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Sensitivity analysis for optimal control problems.

Stochastic optimal control with a probability constraint.

Abstract

This thesis is divided into two parts. In the first part, we study constrained deter-
ministic optimal control problems and sensitivity analysis issues, from the point of view
of abstract optimization. Second-order necessary and sufficient optimality conditions,
which play an important role in sensitivity analysis, are also investigated. In this the-
sis, we are interested in strong solutions. We use this generic term for locally optimal
controls for the L1-norm, roughly speaking. We use two essential tools: a relaxation
technique, which consists in using simultaneously several controls, and a decomposition
principle, which is a particular second-order Taylor expansion of the Lagrangian.

Chapters 2 and 3 deal with second-order necessary and sufficient optimality condi-
tions for strong solutions of problems with pure, mixed, and final-state constraints. In
Chapter 4, we perform a sensitivity analysis for strong solutions of relaxed problems with
final-state constraints. In Chapter 5, we perform a sensitivity analysis for a problem of
nuclear energy production.

In the second part of the thesis, we study stochastic optimal control problems with
a probability constraint. We study an approach by dynamic programming, in which the
level of probability is a supplementary state variable. In this framework, we show that
the sensitivity of the value function with respect to the probability level is constant along
optimal trajectories. We use this analysis to design numerical schemes for continuous-
time problems. These results are presented in Chapter 6, in which we also study an
application to asset-liability management.
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guidé et formé. Je lui suis reconnaissant d’avoir permis que cette thèse se passe dans
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elles ont été autant d’expériences véritablement enrichissantes. Je le remercie de m’avoir
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se développer ma “bosse” des maths...

Merci à tous.
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2 Chapter 1. General introduction

1.1 Sensitivity analysis of optimal control problems

1.1.1 Setting and motivations

Optimal control This first part of this thesis deals with constrained deterministic
optimal control problems of ordinary differential equations. These problems aim at
optimizing controlled dynamical systems, that is to say, dynamical systems whose time-
derivative can be influenced at each time. We distinguish two variables: a control variable
u, standing for the taken decisions, and a state variable y, standing for the state of the
system over time. The typical model for a controlled system is the following:

{
ẏt = f(ut, yt), for a.a. t ∈ [0, T ],

y0 = y0,
(1.1)

where the time interval [0, T ] and the function f : R
m × R

n → R
n are given. For

simplicity, we suppose that the initial state y0 is given and fixed. The control u and the
state variable y are respectively taken in the spaces

U := L∞(0, T ;Rm) and Y :=W 1,∞(0, T ;Rn). (1.2)

For a given control u, we denote by y[u] the unique solution to (1.1) and we say that
a pair (u, y) in U × Y is a trajectory iff y = y[u]. An optimal control problem is of the
following form:

Min
(u,y)∈U×Y

φ(yT ), subject to: y = y[u] and constraints. (1.3)

Optimal control problems have many applications in different fields, such as robotics,
chemistry, power systems, aerospace engineering, biology... Two main approaches can
be distinguished for the solving of optimal control problems: the first one based on
Pontryagin’s principle, which will be used in this first part, and a second one, based on
dynamic programming, which will be used in the second part. For general introductions
on this theory, we refer to [1, 63, 65, 69].

Constraints Let us describe the different constraints that will be considered:

⊲ final-state constraints: ΦE(yT ) = 0, ΦI(yT ) ≤ 0

⊲ pure state constraints (in short, pure constraints):

g(yt) ≤ 0, for all t ∈ [0, T ]

⊲ mixed control-state constraints (in short, mixed constraints):

c(ut, yt) ≤ 0, for a.a. t ∈ [0, T ]

⊲ control constraints: c(ut) ≤ 0, for a.a. t ∈ [0, T ].
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The data functions ΦE, ΦI , c, g are smooth vector-valued functions. Let us mention two
important facts about pure constraints.

1. In general, control constraints can be seen as a particular case of mixed constraints,
but pure constraints cannot. Indeed, a technical assumption, called the inward
condition, is in general required for mixed constraints and is not satisfied for pure
constraints.

2. Systems controlled by their k-th time-derivative (i.e. y
(k)
t = f(ut, yt)) enter into

this general framework: it suffices to consider the time-derivatives of y up to the
order k − 1 as state variables. Pure constraints on state variables controlled by
their k-th derivative are called pure constraints of order k.

In this introduction, we will sometimes use an abstract form for optimal control problems:

Min
u∈U

J (u), subject to: G(u) ∈ K. (1.4)

The state variable being a function of the control u, it is omitted in this abstract formu-
lation.

Sensitivity analysis Let us consider now a perturbed version of problem (1.4):

Min
u∈U

J (u, θ), subject to: G(u, θ) ∈ K, (1.5)

where θ is a perturbation parameter, supposed to be a real number for simplicity. Sen-
sitivity analysis is concerned with the following question: what is the behavior of the
optimal solution and the value of the problem when θ varies ? The sensitivity analysis
will be performed locally, in the neighborhood of a reference value of θ, say θ̄, and we
will consider solutions to the perturbed problems which are close (in a certain sense)
to a solution ū to the reference problem (for θ = θ̄). The typical results that can be
expected are the following:

⊲ a first-order Taylor expansion of the solutions of the perturbed problems

⊲ a second-order Taylor expansion of the value of the perturbed problems.

We refer to [20] for a general introduction and to the book [21], which is a comprehensive
treatment of the subject.

Sensitivity analysis is a natural issue in applied mathematics: when modelling a
certain problem, one typically expects that the solution of this problem depends contin-
uously on its parameters, to ensure the convergence of numerical schemes, for instance.
Let us give some other motivations for sensitivity analysis.

1. In some situations, the variable θ is also an optimization variable. However, opti-
mizing simultaneously u and θ can be a difficult task. A possible approach consists
in fixing θ, solving the sub-problem for which θ is fixed. The sensitivity analysis
allows to compute a first correction to apply to θ, or at least to decide which of
the components of θ should be optimized in priority.



4 Chapter 1. General introduction

2. Similarly, some problems may be solved with the so-called homotopy method (or
continuation method, see [2]). Typically, the considered problem is easy to solve
for a given value θ̄ of the variable θ but may be hard for the other values. The
sensitivity analysis allows to find approximate solutions to the hard problems, for
values of θ close to θ̄, and given a solution to the reference problem.

3. The numerical methods which are not based on dynamic programming provide an
open-loop solution. However, in real-time applications, it is of interest to be able
to compute quickly a new approximate optimal solution if, for example, the system
deviated from the initially planned trajectory [38].

Second-order optimality conditions The second-order necessary and sufficient op-
timality conditions are of key importance in sensitivity analysis of optimization problems.
These conditions are very easy to understand in the case of an unconstrained problem
such as

Min
x∈Rn

f(x). (1.6)

Let x ∈ R
n.

⊲ The first-order necessary conditions state that Df(x) = 0; they are satisfied if x is
locally optimal.

⊲ The second-order necessary conditions state that D2f(x) is positive semi-definite;
they are satisfied if x is locally optimal.

⊲ The second-order sufficient conditions state that Df(x) = 0 and D2f(x) is positive
definite; if they are satisfied, then x is locally optimal.

In the case of constrained optimization problems, the first-order necessary conditions
state that there exists a Lagrange multiplier; the necessary and sufficient second-order
necessary conditions state that the Hessian of the Lagrangian is respectively positive
semi-definite and positive definite on a certain cone, called critical cone.

As we mentioned, the first- and second-order optimality conditions are key tools
for sensitivity analysis and for characterizing local optimality. Moreover, the second-
order sufficient condition is the main assumption for the justification of some numerical
methods, such as the shooting method or the discretization method [10, 11, 22, 57], in
the case of optimal control problems.

1.1.2 Introduction to sensitivity analysis and second-order optimality

conditions

In this subsection, we introduce the main tools of sensitivity analysis. We describe two
classical approaches for sensitivity analysis, a first one based on a stability analysis of
the first-order optimality conditions with the implicit function theorem and a second
one based on a variational analysis. For the sake of simplicity, we work with a finite-
dimensional optimization problem.
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Optimality conditions Let us consider an abstract finite-dimensional problem, de-
fined as follows:

Min
x∈Rn

f(x), subject to: g(x) ∈ K, (1.7)

where f : Rn → R and g : R → R
nC are C2-functions and K is a closed and convex

subset of RnC . For the moment, we do not consider any perturbation variable. From
now on, we fix a feasible point x̄.

Definition 1.1. We say that Robinson qualification condition holds at x̄ (or simply,
that the constraints are qualified at x̄) iff there exists ε > 0 such that

εB ⊂ g(x̄) +Dg(x̄)X −K, (1.8)

where B is the unit ball of RnC and where the signs + and − must be understood in the
sense of the sum of Minkowski.

Proposition 1.2. Let us assume that Robinson qualification condition holds at x̄. Then,
there exist ε > 0 and C > 0 such that for all x with |x− x̄| ≤ ε, there exists x̃ such that

g(x̃) ∈ K and |x̃− x| ≤ C dist(g(x),K). (1.9)

This property is called metric regularity property. It is an important property for the
justification of all the linearized problems that will be introduced in the sequel. Let us
recall the definitions of the tangent and normal cones TK(y) and NK(y) (in the sense of
convex analysis), for all y ∈ R

nC :

TK(y) := {h ∈ R
nC : dist(y + σh,K) = o(σ), σ ≥ 0}, (1.10)

NK(y) := {λ ∈ R
nC∗ : λh ≤ 0, ∀h ∈ TK(y)}. (1.11)

Here, the notation R
nC∗ stands for the space of row vectors of size nC . We define now

the Lagrangian of the problem, given by

L : (λ, x) ∈ R
nC∗ × R

n → L[λ](x) = f(x) + λg(x) ∈ R. (1.12)

The variable λ is called dual variable, we write it into brackets to distinguish it from the
primal variable x. We define the set of Lagrange multipliers Λ(x̄) as follows:

Λ(x̄) = {λ ∈ NK(g(x̄)) : DL[λ](x̄) = 0}. (1.13)

Note that the symbol D (without subscript) stands for the derivative with respect to all
the variables, except λ.

Definition 1.3. We define the critical cone C(x̄) and the quasi-radial critical cone
CQR(x̄) by

C(x̄) = {h ∈ R
n : Df(x̄)h = 0, Dg(x̄)h ∈ TK(x̄)}

CQR(x̄) = {h ∈ C(x̄) : dist(g(x̄) + σDg(x̄)h,K) = o(σ2), σ ≥ 0}.
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Figure 1.1: An example of critical cone (with g(x) = x).

In the following definition, the notation cl(C) stands for the closure of a given set C.

Definition 1.4. We say that:

1. the first-order necessary conditions hold iff Λ(x̄) 6= ∅,

2. the second-order necessary conditions hold iff

Max
λ∈Λ(x̄)

D2
xxL[λ](x̄)h

2 ≥ 0, ∀h ∈ cl(CQR(x̄)), (1.14)

3. the second-order sufficient conditions hold iff

Max
λ∈Λ(x̄)

D2
xxL[λ](x̄)h

2 > 0, ∀h ∈ C(x̄)\{0}. (1.15)

Note that the second-order sufficient conditions do not hold if the set of Lagrange
multipliers is empty.

Assumption 1.1 (Extended polyhedricity). We assume that

cl(CQR(x̄)) = C(x̄). (1.16)

From now on, we assume that the extended polyhedricity condition (defined above)
holds. This condition is typically satisfied if K is described by a finite number of linear
equalities and inequalities. Indeed, in this case, for all y ∈ R

nC , for all h ∈ TK(y), there
exists ε such that

dist(y + σh,K) = 0, ∀σ ∈ [0, ε]. (1.17)

It is still possible to state second-order necessary conditions on the whole critical cone
if the extended polyhedricity condition does not hold, but in this case, an additional
nonpositive term must be added to the Hessian of the Lagrangian in (1.14) [47]. We are
not interested in this situation and prefer stating no-gap second-order conditions, that
is to say that we want that the maximized terms in (1.14) and (1.15) are the same.

Definition 1.5. We say that the quadratic growth property holds at x̄ iff there exist
ε > 0 and α > 0 such that for all x ∈ R

n with |x− x̄| ≤ ε,

g(x) ∈ K =⇒ f(x) ≥ f(x̄) + α|x− x̄|2. (1.18)
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Note that the quadratic growth property implies that x̄ is locally optimal.

Theorem 1.6. Assume that the constraints are qualified at x̄.

1. If x̄ is locally optimal, then the first- and second-order necessary conditions hold.

2. The quadratic growth property at x̄ holds if and only if the second-order sufficient
conditions hold.

Proof. ⊲ Necessary conditions.
Let h ∈ CQR(x̄), d ∈ R

n be such that

Dg(x̄)d+ 1
2D

2g(x̄)h2 ∈ TK(g(x̄)). (1.19)

Then, for σ ≥ 0,

g(x̄+ σh+ σ2d)

= g(x̄) +Dg(x̄)hσ +
(
Dg(x̄)d+ 1

2D
2g(x̄)h2

)
σ2 + o(σ2) (1.20)

and dist(g(x̄ + σh+ σ2d),K) = o(σ2). Thus, by the metric regularity property (Propo-
sition 1.2), there exist ε > 0 and a mapping x : [0, ε] → R

n such that

g(x(σ)) ∈ K, ∀σ ∈ [0, ε] and x(σ) = x̄+ hσ + dσ2 + o(σ2). (1.21)

We call this mapping a path. We obtain that

0 ≤ f(x(σ))− f(x̄) =
(
Df(x̄)d+ 1

2D
2f(x̄)h2

)
σ2 + o(σ2) (1.22)

and therefore that the following linearized problem




Min
d∈Rn

Df(x̄)d+ 1
2D

2f(x̄)h2

s.t. Dg(x̄)d+ 1
2D

2g(x̄)h2 ∈ TK(g(x̄)).

has a nonnegative value. Its dual has the same nonnegative value:

Max
λ∈Λ(x̄)

D2
xxL[λ](x̄)h

2, (1.23)

which proves the result for h ∈ CQR(x̄). It easily extends to cl(CQR(x̄)), equal to C(x̄)
by assumption.

⊲ Sufficient conditions.
We make a proof by contradiction. Assume that there exists a feasible sequence (xk)k
converging to x̄ which is such that

f(xk)− f(x̄) ≤ o(|xk − x̄|2). (1.24)

Set hk = (xk − x̄)/|xk − x̄| and denote by h a limit point of (hk)k. Note that |h| = 1. It
is easy to check that h ∈ C(x̄), as a consequence of (1.24). Observe that for all k and
for all λ ∈ Λ(x̄),

f(xk)− f(x̄) ≥ f(xk)− f(x̄) + λ(g(xk)− g(x̄)) = L[λ](xk)− L[λ](x̄), (1.25)
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since λ ∈ NK(g(x̄)) and since g(xk) − g(x̄) ∈ TK(g(x̄)), by convexity of K. Using the
stationarity of the Lagrangian, we obtain that

f(xk)− f(x̄) ≥ D2
xxL[λ](x̄)(xk − x̄)2 + o(|xk − x̄|2) (1.26)

and to the limit, we obtain that

D2
xxL[λ](x̄)h

2 ≤ 0. (1.27)

Therefore, by the second-order sufficient conditions, we obtain that h = 0, in contradic-
tion with |h| = 1. We have proved that the quadratic growth held under the sufficient
conditions. The converse property is easily checked with the necessary conditions.

Remark 1.7. The compactness of the sphere of radius 1 is crucial in the proof of
the quadratic growth. In an infinite-dimensional setting, this property does not hold.
Therefore, a technical and restrictive assumption on the Hessian of the Lagrangian will
be needed.

Remark 1.8. Inequality (1.26) is central in the proof of the quadratic growth.

Sensitivity analysis Let us introduce now a perturbation parameter θ ∈ R in our
problem, with reference value θ̄ = 0. We assume that x̄ is a local optimal solution to
the reference problem with θ = 0. The family of problems under study is the following:

V η(θ) := Min
x∈Rn

f(x, θ), s.t. g(x, θ) ∈ K and |x− x̄| ≤ η. (P η(θ))

Observe that a supplementary constraint, called localizing constraint, has been added,
with a small parameter η > 0 associated. The reason is that the results obtained are
true only for perturbed solutions close to x̄.

We consider a simplified framework for the constraints: we assume that the set K
stands for equalities and inequalities. Therefore, we set:

g(x, θ) = (gE(x, θ), gI (x, θ)) and K = {0}nE ×R
nI
− , (1.28)

where gE : Rn × R → R
nE , gI : Rn × R → R

nI and nC = nE + nI . In this setting, the
complementarity conditions λ ∈ NK(g(x̄, 0)) for Lagrange multipliers reads:

λ ∈ R
nE∗ × R

nI∗
+ and gIi (x̄, 0) < 0 =⇒ λIi = 0. (1.29)

The Lagrangian is now defined by L[λ](x, θ) = f(x, θ) + λg(x, θ); the set of Lagrange
multipliers Λ(x̄) and the critical cone C(x̄) are considered for a feasible point x̄ of the
reference problem (with θ = 0).
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A first approach for sensitivity analysis We describe here a first approach
based on a study of the stability of the first-order optimality conditions, with the implicit
function theorem. To simplify, we assume that gI(x̄, 0) = 0. In other words, we do not
take into account the inequality constraints which are not active at x̄, for θ = 0.

We say that the strict complementarity condition holds iff for all λ ∈ Λ(x̄), λIi > 0,
for all i = 1, ..., nI . In the following theorem, we assume that Dxg(x̄, 0) is surjective.
This assumption implies that there is a unique Lagrange multiplier, that we denote by
λ̄ and it also implies the qualification condition. Note that the results of the theorem
are given for a small value of η and still hold for all the values η′ ∈ (0, η).

Theorem 1.9. Assume that

1. Dxg(x̄, 0) is surjective

2. the second-order sufficient conditions hold

3. the strict complementarity holds for all λ ∈ Λ(x̄).

Then, the following statements hold true.

1. There exists η > 0 such that for θ in a neighborhood of 0, (P η(θ)) has a unique opti-
mal solution x(θ) with a unique Lagrange multiplier λ(θ) associated. The mapping
θ 7→ (x(θ), λ(θ)) is C1 in the neighborhood of 0.

2. Set h̄ = Dθx(0) and µ̄ = Dθλ(0), the following quadratic optimization problem

Min
h∈Rn

D2L[λ̄](x̄, 0)(h, 1)2 s.t. Dg(x̄, 0)(h, 1) = 0, (1.30)

has for unique solution h̄, with associated multiplier µ̄

3. The following expansion of V η(θ) holds:

V (0) +
(
DθL[λ̄](x̄, 0)

)
θ + 1

2

(
D2L[λ̄](x̄, 0)(h̄, 1)2

)
θ2 + o(θ2). (1.31)

Proof. 1. Note that as a consequence of the strict complementarity, the critical cone is
described by

C(x̄) = {h ∈ R
n : Dxg(x̄, 0)h = 0}. (1.32)

Consider the mapping

H : (x, λ, θ) 7→
(
DxL[λ](x, θ)

g(x, θ)

)
.

We study the well-posedness of the equation H(x, λ, θ) = 0, with unknown variables x
and λ. The derivative Dx,λH(x̄, λ̄, 0)(h, µ), given by

(
DxxL[λ̄](x̄, 0)h + µDxg(x̄, 0)

Dxg(x̄, 0)z

)
(1.33)
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is injective as a consequence of the surjectivity of Dxg(x̄, 0) and of the second-order
sufficient condition. Therefore, there exists a unique mapping θ → (x(θ), λ(θ)) of class
C1, defined in the neighborhood of 0 which is such that H(x(θ), λ(θ), θ) = 0. We
can check a posteriori that x(θ) is a stationary point to (P η(θ)) by using the strict
complementarity condition, and that it is an optimal solution for a sufficiently small
value of η.

2. It can be checked that problem (1.30) has a unique solution with the sufficient
condition and the strict complementarity assumption. Let us set h̄ = Dθx(0) and µ̄ =
Dθλ(0), then Dx,λ,θH(x̄, λ̄, 0)(h̄, µ̄, 1) = 0, and therefore, by (1.33),

(
DxxL[λ̄](x̄, 0)h̄ + µ̄,Dxg(x̄, 0) +Dx,θL[λ̄](x̄, 0)(h̄, 1) = 0

Dg(x̄, 0)(h̄, 1) = 0

)
(1.34)

This is the first-order optimality conditions for (1.30), which are sufficient, since the
problem in convex.

3. Expand to the second order:

V η(θ)− V η(0) = f(x(θ), θ)− f(x̄, 0) = L[λ̄](x(θ), θ)− L[λ̄](x̄, 0), (1.35)

estimate (1.31) follows.

A second approach for sensitivity analysis The second approach for sensitivity
analysis is a variational approach which uses the same techniques as the ones developed
for the second-order conditions. By building feasible paths of points, we obtain an upper
estimate of the value function V η(θ) in the form of a second-order Taylor expansion.
Under the sufficient second-order condition, this expansion is a lower estimate, as we
prove by expanding the Lagrangian up to the second-order. The result that we obtain
is weaker, but does not require the uniqueness of the Lagrange multiplier.

Let us define the first-order linearized problem

Min
h∈RnC

Df(x̄, 0)(h, 1) s.t. Dg(x̄, 0)(h, 1) ∈ TK(g(x̄, 0)), (PL)

its dual is given by
Max
λ∈Λ(x̄)

DθL[λ](x̄, 0). (DL)

We denote respectively by S(PL) and S(DL) the sets of solutions to (PL) and (DL).

Definition 1.10. We say that the strong second-order sufficient condition holds iff for
all h ∈ C(x̄)\{0},

Max
λ∈S(DL)

D2
xxL[λ](x̄, 0)h

2 > 0. (1.36)

Theorem 1.11. Assume that the constraints are qualified at x̄ and that the strong
sufficient second-order condition holds. Then, there exists η > 0 such that for θ ≥ 0,
V η(θ) has the following second-order development:

V η(θ) = V η(0) +
(

Max
λ∈Λ(x̄)

DθL[λ](x̄, 0)
)
θ

+
(

Min
h∈S(PL)

Max
λ∈S(DL)

D2L[λ](x̄, 0)(h, 1)2
)
θ2 + o(θ2). (1.37)
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Moreover, denoting by x(θ) an optimal solution to (1.30), we obtain that the sequence

xθ − x̄

θ
(1.38)

is bounded and possesses all its limit points in S(PL).

Proof. We prove this theorem in three steps.
⊲ First step: a second-order upper estimate. Under the qualification condition, the

set of Lagrange multipliers is bounded. Therefore, problem (DL) has a finite value
and problem (PL), which is linear, has the same finite value and possesses at least one
optimal solution. For all h ∈ S(PL), for ε > 0 sufficiently small, we can build a path
x̃ : θ ∈ [0, ε] → x(θ) which is such that:

g(x̃(θ), θ) ∈ K and x̃(θ) = x̄+ θd+ o(θ). (1.39)

It follows that

V (θ)− V (0) ≤ f(x̃(θ), θ)− f(x̄, 0) = (Df(x̄, 0)(h, 1)) θ + o(θ)

=
(

Max
λ∈Λ(x̄)

DθL[λ](x̄, 0)
)
θ + o(θ). (1.40)

Similarly to the proof of Theorem 1.6, we can build a second-order feasible path of the
following form:

x̃(θ) = x̄+ hθ + dθ2 + o(θ2), (1.41)

where d is a second-order direction of perturbation to be optimized. We obtain a second-
order linearized problem which has for dual:

Max
λ∈S(DL)

D2L[λ](x̄, 0)(h, 1)2 . (1.42)

Finally, we optimize h in S(PL). This proves that the right-hand side of (1.37) is an
upper estimate of V (θ).

⊲ Second step: a first lower estimate.
We denote by x(θ) a optimal solution to the perturbed problem. Similarly to the proof of
the quadratic growth (Theorem 1.6), we prove the following inequality, for all λ ∈ Λ(x̄),

V (θ)− V (0) ≥ L[λ](x(θ), θ)− L[λ](x̄, 0)

= DθL[λ](x̄, 0) +D2L[λ](x̄, 0)(x(θ) − x̄, θ)2

+ o(|x(θ)− x̄|2 + θ2). (1.43)

⊲ Third step: conclusion.
We prove by contradiction that (x(θ)− x̄)/θ is bounded. Indeed, if it is not the case, we
can show that there exists a sequence (θk)k ↓ 0 which is such that for all λ ∈ S(DL),

hk =
x(θk)− x̄

|x(θk)− x̄| → h ∈ C(x̄)\{0} and D2
xxL[λ](x̄, 0)h

2 ≤ 0, (1.44)
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thanks to the upper estimate. The contradiction follows with the strong sufficient second-
order conditions. Then, it is easy to check that all limit points of (x(θ)− x̄)/θ (and there
exists at least one) belong to S(PL).

Finally, let λ ∈ S(DL) and (θk) ↓ 0. Extracting if necessary, we may assume that
(x(θk)− x̄)/θk converges to h ∈ S(PL). Therefore,

D2L[λ](x̄, 0)(x(θk)− x̄, θk)
2 = D2L[λ](x̄, 0)(h, 1)2θ2k + o(θ2k). (1.45)

Combined with (1.43), we obtain that the right-hand side of (1.37) is also a lower
estimate. The theorem is proved.

1.1.3 Main issues in the application to optimal control

The abstract theory of second-order optimality conditions and sensitivity analysis can
be applied to optimal control problems. A certain number of specific difficulties must
be solved, all related in a certain manner to the fact that optimal control problems
are infinite-dimensional. This subsection reviews these difficulties. We refer to [56]
for a recent introduction on the application of second-order optimality conditions to
optimal control problems, to the thesis [41] and to the introduction of [45] for detailed
bibliographies. This thesis is not concerned by the specific case of problems which are
linear with respect to the control, we refer to [5] for these problems. We also refer to
[51, 52] and the references therein for sensitivity results for optimal control problems.

Two-norm discrepancy The space L∞(0, T ;Rm) is an appropriate choice for for-
mulating optimal control problems. In most applications, the control is even uniformly
bounded with explicit bounds. However, this space, which is not a Hilbert space, is not
appropriate for the sufficient conditions since the quadratic growth property never holds
in this space. Let us consider the case of an unconstrained optimal control problem, and
let us set vε(t) = 1 if t ∈ (0, ε), 0 otherwise, for all ε > 0. Then, for all u,

J (u+ vε) → J (u) (1.46)

but ‖vε‖∞ = 1, therefore there cannot be any α > 0 such that

J (u+ vε) ≥ J (u) + α‖vε‖2∞ = J (u) + α. (1.47)

A weaker distance is required to obtain a quadratic growth property, and the appropriate
choice is the L2-distance. Therefore, we have to deal with two distances:

⊲ the L∞-distance, for which the Lagrangian of the problem is twice-differentiable
and metric regularity properties hold, but for which the quadratic growth cannot
be satisfied,

⊲ the L2-distance, which is natural to state a quadratic growth property, but for
which the metric regularity properties do not hold and the Lagrangian is not
differentiable.
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This issue is called the two-norm discrepancy, and the typical quadratic growth property
that can be obtained uses both norms: there exist ε > 0 and α > 0 such that

G(u) ∈ K and ‖u− ū‖∞ ≤ ε =⇒ J (u) ≥ J (ū) + α‖u − ū‖22. (1.48)

The use of the L2-distance for the quadratic growth naturally imposes to use a critical
cone defined in L2(0, T ;Rm) for the sufficient conditions, and it is therefore desirable to
state necessary conditions for a critical cone defined in this space. This complicates much
the proof of the results, in particular, building feasible paths and justifying linearized
problems becomes much more technical. Consider the simple example where the optimal
control is given by ūt = 0 and control constraints are given: −1 ≤ ut ≤ 1. If v is a critical
direction in L2(0, T ;Rm)\L∞(0, T ;Rm), there is no standard metric regularity result that
can be applied to the path ū+ θv, θ ∈ R.

Extended polyhedricity An important technical difficulty that arises in the state-
ment of no-gap second-order optimality conditions lies in checking the extended poly-
hedricity condition in the case of control constraints, mixed constraints, or pure con-
straints. Indeed, even a simple constraint such as ut ≥ 0, for a.a. t, cannot be seen as
a polyhedric constraint since it contains an infinite number of inequalities. Some sup-
plementary assumptions are required in order to prove the density of the quasi-radial
critical cone into the critical cone:

⊲ The contact set (that is to say, the set of times at which the constraint is active)
must be a finite union of intervals and isolated points, for pure, mixed, and control
constraints.

⊲ A certain linear form (obtained by linearizing the pure and mixed constraints) has
to be surjective. This assumption can be seen as a controllability assumption or
more generally as a stregthening of the qualification conditions.

A reformulation of the problem is also required in the case of second-order state con-
straints having touch points, a touch point being an isolated time at which the constraint
is active. The associated technique is called reduction.

Strengthened Legendre-Clebsch condition As already mentioned, the proof of
the quadratic growth (which is a proof by contradiction) in a finite-dimensional set-
ting uses in an essential way the fact that the sphere of radius 1 is compact. This is
of course no longer the case in L2(0, T ;Rm). A bounded sequence (hk)k in this space
may not have limit points for the L2 distance and weak limits points may be equal to
0. It is possible to circumvent this difficulty by assuming that the Hessian of the La-
grangian is a Legendre form. In the absence of control constraints and mixed constraints,
this assumption is equivalent to the uniform positive definiteness of the Hessian of the
Hamiltonian with respect to the control variable, which is acceptable in so far as the
Hamiltonian is minimized (with respect to u) by the optimal control. This condition is
called the strengthened Legendre-Clebsch condition. When control and mixed constraints
are present, the Hessian of the Lagrangian is a Legendre form if and only if the Hessian
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of the augmented Hamiltonian (with respect to u) is uniformly definite positive in time,
which is rather restrictive.

Sensitivity analysis When we use the variational method of sensitivity analysis, the
difficulties that we encounter when we prove upper estimates and lower estimates are
the same as the ones that we respectively encounter in the proofs of second-order neces-
sary and sufficient conditions. A supplementary difficulty has to be mentionned for the
proof of the upper estimate: the first-order linearized problem may not have an optimal
solution if it contains an infinite number of inequalities.

1.1.4 Strong solutions and their specificities

As we pointed out in the previous section, all the available results are stated for local
optimal solutions. In infinite-dimensional spaces, there are some nonequivalent distances
and therefore, we have to make precise what we mean by local optimal solutions. Most
of the available results in the literature concerning the second-order analysis and the
sensitivity analysis of optimal control problems deal with weak solutions, that is to
say, controls that are locally optimal for the L∞-norm. We introduce in this section
two supplementary notions of local optimal solutions, namely Pontryagin minima and
bounded strong solutions. Roughly speaking, these controls are locally optimal for the
L1-norm. The generic term strong solutions that we use in this thesis refers to these two
notions. These two notions were introduced in [55].

The specificity of the first three chapters of this thesis lies in the fact that strong
solutions are considered. The main feature of results for strong solutions is that they
involve a subset of the Lagrange multipliers that we call Pontryagin multipliers.

In this subsection, we first define the Pontryagin multipliers for problems with final-
state constraints and give definitions for the two notions of strong solutions. Finally,
we describe the two main tools that were used: a technique of relaxation [28] and a
decomposition principle [18].

Lagrange and Pontryagin multipliers, strong solutions In this paragraph, we
state the first-order optimality conditions for a simple case of optimal control problem
with final-state constraints only. We describe the Lagrange and Pontryagin multipliers
and the two kinds of strong solutions. We consider the problem:

Min
(u,y)∈U×Y

φ(yT ), s.t. y = y[u], ΦE(yT ) = 0, ΦI(yT ) ≤ 0. (1.49)

For all p ∈ R
n∗, u ∈ R

m, and y ∈ R
n, we define the Hamiltonian H[p](u, y) by

H[p](u, y) = pf(u, y). (1.50)

Let ū be feasible and let ȳ = y[ū]. We associate to any λ = (λE , λI) the costate pλ

uniquely defined by the following backward differential equation:
{

−ṗλt = DyH[pλt ](ūt, ȳt), for a.a. t,

pλT = Dφ(ȳT ) + λEDΦ(ȳT ) + λIDΦI(ȳT ).
(1.51)
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In this framework, the set of Lagrange multipliers, denoted now by ΛL(ū) is given by

ΛL(ū) =
{
λ = (λE , λI) ∈ R

n
ΦE ∗ × R

n
ΦI ∗

+ :

ΦI
i (ūt) < 0 =⇒ λIi = 0, ∀i = 1, ..., nΦI , (1.52)

DuH[pλt ](ūt, ȳt) = 0, for a.a. t
}
. (1.53)

We consider now the set of Pontryagin multipliers ΛP (ū), defined by

ΛP (ū) =
{
λ ∈ ΛL(ū) :H[pλt ](ūt, ȳt) ≤ H[pλt ](u, ȳt),

∀u ∈ R
m, for a.a. t

}
. (1.54)

This two kinds of multipliers can also be defined for optimal control problems with
control, mixed, and pure constraints. Let us define now the different notions of local
optimality that we will use. We use the abstract formulation of an optimal control
problem (1.4).

Definition 1.12. We say that ū is

⊲ a weak solution iff there exists ε > 0 such that for all u ∈ U ,

G(u) ∈ K and ‖u− ū‖∞ ≤ ε =⇒ J (u) ≥ J (ū), (1.55)

⊲ a Pontryagin minimum iff for all R > ‖ū‖∞, there exists ε > 0 such that for all
u ∈ U with ‖u‖∞ ≤ R,

G(u) ∈ K and ‖u− ū‖1 ≤ ε =⇒ J (u) ≥ J (ū), (1.56)

⊲ a bouded strong solution iff for all R > ‖ū‖∞, there exists ε > 0 such that for all
u ∈ U with ‖u‖∞ ≤ R,

G(u) ∈ K and ‖y[u]− ȳ‖∞ ≤ ε =⇒ J (u) ≥ J (ū). (1.57)

By Gronwall’s lemma, the mapping u 7→ y[u] is Lipschitz-continuous, for the L1-norm
on the control and the L∞-norm on the state variable. It follows that if ū is a bounded
strong solution, then it is a Pontryagin minimum, and if it is a Pontryagin minimum,
then it is a weak minimum.

Proposition 1.13. Under a qualification condition, if ū is a weak solution, then ΛL(ū)
is non-empty and if ū is a Pontryagin minimum, then ΛP (ū) is non-empty.

This result is the well-known Pontryagin’s principle. Unsurprisingly, when the notion
of local optimality which is used is strengthened, we obtain a stronger result, that is
to say, more restrictive conditions on the involved set of multipliers. Observe that a
Pontryagin minimum is optimal with respect to controls that may be far for the L∞-
norm, to the contrary of weak solutions. In the same way, for a Lagrange multiplier, the
Hamiltonian is only stationary with respect to u, whereas for a Pontryagin multiplier, the
Hamiltonian is minimized by the control: this statement involves some controls which
are far for the uniform norm.



16 Chapter 1. General introduction

Relaxation The basic idea of relaxation consists in using simultaneously several con-
trols, with some weights associated, such that the sum of the weights is equal to 1. Let
us have a look on a simple example: we consider two controls, u1 and u2 with constant
weights, both equal to 1

2 . The associated state variable is given by:

ẏt =
1
2f(u

1
t , yt) +

1
2f(u

2
t , yt), y0 = y0 (1.58)

and equation (1.58) is called relaxed state equation. Let us denote by y the solution to
this equation. Let us consider now a sequence (uk)k of controls, defined by

ukt =

{
u1t if

⌊
tk
T

⌋
is even,

u2t otherwise,
(1.59)

where the symbol ⌊x⌋ stand for the integer part of the real number x. It can be proved
that the sequence of associated state variables (y[uk])k converges uniformly to y. This
means that the solution of the relaxed state equation can be approximated as accurately
as wanted. If the constraints are qualified, it is possible to build the approximating
sequence (uk)k so that it is also feasible.

This idea can be generalized to infinite convex combinations of the controls, with
Young measures. Roughly speaking, a Young measure t 7→ µt is a measurable mapping
from t ∈ [0, T ] to the space of probability measures on the control space U . The relaxed
equation is given by: {

ẏt =
∫
U f(yt, u) dµt(u),

y0 = y0.
(1.60)

Figure 1.2: Illustration of the approximation of a relaxed control.

The effect of relaxation can also be understood from the point of view of differential
inclusions [6]. Consider the control constraint u ∈ U where U is compact, then the
set of solutions to the state equation coincide with the set of solutions to the following
differential inclusion:

ẏt ∈ F (yt), y0 = y0, (1.61)

where F : Rn ⇉ R
n is the multimapping defined by

F (y) = {f(u, y), u ∈ U}. (1.62)
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Then, the set of solutions to the relaxed equation coincide with the set of solutions to
the following differential inclusion:

ẏt ∈ conv(F (yt)). (1.63)

Relaxation provides a new way of building paths of feasible points. At the first-
order, the standard way of building this paths is to consider a direction of perturbation
v and to expand the cost function of the sequence ū+ θv. But we can also consider the
sequence of relaxed controls which are the combination of ū with a weight (1 − θ) and
another control, say u, with a weight θ, where θ ∈ [0, 1]. This results in the following
state equation:

ẏt = (1− θ)f(ūt, yt) + θf(ut, yt). (1.64)

Let us denote by yθ the solution. Then,

⊲ we can show that there exists a sequence (uθ)θ of classical controls which is such
that

‖yθ − y[uθ]‖∞ = o(θ) and ‖uθ − ū‖1 = O(θ) (1.65)

⊲ and we can compute a first-order Taylor expansion of J (uθ).

These two elements justify the use of relaxation to build feasible paths, for the study of
strong solutions, since the estimate (1.65) on uθ involves the L1-norm. This technique
allows to obtain necessary conditions (and upper estimates for sensitivity) expressed
with Pontryagin multipliers instead of Lagrange multipliers. It has been used at the first
order since the beginning of the development of the optimal control theory; in this thesis
we use it for the second-order analysis.

Decomposition principle The decomposition principle is a particular second-order
Taylor expansion of the Lagrangian of the problem. Let us fix a multiplier of the problem,
and let us denote by L(u) the Lagrangian and by Ω its Hessian at ū, which is a quadratic
form on the space L2(0, T ;Rm). When we try to prove a quadratic growth property, the
approach consists in expanding up to the second order the right-hand side of the following
inequality

J (uk)− J (ū) ≥ L(uk)− L(ū), (1.66)

where (uk)k is a certain sequence of controls (see inequality (1.25) in the proof of Theorem
1.6). With Gronwall’s Lemma, we can prove the following estimate:

L(uk)− L(ū) = Ω(uk − ū) +O(‖uk − ū‖33), (1.67)

which is satisfactory if we know that (uk)k uniformly converges to ū, since then,

‖uk − ū‖33 = O(‖uk − ū‖∞‖uk − ū‖22) = o(‖uk − ū‖22), (1.68)

and therefore, the expansion (1.67) is suitable, since by combining (1.66), (1.67), and
(1.68), we obtain that

J (uk)− J (ū) ≥ Ω(uk − ū) + o(‖uk − ū‖22). (1.69)
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When we study strong solutions, the uniform convergence of (uk)k is not ensured
anymore. Assuming the quadratic growth of the Hamiltonian, we prove in a first step
that ‖uk − ū‖2 → 0. It means that for k large enough, the perturbation |ukt − ūt|
may be very large, but only for times t in a small subset of [0, T ]. Let us consider a
sequence (Ak, Bk)k of partitions of the time interval, and let us define two new sequences
of controls:

uA,k
t =

{
ukt if t ∈ Ak

ūt otherwise,
and uB,k

t =

{
ukt if t ∈ Bk

ūt otherwise.
(1.70)

The subset Ak accounts for the small perturbations and the subset Bk for the large
perturbations. Finally, if the sequence of partitions is suitably constructed, we obtain a
series of estimates, among them,

meas(Bk) → 0, ‖uA,k − ū‖∞ → 0 (1.71)

and above all,

L(uk)− L(ū) = Ω(uA,k − ū)

+

∫ T

0

(
H[pλt ](u

B,k
t , ȳt)−H[pλt ](ūt, ȳt)

)
dt+ o(‖uk − ū‖22). (1.72)

In the study of strong solutions, this expansion is a key tool for the proof of quadratic
growth and for the proof of a lower estimate in sensitivity analysis.

Figure 1.3: Decomposition principle.

1.1.5 Contribution of the thesis

This subsection summarizes in an informal way the main results of the first part of the
thesis. We fix a feasible control ū, its associated trajectory ȳ and denote by ΛL(ū) and
ΛP (ū) the set of Lagrange and Pontryagin multipliers. The Hessian of the Lagrangian
in a given direction v is denoted by Ω[λ](v).
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Chapter 2: Second-order necessary optimality conditions in Pontryagin form

In this chapter, we state and prove second-order necessary conditions for Pontryagin
minima of optimal control problems with pure and mixed constraints. The result is
expressed with Pontryagin’s multipliers and is obtained with a finite relaxation of the
state equation. The main results are the following:

⊲ We give a new technique to build feasible paths for which the direction of pertur-
bation possibly belongs to L2\L∞, with a specific metric regularity property for
the mixed constraints in Lemmas 2.49, 2.50, and 2.51.

⊲ In Theorem 2.48, we give a new proof of second-order necessary conditions for
weak solutions, which are already known (see [17, 64]). As we mentioned, the
main difficulty lies in the proof of the extended polyhedricity condition, but the
possibility of building paths with a direction in L2 simplifies the proof of this
condition. Under technical assumptions, if ū is a weak solution, then for all critical
direction v,

sup
λ∈ΛL(ū)

Ω[λ](v) ≥ 0. (1.73)

⊲ Theorem 2.31 is the main result, we prove the second-order necessary conditions for
Pontryagin minima. Under technical assumptions, if ū is a Pontryagin minimum,
then for all critical direction v,

sup
λ∈ΛP (ū)

Ω[λ](v) ≥ 0. (1.74)

⊲ Theorem 2.57 is a new qualification condition, which is weaker than the usual
qualification and ensures that Pontryagin’s multipliers are non singular.

Chapter 3: Second-order sufficient conditions for bounded strong solutions

In this chapter, we state sufficient conditions ensuring a quadratic growth property for
bounded strong solutions to optimal control problems with pure and mixed constraints.
These conditions consist in:

⊲ for all nonzero critical direction v, there exists λ ∈ ΛP (ū) such that Ω[λ](v) > 0.

⊲ the quadratic growth of the Hamiltonian with respect to u: for at least one Pon-
tryagin multiplier λ, there exists α > 0 such that for almost all t, for all u in a
certain multi-mapping U(t),

H[pλt ](u, ȳt) ≥ H[pλt ](ūt, ȳt) + α|u− ūt|2. (1.75)

The main results are the following:

⊲ Theorem 3.14 provides a decomposition principle for the constrained problem un-
der study, extending the result of [18].



20 Chapter 1. General introduction

⊲ Theorem 3.18 is the main result and proves the quadratic growth property for
bounded strong solutions. Under the sufficient conditions, the Legendre-Clebsch
condition, and technical assumptions, for all R > ‖ū‖∞, there exist α > 0 and
ε > 0 such that for all u,

‖u‖∞ ≤ R, G(u) ∈ K, ‖y[u]− ȳ‖∞ ≤ ε =⇒ J(u) ≥ J(ū) + α‖u− ū‖22. (1.76)

⊲ Theorem 3.21 proves that under technical assumptions, the sufficient conditions
are necessary to ensure the quadratic growth.

Chapter 4: Sensitivity analysis for relaxed optimal control problems with

final-state constraints In this chapter, we perform a sensitivity analysis for a certain
type of bounded strong solutions to relaxed optimal control problems with final-state
constraints. The relaxation (with Young measures) and the decomposition principle are
used in an essential way. The family of problems is given by:

V η(θ) = Min
µ∈M

φ(yT , θ) s.t. y = y[µ, θ], ΦE(yT , θ) = 0, ΦI(yT , θ) = 0, (1.77)

‖y[µ, θ]− ȳ‖∞ ≤ η, (1.78)

where M is a space of Young measures and y[µ, θ] the trajectory associated with the
relaxed control µ, parameterized by θ. The reference problem (with θ = 0) is supposed
to have a solution ū in L∞.

The main results are the following:

⊲ A metric regularity property for relaxed controls, involving the L1-distance (for
the Wasserstein distance) is proved in Theorem 4.9.

⊲ An upper estimate of the V (θ) is proved in Theorem 4.26.

⊲ An extension of the decomposition principle to relaxed controls is provided in
Theorem 4.28.

⊲ Finally, the lower estimate of V (θ) is given in Theorem 4.34.

The second-order expansion of V (θ) which is obtained is of the form:

V (θ) = V (0) + C1θ + C2θ
2 + o(θ2), (1.79)

where the coefficients C1 and C2 are the values associated with linearized problems, and
are expressed with Pontrygin’s multipliers.

Chapter 5: Sensitivity analysis for the outages of nuclear power plants In
this chapter, we consider a problem of nuclear energy production, parameterized by dates
at which nuclear power plants must be stopped. Given a planning of the outages, the
problem is a convex optimal control problem. We study the structure of optimal controls
and perform a sensitivity analysis with respect to the dates. More precisely, we compute
a first-order expansion of the value function. The main results are the following:
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⊲ In Theorem 5.15, we prove the first-order expansion of the value of the problems.

⊲ In Theorem 5.16, we give a precise characterization of the Lagrange multipliers of
the problem.

1.1.6 Perspectives

We mention in this section some possible developments of the first part of the thesis.

Quadratic growth The quadratic growth property that we establish lies on the
Legendre-Clebsch hypothesis. This assumption is naturally satisfied if there are no
control constraints neither mixed constraints, but may be wrong in the presence of such
constraints. It would be an important improvement to obtain a quadratic growth prop-
erty, even for weak solutions, without this assumption.

Remember that the proof of quadratic growth is a proof by contradiction. We typ-
ically consider a sequence (uk)k which contradicts this property, and we have to show
that the sequence of directions:

uk − ū

‖uk − ū‖2
(1.80)

has a limit point v, for a suitable topology, which is in the critical cone, and which is
such that for all multipliers, Ω[λ](v) ≤ 0. This limit point is therefore equal to 0, by the
sufficient second-order condition. The topology which has been used so far is the weak
topology of L2, which does not enable us to obtain directly the desired contradiction.
In Chapter 4, we introduce the narrow topology for Young measures, which is finer
and possesses good compactness properties. This topology would certainly enable us to
obtain a better understanding of the sequence (uk)k and to get the contradiction without
the Legendre-Clebsch assumption.

Sensitivity analysis In Chapter 4, we are able to use the variationnal approach for the
sensitivity analysis of optimal control problems with final-state constraints and obtain
results which do not require the uniqueness of the multiplier. It would be of interest
to extend this approach to more sophisticated problems, with control contraints, mixed
constraints or even pure constraints. The main difficulty is to ensure the existence of
at least one solution to the first-order linearized problem. Indeed, linear optimization
problems with an infinite number of inequality constraints may not have solutions.

The case of control constraints is already interesting. As we show in the example of
subsection 4.6.2, the behavior of optimal solutions may be complex in the presence of
several Lagrange multipliers: in this precise example, the direction of perturbation of
the optimal controls is itself a Young measure.
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1.2 Chance-constrained stochastic optimal control prob-

lems

1.2.1 Introduction to stochastic optimal control

Setting The second part of this thesis is dedicated to the study of stochastic opti-
mal control problems with a probability constraint. Stochastic optimal control problems
aim at optimizing the behavior of uncertain controlled dynamical system. We are inter-
ested by systems modelized by a stochastic differential equation, typically formulated as
follows: {

dYt = f(ut, Yt) dt+ σ(ut, Yt) dWt,

Y0 = y0,
(1.81)

where the functions f and σ are given and respectively called drift and volatility and
where W = (Wt)t∈[0,T ] is a Brownian motion. We denote by F = (Ft)t the filtration
associated with W . At each time, the control u is taken in a compact subset U of Rm

and is a stochastic process adapted to F, which simply means that the control process
cannot anticipate the future. We denote by U the space of adapted control processes in
U . For u ∈ U , we denote by (Y u

t )t the unique solution to (1.81). A simple formulation
of a stochastic optimal control problem is the following:

Min
u∈U

E
[
φ(Y u

T )
]
. (1.82)

We refer to the book [76, 90, 105] for introductions on stochastic control theory.

Dynamic programming and HJB equation The intrinsic difficulty of stochastic
optimal control is to describe in a convenient way the different values of the control in
function of the possible realizations of the Brownian motion. In problem (1.82), the
dynamic of the state variable is Markovian in the following sense: if for some time s,
the control process u ∈ U is independent of Fs, then for all t ≥ s, for all y ∈ R

n, for all
measurable subset B of Rn, and for all Fs-measurable event A,

P
[
Y u
t ∈ B |Y u

s = y, A
]
= P

[
Y u
t ∈ B |Y u

s = y
]
. (1.83)

In other words, given a control process which is independent of the past of s, the behavior
of the state variable, knowing its value at s, is also independent of the past. This fact,
combined with the structure of the cost function, defined as the expectation of a function
of the final state allows, in some sense, to decompose the problem in time, via a dynamic
programming principle [78].

For all s ∈ [0, T ], for all y ∈ R
n, and for all u ∈ U , we denote by (Y s,y,u

t )t∈[s,T ] the
solution to {

dY s,y,u
t = f(ut, Y

s,y,u
t ) dt+ σ(ut, Y

s,y,u
t ) dWt,

Y s,y,u
s = y,

(1.84)

and we define the value function V (t, y) by

V (t, y) = min
u∈U

E
[
φ(Y t,y,u

T )
]
. (1.85)
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Theorem 1.14 (Dynamic programming principle). Let t, let τ a stopping time be such
that τ ≥ t. Then,

V (t, y) = min
u∈U

E
[
V (τ, Y t,y,u

τ )
]
. (1.86)

The interpretation of the principle is the following: knowing an optimal control from
τ to T for each initial state at τ , one can obtain an optimal control from t to T by
minimizing the right-hand side of (1.86) over controls on [t, τ ]. This principle contains
the idea that an optimal control should be computed backwards in time. Considering
a stopping time “infinitesimaly” close to time t, we obtain a relation between the time
derivative of V and the first- and second-order derivatives of V with respect to y. The
corresponding partial differential equation is called Hamilton-Jacobi-Bellman equation
(in short, HJB equation). Let us recall the main steps to recover the PDE. First, we
assume that V is twice-differentiable and apply Itô’s formula to a given constant control
u:

V (t+ dt, Y t,y,u
t+dt )− V (t, y)

=

∫ t+dt

t

(
∂tV (s, Y t,y,u

s ) +DV (s, Y t,y,u
s )f(u, Y t,y,u

s )

+ 1
2D

2V (s, Y t,y,u
s )σ(u, Y t,y,u

s )2
)
ds

+

∫ t+dt

t
DV (s, Y t,y,u

s ) dWs. (1.87)

Note that

⊲ ∂tV stands for the partial derivative of V with respect to t

⊲ DV and D2V stand for the first- and second-order partial derivative of V with
respect to y.

Consider that in the previous formula, we can take the derivatives of the value function
as constant. We obtain that

E
[
V (t+ dt, Y t,y,u

t+dt )
]
− V (t, y)

=
(
∂tV (t, y) +DV (t, y)f(u, y) + 1

2D
2V (t, y)σ(u, y)2

)
dt (1.88)

Combining (1.86) and (1.88), and considering that on a small time, an optimal control
is constant, we find that

− ∂tV (t, y) = inf
u∈U

{
DV (t, y)f(u, y) + 1

2D
2V (t, y)σ(u, y)2

}
(1.89)

For all u ∈ U , p ∈ R
n∗ and Q ∈Mn, where R

n∗ is the space of row vectors of size n and
Mn is the space of symmetric matrices of size n, we define the Hamiltonian H(u, y, p,Q)
by

H(u, y, p,Q) = pf(u, y) + 1
2Qσ(u, y)

2 (1.90)
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and the true Hamiltonian by

H∗(y, p,Q) = inf
u∈U

H(u, y, p,Q). (1.91)

Finally, the HJB equation satisfied by V is given by

{
−∂tV (t, y) = H∗(y,DV (t, y),DV 2(t, y)), ∀(t, y) ∈ (0, T )× R

n,

V (T, y) = φ(y), ∀y ∈ R
n.

(1.92)

This equation has been obtained by assuming that V was twice-differentiable, but in
general, this assumption is false. However, the theory of viscosity solutions provides
a suitable framework in which the HJB equation (1.92) has a sense and has a unique
solution, which is V . This theory was introduced in the seminal papers [89, 87] and in
[88].

Definition 1.15. We say that V : [0, T ] × R
n → R is a subsolution (respectively a

supersolution) to the HJB equation (1.92) iff

V (T, x) ≤ φ(x), (resp. V (T, x) ≥ φ(x)) (1.93)

and for all C2-function ϕ : [0, T ] × R
n → R, for all local maximizer (respectively mini-

mizer) (t, y) ∈ [0, T )× R
n of V − ϕ,

− ∂Vt −H∗(y,Dϕ(t, y),D2ϕ(t, y)) ≤ 0, (1.94)

(respectively, −∂tϕ−H∗(y,Dϕ(t, y),D2ϕ(t, y)) ≥ 0).

We say that V is a viscosity solution iff it is a subsolution and a supersolution.

The following two theorems ensure the existence and the uniqueness of the solution
to the HJB equation.

Theorem 1.16. The value function V is a viscosity solution.

Theorem 1.17 (Comparison principle). Let V1 and V2 be respectively a subsolution and
a supersolution. Then, V1 ≤ V2.

As a corollary of the comparison principle, the viscosity solution to the HJB equation
is unique, and this solution is the value function V .

Numerical methods We give in this section the main ideas of the numerical res-
olution of (1.92). We describe two methods, a semi-Lagrangian scheme and a finite-
difference scheme. For simplicity, we assume in this short presentation that y is of
dimension 1, but these methods can be applied to multidimensional spaces. However,
their complexity is exponential in the dimension of the state variable, since the number
of discretization points is exponential with this dimension. This phenomenon, called
the curse of dimensionality, is a severe restriction to the application of these methods
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when the dimension of the state space increases. We refer to [97, 98] for an introduc-
tion to numerical methods in stochastic optimal control and to [77] for general proofs of
convergence.

Let Mt ∈ N
∗, let δt = T/Mt and let δy > 0. We aim at computing an approximation

(Vj,k)j∈{0,...,Mt}, k∈Z of the value function, such that

Vj,k ≈ V (jδt, kδy), ∀j = 0, ...,Mt, ∀k ∈ Z. (1.95)

Note that we do not explain how to bound the domain of y. For all j ∈ {0, ...,Mt}, we
denote Vj = (Vj,k)k∈Z. As expected, the approximation is obtained backwards in time:
we first compute VMt , then, VMt−1, ..., V1, V0, via a certain mapping Φ which is such that

Vj = Φ(Vj+1), ∀j ∈ {0, ...,Mt − 1}. (1.96)

The numerical scheme is convergent if this abstract mapping Φ (that has to be defined) is
monotone, stable, and consistent. We do not define the notions of convergence, stability
and consistency that are used but only on the one of monotonicity, which is the following:

Φ(W 1) ≤ Φ(W 2), ∀(W 1
k )k∈Z, (W

2
k )k∈Z, s.t. W

1 ≤W 2, (1.97)

where the inequalities have to been understood pointwise.

A semi-Lagrangian scheme ⊲ First step: discretization in time
The semi-Lagrangian scheme consists first in discretizing with respect to time the dy-
namic of (Yt)t. The new time variable is denoted by j and takes its value in the set
{0, 1, ...,Mt}, corresponding to {0, δt, ..., δtMt = T}. The discretized state variable has
the following dynamics: for j ∈ {0, ...,Mt − 1},

Yj+1 = Yj + f(uj, Yj)δt+ σ(uj , Yj)
√
δtwj+1, (1.98)

where (wj)j=1,...,Mt is a sequence of independently identically distributed processes, tak-
ing the values 1 and −1 with probabilities 1/2. For all j = 0, ...,Mt, we denote by Fj the
algebra generated by {w1, ..., wj}. The new control process (uj)j=0,...,Mt−1 is supposed to
be non-anticipative: for all j, (uj)j is Fj-measurable and thus, Yj is also Fj-measurable.

We consider now the same optimal control problem as in (1.82), where the control and
the state are discretized in time. Denoting by Vj(y) the value of the problem starting at
time j with the initial state y, we obtain the following dynamic programming principle:





Vj(y) = infu∈U
{

1
2Vj+1(y

+) + 1
2Vj+1(y

−)
}
,

where: y+ = y + f(u, y)δt+ σ(u, y)
√
δt,

y− = y + f(u, y)δt − σ(u, y)
√
δt,

VMt(y) = φ(y).

(1.99)

⊲ Second step: discretization in space
Equation (1.99) cannot be solved, since the variable y is continous. The second step of
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the method consists in replacing a piecewise-affine approximation of Vj+1 in (1.99), as
follows:





Vj,k = infu∈U
{

1
2

(
(1− {k+})Vj+1,⌊k+⌋ + {k+}Vj+1,⌊k+⌋+1

)

+ 1
2

(
(1− {k−})Vj+1,⌊k−⌋ + {k−}Vj+1,⌊k−⌋+1

)}
,

where: k+ = k +
(
f(u, kδy)δt + σ(u, kδy)

√
δt
)
/δy,

k− = k +
(
f(u, kδy)δt − σ(u, kδy)

√
δt
)
/δy,

VMt,k = φ(k),

(1.100)

where {x} is the fractionnal part of x, defined by {x} = x − ⌊x⌋. Let us conclude the
description of this methods with two general remarks.

1. In general, it is not possible to compute an analytical expression of the solution
to the minimization problem (1.99). A basic approach consists in discretizing the
control space and to look for a minimum by enumeration.

2. In state spaces of dimension greater than 1, one has to fix a triangulation of the
space and for a given y, one has to be able to compute the triangle to which it
belongs.

Figure 1.4: Discretization of the state variable in the semi-Lagrangian scheme.

A finite-difference scheme The finite-difference scheme is obtained by a dis-
cretization of the derivatives involved in the HJB equation. The time and the space
variables are both discretized. We denote by vj,k the corresponding approximation of
the value function. To simplify the notations, we denote: fu,k = f(u, kδy) and we use
the same convention for σ.

⊲ The approximation of the time derivative is

∂tV (jδt, kδy) → vj,k − vj−1,k

δt
(1.101)
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⊲ If fu,k ≥ 0, the approximation of the first-order space derivative is

DV (jδt, kδy)fu,k → vj,k+1 − vj,k
δy

fu,k (1.102)

⊲ If f(u, kδy) ≤ 0, the approximation of the first-order space derivative is

DV (jδt, kδy)fu,k → vj,k − vj,k−1

δy
fu,k (1.103)

⊲ The approximation of the second-order space derivative is

D2V (jδt, kδy) → vj,k+1 − 2vj,k + vj,k−1

δy2
(1.104)

Observe that we use an upwind scheme: the approximation of DV depends on the sign
of f . This is required in order to obtain a monotone scheme. Let us set x+ = max(x, 0)
and x− = inf(x, 0), for all x ∈ R. The discretization of the HJB equation reads: for all
j ∈ {0, ...,Mt − 1}, for all k ∈ Z,

vj+1,k − vj,k
δt

= inf
u∈U

{
vj+1,k+1 − vj+1,k

δy
f+u,k+

vj+1,k − vj+1,k−1

δy
f−u,k +

vj+1,k+1 − 2vj+1,k + vj+1,k

2δy2
σ2u,k

}
. (1.105)

Equivalently,

vj,k = inf
u∈U

{(
1− |fu,k|δt

δy
−
σ2u,kδt

δy2

)
vj+1,k

+
(f+u,kδt

δy
+
σ2u,kδt

2δy2

)
vj+1,k+1 +

(−f−u,kδt
δy

+
σ2u,kδt

2δy2

)
vj+1,k−1

}
. (1.106)

We set ‖f‖∞ = supu∈U, y∈R |f(u, y)| and ‖σ‖∞ = supu∈U, y∈R σ(u, y). Consider the
following condition of Courant, Friedrichs, and Lewy (in short, CFL condition):

‖f‖∞δt ≤ 1
2δy and ‖σ‖2∞δt ≤ 1

2δy
2, (1.107)

then the numerical scheme given by equation (1.106) is monotone.

1.2.2 Chance-constrained optimal control problems

Setting In this thesis, we are interested in chance-constrained optimal control prob-
lems. We consider problems with a constraint on the final state that has to be satisfied
with a given probability. Let us mention two arguments for ensuring this final-state
constraint with only a certain probability:

⊲ In some cases, it is impossible to satisfy almost surely the final-state constraint,
because of the diffusion of the state variable.
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Figure 1.5: Discretization of the state variable in the finite-difference scheme.

⊲ Even if it is possible to satisfy almost surely the constraint, it may be very ex-
pensive. Therefore, it is preferable to allow to break the constraint, but with a
probability which is controlled.

We still consider problem (1.82) but with the following constraint:

P
[
h(Y u

T ) ≥ 0
]
≥ z, (1.108)

where h : Rn → R and z ∈ [0, 1] are given. Let us introduce the indicatrix function of a
subset K of Rn, denoted 1K and defined by

1K : x ∈ R
n 7→ 1K(x) =

{
1 if x ∈ K

0 otherwise.
(1.109)

We set g(y) = 1R+(h(y)), and thus, the probability constraint can be re-formulated as
an expectacion constraint:

E
[
g(Y u

T )
]
≥ z. (1.110)

From now on, we focus on this formulation of the probability constraint. The following
holds true even if g is not of the form 1R+ ◦ h.

Let us mention the introduction to chance-constrained stochastic problems [94, 104]
and the article [83] on the continuous-time case.

Dynamic programming The following lemma is a first step towards a dynamic pro-
gramming approach.

Lemma 1.18. Let u ∈ U . Then, constraint (1.110) holds if and only if there exists a
martingale (Zt)t which is such that

Z0 = z and ZT ≤ g(Y u
T ), a.s. (1.111)

Proof. If such a martingale exists, then, taking the expectation of the inequality in
(1.111), constraint (1.110) holds. Conversly, if (1.110) holds, set

Zt = E
[
g(Y u

T ) | Ft

]
−
(
E
[
g(Y u

T )]− z
)
. (1.112)

It is easy to check that it is a martingale satisfying (1.111).
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By the martingale representation theorem, for all martingale, there exists a square-
integrable process which is such that

dZt = αt dWt. (1.113)

This process can be seen as a new control and Z as a new state variable. We denote by
A the space of adapted square-integrable processes. For all t ∈ [0, T ], y ∈ R

n, z ∈ R,
and α ∈ A, we denote by (Zs,z,α

t )t∈[s,T ] the solution to
{

dZt = αt dWt,

Zs = z,
(1.114)

and we introduce the value function V (t, y, z) defined by

V (t, y, z) = Min
u∈U , α∈A

E
[
φ(Y t,y,u

T )
]
s.t. Zt,z,α

T ≤ g(Y t,y,u
T ), a.s. (1.115)

Note that at the final time,

V (T, y, z) =

{
φ(y) if z ≤ g(y),

+∞ otherwise.
(1.116)

We can state, at least formally, a dynamic programming principle for this value function:
for all t, for all stopping time τ ≥ t,

V (t, y, z) = Min
u∈U ,
Z∈Zτ ,

E[Z(τ)]=z

E
[
V (τ, Y t,y,u

τ , Z(τ))
]
, (1.117)

where Zτ is the space of τ -measurable random values.
Let us mention the difficulties that arise with this dynamic programming approach.

⊲ Given (t, y), the problem (1.115) may be infeasible for the higher values of z, the
value function is therefore equal to +∞. The boundary of the domain of V is a
priori unknown.

⊲ The true Hamiltonian associated with (Y,Z) may be unbounded.

⊲ Finally, there is no direct adaptation of the numerical schemes for the problem.

Lagrangian relaxation This approach is standard [96], let us describe it in an ab-
stract framework, with the following family of problems:

V (z) = Min
x∈X

f(x) s.t. g(x) ≥ z, (1.118)

where the space X is given, f : X → R and g : X → R are also given. Of course,
problem (1.115) enters into this framework. Let λ ≥ 0, we define the dualized problem
as follows:

W (λ) = Min
x

f(x)− λg(x). (1.119)

Observe that V and W are both decreasing. In the following lemma, we consider that
the existence of optimal solutions to problems (1.118) and (1.119) is ensured for all z ∈ R

and for all λ ≥ 0. We denote by x(λ) the solution to (1.119), for a given value of λ.



30 Chapter 1. General introduction

Lemma 1.19. Let λ ≥ 0. Then, x(λ) is a solution to (1.118), with z = g(x(λ)).
Moreover, the mapping λ ∈ R+ 7→ g(x(λ)) is nondecreasing.

Proof. Let λ ≥ 0 and let x be such that g(x) ≥ g(x(λ)). Then,

f(x) ≥ f(x(λ)) + λ(g(x) − g(x(λ))) ≥ f(x(λ)), (1.120)

which proves the first part of the lemma. Let 0 ≤ λ1 < λ2, let x1 = x(λ1) and x2 = x(λ2),
then

f(x1)− λ1g(x1) ≤ f(x2)− λ1g(x2), (1.121)

f(x2)− λ2g(x2) ≤ f(x1)− λ2g(x1), (1.122)

and summing these two inequalities, we obtain that

(λ2 − λ1)g(x1) ≤ (λ2 − λ1)g(x2), (1.123)

which concludes the lemma.

Suppose now that we are able to solve the dual problem, for any value of λ. Then,
given a value of z, we can try to solve the primal dual by solving the following equation,
with unknown variable λ:

g(x(λ)) = z, (1.124)

by dichotomy. This approach may be efficient, but may also fail because the function
λ 7→ g(x(λ)) is not necessarily continuous and may have jumps. This situation typically
arises for nonconvex optimization problem.

In the case of chance-constrained stochastic optimal control problems, the dual prob-
lem is actually much simpler, since the cost function is of the standard form:

E
[
φ(Y u

T )− λg(Y u
T )
]
. (1.125)

In general, this problem is not convex and therefore, the method by penalization may
fail.

1.2.3 Contribution of the thesis

In Chapter 6, we make a link between methods by dynamic programming and methods
by Lagrangian relaxation, via the Legendre-Fenchel transform of the value function, and
via a relaxation technique. Similarly to deterministic problems, relaxation consists in
using mixed strategies, or in other words, to use several controls simultaneously. This
technique is natural in the framework of chance-constrained problems. The new value
function which is obtained is convex with respect to z.

We study this link between these two approaches in a discrete-time framework. In
continuous time, the convexity of the value function with respect to z is ensured if g is
Lipschitz. We use the analysis of the discrete-time case to design numerical methods for
the continuous-time case.

The main results are the following:
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⊲ In Proposition 6.11, we prove that in the relaxed framework, the derivative of the
value function with respect to z is constant along the optimal trajectories and their
associated martingale.

⊲ In Theorem 6.14, we show that for continous-time and unrelaxed problems, the
value function is convex with respect to z, if the mapping g (used in (1.115)) is
Lipschitz.

⊲ We propose an HJB equation for the problem.

⊲ We propose different numerical schemes for the solving of the problem and present
numerical tests.

1.2.4 Perspectives

Chapter 6 contains many unresolved questions and axes of research. The first one deals
with the justification of numerical methods. The issue seems rather difficult for the dy-
namic programming approach, because of the final-state constraints and because of the
unboundedness of the volatility of the martingale. However, the numerical schemes for
the Legendre-Fenchel transform are justified if the function g is sufficiently regular, and
we hope to give a complete justification by combining general results for the Lagrangian
relaxation with convergence results for unconstrained stochastic optimal control prob-
lems.

The discretized problems provides a feedback control for the initial continuous-time
problem. However, it may be unfeasible for the expectation constraint of the initial
problem. A relevent issue deals with the error which is induced by the discretization.

Finally, there is place for improvements of the numerical method. For example, an
interesting issue is the update of the dual value λ in the Lagrange relaxation method.

Let us mention some other theoretical issues.

⊲ Is it possible to prove the convexity of the value function if g is not Lipschitz ? In
particular, does this property hold true for probability constraints ?

⊲ Is it possible to prove that the derivative of the value function with respect to z is
constant along optimal trajectories in the continuous case ?

⊲ Can we prove that the value function is a viscosity solution to the HJB equation
that we propose ? Is it possible to state a comparison theorem and to prove the
uniqueness of the solution ? How should the boundary of the domain be taken
into account in the HJB equation ?
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Abstract

In this chapter, we state and prove first- and second-order necessary conditions in
Pontryagin form for optimal control problems with pure state and mixed control-state
constraints. We say that a Lagrange multiplier of an optimal control problem is a Pon-
tryagin multiplier if it is such that Pontryagin’s minimum principle holds, and we call
optimality conditions in Pontryagin form those which only involve Pontryagin multipli-
ers. Our conditions rely on a technique of partial relaxation, and apply to Pontryagin
local minima.

Résumé

Dans ce chapitre, nous énonçons et prouvons des conditions nécessaires du premier et
second ordre sous forme Pontryaguine pour des problèmes de commande optimale avec
contraintes pures sur l’état et mixtes sur l’état et la commande. Nous appelons mul-
tiplicateur de Pontryaguine tout multiplicateur de Lagrange pour lequel le principe de
Pontryaguine est satisfait et parlons de conditions d’optimalité sous forme Pontryaguine
si elles ne font intervenir que des multiplicateurs de Pontryaguine. Nos conditions
s’appuient sur une technique de relaxation partielle et sont valables pour des minima de
Pontryaguine.

2.1 Introduction

The optimization theory in Banach spaces, in particular optimality conditions of order
one [60, 74] and two [26, 47, 53], applies to optimal control problems. With this approach,
constraints of various kind can be considered, and optimality conditions are derived for
weak local minima of optimal control problems. Second-order necessary and sufficient
conditions are thereby obtained by Stefani and Zezza [64] in the case of mixed control-
state equality constraints, or by Bonnans and Hermant [17] in the case of pure state and
mixed control-state constraints. These optimality conditions always involve Lagrange
multipliers.

Another class of optimality conditions, necessary and of order one, for optimal control
problems comes from Pontryagin’s minimum principle. Formulated in the historical book
[58] for basic problems, including first-order pure state constraints, this principle has
then been extended by many authors. Mixed control-state constraints enter for example
the framework developed by Hestenes [43], whereas pure state, and later pure state and
mixed control-state, constraints are treated in early Russian references such as the works
of Milyutin and Dubovitskii [31, 32], as highlighted by Dmitruk [27]. Let us mention
the survey by Hartl et al. [40] and its bibliography for more references on Pontryagin’s
principles.

Second-order optimality conditions are said in this article to be in Pontryagin form if
they only involve Lagrange multipliers for which Pontryagin’s minimum principle holds.
This restriction to a subset of multipliers is a challenge for necessary conditions, and
enables sufficient conditions to give strong local minima. To our knowledge, such con-
ditions have been stated for the first time, under the name of quadratic conditions, for
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problems with mixed control-state equality constraints by Milyutin and Osmolovskii [55].
Proofs are given by Osmolovskii and Maurer [56], under a restrictive full-rank condition
for the mixed equality constraints, that could not for instance be satisfied by pure state
constraints.

The main novelty of this paper is to provide second-order necessary conditions in
Pontryagin form for optimal control problems with pure state and mixed control-state
constraints. We use the same technique as Dmitruk in his derivation of Pontryagin’s
principle for a general optimal control problem [27]: a partial relaxation of the problem,
based on the sliding modes introduced by Gamkrelidze [36]. These convexifications of
the set of admissible velocities furnish a sequence of auxiliary optimal control problems,
and at the limit, necessary conditions appear to be in Pontryagin form. We thereby
get our own version of Pontryagin’s minimum principle, as first-order necessary condi-
tions. Then, combining the partial relaxation with a reduction approach [16, 44] and a
density argument [13], we obtain second-order necessary conditions in Pontryagin form
for a Pontryagin local minimum of our problem. This technique requires to consider a
variant of the previous auxiliary problems, but not to compute any envelope-like effect
of Kawasaki [47]. Another result that is worth being mentioned is the second-order nec-
essary conditions for a local solution of an abstract optimization problem, that we apply
to the partially relaxed problems. We derive them directly on a large set of directions
in L2, which then simplifies the density argument, compared with [13], and avoid a flaw
that we will mention in the proof of the density result in [17].

Second-order sufficient conditions for strong local minima of similar optimal control
problems constitute another work by the same authors [15]. They rely on an extension
of the decomposition principle of Bonnans and Osmolovskii [18], and on the reduction
approach. Quadratic growth for a strong local minimum is then characterized.

The paper is organized as follows. In Section 2.2, we set our optimal control problem
and define various notions of multipliers and of minima. Section 2.3 is devoted to
the first-order necessary conditions: they are stated, under the form of Pontryagin’s
minimum principle, in Section 2.3.1; our partial relaxation approach is detailed in Section
2.3.2, and then used to prove the first-order conditions in Section 2.3.3. Section 2.4 is
devoted to the second-order necessary conditions: they are stated in Section 2.4.1, and
proved in Section 2.4.2 by partial relaxation combined with reduction and density. We
have postponed our abstract optimization results to Appendix 2.A.1, the proof of an
approximation result needed for the partial relaxation to Appendix 2.A.2, a qualification
condition to Appendix 2.A.3, and an example about Pontryagin’s principle to Appendix
2.A.4.

Notations For a function h that depends only on time t, we denote by ht its value at
time t, by hi,t the value of its ith component if h is vector-valued, and by ḣ its derivative.
For a function h that depends on (t, x), we denote byDth and Dxh its partial derivatives.
We use the symbol D without any subscript for the differentiation w.r.t. all variables
except t, e.g. Dh = D(u,y)h for a function h that depends on (t, u, y). We use the same
convention for higher order derivatives.

We identify the dual space of Rn with the space R
n∗ of n-dimensional horizontal
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vectors. Generally, we denote by X∗ the dual space of a topological vector space X.
Given a convex subset K of X and a point x of K, we denote by TK(x) and NK(x)
the tangent and normal cone to K at x, respectively; see [21, Section 2.2.4] for their
definition.

We denote by | · | both the Euclidean norm on finite-dimensional vector spaces and
the cardinal of finite sets, and by ‖ · ‖s and ‖ · ‖q,s the standard norms on the Lesbesgue
spaces Ls and the Sobolev spaces W q,s, respectively.

We denote by BV ([0, T ]) the space of functions of bounded variation on the closed
interval [0, T ]. Any h ∈ BV ([0, T ]) has a derivative dh which is a finite Radon measure
on [0, T ] and h0 (resp. hT ) is defined by h0 := h0+ − dh(0) (resp. hT := hT−

+ dh(T )).
Thus BV ([0, T ]) is endowed with the following norm: ‖h‖BV := ‖dh‖M + |hT |. See [4,
Section 3.2] for a rigorous presentation of BV .

All vector-valued inequalities have to be understood coordinate-wise.

2.2 Setting

2.2.1 The optimal control problem

Consider the state equation

ẏt = f(t, ut, yt) for a.a. t ∈ (0, T ). (2.1)

Here, u is a control which belongs to U , y is a state which belongs to Y, where

U := L∞(0, T ;Rm), Y :=W 1,∞(0, T ;Rn), (2.2)

and f : [0, T ] × Rm × Rn → Rn is the dynamics. Consider constraints of various types
on the system: the mixed control-state constraints, or mixed constraints

c(t, ut, yt) ≤ 0 for a.a. t ∈ (0, T ), (2.3)

the pure state constraints, or state constraints

g(t, yt) ≤ 0 for a.a. t ∈ (0, T ), (2.4)

and the initial-final state constraints

{
ΦE(y0, yT ) = 0,

ΦI(y0, yT ) ≤ 0.
(2.5)

Here c : [0, T ]×R
m×R

n → R
nc , g : [0, T ]×R

n → R
ng , ΦE : Rn×R

n → R
n
ΦE , ΦI : Rn×

R
n → R

n
ΦI . Consider finally the cost function φ : Rn × R

n → R. The optimal control
problem is then

min
(u,y)∈U×Y

φ(y0, yT ) subject to (2.1)-(2.5). (P )
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2.2.2 Definitions and assumptions

Similarly to [64, Definition 2.1], we introduce the following Carathéodory-type regularity
notion:

Definition 2.1. We say that ϕ : [0, T ]× R
m × R

n → R
s is uniformly quasi-Ck iff

(i) for a.a. t, (u, y) 7→ ϕ(t, u, y) is of class Ck, and the modulus of continuity of
(u, y) 7→ Dkϕ(t, u, y) on any compact of Rm × R

n is uniform w.r.t. t.

(ii) for j = 0, . . . , k, for all (u, y), t 7→ Djϕ(t, u, y) is essentially bounded.

Remark 2.2. If ϕ is uniformly quasi-Ck, then Djϕ for j = 0, . . . , k are essentially
bounded on any compact, and (u, y) 7→ Djϕ(t, u, y) for j = 0, . . . , k − 1 are locally
Lipschitz, uniformly w.r.t. t. In particular, if f is uniformly quasi-C1, then by Cauchy-
Lipschitz theorem, for any (u, y0) ∈ U ×R

n, there exists a unique y ∈ Y such that (2.1)
holds and y0 = y0; we denote it by y[u, y0].

The minimal regularity assumption through all the paper is the following:

Assumption 2.1. The mappings f , c and g are uniformly quasi-C1, g is continuous,
ΦE, ΦI and φ are C1.

We call a trajectory any pair (u, y) ∈ U × Y such that (2.1) holds. We say that a
trajectory is feasible for problem (P ) if it satisfies constraints (2.3)-(2.5), and denote
by F (P ) the set of feasible trajectories. We define the Hamiltonian and the augmented
Hamiltonian respectively by

H[p](t, u, y) := pf(t, u, y), Ha[p, ν](t, u, y) := pf(t, u, y) + νc(t, u, y), (2.6)

for (p, ν, t, u, y) ∈ R
n∗ × R

nc∗ × [0, T ] × R
m × R

n. We define the end points Lagrangian
by

Φ[β,Ψ](y0, yT ) := βφ(y0, yT ) + ΨΦ(y0, yT ), (2.7)

for (β,Ψ, y0, yT ) ∈ R× R
nΦ∗ × R

n × R
n, where nΦ = nΦE + nΦI and Φ =

(
ΦE

ΦI

)
.

We denote

Kc := L∞(0, T ;Rnc
− ), Kg := C([0, T ];R

ng

− ), KΦ := {0}
R
n
ΦE × R

n
ΦI

− , (2.8)

so that the constraints (2.3)-(2.5) can be rewritten as

c(·, u, y) ∈ Kc, g(·, y) ∈ Kg, Φ(y0, yT ) ∈ KΦ. (2.9)

Recall that the dual space of C([0, T ];Rng ) is the space M([0, T ];Rng∗) of finite vector-
valued Radon measures. We denote by M([0, T ];Rng∗)+ the cone of positive measures
in this dual space. Let

E := R× R
nΦ∗ × L∞(0, T ;Rnc∗)×M([0, T ];Rng∗) (2.10)
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and let ‖ · ‖E be defined, for any λ = (β,Ψ, ν, µ) ∈ E, by

‖λ‖E := |β|+ |Ψ|+ ‖ν‖1 + ‖µ‖M. (2.11)

Let (ū, ȳ) ∈ F (P ). Let NKc be the set of elements in the normal cone to Kc at c(·, ū, ȳ)
that belong to L∞(0, T ;Rnc∗), i.e.

NKc(c(·, ū, ȳ)) :=
{
ν ∈ L∞(0, T ;Rnc∗

+ ) : νtc(t, ūt, ȳt) = 0 for a.a. t
}
. (2.12)

Let NKg be the normal cone to Kg at g(·, ȳ), i.e.

NKg(g(·, ȳ)) :=
{
µ ∈ M([0, T ];Rng∗)+ :

∫

[0,T ]
(dµtg(t, ȳt)) = 0

}
. (2.13)

Let NKΦ
be the normal cone to KΦ at Φ(ȳ0, ȳT ), i.e.

NKΦ
(Φ(ȳ0, ȳT )) :=

{
Ψ ∈ R

nΦ∗ :
Ψi ≥ 0
ΨiΦi(ȳ0, ȳT ) = 0

for nΦE < i ≤ nΦ

}
. (2.14)

Finally, let

N(ū, ȳ) := R+ ×NKΦ
(Φ(ȳ0, ȳT ))×NKc(c(·, ū, ȳ))×NKg(g(·, ȳ)) ⊂ E. (2.15)

We denote

P := BV ([0, T ];Rn∗). (2.16)

Given (ū, ȳ) ∈ F (P ) and λ = (β,Ψ, ν, µ) ∈ E, we consider the costate equation in P
{
−dpt = DyH

a[pt, νt](t, ūt, ȳt)dt+ dµtDg(t, ȳt),

pT = DyTΦ[β,Ψ](ȳ0, ȳT ).
(2.17)

Lemma 2.3. Let (ū, ȳ) ∈ F (P ). For any λ ∈ E, there exists a unique solution of the
costate equation (2.17), that we denote by pλ. The mapping

λ ∈ E 7→ pλ ∈ P (2.18)

is linear continuous.

Proof. We first get the existence, uniqueness and the continuity of

λ 7→ pλ ∈ L1(0, T ;Rn∗) (2.19)

by a contraction argument. Then the continuity of

λ 7→ (dp, pT ) ∈ M([0, T ];Rn∗)× R
n∗ (2.20)

follows by (2.17).
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Definition 2.4. Let (ū, ȳ) ∈ F (P ) and λ = (β,Ψ, ν, µ) ∈ E. We say that the solution
of the costate equation (2.17) pλ ∈ P is an associated costate iff

− pλ0 = Dy0Φ[β,Ψ](ȳ0, ȳT ). (2.21)

Let Nπ(ū, ȳ) be the set of nonzero λ ∈ N(ū, ȳ) having an associated costate.

Let (ū, ȳ) ∈ F (P ). We define the set-valued mapping U : [0, T ] ⇉ R
m by

U(t) := cl {u ∈ R
m : c(t, u, ȳt) < 0} for a.a. t, (2.22)

where cl denotes the closure in R
m.

Definition 2.5. Let (ū, ȳ) ∈ F (P ). We say that the inward condition for the mixed
constraints holds iff there exist γ > 0 and v̄ ∈ U such that

c(t, ūt, ȳt) +Duc(t, ūt, ȳt)v̄t ≤ −γ, for a.a. t. (2.23)

Remark 2.6. If the inward condition holds, then there exists δ > 0 such that, for a.a.
t,

Bδ(ūt) ∩ U(t) = Bδ(ūt) ∩ {u ∈ R
m : c(t, u, ȳt) ≤ 0} , (2.24)

where Bδ(ūt) is the open ball in R
m of center ūt and radius δ. In particular, ūt ∈ U(t)

for a.a. t.

In the sequel, we will always make the following assumption:

Assumption 2.2. The inward condition for the mixed constraints holds.

We can now define the notions of multipliers that we will consider. Recall that
Nπ(ū, ȳ) has been introduced in Definition 2.4.

Definition 2.7. Let (ū, ȳ) ∈ F (P ).

(i) We say that λ ∈ Nπ(ū, ȳ) is a generalized Lagrange multiplier iff

DuH
a[pλt , νt](t, ūt, ȳt) = 0 for a.a. t. (2.25)

We denote by ΛL(ū, ȳ) the set of generalized Lagrange multipliers.

(ii) We say that λ ∈ ΛL(ū, ȳ) is a generalized Pontryagin multiplier iff

H[pλt ](t, ūt, ȳt) ≤ H[pλt ](t, u, ȳt) for all u ∈ U(t), for a.a. t. (2.26)

We denote by ΛP (ū, ȳ) the set of generalized Pontryagin multipliers.

(iii) We say that λ ∈ ΛP (ū, ȳ) is a degenerate Pontryagin equality multiplier iff λ =
(β,Ψ, ν, µ) with Ψ = (ΨE,ΨI) is such that (β,ΨI , ν, µ) = 0 and if equality holds in
(2.26). We denote by ΛD

P (ū, ȳ) the set of such multipliers.
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Remark 2.8. 1. The sets ΛL(ū, ȳ), ΛP (ū, ȳ) and ΛD
P (ū, ȳ) are positive cones of non-

zero elements, possibly empty, and ΛD
P (ū, ȳ) is symmetric.

2. Assumption 2.2 will be needed to get that the component ν of a multiplier, as-
sociated with the mixed constraints, belongs to L∞(0, T ;Rnc∗) and not only to
L∞(0, T ;Rnc)∗. See [18, Theorem 3.1] and Theorem 2.47 in Appendix 2.A.1.

3. Let λ ∈ ΛP (ū, ȳ). If Assumption 2.2 holds, then by Remark 2.6, ūt is a local
solution of the finite dimensional optimization problem

min
u∈Rm

H[pλt ](t, u, ȳt) subject to c(t, u, ȳt) ≤ 0, (2.27)

and νt is an associated Lagrange multiplier, for a.a. t.

4. See Appendix 2.A.4 for an example where there exists a multiplier such that (2.26)
holds for all u ∈ U(t), but not for all controls in {u ∈ R

m : c(t, u, ȳt) ≤ 0}.

We finish this section with various notions of minima, following [55].

Definition 2.9. We say that (ū, ȳ) ∈ F (P ) is a global minimum iff

φ(ȳ0, ȳT ) ≤ φ(y0, yT ) for all (u, y) ∈ F (P ), (2.28)

a Pontryagin minimum iff for any R > ‖ū‖∞, there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ) for all (u, y) ∈ F (P ) such that (2.29)

‖u− ū‖1 + ‖y − ȳ‖∞ ≤ ε and ‖u‖∞ ≤ R,

a weak minimum iff there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ) for all (u, y) ∈ F (P ) such that (2.30)

‖u− ū‖∞ + ‖y − ȳ‖∞ ≤ ε.

Remark 2.10. Obviously, (2.28) ⇒ (2.29) ⇒ (2.30). Conversely, if (ū, ȳ) is a weak
minimum for problem (P ), then it is a Pontryagin minimum for the problem obtained
by adding the control constraint |ut − ūt| ≤ ε, and a global minimum for the problem
obtained by adding the same control constraint and the state constraint |yt − ȳt| ≤ ε.

2.3 First-order conditions in Pontryagin form

2.3.1 Pontryagin’s minimum principle

First-order necessary conditions in Pontryagin form consist in proving the existence of
Pontryagin multipliers. See Definitions 2.7 and 2.9 for the notions of multipliers and of
minima. Our version of the well-known Pontryagin’s principle follows, and is proved in
Section 2.3.3. See [27] for a variant with the same approach, and [40] for a survey of this
principle.
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Theorem 2.11. Let (ū, ȳ) be a Pontryagin minimum for problem (P ) and let As-
sumptions 2.1-2.2 hold. Then the set of generalized Pontryagin multipliers ΛP (ū, ȳ)
is nonempty.

By Remark 2.10, we get the following:

Corollary 2.12. Let (ū, ȳ) be a weak minimum for problem (P ) and let Assumptions
2.1-2.2 hold. Then there exist ε > 0 and λ ∈ ΛL(ū, ȳ) such that

{
for a.a. t, for all u ∈ U(t) such that |u− ūt| ≤ ε,

H[pλt ](t, ūt, ȳt) ≤ H[pλt ](t, u, ȳt).
(2.31)

Proof. The extra control constraint |u − ūt| ≤ ε for a.a. t is never active, therefore the
set of Lagrange multipliers is unchanged. The set of Pontryagin multipliers is the set of
Lagrange multipliers for which (2.31) holds.

The proof of Theorem 2.11, given in Section 2.3.3, relies on first-order necessary
conditions for a family of weak minima for auxiliary optimal control problems, namely the
partially relaxed problems, presented in Section 2.3.2. These problems are defined using
a Castaing representation of the set-valued mapping U , introduced at the beginning of
Section 2.3.2. Second order necessary conditions in Pontryagin form in Section 2.4.1 will
be derived from a variant of the partially relaxed problems, the reduced partially relaxed
problems. Thus Section 2.3.2 is central. First and second order necessary conditions for
a weak minimum are recalled, with some orginal results, in Appendix 2.A.1.

2.3.2 Partial relaxation

In this section, (ū, ȳ) is a given Pontryagin minimum for problem (P ), and Assumptions
2.1-2.2 hold.

2.3.2.1 Castaing representation

See [23, 25, 62] for a general presentation of set-valued mappings and measurable selec-
tion theorems.

Definition 2.13. Let V : [0, T ] ⇉ R
m be a set-valued mapping. We say that a sequence

(vk)k∈N, vk ∈ U , is a Castaing representation of V iff {vkt }k∈N is a dense subset of V (t)
for a.a. t.

Lemma 2.14. There exists a Castaing representation (uk)k∈N of the set-valued mapping
U defined by (2.22), and for all k, there exists γk > 0 such that

c(t, ukt , ȳt) ≤ −γk for a.a. t. (2.32)

Proof. For l ∈ N, l ≥ 1, we consider the set-valued mapping Ul defined by

Ul(t) :=
{
u ∈ R

n : c(t, u, ȳt) ≤ −1
l

}
for a.a. t, (2.33)
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so that

U(t) = cl (∪l≥1Ul(t)) for a.a. t. (2.34)

Under Assumptions 2.1-2.2, by [23, Théorème 3.5] and for l large enough, Ul is a mea-
surable with nonempty closed set-valued mapping. Then by [23, Théorème 5.4], it has
a Castaing representation. By (2.34), the union of such Castaing representations for l
large enough is a Castaing representation of U .

We define the following sequence of sets of generalized Lagrange multipliers: for
N ∈ N, let

ΛN (ū, ȳ) :=

{
λ ∈ ΛL(ū, ȳ) :

H[pλt ](t, ūt, ȳt) ≤ H[pλt ](t, u
k
t , ȳt)

for all k ≤ N, for a.a. t

}
. (2.35)

Observe that

ΛP (ū, ȳ) ⊂ ΛN+1(ū, ȳ) ⊂ ΛN (ū, ȳ) ⊂ ΛL(ū, ȳ), (2.36)

and by density of the Castaing representation,

ΛP (ū, ȳ) =
⋂

N∈N
ΛN (ū, ȳ). (2.37)

Recall that E and ‖ · ‖E have been defined by (2.10) and (2.11).

Lemma 2.15. Let (λN )N∈N be a sequence in ΛL(ū, ȳ) such that ‖λN‖E = 1 and λN ∈
ΛN (ū, ȳ) for all N . Then the sequence has at least one nonzero weak ∗ limit point that
belongs to ΛP (ū, ȳ).

Proof. By Assumption 2.2 and [18, Theorem 3.1], the sequence is bounded in E for the
usual norm, i.e. with ‖ν‖∞ instead of ‖ν‖1. Then there exists λ̄ such that, extracting
a subsequence if necessary, λN ⇀ λ̄ for the weak ∗ topology. Since N(ū, ȳ) is weakly ∗
closed, λ̄ ∈ N(ū, ȳ). Observe now that if λ ∈ N(ū, ȳ), then

‖λ‖E = β + |Ψ|+ 〈ν, 1〉1 + 〈µ, 1〉C (2.38)

where 〈·, ·〉1 and 〈·, ·〉C are the dual products in L1(0, T ;Rnc) and C([0, T ];Rng ), respec-
tively, and the 1 are constant functions of appropriate size. Then ‖λ̄‖ = 1 and λ̄ 6= 0.

Let pN := pλ
N
, N ∈ N, and p̄ := pλ̄. By Lemma 2.3, dpN ⇀ dp̄ for the weak ∗ topology

in M([0, T ];Rn∗) and pNT → p̄T . Since

p0 = pT − 〈dp, 1〉C (2.39)

for any p ∈ P, we derive that p̄0 = Dy0Φ[β̄, Ψ̄](ȳ0, ȳT ). Then p̄ is an associated costate,
i.e. λ̄ ∈ Nπ(ū, ȳ). Next, as a consequence of Lemma 2.3, pN ⇀ p̄ for the weak ∗ topology
in L∞. Then DuH

a[pN , νN ](·, ū, ȳ)⇀ DuH
a[p̄, ν̄](·, ū, ȳ) for the weak ∗ topology in L∞,

and then

DuH
a[p̄t, ν̄t](t, ūt, ȳt) = 0, for a.a. t, (2.40)
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i.e. λ̄ ∈ ΛL(ū, ȳ). Similarly, for all k ∈ N,

H[pN ](·, uk, ȳ)−H[pN ](·, ū, ȳ)⇀ H[p̄](·, uk, ȳ)−H[p̄](·, ū, ȳ) (2.41)

for the weak ∗ topology in L∞, and then

H[p̄t](t, u
k
t , ȳt)−H[p̄t](t, ūt, ȳt) ≥ 0 for a.a. t, (2.42)

i.e. λ̄ ∈ Λk(ū, ȳ), for all k ∈ N. By (2.37), λ̄ ∈ ΛP (ū, ȳ).

Since ΛN (ū, ȳ), N ∈ N, are cones of nonzero elements (see Remark 2.8), it is enough
to show that they are nonempty for all N to prove Theorem 2.11, by Lemma 2.15. This
is the purpose of the partially relaxed problems, presented in the next section. Indeed,
we will see that they are such that their Lagrange multipliers, whose existence can easily
be guaranteed, belong to ΛN (ū, ȳ).

2.3.2.2 The partially relaxed problems

As motivated above, we introduce now a sequence of optimal control problems.

Formulation Recall that (ū, ȳ) is given as a Pontryagin minimum for problem (P )
has been given.

Let N ∈ N. Consider the partially relaxed state equation

ẏt =

(
1−

N∑

i=1

αi
t

)
f(t, ut, yt) +

N∑

i=1

αi
tf(t, u

i
t, yt) for a.a. t ∈ (0, T ). (2.43)

The ui are elements of the Castaing representation given by Lemma 2.14. The controls
are u and α, the state is y, with

u ∈ U , α ∈ AN := L∞(0, T ;RN ), y ∈ Y. (2.44)

The idea is to consider the problem of minimizing φ(y0, yT ) under the same constraints
as before, plus the control constraints α ≥ 0. To simplify the qualification issue, we
actually introduce a slack variable θ ∈ R, with the intention to minimize it, and the
following constraint on the cost function:

φ(y0, yT )− φ(ȳ0, ȳT ) ≤ θ. (2.45)

The slack variable θ also enters into every inequality constraint:

−αt ≤ θ for a.a. t ∈ (0, T ), (2.46)

c(t, ut, yt) ≤ θ for a.a. t ∈ (0, T ), (2.47)

g(t, yt) ≤ θ for a.a. t ∈ (0, T ), (2.48)

ΦI(y0, yT ) ≤ θ (2.49)
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and the equality constraints remain unchanged:

ΦE(y0, yT ) = 0. (2.50)

The partially relaxed problem is

min
(u,α,y,θ)∈U×AN×Y×R

θ subject to (2.43)-(2.50). (PN )

Let ᾱ := 0 ∈ AN and θ̄ := 0 ∈ R. As for problem (P ), we call a relaxed trajectory
any (u, α, y, θ) such that (2.43) holds. We say that a relaxed trajectory is feasible if
it satisties constraints (2.45)-(2.50), and denote by F (PN ) the set of feasible relaxed
trajectories.

Under Assumption 2.1, for any (u, α, y0) ∈ U ×AN ×R
n, there exists a unique y ∈ Y

such that (2.43) holds and y0 = y0; we denote it by y[u, α, y0] and consider the mapping

ΓN : (u, α, y0) 7→ y[u, α, y0]. (2.51)

Remark 2.16. 1. We have (ū, ᾱ, ȳ, θ̄) ∈ F (PN ).

2. Robinson’s constraint qualification holds at (ū, ᾱ, ȳ, θ̄) iff the equality constraints
are qualified, i.e. iff the derivative of

(u, α, y0) ∈ U ×AN × R
n 7→ ΦE(y0,ΓN (u, α, y0)T ) ∈ R

n
ΦE (2.52)

at (ū, ᾱ, ȳ0) is onto. We say that problem (PN ) is qualified at (ū, ᾱ, ȳ, θ̄) if this
is the case. See [21, Section 2.3.4] for the definition and characterizations of
Robinson’s constraint qualification.

Existence of a minimum A key result is the following:

Theorem 2.17. Let Assumptions 2.1-2.2 hold and let problem (PN ) be qualified at
(ū, ᾱ, ȳ, θ̄). Then (ū, ᾱ, ȳ, θ̄) is a weak minimum for this problem.

Theorem 2.17 is a corollary of the following proposition, proved in the Appendix
2.A.2 for the sake of self-containment of the paper. It can also be deduced from other
classical relaxation theorems, such as [28, Theorem 3].

Proposition 2.18. Under the assumptions of Theorem 2.17, there exists M > 0 such
that, for any (û, α̂, ŷ, θ̂) ∈ F (PN ) in a L∞ neighborhood of (ū, ᾱ, ȳ, θ̄) and with θ̂ < 0,
for any ε > 0, there exists (ũ, ỹ) ∈ F (P ) such that

‖ũ− û‖1 ≤M ‖α̂‖∞ and ‖ỹ − ŷ‖∞ ≤ ε. (2.53)

Proof of Theorem 2.17. Suppose that (ū, ᾱ, ȳ, θ̄) is not a weak minimum for problem
(PN ). Then there exists (û, α̂, ŷ, θ̂) ∈ F (PN ) as L∞ close to (ū, ᾱ, ȳ, θ̄) as needed and
with θ̂ < 0. Let ε > 0 be such that

‖y − ŷ‖∞ ≤ ε ⇒ φ(y0, yT ) < φ(ȳ0, ȳT ). (2.54)

By the proposition, we get (ũ, ỹ) ∈ F (P ) such that φ(ỹ0, ỹT ) < φ(ȳ0, ȳT ) and

‖ũ− ū‖1 + ‖ỹ − ȳ‖∞ ≤M ‖α̂‖∞ + T‖û− ū‖∞ + ε+ ‖ŷ − ȳ‖∞. (2.55)

Observe that the right-hand side of (2.55) can be chosen as small as needed. Thus we
get a contradiction with the Pontryagin optimality of (ū, ȳ). �
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Optimality conditions Problem (PN ) can be seen as an optimization problem over
(u, α, y0, θ) ∈ U × AN × R

n × R, via the mapping ΓN defined by (2.51). Then we can
define the set Λ(PN ) of Lagrange multipliers at (ū, ᾱ, ȳ0, θ̄) as in Appendix 2.A.1:

Λ(PN ) :=
{
(λ, γ) ∈ N(ū, ȳ)× L∞(0, T ;RN∗

+ ) : DLN [λ, γ](ū, ᾱ, ȳ0, θ̄) = 0
}

(2.56)

where LN is defined, for λ = (β,Ψ, ν, µ), Ψ = (ΨE ,ΨI), y = ΓN (u, α, y0), by

LN [λ, γ](u, α, y0, θ) := θ + β
(
φ(y0, yT )− φ(ȳ0, ȳT )− θ

)

+ΨEΦE(y0, yT ) + ΨI
(
ΦI(y0, yT )− θ

)

+

∫

[0,T ]

[
νt
(
c(t, ut, yt)− θ

)
dt+ dµt

(
g(t, yt)− θ

)
− γt

(
αt + θ

)
dt
]
. (2.57)

In (2.57), θ has to be understood as a vector of appropriate size and with equal compo-
nents. We have the following first-order necessary conditions:

Lemma 2.19. Let problem (PN ) be qualified at (ū, ᾱ, ȳ, θ̄). Then Λ(PN ) is nonempty,
convex, and weakly ∗ compact.

Proof. We apply Theorem 2.47 to (ū, ᾱ, ȳ0, θ̄), locally optimal solution of (PN ) by The-
orem 2.17. Let v̄ ∈ U be given by the inward condition for the mixed constraints in
problem (P ) (Assumption 2.2) and let ω̄ := 1 ∈ AN . Then (v̄, ω̄) satisfies the inward
condition for the mixed constraints in problem (PN ). The other assumptions being also
satisfied by Assumption 2.1 and Remark 2.16.2, the conclusion follows.

2.3.3 Proof of Theorem 2.11

As explained at the end of Section 2.3.2.1, it is enough by Lemma 2.15 to prove that
ΛN (ū, ȳ) 6= ∅ for all N . To do so, we use the partially relaxed problems (PN ) as follows:

Lemma 2.20. Let (λ, γ) ∈ Λ(PN ). Then λ ∈ ΛN (ū, ȳ).

Proof. Let (u, α, y, θ) be a relaxed trajectory and (λ, γ) ∈ E × L∞(0, T ;RN∗), with
λ = (β,Ψ, ν, µ) and Ψ = (ΨE,ΨI). Adding to LN

0 =

∫ T

0
pt

((
1−

∑
αi
t

)
f(t, ut, yt) +

∑
αi
tf(t, u

i
t, yt)− ẏt

)
dt, (2.58)

and integrating by parts we have, for any p ∈ P,

LN [λ, γ](u, α, y0, θ) = θ
(
1− β −

〈
ΨI , 1

〉
− 〈ν, 1〉1 − 〈µ, 1〉C − 〈γ, 1〉1

)

+

∫ T

0

(
Ha[pt, νt](t, ut, yt) +

N∑

i=1

αi
t

(
H[pt](t, u

i
t, yt)−H[pt](t, ut, yt)− γit

) )
dt

+

∫

[0,T ]
(dµtg(t, yt) + dptyt) + Φ[β,Ψ](y0, yT )− pT yT + p0y0 − βφ(ȳ0, ȳT ). (2.59)
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Let (λ, γ) ∈ Λ(PN ). Using the expression (2.59) of LN , we get

Dy0Φ[β,Ψ](ȳ0, ȳT ) + pλ0 = 0, (2.60)

DuH
a[pλt , νt](t, ūt, ȳt) = 0 for a.a. t, (2.61)

H[pλt ](t, u
i
t, ȳt)−H[pλt ](t, ūt, ȳt) = γit for a.a. t, 1 ≤ i ≤ N, (2.62)

β +
〈
ΨI , 1

〉
+ 〈ν, 1〉1 + 〈µ, 1〉C + 〈γ, 1〉1 = 1. (2.63)

Suppose that λ = 0. Then pλ = 0 and by (2.62), γ = 0; we get a contradiction with
(2.63). Then λ 6= 0 and λ ∈ Nπ(ū, ȳ) by (2.60). Finally, λ ∈ ΛL(ū, ȳ) by (2.61), and
λ ∈ ΛN (ū, ȳ) by (2.62) since γ ∈ L∞(0, T ;RN∗

+ ).

We need one more lemma:

Lemma 2.21. Let problem (PN ) be not qualified at (ū, ᾱ, ȳ, θ̄). Then there exists λ ∈
ΛN (ū, ȳ) such that −λ ∈ ΛN (ū, ȳ) too, and for all k ≤ N ,

H[pλt ](t, ūt, ȳt) = H[pλt ](t, u
i
t, ȳt) for a.a. t. (2.64)

Proof. Recall that ΓN has been defined by (2.51). By Remark 2.16.2, there exists ΨE 6= 0
such that

ΨEDΦE(ȳ0, ȳT )DΓN (ū, ᾱ, ȳ0) = 0. (2.65)

Let Ψ = (ΨE, 0) and λ :=
(
0,Ψ, 0, 0

)
, so that D(u,α,y0)LN [λ, 0](ū, ᾱ, ȳ0, θ̄) = 0 by (2.57).

By (2.59), we get

Dy0Φ[0, (Ψ
E , 0)](ȳ0, ȳT ) + pλ0 = 0, (2.66)

DuH
a[pλt , 0](t, ūt, ȳt) = 0 for a.a. t, (2.67)

H[pλt ](t, u
i
t, ȳt)−H[pλt ](t, ūt, ȳt) = 0 for a.a. t, 1 ≤ i ≤ N. (2.68)

Then λ ∈ ΛN (ū, ȳ) and (2.64) holds.

We can now conclude:

Proof of Theorem 2.11. We need ΛN (ū, ȳ) 6= ∅ for all N . If problem (PN ) is qualified
at (ū, ᾱ, ȳ, θ̄), then ΛN (ū, ȳ) 6= ∅ by Lemmas 2.19 and 2.20. If problem (PN ) is not
qualified at (ū, ᾱ, ȳ, θ̄), then ΛN (ū, ȳ) 6= ∅ by Lemma 2.21. �

Actually, we have the following alternative:

Corollary 2.22. The partially relaxed problems (PN ) are either qualified for all N large
enough, if ΛD

P (ū, ȳ) = ∅, or never qualified, and then ΛD
P (ū, ȳ) 6= ∅.

Proof. If the problems (PN ) are never qualified, then we get a sequence a multipliers
as in the proof of Lemma 2.21. By the proof of Lemma 2.15, its limit points belong to
ΛD
P (ū, ȳ).

See Appendix 2.A.3 for a qualification condition ensuring the non singularity of the
generalized Pontryagin multipliers.
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2.4 Second-order conditions in Pontryagin form

2.4.1 Statement

The second-order necessary conditions presented in this section involve Pontryagin mul-
tipliers only. They rely again on the partially relaxed problems, introduced in Section
2.3.2. These problems are actually modified into reduced partially relaxed problems,
which satisfy an extended polyhedricity condition, [21, Section 3.2.3]. The idea is to get
our second-order necessary conditions on a large cone by density of the so-called strict
radial critical cone, so that we do not have to compute the envelope-like effect, Kawasaki
[47].

The main result of this section is Theorem 2.31. It is stated after some new definitions
and assumptions, and proved in Section 2.4.2.

2.4.1.1 Definitions and assumptions

For second-order optimality conditions, we need a stronger regularity assumption than
Assumption 2.1. Namely, we make in the sequel the following:

Assumption 2.3. The mappings f and g are C∞, c is uniformly quasi-C2, Φ and φ
are C2.

Remark 2.23. If there is no pure state constraint in problem (P ) (i.e. no mapping g),
we will see that it is enough to assume that f is uniformly quasi-C2.

For s ∈ [1,∞], let

Vs := Ls(0, T ;Rm), Zs := W 1,s(0, T ;Rn). (2.69)

Let (ū, ȳ) be a trajectory for problem (P ). Given v ∈ Vs, s ∈ [1,∞], we consider the
linearized state equation in Zs

żt = Df(t, ūt, ȳt)(vt, zt) for a.a. t ∈ (0, T ). (2.70)

We call a linearized trajectory any (v, z) ∈ Vs × Zs such that (2.70) holds. For any
(v, z0) ∈ Vs × R

n, there exists a unique z ∈ Zs such that (2.70) holds and z0 = z0; we
denote it by z = z[v, z0].

For 1 ≤ i ≤ ng, we define g
(j)
i : [0, T ]× R

m × R
n → R, j ∈ N, recursively by

g
(j+1)
i (t, u, y) := Dtg

(j)
i (t, u, y) +Dyg

(j)
i (t, u, y)f(t, u, y), g

(0)
i := gi. (2.71)

Definition 2.24. The order of a state constraint gi is qi ∈ N such that

Dug
(j)
i ≡ 0 for 0 ≤ j ≤ qi − 1, Dug

(qi)
i 6≡ 0. (2.72)

Remark 2.25. If gi is of order qi, then t 7→ gi(t, ȳt) ∈ W qi,∞(0, T ) for any trajectory
(ū, ȳ), and

dj

dtj
gi(t, ȳt) = g

(j)
i (t, ȳt) for 0 ≤ j ≤ qi − 1, (2.73)

dqi

dtqi
gi(t, ȳt) = g

(qi)
i (t, ūt, ȳt). (2.74)
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We have the same regularity along linearized trajectories; the proof of the next lemma
is classical, see for instance [16, Lemma 9].

Lemma 2.26. Let (ū, ȳ) be a trajectory and (v, z) ∈ Vs × Zs be a linearized trajectory,
s ∈ [1,∞]. Let the constraint gi be of order qi. Then

t 7→ Dgi(t, ȳt)zt ∈W qi,s(0, T ), (2.75)

and

dj

dtj
Dgi(t, ȳt)zt = Dg

(j)
i (t, ȳt)zt for 0 ≤ j ≤ qi − 1, (2.76)

dqi

dtqi
Dgi(t, ȳt)zt = Dg

(qi)
i (t, ūt, ȳt)(vt, zt). (2.77)

Definition 2.27. Let (ū, ȳ) ∈ F (P ). We say that τ ∈ [0, T ] is a touch point for the
constraint gi iff it is a contact point for gi, i.e. gi(τ, ȳτ ) = 0, isolated in {t : gi(t, ȳt) =

0}. We say that a touch point τ for gi is reducible iff τ ∈ (0, T ), d2

dt2
gi(t, ȳt) is defined

for t close to τ , continuous at τ , and

d2

dt2
gi(t, ȳt)|t=τ < 0. (2.78)

Remark 2.28. If gi is of order at least 2, then by Remark 2.25 a touch point τ for gi is

reducible iff t 7→ g
(2)
i (t, ūt, ȳt) is continuous at τ and g

(2)
i (τ, ūτ , ȳτ ) < 0. The continuity

holds if ū is continuous at τ or if gi is of order at least 3.

Let (ū, ȳ) ∈ F (P ). For 1 ≤ i ≤ ng, let

Tg,i :=
{
∅ if gi is of order 1,

{touch points for gi} if gi is of order at least 2,
(2.79)

∆0
g,i := {t ∈ [0, T ] : gi(t, ȳt) = 0} \ Tg,i, (2.80)

∆ε
g,i := {t ∈ [0, T ] : dist(t,∆0

g,i) ≤ ε}, (2.81)

and for 1 ≤ i ≤ nc, let

∆δ
c,i := {t ∈ [0, T ] : ci(t, ūt, ȳt) ≥ −δ}. (2.82)

We will need the following two extra assumptions:

Assumption 2.4. For 1 ≤ i ≤ ng, the set Tg,i is finite and contains only reducible touch
points, ∆0

g,i has finitely many connected components and gi is of finite order qi.

Assumption 2.5. There exist δ′, ε′ > 0 such that the linear mapping from V2 × R
n to∏nc

i=1 L
2(∆δ′

c,i)×
∏ng

i=1W
qi,2(∆ε′

g,i) defined by

(v, z0) 7→




(
Dci(·, ū, ȳ)(v, z[v, z0])|∆δ′

c,i

)

1≤i≤nc(
Dgi(·, ȳ)z[v, z0]|∆ε′

g,i

)

1≤i≤ng


 is onto. (2.83)

Remark 2.29. There exist sufficient conditions, of linear independance type, for As-
sumption 2.5 to hold. See for instance [17, Lemma 2.3] or [13, Lemma 4.5].
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2.4.1.2 Main result

Let (ū, ȳ) ∈ F (P ). We define the critical cone in L2

C2(ū, ȳ) :=





(v, z) ∈ V2 ×Z2 : z = z[v, z0]

Dφ(ȳ0, ȳT )(z0, zT ) ≤ 0

DΦ(ȳ0, ȳT )(z0, zT ) ∈ TKΦ
(Φ(ȳ0, ȳT ))

Dc(·, ū, ȳ)(v, z) ∈ TKc(c(·, ū, ȳ))
Dg(·, ȳ)z ∈ TKg(g(·, ȳ))





(2.84)

and the strict critical cone in L2

CS
2 (ū, ȳ) :=





(v, z) ∈ C2(ū, ȳ) :

Dci(t, ūt, ȳt)(vt, zt) = 0 t ∈ ∆0
c,i 1 ≤ i ≤ nc

Dgi(t, ȳt)zt = 0 t ∈ ∆0
g,i 1 ≤ i ≤ ng




. (2.85)

Remark 2.30. 1. See [21, Examples 2.63 and 2.64] for the description of TKg and
TKc, respectively.

2. Since by Assumption 2.4 there are finitely many touch points for constraints of
order at least 2, CS

2 (ū, ȳ) is defined by equality constraints and a finite number of
inequality constraints, i.e. the cone CS

2 (ū, ȳ) is a polyhedron.

3. The strict critical cone CS
2 (ū, ȳ) is a subset of the critical cone C2(ū, ȳ). But if

there exists λ = (β̄, Ψ̄, ν̄, µ̄) ∈ ΛL(ū, ȳ) such that

ν̄i(t) > 0 for a.a. t ∈ ∆0
c,i 1 ≤ i ≤ nc, (2.86)

∆0
g,i ⊂ supp(µ̄i) 1 ≤ i ≤ ng, (2.87)

then CS
2 (ū, ȳ) = C2(ū, ȳ) (see [21, Proposition 3.10]).

For any λ = (β,Ψ, ν, µ) ∈ E, we define a quadratic form, the Hessian of Lagrangian,
Ω[λ] : V2 ×Z2 → R by

Ω[λ](v, z) :=

∫ T

0
D2Ha[pλt , νt](t, ūt, ȳt)(vt, zt)

2dt

+D2Φ[β,Ψ](ȳ0, ȳT )(z0, zT )
2

+

∫

[0,T ]
dµtD

2g(t, ȳt)(zt)
2 −

∑

τ∈Tg,i
1≤i≤ng

µi(τ)

(
Dg

(1)
i (τ, ȳτ )zτ

)2

g
(2)
i (τ, ūτ , ȳτ )

. (2.88)

We can now state our main result, that will be proved in the next section.

Theorem 2.31. Let (ū, ȳ) be a Pontryagin minimum for problem (P ) and let Assump-
tions 2.2-2.5 hold. Then for any (v, z) ∈ CS

2 (ū, ȳ), there exists λ ∈ ΛP (ū, ȳ) such that

Ω[λ](v, z) ≥ 0. (2.89)
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Remark 2.32. If ΛD
P (ū, ȳ) 6= ∅ and λ ∈ ΛD

P (ū, ȳ), then −λ ∈ ΛD
P (ū, ȳ) too. Since

Ω[−λ](v, z) = −Ω[λ](v, z) for any (v, z) ∈ V2 ×Z2, Theorem 2.31 is then pointless. See
Corollary 2.22 about the emptiness of ΛD

P (ū, ȳ).

2.4.2 Proof of Theorem 2.31

In this section, (ū, ȳ) is a given Pontryagin minimum for problem (P ), and Assumptions
2.2-2.5 hold.

2.4.2.1 Reduction and partial relaxation

The reduction approach [16, section 5] consists in reformulating the state constraint in
the neighborhood of a touch point, using its reducibility (Definition 2.27). We apply
this approach to the partially relaxed problems (PN ) in order to involve Pontryagin
multipliers (see Lemmas 2.15 and 2.20).

Let N ∈ N. Recall that ΓN has been defined by (2.51).

Remark 2.33. The result of Remark 2.25 still holds for relaxed trajectories:

t 7→ gi(t, yt) ∈W qi,∞(0, T ) for any y = ΓN (u, α, y0). (2.90)

Let τ ∈ Tg,i. We define Θε,N
i,τ : U ×AN × R

n → R by

Θε,N
i,τ (u, α, y0) := max

{
gi(t, yt) : y = ΓN (u, α, y0),

t ∈ [τ − ε, τ + ε] ∩ [0, T ]
}
. (2.91)

Let Γ̄′
N := DΓN (ū, ᾱ, ȳ0) and Γ̄′′

N := D2ΓN (ū, ᾱ, ȳ0).

Remark 2.34. Let ω̄ := 0 ∈ AN . For any (v, z0) ∈ Vs × R
n, s ∈ [1,∞], we have

Γ̄′
N (v, ω̄, z0) = z[v, z0]. (2.92)

Lemma 2.35. There exists ε > 0 independent of N such that for any τ ∈ Tg,i, Θε,N
i,τ is

C1 in a neighborhood of (ū, ᾱ, ȳ0) and twice Fréchet differentiable at (ū, ᾱ, ȳ0), with first
and second derivatives given by

DΘε,N
i,τ (ū, ᾱ, ȳ0)(v, ω, z

0) = Dgi(τ, ȳτ )Γ̄
′
N (v, ω, z0)τ (2.93)

for any (v, ω, z0) ∈ V1 × L1(0, T ;RN )× R
n, and

D2Θε,N
i,τ (ū, ᾱ, ȳ0)(v, ω, z

0)2 = D2gi(τ, ȳτ )
(
Γ̄′
N (v, ω, z0)τ

)2

+Dgi(τ, ȳτ )Γ̄
′′
N (v, ω, z0)2τ −

(
d
dtDgi(·, ȳ)Γ̄′

N (v, ω, z0)|τ
)2

d2

dt2
gi(·, ȳ)|τ

(2.94)

for any (v, ω, z0) ∈ V2 × L2(0, T ;RN )× R
n.

Proof. Combine [16, Lemma 23] with Remark 2.33 and Assumption 2.4.
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The reduced partially relaxed problems The formulation is the same as for prob-
lems (PN ), except that (i) we localize the mixed constraints c and the state constraints
g on the domains given by Assumption 2.5, (ii) we replace the state constraints of order
at least 2 around their touch points with the mappings Θε,N

i,τ . Without loss of generality
we assume that ε′ given by Assumption 2.5 is smaller than ε given by Lemma 2.35; δ′ is
also given by Assumption 2.5.

Let N ∈ N. Recall that in Section 2.3.2 the partially relaxed problem was

min
(u,α,y,θ)∈U×AN×Y×R

θ subject to (2.43)-(2.50). (PN )

We consider the following new constraints:

ci(t, ut, yt) ≤ θ for a.a. t ∈ ∆δ′
c,i 1 ≤ i ≤ nc, (2.95)

gi(t, yt) ≤ θ for a.a. t ∈ ∆ε′

g,i 1 ≤ i ≤ ng, (2.96)

Θε′,N
i,τ (u, α, y0) ≤ θ for all τ ∈ Tg,i 1 ≤ i ≤ ng. (2.97)

The reduced partially relaxed problem is then

min
(u,α,y,θ)∈

U×AN×Y×R

θ s.t. (2.43)-(2.46), (2.49)-(2.50), (2.95)-(2.97). (PR
N )

As before, we denote by F (PR
N ) the set of feasible relaxed trajectories.

Remark 2.36. 1. We have (ū, ᾱ, ȳ, θ̄) ∈ F (PR
N ) and, in a neighborhood of (ū, ᾱ, ȳ, θ̄),

(u, α, y, θ) ∈ F (PR
N ) iff (u, α, y, θ) ∈ F (PN ). In particular, (ū, ᾱ, ȳ, θ̄) is a weak

minimum for problem (PR
N ) iff it is a weak minimum for problem (PN ).

2. Problem (PR
N ) is qualified at (ū, ᾱ, ȳ, θ̄) iff problem (PN ) is qualified at (ū, ᾱ, ȳ, θ̄)

(see Remark 2.16.2).

Optimality conditions Again, problem (PR
N ) can be seen as an optimization problem

over (u, α, y0, θ), via the mapping ΓN . We denote its Lagrangian by LR
N , its set of

Lagrange multipliers at (ū, ᾱ, ȳ0, θ̄) by Λ(PR
N ), and its set of quasi radial critical directions

in L2 by CQR
2 (PR

N ), as defined in Appendix 2.A.1.

Remark 2.37. By Lemma 2.35, we can identify Λ(PR
N ) and Λ(PN ) by identifying the

scalar components of a multiplier associated to the constraints (2.97) and Dirac measures.
See also [16, Lemma 26] or [13, Lemma 3.4].

We have the following second-order necessary conditions:

Lemma 2.38. Let problem (PR
N ) be qualified at (ū, ᾱ, ȳ, θ̄). Then for any (v, ω, z0, ϑ) ∈

cl
(
CQR
2 (PR

N )
)
, there exists (λ, γ) ∈ Λ(PR

N ) such that

D2LR
N [λ, γ](v, ω, z0, ϑ)2 ≥ 0. (2.98)

Here, cl denotes the L2 closure.



54 Chapter 2. Necessary optimality conditions in Pontryagin form

Proof. We apply Theorem 2.48 to (ū, ᾱ, ȳ0, θ̄), locally optimal solution of (PR
N ) by The-

orem 2.17 and Remark 2.36. The various mappings have the required regularity by
Assumption 2.3 and Lemma 2.35. Robinson’s contraint qualification and the inward
condition for the mixed constraints hold as in the proof of Lemma 2.19. The conclusion
follows.

2.4.2.2 Proof of the theorem

Let (v̄, z̄) ∈ CS
2 (ū, ȳ). By Lemma 2.15 and since λ 7→ Ω[λ](v̄, z̄) is linear continuous, it

is enough to show that for all N , there exists λN ∈ ΛN (ū, ȳ) such that

Ω[λN ](v̄, z̄) ≥ 0. (2.99)

Let (ω̄, ϑ̄) := (0, 0) ∈ AN × R. The link with the reduced partially relaxed problems
(PR

N ) is as follows:

Lemma 2.39. Let (λ, γ) ∈ Λ(PR
N ). Then λ ∈ ΛN (ū, ȳ) and

D2LR
N [λ, γ](v̄, ω̄, z̄0, ϑ̄)

2 = Ω[λ](v̄, z̄). (2.100)

Proof. The first part of the result is known by Lemma 2.20 and Remark 2.37. For the
second part, we write LR

N using Ha and H, as in the expression (2.59) of LN , and we
compute its second derivative. The result follows by Lemma 2.35 and Remark 2.34. See
also [16, Lemma 26] or [13, Lemma 3.5].

We also need the following density result, that will be proved in Section 2.4.2.3.

Lemma 2.40. The direction (v̄, ω̄, z̄0, ϑ̄) belongs to cl
(
CQR
2 (PR

N )
)
, the closure of the set

of quasi radial critical directions in L2.

We can now conclude:

Proof of Theorem 2.31 We need λN ∈ ΛN (ū, ȳ) such that (2.99) holds for all N . If
problem (PR

N ) is qualified at (ū, ᾱ, ȳ, θ̄), then we get λN as needed by Lemmas 2.38,
2.39 and 2.40. If problem (PR

N ) is not qualified at (ū, ᾱ, ȳ, θ̄), then we get λ such that
−λ, λ ∈ ΛN (ū, ȳ) by Remark 2.36.2 and Lemma 2.21. Since λ 7→ Ω[λ](v̄, z̄) is linear,
(2.99) holds for λN = ±λ. �

2.4.2.3 A density result

In this section we prove Lemma 2.40. Recall that δ′ is given by Assumption 2.5. We
define the strict radial critical cone in L2

CR
2 (ū, ȳ) :=





(v, z) ∈ C2(ū, ȳ) : ∃δ > 0, ∃M > 0, ∃ε > 0,

Dci(t, ūt, ȳt)(vt, zt) = 0 t ∈ ∆δ
c,i 1 ≤ i ≤ nc

|Dci(t, ūt, ȳt)(vt, zt)| ≤M t ∈ ∆δ′

c,i 1 ≤ i ≤ nc

Dgi(t, ȳt)zt = 0 t ∈ ∆ε
g,i 1 ≤ i ≤ ng





. (2.101)
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Proposition 2.41. The strict radial critical cone CR
2 (ū, ȳ) is a dense subset of the strict

critical cone CS
2 (ū, ȳ).

Proof. Touch points for gi are included in ∆ε
g,i, ε ≥ 0, iff gi is of order 1.

(a) Let W (q),2(0, T ) :=
∏ng

i=1W
qi,2(0, T ). We claim that the subspace





(φ,ψ) ∈ L∞(0, T ;Rnc)×W (q),2(0, T ) :
∃δ > 0 : φi,t = 0 t ∈ ∆δ

c,i 1 ≤ i ≤ nc
∃ε > 0 : ψi,t = 0 t ∈ ∆ε

g,i 1 ≤ i ≤ ng



 (2.102)

is a dense subset of




(φ,ψ) ∈ L2(0, T ;Rnc)×W (q),2(0, T ) :
φi,t = 0 t ∈ ∆0

c,i 1 ≤ i ≤ nc
ψi,t = 0 t ∈ ∆0

g,i 1 ≤ i ≤ ng



 . (2.103)

Indeed, for φi ∈ L2(0, T ), we consider the sequence

φki,t :=

{
0 if t ∈ ∆

1/k
c,i ,

min{k, |φi,t|} φi,t

|φi,t| otherwise.
(2.104)

For ψi ∈W qi,2(0, T ), we use the fact that there is no isolated point in ∆0
g,i if qi ≥ 2, and

approximation results in W qi,2(0, T ), e.g. [13, Appendix A.3]. Our claim follows.
(b) By Assumption 2.5 and the open mapping theorem, there exists C > 0 such that

for all (φ,ψ) ∈ L2(0, T ;Rnc)×W (q),2(0, T ), there exists (v, z) ∈ V2 ×Z2 such that

z = z[v, z0], ‖v‖2 + |z0| ≤ C
(
‖φ‖2 + ‖ψ‖(q),2

)
, (2.105)

Dci(t, ūt, ȳt)(vt, zt) = φi,t t ∈ ∆δ′
c,i 1 ≤ i ≤ nc,

Dgi(t, ȳt)zt = ψi,t t ∈ ∆ε′

g,i 1 ≤ i ≤ ng.
(2.106)

It follows that the subspace





(v, z) ∈ V2 ×Z2 : z = z[v, z0]

∃δ > 0 : Dci(t, ūt, ȳt)(vt, zt) = 0 t ∈ ∆δ
c,i 1 ≤ i ≤ nc

∃M > 0 : |Dci(t, ūt, ȳt)(vt, zt)| ≤M t ∈ ∆δ′

c,i 1 ≤ i ≤ nc

∃ε > 0 : Dgi(t, ȳt)zt = 0 t ∈ ∆ε
g,i 1 ≤ i ≤ ng





(2.107)

is a dense subset of




(v, z) ∈ V2 ×Z2 : z = z[v, z0]

Dci(t, ūt, ȳt)(vt, zt) = 0 t ∈ ∆0
c,i 1 ≤ i ≤ nc

Dgi(t, ȳt)zt = 0 t ∈ ∆0
g,i 1 ≤ i ≤ ng




. (2.108)

Observe now that CR
2 (ū, v̄) and C

S
2 (ū, v̄) are defined by (2.101) and (2.85) respectively

as the same polyhedral cone in the previous two vector spaces. See also Remark 2.30.2.
Then by [29, Lemma 1], the conclusion of Proposition 2.41 follows.
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The definition of the set CQR
2 (PR

N ) of quasi radial critical directions in L2 is given in
Appendix 2.A.1. Recall that (ω̄, ϑ̄) := (0, 0) ∈ AN × R.

Lemma 2.42. Let (v, z) ∈ CR
2 (ū, ȳ). Then (v, ω̄, z0, ϑ̄) ∈ CQR

2 (PR
N ).

Proof. The direction (v, ω̄, z0, ϑ̄) is radial [21, Definition 3.52] for the finite dimensional
constraints, which are polyhedral, as well as for the constraints on α. Let δ and M > 0
be given by definition of CR

2 (ū, ȳ). Then for any σ > 0

ci(t, ūt, ȳt) + σDci(t, ūt, ȳt)(vt, zt) ≤
{
0 for a.a. t ∈ ∆δ

c,i

−δ + σM for a.a. t ∈ ∆δ′
c,i \∆δ

c,i

(2.109)

i.e. (v, ω̄, z0, ϑ̄) is radial for the constraint (2.95). The same argument holds for constraint
(2.96) since there exists δ0 > 0 such that gi(t, ȳt) ≤ −δ0 for all t ∈ ∆ε′

g,i \ ∆ε
g,i. Then

(v, ω̄, z0, ϑ̄) is radial, and a fortiori quasi radial.

Remark 2.43. To finish this section, let us mention a flaw in the proof of the density
result [17, Lemma 6.4 (ii)]. There is no reason that vn belongs to L∞, and not only to
L2, since (vn − v) is obtained as a preimage of (wn −w,ωn −ω). The lemma is actually
true but its proof requires some effort, see [13, Lemma 4.5] for the case without mixed
constraints. The difficulty is avoided here because we do not have to show the density
of a L∞ cone, thanks to our abstract second-order necessary conditions, Theorem 2.48,
that are derived directly in L2.

2.A Appendix

2.A.1 Abstract optimization results

In this section, we recall necessary conditions satified by a weak minimum of a general
optimal control problem. These conditions have been used in this paper to prove our
necessary conditions in Pontryagin form, namely Theorems 2.11 and 2.31, via the partial
relaxation, i.e. Lemmas 2.19 and 2.38.

We actually state and prove first- and second-order necessary conditions for a more
abstract optimization problem. It has to be noted that our second-order conditions,
Theorem 2.48, are obtained directly on a large set of directions in L2, thanks to metric
regularity result, Lemma 2.50, and a tricky truncation, Lemma 2.51. To our knowledge,
this is new.

2.A.1.1 Setting

Let K be a nonempty closed convex subset of a Banach space X and ∆1, . . . ,∆M be
measurable sets of [0, T ]. For s ∈ [1,∞], let

Us := Ls(0, T ;Rm̄), Ys :=W 1,s(0, T ;Rn̄), (2.110)

Xs := X ×
M∏

i=1

Ls (∆i) , Ks := K ×
M∏

i=1

Ls (∆i;R−) . (2.111)
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We consider

Γ: U∞ × R
n̄ → Y∞, J : U∞ × R

n̄ → R, (2.112)

G1 : U∞ × R
n̄ → X, Gi

2 : U∞ × Y∞ → L∞(∆i), (2.113)

the last mappings being defined for i = 1, . . . ,M by

Gi
2(u, y)t := mi(t, ut, yt) (2.114)

for a.a. t ∈ ∆i, where mi : [0, T ] ×R
m̄ × R

n̄ → R. Let

G : U∞ × R
n̄ → X∞, G(u, y0) :=

(
G1(u, y

0), G2(u,Γ(u, y
0)
)
. (2.115)

The optimization problem we consider is the following:

min
(u,y0)∈U∞×Rn̄

J(u, y0) ; G(u, y0) ∈ K∞. (AP )

Remark 2.44. Optimal control problems fit into this framework as follows: given a
uniformly quasi-C1 mapping F : R× R

m̄ × R
n̄ → R

n̄ and the state equation

ẏt = F (t, ut, yt) for a.a. t ∈ (0, T ), (2.116)

we define Γ(u, y0) as the unique y ∈ Y∞ such that (2.116) holds and y0 = y0, for any
(u, y0) ∈ U∞ × R

n̄; given a cost function J̃ : Y∞ → R, we define J := J̃ ◦ Γ; given state
constraints of any kind (pure, initial-final, . . . ) G̃1 : Y∞ → X, with the appropriate
space X and convex subset K, we define G1 := G̃1 ◦ Γ; finally, we define G2 in order
to take into account the mixed control-state and control constraints. By definition, a
weak minimum of such an optimal control problem is a locally optimal solution of the
corresponding optimization problem (AP ).

2.A.1.2 Assumptions

Let (ū, ȳ0) be feasible for (AP ) and let ȳ := Γ(ū, ȳ0). For various Banach spaces Y and
mappings F : U∞ × R

n̄ → Y , we will require one of the followings:

Property 2.1. The mapping F is C1 in a neighborhood of (ū, ȳ0), with continuous
extensions DF(u, y0) : U1 × R

n̄ → Y .

Property 2.2. Property 2.1 holds, and F is twice Fréchet differentiable at (ū, ȳ0), with
a continuous extension D2F(ū, ȳ0) : (U2 × R

n̄)2 → Y and the following expansion in Y :
for all (v, z0) ∈ U∞ × R

n̄,

F(ū+ v, ȳ0 + z0) = F(ū, ȳ0) +DF(ū, ȳ0)(v, z0) +
1

2
D2F(ū, ȳ0)(v, z0)2

+ o∞
(
‖v‖22 + |z0|2

)
. (2.117)

Assumption 2.1 (i ). The mappings Γ, J and G1 satisfy Property 2.1, and the functions
mi are uniformly quasi-C1.
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Assumption 2.2 (i’). The mappings Γ, J and G1 satisfy Property 2.2, and the functions
mi are uniformly quasi-C2.

Assumption 2.3 (ii). Robinson’s constraint qualification holds:

0 ∈ intX∞

{
G(ū, ȳ0) +DG(ū, ȳ0)

(
U∞ ×R

n̄
)
−K∞

}
. (2.118)

Assumption 2.4 (iii). The inward condition holds for G2: there exists γ > 0 and
v̂ ∈ U∞ such that

Gi
2(ū, ȳ) +DuG

i
2(ū, ȳ)v̂ ≤ −γ (2.119)

on ∆i, i = 1, . . . ,M .

Remark 2.45. Let us consider the case of an optimal control problem, with Γ, J and
G1 defined as in Remark 2.44. If F , mi are uniformly quasi-C1 and J̃ , G̃1 are C1,
then Assumption (i) holds. If F , mi are uniformly quasi-C2 and J̃ , G̃1 are C2, then
Assumption (i’) holds. See for example [16, Lemmas 19-20] or [64, Theorems 3.3-3.5].

2.A.1.3 Necessary conditions

We consider the Lagrangian L[λ] : U∞ × R
n̄ → R, defined for λ ∈ X∗

∞ by

L[λ](u, y0) := J(u, y0) +
〈
λ,G(u, y0)

〉
. (2.120)

We define the set of Lagrange multipliers as

Λ(AP ) :=
{
λ ∈ X∗

1 : λ ∈ NK1

(
G(ū, ȳ0)

)
, DL[λ](ū, ȳ0) = 0 on U1 × R

n̄
}
, (2.121)

and the set of quasi radial critical directions in L2 as

CQR
2 (AP ) :=

{
(v, z0) ∈ U2 × R

n̄ : DJ(ū, ȳ0)(v, z0) ≤ 0 and ∀σ > 0,
distX1

(
G(ū, ȳ0) + σDG(ū, ȳ0)(v, z0),K1

)
= o(σ2)

}
. (2.122)

We denote by cl
(
CQR
2 (AP )

)
its closure in U2 × R

n̄.

Remark 2.46. If (v, z0) ∈ CQR
2 (AP ), then DG(ū, ȳ0)(v, z0) ∈ TK1

(
G(ū, ȳ0)

)
. If in

addition Λ(AP ) 6= ∅, then DJ(ū, ȳ0)(v, z0) = 0.

We now state our first- and second-order necessary conditions, in two theorems that
will be proved in the next section.

Theorem 2.47. Let (ū, ȳ0) be a locally optimal solution of (AP ), and let Assumptions
(i)-(iii) hold. Then Λ(AP ) is nonempty, convex, and weakly ∗ compact in X∗

1 .

Theorem 2.48. Let (ū, ȳ0) be a locally optimal solution of (AP ), and let Assumptions
(i’)-(iii) hold. Then for any (v, z0) ∈ cl

(
CQR
2 (AP )

)
, there exists λ ∈ Λ(AP ) such that

D2L[λ](ū, ȳ0)(v, z0)2 ≥ 0. (2.123)
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2.A.1.4 Proofs

Proof of Theorem 2.47. Robinson’s constraint qualification (2.118) and [74, Theorem
4.1] or [21, Theorem 3.9] give the result in X∗

∞. We derive it in X∗
1 with the inward

condition (2.119), see e.g. [18, Theorem 3.1]. �
Proof of Theorem 2.48. (a) Assume first that (v, z0) ∈ CQR

2 (AP ). We consider the
following conic linear problem, [21, Section 2.5.6]:





min
(w,ξ0)∈U1×Rn̄

DJ(ū, ȳ0)(w, ξ0) +D2J(ū, ȳ0)(v, z0)2 ;

DG(ū, ȳ0)(w, ξ0) +D2G(ū, ȳ0)(v, z0)2 ∈ TK1

(
G(ū, ȳ0)

)
.

(Q(v,z0))

Robinson’s constraint qualification (2.118) for problem (AP ) implies that the constraints
of (Q(v,z0)) are regular in the sense of [21, Theorem 2.187]. Then by the same theorem,
there is no duality gap between (Q(v,z0)) and its dual, which is the following optimization
problem:

max
λ∈Λ(AP )

D2L[λ](ū, ȳ0)(v, z0)2. (2.124)

Observe indeed that the Lagrangian of (Q(v,z0)) is

L[λ](w, ξ0) = DL[λ](ū, ȳ0)(w, ξ0) +D2L[λ](ū, ȳ0)(v, z0)2, λ ∈ X∗
1 . (2.125)

The conclusion of the theorem follows when (v, z0) ∈ CQR
2 (AP ) by the following key

lemma, that will be proved below.

Lemma 2.49. The value of (Q(v,z0)) is nonnegative.

(b) Assume now that (v, z0) ∈ cl
(
CQR
2 (AP )

)
. Let (vk, z0,k) ∈ CQR

2 (AP ) converge to
(v, z0) in U2 × R

n̄. By step (b), there exists λk ∈ Λ be such that

D2J(ū, ȳ0)(vk, z0,k)2 +
〈
λk,D2G(ū, ȳ0)(vk, z0,k)2

〉

= D2L[λk](ū, ȳ0)(vk, z0,k)2 ≥ 0. (2.126)

By Theorem 2.47, there exists λ ∈ Λ such that, up to a subsequence, λk ⇀ λ for
the weak ∗ topology in X∗

1 . By Assumption (i’), D2J(ū, ȳ0) : U2 × R
n̄ → R and

D2G(ū, ȳ0) : U2 × R
n̄ → X1 are continuous. The conclusion follows. �

Proof of Lemma 2.49. First we prove a metric regularity result, which relies on
Assumption (iii). For any (u, y) ∈ U∞ × Y∞, we define G+

2 (u, y) ∈ L∞(0, T ) by

G+
2 (u, y)t := max

1≤i≤M

(
Gi

2(u, y)t
)
+

(2.127)

for a.a. t ∈ (0, T ), where

(
Gi

2(u, y)t
)
+
:=

{
max{0, Gi

2(u, y)t} if t ∈ ∆i,

0 if t 6∈ ∆i.
(2.128)
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Lemma 2.50. There exists c > 0 such that, for any (u, y) ∈ U∞×Y∞ with y = Γ(u, y0)
in a neighborhood of (ū, ȳ), there exists (û, ŷ) ∈ U∞ × Y∞ with ŷ = Γ(û, y0) such that

‖û− u‖∞ ≤ c‖G+
2 (u, y)‖∞, (2.129)

‖û− u‖1 ≤ c‖G+
2 (u, y)‖1, (2.130)

‖G+
2 (û, ŷ)‖∞ ≤ c‖G+

2 (u, y)‖1. (2.131)

Proof. Let β ∈ (0, 1) to be fixed later. Since (ū, ȳ0) is feasible, G+
2 (ū, ȳ) = 0, and there

exists α ∈ (0, β) such that

‖u− ū‖∞ + ‖y − ȳ‖∞ ≤ α ⇒ ‖G+
2 (u, y)‖∞ ≤ β. (2.132)

Let (u, y) be such that ‖u− ū‖∞ + ‖y − ȳ‖∞ ≤ α. We define ε ∈ L∞(0, T ) by

εt :=
1

β
G+

2 (u, y)t, (2.133)

so that εt ∈ [0, 1] for a.a. t ∈ (0, T ), and

û := u+ εv̂ (2.134)

where v̂ is given by the inward condition (2.119). Once β is fixed, it is clear that (2.129)
and (2.130) hold. Let ŷ = Γ(û, y0).

Gi
2(û, ŷ) = Gi

2(u, y) +DGi
2(ū, ȳ)(û− u, ŷ − y)

+

∫ 1

0

(
DGi

2

(
u+ θ(û− u), y + θ(ŷ − y)

)
−DGi

2

(
ū, ȳ
)) (

û− u, ŷ − y
)
dθ (2.135)

a.e. on ∆i. Since Γ satisfies Property 1, ‖ŷ − y‖∞ = O (‖û− u‖1), and then

|ût − ut| = O(εt), |ut − ūt| = O(α) = O(β), (2.136)

|ŷt − yt| = O(‖ε‖1), |yt − ȳt| = O(α) = O(β). (2.137)

Since mi is uniformly quasi-C2, Gi
2 and DGi

2 are Lipschitz in a neighborhood of (ū, ȳ).
Then

Gi
2(û, ŷ) = Gi

2(u, y) + εDuG
i
2(ū, ȳ)v̂ +O

(
‖ε‖1 + ε(ε + ‖ε‖1 + β)

)
(2.138)

= (1− ε)Gi
2(u, y) + ε

(
Gi

2(u, y)−Gi
2(ū, ȳ)

)
(2.139)

+ ε
(
Gi

2(ū, ȳ) +DuG
i
2(ū, ȳ)v̂

)
+O

(
‖ε‖1 + ε(ε + ‖ε‖1 + β)

)
.

Observe now that

(1− ε)Gi
2(u, y) ≤ G+

2 (u, y
0) = εβ, (2.140)

ε
(
Gi

2(u, y)−Gi
2(ū, ȳ)

)
= O(αε) = O(εβ), (2.141)

ε
(
Gi

2(ū, ȳ) +DuG
i
2(ū, ȳ)v̂

)
≤ −εγ. (2.142)
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Then there exists C > 0, independent of u and u′, such that

Gi
2(û, ŷ) ≤ C‖ε‖1 + ε

[
C(ε+ ‖ε‖1 + β)− γ

]
(2.143)

on ∆i, i = 1, . . . ,M . We fix β ∈ (0, 1) such that Cβ ≤ γ/2 and α ∈ (0, β) such that
C(ε+ ‖ε‖1) ≤ γ/2. The result follows. �

To prove Lemma 2.49, we also need the following:

Lemma 2.51. Let v ∈ U2 and w ∈ U1. Let vk := 1{|v|≤k}v, w
k := 1{|w|≤k}w, and

σk := ‖vk−v‖2
k . Then vk, wk ∈ U∞, σk → 0, and

‖σkvk‖∞ = o(1), ‖σ2kwk‖∞ = o(1), (2.144)

‖vk − v‖2 = o(1), ‖wk − w‖1 = o(1), (2.145)

‖vk − v‖1 = o(σk). (2.146)

Proof. We first get (2.145) by Lebesgue’s dominated convergence theorem. Then σk =
o( 1k ), and (2.144) follows. Observe that |vk − v|2 ≥ k|vk − v|, which implies ‖vk − v‖1 =
O( 1k‖vk − v‖22). (2.146) follows by definition of σk and by (2.145).

Let us now go back to the proof of Lemma 2.49: let (w, ξ0) be feasible for problem
(Q(v,z0)). We apply Lemma 2.51 to v ∈ U2, w ∈ U1, and we consider

uk := ū+ σkv
k +

1

2
σ2kw

k ∈ U∞, (2.147)

y0,k := ȳ0 + σkz
0 +

1

2
σ2kξ

0 ∈ R
n̄, (2.148)

yk := Γ(uk, y0,k) ∈ Y∞. (2.149)

We have in particular

‖uk − ū‖∞ = o(1), ‖uk − ū‖2 = O(σk). (2.150)

By analogy with linearized trajectories, we denote

z[ṽ, z̃0] := DΓ(ū, ȳ0)(ṽ, z̃0), z2[ṽ, z̃0] := D2Γ(ū, ȳ0)(ṽ, z̃0)2 (2.151)

for any (ṽ, z̃0) ∈ U∞ × R
n̄. Since Γ satisfies Property 2, we have in Y∞

yk = ȳ + σkz[v
k, z0] +

1

2
σ2k

(
z[wk, ξ0] + z2[vk, z0]

)
+ o(σ2k), (2.152)

and in particular, ‖yk − ȳ‖∞ = O(σk). Then (uk, yk) → (ū, ȳ) in U∞ × Y∞ and

‖G+
2 (u

k, yk)‖∞ = o(1). (2.153)

More precisely, since mi is uniformly quasi-C2, we have

Gi
2(u

k, yk) = Gi
2(ū, ȳ) +DGi

2(ū, ȳ)(u
k − ū, yk − ȳ)

+
1

2
D2Gi

2(ū, ȳ)(u
k − ū, yk − ȳ)2 + o

(
|uk − ū|2 + |yk − ȳ|2

)
(2.154)
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a.e. on ∆i, where o(·) is uniform w.r.t. t. We write

Gi
2(u

k, yk)t =
1

2
T i,k
t +

1

2
Qi,k

t +Ri,k
t (2.155)

where, omitting the time argument t,

T i,k := Gi
2(ū, ȳ) + 2σkDG

i
2(ū, ȳ)(v

k, z[vk, z0]), (2.156)

Qi,k := Gi
2(ū, ȳ) + σ2k

(
DGi

2(ū, ȳ)(w
k, z[wk, ξ0])

+D2Gi
2(ū, ȳ)(v

k, z[vk, z0])2 +DyG
i
2(ū, ȳ)z

2[vk, z0]
)
, (2.157)

Ri,k =
1

2
σ3kD

2Gi
2(ū, ȳ)

[(
vk, z[vk, z0]

)
,
(
wk, z[wk, ξ0] + z2[vk, z0] + o(1)

)]

+
1

4
σ4kD

2Gi
2(ū, ȳ)

(
wk, z[wk, ξ0] + z2[vk, z0] + o(1)

)2

+ o
(
|uk − ū|2 + |yk − ȳ|2

)
(2.158)

We claim that ‖Ri,k‖1 = o(σ2k). Indeed, z[v
k, z0], z[wk, ξ0] and z2[vk, z0] are bounded in

Y∞; the crucial terms are then the following:

‖σ3kD2
uuG

i
2(ū, ȳ)(v

k, wk)‖1 = O
(
‖σkvk‖∞ · ‖σ2kwk‖1

)
= o(σ2k) (2.159)

‖σ4kD2
uuG

i
2(ū, ȳ)(w

k, wk)‖1 = O
(
‖σ2kwk‖∞ · ‖σ2kwk‖1

)
= o(σ2k) (2.160)

‖o
(
|uk − ū|2 + |yk − ȳ|2

)
‖1 = o

(
‖uk − ū‖22 + ‖yk − ȳ‖22

)
= o(σ2k) (2.161)

by (2.144),(2.145) and (2.150),(2.152). Recall that (v, z0) ∈ CQR
2 (AP ). Then by (2.146)

and Property 1, satisfied by Γ, we have

dist
L1

(
T i,k, L1(∆i;R−)

)
= o(σ2k). (2.162)

Similarly, since (w, ξ0) is feasible for (Q(v,z0)) and Γ satisfies Property 2,

dist
L1

(
Qi,k, L1(∆i;R−)

)
= o(σ2k). (2.163)

Then, in addition to (2.153), we have proved that

‖G+
2 (u

k, yk)‖1 = o(σ2k). (2.164)

We apply now Lemma 2.50 to the sequence (uk, yk); we get a sequence (ûk, ŷk) ∈
U∞ × Y∞ with ŷk = Γ(ûk, y0,k) and such that

‖ûk − uk‖∞ = o(1), (2.165)

‖ûk − uk‖1 = o(σ2k), (2.166)

‖G+
2 (û

k, ŷk)‖∞ = o(σ2k). (2.167)
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Since G1 satisfies Property 2, (v, z0) ∈ CQR
2 (AP ) and (w, ξ0) is feasible for (Q(v,z0)), we

get

dist
X

(
G1(û

k, y0,k),K
)
= o(σ2k), (2.168)

and then, together with (2.167),

dist
X∞

(
G(ûk, y0,k),K∞

)
= o(σ2k). (2.169)

By Robinson’s constraint qualification (2.118), G is metric regular at (ū, ȳ0) w.r.t.
K∞, [21, Theorem 2.87]. Then there exists (ũk, ỹ0,k) ∈ U∞ × R

n̄ such that

{
‖ũk − ûk‖∞ + |ỹ0,k − y0,k| = o(σ2k),

G(ũk, ỹ0,k) ∈ K∞.
(2.170)

Since (ū, ȳ0) is a locally optimal solution, J(ũk, ỹ0,k) ≥ J(ū, ȳ0) for k big enough. By
Property 2, satisfied by J , we have

σkDJ(ū, ȳ
0)(v, z0) +

1

2
σ2k
(
DJ(ū, ȳ0)(w, ξ0) +D2J(ū, ȳ0)(v, z0)2

)
+ o(σ2k) ≥ 0. (2.171)

The conclusion of Lemma 2.49 follows by Theorem 2.47 and Remark 2.46.

2.A.2 Proof of Proposition 2.18

The proof of Proposition 2.18 relies on the following two lemmas, proved at the end of
the section. The first one is a consequence of Lyapunov theorem [50] and links relaxed
dynamics to classical dynamics.

Lemma 2.52. Let F : [0, T ] × R
m × R

n → R
n and G : [0, T ] × R

n → R
n be uniformly

quasi-C1. Let (û, α̂, ŷ) ∈ U ×AN ×Y such that, for a.a. t, 0 ≤ α̂i ≤ 1/N and

˙̂yt =

(
1−

N∑

i=1

α̂i
t

)
F (t, ût, ŷt) +

N∑

i=1

α̂i
tF (t, u

i
t, ŷt) +G(t, ŷt). (2.172)

Then, for any ε > 0, there exists (u, y) ∈ U × Y such that

ẏt = F (t, ut, yt) +G(t, yt) for a.a. t, y0 = ŷ0, (2.173)

ut ∈ {ût, u1t , . . . , uNt } for a.a. t, (2.174)

‖u− û‖1 ≤
N∑

i=1

‖α̂i‖1‖ui − û‖∞, (2.175)

‖y − ŷ‖∞ ≤ ε. (2.176)

The second one is a metric regularity result, consequence of the qualification of
problem (PN ) at (ū, ᾱ, ȳ, θ̄).
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Lemma 2.53. There exists c > 0 such that for any relaxed trajectory (u, α, y, θ) with
u in a L1 neighborhood of ū and (α, y) in a L∞ neighborhood of (ᾱ, ȳ), there exists a
relaxed trajectory (u′, α′, y′, θ) such that

{
‖u′ − u‖∞ + ‖α′ − α‖∞ + ‖y′ − y‖∞ ≤ c|ΦE(y0, yT )|,
ΦE(y′0, y

′
T ) = 0.

(2.177)

We can now prove the proposition. The idea is to use alternatively Lemma 2.52 to
diminish progressively α̂, and Lemma 2.53 to restore the equality constraints at each
step.

Proof of Proposition 2.18. Let (û, ŷ, α̂, θ̂) ∈ F (PN ), close to (ū, ȳ, ᾱ, θ̄) and with
θ̂ < 0. Without loss of generality, we assume that α̂ 6= 0 and, see Lemma 2.14, that

c(t, uit, ŷt) ≤ θ̂ for a.a. t, 1 ≤ i ≤ N. (2.178)

Let R := diamL∞

{
û, u1, . . . , uN

}
and let ε > 0. We claim that there exists a sequence

(ûk, ŷk, α̂k, θ̂k) ∈ F (PN ) such that (û0, ŷ0, α̂0, θ̂0) = (û, ŷ, α̂, θ̂), and for all k,

diamL∞

{
ûk, u1, . . . , uN

}
< 2R, (2.179)

c(t, uit, ŷ
k
t ) ≤ θ̂k for a.a. t, 1 ≤ i ≤ N, (2.180)

∥∥∥ûk+1 − ûk
∥∥∥
1
≤
(
3

4

)k+1

2RNT‖α̂‖∞, (2.181)

∥∥∥ŷk+1 − ŷk
∥∥∥
∞

≤
(
3

4

)k+1 ε

4
, (2.182)

∥∥∥α̂k+1
∥∥∥
∞

≤
(
3

4

)k+1

‖α̂‖∞ , (2.183)

θ̂k+1 =
1

4
θ̂k. (2.184)

Suppose for a while that we have such a sequence. By (2.181)-(2.183), there exist
ũ ∈ L1(0, T ;Rm) and ỹ ∈ C([0, T ];Rn), and ûk → ũ in L1, ŷk → ỹ in C, and α̂k → 0
in L∞. By (2.179), ũ ∈ U , and since (ûk, ŷk, α̂k, θ̂k) ∈ F (PN ) and θ̂k < 0 for all k, we
get that (ũ, ỹ) ∈ F (P ) by doing k → ∞ in the relaxed dynamics and in the constraints.
Finally,

‖ũ− û‖1 ≤ 8RNT ‖α̂− ᾱ‖∞ and ‖ỹ − ŷ‖∞ ≤ ε. (2.185)

It remains to prove the existence the sequence. Suppose we have it up to index k
and let us get the next term. Let F k and Gk be defined by

F k(t, u, y) :=

(
1−

N∑

i=1

α̂i,k
t

2

)
f(t, u, y), Gk(t, y) :=

N∑

i=1

α̂i,k
t

2
f(t, uit, y). (2.186)
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Since (ûk, ŷk, α̂k, θ̂k) is a relaxed trajectory, we can write

˙̂ykt =

(
1−

N∑

i=1

α̂i,k
t /2

1−∑N
j=1 α̂

j,k
t /2

)
F k(t, ûkt , ŷ

k
t )

+
N∑

i=1

α̂i,k
t /2

1−∑N
j=1 α̂

j,k
t /2

F k(t, uit, ŷ
k
t ) +Gk(t, ŷkt ). (2.187)

Let ε′ > 0. We apply Lemma 2.52 and we get (u, y) ∈ U × Y such that (u, y, α̂k/2, θ̂k)
is a relaxed trajectory, and

ut ∈ {ûkt , u1t , . . . , uNt } for a.a. t, (2.188)

∥∥∥u− ûk
∥∥∥
1
≤

N∑

i=1

∥∥∥∥∥
α̂k,i
t /2

1−∑ α̂k,j
t /2

∥∥∥∥∥
1

∥∥∥ui − ûk
∥∥∥
∞
, (2.189)

∥∥∥y − ŷk
∥∥∥
∞

≤ ε′. (2.190)

By (2.188), we have

diamL∞

{
u, u1, . . . , uN

}
≤ diamL∞

{
ûk, u1, . . . , uN

}
< 2R, (2.191)

c(t, ut, ŷ
k
t ) ≤ θ̂k for a.a. t. (2.192)

By (2.190), and since θ̂k < 0, we have for ε′ small enough,

c(t, ut, yt) ≤
1

2
θ̂k for a.a. t, (2.193)

g(t, yt) ≤
1

2
θ̂k for a.a. t, (2.194)

ΦI(y0, yT ) ≤
1

2
θ̂k, (2.195)

φ(y0, yT )− φ(ȳ0, ȳT ) ≤
1

2
θ̂k, (2.196)

ΦE(y0, yT ) = O(ε′). (2.197)

Observe that ∣∣∣1−
∑

α̂k,j
t /2

∣∣∣ ≥ 1−N‖α̂‖∞ ≥ 3

4
(2.198)

for ‖α̂‖∞ small enough. Then by (2.183),(2.189) and (2.191),

∥∥∥u− ûk
∥∥∥
1
≤ 3

8

(
3

4

)k

2RNT‖α̂‖∞. (2.199)

We now apply Lemma 2.53 to (u, y, α̂k/2) and we get (ûk+1, ŷk+1, α̂k+1) such that
ΦE(ŷk+1

0 , ŷk+1
T ) = 0 and, by (2.197),

∥∥∥ûk+1 − u
∥∥∥
∞

+
∥∥∥ŷk+1 − y

∥∥∥
∞

+

∥∥∥∥α̂
k+1 − α̂k

2

∥∥∥∥
∞

= O(ε′). (2.200)
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Then for θ̂k+1 := θ̂k/4 and ε′ small enough, (ûk+1, ŷk+1, α̂k+1, θ̂k+1) ∈ F (PN ). Moreover,

diamL∞

{
ûk+1, u1, . . . , uN

}
< 2R +

∥∥∥ûk+1 − u
∥∥∥
∞
, (2.201)

∥∥∥ûk+1 − ûk
∥∥∥
1
≤ 3

8

(
3

4

)k

2RNT‖α̂‖∞ + T
∥∥∥ûk+1 − u

∥∥∥
∞
, (2.202)

∥∥∥ŷk+1 − ŷk
∥∥∥
∞

≤ ε′ +
∥∥∥ŷk+1 − y

∥∥∥
∞
, (2.203)

∥∥∥α̂k+1
∥∥∥
∞

≤ 1

2

(
3

4

)k

‖α̂‖∞ +

∥∥∥∥α̂
k+1 − α̂k

2

∥∥∥∥
∞

(2.204)

By (2.200), and since ‖α̂‖∞ 6= 0, we get the sequence up to index k + 1 for ε′ small
enough. �

Proof of Lemma 2.52. We need the following consequence of Gronwall’s lemma:

Lemma 2.54. Let B : [0, T ]×R
n → R

n be uniformly quasi-C1. Then there exists C > 0
such that, for any b ∈ L∞(0, T ;Rn) and e1, e2 ∈ Y such that

{
ė2t − ė1t = B(t, e2t )−B(t, e1t ) + bt for a.a. t,

e20 − e10 = 0,
(2.205)

we have
‖e2 − e1‖∞ ≤ C‖b̂‖1, (2.206)

where b̂ is defined by b̂t :=
∫ t
0 bsds.

Proof. Let w := e2 − e1 − b̂. Then ẇt = B(t, e2t )−B(t, e1t ), and

|ẇt| ≤ C ′|e2t − e1t | ≤ C ′(|wt|+ |b̂t|). (2.207)

The result follows by Gronwall’s lemma.

Let ε > 0, M ∈ N
∗, and tj := jT/M for 0 ≤ j ≤ M . Let us denote by (ei)i,

1 ≤ i ≤ N the canonical basis of RN , and let us define F̃ i : [0, T ] → R
n × R

N by

F̃ 0
t :=

(
F (t, ût, ŷt), 0

)
, F̃ i

t :=
(
F (t, uit, ŷt), ei

)
1 ≤ i ≤ N. (2.208)

For 0 ≤ j < M , we apply Lyapunov theorem [50] to the family (F̃ i)i with coefficients
(α̂i)i on [tj, tj+1]. We get the existence of α ∈ AN , with values in {0, 1}N , and such that
for 0 ≤ j < M ,

∫ tj+1

tj

[(
1−

N∑

i=1

αi
t

)
F̃ 0
t +

N∑

i=1

αi
tF̃

i
t

]
dt =

∫ tj+1

tj

[(
1−

N∑

i=1

α̂i
t

)
F̃ 0
t +

N∑

i=1

α̂i
tF̃

i
t

]
dt. (2.209)

Projecting (2.209) on the first n coordinates, we get that

∫ tj+1

tj

[(
1−

N∑

i=1

αi
t

)
F (t, ût, ŷt) +

N∑

i=1

αi
tF (t, u

i
t, ŷt)

]
dt

=

∫ tj+1

tj

[(
1−

N∑

i=1

α̂i
t

)
F (t, ût, ŷt) +

N∑

i=1

α̂i
tF (t, u

i
t, ŷt)

]
dt. (2.210)
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Let ut := ût +
∑N

i=1 α
i
t(u

i
t − ût). Note that for a.a. t, ut ∈ {ût, . . . , uNt }. We get by

(2.210) that

∫ tj+1

tj

F (t, ut, ŷt)dt =

∫ tj+1

tj

[(
1−

N∑

i=1

α̂i
t

)
F (t, ût, ŷt) +

N∑

i=1

α̂i
tF (t, u

i
t, ŷt)

]
dt. (2.211)

Projecting (2.209) on the last N coordinates, we get that for 1 ≤ i ≤ N ,

∫ tj+1

tj

αi
tdt =

∫ tj+1

tj

α̂i
tdt. (2.212)

Summing (2.212) for 0 ≤ j ≤M , we get that ‖αi‖1 = ‖α̂i‖1 for 1 ≤ i ≤ N . Since

‖u− û‖1 ≤
N∑

i=1

‖α‖1‖ui − û‖∞, (2.213)

we get (2.175). Let y be the unique solution of (2.173); we estimate ‖y − ŷ‖∞ with
Lemma 2.54. Let b be defined by

bt := F (t, ut, ŷt)−
(
1−

N∑

i=1

α̂i
t

)
F (t, ût, ŷt)−

N∑

i=1

α̂i
tF (t, u

i
t, ŷt), (2.214)

and let b̂ be defined by b̂t :=
∫ t
0 bsds. By (2.211), b̂tj = 0 for 0 ≤ j ≤ M . Therefore,

‖b̂‖∞ = O(1/M). Observe now that for a.a. t,

ẏt − ˙̂yt = F (t, ut, yt) +G(t, yt)− F (t, ut, ŷt)−G(t, ŷt) + bt. (2.215)

By Lemma 2.54, ‖y − ŷ‖∞ = O(1/M). For M large enough, we get (2.176), and the
proof is completed. �

Proof of Lemma 2.53. Note that the L1-distance is involved for the control. The
lemma is obtained with an extension of the nonlinear open mapping theorem [3, Theorem
5]. This result can be applied since the derivative of the mapping defined in (2.52) can
be described explicitely with a linearized state equation and therefore, by Gronwall’s
lemma, is continuous for the L1-distance on the control u. �

2.A.3 A qualification condition

2.A.3.1 Statement

We give here a qualification condition equivalent to the non singularity of generalized
Pontryagin multipliers. This qualification condition is expressed with the Pontryagin
linearization [55, Proposition 8.1]. In this section, (ū, ȳ) ∈ F (P ) is given. We will
always assume that Assumption 2.2 holds.

Definition 2.55. We say that λ = (β,Ψ, ν, µ) ∈ ΛL(ū, ȳ) is singular iff β = 0 and that
λ is normal iff β = 1.
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Given u ∈ U , we define the Pontryagin linearization ξ[u] ∈ Y as the unique solution
of {

ξ̇t[u] = Dyf(t, ūt, ȳt)ξt[u] + f(t, ut, ȳt)− f(t, ūt, ȳt),

ξ0[u] = 0.
(2.216)

Note that ξ[ū] = 0. Recall that U is the set-valued mapping defined by (2.22). We define

Uc := {u ∈ U : ut ∈ U(t) for a.a. t} . (2.217)

Definition 2.56. We say that the problem is qualified in the Pontryagin sense (in short
P-qualified) at (ū, ȳ) iff

(i) the following surjectivity condition holds:

0 ∈ int
{
DΦE(ȳ0, ȳT )(z0, ξT [u] + zT [v, z0]) : u ∈ Uc, v ∈ U , z0 ∈ R

n
}
, (2.218)

(ii) there exist ε > 0, û ∈ Uc, v̂ ∈ U , and ẑ0 ∈ R
n such that

DΦE(ȳ0, ȳT )(ẑ0, ξT [û] + zT [v̂, ẑ0]) = 0, (2.219)

and for a.a. t,





ΦI(ȳ0, ȳT ) +DΦI(ȳ0, ȳT )(ẑ0, ξT [û] + zT [v̂, ẑ0]) ≤ −ε,
g(t, ȳt) +Dg(t, ȳt)(ξt[û] + zt[v̂, ẑ0]) ≤ −ε,
c(t, ūt, ȳt) +Dyc(t, ūt, ȳt)ξt[û] +Dc(t, ūt, ȳt)(v̂t, zt[v̂t, ẑ0]) ≤ −ε.

(2.220)

Note that if we impose u = ū in the definition of the P-qualification, we obtain
the usual qualification conditions, which are equivalent to the normality of Lagrange
multipliers. The P-qualification is then weaker, and as proved in the next theorem, it is
necessary and sufficient to ensure the non singularity of Pontryagin multipliers.

Theorem 2.57. Let Assumption 2.2 hold. Then, the set of singular Pontryagin multi-
pliers is empty if and only if the problem is P-qualified.

We prove this result in the following two paragraphs.

Proposition 2.58. Let Assumption 2.2 hold. If the set of singular Pontryagin multi-
pliers is empty, then the set of normal Pontryagin multipliers is bounded in E.

Proof. Remember that the norm of E is defined by (2.11). We prove the result by
contraposition and consider a sequence (λk)k of normal Pontryagin multipliers which is
such that ‖λk‖E → +∞. Then, by Lemma 2.15, the sequence λk/‖λk‖E possesses a
weak limit point in ΛP (ū, ȳ), say λ = (β,Ψ, ν, µ), which is such that

β = lim
k

1

‖λk‖E
= 0. (2.221)

Therefore, λ is singular. The proposition is proved.
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2.A.3.2 Sufficiency of the qualification condition

In this paragraph, we prove by contradiction that the P-qualification implies the non
singularity of Pontryagin multipliers. Let us assume that the problem is P-qualified
and that there exists λ = (β,Ψ, ν, µ) ∈ ΛP (ū, ȳ) with β = 0 and Ψ = (ΨE,ΨI). Let
û, ŵ, ẑ0 be such that (2.219)-(2.220) hold. With an integration by parts and using
the stationarity of the augmented Hamiltonian, we get that for all u ∈ Uc, v ∈ U , and
z0 ∈ R

n,

∫ T

0
νt
(
Dc(t, ūt, ȳt)(vt, zt[v, z0]) +Dyc(t, ūt, ȳt)ξt[u]

)
dt

+

∫ T

0
Dg(t, ȳt)(ξt[u] + zt[v, z0])dµt

+DΦ[0, (ΨE ,ΨI)](ȳ0, ȳT )(z0, ξT [u] + zT [v, z0])

=

∫ T

0
H[pλt ](t, ut, ȳt)−H[pλt ](t, ūt, ȳt) dt ≥ 0. (2.222)

By (2.219)-(2.220) and the nonnegativity of ΨI , ν, and µ, we obtain that for u = û,
v = v̂, z0 = ẑ0, the r.h.s. of (2.222) is nonpositive and thus equal to 0. Therefore, ΨI ,
ν, and µ are null and for all u ∈ Uc, v ∈ U , and z0 ∈ R

n,

ΨEDΦE(ȳ0, ȳT )(z0, ξT [u] + zT [v, z0]) ≥ 0. (2.223)

By (2.218), we can choose u, v, and z0 so that for β > 0 sufficiently small,

DΦE(ȳ0, ȳT )(z0, ξT [u] + zT [v, z0]) = −β(ΨE)T . (2.224)

Combined with (2.223), we obtain that −β|ΨE|2 ≥ 0. Then, ΨE = 0 and finally λ = 0,
in contradiction with λ ∈ ΛP (ū, ȳ).

2.A.3.3 Necessity of the qualification condition

We now prove that the P-qualification is necessary to ensure the non singularity of
Pontryagin multipliers. In some sense, the approach consists in describing this qualifi-
cation condition as the limit of the qualification conditions associated with a sequence
of partially relaxed problems.

Let us fix a Castaing representation (uk)k of U . For all N ∈ N, we consider a partially
relaxed problem (P̃N ) defined by

min
u∈U , α∈AN , y∈Y

φ(y0, yT ) s.t. constraints (2.3)-(2.5), y = y[u, α, y0], and α ≥ 0, (P̃N )

where y[u, α, y0] is the solution to the partially relaxed state equation (2.43). This
problem is the same as problem (PN ), except that there is no variable θ.

For given v ∈ U , z0 ∈ R
n and α ∈ AN , we denote by z[v, z0] the linearized state

variable in the direction (v, z0), which is the solution to (2.70) and we denote by ξ[α]
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the linearized state variable in the direction α, which is the solution to

{
ξ̇t[α] = Dyf(t, ūt, ȳt)ξt[α] +

∑N
i=1 α

i
t

(
f(t, uit, ȳt)− f(t, ūt, ȳt)

)
,

ξ0[α] = 0.
(2.225)

The distinction between the Pontryagin linearization ξ[u] and ξ[α] will be clear in the
sequel, and we will motivate this choice of notations in Lemma 2.61.

Problem (P̃N ) is qualified (in the usual sense) iff

(i) the following surjectivity condition holds:

0 ∈ int{DΦE(ȳ0, ȳT )(z0, ξT [α] + zT [v, z0]) : α ∈ AN , v ∈ U , z0 ∈ R
n} (2.226)

(ii) there exist ε > 0, α̂ ∈ AN , v̂ ∈ U , ẑ0 ∈ R
n such that

DΦE(ȳ0, ȳT )(ẑ0, ξT [α̂] + zT [v̂, ẑ0]) = 0 (2.227)

and




ΦI(ȳ0, ȳT ) +DΦI(ȳ0, ȳT )(ẑ0, ξT [α̂] + zT [v̂, ẑ0]) ≤ −ε,
g(t, ȳt) +Dg(t, ȳt)(ξt[α̂] + zt[v̂, ẑ0]) ≤ −ε, for all t,

c(t, ūt, ȳt) +Dc(t, ūt, ȳt)(v̂t, ξt[α̂] + zt[v̂, ẑ0]) ≤ −ε, for a.a. t,

α̂t ≥ ε, for a.a. t.

(2.228)

We denote now by Λ(P̃N ) the set of generalized Lagrange multipliers of problem
(P̃N ) at (ū, α = 0, ȳ). Following the proof of Lemma 2.20, we easily obtain that

Λ(P̃N ) = {(λ, γ) ∈ ΛN (ū, ȳ)× L∞([0, T ];Rk
+) :

γit = H[pλt ](t, u
i
t, ȳt)−H[pλt ](t, ūt, ȳt), for i = 1, ..., N , for a.a. t}, (2.229)

where ΛN (ū, ȳ) is defined by (2.35) and γ is associated with the constraint α ≥ 0.

Lemma 2.59. Let N ∈ N; all multipliers of ΛN (ū, ȳ) are non singular if and only if
problem (P̃N ) is qualified.

Proof. It is known that all multipliers of Λ(P̃N ) are non singular if and only if problem
(P̃N ) is qualified, see e.g. [21, Proposition 3.16]. It follows from (2.229) that all multipliers
of ΛN (ū, ȳ) are non singular if and only if the multipliers of Λ(P̃N ) are non singular.
This proves the lemma.

As a corollary, we obtain that if problem (P̃N ) is qualified at stage N , it is also
qualified at stage N + 1. Indeed, if none of the multipliers in ΛN (ū, ȳ) is singular, a
fortiori, none of the multipliers in ΛN+1(ū, ȳ) is singular, since ΛN+1(ū, ȳ) ⊂ ΛN (ū, ȳ).

Proposition 2.60. The set of singular Pontryagin multipliers is empty if and only if
there exists N ∈ N such that problem (P̃N ) is qualified.
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Proof. Let N ∈ N be such that problem (P̃N ) is qualified. Then, all multipliers of
ΛN (ū, ȳ) are non singular, by Lemma 2.59. Since ΛP (ū, ȳ) ⊂ ΛN (ū, ȳ), the Pontryagin
multipliers are non singular.

Conversely, assume that for all N ∈ N, problem (P̃N ) is not qualified. By Lemma
2.59, we obtain a sequence of singular multipliers (λN )N which is such that for all N ,
λN ∈ ΛN (ū, ȳ). Normalizing this sequence, we obtain with Lemma 2.15 the existence of
a weak limit point in ΛP (ū, ȳ), which is necessarily singular.

To conclude the proof, we still need a relaxation result, which makes a link between
the Pontryagin linearization ξ[u] and the linearization ξ[α].

Lemma 2.61. Let N ∈ N; assume that problem (P̃N ) is qualified. Then, there exists
A > 0 such that for all (α, v, z0) ∈ AN ×U ,Rn with ‖α‖∞ ≤ A, ‖v‖∞ ≤ A, |z0| ≤ A, for
all ε > 0, if α is uniformly positive, then there exists (u, v′, z′0) ∈ Uc × U × R

n such that

DΦE(ȳ0, ȳT )(z0, ξT [u] + zT [v, z0]) = DΦE(ȳ0, ȳT )(z0, ξT [α] + zT [v, z0]), (2.230)

‖ξ[u]− ξ[α] + z[v′ − v, z0 − z′0]‖∞ ≤ ε. (2.231)

Proof. We only give some elements of proof. Note that this result is a variant of Propo-
sition 2.18 and can be obtained with Dmitruk’s result [28, Theorem 3]. Let us define

g(t, u, y) := Dyf(t, ūt, ȳt)y + f(t, u, ȳt)− f(t, ūt, ȳt). (2.232)

Then, for all u ∈ Uc, ξ[u] is the solution to

ξ̇t[u] = g(t, ξt[u], ut), ξ0[u] = 0. (2.233)

and ξ[α], where α ∈ AN and α ≥ 0 is the solution to the relaxed system associated with
the dynamics g and the Castaing representation. Indeed,

ξ̇t[α] = Dyf(t, ūt, ȳt)ξt[α] +
N∑

i=1

αi
t

(
f(t, uit, ȳt)− f(t, ūt, ȳt)

)

=
(
1−

N∑

i=1

αi
t

)
g(t, ūt, ȳt) +

N∑

i=1

αi
t

(
g(t, uit, ȳt)− g(t, ūt, ȳt)

)
. (2.234)

Finally, we prove the result by building a sequence (uk, αk, vk, zk0 ) which is such that

(u0, α0, v0, z00) = (ū, α, v, z0), (2.235)

DΦE(ȳ0, ȳT )(z0, ξT [α] + zT [v, z0])

= DΦE(ȳ0, ȳT )(z
k
0 , ξT [α

k] + ξT [u
k] + zT [v, z0]), (2.236)

such that αk is uniformly positive and finally which is such that (uk)k converges to some
u ∈ Uc in L

1 norm, (αk)k converges to 0 in L∞ norm, and (vk, zk0 )k equally converges to
some (v′, z′0) in L

∞ norm. This sequence is built by using Lemma 2.52 and by using the
surjectivity condition (2.227). Note that Lemma 2.52 enables to ensure (2.231).
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Let us conclude the proof of Theorem 2.57. Let us assume that the set of singular
Pontryagin multipliers is empty; we already know by Proposition 2.60 that there exists
N ∈ N such that the MFN conditions hold. It remains to prove that the problem is
P-qualified. Let (αk, vk, zk0 )k=1,...,n

ΦE+1 be such that

0 ∈ int
{
conv

[
DΦE(ȳ0, ȳT )(z

k
0 , zT [v

k, zk0 ] + ξT [α
k]), k = 1, ..., nφE + 1

]}
. (2.237)

Let (α̂, v̂, ẑ0) be such that (2.228) holds. By (2.227), if we replace (αk, vk, zk0 ) by
(αk + δα̂, vk + δv̂, zk0 + δẑ0), for any δ > 0, then (2.237) still holds. Moreover, (2.237)
remains true if we multiply this family by a given positive constant. Therefore, since α̂
is uniformly positive, we may assume that the family (αk, vk, zk0 )k=1,...,n

φE
+1 is bounded

by A and such that for all k = 1, ..., nΦE + 1, αk is uniformly positive. Finally, we can
apply Lemma 2.61 to any convex combination of elements of the family. This proves the
part of the P-qualification associated with equality constraints. Multiplying (α̂, v̂, ẑ0) by
a positive constant, we can assume that it is bounded by A and we can equally approx-
imate it so that (2.219) holds and so that (2.220) holds (if the variable ε of Lemma 2.61
is chosen sufficiently small). We have proved that the problem was P-qualified.

2.A.4 An example about Pontryagin’s principle

We give here an example where there exists a multiplier such that the Hamiltonian
inequality (2.26) holds for all u ∈ U(t), but not for all u in

Ũ(t) := {u ∈ R
m : c(t, u, ȳt) ≤ 0} . (2.238)

Indeed, U(t) ⊂ Ũ(t) but it may happen that U(t) 6= Ũ(t).
Consider the optimal control problem

min yT (2.239)

subject to the following state equation with fixed initial state, in R:

ẏt = ut, y0 = y0, (2.240)

and to the following mixed constraint:

ut ≥ −yt, for a.a. t. (2.241)

The optimal control (ū, ȳ) is such that ūt = −ȳt and given an initial state y0, the optimal
solution is given by:

ūt = −y0e−t, ȳt = y0e−t. (2.242)

The problem being qualified, there exists a normal Lagrange multiplier which is deter-
mined by ν. Since the augmented Hamiltonian is stationary, we obtain that for a.a. t,
pνt = νt, and therefore the costate equation writes

− ṗνt = −pνt , pνT = 1, (2.243)
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i.e. pt = νt = e−(T−t) > 0. Let us fix y0 = 0, the optimal solution is (0, 0) and
Ũ(t) = U(t) = R+. The Hamiltonian pu is minimized for a.a. t by ūt = 0 since pt > 0.

Now let us consider a variant of this problem. We replace the previous mixed con-
straint by the following one:

ψ(ut) ≥ −yt, (2.244)

where ψ is a smooth function such that:

{
∀u ≥ 0, ψ(u) = u,

∀u < 0, ψ(u) ≤ 0 and ψ(u) = 0 ⇐⇒ u = −1.
(2.245)

For y0 = 0, (0, 0) remains a feasible trajectory, since Ũ(t) = R+ ∪ {−1}. In this case,
U(t) = R+. Let us check that (0, 0) is still an optimal solution. Let us suppose that
there exist a feasible trajectory (u, y) which is such that yT < 0. Then, let t ∈ (0, T ) be
such that

yt ∈ (yT , 0) and ∀s ∈ [t, T ], ys ≤ yt. (2.246)

It follows that for a.a. s ∈ (t, T ),

ψ(us) ≥ −ys > 0. (2.247)

Therefore, us > 0 and y is nondecreasing on [t, T ], in contradiction with yt > yT . We
have proved that (0, 0) is an optimal solution, and the multiplier and costate remain
unchanged. However, the minimum of the Hamiltonian over Ũ(t) is reached for

u = −1 6= ūt. (2.248)
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Abstract

In this chapter, given a reference feasible trajectory of an optimal control problem,
we say that the quadratic growth property for bounded strong solutions holds if the
cost function of the problem has a quadratic growth over the set of feasible trajectories
with a bounded control and with a state variable sufficiently close to the reference state
variable. Our sufficient second-order optimality conditions in Pontryagin form ensure
this property and ensure a fortiori that the reference trajectory is a bounded strong
solution. Our proof relies on a decomposition principle, which is a particular second-
order expansion of the Lagrangian of the problem.

Résumé

Nous considérons dans ce chapitre une trajectoire admissible d’un problème de com-
mande optimale et disons que la propriété de croissance quadratique pour des solutions
fortes est satisfaite si la fonction coût du problème a une croissance quadratique sur
l’ensemble des trajectoires dont la commande est bornée et dont la variable d’état est
suffisamment proche de la variable d’état de référence. Nos conditions d’optimalité du
second ordre sous forme Pontryaguine garantissent cette propriété et a fortiori que la
trajectoire de référence est une solution forte. Notre preuve s’appuie sur un principe
de décomposition, qui est un développement particulier du lagrangien du problème au
second ordre.

3.1 Introduction

In this paper, we consider an optimal control problem with final-state constraints, pure
state constraints, and mixed control-state constraints. Given a feasible control ū and
its associated state variable ȳ, we give second-order conditions ensuring that for all
R > ‖ū‖∞, there exist ε > 0 and α > 0 such that for all feasible trajectory (u, y) with
‖u‖∞ ≤ R and ‖y − ȳ‖∞ ≤ ε,

J(u, y)− J(ū, ȳ) ≥ α(‖u − ū‖22 + |y0 − ȳ0|2), (3.1)

where J(u, y) is the cost function to minimize. We call this property quadratic growth
for bounded strong solutions. Its specificity lies in the fact that the quadratic growth is
ensured for controls which may be far from ū in L∞ norm.

Our approach is based on the theory of second-order optimality conditions for opti-
mization problems in Banach spaces [26, 47, 53]. A local optimal solution satisfies first-
and second-order necessary conditions; denoting by Ω the Hessian of the Lagrangian,
theses conditions state that under the extended polyhedricity condition [21, Section 3.2],
the supremum of Ω over the set of Lagrange multipliers is nonnegative for all critical
directions. If the supremum of Ω is positive for nonzero critical directions, we say that
the second-order sufficient optimality conditions hold and under some assumptions, a
quadratic growth property is then satisfied. This approach can be used for optimal con-
trol problems with constraints of any kind. For example, Stefani and Zezza [64] dealt
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with problems with mixed control-state equality constraints and Bonnans and Hermant
[17] with problems with pure state and mixed control-state constraints. However, the
quadratic growth property which is then satisfied holds for controls which are sufficiently
close to ū in uniform norm and only ensures that (ū, ȳ) is a weak solution.

For Pontryagin minima, that is to say minima locally optimal in a L1 neighborhood of
ū, the necessary conditions can be strengthened. The first-order conditions are nothing
but the well-known Pontryagin’s principle, historically formulated in [58] and extended
to problems with various constraints by many authors, such as Hestenes for problems
with mixed control-state constraints [43] Dubovitskii and Milyutin for problems with
pure state and mixed control-state constraints in early Russian references [31, 32], as
highlighted by Dmitruk [27]. We refer to the survey by Hartl et al. for more references
on this principle.

We say that the second-order necessary condition are in Pontryagin form if the supre-
mum of Ω is taken over the set of Pontryagin multipliers, these multipliers being the
Lagrange multipliers for which Pontryagin’s principle holds. Maurer and Osmolovskii
proved in [56] that the second-order necessary conditions in Pontryagin form were satis-
fied for Pontryagin minima to optimal control problems with mixed control-state equality
constraints. They also proved that if second-order sufficient conditions in Pontryagin
form held, then the quadratic growth for bounded strong solutions was satisfied. The
sufficient conditions in Pontryagin form are as follows: the supremum of Ω over Pon-
tryagin multipliers only is positive for nonzero critical directions and for all bounded
neighborhood of ū, there exists a Pontryagin multiplier which is such such the Hamilto-
nian has itself a quadratic growth. The results of Maurer and Osmolovskii are true under
a restrictive full-rank condition for the mixed equality constraints, which is not satisfied
by pure constraints, and under the Legendre-Clebsch condition, imposing that the Hes-
sian of the augmented Hamiltonian w.r.t. u is positive. The full-rank condition enabled
them to reformulate their their problem as a problem with final-state constraints only.
Note that these results were first stated by Milyutin and Osmolovskii in [55], without
proof.

For problems with pure and mixed inequality constraints, we proved the second-
order necessary conditions in Pontryagin form [14]; in the present paper, we prove that
the sufficient conditions in Pontryagin form ensure the quadratic growth property for
bounded strong solutions under the Legendre-Clebsch condition. Our proof is based
on an extension of the decomposition principle of Bonnans and Osmolovskii [18] to the
constrained case. This principle is a particular second-order expansion of the Lagrangian,
which takes into account the fact that the control may have large perturbations in
uniform norm. Note that the difficulties arising in the extension of the principle and
the proof of quadratic growth are mainly due to the presence of mixed control-state
constraints.

The outline of the paper is as follows. In Section 3.2, we set our optimal control
problem. Section 3.3 is devoted to technical aspects related to the reduction of state
constraints. We prove the decomposition principle in Section 3.4 (Theorem 3.14) and
prove the quadratic growth property for bounded strong solutions in Section 3.5 (The-
orem 3.18). In Section 3.6, we prove that under technical assumptions, the sufficient
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conditions are not only sufficient but also necessary to ensure the quadratic growth
property (Theorem 3.21).

Notations. For a function h that depends only on time t, we denote by ht its value
at time t, by hi,t the value of its i-th component if h is vector-valued, and by ḣ its
derivative. For a function h that depends on (t, x), we denote by Dth and Dxh its
partial derivatives. We use the symbol D without any subscript for the differentiation
w.r.t. all variables except t, e.g. Dh = D(u,y)h for a function h that depends on (t, u, y).
We use the same convention for higher order derivatives.

We identify the dual space of Rn with the space R
n∗ of n-dimensional horizontal

vectors. Generally, we denote by X∗ the dual space of a topological vector space X.
Given a convex subset K of X and a point x of K, we denote by TK(x) and NK(x)
the tangent and normal cone to K at x, respectively; see [21, Section 2.2.4] for their
definition.

We denote by | · | both the Euclidean norm on finite-dimensional vector spaces and
the cardinal of finite sets, and by ‖ · ‖s and ‖ · ‖q,s the standard norms on the Lesbesgue
spaces Ls and the Sobolev spaces W q,s, respectively.

We denote by BV ([0, T ]) the space of functions of bounded variation on the closed
interval [0, T ]. Any h ∈ BV ([0, T ]) has a derivative dh which is a finite Radon measure
on [0, T ] and h0 (resp. hT ) is defined by h0 := h0+ − dh(0) (resp. hT := hT−

+ dh(T )).
Thus BV ([0, T ]) is endowed with the following norm: ‖h‖BV := ‖dh‖M + |hT |. See [4,
Section 3.2] for a rigorous presentation of BV .

All vector-valued inequalities have to be understood coordinate-wise.

3.2 Setting

3.2.1 The optimal control problem

We formulate in this section the optimal control problem under study and we use the
same framework as in [14]. We refer to this article for supplementary comments on the
different assumptions made. Consider the state equation

ẏt = f(t, ut, yt) for a.a. t ∈ (0, T ). (3.2)

Here, u is a control which belongs to U , y is a state which belongs to Y, where

U := L∞(0, T ;Rm), Y :=W 1,∞(0, T ;Rn), (3.3)

and f : [0, T ]×R
m×R

n → R
n is the dynamics. Given u ∈ U and y0 ∈ R

n, we denote by
y[u, y0] ∈ Y the solution to (3.2) with initial state y0. Consider constraints of various
types on the system: the mixed control-state constraints, or mixed constraints

c(t, ut, yt) ≤ 0 for a.a. t ∈ (0, T ), (3.4)

the pure state constraints, or state constraints

g(t, yt) ≤ 0 for a.a. t ∈ (0, T ), (3.5)
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and the initial-final state constraints

{
ΦE(y0, yT ) = 0,

ΦI(y0, yT ) ≤ 0.
(3.6)

Here c : [0, T ]×R
m×R

n → R
nc, g : [0, T ]×R

n → R
ng , ΦE : Rn×R

n → R
n
ΦE , ΦI : Rn×

R
n → R

n
ΦI . Finally, consider the cost function φ : Rn × R

n → R. The optimal control
problem is then

min
(u,y)∈U×Y

φ(y0, yT ) subject to (3.2)-(3.6). (P )

We call a trajectory any pair (u, y) ∈ U × Y such that (3.2) holds. We say that a
trajectory is feasible for problem (P ) if it satisfies constraints (3.4)-(3.6), and denote by
F (P ) the set of feasible trajectories. From now on, we fix a feasible trajectory (ū, ȳ).

Similarly to [64, Definition 2.1], we introduce the following Carathéodory-type regu-
larity notion:

Definition 3.1. We say that ϕ : [0, T ]× R
m × R

n → R
s is uniformly quasi-Ck iff

(i) for a.a. t, (u, y) 7→ ϕ(t, u, y) is of class Ck, and the modulus of continuity of
(u, y) 7→ Dkϕ(t, u, y) on any compact of Rm × R

n is uniform w.r.t. t.

(ii) for j = 0, . . . , k, for all (u, y), t 7→ Djϕ(t, u, y) is essentially bounded.

Remark 3.2. If ϕ is uniformly quasi-Ck, then Djϕ for j = 0, . . . , k are essentially
bounded on any compact, and (u, y) 7→ Djϕ(t, u, y) for j = 0, . . . , k − 1 are locally
Lipschitz, uniformly w.r.t. t.

The regularity assumption that we need for the quadratic growth property is the
following:

Assumption 3.1. The mappings f , c and g are uniformly quasi-C2, g is differentiable,
Dtg is uniformly quasi-C1, ΦE, ΦI , and φ are C2.

Note that this assumption will be strengthened in Section 3.6.

Definition 3.3. We say that the inward condition for the mixed constraints holds iff
there exist γ > 0 and v̄ ∈ U such that

c(t, ūt, ȳt) +Duc(t, ūt, ȳt)v̄t ≤ −γ, for a.a. t. (3.7)

In the sequel, we will always make the following assumption:

Assumption 3.2. The inward condition for the mixed constraints holds.

Assumption 3.2 ensures that the component of the Lagrange multipliers associated
with the mixed constraints belongs to L∞(0, T ;Rnc∗), see e.g. [18, Theorem 3.1]. This
assumption will also play a role in the decomposition principle.
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3.2.2 Bounded strong optimality and quadratic growth

Let us introduce various notions of minima, following [55].

Definition 3.4. We say that (ū, ȳ) is a bounded strong minimum iff for any R > ‖ū‖∞,
there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (3.8)

‖y − ȳ‖∞ ≤ ε and ‖u‖∞ ≤ R,

a Pontryagin minimum iff for any R > ‖ū‖∞, there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (3.9)

‖u− ū‖1 + ‖y − ȳ‖∞ ≤ ε and ‖u‖∞ ≤ R,

a weak minimum iff there exists ε > 0 such that

φ(ȳ0, ȳT ) ≤ φ(y0, yT ), for all (u, y) ∈ F (P ) such that (3.10)

‖u− ū‖∞ + ‖y − ȳ‖∞ ≤ ε.

Obviously, (3.8) ⇒ (3.9) ⇒ (3.10).

Definition 3.5. We say that the quadratic growth property for bounded strong solutions
holds at (ū, ȳ) iff for all R > ‖ū‖∞, there exist εR > 0 and αR > 0 such that for all
feasible trajectory (u, y) satisfying ‖u‖∞ ≤ R and ‖y − ȳ‖∞ ≤ ε,

φ(y0, yT )− φ(ȳ0, ȳT ) ≥ αR(|y0 − ȳ0|2 + ‖u− ū‖22). (3.11)

The goal of the article is to characterize this property. If it holds at (ū, ȳ), then (ū, ȳ)
is a bounded strong solution to the problem.

3.2.3 Multipliers

We define the Hamiltonian and the augmented Hamiltonian respectively by

H[p](t, u, y) := pf(t, u, y), Ha[p, ν](t, u, y) := pf(t, u, y) + νc(t, u, y), (3.12)

for (p, ν, t, u, y) ∈ R
n∗ × R

nc∗ × [0, T ] × R
m × R

n. We define the end points Lagrangian
by

Φ[β,Ψ](y0, yT ) := βφ(y0, yT ) + ΨΦ(y0, yT ), (3.13)

for (β,Ψ, y0, yT ) ∈ R× R
nΦ∗ × R

n × R
n, where nΦ = nΦE + nΦI and Φ =

(
ΦE

ΦI

)
.

We set

Kc := L∞(0, T ;Rnc
− ), Kg := C([0, T ];R

ng

− ), KΦ := {0}
R
n
ΦE × R

n
ΦI

− , (3.14)
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so that the constraints (3.4)-(3.6) can be rewritten as

c(·, u, y) ∈ Kc, g(·, y) ∈ Kg, Φ(y0, yT ) ∈ KΦ. (3.15)

Recall that the dual space of C([0, T ];Rng ) is the space M([0, T ];Rng∗) of finite vector-
valued Radon measures. We denote by M([0, T ];Rng∗)+ the cone of positive measures
in this dual space. Let

E := R× R
nΦ∗ × L∞(0, T ;Rnc∗)×M([0, T ];Rng∗). (3.16)

Let NKc(c(·, ū, ȳ)) be the set of elements in the normal cone to Kc at c(·, ū, ȳ) that belong
to L∞(0, T ;Rnc∗), i.e.

NKc(c(·, ū, ȳ)) :=
{
ν ∈ L∞(0, T ;Rnc∗

+ ) : νtc(t, ūt, ȳt) = 0 for a.a. t
}
. (3.17)

Let NKg(g(·, ȳ)) be the normal cone to Kg at g(·, ȳ), i.e.

NKg(g(·, ȳ)) :=
{
µ ∈ M([0, T ];Rng∗)+ :

∫

[0,T ]
(dµtg(t, ȳt)) = 0

}
. (3.18)

Let NKΦ
(Φ(ȳ0, ȳT )) be the normal cone to KΦ at Φ(ȳ0, ȳT ), i.e.

NKΦ
(Φ(ȳ0, ȳT )) :=

{
Ψ ∈ R

nΦ∗ :
Ψi ≥ 0
ΨiΦi(ȳ0, ȳT ) = 0

for nΦE < i ≤ nΦ

}
. (3.19)

Finally, let

N(ū, ȳ) := R+ ×NKΦ
(Φ(ȳ0, ȳT ))×NKc(c(·, ū, ȳ))×NKg(g(·, ȳ)) ⊂ E. (3.20)

We define the costate space
P := BV ([0, T ];Rn∗). (3.21)

Given λ = (β,Ψ, ν, µ) ∈ E, we consider the costate equation in P
{
−dpt = DyH

a[pt, νt](t, ūt, ȳt)dt+ dµtDg(t, ȳt),

pT+ = DyTΦ[β,Ψ](ȳ0, ȳT ).
(3.22)

Definition 3.6. Let λ = (β,Ψ, ν, µ) ∈ E. We say that the solution of the costate
equation (3.22) pλ ∈ P is an associated costate iff

− pλ0− = Dy0Φ[β,Ψ](ȳ0, ȳT ). (3.23)

Let Nπ(ū, ȳ) be the set of nonzero λ ∈ N(ū, ȳ) having an associated costate.

We define the set-valued mapping U : [0, T ] ⇉ R
m by

U(t) := cl {u ∈ R
m : c(t, u, ȳt) < 0} for a.a. t, (3.24)

where cl denotes the closure in R
m. We can now define two different notions of multi-

pliers.
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Definition 3.7. (i) We say that λ ∈ Nπ(ū, ȳ) is a generalized Lagrange multiplier iff

DuH
a[pλt , νt](t, ūt, ȳt) = 0 for a.a. t. (3.25)

We denote by ΛL(ū, ȳ) the set of generalized Lagrange multipliers.

(ii) We say that λ ∈ ΛL(ū, ȳ) is a generalized Pontryagin multiplier iff

H[pλt ](t, ūt, ȳt) ≤ H[pλt ](t, u, ȳt) for all u ∈ U(t), for a.a. t. (3.26)

We denote by ΛP (ū, ȳ) the set of generalized Pontryagin multipliers.

Note that even if (ū, ȳ) is a Pontryagin minimum, inequality (3.26) may not be
satisfied for some t ∈ [0, T ] and some u ∈ R

m for which c(t, u, ȳt) = 0, as we show in [14,
Appendix]. Note that the sets ΛL(ū, ȳ) and ΛP (ū, ȳ) are convex cones.

3.2.4 Reducible touch points

Let us first recall the definition of the order of a state constraint. For 1 ≤ i ≤ ng,

assuming that gi is sufficiently regular, we define by induction g
(j)
i : [0, T ]×R

m×R
n → R,

j ∈ N, by

g
(j+1)
i (t, u, y) := Dtg

(j)
i (t, u, y) +Dyg

(j)
i (t, u, y)f(t, u, y), g

(0)
i := gi. (3.27)

Definition 3.8. If gi and f are Cqi, we say that the state constraint gi is of order
qi ∈ N iff

Dug
(j)
i ≡ 0 for 0 ≤ j ≤ qi − 1, Dug

(qi)
i 6≡ 0. (3.28)

If gi is of order qi, then for all j < qi, g
(j)
i is independent of u and we do not mention

this dependence anymore. Moreover, the mapping t 7→ gi(t, ȳt) belongs to W qi,∞(0, T )
and

dj

dtj
gi(t, ȳt) = g

(j)
i (t, ȳt) for 0 ≤ j < qi, (3.29)

dj

dtj
gi(t, ȳt) = g

(j)
i (t, ūt, ȳt) for j = qi. (3.30)

Definition 3.9. We say that τ ∈ [0, T ] is a touch point for the constraint gi iff it is a
contact point for gi, i.e. gi(τ, ȳτ ) = 0, and τ is isolated in {t : gi(t, ȳt) = 0}. We say

that a touch point τ for gi is reducible iff τ ∈ (0, T ), d2

dt2 gi(t, ȳt) is defined for t close to
τ , continuous at τ , and

d2

dt2
gi(t, ȳt)|t=τ < 0. (3.31)

For 1 ≤ i ≤ ng, let us define

Tg,i :=
{
∅ if gi is of order 1,

{touch points for gi} otherwise.
(3.32)

Note that for the moment, we only need to distinguish the constraints of order 1
from the other constraints, for which the order may be undefined if gi or f is not regular
enough.
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Assumption 3.3. For 1 ≤ i ≤ ng, the set Tg,i – if nonempty – is finite and only contains
reducible touch points.

3.2.5 Tools for the second-order analysis

We define now the linearizations of the system, the critical cone, and the Hessian of the
Lagrangian. Let us set

V2 := L2(0, T ;Rm), Z1 :=W 1,1(0, T ;Rn), and Z2 :=W 1,2(0, T ;Rn). (3.33)

Given v ∈ V2, we consider the linearized state equation in Z2

żt = Df(t, ūt, ȳt)(vt, zt) for a.a. t ∈ (0, T ). (3.34)

We call linerarized trajectory any (v, z) ∈ V2 × Z2 such that (3.34) holds. For any
(v, z0) ∈ V2 × R

n, there exists a unique z ∈ Z2 such that (3.34) holds and z0 = z0; we
denote it by z = z[v, z0]. We also consider the second-order linearized state equation in
Z1, defined by

ζ̇t = Dyf(t, ūt, ȳt)ζt +D2f(t, ūt, ȳt)(vt, zt[v, z
0])2 for a.a. t ∈ (0, T ). (3.35)

We denote by z2[v, z0] the unique ζ ∈ Z1 such that (3.35) holds and such that z0 = 0.
The critical cone in L2 is defined by

C2(ū, ȳ) :=





(v, z) ∈ V2 ×Z2 : z = z[v, z0]
Dφ(ȳ0, ȳT )(z0, zT ) ≤ 0
DΦ(ȳ0, ȳT )(z0, zT ) ∈ TKΦ

(Φ(ȳ0, ȳT ))
Dc(·, ū, ȳ)(v, z) ∈ TKc(c(·, ū, ȳ))
Dg(·, ȳ)z ∈ TKg(g(·, ȳ))





(3.36)

Note that by [21, Examples 2.63 and 2.64], the two tangent cones TKg(g(·, ȳ)) and
TKc(c(·, ū, ȳ)) are resp. described by

TKg = {ζ ∈ C([0, T ];Rn) : ∀t, ∀i, gi(t, ȳt) = 0 =⇒ ζi,t ≤ 0}, (3.37)

TKc = {w ∈ L2([0, T ];Rm) : for a.a. t, ci(t, ūt, ȳt) = 0 =⇒ wi,t ≤ 0} (3.38)

Finally, for any λ = (β,Ψ, ν, µ) ∈ E, we define a quadratic form, the Hessian of
Lagrangian, Ω[λ] : V2 ×Z2 → R by

Ω[λ](v, z) :=

∫ T

0
D2Ha[pλt , νt](t, ūt, ȳt)(vt, zt)

2dt+D2Φ[β,Ψ](ȳ0, ȳT )(z0, zT )
2

+

∫

[0,T ]

(
dµtD

2g(t, ȳt)(zt)
2
)
−

∑

τ∈Tg,i
1≤i≤ng

µi(τ)

(
Dg

(1)
i (τ, ȳτ )zτ

)2

g
(2)
i (τ, ūτ , ȳτ )

, (3.39)

where µi(τ) is the measure of the singleton {τ}. We justify the terms involving the touch
points in Tg,i in the following section.
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3.3 Reduction of touch points

We recall in this section the main idea of the reduction technique used for the touch
points of state constraints of order greater or equal than 2. Let us mention that this
approach was described in [44, Section 3] and used in [52, Section 4] in the case of optimal
control problems. As shown in [16], the reduction allows to derive no-gap necessary and
sufficient second-order optimality conditions, i.e., the Hessian of the Lagrangian of the
reduced problem corresponds to the quadratic form of the necessary conditions. We also
prove a strict differentiability property for the mapping associated with the reduction,
that will be used in the decomposition principle. Recall that for all 1 ≤ i ≤ ng, all touch
points of Tg,i are supposed to be reducible (Assumption 3.3).

Let ε > 0 be sufficiently small so that for all 1 ≤ i ≤ ng, for all τ ∈ Tg,i, the time
function

t ∈ [τ − ε, τ + ε] 7→ g(t, ȳt) (3.40)

is C2 and is such that for some β > 0, d2

dt2
gi(t, ȳt) ≤ −β, for all t in [τ − ε, τ + ε]. From

now on, we set for all i and for all τ ∈ Tg,i

∆ε
τ = [τ − ε, τ + ε] and ∆ε

i = [0, T ]\
{
∪τ∈Tg,i ∆

ε
τ

}
, (3.41)

and we consider the mapping Θε
τ : U × R

n → R defined by

Θε
τ (u, y

0) := max {gi(t, yt) : y = y[u, y0], t ∈ ∆ε
τ}. (3.42)

We define the reduced pure constraints as follows:

for all i ∈ {1, ..., ng},
{

gi(t, yt) ≤ 0, for all t ∈ ∆ε
i , (i)

Θε
τ (u, y0) ≤ 0, for all τ ∈ Tg,i. (ii)

(3.43)

Finally, we consider the following reduced problem, which is an equivalent reformulation
of problem (P ), in which the pure constraints are replaced by constraint (3.43):

min
(u,y)∈U×Y

φ(y0, yT ) subject to (3.2), (3.4), (3.6), and (3.43). (P ′)

Now, for all 1 ≤ i ≤ ng, consider the mapping ρi defined by

ρi : µ ∈ M([0, T ];R+) 7→
(
µ|∆ε

i
, (µ(τ))τ∈Tg,i

)
∈ M(∆ε

i ;R+)× R
|Tg,i|. (3.44)

Lemma 3.10. The mapping Θε
τ is twice Fréchet-differentiable at (ū, ȳ0) with derivatives

DΘε
τ (ū, ȳ0)(v, z0) = Dgi(τ, ȳτ )zτ [v, z0], (3.45)

D2Θε
τ (ū, ȳ0)(v, z0)

2 = D2gi(τ, ȳτ )(zτ [v, z0])
2 +Dgi(τ, ȳτ )z

2
τ [v, z0]

−

(
Dg

(1)
i (τ, ȳτ )zτ

)2

g
(2)
i (τ, ūτ , ȳτ )

. (3.46)
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and the following mappings define a bijection between ΛL(ū, ȳ) and the Lagrange multi-
pliers of problem (P ′), resp. between ΛP (ū, ȳ) and the Pontryagin multipliers of problem
(P ′):

λ =
(
β,Ψ, ν, µ

)
∈ ΛL(ū, ȳ) 7→

(
β,Ψ, ν, (ρi(µ

i))1≤i≤ng

)
(3.47)

λ =
(
β,Ψ, ν, µ

)
∈ ΛP (ū, ȳ) 7→

(
β,Ψ, ν, (ρi(µ

i))1≤i≤ng

)
. (3.48)

See [16, Lemma 26] for a proof of this result. Note that the restriction of µi to ∆ε
i

is associated with constraint (3.43(i)) and (µi(τ))τ∈Tg,i with constraint (3.43(ii)). The
expression of the Hessian of Θε

τ justifies the quadratic form Ω defined in (3.39). Note
also that in the sequel, we will work with problem P ′ and with the original description
of the multipliers, using implicitly the bijections (3.47) and (3.48).

Now, let us fix i and τ ∈ Tg,i. The following lemma is a differentiability property for
the mapping Θε

τ , related to the one of strict differentiability, that will be used to prove
the decomposition theorem.

Lemma 3.11. There exists ε > 0 such that for all u1 and u2 in U , for all y0 in R
n, if

‖u1 − ū‖1 ≤ ε, ‖u2 − ū‖1 ≤ ε, and |y0 − ȳ0| ≤ ε, (3.49)

then

Θε
τ (u

2, y0)−Θε
τ (u

1, y0) = g(τ, yτ [u
2, y0])− g(τ, yτ [u

1, y0])

+O
(
‖u2 − u1‖1(‖u1 − ū‖1 + ‖u2 − ū‖1 + |y0 − ȳ0|)

)
. (3.50)

An intermediate lemma is needed to prove this result. Consider the mapping χ
defined as follows:

χ : x ∈W 2,∞(∆ε
τ ) 7→ sup

t∈[τ−ε,τ+ε]
xt ∈ R. (3.51)

Let us set x0 = gi(·, ȳ)|∆ε
τ
. Note that ẋ0τ = 0.

Lemma 3.12. There exists α′ > 0 such that for all x1 and x2 in W 2,∞(∆τ ), if ‖ẋ1 −
ẋ0‖∞ ≤ α′ and ‖ẋ2 − ẋ0‖∞ ≤ α′, then

χ(x2)− χ(x1) = x2(τ)− x1(τ)

+O
(
‖ẋ2 − ẋ1‖∞(‖ẋ1 − ẋ0‖∞ + ‖ẋ2 − ẋ0‖∞)

)
. (3.52)

Proof. Let 0 < α′ < βε and x1, x2 in W 2,∞(∆τ ) satisfy the assumption of the lemma.
Denote by τ1 (resp. τ2) a (possibly non-unique) maximizer of χ(x1) (resp. χ(x2)). Since

ẋ1τ−ε ≥ ẋ0τ−ε − α′ ≥ βε− α′ > 0 and ẋ1τ+ε ≤ ẋ0τ+ε + α ≤ −βε+ α < 0, (3.53)

we obtain that τ1 ∈ (τ − ε, τ + ε) and therefore that ẋ1τ1 = 0. Therefore,

β|τ1 − τ | ≤ |ẋ0τ1 − ẋ0τ | = |ẋ1τ1 − ẋ0τ1 | ≤ ‖ẋ1 − ẋ0‖∞ (3.54)
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and then, |τ1− τ | ≤ ‖ẋ1− ẋ0‖∞/β. Similarly, |τ2− τ | ≤ ‖ẋ2− ẋ0‖∞/β. Then, by (3.54),

χ(x2) ≥ x1(τ1) + (x2(τ1)− x1(τ1))

= χ(x1) + (x2(τ)− x1(τ)) +O(‖ẋ2 − ẋ1‖∞|τ1 − τ |) (3.55)

and therefore, the l.h.s. of (3.52) is greater than the r.h.s. and by symmetry, the converse
inequality holds. The lemma is proved.

Proof of Lemma 3.11. Consider the mapping

Gτ : (u, y0) ∈ (U × R
n) 7→

(
t ∈ ∆τ 7→ gi(t, yt[u, y

0])
)
∈W 2,∞(∆τ ). (3.56)

Since gi is not of order 1 and by Assumption 3.1, the mapping Gτ is Lipschitz in the
following sense : there exists K > 0 such that for all (u1, y0,1) and (u2, y0,2),

‖Gτ (u
1, y0,1)−Gτ (u

2, y0,2)‖1,∞ ≤ K(‖u2 − u1‖1 + |y0,2 − y0,1|). (3.57)

Set α = α′/(2K). Let u1 and u2 in U , let y0 in R
n be such that (3.49) holds. Then by

Lemma 3.12 and by (3.57),

Θε
τ (u

2, y0)−Θε
τ (u

1, y0)

= χ(Gτ (u
2, y0))− χ(Gτ (u

1, y0))

= g(yτ [u
2, y0])− g(yτ [u

1, y0])

+O
(
‖u2 − u1‖1(‖u2 − ū‖1 + ‖u1 − ū‖1 + |y0 − ȳ0|)

)
, (3.58)

as was to be proved.

3.4 A decomposition principle

We follow a classical approach by contradiction to prove the quadratic growth property
for bounded strong solutions. We assume the existence of a sequence of feasible tra-
jectories (uk, yk)k which is such that uk is bounded and such that ‖yk − ȳ‖∞ → 0 and
for which the quadratic growth property does not hold. The Lagrangian function first
provides a lower estimate of the cost function φ(yk0 , y

k
T ). The difficulty here is to linearize

the Lagrangian, since we must consider large perturbations of the control in L∞ norm.
To that purpose, we extend the decomposition principle of [18, Section 2.4] to our more
general framework with pure and mixed constraints. This principle is a partial expan-
sion of the Lagrangian, which is decomposed into two terms: Ω[λ](vA,k, z[vA,k, yk0 − ȳ0]),
where vA,k stands for the small perturbations of the optimal control, and a difference of
Hamiltonians where the large perturbations occur.

3.4.1 Notations and first estimates

Let R > ‖ū‖∞, let (uk, yk)k be a sequence of feasible trajectories such that

∀k, ‖uk‖∞ ≤ R, ‖uk − ū‖2 → 0, and |yk0 − ȳ0| → 0 (3.59)
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This sequence will appear in the proof of the quadratic growth property. Note that the
convergence of controls and initial values of the state implies that ‖yk − ȳ‖∞ → 0. We
need to build two auxiliary controls ũk and uA,k. The first one, ũk, is such that

{
c(t, ũkt , y

k
t ) ≤ 0, for a.a. t ∈ [0, T ],

‖ũk − ū‖∞ = O(‖yk − ȳ‖∞).
(3.60)

The following lemma proves the existence of such a control.

Lemma 3.13. There exist ε > 0 and α ≥ 0 such that for all y ∈ Y with ‖y − ȳ‖∞ ≤ ε,
there exists u ∈ U satisfying

‖u− ū‖∞ ≤ α‖y − ȳ‖∞ and c(t, ut, yt) ≤ 0, for a.a. t. (3.61)

Proof. For all y ∈ Y, consider the mapping Cy defined by

u ∈ U 7→ Cy(u) =
(
t 7→ c(t, ut, yt)

)
∈ L∞(0, T ;Rng ). (3.62)

The inward condition (Assumption 3.2) corresponds to Robinson’s constraint qualifica-
tion for Cȳ at ū with respect to L∞(0, T ;R

ng

− ). Thus, by the Robinson-Ursescu stability
theorem [21, Theorem 2.87], there exists ε > 0 such that for all y ∈ Y with ‖y− ȳ‖∞ ≤ ε,
Cy is metric regular at ū with respect to L∞(0, T ;R

ng

− ). Therefore, for all y ∈ Y with
‖y − ȳ‖∞ ≤ ε, there exists a control u such that, for almost all t, c(t, ut, yt) ≤ 0 and

‖u− ū‖∞ = O
(
dist(Cy(ū), L

∞(0, T ;R
ng

− ))
)
= O(‖y − ȳ‖∞).

This proves the lemma.

Now, let us introduce the second auxiliary control uA,k. We say that a partition
(A,B) of the interval [0, T ] is measurable iff A and B are measurable subset of [0, T ].
Let us consider a sequence of measurable partitions (Ak, Bk)k of [0, T ]. We define uA,k

as follows:

uA,k
t = ūt1{t∈Bk} + ukt 1{t∈Ak}. (3.63)

The idea is to separate, in the perturbation uk − ū, the small and large perturbations in
uniform norm. In the sequel, the letter A will refer to the small perturbations and the
letter B to the large ones. The large perturbations will occur on the subset Bk.

For the sake of clarity, we suppose from now that the following holds:





(Ak, Bk)k is a sequence of measurable partitions of [0, T ],

|yk0 − ȳ0|+ ‖uA,k − ū‖∞ → 0,

|Bk| → 0,

(3.64)

where |Bk| is the Lebesgue measure of Bk. We set

vA,k := uA,k − ū and vB,k := uk − uA,k (3.65)
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and we define

δyk := yk − ȳ, yA,k := y[uA,k, yk0 ], and zA,k := z[vA,k, δyk0 ]. (3.66)

Let us introduce some useful notations for the future estimates:

R1,k := ‖uk − ū‖1 + |δyk0 |, R2,k := ‖uk − ū‖2 + |δyk0 |,
R1,A,k := ‖vA,k‖1 + |δyk0 |, R2,A,k := ‖vA,k‖2 + |δyk0 |,
R1,B,k := ‖vB,k‖1, R2,B,k := ‖vB,k‖2.

(3.67)

Combining the Cauchy-Schwarz inequality and assumption (3.64), we obtain that

R1,B,k ≤ R2,B,k|Bk|1/2 = o(R2,B,k). (3.68)

Note that by Gronwall’s lemma,

‖δyk‖∞ = O(R1,k) = O(R2,k) and ‖zA,k‖∞ = O(R1,A,k) = O(R2,k). (3.69)

Note also that
‖δyk − (yA,k − ȳ)‖∞ = O(R1,B,k) = o(R2,k) (3.70)

and since ‖yA,k − (ȳ + zA,k)‖∞ = O(R2
2,k),

‖δyk − zA,k‖∞ = o(R2,k). (3.71)

3.4.2 Result

We can now state the decomposition principle.

Theorem 3.14. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. Let R > ‖ū‖∞, let
(uk, yk)k be a sequence of feasible controls satisfying (3.59) and (Ak, Bk)k satisfy (3.64).
Then, for all λ = (β,Ψ, ν, µ) ∈ ΛL(ū, ȳ),

β(φ(yk0 , y
k
T )− φ(ȳ0, ȳT )) ≥ 1

2Ω[λ](v
A,k, zA,k)

+

∫

Bk

[
H[pλt ](t, u

k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)

]
dt+ o(R2

2,k), (3.72)

where Ω is defined by (3.39).

The proof is given at the end of the section, page 90. The basic idea to obtain a lower
estimate of β(φ(y0, yT ) − φ(ȳ0, ȳT )) is classical: we dualize the constraints and expand
up to the second order the obtained Lagrangian. However, the dualization of the mixed
constraint is particular here, in so far as the nonpositive added term is the following:

∫

Ak

νt(c(t, u
A,k
t , ykt )− c(t, ūt, ȳt)) dt+

∫

Bk

νt(c(t, ũ
k
t , y

k
t )− c(t, ūt, ȳt)) dt, (3.73)

where ũk and uA,k are defined by (3.60) and (3.63). In some sense, we do not dualize
the mixed constraint when there are large perturbations of the control. By doing so,
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we prove that the contribution of the large perturbations is of the same order as the
difference of Hamiltonians appearing in (3.72). If we dualized the mixed constraint with
the following term: ∫ T

0
νt(c(t, u

k
t , y

k
t )− c(t, ūt, ȳt)) dt, (3.74)

we would obtain for the contribution of large perturbations a difference of augmented
Hamiltonians.

Let us fix λ ∈ ΛL(ū, ȳ) and let us consider the following two terms:

Ik1 =

∫ T

0
−Ha

y [p
λ
t , νt](t, ūt, ȳt)δy

k
t dt

+

∫

Ak

(Ha[pλt , νt](t, u
A,k
t , ykt )−Ha[pλt , νt](t, ūt, ȳt)) dt (3.75a)

+

∫

Bk

(Ha[pλt , νt](t, ũ
k
t , y

k
t )−Ha[pλt ](t, ūt, ȳt)) dt (3.75b)

+

∫

Bk

(H[pλt , νt](t, u
k
t , y

k
t )−H[pλt ](t, ũ

k
t , y

k
t )) dt (3.75c)

and

Ik2 =−
∫

[0,T ]
(dµtDg(t, ȳt)δy

k
t ) +

ng∑

i=1

∫

∆ε
i

(gi(t, y
k
t )− gi(t, ȳt)) dµt,i (3.76a)

+
∑

τ∈Tg,i
1≤i≤ng

µi(τ)(Θ
ε
τ (u

k, yk0 )−Θε
τ (ū, ȳ0)). (3.76b)

Lemma 3.15. Let R > ‖ū‖∞, let (uk, yk)k be a sequence of feasible trajectories satisfying
(3.59), and let (Ak, Bk)k satisfy (3.64). Then, for all λ ∈ ΛL(ū, ȳ), the following lower
estimate holds:

β(φ(yk0 , y
k
T )−φ(ȳ0, ȳT ))
≥ 1

2D
2Φ[β,Ψ](ȳ0, ȳT )(z

A,k
0 , zA,k

T )2 + Ik1 + Ik2 + o(R2
2,k). (3.77)

Proof. Let λ ∈ ΛL(ū, ȳ). In view of sign conditions for constraints and multipliers, we
first obtain that

βφ(yk0 , y
k
T )− φ(ȳ0, ȳT ) ≥ Φ[β,Ψ](yk0 , y

k
T )− Φ[β,Ψ](ȳ0, ȳT )

+

ng∑

i=1

∫

∆ε
i

(gi(t, y
k
t )− gi(t, ȳt)) dµi,t +

∑

τ∈Tg,i
1≤i≤ng

µi(τ)(Θ
ε
τ (u

k, yk0 )−Θε
τ (ū, ȳ0))

+

∫

Ak

νt(c(t, u
A,k
t , ykt )− c(t, ūt, ȳt)) dt+

∫

Bk

νt(c(t, ũ
k
t , y

k
t )− c(t, ūt, ȳt)) dt. (3.78)
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Expanding the end-point Lagrangian up to the second order, and using (3.71), we obtain
that

Φ[β,Ψ](yk0 , y
k
T )− Φ[β,Ψ](ȳ0, ȳT )

= DΦ[β,Ψ](ȳ0, ȳT )(δy
k
0 , δy

k
T ) +

1
2D

2Φ[β,Ψ](ȳ0, ȳT )(δy
k
0 , δy

k
T )

2 + o(R2
2,k)

=
(
pλT δy

k
T − pλ0δy

k
0

)
+ 1

2D
2Φ[λ](ȳ0, ȳT )(z

A,k
0 , zA,k

T )2 + o(R2
2,k). (3.79)

Integrating by parts (see [16, Lemma 32]), we obtain that

pλT δy
k
T − pλ0δy

k
0 =

∫

[0,T ]

(
dpλt δy

k
t + pλt δ̇y

k
t dt
)

=

∫ T

0

(
−Ha

y (t, ūt, ȳt)δy
k
t +H(t, ukt , y

k
t )−H(t, ūt, ȳt)

)
dt

−
∫

[0,T ]

(
dµtDg(t, ȳt)δy

k
t

)
. (3.80)

The lemma follows from (3.78), (3.79), and (3.80).

A corollary of Lemma 3.15 is the following estimate, obtained with (3.60):

β(φ(yk0 , y
k
T )− φ(ȳ0, ȳT )) (3.81)

≥
∫ T

0

[
H[pλt ](t, u

k
t , y

k
t )−H[pλt ](t, ũ

k
t , y

k
t )
]
dt+O(‖δyk‖∞)

=

∫ T

0

[
H[pλt ](t, u

k
t , ȳt)−H[pλt ](t, ūt, ȳt)

]
dt+O(‖δyk‖∞). (3.82)

Proof of the decomposition principle. We prove Theorem 3.14 by estimating the two
terms Ik1 and Ik2 obtained in Lemma 3.15.

⊲ Estimation of Ik1 .
Let show that

Ik1 =
1

2

∫ T

0
D2Ha[pλt νt](t, ūt, ȳt)(v

A,k
t , zA,k

t )2 dt

+

∫

Bk

(H[pλt ](t, u
k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)) dt+ o(R2

2,k). (3.83)

Using (3.71) and the stationarity of the augmented Hamiltonian, we obtain that term
(3.75a) is equal to

∫

Ak

Ha
y [p

λ
t , νt](t, ūt, ȳt)δy

k
t dt

+
1

2

∫

Ak

D2Ha[pλt , νt](t, ūt, ȳt)(v
A,k
t , zA,k

t )2dt+ o(R2
2,k). (3.84)
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Term (3.75b) is negligible compared to R2
2,k. Since

∫

Bk

(H[pλt ](t, u
k
t , y

k
t )−H[pλt ](t, ũ

k
t , y

k
t )) dt

−
∫

Bk

(H[pλt ](t, u
k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)) dt = O(|Bk|R2

1,k) = o(R2
2,k), (3.85)

term (3.75c) is equal to

∫

Bk

(H[pλt ](t, u
k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)) dt+ o(R2

2,k). (3.86)

The following term is also negligible:

∫

Bk

D2Ha[pλt ](t, ūt, ȳt)(v
A,k
t , zA,k

t )2dt = o(R2
2,k). (3.87)

Finally, combining (3.75), (3.84), (3.86), and (3.87), we obtain (3.83).

⊲ Estimation of Ik2 .
Let us show that

Ik2 =
1

2

∫

[0,T ]

(
dµtD

2g(t, ȳt)(z
A,k
t )2

)

− 1

2

∑

τ∈Tg,i
1≤i≤ng

µi(τ)
(Dg

(1)
i (τ, ȳτ )z

A,k
τ )2

g
(2)
i (τ, ūτ , ȳτ )

. (3.88)

Using (3.71), we obtain the following estimate of term (3.76a):

−
∑

τ∈Tg,i
1≤i≤ng

∫

∆ε
τ

Dgi(t, ȳt)δy
k
t dµi,t +

1

2

ng∑

i=1

∫

∆ε
i

D2gi(t, ȳt)(z
A,k
t )2dµt + o(R2

2,k). (3.89)

Remember that z2[vA,k, δyk0 ] denotes the second-order linearization (3.35) and that the
following holds:

‖yA,k − (ȳ + z[vA,k, δyk0 ] + z2[vA,k, δyk0 ])‖∞ = o(R2
2,k). (3.90)

Using Lemma 3.11 and estimate (3.71), we obtain that for all i, for all τ ∈ Tg,i,

Θε
τ (u

k, yk0 )−Θε
τ (u

A,k, yk0 )

= gi(τ, y
k
τ )− gi(τ, y

A,k
τ ) +O(R1,B,k(R1,B,k +R1,k))

= Dgi(τ, ȳτ )(y
k
τ − yA,k

τ ) + o(R2
2,k)

= Dgi(τ, ȳτ )(δy
k
τ − zA,k

τ − z2τ [v
A,k, δyk0 ]) + o(R2

2,k). (3.91)
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By Lemma 3.10,

Θε
τ (u

A,k, yk0 )−Θε
τ (ū, ȳ0)

= Dgi(τ, ȳτ )(z
A,k
τ + z2τ [v

A,k, δyk0 ])

+
1

2
D2gi(τ, ȳτ )(z

A,k
τ )2 − 1

2

(Dyg
(1)
i (τ, ȳτ )z

A,k
τ )2)

g
(2)
i (τ, ūτ , ȳτ )

+ o(R2
2,k). (3.92)

Recall that the restriction of µi to ∆ε
τ is a Dirac measure at τ . Summing (3.91) and

(3.92), we obtain the following estimate for (3.76b):

∑

τ∈Tg,i
1≤i≤ng

[ ∫

∆ε
τ

(
Dgi(t, ȳt)δy

k
t +

1

2
D2gi(t, ȳt)(z

A,k
t )2

)
dµi,t

− 1

2

(Dg
(1)
i (τ, ȳτ )z

A,k
τ )2)

g
(2)
i (τ, ūτ , ȳτ )

]
+ o(R2

2,k). (3.93)

Combining (3.89) and (3.93), we obtain (3.88). Combining (3.83) and (3.88), we obtain
the result.

3.5 Quadratic growth for bounded strong solutions

We give in this section sufficient second-order optimality conditions in Pontryagin form
ensuring the quadratic growth property for bounded strong solutions. Our main result,
Theorem 3.18, is proved with a classical approach by contradiction.

Assumption 3.4. There exists ε > 0 such that for all feasible trajectories (u, y) in
(U × Y) with ‖y − ȳ‖ ≤ ε, if (u, y) satisfies the mixed constraints, then there exists û
such that

ût ∈ U(t), for a.a. t and ‖u− û‖∞ = O(‖y − ȳ‖∞). (3.94)

This assumption is a metric regularity property, global in u and local in y. Note that
the required property is different from (3.60).

Definition 3.16. A quadratic form Q on a Hilbert space X is said to be a Legendre
form iff it is weakly lower semi-continuous and if it satisfies the following property: if
xk ⇀ x weakly in X and Q(xk) → Q(x), then xk → x strongly in X.

Assumption 3.5. For all λ ∈ ΛP (ū, ȳ), Ω[λ] is a Legendre form.

Remark 3.17. By [16, Lemma 21], this assumption is satisfied if for all λ ∈ ΛP (ū, ȳ),
there exists γ > 0 such that for almost all t,

γI ≤ D2
uuH

a[pλt , νt](t, ūt, ȳt), (3.95)

where I is the identity matrix of R
m×m. In particular, in the absence of mixed and

control constraints, the quadratic growth of the Hamiltonian (3.97) implies (3.95).
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For all R > ‖ū‖∞, we define

ΛR
P (ū, ȳ) =

{
λ ∈ ΛL(ū, ȳ) : for a.a. t, for all u ∈ U(t) with |u| ≤ R,

H[pλt ](t, u, ȳt)−H[pλt ](t, ūt, ȳt) ≥ 0
}
. (3.96)

Note that ΛP (ū, ȳ) = ∩R>‖ū‖∞ΛR
P (ū, ȳ). Remember that C2(ū, ȳ) is the critical cone in

L2, defined by (3.36).

Theorem 3.18. Suppose that Assumptions 3.1-3.5 hold. If the following second-order
sufficient conditions hold: for all R > ‖ū‖∞,

1. there exist α > 0 and λ∗ ∈ ΛR
P (ū, ȳ) such that

{
for a.a. t, for all u ∈ U(t) with |u| ≤ R,

H[pλ
∗

t ](t, u, ȳt)−H[pλ
∗

t ](t, ūt, ȳt) ≥ α|u− ūt|22,
(3.97)

2. for all (v, z) ∈ C2\{0}, there exists λ ∈ ΛR
P (ū, ȳ) such that Ω[λ](v, z) > 0,

then the quadratic growth property for bounded strong solutions holds at (ū, ȳ).

Proof. We prove this theorem by contradiction. Let R > ‖ū‖∞, let us suppose that there
exists a sequence (uk, yk)k of feasible trajectories such that ‖uk‖∞ ≤ R, ‖yk − ȳ‖∞ → 0
and

φ(yk0 , y
k
T )− φ(ȳ0, ȳT ) ≤ o(‖uk − ū‖22 + |yk0 − ȳ0|2). (3.98)

We use the notations introduced in (3.67). Let λ∗ = (β∗,Ψ∗, ν∗, µ∗) ∈ ΛR
P (ū, ȳ) be such

that (3.97) holds.
⊲ First step: ‖uk − ū‖2 = R2,k → 0.

By Assumption 3.4, there exists a sequence of controls (ûk)k such that

ûkt ∈ U(t), for a.a. t and ‖uk − ûk‖∞ = O(‖δyk‖∞) = O(R1,k). (3.99)

As a consequence of (3.82), we obtain that

β∗(φ(yk0 , y
k
T )− φ(ȳ0, ȳT ))

≥
∫ T

0

(
H[pλ

∗

t ](t, ukt , ȳt)−H[pλ
∗

t ](t, ûkt , ȳt)
)
dt

+

∫ T

0

(
H[pλ

∗

t ](t, ûkt , ȳt)−H[pλ
∗

t ](t, ūt, ȳt)
)
dt + o(1)

≥ α‖ûk − ū‖22 + o(1)

= α‖uk − ū‖22 + o(1).

Since β∗(φ(yk0 , y
k
T ) − φ(ȳ0, ȳT )) → 0, we obtain that ‖uk − ū‖2 → 0. Therefore, the

sequence of trajectories satisfy (3.59) and by the Cauchy-Schwarz inequality, R1,k → 0.
Now, we can build a sequence of partitions (Ak, Bk)k which satisfies (3.64). Let us

define
Ak :=

{
t ∈ [0, T ], |ukt − ūt| ≤ R

1/4
1,k

}
(3.100)
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and Bk := [0, T ]\Ak. Then,

‖uk − ū‖1 ≥
∫

Bk

(‖uk − ū‖1 + |δyk0 |)1/4dt ≥ |Bk|(‖uk − ū‖1)1/4. (3.101)

Thus, |Bk| ≤ (‖uk − ū‖1)3/4 → 0 and we can construct all the elements useful for the
decomposition principle: ũk, uA,k, vA,k, δyk, yA,k, and zA,k.

Let λ̄ ∈ ΛR
P (ū, ȳ), π ∈ [0, 1) and λ := πλ̄ + (1 − π)λ∗. The Hamiltonian depending

linearly on the dual variable, the quadratic growth property (3.97) holds for λ (instead
of λ∗) with the coefficient (1− π)α > 0 (instead of α).

⊲ Second step: we show that R2,B,k = O(R2,A,k) and Ω[λ](vA,k, zA,k) ≤ o(R2
2,A,k).

By the decomposition principle (Theorem 3.14), we obtain that

Ω[λ](vA,k, zA,k) +

∫

Bk

[
H[pλt ](t, u

k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)

]
dt

≤ β(φ(yk0 , y
k
T )− φ(ȳ0, ȳT )) + o(R2

2,k) ≤ o(R2
2,k). (3.102)

We cannot use directly the quadratic growth of the Hamiltonian, since the control uk does
not satisfy necessarily the mixed constraint c(t, ukt , ȳt) ≤ 0. Therefore, we decompose
the difference of Hamiltonians as follows:

∆k =

∫

Bk

[
H[pλt ](t, u

k
t , ȳt)−H[pλt ](t, ũ

k
t , ȳt)

]
dt = ∆a

k +∆b
k +∆c

k, (3.103)

with

∆a
k :=

∫

Bk

(
H[pλt ](t, u

k
t , ȳt)−H[pλt ](t, û

k, ȳt)
(
dt,

∆b
k :=

∫

Bk

(
H[pλt ](t, û

k, ȳt)−H[pλt ](t, ūt, ȳt)
(
dt,

∆c
k :=

∫

Bk

(
H[pλt ](t, ūt, ȳt)−H[pλt ](t, ũt, ȳt)

(
dt.

Note first that by (3.102), ∆k ≤ O(R2
2,A,k) + o(R2

2,B,k). We set

R̂2,B,k =
[ ∫

Bk

|ûkt − ūt|2 dt
]1/2

. (3.104)

Note that ∆b
k ≥ 0. In order to prove that R2,B,k = O(R2,A,k), we need the following two

estimates:

|∆a
k|+ |∆c

k| = o(∆b
k), (3.105)

|R2
2,B,k − R̂2

2,B,k| = o
(
R2

2,B,k

)
. (3.106)

Since the control is uniformly bounded, the Hamiltonian is Lipschitz with respect to u
and we obtain that

|∆a
k|+ |∆c

k| = O(|Bk|R1,k), (3.107)



3.5 Quadratic growth for bounded strong solutions 95

while, as a consequence of the quadratic growth of the Hamiltonian,

∆b
k ≥ α(1 − π)R̂2

2,B,k

≥ α(1 − π)|Bk|
(
R

1/4
1,k +O(R1,k)

)2

≥ α(1 − π)|Bk|R1/2
1,k

(
1 +O(R

3/4
1,k )

)2
, (3.108)

which proves (3.105). Combined with (3.102) and Ω[λ](vA,k, zA,k) = O(R2
2,A,k), we

obtain that

∆b
k = O(∆a

k +∆b
k +∆c

k) = O(∆k) = O(R2
2,A,k) + o(R2

2,B,k) (3.109)

and

R̂2
2,B,k ≤ 1

α(1− π)
∆b

k = O(∆k) ≤ O(R2
2,A,k) + o(R2

2,B,k). (3.110)

Let us prove (3.106). For all k, we have

∣∣R2
2,B,k − R̂2

2,B,k

∣∣ =
∣∣∣
∫

Bk

(
|ukt − ūt|2 − |ûkt − ū2t |

)
dt
∣∣∣

≤
∫

Bk

|ukt − ûkt |
(
|ukt − ûk|+ 2|ukt − ūt|

)
dt

≤ ‖uk − ûk‖∞
(∫

Bk

|ukt − ûkt |dt+ 2

∫

Bk

|ukt − ūt|dt
)

= O(R1,k)(O(|Bk|R1,k) +O(R1,B,k))

= o(R2
2,k)

which proves (3.106), by using (3.108). Combined with (3.110), it follows that

R2
2,B,k = R̂2

2,B,k + o(R2
2,k) = O(R2

2,A,k) + o(R2
2,B,k) (3.111)

and finally that
R2

2,B,k = O(R2
2,A,k) and R2,k = O(R2,A,k). (3.112)

Moreover, since ∆b
k ≥ 0 and by (3.105), (3.109), and (3.112),

Ω[λ](vA,k, zA,k) ≤ o(R2
2,k)−∆a

k −∆c
k

≤ o(R2
2,k) + o(∆k) ≤ o(R2

2,A,k). (3.113)

⊲ Third step: contradiction.
Let us set

wk =
vA,k

R2,A,k
and xk =

zA,k

R2,A,k
= z[wk, δyk0/R2,A,k]. (3.114)

The sequence (wk, xk0)k being bounded in L2(0, T ;Rm)× R
n, it converges (up to a sub-

sequence) for the weak topology to a limit point, say (w, x0). Let us set x = z[w, x0].
Let us prove that (w, x) ∈ C2(ū, ȳ). It follows from the continuity of the linear mapping

z : (v, z0) ∈ L2(0, T ;Rm)× R
n → z[v, z0] ∈W 1,2(0, T ;Rn) (3.115)
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and the compact imbedding of W 1,2(0, T ;Rn) into C(0, T ;Rn) that extracting if neces-
sary, (xk)k converges uniformly to x. Using (3.71), we obtain that

‖δyk −R2,A,kx‖∞ = ‖zA,k −R2,A,kx‖∞ + o(R2,A,k)

= R2,A,k

(
‖xk − x‖∞ + o(1)

)

= o(R2,A,k). (3.116)

It follows that

φ(yk0 , y
k
T )− φ(ȳ0, ȳT ) = R2,A,kDφ(ȳ0, ȳT )(x0, xT ) + o(R2,A,k), (3.117)

Φ(yk0 , y
k
T )− Φ(ȳ0, ȳT ) = R2,A,kDφ(ȳ0, ȳT )(x0, xT ) + o(R2,A,k), (3.118)

∥∥g(t, ykt )− g(t, ȳt)−R2,A,kDg(t, ȳt)xt
∥∥
∞ = o(R2,A,k). (3.119)

This proves that

Dφ(ȳ0, ȳT )(x0, xT ) = 0, (3.120)

DΦ(ȳ0, ȳT )(x0, xT ) ∈ TKΦ
(φ(ȳ0, ȳT )), (3.121)

Dg(·, ȳ)x ∈ TKg(g(·, ȳ)). (3.122)

Let us set, for a.a. t,

c̄t = c(t, ūt, ȳt) and ckt = c̄t1{t∈Bk} + c(t, uA,k, ykt )1{t∈Ak}. (3.123)

We easily check that

‖ckt − (c̄t +R2,A,kDc(t, ūt, ȳt)(w
k
t , x

k
t ))‖∞ = o(R2,A,k). (3.124)

Therefore,
ck − c̄

R2,A,k
⇀ Dc(t, ūt, ȳt)(wt, xt) (3.125)

in L2(0, T ;Rnc
− ). Moreover, ckt ≤ 0, for almost all t, therefore the ratio in (3.125) belongs

to TKc(c(·, ū, ȳ)). This cone being closed and convex, it is weakly closed and we obtain
finally that

Dc(t, ūt, ȳt)(wt, xt) ∈ TKc(c(·, ū, ȳ)). (3.126)

We have proved that (w, x) ∈ C2(ū, ȳ). By Assumption 3.5, Ω[λ] is weakly∗ lower
semi-continuous, thus from (3.113) we get

Ω[λ](w, x) ≤ lim inf
k

Ω[λ](wk, xk) ≤ 0. (3.127)

Passing to the limit when π → 1, we find that Ω[λ̄](w, x) ≤ 0. Since λ̄ was arbitrary in
ΛR
P (ū, ȳ), it follows by the sufficient conditions that (w, x) = 0 and that for any λ for

which the quadratic growth of the Hamiltonian holds,

Ω[λ](w, x) = lim
k

Ω[λ](wk, xk). (3.128)

Since Ω[λ] is a Legendre form, we obtain that (wk, zk0 )k converges strongly to 0, in
contradiction with the fact that ‖wk‖2 + |xk0 | = 1. This concludes the proof of the
theorem.
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3.6 Characterization of quadratic growth

In this section, we prove that the second-order sufficient conditions are also necessary
to ensure the quadratic growth property. The proof relies on the necessary second-
order optimality conditions in Pontryagin form that we established in [14]. Let us first
remember the assumptions required to use these necessary conditions.

Assumption 3.6. The mappings f and g are C∞, c is uniformly quasi-C2, Φ and φ
are C2.

For δ′ > 0 and ε′ > 0, let us define

∆δ′

c,i := {t ∈ [0, T ] : ci(t, ūt, ȳt) ≥ −δ′}, (3.129)

∆0
g,i := {t ∈ [0, T ] : gi(t, ȳt) = 0} \ Tg,i, (3.130)

∆ε′

g,i := {t ∈ [0, T ] : dist(t,∆0
g,i) ≤ ε′}. (3.131)

Assumption 3.7 is a geometrical assumption on the structure of the control. Assump-
tion 3.8 is related to the controllability of the system, see [17, Lemma 2.3] for conditions
ensuring this property.

Assumption 3.7. For 1 ≤ i ≤ ng, ∆
0
g,i has finitely many connected components and gi

is of finite order qi.

Assumption 3.8. There exist δ′, ε′ > 0 such that the linear mapping from V2 × R
n to∏nc

i=1 L
2(∆δ′

c,i)×
∏ng

i=1W
qi,2(∆ε′

g,i) defined by

(v, z0) 7→




(
Dci(·, ū, ȳ)(v, z[v, z0])|∆δ′

c,i

)

1≤i≤nc(
Dgi(·, ȳ)z[v, z0]|∆ε′

g,i

)

1≤i≤ng


 is onto. (3.132)

The second-order necessary conditions are satisfied on a subset of the critical cone
called strict critical cone. The following assumption ensures that the two cones are equal
[21, Proposition 3.10].

Assumption 3.9. There exists λ = (β̄, Ψ̄, ν̄, µ̄) ∈ ΛL(ū, ȳ) such that

ν̄i(t) > 0 for a.a. t ∈ ∆0
c,i 1 ≤ i ≤ nc, (3.133)

supp(µ̄i) ∩∆0
g,i = ∆0

g,i 1 ≤ i ≤ ng. (3.134)

The main result of [14] was the following necessary conditions in Pontryagin form:

Theorem 3.19. Let Assumptions 3.2, 3.3, and 3.6-3.9 hold. If (ū, ȳ) is a Pontryagin
minimum of problem (P ), then for any (v, z) ∈ C2(ū, ȳ), there exists λ ∈ ΛP (ū, ȳ) such
that

Ω[λ](v, z) ≥ 0. (3.135)

Assumption 3.10. All Pontryagin multipliers λ = (β,Ψ, ν, µ) are non singular, that is
to say, are such that β > 0.
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This assumption is satisfied if one of the usual qualification conditions holds since
then, all Lagrange multipliers are non singular. In [14, Proposition A.13], we gave a
weaker condition ensuring the non singularity of Pontryagin multipliers.

Lemma 3.20. Let Assumptions 3.2, 3.3, and 3.6-3.10 hold. If the quadratic growth
property for bounded strong solutions holds at (ū, ȳ), then the sufficient second-order
conditions are satisfied.

Proof. Let R > ‖ū‖∞, let α > 0 and ε > 0 be such that for all (u, y) ∈ F (P ) with
‖u‖∞ ≤ R and ‖y − ȳ‖∞ ≤ ε,

φ(y0, yT )− φ(ȳ0, ȳT ) ≥ α(‖u − ū‖22 + |y0 − ȳ0|2). (3.136)

Then, (ū, ȳ) is a Pontryagin minimum to a new optimal control problem with cost

φ(y0, yT )− α(|y0 − ȳ0|2 + ‖u− ū‖2) (3.137)

and with the additional constraint ‖u‖∞ ≤ R. The new Hamiltonian and the new
Hessian of the Lagrangian are now given by resp.

H[p](t, u, y)− αβ|u − ū|2 and Ω[λ](v, z) − αβ(‖v‖2 + |z0|2). (3.138)

It is easy to check that the costate equation is unchanged and that the set of Lagrange
multipliers of both problems are the same. The set of Pontryagin multipliers to the new
problem is the set of Lagrange multipliers λ for which for a.a. t, for all u ∈ U(t) with
|u| ≤ R,

H[pλt ](t, u, ȳt)−H[pλt ](t, ūt, ȳt) ≥ αβ|u− ū|22, (3.139)

it is thus included into ΛR
P (ū, ȳ) (which was defined by (3.96)). Let (v, z) in C2(ū, ȳ)\{0},

then by Theorem 3.19, there exists a Pontryagin multiplier (to the new problem), be-
longing to ΛR

P (ū, ȳ), which is such that

Ω[λ](v, z) ≥ αβ(|z0|2 + ‖v‖22) > 0. (3.140)

The sufficient second-order optimality conditions are satisfied.

Finally, combining Theorem 3.18 and Lemma 3.20 we obtain a characterization of
the quadratic growth property for bounded strong solutions (under the Legendre-Clebsch
assumption).

Theorem 3.21. Let Assumptions 3.2-3.10 hold. Then, the quadratic growth property
for bounded strong solutions holds at (ū, ȳ) if and only if the sufficient second-order
conditions are satisfied.
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Abstract

In this chapter, we compute a second-order expansion of the value function of a
family of relaxed optimal control problems with final-state constraints, parameterized
by a perturbation variable. In this framework, relaxation with Young measures enables
us to consider a wide class of perturbations and therefore to derive sharp estimates of
the value function. The sensitivity analysis is performed in a neighborhood of a local
optimal solution of a reference problem. The local solution ū is assumed to be optimal
with respect to the set of feasible relaxed controls having their support in a ball of a
given radius R > ‖u‖∞ and having an associated trajectory very close to the reference
trajectory, for the L∞-norm. We call such a solution a relaxed R-strong solution.

Résumé

Dans ce chapitre, nous calculons un développement au second ordre de la fonction
valeur d’une famille de problèmes de contrôle optimal avec contraintes sur l’état final,
paramétrée par une variable de perturbation. L’analyse de sensibilité est réalisée pour
des contrôles nommés R−strong solutions. Ce sont des solutions optimales par rapport à
l’ensemble des contrôles admissibles de norme infinie inférieure à R ayant une trajectoire
associée dans un petit voisinage pour la norme infinie. Dans ce cadre, la relaxation nous
permet de considérer une large classe de perturbations et ainsi d’obtenir des estimations
précises de la fonction valeur.

4.1 Introduction

We consider a family of relaxed optimal control problems with final-state constraints,
parameterized by a perturbation variable θ. The variable θ can perturb the dynamic of
the system, the cost function and the final-state constraints. The aim of the article is to
compute a second-order expansion of the value V (θ) of the perturbed problems, in the
neighborhood of a reference value of θ, say θ̄. We assume that the reference problem has
a classical local solution ū. The specificity of our work is to consider that this solution is
an R-strong solution, a type of solutions that we introduce and which is closely related to
the usual bounded strong solutions. We also provide some information on the first-order
behavior of perturbed solutions.

There is already an important literature on sensitivity analysis of optimal control
problems. By using a shooting formulation of the problems and extensions of the im-
plicit function theorem, Malanowski and Maurer prove the existence of weak solutions to
the perturbed problems and their Fréchet-differentiability with respect to the perturba-
tion parameter [55], for optimal control problems with first-order state constraints and
mixed constraints. The obtained derivative is itself the solution of a linear quadratic
optimal control problem. Then, a second-order expansion of the value function follows.
We also refer the reader to [51] (and the references therein) for results on the Lips-
chitzian behaviour of perturbed solutions of problems with mixed and first-order state
constraints and to [42] for the case of problems with second-order (and higher-order)
state constraints. Roughly speaking, three kinds of assumptions in all these papers
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are considered: a sufficient second-order condition, a qualification condition and strict
complementarity conditions (imposing in particular the uniqueness of the multiplier).

In this article, rather than using the implicit function theorem, we follow the method-
ology described in [21] and originally in [12]. This approach allows to derive a second-
order expansion of the value function without the assumptions of strict complementarity.
In general, this approach does not ensure differentiability properties of perturbed solu-
tions. The approach is the following: we begin by linearizing the family of optimization
problems in the neighborhood of an optimal solution of the reference problem. Under a
qualification condition, the first-order and second-order linearizations provide a second-
order upper estimate of the value function. The two coefficients involved are the values
of two linearized optimization problems, considered in their dual form. Then, a first
lower estimate is obtained by expanding the Lagrangian up to the second order. Consid-
ering a strong sufficient second-order condition, we show that the distance between the
reference solution and solutions to the perturbed problems is of order |θ − θ̄|. Finally,
the lower estimate corresponds to the upper estimate previously obtained.

The sensitivity analysis is performed in the framework of relaxed optimal controls.
Roughly speaking, at each time, the control variable is not anymore a vector in a space U ,
but a probability measure on U , like if we were able to use several controls simultaneously.
The new control variable is now a Young measure, in reference to the pioneering work
of Young [73]. Relaxation of optimal control problems with Young measures has been
much studied, in particular in [33, 54, 71, 72, 73]. Any Young measure is the weak-∗
limit of a sequence of classical controls, therefore, we expect that a classical optimal
control problem and its relaxed version have the same value. This question is studied,
for instance, in [8, 35].

Three aspects motivate the use of the relaxation. First, by considering convex combi-
nations of controls in the sense of measures, we manage to describe in a convenient way a
large class of tangential directions of the reachable set. This class of tangential directions
was called cone of variations in the early papers of McShane [54], Gamkrelidze [37] and
Warga [70, 71]. It enables to prove Pontryagin’s principle with the standard methods
used to derive first-order optimality conditions of optimization problems. In our study,
we obtain upper estimates expressed with Pontryagin multipliers. More precisely, the
two linearized optimization problems that we obtain have a dual form involving multipli-
ers for which Pontryagin’s principle holds. Let us mention that Dmitruk used a partial
relaxation technique in [27], under the name of sliding modes, to prove Pontryagin’s
principle. His method does not need the use of Young measures, since the relaxation is
performed on discrete sets. On the other hand, an infinite sequence of auxiliary prob-
lems (justified in [28]) is required to obtain Pontryagin’s multipliers. Second, in the
framework of relaxation, we can derive a metric regularity theorem for the L1-distance
using abstract results from [30] and finally, the existence of relaxed solutions for the
perturbed problem is guaranteed. Note that such solutions do not always exist in a
classical framework.

The sensitivity analysis is realized locally, in a neighborhood of a local optimal so-
lution ū of the reference problem. In this study, we use the notion of relaxed R-strong
optimal controls, for R > ‖ū‖∞. We say that a control is a relaxed R-strong optimal
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solution if it is optimal with respect to the Young measures having their support in a
ball of radius R and having a state variable sufficiently close for the uniform norm. This
notion is related to the one of bounded strong solutions [55]. In order to obtain a sharp
upper estimate of V , we must derive a linearized problem from a wide class of pertur-
bations of the control. More precisely, we must be able to perturb the reference optimal
control with close controls for the L1-distance, taking into account that they are usually
not necessarily close for the L∞-distance. For such perturbations of the control, we use
a particular linearization of the dynamics of the system, the Pontryagin linearization
[55].

We obtain a lower estimate of the value function by assuming a sufficient second-order
condition having the same nature as the one in [18]. We assume that a certain quadratic
form is positive and that the Hamiltonian satisfies a quadratic growth condition. In order
to expand the Lagrangian up to the second-order, we split the controls into two parts,
one accounting for the small perturbation of the control in the L∞-distance and the other
one accounting for the large variations. We obtain an extension of the decomposition
principle described in [18] and a lower estimate which corresponds to the upper estimate
obtained previously.

The outline of the paper is as follows. In section 4.2, we prove some preliminary
results and in particular, a metric regularity theorem. Note that we will always suppose
that the associated qualification condition holds. In section 4.3, we obtain a first-order
upper estimate of V and in section 4.4 a second-order upper estimate, given in theorem
4.26. In section 4.5, we prove the decomposition principle (theorem 4.28) and we obtain
the lower estimate (theorem 4.34). Two examples are discussed in section 4.6. In the
appendix, we provide the theoretical material related to Young measures, with precise
references from [7, 24, 67, 68]. We also justify the use of relaxation and present some
technical proofs for completeness.

4.2 Formulation of the problem and preliminary results

4.2.1 Setting

In this part, we define the family of optimal control problems that we want to study.
We also introduce the notion of relaxed R-strong solutions.

In the article, the perturbation parameter will be denoted by θ. A reference value
of θ, say θ̄ is given. We restrict ourselves to the case where θ is nonnegative and θ̄ = 0.
We assume that the functions used are defined for θ ∈ [0, 1]. Consider the control and
state spaces

U := L∞(0, T ;Rm), Y :=W 1,∞(0, T ;Rn), (4.1)

and the state equation, defined in a classical framework, for the moment:
{

ẏt = f(ut, yt, θ), for a.a. t ∈ [0, T ],

y0 = y0,
(4.2)

where y0 ∈ R
n is given and fixed. For a control u in U and θ ≥ 0, we denote by y[u, θ]

the trajectory satisfying the differential system (4.2). We consider the following final
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state constraint:
Φ(yT , θ) ∈ K, K := {0}nE × R

nI
− ⊂ R

nC , (4.3)

with nC = nE + nI . The general family of optimal control problems that we consider is
the following:

Min
u∈U

φ(yT [u, θ], θ), s.t. Φ(yT [u, θ], θ) ∈ K. (4.4)

All introduced functions (f , φ, and Φ) are supposed to be C2 (twice differentiable with
a continuous second-order derivative).

In this general setting, it is not possible to perform a sensitivity analysis of the global
problem. Instead, we are interested in the local behavior of the solutions of the family of
problems, in the neighborhood of a local solution of the reference problem (with θ = 0).
Let us make clear the notion of local optimality which is used. From now on, we fix a
control ū ∈ U and its associated trajectory ȳ = y[ū, 0].

Definition 4.1. Let R > ‖ū‖∞, the control ū is said to be an R-strong optimal solution
if there exists η > 0 such that ū is a solution to the following localized reference problem:

Min
u∈U ,‖u‖∞≤R

φ(yT [u, 0], 0), s.t. Φ(yT [u, 0], 0) ∈ K, ‖y[u, 0] − ȳ‖∞ ≤ η. (4.5)

Note that the control ū is a bounded strong solution if for all R > ‖ū‖∞, it is an
R-strong optimal solution [55, page 291]. If for a given R > ‖ū‖∞, ū is an R−strong
solution, then it is a weak solution.

Let us consider now a relaxed version of this definition. Let us denote by UR the
closed ball of radius R and center 0 in R

m. We denote by MY
R the set of Young mea-

sures on [0, T ] × UR. Relaxation consists in replacing classical controls in U by Young
measures, that we will call relaxed controls, like if we were able to take several deci-
sions simultaneously at each time. The basic definitions related to Young measures are
recalled in the appendix.

The dynamic associated with a Young measure µ in MY
R is the following:

{
ẏt =

∫
UR
f(u, yt, θ) dµt(u), for a.a. t ∈ [0, T ],

y0 = y0.
(4.6)

This definition is compatible with (4.2) for controls in U . We extend the mapping y[u, θ]
to Young measures and we say that µ ∈ MY

R is feasible for the value θ if

Φ(yT [µ, θ], θ) ∈ K. (4.7)

From now on, we fix R > ‖ū‖∞ and we denote by µ̄ the Young measure associated with
ū.

Definition 4.2. The relaxed control µ̄ is said to be a relaxed R-strong optimal solution
if there exists η > 0 such that µ̄ is solution to the following relaxed localized reference
problem:

Min
µ∈MY

R

φ(yT [µ, 0], 0), s.t. Φ(yT [µ, 0], 0) ∈ K, ‖y[µ, 0]− ȳ‖∞ ≤ η. (4.8)
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Note that if µ̄ is a relaxed R-strong solution, then ū is an R-strong solution. From
now on, we suppose that µ̄ is a relaxed R-strong optimal solution for the value η̄. The
relaxed optimal control problems that we will study are the following:

V η(θ) :=





Min
µ∈MY

R

φ(yT [µ, θ], θ),

s.t. Φ(yT [µ, θ], θ) ∈ K, ‖y[µ, θ]− ȳ‖∞ ≤ η.
(PY,η

θ )

Remark 4.3. Note that η is not fixed. For all 0 < η ≤ η′, for all θ ≥ 0,

V η′(θ) ≤ V η(θ).

By assumption, for all η ∈ (0, η̄], V η(0) = V η̄(0). The role of η in the study is secondary,
but it cannot be neglected. Indeed, all the results related to upper estimates (lemma
4.15 and theorem 4.26) are satisfied for all η ∈ (0, η̄]. In section 4.5, the second-order
sufficient condition ensures that for small, positive, and fixed values of η, there exist
solutions µθ of (PY,η

θ ), converging to µ̄ for the L2-distance (theorem 4.33). Thus, the
associated trajectories converge uniformly. This proves that for small values of η > 0,
for all 0 < η′ < η, V η and V η′ coincide on a neighborhood of 0.

4.2.2 Estimates

In our study, the addition of Young measures must be understood as the addition of
measures on [0, T ] × UR. With this definition of the addition, the set MY

R is convex.
The following lemma is a corollary of lemma 4.7. The distance d1 is the Wasserstein
distance, defined by (4.71).

Lemma 4.4. Let µ0 and µ1 be in MY
R, and σ in [0, 1]. Then,

d1(µ
0, (1− σ)µ0 + σµ1) ≤ σd1(µ

0, µ1) ≤ 2RTσ.

In the sequel, we use the notation g[t] := g(ūt, ȳt, 0) for every function g of (u, y, θ).
The following definition of the Pontryagin linearization is a particular linearization of the
state equation. Indeed, we only linearize the dynamic with respect to the state variable.
We extend the definition of [55, page 40] to Young measures.

Definition 4.5. For a given control µ, we define the Pontryagin linearization ξ[µ] in Y
as the solution of

{
ξ̇t[µ] = fy[t]ξt[µ] +

∫
UR
f(u, ȳt, 0) dµt(u)− f [t], for a.a. t ∈ [0, T ],

ξ0[µ] = 0.

Denote by ξθ the solution of the following differential system:

{
ξ̇θt = fy[t]ξ

θ
t + fθ[t], for a.a. t ∈ [0, T ],

ξθ0 = 0.
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Lemma 4.6. The following estimates hold:

‖y[µ, θ]− ȳ‖∞ = O(d1(µ, µ̄) + θ), (4.9)

‖y[µ, θ]− (ȳ + ξ[µ] + θξθ)‖∞ = O(d1(µ, µ̄)
2 + θ2), (4.10)

where d1 is the Wasserstein distance (4.71).

This lemma is proved in the appendix, page 130.

4.2.3 Metric regularity

For q ∈ N\{0}, we set ∆ :=
{
γ ∈ R

q
+,
∑q

i=1 γi ≤ 1
}
. Given µ1, ..., µq ∈ MY

R, we denote

by S the following mapping:

S : (µ0, γ) ∈ (MY
R ×∆) 7→

(
1−

q∑

i=1

γi

)
µ0 +

q∑

i=1

γiµ
i ∈ MY

R . (4.11)

Lemma 4.7. Let γ, γ′ ∈ ∆, and let µ0 ∈ MY
R. Then,

d1
(
S(µ0, γ), S(µ0, γ′)

)
≤

q∑

i=1

|γ′i − γi|d1(µi, µ0) ≤ 2RT

q∑

i=1

|γ′i − γi|.

This lemma is proved in the appendix, page 131. We introduce the following set:

RT := {ξT [µ], µ ∈ MY
R}. (4.12)

The Pontryagin linearization being affine with respect to µ, RT is clearly convex. We
denote by C(RT ) the smallest closed cone containing RT . Since RT is convex, C(RT )
is also convex. This set should be understood as a set of tangential directions of the
reachable set (at the final time). It is a close object to the cone of variations described
in [37, page 121], [71, page 132] and [54, page 457].

Definition 4.8 (Qualification). The control µ̄ is qualified if there exists ε > 0 such that

εB ⊂ Φ(ȳT , 0) + ΦyT (ȳT , 0)C(RT )−K, (4.13)

where B is the unit ball of Rnc and the r.h.s. is understood as
{
Φ(ȳT , 0) + ΦyT (ȳT , 0)ξ − ζ, such that ξ ∈ C(RT ), ζ ∈ K

}
.

In the sequel, we will always assume that µ̄ is qualified. Note that our qualification
condition has the usual form of the Robinson qualification condition and that in remark
4.21, we show that this assumption is weaker than the standard qualification assump-
tion. In general, the Robinson qualification condition allows to compute tangent cones,
thanks to a metric regularity property and finally to prove the existence of nondegen-
erate Lagrange multipliers. In this article, the qualification condition allows to prove a
theorem of metric regularity for the relaxed problem. This theorem will be a useful tool
to justify the linearized problems. The main elements of the proof of the theorem can
be found in [71, lemma 3.1].
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Theorem 4.9. If µ̄ is qualified, then there exist δ > 0, σ > 0, and C ≥ 0 such that for
all θ ∈ [0, σ], for all µ satisfying d1(µ, µ̄) ≤ δ, there exists a control µ′ satisfying

Φ(yT [µ
′, θ], θ) ∈ K and d1(µ

′, µ) ≤ C dist(Φ(yT [µ, θ], θ),K). (4.14)

Proof. ⊲ First step: reduction to a finite-dimensional case.
If (4.13) holds, it can be proved that there exists a family (ξi)i, i = 1, ..., nA (with
nA ≤ nC + 1) in C(RT ) such that for some ε1 > 0,

ε1B ⊂ Φ(ȳT , 0) + ΦyT (ȳT , 0)
(
conv{ξT [µ1], ..., ξT [µnA ]}

)
−K.

Using the mapping S defined by (4.11), with q = nA, we consider the mapping

Gµ,θ : γ ∈ ∆ 7→ Φ(yT [S(µ, γ), θ], θ) ∈ R
nC , (4.15)

defined for all (µ, θ) in MY
R × R+. Note that Gµ,θ(0nA

) = Φ(yT [µ, θ], θ).
Let us fix µ, θ. It can be shown that γ 7→ Gµ,θ(γ) is differentiable on ∆ in the

following sense: there exists a unique mapping γ ∈ ∆ 7→ G′
µ,θ(γ) ∈ R

nA such that, for
all γ, γ′ ∈ ∆,

Gµ,θ(γ
′) = Gµ,θ(γ) +G′

µ,θ(γ)(γ
′ − γ) + o(|γ′ − γ|).

An explicit formula for G′
µ,θ can be obtained with the Pontryagin linearization, see e.g.

[71, equation 3.1.6]. By lemma 4.35, the mapping (µ, θ) ∈ MY
R × R+ 7→ G′

µ,θ(.) ∈
L∞(∆,RnA) is continuous (for the L1-distance of MY

R) and

G′
µ̄,0(0nA

)δγ = ΦyT (ȳT , 0)
( nA∑

i=1

ξT [µ
i]δγi

)
. (4.16)

It follows from (4.16) that

Gµ̄,0(0nA
) +G′

µ̄,0(0nA
)∆ = Φ(ȳT , 0) + ΦyT (ȳT , 0)

(
conv{ξT [µ1], ..., ξT [µnA ]}

)
.

Therefore, by the Robinson-Ursescu stability theorem (see e.g. [61, 66] and also [21,
theorem 2.87]), Gµ̄,0 is metric regular with respect to K at 0nA

with a constant C1 > 0
(in the sense of [21, relation (2.165)]).

⊲ Second step: metric regularity of Gµ,θ.
Moreover, there exist a neighborhood Oµ of µ̄ (for the L1-distance), σ > 0, and a
neighborhood Oγ of 0nA

such that for all (µ, θ, γ) in Oµ × [0, σ] × (Oγ ∩∆), |G′
µ,θ(γ)−

G′
µ̄,0(γ)| ≤ C1

2 . By [21, theorem 2.84], the whole family of functions Gµ,θ is metric
regular at 0nA

, for all µ ∈ Oµ and all θ ∈ [0, σ]. It means in particular that there exists
a constant C2 ≥ 0 which is such that for all µ ∈ Oµ and all θ ∈ [0, σ],

dist(0nA
, G−1

µ,θ(K)) ≤ C2 dist(Gµ,θ(0nA
),K).

⊲ Third step: conclusion.
Let (µ, θ) be in Oµ × [0, σ], since Gµ,θ(0nA

) = Φ(yT [µ, θ], θ), there exists γ̃ in G−1
µ,θ(K)

such that
|γ̃| ≤ C dist(Gµ,θ(0nA

),K) = C dist(Φ(yT [µ, θ], θ),K).
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Finally, we set µ′ = S(µ, γ̃). This control satisfies the final-state constraint and by
lemma 4.7, d1(µ

′, µ) ≤ 2RT |γ̃|. Restricting Oµ to a ball (for the L1-distance) of radius
δ > 0 and center µ̄, we obtain the theorem with δ, σ, µ′, and C = 2RTC2.

Corollary 4.10. For all η > 0, there exists θ̃ > 0 such that for all θ ∈ [0, θ̃], problem
(PY,η

θ ) has an optimal solution.

Proof. Let η > 0. As a consequence of the compactness ofMY
R and the weak-∗ continuity

of µ 7→ y[µ, θ], every minimizing sequence has a limit point which is a solution to problem
(PY,η

θ ). Therefore, for θ sufficiently small, we only need to prove the existence of a feasible
control µ satisfying ‖y[µ, θ]− ȳ‖∞ ≤ η. For all θ ∈ [0, σ],

dist(Φ(yT [ū, θ], θ),K) = O(θ), (4.17)

therefore, by theorem 4.9, there exists a feasible control µθ such that d1(µ̄, µ
θ) = O(θ).

By lemma 4.35, ‖y[uθ, θ]−ȳ‖∞ = O(θ), therefore, for θ sufficiently small, ‖y[µ, θ]−ȳ‖∞ ≤
η. The corollary is now proved.

4.2.4 Optimality conditions

We introduce now the Hamiltonian function H : Rn∗ ×R
m ×R

n × [0, 1] → R defined by

H[p](u, y, θ) := pf(u, y, θ). (4.18)

We also define the end-point Lagrangian Φ : RnC∗ × R
n × [0, 1] → R by

Φ[λ](yT , θ) := φ(yT , θ) + λΦ(yT , θ). (4.19)

Definition 4.11. Let λ ∈ R
nC∗. We say that pλ in W 1,∞(0, T ;Rn∗) is the costate

associated with λ if it satisfies the following differential equation:
{

−ṗλt = Hy[pt](ūt, ȳt, 0), for a.a. t ∈ [0, T ],

pλT = Φ′[λ](ȳT , 0).
(4.20)

Lemma 4.12. Given v ∈ L∞(0, T ;Rn), let z ∈ Y be the solution of

żt = fy[t]zt + vt, z0 = 0. (4.21)

Then, for all λ in R
nC∗, Φ′[λ](ȳT , 0)zT =

∫ T

0
pλt vt dt.

Proof. The lemma is obtained with an integration by parts:

Φ′[λ](ȳT , 0)zT = pλT zT − pλ0z0 =

∫ T

0
(ṗλt zt + pλt żt) dt

=

∫ T

0
(−pλt fy[t]zt + pλt fy[t]zt + pλt vt) dt =

∫ T

0
pλt vt dt,

as was to be proved.
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In the sequel, the notation N and the notation T refer to the normal and the tangent
cones.

Definition 4.13. We say that λ ∈ NK(Φ(ȳT , 0)) is a Pontryagin multiplier if,

H[pλt ](u, ȳt, 0) ≥ H[pλt ](ūt, ȳt, 0), for a.a. t, ∀u ∈ UR. (4.22)

We denote by ΛP the set of Pontryagin multipliers.

Note that the existence of Pontryagin multipliers (Pontryagin’s principle) is proved
at the end of section 4.3.

Remark 4.14. By (4.3), λ ∈ NK(Φ(ȳT , 0)) iff for all i in {1, ..., nI}, λi ≥ 0 and
Φi(ȳT , 0) < 0 =⇒ λi = 0. Note also that (4.22) is equivalent to: for all µ in MY

R,

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0) −H[pλt ](ūt, ȳt, 0)) dµt(u) dt ≥ 0. (4.23)

4.3 First-order upper estimate of the value function

In this section, we compute a first-order upper expansion of the value function. As
already mentioned, the upper estimate is true for any η ∈ (0, η̄].

Consider the Pontryagin linearized problem





Min
ξ∈C(RT )

φ′(ȳT , 0)(ξ + ξθT , 1),

s.t. Φ′(ȳT , 0)(ξ + ξθT , 1) ∈ TK(Φ(ȳT , 0)).
(PLθ)

Lemma 4.15. For all η ∈ (0, η̄], the following upper estimate on the value function
holds:

lim sup
θ↓0

V η(θ)− V η(0)

θ
≤ Val(PLθ). (4.24)

Proof. Let η ∈ (0, η̄] and let (θk)k ↓ 0 be such that

lim
k→∞

V η(θk)− V η(0)

θk
= lim sup

θ↓0

V η(θ)− V η(0)

θ

Let ξ ∈ F (PLθ), where F (PLθ) is the feasible set of problem (PLθ). By definition of
C(RT ), there exists a sequence (αk, ν

k, ξk)k in R+ ×MY
R ×RT such that ξ = limαkξ

k

and ξk = ξT [ν
k], for all k. Note that it may happen that αk → +∞. Extracting if

necessary a subsequence of (θk)k, we can suppose that

θkαk ≤ 1 and α2
k ≤ 1

kθk
. (4.25)

We set

µk = (1− θkαk)µ̄ + θkαkν
k.



4.3 First-order upper estimate of the value function 109

Then (µk)k is a sequence of Young measures and

ξT [µ
k] = θkαkξ

k = θkξ + o(θk). (4.26)

By (4.25) and lemma 4.4,

d1(µ
k, µ̄)2 = O(θ2kα

2
k) = O

(θk
k

)
= o(θk). (4.27)

By lemma 4.6,

‖y[µk, θk]− (ȳ + ξ[µk] + θkξ
θ)‖∞ = O(d1(µ

k, µ̄)2 + θ2k),

therefore, using (4.26) and (4.27),

∣∣yT [µk, θk]− [ȳT + θk(ξ + ξθT )]
∣∣
∞ = o(θk). (4.28)

We obtain the two following expansions:

φ(yT [µ
k, θk], θk) = φ(ȳT , 0) + θkφ

′(ȳT , 0)(ξ + ξθT , 1) + o(θk), (4.29)

Φ(yT [µ
k, θk], θk) = Φ(ȳT , 0) + θkΦ

′(ȳT , 0)(ξ + ξθT , 1) + o(θk). (4.30)

Since Φ′(ȳT , 0)(ξ + ξθT , 1) ∈ TK(Φ(ȳT , 0)), we obtain that dist(Φ(yT [µ
k, θk], θk),K) =

o(σk) and by the metric regularity theorem (theorem 4.9), we obtain the existence of
a feasible sequence µ̃k such that d1(µ̃

k, µk) = o(θk). Moreover, by (4.27), for k large
enough, ‖y[µk, θk]− ȳ‖∞ ≤ η. By lemma 4.35, estimate (4.29) holds for µ̃k and therefore,
for k large enough,

V η(θk)− V η(0) ≤ φ(yT [µ̃
k, θk], θk)− φ(ȳT , 0) = θkφ

′(ȳT , 0)(ξ + ξθT , 1) + o(θk).

Finally, minimizing with respect to ξ, we find that

lim
k→∞

V η(θk)− V η(0)

θk
≤ Val(PLθ)

and the lemma is now proved.

Let us define (formally) the Lagrangian of the problem by

L(u, y, λ, θ) :=
∫ T

0
H[pλt ](ut, yt, θ) dt+Φ[λ](yT , θ)−

∫ T

0
pλt ẏt dt

and the dual linearized problem (DLθ) by

Max
λ∈ΛP

Lθ(ū, ȳ, λ, 0), (DLθ)

with

Lθ(ū, ȳ, λ, 0) :=

∫ T

0
Hθ[p

λ
t ][t] dt+Φθ[λ](ȳT , 0). (4.31)
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Theorem 4.16. Problem (DLθ) is the dual of problem (PLθ) and has the same value.

Proof. Let us check that problem (PLθ) is qualified. Since K ⊂ TK(Φ(ȳT , 0)),

εB ⊂ Φ(ȳT , 0) + ΦyT (ȳT , 0)C(RT )− TK(Φ(ȳT , 0)). (4.32)

It is easy to prove that Φ(ȳT , 0)− TK(Φ(ȳT , 0)) is a cone. Therefore, the r.h.s. of (4.32)
is a cone and contains necessarily the whole space R

nC . Thus,

εB ⊂ R
nC = Φ(ȳT , 0) + Φ′(ȳT , 0)(ξ

θ
T + C(RT ), 1) − TK(Φ(ȳT , 0)),

which is the Robinson qualification condition for the linearized problem.

Now, let us study the dual problem, which is:

Max
λ∈NK(Φ(ȳT ,0))

inf
ξ∈C(RT )

Φ′[λ](ȳT , 0)(ξ
θ
T + ξ, 1). (4.33)

By lemma 4.12, we obtain that the dual problem is

Max
λ∈NK(Φ(ȳT ,0))

inf
ξ∈C(RT )

{
ΦyT [λ](ȳT , 0)ξ +

∫ T

0
Hθ[p

λ
t ][t] dt+Φθ[λ](ȳT , 0)

}
. (4.34)

We claim that for λ ∈ NK(Φ(ȳT , 0)),

D(λ) := inf
ξ∈C(RT )

ΦyT [λ](ȳT , 0)ξ =

{
0 if λ ∈ ΛP ,

−∞ otherwise.
(4.35)

It is clear that D(λ) ∈ {0,−∞} since ΦyT [λ](ȳT , 0)ξ is linear with respect to ξ and C(RT )
is a cone. Let λ ∈ ΛP . By lemma 4.12, for ξ in RT with associated control µ,

ΦyT [λ](ȳT , 0)ξ

=

∫ T

0

(
− pλt fy[t]ξt[µ] + pλt fy[t]ξt[µ] +

∫

UR

pλt [f(u, ȳt, 0) − f [t]] dµt(u)
)
dt

=

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0)−H[pλt ](ūt, ȳt, 0)) dµt(u) dt, (4.36)

and then, ΦyT [λ](ȳT , 0)ξ ≥ 0. Let ξ ∈ C(RT ), then there exists a sequence (αk, ξ
k)k in

(R+ ×RT ) such that ξ = limk αkξ
k. By (4.36),

ΦyT [λ](ȳT , 0)ξ = lim
k
αkΦyT [λ](ȳT , 0)ξ

k ≥ 0,

therefore D(λ) ≥ 0 and finally, D(λ) = 0. Conversely, if λ is not a Pontryagin multiplier,
by (4.36), there exists a control µ such that ΦyT [λ](ȳT , 0)ξT [µ] < 0. Consequently,
D(λ) < 0 and therefore, D(λ) = −∞. This proves (4.35). Finally, combining (4.34) and
(4.35), we obtain that the dual problem is equivalent to (DLθ) and has the same value
as problem (PLθ) as a consequence of [21, theorem 2.165].
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Consider now the situation where there is no perturbation. The linearized problem
(PLθ) and its dual (DLθ) become respectively

Min
ξ∈C(RT )

φyT (ȳT , 0)ξ, s.t. ΦyT (ȳT , 0)ξ ∈ TK(Φ(ȳT , 0)) (PL)

and

Max
λ∈ΛP

0. (DL)

By lemma 4.15, we obtain that 0 ≤ Val(PL) and since 0 ∈ F (PL), Val(PL) = 0. Since
ΛP is the set of solutions of problem (DL) and since problem (PL) has a finite value,
we obtain by [21, theorem 2.165] that ΛP is nonempty, convex, and compact. Note that
Pontryagin’s principle follows and can be understood as a first-order necessary optimality
condition for relaxed problems. Finally, we obtain that problems (PLθ) and (DLθ) have
a finite value. Therefore, estimate (4.24) writes

V (θ) ≤ V (0) + θVal(DLθ) + o(θ). (4.37)

4.4 Second-order upper estimate of the value function

In this section, we obtain a second-order upper estimate of the value function by using a
“standard” linearization at the first order and a “Pontryagin” linearization at the second
order. Indeed, to obtain a second-order estimate, we need to have a solution to some
linearized first-order problem. Unfortunately, problem (PLθ) is a conic linear problem,
thus, it does not have necessarily a solution. This is why we consider now a different
kind of linearization, which is such that the associated linearized problem has a solution.

In this section and in the sequel, we use properties of Young measures detailed in
the appendix.

4.4.1 Standard linearizations and estimates

We first define some operations on the set of Young measures.

Definition 4.17. Let ν ∈ MY , w ∈ L∞(0, T ;Rm), and θ ∈ R. We denote by

w ⊕ θν

the unique Young measure µ in MY such that for all g in the space of functions vanishing
at infinity C0([0, T ] × Rm) (see the appendix),

∫ T

0

∫

Rm

g(t, u) dµt(u) dt =

∫ T

0

∫

Rm

g(t, wt + θu) dνt(u).

If θ 6= 0, we denote by
ν ⊖ w

θ
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the unique Young measure µ in MY which is such that for all g in C0([0, T ]× R
m),

∫ T

0

∫

Rm

g(t, u) dµt(u) dt =

∫ T

0

∫

Rm

g
(
t,
u− wt

θ

)
dνt(u).

We also denote: ν ⊖ w =
ν ⊖ w

1
.

The addition ⊕ (resp. the subtraction ⊖) must be viewed as translations on R
m of

vector wt (resp. −wt) at each time t. The multiplication (resp. the division) by θ must
be viewed as a homothety of ratio θ (resp. 1

θ ) on R
m, at each time t. Note that it will

always be clear from the context if the multiplication (by constants), or the division, is
the operation described in the previous definition or if it the multiplication of measures
by constants, which we used up to now. Note that for µ ∈ MY

R ,

d1(µ, µ̄) = ‖µ⊖ ū‖1.

We now use the set MY
2 defined in the appendix.

Definition 4.18. For a given ν in MY
2 , we define the standard linearization z[ν] by

{
żt[ν] = fy[t]zt[ν] + fu[t]

( ∫
Rm u dνt(u)

)
, for a.a. t ∈ [0, T ],

z0[ν] = 0.

We also set z1[ν] = z[ν] + ξθ, which is the solution of the following system:
{
ż1t [ν] =

∫
Rm f

′[t](z1t [ν], u, 1) dνt(u), for a.a. t ∈ [0, T ],

z10 [ν] = 0.

Although the Pontryagin linearization has been standard for years in the literature,
we use the terminology standard for the linearization z[ν] since it corresponds to the
most natural way of linearizing a differential system. Note that for µ ∈ MY

R , z[µ⊖ ū] is
the solution to {

żt = fy[t]zt + fu[t]
( ∫

UR
(u− ūt) dµt(u)

)
,

z0 = 0.
(4.38)

Lemma 4.19. For µ in MY
R, the following estimates hold:

‖z[µ ⊖ ū]− ξ[µ]‖∞ = O(d2(µ̄, µ)
2), (4.39)

‖y[µ, θ]− ȳ‖∞ = O(‖µ⊖ ū‖1 + θ), (4.40)

‖y[µ, θ]− (ȳ + z[µ⊖ ū] + θξθ)‖∞ = O(‖µ ⊖ ū‖22 + θ2). (4.41)

The proof is given in the appendix, page 131. The Wasserstein distance and the
norm ‖ · ‖2 are also defined in the appendix.

Corollary 4.20. For all ν in MY
∞,

z[ν] = lim
θ↓0

ξ[ū⊕ θν]

θ
.
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Proof. By estimate (4.39), for θ > 0 sufficiently small,

∥∥z[ν]− ξ[ū⊕ θν]

θ

∥∥
∞ =

1

θ
‖z[θν]− ξ[ū⊕ θν]‖∞ =

O(θ2)

θ
= O(θ).

The corollary is now proved.

Remark 4.21. Denoting by C the smallest closed convex cone containing {z[ν]T , ν ∈
L∞(0, T ;Rn)}, we obtain by corollary 4.20 that C ⊂ C(RT ). A standard qualification
condition for the problem would have been to assume that for some ε′ > 0,

ε′B ⊂ Φ(ȳT , 0) + ΦyT (ȳT , 0)C −K.

This assumption is stronger than the qualification condition (condition (4.13)) that we
assumed.

Consider the following standard linearized problem in MY
2 .

Min
ν∈MY

2

φ′(ȳT , 0)(z
1
T [ν], 1), s.t. Φ′(ȳT , 0)(z

1
T [ν], 1) ∈ TK(Φ(ȳT , 0)). (SPLθ)

and the standard linearized problem in L2 := L2(0, T ;Rm) defined by

Min
v∈L2

φ′(ȳT , 0)(z
1
T [v], 1), s.t. Φ′(ȳT , 0)(z

1
T [v], 1) ∈ TK(Φ(ȳT , 0)). (SPL′

θ)

Since L2 ⊂ MY
2 , Val(SPLθ) ≤ Val(SPL′

θ). Moreover, for all ν ∈ MY
2 , we can define

v ∈ L2 by vt =
∫
Rm udνt(u) dt. Then, z1[ν] = z1[v] and therefore, the two problems

have the same value.

Definition 4.22. Let λ in NK(Φ(ȳT , 0)), we say that it is a Lagrange multiplier if
for almost all t in [0, T ], Hu[p

λ
t ](ūt, ȳt, 0) = 0. We denote by ΛL the set of Lagrange

multipliers.

Note that the inclusion ΛP ⊂ ΛL holds since for a.a. t, ūt belongs to the interior of
UR and minimizes H[pλt ](·, ȳt, 0) and thus Hu[p

λ
t ](ūt, ȳt, 0) = 0. Under the qualification

condition (4.13), ΛL is nonempty.

Lemma 4.23. The dual of problem (SPL′
θ) is the following problem:

Max
λ∈ΛL

Lθ(ū, ȳ, λ, 0), (SDLθ)

and it has the same value as the primal problem. Moreover, problems (SPLθ) and
(SPL′

θ) have solutions and Val(PLθ) ≤ Val(SPLθ).

Proof. Remember the definition of the derivative of the Lagrangian, given by (4.31). By
lemma 4.12, the dual of problem (SPLθ) is the following:

Max
λ∈NK(Φ(ȳT ,0))

inf
ν∈L2

Φ′[λ](ȳT , 0)(z
1
T [ν], 1)

= Max
λ∈NK(Φ(ȳT ,0))

{
Lθ(ū, ȳ, λ, 0) + inf

v∈L2

∫ T

0
Hu[p

λ
t ][t]vt dt

}
.
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Moreover, for all λ ∈ NK(Φ(ȳT , 0)), we easily check that

inf
v∈L2

∫ T

0
Hu[p

λ
t ][t]vt dt =

{
0, if λ ∈ ΛL,

−∞, otherwise.

This proves that problem (SDLθ) is the dual of problem (SPL′
θ). Moreover, it follows

directly from the inclusion ΛP ⊂ ΛL that

−∞ < Val(PLθ) = Val(DLθ) ≤ Val(SDLθ) ≤ Val(SPL′
θ) = Val(SPLθ).

We also obtain from the inclusion that problem (SDLθ) is feasible. Since (SPL′
θ) is

linear and since the value of its dual is not −∞, it follows by [21, theorem 2.204] that
both problems have the same value. These solutions are also solutions to (SPLθ).

From now on, we suppose that the following restrictive assumption holds.

Assumption 4.1. The Pontryagin and classical linearized problems have the same
value: Val(SPLθ) = Val(PLθ).

This hypothesis is satisfied in particular if the set of Lagrange multipliers is a sin-
gleton. This hypothesis is also satisfied if the Hamiltonian is convex with respect to u,
since then the definitions of Lagrange and Pontryagin multipliers are equivalent.

4.4.2 Second-order upper estimate

Definition 4.24. For ν ∈ MY
2 , we define the second-order linearization z2[ν] by

{
ż2t [ν] = fy[t]z

2
t [ν] +

1
2

∫
Rm f

′′[t](u, z1t [ν], 1)
2 dνt(u),

z20 [ν] = 0.

In the following problem, the notation T 2 refers to the second-order tangent set [21,
definition 3.28]. Given a solution ν to problem (SPLθ), consider the following associated
linearized problem:





Min
ξ∈C(RT )

1
2φ

′′(ȳT , 0)(z1T [ν], 1)
2 + φyT (ȳT , 0)(z

2
T [ν] + ξ),

s.t. 1
2Φ

′′(ȳT , 0)(z1T [ν], 1)
2 +ΦyT (ȳT , 0)(z

2
T [ν] + ξ)

∈ T 2
K(Φ(ȳT , 0),Φ

′(ȳT , 0)(z1T [ν], 1)).

(PQθ(ν))

Observe that in this linearized problem, ν is the first-order direction of perturbation, for
which we consider standard linearizations, and ξ is the second-order direction of pertur-
bation, for which we consider a Pontryagin linearization. Let us define the mapping Ωθ

on R
nC∗ ×MY

2 as follows:

Ωθ[λ](ν) =

∫ T

0

∫

Rm

H ′′[pλt ][t](u, z
1
t [ν], 1)

2 dνt(u) dt+Φ′′[λ](ȳT , 0)(z
1
T [ν], 1)

2. (4.42)
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Lemma 4.25. The dual of problem (PQθ(ν)) is the following problem,

Max
λ∈S(DLθ)

1

2
Ωθ[λ](ν), (DQθ(ν))

and it has the same value as (PQθ(ν)).

Proof. It is proved in [21, proposition 3.34, equality 3.64] that since K is polyhedric,

T 2
K(Φ(ȳT , 0),Φ

′(ȳT , 0)(z
1
T [ν], 1)) = TK(Φ(ȳT , 0)) + Φ′(ȳT , 0)(z

1
T [ν], 1)R,

where the addition + is the Minkowski sum. Since the second-order tangent set contains
the tangent cone, we obtain, like in the proof of theorem 4.16 that

εB ⊂ R
nC =

1

2
Φ′′(ȳT , 0)(z

1
T [ν], 1)

2+ΦyT (ȳT , 0)(z
2
T [ν] + C(RT ))

− T 2
K(Φ(ȳT , 0),Φ

′(ȳT , 0)(z
1
T [ν], 1)),

which is Robinson qualification condition. By [21, theorem 2.165], problem (PQθ(ν))
has the same value as its dual.

Let us denote by N the polar cone of the second-order tangent set. For all λ in R
nC∗,

λ ∈ N iff λ ∈ NK(Φ(ȳT , 0)) and λΦ
′(ȳT , 0)(z1T [ν], 1) = 0. Following the proof of theorem

4.16, we obtain that the dual of problem (PQθ(ν)) is the following problem:

Max
λ∈ΛP ,

λΦ′(ȳT ,0)(z1T [ν],1)=0,

Φ′′[λ](ȳT , 0)(z
1
T [ν], 1)

2 +ΦyT [λ]z
2
T [ν].

and using lemma 4.12, we find that

ΦyT [λ]z
2
T [ν] =

1

2

∫ T

0

∫

Rm

H ′′[pλt ][t](u, z
1
t [ν], 1)

2 dνt(u).

Moreover, by lemma 4.12 and hypothesis 4.1, for all λ in ΛP ,

λΦ′(ȳT , 0)(z
1
T [ν], 1) = 0 ⇐⇒ Φ′[λ](ȳT , 0)(z

1
T [ν], 1) = φ′(ȳT , 0)(z

1
T [ν], 1)

⇐⇒
∫ T

0
Hθ[p

λ
t ][t] dt+Φθ[λ](ȳT , 0) = Val(SPLθ)

⇐⇒ Lθ(ū, ȳ, λ, 0) = Val(PLθ)

⇐⇒ λ ∈ S(DLθ).

The lemma is now proved.

Consider the problem (PQθ) defined by

Min
ν∈S(SPLθ)

Val(PQθ(ν)) = Min
ν∈S(SPLθ)

Max
λ∈S(DLθ)

1

2
Ωθ[λ](ν). (PQθ)

Theorem 4.26. For all η ∈ [0, η̄], the following second-order upper estimate holds:

lim sup
θ↓0

V η(θ)− (V η(0) + θVal(SPLθ))

θ2
≤ Val(PQθ). (4.43)

This theorem is proved in the appendix, page 132.
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4.5 Lower estimate of the value function

4.5.1 A decomposition principle

In the family of optimization problems that we consider, the expression Φ[λ](yT , θ) plays
the role of a Lagrangian. The basic idea to obtain a lower estimate for the value function
is to use a second-order expansion of the right-hand-side of the following inequality:

φ(yT , θ)− φ(ȳT , 0) ≥ Φ[λ](yT , θ)− Φ[λ](ȳT , 0), (4.44)

for a feasible trajectory y (for the perturbed problem (PY,η
θ )). This inequality holds

since
Φ(yT , θ)− Φ(ȳT , 0) ∈ TK(Φ(ȳT , 0)) and λ ∈ NK(Φ(ȳT , 0)).

The main difficulty in computing an expansion of the difference of Lagrangians is that
we cannot perform Taylor expansions with respect to the control variable, since we are
interested by perturbations of the control which are not small for the L∞-norm. The
idea to deal with this difficulty is to split the control into two intermediate controls, one
accounting for the small perturbations and one accounting for the large perturbations
(both for the L∞-norm). The decomposition principle that we obtain is an extension of
[18, theorem 2.13].

In this part, we fix a sequence (θk)k ↓ 0 and a sequence (µk, yk)k of feasible trajec-
tories for the perturbed problems with θ = θk. We fix λ ∈ S(DLθ). In the proofs of
lemma 4.27 and theorem 4.28, we omit to mention the dependence of the Hamiltonian
with respect to pλt (since the multiplier λ is fixed). For example, we will write H(u, ȳt, θ)
instead of H[pλt ](u, ȳt, θ).

From now on, we set R1,k = d1(µ̄, µ
k) and δyk = yk − ȳ. Note that by lemma 4.6,

‖δyk‖∞ = O(R1,k + θk). We also set zk := z[µk ⊖ ū] and z1,k := zk + θkξ
θ. Note that

the dynamic of zk is given by equation (4.38). Finally, we set

∆Φk = Φ[λ](ykT , θk)− Φ[λ](ȳT , 0).

Lemma 4.27. The following expansions hold:

∆Φk = Val(PLθ)θk + Ik1 + Ik2 + Ik3 + Ik4 + o(θ2k +R2
1,k), (4.45)

where

Ik1 =

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0)−H[pλt ][t]) dµ
k
t (u) dt,

Ik2 =

∫ T

0

∫

UR

(Hy[p
λ
t ](u, ȳt, 0)−Hy[p

λ
t ][t])z

1,k
t dµkt (u) dt,

Ik3 =

∫ T

0

∫

UR

(Hθ[p
λ
t ](u, ȳt, 0) −Hθ[p

λ
t ][t])θk dµ

k
t (u) dt,

Ik4 =
1

2

∫ T

0
H(y,θ)2 [p

λ
t ][t](z

1,k
t , θk)

2 dt+
1

2
Φ′′[λ](z1,kT , θk)

2.
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and

∆Φk =

∫ T

0

∫

UR

H[pλt ](u, ȳt, 0)−H[pλt ][t] dµt(u) dt+O(‖δyk‖∞) + o(1). (4.46)

The proof is given in the appendix, page 134.
In order to go further in the expansions, we need to split the control µk into two

controls. To that purpose, we consider a sequence (Ak, Bk)k of measurable subsets of
[0, T ] × UR such that for all k, (Ak, Bk) is a partition of [0, T ] × UR. We consider the
Young measures µA,k and µB,k which are the unique Young measures such that for all g
in C0([0, T ] × UR),





∫ T

0

∫

UR

g(t, u) dµA,k
t (u) dt =

∫

Ak

g(t, u) dµk(t, u) +

∫

Bk

g(t, ūt) dµ
k(t, u),

∫ T

0

∫

UR

g(t, u) dµB,k
t (u) dt =

∫

Bk

g(t, u) dµk(t, u) +

∫

Ak

g(t, ūt) dµ
k(t, u).

Note that if g is such that for almost all t in [0, T ], g(t, ūt) = 0, then
∫ T

0

∫

UR

g(t, u) dµkt (u) dt =

∫ T

0

∫

UR

g(t, u) dµA,k
t (u) dt+

∫ T

0

∫

UR

g(t, u) dµB,k
t (u).

For i = 1, 2, we set Ri,A,k := di(µ̄, µ
A,k) and Ri,B,k := di(µ̄, µ

B,k). We also set zA,k :=
z[µA,k ⊖ ū], and zB,k := z[µB,k ⊖ ū].

Remember the definition of Ωθ given by (4.42). For λ ∈ R
nC∗, let us denote by

Ω[λ] : MY
2 → R the following mapping:

Ω[λ](ν) =

∫ T

0

∫

Rm

H(u,y)2 [p
λ
t ][t](u, z[ν])

2 dνt(u) dt+Φ(yT )2 [λ](ȳT , 0)(z[ν]T )
2. (4.47)

Theorem 4.28 (Decomposition principle). Assume that

µk(Bk) −→ 0 and ess sup
k→∞

{|u− ūt|, (t, u) ∈ Ak} → 0. (4.48)

Then,
zk = zA,k + o(R2,B,k) (4.49)

and the following expansions hold:

∆Φk = Val(PLθ)θk +
1

2
Ωθ[λ](µA,k ⊖ ū)

+

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0) −H[pλt ][t]) dµ
B,k
t (u) dt+ o(R2

2,k + θ2k). (4.50)

and

∆Φk = Val(PLθ)θk +
1

2
Ω[λ](µA,k ⊖ ū)

+

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0) −H[pλt ][t]) dµ
B,k
t (u) dt

+O(θk(θk +R2,A,k)) + o(R2
2,k). (4.51)
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Proof. With the Cauchy-Schwarz inequality, we obtain that R1,A,k = O(R2,A,k) and
since µk(Bk) → 0,

R1,B,k =

∫

Bk

|u− ūt|dµkt (t, u) dt

≤ (µk(Bk))1/2
[ ∫

Bk

|u− ūt|2 dµk(t, u)
]1/2

= o(R2,B,k). (4.52)

Estimate (4.49) follows from (4.52) and zk = zA,k + zB,k. In order to obtain expansion
(4.50), we work with the terms of the expansion of lemma 4.27. First,

Ik1 =

∫ T

0

∫

UR

(H(u, ȳt, 0) −H[t])(dµA,k
t (u) + dµB,k

t (u)) dt

=
1

2

∫ T

0

∫

UR

Huu[t](u− ūt)
2 dµA,k

t (u) dt

+

∫ T

0

∫

UR

(H(u, ȳt, 0)−H[t]) dµB,k
t (u) dt+ o(R2

2,A,k) (4.53)

and

Ik2 =

∫ T

0

∫

UR

(Hy(u, ȳt, 0)−Hy[t])(z
A,k
t + θkξ

θ
t ) dµ

A,k
t (u) dt

+

∫ T

0

∫

UR

(Hy(u, ȳt, 0)−Hy[t])z
B,k
t dµA,k

t (u) dt

+

∫ T

0

∫

UR

(Hy(u, ȳt, 0)−Hy[t])z
1,k
t dµB,k

t (u) dt

=

∫ T

0

∫

UR

Hu,y[t](u− ūt, z
A,k
t + θkξ

θ
t ) dµ

A,k
t (u) dt+ o(R2

2,k + θ2k), (4.54)

Similarly, we prove that

Ik3 =

∫ T

0

∫

UR

H(u,θ)[t](u− ūt, θk) dµ
A,k
t dt+ o(R2

2,k + θ2k), (4.55)

Ik4 =
1

2

∫ T

0

∫

UR

H(y,θ)2 [t](z
A,k
t + θkξ

θ
t , θk)

2 dµA,k
t dt

+
1

2
Φ′′[λ](ȳT , 0)(z

A,k
T + θkξ

θ
t , θk)

2 + o(R2
2,k + θ2k). (4.56)

Finally, combining lemma 4.27 and estimates (4.53-4.56), we obtain expansion (4.50).
Expansion (4.51) follows by replacing the second-order terms involving θk by the estimate
O(R2,A,kθk).

4.5.2 Study of the rate of convergence of perturbed solutions

In this part, we give estimates of the L2-distance between a solution to the perturbed
problem (PY,η

θ ) and µ̄ under a strong second-order sufficient condition. The results will
hold for small values of η.
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Definition 4.29. We call critical cone C2 the following set:

C2 :=
{
ν ∈ MY

2 , φyT (ȳT , 0)z[ν]T ≤ 0, ΦyT (ȳT , 0)z[ν]T ∈ TK(Φ(ȳT , 0))
}
. (4.57)

In the following assumption, we denote by ri(S(DLθ)) the relative interior of S(DLθ),
which is the interior of S(DLθ) for the topology induced by its affine hull.

Assumption 4.2 (Second-order sufficient conditions). There exists α > 0 such that

1. for some λ̄ ∈ ri(S(DLθ)), for almost all t in [0, T ],

H[pλ̄t ](u, ȳt, 0) −H[pλ̄t ](ūt, ȳt, 0) ≥ α|u− ūt|2, ∀u ∈ UR,

2. for all ν in C2 \ {0}, maxλ∈S(DLθ){Ω[λ](ν)} > 0. Here, 0 is the Young measure
which is equal for almost all t to the Dirac measure (centered at 0).

As a consequence of assumption 4.2.1, for all µ ∈ MY
R ,

∫ T

0

∫

UR

H[pλ̄t ](u, ȳt, 0) −H[pλ̄t ](ūt, ȳt, 0) dµt(u) dt ≥ α‖µ ⊖ ū‖22.

Remark 4.30. It is shown in [18, lemma 2.3] that, since S(DLθ) is compact, for all
λ̃ ∈ ri(S(DLθ)), there exists β > 0 such that for almost all t, for all v in UR,

H[pλ̃t ](v, ȳt, 0)−H[pλ̃t ](ūt, ȳt, 0) ≥ β
(

max
λ∈S(DLθ)

{
H[pλt ](v, ȳt, 0)−H[pλt ](ūt, ȳt, 0)

})
.

It follows from this result that hypothesis 4.2.1 is equivalent to: there exists α′ > 0 such
that for almost all t, for all u ∈ UR,

max
λ∈S(DLθ)

{
H[pλt ](u, ȳt, 0) −H[pλt ](ūt, ȳt, 0)

}
≥ α′|u− ūt|2.

The following lemma states some useful semi-continuity properties for Ω and Ωθ.

Lemma 4.31. If hypothesis 4.2.1 holds, then for all bounded sequences (νk)k in MY
2

narrowly converging to some ν ∈ MY
2 ,

1. the sequence (z[νk])k converges to z[ν] for the L∞-distance

2. for all λ ∈ S(DLθ), Ω[λ](ν) ≤ lim infk→∞Ω[λ](νk)

3. if ν = 0 and Ω[λ̄](νk) → 0, then ‖νk‖2 → 0.

This lemma is proved in the appendix, page 135.

Lemma 4.32. If η > 0 is sufficiently small, then for any sequence (θk)k ↓ 0, for any
sequence of solutions (µk, yk)k to problems (PY,η

θ ), with θ = θk,

R2,k = d2(µ̄, µ
k) → 0. (4.58)
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Proof. Assume, on the contrary, that there exist two sequences (ηk)k ↓ 0 and (θk)k ↓ 0
and a sequence of solutions (µk, yk) to (PY,η

θ ) with η = ηk and θ = θk such that R2,k =
d2(µ̄, µ

k) does not converge to 0. It follows from inequality (4.44) and estimate (4.46)
that

o(1) = φ(ykT , θk)− φ(ȳT , 0) ≥
∫ T

0

∫

UR

(H[pλ̄t ](u, ȳt, 0)−H[pλ̄t ][t]) dµ
k
t (u) dt+ o(1),

thus, by assumption 4.2.1, R2,k → 0, in contradiction with the initial assumption.

From now on, we fix a parameter η > 0 sufficiently small so that lemma 4.32 is
satisfied. We are now able to build a sequence (Ak, Bk)k which can be used in the
decomposition principle. Let us set

Ak :=
{
(t, u) ∈ [0, T ] × UR, |u− ūt| <

√
R1,k

}
and Bk := (Ak)c. (4.59)

We consider the sequences (µA,k)k and (µB,k)k associated with (µk)k and the sequence
of partitions (Ak, Bk)k. We still use the notations zA,k and zB,k. Then,

R1,k =

∫ T

0

∫

UR

|u− ūt|dµkt (u) dt ≥
√
R1,k

∫ T

0

∫

UR

1Bk
t
(t, u) dµkt (u) dt

Thus, µk(Bk) ≤
√
R1,k = O(

√
R2,k) → 0, by lemma 4.32. Moreover,

ess sup
k→∞

{
|u− ūt|, (t, u) ∈ Ak

}
≤
√
R1,k = O(

√
R2,k) → 0.

As a consequence, we can apply the decomposition principle to the partition.

Theorem 4.33. Under hypotheses 4.1 and 4.2, the following estimates on the rate of
convergence of perturbed solutions hold:

R2,k = d2(µ̄, µ
k) = O(θk), ‖yk − ȳ‖∞ = O(θk). (4.60)

Proof. ⊲ First step: R2,B,k = O(R2,A,k + θk).
With expansion (4.51) and the second-order upper estimate (4.43), we obtain that for
all λ ∈ S(DLθ),

1

2
Ω[λ](µA,k ⊖ ū) +

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0)−H[pλt ][t]) dµ
B,k
t (u) dt

≤ o(R2
2,A,k +R2

2,B,k) +O(θkR2,A,k) +O(θ2k). (4.61)

Specializing (4.61) for λ̄ and since Ω[λ](µA,k ⊖ ū) = O(R2
2,A,k), we obtain by the second-

order sufficient condition hypothesis 4.2.1 that

αR2
2,B,k = O(R2

2,A,k + θ2k),

thus, R2,B,k = O(R2,A,k + θk).
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⊲ Second step: R2,A,k = O(θk).
Let us prove by contradiction that R2,A,k = O(θk). Extracting if necessary a subse-
quence, we may assume that θk = o(R2,A,k). It follows directly that R2,B,k = O(R2,A,k).
For all λ ∈ S(DLθ), the difference of Hamiltonians is nonnegative, thus, by (4.61), for
all λ ∈ S(DLθ),

Ω[λ](µA,k ⊖ ū) ≤ O(θ2k) +O(θkR2,A,k) + o(R2
2,A,k) = o(R2

2,A,k). (4.62)

Using definition 4.17, we set

νk =
µA,k ⊖ ū

R2,A,k
.

Note that z[νk] = zA,k/R2,A,k. For all k, ‖νk‖22 = 1, therefore, up to a subsequence, we
can suppose that (νk)k converges narrowly to ν̄ ∈ MY

2 . By lemma 4.31, z[νk] converges
uniformly to z[ν̄]. Let us prove that

φyT (ȳT , 0)zT [ν̄] = 0, (4.63)

ΦyT (ȳT , 0)zT [ν̄] ∈ TK(Φ(ȳT , 0)). (4.64)

By lemma 4.19, we obtain that

δykT = zA,k
T + zB,k

T + θkξ
θ
T +O(θ2k +R2

1,A,k +R2
1,B,k) = zA,k

T + o(R2,A,k),

and finally that δykT = R2,A,k(z[ν
k] + o(1)) = R2,A,k(z[ν̄] + o(1)). As a consequence,

φ(ykT , θk)− φ(ȳT , 0) = R2,A,k

[
φyT (ȳT , 0)zT [ν̄] + o(1)

]
, (4.65)

Φ(ykT , θk)− Φ(ȳT , 0) = R2,A,k

[
ΦyT (ȳT , 0)zT [ν̄] + o(1)

]
. (4.66)

We obtain (4.64) directly and (4.63) follows from (4.65) and from the following first-order
upper estimate:

φ(ykT , θk)− φ(ȳT , 0) ≤ O(θk) = o(R2,A,k).

Therefore, ν ∈ C2. We obtain from lemma 4.31 and (4.62) that

sup
λ∈SDLθ

Ω[λ](ν) ≤ 0.

By the second-order sufficient condition (hypothesis 4.2.2), ν = 0. Applying (4.62) to λ̄,
we obtain by the lower semi-continuity of Ω[λ̄] that limk Ω[λ̄](ν

k) = 0 and thus, by lemma
4.31, ‖νk‖2 → 0, in contradiction with the fact that ‖νk‖2 = 1 for all k. It follows that
R2,A,k = O(θk), thus R2,k = O(R2,A,k+R2,B,k) = θk and finally that ‖yk− ȳ‖∞ = O(θk),
by lemma 4.35.

4.5.3 First- and second-order estimates

In this section, we prove that the first- and the second-order upper estimates that we
have computed in section 4.4 are exact expansions, for sufficiently small values of η > 0
(so that lemma 4.32 holds). The first-order estimate derives directly from inequality
(4.44), expansion (4.51), and theorem 4.33 (under hypotheses 4.1 and 4.2):

V η(θk)− V η(0) = Val(PLθ)θk +O(θ2k). (4.67)
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Theorem 4.34. Under hypotheses 4.1 and 4.2, the following second-order estimate
holds:

V η(θ) = V η(0) + θVal(PLθ) + θ2Val(PQθ) + o(θ2). (4.68)

Moreover, for any θk ↓ 0, we can extract a subsequence of solutions µk to (PY,η
θ ) such

that
µk ⊖ ū

θk
converges narrowly to some ν̄ solution of (PQθ).

Proof. Let (θk)k ↓ 0. We set

νA,k =
µA,k ⊖ ū

θk
, νk =

µk ⊖ ū

θk
.

By theorem 4.33, R2
2,A,k = O(θ2k). Therefore, (νA,k)k is bounded for the L2-norm and

we can extract a subsequence such that (νA,k) narrowly converges to some ν̄ in MY
2 .

Moreover, we can show that

d1(ν
k, νA,k) ≤ ‖µB,k ⊖ ū‖1

θk
= o(1),

thus, νk equally converges to ν̄ for the narrow topology. For all λ ∈ S(DLθ),

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0)−H[pλt ][t]) dµ
B,k
t (u) dt ≥ 0,

thus, by inequality (4.44), by the decomposition principle (theorem 4.28), and by the
lower semi-continuity of Ωθ (lemma 4.31),

V η(θk)− V η(0) ≥ θk Val(PLθ) +
θ2k
2
Ωθ[λ](νA,k) + o(θ2k)

≥ θk Val(PLθ) +
θ2k
2
Ωθ[λ](ν̄) + o(θ2k).

Let us prove that ν̄ is a solution to problem (SPLθ). Following the proof of theorem
4.33, we obtain that

δykT = θk(zT [ν̄] + ξθT + o(1)),

and therefore that

φ(ykT , θk)− φ(ȳT , 0) = θkφ
′(ȳT , 0)(zT [ν̄] + ξθT , 1) + o(θk), (4.69)

Φ(ykT , θk)− Φ(ȳT , 0) = θkΦ
′(ȳT , 0)(zT [ν̄] + ξθT , 1) + o(θk). (4.70)

By (4.37), we obtain that

φ(ykT , θk)− φ(ȳT , 0) ≤ Val(PLθ)θk + o(θk),

therefore
φ′(ȳT , 0)(zT [ν̄] + ξθT , 1) ≤ Val(PLθ).
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and by (4.70),
Φ′(ȳT , 0)(zT [ν̄] + ξθT , 1) ∈ TK(Φ(ȳT , 0)).

This proves that ν̄ is a solution to (SPLθ). By lemma 4.25 and theorem 4.26, we obtain
that

Val(PQθ(ν̄)) ≤ inf
ν∈S(SPLθ)

Val(PQθ(ν)),

thus, ν̄ is a solution to problem (PQθ) and the theorem is now proved. It also proves
that problem (PQθ) has a finite value.

4.6 Two examples

4.6.1 A different value for the Pontryagin and the standard linearized

problem

Let us consider the following dynamic in R
2:

{
ẏt = (u3t , u

2
t )

T , for a.a. t ∈ [0, T ],

y0 = (0, 0)T .

The control u is such that ‖u‖∞ ≤ 1 and we minimize y2,T [u] under the constraint
y1,T [u] = θ, with θ ≥ 0 and θ̄ = 0. The coordinate y2 corresponds to the integral which
would have been used in a Bolza formulation of the problem. For θ̄ = 0, the problem has
a unique solution ū = 0, ȳ = (0, 0)T . This solution is qualified in the sense of definition
4.8, since for v = 1, ξ1[v] = T and for v = −1, ξ1[v] = −T . However, the solution is not
qualified in the sense of the standard definition, since the standard linearized dynamic
z is equal to 0.

For θ ≤ T , the problem has infinitely many solutions, one of them being:

uθt =

{
1, if t ∈ (0, θ),

0, if t ∈ (θ, T ).

Indeed, y1,T [u
θ] = θ, y2,T [u

θ] = θ and if vθ is feasible, then

θ = y1,T [v
θ] =

∫ T

0
(vθt )

3 dt ≤
∫ T

0
(vθt )

2 dt = y2,T [v
θ],

which proves that uθ is optimal. Moreover, if vθ is optimal, then the previous inequality
is an equality and thus, for almost all t, (vθt )

3 = (vθt )
2, that is to say, vθt ∈ {0, 1}. We

also obtain that ‖vθ − ū‖2 =
√
θ and ‖vθ − ū‖∞ = 1. Note that, in this example, R = 1

and ‖uθt ‖∞ = 1 for 0 ≤ θ ≤ T , so that uθ is not an interior point of the ball UR.
Now, let us compute the sets of multipliers ΛL and ΛP (for the reference problem).

Since the dynamic does not depend on y, denoting by λ ∈ R the dual variable associated
with the constraint y1,T [u] − θ = 0, the costate pλ is constant and given by pt = (λ, 1).
The Hamiltonian is given by

H[λ](u) = u2 + λu3.
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As a consequence, we obtain that ΛL = R×{1} and ΛP = [−1, 1]×{1}. The Lagrangian
associated with our family of problems is given by

L(u, y, λ, θ) =
∫ T

0
(u2t + λu3t ) dt+ λ(y1,θ − θ),

therefore, Lθ(ū, ȳ, λ, θ̄) = −λ, Val(PLθ) = 1, and Val(SPLθ) = +∞. In this example,
the Pontryagin linearized problem enables a more accurate estimation of the value func-
tion. Since the solution ū is not qualified in a standard definition, it is not surprising
that the associated linearized problem has a value equal to +∞.

Note that the second-order theory developed in the article cannot be used to study
this example, since we do not have the equality of Val(PLθ) and Val(SPLθ). Moreover,
observe that for the solution λ = −1 of (DLθ), the Hamiltonian H[λ](u) = u2 − u3 has
two minimizers: 0 and 1. The set of minimizers contains the support of the solutions to
the perturbed problems.

4.6.2 No classical solutions for the perturbed problems

This second example shows a family of problems for which the perturbed problems do
not have a classical solution. This example does not fit to the framework of the study
since we consider active control constraints. However, we believe it is interesting since
in this case, the ratio (µθ ⊖ ū)/θ converges to a purely relaxed element of MY

2 for the
narrow topology. This confirms us in the idea to use relaxation to perform a sensitivity
analysis of optimal control problems.

Let us consider the following dynamic in R
2:

{
(ẏ1,t, ẏ2,t)

T = (ut, y
2
1 + 2(vt − θ)2 − u2t )

T , for a.a. t ∈ [0, T ],

(y1,0, y2,0)
T = (0, 0)T ,

where for almost all t in [0, T ], vt ≥ ut and vt ≥ −ut. The perturbation parameter θ is
nonnegative and θ̄ = 0. We minimize y2,T . For θ = 0, the problem has a unique solution
ū = (0, 0)T , ȳ = (0, 0)T . The associated costate p = (p1, p2) is constant, given by p1 = 0
and p2 = 1. Thus,

H[p](u, v, ȳt) = 2(v − θ)2 − u2.

This Hamiltonian has been “designed” in a way to have a unique minimizer when θ = 0,
but two minimizers (±2θ, 2θ) when θ > 0. Let us focus on optimal solutions to the
problem when θ > 0. Let u, v ∈ L∞([0, T ],R), we have

y2,T [u, v] =

∫ T

0
y1,t[u, v]

2 + 2(vt − θ)2 − u2t dt

=

∫ T

0
y1,t[u, v]

2 + 2v2t − 4θvt + 2θ2 − u2t dt

=

∫ T

0
y1,t[u, v]

2 + (v2t − u2t ) + (vt − 2θ)2 − 2θ2 dt ≥ −2θ2T.
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This last inequality is an equality if for almost all t in [0, T ], y1,t[u, v] = 0, vt = 2θ,
|ut| = vt. As a consequence, the problem does not have classical solutions, but has a
unique relaxed one, µθ = ((δ−2θ + δ2θ)/2, 2θ). Moreover,

µθ ⊖ ū

θ
= ((δ−2 + δ2)/2, δ2).

4.A Appendix

Properties of Young measures

First definitions

Weak-∗ topology on bounded measures Let X be a closed subset of Rm. We
say that a real function ψ on [0, T ] × X vanishes at infinity if for all ε > 0, there
exists a compact subset K of X such that for all (t, u) in [0, T ] × (X\K), |ψ(t, u)| ≤ ε.
We denote by C0([0, T ] × X) the set of continuous real functions vanishing at infinity.
The set Mb([0, T ] × X) of bounded measures on [0, T ] × X is the topological dual of
C0([0, T ]×X). The associated weak-∗ topology is metrizable since [0, T ]×X is separable.

Young measures Let us denote by P the projection from [0, T ] × X to [0, T ]. We
say that µ ∈ M+

b ([0, T ] × X) is a Young measure if P#µ is the Lebesgue measure on
[0, T ]. We denote by MY (X) the set of Young measures, which is weakly-∗ compact [67,
theorem 1].

Disintegrability Let us denote by P(X) the set of probability measures on X. To
all measurable mappings ν ∈ L∞(0, T ;P(X)) (see the definition in [67, page 157]), we
associate a unique Young measure µ defined by: for all ψ in C0([0, T ] ×X),

∫

[0,T ]×X
ψ(t, u) dµ(t, u) =

∫ T

0

∫

X
ψ(t, u) dνt(u) dt.

This mapping defines a bijection from L∞([0, T ];P(X)) to MY (X). This property is
called disintegrability. Note that L∞([0, T ];P(X)) ⊂ L∞([0, T ];Mb(X)), which is the
dual of L1(0, T ;C0(X)) [67, page 179]. On MY (X), the weak-∗ topology of this dual
pair is equivalent to the weak-∗ topology previously defined [67, theorem 2]. In the
article, we always write Young measures in a disintegrated form.

Density To all u in L([0, T ];X), we associate the unique Young measure µ defined by
for almost all t in [0, T ], µt = δut . The space L([0, T ];X) is dense in MY (X) for the
weak-∗ topology [68, proposition 8].

Lower semi-continuity of integrands We say that ψ : [0, T ] ×X → R ∪ {+∞} is
a positive normal integrand if ψ is measurable, ψ ≥ 0 and if for almost all t in [0, T ],
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ψ(t, ·) is l.s.c. If ψ is a positive normal integrand, then the mapping

µ ∈ MY (X) 7→
∫ T

0

∫

X
ψ(t, u) dµt(u) dt

is l.s.c. for the weak-∗ topology [67, theorem 4].

Narrow topology We say that the measurable mapping ψ : [0, T ] × X → R is a
bounded Caratheodory integrand if for almost all t in [0, T ], ψ(t, ·) is continuous and
bounded and if ‖ψ(t, ·)‖∞ is integrable. The narrow topology on MY (X) is the weakest
topology such that for all bounded Caratheodory integrands ψ,

µ ∈ MY (X) 7→
∫ T

0

∫

X
ψ(t, u) dµt(u) du

is continuous. This topology is finer than the weak-∗ topology.

Wasserstein distance We denote by P 1 and P 2 the two projections from [0, T ]×X×
X to [0, T ]×X defined by P 1(t, u, v) = (t, u) and P 2(t, u, v) = (t, v). Let µ1 and µ2 be
in MY (X), then π in M+

b ([0, T ] ×X ×X) is said to be a transportation plan between
µ1 and µ2 if P 1

#π = µ1 and P 2
#π = µ2. Note that a transportation plan is disintegrable

in time, like Young measures. The set Π(µ1, µ2) of transportation plans between µ1 and
µ2 is never empty, since it contains the measure π defined by πt = µ1t ⊗µ2t for a.a. t. For
p ∈ [1,∞), the Lp−distance between µ1 and µ2 is

dp(µ
1, µ2) =

[
inf

π∈Π(µ1,µ2)

∫ T

0

∫

X×X
|v − u|p dπt(u, v) dt

]1/p
. (4.71)

This distance is called the Wasserstein distance [24, section 3.4]. The set Π(µ1, µ2)
is narrowly closed and if dp(µ

1, µ2) is finite, any minimizing sequence of the problem
associated with (4.71) has a limit point by Prokhorov’s theorem [67, theorem 11], thus
by lower semi-continuity of the duality product with a positive normal integrand, we
obtain the existence of an optimal transportation plan.

If µ1 is the Young measure associated to u1 ∈ L([0, T ];X), then for all µ2 in MY (X),
there is only one transportation plan π in Π(µ1, µ2), which is, for almost all t in [0, T ],
for all u and v in X, πt(u, v) = δu1

t
(u)µ2t (v), therefore, for all p ∈ [1,∞),

dp(µ
1, µ2) =

[∫ T

0

∫

UR

|v − u1t |p dµ2t (v) dt
]1/p

. (4.72)

Note that in this case, the mapping µ2 7→ ds(µ
1, µ2) is weakly-∗ continuous. If µ1 and

µ2 are both associated with u1 and u2 in Lp([0, T ];X), then dp(µ
1, µ2) = ‖u2 − u1‖p.

Young measures on UR

We suppose here that X is equal to UR, the ball of Rm with radius R and center 0.
We denote MY

R = MY (UR). The set UR being compact, MY
R is weakly-∗ compact [67,

theorem 1]. Moreover, the weak-∗ topology and the narrow topology are equivalent [67,
theorem 4].
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Differential systems controlled by Young measures Let x0 ∈ R
n, and let g :

[0, T ] ×X → R
n be Lipschitz continuous (with modulus A), then for all µ in MY

R , the
differential system

ẋt =

∫

UR

f(xt, u) dµt(u), x0 = x0

has a unique solution in C(0, T ;Rn), denoted by x[µ].

Lemma 4.35. The mapping µ ∈ MY
R 7→ x[µ] ∈ C(0, T ;Rn) is weakly-∗ continuous and

Lipschitz continuous for the L1-distance of Young measures.

Proof. ⊲ Weak-∗ continuity.
Let µ ∈ MY

R , and let (µk)k converges to µ ∈ MY
R for the weak-∗ topology. The sequence

(gk)k defined by

gkt =

∫ t

0

∫

UR

f(xs[µ], u)(dµ
k
s(u)− dµs(u)) ds

converges pointwise to 0. We can show with the Arzelà-Ascoli theorem that this conver-
gence is uniform. For all t in [0, T ],

|xt[µk]− xt[µ]| ≤
∫ t

0

∫

UR

|f(xs[µk], u) − f(xs[µ], u)|dµks(u) ds

+
∣∣∣
∫ t

0

∫

UR

f(xs[µ], u)(dµ
k
s(u)− dµs(u)) ds

∣∣∣

=

∫ t

0
O(|xs[µk]− xs[µ]|) ds+ o(1),

where the estimate o(1) is uniform in time. The uniform convergence of x[µk] follows
from Gronwall’s lemma.

⊲ L1-Lipschitz continuity.
Let µ1 and µ2 be in MR

Y , and let π be an optimal transportation plan between µ1 and
µ2 for the L1-distance. There exists a constant A ≤ 0 such that for all t in [0, T ],

|xt[µ2]− xt[µ
1]| ≤

∣∣∣
∫ t

0

∫

UR×UR

f(xs[µ
2], v) − f(xs[µ

1], u) dπs(u, v) ds
∣∣∣

≤
∫ t

0

∫

UR×UR

A(|xs[µ2]− xs[µ
1]|+ |v − u|) dπs(u, v) ds

≤
∫ t

0
A|xs[µ2]− xs[µ

1]|ds+Ad1(µ
1, µ2).

The Lipschitz continuity follows from Gronwall’s lemma.

Young measures on R
m

We suppose here that X = R
m. We equip MY := MY (Rm) with the narrow topology.

In the article, elements of MY are denoted by ν. For p in [1,∞), we denote by MY
p
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the set of Young measures ν in MY with a finite Lp−norm, defined by ‖ν‖p = dp(0, ν),
where dp is the Wasserstein distance. We denote by MY

∞ the set of Young measures
with bounded support and we define the L∞-norm as follows:

‖ν‖∞ = inf {a ∈ R, ν([0, T ]×B(0, a)) = ν([0, T ]× R
m)}.

Note the inclusion MY
∞ ⊂ MY

2 ⊂ MY
1 .

Lemma 4.36. The unit ball BY
2 of MY

2 is narrowly compact.

Proof. By Prokhorov’s theorem [67, theorem 11], BY
2 is precompact. The mapping

(t, u) 7→ |u|2 being a positive normal integrand, the L2-norm is l.s.c. and therefore, BY
2

is closed for the narrow topology. The lemma is proved.

Lemma 4.37. Let ψ : [0, T ] ×X → R
m a measurable mapping be such that for almost

all t in [0, T ], ψ(t, ·) is continuous and such that

ess sup
t∈[0,T ]

|ψ(t, u)| = o
|u|→∞

(|u|2).

Then, for all bounded sequences (νk)k in MY
2 converging narrowly to ν ∈ MY

2 ,

∫ T

0

∫

Rm

ψ(t, u) dνkt (u) dt −→
k→∞

∫ T

0

∫

Rm

ψ(t, u) dνt(u) dt (4.73)

Proof. The proof is inspired from [7, remark 5.3]. Let (νk)k be a bounded sequence in
MY

2 converging narrowly to ν ∈ MY
2 . Let

A = max
{
‖ν‖22, sup

k
{‖νk‖22}

}
.

Let ε > 0. Let B ≥ 0 be such that for almost all t in [0, T ], for all u in R
m,

ψ(t, u) ≤ ε|u|2 +B.

Then, ε|u|2 +B − ψ(t, u) is a positive normal integrand. Thus,

∫ T

0

∫

Rm

ε|u|2 +B − ψ(t, u) dνt(u) dt ≤ lim inf
k→∞

∫ T

0

∫

Rm

ε|u|2 +B − ψ(t, u) dνk(u) dt.

and therefore,

∫ T

0

∫

Rm

−ψ(t, u) dνt(u) dt ≤ lim inf
k→∞

∫ T

0

∫

Rm

−ψ(t, u) dνkt (u) dt+ 2εA2.

To the limit when ε ↓ 0, we obtain that

∫ T

0

∫

Rm

ψ(t, u) dνt(u) dt ≥ lim sup
k→∞

∫ T

0

∫

Rm

ψ(t, u) dνkt (u) dt,

which proves the upper semi-continuity of the mapping (4.73). We prove similarly the
lower semi-continuity.



4.A Appendix 129

Justification of relaxation

This section aims at justifying the use of relaxation in the formulation of the problem.
The results that we give are independent of the sensitivity analysis performed in the
article. We introduce the value function associated with the notion of classical R-strong
optimal solutions, denoted by V̂ η(θ).

V̂ η(θ) :=





Min
u∈U , ‖u‖≤R

φ(yT [u, θ], θ),

s.t. Φ(yT [u, θ], θ) ∈ K, ‖y[u, θ]− ȳ‖∞ ≤ η.
(4.74)

Note that for all θ ≥ 0, for all η > 0, V η(θ) ≤ V̂ η(θ), since the set of Young measures
contains the classical controls. The converse inequality would be true if there were no
constraints. In that case, it would suffice to approximate any Young measure µ with a
sequence of classical controls converging to µ for the weak-∗ topology. In the constrained
case, this sequence is not necessarily feasible. We prove in lemma 4.38 that if a given
classical control is close in the L1-distance from ū, it can be restored (with another
classical control). We obtain as a corollary that any feasible relaxed control close to ū
in the L1-distance can be approximated by feasible classical controls. Using the results
of convergence of the solutions of perturbed problems obtained in section 4.5, we prove
the equality of V and V̂ for small values of η and θ.

Lemma 4.38. If µ̄ is qualified, then there exist δ1 > 0, σ > 0, and C1 ≥ 0 such that
for all classical controls u with ‖u − ū‖1 ≤ δ1, for all θ ∈ [0, σ], there exists a classical
control u′ such that

Φ(yT [u
′, θ], θ) ∈ K and ‖u′ − u‖1 ≤ C1 dist(Φ(yT [u, θ], θ),K).

Proof. Let δ, σ, and C be the constants given by the metric regularity theorem (theorem
4.9). Let us set δ1 = δ

2C+3 . Given θ ∈ [0, σ], let u be a classical control such that

‖u− ū‖1 ≤ δ1. Set d = dist(Φ(yT [u, θ], θ),K). Let us build a sequence (uk)k of classical
controls with u0 = u and which is such that for all k,

‖uk+1 − uk‖1 ≤
(C + 1)d

2k
and Φ(yT [u

k, θ], θ) ≤ d

2k
. (4.75)

By definition, dist(Φ(yT [u
0, θ], θ),K) ≤ d/20. Let k in N, and let us suppose that we have

built u0,...uk such that (4.75) holds up to index k − 1. Thus, dist(Φ(yT [u
k, θ], θ),K) ≤

d/2k and ‖uj+1 − uj‖1 ≤ (C + 1)d/2j for all j in {0, ..., k − 1}. Therefore,

d1(u
k, µ̄) ≤ ‖uk − u0‖1 + d1(u

0, µ̄) ≤
k−1∑

j=0

(C + 1)d

2j
+ δ1 ≤ 2(C + 1)δ1 + δ1 ≤ δ.

By the metric regularity theorem, there exists a feasible relaxed control µ such that
d1(u

k, µ) ≤ Cd/2k. By the density of classical controls into MY
R , by the weak-∗ conti-

nuity of d1(u
k, ·), and by lemma 4.35, there exists a classical control u such that

‖u− uk‖1 ≤
(C + 1)d

2k
and Φ(yT [u, θ], θ) ≤

d

2k+1
.
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We set uk+1 = u. This justifies the existence of a sequence satisfying (4.75). Finally, we
have built a sequence (uk)k of classical controls which converges for the L1-norm. Let
us denote by u′ its limit, by lemma 4.35, it follows that

dist(Φ(yT [u
′, θ], θ),K) ≤ lim

k→∞
dist(Φ(yT [u

k, θ], θ),K) = 0

and

‖u′ − u‖1 ≤
∞∑

k=0

‖uk+1 − uk‖1 ≤
∞∑

k=0

(C + 1)d

2k
= 2(C + 1)d.

The lemma holds with δ1, σ, u
′, and C1 = 2(C + 1).

Corollary 4.39. Let µ ∈ MY
R and θ ∈ [0, σ] be such that d1(ū, µ) < δ1 and such that µ is

feasible for θ. Then, there exists a feasible sequence of classical controls (uk)k converging
to µ for the weak-∗ topology.

Proof. Let µ ∈ MY
R and θ ∈ [0, σ] be as above. Let (uk)k be a sequence of classical

controls converging to µ for the weak-∗ topology. Then, dist(Φ(yT [u
k, θ], θ),K) → 0,

by lemma 4.35 and for k large enough, ‖uk − ū‖1 ≤ δ1. By lemma 4.38, we obtain a
sequence of feasible controls (ũk)k which is feasible for the value θ and which is such
that ‖uk − ũk‖1 → 0. Then, it is easy to check that ũk converges to µ for the weak-∗
topology. This proves the corollary.

In theorem 4.33, we have proved that under a second-order sufficient condition, for
a small, positive, and fixed value of η, any sequence of solutions to problems (PY,η

θ )
converges to ū for the L1- distance. Therefore, for small values of η and θ, these solutions
can be approximated by feasible classical controls and V η(θ) = V̂ η(θ).

Technical proofs

Lemma 4.6. For all t in [0, T ],

|y[µ, θ]t − ȳt| =
∣∣∣∣
∫ t

0

∫

UR

(
f(u, ys[µ, θ], θ)− f(ūs, ȳs, 0)

)
dµs(u) ds

∣∣∣∣

=

∫ t

0

∫

UR

O(|u− ūt|) +O(|ys[µ, θ]− ȳs|+ θ) dµs(u) ds+O(θ)

= O(d1(µ, µ̄)) +O(θ) +

∫ t

0
O(|y[µ, θ]s − ȳs|) ds,
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whence estimate (4.9) by Gronwall’s lemma. Now, set r = y[µ, θ]−(ȳ+ξ[µ]+θξθ), then,
for all t in [0, T ],

|rt| =
∣∣∣
∫ t

0

∫

UR

(
f(u, ys[µ, θ], θ)− f(u, ȳs, 0)

)
dµs(u)− fy,θ[s](ξs[µ] + θξθs , θ) ds

∣∣∣

≤
∫ T

0
|f(ūs, ys[µ, θ], θ)− f(ūs, ȳs, 0)− [fy[s]ξs[µ] + fy[s]θξ

θ
s + fθ[s]]|ds

=

∫ t

0
|fy[s](ys[µ, θ]− (ȳs + ξs[µ] + θξθ))|ds+O(d1(µ, µ̄)

2 + θ2)

=

∫ t

0
O(|rs|) ds+O(d1(µ, µ̄)

2 + θ2),

since

∫ t

0

∫

UR

[f(u, ys[µ, θ], θ)− f(u, ȳs, 0)] − [f(ūs, ys[µ, θ], θ)− f(ūs, ȳs, 0)] dµs(u) ds

= O(d1(µ, µ̄)(‖y[µ]− ȳ‖∞ + θ)) = O(d1(µ, µ̄)
2 + θ2).

Estimate (4.10) follows from Gronwall’s lemma.

Lemma 4.7. The result is a consequence of the dual representation of the L1-distance
given in [24, theorem 3.4.1]. Let ψ : [0, T ] × UR → R be a bounded Caratheodory
integrand which is such that for almost all t, u ∈ UR 7→ ψ(t, u) is Lipschitz continuous
with modulus 1. Then,

∫ T

0

∫

UR

ψ(t, u)
(
dSt(µ

0, γ′)(u)− dSt(µ
0, γ)(u)

)
dt

=

q∑

i=1

(γ′i − γi)

∫

UR

ψ(t, u)
(
dµi(u)− dµ0(u)

)
dt ≤

q∑

i=1

|γ′i − γi|d1(µ0, µi).

The first inequality follows and the second one is obvious.

Lemma 4.19. Remember that ‖µ⊖ ū‖1 = d1(µ̄, µ). Setting r = ξ[µ]−z[µ⊖ ū], we obtain
that for almost all t in [0, T ],

ṙt = fy[t]rt +

∫

UR

[
f(ȳt, u)− (f [t] + fu[t](u− ūt))

]
dµt(u)

= O(|rt|) +
∫

UR

O(|u− ūt|2) dµt(u),

thus, by Gronwall’s lemma, ‖r‖∞ = O(‖µ⊖ū‖22), which proves estimate (4.39). Replacing
ξ[µ] by z[µ ⊖ ū] in estimates (4.9) and (4.10) of lemma 4.6, we obtain estimates (4.40)
and (4.41).

The following lemma will be used in the proof of theorem 4.26.
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Lemma 4.40. Let (θk)k ↓ 0 and let f : R+ → R+∗ be a non-increasing right-continuous
function converging to 0 at infinity. Then, there exists a sequence (ck)k of positive real
numbers satisfying

ckθk → 0 and
f(ck)

ck
= o(θk). (4.76)

Proof. For all k, set
Ck =

{
c ≥ 0, f(c) ≤ (θkc)

2
}
.

Since f is non-increasing and right-continuous, Ck is a closed interval of R+∗. Set
ck = inf Ck. The sequence (ck)k is well-defined and positive. Let C > 0, for k large
enough, θk <

√
f(C)/C, thus ck ≥ C. This proves that ck → +∞ and therefore that

f(ck) → 0. Since ck/2 < ck,

f(ck/2) ≥
(θkck

2

)2
,

therefore, ckθk ≤ 2
√
f(ck/2) → 0. As a consequence, by right-continuity of f , f(ck)/ck =

θk(θkck) = o(θk). This proves the lemma.

Theorem 4.26. We follow the proof of lemma 4.15. The main difficulty of the proof is
that we need to combine the two different kinds of linearizations: the standard one at
the first order and the Pontryagin linearization at the second order. A second difficulty
arises if ν has a non-bounded support: in this case, a truncation must be realized. In
the proof, we consider this case: ν is non-bounded. Let ν ∈ S(SPLθ), ξ ∈ F (PQθ(ν)),
and (θk)k ↓ 0 be such that

lim
k→∞

V η(θk)− [V η(0) + θk Val(PLθ)]

θ2k
= lim sup

θ↓0

V η(θ)− [V η(0) + θ Val(PLθ)]

θ2
.

Let (µ̃k, αk)k be a sequence in MY
R × R+ such that ξ = limαkξT [µ̃

k]. Extracting a
subsequence of (θk)k if necessary, we can suppose that

θkαk = o(1) and αkθ
2
k ≤ 1.

For all c ≥ 0, we define νc and ωc the unique Young measures which are such that for
all g ∈ C0([0, T ] ×R

m),





∫ T

0

∫

Rm

g(t, u) dνc dt =

∫ T

0

∫

Rm

1|u−ūt|>c g(t, 0) + 1|u−ūt|≤c g(t, u) dν
k
t dt,

∫ T

0

∫

Rm

g(t, u) dωc dt =

∫ T

0

∫

Rm

1|u−ūt|>c g(t, u) + 1|u−ūt|≤c g(t, 0) dν
k
t dt.

We set f(c) = ‖ωc‖22. It satisfies the assumptions of lemma 4.40. We obtain a sequence
(ck)k satisfying (4.76) and we set νk = νck and ωc = ωck . Note that

f(ck) = ‖ωk‖22 ≥ ck‖ωk‖1,

therefore, by (4.40),
‖ωk‖1 = o(θk).
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Now, in order to realize the first-order perturbation, we consider the measure µ1,k =
ū⊕ θkν

k. For almost all t, the support of µ1,kt is included into the ball of center ūt and
radius ckθk. Since ckθk → 0, for k large enough µ1,k ∈ MY

R and since αkθ
2
k ≤ 1, we can

define
µk = (1− αkθ

2
k)µ

1,k + (αkθ
2
k)µ̃

k ∈ MY
R .

We set yk = y[µk, θk]. Let us show the expansion

‖yk − (ȳ + θkz
1[ν] + θ2k(z

2[ν] + ξ))‖∞ = o(θ2k). (4.77)

We know that d1(µ̄, µ
k) = O(θk). Moreover,

θz[ν]− z[µk ⊖ ū] = αkθ
3
kz[ν]− αkθ

2
kz[µ̃

k] = o(θk),

thus, using lemma 4.19, we obtain that

‖yk − (ȳ + θkz
1[ν])‖∞ = o(θk).

Let us set rk = yk − (ȳ + θkz
1[ν] + θ2k(z

2[ν] + αkξ[µ̃
k])). Then,

rkt = (1− αkθ
2
k)

∫ t

0

∫

Rm

f(ūs + θku, y
k
s , θk)− f [s] dνkt (u) ds

−
∫ t

0

∫

Rm

(
θkf

′[s](u, z1s [ν], 1) +
1
2θ

2
kf

′′[s](u, z1s [ν], 1)
2
)
dνt(u) ds

− θ2k

∫ t

0
fy[s](z

2
s [ν] + αkξ[µ̃

k]s) ds

+ αkθ
2
k

∫ t

0

∫

UR

f(u, yks , θk)− (f(u, ȳs, 0) − f [s])− f [s] dµ̃ks(u) ds

=

∫ t

0

∫

Rm

(
f ′[s](θku, (y

k
s − ȳs), θk) +

1
2f

′′[s](θku, yks − ȳs, θk)
2
)
dνkt (u) ds

−
∫ t

0

∫

Rm

(
f ′[s](θku, θkz

1
s [ν], θk) +

1
2f

′′[s](θku, θkz1s [ν], θk)
2
)
dνt(u) ds

− θ2k

∫ t

0
fy[s](z

2
s [ν] + αkξ[µ̃]s)

+ αkθ
2
k

∫ t

0

∫

UR

(
f(u, yks , θk)− f(u, ȳs, θk)

)
dµ̃ks(u) ds+ o(θ2k)

=

∫ t

0

∫

Rm

(
θkfu[s]u+ 1

2θ
2
kf

′′[s](u, z1s [ν], 1)
2
)
(dνkt (u)− dνt(u)) dt

+

∫ t

0
fy[s]r

k
s ds+ o(θ2k)

=

∫ t

0
fy[s]r

k
s ds+O(θk‖ωk‖1) +O(θ2k‖ωk‖22) + o(θ2k)

=

∫ t

0
fy[s]r

k
s ds+ o(θ2k).
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By Gronwall’s lemma, ‖rk‖∞ = o(θ2k) and since αkξT [µ
k] → ξ, expansion (4.77) holds.

As a consequence, the following second-order expansion holds:

φ(yT [µ
k, θk], θk) = φ(ȳT , 0) + θkφ

′(ȳT , 0)(z
1
T [ν], 1)

+ θ2k

[1
2
φ′′(ȳT , 0)(z

1
T [ν], 1)

2 + φyT (ȳT , 0)(z
2
T [ν] + ξ)

]
+ o(θ2k), (4.78)

and the same expansion holds for Φ(yT [µ
k, θk], θk). Therefore, dist(Φ(ykT ),K) = o(θ2k).

By the metric regularity theorem (theorem 4.9) and by lemma 4.35, there exists a se-
quence µ̂k of feasible controls such that d1(µ

k, µ̂k) = o(θ2k) and such that (4.78) holds
for φ(yT [µ̂

k, θk], θk). Minimizing with respect to ξ, we obtain that

lim sup
θ↓0

V η(θ)− [V η(0) + θVal(PLθ)]

θ2
≤ Val(PQθ(ν)).

Minimizing with respect to ν, we obtain the theorem.

Lemma 4.27. Expanding the difference of Lagrangians up to the second order, we obtain

∆Φk = Φ′[λ](ȳT , 0)(δy
k
T , θk) +

1
2Φ

′′[λ](δykT , θk)
2 + o(θ2k + |δykT |2). (4.79)

Then,

ΦyT [λ](ȳT , 0)δy
k
T =

[
pλt δy

k
t

]T
0

=

∫ T

0

(
pλt δ̇y

k
t + ṗλt δy

k
t

)
dt

=

∫ T

0

(∫

UR

(H(u, ykt , θk)−H[t]) dµkt (u)−Hy[t]δy
k
t

)
dµkt (u) dt. (4.80)

Expanding the difference of Hamiltonians, we obtain that

∫ T

0

∫

UR

(H(u, ykt , θk)−H[t]) dµkt (u) dt

=

∫ T

0

∫

UR

[H(u, ykt , θk)−H(u, ȳt, 0)] + [H(u, ȳt, 0) −H[t]] dµkt (u) dt

=

∫ T

0

∫

UR

H(y,θ)(u, ȳt, 0)(δy
k
t , θk) +

1
2H(y,θ)2(u, ȳt, 0)(δy

k
t , θk)

2 dµkt (u) dt

+

∫ T

0

∫

UR

(H(u, ȳt, 0)−H[t]) dµkt (u) dt+ o(θ2k +R2
1,k). (4.81)

Moreover,

∫ T

0

∫

UR

∣∣H(y,θ)2(u, ȳt, 0)(δy
k
t , θk)

2 −H(y,θ)2 [t](δy
k
t , θk)

2
∣∣dµkt (u) dt

= O(R1,k(R
2
1,k + θ2k)). (4.82)

and

R1,k(R
2
1,k + θ2k) ≤ R3

1,k +
1

2
(R2

1,k + θ2k)θk = o(R2
1,k + θ2k). (4.83)
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Finally, remember that Val(PLθ) =
∫ T
0 Hθ[t] dt + Φθ[λ](ȳT , 0). Combining expansions

(4.79-4.83), we obtain that

∆Φk = Val(PLθ)θk +

∫ T

0

∫

UR

(H[pλt ](u, ȳt, 0)−H[pλt ][t]) dµt(u) dt

+

∫ T

0

∫

UR

(Hy[p
λ
t ](u, ȳt, 0) −Hy[p

λ
t ][t])δy

k
t dµ

k
t (u) dt (4.84a)

+

∫ T

0

∫

UR

(Hθ[p
λ
t ](u, ȳt, 0)−Hθ[p

λ
t ][t])θk dµ

k
t (u) dt (4.84b)

+
1

2

[ ∫ T

0
H(y,θ)2 [p

λ
t ][t](δy

k
t , θk)

2 dt+Φ′′[λ](δykT , θk)
2
]
+ o(θ2k +R2

1,k). (4.84c)

We have already proved in lemma 4.19 the following estimate:

‖δyk − (zk + θkξ
θ)‖∞ = O(R2

1,k + θ2k).

Therefore, we can replace δyk by its standard expansion z1,k in terms (4.84a) and (4.84c).
The errors that we make are respectively of order R1,k(R

2
1,k + θ2k) and R

2
1,k(R1,k + θk).

As we prove in estimate (4.83), the first term is of order o(R2
1,k + θ2k). The estimate

(4.45) holds.

Expansion (4.46) follows from (4.84). We replace respectively terms (4.84a), (4.84b),
and (4.84c) by the following estimates: O(R1,k‖δyk‖∞), O(R1,kθk), O(‖δyk‖2∞+θ2k), and
the estimate is obtained, since the sequence (R1,k)k is bounded.

Lemma 4.31. Let ν ∈ MY
2 and let (νk)k be a bounded sequence in MY

2 narrowly con-
verging to ν̄.

⊲ Narrow continuity of ν 7→ z[ν].
We set, for almost all t,

vkt =

∫

Rm

udνkt (u) and vt =

∫

Rm

udνt(u).

It is easy to check that v̄ and vk ∈ L2(0, T ;Rm). Moreover, z[vk] = z[νk] and z[v] = z[ν].
Let us check that vk converges to v̄ for the weak topology of L2. Let h ∈ L2(0, T ;Rm),
then by definition of the narrow topology,

∫ T

0
htv

k
t dt =

∫ T

0

∫

Rm

ht dν
k
t (u) dt→

∫ T

0

∫

Rm

ht dνt(u) dt =

∫ T

0
htv

k
t dt. (4.85)

This proves the weak convergence of vk. The mapping v ∈ L2(0, T ;Rm) 7→ z[v] ∈
H1(0, T ;Rn) being linear continuous, z[vk] converges for the weak topology of H1. Since
(z[vk])k is bounded in H1 and by the compact embedding of this space in C(0, T ;Rn),
z[vk] converges uniformly to z[v].
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⊲ Narrow lower semi-continuity of Ω[λ] and Ωθ[λ].
Let λ ∈ ΛP . Let us decompose Ωθ[λ] into three terms, Q0, Q1, and Q2 with

Q0[λ](ν) =

∫ T

0
Hy,θ[t](z[ν], 1)

2 dt+Φ′′[λ](ȳT , 0)(zT [ν], 1)
2,

Q1[λ](ν) = 2

∫ T

0

∫

Rm

Hu,θ[t](u, 1) +Hu,y[t](u, z[ν]) dνt(u) dt,

Q2[λ](ν) =

∫ T

0

∫

Rm

Huu[t](u)
2 dνt(u) dt.

Since z[νk] converges uniformly to z[ν] and since the sequence (νk)k is bounded, we
obtain by lemma 4.37 that Q0[λ](ν

k) and Q1[λ](ν
k) converge resp. to Q0[λ](ν) and

Q1[λ](ν). Since λ ∈ ΛP , the integrand Huu[t](u)
2 of Q2[λ] is nonnegative, Q2[λ] is lower

semi-continuous for the narrow topology. Finally, we obtain the lower semi-continuity
of Ωθ[λ] and similarly, the one of Ω[λ].

⊲ Strong convergence to 0.
Suppose now that (νk)k converges narrowly to 0 and that Ω[λ̄](νk) → 0. Then, necessar-
ily, Q2[λ̄](ν

k) → 0. From hypothesis 4.2.1, we obtain the inequality 2α‖ν‖22 ≤ Q2[λ̄](ν)
and the lemma is now proved.
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Abstract

Nuclear power plants must be regularly shut down in order to perform refueling and
maintenance operations. The scheduling of the outages is the first problem to be solved
in electricity production management. It is a hard combinatorial problem for which an
exact solving is impossible.

Our approach consists in modelling the problem by a two-level problem. First, we
fix a feasible schedule of the dates of the outages. Then, we solve a low-level problem of
optimization of elecricity production, by respecting the initial planning. In our model,
the low-level problem is a deterministic convex optimal control problem.

Given the set of solutions and Lagrange multipliers of the low-level problem, we can
perform a sensitivity analysis with respect to dates of the outages. The approximation
of the value function which is obtained could be used for the optimization of the schedule
with a local search algorithm.

Résumé

Les centrales nucléaires sont régulièrement arrêtées afin de réaliser des opérations de
maintenance et de rechargement en combustible nucléaire. La planification de ces arrêts
constitue le premier problème à résoudre en gestion de la production d’électricité. C’est
un problème combinatoire difficile qui ne peut être résolu exactement.

Notre approche consiste à modéliser ce problème par un problème à deux niveaux.
Tout d’abord, nous fixons un calendrier admissible des dates des arrêts des centrales.
Puis, nous résolvons un sous-problème de production d’électricité, en respectant le calen-
drier initial. Dans notre modèle, ce sous-problème est un problème de contrôle optimal
déterministe et convexe.

Etant donnés les solutions et multiplicateurs de Lagrange du sous-problème, nous
pouvons réaliser une analyse de sensibilité par rapport aux dates des arrêts. Nous
obtenons une approximation de la fonction valeur qui devrait permettre de mettre en
place un algorithme de recherche locale pour l’optimisation de ces dates d’arrêts.

5.1 Introduction

Energy generation in France is a competitive market, whereas transportation and dis-
tribution are monopolies. Electric utilities generate electricity from hydro reservoirs,
fossil energy (coal, gas), atom (nuclear fission process) and to a small extent from wind
farms, solar energy or run of river plant without pondage. This energy mix provides
enough power and flexibility to match energy demand in any circumstances. Hydro
power stations are managed in order to remove peaks on the load curve during peak-
hours, whereas thermal power stations supply base load energy. Due to their capacity
generation and their production cost as well, the base load part is mainly supported by
nuclear power stations.

Nuclear facilities are subject to various constraints, and this induces a variation of
the availability of nuclear energy. Some events may occur randomly during the operating
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period and cause forced outages. This is why outages must be planned by the producer
in order to perform maintenance and refuelling operations of the fleet of nuclear power
stations and in order to avoid a dramatical decrease of the nuclear availability. Thermal
power stations, using expensive resources such as coal or gas, enable to compensate a
lack of nuclear energy. These supplementary costs, due to the nuclear unavailability
must be minimized when a schedule of the outages is planned.

Each power station has its scheduling variables, which are submitted to local and
coupling constraints as well. There are different constraints in the scheduling of outages
of power plants: on the minimum spacing, on the maximum overlapping between outages,
and on the number of outages in parallel. For operating purposes, the decision to stop a
power station for maintenance has to be forecast far ahead. As a consequence, scheduling
decisions are modelled as “open-loop” decisions, which means that they do not depend
on the consumption scenario.

Given the planning of outages, the low-level problem of electricity production can be
described by a discrete time dynamic and stochastic optimization problem. The overall
optimization problem is a large scale, mixed integer stochastic problem. We refer to [34,
49, 48, 59] for precise descriptions of this problem. At Electricité de France, the numerical
resolution of this problem uses local search algorithms in order to improve the current
planned program. Numerous slight modifications are performed around the current
program and the most profitable determines the next program. The computational
burden to solve this problem is heavy, reducing it is a challenging task.

In this paper, we perform a sensitivity analysis of the electricity production problem
when the integer parameters defining the scheduling of the outages are set. We provide
a first-order expansion of the value of this low-problem, with respect to the dates of
the outages. For the sake of simplicity, the low-level problem is a convex deterministic
optimal control problem with continuous time. We do not consider the combinatorial
side of the problem.

In the first section, we discuss the structure of solutions to the low-level problem,
which are not unique in general. In the second section, we realize the sensitivity analysis
by using a well suited time reparameterization. We obtain a formula for the directional
derivatives of the value function using the opposite of the jumps of the true Hamiltonian
at the times of beginning or end of the outages. It is based on the set of Lagrange
multipliers, which we describe precisely. The result is an application of a theorem of
[21]. The technical aspects related to the theorem such as the proof of qualification or
the proof of convergence of the solutions to the perturbed problems are postponed in
the third section.

5.2 Study of the reference problem

In this first part, we study the low-level problem of production management and therefore
consider that the dates of the outages are fixed. In our model, we only consider one
outage for each plant. Applying Pontryagin’s principle, we study the particular structure
of the optimal controls, which are not unique in general.
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5.2.1 Notations, model and mathematical hypotheses

The main notations for the problem are the following:

[0, T ] the time period
c(x) the cost of production of an amount x

with thermal power stations
d(t) the demand of electricity at time t
d(t) the demand of electricity at time t
S the set of nuclear power plants
n the number of nuclear power plants

si(t) the amount of available fuel of plant i at time t
si0 the initial level of plant i
ui(t) the rate of production of plant i at time t
ūi the maximum rate of production of plant i at time t
U the set of controls defined by

{u ∈ R
n, such that ui ∈ [0, ūi], ∀i ∈ S}

τ ib the date of the beginning of the outage of plant i
τ ie the date of the end of the outage of plant i
T the set of dates defined by

∪i∈S{τ ib , τ ie}.
W (t) the set of working plants at time t,

defined by W (t) = {i ∈ S, t /∈ [τ ib , τ
i
e]}

ai(t) the rate of refuelling of plant i at time t,
with ai(t) ≥ 0

φ(s(T )) a decreasing convex function of the final state
V (τb, τe) the value of the problem in function of τb and τe.

(5.1)

The optimal control problem (P(τb, τe)) is

V (τb, τe) = min
u,s

∫ T

0
c
(
d(t)−

∑

i∈W (t)

ui(t)
)
dt+ φ(s(T )),

s.t. ∀i ∈ S, ṡi(t) = −ui(t) + ai(t)1[τ ib ,τ ie]
(t), for a. a. t,

0 ≤ ui(t) ≤ ūi, for a. a. t,
si(0) = si0,
si(τ ib) = 0,
si(T ) ≥ 0,

(P(τb, τe))

where u ∈ L∞(0, T ;Rn) and s ∈W 1,∞(0, T ;Rn).

The dynamic of the stocks of fuel is clear from the differential equation: the stock
si decreases at rate ui(t) during the time period and increases at rate ai(t) during the
time of outage. The argument of the cost function c is the amount of energy which is
not produced with nuclear power plants in order to satisfy the demand. This energy is
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produced with other types of power stations, which are more expensive. In our model,
we also allow the total production to be greater than the demand.

Note that for optimal solutions, we will obtain that for all i in S, for almost all t in
[τ ib , τ

i
e], the control ui(t) is equal to 0, see lemma 5.2.

Mathematical hypotheses For our study, we suppose that the following hypotheses
are satisfied:

⊲ the cost functions c(x) and φ(s), the demand d(t) and the rate of refuelling a(t)
are continuously differentiable functions,

⊲ the cost function c(x) is strongly convex with parameter α on R,

⊲ the final cost function φ(s) is strictly convex on R
n
+ and for all s in R

n
+, for all i in

S,
Dsiφ(s) < 0.

Feasibility of the problem The problem has a feasible control with a feasible tra-
jectory associated if and only if, for all i in S,

τ ib · ūi ≥ si0.

Moreover, we can prove the existence of an optimal solution in this case. It follows from
the boundedness of the controls and the convexity of the cost functions, see lemma 5.18.
In the sequel, we will assume that the following qualification condition is satisfied: for
all i in S,

τ ib > 0, ūi > 0, τ ib · ūi > si0, and

∫ τ ie

τ ib

ai(t) dt > 0. (QC)

Note that this last integral is equal to si(τ ie). This hypothesis will enable us to prove an
abstract qualification condition, needed to apply Pontryagin’s principle and to realize
the sensitivity analysis (see lemma 5.19).

5.2.2 Study of the optimal controls

This subsection is dedicated to the study of an optimal control u(t), which minimizes
the Hamiltonian for almost all t. For our problem, the Hamiltonian has the particularity
to be independent on the state s.

Let us denote by p the costate associated with s. Given a subset W of S, we define
the Hamiltonian of the system by

HW (t, u, p) = c
(
d(t)−

∑

i∈W
ui
)
+
∑

i∈S
pi
(
− ui + ai(t)1i/∈W

)
(5.2)

for t in [0, T ], u in U and p in R
n. The notation U has been introduced in (5.1). This

subscript W will be particularly useful later, since we will consider the Hamiltonian at
times τ ib and τ

i
e at which there are two sets of working plants of interest (one includes the
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plant beginning or ending its outage, the other does not). Notice that the Hamiltonian
does not depend on the state s.

Proposition 5.1 (Pontryagin’s principle). If hypothesis (QC) holds, then for all optimal
solution (u, s), there exists a costate t 7→ p(t) ∈ R

n such that for all i in S,

⊲ pi(t) is a step function, taking two values pi(0) and pi(T ) on the intervals [0, τ ib)
and (τ ib , T ] respectively

⊲ pi(T ) ≤ Dsiφ(s(T )) and pi(T ) = Dsiφ(s(T )) if si(T ) > 0

and such that for almost all t in [0, T ], the control minimizes the Hamiltonian:

HW (t)

(
t, u(t), p(t)

)
= min

v∈U
HW (t)

(
t, v, p(t)

)
. (5.3)

Proof. In lemma 5.19, we prove that hypothesis (QC) implies Robinson’s qualification
condition (RQC). This condition enables us to apply Pontryagin’s principle for systems
with a final-state constraint, see [46, section 2.4.1, theorem 1] for a proof. For our
problem, each state variable si can be decomposed into two state variables, one describing
the dynamic of the stock before its outage, one describing its dynamic after. This is why
we can view the constraint s(τ ib) = 0 as a final-state constraint. The costate p is a step
function because nor the dynamic, neither the cost function depend on the state. The
discontinuity of the coordinate pi at time τ ib is due to the state constraint s(τ ib) = 0.

In the sequel, we will consider that a costate is an element of R2n which is charac-
terized by its values p(0) and p(T ) at times 0 and T . For all p = (p0, pT ) in R

2n, we
associate the costate function defined by

pi(t) =

{
pi(0) if t ∈ [0, τ ib),

pi(T ) if t ∈ (τ ie, T ],
∀i ∈ S.

We assign no value to pi at time τ ib . However, we will use the following notation in the
sequel: if plant i is the only plant to start an outage at time t = τ ib , p(t

−) and p(t+) are
such that for all j 6= i,

pj(t−) = pj(t+) = pj(t) (5.4)

and such that
pi(t−) = pi(0), and pi(t+) = pi(T ). (5.5)

Now, let us study the problem of minimization of the Hamiltonian introduced in
(5.3). Let t ∈ [0, T ]\T (that is to say, t is different from all the dates of beginning or
end of outage). Let u be an optimal solution and let p ∈ R

2n be an associated costate.
Since t /∈ T , p(t) and W (t) are uniquely defined. Note that if i /∈W (t), then necessarily
t > τ ib and thus

pi(t) = pi(T ) ≤ Dsiφ(s(T )) < 0. (5.6)

Consider the problem

min
v∈U

c
(
d(t)−

∑

i∈W (t)

vi
)
+
∑

i∈S
pi(t)

(
− vi + ai(t)1[τ ib ,τ ie]

(t)
)
. (Pt)
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As we can see, the term
∑

i∈S p
i(t)ai(t)1[τ ib ,τ ie]

(t) does not play any role here. Moreover,
we can decompose the problem by introducing an additional variable µ for the total
production, the sum

∑
i∈W (t) v

i. Let us set

UW (t) =
∑

i∈W (t)

ūi

and let us define, for µ in [0, UW (t)],

ξt(µ) = min
v∈U ,∑

i∈W (t) v
i=µ,

vi=0, ∀i/∈W (t)

∑

i∈W (t)

−pi(t)vi. (5.7)

Now, we can focus on the following one-dimensional problem:

min
0≤µ≤UW (t)

c
(
d(t)− µ

)
+ ξt(µ). (P ′

t)

The following lemma justifies problem P ′
t .

Lemma 5.2. If u is a solution to problem Pt, then
∑

i∈S u
i is a solution to problem P ′

t

and ui = 0 for all i /∈ W (t). Conversely, if µ is a solution to P ′
t , then there exists a

solution u to problem P ′
t which is such that

∑
i∈S u

i = µ.

Proof. Let u ∈ U be a solution to problem Pt. By (5.6), for all i /∈ W (t), −pi(t) > 0
and thus ui = 0. It is then clear that µ =

∑
i∈S u

i =
∑

i∈W (t) u
i is a solution to P ′

t .

Conversely, let µ be a solution to P ′
t . Since µ ≤ UW (t), the optimization problem (5.7)

is feasible and has a solution in U , say u, since U is compact. Then,
∑

i∈S u
i = µ and it

is easy to check that u is a solution to P ′
t .

Problem P ′
t has an economic interpretation. Producing at time t at a rate u has

a consequence on the dynamic of the state after time t. This is represented by the
function ξt(µ). In some sense, the real numbers −p1(t),...,−pn(t) are the marginal prices
associated with the production at time t. Problem P ′

t takes into account both the cost
function c(d(t) − µ) and the cost of production ξt(µ).

Notations In the next three lemmas, we focus on problem P ′
t . We always assume that

t is a given time in [0, T ]\T , u an optimal solution and p an associated costate. Let us
denote by K the cardinal of {pi(t), i ∈ W (t)}. In the sequel, keep in mind that it may
be possible that pi(t) = pj(t) for some i and j in W (t). In this case, the corresponding
value pi(t) = pj(t) is counted only once and then K < |W (t)|. We consider the mapping
σ from {1, ...,K} to P(W (t)) (the power set of W (t)) uniquely defined by:

(i) ∀k ∈ {1, ...,K}, ∀i ∈ σ(k), ∀j ∈W (t), (pj(t) = pi(t)) ⇔ (j ∈ σ(k)). (5.8)

This common value will be denoted by pk(t).

(ii) ∀k, l ∈ {1, ...,K}, k < l ⇒ pk(t) > pl(t). (5.9)
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This mapping is nothing but a decreasing ordering of the coordinates of p(t) involved in
the definition of ξt. We also set, for k in {1, ...,K},

Uk =

k∑

l=1

∑

i∈σ(l)
ūi (5.10)

and U0 = 0. Note that UK = UW (t). In the sequel, indexes i and j will be elements of
S and will appear at the top, whereas indexes k and l will be elements of {1, ...,K} and
will appear at the bottom.

The function µ 7→ ξt(µ) is piecewise affine and convex. We make its value explicit
on [0, UK ]:





ξt(µ) = −p1(t)µ, ∀µ ∈ [0, U1],

ξt(µ) = −p2(t)(µ − U1) + ξt(U1, ), ∀µ ∈ [U1, U2],

...

ξt(µ) = −pK(t)(µ − UK−1) + ξt(UK−1), ∀µ ∈ [UK−1, UK ].

(5.11)

The following lemma shows that there is an ordering in the use of the fuel: we begin
by using the power of the plants of greatest costate.

Lemma 5.3. Let i and j in W (t) be such that −pi(t) < −pj(t), if v is a solution to Pt,
then

(vj > 0) ⇒ (vi = ūi),

or, equivalently,

(vi < ūi) ⇒ (vj = 0).

Proof. This is a direct consequence of lemma 5.2 and the expression of ξt(µ) given by
(5.11).

The interpretation of the lemma is the following: if −pi(t) < −pj(t), then plant i
is cheaper than plant j at time t and should be used first. The next lemma gives the
necessary optimality conditions of problem P ′

t .

Lemma 5.4. Problem P ′
t has a unique solution on [0, UK ], say µ. The following four

cases hold true.

1. If there exists k in {1, ...,K} such that µ ∈]Uk−1, Uk[, then

c′(d(t)− µ) = −pk(t). (5.12)

2. If there exists k in {0, ...,K} such that µ = Uk, then

(a) if k ∈ {1, ...,K − 1},

− pk(t) ≤ c′(d(t)− Uk) ≤ −pk+1(t). (5.13)
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(b) if k = 0,

c′(d(t) − 0) ≤ −p1(t). (5.14)

(c) and if k = K,

− pK(t) ≤ c′(d(t) − UK). (5.15)

Proof. The function µ 7→ c(d(t) − µ) + ξt(µ) is continuous and defined on a compact
interval, whence the existence of the solution. Furthermore, this function is strictly con-
vex, since c is so. The uniqueness of the solution follows. For the optimality conditions,
we use the assumption of differentiability of c and the explicit formula of ξt(µ) given by
(5.11).

The goal of the next lemma is to give a characterization of the solutions to problem
P ′
t in function of d(t). We denote by kmin and kmax the smallest indices such that

lim
x→−∞

c′(x) < −pkmin and − pkmax < lim
x→+∞

c′(x) respectively.

For all k in {kmin, ..., kmax}, we set

{
d−k = c′−1(−pk(t)) + Uk−1,

d+k = c′−1(−pk(t)) + Uk.
(5.16)

We also set

d+
kmin−1

= −∞ and d−kmax+1 = +∞.

We have

d+
kmin−1

< d−
kmin < d+

kmin < d−
kmin+1

< · · · < d−kmax < d+kmax < d−kmax+1.

Now, we can express the optimal solution µ in function of d(t).

Lemma 5.5. The following two cases hold true.

1. If for some k in {kmin, ..., kmax}, d−k ≤ d(t) ≤ d+k , then

µ = d(t)− c′−1
(−pk(t)),

ui = ūi, ∀i ∈ σ(l), l < k,
∑

i∈σ(k) u
i = d(t)− c′−1(−pk(t))− Uk−1,

ui = 0, ∀i ∈ σ(l), l > k.

2. If for some k in {kmin − 1, ..., kmax}, d+k ≤ d(t) ≤ d−k+1, then

µ = Uk,

ui = 0, ∀i ∈ σ(l), l > k,

ui = ūi, ∀i ∈ σ(l), l ≤ k.
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Proof. Since the problem is convex, it suffices to check the necessary optimality condi-
tions detailed in lemma 5.4. For the first case, the condition satisfied is (5.12). In the
second case, if k = 0, the satisfied condition is (5.14), if k = K, the satisfied condition
is (5.15), otherwise, the satisfied condition is (5.13).

Remark 5.6. In lemma 5.5, we see that the coefficients d
−/+
k play an important role,

since they enable us to compute the optimal solutions to problem Pt. Keep in mind
that these coefficients depend on p(t). As a consequence, they have to be viewed as step
functions of time.

We state now a uniqueness property of the optimal controls.

Lemma 5.7. Let (u1, s1) and (u2, s2) be two optimal solutions. Then, for almost all t
in [0, T ],

∑
i∈S u

i
1(t) =

∑
i∈S u

i
2(t) and s1(T ) = s2(T ).

Proof. It is well-known that for a convex optimization problem, if the cost function is
strictly convex with respect to one of the optimization variables, then the value of this
variable is unique at the optimum. For our problem, since c and φ are strictly convex,
we have that

∑
i∈W (t) u

i
1(t) =

∑
i∈W (t) u

i
2(t) for almost all t in [0, T ] and s1(T ) = s2(T ).

Since u1(t) = u2(t) = 0 for almost all t in [τ ib , τ
i
e], we finally obtain that

∑
i∈S u

i
1(t) =∑

i∈S u
i
2(t) for almost all t.

Remark 5.8. While the sum of the controls is unique, there may be several differents
optimal controls. This happens when there are at least two plants i and j for which
pi(t) = pj(t) on a subinterval of [0, T ]. If the demand satisfies strictly the inequalities
of the first case of lemma 5.5, then the problem of minimization of the Hamiltonian,
Pt, has several optimal solutions and the general problem has equally, in general, several
solutions.

5.3 Sensitivity analysis

5.3.1 Theoretical material

In this subsection, we state an abstract general theorem for the sensitivity analysis of a
convex problem. Consider the general parameterized problem

V (y) = min
x∈X

f(x, y), subject to G(x, y) ∈ K, (Py)

in which y stands for the perturbation parameter and belongs to a space Y . The functions
f and G are supposed to be continuously differentiable with respect to x and y. K is a
closed convex subset of a space Z. The spaces X, Y and Z are Banach spaces. We fix a
reference value y0 for y. Let x be a feasible point of the reference problem with y = y0.
We say that Robinson’s qualification condition holds at x if there exists ε > 0 such that

εBZ ⊂ G(x, y0) +DxG(x, y0)X −K, (RQC)
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where BZ is the unit ball of Z. For λ in Z∗, we define the Lagrangian by

L(x, λ, y) = f(x, y) + 〈λ,G(x, y)〉.

In a general framework, for a solution x0 to the optimization problem with y = y0, the
set of Lagrange multipliers Λ(x0, y0) is defined by

Λ(x0, y0) = {λ ∈ Z∗, DxL(x0, λ, y0) = 0, λ ∈ NK(G(x0, u0)}, (5.17)

where NK(G(x0, u0) is the normal cone of K at G(x0, u0), defined by

NK(G(x0, u0)) = {λ ∈ Z∗, 〈λ, z −G(x0, u0)〉 ≤ 0, ∀z ∈ K}. (5.18)

We suppose now that the reference problem Py0 is convex, following [21, definition 2.163].
Problems, like our application problem, with a convex cost function, linear equality
constraints, and finite convex inequality constraints are convex. For a convex problem,
the set of Lagrange multipliers is the set of solutions of a dual problem which does not
depend on the choice of the (primal) solution x0. Therefore, Λ(x0, y0) does not depend
on x0 and we simply write Λ(y0).

The following theorem establishes a differentiability property of the value function
of the problem V (y). See [21, definition 2.45] for a definition of the Hadamard differen-
tiability.

Theorem 5.9. Consider a reference value y0. Suppose that:

1. Problem Py0 is convex and has a non-empty set of optimal solutions S(y0).

2. Robinson’s qualification condition holds at all x0 in S(y0).

3. For any sequence (yk)k converging to y0, for all k, problem Pyk possesses an optimal
solution xk such that, for all λ in Λ(y0), for all sequence (y′k)k satisfying y′k ∈
[y0, yk], one has:

DyL(x0, λ, y0) is a limit point of DyL(xk, λ, y
′
k).

Then the optimal value function V is Hadamard directionally differentiable at y0 in any
direction w and

V ′(y0, w) = inf sup DyL(x, λ, y0)w.
x∈S(y0) λ∈Λ(y0) (5.19)

This theorem is a direct extension of [21, theorem 4.24], which was originally proved
in [39]. In the original formulation of the theorem, the third assumption is replaced by
the following assumption: for any sequence (yk)k converging to y0, for all k, problem Pyk

possesses an optimal solution xk such that the sequence (xk)k has a limit point in S(y0).
However, this assumption would be rather painful to check for our problem, this is why
we prefer weakening it with this new assumption. Note also that the assumption of
convexity of the problem is essential for the sensitivity analysis. In a non-convex setting,
we would have to assume in addition that a certain sufficient second-order condition
holds (see [21, theorems 4.25 and 4.65], for example).
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theorem 5.9. Let us adapt the proof given in [21]. Note first that since Robinson’s
qualification condition holds and since there exist optimal solutions, the set Λ(y0) of
Lagrange multipliers is nonempty and thus, the expression of the directional derivative
(5.19) is finite. It is proved in [21, proposition 4.22] that under the directional regularity
condition, for any mapping α ∈ R+ 7→ y(α) ∈ Y defined on a neighborhood of 0 such
that y(α) = y0 + αw + o(α) the following holds:

lim sup
α↓0

V (y(α)) − V (y0)

α
≤ inf sup

x∈S(y0) λ∈Λ(y0)
DyL(x, λ, y0)w. (5.20)

The directional regularity condition is implied by Robinson’s qualification condition, see
[21, theorem 4.9].

Let αn ↓ 0, let yn = y0+αnw+o(αn) and let (xn)n be the sequence of solutions such
that hypothesis (3) of the theorem is satisfied. Extracting a subsequence if necessary,
we can suppose that (xn)n converges to x0 in S(y0). Let λ be in Λ(y0). Since Λ(y0) ⊂
NK(G(x0, y0)), and then

〈λ,G(xn, yn)−G(x0, y0)〉 ≤ 0,

we have

f(xn, yn)− f(x0, y0) ≥ L(xn, λ, yn)− L(x0, λ, y0).

By convexity of Py0 , the first order optimality conditions imply that x0 belongs to
argminx∈X L(x, λ, y0), and then

L(xn, λ, y0) ≥ L(x0, λ, y0). (5.21)

Since V (yn) = f(xn, yn) and by the mean value theorem and continuity of L(x, λ, y), we
obtain from (5.21) that, for some y′n in [y0, yn],

V (yn)− V (y0) ≥ L(xn, λ, yn)− L(xn, λ, y0)

= αnDyL(xn, λ, y
′
n)w

= αnDyL(x0, λ, y0)w + o(αn),

since by assumption,

DyL(xn, λ, y
′
n) → DyL(x0, λ, y0).

As a consequence, since λ was arbitrary,

lim inf
n→∞

V (yn)− V (y0)

αn
≥ sup

λ∈Λ(y0)
DyL(x0, λ, y0)

≥ inf sup
x∈S(y0) λ∈Λ(y0)

DyL(x, λ, y0)w. (5.22)
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Combining (5.20) and (5.22), we obtain that for any y(α) = y0 + αw + o(α),

lim
α↓0

V (y(α)) − V (y0)

α
= inf sup

x∈S(y0) λ∈Λ(y0)
DyL(x, λ, y0)w,

as was to be proved.

5.3.2 Expression of the directional derivatives

In this subsection, we give a sensitivity formula for problem (P(τb, τe)). We show that
the value function is Hadamard directionally differentiable if all the dates of the outages
are different. When differentiating the value function with respect to one variable, the
result obtained is the jump of the reduced Hamiltonian at the reference time of the
variable.

Time reparameterization Theorem 5.9 cannot be applied directly to our application
problem. Indeed, in its formulation, the cost function and the dynamic are not continu-
ously differentiable with respect to τb and τe. For example, if we try to differentiate the
cost function with respect to the variable τ je , we obtain the following derivative,

c
(
τ je , d(τ

j
e )−

∑

i∈W
ui(τ je )

)
− c
(
τ je , d(τ

j
e )−

∑

i∈W∪{j}
ui(τ je )

)
,

whereW is the set of working plants at time τ je (j being excluded ofW ). This expression
does not make sense, since the control is only in L∞(0, T ;Rn), thus, we cannot define
its value at time τ je .

However, if we perform a well suited change of variable in time, we can apply the
abstract result. The change of variable that we use can be realized if and only if the
following hypothesis holds:

For all i and j in S such that i 6= j, τ ib 6= τ jb , τ
i
e 6= τ je and τ ib 6= τ je . (H)

We begin by computing D
τ je
V (τb, τe). We consider a nuclear power plant j and we

denote by τ0 the reference value of τ je and by (u, s) a solution with a costate p, for the
reference problem with τ je = τ0. As a consequence of (H), we get :

None of the plants, except j, begins or ends its outage at time τ0.

Let us consider two times t1 and t2 such that t1 < τ0 < t2 and such that they are
sufficiently close to τ0 so that none of the plants (except j) begins or ends an outage
during [t1, t2]. The idea of the change of variable is to fix the time of the discontinuity
due to the end of the outage. We set, for all t′ in [0, T ],

θ
τ je
(t′) =





t1 +
τ je − t1
τ0 − t1

(t′ − t1), if t′ ∈ [t1, τ0]

t2 −
t2 − τ je
t2 − τ0

(t2 − t′), if t′ ∈ [τ0, t2]

t′, otherwise.

(5.23)
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Figure 5.1: Change of variable associated with the perturbation of τ je .

We perform the change of variable t = θ
τ je
(t′). See figure 5.1 for an illustration of

the change of variable. It is well defined for τ je in (t1, t2). We denote by W the set of
working plants on the interval [t1, t2]. By convention, j does not belong to W . The new
optimal control problem (P ′(τ je )) to be solved is

V (τ je ) = min
u,s

[ ∫ t1

0
c
(
d(t′)−∑i∈W (t′) u

i(t′)
)
dt′

+ τ je−t1
τ0−t1

∫ τ0

t1

c
(
d ◦ θ

τ je
(t′)−∑i∈W ui(t′)

)
dt′

+ t2−τ je
t2−τ0

∫ t2

τ0

c
(
d ◦ θ

τ je
(t′)−∑i∈W∪{j} u

i(t′)
)
dt′

+

∫ T

t2

c
(
d(t′)−∑i∈W (t′) u

i(t′)
)
dt′ + φ(s(T ))

]
,

s.t. ∀i ∈ S, ṡi(t′) = ...



τ je−t1
τ0−t1

[−ui(t′) + ai ◦ θ
τ je
(t′)1i/∈W ], if t′ ∈ [t1, τ0],

t2−τ je
t2−τ0

[−ui(t′) + ai ◦ θ
τ je
(t′)1i/∈W∪{j}], if t′ ∈ [τ0, t2],

−ui(t′) + ai(t′)1[τ ib ,τ ie](t
′), otherwise,

0 ≤ ui(t′) ≤ ūi,
si(0) = si0,
si(τ ib) = 0,
si(T ) ≥ 0.

(P ′(τ je ))

It is easy to check that problems (P(τb, τe)) and (P ′(τ je )) have the same value when τ je be-
longs to (t1, t2). Since for all t

′ in [0, T ], θτ0(t
′) = t′, the original and the reparameterized

problems are the same for τ je = τ0.

Remark 5.10. Notice that this reparameterization is not correct anymore when another
plant begins or ends an outage at time τ0. Indeed, in this case, we cannot anymore
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identify a constant set of working plants (j let alone) in the neighborhood of time τ0.

Remark 5.11. The Hamiltonian H ′ associated with the reparameterized problem is the
following:

H ′(t′, u, p) = θ̇
τ je
(t′)HW (t′)(θτ je (t

′), u, p).

Note that the set of working plants W (t′) at time t′ is defined with respect to the dates of
the reference problem. Moreover, (u, s) is an optimal solution to P(τb, τe) with associated
costate p if and only if (u ◦ θ

τ je
, s ◦ θ

τ je
) is an optimal solution to P ′(τ je ) with associated

costate p ◦ θ
τ je
.

Derivation of the Lagrangian Let (u, s) be a solution to the reference problem with
τ je = τ0, let p be an associated costate. We consider a Lagrangian on the interval [t1, t2],
where the variable τ je appears. Note that p is constant on this interval. For the sake of
simplicity, we write p instead of p(t′) and t instead of t′. In the following Lagrangian,
we only take into account the part of the cost function and the part of the dynamic
associated with the interval [t1, t2], where the perturbation happens.

L(u, s, p, τ je ) (5.24)

=
τ je − t1
τ0 − t1

∫ τ0

t1

c
(
d ◦ θ

τ je
(t)−

∑

i∈W
ui(t)

)
dt

+
t2 − τ je
t2 − τ0

∫ t2

τ0

c
(
d ◦ θ

τ je
(t)−

∑

i∈W∪{j}
ui(t)

)
dt

+
∑

i∈S
pi
∫ τ0

t1

(
− ṡi(t) +

τ − t1
τ0 − t1

(−ui(t) + ai ◦ θ
τ je
(t)1i/∈W )

)
dt

+
∑

i∈S
pi
∫ t2

τ0

(
− ṡi(t) +

τ − t2
τ0 − t2

(−ui(t) + ai ◦ θ
τ je
(t)1i/∈(W∪{j}))

)
dt

=
τ je − t1
τ0 − t1

∫ τ0

t1

HW (t)(θτ je (t), u(t), p) dt

+
t2 − τ je
t2 − τ0

∫ t2

τ0

HW (t)(θτ je (t), u(t), p) dt −
∑

i∈S

∫ t2

t1

piṡi(t) dt.

Before deriving the Lagrangian, let us introduce some notations. We define the true
Hamiltonian by

H∗
W (t, p) = min

vi∈[0,ūi]
HW (t, v, p), ∀p ∈ R

n. (5.25)

Pontryagin’s principle states that

H∗
W (t)(t, p) = HW (t)(t, u(t), p), for a. a. t in [0, T ].

Note that the function t 7→ H∗
W (t)(t, u, p) is discontinuous at times τ ie and τ ib , for all i.

Indeed, the set of working plants W (t) is changing precisely at these times. The next
lemma is a classic useful consequence of Pontryagin’s principle. See [46, section 2.4.1,
equality (8a)] for a proof.
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Lemma 5.12. Let u be an optimal control, with associated costate p. Consider an
interval (ta, tb) included in [0, T ] on which none of the plants begins or ends an outage.
On such an interval, the costate is constant and the set of working plants is constant,
equal to say W . The mapping:

h : t ∈ [ta, tb] → H∗
W (t, p)

is C1 on [ta, tb] and its derivative is given by

ḣ(t) = DtH
∗
W (t, p0) = DtHW (t, u(t), p), for a. a. t in [ta, tb], (5.26)

where the notation DtHW stands for the partial derivative of HW with respect to t.

Note that this result can also be obtained by applying theorem 5.9. Indeed, H∗
W is the

value of an optimization problem (the minimization of the Hamiltonian), parameterized
by t. Since the constraints (u ∈ U) are unchanged, the derivative of H∗

W (t, p) is the
derivative of the cost function, here the Hamiltonian.

Proposition 5.13. The mapping τ je 7→ L(u, s, p, τ je ) is differentiable on (t1, t2) and

D
τ je
L(u, s, p, τ0) = H∗

W (τ0, p)−H∗
W∪{j}(τ0, p). (5.27)

Proof. We have

D
τ je
L(u, s, p, τ je ) =

[ 1

τ0 − t1

∫ τ0

t1

HW (θ
τ je
(t), u(t), p) dt

+
τ je − t1
τ0 − t1

∫ τ0

t1

t− t1
τ0 − t1

DtHW (θ
τ je
(t), u(t), p) dt

]

−
[ 1

t2 − τ0

∫ t2

τ0

HW∪{j}(θτ je (t), u(t), p) dt

− t2 − τ je
t2 − τ0

∫ t2

τ0

t2 − t

t2 − τ0
HW∪{j}(θτ je (t), u(t), p) dt

]
.

For τ je = τ0, we obtain

D
τ je
L(u, s, p, τ0) (5.28)

=
1

τ0 − t1

[ ∫ τ0

t1

H∗
W (t, p) dt+

∫ τ0

t1

(t− t1)DtH
∗
W (t, p) dt

]

− 1

t2 − τ0

[ ∫ t2

τ0

H∗
W∪{j}(t, p) dt−

∫ t2

τ0

(t2 − t)DtH
∗
W∪{j}(t, p) dt

]
.

Then, we obtain by integrating by parts (with lemma 5.12)
∫ τ0

t1

(t− t1)DtH
∗
W (t, p) dt (5.29)

=
[
(t− t1)H

∗
W (t, p)

]τ0
t1
−
∫ τ0

t1

H∗
W (t, p) dt

= (τ0 − t1)H
∗
W (τ0, p)−

∫ τ0

t1

H∗
W (t, p) dt,
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and a similar expression holds for the integral on [τ0, t2]. Finally, we obtain

D
τ je
L(u, s, p, τ0) = −[H∗

W∪{j}(τ0, p)−H∗
W (τ0, p)], (5.30)

as was to be proved.

Remark 5.14. In general, there are several solutions to the problem. However, the
expression obtained for the derivative of the Lagrangian, when p is given, does not depend
on the primal solution, for two reasons:

⊲ the Hamiltonian, and thus the true Hamiltonian, do not depend on the state (and
therefore, they do not depend on the past trajectory)

⊲ by definition, the true Hamiltonian at time t does not depend on the choice of the
value of the optimal control at time t.

Sensitivity with respect to the beginning of outage The above analysis remains
true for τ jb if hypothesis (H) always holds. In this case, none of the plants (except j)

begins or stops its outage at time τ jb and we denote by W the set of working plants at
the reference time τ0 (j does not belong to W ). The only difference with the previous
expression is that the j-th coordinate of p has a jump at time τ0. Using the conventions
(5.4) and (5.5), we obtain the expression

D
τ jb
L(u, s, p, τ0) = −[H∗

W (τ0, p(τ
+
0 ))−H∗

W∪{j}(τ0, p(τ
−
0 ))]. (5.31)

Notice that the state constraint sj(τ jb ) = 0 has become sj(τ0) = 0, as a consequence,

it does not depend on τ jb anymore and we do not need to take it into account in the
Lagrangian.

Sensitivity with respect to an arbitrary direction We compute now the value of
the directional derivative of the value function in an arbitrary direction. To this purpose,
we must realize a complete reparameterization of the problem and some notations are
needed. We fix a reference value (τb,0, τe,0) for the dates of outages and we suppose that
hypothesis (H) holds. Then, we can fix dates tib,1, t

i
b,2, t

i
e,1 and tie,2 in [0, T ] such that for

all i in S,

tib,1 < τ ib,0 < tib,2 < tie,1 < τ ie,0 < tie,2

and such that on the intervals [tib,1, t
i
b,2] and [tie,1, t

i
e,2], plant i is the only one to begin or

to end its outage. Therefore, we can define the sets W i
b and W i

e of working plants on the
intervals [tib,1, t

i
b,2] and [tie,1, t

i
e,2] respectively, i being excluded of these sets. The global
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change of variable to perform is now the following:

θτb,τe(t
′) =





tib,1 +
τ ib − tib,1

τ ib,0 − tib,1
(t′ − tib,1), for t′ in [tib,1, τ

i
b,0],

tib,2 −
tib,2 − τ ib

tib,2 − τ ib,0
(tib,2 − t′), for t′ in [τ ib,0, t

i
b,2],

tie,1 +
τ ie − tie,1
τ ie,0 − tie,1

(t′ − tie,1), for t′ in [tie,1, τ
i
e,0],

tie,2 −
tie,2 − τ ie

tie,2 − τ ie,0
(tie,2 − t′), for t′ in [τ ie,0, t

i
e,2],

t′, otherwise.

(5.32)

The general reparameterized problem is the following:

V (τb, τe) =

min
u,s

[ ∫ T

0
θ̇τb,τe(t

′) c
(
d ◦ θτb,τe(t′)−

∑

i∈W (t′)

ui(t′)
)
dt′ + φ(s(T ))

]
,

s.t. ∀i ∈ S,

ṡi(t′) = θ̇τb,τe(t
′)
(
− ui(t′) + ai ◦ θτb,τe(t′)1[τ ib,0,τ ie,0](t

′)
)

0 ≤ ui(t′) ≤ ūi,
si(0) = si0,
si(τ ib,0) = 0,

si(T ) ≥ 0.

(P ′(τb, τe))

Here, the set of working plants W (t′) at time t′ is defined by:

W (t′) = {i ∈ S, t′ /∈ [τ ib,0, τ
i
e,0]}.

Notations Let us introduce some notations in order to simplify our sensitivity for-
mula. First, we denote by Π(τb,0, τe,0) the set of costates satisfying Pontryagin’s principle
(lemma 5.1) for the value (τb,0, τe,0) of the dates of the outages. Recall that it is a subset
of R2n. We also introduce the jumps of the true Hamiltonian, denoted by ∆H i

b(p) and
∆H i

e(p) and defined by

∆H i
b(p) = H∗

W i
b
(τ ib,0, p(τ

i +
b,0 ))−H∗

W i
b∪{i}

(τ ib,0, p(τ
i −
b,0 )),

∆H i
e(p) = H∗

W i
e∪{i}(τ

i
e,0, p(τ

i
e,0))−H∗

W i
e
(τ ie,0, p(τ

i
e,0)),

for p in Π(τb,0, τe,0).
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Theorem 5.15. Consider a direction of perturbation denoted by (δτb, δτe). If hypothesis
(H) holds, then

V ′((τb,0, τe,0), (δτb, δτe)
)

(5.33)

= sup
p∈Π(τb,0,τe,0)

[ ∑

i∈S
−δτ ib∆H i

b(p) +
∑

i∈S
−δτ ie∆H i

e(p)

]
.

Proof. The expression of the derivative of the Lagrangian given in the thorem is a simple
extension of expressions (5.27) and (5.31). The theorem is a direct consequence of
theorem 5.9. For our application problem, a costate is a Lagrange multiplier if and
only if it satisfies Pontryagin’s principle, since the Hamiltonian is convex. The three
hypotheses of the theorem (existence of solutions, qualification and continuity of the
derivative of the Lagrangian) are checked in lemmas 5.18, 5.19, and 5.24.

5.3.3 Study of the Lagrange multipliers

In this part, we give a complete description of the set Π(τb, τe) of costates satisfying Pon-
tryagin’s principle, which is for our application problem the set of Lagrange multipliers
introduced in (5.17). Note that the characterization of costates holds even if hypothesis
(H) is not satisfied.

Notations Let us consider the smallest sequence of times

0 = τ0 < τ1 < · · · < τM = T

such that the outages begin or end only at times {τ1, ..., τM}. For all integer m with
0 ≤ m < M , the set of working plants is constant on the interval of time (τm, τm+1).

Let us fix now an optimal control u and its associated trajectory s. Since the set of
Lagrange multipliers does not depend on the choice of the optimal solution, it suffices
to compute the set of costates associated with the particular solution (u, s). We have
proved in lemma 5.7 that µ =

∑
i∈S u

i(t) and s(T ) are unique. Let us define, for all i in
S, 




πi,min
0 = ess sup

t∈[0,τ ib ],ui(t)>0

{−c′(d(t)− µ(t))},

πi,max
0 = ess inf

t∈[0,τ ib ],ui(t)<ūi
{−c′(d(t) − µ(t))}.

(5.34)

For all i in S, if si(T ) > 0, we set

πi,min
T = πi,max

T = Dsiφ(s(T )) (5.35)

otherwise, we set




πi,min
T = ess sup

t∈[τ ie,T ],ui(t)>0

{−c′(d(t)− µ(t))},

πi,max
T = min

{
ess inf

t∈[τ ie,T ],ui(t)<ūi
{−c′(d(t)− µ(t))}, Dsiφ(s(T ))

}
.

(5.36)
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Theorem 5.16. The set of costates Π(τb, τe) is described by

Π(τb, τe) =
(∏

i∈S
[πi,min

0 , πi,max
0 ]

)
×
(∏

i∈S
[πi,min

T , πi,max
T ]

)
. (5.37)

Proof. Let t in [0, T ], let v in U be such that for all i /∈W (t), vi = 0. We set µ =
∑

i∈S v
i.

Fix q in R
n. Then v is a solution to the problem of minimization of the Hamiltonian Pt

with p = q if and only if for all i in W (t),

(
vi > 0 ⇒ qi(t) ≥ −c′(d(t)− µ)

)
, (5.38)

(
vi < ūi ⇒ qi(t) ≤ −c′(d(t)− µ)

)
, (5.39)

and i /∈W (t) ⇒ qi ≤ 0. (5.40)

Therefore, a costate p is such that the Hamiltonian is minimized for almost all t if and
only if conditions (5.38) and (5.39) are satisfied for almost all t with q = p(t). These
conditions being inequalities, it suffices to consider the essential infimum and supremum
as we did in the construction of πi,min

0 , πi,max
0 , πi,min

T and πi,max
T . Notice that we do not

need to impose that pi(T ) ≤ 0, since we already have that Dsiφ(s(T )) ≤ 0. The theorem
follows.

The following lemma describes situations where the costate is unique.

Lemma 5.17. Let us consider four different cases.

1. (a) If on a non-negligible subset of [0, τ ib ], u
i(t) ∈ (0, ūi), then pi(0) is unique.

(b) If si(T ) > 0 or if on a non-negligible subset of [τ ie, T ], u
i(t) ∈ (0, ūi), then

pi(T ) is unique.

2. (a) If there exist two non-negligible subsets T1 and T2 of a given interval [τm, τm+1]
with τm+1 ≤ τ ib such that

∀t ∈ T1, ui(t) = 0 and ∀t ∈ T2, ui(t) = ūi,

then, pi(0) is unique.

(b) If the same property holds on an interval [τm, τm+1] with τm ≥ τ ie, then p
i(T )

is unique.

Proof. In cases 1.a and 1.b, it follows from the existence of a non-negligible subset of
[0, τ ib ] (resp. [τ ie, T ]) where 0 < ui(t) < ūi that πi,min

0 ≥ πi,max
0 (resp. πi,min

T ≥ πi,max
T ),

whence the equality of these bounds and the uniqueness of pi(0) (resp. pi(T )).

For case 2.a, let us define rmin and rmax by

rmin = ess sup
t∈[τm,τm+1],ui(t)>0

{−c′(d(t) − µ(t))},

rmax = ess inf
t∈[τm,τm+1],ui(t)<ūi

{−c′(d(t)− µ(t))}.
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Clearly,

−∞ < rmin ≤ πi,min
0 ≤ πi,max

0 ≤ rmax < +∞.

Let us show the uniqueness by contradiction. We suppose that πi,max
0 −πi,min

0 = ε > 0. It
can be observed from lemma 5.5 that the solution µ of problem P ′

t depends continuously
on d(t) on the interval [τm, τm+1], since the set of working plants remains constant. The
demand d(t) being continuous in time, it follows that c′(d(t) − µ(t)) is a continuous
function of time. Let t1 and t2 be two times such that

− c′(d(t1)− µ(t1)) ≤ rmin +
ε

3
,

− c′(d(t2)− µ(t2)) ≥ rmax − ε

3
.

The function c′(d(t) − µ(t)) being continuous, there exists a non-negligible subinterval
of [t1, t2] (or [t2, t1] if t2 < t1) where −c′(d(t)− µ(t)) belongs to [rmin + ε/3, rmax − ε/3].
On this subinterval, there exists a non-negligible subset where either 0 < ui(t) < ūi,
either ui(t) = 0 or ui(t) = ūi. In the first case, we obtain the uniqueness of pi(0), which
contradicts the statement of non-uniqueness. In the second case, we obtain that

ess inf
t∈[τm,τm+1],ui(t)<ūi

{−c′(d(t)− µ(t))} ≤ rmax − ε

3
, (5.41)

and in the third case, we obtain that

ess sup
t∈[τm,τm+1],ui(t)>0

{−c′(d(t)− µ(t))} ≥ rmin +
ε

3
, (5.42)

Inequalities (5.41) and (5.42) contradict the definition of rmin and rmax. Thus, pi(0) is
unique. Case 2.b can be treated similarly.

It follows from the contraposition of lemma 5.17 that if for some i in S, pi(0) is
not unique, then the optimal control ui is constant on each interval (τm, τm+1) with
τm+1 ≤ τ ib , being equal to 0 or ūi. Denoting by M0 the set of indexes m for which
ui(t) = ūi on (τm, τm+1), we obtain that

si0 = ūi ·
∑

m∈M0

τm+1 − τm. (5.43)

Similarly, if pi(T ) is not unique, then si(T ) = 0 and the optimal control ui is constant
on each interval (τm, τm+1) with τm ≥ τ ie, being equal to 0 or ūi. Denoting by MT the
set of indexes m for which ui(t) = ūi on (τm, τm+1), we obtain that

∫ τ ie

τ ib

ai(t) dt = ūi ·
∑

m∈MT

τm+1 − τm. (5.44)

Inequalities (5.43) and (5.44) are, in some sense, unstable.
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5.4 Technical aspects

In this part, we adopt some new notations in order to simplify the proofs. We set

ℓ(t, u) = c
(
d(t)−

∑

i∈W (t)

ui
)
,

and for a sequence of dates (τb,k, τe,k)k, we denote by θk the associated changes of variable,
defined by (5.32) and we obtain, with the new notations:

V (τb,k, τe,k) = min
u,s

∫ T

0
θ̇k(t) ℓ(θk(t), u(t)) dt+ φ(s(T )),

s.t. ∀i ∈ S, ṡi(t) = θ̇k(t)
(
− ui(t) + ai ◦ θk(t)1[τ ib,0,τ ie,0](t)

)
,

0 ≤ ui(t) ≤ ūi(t),
si(0) = si0,
si(τ ib,0) = 0,

si(T ) ≥ 0.

(P ′(τb, τe))

Let us give two elementary properties associated with the changes of variable θk.
First, it can be easily checked that

θk → Id and θ̇k → 1, (5.45)

for the uniform topology of L∞(0, T ;Rn). Moreover, if b is in L1(0, T ;Rn), then

b ◦ θk → b, (5.46)

for the L1-topology. This property being easily checked if b is continuous, by density of
continuous functions in L1(0, T ;Rn), we obtain it for all function in L1(0, T ;Rn).

5.4.1 Existence of solutions

Lemma 5.18. If condition (QC) is satisfied, the problem has an optimal solution.

Proof. Consider a minimizing sequence (uk, sk) of feasible solutions. Since the controls
are bounded and the dynamic is linear, one can easily prove with the Banach-Alaoglu
theorem and the Arzelà-Ascoli theorem the existence of a subsequence (uk, sk) such that
uk converges to a control u for the weak topology of L∞(0, T ;Rn), such that sk converges
to a trajectory s for the strong topology of L∞(0, T ;Rn), and such that (u, s) is a feasible
trajectory. Moreover, the mapping

u ∈ L∞(0, T ;Rn) 7→
∫ T

0
ℓ(t, u(t)) dt (5.47)

is sequentially lower semi-continuous for the weak-∗ topology. Indeed, since for all t,
ℓ(t, .) is differentiable and convex with respect to u,

∫ T

0
ℓ(t, uk(t)) dt ≥

∫ T

0
ℓ(t, u(t)) dt+

∫ T

0
Duℓ(t, u(t))(uk(t)− u(t)) dt,
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thus, to the limit, ∫ T

0
ℓ(t, u(t)) dt ≤ lim inf

k→∞

∫ T

0
ℓ(t, uk(t)) dt. (5.48)

Since φ is continuous and the cost function is sequentially weakly-∗ lower semi continu-
ous, the trajectory (u, s) is an optimal solution to the problem.

5.4.2 Qualification

Lemma 5.19. If condition (QC) is satisfied, then Robinson’s constraint qualification
holds for any feasible trajectory.

Proof. We must check condition (RQC). We consider that the control u and the tra-
jectory s are the optimization variables, defined on L∞(0, T ;Rn) and W 1,∞(0, T ;Rn).
For simplicity, we denote by L∞, L∞

+ and W 1,∞ the spaces L∞([0, T ],Rn), L∞(0, T ;Rn
+)

and W 1,∞([0, T ],Rn), respectively. The function G describing the constraints is the
following:

G : (u, s) ∈ (L∞,W 1,∞) 7→ (GE(u, s), GI (u, s)),

where

GE(u, s) =





s(0)− s0

ṡi(t) + ui(t)− ai1
[τ jb,0,τ

j
e,0]

(t)

si(τ ib,0)

and

GI(u, s) =





si(T )

ui(t)

ūi − ui(t)

.

The set K is equal to {0}Rn×L∞×Rn ×KI where

KI = R
n
+ × L∞

+ × L∞
+ .

Let us consider a feasible trajectory x = (u, s) of the problem, we denote by dx = (du, ds)
a perturbation of the optimization variables u and s. We have to characterize the set:

G(x, y0) +DxG(x, y0)dx−K.

An element of this set is of the following form:





dsi(0)

ḋs
i
(t) + dui(t)

dsi(τ ib,0)

si(T ) + dsi(T )− g

ui(t) + dui(t)− ǔ(t)

ūi − ui(t)− dui(t)− û(t)

(5.49)
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where ǔ and û belongs to L∞
+ , g belongs to R

n
+. Note that the expression obtained is de-

coupled in i. This allows us to study the qualification by examining just one coordinate.
Let us show that there exists a constant ε > 0 such that for all

dg = (g1, z, g2, g3, ν1, ν2) ∈ R
n × L∞ × R

n × R
n × L∞ × L∞

with ||dg||∞ ≤ ε, there exists dx = (du, ds) in L∞ ×W 1,∞ such that

dg ∈ G(x, y) +DGx(x, y0)dx−K.

It is easy to check that this last condition is equivalent to the existence of a control dui

in L∞ satisfying the bounds

ν1(t) ≤ ui(t) + dui(t) ≤ ūi − ν2(t),

and such that the associated differential system

{
ḋs

i
(t) = −dui(t) + z(t)

dsi(0) = g1

satisfies the following two state constraints:

dsi(τ ib,0) = g2, dsi(T ) ≥ −si(T ) + g3.

Now, we focus on the construction of dui on [0, τ ib,0]. The idea is to take for dui(t) a

convex combination of its bounds, ν1(t) − ui(t) and ūi − ν2(t) − ui(t). The first state
constraint, dsi(τ ib,0) = g2 is equivalent to

∫ τ ib,0

0
dui(t) = g1 − g2 +

∫ τ ib,0

0
z(t) dt.

Hypothesis (QC) states that

0 < si0 =

∫ τ ib,0

0
ui(t) dt < τ ib,0 · ūi,

thus we can set

ε1 = min(si0, τ
i
b,0 · ūi − si0, ū

i) > 0. (5.50)

We assume that

||ν1||∞ ≤ ε1
2
min

(
1, (τ ib,0)

−1
)

and ||ν2||∞ ≤ ε1
2
min

(
1, (τ ib,0)

−1
)
. (5.51)

It follows that:

∫ τ ib,0

0
ūi − ui(t)− ν2(t) dt ≥

(
τ ib,0ū

i − si0
)
− τ ib,0 · ||ν2||∞ ≥ ε1/2, (5.52)
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∫ τ ib,0

0
−ui(t)− ν1(t) dt ≤ −si0 + τ ib,0 · ||ν1||∞ ≤ −ε1/2, (5.53)

and for all t in [0, τ ib,0], ν2(t)− ν1(t) ≤ ūi, thus,

− ui(t)− ν1(t) ≤ ūi − ui(t)− ν2(t). (5.54)

We assume that
|g1| ≤

ε1
6
, |g2| ≤

ε1
6
, and ||z||∞ ≤ ε1

6τ ib,0
, (5.55)

so that ∣∣∣ g1 − g2 +

∫ τ ib,0

0
z(t) dt

∣∣∣ ≤ ε1
2
. (5.56)

Let us set

λ =

(
g1 − g2 +

∫ τ ib,0
0 z(t) dt

)
−
( ∫ τ ib,0

0 −ui(t)− ν1(t) dt
)

∫ τ ib,0
0 ūi − ν2(t) dt−

∫ τ ib,0
0 −ν1(t) dt

, (5.57)

we obtain, combining (5.52), (5.53), and (5.56) that 0 ≤ λ ≤ 1. Using (5.54) and (5.57),
we obtain that the control dui defined on [0, τ ib,0] by

dui(t) = λ
[
− ν1(t)− ui(t)

]
+ (1− λ)

[
ūi − ui(t)− ν2(t)

]
(5.58)

is feasible and that the associated state dsi(t) satisfies the first state constraint.
Let us focus on the construction of dui on [τ ib,0, T ]. The final-state constraint on

dsi(T ) is satisfied if and only if

∫ T

τ ib,0

dui(t) ≤ g2 − g3 + si(T ) +

∫ T

τ ib,0

z(t) dt.

Hypothesis (QC) states that

0 <

∫ τ ie,0

τ ib,0

ai(t) dt.

We set

ε2 = min
(∫ τ ie,0

τ ib,0

ai(t) dt, ūi
)
> 0. (5.59)

We assume now that

||ν1||∞ ≤ ε2
2
min

(
1, (T − τ ib,0)

−1
)

and ||ν2||∞ ≤ ε2
2
. (5.60)

It follows that:
∫ T

τ ib,0

−ui(t)− ν1(t) dt = −
∫ τ ie,0

τ ib,0

ai(t) dt−
∫ T

τ ib,0

ν1(t) dt+ si(T )

≤ −ε2 + (T − τ ib,0)||ν1||∞ + si(T )

≤ −ε2
2

+ si(T ) (5.61)



162 Chapter 5. Sensitivity analysis for the outages of nuclear power plants

and for all t in [0, τ ib,0], ν2(t)− ν1(t) ≤ ūi, thus

−ui(t)− ν1(t) ≤ ūi − ui(t)− ν2(t).

Now, we assume that

|g2| ≤
ε2
6
, |g3| ≤

ε2
6
, ||z||∞ ≤ ε2

6(T − τ ib,0)
,

so that

g2 − g3 +

∫ T

τ ib,0

z(t) dt ≥ −ε2
2
.

Now, we can set, for all t in [τ ib,0, T ],

dui(t) = −ui(t)− ν1(t),

It follows from (5.61) that:

dui(T ) ≤ −ε2/2 + si(T )

≤ g2 − g3 +

∫ T

τ ib,0

z(t) dt+ si(T ).

As a consequence, the second state constraint is satisfied. The lemma is proved by
taking for the constant ε a positive real number satisfying (5.50), (5.51), (5.55), (5.59),
and (5.60).

5.4.3 On convergence of solutions to the perturbed problems

The goal of this part is to check the third hypothesis of theorem 5.9 for our application
problem. To that purpose, we fix a reference date (τb,0, τe,0) and a sequence (τb,k, τe,k) of
dates converging to (τb,0, τe,0). We suppose that hypothesis (H) holds for the reference
problem. Thus, it holds for k sufficiently large and there exists a sequence of optimal
solutions (uk, sk)k to the perturbed problems (for k sufficiently large). We denote by
(pk)k a sequence of associated costates.

In lemma 5.20, we obtain the existence of a subsequence of (uk, sk)k such that (uk)k
converges to an optimal control of the reference problem, u, for the weak-∗ topology, and
such that (sk)k converges uniformly to the associated trajectory s. In lemma 5.22, we
prove the existence of a subsequence such that (pk)k converges to a costate associated
with (u, s) and, in lemma 5.23, we prove that the sum of the controls converges uniformly.
Finally, we prove the last hypothesis of theorem 5.9.

Note that all the subsequences have the same name as the original sequence, for the
sake of simplicity.

Lemma 5.20. There exists a subsequence of (uk, sk)k such that

uk
∗
⇀ u in L∞(0, T ;Rn),

sk → s in L∞(0, T ;Rn),

where (u, s) is a solution to P ′(τb,0, τe,0).
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Proof. In this proof we first show the existence of a feasible limit point (u, s) to the
sequence (uk, sk)k. Then, for any feasible trajectory (ũ, s̃) of the reference problem, we
show the existence of a sequence (ũk, s̃k)k such that both (ũk)k and (s̃k)k converges
uniformy to (ũ, s̃) and such that for k sufficiently large, (ũk, s̃k) is a feasible trajectory
for the perturbed problem.

For all k, for all i in S and for all t in [0, T ],

|ṡik(t)| ≤ ūi + ||a||∞,

|sik(t)| ≤ |si0|+ T (ūi + ||a||∞),

and
||uik||∞ ≤ ūi.

Using the Arzelà-Ascoli theorem and the Banach-Alaoglu theorem, we obtain the exis-
tence of a subsequence, still denoted by (uk, sk)k such that sk converges uniformly to
some s in L∞(0, T ;Rn), with si(0) = si0, s

i(τ ib,0) = 0 and si(T ) ≥ 0 and such that uk
converges to some u for the weak-∗ topology of L∞(0, T ;Rn). Necessarily, for almost all
t in [0, T ], 0 ≤ ui(t) ≤ ūi and, for all k and for all t′,

sik(t
′) = si0 +

∫ t′

0
θ̇k(t)

(
− uik(t) + ai ◦ θk(t)1[τ ib,0,τ ie,0](t)

)
dt

= si0 +

∫ t′

0
−
(
θ̇k(t)− 1

)
uik(t) dt

+

∫ t′

0

(
θ̇k(t)− 1

)
ai ◦ θk(t)1[τ ib,0,τ ie,0](t) dt

+

∫ t′

0
−(uik(t)− ui(t)) dt+

∫ t′

0

(
ai ◦ θk(t)− ai(t)

)
1[τ ib,0,τ

i
e,0]

(t) dt

+

∫ t′

0
−ui(t) + ai(t)1[τ ib,0,τ

i
e,0]

(t) dt. (5.62)

Using (5.45), (5.46), and the weak-∗ convergence of (uk)k, we obtain, to the limit,

si(t) = si0 +

∫ t′

0
−ui(t) + ai(t)1[τ ib,0,τ

i
e,0]

(t) dt,

which proves that s satisfies the differential equation of the reference problem, hence
(u, s) is feasible.

Let (ũ, s̃) be a feasible control of the reference problem. It can be proved (with the
same kind of estimates as in (5.62)) that

si0 +

∫ τ ib,0

0
θ̇k(t)

(
− ũi(t) + ai ◦ θk(t)1[τ ib,0,τ ie,0](t)

)
dt = s̃(τ ib,0) + o(1) = o(1),

si0 +

∫ T

0
θ̇k(t)

(
− ũi(t) + ai ◦ θk(t)1[τ ib,0,τ ie,0](t)

)
dt = s̃(T ) + o(1) = o(1),
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Since Robinson’s qualification holds for the trajectory (ũ, s̃) by lemma 5.19, we obtain,
using the stability theorem [21, theorem 2.87] that there exists a sequence of feasible
trajectories (ũk, s̃k) for the perturbed problems such that (ũk)k and (s̃k)k converges
uniformly to ũ and s̃ respectively.

Finally, we have that

∫ T

0
ℓ
(
t, uk(t)

)
dt ≤

∫ T

0
ℓ
(
t, ũk(t)

)
dt,

thus passing to the lim inf in the left-hand-side (like in 5.48) and passing to the limit in
the right-hand-side, we obtain that

∫ T

0
ℓ
(
t, u(t)

)
dt ≤

∫ T

0
ℓ
(
t, ũ(t)

)
dt,

which proves the optimality of (u, s). The lemma follows.

Lemma 5.21. The sequence (pk) is bounded.

Proof. This result derives from the study of Π(τb,0, τe,0) conducted in theorem 5.16. The
qualification condition (QC) being stable, it is satisfied for k sufficiently large. When
the qualification condition is satisfied, it is impossible that ui(t) = 0 for almost all t in
[0, τ ib,0] or that ui(t) = ūi for almost all t in [0, τ ib,0], thus the associated bounds πi,min

0

and πi,max
0 are finite. More precisely, denoting respectively by dmin and dmax the infimum

and the supremum of d over [0, T ], we obtain that

−c′(dmax) ≤ pik(0) ≤ −c′
(
dmin −

∑

i∈S
ūi
)
,

since−c′ is non-increasing. This proves the boundedness of pk(0). For the study of pk(T ),
let us recall first that up to a subsequence, a sequence (uk, sk) of optimal solutions to
the perturbed problems is such that sk(T ) converges. Let BT a compact of Rn be such
that sk(T ) belongs to BT for k big enough. There are two cases: if sik(T ) > 0, then

inf
s∈BT

Dsiφ(s) ≤ Dsiφ(sk(T )) = pik(T ) ≤ sup
s∈BT

Dsiφ(s)

otherwise, sik(T ) = 0 and by qualification, it is impossible to have uik(t) = 0 for all t in
[τ ie,0, T ] in this case, thus

−c′(dmax) ≤ pik(T ) ≤ sup
s∈BT

Dsiφ(s).

Finally, we obtain that

min
{
− c′(dmax), inf

s∈BT

Dsiφ(s)
}
≤ pik(T ) ≤ sup

s∈BT

Dsiφ(s),

whence the boundedness of (pk)k.
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Lemma 5.22. Up to a subsequence, (pk)k converges to some p in Π(τb,0, τe,0).

Proof. Recall that p is viewed as an element of R2n, therefore we do not need to be
precise about the topology involved for the convergence. By lemma 5.20, we can extract
from this sequence a sequence of solutions, denoted by (uk, sk) such that uk

∗
⇀ u and

sk → s (in L∞(0, T ;Rn)) where (u, s) is a solution to P(τb,0, τe,0).
By lemma 5.21, the sequences pk(0) and pk(T ) are bounded, and thus we can extract

a subsequence such that these sequences converge to say p0 and pT . Let us prove
that p = (p0, pT ) belongs to Π(τb,0, τe,0). Recall that the Hamiltonian associated the
perturbed problem is

θ̇k(t)HW (t)

(
θk(t), u, p

)
.

Let a and b be such that 0 ≤ a < b ≤ T , let v in L∞(0, T ) be such that for almost all t
in [0, T ], for all i in S, 0 ≤ vi(t) ≤ ūi. In order to show that p belongs to Π(τb,0, τe,0), it
suffices to show that:

∫ b

a
HW (t)(t, p(t), u(t)) dt ≤

∫ b

a
HW (t)(t, p(t), v(t)) dt.

Applying Pontryagin’s principle to the perturbed problem, we obtain directly that

∫ b

a
HW (t)

(
θk(t), uk(t), pk(t)

)
dt ≤

∫ b

a
HW (t)

(
θk(t), v(t), pk(t)

)
dt. (5.63)

Let us focus on the integral of the left-hand-side. We have

∫ b

a
HW (t)

(
θk(t), uk(t), pk(t)

)
dt

=

∫ b

a
HW (t)

(
θk(t), uk(t), pk(t)

)
−HW (t)

(
t, uk(t), pk(t)

)
dt

+

∫ b

a
HW (t)

(
t, uk(t), pk(t)

)
−HW (t)

(
t, uk(t), p(t)

)
dt

+

∫ b

a
HW (t)

(
t, uk(t), p(t)

)
−HW (t)

(
t, u(t), p(t)

)
dt

+

∫ b

a
HW (t)

(
t, u(t), p(t)

)
dt.

Using (5.45), (5.46), the uniform convergence of (pk)k, the weak-∗ lower semi-continuity
of the integral of the Hamiltonian (see (5.48) for the idea of a proof), we obtain that to
the limit,

lim inf
k→∞

∫ b

a
θ′k(t)HW (t)

(
θk(t), uk(t), pk(t)

)
dt ≤

∫ b

a
HW (t)

(
t, u(t), p(t)

)
dt.

Similarly, we can show that

lim
k→∞

∫ b

a
θ′k(t)HW (t)

(
θk(t), v(t), pk(t)

)
dt =

∫ b

a
HW (t)

(
t, v(t), p(t)

)
dt.
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Thus, passing to the limit in (5.63), we obtain

∫ b

a
HW (t)

(
t, u(t), p(t)

)
dt ≤

∫ b

a
HW (t)

(
t, v(t), p(t)

)
dt,

which proves that p belongs to Π(τb,0, τe,0), hence the lemma.

Lemma 5.23. Up to a subsequence,

∑

i∈S
uik −→

∑

i∈S
ui in L∞(0, T ;Rn).

Proof. As usual, we set µk(t) =
∑

i∈S u
i
k(t). Let us set

H̃W : R× R
n × R

n → R

(d, µ, p) 7→ c(d(t) − µ) + ξW (µ, p),

where W is a given subset of S. This function looks like a Hamiltonian, however, no-
tice that the demand is viewed as a parameter now. Moreover, the part involving the
refuelling a(t) is missing. For almost all t in [0, T ],

µk(t) = min
µ∈[0,∑i∈W (t) ū

i]
H̃W (t)

(
d ◦ θk(t), µ, pk(t)

)
. (5.64)

Thanks to the reparameterization, when t is given, µk(t) minimizes a function H̃W (t)

independent on k. Recall that the cost function c is α-convex and so is the function
µ 7→ H̃W (d, p, µ). Considering that the optimization problem given by (5.64) is a problem
parameterized by d ◦ θk and pk, we obtain by a classical property of stability of optimal
solutions (see [21, proposition 4.32]) that there exists a constant A independent on time
such that for almost all t in [0, T ],

|µk(t)− µ(t)| ≤ A
(
|pk(t)− p(t)|+ |d ◦ θk(t)− d(t)|

)
, (5.65)

By lemma 5.22, we know that up to a subsequence, (pk(0), pk(T )) converges to some
p in Π(τb, τe). Since the times of discontinuity of p are fixed, this implies the uniform
convergence of the costate, when considered as a time function. Moreover, it is easy to
check that the sequence (d ◦ θk(t))k converges uniformly to d(t), since d(t) is Lipschitz
and since (θk)k converges uniformly to the identity function on [0, T ]. Together with
(5.65), we obtain that

||µk − µ||∞ ≤ A
(
||pk − p||∞ + ||d ◦ θk − d||∞

)
→ 0.

as was to be proved.

Lemma 5.24. If hypotheses (H) and (QC) hold, then hypothesis 3 of theorem 5.9 is
satisfied for any direction of perturbation.
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Proof. We know by lemmas 5.20 and 5.23 that up to a subsequence, for all i in S,

uik
∗
⇀ ui and µk =

∑

i∈S
uik → µ =

∑

i∈S
ui.

Consider a sequence of times (τ̃b,k, τ̃e,k) such that for all k,

(τ̃b,k, τ̃e,k) ∈ [(τb,0, τe,0), (τb,k, τe,k)].

For simplicity, we consider that the direction of perturbation is a unit basic vector in
direction τ je , so that we can refer to expression (5.28) for the derivative of the Lagrangian,
and we use the same notations. We have:

D
τ je
L
(
uk, s, p, (τ̃b,k, τ̃e,k)

)

=
[ 1

τ0 − t1

∫ τ0

t1

HW (θτ̃b,k ,τ̃e,k(t), uk(t), p) dt

+
τ̃ je,k − t1

τ0 − t1

∫ τ0

t1

t− t1
τ0 − t1

DtHW (θτ̃b,k ,τ̃e,k(t), uk(t), p) dt
]

−
[ 1

t2 − τ0

∫ t2

τ0

HW∪{j}(θτ̃b,k,τ̃e,k(t), uk(t), p) dt

−
t2 − τ̃ je,k
t2 − τ0

∫ t2

τ0

t2 − t

t2 − τ0
DtHW∪{j}(θτ̃b,k ,τ̃e,k(t), uk(t), p) dt

]
.

Moreover, for all t in [t1, τ0],

HW (θτ̃b,k ,τ̃e,k(t), uk(t), p)

= c
(
d ◦ θτ̃b,k,τ̃e,k(t)−

∑

i∈W
uk(t)

)
+
∑

i∈S
pi
(
− ui(t) + ai ◦ θτ̃b,k,τ̃e,k(t)1i/∈W

)
,

thus, using the strong convergence of the sum of controls, the weak-∗ convergence of
controls, the strong convergence of θτ̃b,k,τ̃e,k and (5.46), we obtain that

∫ T

0
HW (θτ̃b,k ,τ̃e,k(t), uk(t), p) dt→

∫ T

0
HW (t, u(t), p) dt,

and we prove similarly the convergence of the integral of DtHW , and finally, we obtain
that for a subsequence of the original sequence (τ̃b,k, τ̃e,k)k,

D
τ je
L
(
uk, s, p, (τ̃b,k, τ̃e,k)

)
→ D

τ je
L
(
u, s, p, (τb,0, τe,0)

)
.

This property easily extends to any direction of perturbation by linearity of the derivative
of the Lagrangian.
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5.5 Conclusion

In this article, we have studied a simplified model for the management of electricity
production with nuclear power plants. We have performed a sensitivity analysis of the
value of the problem with respect to the dates of the outages of the power plants. With
formula (5.33), we obtain an approximation of the value function V by writing a first-
order Taylor expansion:

V (τb,0 + δτb, τe,0 + δτe)

= V (τb,0, τe,0) + V ′((τb,0, τe,0), (δτb, δτe)
)
+ o(δτb, δτe). (5.66)

In general, there is a unique multiplier and V ′((τb,0, τe,0), (δτb, δτe)
)
is linear with respect

to the perturbation (δτb, δτe) (see lemma 5.17).
This formula holds if hypothesis H holds and is relevant in a neighborhood of

(τb,0, τe,0). More precisely, we must at least ensure that the ordering of the dates is
unchanged after the perturbation. The question of differentiability when hypothesis H
does not hold is still open. It is difficult to give stability results for the optimal con-
trols, since they are not unique in general. However, as shown in lemma 5.23, the total
production is stable.
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6.1 Introduction

In this chapter, we study stochastic optimal control problems with an expectation con-
straint. More precisely, we would like that the expectation of a given function g of the
final state XT is greater or equal than a given value z. This framework includes some
chance-constrained problems: if g is the indicator function of a subset K, we therefore
ensure that the probability for the final state to belong to K is greater than z. We
refer to [94] and [104, Section 4] for general references on chance-constrained optimiza-
tion problems. We start our analysis with discrete-time problems, and then use it for
continuous-time problems.

We focus on two possible approaches to solve these problems. The first one consists
in adding a supplementary state variable, denoted by Z, which is the conditional expec-
tation of g(XT ). Introducing this variable enables us to transform the problem into a
stochastic target problem, that is to say, a problem for which the final-state constraint
must be satisfied almost surely. As a consequence, a dynamic programming approach
can be developed for the value function V (t, x, z) of the problem, where t is the time,
x the initial state, and z the level for the expectation constraint. This approach was
used, for example in [84, Section 3], in [86, Section 4] for discrete-time problems (as well
as the thesis [91] in French). It was successfully applied in [92, Section 4] to a power
management problem for hybrid vehicles. In [83], it is proved that the value function
of stochastic target problems (therefore including chance-constrained problems) is the
viscosity solution to a certain HJB equation (see also [105, Chapter 8] and the lecture
notes [82]).

The second method is the Lagrangian relaxation method [96, Chapter XII], [99].
Instead of dealing directly with the expectation constraint, we add the term −λE[g(XT )]
to the cost function to be minimized, so that the problem is reduced to a standard
unconstrained stochastic optimal control problem. The dual variable λ ≥ 0 ensuring the
level z of expectation is unknown and must be found iteratively. This technique is used
in [75], for example.

If the dynamic of the system is linear and if g is concave, the expectation constraint
is a convex constraint, in so far as for two given controls satisfying the expectation
constraint, the average control also satisfies the constraint. In general, this property is
not satisfied, therefore, the Lagrange relaxation cannot provide an optimal control for
all the values of z. Note that the set of controls satisfying the constraint may even be
not connected. These issues are studied in [93, 95]. On the other hand, the dynamic
programming method enables us to deal with the apparent nonconvexity, but is more
complex, since it requires a supplementary variable, which is a martingale. In the case
of continuous-time problems, the volatility of this martingale is unbounded, which is a
supplementary difficulty, and the domain of the value function is a priori unknown.

In section 6.2, we study a discrete-time optimal control problem. We describe a nat-
ural relaxation of the problem, which consists in allowing the player to choose a mixed
strategy for the control. In this framework, the (relaxed) value function is convex with
respect to z and some links between the two methods that we mentioned appear, thanks
to the Legendre-Fenchel transform of the value function. We prove that if λ is the dual
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variable associated with our problem, it is a subgradient of the relaxed value function
with respect to z, for all t, along any optimal trajectory. In section 6.3, we formulate
a continuous-time stochastic optimal control problem with an expectation constraint.
We prove that if g is Lipschitz, the value function is convex with respect to z without
relaxation. In section 6.4, we state the HJB equations associated with different value
functions. Note that we only give a formal derivation of the HJB equation of the value
function associated with the original problem. We propose numerical schemes in sec-
tion 6.5, adapted from classical schemes for stochastic optimal control [97, 98]. These
schemes use the analysis of section 6.2. A natural commutativity property between the
discretization of the value function and the Legendre-Fenchel transformation appears.
Finally, section 6.7 is dedicated to a chance-constrained asset-liability management prob-
lem.

6.2 Discrete-time chance-constrained control problems

6.2.1 First properties

Formulation We consider a discrete-time stochastic optimal control problem with an
expectation constraint, which is a generalization of probabilistic constraints. Let T ∈ N

∗,
let (ξj)j=1,...,T be T independent random values. For all j ∈ {0, ..., T}, we denote by F0,j

the σ-algebra generated by {ξ1, ..., ξj} and we denote by F0 the filtration (F0,j)j=0,...,T .
To simplify, we assume that the random values ξj are independent and identically

distributed, with a discrete law. Let I ∈ N
∗ and (pi)i=1,...,I in [0, 1]I be such that∑I

i=1 pi = 1, we assume that for all i ∈ {1, ..., I},
P
[
ξj = i

]
= pi. (6.1)

Now, let us consider a stochastic process (Xj)j=0,...,T with values in R
n, modeled as a

controlled Markov chain. The values of the control process u = (uj)j=0,...,T−1 belong to
a subset U of Rm. The dynamic of X is given by

{
Xj+1 = f(Xj, uj , ξj+1), ∀j = 0, ..., T − 1,

X0 = x0.
(6.2)

We consider a non-anticipative constraint: u must be F0-adapted. We denote by U0 the
set of control processes in U satisfying this constraint. For all u ∈ U0, there exists a
unique process denoted by (X0,x0,u

j )j=0,...,T which is solution to (6.2). Note that X0,x,u

is F0-adapted. To sum up, the decision process is as follows:

x0 → decision of u0 → observation of ξ1 → x1 → ... →
xj → decision of uj → observation of ξj+1 → xj+1 → ...→ xT .

Let φ : Rn → R and g : Rn → R, let z0 ∈ R, we consider the following stochastic optimal
control problem:

min
u∈U0

E
[
φ(X0,x0,u

T )
]

(6.3)

s.t. E
[
g(X0,x0,u

T )
]
≥ z0. (6.4)
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The assumptions on the problem are the following: f is continuous with respect to x and
u, g and φ are continuous, and U is compact, so that the existence of optimal solutions
is ensured (provided that the problem is feasible).

Remark 6.1. The case of a probabilistic constraint of the following form:

P
[
h(X0,x0,u

T ) ≥ 0
]
≥ z (6.5)

enters into this framework, by setting

g(x) = 1R+(h(x)) :=

{
1 if h(x) ≥ 0,

0 otherwise.
(6.6)

Of course, g is not continous in this case, but the existence of optimal solutions is still
ensured if the other assumptions on f , φ, and U still hold, and provided that the problem
is feasible.

Convex analysis tools This paragraph is a very short introduction to some notions
of convex analysis [103]. The notations that we will use there are independent of the
article. Let V : z ∈ R 7→ R ∪ {+∞}. We denote by V ∗ its Legendre-Fenchel transform,
defined for all λ ∈ R by

V ∗(λ) = sup
z∈R

{
λz − V (z)

}
. (6.7)

If z 7→ V (z) is nondecreasing, which will always be the case in the sequel, then

V (λ) = +∞, ∀λ < 0. (6.8)

By definition, for all z and λ,

V (z) + V ∗(λ) ≥ zλ. (6.9)

The subdifferential ∂V is the multimapping, possibly empty, defined for all z ∈ R by

∂V (z) = {λ ∈ R : V (z′)− V (z) ≥ λ(z′ − z), ∀z′ ∈ R}. (6.10)

Observe that for all z and λ,

V (z) + V ∗(λ) = zλ⇐⇒ λ ∈ ∂V (z). (6.11)

Finally, we denote by conv(V ) the convex envelope of V , defined as the greatest convex
and lower semi-continuous function which is smaller than V . Note that by the Fenchel-
Moreau-Rockafellar Theorem, if conv(V )(z) > −∞, then

conv(V )(z) = V ∗∗(z). (6.12)

In this chapter, the functions V that will be used will depend on several variables, but
the Legendre-Frenchel transform, the subdifferential, and the convex envelope will be
always considered with respect to z only.
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Let us introduce the Lagrangian relaxation, for an abstract optimization problem.
We consider the following family of problems:

V (z) = Min
x∈X

f(x) s.t. g(x) ≥ z, (6.13)

where the space X is given, f : X → R and g : X → R are also given. Let us compute
the Legendre-Fenchel transform of the value function V . Let λ ≥ 0.

V ∗(λ) = sup
z∈R

{
λz − inf

x, g(x)≥z
f(x)

}

= sup
x

sup
z≤g(x)

{
λz − f(x)

}

= sup
x

{
λg(x) − f(x)

}

= − inf
x

{
f(x)− λg(x)}. (6.14)

It can be easily checked that for λ < 0, V ∗(λ) = +∞. We call dual problem the
minimization problem in 6.14. Observe that V and V ∗ are both nonincreasing. In the
following lemma, we consider that the existence of optimal solutions to problems (6.13)
and (6.14) is ensured for all z ∈ R and for all λ ≥ 0. We denote by x(λ) the solution to
(6.14), for a given value of λ.

Lemma 6.2. Let λ ≥ 0. Then, x(λ) is a solution to (6.13), with z = g(x(λ)). Moreover,
the mapping λ ∈ R+ 7→ g(x(λ)) is nondecreasing.

Proof. Let λ ≥ 0 and let x be such that g(x) ≥ g(x(λ)). Then,

f(x) ≥ f(x(λ)) + λ(g(x) − g(x(λ))) ≥ f(x(λ)), (6.15)

which proves the first part of the lemma. Let 0 ≤ λ1 < λ2, let x1 = x(λ1) and x2 = x(λ2),
then

f(x1)− λ1g(x1) ≤ f(x2)− λ1g(x2), (6.16)

f(x2)− λ2g(x2) ≤ f(x1)− λ2g(x1), (6.17)

and summing these two inequalities, we obtain that

(λ2 − λ1)g(x1) ≤ (λ2 − λ1)g(x2), (6.18)

which concludes the lemma.

Dynamic programming Let us go back to our stochastic optimal control problem.
Let us first introduce some notations. Let j ∈ {0, ..., T}, for all k ≥ j, we denote by Fj,k

the σ-algebra generated by ξj+1, ..., ξk and we denote by Fj the associated filtration. We
denote by Uj the set of Fj-adapted control processes (uk)k=j,...,T . Finally, for all x ∈ R

n,

for all u ∈ Uj, we denote by (Xj,x,u
k )k=j,...,T the solution to

{
Xj,x,u

k+1 = f
(
Xj,x,u

k , uk, ξk+1

)
, ∀k = j, ..., T − 1,

Xj,x,u
j = x.

(6.19)
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Note that Xj,x,u is Fj-adapted. For all j ∈ {0, ..., T}, for all x ∈ R
n, and for all z ∈ R,

we set

Vj(x, z) = min
u∈Uj

E
[
φ(Xj,x,u

T ) | Fj,T

]
, (6.20)

s.t. E
[
g(Xj,x,u

T ) | Fj,T

]
≥ z. (6.21)

Note that for all j and all x, Vj(x, ·) is nondecreasing.

Lemma 6.3. Let z ∈ R, j ∈ {0, ..., T}, x ∈ R
n and u ∈ Uj. Then, the constraint (6.21)

holds if and only if there exists an Fj-adapted martingale (Zk)k=j,...,T satisfying

Zj = z and ZT ≤ g(Xj,x,u
T ). (6.22)

Proof. Assume that an Fj-adapted martingale Z satisfying (6.22) exists. Then,

E
[
g(Xj,x,u

T ) | Fj,T

]
≥ E

[
ZT | Fj,T

]
= Zj = z, (6.23)

and (6.21) holds. Conversely, assume that (6.21) holds and define

Zk = E
[
g(Xj,x,u

T ) | Fj,k

]
−
(
E
[
g(Xj,x,u

T )
]
− z
)
. (6.24)

Clearly, Z is an adapted martingale and (6.22) holds.

The following proposition states the dynamic programming principle associated with
our problem and shows that the Legendre-Fenchel transform of the value function also
satisfies a dynamic programming principle.

Proposition 6.4. The value function Vj(x, z) satisfies the following relations:

VT (x, z) =

{
φ(x) if g(x) ≥ z,

+∞ otherwise,
(6.25)

Vj(x, z) = inf
u∈U, (zi)i∈RI

∑I
i=1 pizi=z

I∑

i=1

piVj+1

(
f(x, u, i), zi

)
, ∀j = 0, ..., T − 1. (6.26)

Given j and x, for all u ∈ Uj and all adapted martingale Z, u is an optimal solution
and Z satisfies (6.22) if and only if for all j ≤ k < T , (uk, Zk+1) is a solution to (6.26)
with probability 1.

Moreover, the Legendre-Fenchel transform of the value function satisfies for all λ ≥ 0

V ∗
T (x, λ) = g(x)λ − φ(x) (6.27)

V ∗
j (x, λ) = sup

u∈U

{ I∑

i=1

piV
∗
j+1

(
f(x, u, i), λ

)}
, ∀j = 0, ..., T − 1. (6.28)

For all λ < 0, Vj(x, λ) = +∞.
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Proof. The first part of the proposition (relations (6.25) and (6.26)) is classical and
follows directly from Lemma 6.3. Relation (6.27) follows from the definition. Finally,
let us prove (6.28). Let j ∈ {0, ..., T − 1}, let x ∈ R

n. Then,

V ∗
j (x, λ) = sup

z∈R

{
λz − inf

u∈U, (zi)i∈RI
∑I

i=1 pizi=z

{ I∑

i=1

piV
∗
j+1(f(x, u, i), zi)

}}
(6.29)

= sup
u∈U, (zi)i∈RI

{ I∑

i=1

pi
(
λzi − V ∗

j+1(f(x, u, i), zi)
)}

(6.30)

and relation (6.28) follows.

Remark 6.5. 1. Relation (6.28) is an extension of the following well-known property:
the Legendre-Fenchel transform of the inf-convolution of two functions is the sum
of the transforms of these two functions.

2. By (6.14), V ∗
j (x, λ) is the value function associated with the following cost (which

is maximized):

E
[
g(Xt,x,u

T )λ− φ(Xt,x,u
T )

]
. (6.31)

Relation (6.28) is nothing but the dynamic programming principle associated with
this new cost function.

6.2.2 Relaxation

Formulation We consider a relaxed version of the previous problem, which is natural
in the framework of stochastic problems with an expectacion constraint. The value
function that we obtain is the convex envelope (with respect to the variable z) of the
value function of the unrelaxed problems. Therefore, the dynamic programming principle
satisfied by the Legendre-Fenchel transform of the value function can be used.

Let us consider a supplementary sequence (ζj)j=0,...,T−1 of i.i.d. variables with com-
mon law the uniform law on [0, 1]. The dynamic of the state variable X is unchanged.
At time j, before taking a decision uj , the player is allowed to observe ζj and its decision
may depend on ζj. The expectacion constraint is now seen in the σ-algebra generated
by the random processes (ξj)j and (ζj)j . The new decision process is as follows:

x0 → observation of ζ0 → decision of u0 → observation of ξ1 → x1 → ...

xj → observation of ζj → decision of uj → observation of ξj+1 → xj+1 → ...

Let us give a more precise description of this process. In this section, the superscript r
will stand for “relaxed”. At time j, the “˜” symbole will be used for the mathematical
objects defined after the observation of ζj. For all j ∈ {1, ..., T − 1} and for all k ≥ j,
we set {

F r
j,k = σ(ξj+1, ..., ξk, ζj, ..., ζk−1),

F̃ r
j,k = σ(ξj+1, ..., ξk, ζj, ..., ζk).

(6.32)



178 Chapter 6. Stochastic optimal control with a probability constraint

and we denote by F
r
j and F̃

r
j the associated filtrations. We introduce a third filtration,

defined by

G
r
j = (F r

j,j , F̃ r
j,j,F r

j,j+1, F̃ r
j,j+1, ...,F r

j,T ). (6.33)

We denote by U r
j the set of F̃r

j-adapted control processes (uk)k=j,...,T−1 with values in U .

For all u ∈ U r
j and all x ∈ R

n, we still denote by (Xj,x,u
k )k=j,...,T the solution to (6.2),

which is an F
r
j-adapted process.

Dynamic programming We introduce a new value function:

V r
j (x, z) = min

u∈Ur
j

E
[
φ(Xj,x,u

T ) | F r
j,T

]
, (6.34)

s.t. E
[
g(Xj,x,u

T ) | F r
j,T

]
≥ z, (6.35)

where the expectancies are considered in F r
j,T .

On figure 6.1, we give an example of a relaxed value function. The shape of this graph
is typical of a chance-constrained optimization problem, where the set of random events
is discrete. On this figure, the different probabilities that can arise are: 0, 1/3, 2/3 and
1. For the probability 1/2, the optimal control for the unrelaxed problem necessarily
ensure a probability of 2/3. The optimal control for the relaxed problem uses the two
optimal controls associated with the levels 1/3 and 2/3, both with probability 1/2.

Figure 6.1: Example of a relaxed value function, for a chance-constrained problem.

We also need an intermediate value function, defined for all x ∈ R
n, z ∈ R and

s ∈ [0, 1] by

Ṽ r
j (x, z, s) =

{
minu∈Ur E

[
φ(Xj,x,u

T ) | ζj = s
]

s.t. E
[
g(Xj,x,u

T ) | ζj = s
]
≥ z.

(6.36)

Actually, this value function does not depend on s, therefore, we will always write
Ṽ r
j (x, z) in the sequel. Note that V r

j and Ṽ r
j are both nondecreasing with respect to z.

Moreover, for all j, for all x ∈ R
n and all z ∈ R

n,

V r
j (x, z) ≤ Ṽ r

j (x, z) ≤ Vj(x, z). (6.37)
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Lemma 6.6. Let j, z ∈ R, x ∈ R
n, u ∈ Uj . Then, the constraint (6.35) holds if and

only if there exists a G
r
j-adapted martingale (Zj , Z̃j , Zj+1, ..., ZT ) which is such that

Zj = z and ZT ≤ g(Xj,x,u
T ) a.s. (6.38)

The proof of this lemma is similar to the one of Lemma 6.3. The following lemma is
the dynamic programming principle associated with the relaxed problem.

Lemma 6.7. The value function V r

j (x, z) satisfies the following relations:

V r
T (x, z) =

{
φ(x) if g(x) ≥ z,

+∞ otherwise,
(6.39)

Ṽ r
j (x, z) = inf

u∈U, (zi)i∈RI
∑I

i=1 pizi=z

{ I∑

i=1

piV
r

j+1

(
f(x, u, i), zi

)}
, (6.40)

V r
j (x, z) = conv(Ṽ r

j )(x, z) (6.41)

∀j = 0, ..., T − 1.

Moreover, the Legendre-Fenchel transform of V r
j satisfies the same relations as V ∗

j , for
all λ ≥ 0:

V r,∗
T (x, λ) = g(x)λ − φ(x) (6.42)

V r,∗
j (x, λ) = sup

u∈U

{ I∑

i=1

piV
r,∗
j+1

(
f(x, u, i), λ

)}
, ∀j = 0, ..., T − 1. (6.43)

Proof. Let us prove the first part of the lemma. Equations (6.39) and (6.40) are obtained
with Lemma 6.6. We also obtain with Lemma 6.6 that

V r
j (x, z) = inf

z̃∈L1[0,1]
∫ 1
0
z̃(s) ds=z

∫ 1

0
Ṽj
(
x, z̃(s)

)
ds, (6.44)

which proves (6.41).
Let us prove the second part of the lemma. Relation (6.42) follows directly from

(6.39). Similarly to the proof of Lemma 6.4, we obtain that

Ṽ r,∗
j (x, λ) = sup

u∈U

{ I∑

i=1

piV
r,∗
j+1

(
f(x, u, i), λ

)}
. (6.45)

Since a function and its convex envelope have the same Legendre-Fenchel transform, we
obtain (6.43), with (6.41).

Remark 6.8. 1. The dynamic programming principle associated with V r,∗
j (x, λ) does

not involve a dynamic on λ. In other words, for two prescribed λ1 ≥ 0 and λ2 ≥
0, the functions (j, x) 7→ V r,∗

j (x, λ1) and (j, x) 7→ V r,∗
j (x, λ2) can be computed

independently. This property is strongly linked with the fact that the sensitivity
with respect to the variable z is constant over time, as we show in Proposition
6.11.
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2. As a corollary of Lemma 6.7, we obtain that V ∗
j (x, λ) and V r,∗

j (x, λ) are equal.
Therefore,

V r
j = conv(Vj). (6.46)

This also means that if the relaxed problem starts at time j, the player can choose
a control u which is at any time k ≥ j a function of ζj, ξj , ..., ξk.

Consequences of the dynamic programming principle We study now two im-
portant consequences of the dynamic programming principle satisfied by V r,∗

j . We prove
in Proposition 6.11 that the sensitivity of the value function with respect to the level z
is in some sense constant over time, for an optimal control. We also prove in Proposition
6.12 that a feedback control obtained by solving the dual problem (6.43) provides an
optimal control, for an a priori unknown level z. We start with two technical lemmas.

Lemma 6.9. Let j ∈ {0, ..., T − 1}, x ∈ R
n, λ ≥ 0, z ∈ R, and z̃ ∈ L1([0, 1]) such that∫ 1

0 z̃(s)ds = z. Consider the three following statements:

(S1)λ ∈ ∂Vj(x, z), (S2) z̃ is a solution to (6.44), (S3)λ ∈ ∂Ṽ r
j (x, z̃(s)), a.s.

Then,
(S1) and (S2) ⇐⇒ (S3) . (6.47)

Proof. Let us set





A = λz − V r,∗
j (x, λ) =

∫ 1
0 (λz̃(s)− V r,∗

j (x, λ)) ds,

B = V r
j (x, z),

C =
∫ 1
0 Ṽ

r
j (x, z̃(s)) ds.

(6.48)

Then, by (6.9), A ≤ B ≤ C and by (6.11),

(S1) ⇐⇒ A = B, (S2) ⇐⇒ B = C, (S3) ⇐⇒ A = C. (6.49)

The lemma follows.

Lemma 6.10. Let j ∈ {0, ..., T}, x ∈ R
n, u ∈ R

m, λ ≥ 0, z ∈ R, and (zi)i=1,...,I such

that
∑I

i=1 pizi = z. Consider the following four statements:

(S1) λ ∈ ∂Ṽ r
j (x, z)

(S2) u, z1, ..., zI is a solution to (6.40)

(S3) u is a solution to (6.43)

(S4) λ ∈ ∂V r
j+1(f(x, u, i), zi), ∀i = 1, ..., I

Then, the following equivalence holds:

(S1) and (S2) ⇐⇒ (S3) and (S4). (6.50)
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Proof. Let us set





A = zλ− V r,∗
j (x, λ) = zλ− Ṽ r,∗

j (x, λ)

B = Ṽ r
j (x, z)

C =
∑I

i=1 pi(λzi − V r,∗
j+1(f(x, u, i), λ))

D =
∑I

i=1 piV
r
j+1(f(x, u, i), zi).

(6.51)

It easy to check that

A ≤ B ≤ D and A ≤ C ≤ D, (6.52)

as a consequence of the general relation (6.9) and of the non-optimality of u, z1, ...zI in
problems (6.40) and (6.43). Moreover, by (6.11), we also obtain that

{
(S1) ⇐⇒ A = B, (S2) ⇐⇒ B = D,

(S3) ⇐⇒ A = C, (S4) ⇐⇒ C = D.
(6.53)

Combining (6.51), (6.52), and (6.53), we obtain that

(S1) and (S2) ⇐⇒ A = B = D ⇐⇒ A = C = D ⇐⇒ (S3) and (S4) (6.54)

and the lemma follows.

Proposition 6.11. Let j ∈ {0, ..., T − 1}, x ∈ R
n, z ∈ R, let u ∈ Uj be an optimal solu-

tion to problem (6.34)-(6.35), let (Zj , Z̃j, ..., ZT ) be a Gj-adapted martingale satisfying
(6.38). Finally, let λ ∈ ∂V r

j (x, z). Then,

λ ∈ ∂Ṽ r
k (X

j,x,u
k , Z̃k), a.s. and λ ∈ ∂V r

k+1(X
j,x,u
k+1 , Zk+1) ∀k = j, ..., T − 1. (6.55)

Proof. Let us prove the property for k = j. By Lemma 6.9 and Lemma 6.10 (the =⇒ of
(6.47) and (6.50)), we obtain successively that

λ ∈ ∂Ṽ r
j (X

j,x,u
j , Z̃j) and λ ∈ ∂V r

j+1(X
j,x,u
j+1 , Zj+1), a.s. (6.56)

We have proved the lemma for k = j. The general result follows by induction.

Proposition 6.12. Let j ∈ {0, ..., T − 1}, x ∈ R
n, let u ∈ Uj and let λ ≥ 0. Assume

that for all k, uk is a solution to problem (6.43), where x = Xj,x,u
k . Let

z = E
[
g(Xj,x,u

T )
]
, (6.57)

then u is an optimal solution of problem (6.34)-(6.35), and since it is not relaxed, it is
a solution to (6.20)-(6.21).

Proof. Let us define the Gj-adapted martingale (Zj , Z̃j, ..., ZT ) as in Lemma 6.6. By
(6.39),

∂V r
T (x, g(x)) = R+, (6.58)
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therefore, by (6.38),
λ ∈ ∂V r

T (X
j,x,u
T , ZT ) (6.59)

and by Lemma 6.10 (the ⇐= part of (6.50)), we obtain that (uT−1, ZT ) is a solution to
problem (6.40) and that

λ ∈ Ṽ r
T−1(X

j,x,u
T−1 , Z̃T−1). (6.60)

By Lemma 6.9 (the ⇐= part of (6.47)), we obtain that Z̃T−1 is a solution to problem
(6.44) and that

λ ∈ V r
T−1(X

j,x,u
T−1 , ZT−1). (6.61)

By a backward induction, we obtain that for all k = T − 1, ..., j, (uk, Zk+1) is a solution
to problem (6.40), which proves that u is an optimal control.

Note that this result is also a consequence of Lemma 6.2, which also implies that if
u1 and u2 are two optimal strategies for the penalized problems with 0 ≤ λ1 < λ2, then

E
[
g(Xt,x,u2

T )
]
≥ E

[
g(Xt,x,u1

T )
]
. (6.62)

6.2.3 Application

Let us go back to the resolution of problem (6.3)-(6.4) and its relaxed version. Consider
a mapping v : λ 7→ v(j, x, λ) ∈ U which is such that for all j, x, λ ≥ 0, v(j, x, λ) is a
solution to (6.43). This mapping may not be uniquely defined. We consider then the
mapping λ 7→ u(λ) ∈ U which is such that for all λ, for all j,

uj(λ) = v
(
j,X

0,x0,u(λ)
j , λ

)
. (6.63)

It is clear from Proposition 6.12 that for all λ ≥ 0, u(λ) is an optimal control for
problem (6.3)-(6.4), with an undefined level z. Let us consider this level, that we denote
by Z0(x0, λ) and define by

Z0(x0, λ) = E
[
g(X

0,x0,u(λ)
T )

]
. (6.64)

This level can be computed with a dynamic programming approach, by introducing the
function Zj(x, λ), solution to:

ZT (x, λ) = g(x) (6.65)

Zj(x, λ) =

I∑

i=1

piZj+1(f(x, v(j, x, λ), i), λ). (6.66)

As we already mentioned, the mapping λ 7→ Zj(x, λ) is non-decreasing.
To sum up, we are able, for all λ, to compute V ∗(0, x0, λ) and to compute an op-

timal control associated, which is optimal for a certain level Z(0, x0, λ), which is a
non-decreasing function of λ. Therefore, to solve the problem for a given level z, it
suffices to solve the equation:

Z0(x0, λ) = z, (6.67)
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with unknown variable λ, with a dichotomy method (for example). Of course, this
equation does not have solutions if there is a duality gap, that is to say, if V0(x0, z) >
V r
0 (x0, z). Indeed, in this case, there will exist a value of λ, say λ̄, which is such that

lim
λ↑λ̄

Z0(x0, λ) < z < lim
λ↓λ̄

Z(0, x0, λ). (6.68)

Let us denote by z− and z+ the two limits and by u− and u+ two optimal control
strategies associated. In this situation, a relaxed optimal control for the value z by
using u− with probability (z+ − z)/(z+ − z−) and by using u+ with probability (z −
z−)/(z+ − z−).

Let us examine the advantages and drawbacks of this method.

⊲ The computation of V ∗
j (x, λ) is simpler than Vj(x, z), since it is associated with a

standard optimal control problem, and since the dimension of the state variable is
smaller. Of course, a certain number of iterations on λ is required.

⊲ This method cannot compute an optimal control for the unrelaxed problem.

6.3 Properties of continuous-time optimal control prob-

lems

6.3.1 Formulation of the continuous-time problem

Setting Let n, m, d in N
∗, let T > 0, let W be a d-dimensional Brownian motion. We

denote by F = (Ft)t∈[0,T ] the filtration generated by W . Note that in the sequel, all the
statements concerning random values are valid almost surely, unless otherwise specified.
Consider the following dynamic for the state variable X ∈ R

n on [0, T ]:

{
dXt = f(Xt, ut) dt+ σ(Xt, ut) dWt,

X0 = x
(6.69)

where us is progressively measurable and belongs to a given compact U of Rm. The
unique solution to (6.69) is denoted (X0,x,u

t )t∈[0,T ]. We denote by U the set of measurable
controls in U and we aim at minimizing the following cost function:

E
[
φ(X0,x,u

T )
]
. (6.70)

We consider now an expectation constraint:

E
[
g(XT ) ≥ 0

]
≥ z, (6.71)

where g : Rn → R is a given mapping. Like before, this constraint contains the case of
chance-constrained optimal control problems of the form:

P
[
h(XT ) ≥ 0

]
≥ z, (6.72)

that can be obtained by setting g = 1R+ ◦ h.
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The mappings f : Rn × R
m → R

n, σ : Rn × R
m → R

n × R
k, φ : Rn → R satisfy the

classical regularity assumptions: there exists L > 0 such that for all x, y ∈ R
n, for all

u ∈ U ,

|f(x, u)|+ |σ(x, u)| + |φ(x)| ≤ L(1 + |x|), (6.73)

|f(x, u)− f(y, u)|+ |σ(x, u)− σ(y, u)| + |φ(x)− φ(y)| ≤ L|y − x|, (6.74)

so that the stochastic differential equation is well-posed [101, Section 5]. We assume
that for all x ∈ R

n,
|g(x)| ≤ L(1 + |x|). (6.75)

For the moment, we do not suppose that g is Lipschitz (or even continuous), so that we
do not exclude the case of chance-constrained optimal control problems. However, we
will need this assumption in Theorem 6.14.

Dynamic programming Let A be the space of square-integrable measurable pro-
cesses of dimension d. For z ∈ [0, 1], α ∈ A, we denote by (Z0,z,α

t )t∈[0,T ] the solution
to {

dZt = αt dWt

(
:=
∑d

i=1 α
i
t dW

i
t

)
,

Z0 = z.
(6.76)

where α is seen as a row vector in R
d∗. Note that Z0,z,α is a martingale.

Lemma 6.13. Let u ∈ U . Then, the probability constraint (6.71) holds if and only if
there exists α ∈ A such that the martingale Z0,z,α satisfies

Z0,z,α
T ≤ g(X0,x,u

T ). (6.77)

Moreover, if g is lower bounded by say g (resp. upper bounded by say ḡ), and if z ≥ g
(resp. z ≤ ḡ), we can impose that

Z0,z,α
t ≥ g, (resp. Z0,z,α

t ≤ ḡ). (6.78)

Proof. Let α be such that (6.77) hold. Then, since Z is a martingale,

E
[
g(X0,x,u

T )
]
≥ E

[
Zz,α
T

]
= z. (6.79)

Conversly, assume that expectation constraint (6.71) holds, set

z0 = E[g(X0,x,u
T )]. (6.80)

Note that z ≤ z0. Define the martingale

Zt = E
[
g(XT )|Ft

]
− (z − z0), (6.81)

it satisfies (6.77). Let us suppose that g is lower bounded by g. Let us defined the
stopping time

τ = inf
t
{t : Zt < g} (6.82)
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and let us set:

Z ′
t = Zmin(t,τ). (6.83)

It is known that Z ′ is well-defined and is still a martingale (a stopped martingale).
Moreover, it is easy to check that

Z ′
t ≤ max(Zt, g), (6.84)

therefore, (6.77) still holds for Z ′. The proof is the same when g is upper bounded. Fi-
nally, the control α is obtained by the martingale representation problem [101, Theorem
4.3.4].

This lemma allows to reformulate the problem of minimization of (6.70) under (6.71)
as an optimal control problem with a stochastic target. For t, we denote by Ut and At

the subsets of U and A of controls which are independent of Ft. For x and z, for u ∈ Ut,
we denote resp. by (Xt,x,u

s )s∈[t,T ] and (Zt,z,α
s )s∈[t,T ] the solutions to (6.69) and (6.76),

but with initial conditions Xt,x,u
t = x and Zt,z,α

t = z. We introduce the value function
V , defined by

V (t, x, z) = inf
u∈Ut

E
[
φ(Xt,x,u

T )] s.t. E
[
g(Xt,x,u

T )
]
≥ z (6.85)

= inf
u∈Ut, α∈At

E
[
φ(Xt,x,u

T ] s.t. g(Xt,x,u
T ) ≥ Zt,z,α

T . (6.86)

Observe that z 7→ V (t, x, z) is a nondecreasing function. Observe also that V may be
infinite and that for all z, if V (t, x, z) < +∞, then for all z′ ≤ z, V (t, x, z′) < +∞.

6.3.2 Convexity

In this subsection, we prove that the value function is convex with respect to z, if g is
Lipschitz. This property is strongly linked to the relaxation technique studied in section
6.2. Let us give the main idea. Let us fix (t, x), let u1 and u2 be two controls ensuring the
levels z1 < z2. In a relaxed framework, we would prove the convexity by using the two
controls u1 and u2 with probability 1/2. In an unrelaxed framework, the idea consists
in observing the Brownian motion during a very short time, in order to decide which
control should be used.

Theorem 6.14. If g is uniformly Lipschitz, then for all (t, x) ∈ [0, T ], the mapping
z 7→ V (t, x, z) is convex.

Proof. Let t ∈ [0, T ), let x ∈ R
n, let z1 and z2 be such that V (t, x, z1) < +∞,

V (t, x, z2) < +∞, let z = (z1 + z2)/2. Let u
1 and u2 in Ut be such that

E
[
g(Xt,x,u1

T )
]
≥ z1 and E

[
g(Xt,x,u2

T )
]
≥ z2. (6.87)

Let ε > 0. Let ũ1 ∈ Ut+ε be such that the two following processes:

(u1t+s)s∈[0,T−(t+ε)] and (ũ1t+ε+s)s∈[0,T−(t+ε)] (6.88)
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have the same law. In other words, ũ1 is obtained by delaying u1 of ε. We similarly

define ũ2. Let p ∈ [0, 1], let w(p) be such that 1√
2π

∫ w(p)
−∞ e−θ2/2 dθ = p, let Ap be the

following event:
W 1

t+ε −W 1
t ≤ √

εw(p), (6.89)

so that
P
[
Ap

]
= p. (6.90)

Finally, let u0 ∈ U and let u(p) ∈ Ut be such that

ut(p) = u0, ∀t ∈ (t, t+ ε), ut(p) =

{
ũ1t if A(p) is realized

ũ2t otherwise.
(6.91)

In short, we use control u1 with probability p and control u2 with probability (1 − p),
after a small delay during which we observe the Brownian motion, in order to decide
which control to use. We claim that there exists a constant C > 0 independent of p
which is such that:

E
[
g(X

t,x,u(p)
T )

]
≥ pz1 + (1− p)z2 − C

√
ε, (6.92)

E
[
φ(X

t,x,u(p)
T )

]
≤ pE[φ(Xt,x,u1

T )] + (1− p)E[φ(Xt,x,u2

T )] + C
√
ε. (6.93)

We will prove these estimates later. Let us suppose that z2 > z1, and let us set pε =
1
2 − C

√
ε/(z2 − z1). It follows that

E
[
g(X

t,x,u(pε)
T )

]
≥ 1

2
(z1 + z2), (6.94)

E
[
φ(X

t,x,u(pε)
T )

]
≤ 1

2

(
E[φ(Xt,x,u1

T )] + E[φ(Xt,x,u2

T )]
)
+O(

√
ε). (6.95)

To the limit when ε ↓ 0, we obtain that

V (t, x, z) ≤ 1

2

(
E[φ(Xt,x,u1

T )] + E[φ(Xt,x,u2

T )]
)
, (6.96)

and the result follows by minimizing the r.h.s. of the previous inequality.
Now, let us prove estimate (6.92), the proof of (6.93) being similar. First,

E
[
g
(
X

t,x,u(p)
T

)]
= pE

[
g
(
X

t+ε,Xt,x,u0

t+ε ,ũ1

T

) ∣∣∣Ap

]
+(1−p)E

[
g
(
X

t+ε,Xt,x,u0

t+ε ,ũ2

T

) ∣∣∣ Āp

]
. (6.97)

Then, since g is Lipschitz,

E

[
g
(
X

t+ε,Xt,x,u0

t+ε ,ũ1

T

) ∣∣∣Ap

]
= E

[
g
(
Xt+ε,x,ũ1

T

) ∣∣Ap

]
+O

(
E
[
|Xt,x,u0

t+ε − x|
])

= E
[
g
(
Xt,x,u1

T−ε

)]
+O(

√
ε)

= E
[
g
(
Xt,x,u1

T

)]
+O(

√
ε). (6.98)

These last estimates follow from classical a priori estimates for stochastic differential
equations, themselves consequences of Gronwall’s lemma and Itô’s isometry. A similar
estimate holds for u2 and (6.92) follows.
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Remark 6.15. 1. This result does not cover the case of chance-constrained problems
when g = 1R+ ◦h. Proving the convexity (or the non-convexity) in this case is still
an open question to us.

2. The notion of relaxed controls can naturally be defined for continuous-time prob-
lems. If g is Lipschitz, relaxing does not modify the value function.

6.4 HJB equations

In this section, we give three HJB equations that are satisfied by V , its Legendre-Frenchel
transform, and by the boundary of the domain of V . Note that we only provide a formal
derivation of the equation satisfied by V , which is different from the equation provided in
[83] (for which a complete justification is provided). The control α, associated with the
martingale Z is unbounded and therefore the (true) Hamiltonian may be infinite. The
theory of discontinuous viscosity solutions enables to treat the case, but it is possible
to reformulate the problem of minimization of the Hamiltonian so that it only involves
bounded controls, as shown in [85]. This technique was also used in [79] and enabled
the authors to derive a numerical scheme.

Note that in this section, the partial derivative with respect to time is denoted by
∂tV and the first- and second-order partial derivatives with respect to x are simply
denoted by DV and D2V . We never differentiate the Legendre-Fenchel transform V ∗

with respect to λ.

6.4.1 HJB equation for the value function

We denote by Mj the set of symetric matrices of order j. For p ∈ R
n∗ and Q ∈ Mn+1,

with

Q =

(
Qxx Qxz

QT
xz Qzz

)
, (6.99)

where Qxx ∈Mn, Qxz ∈ R
n, Qzz ∈ R, we define the physical Hamiltonian of the problem

by

HX(u, x, p,Qxx) = pf(x, u) +
1

2
tr
[
σ(x, u)σ(x, u)⊤Qxx

]
(6.100)

and the Hamiltonian by

H(u, α, x, p,Q)

= pf(x, u) +
1

2
tr

[(
σ(x, u)σ(x, u)T σ(x, u)α⊤

ασ(x, u)⊤ αα⊤

)
Q

]
, (6.101)

where tr is the trace of a matrix. Observe that the two Hamiltonian are independent of
z. We use the terminology physical Hamiltonian to emphasize the fact that HX is the
Hamiltonian associated with the physical variable X which would have been used in the
absence of probability constraint. Finally, we define the true Hamiltonian by

H∗(x, p,Q) = inf
u∈U

inf
α∈Rd∗

H(u, α, x, p,Q) (6.102)
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We also define for future reference the true physical Hamiltonian

HX,∗(x, p,Qxx) = inf
u∈U

HX(u, x, p,Qzz). (6.103)

We can write the Hamiltonian as follows:

H(u, α, x, p,Q) = Pu,x,p,Q(α), (6.104)

where
P(u,x,p,Q)(α) := A+ αB + |α|2C/2 (6.105)

is a polynomial of degree 2 with coefficients A ∈ R, B ∈ R
d, C ∈ R depending on

(u, x, z, p,Q) and defined by

A := HX(u, x, p,Qxx), B := σ(x, u)⊤Qxz, and C := Qzz. (6.106)

Given (u, x, p,Q), the infimum of P(u,x,p,Q) with respect to α ∈ R
d∗ is given by

AC − |B|2/2
C

if C > 0, A if C = 0 and B = 0, −∞ otherwise. (6.107)

Therefore, given (u, x, p,Q), the minimum of the Hamiltonian w.r.t. α is given by





HX(u, x, p,Qxx)Qzz − |σ(x, u)⊤Qxz|2/2
Qzz

if Qzz > 0,

HX(u, x, p,Qxx) if Qzz = 0 and σ(x, u)⊤Qxz = 0,

−∞ otherwise.

(6.108)
The approach of [102] consists in describing the domain of the true Hamiltonian H∗ with
a nonnegative continous function G(x, p,Q) which is such that

{H∗(x, p,Q) > −∞} ⇐⇒ {G(x, p,Q) > 0} . (6.109)

Then, the HJB equation is given by

min
{
H∗(x,DV,D2V );G(x,DV,D2V )

}
= 0.

For the problem with an expectation constraint, there does not exist (in general) any
continous function describing the domain of the Hamiltonian and therefore, this approach
cannot be adopted. However, it seems reasonable to impose the convexity with respect
to z of the value function in the HJB equation, in view of Theorem 6.14.

We denote by Sd the unit sphere of Rd+1 and we set

S+
d = {β ∈ Sd : β1 ≥ 0}. (6.110)

Let us denote by Pd and P̄d the following subsets of Rd+1:

Pd = {β ∈ R
d+1 : β1 = 1}, P̄d = Pd ∪ {β ∈ Sd : β1 = 0}. (6.111)
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Recall the definition of the coefficients A, B, and C, given by (6.106). For ζ ∈ R,
consider the (d+ 1)-dimensional symmetric matrix M(ζ, u, x, p,Q) defined by

M(ζ, u, x, p,Q) =




ζ +A B1/2 . . . Bd/2

B1/2
... (C/2)Idd

Bd/2




=

(
ζ +HX(u, x, p,Qxx) σ(x, u)⊤Qxz/2

σ(x, u)⊤Qxz/2 (Qzz/2)Idd

)
, (6.112)

where Idd is the identity matrix of size d. Observe that for all α ∈ R
d∗, setting β =

(1, α)⊤ ∈ Pd,

ζ + P(u,x,p,Q)(α) = β⊤M(ζ, u, x, p,Q)β. (6.113)

Note also that if Qzz > 0,

det(M(ζ, u, x, p,Q)) =
2(ζ +HX(u, x, p,Qxx))Qzz − |σ(x, u)⊤Qxz|2

4

=
Qzz

2

[
min
α∈Rd∗

{
ζ + P(u,x,p,Q)(α)

}]
. (6.114)

For M ∈Md+1, we denote by Λ−(M) its smallest eigenvalue. Note that

Λ−(M) = min
β∈S+

d

{
β⊤Mβ

}
. (6.115)

For the HJB equation, we propose, following Bruder:





minu∈U

{
Λ−
(
∂tV +HX(u, x, p, Vxx) σ(x, u)⊤Vxz/2

σ(x, u)⊤Vxz/2 (Vzz/2)Idd

)}
= 0.

V (T, x, z) =

{
φ(x), if z ≤ g(x),

+∞, otherwise.

(6.116)

This formulation of the HJB equation is motivated by the following lemma.

Lemma 6.16. Let ζ ∈ R and (u, x, p,Q). Set

K = min

{
min
α∈Rd∗

{H(u, α, x, p,Q);Qzz}
}
, (6.117)

the following equivalence holds:

K = 0 ⇐⇒ Λ−(M(ζ, u, x, p,Q)) = 0. (6.118)
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Proof. Let us fix ζ and (u, x, p,Q). For simplicity, we write M = M(ζ, u, x, p,Q). The
mapping ρ : β ∈ P̄+

d 7→ ρ(β) = β/|β| ∈ S+
d is a bijection which is such that for all

β ∈ P̄+
d ,

β⊤Mβ ≥ 0 ⇐⇒ ρ(β)⊤Mρ(β). (6.119)

Moreover, by (6.104) and (6.113),

min
α∈Rd∗

{
ζ +H(u, α, x, p,Q)

}
= min

β∈P+
d

{
β⊤Mβ

}
and Qzz = min

β∈Sd,
β1=0

{
β⊤Mβ

}
. (6.120)

It follows that

K = min
β∈P̄+

d

{
β⊤Mβ

}
(6.121)

Combining (6.115), (6.119), and (6.121) and using the fact that ρ is a bijection, we
obtain that

K ≥ 0 ⇐⇒ Λ−(M) ≥ 0. (6.122)

Now, if K = 0 and Qzz = 0, then any β ∈ Sd with β1 = 0 belongs to the kernel of M .
Assume that K = 0 and Qzz > 0, then ζ+P(u,x,p,Q)(α) reaches its minimum, thus equal
to 0, at say ᾱ and therefore, by (6.113), (1, ᾱ) belongs to the kernel of M . Using (6.122),
we obtain that

K = 0 =⇒ Λ−(M). (6.123)

Conversely, assume that Λ−(M) = 0. Let β̄ = (β̄1, β̄2)
⊤ be a nonzero element of the

kernel of M . If β̄1 = 0, then Qzz = 0 and K = 0. If β̄1 6= 0, then ᾱ = β2/β1 is such that
ζ + P(u,x,p,Q)(ᾱ) = 0 and thus K = 0. We have proved that

Λ−(M) = 0 =⇒ K = 0. (6.124)

The lemma is now proved.

6.4.2 HJB equation for the Legendre-Fenchel transform

We give here the HJB equation satisfied by V ∗(t, x, λ), the Legendre-Fenchel transform
of V with respect to λ, for λ ≥ 0. As we explained in Section 6.2, V ∗(t, x, λ) is the value
function associated with the unconstrained maximization of

E
[
g(Xt,x,u

T )λ− φ(Xt,x,u
T )

]
. (6.125)

Therefore, the HJB equation is the following:

{
V ∗(T, x, λ) = g(x)λ− φ(x)

∂tV
∗(t, x, λ) = HX,∗(x,−DV ∗(t, x, λ),−D2V ∗(t, x, λ)

)
.

(6.126)
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6.4.3 HJB equation for the highest reachable level of probability

A possible approach for computing the boundary of the domain of V (t, x, z) consists in
computing the highest reachable level, denoted by Ψ(t, x) and defined by

Ψ(t, x) = sup
z∈R

{
z : V (t, x, z) < +∞

}

= sup
u∈Ut

{
E
[
g(Xt,x,u

T )
]}
. (6.127)

The HJB equation satisfied by Ψ(t, x) is the following:

{
Ψ(T, x) = g(x)

∂tΨ(t, x) = HX,∗(x,−DΨ(t, x),−D2Ψ(t, x)).
(6.128)

Lemma 6.17. Let t < T , let x ∈ R
n and z = Ψ(t, x). Let u ∈ Ut and α ∈ At be such

that

E
[
g(Xt,x,u

T )
]
= z and Zt,z,α

T ≤ g(Xt,x,u
T ). (6.129)

Then, for all s ≥ t,

Zt,z,α
s = Ψ(s,Xt,x,u

s ). (6.130)

Proof. We only give some elements of proof. Note first that (6.129) must necessarily be
an equality. The dynamic programming principle satisfied by Ψ(t, x) is the following:
for all stopping time τ ≥ t,

Ψ(t, x) = sup
v∈U

{
E
[
Ψ(τ,Xt,x,v

τ )
]}
. (6.131)

Then, u is optimal for (6.131), therefore Ψ(s,Xt,x,u
s ) is a martingale. Combined with

the equality in (6.129), we get the result.

6.5 Numerical methods

In this section, we propose some numerical schemes for the resolution of stochastic
optimal control problems with an expectation constraint. Our approach consists in
discretizing the dynamic of the physical state variable X with a controlled Markov chain,
as it is usually done for the semi-Lagrangian scheme and the finite-difference scheme,
and to solve the constrained problem associated. For each type of discretization, two
approaches are possible: one based on dynamic programming, the other one based on
Lagrangian relaxation. The approach using Lagrangian relaxation is of course justified
in so far as the initial continuous-time problem is convex with respect to z (at least if g
is Lipschitz).

To simplify the presentation of the schemes, we suppose that x is of dimension 1.
Let us introduce some notations:

⊲ K > 0, so that the state space is reduced to [−K,K]
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⊲ Mt + 1, the number of discretization points for the time variable

⊲ δt = T/Mt

⊲ 2Mx + 1, the number of discretization points for the space variable

⊲ δx = K/Mx

⊲ Mz + 1, the number of discretization points for the variable z.

We use the following discretized variables:

⊲ j ∈ {0, ...,Mt}, the variable associated with the time variable t

⊲ k ∈ {−Mx, ...,Mx}, the variable associated with the space variable x.

We will sometimes write f(u, k) instead of f(u, kδx) and we will use the same convention
for σ, φ and g.

6.5.1 Semi-Lagrangian schemes

Discretization of the problem The discretization of X is naturally obtained by
discretizing the Brownian motion. Let (ξi)i=1,...,d+1 be a family of Rd and (pi)i=1,...,d+1

be a family of [0, 1] such that

d+1∑

k=1

pi = 1,
d+1∑

k=1

piξ
i = 0, and

d+1∑

k=1

piξ
i(ξi)⊤ = Idd. (6.132)

For d = 1, we can take p1 = p2 = 1/2 and ξ1 = 1, ξ2 = −1. For k = 2, we can take
p1 = p2 = p3 = 1/3 and

ξ1 = (0,
√
2)⊤, ξ2 = (−

√
2/2,

√
6/2)⊤, and ξ3 = (−

√
2/2,−

√
6/2)⊤. (6.133)

We consider now Mt i.i.d. random variables in R
d, (ξj)j=1,...,Mt, with the following law:

P[ξj = ξi] = pi, ∀j ∈ {1, ...,Mt}, ∀i ∈ {1, ..., d + 1}. (6.134)

We consider the same filtrations as in Section 6.2 and for all j, we define the space Uj

of Fj-adapted controls. A first level of discretization of X is given by:

Xu
j+1 = Xu

j + f(uj,Xj)δt + σ(uj ,Xj)ξj
√
δt. (6.135)

However, the variable X is still continous on R and we would like to ensure that the
approximating Markov chain evolves on a countable subset of R. We consider here:
δxZ = {kδx : k ∈ Z}. If after the first step, the state takes the value x, we consider
that it goes to the states

⌊ x
δx

⌋
δx with probability 1−

{ x

δx

}
,

(⌊ x
δx

⌋
+ 1
)
δx with probability

{ x

δx

}
, (6.136)
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where {y} is the decimal part of y and where y = ⌊y⌋+ {y}. Finally, the discretization
of the state variable is given for all i = 1, ..., d by

P
[
Xu

j+1 = ⌊ki⌋δx |Xu
j = kδx

]
= pi(1− {ki}),

P
[
Xu

j+1 = (⌊ki⌋+ 1)δx |Xu
j = kδx

]
= pi{ki}, (6.137)

where

ki = k +
f(uj, k)δt + σ(uj , k)ξ

i
√
δt

δx
. (6.138)

We let the reader check with (6.132) that

E
[
Xu

j+1 −Xu
j |Xu

j

]
= f(uj,X

u
j )δt, (6.139)

Var
[
Xu

j+1 −Xu
j |Xu

j

]
= σ(uj ,X

u
j )σ(uj ,X

u
j )

⊤δt+O(δx2), (6.140)

which proves the consistency of the approximation.

We can now define the discretized value function:

Vj,k(z) =





Min
u∈Uj

E
[
φ(Xj,kδx,u

Mt
)
]

s.t. E
[
g(Xj,kδx,u

Mt
)
]
≥ z.

(6.141)

The associated dynamic programming principle is given by





VMt,k(z) =

{
φ(k) if g(k) ≥ z,

+∞ otherwise,

Vj,k(z) = inf
u∈U,

(z+i )i∈Rd+1,

(z−i )i∈Rd+1,

{∑d+1
i=1 pi

(
(1− {ki})Vj+1,⌊ki⌋(z

−
i ) + {ki}Vj+1,⌊ki⌋+1(z

+
i )
)}
,

where ki = k + (f(uj , k)δt + σ(uj , k)ξ
i
√
δt)/δx,

s.t.
∑d+1

i=1 pi
(
(1− {ki})z−i + {ki}z+i

)
= z.

(6.142)
The dynamic programming principle associated with the Legendre-Fenchel transform
V ∗
j,k(λ) is given for all λ ≥ 0 by





V ∗
Mt,k

(λ) = g(k)λ − φ(k)

V ∗
j,k(λ) = sup

u∈U

{∑d+1
i=1 pi

(
(1− {ki})Vj+1,⌊ki⌋(λ) + {ki}Vj+1,⌊ki⌋+1(λ)

)}
,

where ki = k + (f(uj , k)δt + σ(uj , k)ξ
i
√
δt)/δx.

(6.143)
Note that the dynamic programming principle satisfied by V ∗

j,k(λ) corresponds to
the one that we would have obtained by writing the semi-Lagrangian scheme associated
with V ∗(t, x, λ), we observe a commutativity property between the discretization and
the Legendre-Fenchel transformation.
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Application Two approaches can be used to solve the problem, as we mentioned : the
first one consists in computing Vj,k(z), the second one in computing V ∗

j,k(λ) for a certain
number of values of λ, so that we find an optimal strategy for the required level z. Let
us make a few comments on these approaches.

⊲ The method can be extended to the case when x is multi-dimensional.

⊲ Both approaches suffer from the curse of dimensionality: the complexity of the
algorithm increases exponentially with n.

⊲ We must bound the state space. A simple approach consists in projecting the
coefficient ki on [−Mx,Mx] in the dynamic programming principles.

⊲ For the computation of Vj,k(z), we must discretize the variable z and we must
ensure the constraint:

d+1∑

i=1

pi
(
(1− {ki})z−i + {ki}z+i

)
= z (6.144)

in a consistent way. Moreover, we must take into account the fact the value function
can take the value +∞. We discuss this specific point in subsection 6.5.3.

⊲ The set of controls, U must be discretized, and the minimization problem in the
dynamic programming principles can be solved by enumeration.

6.5.2 Finite-difference schemes

Dicretization of the problem Like previously, we discretize the dynamic of the
variable X with a controlled Markov chain. The discretization is obtained by discretizing
the Hamiltonian of the system. Let us define

p(u, k, 0) = 1− |f(u, k)|δt
δx

− |σ(u, k)|2δt
δx2

p(u, k, 1) =
f+(u, k)δt

δx
+

|σ(u, k)|2δt
2δx2

p(u, k,−1) =
−f−(u, k)δt

δx
+

|σ(u, k)|2δt
2δx2

,

where x+ = max(x, 0) and x− = min(x, 0), so that x = x++x− and |x| = x+−x−. The
controlled Markov chain is defined by

P
[
Xu

j+1 −Xu
j = qδx |Xu

j = kδx
]
= p(uj , k, q), ∀q ∈ {−1, 0, 1}. (6.145)

This chain is well-posed if the following CFL condition holds true:

‖f‖∞δt ≤ 1
2δx and ‖σ‖∞δt ≤ 1

2δx
2, (6.146)
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where ‖f‖∞ = supu,x |f(u, x)| and ‖σ‖∞ = supu,x |σ(u, x)|. Observe that the approxi-
mation is consistent in so far as

E
[
Xu

j+1 −Xu
j |Xu

j = kδx
]
= f(uj , k)δt (6.147)

Var
[
Xu

j+1 −Xu
j |Xu

j = kδx
]
= σ(uj , k)σ(uj , k)

⊤δt+ o(δt). (6.148)

We can now define the discretized value function:

Vj,k(z) =





Min
u∈Uj

E
[
φ(Xj,kδx,u

Mt
)
]

s.t. E
[
g(Xj,kδx,u

Mt
)
]
≥ z.

(6.149)

The associated dynamic programming principle is given by





VMt,k(z) =

{
φ(k) if g(k) ≥ z,

+∞ otherwise,

Vj,k(z) = inf
u∈U,

z−1,z0,z1∈[0,1]3,∑1
q=−1 p(u,k,q)zq=z

{∑1
q=−1 p(u, k, q)Vj+1,k+q(zq)

}
,

∀j ∈ {0, ...,Mt − 1}.

(6.150)

The dynamic programming principle associated with the Legendre-Fenchel transform
V ∗
j,k(λ) is given for all λ ≥ 0 by





V ∗
Mt,k

(λ) = g(k)λ − φ(k)

V ∗
j,k(λ) = sup

u∈U

{∑1
q=−1 p(u, k, q)V

∗
j+1,k+q(λ)

}
,

∀j ∈ {0, ...,Mt − 1}.

(6.151)

Note that the dynamic programming principle satisfied by V ∗
j,k(λ) corresponds to the

one that we would have obtained by writing the finite-difference scheme associated with
V ∗(t, x, λ).

Application The same remarks as for the semi-Lagrangian scheme can be made. Note
however that the extension to the multi-dimensional case is more complex: let us mention
the generalized finite-difference approach of [80, 81].

6.5.3 Possible approaches for the dynamic programming method

We discuss now some possible approaches for the discretization of the variable z in
Vj,k(z). The semi-Lagrangian scheme and the finite-difference scheme can be summarized
as follows:

Vj,k(z) = inf
u∈U

Wj,k(z, u), (6.152)
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where

Wj,k(z, u) = inf
(zi)i=1,...,N∈[0,1]N ,
∑N

i=1 pi(u)z
i=z

N∑

i=1

piWj,k(zi, u, i). (6.153)

Let us fix j, k, u, and let us focus on the solving of problem (6.153). We do not mention
anymore the dependence with respect to j, k, and u and writeW (z) andW (zi, i) instead
of Wj,k(z, u) and Wj,k(zi, u, i).

The mapping W (z) can be computed recursively. For all r ∈ {1, ..., N}, we set:

Pr =

r∑

i=1

pi and Wr(z) = inf
(zi)i=1,...,r∈[0,1]r

1
Pr

∑r
i=1 pizi=z

1

Pr

r∑

i=1

piW (zi, i). (6.154)

Note that PN = 1 and WN (z) =W (z). Moreover, for all r ∈ {1, ..., N},

Wr+1(z) = inf
z−,z+∈[0,1]

Prz−+pr+1z+=z

{
PrWr(z

−) + pr+1W (z+, r + 1)
}

(6.155)

= inf
z−∈[0,1]

{
PrWr(z

−) + pr+1W
(z − Prz

−

pr
, r + 1

)}
. (6.156)

Let us consider a discretization of [0, 1]: Z = {0, 1/Mz , 2/Mz , ..., 1}, where Mz is a
given integer. Let r, let us suppose to have computed an approximation of Wr(z) for all
z ∈ Z. We compute an affine interpolation of Wr(z) on [0, 1]. Note that for the highest
values of z, the problem may be infeasible. We can compute then an approximation of
Wr+1 with (6.156), by enumerating all the values of z− and z in Z. Finally, we obtain
an approximation of W (z) with O(NM2

z ) operations. Of course, many variants can be
considered and we do not give a more complete justification of this approach.

6.6 Numerical tests

In this section, we present numerical results for a simple chance-constrained stochastic
optimal control problem, for the semi-Lagrangian method.

6.6.1 Description of the problem

Setting We consider the dynamic:

dXt = ut dt+ dWt (6.157)

where the control ut belongs to U := [0, 1] for a.a. t. The value function is

V (t, x, z) = Min
u∈Ut

E

[ ∫ T

t
u2s dt

]
s.t. P

[
Xt,x,u

T ≥ 0
]
≥ z. (6.158)
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Boundary The boundary is described by the highest reachable probability

Ψ(t, x) = sup
z∈[0,1]

{
z : V (t, x, z) < +∞

}

= sup
u∈Ut

{
P
[
Xt,x,u

T ≥ 0
]}
. (6.159)

For this simple example, we can compute explicitely Ψ, since this highest probability is
reached with a constant control equal to 1. Therefore,

Ψ(t, x) = P
[
WT−t ≥ −(x+ (T − t))

]
=

1√
2π

∫ (x+T−t)/
√
T−t

−∞
e−θ2/2 dθ. (6.160)

The HJB equation is the following:

{
Ψ(T, x) = 1R+(x)

−∂tΨ(t, x) = DΨ(t, x) + 1
2D

2Ψ(t, x).
(6.161)

Note that

V (t, x, Z(t, x)) = T − t. (6.162)

The semi-Lagrangian scheme is given by





ΨMt,k =

{
1 if k ≥ 0

0 otherwise ,

Ψj,k =
{

1
2

[
(1− {k1})Ψj+1,⌊k1⌋ + {k1}Ψj+1,⌊k1⌋+1

]

+1
2

[
(1− {k2})Ψj+1,⌊k2⌋ + {k2}Ψj+1,⌊k2⌋+1

]}
,

where: k1 = k + (δt+
√
δt)/δx,

k2 = k + (δt−
√
δt)/δx.

(6.163)

For this example, we are also interested in:

Ψ0(t, x) = sup
z∈[0,1]

{
z : V (t, x, z) = 0

}

= P
[
Xt,x,u0

T ≥ 0
]
, (6.164)

where u0 is the control process constant and equal to 0. The explicit value is

Ψ0(t, x) = P
[
WT−t ≥ −x

]
=

1√
2π

∫ x/
√
T−t

−∞
e−θ2/2 dθ. (6.165)
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Discretized value function The discretized value function, with the semi-Lagrangian
scheme, is given by




VMt,k(z) =

{
0 if k ≥ 1R+(k)

+∞ otherwise ,

Vj,k(z) = inf
u∈[0,1], z−/+

1/2

{
1
2

[
(1− {k1})Vj+1,⌊k1⌋(z

−
1 ) + {k1}Vj+1,⌊k1⌋+1(z

+
1 )
]

+1
2

[
(1− {k2})Vj+1,⌊k2⌋(z

−
2 ) + {k2}Vj+1,⌊k2⌋+1(z

+
2 )
]}
,

where: k1 = k + (uδt+
√
δt)/δx,

k2 = k + (uδt−
√
δt)/δx,

s.t. 1
2

(
(1− {k1})z−1 + {k1}z+1 + (1− {k2})z−2 + {k2}z+2

)
= z.

(6.166)

Legendre-Fenchel transform The Legendre-Fenchel transform is given by

V ∗(t, x, λ) = sup
z∈[0,1]

(
λz − V (t, x, z)

)

= Min
u∈Ut

E

[ ∫ T

t
u2t dt− 1R+

(
Xt,x,u

T

)]
. (6.167)

The HJB equation is the following:
{

V ∗(T, x, λ) = λ1R+(x)

−∂tV ∗(t, x) = supu∈[0,1] {uDV ∗(t, x, λ) + 1
2D

2V ∗(t, x, λ)}.
(6.168)

The semi-Lagrangian scheme is given by




V ∗
Mt,k

(λ) =

{
λ if k ≥ 0

0 otherwise ,

V ∗
j,k(λ) = supu∈[0,1]

{
1
2

[
(1− {k1})V ∗

j+1,⌊k1⌋(λ) + {k1}V ∗
j+1,⌊k1⌋+1(λ)

]

+1
2

[
(1− {k2})V ∗

j+1,⌊k2⌋(λ) + {k2}V ∗
j+1,⌊k2⌋+1(λ)

]}
,

where: k1 = k + (uδt+
√
δt)/δx,

k2 = k + (uδt −
√
δt)/δx.

(6.169)

6.6.2 Results

Parameters We present in this part some numerical results for the simplified model.
The discretization parameters that were used are the following:

⊲ Number of times steps: 20; T = 10

⊲ Discretized control space: {0, 1/5, ..., 1}
⊲ Number of space steps: 40; state space: [−20, 20]

⊲ Number of probability steps: 40.
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Boundaries Figures 6.2 and 6.3 show a representation of Ψ(t, x) and Ψ0(t, x), obtained
with a semi-Lagrangian scheme.

Figure 6.2: Graph of Ψ(t, x)

Figure 6.3: Graph of Ψ0(t, x)

Figures 6.4 and 6.5 show a representation of the same functions, for t = 0. The
approximation (in black) and the exact value (in clear) are compared.
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Figure 6.4: Graph of Ψ(0, x)

Figure 6.5: Graph of Ψ0(0, x)

Value function with Lagrange relaxation In figure 6.6, we show an approximation
of V ∗∗(t, x, z) (at time t = 0) obtained as follows:

sup
λ∈Λ

{λz − V ∗(t, x, λ)}, (6.170)

where Λ is a sampling of values of λ. We chose: Λ = {0, 1, 2, ..., 100}.
Let us comment this graph. Three distinct zones, separated by the two bold lines,

can be distinguished. The projections of these lines on the plan (x, z) are described by

z = Ψ0(0, x), and z = Ψ(0, x). (6.171)

On the first zone, for z ≤ Ψ0(0, x), we have that V (0, x, z) = 0. The second zone, where
Ψ0(0, x) ≤ z ≤ Ψ(0, x), is the most interesting since the problem is feasible and does
not have a trivial solution. Finally, the last zone (in dark on the graph) corresponds to
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the zone of infeasibility for the problem. It is easy to check that for z = Ψ(0, x), we
have V (0, x, z) = T , therefore, in order to represent the graph in a convenient way, we
adopted the following rules:

⊲ We computed first the boundaries Ψ and Ψ0.

⊲ On the graph, the value function is equal to T in the infeasibility zone.

⊲ For the first two zones, we used (6.170).

Figure 6.6: Estimation of (x, z) 7→ V (0, x, z) with Lagrange relaxation

Figure 6.7 shows, for all (x, z), the value of λ which is optimal in (6.170). This value
of λ provides an estimate of DzV (t, x, z) (at time 0). This figures justifies a posteriori
the choice of the sampling Λ.

Figure 6.7: Estimation of (x, z) 7→ DzV (t, x, z)
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An optimal control is associated with all λ ≥ 0, for an a priori unknown level of
probability, that can be computed by dynamic programming. Let (x, z), we denote by
Z(0, x, z) the level ensured by the value of λ which is optimal in (6.170). In figure (6.8),
we represent (x, z) 7→ Z(0, x, z) − z. Let us analyse this graph.

⊲ In the first zone (in which the optimal control is equal to 0), Z(0, x, z) − z =
Ψ0(0, x, z) − z.

⊲ In the second zone, Z(0, x, z) − z ≈ 0.

⊲ In the third zone (the infeasibility zone), Z(0, x, z) − z = Ψ(0, x, z) − z.

Figure 6.9 is another view of the same function, in the plan (x, z).

Figure 6.8: Representation of (x, z) 7→ Z(0, x, z) − z

Figure 6.9: Another view of (x, z) 7→ Z(0, x, z) − z
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Dynamic programming We also implemented the method by dynamic program-
ming, in which z is seen as a supplementary state variable. We follow the approach
described in subsection 6.5.3 for the discretization of z. The discretization of [0, 1] that
we chose is: {0, 1/40, ..., 1}. We tested two variants.

⊲ The first one corresponds to the one described in subsection 6.5.3. In figure 6.10,
we show the difference between the obtained result and the evaluation of V ∗∗ com-
puted before. Unsurprisingly, the error is the highest when z is close to the highest
reachable probability, because the discretization may prevent from attaining this
highest level. Moreover, the derivative of V with respect to z is the highest there,
by convexity.

⊲ The second one consists in a refinement of the discretization of the interval [0, 1].
We add a supplementary value, the highest reachable probability, that we have to
compute before. In this simple example, the value on the boundary is known and
equal to T − t. The approximation is much better as one can see on figure 6.11.

Figure 6.10: Difference between dynamic programming and relaxation (with the first
method)
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Figure 6.11: Difference between dynamic programming and relaxation (with the second
method)

6.7 Study of an asset-liability management problem

We describe in this section an asset-liability management problem proposed by our
partners at EDF (Electricité de France). The goal of this problem is to constitute
an asset fund dedicated to future decommissioning and long-term radioactive waste
management. In this model, our portfolio (modelized by the variable At) is composed
of a risky asset and a non-risky. The value of the portfolio must be greater (with a
certain probability) than the expected costs of nuclear decommissioning, the liability
Lt. The model that we present is inspired of [106], see the seminal paper [100] about
asset-liability management.

6.7.1 Setting

Asset portfolio We consider a 2-dimensional Brownian motion. Let us denote by At

the value of the asset portfolio at time t. This portfolio can be invested in two assets:

⊲ a risk-free asset of value Bt and return dBt = rBt,

⊲ a risky one of value St and return dSt = St(µ dt+ σ dW 1
t ).

We consider a two-dimensional control variable θ = (θB, θS), standing for the respective
portfolio proportions invested in both assets. It satisfies θ ∈ Θ, where

Θ :=
{
θ ∈ R

2 : θB ≥ 0, θS ≥ 0, θB + θS ≥ 1, θB ≤ θ̄B, θS ≤ θ̄S
}
. (6.172)

The variable are nonnegative since leverage is forbidden. The dynamic of the asset
portfolio is given by

dAt = At

(
θBt

dBt

Bt
+ θSt

dSt
St

)
= At

(
[θBt r + θSt µ] dt+ θSt σ dW

1
t

)
. (6.173)
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The liability value Lt is also modeled with a geometric brownian motion:

dLt = Lt

(
µ̃ dt+ σ̃[ρ1 dW

1
t + ρ2 dW

2
t ]
)
, (6.174)

where ρ21 + ρ22 = 1.

Constraint Let us denote by Ft := At/Lt the funding ratio. The regulatory authority
imposes that the funding ratio remains above 1 at all time. As the market is incomplete,
this constraint can only be ensured in a probabilistic manner. This leads to consider the
following constraint on the asset-liability management optimization:

P

(
min
t∈[0,T ]

Ft ≥ 1
)
≥ 1− ε, (6.175)

where ε > 0 is close to 0 (typically, ε = 1%), but for simplicity, we consider the constraint

P
[
FT ≥ 1

]
≥ 1− ε. (6.176)

Problem The objective is to minimize the expected portfolio management cost:

E

[ ∫ T

0
e−βtAt(θ

B
t + θSt − 1)r dt

]
, (6.177)

where β ∈ (0, 1) is the manager discount factor.

We denote by U the space of Ft-measurable controls a.s. bounded in R
2. For (a, l) ∈

R
2
+∗, for θ = (θB, θS) ∈ U we denote resp. by As,a,θ

t and Ls,l
t the solutions to (6.173) and

(6.174), starting at a and l respectively at time s, with the control θ.

The problem that we consider is the following:

V (t, a, l, z) = min
θ∈U

E

[ ∫ T

t
e−βsAt,a,θ

s (θBs + θSs − 1)r ds
]
, (6.178)

s.t.





P[At,a,θ
T /Lt,l,θ

T ≥ 1] ≥ z

θBs + θSs ≥ 1,

0 ≤ θBs ≤ θ̄B, 0 ≤ θSs ≤ θ̄S.

6.7.2 Properties of the value function

We discuss some basic properties of the value function V . Note first that V ≥ 0 and
may be equal to +∞. The value function is

⊲ nonincreasing with respect to a

⊲ nondecreasing with respect to l

⊲ nondecreasing with respect to z.
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Moreover, for all µ > 0, for all (t, a, l, z),

V (t, µa, µl, p) = µV (t, a, l, p). (6.179)

Indeed, for any control θ, for all (t, a, l) and λ > 0,

At,µa,θ
s = µAt,a,θ

s , and Lt,µl
s = µLt,l

s (6.180)

and therefore

At,µa,θ
s /Lt,µa,θ

s = At,a,θ
s /Lt,a,θ

s . (6.181)

6.7.3 HJB equations

HJB equation of the value function In this section, we explicit the HJB equation
satisfied by V (t, a, l, z). We first make the following changes of variables : ã = ln(a) and
l̃ = ln(l), and we set

Ṽ (t, ã, l̃, z) = V (t, eã, el̃, z). (6.182)

The dynamic of the state variables is given by

d ln(At) =
(
(θBt r + θSt µ)− 1

2(θ
S
t σ)

2
)
dt+ (θSt σ) dW

1
t , (6.183)

d ln(Lt) =
(
µ̃− 1

2 σ̃
2
)
dt+ σ̃(ρ1 dW

1
t + ρ2 dW

2
t ). (6.184)

The physical Hamiltonian H̃X is given by

H̃X(t, θ, ã,DṼ ,D2Ṽ ) = e−βt+ã(θB + θS − 1)

+
(
(θBr + θSµ)− 1

2(θ
Sσ)2

)
Ṽã + (µ̃ − 1

2 σ̃
2)Ṽl̃

+ 1
2

[
(θSσ)2)Ṽãã + 2θSσσ̃ρ1Ṽãl̃ + σ̃2Ṽl̃l̃

]
. (6.185)

and the term B̃(θ, Vãz, Ṽl̃z) = σ⊤(θ)(Ṽãz, Ṽl̃z)
⊤ involving the cross derivatives is given by

B(θ, Vãz, Ṽl̃z) =

(
θSσ σ̃ρ1
0 σ̃ρ2

)(
Ṽãz
Ṽl̃z

)
=

(
θSσVãz + σ̃ρ1Vl̃z

σ̃ρ2Vl̃z

)
. (6.186)

The value function V is a solution to the HJB equation on [0, T ]× R× R× [0, 1]





minθ∈Θ

{
Λ−
(
∂tṼ + H̃X(t, θ, ã,DṼ ,D2Ṽ ) B̃(θ, Ṽãz, Ṽl̃z)

⊤/2

B̃(θ, Ṽãz, Ṽl̃z)
⊤/2 (Ṽzz/2)Id2

)}
= 0.

Ṽ (T, ã, l̃, z) =

{
0, if z ≤ 1R+(ã− l̃),

+∞, otherwise.

(6.187)
From (6.179), we obtain that for all µ ∈ R,

Ṽ (t, ã+ µ, l̃ + µ, z) = eµṼ (t, ã, l̃, z). (6.188)
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Taking µ = −l̃, we obtain that

Ṽ (t, ã, l̃, z) = el̃V (t, ã− l̃, 0, z) =: V̂ (t, ã− l̃, z). (6.189)

We denote by x the second argument of V̂ . The relations between the partial derivatives
of Ṽ and V̂ are given by

∂tṼ = el̃∂tV, Ṽã = el̃V̂x, and Ṽl̃ = el̃(V̂ − V̂x). (6.190)

and

Ṽãã = el̃V̂xx, Ṽãl̃ = el̃(V̂x − V̂xx), and Ṽl̃l̃ = el̃(V̂ − 2V̂x + V̂xx). (6.191)

Therefore, we obtain that

e−l̃H̃X(t, θ, ã,DṼ ,D2Ṽ )

= e−βt+x(θB + θS − 1) + µ̃V̂

+
[
(θBr + θSµ− µ̃)− 1

2

(
(θSσ)2 − 2θSσσ̃ρ1 + σ̃2

)]
V̂x

+ 1
2

[
(θSσ)2 − 2θSσσ̃ρ1 + σ̃2

]
V̂xx

=: ĤX(t, θ, x,DV̂ ,D2V̂ ) (6.192)

and

B̃(θ, Ṽãz, Ṽl̃z) =

(
θSσV̂xz + σ̃ρ1V̂z − σ̃ρ1V̂xz

σ̃ρ2V̂z − σ̃ρ2V̂xz

)
=: B̂(θ, x, V̂z, V̂xz). (6.193)

Note that
(θSσ)2 − 2θSσσ̃ρ1 + σ̃2 = (θSσ − σ̃)2 + 2θSσσ̃(1− ρ1) ≥ 0. (6.194)

The value function V̂ is a solution the HJB equation on [0, T ] × R× [0, 1]





minθ∈Θ
{
Λ−(M(∂tV, θ, x,Dv̂,D

2v̂)
)}

= 0.

V̂ (T, x, z) =

{
0, if z ≤ 1R+(g),

+∞, otherwise,

(6.195)

where

M(∂tV, θ, x, V̂ ,Dv̂,D
2v̂) =

(
∂tV̂ + ĤX(t, θ, x, V̂x, V̂xx) B̂(θ, V̂z, V̂xz)

⊤/2
B̂(θ, V̂z, V̂xz)/2 (V̂zz/2)Id2

)
. (6.196)

HJB equation of the Legendre-Fenchel transform The Legendre-Fenchel trans-
form of Ṽ (t, ã, l̃, z), denoted Ṽ ∗(t, ã, l̃, λ) satisfies the following HJB equation:

{
∂tṼ

∗ = H̃X,∗(t, ã,−DṼ ∗,−D2Ṽ ∗)

Ṽ ∗(T, ã, l̃, λ) = λ1R+(ã− l̃).
(6.197)
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For all µ ∈ R,

Ṽ ∗(t, ã+ µ, l̃ + µ, λ) = sup
z∈[0,1]

{
λz − eµṼ (t, ã, l̃, z)

}

= eµ sup
z∈[0,1]

{
e−µλz − V (t, ã, l̃, z)

}

= eµṼ ∗(t, ã, l̃, λe−µ). (6.198)

Let λ and λ′, taking µ = ln(λ/λ′) in the previous formula, we get

Ṽ ∗(t, ã, l̃, λ′) =
λ′

λ
Ṽ ∗(t, ã+ ln(λ/λ′), l̃ + ln(λ/λ′), λ). (6.199)

HJB equation of the boundary We describe here the HJB equation satisfied by
the highest reachable probability associated with the problem, defined by

Ψ̃(t, ã, l̃) = sup
z∈[0,1]

{Ṽ (t, ã, l̃, z) < +∞}. (6.200)

We also define the highest reachable probability without adding money,

Ψ̃0(t, ã, l̃) = sup
z∈[0,1]

{Ṽ (t, ã, l̃, z) = 0}. (6.201)

Note that
Φ̃0(t, ã, l̃) ≤ Ψ̃(t, ã, l̃). (6.202)

Let us start with Ψ̃(t, a, l). The Hamiltonian is given by

h̃(θ,DΦ̃,D2Φ̃) =
(
θBr + θSµ− 1

2(θ
Sσ)2

)
Φ̃ã + (µ̃ − 1

2 σ̃
2)Φ̃l̃

+ 1
2

[
(θSσ)2Φ̃ãã + 2θSσσ̃ρ1Φ̃ãl̃ + σ̃2Φ̃l̃l̃

]
. (6.203)

We then set
h̃∗(DΨ̃,D2Ψ̃) := sup

θ∈Θ
h̃(θ,DΨ̃,D2Ψ̃). (6.204)

The HJB equation satisfied by Ψ̃(t, ã, l̃) is





Ψ̃(T, ã, l̃) =

{
1 if ã− l̃ ≥ 0,

0 otherwise,

−∂tΨ̃ = h̃∗(DΨ̃,D2Ψ̃).

(6.205)

Then, observe that
Ψ̃(t, ã, l̃) = Ψ̃(t, ã− l̃, 0) =: Ψ̂(t, ã− l̃). (6.206)

Like before, we denote by x the second argument of Ψ̂. The relations between the partial
derivatives of Ψ̃ and Ψ̂ are given by

∂tΨ̃ = ∂tΨ̂, Ψ̃ã = Ψ̂x, and Ψ̃l̃ = −Ψ̂x. (6.207)
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and
Ψ̃ãã = Ψ̂xx, Ψ̃ãl̃ = −Ψ̂xx, and Ψ̃l̃l̃ = Ψ̂xx. (6.208)

We obtain that

h̃(θ,DΨ̃,D2Ψ̃) =
[
(θBr + θSµ− µ̃)− 1

2

(
(θSσ)2 − σ̃2

)]
Ψ̂x

+ 1
2

[
(θSσ)2 − 2θSσσ̃ρ1 + σ̃2

]
Ψ̂xx/2

=: ĥ(θ, Ψ̂x, Ψ̂xx). (6.209)

and we set
h̃∗(DΨ̂,D2Ψ̂) := sup

θ∈Θ
ĥ(θ,DΨ̂,D2Ψ̂). (6.210)

The HJB equation satisfied by Ψ̂(t, x) is





Ψ̂(T, x) =

{
1 if x ≥ 0,

0 otherwise,

−∂tΨ̂ = ĥ∗(DΨ̂,D2Ψ̂).

(6.211)

Similarly, we obtain the equation satisfied by Ψ̂0. It suffices to change the set of controls
Θ in the Hamiltonian by

Θ0 = {θ = (θB , θS) : θB + θS = 1}. (6.212)

6.7.4 Numerical results

We have computed the value function with the Lagrange relaxation method, with the
following parameters:

⊲ T = 2

⊲ r = 0.03

⊲ µ = 0.07, σ = 0.2

⊲ µ̃ = 0.05, σ̃ = 0.005

⊲ ρ1 = 0, ρ2 = 1

⊲ β = 0.05

⊲ θ̄B = 2, θ̄S = 2.

The parameters for the discretization are the following:

⊲ Number of times steps: 10

⊲ Number of space steps: 50× 50

⊲ Discretization of the control space: {0, 1/2, 1, 3/2, 2} × {0, 1/2, 1, 3/2, 2}
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⊲ Sampling for the dual value: {0, 1, 2, ..., 50}.

Figure (6.12) shows a representation of the value function for l = 1 at t = 0. The value
of V on the boundary Ψ has been taken into account to draw the graph.

Figure 6.12: Value function at l = 1, t = 0

Figure (6.13) shows a representation of the highest reachable probability for l = 1
and t = 0.

Figure 6.13: Highest reachable probability for l = 1 and t = 0
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plant outages. In Frédéric Benhamou, editor, Principles and Practice of Constraint
Programming - CP 2006, volume 4204 of Lecture Notes in Computer Science, pages
271–283. Springer Berlin / Heidelberg, 2006.

[50] A. Liapounoff. Sur les fonctions-vecteurs complètement additives. Bull. Acad. Sci.
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Résumé

Cette thèse est divisée en deux parties. Dans la première partie, nous étudions des
problèmes de contrôle optimal déterministes avec contraintes et nous nous intéressons
à des questions d’analyse de sensibilité. Le point de vue que nous adoptons est celui de
l’optimisation abstraite; les conditions d’optimalité nécessaires et suffisantes du second
ordre jouent alors un rôle crucial et sont également étudiées en tant que telles. Dans cette
thèse, nous nous intéressons à des solutions fortes. De façon générale, nous employons
ce terme générique pour désigner des contrôles localement optimaux pour la norme L1.
En renforçant la notion d’optimalité locale utilisée, nous nous attendons à obtenir des
résultats plus forts. Deux outils sont utilisés de façon essentielle : une technique de re-
laxation, qui consiste à utiliser plusieurs contrôles simultanément, ainsi qu’un principe
de décomposition, qui est un développement de Taylor au second ordre particulier du
lagrangien.

Les chapitres 2 et 3 portent sur les conditions d’optimalité nécessaires et suffisantes
du second ordre pour des solutions fortes de problèmes avec contraintes pures, mixtes
et sur l’état final. Dans le chapitre 4, nous réalisons une analyse de sensibilité pour des
problèmes relaxés avec des contraintes sur l’état final. Dans le chapitre 5, nous réalisons
une analyse de sensibilité pour un problème de production d’énergie nucléaire.

Dans la deuxième partie, nous étudions des problèmes de contrôle optimal stochas-
tique sous contrainte en probabilité. Nous étudions une approche par programmation
dynamique, dans laquelle le niveau de probabilité est vu comme une variable d’état
supplémentaire. Dans ce cadre, nous montrons que la sensibilité de la fonction valeur
par rapport au niveau de probabilité est constante le long des trajectoires optimales.
Cette analyse nous permet de développer des méthodes numériques pour des problèmes
en temps continu. Ces résultats sont présentés dans le chapitre 6, dans lequel nous étudions
également une application à la gestion actif-passif.
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