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Abstract

This thesis addresses the problem of pattern and texture recognition from a
mathematical perspective. These high level tasks require signal representa-
tions enjoying specific invariance, stability and consistency properties, which
are not satisfied by linear representations.

Scattering operators cascade wavelet decompositions and complex modulus,
followed by a lowpass filtering. They define a non-linear representation which
is locally translation invariant and Lipschitz continuous to the action of dif-
feomorphisms. They also define a texture representation capturing high order
moments and which can be consistently estimated from few realizations.

The thesis derives new mathematical properties of scattering representations
and demonstrates its efficiency on pattern and texture recognition tasks.
Thanks to its Lipschitz continuity to the action of diffeomorphisms, small
deformations of the signal are linearized, which can be exploited in appli-
cations with a generative affine classifier yielding state-of-the-art results on
handwritten digit classification. Expected scattering representations are ap-
plied on image and auditory texture datasets, showing their capacity to cap-
ture high order moments information with consistent estimators. Scattering
representations are particularly efficient for the estimation and characteri-
zation of fractal parameters. A renormalization of scattering coefficients is
introduced, giving a new insight on fractal description, with the ability in
particular to characterize multifractal intermittency using consistent estima-
tors.
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bien au déla de mon travail. Merci infiniment.

This thesis would not have been possible without the agreement of Zoran
Inc. to grant me part-time status while being an employee, in particular
thank you Dave Auld for having accepted such a generous deal. Merci à
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Thank you Mike Glinsky, for having invited me to Perth and having tried
(and failed) to teach me some Quantum Field Theory. Merci à mes collègues
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gràcies a tu.



Als meus pares Anna Maria i Joaquim,
a les meves germanes Laia i Maria,
i a la meva estimada esposa Emy.





Contents

Contents vi

List of Notations xi

1 Introduction 1

1.2 The Scattering Representation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Image and Pattern Classification . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Texture Discrimination and Reconstruction from Scattering . . . . . . . . 7

1.5 Multifractal Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Invariant Scattering Representations 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Signal Representations and Metrics for Recognition . . . . . . . . . . . . . 14

2.2.1 Local translation invariance, Deformation and Additive Stability . 14

2.2.2 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Deformable Templates . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Fourier Modulus, Autocorrelation and Registration Invariants . . . 18

2.2.5 SIFT and HoG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Scattering Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Windowed Scattering transform . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Scattering metric and Energy Conservation . . . . . . . . . . . . . 24

2.3.3 Local Translation Invariance and Lipschitz Continuity to Defor-
mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Integral Scattering transform . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Expected Scattering for Processes with stationary increments . . . 28

2.4 Characterization of Non-linearities . . . . . . . . . . . . . . . . . . . . . . 31

2.5 On the L1 continuity of Integral Scattering . . . . . . . . . . . . . . . . . 35

2.6 Scattering Networks for Image Processing . . . . . . . . . . . . . . . . . . 42

2.6.1 Scattering Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 Scattering Convolution Network . . . . . . . . . . . . . . . . . . . 43

2.6.3 Analysis of Scattering Properties . . . . . . . . . . . . . . . . . . . 46

2.6.4 Fast Scattering Computations . . . . . . . . . . . . . . . . . . . . . 48

vi



CONTENTS

2.6.5 Analysis of stationary textures with scattering . . . . . . . . . . . 49

3 Image and Pattern Classification with Scattering 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Compression with Cosine Scattering . . . . . . . . . . . . . . . . . . . . . 55

3.4 Generative Classification with Affine models . . . . . . . . . . . . . . . . . 57
3.4.1 Linear Generative Classifier . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Comparison with Discriminative Classification . . . . . . . . . . . 61
3.5 Handwritten Digit Classification . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Towards an Object Recognition Architecture . . . . . . . . . . . . . . . . 67

4 Texture Discrimination and Synthesis with Scattering 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Texture Representations for Recognition . . . . . . . . . . . . . . . . . . . 73

4.2.1 Spectral Representation of Stationary Processes . . . . . . . . . . . 73

4.2.2 High Order Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Wavelet based texture analysis . . . . . . . . . . . . . . . . . . . . 75
4.2.5 Maximum Entropy Distributions . . . . . . . . . . . . . . . . . . . 76

4.2.6 Exemplar based texture synthesis . . . . . . . . . . . . . . . . . . . 77

4.2.7 Modulation models for Audio . . . . . . . . . . . . . . . . . . . . . 77
4.3 Image texture discrimination with Scattering representations . . . . . . . 78

4.4 Auditory texture discrimination . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Texture synthesis with Scattering . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Scattering Reconstruction Algorithm . . . . . . . . . . . . . . . . . 84

4.5.2 Auditory texture reconstruction . . . . . . . . . . . . . . . . . . . . 90

4.6 Scattering of Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Stochastic Modulation Models . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7.1 Stochastic Modulations in Scattering . . . . . . . . . . . . . . . . . 96

5 Multifractal Scattering 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Review of Fractal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Fractals and Singularitites . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 Fractal Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Multifractal Formalism and Wavelets . . . . . . . . . . . . . . . . . 107

5.2.4 Multifractal Processes and Wavelets . . . . . . . . . . . . . . . . . 108
5.2.5 Cantor sets and Dirac Measure . . . . . . . . . . . . . . . . . . . . 110

5.2.6 Fractional Brownian Motions . . . . . . . . . . . . . . . . . . . . . 111
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List of Notations

x(u) : Function defined on a continuous domain u ∈ Rd.

x[n] : Discrete signal defined for n ∈ Zd.

δ(u) : Dirac distribution.

L2(Rd) : Finite energy functions x(u) such that
∫
|x(u)|2du <∞ .

L1(Rd) : Integrable functions x(u) such that
∫
|x(u)|du <∞ .

l2 : Finite energy discrete signals x[n] such that
∑

n |x[n]|2 <∞ .

l1 : Summable discrete signals x[n] such that
∑

n |x[n]| <∞ .

‖x‖p : Lp(Rd) norm of the function x(u):
(∫
|x(u)|pdu

)1/p
.

‖A‖ : • If A is an L2(Rd) linear operator, ‖A‖ = sup‖x‖=1‖Ax‖ .
• If A is an element of L2(Rd), ‖A‖ = ‖A‖2.
• If A = {Ai , i ∈ I, Ai ∈ L2(Rd)}, then

‖A‖2 =
∑

i∈I

‖Ai‖2 .

|x| : Euclidean norm of a finite-dimensional x ∈ Rd.

x̂ : The Fourier transform of x ∈ L1(Rd) ∪ L2(Rd): x̂(ω) =
∫
x(u)e−iωudu.

x ⋆ g(u) : Convolution operator: x ⋆ g(u) =
∫
x(v)g(u − v)dv.

X(t) : Stochastic process defined for t ≥ 0.

E(X) : Expected Value of the random variable X.

RX(τ) : Auto-covariance of the stationary process X(t).

X
l
= Y : The random variables X and Y follow the same probability distribution.

{X(t)}t l
= {Y (t)}t : Equality in distribution between the processes X(t) and Y (t).
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Chapter 1

Introduction

A fundamental topic in image and audio processing is to find appropriate metrics to
compare images and sounds. One may construct a metric as an Euclidean distance on a
signal representation Φ, applied on signals x, x′:

d(x, x′) = ‖Φ(x)− Φ(x′)‖ .

This puts all the structure of the problem in the construction of a signal representation,
whose role is to encode the relevant signal information and to capture the right notion
of similarity for a given task.

In this thesis, we are interested in the recognition and discrimination of a variety
of different objects, including sound and image patterns such as handwritten digits,
and stationary processes, which model a variety of image and auditory textures, as well
as multifractal measures. Linear representations, such as orthogonal wavelet decom-
positions, define a metric which is equivalent to the Euclidean norm. While in some
problems, such as denoising or compression, this metric is well adapted to assess the
similarity between an original signal and its corrupted or reconstructed version, it does
not capture the correct notion of similarity in high level tasks such as pattern or texture
recognition.

Objects and sounds are perceived and recognized in the human brain in a fraction of
a second, under a variety of physical transformations, including translations, rotations,
illumination changes or transpositions. Similarly, we are able to identify non-gaussian
textures, modeled as random stationary processes, from very few realizations. This
motivates the study of signal and texture representations which incorporate these sym-
metries.

Signals may be translated, rotated, but they can also be deformed, warped, occluded,
without affecting recognition. An efficient invariant representation also needs to be
stable with respect to the amount of deformation applied to a signal. As we shall see,
this is a fundamental property which explains the success of popular image and audio
descriptors such as SIFT [Low04] or MFCC [Mer76]. On the other hand, the texture
representation is another outstanding problem, since most textures appearing in nature
are realizations of non-gaussian processes, and hence are not fully characterized from

1



Chapter 1. Introduction

their spectral densities. It is thus necessary to incorporate information from higher
order statistics into the representation, but their direct estimation has large variance,
which limits their efficiency to discriminate non-gaussian textures. An efficient texture
representation should thus capture information from high order moments, in such a way
that it can be estimated consistently from few realizations.

Scattering operators, introduced by S. Mallat in [Mal12], build locally invariant, sta-
ble and informative signal representations by cascading wavelet modulus decompositions
followed by a lowpass averaging filter. They also define a representation for processes
with stationary increments, capturing high moments, and which can be estimated consis-
tently for a wide class of ergodic processes. Scattering representations have the structure
of a convolutional network, a subclass of neural networks introduced by LeCun [FKL10]
cascading filter banks with pooling and nonlinearities, which are learnt for each specific
task using a gradient descent strategy. Rather than being learnt, the scattering network
is obtained from the invariance, stability and informative requirements, which lead to
wavelet filter banks and to point-wise non-linearities.

This thesis provides further insight on the properties of scattering representations,
with special focus on its applications in pattern and texture recognition. In particu-
lar, we show that the first two layers of the scattering network already constitute a
powerful representation, capturing stable geometric information and with the ability to
discriminate non-gaussian textures.

The first part of the thesis delves into the mathematical properties of scattering op-
erators, deriving new results characterizing their non-linearities, and relating the signal
decay with the regularity of its scattering transform. Next we develop the necessary
tools for image processing applications, and then concentrate on the pattern recogni-
tion problem, and show how the stability of the scattering metric can be exploited to
build robust, efficient linear generative classifiers, achieving state-of-the-art results on
handwritten digit classification.

The second half of the thesis is devoted to the texture representation problem. We
first demonstrate that scattering texture representations are highly discriminative de-
scriptors of non-gaussian textures with multifractal behavior, and that they can be
consistently estimated from few realizations. We study the discrimination of image and
auditory textures, obtaining state-of-the-art results on a dataset of material textures, as
well as the reconstruction from scattering representations.

We finally focus on the study of multifractals. Fractals are fundamental mathemat-
ical objects, characterized by their self-similarity scaling laws. Their identification and
discrimination requires access to high order moments, which are difficult to estimate or
even might fail to exist. We introduce a renormalization of scattering coefficients which
captures a new characteristic scaling law of the multifractal, and which allows stable
identification of several fractal parameters.

2



Chapter 1. Introduction

1.2 The Scattering Representation

The construction of signal representations for recognition starts with the invariance and
stability properties. These properties can be stated in mathematical terms as follows. If
x ∈ L2(Rd) and G denotes a given group of transformations of Rd and Lϕx(u) = x(ϕ(u))
denotes the action of an element ϕ ∈ G in L2(Rd), the invariance to the action of G is
obtained by requiring

∀ϕ ∈ G , ∀x ∈ L2(Rd), Φ(Lϕx) = Φ(x) .

On the other hand, if now we consider a diffeomorphism ϕ ∈ Diff(Rd), the stability to
deformations is expressed as a Lipschitz continuity condition with respect to a metric
‖ϕ‖ on the space of diffeomorphisms measuring the amount of deformation:

∀ϕ ∈ Diff(Rd) ,∀x ∈ L2(Rd) ‖Φ(Lϕx)− Φ(x)‖ ≤ C‖x‖‖ϕ‖ .

Chapter 2 reviews the scattering transform for deterministic functions and processes,
together with its mathematical properties. It also studies these properties on image
processing applications, and obtains two new mathematical results: the first one charac-
terizing its non-linearities from stability constraints, and the second one giving a partial
answer to a conjecture stated in [Mal12], relating the signal sparsity with the regularity
of its scattering representation in the transformed domain.

Scattering representations [Mal12] construct invariant, stable and informative signal
representations by cascading wavelet modulus decompositions followed by a lowpass
filter. A wavelet decomposition operator at scale J is defined as

WJx = {x ⋆ ψλ}λ∈ΛJ
,

where ψλ(u) = 2−djψ(2−jr−1u) and λ = 2jr, with j < J and r ∈ G belongs to a finite
rotation group G of Rd. Each rotated and dilated wavelet thus extracts the energy
of x located at a given scale and orientation given by λ. Wavelet coefficients are not
translation invariant, and their average does not produce any information since wavelets
have zero mean. A translation invariant measure can be extracted out of each wavelet
sub-band λ by introducing a non-linearity which restores a non-zero, informative average
value. This is for instance achieved by computing the complex modulus and averaging
the result ∫

|x ⋆ ψλ|(u)du .

The information lost by this averaging is recovered by a new wavelet decomposition
{|x ⋆ ψλ| ⋆ ψλ′}λ′∈ΛJ

of |x ⋆ ψλ|, which produces new invariants by iterating the same
procedure. Let U [λ]x = |x ⋆ ψλ| denote the wavelet modulus operator corresponding to
the subband λ. Any sequence p = (λ1, λ2, ..., λm) defines a path, i.e, the ordered product
of non-linear and non-commuting operators

U [p]x = U [λm] ... U [λ2]U [λ1]x = | ||x ⋆ ψλ1 | ⋆ ψλ2 | ... | ⋆ ψλm | ,

3



Chapter 1. Introduction

m=0

m=1

m=2

m=3

f

U [λ1]f

SJ [∅]f = f ⋆ φJ

U [λ1, λ2]f

SJ [λ1]f

SJ [λ1, λ2]f

Figure 1.1: Convolutional structure of the windowed scattering transform. Each layer
is computed from the previous by applying a wavelet modulus decomposition U on each
envelope U [p]f . The outputs of each layer are obtained via a lowpass filter φJ .

with U [∅]x = x.

Many applications in image and audio recognition require locally translation in-
variant representations, but which keep spatial or temporal information beyond a cer-
tain scale 2J . A windowed scattering transform computes a locally translation invari-
ant representation by computing a lowpass average at scale 2J with a lowpass filter
φ2J (u) = 2−2Jφ(2−Ju). For each path p = (λ1, . . . , λm) with λi ∈ ΛJ we define the
windowed scattering transform as

SJ [p]x(u) = U [p]x ⋆ φ2J (u) =

∫
U [p]x(v)φ2J (u− v) dv ,

A Scattering transform has the structure of a convolutional network, but its filters
are given by wavelets instead of being learnt. Thanks to this structure, the resulting
transform is locally translation invariant and stable to deformations. The scattering
representation enjoys several appealing properties. In particular, with the scattering
norm, defined as

‖SJx‖2 =
∑

m≥0

∑

p∈Λm
J

‖SJ [p]x‖2 ,

and for an appropriate choice of the wavelets, the scattering transform is a non-expansive
L2(Rd) operator, ‖SJx − SJx

′‖ ≤ ‖x − x′‖, which moreover preserves the L2 norm:
‖SJx‖ = ‖x‖. In particular, this implies that in practice the first mmax layers of the
transform capture most of the signal energy and thus the network depth can be limited.
We shall see that for most practical applications, the first two layers carry most of the
signal energy and also provide enough discriminative information for recognition.

Scattering transforms also define a representation for stationary processes X(t),
which will be the appropriate tool to study image and auditory textures as well as

4
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Chapter 1. Introduction

(a) (b) (c)

Figure 1.2: (a) Two images x(u), x′(u). (b) First order scattering coefficients SJ [λ1]x
displayed with the mapping described in Section 2.6. They are the same for both images.
(c) Second order scattering coefficients SJ [λ1, λ2]x. They are different for each image,
thus showing that second order scattering can efficiently measure the sparsity of the
signal.

multifractal processes. For each p, the expected scattering is defined as

SX(p) = E(U [p]X(t)) .

As opposed to the power spectrum, scattering coefficients depend upon high moments
of the process.

Scattering networks, similarly as other convolutional networks, require a nonlinear
step at the output of its filter banks in order to create new invariants. If one imposes
such nonlinearities to be non-expansive and that they commute with any diffeomorphism,
then we show in Section 2.4. that they are necessarily pointwise. The non-expansive
property is important to ensure that the overall representation is stable with respect to
additive noise. The commutation with diffeomorphisms allows these nonlinearities to
be intertwined in a cascade of filter bank decompositions without affecting the stability
to deformations. Moreover, they enable a systematic procedure to obtain invariant
coefficients. The modulus is preferred since it also provides energy conservation: ‖|x|‖2 =
‖x‖2.

If one considers the limit J →∞, then the windowed scattering transform converges
to a translation invariant representation of L2(Rd) defined on an uncountable path set P∞

which contains infinite length paths of arbitrarily large scales. One can define a measure
and a metric on this set, and show [Mal12] that with the appropriate renormalisation,
given by the response of a Dirac, the limit scattering maps functions from L2(Rd) to
L2(P∞, dµ). S : L2(Rd)→ L2(P∞, dµ),

Sx(p) = µ−1
p

∫
U [p]x(u) du with µp =

∫
U [p]δ(u) du .

5

figures/triangle1.eps
figures/triangle3.eps
figures/triangle4.eps
figures/triangle5.eps
figures/triangle7.eps
figures/triangle8.eps


Chapter 1. Introduction

This renormalized limit scattering has striking ressemblances with the continuous
Fourier transform. In particular, we show in Section 2.5 that for functions x(u) belonging
to L1(Rd), then the scattering representation Sx(p) is continuous on a weaker topology
of P∞, given by paths with bounded slope and finite order.

1.3 Image and Pattern Classification

The properties of scattering operators are exploited in the context of signal classification
in Chapter 3. Given K signal classes, we observe L samples for each class, xk,l , l =

1..L, k = 1..K , which are used to estimate a classifier k̂(x) assigning a class amongst K
to each new signal x.

Complex object recognition problems require more forms of invariance other than
those modeled by physical transformations. For instance, image datasets such as Cal-
tech or Pascal exhibit large variability in shape, appearance, clutter, as shown in Figure
1.3. Similarly, challenging problems such as speech recognition have to take into ac-
count variability of speaker. However, even these datasets are exposed to variability
coming from physical transformations, and hence most object recognition architectures
require a feature extraction step which eliminates such variability, while building sta-
bility to deformations and keeping enough discriminative information. The efficiency of
scattering representations for such a role is first tested in environments where physical
transformations and deformations account for most of the variability.

Figure 1.3: Examples from the Caltech dataset. Intra-class variability includes changes
in shape, appearance, clutter.

The Lipschitz continuity property implies that small deformations are linearized by
the scattering transform. We construct a generative classification architecture which
exploits this linearization property as follows. For each signal class, we learn a collection
of embedded affine spaces Ad,k = µk + Vd,k in the scattering domain which best approx-
imate the observed samples. The best affine approximation spaces are easily computed
with a Principal Component Analysis (PCA) which diagonalises the class-conditional
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Chapter 1. Introduction

empirical covariance matrix

Σk =
1

L

∑

l

(SJxk,l − µk)(SJxk,l − µk)T ,

where µk is the scattering class empirical average µk =
1
L

∑
l SJxk,l .

Signal classes in the scattering domain are thus approximated with affine spaces of
varying dimension. The resulting classifier associates a signal x to the class k̂ yielding
the best approximation space:

k̂(x) = argmin
k≤K

‖SJx− PAd,k
(SJx)‖ . (1.1)

As the dimension increases, the approximation error for each class is reduced, but not
necessarily the discrimination between affine spaces of different classes. The classifier
thus learns the dimension d yielding the best trade-off on a validation subset of the
available samples. This generative architecture is particularly efficient with small train-
ing samples due to the fact that learning is limited to class-conditional auto-correlation
matrices.

The discriminability of scattering coefficients can be improved by renormalising its
coefficients. Renormalisation is an important aspect of many classifiers [FKL10; Bur98],
which often requires significant expertise to properly adjust. We explore a robust equal-
ization strategy which replaces the Dirac renormalisation by the observed maximum
response, and which improves classification rates. We also compare this strategy with
the scattering transfer

TJ [λ1, λ2]x(u) =
SJ [λ1, λ2]x(u)

SJ [λ1]x(u)
,

a renormalization which will be fundamental in the study of multifractal processes.

The linear generative architecture is tested on handwritten recognition, in the MNIST
and USPS datasets. The variability in such problems is well modeled by translations
and elastic deformations. We show that second order scattering coefficients capture
stable, discriminative information leading to state-of-the-art classification results. The
generative linear classifier is compared with a Gaussian kernel SVM, as a function of the
training set size. For small training sizes, the generative classifier outperforms state-of-
the-art methods obtained with convolutional networks. As the training size grows, the
richer Gaussian SVM classifier overtakes all previously reported classification results.

1.4 Texture Discrimination and Reconstruction from Scat-

tering

Chapter 4 studies the efficiency of scattering representations to discriminate and recon-
struct image and auditory textures. These problems require a statistical treatment of
the observed variability as realizations of stationary processes.

7
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Figure 1.4: Examples from the MNIST dataset. Intra-class variability is well modeled
by non-rigid geometric transformations.

Stationary processes admit a spectral representation. Its spectral density is com-
puted from second moments, and completely characterizes Gaussian processes. However,
second moments are not enough to discriminate between most real-world textures.

Texture classification and reconstruction requires a representation for stationary pro-
cesses capturing high order statistics in order to discriminate non-Gaussian processes.
One can include high order moments E(|X(t)|n) , n ≥ 2, in the texture representation,
but their estimation has large variance due to the presence of large, rare events pro-
duced by the expansive nature of xn for n ≥ 1. In addition, discrimination requires a
representation which is stable to changes in viewpoint or illumination.

Julesz [Jul62] conjectured that the perceptual information of a stationary texture
X(t) was contained in a collection of statistics {E(gk(X(t))) , k ∈ K}. He originally
stated his hypothesis in terms of second-order statistics, measuring pairwise interactions,
but he later reformulated it in terms of textons, local texture descriptors capturing
interactions across different scales and orientations. Textons can be implemented with
filter-banks, such as oriented Gabor wavelets [LM01], which form the basis for several
texture descriptors.

The expected scattering representation is defined for processes with stationary incre-
ments. First order scattering coefficients average wavelet amplitudes, and yield similar
information as the average spectral density within each wavelet subband. Second order
coefficients depend upon higher order moments and are able to discriminate between
non-Gaussian processes. The expected scattering is estimated consistently from win-
dowed scattering coefficients, thanks to the fact that it is computed with non-expansive
operators. Besides, thanks to the stability of wavelets to deformations, the resulting
texture descriptor is robust to changes in viewpoint which produce non-rigid small de-
formations.

The CUREt dataset [DVGNK99] contains a collection of different materials taken
under different lighting and pose conditions. On top of the stochastic variability within
different realizations of the stationary textured material, we thus observe a variabil-
ity modeled by a low-dimensional manifold. In this context, the scattering generative
classifier of Chapter 3 outperforms previous state-of-the-art methods. The expected
scattering representation is consistently estimated with a delocalized scattering, which
reduces the intra-class variance while keeping discriminative information. The residual
intra-class variability, due to pose and illumination changes, is reduced thanks to the
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(a) (b) (c)

(d) (e) (f)

Figure 1.5: First row: Three different examples xi from Brodatz dataset, i = 1 . . . 3.
Bottom row: Reconstruction obtained by equalizing white gaussian noise with each
spectral density R̂xi , i = 1 . . . 3, so that the textures on each column have the same
second order moments.

low-dimensional affine spaces.

Auditory textures are highly non-gaussian, and also require a descriptor which cap-
tures high order moments and which can be estimated with reduced variance. First
we consider the discrimination between different sounds, and we verify the fact that
second order scattering coefficients are necessary to discriminate non-gaussian textures.
This fact is confirmed by studying the texture reconstruction problem. By following the
same statistical framework as [MS11], we reconstruct audio realizations from a given
expected scattering descriptor using a gradient descent scattering reconstruction algo-
rithm, which iteratively modifies a sample by modulating its wavelet coefficients with an
envelope, whose spatial variations encoded by new wavelet coefficients, which become
the descent variables. While first order coefficients produce sounds with a characteris-
tic gaussian signature, the reconstructions obtained by adding second order scattering
coefficient produce reconstructions perceptually similar to the originals.

1.5 Multifractal Scattering

Many image textures exhibit an intermittent behavior at different scales, and are thus
well modeled as multifractals. Fractals are singular almost everywhere, and its iden-
tification and discrimination requires an analysis of their singularities. Chapter 5 is
dedicated to the the estimation and characterization of fractal parameters from scatter-
ing representations, which explains its efficiency on the task of classifying multifractal
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textures. Fractals are fundamental mathematical objects, defined from by scaling laws
relating how a process or measure X(t) relates to DsX(t) = X(s−1t), a dilated version
of X(t). Examples include stochastic processes such as Fractional Brownian Motions,
and also deterministic measures, such as Cantor measures.

A fundamental signature of a multifractal is given by its spectrum of singularity,
which measures the Hausdorff dimension D(h) of the sets Ωh where the fractal has
Hölder singularity given by an exponent h. Under appropriate self-similarity conditions,
it can be shown [Jaf97; BKM08a] that this spectrum of singularity can be recovered from
the scaling exponents ζ(q), measuring the power law of the increments of the process as
the scale converges to 0. For fractal processes X(t), it is defined as

∀q , lim
l→0+

E(|X(t) −X(t− l)|q)l−ζ(q) = Cq .

These scaling exponents can be recovered from a wavelet decomposition [BKM08a],
thanks to their vanishing moment: E(|X ⋆ ψj |q) ≃ 2jζ(q) . While monofractal processes
are characterized by a linear exponent, ζ(q) = qH, multifractal processes have a strictly
concave ζ(q). The scaling exponents thus contain crucial information on the fractal.
However, they are difficult to estimate, since high order moments are dominated by
large, rare events which increase the variance of their estimators.

The expected scattering representation is computed from first moments of wavelet
modulus decompositions, and is well defined for processes with stationary increments
having finite first moments. Since the self-similarity of a fractal is expressed through
dilations, it is translated in the scattering domain by relationships between different
scattering paths. These relationships can be exploited to construct a new scale indepen-
dent fractal descriptor. In this chapter we introduce the scattering transfer, constructed
from first and second order scattering coefficients:

TX(j1, j2) =
SX(j1, j2)

SX(j1)
.

It is defined as a function of two path variables, but the self-similarity of X implies that
the scattering transfer is only a function of path increments: TX(j1, j1+l) = TX(l). This
normalized scattering measure, together with the expected first order scattering, defines
a new tool to study fractal phenomena, capturing information which allows identification
and discrimination of several self-similar fractal families. It is consistently estimated
from windowed scattering coefficients by combining information from different scales.
The scattering transfer is a fractal geometric descriptor, which is shown to be nearly
invariant to the action of the derivative operator. As a result, it provides a relative
measure of how the singularities of the fractal are distributed in space.

This function is computed from first and second order coefficients, but it also has
the capacity to control the behavior of higher order scattering coefficients. For a wide
class of fractals, scattering coefficients can be asymptotically predicted from the scat-
tering transfer and its first order coefficients. This asymptotic property corresponds to
a Markov propagation across scattering paths.

10
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Multifractal processes are constructed with an integral scale, which restricts the self-
similarity to a scale range of the form (−∞, J). The curvature of its scaling exponents
ζ(q), referred as the intermittency, gives important information on the degree of mul-
tifractality of the process. Its analysis requires access to information contained in high
order moments. We show that this information can be extracted consistently from the
scattering transfer. Thanks to another asymptotic property, denoted Markov energy
property, the intermittency 2ζ(1) − ζ(2), measuring the curvature of ζ(q), is obtained
from the smallest ρ satisfying the equation

∑

l≥1

TX(l)2ρl = 1

by 2ζ(1) − ζ(2) = − log2(ρ). The scattering transfer is thus an efficient measure to
discriminate monofractal processes -having scaling exponents with no curvature, from
multifractal processes.
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Figure 1.6: (a) Measured energy dissipation F (t) in a turbulent flow, as a function
of time. (b) estimated first order scattering coefficients SF (j). The decay observed
across scales is consistent with the isotropic dissipation model of Kolmogorov and the
‘k−5/3’ law. (c) Comparison of the scattering transfer TF (l) estimated from the observed
turbulent flows with two energy dissipation models. The scattering transfer provides
insight on the adequacy of multifractal models.
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The scattering transfer is computed on several fractal families, including Fractional
Brownian Motions, Lévy processes and Multifractal Random Measures, as well as em-
pirical data from turbulent flows, revealing important properties of the fractal. We also
compare the estimation of the intermittency 2ζ(1) − ζ(2) using the scattering transfer
with a direct estimation of the moments, and also with an estimation based on the
logarithm of the increments, showing a consistency in pair with the state-of-the-art.
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Chapter 2

Invariant Scattering

Representations

2.1 Introduction

Image and audio recognition require a metric to compare signals which is stable with
respect to deformations and additive noise and which respects the invariants given by
transformation groups, while being able to discriminate between different objects or
textures. A metric of the form

d(x, x′) = ‖Φ(x)− Φ(x′)‖

for signals in L2(Rd) translates these invariance, stability and discriminability properties
into the signal representation Φ of L2(Rd) functions.

Linear signal representations are complete and stable to additive noise, which ex-
plains their use on tasks such as compression or denoising. However, they define a
metric equivalent to the Euclidean metric, which is not continuous with respect to geo-
metric deformations. Therefore, they are unable to achieve stability to deformations or
local invariance while keeping high frequency information.

This opens a Pandora box of non-linear signal representations with the prescribed
stability, invariance and discriminability properties. Translation invariance can be ob-
tained with the Fourier modulus, but high frequencies are unstable to small dilations.
Stability to small deformations can be recovered by grouping frequencies into dyadic
intervals with wavelets, leading to the scattering representation introduced by S. Mallat
in [Mal12].

Scattering operators construct invariant, stable and informative signal representa-
tions by cascading wavelet modulus decompositions followed by a lowpass filter. A
windowed scattering transform has the structure of a convolutional network [FKL10],
but its filters are given by wavelets instead of being learnt. Scattering operators also
define a representation for processes with stationary increments, which will be the appro-
priate tool to study image and auditory textures, in Chapter 4, as well as multifractals,
in Chapter 5. It is computed from first moments of cascaded wavelet modulus, which
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are contractive operators. As a result, it defines a representation that is consistently
estimated from windowed scattering coefficients for a wide class of ergodic processes,
and which includes information from high order moments.

The choice of the non-linearities is an important factor determining the complexity
and the properties of the representation. As in other convolutional neural networks,
the non-linearities in the scattering operator are given by point-wise operators. We
shall see that this choice can be justified from the stability conditions imposed on the
representation.

Besides its stability to additive noise and geometric deformations, the scattering
representation enjoys other remarkable properties. In particular, as the scale of the
lowpass window grows, and after an appropriate renormalization, the scattering trans-
form converges into a translation invariant integral transform, defined on an uncountable
path space. The resulting integral transform shares some properties with the Fourier
transform; in particular, signal decay can be related with the regularity on the integral
scattering domain.

The rest of the chapter is structured as follows. Section 2.2 considers signal repre-
sentations for recognition, and formulates the stability properties as Lipschitz continuity
conditions on the representation. Section 2.3 reviews the windowed scattering repre-
sentation for L2(Rd) functions and its stability and energy conservation properties, as
well as the expected scattering for processes with stationary increments, and the inte-
gral scattering transform. Section 2.4 gives the characterization of point-wise non-linear
operators from stability properties. Then, in Section 2.5 we give a partial positive an-
swer to a conjecture stated in [Mal12], predicting that the integral scattering transform
of a L1(Rd) function is continuous. Finally, in Section 2.6, we study scattering rep-
resentations on image processing applications; we give examples of scattering wavelets
and we explore the properties of scattering representations as local image and texture
descriptors.

2.2 Signal Representations and Metrics for Recognition

This section reviews some of the existing tools for signal representation and discrimina-
tion in recognition tasks. Invariance and stability are formulated in terms of Lipschitz
continuity conditions, and are then studied on a variety of representations.

2.2.1 Local translation invariance, Deformation and Additive Stability

In recognition tasks, the action of small geometric deformations and small additive per-
turbations produce small changes in the appearance of objects and textures. This mo-
tivates the study of signal representations defining an Euclidean metric stable to those
perturbations.

These stability properties can be expressed mathematically as Lipschitz continuity
properties. Stability to additive noise is guaranteed by imposing Φ to be non-expansive:

∀x, x̃ ∈ L2(Rd) , ‖Φ(x)− Φ(x̃)‖ ≤ ‖x− x̃‖ . (2.1)
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Indeed, it results that the metric defined by Φ is Lipschitz continuous with respect to
the Euclidean norm of an additive perturbation:

d(x+ h, x) = ‖Φ(x+ h)− Φ(x)‖ ≤ ‖h‖ .

On the other hand, stability to deformations is achieved by controlling the behavior of
Φ under the action of diffeomorphisms u 7→ u− τ(u), where τ : Rd → Rd is an invertible
displacement field. The amount of deformation can be measured with a metric on the
space of diffeomorphisms. If |τ(u)| denotes the Euclidean norm in Rd, |∇τ(u)| denotes
the operator norm of ∇τ(u) and |Hτ(u)| is the sup norm of the Hessian tensor, then the
norm of the space of C2 diffeomorphisms measures the amount of deformation over any
compact subset Ω ⊂ Rd as

‖τ‖ = sup
u∈Ω
|τ(u)| + sup

u∈Ω
|∇τ(u)|+ sup

u∈Ω
|Hτ(u)| .

This deformation metric penalizes displacement fields by its maximum amplitude
supu∈Ω |τ(u)| and maximum elasticity supu∈Ω |∇τ(u)| . In most contexts, however, rigid
displacement fields, corresponding to translations, do not affect recognition to the same
extent as non-rigid, elastic deformations. This motivates the notion of locally translation
invariant representations. We say that Φ is Lipschitz continuous to the action of C2

diffeomorphisms and locally translation invariant at scale 2J if for any compact Ω ⊂ Rd

there exists C such that, for all x ∈ L2(Rd) supported in Ω and all τ ∈ C2,

d(L[τ ]x, x) = ‖Φ(L[τ ]x)−Φ(x)‖ ≤ C‖x‖
(
2−J sup

u∈Ω
|τ(u)|+ sup

u∈Ω
|∇τ(u)|+ sup

u∈Ω
|Hτ(u)|

)
.

(2.2)
The reference scale 2J controls the amount of translation invariance required on the
representation, by diminishing the influence of the amplitude of τ in the deformation
metric. If τ is a displacement field with maximum amplitude supu∈Ω |τ(u)| ≪ 2J , then
(2.2) shows that the representation stability is controlled by the amount of elastic defor-
mation applied to x. On the other hand, the scale of local invariance also controls the
amount of delocalization of the representation. Pattern recognition tasks often require
signal representations which keep spatial information up to a certain resolution, whereas
we will ask stationary texture representations to be fully translation invariant, by letting
the local invariance scale J go to infinity.

2.2.2 Kernel Methods

Kernel methods refer to a general theory in the machine learning framework, whose main
purpose consists in embedding data in a high dimensional space, in order to express
complex relationships in the data in terms of linear scalar products.

For a generic input space X, a feature map Φ : X −→ H maps data into a Hilbert
space H. Linear classification methods access the transformed data Φ(x) only through
scalar products of the form [STC04]

〈Φ(x),Φ(x′)〉 .
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Rather than building the mapping explicitly, the popular “Kernel Trick” exploits
Mercer’s theorem. It states that a continuous, symmetric and positive definite kernel K :
X×X→ R defines an integral operator of L2(X), which diagonalizes in an orthonormal
basis [MNY06] {φn}n of L2(X), with non-negative eigenvalues. As a result, K(x, x′)
admits a representation

K(x, x′) =
∑

n≥1

λnφn(x)φn(x
′) ,

which yields

K(x, x′) = 〈Φ(x),Φ(x′)〉 ,

with Φ(x) = (λ
1/2
n φn(x))n. In Kernel methods it is thus sufficient to construct positive

definite kernels K on X2 in order to extend linear classification tools to more complex
relationships.

Support Vector Machines (SVMs) are particular instances of kernel methods, which
construct separating hyperplanes in supervised learning tasks. We shall discuss these
methods in further detail on Chapter 3.

Despite their success and effectiveness in a number of machine learning tasks, the
high dimensional embeddings induced by kernel methods do not automatically enjoy the
stability properties to additive noise or deformations. The kernel needs to be chosen
accordingly.

2.2.3 Deformable Templates

The theory of deformable templates, pioneered by Grenader in [Gre93], introduced the
notion of group action to construct metrics in a generic object space. A deformable
template is defined as an element x ∈ X on which a group action G×X, (g, x) 7→ g.x ∈ X

is defined. This action defines through the orbits {g.x , g ∈ G} a family of “deformed”
objects.

This structure allows us to incorporate the group action into the notion of similarity
between elements of X. A metric d on X can be constructed from a metric d̃ on the lifted
product space G× X [MY01]. If d̃ is left-invariant 1 , then

d(x, x′) = inf{d̃((id, x), (g, g.x′)) , g ∈ G} (2.3)

defines a metric from the set distance between the orbits of x and x′ under the action
of G.

If G denotes the group of Rd diffeomorphisms, acting on X = L2(Rd) by composition,
then the construction (2.3) has the capacity to express the similarity between x and its
deformed version g.x in terms of the amount of deformation g.

1A distance d̃ on G× X is left-invariant [MY01] if, for all h, g, g′ ∈ G and all x, x′
∈ X,

d̃(h.(g, x), h.(g′, x′)) = d̃((g, x), (g′, x′))
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The computation of the distance d(x, x′) in (2.3) requires to optimize a deformation
cost function, which in general is an ill-posed inverse problem. In some applications,
however, such as medical imaging, it uncovers essential information about the underlying
deformation process.

In general, there is no simple way to construct meaningful left-invariant metrics on the
product space G×X. In [TY05], Trouvé and Younes construct a differential structure on
this space, based on infinitesimal deformations and amplitude variations. This structure
then enables the definition and computation of geodesics. More specifically, the authors
consider infinitesimal perturbations of a template I ∈ X of the form

G× X −→ X ,

(τ, σ) 7−→ Ĩǫ(v,z)(u) = I(u− ǫτ(u)) + βǫσ(u) + o(ǫ) ,

for small ǫ > 0. The vector field τ(u) thus carries the geometrical transformation,
whereas the scalar function σ(u) represents infinitesimal amplitude variations. One then
constructs the tangent space TI from these infinitesimal variations:

TI =

{
lim
ǫ→0

Ĩǫ(τ,σ) − I
ǫ

, (τ, σ) ∈ G× X

}
.

By considering a norm | · |W on G × X, one can define a metric | · |W ′ on the tangent
space TI , which leads to the geodesic distance

dW (I0, I1) = inf

{∫ 1

0
|γ̇(t)|W ′dt , γ(0) = I0 , γ(1) = I1

}
,

where the infimum is taken over all paths γ joining the two images I0, I1.
The computation of such geoedesics thus requires to solve a variational problem,

which in particular estimates deformations minimizing a trade-off between the geometric
and photometric components of the perturbation of the form

ϕ̂ = argmin ‖I1 − I0 ◦ ϕ‖22 +DG(Id, ϕ)
2 ,

where DG is a metric on the space of diffeomorphisms.
The estimation of diffeomorphisms is a difficult inverse problem. Several methods

have been proposed, for instance in [Tro95; VMYT04], with applications in medical
imaging [RACW10] and classification [AAT07].

A particular instance of such problem is the optical flow estimation. In this case,
the goal is to estimate the motion field between consecutive frames of a video sequence
(It)t. Under the hypothesis that illumination is constant along object trajectories, I(x+
vt(x))t = C(x), and that I is differentiable, we obtain the differential equation

〈∇I, vt〉+
∂It
∂t

= 0 .

Estimating the motion field vt is thus an ill-posed inverse problem since there are more
unknowns than equations. There exists a vast literature on how to regularize this inverse
problem, from Horn and Shunk [HS81] to wavelet based approaches [Ber99].
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2.2.4 Fourier Modulus, Autocorrelation and Registration Invariants

Translation invariant representations can be obtained from registration, auto-correlation
or Fourier modulus operators. However, the resulting representations are not Lipschitz
continuous to deformations.

A representation Φ(x) is translation invariant if it maps global translations xc(u) =
x(u− c) by c ∈ Rd of any function x ∈ L2(Rd) to the same image:

∀x ∈ L2(Rd) , ∀ c ∈ Rd , Φ(xc) = Φ(x) . (2.4)

The Fourier transform modulus is an example of a translation invariant representa-
tion. Let x̂(ω) be the Fourier transform of x(u) ∈ L2(Rd). Since x̂c(ω) = e−ic.ω x̂(ω), it
results that |x̂c| = |x̂| does not depend upon c.

A Fourier modulus is translation invariant and stable to additive noise, but unstable
to small deformations at high frequencies [Mal12], as illustrated with the following dila-
tion example. Let τ(x) = sx denote a linear displacement field where |s| is small, and
let x(u) = eiξuθ(u) be a modulated version of a lowpass window θ(u). Then the dilation
xτ (u) = L[τ ]x(u) = x((1 + s)u) moves the central frequency of x̂ from ξ to (1 + s)ξ. If
σ2θ =

∫
|ω|2|θ̂(ω)|2dω measures the frequency spread of θ, then

σ2x =

∫
|ω − ξ|2|x̂(ω)|2dω = σ2θ ,

and

σ2xτ = (1 + s)−d
∫

(ω − (1 + s)ξ)2|x̂((1 + s)−1ω)|2dω

=

∫
|(1 + s)(ω − ξ)|2|x̂(ω)|2dω = (1 + s)2σ2x .

It follows that if the distance between the central frequencies of x and xτ , sξ, is large
compared to their frequency spreads, (2+ s)σθ, then the frequency supports of x and xτ
are nearly disjoint and hence

‖|x̂τ | − |x̂|‖ ∼ ‖x‖ ,
which shows that Φ(x) = |x̂| is not Lipschitz continuous to deformations, since ξ can be
arbitrarily large.

The autocorrelation of x

Rx(v) =

∫
x(u)x∗(u− v)du

is also translation invariant: Rx = Rxc . Since Rx(v) = x ⋆ x(v), with x(u) = x∗(−u), it
follows that the autocorrelation representation Φ(x) = Rx satisfies

R̂x(ω) = |x̂(ω)|2 .

The Plancherel formula thus proves that it has the same instabilities as a Fourier trans-
form:

‖Rx −Rxτ‖ = (2π)−1‖|x̂|2 − |x̂τ |2‖ .
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ω
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ξ (1 + s)ξ

σx
(1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs
−1, then the supports

are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

‖x(u− a(x))− x′(u− a(x′))‖ ≥ (2π)−1 ‖|x̂(ω)| − |x̂′(ω)|‖ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.
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Dense SIFT [BZM07] bypasses the detection phase by computing the SIFT descrip-
tors over a uniformly subsampled grid, which improves discriminability on recognition
tasks [BZM07]. The resulting signal representation is locally translation invariant,
thanks to the averaging created by the orientation histrograms. Moreover, it is sta-
ble to deformations and robust to changes in illumination thanks to a renormalisation
of its coefficients.

■�✁✂✄ ✂☎✁✆✝✄✞✟✠ ❑✄✡☛☞✝✞✟ ✆✄✠✌☎✝☛✟☞☎

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientat

at each image sample point in a region around the keypoint location, as shown on the left. TheseFigure 2.2: Local SIFT descriptor diagram from [Low04]. Around each detected key-
point, image gradients are computed along a grid of 16× 16 pixels. The gradient ampli-
tudes are pooled into 4 histograms, each of them consisting in 8 orientation bins. The
resulting descriptor is locally stable to deformations.

SIFT has been extended and refined into a variety of similar descriptors [BETVG08;
KS04]. In particular, the DAISY descriptor [TLF10] showed that SIFT coefficients can
be approximated by local averages of wavelet coefficient amplitudes.

SIFT coefficients provide local image descriptors which are locally invariant to trans-
lations, and stable to additive noise and geometric and amplitude deformations. How-
ever, they operate at a relatively small scale of 22 pixels, which limits its invariance
properties.

Histogram of Oriented Gradients (HoG) [DT05] is a similar image descriptor, which
computes gradients at several image scales over a dense, overlapping grid, and pools
amplitudes with similar orientations. The pooled vector is then normalized to have unit
Lp norm, with p = 1 or p = 2 [DT05].

2.2.6 Convolutional Networks

Convolutional Networks [LBBH98] are a specific class of neural networks which obtain
invariant signal representations by cascading trainable filter banks with non-linearities
and subsampling and pooling operators. They have been successfully applied to a variety
of image and audio recognition tasks [FKL10]. Each layer of the network is connected to
the previous one by establishing “connections” or filters, whose output is processed with

20

figures/sift_diagram.eps


Chapter 2. Invariant Scattering Representations

a non-linearity such as sigmoids or rectifications. The spatial localization is progres-
sively lost by successively “pooling”, or subsampling, the resulting feature maps with
local averages or general Lp norms. Figure 2.3, from [LBBH98], displays a particular
convolutional network.

INPUT 

32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT

 10

Figure 2.3: Architecture of a convolutional network from [LBBH98]. Each layer is
obtained from the previous one by a filter bank convolution followed by a non-linear
pooling operator.

Convolutional network architectures were originally learnt over a collection of labeled
examples, using a backpropagation algorithm [LBBH98], which optimizes a classification
error loss function using a gradient descent across the network. As opposed to general
neural networks, convolutional networks incorporate a translation invariance prior, which
greatly reduces the number of parameters to learn and hence its efficiency in a number of
recognition tasks. Recently, convolutional network architectures have been trained with
unsupervised data [RBL07] with sparse autoencoders, which learn a filter bank with the
ability to encode its inputs with a sparse representation.

2.3 Scattering Review

This section reviews the Scattering transform introduced in [Mal12] and its mathematical
properties. Section 2.3.1 reviews windowed scattering transforms and its construction
from Littlewood-Paley wavelet decompositions. Section 2.3.2 introduces the scattering
metric and reviews the scattering energy conservation property, and Section 2.3.3 reviews
the Lipschitz continuity property of scattering transforms with respect to deformations.
Section 2.3.4 briefly describes the integral scattering transform, and finally Section 2.3.5
presents the expected scattering transform for processes with stationary increments.

2.3.1 Windowed Scattering transform

In order to achieve stability to deformations, scattering operators are constructed from
a Littlewood-Paley wavelet decomposition.

A wavelet transform is defined by dilating a mother wavelet ψ ∈ L2(Rd) with scale
factors {aj}j∈Z for a > 1. In image processing applications one usually sets a = 2,
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whereas audio applications need smaller dilation factors, typically a ≤ 21/8. Wavelets
are not only dilated but also rotated along a discrete rotation group G of Rd. As a
result, a dilation by aj and a rotation by r ∈ G of ψ produce

ψajr(u) = a−djψ(a−jr−1u) . (2.5)

The wavelets are thus normalized in L1(Rd), such that ‖ψajr‖1 = ‖ψ‖1, which means
that their Fourier transforms satisfy ˆψajr(ω) = ψ̂(ajrω). In order to simplify notations,
we denote λ = ajr ∈ aZ × G and |λ| = aj, and define ψλ(u) = a−djψ(λ−1u). This
notation will be used throughout the rest of the thesis.

Scattering operators can be defined for general mother wavelets, but of particular
interest are the complex wavelets that can be written as

ψ(u) = eiηuθ(u) ,

where θ is a lowpass window whose Fourier transform is real and has a bandwidth of the
order of π. As a result, after a dilation and a rotation, ψ̂λ(ω) = θ̂(λω− η) is centered at
λ−1η and has a support size proportional to |λ|−1. In Section 2.6.1 we shall specify the
wavelet families used along all numerical experiments.

A Littlewood-Paley wavelet transform is a redundant representation which computes
the following filter bank, without subsampling:

∀u ∈ Rd, ∀λ ∈ aZ ×G ,Wλx(u) = x ⋆ ψλ(u) =

∫
x(v)ψλ(u− v)dv . (2.6)

If x is real and the wavelet is chosen such that ψ̂ is also real, then W−λx =Wλx
∗, which

implies that in that case one can assimilate a rotation r with its negative version −r
into an equivalence class of positive rotations G+ = G/{±1}.

A wavelet transform with a finite scale 2J only considers the subbands λ satisfying
|λ| ≤ 2J . The low frequencies which are not captured by these wavelets are recovered by
a lowpass filter φJ whose spatial support is proportional to 2J : φJ(u) = 2−dJφ(2−Ju).
The wavelet transform at scale 2J thus consists in the filter bank

WJx = {x ⋆ φJ , (Wλx)λ∈ΛJ
} ,

where ΛJ = {ajr : r ∈ G+, |λ| ≤ 2J}. Its norm is defined as

‖WJx‖2 = ‖x ⋆ φJ‖2 +
∑

λ∈ΛJ

‖Wλx‖2 .

WJ is thus a linear operator from L2(Rd) to a product space generated by copies of
L2(Rd). It defines a frame of L2(Rd), whose bounds are characterized by the following
Littlewood-Paley condition:

Proposition 2.3.1 If there exists ǫ > 0 such that for almost all ω ∈ Rd and all J ∈ Z

1− ǫ ≤ |φ̂(2Jω)|2 + 1

2

∑

j≤J

∑

r∈G

|ψ̂(2jrω)|2 ≤ 1 ,
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then WJ is a frame with bounds given by 1− ǫ and 1:

(1− ǫ)‖x‖2 ≤ ‖WJx‖2 ≤ ‖x‖2 , x ∈ L2(Rd) . (2.7)

In particular, this Littlewood-Paley condition implies that ψ̂(0) = 0 and hence that the
wavelet must have at least a vanishing moment. When ǫ = 0, the wavelet decomposition
preserves the Euclidean norm and we say that it is unitary.

Wavelet coefficients are not translation invariant but translate as the input is trans-
lated, and their average

∫
Wλx(u)du does not produce any information since wavelets

have zero mean. A translation invariant measure which is also stable to the action of
diffeomorphisms can be extracted out of each wavelet sub-band λ, by introducing a
non-linearity which restores a non-zero, informative average value. This is for instance
achieved by computing the complex modulus and averaging the result

∫
|x ⋆ ψλ|(u)du .

The information lost by this averaging is recovered by a new wavelet decomposition
{|x ⋆ ψλ| ⋆ ψλ′}λ′∈ΛJ

of |x ⋆ ψλ|, which produces new invariants by iterating the same
procedure. Let U [λ]x = |x ⋆ ψλ| denote the wavelet modulus operator corresponding to
the subband λ. Any sequence p = (λ1, λ2, ..., λm) defines a path, i.e, the ordered product
of non-linear and non-commuting operators

U [p]x = U [λm] ... U [λ2]U [λ1]x = | ||x ⋆ ψλ1 | ⋆ ψλ2 | ... | ⋆ ψλm | ,

with U [∅]x = x.

Similarly as with frequency variables, one can manipulate path variables p = (λ1, . . . , λm)
in a number of ways. The scaling and rotation by alg ∈ aZ ×G+ of a path p is denoted
algp = (algλ1, . . . , a

lgλm), and the concatenation of two paths is written p + p′ =
(λ1, . . . , λm, λ

′
1, . . . , λ

′
m′).

Many applications in image and audio recognition require locally translation invari-
ant representations, but which keep spatial or temporal information beyond a certain
scale 2J . A windowed scattering transform computes a locally translation invariant
representation by applying a lowpass filter at scale 2J with φ2J (u) = 2−2Jφ(2−Ju).

Definition 2.3.2 For each path p = (λ1, . . . , λm) with λi ∈ ΛJ and x ∈ L1(Rd) we
define the windowed scattering transform as

SJ [p]x(u) = U [p]x ⋆ φ2J (u) =

∫
U [p]x(v)φ2J (u− v) dv ,

A Scattering transform has the structure of a convolutional network, but its filters
are given by wavelets instead of being learnt. Thanks to this structure, the resulting
transform is locally translation invariant and stable to deformations. The scattering
representation enjoys several appealing properties described in sections 2.3.2 and 2.3.3.
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m=0

m=1

m=2

m=3

f

U [λ1]f

SJ [∅]f = f ⋆ φJ

U [λ1, λ2]f

SJ [λ1]f

SJ [λ1, λ2]f

Figure 2.4: Convolutional structure of the windowed scattering transform. Each layer
is computed from the previous by applying a wavelet modulus decomposition U on each
envelope U [p]f . The outputs of each layer are obtained via a lowpass filter φJ .

2.3.2 Scattering metric and Energy Conservation

The windowed scattering representation is obtained by cascading a basic propagator
operator,

UJx = {x ⋆ φJ , (U [λ]x)λ∈ΛJ
} . (2.8)

The first layer of the representation applies UJ to the input function, whereas successive
layers are obtained by applying UJ to each output U [p]x. Since U [λ]U [p] = U [p+λ] and
U [p]x ⋆ φJ = SJ [p]x, it follows that

UJU [p]x = {SJ [p]x, (U [p + λ]x)λ∈ΛJ
} . (2.9)

If ΛmJ denotes the set of paths of length or order m, it follows from (2.9) that the (m+1)-
th layer given by Λm+1

J is obtained from the previous layer via the propagator UJ . We
denote PJ the set of paths of any order up to scale 2J , PJ = ∪mΛmJ .

The propagator UJ is non-expansive, since the wavelet decomposition WJ is non-
expansive from (2.7) and the modulus is also non-expansive. As a result,

‖UJx− UJx
′‖2 = ‖x ⋆ φJ − x′ ⋆ φJ‖2 +

∑

λ∈ΛJ

‖|Wλx| − |Wλx
′|‖2 ≤ ‖x− x′‖2 .

Moreover, if the wavelet decomposition is unitary, then the propagator UJ is also unitary.
For any path set Ω, the Euclidean norm defined by the scattering coefficients SJ [p] , p ∈

Ω is
‖SJ [Ω]x‖2 =

∑

p∈Ω

‖SJ [p]x‖2 .

Since SJ [PJ ] is constructed by cascading the non-expansive operator UJ , it results that
SJ [PJ ] is also non-expansive:
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Proposition 2.3.3 The windowed scattering transform is non-expansive:

∀x, x′ ∈ L2(Rd) , ‖SJ [PJ ]x− SJ [PJ ]x′‖ ≤ ‖x− x′‖ . (2.10)

The windowed scattering thus defines a metric which is continuous with respect to
the L2(Rd) euclidean metric, and thus it is stable to additive noise. But in fact the
scattering metric also preserves the signal energy, thus showing that all high-frequency
information is encoded in scattering coefficients.

Theorem 2.3.4 A scattering wavelet ψ is said to be admissible if there exists η ∈ Rd

and ρ ∈ L2(Rd) ≥ 0, with |ρ̂(ω)| ≤ |φ̂(2ω)|, ρ̂(0) = 1, such that the function

Ψ̂(ω) = |ρ̂(ω − η)|2 −
∞∑

k=1

k
(
1− |ρ̂(2−k(ω − η))|2

)

satisfies

inf
1≤|ω|≤2

∞∑

j=−∞

∑

r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0 . (2.11)

If ψ satisfies the Littlewood-Paley condition (2.7) with ǫ = 0 and is admissible, then

∀x ∈ L2(Rd) , lim
m→∞

‖U [ΛmJ ]x‖2 = lim
m→∞

∑

n≥m

‖SJ [ΛnJ ]x‖2 = 0 , (2.12)

and
‖SJ [PJ ]x‖ = ‖x‖ . (2.13)

The proof of this theorem shows that the scattering energy propagates progressively
towards the low frequencies, thanks to the demodulation effect of the complex modulus.
The energy of U [ΛmJ ]x is concentrated along scale increasing paths p = (λ1, . . . , λm) with
|λi| < |λi+1|, which greatly reduces the computational needs for numeric applications.
The decay of ‖U [ΛmJ ]x‖ also means that in practice only the first m0 layers of the
transform carry significant energy. Section 2.6 will show that most applications require
at most 2 or 3 layers.

2.3.3 Local Translation Invariance and Lipschitz Continuity to Defor-

mations

The windowed scattering metric defined in the previous section is non-expansive, which
gives stability to additive perturbations. Moreover, it is also stable to the action of
diffeomorphisms, and becomes translation invariant as the localization scale 2J increases.

The limit of ‖SJ [PJ ]x− SJ [PJ ]x′‖ as J →∞ is well defined thanks to the following
non-expansive property:

Proposition 2.3.5 For all x, x′ ∈ L2(Rd) and J ∈ Z,

‖SJ+1[PJ+1]x− SJ+1[PJ+1]x
′‖ ≤ ‖SJ [PJ ]x− SJ [PJ ]x′‖ .
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As a result, the sequence dx,x′(J) = ‖SJ [PJ ]x−SJ [PJ ]x′‖ is positive and non-increasing
as J increases, and hence it converges. This limit metric is translation invariant:

Theorem 2.3.6 Let xc(u) = x(u−c). Then for admissible scattering wavelets satisfying
(2.11) we have

∀x ∈ L2(Rd) ,∀c ∈ Rd , lim
J→∞

‖SJ [PJ ]x− SJ [PJ ]xc‖ = 0 . (2.14)

But, most importantly, the windowed scattering transform defines a stable metric
with respect to the action of diffeomorphisms, which can model non-rigid deformations.
A diffeomorphism maps a point u ∈ Rd to u− τ(u), where τ(u) is a vector displacement
field satisfying ‖∇τ‖∞ < 1. It acts on functions x ∈ L2(Rd) by composition: L[τ ]x(u) =
x(u−τ(u)). The following central theorem computes an upper bound of ‖SJ [PJ ]L[τ ]x−
SJ [PJ ]x‖. For that purpose, we assume an admissible scattering wavelet, and we define
the auxiliary norm

‖U [PJ ]x‖1 =
∑

m≥0

‖U [ΛmJ ]x‖ .

Theorem 2.3.7 There exists C such that every x ∈ L2(Rd) with ‖U [PJ ]x‖1 < ∞ and
τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2 satisfy

‖SJ [PJ ]L[τ ]x− SJ [PJ ]x‖ ≤ C‖U [PJ ]x‖1K(τ) , (2.15)

with

K(τ) = 2−J‖τ‖∞ + ‖∇τ‖∞max(1, log
supu,u′ |τ(u)− τ(u′)|

‖∇τ‖∞
) + ‖Hτ‖∞ ,

and for all m ≥ 0, if PJ,m = ∪n<mΛnJ , then

‖SJ [PJ,m]L[τ ]x− SJ [PJ,m]x‖ ≤ Cm‖x‖K(τ) . (2.16)

This theorem shows that the effect of a diffeomorphism produces in the scattering domain
an error bounded by a term proportional to 2−J‖τ‖∞, which corresponds to the local
translation invariance, plus a deformation error proportional to ‖∇τ‖∞. When x has
compact support, the following corollary shows that the windowed scattering metric is
Lipschitz continuous to the action of diffeomorphisms:

Corollary 2.3.8 For any compact set Ω ⊂ Rd there exists C such that for all x ∈ L2(Rd)
supported in Ω with ‖U [PJ ]x‖1 <∞ and for all τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2, then

‖SJ [PJ,m]L[τ ]x− SJ [PJ,m]x‖ ≤ C‖U [PJ ]x‖1
(
2−J‖τ‖∞ + ‖∇τ‖∞ + ‖Hτ‖∞

)
. (2.17)

The translation error term, proportional to 2−J‖τ‖∞, can be reduced to a second-order
error term, 2−2J‖τ‖2∞, by considering a first order Taylor approximation of each SJ [p]x
[Mal12].
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2.3.4 Integral Scattering transform

The metric defined by the windowed scattering transform converges towards a translation
invariant metric as the scale of the lowpass window 2J increases. However, the transform
itself does not converge without a proper renormalisation.

In order to define the convergence of SJ [PJ ], it is first necessary to embed the count-
able set of paths PJ into a non-countable set P∞, and to equip it with a measure and
a metric. In the limit when J → ∞, a path p = (λ1, . . . , λm) of length m belongs to
the finite product set Λm∞, with Λ∞ = aZ ×G+. A path of infinite length is a sequence
(λn)n ∈ Λ∞

∞. One can construct a product topology in Λ∞
∞ by defining cylinders as the

open sets: Cm(λ) = {(qn)n ∈ Λ∞
∞ : qm+1 = λ}. These sets define a sigma algebra, on

which one can define a measure. If P∞ denotes the set of all finite paths P∞ = ∪m≥0Λ
m
∞,

then this sigma algebra is also generated by the cylinder sets

p = (λ1, . . . , λm) ∈ P∞, C(p) = {(qn)n ∈ Λ∞
∞ : q1 = λ1, . . . , qm = λm} . (2.18)

A measure on Λ∞
∞ is constructed from the scattering of the Dirac distribution U [p]δ,

by defining µ(C(p)) = ‖U [p]δ‖2 for all p ∈ P∞. A neighborhood can be defined using
cylinder sets of scale 2J :

CJ(p) =
⋃

λ∈Λ∞
|λ|−1≤a−J

C(p+ λ) ⊂ C(p) . (2.19)

These neighborhoods define a distance in Λ∞
∞:

d(q, q̃) = inf
q,q̃∈CJ (p)

µ(CJ(p)) ,

but Λ∞
∞ is not complete with this metric. Its completion is achieved by embedding the

set P∞ of finite paths, P∞ = Λ∞
∞ ∪ P∞, defined by adding each p ∈ P∞ to the cylinders

C(p) and CJ(p) without modifying their measure.

An integral scattering transform can now be constructed to be an element of L2(P∞, dµ).
For that purpose, we define

SJx(q, u) =
∑

p∈PJ

SJ [p]x(u)

‖SJ [p]δ‖
1CJ (p)(q) , q ∈ P∞ ,

where 1CJ (p)(q) is the indicator function of CJ(p) in P∞. This extension can be seen as a

scattering energy density on P∞×Rd. It has a spatial resolution of 2−J along its spatial
coordinate, and a frequency resolution 2J along its path variable q. As J →∞, we seek
to define a scattering transform which depends only upon q ∈ P∞. This is achieved by
first defining the marginals

∀q ∈ P∞ , SJx(q) =

(∫
|SJx(q, u)|2dx

)1/2

=
∑

p∈PJ

‖SJ [p]x‖
‖SJ [p]δ‖

1CJ (p)(q) .

27



Chapter 2. Invariant Scattering Representations

SJ is a non-expansive operator of L2(Rd) which preserves the norm, and with the
property that ‖SJx−SJx′‖P is non-decreasing and bounded as J →∞. For x ∈ L1(Rd),
SJ converges pointwise in P∞ to an integral scattering transform:

Proposition 2.3.9 If f ∈ L1(Rd) then

∀p ∈ P∞ , lim
J→∞

SJx(p) =
1

µp

∫
U [p]x(u)du ,

with µp =
∫
U [p]δ(u)du.

Finally, one can extend the integral scattering to P∞ for functions in L2(Rd), as the
limit of windowed normalized scattering:

∀q ∈ P∞ , Sx(q) = lim inf
J→∞

SJx(q) . (2.20)

In [Mal12], one can find sufficient conditions for which SJx converges strongly to Sx,
which then preserves the L2(Rd) norm of x.

2.3.5 Expected Scattering for Processes with stationary increments

This section reviews the definitions and basic properties of the expected scattering of
random processes [Mal12]. The role of the L2(Rd) norm in the deterministic setting is
replaced by the mean square norm E(|X|2)1/2.

If X(t) is a stationary process or has stationary increments, meaning that δsX(t) =
X(t) − X(t − s) is stationary for all s, then X ⋆ ψλ is also stationary, and taking the
modulus preserves stationarity. It results that for any path p = (λ1, ..., λm) ∈ P∞, the
process

U [p]X = |...|X ⋆ ψλ1 | ⋆ ...| ⋆ ψλm |

is stationary, hence its expected value does not depend upon the spatial position t.

Definition 2.3.10 The expected scattering of X is defined for all p ∈ P∞ by

SX(p) = E(U [p]X) = E(|...|X ⋆ ψλ1 | ⋆ ...| ⋆ ψλm |) .

The expected scattering defines a representation for the process X(t) which carries
information on high order moments of X(t), as we shall see in later sections. It also
defines a metric between stationary processes, given by

‖SX − SY ‖2 =
∑

p∈P∞

|SX(p)− SY (p)|2 .

The scattering representation of X(t) is estimated by computing a windowed scatter-
ing transform of a realization x of X(t). If ΛJ = {λ = 2j ; 2−j > 2−J} denotes the set of
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scales smaller than J , and PJ is the set of finite paths p = (λ1, .., λm) with λk ∈ ΛJ ∀k,
then the windowed scattering at scale J of a realization x(t) is

SJ [PJ ]x = {U [p]x ⋆ φJ , p ∈ PJ} .

Since
∫
φJ(u)du = 1, we have E(SJ [PJ ]X) = E(U [p]X) = SX(p), so SJ is an

unbiased estimator of the scattering coefficients contained in PJ .
When the wavelet ψ satisfies the Littlewood-Paley condition (2.7), the non-expansive

nature of the operators defining the scattering transform implies that S and SJ [PJ ] are
also non-expansive:

Proposition 2.3.11 If X and Y are finite second order processes with stationary in-
crements, then

E(‖SJ [PJ ]X − SJ [PJ ]Y ‖2) ≤ E(|X − Y |2) , (2.21)

‖SX − SY ‖2 ≤ E(|X − Y |2) , (2.22)

in particular
‖SX‖2 ≤ E(|X|2) . (2.23)

The L2(Rd) energy conservation theorem (2.3.4) yields an equivalent energy conser-
vation property for the mean squared power:

Theorem 2.3.12 If the wavelet ψ satisfies an admissibility condition (2.11 ), and if X
is stationary, then

E(‖SJ [PJ ]X‖2) = E(|X|2) . (2.24)

Expected scattering coefficients are estimated with the windowed scattering SJ [p]X =
U [p]X ⋆ ψJ for each p ∈ PJ . If U [p]X is ergodic, SJ [p]X converges in probability to
SX(p) = E(U [p]X) when J →∞. A process X(t) with stationary increments is said to
have a mean squared consistent scattering if the total variance of SJ [PJ ]X converges to
zero as J increases:

lim
J→∞

E(‖SJ [PJ ]X − SX‖2) =
∑

p∈PJ

E(|SJ [p]X − SX(p)|2) = 0 . (2.25)

This condition implies that SJ [PJ ]X converges to SX with probability 1. Mean square
consistent scattering is observed numerically on a variety of processes, including gaussian
and non-gaussian fractal processes. It is conjectured in [Mal12] that Gaussian stationary
processes X whose autocorrelation RX is in L1 have a mean squared consistent scatter-
ing. As a consequence of Theorem 2.3.12, mean squared consistency implies an expected
scattering energy conservation:

Corollary 2.3.13 For admissible wavelets as in Theorem 2.3.12, SJ [PJ ]X is mean
squared consistent if and only if

‖SX‖2 = E(|X|2) .
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Expected scattering coefficients depend upon normalized high order moments of X.
If one expresses |U [p]X|2 as

|U [p]X(t)|2 = E(|U [p]X|2)(1 + ǫ(t)) ,

then, assuming |ǫ| ≪ 1, a first order approximation of

U [p]X(t) =
√
|U [p]X(t)|2 ≈ E(|U [p]X|2)1/2(1 + ǫ/2)

yields

U [p + λ]X = |U [p]X ⋆ ψλ| ≈
||U [p]X|2 ⋆ ψλ|
2E(|U [p]X|2)1/2 ,

thus showing that SX(p) = E(U [p]X) for p = (λ1, . . . , λm) depends upon normalized
moments of X of order 2m, determined by the cascade of wavelet sub-bands λk. As
opposed to a direct estimation of high moments, scattering coefficients are computed
with a non-expansive operator which allows consistent estimation with few realizations.
In Chapter 4 we shall see that this is a fundamental property which enables texture
recognition and classification from scattering representations.

The scattering representation is related to the sparsity of the process through the
decay of its coefficients SX(p) as the order |p| increases. Indeed, the ratio of the first
two moments of X

ρX =
E(|X|)

E(|X|2)1/2

gives a rough measure of the fatness of the tails of X.

For each p, the Littlewood-Paley unitarity condition satisfied by ψ gives

E(|U [p]X|2) = E(U [p]X)2 +
∑

λ

E(|U [p + λ]X|2) ,

which yields

1 = ρU [p]X +
1

E(|U [p]X|2)
∑

λ

E(|U [p + λ]X|2) . (2.26)

Thus, the fraction of energy that is trapped at a given path p is given by the relative
sparsity ρU [p]X.

This relationship between sparsity and scattering decay across the orders is of par-
ticular importance for the study of point processes, which are sparse in the original
spatial domain, and for regular image textures, which are sparse when decomposed in
the first level UX of the transform. In particular, the scattering transform can easily
discriminate between white noises of different sparsity, such as Bernouilli and Gaussian.

The autocovariance of a real stationary process X is denoted

RX(τ) = E
(
(X(x) − E(X)) (X(x − τ)− E(X))

)
.
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Its Fourier transform R̂X(ω) is the power spectrum of X. Replacing X by X ⋆ψλ in the
conservation energy formula (2.3.12) implies that

∑

p∈PJ

E(|SJ [p + λ]X|2) = E(|X ⋆ ψλ|2) . (2.27)

These expected squared wavelet coefficients can also be written as a filtered integration
of the Fourier power spectrum R̂X(ω)

E(|X ⋆ ψλ|2) =
∫
R̂X(ω) |ψ̂(λ−1ω)|2 dω . (2.28)

These two equations prove that summing scattering coefficients recovers the power spec-
trum integral over each wavelet frequency support, which only depends upon second-
order moments of X. However, scattering coefficients SX(p) depend upon moments of
X up to the order 2m if p has a length m. Scattering coefficients can thus discriminate
textures having same second-order moments but different higher-order moments.

2.4 Characterization of Non-linearities

This section characterizes from a stability point of view the nonlinearities necessary in
any invariant signal representation in order to produce its locally invariant coefficients;
and in particular in scattering representations.

Every stable, locally invariant signal representation incorporates a non-linear opera-
tor in order to produce its coefficients. Neural networks, and in particular convolutional
networks, introduce rectifications and sigmoids at the outputs of its “hidden units”,
whereas SIFT descriptors compute the norm of the filtered image gradient prior to its
pooling into the local histograms.

Filter bank outputs are by definition translation covariant, not invariant. Indeed, if
y(u) = x ⋆ h(u), then a translation of the input xc(u) = x(u− c) produces a translation
in the output by the same amount, xc ⋆ h(u) = y(u− c) = yc.

Translation invariant measures require non-linear operators because the only linear
measurement which is translation invariant is the signal average. Indeed, the following
proposition shows that a bounded, translation invariant linear operator in L2(Rd) ∩
L1(Rd) is a multiple of the signal average operator

∫
x(u)du. We denote Tcx(u) =

x(u− c) , c ∈ Rd the translation operator.

Proposition 2.4.1 Let Q be a linear functional of L2(Rd) ∩ L1(Rd) such that

∀c ∈ Rd , ∀x ∈ L2(Rd) ∩ L1(Rd) , Qx = QTcx

and bounded in L2(Rd): ‖Qx‖2 ≤ C‖x‖2 for all x ∈ L2(Rd) ∩ L1(Rd). Then Qx =
C(
∫
x(u)du).
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Proof: Let (Vk)k∈Z be a multiresolution analysis generated by a scaling function ϕ ∈
L2(Rd) ∩ L1(Rd), and fix j ∈ Z. Let us first prove the result for xj = PVj

x. xj can be

written using the orthonormal basis {ϕj(u− k2j)}k∈Z, with ϕj(u) = 2−jd/2ϕ(2−ju):

xj(u) =
∑

k

ckϕj(u− 2jk) ,

with ck = 〈x(u), ϕj(u− 2jk)〉. But

Qxj(u) =
∑

k

ckQϕj(u− 2jk) = Qϕj(u)
∑

k

ck , (2.29)

thanks to the fact that Q is linear and Qϕj(u− 2jk) = QT2jkϕj = Qϕj . Moreover,
∫
xj(u)du =

∫ ∑

k

ckϕj(u− 2jk)du

=
∑

k

ck

(∫
ϕj(u− 2jk)du

)
=

(∑

k

ck

)∫
ϕj(u)du ,

which implies, by substituting in (2.29), that

Qxj = Q(ϕj)

(∫
ϕj(u)du

)−1(∫
xj(u)du

)
= C

(∫
xj(u)du

)
,

where C only depends upon the scaling function and the resolution. We finally extend
the result to L2(Rd) ∩ L1(Rd) with a density argument. Given x ∈ L2(Rd) ∩ L1(Rd)
and ǫ > 0, there exists a resolution j such that ‖x − PVjx‖ ≤ ǫ. Let xj = PVjx. Since∫
x(u)du =

∫
xj(u)du, it follows that

‖Qx−Qxj‖ = ‖Qx− C
∫
x(u)du‖

= ‖Q(x− xj)‖ ≤ ‖Q‖‖x− xj‖ ≤ ‖Q‖ǫ ,

which concludes the proof since Q is a bounded operator �.
The local version of this result characterizes linear operators Q̃ which keep spatial

localization at scale 2J and which are locally translation invariant for displacements
c ∈ Rd with |c| ≪ 2J :

‖Q̃x− Q̃Tcx‖ ≤ C‖x‖2−J |c| . (2.30)

If Q̃ is implemented as a convolution with a filter q (possibly followed by a downsam-
pling), then (2.30) implies that the operator

x 7→ q ⋆ hc ⋆ x ,

with hc(u) = δ(u) − δ(u− c), must satisfy

∀c ∈ Rd , sup
ω
|q̂(ω)||ĥc(ω)| ≤ 2−J |c| . (2.31)
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Since |ĥc(ω)|2 = 2|1 − cos(ω.c)|2, (2.31) forces q̂ to have its energy concentrated at
frequencies ω ≤ C2−J , which characterizes local smoothing kernels.

Translation invariant measures can be obtained by integrating any operator M of
L2(Rd) along the orbit generated by the translation group:

Mx =

∫
MTcxdµ(c) .

Here, Tcx(u) = x(u− c) is the translation operator by c ∈ Rd and dµ is a left-invariant
Haar measure of the translation group. If the operator M commutes with translations,
then Mx becomes the average of the function Mx:

Mx =

∫
MTcxdµ(c) =

∫
Mx(u)du .

Non-linear operators commuting with translations thus give a systematic procedure
to obtain translation invariant measures in a convolutional network architecture. As
mentioned in Section 2.2.1, besides local translation invariance it is fundamental to
enforce stability to additive noise and to the action of diffeomorphisms. Additive stability
is guaranteed by imposing non-linear operators which are non-expansive.

In order to preserve the overall stability of the network to the action of diffeomor-
phisms, one can ask the non-linearities to not only commute with translations, but with
any diffeomorphism. This property puts all the geometric stability requirements into
the design of the filter bank. Indeed, if W is a filter bank stable to the action of diffeo-
morphisms, and M is a non-expansive operator commuting with such diffeomorphisms,
then WM is also stable:

‖WML[τ ]x−WMx‖ = ‖WL[τ ]Mx−WMx‖ ≤ C‖Mx‖‖τ‖ ≤ C‖x‖‖τ‖ .

Moreover, the commutation property of M preserves the geometrical information en-
coded by the filters. The following theorem proves that non-linear operators of L2(Rd)
which are non-expansive and which commute with the action of diffeomorphisms are
necessarily point-wise.

Theorem 2.4.2 IfM is an operator of L2(Rd) which is non-expansive, ie ‖Mf−Mg‖ ≤
‖f − g‖, and commutes with the action of diffeomorphisms, then M is a pointwise oper-
ator: Mf(u) = ρ(f(u)) almost everywhere.

Proof: Let 1Ω be the indicator of a compact ball Ω ⊂ Rd. Let us first show that
M1Ω = ρ1Ω. Let φ ∈ Diff(Rd) be a diffeomorphism of Rd. For f ∈ L2(Rd), we denote
Lφf = f ◦ φ. Given f ∈ L2(Rd), let

G(f) = {φ ∈ Diff(Rd) , Lφf = f}

denote the isotropy group of f , ie the subgroup of diffeomorphisms leaving f unchanged
up to a set of zero measure. If φ ∈ G(f), then

‖Mf − LφMf‖ = ‖Mf −MLφf‖ ≤ ‖f − Lφf‖ = 0 ,
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which means that φ ∈ G(M(f)) too.

If f = c1Ω, then its isotropy group contains any diffeomorphism φ satisfying

φ(Ω) = Ω , φ(Ω) = Ω ,

where Ω = Rd − Ω. Thus, Mf is also invariant to the action of any φ satisfying the
above conditions. It results that Mf must also be constant within both Ω and Ω up to
a set of zero measure. Indeed, otherwise we could find two subsets I1, I2 ⊂ Ω of strictly
positive measure µ(I1) = µ(I2) > 0, such that

∫

I1

Mf(x)dµ(x) 6=
∫

I2

Mf(x)dµ(x) ,

but then a diffeomorphism φ such that φ ∈ G(1Ω) and mapping I1 to I2, does not satisfy
‖Mf − LφMf‖2 = 0, which is a contradiction.

Since Mf belongs to L2(Rd) and Ω has infinite measure, it results that Mf(x) =
0 ∀x ∈ Ω, and hence

M(c1Ω) = ρ(c,Ω)1Ω ,

with ρ(c,Ω) = (Mc1Ω)(x0) for any x0 ∈ Ω. Since the hypercube Ω can be obtained from
the unit ball Ω0 of Rd with a similarity transform TΩ , Ω = TΩΩ0, we have M(c1Ω) =
M(TΩc1Ω0) = TΩM(c1Ω0), which shows that ρ(c,Ω) does not depend upon Ω, and we
shall write it ρ(c).

Let us now consider f ∈ C∞ with compact support Ω. Fix a point x0 ∈ Ω. We
consider a sequence of diffeomorphisms (φn)n∈N which progressively warp f towards
f(x0)1Ω:

lim
n→∞

‖Lφnf − f(x0)1Ω‖ = 0 , (2.32)

For that purpose, we construct φn such that φn(x) = x for x ∈ Ω for all n, and such
that it maps a neighborhood of radius 2−n of x0 to the set Ωn ⊂ Ω defined as

Ωn = {x ∈ Ω ,dist(x,Ω) ≥ 2−n} .

Thanks to the fact that the domain Ω is regular, such diffeormorphisms can be con-
structed for instance by expanding the rays departing from x0 at the neighborhood of x0
and contracting them as they approach the border ∂Ω. Since f is C∞ and it is compactly
supported, it is bounded, and hence

‖Lφn(Mf)−M(f(x0)1Ω)‖ = ‖M(Lφnf)−M(f(x0)1Ω)‖
≤ ‖Lφnf − f(x0)1Ω‖ ,

and it results from (2.32) that limn→∞Lφn(Mf) = M(f(x0)1Ω) in L2(Rd). Since the
diffeomorphisms φn expand the neighborhood of x0 and M(f(x0)1Ω) = ρ(f(x0))1Ω ,
then necessarily Mf(x0) =M(f(x0)1Ω)(x0), and hence Mf(x0) = ρ(f(x0)), which only
depends upon the value of f at x0.
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Since C∞, compact support functions are dense in L2(Rd) and M is Lipschitz con-
tinuous, for any f ∈ L2(Rd) and ǫ > 0 we can find f0 ∈ C∞ such that

‖Mf −Mf0‖ = ‖f − f0‖ < ǫ ,

and hence Mf can be approximated by a pointwise operator with arbitrary precision,
and as a result Mf(x) = ρ(f(x)) almost everywhere for all f ∈ L2(Rd). �

Point-wise non-linearities are thus necessary to preserve the stability to additive noise
and to the action of diffeomorphisms, while keeping all the geometrical information. If
moreover one wishes a unitary signal representation, ‖Mx‖ = ‖x‖, then |ρ(y)| = |y| , ∀y,
which is obtained for instance by choosing Mx = |x|, and corresponds to the choice in
the scattering decomposition.

The point-wise characterization requires both the non-expansive property and the
commutation with respect to the action of diffeomorphisms. Indeed, one can find coun-
terexamples whenever each of these conditions is dropped. An operator of the form
Mf = supu ρ(f(u)), where ρ is pointwise, commutes with diffeomorphisms, but fails to
be non-expansive. On the other hand, the commutation property on the whole group of
diffeomorphisms seems to be necessary in order to characterize point-wise operators. For
instance, if one relaxes the commutation condition to the subgroup of diffeomorphisms
given by the affine group, then a counter-example by I. Waldspurger constructs an op-
erator M which is non-expansive and commutes with affine transformations, but is not
point-wise. It dilutes an element f ∈ L2(Rd) by expanding its support progressively.

Max-pooling is a very popular non-linear pooling operator used in several object
recognition architectures [BBLP10]. It computes local maxima values within a neigh-
borhood of a given size:

MPx(u) = max
|u′−u|≤R

|x(u′)| .

If max-pooling is followed by a downsampling using a critical downsampling step R, then
the resulting non-linear operator is non-expansive, but fails to commute with the action
of diffeomorphisms.

2.5 On the L1 continuity of Integral Scattering

Section 2.3.4 reviewed the extension of the windowed scattering to an integral, translation
invariant transform, defined on an uncountable path set P∞. In [Mal12], it was observed
that this integral scattering transform shares some striking resemblance with the Fourier
transform. In particular, it was conjectured that when x ∈ L1(Rd), then Sx is continuous
with respect to the metric defined from the cylinder topology.

In this section, we prove a partial affirmative result of this conjecture. The cylinder
topology from (2.18) defines neighborhoods in P∞, formed by finite and infinite sequences
(qk)k of subband indicies qk ∈ Λ∞, satisfying constraints on its first terms.

The L1 continuity of the integral scattering states that when x ∈ L1(Rd), then for
each p ∈ P∞ and each ǫ > 0, one can find J > 0 such that the neighborhood CJ(p)
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satisfies
∀q ∈ CJ(p) , |Sx(q)− Sx(p)| ≤ ǫ . (2.33)

We shall prove a weaker version of this result, which considers a subset of P∞ formed
by finite paths of bounded slope. Let p = (λ1, . . . , λm) ∈ P∞ be a path of finite order.
Its slope is defined as

∆(p) = sup
k

sup
k′>k

|λk|
|λk′ |

.

Scale increasing paths, which concentrate most of the scattering energy, satisfy ∆(p) < 0
since |λk′ |−1 < |λk|−1 , ∀k′ > k. The following theorem proves that when one approaches
a path p ∈ P∞ with paths q ∈ CJ(p) of bounded slope and finite order, then Sx(q)
converges towards Sx(p) for x ∈ L1(Rd). For simplicity, we write the result using dyadic
wavelets ψλ obtained with a = 2: λ = r2j .

Theorem 2.5.1 Let x ∈ L1(Rd), and let Sx be the integral scattering transform

Sx(p) =
1

µp

∫
U [p]x(u)du ,

where µp =
∫
U [p]δ(u)du. Then, for any p ∈ P∞, B , m ∈ N, and ǫ > 0, there exists

J > 0 such that for any q ∈ P∞ satisfying q ∈ CJ(p), |q| ≤ m and ∆(q) ≤ B, then

|Sx(p)− Sx(q)| ≤ ǫ . (2.34)

Proof: Fix p ∈ P∞, and let q ∈ CJ(p)∩P∞ be a path in the neighborhood of p. We can
thus write q = p+ q̃, with q̃ = λ̃+ q̌ ∈ P∞ satisfying |λ̃|−1 ≤ 2−J . We have

Sx(q) =

∫
U [q]x(u)du∫
U [q]δ(u)du

=

∫
U [q̃]U [p]x(u)du∫
U [q̃]U [p]δ(u)du

=

∫
U [q̃]U [p]x(u)du∫
U [q̃]δ(u)du

·
∫
U [q̃]δ(u)du∫

U [q̃]U [p]δ(u)du

= S(U [p]x)(q̃) ·
(
S(U [p]δ)(q̃)

)−1
. (2.35)

The following lemma proves that if x is in L1(Rd) and is positive, then Sx has a
particularly simple form on “small” paths q̃ ∈ P∞ with finite order and finite excursion:

Lemma 2.5.2 Let m, B ∈ N, and let

AJ,m = {q ∈ P∞ ; q = (λ1, . . . , λm), |q| = m, |λ1| = 2J , ∆(q) ≤M} . (2.36)

If x ∈ L1(Rd), x ≥ 0, then

lim
J→∞

sup
q∈AJ,m

∣∣∣∣Sx(q)−
∫
x(u)du

∣∣∣∣ = 0 . (2.37)
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If we apply Lemma 2.5.2 to f1 = U [p]x and f2 = U [p]δ, then the identity (2.35) implies
that for any ǫ > 0 there exists J > 0 such that

∀q s.t. q ∈ CJ(p), |q| ≤ m, ∆(q) ≤ B ,

∣∣∣∣Sx(q)−
∫
U [p]x(u)du∫
U [p]δ(u)du

∣∣∣∣ ≤ ǫ ,

which implies (2.34) since Sx(p) = (
∫
U [p]δ(u)du)−1

∫
U [p]f(u)du.

We shall then prove (2.37). Fix J > 0, and let q ∈ AJ,m. By definition (2.36),
we can write q = r2J + q̃, and without loss of generality, we can assume that r = 1.
let Djx(u) = 2−jdx(2−ju) be a dilation operator normalized in L1(Rd). A change of
variables shows that

Djx ⋆ ψλ(u) = 2−jd
∫
x(2−jv)ψλ(u− v)dv

=

∫
x(v)ψλ(u− 2jv)dv =

∫
x(v)ψλ(2

j(2−ju− v))dv

= 22
−jd

∫
x(v)ψ2−jλ(2

−ju− v)dv

= Dj(x ⋆ ψ2−jλ)(u) , (2.38)

and by cascading this property we obtain that

U [p]Djx = DjU [2−jp]x ,

or equivalently U [p]x = DjU [2−jp]D−jx. By setting j = J , we obtain

Sx(2J + q̃) = SD−Jx(1 + q̃2−J ) =

∫
U [1 + q̃2−J ]D−Jx(u)du∫
U [1 + q̃2−J ]δ(u)du

, (2.39)

since Djδ = δ ∀j with the L1(Rd) normalization. Now, if x =
∫
x(u)du, (2.39) can be

decomposed as

Sx(2J + q̃) =

=

∫
xU [1 + q̃2−J ]δ(u)du∫
U [1 + q̃2−J ]δ(u)du

+

∫ (
U [1 + q̃2−J ]D−Jx(u)− xU [1 + q̃2−J ]δ(u)

)
du∫

U [1 + q̃2−J ]δ(u)du

= x+

∫ (
U [1 + q̃2−J ]D−Jx(u)− U [1 + q̃2−J ]xδ(u)

)
du∫

U [1 + q̃2−J ]δ(u)du
, (2.40)

The path 2−Jq = 1+ q̃2−J is obtained by a translation in scale of q, and hence it satisfies
|2−Jq| = |q| and ∆(2−Jq) = ∆(q). We will prove (2.37) by showing that

inf
q∈A1,m

∫
U [q]δ(u)du > 0 , (2.41)

and

lim
J→∞

sup
q∈A1,m

∣∣∣∣
∫

(U [q]D−Jx(u)− U [q]aδ(u)) du

∣∣∣∣ = 0 . (2.42)
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Let us first prove (2.41), by induction on the maximum path order m.
Let m = 2. In that case, the set A1,2 contains paths q = (1, λ), where the scale of λ

is lower bounded by |λ|−1 ≤M . We need to see that

inf
|λ|−1≤M

∫
||ψ| ⋆ ψλ|(u)du = ‖|ψ| ⋆ ψλ‖1 > 0 .

From (2.38) we deduce that if j = |λ|, then

‖|ψ| ⋆ ψλ‖1 = ‖Dj(D−j |ψ| ⋆ ψ)‖1 = ‖D−j |ψ| ⋆ ψ‖1 .

Since |ψ| ∈ L1(Rd) and |ψ| ≥ 0, it follows that D−j |ψ| is an approximation of the identity
in L1(Rd) as j →∞, with

∀j ,
∫
D−j |ψ|(u)du = ‖ψ‖1 ,

and hence
lim
j→∞

‖D−j |ψ| ⋆ ψ − ‖ψ‖1ψ‖1 = 0 . (2.43)

But
∣∣∣∣
∫
||ψ| ⋆ ψλ|(u)du − ‖ψ‖1

∫
|ψ|(u)du

∣∣∣∣ =

∣∣∣∣
∫
|D−j |ψ| ⋆ ψ|(u)du − ‖ψ‖1

∫
|ψ|(u)du

∣∣∣∣

≤
∫
||D−j |ψ| ⋆ ψ|(u)− ‖ψ‖1|ψ|(u)| du

≤ ‖D−j |ψ| ⋆ ψ − ‖ψ‖1ψ‖1 .

As a result, ∀ǫ > 0 there exists J such that if |λ| > J , then
∣∣∣∣
∫
||ψ| ⋆ ψλ|(u)du − ‖ψ‖21

∣∣∣∣ ≤ ǫ .

If ǫ is chosen such that ǫ < ‖ψ‖21/2, and Jǫ is the corresponding J , then the paths
q ∈ A1,2, q = (1, λ) with |λ| > Jǫ satisfy

∀q ∈ A , q = (1, λ) , |λ| > Jǫ ,

∫
U [q]δ(u)du > ‖ψ‖21 − ǫ =

‖ψ‖21
2

> 0 . (2.44)

On the other hand, there are only a finite number of paths q ∈ A1,2 with |λ| ≤ Jǫ, since
by definition |λ| ≥M−1. As a result,

inf
q∈A

q=(1,λ),|λ|≤Jǫ

∫
U [q]δ(u)du = α0 > 0 . (2.45)

By combining (2.44) and (2.45) we obtain that

inf
q∈A

∫
U [q]δ(u)du ≥ min(α0,

‖ψ‖21
2

) = α > 0 . (2.46)
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Let us now suppose the result true for m = m0 − 1. We shall prove that it is also
true for m = m0. Let

inf
q∈A1,m0−1

∫
U [q]δ(u)du = α > 0 .

For each l > 0, we shall decompose the set A1,m0 in terms of the maximum jump of the
path:

A1,m0 = Bl ∪ (A1,m0 \Bl) ,

with

Bl =

{
q ∈ A1,m0 , q = (λ1, . . . , λm0); χ(q) = max

k

( |λk|∑
k′<k |λk′ |

)
≥ 2l

}
.

The maximum jump χ(q) of a path thus measures the largest decrease on the scale, with
respect to the current cumulated support of U [λ1, . . . , λk]. Since the set A1,m contains
paths of finite order and finite slope, the maximum jump is lower bounded by a constant
M0 depending on M and the order m0.

Let q ∈ Bl. We can write q = q0 + λ+ q1, where q0 = (λ′1, . . . , λ
′
k′) satisfies

|λ| ≥ (
∑

i≤k′

|λ′i|)2l . (2.47)

If λ = 2jr, we have

U [q0 + λ]δ = U [λ]U [q0]δ = |U [q0]δ ⋆ ψλ|
= Dj(D−jU [q0]δ ⋆ ψ20r) (2.48)

We will now exploit again the fact that fj(u) = D−jU [q0]δ(u) is an approximation of
the identity in L1(Rd). Let γ =

∫
fj(u)du, which does not depend upon j. We have

‖Dj(D−jU [q0]δ ⋆ ψ20r)− γDjψ20r‖1 = ‖(fj ⋆ ψ20r)− γψ20r‖1

=

∫ ∣∣∣∣
∫
(ψ20r(u− t)− ψ20r(u))fj(t)dt

∣∣∣∣ du

≤
∫
‖Ttψ20r − ψ20r‖1fj(t)dt , (2.49)

where Tth(u) = h(u − t) is the translation operator. Since the translation operator
t 7→ Tth is continuous in L1(Rd) for any h ∈ L1(Rd), then for each ǫ > 0, we can find
η > 0 which only depends upon ψ such that

∀|t| < η , ‖Ttψ20r − ψ20r‖1 < ǫ/2 . (2.50)

On the other hand,
∫

|t|>η
‖Ttψ20r − ψ20r‖1fj(t)dt ≤ 2‖ψ‖1

∫

|t|>η
fj(t)dt

= 2‖ψ‖1
∫

|t|>η
D−jU [q0]δ(t)dt

= 2‖ψ‖1
∫

|t|>2jη
U [q0]δ(t)dt . (2.51)
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By construction, the scale 2j is such that

2j ≥ (
∑

i≤k′

|λ′i|) · 2l ,

from (2.47). Since the wavelet ψ has fast decay, U [q0]δ(t) satisfies

|U [q0]δ(t)| ≤ C1/(C2 + (|t|/K))n ,

where Ci and n only depend upon ψ and K =
∑

i≤k′ |λ′i| is proportional to the effective
support of the cascade of convolutions given by U [q0]h = |||h ⋆ ψλ′1 | ⋆ . . . | ⋆ ψλ′k′ |. As a

result, the error in (2.51) can be bounded by

∫

|t|>η
‖Ttψ20r − ψ20r‖1fj(t)dt ≤ C‖ψ‖1ǫ(l)

∫
U [q0]δ(t)dt

≤ C‖ψ‖1γǫ(l) , (2.52)

where ǫ(l)→ 0 as l→∞. By using (2.50) and (2.52) we can now bound (2.49) with

‖(fj ⋆ ψ20r)− γψ20r‖1 ≤
∫
‖Ttψ20r − ψ20r‖1fj(t)dt

=

∫

|t|<η
‖Ttψ20r − ψ20r‖1fj(t)dt+

∫

|t|>η
‖Ttψ20r − ψ20r‖1fj(t)dt

≤ ǫ/2γ + C‖ψ‖1γǫ(l)
≤ ‖ψ‖|q0|1 (ǫ/2 + C‖ψ‖1ǫ(l)) , (2.53)

since γ =
∫
U [q0]δ(u)du ≤ ‖ψ‖m0

1 using the Young inequality ‖f ⋆ g‖1 ≤ ‖f‖1‖g‖1.
Since

‖U [λ]f − U [λ]g‖1 = ‖|f ⋆ ψλ| − |g ⋆ ψλ|‖1
≤ ‖f ⋆ ψλ − g ⋆ ψλ‖1 = ‖(f − g) ⋆ ψλ‖1
≤ ‖f − g‖1‖ψ‖1 ,

it follows that

‖ U [p]f − U [p]g‖1 ≤ ‖f − g‖1‖ψ‖|p|1 . (2.54)

As a result of (2.53), any path q ∈ Bl, which was decomposed as q = q0 + λ + q1,
satisfies

∣∣∣∣
∫
U [q]δ(u)du − γ

∫
U [λ+ q1]δ(u)du

∣∣∣∣ ≤

‖U [q]δ − γU [q1]U [λ]δ‖1 = ‖U [q1]U [λ]U [q0]δ − γU [q1]U [λ]δ‖1
≤ ‖ψ‖|q1|1 ‖U [q0]δ ⋆ ψλ − γψλ‖1
≤ ‖ψ‖m0

1 (ǫ/2 + C‖ψ‖1ǫ(l)) , (2.55)
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by applying (2.54) on U [q1]. (2.55) implies that for any ǫ > 0 one can find sufficiently
large l such that

∫
U [q]δ(u)du is at distance at most ǫ from γ

∫
U [q̃]δ(u)du, where |q̃| < |q|

and α ≤ γ ≤ ‖ψ‖m0
1 . By applying the induction hypothesis with ǫ = α/2, we conclude

that

∀q ∈ Bl ,

∫
U [q]δ(u)du ≥ α2/2 > 0 . (2.56)

On the other hand, the set A1,m0 \Bl contains only a finite number of paths, since their
slope is bounded by ∆(q) ≤ B, and thus

min
q∈A1,m0\Bl

∫
U [q]δ(u)du = α0 > 0 .

We conclude that

∀q ∈ A1,m0 ,

∫
U [q]δ(u)du ≥ min(α2/2, α0) > 0 , (2.57)

which proves (2.41).
Let us finally prove (2.42). Since x ∈ L1(Rd) and x ≥ 0, D−Jx is also an approxi-

mation of the identity, which, with x =
∫
x(u)du, satisfies

∀h ∈ L1(Rd) , lim
J→∞

‖D−Jx ⋆ h− xh‖1 = 0 . (2.58)

If q ∈ A, q = λ1 + q̃ with λ1 = 20r, and hence U [q]D−Jx = U [q̃]|D−Jx ⋆ ψλ1 |. Then, by
using again (2.54), it results that

∣∣∣∣
∫
U [q]D−Jx(u)du− x

∫
U [q]δ(u)du

∣∣∣∣ =

∣∣∣∣
∫

(U [q]D−Jx(u)− xU [q]δ(u))du

∣∣∣∣

≤
∫
|U [q]D−Jx(u)− xU [q]δ(u)| du

= ‖U [q]D−Jx− xU [q]δ‖1
= ‖U [q̃]|D−Jx ⋆ ψλ1 | − xU [q̃]|ψλ1 |‖1
≤ ‖ψ‖|q̃|1 ‖|D−Jx ⋆ ψλ1 | − x|ψλ1 |‖1
≤ ‖ψ‖|q̃|1 ‖D−Jx ⋆ ψλ1 − xψλ1‖1 , (2.59)

which can be made arbitrarily small thanks to (2.58). This proves (2.42), which concludes
the proof of Lemma 2.5.2, and hence of (2.34) �.

Theorem 2.5.1 thus shows that integrable functions have a normalized scattering
transform which enjoys some form of regularity. The regularity is measured on paths
with finite order and finite slope. In order to prove the full version of the conjecture,
Theorem 2.5.1 needs to be extended to handle two new asymptotic regimes: paths with
arbitrarily large order and arbitrarily large slope.

The strategy used to prove (2.37), which finds a lower bound for the denominator
and an upper bound for the numerator, is not powerful enough to study the regularity
on paths with infinite order or slope; indeed, in that case

inf
q

∫
U [q]δ(u)du = 0 .
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The general case thus requires to show that for those paths, the numerator
∫
U [q]x(u)du

has the same decay law as the denominator, with a proportionally factor given by∫
x(u)du.

2.6 Scattering Networks for Image Processing

This section concentrates on image processing applications of scattering representations.
It introduces several scattering wavelet families and studies the properties of its associ-
ated scattering operators for object and texture representations.

2.6.1 Scattering Wavelets

This section describes several wavelet families used to implement scattering representa-
tions.

The Littlewood-Paley wavelet transform of x, {x ⋆ ψλ(u)}λ, defined in (2.6), is a
redundant transform with no orthogonality property. Section 2.3.1 explained that it is
stable and invertible if the wavelet filters ψ̂λ(ω) cover the whole frequency plane. On
discrete images, to avoid aliasing, we only capture frequencies in the circle |ω| ≤ π
inscribed in the image frequency square. Most camera images have negligible energy
outside this frequency circle.

(a) (b) (c)

Figure 2.5: Complex Morlet wavelet. (a): Real part of ψ(u). (b): Imaginary part of
ψ(u). (c): Fourier modulus |ψ̂(ω)|.

Let u.u′ and |u| denote the inner product and norm in R2. A Morlet wavelet ψ is an
example of complex wavelet given by

ψ(u) = α (eiu.ξ − β) e−|u|2/(2σ2) ,

where β ≪ 1 is adjusted so that
∫
ψ(u) du = 0. Its real and imaginary parts are

nearly quadrature phase filters. Figure 2.5 shows the Morlet wavelet with σ = 0.85
and ξ = 3π/4, used in all classification experiments. The Morlet wavelet ψ shown in
Figure 2.5 together with φ(u) = exp(−|u|2/(2σ2))/(2πσ2) for σ = 0.7 satisfy (2.7) with
ǫ = 0.25.
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Cubic spline wavelets are an important family of unitary wavelets satisfying the
Littlewood-Paley condition (2.7) with ǫ = 0. They are obtained from a cubic-spline
orthogonal Battle-Lemairé wavelet, defined from the conjugate mirror filter [Mal08]

ĥ(ω) =

√
S8(ω)

28S8(2ω)
,

with

Sn(ω) =
∞∑

k=−∞

1

(ω + 2kπ)n
,

which in the case n = 8 simplifies to the expression

S8(2ω) =
5 + 30 cos2(ω) + 30 sin2(ω) cos2(ω)

10528 sin8(ω)
+
70 cos4(ω) + 2 sin4(ω) cos2(ω) + 2/3 sin6(ω)

10528 sin8(ω)
.

In two dimensions, ψ̂ is defined as a separable product in frequency polar coordinates
ω = |ω|η, where η is a unit vector:

∀|ω|, η ∈ R+ × S1 , ψ̂(ω) = ψ̂1(|ω|)γ(η) ,

with γ designed such that

∀η ,
∑

r∈G+

|γ(r−1η)|2 = 1 .

Figure 2.6 shows the corresponding two-dimensional filters obtained with spline wavelets,
by setting both ψ̂1 and γ to be cubic splines.

(a) (b) (c)

Figure 2.6: Complex cubic Spline wavelet. (a): Real part of ψ(u). (b): Imaginary part
of ψ(u). (c): Fourier modulus |ψ̂(ω)|.

2.6.2 Scattering Convolution Network

If p = (λ1, ..., λm) is a path of length m then the windowed scattering coefficients
SJ [p]x(u) of order m are computed at the layer m of a convolution network which
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is specified. For large scale invariants, several layers are necessary to avoid losing crucial
information.

For appropriate wavelets, first order coefficients SJ [λ1]x are equivalent to SIFT co-
efficients [Low04]. Indeed, SIFT computes the local sum of image gradient amplitudes
among image gradients having nearly the same direction, in a histogram having 8 differ-
ent direction bins. The DAISY approximation [TLF10] shows that these coefficients are
well approximated by SJ [λ1]x = |x ⋆ ψλ1 | ⋆ φ2J (u) where ψλ1 are partial derivatives of a
Gaussian computed at the finest image scale, along 8 different rotations. The averaging
filter φ2J is a scaled Gaussian.

Partial derivative wavelets are well adapted to detect edges or sharp transitions
but do not have enough frequency and directional resolution to discriminate complex
directional structures. For texture analysis, many researchers [MP90; PS99] have been
using averaged wavelet coefficient amplitudes |x⋆ψλ|⋆φ2J (u), calculated with a complex
wavelet ψ having a better frequency and directional resolution.

The translation invariance of SJ [p]x is due to the averaging of U [p]x by φ2J . It has
been argued [BBLP10] that an average pooling loses information, which has motivated
the use of other operators such as hierarchical maxima [BRP09]. A scattering avoids
this information loss by recovering wavelet coefficients at the next layer, which explains
the importance of a multilayer network structure.

A scattering is implemented by a deep convolution network [FKL10], having a very
specific architecture. As opposed to standard convolution networks, output scattering
coefficients are produced by each layer as opposed to the last layer.Filters are not learned
from data but are predefined wavelets. Indeed, they build invariants relatively to the
action of the translation group which does not need to be learned. Building invariants
to other known groups such as rotations or scaling is similarly obtained with predefined
wavelets, which perform convolutions along rotation or scale variables [Mal12; SM12].

Different complex quadrature phase wavelets may be chosen but separating signal
variations at different scales is fundamental for deformation stability [Mal12]. Using a
modulus to pull together quadrature phase filters is also important to remove the high
frequency oscillations of wavelet coefficients.

For a fixed position u, windowed scattering coefficients SJ [p]x(u) of order m = 1, 2
are displayed as piecewise constant images over a disk representing the Fourier support
of the image x. This frequency disk is partitioned into sectors {Ω[p]}p∈Pm indexed by
the path p. The image value is SJ [p]x(u) on the frequency sectors Ω[p], shown in Figure
2.7.

For m = 1, a scattering coefficient SJ [λ1]x(u) depends upon the local Fourier trans-
form energy of x over the support of ψ̂λ1 . Its value is displayed over a sector Ω[λ1] which
approximates the frequency support of ψ̂λ1 . For λ1 = 2−j1r1, there are K rotated sectors
located in an annulus of scale 2−j1 , corresponding to each r1 ∈ G, as shown by Figure
2.7(a). Their area are proportional to ‖ψλ1‖2 ∼ K−1 2−j1 .

Second order scattering coefficients SJ [λ1, λ2]x(u) are computed with a second wavelet
transform which performs a second frequency subdivision. These coefficients are dis-
played over frequency sectors Ω[λ1, λ2] which subdivide the sectors Ω[λ1] of the first
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Ω[2j1r1]

Ω[2j1r1, 2
j2r2]

(a) (b)

Figure 2.7: To display scattering coefficients, the disk covering the image frequency
support is partitioned into sectors Ω[p], which depend upon the path p. (a): For m = 1,
each Ω[λ1] is a sector rotated by r1 which approximates the frequency support of ψ̂λ1 .
(b): For m = 2, all Ω[λ1, λ2] are obtained by subdividing each Ω[λ1].

(a) (b) (c) (d)

Figure 2.8: (a) Two images x(u). (b) Fourier modulus |x̂(ω)|. (c) First order scattering
coefficients SJx[λ1] displayed over the frequency sectors of Figure 2.7(a). They are
the same for both images. (d) Second order scattering coefficients SJx[λ1, λ2] over the
frequency sectors of Figure 2.7(b). They are different for each image.
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wavelets ψ̂λ1 , as illustrated in Figure 2.7(b). For λ2 = 2−j2r2, the scale 2j2 divides the
radial axis and the resulting sectors are subdivided into K angular sectors corresponding
to the different r2. The scale and angular subdivisions are adjusted so that the area of
each Ω[λ1, λ2] is proportional to ‖|ψλ1 | ⋆ ψλ2‖2.

Figure 2.8 shows the Fourier transform of two images, and the amplitude of their
scattering coefficients. In this case the 2J is equal to the image size. The top and bottom
images are very different but they have the same first order scattering coefficients. The
second order coefficients clearly discriminate these images. Section 2.6.3 shows that the
second-order scattering coefficients of the top image have a larger amplitude because the
image wavelet coefficients are more sparse. Higher-order coefficients are not displayed
because they have a negligible energy, as explained also in Section 2.6.3.

2.6.3 Analysis of Scattering Properties

A convolution network is highly non-linear, which makes it difficult to understand how
the coefficient values relate to the signal properties. Scattering convolutional networks,
thanks to their construction from stable, Littlewood-Paley wavelet filter banks and the
point-wise non-linearities, enjoy energy conservation and stability to additive noise and
to the action of diffeomorphisms.

A windowed scattering SJ is computed with a cascade of wavelet modulus oper-
ators U defined in (2.8), and its properties thus depend upon the wavelet transform
properties. Sections 2.3.1 and 2.3.2 gave conditions on wavelets to define a scattering
transform which is non-expansive and preserves the signal norm. The scattering energy
conservation shows that ‖SJ [p]x‖ decreases quickly as the length of p increases, and
is non-negligible only over a particular subset of frequency-decreasing paths. Reducing
computations to these paths defines a convolution network with much fewer internal and
output coefficients.

Theorem 2.3.4 proves that the energy captured by the m-th layer of the scattering
convolutional network,

∑
|p|=m ‖SJ [p]x‖2, converges to 0 as m→∞.

The scattering energy conservation also proves that the more sparse the wavelet
coefficients, the more energy propagates to deeper layers. Indeed, when 2J increases,
one can verify that at the first layer, SJ [λ1]x = |x⋆ψλ1 |⋆φ2J converges to ‖φ‖2 ‖x⋆ψλ‖21.
The more sparse x ⋆ ψλ, the smaller ‖x ⋆ ψλ‖1 and hence the more energy is propagated
to deeper layers to satisfy the global energy conservation (2.13).

Figure 2.8 shows two images having same first order scattering coefficients, but the
top image is piecewise regular and hence has wavelet coefficients which are much more
sparse than the uniform texture at the bottom. As a result the top image has second
order scattering coefficients of larger amplitude than at the bottom. For typical images,
as in the CalTech101 dataset [FFFP04], Table 2.1 shows that the scattering energy
has an exponential decay as a function of the path length m. Scattering coefficients
are computed with cubic spline wavelets, which define a unitary wavelet transform and
satisfy the scattering admissibility condition (2.11) for energy conservation. As expected,
the energy of scattering coefficients converges to 0 as m increases, and it is already below
1% for m ≥ 3.
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Table 2.1: Percentage of energy
∑

p∈Pm
↓
‖SJ [p]x‖2/‖x‖2 of scattering coefficients on

frequency-decreasing paths of length m, depending upon J . These average values are
computed on the Caltech-101 database, with zero mean and unit variance images.

J m = 0 m = 1 m = 2 m = 3 m = 4 m ≤ 3

1 95.1 4.86 - - - 99.96
2 87.56 11.97 0.35 - - 99.89
3 76.29 21.92 1.54 0.02 - 99.78
4 61.52 33.87 4.05 0.16 0 99.61
5 44.6 45.26 8.9 0.61 0.01 99.37
6 26.15 57.02 14.4 1.54 0.07 99.1
7 0 73.37 21.98 3.56 0.25 98.91

The propagated energy ‖U [p]x‖2 decays because U [p]x is a progressively lower fre-
quency signal as the path length increases. Indeed, each modulus computes a regular
envelop of oscillating wavelet coefficients. The modulus can thus be interpreted as a
non-linear “demodulator” which pushes the wavelet coefficient energy towards lower fre-
quencies. As a result, an important portion of the energy of U [p]x is then captured
by the low pass filter φ2J which outputs SJ [p]x = U [p]x ⋆ φ2J . Hence fewer energy is
propagated to the next layer.

Another consequence is that the scattering energy propagates only along a subset of
frequency decreasing paths. Since the envelope |x ⋆ ψλ| is more regular than x ⋆ ψλ, it
results that |x⋆ψλ(u)|⋆ψλ′ is non-negligible only if ψλ′ is located at lower frequencies than
ψλ, and hence if |λ′| < |λ|. Iterating on wavelet modulus operators thus propagates the
scattering energy along frequency-decreasing paths p = (λ1, ..., λm) where |λk| < |λk−1|
for 1 ≤ k < m. We denote by Pm↓ the set of frequency decreasing (or equivalently scale
increasing) paths of length m. Scattering coefficients along other paths have a negligible
energy. This is verified by Table 2.1 which shows not only that the scattering energy is
concentrated on low-order paths, but also that more than 99% of the energy is absorbed
by frequency-decreasing paths of length m ≤ 3. Numerically, it is therefore sufficient
to compute the scattering transform along frequency-decreasing paths. It defines a
much smaller convolution network. Section 2.6.4 shows that the resulting coefficients
are computed with O(N logN) operations.

Preserving energy does not imply that the signal information is preserved. Since
a scattering transform is calculated by iteratively applying U, inverting SJ requires to
invert U. The wavelet transform W is a linear invertible operator, so inverting Uz =
{z ⋆ φ2J , |z ⋆ ψλ|}λ∈P amounts to recover the complex phases of wavelet coefficients
removed by the modulus. The phase of Fourier coefficients can not be recovered from
their modulus, but wavelet coefficients are redundant, as opposed to Fourier coefficients.
For particular wavelets, it has been proved that the phase of wavelet coefficients can be
recovered from their modulus, and that U has a continuous inverse [Wal12].
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Still, one can not exactly invert SJ because we discard information when computing
the scattering coefficients SJ [p]x = U [p] ⋆ φ2J of the last layer Pm. Indeed, the prop-
agated coefficients |U [p]x ⋆ ψλ| of the next layer are eliminated, because they are not
invariant and have a negligible total energy. The number of such coefficients is larger
than the total number of scattering coefficients kept at previous layers. Initializing the
inversion by considering that these small coefficients are zero produces an error. This
error is further amplified as the inversion of U progresses across layers from m to 0.
Numerical experiments conducted over one-dimensional audio signals, [AM12a] indicate
that reconstructed signals have a good audio quality with m = 2, as long as the number
of scattering coefficients is comparable to the number of signal samples. Audio examples
in www.cmap.polytechnique.fr/scattering show that reconstructions from first order scat-
tering coefficients are typically of much lower quality because there are much fewer first
order than second order coefficients. When the invariant scale 2J becomes too large, the
number of second order coefficients also becomes too small for accurate reconstructions.
Although individual signals can be not be recovered, reconstructions of equivalent sta-
tionary textures are possible with arbitrarily large scale scattering invariants, as it will
be shown in Chapter 4 in auditory texture synthesis.

2.6.4 Fast Scattering Computations

We describe a fast scattering implementation over frequency decreasing paths, where
most of the scattering energy is concentrated. A frequency decreasing path p = (2−j1r1, ..., 2

−jmrm)
satisfies 0 < jk ≤ jk+1 ≤ J . If the wavelet transform is computed over K rotation an-
gles then the total number of frequency-decreasing paths of length m is Km

(J
m

)
. Let

N be the number of pixels of the image x. Since φ2J is a low-pass filter scaled by 2J ,
SJ [p]x(u) = U [p]x⋆φ2J (u) is uniformly sampled at intervals α2J , with α = 1 or α = 1/2.
Each SJ [p]x is an image with α−22−2JN coefficients. The total number of coefficients
in a scattering network of maximum depth m is thus

P = N α−2 2−2J
m∑

m=0

Km

(
J

m

)
. (2.60)

If m = 2 then P ≃ α−2N2−2JK2J2/2. It decreases exponentially when the scale 2J

increases.
Algorithm 1 describes the computations of scattering coefficients on sets Pm↓ of fre-

quency decreasing paths of length m ≤ m. The initial set P0
↓ = {∅} corresponds to the

original image U [∅]x = x. Let p+λ be the path which begins by p and ends with λ ∈ P.
If λ = 2−jr then U [p+ λ]x(u) = |U [p]x ⋆ ψλ(u)| has energy at frequencies mostly below
2−jπ. To reduce computations we can thus subsample this convolution at intervals α2j ,
with α = 1 or α = 1/2 to avoid aliasing.

At the layer m there are Km
(J
m

)
propagated signals U [p]x with p ∈ Pm↓ . They

are sampled at intervals α2jm which depend on p. One can verify by induction on m
that the layer m has a total number of samples equal to α−2 (K/3)mN . There are
also Km

(
J
m

)
scattering signals S[p]x but they are subsampled by 2J and thus have
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Algorithm 1 Fast Scattering Transform

for m = 1 to m do
for all p ∈ P

m−1
↓ do

Output SJ [p]x(α2
Jn) = U [p]x ⋆ φ2J (α2

Jn)
end for
for all p+ λm ∈ Pm↓ with λm = 2−jmrm do

Compute
U [p + λm]x(α2

jmn) = |U [p]x ⋆ ψλm(α2jmn)|
end for

end for
for all p ∈ Pmax

↓ do

Output SJ [p]x(α2
Jn) = U [p]x ⋆ φ2J (α2

Jn)
end for

much less coefficients. The number of operation to compute each layer is therefore
driven by the O((K/3)mN logN) operations needed to compute the internal propa-
gated coefficients with FFT’s. For K > 3, the overall computational complexity is thus
O((K/3)m N logN).

2.6.5 Analysis of stationary textures with scattering

Section 2.3.5 showed that the scattering representation can be used to describe stationary
processes, in such a way that high order moments information is captured and estimated
consistently with few realizations.

Image textures can be modeled as realizations of stationary processes X(u). We
denote the expected value of X by E(X), which does not depend upon u. The Fourier
spectrum R̂X(ω) is the Fourier transform of the autocorrelation

RX(τ) = E
(
[X(u) − E(X)][X(u − τ)− E(X)]

)
.

Despite the importance of spectral methods, the Fourier spectrum is often not suffi-
cient to discriminate image textures because it does not take into account higher-order
moments.

The discriminative power of scattering representations is illustrated using the two
textures in Figure 2.9, which have the same power spectrum and hence same second
order moments. Scattering coefficients SJ [p]X are shown for m = 1 and m = 2 with
the frequency tiling illustrated in Figure 2.7. The ability to discriminate the top process
X1 from the bottom process X2 is measured by a scattering distance normalized by the
variance:

ρ(m) =
‖SJX1[Λ

m
J ]− E(SJX2[Λ

m
J ])‖2

E(‖SJX2[ΛmJ ]− E(SJX2[ΛmJ ])‖2)
.

For m = 1, scattering coefficients mostly depend upon second-order moments and are
thus nearly equal for both textures. One can indeed verify numerically that ρ(1) = 1
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(a) (b) (c) (d)

Figure 2.9: Two different textures having the same Fourier power spectrum. (a) Textures
X(u). Top: Brodatz texture. Bottom: Gaussian process. (b) Same estimated power
spectrum R̂X(ω). (c) Nearly same scattering coefficients SJ [p]X for m = 1 and 2J equal
to the image width. (d) Different scattering coefficients SJ [p]X for m = 2.

so both textures can not be distinguished using first order scattering coefficients. On
the contrary, scattering coefficients of order 2 are highly dissimilar because they depend
on moments up to order 4, and ρ(2) = 5. A scattering representation of stationary
processes includes second order and higher-order moment descriptors of stationary pro-
cesses, which discriminates between such textures. Chapter 4 exploits the consistency
and the discriminability of expected scattering representations to the tasks of texture
classification and synthesis.

The windowed scattering SJ [PJ ]X estimates scattering coefficients by averaging
wavelet modulus over a support of size proportional to 2J . If X is a stationary pro-
cess, Section 2.3.5 showed that the expected scattering transform SX is estimated with
the windowed scattering

SJ [PJ ]X = {U [p]X ⋆ φJ , p ∈ PJ} .
This estimate is called mean-square consistent if its total variance over all paths con-
verges:

lim
J→∞

∑

p∈PJ

E(|SJ [p]X − SX(p)|2) = 0 .

Corollary 2.3.13 showed that mean-square consistency is equivalent to

E(|X|2) =
∑

p∈P∞

|SX(p)|2 ,
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which in turn is equivalent to

lim
m→∞

∑

p∈P∞ , |p|=m

E(|U [p]X|2) = 0 . (2.61)

If a process X(t) has a mean square consistent scattering, then one can recover the
scaling law of its second moments with scattering coefficients:

Proposition 2.6.1 Suppose that X(t) is a process with stationary increments such that
SJX is mean square consistent. Then

E(|X ⋆ ψj|2) =
∑

p∈P∞

|SX(j + p)|2 . (2.62)

Proof: If X is such that SJX is mean square consistent, then the process Xj = |X ⋆ ψj|
also yields a mean square consistent scattering representation, since for each J

∑

p∈PJ

E(|SJ [p]Xj − SXj(p)|2) =
∑

p∈PJ

E(|SJ [j + p]X − SX(j + p)|2)

≤
∑

p∈PJ

E(|SJ [p]X − SX(p)|2) ,

which implies that limJ→∞E(‖SJ [PJ ]Xj − SXj‖2) = 0. As a result,

E(|X ⋆ ψj |2) =
∑

p∈P∞

|SXj(p)|2 =
∑

p∈P∞

|SX(j + p)|2 . (2.63)

�.
For a large class of ergodic processes including most image textures, it is observed

numerically that the total scattering variance
∑

p∈PJ
E(|SJ [p]X − SX(p)|2) decreases

to zero when 2J increases. Table 2.2 shows the decay of the total scattering variance,
computed on average over the Brodatz texture dataset.

Corollary 2.3.13 showed that this variance decay then implies that

‖SX‖2 =
∞∑

m=0

∑

p∈Λm
∞

|SX(p)|2 = E(|X|2) .

Table 2.3 gives the percentage of expected scattering energy
∑

p∈Λm
∞
|SX(p)|2 carried

by paths of length m, for textures in the Brodatz database. Most of the energy is
concentrated in paths of length m ≤ 3.
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Table 2.2: Decay of the total scattering variance
∑

p∈PJ
E(|SJ [p]X − SX(p)|2)/E(|X|2)

in percentage, as a function of J , averaged over the Brodatz dataset. Results obtained
using cubic spline wavelets.

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7

85 65 45 26 14 7 2.5

Table 2.3: Percentage of expected scattering energy
∑

p∈Λm
∞
|SX(p)|2, as a function of

the scattering order m, computed with cubic spline wavelets, over the Brodatz dataset.

m = 0 m = 1 m = 2 m = 3 m = 4

0 74 19 3 0.3
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Chapter 3

Image and Pattern Classification

with Scattering

3.1 Introduction

This chapter applies the properties of the scattering metric to pattern recognition. In
this task, signal classes are affected by several sources of variability, such as geometrical
or photometric transformations, non-rigid deformations, shape and texture variability or
clutter, as shown in figure 1.3. The effectiveness of a signal representation for recognition
thus depends upon its capacity to reduce the intra-class variability while keeping enough
signal information to discriminate between different object classes.

The first source of variability, which affects the large majority of pattern recognition
tasks, is given by geometric and photometric transformations, and non-rigid deforma-
tions. Chapter 2 showed that the metric defined by scattering representations has the
capacity to reduce such variability while keeping high frequency information, and hence
that scattering descriptors are an effective, universal preprocessing step in complex ob-
ject recognition tasks, which reduces geometric variability and facilitates the learning of
more complex structures.

This claim can be verified by first considering classification problems where signal
classes are well modeled as templates x ∈ L2(Rd), with an associated deformation struc-
ture including geometrical transformations and deformations.

Thanks to its Lipschitz continuity property to the action of diffeomorphisms, small
deformations are linearized in the scattering domain. This property is exploited in
this chapter with a generative linear classifier, which learns for each signal class a
low-dimensional affine approximation model. This classifier is estimated with a class-
conditional PCA, and can be interpreted as a supervised invariance learning step.

Prior to the supervised learning of the affine spaces, we increase the efficiency of
scattering representations by reducing the correlation across paths observed in natural
images. Section 3.3 shows that a discrete cosine transform across scale and orientation
variables approximates the Karhunen-Loève basis on a dataset of natural images.

We apply this linear generative classifier to the MNIST and USPS handwritten
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datasets. We show that it outperforms discriminative classifiers such as SVM for small
training sizes, achieving state-of-the-art results. For larger training sizes, a discrimi-
native classifier, implemented with a Gaussian Kernel SVM, is shown to outperform
previously published state-of-the-art results. When training samples are scarce, linear
generative classifiers can take advantage of the Lipschitz regularity of the transformed
data more effectively than discriminative SVMs, as shown with a toy model in Section
3.4.3.

Similarly as in other convolutional networks and SVMs, the performance of the PCA
classifier is improved by renormalizing scattering coefficients. The renormalization given
by the scattering transfer, which will also be used in Chapter 5 for the study of multi-
fractals, yields an improvement with respect to the original scattering metric.

3.2 Support Vector Machines

This Section reviews Support Vector Machines, a popular kernel method to perform
discriminative classification.

Support Vector Machines were introduced in the late 70s by Vapnik [Vap79], and
initially formulated as a supervised method for classification or regression in high dimen-
sional spaces. In its simplest formulation, given a binary classification task X −→ {±1},
where X is a Hilbert space, and where training examples T = {(xi, yi) , xi ∈ X , yi =
±1 , i = 1 . . . I} are observed, a support vector machine [Bur98] constructs a hyperplane
in X which best separates the two classes T+,T−, corresponding to points xi such that
yi = +1 and yi = −1 respectively.

The criteria for best separation is based on the notion of margin. If one first supposes
that the training data is linearly separable in X, i.e., that there exists an hyperplane
(ω, b) , ω ∈ X, b ∈ R, such that

∀xi ∈ T+, xi.ω − b > 0 , ∀xi ∈ T−, xi.ω − b < 0 , (3.1)

then the classifier with smallest generalization error is given by the hyperplane which
maximizes the distance to the nearest training examples. Such hyperplane is character-
ized by {

min(ω,b) ‖ω‖2
s.t. ∀i , yi(ω.xi − b) ≥ 1 .

(3.2)

This program is solved by introducing Lagrange multipliers. It results from the Karush-
Kuhn-Tucker quadratic programming conditions that the solution ω is a linear combi-
nation of the training samples, ω =

∑
i αiyixi, with αi ≥ 0. The indices where αi > 0

are called the support vectors, since they determine the position of the best-separating
hyperplane.

In general, however, the training data is not linearly separable, meaning that (3.1)
is not satisfied. Cortes and Vapnik [CV95] modified the maximum-margin linear pro-
gram (3.2) by introducing slack variables, which allow mis-classified examples but set a
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penalization for such misclassifications. The resulting dual program is

{
maxαi

∑
i αi − 1

2

∑
i,j αiαjyiyjxi.xj

s.t. ∀i , 0 ≤ αi ≤ C ,
∑

i αiyi = 0
(3.3)

Support Vector Machines can be generalized to create non-linear decision functions
by applying the kernel trick [BGV92]. Indeed, the training phase, given by program
(3.3) only uses data through the scalar products xi.xj . By replacing this linear kernel
by a positive-definite kernel K(xi, xj), Section 2.2.2 explained that this is equivalent to
estimating a separating hyperplane on a higher-dimensional feature space, character-
ized by Mercer’s theroem. Popular kernels include the Gaussian radial basis function
K(x, y) = exp(−‖x− y‖2/2σ2), as well as the polynomial kernels K(x, y) = (1 + x.y)d.

Support Vector Machines are a very popular discriminative classifier thanks to their
good generalization properties and the flexibility given by different kernels. However,
we shall see in Section 3.4.3 that on small training sets they can be outperformed by
generative classifiers.

3.3 Compression with Cosine Scattering

In many pattern recognition tasks, it is important from a computational point of view to
compute local descriptors as small as possible. A discrete cosine transform along scale
and orientation variables removes the correlation in scattering coefficients, yielding a
local image descriptor with reduced dimensionality.

Natural images have scattering coefficients SJ [p]X(u) which are correlated across
paths p = (2j1r1, ..., 2

jmrm), at any given position u. The strongest correlation is between
paths of the same length. For each m, scattering coefficients are decorrelated in a
Karhunen-Loève basis which diagonalizes their covariance matrix. Figure 3.1 compares
the decay of the sorted variances E(|SJ [p]X − E(SJ [p]X)|2) and the variance decay in
the Karhunen-Loève basis computed on paths of length m = 1, and on paths of length
m = 2, over the Caltech image dataset with a Morlet wavelet. The variance decay is
much faster in the Karhunen-Loève basis, which shows that there is a strong correlation
between scattering coefficients of same path length.

A change of variables proves that a rotation and scalingX2lr(u) = X(2−lru) produces
a rotation and inverse scaling on the path variable p = (2j1r1, ..., 2

jmrm):

SX2lr(p) = SX(2lrp) where 2lrp = (2l+j1rr1, ..., 2
l+jmrrm) .

If images are randomly rotated and scaled by 2lr−1 then the path p is randomly rotated
and scaled [Per10]. In this case, the scattering transform has stationary variations along
the scale and rotation variables. This suggests approximating the Karhunen-Loève basis
by a cosine basis along these variables. Let us parameterize each rotation r by its angle
θ ∈ [0, 2π]. A path p is then parameterized by ([j1, θ1], ..., [jm, θm]).

Since scattering coefficients are computed along frequency decreasing paths for which
−J ≤ jk < jk−1, to reduce boundary effects, a separable cosine transform is computed
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along the variables j̃1 = j1 , j̃2 = j2 − j1, ... , j̃m = jm − jm−1, and along each angle
variable θ1, θ2, ... , θm. We define the cosine scattering transform as the coefficients
obtained by applying this separable discrete cosine transform along the scale and angle
variables of SJ [p]X(u), for each u and each path length m. Figure 3.1 shows that the
cosine scattering coefficients have variances for m = 1 and m = 2 which decay nearly as
fast as the variances in the Karhunen-Loeve basis. It shows that a DCT across scales
and orientations is nearly optimal to decorrelate scattering coefficients. Lower-frequency
DCT coefficients absorb most of the scattering energy. On natural images, more than
99% of the scattering energy is absorbed by the 1/3 lowest frequency cosine scattering
coefficients.
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Figure 3.1: (A): Sorted variances of scattering coefficients for m = 1 (left) and m = 2
(right). (B): Sorted variances of DCT scattering coefficients. (C): Variances in the
scattering Karhunen-Loeve basis.

Another source of correlation between scattering paths comes from the self-similarity
present in natural textures and geometric structures. If xα is an image patch containing
an edge along an angle α, then for a given sub-band λ = 2jθ,

|xα ⋆ ψλ| ≈ Cθ(xα ⋆ |ψλ|) ,

where the envelope |ψλ| depends mostly on the scale 2j . This induces a correlation on
second order paths along its orientation parameters. Similarly, isolated singularities such
as a Dirac impulse produce scale correlations. Moreover, in Chapter 5 we shall see that
self-similar processes have redundant scattering coefficients, and that these redundancy
can in fact define an invariant quantity.
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3.4 Generative Classification with Affine models

Although discriminant classifiers such as SVM have better asymptotic properties than
generative classifiers, the situation can be inverted for small training sets [NJ02]. We
will consider a simple robust generative classifier based on affine space models computed
with a PCA, resulting in a simplified version of the discriminative k q-metrics algorithm
[SS09]. Applying a Discrete Cosine Transform on scattering coefficients has no effect
on any linear classifier because it is a linear orthogonal transform. However, keeping
the 50% lower frequency cosine scattering coefficients reduces computations and has a
negligible effect on classification results. The classification algorithm is described directly
on scattering coefficients to simplify explanations. Each signal class is represented by a
random vector Xk, whose realizations are images of N pixels in the class. Section 3.4.1
presents a linear generative classifier which takes advantage of the Lipschitz regularity
properties of scattering operators. Section 3.4.2 introduces a renormalization strategy
which improves classification results, similarly as in other classifiers. Finally, in Section
3.4.3 we compare the generative classification strategy with SVM classification, and show
that it may be a more effective tool to exploit local regularity of data on small training
sets.

3.4.1 Linear Generative Classifier

Chapter 2 showed that the scattering operator SJ is Lipschitz continuous with respect
to additive and geometric perturbations of the signal. Section 2.3.2 showed that since
both the wavelet modulus and the averaging kernel are contractive L2(Rd) operators,
the scattering metric satisfies

‖SJ(x+ h)− SJx‖ ≤ ‖h‖ .

It follows that the application h 7→ ϕx(h) = x+ h, performing an additive perturbation
on x, is Lipschitz continuous at 0 when composed with the scattering operator:

‖SJϕx(h)− SJϕx(0)‖ ≤ ‖ϕx(h)− ϕx(0)‖ = ‖h‖ . (3.4)

In that case, thanks to the Radon-Nikodỳm property of Hilbert spaces, SJ admits a
Gâteaux differential almost everywhere [LPT12]. This differential, which is a bounded
linear operator, encodes how infinitesimal additive perturbations of x ∈ L2(Rd) are
mapped into the scattering domain:

SJϕx(h) = SJx+DSJx(h) + o(‖h‖) , ‖h‖ → 0 . (3.5)

On the other hand, Section 2.3.3 showed that the scattering metric is also upper
bounded by an elastic deformation metric. Indeed, if x ∈ L2(Rd) has compact support
and L[τ ]x(u) = x(u − τ(u)), then theorem 2.3.7 showed that the perturbation τ 7→
ϕx(τ) = L[τ ]x satisfies

‖SJϕx(τ)− SJϕx(0)‖ = ‖SJL[τ ]x− SJx‖ ≤ C‖x‖‖τ‖G , (3.6)
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where ‖τ‖G = 2−J |τ |∞ + ‖∇τ‖∞ + ‖Hτ‖∞ is the deformation metric defined in Section
2.3.3. As a result, the map S̃Jx = SJ ◦ ϕx is also differentiable in the sense of Gâteaux
almost everywhere. Its differential DS̃Jx maps small deformations into the scattering
domain:

SJL[τ ]x = SJx+DS̃Jx(τ) + o(‖τ‖G) , ‖τ‖G → 0 . (3.7)

As a result, both small additive perturbations and small geometric deformations are
linearized by the scattering transform. This source of regularity can be exploited in a
supervised classification setting using a class-conditional PCA.

We shall represent each signal class by a random process Xk, whose realizations are
observed images or audio samples. Let E(SJX) = {E(SJ [p]X(u))}p,u be the family of
NJ expected scattering values, computed along all frequency-decreasing paths of length
m ≤ mmax and all subsampled positions u = α2Jn. The difference SJXk − E(SJXk)
is approximated by its projection in a linear space of low dimension d ≪ NJ . The
covariance matrix of SJXk is a matrix of size N2

J . Let Vd,k be the linear space generated
by the d PCA eigenvectors of this covariance matrix having the largest eigenvalues.
Among all linear spaces of dimension d, this is the space which approximates SJXk −
E(SJXk) with the smallest expected quadratic error. This is equivalent to approximating
SJXk by its projection on an affine approximation space:

Ad,k = E{SJXk}+Vd,k.

The resulting classifier associates a signal X to the class k̂ which yields the best
approximation space:

k̂(X) = argmin
k≤K

‖SJX − PAd,k
(SJX)‖ . (3.8)

This algorithm is a simple instance of the supervised k − q-flats algorithm and its
discriminative variants [SS09], where each class is assigned a single affine subspace, rather
than learning a collection of k prototypes for each class. The minimization of (3.8) also
has similarities with the minimization of a tangential distance [HK02], in the sense that
we remove the principal directions of variability to evaluate the distance. However, it
is much simpler since it does not evaluate a tangential space which depends upon SJx.
Let V⊥

d,k be the orthogonal complement of Vd,k, corresponding to directions of lower
variability. This distance is also equal to the norm of the difference between SJx and
the average class “template” E(SJXk), projected in V⊥

d,k:

‖SJx− PAd,k
(SJx)‖ =

∥∥∥PV⊥
d,k

(
SJx− E(SJXk)

)∥∥∥ . (3.9)

Minimizing the affine space approximation error is thus equivalent to finding the class
centroid E(SJXk) which is the closest to SJx, without taking into account the first d
principal variability directions. The d principal directions of the space Vd,k result from
deformations and from structural variability. These d principal directions of variability
can also be interpreted in terms of the Gâteaux differentials from (3.5, 3.7). Indeed,
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the spaces Vd,k encode a subspace of the scattering tangent space generated by the
perturbations h with largest deviations DSJE(X)(h). The variability in the scattering
domain is thus approximated from an input distribution of deformations or additive
perturbations through the corresponding bounded linear operators from (3.5) and (3.7).

The affine space selection is effective if SJXk − E(SJXk) is well approximated by a
projection in a low-dimensional space. This is the case if realizations of Xk are transla-
tions and limited deformations of a single template. Indeed, the scattering differential
DSJX controls how each geometric or additive perturbation is perceived in the scat-
tering domain. If a given template is deformed along displacement fields which span a
low-dimensional space, then the resulting transformed coefficients will also be well ap-
proximated by a low-dimensional space. Moreover, if the deformation is enlarged with
random translations, this won’t affect the approximation power of low-dimensional affine
spaces, since translations are geometric perturbations which are atentuated by DSJX
thanks to the local translation invariance. Hand-written digit recognition is an example.
This is also valid for stationary textures where SJXk has a small variance, which can be
interpreted as structural variability.

The dimension d must be adjusted so that SJXk has a better approximation in the
affine space Ad,k than in affine spaces Ad,k′ of other classes k′ 6= k. This is a model
selection problem, which requires to optimize the dimension d in order to avoid over-
fitting [BM97].

The invariance scale 2J must also be optimized. When the scale 2J increases, trans-
lation invariance increases but it comes with a partial loss of information which brings
the representations of different signals closer. One can prove [Mal12] that for any x and
x′

‖SJ+1x− SJ+1x
′‖ ≤ ‖SJx− SJx′‖ .

When 2J goes to infinity, this scattering distance converges to a non-zero value. To
classify deformed templates such as hand-written digits, the optimal 2J is of the order of
the maximum pixel displacements due to translations and deformations. In a stochastic
framework where x and x′ are realizations of stationary processes, SJx and SJx

′ con-
verge to the expected scattering transforms Sx and Sx′. In order to classify stationary
processes such as textures, the optimal scale is the maximum scale equal to the image
width, because it minimizes the variance of the windowed scattering estimator.

A cross-validation procedure is used to find the dimension d and the scale 2J which
yield the smallest classification error. This error is computed on a subset of the training
images, which is not used to estimate the covariance matrix for the PCA calculations.

The class-conditional PCA is closely related to the decorrelation step induced by the
Cosine Scattering transform of Section 3.3. However, while in the compression phase we
kept the coordinates yielding largest variance, the PCA classifier does the opposite and
keeps the coefficients corresponding to eigenvectors with smallest variability. Indeed, the
cosine scattering transform projects the scattering representation into a linear subspace
containing most of the signal energy, independently of the signal class. This space is
generated by linear combinations of scattering paths keeping the low-frequency varia-
tions across paths along orientation and scale directions. The class-conditional PCA
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further decorrelates the scattering coefficients within a class, by exploiting the spatial
dependencies and class-specific path correlations. But since it is computed for a specific
class in a supervised setting, the variance is non-informative and thus we discard the
leading principal directions, as opposed to the unsupervised compression step carried
out by the Cosine Scattering transform.

Affine space scattering models can be interpreted as generative models computed
independently for each class. As opposed to discriminative classifiers such as SVM,
they do not estimate cross-terms between classes, besides from the choice of the model
dimensionality d. Such estimators are particularly effective for small number of training
samples per class. Indeed, if there are few training samples per class then variance terms
dominate bias errors when estimating off-diagonal covariance coefficients between classes
[BL08].

An affine space approximation classifier can also be interpreted as a robust quadratic
discriminant classifier obtained by coarsely quantizing the eigenvalues of the inverse
covariance matrix. For each class, the eigenvalues of the inverse covariance are set to 0
inVd,k and to 1 inV⊥

d,k, where d is adjusted by cross-validation. This coarse quantization
is justified by the poor estimation of covariance eigenvalues from few training samples.
These affine space models will typically be applied to distributions of scattering vectors
having non-Gaussian distributions, where a Gaussian Fisher discriminant can lead to
important errors.

This affine space classifier can also be related to the “A Contrario” models for de-
tection of geometric structures [DMM01]. This framework is based in the so-called
Helmhotz principle, which states that relevant geometric features have a very small
probability of occurring in a random context [DMM01]. If one considers a classification
task with E(‖X‖2) = 1, and one assumes that the scattering is computed with unitary,
admissible wavelets, then random test examples are located in the scattering unit ball.
If one assumes a uniform distribution along this ball, then given a subspace Vd of di-
mension d, then ‖SJx− PVd

x‖ ≈ (1− d
N J

)‖SJx‖ with high probability. The event that
‖SJx− PVd,k

SJx‖ is significantly smaller than ‖SJx‖ thus has a very small probability
under the hypothesis that x is drawn from a uniform distribution in the unit ball, and
hence it results in an “a contrario” test for belonging to class k.

3.4.2 Renormalization

As in the case of Support Vector Machines, the performance of the affine PCA classifier
can be improved by equalizing the descriptor space.

Table 2.1 from Chapter 2 showed that scattering vectors have unequal energy distri-
bution along its path variables, in particular as the order varies.

A first robust equalization method which is widely used on Support Vector Machines

is obtained by re-normalizing each SJ [p]x(u) by the maximum ‖SJ [p]xi‖ =
(∑

u |SJ [p]xi(u)|2
)1/2

over all training signals Xi:
SJ [p]x(u)

supxi ‖SJ [p]xi‖
. (3.10)
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This supervised scheme ensures that all paths of the renormalized scattering descriptor
have the same maximum energy across the training set. The supremum is preferred
to the average in (3.10) since the underlying distribution of SJ [p]xi generally contains
outliers.

The scattering transfer, which will be introduced and studied in Chapter 5, brings
another renormalization scheme. It is defined for scattering paths p = p0 + λ of order
|p| > 1 as

TJX[p](u) =
SJ [p]X(u)

SJ [p0]X(u)
, (3.11)

and for first order coefficients as TJX[λ](u) = SJ [λ]X(u)
|X|⋆φJ (u)

. Sections 5.3 and 4.7 will prove
that this renormalization produces scattering coefficients which are nearly invariant to
smooth modulations, which model illumination changes; and to the derivation operator
DX(u) = dX

du (u). As we shall see, this strong invariance property can be interpreted as
a form of geometric invariant.

3.4.3 Comparison with Discriminative Classification

The classification of observations x into labels y can be stated in probabilistic terms as
maximizing the conditional probability maxi p(y = ci|x). Generative classifiers exploit
the Bayes rule

p(y|x) = p(y, x)

p(x)
=
p(x|y)p(y)

p(x)

and estimate the class-conditional probabilities p(x|y) with a specified model, whereas
discriminative classifiers directly estimate the posterior probabilities p(y|x), or, equiva-
lently, learn a mapping from observations x to the labels y.

Several authors [Vap98; NJ02] showed that discriminative classifiers have better
asymptotic properties than generative classifiers, since they directly estimate the final
classification objective function. However, it has also been observed [NJ02; UB05] that
under certain circumstances, generative classifiers can outperform discriminative ones,
thanks to a better trade-off between the bias and variance of the estimation.

Section 3.4 argued that thanks to the Lipschitz regularity of scattering operators
with respect to additive perturbations and geometric deformations, signal classes with a
deformable template structure are well approximated by low-dimensional affine spaces
in the scattering domain. The linear generative classifier from Section 3.4.1 is able
to exploit such regularity by diagonalizing the empirical intra-class covariance of the
observed data.

We study the pertinence of such classification strategy by modeling a binary classi-
fication problem, where observations x ∈ RN are drawn from Gaussian distributions

(x|y = 0) ∼ N(µ0,Σ0) , (x|y = 1) ∼ N(µ1,Σ1) .

The covariance matrices Σ0 and Σ1 are constructed as

Σi = UiDrU
T
i , i = 0, 1 , (3.12)
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where Ui is a random orthogonal matrix of dimension N and Dr is a diagonal matrix
such that

Dr(n, n) = σ20n
−r , n = 1 . . . N .

The parameter r thus controls the decay of the eigenvectors of Σi. We also set the
signal-to-noise ratio ρ of the model by normalizing the total variance of each class:

ρ =
‖µ0 − µ1‖2
σ20
∑N

n=1 n
−r

.

We compare the linear generative classifier described in Section 3.4.1 with an SVM
using a Gaussian Kernel. In both methods, the classifier estimates the hyper-parameters
using a validation set, taken off the training set. In the PCA classifier, it is limited to the
dimension d of the affine spaces, whereas in the SVM case we estimate the parameters
of the Gaussian kernel together with the margin cost [CL11].

Figure 3.2 shows the classification results as a function of the training size T and
the decay r of the covariance spectrum. We generated data using N = 40, ρ = 0.1,
with training set sizes of T = 20, 80, 320, 1280, 2560 and test size of 1000 samples. We
averaged the classification results over 4 runs, and we used a validation set obtained
with 20% of the training samples selected at random. When r is small, the covariance
spectrum decays slowly, which implies that each class spans a relatively large subspace.
In these conditions, the PCA classifier does not outperform the SVM at any regime.
As the training set grows, the bias-variance trade-off turns in favor of the richer SVM
model. However, as r increases, the Gaussian distributions produce data which is better
approximated by low-dimensional linear subspaces; the PCA classifier takes advantage
of this regularity more efficiently than the SVM classifier, and as a result it reaches its
asymptotic regime faster than the SVM, as shown in figure 3.2. This phenomena is
consistent with the theoretical analysis performed on binary data in [NJ02]. We shall
see in the next section that real-world data such as handwritten digits exhibit a similar
behavior, where for small training sets the PCA classifier outperforms its discriminative
counterpart.

3.5 Handwritten Digit Classification

The MNIST database of hand-written digits is an example of structured pattern classi-
fication, where most of the intra-class variability is due to local translations and defor-
mations. It comprises at most 60000 training samples and 10000 test samples. If the
training dataset is not augmented with deformations, the state of the art was achieved by
deep-learning convolutional networks [RHBL07], deformation models [KDGH07; AT07],
and dictionary learning [MBP10]. These results are improved by a scattering classifier.

All computations are performed on the reduced cosine scattering representation de-
scribed in Section 3.3, which keeps the lower-frequency half of the coefficients. Table 3.1
computes classification errors on a fixed set of test images, depending upon the size of
the training set, for different representations and classifiers. The affine space selection of
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Figure 3.2: Comparison between PCA and SVM classifiers for the simulated data of
model (3.12), for different training sizes and different decay of the covariance spectra.

Section 3.4.1 is compared with an SVM classifier using RBF kernels, which are computed
using Libsvm [CL11], and whose variance is adjusted using standard cross-validation over
a subset of the training set. The SVM classifier is trained with a renormalization which
maps all coefficients to [−1, 1]. The PCA classifier is trained with the renormalisation
(3.10), and similar results were obtained with the scattering transfer renormalization
(3.11). The first two columns of Table 3.1 show that classification errors are much
smaller with an SVM than with the PCA algorithm if applied directly on the image.
The 3rd and 4th columns give the classification error obtained with a PCA or an SVM
classification applied to the modulus of a windowed Fourier transform. The spatial size
2J of the window is optimized with a cross-validation which yields a minimum error
for 2J = 8. It corresponds to the largest pixel displacements due to translations or
deformations in each class. Removing the complex phase of the windowed Fourier trans-
form yields a locally invariant representation but whose high frequencies are unstable to
deformations, as explained in Chapter 2. Suppressing this local translation variability
improves the classification rate by a factor 3 for a PCA and by almost 2 for an SVM.
The comparison between PCA and SVM confirms the fact that generative classifiers can
outperform discriminative classifiers when training samples are scarce [NJ02]. As the
training set size increases, the bias-variance trade-off turns in favor of the richer SVM
classifiers, independently of the descriptor.

Columns 6 and 8 give the PCA classification result applied to a windowed scattering
representation for mmax = 1 and mmax = 2. The cross validation also chooses 2J = 8.
For the digit ‘3’, Figure 3.3 displays the 4-by-4 array of normalized scattering vectors.
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For each u = 2J(n1, n2) with 1 ≤ ni ≤ 4, the scattering vector SJ [p]X(u) is displayed for
paths of length m = 1 and m = 2, as circular frequency energy distributions following
Section 2.6.2. Figure 3.4 displays the centroid E(SJXk) estimated for the class ‘1’,
together with the principal direction of variability, corresponding to the eigenvector
of largest eigenvalue of the empirical covariance. The panels (e) and (f) of the figure
show that the principal source of variability remaining in the scattering domain is a
rotation of the digit, since the principal direction oscillates along the circular arcs r(p) =
{(rλ1, rλ2) ; p = (λ1, λ2) , r ∈ G+}.

(a) (b)

(c)

Figure 3.3: (a): Image X(u) of a digit ’3’. (b): Array of scattering vectors SJ [p]X(u),
for m = 1 and u sampled at intervals 2J = 8. (c): Scattering vectors SJ [p]X(u), for
m = 2.

Increasing the scattering order from mmax = 1 to mmax = 2 reduces errors by about
30%, which shows that second order coefficients carry important information even at a
relatively small scale 2J = 8. However, third order coefficients have a negligible energy
and including them brings marginal classification improvements, while increasing com-
putations by an important factor. As the learning set increases in size, the classification
improvement of a scattering transform increases relatively to windowed Fourier trans-
form because the classification is able to incorporate more high frequency structures,
which have deformation instabilities in the Fourier domain as opposed to the scattering
domain.

Table 3.1 also shows that below 5 · 103 training samples, the scattering PCA clas-
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Table 3.1: MNIST classification results.

Training x Wind. Four. Scat. mmax = 1 Scat. mmax = 2 Conv. POP
size PCA SVM PCA SVM PCA SVM PCA SVM Net. [AT07]

300 14.5 15.4 7.35 7.4 5.7 8 4.7 5.6 7.18 3
1000 7.2 8.2 3.74 3.74 2.35 4 2.3 2.6 3.21 1.75
2000 5.8 6.5 2.99 2.9 1.7 2.6 1.3 1.8 2.53 -
5000 4.9 4 2.34 2.2 1.6 1.6 1.03 1.4 1.52 1.11
10000 4.55 3.11 2.24 1.65 1.5 1.23 0.88 1 0.85 0.8
20000 4.25 2.2 1.92 1.15 1.4 0.96 0.79 0.58 0.76 -
40000 4.1 1.7 1.85 0.9 1.36 0.75 0.74 0.53 0.65 -
60000 4.3 1.4 1.80 0.8 1.34 0.62 0.7 0.43 0.53 0.68

sifier improves results of a deep-learning convolutional networks, which learns all filter
coefficients with a back-propagation algorithm [FKL10], and obtains comparable results
as the Patchwork Of Parts model from [AT07], which estimates a mixture of deformable
parts. As more training samples are available, the flexibility of the SVM classifier brings
an improvement over the more rigid affine classifier, yielding a 0.43% error rate on the
original dataset, thus improving upon previous state of the art methods.

To evaluate the precision of the affine space model, we compute the relative affine
approximation error, averaged over all classes:

σ2d = K−1
K∑

k=1

E(‖SJXk − PAd,k
(SJXk)‖2)

E(‖SJXk‖2)
.

For any SJXk, we also calculate the minimum approximation error produced by another
affine model Ad,k′ with k

′ 6= k:

λd =
E(mink′ 6=k ‖SJXk − PA

k′ ,d
(SJXk)‖2)

E(‖SJXk − PAd,k
(SJXk)‖2)

.

For a scattering representation with mmax = 2, Table 3.2 gives the dimension d of
affine approximation spaces optimized with a cross validation, with the corresponding
values of σ2d and λd. When the training set size increases, the model dimension d in-
creases because there are more samples to estimate each intra-class covariance matrix.
The approximation model becomes more precise so σ2d decreases and the relative ap-
proximation error λd produced by wrong classes increases. This explains the reduction
of the classification error rate observed in Table 3.1 as the training size increases.

The US-Postal Service is another handwritten digit dataset, with 7291 training sam-
ples and 2007 test images 16 × 16 pixels. The state of the art is obtained with tangent
distance kernels [HK02]. Table 3.3 gives results obtained with a scattering transform
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Table 3.2: Values of the dimension d of affine approximation models on MNIST classifi-
cation, of the intra class normalized approximation error σ2d, and of the ratio λd between
inter class and intra class approximation errors, as a function of the training size.

Training d σ2d λd
300 5 3 · 10−1 2
5000 100 4 · 10−2 3
40000 140 2 · 10−2 4

with the PCA classifier for mmax = 1, 2. The cross-validation sets the scattering scale
to 2J = 8. As in the MNIST case, the error is reduced when going from mmax = 1 to
mmax = 2 but remains stable for mmax = 3. Different renormalization strategies can
bring marginal improvements on this dataset. If the renormalization is performed by
equalizing using the standard deviation of each component, the classification error is
2.3% whereas it is 2.6% if the supremum is normalized.

Table 3.3: Percentage of errors for the whole USPS database.

Tang. Scat. mmax = 2 Scat. mmax = 1 Scat. mmax = 2
Kern. SVM PCA PCA

2.4 2.7 3.24 2.6 / 2.3

The scattering transform is stable but not invariant to rotations. Stability to rota-
tions is demonstrated over the MNIST database in the setting defined in [LBLL09]. A
database with 12000 training samples and 50000 test images is constructed with random
rotations of MNIST digits. The PCA affine space selection takes into account the rota-
tion variability by increasing the dimension d of the affine approximation space. This is
equivalent to projecting the distance to the class centroid on a smaller orthogonal space,
by removing more principal components. The error rate in Table 3.4 is much smaller
with a scattering PCA than with a convolution network [LBLL09]. Much better results
are obtained for a scattering with mmax = 2 than with mmax = 1 because second order
coefficients maintain enough discriminability despite the removal of a larger number d
of principal directions. In this case, mmax = 3 marginally reduces the error.

Table 3.4: Percentage of errors on an MNIST rotated dataset [LBLL09].

Scat. mmax = 1 Scat. mmax = 2 Conv.
PCA PCA Net.

8 4.4 8.8
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Table 3.5: Percentage of errors on scaled and/or rotated MNIST digits

Transformed Scat. mmax = 1 Scat. mmax = 2
Images PCA PCA

Without 1.6 0.8
Rotation 6.7 3.3
Scaling 2 1

Rot. + Scal. 12 5.5

Scaling invariance is studied by introducing a random scaling factor uniformly dis-
tributed between 1/

√
2 and

√
2. In this case, the digit ‘9’ is removed from the database

as to avoid any indetermination with the digit ‘6’ when rotated. The training set has
9000 samples (1000 samples per class). Table 3.5 gives the error rate on the original
MNIST database and including either rotation, scaling, or both in the training and
testing samples. Scaling has a smaller impact on the error rate than rotating digits
because scaled scattering vectors span an invariant linear space of lower dimension.
Second-order scattering outperforms first-order scattering, and the difference becomes
more significant when rotation and scaling are combined, because it provides interaction
coefficients which are discriminative even in presence of scaling and rotation variability.

3.6 Towards an Object Recognition Architecture

The previous section showed the efficiency of scattering representations to describe sig-
nal classes with a deformable structure. General object recognition datasets, such as
Caltech-101 [FFFP04], Pascal [EVGW+] or Imagenet [DDS+09], contain object classes
with far more complex sources of variability, including occlusions, clutter or complex
changes of shape and/or texture, as shown in figure 1.3.

Figure 3.5: Examples from the Caltech dataset. Intra-class variability includes changes
in shape, appearance, clutter.

In these cases, the windowed scattering representation brings local image descriptors
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which capture high frequency information while being stable to non-rigid deformations
and locally translation invariant. The residual variability after the scattering network
cannot in general be absorbed with linear models, as it was the case in the handwritten
digit task. Variability coming from other physical transformation groups, such as rota-
tions or scaling, can be reduced with a scattering operator defined on a roto-translation
group [SM12]. However, complex datasets exhibit other sources of variability, which do
not result from the action of any transformation group: for instance, the clutter in the
background of objects, or the variability in the shapes of, say, chairs.

Many object recognition architectures [LSP06; YYGH09; BBLP10] use SIFT or HoG
as their first layer of processing. Once image patches are transformed using these vi-
sual descriptors, most object architectures encode the descriptors using supervised or
non-supervised methods. Sparse coding strategies [BBLP10] learn a dictionary of vi-
sual features using a sparse inducing criteria to encode each transformed path into a
sparse code [BBLP10]. These transformed codes are successively delocalized by pooling
neighboring codes using max-pooling or average pooling [LSP06]. Sparse coding can
be replaced by other encoding strategies; for instance, vector quantization gives rise to
bags-of-words architectures [LSP06], and it is learnt with a clustering of visual features.
Local coordinate coding [YGZ09] is an encoding strategy half-way between vector quan-
tization and sparse coding, which encodes a visual feature with a linear combination of
its closest prototypes.

Finally, deep neural networks, and in particular convolutional networks, have recently
achieved state-of-the-art results on several complex object recognition tasks [KSH12].
They learn a huge network of filter banks and non-linearities on large datasets, using
both supervised and non-supervised methods. Whereas the first layers of the network
learn local structures such as oriented edges and corners, higher layers are able to learn
more complex relationships of input images, spanning larger spatial neighborhoods.

These non-linear encoding strategies all require learning from data to some extent.
Whereas variability to physical transformations such as translation or rotation is uni-
versal and does not need to be learnt, learning becomes important in order to address
more complex sources of variability. In this context, wavelet scattering networks may
provide the first layers of these general object recognition architectures. The invariance
and stability properties of scattering operators have the capacity to simplify the learning
task of subsequent layers, since they map image patches into a regular manifold thanks
to their Lipschitz continuity properties.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Normalized scattering coefficients for the ‘1’ class. (a),(b): Two examples
X1(u), (c) E(SJ [p]X1(u)), for |p| = 1, (d) E(SJ [p]X1(u)), for |p| = 2. (e) first order co-
efficients of the first principal direction, (f) second order coefficients of the first principal
direction. Observe that this principal direction is capturing a rotation of the digit.
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Chapter 4

Texture Discrimination and

Synthesis with Scattering

4.1 Introduction

In the previous chapter we modeled object classes as deterministic functions in L2(Rd)
with an associated structure of deformations, which might include geometrical and pho-
tometric transformations, shape variability, occlusion, etc. While this description is
useful for the study of many pattern recognition problems, it is not adequate to repre-
sent the class of, say, images of grass or sand, or applause sound clips. These examples
are naturally modeled as realizations of stochastic processes, referred as image or audi-
tory textures in our context. Thus, the observed variability requires to be treated from a
statistical point of view. Stationary processes are particularly relevant since they express
the property that most textures do not depend upon the spatial or temporal reference.

In this chapter we study the problems of texture discrimination and reconstruc-
tion. In the first case, we consider a family of textures, modeled as stationary processes
X1, . . . ,XK . We observe one or several realizations of each process, which are used to
learn a texture model for each class, and then a classifier assigning a label {1 . . . K} to
each new incoming texture realization. In the texture reconstruction problem, we are
given a realization x of an unknown stationary process X, and the goal is to reproduce
independent and perceptually similar realizations of x.

50 years ago, Julesz formulated the hypothesis [Jul62] that the perceptual information
of a given texture X was contained in a finite collection of statistics {E(gi(X)) , i = 1..I},
in the sense that if E(gi(X)) = E(gi(Y )) for all i then X and Y are perceptually
equivalent. Julesz originally stated the hypothesis in terms of second-order statistics,
which measure pairwise interactions of the form gi(X) = gi(X(u)X(u + τk)). He later
gave counterexamples showing that third or higher order statistics were required, finally
leading to a formulation in terms of textons [Jul81], local texture descriptors capturing
interactions across different scales and orientations.

Texture classification and recognition both require a texture representation capturing
enough discriminative information about the underlying process. However, they impose
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different constraints on the representation. Whereas in texture synthesis is imperative to
keep all the statistics which are perceptible in the sense of Julesz, texture classification
requires a representation which can be estimated consistently with few realizations, and
which is stable to geometric and photometric deformations.

One can then ask for a texture representation which can be used effectively in both
classification and reconstruction contexts. The expected Scattering representation incor-
porates high order moments information, and is consistently estimated for a wide class
of ergodic processes thanks to the fact that it is computed from non-expansive operators.
Moreover, Section 2.3.3 showed that it provides stability with respect to deformations.
This chapter shows that the expected scattering can be used as a texture representation
for both classification and reconstruction, thanks to its stability, consistency and highly
informative content.

Gaussian processes are a fundamental class of stochastic processes. Thanks to their
particularly rich structure, we are able to obtain analytical properties of their first and
second order scattering coefficients, which will be of particular interest in Chapter 5.
Besides Gaussian processes, we also consider stochastic modulation processes, which are
of special interest on auditory texture modeling.

The rest of the chapter is structured as follows. Section 4.3 concentrates on image
texture classification, with the Curet material texture dataset [DVGNK99]. Each class
is modeled as a process of the form LθXi, where Xi is a stationary process, representing
the material under some canonic lighting and viewing conditions, and Lθ is a random
geometric and photometric transformation. We show that the expected scattering rep-
resentation, followed by the generative PCA classifier from Chapter 3, builds a highly
discriminative and consistent estimator for each class, yielding a significative improve-
ment over state-of-the-art results. Section 4.4 studies auditory texture classification from
a dataset compiled by McDermott&Simoncelli [McD]. We confirm numerically that scat-
tering representations discriminate non-gaussian stationary processes, by adding to the
dataset Gaussian processes with the same spectral density as each process in the dataset.

Section 4.5 focuses on texture synthesis from expected scattering representations.
For that purpose, we introduce a gradient descent algorithm in Section 4.5.1, which ad-
justs first and second order scattering coefficients, and we place ourselves in the same
statistical framework of [MS11], which approximates the sampling of maximum entropy
distributions with samples from the Julesz ensemble. We apply the scattering synthe-
sis to the auditory textures from Section 4.4, confirming the fact that second order
scattering representations capture enough information to produce realistic auditory tex-
ture reconstruction. Finally, Section 4.6 focuses on first and second order scattering of
Gaussian processes, whereas Section 4.7 studies stochastic modulation models, showing
that by properly renormalizing second order scattering coefficients, one can separate the
influence of the carrier from that of the envelope.
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4.2 Texture Representations for Recognition

Texture representation has long been a major research topic in computer vision and
signal processing. We give a short overview of the literature, with special attention to
the problems of texture discrimination and synthesis.

The law of a stationary processX is an object living in an extremely high dimensional
space. For instance, if we assume a real, discrete process X[n] whose samples become
statistically independent beyond a window of size S, then its distribution is specified
by a density fX ∈ L1(RS), an object of huge complexity which in general cannot be
estimated with a limited number of samples. Texture discrimination and reconstruction
thus require a concise statistical representation of the process, capturing enough discrim-
inative information for the task at hand and such that it can be consistently estimated
from the available observations.

In the discrimination problem, moreover, the representation should be estimated
consistently with few realizations, and should also be stable to changes in the acqui-
sition process which are not perceptually relevant, as in Chapter 3. For instance, the
representation of a textured material should be stable to changes in pose, illumination
or, more generally, geometrical and photometric deformations.

4.2.1 Spectral Representation of Stationary Processes

A stationary process X(t) admits a spectral representation, via the Cramer decomposi-
tion

∀ t X(t) =

∫
eiωtdZ(ω) ,

where dZ(ω) is a zero-mean random spectral measure, which is decorrelated, E(Z(I)Z(J)) =
0 if I ∩ J = ∅, and whose energy, called the spectral density of X, can be obtained from
the auto-correlation of X(t):

E(|Z(I)|2) =
∫

I
R̂X(ω)dω ,

where RX(τ) = E(X(t)X ∗ (t + τ)). If X(t) is Gaussian, then the spectral density
completely characterizes the process from its second order moments, which explains
their popularity in many domains of signal processing. However, most textures found in
nature are not well modeled as Gaussian processes, as shown in figure 4.1. In particular,
it results that high order moments contain essential discriminative information. A useful
texture representation thus should depend upon high order moments.

4.2.2 High Order Spectral Analysis

The spectral density R̂X(ω) of a stationary process X(t) is obtained from the second
order auto-covariance function RX(τ) = E((X(t)−E(X))(X(t + τ)−E(X))∗). Higher
order Spectral analysis [Pet99] generalizes the spectral density by considering third and
higher order cumulants and their multidimensional Fourier transforms. In particular,

73



Chapter 4. Texture Discrimination and Synthesis with Scattering

(a) (b) (c)

(d) (e) (f)

Figure 4.1: First row: Three different examples xi from Brodatz dataset, i = 1 . . . 3.
Bottom row: Reconstruction obtained by equalizing white gaussian noise with each
spectral density R̂xi , i = 1 . . . 3, so that the textures on each column have the same
second order moments.
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the bi-spectrum is defined for a unidimensional stationary process X(t) as the two-
dimensional Fourier transform of the third-order cumulant

C3X(τ1, τ2) = E(X(t)X(t+ τ1)X(t+ τ2))−E(X)(RX(τ1) +RX(τ2) +RX(τ1 − τ2)) + 2E(X)3 .

Higher order spectral analysis has been applied to texture discrimination in [HK76]
with relative success. However, an accurate estimation of high order cumulants requires
large amounts of samples, as shown in [ANVV97], due to the high variance associated
to their estimates. Indeed, the estimation of high moments amounts to estimating the
expected values E(g(X(t), . . . ,X(t+ τk−1))), with

g(x1, . . . xk) =
∏

i≤k

|xi|αi ,
∑

i

αi = m > 1 .

The function g(x) effectively expands large values of its arguments, making the expected
value more and more dominated by rare events which increase the variance of the esti-
mator.

4.2.3 Markov Random Fields

Markov Random Fields are an important family of stationary processes which have
been used for both texture discrimination and synthesis. A discrete stationary process
X[n] is called a Markov Random Field (MRF) if the conditional probability distribution
f(X[n] = x|X[m] = xm , m 6= n), which in general depends upon all values of (xm)m6=n,
can be written as a function only of the neighbors (xm)m∈Nn

, for a given neighborhood
N, which is independent of n since X[n] is stationary. If X[n] is a Markov random field
then its probability distribution is a Gibbs distribution [GG84]. The size of N governs
the complexity of the model, which captures high order statistics up to order |N|.

MRFs have been used in both texture synthesis and discrimination. In [PL98] the
authors study image texture synthesis by using non-parametric, multiscale MRFs. In
[ZFCV02] the authors extract only first and second-order statistics, along a family of
cliques, thus capturing pixel co-occurrences. They use these statistics to define a Gibbs
distribution, from which they sample using a Metropolis algorithm. The joint pixel
distributions, while capturing high-order statistics, have a complexity which grows ex-
ponentially with the size of the neighborhoods, making their estimation soon unfeasible
using a small realization of the process.

Moreover, such distributions are not stable to a number of input transformations,
such as deformations, perspective effects or pose changes. In [VZ03], MRFs are used
in texture classification. Local distributions are learned by doing a vector quantization
of the joint distributions. This clustering step generates partial invariance, but it also
loses information. Recovering the lost information from the a nonlinear clustering step
is difficult, as opposed to linear averaging.

4.2.4 Wavelet based texture analysis

Wavelet filter banks have been used in both texture synthesis and discrimination [HB95;
MP90; LM01]. Marginal statistics for each filter output capture important geometrical
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features of the texture, but [PS99] showed that one should not ignore the co-occurrence
or joint statistics across wavelet coefficients in order to achieve good synthesis. Simoncelli
and Portilla build a steerable pyramid representation, which is a filter bank of oriented,
multiscale complex wavelets, consisting in 4 orientations and 4 scales, and which is
designed to satisfy the unitary Littlewood-Paley condition. The authors consider second
moments of X ⋆ φJ for J = 1..4, as well as skewness and kurtosis, together with auto-
correlation samples of |X ⋆ψλ| , λ = r2j, where ψ is a generator of the steerable pyramid
and λ spans 4 octaves and and 4 different orientations. From the Parseval identity, we
know that these autocorrelation samples have the same stability as the power spectrum

E(| ̂|X ⋆ ψλ||2), which is not stable to non-rigid deformations, as seen in 2.2.4.
More recently, synthesis of auditory textures from envelope statistics has been suc-

cessfully applied in [MS11]. Here, the authors start by decomposing the signal with a
filter bank of 30 cochlea filters satisfying the Littlewood-Paley unitary condition. They
are bandpass filters whose bandwidth increases with the central frequency, and such
that they remain approximately constant on a logarithmic scale. Then they extract the
envelope by taking the modulus of the analytic signal for each of the outputs of the filter
bank, which corresponds to using complex bandpass filters such as those considered in the
scattering decomposition. The envelopes at the output of each filter are next compressed
to reproduce the nonlinear response of the auditory system, and are re-decomposed with
a new family of 20 bandpass filters, the modulation filters, which have similar design
as the cochlea filters but operate at a lower frequency range (similarly as the outputs
of second order progressive scattering). The authors then compute statistics of each
cochlea envelope and their corresponding modulation bands. The statistics consist in
marginal moments (mean, variance, skew and kurtosis) and pairwise correlations for the
cochlea envelopes, as well as variance and pairwise cross-correlation for the modulation
bands, which form a vector of total dimension approximately 1400.

4.2.5 Maximum Entropy Distributions

Texture synthesis from a given statistical representation has been studied since Julesz. In
absence of any other information, the distribution characterized by the expected values
{E(gk(X)) , k = 1..K} is the maximum entropy distribution. It ensures that the amount
of prior information outsize the set of constraints is minimized. The maximum entropy
distribution is characterized by the Boltzmann theorem, which assesses that under some
conditions on the probability space P , the probability density p(x) , x ∈ P , of maximum
entropy subject to the constraints

E(gk(X)) = hk , k = 1 . . . K (4.1)

has the form

p(x) =
1

Z
exp

( ∑

k=1...K

−λkgk(x)
)
, x ∈ P . (4.2)

Here, Z is the partition function and λk are the Lagrange multipliers associated to the
constrained entropy optimization, which need to be adjusted such that the resulting
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density satisfies the expected value constraints (4.1). One can sample from such dis-
tribution using Gibbs sampling and MCMC methods, but given the high dimensional
nature of the probability space, these methods are computationally intensive and require
long iterations. Moreover, the conditional distributions of (4.2) do not have a simple
expressions for non-linear constraints gk. In [ZWM97], the authors proposed a simpler
framework for obtaining new samples, consisting in projecting a realization of a high
entropy distribution, such as gaussian white noise, to the set of realizations satisfying
the expected value constraints, referred as Julesz Ensemble:

{x ∈ L2(Rd) , gk(x) = hk , k = 1 . . . K} .

4.2.6 Exemplar based texture synthesis

Exemplar-based texture synthesis is a another family of texture synthesis methods with
successful numerical results [EF01; KEBK05; LH05], which have made them popular
in the computer graphics community. The general principle is to consider an original
realization of a stationary texture X, and to enlarge it progressively, such that it remains
visually similar to X. These methods assume a Markov property valid for a certain
neighborhood N. Then, rather than estimating the conditional probability distribution
f(X = x|Nx = p), the method searches for patches in the input which are similar
to p, and then retrieves the central pixel value by choosing one of those matches at
random. The quality of the synthesized textures thus depends upon the ability to find
similar patches within the initial texture realization. Periodic and highly structured
textures are examples where the auto-correlation RX(τ) = E(X(t)X(t + τ)) has large
values for nonzero τ , but for white noise RX(τ) = σ2δ(τ), and hence the method cannot
find similar patches. Exemplar-based methods indirectly estimate high order statistics
with a single realization, which has large variance. For synthesis purposes this is not a
problem, but discrimination requires consistent estimators, which in particular impose
a representation with smaller dimensionality.

Dictionary learning has been successfully applied to the texture synthesis problem
in [Pey09]. A dictionary of patches is learnt by maximizing the amount of sparsity on a
set of exemplar patches. Then, new realizations are obtained by solving a convex opti-
mization program which enforces the synthesized image to have a sparse representation
on the learnt dictionary.

4.2.7 Modulation models for Audio

Stationary processes admit a spectral decomposition, given by the Crámer decomposition
theorem. The spectral density completely characterizes gaussian processes. However, it
does not explain many stationary phenomena observed in nature.

Modulations correspond to multiplicative phenomena and are an essential step in the
generation of sound. Multiplicative processes appear also in the construction of fractal
processes, studied in Chapter 5. In its simplest setting, a modulation model is defined
as the process

X(t) = Xs(t)Xf (t) , (4.3)
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where Xs is a smooth (slow) , positive stationary process and Xf is also stationary
(and fast) and independent from Xs. The demodulation step consists in obtaining such
decomposition from X. This is an ill-posed inverse problem, without a unique solution,
which hence requires regularization. Similarly as in the additive spectral decomposition,
it is necessary to specify a scale or frequency separation between the terms. Alternatively,
if one assumes that Xf 6= 0 with probability 1, then an additive decomposition of
Y = log |X| = Y1 + Y2 leads to a possible modulation model for X = |X|eiθ(X):

X = eY1+Y2eiθ(X) = (eY1)(eY2+iθ(X)) .

In audio processing, modulations play a central role in the generation of sounds. This
fact motivates the study of the associated inverse problem, the demodulation, in order
to obtain a signal representation in terms of the modulation components. Generally
speaking, it consists in decomposing a signal x(t) as

x(t) = a(t)c(t) , (4.4)

where a is a positive, slow envelope, and c is an oscillatory, wide-band carrier. De-
modulation is thus an ill-posed inverse problem which requires prior knowledge on the
components to be recovered. Several methods exist in the literature, ranging from the
Hilbert transform demodulation of Gabor [Gab46] to probabilistic demodulation meth-
ods, introduced in [Tur10], where a generative model is estimated.

The basic modulation model (4.4) is often not rich enough to express natural sounds.
In [Sch07; Tur10] the model is generalized to incorporate modulated components at
different temporal scales,

x(t) =

J∑

j=1

aj(t)cj(t) .

The components at each scale are estimated using sub-band demodulation algorithms
[Sch07]. Turner [Tur10] also studied another generalisation where a signal is modulated
multiple times, to form a modulation cascade.

4.3 Image texture discrimination with Scattering repre-

sentations

Visual texture discrimination remains an outstanding image processing problem be-
cause textures are realizations of non-Gaussian stationary processes, which cannot be
discriminated using the power spectrum. Depending on the imaging conditions, tex-
tures undergo transformations due to illumination, rotation, scaling or more complex
deformations when mapped on three-dimensional surfaces.

If X(t) is a stationary process, then Section 2.3.5 showed that under ergodicity con-
ditions that we referred as mean squared scattering consistency, the expected scattering
SX is estimated from a realization x of X using the windowed scattering SJx, with a
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total variance which tends to zero as J →∞:

lim
J→∞

∑

p∈PJ

E(|SJX[p]− SX|2) = 0 . (4.5)

For a wide range of ergodic processes, this property is observed numerically, with a
variance decaying exponentially with J .

The expected scattering can thus be estimated from a single realization under ap-
propriate ergodicity. However, visual textures are not always well modeled by ergodic
processes. In particular, inspired by the CUReT texture database [LM01; VZ09], we
shall model each texture class as follows. Let X̃i represent each material of the class,
with i ranging through the different texture classes, taken under canonic lighting an
pose, and let us assume it is a stationary, ergodic process satisfying (4.5). The observed
process for each class is modeled as

Xi = Lθ(X̃i) ,

where Lθ is a random photometric and geometric transformation, modeling the change in
viewing and lighting conditions. Here θ is a random variable encoding a global illumina-
tion and a similarity transform. Since global illumination and rigid affine transformations
define both low-dimensional manifolds [BJ03], θ can be thought as a low-dimensional
random vector. Although X̃i is ergodic, Xi is not ergodic in general, since each realiza-
tion contains only one instance of the random global deformation vector θ.

For each class, we observe realizations xk, k = 1 . . . K. The windowed scattering
transform of each realization SJxk converges to SLθkX̃ as J increases. For sufficiently
large J , the residual variability in (SJxk)k is thus dominated by the low-dimensional
transformations Lθk , expressed in the scattering domain. This suggests using the same
affine PCA space classifier from Chapter 3, applied on the transformed realizations
{SJxk}k. Indeed, low-dimensional affine spaces are able to absorb the principal direc-
tions of variance, and hence reduce the influence of global lighting and pose during
classification.

Texture classification is tested on the CUReT texture database, which includes 61
classes of image textures of N = 2002 pixels. Each texture class gives images of the same
material with different pose and illumination conditions. Specularities, shadowing and
surface normal variations make classification challenging. Figure 4.2 illustrates the large
intra-class variability, after a normalization of the mean and variance of each textured
image.

Table 4.1 compares error rates obtained with different classifiers. The database is
randomly split into a training and a testing set, with 46 training images for each class
as in [VZ09]. Results are averaged over 10 different splits. A PCA affine space classifier
applied directly on the image yields a large classification error of 17%. The lowest
published classification errors obtained on this dataset are 2% for Markov Random Fields
[VZ09], 1.53% for a dictionary of textons [HCFE04], 1.4% for Basic Image Features
[CG10] and 1% for histograms of image variations [Bro05]. To estimate the Fourier
spectrum, windowed Fourier transforms are computed over half-overlapping windows of
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Figure 4.2: Examples of textures from the CUReT database with normalized mean and
variance. Each row corresponds to a different class, showing intra-class variability in the
form of stochastic variability and changes in pose and illumination.

Table 4.1: Percentage of classification errors of different algorithms on CUReT.

Training X MRF Textons BIF Histo. E(|X̂ |2) S mmax = 1 S mmax = 2
size PCA [VZ09] [HCFE04] [CG10] [Bro05] PCA PCA PCA

46 17 2 1.5 1.4 1 1 0.5 0.2

size 2J , and their squared modulus is averaged over the whole image. This averaging is
necessary to reduce the spectrum estimator variance, which does not decrease when the
window size 2J increases. The cross-validation sets the optimal window scale to 2J = 32,
whereas images have a width of 200 pixels. The error drops to 1%.

For the scattering PCA classifier, the cross validation chooses an optimal scale 2J

equal to the image width to reduce the scattering estimation variance. Indeed, contrarily
to a power spectrum estimation, the variance of the scattering vector decreases when
2J increases. Figure 4.3 displays the scattering coefficients SJ [p]x of order m = 1 and
m = 2 of an example x from the Curet dataset.

A PCA classification with only first order coefficients (mmax = 1) yields a clas-
sification error of 0.5%. Although first-order scattering coefficients are strongly cor-
related with second order moments, whose values depend on the Fourier spectrum,
the classification error is improved relatively to a power spectrum estimator because
SJ [λ1]X = |X ⋆ψλ1 |⋆φ2J is an estimator of a first order moment SX(λ1) = E(|X ⋆ψλ1 |)
and thus has a lower variance than second order moment estimators. A PCA classifi-
cation with first and second order scattering coefficients (mmax = 2) reduces the error
to 0.2%. Indeed, scattering coefficients of order m = 2 depend upon moments of order
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(a) (b) (c)

Figure 4.3: (a): Example of CureT texture X(u). (b): Scattering coefficients SJ [p]X,
for m = 1 and 2J equal to the image width. (c): Scattering coefficients SJ [p]X(u), for
m = 2.

4, which are necessary to differentiate textures having same second order moments as
in Figure 4.1. Moreover, the estimation of SX(λ1, λ2) = E(||X ⋆ ψλ1 | ⋆ ψλ2 |) has a low
variance because X is transformed by a non-expansive operator, as opposed to Xq for
high order moments q ≥ 2.

For mmax = 2, the cross validation chooses affine space models of small dimension
d = 16. However, they still produce a small average linear approximation error. By
recalling the approximation error and separation ratio measures of affine PCA spaces
introduced in previous chapter,

σ2d = C−1
C∑

k=1

E(‖SJXk − PAk
(SJXk)‖2)

E(‖SJXk‖2)
,

and

ρ2d = C−1
C∑

k=1

E(minl 6=k ‖SJXk − PAl
(SJXk)‖2)

E(‖SJXk − PAk
(SJXk)‖2)

,

we obtain an average approximation error σ2d = 2.5 · 10−1 and a separation ratio of
ρ2d = 3.

The PCA classifier provides partial rotation invariance by removing principal com-
ponents. Figure 4.4 shows the first principal direction for a given material in the class,
seen in the scattering domain. We can clearly distinguish differences along coefficients
of the form p, Rαp, where Rαp = (Rαλ1, . . . , Rαλm) is the path obtained by rotating
all its subbands by an angle α. As a result, by removing such principal directions, the
algorithm is effectively averaging scattering coefficients along path rotation parameters,
which comes with a loss of discriminability. A more efficient rotation invariant tex-
ture classification is obtained by cascading the translation invariant scattering S with
a second rotation invariant scattering, as studied in [SM12]. This cascade transforms
each layer of the translation invariant scattering network with new wavelet convolutions
along rotation parameters, followed by modulus and average pooling operators, which
are cascaded. A combined translation and rotation scattering yields a translation and
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Figure 4.4: First principal direction of a texture class #4 in the scattering domain. (a)
scattering coefficients for m = 1. (b) scattering coefficients for m = 2. Reddish colors
indicate positive values, blueish colors indicate negative values.

rotation invariant representation, with the same stability properties to deformations as
those shown in Chapter 2 [Mal12].

4.4 Auditory texture discrimination

Auditory textures such as rain, insect noises or applauses are well modeled as stationary
processes. However, and similarly as in the visual case, they are poorly characterized by
their power spectra, which imposes audio representations to capture high order moments.
Figure 4.5 shows an example of an applause realization taken from [McD] and a white
gaussian noise realization, with its spectral power adjusted to match the applause. The
characteristic clapping produces an impulsive behavior in the original clip, which is not
captured by second order statistics.

(a) (b)

Figure 4.5: (a) example of an applause. The clip has a length of 8 seconds, sampled
at a rate of 20 KHz. (b) gaussian process with the same spectral density as those form
example (a). The spectral density is estimated with a window of length 1 second.

In order to illustrate the capacity of scattering representations to capture high order
moments information, we considered the dataset created by McDermott and Simoncelli,
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Table 4.2: Percentage of correct neighborhood predictions for several audio representa-
tions.

Φ ρ

|x̂| 83%
SJ , mmax = 1 , Q = 1 91%
SJ , mmax = 1 Q = 16 91%
SJ , mmax = 2 , Q = 1 97%
SJ , mmax = 2 Q = 16 91%
SJ , mmax = 3 , Q = 1 96%
SJ , mmax = 3 , Q = 16 91%

available in [McD]. It contains a collection of 30 auditory textures, such as wind, rain, or
helicopter. The authors also offer synthesis clips using several reconstruction strategies,
which include the synthesis from the spectral density. We then consider the dataset
of 60 classes, formed by the 30 original plus the 30 gaussian equivalents. Each clip is
split into 6 smaller signals, which correspond to approximately 1 seconds of sound. For
each example xi we compute its audio representation Φ(xi), and measure the percentage
ρ of examples for which the nearest neighbor of Φ(xi), in the sense of the distance
d(x, x′) = ‖Φ(x)− Φ(x′)‖, comes from the same class as xi.

Table 4.2 shows the classification rates for several choices of Φ. As expected, the
Fourier modulus representation performs poorly, since by construction there are always
two classes whose realizations have the same power spectrum. The rate is better than
pure chance probably because the estimation of the power spectrum in the construction
of the samples differs from the one used to construct Φ. We observe, as predicted,
that second order scattering coefficients bring a significant improvement over first order
coefficients, thanks to the fact that they depend upon moments of order higher than
2. Third order coefficients do not improve the results, mostly due to the fact that
they have little influence on the metric ‖Φ(x) − Φ(x′)‖. The relative influence of high
order scattering coefficients can be modified by different renormalisation strategies, such
as those studied in Section subsection 3.4.2. A remarkable point is the influence of
the choice of the wavelet. The best results are obtained by selecting dyadic splines with
Q = 1 voice per octave, as opposed to the standard filter banks used in audio recognition,
which are more selective in frequency with Q = 16 voices per octave. Scattering with
narrowband wavelets becomes more discriminative to variations in frequency, which are
important for the representation of pitch, at the expense of being less stable to frequency
fluctuations. Auditory textures have features which are not well localized in frequency,
which explains the interest in working with wavelets with larger bandwidths.
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4.5 Texture synthesis with Scattering

This section studies the texture reconstruction from the expected scattering representa-
tion. We follow the same statistical framework as in [PS99; MS11], by using as the set
of statistical measures the expected scattering representation.

We start by introducing a scattering reconstruction algorithm in Section 4.5.1, which
adjusts expected scattering coefficients with a gradient descent using a family of wavelet
modulation operators. We then focus on the auditory texture synthesis, where we apply
the scattering reconstruction algorithm on a family of sound textures.

4.5.1 Scattering Reconstruction Algorithm

Section 4.2.5 showed that, given a texture representation Φ(X) = {E(gk(X) , k =
1 . . . K}, sampling from the maximum entropy distribution determined by the constraints
{Φ(X)k = yk , k ≤ K} can be approximated by a uniform sampling on the Julesz en-
semble:

Φ−1(y) = {x ; gk(x) = yk , k ≤ K} .
Under this framework, the texture synthesis from scattering representations requires an
algorithm which can adjust the averaged scattering coefficients of a given realization to
a specified vector.

Given an element y ∈ Im SJ , the goal is then to solve for x ∈ L2(R)

SJx = y . (4.6)

We place ourselves in the discrete case where x is a signal of size N . The scattering
image is also a finite dimensional space of dimension given by |Γ| = (J +

(J
2

)
)N2−J . In

particular, when J = log2N , |Γ| = (J +
(J
2

)
).

Problem (4.6) can be solved with a gradient descent algorithm, which minimizes

C(x) = ‖SJx− y‖2 . (4.7)

C(x) is convex in the variable SJx. Although SJ is not differentiable with respect to x,
Section 2.3.3 showed that thanks to the Lipschitz property, its first variations [LPT12]
are approximated by a bounded linear operator DSJx. As a result, at any given point
SJx, the direction of steepest descent in the scattering domain, SJx−y, can be recovered
with a perturbation h satisfying

DSJx(h) = ǫ(SJx− y) . (4.8)

It follows that the efficiency of the gradient descent depends upon choosing appropriate
descent variables, with the capacity to modify scattering coefficients along any given
direction of the scattering domain.

Scattering coefficients are computed with a non-linear operator which cascades wavelet
decompositions with complex modulus. A good family of perturbation operators thus
must be able to factorize the influence of wavelet decompositions and the modulus. If
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σ : Rd → C denotes a smooth complex valued function with ‖σ‖∞ < ∞, we define the
linear modulation operator M [σ] as

∀x ∈ L2(Rd), ∀u , M [σ]x(u) = σ(u) · x(u) .

By properly specifying the regularity of the envelopes, modulation operators have
a particularly simple interaction with wavelet decompositions and also with complex
modulus. The regularity of the envelope σ can be controlled with a multiresolution
analysis [Mal08] V∞

k , k ∈ Z, defined in Appendix A.1 as a collection of embedded
subspaces generated by translated versions of a dilated scaling function φ. Proposition
A.1.1 shows that if σ is an envelope in V∞

k , that is, carrying details up to a scale 2k,
and ψj is a wavelet localized at scale 2j , then

∀x ∈ L2(Rd) , ‖σ · (x ⋆ ψj)− (σ · x) ⋆ ψj‖ ≤ C2j−k|σ|∞‖x‖ .

Therefore, when k ≫ j, this proposition shows that the modulation with σ nearly
commutes with the wavelet decomposition at scale 2j .

This near commutation property of modulations is exploited to construct a family
of wavelet modulation operators, which modulate each wavelet sub-band with a slowly
varying complex envelope.

Definition 4.5.1 A wavelet modulation operator of L2(Rd) is defined for any complex
multiscale envelope σ(λ, u) , λ ∈ ΛJ , u ∈ Rd, with supλ,u |σ(λ, u)| < 1 and σ(λ, ·) ∈
V∞
j , λ = 2jr, as

M [σ]x = x+Re
∑

λ

W̃λM [σ(λ, ·)]Wλx , x ∈ L2(Rd). (4.9)

Each envelope σ(λ, u) defines a perturbation of a signal x with the capacity to mod-
ulate each sub-band x ⋆ ψj along a specified envelope σ(λ, ·). Appendix A.3 shows
that, thanks to the near commutation property, the influence of wavelet modulation
perturbations on scattering coefficients is nearly decorrelated when using the wavelet
decomposition coefficients of the envelopes σ(λ, ·) as descent variables. Whereas first
order scattering coefficients are influenced by amplifying or attenuating all wavelet coef-
ficients in a subband, second order scattering coefficients are influenced by modulations
with envelopes having their own spatial or temporal variations. These variations are
carried by wavelet decomposition coefficients of each σ(λ, ·).

Let Γ be the space of first and second order progressive scattering paths

Γ = P
1
↓ ∪ P

2
↓ = {j1 ∈ Z , j1 ≤ J} ∪ {(j1, j2) ∈ Z2 ; j1 < j2 ≤ J} .

For convenience, we can identify first order paths j1 ∈ P1 with (j1, J+1) and parametrize
Γ = {(j1, j2) ∈ Z2 ; j1 < j2 ≤ J + 1}.

We approximate the direction of steepest descent characterized in (4.8) by projecting
it into the subspace ∇MSJx,ǫ generated by a family of wavelet modulation operators.
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Appendix A.3 also shows that wavelet modulations are Lipschitz L2(Rd) operators, and
hence, by the same argument exposed in Section 2.3.3, the first variations of SJM [σ]x
are approximated for sufficiently small ǫ by

SJM [σ]x = SJx+∇MSJx,ǫ(σ) + ǫo(|σ|∞) , ǫ→ 0 .

As a result, the perturbations of steepest descent can be obtained by resolving a linear
system.

The gradient descent algorithm proceeds as follows. We initialize x0 with a sample
from white gaussian noise, and iteratively update xm by searching for the wavelet mod-
ulation M [γmσm] with step γm > 0 yielding the steepest descent in the cost function of
(4.7):

xm+1 =M [γmσm]xm . (4.10)

Let us now characterize the multiscale envelope σ(j, u) yielding the steepest descent, in
terms of its complex wavelet coefficients Θ = (θp[j, n])p,j,n:

σ(j, u) =
∑

|j′−j2|≤∆2,j′>j

∑

n

θ[j′, n]Ψj′(u− 2j
′
n) , (4.11)

where {Ψj(u−2jn)}n is a wavelet basis for the space of details Wj at scale 2
j determined

by the multiresolution analysis.

Let z0 = (j0, q0, n0, α0) denote the multi-index encoding a wavelet modulationM [σz0]
whose envelope has the form

σz0(j, u) =

{
eiα0Ψq0(u− 2q0n0) , if |j − j0| ≤ ∆1 ,
0 otherwise .

Here, j0 ∈ [1, J ], q0 ∈ [j0 + 1, J ], n0 ∈ [1, N2−q0 ] and α0 = 0, π. Thus, the multi-index z
belongs to a discrete space that we denote Z. The subspace generated by small wavelet
modulations is generated by the matrix of finite modulation differences

∇MSJ =

[
· · · (SJM [ǫσz]xm − SJxm)

ǫ
· · ·
]

z∈Z

,

for a given small step ǫ > 0.

The envelope of steepest descent σm is characterized via its wavelet decomposition
coefficients Θm, by projecting the direction of steepest descent in the scattering domain,
SJxm− y, into the subspace generated by ∇MSJ . This corresponds to the minimization

min
Θ
‖(∇MSJxm)Θ− (SJxm − y)‖2 ,

whose solution is given by

Θm = (∇MSJxm)†(SJxm − y) , (4.12)
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where (∇MSJxm)† is the pseudo-inverse, defined as

A† = (ATA)−1AT .

The coefficients in (4.12) yield an envelope σm which defines the direction of descent.
The step γm can be set to a fixed value, or it can also be adjusted dynamically with a
line search strategy. The descent characterized by (4.12) adjusts all the coefficients in
Γ simultaneously. In order to reduce the dimensionality and hence the risk of drifting
towards a local minima, we choose to split the descent into the orthogonal subspaces
Ωj = {(j, j2); j < j2 ≤ J} ⊂ Γ, which pack scattering paths according to their first
scale. The iterative descent thus projects the scattering modulation matrix ∇MSJxm
into J smaller matrices

∇M [Ωj0 ]SJ =

[
· · · (SJM [ǫσz]xm[Ωj0 ]− SJxm[Ωj0 ])

ǫ
· · ·
]

z∈Z;j=j0

,

and iterates over these smaller subproblems.

The subspaces are visited from the coarsest scale ΩJ to the finest Ω0, which corre-
sponds to the increasing order defined in A.13. Although the multiscale modulations are
well localized within the sets Ωj , its influence on neighboring scales is not symmetric in
general, and has a slower decay towards the finer scales. Besides, the multiscale modu-
lations on coarse scales are likely to influence a larger number of signal coefficients than
modulations which admit more irregular envelopes, which limits the risk of being stuck
in local minima.

First order scattering coefficients P1 = (j); j ≤ J are adjusted with multiscale mod-
ulation operators having constant envelopes, and hence they can be adjusted seamlessly
in the subspaces Ωj. For many signals, however, first order coefficients concentrate an
important fraction of the scattering energy, which means that the direction SJx − y
is often aligned along the first order coordinates. In order to accelerate convergence
within the set of second order paths, it is possible to adjust first order coefficients at the
beginning of each loop on the subspaces Ωj.

The scattering reconstruction gradient descent is summarized in algorithm 2. The
reconstruction algorithm is tested numerically on discrete signals. When J = logN , the
averaged scattering representation estimates the expected scattering defined for station-
ary processes defined in Section 2.3.5.

Figure 4.6 shows the reconstruction from a realization g of a white Bernoulli process,
y = SJg, with J = logN . For illustration purposes, we show also the reconstructed
signals when the scattering reconstruction is limited to paths of 0-th order (figures (c)
and (d)) and first order (figures (e) and (f)). The scattering coefficient of order 0 is the
signal average, hence the reconstructed signal is simply a white gaussian noise realization
with the same mean as g. First order coefficients are wavelet amplitude averages, which
give a measure of the average energy within each sub-band. Since the two signals come
from white processes, they are not distinguished by their spectral density, which explains
why the reconstruction from first order coefficients, in (e), is similar to (c). By adding
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Algorithm 2 Scattering Reconstruction Algorithm

Initialize x with a sample of N(0, 1).
while r ≤ rmax and dr ≥ ρ‖y‖ do

Adjust first order scattering coefficients:
x← grad descent(x, y,P1).
for j = J − 1 to 1 do

Adjust coefficients in Ωj:
x← grad descent(x, y,Ωj).

end for
dr ← ‖SJx− y‖.
r ← r + 1.

end while

x = grad descent(x0, y,Ω):
x← x0.
while r ≤ r̃max do

Compute ∇M [Ω]SJ in x.
Θ← (∇M [Ω]SJ)

†(SJx[Ω]− y[Ω]).
σ(j, u)←∑

(q,n,α)(θj [q, n, 0] + iθj [q, n, π])Ψq(u− 2qn).

x←M [γσ]x.
end while

Parameters:
rmax: maximum number of outer loop iterations.
r̃max: maximum number of inner loop iterations.
ρ: tolerance arrival scattering distance.
γ: gradient step.
ǫ: precision for the computation of ∇M [Ω]SJ .
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Figure 4.6: Reconstruction examples of a realization of a Bernouilli process. (a) Orig-
inal signal. (b)-(c) Reconstruction obtained by adjusting only the mean of the process,
and scattering representation. (d)-(e). Reconstruction obtained by adjusting first order
coefficients. (f)-(g): Reconstruction obtained by adjusting first and second order scat-
tering. First order coefficients are plotted in blue, second order coefficients are plotted
in red and third order coefficients are plotted in green. Solid lines correspond to original
signal. Circles and dotted lines correspond to reconstructed signals.
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Figure 4.7: relative reconstruction error as a function of the number of iterations.

the (logN)2 second order coefficients, the reconstructed signal (g) shows the spikes which
characterize Bernoulli processes.

Figure 4.7 shows the convergence of the gradient descent reconstruction algorithm as
a function of the number of iterations, for the example in figure 4.6. The reconstruction
error decays until it reaches a relative error floor of around 3 · 10−3. While we have
no theoretical guarantee of convergence, we observe that the asymptotic behavior is
sensitive to the discretization parameters of the algorithm, especially the gradient step
γ and the precision ǫ used to compute the partial derivatives ǫ−1(SJM [ǫσ]x− SJx).

As long as (logN)2 < N , reconstructing the scattering coefficients SJx = SJx
′ does

not imply that x = x′. Indeed, panels (g) and (h) from Figure 4.6 show that first and
second order scattering coefficients are adjusted, but still x 6= x′. In particular, we notice
that higher order scattering coefficients are not adjusted. If one considers a windowed
scattering representation with Q wavelets per octave, such as in audio applications,
then the number of first and second order coefficients obtained for a signal of size N is
N2−J(QJ +

(QJ
2

)
), which might be larger than N for certain choices of J and Q. In

that case, one might ask if SJx = SJx
′ implies x = x′, or equivalently, whether x can be

reconstructed from its scattering coefficients.

This question is related to the inversion of the wavelet modulus operator U . In
[Wal12], the authors show that U can be inverted for appropriate wavelets by solving
a convex linear program. The operator SJ is obtained by cascading U , followed by a
convolution by the lowpass filter φJ , which implies that a deconvolution step is needed
prior to start inverting U . The reconstruction algorithm for SJ presented here is hence
an alternative which exploits the differentiable structure of SJ with a family of multiscale
modulations.

4.5.2 Auditory texture reconstruction

Section 4.4 showed that first and second order scattering coefficients have the capacity to
discriminate non-gaussian audio textures. We may then ask whether they are sufficiently
informative to reconstruct perceptually similar realizations.

For that purpose, we consider a 1 second example of several texture classes from the
sound dataset of McDermott [McD]. For each example xk, k = 1 . . . K we estimate its
expected scattering representation SXk with the windowed scattering yk = SJxk, and
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obtain new realizations x̃k satisfying

SJ x̃k = yk , k = 1 . . . K . (4.13)

The constraints given by the scattering representation yk thus define our Julesz ensemble,
in the framework of [PS99; ZWM97]. We solve (4.13) with the gradient descent algo-
rithm of the previous section.Similarly as in [MS11], the uniform sampling on the Julesz
ensemble is approximated by initializing the gradient descent with random samples of
gaussian white noise.

Figure 4.8 shows the scattering reconstruction results for mmax = 1 and mmax = 2,
using dyadic spline wavelets with Q = 1 voices per octave. We notice that first order
reconstruction does not capture the spurious behavior of sounds such as the hammer or
the applause. The resulting reconstructions are perceived as equalized gaussian noise,
far from the perception of the original texture. For m = 2, the reconstructed samples
are perceptually similar to the original, especially for the examples of water, applause,
helicopter, train and cocktail party. First and second order coefficients, when using
a dyadic wavelet representation, represent the texture with logN +

(
logN
2

)
∼ (logN)2

coefficients, which gives for N = 214 a representation of less than 200 coefficients. The
examples where this reconstruction gives best results are well modeled by an amplitude
modulation of gaussian noise with a regular envelope. Contrarily to other audio textures
such as the jackhammer, these examples have a regular spectral density, as shown in
figure 4.9.

The frequency resolution of the scattering representation is controlled by the num-
ber of voices per octave Q. Figure 4.10 compares the reconstructed realizations using
Q = 1 and Q = 16 on subset of examples. By increasing the frequency resolution of the
wavelets, we are able to reconstruct realizations with more irregular spectral densities,
but this increase in resolution comes at a cost. Indeed, if X is a stationary process,
then X ⋆ψλ and X ⋆ψλ′ are nearly decorrelated if ψλ and ψλ′ are supported in different
frequency bands, but if X is not gaussian in general they are not independent, which cre-
ates a correlation on their respective envelopes |X ⋆ψλ| and |X⋆ψλ′ | . In particular, this
fact justifies why McDermott and Simoncelli include the correlations between the cochlea
envelopes as part of their texture representation. By choosing wavelets with larger band-
width (smaller Q) , these correlations are encoded in second order coefficients. Besides
this trade-off, increasing the Q-factor impacts the size of the representation. Indeed, the
second order representation with Q = 16 has ∼ Q(logN)2 ≈ 3000 coefficients.

We also explore the influence of adding third order scattering coefficients into the
representation. For that purpose, we modify the gradient descent algorithm by incor-
porating on its objective function the third order coefficients. Although a priori the
family of multiscale modulations described in subsection 4.5.1 does not generate the
whole tangent space of third order coefficients, we numerically observe a convergence
up to a relative error of 3 · 10−2 on average for these considered examples. Third order
coefficients significantly increase the size of the representation to (logN)3 ∼ 2500, and
produce a slight improvement on the reconstruction quality, barely noticeable.

Improving the reconstruction from scattering coefficients thus requires a good fre-
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Figure 4.8: Scattering reconstruction of auditory examples from [McD]. Left col-
umn: Original sounds, Middle column: Reconstruction with mmax = 1, Right column:
reconstruction with mmax = 2. We plot a scalogram obtained with a filter bank with
logarithmicly spaced constant Q, from 1 KHz up to 10KHz, with Q = 16, completed with
linearly spaced constant bandwidth filters covering the lower frequencies. The auditory
examples correspond respectively to: water, jackhammer, applause, insect, helicopter,
train, cocktail party, rusting paper.

quency resolution without losing the capacity to capture the correlation between neigh-
bor frequency components. This flexibility can be obtained by generalizing the second
layer of scattering coefficients. For a one-dimensional process X, the first scattering
layer produces the envelopes (U [λ]X)λ∈ΛJ

, where λ encodes a frequency interval. One
can then construct a second layer [AM12b] where the output coefficients are obtained
by recombining several envelopes U [λ]X with two-dimensional wavelets.

4.6 Scattering of Gaussian Processes

Gaussian processes are a fundamental family of stationary processes, for which the spec-
tral density completely characterizes the full distribution. In this case, first order scatter-
ing coefficients are specified also from the spectral density, as well as the second moments
of the processes defined by the propagators U [λ1, λ2], λ1, λ2 ∈ Λ2

∞.
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Figure 4.9: Comparison of power spectrum of two different audio textures: bubbling
water (in blue), jackhammer (in red). The bubbling water texture has a regular power
spectrum which is well captured by dyadic frequency intervals. However, the jackhammer
shows harmonic frequency peaks that require a more selective wavelet in order to be
reconstructed.

Let X be a centered, stationary Gaussian process and σ2 = E|X|2, and suppose that
the scattering is computed with analytic wavelets having fast decay. We write the auto-
covariance RX(τ) = E ((X(t)− E(X))(X(t + τ)− E(X))∗), and we assume RX ∈ L1.
The first scattering layer starts by computing Xλ = X ⋆ ψλ, which are also Gaussian
and stationary. The complex modulus produces the collection ∀λ ∈ Λ∞ , U [λ]X = |Xλ|,
which are Rayleigh processes when the wavelets are analytic. Their auto-correlation can
be obtained from the auto-correlation of Xλ, as shown by the following proposition from
[DR87]:

Proposition 4.6.1 Let Xr(t) , Xi(t) be independent, stationary Gaussian processes with
σ2 = 2E(|Xr(t)|2). Then Y (t) = |Xr(t) + iXi(t)| is a stationary Rayleigh process. Its
autocorrelation R̃Y (τ) = E(Y (t)(Y (t+ τ))) is given by

R̃Y (τ) =
π

2
σ2 2F1

(
−1

2
,−1

2
; 1;
|RX(τ)|2

σ2

)
, (4.14)

where 2F1 is the hypergeometric function

2F1(a, b; c, x) =

∞∑

n=0

(a)n(b)n
(c)n

xn

n!
, (4.15)

defined with the Pochhammer symbol:

(q)n =

{
1 if n = 0 ,

q(q + 1) . . . (q + n− 1) if n > 0 .

93

figures/audio_power_spectrum_compare.eps


Chapter 4. Texture Discrimination and Synthesis with Scattering

20

40

60

20

40

60

20

40

60

2000 4000 6000 8000 10000 12000 14000 16000

20

40

60

2000 4000 6000 8000 10000 12000 14000 16000 2000 4000 6000 8000 10000 12000 14000 16000

Figure 4.10: Scattering reconstruction of auditory examples from [McD]. Left column:
Original sounds, Middle column: Reconstruction with mmax = 2 and Q = 1, Right
column: reconstruction with mmax = 2 with Q = 16. We plot a scalogram obtained
with a filter bank with logarithmicly spaced constant Q, from 1 KHz up to 10KHz, with
Q = 16, completed with linearly spaced constant bandwidth filters covering the lower
frequencies. The auditory examples correspond respectively to: water, jackhammer,
cocktail party, rusting paper.

This result can be proved by decomposing g(x) = |x| in the Hermite polynomials,
which form an orthonormal basis of the space L2(R, dϕ), where dϕ is the Gaussian
measure:

ϕ(x) =
1√
2π

exp(−x2/2) .

The n-th Hermite polynomial is given by

Hn(x) =
(−1)n
ϕ(x)

dnϕ(x)

dxn
,

and when tested on a gaussian random variable N ∼ N(0, 1) they satisfy

E(Hn(N)Hm(N)) = n!δ(n−m) .

As a result, any measurable function g satisfying E(|g(N)|2) < ∞ can be expressed as
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[Dou06]

g(x) =

∞∑

n=0

gn
n!
Hn(x), gn = E(g(N)Hn(N)), E(|g(N)|2) =

∑

n

|gn|2
n!

.

The second moments of g(N) can be computed similarly using the Mehler Formula:

Lemma 4.6.2 (Mehler Formula, [Dou06]) Let X be a centered, finite energy Gaussian
process with covariance RX(τ) = E(X(t)X(t + τ)∗). Then, if g is measurable and non-
expansive, the process g(X) has correlation

E(g(X(t))g(X(t + τ))∗) =
∞∑

n=0

|gn|2
n!

RX(τ)
n ,

and covariance

Rg(X)(τ) = E(g(X(t))g(X(t + τ))∗)− |E(g(X))|2 =
∞∑

n=1

|gn|2
n!

RX(τ)
n .

This lemma can be used to obtain (4.14) by computing the Hermite Chaos expansion of
g(x) = |x|. We obtain

gn =

{
0 if n = 2k + 1,

(−1)k−1
√

(2k−3)!!(2k)!
2k−1(k−1)!k(k−1)

if n = 2k.

This expansion reveals the singularity of the modulus, since |g2k| ∼ k−3/4 exhibits a slow
decay.

An important consequence of (4.14) is that when a centered Gaussian process X
satisfies RX ∈ L1, then the auto-covariance of U [λ]X = |X⋆ψλ| also satisfies RU [λ]X ∈ L1

provided ψ is analytic:

Proposition 4.6.3 If X(t) is a stationary Gaussian process with E(|X(t)|2) = σ20, such
that RX ∈ L1, and ψ is an analytic wavelet with ψ ∈ L2 ∩ L1, then the auto-covariance
of Y (t) = |X ⋆ ψ(t)| satisfies RY ∈ L1.

Proof: Since X(t) is Gaussian and the convolution is a linear operator, it results that
Z(t) = X ⋆ ψ is a complex Gaussian process and hence that Y (t) = |Z(t)| is Rayleigh,
thanks to the fact that ψ is analytic. By applying proposition 4.6.1 it results that its
autocorrelation R̃Y (τ) = E(Y (t)Y (t+ τ)) equals

R̃Y (τ) =
π

2
σ2 2F1

(
−1

2
,−1

2
; 1;
|RZ(τ)|2

σ2

)
,

where σ2 = E(|Z(t)|2). Since the first term n = 0 of the hypergeometric series is 1 and
E(Y )2 = π

2σ
2 it results that the auto-covariance of Y is given by the series

RY (τ) = R̃Y (τ)− E(Y )2 =
π

2
σ2
∑

n>0

(−1/2)n(−1/2)n
(1)n

γn

n!
,
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with γ = |RZ(τ)|2

σ2
. Let us see that there exists C ≥ 0 such that

∀τ , |RY (τ)| ≤ C|RZ(τ)|2 . (4.16)

Indeed, from the definition of the Pochhammer symbol, one can verify that

∀n > 0 ,

(
(−1/2)n
(1)n

)2

≤
(

1

4n

)2

,

and, since γ(τ) ≥ 0,

∀ τ , |RY (τ)| ≤ C
∑

n>0

γ(τ)n

n2
= CF (γ(τ)) , (4.17)

where F (z) =
∑

n>0 z
n/n2 is analytic. Since 0 ≤ γ(τ) ≤ 1, F (0) = 0, F (1) =∑

n>0 n
−2 = π2

6 < ∞, and F ′′(γ) ≥ 0 for all 0 ≤ γ ≤ 1, we conclude that F (z) is
convex in (0, 1), and hence that

∀τ , |RY (τ)| ≤ CF (γ(τ)) ≤ CF (1)γ(τ) = C̃|RZ(τ)|2 . (4.18)

Now, since Z = X ⋆ ψ, it results that

RZ(τ) = RX ⋆ ψ ⋆ ψ̃(τ) ,

with ψ̃(u) = ψ(−u)∗. By applying the Young inequality, and since ψ ∈ L2∩L1, it results
that

‖RZ‖2 = ‖(RX ⋆ ψ) ⋆ ψ̃‖2 ≤ ‖RX ⋆ ψ‖2‖ψ̃‖1
≤ ‖RX‖1‖ψ‖2‖ψ‖1 ,

which, together with (4.18), implies that ‖RY ‖1 <∞ �.
Proposition 4.6.3 will be used in the next chapter to study Gaussian fractal processes.

4.7 Stochastic Modulation Models

We study in this final section stochastic modulation models, and show that under some
conditions, second order scattering coefficients separate the contributions of carrier and
envelope, hence avoiding an ill-posed inverse demodulation step.

4.7.1 Stochastic Modulations in Scattering

Similarly as in the deterministic case, a stochastic modulation has a simple interaction
with wavelet decompositions. We derive a stochastic commutation bound, which we
then use in a stochastic modulation model to express second order scattering coefficients
in terms of carrier and envelope. We consider in this section stationary processes in
dimension 1.
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Our analysis starts by studying how a stochastic modulation modelX(t) = Xs(t)Xf (t)
is expressed in a wavelet decomposition. In this model, Xs and Xf are independent,
stationary processes. One can interpret X as being the result of a stochastic modulation
of Xf by Xs. In Section A.1, we showed that, thanks to the regularity of the envelope
Xs, we could relate X ⋆ ψj with Xs · (Xf ⋆ ψj). The following proposition derives the
equivalent stochastic property.

Proposition 4.7.1 Let X = XsXf be a stationary process with Xs, Xf stationary and
independent. Let Y = Xs · (Xf ⋆ ψj)−X ⋆ψj, and assume that

∫
|uψ(u)| <∞. Then Y

is a stationary process satisfying

E(|Y |2) ≤ E(|Xf |2)
∫
R̂Xs(ω)|A(2jω)|2dω , (4.19)

where R̂Xs is the spectral density of Xs and A(ω) =
∫
|1− eiuω||ψ(u)|du .

Proof: By definition, we have

Y (t) = Xs(t)

∫
Xf (u)ψj(t− u)du−

∫
Xs(u)Xf (u)ψj(t− u)du

=

∫
(Xs(t)−Xs(u))Xf (u)ψj(t− u)du

= −
∫

(Xs(t)−Xs(t− u))Xf (t− u)ψj(u)du ,

which yields

E(|Y (t)|2) =

∫∫
E
(
(Xs(t)−Xs(t− u))(Xs(t)−Xs(t− u′))

)
E(Xf (t− u)Xf (t− u′))ψj(u)ψj(u′)dudu′

=

∫∫ (
RXs(0) +RXs(u− u′)−RXs(u)−RXs(u

′)
)
RXf

(u− u′)ψj(u)ψj(u′)dudu′

=

∫∫ (∫
(1− eiuω)(1− e−iu′ω)R̂Xs(ω)dω

)
RXf

(u− u′)ψj(u)ψj(u′)dudu′ .

As a result, since R̂Xs(ω) ≥ 0 and |RXf
(τ)| ≤ RXf

(0), we have

E(|Y (t)|2) ≤
∫∫∫

|1− eiuω| |1 − e−iu′ω| R̂Xs(ω) |ψj(u)| |ψj(u′)| |RXf
(u− u′)|dudu′dω

≤ RXf
(0)

∫
R̂Xs(ω)

(∫
|1− eiuω| |ψj(u)| du

)2

dω

= E(|Xf |2)
∫
R̂Xs(ω)

(∫
|1− eiu2jω| |ψ(u)| du

)2

dω ,

which proves (4.19). �.
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Similarly as in the deterministic case, the bound is controlled by a spatial localization
measure of the wavelet, contained in A(ω). Indeed, by considering a limited development
of |1− eiuω| we obtain

A(ω) =

∫
|1− eiuω||ψ(u)|du

=
√
2

∫ √
1− cos(uω)|ψ(u)|du =

∫
(|uω|+ o(|uω|))|ψ(u)|du

∼ |ω|
∫
|uψ(u)|du ,

which yields

E(|Y |2) . 2jE(|Xf |2)
(∫
|uψ(u)|du

)(∫
R̂Xs(ω)|ω|dω

)
. (4.20)

As a result, the more regular the envelope is, the more its spectral density is concentrated
in the small frequencies, which reduces the term

∫
R̂Xs(ω)|ω|dω. In particular, if R̂Xs(ω)

is negligible beyond a frequency 2−k, then (4.20) shows that

E(|Y |2) . C2j−kE(|Xf |2)E(|Xs|2) ,

which corresponds to the same asymptotic behavior as in the deterministic case.

Proposition 4.7.1 shows that stochastic modulations nearly commute with wavelet
decompositions provided the envelope is regular with respect to the scale. We use this
property to approximate second order scattering representations for modulated pro-
cesses.

For that purpose, let us first introduce a regularity criteria for stationary processes
X(t) , which asks its spectral density R̂X to have uniform regularity across all dyadic
frequency intervals.

Definition 4.7.2 Let X(t) be a stationary process with finite energy and let ψs(t) =
s−1ψ(s−1t). For a given exponent β > 0, let (Binf (X,β), Bsup(X,β)) be defined as

Binf (X,β) = inf
s
s−β

E(|X ⋆ ψs|2)
E(|X|2) , Bsup(X,β) = sup

s
s−β

E(|X ⋆ ψs|2)
E(|X|2) ,

We define the characteristic exponent of X as

βX = argmin
β>0

|Bsup(X,β) −Binf (X,β)|

and its dyadic bounds as

Binf (X) = Binf (X,βX ) , Bsup(X) = Bsup(X,βX ) .
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Dyadic regularity is related to a form of self-similarity of the spectral density of X.
These dyadic bounds allow us to bound the second moments E(|X ⋆ ψj|2) with

Binf (X)2−βX jE(|X|2) ≤ E(|X ⋆ ψj |2) ≤ Bsup(X)2−βX jE(|X|2) .

The following proposition shows that when X = XsXf , and p = (j1, j2) is a scat-
tering path which separates the energy of the two components, then E(|U [p]X|) can be
approximated by a separable product of carrier and envelope.

Proposition 4.7.3 Let X = XsXf , where Xs, Xf are stationary and with finite energy,
with Xs ≥ 0 and E(Xs) = 1. Suppose ψ has at least one vanishing moment. Let
p = (j1, j2) with j1 < j2, A(ω) be the modulus of continuity defined in Proposition
(4.7.1), and let Bsup,0, β0 be respectively the dyadic upper bound and the exponent of the
process Y = (Xs − E(Xs))(U [j1]Xf − SXf (j1)). Then,

|SX(p)− SXf (j1)SXs(j2)| ≤
√
b1 +

√
b2 +

√
b3 , (4.21)

with

b1 = E(|Xf |2)
∫
R̂Xs(ω)|A(2j1ω)|2dω ,

b2 = E(|U [p]Xf |2) , b3 = Bsup,02
−j2β0var(Xs)var(U [j1]Xf ) .

Proof: From proposition 4.7.1 we have

E(|X ⋆ ψj1 −Xs(Xf ⋆ ψj1)|2) ≤ b1 ,

which implies
X ⋆ ψj1 = Xs(Xf ⋆ ψj1) +N0 ,

where N0 is an error term satisfying E(|N0|2) ≤ b1 . Since the modulus is contractive,
we have

|X ⋆ ψj1 | = Xs|(Xf ⋆ ψj1)|+N1 , (4.22)

with E(|N1|2) ≤ b1, since Xs is a positive process. We decompose

|(Xf ⋆ ψj1)| = E(|(Xf ⋆ ψj1)|) + X̃ ,

with E(X̃) = 0, and hence (4.22) becomes

|X ⋆ ψj1 | = SXf (j1)Xs +XsX̃ +N1 .

Now, a convolution with ψj2 produces

|X ⋆ ψj1 | ⋆ ψj2 = SXf (j1)Xs ⋆ ψj2 +XsX̃ ⋆ ψj2 +N2 , (4.23)

with E(|N2|2) ≤ b1 since the convolution with ψj is also contractive. By denoting
X1 = |X ⋆ ψj1 | ⋆ ψj2 , X2 = SXf (j1)Xs ⋆ ψj2 and X3 = XsX̃ ⋆ ψj2 +N2, it follows from
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(4.23) that E(|X1 − X2|) = E(|X3|), and hence, since f(x) = |x| is convex, thanks to
the Jensen’s inequality we obtain

|E(|X1|)− E(|X2|)| ≤ E(||X1| − |X2||) ≤ E(|X3|) . (4.24)

To conclude, we shall now bound E(|X3|). Since E(|X|)2 ≤ E(|X|2), we have

E(|X3|) ≤
√
E(|X3|2) .

Finally, we decompose X3 as the sum

X3 = (E(Xs) + X̃s)X̃ ⋆ ψj2 +N2

= X̃ ⋆ ψj2 + Y ⋆ ψj2 +N2 ,

since E(Xs) = 1 and by definition Y = (Xs −E(Xs))(U [j1]Xf − SXf (j1)). As a result,

thanks to the fact that
√
E(|X + Y |2) ≤

√
E(|X|2) +

√
E(|Y |2), we obtain

√
E(|X3|2) ≤

√
E(|X̃ ⋆ ψj2 |2 +

√
E(|Y ⋆ ψj2 |2) +

√
E(|N2|2)

≤
√
E(|U [p]Xf |2) +

√
Bsup,02−j2β0E|Y |2 + b0 ,

which proves (4.21). �.
Proposition 4.7.3 thus approximates the second order coefficient SX(j1, j2) with a

product of two first order coefficients, E(U [j1]Xf ) and E(U [j2]Xs), which depend upon
carrier and envelope respectively. The fidelity of the approximation is controlled by a
commutator bound b1, which satisfies b1 ∼ 2j1−k if the envelope Xs has its spectral
density concentrated at scales ≥ k.

The other two error terms b2, b3 measure the amount of interference X̃ = U [j1]Xf −
SXf (j1) which remains after the first demodulation stage. This interference cannot
in general be distinguished from the envelope Xs, but its influence on second order
coefficients is bounded by b2 and b3. The first term b2 = E(|U [p]Xf |2)1/2 corresponds
to the residual energy of the carrier which escapes the first demodulation through the
path (j1, j2). This energy is visible on U [p]X since the spectral density of XsX̃ in
(4.23) contains a copy of R̂X̃ , due to the fact that Xs is positive and hence its spectral
density has a Dirac impulse at ω = 0. The term b3 carries the residual energy due to the
interference Y . Its bound relies on the property that Y is a wideband process with regular
spectrum, and hence that the fraction of energy captured by ψj2 is nearly proportional

to the bandwidth of |ψ̂(2j2 |ω)|2, which is ∼ 2−j2 . This notion of wideband, regular
spectrum is captured by the term Bsup,0. Since Y is the product of two independent
noises, its spectrum is given by the convolution of the two densities and hence it inherits
the best regularity amongst the two.

In particular, if Xf is Gaussian process, then U [j1]Xf is a Rayleigh process, and
Section 4.6 shows that X̃ = U [j1]Xf − SXf (j1) has a spectral density which is well
approximated by

R̂X̃(ω) ≈ CR̂Xf⋆ψj1
⋆ R̂Xf⋆ψj1

(ω) ,
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where R̂(ω) = R̂(−ω). As a result, the regularity of R̂X̃ can be lower bounded from that

of R̂Xf
.

From the proof of proposition 4.7.3, we deduce also that first order scattering coef-
ficients satisfy

|E(|X ⋆ ψj1 |)− E(Xs)E(|Xf ⋆ ψj1 |)| ≤
√
b1 , (4.25)

and hence that for a sufficiently smooth envelope Xs with E(Xs) = 1 we have SX(j1) ≈
SXf (j1). This suggests a renormalization of second order scattering coefficients, which
eliminates the influence of the carrier:

TX(j1, j2) =
SX(j1, j2)

SX(j1)
≈ SXs(j2) . (4.26)

This renormalized scattering is called scattering transfer, and will play a central role in
Chapter 5 for the study of fractal processes.
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Chapter 5

Multifractal Scattering

5.1 Introduction

Fractals are objects defined from a self-similarity property as one applies a dilation
or a contraction. If DsX(t) = X(s−1t) denotes a dilation operator on functions or
processes, a fractal is characterized by a scaling law relating X with DsX. Deterministic
fractals such as the Cantor set correspond to functional relationsDsX ≡ F (X, s) whereas
fractal processes are defined through equalities in the sense of distributions or through
their moments. Fractal processes are fundamental in the modeling of several physical
systems, such as the study of turbulence, astronomical data, satellite imaging, and also
in the field of finance. Self-similarity across scales implies that fractals are singular
almost everywhere; different families of fractals are then obtained by describing their
singularities.

A fundamental signature of a Multifractal is given by its spectrum of singularity. In
presence of self-similarity, it is equivalent, by the Legendre transform, to a function ζ(q)
giving the scaling law of its q-th order moments. Such quantities are in general difficult
to estimate. Indeed, the estimation of high order moments requires a huge number of
samples, due to the presence of rare large events which increase the variance of the
estimators.

Scattering operators have proved effective in the discrimination of non-gaussian,
fractal-like textures such as those in the Curet dataset [DVGNK99]. Figure 5.1 dis-
plays several examples from this dataset, showing that it contains many examples of
self-similar textures with a multifractal behavior. The identification of the scaling laws
which characterize multifractals is a particular instance of a texture discrimination prob-
lem. A natural question is then whether one can relate scattering coefficients to mul-
tifractal quantities. Many multifractals are characterized by rare, large jumps, which
prevent them from having high order moments. As a consequence, the estimation of
scaling laws from direct estimation of the moments is often unpractical due to lack of
consistency. Expected scattering representations, on the other hand, are constructed as
expected values defined from contractive operators, and exist as long as the process has
finite first moments. We will study in this chapter which multifractal properties can
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be obtained from scattering coefficients, and how the resulting estimators compare to
existing tools.

Figure 5.1: Examples taken from the CureT dataset studied in Chapter 4. Whereas
some classes contain a characteristic scale and/or orientation, other examples exhibit
multifractal behavior.

We shall concentrate in this chapter in one-dimensional multifractals. Self-similar
fractal processes with stationary increments are characterized by their scaling laws. We
introduce a new measure based on first and second order expected scattering coefficients,
the scattering transfer:

TX(j1, j2) =
SX(j1, j2)

SX(j1)
.

It is defined as a function of two path variables, but we show that the self-similarity of X
implies that the scattering transfer is only a function of path increments: TX(j1, j2) =
TX(j2− j1). This normalized scattering measure, together with the expected first order
scattering, defines a new tool to study fractal phenomena, capturing information which
allows identification and discrimination of several self-similar fractal families. In par-
ticular, its asymptotic behavior as l → ∞ yields a new characteristic exponent of the
process. Moreover, the renormalization defining the scattering transfer brings near in-
variance with respect to fractional derivations; as a result, the scattering transfer can be
interpreted as a form of geometric fractal descriptor, measuring the spatial or temporal
dependencies between singularities.

The scattering transfer contains information from first and second order coefficients,
but it also has the capacity to control the behavior of higher order scattering coefficients.
For a wide class of fractals, we observe that high order scattering coefficients can be
asymptotically predicted from the scattering transfer and its first order coefficients.
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This asymptotic property, which can be interpreted as a Markov propagation across
scattering paths, is proved for the Dirac measure, white Gaussian noise and Fractional
Brownian motions.

Multifractal random measures are constructed with an integral scale, which restricts
the self-similarity to a scale range of the form (−∞, 2J ). A fundamental signature
of a multifractal X is given by its scaling exponents ζ(q), which control the asymptotic
behavior of the moments of the increments E(|X(t)−X(t−l)|q) as l decreases. First order
scattering measures the exponent ζ(1) since it is computed from first order moments of
wavelet coefficients. Multifractals are characterized by a concave ζ(q), whose curvature
gives an account of the degree of multifractality of the process. Therefore, its study
requires access to information contained in high order moments. This information can
be extracted consistently from the scattering transfer. In particular, thanks to the
prediction of higher order scattering coefficients by the scattering transfer, we prove
that the intermittency 2ζ(1) − ζ(2), measuring the curvature of ζ(q), is given by the
logarithm of the smallest ρ satisfying the equation

∑

l≥1

TX(l)2ρl = 1 .

Deterministic fractal measures can also be analyzed with the integral scattering trans-
form defined in Section 2.3.4. Deterministic self-similarity is expressed as a periodicity
property on the scattering transfer.

The chapter is structured as follows. Section 5.2 gives a background on stochas-
tic and deterministic fractal analysis. Section 5.3 presents the scattering transfer and
its associated transfer function, together with an estimation from windowed scattering
coefficients. It also introduces an asymptotic Markov property which predicts higher
order scattering coefficients from first and second order coefficients. Section 5.4 analyzes
the scattering transfer for several self-similar fractal processes, showing that it captures
important discriminative information, and we also show that they enjoy the asymptotic
Markov property. We then focus, in Section 5.5, on the study of multifractal processes
with an integral scale. We first obtain a characterization of the intermittency from
the scattering transfer. Then we study the scattering transfer for several multifractal
random cascades, and then we compare the resulting intermittency estimator with alter-
native estimates, showing a consistency in pair with state-of-the-art methods. Finally, in
Section 5.7 we adapt the previous tools to the study of deterministic fractals, and show
that the scattering transfer captures important information about the self-similarity of
the fractal.

5.2 Review of Fractal Theory

This section reviews several fractal families and introduces the tools to measure their
singularities, both for deterministic and stochastic fractals.
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5.2.1 Fractals and Singularitites

Deterministic fractals are singular functions, characterized by their spectrum of singu-
larity. Stochastic fractal processes are defined from a probabilistic scaling law.

From a deterministic point of view, point-wise singularities are studied with the
Hölder exponents. A function f is Cα(u0) if there exists a polynomial Pn of degree
n ≤ ⌊α⌋ and a constant C > 0 such that

∀u ∈ R , |f(u)− Pn(u− u0)| ≤ C|u− u0|α .

One defines the Hölder exponent [Jaf00] of f at u0 as

Hf (u0) = sup{α : f ∈ Cα(u0)} .

A fractal f might contain singularities with different Hölder exponents. One can
characterize the structure of singularities of f via its spectrum of singularity D(h), which
is defined as the Hausdorff dimension of the sets

Ωh = {u ;Hf (u) = h} h ∈ R .

A family Rǫ = {Bi}i∈N is an ǫ-covering of A if A ⊂ ⋃iBi and |Bi| ≤ ǫ , ∀i. The
Hausdorff dimension of a set A is defined as [Jaf00]

dim(A) = sup{δ : lim
ǫ→0

inf
Rǫ={Bi}

∑
|Bi|δ = +∞} .

It measures the growth rate of an ǫ-covering of A as the maximum radius of the balls
converges towards zero. As a result, for any covering of the support of f with balls of
size at most s, the optimum cardinality of such covering is ∼ s−D(h). The spectrum of
singularity thus measures the proportion of Holder h singularities visible at any scale s.

When all the singularities of a fractal f have the same Hölder exponent H, its
spectrum of singularity D(h) is degenerate, i.e. ∀h 6= H ,D(h) = 0 and D(H) = 1.
Some authors [Jaf00; AFTV00] use this property to distinguish ‘monofractals’ from
‘multifractals’, which contain singularities of different Hölder exponents. We shall give
a slightly different definition in Section 5.2.3.

5.2.2 Fractal Processes

Fractal processes are generally defined by a scaling law of the form

∀ s ∈ (S−, S+) , DsX(t)
l
=WsX(t) ,

where
l
= means an equality in the probability law of the process for each s. The scaling

law is valid for a range of scales (S−, S+) which can include ±∞. IfWs is a deterministic
constant for any scale s, then the moments of DsX are uniformly scaled as s varies, and
hence its probability distribution remains unchanged up to a dilation factor. On the other
hand, if Ws is a random variable independent from X, then the probability distribution
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of DsX varies as the scale varies. Next section will show that these two cases correspond
respectively to monofractal and multifractal processes.

The estimation of multifractal processes can be seen as a particular instance of a
texture discrimination problem. Given a realization of a fractal, it is necessary to build
consistent, informative estimators of the scaling laws which characterize the underlying
physical processes.

5.2.3 Multifractal Formalism and Wavelets

We review in this section the main aspects of the multifractal formalism, originated by
Collet et al. in [CLP87; GBP88] for the study of the statistical scaling properties of
singular measures, and further developed by Parisi and Frisch [PF85].

The multifractal formalism originated in the framework of fully developed turbulence
to explain the deviations of experimental data to the Kolmogorov theory of isotropic
turbulence [Fri95]. Mandelbrot [Man74] introduced a family of multiplicative cascade
measures in order to account for such deviations.

One can define [AJ04] the Holder exponent of a measure µ at u0 as

Hµ(u0) = lim inf
δ→0

log µ([x0 − δ, x0 + δ])

log δ
.

One can then associate a spectrum of singularity similarly as in the case of functions.
Moreover, for one-dimensional signals, one can associate to each measure µ defined in
the unit interval [0, 1] the function

fµ(u) =

∫ u

0
dµ(u) ,

which has the same Holder exponents as µ in the case supuHµ(u) < 1 [AJ04]. Box-
Counting (BC) methods [GBP88; MS91] obtain global singularity measures by defining
suitable averages of local Hölder exponents. Originally they were defined as [GBP88]

∀ q ≥ 0 , ζ0(q) = lim
δ→0

log
∑

i µ(bi(δ))
q

log δ
,

where the sum runs over a collection of boxes {bi(δ)} of radius δ arranged over a regular
grid. However, box-counting measures are dominated by strong Hölder singularities,
which do not fully characterize the whole spectrum of singularity [MBA93a].

A multifractal analysis can be carried out by using a wavelet decomposition and
studying the decay of the coefficients as the scale decreases. Jaffard and Meyer showed
in [JM96] that if f has a Hölder exponent Hf (u0) at u0 and ψ is a wavelet with enough
vanishing moments, then under appropriate conditions on the wavelets, one has

|f ⋆ ψs|(u0) ∼ sHf (u0) ,
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where ψs(u) = s−1ψ(s−1u). By detecting wavelet modulus maxima, one can estimate
the singularity spectrum by first defining a partition function [MBA93a]

Z(q, s) =
∑

l∈L(s)

(
sup

(u,s′)∈l
|f ⋆ ψs′ |(u)

)q
, (5.1)

where L(s) is the set of maxima lines crossing at scale s. The asymptotic behavior of
Z(q, s) as s→ 0 is given by the power law

Z(q, s) ∼ sζ(q) .

Bacry et al [MBA93b] and Jaffard [Jaf97] showed that using appropriate wavelets, the
characteristic exponent ζ(q) can be related to the singularity spectrum by the Legendre
transform, for self-similar signals with bounded spectrum:

ζ(q) = min
h∈supp(D(h))

(qh−D(h)) .

For signals with a concave spectrum of singularity, it is possible to recover D(h) by
inverting the Legendre transform:

D(h) = min
q

(qh− ζ(q)) .

Self-similar functions have a concave spectrum of singularity and hence one can use the
characteristic exponent ζ(q) to estimate D(h). However, in general the inverse Legendre
transform only gives an upper bound of D(h).

Similarly, the characteristic exponents of a fractal measure can be estimated with a
wavelet decomposition. Indeed,

µ ⋆ ψs(t) = s−1

∫
ψ(s−1(t− u))dµ(u)

defines a function in Lq for all q, which allows the computation of a partition function
yielding the scaling law.

5.2.4 Multifractal Processes and Wavelets

We review now the theory of stochastic multifractals. We describe their scaling expo-
nents in terms of wavelet decompositions and present some important families of fractal
processes and measures.

Definition 5.2.1 A stochastic process {X(t), t ≥ 0} with stationary increments is self-
similar if it satisfies a scaling law of the form

∀s ≥ 0 , {X(st)}t≥0
l
= {sHX(t)}t≥0 ,

where H is a characteristic exponent [BKM08a].
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Equivalently, one can show [BKM08b] that this is equivalent to a self-similarity of its
increments:

{X(st)−X(s(t− l))}t l
= {sH(X(t) −X(t− l))}t .

A change of time on the process thus recovers a scaled version of the same process, which
leads to a power law behavior of its moments

∀q ∈ R , E(|X(t) −X(t− l)|q) ≃ Cqlζ(q) ,

where ζ(q) = qH is a linear function of q. We shall denote such processes asmonofractals.
In this case, the spectrum of singularity D(h) of X is degenerated, and supported in
h = H. If a self-similar process X(t) can be written as

X(t)
l
=

∫ t

0
dX(s) , t ≥ 0 ,

where dX is a stationary process, then the self-similarity of X(t) induces a self-similarity
on dX(t):

{D−sdX}t l
= {sH−1dX}t .

Multifractal behavior is obtained by generalizing the notion of self-similarity. It can
be defined as follows [BKM08a]:

Definition 5.2.2 A process X with stationary increments has stochastic self-similarity
if for a certain range of scales s we have

∀ t ≥ 0 , ∀ 0 < l < t ,X(st)−X(s(t− l)) l
=Ws(X(t)−X(t− l)) , (5.2)

where Ws is a positive random variable independent of X.

This equivalence in distribution is stated for each fixed t, and in general does not imply
that the two processesX1(t) = Ds−1X(t)−Ds−1X(t−l) andX2(t) =Ws(X(t)−X(t−l))
have the same law. The stochastic self similarity yields a scaling law of the moments of
its increments:

∀q ∈ R , E(|X(t) −X(t− l)|q) ≃ Cqlζ(q) . (5.3)

The scaling exponent ζ(q) is now allowed to be a non-linear function of q. If (5.3) holds
in the limit l→ 0, then ζ(q) is concave as a result of the convexity of the moments of a
random variable, otherwise if it holds when l→∞, then ζ(q) is necessarily convex.

When ζ(q) is a non-linear function of q we say that the process is multifractal. In
particular, if ζ(q) is strictly concave (resp stricly convex), it results [BKM08a] that the
scaling law cannot hold at arbitrarily large scales (resp small scales).

Definition 5.2.3 Assuming ζ(q) is concave, the integral scale of a multifractal X is the
time scale T where the process ceases to be multifractal:

T = sup
l
{l s.t.∀q ∈ R , E(|X(t) −X(t− l)|q) ≃ Cqlζ(q)} . (5.4)

109



Chapter 5. Multifractal Scattering

Equivalently, the integral scale also determines the range of stochastic self-similarity in
(5.2): If DsX(t) = X(s−1t), then

∀s , l ≥ 0 s.t. l ≤ T , st ≤ T , Ds−1X(t)−Ds−1X(t− l) l
=Ws(X(t)−X(t− l)) , t ≥ 0 .

(5.5)

One then generally assumes that the process becomes decorrelated beyond the in-
tegral scale. The degree of multifractality of a process, often referred as intermittency,
is thus characterized by the curvature of its scaling exponents ζ(q). Some authors
[BKM08a] define it as ζ

′′
(0).

If ψ is a wavelet with at least a vanishing moment, then the scaling exponents can
be recovered from the wavelet decompositions of the process [Mal12]:

∀q ∈ R , E(|X ⋆ ψs|q) ≃ Cqsζ(q) . (5.6)

In particular, ζ(1) measures the decay of the wavelet coefficients amplitude

E(|X ⋆ ψs|) ≃ C1s
ζ(1) ,

which are estimated from realizations of X with L1 norms at each scale. Similarly, ζ(2)
measures the decay of the variance of wavelet coefficients with the scale.

The integral scale of a multifractal can be also expressed in terms of wavelet coeffi-
cients. If J = log T is the log of the integral scale, then from (5.5), by setting s = 2j

and l = 2k it results that

∀ j, k s.t. j + k ≤ J , k ≤ J , D2−jX ⋆ ψk(t)
l
=W2j (X ⋆ ψk)(t) , t ≥ 0 . (5.7)

In particular, monofractal processes satisfy (5.7) for all j, k ∈ Z2 with W2j ≡ 2jH .

5.2.5 Cantor sets and Dirac Measure

We give in this section two examples of deterministic fractal measures: the Cantor
measure and the Dirac measure.

Deterministic fractals can be constructed by giving a functional scaling law. In one
dimension, a well known example is the triadic Cantor measure dC∞ defined over the
Cantor set. It is constructed recursively by subdividing a uniform measure into uniform
measures on smaller intervals. The process starts with dC0(x) = dx, where dx is the
uniform Lebesgue measure of [0, 1]. This measure is then split into a piecewise uniform
measure dC1(x) on the intervals [0, 1/3], [1/3, 2/3] and [2/3, 1], with integrals respectively
p1, 0, and 1 − p1, such that

∫
[0,1] dC1(x) = 1. The process is repeated recursively,

by updating each uniform measure of integral p on an interval [a, b] into a piecewise
uniform measure with integrals p1p, 0 and (1 − p1)p on the intervals [a, (2a + b)/3],
[(2a+b)/3, (a+2b)/3] and [(a+2b)/3, b] respectively. The limit measure dC∞ is supported
in the Cantor set and is self-similar, since

D3dC∞ ≡ p1dC∞ in [0, 1] .
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The Cantor measure is then invariant up to a normalisation constant to all dilations
of the form 3n. However, it is not self-similar when the dilation factor is not of that
form. The Dirac measure δ is another example of self-similar measure. In this case, the
self-similarity is observed for any dilation factor:

Dsδ ≡ sδ , ∀s > 0 .

5.2.6 Fractional Brownian Motions

We briefly review an important class of self-similar processes, given by the fractional
brownian motions.

An important family of fractal processes is given by the Fractional Brownian motion
[Dou06]. It is defined as a centered Gaussian process XH(t) with covariance

E(XH(t)XH(t
′)) = |t|2H + |t′|2H − |t′ − t|2H .

The parameter H ∈ (0, 1) is called the Hurst index and controls the average singularity
of the process. The Brownian motion corresponds to a Hurst index H = 1/2. It is not
a stationary process, but its increments XH ⋆ ψ are stationary. XH(t) is a self-similar,
monofractal process, since

XH(st)
l
= sHXH(t) , t ∈ R, s > 0 .

Although XH is not stationary, its increments XH(t) − XH(t − l) are stationary, and
thus one can define a generalized power spectrum [Wor95], given by the spectrum of the
increment divided by the transfer function:

R̂XH
(ω) =

σ2H
|ω|2H+1

. (5.8)

Each filtered process XH ⋆ ψs has a power spectrum R̂X,s satisfying

R̂X,s(ω) = s2H+1R̂X,1(sω) ,

which, together with the fact that XH is Gaussian, implies that

XH ⋆ ψs(st)
l
= sHXH ⋆ ψ1(t) .

As a result, the characteristic exponent is the linear function ζ(q) = qH, confirming
the fact that XH is a monofractal process. In particular, the Hurst exponent can be
estimated from both ζ(1) and ζ(2).

5.2.7 α-stable Lévy Processes

Another important class of self-similar fractal processes comes from the class of stable
Lévy processes.
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A processX(t) , t ≥ 0 is said to be a Lévy process [Kyp07] if its realizations are almost
surely right continuous, with left limits, if Prob(X(0) = 0) = 1 and if its increments
X(t)−X(t−τ) are stationary in the strong sense and such thatX(t)−X(s) is independent
from {X(u) : u ≤ s}.

Lévy processes necessarily originate from an infinitely divisible distribution, which
ensures that X(t) can be written as a sum of iid increments:

∀t ≥ 0n ∈ N , X(t)
l
= (X (t/n)−X(0))+(X (2t/n)−X (t/n))+· · ·+(X(t)−X (t− t/n)) .

The Lévy-Khintchine formula characterizes infinitely divisible distributions from
their characteristic exponents. If Z is a random variable distributed along a probability
law µ, and Ψ(u) = − logE(eiuZ) denotes the exponent of the characteristic function of
Z, then µ is infinitely divisible if and only if

∀u ∈ R, Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iu1|x|<1)Π(dx) , (5.9)

where a ∈ R, σ ≥ 0 and Π is a measure, denoted the Lévy measure, concentrated on
R \ {0} and satisfying

∫
min(1, x2)Π(dx) < ∞. A Lévy process can be decomposed

as a sum of a Brownian motion, a compound Poisson point process, and a martingale
[Kyp07].

Amongst infinitely divisible distributions, we are interested in those which are also
stable. A random variable Z has a stable distribution if for all n ≥ 1 we have

Z1 + · · ·+ Zn
l
= anZ + bn ,

where Zi are independent copies of Z, an > 0 and bn ∈ R. It results that necessarily
an = n1/α for α ∈ (0, 2]. [Kyp07]. An α-stable Lévy process with centered increments
satisfies

X(nt)
l
= n1/αX(t) , t ≥ 0, n ≥ 1 ,

and thus it is self-similar. The jump process ∆X(t) associated to the Lévy process
(X(t))t is defined [Pap07] as

∀ 0 ≤ t , ∆X(t) = X(t) −X(t−) ,

where X(t−) = lims→t− X(s). It is a self-similar stationary process, satisfying

∀0 ≥ t ,∀n > 0 ,∆X(nt)
l
= n1/α−1∆X(t) .

α-stable Lévy distributions are heavy tailed, with rare, large jumps. As a result,
they only have moments strictly less than α [Kyp07].
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5.2.8 Multifractal Random Cascades

Mandelbrot Cascade

The first example of a multifractal process is given by the Mandelbrot cascade [Man74].
It constructs a random measure dM∞ in the unit interval from a binary tree. The root
of the tree is initialized with a uniform measure dM0 on the whole interval I0 = [0, 1),
M0(I0) =

∫
I0
dM0(s) = Y0, where Y0 is a random positive variable. The uniform measure

dM0 is then refined with dM1, which is uniform in the two intervals I1 = [0, 1/2),
I2 = [1/2, 1), and such that the measure of each of these intervals is set to M1(I1) =
Y1 = Y0X1, M1(I2) = Y2 = Y0X2, where X1, X2 are iid, infinitely divisible positive
random variables, independent from Y0. The process is iterated along the binary tree
which partitions each interval Ii in two adjacent intervals of equal length, yielding M∞.
This construction converges towards a non-trivial measure under appropriate conditions
on the positive random variables Xi [Man74]. The resulting measure has stochastic
self-similarity. If one defines a contraction of a measure as Dsµ(I) = µ(D−1

s I) for any
Lebesgue measurable set I, then

DsM∞(I)
l
= XsM∞(I) , s > 1 .

Multifractal Random Measure (MRM)

The construction of the Mandelbrot cascade defines a process which is not stationary,
since it is constructed on a binary tree which is not translation invariant. However,
one can generalize the construction with the so-called random multiplicative cascades
[BKM08a]. One starts by defining the random measure

∀ l ≥ 0 , MRMl,J(dt) = e2ω
J
l
(t)dt ,

in the sense that for all Lebesgue measurable sets I one has MRMl,J(I) =
∫
I e

2ωJ
l
(t)dt.

Here, ωJl is a stationary Gaussian Process with mean and covariance

E(ωJl ) = −
λ2

2
ln(2J/l) , Covω(τ) = λ2 ln

(
2J

sup(l, |τ |)

)
1[−2J ,2J ](τ) . (5.10)

A log-normal Multifractal Random Measure (MRM) is defined as the weak limit when
l→ 0 of the random measure MRMl,J [BKM08b]:

MRM(dt) = lim
l→0+

e2ω
J
l
(t)dt , (5.11)

which exists and is non-trivial as long as λ2 < 1/2.
An MRM is a positve random measure which models the stochastic volatility, and it

has been successfully applied in the fields of finance and turbulence [BKM08a]. It defines
a multifractal process. When ω is a Gaussian process, its scaling exponent is given by

ζ(q) =

(
1 +

λ2

2

)
q − λ2

2
q2 .
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This process depends upon the intermittency coefficient λ2, which controls the amount
of non-linearity of the characteristic exponents ζ(q), and the integral scale 2J , which de-
fines the support of their correlation functions.

Multifractal Random Walk (MRW)

A Multifractal Random Walk (MRW) is constructed as the limit l → 0 of

MRW (dt) = lim
l→0

eξ
J
l
(t)dW (t) ,

where dW (t) is a Wiener noise, and ξJl is also a stationary Gaussian process with same
covariance as in (5.10) and mean given by

E(ξJl ) = −λ2 ln(2J/l) .
An MRW models the stock price fluctuations, and can be thought as the composition

of an MRM with white gaussian noise. Similarly as in the MRM case, it is a multifractal
process. When ξ follows a Gaussian distribution, its scaling exponents given by

ζ(q) =

(
1

2
+ λ2

)
q − λ2

2
q2 .

Again, the intermittency coefficient λ2, controls the amount of non-linearity of the
characteristic exponents ζ(q), and the integral scale 2J defines the decorrelation scale of
the process.

5.2.9 Estimation of Fractal Scaling Exponents

The estimation of the parameters defining a multifractal process has been studied in
[BKM08b; Jaf97]. A fundamental object to be estimated is the characteristic exponent
ζ(q). In particular, the curvature of ζ(q) controls the intermittency of the process and
characterizes a multifractal behavior, as opposed to the homogeneous or monofractal
case. Some authors define the intermittency as ζ

′′
(0) [BKM08a]. Since ζ(0) = 0, a

measure of the curvature at q = s0 is obtained with ζ(2s0) − 2ζ(s0). In particular, for
s0 = 1, one obtains the intermittency measure given by ζ(2) − 2ζ(1). In the case of a
log-normal random cascade, since ζ(q) is a parabole, this finite difference coincides with
ζ ′′(0).

A first strategy to obtain λ2 estimates the moments E(|X ⋆ψj |q) and then performs
a regression on the predicted scaling behavior

E(|X ⋆ ψj|q) ∼ 2(J−j)ζ(q) .

Estimations based on wavelet leaders [ALJ04], which are used in texture discrimination
[WAJZ09], are indirectly obtaining such scaling laws. However, the variance of this
estimator converges very slowly with the sample size, as N−1+α with α > 0, as shown
in [BKM08b; OW00]. High order moments are difficult to estimate due to the expansive
nature of xq for q > 1 and x > 1. In [BKM08a], another estimator for the intermittence
is proposed, based on the covariance properties of the logarithm of the absolute value of
the increments.
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5.3 Scattering Transfer

Fractal processes are analyzed with scattering representations. We introduce the scatter-
ing transfer for self-similar fractals in Section 5.3.1 and also for non-stationary random
measures in 5.3.2. It is computed with scattering operators, which are non-expansive. As
a result, Section 5.3.3 defines a consistent estimator of the scattering transfer using the
windowed scattering transform. Finally, in 5.3.4 we introduce an asymptotic prediction
property of the transfer function, which we shall verify for several fractal families.

5.3.1 Scattering transfer for Processes with stationary increments

The scattering transfer is defined from first and second order expected scattering coef-
ficients. Self-similarity yields a transfer function which gives a new signature of fractal
processes.

If X(t) is a process with stationary increments, then X ⋆ ψj(t) is stationary for
all j ∈ Z, and since convolutions and moduli do not affect stationarity, we have that
U [p]X(t) is stationary for all p. We recall from 2 that the expected scattering is then
defined as

SX(p) = E(U [p]X) .

Since we concentrate in this chapter on uni-dimensional functions and processes, we shall
denote scattering paths as p = (j1, . . . , jm) for sake of simplicity.

The scattering transfer is first defined for processes with stationary increments:

Definition 5.3.1 Let X(t) be a process with stationary increments. The Scattering
transfer of X(t) is defined for (j1, j2) ∈ Z2 by

TX(j1, j2) =
SX(j1, j2)

SX(j1)
. (5.12)

The transfer is well defined as long as SX(j) > 0 for all j ∈ Z. This is guaranteed if
in particular the wavelet ψ satisfies ψ̂(ω) 6= 0 almost everywhere in {ω > 0}, and the
generalized spectral density of X(t) [Mal08] satisfies R̂X(ω) > 0 on a set of positive
measure . This last condition is automatically satisfied for stationary processes with
auto-correlation RX ∈ L1. Unless specified otherwise, we shall assume throughout the
rest of the chapter that this admissibility condition is satisfied.

For any j ∈ Z, for sake of simplicity let us denote the dyadic dilation DjX(t) of the
process X(t) by DjX(t) = X(2−jt) for all t. Recall from definition 5.2.1 that self-similar

processes satisfy {D−jX(t)}t l
= {2jH X(t)}t for all j ∈ Z.

The following proposition shows that self-similar processes have a scattering transfer
which becomes a transfer function of a single scale variable .

Proposition 5.3.2 If the stochastic process X(t) satisfies {D−jX(t)}t l
= {Aj X(t)}t for

j ∈ I, where Aj is independent from X(t), then

∀j1 ∈ I , SX(j1, j2..., jm) = E(Aj1)SX(0, j2 − j1, ..., jm − j1) ,
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and hence
∀j1 ∈ I , TX(j1, j2) = TX(j2 − j1) . (5.13)

The scattering transfer matrix is then called a transfer function. In particular, self-
similar processes satisfy (5.13) for all j1 ∈ Z.

Proof: Since ψj = 2−jDjψ, a change of variables yields Dj |X ⋆ ψ| = |DjX ⋆ ψj| , and
hence

|X ⋆ ψj | = Dj |D−jX ⋆ ψ| . (5.14)

If p = (j1 . . . jm), it results that

U [p]X = | | | |X ⋆ ψj1 | ⋆ ψj2 | ⋆ ...| ⋆ ψjm|
= Dj1 | | | |D−j1X ⋆ ψ| ⋆ ψj2−j1 | ⋆ ...| ⋆ ψjm−j1 | , (5.15)

If X(t) is stationary, then E(DjX) = E(X), and thus from (5.15) we derive that

SX(p) = E(| | | |D−j1X ⋆ ψ| ⋆ ψj2−j1 | ⋆ ...| ⋆ ψjm−j1 |) . (5.16)

Now, if j1 ∈ I, the self-similarity of X implies that

{D−j1X(t)}t l
= {Aj1X(t)}t ,

where Aj1 is independent of X(t). This implies that

SX(p) = E(Aj1)E((| | | |X⋆ψ|⋆ψj2−j1 |⋆...|⋆ψjm−j1 |) = E(Aj1)SX(0, j2−j1, . . . , jm−j1) ,

and hence

TX(j1, j2) =
SX(j1, j2)

SX(j1)
=
E(Aj1)SX(0, j2 − j1)

E(Aj1)SX(0)
= TX(j2 − j1) ,

which proves (5.13) �.
The scattering transfer function thus defines a new measure for self-similar processes,

computed from first and second order coefficients. We shall see that it contains highly
discriminative information. Although it is computed from expected values of contractive
operators U [j1], U [j1, j2] applied to X, we shall see that it contains information about
the scaling exponent ζ(q) for q > 1 of the process.

In particular, it defines a new characteristic exponent for X(t). First order scattering
coefficients SX(j) have a scaling law given by

SX(j) = E(|X ⋆ ψj |) ≃ 2jζ(1) ,

provided the wavelets have at least a vanishing moment. The scattering transfer function
defines a scaling law TX(l) ≃ 2lα . The characteristic exponent α gives a new signature
of X(t), which complements the exponent ζ(1). Since

U [j]X(t) =

∣∣∣∣
∫
X(u)ψj(t− u)du

∣∣∣∣ ≤
∫
|X(u)||ψj(t− u)|du = |X| ⋆ |ψj |(t) ,
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it follows that SX(j) = E(U [j]X) ≤ E(|X|)‖ψ‖1 ,∀j and hence that if p = (j1 . . . jm),
then

SX(p) ≤ E(|X ⋆ ψj1 |)‖ψ‖m−1
1 , (5.17)

which shows in particular that the scattering transfer is defined for any process with
stationary increments having finite first moment.

The scattering transfer defines a normalization which brings further invariance prop-
erties to the scattering representation. The self-similarity used in proposition 5.3.2 is a
particular case of a more general invariance produced by the renormalization. The fol-
lowing proposition shows that the scattering transfer generates invariance with respect
to other linear, translation covariant operators satisfying a similarity property when
applied to the wavelets ψj .

Proposition 5.3.3 Let X(t) be a process with stationary increments, and let L be a
linear, translation covariant operator such that

∀j , |X ⋆ Lψj| l= CL,j|X ⋆ ψj| , (5.18)

where CL,j is a random variable independent of X. Then, if X̃ = LX, we have

TX(j1, j2) = TX̃(j1, j2) . (5.19)

Proof: Since L is linear and translation covariant, it commutes with convolutions; it
follows that

X̃ ⋆ ψj = LX ⋆ ψj = X ⋆ Lψj ,

and hence
|X̃ ⋆ ψj | = |X ⋆ Lψj| l= CL,j|X ⋆ ψj | .

As a result,

TX̃(j1, j2) =
E(||X̃ ⋆ ψj1 | ⋆ ψj2 |)

E(|X̃ ⋆ ψj1 |)
=
E(CL,j)E(||X ⋆ ψj1 | ⋆ ψj2 |)

E(CL,j)E(|X ⋆ ψj1 |)
= TX(j1, j2) �.

Propostion 5.3.3 gives sufficient, idealized conditions under which the transfer is in-
variant. These conditions are nearly satisfied by operators which are almost diagonalized
by complex wavelets. Indeed, if Lψj ≈ CL,jψj , then it follows that (5.18) is approxi-
mately verified. One can control the quality of this approximation with a supremum
norm on the diagonalisation error, as shown by the following proposition.

Proposition 5.3.4 Let X(t) be a stationary process such that E(|X|2) <∞ and RX ∈
L1, and let j1, j2 ∈ Z. Suppose that L is a linear, translation covariant operator in L2,
and let

δ = inf
c∈C
‖Lψj1 − cψj1‖2 . (5.20)

Then, if X̃(t) = LX(t), we have

∣∣∣TX̃(j1, j2)− TX(j1, j2)
∣∣∣ ≤ δ

√
‖RX‖1
SX̃(j1)

(‖ψ‖1 + TX(j1, j2)) . (5.21)
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Proof: Let us first approximate the numerator and the denominator of TX̃(j1, j2).
Since ‖Lψj1‖ <∞ and

|c|‖ψj1‖ − ‖Lψj1‖ ≤ ‖Lψj1 − cψj1‖2 ≤ |c|‖ψj1‖+ ‖Lψj1‖ ,

it follows that the infimum in (5.20) is attained in a compact set and hence that there
exists c0 ∈ C such that ‖Lψj1 − c0ψj1‖2 = δ. We then have

∣∣∣E(|X̃ ⋆ ψj1 |)− |c0|E(|X ⋆ ψj1 |)
∣∣∣ = |E(|X ⋆ Lψj1 | − |X ⋆ c0ψj1 |)|
≤ E(|X ⋆ (Lψj1 − c0ψj1)|) . (5.22)

But for a given h ∈ L2, we also have

E(|X ⋆ h|)2 ≤ E(|X ⋆ h|2) =
∫
R̂X(ω)|ĥ(ω)|2dω

≤ sup
ω
R̂X(ω)‖ĥ‖22 ≤ ‖RX‖1‖h‖22 , (5.23)

where in the last inequality we have used the Plancherel identity. By applying (5.23) to
h = Lψj1 − c0ψj1 , (5.22) becomes

∣∣∣E(|X̃ ⋆ ψj1 |)− E(|X ⋆ c0ψj1 |)
∣∣∣ ≤

√
‖RX‖1δ . (5.24)

Similarly, the second order coefficients are approximated by

|E(||X̃ ⋆ ψj1 | ⋆ ψj2 |)− E(||X ⋆ c0ψj1 | ⋆ ψj2 |)| ≤ E(|(|X̃ ⋆ ψj1 | − |X ⋆ c0ψj1 |) ⋆ ψj2 |)
≤ E(||X ⋆ Lψj1 | − |X ⋆ c0ψj1 ||)‖ψ‖1
≤ E(|X ⋆ (Lψj1 − c0ψj1)|)‖ψ‖1
≤

√
‖RX‖1δ‖ψ‖1 . (5.25)

Finally, by observing that if a, ā, b, b̄ > 0 and

|a− ā| ≤ δa , |b− b̄| ≤ δb ,

then ∣∣∣a
b
− ā

b̄

∣∣∣ ≤ 1

b

(
|a− ā|+ |b− b̄| ā

b̄

)
≤ 1

b

(
δa + δb

ā

b̄

)
, (5.26)

the result (5.21) follows by applying (5.26) with a = SX̃(j1, j2), ā = SX(j1, j2), b =
SX̃(j1) and b̄ = SX(j1) �.

The scattering transfer is thus nearly invariant to linear operators which are nearly
diagonalized by wavelets. Of particular importance are the fractional derivative opera-
tors Dα, defined in the Fourier domain as

D̂αx(ω) = (iω)αx̂(ω) , ω ∈ R .
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Figure 5.2: (a) A realization of Gaussian white noise, (b) log TX(l), estimated from
100 realizations of size 216 points, following the procedure described in Section 5.3.3.
We observe TX(l) ≃ 2−l/2. This asymptotic behavior will be obtained analytically in
Section 5.4.1.

Appendix A.2 shows that wavelets with good frequency localization nearly diagonalize
fractional derivatives. The near invariance of the scattering transfer with respect to
derivation can be interpreted in geometric terms; a derivation operator modifies the
Hölder singularity of all points in a uniform way. The renormalization of scattering
coefficients creates a descriptor which is sensitive only to the local singularity differences,
thus conveying geometric information.

Figure 5.2 shows an example of a self-similar stationary process, given by white
Gaussian noise, and its associated transfer function, which only depends upon j2 − j1.
This behavior contrasts with the one depicted in figure 5.3, which corresponds to a
Bernouilli white noise. This noise is not self-similar, since dilations change the average
density of the process. We observe that as the first scale j1 increases, the scattering
transfer TX(j1, j1 + l) converges towards a transfer function. Indeed, in that case, the
filtered process X ⋆ ψj1(t) converges towards a Gaussian process thanks to the Central
Limit theorem, which is self-similar.

Figure 5.4 shows examples of two processes and its corresponding jump processes,
which are obtained in the discrete case by the linear, translation invariant derivative
operator ∆X(t) = X(t) − X(t − 1). The first row shows a realization of a Bernouilli
process and its associated jump process, and the second row shows a realization of a
MRW cascade with its jump process. First order scattering coefficients are sensitive
to changes in the spectral density of the process, and are hence affected by derivative.
On the other hand, as predicted, the scattering transfer remains nearly invariant to the
derivation.
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Figure 5.3: (a) A realization of Bernouilli white noise, with parameter p = 2−8. (b)
Scattering transfer. We plot the curves Tj1(l) = T (j1, j1 + l) for several j1, estimated
from 100 realizations of size 216. As j1 increases, the curve converges towards a transfer
function T (l) ≃ 2−l/2 of a Gaussian white noise, which is a the bottom of the plot.

5.3.2 Scattering transfer for non-stationary processes

We define the scattering transfer for non-stationary processes. We observe that self-
similarity defines a transfer with similar behavior as in the stationary case.

An important class of fractal random processes are not stationary. Mandelbrot
[Man74] constructed a multifractal process as a random measure defined from a multi-
plicative binary cascade. This cascade is not translation invariant and as a consequence
the resulting measure is not stationary.

We can compute a scattering representation for a random measure µ with compact
support using the integral scattering transform. For each p = (j1 . . . jm), the integral

S̃µ(p) =

∫
(U [p]µ)(u)du

is random variable. The scattering representation for a random measure is thus defined
as

Sµ(p) = E(S̃µ(p)) . (5.27)

This representation is estimated from several realizations of the random measure by first
computing the integral scattering for each realization and then averaging for each path
p across the realizations.

The scattering transfer is then defined analogously as in (5.3.1), by

Tµ(j1, j2) =
Sµ(j1, j2)

Sµ(j1)
.

A random measure of [0, 1] is self-similar if for any open set I ⊂ [0, 1]

Djµ(I)
l
=Wjµ(I) , j > 0 ,
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Figure 5.4: (a) A realization of Bernouilli white noise dX(t). (b) A realization of the
cumulated process X(t) =

∫ t
0 dX(u). (c) First order scattering coefficients of dX(t)

and X(t). (d) Scattering transfer of dX(t) and X(t). We plot the curves Tj1X(l) =
TX(j1, j1 + l) for several j1. Each color corresponds to a different value of j1. Notice
how the curves corresponding to X(t) and dX(t) are nearly overlapping. (e) and (f):
Realizations of an MRW process dX(t) and its associated cumulated process X(t) =∫ t
0 dX(u). (g): First order scattering coefficients SdX(j) and SX(j). (h): Scattering
transfer TdX(l) and TX(l).
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whereWj is a random variable independent of µ. The Mandelbrot cascade is self-similar
for dyadic dilations. In that case, we recover a transfer function as in the stationary case
before, before reaching an integral scale given by the support of the measure.

5.3.3 Estimation of Scattering transfer

The scattering transfer is estimated from averaged scattering coefficients. For self-similar
processes, we construct an estimator of the transfer function which minimizes the mean
squared error, by combining measures from all scales according to their covariance.
For processes with finite second moments, one can approximate the scattering transfer
covariance from the windowed scattering covariances.

If X is self-similar up to an integral scale 2J , then the previous section showed that

TX(l) = TX(j1, j1 + l) , j1 + l ≤ J .

If one supposes that scattering coefficients can be measured for scales j ≥ 0, an estimator
of TX(l) can be obtained by aggregating estimators of each scattering transfer coefficient
TX(j1, j1+ l) for 0 ≤ j1 ≤ J− l. Let us suppose that Yj is an estimator of TX(j, j+ l) =
E(U [j,j+l]X)
E(|X⋆ψj |)

with bias bj = E(Yj−TX(j, j+ l)) and with finite variance. The aggregation

of estimators given by the weights h = (h0, . . . , hJ−l)
∑

0≤j≤J−l

hjYj (5.28)

has a mean-squared error

F (h) = E



∣∣∣
∑

j

hjYj − TX(l)
∣∣∣
2


 = TX(l)2+hTE(YYT )h−2TX(l)hT ((TX(l))u+b) ,

(5.29)
where b = (b0, . . . , bJ−l) and u = (1, . . . , 1). If we denote by Σ = E(YYT ) the corre-
lation matrix of the family of estimators, then this quadratic form is minimized by the
linear combination h∗ satisfying

h∗ = TX(l)Σ−1((TX(l))u + b) = TX(l)Σ−1E(Y) . (5.30)

If the family of estimators Yj is unbiased, then an unbiased aggregation h̄ must satisfy∑
j h̄j = 1; its mean squared error expression is simplified to

F (h̄) = E



∣∣∣
∑

j

h̄jYj − TX(l)
∣∣∣
2


 = E



∣∣∣
∑

j

h̄j(TX(l)− Yj)
∣∣∣
2


 , (5.31)

which implies that in this particular case, if Σ̄ = E((Y − TX(l)u)(Y − TX(l)u)T )
denotes the centered covariance of the estimators Yj, the MSE estimate is obtained by

h̄∗ = argmin
v ,

∑
j vj=1

vT Σ̄v , (5.32)
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which corresponds to the normalized eigenvector of Σ̄ with smallest eigenvalue.

The MSE estimator of the scattering transfer function is thus obtained from estimates
of each transfer coefficient TX(j, j + l), and require access to the covariance structure
of these estimators. The coefficients defining these estimators are however not known,
and need to be estimated from the data.

Let us now compute estimators of each scattering transfer coefficient TX(j1, j2).
The windowed scattering transform SJ [p]X = U [p]X ⋆ φJ is an unbiased estimator of
SX(p) = E(U [p]X), since

∫
φJ(u)du = 1. For a wide range of ergodic processes, we

observed that the variance of this estimator converges to zero as 2J → ∞, and hence
that SJ [p]X(u) converges in probability to the constant SX(p) as J →∞ [Mal12]:

∀ ǫ > 0 , lim
2J→∞

Prob(|SJ [p]X(u) − SX(p)| > ǫ) = 0 . (5.33)

A first estimate for the scattering transfer is given by the ratio of two windowed
scattering coefficients:

TJ [j1, j2]jX(u) =
SJ [j1, j2]X(u)

SJ [j1]X(u)
. (5.34)

We shall denote TJ [j1, j2] the windowed scattering transfer, by analogy with the win-
dowed scattering estimator. For a given J , this estimator is biased, since SJ [j1, j2]X(u)
and SJ [j1]X(u) are not independent random variables, and hence

E

(
SJ [j1, j2]X(u)

SJ [j1]X(u)

)
6= E(SJ [j1, j2](u))

E(SJ [j1]X(u))

in general.

However, since SJ [j1, j2]X(u)→ SX(j1, j2) in probability and SJ [j1]X(u)→ SX(j1)

in probability, then it results that TJ [j1, j2]X(u) = SJ [j1,j2]X(u)
SJ [j1]X(u) also converges in prob-

ability to SX(j1,j2)

SX(j1)
= TX(j1, j2) as long as SX(j1) > 0. As a result, the estimators

TJ [j1, j2]X(u) for (j1, j2) ∈ Z2 are asymptotically unbiased as the scale 2J →∞, for the
class of processes having a mean squared consistent scattering.

If X has stationary increments and X ⋆ψj have finite second moments, then one can
approximate the covariance of TJ [j1, j2]X using truncated Taylor approximations, as in
the Delta method [KM00]. Indeed, let us first suppose that SJ [j1, j2]X has finite energy
and that X satisfies the consistency condition (5.33). If the random variables X and Y
concentrate around their respective means µX and µY , we can consider a second order
approximation of the function g(X,Y ) = X

Y :

g(X,Y ) ≈ g(µX , µY ) +∇g(µX , µY ) · (X − µX , Y − µY )

+
1

2
(X − µX , Y − µY )THg(µX , µY )(X − µX , Y − µY ) , (5.35)

where Hg is the Hessian matrix Hg = ( ∂2g
∂xi∂xj

)i,j . By applying the approximation (5.35)

to X = SJ [j1, j2]X(u), Y = SJ [j1]X(u) and taking the expected value, we obtain an
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approximation of the bias of TJ [j1, j2]X(u):

E(TJ [j1, j2]X(u)) = E

(
SJ [j1, j2]X(u)

SJ [j1]X(u)

)

≈ E(SJ [j1, j2]X(u))

E(SJ [j1]X(u))
− Cov(SJ [j1, j2]X(u), SJ [j1]X(u))

E(SJ [j1]X(u))2

+E(SJ [j1, j2]X(u))
Var(SJ [j1]X(u))

E(SJ [j1]X(u))3

= TX(j1, j2) (5.36)

+
1

SX(j1)2
(TX(j1, j2)Var(SJ [j1]X(u)) − Cov(SJ [j1, j2]X(u), SJ [j1]X(u))) .

In particular, the leading bias term converges to 0 for processes having a mean squared
consistent scattering, since in that case both Var(SJ [j1]X(u)) and Cov(SJ [j1, j2]X(u), SJ [j1]X(u))
converge to 0 as J →∞.

Similarly, the covariance of (TJ [j1, j2]X)(j1<j2), which determines the MSE estimates
defined in (5.30, 5.32), is approximated by a second order development of the function
g(X1,X2, Y1, Y2) =

X1
Y1

X2
Y2

, yielding

E(TJ [j, j + l]X TJ [j
′, j′ + l]X) ≈ TX(j, j + l)TX(j′, j′ + l) +

Cov(SJ [j, j + l]X,SJ [j
′, j′ + l]X)

SX(j)SX(j′)
− SX(j′, j′ + l)Cov(SJ [j, j + l]X,SJ [j]X)

SX(j)2SX(j′)

−SX(j′, j′ + l)Cov(SJ [j, j + l]X,SJ [j
′]X)

SX(j)SX(j′)2
− SX(j, j + l)Cov(SJ [j

′, j′ + l]X,SJ [j]X)

SX(j)2SX(j′)

−SX(j, j + l)Cov(SJ [j
′, j′ + l]X,SJ [j

′]X)

SX(j)SX(j′)2
+
SX(j, j + l)SX(j′, j′ + l)Cov(SJ [j]X,SJ [j

′]X)

SX(j)2SX(j′)2

+
SX(j, j + l)SX(j′, j′ + l)Var(SJ [j]X)

SX(j)3SX(j′)
+
SX(j, j + l)SX(j′, j′ + l)Var(SJ [j

′]X)

SX(j)SX(j′)3
. (5.37)

The approximation (5.37) contains cross-correlation terms between first and second
order scattering across different scales. If X is a Gaussian process, then X ⋆ψj is nearly
decorrelated from X ⋆ ψj′ for j 6= j′, which implies that the covariance approximation
(5.37) can be simplified by removing the cross-scale correlation terms.

Figure 5.5 shows the scattering transfer estimators TJ [j1, j2]X corresponding to a
MRM cascade, together with the scattering transfer function estimator (5.28) with ag-
gregation coefficients given by (5.30), where all the covariances have been estimated with
the empirical covariances and the formulas (5.36, 5.37). We plot confidence intervals for
TX(j, j + l) for several values of j using an interval given by the mean of TJ [j, j + l]X
and its standard deviation. We observe that the variance of TJ [j, j+ l]X increases with j
for all values of l. This phenomena can be explained by approximating Var(TJ [j, j+ l]X)
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Figure 5.5: Estimation of transfer function for an MRM process with intermittency
λ2 = 0.1. We plot confidence intervals for scattering transfer coefficients TJ [j, j+ l]X(u)
for several values of j. In bold magenta we plot the estimated transfer function, using
the MSE estimation (5.30).

with the covariance approximation (5.37):

var
(
TJ [j1, j2]X(u)

)
≈

1

SX(j1)2

(
var(SJ [j1, j2]X) + 2TX(j1, j2)

√
var(SJX[j1, j2])var(SJ [j1]X)

+TX(j1, j2)
2var(SJ [j1]X)

)
, (5.38)

Section 5.5.4 will show that MRM have first order scattering coefficients SX(j1) which
converge towards a constant value. On the other hand, the variances var(SJ [j1, j2]X) and
var(SJ [j1]X) increase with j1, since the number of decorrelated samples in an interval of
size 2J is proportional to 2J−j1 . The MSE estimate takes these variances into account
by assigning lower aggregation weights to the estimates TJ [j1, j1 + l]X with large j1.

There are a variety of multifractals which do not have finite second moments, such
as α-stable Lévy processes with α < 2. In this case, the covariance of SJ [j1, j2] does
not exist, and hence the approximations derived in (5.36, 5.37) cannot be applied. The
large, rare jumps of such processes are also visible in the propagated processes |X ⋆ ψj|
and ||X ⋆ ψj1 | ⋆ ψj2 |.

However, the scattering transfer can mitigate the influence of these jumps, thanks to
cancellation due to the renormalization. This suggests a more general estimator of the
scattering transfer TX[j1, j2]:

TJ,J ′ [j1, j2]X(u) =

(
U [j1, j2]X ⋆ φ2J

U [j1]X ⋆ |ψ2j2 | ⋆ φ2J

)
⋆ φ2J′ (u) . (5.39)

The first scale parameter J averages the wavelet modulus coefficients U [j1, j2]X and
U [j1]X, but now we adjust the lowpass scales in such a way that the numerator and the
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Figure 5.6: Estimation of scattering transfer TX(1, l) for an α-stable Lévy process with
α = 1.3 with windowed transfer estimators for different values of J, J ′, using a total of
221 points. In purple, an “oracle” estimator TJX using 227 points. We plot confidence
intervals using the empirical average and standard deviation for each estimator.

denominator have the same spatial resolution. The second scale parameter J ′ averages
the windowed scattering transfer over a support proportional to 2J

′
. The available

samples are thus combined in two separate stages. The scale J determines the amount
of averaging on windowed scattering coefficients before they are combined to obtain an
estimate of the scattering transfer. The scale J ′ is then responsible for averaging the
normalized coefficients. The previous windowed scattering transfer corresponds to the
case where 2J

′
= 0 and J →∞.

Figure 5.6 compares windowed scattering transfer estimates (5.39) for different values
of J, J ′ for an equal amount of samples. We observe that adjusting the scale 2J of the
windowed scattering trades-off the bias and the variance of the estimator. The numerical
results from Figure 5.6 seem to indicate that the bias produced by a small J dominates
the risk of the estimator TJ,J ′ .

5.3.4 Asymptotic Markov Scattering

The scattering transfer has the capacity to predict a particular asymptotic of high order
scattering coefficients. As the scattering path increments grow, we observe that the
prediction error converges to 0 for a wide class of fractal processes.

A given path p = (j1, . . . , jm) defines a nonlinear operator U [p] =
∏

1≤i≤m U [ji] which
is built from a cascade of operators U [ji]. Since these operators are non-commutative,
the resulting scattering coefficients SX(p) = E(U [p]X) in general depend upon the
whole path p.

The scattering transfer can be used to predict high order scattering coefficients by
assuming a Markov propagation across scattering paths:

Definition 5.3.5 Let X be a process with stationary increments. The Markov scattering

propagation of X is defined by S
M
X(j1) = SX(j1) and for m ≥ 2 and progressive paths
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(j1 . . . jm) by

S
M
X(j1, ..., jm) = SX(j1)

m∏

k=2

TX(jk−1, jk) . (5.40)

A process X has an asymptotic Markov Scattering if

lim
min(jk−jk−1)→∞

∣∣∣SX(j1, ..., jm)− SMX(j1, . . . , jm)
∣∣∣ = 0 , (5.41)

This property means that if the jumps jk − jk−1 of p = (j1 . . . jm) are large enough,
the scattering coefficient SX(p) can be obtained from its ancestor p0 = (j1 . . . jm−1)
using the scattering transfer:

lim
jm→∞

|SX(p)− SX(p0)TX(jm−1, jm)| = 0 .

This property is important since it ensures that the asymptotic behavior of scattering
coefficients is captured by first and second order scattering. This phenomena is in accor-
dance with the previous chapters, where we saw that first and second order coefficients
captured most of the discriminative information in most of the encountered situations.

For a fractal X, the asymptotic Markov property is verified by computing the average
relative error

eX(l) =
1

|Pl|
∑

p∈Pl

|SX(p)− SMX(p)|2
|SX(p)|2 , (5.42)

where
P
l = {p = (j1 < · · · < jm) ∈ PJ ; min

k
jk − jk−1 = l}

denotes the set of progressive paths whose smallest jump is equal to l. The asymptotic
first order Markov property predicts that liml→∞ eX(l) = 0.

Next section shows that several monofractal processes have the asymptotic Markov
scattering property.

5.4 Scattering Analysis of Monofractal Processes

This section computes the Scattering transfer for several monofractal processes. We
derive the asymptotic behavior of the scattering transfer for the white gaussian noise
and Fractional Brownian Motions. The scattering transfer yields a new signature which
allows identification and discrimination of different fractal families. In particular, the
exponent α in the scaling law TX(l) ≃ 2lα reveals information about the fractal family
and its associated parameter.

5.4.1 Gaussian White Noise

We consider in this section the white Gaussian noise, which is a self-similar noise with
monofractal behavior. We compute the first order scattering coefficients as well as the
asymptotics of its scattering transfer.
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Theorem 5.4.1 Let dX(t) be a Gaussian white noise of unit variance, and suppose the
scattering is computed with an analytic wavelet ψ with fast decay. Then the following
properties hold:

1. SdX(j) = ‖ψ‖2
√

π
4 2

−j/2.

2. Its scattering transfer satisfies TdX(j1, j2) = TdX(j1 − j2) , ∀(j1, j2) ∈ Z×Z, and

lim
l→∞

2l/2TdX(l) =

√∫
R|dX⋆ψ|(τ)dτ . (5.43)

Proof: Let us first prove (i). Since dX(t) follows a Gaussian distribution, so does
dX ⋆ ψj , and hence |dX ⋆ ψj |(t) is a Rayleigh random variable, since ψj is analytic. Its
mean does not depend upon t and is given by E(|dX ⋆ψj |) =

√
π
4

√
E(|dX ⋆ ψj |2). Since

dX is a white noise of unit variance, its spectral density is given by

R̂dX(ω) = 1 ,

and hence

E(|dX ⋆ ψj |2) =
∫
R̂dX(ω)|ψ̂j(ω)|2dω = 2−j‖ψ‖22 ,

which implies that

SdX(j) = E(|dX ⋆ ψj |) = ‖ψ‖2
√
π

4
2−j/2 .

We shall now prove (ii). The first statement, namely that the scattering transfer
satisfies TdX(j1, j2) = TdX(j2 − j1), follows immediately from Proposition 5.3.2, since

dX is self-similar for all scales, with DjdX(t)
l
= 2j/2dX(t).

Let us now study the scattering transfer. Since dX is self-similar,

||dX ⋆ ψj1 | ⋆ ψj2 |
l
= Dj1 ||D−j1dX ⋆ ψ| ⋆ ψj2−j1 |

l
= 2−j1/2Dj1 ||dX ⋆ ψ| ⋆ ψj2−j1 .

If we write l = j2−j1, we will prove (5.43) by first proving that the sequence of stationary
processes Zl = 2l/2|dX ⋆ψ|⋆ψl converges in distribution to a Gaussian process, and then
showing that this convergence yields a convergence of the first and second moments of
Zl. The following lemma, proved in Appendix B.1, shows that the second moments of
Zl are uniformly bounded and converge towards a non-zero constant:

Lemma 5.4.2 Let Zl(t) = 2l/2|dX⋆ψ|⋆ψl(t), l ∈ N, and let γ0 = ‖ψ‖22(
∫
R|dX⋆ψ|(τ)dτ),

γ1 = ‖ψ‖22‖
∫
R|dX⋆ψ|‖1. Then γ0 , γ1 < ∞, and the sequence of random variables Zl(t)

satisfies
∀l , E(|Zl(t)|2) ≤ γ1 , and lim

l→∞
E(|Zl(t)|2) = γ0 . (5.44)

The convergence towards a gaussian distribution is given by the following lemma, proved
in Appendix B.2:
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Lemma 5.4.3 The sequence of stationary processes Zl = 2l/2|dX ⋆ψ|⋆ψl, l ∈ N, satisfy

∀ t , lim
l→∞

Zl(t)
d−→ Z = Z(r) + iZ(i) , (5.45)

where Z(r), Z(i) ∼ N(0, σ2/2), σ2 = liml→∞E(|Zl|2), and
d→ denotes convergence in

distribution.

Let us first see how (5.45) implies (5.43). Since the complex modulus F (X(t)) = |X(t)|
is a continuous function, it follows from the Continuous Mapping Theorem on metric
spaces ([Pol84], Theorem 12) that (5.45) implies

∀t , lim
l→∞
|Zl(t)| d−→ R , (5.46)

where R follows a Rayleigh distribution.
We can exploit the convergence in distribution to obtain the asymptotic behavior

of the moments of Zl. The following lemma, proved in Appendix B.3, shows that the
convergence in distribution in such conditions implies the convergence of the first and
second moments:

Lemma 5.4.4 The sequence Zl = 2l/2|dX ⋆ ψ| ⋆ ψl satisfies

∀ t , lim
l→∞

E(|Zl(t)|r) = E(Rr) , for 1 ≤ r ≤ 2 , (5.47)

where R follows a Rayleigh distribution.

Using these lemmas, from (5.47) it follows that

liml→∞E(|Zl|2)
liml→∞E(|Zl|)2

=
E(|R|2)
E(|R|)2 =

4

π
,

implying that

lim
l→∞

E(|Zl|) = lim
l→∞

√
π

4

√
E(|Zl|2) =

π

4
‖ψ‖2

√∫
R|dX⋆ψ|(τ)dτ , (5.48)

and hence

lim
l→∞

2l/2TdX(l) = lim
l→∞

E(|Zl|)
E(|dX ⋆ ψ|) =

√∫
R|dX⋆ψ|(τ)dτ , (5.49)

which finishes the proof �.
Figure 5.7 shows the first order scattering and the transfer function estimated from

the windowed scattering transform using 100 realizations of size N = 216. We display
the logarithms logSdX(j) and log TdX(l) in order to reveal the power law behavior
predicted by proposition 5.4.1:

SdX(j) ≃ 2−j/2 , TdX(l) ≃ 2−l/2 .
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Figure 5.7: (a) plot of log SdX(j) as a function of j, estimated from 100 realizations
of N = 216 points. (b) plot of log TdX(l) as a function of l, estimated from the same
number of realizations. We verify that SdX(j) ∼ 2−j/2 and TdX(l) ∼ 2−l/2.

For small l, we notice that the scattering transfer of dX does not follow the scaling law.
Indeed, in that case U [j1]dX ⋆ ψj1+l has a distribution which is not well approximated
by a Gaussian distribution. However, convergence is observed relatively early, at l ≈ 3.

The proof of proposition 5.4.1 showed that the second order wavelet modulus process
U [1, l]dX(t) = ||dX ⋆ ψ| ⋆ ψl|(t) converges for all t in distribution towards a Rayleigh
distribution, as l→∞. Thus, for sufficiently large l, U [1, l]dX(t) has approximately the
same distribution as U [l]dX(t) = |dX ⋆ ψl|(t), up to a normalization factor:

∀t , ||dX ⋆ ψ| ⋆ ψl|(t)
d≈ Cl|dX ⋆ ψl|(t) , l ≫ 1 . (5.50)

It follows that when j2 ≫ j1, then third order scattering coefficients satisfy

SdX(j1, j2, j3) = SdX(j1)
SdX(j1, j2)

SdX(j1)

SdX(j1, j2, j3)

SdX(j1, j2)

≈ SdX(j1)TdX(j2 − j1)
Cj1,j2E(|dX ⋆ ψj2 | ⋆ ψj3 |)
Cj1,j2E(|dX ⋆ ψj2 |)

= SdX(j1)TdX(j2 − j1)TdX(j3 − j2) ,

and, by repeating the argument on higher order scattering, we obtain the asymptotic
Markov property. Table 5.1 shows the relative approximation error

eX(l) =
1

|Pl|
∑

p∈Pl

|SX(p)− SMX(p)|2
|SX(p)|2

,

introduced in (5.42), which measures the asymptotic Markov scattering property. We
verify that for large enough minimum jump, the Markov approximation reaches a relative
approximation error of 10−3.

The proof of the asymptotic Markov property requires showing that the approxima-
tion in distribution (5.50) is sufficient to invoke a central limit theorem as the jumps
between scales increase. The proof of lemma 5.4.3 shows that having an integrable
autocorrelation is a nearly sufficient condition. This motivates the following conjecture:
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Table 5.1: Average Markov approximation error edX(l) as a function of minimum path
jump l. The error is computed over paths of order m ≤ 4.

l 1 2 3 4 5 6

edX(l) 1.5 · 10−2 8 · 10−3 5 · 10−3 5 · 10−3 2 · 10−3 1 · 10−3

Conjecture 5.4.5 Let X be a stationary process with finite energy σ2 = E(|X(t)|2),
and such that RX ∈ L1. Then

lim
l→∞

2l/2E(|X ⋆ ψλ|) = ‖ψ‖2
√
π
∫
RX(τ)dτ

4
. (5.51)

5.4.2 Fractional Brownian Motion and FGN

Fractional Brownian Motions are an important class of monofractal processes. They
are not stationary but do have stationary increments, which allows us to compute its
expected scattering representation. Its associated increment processes are Fractional
Gaussian Noises (FGN), which are stationary.

The following proposition shows that the Hurst exponent of a Fractional Brownian
Motion is captured by first order scattering coefficients, while its scattering transfer has
the same asymptotic behavior as the White Gaussian noise.

Proposition 5.4.6 Let XH(t) be a Fractional Brownian Motion with Hurst exponent
0 < H ≤ 1. Let ψ be analytic, with fast decay and such that the zeros of ψ̂(ω) in
ω ∈ (0,∞) form a discrete set. Then the following properties hold:

1. SXH(j) = C2jH, with C =

√
πE(|XH⋆ψ|2)

4 .

2. Its scattering transfer satisfies TXH(j1, j2) = TXH(j1 − j2) and

lim
l→∞

2l/2TXH(l) =

√∫
R|XH⋆ψ|(τ)dτ . (5.52)

Proof: The process Xj(t) = XH ⋆ ψj(t) is a stationary Gaussian process [Mal08], with
power spectrum given by:

R̂Xj
(ω) = σ20 |ψ̂(2jω)|2|ω|−(2H+1) . (5.53)

As a result, a change of variables shows that

E(|Xj |2) =
∫
R̂Xj

(ω)dω = 22jHC ,
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with C = E(|XH ⋆ ψ|2). Since Xj is Gaussian, we conclude that SXH(j) = E(|Xj |) =√
πC
4 2jH .

The second statement can be derived directly from theorem 5.4.1. Indeed, XH is
obtained from a white Gaussian noise dX with a fractional linear, translation operator,
acting on the wavelet:

∀t , XH ⋆ ψj(t)
l
= dX ⋆ ψHj (t) ,

where
∀ω , ψ̂H(ω) = ψ̂(ω)ω−(2H+1)/2 .

If ψ is analytic and with fast decay, it results that ψH is analytic and with fast decay
as well. Besides, the zeroes of ψ̂H(ω) in (0,∞) are the same as the zeroes of ψ̂. Thus,
ψH satisfies the admissibility conditions of proposition 5.4.1, and hence we can replace
Zl = 2l/2|dX ⋆ ψ| ⋆ ψl by ZHl = 2l/2|dX ⋆ ψH | ⋆ ψl in (5.43) to obtain

lim
l→∞

2l/2TXH(l) =

(∫
R|dX⋆ψH |(τ)dτ

) 1
2

�.

Figure 5.8 shows the first order scattering and the transfer function of fractional
brownian motions for H = 0.2, 0.4, 0.6, 0.8, estimated from the windowed scattering
transform using 100 realizations of size N = 216. We identify the first scaling exponent
SXH(j) ≃ 2jζ(1), with ζ(1) = H, and we verify that the scattering transfer satisfies
TXH(l) ≃ 2−l/2.

Fractional Gaussian noises dXH(t) are defined as the increment processes of Frac-
tional Brownian Motions. They are self-similar stationary processes, satisfying

∀t ≥ 0 , dXH(st)
l
= sH−1dXH(t) .

The proof of proposition 5.4.6 shows that the same arguments can be applied to dXH

to obtain SdXH(j) ≃ 2j(H−1) and TdXH(l) ≃ 2−l/2. Figure 5.9 displays the scattering
results for Fractional Gaussian Noises dXH(t) for H = 0.2, 0.4, 0.6, 0.8, which confirm
the predicted asymptotic behavior.

5.4.3 Lévy Processes

We consider in this section α-stable Lévy processes. Self-similar Lévy processes, de-
scribed in section 5.2.7, have heavy tailed distributions, and its realizations contain rare,
large, events which critically influence its moments. This phenomena appears frequently
in nature in a variety of multifractal processes. In particular, an α-stable Lévy pro-
cess only has moments strictly smaller than α. Figure 5.10 shows realizations of the
increments of Lévy processes for α = 1.1 , 1.3 1.5, revealing the presence of rare, large
jumps.

If Xα is a α-stable Lévy process, its associated jump process dXα is distributed
according to the Lévy measure Π(x), defined in (5.9), and satisfies E(|dXα|) < ∞. It
results from the first order bound (5.17) that its second order scattering representation
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Figure 5.8: (a) plot of logSXH(j) estimated from 100 realizations of N = 216 points.
(b) plot of log TXH(l), estimated from the same number of realizations. We verify that
SXH(j) ∼ 2jH and TXH(l) ∼ 2−l/2.

is well defined. We estimate its first order scattering and its scattering transfer using the
estimation described in Section 5.3.3. Figure 5.11 shows the log-plot of first order scat-
tering coefficients and the transfer function. For each value of α, we plot the estimated
transfer TdXα(l) together with the confidence interval ±σ for each l.

Since by definition Xα and dXα are self-similar with

∀ t Xα(st)
l
= s1/αX(t) , dXα(st)

l
= s1/α−1dXα(t) ,

the first order scattering coefficients of dXα recover the scaling law of the first moments
of its increments:

lim
j→∞

2−j(α
−1−1)SdXα(j) = lim

j→∞
2−j(α

−1−1)E(|dXα ⋆ ψj |) = C .

Figure 5.11-(a) confirms this scaling law.
The analysis of the scattering transfer, however, reveals that TdXα(l) behaves very

differently than in the Brownian case. Figure 5.11 and Table 5.2 show that TdXα(l) has
approximately the same scaling law as SdXα(j). These results can be interpreted as
follows. Lévy processes with α < 2 contain rare, large jumps, as seen in the examples of
figure 5.10, and whose distribution is dictated by the Lévy measure Π(x). These sparse,
large events are transmitted to the processes U [j]dXα(t) = |dXα ⋆ ψj|(t), in the sense
that U [j]dXα also contains rare, large events which dominate its moments, for each scale
j. The sparsity of U [j]dXα means that the interaction between jumps is not statistically
significant, and thus that we can approximate each U [j]dXα by

∀ t |dXα ⋆ ψ|(t)
l≈ |dXα ⋆ |ψ||(t) ,

which smoothes the jumps with the envelope |ψ|. As a result, it follows that

||dXα ⋆ ψj1 | ⋆ ψj2 |
l≈ |dXα ⋆ (|ψj1 | ⋆ ψj2)|

l≈ Cj1 |dXα ⋆ ψj2 | , j2 ≫ j1 , (5.54)
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Figure 5.9: (a) plot of log SdXH(j) estimated from 100 realizations of N = 216 points.
(b) plot of log TdXH(l), estimated from the same number of realizations. We verify that
SdXH(j) ∼ 2jH and TdX(l) ∼ 2−l/2.

Table 5.2: Estimated scaling laws from the first order scattering coefficients and the
scattering transfer for different α-stable Lévy processes

α H = α−1 − 1 H1 from SJdXα(j) ≃ 2jH1 H2 from TJdXα(l) ≃ 2lH2

1.1 −0.1 −0.14 −0.13
1.3 −0.23 −0.21 −0.2
1.5 −0.33 −0.34 −0.33

which implies that

TdXα(l) =
E(||dXα ⋆ ψ| ⋆ ψl|)
E(|dXα ⋆ ψ|)

≈ C0E(|dXα ⋆ ψl|)
E(|dXα ⋆ ψ|)

= CSdXα(l) , l≫ 1 .

Thus, contrarily to the Brownian case, where the filtering XH ⋆ ψj removes the
long range dependencies of the process which determine its characteristic exponent,
the wavelet coefficients of Lévy processes are still influenced by the large excursions in
amplitude characterizing the jumps. The conjectured behavior (5.54) predicts that the
amplitude of wavelet coefficients varies as a function of the scale following the same
scaling law as the original jump process.

5.5 Scattering of Multifractal Processes

Multifractal processes are characterized by a concave scaling exponents function ζ(q),
which implies the existence of an integral scale. By introducing an asymptotic scattering
energy propagation condition, we give a measure of the curvature of ζ(q) from the
scattering transfer function.
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Figure 5.10: Realizations of α-stable Lévy process. (a) α = 1.1, (b) α = 1.3, (c) α = 1.5.
Notice that the intensity of the jumps is reduced by an order of magnitude from one
panel to the next.

5.5.1 Multifractal Scattering transfer

A transfer function is defined for multifractal processes having an integral scale, thanks
to their stochastic self-similarity.

As explained in Section 5.2.4, a multifractal process X(t) is characterized by a
stochastic self-similarity defined in (5.2), which yields a non-linear scaling exponent
ζ(q). The curvature of ζ(q) thus measures the degree of multifractality of the process,
also referred as intermittency. We will now develop a tool which measures the curvature
of ζ(q) from first and second order scattering coefficients. In particular, we will indi-
rectly measure ζ(q) at q = 1 and q = 2, which yields a measure of the curvature with
ζ(2)− 2ζ(1).

The intermittency ζ(2) − 2ζ(1) is usually difficult to estimate for a fractal process,
since the estimation of

E(|X ⋆ ψj |2)
E(|X ⋆ ψj |)2

≃ 2j(ζ(2)−2ζ(1))

requires to evaluate a second order moment E(|X ⋆ ψj|2) at large scales 2j and the
estimation of such a moment has a high variance.
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Figure 5.11: (a) plot of logSdXα(j) for α-stable Lévy processes, estimated from 64
realizations of N = 220 points. (b) plot of log TdXα(l), estimated from the same number
of realizations.

Let us start by defining a scattering transfer function for processes with stochastic
self-similarity, up to an integral scale T = 2J . We consider multifractal processes which
decorrelate beyond this integral scale, an assumption justified in physical applications
such as turbulence.

The stochastic self-similarity of definition 5.2.2 induces a decomposition of the mul-
tifractal X(t) as a random cascade [BKM08a]:

X(t) =

J∏

j=−∞

Yj(t) , (5.55)

where Yj(t) are independent processes with E(Yj) = 1, and whose spectral density is
concentrated in the interval (−2−j, 2−j). Let us show that this decomposition defines
a scattering transfer having the same invariance as self-similar processes on a subset of
scattering paths determined by the integral scale J . Section 4.7 showed that the wavelet
coefficients of a process of the form YsYf , where Ys is smooth with respect to Yf , satisfies

(YsYf ) ⋆ ψj(t) ≈ Ys(Yf ⋆ ψj)(t) ,

with a mean squared error bound which depends upon the amount of energy of Ys in
the frequencies where |ψ̂j | is non-negligible. Since each term Yj in (5.55) has its energy
concentrated on frequencies in the dyadic interval (−2j , 2j), it results that

X ⋆ ψj1 ≈
∏

j1<j≤J

Yj(t)




j1∏

j=−∞

Yj ⋆ ψj1


 ,

and hence

|X ⋆ ψj1 | ≈
∏

j1<j≤J

Yj(t)

∣∣∣∣∣∣

j1∏

j=−∞

Yj ⋆ ψj1

∣∣∣∣∣∣
.
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It follows that if j2 ≤ J ,

||X ⋆ ψj1 | ⋆ ψj2 | ≈
∏

j2<j≤J

Yj

∣∣∣∣∣∣
∏

j1<j≤j2

Yj

∣∣∣
∏

j≤j1

Yj ⋆ ψj1

∣∣∣ ⋆ ψj2

∣∣∣∣∣∣
,

and, since E(Yj) = 1 for all j,

TX(j1, j2) ≈
E
(∣∣∣
∏
j1<j≤j2

Yj

∣∣∣
∏
j≤j1

Yj ⋆ ψj1

∣∣∣ ⋆ ψj2
∣∣∣
)

E
(∣∣∣
∏j1
j=−∞ Yj ⋆ ψj1

∣∣∣
) . (5.56)

The scattering transfer coefficient TX(j1, j2) can thus be approximated by TX̃j2(j1, j2),
where X̃j2(t) =

∏
j≤j2

Yj(t) is the truncated cascade. But X̃j2 satisfies the stochastic
self-similarity relation

{DsX̃j2(t)}t
l
= {WsX̃j2+s(t)}t ,

where Ws is independent from X̃j. It results that if j′1, j
′
2 satisfy j′1 < j′2 ≤ J and

j2 − j1 = j′2 − j′1, then

TX(j′1, j
′
2) ≈ TX̃j′2

(j′1, j
′
2)

=
E(||X̃j′2

⋆ ψj′1 | ⋆ ψj′2 |)
E(|X̃ ⋆ ψj′1 |)

=
E(Wj′1−j1

)E(||X̃j2 ⋆ ψj1 | ⋆ ψj2 |)
E(Wj′1−j1

)E(|X̃j2 ⋆ ψj1 |)
= TX̃j2(j1, j2) ≈ TX(j1, j2) , (5.57)

which shows that

TX(j1, j2) ≈ TX(j2 − j1) ,

for j1, j2 < J . For j2 > J , the decorrelation at large scales induces a transfer function
which converges to that of the Gaussian white noise, with an asymptotic behavior C2−l/2

as seen in Section 5.4.1. The resulting scattering transfer is

TX(j1, j2) ≈





TX(j2 − j1) if j1 < J and j2 < J

C 2(J−j2)/2 if j1 < J and j2 ≥ J
C 2(j1−j2)/2 if J ≤ j1 < j2

(5.58)

The transfer function TX(l) of X is thus defined for all l ≥ 0. Figure 5.12 shows the
estimated scattering transfer for the random MRM with λ2 = 0.04, with an integral scale
2J ≈ 217. As predicted, paths (j1, j2) with j1 < j2 < J satisfy the invariance induced
by the self-similarity, whereas as soon as j2 ≥ J , the scattering transfer decays as in the
white gaussian noise.
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Figure 5.12: Estimation of the scattering transfer for an MRM random cascade with
λ2 = 0.04. We plot the curves Tj(l) = TdX(j, j + l) as a function of l, and different
colors stand for different values of j.

5.5.2 Energy Markov Property

We introduce an energy Markov property, which yields a measure based on the scattering
transfer function with a scaling exponent given by ζ(2).

If X(t) is a multifractal process with integral scale J , then its second moments satisfy

∀j < J , E(|X ⋆ ψj|2) ≃ 2(j−J)ζ(2) .

Our objective is to define a measure based on first and second order scattering coeffi-
cients having a power law behavior given by ζ(2). Although the scattering representation
is computed from first moments of X(t) and its wavelet modulus decompositions, the
conservation of energy described in Section 2.3.5 allows us to compute the second mo-
ments E(|X ⋆ ψj |2) from its scattering representation. In particular, proposition 2.6.1
showed that if X is a process with stationary increments, such that SJX is mean square
consistent, then

E(|X ⋆ ψj |2) =
∑

p∈P∞

|SX(j + p)|2 . (5.59)

The energy of the process X⋆ψj can thus be recovered by summing all the scattering
coefficients starting by j. Section 2.6.5 also showed that most of the scattering energy
is concentrated within the set of progressive paths p ∈ P↓ satisfying p = (j1 . . . jm) with
ji > ji+1.

The scattering transfer can be used to predict high order scattering coefficients, using
the markov scattering propagation defined in (5.40):

S
M
X(j1, ..., jm) = SX(j1)

m∏

k=2

TX(jk−1, jk) .
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We can thus consider the quantity

∑

p∈P↓

|SMX(j + p)|2 , (5.60)

which depends only upon first and second order scattering coefficients. Moreover, since
X is decorrelated beyond an integral scale 2J , most of the energy in (5.60) is captured
by paths whose maximum scale is smaller than 2J :

∑

p∈PJ
↓

|SMX(j + p)|2 , (5.61)

where PJ↓ is the set of progressive paths with maximum scale given by 2J .
We can then characterize the processes X for which this scattering measure gives

information about ζ(2):

Definition 5.5.1 A multifractal process X with stationary increments and with integral
scale 2J has the energy Markov property if there exist constants C−, C+ > 0 such that

∀j ≤ J , C−E(|X ⋆ ψj |2) ≤
∑

p∈PJ
↓

|SMX(j + p)|2 ≤ C+E(|X ⋆ ψj |2) . (5.62)

This property thus asks that, for all j, the energy captured by all scattering co-
efficients to be comparable to the energy captured by progressive, Markov scattering
coefficients. It is a much weaker condition than the asymptotic Markov scattering, since
we only demand an overall approximation of the energy instead of approximating each
scattering coefficient. Section 5.5.4 shows numerical simulations showing that all tested
multifractal processes satisfy the energy Markov property.

If a process X(t) has the energy Markov property, then the following proposition
shows that 2ζ(1) − ζ(2) can be recovered from the scattering transfer.

Proposition 5.5.2 Let X(t) be a process with stationary increments, with an integral
scale 2J , scaling exponents ζ(q), and satisfying the energy Markov property (5.62). Then
there exist constants C−, C+ > 0 such that

C− ≤ lim
j→−∞

2(J−j)(ζ(2)−2ζ(1))
∑

p∈PJ
↓

p(1)=j

|p|∏

k=2

TX(jk − jk−1)
2 ≤ C+ , (5.63)

and hence

lim
j→−∞

(J − j)−1 log2



∑

p∈PJ
↓

p(1)=j

|p|∏

k=2

TX(jk − jk−1)
2


 = 2ζ(1)− ζ(2) . (5.64)
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Proof: By definition,

S
M
X(j1 . . . jm) = SX(j1)

m∏

k=2

TX(jk, jk−1) .

If p ∈ PJ↓ , then (5.58) shows that TX(jk, jk−1) = TX(jk − jk−1). Then, property (5.62)
implies that there exist C1,−, C1,+ such that

C1,− ≤ lim
j→−∞

(
E(|X ⋆ ψj |2)

)−1
SX(j)2

∑

p∈PJ
↓

p(1)=j

|p|∏

k=2

TX(jk − jk−1)
2 ≤ C1,+ ,

which in turn implies that there exist C2,−, C2,+ satisfying

C2,− ≤ lim
j→−∞

2(J−j)ζ(2)SX(j)2
∑

p∈PJ
↓

p(1)=j

|p|∏

k=2

TX(jk − jk−1)
2 ≤ C2,+ .

Since E(|X ⋆ ψj|) = SX(j) and there exists constants C3,−, C3,+ with

C3,− ≤ lim
j→−∞

2(J−j)ζ(1)E(|X ⋆ ψj|) ≤ C3,+ ,

it follows that we can find constants C4,−, C4,+ so that

C4,− ≤ lim
j→−∞

2(J−j)(ζ(2)−2ζ(1))
∑

p∈PJ
↓

p(1)=j

|p|∏

k=2

TX(jk − jk−1)
2 ≤ C4,+ ,

which proves (5.63). As a result, by taking the limit of the logarithm as j → −∞, we
obtain (5.64) �.

This proposition shows that the scattering transfer is directly associated with the
curvature of the scaling exponents ζ(q). Under the energy Markov property, the ratio

between first and second moments,
E(|X⋆ψj |2)
E(|X⋆ψj |)2

, is expressed in terms of ratios between first

and second order scattering coefficients, which are both computed with non-expansive
operators applied to the multifractal.

The Markov energy property is numerically verified for several multifractal processes.
Figure 5.13 compares the estimated second moments E(|dX ⋆ ψj |2) with the prediction
using the scattering transfer over progressive paths, given by (5.61). We confirm em-
pirically that they yield the same scaling law, and hence that they verify the Markov
energy property.
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Figure 5.13: Numerical verification of Markov energy property for different multifractal
families. From top to bottom: White gaussian noise, Fractional Brownian motion with
H = 0.4, α-stable Lévy process with α = 1.3, MRM cascade with λ2 = 0.04, MRW
cascade with λ2 = 0.04, Mandelbrot cascade. In blue we display the estimated second
moments E(|dX ⋆ ψj |2) as a function of j. In red, the predicted second moments using
the Markov energy model from (5.61), also as a function of j.
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5.5.3 Intermittency characterization from Scattering transfer

This section proves that if the energy Markov property is satisfied, we can obtain ζ(2)−
ζ(1) from the smallest zero of a series defined by the scattering transfer.

We saw in (5.64) that thanks to the energy Markov property, we can obtain 2ζ(1)−
ζ(2) as the limit of a quantity defined entirely from the scattering transfer. We shall see
in this section that one can make the dependency explicit as the root of a series defined
from T .

Let us consider the following power series defined from the scattering transfer of X:

TX(z) =
∑

l≥1

TX(l)2zl , z ∈ C . (5.65)

The following theorem proves that the limit defining 2ζ(1)−ζ(2) is equal to the logarithm
of the smallest real x < 1 satisfying

TX(x) = 1 , (5.66)

Theorem 5.5.3 Let X be a self-similar process with an integral scale 2J , and such
that X satisfies the energy Markov property (5.5.1). Let ‖TX‖2 =

∑
l≥1 TX(l)2, and

TX(z) =
∑

l≥1 TX(l)2zl. Then

1. 2ζ(1)− ζ(2) > 0 if and only if ‖TX‖ > 1, and

2. If ρ is the smallest x ∈ R+ satisfying TX(x) = 1, then

2ζ(1) − ζ(2) = max(0,− log2(ρ)) . (5.67)

Proof: Let us first turn the limit j → −∞ in (5.64) into a limit where the integral
scale J →∞. If X has integral scale J , then D−jX(t) = X(2jt) has integral scale J − j.
The ratio

E(|X ⋆ ψj |2)
E(|X ⋆ ψj |)2

can be rewritten as
E(|D−jX ⋆ ψ|2)
E(|D−jX ⋆ ψ|)2

where the integral scale of D−jX increases to J − j as j → −∞.

The transfer function of D−jX only depends upon j through its domain of definition,
which controls when it reaches its integral scale J − j. We define

F (J − j) = (S
M
D−jX(0))−2

∑

p∈PJ−j

S
M
D−jX(0 + p)2

=
∑

p∈PJ−j

∏

j1=0<j2<..jm≤J−j

T (jk − jk−1)
2 .
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and we write J̃ = J − j. As a result, the energy Markov property (5.64) is equivalent to

lim
J̃→∞

log2 F (J̃)

J̃
= 2ζ(1)− ζ(2) . (5.68)

We shall now compute the limit in terms of F (J̃).
Let us first prove that ‖TX‖ ≤ 1 implies 2ζ(1) − ζ(2) = 0. We decompose F (J̃) in

terms of the path orders:

F (J̃) = 1 +
J̃∑

m=2

F (J̃)m ,

where
F (J̃)m =

∑

p∈P
J̃
,|p|=m

∏

p=(j1...jm)

T (jk − jk−1)
2 .

The quantity F (J̃)m is bounded by indexing the set of paths BJ̃ ,m = PJ̃ ∩{|p| = m}
from BJ̃ ,m−1 as

F (J̃)m =
∑

p∈P
J̃
,|p|=m

∏

p=(j1,..jm)

T (jk − jk−1)
2

=
∑

p∈P
J̃
,|p|=m−1

∑

J̃≥j′>jm−1

T (j′ − jm−1)
2

∏

p=(j1,..jm−1)

T (jk − jk−1)
2

=
∑

p∈P
J̃
,|p|=m−1

∏

p=(j1,..jm−1)

T (jk − jk−1)
2


 ∑

J̃≥j′>jm−1

T (j′ − jm−1)
2




≤ F (J̃)m−1‖T‖2 .

As a result,

F (J̃) ≤ 1 +

J̃∑

m=2

‖T‖2m . (5.69)

This shows that F (J̃) grows at most as C‖T‖2J̃ , which means that

lim
J̃→∞

log2 F (J̃)

J̃
≤ log2 ‖T‖2 . (5.70)

Since ζ(q) is concave, necessarily 2ζ(1) − ζ(2) ≥ 0, and we deduce from (5.70) that if
‖TX‖ ≤ 1 then 2ζ(1) − ζ(2) = 0.

Let us now prove (5.67). For this purpose, we use an alternative decomposition of
the set PJ̃ . Let

QJ̃ = {p = (j1 . . . jp) ∈ PJ̃ ; jp = J̃}
denote the subset of paths in PJ̃ which end by J̃ , and

(S, j0) = {p ∈ PJ̃ : p = (p′, j0) : p′ ∈ S}
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denote the set which extends S with a fixed scale j0. For each ∆ > 0, we have the
following disjoint decompositions:

PJ̃ = PJ̃−1 ∪ QJ̃ ,

QJ̃ = (PJ̃−∆−1, J̃) ∪ (QJ̃−∆, J̃) ∪ . . . ∪ (QJ̃−1, J̃) . (5.71)

Let E(S) =
∑

p∈S

∏
j1...jk

T (jk − jk−1)
2. The normalized energy corresponding to the

set (QJ̃−l, J̃) is computed as

E((QJ̃−l, J̃)) =
∑

p∈(Q
J̃−l

,J̃)

∏

j1...jk

T (jk − jk−1)
2

=
∑

p∈Q
J̃−l

∏

j1...jk

T (jk − jk−1)
2T (l)2

= T (l)2E(QJ̃−l) .

If Q(j) = E(Qj), then the relations (5.71) yield

F (J̃) = E(PJ̃ ) = E(PJ̃) + E(Qtj) = F (J̃ − 1) +Q(J̃) ,

Q(J̃) =

∞∑

l=1

T (l)2Q(J̃ − l) . (5.72)

By substituting Q(J̃) = F (J̃)−F (J̃−1) in (5.72) we obtain the following linear recursion
on F (J̃):

F (J̃) = b0F (J̃ − 1) + b1F (J̃ − 2) + . . . + b∆F (J̃ −∆− 1) + . . . , (5.73)

where the coefficients are given by

{
b0 = 1 + T (1)2 ,

bl = T (l + 1)2 − T (l)2 , l ≥ 1 .
(5.74)

Since F (J̃) = 0 , J̃ < 0 and bl = 0 , l < 0, we define their causal Z-transforms as

F(z) =
∑

n≥0

F (n)z−n ,

B(z) =
∑

n≥0

bnz
−n . (5.75)

The linear recurrence (5.73) becomes

F (n+ 1) =
∑

l≥0

blF (n− l) = (F ⋆ b)(n) , n ≥ 0 . (5.76)
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Since F (0) = 1 and the Z-transform of a convolution F ⋆ b is F(z) · B(z), the linear
relation (5.76) is expressed in the transformed domain as

z + F(z)B(z) = zF (0) +
∑

n≥0


∑

n′≥0

F (n′)bn−n′


 z−n

= zF (0) +
∑

n≥0

F (n+ 1)z−n

= zF (0) + z
∑

n>0

F (n)z−n

= zF(z) . (5.77)

As a result, we have

F(z)(1 − z−1
B(z)) = F(z)PT (z) = 1 , (5.78)

where

PT (z) = 1− z−1
∑

l≥0

blz
−l . (5.79)

If z0 is a zero of PT (z), then necessarily it must also be a pole of F(z).

On the other hand, the radius of convergence of the complex series F(z−1) is given
by

R = lim sup
J̃→∞

F (J̃)−1/J̃ = lim
J̃→∞

F (J̃)−1/J̃ = 22ζ(2)−2ζ(1) ,

thanks to the Cauchy-Hadamard theorem. But the radius of convergence of F(z−1) is
determined by its pole of smallest magnitude, which coincides with the zero of largest
magnitude of PT (z) thanks to (5.78). 2ζ(1)− ζ(2) is thus characterized from the zero of
largest magnitude of PT (z). Let us now factorize PT (z).

We define

T2(l) =





0 if l < 0 ,
−1 if l = 0 ,

TX(l)2 if l > 0 .
(5.80)

Then, if we write PT (z) =
∑

l≥0 b̃lz
−l, by substituting from (5.74) we have that

∀l ≥ 0 , b̃l = T2(l − 1)− T2(l) ,

and hence

PT (z) = (z−1 − 1)(
∑

l≥0

T2(l)z
−l) = (z−1 − 1)(TX (z−1)− 1) .

The zeros of PT of magnitude greater than 1 are thus contained in the zeros of TX − 1
inside the unit circle, and 2ζ(1) − ζ(2) is obtained from the zero of smallest magnitude
of QT (z) = TX(z)− 1.
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Let us finally show that ‖T‖ > 1 necessarily gives a real root with those character-
istics. Since QT (0) = −1 and QT (1) = ‖T‖ − 1 > 0, then necessarily we have a real
root x0 ∈ (0, 1) satisfying QT (x0) = 0, which shows in particular that 2ζ(1)− ζ(2) > 0.
Let us consider the smallest real root x0 satisfying QT (x0) = 0. This root is necessarily
the one with smallest magnitude amongst the roots in the unit circle. Indeed, suppose
z0 is a complex root with nonzero imaginary part satisfying QT (z0) = 0. Then, since
TX(z0) = 1, we have |TX(z0)| = 1 and

QT (|z0|) = TX(|z0|)− 1 > |TX(z0)| − 1 = 0 .

We thus have QT (0) < 0 and QT (|z0|) > 0, which implies that there exists a real root
with magnitude smaller than z0. This concludes the proof. �.

This theorem thus characterizes the multifractal behavior of a process from its scat-
tering transfer function. A measure of the intermittence is obtained analytically by
finding the solutions of the equation

TX(x) = 1 .

We observe that this characterization depends upon all the values of T (l) and not only
upon its asymptotic behavior. In fact, as l grows, the influence of TX(l) on the zero
of TX(x) − 1 diminishes, since its associated power xl tends to 0. This shows that the
transient values of TX for small values of l ≥ 0 contain critical information about the
multifractal behavior of X. We shall see in the estimation section that this property
ensures that estimates of 2ζ(1) − ζ(2) are based on the estimated values of TX(l) with
smallest variance, corresponding to small values of l.

As a corollary, we can bound the value of 2ζ(1) − ζ(2) by bounding the scattering
transfer function:

Corollary 5.5.4 Under the same hypothesis of theorem 5.5.3, then

log2(1+min
l
TX(l)2) ≤ 2ζ(1)− ζ(2) ≤ min(log2(‖T ‖2), log2(1+max

l
TX(l)2)) . (5.81)

Proof: From (5.70) we know that 2ζ(1)− ζ(2) ≤ log2(‖T‖2). Let us now obtain the rest
of the bounds in (5.81). Let K = minTX(l)2. Then, we can write

TX(l)2 = K + d(l) , (5.82)

where d(l) ≥ 0 , ∀l. If ρ = 2ζ(2)−2ζ(1), then from theorem (5.5.3) we know that
∑

l≥1 T (l)
2ρl =

1 . By using (5.82) we have

∑

l≥1

(K + d(l))ρl = K
∑

l≥1

ρl +
∑

l≥1

d(l)ρl = 1 ,

and since d(l) ≥ 0 it results that

K
∑

l≥1

ρl = K
ρ

1− ρ ≤ 1 .
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By substituting ρ = 2ζ(2)−2ζ(1) we obtain

(K + 1)2ζ(2)−2ζ(1) ≤ 1 ,

which implies log2(1 +K) ≤ 2ζ(1)− ζ(2).
If we now replace K = minTX(l)2 by K̃ = max TX(l)2, then d(l) ≤ 0, ∀l, and the

same reasoning yields log2(1 + K̃) ≥ 2ζ(1) − ζ(2), which concludes the proof. �.

5.5.4 Analysis of Scattering transfer for Multifractals

Multifractal Random Cascades [BKM08a] construct stationary multifractal randommea-
sures from a log-infinitely divisible measure. The scattering transfer TX(l) function
converges towards a constant value as l → ∞. We compute numerically the scatter-
ing transfer for multifractal random cascades and verify empirically the energy Markov
property.

The asymptotic scattering transfer for random cascades has been studied in collabo-
ration with E. Bacry and J.F. Muzy. We conjecture that if dX is a self-similar random
cascade, then the scattering transfer converges towards a nonzero constant as l→∞.

Conjecture 5.5.5 Let dX(t) be a random log-infinitely divisible cascade with an integral
scale J . Then there exist two constants K, K ′ > 0 such that

1. limj→−∞ SdX(j) = K, and |SdX(j) −K|2 ∼ 2j−J .

2. Its scattering transfer TdX(j1, j2) converges towards a scattering transfer function
TdX when J − j1 →∞,J − j2 →∞, and

lim
l→∞

TdX(l) = K .

This conjecture is explained from the particular behavior of wavelet decompositions
of a random cascade. A random cascade with integral scale 2J can be written as dX(t) =

limj→−∞ eω
J
j (t), where ωJj (t) is an infinitely divisible process. This process satisfies a self-

similarity property

ωJ−lj−l (2
−lt)

l
= ωJj (t) ,

and, thanks to the infinite divisibility, it also satisfies the cascade property

ωJj (t) = ωj̃j(t) + ωJ
j̃
(t) , , ∀j ≤ j̃ ≤ J ,

with ωj̃j and ωJ
j̃

independent. This property implies that dX(t) can be written as a

product

dX(t) = e
ωJ
j0
(t)

lim
j→−∞

eω
j0
j (t)
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Figure 5.14: Scattering of MRMs with λ2 = 0.04, 0.07, 0.1. (a) Example of a realization
of an MRM with λ2 = 0.04, (b) a realization with λ2 = 0.1, (c) First order scattering
logSdX(j), (d) Scattering transfer log TdX(l). The scattering is estimated from 64
realizations of 220 points.

of two independent processes: a slow one which influences the long range correlations,
and a fast one which dominates the increments of dX at small scales. Using this decom-
position, one can approximate the filtered process dX ⋆ ψj0(t) as the product

e
ωJ
j0
(t)
(

lim
j→−∞

eω
j0
j (t) ⋆ ψj0

)
.

Second order scattering coefficients can thus be controlled by exploiting this decompo-
sition.

Figures 5.14 and 5.15 display the estimated first order scattering and the scattering
transfer for MRM and MRW cascades respectively, confirming the results predicted by
conjecture 5.5.5. In the case of MRW, first order moments are controlled by the Wiener
noise, which yields an asymptotic decay of SdX(j) ≃ 2−j/2. The influence of the noise
composition disappears in the scattering transfer.

Figure 5.16 shows a realization of the binary Mandelbrot cascade, which is self-
similar. We observe that the estimated scattering transfer TX(j1, j1+l) does not depend
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Figure 5.15: Scattering of MRWs with λ2 = 0.04, 0.07, 0.1. (a) Example of a realization
of an MRW with λ2 = 0.04, (b) a realization with λ2 = 0.1, (c) First order scattering
log SdX(j), (d) Scattering transfer log TdX(l). The scattering is estimated from 64
realizations of 220 points.
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Figure 5.16: (a) A realization of a Mandelbrot randommeasure, (b) Estimated Scattering
transfer. We plot the curves Tj1X(l) = TX(j1, j1 + l) for several j1. The curves define
a transfer function TX(l), since the random cascade is self-similar.

upon j1, thus defining a transfer function.

5.5.5 Intermittency Estimation for Multifractals

This section estimates 2ζ(1) − ζ(2) from the scattering transfer, using the result of
theorem 5.5.3. Numerical experiments compare this estimate with a regression of the
estimated moments and the covariance of the logarithm, on MRM and MRW multifrac-
tals.

Section 5.5.4 gave numerical evidence that MRM, MRW and the Mandelbrot cascade
verify the Markov energy property. In such conditions, we can apply theorem 5.5.3 to
estimate the intermittence 2ζ(1)− ζ(2) from an estimation of the scattering transfer.

Conjecture 5.5.5 predicts that as l → ∞, TdX(l) converges towards a constant in
the case of random cascades. As a result, it is only necessary to estimate the first terms
of TdX(l), which are precisely those having the smallest variance.

The scattering transfer TdX is estimated with the windowed scattering transfer T J ,
using the procedure described in Section 5.3.3. Beyond a certain scale J0, we regularize
the estimation by assuming that the transfer function is a constant value. As a result,
the estimated intermittence is obtained from the smallest solution of

J0∑

l≥1

TX(l)2xl + TX(J0)
2x

J0+1

1− x − 1 = 0 ,

which amounts to finding the smallest root of the polynomial

(1− x)
J0∑

l≥1

TX(l)2xl + TX(J0)
2xJ0+1 + x− 1 .

More powerful regularizations can be achieved by fitting the asymptotic decay of T (l)
predicted in (5.5.5). Besides, the solutions x ∈ (0, 1) of TX(x) − 1 = 0 are stable with
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respect to the tail of T . Indeed, if A = supl |TX(l)2 − TX(J0)
2|, then

|TX(x)−
J0∑

l=1

TX(l)2xl − TX(J0)
2x

J0+1

1− x | ≤ A
xJ0+1

1− x , (5.83)

which converges to 0 as J0 →∞ for each x ∈ (0, 1).
The log-normal MRM and MRW are multifractal processes with ζ(q) given respec-

tively by ζ(q) =
(
1 + λ2

2

)
q − λ2

2 q
2 and ζ(q) =

(
1
2 + λ2

)
q − λ2

2 q
2 . In the log-normal

case, the scaling exponent is a parabole and hence ζ(2)− 2ζ(1) = −λ2 .
Table 5.3 reports the results of the intermittency estimation for MRM and MRW

for several values of λ2. We simulate cascades using N = 216 points. We estimate the
expected scattering representation by averaging over 32 realizations, which is then used
to estimate the intermittency. We repeat this experience over 8 runs in order to compute
the standard deviation of the estimators. The estimate based on the scattering transfer
is compared with the linear regression on the estimated first and second order moments

E(|dX ⋆ ψj |2)
E(|dX ⋆ ψj |)2

,

and also with the estimate from [BKM08b], resulting from

Cov (log |dX ⋆ ψτ |(t), log |dX ⋆ ψτ |(t+ l)) ∼ −λ2 ln
(
l

2J

)
+ o

(τ
l

)
.

For the first method, the moments are estimated by averaging the empirical first and
second order moments |x⋆ψj|⋆φJ , |x⋆ψj|2⋆φJ , whereas the second estimate is obtained by
first estimating the covariance Cov (log |dX ⋆ ψτ |(t), log |dX ⋆ ψτ |(t+ l)) for τ ≤ J and
l ≥ τ , and then performing a log regression to recover λ2.

The intermittency estimate based on the scattering transfer outperforms the re-
gression on the moments, and shows a variance comparable to the covariance of the
logarithm. We observe a small bias, which might be due to the simplistic regularization
based on predicting a threshold on the scattering transfer. The low variance is explained
by the consistency of the scattering representation, in contrast with the estimation of
higher order moments. Besides, the intermittency is dominated by the transient of the
scattering transfer. Section 5.3.3 showed that the variance of the estimator of TX(l) is
roughly proportional to 2l, and hence that the transient state corresponds to the regime
where the variance is smallest.

5.6 Scattering of Turbulence Energy Dissipation

Turbulent flows appear in a variety of dynamical systems. They contain random fluc-
tuations across time and space, and are thus modeled as stochastic processes. Fully
developed turbulence contains physical phenomena at different scales, from the fine dis-
sipation scale where the turbulence flow is smooth, until the integral scale, which can
be proportional to the size of the medium.
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Table 5.3: Estimation of 2ζ(1) − ζ(2) = λ2 using the scattering transfer, the regression
on first and second moments, and the log covariance from [BKM08b], for different values
of λ2. We report the mean and the standard deviation of each estimator.

Cascade Intermittency Regression moments Regression Log-Cov Scatt transfer

MRM 0.05 0.05± 8 · 10−3 0.05 ± 6 · 10−4 0.051 ± 10−3

0.1 0.092 ± 1 · 10−2 0.099 ± 2 · 10−3 0.099 ± 10−3

0.15 0.142 ± 1 · 10−2 0.151 ± 4 · 10−3 0.147 ± 210−3

0.2 0.23 ± 10−2 0.248 ± 4 · 10−3 0.24 ± 4 · 10−3

MRW 0.05 0.05 ±8 · 10−3 0.05 ± 6 · 10−4 0.05 ± 10−3

0.1 0.09 ± 10−2 0.1± 2 · 10−3 0.1± 2 · 10−3

0.15 0.14± 2 · 10−2 0.15 ± 2 · 10−3 0.15 ± 10−3

0.2 0.23± 2 · 10−2 0.2± 3 · 10−3 0.24 ± 3 · 10−3

The dissipation of kinetic energy at a given time is given by

F (t) = ν

(
∂v

∂t

)2

,

where v(t) is the velocity flow and ν is a viscosity constant. The Kolmogorov model
[LMC86] predicts an isotropic energy dissipation of energy, which induces a power spec-
trum of F (t) following the well-known Kolmogorov ‘k−5/3’ law:

R̂F (ω) ∝ |ω|−5/3 . (5.84)

This model predicts a dissipation process with self-similarity across scales. However,
the Kolmogorov theory does not account for the intermittency observed in developed
turbulent flows; as a result of the isotropy, the energy dissipation behaves as a Brownian
motion with a Hurst parameter adjusted so that its spectral density decays according
to (5.84). An alternative model which can account for the multifractality of turbulent
flows was introduced also by Kolmogorov in 1962 [MS91]. It modeled the volatility of the
dissipation with a log-normal distribution, which corresponds to a random multiplicative
log-normal cascade.

The pertinence of these models can be elucidated using the scattering transfer tools
developed in the previous sections. Figure 5.17-(a) shows the energy dissipation F (t)
as a function of time, from the velocity measurements of a fluid in a Helium jet, with
a Reynolds number of Rλ = 703, which corresponds to the turbulent regime. The
dissipation scale is observed at approximately 22 sample points, whereas the integral
scale is approximately 211 sample points.

Its first order scattering coefficients are displayed in panel (b) of Figure 5.17. We ob-
serve that between the diffusion and the integral scale logSF (j) ≃ 2−jH , with H ≈ 1/3.
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This corresponds to the Kolmogorov k−5/3 law, since from (5.8) we know that Frac-
tional Brownian Motions have a generalized power spectrum which decays as |R̂F (ω) ∝
|ω|−2H−1.

However, the monofractal isotropic dissipation model can be discarded by computing
the scattering transfer of the observed dissipation. Panel (c) of Figure 5.17 shows the es-
timated scattering transfer coefficients TF (j1, j2). We observe that between the diffusion
and the integral scales, the dissipation exhibits a form of stochastic self-similarity. The
scattering transfer TF (l) corresponding to this regime can thus be used to discriminate
between a monofractal model and multifractal one.

For that purpose, we first verify the Markov energy property of Section 5.5.2. Panel
(d) of Figure 5.17 shows that second moments E(|F ⋆ ψj |2) are well predicted by scat-
tering coefficients. Thus, from Theorem 5.5.3 we use the test ‖TF‖ ≥ 1 to assess the
multifractality of F . By fitting a power law TF (l) ≃ C2−αl in the regime between diffu-
sion and integral scale, we obtain α = 0.19 and C = 0.45, which yields ‖TF‖ = 1.02 > 1,
corresponding to the multifractal regime.

We also use Theorem 5.5.3 to estimate a measure of intermittence 2ζ(1)−ζ(2) ≈ 0.01,
which we then use to simulate a log-normal random cascade with λ2 = 0.01. Figure 5.18
shows the estimated scattering transfer TF (l), which is compared with the dissipation
transfer corresponding to the isotropic dissipation model and the log-normal cascade
model. The log-normal cascade transfer function predicts an asymptotic regime TF (l) ≃
C, which does not correspond to the observed asymptotic regime of TF (l) ≃ 2−0.2l.

The scattering transfer is thus able to discriminate between different multifractal
models with consistent estimators, thanks to the fact that it is computed with non-
expansive operators. As opposed to first order scattering coefficients, which do not
provide insight on the multifractal nature of the process, the scattering transfer contains
enough information to discriminate between different multifractal models.

5.7 Scattering of Deterministic Multifractal Measures

The tools developed for stochastic fractals can be applied for the study of determinis-
tic multifractals. We show that self-similarity can be detected and analyzed with the
scattering transfer

5.7.1 Scattering transfer for Deterministic Fractals

One dimensional deterministic fractals are studied with the integral scattering transform
introduced in Chapter 2. First order scattering coefficients yield a power law given by
ζ(1) which characterizes monofractal singularity. The scattering transfer is defined from
first and second order scattering coefficients. We show that self-similarity is expressed
in terms of an invariance property on the scattering transfer.

Multifractal analysis requires global singularity measurements, such as the partition
function in (5.1). The integral scattering transform for functions f ∈ L2 computes L1
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Figure 5.17: (a) Realization of dissipation F (t) = ν
(
∂v
∂t

)2
in a turbulent flow. (b) First

order scattering coefficients log SF (j) as a function of j, estimated from 4 realizations of
219 samples each. (c) Scattering transfer coefficients log TF (j1, j2) estimated from the
same data. We plot curves log TF (j1, j1 + l) as a function of l for different values of j1.
(d) Verification of the energy markov property. In blue, we plot E(|F ⋆ ψj |2), in red the
energy predicted by markov scattering coefficients of (5.61), as a function of j.

norms of wavelet modulus decompositions U [p]f , given by

S̃f(p) =

∫
U [p]f(u)du , p ∈ P∞ . (5.85)

Here, p is a finite order path p ∈ P∞. Since f ∈ L2 and ψ ∈ L1, U [p]f ∈ L1 ∀p ∈ P∞ and
the transform is well defined. Note that in this case we do not renormalize the integral
by the Dirac scattering, since we do not consider the limit scattering as path order goes
to infinity.

The same transform can be applied to a measure µ defined on a compact set Ω ⊂ R.
In this case, the first scattering decomposition yields

S̃µ(j) =

∫
|µ ⋆ ψj(u)|du

=

∫ ∣∣∣∣
∫
ψj(u− u′)dµ(u′)

∣∣∣∣ du ,
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Figure 5.18: Comparison of the scattering transfer estimated from the observed turbulent
flows with two energy dissipation models.

which is well defined since µ ⋆ ψj ∈ L1. Higher order scattering coefficients are obtained
as in the functional case. Indeed, one can decompose any path p of order |p| > 1 as
p = j0 + p′, yielding

S̃µ(p) = S̃(U [j0]µ)(p
′) ,

which is equivalent to the previous functional case since U [j0]µ ∈ L2 too.
Similarly as in the stochastic case, we introduce the scattering transfer as the main

tool to study self-similarity.

Definition 5.7.1 Let f ∈ L2. The Scattering transfer is defined for (j1, j2) ∈ Z2 by

Tf(j1, j2) =
S̃f(j1, j2)

S̃f(j1)
.

The Scattering transfer for a measure µ is defined analogously.

The Scattering transfer, together with the first order coefficients

S̃f(j) = ‖f ⋆ ψj‖1 , j ∈ Z ,

yield a descriptor for fractals, computed with a contractive operator, but which depends
upon high order moments.

We shall now see how self-similarity is expressed on the scattering domain.
Let Dj be the operator Djf(u) = f(2−ju) which dilates f by a factor 2j .
Similarly, we can define a dilation of a measure µ of R by specifying its integral on

any Borelian set S:
Djµ(S) = µ(2−jS) , (5.86)
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where 2−jS = {u ; 2ju ∈ S}.
The following proposition specifies how a dilation operator is seen in the scattering

domain.

Proposition 5.7.2 Let f ∈ L2 and p = (j1 . . . jm). If Djf(u) = f(2−ju) denotes a
dilation of f by 2j and Ljp = (j1 − j, j2 − j . . . jm − j) denotes a translation of p by j,
then

S̃(Djf)(p) = 2j S̃f(Ljp) (5.87)

and hence
T (Djf)(j1, j2) = Tf(j1 − j, j2 − j) .

Equivalently, if µ is a measure in a compact set of R, then with the same definition of
Ljp we have

S̃(Djµ)(p) = 2j S̃µ(Ljp) and T (Djµ)(j1, j2) = Tµ(j1 − j, j2 − j) .

Proof: Relation (5.15) applied to Djf yields

S̃Djf(p) = 2j1
∫
| | | |D−j1Djf ⋆ ψ| ⋆ ψj2−j1 | ⋆ ...| ⋆ ψjm−j1 |(u)du .

= 2j1
∫
| | | |D−(j1−j)f ⋆ ψ| ⋆ ψj2−j1 | ⋆ ...| ⋆ ψjm−j1 |(u)du . (5.88)

Since Ljp is a translation in the path scale variables, the path increments jk − j1 of Ljp
are the same as those of p. It follows from (5.88) that

S̃Djf(p) = 2j S̃f(Tjp) ,

and in particular

TDjf(j1, j2) =
S̃Djf(j1, j2)

S̃Djf(j1)
=
S̃f(j1 − j, j2 − j)

S̃f(j1 − j)
= Tf(j1 − j, j2 − j) .

The case of the measure is treated analogously. �.
When a function or a measure is self-similar for a scale s, it is also self-similar for

any scale of the form sn , n ∈ N. The wavelet decomposition which defines the scat-
tering representation is composed of dilated versions of a mother wavelet 2−jDjψ(u) =
2−jψ(a−ju). Dyadic wavelets are obtained by setting a = 2. If the self-similarity of a
function appears for s = a, then (5.7.2) shows that the scattering transfer is stationary:
Tf(j1, j1 + l) = Tf(l).

When s 6= a, then the scattering transfer is not stationary. However, the pairs
(n,m) ∈ N2 for which sn ≈ am produce a periodicity phenomena on the scattering
transfer matrix,

Tf(j1, j2) ≈ Tf(j1 +m, j2 +m) ,

as it will be shown with the Triadic Cantor Set.
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5.7.2 Dirac measure

We start by the Dirac measure, which is self-similar for any dilation.

Proposition 5.7.3 Let δ be the Dirac measure. Then the following properties hold:

1. S̃δ(j) = ‖ψ‖1.

2. Its scattering transfer satisfies Tδ(j1, j2) = Tδ(j2 − j1) and

lim
l→∞

Tδ(l) = ‖ψ‖1 . (5.89)

3. δ has an asymptotic first order Markov Scattering.

Proof: The first order scattering gives U [j]δ = |δ⋆ψj | = |ψj |. Since ψj(u) = 2−jψ(2−ju),
a change of variables shows that

S̃δ(j) = ‖ψj‖1 =
∫
|ψj(u)|du = ‖ψ‖1 ,

and hence that first order scattering is constant and equal to ‖ψ‖1.
Let us now verify that Tδ(j1, j2) = Tδ(j2 − j1). The Dirac measure satisfies Dj1δ =

2j1δ. By applying proposition 5.7.2 we have

2−j1S̃Dj1δ(j1, j2) = S̃δ(j1, j2) = S̃δ(0, j2 − j1) ,

and since S̃δ(j1) = ‖ψ‖1, we conclude that Tδ(j1, j2) is only a function of the difference
j2 − j1.

As j → −∞, the envelope |ψj | is an approximation of the identity in L1. Since

U [j1, j2]δ = 2−j1Dj2 |Dj1−j2 |ψ| ⋆ ψ|
= 2−j2Dj2 |2j2−j1Dj1−j2 |ψ| ⋆ ψ|
= 2−j2Dj2 ||ψj1−j2 | ⋆ ψ| ,

it results that for each j2,

lim
j1→−∞

‖U [j1, j2]δ − ‖ψ‖12−j2Dj2 |δ ⋆ ψ|‖1 = lim
j1→−∞

‖U [j1, j2]δ − ‖ψ‖1U [j2]δ‖1 = 0 ,(5.90)

which yields

lim
j1→−∞

∫
U [j1, j2]δ(u)du = ‖ψ‖1

∫
U [j2]δ(u)du ,

and hence liml→∞ Tδ(l) = ‖ψ‖1. By applying (5.90) for each p = (j1 . . . jm) shows that

lim
l→∞

S̃δ(p, jm + l) = Tδ(l)S̃δ(p) ,

and hence that X = δ has an asymptotic Markov Scattering. �.
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Figure 5.19: Scattering of Dirac measure. (a) First order scattering S̃δ(j), (b) Scattering
transfer Tδ(l).

Figure 5.19 displays the scattering first order coefficients, together with the scatter-
ing transfer of the Dirac measure, computed with spline wavelets. As expected, first
order coefficients are constant, and the scattering transfer, after a transient state which
depends upon the wavelet, reaches a constant value.

If one chooses Gabor wavelets, then S̃δ can be computed analytically and hence one
can compute the speed of convergence of T (l) towards the constant. In that case, ψ(u) =
eiξ0ue−u

2/(2σ20), and |ψj1 | is a lowpass Gaussian window. The convolution |ψj1 | ⋆ ψj2 is
again a complex Gaussian, characterized by a variance, a central frequency and an
amplitude, which implies that U [j1, j2]δ is again a lowpass Gaussian characterized by a
variance and a maximum amplitude. This means that for any path p = (j1 . . . jm),

Û [p]δ(ω) = e−βpe−σ
2
pω

2/2 ,

which yields

S̃δ(p) = Û [p]δ(0) = e−βp .

The parameters βp and σ2p are obtained from the previous path p0 = (j1 . . . jm−1) by
solving a linear system:

{
σ2p = σ2p0 + 22jmσ20 ,

βp = βp0 +
σ20ξ

2
0

2

(
1 +

σ202
2jm

σ2p

)
.

(5.91)

As a result,

Tδ(jm − jm−1) =
S̃δ(p)

S̃δ(p0)
= exp

{
σ20ξ

2
0

2

(
1 +

22jm∑m
l=0 2

2jl

)}
.

If p is a frequency decreasing path, the denominator
∑m

l=0 2
2jl is dominated by the last

terms, thus showing that in this case the asymptotic Markov is reached at exponential
rate.
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Figure 5.20: (a) Triadic Cantor fractal (b) Scattering transfer Tµ(j1, j2). We plot the
curves Tµ(j1, j1 + l) as a function of l for different values of j1. The curves do not
converge towards a transfer function since the scattering is defined over dyadic wavelets,
which does not match the scale self-similarity of the fractal.

5.7.3 Cantor Measures

Figure 5.20 shows a triadic Cantor fractal obtained with weights α1 = 0.4 and α2 = 0.6.
As expected, its scattering coefficients are not self-similar since they are computed with
dyadic wavelets at scales of the form sj = 2j , j ∈ Z, and the self-similarity of the
measure is observed for dilations of the form s̃k = 3k , k ∈ Z. The oscillatory pattern
observed in Figure 5.20 is explained by considering the continuous surface

T̃ µ(log s1, log s2) =
E(||µ ⋆ ψs1 | ⋆ ψs2 |)

E(|µ ⋆ ψs1 |)
, s1, s2 ∈ R , s1, s2 > 0 ,

where ψs(u) = s−1ψ(s−1u) is a dilation by a factor s. T̃ µ(log s1, log s2) is a continu-
ous and periodic two-dimensional surface, where the period is determined by the self-
similarity of µ. The scattering transfer Tµ(j1, j2) corresponds to a discrete sampling of
T̃ µ at points of the form (2j1 , 2j2), which creates oscillations as soon as the self-similarity
factor does not correspond to the sampling step.

159

figures/triadic_cantor.eps
figures/figuresmultifractals/triadic_cantor_transfer.eps




Appendix A

Wavelet Modulation Operators

A.1 Wavelet and Modulation commutation

This Section studies the commutation of a wavelet decomposition operator and a mod-
ulation. When the envelope is smooth with respect to the scale of the wavelet, the two
operators nearly commute, thanks to the good spatial localization of wavelets.

We shall express the regularity of σ with a multi-resolution analysis. For that pur-
pose, we consider the multi-resolution approximation spaces {Vk}k∈Z [Mal12] generated
by the orthogonal basis

{φk(t− n2k) , n ∈ Z} ,
where φk(u) = 2−kd/2φ(2−ku) is a scaling function. Notice that in this case we use
an L2 normalization. When the context requires it, we shall distinguish between the
L2 normalized scaling functions and the L1 normalization used in the definition of the
scattering operator. We say that σ ∈ V∞

k if

σ(t) = 2kd/2
∑

n

c[n]φk(t− n2k)

with supn |c[n]| <∞. In particular, if φ is C2, then σ is C2 too.
The following proposition computes a bound for the commutatorM [σ]Wλ−WλM [σ].

As before, |∇σ|∞ = supu |∇σ(u)| denotes the sup of the Euclidean norm of ∇σ, and
|Hσ|∞ = supu ‖Hσ(u)‖, where ‖Hσ(u)‖ is the operator norm of the Hessian Hσ(u).

Proposition A.1.1 Let j and k be two integers, and let M [σ]x(u) = σ(u)x(u) be a
modulation operator with σ ∈ V∞

k . Then, if λ = 2jr, there exists a constant C > 0
depending upon the scaling function φ such that

‖M [σ]Wλ −WλM [σ]‖ ≤ C|σ|∞2j−k∆u(ψ) , (A.1)

with

∆u(ψ) =

∫
|u| |ψ(u)|du .
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Proof: The kernel of M [σ]Wλ −WλM [σ] is

k(v, u) = σ(v)ψλ(v − u)− σ(u)ψλ(v − u) = (σ(v) − σ(u))ψλ(v − u) .

Since σ is twice differentiable, we can consider the following Taylor development:

k(v, u) =

(∫ 1

0
(v − u) · ∇σ(u+ t(v − u))dt

)
ψλ(v − u) , (A.2)

Let us now bound the operator using the Schur lemma. Since

k(u, v) = − (σ(v)− σ(u)) ψ̃λ(v − u) ,

with ψ(u) = ψ(−u), we can exchange the roles of v and u and hence it is sufficient to
bound

sup
u

∫
|k(v, u)|dx .

Fix u ∈ Rd. From (A.2) we have
∫
|k(v, u)|dv ≤ |∇σ|∞

∫
|v − u||ψλ(v − u)|dv

= |∇σ|∞2j
∫
|v| |ψ(v)|dv

via a change of variables ṽ = 2−jr−1v. As a result,

‖M [σ]Wλ −WλM [σ]]‖ ≤ sup
u

∫
|k(v, u)|dv ≤ |∇σ|∞2j

∫
|v||ψ(v)|dx . (A.3)

We shall now bound the gradient of an element of V∞
k . Since

σ(u) = 2kd/2
∑

n

c[n]φk(u− n2k) ,

it follows that
∇σ(u) = 2kd/2

∑

n

c[n]∇φk(u− n2k),

and hence

|∇σ(u)| ≤ 2kd/2
∑

n

|c[n]||∇φk(u− n2k)|

≤ 2−k sup
n
|c[n]|

∑

n

|∇φ(2−ku− n)|

≤ 2−k sup
n
|c[n]|F (∇φ) , (A.4)

where
F (∇φ) = sup

γ∈[0,1]d

∑

n

|∇φ(γ + n)|
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only depends upon φ, and is finite as soon as φ and its derivatives have fast decay.

Finally, by definition

2kd/2c[n] = 2−kd/2
∫
σ(t)φ(2−k(t− n2k)dt ,

which implies that

∀n , |c[n]| = 2−kd
∣∣∣∣
∫
σ(t)φ(2−kt− n)dt

∣∣∣∣

≤ |σ|∞2−kd
∫
|φ(2−kt)|dt = |σ|∞‖φ‖1 . (A.5)

From (A.3, A.4, A.5), we obtain

‖M [σ]Wλ −WλM [σ]‖ ≤ 2j−k|σ|∞∆u(ψ) (F (∇φ)‖φ‖1) ,

which concludes the proof. �.

This proposition shows that when k ≫ j, the modulation with an envelope σ ∈ V∞
k

nearly commutes with the wavelet decomposition at scale j. In that case, we exploit the
good spatial localization of wavelets. When k ≫ j, then the envelope is smooth with
respect to the wavelet, which means that, locally, the envelope is well approximated by
a constant within the support of the wavelet.

A.2 Wavelet Near Diagonalisation Property

Lemma A.2.1 Let λ = 2jr and ∇Wλf = f ⋆∇ψλ. Then, if ω0 is the central frequency
of ψ,

‖∇Wλ − i2−j(r−1ω0)Wλ‖ ≤ d 2−j∆ω(ψ) , (A.6)

where

∆ω(ψ) = sup
ω′
|ω′ − ω0||ψ̂(ω′)|

is the frequency spread of ψ.

Proof of lemma A.2.1: Since scalar products in Rd and gradients commute with or-
thogonal transformations, we can assume without loss of generality that r = 1 and that
ω0 is aligned along the first cartesian coordinate. Let us approximate the convolution
f ⋆ ∂kψλ with another linear operator of the form αf ⋆ ψλ, and let

Ek(f) = f ⋆ ∂kψλ − αf ⋆ ψλ = f ⋆ (∂kψλ − αψλ) .

Since Ek is a convolution operator, it is diagonalized in the Fourier basis and hence its
operator norm is given by

sup
ω

∣∣∣iωkψ̂λ − αψ̂λ
∣∣∣ . (A.7)
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We choose as approximation α = i2−j(ω0)k, which corresponds to the k-th coordinate
of the central frequency of ψλ. As a result, (A.7) yields

‖Ek‖ = sup
ω
|ωk − 2−jω0,k||ψ̂(2jω)|

= 2−j sup
ω
|ωk − ω0,k||ψ̂(ω)|2 ≤ 2−j sup

ω
|ω − ω0||ψ̂(ω)|2 . (A.8)

By summing over all coordinates k = 1 . . . d, we obtain (A.6). �.

A.3 Local Scattering Analysis of Wavelet Modulation Op-

erators

This Section concentrates in the study of the multiscale perturbations defined by (4.9).
We restrict ourselves to the unidimensional case d = 1 and to first and second order
scattering coefficients.

We first verify that the perturbations given by wavelet modulations define a stable
operator in L2(Rd).

Proposition A.3.1 Let Wλ and W̃λ be the wavelet decomposition frame and dual frame
respectively. If the wavelet frame satisfies the Littlewood-Paley condition (2.7) with δ >
0, then M [σ] is a bounded linear operator of L2(Rd), and its norm satisfies

‖M [σ]− 1‖ ≤ |σ|∞
1− δ . (A.9)

In particular, the map σ 7→M [σ]f−f is Lipschitz with respect to the norm supλ,u |σ(λ, u)|.

Proof: The multiscale operator M [σ] can be written as

M [σ] = 1+ W̃MW ,

where W is the decomposition frame W = {AJ ,Wλ}λ∈ΛJ
, M is a point-wise modulation

operator in the frame decomposition coefficients, and W̃ is the frame reconstruction
operator. From the Littlewood-Paley condition (2.7) we know that the frame bounds

are [1− δ, 1], which implies that ‖W‖ ≤ 1 and ‖W̃‖ ≤ 1
1−δ . As for the diagonal operator

M, its norm is bounded by |σ|∞ = supλ,u |σ(λ, u)|. It follows that

‖M [σ]− 1‖ ≤ ‖W‖ ‖M‖ ‖W̃‖ ≤ |σ|∞
1− δ ,

which proves (A.9). Since for each f ∈ L2(Rd) we have

‖M [σ]f − f‖ ≤ ‖f‖
1− δ |σ|∞ ,
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it follows that σ 7→M [σ]f−f is Lipschitz with respect to the supremum norm supλ,u |σ(λ, u)|
�.

The main result that we obtain is that one can find a family of wavelet envelopes
such that they define scattering perturbations with an asymptotic triangular structure.
Thanks to this property, a small scattering perturbation can be linearly inverted as a
cascade of multiscale wavelet modulations.

Let us first define a collection of localized envelopes, which generate a family of
“atomic” wavelet modulations in correspondence with scattering paths. We recall the
definition of Γ:

Γ = P
1
↓ ∪ P

2
↓ = {j1 ∈ Z , j1 ≤ J} ∪ {(j1, j2) ∈ Z2 ; j1 < j2 ≤ J} .

For convenience, we can identify first order paths j1 ∈ P1 with (j1, J+1) and parametrize
Γ = {(j1, j2) ∈ Z2 ; j1 < j2 ≤ J + 1}. A multiscale modulation operator M [σ] is defined
from a bi-dimensional envelope

σ(j1, u) , j1 ≤ J , u ∈ R .

We are now going to construct a family of envelopes {σp}p=(j1,j2)∈Γ in correspondence
with Γ. Let us denote Wk the space of details from a multiresolution analysis [Mal12]:
Vk = Wk ⊕Vk+1.

Definition A.3.2 Let ∆1,∆2 ≥ 0, and suppose that {Ψj(u − 2jn)}n is a wavelet basis
for the space of details Wj of L2(R) generated by ψj . We define an envelope of type
p = (j1, j2), j1 < j2, as

σp(j, u) =

{ ∑
|j′−j2|≤∆2,j′>j

∑
n θ[j

′, n]Ψj′(u− 2j
′
n) , if |j − j1| ≤ ∆ ,

0 , otherwise ,
(A.10)

for any complex vector of coefficients such that sup |θ[j′, n]| <∞.

An envelope of type p = (j1, j2) thus has its energy well localized in the log-frequency
plane (j, j′) defined by the scales of f and the scales of the envelope, and illustrated in
figure A.1.

In particular, when j2 =∞, the envelope has no spatial variations, σp(j, u) ≡ C0 for
|j − j1| ≤ ∆1, and hence the resulting operator M [σ] becomes

M [σ]x = x+ C0

∑

|j−j1|≤∆1

W̃jWjx , (A.11)

which amplifies the energy of the wavelet subbands in [j1 ±∆1].
The operator M [σ] with an envelope of type p = (j1, j2) modifies the wavelet coeffi-

cients of x at scales in the neighborhood of j1. The wavelet representation is redundant,
and the wavelet coefficients from different scales are related by a reproducing kernel

Wjx = WW̃Wjx , (A.12)
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2−j

2−j′

(j1, j2)

∆1

∆2

Figure A.1: Definition of an envelope of type p = (j1, j2) in a plane (j, j′) representing
the scales 2j of the L2(R) wavelet decomposition Wj and the scales j′ of each envelope
σ(j, ·). An envelope of type p is localized around (j1, j2) with a spread controlled by
(∆1,∆2). The shaded region corresponds to envelopes more irregular than the wavelets
they are acting upon. We shall see that the “valid” region is in correspondence with the
set of progressive first and second order scattering paths.

2−j

2−j′

p = (j1, j2)

Cp

Figure A.2: Cone of influence assiociated with the path p = (j1, j2).

where W and W̃ are respectively the forward and the dual wavelet decomposition. This
implies that a perturbation M [σ(j1, ·)]Wj1 on a given scale j1 won’t in general satisfy
the reproducing kernel equation (A.12). As a result, the dual wavelet projections W̃j

will propagate the perturbation to other scales.

The complex coefficients {θ[j′, n] ∈ C}n encode variations, both in phase and am-
plitude, of wavelet coefficients at scale 2j , along envelopes whose own variations are
localized at scale 2j

′
, with j′ > j. We shall now see that an envelope of type p produces

a perturbation concentrated along a band of influence Cp ⊂ Γ centered at p = (j1, j2).
It is defined by

Cp = {q = (l1, l2) ∈ Γ ; l1 = j1 ; l2 ≥ j2} .

Figure A.2 illustrates the band of influence Cp.

The scattering paths in Γ can be ordered along a lexicographic ordering induced from
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Z2. For any p, q ∈ Γ with p = (j1, j2), q = (j′1, j
′
2), we say that

p < q ⇐⇒ 2−j1 < 2−j
′
1 or (j1 = j′1 and 2−j2 < 2−j

′
2) . (A.13)

Then the band of influence Cp of a given path p is included in the set of older paths
{q ∈ Γ; q ≤ p} . The following theorem shows that for each x and small ǫ, we can find
a family of envelopes of type p , p ∈ Γ, such that the operator ∇MSJf mapping each
envelope of type p = (j1, j2) to the corresponding scattering difference,

∇MSJx,ǫ : p 7−→ (SJM [ǫσp]x− SJx)
ǫ

, (A.14)

has its energy concentrated along a band lying in the lower triangular region of the
scattering coordinates. More precisely, the theorem shows that the energy of the per-
turbation SJM [σ]x− SJx along a scattering path q, given by

|SJM [σ]x(q) − SJx(q)|2 ,

decays proportionally to a discrete distance dist(q, Cp) in Γ.

Theorem A.3.3 Let x ∈ L2(R) and p = (j1, j2) ∈ Γ. Suppose that SJ is computed
with a unitary wavelet frame generated by ψ with fast frequency decay. The following
properties hold:

1. If j0 6= j1 and Ωj0 = {(q1, q2) ∈ Γ ; q1 = j0}, then for any envelope of type p

‖SJM [σ]x[Ωj0 ]− SJx[Ωj0 ]‖2 ≤ C|σ|2∞‖f‖2 sup
δ∈[−∆1,∆1]

K1(j1 − j0 + δ) , (A.15)

where K1 depends only upon ψ and satisfies K1(n)→ 0 as |n| → ∞.

2. Suppose Ψ and φ have compact support. Then there exists a non-zero envelope σ∗ of
type p, and C0 depending only on the wavelets, such that if j2+log(j2−j1) ≤ J−C0,
then for all paths q = (q1, q2) satisfying q1 = j1 and q2 < j2, the discrete scattering
vector

F̃q[k] = F [q](2Jk) = SJM [σ][q]x(2Jk)− SJ [q]x(2Jk) , k ∈ Z ,

satisfies

∀ q1 = j1 , q2 < j2 , ‖F̃q‖2 ≤ C‖x‖2
(
K2(∆1) + |σ|2∞2−(j2−q2)

)
, (A.16)

where K2 depends only upon ψ and satisfies K2(n)→ 0 as n→∞, and C depends
upon p and ∆.
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Proof: Let us first prove (A.15). We define F = SJM [σ]x−SJx. Since Ωj0 regroups the
paths in Γ starting by j0, for any x, x

′ ∈ L2(R) we have

‖SJ [Ωj0 ]x− SJ [Ωj0 ]x′‖ ≤ ‖SJU [j0]x− SJU [j0]x
′‖

≤ ‖U [j0]x− U [j0]x
′‖ ≤ ‖Wj0(x− x′)‖ , (A.17)

thanks to the fact that SJ and U are contractive operators. Let us apply (A.17) with
x′ =M [σ]x. If σ is an envelope of type p = (j1, j2), then

M [σ]x− x = Re(
∑

|j−j1|≤∆1

W̃jM [σ(j, ·)]Wjx) ,

and hence

‖F [Ωj0 ]‖ ≤ ‖Wj0(x−M [σ]x)‖
≤

∑

|j−j1|≤∆1

‖Wj0W̃jM [σ(j, ·)]Wjx‖

≤ |σ|∞‖x‖
∑

|j−j1|≤∆1

‖Wj0W̃j‖ . (A.18)

Since the wavelet frame is unitary, the norm of the operator Wj0W̃j is given by

sup
ω
|ψ̂j0ψ̂∗

j (ω)| = sup
ω
|ψ̂(2j0ω)||ψ̂(2jω)| = K1(j0 − j) ,

where
K1(j) = sup

ω
|ψ̂(2jω)| |ψ̂(ω)| . (A.19)

If the wavelet has fast frequency decay, then K1(j) ≤ C0a
|j| for a < 1, and hence (A.18)

is bounded by

‖F [Ωj0 ]‖ ≤ |σ|∞‖x‖2 sup
δ∈[−∆1,∆1]

K1(j1 + δ − j0)




2∆1∑

j=0

C0a
j




≤ C‖x‖ sup
δ∈[−∆1,∆1]

K1(j1 + δ − j0) ,

which proves (A.15).
We shall now prove (B.1). If q = (j1, q2) is a progressive path with q2 < j2, we start

by computing Wj1M [σ]x with an envelope of type p = (j1, j2). If g = Re(g0) and ψ
is a complex wavelet, then 2Wjg = Wjg0, and hence we can drop the real part in the
definition of M [σ] with just a constant impact on the bound. If j ∈ [j1 ±∆1], then by
definition σ(j, u) does not depend upon j, and we shall write σ(j, u) = σ(u). Thus,

Wj1M [σ]x =Wj1f +Wj1

∑

|j−j1|≤∆1

W̃jM [σ]Wjf . (A.20)
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Let us approximate (A.20) with a modulated version of the original wavelet decomposi-
tion, (1+M [σ])Wj1f :

Wj1M [σ]f = Wj1f +Wj1


 ∑

|j−j1|≤∆1

(
M [σ]W̃j − [M [σ], W̃j ]

)
Wjf




= Wj1f +M [σ]Wj1

∑

|j−j1|≤∆1

W̃jWjf +

+[M [σ],Wj1 ]
∑

|j−j1|≤∆1

W̃jWjf −Wj1

∑

|j−j1|≤∆1

[M [σ], W̃j ]Wjf

= (1+M [σ])Wj1f + (E1 + E2 + E3)f ,

with

E1 = M [σ]Wj1


 ∑

|j−j1|≤∆1

W̃jWj − 1


 , E2 = [M [σ],Wj1 ]

∑

|j−j1|≤∆1

W̃jWj ,

E3 = −Wj1

∑

|j−j1|≤∆1

[M [σ], W̃j ]Wj .

We now bound the linear operators Ei, i = 1, 2, 3. We have

‖E1‖ = |σ|∞ sup
ω
|ψ̂(2j1ω)|

∣∣∣∣∣∣
1−

∑

|j−j1|≤∆1

|ψ̂(2jω)|2
∣∣∣∣∣∣
= K2(∆1) , (A.21)

where

K2(∆) = sup
ω
|ψ̂(ω)|

∣∣∣∣∣∣
1−

∑

|j|≤∆

|ψ̂(2jω)|2
∣∣∣∣∣∣

(A.22)

satisfiesK2(∆)→ 0 as ∆→∞, since the wavelet frame is unitary, and hence
∑

j |ψ̂(2jω)| =
1 for all ω > 0.

Since σ is an envelope of type p = (j1, j2), the commutator [M [σ],Wj ] is bounded
using proposition A.1.1 by ‖[M [σ],Wj ]‖ ≤ C2j−j2+∆2 , which implies

‖E2‖ ≤ ‖[M [σ],Wj1 ]‖ ‖
∑

|j−j1|≤∆1

W̃jWj‖ ≤ C2j1−j2+∆2 , (A.23)

and

‖E3‖ ≤
∑

|j−j1|≤∆1

‖[M [σ], W̃j ]‖ ≤ C
∑

|j−j1|≤∆1

2j−j2+∆2 ≤ C ′2j1+∆1−j2+∆2 .(A.24)

By reassembling (A.21), (A.23) and (A.24) we have that

Wj1M [σ]x = (1+M [σ])Wj1x+ Ex , (A.25)
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where E satisfies ‖E‖ ≤ K2(∆1) +C2j1−j2+∆1+∆2 .
Second order scattering coefficients of the form (j1, q2) are computed from the com-

plex modulus of Wj1M [σ]x. IfM [σ] is a modulation operator, then |M [σ]x| =M [|σ|]|x|.
As a result, U [j1]M [σ]x satisfies

‖U [j1]M [σ]x−M [σ̃]U [j1]x‖ ≤ ‖E‖‖x‖ , (A.26)

with
σ̃(u) = |1 + σ(u)| .

Now, we decompose U [j1]M [σ]x with ψq2 , which yields

‖Wq2U [j1]M [σ]x−Wq2M [σ̃]U [j1]x‖ ≤ ‖E‖‖x‖ . (A.27)

Since |σ|∞ < 1, we have that σ̃(u) > 0 , ∀u, which means that the modulus does not
vanish, and hence that it preserves the regularity of σ. As a consequence, if σ is an
envelope of type p = (j1, j2), it follows that σ̃ is also of type p, which means that Wq2

and M [σ̃] commute with an error ∼ 2q2−j2+∆2 . We can thus write

‖Wq2U [j1]M [σ]x−M [σ̃]Wq2U [j1]x‖ ≤ (‖E‖+ C2q2−j2+∆2)‖x‖ ,

which leads to

‖U [j1, q2]M [σ]x−M [σ̃]U [j1, q2]x‖ ≤ (‖E‖+ C2q2−j2+∆2)‖x‖ , (A.28)

since |σ̃| = σ̃. Now, by decomposing σ̃ as

σ̃ = |1 + σ(u)| =
√

1 + 2Re(σ(u)) + |σ(u)|2 = 1 + σ0(u) ,

with σ0(u) = Re(σ(u)) + |σ(u)|2/2 + o(|σ(u)|), we obtain that

‖U [j1, q2]M [σ]x− U [j1, q2]x−M [σ0]U [j1, q2]x‖ ≤ (‖E‖+ C2q2−j2+∆2)‖x‖ . (A.29)

The second order scattering differences F [q] are obtained from U [j1, q2]M [σ]x−U [j1, j2]x
with

F [q] = (U [q]M [σ]x− U [q]x) ⋆ φJ . (A.30)

We now define

L(J) = inf
|β|∞=1

sup
j1<q2<j2

∥∥∥∥∥

((∑

n

β[n]Ψj2(t− n2j2)
)
U [j1, q2]x/‖x‖

)
⋆ φJ

∥∥∥∥∥

2

. (A.31)

This quantity is minimized by envelopes of the form

σ0 =
∑

n

β[n]Ψj2(t− n2j2) (A.32)

which are orthogonal to the functions

{U [j1, q2]xφJ(k2
J − t)}j1<q2<j2,k . (A.33)
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Since both φJ and Ψ have compact support, for each k, the size of the support of
φJ(u − k2J ) is C2J , and those of Ψj2 is C ′2j2 . As a consequence, on an interval of size
C2J , the envelope σ0 has α2J−j2 coefficients which influence the support of φJ(u−k2J ).
Thus, we can divide the constraints

{U [j1, q2]xφJ(k2
J − t)}j1<q2<j2,k

into disjoint sets of size (j2 − j1)N0

Il = {U [j1, q2]xφJ(k2
J − t)}j1<q2<j2,k∈I0(l) , |I0(l)| = N0 ,

according to the spatial position k, in such a way that for each set Il we can find a subset
of basis elements

I
′
l = {Ψj2(t− l′2j2)}l′∈I0′(l)

of size α′2J−j2 , with the property that each element of I′l only intersects scaling functions
φJ(k2

J − t) within the set Il.
As a result, by renaming the position index n in (A.32), the orthogonality constraints

for each fixed group Il in (A.33) become

∫ 

α′2J−j2∑

n=0

β[n]Ψj2(t− n2j2)


U [j1, q2]x(t)φJ (k2

J − t)dt = 0 , j1 < q2 < j2, k ∈ I0(l) ,

α′2J−j2∑

n=0

β[n]

(∫
Ψj2(t− n2j2)U [j1, q2]x(t)φJ (k2

J − t)dt
)

= 0 , j1 < q2 < j2 , k ∈ I0(l) ,

α′2J−j2∑

n=0

β[n]γq2,k[n] = 0, j1 < q2 < j2 , k ∈ I0(l) .(A.34)

The constraints in (A.34) on the envelope are thus equivalent to finding a nonzero
vector β of dimension α′2J−j2 orthogonal to a collection of (j2− j1− 1)N0 vectors γq2,k.
As a result, we can find a non-zero envelope σ∗0 of the form (A.32) with an error L(J) = 0
in (A.31) as long as α′2J−j2 ≥ (j2 − j1)N0, which yields

J ≥ j2 + log2(j2 − j1) + log(N0)− log2(α) .

Since the mapping σ 7→ σ0 is onto, we can consider and envelope σ such that |1 + σ| =
1 + σ∗0.

We then obtain from (A.29)

‖F̃q‖2 =
∑

k

(U [q]M [σ]x− U [q]x) ⋆ φJ(k2
J )2

≤
∑

k

(U [q]M [σ]x− U [q]x−M [σ0]U [q]x) ⋆ φJ(k2
J )2

≤
∥∥U [q]M [σ]x− U [q]x−M [σ0]U [q]x

∥∥2

≤ ‖x‖(K2(∆1) + C|σ|2∞2j1−j2+∆1+∆2 + C|σ|2∞2q2−j2+∆2) ,
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which proves (B.1). �.
Theorem A.3.3 shows that by localizing a modulation both in the scale of the en-

velope and in the scale of the carrier, the effect of such perturbation in the scattering
domain is limited to a band of influence Cp, centered at a point which corresponds to
the coordinates of the complex wavelet envelope. Although the result of theorem A.3.3
controls the absolute scattering difference Fp = SJM [σp]f −SJf , in practice we observe
that the relative difference F/‖F‖ has an asymptotic band behavior. Figure A.3 shows

the operator ∇̃MSJf obtained by normalizing each column of ∇MSJf , for two different
examples of f and for J = logN . We use the ordering of Γ described in (A.13). In
order to optimize the relative energy concentrated in the cone of influence, we draw 20
random envelopes of type p, we project each of them in the orthogonal space

(⊕j1<q≤j2U [q]f)⊥ = {h ∈ (L1(R))′ ;

∫
h(u)U [q]f(u)du = 0 , j1 < q2 ≤ j2} ,

and we retain those achieving maximum concentration in the band of influence Cp. The
first row corresponds to a realization of white gaussian noise, whereas the second row is
obtained from a NASDAQ stock price signal. The middle column shows the obtained
operator setting ∆1 = 0, whereas the right column corresponds to ∆1 = 1. As expected,
the relative energy is concentrated around the cone of influence. When ∆1 = 0, the
impact on scattering coefficients having different first scale is minimized, as predicted by
(A.15). For a white gaussian noise realization, the operator is virtually diagonal, whereas
for the stock price signal the operator is nearly triangular with its energy concentrated
along a band. White noise yields a nearly diagonal operator because the propagator U [q]
of M [σp]f is well approximated by the wavelet decomposition modulus of σp, thanks to
the concentration of U [q]f along its mean. This phenomena is not observed on sparser
signals, such as that of (d).
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Figure A.3: Numerical simulations of the differential scattering operator ∇̃MSJf for

two different signals. First row: (a) realisation of white gaussian noise; (b) ∇̃MSJf
obtained with ∆1 = 0, (c) ∇̃MSJf obtained with ∆1 = 1. Second row: (d) stock price of

NASDAQ:AAPL (e) ∇̃MSJf obtained with ∆1 = 0, (f) ∇̃MSJf obtained with ∆1 = 1.
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Appendix B

Proof of Theorem 5.4.1

B.1 Proof of Lemma 5.4.2

Lemma B.1.1 Let Zl(t) = 2l/2|dX⋆ψ|⋆ψl(t), l ∈ N, and let γ0 = ‖ψ‖22(
∫
R|dX⋆ψ|(τ)dτ),

γ1 = ‖ψ‖22‖
∫
R|dX⋆ψ|‖1. Then γ0 , γ1 < ∞, and the sequence of random variables Zl(t)

satisfies
∀l , E(|Zl(t)|2) ≤ γ1 , and lim

l→∞
E(|Zl(t)|2) = γ0 . (B.1)

Proof: Let us compute the limit liml→∞E(|Zl|2) for Zl = 2l/2|dX ⋆ψ| ⋆ ψl. If dX(t) is a
Gaussian white noise then we saw in Section 4.6 that U [0]dX = |dX ⋆ ψ| is a stationary
Rayleigh process. Proposition 4.6.3 shows that its auto-correlation function RU [0]dX

belongs to L1.
The spectral density of Zl = 2l/2|dX ⋆ ψ| ⋆ ψl is given by

R̂Zl
(ω) = 2lR̂U [0]dX(ω)|ψ̂(2lω)|2 ,

Since RU [0]dX ∈ L1, its Fourier transform is continuous, which implies that

lim
l→∞

E(|Zl|2) = lim
l→∞

2l
∫
R̂Zl

(ω)dω = lim
l→∞

2l
∫
R̂U [0]dX(ω)|ψ̂(2lω)|2dω

= lim
l→∞

R̂U [0]dX(0)2
l

∫
|ψ̂(2lω)|2dω

= R̂U [0]dX(0)

∫
|ψ̂(ω)|2dω = ‖ψ‖22

∫
RU [0]dX(τ)dτ , (B.2)

since |ψ̂(2lω)| concentrates towards the low frequencies as l→∞. In addition, we have

E(|Zl|2) = 2l
∫
R̂U [0]dX(ω)|ψ̂(2lω)|2dω

≤ sup
ω
|R̂U [0]dX(ω)|2l

∫
|ψ̂(2lω)|2dω

= ‖RU [0]dX‖1‖ψ‖22 ,
which completes the proof �.
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B.2 Proof of Lemma 5.4.3

Lemma B.2.1 Let ψ be an analytic wavelet with fast decay and such that the zeros
of ψ̂ in (0,∞) form a discrete set. Then the sequence of stationary processes Zl =
2l/2|dX ⋆ ψ| ⋆ ψl, l ∈ N, satisfy

∀ t , lim
l→∞

Zl(t)
d−→ Z = Z(r) + iZ(i) , (B.3)

where Z(r), Z(i) ∼ N(0, σ2/2), σ2 = liml→∞E(|Zl|2), and
d→ denotes convergence in

distribution.

Proof: This result will be proved using a version of the Central Limit theorem for
strong mixing processes, that we briefly recall. Rosenblatt [Ros] introduced a notion of
dependence of two σ-algebras of events F1, F2 where a probability measure is defined:

α(F1,F2) = sup
A1∈F1,A2∈F2

|P (A1 ∩A2)− P (A1)P (A2)| .

If X(t) is a stationary process, its α-mixing coefficient is defined as

∀τ ≥ 0 , αX(τ) = α(t, t+ τ) = α(Mt
−∞,M

∞
t+τ ) ,

where Mt
s denotes the σ-algebra of events generated by the quantities X(u), s ≤ u ≤ t

[KR60]. If

lim
τ→∞

αX(τ) = 0 , (B.4)

then the process X has the strong mixing condition. We will use the following Central
Limit theorem for strong mixing stationary sequences, first introduced by Rosenblatt
[Ros], and later refined by several authors.

Lemma B.2.2 ([Ros]). Suppose (Xk , k ∈ Z) is a strictly stationary sequence of random
variables satisfying EX0 = 0, EX2

0 < ∞, having the strong mixing condition, and such
that for some δ > 0,

E(|Xk|2+δ) <∞ , and
∑

n≥1

αX(n)
δ/(2+δ) <∞ ,

then the partial sums Sl = l−1/2
∑

0<k≤lXk satisfy liml→∞Var(Sl) = σ2 < ∞. If

moreover σ2 > 0, then

Sl
d→ N(0, σ2) , (l →∞) , (B.5)

where
d→ stands for convergence in distribution.

We shall prove (B.3) by first considering for each l an approximation of the random
variable Zl(t) obtained by discretizing |dX ⋆ ψ|.
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Let m ∈ N, and ∆m(X) denote the discretized process defined as

∀t , ∆m(X)(t) = X

(⌊tm+ θ⌋
m

)
, (B.6)

where θ is a random offset. We consider the following approximation:

∀t, Zl(t) = Zl,m(t) + ǫl,m(t) , (B.7)

where
Zl,m(t) = 2l/2∆m(|dX ⋆ ψ|) ⋆ ψl(t) . (B.8)

For each l, the approximation error ǫl,m(t) is a random variable which satisfies, for every
δ > 0,

lim
m→∞

Prob(|ǫl,m(t)| > δ) = 0 . (B.9)

Indeed, if we write
ǫm(t) = |dX ⋆ ψ|(t) −∆m(|dX ⋆ ψ|)(t) ,

then by definition of ǫl,m in (B.7,B.8) we have

ǫl,m(t) = 2l/2ǫm ⋆ ψl(t) .

We can write ǫm(t) as

ǫm(t) = |dX ⋆ ψ|(t)−∆m(|dX ⋆ ψ|)(t) l
= |X1| − |X2| , (B.10)

where X1 and X2 are 0-mean Gaussian random variables, with a covariance given by

Σ =

(
Ψ(0) Ψ(η)
Ψ(η) Ψ(0)

)
,

where
Ψ(t) = ψ ⋆ ψ̃(t) , ψ̃(t) = ψ(−t) , (B.11)

and η ≤ m−1 is the distance from t to its closest quantifier ⌊tm⌋
m . The random variable

ǫm(t) satisfies

E(ǫm(t)) = E(|dX ⋆ ψ(t)|) − E
(∣∣∣∣dX ⋆ ψ

(⌊mt⌋
m

)∣∣∣∣
)

= 0 ,

since |dX ⋆ ψ| is stationary. Let us now compute its variance.

Var(ǫm(t)) = E(|ǫm(t)|2) = 2(E(|X1|2)− E(|X1| |X2|))

= 2Ψ(0)− 2Ψ(0)

(
π

2
2F1

(
−1/2,−1/2; 1; Ψ(η)

Ψ(0)

))
,

using again the correlation function of a Rayleigh process from Section 4.6. The hyper-
geometric function 2F1(−1/2,−1/2; 1, ·) is continuous with respect to its last argument,
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and such that 2F1(−1/2,−1/2; 1, 1) = 1. It results that for all δ0 > 0 there exists M0

such that for m ≥M0

∀t , Var(ǫm(t)) ≤ δ0 . (B.12)

We then use (B.12) to obtain a bound for the variance of ǫl,m(t). By making the
offset θ of the sampling grid of ∆m random, ǫm(t) is stationary, and hence

Var(ǫl,m(t)) = 2l
∫
R̂ǫm(ω)|ψ̂(2lω)|2dω .

The autocorrelation Rǫm(τ) satisfies

Rǫm(τ) ≤ 2R|dX⋆ψ|(τ) ≤ C|RdX⋆ψ(τ)|2 , (B.13)

thanks to the bound on the hypergeometric function of Propostion (4.6.3). As a result,
Rǫm ∈ L1 and hence its spectral density is continuous and bounded by ‖Rǫm‖1. It results
that

Var(ǫl,m(t)) ≤ sup
ω
|R̂ǫm(ω)|2l

∫
|ψ̂(2lω)|2dω

≤ ‖Rǫm‖1‖ψ̂‖22 .

Since Var(ǫm(t)) = Rǫm(0) ≤ Cm−1 and ‖Rǫm‖1 ≤ C‖RdX⋆ψ‖22, for each η > 0 we can
find T > 0 such that ∫

|τ |≥T
|Rǫm(τ)|dτ ≤ η .

On the other hand,

∀m ≥M0 ,

∫

|τ |≤T
|Rǫm(τ)|dτ ≤ Rǫm(0)2T ≤ 2Tδ0 .

It results that
lim
m→∞

‖Rǫm‖1 = 0 ,

and hence that limm→∞Var(ǫl,m(t)) = 0 .
Thus, using Chebyshev’s inequality, given δ > 0, if σm =

√
E(|ǫl,m(t)|2),

Prob(|ǫl,m(t)| > δ) = Prob

(
|ǫl,m(t)| > σm

δ

σm

)
≤ σ2m

δ2
,

which converges to 0 as m→∞.
We will now prove that the sequence Zl,m(t), as l→∞, converges in distribution to

a Normal random variable. For this purpose, the first step is to show that for each m,
the discrete, stationary Gaussian process

Yk = (dX ⋆ ψ)(k∆0m
−1) , k ∈ Z , (B.14)

has the strong mixing condition. To see this, we use a result from Kolmogorov and
Rozanov [KR60], which gives a sufficient condition for a discrete stationary Gaussian
process to have the strong mixing condition:
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Lemma B.2.3 ([KR60], th. 4) If Xk is a discrete, Gaussian, stationary process with
finite energy, such that its spectral density R̂X(e

iω) is continuous and does not vanish
for any −π ≤ ω < π, then Xk has the strong mixing condition (B.4).

Since

RY [n] = E(YkY
∗
k+n) = E((dX ⋆ψ)(∆0k/m) (dX ⋆ψ)∗(∆0(k+n)/m)) = RdX⋆ψ(∆0n/m)

and RdX⋆ψ(τ) = Ψ(τ), using the definition from (B.11), it follows that the spectral
density of Yk is

R̂Y (ω) =
∑

k

∣∣∣∣ψ̂
(
ω +

mk

∆0π

)∣∣∣∣
2

. (B.15)

Since ψ ∈ L1, its Fourier transform is continuous, which implies that |ψ̂|2 is also contin-
uous. Moreover, since the zeros of ψ̂ are isolated and |ψ̂(ω)| ≥ 0, one can find ∆0 such
that the periodic spectrum R̂Y (ω) does not vanish for −π ≤ ω < π, which, by virtue of
lemma B.2.3, implies that Yk has the strong mixing condition.

In addition, [KR60] shows how to control the decay of the mixing coefficient α(τ).

If there exists an analytic function ϕ(ω) such that |R̂Y (ω)|
ϕ(ω) ≥ ǫ > 0 and the derivative

(
|R̂Y (ω)|
ϕ(ω)

)(l)
is uniformly bounded, then

ρ(τ) ≤ Cτ−l .

Since ψ has fast decay, the spectrum R̂Y (ω) is C∞, which implies that α(τ) has fast
decay by setting ϕ = 1.

Let us now see that if Yk has the strong mixing condition, then its modulus |Y |k also
enjoys the strong mixing condition. By definition, the mixing coefficient of Yk is

∀τ ≥ 0 , αY (τ) = α(Mt
−∞,M

∞
t+τ ) = sup

A1∈Mt
−∞,A2∈M∞

t+τ

|P (A1 ∩A2)− P (A1)P (A2)| ,

where Mt
s denotes the σ-algebra of events generated by the quantities Y (u), s ≤ u ≤ t.

Since the σ-algebra of events M̃t
s generated by |Y (u)|, s ≤ u ≤ t, is included in Mt

s, it
follows that

α|Y |(τ) = α(M̃t
−∞, M̃

∞
t+τ )

≤ α(Mt
−∞,M

∞
t+τ ) = αY (τ) ,

which implies that |Y |k has the strong mixing condition.
Let us now see that for each m, the limit as l→∞ of Zm,l converges in distribution

towards a gaussian random variable. For that purpose, we decompose the convolution
by the wavelet ψl in (B.8) as a cascade of two convolutions, the first one implementing
a low-pass filter which generates partial sums of |Y |k. Since by definition

∆m(|dX ⋆ ψ|)(t) =
∑

n

|Y |n1(−∆0/m,∆0/m)(t− n∆0/m) ,
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we have

Zm,l(t) = 2l/2∆m(|dX ⋆ ψ|) ⋆ ψl(t) =
∑

n

|Y |nβl(t− n∆0/m) , (B.16)

where βl(t) = 2l/2(1(±∆0/m) ⋆ ψl)(t). Since ψ̂(0) = 0, it results that

∀t , |dX ⋆ ψ| ⋆ ψl(t) l
= (|dX ⋆ ψ| − E(|dX ⋆ ψ|)) ⋆ ψl(t) ,

and we can replace |Y |k by the centered stationary sequence Ỹk = |Y |k − E(|Y |0) with
the same mixing properties as |Y |k. The lowpass filter gn given by the partial sum

n−1/2
∑

|k−k′|≤n/2

Xk′ = X ⋆ gn[k]

has a Fourier transform ĝ(eiω) given by the Dirichlet kernel

ĝ(eiω) = n−1/2 sin((n + 1/2)ω)

sin(ω/2)
,

which has its energy concentrated on the frequency interval (−π
n ,

π
n). Since the spectrum

of βl has its energy concentrated on the frequency range (a12
−l−1, a22

−l), then for any
n > 0 and any ǫW > 0, there exists a scale l(n) > 0 and a finite energy analytic filter h
such that

Zm,l(t)
l
= (Ỹ ⋆ βl(n))(t) = ((Ỹ ⋆ gn) ⋆ h)(t) +W , (B.17)

with E(|W |2) ≤ ǫW .
But Ỹ satisfies E(Ỹ ) = 0, E(|Ỹ |2) <∞, E(|Ỹ |4) <∞, and

∑

n

αỸ (n)
1/2 <∞ ,

since its mixing coefficients have fast decay. We can thus apply lemma B.2.2 with δ = 2
to the partial sums Ỹ ⋆ gn. The same argument we used in (B.2) can now be applied by
replacing ψ̂l with the Dirichlet kernel ĝn, to show that

lim
n→∞

Var(Ỹ ⋆ gn) =

(∑

τ

RỸ [τ ]

)
‖g‖22 <∞ ,

and hence that, as n → ∞, the partial sums Ỹ ⋆ gn(t) converge in distribution towards
a Gaussian random variable.

Finally, let us see that this implies the convergence in distribution of Zl towards a
gaussian distribution. We use Slutsky’s theorem, which states that

Xn
d→ X

Yn
P→ 0

}
=⇒ Xn + Yn

d→ X ,
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where
d→ and

P→ stand respectively for convergence in distribution and convergence in
Probability. Since the discretization error ǫm,l converges to 0 in probability as m →∞
uniformly in l, and (B.17) approximates each discretized Zm,l(t) with a linear transfor-
mation (Ỹ ⋆ gn) ⋆ h of partial sums, with an error W converging to 0 in probability as
ǫW → 0, we conclude by letting m→∞ and ǫW → 0 that Zl(t) converges in distribution
to a complex Gaussian random variable. �.

B.3 Proof of Lemma 5.4.4

Lemma B.3.1 The sequence Zl = 2l/2|dX ⋆ ψ| ⋆ ψl satisfies

∀ t , lim
l→∞

E(|Zl(t)|r) = E(Rr) , for r = 1, 2 , (B.18)

where R follows a Rayleigh distribution.

Proof: This result is proved as a consequence of lemma 5.4.3, which lead to the conver-
gence in distribution of (5.46):

∀t , Zl(t) d→ R , (l →∞) ,

where R follows a Rayleigh distribution.
The proof of the Central limit theorem showed that liml→∞E(|Zl|2) = E(|R|2). In

order to see that the first moments also converge, we use a classic result on uniform
integrability of sequences of random variables:

Lemma B.3.2 ([Das08], thm 6.1-6.2) Let Xl be a sequence of random variables. Sup-
pose that for some δ > 0 ,

sup
l
E(|Xl|1+δ) <∞ ,

and that Xl
d→ X. Then Xl is uniformly integrable, and

lim
l→∞

E(Xl) = E(X) .

Lemma 5.4.2 showed in particular that suplE(|Zl|2) ≤ ‖ψ‖22‖R|dX⋆ψ|‖1 <∞. Then, by
setting δ = 1 in lemma B.3.2, we conclude that |Zl| is uniformly integrable and hence
that

lim
l→∞

E(|Zl|) = E(|R|) �.
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