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Abstract

The main topic of this thesis concerns the polynomial approximation of aleatory functions by
means of the random discrete L2 projection, and its application to inverse problems for Partial
Differential Equations (PDEs) with stochastic data. The motivations come from the parametric
approximation of the solution to partial differential models and its application to Uncertainty
Quantification in engineering. The thesis is arranged in two parts, with an introductory chapter
which contains an overview of modern techniques for polynomial approximation of functions
depending on random variables.

In the former part, from Chapter 1 to Chapter 4, the focus is on the theoretical analysis of the
random discrete L2 projection applied to solve the so-called forward problem, e.g. to approximate
the moments of an aleatory function given its observations, or to compute the solution to a
computational model with stochastic coefficients given initial and boundary data. In Chapter 1,
the discrete L2 projection on polynomial spaces with random evaluations is presented, as a tool
to accurately approximate a multivariate function depending on a random variable distributed
according to a given probability density. The stability and optimality of the approximation error
evaluated in the L2 weighted norm are addressed, under the assumption that the density is
bounded away from zero. In this analysis, the main result achieved is a univariate probabilistic
optimal convergence estimate with the uniform distribution, provided the number of evaluations
scales as the square of the dimension of the polynomial space. Several numerical examples confirm
the theoretical results, with aleatory functions defined on parameter spaces featuring low to
moderately high dimension. The role of smoothness of the target function has been investigated
as well.

In Chapter 2 the proof of the stability and optimality in expectation of the random discrete
L2 projection is extended to any monotone set of multi-indices identifying the polynomial space,
and to any dimension of the parameter space. For a specific class of PDE models, that includes
the elliptic model and the linear elasticity model, an exponential convergence estimate w.r.t. the
number of sampling points has been proved, with an a priori optimal choice of the polynomial
space. This estimate clarifies the dependence of the convergence rate on the dimension of the
parameter space, and establishes a relation between the convergence rate of the random discrete
projection and the convergence rate of the classical Stochastic Galerkin method.

Afterwards, in Chapter 3 the analysis of the random L2 projection is extended to more
general densities, focusing on how the choice of the density affects the optimal convergence rate.
It is shown that the assumption on the density being bounded away from zero is strictly required
in the proof of the optimal convergence theorem. The beta family, which includes the uniform
and Chebyshev densities, is investigated. Some tests with the Gaussian and gamma densities
have been performed.

The methodology based on the random L2 projection is then applied in Chapter 4 to
approximate Quantities of Interest related to the solution to PDE models with stochastic data.
Several examples are presented, featuring the Darcy model with values of the coefficient and
geometry of the inclusions governed by random variables. Hence, some examples with the linear
elasticity model and with Navier-Stokes equations, both with stochastic data, are addressed.

In the latter part of the thesis, composed of Chapter 5 and Chapter 6, the methodology
previously developed for the forward problem is applied to inverse problems for PDEs with
stochastic coefficients. In Chapter 5 the problem of Electrical Impedance Tomography (EIT) is
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introduced. The goal is to detect the presence and location of inclusions in the domain, when
observing the solution to the associated PDE model only on the boundary of the domain. A
numerical scheme to solve the dipole-like Neumann problem with inhomogeneous coefficient
is proposed. Next, this scheme is employed in the Factorization Method in the framework
of EIT, first in the case of inhomogeneous background, and then in the case of piecewise
constant background, with values in each region affected by uncertainty. Several variants of
the Factorization Method are proposed, and numerical results showing their effectiveness are
presented.

Lastly, in Chapter 6 the variants of the Factorization Method proposed in the previous
chapter are accelerated by means of the random discrete L2 projection, exploiting the techniques
that have been presented in the first part of the thesis.

Keywords: approximation theory; error analysis; Uncertainty Quantification; polynomial
approximation; random discrete L2 projection; nonparametric regression; PDE stochastic data;
Inverse Problems; Electrical Impedance Tomography; Factorization Method; inhomogeneous
background; uncertain background.



Sommario

Questa tesi verte sull’approssimazione polinomiale di funzioni aleatorie tramite proiezione L2

discreta con valutazioni casuali, con applicazione a problemi inversi per Equazioni alle Derivate
Parziali (EDP) con dati stocastici. Possibili utilizzi di questa tecnica di approssimazione consistono
nella soluzione parametrica di modelli di EDP nell’ambito della Quantificazione dell’Incertezza.
La tesi è strutturata in due parti, con un capitolo introduttivo che contiene una panoramica sulle
moderne tecniche di approssimazione polinomiale di funzioni aleatorie.

Nella prima parte, dal Capitolo 1 al Capitolo 4, viene presentata l’analisi teorica della
proiezione L2 discreta e la sua applicazione per risolvere problemi diretti, e.g. per approssimare
i momenti di una funzione aleatoria a partire da sue osservazioni puntuali, o per calcolare
la soluzione numerica di modelli computazionali con coefficienti stocastici. Nel Capitolo 1
introduciamo la proiezione L2 discreta su spazi polinomiali come strumento per approssimare
accuratamente una funzione di una variabile aleatoria multidimensionale distribuita con densità
nota. Analizziamo la stabilità e l’ottimalità dell’errore di approssimazione valutato nella norma
L2 pesata rispetto alla densità, nell’ipotesi che la densità sia strettamente positiva. Il risultato
principale ottenuto è una stima di convergenza ottimale in probabilità nel caso di densità uniforme
monodimensionale, a condizione che il numero di valutazioni sia proporzionale al quadrato della
dimensione dello spazio polinomiale. I risultati teorici sono confermati da numerosi esempi
numerici, con funzioni aleatorie di variabili univariate e multivariate con dimensione del supporto
moderatamente alta. Il ruolo svolto dalla regolarità della funzione è stato considerato.

Nel Capitolo 2 estendiamo la dimostrazione della stabilità e ottimalità in valore atteso
della proiezione L2 discreta al caso di insiemi di multi-indici monotoni, e per ogni valore della
dimensione dello spazio dei parametri. Per una classe specifica di modelli di EDP, che include
il modello ellittico ed il modello di elasticità lineare, dimostriamo una stima di convergenza
esponenziale rispetto al numero di valutazioni della funzione. Questa stima chiarisce la dipendenza
del tasso di convergenza dalla dimensione dello spazio dei parametri, e stabilisce una relazione
tra il tasso di convergenza della proiezione discreta ed il classico metodo di Galerkin Stocastico.

In seguito, nel Capitolo 3 estendiamo l’analisi della proiezione L2 discreta a densità di
probabilità più generali, ed esaminiamo la dipendenza del tasso di convergenza ottimale dalla
particolare densità scelta. Consideriamo prima la famiglia di densità beta, che contiene in
particolare la densità uniforme e le densità di Chebyshev, e successivamente le densità Gaussiana
e gamma. Inoltre, mostriamo che l’ipotesi che la densità di probabilità sia strettamente positiva
è strettamente necessaria nella dimostrazione del teorema di convergenza ottimale.

La tecnica di approssimazione basata sulla proiezione L2 discreta viene poi applicata nel
Capitolo 4 per approssimare Quantità di Interesse dipendenti dalla soluzione di modelli di EDP
con dati stocastici. Presentiamo diversi esempi relativi al modello di Darcy con coefficiente di
diffusione e geometria delle inclusioni descritti per mezzo di variabili aleatorie, ed alcuni esempi
con il modello di elasticità lineare e le equazioni di Navier-Stokes, entrambi con dati stocastici.

Nella seconda parte della tesi, formata dai Capitoli 5 e 6, applichiamo a problemi inversi
per EDP con coefficienti stocastici le tecniche di approssimazione sviluppate nella prima parte.
Nel Capitolo 5 introduciamo il problema della Tomografia ad Impedenza Elettrica, in cui
l’obiettivo è determinare l’eventuale presenza e posizione di inclusioni nel dominio, osservando
la soluzione dell’EDP associata solo sul bordo del dominio. Costruiamo uno schema numerico
per risolvere il problema di Neumann singolare con coefficiente di diffusione spazialmente
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inomogeneo. Successivamente applichiamo questo schema al Metodo di Fattorizzazione nell’ambito
della Tomografia ad Impedenza Elettrica, prima nel caso in cui il coefficiente di diffusione sia
deterministico ma spazialmente inomogeneo, e poi nel caso il coefficiente sia costante a tratti
con valori in ogni regione affetti da incertezza. Proponiamo diverse varianti del Metodo di
Fattorizzazione, e ne mostriamo la loro efficacia tramite alcuni esempi numerici.

Infine, nel Capitolo 6 le varianti del Metodo di Fattorizzazione proposte nel capitolo prece-
dente vengono accelerate per mezzo della proiezione L2 discreta, utilizzando le tecniche di
approssimazione sviluppate nella prima parte della tesi.

Parole chiave: teoria dell’approssimazione; analisi dell’errore; Quantificazione dell’Incertezza;
approssimazione polinomiale; proiezione L2 discreta a valutazioni casuali; regressione non para-
metrica; EDP con dati stocastici; Problemi Inversi; Tomografia ad Impedenza Elettrica; Metodo
di Fattorizzazione; coefficiente di diffusione inomogeneo; coefficiente di diffusione a valori incerti.



Résumé

Le sujet principal de cette thèse porte sur l’approximation polynômiale des fonctions aléatoires
au moyen de la projection L2 aléatoire discrète, et son application aux problèmes inverses pour
les équations aux dérivées partielles avec des données aléatoires. Les motivations proviennent de
l’approximation paramétrique de la solution de modèles aux dérivées partielles et son application
à la quantification des incertitudes en ingénierie. La thèse se compose de deux parties, avec un
chapitre d’introduction qui résume les techniques modernes de l’approximation polynômiale des
fonctions de variables aléatoires. Dans la première partie, du chapitre 1 au chapitre 4, l’analyse
théorique de la projection L2 aléatoire discrète est développée pour résoudre le problème direct,
par exemple, pour rapprocher les moments d’une fonction aléatoire à partir de ses observations,
ou pour calculer la solution à un modèle numérique avec des coefficients stochastiques.

Dans le chapitre 1, la projection L2 discrète sur les espaces de polynômes avec des évaluations
aléatoires est présenté comme un outil d’approche d’une fonction d’une variable aléatoire, qui
est distribuée selon une densité de probabilité donnée. La stabilité et l’optimalité de l’erreur
d’approximation évaluée dans la norme L2 pondérée sont traités, en supposant que la densité est
borné et n’approche pas zéro. Dans cette analyse, le principal résultat obtenu est une estimation
en probabilité de convergence optimale avec la distribution uniforme, à condition que le nombre
d’évaluations soit proportionnel au carré de la dimension de l’espace polynômial. Plusieurs
exemples numériques confirment les résultats théoriques, avec des fonctions aléatoires définies
sur des ensembles de paramètres présentant faible ou modérément élevé dimension. Le rôle de la
régularité de la fonction a été étudiée aussi bien.

Dans le chapitre 2, la démonstration de la stabilité et l’optimalité de la projection L2 aléatoire
discrète est étendue à un ensemble monotone de multi-indices qui identifie l’espace polynômial,
et à toute dimension de l’ensemble des paramètres. Pour une classe spécifique de modèles aux
dérivées partielles, qui comprend le modèle elliptique et le modèle d’élasticité linéaire, une
estimation de convergence exponentielle en fonction du nombre de points d’échantillonnage a été
prouvé, avec une choix optimal a priori de l’espace polynômial. Cette estimation dépend de la
dimension de l’ensemble des paramètres et établit une relation entre le taux de convergence de la
projection aléatoire discrète et la vitesse de convergence de la méthode de Galerkin Stochastique.

Dans le chapitre 3 l’analyse de la projection aléatoire L2 est étendu à d’autres densités
généraux, en se concentrant sur la façon dont le choix de la densité influe sur la vitesse de
convergence optimale. Il est montré que l’hypothèse sur la densité, étant borné et n’approchant
pas zéro, est strictement nécessaire à la démonstration du théorème de convergence optimale. La
famille bêta, qui comprend la densité uniforme et de Chebyshev, est étudiée. Quelques essais
avec les densités Gaussiennes et gamma ont été effectuées.

La méthodologie basée sur la projection aléatoire L2 est ensuite appliquée au chapitre 4, pour
évaluer des Quantités d’Intérêt qui dépendent de la solution du équations aux dérivées partielles
avec données stochastiques. Plusieurs exemples sont présentés, avec le modèle de Darcy aux
valeurs du coefficient et de la géométrie des inclusions réglés par des variables aléatoires. De plus,
quelques exemples avec le modèle d’élasticité linéaire et équations de Navier-Stokes, ainsi que
avec des données aléatoires, sont pris en compte.

Dans la dernière partie de la thèse, composé des chapitres 5 et 6, la méthodologie développée
précédemment pour le problème direct est appliqué aux problèmes inverses pour les équations aux
dérivées partielles à coefficients stochastiques. Dans le chapitre 5, le problème de la tomographie
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par impédance électrique (TIE) dans des milieux inhomogène est introduit. L’objectif est de
détecter la présence, la position et la géométrie des inclusions dans le domaine, lorsque l’on observe
la solution au modèle EDP associé uniquement sur le bord du domaine. Un schéma numérique
est proposé pour résoudre le problème singulier de Neumann avec un coefficient inhomogène. Ce
système est utilisé dans la méthode de factorisation dans le cadre de l’TIE, d’abord dans le cas
de coefficient inhomogène, puis dans le cas de coefficient constante par morceaux, à valeurs dans
chaque région affectée par l’incertitude. Plusieurs variantes de la méthode de factorisation sont
proposées avec des résultats numériques qui montrent leur efficacité.

Enfin, dans le chapitre 6 les variantes de la méthode de factorisation proposées dans le
chapitre précédent sont accélérés à l’aide de la projection L2 aléatoire discrète, en utilisant les
techniques qui ont été présentés dans la première partie de la thèse.

Mots-clés : théorie d’approximation ; analyse d’erreur ; quantification de l’incertitude ; approxi-
mation polynômiale ; projection L2 discrète aléatoire ; régression non paramétrique ; équations
aux dérivées partielles stochastiques ; problèmes inverses ; tomographie d’impédance électrique ;
la méthode de factorisation ; milieux inhomogène ; milieux incertain.
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Introduction

Approximation theory plays a relevant role in the modern development of science, where functional
relations are employed to describe dependencies and express connections among entities. Whether
the framework is completely abstract, e.g. in pure mathematics, or trying to describe an underlying
real context e.g. in physics and medicine, the matter of how to handle any quantifiable relation
from a mathematical standpoint is of primary importance. Applied mathematics and engineering
applications completely rely on accurate and efficient methodologies to approximate functional
relations, leading to challenging issues as long as more complicated mathematical objects get
involved. In recent years, the topics of uncertainty quantification [GS03, CDS10, CDS11, DNP+04,
LGH11, Eld11, SG04, MNvST11, Zha02, Eld09, EWC08, SG11, CCDS13, CCM+13, MNvST13,
LMRN+02, LMKNG01, NT09, BE09, LMNGK04, LMKNG04, XK02b, DO11, Sud07, GZ07a],
stochastic optimization and optimization under uncertainty [Che02, Cat04, Eld11, RW98, RW91]
gained such a relevance to be considered as a new branch of applied mathematics itself, rather
than minor subsections specifically devoted to address marginal effects. Several other major
areas are directly related, risk or failure analysis, insurance and finance modeling to name just
a few. The key point concerns the analysis of the presence of uncertainty in any of the steps
that lead to the development of mathematical models trying to describe a given phenomenon.
Uncertainty arises from the lack of knowledge (epistemic uncertainty) or when dealing with
aleatory processes (aleatory uncertainty). It may concern the initial data or initial state of
the system, but also be originated from controllable or uncontrollable external factors that can
be treated as random variables. An approach that has been advocated in recent years, the
Polynomial Chaos Expansion (PCE), consists in expanding over a spectral basis the random
output parameters of the computational model, (see e.g. [XK02a, LK04, DNP+04, DGS05, LM06,
GG07, CLMM09, Sud07, BS08, BS11, EMSU12, BE09, DGRH07, SG09, Soi10]). This thesis
presents an approximation methodology that relies on PCE, focusing on the approximation of
aleatory functions and on the solution of computational models formulated by means of Partial
Differential Equations (PDEs). The aforementioned methodology is based on the random discrete
projection, and will be outlined in Section 0.1.

In the mathematical models, the identification of the forward and inverse directions to solve
the problem is stated by the concept of well-posedness in the sense of Hadamard, and the forward
problem is the one which formulation is well-posed [TA77]. According to this definition, the
problems of polynomial approximation of the solution to PDE models with stochastic data, that
are presented in the first part of the thesis, are forward problems. The identification problem for
the coefficient of the PDE model presented in the second part of the thesis is an inverse problem.

Inverse problems are commonly difficult to solve, because they are ill-posed [TA77]. The field
is very wide [MT02, Tar05, AK07, BBG+11, MS12, Kir96, Vog02, KS05], and extends beyond
the area of PDEs. In the present thesis we focus only on the inverse problem of Electrical
Impedance Tomography (EIT) [MS12, BDG08, CIN99, HHP07], and more specifically on the
application of the Factorization Method to the Continuous Model in the framework of EIT. The
Factorization Method is an imaging technique belonging to the class of Qualitative Methods, see
e.g. [CC06] for an introduction. The Continuous Model refers to the modeling of the boundary
condition in the PDE associated with the EIT problem. It is named continuous due to the
unrealistic assumption that any continuous pattern of current can be injected, not taking into
account the finite number of electrodes that usually only partially cover the boundary of the

1
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computational domain. See [MS12] for an overview of several models currently employed in EIT,
including the Continuous Model and other more realistic models such as the Complete Electrode
Model. In the Continuous Model of the inverse problem of EIT, the solution to the elliptic PDE
model is observed on the whole boundary of the domain, and is used to recover information on
the diffusion coefficient of the model inside the domain. The EIT problem is simple to formulate
and delicate at the same time to handle from a mathematical and computational standpoint. It
is a severely ill-posed inverse problem, demanding for appropriate regularization techniques, see
e.g. [EHN96]. Despite of its low spatial resolution, EIT features a high contrast resolution which
makes it interesting in many applications, e.g. geophysics, nondestructive testing, medicine, see
e.g. the monography [MS12] and the references therein.

In reality, uncertainty affects all the inverse problems where physical measurements are
collected: e.g. weather forecast, medical imaging, seismic inversion, image restoration, remote
sensing. Dealing with uncertainty is itself a large dimensional problem, since in the modeling
of real phenomena it is often the case that a huge number of parameters has to be taken into
account. For these reasons several branches of applied mathematics, ranging from inverse problems,
uncertainty quantification, model reduction [BTWG08, DGRH07, SG09, GR11], reduced basis
[BMNP04, RHP08, GMNP07], are nowadays merging their efforts to come up with new efficient
and more powerful methodologies to face one of the main challenges for the forthcoming years,
i.e. the treatment of high dimensional objects, that arise when handling tensors, experimental
measurements, parameters of large-scale models or clinical databases.

0.1 Polynomial approximation techniques for functions depend-
ing on random variables

The main topic of the thesis concerns the approximation in the L2 probability sense of aleatory
scalar functions φ : Γ→ R, or Banach-valued functions φ : Γ→ V where V is a Banach space,
defined over a subset Γ of the d-dimensional euclidean space Rd. The function φ depends on
a random variable Y which is distributed according to a given probability density ρ : Γ→ R+.
The least squares method is one of the most known approximation techniques, with applications
ranging from functional identification to interpolation to data fitting.

Let L2
ρ(Γ) be the space of square integrable functions endowed with the norm ‖ · ‖2L2

ρ(Γ) =
〈·, ·〉L2

ρ(Γ), induced by the inner product

〈u, v〉L2
ρ(Γ) =

∫
Γ
u(Y)v(Y)ρ(Y) dY.

Denote by F any finite dimensional subspace of L2
ρ(Γ). The continuous L2

ρ projection ΠF of a
scalar target function φ on F is defined as

ΠFφ = argmin
v∈F

‖φ− v‖L2
ρ(Γ). (0.1.1)

This continuous projection (0.1.1) cannot be computed exactly, and in practice the minimization
in the L2

ρ norm is replaced by the minimization in some discrete norm ‖ · ‖M that uses only
M pointwise evaluations of the target function. One possible choice, which will be thoroughly
investigated in this thesis, consists in taking M independent realizations y1, . . . ,yM

i.i.d.∼ ρ of the
random variable Y. The random discrete inner product on Γ is defined as

〈u, v〉M = 1
M

M∑
m=1

u(ym)v(ym), (0.1.2)

and induces on Γ the corresponding discrete norm ‖ · ‖2M := 〈·, ·〉M . The random discrete L2
ρ

projection ΠM
F of a scalar target function φ on F is defined as

ΠM
F φ = argmin

v∈F
‖φ(ym)− v(ym)‖M . (0.1.3)
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The continuous (0.1.1) or discrete (0.1.3) L2
ρ projection, when applied to a function of a

random variable, falls in the field of nonparametric regression in the statistical literature.
Nowadays, the field of nonparametric regression is well established (see e.g. [GKKW02]), and

a huge literature is available in the case of noisy measurements. In the noisy framework with
(finite) variance σ2, the observed function φ is contaminated by noise. A general convergence
estimate is stated in [GKKW02, Theorem 11.3]: the error evaluated in the L2

ρ norm, committed
by the random discrete L2 projection (0.1.3) when approximating the true function φ (not
contaminated by noise), φ = E[φ|y], reads

E
[
‖φ−ΠM

F φ‖2L2
ρ

]
≤ C1(σ2)

M
+ C2 inf

v∈F
‖φ− v‖L2

ρ
, (0.1.4)

with M being the number of evaluations of the target function. The estimate (0.1.4) holds for M
large enough compared to the dimension of F . The best approximation error on the right side of
(0.1.4) quantifies the best error that can be achieved when approximating the target function in
the subspace F . The convergence rate is slowed down by the presence of the term M−1. The
constant C2 is independent of M , while C1 can contain logarithmic factors in M , and is such
that it does not vanish in the noiseless case, i.e.

C1(σ2) 6→ 0, if σ → 0. (0.1.5)

An additional truncation operator is needed in (0.1.4) to make the expectation well defined. See
[GKKW02] for further details.

The noiseless case is much less complete, since the estimates like (0.1.4) are useful only in
the noisy framework due to (0.1.5). In the noiseless case one should not expect the convergence
rate to contain the Monte Carlo-type term that prevents to achieve the optimal L2

ρ-projection
convergence rate, and we will show in this thesis that this is actually the case provided M is
large enough compared to the dimension of F . Apart from the approximation problem itself, the
interest towards this framework relies in the application of this approximation technique to the
field of parametric differential equations, and more generally to stochastic differential equations
where stochastic terms could be present in the initial or boundary data, in the coefficients of the
model or in the geometry of the domain. The presence of these sources of randomness takes into
account the uncertainty that often is present in reality. Due to the randomness in the data, the
solution to the differential model is random itself. However, the random input parameters can be
sampled, and the solution to the differential model can be computed exactly without noise (up to
eventual deterministic discretization errors) in the sampled realization of the input parameters.

The idea based on expanding the random output over a suitable spectral basis {ψj}j of
orthogonal polynomials which are orthonormal w.r.t. the underlying density ρ (PCE) goes back to
the work of [Wie38, CM47] for Gaussian densities and Hermite polynomials, and has lately been
generalized to other discrete and continuous probability densities, see e.g. [XK02b, SG04, XH05].
This idea is motivated by the fact that the functional dependence between the solution of the
differential problem and the random data is often very smooth. In the sequel PΛ denotes the
polynomial space generated by suitable combination/tensorization of the family of orthogonal
polynomials {ψj}j . The symbol Λ denotes a set of multi-indices and characterizes the elements
of the space PΛ.

We can summarize the main following techniques, that are currently employed to compute
truncated PCE of random functions in the space PΛ:

Standard Monte Carlo [Fis96, RC04]. This is the most naïve approach, to numerically compute
the correlations 〈φ, ψj〉L2

ρ(Γ) according to the L2
ρ inner product weighted w.r.t. the density ρ. Given

M samples {ym}Mm=1 of the random parameter, being independent and identically distributed
according to the density ρ, the correlations are approximated by

〈φ, ψj〉L2
ρ
≈ 〈φ, ψj〉M . (0.1.6)
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The error ε(M) = |〈φ, ψj〉L2
ρ
− 〈φ, ψj〉M | scales w.r.t. the sample size as M−1/2. Nonetheless, the

slow convergence rate of the standard Monte Carlo method exhibits the remarkable property of
being independent of the dimension of the parameter set.

Stochastic Collocation [BNT07, NTW08a, NT09, BE09, GKW+08, GZ07b, XH05]. In gen-
eral, the aim is to approximate or interpolate a function φ that depends on a finite set of
independent random parameters which are associated with a probability density ρ. In the
Stochastic Collocation approach, the evaluations of the target function are completely uncoupled
among them, and can be performed in parallel. The target function can be replaced by any
computational model, being evaluated in the “collocation points” of the parameter set. Then
these evaluations are employed to build the lagrangian polynomial interpolation, that can later
be used to compute statistics of the solution or to predict the value of the solution to the model
in any point of the parameter set. To achieve this, the stochastic interpolant ΠSGφ is built as(

ΠSGφ
)
(y) =

∑
j

φ(yj)ϕj(y), y ∈ Γ, (0.1.7)

using the evaluations of the function φ in the points yj belonging to a given design (or grid).
Many works in the literature discuss the choice of the grid where the function is evaluated. The
so-called Sparse Grids approach, based on the original work [Smo63] and then developed in
[BG04, BNR00], represents the state of the art in this context, for moderately high dimension of
the parameter set.

Stochastic Galerkin [Gha99, GS03, LMRN+02, LMKNG01, NT09, EEU07, BS09]. The well-
known Stochastic Galerkin method has been proposed in [GS03] (see also the more recent
monography [LMK10]) to solve problems described by means of differential equations with any
source of uncertainty embedded. Theoretical results on convergence rates can be found e.g. in
[BTZ04, CDS10, CDS11].

Consider a differential model in parametric form M(u,y) = 0, provided with a suitable
variational formulation on a Hilbert space V for each value of the parameter y ∈ Γ. For brevity,
assume a smooth dependence of the parameter-to-solution map y 7→ u(y). When the parameter
y is distributed according to a given density ρ, then the solution u of the modelM belongs to
the space L2

ρ⊗V , which is the tensor product of the L2
ρ probability space with the physical space

V . The projection ΠG
Λ associated with the Stochastic Galerkin method is defined as

find ΠG
Λu ∈ L2

ρ ⊗ V : E [〈M(u,y), v〉V ] = 0, ∀ v ∈ PΛ ⊗ V. (0.1.8)

This formulation (0.1.8) brings to a system of coupled PDEs. In practice it consists of a Galerkin
projection on the tensor subspace PΛ ⊗ V of the space L2

ρ ⊗ V , which is composed by the
tensorization of the usual functional space with the probability space. At this stage, V can
already be considered as the discretized physical space (e.g. discretized by the standard Finite
Element Method), rather than the original physical functional space.

Due to its coupled structure, the Stochastic Galerkin method requires some additional efforts
to be performed in parallel, and the use of a black-box solver is possible only with remarkable
difficulties in the implementation.

On the other hand, the direct projection of the solution u on the tensor space PΛ ⊗ V named
ΠΛ (as in (2.4.7)-left in Chapter 2) and defined by

ΠΛu = argmin
v∈PΛ⊗V

‖u− v‖L2
ρ⊗V , (0.1.9)

is of limited interest, because in practice it is not directly computable.

Random discrete L2 projection. The methodology based on the random discrete L2 projection
[CDL13, MNvST11, MNvST13, BS08, BS11, LARH11, HWB10, Eld09] falls somehow between
the aforementioned two methodologies Stochastic Galerkin and Stochastic Collocation. In the



0.2. MOTIVATIONS AND RESULTS ACHIEVED 5

case of scalar functions φ, the random discrete L2 projection on a general finite dimensional
subspace F ⊂ L2

ρ(Γ) has been introduced in (0.1.3). When the dependence of the target function
on the random parameters is smooth, then it is sound to accomplish the projection on polynomial
spaces, and therefore to choose F = PΛ in (0.1.3). The random discrete projection is based
on a random sampling of the parameter set Γ, and is presented as a nonparametric regression
problem on a random design. It differs from other common techniques such as quasi-Monte Carlo
methods [Lem09, GKN+11] or Stochastic Collocation on Sparse Grids [BG04, BNT10] which
are based on a deterministic design. In (0.1.3) the evaluations of the target function φ are still
uncoupled, but a projection on a suitable polynomial space is performed afterward, rather than a
simple interpolation as in the Stochastic Collocation method. In Chapter 2, the random discrete
projection in the case of Hilbert-valued functions φ : Γ→ V is given in (2.4.7)-right, and reads

ΠM
Λ u = argmin

v∈PΛ⊗V

1
M

M∑
m=1
‖u(ym)− v(ym)‖2V . (0.1.10)

The difference with Stochastic Galerkin in (0.1.8) relies on the two-step projection, first on the
physical space and then on the probability space, while in (0.1.8) a unique large system couples
the discretizations both in the probability and in the physical space due to the random nature of
the equationM(u,y) = 0.

Improved Monte Carlo techniques. Many improved strategies to sample the parameter
set have been proposed in the literature, to considerably fasten the convergence rate of the
standard Monte Carlo method. We mention the quasi-Monte Carlo [SJ94, Lem09, DP10,
GKN+11], Latin Hypercube Sampling [MBC79, Loh96, HD03], Multi-level Monte Carlo
[Gil08, HSST12], Markov Chain Monte Carlo. See e.g. [SW98] where an analysis is presented
on how quasi-Monte Carlo outperforms the standard Monte Carlo method.

The application of the aforementioned techniques can be to the approximation of the moments
of scalar and vectorial random functions or functionals depending on the solution to differential
models with stochastic data (also known as Quantities of Interests), or to the approximation
of the solution to models with stochastic data that has to be accomplished both in the usual
functional space and in the probability space.

In some applications a non-intrusive approach is advised, because the Stochastic Galerkin
method would require a significant programming effort to be implemented. This is the case, in
the application of polynomial approximation presented in Chapter 6, that is naturally prone to
be treated with the random discrete projection or with Stochastic Collocation.

Despite our focus are expansions of the output over a spectral polynomial basis, the random
discrete projection, the Stochastic Collocation and the Stochastic Galerkin can be intended in a
broader sense, and can be performed on any subspace of the L2

ρ probability space.
On the other hand, the Monte Carlo family of methods is not directly associated with an

expansion over any basis of the space of random input parameters. For instance, the moments of
the function φ could be computed in (0.1.6) using ψ ≡ 1, together with powers of the evaluations
of the target function φ. However, the random discrete L2

ρ projection can also be viewed as a
post-process of a Monte Carlo simulation to construct an expansion on a basis and significantly
improve the convergence rate.

0.2 Motivations and results achieved

Polynomial approximation by the random discrete L2 projection. In the literature, a lot
of contributions deal with the analysis of the random discrete L2 projection in the noisy framework,
and the field of nonparametric regression covers this subject in detail, see e.g. [GKKW02]. Needless
to say, the regression estimation problem has countless applications towards applied mathematics
and all the branches of science dealing with experimental measurements.
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In the noiseless case, very few contributions were present in the literature on nonparametric
regressions, and a complete theoretical analysis of the stability and convergence of the random L2

projection was missing. The interest towards the noiseless framework arises from the development
of efficient techniques to deal with computational models expressed in parametric form. In the
applications, the uncertainty often affects the measurements of the input parameters, which can
be treated as random variables. Then it is reasonable to assume that the solution to the model can
be evaluated without any additional noise, since the effects of deterministic approximation-type
errors such as round-off errors are negligible w.r.t. the effects due to measurement errors.

This motivates a deeper investigation of the impact that the presence of noise has on
estimates like (0.1.4), in particular on the nature of the term (0.1.5) that prevents the exponential
convergence of the estimate when approximating smooth target functions.

The present thesis is devoted to the theoretical study of the stability and optimality properties
of the approximation methodology based on the random discrete L2 projection, with a focus
on polynomial-type approximations of smooth functions. A condition between the number of
sampling points and the dimension of the polynomial space is introduced, and its key role in the
stability and optimality of the random discrete projection is presented. Under this condition,
even exponential convergence can be achieved for smooth functions. The effects of the dimension
of the parameter space and of the smoothness of the target function are clarified as well. Then
the methodology based on the random discrete projection is applied to approximate aleatory
functions and the solution to PDE models with stochastic data.

The interest towards the methodology based on the random discrete projection in Uncertainty
Quantification is related to the increasing attention dedicated to non-intrusive approaches like
Stochastic Collocation, in contrast to intrusive methods like Stochastic Galerkin. The random
discrete projection preserves the feature of being non-intrusive, still resorting to a global projection
in the probability space. This approach is particularly suited to the application to PDE with
stochastic data, being the evaluations of the computational model mutually uncoupled. In
the Stochastic Collocation method based on Sparse Grids, the computational cost required to
compute the optimal sparse grid becomes unaffordable as the dimension of the parameter set
increases. To alleviate this effect, Adaptive Sparse Grids (see e.g. [GG03]) or greedy approaches
to build quasi-optimal sparse grids might be considered, but the application of the Sparse Grids
approach remains solely confined to moderately high dimensions of the parameter space. On the
other hand, the analysis in this thesis reveals that the stability of the random discrete projection
improves as the dimension of the parameter space increases, making it a tool naturally oriented
towards high dimensional problems. A flexible and easy incorporation of new measurements to
improve the current accuracy of the polynomial approximation is another point of strength of the
random discrete projection versus the Stochastic Collocation method, since the new measurements
do not have to satisfy any hierarchical compatibility. In the random discrete projection, the
computational cost required to compute the sparse grid is replaced by the computational cost
required to perform the projection (0.1.3). With the same underlying polynomial space, the
accuracy of the projection (0.1.1) is superior to the Lagrangian interpolation (0.1.7). However,
in the random discrete projection (0.1.3) replaces (0.1.1), and whether (0.1.3) is more accurate
than (0.1.7) is still under investigation. In the end, the two approaches are quite different and a
fair comparison among them is still an open topic of research.

Application of the Factorization Method to Electrical Impedance Tomography in
inhomogeneous uncertain background. The present thesis addresses the application of the
Factorization Method to the framework of EIT. The Factorization Method is an imaging technique
belonging to the class of Qualitative Methods, see e.g. [CC06] for an introduction. These types
of methods were initially developed in the context of inverse scattering [CPP97, CK98, CHP03,
BBP+09], and then extended to EIT [KG08]. Nowadays, the application of the Factorization
Method to EIT with homogeneous background has been analyzed in many contributions proposed
in the literature, see [CFMV98, Brü01, BHV03, GH07, AHOS07, HS08, LHH08]. In the case
of deterministic inhomogeneous background the only contribution is [HS09], where a slightly
inhomogeneous background is treated as a perturbation of the homogeneous case.
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The contribution of this thesis concerns the numerical analysis of the Factorization Method
applied to the Continuous Model in EIT, in the case of inhomogeneous uncertain background.
The Factorization Method aims to detect the presence and location of inclusions inside the
computational domain, exploiting the information obtained when observing the solution to the
associated PDE model on the whole boundary of the domain. A numerical scheme to solve the
dipole-like Neumann problem in inhomogeneous background has been proposed. This allowed
to extend the range of application of the Factorization Method to inhomogeneous deterministic
background, i.e. to background diffusion coefficient featuring a nonlinear spatial dependence on
the spatial coordinates, as well as to the case of inhomogeneous uncertain background. More
specific types of background, i.e. piecewise constant in a partition of the computational domain,
are then considered. The range of variation of the background coefficient has been investigated
up to two orders of magnitude.

In addition, a Tikhonov regularization technique embedding the Morozov principle has been
compared with another regularization technique proposed in the literature and based on the
Picard Criterion. The effectiveness of the proposed approach has been checked also in presence
of artificial noise contaminating the measurements of the observation operator.

When uncertainty in the background coefficient is present, a classification has been proposed
depending on how the measurements of the random observation operator are collected. Two
situations are distinguished: the case of arbitrary measurements and the case of paired measure-
ments. Accordingly, three variants of the Factorization Method have been proposed to cope with
the uncertainty in the background, and their capabilities have been presented in an extensive set
of numerical tests.

Acceleration of the Factorization Method by means of the random discrete pro-
jection. The methodology based on the random discrete projection has been applied to the
polynomial approximation of the solution to a specific elliptic model, which is embedded in
the variant of the Factorization Method proposed for paired measurements. In addition, the
polynomial approximation has been applied to a specific Neumann-to-Dirichlet map embedded in
the variant of the Factorization Method proposed for arbitrary measurement. The aforementioned
elliptic model and Neumann-to-Dirichlet map contain both the same random background diffusion
coefficient.

In the two cases, a convergence analysis of the approximation error committed by the random
discrete projection has been proposed. The use of a suitable norm ensures to control the error
between the spectrum of the original operator and the spectrum of the polynomial surrogate
model, for each realization of the random variable describing the random background coefficient.

Therefore the evaluations of the original operator, each one requiring to numerically solve
a PDE model, can be replaced by the costless evaluations of the polynomial surrogate model.
This allows to accelerate the variants of the Factorization Method in the case of arbitrary
measurements and in the case of paired measurements.

0.3 Thesis overview

This thesis includes the following five manuscripts, written in collaboration with A. Chkifa,
A. Cohen, H. Haddar, F. Nobile, E. von Schwerin, R. Tempone:

• [MNvST11] “Analysis of the discrete L2 projection on polynomial spaces with random
evaluations” by G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone, which forms
Chapter 1.

• [CCM+13] “Discrete least squares polynomial approximation with random evaluations; ap-
plication to parametric and stochastic elliptic PDEs” by A. Chkifa, A. Cohen, G. Migliorati,
F. Nobile and R. Tempone, which forms Chapter 2.
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• [MNvST13] “Approximation of Quantities of Interest for stochastic PDEs by the random
discrete L2 projection on polynomial spaces” by G. Migliorati, F. Nobile, E. von Schwerin
and R. Tempone, which forms Chapter 4.

• [HM11] “Numerical analysis of the Factorization Method for Electrical Impedance Tomog-
raphy in inhomogeneous background” by H. Haddar and G. Migliorati. The Sections 5.2.3
and 5.5 of Chapter 5 are extracted from here.

• [HM13] “Numerical analysis of the Factorization Method for Electrical Impedance Tomog-
raphy with a piecewise constant uncertain background” by H. Haddar and G. Migliorati,
which forms the remaining part of Chapter 5.

The main topic of the thesis concerns the polynomial approximation of aleatory functions, by
means of the random discrete L2 projection. The thesis is structured in two parts: the former is
dedicated to the analysis of methods for the approximation of random aleatory functions, and
for the approximation of the solution to computational models formulated in terms of Partial
Differential Equations. This part is composed by the following four chapters:

• Chapter 1. The random discrete L2 projection is presented as a tool to approximate
functions which depend on random variables, distributed according to given probability
densities. Under some assumptions, e.g. tensor structure of the density, density bounded
away from zero and smoothness of the function, the target function is projected on a
suitable space of polynomials of random variables. The projection is built using pointwise
noise-free evaluations of the target function on randomly selected points of the parameter
set. The stability and approximation properties of the random projection are analyzed.
For any dimension of the parameter set, and any density of the multidimensional random
variable (with a tensor structure) we proved in Proposition 1.1 the optimality of the L2

ρ

error committed by the random projection, with respect to the L∞ best approximation
error. This result holds for any realization of the random sample. Then in Theorem 1.2 a
one-dimensional probabilistic optimality result is proved, in the case of the uniform density
and under the condition (1.3.1) that the number of sampling points scales as the square of
the dimension of the polynomial space. In this chapter the optimal convergence of RDP
has to be understood in the sense that the L2-error behaves like the best approximation
error (measured in the L∞ norm) of the target function in the chosen polynomial space,
up to logarithmic factors. Moreover, it is shown in Proposition 1.4 that both the stability
of the random projection and the optimal convergence rate are related to the supremum of
the ratio between the continuous L2 weighted and discrete norms of the functions in the
polynomial space, i.e. the random variable Cω defined in (1.2.15).
Several numerical tests in the univariate and multivariate case confirm our theoretical
results, and point out how the smoothness of the target function affects the optimal
convergence rate. Many numerical examples show that, if the target function is smooth,
then an optimal convergence up to a given threshold is obtained with a linear scaling of
the number of sampling points w.r.t. the dimension of the polynomial space. In higher
dimensions a linear scaling allows to achieve the quasi-optimal convergence rate even in
cases where the target function features a low regularity. The stability of the random
projection improves as well in higher dimension, making this tool naturally suited to high
dimensional approximations.

• Chapter 2. This chapter begins with an overview of the theoretical results obtained in
expectation and in probability on the random discrete L2 projection. The condition (1.3.1)
presented in Chapter 1, necessary to achieve stability and optimality of the random discrete
L2 projection, is extended in Section 2.3 to any multi-index monotone set identifying
the polynomial space, and in any arbitrary dimension of the parameter set. Moreover,
in Theorem 2.6 a convergence estimate (2.4.19) in expectation for the random discrete
projection with an a priori chosen polynomial space is derived. This estimate holds for
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any function φ : Γ → R in L2
ρ(Γ) analytic in a polydisc. In particular, its application

is presented in Section 2.5 to approximate the solution to a class of PDE models with
stochastic coefficients. For example, the aforementioned class contains elliptic PDEs and
the linear elasticity model, both with stochastic coefficients described by means of random
variables with a disjoint support in the physical domain. The estimate (2.4.19) shows
that the random discrete L2 projection on suitably chosen sequences of polynomial spaces
converges at least with sub-exponential convergence rate w.r.t. the number of sampling
points. In addition, the same estimate establishes a relation between the random discrete
L2 projection on a priori chosen polynomial spaces and the classical Stochastic Galerkin
method.

• Chapter 3. The assumption on the density presented in Chapter 1 is relaxed, and the case
of the beta family of probability densities is investigated, from the point of view of stability
and optimality of the convergence rate. Then the case of Gaussian density is investigated,
and it is shown that the Assumption 1.1 on the density being bounded away from zero
is strictly required for the probabilistic optimality result to hold. Lastly, the robustness
of the random projection w.r.t. perturbations in the density is investigated through some
numerical tests.

• Chapter 4. The random discrete projection is applied to approximate Quantities of Interest
(QOI), defined as integral functionals of the solution to PDE models with random coefficients
and random domains. The theoretical results obtained with the analysis developed in
Chapter 1 and Chapter 2 extend straightforwardly to the case of QOI. Throughout the
chapter, the polynomial approximation is applied with the Total Degree polynomial space,
as motivated in Chapter 2. Several examples with elliptic PDEs are presented (Darcy
model), when the diffusion coefficient is parametrized by random variables featuring one
and higher dimension. Then, the linear elasticity model with random Young’s modulus and
the Navier-Stokes model with random viscosity and random geometry of the computational
domain have been tested. The role of smoothness in the dependence of the QOI on the
random variables has been numerically investigated as well.

In the latter part of the thesis, some of the techniques developed in the first part for the
forward problem are applied to solve more complicated inverse problems, involving PDEs with
stochastic data. The type of inverse problems treated concerns the recovery of information on
the coefficient of the PDE model, with a specific target towards the case where uncertainty is
present.

• Chapter 5. The Factorization Method has been extended to the case of deterministic
inhomogeneous background, and then of piecewise uncertain background. At first, a nu-
merical scheme to solve the dipole-like singular Neumann problem has been proposed in
Section 5.2.2, when the background coefficient is deterministic but spatially inhomogeneous.
Then, this scheme has been incorporated in the Factorization Method to solve the EIT
inverse problem. Several types of deterministic inhomogeneous background are addressed:
piecewise constant background with two orders of magnitude jumps between neighboring re-
gions and more general backgrounds with a nonlinear dependence on the spatial coordinates.
It is shown that, in the inhomogeneous case, the inversion method achieves reconstructions
of the same accuracy as those obtained in the homogeneous case. The method has been
tested also when the measurements are contaminated by noise. Afterwards, the case of
piecewise constant background with values of the coefficients affected by randomness is
addressed, again with variations of the coefficient up to two orders of magnitude between
neighboring regions. Depending on the procedure employed to collect the measurements,
two situations are distinguished, i.e. arbitrary measurements and paired measurements.
In the case of arbitrary measurements, two variants of the Factorization Method have
been proposed. The first variant accomplishes a background reconstruction through an
optimization procedure, and then performs the sampling step similarly to the standard
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Factorization Method. The second variant avoids the optimization step, and uses a weighted
linear combination of the indicator functions provided by the Factorization Method, as long
as a sufficient number of measurements are available. In the case of paired measurements,
a suitable variant of the Factorization Method based on a Monte Carlo type of indicator
function has been proposed. The effectiveness of all the variants of the Factorization
Method proposed is demonstrated by means of several numerical tests.

• Chapter 6. The polynomial approximation techniques presented in Chapter 1 and
Chapter 2 are utilised to accelerate the variants of the Factorization Method proposed
in Chapter 5. The proposed approach relies on the polynomial approximation of the
inclusion-free Neumann-to-Dirichlet map Λ0 recalled in (6.0.2), and allows to accelerate
either the optimized variant of the Factorization Method (Algorithm 2) or its pure variant
(Algorithm 3). The random discrete projection is applied to compute the polynomial
approximation ΛM

0 of the operator Λ0 with random background coefficient, e.g. the one
defined in (6.0.1). The pointwise evaluations of the operator Λ0 = Λ0(y), for each value
of the parameter y ∈ Γ, can then be replaced by the computationally costless pointwise
evaluations of ΛM0 = ΛM0 (y). In Section 6.3 some convergence estimates are derived, for the
approximation error committed by the random discrete L2 projection when approximating
the solution to model (6.0.3), which defines the operator Λ0. The error estimates are
derived in a convenient norm that ensures pointwise accuracy, rather than accuracy in
expectation. In Theorem 6.3 a convergence estimate in the Frobenius norm for the
polynomial approximation ΛM

0 of the operator Λ0 has been derived, and it ensures the
convergence of all the Ky-Fan k-norms with k < K, with K being the highest frequency in
the measurements of the EIT problem.

0.4 Mind map of the chapters
The reader of the thesis is advised to begin with either Chapter 1 or Chapter 2 which are both
self-contained and introduce the random discrete projection. These chapters are prerequisites
to the following Chapter 3 and Chapter 4 which deal with different aspects related to the
random discrete projection. Another starting point to read the thesis could be Chapter 5, where
the Factorization Method applied to the framework of Electrical Impedance Tomography is
introduced. However, before moving to Chapter 6, the reader is advised to have a look at
Chapter 1 and Chapter 2 as well. Fig. 1 resumes the suggested order to read the chapters.

Chapter 3

Chapter 1 Chapter 2

Chapter 4Chapter 6

Chapter 5

Figure 1: Structure of the chapters. The arrows indicate the advised reading order.
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Chapter 1

Analysis of the discrete L2 projection
on polynomial spaces with random
evaluations

The present chapter is based on the work [MNvST11] entitled “Analysis of the discrete
L2 projection on polynomial spaces with random evaluations” by G. Migliorati, F. Nobile,
E. von Schwerin and R. Tempone.

Abstract

We analyze the problem of approximating a multivariate function by discrete least-
squares projection on a polynomial space starting from random, noise-free observations.
An area of possible application of such technique is Uncertainty Quantification (UQ)
for computational models. We prove an optimal convergence estimate, up to a
logarithmic factor, in the univariate case, when the observation points are sampled
in a bounded domain from a probability density function bounded away from zero,
provided the number of samples scales quadratically with the dimension of the
polynomial space. Several numerical tests are presented both in the univariate and
multivariate case, confirming our theoretical estimates. The numerical tests also
clarify how the convergence rate depends on the number of sampling points, on the
polynomial degree, and on the smoothness of the target function.

Key words: approximation theory, error analysis, noise-free data, multivariate polynomial
approximation, point collocation, generalized polynomial chaos, nonparametric regression.

AMS subject classification: 41A10, 41A25, 65N12, 65N15, 65N35

1.1 Introduction

Given a smooth multivariate function φ = φ(Y1, . . . , YN ), where Y1, . . . , YN are random variables,
we consider in this work the classical problem of approximating φ in a multivariate polynomial
space, starting from noise-free observations of φ on random samples of Y1, . . . , YN .

The motivations for such work come from the field of Uncertainty Quantification (UQ)
in computational models [LMK10, Xiu09], where often uncertainty is present in many input
parameters entering the mathematical model used to describe some problem in engineering,
physics, biology, etc. and can be characterized in probabilistic terms by considering the input

13
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parameters as random variables. The goal of the analysis is typically to compute statistics of the
solution to the mathematical model or some output quantities of interest.

It is assumed here that, for each value of the input parameters, the solution or output
quantity can be accessed without errors. This is, of course, an idealization as deterministic
approximation-type errors will typically be present whenever the model involves differential or
integral operators. Also, round-off errors will be present as well. However, these sources of errors
are quite different in nature from “measurement errors” appearing in an experimental setting,
which are usually modeled as random and statistically independent. In the context of UQ in
computational models, it is therefore reasonable to assume that the approximation errors can be
kept under control by some careful a-posteriori error estimation and mesh refinement (see e.g.
[AO00, BR03] and references therein).

A technique that has received considerable attention in the last few years is the so called
generalized Polynomial Chaos expansion (gPC); see e.g. [GS03, XK02b]. It consists in expanding
the solution in polynomials of the input random variables. The use of global polynomial spaces
is sound in many situations, where the input/output (parameters-to-solution) map is smooth.
This is the case, for instance, in elliptic PDEs with random diffusion coefficient [BNT10, CDS10,
CDS11, BNTT11b].

Once a truncated gPC expansion has been computed by some means, it can be used later for
inexpensive computations of solution statistics or as a reduced model of the input/output map
for “global sensitivity analysis” [CLMM09, Sud07], or optimization under uncertainty [Eld11].

As a tool to build such a gPC approximation, we consider in this work an L2 projection,
starting from a random sample of the input parameters. Such an idea has already been proposed
in the framework of UQ and has been given several names: Point Collocation [HWB10, DNP+04,
NTW08b], non intrusive gPC [LMK10, Eld09] regression [BS08, BS11]. As a practical recipe,
the number of samples drawn from the input distribution is typically taken to be 2 to 3 times
the dimension of the polynomial space.

The proposed approach falls within the classical topic of polynomial regression estimation,
i.e. minimization of the empirical L2 risk within the given polynomial space. We insist, however,
that unlike the traditional statistical approach, here we consider noise-free data evaluated in
random points.

A relevant question is whether such a minimizer is “optimal” in the sense that it achieves an
approximation of the (unknown) function that is equivalent to the “best approximation” in the
polynomial space.

A lot of literature is available on regression estimations in the noisy case. We recall here
the book [GKKW02] that provides a general framework for analysis of regression estimators
with random design, as well as the works [BCD+05, BCDD07] that show optimality of the noisy
regression when using piecewise constant or linear functions. The aforementioned works give
estimates on the expected L2 error under the assumption that the function is bounded in L∞ by
some a priori fixed constant. Other works in the field of distribution-free regression with noise
have derived convergence rates for the L2 risk which are optimal up to logarithmic factors, e.g.
[Koh00, Koh03, BCK09].

The L2-error in expectation is bounded by two terms: the (purely deterministic) best
approximation error of the (unknown) function in the approximating space, and the statistical
error due to the random sampling and the noise in the observations. The latter scales as 1/

√
M

if M is the number of samples. In the aforementioned works, the statistical error does not vanish
in the noise-free setting.

Hence, the main question that we address in this paper: in the noise-free polynomial
approximation based on random samples, does the randomness of the evaluation points introduce
a statistical error O(1/

√
M) or not?

We study theoretically the problem for a univariate function φ(Y ) where Y is a bounded
random variable with probability density function bounded away from zero. Denoting by #Λ the
dimension of the polynomial space, we prove that the L2 projection on a polynomial space with
random samples leads to quasi optimal convergence rates (up to logarithmic factors) provided
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that the number of samples scales as M ∼ (#Λ)2.
Similar results have been derived very recently in [CDL13]. However, the proof proposed

therein uses different techniques than ours.
We also show, in the general multivariate setting, the relation between the optimality of the

projection on random points and the condition number of the corresponding design matrix, when
using an orthonormal basis.

We present several numerical tests, both on univariate and multivariate functions, that
clearly show that a choice M ∼ (#Λ)2 leads to a stable regression problem and an optimal
approximation, whereas M ∼ #Λ leads to an ill conditioned problem when #Λ is large and,
eventually, to a divergent approximation. Moreover, our numerical tests show some significant
differences between the one-dimensional and the multidimensional case.

The outline of the paper is the following: Section 1.2 introduces the approximation problem
as an L2 projection on a space of polynomials in N underlying variables; some common choices
of polynomial spaces are described in Section 1.2.1. The optimality of the random L2 projection,
in terms of a best approximation constant, is shown in Section 1.2.2; the asymptotic behaviour
of this best approximation constant, as the number of random evaluation points goes to infinity,
is analyzed in Section 1.2.3. Next, Section 1.3 restricts the study to polynomial spaces in
one variable, with uniformly distributed random points; in this case, a bound on the best
approximation constant is derived and used to prove Theorem 1.2, which given the maximal
polynomial degree provides a rule for the number of random points that makes the discrete
random L2 projection nearly optimal (up to a logarithmic factor) with any prescribed confidence
level. Section 1.4 gives the algebraic formulation of the random projection problem, in view of
its numerical discretization. In particular, Section 1.4 provides an analysis of how the condition
number of the design matrix depends on the best approximation constant of the random L2

projector. Finally, Section 1.5 complements the analysis in Sections 1.2–1.4 with numerical tests,
both in the one-dimensional case and in higher dimensions.

1.2 Discrete L2 projection with random points
Let Y = [Y1, . . . , YN ] be a vector of N random variables, taking values in a bounded set Γ ⊂ RN .
We assume that Γ has a tensor structure Γ = Γ1 × · · · × ΓN and that the random vector Y has a
probability density function ρ : Γ→ R+.

We consider a random variable Z = φ(Y), where φ : Γ → R is assumed to be a smooth
function. The goal of the analysis is to compute statistical moments of Z. This will be achieved
by first constructing a reduced model (approximate response function); i.e. we approximate the
function φ(Y1, . . . , YN ) by a suitable multivariate polynomial φΛ(Y1, . . . , YN ). We then compute
statistical moments using the approximate function φΛ.

We denote by

E[Z] :=
∫

Γ
φ(Y)ρ(Y)dY

the expected value of the random variable Z and by

P (A) :=
∫
A
ρ(Y)dY

the probability of the event A ∈ B(Γ), where B(Γ) is the Borel σ-algebra with respect to the
measure ρ(Y)dY. Throughout the paper we also assume that

Assumption 1.1. 0 < ρmin ≤ ρ(y) ≤ ρmax <∞, ∀y ∈ Γ.

We introduce the space L2
ρ of square integrable functions f : Γ→ R, endowed with the norm

‖f‖L2
ρ

=
(∫

Γ
f2(Y)ρ(Y)dY

)1/2

.
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Observe that under Assumption 1.1, the norm ‖ · ‖L2
ρ
is equivalent to the standard L2 norm

(with Lebesgue measure), i.e.

√
ρmin ≤

‖v‖L2
ρ(Γ)

‖v‖L2(Γ)
≤ √ρmax, ∀ v ∈ L2

ρ.

Let p = (p1, . . . , pN ) be a multi-index and Λ ⊂ NN an index set which is monotonous in the
following sense:

Property 1 (Monotonicity of Λ). Consider two multi-indices p′,p′′ ∈ NN such that p′′n ≤
p′n, ∀n = 1, . . . , N . The multi-index set Λ is monotonous if the following holds:

p′ ∈ Λ =⇒ p′′ ∈ Λ.

We denote by PΛ(Γ) the multivariate polynomial space

PΛ(Γ) = span
{

N∏
n=1

ypnn , with p ∈ Λ
}
, (1.2.1)

and by #Λ = dim(PΛ) the dimension of the polynomial space, which corresponds to the
cardinality of the index set Λ. For convenience, the set Λ can be arranged in lexicographical
order:

Property 2 (Lexicographical order). Given p′,p′′ ∈ Λ,

p′
L
< p′′ ⇐⇒ ∃ ñ > 0 : (p′

ñ
< p′′

ñ
) ∧ (p′n = p′′n ∀n < ñ).

According to this order, we can let pj denote the jth multi-index of Λ. Sometimes we refer to
the elements of Λ with the generic multi-index p, rather than listing them by the lexicographical
index.

Since the monomial basis in (1.2.1) is very ill-conditioned, in practice we use an orthonormal
polynomial basis. A typical choice is to take orthogonal polynomials with respect to the measure
ρ(Y)dY.

We introduce an N -dimensional orthonormal polynomial basis {lj}#Λ
j=1 of PΛ with respect to

the weighted inner product

(u, v)L2
ρ

=
∫

Γ
u(Y)v(Y)ρ(Y) dY, (1.2.2)

i.e. (li, lj)L2
ρ

= δij . Assumption 1.1 guarantees that the orthonormal basis is complete in L2
ρ

when Λ = NN .
In the case where the density factorizes as ρ(Y) =

∏N
n=1 ρn(Yn) the basis can be constructed

by tensorizing 1D orthogonal polynomials with respect to each weight ρn separately. Given n,
let {ϕnj (·)}j be the orthogonal polynomials with respect to ρn. Picking the jth (according to
Property 2) multi-index pj ∈ Λ, the corresponding jth multidimensional basis function is given
by

lj(Y) =
N∏
n=1

ϕn
pjn

(Yn). (1.2.3)

Thus, using the basis function provided by (1.2.3), the definition (1.2.1) of PΛ becomes

PΛ(Γ) = span{lj , j = 1, . . . ,#Λ}. (1.2.4)

Observe that in general (1.2.1) and (1.2.4) are equivalent only if the index set Λ satisfies the
Monotonicity Property 1.
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To construct the polynomial approximation φΛ we first sample the exact function φ in
M > #Λ independent points y1, . . . ,yM , i.e. yi are independent identically distributed (i.i.d.)
random vectors with probability density function ρ. Then, we compute a discrete least square
approximation of the values φ(yi) in the polynomial space PΛ, i.e.,

φΛ = ΠΛ,ω
M φ = argmin

v∈PΛ(Γ)

1
M

M∑
i=1

(φ(yi)− v(yi))2. (1.2.5)

We will use the superscript (or subscript) ω to denote a quantity that depends on the random
sample y1, . . . ,yM (and therefore is random itself).

We now introduce the random discrete inner product

(u, v)M,ω = 1
M

M∑
i=1

u(yi)v(yi), (1.2.6)

and the corresponding norm ‖u‖M,ω = (u, u)1/2
M,ω. Observe that this is actually a norm in PΛ if

for all v ∈ PΛ,

v(yi) = 0, for i = 1, . . . ,M ⇔ v = 0, (1.2.7)

which by Assumption 1.1 happens with probability one provided that M is large enough. Then,
the discrete least square problem can be written equivalently as

find ΠΛ,ω
M φ ∈ PΛ(Γ) s.t. (ΠΛ,ω

M φ, v)M,ω = (φ, v)M,ω, ∀v ∈ PΛ(Γ).

1.2.1 Common multivariate polynomial spaces

Some of the most common choices of function spaces are, Tensor Product, Total Degree, and
Hyperbolic Cross, which are defined by the index sets below. We index the set Λ by the subscript
w denoting the maximum polynomial degree used:

Tensor Product (TP), Λw =
{
p ∈ NN : max

n=1,...,N
pn ≤ w

}
, (1.2.8)

Total Degree (TD), Λw =
{
p ∈ NN :

N∑
n=1

pn ≤ w
}
, (1.2.9)

Hyperbolic Cross (HC), Λw =
{
p ∈ NN :

N∏
n=1

(pn + 1) ≤ w + 1
}
, (1.2.10)

Smolyak polynomial space (SM), Λw =
{
p ∈ NN :

N∑
n=1

f(pn) ≤ f(w)
}
, (1.2.11)

with f(p) =


0, p = 0,
1, p = 1,
dlog2(p)e, p ≥ 2.

These spaces are isotropic and the maximum polynomial degree w is the same in all spatial
dimensions. Anisotropic versions could be considered as well, see e.g. Appendix A.1 and
[BNTT11a]. The dimensions of TP and TD spaces are

#TP (w, N) = (w + 1)N , (1.2.12)

#TD(w, N) =
(
N + w
N

)
. (1.2.13)
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The dimension of the HC space is harder to quantify, so we report its exact dimension #HC(w, N)
in Fig. 1.1, computed for some values of w and N . A sharp upper bound, that holds when N = 2,
is given by

#HC(w, 2) ≤
⌊

(w + 1) · (1 + log(w + 1))
⌋
. (1.2.14)

See Appendix A.2 for a proof.
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Figure 1.1: Dimension of the HC space, N = 2, 5, 10, 15, 20, 50, 100.

1.2.2 L2
ρ optimality of the random discrete L2 projection

Let us first introduce the following quantity

Cω(M,Λ) := sup
v∈PΛ\{v≡0}

‖v‖2L2
ρ

‖v‖2M,ω

. (1.2.15)

Notice that this quantity depends on the random sample and is therefore a random variable.
The following result holds:

Proposition 1.1. With Cω(M,Λ) defined as in (1.2.15), it holds that

‖φ−ΠΛ,ω
M φ‖L2

ρ
≤
(
1 +

√
Cω(M,Λ)

)
inf

v∈PΛ(Γ)
‖φ− v‖L∞ . (1.2.16)

Proof. When v = ΠΛ,ω
M φ ∈ PΛ the statement (1.2.16) trivially holds. Let v 6= ΠΛ,ω

M φ be an
arbitrary polynomial in PΛ. Then

‖φ−ΠΛ,ω
M φ‖L2

ρ
≤ ‖φ− v‖L2

ρ
+ ‖v −ΠΛ,ω

M φ‖L2
ρ

= ‖φ− v‖L2
ρ

+
‖v −ΠΛ,ω

M φ‖L2
ρ

‖v −ΠΛ,ω
M φ‖M,ω

‖v −ΠΛ,ω
M φ‖M,ω

≤ ‖φ− v‖L2
ρ

+ sup
v∈PΛ\{v≡0}

‖v‖L2
ρ

‖v‖M,ω
‖v −ΠΛ,ω

M φ‖M,ω

= ‖φ− v‖L2
ρ

+
√
Cω(M,Λ)

(
‖φ− v‖2M,ω − ‖φ−Π

Λ,ω
M φ‖2M,ω

) 1
2

≤
(

1 +
√
Cω(M,Λ)

)
‖φ− v‖L∞ .

The thesis follows from the arbitrariness of v.
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Clearly, the convergence property of the random discrete projection is strictly related to
the properties of the quantity Cω(M,Λ). In Section 1.3 we will characterize this quantity in
the particular case of a one-dimensional problem (N = 1) and the uniform distribution. The
extension to multivariate functions is an ongoing work.

1.2.3 Asymptotic limit of Cω(M, Λ)

Here we show that when M →∞, while Λ is kept fixed, the limit of Cω(M,Λ) is almost surely 1.
For the purpose of this analysis we also introduce the constant

C̃Λ = sup
ϕ∈PΛ

‖ϕ‖2L∞
‖ϕ‖2L2

ρ

< +∞. (1.2.17)

Remark 1.1. Given any Λ, the constant C̃Λ is always finite in any dimension N since the
space PΛ is finite dimensional and the domain is bounded. For example in one dimension,
any v ∈ Pw(−1, 1) can be expanded in Legendre series v =

∑w
j=0 αjϕj with ‖v‖2L2 =

∑w
j=0 α

2
j .

Moreover, assuming a uniform distribution ρ on the interval [−1, 1],

‖v‖L∞ ≤
w∑
j=0
|αj |‖ϕj‖L∞ ≤

w∑
j=0
|αj |

√
j + 1

2

≤

√√√√ w∑
j=0

α2
j

√√√√ w∑
j=0

(
j + 1

2
)

= (w + 1)√
2
‖v‖L2 = (w + 1)‖v‖L2

ρ
,

so
√
C̃Λ ≤ w + 1. One can tensorize the one-dimensional case, to show that C̃Λ is bounded with

respect to the maximum polynomial degree w also in higher dimensions.

We recall that a sequence of functions {fn}, where fn : S → R converges uniformly to f if
and only if

lim
n→∞

sup
s∈S

∣∣∣fn(s)− f(s)
∣∣∣ = 0.

We denote the uniform convergence by fn
unif.−→ f . We also recall the definition of an equicontinuous

sequence of functions:

Definition 1.1. Consider the usual ε-δ definition of continuity for a real function f in the point
x0:

∀ε > 0 ∃δ = δ(x0, f) > 0 ∀x ∈ dom(f) : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε. (1.2.18)

We say that the family of continuous functions F = {fi}i is

• equicontinuous if δ in (1.2.18) is independent of fi,

• uniformly equicontinuous if δ in (1.2.18) is independent of fi and x0.

Now consider the set of functions P̂Λ = {v ∈ PΛ : ‖v‖L2
ρ

= 1} ⊂ L2
ρ. For any outcome

{yj}∞j=1 of the random variables {Yj}∞j=1 we define the sequence {τM,ω}M of functionals, whose
elements are defined as

τM,ω(·) =
‖ · ‖2M,ω

‖ · ‖2L2
ρ

: P̂Λ → R+. (1.2.19)

Proposition 1.2. For any M and Λ the function τM,ω in (1.2.19) is Lipschitz continuous over
P̂Λ.
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Proof. Consider the constant C̃Λ defined in (1.2.17). Clearly ‖v‖L∞ ≤
√
C̃Λ for all v ∈ P̂Λ, so

they are uniformly bounded. Taking arbitrary v1 and v2 in P̂Λ,∣∣∣τM,ω(v1)− τM,ω(v2)
∣∣∣ ≤ 1

M

M∑
j=1

∣∣∣v1(yj)2 − v2(yj)2
∣∣∣

= 1
M

M∑
j=1

∣∣∣(v1(yj) + v2(yj)
) (
v1(yj)− v2(yj)

)∣∣∣
≤ 1
M

(
‖v1‖L∞ + ‖v2‖L∞

) M∑
j=1

∣∣∣v1(yj)− v2(yj)
∣∣∣

≤ 2
√
C̃Λ ‖v1 − v2‖L∞ ≤ 2 C̃Λ ‖v1 − v2‖L2

ρ
. (1.2.20)

From Proposition 1.2 it follows immediately that the sequence {τM,ω} is uniformly equicon-
tinuous. Moreover, from the Strong Law of Large Numbers, since E[v(yj)2] < ∞, it follows
that

‖v‖2M,ω = 1
M

M∑
j=1

v(xj)2 M→+∞−→ E
[
(v(yj))2

]
= ‖v‖2L2

ρ
,

almost surely; hence the sequence {τM,ω} is also converging to 1 pointwise. We have then the
following result:

Proposition 1.3. Under the assumptions of Proposition 1.2 it holds

τM,ω(v) unif.−→ 1, ∀ v ∈ P̂Λ, a.s. (1.2.21)

Proof. For any outcome ω, the sequence {τM,ω}∞M=1 is (uniformly) equicontinuous on P̂Λ and
converges almost surely on P̂Λ, therefore it converges uniformly in P̂Λ (see e.g. [Rud76, Theorem
7.25]).

Theorem 1.1. Let Cω(M,Λ) be the constant defined in (1.2.15). Then

lim
M→∞

Cω(M,Λ) = 1, a.s.

Proof. We can extend the definition of τM,ω in (1.2.19) to PΛ \ {v ≡ 0} using the same formula.
Then we rewrite the following supremum as

lim
M→+∞

sup
v∈P̂Λ

∣∣∣∣∣‖v‖
2
M,ω

‖v‖2L2
ρ

− 1
∣∣∣∣∣ = lim

M→+∞
sup

v∈PΛ\{v≡0}

∣∣∣∣∣‖v‖
2
M,ω

‖v‖2L2
ρ

− 1
∣∣∣∣∣,

and, by the continuity of τM,ω(v) in PΛ,

τM,ω(v) unif.−→ 1, ∀ v ∈ PΛ \ {v ≡ 0}, (1.2.22)

from which we also deduce that(
τM,ω(v)

)−1 unif.−→ 1, ∀ v ∈ PΛ \ {v ≡ 0}.

But this implies

lim
M→+∞

sup
v∈PΛ\{v≡0}

∣∣∣∣∣ ‖v‖
2
L2
ρ

‖v‖2M,ω

− 1
∣∣∣∣∣ = 0,

which is the thesis.
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1.3 Error analysis in one dimension for the uniform distribution
We restrict the analysis to the case N = 1 and consider the polynomial space PΛ = span{yp, p =
0, . . . ,w}. For convenience, we rename the polynomial space as Pw and the random discrete
projector as Πw,ω

M . The main result of this section is Theorem 1.2. Its proof is postponed until
the end of the section as we will need several lemmas and intermediate results.

Theorem 1.2. For any α ∈ (0, 1), under the condition

M

3 log((M + 1)/α) ≥ 4
√

3 w2 (1.3.1)

holds

P

‖φ−Πw,ω
M φ‖L2

ρ
≤

1 +

√
3 log M + 1

α

 inf
v∈Pw

‖φ− v‖L∞

 ≥ 1− α. (1.3.2)

The previous theorem states that, with confidence level 1− α, the discrete projection with
random points is (nearly) optimal up to a logarithmic factor in M , provided M is large enough
and satisfies the condition (1.3.1).

Now we proceed to derive some probabilistic results on the distribution of order statistics for
the standard uniform distribution.

1.3.1 Useful results on order statistics of the uniform distribution

To study order statistics of the uniform distribution it is more convenient to consider standard uni-
form random variables in [0, 1] instead of [−1, 1]. Therefore, we introduce a linear transformation
T : [−1, 1]→ [0, 1] and define a new set of i.i.d. random variables

Ui = T (Yi) = Yi + 1
2 , i = 1, . . . ,M.

Thus we continue working with a sample of M independent random variables from the standard
uniform parent distribution,

U1, . . . , UM
i.i.d.∼ U(0, 1). (1.3.3)

We know that the order statistics U(1) < U(2) < . . . < U(M) are

U(k) ∼ Beta(k,M + 1− k), k = 1, . . . ,M,

where we recall that a Beta(k,M + 1− k) random variable has distribution

f(y) = M !
(k − 1)!(M − k)!y

k−1(1− y)M−k, y ∈ [0, 1].

Let us define Ξ(0) = U(1), Ξ(M) = 1−U(M), and Ξ(k) = U(k+1)−U(k) for k = 1, . . . ,M − 1. It
can be shown that Ξ(k) ∼ Beta(1,M) for each k = 0, . . . ,M ; see [DN03, page 14] where a more
general result on the distribution of Uj − Ui is proved, namely

Uj − Ui ∼ Beta(j − i,M − j + i+ 1), 1 ≤ i < j ≤M.

In particular, the distribution is independent of the values i and j, and depends only on
their difference j − i. The following result gives a bound on the probability distribution of
maxk=0,...,M Ξ(k).

Lemma 1.1. For any α ∈ (0, 1) and M ∈ N+

Pr

(
max

k=0,...,M
Ξ(k) >

log((M + 1)/α)
M

)
≤ α.
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Proof. Trivially, if 0 < α ≤ M + 1
exp(M) , then

log
(
(M + 1)/α

)
M

≥ 1 and

Pr

(
max

k=0,...,M
Ξ(k) > 1

)
= 0 < α.

Consider now M + 1
exp(M) < α < 1. Rewriting the random event

{
max

k=0,...,M
Ξ(k) > δ

}
=

M⋃
k=0

{
Ξ(k) > δ

}
,

we have, for 0 < δ < 1,

Pr
(

max
k=0,...,M

Ξ(k) > δ
)

= Pr
( M⋃
k=0

{
Ξ(k) > δ

})

≤
M∑
k=0

Pr
(
Ξ(k) > δ

)
= (M + 1)(1− δ)M . (1.3.4)

Therefore

Pr

(
max

k=0,...,M
Ξ(k) >

log((M + 1)/α)
M

)
≤ (M + 1)

(
1− log((M + 1)/α)

M

)M

= (M + 1)

(1− log((M + 1)/α)
M

) M
log((M+1)/α)

log((M+1)/α)

≤ (M + 1) e− log((M+1)/α) = α.

1.3.2 Relation between ‖ · ‖L2
ρ
and ‖ · ‖M,ω on Pw([−1, 1])

Here we go back to the uniform distribution in Γ = [−1, 1]. We are interested in finding an
inequality between the continuous norm ‖ · ‖L2

ρ
and the discrete norm ‖ · ‖M,ω, i.e. finding a

suitable Cw,ω
M such that

‖v‖2L2
ρ
≤ Cw,ω

M ‖v‖2M,ω, ∀ v ∈ Pw(Γ). (1.3.5)

This will be the random constant appearing in Proposition 1.1. We will also need an inverse
inequality for the derivative (see e.g. [CQ82]),∥∥∥∥∂v∂y

∥∥∥∥
L2(Γ)

≤ Ĉ w2‖v‖L2(Γ), ∀ v ∈ Pw(Γ). (1.3.6)

In this case Ĉ =
√

3, while in general Ĉ(Γ) depends on the length of Γ. The same inequality
holds replacing L2(Γ) with L2

ρ.
The sampled points {yj}Mj=1 are distinct almost surely. To each point yj we associate an open

interval Ij satisfying the requirement that(
M⋃
j=1

Ij

)
∩ Γ = Γ. (1.3.7)
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In other words, the family of intervals {Ij}j is a (finite) covering of the domain Γ. We order the
points in increasing order

−1 ≤ y1 < . . . < yM ≤ 1,

keeping the notation {yj}; it will be clear from the context if we refer to the ordered points or to
the originally sampled points.

In one dimension, it is easy to build a finite covering of mutually disjoint intervals

Ij =
(
yj −∆yj−1, yj + ∆yj

)
, j = 1, . . . ,M, (1.3.8)

taking

∆yj =


| − 1− y1|, j = 0,
|yj+1 − yj |

2 , j = 1, . . . ,M − 1,

|1− yM |, j = M.

(1.3.9)

In general, the sets Ij of this covering are not centered in the sample points. It is useful to split
each interval Ij in its left and right part,

I−j = Ij ∩ {y ∈ R : y ≤ yj}, I+
j = Ij ∩ {y ∈ R : y ≥ yj},

with measures |I−j | = ∆yj−1 and |I+
j | = ∆yj , respectively.

We also define the random variable ∆Y whose realizations are

∆y = max
j=1,...,M

|Ij |. (1.3.10)

In Appendix C we report its cumulative distribution function simulated numerically, for
different values of the number of sampling points M .

The link between the random variable ∆Y and the result given in the previous section is the
following:

Lemma 1.2 (Corollary of Lemma 1.1). For any α ∈ (0, 1) and M ∈ N+ s.t. M ≥ 2

Pr

(
∆Y >

3 log((M + 1)/α)
M

)
≤ α.

Proof. It is enough to notice that, for each realization (ξ0, . . . , ξM ) of the random variables
(Ξ(0), . . . ,Ξ(M)), it holds

max
k=0,...,M

ξk < δ =⇒ ∆y < 3δ,

and thus

Pr (∆Y > 3δ) ≤ Pr
(

max
k=0,...,M

Ξ(k) > δ

)
.

We now define two events:

Σw =
{

∆Y ≤ 1
4Ĉw2

}
and ΣM =

{
∆Y ≤ 3 log((M + 1)/α)

M

}
. (1.3.11)

Observe that, taking M large enough, the probability of Σw can be made arbitrary close to 1.
More precisely
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Lemma 1.3. For any α ∈ (0, 1), under the condition

M

3 log
(
(M + 1)/α

) ≥ 4 Ĉ w2, (1.3.12)

the following inclusion holds

ΣM ⊂ Σw

and

Pr(Σw) ≥ Pr(ΣM ) ≥ 1− α. (1.3.13)

Proof. Clearly, under (1.3.12)

∆Y ≤ 3 log((M + 1)/α)
M

=⇒ ∆Y ≤ 1
4Ĉw2

and the inclusion ΣM ⊂ Σw is proved. The bound from below on the corresponding probabilities
is an immediate consequence of Lemma 1.2.

Now we are ready to formulate the main result of this subsection:

Theorem 1.3. Define on Σw the random variable

Cw,ω
M = M∆Y/2

1− 2∆Y Ĉ w2
. (1.3.14)

Then, in Σw it holds

‖v‖2L2
ρ
≤ Cw,ω

M ‖v‖2M,ω, ∀ v ∈ Pw(Γ). (1.3.15)

Moreover, under condition (1.3.12), in ΣM ⊂ Σw it holds

Cw,ω
M ≤ 3 log((M + 1)/α).

Proof. For convenience the proof uses the standard L2(Γ) norm instead of the weighted norm
L2
ρ. Remember that in this case ‖ · ‖2L2

ρ
= 1

2‖ · ‖
2
L2(Γ). To lighten the notation we also introduce

on each interval I±j the short notation

‖ · ‖I−j := ‖ · ‖L2(I−j ),

‖ · ‖I+
j

:= ‖ · ‖L2(I+
j ).

Take v ∈ Pw(Γ) arbitrarily. The following standard inequalities are used in the sequel:

∣∣∣v(y)2 − v(yj)2
∣∣∣ =

∣∣∣∣∣
∫ y

yj

(v2)′(ξ)dξ
∣∣∣∣∣ =

∣∣∣∣∣
∫ y

yj

2v(ξ)v(ξ)′dξ
∣∣∣∣∣

≤

2‖v‖I+
j
‖v′‖I+

j
, ∀y ∈ I+

j ,

2‖v‖I−j ‖v
′‖I−j , ∀y ∈ I

−
j .

(1.3.16)

Integrating (1.3.16) over I−j and I+
j yields∫

I−j

v(y)2dy − v(yj)2|I−j | =
∫
I−j

(
v(y)2 − v(yj)2

)
dy

≤
∫
I−j

∣∣∣v(y)2 − v(yj)2
∣∣∣dy

≤ 2 |I−j | ‖v‖I−j ‖v
′‖I−j , (1.3.17)
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and similarly for I+
j∫

I+
j

v(y)2dy − v(yj)2|I+
j | ≤ 2 |I+

j | ‖v‖I+
j
‖v′‖I+

j
. (1.3.18)

Summing (1.3.17) and (1.3.18) we get∫
Ij

v(y)2dy − |Ij |v(yj)2 ≤ 2
(
|I−j | ‖v‖I−j ‖v

′‖I−j + |I+
j | ‖v‖I+

j
‖v′‖I+

j

)
≤ 2 |Ij | ‖v‖Ij‖v

′‖Ij , (1.3.19)

which implies∫
Ij

v(y)2dy ≤ |Ij |
(
v(yj)2 + 2 ‖v‖Ij‖v

′‖Ij
)
. (1.3.20)

Summing over all the intervals we have

‖v‖2L2 =
M∑
j=1

∫
Ij

v(y)2dy
[
substitute (1.3.20)

]

≤
M∑
j=1
|Ij |v(yj)2 + 2

M∑
j=1
|Ij | ‖v‖Ij‖v

′‖Ij
[
using (1.3.10)

]

≤ ∆y
M∑
j=1

v(yj)2 + 2∆y
M∑
j=1
‖v‖Ij‖v

′‖Ij
[
definition of ‖ · ‖M,ω

]

= M∆y‖v‖2M,ω + 2∆y
M∑
j=1
‖v‖Ij‖v

′‖Ij
[
Cauchy-Schwarz’s ineq.

]
≤M∆y‖v‖2M,ω + 2∆y ‖v‖L2(Γ)‖v

′‖L2(Γ)

[
using (1.3.6)

]
≤M∆y‖v‖2M,ω + 2∆y Ĉ w2 ‖v‖2L2(Γ). (1.3.21)

Rearranging the terms in (1.3.21) we obtain

(1− 2∆y Ĉ w2)‖v‖2L2(Γ) ≤M∆y‖v‖2M,ω. (1.3.22)

The coefficient in the left hand side is non zero on Σw so we have proved (1.3.14)-(1.3.15). If we
now restrict to ΣM under condition (1.3.12), then from Lemma 1.3 we have

∆Y ≤ 1
4Ĉw2

and ∆Y ≤ 3 log((M + 1)/α)
M

so that

Cw,ω
M = M∆Y/2

1− 2∆Y Ĉ w2
≤ 3 log((M + 1)/α)

and this concludes the proof.

Remark 1.2. Theorem 1.3 states that on ΣM , which is an event of probability at least 1− α,
the discrete and continuous norms are equivalent up to a logarithmic factor if condition (1.3.12)
is fulfilled, which, roughly speaking corresponds to M ∝ w2.
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1.3.3 Proof of Theorem 1.2

The proof of this theorem is merely a collection of results from Proposition 1.1, Theorem 1.3,
and Lemma 1.2.

Proof of Theorem 1.2. We consider the event ΣM defined in (1.3.11). From Lemma 1.2 we know
that under condition (1.3.1) the probability of this event is at least 1− α. From Theorem 1.3 it
holds

‖v‖2L2
ρ
≤ Cw,ω

M ‖v‖2M,ω in ΣM

uniformly with respect to v ∈ Pw(Γ) and the constant Cw,ω
M ≤ 3 log((M + 1)/α) uniformly in

ΣM . We then apply Proposition 1.1 in ΣM to conclude that

‖φ−Πw,ω
M φ‖L2

ρ
≤
(

1 +
√
Cw,ω
M

)
inf
v∈Pw

‖φ− v‖L∞ , ∀φ ∈ L∞(Γ), ∀ω ∈ ΣM .

Since under condition (1.3.1) the probability of ΣM is at least 1−α, this concludes the proof.

1.4 Algebraic formulation
The value of #Λ depends on the particular polynomial space (TP, TD, HC, . . . ), the maximal
polynomial degree used, w, and the dimension of the physical space, N . The number of points
M must satisfy the constraint

M ≥ #Λ,

to have an overdetermined problem (more data than unknowns). We have shown in Section 1.2
that, for univariate functions, M should scale as M ∝ w2 to have a stable discrete projection.
As a general rule to choose M for multivariate functions and arbitrary polynomial spaces we
consider the formula

M = c (#Λ)α , (1.4.1)

where c is a positive constant, and α ≥ 1 a real number. We restrict our numerical tests in
Section 1.5 to 1 ≤ α ≤ 2.

Given the polynomial space, we define the design matrix Dω ∈ RM×#Λ. The element Dω
i,j

contains the jth L2
ρ-orthonormal basis function lj evaluated in the ith sample point yi, that is

[Dω]i,j = lj(yi). (1.4.2)

The discrete random projection ΠΛ,ω
M φ can be expressed in terms of the orthonormal basis {lj}j

as

ΠΛ,ω
M φ(Y) =

#Λ∑
j=1

xωj lj(Y). (1.4.3)

Then the algebraic problem to determine the unknown coefficients {xωj } can be formulated as:

xω = argmin
x∈R#Λ

‖Dωx− bω‖2 (1.4.4)

where bω ∈ RM×1 contains the evaluations of the target function φ in the M sample points:
bω(i) = φ(yi). The Normal Equations allow us to rewrite the rectangular system embedded in
(1.4.4) as a square system:

(Dω)TDωxω = (Dω)T bω. (1.4.5)
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We use problem (1.4.4) to calculate the approximation error, computing its solution xω by QR
factorization. On the other hand, formulation (1.4.5) will be useful to measure the ill-conditioning
of the problem, through the condition number of the matrix (Dω)TDω. Alternatively, one can
also solve (1.4.5) by Cholesky factorization.

To evaluate the approximation error, we have considered a cross-validation approach: a
random set of 100 cross-validating points is chosen at the beginning, and the corresponding
design matrix Dcv is computed. The evaluations of φ in these points are stored in bcv. Then the
cross-validated error in ∞-norm is defined as

‖φ−ΠΛ,ω
M φ‖cv = ‖Dcvx

ω − bcv‖∞. (1.4.6)

Note that ‖ · ‖cv is not a norm on the function space of φ; we abuse the norm notation in the
figures with cross-validation errors below to emphasize the dependence on φ. To estimate the
variability of (1.4.6) due to the random sampling of the M collocation points, we have repeated
the calculation over R independent sets of points {yωkj , j = 1, . . . ,M}, with k = 1, . . . , R and
we have computed the average error

Ecv =
∑R
k=1 ‖Dcvx

ωk − bcv‖∞
R

, (1.4.7)

as well as the sample standard deviation by

sE =

√√√√ 1
R− 1

R∑
k=1

(
‖Dcvxωk − bcv‖∞ − Ecv

)2
. (1.4.8)

We also aim to analyze the condition number of (Dω)TDω,

cond
(
(Dω)TDω

)
=
σmax

(
(Dω)TDω

)
σmin

(
(Dω)TDω

) , (1.4.9)

where σmax(·) and σmin(·) are the maximum and minimum singular values. Again, denoting by
Dωk the design matrix built with the k-th set {yωkj }j , we estimate the mean condition number
K over the R repetitions as

K =

∑R
k=1 cond

(
(Dωk)TDωk

)
R

, (1.4.10)

and the standard deviation as

sK =

√√√√√ 1
R− 1

R∑
k=1

(
cond

(
(Dωk)TDωk

)
−K

)2

. (1.4.11)

In the rest of the section we show how the condition number of problem (1.4.5) relates to some
quantities that already appeared previously. All the contents of this section hold for a generic
polynomial space, in any dimension. Accordingly, we refer to the polynomial space as PΛ.

In addition to the constant Cω(M,Λ) already introduced in (1.2.15), we define the constant
cω(M,Λ) as

cω(M,Λ) = sup
ϕ∈PΛ\{ϕ≡0}

‖ϕ‖2M,ω

‖ϕ‖2L2
ρ

. (1.4.12)

Proposition 1.4. The spectral condition number (2-norm) of the matrix (Dω)TDω, as defined
in (1.4.9) is equal to

K
(
(Dω)TDω

)
= cω(M,Λ)Cω(M,Λ). (1.4.13)
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Proof. Each realization of the random matrix (Dω)TDω is almost surely a symmetric and positive
definite matrix under Assumption 1.1 on ρ.

The ith element of the vector Dωx is

[Dωxω]i =
#Λ∑
j=1

lj(yi)xωj = ΠΛ,ω
M φ(yi). (1.4.14)

By definition (1.2.6) of the random discrete inner product

‖ΠΛ,ω
M φ‖2M,ω = 1

M

M∑
i=1

(
ΠΛ,ω
M φ(yi)

)2
(1.4.15)

and by (1.4.3) and the L2
ρ-orthonormality of {lj}

(xω)Txω =
#Λ∑
j=1

(xωj )2 = ‖ΠΛ,ω
M φ‖2L2

ρ
. (1.4.16)

Using in sequence (1.4.16), (1.4.14) and (1.4.15), yields

(xω)T (Dω)TDωxω

(xω)Txω =
∑M
i=1(ΠΛ,ω

M φ(yi))2

‖ΠΛ,ω
M φ‖2L2

ρ

=
M‖ΠΛ,ω

M φ‖2M,ω

‖ΠΛ,ω
M φ‖2L2

ρ

. (1.4.17)

This shows that (1.4.17) is the Rayleigh quotient of the matrix (Dω)TDω. So the largest and
smallest eigenvalues of (Dω)TDω correspond to cω(M,Λ) and Cω(M,Λ)−1, respectively. Since
(Dω)TDω is symmetric positive definite, its singular values are also eigenvalues. The conclusion
follows from the definition (1.4.9) of the condition number.

Remark 1.3. In 1D and for the uniform distribution we can easily establish a norms equivalence
between ‖ · ‖M,ω and ‖ · ‖L2

ρ
, collecting the results of Theorem 1.3 and Remark 1.1. Namely, under

the condition (1.3.1), with probability 1− α we have

1
1 + w‖v‖

2
M,ω ≤ ‖v‖2L2

ρ
≤ 3 log

(
M + 1
α

)
‖v‖2M,ω,

from which we get the bound on the condition number

cond
(
(Dω)TDω

)
≤ log((M + 1)/α)

w + 1 , in ΣM . (1.4.18)

where ΣM is the event defined in (1.3.11) that has probability at least 1− α. However, we have
observed numerically that the bound (1.4.18) is very pessimistic as under condition (1.3.1) the
condition number seems to be uniformly bounded with respect to M and w.

A direct consequence of Theorem 1.1 is that

cond
(
(Dω)TDω

)
M→+∞−→ 1, a.s.

This is confirmed numerically. Fig. 1.2 shows the numerical results obtained for a 1D problem
with an overkilling rule M = 100 · (#Λ)4, to simulate the asymptotic case M ↑ ∞.

1.5 Numerical results
We present an illustrative selection of results from an extensive set of numerical tests. The aim
is to seek the correct relation between the number of points to sample M and the dimension
of the polynomial space to have a stable and accurate approximation. The following issues are
addressed:



1.5. NUMERICAL RESULTS 29

1 5 10 15 20 22
10

0

10
0.01

10
0.02

10
0.03

10
0.04

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=100⋅#Λ4

 

 

c=100

Figure 1.2: Condition number (1.4.9), N = 1, M = 100 · (#Λ)4. The continuous, marked, lines
show the mean condition number (1.4.10) over 200 repetitions. The dashed lines show the mean
(1.4.10) plus one standard deviation (1.4.11). The scale on the y-axis ranges from 100 = 1 to
100.04 = 1.0965

• how the condition number (1.4.9) depends on w, N , c, α and the choice of the polynomial
space;

• analogously, how the cross-validation error (1.4.6) behaves.

In the convergence plots presented in the rest of this section we show the average error (1.4.7)
and condition number (1.4.10) as well as their average plus one standard deviation.

1.5.1 The one-dimensional case

We first investigate the dependence of the condition number (1.4.9) on the rule (1.4.1) used to
select the numberM(w) of sampling points. Observe that in the one-dimensional case #Λ = w+1.

As seen in Fig. 1.3, the condition number behaves differently depending on the rule chosen. In
Fig. 1.3-Left we report results obtained with the linear rule M = c ·#Λ, corresponding to α = 1
in (1.4.1). We tested several values for c ranging from 2 to 20. All cases show an exponential
growth of the condition number with respect to w, with rates decreasing with increasing c (as
one would expect). Using R = 10000 repetitions the observed average condition number still
shows a large variability. This is due to the large standard deviations of the condition number,
as indicated in the figure in dashed line.

Note that the range of w goes up to 25, so in this range the choice of the largest c yields a linear
rule which uses more sample points than some of the quadratic rules (shown in Fig. 1.3-Right).

In contrast to the exponential growth observed when using the linear rule, the results using
the quadratic rule exhibit a condition number which is approximately constant for w ranging
from 1 to 40. Fluctuations become smaller when c increases. This behaviour is consistent with
the theoretical results in Section 1.3.

We now proceed to illustrate the convergence of the error for few functions of varying regularity
in Figs. 1.4–1.7.

We focus on three target functions: an exponential function

φ(Y ) = exp(Y ), Y ∈ [−1, 1], (1.5.1)

a meromorphic function

φ(Y ) = 1
1 + βY

, Y ∈ [−1, 1], (1.5.2)



30CHAPTER 1. THE RANDOM DISCRETE L2 PROJECTION ON POLYNOMIAL SPACES

1 5 10 15 20 25
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=c⋅#Λ

 

 

c=2
c=3
c=5
c=10
c=20

1 5 10 15 20 25 30 35 40
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=c⋅#Λ2

 

 

c=0.5
c=1
c=1.5
c=2
c=3

Figure 1.3: Condition number (1.4.9), N = 1. The continuous, marked, lines show the mean
condition number (1.4.10) over 10000 repetitions. The dashed lines show the mean (1.4.10) plus
one standard deviation (1.4.11). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

that is a function which is analytic provided that β ∈ (−1, 1), and a function with lower regularity

φ(Y ) = |Y |3. (1.5.3)

Fig. 1.4 shows the error computed as in (1.4.6), in approximating the exponential function
(1.5.1) with different choices of c and α in the rule (1.4.1). The quadratic rule (to the right)
displays the same exponential, optimal, convergence with respect to w independently of the
constant c. The convergence is up to the machine precision.
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Figure 1.4: Error (1.4.6) for the function (1.5.1). The continuous marked lines show the mean
error (1.4.7) over 10000 repetitions. The dashed lines show the mean (1.4.7) plus one standard
deviation (1.4.8). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

In contrast, the linear rule (on the left) displays a deterioration of the convergence using
small values of c. The deterioration is due to the ill-conditioning of the matrix DT

M(ω)DM(ω)
when w increases. As noted before, the largest value of c yields at least as many sample points
as the quadratic rule with the smallest value of c in the shown range and the errors behave
accordingly. Again the fluctuations in the average error decrease with increasing c.

The use of the meromorphic function (1.5.2) with β = 0.5 (Fig. 1.5) and β = 0.9 (Fig. 1.6)
yields analogous error graphs, but with a slower convergence rate. Unlike the function (1.5.2),
which is analytic in [−1, 1], the function (1.5.3) is only in C2([−1, 1]), but not in C3([−1, 1]).
This decreased regularity manifests in the slower decay of the approximation error in Fig. 1.7.
Note that the dependence of the error on the polynomial degree w is displayed in log-log scale,
so that the error no longer decreases exponentially with respect to w.

When taking the number of sample points according to the quadratic rule (Fig. 1.7-Right),
the error decreases like w−3, and in this range of w the error shows no tendency to blow up for
any of the studied values of c.
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Figure 1.5: Error (1.4.6) for the function (1.5.2) with β = 0.5. The continuous marked lines show
the mean error (1.4.7) over 10000 repetitions. The dashed lines show the mean (1.4.7) plus one
standard deviation (1.4.8). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

On the other hand, using the linear rule (Fig. 1.7-Left) yields a deterioration: the critical w,
above which the error starts to grow, increases with increasing c.
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Figure 1.6: Error (1.4.6) for the function (1.5.2) with β = 0.9. The continuous marked lines show
the mean error (1.4.7) over 10000 repetitions. The dashed lines show the mean (1.4.7) plus one
standard deviation (1.4.8). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

Note, in particular, that sooner or later the error starts to blow up for all shown constants. This
is a clear indication that the linear rule does not lead to a stable and convergent approximation.

From a practical point of view, we are mainly interested in the error as a function of the
computational work, not the polynomial degree itself. Fig. 1.8 shows how the error depends on
the total number of sampling points, when we consider the function (1.5.2) with β = 0.5. Note
that Fig. 1.8 shows the same errors as Fig. 1.5 but with M instead of w on abscissas.

In Fig. 1.8-Left we show the linear case: the error decays exponentially with increasing M in
an initial phase, until the error starts to deteriorate. The convergence is faster for small values
of c, but the deterioration also happens earlier, which prevents higher accuracies.

In Fig. 1.8-Right we show the quadratic case. In contrast to the linear case the convergence
becomes subexponential with respect to M . On the other hand, all choices of c ≥ 1 avoid the
deterioration of the errors that we see using the linear rule, and the approximation remains
stable and convergent. Fig. 1.9 compares the convergence of the error obtained with the linear
and quadratic rules, with respect to M .

We remark that, even though the error deteriorates for high w when using the linear rule
with a small c, we can still obtain an accuracy that suffices in many applications.

The plots in Fig. 1.8 show how the convergence speed is affected by the ratio between M
and w. The convergence is fastest with the lowest constant c = M/w up to a certain point when
blow up occurs.

A lower number of repetitions only turns out in an amplified variance in the results. In view
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Figure 1.7: Error (1.4.6) for the function (1.5.3). The continuous marked lines show the mean
error (1.4.7) over 10000 repetitions. The dashed lines show the mean (1.4.7) plus one standard
deviation (1.4.8). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

of the multiD section, where we choose R = 100, we report also in Fig. 1.10 the same graph of
Fig. 1.3-Right, but with R = 200.
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Figure 1.8: Dependence of the error (1.4.6) on the number of sample points M . The function
is (1.5.2) with β = 0.5. The continuous marked lines show the mean error (1.4.7) over 10000
repetitions. The dashed lines show the mean (1.4.7) plus one standard deviation (1.4.8). Left:
M = c ·#Λ. Right: M = c · (#Λ)2.

1.5.2 The multidimensional case

We now proceed to the multidimensional case, where we have an increased freedom to choose the
space PΛ(Γ). We will restrict our examples to isotropic versions of the TP, TD and HC spaces
mentioned above. In this section we choose R = 100 repetitions to estimate the variability of the
error and condition number. In the linear case, the values assumed by c are 1.1, 1.25, 2, 5, 20. In the
multidimensional case a constant c slightly larger than 1 is enough to have a good approximation.
This is in contrast to the 1D case, where the linear rule with a constant c = 2 features a fast
growth of the condition number and a large variability of the polynomial approximation.

Condition number

Fig. 1.11 shows the behaviour of the condition number for the 2D TP space. We see again an
exponential growth of the condition number when M is chosen according to the linear rule. Note
that the dimension of the PC space is equal to (w + 1)2 here.

As in the one-dimensional case, choosing the number of sample points M like M ∝ (#Λ)2

yields condition numbers that are approximately constant in the studied range of w. Compared
to the one-dimensional results of Fig. 1.3, the two-dimensional results exhibit a lower variability.
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Figure 1.9: Dependence of the error (1.4.6)
on the number of sample pointsM . Selected
data from Fig. 1.8 corresponding to the rules
M = 2 ·#Λ, M = 20 ·#Λ, M = 1 · (#Λ)2,
and M = 3 · (#Λ)2.
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Figure 1.10: Condition number (1.4.9), N =
1. The continuous, marked, lines show the
mean condition number (1.4.10) over 200
repetitions. The dashed lines show the mean
(1.4.10) plus one standard deviation (1.4.11).
M = c · (#Λ)2.

Changing the polynomial space to TD we obtain Fig. 1.12, which looks similar to Fig. 1.11.
The same holds with the HC space (Fig. 1.13). Therefore, the choice of the space does not seem
to play a major role in the behaviour of the condition number (1.4.9). Note that the lowest value
of c on the left of Fig. 1.13 is 1, instead of 1.1.

The situation is similar in higher dimensions; see Figs. 1.14–1.16. In addition, we observe
a lower variability and a slower growth of the condition number with the linear rule, which,
however, is still clearly exponential. Lastly, the HC space with the linear rule shows a very slow
growth of the condition number also for very low values of c.
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Figure 1.11: Condition number (1.4.9), TP, N = 2. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

Approximation error

Let us consider the error in approximating the target function

φ(Y) = 1

1 + β

N

∑N
i=1 Yi

, Y ∈ [−1, 1]N , (1.5.4)

which is a multidimensional generalization of (1.5.2), and inherits its regularity. We take β = 0.5
and start by considering the quadratic rule. Fig. 1.17 shows the optimal convergence rates.
The TP space (Fig. 1.17-Left) seems to converge faster than the TD space (Fig. 1.17-Center),
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Figure 1.12: Condition number (1.4.9), TD, N = 2. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 1.13: Condition number (1.4.9), HC, N = 2. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 1.14: Condition number (1.4.9), TP, M = c ·#Λ. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: N = 3. Right: N = 4.
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Figure 1.15: Condition number (1.4.9), TD, N = 4. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 1.16: Condition number (1.4.9), HC, M = c ·#Λ. The continuous, marked, lines show the
mean condition number (1.4.10) over 100 repetitions. The dashed lines show the mean (1.4.10)
plus one standard deviation (1.4.11). Left: N = 4. Right: N = 8.
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but looking at the dimension #Λ of the space we recognize that spaces of the same dimension
(TP or TD) introduce similar approximation errors (see Tables 1.1 and 1.2). Instead, we see in
Fig. 1.17-Right that the convergence of the HC space is slower, also when looking at the effective
dimension of the space, in Table 1.3.
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Figure 1.17: Error (1.4.6) with the function (1.5.4), β = 0.5, N = 2, M = c · (#Λ)2. The
continuous marked lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show
the mean (1.4.7) plus one standard deviation (1.4.8). Spaces: TP (left), TD (center), HC (right).

w # TP Ecv

5 36 0.790 · 10−4

7 64 1.456 · 10−6

10 121 0.724 · 10−8

11 144 1.108 · 10−9

15 256 0.876 · 10−12

Table 1.1: Selected error val-
ues for TP and M = 2 #TP
from Fig. 1.17-Left.

w # TD Ecv

7 36 1.354 · 10−4

10 66 1.688 · 10−6

14 120 0.512 · 10−8

16 153 5.513 · 10−10

21 253 1.123 · 10−12

Table 1.2: Selected error val-
ues for TD and M = 2 #TD
from Fig. 1.17-Center.

w # HC Ecv

12 37 7.505 · 10−4

19 66 7.971 · 10−5

31 119 8.788 · 10−6

40 160 1.889 · 10−6

Table 1.3: Selected error val-
ues for HC and M = 2 #HC
from Fig. 1.17-Right.

Fig. 1.18 shows the error in approximating the function (1.5.4) in TP (on the left) or TD
(on the right) space, for N = 2. We observe a lower variability in the error due to the reduced
variability in the corresponding condition number. Despite the reduced variability we observe
also in this case that the linear rule eventually leads to divergence when w increases if c is chosen
too small. This effect will be much more dramatic for low regularity functions, as shown later on.
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Figure 1.18: Error (1.4.6) with the function (1.5.4), N = 2, M = c ·#Λ. The continuous marked
lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean (1.4.7)
plus one standard deviation (1.4.8). Left: TP space. Right: TD space.

A further comparison can be made between Fig. 1.18-Left and Fig. 1.19-Left. In the latter
case N is increased to 4 (TP space), and this yields a faster convergence with respect to w. Note
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however, that a larger amount of sample points is used, for corresponding w values.
Analogously, the comparison of Figs. 1.18-Right and Fig. 1.19-Right concerning the TD space

reveals that in higher dimension the convergence is faster and more stable.
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Figure 1.19: Error (1.4.6) with the function (1.5.4), β = 0.5, N = 4, M = c ·#Λ. The continuous
marked lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean
(1.4.7) plus one standard deviation (1.4.8). Spaces: TP (left), TD (right).

We also consider the function,

φ(Y) =
N∑
i=1
|Yi|3, Y ∈ [−1, 1]N , (1.5.5)

which is a multidimensional extension of (1.5.3). Fig. 1.20 shows that the optimal convergence
rate achieved by the quadratic rule does not depend on the choice of the space (i.e. TP, TD,
or HC). In addition, for the linear rule Fig. 1.21 shows that the same convergence behaviour is
obtained when increasing the dimension N , but with a significantly decreased variability. Note
that we even allowed c to take the value 1 in the linear rule.
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Figure 1.20: Error (1.4.6) with the function (1.5.5), N = 2, M = c · (#Λ)2. The continuous
marked lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean
(1.4.7) plus one standard deviation (1.4.8). Spaces: TP (left), TD (center), HC (right).

A function with lower regularity across a circle

Now we give an example of a function which is hard to approximate in the TD spaces. When
N = 2, we consider the target function

φ(Y) =
∣∣∣∣∣

2∑
i=1

Y 2
i − 0.5

∣∣∣∣∣
3

, Y ∈ [−1, 1]2, (1.5.6)

which features a discontinuity in its derivatives over the circle with radius equal to
√

0.5 and
centered in the origin. Note that (1.5.6) is a continuous function.
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Figure 1.21: Error (1.4.6) with the function (1.5.5), HC space. The continuous marked lines
show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean (1.4.7) plus
one standard deviation (1.4.8). M = c ·#Λ. N = 2 (left), N = 4 (center), N = 8 (right).

Choosing the quadratic rule leads to the expected theoretical convergence rates for both TP
and TD spaces; see Fig. 1.22. However, the TD space exhibits a suboptimal convergence rate
already when w ≤ 5.

When choosing the linear rule (Fig. 1.23), the results obtained with the TP space slightly
differ from those obtained with the TD space. In particular, the convergence rate is slower than
the theoretically predicted one (Fig. 1.23-Right).
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Figure 1.22: Error (1.4.6) with the function (1.5.6), N = 2, M = c · (#Λ)2. The continuous
marked lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean
(1.4.7) plus one standard deviation (1.4.8). Left: TP. Right: TD.

1.6 Conclusions

In this work we have analyzed the problem of approximating a multivariate function by discrete
L2 projection on a polynomial space starting from random, noise-free observations.

In the 1D case with sampling points drawn from a bounded domain and a probability density
function bounded away from zero, we have shown that the discrete L2 projection leads to optimal
convergence rates, equivalent to the best approximation error in L∞, up to a logarithmic factor,
provided the number of samples M scales quadratically with the dimension of the polynomial
space #Λ. We have also shown how this result reflects on the condition number of the design
matrix.

The numerical tests we have performed confirm the theoretical results corresponding to
a uniform distribution of sample points. In our 1D tests, we clearly see that the condition
M ∼ (#Λ)2 guarantees a condition number of the design matrix bounded independently of the
polynomial degree and an optimal convergence rate. On the other hand, the relation M ∼ #Λ
leads to a condition number growing exponentially fast with the polynomial degree and a
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Figure 1.23: Error (1.4.6) with the function (1.5.6), N = 2, M = c ·#Λ. The continuous marked
lines show the mean error (1.4.7) over 100 repetitions. The dashed lines show the mean (1.4.7)
plus one standard deviation (1.4.8). Left: TP. Right: TD.

convergence plot that features initially a suboptimal rate up to a critical polynomial degree
beyond which divergence is observed. In addition, the sensitivity on the proportionality constant
has been examined.

In high dimension we observe numerically in many cases that a choice M ∼ #Λ does lead to
optimal convergence rate within all reasonable tolerances (up to machine precision). Whether
this is an indication that in high-D the relation M ∼ #Λ is enough to have a stable and optimal
approximation or just that the blow up of the error occurs much further (at tolerances below
machine precision) is still an open question and a topic of current research.

In this work we have considered only functions with values in R. In the field of UQ, one is
often interested in functions with values in some Banach space, representing the solution of a
(possibly nonlinear) differential or integral problem. Future research directions will include the
extension of these results to Banach-valued functions.
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Chapter 2

Discrete least squares polynomial
approximation with random
evaluations; application to
parametric and stochastic elliptic
PDEs

This chapter is based on the contents of the manuscript [CCM+13], in collaboration
with A. Chkifa, A. Cohen, F. Nobile and R. Tempone.

2.1 Introduction

In this work we analyze the discrete least squares approximation based on random evaluations,
to approximate functions depending on multivariate random variables distributed according
to a given probability density. We first recall in Section 2.2 the main results achieved by two
independent approaches that have been recently proposed in the univariate case: stability and
optimality have been proved, in expectation in [CDL13] and in probability in [MNvST11], under
the condition that the number of samples scales quadratically with respect to the dimension of
the polynomial space. Then we focus on the extension to the multivariate case. In Section 2.3 the
relation between the number of samples and the dimension of the polynomial space is extended
to any monotone set, for any dimension of the parameter space.

The least squares methodology based on discrete random evaluations is then applied in
Section 2.4 to the approximation of the solution to PDE models with stochastic coefficients,
when the parameter space features moderately high dimensionality. Next we consider a specific
application consisting of a linear elliptic PDE with a diffusion coefficient containing some inclusions
with random diffusivity. For this specific model, results on the polynomial approximation by
Stochastic Galerkin of the solution w.r.t. the random diffusion parameters have been obtained in
[CCDS13, BNTT11b], and we recall them in Section 2.4.2. Afterwards, in Section 2.4.3 we focus
on the approximation of the solution to the same model by the random discrete projection on
Total Degree polynomial spaces, and show sub-exponential convergence w.r.t. the total number
M of sampling points (hence deterministic PDEs to solve).

This estimate clarifies the dependence of the convergence rate on the number of sampling
points and on the dimension of the parameter set. In addition, a relation has been established
between the convergence rate of the least squares approximation and the convergence rate of
the Stochastic Galerkin method derived in [BNTT11b]. The numerical results presented in
Section 2.5 confirm our estimate and highlight a gap between the condition necessary to achieve

41
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stability and optimality in the theory, and the condition that in practice yields the optimal
convergence rate. Finally in Section 2.6 we draw some conclusions.

2.2 Least squares approximation with noise-free evaluations in
random points

Let d be a non negative integer, Γ a bounded domain of Rd and ρ a probability measure on
Γ. We consider u : Γ→ R an unknown function, depending smoothly on a random variable Y
distributed according to a known probability density ρ : Γ→ R+. The goal of our analysis is to
study the approximation of u by the discrete least squares estimation using noise-free samples
zi = u(yi), i = 1, ...,M of u at the sample points SM := (yi)i=1,...,M where the yi ∈ Γ are
i.i.d samples from the measure ρ. The error between u and its estimator ũ is measured in the
L2(Γ, dρ) norm

‖v‖ :=
(∫

Γ
|v(x)|2dρ(x)

) 1
2

. (2.2.1)

Its associated inner product is denoted by 〈·, ·〉. In general, the probability measure ρ is not
known but we can sample according to ρ and we have access to observations of u at any sampled
point y ∈ Γ. A natural approach in this setting is to consider the solution of the discrete least
squares problem

ũ := argmin
v∈L2(Γ,dρ)

M∑
i=1
|zi − v(yi)|2.

In general ũ is not unique. We consider instead the discrete least squares estimation of u on
finite dimensional subspaces of L2(Γ, dρ). Let N ≥ 1 and VN ⊂ L∞(Γ) be a finite dimensional
subspace of L2(Γ, dρ) with dimVN = N , we introduce the best approximation of u in the space
VN in the continuous and discrete least squares sense

PNu = argmin
v∈VN

‖u− v‖ and PMN u = argmin
v∈VN

‖u− v‖M , (2.2.2)

where

‖v‖M =
(

1
M

M∑
i=1
|v(yi)|2

) 1
2

, (2.2.3)

is the L2 norm with respect to the empirical measure. Analogously, 〈., .〉M denotes the associated
empirical inner product. We should emphasize that this discrete inner product depends on the
sample SM and that the projection PNu depends on the space VN and the discrete projection
PMN u depends on both the space VN and the sample SM .

We are interested in the case N ≤M which is the regime where problem (2.2.2) may admit
a unique solution. Let BL := {L1, . . . , LN} be any basis of VN . The approximation PMN u is then
given by

PMN u =
N∑
j=1

wjLj ,

where w := (w1, . . . , wN )t is the unique solution of

Gw = Ju,



2.2. LEAST SQUARES APPROXIMATION WITH RANDOM EVALUATIONS 43

with G := (〈Li, Lj〉M )1≤i,j≤N , J = 1
M (Li(yj))1≤i≤N

1≤j≤M
and u := (zj)t1≤j≤M . When G is not

singular, then we have

PMN u =
M∑
j=1

u(yj)πj ,

where Bπ := {π0, . . . , πM} is a family of elements in VN given by

Bπ =
(
G−1J

)t
BL.

Indeed, for y ∈ Γ fixed, using the notation Ly := (Lj(y))t1≤j≤N , we have

PMN u(y) =
N∑
j=1

wjLj(y) = w · Ly = (G−1Ju) · Ly = u · (G−1J)tLy.

2.2.1 Stability of the projection PM
N

We suppose now that the basis BL is an orthonormal basis of VN with respect to 〈·, ·〉. We
introduce the quantity

K(VN ) := sup
y∈Γ

 N∑
j=1
|Lj(y)|2

 . (2.2.4)

The quantity K(VN ) does not depend on the orthonormal basis (Lj)1≤j≤N and depends only on
VN and on the measure ρ. See Proposition 2.1 below.

For brevity, in the sequel we denote by ‖v‖∞ := ‖v‖L∞(Γ) the infinite norm of v. As in
[MNvST11], we introduce the constant

C̃(VN ) = sup
v∈VN : v 6=0

‖v‖2∞
‖v‖2

. (2.2.5)

Note that the values ofK(VN ) and C̃(VN ) are bounded, since we assumed VN ⊂ L∞(Γ). Moreover,
we have the following result.

Proposition 2.1.

K(VN ) = C̃(VN ).

Proof. To see this, we have by Cauchy-Schwartz inequality

∣∣ N∑
j=1

vjLj(y)
∣∣2 ≤ N∑

j=1
|Lj(y)|2

N∑
j=1
|vj |2 ≤ K(VN )‖v‖2, y ∈ Γ,

with equality when y = y∗ is the point of Γ where the supremum in K(VN ) is attained and the
function v is defined by vj = Lj(y∗).

We also observe that E(G) = I where I is the identity matrix. It has been proved in [CDL13]
that G is well conditioned with high probability. We introduce the operator norm

|||M ||| := sup
v 6=0

‖Mv‖
‖v‖

= sup
v,w 6=0

|〈Mv,w〉|
‖v‖‖w‖

.

The following Theorem has been proved in [CDL13].
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Theorem 2.1. For 0 < δ < 1, then

Pr
(
|||G− I||| > δ

)
≤ 2N exp

(
− βδM

K(VN )
)
,

where βδ := δ + (1− δ) log(1− δ).

Proof. See [CDL13, Theorem 1].

The theorem implies in particular that when K(VN ) is smaller that M by a logarithmic
factor, for example, if K(VN ) is such that

K(VN ) ≤ βδ
1 + γ

M

logM (2.2.6)

for some γ > 0, then

Pr
(
|||G− I||| > δ

)
≤ 2N
Mγ+1 ≤ 2M−γ . (2.2.7)

In the sequel, we pick δ = 1
2 and shorten the notation with β = β 1

2
≈ 0.15. In Section 2.5 we will

numerically analyze the effects of a different choice of the parameter δ.
Given M fixed, we denote dρM the probability measure of the draw. We denote by ΩM the

set of all possible draws and we divide it into ΩM
+ the set of draws such that

|||G− I||| ≤ 1
2 .

Denote its complement by ΩM
− = ΩM \ ΩM

+ . For any γ > 0, if K(VN ) satisfies (2.2.6), then
Pr(ΩM

+ ) > 1− 2M−γ . In addition, for any draw in ΩM
+ , we have by the definition of the spectral

norms that,

|〈v, w〉M − 〈v, w〉| ≤
1
2‖v‖‖w‖, v, w ∈ VN ,

which implies in particular that

1
2‖v‖

2 ≤ ‖v‖2M ≤
3
2‖v‖

2, v ∈ VN . (2.2.8)

Following [MNvST11], we introduce the random variable Cω as

Cω(M,VN ) = sup
v∈VN\{v≡0}

‖v‖2

‖v‖2M
,

using the continuous weighted L2 norm (2.2.1) and the discrete norm (2.2.3), and the random
variable

cω(M,VN ) := sup
v∈VN\{v≡0}

‖v‖2M
‖v‖2

.

We can measure the stability of the discrete least squares approximation in terms of the
condition number of the matrix GTG: the following characterization has been proven in
[MNvST11].

Proposition 2.2 ([MNvST11]). The spectral condition number (2-norm) of the matrix GTG is
equal to

cond
(
GTG

)
= cω(M,VN )Cω(M,VN ).

Proof. See [MNvST11, Proposition 4].
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The previous considerations show that cond
(
GTG

)
≤ 3 with high probability under the

condition (2.2.6). Moreover, cond
(
GTG

)
M→+∞−→ 1 thanks to the following result proved in

[MNvST11]:

Theorem 2.2 ([MNvST11]). Given any finite dimensional set VN ⊂ L∞(Γ), it holds

lim
M→+∞

cω(M,VN ) = lim
M→+∞

Cω(M,VN ) = 1, almost surely.

Proof. See [MNvST11, Theorem 1].

2.2.2 Optimality of the projection PM
N

In this section we analyze the optimality of the random discrete projection. The exact projection
PNu of the function u on VN and the discrete projection PMN u of u on VN have been introduced in
(2.2.2). The corresponding approximation errors, both in the L2 sense, are denoted as ‖u−PNu‖
and ‖u− PMN u‖, respectively. Moreover, we denote by infv∈VN ‖u− v‖∞ the best approximation
error in L∞ of u on VN .

Assumption 2.1. The function u is uniformly bounded and there exists τ > 0 such that

|u(y)| ≤ τ, ∀y ∈ Γ.

Under Assumption 2.1 on the target function u, we introduce the truncated projection

P̃MN u = Tτ (PMN u), (2.2.9)

where Tτ (t) := sign(t) min{τ, |t|}.

Lemma 2.1 ([MNvST11]). For any realization of the random sample SM it holds

‖u− PMN u‖ ≤
(
1 +

√
Cω(M,VN )

)
inf
v∈VN

‖u− v‖∞.

Proof. See [MNvST11, Proposition 1].

Lemma 2.1 shows that, in any dimension d and for any density ρ, the approximation properties
of the random least squares projection can be determined by the analysis of the random variable
Cω. In particular, Lemma 2.1 holds for any value of M . When M is large enough, from
Theorem 2.2 the random least squares projection is stable and yields the same error as the the
best approximation error achievable, up to a proportionality constant equal to two. The next
theorem ensures the optimality of the random least squares projection, under the condition that
M is large enough to satisfy (2.2.6).

Theorem 2.3. For any γ > 0, if M is such that K(VN ) satisfies (2.2.6), then for any u ∈ L∞(Γ)
with ‖u‖∞ ≤ τ , it holds

E(‖u− P̃MN u‖2) ≤
(
1 + η(M)

)
‖u− PNu‖2 + 8τ2M−γ , (2.2.10)

with η(M) := 4β
(1+γ) logM , and

Pr
(
‖u− PMN u‖ ≤

(
1 +
√

2
)

inf
v∈VN

‖u− v‖∞
)
≥ 1− 2M−γ . (2.2.11)

Proof. The result in expectation given by (2.2.10) has been proven in [CDL13, Theorem 2].
To prove (2.2.11), let M be an integer satisfying the assumption of the theorem. According to

(2.2.7), Pr(ΩM
+ ) ≥ 1− 2M−γ . Now, given a draw in ΩM

+ . Using (2.2.8), we have for any v ∈ VN

‖u− PMN u‖ ≤ ‖u− v‖+ ‖v − PMN u‖ ≤ ‖u− v‖+
√

2‖v − PMN u‖M .

By Pythagoras identity ‖u− v‖2M = ‖u− PMN u‖2M + ‖PMN u− v‖2M , we deduce

‖u− PMN u‖ ≤ ‖u− v‖+
√

2‖u− v‖M ≤ (1 +
√

2)‖u− v‖∞,

which completes the proof.
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In the specific case of polynomial approximation, the probabilistic optimality result expressed
by (2.2.11) has been proven in [MNvST11, Theorem 2]. In particular, in the one-dimensional
case (d = 1) and with the uniform density ρ ∼ U(−1, 1), the relation (2.2.11) (up to a logarithmic
factor) has been proven under the condition that M ∝

(
dim(PN )

)2, using probability arguments
and order statistics of the uniform density.

In many situations the evaluations of the target function u are contaminated by noise, and
are denoted in the sequel by û. The nonparametric approach estimates then the conditional
expectation u(y) = E(û|y), with the maximal variance σ2 of the noise given by

σ2 := max
y∈Γ

E
[
|û− u(y)|2

∣∣∣y] < +∞.

The noisy evaluations û of the unknown function u are employed to compute the (truncated)
least squares projection defined in (2.2.2). The following result has been proven in [CDL13]:

Theorem 2.4. For any γ > 0, if M is such that K(VN ) satisfies (2.2.6), then for any u ∈ L∞(Γ),
with ‖u‖∞ ≤ τ , it holds

E(‖u− P̃MN u‖2) ≤
(
1 + 2η(M)

)
‖u− PNu‖2 + 8τ2M−γ + 8σ2 N

M
, (2.2.12)

with η(M) as in Theorem 2.3.

Proof. See [CDL13, Theorem 3].

The next section focuses on the application of the random least squares projection on
polynomial spaces.

2.3 Least squares approximation in multidimensional polyno-
mial spaces

In this section we confine to the application of the random least squares projection on polynomial
spaces, with either Legendre polynomials and uniform distribution or with Chebyshev polynomials
and Chebyshev distribution.

We introduce the notation F = Nd when d <∞ and F the set of finitely supported multi-
indices when d = ∞. Let ν = (ν1, . . . , νd) be a multi-index and Λ ⊂ F an index set which is
monotonous in the following sense:

Property 3 (Monotonicity of Λ). Consider two multi-indices ν ′,ν ′′ ∈ F such that ν ′′j ≤ ν ′j , ∀ j =
1, . . . , d. The multi-index set Λ is monotonous if the following holds:

ν ′ ∈ Λ⇒ ν ′′ ∈ Λ.

In the case where the density factorizes as ρ(Y) =
∏d
j=1 ρj(Yj) then a basis of the polynomial

space can be constructed by tensorizing one-dimensional orthogonal polynomials with respect to
each weight ρj separately.

From now on, we confine to the case of ρj = U(−1, 1), j = 1, . . . , d. Therefore we introduce
the univariate “Probabilistic” Legendre polynomials (Lk)k≥0, that are orthonormal with respect
to the measure dy

2 on [−1, 1]. The family (Lk)k≥0 forms a complete orthonormal system in
L2([−1, 1], dy2 ). We consider Γ = [−1, 1]d, and then we introduce the tensorized Legendre
polynomials (Lν)ν∈F defined as

Lν(y) :=
∏

j:νj 6=0
Lνj (yj), ν ∈ F , y = (y1, y2, . . .) ∈ Γ. (2.3.1)

The family (Lν)ν∈F forms a complete orthonormal system in L2(Γ, dρ). Next, we define the
polynomial space PΛ associated with any monotone multi-index set Λ as

PΛ = span{Lν : ν ∈ Λ}.
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In the sequel VΛ will denote the polynomial space PΛ. Moreover, as in Section 2.2, N =
dim(VΛ) = dim(PΛ) = #Λ, the last equality being justified by the one-to-one relation (2.3.1)
between basis functions and multi-indices.

Possible choices of polynomial spaces are the Tensor Product and the Total Degree. We index
the set Λ by the subscript w denoting the maximum polynomial degree retained in the space:

Tensor Product (TP), Λ(w) =
{
ν ∈ F : ‖ν‖∞ ≤ w

}
,

Total Degree (TD), Λ(w) =
{
ν ∈ F : ‖ν‖1 ≤ w

}
. (2.3.2)

The exact and discrete projections of the function u on the polynomial space VΛ are denoted by
PΛu and PMΛ u, respectively. The truncation operator defined in (2.2.9) is denoted as P̃MΛ u when
using the discrete projection on the polynomial space VΛ.

With the polynomial basis (2.3.1) the definition of K given in (2.2.4) modifies as

K(Λ) = sup
y∈Γ

∑
ν∈Λ
|Lν(y)|2.

This quantity can be bounded when the set Λ is monotone and when the basis is composed of the
tensorized probabilistic Legendre or Chebyshev polynomials. The following result in Lemma 2.2
allows to quantify the number of sampling points M necessary to satisfy condition (2.2.6), in the
specific case of polynomial approximation with Legendre polynomials. It is valid for any value of
the dimension d, with d = +∞ included.

The result in Lemma 2.4 concerns instead the case of polynomial approximation with
Chebyshev polynomials and distribution.

In Lemma 2.5 we propose an alternative proof of the result expressed by Theorem 2.2, using
multidimensional inverse inequalities.

Lemma 2.2. For any monotone set Λ ⊂ F , the quantity K(Λ) with the tensorized Legendre
polynomials satisfies

K(Λ) ≤ (#Λ)2. (2.3.3)

Proof. For any ν ∈ F and any k ∈ N, we denote by F 3 ((k,ν)) := (k, 0, . . .) +S(ν) the addition
of the multi-index (k, 0, . . .) with all components equal to zero except the first one being equal to
k, and the multi-index ν shifted through the usual Right Shift Operator S.

Since every polynomial Lk attains its maximum in y = 1 and ‖Lk‖L∞([−1,1]) =
√

2k + 1, then

K(Λ) =
∑
ν∈Λ

∏
j:νj 6=0

(2νj + 1).

We prove (2.3.11) using induction on nΛ := #Λ. When nΛ = 1, then Λ = {0F} and it is obviously
true. Let n ≥ 1 and Λ denote a monotone set with nΛ = n+ 1. Without loss of generality, we
suppose that ν1 6= 0 for some ν ∈ Λ, and denote by J ≥ 1 the maximal value attained by the
coordinate ν1 when ν ∈ Λ. For 0 ≤ k ≤ J , we introduce

Λk := {ν̂ = (ν2, ν3, . . . ) : ((k, ν̂)) ∈ Λ}.

By monotonicity of Λ, every Λk is monotone. Also, since J ≥ 1 then #Λk < #Λ for any k, so
that the induction hypothesis implies

K(Λ) =
J∑
k=0

(2k + 1)K(Λk) ≤
J∑
k=0

(2k + 1)(#Λk)2 .

In addition, we have

ΛJ ⊂ · · · ⊂ Λ1 ⊂ Λ0,
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since for k ≥ 1, µ ∈ Λk ⇒ ((k,µ)) ∈ Λ⇒ ((k − 1,µ)) ∈ Λ⇒ µ ∈ Λk−1. We deduce

k(#Λk)2 ≤ #Λk#Λ0 + ...+ #Λk#Λk−1,

and consequently

K(Λ) ≤
J∑
k=0

(#Λk)2 + 2
J∑
k=0

(
#Λk#Λ0 + ...+ #Λk#Λk−1

)
≤
( J∑
k=0

#Λk
)2

= (#Λ)2,

which concludes the proof.

Therefore, in the case of polynomial approximation, the optimality result of the least squares
approximation stated in Theorem 2.3 holds under the condition

(#Λ)2 ≤ βδ
1 + γ

M

logM , (2.3.4)

that thanks to (2.3.11) implies (2.2.6).

Lemma 2.3. For any real positive numbers a0 ≥ a1 ≥ ... ≥ an and any α > ln 3
ln 2 it holds

(a0 + ...+ an)α ≥ aα0 + 2(aα1 ...+ aαn). (2.3.5)

Proof. The proof is by induction on n. Indeed, for n = 0 (2.3.5) is always true. For n = 1, since
the function x 7→ (x+ a1)α − xα is increasing in [a1,∞[, then

(a0 + a1)α − aα0 ≥ (2α − 1)aα1 ≥ 2aα1 .

Now let n ≥ 1 and a0 ≥ a1 ≥ ... ≥ an+1 be positive number. By the induction assumption, we
have

(a0 + ...+ an+1)α =
(
(a0 + ...+ an) + an+1

)α
≥ (a0 + ...+ an)α + 2aαn+1
≥ aα0 + 2(aα1 ...+ aαn) + 2aαn+1
= aα0 + 2(aα1 ...+ aαn+1).

Lemma 2.4. For any monotone set Λ ⊂ F , the quantity KT (Λ) with the tensorized Chebyshev
polynomials satisfies

KT (Λ) ≤ (#Λ)β, with β = ln 3
ln 2 . (2.3.6)

Proof. The univariate “Probabilistic” Chebyshev polynomials (Tn)n≥0 are normalized according
to

max
t∈[−1,1]

Tn(t) = T (1) =


1, if n = 0,
√

2, if n 6= 0.

Consequently, the multivariate “Probabilistic” Chebyshev polynomials (Tν)ν∈F are normalized
according to

‖Tν‖∞ = Tν((1, 1, ..., 1)) =
(√

2
)#supp(ν)

, (2.3.7)

and therefore

KT (Λ) =
∑
ν∈Λ

2#supp(ν). (2.3.8)
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We prove (2.3.6) using induction on nΛ := #(Λ). When nΛ = 1, then Λ = {0F} and it is
obviously true. Let n ≥ 1 and Λ denote a monotone set with nΛ = n+ 1. We define J and the
monotone set Λk as in the proof of Lemma 2.2. We have by the induction assumption

KT (Λ) =
J∑
k=0

γ(k)KT (Λk) ≤
J∑
k=0

γ(k)(#(Λk))
ln 3
ln 2 .

with γ(0) = 1 and γ(k) = 2 for k ≥ 1. Therefore

KT (Λ) ≤ (#Λ0)
ln 3
ln 2 + 2

J∑
k=1

(#Λk)
ln 3
ln 2 .

Since 0 < #(ΛJ) ≤ · · ·#(Λ1) ≤ #(Λ0), then by the inequality (2.3.5) in Lemma 2.3 we deduce

KT (Λ) ≤ (#Λ0 + ...+ #ΛJ)
ln 3
ln 2 = (#Λ)

ln 3
ln 2 ,

which completes the proof.

Lemma 2.5. In the cases of Tensor Product and Total Degree polynomial spaces, the quantity
K(Λ) with the tensorized Legendre polynomials satisfies

K(Λ) ≤


(#Λ)2, Tensor Product,(2w
d

+ 1
)d

#Λ, Total Degree.
(2.3.9)

Proof. The univariate Legendre polynomials orthonormal in L2
ρ(−1, 1), i.e. ‖Lk‖ = 1, are such

that ‖Lk‖L∞(−1,1) =
√

2k + 1. Given v ∈ PΛ, it can be expanded as v =
∑
ν∈Λ vνLν . As in

Lemma 2.2, it holds

K(Λ) =

∑
ν∈Λ

d∏
j=1

(2νj + 1)

 (2.3.10)

for any monotone Λ and any value of d. Then, in the case of TP we obtain

K(Λ) =
d∏
j=1

w∑
i=0

(2i+ 1) =
d∏
j=1

(
w + 1 + 2

w∑
i=0

i

)
=

d∏
j=1

(
w + 1 + 2w(w + 1)

2

)
= (#Λ)2.

In the case of TD it holds

K(Λ) =
∑
ν∈Λ

d∏
j=1

(2νj + 1) ≤
∑
ν∈Λ

(2w
d

+ 1
)d
≤
(2w
d

+ 1
)d ∑

ν∈Λ
1 ≤

(2w
d

+ 1
)d

#Λ.

Remark 2.1. In the case of Total Degree space, a direct calculation of K(Λ) shows that the
condition (2.3.11) expressed in Lemma 2.2 is conservative. In particular

#Λ ≤ K(Λ) < (#Λ)2, (2.3.11)

where the second inequality is strict for all d > 1. Fig. 2.1 shows that as the dimension d
increases, the value of K(Λ) departs more and more from the bound (#Λ)2. The bound in Lemma
2.5 is useful only for d > 5 where the factor

(
1 + 2w

d

)d
is smaller than #Λ.
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Figure 2.1: Comparison between (#Λ)2 and K(Λ) in the case of Total Degree space. Left: d = 2.
Center: d = 4. Right: d = 8.

2.4 Application to elliptic PDEs with random inclusions

We consider the stochastic elliptic boundary value problem

−div(a∇u) = f in D ⊂ Rq, u = 0 on ∂D, (2.4.1)

where f ∈ H−1(D), q is a positive integer and

a(x,y) := ā(x) +
d∑
j=1

yjψj(x). (2.4.2)

The yj , j = 1, . . . , d are independent and uniformly distributed on [−1, 1]. Here d may be infinite;
ā and ψj are functions in L∞(D) with nonoverlapping supports. We suppose that a satisfies the
following uniform ellipticity assumption:

Assumption 2.2 (Uniform Ellipticity Assumption UEA(r,R)).

0 < r ≤ a(x, y) ≤ R <∞, ∀x ∈ D, ∀ y ∈ Γ,

where Γ := [−1, 1]d when d <∞ and Γ := [−1, 1]N when d =∞.

We introduce ρ the uniform measure on Γ defined by dρ := ⊗dj≥1
dyj
2 and the Hilbert space

V := L2(Γ, V, dρ) of square integrable functions taking value in V equipped with the inner
product

〈v, w〉 :=
∫

Γ

(∫
D
∇v(y) · ∇w(y)dx

)
dρ(y). (2.4.3)

The model (2.4.1) yields the variational problem: find u ∈ V such that

B(u, v) = L(v), ∀v ∈ V,

where the linear and bilinear form L and B are defined by,

B(w, v) :=
∫

Γ

(∫
D
a(x,y)∇w(y) · ∇v(y)dx

)
dρ(y), L(v) :=

∫
Γ

(∫
D
f(x)v(x,y)dx

)
dρ(y),

with the integrals over D to be understood as extensions by continuity from L2(D) × L2(D)
to duality pairings between V ∗ and V . The Assumption 2.2 implies that there exists a unique
solution u ∈ V to the variational problem, which satisfies

‖u(y)‖V ≤
‖f‖V ∗
r

=: τ̃ , ∀y ∈ Γ. (2.4.4)
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As we did in Section 2.2.2 for the discrete projection PN , we define the truncated discrete
projection P̃Λ on VΛ,

P̃MΛ u = Tτ̃ (PMΛ u), (2.4.5)

but using a truncation operator Tτ̃ defined as

Tτ̃v =


v , if ‖v‖V ≤ τ̃ ,
τ̃

‖v‖V
v , if ‖v‖V > τ̃,

, (2.4.6)

with the threshold τ̃ instead of τ . It will be clear from the context if we use (2.2.9) or (2.4.6).
We have that V is isomorphic to L2(Γ, dρ)⊗V so that every v in V admits a unique expansion

of the form

v =
∑
ν∈F

vνLν , with vν =
∫

Γ
v(y)Lν(y)dρ(y) ∈ V, ν ∈ F .

We denote by

u =
∑
ν∈F

uνLν ,

the expansion of the solution u and introduce the sequence (cν)ν∈F with

cν = ‖uν‖V , ν ∈ F .

The summability properties of the sequence (cν)ν∈F are well understood. For p > 0, we introduce
the space `p(F) of p-summable sequences indexed in F . For a sequence (aν)ν∈F , we introduce
a := (aν)ν∈F the monotone envelope of (aν)ν∈F defined by

aν = max
ν≤µ
|aµ|,

where ≤ is the order relation defined on F by ν ≤ µ iff νj ≤ µj for any j. The sequence a is
monotone decreasing, in the sense that

ν ≤ µ⇒ aµ ≤ aν .

For p > 0, we introduce the space `pm(F) of sequences that have their monotone envelopes in
`p(F). The following result has been proved in [CDS11].
Theorem 2.5. Under the uniform ellipticity assumption 2.2 and if the sequence (‖ψj‖L∞(D))j≥0
belongs to `p(N) for some p < 1, then the sequence (cν)ν∈F belongs to `pm(F).

This result implies in particular that if ΛN is the set of multi-indices in F corresponding to
the N largest values of cν , then

‖u−
∑
ν∈ΛN

uνLν‖V =
( ∑
ν 6∈ΛN

c2
ν

) 1
2 ≤

( ∑
ν 6∈ΛN

c2
ν

) 1
2 ≤ ‖c‖`p(F)N

−s, s = 1
p
− 1

2

where we have used Stechkin formula with the p-summable sequence (cν)ν∈F . Let us observe
that since the sequence (cν)ν∈F is monotone decreasing, then we can always choose the set ΛN
to be monotone, i.e.

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

This shows the existence of monotone sets that are quasi-optimal in the sense of best term
approximation w.r.t. the monotone envelope. In practice, the construction of the sets ΛN

described earlier is impossible since the sequence (cν)ν∈F and thus (cν)ν∈F is unknown. We
know instead a sequence of computable a priori estimates (qν)ν∈F that is monotone decreasing
and satisfies |cν | ≤ qν . The sequence of nested monotone sets (ΛN )ν∈F corresponding each to
the multi-indices of the N largest qν with ties broken arbitrarily, but with the condition that the
monotonicity and nestedness hold, satisfies

‖u−
∑
ν∈ΛN

uνLν‖V ≤ ‖q‖`p(F)N
−s, s = 1

p
− 1

2 .
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2.4.1 Discrete least squares approximation of parametric elliptic PDEs

We are also interested in the approximation of u using the discrete least squares approximation
discussed in Section 2.2. Here the function u is not scalar but the definition of the least squares
approximation introduced in (2.2.2) extends straightforwardly, with ‖ · ‖L2(Γ,V,dρ) replacing ‖ · ‖
and ‖ · ‖V replacing the absolute value in (2.2.3). We introduce the space VΛ := PΛ ⊗ V , then

PΛu = argmin
v∈VΛ

‖u− v‖V and PMΛ u = argmin
v∈VΛ

‖u− v‖VM , (2.4.7)

where

‖v‖VM =
( 1
M

M∑
i=1
‖v(yi)‖2V

) 1
2
, (2.4.8)

and yi are i.i.d. samples from the probability measure ρ. We have that

PΛu =
∑
ν∈Λ

uνLν .

The least squares projection is given by

PMΛ u =
M∑
j=1

u(yj)πj , (2.4.9)

where the πi are polynomials in PΛ given by the following argument. As in Section 2.2, we
introduce the notation BL := {Lν1 , . . . ,LνN }. Then the family of polynomials Bπ := {π1, . . . , πM}
is given by

Bπ =
(
G−1J

)t
BL.

where this time G :=
(
〈Lνi , Lνj 〉M

)
1≤i,j≤N

and J = 1
M (Lνi(yj))1≤i≤N

1≤j≤M
. To prove (2.4.9), we fix

α ∈ V and consider the scalar functions

Uα : y 7→ 〈u(y), α〉V and Wα : y 7→ 〈PMΛ u(y), α〉V ,

that belongs to L2(Γ, dρ) and PΛ respectively. The projection PMΛ u satisfies the orthogonality
relation

〈PMΛ u, v〉VM = 〈u, v〉VM , v ∈ VΛ,

therefore replacing v with any polynomial P ∈ PΛ, yields

〈Wα, P 〉M = 〈Uα, P 〉M , P ∈ PΛ, ∀α ∈ V,

with 〈·, ·〉M being the empirical inner product. Therefore, Wα is the least square approximation
of Uα in PΛ. We deduce from the scalar case that

Wα =
M∑
j=1

Uα(yj)πj .

This implies

〈PMΛ u(y), α〉V = 〈
M∑
j=1

u(yi)πj(y), α〉V , ∀y ∈ Γ, ∀α ∈ V,

which completes the justification. �
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2.4.2 The case of nonoverlapping inclusions: approximation in Total Degree
polynomial spaces

In [CDS10], it is shown that there exists a sequence of nested monotone sets (ΛN )N≥0 that can
be built using a priori estimates on the Legendre coefficients. However, the sets in the sequence
(ΛN )N≥0 are difficult to characterize, and might lead to approximations quite far from the best
N-term due to the fact the a priori estimations on the Legendre coefficients are not sharp.

In this work, we focus on the subclass of stochastic PDEs (2.4.1), (2.4.2) characterized by
the fact that the functions ψj have nonoverlapping support. This situation allows to model, for
instance, the diffusion process in a medium with nonoverlapping inclusions of random conductivity
(see e.g. Fig. 2.2). In this case, a priori estimates on the Legendre coefficients have been obtained
e.g. in [BNTT12] and have been shown numerically to be quite sharp. They read:

‖uν‖V ≤ C
d∏
j=1

exp{−νj gj}, ∀ν = (ν1, . . . , νd) ∈ Nd.

Explicit expressions for the constant C can be found in [BNTT12, Corollary 8]. The coefficients
(gj)1≤j≤d can be tuned through an a posteriori procedure, that requires to solve only “one-
dimensional” problems, i.e. analyzing the convergence when considering one random variable
at a time and freezing all other variables to their expected value. In [BNTT12] it is also shown
that the quasi-optimal sets associated with the problems in the aforementioned class are

Λw = {ν ∈ Nd :
d∑
j=1

gjνj ≤ w}, w = 1, 2, . . .

and correspond to anisotropic Total Degree spaces, i.e. the anisotropic variants of (2.3.2).
Analogous estimates, showing the optimality of the TD sets, have been presented in [CCDS13].

For convenience we introduce the constants c2, c3 defined as:

c2 := gd

e
, (2.4.10)

c3 :=
Ĉ2

Leg
(1− e−g)d exp

{
2 e2 (1− e−1) c2

5

}
. (2.4.11)

The expression of ĈLeg can be recovered from [BNTT12, Corollary 8]. It depends on d, gn
and is related to the Polydisc Analyticity Assumption [BNTT12, Assumption 3].

Lemma 2.6. In the isotropic case, i.e. gn = g for all n = 1, . . . , d, the following estimate on the
error of the L2 projection PΛ on the quasi-optimal TD sets holds

‖u− PΛu‖2V ≤ c3 exp
{
−c2N

1
d

}
. (2.4.12)

Proof. The following estimate has been obtained in [BNTT12, Theorem 22]:

‖u− PΛu‖2V ≤
Ĉ2

Leg
(1− e−g)d exp

{
−c2 log

(
(1− ε(N))−1

)
N

1
d

}
, (2.4.13)

with

ε(N) = (1− e−1)
(

1− 2e
5N

1
d

)
. (2.4.14)
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When (2e/5)d < N then (1− ε(N)) < 1, and moreover

lim
N→∞

(1− ε(N))
(
c2N

1
d

)
= 0,

because the exponent is always positive and the basis is smaller than one. Introducing the change
of variable z as

z = N
1
d , (2.4.15)

using the definition of c2 in (2.4.10) and replacing ε by (2.4.14), then the exponential term on
the right side in (2.4.13) can be manipulated as(

e−1 + 2 e (1− e−1)
5 z

)c2 z
=

(
1 + 2 e2 (1− e−1)

5 z

)c2 z
· e−c2 z

< e
2 e2 (1−e−1)

5 c2 · e−c2 z. (2.4.16)

The last passage in (2.4.16) is justified observing that for any a > 0, b > 0, z > 0 it holds

(
1 + a

z

)bz
< eab and lim

z→+∞

(
1 + a

z

)bz
= eab.

Note from (2.4.15) that the limit N → +∞ is equivalent to z → +∞. Thanks to (2.4.16) we can
bound the exponential term on the right of (2.4.13), and using the definition (2.4.11) of c3 we
obtain (2.4.12).

2.4.3 Convergence of the least squares approximation

In this subsection we derive an estimate for the expected L2 error E(‖u− P̃MΛ u‖2V) of the least
squares approximation in terms of the number of sampling points M . To do this we rely on
the estimates regarding the exact L2 projection on Total Degree polynomial spaces that have
been recalled in Section 2.4.2. To begin with, we will use the isotropic estimate (2.4.12). The
extension to anisotropic problems will be presented in a forthcoming work.

To lighten the notation we introduce the constant

c1 := 8 τ̃2, (2.4.17)

with τ̃ coming from (2.4.4), and the factor

c4 = c4(M) :=
(
1 + η(M)

)
c3, (2.4.18)

that contains the proportionality constant appearing in (2.2.10). Note that η = η(M) is a
decreasing function and in practice its value is such that c4 ≈ c3. Moreover, we name concisely
as

l(u) := ‖u− P̃MΛ u‖V

the truncated error with the threshold τ̃ defined by means of the truncation operator in (2.4.5).
We recall that τ̃ is related to the boundedness of the solution u by (2.4.4).

Theorem 2.6. In the aforementioned PDE model class, the convergence rate of the least squares
approximation with optimal choice of the polynomial space satisfies

E
[
l(u)2

]
≤ (c4 + c1) exp

{
−
(
c2d

2 βM
) 1

2d+1
}
. (2.4.19)
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Proof. The first step to characterize the optimal convergence rate w.r.t. M is to impose a relation
between M,β, γ and N to have a stable least squares approximation. In the case of polynomial
approximation, the relation (2.3.4) holds choosing the multi-index set Λ such that

N =
(

β

γ + 1
M

logM

) 1
2
, (2.4.20)

and this implies that (2.2.6) is satisfied. Therefore, the relation (2.4.20) prescribes how to enlarge
the dimension of the polynomial space as M increases, to ensure stability and optimality of the
random least squares projection thanks to Theorem 2.3. Of course the value of γ can be chosen
optimally, and we will pursue this strategy in the sequel. Replacing N by (2.4.20) into the right
side of (2.4.12) we have

‖u− PΛu‖2V ≤ c3 exp
{
−c2

(
βM

(γ + 1) logM

) 1
2d
}
. c3 exp

{
−c2

(
βM

γ logM

) 1
2d
}
. (2.4.21)

Since we embedded the stability condition (2.2.6) as a constraint, then we can apply (2.2.10)
(with the error evaluated in the V-norm) and use (2.4.21) to bound the error on the right,
obtaining

E
[
l(u)2

]
≤ c4 · e

−
(
c2
(

βM
γ logM

) 1
2d
)

+ c1 e
−γ logM . (2.4.22)

Note the factor γ logM in both the exponents of (2.4.22). Now we can choose γ = γ(M,β) so
that the exponents of the two exponential terms in (2.4.22) are equal, imposing

c2

(
βM

γ logM

) 1
2d

= γ logM. (2.4.23)

From (2.4.23) we obtain the explicit expression of γ as a function of M and β:

γ =

(
c2d

2 βM
) 1

2d+1

logM . (2.4.24)

Finally, substituting γ with (2.4.24) in (2.4.22), we obtain the convergence rate (2.4.19)
optimized w.r.t. γ.

Looking at (2.4.19) we observe that:

• the error converges to zero exponentially fast as exp
{
−
(
c2d

2 M
) 1

2d+1
}
,

• the convergence rate depends on the dimension d, it is accelerated due to the presence of
d

2d
2d+1 but also decelerated from the presence of d in the exponent of the term M

1
2d+1 ,

• an equivalence with Stochastic Galerkin is established. The error of the best N-term
approximation converges to zero with the rate exp

{
− c2N

1
d
}
(see (2.4.12)). The random

discrete projection converges to zero with the rate exp
{
−
(
c2d

2 M
) 1

2d+1
}
, with M ∼ N2.

2.5 Numerical results
In this section we present some numerical examples that confirm the theoretical findings presented
in sections 2.2 and 2.4. In particular, we check that the convergence rate (2.4.19) is sharp when
the number of sampling points M is chosen as

M = c2
β

(
N
)(2+ 1

d

)
, (2.5.1)
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that comes from the optimal choice of γ prescribed by (2.4.24). To investigate the sensitivity
w.r.t. to β, we denote again β = β(δ), for different choices of δ such that β = 0.15 or β = 0.25.

We consider the elliptic model (2.4.1) on the bounded domain Ω ⊂ R2 shown in Fig. 2.2,−∇ ·
(
a(x,y)∇u

)
= f(x), x in Ω, y ∈ Γ,

u = 0, x on ∂Ω, y ∈ Γ,
(2.5.2)

with a being the random diffusion coefficient defined in (2.5.3) with the geometry displayed in
Fig. 2.2. The eight inclusions Ω1, . . . ,Ω8 are circular with radii equal to 0.13, and are centered in
the points x = (0.5, 0.5±0.3), x = (0.5±0.3, 0.5) and x = (0.5±0.3, 0.5±0.3). The 0.2-times-0.2
inner square Ω0 lies in the center of Ω. The forcing term f is equal to 100 in Ω0 and zero in
Ω \ Ω0. The random diffusion coefficient depends on a multivariate uniform random variable
Y ∼ U([−1, 1]d), and is defined as

a(x,Y) =

0.395
(
Yi + 1

)
+ 0.01, x ∈ Ωi, i = 1, . . . , 8,

1, x ∈ Ω0,
(2.5.3)

such that each random variable is associated with an inclusion. The range of variation of the
coefficient in each inclusion is therefore [0.01, 0.8]. This test case has been used in [BNTT12],
and allows a direct comparison of our results with those obtained when employing the classical
Stochastic Galerkin method. The monodimensional convergence rate g = 1.9 of this example
is has been estimated in [BNTT11b, Fig.7-left]. Note that the coefficient a in (2.5.3) satisfies
Assumption 2.2.

We consider the following Quantity of Interest, related to the solution of the elliptic model
(2.5.2):

QOI1(Y) = 1
|Ω|

∫
Ω
u(x,Y) dx,

and present the results obtained when approximating this function in the polynomial space.
Similar results hold also with other Quantities of Interest, e.g.

QOI2(Y) = 1
|Ω|

∫
Ω

∣∣∣∇u(x,Y)
∣∣∣2 dx, QOI3(Y) = 1

|Ω0|

∫
Ω0
u(x,Y) dx,

which will not be shown here. We consider three cases with d = 2, d = 4, d = 8 independent
random variables. In the case d = 2, the first random variable describes the diffusion coefficient
in the four inclusions at the top, bottom, left, right of the center square Ω0. The second random
variable describes the diffusion coefficient in the other four inclusions. In the case d = 4, each
one of the four random variables is associated with two opposite inclusions w.r.t. the center of
the domain. When d = 8 each of the random variables is associated with a different inclusion.

The Figs. 2.3, 2.4, 2.5 show the convergence plots obtained by the random least squares
approximation using a number of samples as in (2.5.1) with two different choices of β (i.e.
β = 0.15 and β = 0.25). The theoretical bound (2.4.19) is also shown as well as the reference
slopeM−1/2 of a standard Monte Carlo method. In the same figures we also show the convergence
plots obtained when using a simple linear rule M = 3N or M = 10N .

The approximation error of the random least squares projection is approximated as

E
[
‖QOI1(u)− P̃MΛ QOI1(u)‖

]
≈ E

[
‖QOI1(u)− P̃MΛ QOI1(u)‖cv

]
,

employing the cross-validation procedure described in [MNvST11, Section 4].
The results presented in Figs. 2.3, 2.4, 2.5 show that the proposed bound (2.4.19) predicts

very sharply the error E
[
l(u)2

]
, when the number of sampling points M is chosen according to

(2.5.1). The bound accurately describes the effect of the dimension d as well, in the cases of
moderately high dimensions.
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Figure 2.2: Mesh discretization and geometries of the inclusions. The domain Ω is the unitary
square. The inner square is named Ω0, the eight circular inclusions are Ω1, . . . ,Ω8.
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On the other hand, a faster convergence of the error E
[
l(u)2

]
w.r.t. M is observed, with

the linear scaling M ∝ N that yields a lower number of sampling points than (2.5.1), for a
given set Λ. The efficiency of the linear scaling has been pointed out in [MNvST13], and its
importance is motivated by the impossibility to employ the number of sampling points (2.5.1)
when the dimension d is large. Fig. 2.5 shows that already when d = 8, the exponential gain
of the bound (2.4.19) with respect to a Monte Carlo rate becomes perceivable only with an
astronomical number of samples, making the choice (2.5.1) less attractive for the applications.

2.6 Conclusions
In this work the approximation technique based on least squares with random evaluations has
been analyzed. The condition between the number of sampling points and the dimension of the
polynomial space, which is necessary to achieve stability and optimality, has been extended to
any monotone set of multi-indices identifying the polynomial space, in any dimension of the
parameter set, and with the uniform and Chebyshev densities. When the density is uniform, this
condition requires the number of sampling points to scale as the square of the dimension of the
polynomial space.

Afterwards, this technique has been applied to a class of “inclusion-type” PDE models which
includes the elliptic model and the linear elasticity model with stochastic coefficients, and an
exponential convergence estimate in expectation has been derived. This estimate clarifies the
dependence of the convergence rate on the number of sampling points and on the dimension of
the parameter set. Moreover, this estimate establishes a relation between the convergence rate
of the least squares approximation with random evaluations and the convergence rate of the
classical Stochastic Galerkin method.

The numerical tests presented show that the proposed estimate is sharp, when the number
of sampling points is chosen according to the condition that ensures stability and optimality.
In addition, these results show that, in the aforementioned model class, a linear scaling of
the number of sampling points w.r.t. the dimension of the polynomial space can yield a faster
convergence rate.
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Chapter 3

The cases of beta, Gaussian and
gamma probability densities

The analysis developed in Chapter 1, concerning stability and optimality of the random discrete
L2 projection, is presented under the Assumption 1.1 on the probability density ρ:

Assumption 1.1. 0 < ρmin ≤ ρ(y) ≤ ρmax < +∞, for all y ∈ Γ.

Several numerical results featuring the uniform density are shown in Section 1.5. In this chapter
the more general beta family of densities is considered, and it is shown that Assumption 1.1 is
strictly required in our analysis of the discrete random projection, i.e. the stability and optimal
convergence results do not hold if the probability density is not bounded away from zero. On the
other hand, it is shown that the boundedness from above is not required, and an example with
the arcsine density is given. Finally the Gaussian and gamma densities are considered, which
have an unbounded support and therefore cannot be bounded away from zero.

3.1 The assumption on the density

The optimality proof in Theorem 1.2, Chapter 1, relies on the exact expression of order statistics.
The main difficulty in extending this result to probability distributions other than the uniform
one comes from the fact the distances of any two consecutive points are not identically distributed
any more. If the probability density ρ of the sampling points satisfies Assumption 1.1, namely
ρmin < ρ < ρmax, then the same relation between the discrete norm ‖ · ‖M and the continuous
one ‖ · ‖L2

ρ
as in Theorem 1.3 holds up to a multiplicative factor involving the ratio ρmax/ρmin

and the analysis can be recast to the case of uniform random variables, irrespectively of the exact
shape of the density ρ.

However, an attempt to extend the same proof to any density different from the uniform gets
stuck in Lemma 1.1, because of the additive probability argument used in its proof. Therefore,
with any general probability density the optimality of the error evaluated in the ‖ · ‖L2

ρ
norm

stated in Proposition 1.1 still holds, but the optimal convergence rate lacks of a probability
quantification, i.e. a result like Theorem 1.2.

In general, the approximation properties of the random projection completely depend on
the statistical distribution of the random variable Cω defined in (1.2.15), that is not easily
quantifiable.

3.2 Polynomial Chaos expansions

The same notation as in Chapter 1 is used. In particular, N denotes the dimension of the support
Γ of the random variable Y. Here Polynomial Chaos for different families of continuous and
discrete probability densities have been introduced in [XK02b]. Our aim in the present section is
to approximate, in a suitable polynomial space, a given univariate smooth function φ : Γ→ R,

61
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that depends on a random variable Y ∼ ρ, i.e. φ = φ(Y ). In the weighted scalar product
introduced in (1.2.2) any probability density ρ can be used. When the density has been chosen,
then a basis {ϕj}wj=1 of the polynomial space Pw with the property of being orthonormal with
respect to the density ρ has to be built. The following cases for the density are considered:

• ρ ∼ N (0, 1), i.e. Gaussian density with zero mean and unitary variance,

• ρ ∼ G(k, θ), i.e. gamma density with the shape parameter θ = 1, and k > 0,

• ρ ∼ B(α, β), i.e. beta density with α > 0 and β > 0,

in addition to the case ρ ∼ U([−1, 1]) that has been already analyzed in Chapter 1. For any ρ
the family {ϕ̃j}j of one-dimensional orthogonal polynomials is built using the Rodrigues’ formula

ϕ̃j(Y ) =
(
cjρ(Y )

) dj

dY j

(
ρ(Y )(p(Y ))j

)
,

where cj is a normalization factor and p is a polynomial in Y that does not depend on j. In this
way, an orthogonal basis

〈ϕ̃i, ϕ̃j〉L2
ρ

= δijC
j
ρ

is built. Then the polynomials {ϕ̃j}j are orthonormalized by

ϕj = ϕ̃j√
Cjρ
, j = 1, . . . ,w.

The following constants Cjρ make orthonormal the family {ϕj}j , for each choice of the density:

• Gaussian density: {ϕj}j Hermite polynomials with

CjN =
√

2π (j − 1)!;

• gamma density: {ϕj}j (generalized) Laguerre polynomials with

CjG(k) = Γ(j + k + 1)
j! ;

• beta density: {ϕj}j Jacobi polynomials with

CjB(α̃, β̃) = 2α̃+β̃+1Γ(j + α̃+ 1)Γ(j + β̃ + 1)
(2j + α̃+ β̃ + 1)Γ(j + α̃+ β̃ + 1)j!

;

the Jacobi polynomials are orthonormal w.r.t. the weight (Y − 1)α̃(Y + 1)β̃ , and therefore
α̃ = α− 1 > 0, β̃ = β − 1 > 0 since B(α, β) ∼ (Y − 1)α−1(Y + 1)β−1;

• uniform density: {ϕj}j Legendre polynomials with

CjU = 2
2j + 1 .

From the context it is clear when the symbol Γ denotes the Gamma Euler function or the support
of the density ρ. In the framework of Polynomial Chaos it is common to employ the gamma
density with k = 0. In this case the generalized Laguerre polynomials are simply renamed
Laguerre polynomials, and therefore CjG = 1. In the rest of this chapter, we will present several
univariate numerical tests with the aforementioned probability densities.

In the multivariate case, the multi-dimensional family {ψj}Λw
j=1 of polynomials can be built as

in (1.2.3). Heterogeneous families of orthogonal polynomials, that differ in each direction, can be
employed as well.
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3.3 On the stability constraint with the beta density
In this section we show how the quantity K defined in equation (2.2.4) as

Kα̃(w) = sup
y∈[−1,1]

w∑
j=1

(
ϕ

(α̃,α̃)
j (y)

)2
(3.3.1)

depends on the probability density ρ chosen in the beta family B(α, α), parametrized by the
parameter α = α̃+ 1, when α̃ ≥ 0. We remark that (3.3.1) states a relation between the number
of sampling points and the dimension of the polynomial space, such that the random discrete
projection is stable and accurate with high probability.

The evaluation of ϕ̃(α̃,α̃)
j in the right endpoint of the interval [−1, 1] is equal to

ϕ̃
(α̃,α̃)
j (1) =

(
n+ α̃+ 1

n

)
, (3.3.2)

see [Ask75, Equation (2.7)]. Moreover, the following symmetry relation [Sze39, Equation (4.1.3)]
holds

ϕ̃
(α̃,α̃)
j (−y) = (−1)j ϕ̃(α̃,α̃)

j (y), y ∈ [−1, 1], j ≥ 0. (3.3.3)

Using (3.3.2) and (3.3.3) we obtain the following expression for the evaluations of the polynomials
ϕ

(α̃,α̃)
j in the endpoints of the interval [−1, 1]:

∣∣∣ϕ(α̃,α̃)
j (−1)

∣∣∣ =
∣∣∣ϕ(α̃,α̃)
j (1)

∣∣∣ =
∣∣∣∣∣ 1
α̃!

√
(j + 2α̃)!(2j + 2α̃+ 1)

j!22α̃+1

∣∣∣∣∣. (3.3.4)

Therefore, the expression (3.3.4) can be used to get a lower bound of Kα̃(w) as follows:

Kα̃(w) ≥ 1
α̃!22α̃+1

w∑
j=1

√
(j + 2α̃)!(2j + 2α̃+ 1)

j! . (3.3.5)

Fig. 3.1 shows how the bound (3.3.5) performs for different values of the parameter α = α̃− 1
with α = 1, 1.05, 1.25, 1.5, 2, 3, 4. In the case α = 1 the bound is sharp, because the Legendre
polynomials are associated with the uniform density, and these polynomials attain their maximum
in the endpoints of the interval [−1, 1]. As the value of α departs from one, the value of the lower
bound of K increases. In the case of B(2, 2), Fig. 3.1 shows that the condition (3.3.5) becomes
very conservative, since K grows faster than the cubic power w3. On the other hand, the results
in the next section in Figs.3.17, 3.18, 3.19, 3.20, 3.21 show that a quadratic relation between
the number of sampling points and w yields an optimally convergent error. The same holds in
Figs.3.22, 3.23 with the density B(3, 3), although from Fig.3.1 the lower bound of K in this case
grows faster than the quartic power w4.

3.4 Numerical tests with densities with a bounded support: the
beta family

The beta family is useful to check the implications of Assumption 1.1 for a broad class of
probability densities differing in some crucial features. This family allows to examine the case
of a density bounded away from zero (on a bounded support) but unbounded from above, e.g.
the density B(0.5, 0.5) also known as arcsine distribution or Chebyshev distribution of the 1st
kind, as well as the reversed case of a density not bounded away from zero but bounded from
above, e.g. B(1, 3) or B(2, 5) or B(3/2, 3/2). This last density B(3/2, 3/2) is also known as
Wigner distribution or Chebyshev distribution of the 2nd kind. The uniform density B(1, 1) is also
contained in the beta family. To illustrate the differences among the densities, refer to Fig. 3.2.
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To allow a comparison with the results presented in Section 1.5 featuring the uniform
distribution, we focus on the same target functions but with the random variable distributed
according to different distributions, always with support Γ = [−1, 1]. Again, we consider three
smooth functions, i.e. an exponential function

φ(y) = exp(y), y ∈ [−1, 1], (3.4.1)

and two meromorphic functions

φ(y) = 1
1 + 0.5y , y ∈ [−1, 1], (3.4.2)

φ(y) = 1
1 + 0.9y , y ∈ [−1, 1], (3.4.3)

and two functions with lower regularity

φ(y) =|y|, y ∈ [−1, 1], (3.4.4)
φ(y) =|y|3, y ∈ [−1, 1]. (3.4.5)

3.4.1 An unbounded density bounded away from zero

Let us begin with the density B(0.5, 0.5), which is also known as arcsine distribution. This
density is symmetric and promotes the points that are closer to the endpoints of the support Γ.
Compared with the case with uniform density, this problem is much more stable.

1 5 10 15 20 25 30 35 40

10
0

10
2

10
4

10
6

10
8

10
10

10
12

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=c⋅#Λ

 

 

c=2
c=3
c=10

1 5 10 15 20 25 30 35 40
10

−15

10
−10

10
−5

10
0

w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=exp(Y), N=1, M=c ⋅#Λ

 

 

c=2
c=3
c=10

1 5 10 15 20 25 30 35 40

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=1/(1+0.5Y), N=1, M=c ⋅#Λ

 

 

c=2
c=3
c=10

1 5 10 15 20 25 30 35 40

10
−1

10
0

10
1

10
2

10
3

w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=1/(1+0.9Y), N=1, M=c ⋅#Λ

 

 

c=2
c=3
c=10

Figure 3.3: Condition number (1.4.9) and approximation error (1.4.6) with the smooth target
functions (3.4.1), (3.4.2), (3.4.3), averaged over 1000 repetitions, M = c#Λ. Beta density
B(0.5, 0.5).

As shown in Fig. 3.3-top-left, a linear scaling of the number of sampling points M = 3 ·#Λ
is enough to tame the condition number, and to avoid the (numerical) blow-up. Moreover,
M = 3 · #Λ converges like the optimal convergence rate, that in these plots is given by the
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Figure 3.4: Approximation error (1.4.6) with nonsmooth target functions (3.4.5), (3.4.4) averaged
over 1000 repetitions, M = c#Λ. Beta density B(0.5, 0.5).

linear scaling M = 10 ·#Λ (that has even more points than the quadratic scaling M = (#Λ)2 in
the range w = 1, . . . , 10). Fig. 3.3 shows the convergence obtained for three different analytic
functions. Note that the optimal convergence obtained with M = 3 ·#Λ persists also when the
function is not smooth (Fig. 3.4), catching exactly the correct slope according to the power of
the modulus.

3.4.2 Symmetric densities not bounded away from zero

We investigate now the consequences of violating the condition that the density is bounded away
from zero. We begin with the density B(1.05, 1.05) that slightly differs from the uniform density,
for going to zero very slowly on the boundary of its support Γ. The graphs in Fig. 3.5 show
that the linear scaling M ∼ c ·#Λ and the quadratic scaling M ∼ c · (#Λ)2 with the density
ρ = B(1.05, 1.05) yield results almost identical to those with the uniform density presented in
Figs. 1.3. With the quadratic scaling M ∼ (#Λ)2 the condition number slightly increases w.r.t.
w, although the growth is very slow. The next examples with the density B(1.25, 1.25), B(2, 2)
and B(3, 3) will show that this effect amplifies when the density gets flatter going to zero.
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Figure 3.5: Condition number (1.4.9). Beta density B(1.05, 1.05). Left: M = c ·#Λ. Right:
M = c · (#Λ)2.

Even though the condition number with the density B(1.05, 1.05) manifests some slight
differences compared to the condition number of the uniform density, the plots concerning
the convergence rate are completely identical with the two densities. Compare for examples
the errors with the exponential function (1.5.1) in Fig. 1.4 and Fig. 3.6, the errors with the
meromorphic function (1.5.2) in Fig. 1.5 and Fig. 3.7 with β = 0.5, or in Fig. 1.6 and Fig. 3.8
with β = 0.9. Observe that the convergence rate depends on the value of the parameter β,
and a higher value produces a steeper function (1.5.2) that is also harder to approximate. As
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Figure 3.6: Approximation error (1.4.6) with the smooth target function (3.4.1). Beta density
B(1.05, 1.05). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.7: Approximation error (1.4.6) with the smooth target function (3.4.2). Beta density
B(1.05, 1.05). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.8: Approximation error (1.4.6) with the smooth target function (3.4.3). Beta density
B(1.05, 1.05). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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explained in Section 1.5.1 with the uniform density, when the target function is smooth the linear
scaling optimally converges up to a certain value of w, and then the convergence degenerates,
(Figs. 3.6-left, 3.7-left, 3.8-left).

Note in Figs. 3.9,3.10 that the linear scaling does not yield an optimal convergence rate when
the function is not smooth. Conversely, the convergence with quadratic scaling is optimal also
with nonsmooth target functions. Comparing the results with the two densities in Fig. 3.9 and
Fig. 1.7 with the nonsmooth function (1.5.3), the rate of convergence with the uniform density is
slightly faster, but still comparable to the rate of convergence of the density B(1.05, 1.05).

w=1 w=5 w=10 w=15 w=20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

log
10

 w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=|Y| 3, N=1, M=c ⋅#Λ

 

 

c=2
c=3
c=10
slope −2
slope −3

w=1 w=5 w=10 w=15 w=20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

log
10

 w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=|Y| 3, N=1, M=c ⋅#Λ2

 

 

c=0.5
c=1
c=3
slope −2
slope −3

Figure 3.9: Approximation error (1.4.6) with the nonsmooth target function (3.4.5). Beta density
B(1.05, 1.05). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.10: Approximation error (1.4.6) with the nonsmooth target function (3.4.5). Beta
density B(1.05, 1.05). Left: M = c ·#Λ. Right: M = c · (#Λ)2.

Now let us consider the density B(1.25, 1.25), which goes to zero on the boundary of Γ faster
than the density B(1.05, 1.05). In fact, the growth of the condition number with the quadratic
scaling M ∼ (#Λ)2 in Fig. 3.11 is even more accentuated than the growth in Fig. 3.5.

Again the approximation errors for the same smooth functions (3.4.1), (3.4.2) and (3.4.3)
converge with the optimal rate independently of the linear or quadratic scaling, as confirmed by
the results in Figs. 3.12, 3.13 and 3.14.

When approximating nonsmooth target functions (Figs. 3.15,3.16) the optimal convergence
rate is achieved only with the quadratic scaling M ∼ (#Λ)2.

Further increasing the values of the parameters of the Beta density, and keeping them equal
to obtain a symmetric distribution, we can test the effect of an even flatter density on the
boundary. Let us consider the density B(2, 2). From Fig. 3.17, it is clear that the quadratic
scaling M ∼ (#Λ)2 is not enough anymore to keep the condition number under control, but the
blow-up is not yet dramatic, and the numerical computations are still feasible using for example
a scaling M = 10 · (#Λ)2.
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Figure 3.11: Condition number (1.4.9). Beta density B(1.25, 1.25). Left: M = c ·#Λ. Right:
M = c · (#Λ)2.

1 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=exp(Y), N=1, M=c ⋅#Λ

 

 

c=2
c=3
c=10

1 5 10 15 20
10

−15

10
−10

10
−5

10
0

w

||
φ−

Π
wM

(ω
)
φ|

|
cv

Error φ(Y)=exp(Y), N=1, M=c ⋅#Λ2

 

 

c=0.5
c=1
c=3

Figure 3.12: Approximation error (1.4.6) with the exponential function (3.4.1). Beta density
B(1.25, 1.25). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.13: Approximation error (1.4.6) with the meromorphic function (3.4.2). Beta density
B(1.25, 1.25). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.14: Approximation error (1.4.6) with the meromorphic function (3.4.3). Beta density
B(1.25, 1.25). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.15: Approximation error (1.4.6) with the nonsmooth target function (3.4.5). Beta
density B(1.25, 1.25). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.16: Approximation error (1.4.6) with the nonsmooth target function (3.4.4). Beta
density B(1.25, 1.25). Left: M = c ·#Λ. Right: M = c · (#Λ)2.
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Figure 3.17: Condition number (1.4.9) averaged over 100 repetitions. Left: M = c ·#Λ. Right:
M = c · (#Λ)2. Beta density B(2, 2).

The error converges always at the optimal rate with the quadratic scaling, both with
smooth (Figs. 3.18,3.19) and nonsmooth functions (Figs. 3.20,3.21). The linear scaling allow to
approximate accurately only smooth functions, up to a certain threshold, while with nonsmooth
functions the approximation is clearly divergent.
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Figure 3.18: Approximation error (1.4.6) with the exponential function (3.4.1), averaged over
100 repetitions. Left: M = c ·#Λ. Right: M = c · (#Λ)2. Beta density B(2, 2).

The density B(3, 3) becomes convex close to the endpoints. Fig. 3.22-left shows that also a
cubic scaling M ∼ (#Λ)3 cannot avoid the growth of the condition number w.r.t. the parameter
w. Nonetheless, Fig. 3.22-right shows that the error converges at the optimal convergence rate
with M = 2 · (#Λ)2 and the exponential target function (3.4.1). The same occurs in Fig. 3.23
with the nonsmooth functions (3.4.5), (3.4.4).

At this point we can make a general remark on the consequences of relaxing the assumption
on the density ρ being bounded away from zero:

Remark 3.1. When the density ρ is not bounded away from zero, the approximation problem
with the random discrete projection (1.2.5) becomes more and more ill-conditioned, the faster
the density approaches zero. Consequently, the condition number (1.4.9) increases and a larger
sample size is necessay to preserve the numerical stability of the problem, see e.g. Figs. 3.17-right
and 3.22-right. Despite of the ill-conditioning, the quadratic scaling M ∼ (#Λ)2 provides an
optimal convergent rate for smooth and nonsmooth functions, e.g. Figs. 3.20,3.21 with the density
B(2, 2), and Fig. 3.23 with the density B(3, 3).

3.4.3 Nonsymmetric densities not bounded away from zero

Remark 3.1 holds also for nonsymmetric beta densities. Some examples with the densities
B(1, 3) and B(2, 5) follow. The density B(1, 3) is monotone and convex approaching the right
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Figure 3.19: Approximation error (1.4.6) with the meromorphic function (3.4.2), averaged over
100 repetitions. Left: M = c ·#Λ. Right: M = c · (#Λ)2. Beta density B(2, 2).
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Figure 3.20: Approximation error (1.4.6) with the nonsmooth target function (3.4.5), averaged
over 100 repetitions. Left: M = c ·#Λ. Right: M = c · (#Λ)2. Beta density B(2, 2).
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Figure 3.21: Approximation error (1.4.6) with the nonsmooth target function (3.4.4), averaged
over 100 repetitions. Left: M = c ·#Λ. Right: M = c · (#Λ)2. Beta density B(2, 2).
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Figure 3.22: Condition number (1.4.9) and approximation error with the exponential function
(3.4.1), averaged over 100 repetitions, M = c · (#Λ)2. Beta density B(3, 3).
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Figure 3.23: Approximation error (1.4.6) with the nonsmooth target functions (3.4.5), (3.4.4),
averaged over 100 repetitions, M = c · (#Λ)2. Beta density B(3, 3).
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endpoint of Γ. The shape of B(2, 5) is even more flattened than B(1, 3) approaching zero (see
also Fig. 3.2). The results in Figs. 3.24-top-right, 3.25-top-right confirm that the linear scaling
M ∼ #Λ provides only a rough approximation of the exponential function (3.4.1). Concerning
the function (3.4.3), the results in Fig. 3.24-bottom-left with the B(1, 3) density show a slow
convergence, and no convergence in Fig. 3.25-bottom-left for the same function but with the
B(2, 5) density.
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Figure 3.24: Condition number (1.4.9) and approximation error (1.4.6) with the smooth target
functions (3.4.1), (3.4.2), (3.4.3), averaged over 1000 repetitions, M = c · #Λ. Beta density
B(1, 3).

Moreover, the results in Figs. 3.26,3.27 demonstrate that the linear scalingM ∼ #Λ completely
fails to approximate nonsmooth functions such as (1.5.3). The numerical stability of the
approximation problem is lost as well and this contributes to deteriorate the accuracy of the
approximation error.

On the other hand, the approximation obtained with the quadratic scalingM ∼ (#Λ)2 always
converges with the optimal convergent rate, until the numerical stability is lost (Figs. 3.28,3.29).
Looking at the condition number in Fig. 3.28, the random projection can be considered stable
until w = 8 when M = 2 · (#Λ)2, and until w = 10 when M = c · (#Λ)2 with c ≥ 5.

A further test in Figs. 3.30,3.31 shows that the requirement on the density being bounded
away from zero is crucial: renouncing to it the scalings M ∼ (#Λ)3, M ∼ (#Λ)4, M ∼ (#Λ)5 do
not avoid the growth of the condition number, and lead to an ill-posed approximation problem
as the value of w increases. Note that in Figs. 3.30,3.31 the cubic scaling M = c · (#Λ)3 with
c = 1, 10, 100 yields more points than the scalings M = (#Λ)4 and M = (#Λ)5 on the range
w = 1, . . . , 10.

At this stage we can summarize the following remark:

Remark 3.2. The usefulness of the random projection is confined to situations where the number
of sampling points M is large enough to ensure the numerical stability, quantified for example
by the condition number (1.4.9). In one dimension, i.e. N = 1, when the density ρ approaches
zero with a flat slope the condition M ∼ (#Λ)2 does not suffice anymore to ensure the stability.
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Figure 3.25: Condition number (1.4.9) and approximation error (1.4.6) with the smooth target
functions (3.4.1), (3.4.2), (3.4.3), averaged over 1000 repetitions, M = c · #Λ. Beta density
B(2, 5).
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Figure 3.26: Approximation error (1.4.6) with the nonsmooth target functions (3.4.5), (3.4.4),
averaged over 1000 repetitions, M = c ·#Λ. Beta density B(1, 3).
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Figure 3.27: Approximation error (1.4.6) with the nonsmooth target functions (3.4.5), (3.4.4),
averaged over 1000 repetitions, M = c ·#Λ. Beta density B(2, 5).
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Figure 3.28: Condition number (1.4.9) and approximation error (1.4.6) with the smooth target
functions (3.4.1), (3.4.2), (3.4.3), averaged over 100 repetitions, M = c · (#Λ)2. Beta density
B(2, 5).
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Figure 3.29: Approximation error (1.4.6) with the nonsmooth target functions (3.4.5), (3.4.4),
averaged over 100 repetitions, M = c · (#Λ)2. Beta density B(2, 5).
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Figure 3.30: Condition number (1.4.9) and approximation error (1.4.6) with the smooth target
functions (3.4.1), (3.4.2), (3.4.3), averaged over 100 repetitions, M = c · (#Λ)3. Beta density
B(2, 5).
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Figure 3.31: Approximation error (1.4.6) with the nonsmooth target functions (3.4.5), (3.4.4),
averaged over 100 repetitions, M = c · (#Λ)3. Beta density B(2, 5).

However, as pointed out in Section 1.5.2 for the uniform distribution, in higher dimensions the
condition for stability becomes less restrictive, and this holds more generally with any distribution
ρ. The theoretical characterization of this behaviour in high dimensions demands a further
analysis of the statistical distribution of the random variable Cω = Cω(M,Λ) defined in (1.2.15),
and is currently under investigation.

3.5 Numerical results with densities with an unbounded sup-
port

In this section an overview of the numerical tests with densities on an unbounded support is
given. The main focus is on the Gaussian density, and several numerical tests are presented. A
test concerning the condition number with the gamma density is also presented.

3.5.1 The Gaussian case

We consider the following target functions, to test the random discrete projection (1.2.5) with
the standard Gaussian density:

φ(y) = exp(y), y ∈ R, (3.5.1)

φ(y) = 1
1 + exp(y) , y ∈ R, (3.5.2)

φ(y) = 1
1 + y2 , y ∈ R. (3.5.3)

Moreover, we test the following target functions featuring a lower regularity:

φ(y) = |y|3, y ∈ R, (3.5.4)
φ(y) = |y|, y ∈ R, (3.5.5)

φ(y) = |y|
1 + 0.5|y| , y ∈ R. (3.5.6)

In the Gaussian case, the cross-validated error (1.4.6) is evaluated in the 2-norm, because
the evaluation in the ∞-norm naturally degenerates for extremal realizations of Y, due to
the asymptotic divergence of the Hermite polynomials. Therefore, the cross-validated error is
evaluated as

‖φ−ΠΛ,ω
M φ‖cv = ‖Dcvx

ω − bcv‖2, (3.5.7)
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and accordingly, to estimate the variability of (3.5.7) due to the random sampling of the M
collocation points, the calculation is repeated over R independent sets of points {yωkj , j =
1, . . . ,M}, with k = 1, . . . , R. The average error is computed by

Ecv =
∑R
k=1 ‖Dcvx

ωk − bcv‖2
R

, (3.5.8)

instead of (1.4.7). The sample standard deviation is computed by

sE =

√√√√ 1
R− 1

R∑
k=1

(
‖Dcvxωk − bcv‖2 − Ecv

)2
, (3.5.9)

instead of (1.4.8).
Let us begin to examine the stability of the least squares problem, in the case where we

have to approximate a function that depends on a Gaussian random variable. Therefore we
choose the Hermite family of orthogonal polynomials. As shown in Fig. 3.32, a quadratic scaling
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Figure 3.32: Gaussian density. M = c · (#Λ)2. Left: condition number (1.4.9). Right: approxi-
mation error (1.4.6) for the function (3.5.4). The continuous marked lines show the mean error
over 100 repetitions. The dashed lines show the mean error plus one standard deviation.

M = c · (#Λ)2 is far from being stable. A power law M = c · (#Λ)L with exponent L exhibits
the same behaviour. We tried L = 3, . . . , 10, but we do not report the corresponding results.
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Figure 3.33: Gaussian density. M = c · (#Λ)2. Left: approximation error (1.4.6) for the function
(3.5.6). Right: approximation error (1.4.6) for the function (3.5.1). The continuous marked
lines show the mean error over 100 repetitions. The dashed lines show the mean error plus one
standard deviation.

A first numerical investigation shows that to bound the condition number independently
of w, the scaling has to grow at least exponentially in the dimension, i.e. M ∝ (#Λ)#Λ.
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Fig. 3.34 shows that a slightly less dramatic growth is allowed to tame the condition number,
e.g. M = c · (#Λ)#Λ/2 but with M = c · (#Λ)#Λ/3 the condition number still grows significantly
when w increases. However such an effort to maintain bounded the condition number can be
unnecessary, as explained in Remark 3.3.
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Figure 3.34: Gaussian density. Condition number (1.4.9). Left: M = c · (#Λ)#Λ/2. Right:
M = c · (#Λ)#Λ/3. The continuous marked lines show the mean error over 1000 repetitions. The
dashed lines show the mean error plus one standard deviation.

Fig. 3.35 shows the results obtained with the linear scaling M ∼ #Λ: of course the stability is
lost soon, but surprisingly the error obtained approximating the exponential function is decaying
exponentially fast, until the problem remains numerically stable.
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Figure 3.35: Gaussian density. M = c·#Λ. Left: condition number (1.4.9). Right: approximation
error (1.4.6) for the function (3.5.1). The continuous marked lines show the mean error over
1000 repetitions. The dashed lines show the mean error plus one standard deviation.

The functions (3.5.2),(3.5.3) constitute an harder benchmark to test the random projection,
and Fig. 3.36 shows that even the almost quadratical scaling M = 10 · #Λ does not lead
to a convergent approximation. The converge is achieved only with a very expensive scaling
M = 100 ·#Λ.

The same holds when approximating the nonsmooth functions (3.5.4), (3.5.5) (see Fig. 3.37).

The conclusions drawn on the behaviour of the random projection with Gaussian density in
one dimension are summarized in Remark 3.3.

Remark 3.3. In one dimension and when employing the Gaussian density:

• there is no hope to tame the condition number for practical applications, unless w has a
very low value,
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Figure 3.36: Gaussian density. M = c ·#Λ. Approximation error (1.4.6) for the target functions
(3.5.2) and (3.5.3). The continuous marked lines show the mean error over 1000 repetitions. The
dashed lines show the mean error plus one standard deviation.
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Figure 3.37: Gaussian density. M = c ·#Λ. Approximation error (1.4.6) for nonsmooth target
functions (3.5.4), (3.5.5). The continuous marked lines show the mean error over 1000 repetitions.
The dashed lines show the mean error plus one standard deviation.
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• if the target function is smooth, e.g. exponential, the linear scaling yields optimal convergence
up to a certain threshold on w, even if the least squares problem is very ill-posed. When
this happens, one can simply use the (cheap) linear scaling and forget about the condition
number (within certain limitations, of course),

• when the target function is not smooth, only a very expensive scaling (the linear one is
not enough for sure) yields convergence, and the higher w the (exponentially) harder the
optimality to achieve,

• in the Gaussian case the variability of the error is reduced, compared to the uniform case.

3.5.2 The gamma case

The case of a random variable distributed according to a gamma density is even more ill-
conditioned than the Gaussian case, as shown in Fig. 3.38.
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Figure 3.38: Gamma density. Condition number (1.4.9) averaged over 1000 repetitions. M =
c ·#Λ.

3.6 When the polynomial basis is not orthonormal w.r.t. the
experimental density

In practical situations, the realizations of the random variable Y come from natural experiments,
and the underlying experimental density ρ̂ is mostly unknown. Under some assumptions, a
mathematical model can be proposed, and the experimental density ρ̂ can be assumed to be
equal to a known density ρ, but the problem of investigating the effect of sampling from an
experimental density ρ̂ that differs from the density ρ employed in the construction of the
orthonormal polynomial basis (1.2.3) remains.

Therefore, in this section we build the polynomial basis (1.2.3) orthonormalized according
to the arcsine distribution or Wigner distribution, and project over this basis a function that
depends on a random variable distributed according to the uniform density.

The first test is to check the convergence of the random projection on the polynomial space.
The arcsine distribution is used to orthonormalize the polynomials. Therefore, the polynomial
basis is not orthonormal w.r.t. the uniform density, and we do not expect the condition number
to converge to 1 as it happens in Fig. 1.2 when employing Legendre polynomials. Accordingly,
Fig. 3.39 shows a slow but unavoidable growth of the mean condition number, when w increases.
The error converges at the same optimal rates obtained in Figs. 1.5,1.7 when using the polynomial
basis orthonormalized with the same density of the random variable Y.

Then as shown in Fig. 3.40 the two graphs of the condition number exhibits the same
growth, due to the lack of orthonormalization and to the linear scaling M ∼ #Λ. The basis
is orthonormalized w.r.t. the arcsine distribution in Fig. 3.40-left, and w.r.t. to the Wigner
distribution in Fig. 3.40-right.
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Figure 3.39: Chebyshev family of the first kind. Overkilling scaling M = 100 · (#Λ)4. Top-left:
mean condition number (1.4.9). Top-right: approximation error (1.4.6) for the function (3.4.2).
Bottom-left: approximation error (1.4.6) for the function (3.4.5). Bottom-right: approximation
error (1.4.6) for the function (3.4.4). The continuous marked lines show the mean error over 10
repetitions. The dashed lines show the mean error plus one standard deviation.

1 5 10 15 20 25
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=c⋅#Λ

 

 

c=2
c=5
c=10

1 5 10 15 20 25
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

w

c
o
n
d
(
D
M
(

ω
)

T
D
M
(

ω
)
)

Condition number, N=1, M=c⋅#Λ

 

 

c=2
c=5
c=10

Figure 3.40: Condition number (1.4.9) averaged over 10000 repetitions, M = c ·#Λ. Left: basis
(1.2.3) orthonormalized according to the arcsine distribution. Right: basis (1.2.3) orthonormalized
according to the Wigner distribution.
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The theoretical analysis presented in Chapter 1 does not depend on the choice of the basis.
Consequently, in Figs. 3.41,3.42 the error plots do not show any difference due to the basis, and
the convergence rates are the same as those in Figs. 1.5,1.7 obtained using the polynomial basis
orthonormalized with the same density of the random variable Y.
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Figure 3.41: Approximation error (1.4.6) for the target function (3.4.2) with β = 0.5 averaged
over 10000 repetitions, M = c ·#Λ. Left: basis (1.2.3) orthonormalized according to the arcsine
distribution. Right: basis (1.2.3) orthonormalized according to the Wigner distribution.
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Figure 3.42: Approximation error (1.4.6) for the target function (3.4.5) averaged over 10000
repetitions, M = c ·#Λ. Left: basis (1.2.3) orthonormalized according to the arcsine distribution.
Right: basis (1.2.3) orthonormalized according to the Wigner distribution.

In Fig. 3.43 the results with the quadratic scaling M ∼ (#Λ)2 are shown. The basis is
orthonormalized w.r.t. the arcsine distribution. Again the same optimal convergence rates as in
Figs. 1.5,1.7 are obtained. After the previous analysis we can wrap up the following conclusions,
on the sensitivity analysis pursued orthonormalizing the basis (1.2.3) of the polynomial space
w.r.t. densities ρ that differ from the experimental densities ρ̂ where the samples of the random
variable are drawn:

• a worsening in the stability due to the choice of nonorthonormal basis of the polynomial
space occurs,

• the errors obtained employing the basis of the polynomial space orthonormal w.r.t. the
arcsine distribution and Wigner distribution and those obtained with Legendre polynomials
are the same.
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Figure 3.43: Arcsine distribution. M = c · (#Λ)2. Top-left: mean condition number (1.4.9).
Top-right: approximation error (1.4.6) for the function (3.4.2) with β = 0.5. Bottom-left:
approximation error (1.4.6) for the function (3.4.5). Bottom-right: approximation error (1.4.6)
for the function (3.4.4). The continuous marked lines show the mean error over 1000 repetitions.
The dashed lines show the mean error plus one standard deviation.
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Chapter 4

Approximation of Quantities of
Interest in PDEs with stochastic
coefficients and stochastic domain

This chapter is entirely based on the content of the paper [MNvST13] entitled Approxi-
mation of Quantities of Interest in stochastic PDE by the random discrete L2 projection
on polynomial spaces, by G. Migliorati, F. Nobile, E. von Schwerin and R. Tempone.

Abstract

In this work we consider the random discrete L2 projection on polynomial spaces
(hereafter RDP) for the approximation of scalar Quantities of Interest (QOIs) related
to the solution of a Partial Differential Equation model with random input parameters.
In the RDP technique the QOI is first computed for independent samples of the
random input parameters, as in a standard Monte Carlo approach, and then the QOI
is approximated by a multivariate polynomial function of the input parameters using
a discrete least squares approach. We consider several examples including the Darcy
equations with random permeability; the linear elasticity equations with random
elastic coefficient; the Navier–Stokes equations in random geometries and with random
fluid viscosity. We show that the RDP technique is well suited to QOIs that depend
smoothly on a moderate number of random parameters. Our numerical tests confirm
the theoretical findings in [MNvST11], which have shown that, in the case of a single
uniformly distributed random parameter, the RDP technique is stable and optimally
convergent if the number of sampling points is proportional to the square of the
dimension of the polynomial space. Here optimality means that the weighted L2

norm of the RDP error is bounded from above by the best L∞ error achievable in
the given polynomial space, up to logarithmic factors. In the case of several random
input parameters, the numerical evidence indicates that the condition on quadratic
growth of the number of sampling points could be relaxed to a linear growth and
still achieve stable and optimal convergence. This makes the RDP technique very
promising for moderately high dimensional uncertainty quantification.

Key words: PDE stochastic data, discrete least squares, polynomial approximation

AMS subject classification: 41A10, 65N35
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4.1 Introduction

In recent years, the modeling of uncertainty in mathematical models has attracted a lot of
attention in the scientific community. When a probabilistic framework is considered, uncertainty
in the model parameters is modeled in terms of random variables. The underlying challenge
concerns the accurate and efficient approximation of the model outcome in presence of many
random input parameters. In the context of Partial Differential Equations (PDEs) with stochastic
data, a well-established technique that has been used in many engineering applications [Eld11,
HWB10, GZ07a] consists in the use of a spectral expansion to represent the input/output
dependence; see e.g. [GS03, XK02a, LMK10]. Once such an expansion has been computed by
some means, statistics of the model output can easily be recovered. The random discrete L2

projection (RDP), also known as regression or point collocation approach, has been proposed in
the context of applications devoted to uncertainty analysis in [HWB10, BS08, EWC08] as a tool
for computing the spectral expansion of the model response. The regression approach is based on
the evaluation of the target output function on randomly selected points, and aims to improve
the slow convergence of the classical Monte Carlo method by performing a discrete projection
onto a multivariate polynomial space. It differs from other techniques based on a deterministic
choice of the points at which the function is evaluated, also known as Collocation methods on
Sparse Grids [BG04].

In [MNvST11, CDS11] the RDP was analyzed in the context of approximating a smooth
aleatory function in the L2 probability sense. This approximation problem falls in the field
of nonparametric regression with random design, and when noise is present there exist well-
known estimates for the approximation error [GKKW02]. The RDP of a given aleatory function,
consists in its discrete L2 projection over a polynomial space, and is computed by evaluating the
target function pointwise in randomly selected points of the parameter space. Unlike the usual
nonparametric regression in statistics, the evaluations are assumed to be noise-free. The stability
and convergence properties of RDP are analyzed in [MNvST11, CDS11]. Under some assumptions
on the probability density, it is proved in these works that, in one dimension and when the
number of sampling points is proportional to the square of the dimension of the polynomial space,
the RDP converges optimally in the sense that the L2error behaves like the best approximation
error (measured in the “sup” norm) of the target function in the chosen polynomial space, up to
logarithmic factors. It is reasonable to compare with the L∞ best approximation error since the
RDP is based on pointwise evaluations. In [CDS11] a bound in terms of the best approximation
in L2 norm is obtained by taking expectations. In contrast the bound in [MNvST11] is in terms of
the L∞ norm and holds with high probability. The above-mentioned quadratic relation between
number of sampling points and dimension of the polynomial space actually guarantees the
stability of the RDP. Several numerical tests in [MNvST11] show the capabilities of the method,
and highlight the influence of the dimension of the parameter space and of the smoothness of the
target function on the achieved convergence rate.

The present work focuses on the application of RDP to the approximation of QOIs related
to the solution of PDEs with stochastic data. The aleatory function is defined as a functional
of the solution of the PDE, e.g. an integral over a portion of the physical domain. We begin
by considering the Darcy model with a random diffusion coefficient, parametrized in a one-
dimensional parameter space. The randomness affects the value of the coefficient in a particular
region of the physical domain, for instance an inclusion. Then we investigate a variation of
the Darcy example where the randomness affects the location where the diffusion coefficient is
discontinuous. Thus the example treats an inclusion with a random domain in the sense that the
geometrical shape of the domain is parametrized in terms of a random variable.

Next, we move to higher dimensional parameter spaces, always using the isotropic Total
Degree polynomial space (defined in Section 4.2). This choice is well motivated in cases where
the target function depends analytically on each input parameter with analyticity region not
affected by the other parameters [BNTT12]. We consider a Darcy model with a random diffusion
coefficient parametrized in a five-dimensional parameter space, increasing to five the number of
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nonoverlapping inclusions that are displaced in the physical domain.
Finally, we consider two more complex vectorial problems: the Navier–Lamé equations that

govern the bending of a cantilever beam in the regime of linear elasticity, and the incompressible
Navier–Stokes equations that govern the motion of a viscous fluid in a pipe. Both examples
contain uncertainty in the model parameters: the Young modulus in the former, and the viscosity
and the geometry of the domain in the latter.

All examples of the elliptic class presented in this paper, with one-dimensional parameter
space, validate the theoretical results outlined in [MNvST11, CDS11]. In particular, a number
of sampling points proportional to the square of the dimension of the polynomial space always
yields optimal convergence, as predicted by the theory. Moreover, when approximating a smooth
function an optimal convergence is observed up to a certain threshold, even if the number of
sampling points is only linearly proportional to the dimension of the polynomial space. Beyond
such a threshold, the error starts diverging. On the other hand, in all examples with higher
dimensional parameter space, optimal convergence rate for smooth functions has always been
achieved, even with a linear proportionality between the number of sampling points and the
dimension of the polynomial space. No blow-up has been observed in all ranges of polynomial
space dimensions tested. This is consistent with the observation in [MNvST11]: when the
dimension gets higher the RDP seems to become stable even when the number of sample points
is only linearly proportional to the dimension of the polynomial space. In this sense, the one-
dimensional case is the most ill-conditioned case, making the RDP more promising in moderately
high dimensional approximation problems.

The outline of the paper is the following: in Section 4.2 we introduce the formulation of the
random discrete L2 projection and recall the main results obtained in [MNvST11] concerning
stability and optimality. In Section 4.3 the numerical examples are presented. Examples 1, 2,
and 3 are based on the Darcy model with random permeability. Examples 4 and 5 address
the linear elasticity equations with random elastic coefficient, and Navier–Stokes equations in
random geometries and with random fluid viscosity. Finally, Section 4.4 contains the concluding
discussion.

4.2 The random discrete L2 projection on polynomial spaces
In this section we review the formulation of the random discrete L2 projection in an abstract
setting and recall the main results obtained in [MNvST11]. The technique will then be applied
to PDEs with random data in Section 4.3.

Let Γ ⊆ RN be an N -dimensional subset of the N -dimensional Euclidean space, with a tensor
structure form Γ = Γ1 × · · · × ΓN . Denote by ρ : Γ → R+ a probability density function over
Γ, and by Y = (Y1, . . . , YN ) a vector of N random variables, taking values in Γ and distributed
according to the density ρ.

We consider a random variable Z = φ(Y), where φ : Γ → R is assumed to be a smooth
function, and we are interested in computing statistical moments of Z. This will be achieved
by first constructing a reduced model; i.e. we approximate the function φ(Y1, . . . , YN ) by a
suitable multivariate polynomial φΛ(Y1, . . . , YN ). We then compute statistical moments using
the approximate function φΛ.

We denote by

E[Z] :=
∫

Γ
φ(y)ρ(y)dy

the expected value of the random variable Z = φ(Y) and by

Pr(A) :=
∫
A
ρ(y)dy

the probability of the event A ∈ B(Γ), where B(Γ) is the Borel σ-algebra with respect to the
measure ρ(y)dy. Throughout the paper we also assume the followin.
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Assumption 1.1. Γ is a bounded set, and 0 < ρmin ≤ ρ(y) ≤ ρmax <∞, for all y ∈ Γ.

Remark 4.1. This assumption excludes e.g. the normal and lognormal cases, since these
densities are not bounded away from zero due to their unbounded support. In the case of densities
with unbounded support, e.g. normal and lognormal, derivations of results corresponding to
Propositions 4.1, 4.2 and Theorem 4.1 would have to rely on the use of suitable weighted L∞
norms (see e.g. [BNT10]), but this is out of the scope of the present paper.

We introduce the space L2
ρ of square integrable functions f : Γ→ R, endowed with the norm

‖f‖L2
ρ

=
(∫

Γ
f2(y)ρ(y)dy

)1/2

.

Let p = (p1, . . . , pN ) be a multi-index and Λ ⊂ NN a set of multi-indices. In what follows we
consider only sets Λ that are monotone in the following sense.

Property 1 (Monotonicity of Λ). Consider two multi-indices p′,p′′ ∈ NN such that p′′n ≤ p′n for
all n = 1, . . . , N . The multi-index set Λ is monotone if the following holds:

p′ ∈ Λ =⇒ p′′ ∈ Λ.

We denote by PΛ(Γ) the multivariate polynomial space

PΛ(Γ) = span
{

N∏
n=1

ypnn , with p ∈ Λ
}
, (4.2.1)

and by #Λ = dim(PΛ) the dimension of the polynomial space, which corresponds to the
cardinality of the multi-index set Λ. For convenience, the set Λ can be arranged in lexicographical
order, and according to this order, we can denote by pj the jth multi-index of Λ. Sometimes
we refer to the elements of Λ with the generic multi-index p, rather than listing them by the
lexicographical index.

Since the monomial basis in (4.2.1) is very ill-conditioned, in practice we use an orthonormal
polynomial basis. A typical choice is to take orthogonal polynomials with respect to the measure
ρ(y)dy. We introduce an N -dimensional orthonormal polynomial basis {lj}#Λ

j=1 of PΛ with respect
to the weighted inner product

(u, v)L2
ρ

=
∫

Γ
u(y)v(y)ρ(y) dy,

i.e. (li, lj)L2
ρ

= δij . Assumption 1.1 ensures that the orthonormal basis is complete in L2
ρ when

Λ = NN , applying Theorems 3.3 and 3.5 of [EMSU12].
In the particular case where the density factorizes as ρ(y) =

∏N
n=1 ρn(yn) the basis can be

constructed by tensorizing one-dimensional orthogonal polynomials with respect to each weight
ρn separately. Given n, let {ϕnj (·)}j be the orthogonal polynomials with respect to ρn. The jth
multi-index pj ∈ Λ is associated with the corresponding jth multidimensional basis function by

lj(y) =
N∏
n=1

ϕn
pjn

(yn). (4.2.2)

Thus, using the basis functions provided by (4.2.2), the definition (4.2.1) of PΛ becomes

PΛ(Γ) = span{lj , j = 1, . . . ,#Λ}, (4.2.3)

and of course dim(PΛ) = #Λ. Observe that in general (4.2.1) and (4.2.3) are equivalent only if
the index set Λ satisfies the Monotonicity Property 1.
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We consider a sample y1, . . . ,yM of sizeM ≥ #Λ of independent random variables identically
distributed according to the density ρ, and then evaluate the function φ pointwise at each value
yi, i = 1, . . . ,M .

Finally, we compute a discrete least square approximation of the values φ(yi) in the polynomial
space PΛ, i.e.

φΛ = ΠΛ,ω
M φ = argmin

v∈PΛ(Γ)

1
M

M∑
i=1

(φ(yi)− v(yi))2. (4.2.4)

We will use the superscript (or subscript) ω to denote a quantity that depends on the random
sample y1, . . . ,yM (and therefore is random itself).

We now introduce the random discrete inner product

(u, v)M,ω = 1
M

M∑
i=1

u(yi)v(yi) (4.2.5)

on PΛ(Γ), and the corresponding discrete norm ‖u‖M,ω = (u, u)1/2
M,ω. Note that for M ≥ #Λ

the bilinear form (4.2.5) is an inner product on PΛ(Γ) with probability one, by Assumption 1.1.
With this notation we can write (4.2.4) as

find ΠΛ,ω
M φ ∈ PΛ(Γ) such that (φ−ΠΛ,ω

M φ, v)M,ω = 0, ∀ v ∈ PΛ(Γ).

Some of the most common choices of function spaces are Tensor Product, Total Degree, and
Hyperbolic Cross, which are defined by the index sets below. We index the set Λ by the subscript
w, which denotes the maximum polynomial degree used:

Tensor Product (TP), Λw =
{
p ∈ NN : max

n=1,...,N
pn ≤ w

}
, (4.2.6)

Total Degree (TD), Λw =
{
p ∈ NN :

N∑
n=1

pn ≤ w
}
, (4.2.7)

Hyperbolic Cross (HC), Λw =
{
p ∈ NN :

N∏
n=1

(pn + 1) ≤ w + 1
}
. (4.2.8)

These spaces are isotropic in the sense that the maximum polynomial degree w is the same in all
variables Y1, . . . , YN . The dimensions of the TP and TD spaces are

#TP (w, N) = (w + 1)N , (4.2.9)

#TD(w, N) =
(
N + w
N

)
. (4.2.10)

The dimension of the HC space is harder to quantify. An upper bound is given by

#HC(w, N) ≤
⌊
(w + 1) · (1 + log(w + 1))N−1

⌋
, (4.2.11)

where b·c denotes the operation of rounding a real number downwards to the nearest integer.
This bound is sharp for N = 2 and becomes very conservative as N increases.

4.2.1 Stability and convergence rate of the random discrete L2 projection

Here we recall some theoretical results concerning the discrete L2 projection, derived in [MNvST11]
and [CDS11]. Let us first introduce the quantity

Cω(M,Λ) := sup
v∈PΛ\{v≡0}

‖v‖2L2
ρ

‖v‖2M,ω

, (4.2.12)
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which depends on the random sample and is therefore a random variable. The following
proposition states the optimality of the discrete L2 projection with respect to the L∞ norm,
when the error is evaluated in the L2

ρ norm, that is:

Proposition 4.1 (see [MNvST11]). With Cω(M,Λ) defined as in (4.2.12), it holds that

‖φ−ΠM,ω
Λ φ‖L2

ρ
≤
(
1 +

√
Cω(M,Λ)

)
inf

v∈PΛ(Γ)
‖φ− v‖L∞ . (4.2.13)

As a consequence, the convergence properties of the RDP are strictly related to the properties of
the quantity Cω(M,Λ). The next theorem quantifies the asymptotic behavior of the random
variable Cω(M,Λ).

Theorem 4.1 (see [MNvST11]). Let Cω(M,Λ) be the random variable defined in (4.2.12). Then,
for any given Λ we have

lim
M→∞

Cω(M,Λ) = 1, a.s.

The previous proposition and theorem are general results on the discrete L2 projection: they
hold in any dimension N , for any arbitrary N -dimensional monotone multi-index set Λ, and for
any density ρ satisfying Assumption 1.1.

When N = 1 and ρ = U([−1, 1]) a probability estimate has been proved in [MNvST11].
In this particular case the polynomial space is denoted by Pw rather than PΛ, because the
multi-index set Λ is just {0, 1, . . . ,w} and its dimension #Λ = 1 + w. Accordingly, the projector
ΠM,ω

Λ is denoted by ΠM,ω
w . The following theorem ensures the stability and accuracy of the

discrete L2 projection, under the condition M ∝ (#Λ)2.

Theorem 4.2 ([MNvST11]). For any δ ∈ (0, 1), under the condition

M

3 log((M + 1)/δ) ≥ 4
√

3 w2 (4.2.14)

it holds

Pr

‖φ−ΠM,ω
w φ‖L2

ρ
≤

1 +

√
3 log M + 1

δ

 inf
v∈Pw

‖φ− v‖L∞

 ≥ 1− δ. (4.2.15)

We remark that in practice condition (4.2.14) is equivalent toM ∝ (#Λ)2, since the effect due
to the presence of the nonoptimal logarithmic factor is often negligible. In [CDS11] an estimate
in expectation of the error ‖φ −ΠM,ω

w φ‖L2
ρ
has also been derived, showing that it behaves as

the L2 best approximation error under the same condition M ∝ (#Λ)2. Moreover, for analytic
functions, the best approximation error converges exponentially as w increases. Note that, to
keep condition (4.2.14) satisfied, increasing w requires increasing M as well.

There also exists a general relation between the optimal convergence rate of the random
projection and its stability, which holds again in any dimension N and for any Λ and ρ. The
same random variable Cω, besides entering into the error estimate (4.2.13), plays a role in the
stability of the random projection, as stated in the next proposition. As in [MNvST11], we
denote by Dω the random design matrix associated with problem (4.2.4); its elements are defined
as [Dω]i,j = lj(yi).

Proposition 4.2 (from [MNvST11]). The spectral condition number (2 norm) of the matrix
(Dω)TDω is equal to

cond
(
(Dω)TDω

)
= cω(M,Λ)Cω(M,Λ), (4.2.16)

where

cω(M,Λ) := sup
v∈PΛ\{v≡0}

‖v‖2M,ω

‖v‖2L2
ρ

. (4.2.17)
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Remark 4.2. It is also possible to construct a RDP approximation Π̃M,ω
w φ in which the sampling

points are drawn from a density ρ̃ different than ρ. Assuming that ρ(y)/ρ̃(y) < +∞, ∀y ∈ Γ, the
following error bound will hold:

‖φ− Π̃M,ω
w φ‖L2

ρ(Γ) ≤
∥∥∥∥ρρ̃
∥∥∥∥ 1

2

L∞(Γ)
‖φ− Π̃M,ω

w φ‖L2
ρ̃
(Γ). (4.2.18)

We propose then to choose the density ρ̃ so as to improve the stability of RDP, while preserving
its accuracy. A good candidate is given by the Chebyshev distribution. Indeed, it has been shown
in [CDS11] that when drawing samples from the monovariate Chebyshev distribution, the RDP
is stable and optimally convergent under the assumption M ∝ #Λ which is much less demanding
than (4.2.14).

4.3 Parametric PDEs
In [MNvST11] we presented some numerical examples of RDP to approximate monovariate and
multivariate target functions φ = φ(y) : Γ→ R on polynomial spaces. The role of smoothness
was investigated. When using a relation M ∝ (#Λ)2, an optimal (in the sense described in the
introduction) convergence rate was always observed. On the other hand, when using a linear
relation M ∝ #Λ, the optimal convergence rate was observed up to a certain threshold, after
which the error started increasing and eventually diverged. This effect was clearly observed in
the monovariate case. However, in higher dimensions the blow-up of the error was not observed
in the range of practical polynomial degrees explored. As pointed out in [MNvST11], the linear
relation M ∝ #Λ therefore seems to be sufficient for all practical purposes to achieve an accurate
and stable approximation.

The aim of this paper is to test the RDP when the target function φ is related to the solution
of a stochastic PDE model. We focus on QOIs of integral type over the spatial domain of the
PDE model, such as the mean of the solution or its gradient in portions of the domain, or
pointwise quantities such as the maximum or minimum of the solution in the domain.

Consider a steady state PDE model,

L(x,y, u, f, g,Ω) = 0, (4.3.1)

defined on a bounded domain Ω ⊂ Rd and parametrized by y ∈ Γ ⊆ RN , with u : Ω× Γ→ R its
solution, f : Ω× Γ → R the forcing term, and g : ∂Ω× Γ → R a suitable boundary condition.
In general, the operator L can be nonlinear w.r.t. the solution u of the model. The following
examples feature only two-dimensional spatial domains Ω, i.e. d = 2. However, extensions to
three-dimensional problems are straightforward. The domain may also depend on the parameter
y, i.e. Ω = Ω(y). Moreover, we assume that f and g satisfy proper conditions to make the whole
model well-posed in the sense of Hadamard.

Considering y ∈ Γ as a realization of the random variable Y distributed according to the
density ρ : Γ→ R+, the parametric model (4.3.1) can also be considered as a PDE model with
stochastic data.

We now proceed with some examples to illustrate the application of the RDP to approximate
QOIs depending on the solution of stochastic PDEs. First we focus on models in the elliptic
class, where the solution typically depends smoothly on the random variable, as proved in
[CDS11, BNT10].

The first three examples concern the Darcy flow in a medium containing some inclusions.
The first and second examples have a one-dimensional stochastic parameter space: in Example 1
the value of the diffusion coefficient is stochastic, while in Example 2 the geometrical shape of the
inclusion is stochastic. In Example 3 we increase the dimension of the parameter space to five.

Then we analyze the linear elasticity model and the incompressible Navier–Stokes model. The
former exhibits a highly regular dependence of the solution on the random parameter affecting
Young’s modulus, while the latter shows some nonsmooth QOIs.
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To quantify the error ‖φ −ΠM,ω
Λ φ‖L2

ρ
committed by RDP we employ the cross-validation

procedure described in [MNvST11, Section 4]. A random set of 100 cross-validating points is
chosen at the beginning. Then the cross-validated error in the ∞ norm is defined as

‖φ−ΠM,ω
Λ φ‖cv = max

zj
|φ(zj)−ΠM,ω

Λ φ(zj)|, (4.3.2)

where zj , j = 1, . . . , 100, is the set of cross-validation points. To estimate the variability of
(4.3.2) due to the random sampling of the M collocation points, we have repeated the calculation
over R independent sets of points yωkj , j = 1, . . . ,M , with k = 1, . . . , R, and we have computed
the average error

Ecv =
∑R
k=1 ‖φ−Π

M,ω
Λ φ‖cv

R
, (4.3.3)

as well as the sample standard deviation by

sE =

√√√√ 1
R− 1

R∑
k=1

(
‖φ−ΠM,ω

Λ φ‖cv − Ecv
)2
. (4.3.4)

We also aim to analyze the condition number of (Dω)TDω that has been introduced in (4.2.16).
Following [MNvST11, Section 4], it can be quantified as

cond
(
(Dω)TDω

)
=
σmax

(
(Dω)TDω

)
σmin

(
(Dω)TDω

) , (4.3.5)

where σmax(·) and σmin(·) are the maximum and minimum singular values. Again, denoting by
Dωk the design matrix built with the kth set {yωkj }j , we estimate the mean condition number K
over the R repetitions as

K =
∑R
k=1 cond

(
(Dωk)TDωk

)
R

, (4.3.6)

and the standard deviation as

sK =

√√√√√ 1
R− 1

R∑
k=1

(
cond

(
(Dωk)TDωk

)
−K

)2

. (4.3.7)

In the convergence plots, the continuous lines mark the mean of the error ‖φ−ΠM,ω
Λ φ‖L2

ρ
,

or the mean of the condition number of the random design matrix, while the dashed line mark
the mean plus one standard deviation. The discretization of the PDE model over the spatial
domain Ω is obtained by means of the Finite Element method. In Examples 1,2,3,4 the P1 finite
elements are used. In Example 5 the inf-sup compatible P2-P1 finite elements are used.

4.3.1 Example 1: the Darcy flow in a domain with one inclusion

To start, we consider an elliptic model on a bounded deterministic domain Ω ⊂ R2, with a
random diffusion coefficient µ:

−∇ · (µ(x,y)∇u(x,y)) = 0, x in Ω, y ∈ Γ,
u(x,y) = g1(x), x on ∂Γ1 ∪ ∂Γ3, y ∈ Γ,
∂νu(x,y) = g2(x), x on ∂Γ2 ∪ ∂Γ4, y ∈ Γ.

(4.3.8)

We set problem (4.3.8) in a unitary square domain, with a circular inclusion ΩI with radius 0.2,
as shown in Fig. 4.1. The edges are labeled clockwise as Γ1,Γ2,Γ3,Γ4 starting from the left. We
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Figure 4.1: Square domain Ω with a circular inclusion ΩI .

impose nonhomogeneous Dirichlet conditions on the vertical edges and homogeneous Neumann
conditions on the horizontal ones, to force a steady state flow from left to right. The random
diffusion coefficient depends on a uniform random variable Y ∼ U(−1, 1) and is defined as

µ(x, Y ) =
{

exp(5Y ), ΩI ,

10−4, Ω \ ΩI .
(4.3.9)

Such a model for the coefficient can be employed in practical situations where the value of the
diffusion properties of the material are not accurately determined in a given region of the physical
domain, or when the value is a function of the outcome of some stochastic process with a known
underlying probability law. Notice that the aforementioned diffusion coefficient may jump by
more than four orders of magnitude from the bulk to the inclusion.

The QOIs we analyze are defined by integrals of the solution over the physical domain. We
consider the mean of the solution u in Ω,

QOI1(u) = 1
|Ω|

∫
Ω
u dΩ; (4.3.10)

the mean of |∇u|2 in Ω

QOI2(u) = 1
|Ω|

∫
Ω
|∇u|2 dΩ; (4.3.11)

and the mean of the solution on the left boundary segment Γ1,

QOI3(u) = 1
|Γ1|

∫
Γ1
u dΩ. (4.3.12)

All these QOIs are analytic functions of the parameter y (see e.g. [BNT10, CDS11]) so we expect
the best approximation error to decay exponentially fast w.r.t. the polynomial degree w. The
numerical results obtained with a sample size chosen as M ∝ #Λ are reported in Fig. 4.2, where
we plot the condition number (4.3.5) of the matrix (Dω)TDω (top-left) and the error in the QOI
(measured using (4.3.2)) versus the polynomial degree.

When the value of the proportionality constant c decreases too much, the convergence rate
achieved by the random projection is reduced, and the variability of the error amplifies as well.
Analogous results were shown in [MNvST11] for scalar target functions.

Fig. 4.3 shows the results for QOI1 in the case of a sample size M ∝ (#Λ)2. We see that,
as the proportionality constant increases, the convergence curve “stabilizes” onto a limit curve
that corresponds to the optimal convergence, i.e. the convergence of the exact L2 projection.
Note that Figs. 4.2 and 4.3 give convergence plots in terms of the dimension of the polynomial
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space. However, the actual cost of RDP is proportional to the sample size M ; therefore it is
also useful to look at convergence plots of error versus M . Note that Fig. 4.2 (top-right) and
Fig. 4.3 were based on the same data sets, but including only values of w ≤ 10. This is shown in
Fig. 4.4, where error plots for QOI1 are shown for different choices of proportionality relation
M ∝ (#Λ)α.
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Figure 4.2: Example 1. Condition number (4.3.5) (top-left) and approximation errors (4.3.2) in
the QOIi, i = 1, 2, 3, usingM = c ·#Λ = c · (w+1). Continuous lines: sample mean averaged over
R = 100 repetitions. Dashed lines: sample mean plus one sample standard deviation averaged
over R = 100 repetitions.
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Figure 4.3: Example 1. Approximation errors (4.3.2), using M = c · (#Λ)2 = c · (w + 1)2.
Continuous lines: sample mean averaged over R = 100 repetitions. Dashed lines: sample mean
plus one sample standard deviation averaged over R = 100 repetitions.

Observe that the choice M ∝ (#Λ)2, which according to the theoretical estimates is the
minimal relation that guarantees stability of the projection, leads to exponential convergence.
Choosing a smaller sample size, e.g. M = 2 ·#Λ, yields a faster convergence w.r.t. M up to a
certain threshold, after which the solution deteriorates. This effect is also seen in [MNvST11,
Fig.8].
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As an example of a statistical moment obtained from the RDP reduced model we computed
E [QOI1]. The error versus number of samples M is reported in Fig. 4.4 (right) and its decay
is very similar to that of the cross-validated error. We see that in this example RDP is clearly
superior to a simple Monte Carlo approximation of the same expected value, where the error
decays with the rate M−1/2.
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Figure 4.4: Example 1. Left: approximation errors (4.3.2) in the QOI1 versus M for different
choices of the sample size, M = c · (#Λ)α = c · (w + 1)α. The markers are used to indicate
progressive values of w, starting from w = 1. Right: errors in the scalar quantity E [QOI1] versus
M . Here E [QOI1] was approximated from the RDP reduced model, and the error was evaluated
using a highly accurate reference solution computed with w = 20 and M = 5 · (w + 1)2; the
continuous curves show the mean error over R = 100 repetitions, and the dashed lines show the
mean error plus one sample standard deviation. The estimated standard deviation of the sample
mean in a simple Monte Carlo approximation of E [QOI1] is also included.

4.3.2 Example 2: the Darcy model in a domain with an inclusion of random
shape

The second example we consider is based on problem (4.3.8), but now we choose a deterministic
value of the diffusion coefficient µ as

µ(x, Y ) =
{

1, ΩI ,

10−6, Ω \ ΩI ,
(4.3.13)

and the randomness is in the radius of the circular inclusion ΩI , which is centered in (0.4, 0.4)
and has a radius R which is determined by the uniform random variable Y ∼ U(−1, 1) as
R = (Y + 2)/10. For each realization of the random variable we remesh the whole domain. The
motivation for this example is to investigate the effect of a discontinuity of the diffusion coefficient
with random location in the physical domain. The discontinuity consists in the boundary of the
inclusion, where the diffusion coefficient jumps by six orders of magnitude. The QOIs considered
are the same as those in Example 1.

Fig. 4.5 shows the condition number (4.3.5) and the approximation error (4.3.2) in the QOIs
in this example. In Fig. 4.5 we observe an exponential convergence w.r.t. w up to w = 6 for all
three QOIs, and this example shows that these are smooth QOIs even if the problem presents
discontinuities with a random location (hence the solution itself, measured in the L2(Ω) or H1(Ω)
norm, is not smooth with respect to Y). For larger values than w = 6 the error levels out due to
nonnegligible contributions of the finite element error.

Notice again that, as the value of the proportionality constant c increases, the curves converge
to the optimal curve corresponding to the exact L2 projection error curve. In this case, already
M = 3 · (#Λ)2 yields the optimal convergence rate.

Example 2: a less smooth QOI We now build a QOI that exhibits a less regular dependence
on the random variable Y. We consider again problem (4.3.8) with the value of the diffusion
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Figure 4.5: Example 2. Condition number (4.3.5) (top-left) and approximation errors (4.3.2) in
the QOIi, i = 1, 2, 3, using M = c · (#Λ)2 = c · (w + 1)2. Continuous lines: sample mean averaged
over R = 100 repetitions. Dashed lines: sample mean plus one sample standard deviation
averaged over R = 100 repetitions.

coefficient µ given by

µ(x, Y ) =
{

1, ΩI ,

10−2, Ω \ ΩI ,
(4.3.14)

and the circular inclusion ΩI with random radius as in the previous section. Note that the
discontinuity of the coefficient is a jump of two orders of magnitude across the boundary of the
inclusion. Now we consider the following quantities of interest:

QOI4(Y ) = u(x̃, Y )
∣∣∣
x̃=(0.4,0.4)

, QOI5(Y ) = u(x̃, Y )
∣∣∣
x̃=(0.55,0.55)

, (4.3.15)

which are pointwise evaluations of the solution u of problem (4.3.8) in two fixed positions
x̃ = (0.4, 0.4) and x̃ = (0.55, 0.55). The former coincides with the center of the random shape
inclusion and therefore always lies inside it. The latter point may or may not belong to the
inclusion, depending on the outcome of the random variable Y that determines the radius of the
inclusion. The corresponding results are displayed in Fig. 4.6. The QOI associated with the point
x̃ = (0.4, 0.4) exhibits a faster convergence than the one associated with x̃ = (0.55, 0.55), since
the discontinuity in the coefficient affects the regularity of the solution exactly in the point where
it is evaluated. In this case, the point x̃ = (0.55, 0.55) is such that the probability of falling inside
the inclusion is approximately twice the probability of falling outside it. Of course there are also
QOIs that are hard to approximate, e.g. the one associated with the point x̃ = (0.6, 0.6) that
falls inside the inclusion with a probability larger than 98%. In this case the use of importance
sampling techniques (see e.g. [RC04]) should be considered.

4.3.3 Example 3: the Darcy flow in a domain with five inclusions

In the next test we again use problem (4.3.8) and increase the dimension of the parameter space
Γ to N = 5 by adding some inclusions, as shown in Fig. 4.7. The inclusions are circular with
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Figure 4.6: Example 2. Approximation errors (4.3.2) in the QOIi, i = 4, 5, usingM = c · (#Λ)2 =
c · (w + 1)2. Continuous lines: sample mean averaged over R = 100 repetitions. Dashed lines:
sample mean plus one sample standard deviation averaged over R = 100 repetitions.

radius equal to 0.1 and are centered in the points x = (0.5, 0.5) and x = (0.5± 0.25, 0.5± 0.25).
We denote by Ωi, i = 1, . . . , 5, the inclusion domains and Ω0 = Ω \ ∪5

i=1Ωi the bulk. Therefore
Ω =

(⋃5
i=0 Ωi

)
, and the sets Ωi are not overlapping each other. The random diffusion coefficient

now depends on a multivariate uniform random variable Y ∼ U([−1, 1]5) and is defined as

µ(x,Y) =
{

exp(β Yi), Ωi, i = 1, . . . , 5,
10−4, Ω0,

(4.3.16)

such that each random variable is associated with an inclusion. We consider the same QOIs
as in Example 1. The chosen polynomial space PΛ is the isotropic TD space. As mentioned
in the introduction, this choice is motivated by the analysis in [BNTT12]. We set β = 2, so
that the coefficient variations in the inclusions are of two orders of magnitude, and report the
results in Fig. 4.8. The convergence rate is exponential whenever the value of c is larger than
1. A number of points M = 3 ·#Λ is enough to achieve the optimal convergence rate, and no
deterioration is observed up to the maximal polynomial degree w = 10 considered. Then we set
β = 5 and obtain the results in Fig. 4.9. Note that this case yields a variation of more than four
orders of magnitude in the coefficient inside the inclusions. As a consequence we observe that
the convergence remains exponential but with a slower rate.

Figure 4.7: Domain with five inclusions Ω1,Ω2,Ω3,Ω4,Ω5 with random diffusivity for problem
(4.3.8).
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Figure 4.8: Example 3: the Darcy model. β = 2. Condition number (4.3.5) (top-left) and
approximation errors (4.3.2) in the QOIi, i = 1, 2, 3, using M = c ·#Λ = c · (w + 1). Continuous
lines: sample mean averaged over R = 100 repetitions. Dashed lines: sample mean plus one
sample standard deviation averaged over R = 100 repetitions.
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Figure 4.9: Example 3: the Darcy model. β = 5. Approximation errors (4.3.2) in the QOIi,
i = 1, 2, using M = c ·#Λ = c · (w + 1). Continuous lines: sample mean averaged over R = 100
repetitions. Dashed lines: sample mean plus one sample standard deviation averaged over
R = 100 repetitions.
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4.3.4 Example 4: Navier–Lamé equations with “inclusion type” coefficient

We consider the Navier–Lamé equations written in displacement form on the domain Ω = ∪7
i=1Ωi

depicted in Fig. 4.10:
−(λ(x,y) + µ(x,y))∇(∇ · u) + µ(x,y)∇2u = −f(x,y), x ∈ Ω, y ∈ Γ,
σ(u) · n = 0, x on ∂Ω \ Γwall, y ∈ Γ,
u = 0, x on Γwall, y ∈ Γ,

(4.3.17)

with

µ(x,Y) = E(x,Y)
2(1 + ν) , λ(x,Y) = ν E(x,Y)

(1 + ν)(1− 2 ν) ,

and with σ the usual stress tensor

σ(u) = λ(∇ · u)I + 2µ ∇u +∇Tu
2 .

Young’s modulus E is affected by uncertainty, and it depends on the random variable Y ∼
U([−1, 1]7) in the following way:

E(x,Y) = exp(7 + Yi), in Ωi, i = 1, . . . , 7.

Poisson’s ratio ν is deterministic and equal to 0.28. The prescribed boundary conditions are
null displacement on Γwall and null stress on ∂Ω \ Γwall. The forcing term f ≡ −1 models the
distributed action of the gravity force. The reference configuration of the cantilever is a 1× 7
rectangle. Further details about the geometry are given in Fig. 4.10. As in Example 3, we choose
PΛ to be the isotropic TD space. We are interested in the following QOIs:

QOI6(u) =
∫

Ω
|∇u1|2 + |∇u2|2 dΩ,

QOI7(u2) = min
x∈Ω

u2(x), QOI8(u) =
∫

Ω
σ12(u) dΩ.

In Fig. 4.11 we report the corresponding results. The convergence is exponential even with
M = 1.1 · #Λ, which is very close to the minimal number of points required to have an
overdetermined problem. The red line corresponds to the choice M = 3 · #Λ, and can be
considered the optimal convergence rate, since no significant improvement is observed when going
to M = 10 ·#Λ (green line).

Figure 4.10: The cantilever beam.

4.3.5 Example 5: Navier–Stokes equations in a random domain

In the last example, we consider the steady state incompressible Navier–Stokes equations which
govern the motion of a fluid in a pipe:

−ν∆u +
(
u · ∇

)
u +∇p = 0, in Ω,

∇ · u = 0, in Ω,
+ boundary conditions on ∂Ω.

(4.3.18)
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Figure 4.11: Example 4. Condition number (4.3.5) (top-left) and approximation errors (4.3.2) in
the QOIi, i = 6, 7, 8, usingM = c ·#Λ = c · (w+1). Continuous lines: sample mean averaged over
R = 100 repetitions. Dashed lines: sample mean plus one sample standard deviation averaged
over R = 100 repetitions.

The presence of uncertainty in the model is described by a two-dimensional uniform random
variable Y ∼ U([−1, 1]2). The first component Y1 models the uncertainty in the kinematic
viscosity ν(Y) = 10−Y1 , while the second component determines the geometrical parameter r1 by

r1 = 1.5 + Y2
5 .

The parameter r1 defines the curvature in the innermost part of the elbow of the pipe. The
parameter r2 = 0.3 is kept fixed, since it has a minor influence on the solution of the model. The
size of the inflow and outflow sections of the pipe and other geometrical details are reported in
Fig. 4.12. We again choose PΛ to be the isotropic TD space, although the two random variables

Figure 4.12: Geometry of the domain Ω in Example 5.

have clearly different roles. We impose a Poiseuille velocity profile on Γin with maximal velocity
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equal to 4, no-slip conditions on Γwall, null tangential velocity,z and null pressure on Γout. The
QOIs that we address are given by the pressure as

QOI9(Y) = 1
|Γin|

∫
Γin

p(x,Y) dΩ, QOI10(Y) = p(x̃,Y)
∣∣∣
x̃=(2.5,1)

,

and by the vorticity v(x,Y) = ∇× u(x,Y) as

QOI11(Y) =
∫

Ω
|v(x,Y)| dΩ.

The point x̃ = (2.5, 1) lies in a central region of the domain where the pressure is largely affected
by the values of the random parameters. The Reynolds number ranges from 0.4 to 40, depending
on the realizations of the random variable Y. The flow of the fluid is always in the laminar
regime.

We report the numerical results obtained in Fig. 4.13. The QOIs associated with the pressure
converge exponentially fast. On the other hand, the QOI with the vorticity is very sensitive to
the input parameters. As a consequence, the corresponding QOI exhibits a slow convergence,
and the use of a high order polynomial approximation seems ineffective.
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Figure 4.13: Example 5. Condition number (4.3.5) (top-left) and approximation errors (4.3.2) in
the QOIi, i = 9, 10, 11, using M = c ·#Λ = c · (w + 1). Continuous lines: sample mean averaged
over R = 5 repetitions. Dashed lines: sample mean plus one sample standard deviation averaged
over R = 5 repetitions.

4.4 Conclusions

In this work we have presented the use of RDP to approximate QOIs related to the solution of
PDEs with stochastic data. We have proposed several examples of QOIs related to the solution
of the Darcy model, the linear elasticity model, and the Navier–Stokes equations, containing few
random parameters, and we have shown numerically how the sample size affects the convergence
rate when using a linear proportionality relation M ∝ #Λ or a quadratic relation M ∝ (#Λ)2.
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For a one-dimensional parameter space, the theoretical analysis proposed in [MNvST11]
ensures that when a quadratic proportionality M ∝ (#Λ)2 is employed, the error committed
by the random projection behaves as the best approximation error in the L∞ norm. The first
two numerical examples proposed, concerning the Darcy model with one random parameter
describing either the permeability in an inclusion contained in the domain or the radius of the
inclusion, confirm the theoretical results. The QOIs analyzed are all analytic functions of the
random parameter, and exponential convergence has been obtained when employing a quadratic
proportionality relation M ∝ (#Λ)2. On the other hand, with a linear proportionality relation
M ∝ #Λ, the error decays initially exponentially but a deterioration of the convergence is
observed for high polynomial degrees (above w = 11 in Fig. 4.4).

The situation seems to be more favorable in higher dimension. Indeed, in all the proposed nu-
merical tests with smooth (analytic) QOIs and more than one parameter, a linear proportionality
relation M ∝ #Λ yielded an almost-optimal exponential convergence rate, and no deterioration
of the convergence due to an insufficient sample size has been observed in the range of polynomial
degrees and tolerances tested. The design matrix (Dω)TDω is also better conditioned than in
the monovariate case. Although we can not exclude a blow-up of the error for high polynomial
degrees, our conclusion is that for practical engineering tolerances, a linear proportionality
M = c ·#Λ is acceptable, and the higher the dimension, the smaller the constant can be taken,
which makes RDP an attractive technique for moderately high dimensional problems. However a
theoretical result supporting this statement is still missing.

The overall efficiency of RDP has to be compared with classical methods as Stochastic
Galerkin and Stochastic Collocation on Sparse Grids. The RDP is more suited to complex
applications than Stochastic Galerkin, since the evaluations of the target function are completely
uncoupled and one might use a black box deterministic solver. In addition, RDP is very promising
for intermediate to large dimensions and could be competitive with or even better than Stochastic
Collocation on Sparse Grids in terms of accuracy versus number of evaluations of the target
function. A fair comparison between the two methods is out of the scope of the present paper
and will be addressed in a forthcoming work. Meanwhile, in this paper, we have shown one
example of the approximation of the expected value of a QOI, where RDP clearly outperforms a
basic Monte Carlo method.

Finally, we remark that a potential great improvement in the stability and consequent
efficiency of RDP could be achieved by sampling from a distribution different from the underlying
one, as mentioned in Remark 4.2. This aspect will be investigated in a future work.
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Chapter 5

The Factorization Method for
Electrical Impedance Tomography in
piecewise constant uncertain
backgrounds

The contents of this chapter are mainly rearranged from the manuscript [HM13],
by H. Haddar and G. Migliorati, where the Factorization Method is applied to the
Continuous Model in EIT with piecewise constant uncertain backgrounds. The Sec-
tions 5.2.3 and 5.5 are extracted from the technical report [HM11], where more general
deterministic inhomogeneous backgrounds are addressed, also in presence of artificial
noise.

Abstract

We extend the Factorization Method for Electrical Impedance Tomography to the
case of background featuring uncertainty. We first describe the algorithm for known
but inhomogeneous backgrounds and indicate expected accuracy from the inversion
method through some numerical tests. Then we develop three methodologies to
apply the Factorization Method to the more difficult case of piecewise constant
but uncertain background. The first one is based on a recovery of the background
through an optimization scheme and is well adapted to relatively low-dimensional
random variables describing the background. The second one is based on a weighted
combination of the indicator functions provided by the Factorization Method for
different realizations of the random variables describing the uncertain background.
We show through numerical experiments that this procedure is well suited to the
case where many realizations of the measurement operators are available. The third
strategy is a variant of the previous one when measurements for the inclusion-free
background are available. In this case, a single pair of measurements is sufficient to
achieve comparable accuracy to the deterministic case.

Key words: Inverse Problems, Electrical Impedance Tomography, Factorization Method, uncer-
tain background.

AMS subject classification: 35R60, 35R30, 65M32
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5.1 Introduction

The problem of Electrical Impedance Tomography (EIT) arises in many applied contexts. It leads
to well-established operative procedures, e.g. in geophysics, nondestructive testing or imaging
applications, while in other fields its use is still experimental e.g. medicine, [CIN99, Bor02, MS12,
SVV+01, GZ03].

For some key theoretical results related to uniqueness and conditional stability of the EIT
inverse problem, we refer to [AP06, BT03, Ale88, LU89] and references therein. On the numerical
side, many mathematical models and inversion algorithms for EIT were proposed in the literature,
trying to take into account as many physical phenomena as possible, see [MS12] and the
references therein for a complete overview. In this work we address the Factorization Method
(FM) as introduced in [KG08] applied to the Continuous Model (in contrast to the Complete
Electrode Model [LHH08, HHP07]) in the context of EIT featuring an inhomogeneous isotropic
background. We shall in particular address the case where the inhomogeneous background
cannot be considered as a small perturbation of the homogeneous one (as in [HS09]) and more
importantly consider the case where this background is piecewise constant but with uncertain
values on the conductivity (and not on the spatial distribution). The latter configuration is
motivated by medical imaging experiments since the conductivity support may be known from
the use of other imaging modalities, while the physical electrical parameters cannot be exactly
determined.

Most of the works on the FM in the literature treat the case of the homogeneous background,
e.g. [AHOS07, HS08]. Our work is mostly related to numerical issues associated with EIT in
an inhomogeneous and uncertain background. To begin with, we propose a numerical scheme
to solve the dipole-like Neumann boundary-value problem when the background coefficient is
inhomogeneous and deterministic, and use this scheme to design an efficient implementation
of the FM algorithm for inhomogeneous but deterministic background. We then discuss the
case where the background is piecewise constant with known spatial distribution but unknown
parameter values. We propose three variants of the FM to cope with this configuration. In the
first algorithm, by means of an optimization scheme motivated by the structure of the sampling
operator and the outcome of the FM, we simultaneously recover the background parameters
and the shape of the inclusion. This algorithm is well suited to low-dimensional configurations
of the parameter space, and can be applied to moderately high-dimensional configurations by
means of acceleration with polynomial approximation techniques [BNT10, CDS11, MNvST11].
In addition, an alternative approach is proposed, where the optimization scheme is replaced
by a weighting of the FM indicator function with a misfit indicator for the background. This
procedure requires an extensive sampling of the parameter space which would be very expensive.
However, in the case where many independent realizations of the measurement operator are
available, we describe how this strategy can be made efficient. The third algorithm deals with
the case where paired measurements are available, namely measurements for the inclusion-free
background and measurements for the medium with inclusion. In this case, a uniform weight for
the FM associated with random sampling of the parameter space provides an effective indicator
function.

Let us recall that the FM is an imaging technique belonging to the class of Qualitative Methods
[KG08, CC06]. In this sense the inversion output is an approximate image of a characteristic
function of the inclusion domain and the method does not allow for a quantification of the
inversion error in terms of the measurement or discretization errors. Only qualitative statements
on the convergence of regularizing schemes as measurement error goes to zero can be obtained.
The FM is also a deterministic approach to EIT: it relies on a contrast with an inclusion-free
reference and no prior information is needed to apply the method, but additional information
might be useful to interpret the imaging reconstruction. For statistical approaches to Inverse
Problems and EIT based on Bayesian inference, where prior information is needed but the
inclusion-free reference is not required, we refer to [KKSV00, Stu10] and references therein.

The outline of the paper is the following: in Section 5.2.1 we present the problem of EIT and
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the notation. In Sections 5.2.2 and 5.2.3 we introduce the FM in deterministic inhomogeneous
background and the numerical scheme proposed to solve the dipole-like singular problem. Then
in Section 5.2.4 we describe the regularization technique employed. In Section 5.3 we introduce
the problem of EIT in random media, starting from the parametrization of the background
coefficient by random variables. A justification of how randomness affects the spectrum of the
measurement operator is provided. Moreover, two situations are identified depending on how the
measurements are collected, i.e. arbitrary or paired measurements. In Section 5.3.1 two variants
of the FM are proposed, in the case of arbitrary measurements. In Section 5.3.2 a variant of
the FM is proposed in the case of paired measurements. Sections 5.4, 5.5, 5.6, 5.7 illustrate the
performance of the variants of the FM proposed through several test cases. Finally, in Section 5.8
we draw some conclusions.

5.2 The EIT problem and the Factorization Method

5.2.1 Mathematical formulation of the EIT problem

Consider a bounded Lipschitz domain B ⊂ R2 and its subset D ⊂ B. We assume that D is a
union of possibly disjoint Lipschitz domains, each one with positive measure, and that B \D
is connected. The domain B represents the background medium, modeled by means of the
background diffusion coefficient σB . The domain D represents an inclusion, displaced somewhere
inside B (see Fig. 5.1). The inclusion is characterized by unknown shape and unknown value
of its diffusion coefficient σD. We shall assume that σB and σD are real-valued functions. Now
denote by σ ∈ L∞(B) the diffusion coefficient

σ(x) =
{
σB(x), in B \D,
σD(x), in D, (5.2.1)

and define the functional spaces L̊2(∂B), H̊1(B), H̊
1
2 (∂B) and H̊−

1
2 (∂B) as the subspaces of

respectively L2(∂B), H1(B), H
1
2 (∂B) and H−

1
2 (∂B) of functions with zero (boundary) mean

value on ∂B. Throughout the paper the differential operator is denoted by ∇, or by ∇j and ∇x
to specify the differentiation with respect to the jth argument and to the variable x, respectively.

Given g ∈ H̊−
1
2 (∂B), consider the Neumann boundary-value problem,

find u ∈ H̊1(B) s.t.
{
∇ · (σ(x)∇u) = 0, in B,
σ(x)∇u · ν = g, on ∂B, (5.2.2)

where ν denotes the outward normal to ∂B. It is well known that problem (5.2.2) has a unique
solution if σ ∈ L∞(B) and is positive definite. In the case of the continuous EIT model, one
prescribes a current pattern g and measures the generated potential f = u

∣∣
∂B

on the boundary
∂B. The final aim is to retrieve some information about D, e.g. its location inside B and its
shape.

D

B

Figure 5.1: An inclusion D which lies in a medium B.
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The operator Λ that maps currents g into potentials f is the Neumann-to-Dirichlet map
associated with problem (5.2.2) with coefficient (5.2.1). It is a continuous operator from H̊−

1
2 (∂B)

to H̊
1
2 (∂B). Denote also by Λ0 the Neumann-to-Dirichlet map for the problem (5.2.2) with the

coefficient

σ(x) = σB(x), in B, (5.2.3)

and by u0 the solution to the same problem. In this way u0 represents the potential generated
by the incoming current g in the domain B, when the inclusion D is not present. Let f0 be the
corresponding measured potential f0 = u0

∣∣
∂B

= Λ0g. Both the operators Λ and Λ0 are weakly
compact, when restricted on L̊2(∂B), i.e. Λ : L̊2(∂B) → L̊2(∂B) and Λ0 : L̊2(∂B) → L̊2(∂B).
Moreover, we define the operator Λ̃

Λ̃ := Λ− Λ0 : L̊2(∂B)→ L̊2(∂B), (5.2.4)

that has the remarkable property of being strongly compact (eigenvalues decay exponentially
fast: see for instance (5.3.8)).

We will need also the Green function N(·, ξ) ∈ L̊2(B), which is a solution to the following
Neumann boundary-value problem with a Dirac source δξ centered in ξ ∈ B:{

∇1 · (σB(x)∇1N(x, ξ)) = −δξ(x), x ∈ B,
ν · σB(x)∇1N(x, ξ) = − 1

|B| , x on ∂B. (5.2.5)

Notice that (5.2.5) does not embed any information about the inclusion D. Denote by p a
two-dimensional versor (i.e. |p| = 1). In the sequel we will often need the test function

ψ(x, ξ,p) := p · ∇2N(x, ξ), x ∈ B, (5.2.6)

as well as its restriction on ∂B

lpξ = ψ(x, ξ,p)
∣∣∣
x on ∂B

. (5.2.7)

Moreover, denoting by {e1, e2} an orthonormal basis of R2, we define

lkξ = lekξ , k = 1, 2.

Remark 5.1. When the domain B is a circle with radius R there is an explicit formula for the
solution N(x, ξ) of the Neumann problem (5.2.5) with σB ≡ 1 (see e.g. [Brü01]):

N(x, ξ) = − 1
2π

(
log |x− ξ|+ log

∣∣∣∣∣ R|x|x− |x|R ξ
∣∣∣∣∣
)

+ logR
π

. (5.2.8)

On the boundary of the unitary circle the evaluation of ψ defined in (5.2.6) is given by

ψ(x, ξ,p)
∣∣∣
∂B

= 1
π

p · (ξ − x)
|ξ − x|2 , for |x| = 1. (5.2.9)

5.2.2 The Factorization Method with deterministic inhomogeneous background

In this section we outline the basis of the FM applied to EIT and some numerical issues related
to the case of inhomogeneous background. The main result that motivates the FM algorithm
is Theorem 5.1. It provides a necessary and sufficient criterion to localize a point inside the
support of the inclusions. Remark 5.2 shows how this criterion becomes operative. This theorem
can be proved following the lines of the proof of [KG08, Theorem 6.8] that treats the case of
constant σB (see also [Brü01]). The only point that requires attention is the use of unique
continuation arguments for equations of type (5.2.2), and this is why a regularity assumption on
σB is required.
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Assumption 5.1. The coefficients σ and σB are bounded and positive definite functions on B.
The coefficient σB is piecewise Lipschitz continuous and with interfaces with Lipschitz boundaries.
Moreover, denoting by

σmB = min
x∈D

σB(x) and σMB = max
x∈D

σB(x),

then σB and σD satisfy

σD(x) < σmB − τ or σMB < σD(x)− τ

a.e. in D, for some positive constant τ .

Theorem 5.1. Under Assumption 5.1, the operator Λ̃ : L̊2(∂B)→ L̊2(∂B) is self-adjoint and
injective. Moreover, for any versor p it holds

lpξ ∈ Range(|Λ̃|1/2)⇐⇒ ξ ∈ D.

Remark 5.2. Denote by {λj , wj : j ∈ J} the spectral system of the self-adjoint and compact
operator Λ̃. Then

w ∈ Range(|Λ̃|1/2) ⇐⇒
∞∑
j=1

|(w,wj)L2(∂B)|2

|λj |
<∞. (5.2.10)

The main difficulty in implementing the FM for the inhomogeneous background is the precise
evaluation of lpξ that can only be done in the general case by numerically solving problem (5.2.5).
To overcome the singularity in the forcing term, we resort to the fundamental solution

φ(x, ξ) = − 1
2πσB(ξ) log

∣∣∣x− ξ∣∣∣, x ∈ R2, (5.2.11)

of the problem

−∇ ·
(
σB(ξ)∇φ(x, ξ)

)
= δξ(x), x ∈ R2. (5.2.12)

Since the singularity at ξ in problem (5.2.5) is of the same kind as in problem (5.2.12), we can
restrict problem (5.2.5) in a small neighborhood O(ξ) ⊂ R2 of ξ where

σB(x) ≈ σB(ξ), ∀x ∈ O(ξ),

and approximate the solution N(x, ξ) to problem (5.2.5) near the singularity in ξ as

N(x, ξ) ≈ φ(x, ξ), ∀x ∈ O(ξ).

Then it is possible to write a nonsingular problem for the difference

ϕN (·, ξ) = N(·, ξ)− φ(·, ξ), (5.2.13)

plugging (5.2.13) in (5.2.5). The quantity ψ(·, ξ,p) defined in (5.2.6) is a solution to problem
(5.2.5) for any p. Moreover, in ψ the dependence of N(·, ·) on the second argument is smooth. So
we can exploit this regularity to derive a numerical scheme that given ξ ∈ B directly computes
∇2N(·, ξ), that is needed to obtain lpξ through ψ and apply Theorem 5.1. To this aim we
differentiate (5.2.13) with respect to the second argument, and obtain

∇2ϕN (·, ξ) = ∇2N(·, ξ)−∇2φ(·, ξ). (5.2.14)

The derivatives of φ w.r.t. ξ are

∂φ(·, ξ)
∂ξk

= 1
2πσB(ξ)2

∂σB(ξ)
∂ξk

log
(
|x− ξ|

)
+ xk − ξk

2πσB(ξ)|x− ξ|2 , k = 1, 2,
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and since φ is analytical when x 6= ξ the mixed derivatives coincide:

∂2φ(x, ξ)
∂xk∂ξk

= 1
2πσB(ξ)2

∂σB(ξ)
∂ξ1

xk − ξk
|x− ξ|2 + |x− ξ|

2 − 2(xk − ξk)2

2πσB(ξ)|x− ξ|4 ,

∂2φ(x, ξ)
∂x`∂ξk

= 1
2πσB(ξ)2

∂σB(ξ)
∂ξ1

x` − ξ`
|x− ξ|2 −

(xk − ξk) (x` − ξ`)
πσB(ξ)|x− ξ|4 ,

for k, ` = 1, 2 and ` 6= k. Denoting by superscript the partial derivative, we have two problems
for the unknowns ϕkN = ∂ϕN/∂ξk, k = 1, 2:

−∇x ·
(
σB(x)∇1ϕ

k
N (x, ξ)

)
= −∇x ·

((
σB(ξ)− σB(x)

)
Φk(x, ξ)

)
, x in B,

σB(x)∇1ϕN (x, ξ) · ν = −σB(x) Φk(x, ξ) · ν − 1
|∂B| , x on ∂B,

(5.2.15)

with

Φk(x, ξ) =
(
∂2φ(x, ξ)
∂x1∂ξk

,
∂2φ(x, ξ)
∂x2∂ξk

)
, ∀ (x, ξ) ∈ B ×B : x 6= ξ.

All the second derivatives of φ are singular in x = ξ, and behave like 1/|x − ξ|2. Therefore if
σB(·) is piecewise Lipschitz then the solution of (5.2.15) is in H1(B). Hence the variational
formulation of (5.2.15) is suitable for standard finite element discretizations. Once the solution of
(5.2.15) has been computed, then ∇2N(·, ξ) can be recovered from (5.2.14). Notice that when σB
is piecewise constant and ξ does not fall where it jumps, the function ζ(x, ξ) := σB(ξ)− σB(x)
vanishes as x approaches ξ.

5.2.3 A closer look to the theory behind the Factorization Method

Theorem 5.1 merges many results in one, and introduces directly the Range criterion. To
illustrate the theory behind the Factorization Method, we provide a more articulate presentation
as well. The key result is the factorization of the operator Λ̃ given in Theorem 5.2, (see [Sch10,
Chap.12,Thm.4] for a proof). In [KG08] a more general three-term factorization is derived for
Λ̃ : H̊−1/2(∂B) → H̊1/2(∂B). Also another simpler two-term factorization can be chosen, see
e.g. [Sch10]. Although many factorizations are possible, each one of them provides a necessary
and sufficient criterion to determine the inclusions. Lemma 5.1 and Theorem 5.5 show how this
criterion becomes operative. See [Sch10, Chap.12] for the proof of Theorems 5.2, 5.4 and 5.5.

Let us introduce the operator G̃ : H̊−1/2(∂D)→ L̊2(∂B). It acts as a Neumann-to-Dirichlet
map of a suitable virtual problem,

∇ · (σB(x)∇w) = 0, in B \D,
∂w
∂ν = 0, on ∂B,
−∂w
∂ν = ϕ, on ∂D,

(5.2.16)

where ϕ ∈ H̊−1/2(∂D) is the input, and w
∣∣
∂B
∈ L̊2(∂B) is the output. Moreover, define the

space W = {w ∈ H̊1(B \D) : w solves (5.2.16)}, and denote by G̃∗ : L̊2(∂B)→ H̊1/2(∂D) the
adjoint of G̃. To define the operator T we introduce the problems

∇ · (σ(x)∇$) = 0, in B \ ∂D,

∂$
∂ν = 0, on ∂B,

[$]∂D = ϕ, on ∂D,

[ν · σ(x)∇$]∂D = 0, on ∂D,

∫
∂B$ds = 0,



∇ · (σB(x)∇$0) = 0, in B \ ∂D,

∂$0
∂ν = 0, on ∂B,

[$0]∂D = ϕ, on ∂D,

[ν · σB(x)∇$0]∂D = 0, on ∂D,

∫
∂B$0 ds = 0.

(5.2.17)
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The operator T is defined as

T : H̊1/2(∂D)→ H̊−1/2(∂D) : ϕ 7→ ∂($+ −$+
0 )

∂ν

∣∣∣∣
∂D

,

where $+ and $+
0 are the restrictions of $ and $0 on B \D.

Theorem 5.2. The operator Λ̃ : L̊2(∂B)→ L̊2(∂B) introduced in (5.2.4) can be factorized as

Λ̃ = G̃T G̃∗. (5.2.18)

Theorem 5.3. A point ξ ∈ B belongs to D if and only if lpξ coincides with the trace of some
potentials w ∈W .

Proof. Let ξ ∈ D. From the definition (5.2.7) we know that lpξ is the trace of ψ(·, ξ,p) ∈ H̊1(B\D).
For every ξ the function N(·, ξ) has the same Neumann data on the boundary. Thus its normal
derivative w.r.t. ξ is null on ∂B. Moreover, on each connected component of D, the Green’s
formula gives∫

∂Dj

∇2ψ(x, ξ,p) · ν ds = 0, (5.2.19)

for every component Dj ⊂ D such that ξ /∈ Dj . But also the flux of ψ(·, ξ,p) across ∂(B \D)
vanishes, so (5.2.19) holds also for the component Dj of D such that ξ ∈ Dj . Therefore
ψ(·, ξ,p) ∈W .

In the case ξ /∈ D, if there exists w ∈ W such that lpξ is the trace of w then we obtain a
contraddiction. In fact, w and ψ(·, ξ,p) (related to lpξ by (5.2.7)) satisfy the same Neumann
problem in B \ (D ∪ {ξ}) with the same boundary conditions. The uniqueness of the solution
implies that w and ψ(·, ξ,p) coincide in B \ (D ∪ {ξ}). But now w extends harmonically into a
neighborhood O(ξ) of ξ, so that w is bounded in O(ξ) while ψ(·, ξ,p) is not.

If ξ ∈ ∂D with the same argument w and ψ(·, ξ,p) coincide in B \ (D). But this is a
contraddiction because w ∈ H̊1(O(ξ) ∩ (B \ (D)), but ψ(·, ξ,p) has the singularity in ξ.

Lemma 5.1. A point ξ ∈ B belongs to D if and only if lpξ ∈ Range(G̃).

Proof. For any ϕ ∈ H̊−1/2(∂D) the problem (5.2.16) has a unique solution w ∈W . Vice-versa,
every function w ∈ W is a solution to problem (5.2.16), with a well-defined normal derivative
ϕ ∈ H̊−1/2(∂D). The thesis follows as a consequence of Theorem 5.3.

Remark 5.3. The space H̊1/2(∂D) is a Banach reflexive space, with dual containing H̊−1/2(∂D).

Theorem 5.4. The operator T : H̊1/2(∂D) → H̊−1/2(∂D) is self-adjoint and coercive over
H̊1/2(∂D).

Theorem 5.5. Let Λ̃ : L̊2(∂B)→ L̊2(∂B) and G̃ : H̊−1/2(∂D)→ L̊2(∂B) and T : H̊1/2(∂D)→
H̊−1/2(∂D). In addition, let G̃ be injective with dense range and let T be self-adjoint and coercive
on Range(G̃∗). Then Range(G̃) = Range(Λ̃1/2) and

y ∈ Range(G̃) ⇐⇒
∞∑
j=1

|(y, yj)Y |2

λj
<∞, (5.2.20)

where {λj , yj : j ∈ J} denotes a spectral system of the self-adjoint and compact operator
Λ̃ = G̃T G̃∗.
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5.2.4 Description of the algorithm for the deterministic setting

Now we present our operative criterion to implement the range test. It is based on the spectral
decomposition of the operator |Λ̃|1/2 and on the use of an appropriate regularization. We focus
mainly on Tikhonov Regularization (TR), although also a straightforward application of the
Picard Criterion (5.2.27) can give good results when the background is homogeneous (see Remark
5.4 below). To simplify the notation we set G = |Λ̃|1/2. To check whether a given lkξ belongs to
Range

(
G
)
we have to solve the problem

Ggkξ = lkξ , (5.2.21)

which demands for regularization. A consequence of Theorem 5.1, which holds in the continuous
setting, is that

ξ ∈ D ⇐⇒
(
‖gkξ ‖L2(∂B)

)−1
= 0.

The TR of (5.2.21) reads(
α+G∗G

)
gkξ = G∗lkξ . (5.2.22)

We choose the Fourier basis to discretize the operator G. Since we discretize lkξ and gkξ in (5.2.21)
over the same orthogonal basis, then the discretization of G is a square matrix.

In the following we denote by σi the singular values of G and by ui and vi the corresponding
left and right singular vectors. Both the sets {ui}∞i=1 and {vi}∞i=1 form an orthonormal basis of
L2(∂B). The regularized solution of problem (5.2.22) is

gkξ =
∞∑
i=1

σi
α+ σ2

i

(lkξ , ui)vi. (5.2.23)

We choose the regularization parameter α using the Morozov principle, i.e. imposing

‖Ggkξ − lkξ‖L2(∂B) = η, (5.2.24)

with the parameter η > 0 to be in some way related to the accuracy of the measurements. We
pick

η = γσ1, (5.2.25)

with σ1 being the largest singular value of G, and γ a given threshold. The term lkξ depends on
ξ, so to ensure that (5.2.24) is uniformly satisfied we normalize lkξ as l̂kξ = lkξ/‖lkξ‖L2(∂B). The
optimal value of α is computed plugging (5.2.23) into the nonlinear equation (5.2.24), and solving
with respect to α. To show the inversion results, we display the isolines of the indicator function

C(ξ) =
(

log
(
v1(ξ) + v2(ξ)

))−1

, (5.2.26)

where vk(ξ) := ‖gkξ ‖L2(∂B). We can summarize the algorithm by the following:

Remark 5.4 (Picard criterion). Another criterion to test the range condition is analyzed in
[GH07]. It employs the indicator function:

Ik(ξ) = 1
‖lkξ‖2L2(∂B)

∞∑
i=1

∣∣∣(lkξ , ui)L2(∂B)

∣∣∣2
|σi|2

, (5.2.27)

and it reads ξ ∈ D ⇐⇒ Ik(ξ) <∞. Notice that the normalization of lkξ is already embedded
in (5.2.27). We refer to this criterion as the Picard Criterion (PC). It does not require to
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Algorithm 1 The FM in inhomogeneous deterministic background
Sample the region of B to be probed with a set of points P = {ξj}Pj=1
for ξ in the set P do

solve problem (5.2.5) to find its solution N(·, ξ),
compute lkξ from N(·, ξ) using (5.2.7),
use lkξ to compute the indicator C(ξ) in (5.2.26),
plot ξ 7→ C(ξ).

end for

solve problem (5.2.21) to find its regularized solution. However, as discussed in [HM11], the
regularization technique TR is more accurate than PC when the background is not homogeneous,
above all in presence of many inclusions. Hence, in this paper we present only the results obtained
using the TR technique. See also [HM11] for a comparison between TR and PC for several
numerical examples.

We consider backgrounds that are piecewise constant in r regions {Ri}ri=1 that are a partition
of the computational domain B =

⋃r
i=1Ri, see e.g. Fig. 5.3. Denote by m the r-dimensional

vector of positive numbers that specifies the coefficient value in each region Ri of the domain B.
The background coefficient σB is defined as

σB(x) =
r∑
i=1

mi IRi(x), x ∈ B, (5.2.28)

where IX(x) denotes the indicator function of the subdomain X ⊆ B. If m is the vector
m = [1, 1, . . . , 1]> then we obtain a homogeneous deterministic coefficient. Since σB is a diffusion
coefficient, it has to be positive: therefore we assume that mi > 0, ∀ i. More general deterministic
inhomogeneous coefficients σB, nonlinearly depending on the spatial coordinates x, have been
analyzed in [HM11]. The effect of artificial noise has been analyzed in [HM11] as well.

5.3 The problem of EIT in a random background
A natural issue that arises in the mathematical modeling of physical phenomena concerns the
uncertainty in the input data. There are mainly two interpretations on how the presence of
uncertainty in the model could be characterized: the epistemic and the aleatory interpretations.
We introduce them directly in the context of EIT and of the applications that we have in mind.

In the EIT framework, the most natural choice to incorporate in the model the uncertainty
affecting the background media is to consider the background coefficient σB as a random variable.
In the epistemic uncertainty, we can imagine that the coefficient that models the background
material is deterministic but unknown, because of the lack of knowledge or because of inaccurate
measurement instruments. Therefore we can model it as a random variable, although there are
also other ways to cope with epistemic uncertainty. In the aleatory uncertainty, the coefficient is
really random, according to a prescribed probability density. We could think of its realizations
coming from a stationary or from a nonstationary stochastic process.

In general, the treatment of uncertainty through random variables distributed according to
given probability densities is known as the probabilistic approach. For any positive integer q, we
introduce the q-dimensional parameter space Γ ⊆ Rq, the probability density ρ : Γ→ R and the
Hilbert space L2(Γ, dρ) equipped with the inner product 〈u, v〉 =

√∫
Γ u(y) v(y) dρ(y). Denote

by Y ∼ ρ a multidimensional random variable, and by y ∈ Γ any of its realizations. We denote
by L2(Γ, L∞(B)) the Bochner space of functions that take values into Γ and are L∞(B)-valued.
Then we define the random diffusion coefficient σB ∈ L2(Γ, L∞(B)) as

σB(·,y) ∈ L∞(B), ∀y ∈ Γ. (5.3.1)
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Moreover, we assume a smooth dependence of σB on y and that σB satisfies the following Uniform
Ellipticity Assumption.

Assumption 5.2. ∀y ∈ Γ the map y 7→ σB(·,y) is assumed to be smooth (analytical).

Assumption 5.3 (Uniform Ellipticity Assumption). There exist c1, c2 ∈ R+ such that

0 < c1 ≤ σB(x,y) ≤ c2 < +∞, ∀ x ∈ B, ∀ y ∈ Γ.

We will consider two parametrizations of the random coefficient σB introduced in (5.3.1).
Again, the spatial background is piecewise constant in r regions {Ri}ri=1 that are a partition of
the computational domain B =

⋃r
i=1Ri. The randomness concerns the value of the coefficient in

each region Ri. We associate each component of the q-dimensional random variable Y with a
region, hence q = r.

The first parametrization is suitable for uncertainty analysis, and is an extension of (5.2.28)
to treat the case of random background:

σB(x,y) =
r∑
i=1

(
mi + di yi

)
IRi(x), x ∈ B, y ∈ Γ = [−1, 1]r. (5.3.2)

The vectors m and d quantify the mean and dispersion of the coefficient in each region, and
m1 = 1, d1 = 0. The range of variation in each region is [mi−di,mi +di], and we have to impose
that mi − di > 0 for all i = 1, . . . , r, to satisfy Assumption 5.3. The second parametrization is
suitable for large variations of the background coefficient σB, and we parametrize it with the
exponential model

σB(x,y) =
r∑
i=1

10yi IRi(x), x ∈ B, y ∈ Γ = [−1, 1]r, (5.3.3)

so that the coefficient σB jumps by up to two orders of magnitude in each one of the r regions.
Assumption 5.3 imposes some limitations on the type of density ρ that can be associated with
the parameter y in the parametrizations (5.3.2), (5.3.3) and (5.6.1). In this paper we focus only
on the choice ρ = U(Γ), and consequently the parameter y is associated with a uniform density
over the parameter space Γ.

Because of the randomness in σB, the diffusion coefficient (5.2.1) of problem (5.2.2) becomes
random as well. Under Assumption 5.3 the solution u = u(x,y) to problem (5.2.2) belongs to
the space H̊1(B)⊗ L2(Γ, dρ) and depends analytically on y (see [BNT10, CDS11] for the proof).
In the same way the Neumann-to-Dirichlet maps Λ : L̊2(∂B)⊗ L2(Γ, dρ)→ L̊2(∂B)⊗ L2(Γ, dρ)
and Λ0 : L̊2(∂B)⊗ L2(Γ, dρ)→ L̊2(∂B)⊗ L2(Γ, dρ) become random themselves. Also the Green
function N : (x, ξ,y) ∈ B ×B × Γ 7→ N(x, ξ,y) : B ×B × Γ→ L̊2(B)⊗ L2(Γ, dρ) depends on
the random variable Y because it solves problem (5.2.5) with the random coefficient (5.3.1). For
the same reason, the quantities (5.2.7) depend now on any realization y ∈ Γ of Y,

lpξ = lpξ(y), ∀y ∈ Γ. (5.3.4)

We define a measurement of the random operator Λ (or Λ0) to be an observation of Λ (or Λ0)
for a single realization of the random variable Y. In practice the measurements of Λ come from
experiments, while the measurements of Λ0 could be simulated numerically. Denote by M ≥ 1
the number of measurements of Λ. We will always assume that it is not possible to recover the
value of the realization y that generated the measurement of Λ, because this would reduce the
inverse problem in random background to an inverse problem with deterministic background.
Moreover, we need also the following assumption:

Assumption 5.4. We assume to be able to evaluate the operator Λ for any realization of the
random variable Y. To evaluate the operator Λ means that we are able to collect all the voltages
corresponding to the current patterns in the Fourier basis, up to a certain accuracy.



5.3. THE PROBLEM OF EIT IN A RANDOM BACKGROUND 117

This assumption is completely fine in the epistemic uncertainty or in the stationary aleatory
uncertainty, but could not be the case in the nonstationary aleatory uncertainty.

Now we discuss the crucial point of how to extend to the case of uncertain background
the operator Λ̃ defined in (5.2.4) for inhomogeneous but deterministic background. The main
question is: how do we collect the measurements of the random operators Λ and Λ0? Denote
by {ym}m and {ŷt}t the sets of realizations drawn from the random variables {Ym}m

iid∼ ρ and
{Ŷt}t

iid∼ ρ that generated the corresponding measurements of the random operators Λ and Λ0,
respectively. Even if the values of the realizations are unknown, at least two different situations
can be identified, depending on how the measurements are collected:

• arbitrary measurements: the measurements of Λ and Λ0 are collected separately, i.e.
the sets {ym}m and {ŷt}t have nothing to do with each other. In the following we need only
to assume that the realizations in each set are independent only among those belonging to
the same set.

• paired measurements: the measurements of Λ and Λ0 are collected in pair, i.e. the mth
measurement of Λ and Λ0 is collected with the same (but unknown) realization ym = ŷm
of the random variable Y .

The case of arbitrary measurements is the general one, and it arises in both epistemic and
aleatory uncertainties. The case of paired measurements arises in epistemic uncertainty. For
example, in crack testing: several mechanical objects are built together with the same internal
but unknown properties. The measurements of Λ are collected using the mechanical object to
test, and the measurements of Λ0 are collected using a reference object, where the absence of
cracks has been checked by means of other more expensive techniques.

When the measurements are paired, we can define the operator Λ̃ in the case of random
background as in (5.2.4),

Λ̃(y) = Λ(y)− Λ0(y), y ∈ Γ, (5.3.5)

where now the operator is parametrized by the realization y ∈ Γ of the random variable Y .
Therefore

Λ̃ : L̊2(∂B)⊗ L2(Γ, dρ)→ L̊2(∂B)⊗ L2(Γ, dρ),

and Λ̃(y) : L̊2(∂B)→ L̊2(∂B) is strongly compact for any value y ∈ Γ. At this point, the only
difficulty that remains is that the value of y that generated the measurement is unknown. We
will see in Section 5.3.2 how to cope with this issue.

When the measurements are arbitrary, the operator Λ̃ depends on y and ŷ,

Λ̃(y, ŷ) = Λ(y)− Λ0(ŷ), y, ŷ ∈ Γ, (5.3.6)

and the strong compactness property of the operator Λ̃(y, ŷ) : L̊2(∂B) → L̊2(∂B) is lost in
general. However, we know that the singular values of a strongly compact operator decay
exponentially fast. So we can look at the singular values of Λ̃ as defined in (5.3.6), and choose
the value of ŷ that yields the fastest decay of the spectrum of Λ̃. The singular values of several
strongly compact operators are computed in [HM11].

We introduce the quantity K defined as

K(y, ŷ) =
∣∣∣suppx∈B{|σ(x,y)− σB(x, ŷ)| 6= 0

}∣∣∣, y, ŷ ∈ Γ, (5.3.7)

that gives the size of the support of the contrast between σ and σB, for any realization y and ŷ
in Γ. Of course

|D| = K(y,y) ≤ K(y, ŷ) ≤ |B|, ∀ (y, ŷ) ∈ Γ× Γ.

In general, the singular values of Λ̃ increase with respect to the value of K. The next remark
proves this statement in a particular situation where explicit calculations are made possible.
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Remark 5.5. Suppose that B is a circular domain with unitary radius, and D is a concentric
circular inclusion with radius ρ < 1. The diffusion coefficient is assumed to be homogeneous both
in the background and in the inclusion. We define µ = σB/σD and observe that K defined in
(5.3.7) satisfies K = |suppx∈B{σ − σB 6= 0}| = |D|. Of course ρ2 is linearly proportional to K.
The eigenvalues of the Dirichlet-to-Neumann map defined by problem (5.2.2) satisfy (see also
[HK10, Section 2] and [SMI00, Lemma 4. 1])

|λDNi | = i

∣∣∣∣∣µ+ 1− (µ− 1)ρ2i

µ+ 1 + (µ− 1)ρ2i

∣∣∣∣∣, i = 1, 2, . . .

and therefore the eigenvalues of the dual Neumann-to-Dirichlet map decay as

|λNDi | = 1
i

∣∣∣∣∣µ+ 1 + (µ− 1)ρ2i

µ+ 1− (µ− 1)ρ2i

∣∣∣∣∣, i = 1, 2, . . .

From this we can derive the decay of the eigenvalues of the operator Λ̃:

|λi(Λ̃)| = 1
i

∣∣∣∣∣µ+ 1 + (µ− 1)ρ2i

µ+ 1− (µ− 1)ρ2i − 1
∣∣∣∣∣ = 1

i

∣∣∣∣∣ 2
ρ−2i(2(µ− 1)−1 + 1)− 1

∣∣∣∣∣, i = 1, 2, . . . (5.3.8)

and clearly the smallest ρ < 1, the fastest the decay, as shown in Fig. 5.2. See also the numerical
sections where we tested inclusions with radius ρ = 0.1 and ρ = 0.0275. From (5.3.8), if we
suppose µ > 1 we derive

|λNDi | ∼ Ki

i

µ− 1
µ+ 1 , i = 1, 2, . . .

The dependency of the eigenvalues on µ is very small, and it becomes unperceivable already
from the third eigenvalue λ3 on (see Fig. 5.2). Looking at the first eigenvalue we see a slight
dependence of λ1 on µ: the higher µ (that is equivalent to say the higher the contrast σB − σD)
the slower the decay. The case ρ = 0.1 and µ = 10000 has been tested in the numerical sections,
since we have set σD = 10−4 and σB ≡ 1.

Figure 5.2: The decay of the eigenvalues λi(Λ̃) in (5.3.8) for different choices of ρ and µ.

Remark 5.6. The same argument outlined in Remark 5.5 is useful to investigate also the case of
piecewise constant background with random values. Suppose that the circular domain B contains
a concentric circular region R2, and R1 = B \ R2. Consider σB = 1 in R1 and σB = y in
R2, where y is the realization of the univariate random variable Y observed when getting the
measurement of Λ. When we get the measurement of Λ0 we observe another realization ŷ of
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the same random variable Y , so that σB = 1 in R1 but σB = ŷ in R2 and the region R2 is
generating a contrast |y − ŷ| in the diffusion coefficient of the operator Λ̃. Therefore the region
R2 is behaving as an inclusion in the operator Λ̃. The real inclusion lies in the center of the
domain B, but is obfuscated by the presence of the contrast region R2. Due to the presence of the
inclusion, the region R2 is slightly inhomogeneous in its center, but as explained in Remark 5.5
the value of the contrast is practically negligible compared to ρ.

Remark 5.5 and Remark 5.6 justify analytically that the slower the decay of the eigenvalues,
the larger the K(y, ŷ) with respect to ρ. Formally K(y, ŷ) can attain the value |D|, but when
the random coefficient is associated with a continuous probability density a contrast is always
present with probability one. The same occurs also in the applications: there is always a
contrast somewhere in the domain between the background coefficient of Λ and Λ0, because of
modeling, measurement and numerical errors. As a consequence, the quantity K and the value
of the contrast |σ(x,y)− σB(x, ŷ)| have both influence on the decay of the eigenvalues. Since
the background coefficients σ and σB are continuous w.r.t. the random variables (because of
Assumption (5.2)), the magnitude of their contrast |σ(x,y)− σB(x, ŷ)| satisfies

supx∈B\D|σ(x,y)− σB(x, ŷ)| ≤ C‖ŷ − y‖∞, ∀ (y, ŷ) ∈ Γ× Γ.

In conclusion, we proved that in a circular domain with a circular concentric inclusion and
piecewise constant background the decay of the eigenvalues of Λ̃ is governed by ‖ŷ − y‖∞.
Reasonably the same conclusion can be extended to more general geometries and partitions of
the domain into regions with arbitrary shape.

Consequently, when M = 1 and Λ(y) is the only measurement generated by the (unknown)
realization y, we propose to solve the inverse problem

ŷ =argmin
y∗∈Γ

‖Λ̃(y,y∗)‖k, (5.3.9)

to obtain ŷ that satisfies

‖ŷ − y‖∞ ≤ ε. (5.3.10)

The norm ‖ · ‖k is defined as ‖ · ‖k =
∑k
i=1 σi(·), and is known as Ky Fan k-norm. For any

continuous linear operator in Hilbert spaces, the Ky Fan 1-norm corresponds to the usual operator
norm equal to the largest singular value of the operator. The value of ε > 0 has to be sufficiently
small, depending on the size of the inclusion |D| and on the jumps of the background coefficient.
At the discretization level, one can use also the Frobenius norm, that takes into account all the
singular values including the smallest ones.

The problem (5.3.9) is an ill-posed inverse problem over the parameter space Γ, and the
dimension of Γ can be moderately large. If more than one measurement of the operator Λ are
available, i.e. M > 1, it is possible to exploit this further information solving

ŷ =argmin
y∗∈Γ

min
1≤m≤M

‖Λ̃(ym,y∗)‖k. (5.3.11)

The objective function in (5.3.11) contains more minimum points displaced in Γ, and the
optimization algorithm can more easily detect one of them which satisfies (5.3.10), with y being
the one among the M realizations that generated the M measurements. We will discuss in
Section 5.6 how to efficiently solve problems (5.3.9) and (5.3.11).

5.3.1 The Factorization Method in the case of arbitrary measurements

In the case of random background with arbitrary measurements, we propose two versions of the
FM.

The first version of the FM that we present is an optimized variant (Algorithm 2) where
the background is reconstructed by means of an optimization approach. This optimization is
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mandatory whenever only one measurement or few measurements of the operator Λ are available.
The additional operations w.r.t. Algorithm (1) concern the approximation of the solution ŷ to
the optimization problem (5.3.9) when only one measurement of Λ is available, or (5.3.11) when
more than one measurement are available. The second version is named pure variant of the

Algorithm 2 The optimized FM in uncertain background (arbitrary measurements)

Sample the region of B to be probed with a set of points P = {ξj}Pj=1,
Choose the initial guess ŷ(i) ∈ Γ, i = 0,
repeat

Compute ŷ(i+1) performing one or several steps in the optimization procedure for solving problem
(5.3.9) with initial guess ŷ(i).
for ξ in the set P do

solve problem (5.2.5) with σB = σB(·, ŷ(i+1)) to find its solution N(·, ξ, ŷ(i+1)),
compute lkξ(ŷ(i+1)) from N(·, ξ, ŷ(i+1)) using (5.2.7),
use lkξ(ŷ(i+1)) to compute the indicator C(ξ) in (5.2.26),
plot ξ 7→ C(ξ),

end for
i← i+ 1

until
(
the background is NOT reconstructed in C(ξ)

)
OR

(
i ≥ maxit

)
.

FM (Algorithm 3), because the final imaging reconstruction is a weighted linear combination of
intermediate imaging reconstructions, each one obtained without any attempt to reconstruct the
background. The approximation of the solution to problem (5.3.11) satisfying the convergence
criterion (5.3.10) within a tolerance ε arbitrarily small is found by means of a sampling approach,
rather than by optimization. This variant becomes attractive only when many measurements are
available.

To set up an easy notation, we consider only the parametrization (5.3.2) of the coefficient
σB with the vector d. The same idea can be applied with any parametrization of σB. Define
the l∞ norm of an q-dimensional vector v, weighted w.r.t. the q-dimensional vector d as
‖v‖∞,d = max{d1 v1, . . . , dq vq}. Given the values of q, M , ε and the vector d, then the number
T of realizations in the sampling procedure is chosen such that

Pr

 min
1≤m≤M
1≤t≤T

‖ym − ŷt‖∞,d ≤ ε

 ≥ 0.99. (5.3.12)

Notice that ε in (5.3.12) plays the same role as in (5.3.10). If the dispersion vector d has
components all equal to d > 0, so that the dispersion is the same for all the components of the
random variable Y, then (5.3.12) can be rewritten with the usual l∞ norm as

Pr

 min
1≤m≤M
1≤t≤T

‖ym − ŷt‖∞ ≤ ε d−1

 ≥ 0.99. (5.3.13)

In the pure FM the value of T is chosen such that (5.3.12) is satisfied, and this allows us to
obtain an approximation of one of the realizations that generated the measurements, within a
tolerance ε and with 99% probability. In this way the optimization of problem (5.3.11) can be
avoided. Notice that, given M , q, d and ε, condition (5.3.13) states how to choose T such that
the pure FM detects the inclusions with at least 99% probability. In Section 5.7.2 the calibration
of ε is discussed and the value of T such that condition (5.3.13) holds is calculated for some
values of M, q, d, ε and ρ = U(Γ).

Looking at Algorithms 2 and 3, it is clear that the most computationally expensive part of
these two variants of the FM consists in the repetitive evaluation of Λ0, for many realizations of
the random variable Y. In Algorithm 2 this operation is hidden inside the optimization step,
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Algorithm 3 The pure FM in uncertain background (arbitrary measurements)
Collect M measurements Λ(y1), . . . ,Λ(yM ),
Sample the region of B to be probed with a set of points P = {ξj}Pj=1,
Sample T realizations ŷ1, . . . , ŷT from the random variables Ŷ1, . . . , ŶT

iid∼ ρ,
i = 1,
repeat

Compute Fmi = ‖Λ(ym)− Λ0(ŷi)‖k, ∀m and mi = argminm=1,...,MFmi,
for ξ in the set P do

solve problem (5.2.5) with σB = σB(·, ŷi) to find its solution N(·, ξ, ŷi),
compute lkξ(ŷi) from N(·, ξ, ŷi) using (5.2.7),
use lkξ(ŷi) and the SVD decomposition of Λ̃(ymi , ŷi) to compute ‖gkξ (ymi , ŷi)‖L2(∂B),
use ‖gkξ (ymi , ŷi)‖L2(∂B) to compute the indicator Ci(ξ) in (5.2.26),
update C(ξ)← C(ξ) + Ci(ξ) exp

(
− (min1≤j≤i Fmij)

Fmii

)
,

plot ξ 7→ C(ξ),
end for
i← i+ 1

until
(
the background is NOT reconstructed in C(ξ)

)
OR

(
i ≥ T

)
.

where pointwise evaluations of Λ0 are needed. The number of evaluations of Λ0 to achieve an
accurate approximation of the solution to problems (5.3.9) and (5.3.11) can be reduced by means
of polynomial approximation of problem (5.2.2), see Chapter 6.

5.3.2 The Factorization Method in the case of paired measurements

When a pair of measurements of Λ and Λ0 is available, i.e. the measurements are generated
from the same realization y of the random variable Y , then we can build straightforwardly the
operator Λ̃ from (5.3.5). Since the value of the realization y that generated the measurements is
unknown, we have to work with the sampling procedure to span the parameter space Γ looking
for a good approximation of y.

Let {st}Tt=1 be T realizations drawn from the random variables {Yt}Tt=1
iid∼ ρ that are used to

explore the parameter space Γ. We propose the following indicator function, that substitutes the
one defined in (5.2.26):

Ĉ(ξ) =
T∑
t=1

1
log10

(
v1(ξ, st) + v2(ξ, st)

) , (5.3.14)

In (5.3.14) the functions vk : (ξ,y) ∈ (B × Γ) 7→ vk(ξ,y) : B × Γ→ R are defined as vk(ξ,y) :=
‖gkξ (y)‖L2(∂B) and gkξ (y) is again given by (5.2.23) but with lpξ that depends on y, as in (5.3.4).
The indicator (5.3.14) is based on the sample mean estimator, which is very sensitive to the
outliers that correspond to the points where it diverges due to the presence of the inclusion.
This variant of the FM that exploits the indicator function (5.3.14) is described in Algorithm 4.
The number T of realizations to be evaluated with the FM has to be tuned according to the
dimension q of the parameter space Γ.

5.4 Numerical tests featuring deterministic piecewise constant
backgrounds

In this section we present several numerical tests to illustrate the capabilities of the FM in
homogeneous and inhomogeneous but deterministic backgrounds. To show the results, we display
the isolines of the indicator function C(ξ) given by (5.2.26). A crucial issue is the tuning of
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Algorithm 4 The FM in uncertain background (paired measurements)

Sample the region of B to be probed with a set of points P = {ξj}Pj=1,
Sample T realizations s1, . . . , sT from the random variables S1, . . . ,ST

iid∼ ρ,
for ξ in the set P do
for t = 1, . . . T do

solve problem (5.2.5) with σB = σB(·, st) to find its solution N(·, ξ, st),
compute lkξ (st) from N(·, ξ, st) using (5.2.7),
update the indicator Ĉ(ξ) in (5.3.14) with lkξ(st),

end for
plot ξ 7→ Ĉ(ξ).

end for

the scale and the choice of the isovalue that represents the inclusion. In practice, this requires
additional information on the value of the diffusion coefficient σD in the inclusions. In all the
numerical tests we plot the indicator C(ξ) in the domain B choosing an uniform coloring scale,
such that the black color is associated with the zero value and the white color is associated with
maxξ∈B C(ξ). Throughout the paper the space L̊2(∂B) is discretized using the Fourier basis
with 128 terms. P2 finite elements over a 25000 nodes mesh have been used to numerically solve
problem (5.2.2) with the diffusion coefficient (5.2.3) and problem (5.2.15).
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Figure 5.3: Geometries of the regions in the background and displacement of the inclusions (in
dashed line). Top-left: configuration EN. Top-right: configuration ES. Bottom-left: configuration
UN. Bottom-right: configuration US.

The domain B is always the unitary ball centered in (0, 0). The sampling points consist
of a 50 × 50 uniform grid over the square [−1, 1] × [−1, 1]. In the FM we use only the points
ξ ∈ B that fall at a distance larger than 0.05 from the boundary ∂B. In the test cases with
small inclusions the resolution is increased to 100× 100. The dashed purple line always marks
the exact geometry of the inclusion(s). The value of the coefficient that identifies the inclusion is
always set to σD = 0.001, although any value that satisfies Assumption 5.1 is allowed.

We focus on two configurations of the background diffusion coefficient σB:

• (E) the union of two semicircular regions, which are generated by splitting a circle with
a radius equal to 0.75 and centered in the origin in its upper and lower part w.r.t. the
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horizontal axis,

• (U) the union of five annular regions with radii 0.15, 0.35 0.55 and 0.75, where the last but
one outer annular region is further split into two regions to break the radial symmetry of
this configuration.

The inclusion(s) can be configured as

• (N) a circular inclusion with radius 0.1 centered in (0, 0.33),

• (S) four small circular inclusions with radius 0.0275, centered in the points (0.25, 0), (0, 0.35),
(−0.45, 0), (0,−0.7) that are progressively closer to the boundary ∂B.

Combining each background configuration with each inclusion configuration we obtain the four
configurations EN, ES, UN, US depicted in Fig. 5.3.

5.4.1 The homogeneous case

We begin to apply the FM to the EIT problem with an homogeneous deterministic coefficient
σB ≡ 1. Many numerical results in the literature show the potentiality of the method. We focus
on two test cases presented in Table 5.1, that are named as hN and hS.

Ex
am

pl
e

la
be

l

in
cl
us
io
n

co
nfi

gu
ra
tio

n

ba
ck
gr
ou

nd
co
nfi

gu
ra
tio

n

pa
ra
m
et
riz

at
io
n

of
σ
B

va
lu
e
of

m

Fi
gu

re
w
ith

re
co
ns
tr
uc
tio

n

hN N homogeneous (5.2.28) mi = 1, i = 1, . . . , r Fig. 5.4(left)
hS S homogeneous (5.2.28) mi = 1, i = 1, . . . , r Fig. 5.4(right)

Table 5.1: Description of the numerical test cases hN and hS with homogeneous deterministic
background.

Fig. 5.4 shows the results obtained with the inclusion configurations N and S, displaying
the coloring of the indicator C(ξ) in the domain B. In both cases, the reconstructions are very
accurate and the presence and location of all the inclusions are clearly detected.
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Figure 5.4: Coloring of C(ξ). Left: test case hN, γ = 10−2 in (5.2.25). Right: test case hS,
γ = 5× 10−3 in (5.2.25).

5.4.2 The inhomogeneous case

We now proceed to present the results concerning the inhomogeneous deterministic coefficient σB.
In this case the FM is described in Algorithm 1. As will be explained in the next section, we pick
the background coefficient equal to one in the region R1 that is accessible from the boundary.
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i1EN N E (5.2.28) m = [1, 5, 0.5] Fig. 5.5(left)
i1ES S E (5.2.28) m = [1, 5, 0.5] Fig. 5.5(right)
i2EN N E (5.2.28) m = [1, 10, 0.1] Fig. 5.6(left)
i2ES S E (5.2.28) m = [1, 0.1, 10] Fig. 5.6(right)
i1UN N U (5.2.28) m = [1, 5, 1, 5, 0.5, 0.5] Fig. 5.7(left)
i1US S U (5.2.28) m = [1, 5, 1, 0.5, 1, 0.5] Fig. 5.7(right)
i2UN N U (5.2.28) m = [1, 10, 1, 10, 0.1, 0.1] Fig. 5.8(left)
i2US S U (5.2.28) m = [1, 10, 1, 0.1, 1, 0.1] Fig. 5.8(right)

Table 5.2: Description of the numerical test cases i1EN, i1ES, i2EN, i2ES, i1UN, i1US, i2UN
and i2US with inhomogeneous deterministic background.

We consider the test cases i1EN, i1ES, i2EN, i2ES, i1UN, i1US, i2UN and i2US presented in
Table 5.2.

In Fig. 5.5 we present the results obtained when applying the FM in the test cases i1EN and
i1ES, where σB is parametrized as in (5.2.28) and m generates one order of magnitude jumps
between different regions. In Fig. 5.6 we present the results obtained in the test cases i2EN and
i2ES, where σB is parametrized as in (5.2.28) and m generates two orders of magnitude jumps.
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Figure 5.5: Coloring of C(ξ). Left: test case i1EN, γ = 10−2 in (5.2.25). Right: test case i1ES,
γ = 7 · 10−3 in (5.2.25).

Next, in Fig. 5.7 we present the results obtained in the test cases i1UN and i1US, where σB is
parametrized as in (5.2.28) and m generates one order jumps between different regions. Fig. 5.8
shows the results in the test cases i2UN and i2US, with two orders jumps.

The quality of the reconstructions with jumps of one order of magnitude in Fig. 5.5 and
Fig. 5.7 is the same as the quality in Fig. 5.4 with the homogeneous background.

When the order of magnitude of the jumps increases to two, the effect of the jumps in the
background coefficient becomes visible in the reconstruction, as in Fig. 5.8–left. Nonetheless
the inclusion is still accurately detected. In Fig. 5.6–right we observe that the inclusions on
the interface where the coefficient jumps are still detected, albeit with a fainter intensity of the
indicator C(ξ). The same occurs in Fig. 5.8–right with the most inner inclusion. All the four
small inclusions are detected, but the method would hardly inspect the presence of additional
inclusions inside their convex envelope. See also [HM11, Figs. 8, 21, 26], where several tests with
ten small inclusions are presented.

We can conclude that the FM is able to accurately detect the presence and location of all the
inclusions, when the jumps in the background are up to two orders of magnitude.
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Figure 5.6: Coloring of C(ξ). Left: test case i2EN, γ = 10−2 in (5.2.25). Right: test case i2ES,
γ = 10−2 in (5.2.25).
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Figure 5.7: Coloring of C(ξ). Left: test case i1UN, γ = 5 · 10−2 in (5.2.25). Right: test case
i1US, γ = 5 · 10−3 in (5.2.25).
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Figure 5.8: Coloring of C(ξ). Left: test case i2UN, γ = 5 · 10−2 in (5.2.25). Right: test case
i2US, γ = 10−2 in (5.2.25).
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5.5 Numerical tests featuring deterministic inhomogeneous back-
ground with nonlinear spatial dependence

In this section the performance of the numerical scheme proposed are shown, when the back-
ground coefficient is deterministic and nonlinearly dependent on the spatial coordinates. Two
regularization techniques are compared, i.e. Tikhonov with the Morozov principle and the Picard
Criterion. The presence of artificial noise is also investigated.

The Picard Criterion described in Remark 5.4 can be implemented to approximate the
function (5.2.27) by Ĩk(ξ) ≈ Ik(ξ) with

Ĩk(ξ) =
m∑
i=1

(lkξ , ui)2
L2(∂B)
|σi|

/
m∑
i=1

(lkξ , ui)2
L2(∂B), (5.5.1)

retaining only the m largest singular values above the expected measurement error. We refer to
this criterion as the Picard Criterion (PC). It does not require to solve problem (5.2.21) to find
its regularized solution.

Again, the results are shown by displaying the isolines of the indicator function (5.2.26),
being vk(ξ) = ‖gkξ ‖L2(∂B) in the case of TR, or vk(ξ) = Ĩk(ξ) in the case of PC. We plot the
isolines of C(ξ) in the range[

Cfmin, Cmax

]
:=
[
f ·min{C(ξ) : ξ ∈ D}, max{C(ξ) : ξ ∈ D}

]
,

using the parameter 0 < f < 1. The step between the isolines is kept fixed, and this provides
information also on the gradient of the indicator function.

5.5.1 The homogeneous case

The tests featuring an homogeneous background σB = 1 and σD = 2 are named with uppercase
letters:

• test case A: circular inclusion with radius 0.3 centered in (0.3, 0.1);

• test case B: ten small circular inclusions with radius 0.025;

• test case C: two circular inclusions with radius 0.2 centered in (−0.35,−0.35) and (0.35, 0.35);

• test case D: ellipsoidal inclusion centered in (0.3, 0.1), with semiaxes 0.1 and 0.3.

Fig. 5.9 displays the singular values of Λ̃1/2 in the aforementioned test cases. Then, Figs. 5.10,
5.11, 5.12 and 5.13 show the isolines of the indicator function (5.2.26) employing TR or PC.
The test case A is classic and does not show any significative difference between TR and PC.
If the value of the parameter γ is too low then the isolines exhibits oscillations, because the
instability due to ill-posedness shows up. In the test case C the TR is less sensitive to the mutual
disturbance between the two inclusions. Also in the test case D, the TR allows to recover the
elongated shape, while the PC tends to reconstruct a circle. In the test case B both TR and
PC can locate the outer inclusions, although the TR is more accurate and provides also some
information for the internal inclusions.

In the homogeneous case, it is possible to clearly detect the inclusion directly looking at the
values of the optimal regularization parameter α = α(ξ).

5.5.2 The inhomogeneous case

We proceed to test our numerical scheme (5.2.15) in some cases featuring an inhomogeneous
background. The roman numbers denote the following tests:

• test case I: piecewise constant conductivity defined as in Fig. 5.15-left. The radius of the
concentric circle is 0.7. The inclusion is a circle with radius 0.1 centered in (0.35, 0.35) and
σD = 10−3.
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Figure 5.9: Singular values σi of Λ̃1/2. Test case A (top-left). Test case B (top-right). Test case
C (bottom-left). Test case D (bottom-right).
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Figure 5.10: Test case A. Isolines of C(ξ) in [C0.5
min, Cmax]. Top: Tikhonov regularization:

γ = 5× 10−1 (left), γ = 5× 10−2 (center), γ = 5× 10−3 (right). Bottom: Picard criterion, m = 5
(left), m = 25 (center), m = 50 (right).
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Figure 5.11: Test case B. Isolines of C(ξ) in [C0.5
min, Cmax]. Top: Tikhonov regularization, γ = 10−2

(left), γ = 10−3 (center), γ = 10−4 (right). Bottom: Picard criterion, m = 10 (left), m = 25
(center), m = 50 (right).

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 5.12: Test case C. Isolines of C(ξ) in [C0.6
min, Cmax]. Top: Tikhonov regularization with

γ = 5× 10−3 (left), γ = 10−3 (center), γ = 5× 10−4 (right). Bottom: Picard criterion. m = 10
(left), m = 25 (center), m = 50 (right).
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Figure 5.13: Test case D. Isolines of C(ξ) in [C0.5
min, Cmax]. Top: Tikhonov regularization with

γ = 5× 10−2 (left), γ = 10−2 (center), γ = 5× 10−3 (right). Bottom: Picard criterion. m = 10
(left), m = 25 (center), m = 50 (right).
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Figure 5.14: Tikhonov regularization. Test case A, γ = 5×10−3 (top-left). Test case B, γ = 10−3

(top-right). Test case C, γ = 5× 10−4 (bottom-left). Test case D, γ = 5× 10−3 (bottom-right).
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• test case II: piecewise constant conductivity defined as in Fig. 5.15-right. The inclusion
falls across the interface where the value of σB jumps by one order of magnitude. The
radius of the concentric circles are 0.35 and 0.75. The inclusion is a circle with radius 0.1
centered in (0, 0.33) and σD = 10−3.

• test case IIIa: σB(x) = 1 + β
(

sin(5x1) + cos(5x2)
)
, β = 0.15. The inclusion is a circle

with radius 0.15 centered in (−0.3, 0.3) and σD = 2.

• test case IIIb: same as test case IIIa but with β = 0.25.

• test case IVa: ten small circular inclusions with radius (0.025), σB(x) = 1 + β
(

sin(5x1) +

cos(5x2)
)
, β = 0.25 and σD = 2.

• test case IVb: same as test case IVa but with β = 0.3.

• test case V: one small circular inclusion with radius 0.025 centered in (−0.3, 0.3), σB(x) =
5× (x1 + x2) + 11 and σD = 10−3.

• test case VI: σB(x) = 1 + (x2
1 + x2

2), σD = 10−3. The inclusion is a circle with radius 0.15
centered in (−0.3, 0.3).
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Figure 5.15: Values of σB in the test case I (left) and in the test case II (right).

Again, we display the singular values of Λ̃1/2 for all the test cases in Figs. 5.16 and 5.21. Despite
the differences among the geometries and values of σB in the test cases, the singular values
behave likewise. The most important difference is the order of magnitude of the largest singular
values, since this affects the choice of the regularization parameters.

The numerical scheme (5.2.15) performs very well in the test cases I,II with a piecewise
constant diffusion coefficient. In both cases σB jumps by one order of magnitude. In the figures
5.17,5.18 we reconstruct the inclusion using the Tikhonov regularization and the Picard criterion.

In the test case IIIa the coefficient σB features a ±30% variation, and Fig. 5.19 shows that
both TR and PC are capable of accurately detecting the presence and location of the inclusion.

The test case IIIb features the same geometries as the test case IIIa, but now σB has a ±50%
variation. Still both TR and PC are able to detect the location of the inclusion (Fig. 5.20),
but the recovered shape begins to suffer a distortion, because of the strong nonlinearity in the
coefficient. Analogously, in the test cases IVa and IVb the variations in σB are ±50% and
±60%, respectively. As in the homogeneous case, the outer inclusions are well detected by both
TR and PC, but only TR provides also some information in the internal region (Figs. 5.22 and
5.23).
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Figure 5.16: Singular values σi of Λ̃1/2. Test case I (top-left). Test case II (top-right). Test case
IIIa . Test case IIIb (bottom-right).
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Figure 5.17: Test case I. Isolines of C(ξ) in [C0.6
min, Cmax]. Tikhonov regularization: γ = 5× 10−2

(left), γ = 10−2 (center), γ = 5× 10−3 (right). Picard criterion, m = 10 (left), m = 25 (center),
m = 50 (right).
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Figure 5.18: Test case II. Isolines of C(ξ) in [C0.6
min, Cmax]. Tikhonov regularization, γ = 5× 10−2

(left), γ = 10−2 (center), γ = 5× 10−3 (right). Picard criterion, m = 10 (left), m = 25 (center),
m = 50 (right).
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Figure 5.19: Test case IIIa. Isolines of C(ξ) in [C0.5
min, Cmax]. Left: Tikhonov regularization,

γ = 10−1. Center: Tikhonov regularization, γ = 5× 10−2. Right: Picard criterion, m = 25.
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Figure 5.20: Test case IIIb. Isolines of C(ξ) in [C0.5
min, Cmax]. Left: Tikhonov regularization,

γ = 5× 10−1. Right: Picard criterion, m = 10.
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The test case V treats a linear coefficient σB that ranges between 4 and 18 approximately,
while the test case VI treats a coefficient σB with radial dependence on the spatial coordinates.
As before (in Figs 5.24 and 5.25), TR and PC can accurately detect the presence and location of
the inclusion.
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Figure 5.21: Singular values σi of Λ̃1/2. Test case IVa (top-left). Test case IVb (top-right). Test
case V (bottom-left). Test case VI (bottom-right).
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Figure 5.22: Test case IVa. Isolines of C(ξ). Left: Tikhonov regularization, γ = 5×10−3. Center:
Tikhonov regularization, γ = 10−3. Right: Picard criterion, m = 25.

5.5.3 Measurements contaminated by artificial noise

Now we investigate the sensitivity of the reconstructions to noisy perturbations. To this aim
we perturb the operator G with the random matrix U , Uij

i.i.d.∼ U([−1, 1]), scaled to the spectral
norm of G:

Gµ = G+ µ‖G‖2
U

‖U‖2
. (5.5.2)

The parameter µ represents the magnitude of the noisy perturbation, and accordingly we will
tune γ in (5.2.25) or m in (5.5.1). In the presence of noise the isolines obtained with the TR are
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Figure 5.23: Test case IVb. Isolines of C(ξ). Left: Tikhonov regularization, γ = 5×10−3. Center:
Tikhonov regularization, γ = 10−3. Right: Picard criterion, m = 25.

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 5.24: Test case V. Isolines of C(ξ) in [C0.7
min, Cmax]. Left: Tikhonov regularization, γ = 5.

Right: Picard criterion, m = 25.
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Figure 5.25: Test case VI. Isolines of C(ξ) in [C0.7
min, Cmax]. Left: Tikhonov regularization,

γ = 10−1. Right: Picard criterion, m = 25.
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Figure 5.26: Tikhonov regularization. Test case I, γ = 10−2 (top-left). Test case II, γ = 5× 10−2

(top-right). Test case IIIa, γ = 10−1 (bottom-left). Test case VI, γ = 10−2 (bottom-right).
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Figure 5.27: Tikhonov regularization. Test case IIIb, γ = 5 × 10−1 (top-left). Test case IVa,
γ = 10−3 (top-right). Test case V, γ = 5 (bottom-left). Test case IVb, γ = 10−3 (bottom-right).
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identical to those obtained without noise, as long as a sufficient number of the largest singular
values are not obfuscated. The effect of noise is an attenuation of the values in the indicator
function (5.2.26). This holds also for a large amount of noise, up to 10%.

Figs. 5.28, 5.29, 5.30, 5.31 and 5.32, show the results obtained for the test cases A,C,II,IIIa,IVa
after adding 0.1% or 1% of noise. This corresponds to pick µ = 10−3 or µ = 10−2, respectively,
in (5.5.2).

The indicator function (5.2.26) using PC is attenuated a lot faster, preventing the recovery
of the inclusion also with small amounts of noise. Therefore the TR should be preferred to the
PC in case of noisy data.
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Figure 5.28: Test case A. Tikhonov regularization, γ = 5× 10−3. Left: 0.1% noise. Right: 1%
noise.
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Figure 5.29: Test case C. Tikhonov regularization, γ = 5× 10−4. Left: 0.1% noise. Right: 1%
noise.

5.6 Numerical tests with one measurement in a random back-
ground

In this section we present some numerical tests with random backgrounds, in the arbitrary
measurement and paired measurement cases. We are interested in large variations of the
background coefficient σB , and therefore we parametrize it with the exponential model (5.3.3) so
that the coefficient jumps by up to two orders of magnitude in each one of the r regions, or

σB(x,y) =
r∑
i=1

0.5× 10yi IRi(x), x ∈ B, y ∈ Γ = [−0.5, 0.5]r, (5.6.1)

to have up to one order jumps.
Usually in the problem of EIT the boundary is accessible. This would allow to directly recover

the value of the realization of the random variable Y1 that generated the voltage and current
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Figure 5.30: Test case II. Tikhonov regularization, γ = 5× 10−2. Left: 0.1% noise. Right: 1%
noise.
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Figure 5.31: Test case IIIa. Tikhonov regularization, γ = 10−1. Left: 0.1% noise. Right: 1%
noise.
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Figure 5.32: Test case IVa. Tikhonov regularization, γ = 10−3. Left: 0.1% noise. Right: 1%
noise.
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measurement, corresponding to the observation of Λ̃. As a consequence, the value of σB in R1
could be retrieved, and the starting problem could be reduced to a problem with deterministic
coefficient in R1. For this reason, we will choose σB equal to 1 in R1 and random only in B \R1.
In this way, the parameter space Γ in the parametrizations (5.3.2), (5.3.3), (5.6.1) has to be
dimensionally reduced by one, so that its dimension in practice becomes q = r − 1.

We proceed now to present several numerical tests performed with the optimized FM
(Algorithm 2) in the case of one arbitrary measurement, and with the FM of Algorithm 4 in the
case of one paired measurement.

5.6.1 The optimized Factorization Method with one arbitrary measurement

To show the capabilities of the proposed approach we set up three test cases aEN2, aES2 and
aUN1, with an increasing difficulty in the optimization operations. These test cases feature
a random background, and are presented in Table 5.3. The test case aEN2 is a standard
configuration, with a not too small inclusion and a two-dimensional parameter space Γ. In aEN2
the measurement of Λ(y) is generated by the realization y = (8.3567, 0.3558). The test case
aES2 is more challenging than test case aEN2, because the inclusions have a smaller diameter
and their presence is more easily obfuscated by the variations of the random background. The
measurement of Λ(y) in this test case is generated by the realization y = (4.5, 0.75). Lastly, in
test case aUN1 we treat an ill-posed optimization problem over a five-dimensional parameter
space, and the limitations of the optimization approach are highlighted. The measurement of
Λ(y) is generated by the realization y = (4.4950, 1.3450, 0.9450, 3.3450, 0.6240).
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aEN2 N E (5.3.3) [0.1, 10] Fig. 5.33(top-left)
aES2 S E (5.3.3) [0.1, 10] Fig. 5.34(left)
aUN1 N U (5.6.1) [0.5, 5] Fig. 5.38(top-left)

Table 5.3: Description of the numerical test cases aEN2, aES2 and aUN1 with uncertain
background in the case of arbitrary measurements.

From a computational standpoint, the optimization of the Ki Fan k-norm ‖ · ‖k can be
equivalently replaced by the optimization of the real-valued operator qk(·) =

∑k
i=1 log σi(·), which

has the same minimum points as ‖ · ‖k. In Figs. 5.33, 5.34 and 5.35 we display the function
qk evaluated over the parameter space Γ in the test cases aEN2 and aES2, for some values of
k. As explained in Section 5.3, the solution to problem (5.3.9) that corresponds to the global
minimum point is the realization y that generated the measurement of Λ(y). The higher the
value of k, and the steeper the objective function becomes, because more singular values are
taken into account. Moreover, when k increases the objective function shows a product structure
that suggests the use of Alternating Minimization, i.e. optimizing a given component of the
variable while freezing the remaining components. When Γ is two-dimensional, we present the
numerical results only using a global optimization approach, although we observed that the use
of Alternating Minimization allows to reduce the overall computational cost.

When Γ = [0.5, 5]5, the global optimization approach converges to the correct solution in
the subspace of the parameter space associated with the three outer regions, but then gets
stuck into local minima when exploring the two most inner regions. Alternating Minimization
converges even more easily, but still gets stuck into local minima whenever the initial data of
the two most inner regions is not sufficiently close to the exact solution. One possibility is to
initialize with different initial data the optimization procedure, but since the dimension of the
parameter space is moderately large this turns out to be very costly. Therefore, we think that
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Figure 5.33: Test case aEN2. Function qk over the parameter space Γ in log-log scale. Top-left:
k = 1. Top-right: k = 5. Bottom-left: k = 32. Bottom-right: k = 64. The realization
y = (8.3567, 0.3558) corresponds to the global minimum point (0.9220,−0.4488) in log-log scale.

the optimization procedure could still be effectively employed but on problem (5.3.11) with more
than one measurement of Λ and resizing the range of variation of the random variables associated
with the most inner regions. For example, when Y5, Y6 deviate only 25% from their mean values
the Alternating Minimization always easily finds one of the minimum points of problem (5.3.11).
Some tests with many measurements are presented in Section 5.7.
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Figure 5.34: Test case aES2. Function qk over the parameter space Γ in log-log scale. Left:
k = 32. Right: k = 64. The realization y = (4.5, 0.75) corresponds to the global minimum point
(0.6532,−0.1249) in log-log scale.

To solve problem (5.3.9) we choose a derivative-free approach, since ∂y∗‖Λ̃(y,y∗)‖k is not
available. We employ the well-known Melder-Mead method [LRWW98] to perform a constrained
optimization of the objective function qk over the whole parameter space Γ.

In test case aEN2 the method converged in less than 100 iterations to the solution ŷ of
problem (5.3.9) within an accuracy ε = 10−4 in (5.3.10), for several different choices of the initial
point in the parameter space. The number of evaluations of Λ0 has always been less than three
times the number of iterations.

In test case aES2 the method converged in less than 100 iterations to the solution ŷ of
problem (5.3.9) with an accuracy ε = 10−3, for several different choices of the initial point in the
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Figure 5.35: Test case aES2. Same as Fig. 5.34 but zoomed in a neighborhood of the global
minimum point (0.6532,−0.1249). Function qk over the parameter space Γ in log-log scale. Left:
k = 32. Right: k = 64.

parameter space.
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Figure 5.36: Coloring of C(ξ), test case aEN2, γ = 10−2 in (5.2.25). Top-left: using the solution
ŷ to problem (5.3.9) with ε = 0.00014. Top-right: using the solution ŷ to problem (5.3.9) with
ε = 0.001. Bottom-left: using the solution ŷ to problem (5.3.9) with ε = 0.01. Bottom-right:
using the point ŷ = (5.05, 5.05).

Once we obtain an approximation ŷ of the solution to problem (5.3.9), we can apply the
FM with the realization ŷ. In Fig. 5.36 we show the reconstructions obtained in the test case
aEN2, with different values of ε. We solve problem (5.3.9) with the Ky Fan 5-norm with initial
point (0.1, 10), and after 76 iterations and 223 evaluations of Λ0 the method converges to the
solution ŷ = (8.356653, 0.355660) such that the convergence criterion (5.3.10) is satisfied with
ε = 0.00014. The corresponding reconstruction obtained is depicted in Fig. 5.36-top-left. The
other Figs. 5.36-top-right and 5.36-bottom-left show the effect of using a less accurate realization
ŷ for different values of ε. Fig. 5.36-bottom-right is obtained using ŷ = (5.05, 5.05), that is the
expected value of the random variable Y over Γ, and yields a reconstruction where the inclusion
is completely obfuscated by the contrast of the background.

As justified in Section 5.3, when applying the FM with a realization ŷ that is not accurate
enough with respect to the criterion (5.3.10), the background begins to be detected in the
reconstruction. This fact can be used to check a posteriori that the solution to problem (5.3.9) is
accurate enough: if the region Ri of the background is sharply detected, then the ith component
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Figure 5.37: Coloring of C(ξ), test case aES2, γ = 10−2 in (5.2.25). Left: using the solution ŷ
to problem (5.3.9) with ε = 10−3. Right: using the solution ŷ to problem (5.3.9) with ε = 10−2.

of the solution ŷ to problem (5.3.9) is too inaccurate, and its accuracy needs to be improved. To
achieve an improvement one can either utilize Alternating Minimization, or increase k or choose
other types of optimization methods, e.g. Simulated Annealing or Global Pattern Search.

In Fig 5.37-left we show the reconstruction obtained in test case aES2 using the solution ŷ to
problem (5.3.9) that satisfies (5.3.10) with ε = 10−3. This solution was computed solving problem
(5.3.9) with the Ky Fan 32-norm and choosing the initial point (0.1, 10). The optimization required
131 iterations and 312 evaluations of Λ0.
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Figure 5.38: Coloring of C(ξ), test case aUN1, γ = 10−2 in (5.2.25). Top-left: using the solution
ŷ to problem (5.3.9) with ε = 0.0005. Top-right: using the solution ŷ to problem (5.3.9) with
ε = 0.001. Bottom-left: using the solution ŷ to problem (5.3.9) with ε = 0.01. Bottom-right:
using the solution ŷ to problem (5.3.9) with ε = 0.01 in R2, R3, R4 and ε = 0.2 in R5, R6.

Finally in Fig. 5.38 we present the results obtained in test case aUN1 for different values of ε.
In Fig. 5.38-top-left we show the reconstruction obtained when solving accurately problem (5.3.9)
with ε = 5× 10−4, in Fig. 5.38-bottom-right we display the reconstruction obtained when the
optimization of problem (5.3.9) is accurate with ε = 10−2 only in the three most outer regions,
but converged only up to ε = 0.2 in the subspace of Γ associated with the two most inner regions.
As a result, the two most inner regions are detected as an inclusion, and the real inclusion is
obfuscated.

In general, we observed that the global optimization over the whole five-dimensional parameter
space is always successful, when applied to test cases featuring small variations of the coefficient
in the most inner regions, e.g. up to 25%. On the other hand, when the starting point is not
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sufficiently close to the exact solution and the variations of the coefficient are of one order of
magnitude in the two most inner regions, the global optimization over the five-dimensional
parameter space got stuck into local minima. Clearly, this is a limitation of the proposed
approach, and the availability of more than one measurement to facilitate the optimization seems
required to overcome it.

5.6.2 The Factorization Method with one paired measurement

In the case of paired measurements, the inclusion is always easily detected in the configurations
EN and UN , also when the background coefficient jumps by two orders of magnitude. Therefore
we will not present these results, but focus only on the more challenging configurations ES and
US, again with two orders of magnitude jumps in the background coefficient. We consider the
test cases pES and pUS presented in Table 5.4, featuring uncertain background in the case of
paired measurements. The results obtained are presented in Fig. 5.39 for the test case pES, and
in Fig. 5.40 for the test case pUS.
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pES S E (5.3.3) [0.1, 10] Fig. 5.39
pUS S U (5.3.3) [0.1, 10] Fig. 5.40

Table 5.4: Description of the numerical test cases pES and pUS with uncertain background in
the case of paired measurements.
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Figure 5.39: Coloring of Ĉ(ξ) with T = 10, test case pES, γ = 5 × 10−2 in (5.2.25). Top-left:
σB = (1, 0.5, 5). Top-right: σB = (1, 5, 0.5). Bottom-left: σB = (1, 0.1, 10). Bottom-right:
σB = (1, 10, 0.1).

We use the indicator Ĉ(ξ) in (5.3.14) with the number T of realizations chosen according
to the number of regions r. We choose T = 10 when r = 3 and T = 20 when r = 6. Then we
apply the FM when observing only one measurement of the random operator Λ̃, generated from



5.7. NUMERICAL TESTS WITH MANY MEASUREMENTS IN A RANDOM BACKGROUND143

the unknown realization y. The results are presented when “common” realizations are observed,
e.g. σB = (1, 5, 0.5) or σB = (1, 0.26, 4.17, 0.89, 7.05, 0.16), and when “extremal” realizations are
observed as well. We distinguish between “common” and “extremal” realizations in the following
sense: an extremal realization lies on the boundary of the support of the random variable, e.g.
σB = (1, 10, 0.1) and σB = (1, 10, 0.1, 0.1, 10, 10). If a realization is not extremal, than it is a
“common” realization. Extremal realizations provide a worst-case benchmark for the FM.

With all the realizations observed, the FM detects at least three inclusions over four. The
inclusion closest to the center of the domain is the hardest to detect. The reconstructions rely
on a single realization of the random operator Λ̃, and this justifies their slight dependence on
the particular realization observed. In spite of this, at least three inclusions are always sharply
detected, but the most inner is occasionally undetected.
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Figure 5.40: Coloring of Ĉ(ξ) with T = 20, test case pUS, γ = 5 × 10−2 in (5.2.25). Top-
left: σB = (1, 0.26, 4.17, 0.89, 7.05, 0.16). Top-right: σB = (1, 10, 0.1, 0.1, 10, 10). Bottom-left:
σB = (1, 10, 1, 0.1, 1, 0.1). Bottom-right: σB = (1, 0.1, 0.1, 10, 0.1, 10).

5.7 Numerical tests with many measurements in a random back-
ground

5.7.1 The optimized Factorization Method with many arbitrary measure-
ments

As described previously, the optimization in problem (5.3.9) can be facilitated, optimizing problem
(5.3.11) where additional measurements of Λ(Y ) are included. Fig. 5.41 shows the evaluation
over Γ of the objective function of problem (5.3.11) with ‖ · ‖k replaced by qk(·), in the test case
aEN2 and when four additional measurements are added to the previous measurement of Λ.

5.7.2 The pure Factorization Method with many arbitrary measurements

In this section we discuss some details about the application of the pure FM. The critical
issue concerns the choice of ε. In Figs. 5.36-top-right, 5.37-left, 5.38-top-right several accurate
reconstructions are obtained with ε = 10−3 and large variations in the coefficient up to two orders
of magnitude. Based on this observation, and on many other numerical experiments that we do
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Figure 5.41: Test case aEN2 with 5 measurements of Λ(Y ). Evaluation over Γ in log-log
scale of the objective function of problem (5.3.11), with ‖ · ‖k replaced by qk. The realizations
y1,y2,y3,y4,y5 correspond to the five minimum points. Left: k = 1. Right: k = 32.

not report, an accuracy ε = 10−3 is always enough to clearly detect inclusions of normal size, e.g.
with radius 0.1, when there are up to r = 4 regions, d is not larger than 0.125 and the vector m
does not produce jumps in the coefficient larger than one order of magnitude. When interested
in smaller inclusions, with more regions r > 4, or d and m that produce larger variations in σB,
then also the value of ε has to be decreased further.

Table 5.5 reports the number T of realizations needed to satisfy (5.3.13), for some values of
M , q, d, ε = 10−3, σB parametrized by (5.3.2) and d up to 0.125, yielding 25% variations in the
coefficient. Notice that this variation is much smaller than those considered in Figs. 5.36, 5.37,
5.38.

In Table 5.6 we report the value of T such that a condition analogous to (5.3.13) holds, but
with the exponential parametrizations (5.3.3) and (5.6.1). The ranges of variation achieved with
these parametrizations are the same as those in Figs. 5.36, 5.37, 5.38.

d = 0.025 d = 0.05 d = 0.1 d = 0.125
M = 3, q = 2 (r = 3) 1300 4500 15800 -
M = 10, q = 2 (r = 3) 400 1200 4500 7200
M = 10, q = 3 (r = 4) 9000 60000 - -
M = 25, q = 2 (r = 3) 200 600 1900 2800
M = 50, q = 2 (r = 3) 100 300 1000 1600
M = 50, q = 3 (r = 4) 2000 14000 63000 133000

Table 5.5: Uncertainty analysis. The value of T such that Pr(minmt ‖ym− ŷt‖∞ ≤ ε d−1) ≥ 0.99,
given ε = 10−3 and some values of q, M , d. Parametrization of σB by (5.3.2), where ym, ŷt ∈
Γ = [−1, 1]q and Y ∼ U(Γ). The dash advises for a larger value of M .

[0.5, 5] [0.1, 10]
M = 100, q = 1 (r = 2) 40 70
M = 100, q = 2 (r = 2) 10800 36400
M = 1000, q = 1 (r = 2) 10 30
M = 1000, q = 2 (r = 3) 1300 4500

Table 5.6: Large variations. The value of T such that Pr(minmt ‖ym − ŷt‖∞ ≤ ε) ≥ 0.99,
given ε = 10−3 and some values of q, M . Left column: one order of magnitude variations
with the parametrization (5.6.1) of σB, where ym, ŷt ∈ Γ = [0.5, 5]q and Y ∼ U(Γ). Right
column: two orders of magnitude variations with the parametrization (5.3.3) of σB, where
ym, ŷt ∈ Γ = [0.1, 10]q and Y ∼ U(Γ).

We remark that the value of T corresponds to the number of evaluations of the operator Λ0
in the parameter space Γ. These evaluations can be efficiently performed by means of polynomial
approximation techniques, e.g. the random discrete L2 projection presented in Chapters 1, 2, 4
and 6.
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5.8 Conclusions
In this paper we provided a numerical scheme to solve the Neumann dipole-like boundary value
problem in inhomogeneous deterministic background. Then we employed this scheme to apply the
FM to the Continuous Model for EIT. We focused on two types of piecewise constant background
diffusion coefficient: inhomogeneous deterministic and uncertain. With both types of background
the FM is able to detect the presence and location of one or many inclusions, and to supply rough
information on their geometry. The quality of the reconstructions obtained in the inhomogeneous
deterministic case is comparable to the quality of those in the homogeneous case, with jumps in
the background up to two orders of magnitude.

When the background is uncertain we proposed three variants of the FM, based on the
distinction between arbitrary and paired measurements of the random operator Λ. In the paired
measurement case the FM always detects a normal or small inclusion, using only one paired
measurement of the operators Λ and Λ0. In the presence of many inclusions those harder to detect
could remain undetected. In the case of arbitrary measurements, we devised an optimization
scheme to recover the realization of the background diffusion coefficient that generated a given
measurement of the operator Λ. With this approach the FM can be applied also to situations
where only one measurement of Λ is available. The quality of the reconstruction depends
on the accuracy ε to which the optimization can be performed. We focused mainly on large
variations of the background coefficient up to two orders of magnitude, and showed that the
optimization can be performed up to a tolerance ε such that the FM is successful when the
parameter space is low-dimensional. When the dimension of the parameter space increases the
optimization becomes challenging, in particular with large variations of the background coefficient.
Additional measurements of the operator Λ can be easily incorporated in the objective function
to facilitate the optimization procedure, but in moderately large-dimensional parameter spaces,
the applicability of the proposed optimization approach remains confined to uncertainty analysis.
Lastly we proposed a pure variant of the FM, that does not require the optimization step and is
suitable for uncertainty analysis when many measurements of Λ are available.



146CHAPTER 5. THE FACTORIZATION METHOD FOR EIT IN UNCERTAIN BACKGROUNDS



Chapter 6

Acceleration of the Factorization
Method by means of polynomial
approximation

The present chapter links Chapter 5 with the first part of the thesis. In Chapter 5 the problem
of Electrical Impedance Tomography in uncertain background is presented as an identification
problem, where the aim is to determine the presence and location of unknown inclusions. The
case of piecewise constant background affected by uncertainty is addressed, and the diffusion
coefficient is modeled by means of random variables. As in Chapter 5, we confine to random
variables Y distributed according to the uniform density ρ = U(Γ). For example, the background
diffusion coefficient σB has been parametrized by the exponential model

σB(x,y) =
r∑
i=1

10yi IRi(x), x ∈ B, y ∈ Γ = [−1, 1]r, (6.0.1)

so that the coefficient jumps up to two orders of magnitude in each one of the r regions that form
a partition of the computational domain B =

⋃r
i=1Ri, see e.g. Fig. 5.3. Two different situations

are distinguished, depending on how the measurements of the random operators Λ and Λ0 are
collected.

In the case of arbitrary measurements, two variants of the Factorization Method are presented:
the optimized Factorization Method (Algorithm 2) and the pure Factorization Method (Algo-
rithm 3). These variants are both based on the repetitive evaluation of the Neumann-to-Dirichlet
map

y 7→ Λ0(y), y ∈ Γ, (6.0.2)

which demands for a repetitive calculation of the solution to the PDE model (5.2.2) with the
random diffusion coefficient σB introduced in (5.3.1). We recall here problem (5.2.2) and the
definition of the map Λ0. Given η ∈ H̊−

1
2 (∂B), consider the y-parametric Neumann boundary-

value problem,

find u ∈ H̊1(B) s.t.
{
∇ · (σB(x,y)∇u(x)) = 0, x ∈ B, y ∈ Γ,
σ(x,y)∇u(x) · ν(x) = η(x), x on ∂B, y ∈ Γ, (6.0.3)

where ν denotes the outward normal to ∂B. Problem (5.2.2) defines the Neumann-to-Dirichlet
map Λ0 : η 7→ u|∂B, in the same way as in (5.2.3).

The case of paired measurements differs in how the measurements of Λ and Λ0 are collected.
In this case, the variant of the Factorization Method proposed (Algorithm 4) strongly relies
on the sampling procedure, and the Monte Carlo-type estimator (5.3.14) converges with the
well-known low convergence rate with respect to the number T of random samples. For a given
sample point y, the evaluation of the estimator (5.3.14) demands for the calculation of the

147
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solution ϕkN to problem (5.2.15), with the random diffusion coefficient σB introduced in (5.3.1).
This corresponds to evaluate the following map:

y 7→ ϕkN (y), y ∈ Γ, (6.0.4)

for any realization y ∈ Γ. We remark that, although a singular point source is present in problem
(5.2.5), under Assumption 5.1 the forcing term in problem (5.2.15) is a smooth function, as
explained at the end of Section 5.2.3. Therefore, polynomial approximation is the right tool to
approximate the solution ϕkN to problem (5.2.15).

The outline of this chapter is the following. In Section 6.1 we recall the results developed in
Chapter 1 and Chapter 2 concerning the polynomial approximation of random functions and
of the solution to elliptic PDE models with stochastic coefficients. Then the same polynomial
approximation techniques are applied to the framework of EIT introduced in Chapter 5 and,
more specifically, to accelerate the parametric evaluation of the Neumann-to-Dirichlet map (6.0.2)
that is required to apply the Factorization Method in the case of arbitrary measurements. In
Section 6.2 we consider the polynomial approximation of the solution to the Neumann problem
(6.0.3). Then in Section 6.3 we consider the polynomial approximation of the Neumann-to-
Dirichlet map Λ0 defined in (6.0.2). Section 6.4 presents a low computational cost approach
based on the polynomial approximation of the Ky-Fan k-norm. Section 6.5 presents some details
about the polynomial approximation of the map (6.0.4), in the case of paired measurements.

6.1 Convergence estimates for the least squares approximation

Denoting by u the solution to model (5.2.2) or (5.2.15), both with the random diffusion coefficient
σB introduced in (5.3.1), then the following results on the polynomial approximation of u hold.
Note that the models (5.2.2) and (5.2.15) fall in the class of “inclusion type” PDE models with
stochastic diffusion coefficient that has been introduced in Section 2.4.2, and that the Total
Degree polynomial space has been shown in Chapter 2 to be the right polynomial space to use in
this case.

In this section we use the same notation for the projections PΛ and PMΛ that have been
introduced in (2.4.7), as well as the truncated projection P̃MΛ by the truncation operator defined
in (2.4.5), when needed.

Consider a Hilbert space V over the physical domain B. As in Section 2.4.1, we introduce
the tensor space V = L2(Γ, dρ) ⊗ V , equipped with the inner product (2.4.3), and the space
W = L∞(Γ, V ) of bounded V -valued functions. Throughout this chapter, we will set V = H1(B).
Moreover, we will use the constants c1, c2, c3, c4 defined in (2.4.17), (2.4.10), (2.4.11), (2.4.18).

Consider the parametrization (2.4.2) of the diffusion coefficient a(x, y) of problem (2.4.1). In
the general case of an infinite expansion of the coefficient with overlapping basis functions ψj , an
algebraic convergence rate of the best N-term polynomial approximation has been proven.

Theorem 6.1. If the coefficient a(x, y) of problem (2.4.1) satisfies Assumption 2.2, and if the
sequence (‖ψj‖L∞(D))j≥0 belongs to `p(N) for some p < 1 then the best N-term approximation
PΛu of u converges with the algebraic rate

‖u− PΛu‖W ≤ CN−s, s = 1
p
− 1. (6.1.1)

Proof. See [CDS11, Theorem 1.2].

In the parametrizations (6.0.1) (or (5.3.2)) of the background diffusion coefficient σB of
problems (5.2.2) or (5.2.15), the support of the inclusions do not overlap, and this is the situation
that has been specifically addressed in our analysis in Chapter 2. In this case exponential
convergence has been proven.
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Lemma 2.6. In the isotropic case, i.e. gn = g for all n = 1, . . . , d, the following estimate on the
error of the L2 projection PΛ on the quasi-optimal TD sets holds

‖u− PΛu‖2V ≤ c3 exp
{
−c2N

1
d

}
. (6.1.2)

Theorem 2.6. In the aforementioned PDE model class, the convergence rate of the least squares
approximation with optimal choice of the polynomial space satisfies

E
[
‖u− P̃MΛ u‖2V

]
≤ (c4 + c1) exp

{
−
(
c2d

2 βM
) 1

2d+1
}
. (6.1.3)

Denote by C̃ρinv the constant of the inverse inequalities between L∞(V ) and L2
ρ⊗V introduced

in (B.2.2) in Appendix B.2,

C̃ρinv(Λ) = sup
v∈PΛ⊗V

‖v‖L∞(V )
‖v‖L2

ρ⊗V
< +∞. (6.1.4)

Notice that C̃ρinv is bounded when ρ is the uniform density, e.g. C̃ρinv can be bounded by
C̃ρinv(TD) ≤ #TD in the case of the Total Degree space. In the sequel we will extend the estimate
(6.1.3) in norm V = L2

ρ ⊗ V to the norm W = L∞(Γ, V ), since the final aim is to obtain a
pointwise estimate of the error when approximating the parametric map Λ0 = Λ0(y) for any
y ∈ Γ.

Moreover, we introduce the same random variable Cω as in (1.2.15), but adapted to the space
V and using the discrete norm defined in (2.4.8):

Cω(M,Λ) := sup
v∈{PΛ\{v≡0}}⊗V

‖v‖2V(
‖v‖VM

)2 . (6.1.5)

Lemma 6.1. With Cω(M,Λ) defined as in (6.1.5), it holds that

‖u− PMΛ u‖W ≤
(

1 + C̃ρinv

√
Cω(M,Λ)

)
inf

v∈PΛ⊗V
‖u− v‖W . (6.1.6)

Proof. For any v ∈ PΛ ⊗ V it holds

‖u− PMΛ u‖W ≤‖u− v‖W + ‖v − PMΛ u‖W
≤‖u− v‖W + C̃ρinv‖v − P

M
Λ u‖V

≤‖u− v‖W + C̃ρinv

√
Cω(M,Λ) ‖v − PMΛ u‖VM

≤
(

1 + C̃ρinv

√
Cω(M,Λ)

)
‖u− v‖W .

Since v ∈ PΛ ⊗ V is arbitrary, we deduce (6.1.6).

We now state the final result that will be needed in the following sections.

Corollary 1 (of Theorem 2.3). For any γ > 0, if M is such that K(PΛ) satisfies (2.2.6), then
for any u ∈ W it holds

Pr

(
‖u− PMΛ u‖W ≤

(
1 +
√

2 C̃ρinv

)
inf

v∈PΛ⊗V
‖u− v‖W

)
≥ Pr

(
ΩM

+

)
≥ 1− 2M−γ . (6.1.7)

Proof. Same as in the proof of Theorem 2.3 but with the L2
ρ(Γ) norm replaced by the W norm,

and with the constant of the inverse inequality C̃ρinv between L∞ and L2
ρ. The switch from the

W norm to the V norm is by inverse inequality, as in the proof of Lemma 6.1.
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Theorem 6.2. For any γ > 0, if M is such that K(PΛ) satisfies (2.2.6), then for any u ∈
W, ‖u‖W ≤ τ , it holds

E
[
‖u− P̃MΛ u‖2W

]
≤
(
1 +
√

2 C̃ρinv

)2
inf

v∈PΛ⊗V
‖u− v‖2W + (τ + ‖u‖W)2 2M−γ . (6.1.8)

Proof. First we note that

‖u− P̃MΛ u‖W ≤ ‖u− PMΛ u‖W , ∀u ∈ W : ‖u‖W ≤ τ,

where P̃MΛ is the same truncation operator defined in (2.4.5). Thanks to (6.1.7) we obtain

E
[
‖u− P̃MΛ u‖2W

]
≤E
[
‖u− P̃MΛ u‖2W IΩM+

]
+ E

[
‖u− P̃MΛ u‖2W IΩM−

]
≤
(
1 +
√

2 C̃ρinv

)2
inf

v∈PΛ⊗V
‖u− v‖2W Pr(ΩM

+ ) + (τ + ‖u‖W)2Pr(ΩM
− )

≤
(
1 +
√

2 C̃ρinv

)2
inf

v∈PΛ⊗V
‖u− v‖2W + (τ + ‖u‖W)2 2M−γ

and the proof is completed.

6.2 Polynomial approximation of the solution to the Neumann
problem

In this section we consider the polynomial approximation of the solution to the Neumann problem
(6.0.3). We introduce the Hilbert space L2

ρ(Γ)⊗ L̊2(∂B) endowed with the norm

‖u‖2
L2
ρ(Γ)⊗L̊2(∂B) =

∫
Γ
‖u(y)‖2

L̊2(∂B) dy. (6.2.1)

The discrete norm to approximate (6.2.1) is given by

‖u‖2
M,L̊2(∂B) = 1

M

M∑
m=1
‖u(ym)‖2

L̊2(∂B). (6.2.2)

At the discretization level the space L̊2(∂B) is discretized with the Fourier basis FK(∂B) =
{ηk}Kk=1 with zero mean, and L2

ρ(Γ) is discretized with the usual polynomial space PΛ. An L2

projection on the tensor space PΛ(Γ)⊗ FK(∂B) would lead to the following problem

ΠPΛ⊗FKu = argmin
v∈PΛ(Γ)⊗FK(∂B)

‖u− v‖L2
ρ(Γ)⊗L̊2(∂B), (6.2.3)

such that the solution u ∈ L2
ρ(Γ)⊗L̊2(∂B) to problem (5.2.2) with the random diffusion coefficient

(5.2.1) is approximated in the subspace PΛ(Γ)⊗ FK(∂B) ⊆ L2
ρ(Γ)⊗ L̊2(∂B). In this way

ΠPΛ⊗FKu =
#Λ∑
j=1

K∑
k=1

ujk ηk(x) lj(y), x on ∂B, y ∈ Γ. (6.2.4)

In this expression the basis functions of the spaces L2
ρ(Γ) and L̊2(∂B) are coupled through the

coefficients ujk. For any u ∈ L2
ρ(Γ)⊗ L̊2(∂B) we can write

‖u− v‖2
L2
ρ(Γ)⊗L̊2(∂B) =

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

ujkηk(x)lj(y)−
#Λ∑
j=1

∞∑
k=1

vjk ηk(x) lj(y)

∥∥∥∥∥∥
2

L2
ρ(Γ)⊗L̊2(∂B)

=
∥∥∥∥∥
∞∑
k=1

ûk(y)ηk(x)−
∞∑
k=1

v̂k(y) ηk(x)
∥∥∥∥∥

2

L2
ρ(Γ)⊗L̊2(∂B)

=
K∑
k=1
‖ûk − v̂k‖2L2

ρ(Γ) +
∞∑

k=K+1
‖ûk‖2L2

ρ(Γ) . (6.2.5)
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The terms ‖ηk(x)‖2
L̊2(∂B) are all equal to one, since the basis is orthonormal. Notice that

min
v∈PΛ(Γ)⊗FK(∂B)

‖u− v‖2L2
ρ(Γ) = min

(v̂1,...,v̂K)∈(PΛ(Γ))K

K∑
k=1
‖ûk − v̂k‖2L2

ρ(Γ) +
∞∑

k=K+1
‖ûk‖2L2

ρ(Γ)

=
K∑
k=1

min
v̂k∈PΛ(Γ)

‖ûk − v̂k‖2L2
ρ(Γ) +

∞∑
k=K+1

‖ûk‖2L2
ρ(Γ) . (6.2.6)

Each one of the terms ‖ûk − v̂k‖2L2
ρ(Γ) on the right side of (6.2.6) does not depend on the basis

functions {ηk}k.
In the application of the Factorization Method to EIT presented in Chapter 5, the solution u

to problem (5.2.2) with the random diffusion coefficient σB given in (5.3.1) can only be evaluated
for some snapshots, corresponding to the realizations y1, . . . ,yM of the random variable Y.
Moreover, the M snapshots um = u(·,ym) of the solution are already projected on the basis FK ,

u(x,ym) =
K∑
k=1

ûk(ym)ηk(x), x on ∂B, m = 1, . . .M, (6.2.7)

where

ûk(y) =
∞∑
j=1

ujk lj(y), y ∈ Γ,

and a further projection on FK(∂B) is useless. Therefore, the approach by the global projection
(6.2.3) is not suitable for the application to EIT, where a first discretization in space is needed to
collect the M measurements. For this reason, we will develop an approach based on the random
discrete L2 projection

ΠM
Λ,Ku = argmin

v∈PΛ⊗FK(∂B)
‖u− v‖M,L̊2(∂B), (6.2.8)

using the discrete norm (6.2.2). The general element v ∈ PΛ(Γ)⊗ FK(∂B) is of the same form as
(6.2.4),

v(x,y) =
K∑
k=1

v̂k(y) ηk(x), x on ∂B, y ∈ Γ,

where again

v̂k(y) =
#Λ∑
j=1

vjk lj(y), y ∈ Γ.

We can rewrite the projection (6.2.3) using (6.2.6) as

ΠPΛ⊗FKu =
K∑
k=1

ŵkηk,

where the coefficients ŵk are given by the projection

ŵk = PMΛ ûk = argmin
v̂k∈PΛ

‖ûk − v̂k‖L2
ρ(Γ).

Therefore

ΠPΛ⊗FKu =
K∑
k=1

PΛûkηk.
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The error committed by the projection (6.2.3) is given by

‖u−ΠPΛ⊗FKu‖L2
ρ(Γ)⊗L̊2(∂B) =

∞∑
j=#Λ+1

K∑
k=1

u2
jk +

∞∑
k=K+1

‖ûk‖2.

Now we define the following discrete projections,

PMΛ ûk = argmin
v̂k∈PΛ(Γ)

‖ûk − v̂k‖M = argmin
v̂k∈PΛ(Γ)

1
M

M∑
m=1

(
ûk(ym)− v̂k(ym)

)2
. (6.2.9)

From (6.2.6), it is evident that we can approximate each term in the summation on the right
with the corresponding discrete projection PMΛ ûk given by (6.2.9). Finally, repeating the steps
(6.2.5) with the norm (6.2.2), the global discrete projector ΠM

Λ,K introduced in (6.2.8) can be
written as

ΠM
Λ,Ku =

K∑
k=1

PMΛ ûkηk. (6.2.10)

6.3 Polynomial approximation of the parametric Neumann-to-
Dirichlet map

In this section we consider the polynomial approximation of the Neumann-to-Dirichlet map Λ0
defined in (6.0.2), exploiting the results obtained in the previous section.

Following [NT09, BNTT12], we give here an approximation result for problem (6.0.3) when
the boundary datum η(x) is an element of the Fourier basis denoted by ηk. It has been shown
in [BNTT12] that the solution to (6.0.3) with a coefficient σB of the form (6.0.1) featuring
nonoverlapping random inclusions is analytic in a polydisk w.r.t. the random variables. Denote
by PAR ⊂ Cr the Polydisk Analyticity Region centered in the origin of Γ of problem (6.0.3),
where r indicates the dimension of the parameter set Γ as in Chapter 5.

Lemma 6.2. Let Uk be the solution to problem (6.0.3) with Neumann boundary condition
ηk ∈ FK and uk = Uk|∂B. Then

inf
v∈PΛ⊗V

‖uk − v‖L∞(Γ,L̊2(∂B)) ≤ Ck
− 1

2 e−αw, ∀ k = 1, . . . ,K, (6.3.1)

with C,α > 0 independent of k and w.

Proof. First note that, for any Neumann boundary condition η, the solution U(z) : PAR→ H1(B)
to problem (6.0.3) is analytic in the PAR, [NT09, BNTT12], as well as its trace on the boundary
uk(z) : PAR→ L̊2(∂B). Moreover, when ηk ∈ FK is the kth element of the Fourier basis, then it
holds:

‖uk(z)‖L̊2(∂B) ≤ CT ‖U
k(z)‖H1(B) ≤ CTCD‖ηk‖H−1/2(∂B) ≤ CTCDk

− 1
2 , ∀ z ∈ PAR, (6.3.2)

since ‖ηk‖H−1/2 = k−
1
2 , see [Ada75]. In (6.3.2) CT is the constant of the trace inequality, and

CD is the stability constant of the solution w.r.t. the input data, that holds uniformly on
the analiticity region PAR. Furthermore, denote by Twu(z) the Taylor polynomial obtained
expanding u in the origin of the parameter set up to degree w. Then, using the result in [BNTT12,
Lemma 10] it holds

‖uk(z)− Twu
k(z)‖L̊2(∂B) ≤ Ĉ sup

z∈PAR
‖uk(z)‖L̊2(∂B)e

−αw, ∀ z ∈ PAR. (6.3.3)

See [BNTT12, Lemma 10] for the value of α and the expression of the proportionality constant
Ĉ. The thesis (6.3.1) follows from (6.3.3) and (6.3.2) with C = ĈCTCD.
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Finally we can define the following operatorial random discrete projection ΠO that acts on
the operator Λ0 for each entry uk = Λ0ηk(x) as:

ΠOΛ0ηk = Tτ(k)ΠM
Λ,Ku

k = Tτ(k)

(
K∑
i=1

PMΛ ûki ηi

)
, ∀ k = 1, . . . ,K, (6.3.4)

where Tτ(k) is the same truncation operator

Tτ (v) =


v, if ‖v‖L̊2(∂B) ≤ τ,
τ(k)

‖v‖L̊2(∂B)
v, if ‖v‖L̊2(∂B) > τ,

(6.3.5)

introduced in (2.4.6) in Chapter 2.
We prove a convergence theorem for the discretized operator Λ0 over the Fourier basis FK .

Denote by L∞(Γ, F ) the space of operators parametrized by y ∈ Γ with a finite Frobenius norm
for all y ∈ Γ.

Theorem 6.3. For any γ > 0, if M is such that K(PΛ) satisfies (2.2.6), then the following
convergence estimate holds:

E
[
‖Λ0 −ΠOΛ0‖2L∞(Γ,F )

]
≤
(
C1e

−2αw + C2M
−γ
)
(1 + logK), (6.3.6)

with C1 =
(
1 +
√

2 C̃ρinv

)2
Ĉ2C2

TC
2
D, C2 = 8C2

TC
2
D, α > 0 and choosing the truncation (6.3.5)

with thresholds τ(k) = ‖uk‖L∞(Γ,L̊2(∂B)) for all k = 1, . . . ,K in the definition (6.3.4) of ΠO.

Proof. Introducing the space Z = L∞(Γ, L̊2(∂B)), we can apply the thesis (6.1.8) of Theorem 6.2,
but with the space Z instead of W. Moreover, from (6.3.2) we have for all k = 1, . . . ,K that
(τ(k) + ‖uk‖Z) ≤ 2CTCDk−

1
2 , choosing τ(k) = ‖uk‖Z . We obtain

E
[
‖Λ0 −ΠOΛ0‖2L∞(Γ,F )

]
=E

[(
K∑
k=1
‖uk − Tτ(k)ΠM

Λ,Ku
k‖2Z

)]

=
K∑
k=1

E
[
‖uk − Tτ(k)ΠM

Λ,Ku
k‖2Z

]

≤
K∑
k=1

(
1 +
√

2 C̃ρinv

)2
inf

v∈PΛ⊗L̊2(∂B)
‖uk − v‖2Z + (τ(k) + ‖uk‖Z)2 2M−γ

≤
K∑
k=1

(
1 +
√

2 C̃ρinv

)2
Ĉ2C2

TC
2
Dk
−1e−2αw + 8C2

TC
2
Dk
−1M−γ

≤
(
C1e

−2αw + C2M
−γ
)
(1 + logK),

with C1 =
(
1 +
√

2 C̃ρinv

)2
Ĉ2C2

TC
2
D and C2 = 8C2

TC
2
D.

Theorem 6.3 shows that the polynomial approximation of the discretized operator Λ0 is
convergent. The non-optimal factor logK in (6.3.6) does not allow the extension of the proof to
the continuous operator Λ0, replacing the Frobenius norm by the more general Hilbert-Schmidt
norm. However, given that in practical applications of EIT the number of frequencies used
is relatively small, this factor gives only a mild multiplicative constant to the error estimate
in w and M . As shown in Chapter 2, the number of sampling points M and the polynomial
space Λ with degree w have to be related according to condition (2.2.6), to achieve stability and
optimality of the random discrete projection.
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Remark 6.1. The choice of the truncation operators (6.3.5) does not preserve the symmetry of
ΠOΛ0, as any row of the matrix is truncated differently. However, if the number of sampling
points is sufficiently high, e.g. such that condition (2.2.6) is satisfied, then the truncation is not
effective with high probability, and the symmetry of ΠOΛ0 is almost preserved. Moreover, if the
polynomial approximation ΠOΛ0 is accurate enough to reproduce the operator Λ0, i.e. if M and
w are sufficiently large, then the lack of symmetry does not affect the accuracy in the evaluation
of the Ky-Fan norm that is needed to apply the Factorization Method. In practice, the lost of
symmetry of the measurements operator always occurs, due to the presence of noise contaminating
the measurements. Nonetheless, see e.g. the results with noise presented in Section 5.5.3, within
a reasonable range of perturbations the successful application of the Factorization Method is still
possible.

In the end, we obtained a reduced model ΛM
0 (y) = ΠOΛ0(y) of the random operator Λ0

and proved in Theorem 6.3 that its accuracy is arbitrarily high, depending on the choice of the
parameters M and w. Then we can replace ‖Λ(y∗) − Λ0(y)‖F by ‖Λ(y∗) − ΛM

0 (y)‖F in the
optimization of problem (5.3.9), since∥∥∥Λ(y∗)− ΛM0 (y)

∥∥∥
F
≤ ‖Λ(y∗)− Λ0(y)‖F +

∥∥∥Λ0(y)− ΛM0 (y)
∥∥∥
F
, ∀y ∈ Γ, ∀y∗ ∈ Γ,

with the last term on the right converging to zero. The convergence of the Frobenius norm
ensures the convergence of all the Ky-Fan k-norms with k ≤ K.

6.4 Polynomial approximation of the Ky-Fan k-norm

The approach outlined in the previous section requires to approximate the solution to problem
(6.0.3) by the random discrete projection. This requires to solve many (up to K) uncoupled
least squares problems embedded in the projection (6.2.10), depending on the number of Fourier
coefficients to retain and thus on the desired final accuracy level.

An alternative approach to deal with the optimization of problem (5.3.9) is to accomplish a
polynomial approximation of the the Ky-Fan k-norm itself, i.e. to build a polynomial approxi-
mation of the following real-valued scalar target function

φk(y) = ‖Λ(y∗)− Λ0(y)‖k , y ∈ Γ, (6.4.1)

with the simpler random discrete projection PMΛ introduced in (2.2.2). The reduced model
PMΛ φk can then be used in the optimization procedure. This approach allows to perform the
optimization procedure with a surrogate but smoother function that adequately resembles the
original target function in problem (5.3.9). The evaluations of the surrogate model are so cheap
that even the pointwise evaluations of the target function φk over a very fine tensor product grid
on Γ can be employed to look for the point of global minimum.

On the other hand this approach is not rigorously justified as the one outlined in the previous
sections, because in general (6.4.1) is only continuous w.r.t. y, and a further smoothness has still
to be investigated. Nonetheless, several numerical tests have shown that the smoothing effect of
the polynomial interpolation preserves the global minimum point of the original target function,
and at the same time allows to use any optimization algorithm based on derivatives. Therefore,
this approach is a useful tool to identify with a good accuracy the realization y∗ that generated
the measurement Λ(y∗). Fig. 6.1 shows the evaluation over the parameter set Γ of the reduced
model PMΛ φk for some values of k and w, always choosing M = 225 sampling points. The red
cross corresponds to the point y∗ ∈ Γ. The polynomial set Λ is chosen as the Total Degree
space with level w. A 3000 nodes mesh with P1 finite elements has been chosen to discretize
the domain B of problem (6.0.3). In the results displayed in Fig. 6.1 the global minimum point
y∗ that generated the measurement of Λ has been recovered up to a tolerance equal to 10−2.
Depending on the choice of the discretization parameters M , w, k and the finite element gridsize
an arbitrarily accurate approximation of y∗ can be recovered.
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Figure 6.1: The function y 7→ PMΛ φk(y) displayed over the parameter set Γ. The red cross
denotes the realization y∗. Top-left: k = 5, w = 6, M = 225. Top-right: k = 5, w = 7, M = 225.
Bottom-left: k = 5, w = 8, M = 225. Bottom-right: k = 10, w = 8, M = 225.
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6.5 The case of paired measurements

In the case of paired measurements, the variant of the Factorization Method proposed in
Algorithm 4 requires a repetitive calculation of the solution to problem (5.2.15) for different
realizations of the random variable which parametrizes the stochastic diffusion coefficient. The
solutions are then combined in the indicator function (5.3.14) to provide a final indicator, defined
over the physical domain, that is able to detect the presence and location of the inclusions.

The methodology presented in Section 6.2 is directly applicable to compute the polynomial
approximation via random discrete projection of the solution to the Neumann problem (5.2.15),
in the same way as for the solution to (6.0.3).

However, the numerical tests shown in Section 5.6 point out that in the case of paired
measurements a limited number of realizations is enough to detect the presence and location of
the inclusions with a reasonable accuracy, also when the parameter space features a moderately
large dimension, e.g. in Fig. 5.40 with a five-dimensional parameter space. Therefore, the
acceleration via polynomial approximation seems to be less necessary in the case of paired
measurements than in the case of arbitrary measurements.

6.6 Conclusions

A methodology for the polynomial approximation based on the random discrete projection of the
Factorization Method for EIT has been proposed in Section 6.2 and Section 6.3. The theoretical
analysis proves the convergence of the error committed by the random discrete projection, when
approximating the spectrum of the operator Λ0. In Theorem 6.3 an estimate in the Frobenius
norm has been derived, and it ensures the convergence of all the Ky-Fan k-norms with k ≤ K.

In the case of arbitrary measurements, the two variants of the Factorization Method proposed
(Algorithm 2 and Algorithm 3) have been accelerated by computing the polynomial approximation
ΛM0 = ΠOΛ0 of the operator Λ0. Hence the optimization of problem (5.3.9) can be performed as
in Section 5.6, but using the costless pointwise evaluations of the reduced model ΛM0 = ΛM0 (y)
for each value of the parameter y ∈ Γ, instead of the evaluations of Λ0 = Λ0(y) for which is
required each time to numerically solve problem (6.0.3).

The approach based on polynomial acceleration proposed in Section 6.2 and Section 6.3,
becomes useful when the parameter space Γ features a large dimension, to keep affordable the
overall computational cost required to successfully apply the Factorization Method, i.e. the
computational cost required to find an accurate solution, according to the convergence criterion
(5.3.10), to the optimization problem (5.3.9).

In the case of paired measurements, the random discrete projection can be applied to
approximate the map (6.0.4) instead of the map (6.0.2). This turns out in the approximation
of the solution ϕkN to problem (5.2.15) instead of the solution to problem (6.0.3). Notice that
both problems have the same background diffusion coefficient σB, e.g. the one defined in (6.0.1),
and that the elliptic problem (5.2.15) is suitable for polynomial approximation, since it falls in
the same class of elliptic problems treated in Chapter 2. In the end, the same approach can
be applied to accelerate via polynomial approximation the Factorization Method proposed in
Algorithm 4, although the results presented in Section 5.3.2 show that this case is computationally
less demanding than the case with arbitrary measurements.

The result proved in Theorem 6.3 ensures that the same reconstructions obtained in Section 5.6
could be obtained using the polynomial approximation technique proposed, under condition
(2.2.6). This condition requires the number of sampling points to scale as the square of the
dimension of the polynomial space. However, as observed in Chapter 1, Chapter 2 and Chapter 4,
the condition (2.2.6) has been shown to be very conservative. In dimension higher than one a
less strict condition, that requires only a linear proportionality between the number of sampling
points and the dimension of the polynomial space, could be employed, making the random
discrete projection attractive in high dimensions.

As discussed in Section 6.2 the Stochastic Galerkin method cannot be applied in this context.
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The efficiency of the approach with the random discrete projection should be compared with the
efficiency of other techniques such as Stochastic Collocation on Sparse Grids.
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Conclusions and perspectives

In this thesis the polynomial approximation methodology based on the random discrete L2

projection has been presented, to approximate aleatory functions depending on random variables
distributed according to a given probability density. In the former part of the thesis, the stability
and optimality of the random discrete projection have been analyzed. A key role condition
between the number of sampling points and the dimension of the polynomial space has been
pointed out. With the uniform density, the optimal convergence rate is achieved when this
condition is satisfied, i.e. when the number of sampling points is proportional to the square of the
dimension of the polynomial space. Moreover, the analysis proposed clarifies how the dimension
of the parameter space and the smoothness of the target function affect the optimal convergence
rate. Several types of probability densities other than the uniform have been investigated, i.e. the
more general beta family and the Gaussian density.

Afterwards the random discrete projection has been applied to approximate the solution to
a class of PDE models with stochastic data. The aforementioned class contains elliptic PDEs
and the linear elasticity model, both with stochastic coefficients described by means of random
variables with a disjoint support in the physical domain. A convergence estimate has been proven,
showing that the random discrete L2 projection on suitably chosen sequences of polynomial
spaces converges at least with sub-exponential convergence rate w.r.t. the number of sampling
points. The same estimate established a relation between the convergence rate of the random
discrete L2 projection on a priori chosen polynomial spaces and the convergence rate of the
Stochastic Galerkin method.

In addition, the random discrete projection has been applied to approximate Quantities of
Interest, defined as integral functionals of the solution to PDE models with random coefficients
and random domains. Several examples with the Darcy model have been presented, when the
diffusion coefficient is parametrized by univariate and multivariate random variables. Furthermore,
the linear elasticity model with random Young’s modulus and the Navier–Stokes model with
random viscosity and random geometry of the computational domain have been tested.

In the latter part of the thesis, the Factorization Method has been considered in the context of
the Continuous Model in Electrical Impedance Tomography. To begin with, a numerical scheme to
solve the dipole-like singular Neumann problem has been proposed, when the background diffusion
coefficient is deterministic but spatially inhomogeneous. Then, this numerical scheme has been
incorporated in the Factorization Method to solve the EIT inverse problem in inhomogeneous
and uncertain background, with a specific focus on the case of piecewise constant background.

In the inhomogeneous deterministic case, the proposed approach yields reconstructions of the
same accuracy level as those obtained in the homogeneous case, with the range of variation of
the background coefficient up to two orders of magnitude. The method showed to be robust also
when the observations of the measurement operator are contaminated by noise.

In presence of uncertainty in the background coefficient, three variants of the Factorization
Method have been proposed, in both cases of arbitrary and paired measurements of the random
observation operator. Also with uncertain background, the inversion method can detect the
presence and location of several inclusions, again with the range of variation of the background
coefficient up to two orders of magnitude. When uncertainty is present the reconstructions
feature a lower accuracy than those obtained in the deterministic case. When many inclusions
are present those harder to detect could remain undetected.
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Finally the random discrete projection has been applied to accelerate the variants of the
Factorization Method proposed in the case of uncertain background, and some convergence
estimates of the proposed approach have been derived.

Perspectives
Natural continuations of the analysis of the random discrete projection will concern the application
to PDE models with random field coefficients, useful e.g. in the modeling of flow in porous media,
and a fair comparison of this methodology with the Stochastic Collocation method on Sparse
Grids.

Concerning the Factorization Method, further developments could address more realistic
models such as the Complete Electrode Model, the framework of Hybrid Electrical Impedance
Tomography and inverse scattering in uncertain media.



Appendix A

Appendix on polynomial spaces

A.1 Anisotropic polynomial spaces
In Section 1.2.1 several isotropic polynomial spaces were introduced: the Tensor Product space
(1.2.8), the Total Degree space (1.2.9), the Hyperbolic Cross space (1.2.10) and the Smolyak
space (1.2.11). Anisotropic versions of these space can be derived as well. Let

α = (α1, . . . , αN ) (A.1.1)

be a vector of real positive weights, each one being greater or equal than one. Denote by

αmin = min
n=1,...,N

αn. (A.1.2)

Then we can define the following anisotropic variants of the polynomial spaces:

Anisotropic Tensor Product space (ATP)

Λw =
{
p ∈ NN : max

n=1,...,N
αnpn ≤ αminw

}
, (A.1.3)

Anisotropic Total Degree space (ATD)

Λw =
{
p ∈ NN :

N∑
n=1

αnpn ≤ αminw
}
, (A.1.4)

Anisotropic Hyperbolic Cross space (AHC)

Λw =
{
p ∈ NN :

N∏
n=1

(pn + 1)
αn
αmin ≤ w + 1

}
, (A.1.5)

Anisotropic Smolyak polynomial space (ASM)

Λw =
{
p ∈ NN :

N∑
n=1

αnf(pn) ≤ αminf(w)
}
. (A.1.6)

The function f in (A.1.6) is the same function as in (1.2.11). Our choice to avoid weights lower
than one ensures that each anisotropic space is always included in the corresponding isotropic
space. Of course, when taking α = 1 the usual isotropic spaces are recovered.
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A.2 Dimension of the Hyperbolic Cross space
In this section we derive an upper bound for the dimension of the HC space, in any dimension N
of the parameter space Γ. This bound is sharp when N = 2, but it becomes very conservative as
the dimension N increases.

Proposition A.1. An upper estimate of the dimension of the isotropic Hyperbolic Cross space
(1.2.10) is

#HC(w, N) ≤ (w + 1)
(
1 + loge(w + 1)

)N−1
. (A.2.1)

Proof. Clearly #HC(0, N) = 1 for any N , because only the null multi-index belongs to the set
Λ. Moreover, when N = 2 and for any w ≥ 1 it holds

#HC(w, 2) ≤
⌊w+1∑
k=1

w + 1
k

⌋

=
⌊
(w + 1)

w+1∑
k=1

1
k

⌋
[using (A.2.4)]

≤
⌊
(w + 1)

(
1 + loge(w + 1)

)⌋
. (A.2.2)

This estimate can be extended to larger dimensions by induction

#HC(w, N + 1) =
∑∏N+1

n=1 (in+1)≤w+1

1

=
w∑

i1=0

∑
∏N+1
n=2 (in+1)≤

⌊
w+1
i1+1

⌋ 1

=
w∑

i1=0
#HC

(⌊w + 1
i1 + 1

⌋
− 1, N

)
[inductive step]

=
w∑

i1=0

⌊w + 1
i1 + 1

⌋(
1 + log

(⌊w + 1
i1 + 1

⌋))N−1

≤(w + 1)
(

1 + log(w + 1)
)N−1 w∑

i1=0

1
i1 + 1 [using (A.2.4)]

=(w + 1)
(

1 + log(w + 1)
)N

. (A.2.3)

Remark A.1. The partial sum of the harmonic series can be sandwiched as

loge(n+ 1) <
n∑
k=1

1
k
< loge(e n)

because

loge(n+ 1) =
∫ n+1

1

1
x
dx =

n∑
k=1

∫ k+1

k

1
x
dx <

n∑
k=1

∫ k+1

k

1
k
dx =

n∑
k=1

1
k
,

and
n∑
k=1

1
k
< 1 +

∫ n

1

1
x
dx = 1 + loge x

∣∣∣n
1

= 1 + loge n = loge(e n). (A.2.4)
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Remark A.2. The estimate (A.2.1) is very sharp when N = 2, but its accuracy deteriorates as
N increases. To quantify the overestimation of the real value of #HC we define

E(w, N) = #HC(w, N)estimated −#HC(w, N)exact
#HC(w, N)exact

. (A.2.5)

In the case N = 2 it holds

E(10, 2) <0.28,
E(25, 2) <0.21,
E(50, 2) <0.19,

and a geometrical argument shows that

lim
w→∞

E(w, 2) = 0.

In higher dimension

E(5, 5) < 5.508,
E(10, 5) < 9.399,
E(10, 10) < 1142.

Remark A.3. It is possible to derive sharper estimates exploiting the recursive relation

#HC(w, N) ≤ I(w, N) +N w +N #HC(w, N − 1) + 1,

where the integral I(w, N) is equal to

I(w, N) =
∫ w

0

∫ w+1
x1+1−1

0
· · ·
∫ ( w+1∏N−1

n=1 (xn+1)
−1

)
0

dxN · · · dx1.

For example, in the case N = 3,

I(w, 3) = (w + 1)
(

loge(w + 1)
)( loge(w + 1)

2 − 1
)

+ w,

and therefore

#HC(w, N) ≤ (w + 1)
(

loge(w + 1)
)( loge(w + 1)

2 − 1
)

+ w + 3w + 1 + 3 #HC(w, 2),

that at least does not deteriorates

E(10, 3) ≈3.586,
E(25, 3) ≈3.692,
E(50, 3) ≈3.870.
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A.3 Comparison condition number TP vs TD vs HC
The comparison of the condition number (1.4.9) obtained with the three spaces TP, TD, HC
is shown in Fig. A.1, in the case N = 4 and with the number of sampling points chosen as
M = 5 ·#Λ. The TP space features the fastest growth of the condition number w.r.t. #Λ. On
the other side, the growth of the HC space is the slowest one. With any space, it is evident that
the relation M = 5 ·#Λ yields a stable Least Squares approximation for the TD and HC space.
Clearly, the TP space does not allow to further increase the maximum polynomial degree.
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Figure A.1: Left: Condition number (1.4.9). TP, TD, HC spaces, N = 4, M = 5 ·#Λ. Right:
same as left but in log–log scale.

Table A.1 reports selected values from Fig. A.1 of the condition number and of #Λ, for some
values of the parameter w.

cond(DTD) #Λ
w TP TD HC TP TD HC
1 1.4 · 101 3.8 · 100 3.7 16 5 5
2 9.0 · 101 7.5 · 100 5.0 81 15 9
3 5.6 · 102 1.3 · 101 7.4 256 35 19
4 4.2 · 103 2.2 · 101 7.9 625 70 23
5 3.3 · 104 3.9 · 101 10 1296 126 39
6 8.1 · 101 10 210 43
8 3.2 · 102 14 495 73
10 1.4 · 103 14 1001 93
14 2.6 · 104 22 3060 169
20 33 308
30 55 566
40 83 890

Table A.1: Selected values from Fig. A.1 of #Λ and cond(DTD), corresponding to several values
of w, for the spaces TP, TD, HC, N = 4, M = 5 ·#Λ.



Appendix B

Multidimensional inverse inequalities
with uniform distribution

B.1 Inequalities between ‖ · ‖L∞(Γ) and ‖ · ‖L2
ρ(Γ)

In this section, we present some inverse inequalities on polynomial spaces. The same notation
introduced in Remark 1.1 is used. As in Chapter 1, N denotes the dimension of Γ.

One-dimensional inverse inequality.

From the inequality in Remark 1.1, by interpolation we deduce an analogous result in L4

‖v‖L4 ≤
√

(w + 1)
21/4 ‖v‖L2 ,

‖v‖L4
ρ
≤
√

(w + 1)‖v‖L2
ρ
.

Inverse inequality in multiD

Let v ∈ PΛ([−1, 1]N ). Again v can be expanded in Legendre series

v(y) =
∑
p∈Λ

αpφp(y), y = (y1, . . . , yN ) ∈ [−1, 1]N ,

where φp(y) =
∏N
n=1 φpn(yn) and ‖φp‖L∞ =

∏N
n=1

√
pn + 1

2 . Define C̃inv(Λ, N) as

C̃inv(Λ, N) =

∑
p∈Λ

N∏
n=1

(pn + 1
2)

 1
2

. (B.1.1)

Notice that the constant C̃Λ defined in (1.2.17) satisfies also

C̃Λ ≤ C̃inv(Λ, N),

and the equality holds whenever the expressions of C̃inv(Λ, N) are optimal.
Then we can generalize the one-dimensional inequality given in Remark 1.1:

‖v‖L∞ ≤
∑
p∈Λ
|αp|

N∏
n=1

√
pn + 1

2

≤‖v‖L2

∑
p∈Λ

N∏
n=1

(pn + 1
2)

 1
2

=C̃inv(Λ, N)‖v‖L2 .
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Notice that for N = 1 we recover the 1D estimate given in Remark 1.1.
Moreover, we can deduce an analogous result in L4 by interpolation

‖v‖L4 ≤
√
C̃inv(Λ, N)‖v‖L2 .

TP estimate. In the case of the isotropic Tensor Product space (1.2.8):

C̃inv(Λ(w), N)2 =
∑

p∈Λ(w)

N∏
n=1

(pn + 1
2)

=
N∏
n=1

w∑
j=0

(j + 1
2)

=(w + 1)2N

2N

=#TP 2

2N .

Therefore

‖v‖L∞ ≤
#TP
√

2N
‖v‖L2 = #TP‖v‖L2

ρ
,

‖v‖L4 ≤
√

#TP
2N/4

‖v‖L2 ,

‖v‖L4
ρ
≤
√

#TP‖v‖L2
ρ
.

TD estimate. In the case of the isotropic Total Degree space (1.2.9), we recall that

#TD =
(

w +N

N

)
=

N∏
n=1

(
1 + w

n

)
,

and we have

C̃inv(Λ(w), N)2 =
∑

p∈Λ(w)

N∏
n=1

(pn + 1
2)

≤
(w
N

+ 1
2

)N
#TD

≤ 1
2N

(
1 + w

N/2

)N
#TD. (B.1.2)

A consequence of Proposition 2.1 and Lemma 2.2 is that C̃inv(Λ(w), N) ≤ #TD. As
explained in Remark 2.1, the relation in (B.1.2) gives a sharper upper bound of C̃inv(Λ(w), N)
when d > 5. However, we write the inverse inequalities in the case of TD using the simpler bound
C̃inv(Λ(w), N) ≤ #TD rather than (B.1.2):

‖v‖L∞ ≤
#TD
√

2N
‖v‖L2 = #TD‖v‖L2

ρ
,

‖v‖L4 ≤
√

#TD
2N/4

‖v‖L2 ,

‖v‖L4
ρ
≤
√

#TD‖v‖L2
ρ
.
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HC estimate. In the case of the isotropic Hyperbolic Cross space (1.2.10) we have

C̃inv(Λ(w), N)2 =
∑

p∈Λ(w)

N∏
n=1

(pn + 1
2)

≤
∑

p∈Λ(w)

N∏
n=1

(pn + 1)

≤(w + 1)#HC.

Therefore

‖v‖L∞ ≤
√

(w + 1)#HC‖v‖L2 =
√

2N (w + 1)#HC‖v‖L2
ρ
,

‖v‖L4 ≤ ((w + 1)#HC)
1
4 ‖v‖L2 ,

‖v‖L4
ρ
≤
(
2N (w + 1)#HC

) 1
4 ‖v‖L2

ρ
.

B.2 Inequalities between ‖ · ‖L∞(Γ,V ) and ‖ · ‖L2
ρ(Γ)⊗V

Consider an Hilbert space V , e.g. V = H1(B) or V = L2(∂B) with B bounded subset of Rn, for
any positive integer n. In this section we extend the multidimensional inequalities derived in the
Section B.1 between ‖ · ‖L∞(Γ) and ‖ · ‖L2

ρ(Γ) to the case of V -valued functions, i.e. between the
spaces ‖ · ‖L∞(Γ,V ) and ‖ · ‖L2

ρ(Γ)⊗V .
Consider v ∈ L2

ρ(Γ)⊗ V , and denote by {ψj}j an orthonormal basis of L2
ρ(Γ) and by {ϕj}j

an orthonormal basis of V . Defining vj(x) =
∑∞
i=1 v̂ijϕi(x), the expansion of v is

v = v(x,y) =
∞∑
ij=1

v̂ijϕi(x)ψj(y) =
∞∑
j=1

vj(x)ψj(y),

and of course

‖v‖2L2
ρ⊗V =

∞∑
ij=1

v̂2
ij =

∞∑
j=1

( ∞∑
i=1

v̂2
ij

)
=
∞∑
j=1
‖vj‖2V ,

since ‖vj‖2V =
∑∞
i=1 v̂

2
ij . Now we can write

‖v‖L∞(Γ,V ) =

∥∥∥∥∥∥
∞∑
j=1

vj(x)ψj(y)

∥∥∥∥∥∥
L∞(V )

≤ ess sup
y∈Γ

∥∥∥∥∥∥
∞∑
j=1

vj(x)ψj(y)

∥∥∥∥∥∥
V

≤ sup
y∈Γ

∞∑
j=1
‖vj‖V |ψj(y)|

≤
∞∑
j=1
‖vj‖V max

y∈Γ
|ψj(y)|

≤

 ∞∑
j=1
‖vj‖2V

 1
2
 ∞∑
j=1

max
y∈Γ
|ψj(y)|2

 1
2

=‖v‖L2
ρ⊗V

 ∞∑
j=1

max
y∈Γ
|ψj(y)|2

 1
2

. (B.2.1)
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Finally we can define the constant of the inverse inequality C̃ρinv(Λ) as

C̃ρinv(Λ) = sup
v∈PΛ⊗V

‖v‖L∞(V )
‖v‖L2

ρ⊗V
≤

#Λ∑
j=1

max
y∈Γ
|ψj(y)|2

 1
2

< +∞. (B.2.2)

When the density is uniform, the {ψj}j are the Legendre polynomials, that are bounded on Γ.
In this case, observe that C̃ρinv(Λ) is finite, since ∀ v ∈ PΛ ⊗ V the summation on the right side of
(B.2.2) has a finite number of bounded terms.



Appendix C

On the probability distribution of
the random variable ∆Y

The aim of this section is to quantify through some numerical tests the probability distribution
of the random variable ∆Y , which realizations are defined in (1.3.10). The dimension of the
parameter space is N = 1, and the density ρ is chosen to be uniform over Γ = [−1, 1].

From Lemma 1.2 it is clear that the distribution of the random variable ∆Y concentrates
around M−1 when M increases. The Figs. C.1, C.2, C.3, C.4 and C.5 report the frequency
distribution of ∆Y and its Cumulative Distribution Function, estimated over 106 realizations
of the random sample Y1, . . . ,YM . The values of M are 5, 10, 25, 100, 1000. The frequency
distributions are displayed by means of histograms with 1000 classes, or 105 classes in the case
M = 1000.
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Figure C.1: Distribution of the random variable ∆Y with M = 5. Left: frequency distribution of
∆Y . Right: Cumulative Distribution Function of ∆Y .
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Figure C.2: Distribution of the random variable ∆Y with M = 10. Left: frequency distribution
of ∆Y . Right: Cumulative Distribution Function of ∆Y .
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Figure C.3: Distribution of the random variable ∆Y with M = 25. Left: frequency distribution
of ∆Y . Right: Cumulative Distribution Function of ∆Y .
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Figure C.4: Distribution of the random variable ∆Y with M = 100. Left: frequency distribution
of ∆Y . Right: Cumulative Distribution Function of ∆Y .
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Figure C.5: Distribution of the random variable ∆Y withM = 1000. Left: frequency distribution
of ∆Y . Right: Cumulative Distribution Function of ∆Y .
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