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To Meg.

Knowledge and ability were tools,
not things to show off.

– Haruki Murakami, 1Q84





Cette thèse traite de deux problèmes qui ont leur origine dans la théorie du contrôle
géométrique, et qui concernent les systèmes de contrôle avec dérive, c’est-à-dire de la
forme q̇ = f0(q) +

∑m
j=1 ujfj(q). Dans la première partie de la thèse, on généralise le

concept de complexité de courbes non-admissibles, déjà bien compris pour les systèmes
sous-riemanniens, au cas des systèmes de contrôle avec dérive, et on donne des estima-
tions asymptotiques de ces quantités. Ensuite, dans la deuxième partie, on considère une
famille de systèmes de contrôle sans dérive en dimension 2 et on s’intéresse à l’operateur
de Laplace-Beltrami associé et à l’évolution de la chaleur et des particules quantiques
qu’il définit. On étudie plus particulièrement l’effet qu’a l’ensemble où les champs de
vecteurs contrôlés deviennent colinéaires sur ces évolutions.

This thesis is dedicated to two problems arising from geometric control theory, re-
garding control-affine systems q̇ = f0(q) +

∑m
j=1 ujfj(q), where f0 is called the drift. In

the first part we extend the concept of complexity of non-admissible trajectories, well
understood for sub-Riemannian systems, to this more general case, and find asymptotic
estimates. Then, in the second part of the thesis, we consider a family of 2-dimensional
driftless control systems. For these, we study how the set where the control vector fields
become collinear affects the evolution of the heat and of a quantum particle with respect
to the associated Laplace-Beltrami operator.
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1. Introduction

Dynamics, from how a car moves up to the evolution of a quantum particle, are modelled
in general by differential equations. Control theory deals with dynamics where it is
possible to act on some part of the equation by means of controls, e.g., how to park a
car or how to steer a quantum particle to a desired state.

More precisely, a control system on a smooth manifold M is an ordinary differential
equation in the form

q̇(t) = f(q(t), u(t)), (1.1)

where u : [0, T ] → U is an integrable and bounded function – called control – taking
values in some set U ⊂ Rm, and f : M × U → TM is a continuous function such that
f(·, u) is a smooth vector field for each u ∈ U . Thus, fixing a control and an initial point
q0, system (1.1) has a unique maximal solution qu(t). Every curve γ : [0, T ] → M that
can be written as solution of system (1.1) for some control u and with starting point
γ(0), is said to be admissible.

With a control system it is possible to associate an optimal control problem. Namely,
one considers a cost J : (u, T ) 7→ [0,+∞), where T > 0 and u ∈ L1([0, T ],Rm). Then,
given two points q0, q1 ∈ M one is interested in minimizing the functional J among all
admissible controls u ∈ L1([0, T ],Rm), T > 0, for which the corresponding solution of
(1.1) with initial condition qu(0) = q0 is such that qu(T ) = q1. This is written as





q̇(t) = f(q(t), u(t)),

q(0) = q1, q(T ) = q1,

J(u, T ) −→ min .

(1.2)

The final time T can either be fixed, or free to be selected in a certain interval of time.
From the optimal control problem associated with a cost J, one defines the value

function V : M×M → [0,+∞]. This is a function that associates to every pair of points
q0, q1 ∈M the infimum of the cost of controls admissible for the corresponding optimal
control problem (1.2). If there are no such controls, then V(q0, q1) = +∞.

The aim of this thesis is to study two different problems arising from control theory,
regarding control-affine systems with unbounded controls, i.e., with U = Rm. A control-
affine system on a smooth manifold M is a control system in the form

q̇(t) = f0(q(t)) +

m∑

i=1

ui(t)fi(q(t)), (1.3)

where, u : [0, T ]→ Rm is an integrable control function and {f0, f1, . . . , fm} is a family
of smooth vector fields. The vector fields f1, . . . , fm are called control vector fields,
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1. Introduction

while f0 is called the drift. For most of the dissertation we will consider as a cost
J : (u, T ) 7→ [0,+∞) the L1-norm of u. Namely we will be interested in the optimal
control problem 




q̇(t) = f0(q(t)) +

m∑

i=1

ui(t)fi(q(t)),

q(0) = q0, q(T ) = q1,

J (u, T ) =

∫ T

0

√√√√
m∑

i=1

ui(t)2 dt −→ min .

(1.4)

From a mathematical point of view, these systems describe the underlying geometry of
hypoelliptic operators, as we will see later. In applications, they appear in the study of
many mechanical systems, from the already mentioned car parking problem up to most
kind of robot motion planning, and recently in research fields such as mathematical
models of human behavior, quantum control or motion of self-propulsed micro-organism
(see [ADL08, BDJ+08, BCG02a]). A suggestive application of these systems and of
hypoelliptic diffusions, in the particular case where f0 ≡ 0, appeared in the field of
cognitive neuroscience to model the functional architecture of the area V1 of the primary
visual cortex, as proposed by Petitot, Citti, and Sarti [PT99, Pet09, CS06].

We will focus on the following two general problems for these kind of systems.

1. Complexity of non-admissible trajectories. A common issue in control theory, used
for example in robot motion planning, is to steer the system along a given curve Γ.
Since, in general, Γ is not admissible, i.e., it is not a solution of system (1.3), the
best one can do is to steer the system along an approximating trajectory. The first
part of the thesis is dedicated to quantify the cost of this approximation – called
complexity – depending on the relation between Γ and (1.3). As a preliminary
step, it is necessary to study the value function associated with the optimal control
problem (1.4), estimating its behavior along the curve Γ. This research appears in
two papers:

P1. D. Prandi, Hölder continuity of the value function for control-affine systems,
arXiv:1304.6649 [math.OC].

P2. F. Jean, D. Prandi, Complexity of control-affine motion planning,
arXiv:1309.2571 [math.OC].

2. Singular diffusions. In the second part of the thesis we will focus on a family of two
dimensional driftless control systems in the form (1.3), to which it is possible to
associate intrinsically a Laplace-Beltrami operator. Due to the control vector fields
becoming collinear on a curve Z, this operator will present some singularities. Our
interest lies on how Z affects the diffusion dynamics. In particular, we will try to
understand if solutions to the heat and Schrödinger equations associated with this
Laplace-Beltrami operator are able to cross Z, and whether some heat is absorbed
in the process or not. This research appears in:
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1.1. Sub-Riemannian geometry

P3. U. Boscain, D. Prandi, The heat and Schrödinger equations on conic and
anticonic-type surfaces, arXiv:1305.5271 [math.AP].

Recent results on this topic, that have been part of the research developed during
the PhD, but are not presented here, are contained in the work in progress:

P4. A. Posilicano, D. Prandi, A cornucopia of self-adjoint extensions, in prepara-
tion.

The mathematical motivation of the problems considered in this thesis lies in sub-
Riemannian geometry. Thus, we will use the next section to introduce this topic. Our
contributions will then be described in Sections 1.2 and 1.3, while Section 1.4 is devoted
to expose some open problems and future lines of research.

1.1. Sub-Riemannian geometry

Sub-Riemannian geometry can be thought of as a generalization of Riemannian geome-
try, where the dynamics is subject to non-holonomic constraints. Classically (see, e.g.,
[Mon02]), a sub-Riemannian structure on M is defined by a smooth vector distribution
∆ ⊂ TM – i.e., a sub-bundle of TM – of constant rank k and a Riemannian metric
g defined on ∆. From this structure, one derives the so-called Carnot-Carathéodory
distance dSR on M . The length of any absolutely continuous path tangent to the distri-
bution – called horizontal – is defined through the Riemannian metric, and the distance
dSR(q0, q1) is then defined as the infimum of the length of all horizontal paths joining q0
to q1. If no such path exists, dSR(q0, q1) = +∞.

Locally, it is always possible to find an orthonormal frame {f1, . . . , fm} for ∆. This al-
lows to identify horizontal trajectories with admissible trajectories of the non-holonomic
control system

q̇(t) =
m∑

i=1

ui(t)fi(q(t)). (1.5)

The problem of finding the shortest curve joining two fixed points q0, q1 ∈ M is then
naturally formulated as the optimal control problem





q̇(t) =

m∑

i=1

ui(t)fi(q(t)),

q(0) = q1, q(T ) = q1,

J (u, T ) =

∫ T

0

√√√√
m∑

i=1

ui(t)2 dt −→ min .

(1.6)

With this point of view, the Carnot-Carathéodory distance is the value function associ-
ated with (1.6).

This framework is however more general than classical sub-Riemannian geometry. In-
deed, choosing f1, . . . , fm to be possibly non-linearly independent, this optimal control
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1. Introduction

formulation allows to define sub-Riemannian structures endowed with a rank-varying dis-
tribution ∆(q) = span{f1(q), . . . , fm(q)}. Namely, it is possible to define a Riemannian
norm on ∆(q) as

‖v‖q = min

{
|u| | v =

m∑

i=1

uifi(q)

}
, for any v ∈ ∆(q),

from which the metric gq follows by polarization. Through this metric we obtain the
Carnot-Carathéodory distance, coinciding with the value function of the optimal control
problem associated with the non-holonomic control system, as in the classical case. Since
it well known that every distribution can be globally represented as the linear span of
a finite family of (possibly not linearly independent) vector fields (see [Sus08, ABB12a,
DLPR12]), it is always possible to represent globally a sub-Riemannian structure as a
non-holonomic system.

Although it is outside the scope of the following discussion, we remark that this control
theoretical setting can be stated in purely geometrical terms, as done in [ABB12a].

1.1.1. Metric properties

Once the Carnot-Carathéodory distance is defined, the first natural question is: is it
finite? This amounts to ask if every pair of points of M is joined by an horizontal
curve. This property, in the control theoretic language, is known as controllability or
accessibility.

A partial answer (for analytic corank-one distributions) can be found in Carathéodory
paper [Car09] on formalization of classical thermodynamics, where the role of horizontal
curves is roughly taken by adiabatic processes1. However it is not until the 30’s, that
Rashevsky [Ras38] and Chow [Cho39] independently extendend Carathéodory result to
a general criterion for smooth distributions. The key assumption of this theorem is
the Hörmander condition (or Lie bracket-generating condition) for ∆, i.e., that the Lie
algebra generated by the horizontal vector fields spans at any point the whole tangent
space.

Theorem 1 (Chow-Rashevsky Theorem). Let M be a connected sub-Riemannian man-
ifold, such that ∆ satisfies the Hörmander condition. Then, the Carnot-Carathéodory
distance is finite, continuous, and induces the manifold topology.

Heuristically, the Chow-Rashevsky theorem is a consequence of the fact that, in coor-
dinate representation,

e−tg ◦ e−tf ◦ etg ◦ etf (q) = q + t2[f, g](q) + o(t2). (1.7)

Iterating this procedure shows that, if the Lie bracket-generating condition is satisfied,
it is possible to move in every direction and hence to connect every couple of points on
M .
1Indeed, the proof of this fact relies on the theory of Carnot cycles. This is why the sub-Riemannian

distance is known as “Carnot-Carathéodory” distance.
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1.1. Sub-Riemannian geometry

Let us remark that the converse is not true without assuming M and ∆ to be analytic
(see [Nag66]). From now on, we will always assume the Lie bracket-generating condition
to be satisfied.

Although finite, the Carnot-Carathéodory distance presents a quite different behavior
than the Riemannian one. It is a basic fact of Riemannian geometry that small balls
around a fixed point are, when looked in coordinates, roughly Euclidean. This isotropic
behavior is essentially due to the fact that geodesics tangent vectors are parametrized
on the Euclidean sphere in the tangent space. In sub-Riemannian geometry this is no
more true, and as a consequence the Carnot-Carthéodory distance is highly anisotropic.
Indeed, in order to move in directions that are not contained in the distribution, it is
necessary to construct curves like (1.7). This suggest that the number of brackets we
have to build to attain a certain direction is directly related to the cost of moving in
that direction.

In order to exploit this fact, it is necessary to choose an appropriate coordinate system.
Let ∆1 = ∆ and define recursively ∆s+1 = ∆s +[∆s,∆], for every s ∈ N. By the
Hörmander condition, the evaluations of the sets ∆s at q form a flag of subspaces of
TqM ,

∆1(q) ⊂ ∆2(q) ⊂ . . . ⊂ ∆r(q) = TqM. (1.8)

The integer r = r(q), which is the minimum number of brackets required to recover the
whole TqM is called degree of non-holonomy (or step) of ∆ at q. Finally, let w1 ≤ . . . ≤
wn be the weights associated with the flag, defined by wi = s if dim ∆s−1(q) < i ≤
dim ∆s(q), setting dim ∆0(q) = 0. A system of coordinates z = (z1, . . . , zn) at q is priv-
ileged whenever the non-holonomic order of zi is exactly wi – i.e., if fi1 · · · fiwizi = 0 for
any {i1, . . . , iwi} ⊂ {1, . . . ,m} but fi1 · · · fiwifiwi+1zi 6= 0 for some {i1, . . . , iwi , iwi+1} ⊂
{1, . . . ,m}. In particular, any system of privileged coordinates at q induces a splitting
of the tangent space as a direct sum,

TqM = ∆1(q)⊕∆2(q)/∆1(q)⊕ . . .⊕∆r(q)/∆r−1(q),

where each ∆s(q)/∆s−1(q) is spanned by ∂zi |q with wi = s.
Starting from the 80’s, various authors exploited privileged coordinates to obtain the

following result, showing the strong anisotropy of the Carnot-Carathéodory distance.
For early versions see [NSW85, Ger90, Gro96], while a general and detailed proof can
be found in [Bel96].

Theorem 2 (Ball-box Theorem). Let z = (z1, . . . , zn) be a system of privileged coordi-
nates at q ∈M . Then, there exist C, ε0 > 0 such that for any ε < ε0, it holds

Box

(
1

C
ε

)
⊂ BSR(q, ε) ⊂ Box (Cε) .

Here, we let BSR(q, ε) be both the sub-Riemannian ball of radius ε > 0 centered in q and
its coordinate representation z(BSR(q, ε)). Moreover, we let

Box(ε) = {x ∈ Rn | |xi| ≤ εwi} . (1.9)
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1. Introduction

An immediate consequence of this theorem is the Hölder equivalence of the Carnot-
Carathéodory distance and the Euclidean one. Namely, in any coordinate system cen-
tered at q and for q′ sufficiently close to q, it holds

|q′ − q| . dSR(q, q′) . |q′ − q| 1r . (1.10)

Here we used “.” to denote an inequality up to a multiplicative constant.
As a consequence of the anisotropy of the distance, the Hausdorff dimension of a sub-

Riemannian manifold is different from its topological dimension. A point q is said to be
regular if dim ∆s is constant near q for any 1 ≤ s ≤ r. If every point is regular, then the
sub-Riemannian manifold is said to be equiregular. This allows to prove the following
celebrated theorem [Mit85].

Theorem 3 (Mitchell’s measure theorem). The Hausdorff dimension dimHq M of a sub-
Riemannian manifold at a regular point q is given by

dimHq M =

r∑

s=1

s(dim ∆s(q)− dim ∆s−1(q)).

In particular, if dim ∆(q) < dimM , then dimM < dimHq M . Moreover, the (dimHq M)-
dimensional Hausdorff measure is absolutely continuous with respect to any smooth vol-
ume, near q.

The theorem has been proved only at regular points since near these points the Ball-
Box Theorem holds with uniform constants. See [GJ13] for some more general results
in this direction.

1.1.2. Complexity and motion planning

The concept of complexity was first developed for the non-holonomic motion planning
problem in robotics. Given a non-holonomic control system on a manifold M , the motion
planning problem consists in finding an admissible trajectory connecting two points,
usually under further requirements, such as obstacle avoidance. Since with the control
system is associated a distance, it makes sense to try to find the shortest trajectory.

Different approaches are possible to solve this problem (see [LSL98]). Here we focus
on those based on the following algorithm:

1. try to find any (usually non-admissible) path Γ solving the problem,

2. try to approximate Γ with admissible paths.

The first step is independent of the sub-Riemannian structure under consideration, since
it depends only on the topology of the manifold and of the obstacles. Thus, we are inter-
ested in the second step, which depends only on the local nature of the control system
near the path. In particular, we try to measure the complexity of the approximation
task. By complexity we mean a function of the non-admissible curve Γ ⊂ M (or path
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1.1. Sub-Riemannian geometry

γ : [0, T ]→ M), and of the precision of the approximation, quantifying the difficulty of
the latter by means of the cost function. Let us remark that, especially on equiregular
sub-Riemannian manifolds, the asymptotic behavior of σ(Γ, ε) as ε ↓ 0 is strictly related
with the Hausdorff dimension dimH Γ.

Let Γ ⊂ M be a curve with endpoints x and y, i.e., a one dimensional submanifold
with boundary of M diffeomorphic to a closed interval. For ε > 0, we let an ε-cost
interpolation of Γ to be any horizontal curve η : [0, T ]→M with η(0) = x and η(T ) = y
such that in any segment of η of length ≥ ε, there is a point of Γ. Moreover, let
Tube(Γ, ε) to be the sub-Riemannian tubular neighborhood of radius ε around the curve
Γ. Following Gromov [Gro96, p. 278] and Jean [Jea01a], we give two possible definitions
of metric complexity of Γ.

• Interpolation by cost complexity:

σc(Γ, ε) =
1

ε
inf
{

length(η) | η is an ε-cost interpolation of Γ
}
.

This function measures the number of pieces of cost ε necessary to interpolate Γ.

• Tubular approximation complexity:

σa(Γ, ε) =
1

ε
inf



length(η)

∣∣∣∣∣∣

0 < T ≤ T ,
η(0) = x, η(T ) = y,
η
(
[0, T ]

)
⊂ Tube(Γ, ε)



 .

This complexity measures the number of pieces of cost ε necessary to go from x to
y staying inside the sub-Riemannian tube Tube(Γ, ε).

Two functions f(ε) and g(ε), tending to ∞ or to 0 when ε ↓ 0 are weakly equivalent
(denoted by f(ε) � g(ε)) if both f(ε)/g(ε) and g(ε)/f(ε), are bounded when ε ↓ 0. A
complete characterization of weak asymptotic equivalence of metric complexities of a
path is obtained in [Jea03]. We state here this result in the special case where M is an
equiregular sub-Riemannian manifold.

Theorem 4. Let M be an equiregular sub-Riemannian manifold and let Γ ⊂ M be a
curve. Then, if there exists k ∈ N such that TqΓ ⊂ ∆k(q) \ ∆k−1(q) for any q ∈ Γ, it
holds

σc(Γ, ε) � σa(Γ, ε) �
1

εk
.

In particular, this implies that
dimH Γ = k.

Here, similarly to what happened in Theorem 3, the equiregularity is needed in order
to have a uniform Ball-Box theorem near Γ. Indeed, to get the general result of [Jea03],
it is necessary to use a finer form of the Ball-Box theorem that holds uniformly around
singular points, proved in [Jea01b].

Two functions f(ε) and g(ε), tending to ∞ or to 0 when ε ↓ 0 are strongly equivalent
(denoted by f(ε) ' g(ε)) if f(ε)/g(ε) −→ 1 when ε ↓ 0. An asymptotic optimal synthesis
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1. Introduction

for σc(Γ, ε) is a control strategy, depending on ε, that realizes a strong asymptotic
equivalent of σc(Γ, ε) for ε ↓ 0. Namely, it is a family {ηε}ε>0 of ε-cost interpolations of
Γ, such that

1

ε
length(ηε) ' σc(Γ, ε).

The definition of asymptotic optimal synthesis for σa(Γ, ε) is given in a similar way.
In a series of papers by Gauthier, Zakalyukin and others (see [BG13] for a review),

strong asymptotic estimates and explicit asymptotic optimal syntheses are obtained
for the metric complexities on a restricted class of problems, improving the results in
[Jea03]. Namely, these results holds for generic couples (Γ, (∆,g)) of curves and sub-
Riemannian structures, where the latter are either two-step bracket-generating (i.e. such
that ∆ +[∆,∆] = TM), or with two controls and dimM ≤ 6.

We conclude this section by stating, as an example, the result regarding the strong
asymptotic equivalence for a generic distribution on R3 proved in the series of papers
[RMGMP04, GZ05, GZ06]. Generically, a rank two distribution on R3 is two-step
bracket-generating except on a codimension 1 smooth surface, called the Martinet sur-
face and denoted by M. Generically the curve Γ crosses M transversally at a finite
number (possibly equal to 0) of isolated points, where ∆ is not tangent to M. Letting
γ : [0, T ] → M being a parametrization of Γ, let ti, i = 1, . . . , `, be such that γ(ti) are
such points. Then, it holds the following.

Theorem 5. There exists a function χ : [0, T ] → [0,+∞), explicitly defined by Γ and
∆, such that

1. If ` = 0, then

σc(Γ, ε) = 2πσa(Γ, ε) '
4π

ε2

∫ T

0

dt

χ(t)
.

2. If ` 6= 0, letting %(t) = |∂tχ(t)| it holds

σc(Γ, ε) = 2πσa(Γ, ε) ' −4π
log ε

ε2

∑̀

i=1

1

%(ti)
.

1.1.3. The sub-Laplacian

A differential operator P is hypoelliptic if for any a : U ⊂ M → R it holds that
Pa ∈ C∞(U) implies a ∈ C∞(U). The deep connection between second-order hypoellip-
tic operators and sub-Riemannian geometry became evident after the celebrated work
[Hör67]. In this paper, Hörmander proved that the Lie bracket-generating condition
is sufficient for the hypoellipticity of a second order differential operators with local
expression

L =
m∑

i=1

f2i + “first-order terms”,

where the fi’s are first-order differential operators. Then, interpreting {f1, . . . , fm} as a
family of vector fields, it is possible to define a sub-Riemannian structure on M .

10



1.1. Sub-Riemannian geometry

The operator L =
∑m

i=1 f
2
i is commonly called the sub-Laplacian on M associated

with the frame {f1, . . . , fm}. From a sub-Laplacian it is possible to recover the Carnot-
Carathéodory metric dSR defined by the frame. In fact, letting the sub-Riemannian
gradient ∇H u =

∑m
i=1 fiu, it holds that

dSR(q0, q1) = sup
{
u(x)− u(y) | u ∈ C∞c (M) and | ∇H u|2 ≤ 1 a.e.

}
,

where | ∇H u|2 =
∑m

i=1(fiu)2. This has allowed to find many estimates on the fun-
damental solution of L in terms of the associated Carnot-Carathéodory distance (see,
e.g., [FS74, RS76]), and was at the origin of the renovated interested in sub-Riemannian
geometry in the 70’s [Gav77].

However, the correspondence between hypoelliptic operators and sub-Riemannian
manifolds is not one-to-one. Indeed, it is easy to check that the sub-Riemannian gradient
does not depend on the family of vector fields {f1, . . . , fm}, but is intrinsically defined
by the sub-Riemannian structure2. On the other hand, the sub-Laplacian L̃ associated
with a different family of vector fields {g1, . . . , gm}, generating the same distribution,
differs from L by a first-order differential operator. Thus, the same sub-Riemannian
structure is associated with different sub-Laplacians.

Since we are interested in having a diffusion operator intrinsically associated with
the sub-Riemannian structure, we have to resolve this ambiguity. The same problem
arises in Riemannian geometry, when defining the Laplace-Beltrami operator, and it is
resolved through the Green identity. We will proceed in the same way. Namely, instead
of defining the sub-Laplacian through a local frame of the distribution, we consider a
global smooth volume form dµ, and let the sub-Laplacian L to be the only operator
satisfying the Green identity:

−
∫

M
f(L g) dµ =

∫

M
g(∇H f,∇H g) dµ, for any f, g ∈ C∞c (M). (1.11)

Hence, in order to have an intrinsically-defined sub-Laplacian, one needs the volume dµ
to be intrinsically defined by the geometric structure of the manifold.

In the Riemannian case this problem is readily settled. Indeed, on any Riemannian
manifold there are three common ways to define an intrinsic volume: The Riemannian
metric defines the Riemannian volume, with coordinate expression dV =

√
gdx1 ∧ · · · ∧

dx2, while the Riemannian distance allows to define the n-dimensional Hausdorff and
spherical Hausdorff volumes. Since these three volumes are proportional up to a constant
(see, e.g., [Fed69]), they are equivalent for the definition of the Laplace-Beltrami operator
through (1.11).

In the sub-Riemannian setting, through the sub-Riemannian structure it is possible to
define an intrinsic measure – called Popp measure – that plays the role of the Riemannian
volume, and which is smooth if M is equiregular. In the equiregular case, by Theorem 3,
we have at our disposal also the (dimHM)-dimensional Hausdorff measure and spherical

2Indeed, the sub-Riemannian gradient of u is the only vector field such that gq(∇H u(q), v) = du(v),
for any q ∈ M and v ∈ ∆(q).

11



1. Introduction

Hausdorff measure, which are commensurable one with respect to the other (see, e.g.,
[Fed69]) and are absolutely continuous with respect to the Popp measure. Recent results
[ABB12b], have however proved that the density of the Hausdorff measures with respect
to the Popp measure is not, in general, smooth. Thus these measures define different
intrinsic sub-Laplacians. When the manifold is not equiregular, moreover, these sub-
Laplacians can present terms that diverge near singular points, as we will discuss in the
next section.

This said, considering sub-Riemannian manifolds endowed with additional structure
can resolve this ambiguity. For example, for left-invariant sub-Riemannian structures,
i.e., Lie groups equipped with a left-invariant distribution and metric, both the Popp and
the Hausdorff measures are left-invariant and hence Haar measures. The uniqueness up
to a constant of Haar measures, allows then to define the sub-Laplacian through (1.11),
as studied in [ABGR09].

1.1.4. The Laplace-Beltrami operator in almost-Riemannian geometry

We now introduce a particular class of sub-Riemannian structures, the 2-dimensional
almost-Riemannian structures (abbreviated to 2-ARS). These are rank-varying sub-
Riemannian structures on a 2-dimensional manifold M that can be defined locally by
a pair of smooth vector fields satisfying the Lie bracket-generating condition. The
name almost-Riemannian is due to the fact that these manifolds can be regarded as
equipped with a generalized Riemannian metric g, whose eigenvalues are allowed to
diverge approaching the singular set Z where the two vector fields become collinear.
Such structures were introduced in the context of hypoelliptic operators [Gru70, FL82],
then appeared in problems of population transfer in quantum systems [BCG+02b, BC04,
BCC05], and have applications to orbital transfer in space mechanics [BC08, BCST09].

Almost-Riemannian manifolds present very interesting phenomena. For instance,
geodesics can pass through the singular set with no singularities, even if all Rieman-
nian quantities (e.g., the metric, the Riemannian area, the curvature) diverge while
approaching Z. Moreover, the presence of a singular set allows the conjugate locus to
be nonempty even if the Gaussian curvature, where it is defined, is always negative (see
[ABS08]). See also [ABS08, ABC+10, BCG13, BCGS13] for Gauss–Bonnet-type formu-
las, a classification of 2-ARS from the point of view of Lipschitz equivalence and normal
forms for generic 2-ARS.

Since almost-Riemannian structures are not equiregular, both the Popp measure dP
and the 2-dimensional Hausdorff measures diverge on Z. On the other hand, on M \ Z
the Popp measure coincides with the Riemannian volume and is thus proportional to
the 2-dimensional Hausdorff measures. This allows to define an intrinsic sub-Laplacian
L through formula (1.11) applied to smooth functions compactly supported on M \ Z.
Due to the explosion of the metric when approaching the singularity, this operator will
be singular on Z. Since L is actually the Laplace-Beltrami operator of the Riemannian
manifold M \ Z, it is called the Laplace-Beltrami operator associated with the 2-ARS.

Let us remark that this Laplace-Beltrami operator does not coincide with the hypoel-
liptic operator classically associated with the 2-ARS. Indeed, on trivializable structures

12
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over R2 – i.e., structures on R2 admitting a global orthonormal frame – the latter cor-
responds to the “sum of squares” sub-Laplacian L. This sub-Laplacian can be defined
through (1.11) using the 2-dimensional Lebesgue measure, and thus it is not intrinsic.
Moreover, since the Lebesgue measure is locally finite on R2, the operator L is not
singular on Z.

In [BL] the following has been proved for a class of 2-ARS, with strong evidence
suggesting that the same is true in general.

Theorem 6. Let M be a 2-dimensional compact orientable manifold endowed with a 2-
ARS. Assume moreover that Z is an embedded one-dimensional sub-manifold of M and
that ∆ +[∆,∆] = TM . Then the Laplace-Beltrami operator L is essentially self-adjoint
on L2(M, dP).

The proof proceeded through essentially two steps. First, the statement was proved
for the Laplace-Beltrami operator associated with a compactified version of the Grushin
plane ([Gru70, FL82]), and then this result was extended to a general compact 2-ARS,
through perturbation theory [Kat95].

The Grushin plane is the 2-ARS defined globally by the couple of vector fields

X1(x, y) =

(
1
0

)
, X2(x, y) =

(
0
x

)
, x, y ∈ R2, (1.12)

and, thanks to the normal forms obtained in [BCG13], it is a good model for general
2-ARS satisfying ∆ +[∆,∆] = TM . For this structure, the Laplace-Beltrami operator
L and the “sum of squares” sub-Laplacian L are, respectively,

L = ∂2x −
1

x
∂y + x2∂2y and L = X2

1 +X2
2 = ∂2x + x2∂2y .

Theorem 6 has a number of implications. First, it shows that the singularity splits
the manifold in two connected components that a quantum particle or the heat cannot
cross: The explosion of the area naturally acts as a barrier which prevents the crossing
of Z by the particles. Moreover, since the Carnot-Caratheodory distance between points
on different sides of the singularity is finite, there is no hope to get estimates for the
fundamental solution of L in terms of this distance. However, such estimates have been
found by [Léa87] for L, showing that this operator and L have quite different properties.
The first one is not intrinsic, but however keeps track of intrinsic quantities such as the
Carnot-Carthéodory distance. In particular, the corresponding heat flow crosses the set
Z, contrarily to what happens for L.

1.2. Control-affine systems

The first part of this thesis is devoted to generalize the concepts of sub-Riemannian
complexity introduced in Section 1.1.2 to system (1.3) with a non-zero drift. Such a
generalization is critical for applications. As examples we cite: mechanical systems with
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controls on the acceleration (see e.g., [BL05], [BLS10]) where the drift is the velocity, or
quantum control (see e.g., [D’A08], [BM06]), where the drift is the free Hamiltonian.

It has been known since the the 70’s that under the strong Hörmander condition, i.e.,
if {f1, . . . , fm} satisfies the Hörmander condition, and with unbounded controls, such
systems are controllable. Such a result is proved for example in [BL75], considering
(1.3) as a perturbation of a non-holonomic control system. From now on, we will always
assume the strong Hörmander condition to be satisfied.

Although out of the scope of the present work, we have to mention that from as early
as the 60’s the problem of controllability of such systems under the Hörmander condition
– i.e., that the Lie algebra generated by the drift and the control vector fields spans the
whole tangent space at any point – has been subject to a lot of attention, see for example
[Kal60, Her64, BL75, Sus82]. In particular, the main focus has been the so-called small
time local controllability around an equilibrium point, i.e., if given an equilibrium point
q ∈ M and any time T > 0 the end-points of admissible trajectories defined on [0, T ]
and starting from q cover a neighborhood of q. This problem is important, for example,
in the context of quasi-static motions for robots with controls on the acceleration. For
a review on results obtained in this direction see e.g., [Kaw90].

System (1.3) can be seen, from a geometrical point of view, as a generalization of sub-
Riemannian geometry, where the distribution ∆(q) is replaced by the affine distribution
f0(q) + ∆(q). Thus, in addition to the L1 cost J considered in (1.4), it makes sense to
study also the cost

I(u, T ) =

∫ T

0

√√√√1 +
m∑

i=1

ui(t)2 dt,

that measures the “Riemannian” length of admissible curves. We then fix a time T > 0
and consider the two value functions VJ (q0, q1) and VI(q0, q1) as the infima of the costs
J and I, respectively, over all controls steering system (1.3) from q0 to q1 in time T ≤ T .
Contrarily to what happens in sub-Riemmanian geometry with the Carnot-Carathéodory
distance, these value functions are not symmetric, and hence do not induce a metric space
structure on M . In fact, system (1.3) is not reversible – i.e., changing orientation to an
admissible trajectory does not yield an admissible trajectory.

The reason for introducing a maximal time of definition for the controls – not needed
in the sub-Riemannian context – is that, by taking T sufficiently small, it is possible to
prevent any exploitation of the geometry of the orbits of the drift (that could be, for
example, closed). Let us also remark that, since the controls can be defined on arbitrarily
small times, it is possible to approximate admissible trajectories via trajectories for the
sub-Riemannian associated system (i.e., the one obtained by posing f0 ≡ 0 in (1.3))
rescaled on small intervals.

1.2.1. Hölder continuity of the value function

Paper P1., is dedicated to generalize the Chow-Rashewsky theorem and the Ball-box
theorem to system (1.3) with the cost J . Indeed, the first result we obtain is a global
continuity result for the value function.

14



1.2. Control-affine systems

Theorem 7. For any 0 < T ≤ +∞, the function VJ : M×M → [0,+∞) is continuous.
Moreover, letting dSR be the sub-Riemannian distance induced by {f1, . . . , fm}, it holds

VJ (q, q′) ≤ min
0<t≤T

dSR(etf0q, q′), for any q, q′ ∈M.

Letting Rf0(q, ε) be the reachable set from q with cost J less than ε, Theorem 7 shows
that ⋃

0<t≤T
BSR(etf0q, ε) ⊂ Rf0(q, ε). (1.13)

Thus, the cost to steer the sub-Riemannian system from one point to another is always
larger or equal than the cost to steer the control-affine system between the same points.
Moreover, the fact that in coordinates it holds

etf0−εf1 ◦ etf0+εf1(q) = 2tf0(q) + tε[f0, f1](q) + o(εt),

suggests that exploiting the drift it is actually possible to move more easily in some
directions. Indeed, we will prove that this is the case, but only on very special directions
realized as brackets of the drift with the control vector fields. Although this will not
suffice to improve (1.13), we will be able to obtain a ball-box-like estimation of the
reachable set from the outside.

Assume that the drift is regular, in the sense that there exists s ∈ N such that
f0 ⊂ ∆s \∆s−1, where ∆s is defined through the vector fields {f1, . . . , fm} as in the sub-
Riemannian case. In particular, this allows to build systems of privileged coordinates
rectifying f0. Let {∂zi}ni=1 be the canonical basis of Rn and consider the following sets:

Ξ(η) =
⋃

0≤ξ≤T
(ξ∂z` + Box (η))

Π(η) =
⋃

0≤ξ≤T
{z ∈ Rn : |z` − ξ| ≤ ηs, |zi| ≤ ηwi + ηξ

wi
s for wi ≤ s, i 6= k,

and |zi| ≤ η(η + ξ
1
s )wi−1 for wi > s},

In particular, observe that Π(η) is contained in Box(η), defined in (1.9), and that Π(η)∩
{z` < 0} = Box(η) ∩ {z` < 0}. We then get the following generalization of the Ball-Box
theorem

Theorem 8. Let z = (z1, . . . , zn) be a system of privileged coordinates at q for {f1, . . . , fm},
rectifying f0 as the k-th coordinate vector field ∂z`, for some 1 ≤ ` ≤ n. Then, there
exist C, ε0, T0 > 0 such that, if the maximal time of definition of the controls satisfies
T < T0, it holds

Ξ

(
1

C
ε

)
⊂ Rf0(q, ε) ⊂ Π(Cε), for ε < ε0. (1.14)

Here, with abuse of notation, we denoted by Rf0(q, ε) the coordinate representation of
the reachable set.
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This theorem represent the key step for generalizing the estimates on the complexity
of curves from sub-Riemannian control systems to control-affine systems.

Finally, as in the sub-Riemannian case, as a consequence of Theorem 8 we get the
following local Hölder equivalence between the value function and the Euclidean distance.

Theorem 9. Let z = (z1, . . . , zn) be a system of privileged coordinates at q for {f1, . . . , fm},
rectifying f0 as the k-th coordinate vector field ∂z`, for some 1 ≤ ` ≤ n. Then, there exist
T0, ε0 > 0 such that, if the maximal time of definition of the controls satisfies T < T0
and VJ (q, q′) ≤ ε0, it holds

dist
(
z(q′), z(e[0,T ]f0q)

)
. VJ (q, q′) . dist

(
z(q′), z(e[0,T ]f0q)

) 1
r
.

Here for any x ∈ Rn and A ⊂ Rn, dist(x,A) = infy∈A |x − y| denotes the Euclidean
distance between them and r is the degree of non-holonomy of the sub-Riemannian control
system defined by {f1, . . . , fm}.

In this result, instead of the Euclidean distance from the origin that appeared in
(1.10), we have the distance from the integral curve of the drift. This is due to the fact
that moving in this direction has null cost.

It is worth to mention that these results regarding control-affine systems are obtained
by reducing them, as in [AL10], to time-dependent control systems in the form

q̇(t) =
m∑

i=1

ui(t) f
t
i (q(t)), a.e. t ∈ [0, T ], (1.15)

where f ti = (e−tf0)∗fi is the pull-back of fi through the flow of the drift. On these
systems, that are linear in the control, we are able to define a good notion of approxima-
tion of the control vector fields. Namely, we will define a generalization of the nilpotent
approximation, used in the sub-Riemannian context, taking into account the fact that in
system (1.15), exploiting the time, we can generate the direction of the brackets between
f0 and the fjs. This approximation and an iterated integral method yield fine estimates
on the reachable set.

1.2.2. Complexity and motion planning

The core of the first part of the thesis is Paper P2., in collaboration with F. Jean. Here,
we focus on extending the concept of complexity to the control-affine case, and to give
weak estimates of these quantities in the same spirit as Theorem 4.

The lack of time-rescaling properties of system (1.3) forces us to consider separately
the concepts of curves, i.e., dimension 1 connected submanifolds Γ ⊂ M diffeomorphic
to a closed interval, and of paths, i.e., smooth injective functions γ : [0, T ] → M . In
particular, when computing the complexity of paths, we will require the approximating
trajectories to respect also the parametrization and not only the geometry of the path.
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1.2. Control-affine systems

We consider four distinct notions of complexities, two for curves and two for paths.
The two for curves are the same as the sub-Riemannian ones already introduced in Sec-
tion 1.1.2. This is true also for what we call the neighboring approximation complexity
of a path, since in the sub-Riemannian case it coincides with the tubular approximation
complexity. On the other hand, what we call the interpolation by time complexity never
appeared in the literature, to our knowledge. Here, we define them for the cost J , but
the same definitions holds for I.

Fix a curve Γ. Recall the definition of ε-cost interpolation given in Section 1.1.2,
and let Tube(Γ, ε) to be the sub-Riemannian tubular neighborhood of radius ε around
the curve Γ. Then, denoting by qu the trajectory associated with a control u and with
starting point qu(0) = x, we let

• Interpolation by cost complexity:

σJc (Γ, ε) =
1

ε
inf
{
J (u, T ) | qu is an ε-cost interpolation of Γ

}
.

This function measures the number of pieces of cost ε necessary to interpolate Γ.
Namely, following a trajectory given by a control admissible for σJc (Γ, ε), at any
given moment it is possible to go back to Γ with a cost less than ε.

• Tubular approximation complexity:

σJa (Γ, ε) =
1

ε
inf



J (u, T )

∣∣∣∣∣∣

0 < T ≤ T ,
qu(0) = x, qu(T ) = y,
qu
(
[0, T ]

)
⊂ Tube(Γ, ε)





This complexity measures the number of pieces of cost ε necessary to go from x to
y staying inside the sub-Riemannian tube Tube(Γ, ε). Such property is especially
useful for motion planning with obstacle avoidance. In fact, if the sub-Riemannian
distance of Γ from the obstacles is at least ε0 > 0, then trajectories obtained from
controls admissible for σJa (Γ, ε), ε < ε0, will avoid such obstacles.

Given a path γ : [0, T ] → M , we let a δ-time interpolation of γ to be any admissible
trajectory qu : [0, T ] → M of (1.3) such that qu(0) = γ(0), qu(T ) = γ(T ), and that, for
any interval [t0, t1] ⊂ [0, T ] of length t1− t0 ≤ δ, there exists t ∈ [t0, t1] with qu(t) = γ(t).
We then let,

• Interpolation by time complexity:

σJt (γ, ε) = δ inf
{
J (u, T )| u is a δ-time interpolation of γ

}
.

Controls admissible for this complexity will define trajectories touching γ at inter-
vals of time of length at most δ. This complexity measures the minimal average
cost on each of these intervals. It is thus well suited for applications where time is
of great importance - e.g. motion planning in rendez-vous problem.
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• Neighboring approximation complexity:

σJn (γ, ε) =
1

ε
inf

{
J (u, T )

∣∣∣∣
qu(0) = x, qu(T ) = y,
qu(t) ∈ BSR(γ(t), ε), ∀t

}
.

This complexity measures the number of pieces of cost ε necessary to go from x
to y following a trajectory that at each instant t ∈ [0, T ] remains inside the sub-
Riemannian ball BSR(γ(t), ε). Such complexity can be applied to motion planning
in rendez-vous problems where it is sufficient to attain the rendez-vous only ap-
proximately.

For these complexities, exploiting the results of the previous section, we are able to
prove the following theorem, in the same spirit as Theorem 4.

Theorem 10. Assume that the sub-Riemannian structure defined by {f1, . . . , fm} is
equiregular, and that f0 ⊂ ∆s \∆s−1 for some s ≥ 2. Then, for any curve Γ ⊂ M ,
whenever the maximal time of definition of the controls T is sufficiently small, it holds

σJc (Γ, ε) � σIc (Γ, ε) � σJa (Γ, ε) � σIa (Γ, ε) � 1

εκ
.

Here κ = max{k : TpΓ ∈ ∆k(p) \∆k−1(p), for any p in an open subset of Γ}.
Moreover, for any path γ : [0, T ] → M such that f0(γ(t)) 6= γ̇(t) mod ∆s−1 for any

t ∈ [0, T ], it holds

σJt (γ, δ) � σIt (γ, δ) � δ
1

max{κ,s} , σJn (γ, ε) � σIn(γ, ε) � 1

εmax{κ,s} .

Here κ = max{k : γ(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for any t in an open subset of [0, T ]}.

This theorem shows that, asymptotically, the complexity of curves is uninfluenced by
the drift, and only depends on the underlying sub-Riemannian system, while the one of
paths depends also on how “bad” the drift is with respect to this system. We remark
also that for the path complexities it is not necessary to have an a priori bound on T .

We conclude this section by studying the problem of long time local controllability
(henceforth simply LTLC ), i.e., the problem of staying near some point for a long period
of time T > 0. This is essentially a stabilization problem around a non-equilibrium point.

Since the system (1.3) satisfies the strong Hörmander condition, using unbounded
controls it is always possible to satisfy some form of LTLC. Hence, we try to quantify
the minimal cost needed, by posing the following. (To lighten the notation, we consider
only the cost J .) Let T > 0, q0 ∈M , and γq0 : [0, T ]→M , γq0(·) ≡ q0.

• LTLC complexity by time:

Θt(q0, T, δ) = σJt (γq0 , δ).

Here, we require trajectories defined by admissible controls to pass through q0 at
intervals of time of length at most δ.
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• LTLC complexity by cost:

Θn(q0, T, ε) = σJn (γq0 , ε).

Admissible controls for this complexity, will always be contained in the sub-Riemannian
ball of radius ε centered at q0.

Clearly, if f0(q0) = 0, then Θt(q0, T, δ) = Θn(q0, T, ε) = 0, for any ε, δ, T > 0. Al-
though γq0 is not a path by our definition, since it is not injective and γ̇q0 ≡ 0, the
arguments of Theorem 10 can be applied also to this case. Hence, we get the following
asymptotic estimate for the LTLC complexities.

Corollary 11. Assume that the sub-Riemannian structure defined by {f1, . . . , fm} is
equiregular, and that f0 ⊂ ∆s \∆s−1 for some s ≥ 2. Then, for any q0 ∈ M and T > 0
it holds

Θt(q0, T, δ) � δ
1
s , Θn(q0, T, ε) �

1

εs
.

1.3. The Laplace-Beltrami operator on conic and anti-conic
surfaces

The second, and last, part of the thesis is devoted to generalizing the results of [BL], see
Theorem 6 in Section 1.1.4, to more general singular surfaces. Namely, we will consider
a family of Riemannian manifolds depending on a parameter α ∈ R, defined on the
disconnected cylinder M =

(
R \{0}

)
× S1, and whose metric has orthonormal basis

X1(x, θ) =

(
1
0

)
, X2(x, θ) =

(
0
|x|α

)
, x ∈ R, θ ∈ S1 . (1.16)

In other words, we will consider the Riemannian metric g = dx2 + |x|αdθ2.
Through a standard procedure, it is possible to extend this metric to Mcylinder = R×S1

when α ≥ 0, and to Mcone = Mcylinder / ∼ when α < 0. Here, (x1, θ1) ∼ (x2, θ2) if and
only if x1 = x2 = 0. We will let Mα be this extended metric space. Notice that in the
cases α = 1, 2, 3, . . ., Mα is an almost Riemannian structure in the sense of 1.1.4, while
in the cases α = −1,−2,−3, . . . it corresponds to a singular Riemannian manifold with
a semi-definite metric.

One of the main features of these metrics is the fact that, except in the case α = 0,
the corresponding Riemannian volumes have a singularity at Z,

dµ =
√

det g dx dθ = |x|−αdx dθ.

Due to this fact, the corresponding Laplace-Beltrami operators contain some diverging
first order terms,

L =
1√

det g

2∑

j,k=1

∂j

(√
det g gjk∂k

)
= ∂2x + |x|2α∂2θu−

α

x
∂x. (1.17)
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-3 -1 1

Figure 1.1.: Geometric interpretation of Mα. The figures above the line are actually
isometric to Mα, while for the ones below the isometry is singular in Z.

Here, we proceed as in Section 1.1.4 and initially define L as an operator on C∞c (Mα \
Z) = C∞c (M).

We have the following geometric interpretation of Mα (see Figure 1.1). For α = 0, this
metric is that of a cylinder. For α = −1, it is the metric of a flat cone in polar coordinates.
For α < −1, it is isometric to a surface of revolution S = {(t, r(t) cosϑ, r(t) sinϑ) | t >
0, ϑ ∈ S1} ⊂ R3 with profile r(t) = |t|−α+O(t−2α) as |t| goes to zero. For α > −1 (α 6= 0)
it can be thought as a surface of revolution having a profile of the type r(t) ∼ |t|−α as
t → 0, but this is only formal, since the embedding in R3 is deeply singular at t = 0.
The case α = 1 corresponds to the Grushin metric defined in (1.12), considered on the
cylinder.

In Paper P3., in collaboration with U. Boscain, we considered the following problems
about Mα.

(Q1) Do the heat and free quantum particles flow through the singularity? In other
words, we are interested to the following: consider the heat or the Schrödinger
equation

∂tψ = Lψ, (1.18)

i∂tψ = −Lψ, (1.19)

where L is given by (1.17). Take an initial condition supported at time t = 0 in
M− = {x ∈ M | x < 0}. Is it possible that at time t > 0 the corresponding
solution has some support in M+ = {x ∈M | x > 0}? 3

(Q2) Does equation (1.18) conserve the total heat (i.e. the L1 norm of ψ)? This is
known to be equivalent to the stochastic completeness of Mα – i.e., the fact that the
stochastic process, defined by the diffusion L, almost surely has infinite lifespan.

3Notice that this is a necessary condition to have some positive controllability results by means of
controls defined only on one side of the singularity, in the spirit of [BCG].
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In particular, we are interested in understanding if the heat is absorbed by the
singularity Z.

The same question for the Schrödinger equation has a trivial answer, since the
total probability (i.e., the L2 norm) is always conserved by Stone’s theorem.

In order for this two questions to have a meaning it is necessary to interpret L as a
self-adjoint operator acting on L2(M,dµ). However, since L is defined only on C∞c (M),
it cannot be self-adjoint and hence one has to apply the theory of self-adjoint extensions.
As a comparison, in order to have a well defined evolution for the equation ∂tψ = ∂2xψ
on the half-line [0,+∞), it is necessary to pose appropriate boundary conditions at 0:
Dirichlet, Neumann, or a combination of the two. These conditions, indeed, guarantee
that ∂2x is essentially self-adjoint on L2([0,+∞)).

1.3.1. Passage through the singularity

The rotational symmetry of Mα suggests to proceed by a Fourier decomposition of L in
the θ variable. Thus, we decompose the space L2(M,dµ) =

⊕∞
k=0Hk

∼= L2(R \{0}, |x|−αdx),
and the corresponding operators on each Hk will be

L̂k = ∂2x −
α

x
∂x − |x|2αk2. (1.20)

It is a standard fact that L is essentially self-adjoint on L2(M,dµ) if all of its Fourier
components L̂k are essentially self-adjoint on L2(R \{0}, |x|−αdx), while the contrary is
not true.

As remarked at the end of Section 1.1.4, if the Laplace-Beltrami operator is essentially
self-adjoint – i.e., if it admits only one self-adjoint extension that is the Friederichs
extension LF – then (Q1) has a negative answer. Indeed, by definition, LF acts separately
on the two sides of the singularity hence inducing two independent dynamics. The
following theorem – that extends Theorem 6 – classifies the essential self-adjointness of
L and of its Fourier components.

Theorem 12. Consider Mα for α ∈ R and the corresponding Laplace-Beltrami operator
L as an unbounded operator on L2(M,dµ). Then the following holds.

• If α ≤ −3 then L is essentially self-adjoint;

• if α ∈ (−3,−1], only the first Fourier component L̂0 is not essentially self-adjoint;

• if α ∈ (−1, 1), all the Fourier components of L are not essentially self-adjoint;

• if α ≥ 1 then L is essentially self-adjoint.

As a corollary of this theorem, we get the following answer to (Q1).
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α ≤ −3 Nothing can flow through Z
−3 < α ≤ −1 Only the average over S1 of the function can flow

through Z
−1 < α < 1 It is possible to have full communication between

the two sides

1 ≤ α Nothing can flow through Z

More precisely, when −3 < α ≤ −1 there exists a self-adjoint extension of L, called
the bridging extension and denoted by LB, such that the heat and Schrödinger flows
allow the passage of only the first Fourier component through the singularity. On the
other hand, when −1 < α < 1, there exists a self-adjoint extension of L, still called the
bridging extension, such that (Q1) has a positive answer, i.e., all the Fourier components
can flow through the singularity.

1.3.2. Stochastic completeness

It is a well known result that each non-positive self-adjoint operator A on a Hilbert
space H defines a strongly continuous contraction semigroup, denoted by {etA}t≥0. If
H = L2(M,dµ) and it holds 0 ≤ etAψ ≤ 1 dµ-a.e. whenever ψ ∈ L2(M,dµ), 0 ≤ ψ ≤ 1
dµ-a.e., the semigroup {etA}t≥0 and the operator A are called Markovian.

When {etA}t≥0 is the evolution semigroup of the heat equation, the Markov property
can be seen as a physical admissibility condition. Namely, it assures that when starting
from an initial datum ψ representing a temperature distribution (i.e., a positive and
bounded function) the solution etAψ remains a temperature distribution at each time,
and, moreover, that the heat does not concentrate. Hence in the following we will focus
only on the Markovian self-adjoint extensions of L.

The interest for Markov operators lies also in the fact that, under an additional as-
sumption which is always satisfied in the cases we consider, Markovian operators are
generators of Markov processes {Xt}t≥0 (roughly speaking, stochastic processes which
are independent of the past).

Since essentially bounded functions are approximable with functions in L2(M,dµ), the
Markovian property allows to extend the definition of etA from L2(M,dµ) to L∞(M,dµ).
Let 1 be the constant function 1(x, θ) ≡ 1. Then (Q2) is equivalent to the following
property.

Definition 13. A Markovian operator A is called stochastically complete (or conserva-
tive) if etA1 = 1, for any t > 0. It is called explosive if it is not stochastically complete.

It is well known that this property is equivalent to the fact that the Markov process
{Xt}t≥0, with generator A, has almost surely infinite lifespan.

We will consider also the following stronger property of {Xt}t≥0.
Definition 14. A Markovian operator is called recurrent if the associated Markov pro-
cess {Xt}t≥0 satisfies, for any set Ω of positive measure and any point x,

Px{there exists a sequence tn → +∞ such that Xtn ∈ Ω} = 1.
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1.3. The Laplace-Beltrami operator on conic and anti-conic surfaces

Here Px denotes the probability measure in the space of paths emanating from a point
x associated with {Xt}t≥0.

We are particularly interested in distinguishing how the stochastically completeness
and the recurrence are influenced by the singularity Z or by the behavior at ∞. Thus
we will consider the manifolds with borders M0 = M ∩ ([−1, 1] × S1) and M∞ =
M \ [−1, 1] × S1, with Neumann boundary conditions. Indeed, with these boundary
conditions, when the Markov process {Xt}t≥0 hits the boundary it is reflected, and
hence the eventual lack of recurrence or stochastic completeness on M0 (resp. on M∞)
is due to the singularity Z (resp. to the behavior at ∞). If a Markovian operator A
on M is recurrent (resp. stochastically complete) when restricted on M0 we will call
it recurrent (resp. stochastically complete) at 0. Similarly, when the same happens on
M∞, we will call it recurrent (resp. stochastically complete) at ∞.

In this context, it makes sense to give special consideration to three specific self-adjoint
extensions of L, corresponding to different conditions at Z. Namely, we will consider the
already mentioned Friedrichs extension LF, that corresponds to an absorbing condition,
the Neumann extension LN, that corresponds to a reflecting condition, and the bridging
extension LB, that corresponds to a free flow through Z and is Markovian only for
α ∈ (−1, 1). Observe that LF and LN are always self-adjoint Markovian extensions,
although it may happen that LF = LN. In this case LF is the only Markovian extension,
and the operator L is called Markov unique. This happens, for example, when L is
essentially self-adjoint.

The following result will answer to (Q2).

Theorem 15. Consider Mα, for α ∈ R, and the corresponding Laplace-Beltrami oper-
ator L as an unbounded operator on L2(M,dµ). Then it holds the following.

• If α < −1 then L is Markov unique, and LF is stochastically complete at 0 and
recurrent at ∞;

• if α = −1 then L is Markov unique, and LF is recurrent both at 0 and at ∞;

• if α ∈ (−1, 1), then L is not Markov unique and, moreover,

– any Markovian extension of L is recurrent at ∞,

– LF is explosive at 0, while both LB and LN are recurrent at 0,

• if α ≥ 1 then L is Markov unique, and LF is explosive at 0 and recurrent at ∞;

In particular, Theorem 15 implies that for α ∈ (−3,−1] no mixing behavior defines
a Markov process. On the other hand, for α ∈ (−1, 1) we can have a plethora of such
processes. Classifying all possible Markov processes in this interval of parameters is the
aim of Paper P4., in collaboration with A. Posilicano.

Since the singularity Z is at finite distance from any point of Mα, one can interpret
a Markov process that is explosive at 0 as if Z were absorbing the heat. Thus, as a
corollary of Theorem 15, we get the following answer to (Q2).
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Figure 1.2.: A summary of the results obtained in Paper P3..

α ≤ −1 The heat is absorbed by Z
−1 < α < 1 The Friedrichs extension is absorbed by Z, while

the Neumann and the bridging extensions are not.

1 ≤ α The heat is absorbed by Z

In Figure 1.2, we plotted a summary of the results we obtained.

1.4. Perspectives and open problems

The results exposed in this thesis are part of ongoing work. Here, we list some of the
natural extensions of this work.

1.4.1. Complexity of non-admissible trajectories

1. Currently, we are working on improving two aspects of Theorem 10. First, we are
considering the case where f0(γ(t)) = γ̇(t) mod ∆s−h(γ(t)) for some 1 ≤ h ≤ s
and for any t ∈ [0, T ]. We have strong evidence suggesting that this yields smaller
complexities. Secondly, we are trying to weaken the assumption f0 ∈ ∆s \s−1 to
f0(q) /∈ ∆(q) for any q ∈M .

2. In mechanical systems, where one controls the acceleration and the drift is the
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velocity, one is usually interested in quasi-static motion planning, i.e., moving
along trajectories near the zero-level set of the drift. In order to develop a complete
theory of control-affine complexities for the costs J and I, it is then necessary to
extend our results to curves or paths contained in the zero-level set of f0.

3. We focused on costs based on the L1-norm. While in the sub-Riemannian case,
thanks to the rescaling properties of non-holonomic control systems, this is es-
sentially equivalent to minimize the Lp-norm, such a statement is no more true
for control-affine system. Thus, we intend to study what happens for this kind
of costs. This problem is not just a mathematical curiosity, but is critical for a
fruitful application of these results to quantum control, where the cost is usually
the L2-norm.

4. In this thesis we obtained only weak asymptotic estimates for the complexities. It
is then natural to look for strong asymptotic estimates and asymptotic optimal
syntheses in the spirit of Theorem 5. The techniques employed by Gauthier and
Zakalyukin should indeed admit a natural generalization to the control-affine case.

1.4.2. Singular diffusions

1. As already mentioned, we are currently collaborating with A. Posilicano on Pa-
per P4. which is a direct continuation of the results exposed in Section 1.3. Our
aim is to completely classify all the Markovian self-adjoint extensions of L in the
case α ∈ (−1, 1), where the deficiency indexes of the Laplace-Beltrami operator
are infinite. This would allow for a better understanding of which kind of trans-
missions are possible in this context. The main motivation for this classification,
however, is the interest these metrics have for α ∈ (0, 1) in the control of partial
differential equations, see e.g., [Mor13].

2. It would be nice to understand the scattering properties of these operators (taking
the bridging extension as a reference), and to derive the associated transmission
and reflection coefficients. This would give informations on how much of a wave
packet would be reflected or transmitted, when hitting the singularity.

3. The study we carried out is meant as a model for more general structure, like non-
equiregular sub-Riemannian manifolds or general conical manifolds. Our plan is
thus to adapt the same tools to prove general results for the heat and Schrödinger
equations for the Laplace-Beltrami operator corresponding to a generalized Rie-
mannian metric including cones, horn-like manifolds and other generalizations.

4. We give results on the behavior of Markov processes by working solely on their
generators. It is natural to try to understand if it is possible to obtain the same
results from a purely probabilistic point of view, for example by defining such
Markov processes as limits of random walks.
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HÖLDER CONTINUITY OF THE VALUE FUNCTION FOR

CONTROL-AFFINE SYSTEMS

DARIO PRANDI†‡

Abstract We prove the continuity and we give a Holder estimate for the value function as-
sociated with the L1 cost of the control-affine system q̇ = f0(q) +

∑m
j=1 ujfj(q), satisfying the

strong Hörmander condition. This is done by proving a result in the same spirit as the Ball-Box
theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction
of the control-affine system to a linear but time-dependent one, for which we are able to define a
generalization of the nilpotent approximation. Finally, we also prove the continuity of the value
function associated with the L1 cost of time-dependent systems of the form q̇ =

∑m
j=1 ujf

t
j (q).

Key words: control-affine systems, time-dependent systems, sub-Riemannian geometry, value
function, Ball-Box theorem, nilpotent approximation.
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1. Introduction

A sub-Riemannian control system on a smooth manifold M is a control system in the form

(1) γ̇(t) =

m∑

i=1

ui(t) fi(γ(t)), a.e. t ∈ [0, T ],

where u : [0, T ] → Rm is an integrable control function and {f1, . . . , fm} is a family of smooth
vector fields satisfying the Hörmander condition, i.e., such that its iterated Lie brackets generate
the whole tangent space at any point. The length of a curve γ solving (1), is then defined as the

length(γ) = min
∫ T

0
|u| dt, where the minimum is taken over all the possible u(·) satisfying the

above ODE. Due to the linearity of the system w.r.t. u, this length will be independent of the
parametrization of γ. Finally, we define

dSR(q, q′) = inf{length(γ) : γ : [0, 1]→M is a solution of (1), γ(0) = q and γ(T ) = q′}.
By the Hörmander condition, dSR is a distance, called Carnot-Carathéodory distance, endowing
M with a natural metric space structure. A manifold considered together with a sub-Riemannian
control system is called a sub-Riemannian manifold.

Define ∆1 = span{f1, . . . , fm} and ∆s+1 = ∆s + [∆s,∆1], for every s ∈ N. Under the
hypothesis that {f1, . . . , fm} is equiregular, i.e., that, for each s ∈ N, the dimension of ∆s(q)
is independent of q ∈ M , the Hörmander condition implies that there exists a (minimal) r ∈ N
such that ∆r(q) = TqM for all q ∈ M . Such r is called the degree of non-holonomy of the
sub-Riemannian control system.
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A fundamental result in the theory of sub-Riemannian manifolds is the celebrated Ball-Box
theorem (see for example [8]). This theorem gives a rough description of the infinitesimal shape
of the sub-Riemannian balls. Namely, at any point q of an equiregular sub-Riemannian manifold,
the sub-Riemannian ball of small radius ε is equivalent, in privileged coordinates, to the box

[−ε, ε]× . . .× [−ε, ε]︸ ︷︷ ︸
dim ∆1

× . . .× [−εs, εs]× . . .× [−εs, εs]︸ ︷︷ ︸
dim ∆s−dim ∆s−1

× . . .× [−εr, εr]× . . .× [−εr, εr]︸ ︷︷ ︸
dim ∆r−dim ∆r−1

.

By this we mean that, for some constant C > 0, the sub-Riemannian ball is contained in a box
of side Cε, and contains a box of side ε/C.

This fact has a plethora of applications. First, it allows to prove a Hölder regularity estimate
with respect to the Euclidean distance in coordinates, namely that, for q′ sufficiently close to q,
it holds

(2) |q′| . dSR(q, q′) . |q′|1/r.
Here we use “.” to denote an inequality up to a multiplicative constant, independent of q′. Then,
among many others, it is a fundamental step in the computation of the Hausdorff dimension of
the manifold (see [21]), and it is used to obtain asymptotic estimates on the heat kernel (see e.g.,
[23, 20, 14, 2]). Moreover, it is the main tool in computing the asymptotic equivalents of the
entropy and the complexity of curves (see e.g., [18, 19, 22, 15, 16]).

In this paper, we focus on a very important generalization of the control system (1), namely
on control-affine systems. These systems are obtained by adding to (1) an uncontrolled vector
field f0, called the drift, and are in the form

(3) γ̇(t) = f0(γ(t)) +
m∑

i=1

ui(t) fi(γ(t)), a.e. t ∈ [0, T ].

These kind of systems appears in plenty of applications. As an example we cite, mechanical
systems with controls on the acceleration (see e.g., [10], [7]), where the drift is the velocity, or
quantum control (see e.g., [12], [9]), where the drift is the free Hamiltonian. We always assume the
strong Hörmander condition, i.e., that the family {f1, . . . , fm} satisfies the Hörmander condition.

The cost of a curve γ solving (3) is cf0(γ) = min
∫ T

0
|u| dt. Unlike the sub-Riemannian length,

due to the presence of the drift, the cost depends on the parametrization of the curve. Finally,
the value function, between q, q′ ∈M , of the control system at time T > 0, is defined as

ρf0T (q, q′) = inf{cf0(γ) : γ : [0, T ′]→M solves (3), γ(0) = q, γ(T ′) = q′, and T ′ ≤ T}.
Assume now that the drift is regular, in the sense that there exists s ∈ N such that f0(q) ∈
∆s(q) \∆s−1(q), for any q ∈ M , where ∆s is defined through the vector fields {f1, . . . , fm} as
before. Our main result is, then, a generalization of (2) to this context.

Theorem 1.1. Let z = (z1, . . . , zn) be a system of privileged coordinates at q for {f1, . . . , fm},
rectifying f0 as the k-th coordinate vector field ∂zk , for some 1 ≤ k ≤ n. Then, for sufficiently

small T and ε, if ρf0T (q, q′) ≤ ε then in z coordinates it holds

dist
(
z(q′), z(e[0,T ]f0q)

)
. ρf0T (q, q′) . dist

(
z(q′), z(e[0,T ]f0q)

)1/r

.

Here for any x ∈ Rn and A ⊂ Rn, dist(x,A) = infy∈A |x − y| denotes the Euclidean distance
between them, etf0 denotes the flow of f0, and r is the degree of non-holonomy of the sub-
Riemannian control system defined by {f1, . . . , fm}.

In this result, instead of the Euclidean distance from the origin that appeared in (2), we have
the distance from the integral curve of the drift. This is due to the fact that moving in this
direction has null cost. As in the sub-Riemannian case, Theorem 1.1 is a consequence of an
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estimate on the shape of the reachable sets, contained in Theorem 4.27. Moreover, although
Theorem 1.1 seems a natural generalization of (2), the shape of the reachable sets described in
Theorem 4.27 is much more complicated than the boxes of the sub-Riemannian case, yielding a
more difficult proof. Theorem 1.1 and 4.27 represent the key step for generalizing the estimates
on the complexity of curves from sub-Riemannian control systems to control-affine systems.

It is worth to mention that these results regarding control-affine systems are obtained by
reducing them, as in [3], to time-dependent control systems in the form

(4) γ̇(t) =
m∑

i=1

ui(t) f
t
i (γ(t)), a.e. t ∈ [0, T ],

where f ti = (e−tf0)∗fi is the pull-back of fi through the flow of the drift. On these systems, that
are linear in the control, we are able to define a good notion of approximation of the control vector
fields. Namely, in Section 3.3 we will define a generalization of the nilpotent approximation, used
in the sub-Riemannian context, taking into account the fact that in the system (4), exploiting the
time, we can generate the direction of the brackets between f0 and the fjs. This approximation
and an iterated integral method yield the correct estimates on the reachable set, contained in
Theorem 3.19.

The paper is divided in three sections. In Section 2 we recall some generalities and definitions
regarding sub-Riemannian control systems, used in the following sections. In Section 3 we
consider control systems in the form (4), and we prove the continuity of the value function
for general time-dependent vector fields. Then, in Theorem 3.19, restricting then to the case
where the time dependency is explicitly given as f ti = (e−tf0)∗fi, we establish some estimates
on the reachable sets, in the same spirit as the Ball-Box theorem. Finally, in Section 4 we
consider control-affine systems. After proving the relation between control-affine systems and
time-dependent systems, we prove the continuity of the value function. Then, in Lemma 4.28,
exploiting the affine nature of the control system, we give an upper bound on the time needed to

join two points q and q′ as a function of ρf0T (q, q′). From this fact and the estimates of Section 3,
Theorems 4.26 and 4.27 follow. Theorem 1.1 is then a particular case of Theorem 4.26, that
holds under slightly milder assumptions on f0 and {f1, . . . , fm}.

2. Sub-Riemannian Geometry

Throughout this paper, M is an n-dimensional connected smooth manifold. In this section
we recall some classical notions and results of sub-Riemannian geometry.

2.1. Sub-Riemannian control systems. A sub-Riemannian (or non-holonomic) control sys-
tem on M is a control system in the form

(SR) q̇ =

m∑

i=1

ui fi(q), q ∈M, u = (u1, . . . , um) ∈ Rm,

where {f1, . . . , fm} is a family of smooth vector fields on M . We let fu =
∑m
i=1 ui fi.

An absolutely continuous curve γ : [0, T ] → M is (SR)-admissible if there exists a control
u ∈ L1([0, T ],Rm) such that γ̇(t) = fu(t)(γ(t)), for a.e. t ∈ [0, T ]. The curve is said to be
associated to any such control. The length of γ is defined as

(5) length(γ) = min ‖u‖L1([0,T ],Rm),

where the minimum is taken over all controls u such that γ is associated with u. It is at-
tained, due to convexity reasons. Notice that, by definition, length(γ) is invariant under time
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reparametrization of the curve. The distance induced by the sub-Riemannian system on M is
then defined as

dSR(q, q′) = inf{length(γ) : γ (SR)-admissible and γ : q  q′},

where γ : q  q′ stands for γ : [0, T ]→M , for some T > 0, γ(0) = q and γ(T ) = q′.
Let ∆ be the C∞-module generated by the vector fields {f1, . . . , fm} (in particular, it is

closed under multiplication by C∞(M) functions and summation). Let ∆1 = ∆, and define
recursively ∆s+1 = ∆s + [∆s,∆], for every s ∈ N. Due to the Jacobi identity ∆s is the C∞-
module of linear combinations of all commutators of f1, . . . , fm with length ≤ s. For q ∈M , let
∆s(q) = {f(q) : f ∈ ∆s} ⊂ TqM . We say that {f1, . . . , fm} satisfies the Hörmander condition
(or that it is a bracket-generating family of vector fields) if

⋃
s≥1 ∆s(q) = TqM for any q ∈ M .

In the following we will always assume this condition to be satisfied.
By the Chow–Rashevsky theorem (see for instance [1]), the hypothesis of connectedness of

M and the Hörmander condition guarantee the finiteness and continuity of dSR with respect to
the topology of M . Hence, the function dSR, called sub-Riemannian or Carnot-Carathéodory
distance, induces on M a metric space structure. The open balls of radius ε > 0 and centered at
q ∈M , with respect to dSR, are denoted by BSR(q, ε).

We say that a (SR)-admissible curve γ is a minimizer of the sub-Riemannian distance between
q, q′ ∈ M if γ : q  q′ and length(γ) = dSR(q, q′). Equivalently, γ is a minimizer between
q, q′ ∈M if it is a solution of the free-time optimal control problem, associated with (SR),

(6) ‖u‖L1(0,T ) =

∫ T

0

√√√√
m∑

j=1

u2
j (t) dt→ min, γ(0) = q, γ(T ) = q′, T > 0.

Indeed, the sub-Riemannian distance is the value function associated with this problem. It is a
classical result that, for any couple of points q, q′ ∈M sufficiently close, there exists at least one
minimizer.

Remark 2.2. The optimal control problem (6) is equivalent to the following, with p ≥ 1 and
T > 0 fixed,

(7) ‖u‖Lp(0,T ) =

(∫ T

0

|u|p dt
)1/p

→ min, γ(0) = q, γ(T ) = q′,

In fact, due to the invariance under time reparametrization of system (SR), in (6) we can fix either
T > 0 or the Euclidean norm of u. Moreover, by the Hölder inequality, for any p > 1, letting p′

be the conjugated exponent to p (i.e., 1/p+ 1/p′ = 1), we get ‖u‖L1(0,T ) ≤ T 1/p′‖u‖Lp(0,T ), with
the equality holding if and only if |u| is constant. From these two facts, it is easy to check that
minimizers of the optimal control problem (7) coincide with the minimizers of (6) with constant
norm. Thus the two optimal control problems are equivalent.

Remark 2.3. This control theoretical setting can be stated in purely geometric terms. Indeed,
it is equivalent to a generalized sub-Riemannian structure. Such a structure is defined by a rank-
varying smooth distribution and a Riemannian metric on it (see [1] for a precise definition). In
a sub-Riemannian control system, in fact, the map q 7→ span{f1(q), . . . , fm(q)} ⊂ TqM defines a
rank-varying smooth distribution, which is naturally endowed with the Riemannian norm defined,
for v ∈ ∆(q), by

g(q, v) = inf

{
|u| =

√
u2

1 + · · ·+ u2
m : fu(q) = v

}
.
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The pair (∆,g) is thus a generalized sub-Riemannian structure on M . Conversely, every rank-
varying distribution is finitely generated, see [6, 1, 4, 13], and thus a sub-Riemannian distance
can be written, globally, as the value function of a control system of the type (SR).

2.2. Privileged coordinates and nilpotent approximation. We now introduce the equiva-
lent, in the sub-Riemannian context, of the linearization of a vector field. This classical procedure,
called nilpotent approximation, is possible only in a carefully chosen set of coordinates, called
privileged coordinates.

Since {f1, . . . , fm} is bracket-generating, the values of the sets ∆s at q form a flag of subspaces
of TqM ,

∆1(q) ⊂ ∆2(q) ⊂ . . . ⊂ ∆r(q) = TqM.

The integer r = r(q), which is the minimum number of brackets required to recover the whole
TqM , is called degree of non-holonomy (or step) of the family {f1, . . . , fm} at q. Set ns(q) =
dim ∆s(q). The integer list (n1(q), . . . , nr(q)) is called the growth vector at q. From now on we
fix q ∈ M , and denote by r and (n1, . . . , nr) its degree of non-holonomy and its growth vector,
respectively. Finally, let w1 ≤ . . . ≤ wn be the weights associated with the flag, defined by wi = s
if ns−1 < i ≤ ns, setting n0 = 0.

For any smooth vector field f , we denote its action, as a derivation on smooth functions, by
f : a ∈ C∞(M) 7→ fa ∈ C∞(M). For any smooth function a and every vector field f with f 6≡ 0
near q, their (non-holonomic) order at q is

ordq(a) = min{s ∈ N : ∃i1, . . . , is ∈ {1, . . . ,m} s.t. (fi1 . . . fis a)(q) 6= 0},
ordq(f) = max{σ ∈ Z : ordq(fa) ≥ σ + ordq(a) for any a ∈ C∞(M)}.

In particular it can be proved that ordq(a) ≥ s if and only if a(q′) = O(dSR(q′, q))s.

Definition 2.4. A system of privileged coordinates at q for {f1, . . . , fm} is a system of local
coordinates z = (z1, . . . , zn) centered at q and such that ordq(zi) = wi, 1 ≤ i ≤ n.

For any point q ∈M there always exists a system of privileged coordinates around q. Consider
such a system z = (z1, . . . , zn). We now show that this allows to compute the order of functions
or vector fields in a purely algebraic way. Given a multiindex α = (α1, . . . , αn) we define
the weighted degree of the monomial zα = zα1

1 · · · zαn
n as w(α) = w1α1 + · · · + wnαn and the

weighted degree of the monomial vector field zα∂zj as w(α)−wj . Then one can prove that, given
a ∈ C∞(M) and a smooth vector field f , with Taylor expansion

a(z) ∼
∑

α

aαz
α and f(z) ∼

∑

α,j

fα,jz
α∂zj ,

their orders at q can be computed as

ordq(a) = min{w(α) : aα 6= 0} and ordq(f) = min{w(α)− wj : fα,j 6= 0}.
A function or a vector field are said to be homogeneous if all the nonzero terms of the expansion
have the same weighted degree.

We recall that, for any a, b ∈ C∞(M) and any smooth vector fields f, g, the order satisfies the
following properties

ordq(a+ b) = min{ordq(a), ordq(b)}, ordq(ab) = ordq(a) + ordq(b),

ordq(f + g) = min{ordq(f), ordq(g)}, ordq([f, g]) ≥ ordq(f) + ordq(g).
(8)

Consider fi, 1 ≤ i ≤ m. By the definition of order, it follows that ordq(fi) ≥ −1. Then we
can express fi in coordinates as

z∗fi =

n∑

j=1

(
hij + rij

)
∂zj ,
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where z∗ is the push-forward operator on vector fields associated with the coordinates, defined
as z∗f = dz ◦ f ◦ z−1, hij are homogeneous polynomials of weighted degree wj − 1, and rij are
functions of order larger than or equal to wj .

Definition 2.5. The nilpotent approximation at q of fi, 1 ≤ i ≤ m, associated with the
privileged coordinates z is the vector field with coordinate representation

z∗f̂i =

n∑

j=1

hij ∂zj .

The nilpotentized sub-Riemannian control system is then defined as

(NSR) q̇ =
m∑

j=1

uj(t)f̂j(q).

The family of vector fields {f̂1, . . . , f̂m} is bracket-generating and nilpotent of step r (i.e., every
iterated bracket [fi1 , [. . . , [fik−1

, fik ]]] of length larger than r is zero).
The main consequence of the nilpotent approximation is the following (see for example [8,

Proposition 7.29]).

Proposition 2.6. Let z = (z1, . . . , zn) be a system of privileged coordinates at q ∈ M for
{f1, . . . , fm}. For T > 0 and u ∈ L1([0, T ];Rm), with |u| ≡ 1, let γ(·) and γ̂(·) be the trajectories
associated with u in (SR) and (NSR), respectively, and such that γ(0) = γ̂(0) = q. Then, there
exist C, T0 > 0, independent of u, such that, for any t < T0, it holds

(9) |zi(γ(t))− zi(γ̂(t))| ≤ Ctwi+1, i = 1, . . . , n.

We recall, finally, the celebrated Ball-Box Theorem, that gives a rough description of the
shape of small sub-Riemannian balls.

Theorem 2.7 (Ball-Box Theorem). Let z = (z1, . . . , zn) be a system of privileged coordinates at
q ∈M for {f1, . . . , fm}. Then there exist C, ε0 > 0 such that for any ε < ε0, it holds

Box

(
1

C
ε

)
⊂ BSR(q, ε) ⊂ Box (Cε) ,

where, BSR(q, ε) is identified with its coordinate representation z(BSR(q, ε)) and, for any η > 0,
we let

(10) Box (η) = {z ∈ Rn : |zi| ≤ ηwi},
Observe that the first inclusion follows directly from the definition of privileged coordinates.
As a corollary of the Ball-Box Theorem, we get the following result on the regularity of the

distance.

Corollary 2.8. Let z = (z1, . . . , zn) be a system of privileged coordinates at q ∈M for {f1, . . . , fm}.
Then there exists C, ε > 0 such that

1

C
|z(q′)| ≤ dSR(q, q′) ≤ C|z(q′)|1/r, q′ ∈ BSR(q, ε).

3. Time-dependent systems

3.1. Time-dependent control systems. We now consider a more general situation. Namely,
we consider on M the time-dependent non-holonomic control system

(TD) q̇ =

m∑

i=1

ui f
t
i (q), q ∈M, u = (u1, . . . , um) ∈ Rm, t ∈ I,
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where I = [0, b) for some b ≤ +∞ and {f t1, . . . , f tm} is a family of non-autonomous smooth vector
fields, with smooth dependence on the time parameter. We let f tu =

∑m
i=1 ui f

t
i .

In analogy with the autonomous case, we define (TD)-admissible curves as absolutely contin-
uous curves γ : [0, T ] ⊂ I → M such that γ̇(t) = f tu(t)(γ(t)) for a.e. t ∈ [0, T ], for some control

u ∈ L1([0, T ],Rm). Observe, however, that contrary to what happens in the sub-Riemannian
case, the (TD)-admissibility property is not invariant under time reparametrization, e.g., a time
reversal. Thus, we define the cost (and not the length) of γ to be

c(γ) = min ‖u‖L1([0,T ],Rm),

where the minimum is taken over all controls u such that γ is associated with u and is attained
due to convexity. The value function induced by the time-dependent system is then defined as

ρ(q, q′) = inf{c(γ) : γ is (TD)-admissible and γ : q  q′}.
Clearly, the value function is non-negative. It is not a metric since, in general, it fails both to be
symmetric and to satisfy the triangular inequality. Moreover, as the following example shows, ρ
could be degenerate. Namely, it could happen that q 6= q′ but ρ(q, q′) = 0.

Example 3.9. Let M = R, with coordinate x and consider the vector field f t = (1− t)−2∂x
defined on [0, 1). For any x0 ∈ R, x0 6= 0, and for any sequence tn ↑ 1, let un ∈ L1([0, tn]) be
defined as un ≡ (1− tn)x0. By definition, each un steers the system from 0 to x0. Hence,

ρ1(0, x0) ≤ inf
n∈N
‖un‖L1([0,tn]) = inf

n∈N

∫ tn

0

(1− tn)x0 dt = x0 inf
n∈N

tn(1− tn) = 0.

This proves that, for any x0 ∈ R, ρ1(0, x0) = 0.

For T > 0, q ∈M and ε > 0, we denote the reachable set from q with cost less than ε by

R(q, ε) = {q′ ∈M : ρ(q, q′) < ε}.
We will also consider the reachable set from q in time less than T > 0 and cost less than ε, and
denote it by RT (q, ε). Clearly RT (q, ε) ⊂ R(q, ε).

In general, the existence of minimizers for the optimal control problem associated with (TD)
is not guaranteed. We conclude this section with an example of this fact.

Example 3.10. Let M = R, with coordinate x, and consider the vector field f t = e−t∂x for
t ∈ [0, 1). Fix x0 ∈ R, x0 6= 0. Observe that, for any T > 0 and any control u ∈ L1([0, T ])
steering the system from 0 to x0 , it holds

(11) |x0| =
∣∣∣∣∣

∫ T

0

u(t)e−t dt

∣∣∣∣∣ ≤
∫ T

0

|u(t)|e−t dt < ‖u‖L1([0,T ]).

This implies ρ(0, x0) ≥ |x0|. Let now un ∈ L1([0, 1/n]) be defined as un(t) = x0ne
t. Clearly un

steers the system from 0 to x0. Moreover,

ρ(0, x0) ≤ inf
n∈N
‖un‖L1([0,1/n]) = |x0| inf

n∈N
e

1
n − 1

1
n

= |x0|.

This proves that ρ(0, x0) = |x0|. Hence, the non-existence of minimizers follows from (11).

3.2. Finiteness and continuity of the value function. In this section, we extend the Chow–
Rashevsky Theorem to time-dependent non-holonomic systems, under the strong Hörmander
condition, whose definition follows.

Definition 3.11. We say that a family of time-dependent vector fields {f t1, . . . , f tm}t∈I satisfies
the strong Hörmander condition if {f t01 , . . . , f

t0
m} satisfies the Hörmander condition for any t0 ∈ I.
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As we will see later on in Section 4, when considering families of time-dependent vector fields
of the form f ti = (e−tf0)∗fi this condition is equivalent to the strong Hörmander condition for
the affine control system with drift f0 and control vector fields {f1, . . . , fm}.

From now on we will assume that the following holds.

The family of smooth vector fields {f t1, . . . , f tm}t∈I , depends smoothly on t

and satisfies the strong Hörmander condition.
(H0)

This section will be devoted to the proof of the following.

Theorem 3.12. Assume that {f t1, . . . , f tm}t∈I satisfies (H0). Then, the function ρ : M ×M →
[0,+∞) is continuous. Moreover, for any t0 ∈ I and any q, q′ ∈ M , letting dSR be the sub-
Riemannian distance induced by {f t01 , . . . , f

t0
m}, it holds ρ(q, q′) ≤ dSR(q, q′).

Now, we need to introduce some notation. Following [5], the flows between times s, t ∈ R of
an autonomous vector field f and of a non-autonomous vector field τ 7→ fτ will be denoted by,
respectively,

e(t−s)f : M →M and −→exp

∫ t

s

fτ dτ : M →M.

Fix q ∈ M and assume, for the moment, that t0 = 0. Let ` ∈ N and F = (i1, . . . , i`) ∈
{1, . . . ,m}`. For any T ∈ I, T > 0, we define the switching end-point map at time T and
associated with F to be the function ET ,F : R` →M defined as

ET ,F (ξ) = −→exp

∫ T
`−1
` T

1

T ξ` f
τ
i`
dτ ◦ · · · ◦ −→exp

∫ T
`

0

1

T ξ1 f
τ
i1 dτ (q)

= −→exp

∫ 1

`−1
`

ξ` f
τT
i`

dτ ◦ · · · ◦ −→exp

∫ 1
`

0

ξ1 f
τT
i1 dτ (q).

(12)

Here we applied a standard change of variables formula for non-autonomous flows. Let then

(13) gτT ,F =





ξ1 f
τT
i1

if 0 ≤ τ < 1/`,

ξ2 f
(τ−1/`)T
i2

if 1/` ≤ τ < 2/`,
...

ξ` f
(τ−(`−1)/`)T
i`

if (`− 1)/` ≤ τ < 1,

so that we can write

ET ,F (ξ) = −→exp

∫ 1

0

gτT ,F (ξ) dτ (q).

Clearly, t 7→ −→exp
∫ t

0
gτT ,F (ξ) dτ (q), t ∈ [0, 1], is a (TD)-admissible trajectory. Thus, ET ,F (ξ),

T > 0, is the end-point of a piecewise smooth (TD)-admissible curve.
We recall that, by the series expansion of −→exp (see [5]), for any non-autonomous smooth vector

field fτ , it holds −→exp
∫ t

0
fτ dτ (q) = et f

0

(q) +O(t2). Thus, we can define

E0,F (ξ) = lim
T ↓0

ET ,F (ξ) = eξ` f
0
` ◦ . . . ◦ eξ1 f0

1 (q) = −→exp

∫ 1

0

gτ0,F (ξ) dτ (q),

where, gτ0,F (ξ) is defined in (13). Then t 7→ −→exp
∫ t

0
gτ0,F (ξ) dτ (q), t ∈ [0, 1], is an (SR)-admissible

curve for the sub-Riemannian structure defined by {f0
1 , . . . , f

0
m} and E0,F (ξ) is the end-point of

a piecewise smooth trajectory in (SR).
After [24], we say that a point q′ ∈ M is (TD)-reachable from q at time t0 = 0, if there exist

` ∈ N, F ∈ {1, . . . ,m}`, T > 0 and ξ ∈ R`, such that ET ,F (ξ) = q′. In this case it is clear
that ρ(q, q′) ≤ ∑i |ξi|. Moreover, if ξ′ 7→ ET ,F (ξ′) has rank n at ξ, the point q′ is said to be
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(TD)-normally reachable at time t0 = 0. Finally, the point q′ is said to be (SR)-reachable or
(SR)-normally reachable for the vector fields {f0

1 , . . . , f
0
m}, if these properties holds for T = 0.

In the case t0 > 0, taking T > 0 such that T + t0 ∈ I and changing the interval of integration
in (12) from [0, T ] to [t0, t0 + T ], it is clear how to define (TD)-reachable and (TD)-normally
reachable points from q at time t0, and (SR)-reachable and (SR)-normally reachable points for
the vector fields {f t01 , . . . , f

t0
m}.

The proof of the following lemma is an adaptation of [24, Lemma 3.1].

Lemma 3.13. Let q′ ∈ M be (SR)-normally reachable for the vector fields {f t01 , . . . , f
t0
m} from

q, by some ` ∈ N, ξ ∈ R` and F ∈ {1, . . . ,m}`. Then, there exist ε0, T0 > 0 such that, for
any ε < ε0, the point q′ is (TD)-normally reachable at time t0, by the same ` and F , and some
ξ′ ∈ R`, with

∑
j |ξj − ξ′j | ≤ ε, and any T < T0.

Proof. Without loss of generality, we assume t0 = 0.
Let U ⊂ R` be a neighborhood of ξ such that E0,F has still rank n when restricted to it.

Then, there exists B = {x :
∑
j |xj − ξj | ≤ ε} ⊂ U such that E0,F maps diffeomorphically

a neighborhood of B in U onto a neighborhood of q. It follows, from standard properties of
differential equations, that, for T > 0 sufficiently small, the map ET ,F is well defined on B and
that ET ,F −→ E0,F as T ↓ 0 in the C1-topology over B. Thus, there exists T1 > 0 such that,
for T < T1, ET ,F has rank n at every point of B.

Since the map E0,F is an homeomorphism from B onto a neighborhood of q, and ET ,F −→
E0,F uniformly as T ↓ 0, it follows that there exists a fixed neighborhood V of q and T2 > 0 such
that V ⊂ ET ,F (B), for any T < T2. Then, for any T < min{T1, T2}, there exists ξ′ ∈ B such
that the point q′ = ET ,F (ξ′) is (TD)-normally reachable. �

We will use the following consequence of Lemma 3.13. We remark that the result holds even
if {f t1, . . . , f tm}t∈I satisfies the Hörmander condition only at time t0 ∈ I.

Lemma 3.14. Let dSR be the sub-Riemannian distance induced by {f t01 , . . . , f
t0
m}, then for any

t1 ∈ I, such that t1 − t0 > 0 is sufficiently small, and for any q, q′ ∈M it holds

inf{c(γ) : γ : [t0, t1]→M is (TD)-admissible, γ(t0) = q and γ(t1) = q′} ≤ dSR(q, q′).

In particular, ρ(q, q′) ≤ dSR(q, q′).

Proof. Fix ε > 0. By Chow’s theorem it is clear that q′ is (SR)-reacheable from q. Moreover, since
there exist (SR)-normally reachable points from q′ arbitrarily close to q′ (see e.g., [1, Lemma
3.21]), follows that q′ is always (SR)-normally reacheable from q by ξ such that

∑
j |ξj | ≤

dSR(q, q′) + ε/2. Hence, by Lemma 3.13, if ε and η > 0 are sufficiently small, we have that q′ is
(TD)-normally reachable from q at time t0 by ξ′ such that

∑
j |ξ′j | ≤ dSR(q, q′) + ε and T < t1.

This clearly implies that

inf{c(γ) : γ is (TD)-admissible, γ(t0) = q and γ(t1) = q′} ≤ dSR(q, q′) + ε.

Finally, the lemma follows letting ε ↓ 0. �

We now prove the main theorem of the section.

Proof of Theorem 3.12. By Lemma 3.14, we only need to prove the continuity of ρ. We will prove
only the lower semicontinuity, sinche the upper semicontinuity follows by similar arguments.

We start by proving the lower semicontinuity of ρ(q, ·) at q′. Consider a sequence qk → q′

and let uk ∈ L1([0, Tk],Rm) be controls such that each one steers system (TD) from q to qk and
lim infn ρ

f0(q, qk) = lim infn ‖uk‖L1 . Then, by Lemma 3.14, for any ε > 0 there exists a sequence



HÖLDER CONTINUITY OF THE VALUE FUNCTION FOR CONTROL-AFFINE SYSTEMS 10

of T̃k > 0 and a sequence of controls vk ∈ L1([Tk, T̃k],Rm) all steering system (TD) from qk to
q′ and such that ‖vk‖L1([Tk,T̃k],Rm) ≤ dSR(qk, q

′) + ε. Since dSR(qk, q
′)→ 0, this implies that

ρ(q, q′) ≤ lim
n→∞

(
‖uk‖L1([0,Tk],Rm) + ‖vk‖L1([Tk,T̃k],Rm])

)
= lim inf

n
ρ(q, qk) + ε.

Letting ε ↓ 0 proves that ρ(q, ·) is lower semicontinuous at q′.
In order to prove the lower semicontinuity of ρ(·, q′) at q, let us define

ϕε(p) = inf{c(γ) : γ : [ε, T ] ⊂ I →M is (TD)-admissible and γ : p q′}.
We claim that for any p ∈ M it holds that ϕε(p) −→ ρ(p, q′) as ε ↓ 0. Since it is clear that
ϕε(·) ≥ ρ(·, q′), it suffices to prove that

(14) lim
ε↓0

ϕε(p) ≤ ρ(p, q′) for any p ∈M.

To this aim, fix p ∈M and η > 0 and let γ : [0, T ]→M be such that c(γ) ≤ ρ(p, q′)+η. It is clear
that γ(2ε) → p as ε ↓ 0, and hence that ρ(p, γ(2ε)) → 0 as ε ↓ 0, by the first part of the proof.
Thus, for any ε > 0 sufficiently small, there exists a (TD)-admissible curve γε : [ε, 2ε]→M such
that γε : p γ(2ε) and c(γε) ≤ ρ(p, γ(2ε)) + η. By concatenating γε with γ|[2ε,T ], we get that

ϕε(p) ≤ c(γε) + c(γ) ≤ ρ(p, γ(2ε)) + ρ(p, q′) + 2η.

Letting ε ↓ 0 and then η ↓ 0, this proves (14) and thus the claim.
Let now qk → q and fix η > 0. By Lemma 3.14 this implies that ρ(qk, q) → 0 and that for

any ε > 0 sufficiently small, there exists a (TD)-admissible curve γε : [0, ε] → M such that
γε : qk  q and c(γε) ≤ ρ(qk, q) + η. Hence

ρ(qk, q
′) ≤ c(γε) + ϕε(q) ≤ ρ(qk, q) + ϕε(q) + η.

By the previous claim, letting ε, η ↓ 0, this implies that ρ(qk, q
′) ≤ ρ(qk, q) + ρ(q, q′). Since

ρ(qk, q) → 0, taking the liminf as k → +∞, this proves the lower semicontinuity of ρ(·, q′) at q,
completing the proof. �

Remark 3.15. From the proof of Theorem 3.12, it follows that hypothesis (H0) is not sharp.
Indeed, the following is sufficient to prove the theorem.

The family of smooth vector fields {f t1, . . . , f tm}t∈I , depends smoothly on t,

and satisfies the strong Hörmander condition at t = 0 and in an open

neighborhood of sup I.

(H1)

We will conclude this section by showing that, in our framework, it is necessary to assume
the Hörmander condition on both ends of I. Although outside the scope of the present work,
we remark that stronger assumptions on the regularity of the vector fields, i.e., that they are
uniformly Lipschitz, would allow to prove Theorem 3.12 assuming only that {f t1, . . . , f tm}t∈I
satisfies the Hörmander condition at one time t0 ∈ I.

The following example proves that if the family {f t1, . . . , f tm}t∈I satisfies the Hörmander con-
dition only near t = 0, then the value function is in general not continuous. Through a slight
modification, the same argument can also be used to prove that the same holds if the Hörmander
condition is satisfied only at a neighborhood of sup I or of any t0 ∈ I.

Example 3.16. Let M = (−2, 2)× (−1,+∞), with coordinates (x, y), and consider the vector
fields

f(x, y) =
((y + 1)(1− x2),−x)√
(y + 1)2(1− x2)2 + x2

, g(x, y) =

(
x, h(x)(y + 2)

)
√
x2 + h(x)2(y + 2)2

,
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Figure 1. The two vector fields of Example 3.16 with h(x) = c e
− 1

1−x2 for x ∈ [−1, 1].

where h : [−2, 2]→ R is a smooth cutoff function such that supph ⊂ [−1, 1], h ≥ 0 and h(0) = 1
(see Figure 1). Fix 0 < ε < 1, C ≥ 16 and let φ, ψ : [0, 1] → R be two smooth functions such
that

φ(t) =

{
1 if 0 ≤ t ≤ ε,
0 if 2ε ≤ t ≤ 1,

ψ(t) =

{
1 if 0 ≤ t ≤ 2ε,

C if 3ε ≤ t ≤ 1,

and such that φ is nonincreasing while ψ is nondecreasing. Finally, consider the time-dependent
system on M specified by the vector fields f t(x, y) = φ(t)f(x, y) and gt(x, y) = ψ(t)g(x, y),
t ∈ [0, 1]. We will show that {f t, gt} satisfies the Hörmander condition for t ∈ [0, ε], but that the
value function associated with the family {f t, gt}t∈[0,1] is not lower semicontinuous.

We start by showing that f(p) and g(p) are transversal for any p = (x, y) ∈M , implying the
Hörmander condition for {f t, gt}, t ∈ [0, ε]. If x ∈ (−2,−1] ∪ [1, 2), then, by definition of h,
g(p) = (1, 0) is clearly transversal to f(p). On the other hand, if x ∈ (−1, 1) \ {0} and g(p) is
parallel to f(p), a simple computation shows that h(x) < 0, which is a contradiction. Finally, for
x = 0, it is clear that g(p) = (0, y + 2) and f(p) = (y + 1, 0) are never parallel. We remark that
this implies also that the value function ρε, induced by controls defined on [0, ε], is a distance
equivalent to the Euclidean one. In particular, |p1 − p2| ≤ 2ρε(p1, p2) for any p1, p2 ∈M .

Fix now q′ = (1, 0). The set of points from which q′ is reachable using only f is exactly Oq′ =
{(1, y) : y > −1}. Let then q0 ∈ (−1, 0)×{0} be such that ρε(q0, (−1, 0)) ≤ 1

4 minp∈Oq′ ρε(q0, p).

In order to show that ρ1(q0, ·) is not lower semicontinuous at q′, consider any sequence {qn}n∈N ⊂
(1/2, 1)×{0} such that qn −→ q′. By continuity of ρε and the fact that −qn −→ (−1, 0), we can
always assume that, up to subsequences, ρε(q0,−qn) ≤ 1

2 minp∈Oq′ ρε(q0, p).

Since gt ≡ 0 for t ≥ 2ε, if u ∈ L1([0, 1],R2) is a control steering the system from q0 to q′, the
control u|[0,2ε] steers the system from q0 to some p ∈ Oq′ . Exploiting the fact that ρ2ε ≥ ρε by
monotonicity of ψ, this implies that

(15) ρ1(q0, q
′) ≥ min

p∈Oq′
ρε(q0, p) ≥ 2ρε(q0,−qn).
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Let now u ∈ L1([0, 1],Rm) be the control constructed as follows. From time 0 to ε, u|[0,ε] is
the minimizer of ρε steering the system from q0 to −qn. Then, u|(ε,3ε) ≡ 0 and, after this, the
control acts only on f t for time t ∈ [3ε, 1], steering the system from −qn to qn. Hence,

(16) |qn − (−qn)| =
∣∣∣∣
∫ 1

3ε

u(t)f t(x(t), y(t)) dt

∣∣∣∣ = C

∫ 1

3ε

|u(t)| dt.

Since |qn − (−qn)| < 2, C ≥ 16/|q0 − q′| ≥ 8/ρε(q0, q
′), and by (16), it holds that

ρ1(q0, qn) ≤
∫ 1

0

|u(t)| dt = ρε(q0,−qn) +
1

C
|qn − (−qn)| ≤ 3

4
ρ1(q0, q

′).

Taking the lim inf as n→∞ shows that ρ1(q0, ·) is not l.s.c. at q′.

3.3. Estimates on reachable sets. In this section, we concentrate on a particular class of
time-dependent systems. Namely, let {f1, . . . , fm} be a bracket-generating family of smooth
vector fields, f0 be a smooth vector field, and consider the time-dependent system

(17) q̇ =

m∑

i=1

ui f
t
i , f ti = (e−tf0)∗fi(q), q ∈M, u = (u1, . . . , um) ∈ Rm.

Here, (e−tf0)∗ is the push-forward operator associated with the flow of f0.
As we will see in the next section, this class of systems arises naturally when dealing with

control systems that are affine with respect to the control. Observe, in particular, that from the
bracket-generating property of {f1, . . . , fm} it follows immediately that the time-dependent fam-
ily {(e−tf0)∗f1, . . . , (e

−tf0)∗fm} satisfies the strong Hörmander condition, as per Definition 3.11.
Before proceeding with the estimates of the reachable sets, we need to define a suitable approx-

imation of system (17). Namely, fix a system of privileged coordinates (in the sub-Riemannian
sense) at q for {f1, . . . , fm}. Assume that f0(q) 6= 0, and let s ∈ {1, . . . , r} be such that
ordq(f0) = −s. In this case, there exist, in coordinates, an homogeneous vector field f−s0 , of
weighted degree −s, and a vector field f>−s0 , of weighted degree ≥ −s+ 1, such that

(18) z∗f0 = f−s0 + f>−s0 .

In particular, it holds that f−s0 6≡ 0 near z(q) = 0.

Remark 3.17. The fact that ordq(f0) = −s is not equivalent, in general, to f0 ∈ ∆s near q. In
particular, if the growth vector is non-constant around q, from ordq(f0) ≥ −s it does not follow
that f0 ∈ ∆s. For example, consider the sub-Riemannian control system on R2 with (privileged)
coordinates (x, y), defined by the vector fields ∂x and x∂y, called the Grushin plane. Outside
{x = 0}, the non-holonomic degree of these vector fields is 1, while, on {x = 0}, we need one
bracket to generate the y direction, and thus it is 2. Hence, if ȳ 6= 0 the vector field y∂y is never
in ∆ near (0, ȳ), but ord(0,ȳ)(y∂y) = ord(0,ȳ)(y) + ord(0,ȳ)(∂y) = 0.

However, due to the properties (8) and the fact that ∆s is a module, the converse is always
true. Namely, if f0 ∈ ∆s, then ordq(f0) ≥ −s.

For any smooth vector field f , let (ad1f0)f = [f0, f ] and (ad`f0)f = [f0, (ad`−1f0)f ], for any
` ∈ N. We recall (see for example [17]) that the following Taylor expansion holds

(19) (e−tf0)∗f ∼
∞∑

`=0

t`

`!
(ad`f0)f.

Since ordq(fj) ≥ −1, by (8) we have that ordq((ad`f0)fj) ≥ −`s−1. Then, using the decomposi-
tion (18), for any ` ≥ 0, there exists, in coordinates, an homogeneous vector field F `j of weighted
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degree −`s, and a remainder r` of order ≥ −`s− 1, such that

(20) z∗
[
(ad`f0)fj

]
= F `j + r`.

Definition 3.18. The homogeneous series approximation at q of f tj , 1 ≤ j ≤ m, associated with
the privileged coordinates z, is the vector field with coordinate representation

(21) f̂ tj =

%∑

`=0

t`

`!
F `j ,

where % = br−1/sc and r is the non-holonomic degree of {f1, . . . , fm} at q. The approximated
time-dependent control system is then defined as

(ATD) q̇ =

m∑

j=1

uj(t)f̂
t
j (q).

If a system, in some system of privileged coordinates, coincides with its homogeneous series
approximation , we will say that it is series homogeneous.

The homogeneous series approximation encodes the idea that the time t is of weight s =
− ordq(f0). This is a consequence of the fact that, due to the expansion (19), t allows to
build brackets of f0 with the fjs. In this sense, the homogeneous series approximation is a
generalization of the nilpotent approximation.

We are now ready to state the main theorem of this section.

Theorem 3.19. Let {f1, . . . , fm} satisfy the Hörmander condition, let z = (z1, . . . , zn) be a
system of privileged coordinates at q ∈ M for {f1, . . . , fm}. Then there exist C, T, ε0 > 0 such
that, for any ε < ε0 and any q′ ∈ RT (q, ε), setting s = − ordq(f0) it holds

|zi(q′)| ≤ C
(
εwi + εT

wi
s

)
if wi ≤ s,(22)

|zi(q′)| ≤ Cε
(
ε+ T

1
s

)wi−1

if wi > s.(23)

Moreover, if the system is series homogeneous, then it holds the stronger estimate

(24) |zi(q′)| ≤ Cεwi if wi ≤ s.
To prove this theorem we need the following proposition, estimating the difference between

(17) and (ATD).

Proposition 3.20. Let {f1, . . . , fm} satisfy the Hörmander condition, and let z = (z1, . . . , zn) be
a system of privileged coordinates at q ∈M for {f1, . . . , fm}. For T > 0 and u ∈ L1([0, T ];Rm),
let γ(·) and γ̂(·) be the trajectories associated with u in (17) and (ATD), respectively, and such
that γ(0) = γ̂(0) = q. Then there exist C, ε0, T0 > 0, independent of u, such that, if t < T0 and∫ t

0
|u| ds = ε < ε0, and setting s = − ordq(f0) it holds

(25) |zi(γ(t))− zi(γ̂(t))| ≤ Cε
(
ε+ t

1
s

)wi
, i = 1, . . . , n.

Remark 3.21. This proposition generalizes Proposition 2.6. In fact, in the sub-Riemannian
case, since f0 ≡ 0, if, for t > 0, the curve γ is associated to u ∈ L1([0, t],Rm), it is associated

also to uτ (·) = τ
t u( τt ·), for any τ > 0. Thus, since

∫ τ
0
|uτ | ds =

∫ t
0
|u| ds = ε, (25) reduces to

|zi(γ(t))− zi(γ̂(t))| ≤ lim
τ↓0

C(εwi+1 + τεr) = Cεwi+1.

Finally, assuming that u satisfies the hypotheses of Proposition 2.6, i.e., that |u| = 1, we get
t = ε.
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Proof. Let z(γ(·)) = x(·), z(γ̂(·)) = y(·), and ‖z‖ =
∑n
`=1 |z`|1/wi . We mimic the proof of

Proposition 7.29 in [8]. The first step is to prove that there exists a constant C > 0 such that

‖x(t)‖, ‖y(t)‖ ≤ Cε for t and ε =
∫ t

0
|u| ds small enough. We prove this for ‖x(t)‖, the same

argument works also for ‖y(t)‖.
In z coordinates, the equation of the control system (17) is,

ẋi(t) =
m∑

j=1

uj(t)(zi)∗ f
t
j (γ(t)), i = 1, . . . , n.

Due to the fact that z∗f tj = z∗fj + O(t), uniformly in a neighborhood of q that ordq(zi) = wi
and that ordq(fj) ≥ −1, we have that there exist T0 and C > 0 such that |(zi)∗f tj (q)| ≤
C
2 |(zi)∗fj(q)| ≤ C‖x(t)‖wi−1, for any t < T0. Thus we get

(26) |ẋi(t)| ≤ C
m∑

j=1

|uj(t)|‖xi(t)‖wj−1.

As in the proof for the sub-Riemannian case, choosing N sufficiently large, so that all N/wi are

even integers, and setting |||z||| = (
∑n
`=1 |z`|N/wi)

1
N we get a norm equivalent to ‖z‖. Deriving

with respect to time and using (26) we get d
dt |||x(t)||| ≤ C

∑n
j=1 |uj(t)|. Finally, by integration,

equivalence of the norms, and the fact that x(0) = z(q) = 0, we conclude that ‖x(t)‖ ≤ Cε.
Now we move to proving (25). By construction of (ATD) and the Taylor expansion of f tj , for

any ` ≤ % = br−1/sc, there exist homogeneous polynomials h`ji of order wi−`s−1 and remainders

r`ji of order larger than or equal to wi − `s, such that we can write

(zi)∗f
t
j =

%∑

`=0

t`

`!

(
h`ji + r`ji

)
+O(t%+1),

(zi)∗f̂
t
j =

%∑

`=0

t`

`!
h`ji.

Here, the O is intended as t ↓ 0 and is uniform in a compact neighborhood of the origin. Then,

ẋi(t)−ẏi(t) =
m∑

j=1

uj(t)

( %∑

`=0

t`

`!

(
h`ji(x)− h`ji(y) + r`ji(x)

)
+O(t%+1)

)

=

m∑

j=1

uj(t)

( %∑

`=0

t`

`!

( ∑

wk<wi−`s

(
xk(t)− yk(t)

)
Q`jik(x, y) + r`ji(x)

)
+O(t%+1)

)
,

where Q`jik are homogeneous polynomial in x and y, of order wi−wk − `s− 1. We observe that,

if wi − wk − `s− 1 < 0, then Q`jik ≡ 0. Thus, for sufficiently small ‖x‖ and ‖y‖, we have

|Q`jik(x, y)| ≤ C
(
‖x‖(wi−wk−`s−1)+ + ‖y‖(wi−wk−`s−1)+

)
, |r`ji(x)| ≤ C‖x‖(wi−`s)+ .

Here we let (ξ)+ = max{ξ, 0}, for any ξ ∈ R. Using the inequalities of the first step, taking t < T
sufficiently small, and enlarging the constant C, we get

|ẋi(t)−ẏi(t)|

≤ C|u(t)|
( %∑

`=0

t`

`!

( ∑

wk<wi−`s

∣∣xk(t)− yk(t)
∣∣εwi−wk−`s−1 + ε(wi−`s)+

)
+ t%+1

)

≤ C|u(t)|
( %∑

`=0

t`
( ∑

wh<wi

∣∣xh(t)− yh(t)
∣∣εwi−wh−1 + ε(wi−`s)+

)
+ t%+1

)
.
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In the last inequality we applied the change of variable wk 7→ wh − `s in each of the sums.
We can integrate the system by induction, since it is in triangular form. For wi = 1, since

(wi − `s)+ = 0 for any ` ≥ 1, the inequality reduces to

|ẋi(t)− ẏi(t)| ≤ C|u(t)|
(

%∑

`=0

t`ε(wi−`s)+ + t%+1

)
≤ C|u(t)|(εwi + t).

Here we enlarged the constant C. Thus, integrating the previous inequality, we get |xi(t)−yi(t)| ≤
Cε(εwi + t) ≤ Cε(ε+ t

1
s )wi .

Let, then, wi > 1 and assume that |xh(t) − yh(t)| ≤ Cε(ε + t
1
s )wh for any wh < wi. To

complete the proof it suffices to show that |ẋi(t) − ẏi(t)| ≤ C|u(t)|(ε + t
1
s )wi , since (25) will

follow, as above, by integration. Thus, we have, enlarging again the constant C and taking t
sufficiently small,

|ẋi(t)− ẏi(t)|

≤ C|u(t)|
( %∑

`=0

t`

( ∑

wh<wi

(
ε+ t

1
s

)wh

εwi−wh + ε(wi−`s)+
)

+ t%+1

)

≤ C|u(t)|
( %∑

`=0

t`

( ∑

wh<wi

t
wh
s εwi−wh + ε(wi−`s)+

)
+ t%+1

)
.

(27)

If t ≤ εs, from (27) it is clear that |ẋi(t) − ẏi(t)| ≤ C|u(t)|εwi . Here we used the fact that
%+ 1 ≥ wi/s. On the other hand, if ε < t1/s, it holds

|ẋi(t)− ẏi(t)| ≤ C|u(t)|
(

%∑

`=0

( ∑

wh<wi

t
wh
s +`+

wi−wh
s + t`+

wi−`s

s

)
+ t%+1

)
≤ C|u(t)|t

wi
s .

Putting together these two estimates, we get that |ẋi(t)−ẏi(t)| ≤ C|u(t)|(εwi +t
wi
s ) ≤ C|u(t)|(ε+

t
1
s )wi , completing the proof of the proposition. �

Proof of Theorem 3.19. We start by claiming that (24) implies (22). In fact, if γ : q  q′ is the
trajectory associated in (17) to a control u ∈ L1([0, T ],Rm), and γ̂ is the trajectory associated
with the same control in the homogeneous series approximation (ATD), with γ̂(0) = q, it holds

|zi(q′)| ≤ |zi(γ̂(T ))|+ |zi(γ̂(T ))− zi(γ(T ))|.
Thus, by Proposition 3.20, the claim is proved.

Hence, from now on we assume our system to be in the form (ATD). Let us define, for
1 ≤ j ≤ n and 0 ≤ α ≤ r, the vector fields ϕαj as

ϕαj =
α∑

`=0

t`

`!
F `j ,

where F `j are defined in (20). We do not explicitly denote the dependence on time, to lighten

the notation. Observe that, if α = %, then, by (21), ϕαj = f̂ tj .

We claim that, letting x(α)(·) be the trajectory associated with a control u ∈ L1([0, T ],Rm)
in system (TD) with {ϕα1 , . . . , ϕαm} as vector fields, then, for some constant C > 0 and any
i ∈ {1, . . . , n} and α ≥ 1, it holds

(28) |x(α)
i (T )− x(α−1)

i (T )| ≤
{

0 if wi ≤ αs,
Cε(ε+ T

1
s )wi−1 if wi > αs.
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In fact, due to the homogeneity of the F `j , proceeding as in the proof of Proposition 3.20, we get
that for wi ≤ αs it holds

|ẋ(α)
i (t)− ẋ(α−1)

i (t)| ≤ C|u(t)|
α−1∑

`=0

t`
∑

wh<wi

|x(α)
h (t)− x(α−1)

h (t)|εwi−wh−1.

By induction on 1 ≤ wi ≤ αs, this proves the first part of the claim. On the other hand, if
wi > αs, it holds

|ẋ(α)
i (t)− ẋ(α−1)

i (t)| ≤ C|u(t)|
( α−1∑

`=0

t`
∑

wh<wi

|x(α)
h (t)− x(α−1)

h (t)|εwi−wh−1 + tαεwi−αs−1

)
.

Then, again by induction over wi, we get that |x(α)
i (T )− x(α−1)

i (T )| ≤ CTαεwi−αs. Finally, the
claim follows considering the cases T ≤ εs and T > εs.

Due to the fact that ϕ0
j = f̂j , by Theorem 2.7 it holds |x(0)

i (T )| ≤ Cεwi . Thus, applying (28)
and enlarging the constant C, we get

|zi(q′)| = |x(r)
i (T )| ≤

r∑

`=1

∣∣∣x(`)
i (T )− x(`−1)

i (T )
∣∣∣+
∣∣∣x(0)
i (T )

∣∣∣ ≤
{
Cεwi if wi ≤ s,
Cε(ε+ T

1
s )wi−1 if wi > s.

This proves (23) and (24), completing the proof of the theorem. �

We end this section by showing that the estimate (23) is sharp, at least in some directions.
Indeed, for a system which is series homogeneous at q in some privileged coordinates z, and
satisfies the hypotheses of Theorem 3.19, it holds that z∗((adkf0)fj) is an homogeneous vector

field of weighted degree −sk − 1. Thus, since εtk ≤ ε(ε+ t
1
s )sk, the following proposition shows

that (23) is sharp in this direction. The proof is an adaption of an argument from [11].

Proposition 3.22. Let {f1, . . . , fm} satisfy the Hörmander condition. Let, moreover q ∈ M ,
i ∈ {1, . . . ,m} and k ≥ 0. Then, for any coordinate system y at q, there exist T, ε0 > 0 such that,
for any ε < ε0 and t < T there exists a (TD)-admissible curve γ : [0, t]→M , with c(γ) ≤ ε, and
such that

y(γ(t)) = εtkdy
(
(adkf0)fj(q)

)
+O(εtk+1) as εt→ 0.

Proof. Let t, η > 0 be fixed, and define u ∈ L1([0, T ],Rm) as ui(τ) ≡ η, uj(τ) ≡ 0 for j 6= i,

τ ∈ [0, t]. Then, fix any Φ ∈ Ck([0, 1]) such that Φ(i)(0) = Φ(i)(1) = 0, for 0 ≤ i < k. Thus, by
integrating by parts and the fact that d

dt (e
−tf0)∗ g = (e−tf0)∗

(
ad(f0)g

)
, we get

∫ t

0

Φ(k)(τ/t)(e−τf0)∗fi(q) dτ = tk
∫ t

0

Φ(τ/t)(e−τf0)∗
(

(adkf0)fi

)
(q) dτ,

for any t and q. This implies that the flows generated by Φ(k)(τ/t)(e−τf0)∗fi and tkΦ(τ/t)(e−τf0)∗
(

(adkf0)fi

)

coincide. Using the series expansions of the chronological exponential and (e−tf0)∗, see [5, Section
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2.4], there holds, then,

−→exp

∫ t

0

m∑

j=1

Φ(k)(τ/t)uj(τ)(e−τf0)∗fj dτ = −→exp

∫ t

0

ηΦ(k)(τ/t)(e−τf0)∗fi dτ

= −→exp

∫ t

0

ηtk Φ(τ/t)(e−τf0)∗
(

(adkf0)fi

)
dτ

= −→exp

∫ 1

0

ηtk+1 Φ(s)(e−tsf0)∗
(

(adkf0)fi

)
ds

= −→exp

∫ 1

0

ηtk+1 Φ(s)
(

(adkf0)fi +O(t)
)
ds

= Id + ηtk+1(adkf0)fi +O(ηtk+2)

Finally, considering any coordinate system and letting ε = ηt, this completes the proof. �

4. Control-affine systems

In this section we apply the results of Section 3 to control-affine systems. Let {f1, . . . , fm}
be a bracket-generating family of vector fields, f0 be a smooth vector field, called the drift, and
consider the control-affine system

(D) q̇ = f0(q) +
m∑

i=1

ui fi(q), q ∈M, u = (u1, . . . , um) ∈ Rm.

The assumption on {f1, . . . , fm} to be bracket-generating, is called strong Hörmander condition
for (D).

An absolutely continuous curve γ : [0, T ]→M is (D)-admissible if γ̇(t) = f0(γ(t))+fu(t)(γ(t))

for some control u ∈ L1([0, T ],Rm). Its cost is defined as

cf0(γ) = min ‖u‖L1([0,T ],Rm),

where the minimum is taken over all controls u such that γ is associated with u. Then, we define
the two value functions we are interested in as

ρf0T (q, q′) = inf{c(γ) : γ : [0, T ′]→M is (D)-admissible, γ : q  q′, T ′ ≤ T},
ρf0(q, q′) = inf{c(γ) : γ (D)-admissible and γ : q  q′}.

It is clear that ρf0T (q, q′) ↘ ρf0(q, q′) as T → +∞, for any q, q′ ∈ M . Moreover, we observe

that, ρf0T (q, etf0q) = 0 for any 0 ≤ t ≤ T . Finally, the reachable sets with respect to these value
functions, from any q ∈M and for ε, T > 0, are

Rf0T (q, ε) = {q′ ∈M : ρf0T (q, q′) < ε}, Rf0(q, ε) = {q′ ∈M : ρf0(q, q′) < ε}.

4.1. Connection with time-dependent systems. Applying the variations formula (see [5]),
system (D) can be written as a composition of a time-dependent system in the form (17) and of
a translation along the drift. Namely, for any u ∈ L1([0, T ],Rm), it holds

(29) −→exp

∫ T

0

(
f0 +

m∑

i=1

ui(t) fi

)
dt = eTf0 ◦ −→exp

∫ T

0

m∑

i=1

ui(t) (e−tf0)∗fi dt.

We call time-dependent system associated with (D) the following control system,

(30) q̇ =

m∑

i=1

ui (e−tf0)∗fi(q), q ∈M, u = (u1, . . . , um) ∈ Rm.
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Observe that, since diffeomorphisms preserve linear independence, the strong Hörmander con-
dition for (D), implies that {(e−tf0)∗f1, . . . , (e

−tf0)∗fm}t∈[0,+∞) satisfies the strong Hörmander
condition, defined in Definition 3.11.

Exploiting these facts, we can prove the following.

Proposition 4.23. Assume that (D) satisfies the strong Hörmander condition. Then, for any

T > 0, the functions ρf0T , ρ
f0 : M ×M → [0,+∞) are continuous. Moreover, letting dSR be the

sub-Riemannian distance induced by {f1, . . . , fm}, for any q, q′ ∈M it holds

ρf0T (q, q′) ≤ min
0≤t≤T

dSR(etf0q, q′), ρf0(q, q′) ≤ min
t≥0

dSR(etf0q, q′).

Proof. The continuity of the two functions, and the fact that ρf0T (q, q′), ρf0(q, q′) ≤ dSR(q, q′), for
any q, q′ ∈M , follows from the same arguments used in Theorem 3.12, adapting Lemmata 3.13
and 3.14 to the system (D). In particular, one has to consider (T ,F , ξ) 7→ eT f0 ◦ET ,F (ξ) instead
of (T ,F , ξ) 7→ ET ,F (ξ).

To prove the second part of the statement, we let, for any t ∈ [0, T ),

ϕt(p) = inf{c(γ) : γ : [t, T ′]→M is (D)-admissible, γ : p q′, T ′ ≤ T}.
It is clear that, as above, it holds ϕt(p) ≤ dSR(p, q′). Moreover, we observe that ρf0T (q, etf0q) = 0
for any 0 ≤ t < T , and hence that for any such t it holds

ρf0T (q, q′) ≤ ϕt(etf0q) ≤ dSR(etf0q, q′).

Taking the minimum for 0 ≤ t < T , proves the inequality regarding ρf0T . To complete the proof

it suffices to observe that ρf0(q, q′) ≤ ρf0T (q, q′) for any T > 0. �
We point out that in system (D), as in time-dependent systems, the existence of minimizers

is not assured. Moreover, this lack of minimizers is possible even if they exist for the associated
time-dependent system, as the following example points out.

Example 4.24. Consider the following vector fields on R3, with coordinates (x, y, z),

f1(x, y, z) = ∂x, f2(x, y, z) = ∂y + x∂z.

Since [f1, f2] = ∂z, {f1, f2} is a bracket-generating family of vector fields. The sub-Riemannian
control system associated to {f1, f2} on R3 corresponds to the Heisenberg group.

Let now f0 = ∂z be the drift. Since [f1, ∂z] = [f2, ∂z] = 0 it holds that (e−tf0)∗f1 = f1 and
(e−tf0)∗f2 = f2. Hence, the associated time-dependent system is actually not time-dependent.
Thus, by (29), a curve γ : [0, T ]→ R3 is (SR)-admissible for {f1, f2} if and only if γ̃(·) = e·f0 ◦γ(·)
is (D)-admissible. As a consequence of this, for any q ∈ R3 and any ε > 0,

Rf0(q, ε) =
⋃

t≥0

etf0 ◦BSR(q, ε).

As pointed out in Section 2, minimizers for the sub-Riemannian system exist between any
pair of points in BSR(q, ε), if ε is sufficiently small. Let us show that, for any point in Rf0(q, ε)
with positive z coordinate, we have an explicit minimizer, while for the others there exists no
minimizer. Without loss of generality we can consider q = 0. Then, since et

′f0(x′, y′, z′) =
(x′, y′, z′ + t′), every point (x, y, z) ∈ Rf0(0, ε) with z > 0, can be reached optimally considering
the sub-Riemannian minimizing curve between the origin and (x, y, 0) rescaled on time z.

If, instead, z ≤ 0, we cannot construct any sub-Riemannian trajectory from 0 to (x, y, z − t),
t > 0, with cost ≤ dSR(0, (x, y, z)). This is due to the fact that the minimizing trajectories in
Heisenberg group are the lifts of arcs on the plane (x, y), spanning area equal to the z coordinates,
and that |z − t| = −z + t > |z|. Since, by Proposition 4.23, ρf0(0, (x, y, z)) ≤ dSR(0, (x, y, z)),
this implies that there exists no minimizer for ρf0(q, (x, y, z)).
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4.2. Estimates on reachable sets. In this section we apply Theorem 3.19, in order to obtain
results in the spirit of Theorem 2.7 and Corollary 2.8. First, we need the following definition.

Definition 4.25. The point q is said to be regular with respect to the drift f0, if q′ 7→ ordq′(f0)
is locally constant at q.

The main result of this section are the following local regularity estimates for ρf0 . We cannot
expect anything global, since in general the sets Rf0(q, ε) are noncompact.

Theorem 4.26. Assume that (D) satisfies the strong Hörmander condition, and let q be regular
with respect to the drift f0. Assume, moreover, that z = (z1, . . . , zn) is a system of privileged
coordinates at q for {f1, . . . , fm}, such that z∗f0 = ∂zk , for some 1 ≤ k ≤ n. Then, there exist
T0, ε0, C > 0 such that

1

C
dist

(
z(q′), z(e[0,T ]f0q)

)
≤ ρf0T (q, q′) ≤ C dist

(
z(q′), z(e[0,T ]f0q)

)1/r

, q′ ∈ Rf0T (q, ε),

where, for any x ∈ Rn and A ⊂ Rn, dist(x,A) = infy∈A |x− y| is the Euclidean distance between
them and r is the degree of non-holonomy of {f1, . . . , fm} at q.

Let us define the following sets, for parameters η > 0 and T > 0. We remark that Box (η) is
defined as in (10) and that {∂zi}ni=1 is the canonical basis in Rn.

ΞT (η) =
⋃

0≤ξ≤T

(
ξ∂zk + Box (η)

)
,

ΠT (η) = Box (η) ∪
⋃

0<ξ≤T
{z ∈ Rn : zk = ξ, |zi| ≤ ηwi + ηξ

wi
s for wi ≤ s, i 6= k,

and |zi| ≤ η(η + ξ
1
s )wi−1 for wi > s},

Π̂T (η) = Box (η) ∪
⋃

0<ξ≤T
{z ∈ Rn : zk = ξ, |zi| ≤ ηwi for wi ≤ s, i 6= k,

and |zi| ≤ η(η + ξ
1
s )wi−1 for wi > s}.

As in the sub-Riemannian case, Theorem 4.26 is a direct consequence of some estimates on
the shape of the accessible sets, contained in the following.

Theorem 4.27. Assume that (D) satisfies the strong Hörmander condition, and let q ∈ M
be regular with respect to the drift f0. Assume, moreover, that z = (z1, . . . , zn) is a system of
privileged coordinates at q for {f1, . . . , fm}, such that z∗f0 = ∂zk , for some 1 ≤ k ≤ n. Then,
there exist C, ε0, T0 > 0 such that

(31) ΞT

(
1

C
ε

)
⊂ Rf0T (q, ε) ⊂ ΠT (Cε), for ε < ε0 and T < T0.

Here, with abuse of notation, we denoted by Rf0T (q, ε) the coordinate representation of the reach-
able set. In particular,

Box

(
1

C
ε

)
∩ {zk ≤ 0} ⊂ Rf0T (q, ε) ∩ {zk ≤ 0} ⊂ Box (Cε) ∩ {zk ≤ 0}.

Moreover, if the system is nilpotent, it holds

(32) ΞT

(
1

C
ε

)
⊂ Rf0T (q, ε) ⊂ Π̂T (Cε), for ε < ε0 and T < T0.

In order to prove Theorem 4.27, we need the following lemma.
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Lemma 4.28. Let z = (z1, . . . , zn) be a system of privileged coordinates at q ∈ M . Then there

exist C, ε0, T0 > 0 such that, for any q′ ∈ Rf0T (q, ε0) for ε < ε0 and T < T0, and such that

(i) for any t < ε0, ordq′(t) f0 = −s, where q′(t) = e−tf0(q′),
(ii) dzk

(
f0(z(q′))

)
6= 0, for some k with wk = −s,

it holds that, if u ∈ L1([0, T ],Rm) is a control steering the system (D) from q to q′, with ‖u‖1 = ε,
then

T ≤ C
(
εs + max{zk(q′), 0}

)
.

Proof. For any η > 0, let γ be the trajectory associated with u ∈ L1([0, T ],Rm) in the system
(D), and satisfying γ : q  q′. Let γ̃ be the trajectory associated with u and starting from q, in
the time-dependent system (30). Thus γ(t) = etf0 ◦ γ̃(t) and ρ(q, γ̃(T )) ≤ ε.

Recall that, for any vector field g and point p ∈ M , it holds that zk(eTg(p)) − zk(p) =∫ T
0
dzk
(
g(etg(p))

)
. Thus, by the mean value theorem, there exists τ ∈ [0, T ] such that

(33) zk(q′) = zk(γ(T )) = T dzk
(
f0(eτf0(γ̃(T )))

)
+ zk(γ̃(T )).

Since eτf0(γ̃(T )) = e−(T−τ)f0(q′), by hypothesis (ii) and the smoothness of f0, there exist
T0, C1 > 0, independent of γ, such that dzk

(
f0(eτf0(γ̃(T )))

)
≥ C1 for T < T0. Hence, by

Theorem 3.19 (since wk = s), there exist C2, ε̄ > 0 such that, if ε < ε̄ and T < T0,

T ≤ |zk(γ̃(T ))|+ max{zk(q′), 0}
C1

≤ C2

(
εs + Tε

)
+ max{zk(q′), 0}
C1

.

Since the constants are independent of γ, taking C = C2/C1, ε0 ≤ min{T0, ε̄, (C − 1)/C2}
completes the proof. �
Proof of Theorem 4.27. The first inclusion in (31) follows from Theorem 2.7 and Theorem 4.23.
In fact, combining them, we have that, for any ε < ε0 and any T > 0,

ΞT

(
1

C
ε

)
⊂

⋃

0≤t≤T
BSR(etf0q, ε) ⊂ Rf0T (q, ε).

To prove the second inclusion, we let q′ ∈ Rf0T (q, ε). Fix any η > 0 and consider a control
u ∈ L1([0, T ],Rm) such that its associated trajectory γ, in the system (D), satisfies γ : q  q′

and cf0(γ) ≤ ε+ η. We distinguish two cases. First we assume that zk(q′) ≤ 0. In this case, by
Lemma 4.28 it follows there exists C, ε0, T0 > 0 such that if T < T0 and ε < ε0, then T ≤ Cεs.
Moreover (29) implies that e−Tf0(q′) ∈ RT (q, ε). Then, enlarging the constant C, Theorem 3.19
yields

|zi(q′)| =
∣∣zi
(
e−Tf0(q′)

)∣∣ ≤ C
(
εwi + εT

wi
s

)
≤ Cεwi , if wi ≤ s and i 6= k,

|zk(q′)| ≤ T +
∣∣zk
(
e−Tf0(q′)

)∣∣ ≤ T + C
(
ε+ T

1
s )s ≤ Cεs,

|zi(q′)| =
∣∣zi
(
e−Tf0(q′)

)∣∣ ≤ Cε
(
ε+ T

1
s

)wi−1 ≤ Cεwi , if wi > s.

Here, we used the fact that, for any p ∈ M , from z∗f0 = ∂zk , it holds zi(p) = zi
(
e−Tf0(p)

)
and

|dzk(f0(p))| ≡ 1. Thus, q′ ⊂ Box (Cε) ⊂ Π (Cε).
On the other hand, if zk(q′) > 0, Lemma 4.28 yields that T ≤ C

(
εs + zk(q′)

)
. Then, applying

again Theorem 3.19, we get

|zi(q′)| ≤ C
(
εwi + εzk(q′)

wi
s

)
, if wi ≤ s and i 6= k,

|zk(q′)| ≤ T + Cεs,

|zi(q′)| ≤ Cε
(
ε+ zk(q′)

1
s

)wi−1
, if wi > s.

This proves that q′ ⊂ Π (Cε), completing the proof of (31).
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To prove (32) it suffices to use the same argument as above, applying the result on nilpotent
systems in Theorem 3.19. �

Remark 4.29. Theorem 4.27 suggests that the behavior of the system (D), when moving in the
direction −f0, is essentially sub-Riemannian. However, although this is true locally in time, it is
false in general. For example, consider the Euclidean plane endowed with a rotational drift, i.e.,
such that {etf0(q)}t∈(0,+∞) is diffeomorphic to S1 for any q 6= 0. Then, ρf0(q, e−tf0(q)) = 0 for
any t > 0 and thus we can move in the direction −f0 for free.

Proof of Theorem 4.26. Since every norm on Rn is equivalent, dist(z(q′), [0, T ]∂zk) is equivalent
to

a(q′) =
∑

1≤i≤n
i 6=k

|zi(q′)|+ min
t∈[0,T ]

|zk(q′)− t|.

Thus, to complete the proof it suffices to prove that it holds C−1a(q′) ≤ ρf0T (q, q′) ≤ Ca(q′)1/r.

By Theorem 3.19, ΞT (C−1ε) ⊂ Rf0T (q, ε) ⊂ ΠT (Cε) for any ε < ε0. The first inclusion is

equivalent to the fact that, for every ε < ε0 such that Ca(q′) ≤ εr, one has ρf0T (q, q′) ≤ ε. From

this follows that ρf0T (q, q′) ≤ C1/ra(q′)1/r. The same reasoning applied to the other inclusion
proves that

|zi(q′)| ≤ C(ρf0T (q, q′)wi + ρf0T (q, q′)T
wi
s ) if wi ≤ s, i 6= k,

min
t∈[0,T ]

|zk(q′)− t| ≤ Cρf0T (q, q′)s,

|zi(q′)| ≤ C(ρf0T (q, q′)wi + ρf0T (q, q′)T
wi−1

s ) if wi > s.

Clearly, this implies that a(q′) ≤ Cρf0T (q, q′), for some larger constant, completing the proof of
the theorem. �
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[9] U. Boscain and P. Mason. Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math.

Phys., 47(6):062101, 29, 2006.

[10] F. Bullo and A. D. Lewis. Geometric control of mechanical systems, volume 49 of Texts in Applied Math-
ematics. Springer-Verlag, New York, 2005. Modeling, analysis, and design for simple mechanical control

systems.
[11] J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American

Mathematical Society, Providence, RI, 2007.

[12] D. D’Alessandro. Introduction to quantum control and dynamics. Chapman & Hall/CRC Applied Mathe-
matics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2008.
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COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING

F. JEAN∗ AND D. PRANDI†‡

Abstract In this paper we study the complexity of the motion planning problem for control-affine
systems. Such complexities are already defined and rather well-understood in the particular case of
nonholonomic (or driftless) systems. Our aim is to generalize these notions and results to systems
with a drift. Accordingly, we present various definitions of complexity, as functions of the curve
that is approximated, and of the precision of the approximation. Due to the lack of time-rescaling
invariance of these systems, we consider geometric and parametrized curves separately. Then, we
give some asymptotic estimates for these quantities.

Key words: control-affine systems, sub-Riemannian geometry, motion planning, complexity.

2010 AMS subject classifications: 53C17, 93C15.

1. Introduction

The concept of complexity was first developed for the non-holonomic motion planning problem
in robotics. Given a control system on a manifold M , the motion planning problem consists in
finding an admissible trajectory connecting two points, usually under further requirements, such as
obstacle avoidance. If a cost function is given, it makes sense to try to find the trajectory costing
the least.

Different approaches are possible to solve this problem (see [21]). Here we focus on those based
on the following scheme:

(1) try to find any (usually non-admissible) path solving the problem,
(2) try to approximate it with admissible paths.

The first step is independent of the control system, since it depends only on the topology of the
manifold and of the obstacles. Thus, we are interested in the second step, which depends only on
the local nature of the control system near the path. The goal of the paper is to understand how
to measure the complexity of the approximation task. By complexity we mean a function of the
non-admissible curve Γ ⊂ M (or path γ : [0, T ] → M), and of the precision of the approximation,
quantifying the difficulty of the latter by means of the cost function.

1.1. Control theoretical setting. A sub-Riemannian (or non-holonomic) control system on a
smooth manifold M is a control system in the form

(1) q̇(t) =

m∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ],
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where u : [0, T ] → Rm is an integrable and bounded control function and {f1, . . . , fm} is a family
of smooth vector fields on M satisfying the Hörmander condition, i.e. such that its iterated Lie
brackets generate the whole tangent space at every point. Moreover, we will always assume the
sub-Riemannian structure to be equiregular (see Section 2.1). Given a sub-Riemannian control
system, a natural choice for the cost is the L1-norm of the controls. Due to the linearity and the
reversibility in time of such a system, the associated value function is in fact a distance, called
Carnot-Carathéodory distance, that endows M with a metric space structure.

In this paper, we focus on a very important generalization of control system (1), namely on
control-affine systems. These systems are obtained by adding to (1) an uncontrolled vector field
f0, called the drift, and are in the form

(2) q̇(t) = f0(q(t)) +
m∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ].

These kind of systems appears in plenty of applications. As an example we cite, mechanical systems
with controls on the acceleration (see e.g., [7], [5]), where the drift is the velocity, or quantum control
(see e.g., [8], [6]), where the drift is the free Hamiltonian. We always assume the strong Hörmander
condition, i.e., that the family {f1, . . . , fm} satisfies the Hörmander condition.

Our work will focus on the following cost functions,

(3) J (u, T ) =

∫ T

0

√√√√
m∑

j=1

uj(t)2 dt and I(u, T ) =

∫ T

0

√√√√1 +
m∑

j=1

uj(t)2 dt.

Let q ∈M and define qu : [0, T ]→M as the trajectory associated with a control u ∈ L1([0, T ],Rm)
such that qu(0) = q. The cost J , measuring the L1-norm of the control, quantifies the cost spent
by the controller to steer the system (2) along qu. On the other hand, I measures the Riemannian
length of qu with respect to a Riemannian metric1 such that f0, f1, . . . , fm are orthonormal.

Fix a time T > 0 and consider the two value functions V J (q, q′) and V I(q, q′) as the infima
of the costs J and I, respectively, over all controls u ∈ UT =

⋃
0<T≤T L1([0, T ],Rm) steering the

system from q to q′. Contrarily to what happens in sub-Riemmanian geometry with the Carnot-
Carathéodory distance, these value functions are not symmetric, and hence do not induce a metric
space structure on M . In fact, system (2) is not reversible – i.e., changing orientation to an
admissible trajectory does not yield an admissible trajectory.

We consider controls defined on T ≤ T since we are interested in the local behavior of system
(2). Indeed, without an upper-bound for the time of definition of the controls, the reacheable sets
Rf0(q, ε) = {q′ ∈ M | V J (q, q′) ≤ ε} are in general non-compact for any q ∈ M and ε > 0. As a
byproduct of this choice, by taking T sufficiently small, it is then possible to prevent any exploitation
of the geometry of the orbits of the drift (that could be, for example, closed). Let us also remark
that, since the controls can be defined on arbitrarily small times, it is possible to approximate
admissible trajectories for system (2) via trajectories for the sub-Riemannian associated system
(i.e., the one obtained by posing f0 ≡ 0) rescaled on small intervals.

1.2. Complexities. Depending on wether we want to approximate curves, i.e., dimension 1 con-
nected submanifolds of Γ ⊂ M diffeomorphic to a closed interval, or paths, i.e., smooth injective
functions γ : [0, T ] → M , we will consider different notions of complexities. In particular, when
computing the complexity of paths, we will require the approximating trajectories to respect also
the parametrization and not only the geometry of the path. While in the sub-Riemannian case,

1Whenever it exists, which is not always the case since the vector fields f0, f1, . . . , fm coud be not linearly
independent
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due to the time rescaling properties of the control system, these concepts coincide, this is not the
case for control-affine systems.

We are interested in four distinct notions of complexity, two for curves and two for paths. The
two for curves are the same as the sub-Riemannian ones already introduced in [17, 18]. This is
true also for what we call the neighboring approximation complexity of a path, since in the sub-
Riemannian case it coincides with the tubular approximation complexity. On the other hand, what
we call the interpolation by time complexity never appeared in the literature, to our knowledge.
Here we give the definitions for a generic cost J : UT → [0,+∞).

Fix a curve Γ – i.e., a one dimensional oriented submanifold with boundary of M diffeomorphic
to a closed interval. Then, for any ε > 0 we define the following complexities for Γ.

• Interpolation by cost complexity: For ε > 0, let an ε-cost interpolation of Γ to be any control
u ∈ UT such that there exist 0 = t0 < t1 < . . . < tN = T ≤ T for which the trajectory qu
with initial condition qu(0) = x satisfies qu(T ) = y, qu(ti) ∈ Γ and J(u|[ti−1,ti), ti−ti−1) ≤ ε,
for any i = 1, . . . , N . Then, let

σJc (Γ, ε) =
1

ε
inf
{
J(u, T ) | u is an ε-cost interpolation of Γ

}
.

This function measures the number of pieces of cost ε necessary to interpolate Γ. Namely,
following a trajectory given by a control admissible for σJc (Γ, ε), at any given moment it is
possible to go back to Γ with a cost less than ε.
• Tubular approximation complexity: Let Tube(Γ, ε) to be the tubular neighborhood of radius
ε around the curve Γ w.r.t. the small sub-Riemannian system associated with (2) (obtained
by putting f0 ≡ 0, see Section 2.2), and define

σJa (Γ, ε) =
1

ε
inf



J(u, T )

∣∣∣∣∣∣

0 < T ≤ T ,
qu(0) = x, qu(T ) = y,
qu
(
[0, T ]

)
⊂ Tube(Γ, ε)





This complexity measures the number of pieces of cost ε necessary to go from x to y staying
inside the sub-Riemannian tube Tube(Γ, ε). Such property is especially useful for motion
planning with obstacle avoidance. In fact, if the sub-Riemannian distance of Γ from the
obstacles is at least ε0 > 0, then trajectories obtained from controls admissible for σJa (Γ, ε),
ε < ε0, will avoid such obstacles.

Fix now a path γ : [0, T ]→M – i.e., a smooth injective function with γ̇(t) 6= 0 for any t ∈ [0, T ].
For any δ > 0 and ε > 0 we then define the following complexities for the path γ.

• Interpolation by time complexity: Let a δ-time interpolation of γ to be any control u ∈
L1([0, T ],Rm) such that its trajectory qu : [0, T ]→M in (2) with qu(0) = γ(0) is such that
qu(T ) = γ(T ) and that, for any interval [t0, t1] ⊂ [0, T ] of length t1 − t0 ≤ δ, there exists
t ∈ [t0, t1] with qu(t) = γ(t). Then, let

σJt (γ, ε) = δ inf
{
J(u, T )| u is a δ-time interpolation of γ

}
.

Controls admissible for this complexity will define trajectories touching γ at intervals of
time of length at most δ. This complexity measures the minimal average cost on each of
these intervals. It is thus well suited for applications where time is of great importance -
e.g. motion planning in rendez-vous problem.
• Neighboring approximation complexity: Let BSR(p, ε) denote the ball of radius ε centered

at p ∈M w.r.t. the small sub-Riemannian system associated with (2) (obtained by putting
f0 ≡ 0, see Section 2.2), and define

σJn(γ, ε) =
1

ε
inf

{
J(u, T )

∣∣∣∣
qu(0) = x, qu(T ) = y,
qu(t) ∈ BSR(γ(t), ε), ∀t ∈ [0, T ]

}
.
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This complexity measures the number of pieces of cost ε necessary to go from x to y
following a trajectory that at each instant t ∈ [0, T ] remains inside the sub-Riemannian ball
BSR(γ(t), ε). Such complexity can be applied to motion planning in rendez-vous problems
where it is sufficient to attain the rendez-vous only approximately.

Two functions f(ε) and g(ε), tending to ∞ or to 0 when ε ↓ 0 are weakly equivalent (denoted
by f(ε) � g(ε)) if both f(ε)/g(ε) and g(ε)/f(ε), are bounded when ε ↓ 0. When f(ε)/g(ε)
(resp. g(ε)/f(ε)) is bounded, we will write f(ε) 4 g(ε) (resp. f(ε) < g(ε)). In the sub-
Riemannian context, for any curve Γ ⊂ M and path γ : [0, T ] → M such that γ([0, T ]) = Γ it
holds σJc (Γ, ε) � σJa (Γ, ε) � σJn (γ, ε). A complete characterization of weak asymptotic equivalence
of sub-Riemannian complexities is obtained in [20]. We state here such characterization in the
special case where {f1, . . . , fm} defines an equiregular structure.

Theorem 1.1. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure. Let
Γ ⊂M be a curve and γ : [0, T ]→M be a path such that γ([0, T ]) = Γ. Then, if there exists k ∈ N
such that TqΓ ⊂ ∆k(q) \∆k−1(q) for any q ∈ Γ, it holds

σJc (Γ, ε) � σJa (Γ, ε) � σJn (γ, ε) � 1

εk
.

We mention also that for a restricted set of sub-Riemannian systems, i.e., one-step bracket
generating or with two controls and dimension not larger than 6, strong asymptotic estimates and
explicit asymptotic optimal syntheses are obtained in the series of papers [23, 12, 13, 14, 15, 16, 11]
(see [10] for a review).

1.3. Main results. As a first result, in Section 5 we prove the following weak asymptotic equiva-
lence for the interpolation by time complexity, in the same spirit as Theorem 1.1.

Theorem 1.2. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and let
γ : [0, T ] → M be a path. Then, if there exists k ∈ N such that γ̇(t) ∈ ∆k(γ(t)) \ ∆k−1(γ(t)) for
any t ∈ [0, T ], it holds

σJt (γ, δ) � δ 1
k .

Since in the sub-Riemannian context one is only interested in the cost J , Theorems 1.1 and
1.2 completely characterize the weak asymptotic equivalences of complexities of equiregular sub-
Riemannian manifolds.

The main result of the paper is then a weak asymptotic equivalence of the above defined com-
plexities in control-affine systems, generalizing Theorems 1.1 and 1.2.

Theorem 1.3. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and
that f0 ⊂ ∆s \ ∆s−1 for some s ≥ 2. Let Γ ⊂ M be a curve and define κ = max{k : TpΓ ∈
∆k(p)\∆k−1(p), for any p in an open subset of Γ}. Then, whenever the maximal time of definition
of the controls T is sufficiently small, it holds

σJc (Γ, ε) � σIc (Γ, ε) � σJa (Γ, ε) � σIa (Γ, ε) � 1

εκ
.

On the other hand, let γ : [0, T ] → M be a path such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for
any t ∈ [0, T ] and define κ = max{k : γ(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for any t in an open subset of
[0, T ]}. Then, it holds

σJt (γ, δ) � σIt (γ, δ) � δ
1

max{κ,s} , σJn (γ, ε) � σIn(γ, ε) � 1

εmax{κ,s} .

This theorem shows that, asymptotically, the complexity of curves is uninfluenced by the drift,
and only depends on the underlying sub-Riemannian system, while the one of paths depends also
on how “bad” the drift is with respect to this system. We remark also that for the path complexities
it is not necessary to have an a priori bound on T .
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1.4. Long time local controllability. As an application of the above theorem, let us briefly
mention the problem of long time local controllability (henceforth simply LTLC ), i.e., the problem
of staying near some point for a long period of time T > 0. This is essentially a stabilization
problem around a non-equilibrium point.

Since the system (2) satisfies the strong Hörmander condition, it is always possible to satisfy some
form of LTLC. Hence, it makes sense to quantify the minimal cost needed, by posing the following.
(To lighten the notation, we consider only the cost J .) Let T > 0, q0 ∈ M , and γq0 : [0, T ] → M ,
γq0(·) ≡ q0.

• LTLC complexity by time:

Ξt(q0, T, δ) = σJt (γq0 , δ).

Here, we require trajectories defined by admissible controls to pass through q0 at intervals
of time of length at most δ.
• LTLC complexity by cost:

Ξc(q0, T, ε) = σJn (γq0 , ε).

Admissible controls for this complexity, will always be contained in the sub-Riemannian
ball of radius ε centered at q0.

Clearly, if f0(q0) = 0, then Ξt(q0, T, δ) = Ξc(q0, T, ε) = 0, for any ε, δ, T > 0. Although γq0 is
not a path by our definition, since it is not injective and γ̇q0 ≡ 0, the arguments of Theorem 1.3
can be applied also to this case. Hence, we get the following asymptotic estimate for the LTLC
complexities.

Corollary 1.4. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and
that f0 ⊂ ∆s \∆s−1 for some s ≥ 2. Then, for any q0 ∈M and T > 0 it holds

Ξt(q0, T, δ) � δ
1
s , Ξc(q0, T, ε) �

1

εs
.

1.5. Structure of the paper. In Section 2 we introduce more in detail the setting of the problem.
In Section 3 we present families of coordinates adapted to the drift and to curves or paths, that
will be useful in the sequel. Section 4 collects some useful properties of the costs J and I, proved
mainly in [22]. Then, Section 5 is devoted to relate the complexities of the control-affine system
with those of the associated sub-Riemannian systems and to prove Theorem 1.2. In this section we
also prove Proposition 5.3, that gives a first result in the direction of Theorem 1.3 showing when
the sub-Riemannian and control-affine complexities coincide. Finally, the proof of the main result
is contained in Sections 6 and 7, for curves and paths respectively.

2. Preliminaries

Throughout this paper, M is an n-dimensional connected smooth manifold.

2.1. Sub-Riemannian control systems. As already stated, a sub-Riemannian (or non-holonomic)
control system on a connected smooth manifold M is a control system in the form

(SR) q̇(t) =
m∑

i=1

ui(t) fi(q(t)), a.e. t ∈ [0, T ]

where u : [0, T ] → Rm is an integrable and bounded control function and {f1, . . . , fm} is a family
of smooth vector fields on M . We let fu =

∑m
i=1 ui fi. The value function dSR associated with the
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L1 cost is in fact a distance, called Carnot-Carathéodory (or sub-Riemannian) distance. Namely,
for any q, q′ ∈M ,

dSR(q, q′) = inf

∫ T

0

√√√√
m∑

j=1

uj(t)2 dt,

where the infimum is taken between any control u ∈ L1([0, T ],Rm) for some T > 0 such that
its trajectory in (SR) is such that qu(0) = q and qu(T ) = q′. An absolutely continuous curve
γ : [0, T ]→M is admissible for (SR) if there exists u ∈ L1([0, T ],Rm) such that γ̇(t) = fu(t).

Let ∆ be the C∞-module generated by the vector fields {f1, . . . , fm} (in particular, it is closed
under multiplication by C∞(M) functions and summation). Let ∆1 = ∆, and define recursively
∆s+1 = ∆s + [∆s,∆], for every s ∈ N. Due to the Jacobi identity ∆s is the C∞-module of linear
combinations of all commutators of f1, . . . , fm with length ≤ s. For q ∈M , let ∆s(q) = {f(q) : f ∈
∆s} ⊂ TqM . We say that {f1, . . . , fm} satisfies the Hörmander condition (or that it is a bracket-
generating family of vector fields) if

⋃
s≥1 ∆s(q) = TqM for any q ∈ M . Moreover, {f1, . . . , fm}

defines an equiregular sub-Riemannian structure if dim ∆i(q) does not depend on the point for any
i ∈ N. In the following we will always assume these two conditions to be satisfied.

By the Chow–Rashevsky theorem (see for instance [1]), the hypothesis of connectedness of M
and the Hörmander condition guarantee the finiteness and continuity of dSR with respect to the
topology of M . Hence, the sub-Riemannian distance, induces on M a metric space structure. The
open balls of radius ε > 0 and centered at q ∈M , with respect to dSR, are denoted by BSR(q, ε).

We say that a control u ∈ L1([0, T ],Rm), T > 0, is a minimizer of the sub-Riemannian distance
between q, q′ ∈ M if the associated trajectory qu with qu(0) = q is such that qu(T ) = q′ and
‖u‖L1([0,T ],Rm) = dSR(q, q′). Equivalently, u is a minimizer between q, q′ ∈ M if it is a solution of

the free-time optimal control problem, associated with (SR),

(4) ‖u‖L1(0,T ) =

∫ T

0

√√√√
m∑

j=1

u2
j (t) dt→ min, qu(0) = q, qu(T ) = q′, T > 0.

It is a classical result that, for any couple of points q, q′ ∈M sufficiently close, there exists at least
one minimizer.

Remark 2.1. This control theoretical setting can be stated in purely geometric terms even if
we drop the equiregularity assumption. Indeed, it is equivalent to a generalized sub-Riemannian
structure. Such a structure is defined by a rank-varying smooth distribution and a Riemannian
metric on it (see [1] for a precise definition).

In a sub-Riemannian control system, in fact, the map q 7→ span{f1(q), . . . , fm(q)} ⊂ TqM defines
a rank-varying smooth distribution, which is naturally endowed with the Riemannian norm defined,
for v ∈ ∆(q), by

(5) g(q, v) = inf

{
|u| =

√
u2

1 + · · ·+ u2
m : fu(q) = v

}
.

The pair (∆,g) is thus a generalized sub-Riemannian structure on M . Conversely, every rank-
varying distribution is finitely generated, see [2, 1, 3, 9], and thus a sub-Riemannian distance can
be written, globally, as the value function of a control system of the type (SR).

Since {f1, . . . , fm} is bracket-generating, the values of the sets ∆s at q form a flag of subspaces
of TqM ,

∆1(q) ⊂ ∆2(q) ⊂ . . . ⊂ ∆r(q) = TqM.

The integer r, which is the minimum number of brackets required to recover the whole TqM , is called
degree of non-holonomy (or step) of the family {f1, . . . , fm} at q. The degree of non-holonomy is
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independent of q since we assumed the family {f1, . . . , fm} to define an equiregular sub-Riemannian
structure. Let ns = dim ∆s(q) for any q ∈ M . The integer list (n1, . . . , nr) is called the growth
vector associated with (SR). Finally, let w1 ≤ . . . ≤ wn be the weights associated with the flag,
defined by wi = s if ns−1 < i ≤ ns, setting n0 = 0.

For any smooth vector field f , we denote its action, as a derivation on smooth functions, by
f : a ∈ C∞(M) 7→ fa ∈ C∞(M). For any smooth function a and every vector field f with f 6≡ 0
near q, their (non-holonomic) order at q is

ordq(a) = min{s ∈ N : ∃i1, . . . , is ∈ {1, . . . ,m} s.t. (fi1 . . . fis a)(q) 6= 0},
ordq(f) = max{σ ∈ Z : ordq(fa) ≥ σ + ordq(a) for any a ∈ C∞(M)}.

In particular it can be proved that ordq(a) ≥ s if and only if a(q′) = O(dSR(q′, q))s.

Definition 2.2. A system of privileged coordinates at q for {f1, . . . , fm} is a system of local coor-
dinates z = (z1, . . . , zn) centered at q and such that ordq(zi) = wi, 1 ≤ i ≤ n.

Let q ∈M . A set of vector fields {f1, . . . , fn} such that

(6) {f1(q), . . . , fn(q)} is a basis of TqM, and fi ∈ ∆wi for i = 1, . . . , n,

is called an adapted frame at q. We remark that to any system of privileged coordinates z at q is
associated a (non-unique) adapted frame at q such that ∂zi = z∗fi(q) (i.e., privileged coordinates
are always linearly adapted to the flag).

For any ordering {i1, . . . , in}, the inverse of the local diffeomorphisms

(z1, . . . , zn) 7→ ezi1 fi1+...+zin fin (q), (z1, . . . , zn) 7→ ezin fin ◦ · · · ◦ ezi1 fi1 (q),

define privileged coordinates at q, called canonical coordinates of the first kind and of the second
kind, respectively. We remark that, for the canonical coordinates of the second kind, it holds
z∗fin(z) ≡ ∂zin .

We recall the celebrated Ball-Box Theorem, that gives a rough description of the shape of small
sub-Riemannian balls.

Theorem 2.3 (Ball-Box Theorem). Let z = (z1, . . . , zn) be a system of privileged coordinates at
q ∈M for {f1, . . . , fm}. Then there exist C, ε0 > 0 such that for any ε < ε0, it holds

Box

(
1

C
ε

)
⊂ BSR(q, ε) ⊂ Box (Cε) ,

where, BSR(q, ε) is identified with its coordinate representation z(BSR(q, ε)) and, for any η > 0, we
let

(7) Box (η) = {z ∈ Rn : |zi| ≤ ηwi},
Remark 2.4. Let N ⊂ M be compact and let {zq}q∈N be a family of systems of privileged
coordinates at q depending continuously on q. Then there exist uniform constants C, ε0 > 0 such
that the Ball-Box Theorem holds for any q ∈ N in the system zq.

2.2. Control-affine systems. Let f0 and {f1, . . . , fm} be smooth vector fields on M and, for some
T > 0, define UT =

⋃
0<T<T L

1([0, T ],Rm). Consider the control-affine control system

(D) q̇(t) = f0(q(t)) +
m∑

j=1

uj fj(q(t)), u ∈ UT .

An absolutely continuous curve γ : [0, T ]→M is admissible for (D) if γ̇(t) = f0(γ(t))+fu(t)(γ(t))

for some control u ∈ L1([0, T ],Rm). Observe, however, that contrary to what happens in the sub-
Riemannian case, the admissibility for (D) is not invariant under time reparametrization, e.g., a
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time reversal. Thus there is no canonical choice for the cost, and we will focus on the two costs
given in (3).

In the rest of the paper we will always assume the following hypotheses to be satisfied.

(H1) Equiregularity: dim ∆k(q) does not depend on q ∈M ;
(H2) Strong Hörmander condition: there exists r ∈ N such that ∆r(q) = TqM for any q ∈M ;

Hypotheses (H1) is made for technical reasons and to lighten the notation. It would be possible to
avoid it through a desingularization procedure similar to the one in [19]. On the other hand, (H2)
is essential to apply our methods.

We will also often assume that, for some s ∈ N, the following “equiregularity” for (D) holds.

(Hs) f0 ⊂ ∆s \∆s−1.

Due to hypothesis (H1), this is equivalent to the fact that ordq(f0) = −s for any q ∈M .
For any u ∈ L1([0, T ],Rm), by the variation formula (see [4]), it holds

(8) −→exp

∫ T

0

(
f0 +

m∑

i=1

ui(t) fi

)
dt = eTf0 ◦ −→exp

∫ T

0

m∑

i=1

ui(t) (e−tf0)∗fi dt.

This shows that a control steering system (D) from p ∈ M to q ∈ M in time T > 0, steers from p
to e−Tf0q the time-dependent control system

(TD) q̇(t) =
m∑

j=1

uj(t) (e−tf0)∗fj(q(t)).

Sometimes proofs will be eased by considering (TD) instead of (D), due to the linearity w.r.t. the
control of the former.

In the following we will often consider also the two sub-Riemannian control systems associated
with (D), called respectively small and big, and defined as

q̇(t) =

m∑

j=1

uj(t) fj(q(t)),(SR-s)

q̇(t) = u0(t)f0(q(t)) +

m∑

j=1

uj(t) fj(q(t)).(SR-b)

We will denote by dSR and BSR the Carnot-Carathéodory metric and metric balls, respectively,
associated with (SR-s). This distance is well-defined due to Hypothesis (H2)

3. Continuous families of coordinates

In this section we consider properties of families of coordinates depending continuously on the
points of the curve or path, in order to be able to exploit Remark 2.4.

From the definition of privileged coordinates, we immediately get the following.

Proposition 3.1. Let γ : [0, T ] → M be a path. Let t > 0 and let z be a system of privileged
coordinates at γ(t) for {f1, . . . , fm}. Then, there exists C > 0 such that

(9) |zj(γ(t+ ξ))| ≤ C|ξ| for any j = 1, . . . , n and any t+ ξ ∈ [0, T ].

Moreover, if for k ∈ N it holds that γ̇(t) /∈ ∆k−1(γ(t)), then there exist C1, C2, ξ0 > 0 and a
coordinate zα, of weight ≥ k, such that for any t ∈ [0, T ] and any |ξ| ≤ ξ0 with t+ ξ ∈ [0, T ] it holds

(10) C1ξ ≤ zα(γ(t+ ξ)) ≤ C2ξ.

Finally, if γ̇(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)), the coordinate zα can be chosen to be of weight k.
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Proof. By the smoothness of γ, there exists a constant C > 0 such that |(zj)∗γ̇(t+ ξ)| ≤ C for any
j = 1, . . . , n and any t+ ξ ∈ [0, T ]. Thus, we obtain

|zj(γ(t+ ξ))| ≤
∣∣∣∣
∫ t+ξ

t
|(zj)∗γ̇(t+ η)| dη

∣∣∣∣ ≤ C |ξ|.

Let us prove (10). Let {f1, . . . , fn} be an adapted basis associated with the system of coordinates

z. In particular it holds that z∗fi(γ(t)) = ∂zi . Moreover, let k′ ≥ k be such that γ̇(t) ∈ ∆k′(γ(t)) \
∆k′−1(γ(t)) and write γ̇(t) =

∑
wi≤k′ ai(t)fi(γ(t)) for some ai ∈ C∞([0, T ]). Hence

z∗γ̇(t) =
∑

wi≤k′
ai(t) z∗fi(γ(t)) =

∑

wi≤k′
ai(t) ∂zi .

Since there exists i with wi = k′ such that ai(t) 6= 0, this implies that (zi)∗γ̇(t) 6= 0. Since k′ ≥ k,
we have then proved (9). �

As already observed in Remark 2.4, in order to be apply the estimates of Theorem 2.3 uniformly
on γ we need to consider a continuous family of coordinates {zt}t∈[0,T ] such that each zt is privileged
at γ(t) for {f1, . . . , fm}. We will call such a family a continuous coordinate family for γ.

Let us remark that, fixed any basis {f1, . . . , fn} adapted to the flag in a neighborhood of γ([0, T ]),
letting zt be the inverse of the diffeomorphism

(11) (z1, . . . , zn) 7→ ez1f1 ◦ . . . ◦ eznfn(γ(t)),

defines a continuous coordinate family for γ.
The following proposition precises Proposition 3.1.

Proposition 3.2. Let γ : [0, T ] → M be a path and let k ∈ N such that γ̇(s) ∈ ∆k(γ(s)) for
any t ∈ [0, T ]. Then, for any continuous coordinate family {zt}t∈[0,T ] for γ there exists constants
C, ξ0 > 0 such that for any t ∈ [0, T ] and 0 ≤ ξ ≤ ξ0 it holds

(12) |ztj(γ(t+ ξ))| ≤ Cξ if wj ≤ k and |ztj(γ(t+ ξ))| ≤ Cξ
wj
k if wj > k.

Proof. Fix t ∈ [0, T ] and let {f1, . . . , fn} be an adapted basis associated with the privileged coordi-
nate system zt. To lighten we do not explicitly write the dependence on time of such basis. Writing

zt∗fi(z) =
∑n

j=1 f
j
i (z)∂ztj , it holds that f ji is of weighted order ≥ wj − wi, and hence there exists a

constant C > 0 such that

(13) |f ji (z)| ≤ C‖z‖(wj−wi)+ .

Here ‖z‖ is the pseudo-norm |z1|
1
w 1 + . . .+ |zn|

1
wn and h+ = max{0, h} for any h ∈ R. Due to the

compactness of [0, T ], the constant C can be choosen to be uniform w.r.t. the time.
Since γ̇(ξ) ∈ ∆k(γ(ξ)) for ξ > 0, there exist functions ai ∈ C∞([0, T ]) such that

(14) γ̇(ξ) =
∑

wi≤k
ai(ξ)fi(γ(ξ)) for any ξ ∈ [0, T ].

Observe that, for any t ∈ [0, T ], it holds that

(15)
1

ξ

∫ t+ξ

t
|ai(η)| dη = |ai(t)|+O(ξ) as ξ ↓ 0,

where O(ξ) is uniform w.r.t. t. In particular, for any ξ sufficiently small, this integral is bounded.
By (14), for any t ∈ [0, T ] we get

(16) ztj(γ(t+ ξ)) =
∑

wi≤k

∫ t+ξ

t
ai(η)f ji (zt(γ(η))) dη, for any t+ ξ ∈ [0, T ]

9



Then, applying (13) we obtain

max
ρ∈[0,ξ]

|ztj(γ(t+ ρ))| ≤
∑

wi≤k

∫ t+ξ

t
|ai(η)| |f ji (zt(γ(η)))| dη

≤ C
(

max
ρ∈[0,ξ]

‖zt(γ(t+ ρ))‖
)(wj−k)+ ∑

wi≤k

∫ t+ξ

t
|ai(η)| dη.

(17)

Up to enlarging the constant C, this and (15) yield

maxρ∈[0,ξ] |ztj(γ(t+ ρ))|
ξwj

≤ C
(

maxρ∈[0,ξ] ‖zt(γ(t+ %k))‖
ξ

)(wj−k)+ ∑

wi≤k

1

ξk

∫ t+ξk

t
|ai(η)| dη

≤ C
(

maxρ∈[0,ξ] ‖zt(γ(t+ %k))‖
ξ

)(wj−k)+

.

(18)

Clearly, if maxρ∈[0,ξ] ‖zt(γ(t+ ρk))‖/ξ ≤ C uniformly in t, inequality (18) proves (12). Then, let

us assume by contradiction that maxρ∈[0,ξ] ‖zt(γ(t+ ρk))‖/ξ is unbounded as ξ ↓ 0. For any ξ let

ξ̄ ∈ [0, ξ] to be such that ‖zt(γ(t+ ξ̄k))‖ = maxρ∈[0,ξ] ‖zt(γ(t+ ρk))‖. Then, there exists a sequence
ξν → +∞ such that

bν =
|ztj(γ(t+ ξ̄kν ))|

ξ
wj
ν

−→ +∞ and
1

n

‖zt(γ(t+ ξ̄kν ))‖
ξν

≤ b
1
wj
ν ≤ ‖z

t(γ(t+ ξ̄kν ))‖
ξν

.

Moreover, by (18), it has to hold that wj > k. Then, again by (18), follows that

bν ≤ Cn b
1− k

wj
ν −→ 0 as ν → +∞.

This contradicts the fact that bν → +∞, and proves that there exists ξ0 > 0, a priori depending
on t, such that ‖zt(γ(t+ ξ̄k))‖/ξ ≤ C for any ξ < ξ0. Since [0, T ] is compact, both constants ξ0, C
are uniform for t ∈ [0, T ], thus completing the proof of (12) and of the proposition. �

We now focus on coordinate systems adapted to the drift. In particular, if for some s ∈ N it
holds that f0 ⊂ ∆s \∆s−1, it makes sense to consider the following definition.

Definition 3.3. A privileged coordinate system adapted to f0 at q is a system of privileged coordi-
nates z at q for {f1, . . . , fm} such that there exists a coordinate z` such that z∗f0 ≡ ∂z` .

Observe that completing f0 to an adapted basis {f1, . . . , f0, . . . , fn} allows us to consider the
coordinate system adapted to f0 at q, given by the inverse of the diffeomorphism

(19) (z1, . . . , zn) 7→ ez`f0 ◦ . . . ◦ eznfn(q).

The following definition combines continuous coordinate families for a path γ : [0, T ]→M with
coordinate systems adapted to a drift.

Definition 3.4. A continuous coordinate family for γ adapted to f0 is a continuous coordinate
family {zt}t∈[0,T ] for γ, such that each zt is a privileged coordinate system adapted to f0 at γ(t).

Such coordinates systems can be built as per (19), letting the point q vary on the curve.
Recall that f0 ⊂ ∆s \ ∆s−1 for some s, and consider a path γ : [0, T ] → M such that γ̇(t) ∈

∆s(γ(t)) and that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ]. In this case, there exists
fα ⊂ ∆s \∆s−1 and two functions ϕ`, ϕα ∈ C∞([0, T ]), ϕα ≥ 0, such that

γ̇(t) mod ∆s−1(γ(t)) = ϕ`(t)f0(γ(t)) + ϕα(t)fα(γ(t)).
10



Moreover, by the assumption f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)), if ϕ`(t) = 1 then ϕα(t) > 0. Then,
using fα as an element of the adapted basis used to define a continuous coordinate family for γ
adapted to f0, it holds (zti)∗γ̇(t) = ϕi(t) for i = α, ` and any t ∈ [0, T ]. The following lemma will
be essential to study this case.

Lemma 3.5. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ] → M be a
path such that γ̇(t) ∈ ∆s(γ(t)) and such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ].
Consider the continuous coordinate family {zt}t∈[0,T ] for γ adapted to f0 defined above. Then, there
exist constants ξ0, ρ,m > 0 and a coordinate α 6= ` of weight s such that for any t ∈ [0, T ] and
0 ≤ ξ ≤ ξ0, it holds

(zt`)∗γ̇(t+ ξ) ≤ 1− ρ if t ∈ E1 = {ϕ` < 1− 2ρ},(20)

(ztα)∗γ̇(t+ ξ) ≥ m if t ∈ E2 = {1− 2ρ ≤ ϕ` ≤ 1 + 2ρ},(21)

(zt`)∗γ̇(t+ ξ) ≥ 1 + ρ if t ∈ E3 = {ϕ` > 1 + 2ρ}.(22)

In particular, it holds that E1 ∪ E2 ∪ E3 = [0, T ].

Proof. Since ϕα > 0 on ϕ−1
` (1), by continuity of ϕ` and ϕα there exists ρ > 0 such that ϕα > 0 on

ϕ−1
` ([1− 2ρ, 1 + 2ρ]). Since E2 = ϕ−1

` ([1−2ρ, 1+2ρ]) is closed, letting 2m = minE2 ϕα > 0 property
(21) follows by the uniform continuity of (t, ξ) 7→ (ztα)∗γ̇(t+ ξ) on E2× [0, ξ0], for sufficiently small
ξ0. Finally, the uniform continuity of (t, ξ) 7→ (zt`)∗γ̇(t+ ξ) over E1 × [0, ξ0] and E3 × [0, ξ0] yields
(20) and (22). �

We end this section by observing that when the path is well-behaved with respect to the sub-
Riemannian structure, it is possible to construct a very special continuous coordinate family, rec-
tifying both γ and f0 at the same time.

Proposition 3.6. Let γ : [0, T ]→M be a path and k ∈ N be such that γ̇(t) ∈ ∆k(γ(t))\∆k−1(γ(t))
for any t ∈ [0, T ], there exists a continuous coordinate family {zt}[0,T ] for γ adapted such that

(1) there exists a coordinate zα of weight k such that zt∗γ̇ ≡ ∂zα;

(2) for any ξ, t ∈ [0, T ] it holds that ztα = zt−ξα + ξ and zti = zξi if i 6= α.

Moreover, if there exists s ∈ N such that f0 ⊂ ∆s\∆s−1 and such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t))
for any t ∈ [0, T ] whenever s = k, such family can be chosen adapted to f0.

Proof. By the assumptions on γ̇, it is possible to choose fα ⊂ ∆k \∆k−1 such that γ̇(t) = fα(γ(t)).
Let then {f1, . . . , fn} be the adapted basis obtained by completing fα and f0. Finally, to complete
the proof it is enough to consider the family of coordinates given by the inverse of the diffeomor-
phisms

(z1, . . . , zn) 7→ ez`f0 ◦ · · · ◦ ezαfα(γ(t)). �

4. Cost functions

In this section we focus on properties of the cost functions defined in (3) and of the associated
value functions, respectively denoted by V J (·, ·) and V I(·, ·). For J such function is defined by

(23) V J (q, q′) = inf
{
J (u, T )| T > 0, qu(0) = q, qu(T ) = q′

}
.

The definition of V I is analogous.
11



4.1. Regularity of the value function. The following result, in the case of J is contained in
[22, Proposition 4.1], The proof can easily be extended to I.

Theorem 4.1. For any T > 0, the functions V J and V I are continuous from M ×M → [0,+∞)
(in particular they are finite). Moreover, for any q, q′ ∈M it holds

V J (q, q′) ≤ min
0≤t≤T

dSR(etf0q, q′),

V I(q, q′) ≤ min
0≤t≤T

(
t+ dSR(etf0q, q′)

)
.

Here etf0 denotes the flow of f0 at time t and we recall that dSR denotes the Carnot-Carathéodory
distance w.r.t. the system (SR-s).

We remark that this fact follows from the following proposition (obtained adapting [22, Lemma
3.6] to control-affine systems).

Proposition 4.2. For any η > 0 sufficiently small and for any q0, q1 ∈M , it holds

inf{J (u, η) | if qu(0) = q0 then qu(η) = q1} ≤ dSR(q0, q1).

In the same paper, it is proved a more general version of the following result, in the same spirit
of Theorem 2.3. We denote the reachable set from the point q ∈M with cost J less than ε > 0 as

(24) Rf0T (q, ε) =
{
p ∈M | V J (q, p) ≤ ε

}
.

Recall de definition of Box (η) in (7) and that {∂zi}ni=1 is the canonical basis in Rn. Then, we define
the following sets, for parameters η > 0 and T > 0:

ΞT (η) =
⋃

0≤ξ≤T

(
ξ∂z` + Box (η)

)
,

ΠT (η) = Box (η) ∪
⋃

0<ξ≤T
{z ∈ Rn : |z` − ξ| ≤ ηs, |zi| ≤ ηwi + ηξ

wi
s for wi ≤ s, i 6= `,

and |zi| ≤ η(η + ξ
1
s )wi−1 for wi > s}.

Theorem 4.3. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Assume, moreover, that
z = (z1, . . . , zn) is a privileged coordinate system adapted to f0, i.e., such that z∗f0 = ∂z`. Then,
there exist C, ε0, T0 > 0 such that

(25) ΞT

(
1

C
ε

)
⊂ Rf0T (q, ε) ⊂ ΠT (Cε), for ε < ε0 and T < T0.

Here, with abuse of notation, we denoted by Rf0T (q, ε) the coordinate representation of the reachable
set. In particular,

(26) Box

(
1

C
ε

)
∩ {z` ≤ 0} ⊂ Rf0T (q, ε) ∩ {z` ≤ 0} ⊂ Box (Cε) ∩ {z` ≤ 0}.

Remark 4.4. Let N ⊂ M be compact and let {zq}q∈N be a family of systems of privileged
coordinates at q depending continuously on q. Then, as for Theorem 2.3 (see Remark 2.4), there
exist uniform constants C, ε0, T0 > 0 such that Theorem 4.3 holds for any q ∈ N in the system zq.

We notice also that, since [22, Example 21] is easily extendable to I, it follows that, for neither J
nor I, the existence of minimizers is assured. Recall that a control u ∈ UT is a minimizer between
q1, q2 ∈ M for the cost J if its associated trajectory with initial condition qu(0) = q1 is such that
qu(T ) = q2 and V J(q1, q2) = J(u, T ).
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4.2. Behavior along the drift. The following proposition assures that a minimizer for J and I
always exists when moving in the drift direction.

Proposition 4.5. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. For any 0 < t < T ,
the unique minimizer between any q0 ∈ M and etf0q0 for the cost J is the null control on [0, t].
Moreover, if f0 /∈ ∆(q0), i.e. s ≥ 2, and the maximal time of definition of the controls T is
sufficiently small, the same is true for I.

Proof. Since, for t ∈ [0, T ], we have that V J (q, etf0q) = 0, the first statement is trivial.
To prove the second part of the statement we proceed by contradiction. Namely, we assume that

there exists a sequence T n −→ 0 such that for any n ∈ N there exists a control vn ∈ L1([0, tn],Rm) ⊂
UT n , vn 6≡ 0 , steering the system from q0 to eT n f0(q0) and such that

(27) tn + ‖vn‖L1([0,tn],Rm) = I(vn, tn) ≤ I(0, T n) = T n .
Let z = (z1, . . . , zn) be a privileged coordinate system adapted to f0 at q, as per Definition 3.3.
Thus, by Theorem 4.3, it holds

|z`(eT n f0(q0))| ≤ tn + C‖vn‖2L1([0,tn],Rm)
.(28)

Since z`(e
T n f0(q0)) = T n, putting together (27) and (28) yields ‖vn‖L1([0,tn],Rm) ≤ C‖vn‖2L1([0,tn],Rm)

for any n ∈ N. Since by the continuity of V I we have that ‖vn‖L1([0,tn],Rm) → 0, this is a contra-

diction. �
We remark that, in the case of I, the assumption f0 /∈ ∆(q0) of Proposition 4.5 is essential. In

particular, in the following example we show that when f0 ⊂ ∆ even if a minimizer between q0 and
etf0(q0) exists, it could not coincide with an integral curve of the drift.

Example 4.6. Consider the control-affine system on R2,

(29)
d

dt
x = f0(x) + u1f0(x) + u2f(x),

where f0 = (1, 0) and f = (φ1, φ2) for some φ1, φ2 : R2 → R, with φ2 6= 0 and ∂x(φ1/φ2)|(0,0) 6= 0.
Since f0 and f are always linearly independent, the underlying small sub-Riemannian system is
indeed Riemannian with metric

g =

(
1 −φ1/φ2

−φ1/φ2
1−φ21
φ22

)
.

Let us now prove that the curve γ : [0, 1] → R2, γ(t) = (t T, 0) is not a minimizer of the
Riemannian distance between (0, 0) and (T, 0). In particular, it is enough to prove that γ is not a
geodesic for small T > 0. For γ the geodesic equation writes{

t2Γ1
11(γ(t)) = 0,

t2Γ2
11(γ(t)) = 0,

for any t ∈ [0, 1] ⇐⇒ Γ1
11(·, 0) = Γ2

11(·, 0) = 0 near 0.

Here, Γik` are the Christoffel numbers of the second kind associated with g. A simple computation
shows that

Γ1
11 =

φ1

φ2
∂x1

(
φ1

φ2

)
, Γ2

11 = ∂x1

(
φ1

φ2

)
.

Thus, if ∂x1(φ1/φ2)|(0,0) 6= 0, then Γ2
11(0, 0) 6= 0, showing that γ is not a geodesic.

We now show that this fact implies that for any minimizing sequence un = (u1
n, u

2
n) ∈ L1([0, tn],R2

for V I between (0, 0) and eTf0((0, 0)) = (T, 0), such that J(un+1, tn+1) ≤ J(un, tn), then u2
n 6= 0

for sufficiently big n. To this aim, fix any tn → 0, let un(s) = u(s/tn) and qn(·) be the trajectory
associated with un in system (29). Moreover, let v = (v1, 0) ∈ L1([0, S],R2) be the minimizer
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of I between (0, 0) and (T, 0) in the system ẋ1 = 1 + v1. Since the trajectory of v is exactly γ,
by rescaling it holds length(γ) = I(v, S). Then, by standard results in the theory of ordinary
differential equations, it follows that qn(tn) → (T, 0) and the fact that γ is not a Riemannian
minimizing curve implies that

‖un‖L1 = ‖u‖L1 < length(γ) = I(v, S).

Hence, for sufficiently big n it holds that I(un, tn) < I(v, S), proving the claim.

As a consequence of Proposition 4.5, we get the following property for the complexities defined
in the previous section with respect to the costs J and I. It generalizes to the control-affine setting
the trivial minimality of the sub-Riemannian complexity on the path Γ = {q}.
Corollary 4.7. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s\∆s−1. Let x ∈M and y = eTf0x,
for some 0 < T < T . Then, for any ε > 0, the minimum over all curves Γ ⊂ M (resp. paths

γ : [0, T ]→M) connecting x and y of σJc (·, ε) and σJa (·, ε) (resp. σJt (·, δ) and σJn (·, ε)) is attained
at Γ = {etf0}t∈[0,T ] (resp. at γ(t) = etf0x). Moreover, the same is true for the cost I, whenever T
is sufficiently small.

4.3. Behavior transversally to the drift. When we consider two points on different integral
curves of the drift, it turns out that the two costs J and I are indeed equivalent, as proved in the
following.

Proposition 4.8. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let q, q′ ∈M be such
that there exists a set of privileged coordinates adapted to f0 at q. Then, there exists C, ε0, T > 0
such that, for any u ∈ UT such that, for some T < T , qu(T ) = q′ and J (u, T ) < ε0, it holds

J (u, T ) ≤ I(u, T ) ≤ CJ (u, T ).

The proof of this fact relies on the following particular case of [22, Lemma 25].

Lemma 4.9. Assume that there exists s ∈ N such that f0 ⊂ ∆s \ ∆s−1. Let q ∈ M and let
z = (z1, . . . , zn) be a system of privileged coordinate system adapted to f0 at q. Then, there exist
C, ε0, T > 0 such that, for any u ∈ UT , with J (u, T ) < ε0 for some T < T , it holds

T ≤ C
(
J (u, T )s + z`(qu(T ))+

)
.

Here, we let ξ+ = max{ξ, 0}.
This Lemma is crucial, since it allows to bound the time of definition of any control through its

cost. We now prove Proposition 4.8.

Proof of Proposition 4.8. The first inequality is trivial. The second one follows by applying Lemma 4.9,
and computing

I(u, T ) ≤ T + J (u, T ) ≤ (Cεs−1
0 + 1)J (u, T ).

�

5. First results on complexities

In this section we collect some first results regarding the various complexities we defined.
For the complexity of a generic cost function J : UT → [0,+∞), satisfying some weak assump-

tions, we have the following.

Proposition 5.1. Assume that, for any q1 ∈M and any q2 /∈ {etf0q1}t≥0, it holds V J(q1, q2) > 0.
Then, for any curve Γ ⊂M it holds the following.

(1) if Γ is not an integral curve of the drift, then limε↓0 σJc (Γ, ε) = limε↓0 σJa (Γ, ε) = +∞.
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(2) if Γ is an admissible curve for (D), then εσJc (Γ, ε) and εσJa (Γ, ε) are bounded from above,
for any ε > 0.

Moreover, for any path γ : [0, T ]→M it holds the following.

(1) limδ↓0 σJt (γ, δ) = 0 and, if γ is not a solution of (D), limε↓0 σJn(γ, ε) = +∞.
(2) if γ is an admissible curve for (D), then σJt (γ, ε)/δ and εσJn(γ, ε) are bounded by above, for

any δ, ε > 0.

Proof. We only prove the statements regarding the cost interpolation complexity of a curve Γ. The
same reasonings will hold for the others.

Since V J(x, y) > 0, the first statement follows from

lim
ε↓0

σJc (Γ, ε) ≥ V (x, y) lim
ε↓0

1

ε
= +∞.

On the other hand, let u be a control such that qu([0, T ]) = Γ. Then, it is clear that σJc (Γ, ε) ≤
J(u, T )/ε, completing the proof of the proposition. �

Before starting to work with complexities in control-affine systems, we prove Theorem 1.2.

Proof of Theorem 1.2. Let {zt}t∈[0,T ] to be the continuous family of coordinates for γ given by

Proposition 3.6. We start by proving that σSR-s
t (γ, δ) 4 δ

1
k . Fix any partition 0 = t0 < t1 < . . . <

tN = T such that δ/2 ≤ ti− ti−1 ≤ δ. If δ is sufficiently small, from Theorem 2.3 follows that there
exists a constant C > 0 such that for any i = 0, . . . , N in the coordinate system zti it holds that

Box(γ(ti), Cδ
1
k ) ⊂ BSR(γ(ti), δ

1
k ). Hence, since z

ti−1
α (γ(ti)) = ti− ti−1, that z

ti−1

j (γ(ti)) = 0 for any

j 6= α, and that N ≤ d2T/δe ≤ CT/δ, we get

σSR-s
t (γ, δ) ≤ δ

N∑

i=1

dSR(γ(ti−1), γ(ti)) ≤ Cδ
N∑

i=1

n∑

j=1

|zti−1

j (γ(ti))|
1
wj = Cδ

N∑

i=1

(ti − ti−1)
1
k ≤ CTδ 1

k .

This proves that σSR-s
t (γ, δ) 4 δ 1

k .

On the other hand, to prove that σSR-s
t (γ, δ) < δ

1
k , let η > 0 and u ∈ L1([0, T ]) be a control

admissible for σSR-s
t (γ, δ) such that

‖u‖L1([ti−1,ti])
≤ σSR-s

t (γ, δ)

δ
+ η.

Let 0 = t0 < t1 < . . . < tN = T be times such that qu(ti) = γ(ti), i = 0, . . . , N , 0 < ti − ti−1 ≤ δ.
Moreover, let ui ∈ L1([ti−1, ti]) be the restriction of u between ti−1 and ti. Observe that, up to
removing some ti’s, we can assume that ti − ti−1 ∈

(
δ
2 ,

3
2δ
]
. This implies that d2T/(3δ)e ≤ N ≤

d2T/δe.
To complete the proof it suffices to show that ‖ui‖L1([ti−1,ti])

≥ Cδ 1
k . In fact, for any η > 0, this

yields

σSR-s
t (γ, δ)

δ
≥ ‖u‖L1([0,T ],Rm) − η =

N∑

i=1

‖ui‖L1([ti−1,ti])
− η ≥ C

N∑

i=1

δ
1
k − η ≥ C 2T

3δ
δ

1
k − η.

Letting η ↓ 0, this will prove that σSR-s
t (γ, δ) < δ 1

k , completing the proof.
Observe that, by Theorem 2.3, for any i = 1, . . . , N in the coordinate system zti−1 it holds

BSR(γ(ti), ‖ui‖L1([ti−1,ti])
) ⊂ Box

(
γ(ti), C‖ui‖L1([ti−1,ti])

)
. Since z

ti−1
α (ti) = ti − ti−1, this implies

that
δ

2
≤ ti − ti−1 = |zti−1

α (γ(ti))| ≤ C ‖ui‖kL1([ti−1,ti])
,

proving the claim and the theorem. �
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In the following, we will denote with an apex “SR-s” – e.g. σSR-s
c – the complexities associated

with the small sub-Riemannian system (SR-s) defined at p. 8, and with an apex “SR-b”, e.g. σSR-b
c ,

the ones associated with the big sub-Riemannian system (SR-b).
We immediately get the following.

Proposition 5.2. Let Γ ⊂M be a curve and γ : [0, T ]→M be a path.

(i) Any complexity relative to the cost J is smaller than the same complexity relative to I.
Namely, for any ε, δ > 0, it holds

σJc (Γ, ε) ≤ σIc (Γ, ε), σJa (Γ, ε) ≤ σIa (Γ, ε),

σJt (γ, δ) ≤ σIt (γ, δ), σJn (γ, ε) ≤ σIn(γ, ε).

(ii) For any cost, the neighboring approximation complexity of some path is always bigger than
the tubular approximation complexity of its support. Namely, for any γ : [0, T ] → M and
any ε > 0, it holds

σJa (γ([0, T ]), ε) ≤ σJn (γ, ε), σIa (γ([0, T ]), ε) ≤ σIn(γ, ε)

(iii) Any complexity relative to the cost I is bigger than the same complexity computed for the
system (SR-b). Namely, for any ε, δ > 0, it holds

σSR-b
c (Γ, ε) ≤ σIc (Γ, ε), σSR-b

a (Γ, ε) ≤ σIa (Γ, ε),

σSR-b
t (γ, δ) ≤ σIt (γ, δ), σSR-b

n (γ, ε) ≤ σIn(γ, ε).

(iv) In the case of curves, the complexities relative to the cost I are always smaller than the
same complexities computed for the system (SR-s). Namely, for any ε > 0 it holds

σIc (Γ, ε) ≤ σSR-s
c (Γ, ε), σIa (Γ, ε) ≤ σSR-s

a (Γ, ε).

Proof. The inequality in (ii) is immediate, since any control admissible for the σn(γ, ε) is also
admissible for σa(γ([0, T ]), ε).

On the other hand, the inequalities in (iii) between the complexities in (SR-b) and the ones
in (D), with cost I, is a consequence of the fact that, for every control u ∈ UT , the trajectory
qu is admissible for (SR-b) and associated with the control u0 = (1, u) : [0, T ] → Rm+1 with
‖u0‖L1([0,T ],Rm+1) = I(u, T ). The inequalities in (i) between the complexities in (D) with respect

to the different costs follows from the fact that J ≤ I.
Finally, to complete the proof of the proposition, observe that, by Theorem 4.1, it holds that

V I(q, q′) ≤ dSR(q, q′), for any q, q′ ∈M.

This shows, in particular, that every ε-cost interpolation for (SR-s), is an ε-cost interpolation for
(D), proving the statement regarding the cost interpolation complexity in (iv). The part concerning
the tubular approximation follows in the same way. �

We conclude this section by proving an asymptotic equivalence for the complexities of a control-
affine system in a very special case. In particular, we will prove that if we cannot generate the
direction of Γ with an iterated bracket of f0 and some f1, . . . , fm, then the curve complexities for
the systems (D), (SR-s) and (SR-b) behaves in the same way.

Let Lf0 be the ideal of the Lie algebra Lie(f0, f1, . . . , fm) generated by the adjoint endomorphism
ad(f0) : f 7→ ad(f0)f = [f0, f ], f ∈ Vec(M). Then the following holds.

Proposition 5.3. Assume that there exists s ∈ N such that f0 ⊂ ∆s \ ∆s−1, and let Γ ⊂ M be
a curve such that there exists k ∈ N for which TΓ ⊂ ∆k \∆k−1. Assume, moreover, that for any
q ∈ Γ it holds that TqΓ 6⊂ Lf0(q). Then, for sufficiently small T ,

(30) σJc (Γ, ε) � σIc (Γ, ε) � σJa (Γ, ε) � σIa (Γ, ε) � 1

εk
.
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Proof. By the fact that TqΓ 6⊂ Lf0(q), follows that TqΓ ⊂ Liekq (f0, f1, . . . , fm)\Liek−1
q (f0, f1, . . . , fm).

Thus, approximating Γ in the big or in the small sub-Riemannian system is equivalent, and by The-
orem 1.1 follows

σSR-s
c (Γ, ε) � σSR-b

c (Γ, ε) � σSR-s
a (Γ, ε) � σSR-b

a (Γ, ε) � 1

εk
.

The statement then follows by applying Proposition 5.2. �
Remark 5.4. Observe that if f0 ∈ ∆ in a neighborhood U of Γ, it holds that Liekq (f0, f1, . . . , fm) =

∆k(q) for any q ∈ U . Then, by the same argument as above, we get that (30) holds. This shows
that, where f0 ⊂ ∆, the asymptotic behavior of complexities of curves is the same as in the
sub-Riemannian case.

6. Complexity of curves

This section is devoted to prove the statement on curves of Theorem 1.3. Namely, we will prove
the following.

Theorem 6.1. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let Γ ⊂ M be a curve
and define κ = max{k : TpΓ ∈ ∆k(p) \ ∆k−1(p) for some p ∈ Γ}. Then, if the maximal time of
definition of the controls T is small enough,

σJc (Γ, ε) � σIc (Γ, ε) � σJa (Γ, ε) � σIa (Γ, ε) � 1

εκ
,

Due to the fact that the value functions associated with the costs J and I are always smaller
than the sub-Riemannian distance associated with system (SR-s), the 4 immediately follows from
the results in [20].

Proposition 6.2. Let Γ ⊂M be a curve such that there exists k ∈ N for which TΓ ⊂ ∆k. Then,

σJc (Γ, ε) 4 σIc (Γ, ε) 4 1

εk
, σJa (Γ, ε) 4 σIa (Γ, ε) 4 1

εk
.

Proof. By (i) in Proposition 5.2, follows that we only have to prove the upper bound for the
complexities relative to the cost I. Moreover, by the same proposition and [20, Theorem 3.14],
follows immediately that σIc (Γ, ε) and σIa (Γ, ε) 4 ε−k, completing the proof of the proposition. �

In order to prove <, we will need to exploit a sub-additivity property of the complexities. In order
to have this property, it is necessary to exclude certain bad behaving points, called cusps. Near
these points, the value function behaves like the Euclidean distance does near algebraic cusps (e.g.,

(0, 0) for the curve y =
√
|x| in R2). In the sub-Riemannian context, they have been introduced in

[20].

Definition 6.3. The point q ∈ Γ is a cusp for the cost J if it is not an endpoint of Γ and if,
for every c, η > 0, there exist two points q1, q2 ∈ Γ such that q lies between q1 and q2, with q1

before q and q2 after q w.r.t. the orientation of Γ (in particular q 6= q1, q2), V J(q1, q2) ≤ η and
V J(q, q2) ≥ c V (q1, q2).

In [20] is proved that no curve has cusps in an equiregular sub-Riemannian stucture. As the
following example shows, the equiregularity alone is not enough for control-affine systems.

Example 6.4. Consider the following vector fields on R3, with coordinates (x, y, z),

f1(x, y, z) = ∂x, f2(x, y, z) = ∂y + x∂z.

Since [f1, f2] = ∂z, {f1, f2} is a bracket-generating family of vector fields. The sub-Riemannian
control system associated with {f1, f2} on R3 corresponds to the Heisenberg group.
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Let now f0 = ∂z ⊂ ∆2 \∆ be the drift, and let us consider the curve Γ = {(t2, 0, t) | t ∈ (−η, η)}.
Let q = (0, 0, 0). Since TqΓ /∈ ∆(q), by smoothness of Γ and ∆, for η sufficiently small TΓ ⊂ ∆2 \∆.
We now show that the point q is indeed a cusp for the cost J . In fact, for any ξ > 0 such that
2ξ < T , it holds that the null control defined over time [0, 2ξ] steers the control affine system from
q1 = (ξ2, 0,−ξ) ∈ Γ to q2 = (ξ2, 0, ξ) ∈ Γ. Hence, by Proposition 4.5, V J (q1, q2) = 0. Moreover,
since q and q2 are not on the same integral curve of the drift, V J (q, q2) > 0 = V J (q1, q2). This
proves that q is a cusp for J .

The following proposition shows that cusps appear only where the drift becomes tangent to the
curve at isolated points, as in the above example.

Proposition 6.5. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let Γ ⊂M be a curve
such that TΓ ⊂ ∆k \∆k−1. Moreover, if s = k, let Γ be such that either f0(p) /∈ TpΓ⊕∆s−1(p) for
any p ∈ Γ or f0|Γ ⊂ TΓ⊕∆s−1. Then Γ has no cusps for the cost V J .

Proof. If f0|Γ ⊂ TpΓ ⊕ ∆s−1(p), the statement is a consequence of Proposition 4.5. Hence, we
assume that f0(p) /∈ TpΓ ⊕∆s−1(p) for any p ∈ Γ. Let γ : [0,T] → M be a path parametrizing Γ
and consider the continuous coordinate family {zt}t∈[0,T] adapted to f0 given by Proposition 3.6.

In particular, it holds that zt∗γ̇(·) ≡ ∂zα for some coordinate zα of weight k and for any t ∈ [0,T].
We now fix any t0 ∈ (0,T) and prove that γ(t0) is not a cusp. In fact, letting η > 0 be sufficiently
small, by Theorem 4.3 and the fact that zt`(γ(·)) ≡ 0 we get

V J (γ(t0), γ(t0 + η)) ≤ C
n∑

j=1

|zt0j (γ(t0 + η))|
1
wj = C|zt0α γ(t0 + η)| 1k

= 2C|zt0−ηα (γ(t0 + η))| 1k ≤ CV (γ(t0 − η), γ(t0 + η)).

Letting t1 = t0 − η and t2 = t0 + η, this proves that V J (γ(t0), γ(t2)) ≤ V J (γ(t1), γ(t2)). By
definition, this implies that γ(t0) is not a cusp, completing the proof of the proposition. �

Finally, we can prove the sub-additivity of the curve complexities.

Proposition 6.6. Let Γ′ ⊂ Γ ⊂ M be two curves. Then, if the endpoints of Γ′ are not cusps for
the cost J , there exists a constant C > 0 such that for sufficiently small T it holds

σJc (Γ′, ε) 4 σJc (Γ, ε), σJa (Γ′, ε) 4 σJa (Γ, ε).

Proof. Cost interpolation complexity. Let u ∈ L1([0, T ],Rm) be a control admissible for σJc (Γ, ε),
and let 0 = t1 < . . . < tN = T be such that ‖u‖L1([ti−1,ti])

≤ ε. Recall that by Theorem 4.1, V J is

a continuous function. Since for small T > 0, for any ε > 0 and for any q0 ∈ M the reachable set
RT (q, ε) is bounded, it holds thatRT (q, ε)↘ {etf0(q0) | t ∈ [0, T ]} as ε ↓ 0, in the sense of pointwise
convergence of characteristic functions. From this follows that, for ε and T sufficiently small, there
exist i1 6= i2 such that qu(ti) ∈ Γ′ for any i ∈ {i1, . . . , i2} and qu(ti) 6∈ Γ′ for any i /∈ {i1, . . . , i2}.
Since x′ and y′ are not cusps, there exists c > 0 such that, letting x′ and y′ be the endpoints of Γ′, it
holds V J (x′, qu(ti1)) ≤ cV I(qu(ti1−1, qu(ti1)) ≤ ε and V J (qu(ti2), y′) ≤ V J (qu(ti2), qu(ti2+1)) ≤ cε.
Thus, there exists a constant C > 0 such that

σJc (Γ′, ε) ≤
J (u|[ti1 ,ti2 ])

ε
+ 2c ≤ C

J (u|[ti1−1,ti2+1])

ε
≤ CJ (u)

ε
.

Taking the infimum over all controls u, admissible for σJc (Γ, ε) completes the proof.
Tubular approximation complexity. Let u ∈ L1([0, T ],Rm) be a control admissible for σJa (Γ, ε).

Then, letting qu be its trajectory such that qu(0) = x, there exists two times t1 and t2 such that
qu(t1) ∈ BSR(x′, Cε) and qu(t2) ∈ BSR(y′, Cε). Then, since V J ≤ dSR by Theorem 4.1, the same
argument as above applies. �
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Thanks to the sub-additivity, we can prove the < part of Theorem 6.1 in the case where the
curve is always tangent to the same stratum ∆k \∆k−1.

Proposition 6.7. Assume, that there exists s ∈ N such that f0 ⊂ ∆s\∆s−1. Let Γ ⊂M be a curve
such that there exists k ∈ N for which TpΓ ∈ ∆k(p) \∆k−1(p) for any p ∈ Γ. Then, for sufficiently
small time T , it holds

σIc (Γ, ε) < σJc (Γ, ε) < 1

εk
, σIa (Γ, ε) < σJa (Γ, ε) < 1

εk
.

Proof. By Proposition 5.2, σIc (Γ, ε) < σJc (Γ, ε) and σIa (Γ, ε) < σJa (Γ, ε). We will only prove that
σJc (Γ, ε) < ε−k, since the same arguments apply to σJa (Γ, ε).

Let γ : [0,T]→M be a path parametrizing Γ. We will distinguish three cases.

Case 1 f0(p) /∈ ∆s−1(p)⊕ TpΓ for any p ∈ Γ: Fix η > 0 and consider a control u ∈ L1([0, T ]),
admissible for σc(Γ, ε) such that

(31)
‖u‖L1

ε
≤ σc(Γ, ε) + η.

Let ui = u|[ti−1,ti], i = 1, . . . , N =
⌈‖u‖L1

ε

⌉
to be such that ‖ui‖L1 = ε for any 1 ≤ i < N ,

‖uN‖L1 ≤ ε. Moreover, let si be the times such that γ(si) = qu(ti).
By (31), it holds N ≤ dσc(Γ, ε) + η + 1e. However, we can assume w.l.o.g. that N ≤

dσc(Γ, ε) + ηe. In fact, N > dσc(Γ, ε) + ηe only if ‖uN‖ < ε. In this case we can simply

restrict ourselves to compute σc(Γ̃, ε) where Γ̃ is the segment of Γ comprised between x and

qu(tN−1). Indeed, by Propositions 6.5 and 6.6, it follows that σc(Γ̃, ε) 4 σc(Γ, ε).
We now assume that ε and T are sufficiently small, in order to satisfy the hypotheses

of Theorem 4.3 at any point of Γ. Moreover, let {zt}t∈[0,T] be the continuous coordinate
family for Γ adapted to f0 given by Proposition 3.6. Then, it holds

(32) T =
N∑

i=1

(si − si−1) =
N∑

i=1

|zsi−1
α (γ(si))| =

N∑

i=1

|zsi−1
α (qu(ti))| ≤ C(σc(Γ, ε) + η)εk.

Here, in the last inequality we applied Theorem 4.3 and the fact that zsi−1
` (qu(ti)) = 0 by

Proposition 3.6. Finally, letting η ↓ 0 in (32), we get that for any ε sufficiently small it
holds σc(Γ, ε) ≥ CT ε−k. This completes the proof in this case.

Case 2 s = k and f0(p) ∈ ∆s−1(p)⊕ TpΓ for any p ∈ Γ: Let {zt}t∈[0,T] be a continuous co-

ordinate family for γ adapted to f0. In this case, since (zt`)∗f0 = 1, it holds that (zt`)∗γ̇(·) 6=
0. Hence, there exist C1, C2 > 0 such that for any t, ξ ∈ [0, T ]

C1(t− ξ) ≤ zt`(γ(ξ)) ≤ C2(t− ξ), if (zt`)∗γ̇(·) > 0;(33)

C1(t− ξ) ≤ −zt`(γ(ξ)) ≤ C2(t− ξ), if (zt`)∗γ̇(·) < 0.(34)

If (34) holds, then we can proceed as in Case 1 with α = `. In fact, |zsi−1

` (qu(ti)| ≤ Cεs by
Theorem 4.3. On the other hand, if (33) holds, by applying Theorem 4.3 we get

T =
N∑

i=1

(si − si−1) ≤ 1

C1

N∑

i=1

|zsi−1

` (γ(si))| =
1

C1

N∑

i=1

|zsi−1

` (qu(ti))|

≤ 1

C1

N∑

i=1

(Cεs + ti − ti−1) ≤ C
(
σJc (Γ, ε) + η

)
εs + T.

By taking T sufficiently small, it holds T ≤ T < T. Then, letting η ↓ 0 this proves that
σJc (Γ, ε) ≥ ((T − T )/C)ε−s < ε−s. This completes the proof of this case.
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Case 3 s = k and f0(p) ∈ ∆s−1(p)⊕ TpΓ for some p ∈ Γ: In this case, there exists an open
interval (t1, t2) ⊂ [0,T] such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ (t1, t2). Thus,
Γ′ = γ((t1, t2)), satisfies the assumption of Case 1 and hence σJc (Γ′, ε) < ε−k. Moreover, by
Proposition 6.5, we can assume that γ(t1) and γ(t2) are not cusps. Then, by Proposition 6.6
we get

1

εk
4 σJc (Γ′, ε) 4 σJc (Γ, ε),

completing the proof of the proposition.

�
Finally, we are in a condition to prove the main theorem of this section.

Proof of Theorem 6.1. Since it is clear that TΓ ⊂ ∆κ, the upper bound follows by Proposition 6.2.
Moreover, by Proposition 5.2 it suffices to prove that σJc (Γ, ε) and σJa (Γ, ε) < ε−κ. Since the
arguments are analogous, we only prove this for σJc .

By smoothness of Γ, the set A = {p ∈ Γ | TpΓ ∈ ∆κ(p) \∆κ−1(p)} has non-empty interior. Let
then Γ′ ⊂ A be a non-trivial curve such that either f0(p) /∈ TpΓ′ ⊕∆s−1(p) for any p ∈ Γ′ or that
f0|Γ′ ⊂ TΓ′ ⊕∆s−1. Then, since by Proposition 6.5 we can choose Γ′ such that it does not contain
any cusps, applying Proposition 6.6 yields that σJc (Γ′, ε) 4 σJc (Γ, ε). Finally, the result follows
from the fact that, by Proposition 6.7, it holds σJc (Γ′, ε) < ε−κ. �

7. Complexity of paths

In this section we will prove the statement on paths of Theorem 1.3. Namely, we will prove the
following.

Theorem 7.1. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. let γ : [0, T ] → M be a
path such that f0(γ(t)) 6= γ̇(t) mod ∆s−1(γ(t)) for any t ∈ [0, T ] and define κ = max{k : γ(t) ∈
∆k(γ(t)) \∆k−1(γ(t)) for any t in an open subset of [0, T ]}. Then, it holds

σt(γ, δ) � δ
1

max{κ,s} , σn(γ, ε) � 1

εmax{κ,s} .

Differently to what happened for curves, the 4 part does not immediately follow from the
estimates of sub-Riemannian complexities, but requires additional care. It is contained in the
following proposition.

Proposition 7.2. Assume that there exists s ∈ N such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ]→M be
a path such that γ̇(t) ∈ ∆k(γ(t)). Then, it holds

(35) σJt (γ, δ) 4 σIt (γ, δ) 4 δ
1

max{s,k} , σJn (Γ, ε) 4 σIn(Γ, ε) 4 1

εmax{s,k} .

Proof. By (i) in Proposition 5.2, follows that we only have to prove the upper bound for the
complexities relative to the cost I. We will start by proving (35) for σIt .

Let {zt}t∈[0,T ] be a continuous coordinate family for γ adapted to f0. Let γ̃t(ξ) = e−(ξ−t)f0(γ(ξ)).

Then, since zt∗f0 = ∂z` , it holds

(36) zt`(γ̃t(ξ)) = zt`(γ(ξ))− (ξ − t), zti(γ̃t(ξ)) = zti(γ(ξ)) for any i 6= `.

Fix ξ > 0 sufficiently small for Proposition 3.2 to hold and choose a partition 0 < t1 < . . . <
tN = T such that δ/2 ≤ ti − ti−1 ≤ δ. In particular, N ≤ d2T/δe. We then select a control
u ∈ L1([0, T ],Rm) such that its trajectory qu in (D), with qu(0) = x, satisfies qu(ti) = γ(ti) for any
i = 1, . . . , N as follows. For each i, we choose ui ∈ L1([ti−1, ti],Rm) steering system (TD) from
γ(ti−1) = γ̃ti−1(ti−1) to γ̃ti−1(ti). Then, by (8) and the definition of γ̃ti−1 , the control ui steers
system (D) from γ(ti−1) to γ(ti).
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Since by [22, Theorem 8] it holds V ITD ≤ dSR, by (36), Proposition 3.2 and Theorem 2.3, if δ is
sufficiently small we can choose ui such that there exists C > 0 for which

I(ui, ti − ti−1) ≤ C
n∑

j=1

|zti−1

j (γ̃ti−1(ti))|
1
wj ≤ C

n∑

j=1

|zti−1

j (γ(ti))|
1
wj + δ

1
s

≤ C


∑

wj≤k
δ

1
wj + δ

1
s +

∑

wj>k

δ
1
k


 ≤ Cδ

1
max{k,s} .

(37)

Hence, we obtain that

(38) I(u, T ) ≤ N I(ui, ti − ti−1) ≤ 3C
T

δ
δ

1
max{k,s} .

Since the control u is admissible for σIt (γ, δ), this proves that σIt (γ, δ) 4 δ
1

max{k,s} .

To complete the proof for σn(γ, ε), let δ = εmax{k,s}. Then, by Theorems 2.3 and 4.3, there

exists a constant C > 0 such that Rf0δ (γ(t), ε) ⊂ BSR(γ(t), Cε) for any t ∈ [0, T ]. In particular,
dSR(γ(ti), qu(t)) ≤ Cε for any t ∈ [ti−1, ti]. Moreover, again by Theorem 2.3, Proposition 3.2, and
the fact that γ̇(·) ∈ ∆k(γ(·)), this choice of δ implies also that dSR(γ(ti−1), γ(t)) ≤ Cε for any
t ∈ [ti−1, ti]. Hence, for any t ∈ [ti−1, ti], we get

dSR(γ(t), qu(t)) ≤ dSR(γ(ti−1), qu(t)) + dSR(γ(ti−1), γ(t)) ≤ 2Cε.

Thus, u is admissible for σIn(γ,Cε). Finally, from (38) we get that σIn(γ,Cε) ≤ ε−1I(u, T ) ≤
3CTε−max{k,s}, proving that σn(γ, ε) 4 ε−max{k,s}. This completes the proof. �

Now, we prove the < part of the statement, in the case where γ̇ is always contained in the same
stratum ∆k \∆k−1.

Proposition 7.3. Assume that there exists s ≥ 2 such that f0 ⊂ ∆s \∆s−1. Let γ : [0, T ]→M be
a path, such that γ̇(t) ∈ ∆k(γ(t)) \∆k−1(γ(t)) for any t ∈ [0, T ]. Moreover, if s = k, assume that
f0(γ(t)) 6= γ̇(t) mod ∆s−1 for any t ∈ [0, T ]. Then, it holds

σIt (γ, δ) < σJt (γ, δ) < δ
1

max{s,k} , σIn(γ, ε) < σJn (γ, ε) < 1

εmax{s,k} .

Proof. By Proposition 5.2, σJt (γ, δ) 4 σIt (γ, δ) and σJn (γ, ε) 4 σIn(γ, ε). Hence, to complete the

proof it suffices to prove the asymptotic lower bound for σJt (γ, δ) and σJn (γ, ε). In the following,

to lighten the notation, we write σt and σn instead of σJt and σJn .
Interpolation by time complexity. Let η > 0 and u ∈ L1([0, T ]) be a control admissible for

σt(γ, δ) such that

(39) J (u, T ) = ‖u‖L1([0,T ],Rm) ≤
σt(γ, δ)

δ
+ η.

Let N = dT/δe and 0 = t0 < t1 < . . . < tN = T be times such that qu(ti) = γ(ti), i = 0, . . . , N ,
and 0 < ti − ti−1 ≤ δ. Observe that, up to removing some ti’s, we can always assume δ/2 ≤
ti − ti−1 ≤ (3/2)δ and N ≥ d(2T )/(3δ)e. Moreover, let ui = u|[ti−1,ti]. Proceding as in the proof of

Theorem 1.2, p. 15, we get that in order to show that σt(γ, δ) < δ
1

max{k,s} it suffices to prove

(40) ‖ui‖L1([ti−1,ti])
≥ Cδ

1
max{s,k} , i = 1, . . . , N.

We distinguish three cases.
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Case 1 k > s: Let {zt} be the continuous coordinate family for γ adapted to f0 given by
Proposition 3.6. Then, since zt`(γ(·)) = 0 and ztα(γ(ξ)) = ξ − t, by Theorem 4.3 it holds

(41)
δ

2
≤ (ti − ti−1) = |zti−1

α (γ(ti))| ≤ C‖ui‖kL1([ti−1,ti])
.

This proves (40).
Case 2 k < s: Also in this case, let {zt} be the continuous coordinate family for γ adapted

to f0 given by Proposition 3.6. Then, by Lemma 4.9 we get

δ

2
≤ ti − ti−1 ≤ C‖ui‖sL1([ti−1,ti])

,

which immediately proves (40).
Case 3 k = s: Let {zt}t∈[0,T ] be a continuous coordinate family for γ adapted to f0. By the

mean value theorem there exists ξ ∈ [ti−1, ti] such that

(42) z
ti−1

` (γ(ti)) =

∫ ti

ti−1

(zt`)∗γ̇(t) dt =
(
(z
ti−1

` )∗γ̇(ξ)
)
(ti − ti−1).

Consider the partition {E1, E2, E3} of [0, T ] given by Lemma 3.5 and let δ ≤ δ0. Then,
depending to which Ej belongs ti−1, we proceed differently.
(a) ti−1 ∈ E1: By Lemma 4.9 and (42) we get

ti − ti−1 ≤ C‖ui‖sL1([ti−1,ti])
+ z

ti−1

` (γ(ti))
+ = C‖ui‖sL1([ti−1,ti])

+
(
(z
ti−1

` )∗γ̇(ξ)
)
(ti − ti−1).

Then, by (20) of Lemma 3.5, we get

‖ui‖L1([ti−1,ti])
≥
(

1− (z
ti−1

` )∗γ̇(ξ)

C

) 1
s

(ti − ti−1)
1
s ≥

( ρ
C

) 1
s
δ

1
s .

This proves (40).
(b) ti−1 ∈ E2: By (21) of Lemma 3.5, (42) and Theorem 4.3 we get

m(ti − ti−1) ≤ |zti−1
α (γ(ti))| ≤ C

(
‖ui‖sL1([ti−1,ti])

+ ‖ui‖L1([ti−1,ti])
|zti−1

` (γ(ti))|
)
.

Reasoning as in (37) yields that we can assume ‖ui‖L1([ti−1,ti])
≤ Cδ

1
s . Then, by (42)

and letting δ ≤ (m/(2 + 4ρ))s, we get

‖ui‖L1([ti−1,ti])
≥ (m− δ 1

s (1 + 2ρ))
1
s (ti − ti−1)

1
s ≥

(m
2

) 1
s
δ

1
s ,

proving (40).
(c) ti−1 ∈ E3: By Theorem 4.3 it follows that

(43) |zti−1

` (γ(ti))| ≤ C‖ui‖sL1([ti−1,ti])
+ (ti − ti−1).

Then, by (42) and (43) we obtain

‖ui‖L1([ti−1,ti])
≥
(

(z
ti−1

` )∗γ̇(ξ)− 1

C

) 1
s

(ti − ti−1)
1
s ≥

( ρ
C

) 1
s
δ

1
s .

The last inequality follows from (22) of Lemma 3.5. This proves (40).

Neighboring approximation complexity. Fix η > 0 and let u ∈ L1([0, T ],Rm) be admissible
for σn(γ, ε) and such that ‖u‖L1([0,T ],Rm) ≤ σn(γ, ε) + η. Let qu : [0, T ] → M be the trajectory of

u with qu(0) = γ(0). Let then N = dσn(γ, ε) + ηe and 0 = t0 < t1 < . . . < tN = T be such that
‖u‖L1([ti−1,ti]) ≤ ε for any i = 1, . . . , N . By Proposition 4.2 and the fact that qu(t) ∈ BSR(γ(t), ε) for
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any t ∈ [0, T ], we can build a new control, still denoted by u, such that qu(ti) = γ(ti), i = 1, . . . , N ,
and ‖u‖L1([ti−1,ti]) ≤ 3ε.

Fixed a δ0 > 0, w.l.o.g. we can assume that ti − ti−1 ≤ δ0. In fact, we can split each interval
[ti−1, ti] not satisfying this property as ti−1 = ξ1 < . . . < ξM = ti, with ξν − ξν−1 ≤ δ0. Then, as
above, it is possible to modify the control u so that qu(ξν) = γ(ξν) for any ν = 1, . . . ,M . Since
M ≤ dT/δ0e and qu(·) ∈ BSR(γ(·), ε), we have ‖u‖L1([ξi,ξi−1]) ≤ 5ε and the new total number of

intervals is ≤ (1 + dT/δ0e)dσn(γ, ε) + ηe ≤ C(σn(γ, ε) + η).

We claim that to prove σn(γ, ε) < ε−max{s,k}, it suffices to show that there exists a constant
C > 0, independent of u, such that

(44) ti − ti−1 ≤ Cεmax{s,k}, for any i = 1, . . . , N.

In fact, since N ≤ C(σn(γ, ε) + η), this will imply that

T =
N∑

i=1

ti − ti−1 ≤ C(σn(γ, ε) + η)εmax{s,k}.

Letting η ↓ 0, we get that σn(γ, ε) < ε−max{s,k}, proving the claim.
We now let δ0 sufficiently small in order to apply Lemma 3.5, Theorem 4.3, and Lemma 4.9. As

before, we distinguish three cases.

Case 1 k > s: Let {zt} be the continuous coordinate family for γ adapted to f0 given by
Proposition 3.6. By Theorem 4.3, using the fact that γ(ti) = qu(ti) for i = 1, . . . , N , we get

(ti − ti−1) = |zti−1
α (γ(ti))| ≤ Cεk.(45)

This proves (44).
Case 2 k < s: Again, let {zt} be the continuous coordinate family for γ adapted to f0 given

by Proposition 3.6. As for the interpolation by time complexity, by Lemma 4.9 and the fact
that qu(ti) = γ(ti), we get

(ti − ti−1) ≤ Cεs,
thus proving (44).

Case 3 k = s: Let {zt}t∈[0,T ] to be a continuous coordinate family for γ adapted to f0. Con-
sider the partition {E1, E2, E3} of [0, T ] given by Lemma 3.5 and recall (42). We distinguish
three cases.
(a) ti−1 ∈ E1: By Lemma 4.9 and (42) we get

ti − ti−1 ≤ Cεs + z
ti−1

` (γ(ti)) = 2Cεs +
(
(z
ti−1

` )∗γ̇(ξ)
)
(ti − ti−1).

By (20) of Lemma 3.5, this implies

ti − ti−1 ≤
(

2C

1− (z
ti−1

` )∗γ̇(ξ)

)
εs ≤ 2C

ρ
εs.

Hence, (44) is proved.
(b) ti−1 ∈ E2: By (21) of Lemma 3.5, (42) and Theorem 4.3 we get

m(ti − ti−1) ≤ |zti−1
α (γ(ti))| ≤ C

(
εs + ε|zti−1

` (γ(ti))|
)
≤ C

(
εs + εs+1 + ε(ti − ti−1)

)
.

This, by taking ε sufficiently small and enlarging C, implies (44).
(c) ti−1 ∈ E3: By Theorem 4.3 it follows that

(46) |zti−1

` (γ(ti))| ≤ Cεs + (ti − ti−1).
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Then, by (42) and (46) we obtain

ti − ti−1 ≤
C

(z
ti−1

` )∗γ̇(ξ)− 1
εs ≤ C

ρ
εs.

The last inequality follows from (22) of Lemma 3.5, and proves (44).

�
As for the case of curves, in order to extend Proposition 7.3 to paths not always tangent to the

same strata, we will need the following sub-additivity property. Let us remark that due to the
definition of the path complexities, we do not need to make any assumption regarding cusps.

Proposition 7.4. Let γ : [0, T ]→M be a path and let t1, t2 ⊂ [0, T ]. Then,

σJt (γ|[t1,t2], δ) 4 σJt (γ, δ), σJn (γ|[t1,t2], ε) 4 σJn (γ, ε).

Proof. Time interpolation complexity. Let u ∈ L1([0, T ],Rm) be a control admissible for σJc (Γ, ε),
and let 0 = ξ1 < . . . < ξN = T be the times where qu(ξi) = γ(ξi). Let i1 6= i2 such that t1 ≤ ξi ≤ t2
for any i ∈ {i1, . . . , i2}. Observe that, by Theorems 2.3 and 4.1, we have V J (γ(t1), γ(ξi1)) ≤
dSR(γ(t1), γ(ξi1)) ≤ Cδ

1
r and V J (γ(ξi2), γ(t2)) ≤ dSR(γ(ξi2), γ(t2)) ≤ Cδ

1
r , where δ is sufficiently

small, C is independent of δ, and r is the nonholonomic degree of the distribution. Thus, assuming
w.l.o.g. C ≥ 1,

σJt (γ|[t1,t2], δ) ≤ δJ (u|[ti1 ,ti2 ]) + 2Cδ1+ 1
r ≤ CδJ (u) + Cδ1+ 1

r .

Taking the infimum over all controls u admissible for σJt (γ, δ), and recalling that, by Proposition 7.2,

it holds σJt (γ, δ) 4 δ 1
r , completes the proof.

Neighboring approximation complexity. In this case, the proof is identical to the one of Proposi-
tion 6.6 for the tubular approximation complexity. The sole difference is that here, by definition of
σJn , we do not need to assume the absence of cusps. �

We can now complete the proof of Theorem 1.3, by proving Theorem 7.1.

Proof. The proof is analogous to the one of Theorem 6.1, using Propositions 7.2, 7.3 and 7.4. �
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THE HEAT AND SCHRÖDINGER EQUATIONS ON CONIC AND ANTICONIC
SURFACES

UGO BOSCAIN† AND DARIO PRANDI†‡

Abstract We study the evolution of the heat and of a free quantum particle (described by the
Schrödinger equation) on two-dimensional manifolds endowed with the degenerate Riemannian met-
ric ds2 = dx2 + |x|−2αdθ2, where x ∈ R, θ ∈ T and the parameter α ∈ R. For α ≤ −1 this metric
describes cone-like manifolds (for α = −1 it is a flat cone). For α = 0 it is a cylinder. For α ≥ 1 it
is a Grushin-like metric. We show that the Laplace-Beltrami operator ∆ is essentially self-adjoint if
and only if α /∈ (−3, 1). In this case the only self-adjoint extension is the Friedrichs extension ∆F ,
that does not allow communication through the singular set {x = 0} both for the heat and for a
quantum particle. For α ∈ (−3,−1] we show that for the Schrödinger equation only the average on
θ of the wave function can cross the singular set, while the solutions of the only Markovian extension
of the heat equation (which indeed is ∆F ) cannot. For α ∈ (−1, 1) we prove that there exists a
canonical self-adjoint extension ∆B, called bridging extension, which is Markovian and allows the
complete communication through the singularity (both of the heat and of a quantum particle). Also,
we study the stochastic completeness (i.e., conservation of the L1 norm for the heat equation) of the
Markovian extensions ∆F and ∆B, proving that ∆F is stochastically complete at the singularity if
and only if α ≤ −1, while ∆B is always stochastically complete at the singularity.

Key words: heat and Schrödinger equation, degenerate Riemannian manifold, Grushin plane,
stochastic completeness.
2010 AMS subject classifications: 53C17, 35R01, 35J70.

1. Introduction

In this paper we consider the Riemannian metric on M =
(
R\{0}

)
×T whose orthonormal basis

has the form:

X1(x, θ) =

(
1
0

)
, X2(x, θ) =

(
0
|x|α

)
, α ∈ R.(1)

Here x ∈ R, θ ∈ T and α ∈ R is a parameter. In other words we are interested in the Riemannian
manifold (M, g), where

g = dx2 + |x|−2αdθ2, i.e., in matrix notation g =

(
1 0
0 |x|−2α

)
.(2)

Define

Mcylinder = R× T, Mcone = Mcylinder/ ∼,

†Centre National de Recherche Scientifique (CNRS), CMAP, École Polytechnique, Route de
Saclay, 91128 Palaiseau Cedex, France and Team GECO, INRIA-Centre de Recherche Saclay
‡SISSA, Trieste, Italy
E-mail address: ugo.boscain@polytechnique.edu, prandi@cmap.polytechnique.fr.
This work was supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract number

239748, and by the ANR project GCM, program “Blanche”, project number NT09_504490.
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where (x1, θ1) ∼ (x2, θ2) if and only if x1 = x2 = 0. In the following we are going to suitably extend
the metric structure to Mcylinder through (1) when α ≥ 0, and to Mcone through (2) when α < 0.

Recall that, on a general two dimensional Riemannian manifold for which there exists a global
orthonormal frame, the distance between two points can be defined equivalently as

(3) d(q1, q2) = inf

{∫ 1

0

√
u1(t)2 + u2(t)2 dt | γ : [0, 1]→M Lipschitz , γ(0) = q1, γ(1) = q2

and u1, u2 are defined by γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t))

}
,

(4) d(q1, q2) = inf

{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt | γ : [0, 1]→M Lipschitz , γ(0) = q1, γ(1) = q2

}
,

where {X1, X2} is the global orthonormal frame for (M, g).
Case α ≥ 0. Similarly to what is usually done in sub-Riemannian geometry (see e.g., [1]), when

α ≥ 0, formula (3) can be used to define a distance on Mcylinder where X1 and X2 are given by
formula (1). We have the following (for the proof see Appendix A.1).

Lemma 1.1. For any α ≥ 0, formula (3) endows Mcylinder with a metric space structure, which is
compatible with its original topology.

Case α < 0. In this case X1 and X2 are not well defined in x = 0. However, to extend the
metric structure, one can use formula (4), where g is given by (2). Notice that this metric identifies
points on {x = 0}, in the sense that they are at zero distance. Hence, formula (4) gives a structure
of well-defined metric space not to Mcylinder but to Mcone. Indeed, we have the following (for the
proof see Appendix A.1).

Lemma 1.2. For α < 0, formula (4) endows Mcone with a metric space structure, which is com-
patible with its original topology.

Remark 1.3 (Notation). In the following we call Mα the generalized Riemannian manifold given
as follows

• α ≥ 0: Mα = Mcylinder and metric structure induced by (1);
• α < 0: Mα = Mcone and metric structure induced by (2).

The corresponding metric space is called (Mα, d). Moreover, we call Z the singular set, i.e.,

Z =

{
{0} × T, α ≥ 0,

{0} × T/ ∼ α < 0.

The singularity splits the manifold Mα in two sides M+ = (0,+∞)× T and M− = (−∞, 0)× T.

Notice that in the cases α = 1, 2, 3, . . ., Mα is an almost Riemannian structure in the sense of
[3, 2, 6, 7, 8], while in the cases α = −1,−2,−3, . . . it corresponds to a singular Riemannian manifold
with a semi-definite metric.

One of the main features of these metrics is the fact that, except in the case α = 0, the corre-
sponding Riemannian volumes have a singularity at Z,

dω =
√

det g dx dθ = |x|−αdx dθ.
Due to this fact, the corresponding Laplace-Beltrami operators contain some diverging first order
terms,

∆ =
1√

det g

2∑

j,k=1

∂j

(√
det g gjk∂k

)
= ∂2

x + |x|2α∂2
θu−

α

x
∂x(5)

2
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Figure 1. Geometric interpretation of Mα. The figures above the line are actually
isometric to Mα, while for the ones below the isometry is singular in Z.

We have the following geometric interpretation of Mα (see Figure 1). For α = 0, this metric is
that of a cylinder. For α = −1, it is the metric of a flat cone in polar coordinates. For α < −1,
it is isometric to a surface of revolution S = {(t, r(t) cosϑ, r(t) sinϑ) | t > 0, ϑ ∈ T} ⊂ R3 with
profile r(t) = |t|−α +O(t−2α) as |t| goes to zero. For α > −1 (α 6= 0) it can be thought as a surface
of revolution having a profile of the type r(t) ∼ |t|−α as t → 0, but this is only formal, since the
embedding in R3 is deeply singular at t = 0. The case α = 1 corresponds to the Grushin metric on
the cylinder. This geometric interpretation is explained in Appendix A.2.

Remark 1.4. The curvature of Mα is given by Kα(x) = −α(1 + α)x−2. Notice that Mα and Mβ

with β = −(α+1) have the same curvature for any α ∈ R . For instance, the cylinder with Grushin
metric has the same curvature as the cone corresponding to α = −2, but they are not isometric
even locally (see [7]).

1.1. The problem. About Mα, we are interested to the following problems.
(Q1) Do the heat and free quantum particles flow through the singularity? In other words, we

are interested to the following: consider the heat or the Schrödinger equation

∂tψ = ∆ψ,(6)
i∂tψ = −∆ψ,(7)

where ∆ is given by (5). Take an initial condition supported at time t = 0 in M−. Is it
possible that at time t > 0 the corresponding solution has some support in M+? 1

(Q2) Does the equation (6) conserve the total heat (i.e. the L1 norm of ψ)? This is known to be
equivalent to the fact that the stochastic process, defined by the diffusion ∆, almost surely
has infinite lifespan. This is known as the problem of the stochastic completeness of Mα. In
particular, we are interested in understanding if the heat is absorbed by the singularity Z.

The same question for the Schrödinger equation has a trivial answer, since the total
probability (i.e., the L2 norm) is always conserved by Stone’s theorem.

Of course, the first thing to do in attacking this problem is to give a meaning to ∆ at Z, and to
define in which functional spaces we are working. In particular, it is classical that to have a well
defined dynamic associated to ∆, it is necessary for ∆ to be a self-adjoint operator on L2(M,dω)
(see Theorem 2.1). Thus, we will consider the operator ∆|C∞c (M), and characterize all its self-adjoint

1Notice that this is a necessary condition to have some positive controllability results by means of controls defined
only on one side of the singularity, in the spirit of [5].
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extensions. This will be achieved by prescribing opportune boundary conditions at the singularity
Z.
Remark 1.5. By making the unitary change of coordinate in the Hilbert space U : L2(M,dω) →
L2(M,dxdθ), defined by Uv(x) = |x|−α/2v(x), the Laplace-Beltrami operator is transformed in

∆◦ = U∆U−1 = ∂2
x −

α

2

(
1 +

α

2

) 1

x2
+ |x|2α∂2

θ .

This transformation was used to study the essential self-adjointness of ∆|C∞c (M) for α = 1 in [9]. Let
us remark that, when acting on functions independent of θ, the operator ∆◦ reduces to the Laplace
operator on R \ {0} in presence of an inverse square potential, usually called Calogero potential
(see, e.g., [18]).

1.2. Self-adjoint extensions. The problem of determining the self-adjoint extensions of ∆|C∞c (M)

on L2(M,dω) has been widely studied in different fields. A lot of work has been done in the case
α = −1, in the setting of Riemannian manifolds with conical singularities (see e.g., [11, 24]), and
the same methods have been applied in the more general context of metric cusps or horns (see e.g.,
[12, 10]) that covers the case α < −1. See also [22]. Concerning α > −1, on the other hand, the
literature regarding ∆ is more thin (see e.g., [25]).

In the following we will consider only the real self-adjoint extensions, i.e., all the function spaces
taken into consideration are composed of real-valued functions. We refer to Appendix B for a
discussion of the complex case.

Any closed symmetric extensionA of ∆|C∞c (M) is such thatDmin(∆|C∞c (M)) ⊂ D(A) ⊂ Dmax(∆|C∞c (M)),
where the minimal and maximal domains are defined as

Dmin(∆|C∞c (M)) = D(∆) = closure of C∞c (M) with respect to the norm ‖∆ · ‖L2(Mα,dω) + ‖ · ‖L2(Mα,dω),

Dmax(∆|C∞c (M)) = D(∆∗) = {u ∈ L2 (Mα, dω) : ∆u ∈ L2 (Mα, dω) in the sense of distributions}.
Thus, it has to hold that Au = ∆∗u for any u ∈ D(A), and hence determining the self-adjoint
extensions of ∆|C∞c (M) amounts to classify the so-called domains of self-adjointness. Recall that the
Riemannian gradient is given by ∇u(x, θ) = (∂xu(x, θ), |x|2α∂θu(x, θ)). Following [19], we let the
Sobolev spaces on the Riemannian manifold M endowed with measure dω to be

H1(M,dω) = {u ∈ L2(M,dω) : |∇u| ∈ L2(M,dω)}, H1
0 (M,dω) = closure of C∞c (M) in H1(M,dω),

H2(M,dω) = {u ∈ H1(M,dω) : ∆u ∈ L2(M,dω)}, H2
0 (M,dω) = {u ∈ H1

0 (M,dω) : ∆u ∈ L2(M,dω)}.
We define the Sobolev spaces H1 (Mα, dω) and H2 (Mα, dω) in the same way. We remark that, in
general, it may happen that H1(M,dω) = H1

0 (M,dω). Indeed this property will play an important
role in the next section. In Proposition 2.10, is contained a description of Dmax(∆|C∞c (M)) in terms
of these Sobolev spaces.

Although in general the structure of the self-adjoint extensions of ∆|C∞c (M) can be very compli-
cated, the Friedrichs (or Dirichlet) extension ∆F , is always well defined and self-adjoint. Namely,

D(∆F ) = H2
0 (M,dω).

Observe that, since L2(M,dω) = L2(M+, dω) ⊕ L2(M−, dω) and H1
0 (M,dω) = H1

0 (M+, dω) ⊕
H1

0 (M−, dω), it follows that

D(∆F ) = {u ∈ H1
0 (M+, dω) | ∆u ∈ L2(M+, dω)} ⊕ {u ∈ H1

0 (M−, dω) | ∆u ∈ L2(M−, dω)}.
This implies that ∆F actually defines two separate dynamics on M+ and on M− and, hence, there
is no hope for an initial datum concentrated inM+ to pass toM−, and vice versa. Thus, if ∆|C∞c (M)

is essentially self-adjoint (i.e., the only self-adjoint extension is ∆F ) the question (Q1) has negative
answer.
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1.2.1. Essential self-adjointness of ∆|C∞c (M). The rotational symmetry of the cones, suggests to
proceed by a Fourier decomposition in the θ variable, through the orthonormal basis {ek}k∈Z ⊂
L2(T). Thus, we decompose the space L2(M,dω) =

⊕∞
k=0Hk

∼= L2(R \ {0}, |x|−αdx), and the
corresponding operators on each Hk will be

(8) ∆̂k = ∂2
x −

α

x
∂x − |x|2αk2.

Observe (see Proposition 2.3) that if all the ∆̂k are essentially self-adjoint on C∞c (R \ {0}), then
the same holds for ∆|C∞c (M).

The following theorem (that extends a result in [9] and is proved in Section 2.3), classifies the
essential self-adjointness of ∆|C∞c (M) and its Fourier components. We remark that the same result
holds if ∆|C∞c (M) acts on complex-valued functions (see Theorem B.2).

Theorem 1.6. Consider Mα for α ∈ R and the corresponding Laplace-Beltrami operator ∆|C∞c (M)

as an unbounded operator on L2(M,dω). Then it holds the following.

(i) If α ≤ −3 then ∆|C∞c (M) is essentially self-adjoint;
(ii) if α ∈ (−3,−1], only the first Fourier component ∆̂0 is not essentially self-adjoint;
(iii) if α ∈ (−1, 1), all the Fourier components of ∆|C∞c (M) are not essentially self-adjoint;
(iv) if α ≥ 1 then ∆|C∞c (M) is essentially self-adjoint.

As a corollary of this theorem, we get the following preliminary answer to (Q1).
α ≤ −3 Nothing can flow through Z

−3 < α ≤ −1 Only the average over T of the function can flow through Z
−1 < α < 1 It is possible to have full communication between the two sides

1 ≤ α Nothing can flow through Z
In particular, to understand the possible evolutions in the case α ∈ (−3,−1], it suffices to study
the equation on the first Fourier component. Indeed, in this case any self-adjoint extension A of
∆|C∞c (M) can be decomposed as

(9) A = Â0 ⊕


 ⊕

k∈Z\{0}
∆̂k


 ,

where Â0 is a self-adjoint extension of ∆̂0 and, with abuse of notation, we denoted the only self-
adjoint extension of ∆̂k by ∆̂k as well.

Remark 1.7. Notice that in the case α ∈ (−3, 0), since the singularity reduces to a single point,
one would expect to be able to “transmit” through Z only a function independent of θ (i.e. only the
average over T). Theorem 1.6 shows that this is the case for α ∈ (−3,−1], but not for α ∈ (−1, 0).
Looking at Mα, α ∈ (−1, 0), as a surface embedded in R3 the possibility of transmitting Fourier
components other than k = 0, is due to the deep singularity of the embedding. In this case we say
that the contact between M+ and M− is non-apophantic.

1.2.2. The first Fourier component ∆̂0. We now focus on the first Fourier component ∆̂0|C∞c (R\{0})
on L2(R \ {0}, |x|−αdx), when α ∈ (−3, 1), and we describe its real self-adjoint extensions. For
a description of the complex self-adjoint extensions of ∆̂0|C∞c (R\{0}), we refer to Theorem B.3.
We remark that this operator is regular at the origin, in the sense of Sturm-Liouville problems
(see Definition 2.5), if and only if α > −1. Hence, for α ≤ −1, the boundary conditions will be
asymptotic, and not punctual.
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Let φ+
D and φ+

N be two smooth functions on R \ {0}, supported in [0, 2), and such that, for any
x ∈ [0, 1] it holds

(10) φ+
D(x) = 1, φ+

N (x) =

{
(1 + α)−1 x1+α if α 6= −1,

log(x) if α = −1.

Let also φ−D(x) = φ+
D(−x) and φ+

N (x) = φ−N (−x). It holds the following.

Theorem 1.8. Let Dmin(∆̂0) and Dmax(∆̂0) be the minimal and maximal domains of ∆̂0|C∞c (R\{0})
on L2(R \ {0}, |x|−αdx), for α ∈ (−3, 1). Then,

Dmin(∆̂0) = closure of C∞c (R \ {0}) in H2(R \ {0}, |x|−αdx)

Dmax(∆̂0) = {u = u0 + u+
Dφ

+
D + u+

Nφ
+
N + u−Dφ

−
D + u−Nφ

−
N : u0 ∈ Dmin(∆̂0) and u±D, u

±
N ∈ R},

Moreover, A is a self-adjoint extension of ∆̂0 if and only if Au = (∆̂0)∗u, for any u ∈ D(A), and
one of the following holds

(i) Disjoint dynamics: there exist c+, c− ∈ (−∞,+∞] such that

D(A) =
{
u ∈ Dmax(∆̂0) : u+

N = c+u
+
D and u−N = c−u

+
D

}
.

(ii) Mixed dynamics: there exist K ∈ SL2(R) such that

D(A) =
{
u ∈ Dmax(∆̂0) : (u−D, u

−
N ) = K (u+

D, u
+
N )T

}
.

Finally, the Friedrichs extension (∆̂0)F is the one corresponding to the disjoint dynamics with
c+ = c− = 0 if α ≤ −1 and with c+ = c− = +∞ if α > −1.

From the above theorem (see Remark 2.9) it follows that u±N = limx→0± |x|−α ∂xu(x) and, if
−1 < α < 1, that u±D = u(0±). Moreover, the last statement implies that

D((∆̂0)F ) =

{
{u ∈ Dmax(∆̂0) : u+

N = u−N = 0} if α ≤ −1,

{u ∈ Dmax(∆̂0) : u(0+) = u(0−) = 0} if α > −1.

In particular, if α ≤ −1 the Friedrichs extension does not impose zero boundary conditions.
Clearly, the disjoint dynamics extensions will give an evolution for which (Q1) has negative

answer. On the other hand, the mixed dynamics extensions, will permit information transfer be-
tween the two halves of the space. Since by Theorem 1.6, to classify the self-adjoint extensions for
α ∈ (−3,−1] it is enough to study ∆̂0, this analysis completely classifies the self-adjoint extensions
in this case. On the other hand, since for α ∈ (−1, 1) all the Fourier components are not essentially
self-adjoint, a complete classification requires more sophisticated techniques. We will, in turn, study
some selected extensions.

Remark 1.9. We call the mixed dynamics extension with K = Id the bridging extension of the first
Fourier component, and denote it by (∆̂0)B. Then, if α ∈ (−3,−1], we let the bridging extension
∆B of ∆|C∞c (M) to be defined by (9) with A0 = (∆̂0)B. This extension allows for a maximal
communication between the two sides. The bridging extension for α ∈ (−1, 1) is described in the
following section.

1.3. Markovian extensions. It is a well known result, that each non-positive self-adjoint operator
A on an Hilbert space H defines a strongly continuous contraction semigroup, denoted by {etA}t≥0.
If H = L2(M,dω) and it holds 0 ≤ etAu ≤ 1 dω-a.e. whenever u ∈ L2(M,dω), 0 ≤ u ≤ 1 dω-a.e.,
the semigroup {etA}t≥0 and the operator A are called Markovian. The interest for Markov operators
lies in the fact that, under an additional assumption which is always satisfied in the cases we consider
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(see Section 3), Markovian operators are generators of Markov processes {Xt}t≥0 (roughly speaking,
stochastic processes which are independent of the past).

Since essentially bounded functions are approximable from L2(M,dω), the Markovian property
allows to extend the definition of etA from L2(M,dω) to L∞(M,dω). Let 1 be the constant function
1(x, θ) ≡ 1. Then (Q2) is equivalent to the following property.

Definition 1.10. A Markovian operator A is called stochastically complete (or conservative) if
etA1 = 1, for any t > 0. It is called explosive if it is not stochastically complete.

It is well known that this property is equivalent to the fact that the Markov process {Xt}t≥0,
with generator A, has almost surely infinite lifespan.

We will be interested also in the following property of {Xt}t≥0.

Definition 1.11. AMarkovian operator is called recurrent if the associated Markov process {Xt}t≥0

satisfies, for any set Ω of positive measure and any point x,

Px{there exists a sequence tn → +∞ such that Xtn ∈ Ω} = 1.

Here Px denotes the measure in the space of paths emanating from a point x associated to {Xt}t≥0.

Remark 1.12. Notice that recurrence of an operator implies its stochastic completeness. Equiva-
lently, any explosive operator is not recurrent.

We are particularly interested in distinguish how the stochastically completeness and the recur-
rence are influenced by the singularity Z or by the behavior at ∞. Thus we will consider the
manifolds with borders M0 = M ∩ ([−1, 1]×T) and M∞ = M \ [−1, 1]×T, with Neumann bound-
ary conditions. Indeed, with these boundary conditions, when the Markov process {Xt}t≥0 hits
the boundary it is reflected, and hence the eventual lack of recurrence or stochastic completeness
on M0 (resp. on M∞) is due to the singularity Z (resp. to the behavior at ∞). If a Markovian
operator A on M is recurrent (resp. stochastically complete) when restricted on M0 we will call it
recurrent (resp. stochastically complete) at 0. Similarly, when the same happens on M∞, we will
call it recurrent (resp. stochastically complete) at ∞. As proven in Proposition 3.14, a Markovian
extension of ∆|C∞c (M) is recurrent (resp. stochastically complete) if and only if it is recurrent (resp.
stochastically complete) both at 0 and at ∞.

In this context, it makes sense to give special consideration to three specific self-adjoint exten-
sions, corresponding to different conditions at Z. Namely, we will consider the already mentioned
Friedrichs extension ∆F , that corresponds to an absorbing condition, the Neumann extension ∆N ,
that corresponds to a reflecting condition, and the bridging extension ∆B, that corresponds to a free
flow through Z and is defined only for α ∈ (−1, 1). In particular, the latter two have the following
domains (see Proposition 3.12),

D(∆N ) = {u ∈ H1(M,dω) | (∆u, v) = (∇u,∇v) for any v ∈ H1(M,dω)},
D(∆B) = {H2 (Mα, dω) | u(0+, ·) = u(0−, ·), lim

x→0+
|x|−αu(x, ·) = lim

x→0−
|x|−αu(x, ·) for a.e. θ ∈ T}.

Each one of ∆F , ∆N and ∆B is a self-adjoint Markovian extensions. However, it may happen that
∆F = ∆N . In this case ∆F is the only Markovian extension, and the operator ∆|C∞c (M) is called
Markov unique. This is the case, for example, when ∆|C∞c (M) is essentially self-adjoint.

The following result, proved in Section 3.3, will answer to (Q2).

Theorem 1.13. ConsiderMα, for α ∈ R, and the corresponding Laplace-Beltrami operator ∆|C∞c (M)

as an unbounded operator on L2(M,dω). Then it holds the following.
(i) If α < −1 then ∆|C∞c (M) is Markov unique, and ∆F is stochastically complete at 0 and

recurrent at ∞;
(ii) if α = −1 then ∆|C∞c (M) is Markov unique, and ∆F is recurrent both at 0 and at ∞;
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(iii) if α ∈ (−1, 1), then ∆|C∞c (M) is not Markov unique and, moreover,
(a) any Markovian extension of ∆|C∞c (M) is recurrent at ∞,
(b) ∆F is explosive at 0, while both ∆B and ∆N are recurrent at 0,

(iv) if α ≥ 1 then ∆|C∞c (M) is Markov unique, and ∆F is explosive at 0 and recurrent at ∞;

In particular, Theorem 1.13 implies that for α ∈ (−3,−1] no mixing behavior defines a Markov
process. On the other hand, for α ∈ (−1, 1) we can have a plethora of such processes.

Remark 1.14. Notice that, since the singularity Z is at finite distance from any point of Mα, one
can interpret a Markov process that is explosive at 0 as if Z were absorbing the heat.

As a corollary of 1.13, we get the following answer to (Q2).
α ≤ −1 The heat is absorbed by Z
−1 < α < 1 The Friedrichs extension is absorbed by Z,

while the Neumann and the bridging extensions are not.
1 ≤ α The heat is absorbed by Z

1.4. Structure of the paper. The structure of the paper is the following. In Section 2, after
some preliminaries regarding self-adjointness, we analyze in detail the Fourier components of the
Laplace-Beltrami operator on Mα, proving Theorems 1.6 and 1.8. We conclude this section with a
description of the maximal domain of the Laplace-Beltrami operator in terms of the Sobolev spaces
on Mα, contained in Proposition 2.10.

Then, in Section 3, we introduce and discuss the concepts of Markovianity, stochastic complete-
ness and recurrence through the potential theory of Dirichlet forms. After this, we study the Markov
uniqueness of ∆|C∞c (M) and characterize the domains of the Friedrichs, Neumann and bridging ex-
tensions (Propositions 3.11 and 3.12). Then, we define stochastic completeness and recurrence at
0 and at ∞, and, in Proposition 3.15, we discuss how these concepts behave if the k = 0 Fourier
component of the self-adjoint extension is itself self-adjoint. In particular, we show that the Marko-
vianity of such an operator A implies the Markovianity of its first Fourier component Â0, and
that the stochastic completeness (resp. recurrence) at 0 (resp. at ∞) of A and Â0 are equivalent.
Then, in Proposition 3.14 we prove that stochastic completeness or recurrence are equivalent to
stochastically completeness or recurrence both at 0 and at ∞. Finally, we prove Theorem 1.13.

The proofs of Lemmata 1.1 and 1.2 are contained in Appendix A.1, while in Appendix A.2 we
justify the geometric interpretation of Figure 1. Appendix B contains the description of the complex
self-adjoint extension of ∆̂0.

2. Self-adjoint extensions

2.1. Preliminaries. Let H be an Hilbert space with scalar product (·, ·)H and norm ‖ · ‖H =√
(·, ·)H. Given an operator A on H we will denote its domain by D(A) and its adjoint by A∗.

Namely, if A is densely defined, D(A∗) is the set of ϕ ∈ H such that there exists η ∈ H with
(Aψ,ϕ)H = (ψ, η)H, for all ψ ∈ D(A). For each such ϕ, we define A∗ϕ = η.

An operator A is symmetric if

(Aψ,ϕ)H = (ψ,Aϕ)H, for all ψ ∈ D(A).

A densely defined operator A is self-adjoint if and only if it is symmetric and D(A) = D(A∗), and
is non-positive if and only if (Aψ,ψ) ≤ 0 for any ψ ∈ D(A).

Given a strongly continuous group {Tt}t∈R (resp. semigroup {Tt}t≥0), its generator A is defined
as

Au = lim
t→0

Ttu− u
t

, D(A) = {u ∈ H | Au exists as a strong limit}.
8



When a group (resp. semigroup) has generator A, we will write it as {etA}t∈R (resp. {etA}t≥0).
Then, by definition, u(t) = etAu0 is the solution of the functional equation

{
∂tu(t) = Au(t)
u(0) = u0 ∈ H.

Recall the following classical result.

Theorem 2.1. Let H be an Hilbert space, then
(1) (Stone’s theorem)The map A 7→ {eitA}t∈R induces a one-to-one correspondence

A self-adjoint operator ⇐⇒ {eitA}t∈R strongly continuous unitary group;

(2) The map A 7→ {etA}t≥0 induces a one-to-one correspondence

A non-positive self-adjoint operator ⇐⇒ {etA}t≥0 strongly continuous semigroup;

For any Riemannian manifoldM with measure dV , via the Green identity follows that ∆|C∞c (M)

is symmetric. However, from the same formula, follows that

D(∆|C∞c (M)
∗) = {u ∈ L2(M, dV ) | ∆u ∈ L2(M, dV )} ' C∞c (M),

where ∆u is intended in the sense of distributions. Hence, ∆ is not self-adjoint on C∞c (M).
Since, by Theorem 2.1, in order to have a well defined solution of the Schrödinger equation the

Laplace-Beltrami operator has to be self-adjoint, we have to extend its domain in order to satisfy
this property. For the heat equation, on the other hand, we will need also to worry about the fact
that it stays non-positive while doing so. We will tackle this problem in the next section, where we
will require the stronger property of being Markovian (i.e., that the evolution preserves both the
non-negativity and the boundedness).

Mathematically speaking, given two operators A,B, we say that B is an extension of A (and we
will write A ⊂ B) if D(A) ⊂ D(B) and Aψ = Bψ for any ψ ∈ D(A). The simplest extension one
can build starting from A is the closure Ā. Namely, D(Ā) is the closure of D(A) with respect to
the graph norm ‖ · ‖A = ‖A · ‖H + ‖ · ‖H, and Āψ = limn→+∞Aψn where {ψn}n∈N ⊂ D(A) is such
that ψn → ψ in H. Since if A is symmetric A ⊂ Ā ⊂ A∗, any self-adjoint extension B of A will be
such that Ā ⊂ B ⊂ A∗. For this reason, we let Dmin(A) = D(Ā) and Dmax(A) = D(A∗). Moreover,
from this fact follows that any self-adjoint extension B will be defined as Bψ = A∗ψ for ψ ∈ D(B),
so we are only concerned in specifying the domain of B. The simplest case is the following.

Definition 2.2. The densely defined operator A is essentially self-adjoint if its closure Ā is self-
adjoint.

It is a well known fact, dating as far back as the series of papers [16, 17], that the Laplace-Beltrami
operator is essentially self-adjoint on any complete Riemannian manifold. On the other hand, it is
clear that if the manifold is incomplete this is no more the case, in general (see [23, 20]). It suffices,
for example, to consider the case of an open set Ω ⊂ Rn, where to have the self-adjointness of
the Laplacian, we have to pose boundary conditions (Dirichlet, Neumann or a mixture of the two).
In our case, Theorem 1.6 will give an answer to the problem of whether ∆|C∞c (M) is essentially
self-adjoint or not.

2.2. Fourier decomposition and self-adjoint extensions of Sturm-Liouville operators.
There exist various theories allowing to classify the self-adjoint extensions of symmetric operators.
We will use some tools from the Neumann theory (see [26]) and, when dealing with one-dimensional
problems, from the Sturm-Liouville theory. LetH be a complex Hilbert space and i be the imaginary
unit. The deficiency indexes of A are then defined as

n+(A) = dim ker(A+ i), n−(A) = dim ker(A− i).
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Then A admits self-adjoint extensions if and only if n+(A) = n−(A), and they are in one to one
correspondence with the set of partial isometries between ker(A− i) and ker(A+ i). Obviously, A
is essentially self-adjoint if and only if n+(A) = n−(A) = 0.

Following [27], we say that a self-adjoint extension B of A in H is a real self-adjoint extension if
u ∈ D(B) implies that u ∈ D(B) and B(u) = Bu. When H = L2(M,dω), i.e. the real Hilbert space
of square-integrable real-valued function on M , the self-adjoint extensions of A in L2(M,dω) are
the restrictions to this space of the real self-adjoint extensions of A in L2

C(M,dω), i.e. the complex
Hilbert space of square-integrable complex-valued functions. This proves that A is essentially self-
adjoint in L2(M,dω) if and only if it is essentially self-adjoint in L2

C(M,dω). Hence, when speaking
of the deficiency indexes of an operator acting on L2(M,dω), we will implicitly compute them on
L2
C(M,dω).
We start by proving the following general proposition that will allow us to study only the Fourier

components of ∆|C∞c (M), in order to understand its essential self-adjointness.

Proposition 2.3. Let Ak be symmetric on D(Ak) ⊂ Hk, for any k ∈ Z and let D(A) be the set
of vectors in H =

⊕
k∈ZHk of the form ψ = (ψ1, ψ2, . . .), where ψk ∈ D(Ak) and all but finitely

many of them are zero. Then A =
∑

k∈ZAk is symmetric on D(A), n+(A) =
∑

k∈Z n+(Ak) and
n−(A) =

∑
k∈Z n−(Ak).

Proof. Let ψ = (ψ1, ψ2, . . .) ∈ D(A). Then, by symmetry of the Ak’s and the fact that only finitely
many ψk are nonzero, it holds

(Au, v)H =
∑

k∈Z
(Akuk, vk)Hk =

∑

k∈Z
(uk, Akvk)Hk = (u,Av)H.

This proves the symmetry of A.
Observe now that ψ = (ψ1, ψ2, . . .) ∈ ker(A±i) if and only if 0 = Aψ±i = (A1ψ1±i, A2ψ2±i, . . .).

This clearly implies that dim ker(A± i) =
∑

k∈Z dim ker(Ak ± i), completing the proof. �

Observe that, for any k ∈ Z, the Fourier component ∆̂k, defined in (8), is a second order
differential operator of one variable. Thus, it can be studied through the Sturm-Liouville theory
(see [27, 14]). Let J = (a1, b1)∪(a2, b2), −∞ ≤ a1 < b1 ≤ a2 < b2 ≤ +∞, and for 1/p, q, w ∈ L1

loc(J)
consider the Sturm-Liouville operator on L2(J,w(x)dx) defined by

(11) Au =
1

w

(
− ∂x(p ∂xu) + qu

)
.

Letting J = R \ {0}, w(x) = p(x) = |x|−α, q(x) = k2|x|α, we recover ∆̂k.

Definition 2.4. The endpoint (finite or infinite) a1, is limit-circle if all solutions of the equation
Au = 0 are in L2((a1, d), w(x)dx) for some (and hence any) d ∈ (a1, b1). Otherwise a1 is limit-point.

Analogous definitions can be given for b1, a2 and b2.

Let us define the Lagrange parenthesis of u, v : J → R associated to (11) as the bilinear anti-
symmetric form

[u, v] = u p ∂xv − v p ∂xu.
By [27, (10.4.41)] or [14, Lemma 3.2], we have that [u, v](d) exists and is finite for any u, v ∈
Dmax(∆̂k) and any endpoint d of J . In particular, if d is limit-point, it holds [u, v](d) = 0. By
Lemma 2.8, the Patching Lemma (see [27, Lemma 10.4.1]) and [27, Lemma 13.3.1], we then have
the following characterization of the minimal domain of ∆̂k,

(12) Dmin(∆̂k) =
{
u ∈ Dmax(∆̂k) | [u, v](0+) = [u, v](0−) = 0 for all v ∈ Dmax(∆̂k)

}
.
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We recall also that the maximal domain can be written as
(13)
Dmax(A) = {u : J → R | u, p ∂xu are absolutely continuous on J, and u, Au ∈ L2(J,w(x)dx)}.

Definition 2.5. The Sturm-Liouville operator (11) is regular at the endpoint a1 if for some (and
hence any) d ∈ (a1, b1), it holds

1

p
, q, w ∈ L1((a1, d)).

A similar definition holds for b1, a2, b2.

In particular, for any k ∈ Z, the operator ∆̂k is never regular at the endpoints +∞ and −∞, and
is regular at 0+ and 0− if and only if α ∈ (−1, 1).

We will need the following theorem, that we state only for real extensions and in the cases we
will use.

Theorem 2.6 (Theorem 13.3.1 in [27]). Let A be the Sturm-Liouville operator on L2(J,w(x)dx)
defined in (11). Then

n+(A) = n−(A) = #{limit-circle endpoints of J}.
Assume now that n+(A) = n−(A) = 2, and let a and b be the two limit-circle endpoints of

J . Moreover, let φ1, φ2 ∈ Dmax(A) be linearly independent modulo Dmin(A) and normalized by
[φ1, φ2](a) = [φ1, φ2](b) = 1. Then, B is a self-adjoint extension of A over L2(J,w(x)dx) if and only
if Bu = A∗u, for any u ∈ D(B), and one of the following holds

(1) Disjoint dynamics: there exists c+, c− ∈ (−∞,+∞] such that u ∈ D(B) if and only if

[u, φ1](0+) = c+[u, φ2](0+) and [u, φ1](0−) = d+[u, φ2](0−).

(2) Mixed dynamics: there exist K ∈ SL2(R) such that u ∈ D(B) if and only if

U(0−) = K U(0+), for U(x) =

(
[u, φ1](x)
[u, φ2](x)

)
.

Remark 2.7. Let φa1 and φa2 be, respectively, the functions φ1 and φ2 of the above theorem,
multiplied by a cutoff function η : J → [0, 1] supported in a (right or left) neighborhood of a in J
and such that η(a) = 1 and η′(a) = 0. Let φb1 and φb2 be defined analogously. Then, from (12),
follows that we can write

(14) Dmax(A) = Dmin(A) + span{φa1, φb1, φa2, φb2}.
The following lemma classifies the end-points of R \ {0} with respect to the Fourier components

of ∆|C∞c (M).

Lemma 2.8. Consider the Sturm-Liouville operator ∆̂k on R \ {0}. Then, for any k ∈ Z the
endpoints +∞ and −∞ are limit-point. On the other hand, regarding 0+ and 0− the following
holds.

(1) If α ≤ −3 or if α ≥ 1, then they are limit-point for any k ∈ Z;
(2) if −3 < α ≤ −1, then they are limit-circle if k = 0 and limit-point otherwise;
(3) if −1 < α < 1, then they are limit-circle for any k ∈ Z.

Proof. By symmetry with respect to the origin of ∆̂k, it suffices to check only 0+ and +∞.
Let k = 0, then for α 6= −1 the equation ∆̂0u = u′′ − (α/x)u′ = 0 has solutions u1(x) = 1 and

u2(x) = x1+α. Clearly, u1 and u2 are both in L2((0, 1), |x|−αdx), i.e., 0+ is limit-circle, if and only
if α ∈ (−3, 1). On the other hand, u1 and u2 are never in L2((1,+∞), |x|−αdx) simultaneously, and
hence +∞ is always limit-point. If α = −1, the statement follows by the same argument applied to
the solutions u1(x) = 1 and u2(x) = log(x).
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Let now k 6= 0 and α 6= −1. Then ∆̂ku = u′′ − (α/x)u′ − x2αk2 = 0, x > 0, has solutions
u1(x) = exp

(
kx1+α

1+α

)
and u2(x) = exp

(
−kx1+α

1+α

)
. If α > −1, both u1 and u2 are bounded and

nonzero near x = 0, and either u1 or u2 has exponential growth as x → +∞. Hence, in this case,
u1, u2 ∈ L2((0, 1), |x|−α) if and only if α < 1, while +∞ is always limit-point. On the other hand,
if α < −1, u1 and u2 are bounded as x → +∞ and one of them has exponential growth at x = 0.
Since the measure |x|−αdx blows up at infinity, this implies that both 0+ and +∞ are limit-point.
Finally, the same holds for α = −1, considering the solutions u1(x) = xk and u2(x) = x−k. �

2.3. Proofs of Theorem 1.6 and 1.8. We are now able to classify the essential self-adjointness
of the operator ∆|C∞c (M).

Proof of Theorem 1.6. Let D ⊂ C∞c (M) be the set of C∞c (M) functions which are finite linear
combinations of products u(x)v(θ). Since L2(M,dω) = L2(R \ {0}, |x|−αdx) ⊗ L2(T, dθ), the set
D is dense in L2(M,dω) and hence, by Proposition 2.3 the operator ∆|D is essentially self adjoint
if and only if so are all ∆̂k|D∩Hk . Since n±(∆|D) = n±(∆|C∞c (M)), this is equivalent to ∆|C∞c (M)

being essentially self-adjoint.
To conclude, recall that by Theorem 2.6 the operator ∆̂k is not essentially self-adjoint on

L2(R \ {0}, |x|−αdx) if and only if it is in the limit-circle case at at least one of the four end-
points −∞, 0−, 0+ and +∞. Hence applying Lemma 2.8 is enough to complete the proof. �

Now we proceed to study the self-adjoint extensions of the first Fourier component, proving
Theorem 1.8 through Theorem 2.6 and Remark 2.7.

Proof of Theorem 1.8. We start by proving the statement on Dmin(∆̂0). The operator ∆̂0 is trans-
formed by the unitary map U0 : L2(R \ {0}, |x|−αdx)→ L2(R \ {0}), U0v(x) = |x|−α/2v(x), in

∆◦ 0 = ∂2
x −

α

2

(α
2

+ 1
) 1

x2
.

By [4] and [27, Lemma 13.3.1], it holds that Dmin( ∆◦ 0) is the closure of C∞c (R \ {0}) in the norm
of H2(R \ {0}, dx), i.e.,

‖u‖H2(R\{0},dx) = ‖u‖L2(R\{0},dx) + ‖∂xu‖L2(R\{0},dx) + ‖∂2
xu‖L2(R\{0},dx).

From this follows that Dmin(∆̂0) = U−1
0 Dmin( ∆◦ 0) is given by the closure of C∞c (R \ {0}) in

W = U−1
0 H2(R \ {0}, dx), w.r.t. the induced norm

‖v‖W = ‖v‖L2(R\{0},|x|−αdx)+
∥∥|x|α/2∂x(|x|−α/2v)

∥∥
L2(R\{0},|x|−αdx)

+‖|x|α/2∂2
x(|x|−α/2v)‖L2(R\{0},|x|−αdx).

Thus, to prove the claim, we need to show that the convergences inW and in H2(R\{0}, |x|−αdx)2

are equivalent on C∞c (R \ {0}).
To this aim, fix a cutoff function ψ ∈ C∞c (R) such that ψ(0) = 0, ∂xψ(0) = 1, and suppψ ⊂

(−1, 1). Moreover, let {vn}n∈N ⊂ C∞c (R \ {0}) be a sequence such that vn → v w.r.t. ‖ · ‖W . In
particular, ψvn −→ ψv and (1− ψ)vn −→ (1− ψ)v w.r.t. ‖ · ‖W . Since x−1 ≤ 1 if |x| ≥ 1, by

(15) ∂xv(x) = |x|α/2∂x(|x|−α/2v) +
α

2

v

x
, ∆̂0v = |x|α/2∂2

x

(
|x|−α/2v

)
+
α

2

(α
2

+ 1
) v

x2
.

2recall that the norm on H2(R \ {0}, |x|−αdx) is

‖v‖H2(R\{0},|x|−αdx) = ‖v‖L2(R\{0},|x|−αdx) +
∥∥∂x v

∥∥
L2(R\{0},|x|−αdx)

+ ‖∆̂0v‖L2(R\{0},|x|−αdx)

12



follows immediately that (1 − ψ)vn −→ (1 − ψ)v in H2(R \ {0}, |x|−αdx). Recall now the Hardy
inequality (see [13])

(16)
∫ 1

0

u2

x2
dx ≤ 4

∫ 1

0
(∂xu)2 dx, for any u ∈ H1

0 ((0, 1), dx).

Let un = U0(ψ(vn − v)) = ψ|x|−α/2(vn − v). Since ψ|x|−α/2vn ∈ C∞c ((0, 1)) and ψ|x|−α/2vn →
ψ|x|−α/2v in H2((0, 1), dx), it holds that un ⊂ H1

0 ((0, 1), dx). Thus, by (16),
∫ 1

0

(ψvn − ψv)2

x2
x−α dx =

∫ 1

0

u2
n

x2
dx

≤ 4

∫ 1

0
(∂xun)2 dx = 4

∫ 1

0

(
|x|−α/2∂x

(
|x|−α/2

(
ψvn − ψv

)))2

x−α dx −→ 0.

By (15), the same argument applied on (−1, 0) proves that ∂xψvn −→ ∂xψv in L2(R\{0}, |x|−αdx),
and hence that ∂xvn −→ ∂xv. Observe now that by [4, (3.5)] there exists C > 0 such that for any
u ∈ Dmin( ∆◦ 0) it holds

(17)
∥∥∥α

2

(α
2

+ 1
) u

x2

∥∥∥ ≤ C‖u‖H2(R\{0},dx).

Hence, for any ϕ ∈ Dmin(∆̂0) it holds

‖∆̂0ϕ‖L2(R\{0},|x|−αdx) =
∥∥ ∆◦ 0

(
|x|α/2ϕ

)∥∥
L2(R\{0},dx)

≤ C
∥∥|x|α/2ϕ

∥∥
H2(R\{0},dx)

= C‖ϕ‖W .

Hence, choosing ϕ = ψvn − ψv, this proves that ∆̂0(ψvn) −→ ∆̂0(ψv) in L2(R \ {0}, |x|−αdx).
This completes the proof that vn −→ v in H2(R \ {0}, |x|−αdx) and hence that Dmin(∆̂0) ⊂
H2(R \ {0}, |x|−αdx).

In order to complete the first part of the proof, we have to show that if {vn}n∈N ⊂ C∞c (R \ {0})
is such that vn → v in H2(R \ {0}, |x|−αdx), then vn → v also in W . This can be proved as above,
by (15), (16), and (17).

We now proceed to the classification of the self-adjoint extensions of ∆̂0. For this purpose, recall
the definition of φ±D and φ±N given in (10) and let

φN (x) = φ+
N (x) + φ−N (x), φD(x) = φ+

D(x) + φ−D(x).

Observe that φD ∈ L2(R \ {0}, |x|−αdx) and that ∆̂0φD(x) = 0 for any x /∈ (−2,−1)∪ (1, 2). Since
the function is smooth, this implies that φD ∈ Dmax(∆̂0). The same holds for φN . Moreover, a
simple computation shows that [φ+

D, φ
+
N ](0+) = [φ+

D, φ
+
N ](0−) = 1, and hence φN and φD satisfy the

hypotheses of Theorem 2.6. In particular, by Remark 2.7, this implies that

Dmax(∆̂0) = Dmin(∆̂0) + span{φ+
D, φ

+
N , φ

−
D, φ

−
N}.

We claim that for any u = u0 + u+
Dφ

+
D + u+

Nφ
+
N + u−Dφ

−
D + u−Nφ

−
N ∈ Dmax it holds

(18) [u, φN ](0+) = u+
D, [u, φD](0+) = u+

N , [u, φN ](0−) = u−D, [u, φN ](0−) = u−N .

This, by Theorem 2.6 will complete the classification of the self-adjoint extensions. Observe that,
(12) and the bilinearity of the Lagrange parentheses imply that [u0, φN ](0±) = [u0, φD](0±) = 0.
The claim then follows from the fact that

[φ+
D, φN ](0+) = [φ+

N , φD](0+) = [φ−D, φN ](0−) = [φ−N , φD](0−) = 1,

[φ−D, φN ](0+) = [φ−N , φD](0+) = [φ+
D, φN ](0−) = [φ+

N , φD](0−) = 0.
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To complete the proof, it remains only to identify the Friedrichs extension (∆̂0)F . Recall that
such extension is always defined, and has domain

D((∆̂0)F ) = {u ∈ H1
0 (R \ {0}, |x|−αdx) | ∆̂0u ∈ L2(R \ {0}, |x|−αdx)}.

Since if α ≤ −1, φN /∈ H1(R \ {0}, |x|−αdx), it is clear that the Friedrichs extension corresponds
to the case where u+

N = u−N = 0, i.e., to c+ = c− = 0. On the other hand, if α > −1, since all the
end-points are regular, by [14, Corollary 10.20] holds that the Friedrichs extension corresponds to
the case where u(0±) = u±D = 0, i.e., to c+ = c− = +∞. �

Remark 2.9. If u ∈ Dmax(∆̂0), it holds

u+
D = [u, φN ](0+) = lim

x↓0

(
u(x)− x ∂xu(x)

)
and u+

N = [u, φD](0+) = lim
x↓0

x−α ∂xu(x).

This implies, in particular, that if α > −1 then u+
D = u(0+). Indeed this holds if and only if the

end-point 0+ is regular in the sense of Sturm-Liouville operators, see Definition 2.5. Clearly the
same computations hold at 0−.

We conclude this section with a description of the maximal domain, in the case α ∈ (−1, 1).

Proposition 2.10. For any α ∈ R, it holds that

Dmax(∆|C∞c (M)) =





H2(M,dω) = H2
0 (M,dω) if α ≤ −3 or α ≥ 1,

H2(M,dω)⊕ span{φ+
N , φ

−
N} if − 3 < α ≤ −1,

H2(M,dω) % H2
0 (M,dω) if − 1 < α < 1.

Here we let, with abuse of notation, φ±N (x, y) = φ±N (x).

Proof. Recall that, by definition, H2(M,dω) ⊂ Dmax(∆|C∞c (M)). Moreover, if α ≤ −3 or if α ≥ 1,
by Theorem 1.6 it holds Dmax(∆|C∞c (M)) = D(∆F ) = H2

0 (M,dω) ⊂ H2(M,dω). This proves the
first statement.

On the other hand, by Remark 2.7, if α ∈ (−3,−1], since ∆̂k is essentially self-adjoint for any
k 6= 0 we can decompose the maximal domain as

Dmax(∆|C∞c (M)) = Dmax(∆̂0)⊕


 ⊕

k∈Z\{0}
D(∆̂k)




Moreover, letting π0 be the projection on the k = 0 Fourier component and defining (π−1
0 u0)(x, θ) =

u0(x) for any u0 ∈ L2(R\{0}, |x|−αdx), the previous decomposition and the fact thatDmin(∆|C∞c (M)) ⊂
H2(M,dω) ⊂ Dmax(∆|C∞c (M)) implies that

Dmax(∆|C∞c (M)) =
{
u = u0 + π−1

0 ũ | u0 ∈ Dmin(∆|C∞c (M)), ũ ∈ span{φ+
D, φ

+
N , φ

−
D, φ

−
N}
}

= H2(M,dω) + span{φ+
D, φ

+
N , φ

−
D, φ

−
N}.

Here, in the last equality, we let φD(x, y) = φD(x) and φN (x, y) = φN (x). A simple computation
shows that φD ∈ H1(R \ {0}, |x|−αdx) and φN /∈ H1(R \ {0}, |x|−αdx). Since ∆̂0φD = 0, it follows
that φD ∈ H2(M,dω), while φN /∈ H2(M,dω). This implies the statement.

To complete the proof it suffices to prove that if α ∈ (−1, 1) it holds Dmax(∆|C∞c (M)) ⊂
H2(M,dω). In fact, the inequalityH2(M,dω) 6= H2

0 (M,dω) will then follow from the fact that ∆F is
not the only self-adjoint extension of ∆|C∞c (M). By Parseval identity, φ,∆φ ∈ L2(M,dω) if and only
φk, ∆̂kφk ∈ L2(R\{0}, |x|−αdx) for any k ∈ Z and thus the statement is equivalent to Dmax(∆̂k) ⊂
H2(R \ {0}, |x|−αdx) for any k ∈ Z. Let u ∈ Dmax(∆̂k). Since limx→0± x

−α∂xu(x) = [u, φD](0±),
this limit exists and is finite. Moreover, since ±∞ are limit-point, it holds limx→±∞ x−α∂xu(x) =
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[u, φD](±∞) = 0. Hence, x−α∂xu is square integrable near 0 and at infinity, and from the charac-
terization (13) follows that ∆̂ku ∈ L2(R \ {0}, |x|−αdx). This proves that u ∈ H2(R \ {0}, |x|−αdx)
and thus the proposition. �

3. Bilinear forms

3.1. Preliminaries. This introductory section is based on [15]. Let H be an Hilbert space with
scalar product (·, ·)H. A non-negative symmetric bilinear form densely defined on H, henceforth
called only a symmetric form on H, is a map E : D(E)×D(E)→ R such that D(E) is dense in H
and E is bilinear, symmetric, and non-negative (i.e., E(u, u) ≥ 0 for any u ∈ D(E)). A symmetric
form is closed if D(E) is a complete Hilbert space with respect to the scalar product

(19) (u, v)E = (u, v)H + E(u, v), u, v ∈ D(E).

To any densely defined non-positive definite self-adjoint operator A it is possible to associate a
symmetric form EA such that

EA(u, v) = (−Au, v)

D(A) = {u ∈ D(EA) : ∃v ∈ H s.t. E(u, φ) = (v, φ) for all φ ∈ D(EA)}.
Indeed, we have the following.

Theorem 3.1 ([21, 15]). Let H be an Hilbert space, then the map A 7→ EA induces a one to one
correspondence

A non-positive definite self-adjoint operator ⇐⇒ EAclosed symmetric form.

In particular, this correspondence can be characterized by D(A) ⊂ D(EA) and EA(u, v) = (−Au, v)
for all u ∈ D(A), v ∈ D(EA).

Consider now a σ-finite measure space (X,F ,m).

Definition 3.2. A symmetric form E on L2(X,m) is Markovian if for any ε > 0 there exists
ψε : R → R such that −ε ≤ ψε ≤ 1 + ε, ψε(t) = t if t ∈ [0, 1], 0 ≤ ψ′ε(t)− ψ′ε(s) ≤ t− s whenever
s < t and

u ∈ D(E) =⇒ ψε(u) ∈ D(E) and E(ψε(u), ψε(u)) ≤ E(u, u).

A closed Markovian symmetric form is a Dirichlet form.
A semigroup {Tt}t≥0 on L2(X,m) is Markovian if

u ∈ L2(X,m) s.t. 0 ≤ u ≤ 1 m− a.e. =⇒ 0 ≤ Ttu ≤ 1 m− a.e. for any t > 0.

A non-positive self-adjoint operator is Markovian if it generates a Markovian semigroup.

When the form is closed, the Markov property can be simplified, as per the following Theorem.
For any u : X → R let u] = min{1,max{u, 0}}.
Theorem 3.3 (Theorem 1.4.1 of [15]). The closed symmetric form E is Markovian if and only if

u ∈ D(E) =⇒ u] ∈ D(E) and E(u], u]) ≤ E(u, u).

Since any function of L∞(X,m) is approximable by functions in L2(X,m), the Markov property
allows to extend the definition of {Tt}t≥0 to L∞(X,m), and moreover implies that it is a contraction
semigroup on this space. When {Tt}t≥0 is the evolution semigroup of the heat equation, the Markov
property can be seen as a physical admissibility condition. Namely, it assures that when starting
from an initial datum u representing a temperature distribution (i.e., a positive and bounded func-
tion) the solution Ttu remains a temperature distribution at each time, and, moreover, that the
heat does not concentrate.

The following theorem extends the one-to-one correspondence given in Theorems 2.1 and 3.1 to
the Markovian setting.
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Theorem 3.4 ([15]). Let A be a non-positive self-adjoint operator on L2(X,m). The following are
equivalents

(1) A is a Markovian operator;
(2) EA is a Dirichlet form;
(3) {etA}t≥0 is a Markovian semigroup.

Given a non-positive symmetric operator A we can always define the (non-closed) symmetric
form

E(u, v) = (−Au, v), D(E) = D(A).

The Friedrichs extension AF of A is then defined as the self-adjoint operator associated via Theo-
rem 3.1 to the closure E0 of this form. Namely, D(E0) is the closure of D(A) with respect to the
scalar product (19), and E0(u, v) = limn→+∞ E(un, vn) for un → u and vn → v w.r.t. (·, ·)E . It is
a well-known fact that the Friedrichs extension of a Markovian operator is always a Dirichlet form
(see, e.g., [15, Theorem 3.1.1]).

A Dirichlet form E is said to be regular on X if D(E) ∩ Cc(X) is both dense in D(E) w.r.t. the
scalar product (19) and dense in Cc(X) w.r.t. the L∞(X) norm. To any regular Dirichlet form EA
it is possible to associate a Markov process {Xt}t≥0 which is generated by A (indeed they are in
one-to-one correspondence to a particular class of Markov processes, the so-called Hunt processes,
see [15] for the details).

If its associated Dirichlet form is regular, by Definitions 1.10 and 1.11, a Markovian operator is
said stochastically complete if its associated Markov process has almost surely infinite lifespan, and
recurrent if it intersects any subset of X with positive measure an infinite number of times. If it is
not stochastically complete, an operator is called explosive. Observe that recurrence is a stronger
property than stochastic completeness. Since we will only consider regular Dirichlet forms, we refer
to [15] for a definition of recurrence valid for general Dirichlet forms.

We will need the following characterizations.

Theorem 3.5 (Theorem 1.6.6 in [15]). A Dirichlet form E is stochastically complete if and only if
there exists a sequence {un} ⊂ D(E) satisfying

0 ≤ un ≤ 1, lim
n→+∞

un = 1 m− a.e.,

such that
E(un, v)→ 0 for any v ∈ D(E) ∩ L1(X,m).

We let the extended domain D(E)e of a Dirichlet form E to be the family of functions u ∈
L∞(X,m) such that there exists {un}n∈N ⊂ D(E), Cauchy sequence w.r.t. the scalar product (19),
such that un −→ u m-a.e. . The Dirichlet form E can be extended to D(E)e as a non-negative
definite symmetric bilinear form, by E(u, u) = limn→+∞ E(un, un).

Theorem 3.6 (Theorems 1.6.3 and 1.6.5 in [15]). Let E be a Dirichlet form. The following are
equivalent.

(1) E is recurrent;
(2) there exists a sequence {un} ⊂ D(E) satisfying

0 ≤ un ≤ 1, lim
n→+∞

un = 1 m− a.e.,

such that
E(un, v)→ 0 for any v ∈ D(E)e.

(3) 1 ∈ D(E)e, i.e., there exists a sequence {un} ⊂ D(E) such that limn→+∞ un = 1 m− a.e.
and E(un, un)→ 0.
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Remark 3.7. As a consequence of this two theorems we have that if m(X) < +∞, stochastic
completeness and recurrence are equivalent.

We conclude this preliminary part, by introducing a notion of restriction of closed forms associated
to self-adjoint extensions of ∆|C∞c (M).

Definition 3.8. Given a self-adjoint extension A of ∆|C∞c (M) and an open set U ⊂ M , we let the
Neumann restriction EA|U of EA to be the form associated with the self-adjoint operator A|U on
L2(U, dω), obtained by putting Neumann boundary conditions on ∂U .

In particular, by Theorem 3.1 and an integration by parts, it follows that D(EA|U ) = {u|U | u ∈
D(EA)}.

3.2. Markovian extensions of ∆|C∞c (M). The bilinear form associated with ∆|C∞c (M) is

E(u, v) =

∫

Mα

g(∇u,∇v) dω =

∫

Mα

(
∂xu ∂xv + |x|2α∂θu ∂θv

)
dω, D(E) = C∞c (M).

By [15, Example 1.2.1], E is a Markovian form. The Friederichs extension is then associated with
the form

EF (u, v) =

∫

M

(
∂xu ∂xv + |x|2α∂θu ∂θv

)
dω, D(EF ) = H1

0 (M,dω),

where the derivatives are taken in the sense of Schwartz distributions. By its very definition, and
the fact that D(EF ) ∩ C∞c (M) = C∞c (M), follows that EF is always a regular Dirichlet form on M
(equivalently, on M+ or on M−). Its associated Markov process is absorbed by the singularity.

The following Lemma will be crucial to study the properties of the Friederichs extension. Let
M0 = (−1, 1) × T, M∞ = (1,+∞) × T and recall the notion of Neumann restriction given in
Definition 3.8.

Lemma 3.9. If α ≤ −1, it holds that 1 ∈ D(EF |M0). Moreover, 1 /∈ D(EF |M0)e if α > −1 and
1 ∈ D(EF |M∞)e if and only if α ≥ −1.

Proof. To ease the notation, we let Êk to be the Dirichlet form associated to the Friederichs extension
of ∆̂k. In particular, for k = 0,

Ê0(u, v) =

∫

R\{0}
∂xu ∂xv |x|−αdx, D(Ê0) = H1

0 (R \ {0}, |x|−αdx).

Let πk : L2(M,dω)→ Hk = L2(R \ {0}, |x|−αdx) be the projection on the k-th Fourier component.
Then, from the rotational invariance of D(EF ) follows that

D(EF ) =
⊕

k∈Z
D(Êk), EF (u, v) =

∑

k∈Z
Êk(πku, πkv).

In particular, since π01 = 1 and πk1 = 0 for k 6= 0, follows that 1 ∈ D(EF |M0) (resp. 1 ∈ D(EF |M∞)e)
if and only if 1 ∈ D(Ê0|(0,1)) (resp. 1 ∈ D(Ê0|(1,+∞))e). Here, with abuse of notation, we denoted
as 1 both the functions 1 : M → {1} and 1 : R → {1}. Thus, to complete the proof of the
lemma, it suffices to prove that 1 ∈ D(Ê0|(0,1)) if α ≤ −1, that 1 /∈ D(Ê0|(0,1))e if α ≥ −1 and that
1 ∈ D(Ê0|(1,+∞))e if and only if α ≥ −1.

For any 0 < r < R < +∞, let fαr,R be the only solution to the Cauchy problem
{

∆̂0f = 0,

f(r) = 1, f(R) = 0.
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Namely,

fαr,R(x) =





R1+α − x1+α

R1+α − r1+α
if α 6= −1,

log
(
R
x

)

log
(
R
r

) if α = −1.

Then, the 0-equilibrium potential (see [15] and Remark 3.10) of [0, r] in [0, R], is given by

(20) ur,R(x) =





1 if 0 ≤ x ≤ r,
fαr,R(x) if r < x ≤ R,
0 if x > R.

It is a well-known fact that ur,R is the minimizer for the capacity of [0, r] in [0, R). Namely, for any
locally Lipschitz function v with compact support contained in [0, R] and such that v(x) = 1 for
any 0 < x < r, it holds

(21)
∫ +∞

0
|∂xur,R|2x−α dx ≤

∫ +∞

0
|∂xv|2x−α dx

Since it is compactly supported on [0,+∞) and locally Lipschitz, it follows that ur,R ∈ D(Ê0|(1,+∞))

and 1− ur,R ∈ D(Ê0|(0,1)) for any 0 < r < R < +∞.
Consider now α ≥ −1, and let us prove that 1 ∈ D(Ê0|(1,+∞))e. To this aim, it suffices to show

that there exists a sequence {un}n∈N ⊂ D(Ê0|(1,+∞)) = {u|(1,+∞) | u ∈ H1((0,+∞), x−αdx)} such
that un −→ 1 a.e. and Ê0|(1,+∞). Let

un =

{
un,2n if α 6= −1,

un,n2 if α = −1.

It is clear that un −→ 1 a.e., moreover, a simple computation shows that

Ê0|(1,+∞)(un, un) =

∫ +∞

1
|∂xun|2 x−α dx =

{
1+α

21+α−1
n−(1+α) if α 6= −1,

1
log(n) if α = −1.

Hence Ê0|(1,+∞) −→ 0 if α ≥ −1, proving that 1 ∈ D(Ê0|(1,+∞))e.
We now prove that 1 ∈ D(Ê0|(0,1)) if α ≤ −1. Consider the following sequence inH1((0, 1), x−αdx),

un =

{
u1/2n,1/n if α 6= −1,

u1/n2,1/n if α = −1.

A direct computation of
∫ 1

0 |∂xun|2x−αdx, the fact that suppun ⊂ [0, 1/n] and 0 ≤ un ≤ 1, prove
that un −→ 0 in H1((0, 1), x−αdx). Since 1 − un ∈ D(Ê0|(0,1)), which is closed, this proves that
1− un −→ 1 in D(Ê0|(0,1)), and hence the claim.

To complete the proof, it remains to show that 1 /∈ D(Ê0|(1,+∞))e if α < −1. The same
argument can be then used to prove that 1 /∈ D(Ê0|(0,1))e if α > −1. We proceed by con-
tradiction, assuming that there exists a sequence {vn}n∈N ⊂ D(Ê0|(1,+∞)) such that vn −→ 1

a.e. and Ê0|(1,+∞)(vn, vn) −→ 0. Since the form Ê0|(1,+∞) is regular on [1,+∞), we can take
vn ∈ C∞c ([1,+∞)). Moreover, we can assume that vn(1) = 1 for any n ∈ N. In fact, if this
is not the case, it suffices to consider the sequence ṽn(x) = vn(x)/vn(1). Let Rn > 0 be such
that

⋃
m≤n supp vm ⊂ [1, Rn]. Moreover, extend vn to 1 on (0, 1), so that Ê0|(1,+∞)(vn, vn) =
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∫ +∞
0 |∂xvn|2x−αdx. Since the same holds for u1,Rn , by (21), the fact that Rn −→ +∞ and α < −1,
we get

lim
n→+∞

Ê0|(1,+∞)(vn, vn) ≥ lim
n→+∞

Ê0|(1,+∞)(u1,Rn , u1,Rn) = lim
n→+∞

1 + α

R1+α
n − 1

= −(1 + α) > 0.

This contradicts the fact that Ê0|(1,+∞)(vn, vn) −→ 0, completing the proof. �

Remark 3.10. The 0-equilibrium potential defined in (20) admits a probabilistic interpretation.
Namely, it is the probability that the Markov process associated with ∆̂0 and starting from x, exits
the first time from the interval {r < x < R} through the inner boundary {x = r}.

It is possible to define a semi-order on the set of the Markovian extensions of ∆|C∞c (M) as follows.
Given two Markovian extensions A and B, we say that A ⊂ B if D(EA) ⊂ D(EB) and EA(u, u) ≥
EB(u, u) for any u ∈ D(EA). With respect to this semi-order, the Friederichs extension is the minimal
Markovian extension. Let ∆N be the maximal Markovian extension (see [15]). This extension is
associated with the Dirichlet form E+ defined by

E+(u, v) =

∫

M

(
∂xu ∂xv + |x|2α∂θu ∂θv

)
dω,

D(E+) = {u ∈ L2(M,dω) | E+(u, u) < +∞} = H1(M,dω),

where the derivatives are taken in the sense of Schwartz distributions. We remark that E+ is a
regular Dirichlet form on M+ = Mα \M− and M− = Mα \M+ (see, e.g., [15, Lemma 3.3.3]). Its
associated Markov process is reflected by the singularity.

When ∆|C∞c (M) has only one Markovian extension, i.e., whenever ∆F = ∆N , we say that it
is Markov unique. Clearly, if ∆|C∞c (M) is essentially self-adjoint, it is also Markov unique. The
next proposition shows that Markov uniqueness is a strictly stronger property than essential self-
adjointness.

Proposition 3.11. The operator ∆|C∞c (M) is Markov unique if and only if α /∈ (−1, 1).

Proof. As observed above, the statement is an immediate consequence of Theorem 1.6 for α ≤ −3

and α ≥ 1. If α ∈ (−3,−1], since by Theorem 1.6 all ∆̂k for k 6= 0 are essentially self-adjoint, it
holds that ∆N = Â0⊕ (

⊕
k∈N ∆̂k) for some self-adjoint extension Â0 of ∆̂0. Recall the definition of

φ±D and φ±N given in (10) and with abuse of notation let φ±D(x, θ) = φ±D(x) and φ±N (x, θ) = φ±N (x).
Since E+(φ±N , φ

±
N ) = +∞ if and only if α ≤ −1, we get that φ+

N , φ
−
N /∈ D(E+) ⊃ D(∆N ) if α ≤ −1.

Hence, by Theorem 1.8, it holds that Â0 = (∆̂0)F and hence that ∆N = ∆F .
On the other hand, if α ∈ (−1, 1), the result follows from Lemma 3.9. In fact, it implies that

φD /∈ H1
0 (M,dω) = D(EF ) but, since E+(φD, φD) < +∞, we have that φD ∈ D(E+). This proves

that ∆F $ ∆N . �

By the previous result, when α ∈ (−1, 1) it makes sense to consider the bridging extension,
associated to the operator ∆B and the form EB, defined by

EB(u, v) =

∫

Mα

(
∂xu ∂xv + |x|2α∂θu ∂θv

)
dω,

D(EB) = {u ∈ H1(M,dω) | u(0+, θ) = u(0−, θ) for a.e. θ ∈ T}.
From Theorem 3.3 and the fact that EB = E+|D(EB) follows immediately that EB is a Dirichlet
form, and hence ∆F ⊂ ∆B ⊂ ∆N . Moreover, due to the regularity of E+ and the symmetry of the
boundary conditions appearing in D(EB), follows that EB is regular on the wholeMα. Its associated
Markov process can cross, with continuous trajectories, the singularity.
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We conclude this section by specifying the domains of the Markovian self-adjoint extensions
associated with EF , E+ and, when it is defined, EB.
Proposition 3.12. It holds that D(∆F ) = H2

0 (M,dω), while

D(∆N ) = {u ∈ H1(M,dω) | (∆u, v) = (∇u,∇v) for any v ∈ H1(M,dω)}.
Moreover, if α ∈ (−1, 1), the domain of ∆B is

D(∆B) = {H2 (Mα, dω) | u(0+, ·) = u(0−, ·), lim
x→0+

|x|−α∂xu(x, ·) = lim
x→0−

|x|−α∂xu(x, ·) for a.e. θ ∈ T}.

Proof. In view of Theorem 3.1, to prove that A is the operator associated with EA it suffices to
prove that D(A) ⊂ D(EA) and that EA(u, v) = (−Au, v) for any u ∈ D(A) and v ∈ D(EA). The
requirement on the domain is satisfied by definition in all three cases. We proceed to prove the
second fact.

Friedrichs extension. By integration by parts it follows that EF (u, v) = (−∆Fu, v) for any u, v ∈
C∞c (M), and this equality can be extended to u ∈ H2

0 (M,dω) = D(∆F ) and v ∈ H1
0 (M,dω) =

D(EF ).
Neumann extension. The property that E+(u, v) = (−∆Nu, v) for any u ∈ D(∆N ) and v ∈ D(E+)

is contained in the definition.
Bridging extension. By an integration by parts, it follows that∫

Mα

(
∂xu ∂xv + x2α∂θu ∂θv

)
dω = (−∆Bu, v)−

∫

T
v|x|−α∂xu

∣∣0+
x=0− dθ = (−∆Bu, v).

�
3.3. Stochastic completeness and recurrence on Mα. We are interested in localizing the prop-
erties of stochastic completeness and recurrence of a Markovian self-adjoint extension A of ∆|C∞c (M).
Due to the already mentioned repulsing properties of Neumann boundary conditions, the natural
way to operate is to consider the Neumann restriction introduced in Definition 3.8.

Observe that, if U ⊂ M is an open set such that Ū ∩ ({−∞, 0,+∞} × T) = ∅, then the
Neumann restriction EA|U is always recurrent on U . In fact, in this case, there exist two constants
0 < C1 < C2 such that C1dx dθ ≤ dω ≤ C2dx dθ on U and clearly 1 ∈ D(EA|U ) = H1(U, dx dθ), that
by Theorem 3.6 implies the recurrence. For this reason, we will concentrate only on the properties
“at 0” or “at ∞”.

Definition 3.13. Given a Markovian extension A of ∆|C∞c (M), we say that it is stochastically
complete at 0 (resp. recurrent at 0) if its Neumann restriction to M0 = (−1, 1)×T, is stochastically
complete (resp. recurrent). We say that A is exploding at 0 if it is not stochastically complete at
0. Considering M∞ = (1,∞)× T, we define stochastic completeness, recurrence and explosiveness
at ∞ in the same way.

In order to justify this approach, we will need the following.

Proposition 3.14. A Markovian extension A of ∆|C∞c (M) is stochastically complete (resp. recur-
rent) if and only if it is stochastically complete (resp. recurrent) both at 0 and at ∞.

Proof. Let {un}n∈N ⊂ D(EA) such that un → 1 a.e. and EA(un, un)→ 0. Since D(EA|M0) = {u|M0 |
u ∈ D(EA)} and D(EA|M∞) = {u|M∞ | u ∈ D(EA)} follows that {un|M0}n∈N ⊂ D(EA|M0) and
{un|M∞}n∈N ⊂ D(EA|M∞). Moreover, it is clear that un|M0 , un|M∞ → 1 a.e. and EA|M0(un|M0 , un|M0),
EA|M∞(un|M∞ , un|M∞)→ 0. By Theorem 3.6, this proves that if EA is recurrent it is recurrent also
at 0 and ∞.

On the other hand, if A|M0 and A|M∞ are recurrent, we can always choose the sequences
{un}n∈N ⊂ D(EA|M0) and {vn}n∈N ⊂ D(EA|M∞) approximating 1 such that they equal 1 in a
neighborhood N of ∂M0 = ∂M∞ = ({1}×T)∪ ({−1}×T). In fact the constant function satisfies the
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Neumann boundary conditions we posed on ∂M0 = ∂M∞ for the operators associated with EA|M0

and EA|M∞ . Hence, by gluing un and vn we get a sequence of functions in D(EA) approximating
1. The same argument gives also the equivalence of the stochastic completeness, exploiting the
characterization given in Theorem 3.5. �

Before proceeding with the classification of the stochastic completeness and recurrence of ∆F ,
∆N and ∆B, we need the following result. For an operator acting on L2(R \ {0}, |x|−αdx), the
definition of stochastic completeness and recurrence at 0 or at ∞ is given substituting M0 and M∞
in Definition 3.13 with (−1, 1) and (1,+∞).

Proposition 3.15. Let A be a Markovian self-adjoint extension of ∆|C∞c (M) and assume it decom-
poses as A = Â0 ⊕ Ã, where Â0 is a self-adjoint operator on H0 and Ã is a self-adjoint operator
on
⊕

k 6=0Hk. Then, Â0 is a Markovian self-adjoint extension of ∆̂0. Moreover, A is stochastically
complete (resp. recurrent) at 0 or at ∞ if and only if so is Â0.

Proof. Let πk : L2(M,dω) → Hk = L2(R \ {0}, |x|−αdx) be the projection on the k-th Fourier
component. In particular, recall that π0u = (2π)−1

∫ 2π
0 u(x, θ) dθ. Let u ∈ D(Â0) ⊂ L2(R, |x|−αdx)

be such that 0 ≤ u ≤ 1. Hence, posing ũ(x, θ) = u(x), due to the splitting of A follows that
ũ ∈ D(A) and by the markovianity follows that 0 ≤ Aũ ≤ 1. The first part of the statement is then
proved by observing that, since π0ũ = u and πkũ = 0 for k 6= 0, we have Aũ(x, θ) = Â0u(x) for any
(x, θ) ∈M .

We prove the second part of the statement only at 0, since the arguments to treat the at ∞
case are analogous. First of all, we show that the stochastic completeness of A and Â0 at 0 are
equivalent. If 1 : M0 → R is the constant function, it holds that π01 = 1 : (−1, 1)→ R. Moreover,
due to the splitting of A, we have that etA = etÂ0 ⊕ etÃ Hence, it follows that etA1 = etÂ01. This,
by Definition 1.10, proves the claim.

To prove the equivalence of the recurrences at 0, we start by observing that D(EA) = D(E
Â0

)⊕
D(EÃ) and that

(22) EA(u, v) = E
Â0

(π0u, π0v) + EÃ(⊕k 6=0πku,⊕k 6=0πkv), for any u, v ∈ D(EA)

In particular, since π01 = 1 this implies that EA|M0(1, 1) = E
Â0
|(−1,1)(1, 1). By Theorem 3.6, this

proves that if Â0 is recurrent at 0, so is A. Assume now that A|M0 is recurrent. By Theorem 3.6
there exists {un}n∈N ⊂ D(EA|M0) such that 0 ≤ un ≤ 1 a.e., un −→ 1 a.e. and EA|M0(un, v) → 0
for any v in the extended domain D(EA|M0)e. By dominated convergence, it follows that π0un =

(2π)−1
∫ 2π

0 un(·, θ) dθ → 1 for a.e. x ∈ (−1, 1). For any v ∈ D(E
Â0
|(−1,1))e, let ṽ(x, θ) = v(x). It is

easy to see that ṽ ∈ D(EA|M0)e Then, by applying (22) we get

E
Â0
|(−1,1)(π0un, v) = EA|M0(un, ṽ) −→ 0, for any v ∈ D(E

Â0
|(−1,1))e.

Since 0 ≤ π0un ≤ 1, this proves that Â0|(−1,1) is recurrent �
The following proposition answers the problem of stochastic completeness or recurrence of the

Friedrichs extension.

Proposition 3.16. Let ∆F be the Friedrichs extension of ∆|C∞c (M). Then, the following holds
at 0 at ∞

α < −1 recurrent stochastically complete
α = −1 recurrent recurrent
α > −1 explosive recurrent

In particular, ∆F is stochastically complete for α < −1, recurrent for α = −1 and explosive for
α > −1.
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Proof. The part regarding the recurrence is a consequence of Lemma 3.9 and Theorem 3.6, while
the last statement is a consequence of Proposition 3.14. Thus, to complete the proof it suffices to
prove that ∆F is stochastically complete at +∞ if α < −1 and not stochastically complete at 0 if
α > −1.

By Proposition 3.15 and the fact that ∆F = ⊕k∈Z(∆̂k)F , we actually need to prove this fact only
for (∆̂0)F . Moreover, since the Friederichs extension decouples the dynamics on the two sides of
the singularity, we can work only on (0,+∞) instead that on R \ {0}. As in Lemma 3.9, we let Ê0

to be the Dirichlet form associated to the Friederichs extension of ∆̂0.
We start by proving the explosion for α > −1 on (0, 1). Let us proceed by contradiction and as-

sume that (∆̂0)F is stochastically complete on (0, 1). By Theorem 3.5, there exists un ∈ D(Ê0|(0,1)),
0 ≤ un ≤ 1, un −→ 1 a.e. and such that Ê0|(0,1)(un, v) −→ 0 for any v ∈ D(Ê0|(0,1)) ∩
L1((0, 1), x−αdx). Since Ê0|(0,1) is regular on (0, 1], we can choose the sequence such that un ∈
C∞c ((0, 1]). In particular un(0) = limx↓0 un(x) = 0 for any n. Let us define, for any 0 < R ≤ 1,

vR(x) = lim
r↓0

(
1− ur,R(x)

)
=

{
x1+α/R1+α if 0 ≤ x < R,

1 if 0 ≤ x ≥ R,

where ur,R is defined in (20). Observe that, by the probabilistic interpretation of ur,R given in
Remark 3.10, follows that vR(x) is the probability that the Markov process associated with (∆̂0)F
and starting from x exits the interval (0, R) before being absorbed by the singularity at 0. A simple
computation shows that vR ∈ D(Ê0|(0,1))∩L1((0, 1), x−αdx). Thus, by definition of {un}n∈N and a
direct computation we get

0 = lim
n→+∞

Ê0|(0,1)(un, vR) =
1 + α

R1+α
lim

n→+∞

∫ R

0
∂xun dx =

1 + α

R1+α
lim

n→+∞
un(R).

Hence, un(R) −→ 0 for any 0 < R < 1, contradicting the fact that un −→ 1 a.e..
To complete the proof, we show that if α < −1, (∆̂0)F is stochastically complete on (1,+∞).

Let v ∈ D(Ê0|(1,+∞)) ∩ L1((1,+∞), x−αdx) ⊂ H1((1,+∞), dx). Thus, by Morrey’s inequality v
is 1/2-Hölder continuous with constant CH . Since, for any 1 < r < R, by (20) it holds that
ur,R ∈ D(Ê0|(1,+∞)), letting un = un,2n a direct computation yields

(23) Ê0|(1,+∞)(un, v) = (1 + α)
v(2n)− v(n)

n1+α(21+α − 1)
.

Since un −→ 1 pointwise, by Theorem 3.5, to complete the proof it suffices to show that

(24)
v(2n)− v(n)

n1+α(21+α − 1)
−→ 0, for any v ∈ D(Ê0|(1,+∞)) ∩ L1((1,+∞), x−αdx).

Fix C > 0 and let {ni}n∈N = {n ∈ N | v(n) > Cnα−1} and εi = inf{ε > 0 | v(ni + ε) ≤
C(ni + ε)α−1}. By the continuity of v it holds v(ni + εi) = C(ni + εi)

α−1. Moreover εi <∞ since
xα−1 /∈ L1((1,+∞), x−αdx). Notice that

∫ +∞

1
|v|x−αdx ≥ C

∑

i∈N

∫ ni+εi

ni

1

x
dx = C

∑

i∈N
log

(
ni + εi
ni

)
.

Thus, since v ∈ L1((1,+∞), x−αdx), the sum on the r.h.s. has to be finite. In particular we have
that, for i sufficiently big, log((ni+εi)/ni) ≤ 1/ni. Hence, there exists C ′ > 0 such that εi ≤ C ′e1/ni ,
for i sufficiently big. Due to the 1/2-Hölder continuity of v and the fact that x 7→ xα−1 is decreasing,
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we get

e
1/2ni ≥ ε

1/2
i

C ′
≥ |v(ni)− v(ni + εi)|

CHC ′
=
|v(ni)− C(ni + εi)

α−1|
CHC ′

≥ |v(ni)− Cnα−1
i |

CHC ′
.

Finally, this implies that there exists C ′′ such that |v(n)| ≤ C ′′(nα−1 + e1/2n) for n sufficiently big,
and hence that ∣∣∣∣

v(2n)− v(n)

n1+α(21+α − 1)

∣∣∣∣ ≤ C ′′
2α−1 + 1

2α+1 − 1

1

n2
+

C ′′

2α+1 − 1

e1/4n + e1/2n

nα+1
−→ 0,

completing the proof of (24), and hence of the theorem. �
We are now in a position to prove Theorem 1.13.

Proof of Theorem 1.13. By Propositions 3.11 and 3.16, we are left only to prove statement (iii)-
(a) and the second part of (iii)-(b), i.e., the stochastic completeness of ∆N and ∆B at 0 when
α ∈ (−1, 1).

Statement (iii)-(a) follows from [15, Theorem 1.6.4], since for α ∈ (−1, 1) the Friederichs ex-
tension (which is the minimal extension of ∆|C∞c (M)) is recurrent at ∞. To complete the proof it
suffices to observe that, for these values of α, it holds that 1 ∈ H1(M0, dω) = D(E+|M0) and clearly
E+|M0(1, 1) = 0. By Theorem 3.6, this implies the recurrence of E+ at 0. The recurrence of EB at 0
follows analogously, observing that 1 is also continuous on Z and hence it belongs to D(EB|M0) �

Appendix A. Geometric interpretation

In this appendix we prove Lemmata 1.1 and 1.2, and justify the geometric interpretation of
Figure 1.

A.1. Topology of Mα.

Proof of Lemma 1.1. By (3), it is clear that d : Mcylinder × Mcylinder → [0,+∞) is symmetric,
satisfies the triangular inequality and d(q, q) = 0 for any q ∈ Mcylinder. Observe that the topology
on Mcylinder is induced by the distance dcylinder((x1, θ1), (x2, θ2)) = |x1 − x2| + |θ1 − θ2|. Here and
henceforth, for any θ1, θ2 ∈ T when writing θ1− θ2 we mean θ1− θ2 mod 2π. In order to complete
the proof it suffices to show that for any {qn}n∈N ⊂Mcylinder and q̄ ∈Mcylinder it holds

(25) d(qn, q̄) −→ 0 if and only if dcylinder(qn, q̄) −→ 0.

In fact, this clearly implies that if d(q1, q2) = 0 then q1 = q2, proving that d is a distance, and
moreover proves that d and dcylinder induce the same topology.

Assume that d(qn, q̄) → 0 for some {qn}n∈N ⊂ Mcylinder and q̄ = (x̄, θ̄) ∈ Mcylinder. In this case,
for any n ∈ N there exists a control un : [0, 1] → R2 such that ‖un‖L1([0,1],R2) → 0 and that the
associated trajectory γn(·) = (xn(·), θn(·)) satisfies γn(0) = qn and γn(1) = q̄. This implies that, for
any t ∈ [0, 1]

|xn(t)− x̄| ≤
∫ t

0
|u1(t)| dt ≤ ‖un‖L1([0,1],R2) −→ 0.

Hence, xn(t) −→ x̄. In particular, this implies that |xn(t)| ≤ ‖un‖L1([0,1],R2) + |x̄| for any t ∈ [0, 1],
and hence

|θn(0)− θ̄| ≤
∫ 1

0
|u2(t)||xn(t)|α dt ≤

(
‖un‖L1([0,1],R2) + |x̄|

)α
∫ 1

0
|u2(t)| dt

≤ ‖un‖L1([0,1],R2)(‖un‖L1([0,1],R2) + |x̄|)α −→ 0.

Here, when taking the limit, we exploited the fact that α ≥ 0. Thus also θn(0) −→ θ̄, and hence
qn = (xn(0), θn(0)) −→ (x̄, θ̄) = q̄ w.r.t. dcylinder.
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In order to complete the proof of (25), we now assume that for some qn = (xn, θn) and q̄ = (x̄, θ̄)
it holds dcylinder(qn, q̄) −→ 0 and claim that d(qn, q̄) −→ 0. We start by considering the case q̄ /∈ Z,
and w.l.o.g. we assume q̄ ∈ M+. Since M+ is open with respect to dcylinder, up to subsequences it
holds qn ∈M+. Consider now the controls

un(t) =

{
2 (x̄− xn) (1, 0) if 0 ≤ t ≤ 1

2 ,

2 (θ̄ − θn)|x̄|−α (0, 1) if 1
2 < t ≤ 1,

A simple computation shows that each un steers the system from qn to q̄. The claim then follows
from

d(qn, q̄) ≤ ‖un‖L1([0,1],R2) ≤ |x̄− xn|+ |θ̄ − θn||x̄|α ≤ (1 + |x̄|α) dcylinder(qn, q̄) −→ 0.

Let now q̄ ∈ Z and observe that w.l.o.g. we can assume qn /∈ Z for any n ∈ N. In fact, if this is not
the case it suffices to consider q̃n = (xn + 1/n, θn) /∈ Z, observe that d(qn, q̃n) → 0 and apply the
triangular inequality. Then, we consider the following controls, steering the system from qn to q̄,

vn(t) =





3
(
(θ̄ − θn)1/2α − xn

)
(1, 0) if 0 ≤ t ≤ 1

3 ,

3 (θ̄ − θn)1/2 (0, 1) if 1
3 < t ≤ 2

3 ,

3 (θn − θ̄)1/2α (1, 0) if 2
3 < t ≤ 1.

Since x̄ = 0 and α ≥ 0, we have

d(qn, q̄) ≤ ‖vn‖L1([0,1],R2) ≤ |(θn − θ̄)1/2α − xn|+ |θ̄ − θn|1/2 + |θn − θ̄|1/2α −→ 0.

This proves (25) and hence the lemma. �

Proof of Lemma 1.2. By (4), it is clear that d : Mcone×Mcone → [0,+∞) is symmetric, satisfies the
triangular inequality and d(q, q) = 0 for any q ∈Mcone.

Observe that the topology on Mcone is induced by the following metric

dcone((x1, θ1), (x2, θ2)) =





|x1 − x2|+ |θ1 − θ2| if x1x2 > 0,

|x1 − x2| if x1 = 0 or x2 = 0,

|x1 − x2|+ |θ1|+ |θ2| if x1x2 < 0.

By symmetry, to show the equivalence of the topologies induced by d and by dcone, it is enough
to show that the two distances are equivalent on [0,+∞) × T. Moreover, since by definition of g
it is clear that d(q1, q2) = 0 for any q1, q2 ∈ Z and that d is equivalent to the Euclidean metric
on (0,+∞) × T, we only have to show that for any {qn} ⊂ (0,+∞) × T, qn = (xn, θn), and
q̄ = (0, θ̄) ∈ Z, it holds that
(26) d(qn, q̄) −→ 0 if and only if dcone(qn, q̄) −→ 0.

We start by assuming that d(qn, q̄) −→ 0. Then, there exists γn : [0, 1]→M such that γn(0) = qn
and γn(1) = q̄ and

∫ 1
0

√
g(γn(t), γn(t)) dt −→ 0. This implies that

|xn| ≤
∫ 1

0

√
g(γn(t), γn(t)) dt −→ 0,

and thus that xn −→ 0. This suffices to prove that dcone(qn, q̄) −→ 0.
On the other hand, if dcone(qn, q̄) −→ 0, it suffices to consider the curves

γn(t) =

{(
(1− 2t)xn, θn

)
if 0 ≤ t < 1

2 ,(
0, θn + (2t− 1)(θ̄ − θn)

)
if 1

2 ≤ t ≤ 1.
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t

r(t)

Figure 2. The surface of revolution of Proposition A.1 with α = −2, i.e. r(t) = t2.

Clearly γn is Lipschitz and γn(0) = qn and γn(1) = q̄. Finally, since g|Z = 0, the proof is completed
by

d(qn, q̄) ≤
∫ 1

0

√
gγn(t)(γ̇n(t), γ̇n(t)) dt =

∫ 1
2

0

√
gγn(t)((−2xn, 0), (−2xn, 0)) dt = xn −→ 0.

�

A.2. Surfaces of revolution. Given two manifolds M and N , endowed with two (possibly semi-
definite) metrics gM and gN , we say that M is C1-isometric to N if and only if there exists a
C1-diffeomorphism Φ : M → N such that Φ∗gN = gM . Here Φ∗ is the pullback of Φ. Recall that,
in matrix notation, for any q ∈M it holds

(27) (Φ∗gN )q(ξ, η) = (JΦ)T gMΦ(q)JΦ(ξ, η).

Here JΦ is the Jacobian matrix of Φ.
We have the following.

Proposition A.1. If α < −1 the manifold Mα is C1-isometric to a surface of revolution S =
{(t, r(t) cosϑ, r(t) sinϑ) | t ∈ R, ϑ ∈ T} ⊂ R3 with profile r(t) = |t|−α + O(t−2α) as |t| ↓ 0 (see
figure 2), endowed with the metric induced by the embedding in R3.

If α = −1, Mα is globally C1-isometric to the surface of revolution with profile r(t) = t, endowed
with the metric induced by the embedding in R3.

Proof. For any r ∈ C1(R), consider the surface of revolution S = {(t, r(t) cosϑ, r(t) sinϑ) | t >
0, ϑ ∈ T} ⊂ R3. By standard formulae of calculus, we can calculate the corresponding (continuous)
semi-definite Riemannian metric on S in coordinates (t, ϑ) ∈ R× T to be

gS(t, ϑ) =

(
1 + r′(t)2 0

0 r2(t)

)
.

Let now α < −1 and consider the C1 diffeomorphism Φ : (x, θ) ∈ R × T 7→ (t(x), ϑ(θ)) ∈ S
defined as the inverse of

(28) Φ−1(t, ϑ) =

(
x(t)
θ(ϑ)

)
=

( ∫ t
0

√
1 + r′(s)2ds
ϑ

)
.

Observe that Φ is well defined due to the fact that r′ is bounded near 0. Since ∂t(Φ−1) = ∂tx(t) =√
1 + r′(t)2, by (27) the metric is transformed in

Φ∗gS(x, θ) =
(
J−1

Φ

)T
gS(Φ(x, θ))J−1

Φ =

(
1 0

0 r
(
Φ(x, θ)

)2
)
.
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We now claim that, if α < −1, there exists r(·) ∈ C1(R) such that r(t(x)) = |x|−α near {x = 0},
given by the expression

r(t) =

{
t−α +O(t−2α), if t ≥ 0,

−(−t)−α +O(t−2α) if t < 0.

Notice that, this function generates the same surface of revolution as r(t) = |t|−α +O(t−2α), but is
C1 in 0 while the latter is not.

Take r(t(x)) = |x|−α, and assume w.l.o.g. that t, and hence x(t), is positive. Thus, we get

(29) r′(t) = ∂tr(t(x(t))) = ∂t(x(t))−α = −α(x(t))−(α+1)∂tx(t) = −α(x(t))−(α+1)
√

1 + r′(t)2.

Since x(0) = 0 and α > −1, this implies that r′(0) = 0. Finally, a Taylor expansion around t = 0
yields

r(t) = (x(t))−α =
(
t∂tx(0) +O(t2)

)−α
= t−α(1 + r′(0)2)−α/2 +O(t−2α) = tα +O(t−2α),

completing the proof of the claim.
To complete the proof of the proposition, let α = −1. In this case, by letting r(t) = t, the metric

on the surface of revolution is

gS(t, ϑ) =

(
2 0
0 t2

)
.

Consider the diffeomorphism Ψ : (x, θ) ∈ R× T 7→ (t, ϑ) ∈ S defined as

(30) Ψ(x, θ) =
√

2

(
x
θ

)
.

Then the statement follows from the following computation,

Φ∗gS(x, θ) =
(
J−1

Ψ

)T
gS(Ψ(x, θ))J−1

Ψ =

(
1 0

0 r
(
Ψ(x, θ)

)2
/2

)
=

(
1 0
0 x2

)
.

�

Remark A.2. If α > −1 we cannot have a result like the above, since the change of variables (28)
is no more regular. In fact, the function r(t) = t−α has an unbounded first derivative near 0. On
the other hand, if α is a negative integer, by iterating (29) follows that the change of variables (28)
(or (30) for α = −1) is indeed C∞. A similar argument can be used to prove that, if α < −k for
some k ∈ N, the change of variable is of class Ck.

Appendix B. Complex self-adjoint extensions

The natural functional setting for the Schrödinger equation onMα is the space of square integrable
complex-valued function L2

C(M,dω). Recall that a self-adjoint extension B of an operator A over
L2
C(M,dω) is a real self-adjoint extensions if and only if u ∈ D(B) implies u ∈ D(B) and B(u) =

(Bu). The self-adjoint extension of A over L2(M,dω) are exactly the restrictions to this space of
the real self-adjoint extension of A over L2

C(M,dω).
All the theory of Section 2 extends to the complex case, in particular, we have the following

generalization of Theorem 2.6.

Theorem B.1 (Theorem 13.3.1 in [27]). Let A be the Sturm-Liouville operator on L2
C(J,w(x)dx)

defined in (11). Then

n+(A) = n−(A) = #{limit-circle endpoints of J}.
Assume now that n+(A) = n−(A) = 2, and let a and b be the two limit-circle endpoints of

J . Moreover, let φ1, φ2 ∈ Dmax(A) be linearly independent modulo Dmin(A) and normalized by
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[φ1, φ2](a) = [φ1, φ2](b) = 1. Then, B is a self-adjoint extension of A over L2
C(J,w(x)dx) if and

only if Bu = A∗u, for any u ∈ D(B), and one of the following holds

(1) Disjoint dynamics: there exists c+, c− ∈ (−∞,+∞] such that u ∈ D(B) if and only if

[u, φ1](0+) = c+[u, φ2](0+) and [u, φ1](0−) = d+[u, φ2](0−).

(2) Mixed dynamics: there exist K ∈ SL2(R) and γ ∈ (−π, π] such that u ∈ D(B) if and only
if

U(0−) = eiγK U(0+), for U(x) =

(
[u, φ1](x)
[u, φ2](x)

)
.

Finally, B is a real self-adjoint extension if and only if it satisfies (1) the disjoint dynamic or (2)
the mixed dynamic with γ = 0.

As a consequence of Theorem B.1, we get a complete description of the essential self-adjointness
of ∆|C∞c (M) over L2

C(M,dω), extending Theorem 1.6, and of the complex self-adjoint extensions of
∆̂0, extending Theorem 1.8.

Theorem B.2. Consider Mα for α ∈ R and the corresponding Laplace-Beltrami operator ∆|C∞c (M)

as an unbounded operator on L2
C(M,dω). Then it holds the following.

(i) If α ≤ −3 then ∆|C∞c (M) is essentially self-adjoint;
(ii) if α ∈ (−3,−1], only the first Fourier component ∆̂0 is not essentially self-adjoint;
(iii) if α ∈ (−1, 1), all the Fourier components of ∆|C∞c (M) are not essentially self-adjoint;
(iv) if α ≥ 1 then ∆|C∞c (M) is essentially self-adjoint.

Theorem B.3. Let Dmin(∆̂0) and Dmax(∆̂0) be the minimal and maximal domains of ∆̂0|C∞c (R\{0})
on L2

C(R \ {0}, |x|−α), for α ∈ (−3, 1). Then,

Dmin(∆̂0) = closure of C∞c (R \ {0}) in H2
C(R \ {0}, |x|−αdx)

Dmax(∆̂0) = {u = u0 + u+
Dφ

+
D + u+

Nφ
+
N + u−Dφ

−
D + u−Nφ

−
N : u0 ∈ Dmin(∆̂0) and u±D, u

±
N ∈ C},

Moreover, A is a self-adjoint extension of ∆̂0 if and only if Au = (∆̂0)∗u, for any u ∈ D(A), and
one of the following holds

(i) Disjoint dynamics: there exist c+, c− ∈ (−∞,+∞] such that

D(A) =
{
u ∈ Dmax(∆̂0) : u+

N = c+u
+
D and u−N = c−u

+
D

}
.

(ii) Mixed dynamics: there exist K ∈ SL2(R) and γ ∈ (−π, π] such that

D(A) =
{
u ∈ Dmax(∆̂0) : (u−D, u

−
N ) = eiγK (u+

D, u
+
N )T

}
.

Finally, the Friedrichs extension (∆̂0)F is the one corresponding to the disjoint dynamics with
c+ = c− = 0 if α ≤ −1 and with c+ = c− = +∞ if α > −1.
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5. Abstract

We study two problems arising from geometric control theory, regarding control-affine
systems q̇ = f0(q) +

∑m
j=1 ujfj(q). The main contributions are those given in the three

articles attached to the thesis.

The first part of this dissertation is devoted to the problem of complexity of non-
admissible trajectories in the case of control-affine systems satisfying the strong Hörman-
der condition. This problem amounts to quantify the cost of approximating a non-
admissible curve up to a certain precision. In the particular case of sub-Riemannian (or
driftless) systems – i.e., with f0 ≡ 0 – various notions of complexities are already defined
and rather well-understood. Our contributions appear in two papers:

P1. D. Prandi, Hölder continuity of the value function for control-affine systems,
arXiv:1304.6649 [math.OC].

P2. F. Jean, D. Prandi, Complexity of control-affine motion planning, arXiv:1309.2571
[math.OC].

In the first, as a preliminary step, we prove a result in the same spirit as the Ball-Box
theorem for sub-Riemannian systems, in the context of control-affine systems equipped
with the L1 cost. The techniques used are based on a reduction of the control-affine
system to a linear but time-dependent one. As a byproduct, besides consequences on
the Hölder regularity of the associated value function, we get the continuity of the value
function of time-dependent systems of the form q̇ =

∑m
j=1 ujf

t
j (q).

Paper P2. is the core of this part of the thesis. Here, we present various definitions
of complexity, as functions of the curve that is approximated, and of the precision of
the approximation. Due to the lack of time-rescaling invariance of these systems, we
consider geometric and parametrized curves separately. Then, using the instruments
developed in (P1.), we give some asymptotic estimates for these quantities.

In the second part of the thesis we consider the family of two-dimensional driftless
control systems in the form q̇ = u1f1(q) + u2f2(q) with q = (x, θ) ∈ R×S1, where
f1(x, θ) = (1, 0) and f2(x, θ) = (0, |x|α) for a parameter α ∈ R. This family of control
system describes dynamics on cone-like manifolds, on the cylinder and on Grushin-type
manifolds. Due to the control vector fields becoming collinear on {x = 0}, the intrinsic
Laplace-Beltrami operator L presents some singularities. We study how the singular set
affects the evolution of the heat and of a quantum particle (described by the Schrödinger
equation) associated with L are affected by this singularity. This research appears in:

P3. U. Boscain, D. Prandi, The heat and Schrödinger equations on conic and anticonic-
type surfaces, arXiv:1305.5271 [math.AP].
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Here, we show that L is essentially self-adjoint if and only if α /∈ (−3, 1). In this
case the only self-adjoint extension is the Friedrichs extension LF, that does not allow
communication through the singular set {x = 0} both for the heat and for a quantum
particle. For α ∈ (−3,−1] we show that for the Schrödinger equation only the average on
θ of the wave function can cross the singular set, while the solutions of the only Markovian
extension of the heat equation (which indeed is LF) cannot. For α ∈ (−1, 1) we prove
that there exists a canonical self-adjoint extension LB, called bridging extension, which
is Markovian and allows the complete communication through the singularity (both of
the heat and of a quantum particle). Also, we study the stochastic completeness (i.e.,
conservation of the L1 norm for the heat equation) of the Markovian extensions LF and
LB, proving that LF is stochastically complete at the singularity if and only if α ≤ −1,
while LB is always stochastically complete at the singularity.
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6. Resumé

On étudie deux problèmes qui ont leur origine dans la théorie du contrôle géométrique
et qui concernent les systèmes de contrôle avec dérive q̇ = f0(q) +

∑m
j=1 ujfj(q). Les

contributions originales sont celles contenues dans les trois articles insérés dans la thèse.

La première partie de ce manuscrit traite du problème de la complexité des courbes
non-admissibles pour les systèmes de contrôle avec dérive qui satisfont l’hypothèse d’Hörman-
der forte. Il s’agit de quantifier pour ces systèmes le coût nécessaire à l’approximation
d’un chemin non-admissible avec une précision donnée. Dans le cas particulier des
systèmes sous-riemanniens, c’est-à-dire sans dérive, plusieurs notions de complexité ont
déjà été définies et sont maintenant bien comprises. Nos contributions sont contenues
dans deux papiers:

P1. D. Prandi, Hölder continuity of the value function for control-affine systems,
arXiv:1304.6649 [math.OC].

P2. F. Jean, D. Prandi, Complexity of control-affine motion planning, arXiv:1309.2571
[math.OC].

Dans le premier, on généralise le théorème du Ball-Box valable pour les systèmes sous-
riemanniens aux systèmes avec dérive, le coût étant la norme L1. Ce résultat permet
d’obtenir des estimations de type Hölder pour la fonction valeur associée et constitue
un outil indispensable pour P2.. Les techniques que l’on utilise sont basées sur une
réduction du système de contrôle avec dérive à un système sans dérive mais qui dépend
explicitement du temps.

Ensuite, dans le papier P2., on présente plusieurs définitions de complexité, comme
fonctions de la courbe à approximer et de la précision requise. En particulier, le système
n’étant pas invariant par changement de paramétrage temporel, on est forcé de considérer
séparément les courbes géométriques et les courbes paramétrées. En utilisant les résultats
obtenus dans P1., on arrive à donner des estimations asymptotiques de ces quantités
quand la précision se rapproche de zéro.

Dans la deuxième partie de la thèse on considère une famille de systèmes de contrôle
sans dérive en dimension 2 de la forme q̇ = u1f1(q) + u2f2(q) où q = (x, θ) ∈ R×S1,
f1(x, θ) = (1, 0) et f2(x, θ) = (0, |x|α), avec un paramètre α ∈ R. Selon la valeur de
α, cette famille décrit une dynamique sur des variétés coniques, sur le cylindre ou sur
une variété de type Grushin. On s’intéresse à l’opérateur de Laplace-Beltrami associé
ainsi qu’à l’évolution de la chaleur et des particules quantiques qu’il définit. On étudie,
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plus particulièrement, l’effet qu’a l’ensemble singulier {x = 0}, où les champs de vecteurs
contrôlés deviennent colinéaires, sur ces évolutions. Cette recherche fait l’objet du papier,

P3. U. Boscain, D. Prandi, The heat and Schrödinger equations on conic and anticonic-
type surfaces, arXiv:1305.5271 [math.AP].

On montre que L est essentiellement auto-adjoint si et seulement si α /∈ (−3, 1). Dans
ce cas-là, la seule extension auto-adjointe est l’extension de Friedrichs LF, qui ne per-
met pas la communication à travers l’ensemble singulier {x = 0} aussi bien pour la
chaleur que pour les particules quantiques. Pour α ∈ (−3,−1] on montre que pour
l’équation de Schrödinger seulement la moyenne sur θ de la fonction d’onde peut tra-
verser l’ensemble singulier, tandis que les solutions de la seule extension markovienne de
l’équation de la chaleur, qui est LF, ne le peuvent pas. Finalement, pour α ∈ (−1, 1) on
montre qu’il existe une extension auto-adjointe canonique LB, qu’on appelle extension
“bridging”, qui est markovienne et permet une communication complète à travers la
singularité (aussi bien pour la chaleur que pour les particules quantiques). En outre,
on étudie la complexité stochastique des extensions markoviennes LF et LB, c’est-à-dire
la conservation de la norme L1 pour l’équation de la chaleur, et on prouve que LF est
stochastiquement complète sur la singularité si et seulement si α < −1 et que LB est
toujours stochastiquement complète sur la singularité.
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