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Introduction

This manuscript gives an account of the application of polarization-resolved second

harmonic generation microscopy (P-SHG) in collagenous tissues. The present work

has been carried out in the Laboratory for Optics and Biosciences at Ecole Polytech-

nique (UMR7645 CNRS, U696 Inserm), Palaiseau, France, in the research group of

Dr. Hab. Marie-Claire Schanne-Klein. The group possesses an extensive expertise in

second harmonic generation (SHG) from collagen and connective tissues with various

structural properties. This work goes in continuity with the group’s general aim to

deeper understand SHG in biological tissues. However, it tackles two new subjects for

the laboratory which are polarization resolution of SHG signal, and application of SHG

to biomechanical studies of connective tissue. In order to give a consistent introduction

to the following manuscript, this section will be structured in the following way. First

we will give the state of the art of P-SHG studies in 2009, when the Ph.D. work started.

Secondly, we will list the objectives of this thesis. Finally, we will give a chapter-wise

outline of the whole manuscript.

In 2009, SHG microscopy had already been established as an effective tool for con-

nective tissue visualization due to its high specificity for fibrillar collagen. The technique

was used for imaging of unstained collagenous tissues such as various tendons [1–16],

skin [17–19], sclera [16, 20], cornea [21–24], cartilage [16, 25], invertebrate disks [26], fi-

brotic lung [27] and kidney [28], and others. Other biological sources of SHG, such as

myosin in muscle sarcomeres [15, 29, 30], tubulin microtubules [31], starch grains [32, 33]

and cellulose [34,35] had been identified as well.

P-SHG is SHG refinement, which is almost exclusively intended to determine the

anisotropy of SHG signals in tissues. By 2009, this anisotropy was measured in tendon and

other collagen tissues [6, 7, 11, 13, 36], and several attempts had been performed to relate

this anisotropy to the microstructure of collagen, either at molecular [15,30,37] or fibrillar

[3] level. Accordingly, the anisotropy measured by P-SHG had been used as a discerning

parameter between SHG-capable tissues with different microscopic structures, such as

between tendons and muscles [15], or between collagen in healthy and tumoral [36, 37]

or diseased [23, 38] tissue. Another topical application of P-SHG was to determine fibril

orientation fields in collagenous tissues [39–41]. However, the determined orientations
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usually coincided with those morphologically visible on images, and thus provided no new

information.

P-SHG is often used in thick anisotropic tissues, such as tendon, so intensity and

polarization changes due to birefringence and attenuation should be taken into account.

However, in spite of increasing attention to P-SHG in 2009, the theoretical model inter-

preting P-SHG signal from collagen remained almost unchanged for three decades since

its introduction by Roth and Freund in 1981 [2]. In particular, this model didn’t account

for the birefringence directly affecting P-SHG results.

Collagenous tissues have a crucial structural and mechanical role in organism, which

makes it an important subject for biomechanical studies since 1970s [42–49]. A par-

ticular concern in these studies is the relationship between macroscopic properties and

microscopic structure. SHG and P-SHG have a high intrinsic specificity to fibrillar colla-

gen, which would make them perfect techniques to complete biomechanical measurement.

However, to the best of our knowledge, no such experimental system coupling biomechan-

ics with SHG microscopy had been reported by 2009.

Taking into consideration the state of the art in P-SHG in 2009, we chose the following

objectives for this work.

1. Develop and test a comprehensive model of P-SHG in thick collagenous tissues.

2. Perform numerical simulations of SHG imaging in thick anisotropic tissues in order

to have an independent reference to the experiment and to validate our understand-

ing of SHG process in collagen.

3. Couple SHG/P-SHG microscopy to biomechanical assays in collagenous tissues.

4. Derive the relationship between P-SHG signal and structural parameters in collage-

nous tissues and test it in model tissues

The manuscript is structured in the following way.

• Chapter 1 gives a brief introduction to collagen synthesis and structure, as well as to

biomechanical properties of macroscopic collagen assemblies. Collagen visualization

techniques and associated challenges are equally discussed.

• Chapter 2 first deals with the bases of multiphoton microscopy (MPM). A detailed

description of SHG principles is given afterwards. A particular attention is given

to the tensorial nature of SHG origin in collagenous tissues. We also introduce a

theoretical model linking SHG signal with structural disorder in collagen tissues.
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• Chapter 3 deals with the influence of various light propagation effects on P-SHG

microscopy in thick collagen tissues. This includes a description of the experimental

setup for SHG imaging, followed by the experimental data, which are analyzed by a

phenomenological model we developed to account for these effects. Additionally, the

chapter presents ab initio numerical simulations of light propagation and harmonic

generation in tendon and cornea.

• Chapter 4 presents results of biomechanical studies in rat-tail tendon, accompanied

by SHG and P-SHG imaging, performed in collaboration with the group of Jean-

Marc Allain at the Solid Mechanics Laboratory (Ecole Polytechnique - CNRS -

MinesParisTech). It first introduces a proof of concept study, which demonstrates

the possibility of coupling mechanical assays with simultaneous SHG microscopy in

a single setup. Secondly, it presents our P-SHG measurements of the orientational

order variations of collagen fibrils in a tendon upon controlled stretching.

• Finally, the Conclusion draws the bottom line for the thesis, paying special attention

to the accomplished objectives, and to the contribution this work brings to the area

of P-SHG studies of collagen.
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Chapter 1

Collagen

This manuscript revolves around optical and mechanical properties of collagen assemblies

in mammal tissues. The notions of collagen types, structure, synthesis, assembly and

degradation are crucial for understanding macroscopic properties such as the remarkable

optical transparency of cornea or peculiar strain-stress curves of tendon. In this chapter,

starting from the section 1.1, we first present synthesis and structure of collagen from

its genes and its smallest structure block – tropocollagen – to different levels of spatial

organization in tissues. Secondly, in section 1.2, it will be discussed how higher levels of

assembly condition the mechanical properties of tendon fibrils and fascicles. The section

1.3 is devoted to collagen conventional visualization techniques and to the associated

challenges. These challenges are discussed in the context of connective tissue development

and pathology diagnosis, and justify the development of SHG that is introduced in the

next chapter. The conclusion to the chapter will be drawn in 1.4.

1.1 Structure and synthesis

1.1.1 Collagen types

Collagen is the most abundant protein in human body, accounting for about 25% of total

protein mass [50]. This protein is present in virtually all organs and is responsible for

their mechanical properties, especially for tensile strength and rigidity. Collagen is a

major component of such structural tissues as ligaments, tendons, fascia, cornea, bones

and cartilage. It also assures the strength of vessels and skin.

There are almost 30 types of collagen, which differ in their amino-acid sequence,

structure and function [50]. All these types have a triple-helical domain of various length

as the main feature of the molecule, and structural differences are achieved via variations

in higher orders of organization. It is noteworthy to distinguish fibrillar collagen family
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(types I, II, III, V, ...) from the one that forms basement membranes (collagen type IV),

the two showing remarkable difference in macromolecular assembly and function.

By far the most abundant collagen type is the fibrillar collagen type I, since it accounts

for about 90% of all collagens in humans. Its synthesis will be described in details, since

it is the main component of tendon and cornea, which this manuscript is centred around.

1.1.2 Collagen type I structure and synthesis

The elementary block of collagen type I is the correspondent tropocollagen protein [(Gly-

X-Y)n]3, which is the final step of collagen synthesis before it is assembled to produce larger

structures (fibrils, fibers) in the extracellular matrix. The part of the helical domain in

tropocollagen molecule is shown in Fig. 1.1. It is a 300 nm-long and 1.5 nm-thick tightly

wound triple helix, consisting of three peptide chains, each forming a left-handed helix [51].

Two of them are identical and called α1-chain, and the third is called α2-chain.

Figure 1.1: Schematic structure of collagen molecule. (a) Left-handed single helix, featuring glycine
at every third position. X and Y can vary, though proline and hydroxyproline are frequent at X
and Y positions respectively. (b) Right-handed triple helix with glycine amino acids pointing to
the center of the assembly. Adapted from [50].

Every third amino acid in the strain is glycine, which has the smallest possible residue

(only hydrogen atom)(Fig. 1.1 B). While the chains coil in helices, glycine occupies the
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innermost position in the triple-chain assembly, which enables the three strands to come

in contact and to form a compact collagen triple helix. Other amino acids in the strand

can vary significantly, but the most abundant ones are proline and hydroxyproline, which

are essential for stabilization of the triple helix (see the next subsection).

Collagen are produced by a class of cells named fibroblasts, which are additionally

specialized depending on tissue, e.g. tenocytes in tendon and keratocytes in cornea. The

synthesis is illustrated in Fig. 1.2. First, transcripts from COL1A1 and COL1A2 genes are

translated directly into the lumen of the endoplasmic reticulum (ER) thanks to a short

N-terminal signal sequence. The newly synthesized strands, called pro-α-chains, undergo

post-transcriptional changes into the ER lumen: the signal sequence is cleaved, selected

prolines and lysines are hydroxylated to produce hydroxyproline and hydroxylysine, and

glycosylation of selected hydroxylysines is performed. Then, the three pro-α chains self-

assemble into a procollagen triple helix. Hydroxylated amino acids help to stabilize the

triple helix by hydrogen bonds they create between one another. After secretion via

secretory vesicles, the cleavage of propeptides produces tropocollagen molecules consisting

essentially of a single helical domain.

Figure 1.2: Pathway of collagen synthesis. Pro-α-chain synthesis (1) is followed by post-
transcriptional modifications (2-3) and self-assembling into a triple helix (4-5). The procollagen is
secreted (6), undergoes cleavage of terminal peptides (7) and self-assemble into fibrils (8). Further,
fibrils aggregate to form thicker assemblies such as fibers and fascicles (9). Adapted from [50].
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1.1.3 Hierarchical organization of collagen assemblies

In the previous subsection we described the synthesis of a collagen primitive structure

which is the tropocollagen molecule. The next level of organization is the collagen fib-

ril which is produced by self-assembly of tropocollagen molecules after the cleavage of

propeptides. Self-assembly is followed by enzymatic cross-linking of lysine residues of

constituent tropocollagen molecules, which is necessary to ensure tensile strength of the

structure. Collagen fibrils may vary in diameter from 10 to 500 nm depending on tis-

sue [52, 53]. In tendon, typical fibril diameter is about 100-300 nm, while in cornea it

is near 30 nm. Different studies suggest that fibril diameter might be controlled by the

stoichiometry of fibril-associated types of collagen (types IX, XI) [54], proteoglycan com-

position of tendon [55], and fibril polarity [56,57].

Collagen molecules assembly within a fibril is not haphazard but possesses a particular

order, both in longitudinal and transverse directions. All the molecules within a fibril

have the same polarity (see Fig. 1.3 a). Longitudinal order can be seen on transmission

electron microscopy (TEM) images, especially on those with negative staining (Fig. 1.3

b) which show a typical striated pattern with a period of 67 nm noted as D. This period

corresponds to a shift between neighbouring molecules staggered in the assembly. As the

molecule length is not a multiple of D (4D < Ltropocollagen < 5D), there are regions with 5

overlapping molecules (overlap regions) and others with only 4 overlapping molecules (gap

regions) (Fig. 1.3 b). The succession of these two series gives the observed banding. The

transversal order has been extensively investigated using electron microscopy [58], nuclear

magnetic resonance (NMR) [59] and X-Ray scattering [60–62]. These studies indicate the

presence of both short-range crystalline order (Fig. 1.3 e) and liquid-like disorder with

radial symmetry (Fig. 1.3 d).

In tendon, the fibrils reach 100-300 nm in diameter and are stacked in a parallel

manner to form fibers and fascicles, measuring about 100-200 μm in diameter. Fascicles

are enforced by proteoglycans (up to 1% of tendon dry weight), which form networks

orthogonal to fibril direction (see Fig. 1.4). Proteoglycans (PG) are large proteins with

covalently attached highly hydrophilic glycosaminoglycan (GAG) chains. The substantial

part of all collagen water content is associated with PG, forming a matrix which embeds

fibrils and enhance their resistance to tensile and compression stress [65,66]. Birefringence

studies suggest that collagen fibers are arranged in bundles and fascicles in a helical

manner [67].

In corneal stroma, accounting for 90% of corneal thickness, fibrils are thinner (< 30

nm) and are organized in 2 μm-thick lamellae with different orientations. The angle be-

tween two adjacent lamellae is typically π/3 to π/2 [52,69,70]. Theoretical and numerical
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Figure 1.3: Structure of a collagen fibril. (a-c) Longitudinal order [63] and (d-e) lateral order [64] of
collagen fibrils. (a) Fibrils feature a characteristic 67 nm periodicity, which is due to the presence
of overlap and gap regions. TEM images with negative (b) and positive (c) staining. Dark-light
banding with 67 nm period is better observed on negatively stained samples. (d) Lateral fibril
organization has a quasi-crystalline structure with liquid-like disorder. (e) Elementary lattice for
crystalline regions contains five molecules organized as in (a). Adapted from [63] and [64]

Figure 1.4: (a) Schematic representation of a proteoglycan chain. Courtesy of Pennsylvania State
University. (b) Electron microscopy photograph of longitudinal section of collagen fibrils in rabbit
outer sclera. Fixed in presence of Cuprolinic Blue. Proteoglycans appear as an array of positively
stained filaments associated with the D bands of the collagen fibrils. Scale bar 150 nm. Adapted
from [68]

studies were performed to show that the small diameter of fibrils in cornea and quasi-

crystalline order in lamellae are crucial for the transparency of corneal stroma [69, 71].

Similar plywood collagen organization is observed in tadpole skin and mature bone.

1.2 Tendon biomechanics

The mechanical properties of tendons are dictated by their physiological function in the

body. Their primary role in the organism is to transmit mechanical force between the

muscles and the bones. Moreover, during the movement, the tendons have been shown to

recuperate mechanical energy in the form of elastic contraction energy and then to release

it, by analogy to a deformed spring [43, 72]. These properties, while conditioned by the
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function, are conferred to tendons by its complex hierarchical structure, described in the

previous section 1.1.

Tendon mechanics has been extensively studied since 1970s [43–48, 72]. Tendons are

roughly unidimensional objects, so the natural mechanical assay on a tendon consists in

stretching the tendon or its fascicles along their axis, and recording the induced stress as

a function of applied strain. The obtained measurements are called "stress-strain curves"

and can be either continuous or incremental.

Continuous curves are those obtained on a tendon continuously stretched at a given

fixed speed. Incremental curves are those where a tendon is stretched by a fixed strain

increment and then allowed to relax at a constant strain, and then stretched again and so

on. Typical curves are displayed in the Fig. 1.5. In continuum mechanics, the continuous

curves are used to define the constitutive equation σ(ǫ) for an elastic medium. This

equation establishes linkage between the stress ǫ (tensile force per unit area) and the strain

σ (relative deformation) in the medium. However, tendons are not purely elastic, but

exhibit a strong viscoelastic behavior, which implies that the stress-strain curve depends

not only on the strain, but also on the strain rate ǫ̇ = dǫ
dt

:

σ = σ(ǫ, ǫ̇). (1.1)

It means that a more general description of tendon mechanics would require stress-

strain data at all ǫ̇ rates. In practice, the dependence of the strain rate is often explicitly

excluded when all the measurements within a study are performed at a constant strain

rate.

St 

Se 

Figure 1.5: Schematic representation of stress-strain curves for tendon. (a) Continuous stress-strain
curve, arbitrary units. (b) Incremental stress-strain curve. Upper points St represent total strain,
while lower points Se represent elastic component after relaxation. (c) Regions of a continuous
stress-strain curve. Adapted from [48]. (d) SHG image of crimps in a relaxed rat tail tendon. Scale
bar is 50 µm.

Incremental curves give access to the relaxation at different strains. They probe the

viscosity and the inner reconfigurations of the tissue. Indeed, they provide values for the

elastic component of the stress, which is attained after relaxation (Se in the Fig. 1.5),
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and the total stress containing also the viscous component, which is attained at the end

of a stretching period (St in the Fig. 1.5). Moreover, when mechanical assays are coupled

with time-consuming imaging, this type of curve must be privileged over the continuous

type, as the sample must reside in a stationary state during the imaging.

The continuous curve for the tendon has four distinct regions (see Fig. 1.5 a): a toe

region, a heel region, a linear part and a plateau followed by rupture.

In its relaxed state, tendon features wavy structures, commonly referred to as crimps,

undulations or wave-like structures (see Fig. 1.5 d). At small deformations, which cor-

respond to the toe region, the tendon is stretched without significant increase in force,

which is accompanied by straightening of these macroscopic crimps (see Fig. 1.5 c, toe

region).

Further, in the heel region, the stiffness of tendon increases significantly with extension

(see Fig. 1.5 c, heel region). X-ray scattering [47] and NMR [59] studies suggest that this

part of the curve is characterized by microscopic kinks in gap regions of collagen fibrils,

which are straightened upon loading. Misof et al. [47] proposed an entropic mechanism

of kink straightening, which well explains the nonlinear behavior of the heel part.

The linear part includes both elastic and viscous deformation, which can be seen from

the incremental curve (see Fig. 1.5 b). A model proposed by Puxkandl et al. [49] gives

insight into the origin of this bimodal behavior on the linear region of the curve and allows

one to quantify it. It considers tendon fascicle as collagen fibrils immersed in proteoglycan

matrix (Fig. 1.6 a), where elasticity and viscosity come both from fibrils and fibril-matrix

interaction. According to Puxkandl et al., a tendon can be represented by two instances

of Kelvin model put in series, one for fibrils contribution and another one for that of

proteoglycan matrix (Fig. 1.6 b). Several studies show that tendons can slowly recover

from strain in linear region, so the stretching remains quasi-reversible [73, 74]. Finally,

beyond the linear part, tendon yields and tears apart.

A typical stress-strain curve provides several relevant mechanical parameters, such

as tangent modulus, maximal stress and strain to fail. These different parameters can

vary significantly depending on tendon type and age, and can be a hallmark of various

pathologies. Several studies suggest that decreased cross-linked efficiency results in much

less maximal stress, and fibril length growing with age leads to increase of tangent modulus

via increased shearing [49].

In spite of the wealth of mechanical and structural information on tendon, there is still

no well-established and widely admitted picture accounting for all the details of its defor-

mation. Tendon mechanics and its relation to structure remains of great interest for the

treatment of tendon and ligaments injuries as well as a basic model for the biomechanics

of other connective tissues.
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Figure 1.6: Viscoelastic model of tendon tensile response. (a) Collagen fibrils (cf) are embedded in
a proteoglycan matrix (pg). ǫT indicates the total strain applied to the tendon. (b) Kelvin model
for fibril-matrix viscoelasticity. E, ǫ are elastic modulus and tensile strain, and η is viscosity. F
and M indices stand for fibril and matrix, respectively. Adapted from [49].

1.3 Collagen visualization techniques and challenges

Systematic study of connective tissue, and in particular of collagen formation, presents a

topical interest in biomedical domain. The different aspects of collagen metabolism, its

structure and its interaction with cells and the rest of extracellular matrix (ECM) govern

a variety of biological processes and pathologies, and the collagen visualization has a key

role in their understanding. Collagen visualization and scoring is important for a variety

of applications. As a diagnostic tool, it should help to evaluate various types of fibrosis,

developing tumors, and burn recovery. Additionally, studies of biomimetic materials such

as artificial collagen matrices require precise imaging of these complex structures.

In order to be efficiently implemented for the problems cited above, a visualization

technique should meet several requirements. Notably, it should have low invasivity in

order to be used in vivo and to maximally preserve the visualized specimen. 3D-capability

is also important, especially for collagen scoring in thick samples and for analysis of

complex structures such as artificial matrices. Additionally, apart from providing axial

resolution, the technique should have large penetration depth to exploit its 3D capabilities.

Finally, as collagen in tissue is accompanied by a number of other extracellular and cellular

components, the visualization should also present specificity for collagen to discern it from

the rest of the ECM.

In this section we briefly introduce the most common conventional techniques for

visualization of collagen in tissues, and all of them show limitations from that point of
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view. In contrast, second harmonic generation microscopy (SHG), which is the central

topic of this manuscript, can provide all the advantages we’ve just cited as important.

SHG properties, which impart these key features to the technique, will be described in

details in the next chapter. However, in this section we introduce several challenges that

are important for the present state of the art SHG microscopy. This will help to clarify the

objectives of this work in the context of connective tissue studies, and make the transition

to the rest of the manuscript.

1.3.1 Conventional visualization techniques

1.3.1.1 Electron microscopy

Electron microscopy (EM) has been used to study the structure of collagen fibrils since

1940s [75, 76]. This technique has an extremely high resolution, which allowed, for ex-

ample, to discover the 67 nm D-period of collagen fibrils which arises from staggering

of tropocollagen molecules. More generally, electron microscopy is very useful to assess

structural changes which occur at nanometre scale.

On the other hand, the electron microscopy has its limitations. First, a relatively

complex preparation for biological tissues (dehydration, ultrathin sectioning, staining) and

high doses of irradiation used to obtain images makes it inapplicable for in vivo studies.

The complex sample preparation can also result in various imaging artefacts, which may

give an erroneous data interpretation. Furthermore, electron microscopy images have a

small field of view (FOV), thus providing only a local insight on the sample structure. A

more comprehensive picture of the tissue in study thus requires preparing more samples

and getting more images.

1.3.1.2 Atomic force microscopy

Atomic force microscopy (AFM) is an imaging technique that uses a cantilever with a

sharp tip to scan the surface of a specimen. AFM provides spatial resolution on the order

of fractions of a nanometre, which competes with that of EM. In contrast with EM, AFM

imaging is generally performed in air or in liquid, doesn’t require any sample preparation,

and is mild enough to image the surface of soft biological objects. AFM has been used

to study collagen since 1990s [77–80]. AFM additionally enables force spectroscopy mea-

surements, which allows for nanoscale stress-strain measurements. Notably, it has been

used to perform mechanical assays on collagen molecules pulled out of collagen fibrils [81].

As it does not require specific sample preparation, AFM imaging can also be used to cal-

ibrate less-resolutive imaging techniques, as it was done for second harmonic imaging by

comparing AFM images and corresponding second harmonic images [82,83].
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AFM produces images with extremely high resolution and additionally allows for get-

ting 3D representation of sample surface. However, the scanning speed is generally low,

and it may take up to several minutes to produce an image. AFM also has limitations

due to its small field of view, even smaller than that of EM. Another drawback specific to

AFM it that the tapered form of cantilever tip or too coarse tip can cause image artefacts

while imaging steep walls and overhangs.

1.3.1.3 Polarized light microscopy

Polarized light microscopy (PLM) exploits the sample’s birefringence to produce image

contrast. It has been extensively used to analyze different phases of liquid crystal order-

ing of different compounds, including collagen solutions in acid (see for instance [84–86]).

PLM has long been established as an appropriate tool for visualizing and analysing crimps

in tendon, as it reveals typical banding in crimped tendon with high contrast [87]. Addi-

tionally, PLM imaging of transverse tendon section was used to reveal helical organization

of fibrils within tendon fascicles [67].

PLM has the advantage of being used without any particular sample preparation and

for samples of different thicknesses. However, it doesn’t have any specificity regarding

different birefringent compounds and doesn’t provide axial resolution.

1.3.1.4 Optical coherence tomography

Optical Coherence Tomography (OCT) is an interferometric technique, which provides

images with 3D-resolution in translucent and opaque tissues. Basically, the source of

contrast in OCT is the reflectivity of a certain layer in tissue. OCT has been used to

study the structure of the corneal stroma, and its different pathologies [88–93]. It also

proved promising technique to study crimp morphology in tendon during mechanical

load [94,95].

OCT can provide decent axial resolution (about 1 μm) without using high-NA lenses,

which gives it an advantage over confocal microscopy in precise imaging of relatively

distant objects, such as retina imaging through the pupil [96, 97]. However, OCT lacks

specificity for different compounds.

1.3.1.5 Histological and immunohistochemistry staining

Histological staining (histochemistry) is based on specific coloration of biological tissues

in order to provide contrast for optical visualization of its different constituents. His-

tological staining techniques remain the reference for identifying various pathologies in

tissue. The staining is performed by various sets of dyes and preceded by a routine tissue

preparation. A typical one consist of fixing the tissue (e.g. in formalin), embedding it in
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paraffin wax (hardens the tissue block enabling sectioning), sectioning on a microtome,

and rehydration. Instead of embedding in paraffin, the tissue can be frozen and cut by a

cryomicrotome. Typical stains used for connective tissue study are HES (Haemotoxylin-

Eosin-Safran), Masson trichrome, and Picrosirius Red.

Histochemistry is a simple and low-cost technique, which is routinely used in labora-

tories and hospitals. On the other side, it provides low specificity to collagen, as all the

ECM is stained similarly (besides Picrosirius Red that specifically enhances the birefrin-

gence of collagen, which can be observed by PLM). Additionally, as dyes must penetrate

into the tissue to efficiently stain their targets, the tissue slice thickness is limited to

somewhat ∼2-5 μm. It implies that the obtained images are essentially 2D. Finally, the

tissue preparation procedure may perturb the morphology of the tissue and introduce

image artefacts.

Another technique called immunohistochemistry (IHC) uses antibodies instead of

chemical dyes to specifically mark proteins, carbohydrates and lipids. The presence of

antibodies in tissue can be revealed by dedicated molecules bound to antibodies, such

as chromogenic reporters and fluorescence reporters. In most cases IHC provides an un-

paralleled specificity, as antibodies can be obtained for virtually any antigen. However,

due to very similar helical domains common to all collagens, the IHC staining of different

collagens may be tricky in some tissues and may lack selectivity.

Immunohistochemistry is often used as it is relatively inexpensive and provides good

specificity. However, the sample preparation for IHC contains numerous steps with incon-

stant outcome, which makes it hardly reproducible and thus not quantitative. IHC also

shares the drawbacks of histochemistry, which are notably the need in thin slices, and the

tissue perturbation during the sectioning.

1.3.2 Challenges in collagen visualization

In contrast to conventional collagen imaging techniques, SHG microscopy can fulfil the

demand for specific collagen visualization, 3D resolution, low invasivity and high imaging

depth. However, while SHG has already proven to be a promising visualization modality

for connective tissue study, there are at least two challenges to be undertaken in order to

improve it and to provide new functionalities.

1. SHG microscopy potentially enables access to submicrometre scale organization

of collagen assemblies via accurate polarization analysis of SHG signal (P-SHG).

However, various phenomena such as scattering, attenuation and birefringence can

impede these precise measurement. Thus, in order to understand and properly im-

plement P-SHG modality, a comprehensive model taking account of different signal
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perturbations should be developed. These theoretical considerations should also be

tested by numerical calculations to evaluate influences of different factors.

2. Mechanical assays on collagenous tissues such as tendon, skin, dura mater helps

to understand the origin of biomechanical response to applied strain, to the con-

dition that a technique providing information on microscopic tissue organization

is used simultaneously. As SHG and P-SHG are efficient techniques for assessing

collagen morphology and microscopic structural features, they seem promising for

complementing mechanical studies. Thus, such an experimental setup which couples

mechanical assays with SHG microscopy should be developed, and the experimental

approach needs to be validated.

These two challenges delimit the subject matter of this thesis and fully encompass its

objectives, which we announced in the Introduction.

1.4 Conclusion

In this chapter we briefly presented the main aspects of collagen synthesis, molecular and

supramolecular structure, and biomechanics. Moreover, we gave coverage of principal

techniques of collagen visualization in tissues and cited their advantages and limitations

for the biomedical use.

An increasing role in connective tissue study is entrusted to novel optical techniques,

which can handle the increasing demand in low invasivity, increasing speed and high

resolution. SHG microscopy perfectly meets these criteria and is valuable for collagen

visualization in different tissues and upon different conditions. However, this nonlinear

technique has a further potential which needs to be explored. In particularly, P-SHG can

provide additional information on internal organization of collagen structures, but requires

adequate theoretical models to interpret experimental results. Additionally, SHG can be

a suitable technique to be united with biomechanical studies, thus shedding the light on

the origin of mechanical response in collagen tissues.
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Chapter 2

Theoretical background of

polarization-resolved SHG microscopy

Introduction to multiphoton microscopy

Multiphoton microscopy (MPM), also known as nonlinear optical microscopy, is a class of

optical imaging techniques which rely on various nonlinear processes occurring in nonlinear

media. Since it was introduced in a milestone paper of Webb, Denk and Strickler [98],

multiphoton microscopy gained more and more popularity in cellular and tissue biology

because of its intrinsic 3D-capability, various available endogenous contrasts in tissues,

and its small invasivity. In this section, some general features of multiphoton microscopy

will be treated in section 2.1, followed by more detailed description of major contrasts

used in MPM. Second harmonic generation (SHG) is a dominant topic of the present

work, so it will be discussed in much more details and occupies the entire section 2.2.

Tensorial response of collagen with respect to polarized excitation will be treated in the

final section 2.3.

2.1 Principles and contrast mechanisms of multiphoton

microscopy

By definition, multiphoton microscopy implements nonlinear optical interactions. This

nonlinearity confers several advantages to multiphoton microscopy, such as optical sec-

tioning, deep tissue penetration and small phototoxicity. However, these advantages have

a price to pay, which is, notably, the need in extremely intensive electric field to be created

in the sample.

The large variety of nonlinear optical interactions gives rise to a number of contrasts

that can be used in nonlinear microscopy. In this section we will present two-photon
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excited fluorescence (2PEF), third harmonic generation (THG) and coherent anti-Stokes

Raman scattering (CARS). Simplified Jablonski diagrams for these processes are shown

in the Fig. 2.1. Second harmonic generation (Fig. 2.1 a) will be briefly introduced as well,

but its detailed description is given in the next section.

Figure 2.1: Simplified Jablonski diagrams for different types of multiphoton microscopies. (a)
Second harmonic generation (SHG). (b) Third harmonic generation (THG). (c) Two-photon excited
fluorescence (2PEF). (d) Coherent Anti-Stokes Raman Scattering (CARS).

2.1.1 Making intense fields

Classically, the appearance of nonlinear effects in optics signifies that electron response

to sinusoidal excitation field becomes anharmonic. It happens when the perturbation

field is large enough to be comparable with typical atomic electric field, which is Eat =

e/a20 ∼ 1011 V/m [99]. A beam of a continuous laser light of 1 W, focused in a 0.5 μm

× 0.5 μm spot will produce a field intensity of only about 107 V/m. Reaching higher

intensities not only presents a technical challenge, but will also lead to energy flux and heat

deposition much stronger than what biological tissues can tolerate. However, this problem

is circumvented by using ultrashort pulse lasers. It allows one to increase peak intensities

necessary for nonlinear processes to occur, while maintaining low average intensity. For

example, a 100 mW 100 fs-pulsed laser with 80 MHz rate can provide peak intensity

even larger than the atomic field, thus enabling all types of nonlinear interactions up to

those leading to destruction of the tissue. Since the apparition of turn-key femtosecond

lasers, such as a mode-locked Ti:Sa laser, nonlinear microscopy is gaining more and more

popularity.

2.1.2 Optical sectioning

An outstanding and well-known property of multiphoton microscopy is its intrinsic optical

sectioning. Sectioning means that the imaging system is able to resolve structures in the

axial direction.

Let’s consider a tightly focused beam in a medium with bulk fluorescence and discuss

the z-resolution for single-photon excitation and for two-photon excitation. Single-photon
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excited fluorescence (1PEF) scales linearly with the incident intensity, while 2PEF scales

as the square of the incident intensity [99]. For a small volume of the excitation cone,

the number of photons emitted will be dNω(z)
dSdz

∝ E2 for 1PEF, and dN2ω(z)
dSdz

∝ E4 for

2PEF, where E is the excitation field. As the fluence is constant along the propagation

direction, i.e.
∫
E2dS = C (we assume that there is no beam attenuation along the

propagation), we can roughly take Ẽ(z)2S̃(z) = C̃, Ẽ and S̃ being the effective area of

the beam section at z and the average field across this section. Thus, the number of

photons emitted from a slab of thickness dz is dNω(z) ∝ dz
∫
E2dS = Cdz for 1PEF, and

dN2ω(z) ∝ dz/S̃(z) for 2PEF. For 1PEF, each slab of uniformly fluorescent sample will

produce the same number of photons. The integral
∫
dNω(z)dz diverges, and one cannot

say where a detected photon comes from. On the other hand, for a Gaussian beam we

can easily calculate dN2ω(z):

dN2ω(z) ∝ dz

S̃(z)
∝ dz

1 + z2

z2
R

. (2.1)

Figure 2.2: Fluorescence signal for conventional and two-photon excitation. (a) Excitation cone
for linear excitation, with fluorophores efficiently excited outside the focal plane. (b) Two-photon
excitation. Fluorophores are only efficiently excited at the focal point, due to squared dependence
on excitation beam intensity. Adapted from [9].

Here, the integral
∫
dN2ω(z)dz converges, and most photons come from the region

(−zR, zR), naturally confined by Rayleigh length zR on either side. This simple calculation

is well illustrated by an iconic picture of multiphoton community (Fig. 2.2.) The actual

value for the 2PEF resolution is readily defined from the focal field distribution. It is

the size (1/e) of the point-spread function (PSF), which is the squared intensity of the
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⎧
⎨
⎩
ωxy =

0.32λ√
2NA

; NA < 0.7

ωxy =
0.325λ√
2NA0.91 ; NA > 0.7

ωz =
0.532λ√

2

[
1

n−
√
n2−NA2

]

Table 2.1: Estimation of 2PEF lateral (ωxy) and axial (ωz) resolution. adapted from [10]

focal field (quadrupled field). The obtained image is the convolution of fluorophores

distribution with the PSF, and the PSF size determines the smallest detail resolved by

the microscope. A good yet simple estimate for the 1/e size of the 2PEF PSF is given

in [10] (see Tab. 2.1).

Unlike conventional fluorescence microscopy, confocal microscopy can provide axial

resolution. The excitation is still linear, but the detection path is modified by introducing

a pinhole, which privileges the detection only of those photons that were emitted near the

focal plane. The synergetic effect of tight focusing, which provides high lateral resolution,

and the pinhole responsible for axial sectioning, ensures 3D-capability.

More detailed comparison of resolution and PSF between 1PEF and 2PEF can be

found in [100].

2.1.3 Two-photon excited fluorescence (2PEF)

2PEF microscopy is far the most widespread nonlinear microscopy technique, and it was

first made to be commercially available by Bio-Rad in 1996. Nowadays, a number of manu-

facturers (Zeiss, Leica, Nikon, Olympus, ...) produce commercial 2PEF microscopes. The

process of simultaneous two-photon absorption was first described by Maria Goeppert-

Mayer in her PhD thesis in 1931, and the first microscope was built in 1990 by Webb,

Denk and Strickler in their lab at Cornell University [98].

Excitation by two photons with subsequent fluorescence (2PEF) is a nonlinear optical

process, which is based on the probability of a fluorophore to be excited by simultaneous

absorption of two photons in a single quantum event. Each photon carries about half of

the energy necessary for the excitation of the fluorophore. The excitation is followed by

the emission of a single fluorescence photon with energy lower than the excitation energy

due to the Stokes shift, and typically higher than the energy of either photon used to

excite the molecule. The diagram illustrating this process is shown in the Fig. 2.1 c. This

process is dependent on the imaginary part of the third-order nonlinear susceptibility

tensor, and the probability of 2PEF scales as the square of incident intensity [99].

Since 2PEF is a fluorescence imaging technique with 3D-resolution, exactly as the

more conventional confocal microscopy, it is informative to compare their properties.
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Typically, all the vast library of fluorophores used in confocal microscopy can be

directly used for 2PEF. However, for many fluorophores their two-photon absorption

spectra differ significantly from their single-photon counterpart due to different selection

rules for single- and two-photon transitions. Moreover, two-photon excitation spectra are

usually wider. On one hand, it can lead to the loss of selectivity if it is achieved by using

different excitation wavelength to excite different fluorophores. On the other hand, while

absorption spectra widen and overlap, the respective fluorescence emission spectra remain

relatively well separated. It allows for simultaneous excitation of several fluorophores by

a single wavelength and selectivity is achieved by choosing different spectral windows for

fluorescence emission detection.

For a chosen wavelength and numerical aperture, the resolution of 2PEF is similar to

that of confocal microscopy. While the confocal microscopy outperforms 2PEF by a factor

of 2 at small depth in weakly-scattering tissue, in thick and scattering tissues 2PEF evens

the score. First, the scattering in tissue is significantly higher for the single-photon excita-

tion wavelength λ than for two-photon excitation wavelength 2λ (for the same transition

energy of the molecule), which results in more deteriorated PSF for confocal imaging.

Secondly, scattering leads to lower fluorescence signal, which requires to further open

pinhole, thus accepting photons from a wider layer near the focus and deteriorating the

resolution.

Due to low phototoxicity, which is restrained to the focal volume, two-photon mi-

croscopy permits to further increase incident intensity and to efficiently excite endoge-

nous fluorophores, which are generally much weaker than dedicated fluorescent dyes. The

most common endogenous fluorophores in biological tissues are aromatic amino acids

(tryptophan, tyrosine and phenylalanine), electron carriers (NADH, FAD) and structural

proteins such as elastin and collagen. However, collagen fluorescence is weak compared

to that of elastin, and it can be visualized much more efficiently by SHG microscopy.

An example of 2PEF image is displayed in Fig. 2.3. It shows a lung tissue affected

by idiopathic lung fibrosis (ILF), which is a rare disease characterized by apparition of

large collagen producing areas known as fibrotic foci. Two-photon excited fluorescence

from endogenous fluorophores is shown in red, and green represents second harmonic

generation from collagen fibers (see next section).

2.1.4 Second and third harmonic generation

Second harmonic generation was the first nonlinear optical process experimentally ob-

served. It was demonstrated in 1961 by Franken et al. [101] soon after the invention of

lasers. It has several applications across different areas of physics, and is often used in

lasers to obtain new wavelengths. However, this manuscript focuses exclusively on SHG
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Figure 2.3: 2PEF/SHG image of human lung tissue attained with idiopathic lung fibrosis. Red
is endogenous 2PEF primarily from NADH in cells and from elastin in the ECM. Green is SHG
originating from fibrillar collagen. A fibrotic focus (green bean-shaped bundle of collagen fibrils)
is visible in the upright corner above the alveolus (black cavity). Image taken with 20x 0.95NA
objective, at 860 nm, 20 mW beam power. Lung sample from Hôpital Bichat/Inserm U700

application as a contrast in a multiphoton microscopy that is called second harmonic mi-

croscopy. SHG is specific to highly ordered structures such as those adopted by fibrillar

collagen, and can be used in unstained biological tissues. SHG is the central topic of this

manuscript, and its detailed description will be done in the next section.

Another promising contrast used in multiphoton microscopy is third harmonic genera-

tion (THG). It is a coherent nonlinear process of simultaneous scattering of three photons

to produce a single photon with the energy equal to the sum of the three incident photons.

The technique relies on pulsed light with wavelength from 0.9 to 1.5 μm, produced by

infrared lasers or optical parametric oscillators (OPOs). Since it is a coherent process, its

interpretation could be more difficult than that of incoherent 2PEF. The detected photons

outcome depends on several factors, such as scatterers geometry, the form of radiation

diagram and the scattering properties of the tissue. For example, there is no THG signal

from a bulk sample with uniform nonzero third-order susceptibility χ(3), due to the Gouy

phase anomaly and resulting coherent cancellation of THG signal from different parts of

the focal volume [99, 102, 103]. On the other hand, a high contrast is observed on the

interfaces of two media with different χ(3), such as water-oil interfaces [104,105].

Since THG can visualize oil-water interfaces, it can reveal outer bilipid layer and

nucleus surface, along with smaller organelles such as mitochondria [104]. In the context

30



of this manuscript, it is noteworthy that THG was used to image interfaces between

subsequent collagen layers in corneal stroma [106]. It was attributed to different collagen

fibril orientation in each collagen slab, resulting in different third-order susceptibilities

χ(3) on the either sides of the interface [106].

2.1.5 Coherent anti-Stokes Raman Scattering

Coherent anti-Stokes scattering (CARS) in a scanning microscope was first demonstrated

in 1982 by Duncan et al. [107], but it received no development until the end of the century,

when it started to gain popularity. CARS relies on four-wave mixing, as shown in the

Fig. 2.1 d, which is a third-order nonlinear process. This technique is more difficult

to implement, since it requires 2 different excitation beams to be spatially aligned and

temporally synchronized with high precision. The first is the pump field ωp which is

involved twice (two red upward arrows in the Fig. 2.1 d) and the second is Stokes field ωs

(smaller red downward arrow) involved once in the scattering event. This method allows

for probing vibrational levels with efficient enhancement by the resonance at ωp − ωs.

CARS microscopy also possesses an intrinsic 3D resolution, as its efficiency is proportional

to I2ωp
Iωs

that is sufficient to ensure the optical sectioning (see subsection 2.1.2).

The advantage of CARS consists in chemical specificity attained with intrinsic axial

resolution. Indeed, 3D-confinement of the excitation volume enables microscopy capa-

bilities, while changing ωs provides spectral scanning of vibrational levels in the studied

sample. However, in practice, obtaining pixel-wise spectra is time consuming, and often

CARS is used with ωs set to a fixed vibrational frequency. For instance, it can be C-H

bond stretching band at 2840 cm−1, which allows for imaging of C-H rich lipid bodies.

2.2 Second Harmonic Generation microscopy

In this section we will first describe general principles of second harmonic generation in a

medium, paying particular attention to the role of coherence in SHG process, and to the

notion of resolution in SHG. After that, we will discuss the capability of collagen and its

assemblies to efficiently generate second harmonic radiation.

2.2.1 Mechanisms and principles

2.2.1.1 Physical origins

SHG is a nonlinear optical phenomenon where two photons at the same wavelength are

scattered by a single molecule to produce a photon at half the wavelength. SHG is a

coherent and instantaneous process (in contrast to 2PEF), which means that the phase
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of the generated wave is strictly related to that of the incident field. In a more general

case, the induced dipole p in such a molecule can be written as

p = [α]E + [β]EE + [γ]EEE + ... (2.2)

Here, E is the incident field, [α] is the linear polarizability of the molecule, and [β]

and [γ] are first and second hyperpolarizabilities. The first term corresponds to the linear

scattering, the second is responsible for SHG, and the third term governs THG. In the

most general case, the polarizability and first and second hyperpolarizabilities are tensors

with two, three and four dimensions respectively.

Harmonics generation can be illustrated by Lorentz oscillator model, treating the

interaction of an electromagnetic wave with a bound electron. According to this model,

an electron driven by the excitation field starts to oscillate and to generate the secondary

wave. For a harmonic potential, the oscillation is sinusoidal with the same frequency

ω as the driving field. However, for large excitation fields, the real potential can differ

significantly from harmonic one, which influences the oscillation signature. More precisely,

such an oscillation contains contributions of harmonic frequencies, i.e. 2ω, 3ω,... which

are radiated more or less efficiently (see Fig. 2.4.)

0 2000 4000 6000 8000
-1

0

1

0 2000 4000 6000 8000
-1

0

1

0 2000 4000 6000 8000 10000 12000
-1.5

-1

-0.5

0

0.5

1

1.5

e- 

Figure 2.4: SHG from an electron in an anharmonic potential. The nonlinearly scattered wave
contains harmonic components for double and triple frequencies.

In the case of symmetric potential, its Taylor series contains only even terms, which

correspond to odd harmonics. It means that no second harmonic (fourth, sixth, ...) is

possible in a centrosymmetric molecule.

2.2.1.2 The role of coherence in SHG

The coherent nature is the most prominent feature of SHG, which determines the rest

of its properties. On one hand, the coherent amplification of signal from ordered and

well-aligned structures makes that they are the only ones to efficiently produce SHG. It

accomplishes the most important role of SHG in tissue microscopy, which is the specific
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visualization of fibrillar collagens, tubulin microtubules, and sarcomeres in muscles with-

out staining. On the other hand, this property significantly impedes both qualitative

and quantitative interpretation of the SHG images, and even compromises the notion of

resolution in SHG microscopy, as will be shown in the following item.

To illustrate the role of coherence, let’s consider a simple example of the nonlinear

scattering in two different media with the same number of scatterers within a small

volume. The first volume contains harmonophores aligned along a specific direction,

while in the second volume, the harmonophores are randomly oriented (see Fig. 2.5).

θi 

θj 

Figure 2.5: Schematic illustration of (a) second harmonic generation and (b) hyper-Rayleigh scat-
tering.

We assume that the volume is small compared to the wavelength, so in the first case

(Fig. 2.5 a) all the scatterers radiate in phase, and their contributions sum up coherently.

The final radiated intensity (total or in a chosen direction) is therefore

ISHG ∝
(∑

E2
)2

∝ N2E4, (2.3)

where N is the number of scatterers and E is the excitation field. One can see that

the intensity varies as the square of the number of molecules. It is actually this type of

coherent amplification of second harmonic waves which is referred to as Second Harmonic

Generation.

In the second medium, the second harmonic field radiated by each molecule along the

direction of the incident field is proportional to cos3 θi. Here, θi is the angle between the

orientation of the ith molecule and the polarization of the incident field. In such a medium,

the total harmonic field is proportional to
∑

i E
2 cos3 θi, which is a random variable for

which the expected value is zero. In this case, the intensity is directly proportional to the
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variance of the electric field, and reads:

IHRS ∝ Var [E2ω] = E4

(
∑

i

cos3 θi

)2

=

= E4
∑

cos6 θi + 2E4
∑

i,j i<j

cos3 θi cos3 θj =
1

7
NE4. (2.4)

The bar over the terms signifies the expected value of a random variable. The intensity

scales only linearly with the number of scatterers. This process is called hyper-Rayleigh

scattering (HRS). For such an isotropic distribution of scatterers, their local density is

usually much smaller than that in SHG capable tissues. In practice, the focal volume and

the typical acquisition time in microscopy are too small to achieve detectable signal levels

from isotropically distributed harmonophores.

This property can be interpreted as an illustration that SHG does not exist in a

medium with central symmetry (explained in the previous item). Indeed, as all positions

and orientations for molecules are equiprobable in such an isotropic medium, it possesses

a central symmetry in a statistical sense (for the moment, we assume that the molecules

are not chiral, i.e. the molecule and its spatially inverted copy differs only in orientation).

It is thus natural that for large N the HRS intensity is statistically negligible compared

to that of SHG.

2.2.1.3 Resolution: comparison between SHG microscopy and other tech-

niques

In this part we will discuss the axial resolution of SHG microscopy in comparison with

several widely-used techniques, such as conventional fluorescence microscopy, confocal mi-

croscopy and two-photon excited fluorescence microscopy. The two nonlinear techniques,

SHG and 2PEF, provide intrinsic optical sectioning, while single-photon fluorescence mi-

croscopy does not, unless a pinhole is used.

The resolution aspect for fluorescence techniques was already treated in the previous

section. Briefly, the main difference between linear and nonlinear fluorescence doping the

latter of its 3D-capability, is that the nonlinear excitation is proportional to the square

of excitation intensity, rather than scaling linearly with it. Thus, the optical sectioning

in linear excitation is not intrinsic and should be ensured by a pinhole, which shapes the

axial detection efficiency.

For incoherent microscopic techniques with axial resolution like confocal microscopy

and two-photon excited microscopy, the resolution is associated to the point spread func-

tion (PSF) which is an image of a point source of contrast. The obtained image can be
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interpreted as a convolution of the fluorophores distribution with the PSF, which gives to

the PSF the significance of the smallest detail resolved by a technique.

The situation is more complex for the coherent SHG, as the recorded image depends

not only on SHG intensities produced by individual scatterers, but also on their relative

phase. As a consequence, the spatial distribution of harmonophores cannot be deduced in

general case and requires some a priori assumptions about the sample and phase-matching

conditions for the SHG wave. For example, small isolated objects, such as individual

distant fibrils [5], are well resolved as there is no significant interference possible between

distant sources due to the tight confinement of the field.

However, in the present work we mainly perform SHG in tendon and cornea, which

are bulk and dense sources of SHG. To determine the resolution in this case, we will

use a similar approach as for 2PEF resolution (see 2.1.3), looking at the total number of

photons produced by the excitation and assessing the z-slab they primarily come from.

Let’s consider a tightly focused beam in a medium with bulk SHG capability. The

simulated intensity distribution for 0.95NA is shown in the Fig. 2.6 a and b.
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Figure 2.6: Fundamental beam intensity (a) and its decimal logarithm (b) in the (x,z) plane
calculated for 0.95 NA. Effective phase distribution for forward SHG (with subtraction of 2ik(z −
z0)) (c) and backward SHG (with subtraction of −2ik(z − z0)) (d) in the (x,z) plane. Red ellipse
at (c) and (d) indicates the approximate size of the focal spot. Black and white spots along the
axial line in (c) correspond to regions where colormap value changes from −π to π, thus being
zones of relatively constant phase in spite of their contrasted appearance.

For simplicity reasons, we will assume that the generated nonlinear dipole has only one

component, which is parallel to the excitation field E. For a chosen direction n = k2ω/k2ω,

the detected SHG intensity is proportional to

I2ω(n) ∝
∣∣∣∣
∫

E(r)2e−ik2ω
rd3r

∣∣∣∣
2

=

∣∣∣∣
∫

|E(r)|2 ei2φ(r)e−ik2ω
rd3r

∣∣∣∣
2

(2.5)
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where φ(r) is the phase of the incident field. One can possibly imagine such a perfectly

coherent distribution of harmonophores and of the excitation beam phase, which makes

the phase factor disappear. In this case we would observe the same dependence on field

exponent as in conventional fluorescence microscopy, without any axial resolution. How-

ever, it is not the case in reality due to the relatively complex structure of the beam

phase. It is thus clear that the signal formation and the total intensity depend strongly

on phase distribution of the beam and the propagation direction. In a microscopy setup,

the SHG can either be detected in the forward (trans, F-SHG) or backward (epi, B-SHG)

direction, so we will consider these two cases to evaluate the effective resolution.

The forward direction, which coincides with the propagation direction of the incident

field, privileges phase matching. Indeed, the phase difference between portions of SHG

radiated from different slabs is compensated by the phase change of the fundamental

wave acquired from propagation between these slabs. In the Fig. 2.6 c, one can see the

phase distribution for squared field E2
x with subtraction of 2ikz term. This distribution

represents the effective phase for the forward radiation. There are two cones of uniform

phase, in front of and behind the focal point. The phase difference between these cones is

about 2π, which is twice the so-called Gouy phase. The Gouy phase change occurs at the

focus, mostly within a 2-Rayleigh length-thick slab, which coincides approximately to the

beam confinement in the z direction (Fig. 2.6 a). Hence, the diverging frontal and rear

cones are approximately phase-matched, while the scatterers in the center of the beam are

in opposite phase to the tails. In this situation, one may expect the signal to be efficiently

produced even slightly outside the focal point. However, the phase matching conditions

are additionally modified by the light dispersion in the medium (n2ω −nω), which reflects

the difference in light velocities for fundamental and harmonic waves. This effect should

decrease coherent amplification outside the focal point. For the case of back-propagating

SHG, the effective phase distribution is displayed in Fig. 2.6 d. There are no zones of

uniform phase, and there is no signal amplification, as the signal from a uniform sample

undergoes destructive interference. However, for samples with non-uniform distribution

of harmonophores, this geometry can probe spatial frequencies of approximately quarter

the wavelength in the focal volume, so it can represent a potential interest for study of

thin stratified media.

Rather than speaking of optical resolution in SHG microscopy, one can define a co-

herence length [2], which is the length over which the effective phase of signal formation

changes by π:

lc =
π

|k2ω − 2kω|
. (2.6)

Here, k2ω indicates the wave vector of second harmonic in the direction of observa-

tion, while kω stands for the wave vector of excitation field, which is oriented along the
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Type of contrast Signal formation Divergence

Conventional fluorescence

∫
|E|2 d3r ∝

∫
dz diverges

Confocal fluorescence

∫
|E|2 PSFpinholed

3r ∝
∫

dz

z2
converges

2PEF

∫
|E|4 d3r ∝

∫
dz

z2
converges

SHG
∣∣∣
∫

E2d3r
∣∣∣
2

∝
∣∣∣
∫

|E|2 eiφd3r
∣∣∣
2

depends on phase

THG
∣∣∣
∫

E3d3r
∣∣∣
2

∝
∣∣∣
∫

|E|3 eiφd3r
∣∣∣
2

∼ 0

Table 2.2: Origin of axial resolution for different imaging modes of contrast. Diverging integral
for conventional fluorescence signifies absence of axial resolution. Converging integral implies axial
resolution for confocal and two-photon excited microscopies. In SHG, the precise value of the
integral depends on the scatterers distribution. For THG, there is no signal in bulk tissue due to
Gouy phase.

excitation beam propagation. This formula gives a good estimation of lc for the coun-

terpropagative SHG beam (B-SHG), but requires the explicit introduction of the Gouy

phase correction and index dispersion for the F-SHG beam [108, 109]. Instead, we can

estimate F-SHG lc directly from the calculated phase distribution. Finally, for 0.95NA

we get lc ≈ lRayleigh ≈ 3λ/2 for the F-SHG (see Fig. 2.6 c), and lc ≈ π/4kω = λ/8 for the

B-SHG (see Eq. 2.6 with k2ω ≈ −2kω).

The Gouy phase is also a crucial factor in bulk THG. As can be deduced from few last

paragraphs, the beam Gouy phase shift of π corresponds to 3π for the effective forward

THG. It makes the rear and frontal cones (see Fig. 2.6 c) of the opposite phase, and

additionally cuts the focal volume in two parts interfering destructively. It is the reason

why the THG is not produced in a bulk medium and usually requires an interface between

media with different χ(3) [99, 110].

To summarize, the origins of resolution in different microscopy techniques for the bulk

contrast source are presented in the table 2.2.

2.2.2 Origin of SHG in collagen

In the previous subsection we discussed the general principles of SHG, paying special

attention to the coherent process of signal formation. In this part we will elucidate the

origin of SHG in collagenous assemblies and emphasize the role of a regular hierarchical

structure on the efficiency of this process. Hierarchy of SHG signal build-up in collagen

is shown in the Fig. 2.7.
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Figure 2.7: Origin of SHG in collagen tissues with hierarchical levels of SHG amplification in
collagen. In this section, for the sake of simplicity the induced nonlinear dipoles in peptide bonds
are assumed to be parallel to the excitation field.

The source of efficient second harmonic dipole in tropocollagen molecules has been

attributed to the peptide bonds along the three chains constituting the helical structure

[30,111–113]. The hypothesis that SHG is produced by the protein backbone rather than

by the residues is supported by the fact that all types of collagens capable of hierarchical

assembly (fibrillar types I, II, III, V, ...) produce SHG, while their amino-acid sequence

differs significantly. In this context, a tropocollagen molecule can be considered as a set

of second-order dipoles, which are situated along the three helices. While one can admit

that a nonlinear response originates from a peptide bond, some studies show that the

bond itself does not actually coincide to the induced nonlinear dipole direction [112,113].

When excited along the main axis of the triple helix, each bond contributes construc-

tively to the SH signal produced by the molecule. The triple helix is therefore the first

hierarchical level of SHG amplification for a peptide bond. However, as the length of

the tropocollagen molecule is comparable to the wavelength, the amplification efficiency

depends on the direction of signal detection [111]. In spite of the efficient coherent sum-

mation of peptide bond responses, neither individual collagen molecules nor isotropic

distributions of these molecules are observable by SHG microscopy. Pena et al. demon-

strated that there is no SHG produced from the basement collagen IV in connective tissue

due to its virtually centrosymmetric organization [114]. However, Deniset-Besseau et al.

showed that a much weaker HRS signal can be detected from concentrated collagen liquid

solutions using higher excitation volume and much longer acquisition times than usually

implemented in SHG microscopy setups [111].
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The next level of collagen assembly — which is the assembly of individual molecules

to produce fibrils — also amplifies the SHG signal significantly, as all molecules have the

same orientation, or polarity, within the fibril [63]. This amplification has a qualitative

impact on the SHG, as isolated fibrils are easily observed with SHG microscopy, unlike

individual molecules.

Further, one can imagine two different scenarios for fibril assembly into a fascicle or

bulk tissue. The first one would obey the same logic as previous two levels of assem-

bly, i.e. the fascicle consists of aligned parallel fibrils with same polarity (same molecule

orientation in each fibril with respect to the main axis of the fascicle). This case would

produce fairly more amplified SHG signal than that from a single fibril.

Another possibility consists in organization in which each polar fibril randomly adopts

either parallel or anti-parallel orientation with respect to the fascicle axis (random head-

tail arrangement). Thus, the amplification of SHG in such a fascicle has a stochastic nature

and is similar to the hyper-Rayleigh scattering of collagen (as described in 2.2.1.2), besides

the fact that individual SH scatterers are collagen fibrils, not molecules. We suggest the

name "HRS-like" amplification instead of coherent amplification to this process.

While there are evidences that collagen fibrils adopt a random head-tail organization

in tendon [115], no data indicating either of two described scenarios are available for

cornea.

2.3 Collagen tensorial response

In the previous section we extensively used the notion of a nonlinear dipole, which is in-

duced in a moiety (also called "harmonophore") upon excitation by a fundamental field.

To describe the coherent effects in SHG and signal amplification in collagen assemblies,

we limited ourselves to molecules generating second harmonic along the polarization di-

rection of the excitation field. This simple concept fully allowed us to explain the origin of

SHG in collagenous tissues and to elucidate its main properties. However, in the context

of SHG tensorial nature, which we first introduced in 2.2, this property corresponds solely

to a single component of the hyperpolarizability tensor, which is βuuu with u aligned with

the excitation field. In general case, SHG-producing moiety has a wider set of tensor com-

ponents, which depend on exact structure of the molecule. The different components of

this tensor can be probed by polarization-resolved second harmonic generation (P-SHG).

P-SHG consists in analysing SHG signal in tissue while varying the incident polarization.

The SHG signal anisotropy can be quantified with a single parameter ρ, which we will

discuss in details later in this section. P-SHG provides an additional contrast by mea-

suring pixel-wise distribution of ρ in tissue, which gives access to the structure of the

harmonophore assemblies.
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P-SHG was successfully used to determine local fibril orientation within the tissue,

which was demonstrated in [40, 41]. Several groups reported measurements of the ρ

parameter in collagenous tissues [4, 6, 11, 13]. As different microscopic organization of

nonlinear scatterers generally results in different P-SHG response, the parameter ρ can

serve as a discerning variable to characterize different tissues or changes within a single

type of tissue, which are accompanied by collagen reorganization. Notably, this approach

was used to differentiate SHG from collagen and myosine [30], healthy and tumoral tis-

sue [37, 116], and normal and diseased cartilage [38]. Some authors used the measured ρ

values to determine helical pitch angles of peptide bonds within collagen molecules [15,30],

thus providing a link between SHG responses at peptide bond level and tissue level. As

P-SHG is recently gaining more and more popularity, an effort was made by some groups

to reduce both acquisition and image processing time while optimizing the precision of

P-SHG analysis in tissues [117, 118]. Recent advanced model of P-SHG confirmed that

the peptide bonds are sources of the nonlinear response in collagen [119].

In this section we briefly present the general tensorial properties of light scattering.

Then, a substantial part of the section is dedicated to the hyperpolarizability of collagen

molecules and macroscopic structures. Finally, we discuss on how the P-SHG can give an

insight on the molecular organization on sub-μm scale.

2.3.1 Tensorial formalism of medium polarization

Let’s return to the Eq. 2.2 describing the polarization of a moiety in slightly different

notations:

pi = αijEj + βijkEjEk + γijklEjElEk + ... (2.7)

Here, pi is the induced dipole moment including both linear and nonlinear parts, αij

is the linear polarizability tensor, βijk is the first hyperpolarizability tensor responsible

for the SHG, and γijkl is the second hyperpolarizability tensor responsible for the THG.

The indices j, k, l are dummy indices, and we use the Einstein convention, performing

a summation over indices appearing twice in a single term. The local field factors are

omitted for simplicity.

Tensors are geometrical objects which are transformed in a specific way when the

reference frame is changed. More precisely, a tensor Tαβ...γ in new basis will be transformed

as follows:

Tα′β′...γ′ = Tαβ...γe
α
α′e

β
β′ ...e

γ
γ′ , (2.8)

where eii′ governs the transformation between two frames. Here, upper and lower indices

simply indicate old and new coordinates. Such a tensor is inherent to a moiety and is

related to its geometric configuration and orientation. It implies that when seen from the
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laboratory reference frame, two identical scatterers with different orientations will have

two different tensors. It is useful to define such a tensor in the proper reference frame

of the scatterer, preferably in a most convenient way. This will allow one to obtain the

tensor in any reference frame by a known transformation.

A good example of molecules with strong β are push-pull molecules, where the charge

transfer between donor and acceptor is only possible in one dimension. In this simplest

case, the polarizability and all hyperpolarizabilities will have only one main component

(αuu, βuuu, γuuuu, ...) in the associated reference frame. This push-pull concept can be

applied to describe qualitatively the SH response of peptide bonds.

While it is possible to define a hyperpolarizability tensor for an elementary scatterer

such as a molecule or even a particular bond in a molecule, in practice this microscopic

tensor is not accessible by optical measurements. Indeed, even a tightly focused beam

contains many and many elementary scatterers, which are simultaneously excited by the

driving field. Instead, the medium is characterized by an apparent nonlinear susceptibility,

which results from summation of all elementary hyperpolarizability tensors in the focal

volume:

χ
(2)
ijk =

∑

n∈V
βijk, n. (2.9)

Here, βijk is the elementary scatterer’s hyperpolarizability in the laboratory reference

frame. It is obtained from the βIJK tensor in the associated frame in the following way:

βijk = βIJKT
I
i (ϕ, θ, ψ)T

J
j (ϕ, θ, ψ)TK

k (ϕ, θ, ψ) . (2.10)

The rotation matrix T between two reference frames reads

T (ϕ, θ, ψ) =

⎛
⎜⎝
cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sϕsθ

cψsϕ + cϕcθsψ cϕcθcψ − sϕsψ −cϕsθ

sθsψ cψsθ cθ

⎞
⎟⎠

(2.11)

with Euler angles ϕ, θ and ψ shown next to the formula. s’s and c’s signify sines and

cosines of corresponding angles.

Here above, we related the microscopic hyperpolarizability tensor β, which describes

the induced momentum of a single scatterer, to the macroscopic nonlinear susceptibility

tensor χ(2), which is appropriate for continuous media and which describes the volume

density of induced dipoles (medium polarization). The hyperpolarizability describes the

scatterer’s interaction with the local field, while the nonlinear susceptibility describes the

interaction of a continuous nonlinear medium with the average field.
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2.3.2 Symmetries of collagen assemblies and nonlinear response

tensors

In the most general case, the hyperpolarizability tensor describes how jth and kth com-

ponents of two excitation fields at frequencies ω1 and ω2 contribute to the ith component

of the scattered field at frequency ω1 + ω2. In full notation, the tensor is written as:

βijk (ω1 + ω2; ω1, ω2) (2.12)

For an arbitrary scatterer, such a tensor may have as many as 27 independent com-

ponents, although this number might be substantially reduced by different symmetries.

First of all, we are not interested in sum-frequency generation for two arbitrary frequen-

cies, but only in SHG, i.e. when ω1 = ω2 = ω. In this case, βijk (ω1 + ω2; ω1, ω2) becomes

βijk (2ω; ω, ω), which is invariant with respect to the permutation of two last indices.

This fact reduces the number of independent components from 27 to 18.1

Further simplifications apply for the interaction in a lossless medium, which we suppose

is the case for the tendon. It implies that all tensor components are real. Another

substantial simplification is granted by Kleinman symmetry, which applies when all the

involved frequencies (ω and 2ω) are far from resonance. It is a stronger requirement

than the absence of losses. In collagen, light absorption bands are situated below 240

nm [7, 120], while we usually work at λ/2 = 430nm, which makes it reasonable to adopt

this simplification. In some studies the Kleinman symmetry is shown to be precise within

a few percent [113], while some other authors question the applicability of this symmetry

for biological tissues [121]. When Kleinman symmetry is valid, the tensor components

are basically frequency-independent, which allows to interchange all indices in βijk further

reducing the number of independent components from 18 to 10.

Besides simplifications that come from general properties of SHG, there are those as-

sociated with the spatial symmetry of the medium. Fortunately, collagen assemblies are

highly regular structures with high symmetry on different levels of organization. As the

tropocollagen molecule consists of three almost identical helices, it possesses rotational

symmetry C3, and the tensor βmol inherits it. For further simplicity, this symmetry is

approximated with C∞. The Kleinman symmetry imposes invariance with respect to in-

1As SHG description with βijk becomes redundant, it is often substituted by a two-dimensional 3× 6
matrix di, s, which is basically a βijk with rearranged components [15,30,36,41,99]. In di, s, i corresponds
to the first index of βijk, while s corresponds to different combinations of j, k as shown below:

di,s(j, k) = βijk, where s(j, k) =

j \ k x y z
x 1 6 5
y 6 2 4
z 5 4 3

. (2.13)
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terchanging of all three indices, explicitly ruling out chiral components, which makes that

the medium effectively possesses C∞v symmetry. Additionally, the Kleinman symmetry

reduces the number of independent tensor components for C∞v from 4 to 2.

C∞v, with Kleinman symmetry

βxxx,

βxyy = βxzz =

= βyxy = βzxz

= βyyx = βzzx

C∞v, w/o Kleinman symmetry

βxxx,

βxyy = βxzz,

βyxy = βzxz,

βyyx = βzzx

(2.14)

Here and further in the manuscript, the x is the symmetry axis, unless other is stated.

2.3.3 Second harmonic response of collagen at molecular and fib-

rillar scale

In this subsection we will explore the tensorial nature of collagen taking into account its

hierarchical structure and implementing the approach described above. The elementary

sources of SHG in collagen are the peptide bonds in the protein backbone, which eventually

determines the SHG response of the observable structures, such as bundles of collagen

fibrils.

βbond βmol

C3 ∼ C∞v

χ(2), C∞vβfib, C∞v

Figure 2.8: Nonlinear response tensors at different scales. (a) Part of the collagen alpha-chain,
featuring Gly-Pro-Hyp-Gly sequence; peptide bonds are shown by blue-cyan sticks. (b) Part of
tropocollagen molecule, which exhibits rotational symmetry C3, which is often approximated by
C∞v. (c) Collagen fibril equally possessing a C∞v symmetry. (d) Collagen fascicle with focused
beam. The beam focal volume (red spot) encompasses one or two dozens of fibrils in tendon or
about a hundred fibrils in cornea.

However, it is not always convenient to perform a direct transition from the elementary

scatterer to the continuous medium according to Eq. 2.9. Instead of performing direct
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summation over all amino-acids in the focal volume, one may separate the procedure in

few steps, at each level calculating the intermediate tensor, e.g. for a collagen molecule

and collagen fibril (see Fig. 2.8). It doesn’t mean that one would be able to access these

intermediate tensors by direct measurements, but instead this procedure yields tensors

for more relevant building blocks for the collagen tissue. Additionally, these larger blocks

may have a higher symmetry, and hence, a simpler form of tensor. Somewhere during

this step-wise transformation one should switch from microscopic (β) to continuous (χ(2))

notations. However, this boundary is not clearly defined. Mostly by convenience in

notations, we will however use hyperpolarizabilities for scales from the fibrillar level and

below, and nonlinear susceptibility for the fascicles.

This multi-scale approach allows one to chose the most appropriate scale for the current

needs. At every hierarchical level, the relevant tensors are those corresponding to the level

of interest and to the level below. The first is as a matter of fact required to interpret

the measured signal, and the second permits to gain insight into the variations of the

former. Thus, when studying HRS signal from collagen, tensors for a single molecule and

for a peptide bond become of a particular interest [111]. When studying individual fibril

formation, the fibrillar and molecular tensors come to focus. Finally, in this work we

address SHG in bulk tissues, so we are primarily interested by nonlinear susceptibility of

tissue and hyperpolarizability of individual fibrils.

Hyperpolarizability tensor for the collagen molecule is obtained from the adequate

elementary SHG-radiating block, that is the peptide bond [30]. For simplicity, it can be

approximated by a push-pull molecule model, and in this case, βmol reads:

βijk, mol =
∑

n

βXXX, bond TX
i (ϕn, θn)T

X
j (ϕn, θn)T

X
k (ϕn, θn) . (2.15)

Here capital letters stand for the associated reference of a push-pull moiety, and small

letters stand for the reference associated with the tropocollagen molecule. The summation

is performed over different peptide bonds in the molecule, and not over tensor components,

βXXX, bond being the only component of the elementary block’s tensor. The pitch angles

for different amino-acids are not equal, since their positions in [Gly-X-Y]3 blocks are not

all equivalent. Additionally, the T I
i matrix is simplified compared to the Eq. 2.11, as

for a push-pull bond the angle ψ is irrelevant and can be set to any value. The C∞v

symmetry of the tropocollagen limits the number of independent components to only two

(as described in the previous subsection).

In spite of reproducing correctly the symmetry of the resulting molecular tensor, the

model of SHG originating from non-interacting push-pull peptide bonds is not accurate.

The proper calculation of the hyperpolarizability tensor for collagen molecule is not a

trivial problem. Numerical simulations based on known molecular structure of tropocol-
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lagen was recently performed by Tuer et al. [112, 122]. They explain that segmentation

is needed to reasonably reduce the calculation time for hyperpolarizability tensor cal-

culation. They also show that segmentation in individual effective amino acids doesn’t

offer sufficient precision and yields unrealistic results. The authors however were able to

improve the situation by segmenting the molecule in larger blocks, containing 3-5 amino

acids. As a conclusion, the best calculation would be a full triple helix simulation of

hyperpolarizability tensor, which are still out of reach for modern calculation.

Hyperpolarizability of tropocollagen can further be used to calculate the tensor for

a fibril. Neglecting the small helical angles of tropocollagen molecules within a fibril

[123], one can also write the hyperpolarizability of a fibril consisting of N tropocollagen

molecules in the following simple way:

βijk, fib = Nβijk, mol. (2.16)

Finally, performing a summation of contributions from all fibrils in the focal volume,

we make a similar transition to the higher scale of fiber or fascicle. By convention,

we consider that this transition marks the passage from microscopic notations to the

macroscopic ones:

χ
(2)
ijk =

∑

n

βIJK, fib T I
i (ϕn, θn)T

J
j (ϕn, θn)T

K
k (ϕn, θn) = N 〈βijk,fib〉Ω . (2.17)

Here, 〈·〉Ω stands for averaging over all orientations of contributing fibrils. In contrast

to β tensors, which values are entangled within the value of χ(2) and cannot be accessed,

the χ(2) tensor can be directly measures in tissue.

2.3.4 P-SHG signal for C∞v symmetry

Absolute measurements of hyperpolarizability and nonlinear susceptibility are difficult, as

they involve many loose parameters which cannot be precisely controlled. While providing

absolute values, such measurements are usually still relative to compounds for which the

hyperpolarizability tensor was independently measured previously (e.g. see [111]). On

the contrary, it is rather straightforward to perform relative measurements of different

components within a single susceptibility tensor, since the calibration is provided within

the tensor (e.g. one of the components). For a tensor with n independent components

χ
(2)
1 , χ

(2)
2 , ..., χ

(2)
n , there are n− 1 ratiometric parameters:

χ
(2)
2

χ
(2)
1

,
χ
(2)
3

χ
(2)
1

, ..., χ
(2)
n

χ
(2)
1

.

For collagen within Kleinman approximation, there are only 2 independent compo-

nents, so there is only one ratiometric parameter, which characterizes the tensor to within

a constant factor. This value is often called the SHG anisotropy parameter ρ and can be
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defined at different levels of hierarchy. For instance, we define ρfib for single fibril, and an

effective ρ for the bulk tissue:

ρfib =
βxxx, fib

βxyy,fib

ρ =
χ
(2)
xxx

χ
(2)
xyy

. (2.18)

In the following, we will use ρ without an index to refer to SHG anisotropy param-

eter at tissue level, unless differently specified. When precise absolute measurement are

unavailable, it is the only quantitative parameter that characterizes SHG from a sample

with C∞v symmetry.
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Figure 2.9: Scheme of polarization-resolved SHG experiment.

Let’s discuss P-SHG signal for a tendon sample, considering a geometry which is typical

for tendon SHG experiments [4, 13, 124] (see Fig. 2.9). A collagen fascicle with nonlinear

susceptibility tensor χ
(2)
ijk is placed within xy plane along the x-axis. The incident field

propagates along z. The polarization of the incident beam lies within the sample plane,

making an angle α with the x axis, so that

Eω
x = E0 cosα (2.19)

Eω
y = E0 sinα.

In this case, the radiated SHG intensities with x and y polarizations are:

I2ωx ∝
(
χ(2)
xxx (E

ω
x )

2 + χ(2)
xyy

(
Eω

y

)2)2 ∝
(
ρ cos2 α + sin2 α

)2
E4

0 (2.20)

I2ωy ∝
(
χ(2)
yxyE

ω
xE

ω
y + χ(2)

yyxE
ω
y E

ω
x

)2 ∝ sin2(2α)E4
0 (2.21)

As it may be seen from above, the x SHG component is produced by either of incident

polarizations independently. The y SHG field is only produced when the incident field has

both x and y polarization components. The properties of z SHG are equivalent to that of
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y, but in this geometry there is no z excitation field, so there is no z SHG produced. The

polar diagrams of I2ωx and I2ωy for ρ = 1.4 are shown in the Fig. 2.10. One can see from

the Eq. 2.20, that the ratio of intensities for α = 0 and α = π/2 gives the squared value

for anisotropy parameter ρ. In practice, it allows one to extract ρ value from measured

polarization diagrams by fitting the data accordingly to the Eq. 2.20.
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Figure 2.10: Polar diagram for SHG intensities along the tendon axis x (a) and along the orthogonal
direction y (b) as a function of the polar direction α of the excitation field. The diagrams are
calculated for ρ = 1.4. Intensities are given in arbitrary units.

2.3.5 Tensorial response variation versus disorder in collagen fas-

cicle

In this work, we are interested in measuring nonlinear susceptibility of the tissue, i.e. its

response on the hierarchy level corresponding to the focal volume of our imaging system.

In practice, this corresponds to clusters of few dozen fibrils in tendon (about a hundred

for cornea), which may have orientational spread around the main axis (see Fig. 2.11 a).

In this part we will explicitly derive the χ(2) tensor dependence on the angular spread of

constituting fibrils to determine relationship between P-SHG responses at fibrillar level

and tissue level. It should be noted, that this approach is different from that used by

Plotnikov et al. [30], Tiaho et al. [15], and Su et al. [125], who directly link helical angle of

peptide bond to the tissue nonlinear susceptibility. By doing this, the authors explicitly

neglected any orientational disorder that collagen molecules may have within fibrils, or

fibrils may have within fascicles. We believe that our approach is more appropriate, as it

doesn’t require additional hypotheses on the organization of molecules within fibrils.

The relationship between anisotropy parameters ρfib and ρ is derived by writing down

the two independent components χ
(2)
xxx and χ

(2)
xyy according to the Eq. 2.17. For a fascicle

consisting of fibrils oriented at different polar angles θ and azimuthal angles ϕ to fascicle
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Figure 2.11: Orientational disorder in tendon. (a) Hierarchical structure of collagen, from molecule
to fibril and fascicle. P-SHG probes the orientational distribution of fibrils within the fascicle. (b)
Collagen fibril with (θ, ϕ) orientation. (x, y, z) and (X, Y , Z) denote laboratory frame and fibril
frame respectively. (c) Effective SHG anisotropy parameter ρ as a function of fibril orientation
dispersion σ in the tendon fascicle for fibril parameter ρfib = 1 and ρfib = 1.36.

axis (see Fig. 2.11 b), one can write:

χ(2)
xxx = N

〈
βXXX cos3 θ (2.22)

+ 3βXY Y cos θ sin2 θ
〉
ϕ,θ

χ(2)
xyy = N

〈
βXXX cos θ sin2 θ cos2 ϕ (2.23)

+ βXY Y

(
cos3 θ cos2 ϕ− 2 cos θ sin2 θ cos2 ϕ+ cos θ sin2 ϕ

) 〉
ϕ,θ

.

Here above, we used the fact that for Kleinman and C∞v symmetry the following

relations hold:βXY Y = βY Y X = βY XY = βXZZ . We assume that fibrils are distributed

uniformly with respect to the azimuthal angle ϕ. Further, we assume that the polar

angle θ is governed by some distribution g(θ), which reflects the angular spread of fibril

orientation about the fascicle axis. In this case we obtain:

χ(2)
xxx = NβXXX

〈
cos3 θ

〉
g
+ 3NβXY Y

〈
cos θ sin2 θ

〉
g

(2.24)

χ(2)
xyy = χ(2)

yxy = χ(2)
yyx =

1

2
N
(
βXXX

〈
cos θ sin2 θ

〉
g
+ βXY Y

(
3
〈
cos3 θ

〉
g
− 〈cos θ〉g

))
(2.25)

and χ
(2)
ijk = 0 for all other components.

The SHG anisotropy parameter ρ writes:

ρ =
χxxx

χxyy

=
ρfib 〈cos3 θ〉g + 3

〈
cos θ sin2 θ

〉
g

3
2
〈cos3 θ〉g − 1

2
〈cos θ〉g + 1

2
ρfib

〈
cos θ sin2 θ

〉
g

, (2.26)

It is useful to introduce a spread parameter δ as follows

δ = 1−
〈cos3 θ〉g
〈cos θ〉g

=

〈
cos θ sin2 θ

〉
g

〈cos θ〉g
(2.27)
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which is positive if θ is distributed around 0, and δ
θ→0−−→ 0. Hence, Eq. 2.26 can be

rewritten as

ρ = ρfib +
δ
2
(3− ρfib) (ρfib + 2)

1− δ
2
(3− ρfib)

. (2.28)

This equation shows different behavior for ρfib < 3 (increases asymptotically to 3)

or ρfib > 3 (decreases asymptotically to 3). Given the values of ρ measured in our

experiments and reported in the literature [4, 6, 7, 13, 15, 36, 111], we expect that ρfib < 3

for rat-tail tendon fascicles. In that case, the effective parameter ρ increases with δ,

i.e. with disorder. The same trend has been reported in the particular case of a conical

distribution at a fixed angle θ when increasing θ [112]. It is noteworthy, that the special

point ρfib = 3 is a consequence of symmetry of the fibril hyperpolarizability tensor (total

number of components identical to βxyy,fib), and is not related to the dimension of fibril

orientation distribution. For instance, this critical value ρfib = 3 also appears for a planar

fibril distribution, i.e. fibrils symmetrically spread in the xy plane around zero angle.

To further simplify the calculations, we now consider that the angle θ exhibits a Gaus-

sian distribution around x−axis, g(θ) ∝ e−
θ2

2σ2 , with distribution width σ =
√

〈θ2〉g. For

this Gaussian distribution, δ can be written using Dawson’s integral ξ(x) = e−x2 ∫ x

0
et

2
dt,

which gives:

δ =

〈
cos θ sin2 θ

〉
σ

〈cos θ〉σ
=

2ξ
(√

2σ
)
− ξ
(
2
√
2σ
)

4ξ
(√

2σ
) . (2.29)

Parameter ρ is then easily computed as a function of angular dispersion σ (see results

in Fig. 2.11 c). Note that the Gaussian distribution approximation holds only for small

angles (σ � π/4), since θmax is limited to π. Other distributions, such as von Mises or

Wrapped Normal distributions, may be considered for larger dispersions.

2.4 Conclusion

In this chapter we presented theoretical bases of P-SHG. We briefly introduced basic

features and most prominent imaging modalities of multiphoton microscopy and discussed

in details the properties of SHG microscopy and its origin in collagenous tissues. Finally,

we described the tensorial nature of P-SHG signal in tissues and developed a theoretical

model which links orientational order in tissue with its nonlinear susceptibility tensor.

SHG relies on simultaneous scattering of two excitation photons by a single har-

monophore. We showed that coherence is of particular importance in SHG process, and

it is responsible for efficient SHG amplification in samples with uniformly oriented har-

monophores. As so, SHG is produced only in dense and highly ordered tissues. P-SHG

from a molecule or a medium is characterized by a first hyperpolarizability or nonlinear

susceptibility tensor, respectively. These tensors determine how efficiently the different
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components of the excitation field produce SHG that is polarized along different coordi-

nate axes. We introduced a theoretical model, which links the nonlinear susceptibility

of a complex collagen structure to its building elements and their relative orientations.

Notably, we showed how P-SHG measurements in tendon fascicle can provide information

on the angular spread of collagen fibrils within the fascicle.

To conclude, SHG by itself proved to be an efficient probe for tissues organization.

Additionally, P-SHG provides a promising structural imaging modality, which allows for

quantifying fibril orientation and disorder in collagen tissue. While the image resolution

is still diffraction-limited, P-SHG is sensible to structural properties at submicrometre

scale, i.e. below optical resolution.
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Chapter 3

Linear optical effects in

polarization-resolved SHG microscopy

Introduction

The SHG signal produced in a complex tissue by an excitation beam obviously depends

both on the tissue, and on the beam propagation. Indeed, the focal field distribution

can undergo dramatic changes in a dense, scattering tissue. Additionally and most im-

portantly, if the tissue is anisotropic like tendon, these changes are different for incident

polarizations along and perpendicular to the fascicle. However, up to now, little atten-

tion was given to this fact, and in the literature P-SHG images were usually processed

according to Eqs. 2.19-2.21. In 1982, Roth et Freund [3] included a birefringence term

in the model equation for SHG intensity, but this approach didn’t receive thorough ex-

perimental validation, and is not applicable for tightly focused beams used in microscopy

setups. More recently, Stoller et al. [6] explicitly neglected possible birefringence in the

interpretation of their results, while the diagrams they obtained suggest its presence.

Mansfield et al. [38] observed polarization-resolved SHG diagrams as a function of depth

in tendon and cartilage, and touched upon possible contributions of birefringence and

anisotropic attenuation. However, the P-SHG results were not treated accordingly, and

no quantitative explanation was proposed to that account. In parallel to the course of

this thesis, some papers were published reporting a more elaborated study of polarization

scrambling [35] and birefringence [126].

In our work we clearly demonstrate that P-SHG measurements are prone to different

perturbations in tissues due to linear propagation effects, that impede correct interpre-

tation of P-SHG data in aligned rat-tail tendons. We therefore develop a comprehensive

approach to correct P-SHG measurement for these artefacts.
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In the first section we describe in details the experimental setup used for P-SHG

measurements.

In the second section we present the results are given as an article that has been pub-

lished in Optics Express. The article presents a phenomenological model which includes

explicitly the effects we observed in tendon P-SHG imaging, and the experimental data

which are interpreted using this model.

The third section is devoted to numerical simulations of the excitation beam propaga-

tion and SH generation. It includes both a theoretical part and the simulation results for

tendon. Additionally, simulation results for cornea are presented in a form of a published

article. This article reports experimental P-SHG data obtained by one of my colleagues,

G. Latour, and their interpretation based on my numerical simulations.

Finally, in the fourth section we discuss the obtained experimental and theoretical

results and draw some conclusions on the impact they can have on the modern state-of-

art P-SHG imaging.

3.1 Experimental setup for simultaneous SHG/2PEF

imaging

Here we describe the main part of our experimental setup. It allows for simultaneous

acquisition of two-photon excited fluorescence and second harmonic generation, thus being

a representative case of multiphoton microscopy instrumentation. The scheme of our

multiphoton microscope is depicted in the Fig. 3.1.

The source of the excitation light is a mode-locked Titane:Sapphire femtosecond laser

(Tsunami, Spectra-Physics) which is pumped with a continuous 5 W laser (Millenia,

Spectra-Physics). The wavelength of the Ti:Sa laser is tunable between 700 nm and

990 nm. The pulses are cadenced at 82 MHz and have a duration of approximately

130 fs. The beam power varies from 500 mW at 730 nm to 250 mW at 970 nm, reaching

its maximum of 800 mW at 790 nm. In our experiments we typically used 860 nm light,

for which the beam power was about 700 mW.

The laser power delivered to the microscope is controlled by a half-wave plate succeeded

by a Glan prism. The half-wave plate rotates the incident polarization before the Glan

prism, changing the amount of light transmitted by the prism.

A shutter installed after the Glan prism blocks the beam unless the acquisition is

performed, which limits the photo-damage undergone by the sample.

The beam scanning is performed by galvanometric mirrors (GSI-Lumonics). They

change the angle of incidence of the beam on the objective, therefore laterally displacing
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Ti-Sa Laser 
(0.7-1.0 µm) 

Figure 3.1: Experimental setup. Microscope consists of the following modules as depicted: exci-
tation and scanning, incident polarization control, backward detection, and polarization-resolved
forward detection. See description in the text.

the focal spot in the focal plane. The mirrors are optically coupled with the back pupil

of the objective by an afocal system, which is also designed to expand the beam spot

for full coverage of the pupil. The beam magnification is essential for exploiting the full

numerical aperture of the objective.

Before hitting the objective, the beam passes through a dichroic mirror, which deflects

the backward-emitted light, containing both SHG and 2PEF signal, to the epidetection

module.

The polarization state of the light is controlled just before the objective. For the precise

polarimetric measurement in the forward direction, an IR polarizer is used to eliminate

non-negligible ellipticity (14%) originating from the dichroic and the galvanometric mir-

rors. The polarizer is oriented to deliver the maximum possible power. Then, the resulting

linear polarization is rotated by an achromatic half-wave plate (MWPAA2-22-700-1000,

CVI-Melles Griot). When performing polarimetric measurements in the backward di-

rection, the polarizer is replaced by a quarter-wave plate to avoid polarization-specific

blocking of the beam. The reason why λ/4-plate is not used in the forward direction is

that in practice the polarizer allowed for almost perfect ellipticity elimination, while there

was a remainder ellipticity of 5% with λ/4-plate.

The beam is focused at the sample by an objective. Since we usually work at 860 nm

IR light with broad spectrum, the objective must be transparent for the infra-red light
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and corrected for the chromatic aberrations. In our setup we use Olympus XLUMPFL

20x W/IR objective with 0.95 numerical aperture. It is a water-immersion objective

transparent in infra-red, with working distance of 2 mm. It has a high NA, which ensures

tight focusing, beneficial for the resolution (1.6 μm axial and 0.4 μm lateral FWHM

resolution for 2PEF). At the same time, due to moderate magnification, it possesses a

large field of view of about 500 μm × 500 μm. The vertical position of the objective, which

corresponds to the axial coordinate of the focal spot, is controlled by a motor (Physik

Instrumente M-126 DG) with a minimal step of 0.2 μm.

There are two detection modules, in the forward and backward directions, each fea-

turing two photomultiplier tubes (PMTs). The epidetection module allows for detecting

backward-emitted 2PEF and back-scattered SHG light. In the module, the two modes

of contrast are separated by a second dichroic mirror (FF458-Di01, Semrock). The for-

ward detection module uses a polarization cube (BBPC-550, CVI-Melles Griot), which

divides two orthogonal SHG polarizations towards two different PMTs. To ensure the

quality of polarized light, we additionally put linear polarizers (03FPG021, CVI-Melles

Griot) in front of each of these PMTs. For all PMTs, spectral filters are used to select

the needed spectral component and to reject the other contributions. We used bandpass

filter (Chroma HQ430/20) in SHG channels and coloured filters (Schott GG455) for 2PEF

channels. Each channel was additionally equipped by one (backward detection) or two

(forward detection) low-pass filters (FF01-680SP or FF01-720SP Semrock) to block the

fundamental beam.

The whole system is controlled by a custom Labview interface developed in the labo-

ratory. The module for polarization-resolved detection was developed by myself.

3.2 Experimental artefacts in thick anisotropic tissue

Introduction

In this section we present a phenomenological model (i.e. based on the observed effects

rather than on ab initio considerations) for P-SHG in rat-tail tendon. First, in this

subsection we present a brief introduction to this model and to experimental results.

Secondly, the detailed formalism, results and discussion are presented in a form of a

journal article, as it has already been published in Optics Express.

The rat-tail tendon was chosen for our experiments because it is model tissue in

collagen studies and in SHG experiments in particular, and it is easily obtained from rat

tails. It has a simple structure as compared to other collagenous tissues. Indeed, it is

virtually unidimensional, its dry content is 90% collagen and its hierarchical structure
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possesses similar organization on all levels (parallel packing of molecules into fibrils and

fibrils into fibers and fascicles).

In the article presented in this section we measured SHG polarization diagrams as

a function of imaging depth in tendon. More precisely, for each position zobj of the

objective, we recorded SHG intensities along two polarization directions, Ix(α, zobj) (along

the tendon) and Iy(α, zobj) (perpendicular to the tendon), as functions of incident linear

polarization angle α.

The obtained diagrams were then compared to those predicted by the Eqs. 2.20, 2.21

and discrepancies were observed. Notably, for a certain imaging depth ∼ 30μm and angles

α ∼ ±π/4 we observed minima of x-polarized SHG signal Ix(α, zobj), which could not be

explained by the Eq. 2.20. We attributed this effect to tissue birefringence, which results

in phase shift between the x- and y-components of the excitation field. Furthermore,

we observed that SHG signal attenuation was stronger for incident polarization parallel

to the tendon axis than for incident polarization perpendicular to the tendon axis. We

referred to this effect as diattenuation, which is explained by anisotropic scattering of the

excitation field. Finally, we demonstrated that a significant part of harmonic field initially

radiated with x-polarization is detected in the y-polarization channel and vice versa. This

is called polarization cross-talk, and is probably due to scattering on misaligned fibrils

within the fascicle.

All these three effects were explicitly taken into account in the Eq. 2.20 to produce

the following general equation of our phenomenological model:

I2ωx (z) ∝
∣∣∣ρe−

z
∆la cos2 αei∆φ + sin2 α

∣∣∣
2

+ ηXY e
− z

∆la |sin 2α|2 . (3.1)

∆φ denotes the phase shift accumulated with depth between two incident orthogonal

polarizations, ∆la stands for excitation field diattenuation length, and ηXY shows the

amount of Iy detected in the x-channel.

The measured diagrams Ix(α, zobj) were fitted with the equation above to obtain the

values for birefringence, diattenuation and polarization cross-talk. The simulated dia-

grams obtained with the extracted parameters are in excellent agreement with the ex-

perimental data, which signifies that our model correctly accounts for all observed effects

affecting P-SHG in tendon.

3.2.1 Polarization-resolved Second Harmonic microscopy in

anisotropic thick tissues
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microscopy in anisotropic thick tissues

Ivan Gusachenko, Gaël Latour, Marie-Claire Schanne-Klein

Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM U696,
91128 Palaiseau, France

marie-claire.schanne-klein@polytechnique.edu

Abstract: We thoroughly analyze the linear propagation effects that
affect polarization-resolved Second Harmonic Generation imaging of thick
anisotropic tissues such as collagenous tissues. We develop a theoretical
model that fully accounts for birefringence and diattenuation along the
excitation propagation, and polarization scrambling upon scattering of
the harmonic signal. We obtain an excellent agreement with polarization-
resolved SHG images at increasing depth within a rat-tail tendon for
both polarizations of the forward SHG signal. Most notably, we observe
interference fringes due to birefringence in the SHG depth profile when
excited at π/4 angle from the tendon axis. We also measure artifactual
decrease of ρ = χxxx/χxyy with depth due to diattenuation of the excitation.
We therefore derive a method that proves reliable to determine both ρ and
the tendon birefringence and diattenuation.
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1. Introduction

Second Harmonic Generation (SHG) microscopy is an efficient imaging technique to visu-
alize the three-dimensional (3D) distribution of fibrillar collagen in biological tissues [1, 2].
Incident circular polarization is usually used since it enables imaging of fibrils independently
of their orientation in the focal plane. This approach is particularly relevant for quantitative
biomedical studies such as fibrosis scoring [3, 4]. However, fibrillar collagen exhibits a struc-
tural anisotropy that may be interesting to characterize for many applications. For that purpose,
polarization-resolved SHG provides complementary information about the 3D distribution of
nonlinear dipoles within the focal volume [5, 6, 7, 8]. The usual approach is to measure the
ratio ρ of the two main tensorial components of the nonlinear response, considering a cylin-
drical symmetry for fibrillar collagen [9, 10, 11, 12, 13, 14]. This ratio depends on the orienta-
tional distribution of the collagen triple helices and on the orientation of the nonlinear dipoles
(along the peptidic bonds) within the triple helix. ρ therefore provides information about the
ordering of collagen molecules or fibrils within the focal volume. It has been measured in
various collagenous tissues and showed a wide dispersion of values (1.2 to 2.6). Comparison
of healthy and pathological tissue however requires to characterize the accuracy of ρ measure-
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ments and their sensitivity to various artifacts. In particular, the anisotropy of many collagenous
tissues may affect polarization-resolved SHG experiments as reported in tendons [10, 15, 16].
Polarization-resolved image processing improved when taking into account diattenuation [15]
and birefringence [10, 16]. Furthermore, polarization scrambling due to scattering has been
shown in tendons and other biological tissues [17].

The aim of this paper is therefore to thoroughly characterize the linear propagation effects
that affect polarization-resolved SHG experiments in anisotropic tissues and to develop a reli-
able method to determine ρ in collagenous tissues. For this purpose, we first develop a theoreti-
cal model that fully accounts for birefringence, diattenuation and polarization scrambling upon
scattering. We then record polarization-resolved SHG images in rat-tail tendons that is a model
tissue composed of aligned collagen fibrils. We finally compare simulated and experimental
data that show an excellent agreement and give insight into the linear and nonlinear optical
properties of the tendon. Most notably, we observe interference fringes in the SHG depth pro-
files when excited at π/4 angle from the tendon axis, and artifactual decrease of ρ with depth
due to diattenuation of the excitation. We conclude that the correction for these effects enables
a reliable determination of ρ .

2. Experimental setup

2.1. Tendon preparation

Tendons were extracted from Sprague-Dawley rat-tails (female, ≈ 300g), centrifugated at 4700
rpm and stored at 4◦ in phosphate buffer saline (PBS). Imaging was performed within a few days
using a water-immersion objective. Tendons were first labelled with fluorescent latex beads
to enable precise location of the tissue surface (1µm diameter, L1030, Sigma-Aldrich). After
rinsing, they were fixed at both extremities and streched to get rid of the crimps and facilitate
alignment of the fibrillar pattern along the x direction of the microscope stage. They were kept
in PBS on a glass coverslip that maintained them in the focal plane of the microscope.

2.2. Imaging setup

Multiphoton imaging was performed using a custom-built laser scanning microscope [18] as
depicted in fig. 1.a. Excitation was provided by a femtosecond Titanium-sapphire laser tuned
at 860 nm and scanned in the xy directions using galvanometric mirrors. It was focused in the
tendon using a water-immersion 20x, 0.95 NA objective that resulted in typically 0.4 μm lateral
and 1.6 μm axial resolution near the sample surface. Power was adjusted to 10-15 mW at the
focus using a rotating half waveplate and a Glan prism that filtered out y-polarization before
entering the microscope setup. Nonlinear optical signals were detected using photon-counting
photomultiplier tubes and appropriate spectral filters to reject the laser excitation (FF01-680SP,
Semrock) and select two-photon excited fluorescence (2PEF) signal (GG455 high-pass filter,
Schott) or SHG signal (HQ430/20 interferential filter, Chroma). 2PEF was detected in the back-
ward direction and SHG in the forward direction. Multimodal images were recorded using 100
to 200 kHz pixel rate, 0.4 to 0.8 μm pixel size and 1 to 2 μm z-step. They were combined using
Matlab and ImageJ softwares as shown in fig. 1.c. Note that there is a slight index mismatch
between the tendon (n = 1.5) [20] and water (n = 1.33), so that the depth z within the tendon is
related to the lens displacement dzlens by: z = dzlens ntendon/nwater.

2.3. Polarization-resolved measurements

The laser polarization at the back pupil of the objective was approximately along the x direction
but exhibited a 14% ellipticity due to the optical components within the microscope (9% ellip-
ticity without the dichroic mirror for epi-detection). We therefore inserted an infrared polarizer
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Fig. 1. Experimental setup. (a) Laser scanning multiphoton microscope showing
polarization-resolved detection of forward SHG signal and epi-detection of 2PEF signal
and possibly of SHG signal. The insert displays the incident electric field relative to the
tendon geometry in the focal plane. (b) x- and y-polarized forward 2PEF signal from a flu-
orescent slide for variable incident polarization angles. The ratio of the 2 maxima is used
for calibration of polarization-resolved SHG signals. (c) Combined 2PEF (red) and SHG
(green) image of a tendon labeled with fluorescent latex beads. The image is the summation
of 15 images acquired 2μm apart from the tendon upper surface, with enhanced contrast.
The yellow box shows a typical Region of Interest used for plotting depth-polar diagrams
as in fig. 5. Scale bar: 50μm.

and achieved an ellipcity less than 1% with small scanning angles. This linear polarization was
tuned from −2π/3 to 2π/3 (usually with π/12 steps) by rotating an achromatic half wave-
plate (MWPAA2-22-700-1000, CVI-Melles Griot) placed just before the objective (see fig.
1.a). Forward SHG signals were analyzed using a polarizing beamsplitter cube (BBPC-550,
CVI- Melles Griot). To improve the extinction ratio of the x- and y-polarized detection chan-
nels, linear polarizers (03FPG021, CVI- Melles Griot) were set in front of the detectors. The
relative transmission of these two channels was calibrated using a fluorescent slide (Chroma):
we took advantage of the isotropy of the setup within the xy plane and compared the x-polarized
signal to the y-polarized one excited with polarizations shifted by π/2 angle (see fig.1.b). The
ratio of both channels was typically 1.1. Calibration was performed before every experiment
and enabled quantitative comparison between x- and y-polarized signals.

3. Theoretical background

3.1. Polarization-resolved SHG

Let’s consider the nonlinear optical interaction of the incident laser beam with a rat-tail tendon.
The polarization induced in the medium by the elecric field E is given by:

Pi = χ
(1)
i j E j + χ

(2)
i jk E jEk (1)
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where we considered only the first- and second-order electric susceptibility tensors χ(1),(2). Rat-
tail tendon is commonly assumed to have a cylindrical symmetry (C6v symmetry) [9, 10, 7],
which reduces the number of independent nonvanishing χ(2) components. Moreover, we as-
sume that the Kleinman symmetry is valid as usually considered because of the nonresonant
character of the interaction. Within these approximations, there are only 2 independent non-
vanishing χ(2) tensorial components: χxxx and χxyy = χxzz = χyxy = χzxz = χyyx = χzzx, where
x represents the main axis of the tendon [19]. Considering a laser beam propagating in the z
direction with a linear polarization at angle α to the tendon lying in the xy plane (see fig. 1.a),
the electric fields reads: Eω

x = E0 cosα and Eω
y = E0 sinα near the focus and induces a SH

polarization:

P2ω
x ∝

(
χxxx cos2 α + χxyy sin2 α

)
E2

0

P2ω
y ∝ (χxyy sin2α)E2

0

(2)

which radiates at frequency 2ω . In this paper, we are interested in ratiometric measurement
of the second-order response and we consider the ratio of the two independent tensorial com-
ponents of the second-order susceptibility: ρ = χxxx/χxyy. This ratio provides insight into the
orientational distribution of the collagen molecules within the focal volume. It is taken to be
real in the Kleiman approximation. The SH intensity detected for each polarisation then reads:

I2ω
x = K

∣∣ρ cos2 α + sin2 α
∣∣2 (3a)

I2ω
y = K |2sinα cosα|2 (3b)

where K is a constant merging various parameters such as setup geometry and squared incident
beam intensity I2

0 . Polar diagrams of eq. (3) are displayed in fig. 2.a and b using ρ = 1.4. A
common method to determine ρ from polarization-resolved SH experiments is to fit I2ω

x using
eq. (3a).

In the following, we propose a more general method. Since I2ω
x and I2ω

y are even functions of
α and contain only even powers of trigonometric functions, they can be represented as a sum
of cos2nα functions:

I2ω
x = Acos4α +Bcos2α +C (4a)

I2ω
y =

K
2
(−cos4α +1) (4b)

where

A =
K
2

(
ρ −1

2

)2

(5a)

B = 2K

(
ρ −1

2

)(
ρ +1

2

)
(5b)

C =
K
2

(
ρ −1

2

)2

+K

(
ρ +1

2

)2

(5c)

In that framework, one can notice that:

ρ2 =
A+B+C
A−B+C

(6)

This expression enables the determination of ρ from polarization-resolved SH data by fitting
I2ω
x using eq. (4a). The advantage of this method is that it can take into account various phys-

ical effects that appear to modify the expression of I2ω
x but not its representation as a sum of

cos2nα functions. These physical effects will be presented in the following sections and the
new expressions of the A,B and C parameters will be derived.
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Fig. 2. Simulated polar diagrams of polarization-resolved SH intensity generated by a ten-
don aligned along x axis. The angle represents the direction of the excitation polarization to
the tendon direction (see fig. 1.a). (a) I2ω

x and (b) I2ω
y in a non-birefringent, non-scattering

medium without diattenuation (see eq. (2)). (c) I2ω
x and (d) I2ω

y at 24μm depth considering
birefringence (Δn = 0.0066), diattenuation (Δla = 175μm) and polarisation cross-talk due
to scattering (ηxy = 0.13) (see Eq. (11)). ρ = 1.40 in all simulations.

3.2. Tendon birefringence

In the former derivation of I2ω , we have assumed that the electric field propagation takes place
in an isotropic medium. Nevertheless, the tendon is considered to exhibit a C6v symmetry,

so that the permittivity tensor ε0

(
1+ χ

(1)
i j

)
has two different components and the tendon is

analogous to a uniaxial birefringent crystal. Indeed, it has been reported that birefringence
Δn = ne −no attains 5 ·10−3 [20, 21] in tendon. As a consequence, the x (extraordinary wave)
and y (ordinary wave) excitation field components undergoes a relative phase retardation when
propagating within the tendon. SH intensity then reads:

I2ω
x (z) = K

∣∣∣ρ cos2 αeiΔφ + sin2 α
∣∣∣
2
= K
(∣∣ρ cos2 α + sin2 α

∣∣2 + ρ

2
sin2 2α (cosΔφ −1)

)
(7a)

I2ω
y (z) = K

∣∣∣∣sin2α ei 2π(ne+no)
λ z

∣∣∣∣
2

= K |sin2α |2 (7b)

where Δφ = 4π(ne−no)z
λ accounts for the birefringence in the excitation propagation (SHG

intensity is unaffected by birefringence in the harmonic propagation). Note that z represents
the depth in tendon at which SH takes place: due to index mismatch, z = dzlens ntendon/nwater,
where dzlens is the microscope lens displacement from the tendon upper surface.

These expressions show that I2ω
y is unaffected by birefringence, while I2ω

x has a supplemen-
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tary term compared to eq. (4). Decomposing I2ω
x in the cos2nα basis, we get:

Abiref = K

[
1
2

(
ρ −1

2

)2

+
ρ

4
(1− cosΔφ)

]
(8a)

Bbiref = 2K

(
ρ −1

2

)(
ρ +1

2

)
(8b)

Cbiref = K

[
1
2

(
ρ −1

2

)2

+

(
ρ +1

2

)2

− ρ

4
(1− cosΔφ)

]
(8c)

One observes that Bbiref = B and Abiref+Cbiref = A+C, so that ρ can be determined using eq.
6 as in section 3.1. To get better insight into the effect of birefringence, we have plotted in fig.
3 the variation of I2ω

x and I2ω
x as a function of the incident polarization angle α for increasing

depth within the tendon. Comparison of model calculations with and without birefringence
shows that birefringence results in interference fringes in the x-polarized SH intensity I2ω

x when
excited with a linear polarization at π/4 from the tendon axis, as shown by the cosΔφ term in
eq. 7a (see z-profiles in 3.k and 3.n).

3.3. Polarization cross-talk

We have assumed yet that propagation occurs in an optically perfect medium. However, tendon
is a scattering medium like most biological tissues. It results in the decrease of the excitation
intensity since scattered light is not intense enough to induce a nonlinear response. This effect,
that may be different for x- and y-polarized incident light, will be considered in the next sec-
tion. Here, we are interested in the effect of light scattering on the harmonic beam polarization.
When propagating in an anisotropic scattering medium, a wave with well-defined polarization
accumulates scrambling over its polarization direction since scattering processes slightly rotate
the polarization direction. As a consequence, a small amount of SH light that is initially polar-
ized along y is detected in the x-polarized channel and vice versa. Let ηXY (resp. ηY X ) be the
amount of that polarization ”cross-talk” from y detection channel to x detection channel (resp.
from x to y), so I2ω reads:

I2ω
x (z) = K

∣∣ρ cos2 α + sin2 α
∣∣2 +ηXY K |sin2α |2 (9a)

I2ω
y (z) = ηY X K

∣∣ρ cos2 α + sin2 α
∣∣2 +K |sin2α |2 (9b)

Decomposing I2ω
x in the cos2nα basis, we obtain:

Apol = K

[
1
2

(
ρ −1

2

)2

− ηXY

2

]
(10a)

Bpol = 2K

(
ρ −1

2

)(
ρ +1

2

)
(10b)

Cpol = K

[
1
2

(
ρ −1

2

)2

+

(
ρ +1

2

)2

+
ηXY

2

]
(10c)

Once again, Bpol =B and Apol+Cpol =A+C, and ρ can be determined as before. Fig. 3.b and
g show that the angular profiles of I2ω

x and I2ω
y are slightly modified by polarization cross-talk.

3.4. Diattenuation in tendon

Multiphoton microscopy uses near-infrared excitation which minimizes absorbance and scat-
tering in biological tissues. Nevertheless, light scattering and spherical aberrations cause focal

#131579 - $15.00 USD Received 13 Jul 2010; revised 20 Aug 2010; accepted 22 Aug 2010; published 26 Aug 2010

(C) 2010 OSA 30 August 2010 / Vol. 18,  No. 18 / OPTICS EXPRESS  19345



volume deterioration upon propagation within the tendon, which results in smaller excitation
intensity and weaker SH signal. For simplicity, we assume that the excitation intensity under-
goes exponential attenuation with depth. Due to the tendon anisotropy, the effective attenuation
lengths for Iω

x and Iω
y are different and the excitation light experiences diattenuation. These at-

tenuation lengths will be noted as le
a and lo

a to account for the uniaxial symmetry of the tendon.
We assume that diattenuation of the SH signal is negligible because signal forward-detection in
multiphoton setups is not much sensitive to light scattering and aberrations. I2ω

x,y then reads:

I2ω
x (z) = K

∣∣∣ρ cos2 αe
− z

lea + sin2 αe
− z

loa

∣∣∣
2
= Ke

− 2z
loa

∣∣∣ρe−
z

Δla cos2 α + sin2 α
∣∣∣
2

(11a)

I2ω
y (z) = K

∣∣∣sin2α e
− z

2loa e
− z

2lea

∣∣∣
2
= Ke

− 2z
loa e−

z
Δla |sin2α |2 (11b)

where 1
Δla

= 1
le
a
− 1

lo
a

. The expression of the A,B and C parameters are the same as in eq. 5 with

the modified parameters: K → Ke
− 2z

loa and ρ → ρe−
z

Δla . Consequently, once Δla is known, ρ can
be determined in a similar way as in section 3.1. Note that this approach can be generalized to
an arbitrary diattenuation profile fa(z) = f x

a (z)/ f y
a (z) by using the transformation ρ → ρ fa(z)

in eq. 6. Fig. 3.c, h and m show the modifications of I2ω
x and I2ω

y induced by diattenuation.
In particular, z-profiles for an incident polarization parallel (resp. perpendicular) to the tendon
exhibit a le

a (resp. lo
a ) exponential decay.
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Fig. 3. Numerical calculation of polarization-resolved SH intensity as a function of incident
polarisation angle α (see fig. 1) and depth z within tendon for different parameters. (a)-(e)
I2ω
x , (f)-(j) I2ω

y and (k)-(o) z-profiles of I2ω
x for α = 0 (green dotted line), α = π/4 (blue

dashed line) and α = π/2 (red dash-dot line). (a), (f), (k) tendon with uniform depth-
attenuation: la

x = la
y = 190μm. (b), (g), (l) tendon with polarization cross-talk: ηxy = 0.13,

ηyx = 0.2 (constant with depth). (c), (h), (m) tendon with diattenuation: le
a = 91μm and

lo
a = 190μm. (d), (i), (n) tendon with birefringence Δn = 0.0066. (e), (j), (o) tendon with

diattenuation, birefringence and polarisation cross-talk (same parameters). ρ is equal to
1.40 for all calculations.
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3.5. Combined effects of birefringence, polarization cross-talk and diattenuation

When taking into account all the effects introduced above, we obtain the following expression:

I2ω
x (z) = Ke

− 2z
loa

(∣∣∣ρe−
z

Δla cos2 αeiΔφ + sin2 α
∣∣∣
2
+ηXY e−

z
Δla |sin2α |2

)
(12)

Fig. 2.c and d display the polar diagrams of this expression along with the similar expression
for I2ω

y . They clearly look very different from the polar diagrams a and b plotted from the
simplified model (eq. 3). It shows that determination of ρ using eq. 3a is hazardous. Conversely,
I2ω
x can still be decomposed as a sum of cos2nα functions as in eq. 4a: the parameters Aeff,Beff

and Ceff are obtained by combining the effects of birefringence (eq. 8) and polarization cross-

talk (eq. 10) only, and considering the modified parameters: K → Ke
− 2z

loa , ρ → ρe−
z

Δla and
ηxy → ηxye−

z
Δla . In that framework, ρ can be determined as follows:

ρ2e
−2z
Δla =

Aeff +Beff +Ceff

Aeff −Beff +Ceff
(13)

given that z-profiles of I2ω
x for α = 0 and π

2 can be used to determine le
a and lo

a (or fa(z) in a
more general case).

The right hand side of fig. 3 displays the x- and y-polarized SH signal given by eq. 12: diat-
tenuation is revealed by differences in z attenuation for incident polarization parallel and per-
pendicular to the tendon axis, birefringence by oscillations in the z-profile at π/4 polarization
angle from the tendon axis and polarization cross-talk by deformation of the angular profiles.
In order to better evidence the latter two effects, we introduce the parameter Δ that sorts out the
contributions of Δφ and ηXY to Aeff and Ceff:

Δ(z) =
C−3A−

√
(A+C)2 −B2

2(A−B+C)
(14a)

Δ(z) = fa

[
ηXY − ρ

2
(1− cosΔφ)

]
(14b)

At a given depth, contributions of birefringence and polarization cross-talk are intrinsically
mixed, but information on these effects can be obtained by analysis of Δ depth variation.

4. Results

Fig. 4 displays typical x- and y-polarized SHG images obtained at various depths within a ten-
don for an incident beam polarized at π/4 from the tendon axis. Transverse profiles show that
the SHG signal is higher at the tendon edges as expected because of the cylindrical shape of
the tendon: attenuation of the excitation beam is more effective in the center of the section
when the incident light propagates along a larger distance within the tendon. However, the x-
and y-polarized SHG transverse profiles exhibit different behaviour as a function of the depth
from the tendon upper surface. In fig. 4.a and b, the x-polarized SHG image is more attenu-
ated than the y-polarized SHG image at the tendon center, whereas it is not the case in fig.
4.c and d. Moreover, the x-polarized SHG image at 57μm (fig. 4.c) displays more signal at the
center than at intermediate positions along the transverse profile. This complex behaviour is
characteristic for birefringence effects. The x and y components of the π/4-polarized incident
beam experience different optical indices when propagating within the tendon and accumulate
a relative phase shift. The tensorial components of the nonlinear response excited by the x and
y components of the π/4-polarized incident beam then interfere in a constructive or destructive
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way, depending on the propagation distance within the tendon. It results in interference fringes
in the depth profile of the SHG signal for incident excitation mixing up x and y-polarization
components. These fringes appear only in x-polarized SHG images because they result from
the coherent summation of two tensorial components excited along x and y polarizations re-
spectively (see eq. 2). Conversely, y-polarized SHG images are not sensitive to birefringence
because they probe only one tensorial component.

Fig. 4. Polarization-resolved SH images of a tendon upon excitation polarized at π/4 from
the tendon axis. (a)-(c) x- and (b)-(d) y-polarized SH images and transverse profiles of a
tendon aligned along x axis at (a)-(b) 39 μm depth and (c)-(d) at 57 μm depth from the
tendon upper surface. x-polarisation images shows dark fringes (red arrows), whereas y-
polarisation has almost uniform intensity profile in the tendon center. Scale bar: 50 μm.

To get a better insight into the physics of polarization-resolved SHG images, we carried out
SHG experiments at increasing depth within the tendon. Fig. 5.a and b display typical x- and
y-polarized SHG signals in 28 x 20μm regions of interest such as the one depicted in fig. 1.a.
The depth profile of the 2PEF signal from the latex beads is also displayed in fig. 5.c. It enables
the location of the tendon surface z0 that corresponds to the maximum of the 2PEF peak. The
specific patterns observed in the SHG images were consistently observed in all our samples
provided that the ellipticity of the incident polarization was negligible. Practically, experiments
performed without a linear polarizer at the back pupil of the objective lens exhibited a non
symmetrical pattern relative to the tendon axis (α = 0).

Fig. 5.f displays z-profiles of the x-polarized SHG signal for various incident polarization
angles. Interference fringes characteristic for birefringence in the excitation propagation are
clearly observed for an incident polarization at π/4 angle to the tendon axis. The distance be-
tween the two maxima is δ z ≈ 47μm. In a first approximation, it is related to the birefringence
phase shift by Δn = λ/2δ z. It gives: Δn ≈ 0.008 (after index mixmatch correction), in qual-
itative agreement with reported birefringence in tendon [20, 21]. It will be determined more
precisely later on. Diattenuation of the laser excitation is suggested by the z-profiles of the x-
polarized SHG signal at 0 and π/2 angles. Exponential fitting gives the following attenuation
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lengths for x and y incident polarizations : le
a = 91μm and lo

a = 190μm (see fig. 6.a).
Finally, fig. 5.d and e display I2ω

x and I2ω
y at the surface of the tendon (z = z0) where birefrin-

gence and diattenuation effects do not apply. We therefore fit our data using eq. 9 that accounts
only for polarization cross-talk due to light scattering (or equivalently, using eq. 12 with z = 0
and Δφ = 0). We observe that the experimental data are better fitted using eq. 9 than in the sim-
plified approach (eq. 3). It shows that polarization cross-talk due to light scattering significantly
distorts the polarization pattern at the tendon surface.
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Fig. 5. Experimental polarization-resolved SH intensity from a tendon. (a) I2ω
x and (b) I2ω

y
as a function of incident polarisation angle α (see fig. 1) and lens displacement. (c) z-profile
of fluorescence signal from latex beads, peaking at the tendon surface z0. (d) I2ω

x (α) and
(e) I2ω

y (α) at the tendon surface (black dots), along with fits using the simplified approach
(eq. 3, red line) or accounting for polarization cross-talk (eq. 9, blue line). (f) experimental
z-profiles of I2ω

x for α = 0 (green dotted line), α = π/4 (blue dashed line) and α = π/2
(red dash-dot line).

Altogether, these experimental observations show that the usual approach with eq. 3 does not
satisfactorily account for polarization-resolved SHG imaging in thick tendons. Birefringence,
diattenuation and polarization cross-talk due to scattering must all be taken into account to
explain experimental data. Accordingly, we used eq. 4 with parameters Aeff,Beff and Ceff to fit
our data. Note that we introduced an angular shift α0 to account for possible slight misalignment

of the tendon axis from x direction (−2◦ < α0 < 2◦ for all our data). We then calculated ρe
−z
Δla

by use of eq. 13. This value was subsequently corrected for diattenuation using le
a = 91μm

and lo
a = 190μm obtained from exponential fitting of I2ω

x (α = 0) and I2ω
x (α = π/2). Both the

raw and corrected values of ρ are depicted in fig. 6.b. Diattenuation correction successfully
removes the artifactual variation of ρ with depth and enables the reliable determination of
this parameter: ρ = 1.40± 0.03. Moreover, as already stated, this approach is applicable to
any attenuation profile fa(z). To fully characterize the optical response of our sample, we also
calculated the parameter Δ(z) from eq. 14a and plotted its depth profile in fig. 6.c. Eq. 14b shows
that the values at the maxima (Δφ = 2πk with k integer) reduce to ηxy. The first maximum is
obtained at the tendon surface: ηxy = 0.13. The second maximum is zero which shows that
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e
−z
Δla ηxy is negligible ≈ 60μm deep within the tendon. We then consider that ηxy diminishes

exponentionally from 0.13 to 0 within the first 40μm from the surface and we get Δn = 0.0066
by fitting our data using eq. 14b (Δn = 0.0074 without any index mismatch correction).

Finally, to verify the consistency of our data processing, let’s compare our experimental data
(fig. 5.a and b) to the simulations using our experimentally determined parameters for bire-
fringence, diattenuation and polarization cross-talk (fig. 3.e and j). The theoretical and exper-
imental intensity maps are in excellent agreement which proves that our theoretical approach
satisfactorily reproduces polarization-resolved SHG experiments in tendons.
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Fig. 6. Determination of tendon characteristic parameters from experimental SH depth-
profiles. (a) I2ω

x (α = 0) (blue dots) and I2ω
x (α = π/2) (red squares) showing diattenuation:

the solid lines correspond to exponential fitting with le
a = 91μm and lo

a = 190μm. (b) ρ de-
termined from polarization-resolved SHG measurements with (black) and without (green)
correction for diattenuation. (c) Δ parameter evidencing birefringence (oscillations), po-
larization cross-talk due to scattering (non-vanishing value at the tendon surface) and di-
attenuation (exponential attenuation with depth). The solid line represents fitting with the
following parameters: Δn = 1.40, ηxy = 0.13 near the surface and Δla = 134μm.

5. Discussion

In this paper, we developed a method to account for linear propagation effects affecting the
polarization when determining ρ by polarization-resolved SHG experiments. Previous works
studied the effects of diattenuation [15] and birefringence [10, 16] separately, but they did not
propose an approach accounting for both effects and enabling the determination of ρ at any
depth. Our model considers birefringence and diattenuation along the excitation beam propa-
gation and polarization cross-talk due to scattering of the SHG signal. Our experimental results
show that this model perfectly fits our data on rat-tail tendons and enables the reliable deter-
mination of ρ . We also observed interference fringes in the SHG depth profiles which show
unambiguously that birefringence affects polarization-resolved SHG microscopy. Our model
may be refined by numerical simulations of the field distribution within the focal volume using
a vectorial approach to properly describe the polarizations [22]. Such a calculation would ac-
count for polarization mixing through the high numerical aperture objective lens [22, 23] and
for deformation of the focal volume due to birefringence. The description of the polarization
may also be further refined by using Mueller matrices and tracking Stokes vectors through the
tendon [24]. The advantage of our model however is to include all the characteristic features of
the biological sample in a phenomenological approach, including light scattering or depolariz-
ation. It presumably explains why it shows an excellent agreement with our experimental data
and proves relevant to determine optical parameters of rat-tail tendon.

Our data gives insight into both the linear and nonlinear optical response of the tendon. It
first enables the determination of the tendon birefringence at the excitation wavelength. We
obtain Δn = 6.6 10−3 in good agreement with recently reported values measured in a more
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direct way using Optical Coherence Tomography (OCT) (Δn = 5.3 10−3) [20, 21]. We also
measure the diattenuation at 860nm, Δla = 175μm, and the polarization cross-talk due to scat-
tering, ηxy = 13%. Our measured values seem reasonable considering usual optical properties
in biological tissues. Previous work also reported polarization scrambling in tendon that could
be reduced by optical clearing [17]. Our phenomenological parameter ηxy = 13% amounts
to an average SHG polarization rotation of about 20◦. It shows that the SHG polarization is
reasonably well preserved in the forward direction although propagation to the detector takes
place over several scattering lengths. Indeed, forward detection picks up mainly quasi-ballistic
photons and the polarization of these photons is not strongly modified. Similarly, the meas-
ured attenuation lengths (le

a = 91μm and lo
a = 190μm) are in good agreement with our previous

measurements in rat-artery [26] and the diattenuation shows qualitative agreement with previ-
ously reported measurements in rat-tail tendon using OCT (Δla = 125μm [20, 21]) or in horse
flexor tendon using SHG microscopy (Δla = 480μm [15]). Note that the precise determination
of these parameters depends on the tendon index considered for index mismatch correction. Fi-
nally, as intended from these polarization-resolved SHG experiments, they determine the ratio
ρ of the two main tensorial components of the tendon second-order susceptibility. We obtain
ρ = 1.40±0.03 from the experimental data displayed in fig. 5. Similar values in the range 1.3
to 1.5 were consistently obtained in all our samples. The reproducibility of these measurements
is excellent considering the dispersion of tissue properties in biological samples. Slight differ-
ences from one tendon to the other may moreover be attributed to differences in the tendon
preparation, particularly in the tendon stretching, that could affect the 3D distribution of fibrils
at a submicrometric scale.

Most importantly, our measurements show that the raw value of ρ varies a lot with depth
as depicted in fig. 6.b. It decreases from 1.40 at the surface of the tendon to 0.8 at ≈ 90μm
depth within the tendon. These data proves that correction for diattenuation is essential for
reliable measurements of ρ in thick anisotropic tissues and that our model provides an efficient
correction along the full stack of data. We expect that the determination of ρ deeper in the tissue
would be hampered because of the low signal to noise ratio. When possible, the most reliable
method is to perform polarization-resolved measurements at the sample surface to get rid of
diattenuation and birefringence effects.

Finally, note that this method is also applicable to epidetected SHG signals. In that configura-
tion, the infrared polarizer set before the half waveplate at the back pupil of the objective has to
be replaced by a quarter waveplate set at a suitable angle to correct for incident ellipticity with-
out rejecting some epi-SHG signal (see fig. 1.a). Polarization analysis of this epidetected SHG
signal is a complex task because of the presence of the waveplates. Furthermore, backward-
detected SHG is highly affected by scattering and related polarization distortion [25, 17]. How-
ever, SHG polarization analysis was required here for properly characterizing the different lin-
ear optical effects that may affect the determination of ρ . Once this study is completed, the total
SHG intensity can be fitted like the x-polarized component as a sum of cos2nα functions, using
an expression similar to eq. 12. Favourably, this configuration does not require the alignment
of the tendon axis relative to polarization analysis.

6. Conclusion

In this paper, we combined model calculation and experiments in rat-tail tendon to characterize
linear optical effects that affect the polarization in polarization-resolved SHG experiments. We
evidenced that birefringence, diattenuation and polarization scrambling upon scattering signif-
icantly distort the SHG response for tunable incident linear polarizations. In particular, bire-
fringence results in interference fringes in the depth profile of the SHG signal excited with
polarization at π/4 angle from the tendon axis. Most importantly, diattenuation results in an ar-
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tifactual decrease of ρ with the depth within the tendon. To address these problems, we derived
a method to process polarization-resolved SHG data and we successfully retrieved relevant op-
tical parameters in rat-tail tendon. This method is applicable to any anisotropic sample that
exhibits SHG signals, including other collagenous tissues and presumably skeletal muscles. It
may also be generalized to other nonlinear optical processes, that is 2PEF, THG, CARS or SRS
polarization-resolved microscopies. Altogether, our work proves unambiguously that uncor-
recting for polarization distortion results in misleading determination of the tensorial nonlinear
response in anisotropic thick tissues.
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3.3 Numerical simulations

Introduction

This section is devoted to numerical simulations of SHG by a strongly focused beam in

collagenous tissues. This quantitative analysis is intended to extend the phenomenological

model described in the previous section of this chapter. Although the latter is robust,

simple and accounts for all observed artefactual processes, it has the drawback to of being

deduced for a scalar field, i.e. for low numerical aperture. However, SHG microscopy

usually relies on strongly focused beams to provide decent axial resolution. Hence, the

case of high numerical aperture (NA 0.95) should be explicitly treated in a numerical

model to study the influence it could have on the interpretation of P-SHG signal.

The section is organized as follows. First, we give an overview of main stages of sim-

ulation and describe the geometry for which the simulation is performed. Second part is

devoted to the numerical simulation of beam focal field in a birefringent medium which

emulates the tendon. This part deals with the theoretical derivation of the calculation,

which is followed by numerical results, and algorithmic issues are presented in the Ap-

pendix. The third part is devoted to the simulation of dipole radiation in a birefringent

medium and has similar internal organization. Finally, the fourth part presents the results

for the SHG simulation in cornea.

3.3.1 Overview of SHG simulation in tendon

Apart from the SHG anisotropy, our experimental polarimetric results reveal three main

effects which influence polarization diagrams in rat-tail tendons. They are birefringence,

diattenuation that is mainly due to scattering, and polarization cross-talk that is also

governed by anisotropic scattering. The latter two processes involving scattering should

be treated using appropriate statistical methods [127–130]. On the contrary, the light

propagation in birefringent medium without scattering is purely deterministic and its

calculation is more straightforward. In this work, we restrain numerical simulations to

the case of non-scattering medium.

This simulation aims to reproduce the experimental results obtained in the previous

section. Thus, we will calculate the diagrams for the radiated SHG intensity as a function

of the angle α of incident linear polarization and the imaging depth in tendon, which will

be determined by the z-position of the objective zobj. The general scheme of calculation is

displayed in Fig. 3.2. As a starting point for the simulation, we take the field distribution

on the back pupil of the objective. Then, for a fixed zobj we simulate propagation from

the objective to the interface between water and tendon by the angular spectrum method
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Figure 3.2: Scheme of SHG calculation in a birefringent tendon. (a) Plane incident wave is mapped
onto a converging spherical wave by a model objective lens. (b) Field distribution just before
the water-tendon interface is calculated using angular spectrum method [131]. (c) Field beyond
the interface is obtained using appropriate boundary conditions based on [132]. (d) Focal field
in birefringent medium (tendon) is calculated using model described in [132]. (e) Radiation in
birefringent medium is calculated based on [133,134].

[131]. After that, boundary conditions are used to obtain the field in the tendon near

the surface. The focal field distribution is then calculated by a method similar to that

of [131] which uses different field propagators for ordinary and extraordinary waves [132].

The obtained field distribution near the focal volume is used to calculate the induced

nonlinear polarization. Finally, the SH radiation in the birefringent medium is calculated

using Clemmow scaling method [133,134]. This whole procedure is performed for all zobj,

and the diagrams Iα,z are produced.

3.3.2 Focal field calculation in birefringent media

3.3.2.1 Field propagation in a uniform medium. Angular spectrum represen-

tation.

To get the field distribution in the beam focused by an objective one can use angular

spectrum representation, which is described in chapter 3 of [131]. Central result of that

chapter is that the field E near the beam focus can be expressed through the far-field E∞

at a reference sphere of radius f (focal distance of the objective) centred at z = 0

E(x, y, z) =
ire−ikr

2π

∫∫

(k2x+k2y)≤k2

E∞(kx, ky)e
i[kxx+kyy+kzz]

1

kz
dkx dky. (3.2)

Here, kz(kx, ky) =
√

k2 − k2
x − k2

y is the longitudinal component of wave vector, and

r =
√
x2 + y2 + z2. The integral is calculated over a circle of radius k, since we ne-
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Figure 3.3: Scheme of focal field calculation by angular representation method. nϕ and nρ unit
vectors are mapped onto nϕ and nθ. A is the back pupil, P1 and P2 are the principal planes of the
objective. The beam is focused into the point F2 = (0, 0, 0). Adapted from [135].

glect evanescent waves with imaginary kz. Moreover, for a real lens the solid angle of

illumination is always smaller than 2π, and we replace k by kmax = kNA
n

.

The far-field E∞ is obtained from the incident field Einc using a model lens, which

transforms a plane wave into a spherical wave converging to z = 0, which is the focal

point.

E∞ =
[
ts [Einc · nϕ]nϕ + tp [Einc · nρ]nθ

]√n1

n2

cos θ (3.3)

Here, nϕ- and nρ-projections of the incident field in cylindrical coordinate system are

mapped onto nϕ- and nθ-components in spherical system for converging wave. The factor√
n1

n2
cos θ ensures energy flux conservation. ts and tp are Fresnel transmission coefficients.

The scheme illustrating this mapping is displayed in the Fig. 3.3

We suppose that our incident beam is linearly polarized in xy plane with α angle to

x axis, and collimated at the rear principal plane P1. Its intensity profile is Gaussian

with waist w0. While choosing w0, one should make a trade-off between high resolution

(efficiently filled back aperture for large w0) and tolerable energy loss on the back aperture

A (small w0). Typically, w0 is comparable to the aperture radius [131]. Moreover, we
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suppose the lens to be optically cleared, which means that Fresnel coefficients ts and tp

are equal to 1. Finally, one can deduce the expression for E∞ as a function of θ and ϕ:

Ex
∞(θ, ϕ) = E0e

− f2 sin2 θ

w2
0

([
1− cos2 ϕ (1− cos θ)

]
cosα + cosϕ sinϕ (cos θ − 1) sinα

)√n1

n2

cos θ

Ey
∞(θ, ϕ) = E0e

− f2 sin2 θ

w2
0

(
cosϕ sinϕ (cos θ − 1) cosα +

[
1− sin2 ϕ (1− cos θ)

]
sinα
)√n1

n2

cos θ

Ez
∞(θ, ϕ) = −E0e

− f2 sin2 θ

w2
0 (cosϕ sin θ cosα + sinϕ sin θ sinα)

√
n1

n2

cos θ.

(3.4)

After expressing θ and ϕ via kx and ky, one can calculate E by introducing the equa-

tions 3.4 into Eq. 3.2.

3.3.2.2 Field in a birefringent medium

After propagation from the objective through the immersion medium, the beam strikes

the interface with the tendon and further propagates through it. We model the tendon as

a uniaxial birefringent medium, so there will be an ordinary and an extraordinary wave

propagating through the tissue. To model the light propagation in birefringent medium

we follow the formalism proposed by Hacyan and Jáuregui [132], which is described below

with small modifications relevant to our implementation.

The Maxwell equations in the absence of free charges and currents are

∇ ·B = 0, ∇× E+
∂B

∂t
= 0,

∇ ·D = 0, ∇×H− ∂D

∂t
= 0,

(3.5)

where D = ǫ̂ ·E and B = μH. For a birefringent medium, the linear susceptibility writes:

ǫ̂ = ǫ⊥1+
(
ǫ‖ − ǫ⊥

)
ss, (3.6)

where s is a unitary vector along the optical axis of the medium, and ǫ‖ and ǫ⊥ are

permittivities parallel and perpendicular to the axis, respectively. One can show that

solutions for Maxwell equations 3.5 for ordinary and extraordinary monochromatic waves

are

Eo = −iωs×∇ψo, Ee = − 1

ǫ⊥
∇ (s · ∇ψe)− μω2ψes, (3.7)
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where ψo and ψe are Hertz potentials meeting the two equations:

ǫ⊥μω
2ψo +∇2ψo = 0,

ǫ⊥ǫ‖μω
2ψe +∇ · ǫ̂ · ∇ψe = 0.

(3.8)

The general solutions of 3.8 for z > 0 are

ψ(o, e) (x, y, z) =
1

2π

∫ ∫
dkxdkye

ikxx+ikyy+ik
(o, e)
z zψ̃(o, e) (kx, ky) , (3.9)

where ψ̃(o, e) (kx, ky) is the Fourier transform of ψ(o, e) (x, y, z = 0) (for example, near the

interface with another medium). k
(o, e)
z in the expression above are solutions to the fol-

lowing equations:

ǫ⊥μω
2 − ko · ko = 0

ǫ⊥ǫ‖μω
2 − ke · ǫ̂ · ke = 0.

(3.10)

Although ψ̃(o, e)(kx, ky; z) = ψ̃(o, e)(kx, ky)e
ik

(o, e)
z z is not a 3D Fourier transform, its

dependence on z allows for manipulating it like if it were. Essentially, it means that we

can substitute z derivative in (x, y, z)-space by a factor ikz in (kx, ky; z)-space. Indeed,

F
[∂ψ
∂z

]
(kx, ky; z) =

1

2π

∫∫
e−ikxx−ikyy

(
1

2π

∫∫
ikze

ik′xx+ik′yy+ikzzψ̃(k′
x, k

′
y)dk

′
x dk

′
y

)
dx dy

=

∫∫
ikz(k

′
x, k

′
y)ψ̃(k

′
x, k

′
y)e

ikz(k′x, k
′
y)δ(kx − k′

x) δ(ky − k′
y)dk

′
x dk

′
y

= ikzψ̃(kx, ky)e
ikzz = ikzψ̃(kx, ky; z).

(3.11)

One can thus rewrite 3.7 in the form

Ẽo = ωs× koψ̃o(ko), Ẽe =

[
1

ǫ⊥
(s · ke)ke − μω2s

]
ψ̃e(ke). (3.12)

Focal fields Eo and Ee are obtained from ψ̃(o, e)(kx, ky; z) using 3.12 and subsequent

Fourier Transform. The total field E in the medium is:

E = Eo + Ee =
(
Ee

x;E
o
y + Ee

y;E
o
z + Ee

z

)
= (Ex;Ey;Ez) . (3.13)

By definition, there is no ordinary wave component Eo
x along the optical axis.

If we consider an x-polarized planar wave incident on a birefringent medium with opti-

cal axis x, it will obviously create only an extraordinary wave in the medium. Identically,

the y-polarized one will only create an ordinary wave. However, in the case of tight focus-
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ing discussed in this section, a wave with any polarization incident on a high-NA objective

will produce all the five components from the Eq. 3.13, both ordinary and extraordinary

ones, and along x, y and z.

Due to linearity of Maxwell equations, the field E1+2 created by the sum of two incident

fields Einc,1+Einc,2 is equal to the sum of fields E1 and E2 created independently by Einc,1

and Einc,2. It allows us to choose two basis incident fields Einc,1,2 and to calculate E1,2,

which can be used to reproduce focal field from any incident polarization. To simplify the

calculations, we choose

Einc,1 =Einc,‖ = E0ex (3.14)

Einc,2 =Einc,⊥ = E0ey (3.15)

and we will use Ei‖,⊥ to denote field components produced by Einc,‖,⊥. Should it be em-

phasized that all these components, except for Ex‖, have both ordinary and extraordinary

components, as seen from the Eq. 3.13. Notably, for an incident field polarized at angle

α to the x-axis, the focal field writes

Eα =
(
Ex‖ cosα + Ex⊥ sinα,Ey‖ cosα + Ey⊥ sinα,Ez‖ cosα + Ez⊥ sinα

)
(3.16)

where

Ex‖,⊥ = Ee
x‖,⊥

Ey‖,⊥ = Eo
y‖,⊥ + Ee

y‖,⊥ (3.17)

Ez‖,⊥ = Eo
z‖,⊥ + Ee

z‖,⊥

It means that we have to calculate 10 field distributions. However, it is expected that

Eo
y⊥ and Ee

x‖ are much larger than all other components, so the fields produced by Einc,‖

and Einc,⊥ are "mostly" ordinary and extraordinary.

3.3.2.3 Boundary conditions between isotropic and birefringent media

As seen from the Eq. 3.9, the calculation of ψo,e(x, y, z) and therefore of Eo,e requires

the values of ψo,e(x, y, z = 0) near the interface between the birefringent medium (ten-

don) and the isotropic medium (immersion, water). These values must be obtained from

the incident field using appropriate boundary conditions between two media. From the

work of Hacyan and Jáuregui [132] we also deduce boundary conditions for ordinary and

extraordinary Hertz potentials. For an interface between a uniform medium with per-

mittivity ǫ1 and birefringent medium with permittivity tensor defined in the Eq. 3.6 one
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obtains

ψ̃o = 2
[ez × (Q+ S)] · ẼI

(Q+ S) · [(P+R)× ez]
,

ψ̃e = −2
[ez × (P+R)] · ẼI

(Q+ S) · [(P+R)× ez]

(3.18)

where

P = ω(s× ko)⊥, Q = ǫ−1
⊥ (s · ke)k⊥ − μω2s⊥

R =
ω

μkz

[
(s · ko)ez × k⊥

]
− ǫ⊥ω

3

kz

[
ez × s

]
+

ǫ⊥
ǫ1kz

(
ez · [s× k⊥]

)
k⊥,

S =
ω2

kz
(szk⊥ − ke

zs⊥) +
1

ǫ1kz

[
(s · k⊥k

e
z)− szk

2

⊥
]
k⊥,

(3.19)

where ẼI is the Fourrier transform of the incident field EI.

The implementation of these numerical calculations is presented in the Appendix.

3.3.2.4 Results and discussion

In 3D SHG microscopy, the z-position of the imaged slab usually refers to the z coordinate

of the objective. However, the objective displacement ∆zobj and the resulting displace-

ment of the focal point in the sample ∆zsample are generally not equal. Their difference

depends on the index mismatch between the immersion medium, for which the objec-

tive is designed (water, nwater=1.33) and the sample nsample. In paraxial approximation,

∆zsample=∆zobj
nsample

nwater
, so they are equal when the indices are matched. In the following,

for the sake of simplicity, we will write that the beam is focused at Z μm if zobj = Z μm,

and zobj = 0 corresponds to a beam focused at the water-tendon interface.

Intensity distribution The calculated beam intensity distribution for two tendon in-

dices (no = 1.33 and no = 1.5) and for two incident linear polarization (parallel and

perpendicular to the tendon axis) is shown in the Fig. 3.4. The index no = 1.33 is chosen

to provide a case of index-matched propagation, while index no = 1.5 corresponds to val-

ues reported for tendon [136]. As explained previously, we use notations Ei,‖,⊥ for focal

field components resulting from the incident field Einc,‖,⊥. Intensities are calculated for

objective position zobj = 50μm. Birefringence is set to ∆n = ne−no = 0.007, as reported

for tendon in the previous section and in [136,137]. Within each of two sets with different

no, intensities are normalized to the maximal intensity of the field Ex⊥. Intensities for

no = 1.33 are larger than those for no = 1.5 by factor of 1.441. Indeed, the focal volume

is deteriorated for no = 1.5 due to spherical aberrations, which result in a larger FWHM.
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As in both cases the total beam energy flux is the same, larger FWHM for no = 1.5 leads

to smaller intensity.

The largest components produced by Einc,‖ and Einc,⊥ are Ex‖ and Ey⊥, as expected

(Fig. 3.4 (a, d) and (h, k)). The intensity of z-polarized fields attains up to 9% (Fig. 3.4

l) of that of the main components, while the intensities of Ey‖ and Ex⊥ do not exceed

1% (Fig. 3.4 e). Due to high numerical aperture, the wave created by Einc,‖ (Einc,⊥)

is not purely extraordinary (ordinary), but has a small contribution of its orthogonal

counterpart. However, for simplicity, we will refer to the field produced by Einc,‖ (incident

field parallel to the tendon axis), as the extraordinary component, and to that produced

by Einc,⊥ (incident field perpendicular to tendon axis) as the ordinary component.

The shape of the focal field distribution is less regular for no = 1.5 than for no = 1.33

due to spherical aberrations originating from the index mismatch on the surface. However,

the extraordinary components for ne = 1.337 are also distorted due to an index slightly

different from 1.33. For the case of no = 1.5, the secondary (smaller) components are

axially displaced with respect to the main components.

Phase distribution and birefringence As can be seen from the Fig. 3.4, the effect of

birefringence on the intensity of focal field is limited. However, the birefringence influences

the relative phase between the ordinary and extraordinary parts of the beam, as they

perceive different indices, no and ne, during the propagation. The effect of birefringence

is observed in the x component of the nonlinear polarization (see Eq. 2.20), as was shown

in the previous section:

P 2ω
x ∝ ρE2

x + E2
y . (3.20)

Indeed, when the phase difference between squared ordinary field E2
y and extraordinary

field E2
x is π, the two terms interfere destructively. It then produces remarkable dark

spots on polarization-depth diagrams (see previous section). The phenomenological model

described in the previous section relies on the assumption that x and y field components

overlap completely and have uniform phase difference across the focal volume, which is

not strictly true.

In this simulation, we calculate the phase shift within the focal volume as the com-

plex phase of the product arg((E2
x‖)

†E2
y⊥). To simplify, we don’t take Ex⊥ and Ey‖ into

account, as their intensity is less than 1% of that for the main components. The average

phase across the focal volume is weighted by the overlap of the two components which is

calculated as
∣∣Ex‖
∣∣2 |Ey⊥|2. The phase is averaged over a zone S which encompasses 90%
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Figure 3.4: Intensity distribution of simulated focal field for 0.95 NA objective in birefringent
medium normalized to the x component of x-polarized incident field Ix‖ (a, d). The objective z-
coordinate is zobj = 50 µm. (a, d, g, j) x-polarized component; (b, e, h, k) y-polarized component;
(c, f, i, l) z-polarized component. Calculations for (a1-l1) no = 1.33; (a2-l2) no = 1.5; (a-f) incident
beam polarized along the tendon optical axis; (g-l) incident beam polarized perpendicularly to the
tendon axis. I profile (a-c, g-i) in the xy plane; (d-f, j-k) in the xz plane; (l) in the yz plane. White
dotted lines on xy slices indicate xz slice position, and vice versa. Numbers indicate the intensity
factor with respect to Ix‖ intensity. Intensities for no = 1.33 are larger than those for no = 1.5 by
factor of 1.441. The difference in z-position between no = 1.33 and no = 1.5 is due to different
index mismatch.
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of the overlap. More precisely, the zone S is defined as the smallest region for which:

∫∫∫
S⊂R3

∣∣Ex‖
∣∣2 |Ey⊥|2 d3r

∫∫∫
R3

∣∣Ex‖
∣∣2 |Ey⊥|2 d3r

= 0.9 (3.21)

and the average phase at a certain depth is calculated in the following way:

∆φ =

∫∫∫
S

arg((E2
x‖)

†E2
y⊥)
∣∣Ex‖
∣∣2 |Ey⊥|2 d3r

∫∫∫
S

∣∣Ex‖
∣∣2 |Ey⊥|2 d3r

. (3.22)

This spatial overlap is calculated as a function of focusing depth in Fig. 3.5 f. One

can see that ordinary and extraordinary components don’t separate significantly over

the whole simulated range (up to 80 μm depth). Remarkably, the separation is more

pronounced for the case no = 1.33 than for no = 1.5. It can be understood as in the

second case the relative difference in index mismatch between ordinary and extraordinary

waves is marginal (1.507− 1.33 = 0.177 and 1.5− 1.33 = 0.170), while it is substantial in

the first case (0.007 for extraordinary, while the ordinary is index-matched).

The phase shift between (Ex‖)
2 and (Ey⊥)

2 within the focal volume is shown in Fig. 3.5

a-d. In each subfigure (a-d), the inner region corresponds to the phase variation within

the zone S with respect to the average phase ∆φ over this zone. The average phase

corresponds to zero of the colorbar, and its absolute value is given in the bottom of each

subfigure. The outer region has the gray level corresponding to zero (average phase) to

simplify perception. The phase shift in the head of the beam is larger than that in its tail.

One can see from the scale bars that the phase dispersion across S is roughly two-times

larger at 50 μm than at 25 μm. However, it is approximately of the same extent for

no = 1.33 and for no = 1.5.

The phase difference averaged across the focal volume as a function of focusing depth

is shown in Fig. 3.5 e. Phase shift π, which corresponds to destructive interference, occurs

near ∼27-30 μm, as observed experimentally. Notably, the phase difference accumulated

with depth between extraordinary and ordinary polarization depends on the index of the

medium. Indeed, in paraxial approximation the phase shift between squared fields at a

fixed zsample can be written as

∆φ = 2
2π

λ
∆nzsample =

4π

λ
∆nzobj

nsample

nwater

. (3.23)

79



0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

 

 

-1 0 1

21

22

23

24

25

26

27

28

29

0

 

 

-1 0 1

46

47

48

49

50

51

52

53

54

0

 

 

-1 0 1

55

56

57

58

59

60

61

62

0

 

 

-1 0 1

25

26

27

28

29

30

31

32

33

0

∆φ = 2.999

∆φ = 2.584

∆φ = 5.98

∆φ = 5.179

∆
φ

∆
φ

∆
φ

∆
φ

∆
φ

Figure 3.5: (a-d) Simulated phase shift between squared x- and y-polarized fields produced by
Einc,x and Einc,y within the zone encompassing 90% of fields overlap. Calculation (a, b) for
no = 1.33; (c, d) for no = 1.5; (a, c) at 25 µm focusing depth; (b, d) at 50 µm focusing depth.

(e) Averaged phase shift between
(
Ex‖

)2
and (Ey⊥)

2
as a function of focusing depth for no = 1.33

(blue) and no = 1.5 (red). (f) Overlap between ordinary and extraordinary components as a
function of focusing depth for no = 1.33 (blue) and no = 1.5 (red).

It is proportional to both medium index and birefringence. Fitting data in Fig. 3.5 e

with this equation one can get ∆n ≈ 0.0071 for no = 1.33 and ∆n ≈ 0.0072 for no = 1.5

which is very close to the value used for calculation in spite of non-paraxial focusing.

Conclusion To conclude, we calculated the focal field distribution in a birefringent

medium for a tightly focused beam and characterized the phase shift between ordinary

and extraordinary waves. The phase shift is not uniform within the focal volume, and its

average is proportional to the depth of focusing as expected. The birefringence obtained

from the simulated data is in perfect agreement with the value used for calculation, which

means that paraxial approximation can be used for extracting birefringence from the

experimental data. Additionally, slight separation of focal volumes is observed at larger

depths. The effect of the birefringence on the focal field intensity distribution is minimal

and is due to additional spherical aberrations it creates.
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3.3.3 SH radiation in tendon

3.3.3.1 Radiation of a punctual dipole in a birefringent medium

The focal field calculated in the previous subsection is used to calculate the induced

polarization at double frequency. For the field E = (Ex, Ey, Ez) the polarization is the

following:

P (2ω)
x = χ(2)

xxxE
2
x + χ(2)

xyyE
2
y + χ(2)

xyyE
2
z ,

P (2ω)
y = 2χ(2)

xyyExEy, (3.24)

P (2ω)
z = 2χ(2)

xyyExEz.

where x is the direction along the tendon fascicle. The simple structure of the nonlinear

susceptibility tensor has been discussed in the second chapter of this manuscript. While

the induced polarization is easily calculated, the analytic calculation of radiation produced

by this polarization density in a birefringent medium is not a trivial task.

The mathematical formulation of the radiation problem consists in the following. In

order to find radiated intensity one has to derive a particular far-field solution of Maxwell

equations

∇× E = −∂B

∂t

∇×H = JS +
∂D

∂t

(3.25)

in the medium with the following constitutive equations:

D = ε0E + P =

⎛
⎜⎝

ǫ‖ 0 0

0 ǫ⊥ 0

0 0 ǫ⊥

⎞
⎟⎠ , B = μH. (3.26)

ǫ‖ = n2
e and ǫ⊥ = n2

o are dielectric permittivities along and perpendicular to the axis

of symmetry, as introduced in section 3.3.2.2. In the equations above, JS = ∂P(2ω)

∂t
is the

source current, produced by induced polarization P(2ω). This polarization that creates

radiation is present only in the focal volume.

The particular solution can be easily found if the fundamental solution is known.

Indeed, if one knows the field Ej(r) radiated by a punctual dipole pj = ejδ(r), the

solution is obtained as

E j
i =

∫∫∫
Ej

i (r − r′)P
(2ω)
j (r′)dr′. (3.27)
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For an isotropic medium, the fundamental solution represents the field radiated by

a punctual dipole, and it is known to be a spherical wave with amplitude of the form

eikr/kr.

In a uniaxial medium, a radiating dipole can be split into two components (parallel

and perpendicular to the optical axis) for which radiation is expected to be different due

to anisotropy. An elegant solution for dipole radiation in uniaxial medium was proposed

by Clemmow [133, 134]. The method relies on known solutions for field in vacuum and

is based on different scaling of these solutions in birefringent medium for TE and TM

waves. Accordingly, it is known as Clemmow scaling method. For a birefringent medium,

TE is equivalent to ordinary and TM is equivalent to extraordinary.

Below, we present electromagnetic field radiated by x-, y-, and z-oriented dipole as

given in [133]. Additionally, expressions are simplified by applying far-field approximation.

All fields are written down in spherical coordinate system associated with the axis of

beam propagation (and SHG detection) z. For a dipole oriented along tendon axis x,

its radiation is purely a TM (extraordinary) wave. However, the radiation of a dipole

perpendicular to the tendon axis is neither pure TM nor pure TE, but is a mixture

of two. It is shown by Clemmow that such a punctual dipole can be split into two

spatial distributions of dipole density, so that each one generates exclusively TE or TM

wave [134]. In the following, the electric field is given in units of k2

4π

√
μ0/ε0

√
ǫ⊥, so this

factor is omitted in the expressions. We also introduce the effective radius-vectors for

ordinary (ǫ⊥r) and extraordinary (R) waves, and their lengths
√
ǫ⊥r and R, respectively.

R = (
√
ǫ‖x,

√
ǫ⊥y,

√
ǫ⊥z), R =

√
ǫ‖x2 + ǫ⊥(y2 + z2) ;

√
ǫ⊥r =

√
ǫ⊥(x, y, z),

√
ǫ⊥r =

√
ǫ⊥ (x2 + y2 + z2) .

(3.28)

Radiated field for an x-oriented dipole reads:

Eθ =i cos θ cosϕ
ǫ‖r

2

R2

eikR

kR
= T e,x

θ

eikR

kR

Eϕ =− i sinϕ
ǫ‖r

2

R2

eikR

kR
= T e,x

ϕ

eikR

kR

(3.29)

where θ and ϕ are polar and azimuthal angles in the spherical coordinate reference frame

associated with z-axis, with the ray ϕ = 0 along the x-axis (see Fig. 3.6). k = 2π/λ is the

wavenumber in vacuum. Here, eikR

kR
is the propagative term for the extraordinary wave,

and T e,x
θ,ϕ encompass angular dependence of ϕ and θ components of the extraordinary wave

generated by a punctual dipole along x.
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Figure 3.6: Coordinates in tendon reference frame. x-axis is the symmetry axis of the tendon.
Positive z-axis corresponds to the direction of beam propagation. The ray θ = 0 coincides with
z > 0, and ϕ is measured with respect to the xz plane.

Radiated field for a y-oriented dipole reads:

Eθ = −i
sin θ

sin2 θ sin2 ϕ+ cos2 θ

(
sin2 ϕ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ cos2 θ cos2 ϕ
ǫ‖r

2

R2

eikR

kR

)
=

= T o,y
θ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ T e,y
θ

eikR

kR

Eϕ = −i
sin θ cos θ sinϕ cosϕ

sin2 θ sin2 ϕ+ cos2 θ

(
eik

√
ǫ⊥r

k
√
ǫ⊥r

− ǫ‖r
2

R2

eikR

kR

)
=

= T o,y
ϕ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ T e,y
ϕ

eikR

kR
.

(3.30)

Radiated field for a z-oriented dipole reads:

Eθ =− i
sin θ

sin2 θ sin2 ϕ+ cos2 θ

(
sin2 ϕ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ cos2 θ cos2 ϕ
ǫ‖r

2

R2

eikR

kR

)
=

= T o,z
θ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ T e,z
θ

eikR

kR

Eϕ =− i
sin θ cos θ sinϕ cosϕ

sin2 θ sin2 ϕ+ cos2 θ

(
eik

√
ǫ⊥r

k
√
ǫ⊥r

− ǫ‖r
2

R2

eikR

kR

)
=

= T o,z
ϕ

eik
√
ǫ⊥r

k
√
ǫ⊥r

+ T e,z
ϕ

eikR

kR

(3.31)

The expressions on the right side highlight that Eqs. 3.29-3.31 behave the same way:
eik

√
ǫ⊥r

k
√
ǫ⊥r

and eikR

kR
are propagative terms for ordinary and extraordinary waves, respectively,

while T e,o;x,y,z
θ,ϕ are specific for x-, y-, and z-oriented dipoles (with T o,x

θ,ϕ = 0).
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3.3.3.2 Radiation integral

In order to calculate the total fields, one has to integrate these fundamental solutions over

the radiating volume as shown in the Eq. 3.27:

E i
θ, ϕ(r) =

∫∫∫
T o,i
θ, ϕ(r − r′)P

(2ω)
i (r′)

e−ik
√
ǫ⊥|r−r′|

k
√
ǫ⊥ |r − r′|d

3r′+

+

∫∫∫
T e,i
θ, ϕ(r − r′)P

(2ω)
i (r′)

e−ik|R−R
′|

k |R − R′|d
3r′.

(3.32)

We choose the origin r = 0 somewhere in the radiative volume. The vector r denotes

points in the far-field zone, while r′ denotes points in the excitation volume where the

nonlinear polarization is induced, so r ≫ r′. In this case, |r− r′| can be developed in

Taylor series by the powers of r′/r. In the dipole approximation we keep only the first

term:

|r− r′| =
√

(r− r′)2 =
√
r2 − 2r · r′ + r′2 ≈ r − n · r′. (3.33)

We suppose that for a chosen r, all functions of |r− r′| are constant across the radiative

volume except for rapidly varying exponentials. Introducing 3.33 in the integral 3.32, we

obtain

E i
θ,ϕ(r; θ, ϕ) =T o,i

θ, ϕ(θ, ϕ)
eik

√
ǫ⊥r

k
√
ǫ⊥r

∫∫∫
P

(2ω)
i (r′)e−ik

√
ǫ⊥n·r′d3r′

+T e,i
θ, ϕ(θ, ϕ)

eikR

kR

∫∫∫
P

(2ω)
i (r′)e−ikN·R′

d3r′

=Eo,i
θ,ϕ(r; θ, ϕ) + Ee,i

θ,ϕ(r; θ, ϕ)

(3.34)

where N = R/R. The scalar integrals P i
o(θ, ϕ) =

∫∫∫
P

(2ω)
i (r′)e−ik

√
ǫ⊥n·r′d3r′ and

P i
e(θ, ϕ) =

∫∫∫
P

(2ω)
i (r′)e−ikN·R′

d3r′ reflect the angular efficiency of SH radiation by a

given focal distribution of induced polarization P
(2ω)
i . Additionally, the angular depen-

dence is shaped by T o,i
θ,ϕ terms.

The angular intensity distribution is calculated as the sum of squared absolute values

for θ- and ϕ-projections of the electric field.

I(r; θ, ϕ) = |Eo,y
θ + Eo,z

θ + Ee,x
θ + Ee,y

θ + Ee,z
θ |2 +

∣∣Eo,y
ϕ + Eo,z

ϕ + Ee,x
ϕ + Ee,y

ϕ + Ee,z
ϕ

∣∣2 (3.35)

One can see from Eq. 3.34 that the cross-terms between ordinary and extraordinary

components contain the factor eik(r
√
ǫ⊥−R), which oscillates as a function of r. For the

propagation along z-axis, the extraordinary wave has an effective index close to ne, so the

oscillation period is about λ/(ne−no). For a birefringence of 0.007 it gives about 120 μm,

which for a 500 μm-thick tendon is equivalent to several periods. It is thus reasonable to
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consider ordinary and extraordinary waves mutually incoherent, which allows neglecting

these cross-terms.

Figure 3.7: Two possible schemes for total intensity calculation. (a) The detector is situated after
the tendon-water interface. Angular SHG radiation diagrams are altered by the interface. (b) The
effective detector is situated within the tendon.

In a real experimental setup, the radiation diagrams I(r; θ, ϕ) in tendon are altered on

the tendon-water interface, which precedes the detectors (Fig. 3.7 a). Calculating angular

diagrams outside the tendon would require the explicit introduction of such an interface

between birefringent and isotropic media. An alternative way is to assume that the SHG

signal is detected by a virtual detector situated within the tendon (Fig. 3.7 b). If we

neglect the internal reflection, the total intensity in either configuration is the same, but

the original diagrams I(r; θ, ϕ) are more informative than those changed by the interface,

as they reflect the actual phase matching properties. We adopt the latter configuration

(Fig. 3.7 b), for which the total radiated intensity for a given angle α of the incident beam

polarization and for a given zobj is calculated as follows:

I(α, zobj) = r2
∫∫

I(r; θ, ϕ)
∣∣
α,zobj

sin θdθdϕ. (3.36)

As the angular coordinates further need to be discretized for numerical implementa-

tion, we will use nx, ny instead of (θ, ϕ) in the following, so that E(r; θ, ϕ) = E(r; nx, ny).
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nx, ny and nz are defined as

nx = sin θ cosϕ

ny = sin θ sinϕ (3.37)

nz = cos θ.

3.3.3.3 Simplification of the calculation using relative order of magnitude

and symmetry of SH radiation components

In the section 3.3.2 devoted to the beam focusing in a birefringent medium, it was shown

that as much as six components are required to reproduce the focal field created by an

arbitrary incident polarization: Ex‖, Ey‖, Ez‖, Ex⊥, Ey⊥, Ez⊥.

For induced polarization density it implies:

P (2ω)
x ∝ ρ

(
Ex‖ cosα + Ex⊥ sinα

)2
+
(
Ey‖ cosα + Ey⊥ sinα

)2
+

+
(
Ez‖ cosα + Ez⊥ sinα

)2
(3.38)

P (2ω)
y ∝ 2

(
Ex‖ cosα + Ex⊥ sinα

) (
Ey‖ cosα + Ey⊥ sinα

)
(3.39)

P (2ω)
z ∝ 2

(
Ex‖ cosα + Ex⊥ sinα

) (
Ez‖ cosα + Ez⊥ sinα

)
(3.40)

where α is the angle between the incident field polarization and tendon axis. Instead

of calculating numerically P
(2ω)
i and resulting radiation for every α of the incident field,

one can calculate the radiation for a finite number of quadratic terms Ei,‖,⊥Ej,‖,⊥ and

use it to instantly obtain radiation at any given α according to Eqs. 3.38-3.40. In the

light of previous paragraph, one would need to calculate both ordinary and extraordinary

integrals Po and Pe for as many as 17 quadratic terms such as Ex‖Ex‖, Ex‖Ex⊥, ... etc.

(9 terms from Eq. 3.38, 4 from Eq. 3.39 and 4 from Eq. 3.40). In the following, we will

designate these integrals EEo,e, such as, for example (see Eq. 3.34):

EEo
x‖,x⊥ =

∫∫∫
Ex‖Ex⊥e

−ik
√
ǫ⊥nr′d3r′ (3.41)

EEe
y‖,z⊥ =

∫∫∫
Ey‖Ez⊥e

−ikNR
′
d3r′ (3.42)

However, as it was shown previously (see Fig. 3.4 on page 78), the six field compo-

nents differ significantly in intensity, which allows one to choose principal and additional

components. According to the intensities obtained in focal field simulations, we separate
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the field components into three orders of magnitude:

Ex‖, Ey⊥ : order 0

Ez‖, Ez⊥ : order 1 (3.43)

Ey‖, Ex⊥ : order 2

where order 0 corresponds to the strongest field. When multiplied one by another, they

are arranged in five orders as follows:

E2
x‖, E

2
y⊥, Ey⊥Ex‖ : order 0

Ex‖Ez‖, Ex‖Ez⊥ : order 1

E2
z‖, Ez‖Ez⊥, E

2
z⊥, Ex‖Ex⊥, Ey‖Ey⊥, Ex‖Ey‖, Ex⊥Ey⊥ : order 2 (3.44)

Ex⊥Ez‖, Ex⊥Ez⊥ : order 3

E2
y‖, E

2
x⊥, Ex⊥Ey‖ : order 4

We should note that this separation is not strict, and additionally may depend on

the numerical aperture of the objective. In practice, this approach allows for estimating

contributions from different components. For example, one may compare scalar field

approximation (only 0 order enabled) with vectorial focusing (all 5 orders enabled). Also,

it is possible to qualitatively assess contributions of Ez⊥,‖ fields (1st order) and smaller

Ex⊥ and Ey‖ fields (2nd order).

Ey‖Ex‖ Ez‖

Ez⊥Ey⊥Ex⊥

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

x 

y 

Figure 3.8: Symmetry of the focal field with respect to the inversion of x and y coordinates. The
two largest components Ex‖ and Ey⊥ are symmetric with respect to both inversions, smallest
components Ex‖ and Ey⊥ are fully antisymmetric. Intermediate Ez components are symmetric
with respect to one inversion and antisymmetric with respect to the other.

The calculation of integrals EEo and EEe can also be simplified by considering the

symmetry of the focal field components. According to our simulations, the focal field

components are either symmetric or antisymmetric with respect to x and y coordinate

inversion. The symmetries for field components are shown in the Fig. 3.8. We denote
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symmetry class with two digits, one for each mirror plane, 0 standing for symmetric and 1

for antisymmetric behavior with respect to axis inversion. For example, class 01 signifies

that the function is symmetric with respect to x-coordinate inversion (plane of mirror

symmetry y = 0), and antisymmetric with respect to y-coordinate inversion (plane of

inversion symmetry x = 0).

The symmetries for terms written in 3.44 can be easily deduced and are shown below:

E2
x‖, E

2
x⊥, E

2
y‖, E

2
y⊥, E

2
z‖, E

2
z⊥, Ey⊥Ex‖, Ex⊥Ey‖ : class 00

Ez‖Ex‖, Ez⊥Ex⊥ : class 01

Ez‖Ex⊥, Ez⊥Ex‖ : class 10

Ez⊥Ez‖, Ex‖Ex⊥, Ex‖Ey‖, Ey⊥Ey‖, Ey⊥Ex⊥ : class 11

(3.45)

Now let’s consider, for example, the value of EEo for inverted x-coordinate (mirror

plane y = 0):

EEo(r;−nx, ny) =
eik

√
ǫ⊥r

k
√
ǫ⊥r

∫∫∫
EE(x′, y′, z′)e−ik

√
ǫ⊥(−x′nx+y′ny+z′nz)d3r′ (3.46)

=
eik

√
ǫ⊥r

k
√
ǫ⊥r

∫∫∫
EE(−x′′, y′′, z′′)e−ik

√
ǫ⊥(x′′nx+y′′ny+z′′nz)d3r′′. (3.47)

Here, EE is one of the quadratic field terms shown in 3.44, such as, for example, Ex‖Ey⊥.

In the equation above we changed variables as follows: r′′ = (−x′, y′, z′). One can see

that the value EEo inherits the symmetry of EE term. Hence, it is only necessary to

numerically calculate radiation terms EEo,e for a single quadrant, for example x > 0, y > 0,

as the values in other quadrants can be deduced according to 3.45. In order to obtain all

necessary components for SH radiation produced at a fixed zobj and at any polarization

angle α of the incident field, one must numerically calculate 34 integrals (17 for both

ordinary and extraordinary components) in a single quadrant (x > 0, y > 0). Finally,

the angular diagrams I(θ, ϕ)
∣∣
α,z=zobj

are obtained using symmetry (Eq. 3.45) and angular

dependence (Eqs. 3.38-3.40).

The summary of calculation data flow is represented in Fig. 3.9.

3.3.3.4 Results: angular radiation diagrams

In this section we present the results of our numerical calculations for angular intensity

distribution I(θ, ϕ) of SHG radiation.

SHG radiation was calculated for different sets of tendon optical parameters. First

parameter is the tendon birefringence, for which values ∆n = 0 and ∆ = 0.007 were used.

While ∆n = 0.007 corresponds to the values experimentally measured in tendon [136,138,
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Figure 3.9: Data flow of P-SHG numerical calculation. For two components Einc,‖, Einc,⊥ of the
incident field, 10 components Eo,e

i;‖,⊥ of focal field are calculated in tendon. The focal field creates

P2ω
i , which contains 17 quadratic terms of different order and symmetry. Each of this term produces

an ordinary EEo and an extraordinary EEe radiation component (34 total). Radiation diagrams
I(θ, ϕ) for any chosen α are then calculated using these components EE and their respective angular
dependences T o,e;i

θ,ϕ . Integration of I(θ, ϕ)
∣∣
α,zobj

over the solid angle of radiation produces intensity

diagrams I(α, zobj).

139], the value ∆n = 0 was chosen to comparatively asses the effect of birefringence on the

determination of other optical parameters, such as anisotropy parameter ρ = χ
(2)
xxx

χ
(2)
xyy

. The

simulations were performed for two different indices no = 1.33 and no = 1.5, as explained

previously. As the radiation process involves interaction of waves at ω (incident wave)

and 2ω (SH wave), the phase-matching conditions and hence, the SHG efficiency, depend

on medium dispersion d = n2ω−nω. In our simulations we used d = 0 and d = 0.05no (5%

dispersion). The 5% value corresponds to values reported in literature [140], while d = 0

was used for comparison. SHG anisotropy parameter was fixed to 1.36, which corresponds

to values obtained using our phenomenological approach [138]. The simulations were thus

performed for a total of 8 sets of parameters, as shown in table 3.1.

The simulated angular SHG radiation diagrams at different imaging depths and differ-

ent angles of the incident field polarization are shown in the Fig. 3.10. The diagrams are

displayed for three different polarization angles α = 0 (a,d), α = π/4 (b,e) and α = π/2

89



 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 3.10: Simulated SHG radiation angular diagrams I(nx, ny) as functions of nx = sin θ cosϕ
and ny = sin θ sinϕ for the 8 parameter sets listed in Tab. 3.1 and for two different imaging depths
zobj,1 and zobj,2. zobj,1 was set to 6 µm and corresponds to imaging plane in the proximity of
tendon-water interface. zobj,2 corresponds to the depth where the phase shift between incident
squared fields (Eω

x )
2 and (Eω

y )
2 attains π. Accordingly, it was set to 30 µm for the cases with

no = 1.33 and to 27 µm for the cases with no = 1.5. Intensities within a set (a-g) are normalized
to the maximal intensity in (a), and relative intensities are shown in the bottom-left corner. (a)
Diagrams for incident field polarized at α = 0 to tendon axis, at the depth zobj,1. (b) Diagrams
for α = π/4, zobj,1. (c) Diagrams for α = π/2, zobj,1. (d) Diagrams for α = 0, zobj,2. (e) Diagrams
for α = π/4, zobj,2. (f) Diagrams for α = π/2, zobj,2. (g) Radiation diagrams created by P 2ω

x at
zobj,2 at angle α for which maximal intensity extinction is obtained (α shown at the upper right
corner). These diagrams (g) are not observed directly. Odd (1, 3, 5, 7) and even (2, 4, 6, 8) rows
correspond to non-dispersive and dispersive (d = 5%) parameter sets, respectively.
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1 : ∆n = 0

d = 0

n = 1.33

5 : ∆n = 0.007

d = 0

n = 1.33

2 : ∆n = 0

d = 5

n = 1.33

6 : ∆n = 0.007

d = 5

n = 1.33

3 : ∆n = 0

d = 0

n = 1.5

7 : ∆n = 0.007

d = 0

n = 1.5

4 : ∆n = 0

d = 5

n = 1.5

8 : ∆n = 0.007

d = 5

n = 1.5

Table 3.1: Parameter sets used for simulation of SHG radiation intensity. The set #8 presumably
reproduces actual tendon optical parameters.

(c,f), and for two different imaging depths zobj,1 = 6μm and zobj,2 = 30μm or 27 μm. zobj,2

corresponds to the depth where a π phase shift between (Eω
x )

2 and (Eω
x )

2 is attained,

which results in extinction of induced x-polarization P
(2ω)
x for a certain α. This depth is

30 μm for no = 1.33 and 27 μm for no = 1.5, as given by Fig. 3.5 e in section 3.3.2

The diagrams for ∆n = 0 and for water-matched index n = 1.33 (a1-f2) have fairly

similar form within a set, varying only in relative amplitude. It can be understood, as

first, the medium is isotropic with respect to propagation, which removes dependence on

polarization angle α, and second, the index matching removes possible dependence on the

depth zobj. For the non-birefringent case of n = 1.5 the diagrams are slightly different at

different depths (a3-c4 compared to d3-f4), which is due to spherical aberrations altering

the focal field distribution.

While diagrams for the non-dispersive case (a1-f1, a3-f3) present strong forward emis-

sion with maximum along θ = 0, the diagrams for 5% dispersion have additional annular

parts (a2-f2) or consist exclusively of a conical lobe (a4-c4) with possibly a central lobe

(d4-f4). For the non-dispersive case, the incident beam and generated SH beam are

phase-matched for the forward radiation, while dispersion changes the phase-matching

conditions and hence the polar angle of optimal SH radiation.

Angular diagrams for sets with birefringence ∆n = 0.007 (a5-f8) vary considerably

within a single set and are more complex than those for ∆n = 0. For a given depth and

index and without dispersion, diagrams for α = 0 and α = π/2 have slightly different

forms (a5 compared to c5, d5 to f5, a7 to c7, d7 to f7). While α = 0 diagrams have a

wide central lobe, α = π/2 diagrams show additional rings which are particularly neat in

(f5). As one can see from the Eq. 2.20-2.21, the incident field polarized both at α = 0

and α = π/2 induces exclusively the P
(2ω)
x term. The wave it radiates is an extraordinary

wave, while incident waves for α = 0 and α = π/2 are extraordinary and ordinary waves,

respectively. Thus, a particular phase matching between an incident ordinary beam and
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an induced extraordinary SH wave creates annular modulations of radiation intensity.

This effect is more pronounced for no = 1.33 and for the larger depth. The complex

structure of diagrams for dispersive sets makes their interpretation more difficult.

Quantitatively, the effect of birefringence is observed by comparing maximal intensity

on a diagram (number in the corner) for α = π/4 between zobj,1 and zobj,2 (b to e). While

pairs (a,d) and (c,f) have approximately the same intensity, b and e differ significantly.

It is explained by the extinction of P
(2ω)
x term due to birefringence. (e6 has a thin lobe

of high peak intensity but limited total intensity of similar magnitude as e8).

Diagrams (g5-g8) in the Fig. 3.10 represent the x-polarized SH intensity when the

P
(2ω)
x term is most efficiently extinguished. It happens for a certain α when the terms

ρE0 cos
2 α and E0 sin

2 α are perfectly balanced. This angle α is shown in the upper-right

corner of diagrams. These angular diagrams are relatively irregular because they result

from the residual dipole distribution produced by the difference of almost identical focal

fields.

3.3.3.5 Results: total SHG intensity polarization diagrams

In this paragraph we present z-diagrams of calculated total intensity I(α, zobj) =∫∫
IdΩ
∣∣
α,zobj

for SHG radiation in tendon. These numerical simulations of the radiated

SHG intensity were performed to test the applicability of the phenomenological model

of section 3.2 for the case of tight focusing in a birefringent medium. To that end, we

applied our phenomenological model to the simulation results in the same way as it was

applied to the experimental data.

We use Eq. 3.1 considering no diattenuation, because it is absent in our simulations:

I(α, zobj) ∝
∣∣ρ cos2 αei∆φ + sin2 α

∣∣2 + ηXY |sin 2α|2 . (3.48)

Here, ∆φ is the phase shift due to birefringence. In our phenomenological approach

[138], Eq. 3.1 was used to fit the intensity polarized along x-axis, and ηXY was used to

take into account possible contribution of y-polarized components. In the present case, we

use this equation to fit total intensity diagrams, containing x- and y-polarized signals. It

means that ηXY should have unity value. We will refer to it simply as η. The parameters

we extract from the fit are ρ and

∆ = η − ρ

2
(1− cos∆φ). (3.49)

The latter unites the relative contribution of y-polarization, η, and oscillations due to

birefringence (see detailed derivation in [138]).
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Figure 3.11: Simulated total SHG intensity in tendon as a function of incident polarization angle
α and of imaging depth zobj for the 8 parameter sets listed in Tab. 3.1. Imaging depth zobj varied
between 0 and 80 µm. (a) SHG intensity I(α, zobj) as a function of incident field polarization
angle α and imaging depth zobj . (b) SHG intensity depth profiles along α = 0 (green dotted line),
α = π/4 (blue dashed line) and α = π/2 (red dash-dot line). (c) Anisotropic parameter ρ and
parameter ∆ as a function of zobj . ρ and ∆ are extracted from the intensity diagrams as explained
in [138]. Contrast is enhanced for images (a2), (a4), (a6) and (a8).
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Figure 3.11 shows numerically simulated total SHG intensity and parameters extracted

from the simulated data according to the phenomenological model. The results are pro-

vided for the 8 parameter sets listed in Tab. 3.1. Simulated forward-emitted SHG inten-

sities as functions of polarization angle α and scanning depth zobj are shown in subfigures

(a1-a8). Subfigures (b1-b8) show depth intensity profiles for incident polarization angles

α = 0 (green dotted line), α = π/4 (blue dashed line) and α = π/2 (red dash-dot line).

Lines corresponding to these profiles are shown on the intensity diagram (a1). Subfig-

ures (c1-c8) show parameters ρ and ∆ as extracted by fitting with the phenomenological

model.

Non-birefringent case: ∆n = 0. First we consider simulations for the non-

birefringent cases ∆n = 0 (1-4). Diagram for the non-dispersive and index-matched case

(d = 0, n = 1.33) (a1) shows constant intensity as a function of zobj as expected, as the

confinement of the focal field is well preserved at larger depths due to the water-tendon

index matching. For the non-dispersive case with index mismatch (d = 0, n = 1.5) (a3)

a slight signal attenuation is observed with depth, as focal volume deteriorates due to

spherical aberrations. Diagrams for both dispersive cases (a2, a4) shows a peak of inten-

sity at the water-tendon interface and a constant (a2) or slowly varying (a4) intensity as a

function of depth beyond the interface. This steep intensity decrease is due to the altered

phase-matching conditions within the beam, which results in destructive interference of

SHG signals radiated from frontal and rear halves of the beam. On the surface, when

the SHG from the frontal half is not compensated, the resulting efficiency is much higher.

The interfacial peak is up to 10 times weaker than intensities for non-dispersive cases

(a1, a3). The intensity beyond the surface is up to 100 times weaker as compared to the

diagrams without dispersion.

ρ and ∆ for non-birefringent sets are shown in (c1-c4). The ρ values are very close to

the value 1.36 used for simulations. The small difference is probably due to the contribu-

tion of z-field, which is not taken into account in the phenomenological model. For four

cases (c1-c4) the parameter ∆ is equal to 1 at all zobj, as expected from Eq. 3.49 when

∆n = 0.

Birefringent case: ∆n = 0.007. Now we will discuss simulation results for sets with

birefringence ∆n = 0.007 (5-8). The intensity diagrams (1-4) are different from those

without birefringence, notably because of visible periodic variations as a function of zobj.

The oscillating behavior of intensity is evidenced on depth intensity profiles (b5-b7) for

incident angle α = π/4 (blue dashed line). A slight attenuation is observed with depth

for no = 1.5 (a7) due to spherical aberrations which deteriorate focusing. Identically to

the non-birefringent sets (1-4), the polarization diagrams for two dispersive cases (a6, a8)
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exhibit an interfacial intensity peak and much weaker SHG signal beyond the interface.

According to [136,138,140], the set #8 is expected to reproduce tendon optical parameters.

However, in the experiment we don’t observe any intensity peak on the surface, but a

smooth increase of intensity instead. We suppose this happens due to a less dense surface

layer consisting of loose fibrils. In other words, the collagen density and χ(2) also vary

smoothly near the surface from zero to their respective value within the tendon.

ρ and ∆ parameters for birefringent sets are plotted in (c5-c8). Unlike the non-

birefringent cases (1-4), the values of ρ vary with depth and differ significantly from

the value 1.36 used for calculations (∼1.7 for c5 and c7, ∼1.5 for c6, ∼1.35-1.5 for c8).

Additionally, the high values of ∆ for (c5, c6, c7) cannot be explained by the Eq. 3.49, as

it predicts values less or equal to unity. However, the oscillating behavior, which is due

to the birefringence, is well reproduced. The fitting of ∆ as a function of zobj by a cosine

function provides measured values for birefringence, which coincide with great precision

with the ∆n = 0.007 used for calculation: 0.007 for c5, 0.0071 for c6, 0.0072 for c7, 0.0071

for c8 (for no = 1.5 (c7, c8) ∆n values were corrected according to Eq. 3.23).

3.3.3.6 Discussion of the simulated ρ and ∆

Reconsideration of the phenomenological model. In order to understand why ρ

and ∆ differ significantly from the expected values, we need to reconsider the phenomeno-

logical model in the light of derived solutions for the radiated SH field. According to the

Eqs. 3.24, 3.38, 3.39 and using only the largest terms Ex‖ and Ey⊥ we can write for the

induced polarization:

P (2ω)
x ∝ ρE2

x‖ cos
2 α + E2

y⊥ sin2 α

P (2ω)
y ∝ Ex‖Ey⊥ sin 2α.

(3.50)

As it was shown in the focal field simulations (3.3.2), the Ex‖ and Ey⊥ fields have

almost identical magnitudes for each of the cases no = 1.33 and no = 1.5 (see Fig. 3.4).

According to Eqs. 3.36, the total radiated intensity at a given α writes:

I
∣∣
α,zobj

∝
∫∫

|Pe|2 dΩ +

∫∫
|Po|2 dΩ =

=

∫∫ ∣∣ρEEe
x‖,x‖ cos

2 α + EEe
y⊥,y⊥ sin2 α

∣∣2 dΩ +

∫∫ ∣∣EEo
x‖,y⊥ sin2 α

∣∣2 dΩ. (3.51)

We remind that EEe
x‖,x‖, for example, is the extraordinary wave radiation efficiency of

the term E2
x‖ (see Eqs. 3.41, 3.42). The equation above is an elaborate analogue of the

Eq. 3.48, with η = 1.
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While all the three terms E2
x‖, E2

y⊥ and Ex‖Ey⊥ have almost identical magnitude,

it is generally not true for EEe
x‖,x‖, EEe

y⊥,y⊥ and EEo
x‖,y⊥ as they correspond to different

types of phase-matching conditions (see Fig. 3.12). Indeed, the term EEe
x‖,x‖ is the type 0

(extraordinary SH wave generated by two extraordinary incident waves), EEe
y⊥,y⊥ is the

type I (extraordinary SH wave generated by two ordinary incident waves), and EEo
x‖,y⊥

is the type II (ordinary SH wave generated by one ordinary wave and one extraordinary

wave).

ω, e 
ω, e 2ω, e 

ω, o 
ω, o 2ω, e 

ω, e 
ω, o 2ω, o 

χ(2ω)
xxx

χ(2ω)
xyy

χ(2ω)
yxy , χ(2ω)

yyx

Figure 3.12: Possible types of SHG in tendon by analogy to phase-matching types in birefringent
crystals. Type 0 corresponds to generation of an extraordinary wave by two extraordinary waves

(governed by χ
(2ω)
xxx tensorial component). Type I corresponds to generation of an extraordinary

wave by two ordinary waves (χ
(2ω)
xyy ). Type II corresponds to generation of ordinary wave by one

extraordinary and one ordinary wave (χ
(2ω)
yxy and χ

(2ω)
yyx ).

When fitting the Eq. 3.51 with 3.48, instead of actual values ρ = 1.3 and η = 1 we

will extract apparent values ρapp and ηapp:

ρapp = ρ

∫∫ ∣∣EEe
x‖,x‖
∣∣2 dΩ

∫∫ ∣∣EEe
y⊥,y⊥

∣∣2 dΩ
(3.52)

ηapp =

∫∫ ∣∣EEo
x‖,y⊥
∣∣2 dΩ

∫∫ ∣∣EEe
y⊥,y⊥

∣∣2 dΩ
(3.53)

If we record I(α, zobj) = Ix(α, zobj) + Iy(α, zobj), we know that η in Eq. 3.48 is unity,

so measuring the apparent ηapp delivers directly the relative efficiency of types II and I,

which is rII

I
=

∫∫|EEo
x‖,y⊥|2dΩ

∫∫|EEe
y⊥,y⊥|2dΩ

. Thus, this value can only be measured when the detection is

96



not resolved in polarization [141] or when Ix and Iy intensities are detected simultaneously

in different channels which are properly calibrated [138].

On the contrary, it follows from Eq. 3.52 that ρ cannot be measured separately from

the relative efficiency of types 0 and I, which is r0

I
=

∫∫|EEe
x‖,x‖|2dΩ

∫∫|EEe
y⊥,y⊥|2dΩ

. The latter can only be

estimated from simulations based on known optical parameters of the tendon, but cannot

be measured independently. In this case, the II-to-I efficiency rIII which can be both

measured and simulated, indicates whether the optical parameters were chosen correctly.

However, this indication relies on the assumption that the numerical model reproduces

the phase-matching behavior within the required precision.

Both efficiencies r0I and rIII reflect the phase-matching within the focal volume, so

they depend primarily on the birefringence ∆n and the dispersion d which directly influ-

ence the phase-matching conditions. For zero birefringence, both r0I and rIII are unities

as the ordinary and extraordinary waves have exactly the same indices. The absolute

efficiency can vary upon dispersion, but it doesn’t influence ratiometric measurements.

Unity relative efficiencies result in precise determination of ρ and ∆ from the polarization

diagrams (see c1-c4 at Fig. 3.11). For birefringence ∆n = 0.007 and for zero dispersion,

for both indices we observe ρ ∼ 1.7 and ∆ up to 2 (c5, c7), which signifies that r0I is about

1.7/1.36≈1.25, and rIII is as high as ∼2. For both dispersive sets (c6, c8), the measured

parameters are closer to the values used for calculations, which signifies that r0I and rIII
are closer to one. Finally, for the case which is expected to reproduce tendon optical

parameters (c8, ∆n = 0.007, n = 1.5, d = 5%), the values of ρapp and ηapp are relatively

close to the set values. Indeed, ∆ is close to 1 near its maxima (see Eq. 3.49), and ρ is

close to 1.36 beyond the tendon surface.

The apparent values ρapp and ∆ obtained in the simulations have to be compared

to the experimental results. Considering the experimental data for tendon presented in

the previous section 3.2 and in our paper [138], the phenomenological model provided

ηapp ∼ 1.2 − 1.4 (using x and y channel calibration, not discussed in the paper), which

is slightly different from that of Fig. 3.11 c8, but close to that of the dispersive case

with no = 1.33 (c6). Even if the relative efficiencies are not explicitly related one to

another, we suppose that the set #6, for which the simulated rIII is close to that observed

in experiment, can be used to estimate r0I . Hence, the uncertainty on experimentally

measured ρ can also be estimated from this set. The apparent ρapp in this case is 8-10%

larger than the one introduced in the calculation, and we suppose it is roughly the same

for measured ρ.

The true values of no and d in the tendon may also differ slightly from those we chose

for the simulation. It implies that, for example, choosing smaller dispersion may give

the simulated ηapp closer to that measured in tendon. However, this hypothesis requires
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extensive simulations to reproduce the ρapp and ∆ curves for a large number of parameter

sets near no = 1.5 and d = 5%, in order to study the dependence of r0I and rIII on these

parameters. Finally, precise independent measurements of tendon optical parameters,

such as birefringence, refractive index and dispersion, along with simulations, would allow

to estimate r0I and hence, the real ρ in tendon.

Polarization cross-talk due to vectorial focusing. In section 3.2 we showed that

fitting the x-polarized SHG intensity with the Eq. 3.48 allows one to measure the extent

of polarization cross-talk, i.e. the part of y-polarization detected in the x-channel. We

assumed that this effect was due to scattering on slightly misaligned fibrils within the

fascicle. However, in the case of tight focusing with high-NA objectives, one can assume

that the field emitted by an induced polarization P
(2ω)
y within a wide cone will bring non-

negligible contribution to the x-field after refocusing on the detectors. In order to assess

this possible contribution of vectorial focusing in a non-scattering medium we calculated

the intensity detected in the x-channel Ix(α, zobj) and applied the Eq. 3.48 to obtain η

parameter.

For these calculations we used two sets with no birefringence (∆n = 0) and an index

n = 1.5: one with and one without dispersion. It corresponds to the sets #3 and #4

in Tab. 3.1. We used zobj = 50μm. While the radiation is forward-directed within a

relatively narrow lobe for the non-dispersive case #3 (see Fig. 3.10 a3-f3), it is spread

within a wide cone with aperture of about 30◦ for the dispersive case #4 (see Fig. 3.10 a4-

f4). Hence, the scrambling should be significantly larger for the set #4. The calculations

gave η ∼ 10−4 for the narrow forward-directed emission of the set #3 and η ∼ 10−3 for the

case #4. While cross-talk is approximately ten times larger for the field radiated in a wide

cone, as expected, it is still two orders of magnitude smaller than the value η ∼ 0.1 we

measured in tendon (see previous section and [138, 139]). It proves that the scrambling

observed experimentally is not due to the vectorial focusing. Thus, the polarization-

resolved detection can bring additional information about polarization cross-talk, which

cannot be obtained only by measuring I = Ix + Iy. To conclude, the ideal configuration

that allows for obtaining the maximum of information is polarization-resolved excitation

coupled with detection split into two properly calibrated channels for x- and y-polarized

SHG.
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3.3.4 SHG simulations in cornea

3.3.4.1 Introduction

In this subsection we present numerical simulations of SHG in cornea. A short outline

of our results is given here, while the detailed results and discussion will be given in our

published article that we present in the next paragraph.

Cornea is a transparent collagenous tissue, which accounts for the 2/3 of the refractive

power in a mammalian eye. It is organized in 1-3 μm thick lamellae of aligned collagen

fibrils, typically 30 nm in diameter, embedded in an aqueous matrix. The angles between

fibril directions in adjacent lamellae are typically ∼ π/3-π/2. Due to local anisotropy of

this tissue and to the intrinsic SH signal it can generate, P-SHG is a promising technique

for structural imaging of unstained corneal samples.

We performed P-SHG measurements in human and rat corneas and applied our phe-

nomenological model described previously to the obtained polarimetric data. While the

χ(2) formalism in general, and our phenomenological model in particular deal with ho-

mogeneous media such as tendon, the model proved to be robust even for the case of

lamellar non-homogeneous structure of cornea. In particular, the application of this phe-

nomenological model allowed us to determine with good precision the interfaces between

adjacent lamellae and fibril orientation within lamellar domains. Interestingly, the param-

eter ρ measured at the interface of two adjacent lamellae was smaller than that within

the lamellae. This fact seems in contradiction with our theoretical calculations in the

chapter 2 (see Eq. 2.28), which predict larger ρ for samples with orientation disorder. In

fact, this behavior is related to the phase shift at the beam focus that is observed with

tightly focused beams (Gouy phase shift). SHG electric fields radiated from anterior and

posterior parts of the beam focus exhibit an effective phase difference of about π/2. As

a consequence, the contributions from the two lamellae apart from the interface are in

quadrature rather than in phase, so that they contribute independently to the SHG signal.

One may alternatively consider that they add in an incoherent manner rather than in a

coherent one, which results in a smaller ρ.

While the output data provided by the model allows for determining lamella inter-

faces, it should be noted that the hypothesis of a uniform χ(2) used in the model doesn’t

hold when the beam is focused between two lamellae. In this case, the model output

parameters, such as ρ, do not represent real values in tissue, and should be regarded

accordingly.

In order to understand the behavior of SHG process in the vicinity of interlamellar in-

terface we performed numerical simulations as described in the two previous subsections.

In contrast to tendon, which is uniformly birefringent, cornea are made of thin birefrin-

gent slabs oriented quasi arbitrarily. It means that in each slab there is a different set of
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ordinary and extraordinary waves, and phase aspects of the focal field distribution and

harmonic generation can be very subtle. However, the cornea is globally non-birefringent,

as due to arbitrary lamellae orientations, the average phase shift is globally zero. For

the sake of simplicity, for these simulations, we assumed that cornea is also locally non-

birefringent. Accordingly, we set the birefringence to zero. The simulated intensity dia-

grams were fitted with the phenomenological model to obtain parameters of interest, such

as ρ, fibril orientation φ and the indicator of fit quality R2.

The numerical results we obtained reproduced both qualitatively and quantitatively

the measured data. In particular, we showed that the angle φ of fibril direction within a

lamella exhibits a steep transition between lamellae. Furthermore, R2 parameter attains

its minima near the interface, which shows that the model does not reproduce correctly

the SHG near the interface of two slabs with different χ(2) tensors. Finally, the simulations

proved that the intensity diagrams near the interface corresponds to a ρ smaller than used

for simulations, which is explained by the Gouy phase shift within the focal volume.

As a conclusion, our phenomenological model can be fruitfully used to analyze P-

SHG data in cornea, providing information on fibril directions within the lamellae and

on precise zobj-coordinates of the interfaces. It also provides values for the anisotropy

parameter ρ within the lamellae, though these values should be interpreted with caution

because of phase-matching considerations described previously.

3.3.4.2 In vivo structural imaging of the cornea by polarization-resolved sec-

ond harmonic microscopy
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Abstract: The transparency and mechanical strength of the cornea are 
related to the highly organized three-dimensional distribution of collagen 
fibrils. It is of great interest to develop specific and contrasted in vivo
imaging tools to probe these collagenous structures, which is not available 
yet. Second Harmonic Generation (SHG) microscopy is a unique tool to 
reveal fibrillar collagen within unstained tissues, but backward SHG images 
of cornea fail to reveal any spatial features due to the nanometric diameter 
of stromal collagen fibrils. To overcome this limitation, we performed 
polarization-resolved SHG imaging, which is highly sensitive to the sub-
micrometer distribution of anisotropic structures. Using advanced data 
processing, we successfully retrieved the orientation of the collagenous 
fibrils at each depth of human corneas, even in backward SHG homogenous 
images. Quantitative information was also obtained about the 
submicrometer heterogeneities of the fibrillar collagen distribution by 
measuring the SHG anisotropy. All these results were consistent with 
numerical simulation of the polarization-resolved SHG response of cornea. 
Finally, we performed in vivo SHG imaging of rat corneas and achieved 
structural imaging of corneal stroma without any labeling. Epi-detected 
polarization-resolved SHG imaging should extend to other organs and 
become a new diagnosis tool for collagen remodeling.

© 2011 Optical Society of America

OCIS codes: (180.4315) Nonlinear microscopy; (120.5410) Polarimetry; (190.4160) 
Multiharmonic generation; (170.3880) Medical and biological imaging; (170.4470)
Ophthalmology.
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1. Introduction

The cornea is the outer part of the eye that protects against external injuries and contributes to 
2/3 to the eye refractive power. Commercially available techniques, such as confocal 
reflectance microscopy [1] or optical coherence tomography (OCT) [2,3], enable three-
dimensional (3D) cell-scale imaging of cornea. However, these techniques lack specificity or 
contrast when looking at the collagen organization of the corneal stroma. The stroma 
represents 90% of the corneal thickness and is composed of more than 250 stacked collagen 
lamellae that are 1-3 μm thick [4]. Each lamella forms 10-100 μm wide domains that are 
comprised of 30 nm diameter collagen fibrils organized into a hexagonal lattice. This highly 
organized structure is responsible for both the transparency and the mechanical strength of the 
cornea. It may be disrupted in case of a variety of injuries and pathologies (e.g. keratoconus) 
[4] or after laser surgery [5]. It is therefore of great interest to develop in vivo imaging 
techniques that provide structural and quantitative information about the corneal stroma.

Multiphoton microscopy (MPM) has been shown to enable 3D imaging of biological 
tissues with similar resolution as the other optical techniques mentioned above. Strong two-
photon excited fluorescence (2PEF) signals can be obtained from exogenous labels and in vivo
tracking of fluorescent microspheres was recently reported in rabbit corneas [6]. However, it 
is of great interest to take advantage of endogenous MPM signals to image unstained corneas 
[7,8]. MPM has been shown to provide ex vivo specific and contrasted images of unstained 
corneas by using Second Harmonic Generation (SHG) and Third Harmonic Generation (THG) 
signals to complement usual 2PEF signals [9–17]. THG signals are related to micrometer-
sized optical heterogeneities and are obtained at the lamellar interfaces [16]. However, THG 
signals are mainly detected in the forward direction, which is not appropriate for in vivo
imaging. SHG is a coherent second order nonlinear signal that probes dense non-
centrosymmetrical macromolecular structures such as fibrillar collagen [7,8,18,19]. Since the 
diameter of stromal collagen fibrils is much smaller than the optical resolution, collagen fibrils 
are not resolved in the SHG images of cornea. Accordingly, backward SHG (B-SHG) images 
can be considered as nearly homogeneous with speckle-like background at the micrometer 
scale [11,13,15]. However, forward SHG (F-SHG) images exhibit striated features that are 
attributed to complex coherent processes within the focal volume with different phase-
matching conditions than in the B-SHG images [20–22]. These striated features are generally 
considered to indicate the orientation of the lamellar domains [11,13,15,16]. Therefore, SHG 
microscopy has been mainly limited to forward imaging in excised corneas up until now, 
since only F-SHG images seem to provide information about the stromal architecture. 
Application of THG or SHG microscopy to in vivo imaging may take advantage of internal 
reflections at the eye optical interfaces to image forward-radiated signals in an epi-
configuration; however, these back-scattered signals are quite low and direct utilization of B-
SHG signals is the most promising technique for in vivo imaging.

This work aims to implement polarization-resolved B-SHG microscopy to retrieve 
orientation information about the 30 nm-diameter stromal collagen fibrils and to enable in 
vivo structural imaging of cornea without any labeling. Polarization resolved techniques are 
indeed highly sensitive to the sub-micrometer distribution of anisotropic elementary
components within a sample, much below the optical resolution, as routinely exploited in 
ellipsometry measurements. Polarization-resolved SHG microscopy was first developed in rat-
tail tendons [23–27] and in skeletal muscle [25,28–31] to determine orientation maps. It was 
also used in ex vivo corneas using a forward detection configuration to study thermal 
disruption of the collagen lamellae [14]. However, polarization-resolved SHG microscopy 
was never used to visualize the 3D organization of nanometer-sized fibrils in an epi-
configuration until now.
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The paper is organized as follows; we first introduce experimental implementation of 
polarization-resolved SHG and theoretical background based on tensorial formalism of 
nonlinear optics. We also perform numerical simulations to understand the construction of the 
polarization-resolved SHG signals from stacked adjacent lamellae. We then show that this 
method successfully retrieves the orientation and anisotropy of the collagenous lamellar 
domains in human excised corneas both from F-SHG and B-SHG signals. Most importantly, 
we perform in vivo polarization-resolved SHG imaging of rat corneas and demonstrate that 
our method also applies to that configuration. Finally, we discuss the robustness and interest 
of this approach and we propose further in vivo studies.

2. Materials and methods

2.1. Polarization-resolved SHG microscopy

MPM imaging was performed using a custom-built laser scanning upright microscope, based 
on a femtosecond titanium-sapphire laser (Tsunami, Spectra-Physics) and photon-counting 
detection (P25PC photomultiplier tubes, Electron Tubes) [15,18,26] (Fig. 1A). High 
numerical aperture water immersion objectives (20x, NA 0.95 or 60x, NA 1.2, Olympus) were 
used to achieve lateral and axial spatial resolutions of 0.4 x 1.6 or 0.3 x 0.9 μm2 at 860 nm 
near the sample surface. B-SHG and 2PEF signals were detected in the backward direction for 
in vivo imaging, while in ex vivo corneas, F-SHG signals were also collected. We used 
suitable spectral filters to reject the excitation laser beam (FF01-680/SP and FF01-720/SP, 
Semrock), and select the 2PEF emission (GG455 and GG400 high-pass filters at 730 and 860 
nm respectively, Schott) or the SHG signal (Hg01-365 and FF01-427/10 interferential filters 
respectively, Semrock). Multimodal image stacks were recorded using 200 to 300 kHz pixel 
rate with 0.5 to 0.8 μm pixel size, and 0.5 μm (fine lamellar studies) to 10 μm (structural 

Fig. 1. Experimental setup. (A) Laser scanning microscope with rotating waveplates to control 
the polarization state of the excitation beam. Orientation of the linearly polarized excitation 
relative to the cornea morphology in the laboratory frame is indicated in the inset. 2PEF and B-
SHG are detected in the backward direction as required in in vivo experiments. F-SHG is also 
detected in ex vivo experiments and correlated to polarimetric B-SHG data. (B) Forward and 
backward 2PEF signals from a fluorescent slab versus orientation of the linearly-polarized 
excitation, showing variations smaller than 3.2%. (C) Polarization-resolved 2PEF signal from a 
fluorescent slab versus orientation of the linearly-polarized excitation using polarization 
sensitive forward detection showing that the maximum 2PEF signal consistently corresponds to 
x or y polarization of the excitation beam.

(C) 2011 OSA 1 January 2012 / Vol. 3,  No. 1 / BIOMEDICAL OPTICS EXPRESS  4



information through the whole corneal thickness) axial steps. Laser power at the objective 
focus was typically 20 to 85 mW.

Polarization-resolved SHG was performed using two motorized achromatic waveplates 
inserted at the back pupil of the objective (Fig. 1A) A quarter waveplate was first used either 
to switch to quasi-circular polarization or to correct the 14% ellipticity that is mainly 
introduced by galvanometric mirrors and dichroic mirror and to obtain a well-defined linear 
polarization (5% residual ellipticity after correction). A half waveplate was then used to 
control the orientation of this linear polarization. Polarization-resolved SHG was carefully 
calibrated as previously reported [26]. We verified that forward and backward 2PEF signals 
from a fluorescent slab (Chroma), exhibited variations smaller than 3.2% when the linear 
excitation was rotated (Fig. 1B). The absolute polarization angle of the laser excitation was 
also verified before each experiment by analyzing the polarization of 2PEF signals using a 
polarizing beamsplitter and linear polarizers in the forward detection module (Fig. 1C). 
Circularly polarized excitation was sometimes used to obtain SHG images of collagen 
lamellae with similar efficiency whatever their orientation in the focal plane. Equivalently, we 
summed all the SHG images obtained with linearly polarized excitation tuned from 90° to 
90° every 10°.

2.2. Human cornea preparation

The study was conducted according to the tenets of the Declaration of Helsinki and French 
legislation for scientific use of human corneas, using 7 human corneas, obtained from the 
French Eye Bank (BFY, Paris, France), which were unsuitable for transplantation [32]. They 
exhibited an endothelial cell density between 1850 and 2450 cell/mm2 (mean value: 2130 
cell/mm2) that is above the viability threshold fixed at 2000 cell/mm2 for all the corneas 
except one [32]. They were stored at 31°C in CorneaMax medium (Eurobio, France) until the 
experiment. A custom-built holder was used for SHG imaging that clamped the sclera and 
preserved the cornea. This holder was inserted in a Petri dish with refined thickness to 
optimize the F-SHG signal detection. Corneas were immerged in a storage medium without 
red phenol (#7002_WORP, Stem Alpha, France) to prevent tissue drying during SHG 
imaging. They were slightly edematous as shown by their increased thickness (typically 700 
μm) compared to physiological corneal thickness (around 500 μm).

2.3. Ex vivo porcine eyeball imaging

Freshly enucleated pig eyes were obtained from a local slaughterhouse (Etablissement Guy 
Harang, France) and stored in Hanks’ Balanced Salt Solution (Sigma) until experiment. MPM 
imaging was performed within 12 hours after the death using a molded agarose gel to hold the 
eyeball. A gel tear substitute (Lacrigel, Europhta, Monaco) was used to maintain optical 
contact between the eye and the immersion objective (1.340 refractive index in the visible 
range at 22°C as measured with Abbe refractometer).

2.4. In vivo rat cornea imaging

Experiments were conducted in accordance with the Association for Research in Vision and 
Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision 
Research. Male three-month old (n = 1) and one-year old (n = 1) Wistar rats were purchased 
from Janvier (Le Genest-Saint-Isle, France) and roomed for one week before inclusion in the 
study. For experiments, rats were anesthetized by intramuscular injection of a mixture of 
Ketamine (100 mg/kg) and Xylazine (10 mg/kg). The rat was then placed on a plate under the 
microscope and, after local anesthetic (tetracaine) instillation, the eye was flattened with a 
coverslip mounted on a custom-built mechanical device. Optical contact was maintained with 
ophthalmic gel as for porcine eyeballs.
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3. Polarization-resolved SHG: theoretical background and numerical simulation

3.1. Theoretical background and data processing

The SH response of a medium is characterized by the second order nonlinear susceptibility 
tensor (2) . This tensor is obtained as the averaged response of small collagen fibrils aligned 

in domains within lamellae and it reflects the direction of collagen fibrils in these domains. 
Assuming that fibrillar collagen exhibits a cylindrical symmetry and that Kleinmann 
symmetry applies [19,24], it exhibits only two independent components: XXX and 

XYY XZZ YXY ZXZ YYX ZZX , where X is the direction of the collagen fibrils (see 

Fig. 1A). An incident electric field E0 then induces the following SH radiation in the fibril 
frame XYZ: 

2 2 2 2
0cos ( ) sin ( )X XXX XYYE E   (1a)

2 2
0sin 2( )Y XYYE E   (1b)

where and stand for the laser excitation polarization angle and the fibril orientation angle, 
respectively, with respect to a fixed direction in the laboratory frame (axis x in Fig. 1A). This 
formalism is valid because the collagen lamellae are parallel to the surface of the cornea so 
that the collagen fibrils and the incident electric field are both within the focal plane. The total 
SH intensity is then given by

2 22 2 2cos ( ) sin ( ) sin 2( )I K   (2)

where K is a constant merging the squared incident intensity and setup geometrical 
parameters. Two quantitative parameters appear in this expression: (i) the angle ( ) of the 

laser excitation polarization to the collagen fibrils axis within lamellar domains; (ii) the ratio 

XXX

XYY

, which reflects the anisotropy of the nonlinear response of these lamellar domains. 

This approach is valid for both B-SHG and F-SHG signals.
Equation (2) can be expressed as a sum of Fourier components cos 2 ( )n , with n = 0, 

1, 2 [24,26,33]. This is an efficient way to process the experimental data and determine the 
SHG anisotropy parameter even in the presence of optical artifacts due to diattenuation or 
birefringence in the propagation of the laser excitation [25–27,34]:

2 cos 4( ) cos 2( )I A B C   (3)

As previously derived [26

A B C

A B C
  (4)

where we have omitted diattenuation correction since there is no diattenuation in the corneal 
stroma (da ta not shown). This expression applies even in birefringent media, which may be 
the case in corneal stroma [35].

Equation (3) was then used to fit the SHG signal in every pixel of the images as a function 
of the polarization angle of the laser excitation. Image processing was performed 
automatically using custom-written Matlab script applicable to 3D image stacks with 
polarimetric information for each pixel (4D data stacks). In order to optimize the signal to 
noise ratio, the polarization-resolved SHG images were first binned to obtain 8 x 8 to 13 x 13 
μm2 pixel areas. These enlarged regions of interest (ROI) remain smaller than the lamellar 
domains that extent over 10 μm wide in the anterior stroma to more than 100 μm wide in the 
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posterior part. Our script then determined for every ROI the angle of the collagen fibrils to a 
reference direction in the laboratory frame, the SHG anisotropy parameter and the 
coefficient of determination R2 which quantifies the goodness of the fitting procedure 
(0<R2<1).

3.2. Numerical simulation of the anisotropy parameter variation with depth

The parameter is related to the anisotropy of the SH response in homogenous lamellar 
domains composed of aligned nanometric collagen fibrils. Generally speaking, the nonlinear 
susceptibility formalism is relevant for locally uniform tissue structures. However, two 
adjacent lamellae with different orientations and consequently different (2) can contribute 
together to the SH response when the beam is focused at the interface between them. This 
configuration occurs at every lamellar interface when scanning along the depth of the cornea. 
It is expected to induce distortions of the polarimetric diagrams and to hinder the correct 
determination of the parameters and since the SH response is not uniform throughout the 
focal volume.

We performed numerical simulation of the depth profile of SHG signals while scanning 
through an interlamellar interface so as to have a better quantitative understanding of the 
variation of and in our experimental data. The electric field distribution near the beam 
focus was calculated using the angular spectrum method [36] for a 1.2 numerical aperture 
objective (axial FWHM 
of the discretized focal volume, considering two different orientations of the (2) tensor for the 
two lamellae, with = 1.3. The total SH electric fields radiated in different solid angles were 
then calculated and the total F-SHG intensity was finally obtained for all polarization 
directions of the excitation beam. These model calculations resulted in distorted polarization 
diagrams at interfaces due to the contributions of both lamellae. These diagrams were fitted in 
the same way as our experimental data using Eq. (3). The resulting effective SHG anisotropy 
parameter eff is depicted in Fig. 2A as a function of the angle between two lamellar domains 
and of the depth position of the lamellar interface within the focal volume. eff exhibits a 
minimum at the interface between two lamellae (for a depth equal to 0 in the simulation), 
whatever the angle between the two adjacent lamellae. The depth profiles of the effective 
parameters eff and eff for two lamellae at 60° is detailed in Fig. 2B. In addition to the 
decrease of the eff values, eff switches steeply from the direction of the first lamella to the 
direction of the second one while the goodness of the fit R2 displays a minimum.

Fig. 2. Numerical simulation of effective SHG anisotropy parameter eff across a lamellar 
interface. (A) Effective SHG anisotropy ratio eff obtained by fitting with Eq. (3) simulated 
polarimetric diagrams with contributions of two adjacent lamellae. = 1.3 within a unique 
lamella and eff varies with the depth of the lamellar interface within the focal volume and with 
the relative angle of the two lamellae orientations. (B) Simulated depth profiles of the SHG 
anisotropy ratio ( eff), of the orientation of the collagen lamellar domains ( eff) and of the 
coefficient of determination (R2) for two adjacent lamellae with 60° relative angle.
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4. Results

4.1. Cornea multiphoton imaging

Typical B-SHG and F-SHG images from ex vivo human corneas are displayed in Figs. 3A-B.
Image stacks in the whole corneal thickness are shown in Media 1. As previously reported, F-
SHG images are characterized by striated spatial features, while B-SHG images are nearly 
homogeneous at the micrometer scale, with speckle-like background interrupted by linear 
cracks with much smaller signal. Similar features are observed in transverse reconstructions of 
F-SHG and B-SHG images (Figs. 3C-D and Media 2). B-SHG images therefore do not 
directly provide any structural information about the corneal stroma. We have, however, 
measured that the F-SHG to B-SHG intensity ratio is close to 1 after normalization of both 
detection channels, so that B-SHG signals are quite large signals. Structural information may 
therefore be obtained from these signals by performing polarization-resolved SHG 
microscopy since we expect larger SHG signals when the incident excitation field is aligned 
with the collagen fibrils. F-SHG and B-SHG polarization-resolved signals are both recorded 
by rotating the incident polarization as depicted in Fig. 4. We then developed a specific 
method to process these data based on the tensorial nonlinear optics formalism.

Fig. 3. F-SHG and B-SHG images of posterior stroma from human corneas. (A) F-SHG and 
(B) B-SHG images obtained as the sum of all the raw images acquired with tunable linear 
incident polarization (60x 1.2 NA objective, scale bar: 30 μm, false colors) (Media 1). (C) F-
SHG and (D) B-SHG xz reconstruction from the previous data volume (Media 2). Striated 
features (A) and stacked organization (C) are clearly visible in F-SHG images while B-SHG 
images (C) and (D) are spatially homogenous in.

4.2. Determination of fibril orientations

Figure 4 displays typical polarimetric diagrams for the highlighted ROIs in the SHG images. 
The fits give R2 values that are close to 1 and consistent for F-SHG and B-SHG signals. It is 
worth noting that the angle  (Fig. 4B) corresponds to the orientation of the striated features 
that appear in F-SHG images (Fig. 4A). It confirms that these striated features reveal the 
orientation of the collagen fibrils in stromal lamellar domains. In a few ROIs, the R2 values 
were lower and fitting F-SHG and B-SHG signals provided different parameters. This 
discrepancy is related to the specific structures observed in these ROIs. The F-SHG image 
shows two distinct networks of striated features that seem to be superimposed in the focal 
volume. It means that the excitation beam was focused at the interface between two lamellae 
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and that SHG radiation from these two adjacent lamellae was collected together. These two 
contributions lead to a distortion of the polarization-resolved SHG profile and the fibril 
orientation cannot be determined unambiguously in such ROIs.

In order to further evaluate the relevance of our method, the angle was superimposed on 
the SHG images, using arrows with length proportional to the R2 value (Figs. 5A-B). When R2

values were below an arbitrary threshold (typically 0.7), the results of the fits were discarded. 
This image processing was performed along the whole depth of the corneal stroma and gave 
consistent results (Media 3). We observe that the fibrils orientations determined by this 
approach are (i) the same for F-SHG and B-SHG images although these images exhibit 
different structures, (ii) in good agreement with the orientations of the micrometric features 

Fig. 4. Polarimetric diagrams from F-SHG and B-SHG images of posterior stroma from human 
corneas. (A) F-SHG and (C) B-SHG images obtained as the sum of all the raw images acquired 
with tunable linear incident polarization (20x 0.95 NA objective, scale bar: 50 μm, false 
colors). (B) F-SHG and (D) B-SHG averaged intensity in the highlighted ROIs versus the 
angular direction of the incident linear polarization. Fits of F-SHG and B-SHG polarimetric 
diagrams using Eq. (3) (red color) provide the same orientation of the collagen lamellar 
domains and the same SHG anisotropy ratio with a high coefficient of determination R2 (see 
insets).

Fig. 5. Orientation maps and SHG anisotropy ratio obtained from polarimetric SHG imaging. 
(A) F-SHG and (B) B-SHG images of human corneal stroma superimposed with arrows 
indicating the orientation of collagen fibrils in the lamellar domains calculated from 
polarimetric diagrams in 13 x 13 μm2 ROIs using Eq. (3). The arrow lengths scale as R2 and 
results are displayed only when R2

same way from (C) F-SHG and (D) B-SHG data. Scale bar: 50 μm. Excitation: 75 mW at 860 
nm with a 20x 0.95 NA objective. (Media 3) 
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revealed in F-SHG images. It shows that polarization-resolved SHG microscopy enables the 
determination of the collagen fibril orientations within the corneal lamellae using epi-detected 
signals although raw B-SHG images are spatially homogenous.

The robustness of this approach was characterized as a function of the depth and of the R2

threshold value (Fig. 6). The greater the R2 threshold value, the smaller the number of retained 
ROIs, as expected. The goodness of the fit also gradually deteriorates with depth, which is 
mainly due to the slight decrease of the SHG signal with depth. While a R2>0.9 threshold 
appears to be too restrictive because of the weak number of retained ROIs, R2 thresholds 
between 0.5 and 0.7 provide a satisfactorily mapping of the angle without incongruous 
results. Using a R2>0.7 threshold, the mean R2 is 0.92 ± 0.07 (resp. 0.84 ± 0.06) and 91% 
(resp. 63%) of the ROIs are retained for F-SHG images (resp. B-SHG images). It shows that 
our fitting procedure is robust enough to determine the collagen fibril orientation in the 
lamellar domains at each depth in the cornea.

This approach also enables the determination of the SHG anisotropy parameter that 
shows values between 1.1 and 1.4 in both detection directions (see Figs. 5 C-D).

Fig. 6. Optimization of polarimetric image processing. Depth profiles of the mean SHG 
d ROIs above the 

R2 threshold (ROIs (%)) and the mean coefficient of determination (<R2>) as obtained from 
polarization-resolved SHG images, using Eq. (3) with a R2 threshold equal to (A) 0.5, (B) 0.7 
and (C) 0.9. 13 x 13 μm2 ROIs are processed in 170 x 170 μm2 F-SHG (black) and B-SHG 
(red) images over the whole corneal thickness.

4.3. Depth profiles of SHG intensity, SHG anisotropy and lamellar domain orientation

Depth profiles of the SHG signals were measured using a 60x, NA 1.2 objective to increase 
the axial resolution and to better resolve the lamellae. These measurements were performed in 
the posterior stroma where the lamellae are thicker and wider. Transverse reconstructions of 
the anisotropy parameter show a stacked organization both for F-SHG data (Fig. 7A) and for 
B-SHG data (Fig. 7B). This feature is better characterized when looking at the depth profiles 
of the total SHG intensity, of parameter , of angle , and of the R2 values that are plotted 
together in Fig. 7C for the 8.5 x 8.5 μm2 ROI underlined in the image profiles.

Depth profiles of angle exhibit plateaus that extend over a few microns and are followed 
by steep transitions to other plateaus at a quite different angle. This behavior is consistent with 
the organization of lamellar domains in corneal stroma. The average angular shift between 
two adjacent lamellae is 60° ± 22° in this corneal sample, in good agreement with the value 
determined by electron microscopy from corneal slices [37].
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Fig. 7. Depth profiles of polarimetric SHG data in the posterior stroma of a human cornea. 
SHG anisotropy ratio along a transverse section obtained from (A) F-SHG and (B) B-SHG 
polarization-resolved data using 8.5 x 8.5 μm2 ROIs and 0.5 μm z-steps. Scale bars: 20 μm. 
Excitation: 20 mW at 860 nm with a 60x 1.2 NA objective. (C) Depth profiles of the total SHG 
intensity summed for all linear incident polarizations (SHG signal), of the SHG anisotropy ratio 
( ), of the orientation of the collagen lamellar domains ( (°)) and of the coefficient of 
determination (R2), in forward (black) and backward (red) configurations. A low R2 threshold 
(0.5) has been used for this data set.

The SHG anisotropy parameter also exhibits strong depth variations, with maxima (resp. 
minima) corresponding to the plateaus (resp. steep variations) in the angle profiles. It means 
that has local maxima within the lamellae and minima between lamellae. This behavior is 
consistent for F-SHG and B-SHG data although B-SHG provides slightly smaller than F-
SHG.

The F-SHG intensity profile also reflects the stacked organization of stromal lamellae.
Correlation with angle profiles show that the intensity maxima are found within the 
lamellae. This result is in good agreement with previous work that compared SHG and THG 
intensity depth profiles [15,16]. It is worth noting that the B-SHG intensity profile is much 
smoother than the F-SHG one. Similarly, transverse reconstructions of B-SHG image stacks 
do not show the stromal stacked organization observed in F-SHG ones (Media 2). This further 
substantiates the development of polarization-resolved SHG microscopy for epi-detected 
imaging.

Finally, R2 depth profiles exhibit maxima that are correlated with the plateaus of the angle 
, the maxima, and the F-SHG intensity maxima. The goodness of the fit is therefore higher 

within the lamellae. Meanwhile, the minima of the R2 values correlate with the interface 
between two adjacent lamellae, in agreement with our previous considerations about the 
fitting accuracy (Fig. 2). Here again, these results are consistent for F-SHG and B-SHG data 
although B-SHG provides slightly higher R2 values than F-SHG. This behavior is attributed to 
the difference in coherence lengths for F-SHG and B-SHG. B-SHG microscopy is 
characterized by a smaller coherence length and probes smaller axial regions than F-SHG 
microscopy. It is consequently expected to be sensitive to the interface region between two 
lamellae over a thinner axial extent.
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4.4. Ex vivo eyeball imaging 

Intact porcine eyeballs were imaged using polarization-resolved SHG microscopy as a first 
step toward in vivo imaging. Spatially homogeneous B-SHG images were observed as in the 
ex vivo human corneas [11,13,17]. By using the same image processing as above, the 
orientation and the SHG anisotropy of the different lamellar domains were successfully 
retrieved for the whole 800 μm-deep cornea (Fig. 8 and Media 4). No comparison was 
possible with F-SHG signals, which could not be detected in that configuration. Nevertheless, 
we verified that our results were consistent with physiological data. In particular, the spatial 
extent of the retrieved lamellar domains was smaller in the anterior stroma than in the 
posterior one, as expected. Moreover, the high R2 values certified the goodness of the fitting 
procedure: using a R2>0.7 threshold, 81% of the binned pixels were retained with <R2> = 0.8 
± 0.07.

Fig. 8. Ex vivo polarization-resolved SHG imaging of intact porcine eyeball. B-SHG images at 
(A) 40 and (B) 730 μm depth, superimposed with the orientation maps of lamellar domains 
determined from polarimetric data for R2>0.7. Scale bar: 50 μm. Excitation: 70 mW at 730 nm 
with 20x 0.95 NA objective, at 300 kHz pixel rate. Image processing is performed for 13 x 13 
μm2 ROIs (Media 4). 

4.5. In vivo imaging

Finally, we performed in vivo corneal imaging in anesthetized Wistar rat. A custom-built 
aplanation device was applied to prevent the eye from any movement as in in vivo reflectance 
confocal microscopy. The pixel acquisition rate was also increased to 300 kHz, or typically a 

Fig. 9. In vivo polarization-resolved SHG imaging from rat cornea. B-SHG images at (A) 
20 and (B) 100-μm depth, superimposed with the orientation maps of collagen fibrils in 
lamellar domains determined from polarimetric data for R2>0.7. Scale bar: 50 μm. Excitation: 
85 mW at 860 nm with a 20x 0.95 NA objective, at 300 kHz pixel rate. Image processing is 
performed for 13 x 13 μm2 ROIs (Media 5)/ 
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few tenths of a second per frame. In vivo B-SHG images of the rat cornea were similar to 
images obtained in ex vivo rat eyeball (data not shown). After data processing of SHG 
polarimetric data, the orientation and the anisotropy of the collagen fibrils in the lamellar 
domains were successfully retrieved in the whole thickness of the cornea (around 150 μm 
thick) (Fig. 9 and Media 5) with good statistics: using a R2>0.7 threshold, 70% of the binned 
pixels were retained with <R2> = 0.85 ± 0.07.

5. Discussion

5.1. Polarization-resolved SHG of the corneal stroma

In this work, we implemented polarization-resolved SHG imaging to probe the orientation of 
30 nm-diameter collagen fibrils in lamellar domains within corneas. The main advantage of 
our approach is its applicability to both forward and backward detections, opening the way to 
structural quantitative in vivo microscopy. Raw B-SHG images of corneal stroma are indeed 
spatially homogenous and do not provide any structural information about the collagen 
lamellae distribution. F-SHG images from excised corneas exhibit striated patterns that reveal 
the collagen fibril distribution within the lamellae, but they cannot be recorded in in vivo
configuration. In that context, our approach takes advantage of the enhanced SHG response of 
collagen fibrils when aligned along the excitation electric field. F-SHG and B-SHG images 
are recorded for various polarization directions of the laser excitation and suitable data 
processing retrieves the collagen orientation in every pixel of the SHG images. Fitting of 
polarimetric data is based on the tensorial formalism of second order nonlinear optics and 
takes into account possible birefringence of the cornea, which may distort the excitation 
polarization. The anisotropy of the SHG response in any ROI of the cornea is also measured 
through the parameter . It is quite low ( 1.1-1.4), but it appears to be sufficient to 
determine orientations using Eq. (3), provided that the excitation polarization is well-defined. 
It is therefore mandatory to correct any ellipticity of the incident beam and to carefully control 
the rotating angle of the incident polarization.

Our results demonstrate that this new modality is (i) reliable since the retrieved orientation 
maps are the same for F-SHG and B-SHG images and are in good agreement with the direct 
visualization of lamellar domain orientations in raw F-SHG images; (ii) robust and efficient 
since it enables the structural characterization of the lamellar domains along the whole 
thickness of the corneal tissue with good fitting accuracy (high R2 values) (Fig. 5 and 
Media 3); (iii) applicable to intact eyeballs (Fig. 8 and Media 4) and to in vivo imaging of rat 
corneas (Fig. 9 and Media 5).

5.2. Comparison between experimental data and numerical simulation
(2) formally applies to a homogenous medium while the cornea is 

composed of stacked collagen lamellae. In particular, the SHG collected signals may have 
contributions from two adjacent lamellae. Accordingly, we observed specific features in the 
depth profiles of the parameters and R2 obtained when fitting experimental polarization-
resolved SHG signals (Fig. 7). Interfaces between lamellae were accurately located thanks to 
the steep changes of the lamellar domain orientation angle . We consistently observed a 
decrease of R2 at the same depths. Interestingly, the depth profiles also exhibited minima at 
the lamellae interfaces, which means that a heterogeneous SH response in the focal volume 
results in a lower effective . 

Numerical simulations are in excellent agreement with these experimental results (see Fig. 
2B). They fully reproduce the experimental variations of all the parameters through a lamellar 
interface. Such an excellent agreement cannot be obtained by just averaging the SH anisotropy 
from two lamellae in the focal volume. Indeed, the peculiar depth profiles we observed 
experimentally are due to the specific axial phase profile of the excitation beam. Tightly 
focused beams exhibit a phase shift at the beam focus that is the so-called Gouy phase shift 
[36]. Practically, the effective phase shift between the front and the back halves of the 
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contributions from the two lamellae apart from the interface are in quadrature rather than in 
phase, so that they contribute independently to the SH response. In other words, they add in an 
intensity-like manner rather than in a coherent one. This results in a lower effective . 

Finally, our numerical simulations demonstrate that (i) measurement of the orientation of 
the collagen fibrils in the lamellar domains by polarization-resolved SHG microscopy is 
robust even near the interface between two lamellae where the polarization diagrams are 
distorted; (ii) measurement of the SHG anisotropy parameter must be performed away from 
any interface in an homogenous region of the cornea to avoid artifacts due to heterogeneities; 
(iii) variation of the SHG anisotropy parameter is related to heterogeneities of the fibrillar 
collagen organization within the focal volume. The latter consideration may be used to study 
pathological disorders in the cornea, which are characterized by an alteration of the fibril 
organization inside the lamellae. Measurements of should also enable monitoring of either 
corneal reshaping after corneal graft or corneal wounding after any injury.

5.3. In vivo imaging

Altogether, the main advantage of polarization-resolved SHG microscopy is its applicability 
to in vivo imaging. Our data demonstrates that clear B-SHG images are obtained in 
anesthetized rats despite the vital movements and that the orientation of the collagen lamellar 
domains can be retrieved. We estimated that the lateral corneal movements during the 
acquisition of a polarization-resolved image at a given depth (10 seconds for 18 angular 
positions) were around a few microns. We therefore processed the SHG data using 13 x 13 
μm2 ROIs that are larger than the corneal movements and small enough compared to the 
typical lamellae width. Axial movements could not be experimentally determined because B-
SHG images were homogenous. However, in case of axial movements, two or more lamellae 
would contribute to the SHG signal and data fitting would exhibit lower R2 than for ex vivo
imaging of immobilized eyeball. Since R2 are similar in both configurations, we expect that 
axial movements are marginal and do not disrupt the determination of lamellar domain 
orientations.

Further in vivo studies would require a few improvements of the acquisition conditions. 
First, the acquisition time could be reduced by degrading the image resolution and increasing 
the pixel size rather than averaging the signal over large ROIs. The number of polarization-
resolved images could also be reduced by using greater angular steps. It would, however, 
require carefully optimizing the angular step number and total acquisition time to determine 
the orientation of the lamellar domains with reasonable accuracy [33]. Second, immobilization 
of the rat eye could be improved by designing a user-friendly system as already used in 
confocal microscopy; possible artifacts due to fast eye motion could be also corrected by use 
of suitable image processing to reconstruct undistorted images as reported for confocal 
microscopy [38]. Third, further studies are necessary to precisely evaluate the maximum 
power to be used to avoid any tissue damage and ensure cell viability, although no alteration 
of the stromal collagen was observed during our experiments. Regarding the other ocular 
tissues such as lens and retina, we expect that our technique is quite safe since the laser is 
focused in the cornea, similarly to what is routinely performed with pulsed lasers for corneal 
surgery.

6. Conclusion

In this paper, we demonstrated a new method to visualize the structural organization of the 
cornea without any staining and in an epi-detection configuration that is appropriate for in 
vivo imaging. Our approach merges polarimetric and SHG microscopies to provide 
quantitative data about the main direction and the heterogeneity of the collagen fibrils 
distribution. It takes advantage of the high sensitivity of polarimetry for optically anisotropic 
structures, even below the optical resolution, such as for the 30 nm-diameter stromal collagen 
fibrils. Using polarization-resolved SHG, we mapped the 3D distribution of collagen lamellae 
at each depth in human corneas and obtained an excellent agreement with numerical 
simulations. We also performed in vivo SHG imaging of rat corneas and demonstrated that our 
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approach enables structural imaging of corneal stroma without any labeling and despite the 
vital movements.

This method opens avenues for preclinical ophthalmological studies, which require 
dynamic follow-up of corneal lamellar structure in a variety of injuries or pathologies. It 
should also find applications to in vivo diagnosis of human corneal dystrophies or to corneal 
healing monitoring after keratoplasty or refractive surgery. More generally, epi-detected 
polarization-resolved SHG imaging can provide quantitative structural information about the 
3D organization of collagen fibrils within any tissue. We therefore expect that this new 
method will extend to other organs and become a new diagnosis tool for collagen remodeling.
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3.4 Discussion

In this chapter we discussed linear optical effects that can affect SHG measurements in

thick collagenous tissues. First, to account for these effects when processing P-SHG data,

we presented a simple and robust phenomenological model. Furthermore, we performed

simulations of SHG in tendon and cornea in the case of tight focusing, starting from the

incident field distribution on the back pupil of the objective and ending with angular

diagrams of SHG radiation.

The phenomenological model was very useful as it allowed us to easily take into account

all the discrepancies we observed in measured polarization diagrams with respect to those

predicted by a simpler commonly used model. However, this model is based solely on P-

SHG experimental observations, which served both for deriving the model and deducing

from this model the parameters of interest. It means that this model still needs to be

validated by independent measurements of optical parameters or by direct simulations of

the SHG in the tissue with known linear and nonlinear optical parameters.

In order to have an independent reference for P-SHG experiments, and to account for

the tight focusing geometry, we performed numerical simulations of SHG. Interestingly,

the most important results drawn from the numerical simulations were not due to the

tight focusing, which was one of the reasons to perform the simulations. Indeed, we

showed that auxiliary fields which are absent in the scalar case (Ez and Ey created by

an x-polarized excitation beam) were rather small, and their effect on the polarization

diagrams I(α, zobj) and on the measured SHG anisotropy parameter ρ was minimal.

In contrast, we showed that the birefringence and the optical index dispersion can

affect ρ measurements in more dramatic and less predictable way than we expected.

The birefringence was partially taken into account in the phenomenological model, as

it introduced a phase difference between ordinary and extraordinary fields, participating

together to create the x-component of the induced polarization Px ∝ ρE2
x+E2

y . However,

it was shown in our simulations that the difference in focal field phase distribution between

ordinary and extraordinary waves could additionally change relative efficiencies of SHG.

When birefringence is present, the index dispersion also has a crucial role in the phase-

matching within the beam. To the best of our knowledge, this subtle effect of birefringence

has never been observed nor discussed in the context of SHG in tissues up to now. Though,

it has a direct analogy to the phase matching types for SHG in birefringent nonlinear

crystals, which are well known for decades.

We also showed that this difference in SHG efficiency for different phase-matching

geometries has a direct consequence on the determination of ρ in the tissue. Combining

the phenomenological model 3.1 and the expressions for the relative SHG efficiencies 3.52,

one can deduce the measured ρapp:
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ρapp = ρe−
z

∆la

∫∫ ∣∣EEe
x‖,x‖
∣∣2 dΩ

∫∫ ∣∣EEe
y⊥,y⊥

∣∣2 dΩ
. (3.54)

It shows that the determination of the true anisotropy parameter ρ on the tissue scale

ρ is affected by two independent effects. The first is the diattenuation, which is due to

different attenuation lengths for 2 polarizations and is characterized by a diattenuation

length ∆la. The second is the birefringence ∆n, which results in different phase-matching

conditions for the SH waves generated by ordinary or extraordinary excitation fields. It

is noteworthy, that besides these two effects, diattenuation and birefringence, measuring

ρ on each lower scale of collagen structure (ρfib or ρmol) introduces additional uncertainty

in the determination of anisotropy parameter.

The diattenuation is progressively accumulated with depth, so it is negligible in thin

collagen samples and near the surface. In thick tissues, it can be measured from the

z-diagrams and corrected for. However, it is not the case for the birefringence. While the

accumulated average phase shift between the ordinary and extraordinary polarizations is

negligible for thin samples, the alteration of relative SHG efficiencies due to birefringence

is present at any depth and cannot be measured directly.

The simulation results for tendon have also consequences on the interpretation of

SHG from cornea. While the cornea is macroscopically non-birefringent, it is birefringent

locally. Thus, within a lamella, the different phase-matching conditions for ordinary and

extraordinary waves can also result in different SHG efficiencies, which introduces error on

ρ measurements. More generally, the effect of altered SHG efficiency due to birefringence

is present as soon as the collagen assembly occupies a significant part of the focal volume.

It should be the case not only for dense collagen tissues such as tendon, but even for

thin or isolated fibers and fibril bundles in skin, vessels, fascia and other dense connective

tissues.

In spite of substantial complexity of SHG in collagen, for which some aspects are

revealed in our studies, we believe that further work could improve the robustness and

accuracy of nonlinear tensor measurements. Notably, further numerical simulations of

phase matching within the focal volume as a function of dispersion and birefringence

should be performed to study the influence of these parameters on SHG efficiency. Addi-

tionally, precise independent measurements of tendon optical parameters such as index,

dispersion and birefringence should be performed.

The numerical simulations described in this work are generally very time-consuming

for typical desktop CPUs and require intensive computation solutions such as clusters

or general-purpose calculation GPUs. For example, on the mid-range GPU we used, the

calculation time for one set of parameters was about 3 hours, which is few times longer
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than the real experiment. In this context we believe that further increase of calculation

speed should be considered. For example, taking into account that the diagrams I(α, zobj)

are obtained by integrating angular radiation diagrams I(θ, ϕ) over the solid angle, the

resolution (number of points) of the latter directly influences the calculation time. How-

ever, as we are eventually interested in the total intensity, we expect that satisfactory

precision can be achieved with relatively small number of points. Hence, the influence of

the number of points in I(θ, ϕ) on the resulting precision should be studied to reduce the

calculation time.

To conclude, we demonstrated the complexity of P-SHG image processing in collage-

nous tissues, first by a phenomenological model and then by direct numerical simulations.

Our results show that the experimental data are affected with most of the tissue opti-

cal parameters, such as birefringence, index dispersion, diattenuation and polarization

cross-talk. Further numerical simulations and independent measurement of tissue index,

dispersion and birefringence are required to increase the precision on the determined SHG

anisotropy parameter ρ. Nevertheless, our study already provides a comprehensive un-

derstanding of P-SHG images and enables the determination of SHG anisotropy with

reasonable accuracy.
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Chapter 4

Tendon biomechanics

Introduction

The relationship between microscopic organization and its macroscopic manifestation re-

sulting in mechanical features is a great concern in connective tissue study. Advances in

this respect should help clinical studies dealing with tendon and ligament injuries, and

should provide clues for creating new biomimetic materials. Tendon is a model tissue for

these studies, as it has simple unidirectional geometry, for which mechanical assays are

straightforward. Tendon has unique mechanical properties, which are conferred by its

microscopic structure and hierarchical organization. These properties have been widely

studied in particular on rat-tail tendons, not least because they are easily extracted from

rat tails which are widely available. However, to gain further insight on the origin of me-

chanical response and get information on the reorganization of tissue upon stretching, the

mechanical assays must be coupled to techniques providing complementary information

on the microscopic scale.

Several studies implementing incremental stretching assays coupled with imaging have

been reported. Confocal microscopy has been used to track cell nuclei in a stretched ten-

don [142]. Crimp straightening and apparition during stretching and relaxation have been

monitored by optical coherence tomography (OCT) [95]. Earlier, Misof et al. [47] reported

stress-strain measurements with simultaneous X-ray scattering to evidence increasing lat-

eral order in tendon during stretching.

SHG proved highly specific for imaging fibrillar collagen, which makes it a perfect tool

for morphological studies. Additionally, SHG efficiency strongly depends on the packing

properties of collagen molecules, thus providing a promising way to assess changes in

structural order associated with tissue deformation. P-SHG gives to this inherent feature

a quantitative aspect, allowing one to measure nonlinear susceptibility tensor variations

associated with disorder, as shown in chapter 2 (2.3.5). Hence, SHG microscopy is a
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perspective technique to provide complementary microscopic information during tendon

mechanical assays.

To the best of our knowledge, no such study involving both SHG imaging and me-

chanical assays has been reported up to now. Thus, we performed a proof of concept

implementation of simultaneous loading and SHG imaging of tendon. Besides the demon-

stration of feasibility of the method, we studied crimps behavior during load-relaxation

cycles in rat-tail tendons. Furthermore, on an improved experimental setup allowing for

polarization-resolved detection, we performed P-SHG in stretched tendon in order to mon-

itor anisotropy parameter ρ upon tissue reorganization. These studies were performed in

collaboration with J.-M. Allain and V. Tran from the Solids Mechanics Laboratory at

Ecole Polytechnique (CNRS - MinesParisTech).

This chapter is organized as follows. In the first section will be presented the two

experimental setups, which were developed for the proof of concept and for the P-SHG

experiment, respectively. The second section is devoted to our results on coupling me-

chanical assays in rat-tail tendons with SHG imaging. The experimental results obtained

together with one of my colleagues Y. Goulam Houssen are presented in the form of an

article published in Journal of Biomechanics [143]. In the third section we present P-SHG

experiments carried out in tendon during incremental stretching, also in the form of an

article, which is published in Biophysical Journal [139]. Finally, in the fourth section the

obtained results will be discussed.

4.1 Experimental setup

Stress-strain measurements on tendon were performed on two different implementations

of our experimental setup. Both setups were implemented on the base of the multiphoton

microscope described in 3.1. They share the excitation part and the epidetection path,

but differ in forward detection path and mechanical devices used for tendon traction. The

corresponding schemes and images are displayed in the Fig. 4.1.

The first setup (Fig. 4.1 a-c) uses a custom traction device developed by D. Calde-

maison from Solid Mechanics Laboratory, Ecole Polytechnique, installed in the place of

the sample stage. It allows for uniaxial asymmetrical traction of tendon, as it features

only a single motor on one side, the other side being immobile (see Fig. 4.1 a). The force

is measured using a 10N load cell (XFL225D10, FGP Sensors), and the displacement is

measured by a displacement sensor. Small metal plates with a pin are used to attach the

tendon, which extremities are coiled around the pin and glued with cyanacrylate to the

plates. The plates are then fixed by two traction heads, one mobile and one immobile.

The forward SHG detection block is removed to let enough place for the traction device

installation, and detection for both SHG (collagen in tendon) and 2PEF (fluorescence
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from latex beads) is performed in the backward direction. As the stretching is asym-

metrical, slight adjustment of the tendon lateral position is required to always image the

same region of the tendon fascicle. Characteristic patterns in SHG images are used as

references to identify this region.
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Figure 4.1: Experimental setups for biomechanical studies. (a-c) Asymmetric traction device used
for the proof of concept experiment. (d-f) Symmetric traction device for P-SHG measurement. (a,
d) Scheme of the setup. (b, e) General view of the setup. (c, f) Close view of the sample holder
with attached tendon. Red dashed line in (c) indicates the tendon.

The traction device in the second setup (Fig. 4.1 d-f) represents an improvement of

the first one. First, it has two motors (drl42pa2g-04; Oriental Motor, Tokyo, Japan), one

on each side of the tendon, which are moving with equal speed and enable symmetrical

stretching. Secondly, it has two force sensors (k1563-100N; Scaime, Annemasse, France) to

increase precision. Finally, its specific design with a transparent basin allows for detection

of forward-emitted SHG, which is resolved into x- and y-polarizations in the detection
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module (described in 3.1). Backward detection is also possible and is usually used for

detection of 2PEF from fluorescent latex beads labelling tendon. Due to symmetrical

stretching, the zone of interest in the center of tendon thus remains immobile, which is

verified by looking at specific pattern created by fluorescent beads.

4.2 Proof of concept of biomechanical assays coupled

with SHG imaging

4.2.1 Introduction

In this section we report continuous monitoring of rat-tail tendon during

stretch/relaxation cycles by SHG microscopy. In this paragraph we give a brief outline of

the results, which are detailed immediately after in the form of a journal article.

We performed series of stress-relaxation cycles at increasing maximal strain (2%, 4%,

5%, 8% and 12%). In a series, for a maximal strain of, for example, 2%, the loading path

in percent was 0-1-2-1-0-1-2-1-0-... (see Fig. 2 in the article in 4.2.2). The maximum stress

we observed for a series at a given maximal strain increases linearly with this strain as

expected. More interestingly, we observed hysteresis in the stress-strain curve during the

first cycle of a series with a new maximal strain, but not for the following cycles. It means

that the stretching and relaxation parts of the curve do not coincide for the first cycle.

It evidences that tendon undergoes structural reorganization when stretched further than

during former few cycles. Equivalently, it means that the equilibrium length of a relaxed

tendon increases after a preconditioning to a new maximal strain.

The loading cycles were accompanied by SHG imaging of crimp morphology. Crimp

pattern is typical for tendons in relaxed state, and has a pseudo-periodical aspect, so the

average crimp period can be a relevant parameter to quantify the tendon relaxation (see

Fig. 3 in the article in 4.2.2). In each cycle of each series at increased maximal strain,

we measured the crimps period at zero strain that corresponded to the relaxed state of

tendon. For example, for a cycle 0-1-2-3-4-3-2-1-0 we measured the crimp period twice,

at the first and at the last 0% strain. We observed a decrease in crimp period at zero

strain with the maximal strain in series. Indeed, each new maximal strain results in a

new preconditioning of tendon, i.e. in longer length in relaxed state. When relaxed back

to zero, longer tendons are naturally more crimped.

To conclude, we implemented the first mechanical assays in tendon with simultaneous

SHG imaging, to the best of our knowledge. We showed that SHG imaging at micro-

scopic scale and mechanical measurements at macroscopic scale give consistent results

(see Fig. 2f and 3h in the article in 4.2.2). This multiscale approach showed that ten-
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don is preconditioned to a new structural state when it is stretched to a higher extent.

Additionally, we showed that crimp period could be a relevant parameter to quantify the

tendon relaxation. Indeed, the crimp period reveals inner mechanisms of microstructural

reorganization, and therefore is a good candidate to distinguish mechanical models of the

tendons.

4.2.2 Monitoring micrometer-scale collagen organization in rat-

tail tendon upon mechanical strain using second harmonic

microscopy
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We continuously monitored the microstructure of a rat-tail tendon during stretch/relaxation cycles. To

that purpose, we implemented a new biomechanical device that combined SHG imaging and

mechanical testing modalities. This multi-scale experimental device enabled simultaneous visualization

of the collagen crimp morphology at the micrometer scale and measurement of macroscopic strain–

stress response. We gradually increased the ultimate strain of the cycles and showed that precondi-

tioning mostly occurs in the first stretching. This is accompanied by an increase of the crimp period in

the SHG image. Our results indicate that preconditioning is due to a sliding of microstructures at the

scale of a few fibrils and smaller, that changes the resting length of the fascicle. This sliding can reverse

on long time scales. These results provide a proof of concept that continuous SHG imaging performed

simultaneously with mechanical assay allows analysis of the relationship between macroscopic

response and microscopic structure of tissues.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The relationship between microscopic macromolecular orga-

nization and macroscopic biomechanical properties is a general

concern in collagenous tissues. Tendon is a model system in that

respect; it is almost unidirectional and does not require biaxial

loading in biomechanical studies. It is a highly structured tissue

designed for force transmission from muscle to skeleton, mainly

composed of type I collagen that forms fibrils of around 200 nm

diameter. These fibrils assemble into fibers that further form

fascicles with a crimped pattern (Kastelic et al., 1978). This

hierarchical organization is responsible for the biomechanical

properties of the tissue.

The macroscopic mechanical properties of tendon are fairly

well known (Abrahams, 1967; Ker, 2007). Quasi-static stretching

of rat-tail tendon gives a non-linear response, with a toe region in

the first few percent of strain, followed by a linear region.

However, the relationship between these properties and the

structure at lower scales (such as fibers or fibrils) remains a

subject of strong interest (Puxkandl et al., 2002; Fratzl, 2003;

Screen et al., 2004; Gupta et al., 2010). The initial toe region is

attributed to a straightening of the initially crimped collagen

fibrils (Rigby et al., 1959; Viidik and Ekholm, 1968; Hansen et al.,

2002; Franchi et al., 2007). The linear region is considered as the

response when the collagen fibrils are aligned in the direction of

traction, so it is associated with an extension of collagen fibers

combined with a sliding of the fibrils in their proteoglycan matrix

(Fratzl, 2003). Tendons subjected to cycles of stretch/relaxation

exhibit a hysteretic stress–strain relationship (Fung, et al., 2009).

This is attributed to a rearrangement of the proteoglycan matrix

around the collagen fibrils (Puxkandl et al., 2002; Redaelli et al.,

2003).

Further insight into these microscopic processes requires

continuous monitoring of tendon microstructure during mechan-

ical assays. In that respect, few studies using semi-continuous

optical imaging of tendon stretching have been reported. Confocal

microscopy has been used to track labeled cell nucleus in tendons

(Screen et al., 2004). Optical Coherence Tomography (OCT) has

been used to monitor the straightening of tendon crimps with

applied tensile strain (Hansen et al., 2002). The latter technique

provides images of unlabeled collagen fibrils, but with limited

contrast because of its low specificity. In that context, Second

Harmonic Generation (SHG) microscopy is a valuable technique

to investigate the microstructure of collagenous tissues. SHG is a

multiphoton mode of contrast at exactly half the excitation

wavelength that is highly specific for dense noncentrosymmetric

media, such as fibrillar collagen (Freund et al., 1986; Campagnola
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et al., 2002; Stoller et al., 2002; Zoumi et al., 2002; Cox et al.,

2003; Zipfel et al., 2003; Strupler, et al., 2007; Deniset-Besseau

et al., 2009). As a coherent nonlinear optical process, it is an

effective structural probe of the micrometer-scale collagen macro-

molecular organization (Pena et al., 2005; LaComb et al., 2008;

Rivard et al., 2011). Moreover, it is characterized by intrinsic

three-dimensional (3D) resolution like two-photon excited fluor-

escence (2PEF). SHG microscopy hence enables 3D visualization of

intact tendons by recording stacks of optically sectioned images

with typically 1–3 mm axial resolution. It has been shown to

provide high-contrast images of the characteristic crimped pat-

tern of this tissue (Stoller et al., 2002; Stoller et al., 2003; Williams

et al., 2005; Erikson et al., 2007; Legare et al., 2007; Gusachenko

et al., 2010). SHG imaging has recently been used to visualize

damage in tendons after fatigue tests, and proved efficient in

providing 3D maps of fiber orientations (Fung et al., 2010).

This paper reports the development of multi-scale experi-

ments to monitor simultaneously the microstructural organization

of tendon and its macroscopic mechanical response. To that end,

we perform mechanical measurements while imaging optical

sections of a whole tendon fascicle using SHG microscopy and

analyzed the stress–strain relationship versus the crimp mor-

phology. To the best of our knowledge, continuous monitoring of

tendon microstructure during multiple loading cycles has not

been reported yet. We observe that cyclic stretch/relaxation at

increasing strains leads to a shift of the toe region accompanied

by an increase of the crimp spatial period. Our data confirm that

the toe region is due to the straightening of the crimps, and that

the linear region is due to the fibrils sliding.

The paper is organized as follows: the next section is devoted

to a detailed description of the experimental methods; then we

present our mechanical measurements and SHG images for

increasing cyclic stretching; we finally discuss the mechanical

data through changes of the microstructure morphology.

2. Materials and methods

2.1. Rat-tail tendon preparation and clamping to the testing device

The tendons were extracted from Sprague Dawley rat tails (female, 250–300 g,

n¼3). The tails were kept frozen until dissection. Incisions were made at the

tapered end of the tails using pliers to pull out the tendon fascicles gently. The

tendons were rinsed in phosphate buffered saline (PBS) and centrifuged at

4700 rpm (3�10 min) to remove all other tissue components. The tendon

fascicles were stored in PBS at 4 1C and used within a few days for the

experiments.

Tendon fascicles were attached to the testing device as depicted in Fig. 1. They

were glued with cyanoacrylate onto a metallic plate (20�20�1 mm3) and coiled

on rods inserted in the plate, in an almost symmetric manner to limit any

boundary effect due to gluing (see Fig. 1C). The fascicles were suspended vertically

and allowed to rotate freely before gluing to a second plate, to minimize initial

torsion. We always gently manipulated the tendon fascicles to avoid uncontrolled

stretching and maintained them in PBS to prevent drying (except for the ends).

The plates were then firmly clamped to small screw-tightened grips within the

testing device. The distance between the grips was adjusted to maintain the

tendon fascicles almost horizontal, with 1–2 mm of deflection at most. This initial

deflection is due to the fascicle weight and cannot be avoided without stretching

the fascicle. During all experiments, the tendon fascicles were immersed in PBS

using a glass cover-slip just under the sample (see Fig. 1A and B). In some

experiments, the tendon fascicle was labeled with fluorescent latex beads

(1 mm diameter, L1030, Sigma-Aldrich) to monitor local strains.

2.2. Multiphoton imaging

The tendon microstructure was observed by putting the testing device in place

of the stage in a custom-built laser scanning microscope (see Fig. 1A and B;

Strupler et al., 2007). Tendons were illuminated in an upright geometry using

circularly-polarized excitation at 860 nm from a femtosecond titanium–sapphire

laser (Spectra-Physics). SHG and 2PEF signals were recorded in two photon-

counting epi-detection channels using appropriate dichroic mirrors and spectral

filters (Strupler et al., 2007). We used a 20�0.95 NA water objective with

typically 0.40 mm (lateral)�1.6 mm (axial) resolution near the sample surface.

SHG images were recorded using 200 kHz pixel rate and 0.8 mm pixel size, with

typically 50 mW excitation power. We verified that we always imaged the same

region of the tendon fascicle using characteristic patterns in the SHG images as

references. When necessary, we slightly shifted the microscope stage to compen-

sate for small lateral displacements during loading cycles. Adjustment of the

objective focus was usually required because of slight axial displacement of the

tendon fascicle. In some experiments, z-stacks of combined SHG and 2PEF images

were acquired along the full thickness of the tendon fascicle (every 2 mm). No

photo-damage of the tendon was observed under these experimental conditions.

SHG images were analyzed using ImageJ software (W. Rasband, NIH) to

estimate the crimp period (distance measurements along the tendon axis).

2.3. Mechanical testing

Mechanical tests were performed at room temperature using a uniaxial

RAITHs testing device. The force was measured using a 10 N load cell

(XFL225D10, FGP Sensors) with 1% accuracy. Stress was obtained as the force

divided by the initial cross-sectional area, assuming a cylindrical shape of the

tendon fascicle. Typical diameter was 400 mm, as obtained from SHG image-stacks

recorded before stretching. Strain was obtained as the ratio of the grips displace-

ment divided by the initial length of the tendon fascicle (typically 26 mm).

Displacement and force values were measured every second. The fascicles were

stretched at 10 mm/s constant strain rate (around 3�10�2% s�1).

To investigate possible slipping, we compared the grips displacement to the

local displacement on the tendons through the tracking of ink labels, separated by

Z

2PEF

XY scanning

Y

X

Waveplate

Ti-Sa Laser

SHG

Spectral 

filters

Dichroic 

mirrors

Motor

Displacement

sensor

Force 

sensor
Tendon

Fig. 1. Experimental setup. (a) Scheme of the laser scanning microscope and the traction device. (b) Picture of the traction device under the objective, showing the tendon

immersed in water on a glass coverslip and supported by a teflon base. (c) Zoomed view of the tendon fascicle mount and the grips.
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10 mm and imaged under a binocular microscope. No significant difference was

observed. However, we noticed that significant torsion could occur if the tendon

fascicle torsion was not carefully minimized before gluing.

Typical loading path was composed by successive series of two stretch/

relaxation cycles at the same ultimate strain (see Fig. 2A). The ultimate strains

of the series were progressively increased up to breaking. The traction device was

immobilized during image acquisition.

3. Results

3.1. Stress–strain relationship

Typical strain–stress measurements are displayed in Fig. 2.

Fig. 2A shows the loading path made up of successive series at

increasing ultimate strains (2, 4, 5, 8, and 12%). Each point

corresponds to a typically 40 s pause for SHG imaging. Fig. 2B

shows the measured stresses for the whole loading path. We

observe similar stress–strain curves to those previously reported

(Rigby et al., 1959), with an initial toe-region followed by a linear

part at larger strains, which can be clearly defined in our case as

strains higher than 6%. The curves shift to the right as we

gradually increase the ultimate strain in the series. For example,

the curves for 5% ultimate strain (in blue) seem to be a translation

to higher strains of the curves for 4% ultimate strain (in green).

The only exception to this observation is the last curve (in

magenta). We attribute the backward shift at 12% to a longer

pause (about 5 min) at 0% strain before stretching to 12%.

The observed stresses are quite reproducible in our experi-

ments but they are significantly lower than previously reported

ones (Hansen et al., 2002; Sionkowska and Wess, 2004; Screen

et al., 2005). The slope of the linear part gives an equivalent

Young modulus of 75 MPa (considering the last stretching up to

12% strain). This quantitative discrepancy may come from uncon-

trolled strain application during fascicle preparation. We think

however that it is most likely due to the storage in PBS solution,

which was reported to lead to fascicle swelling and subsequent

artificial increase of the fascicle cross-section for stress calcula-

tion (Legerlotz et al., 2010). Moreover, we corroborated that fresh

tendon fascicles give similar results to previously frozen ones. Our

setup also enabled us to monitor the motion of the tendon surface

by imaging fluorescent beads. We verified in this way that there

was no excessive torsion and that the macroscopic strain corre-

sponded to the local strain, at least for the first stretching.

Fig. 2B and C focus on the stress–strain relationship for the

series with ultimate strains of 5% and 8%, respectively. We also

include, for clarity, the last relaxation of the previous series (in

black) and the first stretch of the next series (in grey). The set of

curves illustrates preconditioning; the curves shift slowly to the

right, reaching lower stresses for the same strain for the second

cycle. The modification of the stress–strain relationship is stron-

gest during the first stretch of a series. The stresses in the first

relaxation and in the second cycle at this ultimate strain are very

close, and cannot be easily distinguished given our sensor

resolution. Thus we performed only two cycles per series at a

given ultimate strain.

To quantify more precisely the preconditioning, we measured

the maximum stress reached in each cycle (Fig. 2E) and the

minimal strain at which we could measure a significant stress

(Fig. 2F). These two quantities could be defined in all the cycles,

whereas we could not determine a linear part for cycles with

small ultimate strain. As there are two cycles per series, there are

two maximum stresses per ultimate strain in Fig. 2E. The maximal

stress of the second cycle of a series is always smaller than that of

the first cycle, illustrating preconditioning. As expected, we see

that the ultimate stress increases with the ultimate strain,

although this increase is not homogeneous—for example, the

ultimate stresses for 4% and 5% ultimate strains are similar.

Fig. 2F displays the lowest strains at which the stress is

significantly different from the noise versus the ultimate strain.

This quantity characterizes the onset of the toe-region of the

Fig. 2. Mechanical behavior of a tendon fascicle. (a) Loading path versus the image number; each color is associated with one ultimate strain. (b) Stress–strain curves for

the whole loading path. (c)–(d) Stress–strain curves for a series of cycles at 5% and 8% ultimate strain, with color codes as indicated in the insert. (e) Maximum stress per

cycle versus the ultimate strain. (f) Initial measurable strain versus the ultimate strain. (For interpretation the references to color in this figure legend, the reader is referred

to the web version of this article.)
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stress–strain curve. As strain is measured with respect to the

initial length of the fascicle, it can be considered as the change in

the resting length of the tendon fascicle; the larger the lowest

strain, the longer the fascicle. Since a series includes two stretches

and two relaxations, there are four points for each ultimate strain,

although in most cases the last three ones are indistinguishable.

We call this value the limit lowest strain for a given series. It is

reached after the first stretch for each series and increases linearly

with the ultimate strain of the series (dotted line in Fig. 2F). Linear

fitting gives a slope of 0.58 and a lowest strain of 0.44%.

Fig. 2F appears as a stair-shaped curve. The lowest strain

indeed increases abruptly between the first stretch and the first

relaxation in a series. Then, when the ultimate strain is increased

for a new series, the first stretch has not been preconditioned, and

the lowest strain does not change. Consequently, the points are

almost indistinguishable and the curve in Fig. 2F moves horizon-

tally. The last point at 12% ultimate strain is lower since we

allowed the tendon fascicle to relax for 5 min.

3.2. Crimp evolution

In order to connect the macroscopic biomechanical behavior of

tendon to its microscopic collagen organization, we paused and

recorded SHG images at every point on the loading path. Typical

images are displayed in Fig. 3A–E and correspond to positions

emphasized by orange circles in the loading path depicted in

Fig. 3F. These images show E2–3 mm thick transverse sections

within the intact tendon. They display a fibrillar pattern char-

acteristic for the collagen macromolecular organization in agree-

ment with previous reports (Stoller et al., 2003; Williams et al.,

2005; Erikson et al., 2007). They do not directly show the fibers

within the tendon fascicles, but correspond to interference

patterns. The SHG signal indeed results from the coherent

summation of the SHG response of all the fibrils within the focal

volume and is more or less intense depending on the relative

position and orientation of these fibrils (LaComb et al., 2008;

Rivard et al., 2011; Strupler and Schanne-Klein, 2010).

In most of our experiments, the tendon fascicle exhibited small

but well defined crimps at 0% strain (Fig. 3A). At the ultimate strain

of a cycle, the fascicle was always straight, with no visible crimped

pattern in intact tendons (Fig. 3B and D). In broken tendons, we

observed a stretched region in the center and a crimped region

near the tendon edge in the same image. During stretching, the

crimps disappear at a given strain, and then reappear at higher

strain during relaxation, indicating an inelastic behavior.

In order to quantify the crimp pattern along a loading path, we

measured the crimp period in the SHG images. Fig. 3G shows the

variation of the crimp period at 0% strain (along the dotted line for

0% in Fig. 3F). The period decreases with the cycle number, which

means that the crimps are increasingly marked in SHG images

(see Fig. 3A, C and E) after every cycle. Note that complementary

measurements of the crimp amplitude would require 3D recon-

struction of the tendon fascicle by recording SHG image stacks

instead of only one transverse section. This could result in

confused data because of relaxation during the longer pauses,

which would be needed for SHG imaging.

Fig. 3H displays the crimp period at 2% strain versus the cycles

with ultimate strain above 4% (see the dotted line 2% in Fig. 3F).

There are two points per cycle, the lowest one being always in the

relaxation part. For cycles of a given series (same ultimate

strain—same color in Fig. 3), we observe that the period increases

between a relaxation and the next stretch.

We note that the crimp period, shown in Fig. 3H, evolves

similarly to the lowest measurable strain, shown in Fig. 2E for the

same tendon fascicle. Both of them indicate that there is an

irreversible deformation of the tendon fascicle during

preconditioning.
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4. Discussion

In this study, we successfully implemented continuous in situ

SHG imaging of a tendon subjected to a mechanical assay. SHG

microscopy advantageously provided optically sectioned images

of the micrometer-scale fibrillar organization of the tendon. Our

SHG images showed a better contrast than polarized-light micro-

scopy images that integrate the tendon structure over its full

thickness. Moreover, the high specificity of SHG microscopy for

fibrillar collagen resulted in high-contrast images compared to

other 3D techniques like confocal microscopy or optical coher-

ence tomography.

SHG images and mechanical measurements show that pre-

conditioning is associated with a change in the stress-free con-

figuration. It is stronger during the first stretch for a given

ultimate strain, although many more cycles are required to reach

the limit curve (Abrahams, 1967). Preconditioning is associated

both with a shift of the toe-region of the stress–strain curve to

higher strains (Fig. 2F), and a decrease in the crimp period (Fig. 3G

and H). We attribute this behavior to a sliding of the collagen

fibrils with respect to each other, extending the relaxed length of

the tendon fascicle. Since SHG observations are sensitive to the

fibril scale, our results indicate that sliding occurs at a similar or

smaller scale, but they cannot distinguish between fibrillar and

intra-fibrillar sliding.

However, the preconditioning is not irreversible. During an

extended pause at the initial length of the tendon fascicle, we

observed a decrease of the resting length (see Fig. 2F). This

recovery from previous preconditioning is usually attributed to

a reconfiguration of the bonds between fibrils or lower-scale

structures (Vesentini et al., 2005; Ciarletta and Ben Amar, 2009).

On a shorter time scale, we observe that the crimp period at 2%

strain increases significantly between a relaxation and the next

stretching of the tendon fascicle. This was not observed at 0%

strain, which indicates that relaxation involves different time

scales, and therefore different length scales. We cannot access

faster relaxation times than a few tenths of a second, which is the

time needed to adjust imaging parameters (Gupta et al., 2010).

All these considerations indicate that preconditioning is

mostly due to sliding of microstructures inside the fascicle. SHG

imaging shows that a significant part of the sliding occurs

between fibrils; previous works showed that sliding occurs

between and inside the fibrils (Puxkandl et al., 2002; Screen

et al., 2004; Cheng and Screen, 2007). We also observed that the

preconditioned state is temporary and can recover, at least

partially, on a longer time scale (Hansen et al., 2002).

5. Conclusion

We developed a new multi-scale experiment to simulta-

neously monitor the fibrillar collagen architecture at microscopic

scale and the strain–stress relationship at macroscopic scale in

biological tissues. To that end, we combined a multiphoton

microscope and a mechanical device, and we performed simulta-

neous SHG imaging and controlled mechanical loading of rat-tail

tendon. This biomechanical setup has never been reported yet to

the best of our knowledge. Our study provides a proof of concept

that this device enables analysis of the connection between

macroscopic response and microscopic structure of tissues. We

showed that mechanical preconditioning mostly arises from

sliding and is reversible on long time-scales. This supports the

notion that the mechanical behavior of a tendon fascicle relies on

its microstructure remodeling. Our experimental setup can be

readily generalized to other mechanical assays and to any other

bidimensional tissue, such as skin or cornea. SHG imaging can

also be combined with 2PEF imaging to visualize either elastin

fibers or labeled cells. Our method should then permit continuous

analysis of 3D remodeling of connective tissues in mechanical

assays and bring new valuable information to biomechanics of

microstructured tissues.
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4.3 Varying fibril ordering in tendon

4.3.1 Introduction

In the previous section we demonstrated the feasibility of SHG imaging during mechan-

ical assays. In particular, we showed that tissue undergoes morphological changes that

are manifested by crimp disappearance upon stretching. Further stretching of the ten-

don above the limit of crimp disappearance resulted in higher measured stress and was

accompanied by changes in internal structure which could not be directly observed in mi-

croscopic images. A tendon can roughly be represented as a bundle of more or less aligned

collagen fibrils. One can assume that further stretching of such a bundle is accompanied

by fibril alignment, and hence results in lateral order increase at the submicrometre scale.

It was shown in 2.3.5 that P-SHG provides information on orientational disorder in fibril-

lar tissue by measuring changes in ρ parameter, which makes it a perfect tool for testing

this assumption. Here we give a brief outline of the obtained results, which are detailed

immediately after in the form of a journal article.

We performed P-SHG measurements in rat-tail tendon at increasing strain in the

same ROI (region of interest). The minimal strain chosen for P-SHG measurements was

just above the threshold of crimps disappearance, so all measurements were performed

on morphologically straight tendon. We recorded polarization-resolved SHG-images at

increasing depth according to the protocol described in section 3.2, and processed them

using the phenomenological model introduced in the same section. At all strains, we thus

extracted the linear and nonlinear optical parameters of tendon, that is, birefringence

∆n, diattenuation 1/∆la, polarization cross-talk η and SHG anisotropy parameter ρ (see

Fig. 5 in the article in 4.3.2).

Measured birefringence monotonously increased and was slowly saturating with strain,

as expected because the tissue became denser and more anisotropic. Attenuation de-

creased for polarizations both parallel and perpendicular to the tendon axis, as expected

because aligned tissue became less scattering and more transparent. The tendon region

near the water-tendon interface was shown to be the source of polarization cross-talk,

presumably due to the presence of loose and highly disordered fibrils. This cross-talk

decreased with strain, as all the fibrils became more aligned, and the surface was better

defined. Finally, the SHG anisotropy parameter ρ was shown to vary in a non-monotonous

way. At small strains, ρ decreased with strain, and hence with order, as predicted by our

theoretical model introduced in section 2.3.5. For larger strains, however, ρ increased

with strain. Possible explanation of this behavior in the framework of our model is that

further stretching leads to rupture of individual fibrils within the tissue, which produces

loose fibril ends contributing to ρ increase. Alternatively, there could be an additional
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mechanism that was not accounted for in our approach. We assumed that the minimal

measured ρ corresponded to the case of perfectly aligned fibrils and was equal to the

anisotropy parameter at the fibrillar scale ρfib. Indeed, for the Eq. 2.26 the case of perfect

fibril alignment θ = 0 gives ρ = ρfib. Our data thus provided a precise measurement of

ρfib, which was in agreement with recently published calculations [112].

To conclude, we monitored linear and nonlinear optical parameters using P-SHG mi-

croscopy of tendon at different strains. To the best of our knowledge, this is the first exper-

imental observation of ρ variation in the same ROI for a tendon fascicle upon mechanical

traction. Additionally, the minimal observed ρ provided the best available estimation of

the anisotropy parameter at the fibrillar scale ρfib.

4.3.2 Polarization-Resolved Second-Harmonic Generation in

Tendon upon Mechanical Stretching
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ABSTRACT Collagen is a triple-helical protein that forms various macromolecular organizations in tissues and is responsible

for the biomechanical and physical properties of most organs. Second-harmonic generation (SHG) microscopy is a valuable

imaging technique to probe collagen fibrillar organization. In this article, we use a multiscale nonlinear optical formalism to bring

theoretical evidence that anisotropy of polarization-resolved SHG mostly reflects the micrometer-scale disorder in the collagen

fibril distribution. Our theoretical expectations are confirmed by experimental results in rat-tail tendon. To that end, we report

what to our knowledge is the first experimental implementation of polarization-resolved SHG microscopy combined with

mechanical assays, to simultaneously monitor the biomechanical response of rat-tail tendon at macroscopic scale and the

rearrangement of collagen fibrils in this tissue at microscopic scale. These experiments bring direct evidence that tendon stretch-

ing corresponds to straightening and aligning of collagen fibrils within the fascicle. We observe a decrease in the SHG anisotropy

parameter when the tendon is stretched in a physiological range, in agreement with our numerical simulations. Moreover, these

experiments provide a unique measurement of the nonlinear optical response of aligned fibrils. Our data show an excellent

agreement with recently published theoretical calculations of the collagen triple helix hyperpolarizability.

INTRODUCTION

Polarization-resolved second-harmonic generation (P-SHG)

microscopy has recently emerged as a new multiphoton

modality that efficiently probes the three-dimensional

architecture of collagenous tissues (1–13). This modality

takes advantage of the high specificity of SHG signals for

dense noncentrosymmetric macromolecular organizations

(14–17) and of the sensitivity of polarimetric approaches

to the molecular orientation distribution. It is of great

interest for collagenous tissues because of the highly aniso-

tropic organization of fibrillar collagens in tissues. Fibrillar

collagens are characterized by a long triple-helical domain

and self-assemble to form fibrils with various diameters

and distributions depending on the tissue (18). The hierar-

chical organization of collagen is responsible for the bio-

physical and mechanical properties of most tissues. For

instance, the transparency of cornea results from the almost

crystalline order of 30-nm-diameter collagen fibrils within

2-mm-thick stacked lamellas in the corneal stroma. In the

same vein, the mechanical strength of tendons results

from the many hierarchical levels of collagen organization

within this tissue. Tendons are composed of collagen type

I that forms z200-nm-diameter fibrils, which further

assemble to form a few mm-diameter fibers and finally

around 100 mm-diameter fascicles (19). The latter tissue

has been extensively studied as a model system with

uniaxial symmetry because tendon fascicles are easily ex-

tracted from rat-tails (1,9,10,12,20).

Analysis of P-SHG images is a complex task in collage-

nous tissues because of the many parameters involved in

the tissular response. Usually, the collagen SHG response

is characterized by the SHG anisotropy parameter r, which

is related to the ratio of the SHG responses when the exci-

tation field is polarized parallel (respectively, perpendicular)

to the tendon fascicle axis (1,3,5,6,8,9,11,12). However, the

relationship of this parameter to the collagen molecular

response and the fibril orientation distribution is not fully

characterized yet. Moreover, tendon fascicles exhibit aniso-

tropic linear optical properties, mainly birefringence and di-

attenuation, which may distort P-SHG data and impede

measurements of r (1,7,9,10,21).

This article aims to determine the origin of the variations

of the SHG anisotropy parameter r to serve as a possible

probe of the collagen submicrometer-scale organization in

various physiological conditions. To that end, we perform

P-SHG measurements in rat-tail tendon fascicles subjected

to varying mechanical loads. This method enables the

characterization of the same tissue while varying the

orientational distribution of collagen fibrils because

mechanical load results in a rearrangement of the collagen

fibrils within the tendon (22–24). In this way, we report

what is, to our knowledge, the first experimental observation

of r-variations in the same region of interest (ROI) of a

tendon fascicle upon mechanical loading. We propose a

theoretical analysis of these variations by considering

collagen fibrils with identical tensorial SHG response but
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varying orientational distribution. We also carefully process

our images to correct for artifacts related to linear optical

anisotropy of tendon fascicles. We obtain a good agreement

between experimental data and theoretical calculations,

which indicates that variations of the SHG anisotropy

parameter r are mainly due to a rearrangement of the fibril

orientational distribution within the tissue.

In the following, we first present our experimental setup

that combines a traction device with a P-SHG microscope.

Then, we propose a theoretical approach to gain insight

into the origin of the variation of the SHG anisotropy param-

eter r. Next, we present three-dimensional P-SHG images

of tendon fascicles under mechanical loading and determine

the variation of linear birefringence, diattenuation, and SHG

anisotropy parameter r as a function of the fascicle strain.

Finally, we discuss these results in our theoretical frame-

work, before concluding.

MATERIALS AND METHODS

Tendon preparation

Tendons were extracted from Sprague-Dawley rat-tails (female, z300 g)

that were kept frozen until dissection. The fascicles were rinsed in phos-

phate-buffered saline (PBS) and centrifugated at 4700 rpm to remove any

other tissue components, as described previously (24). They were stored

at 4� in PBS and used within a few days for the experiments. Tendon fasci-

cles were first labeled with fluorescent latex beads (1-mm diameter, L1030;

Sigma-Aldrich, St. Louis, MO) to enable precise localization of the tissue

surface. They were then attached to the traction device by use of metallic

plates with rod-shaped inserts. They were coiled on the rods in a symmetric

manner and glued with cyanoacrylate on the metallic plates. Before

mounting in the stretching device, they were suspended vertically and

allowed to rotate freely so as to minimize initial torsion. The plates were

then screwed to the testing device and immersed in a dish filled with

PBS to prevent the tendon fascicle from drying. The bottom of the dish

consisted of a glass coverslip to enable trans-detection of SHG signals

(see Fig. 1).

Polarization-resolved multiphoton microscopy

Multiphoton imaging was performed using a custom-built laser-scanning

upright microscope as previously described (9,16). Briefly, excitation was

provided by a femtosecond Titanium-sapphire laser tuned at 860 nm

(Tsunami; Spectra-Physics, Tucson, AZ), which was focused using a

water-immersion 20�, 0.95 NA objective with resolution typically

0.4 mm (lateral) � 1.6 mm (axial) near the sample surface. Multiphoton

signals were collected with photon-counting photomultiplier tubes

(P25PC; ET Enterprise, Uxbridge, United Kingdom) using appropriate

dichroic mirrors and spectral filters as depicted in Fig. 1. 2PEF was detected

in the backward direction and SHG either in the forward or backward

directions. Multimodal images were usually recorded using 200 kHz pixel

rate, 0.8 mm pixel size, and 2 mm z-step, with 15–20 mW excitation power

at the focus. No degradation of the tendon fascicle was observed under

these conditions.

Polarization-resolved imaging was achieved by tuning the polarization

of the laser excitation and analyzing the forward SHG (F-SHG) signals

(9). To that end, we inserted a linear infrared polarizer at the back pupil

of the objective to correct the nonnegligible ellipticity of the excitation

beam due to the optical components within the microscope. We thereby

achieved a linear polarization with ellipticity <1% at small scanning

angles. This linear polarization was tuned from –2p/3 to 2p/3 (usually

with p/12 steps) by rotating an achromatic half-wave plate (MWPAA2-

22-700-1000; CVI-Melles Griot, Albuquerque, NM) placed just before

the objective (see Fig. 1). F-SHG signals were analyzed using a polarizing

beamsplitter cube (BBPC-550; CVI-Melles Griot). The extinction ratio of

the x- and y-polarized detection channels was maximized by putting linear

polarizers (03FPG021; CVI-Melles Griot) in front of the detectors. The

relative transmission of these two channels was calibrated using a fluores-

cent slide before each experiment to enable quantitative comparison

between x- and y-polarized F-SHG images (9). Image processing was per-

formed using MATLAB (The MathWorks, Natick, MA) and ImageJ

(W. Rasband, National Institutes of Health, Bethesda, MD) softwares

with the MIJ plug-in (25).

Traction device and loading path

The traction device was a custom-built uniaxial device designed to stretch

the tendon fascicles in a symmetrical way to enable continuous imaging of

the same region at the center of the fascicle. This device was composed of

two motors (drl42pa2g-04; Oriental Motor, Tokyo, Japan) and two force

sensors (k1563-100N; Annemasse, France) on both sides of the fascicle

(see Fig. 1). Force and displacement were measured every 1 s. This device

was inserted in place of the microscope stage, so that the tendon fascicle

was imaged in an upright geometry, with F-SHG signals collected by

a condenser lens just below the coverslip glass window of the PBS-filled

dish. Multiphoton imaging was first performed continuously to adjust the

position of the fascicle at the beam focus. The fascicles were then stretched

until the crimps disappeared, and slightly relaxed to observe again the

crimps. This position was referred as the zero strain, and the corresponding

length of the fascicle as the reference length l0 (24). Strain was then ob-

tained as the ratio of the total metallic plates displacement divided by

this reference length (typically 40 mm). It could be slightly overestimated

because of the uncertainty in the zero strain position, but the relative strain

values were accurately determined.

Ti-Sa Laser 

(0.7-1.0 µm)

FIGURE 1 Laser-scanning multiphoton microscope with polarization-

resolved detection of F-SHG signal and epi-detection of 2PEF signal and

possibly of B-SHG signal. The symmetrical traction device is inserted

between the objective and the condenser, with a glass window below the

tendon fascicle.
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Combined SHG imaging and mechanical assay were performed as

follows. We increasingly stretched the fascicles at 10 mm/s constant strain

rate by steps of 1% strain. At each step, we stopped the motors and waited

~10 min until the fascicle relaxed to a quasistatic state. We then recorded

z-stacks of multiphoton images in immobilized fascicle. We verified

that we always imaged the same region of the fascicle by looking at

characteristic patterns from fluorescent beads on the fascicle. When neces-

sary, we slightly adjusted the lateral and axial positions of the fascicle by

moving the whole traction device by mean of micrometer stages. P-SHG

imaging was then performed in a 20 mm � 28 mm ROI at the center of

the fascicle.

We carried out measurements in seven stretched tendons; three of them

were preconditioned by stretching directly to 6–8% and then relaxing until

crimps were again observed (typically 2–4% strain instead of zero because

of hysteresis). No significant behavior difference was observed between

preconditioned and nonpreconditioned tendons.

THEORETICAL BACKGROUND

Second-harmonic generation in tendon

SHG is usually described using second-order nonlinear

optical susceptibility tensor c
(2). In this formalism, the

nonlinear optical polarization at the harmonic frequency

2u, induced by an incident electric field E at frequency u

in a uniform medium, is given by

Pi ¼ c
ð2Þ
ijk EjEk: (1)

It is nonzero only in noncentrosymmetric media. Tendon

fascicle are commonly assumed to have cylindrical

symmetry (1,20), which reduces the number of independent

nonvanishing tensorial components of c(2). Moreover, we

assume that Kleinman symmetry applies because of the

nonresonant character of the interaction (1,20). Within these

assumptions, c(2) has only two independent nonvanishing

components: cxxx and cxyy ¼ cyxy ¼ cyyx ¼ cxzz ¼ czxz ¼
czzx, where x is the main axis of the tendon fascicle

(1,20). P-SHG experiments give access to the ratio of these

tensor components: r ¼ cxxx/cxyy. This SHG anisotropy

parameter measures the ratio of the SHG responses when

the incident electric field is parallel (respectively, perpendic-

ular) to the tendon axis.

Collagen hierarchical structure and orientational

disorder in tendon

The nonlinear susceptibility tensor c
(2) represents the

macroscopic nonlinear response of the medium that is

composed of elementary scatterers at a smaller scale. These

elementary responses are described by a first hyperpolariz-

ability tensor (26). The very elementary nonlinear scatterers

in collagenous tissues are presumably the peptide bonds

along the peptidic scaffold (3,27). These molecular entities

present delocalized electrons in a noncentrosymmetric

environment, which gives a nonvanishing second-harmonic

response. Moreover, they are tightly aligned along the

collagen triple helices and within the fibrils and fascicles,

so that their small second-harmonic responses are coher-

ently amplified and the resulting macroscopic response

c
(2) is quite large (27).

Considering the hierarchical organization of collagen,

one may define hyperpolarizability tensors at different

scales: peptide bonds, triple helices, or fibrils (see Fig. 2 a).

In this work, we assume that collagen triple helices and

fibrils are quite rigid upon physiological mechanical loads,

which means that physiological mechanical deformations

are only accompanied with reorganization of fibrils within

the fascicle. We therefore consider collagen fibrils as the

relevant elementary nonlinear optical structure at submi-

crometer scale. Within this assumption, all the collagen

fibrils exhibit the same first hyperpolarizability tensor b in

their associated reference frames, but they show orienta-

tional dispersion around the fascicle main axis. Because

the macroscopic SH polarization is obtained as the sum

of elementary nonlinear dipole moments, the susceptibility

tensor reads

c
ð2Þ
ijk ¼ N

D

b
ð2Þ
ijk

E

U
; (2)

where N is the fibril concentration and the average is taken

over the angular distribution U of fibrils. Local field factors

have been neglected in this expression.

The fibrils are assumed to exhibit cylindrical symmetry

like the fascicles, so that the nonzero hyperpolarizability

a b c

FIGURE 2 Orientational disorder in tendon. (a) Hierarchical structure of collagen, from molecule to fibril and fascicle. P-SHG probes the orientational

distribution of fibrils within the fascicle. (b) Collagen fibril with (q,4) orientation. (x,y,z) and (X,Y,Z) denote laboratory frame and fibril frame, respectively. (c)

Effective SHG anisotropy parameter r as a function of fibril orientation dispersion in the tendon fascicle for fibril parameter rfib ¼ 1 and rfib ¼ 1.36.
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components in the fibril frame are bXXX and bXYY ¼ bYXY ¼
bYYX ¼ bXZZ ¼ bZXZ ¼ bZZX for the same symmetry reasons

as for c(2). The orientation of such a collagen fibril with

cylindrical symmetry can be described by two angles

(q,4), where q represents the polar angle between the fibril’s

main axis X and the x axis in the laboratory frame (Fig. 2 b)

and 4 is the azimuthal angle of the fibril with respect to the

xy plane in the laboratory frame. For a single fibril at (q,4),

the hyperpolarizability in the laboratory frame reads

bijk ¼
X

I;J;K

TiITjJTkKbIJK ; (3)

where (i,j,k) and (I,J,K) denote coordinates in the laboratory

frame and in the fibril frame, respectively, and T is the Euler

matrix (see the Supporting Material).

Moreover, at a smaller scale, the hyperpolarizability

tensor of a collagen fibril can be related to the elementary

hyperpolarizability tensor of a peptide bond ~b using an

expression similar to Eq. 3,

bIJK ¼
X

a;b;c

TIaTJbTKc
~babc; (4)

where (a,b,c) and (I,J,K) denote coordinates in the peptide

frame and in the fibril frame, respectively. It is usually

assumed that the peptide bonds behave as rodlike nonlinear

scatterers so that there is only one nonvanishing component
~buuu (3).

To summarize, we consider the nonlinear optical response

of collagen at three different scales: the very elementary

scale ~b that corresponds to the peptide bonds, the fibrils

scale b, and the tissue scale c
(2) that is probed through

imaging or spectroscopic experiments. As stated above,

this three-scale approach aims to separate the scale of the

fibrils that are considered as rigid entities from the scale

of the tissue where the fibrils distribution may vary dramat-

ically upon various perturbations.

SHG anisotropy parameter at fibrillar and tissular

scales

In the following, we further consider that fibrils are

uniformly distributed around the x axis, with an orienta-

tional distribution

Fðq;4Þ ¼
1

2p
gðqÞ;

where g(q) is an appropriate distribution density function of

q. Using this distribution and Eqs. 2 and 3, the relationship

between the macroscopic nonlinear response c
(2) and fibril

first hyperpolarizability b reads

cð2Þ
xxx ¼ NbXXX

�

cos3 q
�

g
þ 3NbXYY

�

cos q sin2 q
�

g
; (5)

cð2Þ
xyy ¼

1

2
N

�

bXXX

�

cos q sin2 q
�

g
þ bXYY

�

3
�

cos3 q
�

g

� hcos qig

��

:

(6)

The SHG anisotropy parameter r is determined from

r ¼
cð2Þ
xxx

c
ð2Þ
xyy

¼
rfibhcos

3 qig þ 3hcos q sin2 qig
3

2

�

cos3 q
�

g
�
1

2
hcos qig þ

1

2
rfib

�

cos q sin2 q
�

g

;

(7)

where we have introduced an SHG anisotropy parameter at

the scale of a single fibril rfib ¼ bXXX=bXYY .
At a smaller scale, rfibmay also be related to the angleQ of

the elementary nonlinear scatterers to the fibril axis by

deriving a relationship between bXXX (respectively, bXYY)

and ~buuu similarly to Eq. 5 (respectively, Eq. 6). In that

case, because there is only one nonvanishing component
~buuu, these expressions simplify to (3,5,6)

bXXX ¼ N~buuu cos
3 Q; (8)

bXYY ¼
1

2
N~buuu cos Q sin2 Q; (9)

and rfib reads

rfib ¼
bXXX

bXYY

¼
2

tg2ðQÞ
: (10)

This expression is strictly valid for a unique orientation Q

of the elementary nonlinear scatterers to the fibril axis. It

may be refined considering the accurate geometry of

a triple-helix (27,28) and the structure of a fibril (29). It is

noteworthy that we consider a rigid structure at this scale.

Orientational disorder within the fascicle is only relevant

at a larger scale that corresponds to the rearrangement of

the fibrils upon stretching, as shown in Eq. 7.

We now focus on the fascicle scale and we examine Eq. 7.

It shows that the parameter r that is measured using P-SHG

experiments is related to the corresponding parameter rfib at

the fibril scale and to the angular dispersion of the fibrils

within the focal volume

s ¼
ffiffiffiffiffiffiffiffiffiffiffi

�

q2
�

g

q

:

Given the values of r reported in the literature, we expect

that rfib < 3 for rat-tail tendon fascicle. In that case, the

effective parameter r increases with s that is with disorder

(see the Supporting Material). The same trend has been

reported in the particular case of a conical distribution at

a fixed angle q when increasing q (12). Calculation of

parameter r as a function of s is displayed in Fig. 2 c in
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the simplified case of a Gaussian distribution around the

x axis,

gðqÞfe
� q2

2s2

(see the Supporting Material). The value r monotonically

increases with angular dispersion up to 3. For example, r

is calculated as 1.5 that is a typical value reported in the

literature, using a fibril parameter rfib ¼ 1 and orientation

dispersion as small as 15�. As expected, r tends toward

rfib for s tending toward zero. Our calculation thus demon-

strates unambiguously that the measured SHG anisotropy

parameter r reflects the orientational disorder of the fibrils

within the fascicle.

P-SHG in thick anisotropic tissues

The parameter r is measured using P-SHG imaging experi-

ments. Advanced image processing is required to take into

account possible polarization distortions due to propagation

within the tendon fascicle, as reported in our recent article

(9). Laser excitation is indeed affected by diattenuation

and birefringence when propagating within this thick aniso-

tropic tissue, while SHG radiation undergoes polarization

scrambling. A complete description of our image processing

is given as the Supporting Material. Briefly, we fit the SHG

signal intensity along x polarization as

I2uðaÞ ¼ A cos 4aþ B cos 2aþ C; (11)

where a is the polarization angle of the incident electric

field in the xy plane. The parameter r then reads

r2e�
2z
Dl ¼

Aþ Bþ C

A� Bþ C
; (12)

where Dl�1 ¼ l�1
x � l�1

y is the diattenuation. Diattenuation

corresponds to the difference of attenuation lengths for the

two orthogonal polarizations of the incident beam: parallel

(a ¼ 0) and perpendicular (a ¼ p/2) to the tendon fascicle

axis. It can be extracted from experimental data by fitting

I2ux;a¼0ðzÞ and I2u
x;a¼p=2ðzÞ z-profiles using exponential func-

tions. Finally, we calculate a second parameter D from

A,B,C (see the Supporting Material) to extract the birefrin-

gence Dn and the amount of polarization scrambling h(z0)

near the tendon surface. This advanced data analysis method

thus enables the determination of both linear and nonlinear

optical properties in any ROI of the tendon fascicle.

RESULTS

Mechanical assays

We performed mechanical assays coupled with P-SHG

measurements in tendon fascicles to characterize the

variation of the collagen organization under mechanical

load. A typical loading path is displayed in Fig. 3, along

with force measurements that show a relaxation while

the strain is kept constant. We therefore always recorded

SHG image stacks after ~10-min relaxation, to probe the

fascicle in a quasi-steady state. The imaging recording

time is quite long (typically 3 min; see boxes in Fig. 3 a)

because many images (typically 850) are recorded to

retrieve the polarization dependence at increasing depths

within the fascicle.

The force-strain response of the tendon fascicle is dis-

played in Fig. 3 b. The force shows a slow continuous

increase superimposed to steep variations related to fascicle

relaxation while motors are immobile. The variation of the

fascicle stiffness (slope of the force-strain curve) as

measured between two successive steps with increasing

strain is in good agreement with previously reported data

(24,30). A toe region with increasing stiffness is observed

below 3% strain. Then the fascicle exhibits a linear behavior

with constant stiffness (3–6% strain). The tangent modulus

is ~200 MPa in this region, similarly to the values reported

for fascicles in the literature (24,31,32). Finally, the stiffness

decreases, indicating that force saturates at strains beyond

6%, which shows that the fascicle begins to break.

FIGURE 3 Mechanical behavior of a tendon fascicle. (a) Loading path of

the mechanical assay (strain as a function of time, dotted line) and response

of the tendon fascicle (force as a function of time, solid line). (Rectangles)

Times when P-SHG imaging was performed. (b) Force variation as a

function of strain along the loading path. Negative peaks at integer values

correspond to tendon mechanical relaxation while motors are stopped.
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P-SHG images of tendon fascicle

Fig. 4 displays P-SHG imaging data from the same fascicle

at 2% and 4% strains. SHG images exhibit a striated pattern

that is characteristic for the collagen fibrillar organization in

tendon fascicles (1,2,4,24) (see Fig. 4, a and e). It does not

directly reproduce the fibril distribution within the fascicle,

but corresponds to interference patterns resulting from the

coherent summation of the SHG radiation from all the fibrils

within the focal volume (33–35). We used simultaneous

2PEF imaging to visualize fluorescent beads that labeled

the fascicle surface. We observed the same bead patterns

at any strain, which indicates that we successfully imaged

the same region of the fascicle thanks to symmetric stretch-

ing in our traction device. Slight displacements of this

pattern between two successive strains were sometimes

observed but remained much smaller than the microscope

field of view. We then took advantage of these specific

bead patterns to process P-SHG data exactly in the same

ROI of the fascicle at any applied strain (see yellow ROI

in Fig. 4, a and e). Fluorescent labeling of the fascicle

also served as a depth reference z0 to locate the fascicle

surface.

Fig. 4, b and f, displays the x-polarized SHG mean inten-

sity in the highlighted ROI as a function of the depth within

the fascicle and of the incident polarization angle a. These

polarimetric diagrams exhibit characteristic features that we

attribute to polarization distortions (9):

First, the depth profiles at 5p/4 excitation angle display

interference fringes with dark spots at ~40 mm depth from

tendon surface. These fringes are related to birefringence

in the propagation of the laser excitation, which results in

a phase delay between the x- and y-polarization components

of the laser excitation. They appear near 5p/4 excitation

angle because x and y components have similar amplitudes

and destructive interferences are more effective.

Second, the depth profiles at 0 and 5p/2 angles are

different, which indicates different attenuation lengths

within the fascicle for x- and y-polarization components.

Note that the observed polarimetric diagrams are different

at 2% and 4% strains: the dark spots are slightly sharper at

4% strain, whereas attenuation is stronger at 2% strain. We

therefore expect quantitatively different parameters r after

image processing.

Determination of linear and nonlinear anisotropy

parameters

These P-SHG data were fitted with a sum of cos 2na func-

tions (n ¼ 0,1,2) using Eq. 11. The obtained parameters

A,B,C were then used to calculate the SHG anisotropy

parameter r and the parameter D as a function of depth

within the tendon (see the Supporting Material). Fig. 4, c

and g, displays raw and corrected values of r. The raw r-

values decrease with increasing depth within the fascicle,

whereas r is expected to be constant because the fascicle

appears as a uniform medium. This artifactual decrease

results from diattenuation that accumulates with depth. It

is corrected accordingly using Eq. 12 and the diattenuation

FIGURE 4 P-SHG imaging of the same fascicle at (a–d) 2% strain and (e–h) 4% strain. (a and e) Multiphoton images of the tendon fascicle labeled with

fluorescent beads. SHG signal (green color) is specific for collagen and 2PEF signal (red color) reveals the beads. (Yellow frames) ROI used for data

processing. Fluorescent bead pattern ensures that the same region of the fascicle is processed at any strain. Scale bar: 20 mm. (b and f) x-polarized SHG

mean intensity in the highlighted ROI as a function of the incident polarization angle a and of the scanning depth in tendon. (c and g) Raw (green) and

corrected (black) r-value as a function of depth. (d and f) D-value as a function of depth (blue points), and fit (red line) using Eq. 11 and Eq. S10 in the

Supporting Material.
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lengths derived from the SHG depth profiles at 0 and p/2

excitation angles. The corrected r then shows a nearly

constant value as a function of depth, as expected.

Fig. 4, d and h, displays the depth profiles of D (blue

circles) as calculated from the P-SHG data. They exhibit

oscillations that originate from the fascicle birefringence

and reflect the phase shift between x- and y-polarization

components that accumulates along propagation of the laser

excitation within the tendon fascicle. The birefringence is

then obtained from the position of the first maximum (see

the Supporting Material). The decay of the oscillation

amplitude is due to the diattenuation. Nonzero value of D

at z ¼ z0 corresponds to polarization scrambling in the

SHG propagation. This effect is nonnegligible at the surface

of the fascicle, but vanishes within the tendon because D is

zero at the next maximum, where there is no contribution

from birefringence. The theoretical expression of D satisfac-

torily fits the measured D depth profile (see red lines in

Fig. 4, d and h). It provides the birefringence value Dn

and the polarization scrambling at the fascicle surface

h(z0) Here again, we obtain different parameters at 2%

and 4% strains; a larger birefringence Dn and a smaller cross

talk h(z0) are observed at the largest strain.

Variation of fibril orientation distribution

with mechanical load

All the optical parameters obtained from P-SHG data are

finally displayed as a function of strain in Fig. 5. They all

exhibit nonnegligible variations with strain, whether they

are linear or nonlinear optical parameters. We obtained

similar results for all the tendon fascicles under study. The

error bars in Fig. 5 are related to the fitting accuracy and

not to the dispersion of different measurements, because

this figure displays measurements in the same fascicle at

increasing strain. The error bars were calculated using 95%

confidence intervals for A, B, and C (data fit using Eq. 11),

and taking into account the correlation of these parameters.

The SHG anisotropy parameter r decreases from 1.39 to

1.36 while stretching from 2% to 4% and then it increases up

to 1.42 (see Fig. 5 a). Its average value is in good agreement

with our previous measurements (9). Note that r was deter-

mined at the fascicle surface, where the accumulated phase

shift and the diattenuation are zero. The fascicle birefrin-

gence Dn monotonically increases with strain, going from

0.0058 to 0.0066 (see Fig. 5 b). The polarization scrambling

at the fascicle surface h(z0) decreases monotonically with

strain (see Fig. 5 c). Finally, the attenuation lengths for

x- and y-polarized fields also increase monotonically with

strain (see Fig. 5 d). It means that the fascicle becomes

more transparent both for x- and y-polarized fields when

stretched. Diattenuation length is also increasing with strain.

Note that the attenuation length for y-polarized field is the

largest, which means that the tendon fascicle is more trans-

parent for light polarized perpendicularly to the fibrils.

DISCUSSION

Many articles have reported P-SHG comparative studies for

different samples, with the aim to use variation of SHG

anisotropy parameter r to identify different tissues or to

find hallmarks of various pathologies (5–8). However, it is

not well established yet how this parameter varies within

the same tissue as a response to tissue perturbations. To

the best of our knowledge, this article reports the first exper-

imental observation of r-variations in the same ROI of

a collagenous tissue. To that end, we implemented a unique

experimental setup that combines P-SHG microscopy with

mechanical assays, because mechanical loading is expected

to induce a reorganization of the collagen distribution within

the tissue. This setup was designed to always monitor the

same ROI thanks to symmetric stretching. Accordingly,

we successfully visualized the same region of a tendon

fascicle that was increasingly stretched up to a few percents

and we observed a significant variation of the SHG anisot-

ropy parameter r with stretching. Our work then proves

that r can vary as a function of mechanical load.

However, the SHG anisotropy parameter r is not the only

optical parameter that is expected to vary upon tissue re-

modeling. Linear optical parameters may also vary when

a b c d

FIGURE 5 Tendon fascicle optical parameters obtained from P-SHG images as a function of strain. (a) SHG anisotropy parameter r. (b) Birefringence

Dn. (c) Polarization scrambling at the fascicle surface h(z0). (d) Extraordinary attenuation length (x polarization, parallel to the fascicle main axis, solid line),

ordinary attenuation length (y polarization, perpendicular to the fascicle main axis, dash-dotted line), and diattenuation length (dotted line).
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the tendon fascicle is stretched, mainly the birefringence

Dn, the diattenuation length Dl, and the polarization scram-

bling h(z0) near the fascicle surface. Variations of all these

parameters are mixed together in the P-SHG response

because the polarization state of the excitation beam is

modified by birefringence and diattenuation whereas polar-

ization scrambling affects the polarization of the SHG

signal. It is therefore mandatory to use an advanced image

processing method to separate the variation of the nonlinear

optical parameter r from the variations of the linear optical

parameters Dn, Dl, and h(z0). This approach advantageously

enables monitoring of birefringence, diattenuation length,

and polarization scrambling as a function of tendon stretch-

ing, which provides complementary information about the

tissue reorganization at microscopic scale. Most impor-

tantly, we obtained reproducible experimental results with

error bars small enough to observe significant variations

of all the parameters of interest.

These variationswith strain have to be related to the tendon

microstructure and mechanics. The macroscopic mechanical

properties of tendon fascicle have been extensively studied

(22–24,30,36). A tendon in its relaxed state is usually consid-

ered as a bundle of packed fibrils with a crimped pattern. A

mechanism explaining the evolution of the tangent modulus

with strain in relationship with the fibril organization has

been proposed (22). The initial toe region (see Fig. 3 b) is

attributed to the straightening of the collagen fibrils. The

linear region is then associated with a sliding of the fibrils

in their proteoglycan matrix. These two regions correspond

to physiological stretching of the tendon fascicle, while the

next region showing force saturation at strain beyond 6% is

characteristic for nonphysiological disruption of the tendon

fascicle. In other words, stretching under physiological

conditions is considered to result in a better alignment of

the fibrils within the tendon fascicle and is associated with

an increase of order and anisotropy of the tissue. Let us

discuss in this framework the variations of the linear and

nonlinear optical parameters we observed experimentally.

The measured birefringence increases with strain, as ex-

pected because the fibrils forming the fascicle become

more aligned, increasing the anisotropy that translates into

birefringence. It changes by 14% over the full loading

path, and by ~7% over the maximal physiological strain

range (2–4%).

The same explanation applies to the increase of the atten-

uation lengths lx and ly, but the variations are more dramatic.

Thus, lx exhibits 1.5-fold increase while stretched from 2%

to 8%, and ly exhibits 30% maximal increase. The stretched

tendon fascicle with well-aligned fibrils appears to be more

transparent for both parallel and perpendicular polarization

of the infrared excitation field. The diattenuation length Dl

changes even more drastically, displaying twofold increase

with strain.

The polarization scrambling h(z0) decreases with strain,

as expected if we consider that the surface of an aligned

fascicle is smoother and better defined. Scrambling indeed

occurs mainly near the surface, and better-aligned fibrils

near the surface are expected to scramble the SHG polariza-

tion to a smaller extent.

The variation of r is not monotonic in contrast to the

former parameters. It shows two different regions (see

Fig. 5 a): r first decreases in the interval 2–4% and then rises

up from 4% to 8%. This trend was observed for all studied

tendons, whether preconditioned or not. The first decreasing

part is in agreement with the model we introduced in the

theoretical section. It reflects the decrease of r with

increasing order in tissue, as obtained by the numerical

simulation displayed in Fig. 2 c. This decreasing behavior

corresponds to the heel region on the force-strain curve,

which is associated with the physiological range of tendon

stretching. It confirms that tendon stretching is associated

with a rearrangement of collagen fibrils that results in

a better alignment of these fibrils within the tendon fascicle

(22–24).

In contrast, the second increasing region of r variation

with strain indicates that the alignment of collagen fibrils

is somewhat disrupted at higher strains. These strains do

not correspond to physiological conditions according to

the literature (23). This is confirmed by the saturation of

the force observed in Fig. 3 b. We therefore expect that

some fibrils begin to break, resulting in misaligned collagen

subfibrils or molecules within the tendon fascicle. Alterna-

tively, this increasing region of r at higher strains may be

attributed to straightening of the collagen triple-helix itself

(37). In this case, the increase of the measured parameter

r results from variations of rfib at the molecular scale, not

from orientational changes at the fibrillar scale. We note

that a behavior change is also observed to a lesser extent

in the birefringence variation that appears to saturate at

strains higher than 4%.

Let us now examine the quantitative values obtained for

r. The range of the measured values for all strains is in

good agreement with previous measurements, while the

minimal value of r provides what to our knowledge is

new information about the SHG response of collagen fibrils.

This minimal value is obtained typically for 3–4% strains.

It corresponds to well-ordered fibrils within the tendon

fascicle, so that r z rfib (see Eq. 7 with q uniformly equal

to 0). Our measurements of stretched tendon fascicles

thus quantify the SHG anisotropy parameter of collagen

fibrils. This parameter is not accessible in relaxed tissues

that exhibit a disordered distribution of collagen fibrils,

except in the corneal stroma that is the only collagenous

tissue with well-aligned fibrils as required for corneal trans-

parency. However, measurements of rfib in corneal stroma

are less accurate than in stretched tendon fascicles because

collagen fibrils are distributed in z2-mm-thick lamellae.

The rfib measurements are then significantly disrupted at

lamellar interfaces and somewhat along the whole lamellar

thickness that approaches the axial optical resolution (13).
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An interesting alternative method to measure the SHG

anisotropy parameter of collagen fibrils would be to stretch

individual collagen fibrils using micromechanical devices

(38,39). However, we expect P-SHG signals of single fibrils

to be quite small, which would probably deteriorate the

accuracy of these measurements. P-SHG imaging in

stretched tendon fascicles therefore appears to certainly

provide the most accurate measurement of the SHG anisot-

ropy at the fibrillar scale. We obtain rfib ¼ 1.36 5 0.01 for

the tendons under study.

This value is related to the orientational distribution

of the elementary nonlinear scatterers within the fibrils

(3,5,12,27). Considering that these elementary nonlinear

scatterers are the peptide bonds and assuming that they all

exhibit the same angle Q to the fibril axis, rfib ¼ 1.36 gives

Q ¼ 50.5� by use of Eq. 10. This value is close to the mean

orientation of the peptide bonds to the helix axis (45.3� pitch

angle). This approach should, however, be refined as sug-

gested recently (12,40,41). It indeed assumes that the

elementary nonlinear dipoles are perfectly aligned along

the peptide bonds, which has been questioned by quantum

chemistry calculations (40). Moreover, side chains or other

submolecular units in the amino acids may also contribute

to the elementary nonlinear hyperpolarizability (11,12,41).

Finally, the interactions between elementary effective

nonlinear dipoles along the peptidic sequence may result

in strong modifications of the total nonlinear response

(12,40). Taking into account all these effects requires

advanced theoretical calculations that need to be validated

by accurate experimental measurements. In that regard,

our measurements show a very good agreement with the

value bXXX/bXYY ¼ 1.4 calculated by Tuer et al. (12) by

use of ab initio modeling of the first hyperpolarizability of

effective amino acids with corrections for pair interactions.

Our results then confirm that the P-SHG response in single

collagen fibrils is dominated by the orientation of the amino

acids in the triple-helical structure.

CONCLUSION

In this article, we showed that the P-SHG response of

collagenous tissues mainly reflects the distribution of fibril

orientation. For that purpose, we developed a three-scale

theoretical approach of the collagen nonlinear optical

response: the very elementary scale that corresponds to

the nonlinear response of chemical moieties along the

amino-acid sequence, the scale of the fibrils that are consid-

ered as rigid entities and the scale of the tissue where the

fibrils show different orientations that may vary dramati-

cally upon various perturbations. Our calculations indicate

that more disordered distributions of fibril orientation in

the tissue result in a larger SHG anisotropy parameter r.

This was confirmed experimentally by stretching a rat-tail

tendon fascicle while continuously monitoring r in the

same ROI of the tissue. We observed unambiguously

a decrease of the SHG anisotropy parameter r to a minimum

value that was attributed to the best alignment of the fibrils

at a submicrometer scale. The SHG anisotropy parameter

next increased for nonphysiological strains due to the

disruption of the tissue. The minimum value of r measures

the SHG anisotropy parameter at the fibril scale rfib. Our

measurements thus provide accurate information about the

P-SHG response of single collagen fibrils that appear to

confirm recent advanced theoretical calculations of the

triple helix hyperpolarizability (12).

This approach may be generalized to other mechanical

assays to gain insight into the relationship between mechan-

ical loading of collagenous tissues at macroscopic scale and

reorganization of collagen fibrils at the microscopic scale. It

should also prove efficient to look at wound healing or any

tissue remodeling in response to a variety of injuries. P-SHG

microscopy coupled to our rigorous image processing and

multiscale data analysis will enable measurements of local

disorder in the collagen matrix that may reflect pathological

processes and provide a quantitative tool for monitoring

their progression.

SUPPORTING MATERIAL

A complete description of r-calculation and of image processing are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(12)

00409-2.
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4.4 Discussion

In this work, we first observed and analyzed crimp behavior by SHG microscopy during

series of load-relaxation cycles in rat-tail tendon. This cyclic loading represents a simple

and comprehensive way to evidence the mechanical hysteresis of collagen tissue. Notably,

we demonstrated that tissue preconditioning during first cycles in a series is related to

changes in tendon stress-free state. In other words, the relaxed length of a tendon increases

after preconditioning, and the heel region of the stress-strain curve is shifted towards

higher strains.

On an improved experimental setup, we then performed P-SHG measurements of SHG

anisotropy parameter ρ in a tendon undergoing mechanical loading. Mechanical loading

is expected to induce a reorganization of the collagen fibril orientations within the tissue,

which would result in a different SHG anisotropy parameter. Many groups have reported

P-SHG comparative studies for different samples [15, 37, 38, 41], but ρ variations have

never been reported within the same tissue as a response to tissue perturbations. In that

respect, we present unique results on SHG anisotropy parameter ρ variations in tendon

related to the change of orientational order of collagen fibrils. Other optical parameters

such as tissue birefringence and attenuation length were shown to vary significantly upon

loading, which provides complementary information about the tissue reorganization at

microscopic scale. Most importantly, we obtained reproducible experimental results with

error bars small enough to observe significant variations of all the parameters of interest.

In the time line of my thesis work, the numerical simulations of SHG in tendon de-

scribed in chapter 3 were performed after the biomechanical studies of this chapter. How-

ever, these numerical simulations give a new insight on the interpretation of obtained

P-SHG results we published in Biophysical Journal article [139], which should be dis-

cussed.

On one hand, in our P-SHG study we showed that a number of optical parame-

ters varies upon mechanical load, notably the birefringence ∆n and the SHG anisotropy

parameter ρ. On the other hand, in the previous chapter we showed that the tissue bire-

fringence can dramatically influence the apparent value of the anisotropy parameter ρ,

though optical dispersion may partly alleviate this effect. Thus, the observed ρ variations

with strain may be caused not only by fibril realignment in tendon (described in 2.3.5),

but also by the artefactual changes in apparent ρ due to increasing birefringence (de-

scribed in 3.3.3.6). The relative contributions of these two effects are not known a priori.

In order to better understand the influence of the varying birefringence on ρ variations

one may perform additional numerical simulations for different birefringence values ∆n.

However, we think that while the birefringence can influence the ρ measurements, it’s

contribution is not dominant. Indeed, while the birefringence increases monotonously,
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it is not the case for ρ, which first decreases and then increases with strain (see Fig. 5

in [139]). Additionally, while the birefringence saturates and varies slowly at large strains,

ρ continues to vary significantly. These clues indicate that tendon stretching and hence,

fibril reordering, has a significant effect on ρ change independently of the birefringence

value in tissue.

To conclude, during this work we developed a new modality to study collagen tis-

sues by combining controlled mechanical traction with SHG microscopy and advanced

P-SHG measurements. This new modality required a verification of principle, which was

performed as a first part of our biomechanical study. Afterwards, P-SHG measurements

were performed in a stretched tendon, which revealed significant variation of SHG pa-

rameter of interest reflecting the change of disorder in tissue. These modality uniting

mechanics and SHG can be readily generalized to more complex collagenous tissues such

as skin, dura mater and cornea. We believe our findings have an important impact on

the general understanding of SHG from tendons in particular, and collagenous tissues in

general.
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Conclusions and Perspectives

In this work we developed a comprehensive theory for P-SHG microscopy, and tested this

technique for probing collagen tissues organization at submicrometre scale. Our work

involved three vast topics: the origin of SHG polarization distortion in thick anisotropic

tissues, the coupling of SHG microscopy with mechanical studies in tendon, and the

relationship between the internal tissue organization and tissue nonlinear susceptibility

tensor probed by P-SHG. In this concluding section, we make a summary of the results

we achieved in attempt to improve the present state of the art P-SHG microscopy, and

briefly trace the main perspectives for further development of this technique.

We performed a systematic study to identify the effects influencing P-SHG measure-

ments in collagen tissues. Our initial experimental study showed that polarization states

of both excitation and SH waves in rat-tail tendon are influenced by three optical effects:

birefringence, diattenuation, and polarization cross-talk. Their impact accumulates with

propagation in tissue and eventually distorts the detected SHG polarization. Birefrin-

gence introduces a phase delay between two orthogonal polarizations of the excitation

field, which drastically changes SHG intensity at certain depths. Diattenuation signi-

fies that two orthogonal excitation polarizations undergo different attenuation in tissue,

which directly impedes the measurements of nonlinear anisotropy of the sample. Finally,

polarization cross-talk arises when radiated SHG waves change their polarization state

by scattering on misaligned fibrils in tendon. We then developed a phenomenological

theoretical model, which accounts for these effects, determines their magnitude based on

P-SHG measurements, and eventually allows one to correct P-SHG data to access the

actual SHG anisotropy in tissue.

After that, we numerically simulated the SHG microscopy in birefringent nonlinear me-

dia, such as tendon. In our simulations we explicitly accounted for tissue birefringence,

but not for diattenuation and polarization cross-talk. The simulation results showed that

tight vectorial focusing of the incident field has little effect on the polarization state.

However, we identified an unexpectedly strong effect of local birefringence on SHG sig-

nal. Slightly different phase distributions within focal volume for incident ordinary and

extraordinary waves resulted in drastically different SHG outcomes for these two waves.

As a result, the measured tissue nonlinear anisotropy was directly affected by the dif-
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ference in SHG efficiency, which was also shown to be influenced by index dispersion in

the medium. This relative SHG efficiency cannot be measured independently, and thus

cannot be easily corrected for.

We also coupled SHG imaging with mechanical assays in rat-tail tendon to monitor mi-

croscopic crimp morphology simultaneously with macroscopic stress-strain measurements.

As this type of biomechanical setup has never been reported before, our work provides

a proof of the concept that SHG microscopy is a promising complement for mechanical

studies, which can elucidate the relationship between tissue microscopic structure and its

macroscopic functional features.

Finally, we developed a theoretical model that links the submicrometre orientational

organization of harmonophores within the tissue to its nonlinear anisotropy probed by

P-SHG. Our calculations showed, that SHG anisotropy parameter ρ increases with orien-

tational disorder, which makes ρ a promising indicator of internal tissue organization. We

then tested this model by performing P-SHG measurements in an increasingly stretched

rat-tail tendon, which is expected to undergo microscopic structural changes upon loading.

Our experimental results showed that birefringence and diattenuation vary significantly

as a function of strain. Most importantly, we unambiguously observed variations in SHG

anisotropy ρ, which were attributed to the changes in the internal structure of the tissue.

In order to further improve the understanding of P-SHG in collagen tissues and in-

crease precision on measured SHG anisotropy, additional studies may be contemplated.

A logical way to upgrade polarization-resolved experiments is to implement full charac-

terization of input and output polarization states according to Mueller matrix formalism.

This requires generalization of this formalism to SHG analysis, and entails introducing

polarization state generator and analyzer in the beam pathway, as in the recent paper

of Mazumder et al. [144]. Additionally, an integral approach to study SHG efficiency

dependence on birefringence, dispersion and beam phase may be undertaken. This ap-

proach should include elaborated theoretical considerations, numerical simulations, and

independent measurements of tissue optical parameters. Finally, our experiments combin-

ing P-SHG imaging and biomechanical tissue testing may be generalized to other collagen

tissues such as skin and cornea.

All results achieved in this work already provide a comprehensive study of P-SHG

microscopy in collagen tissues. Our theoretical and numerical models, which have been

tested experimentally on our unique biomechanical setup, make P-SHG a promising and

confirmed tool to study variations in collagen tissues undergoing structural changes. We

strongly believe that in the context of recently increasing interest to P-SHG modality, the

results of this work makes a timely contribution to the area of advanced tissue microscopy.

146



Appendix

Implementation of numerical calculation

The form of the integral for the focal field E (Eq. 3.2) suggests that Fourier Transform

(FT) can be used to calculate the field distribution. In birefringent media, the calculation

of fields Eo,e from Hertz potentials ψo,e (Eq. 3.9) explicitly relies on FT. The most common

way to implement FT numerically is via Discrete Fourier Transform (DFT). DFT and

inverse DFT are defined as follows for an array of length N :

Y (k) =
N∑

j=1

y(j)ω
(j−1)(k−1)
N

y(j) =
1

N

N∑

k=1

Y (k)ω
−(j−1)(k−1)
N

(4.1)

where Y (k) is FT image (k-space) of y(j) (x-space) and ωN = e−i 2π
N . DFT is usually cal-

culated via Fast Fourier Transform (FFT) algorithms. For example, Matlab uses FFTW

library [145] with computational complexity of N logN for any N . The drawback of this

method is that the resolutions in k- and x-spaces are mutually dependent and coupled by

the equation:

∆k =
2π

N∆x
. (4.2)

For example, in the case of beam focusing, the resolution in the focal zone provided by

DFT is determined by the diameter of the back pupil and is about ∆x ∼ 2π/k ∼ λ, which

is obviously insufficient for tight focusing. However, this property is purely a consequence

of the method and doesn’t have physical limitation beneath. Another drawback of DFT

is that zero phase ei 0 must correspond to the first element of y(j), regardless of whether

j corresponds to x = 0 or not.

The problem of insufficient resolution in k-space is usually resolved by a technique

named zero padding, which consists in enlarging y with additional zeros, bearing no addi-

tional information about the y itself. As it can be seen from 4.2, greater N with fixed ∆x

results in smaller ∆k. The price to pay is evidently the calculation time. For example, for
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1D-arrays a 10-fold increase in resolution, the calculation time will be
(

10N log(10N)
N log(N)

)
≥ 10

times greater.

These two problems can be circumvented by using Chirp Z-Transform (CZT), which

is defined in the following way:

Y (k) =
N−1∑

n=0

y(n)znk. for k = 0..M − 1. (4.3)

Here, z is an arbitrary complex number, but here we will only consider the case of

z = eiφ. While in DFT φ is fixed to 2π/N , in CZT it can be set manually, allowing for

arbitrary x- and k-resolutions. CZT is efficiently calculated by two FFT and one inverse

FFT, so it also has N logN computational complexity. CZT has already been used for

beam calculations [135]. In this work we give an alternative insight on the derivation of

CZT as a form of FT with arbitrary discretization in x- and k-spaces.

We start from direct discretization of Fourier integral in order to obtain Fourier trans-

form of the signal. For each point km one has

f̃(km) =
1√
2π

∞∫

−∞

f(x)e−ikmxdx ≈ ∆x√
2π

N∑

n=1

f(xn)e
−ikmxn . (4.4)

For a signal sampled between xmin and xmax with ∆x = xmax−xmin

N−1
and for the spectral

region between kmin and kmax with ∆k = kmax−kmin

M−1
, the expression 4.4 reads:

∆x√
2π

N∑

n=1

f(xn)e
−ikmxn =

=
∆x√
2π

N∑

n=1

f(xn)e
−i[kmin+∆k(m−1)][xmin+∆x(n−1)]

=
∆x√
2π

e−ikminxmin

⎡
⎣e−ixmin∆k(m−1)

⎧
⎨
⎩

N∑

n=1

∗︷ ︸︸ ︷[
f(xn)e

−ikmin∆x(n−1)
]
e−i∆k∆x(n−1)(m−1)

⎫
⎬
⎭

⎤
⎦

︸ ︷︷ ︸
∗∗

(4.5)

When kmin and xmin are zeros, M = N and ∆x∆k = 2π
N

, the expression above

simplifies to a standard DFT. Here, curly brackets signify N -to-M CZT, while square

brackets emphasize element-wise phase shift before CZT (∗, in x-space) and after CZT

(∗∗, in k-space). The function we introduce uses (xmin, xmax, N) and (kmin, kmax, M)

as parameters to calculate FT of the region of interest. In practice, we show 3 to 5-fold

acceleration for one-dimensional FT, and even more for 2D- and 3D-FT as compared
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to zero padding. However, it is necessary to ensure that sampled signal has enough

information to reconstruct high frequencies, i.e. that 2π
∆x

≥ max (|kmax|, |kmin|), equality

corresponding to a standard DFT.

Calculation speed for focal field simulations

Field distribution is calculated independently for each z, so the task can be parallelized

and accelerated using, for example, multicore general-purpose graphics processing units

(GPGPU). We performed our simulations on an Intel Core2 6420 CPU with 4Gb RAM,

equipped with NVIDIA GTX460 GPU. The code is written in Matlab using special plug-

in for GPU computing (Accelereyes Jacket, Accelereyes, trial version). Typical calculation

time for 10 field components (2 ordinary and 3 extraordinary for both linear polarizations

of the incident beam) with number of points 64× 64× 256 was about 0.5 s. We observed

a 30-fold speed-up when using GPU for these calculations.
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Summary

Collagen is a major structural protein that forms various macromolecular organizations in tissues

and is responsible for the biomechanical properties of most organs. Second harmonic generation (SHG)

microscopy is a valuable imaging technique to probe collagen fibrillar organization. This work is aimed

at implementing and characterizing polarization-resolved SHG (P-SHG) and coupling this technique to

biomechanical assays to provide multiscale structural information on collagen tissues.

We first studied the linear propagation effects that affect P-SHG imaging of thick anisotropic tissues

such as collagen tissues. We developed a theoretical model that accounts for birefringence, diattenuation,

and polarization scrambling, and obtained an excellent agreement with our P-SHG measurements in rat-

tail tendon. Moreover we performed numerical simulations of light propagation and harmonic generation

in tendon and cornea, which confirmed the crucial role of birefringence for P-SHG signal formation.

We then implemented a new experimental device that combined mechanical testing with SHG imag-

ing. It enabled visualization of the tendon crimp morphology at the micrometer scale during macroscopic

strain–stress measurements. Our results proved that continuous SHG imaging allows for elucidating the

link between macroscopic response and microscopic structure of tissues.

Finally, we developed a theoretical model, which relates the P-SHG signal anisotropy to the orienta-

tional order of its SHG-capable constituents at submicrometer scale. We tested our model by performing

P-SHG measurements in increasingly stretched tendon, and successfully characterized variations of fibril

disorder within fascicle with strain.

Key words: second harmonic microscopy, optical polarization, collagen, biomechanics, numerical

simulations, biological tissues.

Résumé

Le collagène est une protéine de structure majeure qui forme diverses organisations macromoléculaires

dans les tissus, et est responsable des propriétés biomécaniques de la plupart des organes. La génération

de seconde harmonique (SHG) est une technique d’imagerie adaptée pour sonder l’organisation fibril-

laire du collagène. Ce travail vise à implémenter et à caractériser la SHG résolue en polarisation (P-

SHG), et à coupler cette technique à des essais biomécaniques pour obtenir des informations structurelles

multiéchelles sur les tissus collagéniques.

Nous avons d’abord étudié les effets optiques linéaires qui influencent l’imagerie P-SHG dans les

tissus anisotropes denses tels que les tissus collagéniques. Nous avons développé un modèle théorique qui

prend en compte la biréfringence, la diattenuation et le mélange de polarisation, et nous avons obtenu un

excellent accord avec nos mesures P-SHG dans le tendon de queue de rat. De plus, nous avons effectué

des simulations numériques de la propagation du faisceau d’excitation et de la formation du signal SHG

dans le tendon et la cornée. Ces simulations ont confirmé le rôle crucial de la biréfringence en P-SHG.

Nous avons ensuite mis en place un dispositif expérimental combinant des essais mécaniques avec

l’imagerie SHG. Cela a permis de visualiser la morphologie du tendon à l’échelle micrométrique pendant

les essais mécaniques macroscopiques. Nos résultats ont montré que l’imagerie SHG sous traction permet

d’élucider le lien entre la réponse macroscopique des tissus et leur structure microscopique.

Enfin, nous avons développé un modèle théorique pour relier l’anisotropie du signal P-SHG à l’ordre

orientationnel submicrométrique des harmonophores dans le tissu. Nous avons testé ce modèle par des

mesures P-SHG sur un tendon soumis à une élongation croissante. Nous avons alors caractérisé avec

succès les variations d’organisation des fibrilles dans le tendon en fonction de l’élongation.

Mots-clés : microscopie de seconde harmonique, polarization optique, collagène, biomécanique,

simulations numériques, tissus biologiques.


