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Notations, units and nomenclature
Throughout this thesis the following conventions are used:

e The summation convention on repeated indices is implicitly adopted.

e The vectors and second order tensors are indicated by boldface letters, like u and o for the dis-
placement field and the stress field. Their components are denoted by italic letters, like u; and
Oij-

e The fourth order tensors as well as their components are indicated by a calligraphic letter, like A
or A;ji for the stiffness tensor. Such tensors are considered as linear maps applying on vectors or
second order tensors and the application is denoted without dots, like Ae whose ij-component is

Aijkickl-
e The material constants are in sans serif letter e.g. a, E, G¢, wy

e The inner product between two vectors or two tensors of the same order is indicated by a dot, like
a - b which stands for a;b; or o - € for o;j¢;;.

e The symbol ® denotes the tensor product and ®; its symmetrized, i.e. 2e; ®;e3 = €1 ®ea+eaRe;.
o M denotes the space of 2 x 2 or 3 x 3 symmetric tensor and I is its identity tensor.

e The classical convention is adopted for the orders of magnitude: o(e) denotes functions of e such
that lim._0o0(€)/e = 0.

e If A(-) represents a quadratic form defined on a Hilbert space, the associated symmetric bilinear
form is denoted by A(:,-), i.e.

4A(x €) = Alx +€§) — Alx — §)-

e The dot stands for the time derivative, e.g. & = da /Ot
e The physical quantities are expressed in the international system of units.

e The Equations and Figures are numbered by chapter, whereas the Proposition, Hypothesis and
Remarks only use a single counter in the entire thesis.

A list of the main symbols and notations adopted in this thesis are reported in the following tables.
The notations of Table 1 are used in the entire thesis and concern the geometry, the loading and the
gradient damage model. Those introduced in Table 2 are used in Chapter 2 during the nucleation process.
The propagation of a damage band in Chapter 2 uses Table 3. Table 4 introduces the notations for the
thermal shock setting, they are primarily used in Chapter 3 but also partially in Chapter 4.



Notations, units and nomenclature

Material constants

E, v

a, ke

Oc

7, Mn

wyp = w(1)
GC

Ala), C(a)

Internal variables

Young modulus and Poisson ratio (sound material)

Thermal expansion and thermal diffusivity

Critical stress (1.29) and internal length of the damage model
Internal length of the damage model

Total energy dissipation per unit volume

Toughness

Rigidity and compliance tensor

u
T
a
g=Va

Dual quantities

Displacement
Temperature
Damage scalar variable
Gradient of the damage

g
S

Y
q

Stress tensor (1.1)

Entropy (1.1)

Energy release rate density (1.1)
Damage flux vector (1.1)

Space and time variables

X Space variables in the physical space
t Physical time variable

Loading

Uy Displacement

F, Surface forces

f; Volumetric Forces

ed(x) Imposed strain field

e(x) Total strain field

ef(x) = g4(x) — €?(x) Elastic strain field

The 1D bar in traction

S Localization

L. Width of localized damage band

e? Jump of the displacement (1.25) over a localization

Energies

4% Strain and temperature work (1.2)

w Bulk energy density of the gradient damage model

Wo Bulk energy density of the underlying local damage model

P Elastic energy density

w(a) Energy dissipation per unit volume

Wy Potential of the given external forces

Py Total Energy of the structure composed of the non local damage model
PE Total Energy of the structure for a Griffith surface energy (1.33)

P Total Energy of the structure for a regularized Griffith surface en-

ergy(1.34)

Table 1: Main nomenclature for the material parameter and the non local gradient damage model



Space, time variables and geometry

X = (.731, .752)

(r,0)

x =x/L
w

F:I:

O

€1, e

Space variables in the physical space

Polar coordinates from the tip of the notch
Rescaled coordinates

Notch angle

Lips of the notch

The domain of characteristic size L

Unit vectors at the tip of the notch

Nucleation near a notch

0

Kmu ng KC
e=1mn,/L
ut, o

UE, fe’ Fe7 806

Notch singularity

Stress intensity factors
Small parameter (2.1)

Real displacement and stress
Real loading

Dimensionless setting

I~J€7 f‘s’ Fe’ éOé
H*(0)

=x/L
=r/L

Dimensionless displacement and stress
Dimensionless loading (2.4)

Angular function of the singularity
Rescaled Cartesian coordinated
Rescaled radius for the polar coordinates

The outer problem

0

u', o’

fi(€)

Rescaled domain of characteristic domain size 1

1 outer expansion term of the dimensionless displacement and stress field
H€ S€

u, o

outer expansion

The inner problem (Fig. 2.4)

Qoo

vi, Tl
gi(€)
y =x/e=x/nn
p=rle=1/m

The inner domain

1 inner expansion term of the dimensionless displacement and stress field
uc, o (2.9)

inner expansion coefficient

Cartesian coordinated in the inner problem

Radius for the polar coordinates in the inner problem

Table 2: Main nomenclature the nucleation and the rescaling due to the matched asymptotic expansion



Notations, units and nomenclature

The crack and its tip

4y Length of the cracks at time ¢

Py Tip of the crack

B,(t) Ball of radius r of center Py

C,(t) Boundary of B, (t)

- (t) Weakly singular part in the energy balance transport
Tt Unit normal to the crack at its tip

Q,.(t) Uncracked part of the body outside the ball B, (t)
J.(t) Flux of energy (2.19)

Separation of scales
U771, F1,e%  Loading

u’, o’ Displacement and stress field
U,f,F,e° Dimensionless loading
u,o First order displacement and stress field

Moving variables

Moving variables

Rescaled by 7

Rescaled quantities by n

G Energy release rate

G¢ Toughness

Oy Damage field in the crack band
(s,¢) Curvilinear coordinates of the crack
x(s) Parametrization of T

The tip problem

y = (x—P)/n  Rescaled coordinated with origin the tip of the crack
p=|lyll=r/n Normalized radius from the tip of the crack

Table 3: Main nomenclature for the convergence of non local damage models towards Griffith



Material and geometric constants

L

Space and time variables

Width of the slab (Fig. 3.2)

x = (x1,x2)

t

y = x2/2v/ ket
T = 2v/ket /00

Thermal Loading

Space variables in the physical space

Physical time variable

Rescaled depth variable adapted to the diffusion process
Rescaled time adapted to the fundamental solution (3.19)

0

fe

0 =o./avE

i (x)

&€t (X)

£5(x) = e1(x) — e (x)

Fundamental Branch

Temperature drop at the surface
Complementary error function (Fig. 3.2)
Thermal shock mildness parameter (3.18)
Thermal strain field (3.5)

Total strain field

Elastic strain field (3.5)

a; (x), ui(x), o;(x)
X; = (uf,a7)
a-(y),o-(y)

Dy

0r = Df /2V/kt

Bifurcation and Stability

Damage, displacement and stress fields in the physical variables ¢, x
state fields vector

Damage and stress field in the scaled variables 7,y

Damage penetration in the physical variables ¢,x

Damage penetration in the scaled variables 7,y (3.19)

¢ = x2/D;
Ri(v,B)
R?

Ri

ty, s

Vb,ﬁb

k, Kk

(’%bv Vb7 Bb)

Th, 57'1,

)\b = 27T957b7'b£/l<cb
Dy = 26, vVketp = 06, 1¢

Crack Spacing

Rescaled depth variable adapted to the damage penetration (3.41)
Rayleigh Ratio (3.37) studying the positivity of P/ (x;})

Minimum value of the Rayleigh ratio R} (v, 3) over C xD; (3.38) and of
RE(V, B) over RT x H x H (3.44)

Minimum value of the Rayleigh ratio R} (v, 3) over CxD; (3.39)

First time of bifurcation and loss of stability (3.49)

Mode of bifurcation (3.50)—(3.51)

Wave number corresponding to the periodic solution (3.41)—(3.42)
Normalized minimizers of R% (V, 3)

Rescaled time and damage penetration associated to the first bifurcation
time

Wavelength of the first bifurcation solution (3.52)

Damage penetration at the first bifurcation point (3.53)

a

d

Penetration
Spacing between cracks

Table 4: Main nomenclature for the thermal shock semi analytical analysis of Chapter 3






Introduction

The presence of cracks in structures and soils may or may not be desirable. They usually are not as they
impair the functionality of the structure. The later can be of different nature, for example in the case
of cement based materials: structural, durable or aesthetic. Thereby, not only is the presence of cracks
important but their distribution, length and opening as well. This means that the topology is a concern
to develop structures. Unfortunately, topology is very specific information on cracks. The source of cracks
can come from structural loading ¢.e. an external load is applied to the structure or non structural as
cooling, drying or relaxation of the constitutive materials. The aim of the mechanical or civil engineer is
thus to limit the crack setting to prevent the deterioration of the functionality of the structure. Conversely,
in the case of petroleum engineers, for extracting resources, a connected network can be sought for.

The difficulty in giving a proper crack model is the multitude of behaviors. Indeed, one has to predict
the nucleation of cracks as well as their evolution. The former is concerned by the position, the orientation
and the size of the initial cracks. The latter tackles the issue of the direction and rate of the propagation.
Both can encounter discontinuous evolutions. Complex morphogenesis are observed in nature: mud drying,
bark of trees, or in structures: crazing of concrete or paintings. Furthermore complex crack patterns can
arise from the onset and they develop on several order of magnitude. Finally, for a given loading, material
aspects overlap with structure considerations. For all these tasks a coherent framework to predict their
evolution is sought for.

In the thesis, the focus is reduced to brittle fracture, that is behaviors such that the cracks appear with
little deformations in the material, as opposed to ductile fracture. These behaviors are dangerous as they
occur for small changes in the geometry of the structure and often exhibit a softening behavior, source
of instabilities leading to catastrophic failures. Monotonic loading will be considered and thus any cyclic
behavior (nucleation by fatigue) is put aside. Although the materials considered such as concrete and
geo-materials have variable properties depending on the point considered, only sound materials of uniform
material properties will be considered. Indeed even in this simplified framework complex phenomena will
be accounted for.

In the last decade, the use of continuous models to predict the evolution of cracks have arisen. In these
models a genuine unknown on the entire domain which describes the crack is added to the description of
the bulk of the material. On the one hand this allows to numerically track the crack set in a continuous
matter. On the other hand cracks are discontinuous objects by nature and the regularization might be
to strong, this is a defect of the phenomenological approach. These approaches can be viewed as damage
models which have arisen in the 70’s where a variable [Lemaitre & Chaboche 1978| captures the loss of a
material property and especially the rigidity in the wake of the pioneer work by Lazar M. Kachanov. In
the 90’s, these damage models have been regularized to avoid spurious localization |[Benallal et al. 1993|.
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At the same time a multitude of ad hoc criteria have been proposed to evolve from damage to cracks,
but with no definite answer. The approach used here is in the continuity of the variational approach
to fracture [Francfort & Marigo 1998| where the evolution problem is constructed from an energy and a
stability principle. These approaches allow to capture complex phenomena as the periodic nucleation and
then crack selection mechanisms in the case of a thermal shock setting (Fig. 1). The regularized approach
[Bourdin et al. 2000] introduces a gradient of the genuine unknown and thus resembles the gradient damage
models [Comi 1999]. Further from this historical perspective, the gradient damage model is considered as
such and the evolution is based on a local stability principle [Benallal & Marigo 2007].

Figure 1: Damage distribution obtained at a “large” time with an alternate minimization algorithm in
the case of a thermal shock ¢.e. the body at an initial homogeneous temperature is exposed to a cooler
temperature on its top surface. The blue zones correspond to an undamaged point, the midline of the red
zones to a totally damaged point.

Let us raise a warning, many results in this thesis are based on asymptotic behaviors [Lagerstrom 1988].
This way of thinking, which is not new in any sens, allows to extract the main physical mechanisms when
passing to the limit. Yet the small parameter always takes a finite value and never vanishes whatever
the material or the structure. This is the base of linearized theories. Some physical behaviors are better
explained in these simplified theories then with the entire one, a famous example is that of boundary layers
in fluid mechanics [Cousteix & Mauss 2006]. This also allows to underline some properties that are local,
typically a set of cracks tips that are far apart can be studied independently one from an other. But at
the same time, taking the limit gives raise to a loss on information which can reveal itself essential. This
will be observed in the case of crack nucleation.

The dissertation is organized as follows. The second to forth chapters are independent from one
an other. In the first chapter the construction of gradient damage model in a variational framework is
introduced. These models are based on a scalar variable, representing the loss of rigidity of the mate-
rial. The evolution problem is based on three principles in the framework of rate independent problems
[Mielke 2006]: irreversibility, stability and energy balance. The gradient of the scalar variable controls the
localization process and thus the dissipated energy is always finite. The main results of the construction
[Pham & Marigo 2010a, Pham & Marigo 2010b, Pham & Marigo 2013| are recalled and the properties
which will be used in the following chapters are underlined. Especially the evolution of damage in a one
dimensional bar in traction is given in details.

In the second chapter the nucleation near a notch of cracks and their propagation are studied using
separation of scales methods. In a first part the nucleation process of damage around a notch where the



elastic solution is singular is examined. A careful study of the evolution problem allows to decompose
the critical loading that leads to crack nucleation in three terms. Only one of them is due to the damage
model, the two other being linked with the geometry and a scale effect. A simple method is proposed
for the mechanical engineer. In a second part, assuming that a damage band exists its evolution law is
established. Especially, using only the stability principle and under the condition of a separation of scales
it is proven that the gradient damage model converges towards Griffith’s propagation law. This extends
previous results in the sens that it uses a local minimal principle and not a global one. The damage and
stress evolution in the tip of the damage zone are particular as the stress in not singular but the damage is
until the crack propagates. Let us emphasize that the variational character of the damage evolution law is
fundamental to make the link with Griffith’s law. Therefore one can suspect that such a result is no longer
true if one adopts constitutive laws which are not connected with these energy principles. The last point
of this second chapter is the numerical investigation of the propagation of damage bands. Especially,
does the propagation happen for the expected loading and does one observe the expected vanishing of
the singularity in damage 7 The stress, displacement and damage field near the tip of the damage band
is investigated. Here, the link with Griffith’s law is made with the sole help of the first order stability
conditions and not with the complete stability condition. It is interesting to explore all the consequences
of the stability. In particular, one notes in the numerical simulations of the thermal shock that the cracks
are periodically distributed (Figs. 1-2). The following chapter tackles the use of second order stability
conditions to achieve the proof of global property of periodicity.

In the third chapter, the thermal shock problem with the gradient damage model, at very short times, is
extensively described. The originality is here a non-trivial two dimensional case of bifurcation which allows
to shed some light on the nucleation of complex morphogenis crack patterns in quasi-static evolutions.
This explains the beginning of the localization process and the global property of periodicity of initial
cracks from a sound homogeneous material. The periodic nucleation (Fig. 2) is established, where after a
damage evolution depending only on one direction, the beginning of the localization process arises. This
allows to better understand the morphogenesis of complex crack patterns. The solution is parameterized
by the mildness of the thermal shock ¢.e. the ratio between the materials critical stress and the maximal
stress induced by the thermal loading. A remarkable property is that the spacing is proportional to the
materials internal length. This setting should be seen as more than a specific example. Indeed, this
idealized context allows to have an almost entire analytical solution, but the behavior is inherent of the
gradient damage model used.

In the last chapter, cooling and drying problems from the nucleation phase towards the propagation,
crack selection and arrest are investigated numerically. This part of the work is closer to the applications
possible in an engineering context. Thus the physical values of the material parameters, that a reader
non accustomed to dimensionless quantities would have found missing in the previous chapters, are in-
troduced. In the evolution process, this is the continuation of the previous chapter, but its presentation
is independent. The numerical algorithm captures the nucleation phase, although there is a competition
between different time and space regimes. As time increases and thus the temperature field penetrates
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) the onset of damage occurs at ¢ = 0 at the upper
51de where the thermal shock happens

(c) damage localizes in a set of periodically distributed
zones

"~V ~J -~~~

(e) the length of all the damage bands grows

) for small times ¢, the damage penetrates progres-
swely inside the body and remains homogeneous in the
horizontal direction

¥ ¥ » ¥ L] T

(d) the damage parameter grows until 1 in the midline
of these zones whose width remains of the order of 7,

J L S U

(f) some damage bands stop to propagate whereas the
other ones continue

Figure 2: Main stages captured by the alternate minimization algorithm for “short” times in the thermal

shock problem. A homogeneous material at uniform temperature is exposed at a smaller temperature at

t=0

the body a crack selection mechanism appears. The nucleation phase is indeed controlled by the critical
stress, whereas the propagation phase depends on the material’s toughness. The results are confronted
to experimental data from ceramics. In three-dimensional simulations cracks form an hexagonal pattern

which also follows a coarsening phenomenon. Even more impressive, for thin slabs the limit between two

and three-dimensional behavior is captured. Extensions to gas storage caverns and composite materials

exhibit the robustness of the method and the results.
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In this chapter the construction of the variational approach to damage and the necessary hypothesis
to capture brittle fracture is presented. Using arguments based on a work property, the fact that the
constitutive relation is standard is justified. Then the evolution law based on the three ground principle of
irreversibility, stability and energy balance is introduced. The bulk energy density is supposed to depend on
the gradient of the damage variable, which allows to control the localization process inherent to softening
behaviors. The main characteristics of a localized damage band are mentioned. These models are used
in the framework of the variational approach to fracture which is called to mind as well as its numerical
implementation. Most results of this chapter have already been published and the only claim of novelty is
taking into account the thermal effects. The link between the work property and the standard formulation
go back to the 80’s [Marigo 1981, Marigo 1989]. The variational formulation to brittle fracture has been
introduced in the 90’s by [Francfort & Marigo 1998| and has been regularized following the initial work
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by [Ambrosio 1990| primely in [Bourdin ef al. 2000]. The reinterpretation as a gradient damage model
[Marigo 2000] and thorough investigate more recently [Benallal & Marigo 2007, Pham & Marigo 2010a,
Pham & Marigo 2010b, Pham & Marigo 2013].

1.1 General hypothesis and construction

In this thesis, the evolution of damage is assumed to be the only dissipative mechanisms. Thus other
dissipative processes such as plasticity are neglected. The state s of the material is given by the four
internal variables, the strain € defined as the symmetric gradient of the displacement u, the temperature
T, the damage variable «, and the gradient of the damage variable g = Va. Thus s = (e(u), T, o, Va).
Therefore, the material behavior is non local in the sense that it depends on the gradient of damage
[Pijaudier-Cabot & Bazant 1987, Comi 1999]. The damage variable represents the degradation of the
material such as micro-defects or micro-cracks. Furthermore it is assumed that a scalar is sufficient to
represent this state and that the variable evolves between 0 and an ultimate state ay, (strictly positive)
after which it does not evolve any more. These two extremal values 0 and «,, correspond to the sound and
the totally damaged material. The choice of the damage variable « is arbitrary, yet a change of variable
is always possible. The goal of this section is to justify that the bulk energy density of the material is
the function of state W : s = (e, T,a,g) — W(e, T, a,g). The dual quantities associated with the state
variables are respectively the stress tensor o, the entropy s, the energy release rate density Y and the
damage flux vector q:

ow ow ow ow

= (e, T = ——(&,T Y=-—""(¢T = (e, T,a,g). (1.1
o 85 (67 7a7 g)7 S aT (87 7&7 g) aa (57 7a7 g)? q 8g (87 7a7 g) ( )

1.1.1 State functions, energies and dual quantities

Considering an elementary volume, the variable which can be controlled are the strain and the tem-
perature q = (e, T) and one notes Q(q, ) the force function associated.

Hypothesis 1 (Admissible deformation and temperature field). The admissible strain and temperature
lie in an open connected subset of Mg X R defined by the yield function ¢(e, T, )

R(a):={eeM;,, TeR | ¢ T a) <0}
Furthermore a reference temperature To such that the vanishing strain belongs to this subset is assumed to

exist.

This hypothesis can be justified hereafter the construction of the damage model. It is based on an
homogenization argument and will be sketched out in Appendix A. Drucker-Ilyushin postulate is extended
to cases where the evolution is not isothermal:
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Hypothesis 2 (Work property). For any strain and temperature evolution t — €(t), t— T(t) compatible
strain and temperature path imposed at the material point M. The strain and temperature work on this
cycle is defined by:

1
wi= [ ala.a)- i) d (1.2)
0

and is positive in any admissible strain-temperature cycle starting from equilibrium state.

A state is said to be at equilibrium if it evolves only if the configuration evolves. From Drucker-Ilyushin
postulate one can prove that a material is necessarily hyperelastic at a given damage state «, derives from
a potential 1 dual of the controllable variables:

_ W

Q:(O',S) Q—aiq

(s)

this leads us to make the following assumption:

Hypothesis 3 (Hyperelastic behavior at fix damage). The elastic energy density is assumed to be strictly
convex for a given damage o < Q.

Y(ke, T,a) = k*)(e, T,a) Vk>0 VeeM, Vac|0,a,) VYTER.

Moreover the material’s energy release rate as the damage increases reads:

o
i’a,T,a <0 VeeM, Vacl0,am,), VTEcR.
O«

The homogeneity property can be justified by the theory of homogenization [Marigo 1985] in the case
where there is no contact between the lips of the microcracks.

1.1.2  Restriction from the work property

The results from [Marigo 1989] are extended to the thermo-elasto-damage material. A generic path
(Fig. 1.1) is considered having the following properties: (o) the initial state qo belongs to the elastic-domain,
(i) the material is loaded till a point gy situated on the surface OR; (ii) an infinitively small increase dq of
the controllable variables q = (e, T) such that qp + dq remains in the elastic domain; (iii) elastic unloading
from qq + dq to qo, where the damage remains constant. (A small increase in the hardening is considered
sufficiently small such that €g remains in the elastic domain.) No assumption is made on dq which may
take any of the form between (d¢e,0), (0,0T) and (de, dT).

Then the strain work can be decomposed as the sum on each part of the cycle W = Wy + Ws + Wi
To pass from qo to qq, the work W is purely elastic and thus W, = fol Q- qdt = ¥(q1,a0) — ¥(qo, ).
In the same manner the work on the last phase, which is an elastic unloading, reads W5 = flo 0 -qds =
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(,7—’_ oq; + dq

Figure 1.1: Specific path in the controllable variable space

Y(qo, a0 + dar) — (g1 + 9, g + ). The second step is irreversible Wa = 1 4(e1, a) - 09 4 0(6q). At the
first order in dq, the positivity of the work in this cycle leads to:

(G000 = 52 @r,a0) ) 40 =0 (13)

Let us stress that (1.3) is valid for any qo € R(«) and q; € OR(«). From this inequality, one deduces the
evolution of the damage parameter:

1. Irreversibility. Taking qo = (0, Tp) in (1.3) and as —0.,¢(q1, o) is positive according to Hypothe-
sis 3, (1.3) leads to & > 0, under the assumption of a regular evolution in time.

2. FEvolution from the thermodynamical force. The yield function is now established, w(a) =
—0,0%(q1, ) and thus (1.3) becomes

Vqo € R(a)  — 9at(q0, ) < w(a)

Thus the following has been established

Proposition 1 (Evolution of the damage parameter). In any cycle verifying the work property the damage
s not decreasing and the evolution of damage « is governed by the Kuhn-Tucker conditions:
o oY

a >0, ——(,T,a) —w(a) <0 (—aa

Do < (e,T,a) — w(a)) a=0 (1.4)

Thus the evolution of damage is formulated in terms of an elastic energy release rate and the equation of
the surface is given by

o(e, T,a) := —%(E,T, a) —w(a)

A major consequence of this variational transcription is that the internal (i.e. strain and temperature)
work W is a state function, i.e. the work to evolve from the reference temperature Ty and vanishing strain
and damage to a state g, T, & does not depend on the path. Indeed, considering a path

[0,1] — M, x R, t — e(t), T(t)
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such that (e(0), T(0)) = (0,To) and (e(1),T(1)) = (e,T), at each time ¢ the damage is denoted a(t)
and is assumed to be sound in the initial state and take the value @(1)in the final state. During this
transformation the work of the temperature and strain reads

1
W= /0 Q(a(t), a(t)) - 4(t) dt

Denoting w(«) the antiderivative of w vanishing in 0 and according to (1.4):

% (¥(e(t), T(1) a(t) +w(a(t)) = Ye(e(t), T(t), at)) - &(t) + r(e(t), T(t), at)) - T(1)

The strain and temperature work is thus the integral of an exact derivative

w= [ 8 e, T0.6(0) + wia(n) at
Given the values at the extremity of the path:
W(e, T,a) =y, T,a)+w(a).
Accordingly, the local bulk energy density is defined by
Wo(e, T, ) := W(e, T, a).

The bulk energy density W is assumed to also depend on the gradient of the damage g = Va and to
remain a state function that verifies

Wi(e, T,a,0) = Wy(e, T, )

and thus one can define (1.1) which reads:

ow ow ow ow

Uzi(svTong)a 8:—7(E,T,Oé,g) Y:_7(€7T7a7g)7 qZT(E,T,a,g).
g

Oe oT e
1.1.3 Dissipation and thermal effects

The second thermodynamic principle under the form of Clausius-Duhem inequality reduces to the

1
condition 0 < Tar - VT V(e,T,a,VT), where qr stands for the local heat flux density. Indeed the

dissipation is given by

D = 0-é—1/}—sT+%qT-VT
L (. . Oy 1
= O0-€ <8€€+8aa+8'TT> ST"‘TQTVT

1
= w(a)a+ Tar vT
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Remark 1. The gradient of the temperature V'T could have been introduced as an internal variable. But
the Clausius-Duhem tnequality, which should be true for any process would lead us to prove that W is
independent of V'T. Furthermore, W is independent of the displacement and the skew-symmetric part of
the gradient of the displacement.

The damage process is assumed to be dissipative and thus the increase of « is source of a dissipa-
tion process which should lead to a volumetric temperature source in the bulk. In the case of concrete
[Huon et al. 2009] measure that the elevation in temperature is of 0.5°C thus this temperature source can
be neglected in front of the loading which will be considered in Chapters 3-4. Thus, the temperature T is
now considered to impose a loading e which can be taken into account in more generic term of pre-strain
€. Furthermore, this prestrain is assumed to be considered in the configuration work through the elastic
strain €¢ = e — €. Thus the four internal variables are now €,e?, o, Voo and W can be referred to as the
strain work and one has:

{ s=(e,T,a,g8) —~ W(,T,a,g)
s=(e%a,g)— W a,g)

will be indiscriminately used. The local bulk energy density is the the sum of two terms

Wo(e, T,a) = (e, T, ) + w(a)

€0

Figure 1.2: Dissipation an elastic energy for linear elasticity in the case of a hardening then softening
damage law. Green the elastic stores energy (e, ). Purple the dissipated energy w(a). Red line
damaging path. Full black line: initial loading. Dashed black line: Unloading - Loading path for the
damage state «q

1.1.4 Hardening and softening properties

The underlying local behavior is characterized by the function Wy defined by Wy(e, o) = W (e, o, 0).
The elastic domain in the strain space and in the stress space are respectively defined by

R(a) = {se eM, : —I/Z(ee,a) > 0}, R*(a) = {a’ eM, : 8;‘;5 (0,0) < 0} (1.5)
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where W (o, @) = supgecy, {0 - €° — Wo(e®, ) } and M denotes the space of symmetric tensors.

Definition 1. For a given damage state o, a material is said to be strain hardening if o — R(a) is
increasing, stress hardening (or hardening) if @ — R*(«) is increasing and softening if a — R*(«) is
decreasing.

The belonging of a state to the elastic domain as well as the the hardening and softening are now
expressed in term of stability principle:

Property 1 (Hardening and Softening). A state (€%, «) belongs to the elastic domain and is hardening in
strain if and only if

Wo (e, a) < Wy(e, B), VB €10, am)

A state (o, a) belongs to the elastic domain and is hardening in stress if and only if

Wolo, ) <Wg(o,p), VB e€0,am)

Proof. In the strain space the stability condition reads as

Wy, . 0*Wy
90 (g% B)B + Do

(€,8)88>0 VB € [0, )

First order stability criterion gives the damage criterion (1.5). When the equality holds in the first order
condition, i.e. the state is on the surface, the second order stability condition gives that a — R(«) is
increasing and thus is hardening in stress. The same argumentation can be done in the case of the stress
space R*(«). O

Thus, the hardening and softening properties are a second order stability condition on the bulk energy
density. They can also be reformulated in terms of convexity properties [Pham & Marigo 2010a].

Definition 2. A material is said to be strongly brittle material, see [Pham & Marigo 2013, Hypothesis 1]
if the material has a softening behavior as well as a finite dissipated energy during any process where the
damage evolves from 0 to ap,.

Accordingly in the case of a strongly brittle material the elastic domain in the strain space R(«) is an
increasing function of o while the elastic domain in the stress space R*(a) is a decreasing function of a.
A linearized theory in €° and g is considered for the bulk energy density. The neighborhood of the state
(0, v, 0) is studied:

W(e a,g) =w(a) + oo(a) - e+ Ai(a) - g + (e, a) + Az(a)e” - g + Az(@)g - 8, (1.6)

considering linearized elasticity
1
P(et a) = §A(O()Ee o
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and the terms of the expansions are all functions of the damage state o around which the elasticity is
linearized. The term w(«) is identified with the dissipated energy in a homogeneous process. The prestress
term oo(a) can be chosen to be fixed to zero.

Let us now considers the terms Ajc(1 23y corresponding to the gradient terms g = Va. They are
tensors of different orders. Under the assumption that damage is isotropic (and thus « is scalar) Aq, As
vanish and Ag is proportional to the identity. The goal of the regularization being to penalize strong
gradients the tensor A3 should be positively defined, thus As(a) = A(a)I. Finally the strain work only
can be determined by three functions of the damage A, w, A

W(e a,g) = %A(a)se e+ w(a) + Ale)VaVa (1.7)

Thus, the identification of the damage model requires to define the three functions of the damage
variable.

Remark 2 (Choice of the damage variable). In the case of a strongly brittle material it is always possible
to chose a such that it evolves between 0 and 1. Another interesting choice from a practical viewpoint
consists in changing the damage variable so that the mutiplicative factor A(a)) becomes a constant. From
now on this change of variable will have been assumed to be done.

Furthermore between the two functions A, w and A the dimension difference is the square of a length,
thus the length 7 is introduced

1
W a,g) = §A(a)se e +w(a) + An’VaVa (1.8)

where A is independent of a and has the dimension of a pressure such that 1 has the dimension of a length.
By doing this a characteristic dimension has been introduced to our problem which obviously depends on
the choice of A. In the case of the family of damage models given by the bulk energy density (1.8), in order
for the softening properties to be satisfied, o — A’(a)/wW/(a) and o — C'(«a)/W'(«) must be increasing,
where C = A~! is the compliance tensor.

1.2 Evolution of gradient damage models in a structure

The evolution of the damage parameter given in Proposition 1 yet it says nothing of the evolution in
the structure. One should keep in mind that the stability is inherently depending on the geometry and
the loading applied to a structure and exceed the material properties.

1.2.1 Setting of the gradient damage model

Let us consider a homogeneous body whose natural reference configuration is the open connected
bounded set Q C R? of characteristic size L. The body is submitted to a time dependent loading which
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consists of a density of volume forces f;, a density of surface forces F; prescribed on the part Oy of the
boundary and prescribed displacements U; on the complementary part dp{) of the boundary, ¢ denoting
the time parameter. The potential of the given external forces at time t can read as the following linear
form W¥ defined on the set C; of kinematically displacement fields

WE(v) ::/ft-vdx+/ F;-vds
Q N

The kinematically admissible displacement fields is formerly introduced
C = {v : v="U; on QDQ},
and also introduce the set of admissible damage fields
D:={p:0<8<ap,ae in Q}.
thus C; = C; 4+ Uy is a linear space and is time dependent.

Remark 3 (Regularity of the admissible displacement and damage field). The choice of the functional
space raises in issue. When o = g, the presentation of functional spaces will remain informal as above.
The fields are assumed sufficiently smooth so that all calculations make sense. A natural requirement is
that the total energy is finite at each time, the damage field should belong to L°(2) N HY(Y). Because
of the lost of stiffness when o = 1, the question is more difficult for the displacement field. A precise
statement of the of the functional space remains out of the scope of this dissertation. If a(x) < auy, then
the bulk density is defined as soon as the fields belong to H () and the admissible fields read

Ci={ve HY(Q) x HY(Q) : v="U; on opQ} D={Be€H Q) :0<8<am ae inQ}.
The law of evolution of the damage in the body is written in a variational form and based on the
definition of the total energy of the body associated with admissible states. Specifically, if (v, ) denotes

a pair of admissible displacement and damage fields at time ¢, i.e. if v € C; and § € D then the total
energy of the body at time ¢ in this state is given by

Puv.3) = [ W(e(v) ~ e,5,V8) dx — WE(Y) (1.9)
Q
where €(v) denotes the symmetrized gradient of v. Following the variational approach presented in

[Pham & Marigo 2010a] and [Pham & Marigo 2010b], the evolution of the damage in the body is governed
by the three principles of irreversibility, stability and energy balance. Precisely the evolution follows:

Hypothesis 4 (The damage evolution law). Specifically these conditions read as follows:

(IR) Irreversibility: ¢t — a; must be non decreasing and, at each time t > 0, ay € D.
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(ST) Stability: At each time t > 0, the real state (u;, o) must be stable in the sense that for all v € C;
and all B € D such that B > oy, there exists h > 0 such that for all h € [0, h]

Pt(ut+h(v—ut),at+h(6—at)) > Pt(ut,ozt). (110)

(EB) Energy balance: At each time t > 0 the following energy balance must hold:
¢
Pi(ug, ar) = Po(ug, ap) —|—/ </ os-€(Uy) — a5 - €) dx — WE(U,) — Wﬁ(u5)> ds. (1.11)
0 Q
where:

e g denotes the given damage state at the beginning of the loading process

e Uy is the associated displacement field obtained by solving the elastostatic problem at time 0: ug =
argminy e, Po(v, o)

e 0, denotes the real stress field at time s and is given by (1.1)
e U, is the rate of a given, but yet arbitrarily chosen, admissible displacement field at time s
o &0 is the rate of the imposed strain at time s

e W¢ denotes the linear form associated with the rate of the prescribed volume or surface forces at

time s and reads
V.Vse(v):/f.;-vdx—&—/ F, - vds
Q ONQ

In essence this formulation falls in the modern mathematical treatment of rate independent processes
[Mielke 2006]. Note that the concept of stability adopted here is that of directional stability. In this sense
it is a weaker condition than global stability, and this will play a major role in this thesis. For a given
admissible direction (v, (), the inequality (1.10) must hold for sufficiently small A, this neighborhood
depending on the direction. Accordingly, for a given direction considering small h and expanding the
energy of the perturbed state with respect to h up to the second order, the inequality (1.10) becomes

0< Pé(ut, ap)(v—uy, B —ay) + gpé’(ub ag)(v —ug, f—ay) +o(h), (1.12)

where P/ and P/’ denote the first and second directional derivatives of P; and o(h) higher order terms in
h. Precisely the first derivative of the total energy reads

Pi(wa)(v.0) = [

i (at-r-:(v) —Yt~ﬁ+qt-V6> dx — WE(v), (1.13)

where o4, Y; and q; denote respectively the stress tensor, the energy release rate density and the damage
flux vector at time ¢ which are given in terms of the current state by the constitutive relations (1.1).
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Passing to the limit when h goes to 0 in (1.12) and using the fact that C, is a linear space, one immediately
deduces that the stability condition (1.10) is satisfied only if, at each time, the body is at equilibrium
and the damage criterion is satisfied. Specifically, these necessary conditions are the weak form of the
equilibrium

/ o e(v)dx=Wi(v), VveCl, (1.14)
Q

and the weak form of the damage criterion

/Q(—Yt B—a)+q-V(B—a))dx >0, VBeD : > . (1.15)

The two conditions (1.14)-(1.15) can be seen as the first order stability conditions. They are necessary
but not always sufficient in order for (1.10) to hold. More precisely, if the direction 3 is such that the
inequality is strict in (1.15), then (1.12) is satisfied for h small enough and hence the stability is ensured
in this direction. However, if the direction 3 is such that the inequality is an equality in (1.15), then (1.12)
requires that the second derivative be non negative in order that the state be stable with respect to this
direction of perturbation (and the stability in this direction is ensured if the second derivative is positive).
The following has been obtained

Proposition 2 (Second order stability conditions).

1. When Pj(ug, ap)(v—uy, B—ay) > 0, then (uy, oy) is stable with respect to the direction of perturbation

(V7 /8>7

2. When Pj(ug, on)(Vv—uy, f—ay) = 0, then (ug, o) is stable with respect to the direction of perturbation
(v, B)
(a) only if P/ (us, ar)(v — g, B — ) > 0 (necessary condition)
(b) if P (ay,c)(v —uy, B —ay) >0 (sufficient condition,).

Remark 4. In the Hypothesis 4, the energy balance has been written under an integral form which allows
for discontinuous time evolutions.

By standard arguments of the calculus of variations [Dacorogna 2008] and by virtue of the hypothesis
of regularity of the fields, one easily deduces from the first order stability conditions (1.14)—(1.15) the
following

Proposition 3. The first order stability conditions are satisfied if and only if the following local conditions
hold:

dive, +f; =0 in Q\ Qf, om =F; on ONQ, om =0 on 09, (1.16)
Y:+divg, <0 in Q\ QF, q:-n >0 on 00. (1.17)

where Qf denotes the part of the domain, assumed not to evolve, such that o = ap,.
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In (1.16) the natural boundary arise not only on the surface of the domain but also on the interface
between the damage part of the domain and the sound part.

In chapter 2 the case where ) is a crack that evolves will be treated. Note that the two bulk
conditions hold only in the uncracked part of the body. It remains to use energy balance (1.11). Owing to
the smoothness assumption on the time evolution, taking the derivative of (1.11) with respect to ¢ leads
to

d . . o .
0 = dtPt(ut,at)—/Jt-s(Ut)—Ut-sgdx—Wt(Ut)—Wt(ut)
Q
o o L o (a0 )
0 = W(e(u) —&;, ¢, Vo) dx o (e(Uy) — &} ) dx — Wi(u, — Uy)
dt Joog 2\

= /\ (Ut-€(1:lt—Ut)—Ytdt+Qt'th> dx
Q\Q¢

- —/ (divat (i — U + (Vs —|—divqt)dt) dx+/ (atn.ut +a- nat) ds.  (1.18)
0\

oN
Taking into account the equilibrium and the boundary conditions (1.16), the terms containing oy vanish
in (1.18). Therefore, one gets

0
0= —/ (Yt + div qt) &y dx + / A??Qﬁo'ét ds. (119)
Q o0 on

By virtue of the irreversibility conditions and the inequalities (1.15), the equality (1.19) holds if an only
if the following pointwise equalities hold

(Yi+divgy) @ =01in Q\ QfF, %%tat =0 on 0S. (1.20)
n

Hypothesis 4 gives the variational evolution of the damage on which this thesis is built. The strong first
order stability equations (1.16) give the equilibrium and the damage criteria. When the first derivatives
cancels out the second order stability conditions should be studied (Proposition 2). Let us know briefly
evoke the evolution in a one dimensional framework.

1.2.2 Results from the one dimensional evolution of a bar in traction

Our goal is to use the non local gradient based damage models to account for fracture. As will be
seen in the following chapters, the damage evolutions tends to structure itself in bands. To understand the
cross-section of these bands, the main results from a one dimensional analysis of a bar in traction which
has been studied at length in [Pham & Marigo 2013] are summarized. The reader should keep an open
eye for the critical loading at which the initiation of damage occurs, the width of the damage localization
zone and the total energy dissipated in a single localization. In a one-dimensional context the bulk energy
(1.7) is given by

1 1
W, €% a,0") = SE(a)(u; — &) +w(a) + S ApA(a')? (1.21)
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where () = % is the first derivative with respect to the space coordinate x and E(a) denotes the one

dimensional stiffness. The domain is a bar of length L: Q = (0, L). The end x = 0 is blocked while the end
x = L has a displacement Uy = tL imposed by a hard device (Fig. 1.3). No volumic loading is imposed:

Ve e (0,L) €%x)=0, fi(z)=0.

/{ U =tL
7

Figure 1.3: One dimensional bar in traction

The total energy of the body becomes

Pun ey = [ (GE@P +wla) + JA(@)?) a,

the first order derivative of which reads as

L 1
Pitusa)(w8) = [ (E@)u)o+ jE @)W +w (@) + M) a
0
and the strong formulation (1.16) is written as

Equilibrium oj(z) =0

Irreversibility &; >0

Damage criterion SE'(ay)(u})? +w' () — Al >0
Energy Balance (1E'(a)(u})? +w'(oy) — Anef) dy = 0

Boundary Conditions «o}(0) <0, ay(L) >0

One immediately deduces that the stress is constant in the entire bar o(x) = E(ay(z))u}(z). At time
t = 0, the structure is assumed sound ag = 0 and unloaded ug = 0.

The homogeneous solution and its stability: First, a homogeneous solution (tx, ;) of the evolution
problem is studied. The solution of the elastic problem is given by the displacement w;(x) = ¢tz and the
stress o4(x) = tE(ay) thus the damage criterion is also homogeneous and reads

2

E’(at)E +w'(ay) >0
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and thus an elastic phase exists, as soon as w'(0) > 0, its limit is given by the loading

—ow/(0)

"=\ EE)

. =/ —2w/(0)E’(0)

and the square roots are defined as E'(a) < 0. For ¢ > t¢ the equality in the damage criterion is reached
in each point and damage can evolve. The associated stress-strain response,introducing the compliance
C=E"!

2w/ (o)

en

[ E(Oét)t =

The second order derivative at the state (tx, o) reads

L
1 1
Pitz.0(w.0) = [ (SE@IWR + 26 @05 + (G (@) +w'(a) ) 6+ AP(3)?)
0
Proposition 2 reduces to the comparison of the Rayleigh ratio:

JEE(ar) (v + tBE () [E(a))? + An2(8))? da
Jo (3C"(ar)o? —w"(ay)) da

with 1, i.e. a sufficient (respectively necessary) condition for stability is

Rt(v, ﬁ) ==

R > tively >) 1.
, An t(v, B) > (respectively >)

Property 2 (Stability of homogeneous state). In the elastic phase the homogeneous strain-damage state
is stable.

Ij < 72 AE(0y)?C (o) %0}
7 (3o} — w (o)’

Proof. The proof is not reproduced here, see [Pham 2010] and [Pham et al. 2011] for a thorough investi-
gation on the stability O

Thus n actually introduces a size effect, thus for large bars the homogeneous solution will be unstable
and another solution will appear. Actually, even during a stable solution an infinite number of solution
can appear [Benallal & Marigo 2007] through bifurcation. The localized solution is now reestablished.

Optimal damage profile: Construction of damage localized states. From a homogeneous damage «q
consider a single localization S of center xy. The equilibrium stress o € (0, 0.) is considered and thus

—02C (ap) + 2w/ (ay) — 2An%a) =0 on S, ;= ag on (0, L)\S (1.22)

since v and o’ must be continuous at xg & L. then a(xg % L.) = ap and o/ (¢ £ L.) = 0 multiplying (1.22)
by o' and integrating with respect to x, the first integral gives

—07C(a) + 2w(ay) — An*a? = C on S
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is obtained, where C is a constant. Evaluating C' = —oy/E. Hence the first integral may be written in the
form

oy (x)? = H(ot, ay(x)) in S (1.23)
where

J2

H(o,5) = & (w(B) — wlon) — +z (EC'(8) ~ 1) with [0,1)

T
2L,

Figure 1.4: The localized damage profile with no residual stress: Evolution of the damage field in the
localization for the specific damage law of Example 1. Localization from an elastic state g = 0 if the bar
is long enough.

Characteristic size of the localization: The half-size L.(c) of the localization is deduced from (1.23)
and is a function of the stress. Let us define a(o) the maximal value along the localization of the damage

reached at zg
a(ot) ds

ag V H(Utaﬁ)

A damage localization corresponding to a stress ¢ = 0 can be viewed as a crack. Considering the local-
ization from a sound material o = 0, the energy dissipated in the creation of a single crack is identified
with the fracture toughness of the material. Thus the half damage band and the toughness read

1 1
u:awzyédm%gﬁ G =2 [ V2w(F)ds (1.24)

The damage profile localization is given implicitly from the first integral by integration over (x,zq) (or

(w0, x)):
B a(ot) ds
ool = n/a@c) H(o, f)

Global force displacement response and critical crack opening The overall stress-strain relation

Le(ot) =1

a(ot)
g =e%(oy) + n%sd(o’t) €d(0't) = / (C(B) — Clan)) I‘I((i(iﬂ)
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The critical jump e? is very sensitive to the constitutive relation. In the case where the elastic energy
density (e, op) = 1(1 — ay)%e§ - €, if ¢ < 2 then & vanishes. Conversely, if ¢ > 2 €%, goes to infinity.
As this critical jump will be linked to the crack opening in the case of a crack, this justifies the choice of

q = 2, in the case (1.21) this

A
el = gE (1.25)

where a thorough study can be found in [Pham & Marigo 2013].

Choice of the normalization A. The choice to break down the constant of the gradient term into a
length 1 and a pressure A has been made. A first option is to set its value A to w; = w(1) then (1.24)

AT o [ a_TW
n/o QW(ﬁ)dﬁ Gc—2n/0\/mdﬁ e'=3F

An other choice of normalization could be made in (1.21) normalizing the gradient term by the sound
young modulus E = E(0). This would have changed the interpretation of 7 as the damage band and the
dissipated energy would read (1.24):

/F Gc:2n/01\/md5 sd:g

1.2.3 A specific damage model

reads:

The fact that the damage parameter is a scalar which can only grow from 0 to 1 has already been
discussed, a = 0 denoting the undamaged state and o = 1 the completely damaged state. [t depends on
the normalizations associated with the choices of the critical value 1 for o and w(1) for the multiplicative
factor. Here W is specified, and most results will be established in the specific case of the damage model
of:

Example 1. A typical example of such a behavior is when the bulk energy density

1 1
Wie, % a,Va) = 5(1 —a)’Ale =€) - (e — %) +wia + §w1772Va -Va, (1.26)
is the sum of three terms: the stored elastic energy (e, a) = L(1—a)?A(e —€°) - (€ — €°), the local part of

the dissipated energy by damage w(a) = wya and its non local part §W1772V04~V04, Therefore wi represents
the energy dissipated during a complete, homogeneous damage process of a volume element: wy = w(1).

Accordingly, the dual quantities at time ¢ (1.1) are given by the state functions:
or=(1- at)QAé'f, Yi = (1 —at)Aef - €f —w, Q= W1n2gt
Then the damage criterion (1.16) reads:

(1 — ap)Ael - €f —wy +win?Aa; <0 (1.27)
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and the consistency condition
(1 — ar)Aef - €f —wy +win’Aqy) dy = 0 (1.28)

The elastic domains R(a;) and R*(ay) at the damage state a; now read

C
(1 — th>3

The critical stress o, in a uniaxial tensile test such that o = o.e; ® e is then given by

Rlag) ={e €M : (1 —a)Ale —€Y) (e =€) <w}, R*(y) ={o €M, : o0 <wi}

[ 2w/(0) —
o =\le—w VWiE. (1.29)

The non local dissipated energy density is assumed to be a quadratic function of the gradient of damage.
Since the damage parameter is dimensionless and by virtue of the above definition of wy, 1 has the
dimension of a length. Accordingly,  can be considered as an internal length characteristic of the material
while having always in mind that the definition of 7 depends on the normalizations associated with the
choices of the critical value 1 for « and w(1) for the multiplicative factor.

 L/n

unstable

% t
tC

Figure 1.5: Stability of the Example 1. For long bars at the end of the elastic phase the homogeneous
state is unstable. For short bars a homogeneous solution can exist with a positive damage field

The choice of the Example 1 is made for a variety of reasons. First for its simplicity and the fact that
it is convex in each variable: the displacement u and the damage «. Then the choice of w(«) leads to
the existence of an elastic domain, non empty and thus a stress threshold which has been called critical
stress (1.29). Furthermore, the jump of the displacement at the boundary of the damage band is finite
but not vanishing. This will allow a jump of the displacement on the lips of the crack. Less importantly,
the choice of normalization in front of the gradient term, allows to introduce another length for the crack
opening then that of the damage band.

The damage model is defined from the wy and the internal length n. Thus the critical stress, the half
width of the damage band and the toughness read:
4v2

o. = vwiE L. =2V2n Ge = Twm (1.30)
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In this dissertation the damage model of Example 1 will be used. This damage model is based on only
three material parameters E, o.,n7 and accounts for complex phenomena. Nevertheless the distinction
between the behavior in traction or in compression is not satisfactory but has been partially addressed in
[Amor et al. 2009].

Example 2. A damage model similar to the one presented in Ezample 1 is

1 n
W"(e, e a,Va) = 5(1 —a)’Ale =€) - (e — &%) + %a +win,Va - Va. (1.31)

n

One can establish that n = \/2n,, and thus the critical stress and the width of the damage localization zone
and the dissipated energy read:

"E 8
n= \/inm Oc = V‘;}l L= 4nj, Ge = gw? (1'32)
n

This formulation is introduced as it is the one used in the numerical implementation (see Section 1.3.3),
except for a rescaling it is identical to that of Example 1 and thus presents the same properties. In this
thesis, as soon as numerical implementations are considered the damage model of Example 2 will be used.
In the case of analytical work we will stick with that of Example 1).

1.3 The variational approach to Griffith’s theory of fracture and its numerical implemen-
tation

Setting aside for a moment the damage model introduced we turn back to the genesis of the variational
approach to fracture.

1.3.1 Variational approach to Griffith’s theory of fracture

The variational approach to fracture introduced in [Francfort & Marigo 1998] is based on two ingredi-
ents which are a surface energy in the sens first introduced by Griffith and a global minimization problem.
The total energy of the structure with a Griffith surface energy reads as

PE(u,l) == o Yole(u)(x),e%(x)) dx + GSp(u) — WE(u) (1.33)

where 1p(e(u), ") = 1(e(u),€,0) is the elastic strain energy density, Sy(u) is the length of the crack
and G the material’s toughness. This “drawback” of Griffith’s theory was one of the motivations which
led |Francfort & Marigo 1998| to replace the Griffith criterion by a principle of least energy, in the spirit
of the original idea of Griffith. It turns out that the principle of least energy is really able to predict
the nucleation of cracks in a sound body initiation [Marigo 2010] and contains the evolution of the crack
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direction [Chambolle et al. 2009]. However, the nucleation is necessarily brutal in the sense that a crack
of finite length suddenly appears at a critical loading.

The numerical approach is based on a variational approximation, originally proposed in
|Ambrosio 1990], of the total energy (1.33) by elliptic functionals. The regularized functional originally
used in [Bourdin et al. 2000] is modified to account for the inelastic strain:

ef(x) = e(uy)(x) — &} (x).

Proceeding by induction, in the setting of [Bourdin et al. 2000, Bourdin et al. 2008], one can introduce
a function « taking its values in [0,1] and representing in some sense the crack set, a regularization
parameter 7, homogeneous to a length one gets the regularized energy depending on the parameter 7,
(1.34). Tt is then possible to show that (1.34) converges in the sense of I'-convergence to the fracture total
energy (1.33), from which one derives convergence of global minimizers [see Braides 1998, for instance for
more details on the construction of the regularized energy|. This analysis can then be carried out for the
time evolution as shown in [Giacomini 2005|. The interested reader should refer to [Ortner & Negri 2008,
Marigo 2010, Negri 2010| for comparison between Griffith’s initial formulation and the one revisited in the
variational approach.

For any u, a the regularized energy is of the form

Pred(u,a) = /Q % (1= @) + k) Ale(u) — €9) - (e(u) — €9) + %Gc <no‘ +mVa- w) dx  (1.34)

where surface energy term [ %Gc (r%n + nnVa.Va) dx differs from the one used in [Bourdin et al. 2000]
while still falling with the more general scope of [Braides 2002|. The regularized energy (1.34) can be
viewed as a damage model as the one proposed in Example 2 where w] = 3/8G.. The parameter k,,, is a
small residual rigidity introduced for numerical purposes. The convergence results remains valid provided
that ky, = o(nn).

In the literature the field representing the crack is often denoted v = 1 — a. Here G. denotes the
toughness of the material. As 7, tends towards zero this model approximate Griffith’s brittle fracture.
The proof uses a global minimum argument though I'-convergence. By doing this the material’s toughness

h
Gcnum = Gc <1 + 3) )
81

is overestimated

where h is the characteristic size of discretization of the mesh. The error on the surface energy is indepen-
dent of the type of elements (linear versus quadratic) used. Furthermore, an unstructured mesh is used
such that no favored direction be introduced and to avoid overestimating the energy [Negri 1999]. Yet,
two flaws can be addressed. First, it does not contain a critical stress, commonly accepted as a physical
parameter for brittle materials. Secondly the minimization problem is global. In [Bourdin et al. 2008],
the variational approach to fracture is viewed in a broader sens with the definition of an energy and a
minimization principle, especially they investigate cohesive surface energies as well.
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1.3.2 Local and global minimization

The variational approach to fracture (in the broadest sense of the term), [Bourdin et al. 2008] is based
on the two main ingredients being the choice of an energy and the variational principle. These choices

lead to different behaviors. In their pioneer work [Francfort & Marigo 1998] state:

“l...] the driving principle is global minimization. Such a principle is not dictated by any
known thermodynamical argument ; it is rather a convenient postulate which provides for
useful insight into a variety of behaviors [...] A more realistic approach that would investigate
local minimizers is doomed for the want of the necessary mathematical apparatus.”

The variational approach to fracture in the Griffith model [Francfort & Marigo 1998| is based on Global
minimization. Yet this principle is physically unacceptable as it requires to pass energy barriers (Fig. 1.6)
and may not admit any solution? Thus, the uncracked state is always a local minimum (Proposition 4 in
|Charlotte et al. 2006] for the one dimensional case and [Marigo 2010]) and thus the nucleation of a crack
is necessarily brutal (path pg which jumps from the state sy to the state s; whatever the height of the
energy barriers). Furthermore, when forces (body or surfacic) are applied to the body, the global minimum
is minus infinity and the solution is totally broken state (path p; to go to a state s3 where P(s3) = —o0).
Here the local stability principle is used. An other argument in favor of study of the local stability is the
numerical implementation (see Section 1.3.3) The use of local stability principle has also been used in the

P
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Figure 1.6: Diagram of the total energy as a function of the state. Energy barriers in the case of a Griffith
surface energy as the state with no crack sg is always a local minimum. If surfacic or volumic forces ares

imposed the global minimum is minus infinity ss.

case cohesive cracks. Where leaving the pure Griffith setting, cohesive forces are added between the lips

of the cracks |Charlotte et al. 2006].
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Referring to the regularized energy (1.34), [Bourdin et al. 2008| write

“Mechanicians may be tempted to lend significante to the resulting model as a damage gradient
model [...| we view it merely as an approximation and will resist any further discussion of its
intrinsic physical meaning”

In this dissertation, the opposite is done, and this damage model is considered as the physical relevant
model. The stability principle is that of local minimums, even if the cost is less mathematical rigor. The
Griffith behavior will only be a limit behavior as shown in the following chapter.

1.3.3 Alternate Minimization in a F.E.A

We wish to use the non local damage model introduced above in a finite element analysis (F.E.A.).
The time-continuous quasi-static evolution is approached by a time discretized regularized evolution law
by considering a discrete set of loads t;, and iteratively seeking minimizers (u;, a; ) of P (1.9) under the
irreversibility condition a; > a;—1. The alternate minimization algorithm is briefly mentioned and refer
to the literature to [Bourdin 2007| and [Bourdin et al. 2008] for the interested reader. From the numerical
point of view one uses an algorithm of alternate minimization in order to find the state of the body at
each time step. That consists in constructing at time step ¢; a sequence (uj oy’), n € N, such that

n : n
u;, = argmin Py, (v, a3’ ),
veC,

aftt = argmin Py, (uy,, B) (1.35)

BED: fzar; 4

(with an initial condition, for example O‘% = oy, ,). This algorithm is an algorithm of descent of the total
energy, indeed

Pti(u?;7 O‘Z) < Pti (ugila O‘Z) < Pti(uzfl, O‘Zfl)a

which in general converges. In such a case it converges to a state (uy,, ay,) which satisfies the first order
stability conditions (1.14)—(1.15) at time step ¢;. This time discrete minimization problem is in turn
discretized in space by means of linear finite elements, following the lines of the work cited above. No
attempt at proving the convergence of the regularized model or its discretization to the continuous evolution
law is made. The numerical implementation is that of [Bourdin 2007] and is based on the following
libairies: PETSc [Balay et al. 2012b, Balay et al. 2012a, Balay et al. 1997| is used for data distribution,
parallel linear algebra, and TAO [Munson et al. 2012| for the constrained optimization.

Remark 5 (The implementation of irreversibility). In the case of a crack set cracks are not allowed
to heal. That is should a crack exist at time t it should also exist at any later time. Actually, the condition
enforced here, is stricter. Indeed the condition (IR) is enforced by a projection at each minimization set in
(1.35) of aZH on off with an irreverisibility threshold set at o = 1072
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1.3.4 Other regularization techniques

The variational approach to fracture and its interpretation as a gradient damage model presented
above is very close to two other regularization techniques the so called phase field approach and the
thick level set approach. Both introduce a genuine unknown, as a scalar field, to approximate the crack
set. In the physics community, regularized representation of cracks are commonly regarded as phase
field methods [Karma et al. 2001, Henry & Levine 2004, Karma & Lobkovsky 2004, Henry 2010] originat-
ing from the Ginzburg-Landau theory of phase transition. These models also approximate the cracks as
the localization of an internal scalar variable, denoted as damage or order parameter, and is based on
a variational formulation including a gradient term in the internal variable. One main difference in the
theoretical formulation is that the phase-field models are viscous in nature, whilst the evolution of damage
models obtained within the variational approach to fracture is formulated in a rate-independent setting.
More importantly, all available works using phase field methods consider the propagation of a pre-existing
cracks and does not include any initiation criterion. More recently a coherent thermodynamical frame-
work has been proposed for the phase field models [Miehe et al. 2010a] where the regularized numerical
implementation is based on rate-independent and rate-dependent models. A robust algorithmic implemen-
tation of these models for updating the displacement and damage field in a given time step by operators
splits [Miehe et al. 2010b]. In the mechanical numerical community, the thick level set approach is used
[Moés et al. 2011, Bernard et al. 2012, Stolz & Moés 2012]. The evolution of the damage is governed by a
driving force, which is the weighed average of Y on the width of the level set. The damage increases pro-
gressively as the level set value rises. At some distance from the front the material is completely degraded
unveiling a crack. The nucleation criteria converges towards a local criteria as presented here.

Conclusion of Chapter 1

A model to capture defect evolution in brittle materials has been introduced. This work is concerned
with the modeling of softening material (Definition 1.1.4) by regularized damage models. The main
elements of the justification of the variational approach for damage models of a scalar variable are given.
As the thermal loading is of interest in this dissertation the results have been extended to take it into
account. This implies an extension of the work property which justifies the local variational approach. The
strain work becomes a state function. Thus the local evolution can written under the form of Kuhn-Tucker
conditions (Proposition 1). Unfortunately these conditions are not sufficient for the evolutions in structure
due to the softening behavior.

Thus a stability principle and an energy balance are introduced (Hypothesis 4). The evolution of the
displacement and damage field are governed by a rate independent process based on the three item of
irreversibility, stability and energy balance. The local model is then enhanced by inserting gradient of
damage into the energy expression. This allows to control localization. From the stability principle the
first order conditions give the strong formulation (Proposition 3) which are completed with a consistency
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condition (1.20). For the stability to be verifies the so called second order stability conditions must hold
(Proposition 2) The case of the evolution of a one dimensional bar under traction is studied. This allows
to exhibit some properties of the damage model and its evolution. Very quickly the main steps of the
construction of localized states have been given. From these parameters the toughness G. is identified
as the energy dissipated in a single localization (1.24). Especially, the damage model is self-consistent
and depends on two elastic parameters (E,v) and two non-linear parameters the critical stress o. and
the internal length 7. Among the varieties of models [Pham & Marigo 2013] the simplest exhibiting the
required properties is chosen: strong brittleness and a stress threshold.

This damage model can also be viewed as a regularization of the variational approach to fracture
introduced in [Francfort & Marigo 1998|. Indeed, one can prove that the gradient based damage models
converges towards Griffith’s evolution law. These results are based on global minimization which presents
the of brutal nucleation and not being able to predict the evolution of a structure with imposed forces.
Finally, the numerical implementation based on an alternate minimization algorithm, which is a descent
algorithm, is introduced.
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Strength and toughness from crack
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This chapter is devoted to the nucleation and propagation of damage bands. Damage theory aims at
modeling progressive degradation and failure of structures. Materials exhibiting stress softening lead to
localization of the damage in bands. The nucleation and propagation phase are separated. Variational

principles enable to capture the entire evolution in a single framework and have been studied in the
case of stress concentration in a one dimensional context |Pham & Marigo 2013]|. This chapter extends
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these results in the case of a singular stress and to a multidimensional context. In Section 2.1, the crack
nucleation in singular stress due to a notch is investigated. A critical stress intensity factor is revealed.
It depends only on the notch angle and the damage model but is independent of the material parameters
and the geometry of the structure. Taking into the scale effect and the geometry of the structure gives a
simple framework to determine the critical loading at nucleation. Once the regularized crack is established
its propagation is studied. The first challenge is to make sens of the energy balance in the case of a moving
band (Section 2.2.1). Two properties are extension of the one dimensional case: the entire construction of
the damage profile in a crack band happens at the crack tip and the stress field is modified by the damage
at the tip of the band, and no singularity in stress ever exist. More importantly, the evolution law of these
damage band is constructed with the sole help of local stability (Section 2.2.6). Finally in Section-2.3, the
propagation of a damage band is investigated numerically. The evolution is confronted to the analytical
results and at the same time to the nucleation for a flat notch.

2.1 Nucleation of a damage band near a notch

Let us consider a homogeneous body whose reference configuration is the open connected bounded set
Q1 C R? of characteristic size L. This body includes a notch characterized by its angle w (Fig. 2.1). The
tip of the notch is taken as the origin of space. This body is made of a brittle material modeled by a
gradient damage model. Let us consider the specific damage model of Example 2. For a given material
and thus considering different size of structures a family of problems are cast by the parameter
_Mn
T L
the dependence on any quantity is indicated by the superscript €. Here the n index corresponds to numerics
as the damage model of Example 2 is used. Typically for the material considered € is small in front of
the unit. The internal length can be characterized either directly or from the critical stress and toughness

€ (2.1)

(1.30). For example, in the case of concrete [Comi & Perego 2001] the typical size is of the order of the
centimeter thus for structures of characteristic size varying from 10 centimeters to the meter e varies
from one tenth to one hundredth. In the case of polymethylmethacrylate (PMMA) [Dunn et al. 1997] the
internal length is of the order the millimeter and thus for L between 1 and 10 centimeters, € also varies
from one tenth and one hundredth.

The body is submitted to a time dependent loading which consists of a density of volume forces ff, a
density of surface forces F§ prescribed on the part On€2;, of the boundary and prescribed displacements
U¢ on the complementary part Op€2;, of the boundary, ¢t denoting the time parameter. The edges of the
notch are free in stress and damage, accordingly the boundary condition on I't of outer normal n are

auoﬁicy

— = =0 on I't.
on on on

The potential of the given external forces at time ¢ can read as the following linear form Wy defined
formally on the set Cf = {v : v="Uion 8DQ} of kinematically displacement fields total energy of the
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Figure 2.1: The real problem of characteristic size L
structure

WE(v) ::/ff-vdx—i—/ F; - vds,
Q IO

and the total energy P; (1.9) reads

Pe(v,B) = /QW(E(V) — &), 8,VB)dx — WE (V).

The strong formulation composed of the equilibrium, the damage criteria and the consistency condition
is deduced from this variational formulation, Proposition 3 reads:

div o+ ft =0
(1 —ap)A (e(uy) — &) - (e(uy) —€f) — % + 2wy, Aay <0
((1 —a)A (e(uy) — €)) - (e(uy) — €)) — L+ anwlAat> d; =0

vx € Qp\ QF (2.2)

which holds in any point of the bulk material where the damage does not reach it’s ultimate value o = 1.
The boundary conditions become:

u¢ = U¢ on 6DQL

o‘n =F° on 8NQL (2.3)
oc‘n=0 on I't

%Or‘: =0 on FiUODQLUaNQL
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The nucleation of cracks around a notch is the primely interest. As the analysis will show, the notch
induces a stress concentration and the evolution is essentially local. Hence the loading can be characterized
by a stress intensity factor K. The choice is made to decompose K into three terms to underline the
different impacts. The nucleation process of cracks can be decomposed in the product of three stress
intensity factors (this choice of vocabulary is done as each term is independent). The first is a scale effect,
linking the dimension of the structure to that of the material. The second is a global coefficient linking
the loading to the geometry of the structure. The third is a dimensionless parameter which only depends
on the angle, the type of damage law and the Poisson ratio v. The physical domain €2, is rescaled to
the dimensionless domain ; Section 2.1.1. Using matched asymptotic expansion, from the outer domain
1 one can build the stress intensity factor K, (Section 2.1.2), with a purely elastic analysis eventually
using finite elements. In the inner domain Q, for a generic problem, the loading comes through the
matching conditions which allows to compute the stress intensity factor K. (Section 2.1.3) using the non
local damage model.

2.1.1 Dimensionless setting: scale effect

Our damage model will introduce size effects. To be sure to make them explicit, the physical domain
Qr, is rescaled into a normalized domain denoted € in new (dimensionless) coordinates X = x/L. The
normalized displacement and stress (¢, ¢) are given by:

uf(x) = npuf(x) of(x) = 0.e0¢(%), a(x)=a‘(x)

and thus the normalized strain becomes &(u°)

All these normalized quantities continue to depend on the small parameter €. The rescaling of the loading
reads:

US =, U, ff = —Sef’, FS =o.eFe, ¥ = ea' (2.4)
where the time index is dropped for the sake of conciseness.

Reminding the reader that the energy density w} can be written as w] = o2, /E, the dimensionless
problem on the rescaled domain € (Fig. 2.2) is composed of the bulk conditions which read as

dive® + =0
vk e O\ Qf (1 —a)e?A (8(€) — &%) - (e(€) — &%) — 1+ 262Aac <0, (2.5)
((1 — a%)eA (B(1°) — %) - (8(0°) — &%) — 1 + 262&);) Q=0
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Figure 2.2: The rescaled problem of characteristic size 1.

and the boundary conditions

€

=1}
I
ch

€ on dpfly

‘n=F¢ ondn

n=20 on I'*

g2 =0  onT*UIpY UINQ.

Q:

(2.6)

Q:

In the following subsection the solution to (2.5)-(2.6) will be searched under two forms: the first in the
outer domain valid far away from the notch i.e. when ||X|| >> 1, the second close to the notch ||x|| << 1.
Thus using matched asymptotic expansions [Lagerstrom 1988, the displacement field and stress fields are
searched as series of powers of e. Both approximations are simultaneously valid which allows to write the
so called matching conditions.

2.1.2  The outer problem: an elastic computation

Due to the stress concentration near the tip of the notch, and assuming that the loading is regular
enough, damage initiates near the notch. In the outer domain, the displacement u° is searched under the
form

(%) = fo()u'(x) + fi(e)u! (%) + -,

where - - - represents terms of higher order as e — 0 and f;(¢€) are powers of e.

Then the stress reads o€ as
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The solution depends linearly on the loading which thus can be expended according to the same power
series:
U = fo(e)U, f°= fo(e)f, F°= fo(e)F, &% = fy(e)e’
Under the condition that fy(e) is small in front of e=2 (This condition will be verified when the loading is
characterized in the following subsection), the equilibrium and damage criterion (2.5) becomes at the first

order:
dive’+f=0
~ 50 — 1— AE 0
vk e O\ o = -ahe@) 2.7)
~1<0
da®
S =0

and thus @° = 0 and the problem becomes purely elastic. Therefore, for loading small enough, the damage
zone remains confined in the vicinity of the singularity.

€2

Figure 2.3: Polar coordinates at the tip of the notch in the outer domain ;.

In a structure composed of an elastic material a notch generates a singularity in the stress field. In the
vicinity of the notch (Fig. 2.3) polar coordinates are used and the first term of the displacement field can
be written under the form:

a0’ = K,72H%(9) (2.8)
where H¥(0) is a function of the notch angle w, the notch singularity ¢ and of the angle # of the polar coor-
dinates. The method to compute H¥ is classical result from plane elasticity [Dauge 1988, Grisvard 1992].
In appendix B.1 these functions are recalled for a vanishing Poisson ratio. A description of the method
to compute K, with the use of dual singular function is given in appendix B.2. It is solution of an elastic
computation which can be performed with any finite element code. Thus from (2.8) the real displacement
field reads

u‘(x) = Ky fo(e)n, L™ %r?H“(6) + higher order terms

where fo(€)n, L ™9 captures the scale effect and is a function of the materials characteristic and of the notch
angle w. The power function fy(€) such that the damage criteria be initiated has yet to be determined.

2.1.3 The inner problem at the vicinity of the notch: the constitutive law intensity factor

A solution is now searched for near the tip of the notch in a zone of dimension €. In the vicinity of the
notch the problem is rescaled using the microscopic coordinates y = x/e. Accordingly, the inner problem
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is the infinite domain
Qoo = {(p,6) € [0, +00) X (~w, +w)} .

The dimensionless displacement € is sought for as functions of the shape

Figure 2.4: The inner domain Q.

~ X X
(%) = g0V’ (X) + ga (v () - (29)
where - - - represent terms of higher order as e — 0 and g;(¢€) are power series of e. Thus the stress ¢ field
will be of the form ~ ~
&(x) = 906(6) Toé) + 916(6)7-1(’;) b (2.10)

Injecting the inner expansion (2.9)-(2.10) into the equilibrium div7® = 0 and damage criterion (2.5)
becomes over the domain Qa: VX € Qoo \ Qg the damage criteria expands as

(1 —a%go(e)?Ae(v0) - e(v") — 1+ 2Ad° <0, (2.11)

and the boundary conditions read 7%n = 0 and %ﬁ) =0on fni. The inner and outer expansions are both

valid in a domain such that the radius € < r < L giving the so called matching conditions in displacement
lim  (go(€)v®(p,0) — € fo(e) Kgp?H?(0)) = 0, (2.12)
p—00

lim a%(p,0) = 0.

p—00

Specifically, (2.12) induces that the first order coefficient from the inner and outer expansion are such that

go(e) = fo(e)e?Ky.

Let us point out that in (2.11) the bulk loadings f¢ and &% do not appear as they are of higher order.
However, they appear through the matching conditions (2.12) as they influence on K in the outer domain.
This allows to characterize the dimensionless loading parameters introduces (2.4) and to state the first
fundamental result:
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Property 3. For the damage criteria to be activated the loading must be of the order €= ¢ and thus
fo(e) = te=2. This gives the order of the loading for the initiation of damage.

Proof. In (2.11) if go(e) < 1 then the damage criteria is never activated. Indeed, for go(e) < 1, the
damage field o is solution of

—1+2Aa? <0, (—1 + 2Aa§3) &) =0

with the boundary and initial conditions

o TE 0 0
o = Oonl), ", plggo a;(p,0) =0, a,_y = 0.
The only solution is af = 0. If go(e) > 1 is too large, the first term dominates and the criteria is
violated. O
w te Amazx R,

99 7 | 191 £.001 | .53 2.5my,
957 | .194+£.001 | .54 2.6my,
9m | .2060£.001 | .62 2.5my,
Bm | .248£.001 | .55 2.3y,
75 m | 283 £.002 | .46 2.1n,
g | 337£.002 | .38 2.0my,
6 | .530£.003 | .27 2.0mp,
S| 705 £.004 | 14 1.9m,
Sl | 934 £.005 | .02 | 1.63n,

Table 2.1: Value of the critical stress intensity factor K. = kf. in the case of plane elasticity for v = 0 for
the damage law (1.26).

The order of magnitude of the loading for the damage evolution has just been given. By design, the
loss of stability leading to a real crack (i.e. such that o = 1 at some given point) happens at the same
scale of the loading.

Computation of the value K.. Instead of the computation on an infinite domain, a large domain with
respect to the internal length is considered.

QR = {(pa 0) € [07R] X (_wv"’_w)} :

The internal length is such that in the dimensionless problem both Gc = 1 and 0. = 1, i.e. 1, = .375.
Thus the radius of the domain is fixed at R = 10. The monotonically increasing loading is divided into
200 time steps. For the notch angles w = .51 and .5567 a homogeneous mesh of size A = .05 is used. For
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the other notches a coin near the notch with a finer notch A = .02 is used. The loading is imposed as
tH“(0) on the boundary p = R:

vO(R,0) = tkR°H" (6)

where H“ () is the same as in (2.8) and k is a rescaling of the loading. The value taken by £ where the
nucleation of a crack appears is denoted ¢.. Thus 7°, a" are solution of

divr? =0
(1—a®)Ae(v9) - &(v?) —142Aa" <0
Vv € Qp \ QF ((1 — A" AE(VO) - E(V0) — 1+ 2Aa0) a0 =0
vO(R,0) = tkRCH* ()
(a"(R,0) =0
The rescaling chosen
b 1

(2m)e(l — )’

and thus the critical time K, = ki,

Figure 2.5: Damage evolution leading to the loss of stability for a notch of angle w = .97. Zoom on a domain
of size domain 2.5n,, X 2.5n,, centered on the tip of the notch for the time steps {50, 161, 170, 180, 182} cor-
responding to the loading t = {.06, .18, .19, .203, .205}. Isovalues of the damage field o = .5, .4,.3,.2,.1,0.

If damage nucleates as soon as the loading begins it is confined to a single point, the tip of the notch.
As the loading ¢ increases (Fig. 2.5), the size of the damage zone increases and it’s maximal value taken
in 0 increases. The isovalues in the damage are very close to circles centered in 0. This evolution is stable
until K..

Figure 2.6 reports the zoom at the tip of the notch for the loading K. and the previous time step. Just
before the loss of stability, the damage field at the tip of the notch (Fig. 2.7) decreases from its maximal
value towards 0 on a range which does not depend much from the notches angle. Table 2.1 reports the
values of the critical loading at localization as well as the maximum value of the damage and the radius.
As the singularity decreases, the critical stress is a loading order above (Tab. 2.1). The initial length of
the crack (Fig. 2.6) is a global property and depends on the geometry of the structure.
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Figure 2.6: Damage field in the vicinity of the notch for two consecutive time steps at K.. The notch is
defined by the angle {.97, .87, .757} (top to bottom). Blue sound material (o = 0), red totally damage
(a=1).

The special case where w = 7 is considered and thus the notch degenerates into a crack. As in the case
of a notch damage increases progressively with the loading in a diffuse matter near the tip. At a given
time this damage evolution is unstable and a crack with o = 1 nucleates brutally. Thus the damage band
nucleation appears for a loading K. = .191

The construction of the damage field, in the direction of the previous crack set, is progressive till the
nucleation of a continuous set of points such that o = 1. Orthogonal to the direction of propagation
(Fig. 2.9), the damage is maximal in the extension of the preexisting crack, and becomes the optimal
profile from a one dimensional analysis at the critical loading.
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y1=2a1/n

Figure 2.7: Damage profile at the tip of the notch at the time step prior to the bifurcation leading to the
nucleation of a continuous set of points with no residual stress (o = 1).

Figure 2.8: Damage field, Initiation of damage at a crack tip for two consecutive time steps at the loading
K. = .191.
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Figure 2.9: Damage field orthogonal to the tip of the crack at y3 = z1/n, = 1.
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2.2 Convergence of non local damage models towards Griffith

In the variational approach to fracture [Bourdin et al. 2008] the regularized functional introduced to
approximate the total energy associated with Griffith’s assumption on the surface energy can be inter-
preted as a non local damage model in the spirit of those developed by [Pham & Marigo 2010b]. These
damage gradient models contain an internal length 1 which can be considered as a material character-
istic. Whenever this length is small by comparison with the dimensions of the body, it can be proven
by Gamma-convergence arguments [Ambrosio & Tortorelli 1990, Braides 2002] that the global minimum
of the regularized functional converges to the global minimum of Griffith’s functional. This result can
be considered as a fundamental link between damage and fracture mechanics. However it deserves to be
improved and generalized by removing the concept of global minimization of the energy which cannot be
considered as a good physical principle. Indeed, this type of global minimization allows jumps from one
state to the other without considering the presence of energy barriers. Therefore, the global minimization
principle is replaced by a stability condition which can be considered as a local minimization principle.
One is then interested whether the evolution of damage governed by such a weaker condition remains close
to the one prescribed by Griffith’s law when the internal length is small. The same question appears when
considering numerical tests based on an alternate minimization algorithm [Bourdin 2007|. Indeed, such
an algorithm does not converge necessarily to a global minimizer of the energy, but only to a stationary
state. The issue is to compare the evolution given by the numerical computations with Griffith’s law.
Practically all the numerical simulations show that, after a stage of nucleation, the damage concentrates
in bands whose width is of the order of the characteristic length 7 of the material. Moreover, except at the
tip of the damage zone, the damage profile in the direction orthogonal to the band is practically the one
given by a one-dimensional analysis [Pham & Marigo 2013]. These two properties (a thin damage band
with an optimal profile) are the basic assumptions of our analysis. The last major issue in order to achieve
this task is to give a sense to the concepts of energy release rate and of critical energy release rate, that
is to say, to introduce correctly the basic quantities G and G¢ entering in Griffith’s law in the setting of
our damage law. Specifically, in Griffith’s theory, G is defined by assuming that the material has a purely
elastic behavior. Then by virtue of Irwin’s formula one can relate the energy release rate to the singularity
at the tip of the crack and therefore to the stress intensity factors. In the context of the present damage
law, there is no more singularities of the stresses (but the gradient of damage can be singular!), the stresses
remain bounded. Besides, in Griffith’s theory, G¢ is a given material constant characterizing the energy
associated with surfaces of discontinuity whereas in our damage approach the parameters characterizing
the inelastic behavior of the material are the critical stress o, and the internal length 1. Accordingly, G
will be defined with the help of a two-scale approach and G. will be defined as the energy dissipated by
creating the optimal damage profile.

Specifically this section is organized as follows. After introducing fundamental assumptions, some
general properties of the damage evolution are established in Section 2.2.1. Then, in Section 2.2.2, the
separation of scales is performed by assuming that the internal length 7 is small by comparison with the
length of the damage band and any other structural dimension. The damage problem, is first studied, far
from the crack band and the crack tip. That allows us to define G, see Section 2.2.3. In Section 2.2.4,
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after studying the damage problem in the damage band (far enough from its tip), G is identified with
the dissipated energy in any unit of length of the damage band. In Section 2.2.5, the damage problem is
analyzed in the neighborhood of the crack tip. That leads to the introduction of a generalized Rice path-
integral which is studied in Section 2.2.6. In particular some properties relative to its path dependence
are established. We are then in a position to conclude and to make the link between the propagation
law of the damage band and Griffith’s law (Section 2.2.7). The following results have been published in
[Sicsic & Marigo 2013|.

2.2.1 Consequences of the first order stability conditions and of the energy balance with an evolving
totally damage set

In the Chapter 1, the Section 1.2.1 of the construction of the damage model, the set of points such
that @ = 1 was considered fix. This hypothesis is dropped here. To simplify the presentation, the imposed
loading is suppose to vanish but the results would remain even it were not the case. As previously stated,
the stability condition (1.10) is satisfied only if, at each time, the body is at equilibrium and the damage
criterion is satisfied. Specifically, they respectively read in a variational form (1.14)-(1.15) as

/Ut-e(v—ut)dx =W/ (v—-—w), VveC(
Q

/Q(_yt.(g_at)_;_qt-v(ﬁ—at)) dz>0, VBeD : B> a,

where o4, Yy and q; denote respectively the stress tensor, the energy release rate density and damage flux
vector which are given in terms of the current state by the constitutive relations (1.1). These two conditions
can be seen as the first order stability conditions. From the numerical point of view [Bourdin 2007|, one
uses an algorithm of alternate minimization in order to find the state of the body at each time step. In
such a case it converges to a state (uy,, ay,) which satisfies the first order stability conditions (1.14)—(1.15)
at time step t;. A typical example of numerical results which can be obtained by this type of damage
models with the alternate minimization algorithm is illustrated in Figure 1. In other words, the damage
bands are assumed to have been previously created so that their width is of the order of 1 whereas their
length is much greater than 7 such that the core of these bands is totally damaged. The evolution of
these bands is our primerly interest. The propagation of such a crack band is studied by assuming that
the path is given. The periodicity distribution will be the object of the following chapters. This leads to
the following:

Hypothesis 5 (The structuration in crack bands). Let T'; be the set of totally damaged points and
let v¢ be the set of damage points at time t, i.e.

Ii={xeQ : axt)=1} C %5={xeQ : 0<a(xt) <1}

The former set will be called the crack whereas the latter will be called the crack band. The follow
assumptions are made
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1. Ty is a smooth curve whose end Py (the crack tip) is moving such that the length of the curve be a
smooth increasing function of time, say {;

2. The stage of the evolution is such that ¢ is much larger that the material length n;

3. v is contained in a thin band included in Q, whose length differs from €, by a term of the order of
1 and whose cross-section has a width of the order of n;

4. The damage evolution is smooth both in time and space.

Note that only the case where there is one crack band are considered, but since our analysis is essentially
local the procedure could be easily extended to the case of a family of crack bands like in the example of
the thermal shock. By standard arguments of the calculus of variations and By virtue of the hypothesis
of regularity of the fields, one easily deduces from the first order stability conditions (1.14)-(1.15) that
Proposition 3 reads in the current context:

Proposition 4. The first order stability conditions are satisfied if and only if the following local conditions
hold:

divey + 1, =0 in Q\ Ty, om =F; on OnSQ, om =0 on Iy, (2.13)
Yi+divgy <0 in Q\ Ty, q:-n >0 on 00 (2.14)

Note that the two bulk conditions hold only in the uncracked part of the body.

It remains to use the energy balance (1.11). Owing to the smoothness assumption on the time evolution,
one can take the derivative of (1.11) with respect to ¢ and that leads to (2.15)

0 = —Pt(ut,at) — / O '€(Ut) d$+Wte(Ut) +Wf(ut)
dt O\

d . .
= — Wt dx | — / g¢ '€(Ut) dx —Wf(ut - Ut)
dt \ Jor, O\,

where Wy = W(e(u), a, V). The main difficulty is to evaluate the rate of the bulk energy near the tip
of the crack when the crack tip moves because of the possible presence of singularities. Accordingly, €2 is
partitioned to isolate the (moving) tip of the crack. Let B, (¢) be the ball of radius r centered at Py, let
C,(t) be its boundary (a circle of radius r) and let £2,(¢) be the uncracked part of the body outside the
ball B,(t): Q-(t) =2\ ([t UB,(¢)). The unit vector tangent to I'; at P, is denoted 7, (Fig. 2.10). Let us
evaluate the derivative with respect to ¢ of the bulk energy included in €,(¢). Using classical results for
the derivative of integrals over time dependent domains and by virtue of the regularity assumption, one
gets

d .
— Wtdl’ :/ (Ut‘E(ﬂt)—Yt'dt+Qt'V(jét) dx—ﬁt/ Wt‘Tt'ndS (215)
dt \ Jo,() (1) Cr(t)
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Figure 2.10: The crack tip moving with the speed ¢;. The contour C,(t) translates with the crack tip.

where n denotes the outer unit normal to B, (¢). Inserting (2.15) into (2.15) leads to

0 = / (Gt'€<ut—Ut)—ft’(ut—Ut)—Yt'dt+Qt‘vat> de’—/ Ft'(l:lt—Ut)dS
Qr(t) ONQ

_gt Wt n-7¢ ds + — / Wt dr | — / (Ut . E(Ut) + ft . (th — Ut)> dx. (216)
Cr(t) dt \ J. @) B, (1)

Integrating by parts the gradient terms in the integral over €2,(¢) in (2.16) and using the equilibrium
equations of (2.14) allow for simplifying the energy balance which can read now

0 = / (Yt—i—divqt)-dtdx—l—/ <th-7'tét+0'tn-1'1t+qt-ndt> ds
Qr(t) Cr(t)

_% </Br(t) Wi d$> T /BT(t) (Ut e(Up) + i - (1 — Ut)) de. (247

To conclude one must pass to the limit when r goes to 0. The integrals over B,(¢) will not give a
contribution to the limit because their integrand cannot be sufficiently singular. On the other hand, the
integral over C,(t) can give a non null limit. Its study will be made in the next section. For that purpose,
it is more convenient to make a change of coordinates by taking the tip of the crack P; as the (moving)
origin of the coordinates and (21, Z2) as the new cartesian coordinates with Z; = (x —P¢) - 7. Specifically,
one sets X = (x — P;) and any field f is transformed into f so that f(X,¢) = f(P; 4+ %,t). By the chain
rule one gets

) of . of
foxt) = Lo - i Lz,

Inserting this change into the integral over C,(t) which becomes an integral over C,, (2.17) can read as
Q- (t)

with A
8ut N 85615

J(t) = / <Wt fy — i - 55 " G -n a@1> ds (2.19)
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.. Oty . 00y R d ) ‘ ‘
l.(t) = Lt i e . ‘. B ‘
(t) /@ <0’tn oy +q-n T ) ds o ( o W, d:v) —I—/&(t) (m e(Uy) + £ - (0y Ut)) dz

The second fundamental result can now be established
Proposition 5. From a careful analysis of the singularities at the tip of the crack, one first proves that

lim I, () =0, lim J,(t) = Jo(t) < 0. (2.20)
r—r

r—0

Then, from the first order stability conditions and the global energy balance, one deduces that
(Yo +divgy)-dy =0 in Q\ Ty, Jo(t)l; =0 (2.21)

which can be seen as the local energy balances.

Proof. The complete proof of the property (2.20) is out of the scope of this work. A sketch of the proof is
merely given in B.3. Accordingly, let us assume that (2.20) holds. Since lim,_,ol,(¢) = 0, passing to the
limit when r goes to 0 in (2.18) gives

0= / (Yt + div qt) -apda + Jo(t)ét. (222)
O\T

Since Yy + divq; < 0 by virtue of the first order stability conditions and since é&; > 0 by virtue of the
irreversibility condition, the integral over €,(¢) in (2.18) is non positive. Since Jo(t) < 0 and since £; > 0
by virtue of the irreversibility condition, Jo(t)ét < 0. Therefore, each term in (2.22) is non positive while
their sum must be zero, hence each term vanishes which is precisely (2.21). O

Remark 6. By virtue of Proposition 5, Jol=0. That means that the gradient of damage can be singular
only when the crack does not propagate. Its singular part is then given by

K 0 0
Va = 2—\” <— Cos ieT + sin 2e9> + regular terms, K > 0.

But K must vanish and hence the singularity disappears when the crack propagates.
2.2.2 Separation of scale

All the results of the previous section have been obtained without using the assumption that the
internal length of the material n is small by comparison with the length of the crack and the dimensions
of the body. In particular the property that Jo(t)¢; = 0 does not require such an assumption. On the
other hand, the link with Griffith’s law can only be made in this asymptotic context. Therefore, this
assumption is adopted henceforth. To rigorously make a separation of scale requires the use of asymptotic
methods like matched asymptotic expansions [Lagerstrom 1988|. We merely present here its great lines.
Throughout the end of this section, 1 is considered as a small parameter and the dependence on it of any
quantity is indicated by a superscript like u” for the displacement field. On the contrary, the explicit time
dependence is now removed.
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F

Figure 2.11: Shematic positons of the outer (purple), crack (gray) and tip (blue) problem

1. The damage evolution problem can be decomposed into three problems: (i) the outer problem which
gives the behavior of the fields far enough from the crack band and the crack tip; (ii) the crack band
problem which gives the behavior of the fields in or near the crack band but far enough from the
crack tip; (iii) the crack tip problem which gives the behavior of the fields in the neighborhood of
the crack tip.

2. The order of magnitude of the fields with respect to the small parameter 1 depends first on the order
of magnitude of the loading and then on the zone where they are evaluated. It turns out that it is
sufficient to prescribe a loading (f7, F7, U" or €") with a magnitude the order of /1 for propagating
the crack. This is essentially due to the stress concentration which is automatically induced by the
presence of the tip of the crack and to the fact that the dissipated energy for creating the crack band
is of the order of n. The amplitude of the loading is assumed to be of the order of |/7:

f1=nf, Fl=nF, Ul=,,70, "=5é¢"

This can be established as in Section 2.1. The only difference is that the small parameter is the internal
length n which will allow to highlight the linearity to this quantity.

2.2.3 The outer problem and definition of Griffith’s energy release rate

At a macroscale the thin process zone around the crack can be neglected and the associated outer
problem is a purely elastic problem posed on the cracked domain  \ I'. Its solution depends linearly on
the loading parameters. Since the magnitude of the loading is of the order of /7, the real displacement
and stress fields can read
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where u and o satisfy

dive +f=0, o=A(u)—-¢") in Q\T

on = F on Oy{2, on=0onT, u = U on dpf.

The fields u and o are singular near the tip of the crack (but of course these fields are not a good
approximation of the real fields in that zone). In the case of an isotropic material, the singular part of o
is _ _

Ky Ky
=—=3/0)+—=XZy(0)+---

\/; I( ) + \/77, [[( ) +

where Kj, Ky are the (rescaled) stress intensity factors and X7, X the usual angular functions corre-
sponding to the opening and sliding modes [Leblond 2000].

o(x)

The potential energy release rate G" can also define in this fictitious elastic problem. It is related to
the stress intensity factors by Irwin’s formula [Leblond 2000]|. By linearity, one gets

1— 2

G" =G, G= (K? + K%) (2.23)

where E and v are the Young modulus and the Poisson ratio of the sound material. Note that G" is of
the order of n by virtue of the assumption on the loading magnitude. In the same manner the real stress
intensity factors K7 ;; are of order \/i: K} ;= /1 K111

2.2.4 The damage field inside the crack band and definition of G¢

In the crack band or in its neighborhood but far enough of the crack tip, the displacement and stress
fields are matched to those of the outer problem. It follows in particular that the stresses are still of order
V1. Let s be the arclength and s — x(s) be a parameterization of I'. A point x in the crack band is
represented by the system of curvilinear coordinates (s, () such that x = x(s) + {nv(s) where v(s) is unit
normal vector to I" at x(s) (Fig. 2.12). The damage field o in the crack band and its neighborhood is
searched under the form

a'(x) = ax(s,() + higher order terms with . (s,0) =1 and a.(s,¢) =0 for |[¢| > L.(s).

Hence 2L.(s)n represents the width of the crack band at s. Since 1C'(a")a” - 6" is of the order of
whereas W/ (o) and div q" = win?Aa” are of the order of 1. Since the gradient of o in the tangential
direction is negligible by comparison with its gradient in the normal direction, the damage criterion (1.27)
in the crack band can read at the first order as

32
w () — wlﬁ =0.

a¢?
This autonomous second order ordinary differential equation admits a first integral. Indeed, multiplying

Oa\2 . . . .
it by O, /IC, it appears that w(a.) — iw; (%) is independent of (. Using the boundary conditions at
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Figure 2.12: The damage band

¢ = £L.(s), one gets that this constant is 0 and hence

w1 0o
2w () OC

= sign((). (2.24)

Using the boundary condition at ¢ = 0 one finally obtains

_ 1 W1 B 1 W1
L— /0 [ K= / Rt (2.25)

ax(¢) being given implicitly. It turns out that L. and a. are independent of s, which means that the
damage profile is the same all along the crack band (except at its ends).

Let us calculate now the energy by unit length dissipated during the creation of the crack band. It is
given by the integral over the crack band cross-section of w(a) + w1n?Va” - Va/. Both terms in that
sum are of the order of  and by virtue of (2.24) give the same contribution to the integral. Denoting by
G{ the leading term of the dissipated energy, after an easy calculation one obtains

1
Gl =nbe  Ge=2V2 [ Vw(F)ds. (2.26)
0

Note that G¢ is of the order of 7, intrinsic to the material and independent of the crack path and how the
crack band was created. It will play the role of the surface energy density in Griffith’s law.

Example 3. In the case of the constitutive law of Evample 1 where A(a) = (1 — a)?A and w(a) = wia,
one gets L. = \/2 (hence the width of the crack band is 2v/21), G = 4v/2w1n/3 whereas the critical stress
o in a uniazial tensile test is independent of n and given by 0. = /W1E. Moreover the damage profile in
the crack band is a parabola: on(¢) = (1 — |C|/V/2)2.

2.2.5 The damage problem near the tip of the crack

Near the tip of the crack, n is the natural length scale. On that account let us rescale the system of
coordinates in the neighborhood of the crack tip P = x/(¢) by setting

x—P
y:

r
= y1e1 + y2e2, p=lyl= 5
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Figure 2.13: The crack tip with the damage zone

This crack tip problem is posed in the entire plane R?, the crack corresponding to the half-line I' =
(—00,0) x {0} and the crack band to 7 (Fig. 2.13). One searches for the displacement, stress and damage
fields under the form

w(x) = muP) +quly) +---,  olx)=a(y)+---,  a'x)=aly)+--

where u(P) represents the displacement of the crack tip given by the outer problem. By virtue of a stress
concentration effect due to the presence of the crack tip, the stresses are of the order of 1 in this region
while they are of the order of \/7 in the outer domain. Therefore, by matching the two expansions one
gets the following behavior of & at infinity:

i (o)~ 21210~ 300)) - 227)

and hence the rescaled stress intensity factors K; and K given by the outer problem will play the role
of the time-dependent loading parameters for the crack tip problem. The equilibrium equations, the
stress-strain relations and the boundary conditions read

dive =0 and & =A(a)e(n) in R*\T, &e;=0 and a=1 on T (2.28)

where all the spatial derivatives are now taken with respect to y. Note that the loadings f7 and € do not
appear because they are of higher order. Since all terms in Y7 4 div q" are of the order of 1, the damage
criterion (1.27) reads at the first order as

1 _
5C’(d)& g —w(a)+wAa<0 in R?\T. (2.29)
From the chain rule, the rate of damage is of order of 1/7 and reads
( da

&(x) = _Eaiyl(y) 4o (2.30)

Accordingly, the local energy balance (1.28) reads at the first order

(%C’(a)& o —w'(a)+ wlAa)g;é =0 in RZ\T. (2.31)
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The damage field expansion of the crack tip problem must be matched to the damage field expansions
of the outer and crack band problems. Therefore & must vanish at infinity except in the direction of the
crack where it must correspond to the field a, given by (2.25). Specifically, these matching conditions
read

im o =0, lim @ =« . 2.32
o o) i a(y) = ox(y2) (2.32)
Remark 7. In current and previous section the same dimensioning path have not been used. Yet the
notation are coherent. Especially the figures 2.1.3 and 2.13 and are at the same scale

2.2.6 The generalized Rice integral and its properties

In the analysis of the global energy balance, the flux of energy J,.(¢) defined in (2.19) is a path integral
which generalizes Rice’s integral used in brittle fracture to calculate the potential energy release rate. This
path integral will be studied for paths which are very close to the tip of the crack. Using the rescaled
system of coordinates (y1,¥2), let us consider such a path C whose ends are located on the lips of the crack
and which circumvents the crack tip (Fig. 2.14). It appears that the associated path integral Jg is of the
order of n, J? =nJe +--- and Jg reads as

- - ow ou; OW oa
Jz/(Wsu,&,V@n — — su,d,V@n-’—su,d,V&n-) ds 2.33
where 5 denotes the arclength of C. In (2.33) W represents the rescaled bulk energy density, i.e.
- 1., _ 1 _
W(e, a,g) = iA(a)e e +w(a)+ JWig 8 (2.34)
and one sets @ = — = wig. One fundamental property of the path integral is its monotonicity with

og

Figure 2.14: Two ordered paths in the neighborhood of the crack tip.
respect to the path. This requires to define the following partial order relation between the paths

Definition 3. One says that the path C is greater than the path C', if C' is included in the domain delimited
by the path C and the crack T.
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Let us prove the first fundamental property of this path integral.

Proposition 6. When the crack propagates, i.e. when { > 0, then the path integral Jg is path independent.

Proof. Let us consider two paths C and C’ such that C > C’ in the sense of Definition 3 (Fig 2.14). Let B
be the domain delimited by theses two paths and the crack line. It is easy to check that

_ - - _ ou; _ o _
Joe—Ja = /8]E <Wn1 — Uijnja—yl — anjayl> ds

because n; = 0, on = 0 and da/dy; = 0 on I'. By Green’s formula one gets

- - oW 0 ou; oo
Jomdn = [ (2L 9 (5,9% 4 299 45
c e /]B (5:91 0y, <U”8y1 q] 9y1>> §

8W@ 85¢j ou; . _8(1) ds

= - — divi—
/B ( oa oy1  Oy; oy Loy

Using the equilibrium equation divée = 0 and the definitions of W leads to
7 7 I/=\= = 1= _\ Oa
Jeg—Jg = — (%C (@)g -0 —w(a)+ WlAOé) —ds (2.35)
B oy

and one concludes by the local energy balance (2.31) that Jz = Jz. The proof that the equality remains
true even if the path are not well ordered is left to the reader. Let us note that this invariance property
remains true for more general bulk energy density than (2.34) because the proof is essentially based on
the variational character of the damage evolution law. O

The second fundamental property requires an extra assumption which is stated here for future reference.

Hypothesis 6. At each time and almost everywhere, the damage evolution is assumed to follow Oa/dy; <
0.

Remark 8. The condition 0a/0y1 < 0 is automatically satisfied when the crack propagates by wvirtue of
the irreversibility condition and (2.30). Therefore it is sufficient that the damage remains constant in the
netghborhood of the crack tip when the crack does not propagate in order that the condition remains true
at every time.

That leads to the

Proposition 7. Under Hypothesis 6, the path integral is a decreasing function of the path, i.e.

C_ZC_/ — _C_S _C_"
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Proof. 1t suffices to start from (2.35). Then the inner damage criterion (2.29) and Hypothesis 6 give the
desired inequality. O

The last property consists in calculating the path integral for large paths.

Proposition 8. Let ép be the circle of radius p and centered at (0,0). Then when p goes to infinity, one
obtains the following limat for j@p :
Joo i= lim Jo =G — G (2.36)

p—00

where G and G¢ are the rescaled energy release rate and the rescaled dissipated energy given in (2.23) and
(2.26).

Proof. The circle C_p is divided into two complementary parts C_g and C_z, the former corresponding to
0 c[r—1/\/p,—m+1/\/p] and the latter to § € (—m, -7+ 1/,/p)U (7 —1//p, 7). Accordingly, for large
values of p, the damage field is nil on éz and the contribution of this part to the path integral reads

_ 1. _ ou; _
CZ = /C (2C[)O' cONy — O'Z]njayl> ds.

o
P

That corresponds to the usual Rice integral in a pure linear elastic setting [Leblond 2000]. Using the
asymptotic behavior (2.27) of & at infinity and the fact that the missing angular sector tends to 0 when
p goes to infinity, one obtains at the limit

1— 12

(K7 +Ki) = G.

lim j@o =
pP—00 P

On the complementary part C_g, for large values of p, one has:

Hence lim, jc',) =G - G L]

2.2.7 The link with Griffith’s law

We are now in a position to conclude by the
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Proposition 9. As long as the internal length of the material is small by comparison with the dimensions
of the cracked body and provided that the evolution of damage satisfies Hypotheses 4—6, the evolution of
the tip of the crack is governed by Griffith’s law, i.e. the following conditions hold

Irreversibility (>0
Stability G" < Gl (2.37)

Energy balance (G" — GJ)¢ =0

Proof. Let us prove each item of Griffith’s law.

1. The irreversibility condition for £ is a consequence of that for .

2. From Proposition 5, one knows that Jj = nJo < 0 where Jy = lim, o jc-p. By Proposition 7, one
knows that J,, < Jy. From Proposition 8, one knows that J,, = G—Ge.. Hence G" = 77@ < 77(_3c = G/.

3. From Proposition 5, one knows that Jgé = 0. By Proposition 6, one knows that Jool = Jol. From
Proposition 8, one knows that Jo, = G — Gc. Hence G = GU/.

The proof is complete. ]

2.3 Numerical investigation of the propagation of the damage tip

In Section 2.1 cracks have been initiated when the stress is singular. Other initiation process with
no singularity are possible as the one proposed in the case of homogeneous stress in a bar in traction
[Pham & Marigo 2013| of for stress concentration due to a diffusion process [Sicsic et al. 2013]. What
ever, the nucleation type observed, numerically (e.g. Figs. 2.1, 2.6, 2.8), that the damage localizes in
bands of width 7,. In this section, we are interested in the stationary propagation of these damage band.
The first implementations [Bourdin et al. 2000| the length 7, was considered as a numerical parameter
had no physical meaning. In an asymptotic analysis, we still consider that this parameters is small, but it
that it’s value has a meaning. And example of the meaning of such a length can be found on the stability
of uniaxial answers [Pham et al. 2011] or in the thermal shock setting [Sicsic et al. 2013]. Although it is
a small parameter it remains strictly positive. The material length 7,, is small in front of the size of the
structure and all the other dimensions of the structures (e.g. heterogeneities, the cracks length). This
allows for a separation of scale as in the previous sections. Thus only a stationary problem near the tip of
the damage band Py is studied. Let us stress that regarding the stationary evolution of the damage phase
is different then initiation around a notch even when this notch has an angle of 7w and is then assimilated
to a crack. Indeed the displacement, damage and stress field take remarkable values.

We consider that the previous evolution of the the structure has lead to the construction of a damage
band and assume that the localization of damage allows for Hypothesis 5 to hold. Once again the separation
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of scale is based on the use of matched asymptotic expansions as in Section 2.1. Les us repeat that € is
considered as a small parameter. The damage evolution problem can be decomposed into three problems:
(i) the outer problem which gives the behavior of the fields far enough from the crack band and the crack
tip; (ii) the crack band problem which gives the behavior of the fields in or near the crack band but
far enough from the crack tip; (iii) the crack tip problem which gives the behavior of the fields in the
neighborhood of the crack tip.

The outer problem. The order of magnitude of the fields with respect to the small parameter € depends
first on the order of magnitude of the loading and then on the zone where they are evaluated. The
amplitude of the loading is assumed to be of the order of /e:

fC=\ef,F = /e F,U = /e U,e% = /e &°.

At a macroscale the thin process zone around the crack can be neglected and the associated outer problem
is a purely elastic problem posed on the cracked domain Q\T'. Its solution depends linearly on the loading
parameters. Since the magnitude of the loading is of the order of /7, the real displacement and stress
fields can read

u“=vVeu+- -, ocf=\eo+---

where u and o satisfy in Q\T the equilibrium dive +f = 0 and the constitutive relation o = A(e(u) —&°).
The boundary conditions read on = F on Oy, on =0 on I' and u = U on dpQ.

The fields u and o are singular near the tip of the crack. In the case of an isotropic material, the
singular part of U is
U(x) = K1v/rU(0) + Kp/rUp(6) + - - -

where Kj, Ky are the (rescaled) stress intensity factors and Uy, Uy the usual angular functions corre-
sponding to the opening and sliding modes [Leblond 2000| and U (8) = H™(6).

The crack band problem. The displacement, stress and damage are assumed to vary slowly in the
direction of the band. Thus the analysis is essentially one dimensional and the damage evolution follows
that of the optimal profile (2.38).

The crack tip problem. The separation of scale justifies the existence of tip problem as soon as 7 is
small in front of all the other dimensions. Therefore, in the sequel, a dimensionless problem is considered
and always keeping in mind that this is due to a licit rescaling. Let us fix the notations for the study of
the stable propagation of a damage band. The crack is oriented following €; therefore, y; = z1/n, is the
coordinate in the direction to the crack and yo = x2/n,, orthogonal to it. The damage field is still denoted

a(yz) = (1 - MY, (2.38)

« and the optimal profile

2

where yq is the position of the center of the damage band and the half width of the damage zone is 2,
therefore for |ya| > 2 damage vanishes in the band. The only loading parameter is the stress intensity
factor Kg. (r,0) are the polar coordinates from the tip of the crack P;. The study of the crack tip problem
is the goal of this section.
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2.3.1 Geometry and loading of the rescaled problem at the tip of a damage band

The tip domain Q. (Fig. 2.15) is restricted to a large circle
Qr ={(p,0) €[0,R] x (-, m)}

the crack
I'=A{(p,0) € [0, R] x {-~}}

is straight due to the hypothesis of separation of scale. Thus one can work in the basis defined by e;
following the crack and @y orthogonal to it. The domain Qg is considered as a disk of radius 10 whose
contour is the circle 9Q = 9oQ U 9,9. The outer problem has given the behavior of the fields far enough
from the crack band and the crack tip. Thus the loading is that of the singularity from LE.F.M. and
the damage field is equal to 0 in all other direction then that of the crack. The crack band problem, that
Oa/On in the direction of the crack band vanishes. Thus in the case of the tip problem. One can consider
a coin with a loading the singularity of the crack tip. On which the boundary conditions in damage are

prescribed
_ ) _
a =0 on 9yf? a—z:()onﬁvﬂ,

and for the displacement:
u = U(r,0) on 90

where the usual angular functions read

K 0 K 0
UIZE %(ﬁ—cosﬁ)cosi, UQZ? %(/ﬁ—cosﬁ)sini
where Kk = % These boundary conditions are those prescribed by the first order matched asymptotic

expansions. In the disk we consider the crack I';, a set of points such that o = 1, thus this imposes the

boundary conditions:

0
a=1 —u:ug:()onl“

on

In the center of the domain €, an ellipse of minor and major radius 57, and 10n, centered on the point
of coordinates (1,0) is defined. The inner mesh size of the ellipse is h;,. The mesh size on the outer ring
varies progressively from h;y, /m, = 20 to hoyt/nn = 1. The inner coin has 159,766 elements and the outer
ring 163,675 for a total number of 323,441 elements. The total number of nodes is 161,918. Three degree
of freedom (d.o.f.) are declared at each node: the two coordinates of the displacement uj, uz and the
damage field «.

The initial Young modulus for a sound material E = 1, the Poisson coefficient v = 0 and the material’s
Toughness is normalized Gc = 1. A monotonically increasing boundary displacement obtained from the
crack-tip field for a mode-I crack on an isotropic material, scaled by a factor t, is applied. The loading
parameter ¢ evolves between 0 and 1.3 in 200 time steps. The residual rigidity k,, = 107° and the
characteristic size of the domain R/n, = 50
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tKH™(6)

8

Figure 2.16: Damage field at the first time step

Figure 2.15: Geometry of the mesh simulating K = 0. Red totally damaged field a = 1 blue
the loading at the tip pf a damage band. Ellipse sound material & = 0. The domain is a disc of
at the time with a mesh size of h = .1 radius 10.

2.3.2  The first time step and the optimal profile

During the first time step, the loading is nil K = 0. The alternate minimization algorithm captures
the solution of the Laplacien with Neumann boundary conditions. Indeed as there is no loading u = 0 the
damage criteria and consistency condition (Eq. 2.11) become:

wl + 2w Aa = 0, (wi‘ + QWTAQ) a=0

with the boundary condition o = 1 on I'y. Plotting the damage field at the tip of the crack and zooming
on a domain of size 1 X 1 we see the continuous phase of the damage (Fig. 2.17). This continuity is a
consequence of the introduction of the damage of gradient.

The optimal damage profile is captures in most of the damage band except the very extremity
(Fig. 2.18). Here for y; = x1/n, < —1 the damage profile in the damage zone is already that of the
one dimensional study (2.38). Thus even in the tip problem, the influence of the band problem is ob-
served, where the damage evolution follows the optimal profile.

Using polar coordinates shows that the damage profile is flatter and that as the tip the damage profile
is flatten (Fig. 2.19). Thus when it is not loaded, as damage the tip of the damage band fades as quickly
as possible. Let us stress, that this construction is artificial in the sens that o = 1 is directly set. A
progressive loading through a on T is not considered.



62 Chapter 2 : Strength and toughness from crack nucleation to propagation
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Figure 2.18: The damage profile for different distance y; = {—1, —.5, 0} from the tip at the first time step
for i, = .05 compared to the optimal profile

2.3.3 Damage and stress building up to the crack propagation

The crack propagation is defined by the time step where the set of points I'y where the damage has
reached the value 1 increases. From the first time step where there is no loading. While comparing the
stress and damage in front of the crack I';, (Fig. 2.23) stress grows progressively so that the zone on which
the damage descents from 1 to 0. For K = 1.02, which corresponds to t; = 158, the set of damage points
such that o = 1 grows i.e. the crack I'y propagates. This corresponds to the critical stress intensity factor
of Kr. = /EG, = 1 from Irwin’s formula in the rescaled tip problem.
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Figure 2.19: Damage profile following the angle coordinate 6 € [—, 7] for different radius p = {.2,.5,1,2.5}
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Figure 2.20: The damage profile orthogonal to the crack propagation compared to the optimal profile at
the tip of the crack and in the process zone

Figure 2.20 depicts the damage field orthogonal to the direction of the crack. Looking at the cross
section to the tip of the crack (i.e. x; = 0), the damage profile with the optimal profile (2.38) for the
loading corresponding to crack propagation (Fig. 2.20(a)).
progressively. At a given distance from the crack (Fig. 2.20(b)) the damage only increases once the crack
propagates and the optimal profile is once again captured with a certain delay. The loading has not been
adapted to the propagation of the crack which explains the shift of the damage at ¢t; = 170 with the
optimal profile. The entire construction of the damage profile in a crack band and thus the amount of
energy dissipated happens at in front of the crack tip P;. Thus when the crack propagates, for any x; < 0,
the cross section is that of the optimal profile and no more energy dissipation occurs.

In front of the crack, the damage increases
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Figure 2.21: Damage profile for 8 = 45, at different time steps

The two privileges directions, that of the crack and its orthogonal, give us a good description of the
construction of the crack tip. Yet other direction are now investigated. Figure 2.21 the damage field
following a radius of angle § = 45 with the direction of the crack, illustrates the construction of the
damage profile. When the crack propagates the damage profile is above the optimal profile. Thus, at
propagation, we do not have isovalues following a given radius.
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Figure 2.22: Stress evolution at the crack tip for different loading K, Comparison with the theoretical
results from L.E.F.M

The stress computed by the alternate minimization algorithm is compared (Fig. 2.22) with that from
L.E.F.M. The influence zone is larger in the case of o9g then for the component o1;. Out of this zone of
influence, the two stress field coincide. For the former the zone is up to 4 times L. where as the latter
influence zone is restricted to 1.5L..
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2.3.4 Crack Propagation

The evolution of this damage band and that the tip problem really corresponds to a steady state
(Fig. 2.23). Tt is remarkable how locally the stress field and the damage field coincide in their evolution.
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Figure 2.23: Damage and stress evolution at the crack tip for different loading K as a function of the
distance from the tip of the initial crack. Although the loading (i.e. the singularity) is as if the crack has
not propagated, one observes a translation of the stress and damage field.

The crack starts propagation at the time step ¢; = 158, which corresponds to a loading K = 1.03.
Study the state of the damage field for this particular loading. When the crack propagates the damage
field (Fig. 2.24(a)) is very close to the optimal one in all directions. Yet the length of the process zone
is one and half time the half width of the crack band, 7.e. in the physical space three times the internal
length 7.

The stress field is no more singular because of the damage. Yet the damage field becomes singular
(Remark 6). The numerical simulation captures this singularity, which is most visible when plotting the
gradient of the damage for different loadings (Fig. 2.25). This singularity vanishes as predicted when the
crack propagates the damage field becomes regular (Fig. 2.25).

In the one dimensional setting, the stress is always smaller then the critical stress (1.29) at any point
during the entire evolution phase [Pham & Marigo 2013|. In a multidimensional context this condition is
replaced by the damage criteria, which defined the state of admissible stress as a function of the current
damage state. The variational evolution states that if the criteria is not reached damage can not evolve.
Indeed, the damage field only starts to evolve when the criteria Figure 2.26 is reached, although the
computation of the criteria (2.11) is noisy due to the laplacian of the damage field computed from linear
elements.

In the numerical evolution, the alternate minimization captures a local minimum and no guarantee
are given that the irreversibility condition and damage criteria are valid at all points (see e.g. Figs. 2.21,
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Figure 2.24: Damage field following the Radius
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Figure 2.25: Gradient of the damage as a function of the distance from P;. The singularity of the damage
vanishes when the crack propagates

2.24). Here, in this particular setting and as the loading in monotonically increasing, the irreversibility
is automatically fulfilled. Thus enforcing or not the irreversibility condition in the numerical simulations
gives the same results. The criterion is maximum at the tip of the crack and not a little away as it has
been noticed |Simone et al. 2004 for other regularization.
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Figure 2.26: Damage field and damage criteria (2.11) at the tip of the damage band for the loading
K =1{.26, .65, 1.01}

2.3.5 Cohesive interpretation of the tip of the crack

Non local damage models and cohesive crack models enjoy very similar properties. Especially both
present as threshold under the form of a critical stress before nucleation of damage or cracks. Yet the uses
of damage on large structures is very costly in terms of computation. On the other hand cohesive model
to not capture properly the position of cracks nucleation. Therefore many others [Cazes et al. 2009] have
intended to link both formulations and build a transition from non local damage to cohesive models. Here
we claim that in some sens the damage process zones in the damage band ban be viewed as a regularization
of a cohesive crack model which is an intermediate step between damage and Griffith’s surface energy.

The computation of the crack opening, is based on the fact that for any field :

/QVoznnd)dfcnn—_io/W'F—@b_] Uy ds

Therefore the integration of Va - u over a cross section of the damage band converges towards the crack
opening as 7, tends towards zero.

The theoretical profile for cohesive cracks [see Abdelmoula et al. 2010, Appendix|, for v = 0 reads
T — L) 8 o, D

oo =v (55 ) S g

where o is the critical stress of the cohesive model, E the young modulus D, is the length of the cohesive
process zone and V({) is the dimensionless function defined by

V() =v1-C(—C¢In(1++/1-¢)+¢mv/[¢]

it¢ <1, (#0,V(0)=1and V(¢) = 0 otherwise.
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Figure 2.27: Crack Opening as distance from the tip for our damage model, two critical stress for the
cohesive model and that from L.E.F.M.

Taking the critical stress o, = 1.37 computed from (1.29) overestimates the jump. The shape of the
crack opening between the damage simulation and that from cohesive theory are very close with a concave
phase for z; < 0 and convex phase for 0 < 21 < Dy. The limit of this analysis is that the distance of
the process zone is the same as that at the tip of the crack. There is no physical justification for these
two distances to be of the same order. Especially a damage process zone much longer then wide could be
expected. Interpretation of the thickness of the damage band as that of the thickness of the process zone.

However, as the thickness and the width of the damage process zone have no reason of being of the same
width, the current model is unable to truly represent a cohesive model. Adding plasticity [Alessi et al. 2013]
seems a much promising bet as it adds the ability to predict real jumps of the displacement.

2.3.6  The case of branching under mode II loading

Here, the damage process at the tip under the loading of a mode II is investigated. Thus the damage
band is considered established as in Section 2.3.2 and submitted to the mode II loading of L.E.F.M. Yet
the secondary crack does not leave from the tip of the crack in y; = 0 but rather in this simulation from
y1 = —2. Let us state that the correct angle predicted in [Amestoy & Leblond 1992| is found (Fig. 2.28)
and other angles are not investigated. The difference with [Bourdin el al. 2000] is that the inital state
here is an established damage band and not a crack.
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Figure 2.28: Branching on Mode IT loading: Damage field for the time step {0, 100, 148, 149}

Conclusion of the chapter

Let us mention that the fundamental results of this chapter are asymptotic properties. In the case of
nucleation if the size of the structure is of the same size the results would not hold e.g. for a plate with
a notch. In Proposition 9, the crack band behaves like a Griffith crack only when the internal length 7 is
small compared to any other length. For instance, the result is not true any more during the nucleation
stage of the crack. Our result does not hold when the tip of the crack reaches the boundary of the body
or is close to an inclusion. In particular, the “effective” propagation of crack bands in composite materials
where the distance between the heterogeneities is of the same order as the internal length cannot be
obtained with the asymptotic method proposed here.

The construction of the critical loading for crack nucleation (for instance, at the tip of a notch) with
this type of gradient damage model is a very important task. Here it has been treated with a separation
of scales method. First, the dimensionless problem has a scale effect appear as a competition between
the size of the structure and the internal length. This means that all things being equal (geometry and
material), the crack will not nucleate for the same loading as the size of the structure increases. Then
the outer problem, far from the notch, is only elastic and geometric stress intensity factor is constructed.
Then in the inner problem, in the vicinity of the notch, the problem is generic in the sens that it does
not depend nor on the size of the structure nor on its geometry. This allows to compute a material stress
intensity factor. The product of all three terms allows to determine the critical loading. Accurate results
on the length of the initial cracks, at this loading, can not be established in the current framework as they
are a global property. Indeed, the initial length would depend on the entire structure and is much more
difficult to establish in a general sens.

Let us emphasize that the variational character of the damage evolution law is fundamental to make
the link with Griffith’s law. All the properties (and the definition itself) of the generalized Rice integral
are based on the first order stability conditions and the energy balance. Therefore one can suspect that
such a result is no more true if one adopts constitutive laws which are not connected with these energy
principles. Especially in our approach, the construction of the surface energy density G. as an intrinsic
material parameter is a consequence of the characteristic damage profile not being history dependent.
Several proofs are given here in a simplified context but one can expect that they could be extended to a



70 Chapter 2 : Strength and toughness from crack nucleation to propagation

more general one. In particular, an interesting challenge would be to consider anisotropic materials and
to find the dependence of the surface energy density on the orientation of the crack.

The link with Griffith’s law is made with the sole help of the first order stability conditions and not
with the complete stability condition. It is an advantage by comparison with the Gamma-convergence
result based on global minimization. One can consider that our analysis reinforces this convergence result.
On the other hand, it is interesting to explore all the consequences of the stability condition. In particular,
one notes in the numerical simulations of the thermal shock that the cracks are periodically distributed.
An interesting challenge is to give a theoretical proof of this global property of periodicity and even to
give a method for calculating the period in terms of the parameters of the problem. This will be achieved
by considering second order stability conditions in Chapter 3.

The alternate minimization captures the evolution in the tip of the damage band problem which is
a very subtle phenomenon. The construction of the first state, for a vanishing loading, is artificial. The
optimal profile can be found very near the crack tip. The stress is obviously bounded. The crack propagates
for the expected loading from linear elastic fracture mechanics. The displacement field in the process zone
is identical as that a cohesive zone crack model but with a different critical stress.
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This chapter studies the initiation of cracks in the thermal shock problem through the variational

analysis of

the quasi-static evolution of the gradient damage model. A two-dimensional semi-infinite slab

is considered with an imposed temperature drop on its free surface. The damage model is formulated in the

framework

of the variational theory of rate-independent processes based on the principles of irreversibility,

stability and energy balance. In the case of a sufficiently severe shock, we show that damage immediately
occurs and that its evolution follows first a fundamental branch without localization. Then it bifurcates into

another branch in which damage localization will take place to finally generate cracks. The determination

of the time

cracks and

and mode of that bifurcation allows us to explain the periodic distribution of the so-initiated
to calculate the crack spacing in terms of the material and loading parameters. Especially, the

notions of bifurcation and loss of stability must be distinguished as unlike in elastic buckling where they
often coincide, as in plasticity [Nguyen 1984, Nguyen 1987] it is not the case here. Numerical investigations

complete and quantify the analytical results.
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Specifically the chapter is organized as follows. Section 3.2 formalizes the thermal shock problem
in a two dimensional setting and recalls the formulation of the gradient damage model. Section 3.3
establishes the fundamental solution in the elastic and damaged case. The following section is devoted
to the bifurcation and loss of stability of this fundamental branch. In Section 3.4.1 we formalize the
rate problem, then we characterize bifurcation and stability by Rayleigh’s ratio minimization (Section
3.4.2) and give the main properties of the Rayleigh ratio (Section 3.4.3). We then characterize the first
bifurcation (Section 3.4.4). The numerical computation are gathered in Section 3.5, dealing first with the
fundamental solution and then with the bifurcation problem. The key results are resumed and commented
in Section 3.6.

3.1 Introduction: the model problem of the thermal shock

The shrinkage of materials, induced by cooling or drying, may lead to arrays of regularly spaced
cracks in a range of phenomena. Examples of such a situation come from various fields: civil engineer-
ing with the drying of concrete [Bisschop & Wittel 2011|, mechanical engineering with the exposure of
glass |Geyer & Nemat-Nasser 1982 or ceramics to a thermal shock [Bahr et al. 2010, Shao et al. 2010],
geomaterials with the drying of soils [Morris et al. 1992, Chertkov 2002, Goehring et al. 2009] or col-
loidal suspensions [Gauthier et al. 2010], and the thermal shocks in overexploited gas storage caverns
[Bérest et al. 2012|. These cracks are of importance as they can weaken the body or govern future dif-
fusion process, modify the strength of the material [Shao et al. 2011] or compromise the safety of the
structure. The thermal shock setting, that is a body at uniform setting temperature suddenly exposed to
a different temperature is often used as a generic problem for the drying and cooling of materials.

Figure 3.1: Crack pattern in a slab after a thermal shock [Jiang et al. 2012]

The theoretical and numerical aspects of multiple cracking under thermal shock have been
studied by many authors using classical tools of the Griffith theory of fracture mechan-
ics |[Hasselman 1969, Bazant et al. 1979, Bahr et al. 1988, Lu & Fleck 1998, Jagla 2002, Jenkins 2005,
Bahr et al. 2010, Jiang et al. 2012|. The most intriguing phenomena are the period doubling in the crack
spacing during the propagation inside the body and the crack initiation. The existing studies assume
a priors that the cracks are straight, parallel to each other, and periodically distributed. Hence, they
usually perform energetic analyses based on numerical or semi-analytical calculations of the strain energy
associated to uniform or alternate crack propagation modes. In this context, [Bazant et al. 1979] explain
selective crack arrest using a bifurcation analysis based on the change of sign of the second derivative
of the strain energy with respect to the crack penetration. [Bahr et al. 1988| performs a similar analy-
sis with numerical boundary element calculations and discuss crack initiation assuming periodicity and
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the presence of initial flaws. [Jagla 2002] discusses the initiation and propagation of the periodic crack
pattern using a stress criterion for initiation and energy minimality for optimal spacing. More recently,
[Jenkins 2005] and [Jiang et al. 2012| study spacing and initiation by global minimization of the Griffith
energy. [Bahr et al. 2010] derives semi-analytical scale laws for the spacing of the cracks as a function of
the penetration and the severity of the thermal shock.

Differently from previous works on thermal shocks, where initiation is obtained by introducing initial
flows or assuming the topology of the crack pattern, here we start with a truly sound and uniform material.
By assuming a perfect conductivity at the surface of the thermal shock, we consider a Dirichlet boundary
condition on the temperature and use the analytically calculated temperature field, function of space and
time, to evaluate the mechanical loading in the form of thermally induced inelastic strains. The loading
is controlled by the thermal shock mildness parameter © = o./(Ead), where o, is the critical stress of
the material, ¢ the temperature drop at the surface, a the thermal expansion coefficient and E the Young
modulus. For mild shocks (© > 1), one trivially obtains that the solution remains purely elastic and the
damage is null at any time. For sufficiently severe shock (O < 1), the damage criterion is reached at the
beginning of the evolution. Looking for a solution invariant in the direction x; parallel to the surface
of thermal shock, we show the existence of a fundamental solution with diffused damage localized in a
finite strip (Proposition 11), where the damage field monotonically decreases from a maximum value at
the surface to zero at a finite depth Dj.

Hence, we formulate the rate problem (Proposition 13) and the second-order stability conditions about
this fundamental solution, whose uniqueness and stability are determined through the minimization of
a Rayleigh ratio on linear spaces or convex cones (Proposition 16). The main result of this chapter is
the solution of this bifurcation and stability problem (Proposition 18), which is obtained by adopting a
partial Fourier decomposition in the direction parallel to the surface of the slab. We prove the existence
of a finite time ¢, from which a bifurcation from the fundamental branch can occur, the fundamental
branch becoming unstable at a later time t;. Moreover we show that the bifurcated solution is stable
(Proposition 15) and characterized by a finite wavelength A\, proportional to the internal length 7 of
the material. This bifurcated solution represents the onset of the localization phenomena leading to the
establishment of the periodic crack pattern observed in the experiments. Quantitative results are obtained
through the numerical solution of a one-dimensional boundary value problem for the fundamental branch
and of a parametric one-dimensional eigenvalue problem for establishing the key properties of the bifurcated
solution as a function of the loading parameter © and the Poisson ratio.

3.2 Setting of the problem: the body and its thermal loading

The natural reference configuration of the plate is the semi-infinite strip {2 = (0, +L) x (0, 4+00). The
length L is assumed to be much greater than the internal length 7 of the material. This assumption plays
a role in the bifurcation and stability analyses (Section 3.4). The body forces are neglected. The sides
21 = 0 or L are submitted to boundary conditions so that the normal displacement and the shear stress
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vanish, whereas the side x9 = 0 is free. Accordingly, the mechanical boundary conditions read as

u1|x1:0 orL =0, 021|x1:0 orL =0, (3.1)

092,4,—0 = 012]4y—0 = 0.

In ;1 =0 or L and 22 = 0 no boundary condition are imposed on the damage field, which can thus freely
evolve. Up to time 0, the plate is at the reference uniform temperature Ty and hence in its reference
configuration, stress free and undamaged:

w(x) =0, ex)=0, a(x)=0, oix)=0, VxeQ, Vt<O0.

T =Ty -1

To
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Figure 3.2: Thermal shock problem statement: Mechanical and thermal boundary conditions of a plate
with an intial homogeneous temperature Ty

The plate is constituted of a material whose behavior law is that of Example 1. A is the stiffness tensor
of the sound material. Thus, (1 — «)?A represents the stiffness tensor of the material in the damage state
«, it decreases from A to 0 when « grows from 0 to 1. The material being isotropic and by virtue of the
plane stress assumption, the in-plane stiffness coefficients read for i, j, k,l € {1,2} as

vE
Aijkl = ——=50ij01 +

1-.2 (dirdj1 + dadjn), (3.3)

E
21+v)
where E represents the Young modulus of the sound material and v is the Poisson ratio, which does not
change throughout the damage process.

From time 0, a colder temperature T; = T — 9 is prescribed on the side 9 = 0. Assuming that the
temperature field is not influenced by the damage evolution and that the sides 1 = 0 or L are thermally
insulated, the diffusion of the temperature inside the body is governed by the classical heat equation.
Therefore, assuming the temperature boundary condition in xo = 0 is of Dirichlet type, the temperature
field at time ¢ > 0 is given by

Ty(x) = To — ﬁfc(Q’“"T%) (3.4)
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where f. it the complementary error function, strictly decreasing from 1 in zero (i.e. at the surface) to 0

2 o0
fo(z) = N / e 5 ds,

and k¢ is the thermal diffusivity, a material constant. Thus the temperature field is uniform with respect to

at infinity, 4.e.

the x1 direction. The influence of the damage where the permeability can change of order of magnitude has
been studied by homogenization in [Dormieux & Kondo 2004, Dormieux et al. 2006], but this phenomena
is not considered here.

— 2kt =0.1

4 ! ee 2/KI=05|]
me 2Vkid =1.0

..... 2vket =5.0

Figure 3.3: The complementary error function

At every time t, the elastic strain field ef is the difference between the total strain field e; and the
thermal strain field e!?. Since the material is isotropic, assuming that the shrinkage is linear, this latter
one reads as e (x) = a(Ty(x) — To)I, where a denotes the thermal dilatation coefficient of the material
and I is the identity tensor of M. Accordingly, the thermal and elastic strain fields read as

e (x) = —avf, (

€8(x) = e(w)(x) + adl e ( (3.5)

2F> 2F>

where £(u;) is the symmetrized part of the gradient of ;.

Only the first stage of the damage process will be considered in this chapter, so that a reaches nowhere
the critical value 1 corresponding to the loss of rigidity of the material. Accordingly, the set of admissible
damage fields D and the set of kinematically admissible displacement fields C are defined as

D:={BcHY(N) :0<B<1inQ}, C:={veH'(Q)?:v;=00nz; =0o0rL} (3.6)

where H'(Q) denotes the usual Sobolev space of functions which are square integrable over Q and whose
distributional gradient is also square integrable. The spaces D and C are time independent and are
equipped with the natural norm of H'(Q). With every pair of admissible displacement and damage fields,
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i.e. with every (v, ) € CxD, is associated the total energy of the body at time ¢ in this state, that is

Pi(v.f) = /Q W(e(v) - e, 5, V) dx

1 2 th th W1772
= [ (30-PPAEW) e )~ ) +ws+ ULV VB dx (37
Q

where e(v) denotes the symmetrized gradient of v.

Throughout the chapter an extensive use of the directional derivatives of P; and its partial derivatives
with respect to time are made. All these derivatives up to the second order are defined below.

Definition 4 (Derivatives of the total energy).

1. First partial deriwvative with respect to t:
Pu(v.) = = [ (1= BPAe(v) —el") el ax (39
2. Second partial derivative with respect to t:
Pi(v, ) = /Q (1= B)2A & — (1 B)A(e(v) - €f") - &) ax; (3.9)
3. First directional derivative of Py at (u, ) in the direction (v, [3):

Pitwa)w.d) = [ ((1- oA~ ) -ev)

(w1 = (1= )A(e(u) — &) - (e(w) — &") ) B+ win?Va - VB) dx; (3.10)
4. Second directional derivative of Py at (u, ) in the direction (v, [):

Plwa)v.d) = [ ((1=0PAc(v)-e(v) = 4(1 - a)A(e(w) — ") -£(v)3

FA(e(u) — eth) - (e(u) — )82 + win? V5 - Vﬁ) dx; (3.11)

In (3.11), P{(u,«) is considered as a quadratic form. The associated symmetric bilinear form is
still denoted by P/ (u, ), but is discriminated by denoting Py (u, ) ((v, B), (v, B)) its application to
a pair of directions. Accordingly, one has P} (u,a)(v,B) =P/ (u,a) (v, B), (v, ).

5. Second order cross term:

Pl(u, a)(v, §) = /Q ( — (1—a)?Aelh - e(v) + 2(1 — a)A(e(u) — ) - égh5> dx. (3.12)



3.2. Setting of the problem: the body and its thermal loading 77

To simplify the presentation, only evolutions smooth both in space and time will be considered. It is
not really a restrictive assumption. Indeed, the main interest is the loss of uniqueness and of stability of the
“fundamental branch” which is smooth as seen in the next section. Specifically, the following smoothness
assumption is made

Hypothesis 7. The only evolutions considered are those such that
1. Each component of u; and oy are continuously differentiable in Q and belong to H*(Q) at every
t>0;

2.t — u and t = oy are continuous and piecewise continuous differentiable. The right and the left
time derivatives 1'1;t and dti exrist at every time, 1'115i belongs to C and dti belongs to DT, where

DT .= H Q)N {B > 0}.

From the damage evolution law (Hypothesis 4) and specifically Proposition 3, the first order stability
conditions (1.14)—(1.15)are satisfied if and only if:

dive; =01in Q, oy =0on xo =0, oe;-eo=0onxz; =0o0rlL, (3.13)
(1 — ay)Ae§ - €8 —wy +win?Aay < 0in %at >0 on 0N. (3.14)
n

Let us use the energy balance (1.11) which reads in the current setting as

t .
Pi(ug, ar) —|—/ </ o, - ethy dx) ds = 0.
0 \Ja

Owing to the smoothness assumption on the time evolution, taking the derivative of (1.11) with respect
to t leads to

d
0 = dt/QW(E(ut)_egh’at’vat)dx-i-/ﬂat-é;hdx
= / (O't . E(ilt) - Ytdt +q¢ - vat) dx
Q

_ / (div o i+ (Yo + div qt)at> dx + / (mn iyt ndt> ds. (3.15)
Q

N
Taking into account the equilibrium and the boundary conditions (3.13), the terms containing o vanish
in (3.15). By virtue of the irreversibility conditions and the inequalities (3.14), the equality (3.15) holds
if an only if the following pointwise equalities hold

Oay

((1 —ay)Aegf - €] —wi + WlnzAat> &t =01in Q, o = 0 on 09. (3.16)
n

These equalities can be seen as the local energy balances. They correspond also to what is generally
called the consistency relations in Kuhn-Tucker conditions. (1.16) becomes
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Proposition 10. A smooth stable evolution t — (uy, ) € CxD must satisfy the following set of local
conditions at every time t > 0 (with the convention that at any time when t — «y is not differentiable, the
relations hold both for &; and & ):

1. The Kuhn-Tucker conditions in the bulk
dt Z 07
In Q: (1 —a)Ale(uy) — €M) - (e(uy) — eth) — wy +win?Aa; <0,
((1 —a)A(e(wy) — ) - (e(uy) — i) —wy + W1n2Aat) & = 0.

2. The Kuhn-Tucker conditions on the boundary

OndQ: >0, %zo, %atzo.
on on

3. The equilibrium equations and the static boundary conditions

dive; =0 in €, oer =0 o0nzo =0, oie1-e=0o0nzx =0 orlL.

4. The stress-strain relation

o = (1 — a)?Ale(uy) — et) in Q.

These conditions are sufficient in order for the irreversibility condition and the energy balance be satisfied,
but not sufficient to verify the full stability condition (1.10). Accordingly, a smooth evolution which satisfies
only the four conditions above will be called a stationary evolution.

3.3 The fundamental branch

3.3.1 The elastic response

Let us consider the elastic response of the plate, i.e. the response such that oy = 0 at every ¢t. The
stress and strain fields are given by

L2 L2

2v/ket 2vket

from which one easily deduces u; (in particular u; - e; = 0 and u; - ez only depends on x2). Since |oy11]
is maximal on the side xo = 0 where it takes the value Ead at every ¢ > 0, the damage criterion (3.14)
is satisfied everywhere in  at every time if and only if a < o./E with 0. = v/wiE given by (1.29).
Specifically, one has

o(x) = Eav fc< >e1 ® ey, e(w)(x) = —(1+v)av fc< >e2 ® ey, (3.17)



3.3. The fundamental branch 79

1. If Ea?9¥? < wy, then inserting (3.17) into (3.10) leads to

Pz(Ut,O)(V — ut,ﬁ) = /Q (Wl — E32192 fc(z\'j%)2> ﬁdX, vt > O,V(V,,B) € CxD.

Since fc(x) decreases from 1 to 0 when z grows from 0 to oo, Pj(us, a)(v — ug, 8) > 0 and the
equality holds if and only if § = 0 everywhere in Q. Moreover, by virtue of (3.11), in such directions
the second derivative reads as

Pl (0,0) (v — 1, 0) = /Q Ae(v) - e(v) dx.

Therefore P} (ug,0)(v — ut,0) > 0 for every v € C \ {0} and hence the elastic response is stable at
every time ¢ > 0 in all directions by virtue of Proposition 2.

2. If Ea?¥? > wy, then at every time ¢ > 0 there exists a subdomain of Q where the damage criterion
(3.14) is not satisfied. Hence, the elastic response is never stable. Damage occurs as soon as ¢ > 0.

3.3.2 The fundamental damage branch

From now on only the case when aE > o, will be considered. The dimensionless loading parameter
O which characterizes the mildness of the thermal shock

<1 (3.18)

is introduced. If the elastic response is considered, one sees that the damage criterion (3.14) is violated
in the strip 0 < 2o < 2f.71(©)v/ket which grows progressively with time. One can suspect that damage
occurs in this strip. Moreover, since the loading and the geometry are invariant with respect to the x;
direction, one can seek first for an evolution which only depends on z2 and t. Accordingly, a stationary
evolution (uj, «;) such that o is of the form

0i(x) = ar(y), 7= 0y T2
t - Tya - (_)777 y_2\/@

is treated. Where new spatial and time variables inspired by the thermal diffusion process have been

(3.19)

introduced. Inserting this form into (3.13), it is easy to see that the displacement field is the same as the
elastic one and hence

e(u;)(x) =&,-(y) := —(1 +v)adf.(y)es ® es. (3.20)
The stress field is different because of the damage evolution
or(x) = a,(y) :== (1 - a,(y))*Ead f.(y)e; @ ey. (3.21)

It remains to find the evolution of the damage @, in the coordinates (y, 7). Assuming that the support
of &, is the interval [0, ;) where 0, has to be determined, by virtue of (3.14) and (3.16), &, must satisfy
the following differential equation in this interval
1 d?a,
72 dy?

(y) +fe()’(1 —ar(y) =0°  Vye(0,,). (3.22)
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The Kuhn-Tucker condition at xo = 0 requires that the first derivative of &, vanishes at y = 0. The
continuity of &, and of its first derivative at y = d, require that both quantities vanish. Therefore the
boundary conditions read

dau,

dy

da;

dy

0)=0, a(s)=0, (6,) = 0. (3.23)

Moreover, the damage criterion is satisfied for y > d, if and only if f.(6;) < © and hence if and only if
6, > f.1(O). (3.24)

The existence and the uniqueness of @, and J, as a solution of (3.22)-(3.24) is a consequence of the
following

Proposition 11. At each time T > 0 the damage field &, is necessarily the unique minimizer of P, over

{B € H(0,00) : 0 < B <1}, where

Pri)i= [ (a0 + R0 - B2 + %50 (3:25)

Accordingly, the support of &, is really a finite interval [0,0,) and (&, d;) satisfy (3.22)~(3.24). Moreover
&, is monotonically decreasing in [0,6;) from a&-(0) < 1 to 0.

Proof. The proof goes as follows. First the existence and uniqueness of minimizers is established. Then 0
is proven not to be a minimizer. The regularity of &, and its support are established. The proof is given
in Appendix C.1. O

From the characterization of &, it is easy to obtain its asymptotic behavior at small times and at
large times. This leads to the

Proposition 12 (Asymptotic behaviors of &, ).

1. When 7 tends to 0, (&, /72%,8;) strongly converges in H'(0,00) xR to (ap, o) given by

So is the unique positive number such that ©25y = 060 fo(y)? dy, (3.26)
v (y) = 62 —f(y)? i € [0, 4
ao(y) =0 if Yy >do

2. When T tends to oo, (a,d,) strongly converges in L*(0,00) xR to (Gieo,d00) given by

0o =f71(O),  anoly) = fe(y)? Fyellix) (3.28)

0 if Y200
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Proof. This result is quite natural in view of (3.22)-(3.23). It can be rigorously proved by virtue of
Proposition 11 and using classical arguments of functional analysis based on first estimates, weak and
strong convergences. The proof is given in Appendix C.2. O

Thus Proposition 12 gives the typical behavior for short and long times. The impact of © easily be
illustrated on positioning ©, dy and o, on the graph of f.> (Fig. 3.4) and mild loading will lead to very
close initial and final diffusivity whereas for severe loading the initial diffusivity which be much higher.

Figure 3.4: Geometrical interpretation of the initial dg and final d, diffusivity. &g verifies Maxwell line:
the two gray area are equal.

In order that ¢ — (u},«}) be an admissible evolution (at least a stationary evolution), it remains to
verify that ¢t — o satisfies the irreversibility condition, 7.e. is monotonically increasing. Unfortunately,
this property cannot be proven analytically and will be only checked numerically. Indeed, using the chain
rule, &; (x) reads as

cws oy dog, Oy . dr

The first term in the right hand side above is positive because y — @, (y) is monotonically decreasing at
given time and y is a decreasing function of ¢ at given xo. Yet, 7 — @, is not monotonically increasing.
Indeed, 7 — 0, is in fact monotonically decreasing. (In particular one immediately deduces from (3.26)
and (3.28) that Jp > do.) Consequently, the second term in the right hand side above is not always
positive and one cannot conclude. Accordingly, one adopts the following

Hypothesis 8 (Monotonicity of t — a5). Throughout the next section t — «f is assumed to be monotoni-
cally increasing and hence that the depth D} := 26.v/kct of the damage zone associated with the fundamental
branch is an increasing function of time. Those properties will be checked numerically in Section 3.5.



82 Chapter 3 : Thermal Shock

3.4 Bifurcation from and instability of the fundamental branch

In the wake of [Nguyen 1994, Nguyen 2000| bifurcation and stability theory is used. It has been
introduced in the case of non local damage for the selection of solutions in [Benallal & Marigo 2007]. The
response can follow the fundamental branch only as long as the associated state is stable. But the evolution
can bifurcate on another branch before the loss of stability of the fundamental branch, whenever such a
branch exists and is itself stable (at least in a neighborhood of the bifurcation point). Accordingly, it is
important to identify the possible points of bifurcation on the fundamental branch. It is the aim of this
section.

3.4.1 Setting of the rate problem

Let t > 0 be a given time and (uj,a;) be the associated state of the fundamental branch, given
by (3.19)—(3.24). Let us study the evolution problem in the time interval [t,¢ + t'), with ¢’ > 0 and
small enough, assuming that the state of the body is the fundamental one (ujf,a;) at time t. Let
{(us, @) sepp 1) be @ possible solution of the evolution problem during the time interval [t,¢ +t'). One
assumes that the evolution is sufficiently smooth so that the right derivative exists at ¢t. This derivative
denoted (u, &) is defined by

N « T | «
u= 1}1118 E(ut+h - uy), o= 1}5101 E(O‘H-h — o), (3:29)

these limits being understood in the sense of the natural norm of C xD. Moreover, the construction of
the rate problem giving (1, &) needs an additional smoothness assumption relative to the growth of the
damage zone. Specifically, one adopts the following

Hypothesis 9 (Smooth growth of the damage zone). Let Q2 be the damage zone at time s € [t,t +t') in
the evolution {(us, )}y pyrr), Go€

Ql={xecQ : asx) >0} (3.30)

Thus Qf = (0,L)x[0,D}). By virtue of the irreversibility condition and Hypothesis 8, s — Q% is increasing.
One assumes that this growth is smooth in the sense that there exists C' > 0 such that

Q4\ Qf  (0,L)x[D}, D} + C(s —t)).
Thus, the new damaging points in the time interval (t,s) are included in a strip of width C(s —t).
Of course, if the evolution follows the fundamental branch, then (0, &) = (0}, &;) and Hypothesis 9 is
satisfied because 7 — 9§, is smooth.

Our purpose is to find whether another rate is possible, recalling that only the case © < 1 is considered.
Imposing the evolution to satisfy the three items (IR), (ST) and (EB) and Hypothesis 7, one deduces the
following variational formulation for the rate problem.



3.4. Bifurcation from and instability of the fundamental branch 83

Proposition 13 (The rate problem). Lett > 0 be a given time. At this time, the rate (0, &) of any branch
which is solution of the evolution problem and follows the fundamental branch up to time t is such that

x = (0,a) €CxDf,  VE=(v,f) €eCxD;
P ) (€ = X) + PLxi) (€ —x) > 0. (3.31)

In (3.31) D; is the set of admissible damage rate fields at time t, i.e.

Df={BeH(Q):>0mnQ, B=0nQ\Q},  Qf=(0,L)x[0,D}).

Proof. The proof given in C.3 is based on the derivation of the first order stability condition and the
expansion of the energy balance at t + h The regularity assumptions of Hypotheses 7 and 9 are key. [

D;r is time dependent unlike D as Q¢ (3.30) evolves with time as the fundamental solution penetrates
into the body.

3.4.2 Characterization of bifurcation and stability by Rayleigh’s ratio minimization

The rate x; = (0f, &;) is solution of (3.31). The question is to know whether another solution exists.
The uniqueness is guaranteed when the quadratic form P/ (x;) is positive definite on the linear space
C x Dy, Dy denoting the linear space generated by Df, i.e.

D,={BeHY(Q):5=0inQ\ Q. (3.32)
Indeed, in such a case, let us consider another solution x. Making & = x} in (3.31):
Py (i) (X = %) + Pixi) (ki — %) > 0. (3.33)
Making & = x in the variational inequality satisfied by x;, gives
Py (X)X = Xi) + Pi(x;) (x = X7) 2 0. (3.34)

The addition of the two inequalities (3.33)-(3.34) leads to P} (x;)(x — x;) < 0 which is possible only if
x = x; when P/'(x;) is positive definite.

Let us now consider the question of the stability of (uj,a;). By virtue of Proposition 2, this funda-
mental state is stable only if Py (x;)(€) >0, for all £ € CxD;", and if P} (x;)(&) > 0 for all rates £ # 0
in CxD;f. Accordingly, the stability is governed by the positivity of P/ (x}) on CxDjf.

By virtue of (3.11), P/ (x}) can read as the difference of two definite positive quadratic forms on CxD;,
7.€.

Pi(xi) = Af = B;
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with

A (v,B) = /Q (A((l —af)e(v) —2e5*B) - (1 — af)e(v) — 2&5*B) + win*V3 - Vﬂ) dx, (3.35)

T2
Bi(p) = /QBAef* -e8* B2 dx, ef"(x) = av fc(r/@> (e1 ®e1 —rvex ® e). (3.36)
where e§*(x) comes from (3.5) and (3.17). Accordingly, one has:
Proposition 14. The study of the positivity of P} is equivalent to compare the following Rayleigh ratio
Ry with 1:

Af(v,B) .
Ritv.8) =1 Big) PO (3.37)
400 otherwise

Specifically, the possibility of bifurcation from the fundamental state is given by

b . .
R = min R, R >1 = no bifurcation (3.38)
CxDy Ri’ <]l = bifurcation possible
while for the stability of the fundamental state one gets
Ri>1 = tabilit
RS := min R}, ‘ Sy (3.39)
exDfF Ri <1 = instability

Remark 9. By standard arguments one can prove that both minimization problems admit a solution. Since
the dependence on time of the fundamental state is smooth, so is the dependence on time of the minima
RV and R;. Since Dt+ C Dy, one immediately gets RY < Ry and hence one can suspect that a bifurcation
occurs before the instability. The proof of that result as well as the determination of the times t, and t
when the bifurcation and the loss of stability occur are the aim of the next subsections.

The bifurcated branch is only observed if it corresponds to stable states. Thus the following result
characterizes the neighboring states after bifurcation from the stable fundamental branch.

Proposition 15. Let (uj, o) be the state of the fundamental branch at time t < ts. Let s — (us,a5) be a
stationary evolution (as defined in Proposition 10) in the time interval [t,t+t") which starts from (uf, o)
at time t. Then for t' sufficiently small, all the states of this branch satisfy (ST) and are thus stable.

Proof. The proof is given in C.4 and uses a continuity argument. O

3.4.3 Some properties of Rayleigh’s ratio minimizations

Let &€ = (¥, 3) be a minimizer of R} over CxD;. It satisfies the following optimal conditions which
involve the symmetric bilinear forms Aj(-,-) and B (:,) associated with the quadratic forms Af(-) and
By (-): ) ) _

A{(&.€) =RI B{(B.8),  VE=(v,B) ECxDx. (3.40)
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By standard arguments, one deduces the natural boundary conditions 83/8:31 = 0on x; = 0orlL.
Therefore, as it is suggested by the x1 independence of the fundamental state, one can decompose 3 into
the following Fourier series:

T2

B = 3 (Qeos (k). =5

keN

(3.41)

where one introduces the change of coordinate xzo + ( in order that the support of the functions /3"‘ be
the fix interval [0,1). Accordingly, the 3*’s can be seen as elements of Hy,

Ho = {B € H(0,1): (1) =0}.

In the same way, using the boundary conditions 0; = 0, £12(Vv) = 0 and hence 902/0x1 =0 on x; =0 or L,
v can be decomposed as follows:

v(x) = Z 2290,/ ket (Vf(() sin (/mrx—l_l) e1 + VF(¢) cos (kﬂ%) 62) (3.42)

keN
where the V¥’s are normalized to simplify future expressions and belong to H,

H = H'(0,00)%

Considering only the rates (v, ) in CxD; which can be decomposed in the same manner and using the
orthogonality between the trigonometric functions of x; entering in the expansions of (v, 3), the different
modes (V*, 3¥) are uncoupled from each other. Specifically A} and B} can read as

Ar(v,B) =Y _AF(VE ) Br(B) =) BE(BY).

keN keN

Therefore, if one introduces the Rayleigh ratios RF(V, ) = A¥(V, 8)/BF(B) for k € N, then

R? = min min RY. (3.43)
kEN HxHo
Indeed, let RF be the minimum of R¥ over HxHy and let (V;¥, 3F) be a minimizer. Let k; be a minimizer
of k — RE. All these minimizers exist. Then A¥(V, 8) > RFBF(B) for all k € N and all (V, 8) € HxH,.
Therefore, R > RF. But since RF* = R (V;*, 3F*), one gets RF* > R and hence Rf* = R?.

Finally, after a last change of variable (3.47) and introducing the assumption that the internal length
7 is small by comparison with the width of the body L, the following proposition holds:

Proposition 16. Assuming that n < L, at a given time t > 0, the minimum of the Rayleigh ratio R}
over C XDy is given by
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AV, B8) .
_ _ Y 7 0
R —minmin RS, REV.9)={ B(5) 70 (3.44)
- 0 400 otherwise

where the dimensionless quadratic forms A% and B, are given by

1 —a,(6:¢))? 1—-v

ave = | Rt (rf“vl(o? + V(0 + 2V (QVH(Q) + —5— (V) + %(0)2) a¢

1
+ [ (~ 40 = a5 ONGORAGB() + 460 PBO?) de
0

1
s | (RBICP+702) ac (3.45)
1
B.(5) = /O 31(6:C)2B(C)? dC. (3.46)

The optimal “wave number” ky is related to the optimal dimensionless “wave number” iy (minimizer of
RY) by
. ks L 2kt
ky = -, = , 3.47
tTresrn T op (347)

and, since n K L, the discrete minimization problem over N for k can be replaced by a continuous mini-

mization problem over RT for k.

Proof. The change of variable ( = x2/Dj reduces the support of 5 to [0,1). By virtue of (3.43), it suffices
to insert (3.41) and (3.42) into (3.35)—(3.37) to obtain after some calculations (3.44)-(3.47). O

The next Proposition gives some useful estimates of the Rayleigh ratio minima.

Proposition 17 (Some estimates of R?, mingg, RS and Rf).

1. There exists C > 0 such that ming.qgy, RE > % for all 7> 0 and all kK > 0;
T

2. lim_yo R? = limr_so <minHmo 7%:&) — Jo00, Vi > 0;

3. limg_s00 R? < limy_y00 RS < 1;

4. minggy, RY > 4/3, V7 > 0. Moreover, lim,_,o, mingy, R = 4/3.

5. For gwen T > 0,

. mingpgy, RE 1
lim 5 = 553
K—00 K 357_7'

Proof. The proof is given in C.5. O
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3.4.4 Determination of the first bifurcation

The major result of this chapter can now be established

Proposition 18. There exists a time t, > 0 such that Rf > 1,Vt < t and Rbb = 1. Therefore ty is the
first time at which a bifurcation from the fundamental branch can occur. The fundamental branch is still
stable at this time but becomes definitively unstable at a time ts such that t, < ts < 400.

Moreover, at time ty, the rate problem admits other solutions than the rate (1'1;1, (i;fb) corresponding to
the fundamental branch. Such bifurcation rates (0, &) are necessarily of the following form

(0,6) = (i}, &) + ¢ (v*, B) (3.48)

where (v, 8%) is a minimizer of Ry, over Cx Dy, while ¢ is an arbitrary (but non-zero) constant whose
abso'lute value is sufficiently small so that &, +c B> 0. Conversely, if (v, B®) is a minimizer of Ry, over
CxDy,, then there exists ¢ > 0 such that, for every c with |c| < ¢, (0, &) given by (3.48) is really solution
of the rate problem at ty.

Specifically, the time t, and the mode of bifurcation (v, B°) are given by

0%72n?
4
ty 4kc ) (3 9)
N X . X ~ X xr
vi(x) = avD, (Vlb(Di) sin <27r/\11)) e+ V;’(D—Z) cos (271')\11)) e2> , (3.50)
b — ph(*2 1
gx) = g <Db> cos <27r)\b> . (3.51)

In (3.49)~(3.51) the wave number ry and the modes (V®, 3°) are (normalized) minimizers of RE(V,B)
over all kK > 0 and all (V, ) € HxHy while 7, is such that ﬁﬁf(vb,ﬁb) = 1. Since 0 < Ky < +00, the
damage mode of bifurcation is a sinusoid with respect to x1 whose wavelength Ny is finite and given by

O,
T——1).

Ap = 2 (3.52)

Kb
In (3.50)-(3.51), Dy, represents the depth of the damage zone at time ty, i.e.
Dy := 207,/ Kty = Oy, 11 (3.53)

Hence, Ay and Dy are proportional to the internal length n of the material. The coefficients of proportional-
ity only depend on the Poisson ratio v and on the dimensionless parameter © characterizing the amplitude
of the thermal shock.

Proof. The proof is divided into 3 steps.

(i) : Definitions of t, and ts. By virtue of Proposition 17 (Properties 2 and 3), R} varies continuously
from a value less than 1 to 400 when ¢ goes from 0 to +00. Hence, there exists at least one time s such
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that R® = 1. Any such time is necessarily non-zero and finite, i.e. 0 < s < +00. Defining t;, as the smallest
of such times, one gets R > 1 for all ¢ < ¢, by virtue of Property 2. Therefore, by virtue of (3.38), t; is
the first time when a bifurcation can occur.

In the same way, since R > R? and by virtue of the Properties 2 and 3, R{ varies continuously from
a value less than 1 to +00 when ¢ goes from 0 to +o00. Hence there exists at least one time o such that
RS = 1. Any such time is necessarily non-zero and finite, i.e. 0 < ¢ < +00. Defining s as the largest
of such times, one gets Rf < 1 for all ¢ > ¢s by virtue of Property 3. Therefore, by virtue of (3.39), the
fundamental branch is never stable after t5. Hence, these critical times are such that 0 < ¢, < t; < +o0.
The inequality ¢, < ts will be proved in the next step. <

(ii) : Necessary form of a bifurcation rate. Let us consider the rate problem at time t, and let x be
a solution. Inserting into (3.31) and taking into account that Xj, itself satisfies (3.31) at time ¢, gives
Af (x—x1,) < BE (x—Xt,), see (3.33)-(3.34). But since Ry, := mmcw Ri, =1, one has also the converse
inequality and hence the equality

Az, (X = xi,) = B, (X — Xi,)-

Therefore, if x # Xi,, then x — Xj, must be a minimizer of R}, over C ijtb. Therefore, by virtue of
the analysis of the previous subsection and Proposition 16, x must take the form given by (3.48)—(3.53).
Indeed, (ky, Vb,Bb) is a minimizer of (k, V, ) — ﬁﬁb (V, ) over R" xHxHg and 1 = ﬁﬁ;(ﬁb, f/b,Bb). By
virtue of the properties 4 and 5 of Proposition 17, 0 < kp < +00 and hence the wave length )\, is non-zero
and finite. By using (3.47) at time t;, one obtains (3.49) and (3.52). Since, at a given 7, &, depends only
on O, so does d,. Therefore R” depends only on v and ©. Accordingly, x; and 7, depend only on v and
O.

Since A\, < +00, the dependence of 5 on z; is really sinusoidal and hence 5° does not belong to Dtt
Accordingly (v®, %) cannot be a minimizer of R:, over CxDj;. Therefore Rj, > 1 = Ré’b and hence tg > 1.
The fundamental branch is still stable at ¢;. <

(iii) : Ewistence of a bifurcation rate. It remains to prove that non trivial solutions for the rate problem
really exist at time t,. So, let (/ib,f/b,ﬁb) be a minimizer of (k,V, ) — ﬁﬁb(V,B) over RT™ x H x H,.
Since (kp, ch, cﬁb) is also a minimizer for any ¢ # 0 and since Bb = 0, one can normalize the minimizer
for instance by fol Bb 2d¢ = 1. Let us consider the rate x = Xt, + c£b with &b = (v?, %) given by
(3.50)-(3.51) and ¢ # O Since £€° is a minimizer of Ry, over Cx Dy, and since R?b =1, Eb satisfies the
variational equality

Pr(x;,) (€0, €) =0, VEeCxDy,, (3.54)
Since Xz, is solution of the rate problem, it satisfies (3.31) which reads at time ¢, as
i (X3,) (X, € = Xi,) + P1, (X, (€ = X3,) >0, V& € Cx Dy, (3.55)

Using (3.12), (3.50) and (3.51), it turns out that Ptb(x?fb)(fb) = 0. Indeed, by virtue of the independence
of € and o on 1, one gets

Pl (X / / (C) cos kar—) day dC = 0. (3.56)
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Therefore, after calculations based on (3.54)—(3.56), one obtains V€ € C XD;Z:

P (x:,) (€ — %) + P (0G) (€ — %) =P () (X, € — X0,) + P (G, (€ — XG,) =0, (3.57)

and hence x satisfies (3.31) at ¢,. In order that x be a solution of the rate problem, it remains to verify
that a3, + c8® > 0. Since it is true for sufficiently small |c| (one has to prove that &’ is non zero and that
B’ is finite. This proof is left to the reader), one has constructed a family of non trivial solutions of the
rate problem at time ¢,. < The proof of the Proposition is complete. [

3.5 Numerical results

This section is devoted to the numerical exploration of the equations of the minimization problem.
These results can be classified in three families: illustration, hypothesis validation and quantification. Some
results are illustrated by plotting the solutions. The validation of hypothesis can be made numerically
such as the irreversibility. The main interest is to quantify the results especially those of Proposition 18
with the wavelength at the first bifurcation. This numerical implementation is based on two aspects:
solving (3.22) by a shoot method and minimizing (3.44). Before starting, let us recall that the loading
parameter reads © = o./(avE), and thus © — 0 corresponds to a strong thermal shock and © — 1 to a
very light loading.

3.5.1 The fundamental branch

The fundamental branch is a solution with homogeneous damage in the direction parallel to the surface
of the thermal shock. It exists for any positive time ¢ > 0 and has non-zero damage in a strip within a
positive distance Dy from the surface. Using the time and space variables 7 and y adapted to the thermal
problem, the value of the damage field in the region 0 < y < &, = Dj/2v/kct is found by solving the
second order non-autonomous linear differential equation (3.22) with the boundary conditions (3.23). The
existence and uniqueness of the solution of this boundary value problem is guaranteed by Proposition 12.
To solve it, for a given time 7 and mildness of thermal shock ©, a shooting method is applied, which, after
solving the initial value problem for &,(d;) = a.(d,) = 0, searches for the length of the damaged domain
- such that &/ (0) = 0. The corresponding solution for d, is checked against the asymptotic results for
dp and do obtained in Proposition 12 (Fig. 3.5). For large values of 7, the numerical problem becomes
ill-conditioned and differential solver and root finding algorithms show convergence issues.

Figure 3.6 reports the damage field obtained for different times and thermal shock intensities. The left
and right columns show the results in the scaled (y,7) and physical (x,t) coordinates, respectively. This
fundamental solution is independent of the Poisson ratio v, being characterized by null displacements in
the z1-direction.

The damage is non null for any positive time. For severe thermal shocks (see the plots at the top for
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Figure 3.5: Asymptotic result for the scaled depth of the damage strip §, as a function of the mildness
thermal shock ©. The dashed lines are the results for 7 — 0, dy, and for 7 — 00, d. The continuous lines
are the results of the numerical root finding in the shooting method for short (7 = 0.1) and long (7 = 50)
times.

© = 0.01 in Figure 3.6), the solution in the physical space is characterized by an almost fully damaged
zone close to the boundary, which propagates inside the domain with increasing time. For mild thermal
shock (© = 0.5,0.9) the solution is with smaller space and time gradients. Note that d, is decreasing with
7, whilst D} is increasing with ¢. For any value of © and 7, the solution is monotonically decreasing in
space, varying from a maximum value o} (0) at the boundary to 0 at x = Dj, as proven in Proposition 11.
Hence, its behavior as a function of © and t can be globally resumed by the contour-plots of the damage
at the surface, a;(0), and the length of the damaged domain, D}, see Figure 3.7. Both the maximal
value of the damage field and the damage penetration depth increase monotonically with the severity of
the thermal shock and the time. The limit value of the maximal value of the damage field for ¢, 7 — oo
is a’, (0) = 1 — ©% < 1 (see Proposition 12, Eq. (3.28)). To check numerically that the solution o} (2)
respects the irreversibility condition for a fixed loading O, &;(z2) is reported in Figure 3.8 as a function
of zo and ¢ for ® = {0.01, 0.2, 0.5, 0.9}. Similar results are found for any other tested value of ©.
In particular, for any value of ©, whenever the numerical ODE solver converges, the minimum value of
&f(x2) over t > 0,29 > 0 is 0. The numerical tests seem to corroborate the validity of Hypothesis 8 on
the irreversibility of the fundamental branch.

3.5.2 Bifurcation from the fundamental branch: critical times, critical damage penetration and optimal
wavelength

The goal of this Section is to quantify numerically the first possible bifurcation from the fundamental
branch. Starting from the result of Proposition 16, the problem is solved using the partial Fourier series in
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Figure 3.7: Fundamental solution: damage at the surface «;(0) and penetration of the damage D} as a
function of the thermal shock mildness (©) and time. The red dashed line indicates the bifurcation time
as a function © and separate the parameter space in regions where the fundamental solution is unique or
not.

the xj-variable and the associated wave number x introduced in Section 3.4.3, Eqns. (3.41)-(3.42). For the
xo-direction, the dimensionless variables ( = z5/Dj, are used, so that the support of the damaged strip of
the fundamental solution is [0, 1) for any loading parameter ©. Hence, the sign of the second derivative
of the energy P/ (x;) is studied numerically, which below is referred to as P/ for brevity, and look for
the critical bifurcation times 7, the critical wave numbers x; and the associated bifurcation modes as a
function of the thermal shock mildness ©.

In the numerical work, the study of the positive definiteness of P}’ is based on the following Proposition.
Proposition 19. Let
{1i (V0,50 }

be the eigenvalues and the eigenvectors of the following quadratic form defined on the finite interval [0, 1]

o
o i < i1
=1

K
1—12

PL(V.B) = Az(V. B) + C(V(1) = B:(B), (V,B) € H'(0,1)* x Hy (3.58)
where A% is the restriction of A% on [0,1] and C(V (1)) = DV (1) + c12VA (1) Va(1) + 22 Va(1)? is defined
by

V)= min AS(W),  Hyqy = {W € HY(0,00)2 : W(0) = V(1)} (3.59)
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Figure 3.8: Check of the irreversibility condition: Total time derivative of the damage field of the funda-
mental branch o} with respect to time, &5, for the loading © = {.01, .2,.5,.9}.

with
1—v

+o0 - - - - - - -
Asw) = [ (W02 + WO+ 2 @O + 5O+ W) o

The study of the positivity of P} is equivalent to compare the smallest eigenvalue py with zero and Ri’ >
(resp. <)1 if and only if py > (resp. <)0. The possibility of bifurcation from the fundamental solution is
given by

{Ml >0 = no bifurcation (3.60)

wr <0 = bifurcation possible

Moreover, (V(l),ﬂ(l)) is the restriction on [0,1] of the first eigenvector of Py'.

Proof. Being A® and B, positive definite and B, defined on [0, 1], the positive definiteness of the quadratic
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form P}’ is equivalent to the positive definiteness of

P/(V,8)=__min _PI(V,p).

VeH!(1,00)2

The expression (3.58) is obtained by decomposing A% in the contributions coming from the integral over
[0,1] and [1, 00]. The latter contribution is given by

U (v + o2 + 2vi(vio) + 52 (0 +0) ) a6 6

1—22 2

which, using the change of variable ¢ — 1 + ¢/ and that @, = 0 in [1,00), may be rewritten as T A"

The criterion for assessing the positivity of the quadratic form 75{’ on the basis of the sign of its
smallest eigenvalue is a classical result of the spectral decomposition theorem for a continuous self-joint
linear operator on a real Hilbert space and is not discussed further here. ]

The quadratic form (3.58) is a reduced version of the second derivative of the potential energy defined
on the finite interval [0,1], instead of on the semi-infinite space [0, 00). The formulation above is more
convenient for the numerical analysis than the Rayleigh ratio bifurcation criterion of Proposition 14 for
two main reasons: (i) the availability of efficient numerical methods for the calculation of the smallest
eigenvalue of a symmetric matrix; (ii) the formulation of the eigenvalue problem on a finite interval is
better suited for the discretization. The effect of the subdomain [1, o0] is accounted for by an equivalent
stiffness localized in ¢ =1 ( C(V(1) ), which implies a boundary condition of the Robin type in { = 1.
The coefficients of the quadratic form C are evaluated by solving the linear differential equations obtained
as Euler-Lagrange equations for (3.59). An easy analytical solution is possible for the case v = 0, giving

611:2/3 C12:—1/3 622:2/3.

For v # 0 the analytical solution becomes cumbersome and the coefficients must be computed numerically,
once for all. The corresponding results obtained through a finite element solver are reported in Figure 3.9.
They are obtained on a domain long enough to obtain a result almost independent of its length (the
solutions of (3.59) are decaying exponentially with (). Note that ¢11 = ca2.

For the numerical analysis of the sign of (3.58), the problem is discretized using linear 1d Lagrange finite
elements and a uniform mesh. Hence, for given values of the parameters 7, ©, v and the wave number « in
the xi-direction, the smallest eigenvalue uq(7, K, ©,v) of the matrix corresponding to the discrete version
of (3.58) is computed. The numerical code for this purpose is based on the use of the finite element library
FEniCS |Logg et al. 2012] and the eigensolvers provided in SLEPC |Hernandez et al. 2005].

To find the shortest bifurcation time 7, for which pu; = 0 and the associated wave number k; the
following steps are used:

1. Initialization. Set the values of (v, ©).
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Figure 3.10: Decreasing of the first eigenvalue
Figure 3.9: Evolution of the coefficients w1 with respect to 7 of the quadratic form (3.58)
€11, €12, coo with respect to the Poisson ratio v for © = .4, v =0 for k ={1,2,5,10}

2. Define the critical curve. Given k, find 7(x) such that u;(7, k,0,v) = 0, using a bisection algorithm
on 7. This gives the critical curve in the 7 — K space.

3. Find the bifurcation point given by kp = argmin, p1(7(k), k,0,v) and 7, = 7(kp). To this end a
numerical minimization routine using the downhill simplex algorithm (fmin function provided in the
optimization toolbox of SciPy [Jones et al. 01 |) is used.

For step 2, neither existence nor uniqueness of a solution for the critical 7 for a given  can be established.
The p1(7, K, ©,v) is numerically found to be a monotonically decreasing function of 7 (Fig. 3.10), which
gives us the convergence of the bisection algorithm if a solution exists in the selected initial interval.
However, for small values of k a solution may not exist at all, in agreement with the Property 4 of
Proposition 17.

Figure 3.11 illustrates the critical curves obtained for v = 0 and different ©. For a given loading ©
the critical curve partitions the space (k,7) in the region below the curve, where the fundamental solution
is the unique solution of the rate problem, and in the region above the curve, where other solutions may
exist. During the evolution problem, the first time for which another solution may exist (and indeed it
does exist, as stated in Proposition 18), is the minimum point on the critical curve k +— 7(x). This point
is the bifurcation point corresponding to the critical time 7, and the wave number k;, (see Proposition 18).
The numerical solution provided in Figure 3.11 may be checked against the qualitative properties of the
Rayleigh ratio proved in Proposition 17. Namely, one observes that: (i) the fundamental solution is
unique for 7 sufficiently small (Properties 1-2); (ii) the fundamental solution is unique for sufficiently
small wave numbers even for very long times (Property 4); (iii) for kK — 0o, 7(k) is approximately linear
in k (Property 5).
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Figure 3.11: Critical curves separating the states (k,, 7) unique and those where bifurcation can occur for
different values of the loading parameter ©

For the case v = 0, the critical time 7, and wave number k; at the bifurcation as a function of © are
reported in Figure 3.12. Figure 3.13 shows the shape of the damage rate 8° as a function of ¢ for the
eigenvector associated to the eigenvalue p; = 0.

The key numerical results of this chapter are condensed in Figure 3.14. It shows as a function of ©
(and v = 0) the plots of the critical bifurcation time ¢, wave length \, = 27

©6,, 7

NZ ’n and penetration of
the damage Dj in the physical space and time variables, 2 and ¢. The critical time at the bifurcation
is reported also as dashed lines in Figure 3.7, which partitions the © — ¢ space in the regions where the
fundamental solution is unique or not.

Figure 3.15 shows the influence of the Poisson ratio on the results for a fixed value of ©, showing that
the critical wavelength, time and damage depth have a relevant dependence on the Poisson ratio only for

v close to —1. Recall that in plane stress elasticity thermodynamically admissible values of the Poisson
ratio are in the interval (—1,1).

3.6 Final remarks: the genesis of periodic crack patterns

The initiation of a periodic solution in a gradient damage model under a thermal shock loading has been
studied. The quasi-static evolution problem for a semi-infinite slab has been formulated in the framework

of the variational theory of rate-independent processes. From the first order stability conditions and energy
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Figure 3.14: Wavelength A, time ¢; and penetration of the damage zone Dy at the first possible bifurcation
(given by (3.49), (3.52)) for a vanishing Poisson ratio v = 0 as a function of the loading parameter ©

balance, it has been proven that, for sufficiently severe thermal shocks, damage initiates at ¢ = 0 with
non-zero damage diffused in a strip parallel to the surface of the shock. The analysis of the rate problem

about this fundamental solution shows the existence of a bifurcation at a finite time ¢, towards a stable
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Figure 3.15: Influence of the Poisson ratio on the characteristic of the first bifurcation point as a function
of the loading parameter © = {.4, .8}.

solution with periodic damage. The fundamental solution becomes unstable at a later time t5 > t;. The

bifurcation and stability analysis is based on the study of the sign of the second derivative of the energy in

an infinite dimensional setting. The analytical results are obtained by the minimization of a Rayleigh ratio

and the decomposition of the solution with a partial Fourier series. Further quantitative results about

the time, damage penetration and wavelength at the bifurcation are obtained numerically by solving a

one-dimensional eigenvalue problem.

The analysis of gradient damage models of the previous sections quantitatively predicts the estab-
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lishment of a fundamental solution with diffuse damage and its bifurcation at a finite time ¢, towards a
periodic solution. Let us resume and comment below the main results, coming from our analytical and
numerical approaches on a semi-infinite slab.

o Loading parameter. The solution of the problem depends on a single dimensionless parameter, the
mildness of the thermal shock © = o./aE?, defined as the ratio between the critical stress of the
material and the thermal stresses induced by the temperature drop ¢ at the surface, and the Poisson
ratio v. The dependence on the internal length of the damage model 7 is almost trivial and given
explicitly (see below).

o FEuxistence of a critical severity of the thermal shock. For mild shocks with © > 1 the solution remains
purely elastic at any time and there is not damage at all.

e Fundamental solution. If © < 1 there exists, for any ¢ > 0 a solution with diffused damage in a strip,
varying monotonically from a maximum damage value «;(0) at the surface to zero at a depth Dj.
The values of a(0) and Dj as a function of time and the mildness of the thermal shock can be read
in Figure 3.7, where the dashed red line critical time ¢, for the first bifurcation toward the periodic
solution. This fundamental solution becomes unstable at a finite time t5 > t; (Proposition 18).

e Bifurcated solution. At a finite time t; there exists a bifurcation from the fundamental solution
toward a periodic solution with a wavelength Ay in the xy variable. This bifurcated branch is stable
for t sufficiently close to ¢, (Proposition 15).

e Bifurcation time. The bifurcation time ¢ is monotonically increasing with the mildness of the thermal
shock. The numerical results of Figure 3.14 for v = 0 indicate that it varies from very small values
for © — 0 to very large values for © — 1. Proposition 18 states that t; is always a strictly positive
time.

o Bifurcation wavelength. The wavelength of the bifurcated solution is increasing with the mildness of
the thermal shock © . The numerical results of Figure 3.14 for v = 0 indicate that it goes to zero for
© — 0". For © — 1, it has finite limit which is of about eight times the internal length, (numerical
result for © = .96).

e Damage penetration. The damage penetration at the bifurcation, Dy, is almost independent of the
loading (it varies only between n and 1.57), as evident also from Figure 3.7(b), where the dashed
line corresponding to the bifurcation almost coincides with an iso-depth line. The penetration of
the damage band seems to be the parameter triggering the bifurcation and not the maximal value
of damage or time which vary with the loading.

o Influence of the internal length. The damage penetration in the homogeneous solution D; and the
wavelength Ay of the bifurcated solution are simply proportional to the internal length 7 of the
damage model. This fact does not really come as surprise, because 7 is the only characteristic length
of the problem for a semi-infinite slab (the characteristic length of the diffusion process associated to
the material constant k. can be eliminated by a trivial rescaling of the time variable). The bifurcation
time ¢, is proportional to 7.
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e Influence of the Poisson ratio. The fundamental solution is independent of the Poisson ratio. The
numerical results of Figure 3.15 show a weak dependence of the key properties of the bifurcated
solution of the Poisson ratio v, except for v — —1.

Our work relies on many simplifying hypotheses, which allow us to reach an almost complete analytical
treatment of the initiation problem. First, the geometry and the loading are highly idealized. More realis-
tic settings will include the effect of the finite dimension of the slab and a full two-dimensional solution of
the thermal problem, eventually accounting for boundary condition of the Robin type on the temperature
(Newtonian cooling) and the localized changes in the thermal conductivity due to cracks. Three dimen-
sional effects may play a crucial role as soon as the thickness of the slab increases. Further generalization
should consider the effect of choice of the damage law, as done in a 1d setting by [Pham & Marigo 2013|.
The existence of a critical stress assures the existence of a purely elastic response. The numerical val-
ues of Section 3.5 will depend on the specific damage model. Here a specific choice has been made (see
Example 1) which assures an easy numerical treatment.
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In the previous chapter the nucleation process of the thermal shock problem has been studied in a semi-
analytical manner. The behavior at the exposed surface for short times has been examined, leading to the
nucleation of a periodic set of localized damage zones. In the second chapter, it has been established that
when the length of the damage is long in front of the dimension of the internal length, the damage band
follows Griffith’s evolution law. In this chapter, the entire evolution process from the nucleation to crack
selection mechanisms is addressed in a mostly numerical matter. The model problem of the thermal shock



102 Chapter 4 : Morphogenis of cracks

is once again considered. The results will also be compared to experiments. Furthermore the behavior
of the model is a three-dimensional setting is illustrated. Some insight on the engineering answers that
can be exploited will be given, making explicit the material parameters. This chapter, although using the
results from the previous one, can be read independently.

Specifically, in Section 4.1 the dimensionless energy is re-investigated and two regimes governed re-
spectively by o, and G, are established. Then (Section 4.2) the nucleation phase is investigated comparing
the alternate minimization solution with those of Chapter 3. The next phase, the nucleation of cracks
is discussed in Section 4.3. Once the cracks are established, the propagation phase and the crack se-
lection mechanisms are studied (Section 4.4) and comparison to experimental results (on the nucleation
and propagation phases) are performed. The three-dimensional simulations (Sec. 4.5) exhibit a hexagonal
crack patterns when the domain is very large. The limit case of thin slabs justifies the two-dimensional
assumption. Finally two applications are investigated (Sections 4.6-4.7).

4.1 The two loading parameters © and /; in the thermal shock setting

The natural configuration of the plate is Q = (0, L) x (0, Ly) and is at a uniform temperature Tg. As
in Chapter 3 a perfect conductivity of the temperature is assumed. Therefore, the temperature boundary
condition in z9 = 0 is of Dirichlet type, the temperature field at time ¢ > 0 is

T2
2v/ket

where fc it the complementary error function, strictly decreasing from 1 to 0 at infinity. The material

2 o0
Ti(x) =To - q9fc( ) vt >0, with fe(z) = ﬁ/ e ds,

constant k. characterizes its thermal conductivity. Thus the temperature field is uniform with respect to
the x5 direction. The body forces are neglected. The depth of numerical specimen L, is large in front of
the characteristic length of the diffusion process v/kcty, where t; is the first bifurcation time. The shear
stress and the normal displacement vanish on 1 = 0 and x1 = L,. The surfaces 2 = 0 and z2 = L, are
stress free. The damage field evolution is left free of any constraint on all boundaries. Thus the boundary
conditions read:

ul’zlzo orr, =0 (4.1)
022|2,=0 or L, — 0—12‘932:0 or L, =V

O11l2—0 or L, = 022 2y—0 or L, = 12|30 or Ly = 0.

The plate is constituted of a material whose constitutive relation is that of Example 1. In the numerical
simulation, whose study is the goal of the first sections of this chapter, the main stages of the damage
evolution are as follows. Damage nucleates (Fig. 4.1(a)) on the surface exposed to the temperature change
at t = 0. Then it propagates in the depth of the structure (Fig. 4.1(b)) remaining homogeneous parallel
to exposed surface, the maximal damage value remains at the surface and increases. At a given time, a
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) the onset of damage occurs at ¢t = 0 at the (b) for small times ¢, the damage penetrates pro-
upper side where the thermal shock happens gresswely inside the body and remains homoge-
neous in the horizontal direction

—F—

) damage localizes in a set of periodically dis- (d) the damage parameter grows until 1 in the
trlbuted zones mldhne of these zones whose width remains of the
order of 7,

U J U U\

(e) the length of all the damage bands grows (f) some damage bands stop to propagate whereas
the other ones continue

Figure 4.1: Main stages captured by the alternate minimization algorithm with no assumption on the
topology. Illustrates the singularity in time, the loss of uniqueness and the localization process. A damage
band with o = 1 at its center is assimilated to a crack.

bifurcation (Fig. 4.1(c)) from this initial solution is observed, a periodic solution arises. The localizing
process has begun which terminates with the construction of a crack (Fig. 4.1(d)). Then these cracks
propagate (Fig. 4.1(e)). The last phase is a mechanism of crack selection (Fig. 4.1(f)), where every other
cracks stops. This is the general overview and some steps might be skipped for severe of mild loading.

Before elaborating a more precise description of the numerical results from the thermal problem, the
relevant quantities are identified. In experiments parallel arrays of cracks are observed (Fig. 3.1). Assuming
that the dissipative corresponds to Griffith surface energy, a dimensionless analysis introduces the length
[Jagla 2002, Jenkins 2005, Bahr et al. 2010]:

Gc
o= -
07 E(av)?’

which is called the Griffith length. Thus the total energy (1.33) of the system reads in a dimensionless
form

(4.2)

PC(u, T, () = Po(E(0)(x), €9) dx + oSy (4.3)
O\I;

where g is normalized by the volumic elastic energy induced by the maximum shrinkage E(a)?. This
length £y is the ratio between the crack surface energy density and the volumic stored elastic energy.
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Thereby an other loading parameter than the one introduced in Chapter 4 appears when considering the
Griffith surface energy. However the gradient damage model converges towards Griffith surface energy for
small internal length 1. How can we explain these two quantifications of the loading the Griffith length £
and the mildness of the thermal shock ©7

This problem has a multiple of length: Griffith’s length £y, the dimensions of the structure L,, L,, the
internal length 7, the diffusion penetration 2v/kct. At the exception of the diffusion one, all these length
are fixed for a given problem. Two regimes are going to be identified according to the length 2v/k.t. Using
the energy density of Example 2 and writing the regularized functional (1.34) in a dimensionless setting:

_ 1 _ _ w1 o Mn = _
T,a) = [ —(1—a;)’Ae’(y) - e L=+ -V Vo | dx 44
PluT.a)i= [ 50— a0l ) + gy (4 Vo Vo) ax  (4a)
where V = 2vktV, A = A/E, € = €f/(ad), and X = x/(2v/kct). From (4.4), two choices are possible.
Introducing a loading parameter © and a rescaled time 7:

Oc V2v/ket

O — — 4.5

avE ’ On, (45)
where one recalls that (1.29) 0. = /WJE/n,, and thus the loading parameter is the ratio between the
material’s critical stress and the maximum stress imposed by the thermal shock. The dimensionless
regularized energy! (4.4) reads:

1 _ - 1 = _
/ —(1— ay)*Aet(y) - e¢(y) + O%a, + - Va, - Va,dx
a2 2T

The other choice, is to explicit the Griffith length fy. The dimensionless quantity 7, = 7, /(2vkct), ratio
between the materials internal length and the penetration of the diffusion is introduced, and (4.4) reads:

/Q S(1— a)?Aée(y) - €(y) + 5lo <;; +iVa- %) dx. (4.6)

What is the meaning of these two transcriptions of P ? First, in (4.6) the structure is the same as in
(1.34), and thus when 7, — 0 one can expect the integral of the gradient term to converge towards the
measure of the crack set. But this is valid for a given time ¢. And thus for any length 7,, there will always
exist a time £ where 7,, can not be considered small. Indeed, if the regularized approach to fracture was
used one would have to use a variable (with time) internal length which verifies

N (t) << 24/kct, vt € (0, 4o0(.

Not only would the introduce numerical difficulties but it contradicts the physical meaning given in this
work to the internal length. In the physical space, 1, should be small in front of all the other dimensions
and especially the penetration of the temperature field 2v/kct for the Griffith length to have a meaning.
Otherwise, the gradient damage remains the valid model, and © = o./(aE¥) captures the loading. Finally,
both interpretations are valid, depending on the time in our problem:

!The choice made in Chapter 3 let to a different definition of . and 7 but consistent with the one proposed here taking

n=12n,
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1. For short times, the mildness parameter ©, the ratio between the critical stress and the imposed
thermal stress, governs the evolution.

2. For longer times t such that 2+/kct >> ny,, the Griffith length ¢y is the sole parameter governing the
evolution.

Before investigating at length the numerical evolution of the crack set in the thermal shock problem it
is useful to come back to the material parameters and especially those of damage and fracture, G¢, o¢, 1.
These material constants are linked coherently (1.32) due to the framework proposed by the gradient
damage model. The intensity of the thermal shock (4.2) and (4.5) can be formulated depending on the
choice of material parameters:

e The material is characterized by (o, Gc), the two most current macroscopic quantities for brittle

fracture
Oc Gc

= € =
avE 07 E(av)?
The loading © which gives the mildness of the thermals shock does not depend on the internal length
nn. The internal length can be figured out from (1.32) as 1, = 802/(3EG,).

e The material is characterized by (o, n,) which define the damage model

0O 0 _4\@ Ufnn _4\/5
Y= 07 73 (Eav)2 3

©%n,

e The material is characterized by (7, G¢) corresponding to a Griffith evolution law which is regularized
with a parameter 7,, which possibly has no physical meaning

O = 3_vGe VGe \/§ Ej ln = Ge
V8 yEpat  V8\ 07 E(av)?
this illustrates that © is a competition between the materials internal length 7, and that of the
Griffith problem /.

The mildness parameter and Griffith’s length being characterized depending on the choice of material
parameters (a direct consequence of (1.32)). Let us discuss their evolution:

e for a given material, when the loading (i.e. the gradient of the thermal shock ¥) increases, then ©
and £y decrease

e for a given loading a®}, and critical stress o.: © is invariant to n, and £ is proportional to 7, (because
the toughness is proportional to 7, (1.32) G. = 80.n/(3E))

e for a given loading a¥, and toughness G. then ¢ is invariant and © increases with o, or decreases
with 7.
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The reader is now well aware that using the bulk energy density from Example 1 would just change
a few numerical coefficient but in no case the interpretations which have just been given. These few
paragraphs have: (i) exhibited two regimes depending on the time from the damage model, (ii) linked the
parameters quantifying the loading two the material available. They should be kept in mind as browsing
through the chapter as many results are based on the different interpretations.

4.2 Nucleation phase: comparison between analytical and numerical results

Here the first steps of the evolution are studied (Figs. 4.1(a), 4.1(b) 4.1(c)), corresponding to the
nucleation phase of localized damage zones. Does the numerical implementation, through the alternate
minimization (Chapter 1) capture the fundamental solution and the bifurcation to localized states 7

4.2.1 Main results from the analytical damage at nucleation

In Chapter 3 the same setting has been studied using the variational formulation of the non local
damage model based on irreversibility, stability and energy balance. Using conventional techniques of
calculus of variations we proved

1. The state of the system depends on the loading parameter ©.

2. If © > 1 the elastic solution remains stable for any time.

3. If ©® < 1 damage starts at ¢ = 0. First the state only depends on the depth o} (x) = @,(y) where
the change of variable y = z2/(2v/kct) is suggested by the diffusion process. It has been proven that
the damage fields fundamental branch is governed by:

L85 (y) +fe(y)(1 - ar(y) =@ Wy € (0,5,)
Wr0)=0,  a(6)=0, 9= (5)=0.

(4.7)

The damage profile can been computed by numerical integration of (4.7). The displacement field is
the same as the elastic one but the stress field is different because of the damage evolution

e(uf)(x) = &-(y) = (L +v)adfe(y)ez ®er, 07 (x) = F+(y) := (1 - a-(y))’Ead fe(y)er @ ey

4. The uniqueness and stability of this fundamental branch are then studied in Section 3.4. The
homogeneous phase is unique and stable for a strictly positive time.

5. At a critical time ¢, there is a loss of uniqueness of the homogeneous solution and a bifurcation of
finite periodicity arises. The time and periodicity at bifurcation are given by:
O, Ty

O
Ap =2 .
4kc ) b ™ P Min

ty =
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where (kyp,7) only depend on the loading © and the Poisson ratio v. They are solution of a mini-
mization problem (Fig. 3.14). The bifurcation solution (1/%y, Ay) varies linearly to the internal length
Nn. Therefore t; is the first time at which a bifurcation from the fundamental branch can occur. The
fundamental branch is still stable at this time but becomes definitively unstable at a time ts such
that t), < ts < 4+o0.

The bifurcation towards a periodic solution is the onset of the localization process leading to the formation
of periodic crack patterns.

4.2.2 The fundamental solution: invariant parallel to the exposed surface

For short times, the damage and displacement field depend only on the second space variable (x3 in the
physical space). The analytical solution of the fundamental branch x — «a; (x) is computed from (4.7) and
leads to (Fig. 3.6). For the alternate minimization implementation, a domain of size L, = 200 L, = 50 of
elements of size h = .2 is considered. The numerical parameters are set at v =0, E=1, G = 1:

e For two different internal length 7, = 10 and 7, = 20 (Fig. 4.2) which correspond to loadings
© = 0.194 and © = 0.137. Thus this internal length

e Fixing n, = 10 (Fig. 4.3) a severe © = .01 and a mild loading © = .5 are considered.

These results are totally independent of the mesh size. There is not even an error introduced for the
evaluation of the toughness G¢. As the numerical algorithm includes the first order stability condition (1.35)
which is used to compute the semi-analytical solution. For any time step belonging to this fundamental
branch, it is very easy to capture the solution with respect to the next section. It will not be discussed
any further, indeed the fundamental solution has been extensively studied in (Fig. 3.6).

4.2.3 Bifurcation and loss of stability: the periodic solution

The alternate minimization algorithm allows to capture properly the horizontal homogeneous solution.
We concentrate on the step of Fig. 4.1(c) where the numerical algorithm bifurcates from the fundamental
branch and a periodic solutions arises. At a given depth a, the evolution of the damage field (Fig. 4.4)
bifurcates in a single time step from the constant value o (a,-) to a periodic damage solution of minimum
af(a,-). This time step is the beginning of the localizing process. All the periods evolve in cracks
on a few time steps.Note that some sorts of boundary effects is observed and that the solution is not
entirely periodic, in the sense that the amplitude of the damage is not the same for each “wave”. These are
numerical aspects which are not relevant to the general process but will become relevant for certain loading
parameters. In this section, the bifurcation time step is studied, whereas the construction of cracks, for
which no analytical results exist are studied in Section 4.3.
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Figure 4.2: The fundamental solution damage field in function of the depth from the semi-analytical
solution (Anal.) and the alternate minimization algorithm (A.M.) n, = 10 (left) and 1, = 20 (right). The
semi-analytical results come from Chap. 3, Sec. 3.3.
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Figure 4.3: The fundamental solution damage field in function of the depth from the semi-analytical
solution (Anal.) and the alternate minimization algorithm (A.M.) for a severe ® = .01 (left) and mild
© = .5 (right) loading. The semi-analytical results come from Chap. 3, Sec. 3.3.
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Figure 4.4: Evolution of the damage profile at a given distance from the surface. The damage is constant
following the x direction for small times. Then the periodicity arises.

Once the solution bifurcates from the fundamental branch no more analytical solution exists any more.
We therefore would like to compare the time and wavelength of the bifurcation from the fundamental
branch. In the wake of Chapter 3 - Section 3.5 where the influence of the Poisson ratio is seen as negligible
this parameter is not studied fixed at v = 0. The periodicity and the critical time of this loss of stability
are extracted (Table 4.1). The error estimation is due to the time discretization and the finite width of the
domain. The wavelength window is related to the fact that the number of periods in the domain is given
up to a half period, as the boundary condition is such that g—ﬁ. Thus for n periods of width A the error
of the finite dimension is given at Ap/(2n). The same error estimates are used in Tables 4.4-4.5. When
the load decreases, and thus the periodicity increases, less and less localization zones appear for a given
width of the slab. The wavelength is computed on the 6 or 7 periods at the center of the slab.

The results (Table 4.1) are compared to those of Chapter 3 in the physical space. Figure 4.5 reports
for the various loadings © the numerical results from the alternate minimization algorithm and those
from the semi analytical work. Thus the relation in the periodicity A\, between the alternate minimization
computation and those from the analytical (Fig. 4.5) are a good match. The bifurcation from the alternate
minimization computation is systematically above. As that computed in Chapter 3 was a first bifurcation
time. Indeed no estimate of the loss of stability of the fundamental branch exist. The penetration of the
damage is once again constant for any loading. The periodicity for .7 < © < 1 is not investigated for two
linked reason. As the bifurcation occurs, its amplitude is of the order of the variations on the elements.
Furthermore the system evolves directly towards cracks.

Remark 10. The computation cost of the bifurcation time step is much higher than during the evolution
of the fundamental solution where the number of iterations for a given time step jumps (typically the
number of iterations is multiplied by 7). Furthermore, the numerical noise due to the mesh is a sufficient
imperfection for the bifurcation to occur. The fact that the localization comes from a lost of stability or a
bifurcation has not been investigated and would require to compare the eigenvalues of the Hessian during
the computation.
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O .02 1 2 3 4 5 6 e
at 9.68 1.93 968 645 484 .387 323 277
lo/Nn 0011 | .0267 107 24 427 667 .96 1.307
b 3.28 | 18 +.12 | 37+ .6 | 50£1.86 | 55.8£1.94 | 74.65 £3.48 | 81.8 + 3.2 | 86.3 £+ 3.7
kety 25 | 4.15+.18 | 124 +.3 | 22 £.29 43+.5 69.8+.7 147 £ 1 307 £ 2
Dy, 20 20.21 19.34 17.78 18.18 16.48 17.32 17.32
e 3.04 16.7 41.1 96.6 160 198 352 713
Keteracks 37 7.87 25.5 40.8 76.5 124 224 649
D. 20.4 21.92 20.99 19.79 19.2 16.7 16.7 16.7
Si(a=1) Nan 1.76 4.5 5.99 9.70 12.5 21 42
Se(a > 0) Nan 21.5 22 24.83 22.32 39.7 49 72
Si(a=1)/ly || Nan 6.59 4.2 2.5 2.27 1.87 2.2 3.2
Ae/ 4o 276 62.5 41.1 40.25 37.47 29.7 36.7 54.6
keteracks/ 03 3057 110 22.2 7.08 4.19 2.8 2.4 3.8

Table 4.1: Wavelength, bifurcation time and damage depth for different loading parameters ©. Numerical parameters h = .2,
n, = 10, v = 0. The domain size varies from L, L, = 800,50 to L, L, = 5000,2000. The loading is adapted through the
variation of the thermal expansion coefficient.
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Figure 4.5: Comparison of the bifurcation spacing and given by the damage formulation and those of
the alternate minimization process in function of the loading parameter ©. Data from Table 4.1 and

Figure 3.14 correspond to the first bifurcation possible.
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For severe loadings, the asymptotic behavior of (Fig. 4.5) can be quantified

Ab ketp Db) <77n ) ( Ap ketp Db) ( o )
log —,log ——,log — | = Ay, log| — | + B log —,log —-,log — | = A, log | — | + By,
( Bo ) T ) T St ) T ) T

where the coefficients (Ay,, By,) and (4,,, By,) are given by Tables 4.2-4.3

AZO BZO Ann Bnn
Mo/ lo 0.4758 | 1.0204 Ao/ 0.5241 | 1.0205
kety/€2 || 1.0976 | -0.2729 kety/n2 || 0.9024 | -0.2729
Dy/ty 1.0487 | 0.1913 Dy/nn -0.0487 | 0.1913
Table 4.2: For large n,/ly i.e. n,/ly > 2. Table 4.3: For small ¢y/n, i.e. £o/n, < .5.

Of course Figure 4.5 is just a question of formatting which allows to see the evolution of the bifurcates
solution as the materials internal length increases (Fig. 4.5(b)), or for a given material as the loading
increases (Fig. 4.5(c)).

4.2.4 Study of the influences of the material’s internal length n,

In the previous section the characteristics of the numerical bifurcation have been compared with those
of Chapter 3 using the thermal expansion coeflficient a to change the loading parameter. The internal
length has been kept constant although claim were made on its impact. Does the numerical simulation
capture properly the linearity of the solution with respect to the internal length? On a domain of same
size and for a giving loading the damage profile seems to follow an homothetic transformation (Fig. 4.6)
as 7, increases.

Figure 4.6: Initial crack distribution for different internal length. n, = (1,5, 10) for L,=200 and L,=50
for a constant thermal loading © = .2.

Let us check it more precisely. A given loading © is considered, and the materials internal length
varies, thus considering a family of materials where the internal length varies but the critical stress o, is
kept constant (Fig. 4.6).

Tables 4.4 and 4.5 investigate the linearity of Ay for © = .1 and © = .2. The last line of each table
corresponds to the first two columns of Table 4.1. In Table 4.4 * corresponds to a domain size of L, = 800.
In the same manner, the semi analytical results where computed for an infinite domain L, /n,. In the
present case the slab takes a finite value which is a function of the internal length. As 7, increases less
and less periods nucleate on a given domain challenging the hypothesis of large domains.
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Remark 11. These tables are at fir © and have n, vary, consequently £y is not constant. A dimensional
analysis gives that the parameters are ©, Ly /Ny, Ly/nn. The semi analytical study is run when Ly /1, — 0o
and Ly /n, — co. Thus, Tables 4.4 and 4.5 also investigate the impact of the finite size on the domain.

4.3 From lost of uniqueness to an array of cracks

Here, the process leading to cracks (Fig. 4.1(d)) is shed some light on, this section is purely numerical
as no analytical results exist. The description from the bifurcation to a set of parallel initial cracks is given.
Their spacing is discussed in the light of the convergence towards Griffith’s theory. Although their length is
of the same dimension as their width, a continuous set of points have reached o = 1 leading to no residual
stress, this set of points is called a crack, even if the surrounding points are already heavily damaged.
Ounce again, the material’s toughness will not be corrected for the numerical error Gc(1 + 3h/8n,,).

The linearity with respect to the internal length 7, is now extended to the periodicity of cracks.
Table 4.6 for a fix value of © the number of cracks is inversely proportional to the internal length.
However, the Griffith length fo is not constant even though it is suppose to control the crack evolution.
This section investigates this matter.

4.3.1 Construction of the optimal Profile

From a one-dimensonal study |[Pham & Marigo 2013] one can construct the entire phase from the
bifurcation of the fundamental solution to cracks. Here this is not a continuous evolution. The evolution
of a single period is considered (Fig. 4.7) which is the zoom of Figure 4.4 on a single localization zone. Up
to time step 79, the fundamental solution is unique and thus at a given depth the solution is homogeneous
with respect to x7.

Is the periodicity that arises sufficiently large such that a crack can develop in each wave 7 to answer
this question, the periodicity of the bifurcated solution is compared to that necessary for a crack to develop
from o*(0) (Fig. 4.8). At the surface, there is always enough room for a crack to appear, whatever the
loading and thus the internal length. As in [Pham & Marigo 2013] a first integral arises and by integration
this leads to the width of the localization and to the optimal profile of center z1|:

(o)
sl = [ 8, (1)

from which we deduce the width of a localization and an optimal profile from a state o*

2
Lz:4nnm, a(r1,0) = a™(0) + ( 1_a*(0)_|l‘1—1’10)

Tin

Whether the loading is severe (and a*(0) is close to one) or very mild (a*(0) remains small), by comparing
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Figure 4.7: Localization process i.e. Construction of a crack in the thermal shock problem. At a depth of
2n, from the surface for the time steps {70, 75,81, 84, 85}.

the periodicity of the bifurcated solution A,/ to the width of a damage localization 2L} /n, we observe
that their is always enough space (Fig. 4.8).

= *(0) (RS)
7 == N/

= L/t 18

spacing

Figure 4.8: Comparison between the bifurcation periodicity and the space 2L} to create an optimal profile
from o*(0).

When considering the global picture of the evolution (Fig. 4.9) from the homogeneous damage field
to the apparition of cracks (o = 1), the evolution is always as follows. The bifurcation happens in one
time-step and a periodic solution appears as already described. Then the bifurcated solution evolves, the
value of damage increases, and suddenly a crack can form in some periods. As the loading increases, more
and more periods switch to cracks. At a given time the cracks that have formed propagate (Fig. 4.1(e)).

But when do these cracks appear 7 Table 4.1 reports an estimate of the time between the lost of



4.3. From lost of uniqueness to an array of cracks 115

Depth =1 == Depth=2 - Depth=3

[] 1
95 4 2
st i
S - i
< 'R LI
g 8| aE il
S ol 4y s .
A ¥ A X H
T AN, Nl N N’
65 L N NN
6
-100 50 0 50 100
1 i >
H ] 'l. i i
g " 5
95 4 H H] » H
9 i H L 1] o
P | Y N | S | B
I L S | T L O |
g 84 i it it it i
15 ' ' i i oy i
ATy A | L iy LA i
% E ¥ —_— s %
Tt At N N N N
65 [/ AN pN— RN pN—— R
6 ‘
-100 -50 0 50 100
Width

Figure 4.9: Damage evolution for different depth at three non consequential time steps. The depth

correspond to {.11,, .2n,, .3n,}.

stability and that where all the cracks are formed step 4.1(d). Once all these cracks are created the last
step, which is the propagation or arrest of some cracks will be the subject of Section 4.4. Obviously the
growth of all cracks simultaneously together at the beginning, which is the first step of this evolution,
depends on the initial length of these cracks.

4.3.2 The initial crack spacing

The fist step of the localization does not guarantee that for each wave, a real crack will appear. Thus
the initial periodicity of real cracks can not be established. Numerically for © < .3 it is observed that it
is always possible with a depth of the domain large enough and sufficiently small time steps to initiate
a real crack in each wave. As © increases less and less waves evolves towards cracks. Let us define the
critical loading ©* where all localized zone does not become cracks, numerically it seams to lie in the
range .3 < ©* < .5. For mild loading © > .5 cracks do not initiate in each period. No definitive answer is
proposed on how many cracks appear. Three interpretations are proposed:

1. the competition between the Griffith length ¢y and the internal length 7, (Fig. 4.10),
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For severe loading © = .2 the penetration of temperature is small in front of the internal length. For
milder loading © = .7, the penetration of the diffusion and the internal length are of the same order.

2. the length of the initial crack with respect to the penetration of damage at bifurcation Dy, (Fig. 4.11).

For severe loadings, i.e. small © values the length of the initial cracks are much larger then ¢
Tab. 4.1, where as for less severe thermal shocks the length of initials cracks are of the order of ¢

3. the dissipated energy at the time of bifurcation with respect to the elastic energy.

Griffith global Minimization A very close setting has been studied with Griffith’s surface energy using
global minimization [Jenkins 2005]. The data is extracted from [Jenkins 2005, Fig. 10|, where L, /o = 16
which seem to have reached an asymptotic regime from the initial crack spacing as the behavior is the
same as for L, /ly = {10, 12,14}. The length of initial cracks is £y and their spacing evolves from 40 ¢, for
the first cracks to 18 £y for the minimal spacing at the surface for times which are respectively T JO3 =1
and t/f2 = .8. For © > 1 and large enough domains cracks appear with no previous damage zone in the
case of global minimization. But the alternate minimization algorithm is a local minimization algorithm
and thus those solutions are not captured. In comparing local and global minimum it is obvious that the
local minimum will always lead to a bifurcation before.

Mesh sensitivity. The non-local damage model is said to mesh independent. However, this statement
requires clarification. Bifurcation and stability are sensitive to imperfections and especially those intro-
duced by the mesh. The solution is sensible to the size of the mesh and a thorough analysis of the second
Hessian of the total energy in the numerical implementation would be of great interest to understand the
bifurcation.

4.3.3 The impact of irreversibility on the nucleation of localized zones

The different solutions given by the alternate minimization according to the implementation of the
irreversibility condition are discussed. The numerical observation is that whithout the irreversibility
condition the cracks all appear at the same time whereas when the irreversibility is implemented the
apparition of cracks is a sequential evolution between t, and tqrqers (Fig. 4.13).

In the case with no irreverisibility, an unloading (Fig. 4.12) of the damage between the cracks is
observed. Yet the periodicity is the same. Furthermore in the case of no irreversibility (Fig. 4.13) all
the cracks are created in one single time step. The implementation of irreverisiblity on the damage field
through a projection for any positive damage value not only for those who have developed a crack is
mandatory. Indeed, a too light condition on irreversibility, as would be only considering is for established
cracks, is equivalent to its absence. The Back-Tracking algorithm [Bourdin 2007] has no impact on theses
simulation as the total energy is always increasing (Fig. 4.13).
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M a b ty D, Ao/ N ty/ 02 Dy /1,
1 6,124 1.96 £ .01 .09 £ .01 2.19 1.9 £ .01 .09 £ .01 2.2
2 4,330 3.52 £ .03 0.19 £ .01 | 3.93 || 1.75 £ .015 | .05 £ .002 1.97
5 2,739 || 11454+ .33 | 1.38+ .05 | 9.64 || 2.29 £ .066 | .05 + .002 1.92
7 2,315 || 12.65 £ 1.60 | 2.17 + .1 13.8 1.8 £.23 051 +£.002 | 1.97
10 | 1,936 || 36.15 £3.27 | 12.13 + .32 | 19.51 3.6 + .32 124 .003 1.9
10* | 1,936 15.34 +.12 397+ .18 | 20.14 || 1.15 + .01 | .04 + .002 2.01
Semi-Analytical Section 3.5.2 1.53 21 1.92
Table 4.4: Numerical simulation for different internal lengths. Loading parameters © = .1. Slab of

dimension L,=200, L,=50 v = 0.

M a Ap iy Dy, Ao/ ty/ 3 Dy /1
1 3.062 3.56 £ .03 A3 + .04 1.85 3.56 + .03 | .13 + .04 1.85
2 | 2.165 6.17 + .1 .38+ .01 3.75 || 3.09 + .05 | .09 + .003 | 1.87
5 1.369 17.02 + .72 2.65 + .07 | 947 || 3.40 &£ .14 | .11 £+ .003 1.89
7 1.157 || 224 +£1.25 5.75 + .15 | 1345 || 3.2 4+ .18 | .12 4+ .003 1.92
10 | 0.968 || 37.33 +3.48 | 12.45 + .32 | 19.34 || 3.73 + .35 | .12 4+ .003 1.93
Semi-Analytical Section 3.5.2 3.33 07 1.77

Table 4.5: Numerical simulation for different numerical length parameters © = .2 L,=200, L,=50.
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Figure 4.10: Damage penetration rescaled by the diffusion penetration. The penetration of the fundamen-
tal damage solution is constant with the penetration of the temperature field. The red dots correspond to
the first bifurcation state t,. For severe loading © = .2 the penetration of temperature is small in front
of the internal length. For milder loading © = .7, the penetration of the diffusion and the internal length

are of the same order.
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(a) Almost continuously evolution from the bifurcation and thus very short
cracks © = .1 height .14y

(b) Cracks of the length of the damage band appear © = .3 height 14

I

(c) Cracks longer then the damage band appear, thus necessarily a strong
discontinuity in the evolution of the damage field © = .6. height 3.3¢5. On
the left of the crack one observes 3 other beginning of localization which
have not evolved into cracks

Figure 4.11: Different type of initial cracks. Let us recall that the depth of the damage is a constant for
any loading © < 1 dimension of the capture 5n, x 40n,.
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Mn a Nb cracks tp teracks
1 | 3.062 58 A3 169
2 | 2.165 30 0.38 | 0.671
5 | 1.369 12 2.65 4.33
7 | 1.157 8 5.75 8.63
10 | 0.968 6 12.45 | 18.84

Table 4.6: Numerical simulation for different numerical length parameters for a constant loading © = .2.
Domain size L,=200, L,=50.

lo/mn | t2" || Elastic E. | Dissipated E. | Ratio
0267 | 14 .085 .35 4
107 .08 0.15 .065 44
24 .01 .035 .00035 .009
427 .005 .005 8e-7 1.7e-4

Table 4.7: Surface and Elastic energy at Griffith time for crack nucleation such that g /€% = .1 depending
on the loading.

Figure 4.12: Domain size 200 x 50 © = .2,n, = 10 All cracks created. Left no irreversibility, right
irreversibility. Note how even if the crack periodicity is the same, damage release appears between the
cracks when the irreversibility is not implemented.

4.4 The scale law and comparison with experimental results

When considering domain size large in front of the internal length n,,, the characteristic pattern is the
one reproduced in Figure 4.14 for large times. An array of cracks, the spacing of which increases with
depth, is observed. This is exactly the same simulation as given in the problem statement (Fig. 4.1) but
for a larger domain. Actually considering only the surface of the domain exposed to the thermal shock,
Figure 4.14 would give Figure 4.1. In this section, the crack selection mechanism resulting in the arrest of
every other crack each time a characteristic period doubles is investigated.

As n, becomes small in front of all other length in the structure, these damage bands behave like cracks
(Chapter 2) for a local minimum. Thus the scale law from [Bahr et al. 2010] is expected to be valid. This
scale law gives a relation between the crack spacing d as a function of the distance a from the surface
(Fig. 4.4).
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Figure 4.13: Evolution with time (i.e. the loading parameter) fd the elastic and dissipated (surface) energy
in the case of irreverisibility and no irreversibility © = .2, n,, = 10, L, x L, = 200 x 50.

Figure 4.14: Damage distribution obtained at a large time. The spacing increases with the depth

\ d

Figure 4.15: Spacing between crack d at a given depth a. Assuming that the cracks are straight orthogonal
to the surface and equally spaced.

The experiments considered are thin slabs which are heated before being quenched into water. The
states of the cracks at the end of the diffusion process is studied. Many slabs are put together such that
heat only diffuses by the small faces. A complete description of the experimental set up can be found in
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[Bahr et al. 1986, Jiang et al. 2012]. The two dimensional hypothesis will be challenged in the following
section. All material parameters come from the published papers and the data sets from the experiments,
giving the spacing as a function of the distance from the surface, have directly been communicated by the
authors.

4.4.1 A first experimental set

The slab considered is 5 mm x 10 mm x 60 mm. The material parameters are K;. = 1.89 MPa. /m, a =
1.15 x 107® and E = 60 GPa. Thus from Irwin formula and taking v = .22 one deduces G, = 57.5 J.m 2.
No reference have been found, for a specific critical stress o, for this material. Thus, from the observation
of [Bahr et al. 1986] that states the existence of a critical temperature between 154° K and 159° K, which
we associate to the parameter loading © = 1, from which is deduced that o, = 110 MPa and thus n, = .11

103 - :
= = Bahr et al (2010) 1
e o Alt. Min. v = 280
— )l o
— D/t
102 H -- M/
Dy/ly

d/ty

101 L

10(] I )
107! 100 10t 102
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Figure 4.16: Scale law: Spacing between cracks d as a function of the distance a from the exposed
surface (square experiments and circle simulation). Horizontal green line initial periodicity A, predicted
in Chapter 3. Vertical lines: in red the internal length 7,, in blue D the depth of the slab. Full black line
scale law from [Bahr et al. 2010]. The relevant dimensionless number is ¢p.

These results show room for improvement, especially because we have no guarantee that the same
material is used in [Bahr et al. 1986] and [Bahr et al. 2010]. Let us turn towards a more complete data
set.

4.4.2 Confrontation with experimental results from [Shao et al. 2011] on ceramics

This section is devoted to the study of an entire thermal shock problem. Comparing with the scale
law from [Bahr et al. 2010] and using experiments partially reported in [Shao et al. 2011|. This numerical
simulations has to goal of looking at three phases: (i) nucleation (ii) scale law (iii) crack arrest in a specific
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case.

Figure 4.17: Half domain size corresponding to that experiments in [Shao et al. 2011] for temperatures
¥ = {280,380, 580}. S.I. unit is used except length that are in [mm].

In the numerical simulations, half a slab is considered (Domain size 10 mm x 25 mm). The material
parameters E = 340 GPa, G, = 42.47 J.m 2, 0. = 342.4 MPa (and also v = .22), give, using an internal
length? 1, = 46um. Which leads to the loading parameters from Table 4.8. Here from the couple (G, o)
as material parameter, the value of 7, is computed which is then used as material parameter for the
numerical computation. Thus the mesh size is fixed at h = .01 mm, ensuring h/n, = 5. Leading to a
mesh with 5 x 105 elements and thus 20 x 10 degree of freedom (d.o.f.). The simulation are runned on
half the test specimen and the boundary conditions u, = 0,0a/0n = 0,012 = 0 are enforced. The other
boundaries are left free in displacement and damage. The intensivity of the thermal shock and the Griffith
length are reported in Table 4.8.

The diffusion is simplified with respect to the modeling part of [Shao et al. 2011], as the material

2From [Shao et al. 2011] the limit temperature would be identified as ¥ = 230 (thus £o = 0.036895 mm) which gives an
internal length 7, = 0.098 mm



4.4. The scale law and comparison with experimental results 123

9 © Lo [um)
280 || 0.4492 | 24.89
380 || 0.3308 | 13.51
580 || 0.2167 5.80

Table 4.8: Value of the loading parameters © and ¢y corresponding to the experience from
[Shao et al. 2011].

constant are assumed not to depend on the temperature. Solving the heat equation %—f — kc% = 0 with
ke = k/(pcp) is the thermal diffusivity [m?/s]. The thermal expansion coefficient is chosen constant to

a =8 x 1079 corresponding to a temperature of 600°K in [Shao et al. 2011].

Figure 4.17 reports the final network of damage bands at the end of the simulation on the entire
domain for different temperatures. As already mentioned no hypothesis on the crack set are made. Thus
in the center part of the specimen, where the heat equation is unidirectional, the parallel array of cracks
as in Figure 4.14 is a result of the minimization process. The number of cracks is computed for 100 depth
points distributed on a log space on the upper side of the computation.

Figure 4.18 reports the comparison, in the thermal shock problem on ceramics, between experimental
measures and the numerical simulation with alternate minimization algorithm. The first depth experimen-
tally measured is well beyond the damage zone predicted from Chapter 3. For different loading, despite
the simplification in the thermal process (heat equation and linear shrinkage), very good agreement is

found.

In the center part of the domain the linear regressions of the simulations and the experimental data

d a
I — | =Al — B
o8 (ft)) o8 <f0> Mt

which quantify the impressive results for different loadings.

are compared

Experiment AM.

Y A B A | B
280 || .83 .61 75| .67
380 || .63 .90 .69 | .79
580 || .58 | 1.11 .68 | .81

Table 4.9: Regression on the experimental and computed spacing as a function of the penetration in the
crack selection regime.
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Figure 4.18: Scale law: Spacing between cracks d as a function of the distance a from the exposed
surface (square experiments and circle simulation). Horizontal green line initial periodicity A, predicted
in Chapter 3. Vertical lines: in red the internal length 7, in blue D = L, /2, the half of the depth of the
slab. Full black line scale law from [Bahr et al. 2010|. The relevant dimensionless number is ¢y.
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4.5 Three-dimensional numerical simulations

4.5.1 The scale-law on large domains

In three dimensions (Fig. 4.19) more complex morphology appear. Especially, hexagons of width
increases when penetrating in the material are observed. In three-dimensions, it is not possible to perform
full-domain numerical experiments while resolving the material’s internal length for anything but the
smallest structures. In order to study scaling properties of three-dimensional crack pattern, we considered
an semi-infinite domain {z > 0} subject to a thermal shock on the face {z = 0}. The elastic properties
and experimental settings are the same as in the two-dimensional experiments of Section 4.4.2. A series of
numerical experiments were performed on subdomains (—L/2,L/2) x (—L/2,L/2) x (0, L), for increasing
values of L from 2mm to 2m. Null normal displacement on all lateral and the upper faces was prescribed.

The number of elements in the mesh was kept constant by setting the critical size of the elements
h = L/200, and an internal length to 7, = 5h. For L = 2mm, we get 1, = 5e — 2, matching the considered
material’s internal length, and allowing us to capture crack nucleation. For larger domains, we do not
claim to be able to capture the initial onset of fracture, but following the rationale developed in the two-
dimensional case and validated in Figure 4.18, we claim that the selection mechanism is properly accounted
for. The outcome of this series of simulation is shown in Figure 4.19 where the crack patter is highlighted
by taking the isovolume a > .95. The temperature field is projected on these surfaces representing the
cracks.

Figure 4.19: Three-dimensional crack patterns for domains with edge length (a) 2mm; (b) 10mm; (c)
20mm; (d) 40mm; (e) 63.2mm; (f) 200mm; (g) 632mm; (h)2m. [Bourdin et al. 2013].

Boundary effects for deep cracks are filtered out by showing the crack pattern only for z < .75L.
The fracture patterns delimit polygonal cells, and a coarsening phenomenon similar to that of the two-
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dimensional case is observed. Figure 4.19 is obtained by measuring the average cross-sectional area of the
cells as a function of the penetration depth in numerical simulations. As in the two-dimensional case, the
solid line is the scaling law from [Bahr et al. 2010]. In the Griffith regime (that is for crack size much
larger than the material’s internal length), our numerical simulations follow closely the two-dimensional
scaling law, for a range of domain sizes spanning three orders of magnitude.

Scaling plot

L=2.0 mm

L =10.0 mm
L =20.0 mm
L =40.0 mm
L =200.0 mm
10* L=632.4 mm
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Figure 4.20: Scale law in the 3 dimensional case: Scale of the hexagons with respect to the penetration

4.5.2 Three-dimensional effects in thin slabs and transition to transverse cracks

In the case of simulations of width 1 mm two dimensional effects whereas 5 mm three dimensional
effects (Fig. 4.21) appear. This correspond to the observations made in [Shao et al. 2010] for domains
of width 5 mm and [Shao et al. 2011| for domains of 1 mm. In this sens these computation validate the
hypothesis of a two dimensional in plane stress although the with of 1 mm is 20%,.

A second series of numerical simulations attempts at providing quantitative validation of our approach
and its ability to capture complex fracture patterns by focusing on the transition from two-dimensional
to three-dimensional crack patterns. Experiments suggest that for identical materials and environmental
parameters, the sample can have a strong influence on the crack patterns at onset.

For “thin” domains, the solution is essentially two-dimensional while for domain of thickness comparable
or larger than the initial crack spacing, three-dimensional polygonal crack patterns arise (compare for
instance the crack patterns from Figure 7 in [Shao ef al. 2011] to that of Figure 2 in [Shao et al. 2010].)
In all cases, the domain is long enough and the cracks short enough in relation to the domain size to avoid
boundary effects potentially arising from computations on a subdomain.
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Figure 4.21: Three-dimensional version of the experiment from Figure 4.17(b) performed on a subset of
dimension 5mm x L x 5mm of the full domain for L, = (a) .1mm; (b) .5mm; (c) 1mm; (d) 1.5mm; (e)
2mm. |Bourdin et al. 2013]

(b)

Figure 4.22: Three-dimensional version of the experiment from Figure 4.17 performed on a subset of
dimension 5mm x 1mm x 5mm of the full domain for a temperature contrast (a) 280°C'; (b) 380°C'; (c)
480°C'; (d) 580°C'; (e) 680°C'. [Bourdin et al. 2013]



128 Chapter 4 : Morphogenis of cracks

Finally, we focus on the two to three-dimensional crack transition as a function of the shock intensity.
A careful look at Figure 5 in [Shao et al. 2011] suggests that for temperature contrasts below 380°C,
only transverse cracks are observed, that for ¢ = 580°C', some three dimensional artifacts are observed,
while for ¥ = 680°C', full three-dimensional patterns are observed from the onset. Again, our numerical
simulations matches experimental observations: for ¥ = 280°C' and ¥ = 380°C', cracks are essentially
transverse. For 9 = 480°C', ¥ = 580°C', some three-dimensional effects arise while for ¢ = 680°C full
three-dimensional patterns are observed from the onset. Note that when they appear three-dimensional
effects are limited to a shallow layer past which cracks become transverse.
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4.6 Application to gas storage cavern

This work has initiated following question from the geo-mechanical group at LMS.

4.6.1 Moss Bluff cavern, general overview

A cavern initially filled with gas is considered, due to an accident or to normal running operation a
drop of pressure occurs in the cavern. This drop of pressure induces a drop of temperature Tyop in the
cavern, eventually after the initial drop the temperature raises back to the initial temperature. Before, the
gas release the salt is at an initial stress state at which one must add the effects of temperature variation
in the well. They can be estimated by assuming that they are applied “instantaneously” and that the
viscoelastic flow that follows has not time to propagate. This is a rough assumption, especially for the
well, but which give the orders of magnitude. The viscoelastic behavior of brittle solids has been studied

analytically in [Nguyen et al. 2013] and applied to sedimentary rocks. In any case the mechanical effect
of the change of pressure in the gas in the cavern is neglected.
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Figure 4.23: The temperature drop and thermal loading. Dashed-Red: profile of the real temperature
[Bérest et al. 2013|. Blue: approximation with a thermal shock used in Section 4.6.2.

The material constitutive of the cavern is modelized by an homogeneous brittle material. The material
properties are given in Table 4.10 and are those of the salt. The measured elastic moduli of natural rock
salt from ten different locations in the US [Hansen et al. 1984] where mean values were found to be in
the 24 — 32 GPa range. The material’s toughness is computed from the critical stress intensity factor K.
varying between 8 — 25 MPa.mm™"/? found in [Guosheng 1998|. Using Irwin’s formula G, = (1 — v)?K?.JE

we determine the materials toughness varies between 2.4 J.m~2 and 23.4J.m 2. The materials length

n is given by (1.30) and will be discussed in the following section. Finally, its thermal diffusivity k. is

determined from a thermal conductivity of 6 W.m ™' K1, a heat capacity of 921 J.kg™!.K~! and a density
of 2.19.

The cavern is supposed to be a cylinder whose cross section is the domain  (Fig. 4.24) the surface
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E v a GC Oc¢ n kc
25 GPa | .25 | 4.107° | 15Jm 2 | 1.35 MPa | .1 m | 1.76.10 5m2.s~1

Table 4.10: Average material parameters of the elasto-damageable salt constitutive of the cavern.
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cavern at a damage state. Blue sound material.
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o1 (i.e. the cavity wall) is exposed to the thermal shock. All boundaries are left stress free. The thermal
loading imposes an linear shrinkage e'® = a(T(x,t) — Ty) and we assume that the thermal diffusivity is
independent of the materials states, thus the temperature field is solution of the heat equation

oT
with the boundary condition T = T — Ty, on the surface of the cavern dr) and the initial condition
T(x,0) = ToVx € Q. The thermal diffusivity is assumed to be constant in the entire material and
independent of the temperature and the crack state.

The operating engineer is interested in the following questions: Will the fractures be arrested at a
certain distance from the cavity wall 7 Will the cavity be stable in spite of the fracture formation 7
We are concerned with assessing the risk of cracking during the Moss Bluff accident [Bérest et al. 2013].
The cavern of height 700 m and of radius varying between 20 m and 40 m is filled with gas. Its total
capacity is 1.291.766 m®. The profile of 91Q is the average profile based on 4 orthogonal measures of
the circumference made of 2800 points. The domain € is carved in a the domain [0, 150] x [-720, —1250]
where the point (0,0) is taken as the point of the axis of revolution situated at the see level.
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Temperature evolution in the cavity: The change of temperature can be precisely computed in
[Bérest et al. 2013| where simplified state equations (ideal gas and Van der Waals gas) to allow getting
closed-form solutions of the blow-out problem. These solutions are applied to the cases of compressed air
storage and hydrogen storage in salt caverns. The minimal temperature is reached after 2 days and comes
back to a normal temperature after 7 days. The drop in temperature is of 78°C'.

Initial state around the cavity: Around the well, before the blow, exists an initial stress field. Near
the surface, the vertical stress component is dominant and takes value close to 20 MPa. As Ea/(1 —v) =
1.33 MPa.K™!, As an approximation, we run a simulation with no initial stress but simulate a drop of
temperature 20°C' lower then the actual Tgyop.

A computation on the entire cavern (Figure 4.25) is not realistic because of the internal length 7 is
very small in front of the size of the structure. With an overestimated internal length, we see that the
cavern can be study a cross section at a time. Thus we will restrict our analysis to the bottom part of the
cavern to use the real material parameters.

4.6.2 Crack nucleation and propagation in Moss Bluff blow out

From Figure 4.25, cracks do not seem to propagate in a privileged region of the salt foundations,
although the geometry induces stress singularities. Thus in the sequel, the computation will be restricted
to a slice of the cavern. On the top and bottom of the domain normal displacement are blocked u, = 0 and
shear stress are assumed to vanish. Near the surface 912, up to a distance of 45 from the revolution axis
the mesh is set to h = .03 the size of the mesh is then increases up to 5. Near the surface 012, we need a
refined mesh as to approximate properly the energy dissipated one must respect the characteristic size of
the mesh is small in front of n. Typically h/n = 5 allows the surface energy density to well approximate
the materials toughness while minimizing the computation cost. Thus the computation are performed on
meshes of 14 millions elements leading to 31 millions degrees of freedom (2 for displacement and 1 for
damage field at each node). Furthermore, an unstructured mesh is used such that no favored direction be
introduced and to avoid overestimating the energy [Negri 1999].

The goal is to quantify up to which depth the cavern can be damaged to evaluate the potential volume
variation. In this case we consider the short time behavior for the total blast, the amplitude of the thermal
shock is [Beérest et al. 2013]

Tarop = 78°C = 58°C.

n

drop
The damage state at 3 different dates after the beginning of the loading is reported in Figure 4.26. At
the beginning a totally damage zone diffuses in the bulk of the material (Fig. 4.26(a)). This zone has no
residual consistence and would lead to a disintegration of the rock wall. Then after a certain time (a little
more than a day) cracks nucleate (Fig. 4.26(b)). These cracks progressively penetrate the bulk of the salt
formation. Then around the third day, a periodic array of cracks is created. The periodicity arises despite
the roughness of the surface and despite the initially totally damage zone. This property is noteworthy.
Let us stress once again that we have made no assumption on the topology of cracks. Thus the evolution
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principle, automatically selects the localization into cracks.
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Figure 4.26: Damage field after a thermal shock as in the Moss Bluff cavern. Very Severe blow up
Tarop = 78°C' on 7 days. Blue sound material point a(x) = 0, Red totally damage point a(x) = 1.
Distance in meters.

Thus we observe that during the first day (Fig. 4.26(a)), a zone of depth 40 cm totally damaged is
created all along Op{). The consequence is that in this zone could lead to the fall of rocks of volume
271 x 30m x 700m x 40cm. (52000m?3) which is 4 percent of the cavern. The crack spacing, for the current
loading is of no specific interest as the loading is very severe, except that its existence confirms that a
disintegrate zone will always localize into a set of cracks. We are now interested in the evolution of this
array on a longer period, which is the concern of the following section.

The same analysis is reproduced but for an amplitude of the thermal shock of Ty, = 40 and over on
a period of 6 months. This temperature drop is more realistic over a “long” period. Thus the loading is
given by

Tarop = 40°C = 20°C'.

n

drop
The goal is primely to determine how far and with which spacing the cracks propagate. The length of
crack increases as time goes by (Fig. 4.27). Unlike, for the severe loading, cracks nucleate periodically at
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the surface. After 3 days, one can observe a set of periodically cracks of the order of the meter. After
7 days, only every other cracks has continued its propagation. This crack arrest and period doubling
continues over the six first months.
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Figure 4.27: Damage field after a long exposure to a thermal field Tq,op = 40°C'. Evolution on a long
period. Blue sound material point a(x) = 0, Red totally damage point a(x) = 1.

The crack spacing as a function of the average depth is reported in Figure 4.28, where {j is a length
characterizing the intensity of the loading. In the case of a half-plane, [Bahr et al. 2010] have predicted
the crack spacing of a parallel array of cracks following Griffith’s law. Thus, when considering the entire
range of —1130 m to —1190 m below the see level, the relation between the penetration and the crack
spacing follows the scale law from Griffith’s theory. The geometry has very little influence on the position
and spacing of cracks. Albeit the surface of the rock wall is not regular, the global picture is a parallel
array of cracks. If we were to add a few heterogeneities, these would not modify the global picture, albeit
some individuals cracks would follow a different path.

The results of Figure 4.27 shows little influence of the geometry of the cavern on the crack pattern.
This allows to use the results from a thermal shock on a semi infinite slab.
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Figure 4.28: Crack spacing d as a function of the distance a from the average of the radius of the rock face
for 3 different ranges from the see level. Blue diagonal scale law from [Bahr et al. 2010]. The red vertical
fixes the scale of the internal length of the material.

o lo
Tgrop =58°C | .023 | .11 mm
Tgrop =20°C | .068 | .94 mm

Table 4.11: Loading parameters for two different temperatures based on the material parameters of Ta-
ble 4.10.

4.6.3 Conclusion on the Moss Bluff Application

On the one hand, we have performed a simplified analysis especially: (i) the behavior of the material
has been considered rate independent and thus the viscoelastic nature of the material has been neglected,
(ii) the initial pre-stress of the material has only been taken into account through a change of the loading
(iii) We have considered two simplified temperature profile, compared with the real profile (Fig. 4.23),
with respectively a drop of temperature Tgyop = 60°C' and Tgyop = 40°C'; (iv) The initial temperature
field is assumed to be constant and at the temperature of the gas before the blow. On the other hand, the
damage model used is very versatile. The identification of material parameters of the model is given from
(1.30) and is thus very simple from quantities well know in fracture mechanics, the Young modulus, the
toughness and the critical stress. Furthermore, this work benefits from the theoretical work on thermal
shock setting done in the previous chapter.

However, these assumptions do not reassess the main conclusions. Thus the damage based fracture
model allows to capture the topology of the crack setting. Although, notches and angles are Thus the
geometry of the cavern plays a small role in front of the intensity of the thermal loading. The consequence
is that when cracks propagate, the simplifies approach [Bahr et al. 2010] related the spacing of cracks as a
function of their penetration: (i) If the thermal shock is extremely severe, the rock wall is totally damaged;
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(ii) at a given time (or penetration) the gradient damage model always structures it self in bands which
are the regularized version of cracks; (iii) These cracks propagates in the bulk of the material as long as
the temperature drop propagates; (iv) as the cracks penetrate, their spacing increases, and they follow the
scale law from Griffith’s theory.

Thereby, very fine results can be established at a high computation cost. Perspectives are to consider
real evolutions in temperature as well as precise initials stress states and the viscoelastic flow. This
application also exhibit that the analysis in the case of half domains remains highly relevant, and thus
those theoretical and analytical results can be used in many gas storage caverns submitted to a rapid
change is temperature.

4.7 Application to non homogeneous materials

Many materials are not homogeneous, it is especially the case of concrete. Let us consider a simple
composite material: a brittle phase in which are enclosed elastic inclusions. This specific case deserves to
be studied in depth, yet here the previous results will merely be applied. In which sens the heterogeneities
change the results 7

The inclusion do not participate to the transport. It easily conceivable for drying for example with glass
inclusions in a cement paste |Bisschop & Van Mier 2002b, Bisschop & Van Mier 2002a, Bisschop 2002].
The inclusions and the matrix have the same rigidity E = 1 and Poisson ratio v = .2. Considering fix
positions of inclusion, but increasing their radius (Fig. 4.29) as their size increase the influence is greater.
Here not only does the size of the inclusion change but also the ratio between inclusion and matrix. We
try to separate both factor.

Figure 4.29: Drying in non homogeneous materials: Position of inclusions fix, radius increasing.

The inclusions are of radius r and the ratio of the surface of inclusions on the total surface is ¢.
The internal length of the material is kept constant 7, = .5 and is thus smaller (but of the same order)
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as the inclusions®

. Thus the size and the ratio have an impact on the damage properties (Fig. 4.32).
Quantitatively, smaller inclusions tend to locate the damage on the surface, and this damage remains
very diffuse, the localization into damage bands does not necessarily happen. For larger inclusions the
array of cracks remains. The cracks are more or less parallel. The impact of the ratio is a expected, the
amount of damage increases with the ratio of inclusions as the stress increases. This has a impact on the
maximum penetration of cracks. These results are at the same drying time and more precise results as in

|Bisschop 2002] related to the mass loss should be sought for.

For the considered loading, in the homogeneous case, all the localization develop into cracks. We
consider one quantitative result, comparing the crack spacing at the surface as a function of the size of
the inclusion and the ratio ¢ (Table 4.12). The deviation with the homogeneous case remain below 20
percents.

radius 2 .3 4
1 1.98 | 2.17 | 1.66
3 1.97 | 2.02 | 2.03
Table 4.12: Initial spacing of cracks for © = .2 for different inclusion ratio to be compared with a

Ao/ = 3.7 (i.e. Ay = 1.85 for 0, x.5) in the case of a homogeneous material (Tab. 4.1).

Conclusion

Nucleation of complex cracks morphology is still a difficult task. The ability of the numerical imple-
mentation of the variational approach to fracture to initiate a parallel sets of cracks has been illustrated.
Theses numerical results are confronted to two semi-analytical results: the localized damage solution de-
tailed in Chapter 3 and the scale law from [Bahr et al. 2010]. These two bounds give us some confidence in
the numerical results which will thus be extended to more complex settings directly linked with industrial
applications. These cracks emerge in a periodic localized damage solution which is the bifurcation of a
fundamental branch homogeneous with respect to the horizontal direction. The periodicity is confronted
with that of the bifurcated solution of gradient damage model and to that predicted by Griffith’s theory.
Many simplification are made in this work yet the essential elements remain the singularity in the evolu-
tion of the temperature field. Two extensions of this work are possible: to other diffusion process and to
smaller domains (exhibit scale effects).

Different regimes arise depending on the value of the loading parameter, which is the ratio between
the materials critical stress and the stress induced by the thermal shock. For severe loading, the non local
damage interpretation explains the entire nucleation phase, whereas for milder loading the Griffith regime
appears during the cracks nucleation phase. In the former the periodicity is well explained as a global
property of the damage evolution, whereas is the latter, no mean to prove periodicity exist. Different

3This could typically be the case of a mortar with aggregates in the case of concrete
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Figure 4.32: Drying in non homogeneous materials. Depending on the size of the inclusions r and their
density ¢ damage localizes in bands or remains diffuse.
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interpretations are proposed on this aspect but with no definitive answer.

Finally the simulations are confronted to a real thermal shock experiment. The numerical implemen-
tation captures all three phases: nucleation, scale law and crack arrest. The influence of the physical
parameter of the internal length is illustrated, although it is most important that it is compared with
other experiments. These comparison are confronted to the difficulty to physically measure a crack and
the definition of a crack in a continuous damage zone. This matter deserves further investigation. Both
interpretation of damage and Griffith of a same formulation depending on the crack regime have been
discussed.

The three-dimensional computation allows to exhibit an hexagonal crack pattern whose scale law is
the same as in two dimensions. The emergence of three dimensional effects in the case of slabs when the
thickness increases corresponds to the experimental observations. Then two applications are considered,
both for severe loadings, from which we conclude that many results from the half plane thermal shock
have a broad domain of validity.

To better understand of all the numerical results, the question of computation cost reducing techniques
should be addressed. Either simple with evolving mesh size with the penetration or more complex with
adaptive mesh and re-meshing. Indeed at the surface the mesh size is given by the materials critical stress
which usually forces to have very fine meshes. As we penetrate in the material and that cracks have
nucleated, the internal length has less physical meaning and its choice could be relaxed.



Conclusion and Perspectives

In this dissertation new results in the use of gradient damage models to capture brittle fracture are
proposed. These results are based on the sound mathematical bases of calculus of variations. They stand
at different levels in the construction of the theory. The construction of the variational approach to damage
and fracture, for a rate-independent process, in a quasi-static setting, based on the three principles of:
irreversibility, stability and energy balance, is recalled. The same damage models used in the regularized
approach to fracture of the numerical simulations [Bourdin et al. 2000| are considered. This model fits
into the family of models introduced in [Pham & Marigo 2010b], for which a general analysis of the one-
dimensional traction problem has been reported in [Pham & Marigo 2013]. It is characterized by a scalar
damage variable and a gradient term in the damage, which introduces an internal length 7. Underlying
to the variational approach is the choice of an energy, whose dissipative process is characterized by a
critical stress o, and an internal length 7. The one chosen in this thesis allows to capture brittle material:
critical stress, finite dissipated energy and finite crack opening. The variational principal used in the one
of directional stability. From the first order stability condition the equilibrium and damage criteria are
devised. These are point-wise conditions. The second order condition give a global property. In the case
of an evolution of a bar in traction, the evolution is as follows. There exists an elastic phase, when the
stress reaches the threshold o, damage nucleates everywhere in the bar. As the behaviors studied are
softening, the stress in the bar decreases. Then this solution localizes. The loading at which it happens
depends on the size of the bar which underscores a size effect. From a single localization the material’s
toughness G¢ can be identified, is it proportional to the internal length 1. The main contributions of this
work are summarized before opening on possible perspectives.

Nucleation of a crack at a notch singularity

A major issue that remains in fracture mechanics is how to model the nucleation of a crack in a sound
material. Here, an intermediate step is introduced by using damage and to not directly nucleate a crack
from a sound material. A separation of scales illustrates that damage only nucleates in the surrounding
of the notch, and thus far away from the notch the behavior remains elastic. Thus, rescaling the family
of problems brings up a first term which captures the size effect. Then on the rescaled problem, using
the techniques of matched asymptotic methods on the outer part of the domain the stress intensity factor
K, due to the geometry is identified. This is a simple elastic computation. Finally in the vicinity of the
notch the so called inner problem is studied, which only depends on the angle of the notch w. On the one
hand, the order of magnitude of the loading to nucleate a crack only depends on the notch angle. On the
other hand, this allows to develop a simple approach for engineers to design at crack nucleation. Indeed,
using Table 2.1 the problem is reduced to an elastic computation possible with any F.E.M. as detailed in
Appendix B.2 to determine K.
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Propagation of damage bands and convergence towards Griffith’s evolution law

Whenever the length 7 is small by comparison with the dimensions of the body, one can prove by
Gamma-convergence arguments that the global minimum of the regularized functional converges to the
global minimum of Griffith’s functional. This result is the base of the numerical implementation of the
variational approach to fracture. This key result is viewed as a fundamental link between damage and
fracture mechanics. However the concept of global minimization of the energy cannot be considered as
a good physical principle. Indeed, not only does this type of global minimization allow for jumps from
one state to an other without considering the presence of energy barriers, but in the case of prescribe
forces it does not accept any solution. It deserves to be improved and generalized by replacing the global
minimization principle by a stability condition used in this dissertation. One is then interested whether the
evolution of damage governed by such a weaker condition remains close to the one prescribed by Griffith’s
law when the internal length 7 is small. The same question appears when considering numerical tests
based on an alternate minimization algorithm. Indeed, such an algorithm does not converge necessarily
to a global minimizer of the energy but only to a stationary state. The issue is to compare the evolution
given by the numerical computations with Griffith’s law.

Practically the numerical simulations show that, after a stage of nucleation, the damage concentrates
in bands. Their width is of the order of the characteristic length n of the material. Moreover, except at the
tip of the damage zone, the damage profile in the direction orthogonal to the band is practically the one
given by a one-dimensional analysis. These two properties (a thin damage band with an optimal profile)
are the basic assumptions (Hypothesis 5) of our analysis. The local energy balance conditions still hold
even in the vicinity of the crack tip (Proposition 5). The last major issue in order to achieve this task is
to give a sense to the concepts of energy release rate and of critical energy release rate, that is to say, to
introduce correctly the basic quantities G and G¢ entering in Griffith’s law in the setting of our damage
law. Specifically, in Griffith’s theory, G is defined by assuming that the material has a purely elastic
behavior. Then by virtue of Irwin’s formula one can relate the energy release rate to the singularity at the
tip of the crack and therefore to the stress intensity factors. In the context of the present damage law, the
stresses remain bounded but the gradient of damage can be singular. Besides, in Griffith’s theory, G¢ is a
given material constant characterizing the energy associated with surfaces of discontinuity whereas in our
damage approach the parameters characterizing the inelastic behavior of the material are the critical stress
0. and the internal length 7. Accordingly, GG is defined with the help of a two-scale approach and G, as
the energy dissipated by creating the optimal damage profile. From all these ingredients, in Proposition 9
is established that the damage bands follow Griffith’s propagation law.

The numerical investigation of the tip problem gives a better understanding of the evolution of damage
bands. Obviously there is no singularity in stress as the damage criteria induces a stress threshold. The
crack propagates for the expected critical stress intensity factor. In this stationary phase (Fig. 2.23), the
damage profile is almost invariant for any angle leaving from the tip (Fig. 2.24). As established analytically,
the damage is singular at the tip of the damage band except when the crack propagates.
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Nucleation for stress concentration in a thermal shock setting

When there is a singularity due to a notch the nucleation phase is localized in the vicinity of the notch.
Yet cracks can also appear when the stress is much more diffuse, especially, in many situations cracks
which a characteristic distance between them appear. This study aims at giving further insight on the
initiation phenomenon in thermal shock fracture and, more generally, on the morphogenesis of complex
crack patterns. It also provides a non-trivial example of the study of the evolution and bifurcation problem
of gradient damage models in a two dimensional settings. The thermal shock problem for a semi-infinite
two-dimensional slab is taken as a model problem. By assuming a perfect conductivity at the surface of
the thermal shock, a Dirichlet boundary condition on the temperature is considered. The analytically
calculated temperature field, function of space and time is used to evaluate the mechanical loading in the
form of thermally induced inelastic strains.

Hence, the rate problem (Proposition 13) is formulated. The fundamental solution uniqueness and
stability are determined through the minimization of a Rayleigh ratio on linear spaces or convex cones
(Proposition 16). The main result of this chapter is the solution of this bifurcation and stability problem
(Proposition 18), which is obtained by adopting a partial Fourier decomposition in the direction parallel
to the surface of the slab. The existence of a finite time ¢, from which a bifurcation from the fundamental
branch can occur is proven, the fundamental branch becoming unstable at a later time ¢;. Moreover the
bifurcated solution is stable (Proposition 15) and characterized by a finite wavelength A, proportional to
the internal length n of the material. This bifurcated solution represents the onset of the localization
phenomena leading to the establishment of the periodic crack pattern observed in the experiments.

Quantitative results are obtained through the numerical solution of a one-dimensional boundary value
problem for the fundamental branch and of a parametric one-dimensional eigenvalue problem for establish-
ing the key properties of the bifurcated solution as a function of the loading parameter 8 and the Poisson
ratio. The main assumption is the perfect conductivity that implies that the maximal stress is reached on
the surface at t = 0.

Morphogenesis of cracks under drying or cooling

This last chapter studies numerically the morphogenesis of cracks patterns in the thermal shock. The
understanding of the variational damage models is leveraged to numerically study the morphogenis of
complex crack patterns and their selective growth. These results illustrate the predictive and quantitative
modeling of the complex fracture pattern evolution. Once again they are based on no a priori hypotheses
on the crack set geometry. The loading comes from the cooling induced shrinkage. Nucleation is governed
by both the critical stress o, and the internal length 7,, where the propagation is governed by G¢. Yet
only two materials parameters are needed and they are related in our formulation.

Although this section is numerically based, one greatly benefits from the understanding of the nucle-
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(a)

Figure 4.33: (a) Crack pattern in a slab of ceramic after thermal shock (b) numerical simulation. Damage
field « indicating the location of cracks.

ation developed previously. Especially, the importance of the evolution of the damage and of the diffusion
process, must not be neglected. As the cracks penetrate our model captures the scale law observed exper-
imentally on a multitude of scales and which can be deducted from Griffith’s evolution law. Very good
qualitative (Fig. 4.33) and quantitative agreements are found.

This detailed study shows that the computation costs remain high as soon as material parameters are
used. Indeed, from material parameters, the internal length is small in front of the size of the structures.
Not only does this length appear in solutions as in the thermal shock setting, it also governs the link
between the toughness G, and the critical stress o.. Thus a change in the length will modify one of these
key physical parameters. When cracks are established, o, is less relevant, but for nucleation, the relation
between the mesh size, the internal length and the size of the structure leads to heavy computations.

The extension to three-dimensional simulations is natural and does not require new theoretical de-
velopment. For large domains, cracks form a hexagonal pattern, which in the case of the thermal shock
follows the same scale law as in two-dimensions. A very subtle behavior is captured for the transition
between three and two dimensional crack patterns which corresponds to the experimental observations.
Moreover non regular surfaces or heterogeneous materials can also be addressed in this framework, and
illustrate the generality of the simplified framework studied.

Perspectives

There are many outlooks to this thesis. Following the order of the chapters let us give a few hints on
what they could be. First, the justification of the gradient term through homogenization is still lacking in
the construction of the model. The nucleation phase should be compared to other evolution law, surface
energy densities such a Griffith or cohesive force models but also other bulk models such as plasticity or a
coupled plastic damage model. Once the damage bands are established, the convergence of the evolution of
their length towards a given evolution law in the case of non homogeneous materials, should be established.
The result should depend of the size of heterogeneities compared to the internal length 7. Especially the
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effective propagation of crack bands in composite materials where the distance between the heterogeneities
is of the same order as the internal length. Obviously rate dependent evolutions as well as dynamic loading
are still open questions. The limit of the gradient in damage it is a very strong regularization which on
the mathematical side a proper space for the damage field must be established.

In the case of the thermal shock, the investigation of size effects is an interesting extension, where the
width of the slate as well as its height should influence the initial periodicity. A post buckling analysis
which would allow to understand the selection mechanisms from bifurcated state to the crack setting. A
litmus test is to compare the results to different class of materials, where other damage models in the same
vain could be used. These results can be used as one, among other, selection mechanisms for the proper
damage models. But, the present work is a step forwards as the internal length is linked to a macroscopic
quantity. The evolution of damage with hydration or the alkali-silica reaction is a natural extension at
least numerically.

Speaking of numerics, materials often are such that the internal length 7 is small in front of the
dimension of structure. The numerical approximation of a characteristic mesh size small in front of n
leads to problems with a great number of degree of freedoms. One can not overlook that this is an
obstacle to the industrial diffusion of these methods. This issue could be addressed from a numerical
perspective.






APPENDIX A

Appendix of Chapter 1

While reasoning on the underlying local damage model, the connexity Hypothesis 1 is justified through
homogenization. The strain energy is linearized around the state (0, T, @) up to the second order assuming
small strains, and a small variation from the initial temperature

Wo(e, T, o) = Wy(0, To, ) + oo(ax) - € + %A(a)e - — A(a)a(a)e(T — Typ) + 17(04)(T — To)>.

2

Physical interpretation of the different terms: og(«) is the prestress, a(«) is the thermal dilatation consid-
ered isotropic, A(«) is the rigidity and y(«)/ Ty is the specific heat capacity at constant strain. A priori

these coeflicients depend on the damage state. Choosing the reference state such that the prestress term

vanishes and identifying w(a) = Wy (0, To, ) and thus the elastic energy density is:

V(e T, a) = %A(a)s ‘& — A(@)a(@)e(T — To) + ~~(a)(T — Tp)2

2

U(e, T, a) = 5A(0) (e — a(a)(T ~ To)) - (e ~ a(a)(T ~ To)) ~ ze(0)(T — To)?

Proposition 1 and Hypothesis 1 lead to a yield surface of

-1 o(e, T, o) <w(a)

- %A'(a)e e+ (N(@)a(a) + Ala)a'(@)) (T — To) — 27(a)(T - To)* < w(a) (A1)
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Figure A.1: Cell Y for the homogenization process of characteristic size €

Justification of the convex domain in the temperature field (Hypothesis 1). Therefore a two scale
homogenization asymptotic approach is considered. Let us consider a cell Y (Fig. A.1) of characteristic
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size € constituted of an inclusion Y; in a matrix Y;,. The dependence of the displacement and temperature
field on € is made explicit. The solution is searched for in power series of the small parameter e:

Te(x,y) = T(x) + €T1(x,y) +---  and  uc(x) = u(x) +ews (x,y) + -+,
where y is the fast variable y = x/e. In the mechanical problem, the temperature field only appears
through it’s average value on the cell T. The homogenized energy density for a macroscopic temperature
T is solution of the minimization problem

D)= min oo [ SAW) (e(v) ~ay)T) - (o(v) — aly)T) -

c(y)T? dy
veHul(Y)

N | =

where Hﬁl(Y) ={ve H'(Y)| wvperiodic} which becomes at the first order in u,
- 1 1 - - 1 -
e, T)= min — [ ZA v —a(y)T) - (e(u —a(y)T) — zc(y)T?dy.
GET)= i A0 () ) —a)T) (o) + o) ~a()T) — 5ely) Ty

The term y is used to make reference to the solution of the minimization process, which by linearity reads
x(y) = &i;x“(y) + Tx"(y), where x and x° are solution of the 7 elementary problems:

/Y Asira(y) (é + skl(xmh)> ei(v)dy =0  Voe H(Y), (m,h)e{1,2,3)>

/Y Aii(y) (E+ Ekl(XO)) gij(v)dy =0 Vo € Hﬁl(y)

where H! of vanishing average. The derivative should be understood in the sense of distributions in the
case of discontinuous fields. Finally, knowing x“ and x" the homogenized energy density reads:

= / (1A<y> (e(@) + e5(@e(x?) + ()T - a(y)T)

(e(@) + e (@e(x?) + (0T — a(y)T) - c<y>T2) dy

DN | =

Denoting 6;; the Kronecker symbol, the homogenized Hooke tensor, prestress °, and the homogenized
coupling term read as:

- 1
Aiji = |Y|/YAijkl (5km5m + €kl(th(Y))> dy,
- 1
oy = Aai= / Aijki <5km5lh + Ekl(th(Y))> - (abp — e (x")) dy,
Y1 Jy
- 1
bij = v /Y Aijki(adk — er(X°)) - (adk — er(x”)) dy.

Finally, the elastic energy density reads:
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combining (A.1) leads to b which must be decreasing with respect to the damage. This is the case as b
is solution of a minimization problem on a space that increases with the damage. Thus Hypothesis 1 is
justified.






APPENDIX B

Appendices of Chapter 2

B.1 The singular displacement field at the tip of the notch

A notch near an elastic material generates a singularity. To fix the notation let us mention the main
steps to compute the displacement field at the tip of a notch. A solution is searched for as an Airy function
of the shape:

N
¢(F,0) = Ko F(6)
=1

where (7, §) are the polar coordinates (Fig. 2.3) defined from the tip of the notch. In the case where w <,
the first two singularities g are solution of

sin2pw = —psin2w and  sin2gw = psin 2w (B.1)

and are reported (Fig. B.1). For w < w* = 2.2467 a single singularity exists. In the sequel only the
strongest singularity will be considered, which could vanish for specific loading or geometries, in which
case one should consider the following singularity. The first angular function F!() is even:

FY(0) = (1 — o) sin(1 — g)wcos(1 + 0)0 — (1 + o) sin(1 + g)w cos(1 — )0 (B.2)

0.2

0.0
/2 3r/4 &

Figure B.1: Power of the singularity function on the angle of the notch
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Then the strain is integrated up to the displacement (for v = 0), U, = 2re,, and Uy = %U; —4y/reg,
with the stress

o 10% 106 a<1a¢>

= zo Yo 0= "o \roe

HY(0) =(1—o0)sin(fo+ (0 — 1)w) + (0 — 1)sin[fo + w — pw] + 3sin[lo — (1 + o)w]  (B.3)
—  3sin[fo +w + pw] — psin[20 — 0o — (1 + o)w] + osin[26 — Op + w + ow]

H3(0) = (1—o0)cos(fo+ (¢—1)w)+ (¢ —1)cos[fo+w— ow] —3cos[fo— (1 + o)w] (B.4)
+  3cos[fo+ w+ ow] + 0cos[20 — Op — (1 + g)w] — pcos[20 — o + w + ow]

Finally, denoting H*(0) = (H%(0), HS(0)) the first term of the outer expansion u’ can be written
under the form (2.8)

B.2 Computation of K, through the dual stress singularity method

As proven in Section 2.2.3, in the outer domain the behavior is elastic and thus the stress field is
solution of the equilibrium
dive? +f =0 (B.5)
and the boundary conditions
uwW=U on dph
oc’'n=F on (B.6)

c’n=0 on I't

And thus the first singular term (2.8) u’ = K,;7¢H“ (). To compute the stress intensity factor K, we
propose to use the dual stress singular method. For that, we note that for an angle w if p is solution of
(B.1), then o* = —p also is. Furthermore, the angular function associated reads F* = —F and the airy
function of the dual singularity is

¢* — _T9+1Fi(0)

Thus the stress read
oty = == (F"(0) + (1 - 0)F(6)).

oty = —er CUF(9),  ohy = o(1)r " F(6)
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and the displacement
u* =7 (Ur(0)e, + Uj(0)ep)
with

Ur0) == (F"(0) + (1 — o) F'(9)),

| =

U30) = 575 (F"(0)+ (20 = 0+ DF'0)).

The main difficulty is to evaluate near the tip of the notch. Accordingly, we partition €2 to isolate the
tip of the notch. Let B, be the ball of radius r centered at the tip of the notch, let C, be its boundary (a
circle of radius r) and let 2, be the uncracked part of the body outside the ball B,: Q, = Q; \ B,.

Rewriting the equilibrium (B.5) under its weak form and using two integral by parts:

0 = / (dive” +f) - u*Fdrde
Q.
~ 0 e . - o’ - .
= —Vu’ - Vu* + fu*rdrdf + — - Vu*drdé
a, 00, On
o’ L .o
on on

= / uO-Au*+fu*rdfd9+/ ) drde

~7‘ 807
The term in u® - Au* of the first integral vanishes as u* is harmonic by construction. As the normal on
the notch is —e,, and passing to the limit in 7,

ut —ul. didf = 20K H?(0))” do
/@(an“ u an)r M/g( (0)

where the computation of the displacement field u can be done with any finite element software as it is
solution of an elastic problem and u* is a given function.

Jo, P AFd0 + [o (G- u - u®- 55 a7 dg
K — T T

g 20 [ (He(h))? b (B.7)

B.3 Sketch of the proof of Property 5

The proof of property (2.20) for the general class of strongly brittle materials needs a complete analysis
of the singularities at the tip of the crack. Such an analysis requires additional hypotheses on the state
function W. Consequently, a sketch of the proof is merely given in the particular case of the damage
model in Example 1. The analysis of the singularities is made near the tip of the crack and hence a polar
system of coordinates (r, ) is used with pole the tip of the crack, § = 0 corresponding to the axis tangent
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to the crack. Accordingly the lips of the crack correspond to 8 = +x. Since the time is fixed, the index ¢
is removed from all fields.

Let us denote v = 1 — «, only singular parts of the displacement are considered and damage fields of
the following form:

v(r,0) =rPV(0) + -, u(r,0) =ri(U.(0)e, + Up(0)eg) + - - -

where p and g will be called the order of the singularity. In order that the total energy be finite the orders
p and ¢ must be such that p > 0 and p + ¢ > 0. The damage criterion (2.14)3 reads

1
§U_3C00' o —wy —win?Av < 0. (B.8)

The first term of (B.8), Lv™3Cyo - o, being non negative, it cannot be more singular than the two other
terms of (B.8) whose orders are respectively 0 and at least p — 2. p merely considered such that p < 2
because otherwise the proof is trivial. Therefore, the order of %v*3Coa' - o must be greater or equal to
p — 2. This condition is automatically satisfied when the singular field displacement field corresponds to
a rigid displacement and in such a case ¢ € {0,1}. Otherwise %v‘gcoa - o is of order p + 2q — 2. Hence,
in any case ¢ must be non negative.

From the two inequalities p > 0 and ¢ > 0, it is easy to check that lim,_,ol, = 0. Moreover the only
terms in J, which can give a non null contribution are the gradient damage terms. Since Va - Va and
grovq are both of order 2p—2, Jo = 0if p > 1/2. Therefore, it remains to consider the cases when p < 1/2.

Let us prove that even if ¢ = 0, the order of 1v™3Cyo - o is greater than p—2. Tt is true when ¢ > 0. If
q = 0, then the order of the strains is at least —1, the order of ¢, is greater than —1 and the order of the
stresses is at least 2p — 1. Since the stress field o must satisfy the equilibrium equations, assuming that
the body forces are not singular, the singular part of dive must vanish. This is equivalent to introduce
an Airy function of order 2p + 1, say ¢(r,0) = r?»1F(0), and to set
1 9% 10¢ o) <1a¢> N 9%

=Zoe Trar T T e \vag) T T gt (B-9)

Orp

From the stress-strain relation v?Ee,. = (1 — v?)o, — v(1 + v)ogg, where E is the Young modulus of the
sound material and v the (invariable) Poisson ratio, one deduces that F'() must satisfy

0=(1—v)F"(0) + (1 — v(2p+ 1))(2p + 1)F(6).

Since the lips of the crack are stress free, F' must satisfy the boundary conditions F(£7) = F'(+m) = 0.
Therefore, the unique solution is F' = 0, the order of the stresses is greater than 2p — 1 and hence the
order of Lv™3Cyo - o is greater than p — 2.

Writing (B.8) at the order p — 2, one deduces that V' must be a non null function which satisfies

V'+p’V >0 and V>0in(-m,7m),  V(£m)=0.
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Let us prove that p > 1/2. Multiplying the inequality V” + p?V > 0 by V, integrating over (—, ),
integrating by parts the first term and taking into account the boundary conditions lead to

J S vierds o L0240 1 (B.10)
f V(0) 2d9 T >0 ffﬁ p(0)2do 4 ’
p(£m)=0

where the last equality is a classical result the proof of which is left to the reader. Moreover, all inequalities
become equalities in (B.10) if and only if p = 1/2 and V(0) = K cos(6/2) with K > 0. This matches the
classical singularity of the laplacian with Dirichlet boundary conditions on the lips of the crack. In such
a case, a straightforward calculation gives

Jo = —%WMQKz <0

which completes the sketch of the proof.






APPENDIX C

Appendices of Chapter 3

C.1 Proof of Proposition 11

Proof. The proofis divided into 8 steps. Throughout the proof 7 is a given positive number. The functional
spaces read

Dy :={B € H(0,00) : 0< B <1} and Dy:={B € H(0,00) : 0<}p}.

(i) : Existence and uniqueness of the minimizer. Since P is positive and lower semi-continuous and
since D§ is closed in H'(0, 00), a minimizer exists. Since P; is strictly convex, the minimizer is unique
and is denoted by &,. <

(ii) : @, is also the unique minimizer of P, over Dy. By the same arguments as for the minimization
over D, the_minimizer_exists and is unique, say &,. Let us set &, = min{a,, 1} € D} C Dy. One easily
checks that P (c,) < P-(&;). Therefore &, = &, € D§ and hence &, = &,. <

(iii) : 0 is not the minimizer. Since © < 1 = f.(0), there exists h > 0 such that © < f.(y) in [0, h]. Since
PLOXE) = [ (6 = Fely))5(0) o,

if one chooses 3 € Dy with its support included in [0, h], then P.(0)(3) < 0 and hence 0 cannot be the
minimizer. The (open) support of @, is denoted by I, i.e. I, ={y >0 : a,(y) > 0}. <

(iv) : a; is indefinitely continuously differentiable in I and satisfies

L) )1 -6 ) =0 Vel (1)

Since &, minimizes P, over Dy, by standard arguments one gets that it satisfies

[ (Zahs )+ (0~ w1 - a, ) ) dy 2 0. v €D ©
0

T
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and the equality holds when 8 = &,. Let ¢ € C§°(1,) (where C§°(I;) is the set of indefinitely differentiable
functions with compact support in ;). For h small enough, 8 := &, + he € Dy and one gets from (C.2)

/1 (:gdi(y)w’(y) - (@2 —fe(y)*(1 - dT(y)))gp(y)> dy > 0.

Changing ¢ in —¢ gives the opposite sign and the equality for every ¢ € C§°(I;). Therefore @, satisfies
(C.1) in I,. Since @, is continuous and since f. is indefinitely continuously differentiable, one deduces by
induction that &, is also indefinitely continuously differentiable in I.. <

(v) : The support I, is an interval of the form [0,6;) with 0 < §, < co. Let us prove by contradiction
that there does not exist a connected component (a,b) of I such that 0 < a < b < co. If such a component
exists, then &, (a) = @, (b) =0 (even if b = co because &, must tend to 0 at infinity in order to belong to
H'(0,00)). Let us prove that & (a) = 0 by using (C.2). For h > 0 and small enough, let us consider the
family of test functions [, defined by S (y) = 1 — |y — a| /h when |y — a] < h and Si(y) = 0 otherwise.
Then (C.2) gives

ar(a—h) ar(a+h) 2 /a+h

< — (62 —fe(y)*(1 - dT(y)))ﬁh(y) dy.

—h
Passing to the limit when h goes to 0 gives @.-(a—) = @’ (a+) and hence &, is differentiable at a. But
since @, > 0 and @,(a) = 0, this is possible if and only if @ (a) = 0. Therefore @/(a+) must be non
negative so that &, be positive in a neighborhood of a. Since &’ (a+) = 72(0? — f.(a)?) by (C.1), since f.
is decreasing and since 0 < &, < 1in (a,b), one gets

ol(y) = 7H0% — fc(y)*(1 — ar(y)) > 72(0* — fe(a)®) 2 0, Vye€ L.

T

Consequently @/ is increasing and hence positive in I;. Hence @&, must be increasing in I, which is
incompatible with a,(b) = 0. This is the contradiction and therefore a = 0. Consequently, there exists a
unique connected component and I is an interval of the form [0, d,). <

(vi) : @, satisfies the boundary conditions &..(0) = a-(d;) = a_(6;) =0 and 6, is finite. Taking 8 = @,
in (C.2) which is then an equality, integrating by parts the first term in the integral and using (C.1) give
a.(0)a,(0) = 0. Since @,(0) > 0, one obtains a.(0) = 0. If 6, = oo, then the boundary conditions at J,
are a consequence of &, belongs to H'(0,00) and is indefinitely continuously differentiable. If §, < oo,
integrating by parts the first term in the integral of (C.2) and using (C.1) leads to

&L (6,—)B(6,) + 7 /5 T (@~ f(y)?)By) dy >0, VA e Dy

This is possible if and only if &.(d,—) > 0 and © > f.(y) for all y > ¢,. But since a-(d,) =0 and a, > 0,
one also has &/ (6,—) < 0. Hence &/ (6;—) = 0 and since a.(d,+) = 0 one finally has &/ (6,) = 0.

From the inequality © > f.(y) for all y > &, one deduces that d, > f.~1(©). Integrating (C.1) over I,
gives

Or [e9)
0%, — /0 fo(y)(1 - ar(y)) dy < /0 fu(y)? dy < oo (C3)
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and hence 9, is finite. «

(vii) : ar(y) is monotonically decreasing from a.(0) < 1 to 0 when y goes from 0 to 6,. If a,(0) =1,
then one should have both a.(0) = 0 and &Z(0) = ©% > 0. Hence a,(y) should be greater than 1 for
small positive y which is impossible. So, @;(1) < 1. Let us show that there does not exist a point
y where @ (y) > 0, by contradiction. If such a point exists, then by continuity there should exist a
connected component (a,b) where a.. > 0. Since &.(0) = a.(d,) = 0, one should have & (a) = a.(b) =
0. Consequently a’(a) > 0. But, by (C.1), @/ should be increasing in (a,b) (because f. and 1 — &,

are decreasing). Therefore @ should be positive and hence @, should be increasing in (a,b). That is
impossible, hence &, < 0 everywhere. <«

(viii) : There exists a unique pair (&r,0;) in Dy x (0,400) which satisfies (3.22)—(3.24). Let us first
remark that (3.24) with a; = 0 in (., 00) implies that

0 + )’ (-6, (0) <O Wy € (57,00). (C4)

Multiplying (3.22) and (C.4) by 8 € Dy, integrating over (0,9,) U (d,,00), integrating by parts and
using (3.23) leads to (C.2). Moreover the equality holds when 8 = a,. Therefore a,; € Dy is such that
Pl (a,)(B—a,) > 0 for all 8 € Dy which is a characterization of the unique minimizer of P, over Dy. < [J

C.2 Proof of Proposition 12

Proof. The proof is divided into 4 steps. The case for small and large times 7 are distinguished.

(i) : limit ag. Considering the test fields 8 = 72exp(—y) in (3.25) leads to the estimation P, (a,) < C
which implies |[a,(|7, < C and [|&[|]7. < 07_2. Substracting P,(0) from (3.25), ||a-[3, < C7? and
|a||2, < C7*. Therefore up to a subsequence %% (respectively o) converges weakly towards ag (respec-
tively 0) in H'(R). Let us fix 8 in (C.2) and let 7 tend towards 0, then

| (@wsw + (2 - t07)sw) aw=o0, vaem, (©5)

and the equality holds for § = ag. Thus ag is uniquely defined, and the entire sequence &, converges
weakly towards ag. The strong convergence is a consequence of the weak convergences and (C.2) and

(C.5).
<

(ii) = Limit 6g. From (C.3) 0, is bounded, then up to a subsequence it weakly converges in R towards
dp. Passing to the limit in (C.3), as

2 % 2
0% = / fo(y)* dy,
0
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gives that dg is uniquely defined, and the entire sequence d, converges weakly towards dg. Finally

5, do
el = 8lfs < [P0 —ar)du— [ty

which converges towards zero, and thus the convergence is strong. <

(iii) : Limit @oo. Taking the test field 8 = exp(—y), that vanishes as y tends towards infinity, leads to
the following estimations Proposition 11 leads to :

| 5P - ) + eaay < €

and thus [;° fc(y)?a,(y)*dy < C and [;° a,(y)dy < C. Since fc is indefinitely continuously differentiable
|@;]|2, < C and thus up to a subsequence @, converges weekly towards @ in L?. Fixing 8 in (C.2) and
letting 7 grow to infinity :

| (& - &wPa-ax)sm) du=0. Ve (sel?Oo):0<8),  (CH)

where the equality holds 8 = aw. Thus @ is uniquely (and given by (3.28)) defined and the entire
sequence &, converges weakly towards it. The strong convergence is given by:

IN

cllar — 5400”%2

/0 () (@r — ) dy (1)
> 1

< [ R (@07 + 6w = 20 W) dy+ [ Zd W ()
using (C.2) with 8 = @, and (C.6) with 8 = @, and = do-

oo
clar — sl < [0~ )@ (v) — () dy
0
where the second member tends towards zero by virtue of the weak convergence. <

(iv) : Limit 6so. From (C.3) 0, is bounded, then up to a subsequence it converges weakly in R towards
dso- Passing to the limit in (C.3), as

doo
0%, — /0 fe(1)2(1 — oo (y)) dy

000 18 uniquely defined and the entire subsequence converges weakly in R.a [J

C.3 Proof of Proposition 13

Proof. The three items (IR), (ST) and (EB) give the following necessary conditions for (1, &):
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1. By (IR), & > 0 and hence (0, &) € CxDy;
2. The stability condition (ST) implies the first order stability conditions which at time ¢ 4 h read as
V(v,B) € CxDy, P£+h(ut+h7at+h)(vv B) > 0. (C.9)

Let us discriminate between two types of direction:

(a) For the directions (v, 8) such that P(u}, ;) (v, ) > 0, by continuity the inequality (C.9) holds
for h small enough and hence (ST) is satisfied.

(b) Considering the directions (v, ) such that P;(u}, ;) (v, 3) = 0. By virtue of (1.16)-(1.27) they
correspond to the directions such that 8 = 0 in the undamaged domain at time ¢ Qf = Q \ Q¢.
Dividing the inequality (C.9) by h and passing to the limit when h goes to 0 give the following
inequality that the (0, &) rate must satisfy

¥(v,8) € CxDy Py(uy, ap) ((,d), (v, B)) + Pi(uy, a7) (v, B) = 0. (C.10)

In (C.10), P/ (uf, o) represents the symmetric bilinear form associated with the quadratic form
defined in (3.11), while P/(u}, «;) is the linear form given by (3.12).

3. From the Kuhn-Tucker conditions in the bulk at time ¢, see Proposition 10, & = 0 in €. The energy
balance (EB) reads at time t + h

t+h
0 = Pirn(Xern) — Pe(xi) +/ / os- égh dxds
t Q

t+h
= PrnOaen) — Pean(6) + Pen() — Pix) + / /Q oy eMdxds  (C.11)
t

where o5 = (1 — a5)?A(e(us) — ™), Xyin = (Wen, arrn) and x; = (uf,af). A first expansion of
(C.11) gives

* * 1 * * * *
0 = Ptl+h(Xt)(Xt+h - X))+ §Pél+h(Xt)(Xt+h —Xi) + Pern(xi) — Pe(xi)
t+h . )
[ ] o el axds+ ol —xi ) (©.12)
t

where P/ (x;) is the quadratic form defined in (3.11), || - || denotes the natural norm on CxD. A
second expansion leads to

* * - * . h2 * . - * h2 > *
0 = Pixt)Xn — Xi)+ R*PL(x;) (%) + ?,Pt//(Xt)(X) + hP(x;) + ?Pt(Xt)

h2
+h/ o &b dx+2/(a; e e ey dx + o(h?) (C.13)
Q Q

where x = (01, &) and & is the right derivative of t — o at t. Let us examine the different terms of
(C.13):
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(a) Using (1.1), (1.13), (1.16), (3.19)-(3.23), one gets

Pl (X, — X :/ <w1—Ea2192f2< 2 >>a n(x) dx.
o xisn =X = [, 2 (575)) et

By virtue of Hypotheses 7 and 9, ay, is continuously differentiable and vanishes outside Q.
Therefore maXod \od |an| = o(h) since Qf, \ Qf is included in a strip of width Ch. Hence

Pi(x7)(Xesn — Xi) = o(h?) (in the case of the fundamental branch, this term is of the order

of h3);
(b) By virtue of (3.8), Ps(x 2‘ =—Joo7 -eth dx;
(¢) By virtue of (3.9), P,(x = [o((1— af)2Ae - et — op - €M) dx.

Using all these calculations, dividing (C.13) by h? and passing to the limit when h goes to 0, one
finally obtains

Pé’(x?)(')”"é( *)(')20‘ (C.14)
where by virtue of (3.12), P{(x})(X) = — [o(0 - & + (1 — o )2Aeil - &1 dx.
Equation (3.31) is a direct consequence of (C.10) and (C.14). O
C.4 Proof of Proposition 15
Proof. || - || denotes indiscriminately the natural norm on H'(Q) and H'(Q)% Let s € (t,t +t'), (v,) €

CxDF, (v, ) # (0,0) and let h be a small positive real number. Expanding with respect to h up to the
second order gives

Ps(us + hv,as + hﬁ) = Ps(ué,‘a as) + P;(um as)(va B) + %73!(115, as)(‘@ﬁ) + Z(h)

Since the evolution is stationary, Pj(us, as)(v,3) > 0. Thus it is sufficient to prove P/ (us, as)(v,3) > 0
for proving the stability of (us, as) in the direction (v, 3). By continuity the quadratic form P} (us, as)
converges to the quadratic form P} (u¢, o) when s tends to t and

V(v,0) €CxHN Q) | (P{(us,05) = P/ (0}, 7)) (v, ) |< O(s = )([Iv]* + [18]1%)

where O(+) is bounded on [0,¢') and lim._,o O(s) = 0. Therefore it is sufficient to prove that there exist
C such that
V(v,8) eCxDf  P/(uf,a7)(v,B) = Ci(|lv|* + 1IB]*) (C.15)

Indeed, in such a case for ¢’ sufficiently small one has for all s € (t,¢+t)

P (us,05)(v, 8) > (Co = O(s = 1)) (IVII* + [|BII*) > 0
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Since t < ts the state (uf, o) is stable and R} = ming, + R; > 1. By definition of see (3.37),

W08 € CxD Pl(utanv.) > (1- g ) Ai(v.5) 20
t

with the equality to 0 if and only if (v, 8) = (0,0). Thus (C.15) is obtained. O

C.5 Proof of Proposition 17
Proof. Throughout the proof the notations of Section 3.4.3 are used.

1. By virtue of the positivity of the sum of the first two terms in the right hand side of (3.45) and since
fc <1 everywhere, one gets

1 4
p 1 JyB2dC
R(V ’8)—3527-2 fOIBQdC’ VVEH’ V/BE/H()\{O}
and hence
K 1 . fo 772
1512%107% 3627 2,867-[ \{0} f 52 d( 125272'

Since, by Proposition 12, §; varies continuously from &g to o0, max; 0 < co and the result follows.

2. Tt is a direct consequence of the previous estimate, of the definition (3.47) of 7 and of the definition
(3.44) of RY.

3. Let us consider the following pair (v, 3) in CX'D;_:

B(x) = B(¢) (1 + COS(kﬂ'%)), = 2396, \/kt V(¢) sin(k Ll )ei,
where 3 € HoN{B >0}, V € H'(0,00) and k € N,. Inserting into (3.37) and using (3.45)(3.46)
give
0rn e
Rtngr(VaB): 2A ( 6)_ VT( 81,5)'
3B ()
After some calculations, one gets 353,(5) =9 fo €)%23(¢)?d¢ and

Y D (¢ (©)*
24%(0,3) + A%(Vey, ) = /0 (1— ar(6-¢))? (1_1,2 +2(1+u)> a

1
+ [ (- 40 - G0N ORV(OFQ) + 126(6:025(0)) g
0

Yo /0 (2B + 37 0P) de.
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Taking
. 1 — 2 fe(6:¢) -
and passing to the limit when ¢t — oo yields
, 8—4?  C(B)
5 <
tli{& Ri < 9 + K2’

where C(B) depends on 8 but not on x. Passing to the limit when x goes to oo gives the desired
inequality for R;. Since R? < R (Remark 9) the result follows.

4. When k = 0, the crossed term of 3 with V vanishes in R%(V, 3). Therefore, V = 0 is the minimizer
of RY at every 7 > 0. Accordingly, one gets

o4 1 . Jo B(Q)?*d¢
07 = 37 5520 st [Th(6,0)28(0)7 dC

HxH,o

from which one easily deduces the announced property.

5. The behavior of mingg.gy, R when x goes to infinity is a problem of singular perturbation in which the
sequence of minimizers degenerates. So, this asymptotic behavior is obtained by a direct approach.
First, one deduces from (3.45)-(3.46) the following estimate:

- K2 fo BOPAC K
RV S T . paorac T BEE

V(V,5) € Hx(Ho \ {0}),

where the second inequality is due to fo < 1 in (0,1). Therefore one obtains the following lower
bound for the limit of the minimum when x — oo:

. minHXHO 7@? 1
lim 5 > 55
K—00 K 302t

It remains to construct a minimizing sequence such that the equality holds at the limit. Let 8% be
the sequence defined by 5%(¢) = max{1 — x(,0}. Hence 8% € Ho and R%(0, 3%)/k? is given by

RE(0, B%) 1 (1= k0)2d¢ + 1)k i

k2 36272 fol/'i f(0,0)(1 — kC)2dC 3K
and passing to the limit yields -
RN 1
Koo K2 36272

The proof is complete. O
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Abstract: This thesis explores the use of damage models to predict the onset and propagation of
cracks in a coherent manner. The results are based on the definition of a bulk energy density and a
stability principle. Firstly, we study the nucleation of cracks in a notched domain. The limit loading can
be decomposed as the product of three stress intensity factors: a scale effect, a geometry induced factor,
function of the angle of the notch, and one due to the damage model. The cracks that appear have a
characteristic profile whose width is of the order of the internal length. When the latter is small in front
of the dimensions of the structure, by separating scales, and using a local minimum principle, we prove
that the length of these damage bands follow Griffith’s law. This fundamental results extends those based
on global minimization but with a sounder physical base. A thorough investigation of the thermal shock
problem leads to a better understanding of the nucleation of cracks. Especially the global property of
crack periodicity is exhibited. These results are based on the variational approach and the properties
would probably be lost for models developed in an other framework. Finally, numerical results based on
an alternate minimization algorithm are established. The nucleation phase is controlled by the critical
stress whereas the propagation is governed by the toughness. Size effects in two and three dimensions are
captured. These numerical simulations are then confronted to experimental results.

Keywords: fracture, non-local damage, variational approach, size effect, asymptotic analysis

Résumeé : Cette theése explore 'utilisation de modéles d’endommagement pour prédire la nucléation et
la propagation de la rupture de maniére cohérente. Les résultats sont basés sur la donnée d’une énergie, qui
définit le matériau, et d’une loi d’évolution construite sur un principe de stabilité, de conservation d’énergie
et d’irreversibilité. Dans un premier temps, on étudie I'initiation de fissures dans une structure contenant
un coin. Le chargement limite se réduit & trois composantes : un facteur d’échelle, une composante
géométrique fonction de 'angle, et une composante propre au modéle. Ces modéles donnent naissance
a des fissures dont le profil est caractéristique et dont la largeur est de l'ordre de la longeur interne du
modeéle. Cette derniére étant petite devant les dimensions de la structure, dans le cadre d’une séparation
d’échelles et en utilisant un principe de minimum local, on montre que le modéle d’endommagement
considéré converge vers la loi de propagation de Griffith. Ce résultat fondamental étend ceux existants,
basés sur la minimisation globale, mais avec une base physique plus forte. Une étude approfondie donne une
meilleure compréhension de la phase d’initiation dans le cas d’un choc thermique et on établit la propriété
globale qu’est I’émergence d’une solution périodique. Ces résultats s’appuient sur le cadre variationnel,
les propriétés seraient probablement perdues pour un modeéle d’endommagement développé dans un autre
cadre. Dans un dernier temps, les résultats numériques basés sur un algorithme de minimisation alternée
capturent une initiation contrélée par la contrainte critique, ainsi que la propagation des fissures controlée
par la densité d’énergie de fissuration. Des effets d’échelle en deux et trois dimensions sont mis en évidence.
Les simulations sont alors confrontées & des résultats expérimentaux.

Mots-clés : rupture, endommagement & gradient, approche variationnelle, effets d’échelle, analyse
asymptotique
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