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Abstract

The thesis is focused on the study of various gravitational environments in four di-
mensions: gravitational instantons and their related geometric flows, black holes in
anti-de-Sitter (AdS) both in general relativity and in N = 2 supergravity. Besides
their own interest, these backgrounds offer possible holographic interpretations
whose understanding provide insights both into the bulk and boundary theories.
In general relativity, the search of new exact solutions both in flat and in AdS spaces
is a challenging task. A peculiar simplifying assumption in the Euclidean regime
is the one of self-duality of the Riemann tensor. This condition provides a class of
gravitational instantons. Their interest lies both in the bulk and in the boundary
features. Asymptotically, the self-duality condition gives rise to boundaries whose
effective action is proportional to the Chern-Simon action. On the gravity side,
the (Euclidean) temporal evolution of the gravitational instantons is described by
a geometric flow. This connection has been analyzed in full details, leading to a
comprehensive understanding under the general assumptions of time foliation and
homogeneity of the spatial sector. In particular, the role of the Ricci tensor and of
the Yang-Mills connection within the geometric flow bas been unraveled.
In the generating techniques which aim at finding new solutions of Einstein’s equa-
tions, one is often assuming the existence of Killing vectors. An important class of
starting solutions is that of stationary rotating black holes. Generating methods
are available in the case of vanishing cosmological constant, such as Weyl’s, while
in presence of the cosmological constant the system is no longer integrable. It thus
remain a challenging question to exhibit new stationary axysymmetric black holes
in AdS space. This question arises in the framework of holographic fluid dynamics.
Rotating systems in the bulk correspond to fluids with non-trivial vorticity in the
boundary: the Taub-NUT solution corresponds to a monopole-like vorticity, while
the Kerr solution corresponds to a dipole-like vorticity. Regularity of the solution
at the horizon puts constraints on the transport coefficient of the boundary fluid
in such a way that it has the form of a perfect-fluid. The correspondence between
the bulk and the boundary is usually done through a perturbative or a derivative
expansion. Necessary conditions have been found such that the expansion can be
resummed and exact solutions of Einstein’s equations can be generated.
The development of techniques to map strongly coupled field theories to weakly-
coupled gravitational systems is sustained by a better understanding of the ther-
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modynamic properties of black holes, based on the accurate counting of their mi-
croscopic states. However, a microscopic counting of the entropy of black holes in
AdS is not available yet. In the case of N=2 supergravity in four dimensions, a re-
lation between rotating non-BPS extremal asymptotically flat black holes and BPS
rotating asymptotically AdS black holes has been discovered via an ungauging pro-
cedure. The existence of a connection between the microscopic entropy counting of
the two systems is enforced by the fact that the attractor geometries of both types
of black holes fit within a common class of spaces that are supersymmetric. For
both asymptotically flat and asymptotically AdS non-BPS black holes, arguments
for the entropy counting have been formulated, based on extremality. The ungaug-
ing procedure indicates that, for extremal black holes, a supersymmetric conformal
field theory dual can be found, thus gaining insights on the role of gaugings in the
microscopic counting.
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Resumé

Différents environnements gravitationnels à quatre dimensions sont abordés dans
ce travail de thése : instantons gravitationnels et leurs correspondances avec des
flots géométriques et trous noirs dans des espaces anti-de-Sitter (AdS), aussi bien
en relativité générale qu’en supergravité N = 2. Au delà de leur intérêt en tant que
solutions gravitationnelles, ces derniers offrent également une possible interpréta-
tion holographique, fournissant une meilleure compréhension des théories duales,
tant dans l’espace ambiant que sur le bord.
De manière générale, la recherche de nouvelles solutions en relativité est un véri-
table défi, aussi bien en espace plat qu’en espace AdS. Cette tâche est cela dit
nettement simplifiée dans l’hypothèse où l’on dispose, en régime euclidien, d’un
tenseur de Riemann auto-dual. Ces solutions, dites instantons gravitationnels,
portent un intérêt, tant pour leurs caractéristiques dans le bulk que pour leurs
propriétés sur le bord. De façon asymptotique, la condition d’auto-dualité fournit
des théories de bord dont l’action est proportionelle à celle de Chern-Simons. Du
point de vue gravitationnel, l’évolution en temps des instantons est décrite par un
flot géométrique. Ce lien est analysé en détail, dans l’hypothèse générale d’une
foliation temporelle de la métrique et d’un espace tridimensionnel homogène. En
particulier, l’attention a été focalisée sur le rôle du tensor de Ricci et de la connex-
ion de Yang-Mills dans le flot géométrique.
Plusieurs techniques sont utilisées pour trouver de nouvelles solutions des équations
d’Einstein. Ces techniques supposent souvent l’existence d’un certain nombre de
vecteurs de Killing. Une classe importante étant celle des métriques stationnaires,
pour lesquelles on dispose, pour une constante cosmologique nulle, de méthodes
telles que la technique de Weyl. En espace de type AdS, le système n’est plus
intégrable, et trouver de nouveaux trous noirs avec symétrie axiale est une ques-
tion toujours ouverte. Cette même question peut être posée dans le contexte de la
dynamique des fluides holographiques. Trous noirs en rotation correspondent alors
sur le bord à des fluides aux vorticités particulières : le trou noir de Taub-NUT
correspond à une vorticité qui se comporte comme un monopole, tandis que le trou
noir de Kerr correspond à une vorticité se comportant comme un dipôle. En im-
posant que la solution soit régulière sur l’horizon, les coefficients de transport du
fluide sur le bord sont contraints de telle façon que le fluide acquiert la forme d’un
fluide parfait. La correspondance entre solution gravitationnelle et théorie hydro-
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dynamique se fait usuellement par un développement perturbatif ou en dérivées.
Il existe cedependant des conditions nécessaires afin que le développement puisse
être ressommé et pour qu’on puisse trouver des solutions exactes de la relativité
générale.
Une meilleure compréhension des propriétés thermodynamiques des trous noirs,
ainsi qu’un comptage précis de leurs micro-états est nécessaire au bon développe-
ment des techniques de connexion entre théories fortement et faiblement couplées.
Cependant, le comptage de l’entropie des trous noirs dans des espaces de type
AdS ne fait toujours pas partie des résultats connus. Dans le cas des théories de
supergravité N=2 en quatre dimensions, en considérant des solutions en rotation,
une relations entre trous noirs extremaux non-BPS en espace plat et trous noirs
BPS en espace AdS a été mise au point grâce à une procédure dite d’“ungauging”.
L’existence d’une connexion entre le comptage microscopique de l’entropie dans les
deux cas est étayée par les propriétés de ces solutions sur l’horizon, auprès duquel
les deux solutions entrent dans une même classe d’espaces supersymétriques. Dans
les deux cas - espaces plats et espaces AdS - il existe des outils pour le calcul
de l’entropie, basés sur l’extremalité des solutions. La connexion entre les so-
lutions dans les deux types d’espace indique l’existence d’une théorie conforme,
supersymétrique, duale aux trous noirs extremaux, donnant par conséquent des
informations sur le rôle des champs de jauge dans le comptage microscopique.
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Chapter 1

Introduction

The present thesis aims at exploring various aspects of the gravitational theory,
related with geometrical flows, instantons and black holes, and its holographic
applications.
In the first and last parts of the work we deal with solutions of classical general
relativity, while in the second chapter we go beyond Einstein’s gravity by adding
supersymmetry to the theory. In particular, a central concept is the one of black
hole solutions. The presence of a singularity in such solutions is the signal of a
breakdown of classical general relativity at small scales and of the appearance of
quantum phenomena. In this sense, general relativity can be viewed as the low
energy (large scale) limit of a more fundamental theory of quantum gravity.

1.1 Quantum gravity

To describe gravity at small scales, one needs to introduce a theory conciliating
quantum effects and general relativity. A consistent theory of quantum gravity
should reduce to general relativity at large scales, and smooth out the singularities
of the classical theory through the appearance of quantum phenomenas at small
scales. In particular, such theories should be in accordance with the no-hair the-
orem, and thus no degrees of freedom beyond the total mass and the conserved
charges should affect the description far from the singularity. Furthermore, the
microscopic degrees of freedom of the quantum analysis of the black hole should
be given in terms of a statistical description involving a large number of degrees of
freedom, in an analogous way as the molecular description of gases.
The task of finding such quantum description of gravity is of course not completed
and it remains one of the main open challenges of theoretical physics.
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CHAPTER 1. INTRODUCTION

1.2 Supergravity
Supersymmetric theories relate bosonic and fermionic particles: each boson has a
fermionic partner, and viceversa, forming a pair of superpartners. When more than
two particles are related, the amount of supersymmetry is higher (and thus N is
higher).
Supergravity theories are, as the name says, gravitational supersymmetric theo-
ries. The force of gravity is carried by the graviton, and its fermionic superpartner
is the gravitino. The number of gravitinos is given by N . Supergravity theories
were originally introduced as genuine candidates for theories of quantum gravity.
However, it was soon realized that they are power-counting non-renormalizable,
i.e. not well behaved at high energies. Nevertheless, it is still interesting to study
them as effective theories, and in particular as the limit of string theory for low
energy and large distance (compared to the length of the string). In this limit, the
string can be viewed as a point particle, and the effective description of the theory
is given by field theories of gravity coupled to scalars and gauged fields.
Demanding a theory to be invariant under supersymmetric transformations re-
stricts the possible interactions, which will then be described by a smaller number
of functions with respect to the non-supersymmetric theory. These couplings should
be derived from a more fundamental theory, like string theory, but it is possible to
study the structure of supergravity theories independently, deferring the connec-
tion to a possible string origin. This is the approach we will adopt, and that can be
used to constrain solutions of classical general relativity. Indeed, supersymmetric
states, called “BPS”, correspond to the ground states of the theory. Since the ex-
istence of supersymmetry protects the solutions from any high energy correction,
such solutions exist and keep their main properties in the full quantum solution as
well.

1.3 AdS/CFT correspondence
The AdS/CFT duality originated from string theory, but has been mostly developed
with pure gravity, and it is currently one of the main topics of research in theoretical
physics. The conjecture relates two apparently different theories: gravitational d+
1-dimensional asymptotically anti-de-Sitter theories and d-dimensional conformal
field theories living on the boundary of the AdS spaces. This gauge/gravity duality
was first studied for superstring bulk theories, but further studies showed that it is
valid for many different models not involving supersymmetry. As a consequence,
the correspondence can be used to obtain results in different applications to various
physical systems, i.e. particle physics and condensed matter physics above all,
where it can provide experimentally reachable results.
The key property of the correspondence is that it maps strongly-coupled regimes
in one theory to weakly coupled regimes in the dual model, given the possibility
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CHAPTER 1. INTRODUCTION

of studying various relevant field theories at strong coupling. In this context, one
of the most important applications of the gauge/gravity duality is within heavy-
ion physics. Experiments at the Large Hadron Collider and at the Relativistic
Heavy Ion Collider produce a plasma of quarks and gluons (QGP) by heavy-ion
collisions. After the collisions, the components of the QGP rapidly come into
local thermal equilibrium, and their behavior can be studied by a hydrodynamic
model. In particular, the QGP evolution is characterized by a set of transport
coefficients, the most relevant of them being the so-called shear viscosity. For
weakly-coupled theories, the transport coefficients can be computed by standard
perturbative calculations. However, the temperature of the QGP is estimated
to be approximately 170 MeV, which is near the confinement scale of quantum-
chromodynamics (QCD). Hence, QGP is deep inside the non-perturbative regime of
QCD, and thus perturbative techniques cannot be applied. Moreover, the standard
numerical approach to strong interacting QCD (i.e. computations on lattice),
which gives a precise analysis of thermodynamical quantities, is not well suited
for computing transport coefficients. The gauge/gravity duality offers a theoretical
framework to investigate strongly interacting systems like the one just described by
considering the simpler dual weakly-coupled (super-)gravity model. Computing the
transport coefficients in the near-equilibrium regime of the quantum field theory
will correspond to compute deformations of black holes in the dual AdS space.

1.4 Fluid/gravity correspondence
The fluid/gravity correspondence is the limit of the AdS/CFT correspondence in
the regime where the boundary strongly-coupled field theory is well-approximated
by its long wavelength effective description. The corresponding bulk is given by
black holes in classical general relativity, with the possibility of adding supersym-
metries and potential string corrections. Two alternative expansions are available
for finding the holographic fluid dual to an asymptotically AdS black holes.
The first expansion consists in perturbing a gravity solution, such as a black hole
or a black brane, by means of isometry transformations whose infinitesimal pa-
rameters depend on the coordinates on the boundary of the AdS bulk space. The
transformed expression is no longer a solution of the bulk equations of motion. In
order for it to be a solution, the local boundary parameters should satisfy some dif-
ferential equations which turn out to be, at first order, the linearized Navier-Stokes
equations for relativistic fluids. The procedure can be made iterative and thus in
principle it can be used to compute the expansion at any desired order. Details on
this expansion can be found, for example, in [43] and [35].
The second expansion, called of Fefferman-Graham, is an expansion for large holo-
graphic radial coordinate, where the only independent data are the background
boundary metric and the holographic stress-energy tensor satisfying the conserva-
tion equations. Within this frame, it is possible to study interesting properties of
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CHAPTER 1. INTRODUCTION

the fluids, such as the vorticity, which is important to apply the AdS/CMT (con-
densed matter theory) correspondence to systems such as rotating Bose or Fermi
gases, turbulence or wave propagation in moving metamaterials. It is also possible
to show that some of the transport coefficients are constrained by the bulk geome-
try. Moreover, for a particular class of boundary fluids it is possible to go beyond
the perturbation level and find an exact correspondence between black holes and
fluids, leading to possible interesting insights on new solutions for asymptotically
AdS black holes. The procedure was studied extensively in [27], while we quote as
well the original paper [36].

1.5 Outlook of the thesis
In the first part of the thesis we study gravitational instantons and their relation
with geometric flows. Instanton solutions to Yang-Mills theory have been studied
in the 70s, and later on researches have focused as well on instantonic solutions
to general relativity. In a four-dimensional Euclidean space-time, a main feature
is the possibility of imposing self-duality either of the Ricci or of the Weyl tensor,
depending on whatever the space presents a non-vanishing cosmological constant.
Within the hypothesis of foliation in one-dimensional temporal direction and three-
dimensional homogeneous spatial sector, we show that the time evolution of such
solution is related to a geometric flow given by a Ricci flow plus a Yang-Mills con-
nection. Gravitational instantons can have a holographic interpretation once we
turn on the cosmological constant: indeed, in the case of Lorentzian signature,
we find traces of the self-duality properties of instantonic solutions in the duality
between the Cotton tensor of the three-dimensional boundary background and the
stress-energy tensor of the effective conformal theory. In four dimension, this cor-
responds to a duality between the mass and the nut charge.
Turning on the mass in a gravitational solutions generates a black hole, where a
horizon is present. Such solutions can be generalized in presence of supersymme-
try, i.e. in supergravity theories. Supergravity theories with negative cosmological
constant are the natural frame for the AdS/CFT correspondence, even though the
latter is often applied in a non-supersymmetric context, like in the last part of
the thesis. While holography needs an asymptotically anti-de-Sitter space to be
applied, we master black hole solutions and techniques to generate new solutions in
a better way in the case of vanishing cosmological constant. Moreover, the micro-
scopic counting of degrees of freedom is also better understood for asymptotically
flat solutions than for asymptotically AdS ones.
The topic of the second chapter fits into this context. Indeed, it is shown that a
relation is existing between asymptotically flat and asymptotically AdS solutions.
For such a connection to exist, it is necessary that the cosmological constant is gen-
erated in a dynamical way. This is possible only in gauged supergravity theories.
Among gauged theories, a class of solutions can be found such that the gauging is
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CHAPTER 1. INTRODUCTION

non-vanishing but the scalar potential is. Such a theory is not equivalent to the
ungauged one, which has vanishing cosmological constant, because of the different
fermionic sector. This is reflected in the different supersymmetric properties of the
solution, which, for example, for the case of static black holes is full BPS for the
ungauged theory and 1/2 BPS for the gauged one with vanishing potential.
The topics analyzed in the first two chapters raise questions concerning holography,
which is the subject of the last chapter. When considering stationary black hole
solutions in four dimensions, a fluid in global equilibrium appears in the three-
dimensional boundary geometry. Such fluids inherit kinematical properties, such
as the vorticity, from the bulk geometry. The holographic correspondence can be
used to gain information both on the boundary and on the bulk side. In one di-
rection, the holographic stress-energy tensor turns out to be perfect-fluid like, and
the combination of dynamical and kinematical variables gives information on the
transport coefficient of the fluid. In the opposite direction, it is possible to define
a class of three-dimensional spaces for which the correspondence is exact: that is,
the holographic dual of such spaces is an exact solution of the bulk equations of
motion. This “perfect” geometries are characterized by a Cotton-York tensor of
the same form of the stress-energy tensor. Under this condition, the holographic
expansion can be resumed and the bulk solution has a non-trivial monopolar or
dipolar moment. The constant coefficients appearing in the Cotton-York tensor
and in the stress-energy tensor are independent and they measure the pressure
(and thus the temperature) and the vorticity of the fluid. They are related to the
mass and to the nut charge of the four-dimensional gravitational environment. By
imposing such coefficients to be equal to each other we recover, in the correspond-
ing solution with Euclidean signature, self-dual solutions of the type studied in the
first chapter.
Even thought the complete relationship between gravitational instantons, flows,
gravitational self-duality and holography has not been fully unravelled, the work
produced in the present thesis points towards a deeper connection, the most intrigu-
ing being the linear holographic realization of the non-linear gravity self-duality.
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Chapter 2

Gravitational instantons and
geometric flows

In analogy with Yang-Mills instantons, it is possible to define instanton-like solu-
tions of Einstein’s equations. The definition can be made operational by choosing
space-times with the structure of a three-dimensional homogeneous foliation. In
this case, the solutions show an intriguing relation with three-dimensional geomet-
ric flows.
We start the chapter by discussing the motivations for the study of gravitational in-
stantons, followed by a brief discussion on Yang-Mills instantons. We will then give
the definition of spatial-homogeneous gravitational instantons and classify them in
full generality, mentioning as well some peculiar solutions which identify, after an-
alytic continuation to Minkowski space, to the Taub-NUT solution for vanishing
cosmological constant. We then discuss the relation between these solutions and
three-dimensional Ricci and, in general, geometric flows.

2.1 Motivations
Instanton solutions for general relativity have been investigated since the 70s, soon
after the discovery of Yang-Mills instantons. The first instanton-like metric discov-
ered comes from standard solutions of black holes physics. While these solutions
arise naturally in space-times with Minkowskian signature, by analytic continuation
to Euclidean space-time we can produce positive-definite singularity-free metrics.
The further property of being asymptotically locally flat ensures the possibility of
defining asymptotic states and it is reminiscent of the intuitive idea of instantons
coming from Yang-Mills theory, which should approach a pure gauge at infinity.
Early search for gravitational instanton solutions was motivated by the possible
applications in cosmology or in non-perturbative quantum gravity transitions. The
discovery of a relation between the dynamics of the instanton and geometric flow
equations on a three-dimensional manifold has stimulated further investigations on

11
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the topic. Geometric flows are differential equations which describe the evolution
of the metric driven by geometric structure on the manifold. Within the geometric
flow associated to gravitational instantons, the Ricci flow plays a crucial role in.
The latter is appearing as well in other physical contexts: for example, since the
Ricci-flow equations are the renormalization-group equations for two-dimensional
sigma-models, the relation between gravitational instantons and Ricci flows is an
indication towards a dynamical generation of time in string theory.
It is worth mentioning also that the appearance of first-order differential equations
in the gravitational settings is reminiscent of holographic settings, and it can be
interesting to dig more in this direction, reconstructing the bulk fields by flowing
the boundary datas.

2.2 Yang-Mills instantons
In gauge theories, an instanton is a topologically non-trivial solution to classical
field equations potentially described by a self-dual or anti-self-dual connection with
finite action. For simplicity, we focus on solutions with SU(2) symmetry. The pure
Yang-Mills action is given by

S =
∫
d4x

(1
2trFµνF µν

)
, (2.1)

where
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (2.2)

is the field strength. The field equations are:

∂µF
µ
ν + [Aµ, Fµν ] = 0. (2.3)

We define the dual of the strength tensor as

F̃µν = 1
2εµναβF

αβ. (2.4)

The field strength Fµν is said to be self-dual when Fµν = F̃µν , and anti-self-dual
when Fµν = −F̃µν . If this is the case, the Yang-Mills equations (2.3) are automat-
ically satisfied thanks to the Bianchi identities:

∂µFµν + [Aµ, Fµν ] = ±
(
∂µF̃µν + [Aµ, F̃µν ]

)
= 0. (2.5)

We still have to impose that the gauge potential enjoys a SU(2) symmetry. This
leads us to choose the Ansatz:

Aµ = ρ(r)g−1∂µg, (2.6)

12



CHAPTER 2. GRAVITATIONAL INSTANTONS AND GEOMETRIC FLOWS

where ρ is an arbitrary function, r2 = t2 + x2 and g = t−iσẋ
r

, and σ are the Pauli
matrices. Inserting (2.6) in the equation for the strength tensor self-duality we find
that ρ obeys the equation:

ρ′(r) + 2
r
ρ(r) (ρ(r)− 1) = 0. (2.7)

Thus, by imposing self-duality and SU(2) gauge symmetry we have reduced the
problem from solving the second-order differential equation (2.3) to solving the
first-order equation (2.7). Is is easy to find a solution of (2.7) with the further
property that Aµ is a pure gauge at infinity, that is ρ(r)→ 1 when r →∞:

ρ(r) = r2

r2 + λ2 , (2.8)

with λ specifying the size of the instanton. By using the latter expression we find

Aµ = r2

r2 + λ2 g
−1∂µg (2.9)

and
Fµν = 4λ2

r2 + λ2σµν , (2.10)

where σµν , µ = {0, i} satisfy

σij = 1
4 [σi, σj] , σi0 = 1

2σi = −σ0i. (2.11)

We have thus found an Euclidean SU(2) solution to Yang-Mills equations with
finite action, self-dual strength tensor Fµν localized at r = 0 and falling like 1/r4

at infinity, and with Aµ being asymptotically a pure gauge.

2.3 Homogeneity of the spatial sector
We would like to define gravitational instantons in the same line as we defined Yang-
Mills instantons. The structure of the space time is crucial to settle an operative
definition of the gravitational instanton and on its relation with geometric flows
and we should pause to analyze it in details. We provide the four-dimensional space
time with the structure of a foliation in three-dimensional leaves. Our manifold
M4 becomes thus topologically equivalent to R ×M3, with a natural separation
between the one-dimensional time direction and the three-dimensional space direc-
tions. Furthermore, we consider the spatial sector to be homogeneous, that is we
assume it to be invariant under an isometry group of motion of at least dimension
three acting transitively on the leaves. We thus have three independent Killing
vectors

[ξi, ξj] = ckijξk, (2.12)

13
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Type Structure constants
I cijk = 0
II c1

23 = −c1
32 = +1

VI−1 c2
13 = −c2

31 = −1, c3
12 = −c3

21 = −1
VII0 c2

13 = −c2
31 = −1, c1

23 = −c1
32 = +1

VIII c1
23 = −c1

32 = −1, c2
31 = −c2

13 = +1, c3
12 = −c3

21 = +1
IX c1

23 = −c1
32 = +1, c2

31 = −c2
13 = +1, c3

12 = −c3
21 = +1

Table 2.1: Unimodular Bianchi groups (cijk not explicitly given are taken to be
zero)

where cijk are the structure constants of the isometry group. Their dual vectors
are the left-invariant Maurer-Cartan forms {σi, i = 1, 2, 3}, defined by σicξj = δij
and obeying

dσi = 1
2c

i
jkσ

j ∧ σk. (2.13)

The structure constants can be put in the form
ckij = εijln

lk + δkjai − δkiaj, (2.14)
where nlk are the elements of a symmetric matrix n and ai are the components of a
covector a. The trace of the structure constants is given by cj ij = 2ai. Unimodular
groups have zero trace, while non-unimodular groups have non-vanishing trace.
We refer to them as Bianchi A and Bianchi B respectively, from the name of the
mathematician who first classified all three-dimensional algebras in 1897. We report
the complete classification of the structure constant in tables 2.1 and 2.2, while we
write the canonical structure constants in table 2.3.
For further convenience we also define the antisymmetric matrix m with entries

mij = εijkak. (2.15)
The Jacobi identity of these algebras

[ξi, [ξj, ξk]] + [ξj, [ξi, ξk]] + [ξk, [ξi, ξj]] = 0 (2.16)
becomes then

εijkm
ij
(
nkl −mkl

)
= 0 ⇐⇒ akn

kl = 0. (2.17)

2.4 Metric Ansatz and Cartan formalism
The generic four-dimensional metric equipped with a three-dimensional homoge-
neous spatial sector reads

ds2 = N(T )dT 2 + gij(T )σiσj. (2.18)
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Type Structure constants
III c1

13 = −c1
31 = +1

IV c1
13 = −c1

31 = +1, c1
23 = −c1

32 = +1, c2
23 = −c2

32 = +1
V c1

13 = −c1
31 = +1, c2

23 = −c3
32 = +1

VIh>−1 c1
13 = −c1

31 = +1, c2
23 = −c2

32 = +h
VIIh>0 c2

13 = −c2
31 = +1, c1

23 = −c1
32 = −1, c2

23 = −c2
32 = +h

Table 2.2: Non-unimodular Bianchi groups (cijk not explicitly given are taken to
be zero)

Type a n1 n2 n3 Group
I (0, 0, 0) 0 0 0 Translations
II (0, 0, 0) 1 0 0 Heisenberg

VI0 (0, 0, 0) 1 -1 0 E(1,1)
VII0 (0, 0, 0) 1 1 0 E(2)
VIII (0, 0, 0) 1 1 -1 SL(2,R)
IX (0, 0, 0) 1 1 1 SU(2)
III (1,0,0) 1 -1 0
IV (1, 0 , 0) 1 0 0
V (1,0,0) 0 0 0

VIh (h > −1, 0, 0) 1 -1 0
VIIh (0, 0, h > 0) 1 1 0

Table 2.3: Canonical structure constants for the different Bianchi groups. The
matrix nij can be put in a diagonal form and we denote its diagonal elements by
n1, n2, n3.
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It is convenient to introduce an orthonormal frame θa such that

ds2 = ηabθ
aθb, (2.19)

where we should choose ηab = 1 or ηab = diag(1, 1,−1,−1), up to permuta-
tions, to have real solutions. In particular, in order to achieve the correspon-
dence with the geometric flow without complexifications, we need to choose ηab =
diag(1, 1,−1,−1) for Bianchi III, VI and VIII groups, and the pure Euclidean
signature for all others Bianchi groups. The vierbeins are given by:

θ0 = NdT, θα = Θα
jσ

j with gij = ηαβΘα
iΘβ

j. (2.20)

The components of the metric, or alternatively the vierbeins, will be of course
determined by imposing Einstein’s equations. Note here the use of the different
indices: α, β, . . . indicate the orthonormal space frames, so that a = (0, α), whereas
i, j, . . . correspond to our choice of the invariant forms as they follow from fixing
the structure constants. Without loss of generality, we can set N = Θ =

√
detg.

It is also useful to introduce a new time variable t defined by dt = NdT .
The torsionless spin-connection one-form is uniquely defined by the Cartan struc-
ture equations

ωab = −ωba dθa + ωab ∧ θb = 0. (2.21)

By using the spin-connection, the Riemann curvature two-forms can be defined:

W a
b = dωab + ωac ∧ ωcb. (2.22)

The latter satisfies the Bianchi identity

W a
b ∧ θb = 0. (2.23)

The Ricci one-form is given by:

Ra = θbcWba = Rabθ
b, θacθb = δab, (2.24)

where Rbc are the components of the ordinary Ricci tensor and the Ricci scalar is
given by R = θacRa.

2.5 Gravitational instantons
By using the above formalism, the Einstein-Hilbert action can be expressed in
terms of the curvature two-forms as

S = − 1
32πG

∫
M4

εabcdW
ab ∧ θc ∧ θd. (2.25)
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The action has an extremum when

W ab ∧ θcεabcd = 0. (2.26)

By using the self-dual curvature two-form

W̃ ab = 1
2ε

ab
cdW

cd (2.27)

the equation of motions (2.26) can be expressed as

W̃ c
d ∧ θd = 0. (2.28)

A sufficient (but non necessary) condition for this to hold, using (2.23), is

W̃ ab = ±W ab. (2.29)

Thus, in analogy to the Yang-Mills theory case, thanks to the Bianchi identities
the (anti-)self-duality of the Riemann curvature two-form is a sufficient condition
for Einstein’s equations to be satisfied. The main difference is that while the
equations for the self-duality of the field strength tensor in the Yang-Mills case were
first order differential equations, (2.29) are still second order differential equations.
First-order equations can be obtained by considering the spin-connection. Indeed,
a sufficient condition for (2.29) to be solved is to impose the (anti-)self-duality
of the spin connection. However, this does not exhaust all the possibilities: the
necessary condition is for the spin-connection to be (anti-)self-dual up to a local
SO(3) transformation, that is a gauge transformation. For the case at hand, the
number of non-equivalent (anti-)self-dual spin-connections is equal to the number of
homomorphisms g → so(3), where g is the algebra of the group acting on the three-
dimensional spatial sector. For the cases at hand, there will be two non-equivalent
such homomorphisms, leading to two different branches of solutions. In order to
write explicitly the conditions for the Riemann curvature and the spin-connection
in an operative way, we first implement the (anti-)self-duality conditions within
our choice of the metric (2.18). In order to do this, it is useful to write the spatial
vielbeins as

ηijθ
j = γijσ

j, (2.30)

where γij(t) is an invertible matrix which give us the “square root” of the three-
dimensional part of the metric1. The spin-connection and the curvature forms
belong to the antisymmetric 6 representation of SO(4). In four dimensions, this
group of local frame rotations factorizes into a self-dual (sd) and an anti-self-dual

1In order to make a connection between instantonic solutions and geometric flows, we will
require γ to be symmetric as well. This is a further non-trivial restriction for non-unimodular
Bianchi groups, and it is not necessary from the gravitational instantons point of view, so we will
first present the classification of the solutions for generic γ.

17



CHAPTER 2. GRAVITATIONAL INSTANTONS AND GEOMETRIC FLOWS

(asd) part as SO(3)sd ⊗ SO(3)asd, and the connection and curvature SO(4)-valued
forms can be reduced with respect to the SO(3)(a)sd as 6 = (3sd,3asd):

Sα = 1
2

(
ω0α + 1

2εαβγω
βγ
)
,

Aα = 1
2

(
ω0α −

1
2εαβγω

βγ
)
,

(2.31)

for the connection and

Sα = 1
2

(
W0α + 1

2εαβγW
βγ
)
,

Aα = 1
2

(
W0α −

1
2εαβγW

βγ
) (2.32)

for the curvature. Thus, {Sα,Sα} are vectors of SO(3)sd and singlets of SO(3)asd
and viceversa for {Aα,Aα}. The curvature now reads

Sα = dSα + εαβγ Sβ ∧ Sγ,
Aα = dAα + εαβγA

β ∧ Aγ.
(2.33)

It is sufficient to impose Aα (or similarly Sα) to vanish to impose (anti-)self-duality
and thus have a solutions of Einstein’s equations. For concreteness we focus on self-
dual solutions

Aα = 0. (2.34)
In order to write explicitly the latter conditions, consider the expansion of the
Levi-Civita connection along the metric:

ω0α = ω0αiσ
i,

ωαβ = ωαβ0dt+ ωαβiσ
i.

(2.35)

By introducing
Iαi = ω0αi −

1
2εαβγη

βσηγρωσρi (2.36)

we can write

Aα =
(
I ′αi − Iβiηβγωγα0

)
dt∧σα+1

2
(
Iαic

i
jk + εαβγη

βσηγρIσjIρk
)
σj∧σk = 0, (2.37)

where the prime stands for d/dt. In order to trivially obtain first integrals from
this equation, a necessary and sufficient condition is to make the gauge choice

ωαβ0 = 0, (2.38)

after which (2.37) becomes equivalent to

I ′αi = 0, Iαic
i
jk + εαβγη

βσηγρIσiIρj = 0. (2.39)
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A sufficient condition for (2.37) to be satisfied is Aα = 0, but this is not of course a
necessary condition. Requiring the self-duality of the curvature states that the anti-
self-dual part of the connection must be a pure gauge field: dAα+εαβγA

β∧Aγ = 0.
This condition means that Aα can be set to zero by performing a local SO(4) gauge
rotation, and it is achieved when we set

Aα = 1
2Iαiσ

i. (2.40)

Thus, to find a gravitational instanton solution we need to solve the first order
differential equation (2.40) and the constraint equation (2.39). It is useful to in-
troduce

Ω = detΓ
(
γnγ − γmγ − η

2tr (γnγη)
)
. (2.41)

In the latter, we dropped all the indices and Γij is the inverse of γij, while η stays
for both ηij and ηij, which are in fact equal. Then, by using the Ansatz for the
metric we can see that (2.40) is equivalent to the evolution equation

γ′ = −Ωηγ − I (2.42)

together with the constraint equation

[γ′η, ηΓ] = 0. (2.43)

By using (2.42), (2.43) can be written as

[Ωη + IΓ, γη] = 0. (2.44)

2.6 Classification of the solutions
Both the evolution and the constraint equations depend explicitly on the first in-
tegral Iij. In particular, the solutions to the constraint equation in (2.39), which is
equivalent to (2.44), describe the homomorphisms from the algebra of the homo-
geneity group g3 to the algebra of the holonomy subgroup so(3):

I : g3 → so(3). (2.45)

It is thus natural to classify the solutions according to the rank of I, which will
lead to inequivalent self-dual metrics. Rank 3 solutions exist only for Bianchi VIII
and IX classes by taking I = η. As for rank 1 solutions, (2.39) becomes

I(n+m) = ηAdj(I)T ⇐⇒ I(n+m) = 0 ⇐⇒ (n−m)IT = 0. (2.46)

Here is the complete classification:

• rank 3(maximal): VIII, IX,
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• rank 2: impossible,

• rank 1: I, II, III, IV, V, VI, VII,

• rank 0: all Bianchi types

There is still an additional constraint to be satisfied coming from (2.38), which is
a necessary and sufficient condition for the evolution equations to exist. By using
the Ansatz on the metric we can prove that this condition is equivalent to

A (γ′ηγ) = 0, (2.47)

where we introduced the notation A(X) = 1
2

(
X −XT

)
. By using the evolution

equation (2.42) we find
A(Iγ) = −2γmγ. (2.48)

Thus when I is rank zero, we must have m = 0 ⇐⇒ aρ = 0, which is the case
for the unimodular classes of the Bianchi algebras, while it imposes non-trivial
conditions on non-unimodular classes. The classification becomes then

• rank 3(maximal): VIII, IX,

• rank 2: impossible,

• rank 1: I, II, III, VI0, VII0,

• rank 0: I, II, VI0, VII0, VIII, IX,

where here we are using the subscript to indicate the value of the parameter h, as
defined in table 2.3. One can also further restrict the classification by imposing that
the determinant of the metric does not vanish. This is the case for all unimodular
classes and, within the non-unimodular classes, for the Bianchi III group. We
choose here to consider both degenerate and non-degenerate solutions, since the
correspondence with the geometric flows holds for both situations. We should also
point out that in all unimodular classes, the metric of the manifold can be taken
to be diagonal without loss of generality.
In the following sections we will present the possible singularities occurring in these
metrics, as well as two peculiar examples: Bianchi IX and Bianchi III.

2.7 Singularities: nuts and bolts
Let us consider a generic metric, when the homogeneity group is unimodular:

ds2 = dt2 +
3∑
i=1

(
fi(t)σi

)2
. (2.49)
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The metric is regular when its coefficients fi are finite for finite times. There exists
singularities which are just apparent, if they can be eliminated by an appropriate
change of variables. In four-dimensions, there are two types of singularities, classi-
fied as nuts and bolts. Such singularities are related to the fixed points of Killing
vector fields, and they are independent of the gravitational equations. The struc-
ture of the fixed point set of a Killing vector field χµ acting on a four-dimensional
Riemannian manifold is determined by the rank of the 4 × 4 matrix ∇µ

χ
ν . This

is an anti-symmetric matrix, since its symmetric part vanishes identically by def-
inition of Killing vector. It can have either rank 4 or 2, while rank 0 is excluded
because it would imply the vector field to vanish everywhere. The nature of the
singularity depends on the rank of the matrix.

• When the matrix ∇µ
χ
ν has rank 4, there are no directions left invariant at

the tangent space of the fixed point, which appears thus to be isolated and
in is called a nut. The geometry near t = 0 is given by

f 2
i ≈ t2. (2.50)

Note that t = 0 corresponds to a coordinate singularity in the flat polar co-
ordinate system. The singularity can be removed by changing the coordinate
system to a local Cartesian system near t = 0 and adding the point t = 0 to
the manifold. Near t = 0, the manifold is then topologically R4.

• When the matrix ∇µ
χ
ν has rank 2, only a two-dimensional subspace of the

tangent space at the fixed point remains invariant under the action of the
Killing vector field, whereas the two-dimensional orthogonal complement ro-
tates into itself. Then, the fixed point set is provided by this invariant two-
dimensional subspace and it is called bolt. The geometry near t = 0 is given
by

f 2
1 = f 2

2 = finite,
f 2

3 = n2t2, n ∈ Z.
(2.51)

Thus, the metric will be built out of the canonical S2 metric dθ2 + sin2 θdφ2

multiplied by the constant of f1 = f2, while at constant (θ, φ) the two re-
maining terms look like

dt2 + n2t2dψ2. (2.52)

Provided the range of nψ2 is adjusted to [0, 2π], the apparent singularity at t =
0 is nothing but a coordinate singularity in the flat polar coordinate system on
R2. Again, this singularity can be removed by using Cartesian coordinates.
The topology of the manifold is locally R2×S2, with R2 shrinking to a point
on S2 at t→ 0.
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When t→∞, we can distinguish three different situations: the Euclidian infinity,
the Taubien infinity, and the conical infinity. They are respectively given by

fi →
ξ

2 , ξ →∞ 0 ≤ ψ ≤ 4π,

f1, f2 → ξ, ξ →∞, c→ const,

fi →
ξ

2 , ξ →∞, 0 ≤ ψ ≤ 2π.

(2.53)

2.8 Bianchi IX gravitational instantons
In this case, the space-time has an SU(2) symmetry. As a further condition, we
consider here the axisymmetric case, where the group of symmetry is enlarged
to SU(2) × U(1). This assumption simplifies the system of equations we need
to solve. From the discussion of the last section, we expect two non-equivalent
solutions: one when I has rank three, and one when it has rank zero. Explicitly,
Iij can be put in a diagonal form where the elements can only take values 0 and 1.
The trivial homomorphism case corresponds to entries 0, while the case of entries
1 will correspond to an isomorphism. In the literature, the two cases correspond
respectively to the so called Eguchi-Hanson branch and Taub-NUT branch. We
remember that the metric can be chosen to be diagonal without loss of generality.
The Eguchi-Hanson branch corresponds to choosing

ds2 = f 2(T )dT 2 + T 2
((
σ1
)2

+
(
σ2
)2

+
(
g(T )σ3

)2
)
, (2.54)

while the Taub-NUT branch corresponds to choosing

ds2 = f 2(T )dT 2 + T 2g2(T )
((
σ1
)2

+
(
σ2
)2

+
(
Tσ3

)2
)
. (2.55)

As an example, we present the properties of both metrics, and its derivation for
the case of the Eguchi-Hanson branch.

2.8.1 Eguchi-Hanson branch
We start from (2.54) and compute the differential of the orthonormal basis:

dθ0 = 0,

dθ1 = 1
Tf

θ0 ∧ θ1 + 1
2Tgθ

2 ∧ θ3,

dθ2 = 1
Tf

θ0 ∧ θ2 + 1
2Tgθ

1 ∧ θ3,

dθ3 = 1
Tf

θ0 ∧ θ3 + g′

gf
θ0θ3 + 1

2
g

T
θ2 ∧ θ2.

(2.56)
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The components of the spin-connection are given by

ω1
0 = 1

Tf
θ1, ω2

3 = 1
4
g

T
θ1,

ω2
0 = 1

Tf
θ2, ω3

1 = 1
4
g

T
θ2,

ω3
0 =

(
1
Tf

+ g′

fg

)
θ3, ω1

2 = 2− g2

4Tg θ3.

(2.57)

Imposing self-duality, (2.42), leads thus to the equations

fg = 4,

g + g′T = f

4
(
2− g2

)
.

(2.58)

The solution is given by

g2(T ) = 16
f 2(T ) =

(
1−

(
c

T

)4
)
, (2.59)

where c in an integration constant.
The Eguchi-Hanson metric is then given by

ds2 = dT 2

16
[
1−

(
c
T

)4
] + T 2

(σ1
)2

+
(
σ2
)2

+
(

1−
(
c

T

)4
)2 (

σ3
)2
 . (2.60)

For t ≈ c the metric behaves as

ds2 ≈ 1
4du

2 + 1
4 (dθ + cos θdφ)2 + c2

4
(
dθ2 + sin2 θdφ

)
, (2.61)

where

u2 = T 2
[
1−

(
c

T

)4
]
. (2.62)

For fixed θ and φ, we obtain

ds2 ≈ 1
4
(
du2 + u2dψ2

)
, (2.63)

which is the R2 metric written in polar coordinates. Thus, the singularity at u = 0
must be a removable coordinate singularity. In particular, by choosing ψ ∈ [0, 2π],
we can see that it is a bolt type of singularity.
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2.8.2 Taub-NUT branch
With computations along the same lines then those done for the Eguchi-Hanson
branch, it can be proven that the Taub-NUT metric is given by

ds2 = 4(
1 +

[
1−

(
a
T

)4
] 1

2
)dT 2

+ T 2

4

(
1 +

[
1−

(
a

T

4)] 1
2
) [(

σ1
)2

+
(
σ2
)2
]

+ T 2
(
σ3
)2
.

(2.64)

By choosing a different time-parametrization, the metric can be put in the more
familiar form

ds2 = 1
4
r +m

r −m
dt2 +

(
r2 −m2

) [(
σ1
)2

+
(
σ2
)2
]

+ 4m2 r −m
r +m

(
σ3
)2
. (2.65)

This metric is defined in the region m < r < ∞. At r = m we do not have a
singularity, but the metric changes sign. To remove the apparent singularity at
r = m, we fist turn r to the proper distance coordinate

dτ 2 = 1
4

(
r +m

r −m

)
dr2 (2.66)

and consider the region r = m+ ε, with ε� m. Then

τ =
∫ m+ε

m

1
2

(
r +m

r −m

1
2
)
dr ≈ (2mε)

1
2 . (2.67)

The metric near ε = 0 is thus

ds2 ≈ dτ 2 + 1
4
(
dθ2 + sin2 θdφ2

)
+ 1

4τ
2 (dψ + cos θdφ)2

≈ dτ 2 + τ 2
((
σ1
)2

+
(
σ2
)2

+
(
σ3
)2
)
.

(2.68)

This is the condition for a removable nut singularity. As a curiosity, we mention
that the name “Taub-NUT” fits both for the property of the metric and for the
names of its discoverers, Taub-Newman-Unti-Tamburino.

2.9 Bianchi III gravitational instantons
In this case, studied in [4], the diagonal Ansatz for the metric is not valid anymore.
Furthermore, non-degenerate self-dual solutions have rank 1 for the matrix I, and
we can distinguish two cases, depending on the values of the matrix of frame
components. Note that this is in contrast with the others non-unimodular groups,
for which non-degenerate solutions do not exist.

24



CHAPTER 2. GRAVITATIONAL INSTANTONS AND GEOMETRIC FLOWS

• The first solution is given by

ds2 = F (t)
32 c4

0 cosh4
(
t− t∗

)dt2 +

(
K t− 1

)
tanh

(
t− t∗

)
−K

c2
0

(σ3)2

+ g1(t)
F (t) (σ1)2 + g2(t)

F (t) (σ2)2 + 2 g3(t)
F (t) σ

1 σ2,

(2.69)

where we have introduced the functions F (t), g1(t), g2(t) and g3(t) given by

F (t) = 8 c2
0 cosh

(
t− t∗

)[(
K t− 1

)
sinh

(
t− t∗

)
−K cosh

(
t− t∗

)]
,

g1(t) = (K2 + 1) cosh
(
2(t− t∗)

)
+ 2K sinh

(
2(t− t∗)

)
+ 2K2 t2 +K2 − 1,

g2(t) = (K2 + 1) cosh
(
2(t− t∗)

)
− 2K sinh

(
2(t− t∗)

)
+ 2K2 t2 − 8K t+K2 + 7,

g3(t) = (K2 − 1) cosh
(
2(t− t∗)

)
+ 2K2 t2 − 4K t+K2 + 1.

Denoting the zeroes of F (t) as ti, we find that the Kretschmann scalar diverges
as (t − ti)6 as t → ti, indicating a curvature singularity at each of the two
zeros of F (t).

• The second solution is given by

ds2 = L (B − 1)
4

tanh(t)
cosh2(t)

dt2 + L (B − 1) tanh(t)
(
σ3
)2

+ L

4 (B − 1)

{[
2B2 csch(2 t) + tanh(t)

] (
σ1
)2

+

−2 [tanh(t)− 2B (B − 2)csch(2 t)]σ1 σ2[
csch(2 t)(cosh(2 t) + 2 (B − 2)2 − 1

] (
σ2
)2
}
. (2.70)

In this case, the Kretschmann scalar is given by

K = 384 coth6(t)
(B − 1)2L2 (2.71)

and we find at t = 0 the metric has a curvature singularity.

2.10 Geometric flows
A geometric flow or geometric evolution equation is a non-linear equation that
describes the deformation of a metric on Riemannian manifolds driven by their
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curvature in various forms. The evolution of the metric g with respect to a contin-
uous parameter t is irreversible and driven by a symmetric tensor:

d

dt
gij = −Sij. (2.72)

Geometric flows are naturally divided into intrinsic and extrinsic classes, depending
on wether they are driven by intrinsic or extrinsic tensors of the metric. Here we
will concentrate on intrinsic geometric flows.
The first and probably most known example of a geometric flow is the Ricci flow

d

dt
gij = −2Rij, (2.73)

where Rij is the Ricci tensor and the 2 is a conventional factor that can be absorbed
by rescaling t.
The Ricci flow was first introduced in 1982 by Hamilton as the pillar of a program
designed to prove Poincaré (1904) and Thurston (1975) conjectures. This program
culminated in 2002-2003 with the actual proof by Perelman. Independently and
around the same time, it was also observed in physics in 1996 by Friedan, in his
work studying the weak-coupling limit of the renormalization group flow for non-
linear σ-models.
The Ricci flow equation resembles a heat equation: as the heat equation tends to
make uniform a given temperature distribution, the Ricci flow evolves an initial
metric into a homogeneous one. The short time existence of the solution is guar-
anteed by the parabolic form of the dynamics: that is, the minus sign on the right
side of the equation ensures that the Ricci flow is well defined for sufficiently small
positive times. On the contrary, there might be singularities arising at finite time,
as in the case of compact manifolds with strictly positive curvature metrics. In this
case, the space collapses to a point in finite time. In other words the Ricci flow
does not preserve the volume. This is why it is useful to introduce a normalized
version of the flow

d

dt
gij = −2Rij + 2

n
rgij, (2.74)

where n is the dimension of the manifold and r is the average scalar curvature
defined by r =

∫
RdV∫
dV

. While the two definitions of Ricci flows are related just by a
suitable time reparametrization and a rescaling of the metric by a function of time,
the normalized version of the flow has better chances to admit solutions that exist
for sufficiently long time.
Of course, various extensions of the Ricci flow can be considered, by adding other
terms to the right side of the equation. As we will see, depending on the Bianchi
group we will consider it will be indeed necessary to generalize the Ricci flow
in appropriate ways. In order to make contact with the evolution equation of
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the gravitational instanton, the geometric flow will not be defined on the three-
dimensional homogeneous space, but rather on its “square root”, which we already
defined in (2.30). This means that the flowing metric is

ds2 = γijσ
iσj, (2.75)

rather then g. As an immediate consequence, we have to impose γ to be symmetric.
In the next section we will study the consequences of this additional requirement in
the classification of the self-dual solutions. Then, we will set the relation between
the geometric flow and the instantons, and show as explicit examples how the
correspondence work for the Bianchi IX and III groups.

2.11 Classification of the solutions with symmet-
ric γ.

Requiring γ to be symmetric affects not only the constraint equation (2.44), but
also the dynamics of the gravitational instanton, since we want the metric to stay
symmetric during the evolution. The condition for γ′ to be symmetric is indeed
not automatically satisfied and, thanks to (2.42), it is translated into

A (Ωηγ + I) = 0, (2.76)

where A stands for the anti-symmetrization operation we already introduced. Thus
now the evolution of the instanton, which is governed by (2.42), is subject to two
independent constraint: (2.76) and (2.44). Their combination gives

γmγ = A (IMη) , (2.77)

where M = Adj(γ) is the adjoint matrix of γ, i.e. the matrix of the 2x2 subdeter-
minants of γ.
While for unimodular groups the constraints on the symmetry of γ and of its
derivative are automatically satisfied, for non-unimodular groups they do restrict
the possible solutions. In particular, starting from (2.46) and using (2.76) and
(2.77) we can prove that the rank-1 matrix I has to be symmetric as well:

I = IT . (2.78)

Moreover, we can use the constraint (2.77) to prove that for symmetric γ the
evolution equation (2.42) can be expressed as2

γ′ = − det Γ
(
γnγnγ − 1

2 (γmγnγ − γnγmγ)− γ

2 tr (γn)2
)
− I. (2.79)

2For IV and V Bianchi classes we need to use also the other constraint (2.76) in order to
achieve this form of the equation.
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Table 2.4: Basis of invariant forms and restrictions on γ – unimodular groups
Type n, η, a = 0 Restrictions Restrictions

from (2.76) from (2.44)
I n = 0 η = 1 none none rank-1
II n = diag(0, 1, 0) γ12 = 0 = γ23 γ12 = 0 = γ23: rank-0

η = 1 γ13 = 0 and/or γ11 = γ33: rank-1
VIII n = η = diag(1,−1,−1) none none rank-0

none rank-3: I = η
IX n = η = 1 none none rank-0

none rank-3: I = η
VI−1 n = diag(0, 1,−1) γ12 = 0 = γ13 γ12 = 0 = γ13

η = diag(−1, 1,−1) rank-0,1
VII0 n = diag(1, 1, 0) γ12 = 0 = γ23 γ13 = 0 = γ23

η = diag(1, 1, 1) rank-0,1

This equation is valid for symmetric metrics γ, with I being a symmetric rank-
1 or rank-3 matrix. Of course in the latter case we have I = η and the only
algebras we can consider are Bianchi VIII and IX. At this stage we still need to
impose the second constraint (2.76). This condition does not affect the Bianchi
VIII and IX classes. All other classes are restricted by the condition. In particular,
considering non-unimodular groups and choosing I to be rank-0, the metric γ must
have vanishing determinant. The same holds for rank-1, except for the Bianchi III
class, which admits non-singular self-dual gravitational instantons. We display the
restrictions on the form of the metric for both unimodular and non-unimodular
classes in the tables (2.4) and (2.5).

2.12 Correspondence between geometric flows and
gravitational instantons

The last step of our analysis is to interpret the evolution of the gravitational in-
stanton as a geometric flow. We start with the expression for the Ricci tensor on
a generic homogeneous three-dimensional metric equipped with a metric γ

R[γ] = N+det Γ
(
γnγnγ − γmγnγ + γnγmγ − γ

2 tr (γn)2
)

+a⊗a−2γaΓa, (2.80)

where N is the Cartan-Killing metric of the Bianchi algebra we are considering:

Nij = −1
2c

l
kic

k
lj = −1

2εlimεkjnn
mknnl − aiaj. (2.81)
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Table 2.5: Basis of invariant forms and restrictions on γ – non-unimodular groups
Type n, η, a Restrictions Restrictions

from (2.76) from (2.44)
III n = diag(0, 1,−1) a = (1, 0, 0) γ12 = γ13 γ11, γ13 given in (2.102)

η = diag(−1, 1,−1) γ22 = γ33
IV n = diag(0, 1, 0) γ12 = 0 = γ13, singular from (2.44)

η = 1 a = (1, 0, 0) γ23 = γ22 + γ33 γ22 = 0 = γ33
V n = 0 η = 1 γ12 = 0 = γ13 singular from (2.44)

a = (1, 0, 0) γ22 = −γ33 γ22 = 0 = γ23
VIh>−1 n = diag(0, 1,−1) a = (h+ 1, 0, 0) γ12 = 0 = γ13 singular from (2.44)

η = diag(−1, 1,−1) γ22 = γ33 γ22 = γ23
VIIh>0 n = diag(1, 1, 0) η = 1 γ13 = 0 = γ23 singular from (2.44)

a = (0, 0, h) γ11 = −γ22 γ11 = 0 = γ12

2.12.1 Unimodular groups
For this class we have a = 0. The geometric flow corresponding to the evolution of
the gravitational instanton is given by a Ricci flow combined with a Yang-Mills flow
produced by a flat, non flowing Yang-Mills connection on M3. The appropriate
connection to consider is SO(2,1) for Bianchi VI or VIII, and SO(3) otherwise,
since it reflects the four-dimensional anti-self-dual part of Levi-Civita connection
onM4, appearing as the first integral (2.40). The Yang-Mills connection is defined
by

α ≡ αiσ
i = −λijσiT j, (2.82)

where T i = ηijTj are the generators of the SO(3) or SO(2,1) group:

[Ti, Tj] = −εijkT k, (2.83)

with normalization tr (TiTj) = −2ηij. The absence of flow for the connection,
α′ = 0, is translated into λ′ij = 0, while the flatness condition requires

F = dα + [α, α] ≡ 0 ⇐⇒ λilc
l
jk + εijkη

jmηknλmjλnk = 0. (2.84)

The required term to achieve the correspondence between instantons and flows is
given by

− 1
2tr (αiαj) = ηklλkiλlj, (2.85)

provided that the following relationship holds between the Levi-Civita connection
Iij and the Yang-Mills connection λij

N − I = λTηλ. (2.86)

For unimodular groups, (2.84) is equivalent to

λn = nλT = 0, (2.87)
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which implies that λ should be symmetric. No matter the rank of I, it is always
possible to find λ such that is satisfies (2.86), which reads

γ′ = −R [γ]− 1
2tr (α⊗ α) . (2.88)

In particular, we consider as an example Bianchi IX. In this case, we have a rank-0
solution I = 0 corresponding to the condition

λ = η, (2.89)

and a rank-3 solution I = η, where λ = 0. We recall that the two solutions
correspond, respectively, to the Eguchi-Hanson and the Taub-NUT branches. In
particular, in the latter case the evolution of the instantons is a pure Ricci flow,
without the need to add the Yang-Mills flow, that is α = 0.

2.12.2 Non-unimodular groups
By proceeding along the same lines, we now analyze non-unimodular groups. Again
we need to satisfy (2.86). For any rank-0 and rank-1 I it is always possible to find
a solution for the matching condition, since (2.39) and (2.84) become respectively

I(n+m) = (n−m)I = 0 (2.90)

and
λ(n+m) = (n−m)λT = 0, (2.91)

while Jacobi identities (2.17) imply that

N(n+m) = (n−m)N = 0. (2.92)

More terms appear when trying to write the evolution of the instantons in terms of
a geometric flow. In order to interpret these new terms, we compute the symmetric
part of covariant derivative of a:

S (∇a) = det Γ
2 (γnγmγ − γmγnγ) + a⊗ a− γaΓa. (2.93)

With this expression at hand, one can see that the evolution of the gravitational
instanton is given by

γ′ = −R [γ] + S (∇a)− γaΓa− 1
2tr (A⊗ A) . (2.94)

This describes a geometric flow driven by the Ricci tensor, combined with a Yang-
Mills connection as well as a diffeomorphism generated by a and by an invariant
component of the scalar curvature, which indeed reads

S [γ] = tr (ΓR [γ]) = tr (ΓN)− detΓ
2 tr (γn)2 − 5aΓa. (2.95)
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As stated, all non-unimodular Bianchi metrics but Bianchi III are degenerate due
to the condition (2.44). Nevertheless, the correspondence between geometric flows
and homogeneous three-dimensional metrics holds for all cases when γ is symmetric.
This of course restricts the form of the metric, but such restrictions are coming from
the consistency of the instantons. We list such conditions for all Bianchi groups in
tables 2.4 and 2.5. As a last step, it is interesting to consider explicitly the Bianchi
III case.

2.12.3 Bianchi III gravitational instantons

For all non-unimodular Bianchi groups but Bianchi III we can prove that the con-
straint (2.44) implies

γmγ = 0, (2.96)

which eventually implies det γ = 0. By looking at (2.77), this is trivial if I is
rank-0. If I is rank-1, for all non unimodular groups but Bianchi III the generic
solution for symmetric I is

Iij = κaiaj, (2.97)

where κ is an arbitrary constant. With this form of the first integral, one can prove
that the determinant has to vanish. This is not the case for Bianchi III, for which
I has to be of the form

I =

µ χ χ
χ −ν −ν
χ −ν −ν

 , χ2 + µν = 0. (2.98)

The generic form of λ satisfying the flatness condition (2.84) is given by

λ =

ρ1λ ρ1ς ρ1ς
ρ2λ ρ2ς ρ2ς
ρ3λ ρ3ς ρ3ς

 , (2.99)

while requiring the matching condition (2.86) to be satisfied translates into

(ρ1λ)2 = 2 + µ,
(
ρ2

1 + ρ2
2 + ρ2

3

)
λς = χ,

(
ρ2

1 + ρ2
2 + ρ2

3

)
ς2 = −ν. (2.100)

Demanding constraint (2.44) to be satisfied restricts the form of the metric:

γ11 = χ2 + 2ν
2ν2 (γ23 + γ33) , γ13 = − χ

2ν (γ23 + γ33) . (2.101)
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The general solution to the evolution equation is thus given by

γ11(t) = (1− µ

2 ) t+ γ11(0),

γ13(t) = γ31(t) = −χ2 t+ γ13(0),

γ33(t) = γ33(0)
(

1 + νt

γ33(0) + γ23(0)

)
,

γ23(t) = γ32(t) = γ23(0)
(

1 + νt

γ33(0) + γ23(0)

)
,

(2.102)

where the initial condition are constrained by (2.101) and the constraint (2.76)
guarantees that they will be valid for any time. These solutions are the restricted
version of those analyzed in section 2.9 for the case of γ symmetric, and they still
exhibit naked singularities as in the previous case.
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Chapter 3

Ungauging extremal black holes
in four-dimensional N = 2
supergravity

After a brief introduction to N = 2 D = 4 supergravity, we devote the chapter
to the study of an ungauging procedure to relate asymptotically AdS and asymp-
totically flat black hole solutions. We analyze in detail the horizon and global
properties of the solutions, as well as the connection with existing solutions and
the possibility of using our results and constructions to simplify the asymptotically
AdS solutions.

3.1 Four-dimensional N = 2 supergravity

3.1.1 Introduction
Supergravity theories are related among each others via dualities, compactifications
or reductions. Their interconnection and intrinsic similarity mean that studying
one particular theory can lead to a better understanding of other related theories.
In this sense, among the other 4-dimensional theories the N = 2 one is best-
suited for making relations with others. They do not have so much symmetry
to only allow for very restricted classes, but they possess enough symmetry to
be still mathematically tractable. They possess eight conserved supercharges in
four-dimensions, and present the feature of electric-magnetic duality, which we will
introduce.

3.1.2 Bosonic abelian gauged Lagrangian
We start directly by presenting the bosonic part of the Lagrangian for abelian U(1)
gauged N = 2 D = 4 supergravity coupled to nV vector multiplets, first studied in
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[37] and [38], which reads:

Lg = R− 2gij̄∂µzi∂µz̄ ī −
1
2F

I ∧GI + 2V. (3.1)

We do not display here the fermionic part of the Lagrangian, since in the following
we are always setting the fermionic fields to zero. The Ricci scalar is R, while zi,
i = 1, . . . nV are the vector multiplet complex scalars. The abelian gauge fields are
F I and its dual GI , while V is the scalar potential. We will now proceed to a more
detailed analysis of each term.
The physical scalars zi parametrize a special Kähler geometry of complex dimension
nV , whose metric is given by gij̄, and they naturally appear through the symplectic
section V . Choosing as a basis

zi = X i

X0 , (3.2)

the section can be written in components in terms of the scalars XI = X0, X i as

V =
(
XI

FI

)
FI = ∂F

∂XI
, (3.3)

where F is a holomorphic function of degree two called the prepotential. Note here
the different uses of the indices: small indices i run through the vector multiplets,
while capital indices I = {0, i} run through both the gravity and the vector multi-
plets. Note also that the physical scalars are defined in terms of theXI up to a local
U(1) transformation. In the following, we will always consider the prepotential to
be cubic

F = −1
6cijk

X iXjXk

X0 , (3.4)

where cijk is a completely symmetric tensor. The section V is subject to the con-
straints

〈V̄ ,V〉 = i, 〈D̄īV̄ , DjV〉 = −igīj, (3.5)
where D is the Kähler covariant derivative and the brackets denote the symplectic
scalar product

〈A,B〉 = ATΩB = AIB
I − AIBI , (3.6)

where Ω is the Sp(2nV + 2) matrix.
In the third term of the Lagrangian we find F I

µν and GIµν , which are respectively
the abelian gauge fields and their duals:

G−µνI := −16πi
e

∂L
∂F−Iµν

= NIJF−Jµν , (3.7)

where e is a constant and NIJ is the scalar dependent periodic matrix, whose ex-
pression is not explicitly needed here. The gauge fields naturally arrange themselves
into a symplectic vector of electric and magnetic gauge field strengths:

Fµν =
(
F I

µν

GIµν

)
. (3.8)

34



CHAPTER 3. UNGAUGING EXTREMAL BLACK HOLES IN FOUR-DIMENSIONAL N = 2
SUPERGRAVITY

Its integral over a sphere near infinity defines the associated electric and magnetic
charges

Γ =
(
pI

qI

)
= 1

2π

∫
S2
F . (3.9)

Thanks to the Bianchi identities, which take the form

εµνρσ∂µF
I
νρ = 0,

εµνρσ∂µGIνρ = 0,
(3.10)

both the charges pI and qI are conserved.
Before giving the explicit form of the last term in the Lagrangian, the scalar po-
tential V , we need to introduce the Fayet-Iliopoulos (FI) parameters. They are
arbitrary constant gauging parameters, and they organize themselves into the sym-
plectic vector G = {gI , gI}. In general, they control the couplings of the vector
fields. Since we are considering just the case where the class of gauging is abelian,
these couplings occur only in the fermionic sector of the theory, in particular be-
tween the gravitino and the vector fields. Thus, the pure bosonic Lagrangian is
affected by the presence of these gaugings just through the scalar potential of the
theory V . We introduced both the electric and magnetic gaugings, but the electric-
magnetic duality group will always allow to rotate G in a frame where only electric
gaugings are turned on, i.e. gI = 0. This implies a rotation of the symplectic
section and thus the choice of a preferred basis for the physical scalars ti. A full
N = 2 duality covariant Lagrangian has not yet been written explicitly, but as
we said the bosonic part of the theory is affected only through the potential V ,
which can be written in a simple manifest covariant form. We thus decide here to
consider the covariant version of the electrically gauged theory, keeping in mind
that while all the expressions for bosonic backgrounds must be covariant under the
electric-magnetic duality, the equation involving fermionic quantities strictly apply
only to the electrically gauged theory.
We are now ready to introduce the expression for the scalar potential V :

V = Zi(G)Z̄i(G)− 3 |Z(G)|2 , (3.11)

where Z(G) and Zi(G) are scalar dependent central charges, defined respectively
in terms of a generic symplectic vector A as

Z(A) = 〈A,V〉 (3.12)

and
Zi(A) = 〈A,DiV〉. (3.13)
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3.2 Connection between gauged and ungauged
bosonic Lagrangian

As noticed, the bosonic part of the Lagrangian is modified by the presence of the
gaugings just by the introduction of the scalar potential term V . This means that
the gauged Lagrangian Lg can be easily written in terms of the ungauged one L0
as

Lg = L0 + V. (3.14)

This expression implies that starting from a gauged theory we can find the un-
gauged one just by setting the potential to zero, as far as only the bosonic sector is
concerned. Thus, the ungauged theory is reached when the FI terms vanish, but,
since the potential is not positive-definite, this is not the only possibility. Indeed,
we can choose the FI parameters in such a way that the scalar potential is iden-
tically zero, but the theory is not reduced to an ungauged one. In this case the
bosonic part of the Lagrangian for the two theories will be the same, Lg = L0,
but the FI terms will still still appear in the fermionic sector of the gauged theory.
Thus, the supersymmetric vacua of the two theories will not coincide because of
the different fermionic sector of the two theories.

3.2.1 Motivations
Such a connection between gauged and ungauged theories, and thus between asymp-
totically flat and asymptotically AdS solutions, is interesting because it can bring
new insights especially in the gauged theory, for which in general there is a less
broad knowledge. For example, most of the investigations on the microscopic de-
scription of black holes in supergravity have been carried out for asymptotically flat
black holes preserving some amount of supersymmetry, which provides additional
control over various aspects of these systems. The asymptotically flat and the
asymptotically AdS classes of black holes are unrelated, as they arise as solutions
to different supergravity theories. Consequently, the two theories are generally
studied with different methods, and the problem of entropy counting is not an
exception in this respect. The connection between gauged and ungauged super-
gravity shows that this is not always the case, and can thus bring new insights on
the microscopic description of asymptotically AdS black holes.
The classification of asymptotically flat black holes includes all BPS solutions, that
is solutions that remain invariant under some of the supersymmetry transforma-
tions of the theory, and, beyond the supersymmetric sector, the static and the
stationary under-rotating cases are known. While the latter are more complicated
than the corresponding BPS ones, they all share the feature of being described
by first order differential equations. Asymptotically AdS black hole solutions are
known mostly within the BPS sector, while only few examples of non-BPS solutions
are known. Finding a connection between asymptotically AdS and asymptotically
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flat solutions is thus interesting also in the perspective of searching for new asymp-
totically AdS solutions.

3.2.2 Very small vector
We introduce here a preliminary concept which is essential in the ungauging pro-
cedure. Within a theory with cubic prepotential (3.4), we define R to be a “very
small vector”, as shown in [8], if it satisfies the relation

Zi(R)Z̄i(R) = 3 |Z(R)|2 . (3.15)

This is just the expression we have if we demand the scalar potential to vanish in a
non-trivial way, i.e. without asking the FI gaugings themselves to vanish. Thus, the
connection between gauged and ungauged theories is achieved when the FI terms
are described by a very small vector. By choosing the preferred duality frame
in an appropriate way, we can always set the very small vector to have only one
component. For example, G can be rotated in such a way that the only component
is the purely electric one q0:

G = g{0, δ0
I}, (3.16)

where g is a constant. Anyway, we choose here to keep the vector generic.
An alternative equivalent definition of very small vector can be given by introducing
a quartic form I4, which is invariant under symplectic transformations:

I4(R) = 1
4!t

MNPQRMRNRPRQ, (3.17)

where tMNPQ is a completely symmetric tensor. The expression for the quartic
invariant for the charge vector Γ introduced in (3.9) is given by

I4(Γ) = −
(
p0q0 + piqi

)2
+ 2

3q0cijkp
ipjpk − 2

3p
0cijkqiqjqk + cijkp

jpkcilmqlqm. (3.18)

The absolute value of this expression determines the entropy of static black holes
for any values of the charges (see for example the review [41]).
A small vector is defined by the relations

I4(R) = I4(R)
dR

= 0, (3.19)

while a very small vector satisfies the additional constraint

1
4I4(R,R,Z, Z) ≡ 1

4t
MNPQRMRNZPZQ = −〈R,Z〉2 (3.20)

for any vector Z. One can prove that those conditions are equivalent to (3.15).
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3.3 Squaring of the action
Considering first asymptotically AdS solutions, the squaring procedure presented
in [7] shows that it is possible to write the action (3.1) as a sum of squares of
first-order differential equations and, as a consequence, a sufficient condition to
obtain a solution of the equations of motion is to impose that each of the squares
vanish. We consider generic asymptotically AdS static black hole configurations,
whose metric ansatz is given by

ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + e2ψ(r)dΩ2

)
, (3.21)

where eU and eψ are two scalar functions describing the scale factor of the metric
and of the three-dimensional base space.
By plugging this ansatz in the action (3.1) we obtain an effective one-dimensional
theory for the scalar fields and the warp factors U and ψ:

S1d =
∫
dr
[
e2ψ

(
(U ′ − ψ′)2 + 2ψ′2 + gij̄z

iz̄ j̄
′ + e2U−4ψVBH + e−2UV

+2ψ′′ − U ′′)− 1] ,
(3.22)

where the prime denotes derivative with respect to the radial coordinate and the
black hole potential is given by

VBH = Zi(Γ)Z̄i(G) + |Z(Γ)|2 . (3.23)

After integration by parts of (3.22), we arrive to the expression

S1d =
∫
dr
[
e2ψ

(
U ′

2 − ψ′2 + gij̄z
iz̄ j̄

′ + e2U−4ψVBH + e−2UV
)
− 1

]
+
∫
dr

d

dr

[
22ψ (2ψ′ − U ′)

]
,

(3.24)

where the last line is just a total derivative which can be discarded. It is useful to
rewrite the black hole potential (3.23) as

VBH = −1
2ΓTMΓ, (3.25)

where
M =

(
A B
C D

)
(3.26)

is a symplectic matrix defined by the entries

A = N + ReN (ImN )−1 ReN ,
D = (ImN )−1 ,

B = CT = ReN (ImN )−1 .

(3.27)
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In order to write the action as a sum of squares, we need to introduce various
special geometry identities. A basic expression is given by

1
2 (M− iΩ) = ΩV̄VΩ + ΩUigij̄Ūj̄Ω, (3.28)

which leads to
MV = iΩV (3.29)

and
MUi = −iΩUi. (3.30)

From the latter, it follows that
V̄TMV = i〈V̄ ,V〉 = −1 (3.31)

and
UT
i MŪj̄ = i〈Ui, Ūj̄〉 = −gij̄. (3.32)

The first step is to rewrite the kinetic term for the scalar fields and the scalar
potentials V and VBH in terms of symplectic sections using

− V ′TMV̄ ′ = gij̄z
i′ z̄ j̄

′ +Q2
r, (3.33)

where
Qr ≡

i

2
(
z̄ j̄

′
∂̄j̄K − zi

′
∂iK

)
(3.34)

is a composite connection, and K is the Kähler potential.
Given the properties of the symplectic sections, we can also introduce a phase factor
so that

− Im(eiαV ′T )MIm(eiαV ′) = 1
2gīz

i ′z̄ ̄ ′ + 1
2Q

2
r , (3.35)

and once more obtain new identities:

Re(eiαV)TMRe(eiαV) = Im(eiαVT )MIm(eiαV) = −1
2 , (3.36)

Im(eiαVT )MRe(eiαV) = 0 , (3.37)

Im(eiαV ′) = Im(eiαzi ′Ui)−Qr Re(eiαV) , (3.38)

Im(eiαVT )MΓ = Re(eiαZ(Γ)) , Re(eiαVT )MΓ = −Im(eiαZ(Γ)) , (3.39)

Im(eiαV ′)MΓ = −Re(eiαZ(Γ)′) + 2Qr Im(eiαZ(G)) . (3.40)
After some long, but straightforward manipulations, the action (3.24) can then be
rewritten as

S1d =
∫
dr
[
−1

2e
2(U−ψ)〈E , JE〉 − e2ψ

[
(Qr + α′) + 2e−URe

(
e−iαZ(G)

)]2
− e2ψ

[
ψ′ − 2e−U Im

(
e−iαZ(G)

)]2
− (1 + 〈G,Γ〉)

− 2 d
dr

[
e2ψ−U Im

(
e−iαZ(G)

)
+ eURe

(
e−iαZ(Γ)

)]]
.

(3.41)
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Several terms deserve a more detailed explanation. The scalar dependent complex
structure J is just given by

J = ΩM, (3.42)
and it thus satisfies the equations

JV = −iV , JDiV = iDiV , (3.43)

while e−iα is just an arbitrary phase and Qr is the composite Kähler connection,
and we introduced

E ≡ 2e2ψ
(
e−U Im

(
e−iαV

))′
− e2(ψ−U)JG

+ 4e−2URe
(
e−iαZ(G)

)
Re

(
e−iαV

)
+ Γ.

(3.44)

The action (3.41) now indeed reads as a sum of squares of first order differential
equations plus a boundary term, provided that we impose the constraint for the
charges

〈G,Γ〉 = −1. (3.45)
Once this is satisfied, we obtain a solution by imposing

E = 0, (3.46)

Qr + α′ = −2e−URe
(
e−iαZ(G)

)
, (3.47)

ψ′ = 2e−U Im
(
e−iαZ(G)

)
. (3.48)

The first equation (3.46) contains the flow equations for the scalar field and the
equation for U , the second one (3.47) gives the condition on the phase α, while
the last one (3.48) describes the evolution of ψ. The equations of motion following
from this procedure of squaring of the action imply the equations of motion for the
scalars as well as the tt-component of the complete Einstein equation, whereas the
remaining Einstein equations are identically satisfied upon imposing the Hamilto-
nian constraint

e2ψψ
′2 − 1− e2ψU

′2 − e2ψgī t
i ′ t̄i ′ + e2(U−ψ)VBH + e2(ψ−U)V = 0 . (3.49)

As shown in [7], the solution (3.46)-(3.48) is BPS.
Note that we can easily recover the ungauged limit G = 0: the constraint (3.45)
would lead to an inconsistency, but the second line of (3.41) can be written as a
new squared first order equation and a boundary term

−
(
eψψ − 1

)2
−
(
2eψ

)′
. (3.50)

This leads to the identification eψ(r) = r, and hence to reducing the metric ansatz
to the one for asymptotically flat configurations.
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3.3.1 Flow equations
The writing of the effective one-dimensional action as a sum of squares can be
further analyzed to find the explicit expression for the resulting flow equations
for the scalar fields zi. Equation (3.46), E = 0, is a complex symplectic vector
equation. To extract information, it is useful to project the equation on all possible
independent sections. From the contraction

〈E ,Re
(
e−iαV

)
〉 = 0 (3.51)

we obtain the flow equation for the warp factor U(r):

U ′ = −eU−2ψRe
(
e−iαZ(Γ)

)
+ e−U Im

(
e−iαZ(G)

)
. (3.52)

The contraction
〈E , Im

(
e−iαV

)
〉 = 0 (3.53)

gives
α′ +Qr = −eU−2ψIm

(
e−iαZ(Γ)

)
− e−URe

(
e−iαZ(G)

)
. (3.54)

The projection along the covariant derivatives of the section

〈E , Ui〉 = 0 (3.55)

leads to the scalar fields flow equation

zi
′ = −eiαgij̄

(
eU−2ψZ̄j̄(Γ) + ie−U Z̄j̄(G)

)
. (3.56)

Contractions with Γ and G give identities. By using (3.47) and (3.54) we get the
constraint

eU−2ψIm
(
e−iαZ(Γ)

)
= e−URe

(
e−iαZ(G)

)
. (3.57)

This condition arises as a consequence of the fact that in writing the action as a
sum of squares we introduced an additional degree of freedom α(r) that was not
present in the reduced action, and it can be shown to be automatically satisfied
once the Hamiltonian constraint (3.49) is.

3.4 Ungauged limit
Our goal is now to perform the same analysis in the case where the gaugings G are
given by a very small vector. For this, one should take in principle the most general
form of G satisfying (3.15) and proceed in the same line to find the squaring of
the action. However, given the homogeneity of the potential in terms of G, it is
more convenient to use a different strategy. We introduce a Lagrange multiplier by
performing a rescaling of the gaugings

G→ eϕG, (3.58)
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where the Lagrange multiplier will be treated as an independent field whose purpose
is to take into account the flatness of the potential. The presence of the Lagrange
multiplier ensures that we are now dealing with a flat theory, and it should thus
satisfy (3.15) without adding any new physical degree of freedom. Indeed, the
choice eϕ = 0, which corresponds to setting the gaugings to zero, will give a possible
solution for the equations of motion for the ungauged theory. Of course, setting
the gaugings to zero is not the only possibility, so we want to repeat the procedure
of the squaring of the action by leaving explicitly the Lagrange multiplier to obtain
a more generic squaring of the ungauged bosonic action. Since we are dealing
with asymptotically flat solutions, we can make the choice for the metric function
eψ = r, so that

ds2 = −e2U(r)dt2 + e−2U(r)
(
dt2 + r2dΩ2

)
, (3.59)

and the three-dimensional part of the space is just flat. Note that even if here we
are choosing the static ansatz for simplicity, all the results can be extended for the
case of under-rotating black holes. The action can be written as a sum of squares in
a similar way as above, up to an extra term originating from the partial integration
involved:

S0 =
∫
dr
[
− 1

2r2 e
2U〈E , JE〉 − r2

[
(Qr + α′) + 2e−URe

(
e−iαZ(G)

)]2
−
[
2reϕ−U Im

(
e−iαZ(G)

)
−
(

1 + 1
2rϕ

′
)]2

+r4eϕ
((
r−1e−ϕ/2

)′)2
− (2 + eϕ〈G,Γ〉)

]
,

(3.60)

where we dropped out the total derivative. The Lagrangian is now written as a sum
of squares for the physical fields, along with an extra kinetic term and a Liouville-
type potential for the multiplier ϕ, that decouples from the rest of the action. As
before, we can solve the equations of motion for the physical fields by imposing
that each of the squares vanish

E = 0, (3.61)

Qr + α′ = −2eϕe−URe
(
e−iαZ(G)

)
, (3.62)

2re−U Im
(
e−iαZ(G)

)
= e−ϕ

(
1 + 1

2rϕ
′
)
. (3.63)

Note that these equations fix as well the form of the Lagrange multiplier in terms
of the physical fields. In addition to impose the squared terms to vanish, we still
have to impose the equation of motions for ϕ:

d

dr

(
r2u′

)
− 〈G,Γ〉r−2e−2u = 0, (3.64)
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where eu ≡ r−1e−φ/2. It remains a last equation to be imposed: the Hamiltonian
constraint (3.49), giving the condition

〈G,Γ〉+ 4r2e−2Ueϕ
(
Im

(
e−iαZ(G)

))2
= 0. (3.65)

3.4.1 Flow equations
The flow equations are closely related to those studied in section 3.3.1, with the
differences that now the function eψ describing the spatial part of the metric is
fixed to eψ = r and that we included the additional function eϕ. By projecting the
scalar flow equation E = 0 on the independent sections we find

U ′ = − r−2 eU Re(e−iαZ) + eϕe−U Im(e−iαW ) , (3.66)
ti′ = − eiαgī

(
eU−2ψZ̄̄ + i eϕe−UW̄̄

)
, (3.67)

and
Qr + α′ = −r−2 eU Im(e−iαZ)− eϕe−U Re(e−iαW ) . (3.68)

Combining the last relation with (3.62) leads to the constraint

r−2 eU Im(e−iαZ) = eϕe−U Re(e−iαW ) . (3.69)

In the case of gauged supergravity, this condition was equivalent to the Hamiltonian
constraint (3.49). In the ungauged case, (3.69) is not automatically satisfied once
we impose (3.66)-(3.68) and the two expressions are genuinely different conditions.

3.5 Asymptotically flat solutions
In order to search for solutions to the above system of equations, we start by
looking for explicit solutions of the equations of motion for the Lagrange multiplier
(3.64). The general solution will be in terms of exponential of the type e±1/r, which
are badly singular at r = 0 and lead to unphysical results. However, a particular
enveloping solution exists:

eu = 〈Γ, G〉− 1
2V, (3.70)

where V is the distinguished harmonic function

V = v + 〈Γ, G〉
r

, (3.71)

v being a positive constant. We assume 〈Γ, G〉 > 0 so that V is positive definite.
The expression for the Lagrange multiplier is thus given by

eϕ = 〈Γ, G〉
r2V 2 = d

( 1
V 2

)
. (3.72)
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The expression for the Hamiltonian constraint (3.49) becomes then

2e−U Im
(
e−iαZ(G)

)
= V, (3.73)

which implies that the solution can be expressed in terms of harmonic functions.
It is useful at this point to make contact between our solution and the static limit
of the generic single center class of solutions for asymptotically flat black holes.
Following [8], we start by defining another very small vector R dual to G, R ∝ JG,
given by

R = −4 e−2U

|Y |2 V 2
Re

[
Y 3Ẑ(G)V + |Y |2 Y Ẑi(G)DiV

]
, (3.74)

Y ≡
(
1 + ime2U

)
, (3.75)

where m is an arbitrary constant and

Ẑ(G) = Z(G)
|Z(G)| , Ẑi(G) = Zi(G)

|Z(G)| . (3.76)

By using the flow equations for the scalar fields E = 0, it was shown in [8] that the
small vector R is constant. Given the definition of R and by introducing a vector
or harmonic functions carrying the charges,

H = h+ Γ
r
, (3.77)

the solution to the system of equation (3.61)-(3.63) is given by (see [8] for details)

2Im
(
e−Ue−iαV

)
= H− 2〈G,H〉

〈G,R〉
R + m

〈G,H〉
G. (3.78)

Note also that the Hamiltonian constraint (3.73) fixes the distinguished harmonic
function 〈G,H〉 as

〈G,H〉 = −V. (3.79)
By imposing the regularity of the solution we find a constraint connecting the two
very small vectors R and G

1
2I
′
4
M(H,H, G) = 〈G,H〉HM − 2〈G,H〉

〈G,R〉
RM , (3.80)

where the index M,N, . . . denote both the electric and magnetic components and
I ′4
M is defined from the quartic invariant as

I ′4
M(H,H, G) ≡ ∂2I4(H)

∂HM∂HN

GN = 1
2t

MNPQHNHPGQ. (3.81)

The constraint (3.80) is important because it selects the allowed charged Γ for given
very small vectors G,R, and viceversa. In particular, for each pole of the harmonic
function H, (3.80) constraints the charges to lie in a Lagrangian subspace that
contains R.
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3.6 Supersymmetric variations
In order to study supersymmetric solutions, we need to explicitly ensure that the
supersymmetry variations vanish. The variations for the bosonic fields are auto-
matically zero because of the assumption that the fermions vanish. The relevant
variations are those for the fermionic fields that belong to the supermultiplets ap-
pearing in the actions, that is the gravitinos ψµA for the gravity multiplet and the
gauginos λiA for the vector multiplets. Their supersymmetry variations, for the
case of generic FI gaugings G, are given by:

δψµA = DµεA + Z(F)−µνγνεABεB −
1
2Z(G)σ3

ABγµε
B,

δλiA = −i/∂tiεA + i

2Z̄(F)i−µν γµν εABεB + iZ̄i(G)σ3,ABεB,
(3.82)

where the covariant derivative is defined as

DµεA =
(
∂µ −

1
4ω

ab
µ γab + i

2Qµ

)
εA + i

2〈G,Aµ〉σ
3
A
BεB, (3.83)

and the central charges of the electric and magnetic field strengths are

Z(F)µν = 〈Fµν ,V〉, Z(F)i, µν = 〈Fµν , DiV〉. (3.84)

Even if the bosonic sector of the flat potential gauged theory and the bosonic
sector of the ungauged theory are the same, the supersymmetric variations will
be different, simply because in the second case G = 0. This means, in particular,
that the supersymmetric variations of the two theories do not overlap and form
two disjoint sets. In fact, suppose we have a supersymmetric background solution
of the ungauged theory and consider, for simplicity, the gaugino variation. If we
want this solution to be as well a solution of the flat gauged theory, we require that
it satisfies Zi(G) = 0, since otherwise we cannot make the variation vanish both
in the gauged and in the ungauged theory. But the flat potential condition (3.15)
implies that Z(G) = 0 as well. Remembering the definitions of the central charges
(3.12) and (3.13), we have that

〈V , G〉 = 0, 〈DiV , G〉 = 0, (3.85)

which imply that G = 0 as a consequence of the properties of special geome-
tries. Thus, the only theory for which this solution can be supersymmetric is
the ungauged one. In general, BPS solutions of the asymptotically Minkowskian
space-time are non supersymmetric in the flat gauged theory, and viceversa. This
situation is illustrated in figure 3.1.

45



CHAPTER 3. UNGAUGING EXTREMAL BLACK HOLES IN FOUR-DIMENSIONAL N = 2
SUPERGRAVITY

Figure 3.1: The two bubbles represent the space of BPS solutions of ungauged and
abelian gauged supergravity with a flat potential, as subspaces of all bosonic solutions,
common to both theories. Note the presence of two distinct AdS2 × S2 backgrounds
that are supersymmetric only within one theory. The blue line represents the BPS black
hole solutions, interpolating between Minkowski space and the fully BPS AdS2 × S2.
It is supersymmetric with respect to the ungauged theory, but not with respect to the
gauged one. The solutions described here, represented by a red line, interpolate between
Minkowski and the so called magnetic AdS2 × S2 vacuum and they are globally non-
supersymmetric.

3.7 Attractor geometry

We move to the study of the supersymmetries preserved by the near horizon ge-
ometry of the solutions above. In this limit, and considering for simplicity the
static case, we expect the black hole metric to approach the metric of an AdS2×S2

geometry

ds2 = −r
2

v2
1
dt2 + v2

1
r2 dr

2 + v2
2

(
dθ2 + sin2 θdφ2

)
, (3.86)

where v1 and v2 are the radiuses of AdS2 and S2 respectively. The corresponding
vierbeins are given by

eaµ = diag
(
r

v1
,
v1

r
, v2, v2 sin θ

)
, (3.87)
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while the non-vanishing components of the spin-connection are

ω01
t = −r

2

v2
1
, ω23

φ = cos θ. (3.88)

To satisfy Bianchi identities and Maxwell equations in both the flat gauged and
ungauged theories, it is useful to assume that the gauge field strengths are given
in terms of the charges Γ =

(
pI , qI

)T
by

Fµν ≡
(
F I
µν , GIµν

)
, F I

θφ = 1
2p

I sin θ, GIθφ = 1
2qI sin θ, (3.89)

and that the scalar fields are constant everywhere near the horizon, ∂µz = 0. We
will be using a timelike Killing spinor ansatz, ensuring that once the BPS equations
are satisfied we automatically have a supersymmetric solution, thanks to the fact
that the BPS equations together with Maxwell equations and Bianchi identities
imply the validity of both Einstein’s equations and of the equations of motion for
the scalar fields.
When we consider the spherical symmetry case, it turns out that in the static limits
two choices for the AdS2 × S2 attractor geometry are possible: the one of a full
BPS solution, or the one of a 1

2 -BPS solution. In the latter situation, the Killing
spinor should satisfy the projection

εA = iσ3
A
Bγ23εB = σ3

A
Bγ01εB, (3.90)

while in the full supersymmetric case no projection is involved.

3.7.1 Analysis of the BPS conditions
We can think of the Killing spinor as separating into two parts: one on AdS2 and
one on S2. The AdS2 part transforms in the standard way under the SO(2, 1)
isometries of the AdS space, while the spherical part remains a scalar under rota-
tions. The t and r components of the gravitino variation are therefore non-trivial
due to the dependence of the spinor on these coordinates. We are however not
directly interested in the explicit dependence, but only in considering the integra-
bility condition for a solution to exist, given by D[tDr]εA = 0 for all A = 1, 2.
Plugging the metric and gauge field ansatz, we obtain the equations

1
2v2

1
= |W |2 + 1

v4
2
|Z(Γ)|2 (3.91)

and
〈G,Ftr〉 = 0. (3.92)
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The solution to these conditions ensure that the gravitino variation on AdS2 is
vanishing.
Turning now to the spherical part, we derive the two independent conditions

i
1
v2

2
Z(Γ) = −Z(G) (3.93)

and
〈G,Γ〉 = −1. (3.94)

The latter equation is just the usual Dirac quantization condition that seems to
accompany the solutions of magnetic type like the one we are dealing with. By using
(3.93) we can simplify (3.91) and thus recast the equations in the more suggestive
form

v−2
1 = 4 |Z(G)|2 , v2

2 = −i Z(Γ)
Z(G) . (3.95)

Moving now to the gaugino variations, the condition for the scalars to be constant
leaves us with one additional condition for each scalar on the background solution:

− iZi(Γ) = v2
2Zi(G). (3.96)

This concludes our analysis for the case of gauged supergravity, proving that we
can ensure that AdS2 × S2 with radiuses v1 and v2 preserved half of the super-
symmetries by satisfying equations (3.91)-(3.94) within the metric and gauge field
ansatses chosen above. We would like now to see whether these BPS conditions
admit solutions describing asymptotically flat black holes. First we notice that the
condition

− 4Im
(
Z̄(Γ)V

)
= Γ + v2

2JG (3.97)

is equivalent to (3.93) and (3.96), where (3.91) has been used to fix the AdS2
radius. Taking the inner product of the latter expression with the gauging, and
using (3.94), we can show that the radius of the sphere is given by

v−2
2 = 2gījZi(G)Z̄j̄(G)− 2 |Z(G)|2 . (3.98)

When we impose the flatness of the potential, the latter equation combined with
(3.91) implies that v2 = v1, which is a necessary condition for the black hole to be
asymptotically flat. The BPS attractor equation (3.97) becomes then

− 4Im
(
Z̄(Γ)V

)
= Γ + 1

2R, (3.99)

where we have used the definition of very small vector (3.74). This is just the generic
BPS attractor equation for asymptotically flat black holes for the gauged theory
(note that the corresponding ungauged theory is non-BPS). We can conclude that
the near horizon geometry of static asymptotically flat extremal black holes can
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Attractor Global

G = 0 j = 0 Full BPS 1/2 BPS

G ∈ S, flat

j = 0 1/2 BPS non−BPS

j 6= 0 1/4 BPS non−BPS

G /∈ S, AdS

j = 0 1/2 BPS 1/4 BPS

j 6= 0 ? ?

Table 3.1: An overview of supersymmetry properties of under-rotating attractors
and full solutions in abelian gauged and ungauged theories, depending on whether
the vector of gaugings G is vanishing or lies in the very small orbit S or not. Th
“?” for the under-rotating case in AdS signifies not only that the supersymmetry
properties of these solutions are not analyzed, but also that their existence is not
even certain.

be viewed as a special case of the general attractor geometry for BPS black holes
in abelian gauged supergravity, upon restricting to the case where the potential
is flat. In addition, when the FI terms are vanishing we immediately obtain the
BPS attractor equations for ungauged supergravity, preserving the full N = 2
supersymmetry. This provides a unifying picture, since the BPS attractor equation
(3.97) appears to be universal for static extremal black holes in N = 2 theories,
independent of the asymptotic behavior (Minkowski or AdS) or on the amount of
supersymmetry preserved. Note also that since the Lagrange multiplier we used to
ensure that G is a very small vector is a constant at the horizon, asymptotically
AdS and Minkowskian solutions are undistinguishable in this region.
We present our results just for the static case, but our discussion and the squaring
procedure can be generalized to stationary solutions as well (see [12] for details).
The results for both the attractor and the global geometries are summarized in
Tab. 3.1.
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3.8 Asymptotically AdS4 solutions
In literature, the procedure of squaring the action to obtain first-order equations
was originally carried out for asymptotically AdS solutions. Given the very close
similarity between the equations describing the asymptotically flat and asymptot-
ically AdS systems, it is possible to use some of the objects we have introduced in
the ungauged case to clarify the structure of asymptotically AdS static solutions.
The ansatz for the metric of the black hole is given in (3.21), which allow for a
non-flat three-dimensional base, and the flow equations are given by (3.46)-(3.48).
We would like to discuss the properties of the gauged solutions along the same
line of section 3.5, where we introduced the dual very small vector R and found
constraints restricting the form of the allowed harmonic functions. Of course the
main difference between the asymptotically flat and the asymptotically AdS case is
that an extra metric function enters in place of the Lagrange multiplier. Moreover,
since the gauging field G is not a very small vector anymore, R is not a very small
vector either. We should also note the different role of the constant m defined in
(3.75): in the asymptotically flat case m is an arbitrary constant allowing us to get
the most general solution, while the analysis of the asymptotic fall-off of the terms
of the flow equation for the scalar, (3.44), shows that in the gauged case we need
to choose m = 0, as a non-zero m would spoil the behavior of the scale factor of
the metric at infinity.
Using the definition (3.74) with m = 0 we find

|Z(G)|2R = JG. (3.100)

This expression allows us to rewrite the flow equation for the section as

2e2ψ
(
e−U Im

(
e−iαV

))′
− 2e2ψ |Z(G)|2R + 4e2ψ−U (Qr + α′) Re

(
e−iαV

)
+ Γ = 0.

(3.101)
It is natural to use the ansatz

2e−U Im
(
e−iαV

)
= re−ψH, (3.102)

which implies that the Kähler connection is vanishing

Qr + α′ = 0. (3.103)

By choosing eψ = r, the ansatz (3.102) reduces to the asymptotically flat one (3.78)
for m = 0, while in general, combined with the equation of motion for ψ presented
in (3.44), it gives (

eψ
)′

= r〈G,H〉. (3.104)

The integration of the equation (3.101) can be done directly, but it is much simpli-
fied, using some intuition borrowed from the asymptotically flat case. In particular,
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we claim that the constraint (3.80)

1
2I
′
4
M(H, G) = 〈G,H〉HM − 2〈G,H〉

〈G,R〉
RM (3.105)

is relevant also for the asymptotically AdS case, where G and R are generic vectors.
Although we cannot prove it in general, such a constraint homogeneous in H, G
and R is reasonable given the similarity of the flow equations and the fact that
the two ansatses (3.78) and (3.102) are related by a rescaling of a function. The
meaning of the constraint is still that given a vector of gauging the set of charges is
fixed, but now those charges cannot be read directly from the poles of the harmonic
functions H. Its validity for asymptotically AdS solutions is important because, as
in the asymptotically flat case, it is much easier to compute R from the constraint,
instead of performing the tedious direct computation involving the matrix J .
As an example, we present the STU model for both asymptotically flat and asymp-
totically AdS solutions, pointing out the differences between the two and the role
of the constraint.

3.8.1 STU model
By fixing the sympletctic basis, the STU model is defined by the prepotential

F = X1X2X3

X0 . (3.106)

Asymptotically flat solutions

The very small vector G can be chosen in such a way that only one of its constant
components is non-vanishing. For example, we can take

G = (0, 0; 1, 0)T , (3.107)

keeping in mind that this choice is not unique. The second very small vector R is
then given by

R = (−4, 0; 0, 0)T . (3.108)
The charges of the solutions are given by the poles in the following choice of the
harmonic functions

H =
(
H0, 0; 0, Hi

)
, (3.109)

where
Hi = hi + qi

r
, H0 = h0 + p0

r
, (3.110)

hi and h0 being constants. Using (3.78), we can find the explicit expression for the
physical scalars

ti = M − ie−2U

2H0Hi

, (3.111)
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and for the real part of the section

2 e−U Re(e−iαV) = e2U
(
M H0, −H0 |εijk|HjHk ; −M2

H0 − 2H1H2H3, M Hi

)T
,

(3.112)

where M is a dipole harmonic function

M = m+ j cos θ
r2 . (3.113)

The constraint equation (3.80) is of course satisfied, and we can find the explicit
form of the metric (3.59):

e−4U = 4H0H1H2H3 −M2, dω = −dM. (3.114)

Near horizon solution

The near horizon limit is taken by simply dropping the constants h0 and hi in the
harmonic functions. The scalars (3.111) become

zi = j cos θ − ie−2U

2p0qi
, (3.115)

while the near horizon metric is given by

ds2 = −e2U r2 (dt+ ω)2 + e−2U
(
dr2

r2 + dθ2 + sin2 θdφ2
)
,

e−4U = 4 p0 q1q2q3 − j2 cos2 θ ω = j
sin2 θ

r
dφ . (3.116)

Asymptotically AdS solutions

The FI terms are no longer given by a very small vector, but we can choose a frame
where they are given by

G =
(
0, gi; g0, 0

)T
. (3.117)

We consider a vector of single center harmonic functions

H =
(
H0, 0; 0, Hi

)
, (3.118)

where
H0 = α0 + β0

r
, Hi = αi + βi

r
. (3.119)
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Note that these expressions are closely similar to those for the asymptotically flat
case, but here the poles of the harmonic functions do not correspond to the charges.
We can use (3.102) to compute

e−URe
(
e−iαV

)
= re−ψe2U

(
0, 1

2H
0
∣∣∣εijk∣∣∣HjHk; H1H2H3, 0

)T
(3.120)

and
r−4e4ψe−4U = 4H0H1H2H3. (3.121)

We should also satisfy (3.104), for which a choice of the solution is given by

〈G,H〉 = 2, eψ = r2 + c, (3.122)

where c is an arbitrary integration constant and the first expression is a simplifying
condition.
Using the flow equation for the section (3.101), we find the constraints

α0g0 = αigi , p0 = cα0 − 2(β0)2g0 , −qi = cαi − 2(βi)2gi, (3.123)

where there is no implicit sum in the repeated indices and each equation is thus
valid for each index i separately. Thanks to (3.100), the expression for the dual of
G, R, is then given by

R0 = g0 (H0)2 , Ri = gi (Hi)2 , (3.124)

where again there is no implicit sum.
It is now straightforward to check that the constraint (3.105) is automatically
satisfied.

3.9 Summary
In this chapter we study a connection between asymptotically AdS and asymp-
totically flat solutions via an ungauging procedure. We consider the bosonic La-
grangian for abelian U(1) supergravity coupled to nV vector multiplets. The un-
gauged and the gauged theory are simply related by the addition of the scalar
potential, where the FI terms appear:

Lg = L0 + V. (3.125)

A so-called “squaring procedure” is available for asymptotically AdS solutions and
it allows to write first-order differential equations of motions which are explicitly
solvable. The asymptotically flat limit is reached for vanishing FI gaugings, but
since the potential V is not positive-definite, this is not the only possibility. We
therefore introduced a Lagrange multiplier taking into account the flatness of the
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potential, and proceeded to generalize the squaring procedure for ungauged theo-
ries. The solution can be expressed in terms of harmonic functions, and it is easy
to make contact with the generic single-center solution present in literature [8].
In particular, by introducing the very small vector R, dual to the gauging vector
G, we show the existence of a constraint for the allowed electro-magnetic charges
implying that the harmonic functions lie in a Lagrangian submanifold that includes
R.
The next step in the analysis of the solution is the study of the supersymmetric
variations. All supersymmetry variations for the bosons are automatically zero by
the assumption of vanishing fermions. The variations of the fermions are different
if we consider vanishing FI terms or flat potential with non-vanishing FI terms,
because of the presence of the Lagrange multiplier. At the horizon the Lagrange
multiplier becomes a constant, thus the asymptotically flat and the asymptotically
AdS theories coincide and the both belong to the BPS class.
We moved then to analyze asymptotically AdS solutions by using the methods
borrowed from the study of asymptotically flat solutions. Indeed, the equations
describing the systems for the gauged and ungaged theories are very closely re-
lated: the only difference is that an extra metric function enters in place of the
Lagrange multiplier. In particular, the constraint restricting the form of the al-
lowed electromagnetic charges is still valid, even if R and G are not very small
vectors anymore.
In the last part of the chapter we present the STU model for asymptotically flat and
asymptotically AdS solutions as an example to enlighten differences and similarities
between the two theories.
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Chapter 4

Holographic perfect-like fluids,
black hole uniqueness and
transport coefficients

Within the AdS/CFT correspondence, an interesting limit is the one where the
dynamics of the field theory reduces to that of an effective classical fluid dynamics.
Under the holographic map, the dual of this long wavelenght regime is given by
classic black hole solutions. After a review of relativistic fluid dynamics, we present
two different techniques to find fluids dual to black hole solutions: the expansion
with respect to the velocity field in the boundary and the one with respect to
the holographic radial coordinate. We focus then on the latter type of expansion
for known four-dimensional stationary black hole solutions. We give the proper-
ties of the boundary geometries, focusing in particular on the vorticity properties
and on the analogue gravity interpretation. Then, we point out that black-hole
uniqueness constraints the transport coefficients to vanish, and we derive condi-
tions under which the expansion can be resummed to find an exact solution of
Einstein’s equations.

4.1 Introduction and motivations
The fluid/gravity correspondence states that there can be a regime such that the
degrees of freedom living on the boundary of an asymptotically AdSD space-time
are described by the hydrodynamics of a relativistic fluid in D − 1 dimensions.
Consequently, the dynamical equations of the fluid in the boundary are encoded in
the asymptotic behavior of the bulk Einstein’s equations.
From the boundary point of view, a holographic mapping to classical gravity sys-
tems can in principle help gaining insights on some theoretical challenges of fluid
dynamics. For example, finding globally regular solutions for non-relativistic in-
compressible viscous fluids, described by the Navier-Stokes equations remains an
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open question, and more challenging is to reach a detailed understanding of turbu-
lence.
From the bulk point of view, the holographic duality allows to construct in a sys-
tematic way dynamical black hole solutions with regular event horizon (see for
example the review [43]).
Within the AdS/CMT correspondence, the fluid/gravity duality aims as well at
finding new computational tools for strongly coupled condensed matter systems
using holography. In particular, we will focus on rotating boundary fluids, to
which will correspond stationary black hole solutions in the bulk. This can lead to
insights in some ultra-cold-atom systems, like fast rotating gases [42], that could
be studied with holography techniques. Furthermore, by studying the sound/light
propagation through the boundary fluid we can give an holographic description
of acoustic/luminal analogue gravity [21]. This analogue gravity interpretation
opens up the possibility for applications to meta-materials with dedicated acoustic
or optical properties. The crucial feature is here the sound/light propagation in
supersonically/superluminally (with respect to the local velocity of sound/light)
moving media.

4.2 Relativistic fluid dynamics
We give here a brief review of relativistic fluid dynamics [44], [45], and we focus
later on conformal fluids [35], [43].
Fluid dynamics is the effective description of some interacting quantum field the-
ories when the fluctuations are of sufficiently long wavelength. This description
is intrinsically statistical in nature, since it is the collective macroscopic physics
of a large number of microscopic constituents. The situation can be pictured as
follows: sufficiently long-wavelenght variations are slow on the scale of the local
energy/density temperature. Then, at any given point of the system we expect
to encounter a domain where the local temperature is roughly constant. Different
domains will be then described by different values of the intrinsic thermodynamic
variables. Fluid dynamics describe how these different domains interact and ex-
change conserved quantities.
More formally, any interacting system is characterized by an intrinsic length scale:
the mean free path length `mfp. In the kinetic theory context, `mfp characterizes the
length scale for the free motion between successive collisions. The hydrodynamic
limit is defined as the regime in which the scale of the system L is much larger than
`mfp, and thus in a small region compared to L the constituents of the system in-
teract among each others several times, thermalizing locally. As a consequence, we
can treat the long-distance system as a fluid described by thermodynamic macro-
scopic quantities.
We refer to relativist hydrodynamics when the microscopic components of the fluid
are constrained by Lorentz symmetry. Consider a fluid living in a d-dimensional
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space-time with metric
ds2 = gµνdx

µdxν . (4.1)

Due to the presence of dissipative terms, hydrodynamics is generally formulated
by the analysis of the equations of motion, rather then starting from an action
principle. Under the hypothesis of uncharged fluid, the dynamical content of the
hydrodynamic equation is given by the Euler equation, found by imposing the
conservation of the energy:

∇µT
µν = 0, (4.2)

where T µν is the energy-momentum tensor. In d dimensions, the number of in-
dependent components of T µν is 1

2d(d + 1), while (4.2) has d equations. Thus,
for d > 2 we have more variables then equations. To close the system, we need
to reduce the number of independent component of the energy-momentum tensor.
Since if the perturbations are large compared to `mfp the system is in local thermal
equilibrium, at any given time it is determined by the temperature T (x) and by
the velocity field uµ(x), describing the flow of the thermodynamic quantities. By
normalizing the velocity to −1, i.e. uµuµ = −1, the total number of independent
fields is d and we have the same number of equations and variables.
The dependence of T µν in terms of T (x) and uµ(x) is given by the so-called “con-
stitutive relation”. Since we assume the deviation from equilibrium to be small,
we expect the contribution of the terms at higher order in derivatives of T (x) and
uµ(x) to be increasingly subdominant in the hydrodynamic limit. For that, we
write the constitutive relation in a derivative expansion:

T µν =
∞∑
n=0

T µνn , (4.3)

where the n-term is the nth order in the derivatives of the fluid fields, giving a
contribution of order

(
llfp
L

)n
.

4.2.1 Ideal fluids
We start with the description of ideal fluids, which have no dissipation. By going
to a local rest frame, where the velocity field is aligned with the direction of the
energy flow, i.e. u0 = 1, ui = 0, where i are the spatial coordinates, we can identify
the components of the energy-momentum tensor as the energy density ε and the
pressure P :

(T µν)ideal = diag [ε, p, p, · · · ] . (4.4)

By acting on (4.4) with a finite boost transformation with velocity field uµ we
obtain the energy-momentum tensor in covariant formalism:

(T µν)ideal = εuµuν + p (gµν + uµuν) . (4.5)
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It is useful to define the projector onto the spatial directions

P µν = gµν + uµuν . (4.6)

It is a symmetric positive definite tensor satisfying

P µνuν = 0, P µρPρν = P µ
ν = P µρgρν , P µ

µ = d− 1. (4.7)

The ideal energy-momentum tensor takes then the form

(T µν)ideal = εuµuν + pP µν . (4.8)

4.2.2 Dissipative fluids
Adding dissipation terms is necessary for a fluid system to equilibrate when per-
turbed away from a given equilibrium configuration. To add dissipative contri-
butions, like viscosity and thermal conduction, it is necessary to go beyond the
zeroth order in the derivative expansion. For a fluid in local thermal equilibrium,
the energy-momentum tensor generalizes to

T µν = εuµuν + p (gµν + uµuν) + T µνn , (4.9)

where T µνn , n > 0, represents the potentially dissipative terms, to be determined
in terms of derivatives of T (x) and uµ(x) and of the thermodynamic variables ε, p.
In relativist fluids it is not possible to distinguish between mass and energy fluxes,
one flux involving necessarily the other. For this reason it is convenient to fix the
velocity field in an unambiguous way. Different conventions can be used, and in
particular we choose here the so-called Landau frame, in which at equilibrium the
components of the energy-momentum tensor which are longitudinal to the velocity
are associated with the energy density:

uµT
µν = −εuν . (4.10)

As a consequence, the dissipative contributions to the energy-momentum tensor
must satisfy

T µνn uµ = 0. (4.11)
Note that within this choice of frame we have no energy flow in the local rest frame.
We now consider the decomposition of the velocity gradient ∇νuµ into irreducible
representations of the Lorentz group: a mixed contribution given by the accelera-
tion aµ and a fully transverse part. The latter can be decomposed into a symmetric
traceless tensor, the shear σµν , an antisymmetric tensor, the vorticity ωµν , and a
pure trace part, the expansion rate θ. The decomposition reads

∇νuµ = −aµuν + σµν + ωµν + 1
d− 1θP

µν , (4.12)
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with the various components defined as

θ = ∇µu
µ = P µν∇µuν , (4.13)

aµ = uν∇νu
µ ≡ Duµ, (4.14)

σµν = ∇(µuν) + u(µaν) − 1
d− 1θP

µν = P µρP νσ∇(ρuσ) −
1

d− 1θP
µν , (4.15)

ωµν = ∇[µuν] + u[µaν] = P µρP νσ∇[ρuσ], (4.16)
where we have introduced the velocity projected covariant derivative D ≡ uµ∇µ.
Note also our conventions for the symmetrization and anti-symmetrization, which
are respectively

A(ab) = 1
2 (Aab + Aba) , A[ab] = 1

2 (Aab − Aba) . (4.17)

For further convenience, for any rank-two tensor Fµν we define the bracket tensor
〈Fµν〉, which is symmetric, traceless and transverse:

〈Fµν〉 = P µρP νσF(ρσ) −
1

d− 1P
µνP ρσFρσ. (4.18)

Due to the normalization of the velocity field, uµuµ = −1, the following identities
hold:

uµ∇νuµ = 0, ∇ρu
µ∇σuµ = −uµ∇ρ∇σuµ, uµa

µ = 0, (4.19)

where the last one states the tracelessness of aµuν .
To determine the first order contributions to the energy momentum tensor in the
gradient expansion, we write the more general symmetric two-index conserved
((4.2)) tensor satisfying the Landau frame condition (4.10) built out of first-order
derivatives of the velocity field. Those contributions are given by:

T µν1 = −2ησµν − ζθP µν , (4.20)

where we have introduced the shear viscosity η and the bulk viscosity ζ. We thus
obtain a first order viscous fluid:

T µν = εuµuν + p (gµν + uµuν)− 2ησµν − ζθP µν . (4.21)

We can explicitly show that this corresponds to Navier-Stokes equations of motion
by imposing the conservation of the energy-momentum tensor. In particular, we
project the conservation equation along the fluid velocity and along the transverse
direction, obtaining respectively

uν∇µT
µν = −Dε− (p+ ε)∇µu

µ + uν∇µT
µν
1 = 0, (4.22)
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and
Pρν∇µT

µν = (ε+ p)Duρ +∇ρp+ uρDp+ Pρν∇µT
µν
1 0. (4.23)

The spatial components of the latter represent the generalization of the Euler
equation in presence of dissipative effects, that is the Navier-Stokes equations for
compressible relativistic fluids. In the non-relativistic limit |v| << 1 we have

uµ ≈ {1, ~v}, D ≈ ∂0 + ~v · ~∂, (4.24)

and the equation of state are characterized by ε >> p, and the energy density is
dominated by matter. Assuming the incompressible condition ∂ivi, (4.23) becomes

∂0vi +
(
~v · ~∂

)
vi = −1

ε
∂ip+ η

ε
∂j∂

jvi, (4.25)

which is the incompressible non-relativistic Navier-Stokes equation.

4.3 Conformal fluids
Since the fluid theory appears in the boundary of a gravitational theory, it will be
conformally invariant. It is thus useful to study conformal fluids in details.

4.3.1 Weyl transformation of the energy-momentum tensor
The energy-momentum tensor enjoys different simplifications: first, due to scale
invariance, the energy-momentum tensor for conformal theories is traceless. Im-
posing this condition on the energy-momentum tensor with first-order dissipative
effects (4.21) we get

p = 1
d− 1ε, ζ = 0. (4.26)

Hence, conformal fluids have no bulk viscosity, and the energy-momentum tensor
at first order reads

T µν = ε (gµν + d uµuν)− 2ησµν . (4.27)

The second simplification occurring is that T µν must transform in a covariant way
under Weyl rescaling. This will restrict the possible terms appearing in the energy-
momentum tensor at higher orders in the derivative expansions. Last, since there
are no dimensionful scales involved, the dependence of the various hydrodynamic
quantities on the temperature is determined by dimensional analysis.
To understand the conformal properties of the energy-momentum tensor, we start
considering a Weyl rescaling of the background metric gµν :

gµν = e2φg̃µν → gµν = e−2φg̃µν . (4.28)
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The velocity field will then transform as

uµ = e−φũµ, (4.29)

as a direct consequence of its normalization uµuµ = −1. As a consequence, the
spatial projector will also transform homogeneously

P µν = e−2φP̃ µν . (4.30)

We require that in a conformal theory the dynamical equations are invariant under
conformal transformations. In general, an equation involving a field Ψ is conformal
invariant if there exists a number ω ∈ R such that Ψ is a solution of the equation
with metric gµν if and only if Ψ̃ = eωφΨ is a solution of the equation with metric
g̃µν . The number ω is called the “conformal weight” of the field. This means that
in the case of conformal fluid dynamics we should require

∇µT
µν = e−kφ∇̃µT̃

µν , (4.31)

where k ∈ R and
T µν = e−ωφT̃ µν . (4.32)

The Christoffel symbols transform under Weyl rescaling as

Γνλµ = Γ̃νλµ + Π̃ν
λµ,

Π̃ν
λµ = δνλ ∂µφ+ δνµ ∂λφ− g̃λµ g̃νσ ∂σφ ,

(4.33)

which implies that the covariant derivative of the energy-momentum tensor is given
by

∇µT
µν = ∇̃µ

(
eωφT̃ µν

)
+ eωφΠ̃µ

µλT
λν + eωφΠ̃ν

µλT
µλ

= eωφ∇µT
µν + (−ω + d+ 2) e(ω−1)φT µν∂µe

φ + e(ω−1)φT∇νeφ,
(4.34)

where T = gµνT
µν . Since the theory is conformal, the trace of the energy-momentum

tensor vanishes, thus T = 0. Hence, the equation of motion of fluid-dynamics is
conformal invariant if the energy-momentum tensor has conformal weight ω = d+2,
that is it transforms as

T µν = e−(d+2)φT̃ µν . (4.35)

To construct the fluid energy-momentum tensor at higher orders we simply need to
enumerate the set of operators in our gradient expansion which transform homo-
geneously under (4.28). Let us consider the situation at first order in derivatives
explicitly. The covariant derivative of the velocity field uµ transforms inhomoge-
neously:

∇µu
ν = ∂µu

ν + Γνµλ uλ = e−φ
[
∇̃µ ũ

ν + δνµ ũ
σ ∂σφ− g̃µλ ũλ g̃νσ ∂σφ

]
. (4.36)
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This equation can be used to derive the transformation of various quantities of
interest in fluid dynamics, such as the acceleration aµ, shear σµν , etc..

θ = ∇µu
µ = e−φ

(
∇̃µũ

µ + (d− 1) ũσ ∂σφ
)

= e−φ
(
θ̃ + (d− 1) D̃φ

)
,

aν = Duν = uµ∇µu
ν = e−2φ

(
ãν + P̃ νσ ∂σφ

)
,

σµν = P λ(µ∇λu
ν) − 1

d− 1 P
µν ∇λu

λ = e−3φ σ̃µν

(4.37)

Armed with this information, we are able to write the first-order energy-momentum
tensor for a conformal viscous fluid as

T µν = ε (gµν + d uµuν)− 2ησµν . (4.38)

where the coefficient of the bulk viscosity, ζ, has to vanish because the expansion
θ transforms inhomogeneously. Note that this is indeed equivalent to (4.27).

4.3.2 Weyl covariant formulation of conformal fluid dynam-
ics

In a straightforward way, one can carry on the same exercise and write order
by order the gradient expansion of the energy-momentum tensor. However, it is
useful to work in a more abstract way to take into account in a better way the Weyl
transformation properties of the operators in the theory. In particular, following
[34], we define a Weyl covariant derivative in terms of which the fluid mechanics can
be cast into a manifestly conformal language. To do so, we first need to define the
Weyl connection over (M, C), whereM is the space-time manifold and C denotes
the conformal class of metrics on the manifold. A torsionless connection is called
a Weyl connection if for every metric in the conformal class C there exists a one
form Aµ such that

∇Weyl
ρ gµν = 2Aρgµν . (4.39)

We then define the Weyl covariant derivative ∇DWeyl
µ = ∇µ + ωAµ in such a way

that if a tensorial quantity Qµ···
ν··· obeys Qµ···

ν··· = e−ωφQ̃µ···
ν···, then DρQ

µ···
ν··· = e−ωφQ̃µ···

ν···.
Its expression is given by

∇DWeyl
ρ Qµ···

ν··· ≡ ∇ρQ
µ···
ν··· + ωAρQµ···

ν···

+
(
gρσAµ − δµρAσ − δµσAρ

)
Qσ···
ν··· + · · ·

−
(
gρνAσ − δσρAν − δσνAρ

)
Qµ···
σ···.

(4.40)

The dots stay for the contractions with the following index of Qµ···
ν···, which we don’t

write explicitly. From (4.39) follows immediately that the covariant derivative is
metric compatible,

∇DWeyl
ρ gµν = 0, (4.41)
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since the metric tensor has weight ω = −2. In addition, fluid mechanics requires
the Weyl covariant derivative of the fluid velocity to be transverse and traceless:

uρDρuµ = 0, Dρuρ = 0. (4.42)

These conditions enable to uniquely determine the connection one-form Aµ to be
the distinguished vector field

Aµ = uρ∇ρuµ −
1

d− 1uµ∇
ρuρ ≡ aµ −

1
d− 1θuµ. (4.43)

The quantities appearing in the gradient expansion of the energy-momentum tensor
can be now written in this Weyl covariant notation. For example, at first order we
have

σµν = D(µuν), ωµν = −D[µuν], (4.44)
both of which have weight ω = 3. The fundamental equations of fluid mechanics
can be reformulated in a Weyl-covariant form. For example, the equation of energy
conservation is simply recast as

DµT µν = 0, (4.45)

since

DµT µν = ∇µ T
µν + wAµ T µν +

(
gµαAµ − δµµ Aα − δµαAµ

)
Tαν (4.46)

+
(
gµαAν − δνµAα − δναAµ

)
T µα

= ∇µ T
µν + (w − d− 2)Aµ T µν −Aν T µµ

= ∇µT
µν , (4.47)

where we have used the conformal weight ω = d + 2 of the energy-momentum
tensor. We mention here that for CTFs on curved manifolds in even space-time
dimensions we encounter the Weyl anomaly W . By incorporating it, the fluid
dynamical equations are given by

DµT
µν = ∇µT

µν +Aν
(
T µµ −W

)
= 0. (4.48)

4.3.3 Non-linear conformal fluids
We now discuss the general conformal fluid up to second order in the derivative
expansion by using the Weyl covariant formalism. At second order, the possible
operators transforming homogeneously that can appear are either two-derivative
expressions acting on the dynamical degrees of freedom or terms involving squares
of first derivatives. We start with the operators which can be build solely from the
velocity field:

DµDνuλ = Dµσνρ +Dµωνρ = e−φD̃µD̃ν ũρ

Dρσµν = eφ D̃ρσ̃µν , Dρωµν = eφ D̃ρω̃µν .
(4.49)
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In addition, we have terms involving squares of first derivative operators:

σµρ σ
νρ = e−4φ σ̃µρ σ̃

νρ , ωµρ ω
νρ = e−4φ ω̃µρ ω̃

νρ , σµρ ω
νρ = e−4φ σ̃µρ ω̃

νρ ,
(4.50)

We also have operators involving the temperature T , which has conformal weight
ω = 1. The terms involving no more than two derivatives are

DµT = e−φD̃µT̃ ,

DρDσT = e−φD̃ρD̃σT̃ .
(4.51)

To complete the classification, we need to study the terms appearing from com-
mutators of covariant derivatives on the curvature tensors. All such tensors can be
written in the Weyl covariant formalism, and in particular for d > 3 we have one
symmetric traceless tensor involving two derivatives:

Cµνρσu
ρuσ = C̃µνρσũ

ρũσ, (4.52)

where Cµνρσ is the Weyl tensor.

4.3.4 The non-linear conformal energy-momentum tensor
At first two orders in the derivative expansion, the set of symmetric traceless tensors
which transform homogeneously under Weyl rescaling are:

First order : σµν

Second order : F1µν = 2uρDρσµν , F2µν = Cµρνσu
ρuσ,

F3µν = 4σρ<µσν>ρ, F4µν = 2σρ<µων>ρ,
F5µν = ωρ<µων>ρ.

(4.53)

The general contribution to the energy-momentum tensor is thus given by
Πµν

(1) = −2ησµν

Πµν
(2) = τπηFµν1 + κFµν2 + λ1Fµν3 + λ2Fµν4 + λ3Fµν5 .

(4.54)

In general, the value of the six transport coefficients η, τπ, κ, λi, for i = {1, 2, 3} is
determined holographically using the bulk gravitational theory.

4.4 Holographic derivative expansion
We present here the first type of holographic expansion: the one in derivatives
of the velocity field [26]. We first start with a static black brane solution, to
which will correspond a perfect fluid configuration on the boundary. Then, by
promoting the parameters of the black brane to slowly varying functions, and
imposing order by order in the perturbative expansion that the metric is a solution
of Einstein’s equation, we find at the boundary Navier-Stokes equations and higher
order corrections.
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4.4.1 Preliminaries: Schwarzschild black holes in AdSd+1

We start by considering the planar Schwarzschild-AdSd+1 black hole written in
Poincaré patch:

ds2 = −r2f(br)dt2 + dr2

r2f(br) + r2δijdx
idxj, (4.55)

where
f(r) = 1− 1

rd
. (4.56)

The boundary energy-momentum tensor is computed by regulating the asymptot-
ically AdSd+1 metric at some cut-off hypersurface r = ΛC and considering the
induced metric on this surface gµν . This holographic energy-momentum tensor is
given in terms of the extrinsic curvature Kµν and of the metric data on the hyper
surface. Denoting the unit outward normal to the surface by nµ we have

Kµν = gµρ∇ρnν . (4.57)

For (4.55), the energy-momentum tensor is just the one of a perfect fluid in the
rest frame

T µν = εηµν + puµuν , (4.58)
where the conformal condition (4.26) is holding. This result is not surprising, since
the solution in the bulk is static and therefore we expect it to correspond to global
thermal equilibrium.
By boosting the solution (4.55) along the translationally invariant spatial directions
xi we generate the d parameters family of solutions

ds2 = dr2

r2f(br) + r2 (−f(br)uµuν + Pµν) dxµdxν , (4.59)

where

u0 = 1√
1− β2 ,

ui = βi√
1− β2 ,

(4.60)

βi being the parameter associated with the boost, β2 = βiβ
i, and b the one as-

sociated with the r-dilation. We also remember that P µν is the spacial projector
defined in (4.6). The boosted black brane (4.59) can be understood physically as
follows. The isometry group of AdSd+1 is SO(d, 2). The Poincaré algebra plus
dilations form a distinguished subalgebra of this group. The rotations SO(d) and
the translations R1,d−1 that belong to this sub algebra annihilate the static black
brane solution (4.59) in AdSd+1 because of the symmetries of this background.
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However, the remaining symmetry generators, that is the dilations and the boosts,
act nontrivially on this brane, generating a d parameter set of black hole solutions.
The energy-momentum tensor for the boosted black brane is still the one of an
ideal conformal fluid.
In order to describe hydrodynamics, we should perturb the system away from global
equilibrium. It it natural to do it by promoting the parameters of the boosted black
brane to be slowly varying functions of the boundary coordinates xµ. Together with
this, we should also let the boundary metric vary. The boundary fluid dynamics is
governed by the conservation of the energy-momentum tensor,

∇µT
µν = 0, (4.61)

where T µν is modified by adding derivatives of the parameters, that is by express-
ing it in a gradient expansion. The bulk metric (4.59) with local parameters is no
longer a solution to Einstein’s equations. Since we are assuming slowly variations
of the parameters, we will be able to construct a solution of Einstein’s equations
starting from (4.59) by doing a derivative expansion.
Hence, the fluid/gravity correspondence gives a natural framework to derive the
fluid dynamic energy-momentum tensor from the gravitational bulk. This proce-
dure determines in principle the various order transport coefficients in an ambiguous
way.

4.4.2 The perturbative procedure
As we said, if the parameters {b, βi} are promoted to local functions of the bound-
ary coordinates {t, xi}, the metric does not satisfy Einstein’s equations anymore.
However, it is possible to construct a new solution by modifying the starting met-
ric and by constraining the local parameters. The boundary dual of the resulting
metric can be interpreted as a fluid with dissipative contributions for d > 2, and
the parameters {b, βi} are connected with the fluid temperature and velocity.
To implement the procedure, it is first useful to write (4.59) in Eddington-Finkelstein
coordinates:

ds2 = −2uµdxµdr − r2f(br)uµuνdxµdxν + r2Pµνdx
µdxν . (4.62)

Note that this metric can be also casted in a Weyl covariant form as

ds2 = −2uµdxµ (dr + rAµdxµ)2
r (1− f(br))uµuνdxµdxν + r2gµνdx

µdxν . (4.63)

The main reason to use this chart of coordinates is that in this frame the solution is
regular everywhere except at the origin r = 0, and in particular it is regular at the
future horizon. This implies that the map from the space of distinguished solutions
of fluids to solutions of Einstein’s equations in the bulk is one to one. Moreover,
these coordinates provide a clear physical interpretation of the locally equilibrated
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fluid dynamical domains in the bulk geometry. In particular, the boundary do-
mains where the local thermal equilibrium is attained exited along ingoing radial
null geodesics into the bulk. Thus, a given boundary domain correspond to a tube
of width set by the scale of variation in the boundary. By patching together these
tubes we obtain a solution to Einstein’s equations and, moreover, this patching can
be done order by order in boundary derivatives.
The outline of the perturbation scheme is as follows. First we replace the con-
stant parameters b and βi in the metric (4.62) by slowing varying functions of the
boundary coordinates, b(xµ) and βi(xµ):

ds2 = −2uµ(xα)dxµdr − r2f(b(xα)r)uµ(xα)uν(xα)dxµdxν + r2Pµν(xα)dxµdxν .
(4.64)

In general this metric, which we will denote as G(0) (b(xµ), βi(xµ)), is not a solution
to Einstein’s equations. It is still regular everywhere but for r = 0, and if all the
derivatives of the parameters b(xµ) and βi(xµ) are small, it is well approximated
by a boosted black brane. Thus, for slowly varying functions b(xµ) and βi(xµ) it is
intuitive to think that (4.64) is a good approximation to a true solution of Einstein’s
equations with regular even horizon. This is indeed the case, provided that b(xµ)
and βi(xµ) satisfy a set of equations of motion which are just the equations for
boundary fluid dynamics.
In particular, in order to find a solution to Einstein’s equations starting from (4.64),
we need to add correction in a power series of a small parameter ε:

G = G(0) (βi, b) + εG(1) (βi, b) + ε2G(2) (βi, b) +O
(
ε3
)
, (4.65)

where G(0) is the metric (4.64) and G(1), G(2), etc, are correction metrics to be
determined. Note that for convenience of notation we dropped the space-time
indices in G(n) and the dependence of the parameters b and βi on xµ. We also need
to correct the velocity and temperature fields order by order in the perturbative
expansion:

βi = β
(0)
i + εβ

(1)
i +O

(
ε2
)

b = b(0) + εb(1) +O
(
ε2
)
,

(4.66)

where β(n)
i and b(n) are functions of εxµ. It is useful at this point to fix a gauge

Grr = 0, Grµ = uµ. (4.67)

With this gauge choice curves of xµ = constant are affinity parameterized null
geodesics in the resulting space-time, with the radial coordinate r being the affine
parameter.
We can now plug the Ansatz (4.65) together with (4.66) into Einstein’s equations
and find the solution order by order in ε. Let us imagine that we have solved the
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perturbation theory to the (n − 1)th order, that we we have determined G(m) for
m ≤ n − 1 and β

(m)
i and b(m) for m ≤ n − 2. By going one order further and

imposing Einstein’s equations, we get an equation of the form

H
[
G(0)

(
β

(0)
i , b(0)

)]
G(n) (xµ) = sn. (4.68)

Here H is a linear differential operator of second order depending only on the co-
ordinate r. As G(n) is of order εn, a boundary derivative would produce a higher
order term in ε. Notice also that H depends only on the value of the parameters
at xµ and not on their boundary derivatives. Thus, H in an ultra local operator in
the boundary direction. Also, H is independent of n: we have the same homoge-
neous operator at every order in perturbation theory. This makes the perturbation
expansion in ε ultra-local in the boundary directions, allowing us to solve the equa-
tions point by point in the boundary. The source terms sn will however depend on
the order of the expansion. They are a local expression of nth order in boundary
derivatives o β(0)

i and b(0), as well as of (n−k)th order in β(k)
i , b(k) for all k ≤ n−1.

The gravitational equation (4.68) form a set of (d+1)(d+2)
2 equations. It is useful to

split these into two classes of equations: a class that determines the metric data
we need, comprising of d(d+1)

2 equations which we call “dynamical equations”, and
a second set of d equations which are first-order in derivatives of r, and which we
call “constraint equations”.

• Constraint equations: They are obtained by contracting the Einstein ten-
sor EMN with the one-form normal to the boundary:

E
(c)
M = EMNξ

N , (4.69)

where in our case ξN = dr and thus ξN = gNr. Considering the boundary
directions of E(c)

M we obtain a set of d equations involving only the parameters
and not the unknown metric corrections. These reproduce the equations of
conservation of the boundary energy-momentum tensor at order n− 1:

∇µT
µν

(n−1) = 0 . (4.70)

We can thus interpret the parameters as fluid quantities. The constraint
equations can be used to determine those parameters, namely b(n−1) and
β

(n−1)
i , and are thus giving the fluid dynamics equations up to order O (εn)

in the gradient expansion, assuming that the solutions at preceding orders
are known.

• Dynamical equation: the remaining equations involve E(C)
r and the dy-

namical Einstein’s equations. They depend in general on both the parame-
ters and on G(n), and they can be used to solve the latter unknown function
in terms of the derivatives of the parameters. Being a nth-order contribu-
tion, G(n) will depend on n derivatives of the parameters. It is convenient
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to classify the dynamical equations according to the representations of the
symmetry group of the zeroth order solution. This is given by rotational sym-
metry in the spatial sections on the boundary, and it is thus the little group
SO(d− 1). By using this symmetry, it is possible to decouple the system of
equations into a set of first order differential operators. Having performed
this diagonalization of the system of equations one has a formal solution of
the form:

G(n) = particular(sn) + homogeneous(H) (4.71)

To determine the solution uniquely we need to prescribe boundary conditions:
we impose that the solution is asymptotically AdSd+1 and also demand reg-
ularity at all r 6= 0. In particular, the solution should be regular at the
hypersurface b r = 1. For an arbitrary non-singular and appropriately nor-
malizable source sn it is always possible to choose such boundary conditions.
Furthermore, if the solution at order n−1 is non-singular at all nonzero r, it is
guaranteed to produce a non-singular source at all nonzero r. Consequently,
the non-singularlity of sn follows inductively.

4.4.3 First order in the derivative expansion
We briefly illustrate how to carry out at first order the formal derivative expansion
we presented in the last section. Consider the zeroth order metric G(0) given in
(4.64). If we want to work to first order in boundary derivatives, we can pick a point
on the boundary xµ = xµ0 , which can be chosen to be at the origin because of the
symmetries of the space without loss of generality. With the technique explained
previously, it is possible to construct the solution of Einstein’s equations at a given
order in a neighborhood of xµ0 . Note that thus the metric is not global. At xµ0 we
can use the local scaling symmetry to set b(0) = 1 and pass to a local inertial frame
so that β(0)

i = 0. Expanding (4.64) up to zeroth-order at xµ0 we get

ds2
(0) = 2 dv dr − r2 f(r) dv2 + r2 dxi dx

i

− 2 δβ(0)
i dxi dr − 2 δβ(0)

i r2 (1− f(r)) dxi dv − d δb
(0)

rd−2 dv
2 ,

(4.72)

where we have introduced δβ
(0)
i = xµ ∂µβ

(0)
i and δb(0) = xµ ∂µb

(0), which are the
leading terms in the Taylor expansion of the velocity and temperature fields at
xµ0 = 0.
We would like now to compute the first order corrections to the metric, that is
G(1). For this, we need need to choose an Ansatz for G(1). As mentioned earlier,
it is useful to use the SO(d − 1) spatial rotation symmetry at xµ0 to decompose
modes into various representations of this symmetry. Modes of G(1) transforming
under different representations decouple from each other by symmetry. We have
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the following decomposition into SO(d− 1) irreducible representations:

scalars: G(1)
vv , G

(1)
vr ,

∑
i

G
(1)
ii ,

vectors: G
(1)
vi ,

tensors: G
(1)
ij

(4.73)

We work sector by sector and solve the constraint and the dynamical Einstein’s
equations.
In the scalar sector, we find that the constraint equations imply that

1
d− 1 ∂iβ

(0)
i = ∂vb

(0) , (4.74)

while in the vector sector we have

∂ib
(0) = ∂vβ

(0)
i . (4.75)

These are just the Euler equations, that is the relativistic Navier-Stokes equations
for zero viscosity and heat conduction terms. They are equivalent to demanding
the energy momentum conservation (4.45) at a given point xµ0 .
The dynamical equations can be used to solve for the functions appearing in G(1),
and we shall demand as well regularity for r 6= 0. We do not present the result here,
but we just mention the form of the differential operator in the various sectors:

vector : Hd−1O = d

dr

(
1

rd−1
d

dr
O
)

tensor : Hd(d+1)
2
O = d

dr

(
rd+1 f(r) d

dr
O
)

(4.76)

which, as advertised earlier, are simple differential operators in the radial variable
alone.
The energy-momentum tensor is given by

T µν = 1
b4 (3uµuν)− 1

b3σ
µν , (4.77)

where the last term takes into account the dissipative effects.
The calculation can in principle be carried out at any desired order in the derivative
expansion. As we discussed earlier, the form of the differential operator (4.68)
remains invariant in the course of the perturbation expansion. Thus, one needs to
compute at any given order the source terms sn and, in addition, to ensure that
the lower order energy-mometum tensor conservation equations are satisfied. The
energy-momentum tensor turns out to be the one quoted in (4.54).
The essential physical points arising from the fluid-gravity correspondence in the
velocity derivative expansion can be summarized as follows:
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• The gravitational derivation of the relativistic Navier-Stokes equations and its
higher-order generalizations confirms the basic intuition that fluid dynamics
is indeed the correct long-wavelength effective description of strongly coupled
field theory dynamics.

• The geometries dual to fluid dynamics turn out to be black hole spacetimes
with regular event horizons. This indicates that the hydrodynamic regime is
special and, in particular, that the fluid dynamical energy-momentum tensors
lead to regular gravity solutions respecting cosmic censorship.

• The explicit construction of the fluid dynamical energy-momentum tensor
leads to a precise determination of higher order transport coefficients for the
dual field theory.

4.5 The Fefferman-Graham expansion
The Fefferman-Graham procedure [36], [27], [28] is an expansion in the holographic
radial coordinate r, as opposed to the perturbative expansion we just presented
which is an expansion in derivatives of the velocity field. In particular, while the
Fefferman-Graham expansion is a large r expansion, the expansion in derivatives of
the velocity field can be seen as a tube going from the bulk to the boundary spaces,
and the higher we go in the expansion the more we increase the width of the angle
of the tube. While with the velocity derivative expansion we have to start from
the Schwarzschild boosted black brane solution, the Fefferman-Graham expansion
allows us to find the holographic fluid dual to any kind of asymptotically AdS black
hole. In particular, it can be proven that any asymptotically AdS metric can be
put in the form

ds2 = L2

r2 dr
2 + r2

L2ηabÊ
a(r, x)Êb(r, x) , (4.78)

where Λ = − 3
L2 = −3k2 is the negative cosmological constant, x design the bound-

ary coordinates and we use the index a, b, . . . for the boundary coordinates. For
torsionless connections there is always a suitable gauge choice such that the metric
(4.78) is fully determined by two coefficients êa and f̂a in the expansion of the
coframe one-forms Êa(r, x) along the holographic coordinate r ∈ [0,∞)

Êa(r, x) =
[
êa(x) + L2

r2 F̂
a(x) + · · ·

]
+ L3

r3

[
f̂a(x) + · · ·

]
. (4.79)

The asymptotic boundary is at r →∞:

ds2
bdy = lim

r→∞

ds2

k2r2 . (4.80)

The ellipses in (4.79) denote terms that are multiplied by higher negative powers
of r. Their coefficients are not independent, but are determined in terms of êa and

71



CHAPTER 4. HOLOGRAPHIC PERFECT-LIKE FLUIDS, BLACK HOLE UNIQUENESS AND
TRANSPORT COEFFICIENTS

f̂a, and have specific geometrical interpretations1, though this is not relevant for
our discussion.
The two independent functions êa(x) and f̂a(x) can be seen as vector-valued one-
forms in the boundary. They can be interpreted as proper canonical variables
playing the role of boundary “coordinate” and “momentum” for the Hamiltonian
evolution along r. For stationary backgrounds, as those we will to consider, êa and
f̂a are t-independent.
Although the Fefferman-Graham expansion is valid in general for asymptotically
AdS metrics in any dimension, we focus now on the case of our interest: that
is, when the fluid dynamics is in D = d − 1 = 2 + 1 dimensions. The boundary
“coordinate” is given by the set of one-forms êa. For this coframe we must determine
the “momentum” of the boundary data. For example, when the boundary data
carry zero mass, we expect the momentum to be zero. In this case f̂a(x) = 0 and
the unique exact solution of the Einstein’s equations is pure AdS4.
More generally, the vector-valued one-form f̂a satisfies

f̂a ∧ êa = 0 , ηabcf̂
a ∧ êb ∧ êc = 0 , ηabcDf̂ b ∧ êc = 0 , (4.81)

where the action of the generalized exterior derivative D on a vector-valued one-
form V̂ a is defined as

DV̂ a = dV̂ a + ηabcB̂
b ∧ êc , (4.82)

and B̂a is the Levi-Civita spin connection associated with êa. The Levi-Civita
symbols ηabc should be treated as tensor densities in curved space. The objects
with correct tensor transformation properties scale as metric determinants, i.e.
ηαβγδ ∝

√
−g, and ηαβγδ ∝ 1√

−g .
The conditions (4.81) imply, respectively, symmetry, absence of trace and covariant
conservation of the tensor T = T aběa ⊗ êb, defined as

f̂a = 1
κ
T (êa) = 1

κ
T abê

b , κ = 3
8πGNL

. (4.83)

Hence, we can interpret the latter of (4.81) as the covariantly conserved energy-
momentum tensor of a conformal field theory. As mentioned, we are interested in
particular in stationary bulk solutions, for which we expect the energy-momentum
tensor be reduced to the perfect relativistic form:

T ab = (ε+ p)uaub + pδab . (4.84)

Although the two necessary ingredients for the description of a relativistic perfect
fluid, namely the boundary frame and the velocity one-form, are nicely packaged
in the leading and subleading independent boundary data, until now we did not
assume any specific relationship between them. Such a relationship is imposed
from the bulk side: to any solution of the gravitational equations will correspond
appropriate boundary conditions.

1For example, the coefficient F̂ a is related to the boundary Schouten tensor.
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4.6 Fluids in 2+1 dimensional Randers-Papapetrou
backgrounds

We would like to specialize to fluids appearing as the boundary of 3+1 dimensional
stationary black holes in the Fefferman-Graham expansion [10], [21]. First we
analyze the additional properties of the boundary fluid when the background is
stationary: namely, the velocity field of such fluids is a Killing vector, and this has
non-trivial consequences on the dynamics. Then, we will discuss the features of the
2+1 dimensional boundary metric, which is in general going to be of the so-called
“Randers-Papapetrou” form.

4.6.1 2+1 dimensional fluids with additional Killing vector
When the background is stationary, the velocity field of the fluid is a Killing vector
field with respect to the boundary metric. In general, a Killing vector field ξ
satisfies

∇(aξb) = 0. (4.85)
They have several remarkable properties, among which we quote:

• they have vanishing expansion,

• a constant-norm2 Killing vector field is furthermore geodesic and shearless.
It can only carry vorticity.

In general, fluids exhibit dissipative phenomena as they describe media with non-
zero shear viscosity. However, such fluids can be in special kinematic configurations
where the effects of dissipation are ignorable3. In this case, their dynamics is
captured by the perfect part of the energy-momentum tensor and the equations of
motion read (ε+ p)θ +∇ǔε = 0

(ε+ p)â−∇⊥p = 0,
(4.86)

where ∇⊥ = ∇ + û∇ǔ stands for the covariant derivative along the directions
normal to the velocity field, and the acceleration form is â = aaê

a. We should also
take into account the conformality of the fluid, ε = (D − 1)p. The latter implies
that Eqs. (4.86) becomes ∇ǔε = 0

â = ∇⊥p
Dp

.
(4.87)

2This is not an empty statement since Killing vectors cannot be normalized at will. When
their norm is constant, it can be consistently set to −1, 0 or 1.

3A fluid can be stationary and altogether dissipate energy provided it is not isolated. These
situations are called “forced steady states”. On curved boundary backgrounds, the forcing task
can be met by gravity through the boundary conditions. As this feature does not appear in the
backgrounds that we will consider, we don’t analyze it further.
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These equations are telling us that energy density is conserved along the fluid
lines and that, in the absence of spatial pressure gradients, that is for energy and
pressure constants in spacetime, the flow is geodesic.
We can thus summarize the properties of a fluid whose velocity field is a Killing
vector:

• the flow is geodesic, shearless and expansionless.

• the internal energy density is conserved and the pressure is spatially homo-
geneous.

• if the fluid is conformal then ε = (D − 1)p is constant in spacetime.

Therefore, despite its viscosity, the kinematic state of the fluid can be steady and
non-dissipative. For this to happen, however, the existence of a constant-norm
time-like Killing vector is required. In other words, the background geometry
must itself be stationary4. In this case, the constant-norm time-like Killing vector
congruence allows for the definition of a global time coordinate, with associated
inertial frames. The latter are comoving with the fluid. All the examples we will
discuss in the following fall into this class.

4.6.2 Randers-Papapetrou stationary geometries
Boundary metrics appearing in the holographic analysis of stationary black holes
are of the generic form:

ds2 = B2
(
−(dt− bidxi)2 + aij(x)dxidxj

)
, (4.88)

where B, bi, aij are x-dependent functions, where x is the two-dimensional spatial
part of the three-dimensional boundary metric. Note that we use i, j, . . . to indi-
cate components of the two-dimensional space, and a, b, . . . as index of the three-
dimensional metric. These kind of metrics are called of the “Randers-Papapetrou”
type.
For later convenience, we introduce aij, bi and γ such that

aijajk = δik, bi = aijbj, γ2 = 1
1− aijbibj

. (4.89)

The metric components read:

g00 = −B2, g0i = B2bi, gij = B2(aij − bibj), (4.90)

and those of the inverse metric:

g00 = − 1
γ2B2 , g0i = bi

B2 , gij = aij

B2 . (4.91)

4More generally, it can be shown that the velocity field uµ of a stationary fluid flow has to be
proportional to a Killing vector field of the background geometry.
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Finally, √
−g = BD

√
a, (4.92)

where a is the determinant of the symmetric matrix with entries aij.
In the natural frame of the above coordinate system {∂t, ∂i}, any observer at rest
has normalized velocity ǔ = 1

B
∂t and dual form û = −B(dt − b), where b = bidx

i.
The normalized vector field ǔ is not in general Killing, as opposed to ∂t. For this
observer, the acceleration is thus non vanishing:

ǎ = ∇ǔǔ = gij∂i lnB (∂j + bj∂t) . (4.93)

The motion is inertial if and only if B is constant. It will be enough for our
purposes to consider the case B = 1, and in all subsequent formulas we will assume
this choice. We furthermore introduce a frame

ě0 = ∂t, ěα = E i
α (bi∂t + ∂i) , E i

α E
β
i = δβα (4.94)

adapted to the geodesics at hand and its dual orthonormal coframe

ê0 = dt− b, êα = Eα
idxi, Eα

iE
β
iδαβ = aij. (4.95)

This will be referred to as the Randers-Papapetrou frame. Note that we use greek
indices α, β, . . . to indicate components in this frame.
The constant-norm Killing vector field ǔ = ě0 = ∂t defines a geodesic congruence,
that is it defines the orbits of all observers at rest in the Randers-Papapetrou frame.
The velocity field is defined as

û = −ê0 = −dt+ b, (4.96)

and allows us to write the Randers-Papapetrou metric in the convenient form

ds2 = −û2 + ds̃2, (4.97)

with the two-dimensional part of the metric being ds̃ = aijdx
idxj (in general, we

will use the tilde to indicate two-dimensional quantities). As was shown in the last
section, the Randers-Papapetrou frame corresponds to zero shear and expansion,
but non-trivial vorticity. From the definition of the vorticity tensor (4.16), we can
define the vorticity form as

2ω = ωabê
a ∧ êb = dû+ û ∧ â. (4.98)

Then, in our frame we have:

ω = 1
2db ⇒ ω0i = 0, ωij = 1

2 (∂ibj − ∂jbi) . (4.99)
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The physical effect of vorticity is seen in the obstruction to the parallel transport
of the spatial frame ěα along the congruence:

∇ě0 ěα = ωRP
αβ δ

βγ ěγ ⇔ ∇∂t∂i = ωija
jk (∂k + bk∂t) , (4.100)

ωPR
αβ = E i

α E
j

β ωij are the components of the spatial part of the vorticity in the
Randers-Papapetrou frame.
The Hodge-dual of the vorticity (4.99) has components

ψµ = ηµνρωνρ ⇔ ωνρ = −1
2ηνρµψ

µ. (4.101)

In 2 + 1 dimensions, it is aligned with the velocity field:

ψµ = quµ, (4.102)

where
q(x) = −ε

ij∂ibj√
a

(4.103)

is a static scalar field. We define R̃(x) as the Ricci scalar of the two-dimensional
part of the Randers-Papapetrou geometry, described by the metric aij. The scalar
field q and the two-dimensional Ricci scalar R̃(x) carry all relevant information
about the curvature of the Randers-Papapetrou geometry. We quote for latter
use the relation between the three-dimensional and the two-dimensional curvature
scalars:

R = R̃ + q2

2 . (4.104)

The three-dimensional Ricci tensor can be written as

Rµν dx
µdxν = q2

2 u
2 + R̃ + q2

2 ds̃2 − u dxρuσηρσµ∇µq, (4.105)

while the three-dimensional Cotton-York tensor takes the form (the hat here indi-
cates two-dimensional quantities)

Cµν dx
µdxν = 1

2

(
∇̃2q + q

2(R̃ + 2q2)
) (

2u2 + ds̃2
)

−1
2
(
∇̃i∇̂jq dx

idxj + ∇̃2q u2
)

−u2dx
ρuσηρσµ∇µ(R̃ + 3q2). (4.106)

The latter is a symmetric traceless tensor defined in general as

Cµν = ηµρσ∇ρ

(
Rν
σ −

1
4Rδ

ν
σ

)
. (4.107)
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In three-dimensional geoemtries, it replaces the role of the Weyl tensor, which is
identically vanishing. In particular, conformally flat backgrounds have zero Cotton-
York tensor.
The fluid on Randers-Papapetrou backgrounds in perfect equilibrium has the energy-
momentum tensor

T (0)
µν dx

µdxν = p
(
2u2 + ds̃2

)
, (4.108)

with the velocity being given by (4.96) and p = constant. We have also used here
ε = 2p, which is a consequence of conformal invariance.
Randers-Papapetrou metrics do not exhibit ergoregions since g00 = −15. However,
regions where hyperbolicity is broken (i.e. where constant-t surfaces become time-
like) are not excluded. This happens whenever there exist regions where bibjaij > 1.
Indeed, in these regions, the spatial metric aij − bibj possesses a negative eigen-
value, and constant-t surfaces are no longer spacelike. Therefore, the extension
of the physical domain accessible to the inertial observers moving along ǔ = ∂t is
limited to spacelike disks in which bibjaij < 1 holds.
As a last remark, following Eqs.(4.87), the shearless and expansionless geodesic
congruences under consideration could describe the fluid lines of a dissipationless
stationary, conformal fluid, under the assumption that the energy and the pres-
sure are conserved and constant all over space. As we will see, this is exactly the
dynamics that emerges through holography.

4.6.3 The Zermelo frame

There is an equivalent way to recast the Randers-Papapetrou metric: the Zermelo
frame. Consider a two-dimensional Euclidean manifoldM with metric hij. The so-
called Zermelo navigation problem asks for the minimum-time trajectories on that
manifold under the influence of a time-independent windW i. It can be proven that
these minimum-time trajectories coincide with the null geodesics of the Randers-
Papapetrou frame, provided that the Randers-Papapetrou data (aij, bi) are related
to the Zermelo data (hij,W i) as

hij = aij−bibj

γ2 , hikhkj = δij, (4.109)
W i = −γ2bi, Wi = hijW

j = − bi

γ2 . (4.110)

Using the above, the Randers-Papapetrou metric (4.88) can be recast in the fol-
lowing form

ds2 = γ2
[
−dt2 + hij

(
dxi −W idt

) (
dxj −W jdt

)]
, (4.111)

5Ergoregions would require a conformal factor in (4.88) that could vanish and become negative.
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which is called the “Zermelo form”. This form of the metric suggests the following
orthonormal coframe and its dual frame:

ẑ0 = γdt , ẑα = Lαi(dxi −W idt), L i
α L

β
i = δαβ , (4.112)

ž0 = 1
γ

(∂t +W i∂i) , žα = L i
α ∂i, LαiL

β
jδαβ = γ2hij. (4.113)

We will call the latter the Zermelo frame. This frame is not inertial: indeed, its
timelike vector field ž0 defines a congruence of accelerated lines, ∇ž0 ž0 6= 0. It is
useful to compare the Randers-Papapetrou frame introduced previously in (4.146)
and(4.95) with the Zermelo frame at hand. Being both orthonormal, they are
related by a local Lorentz transformation, as we can see by combining the above
formulas:

ě0 = γ
(
ž0 −W β žβ

)
, (4.114)

ěα = Γ β
α

(
žβ −Wβ ž0 + γ2 − 1

γ2

(
WβW

γ

W 2 − δγβ
)
žγ

)
, (4.115)

where

Γ β
α = γ2E i

α L
β
i, Wα = 1

γ
LαiW

i, Wα = δαβW
β, (4.116)

W 2 = WαWα = W iWi = 1− 1
γ2 . (4.117)

These expressions are telling us that each spacetime point is the intersection of two
lines, belonging each to the two congruences under consideration. At this point,
Wα are the spatial velocity components of the inertial observer in the spatial frame
of the accelerated observer and 1

γ2 = 1−W 2 is the corresponding Lorentz factor.
The Randers-Papapetrou observer and the Zermelo one perceive the rotation of the
fluid in different ways. The Randers-Papapetrou observers feel the rotation as de-
scribed in (4.100), so through embarked gyroscope, whereas the Zermelo observers
satisfies

∇ž0ǔ = ωZ
0αδ

αβ žβ. (4.118)
Here ǔ = ě0 is the velocity of the inertial observers, while ωZ

ab are the vorticity
components as observed in the Zermelo frame: ωZ

αβ = L i
α L

j
β ωij and ωZ

0β = WαωZ
αβ.

Hence, for the accelerated observers, the inertial ones are subject to a Coriolis
force: Zermelo observers are rotating themselves. The velocity vector ǔ = ě0 of
the inertial observers undergoes a precession around the worldline of a Zermelo
observer tangent to ž0. Since the observer itself is accelerated, we expect a non-
trivial variation of ǔ, which is actually better captured as a Fermi derivative along
ž0:

Dž0ǔ =
(
ωZ

0α − žα(γ)
)
δαβ žβ +Wαžα(γ)ž0 , (4.119)

where žα(γ) = L i
α ∂iγ. The extra terms result from the rotation of the Zermelo

frame and contribute to the observed precession of the velocity vector ǔ.
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One can try to tune rotating frames so as to make the perceived angular momentum
of a given congruence disappear, i.e. make the derivative (4.119) vanish with respect
to the rotating frame. This leads to the so called zero angular momentum frames,
and it is satisfied by the necessary and sufficient condition

W jωji = γ∂iγ, (4.120)

which implies that both the coefficient of ωZ0α and the combination ωZ0α − žα(γ)
vanish. Equation (4.120) carries intrinsic information about the background and
can indeed be recast as

Lž0 ê0 = 0. (4.121)
When fulfilled, the Zermelo observers coincide with the locally non-rotating frames.

4.6.4 Analogue gravity interpretation
In the above analysis, and particularly in the change of frame from Randers-
Papapetrou to Zermelo, it has been implicitly assumed that W 2 < 1. The velocity
of Randers-Papapetrou observers with respect to the Zermelo frame is however
fixed by the geometry itself, since W 2 = bib

i, and nothing a priori guarantees that
bib

i < 1 everywhere. Indeed, there can exist regions where bibi > 1, bounded by a
hypersurface where bibi = 1. We call the latter velocity-of-light hypersurface, since
it is the edge where the Randers-Papapetrou observer reaches the speed of light
with respect to the Zermelo frame.
The problem raised here is a manifestation of the so-called global hyperbolicity
breakdown. Indeed, we have seen that in geometries of the Randers-Papapetrou
form (4.88), constant-t surfaces are not everywhere spacelike. The extension of the
physical domain accessible to the inertial observers moving along ǔ = ∂t is limited
to spacelike disks in which b2 < 1 holds, bounded by the velocity-of-light surface,
where these observers become luminal.
The breaking of hyperbolicity is usually accompanied with the appearance of closed
timelike curves (CTCs). These are ordinary spacelike circles, lying in constant-t
surfaces, which become timelike when these surfaces cease being spacelike, i.e. when
b2 > 1. CTCs can be due to the compactification of the time direction, but it is
not the case for our situation, where they cannot be removed by unwrapping time.
They would need an excision procedure for consistently removing, if possible, the
b2 > 1 domain, in order to keep a causally safe spacetime.
Although the issue of hyperbolicity is intrinsic to our stationary geometries, moving
from the form (4.88) to the form (4.111) may provide alternative or complementary
views. In the Zermelo form (4.111) the “trouble” is basically encapsulated in the
conformal factor. However, some problems such as the original Zermelo navigation
problem, are sensitive to the general conformal class6 of (4.111), and the conformal

6In the Zermelo navigation problem we look for null geodesics. In that framework, going to
regions where γ2 < 0 means having a drift current faster than what the ship can overcome.
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factor γ2 can be dropped or replaced. Doing so can leave us with a geometry po-
tentially sensible everywhere. This instance appears precisely in analogue gravity
systems.
Metrics of the form (4.111) are in fact known as acoustic or optical. They are
used for describing the propagation of sound/light disturbances in relativistic or
non-relativistic fluids moving with velocity W i in spatial geometry hij, and subject
to appropriate thermodynamic/hydrodynamic assumptions. In this approach, the
full metric (4.111) is an analogue metric and is not the actual metric of physical
spacetime. Under this perspective, peculiarities such as CTCs, potentially present
in the analogue geometry, have no real physical existence. They are manifestations
of other underlying physical properties such as supersonic/superluminal regimes in
the flowing medium.

4.7 Fefferman-Graham expansion stationary black
holes in four dimensions: examples

We take into account three well-known stationary asymptotically AdS black holes in
four-dimensions: the Schwarzschild solution, the Kerr solution and the Taub-NUT
solution. These examples will allow to get familiar with the Fefferman-Graham
expansion, as well as discuss the boundary properties by using both the Randers-
Papapetrou and the Zermelo frame. In the next section we will pose and solve in
generality the problem of finding boundary geometries corresponding to stationary
solutions and vice-versa.

4.7.1 Schwarzschild black hole
The first metric we consider is the Schwarzschild one. It is not only stationary
but also static, and although the boundary fluid is trivial it is a good example to
show the procedure to write a metric Fefferman-Graham coordinates. The solution,
which we already presented in (4.55) is given by

ds2 = dρ2

V (ρ) − V (ρ)dt2 + r2
(
dθ2 + sin2 θdφ2

)
, (4.122)

where
V (ρ) = 1 + k2ρ2 − 2M

ρ
. (4.123)

In order to put the metric in the Fefferman-Graham form (4.78) we need to perform
a change of coordinates involving just the radial coordinate ρ:

dρ√
V (ρ)

= L

r
dr. (4.124)
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This integral can be solved in a polynomial expansion as

ρ = r − L2

4r + L2M

3r2 +O
( 1
r3

)
. (4.125)

We thus can write the vierbein components of the metric in Fefferman-Graham
coordinates:

Et =
√
V (ρ)dt =

(
r

L
+ L

4r −
2LM
3r2 +O

( 1
r3

))
dt,

Eθ = ρdθ =
(
r − L2

4r + L2M

3r2 +O
( 1
r3

))
dθ,

Eφ = ρ sin θdφ =
(
r − L2

4r + L2M

3r2 +O
( 1
r3

))
sin θdφ.

(4.126)

The boundary metric in thus given by

ds2
bdy = lim

r→∞

ds2

k2r2 = −dt2 + L2
(
dθ2 + sin2 θdφ2

)
, (4.127)

while the stress current takes the form

f t = −2Mk

3 dt, f θ − M

3 dθ, fφ = M

3 sin θdφ, (4.128)

giving rise to the boundary energy-momentum tensor

T ab = (ε+ p)uaub + pgab, (4.129)

where g is the boundary metric and ε = 2p = 2κMk
3 . We thus obtain a perfect

static conformal fluid in the boundary, with no vorticity, shear or viscosity.

4.7.2 Kerr black hole
The next example we consider is the Kerr black hole, describing the field generating
by a rotating mass. The metric is given by:

ds2 = dr2

V (r, θ) − V (r, θ)
[
dt− a

Ξ sin2 θdφ
]2

+ ρ2

∆θ

dθ2 + sin2 θ∆θ

ρ2

[
adt− r2 + a2

Ξ dφ
]2

, (4.130)

where
V (r, θ) = ∆r

ρ2 (4.131)
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and
∆r = (r2 + a2)(1 + k2r2)− 2Mr (4.132)
ρ2 = r2 + a2 cos2 θ (4.133)

∆θ = 1− k2a2 cos2 θ (4.134)
Ξ = 1− k2a2. (4.135)

Let us start with a few comments on the properties of this solution. The geometry
has inner (r−) and outer (r+) horizons, where ∆r vanishes, as well as an ergosphere
at gtt = 0. One can show that the rotating AdS black hole is stable for a2 < k2,
hence the asymptotically flat black hole (k = 0) is unstable. This is a consequence
of frame dragging (behind the ergosphere no static observer exists), which disap-
pears asymptotically in the Kerr black hole, but persists in the Kerr-AdS.
On the outer horizon ∆r(r+) = 0, any fixed-θ observer has a determined angular
velocity:

ΩH = aΞ
r2

+ + a2 , (4.136)

and thus a tangent vector proportional to
∂t + ΩH∂φ, (4.137)

which is light-like. The angular velocity ΩH is not the one measured at infinity by
a static observer - contrary to what happens for the asymptotically flat plain Kerr
geometry. In fact, ΩH is the angular velocity observed by an asymptotic observer
in the natural frame of the coordinate system at hand. This observer is not static,
but has an angular velocity

Ω∞ = ak2, (4.138)
which obviously vanishes when the cosmological constant is switched off (k → 0).
The angular velocity of the black hole for a static observer at infinity is thus

Ω = ΩH + Ω∞ = a(1 + k2r2
+)

r2
+ + a2 . (4.139)

When moving to the Euclidean signature, by performing the change t = −iτ, a =
iα, the outer horizon appears as a bolt7.
The boundary metric is given by

ds2
bry. = lim

r→∞

ds2

k2r2 = −
[
dt− a

Ξ sin2 θdφ
]2

+ dθ2

k2∆θ

+ ∆θ

k2Ξ2 sin2 θdφ2. (4.140)

It can be recasted in several ways:

ds2
bry. = ∆θ

Ξ

(
−dt2 + Ξ

k2∆2
θ

(
dθ2 + ∆θ

Ξ sin2 θ [dφ+ Ω∞dt]2
))

(4.141)

= 1
∆θ′

(
−dt2 + 1

k2

(
dθ′2 + sin2 θ′ [dφ+ Ω∞dt]2

))
. (4.142)

7Bolt removable singularities where introduced in 2.7
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The last expression is obtained by trading θ for θ′ as

∆θ∆θ′ = Ξ, (4.143)

where ∆θ′ = 1− k2a2 cos2 θ′. It describes the boundary of Kerr-AdS as conformal
to the three-dimensional Einstein universe, rotating at angular velocity Ω∞.
From (4.140) we easily recover the component of the Randers-Papapetrou frame as

b = a

Ξ sin2 θ dφ , aij = L2diag
(

1
∆θ

,
∆θ

Ξ2 sin2 θ

)
(4.144)

while the orthonormal coframes (4.95) are

ê0 = dt− a

Ξ sin2 θ dφ , ê1 = L√
∆θ

dθ , ê2 = L
√

∆θ

Ξ sin θ dφ. (4.145)

The dual boundary frames are of the form

ě0 = ∂t , ěα = E i
α (bi∂t + ∂i) , E i

α E
β
i = δβα . (4.146)

The boundary energy-momentum tensor is of the form (4.129), as in the Schwarzschild
case, and describes a conformal fluid with constant pressure and with velocity field
given by ǔ = ∂t and û = −dt + b. The fluid is therefore at rest in the Randers-
Papapetrou frame, and the corresponding observers are thus comoving. Further-
more, ∂t is a Killing vector with constant norm (−1). Hence, its integral lines are
geodesics:

ǎ = ∇∂t∂t = 0 . (4.147)
The fluid and the comoving observers are inertial. For this geodesic congruence,
the shear and expansion systematically vanish. The boundary fluid is nevertheless
carrying a non-trivial vorticity:

ω = 1
2db = a cos θ sin θ

ξ
dθ ∧ dφ = ak2 cos θê1 ∧ ê2. (4.148)

This vorticity describe a cyclonic flow, that is, for example, it could describe the
motion of the atmosphere of a rotating planes as seen from the comoving frame.
In the Zermelo frame we have

hij = L2diag
(
ξ

∆2
θ

,
sin2 θ

∆θ

)
, (4.149)

Wαžα = − a
L

sin θ√
ξ
ž2 = − a

L2∂φ, (4.150)

and
γ =

√
∆θ

ξ
. (4.151)
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As explained in the last section, the presence of CTCs is related to the value of b2.
For the Kerr geometry we have

b2 = a2 sin2 θ

L2 − a2 cos2 θ
, (4.152)

which is bounded by 1 as long as a < L, and thus as long as this condition is satisfied
there are no CTCs. The condition for the Fermi derivative along ž0 to vanish,
(4.120), is fulfilled and thus the effective precession of the fluid worldline with
respect to the Zerrmelo observer disappears as a consequence of the cancellation
of the genuine vorticity and of the effect produced by the acceleration.

4.7.3 Taub-NUT
The Taub-NUT geometry is a foliation over squashed three-spheres solving Ein-
stein’s equations:

ds2 = dr2

V (r) +
(
r2 + n2

)(
(σ1)2 +

(
σ2
)2
)
− 4n2V (r)

(
σ3
)2

= dr2

V (r) +
(
r2 + n2

) (
dθ2 + sin2 θdφ2

)
− 4n2V (r) (dψ + cos θdφ)2

(4.153)

with

V (r) = 1
r2 + n2

[
r2 − n2 − 2Mr + k2

(
r4 + 6n2r2 − 3n4

)]
, (4.154)

where 
σ1 = sin θ sinψ dφ+ cosψ dθ
σ2 = sin θ cosψ dφ− sinψ dθ
σ3 = cos θ dφ+ dψ

(4.155)

are the SU(2) left-invariant Maurer–Cartan forms in terms of Euler angles 0 ≤ θ ≤
π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π. Besides the mass M and the cosmological constant
Λ = −3k2, this solution depends on an extra parameter n: the nut charge. It is
convenient to trade ψ for t = −2n(ψ+φ). With this coordinate the metric (4.153)
assumes the form

ds2 = dr2

V (r) +
(
r2 + n2

) (
dθ2 + sin2 θdφ2

)
− V (r)

[
dt+ 4n sin2 θ

2dφ
]2

. (4.156)

The original Taub-NUT solution was a vacuum solution designed for cosmology.
Since then, many variants have been studied, both with Lorentzian and Euclidean
signature (reached by setting ν = in and τ = it), with or without cosmological con-
stant or mass. Indeed, we already encountered the Euclidean version in the absence

84



CHAPTER 4. HOLOGRAPHIC PERFECT-LIKE FLUIDS, BLACK HOLE UNIQUENESS AND
TRANSPORT COEFFICIENTS

of mass of the Taub-NUT geometries when discussing Bianchi IX gravitational in-
stantons. One can generalize this solution to take into account the presence of
a cosmological constant by demanding the self-duality of the Weyl tensor instead
of the Riemann tensor. Adding a mass opens up new possibilities according to
the kind of horizons that appear, and the corresponding solutions can be either
(Weyl-)self-dual or not, and they are called respectively Taub-bolt or Pedersen.
Self-duality must however be abandoned in the Lorentzian framework.
Many of these properties of the Taub-NUT geometry are a consequence of its isom-
etry group SU(2)× U(1), generated by the Killing vectors


ξ1 = − sinφ cot θ ∂φ + cosφ ∂θ − 2ν sinφ

sin θ (1− cos θ) ∂t
ξ2 = cosφ cot θ ∂φ + sinφ ∂θ + 2ν cosφ

sin θ (1− cos θ) ∂t
ξ3 = ∂φ − 2ν ∂t
e3 = −2ν ∂t.

(4.157)

Two extra vectors e1 and e2 generate with e3 the right SU(2). These are not Killing,
however, due to the squashing of the spherical leaves.
The solution at hand has generically two horizons (V (r±) = 0) and is well-defined
outside the outer horizon r+, where V (r) > 0. In the Euclidean language, this
horizon is a bolt8 i.e. the two-dimensional fixed locus of the Killing vector e3. On
this surface, θ = π is an isolated fixed point of another Killing vector ξ3 + e3. This
is a nut, carrying a net nut charge n.
The nut is the origin of the so-called Misner string, departing from r = r+, all the
way to r →∞, on this southern pole at θ = π. The geometry is nowhere singular
along the Misner string, which appears as a coordinate artifact in an analogous
way as the Dirac string of a magnetic monopole is a gauge artifact. In order for
this string to be invisible, coordinate transformations displacing the string must
be univalued everywhere, which is achieved by requiring the periodicity condition
ψ ≡ ψ + 4π or equivalently t ≡ t − 8πn. Alternatively, one can avoid periodic
time and keep the Misner string as part of the geometry. This semi-infinite spike
appears then as a source of angular momentum, integrating to zero and movable
at wish using the transformations generated by the above vectors. This will be
our viewpoint throughout this work. However, despite the non-compact time, the
AdS-Taub-NUT geometry is plagued with closed time-like curves, which disappear
only in the vacuum limit. Even though this is usually an unwanted situation, it
is not sufficient for rejecting the geometry, which from the holographic perspective
has many interesting and novel features we are now going to discuss.

8By analytic continuation, the solution (4.153) with (4.154) is mapped onto the so-called
AdS-Taub-bolt.
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Following the Fefferman-Graham procedure, the boundary metric is given by

ds2
bry. = 1

k2

(
(σ1)2 +

(
σ2
)2
− 4k2n2

(
σ3
)2
)

= −
[
dt+ 4n sin2 θ

2dφ
]2

+ 1
k2

(
dθ2 + sin2 θdφ2

)
. (4.158)

This is a squashed three-sphere appearing as a limiting leave of the foliation (4.153).
The squashing is Lorentzian as in the bulk, and consequently the closed time-like
curves survive on the boundary.
We can make contact with (4.78) by choosing

b = −2n(1− cos θ)dφ , aij = L2diag(1, sin2 θ), (4.159)

while the orthonormal coframes are given by

ê0 = dt+ 2n(1− cos θ)dφ , ê1 = Ldθ , ê2 = L sin θ dφ . (4.160)

All results discussed in the last section are still valid: the fluid and the comoving
observers are inertial, and shear and expansion vanish. The energy-momentum
tensor is perfect-fluid like, and the vorticity is given by

ω = 1
2db = −n sin θdθ ∧ dφ = −nk2ê1 ∧ ê2. (4.161)

This corresponds to a Dirac-monopole-like vortex, in contrast with the Kerr case
which can be considered as a dipole. In this magnetic picture, the Misner string is
traded for a Dirac string. Indeed, while for the Kerr black hole we have∫

S2
ω = 0, (4.162)

which describe a solid rotation, for the Taub-NUT case due to the presence of the
nut charge we have

n = − 1
4π

∫
S2
ω. (4.163)

The components of the metric in the Zermelo frame are given by

hij = diag
(
L2 − 4n2 tan2 θ/2, 4 tan2 θ/2(L2 cos2 θ/2− 4n2 sin2 θ/2)2

)
(4.164)

together with
W = 1√

L2

4n2 cot2 θ/2− 1
(4.165)

The necessary and sufficient condition for the Fermi derivative along ž0 to vanish,
(4.120), is not fulfilled, and thus the Zermelo frame does not coincide with the
locally non-rotating frame. Moreover, CTCs appear. Indeed, b2 = 1 when θ
reaches θ∗ = 2 arctanL/2n. Hyperbolicity holds in the disk 0 < θ < θ∗, whereas it
breaks down i the complementary disk π > θ > θ∗ centered at the Misner string.
The fluid becomes superluminal and the Misner string is interpreted as the core of
the vortex.
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4.8 Perfect-Cotton geometries

4.8.1 Perfect-like fluids and background geometries

As we have seen, the energy-momentum tensor of the examples we considered is
perfect-fluid like. Being stationary, the fluid behaves therefore as a thermody-
namic system in global equilibrium, without dissipation and entropy production.
We call those geometries where the fluid can exist in perfect equilibrium “perfect
geometries”. In such backgrounds, the global equilibrium can be described thermo-
dynamically. The values of the transport coefficients, which determine wether the
geometry is perfect or not, is determined by the underlying microscopic dynam-
ics of the fluid. Indeed, for neutral fluids the transport coefficients are in general
functions of the temperature and of the coupling constants of the microscopic the-
ory. Nevertheless, the boundary geometry plays a role in fixing which terms are
appearing in the energy-momentum tensor, because it determines which terms can
appear regardless of the value of the corresponding transport coefficient. In partic-
ular, even if the transport coefficients are non-vanishing, the tensor to which they
couple may vanish because of the geometry properties, i.e. may vanish kinemati-
cally, and thus the corresponding term may not appear in the energy-momentum
tensor.
Given a conformal boundary geometry, one can write all the possible terms in the
energy-momentum tensor, as we showed in (4.53), by considering Weyl-covariant
traceless transverse tensors Tµν order by order in a derivative expansion. Moreover,
we should consider just non-dissipative transport coefficients, since the dissipative
ones, like the shear viscosity η, lead to generation of entropy and thus to an out-
of-equilbrium situation. Some of those non-dissipative Weyl-covariant traceless
transverse tensors will also satisfy ∇µTµν 6= 0. We refer to them as “dangerous
tensors”, and we call their transport coefficients “dangerous transport coefficients”.
The necessary and sufficient condition for the existence of perfect equilibrium in
backgrounds with a normalized Killing vector field is that the dangerous transport
coefficients vanish.
Of course, transport coefficients which are dangerous in one background do not
need to be dangerous for all backgrounds: for example, for certain metrics the
corresponding dangerous tensor could be just vanishing.
Consider a 2+1 dimensional background. At first order in the derivative expansion
of the energy-momentum tensor we have σµν , which is associated with the shear
viscosity η. As we pointed out, this is a dangerous transport coefficient, and thus
we need to demand σµν to vanish on equilibrium solutions. At second order, we still
have no transport coefficients playing a role in describing equilibrium in a confor-
mal fluid. However, at third order we can get non-dissipative transport coefficients.
Their corresponding tensors can in principle appear in the energy-momentum ten-
sor and thus contribute to describing equilibrium in a conformal theory. The third
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order in derivatives of the energy-momentum tensor reads:

T µν(3) = γ(3)1〈Cµν〉+ γ(3)2〈DµV ν〉+ γ(3)3〈DµW ν〉, (4.166)

where the bracket was defined in (4.18) and

V µ = ∇α
⊥ω

µ
α + uµωαβω

αβ, W µ = ηµνρuνVρ. (4.167)

All other possible transport coefficients appearing at third order would contribute
to dissipation. Their corresponding Weyl covariant traceless transverse tensors
could appear in the form of the energy-momentum tensor, and we thus need to
impose them to vanish at equilibrium.
At higher order in derivative expansion, we will get more and more non-dissipative
transport coefficients, which will be required to describe the equilibrium in a sta-
tionary background geometry. At each order in derivative expansion though, we
will have only finite number of such transport coefficients, even though any all-
order statement involves an infinite number of them.
An equilibrium solution of conformal fluid mechanics will by definition satisfy the
conservation of the energy-momentum tensor and be such that all the Weyl covari-
ant traceless transverse tensors corresponding to non-vanishing dissipative trans-
port coefficients become zero when evaluated on-shell. There need not be a unique
equilibrium solution in a given stationary background metric. Furthermore, as we
will typically have an infinite number of non-vanishing non-dissipative transport
coefficients, thermodynamics is clearly not a sufficient information to describe the
class of equilibrium solutions in an arbitrary stationary background.

4.8.2 Perfect fluids and Randers-Papapetrou geometries
As already mentioned in Sect. 4.6.2, a perfect-like fluid at equilibrium on a
Randers-Papapetrou background is aligned along the geodesic congruence tangent
to ∂t. It has neither shear, nor expansion, but carries vorticity inherited from the
fact that ∂t is not hypersurface-orthogonal9. As discussed in the previous section,
the fluid can attain perfect equilibrium if and only if there are no dangerous terms
appearing in the energy-momentum tensor. This means that if a dangerous tensor
is allowed by the geometry, it’s corresponding dangerous transport coefficient has
to vanish. This will imply constraints on transport coefficients, as these station-
ary backgrounds will generically have infinitely many associated dangerous tensors.
One simple example of such a tensor is 〈DµVν〉, the second term of (4.166), which
will be given in terms of covariant derivatives of q. In general, ∇µ〈DµVν〉 6= 0
in these stationary backgrounds, therefore it is a dangerous tensor and the corre-
sponding dangerous transport coefficient must vanish in order for the fluid to be

9For this very same reason, Randers-Papapetrou geometries may in general suffer from global
hyperbolicity breakdown. This occurs whenever regions exist where bibi > 1. There, constant-t
surfaces cease being space-like, and potentially exhibit closed time-like curves.
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in perfect equilibrium.
However, when the stationary background has additional isometries, most Weyl-
covariant traceless transverse tensors built from derivatives of u will vanish. This
means that we do not need to impose any condition on the corresponding transport
coefficients in order to have perfect equilibrium. In particular, the more the num-
ber of isometries of the stationary background, the less the number of transport
coefficients we will be able to probe by demanding perfect equilibrium to exist.

4.8.3 Perfect-Cotton Randers-Papapetrou geometries
The boundaries arising as the holographic duals of stationary four-dimensional Ein-
stein spaces, as those studied in the previous sections, have two peculiar properties.
We already noticed the first one, which is the existence of a time-like Killing vector
field of unit norm u. Moreover, the Cotton tensor takes the form

Cµνdx
µdxν = c

2(2u2 + ds̃2), (4.168)

where c is a constant10. This means that the Cotton tensor has the same form
as the as perfect fluid energy-momentum tensor, but with a different constant of
proportionality. In such geometries the Cotton-York tensor can be interchanged
with the perfect-fluid energy-momentum tensor without spoiling its property of
being perfect. We refer to them as “perfect-Cotton geometries”. We do not claim
that this class of solutions is the only one leading to a perfect-fluid-like energy-
momentum tensor, but we can prove that perfect-Cotton geometries with perfect-
fluid-like energy-momentum tensor have an exact gravitational dual.
Considering (4.106), the condition (4.168) is equivalent to

∇̃2q + q(δ − q2) = 2c (4.169)

aij

(
∇̃2q + q

2(δ − q2)− c
)

= ∇̃i∇̃jq (4.170)

R̃ + 3q2 = δ. (4.171)

Here δ is another constant and it relates the curvature of the base space with the
vorticity strength.
Without loss of generality, we can choose the two-dimensional part of the metric
ds̃ = aijdx

idxj to be diagonal:

ds̃2 = A2(x, y)dx2 +B2(x, y)dy2, (4.172)

and make the gauge choice:
b = b(x, y) dy, (4.173)

10The divergence of the Cotton-York tensor is identically zero, thus for expansionless u the
form (4.168) requires c constant.

89



CHAPTER 4. HOLOGRAPHIC PERFECT-LIKE FLUIDS, BLACK HOLE UNIQUENESS AND
TRANSPORT COEFFICIENTS

for which (4.103) reads:
q = − ∂xb

AB
. (4.174)

Further gauge fixing is possible and will be made when appropriate11. The explicit
form of Eqs. (4.169), (4.170) and (4.171) in terms of A(x, y), B(x, y) and b(x, y) is
not very illuminating and we will not reproduce it here.

4.8.4 Geometries with space-like Killing vectors
When the backgrounds have an extra Killing vector the perfect geometry condition
can be solved exactly, and we can moreover make contact with the explicit examples
we took into account. For now on, for simplicity we set k = 1.

The presence of an additional unique space-like isometry simplifies the con-
ditions for a Papapetrou–Randers metric to be perfect-Cotton. Without loss of
generality, we take the additional Killing vector to be ∂y and we chose a represen-
tation such that A2 = 1

G(x) , B
2 = G(x) and b = b(x). The metric takes then the

form
ds2 = − (dt− b(x) dy)2 + dx2

G(x) +G(x)dy2, (4.175)

and we are able to solve (4.169)–(4.171) in full generality. The solution is written
in terms of 6 arbitrary parameters c̃i:

b(x) = c̃0 + c̃1x+ c̃2x
2, (4.176)

G(x) = c̃5 + c̃4x+ c̃3x
2 + c̃2x

3 (2c̃1 + c̃2x) . (4.177)

It follows that the vorticity strength takes the linear form

q(x) = −c̃1 − 2c̃2x, (4.178)

and the constants c and δ are given by:

c = −c̃3
1 + c̃1c̃3 − c̃2c̃4, (4.179)

δ = 3c̃2
1 − 2c̃3. (4.180)

Finally, the Ricci scalar of the two-dimensional base space is given by

R̂ = −2 (c̃3 + 6c̃2x(c̃1 + c̃2x)) , (4.181)

and using (4.104) one can easily find the form of the three-dimensional scalar as
well. Not all the six parameters c̃i correspond to physical quantities: some of them
can be just reabsorbed by change of coordinates. In particular, we set here c̃0 = 0
by performing the diffeomorphism t → t + py, with constant p, which does not
change the form of the metric.

11We could for example set A = B since any two-dimensional space is conformally flat. We
should however stress that all these choices are local, and the range of coordinates should be
treated with care in order to avoid e.g. conical singularities.
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Non-vanishing c4

To analyse the class with c̃4 6= 0, we first perform the further diffeomorphism
x → x + s, with constant s, which keeps the form of the metric. By tuning the
value of s we can set c̃5 to zero. Therefore, without loss of generality we can choose:

b(x) = c̃1x+ c̃2x
2, (4.182)

G(x) = c̃4x+ c̃3x
2 + c̃2x

3 (2c̃1 + c̃2x) . (4.183)

We are thus left with four arbitrary geometric parameters. For consistency we
can check that q(x), c, δ, R and R̂ indeed depend only on these four parameters.
Moreover, by performing the change of variables

x→ x

c̃4
, y → y

c̃4
, t→ t

c̃4
, (4.184)

and defining new variables

c1 = c̃1

c̃4
, c2 = c̃2

c̃2
4
, c3 = c̃3

c̃2
4
, c4 = c̃4 (4.185)

we can see that c4 is an overall scaling factor of the metric. Indeed, we have

b(x) = c1x+ c2x
2, (4.186)

G(x) = x+ c3x
2 + c2x

3 (2c1 + c2x) , (4.187)

which depend now on the three dimensionless parameters c1, c2 and c3. Using the
above variables the metric becomes c2

4ds2. Since we are dealing with a conformal
theory, we can always choose appropriate units to set c4 to any convenient value
and deal with dimensionless quantities only.

Monopoles: homogeneous spaces Consider the vorticity strength (4.178).
The simplest example that can be considered is the one of constant q, that is when
c2 = 0. We call the corresponding geometries monopolar geometries, a terminology
that we will justify in the following. The two-dimensional Ricci scalar (4.181)
is in this case constant: R̂ = −2c3. This means that the parameter c3 labels
the curvature signature of the two-dimensional base space and that without loss of
generality (by appropriately choosing c4 and then dropping the overall scale factor),
we can set

c3 = −ν = 0,±1 . (4.188)
Thus, we are left with one continuous parameter, c1, which we rename as

c1 = −2n . (4.189)

Moreover, the Cotton–York tensor is proportional to

c = 2n(ν + 4n2) , (4.190)
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hence the parameter n determines whether the geometry is conformally flat or not.
Note that, apart from the trivial case n = 0, the space is conformally flat also when
ν = −1 and 4n2 = 1 – we will briefly comment on this issue at the end of Sec.
4.8.4. The functions b(x) and G(x) take now the form

b(x) = −2nx , G(x) = x(1 + νx) , (4.191)

The form of G(x) motivates the parameterisation

x = f 2
ν (σ2 ) ,


f1(σ) = sin σ
f0(σ) = σ

f−1(σ) = sinh σ
, y = 2φ , φ ∈ [0, 2π] . (4.192)

Then, the geometries (4.175) take the form

ds2 = −
(

dt+ 4nf 2
ν (σ2 ) dφ

)2
+ dσ2 + f 2

ν (σ)dφ2 , (4.193)

which is that of fibrations over S2,R2 and H2 for ν = 1, 0,−1 respectively. The
two-dimensional base spaces are homogeneous with constant curvature having three
Killing vectors; the three-dimensional geometry has in total four Killing vectors.

These geometries appear at the boundary of asymptotically anti-de Sitter Taub–
NUT Einstein spaces with n being the bulk nut charge.

We want now to discuss the presence of dangerous tensors. The velocity one-
form is:

u = −dt− 4nf 2
ν (σ2 )dφ, (4.194)

while the vorticity has constant strength:

q = 2n. (4.195)

Furthermore, the geometric data ensures the following structure:

Rµν dxµdxν =
(
ν + 4n2

)
u2 +

(
ν + 2n2

)
ds2 (4.196)

The above condition implies that all hydrodynamic scalars, vectors and tensors
that can be constructed from the Riemann tensor, its covariant derivatives and the
covariant derivatives of u are algebraic. More specifically

• all hydrodynamic scalars are constants,

• all hydrodynamic vectors are of the form kuµ with constant k, and

• all hydrodynamic tensors are of the form auµuν + bgµν with constant a and
b.
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This means that there exists no traceless transverse tensor that can correct the
hydrodynamic energy–momentum tensor in perfect equilibrium. In other words,
there exists no dangerous tensor. Thus, in the case of monopolar geometries it is
not possible to know the value of any transport coefficient.

This above result is not surprising. Indeed, we called Papapetrou–Randers con-
figurations given by (4.192) and (4.193) of monopolar type because the vorticity
is constant,12 as a consequence of the homogeneous nature of these space–times.
In such a highly symmetric kinematical configuration, the fluid dynamics cannot
be sensitive to any dissipative or non-dissipative coefficient. This result provides
a guide for the subsequent analysis: to have access to the transport coefficients,
we must perturb the geometry away from the homogeneous configuration. The
above discussion suggests that this perturbation should be organised as a multipo-
lar expansion: the higher the multipole in the geometry, the richer the spectrum
of transport coefficients that can contribute, if non-vanishing, to the global equi-
librium state, and that we need to set to zero for perfect fluids.

Dipolar geometries: axisymmetric spaces When c2 6= 0, the vorticity is
not constant and hence the space ceases to be homogenous. If some symmetry
remains, this must be in the form of a space-like Killing vector: therefore, these
are axisymmetric spaces. We call such geometries dipolar geometries, as their axial
symmetry connects them with the gauge potential of electric or magnetic dipoles.

For simplicity, we start considering a pure dipolar geometry, namely a nontrivial
conformally flat metric and see how it is parameterised in terms of c1, c2 and c3.
We start from R× S2 where we set to one the sphere’s radius

ds2 = −dt2 + dϑ2 + sin2 ϑdϕ2. (4.197)

We do then a conformal rescaling by a function Ω(ϑ), which preserves the axial
symmetry around ϕ – and the conformal flatness of (4.197) i.e. the vanishing
Cotton tensor:

ds′2 = Ω2(ϑ) ds2 . (4.198)

The vector field ∂t is no longer of unit norm. However, if Ω(ϑ) simply corresponds to
a rotation,13 then a new unit-norm time-like Killing vector may exist and describe
trajectories of a fluid in equilibrium on the background (4.198). We will show that
this is possible for

Ω2(ϑ) = 1− a2 sin2 ϑ (4.199)

12Note also that b, as given in (4.173) and (4.191), has the same form as the gauge potential
of a Dirac monopole on S2, R2 or H2. This magnetic paradigm can be made more precise – see
e.g. [19].

13Actually to a precession, hence we call this the precession trick.
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with a being a constant parameter. Consider for that the change of coordinates
(t, ϑ, ϕ) 7→ (t′, ϑ′, ϕ′) defined as:

t = t′ , Ω2(ϑ) = ∆ϑ′

Ξ , ϕ = ϕ′ + at′ (4.200)

with
∆ϑ′ = 1− a2 cos2 ϑ′ , Ξ = 1− a2 . (4.201)

The metric (4.198) reads now:

ds′2 = −
[
dt′ − a

Ξ sin2 ϑ′dϕ′
]2

+ dϑ′2
∆ϑ′

+ ∆ϑ′

Ξ2 sin2 ϑ′dϕ′2 . (4.202)

Clearly the Killing vector
∂t′ = ∂t + a∂φ (4.203)

is of unit norm, and its vorticity

ω = a

Ξ cosϑ′ sinϑ′dϑ′ ∧ dϕ′ (4.204)

has strength
q = −2a cosϑ′ . (4.205)

Any fluid comoving with ∂t′ in the background metric (4.202) undergoes a cy-
clonic rotation on a squashed14 S2. As already stressed, this background metric is
conformally flat.

Finally, by performing the change of coordinates

x =
sin2 ϑ′

2
1− a2 , y = 2ϕ, (4.206)

we can bring the metric (4.202) into the form (4.175) with

b(x) = 2ax
(
1− (1− a2)x

)
, (4.207)

G(x) = x− (1− 5a2)x2 − 8a2(1− a2)x3 + 4a2(1− a2)2x4. (4.208)

It is easy then to read off the parameters

c1 = 2a , c2 = −2a(1− a2) , c3 = 5a2 − 1. (4.209)

We now move to the generalisation of the above to non-conformally flat geome-
tries with x-dependent vorticity. These are the dipolar-monopolar metrics. In those
cases the precession trick mentioned previously does not suffice and one needs to
perform the appropriate parameterisations of the cis. Nevertheless, our previous

14The spatial metric d`′2 in (4.202) describes a squashed two-sphere.
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explicit examples serve both as a guiding rule as well as a test for our results. We
will present them and spare the reader from the non-illuminating technicalities.
By appropriately choosing c4 and dropping the overall scale factor, we can param-
eterise c1, c2 and c3 by the charge n and the angular momentum a, without loss
of generality. These parameterisations will depend on the topology captured in ν.
As already quoted, from the holographic analysis presented in Sec. 4.10, it will
become clear that n is the bulk nut charge.

Spherical (ν = 1) The relation between a and n and the three geometric pa-
rameters is given by:

c1 = 2(a− n),
c2 = 2a(−1 + a2 − 4an),
c3 = −1 + 5a2 − 12an. (4.210)

We also perform the following coordinate transformations:

x = κ sin2 ϑ

2 ,

y = λϕ, (4.211)
with

κ = 1
1 + a(4n− a) , λ = 2

κΞ and Ξ = 1− a2. (4.212)

The two-dimensional base space in the metric (4.175) takes then the form:

d`2 = dϑ2

∆ϑ

+ sin2 ϑ∆ϑ

Ξ2 dϕ2 (4.213)

with
∆ϑ = 1 + a cosϑ(4n− a cosϑ). (4.214)

The coordinates range as ϑ ∈ [0, π] and ϕ ∈ [0, 2π]. The full 2 + 1-dimensional
metric is of the Papapetrou–Randers form: ds2 = −u2 + d`2. The velocity field
takes the form

u = −dt+ b(ϑ)dϕ , b(ϑ) = 2(a− 2n+ a cosϑ)
Ξ sin2 ϑ

2 . (4.215)

The scalar vorticity strength is given by
q = 2 (n− a cosϑ) , (4.216)

while the constant c appearing in the Cotton–York tensor is
c = 2n(1− a2 + 4n2). (4.217)

The base space (4.213) is a squashed S2. The vorticity (4.216) has two terms: the
constant monopole and the dipole. It is maximal on the northern (ϑ = 0) and
southern (ϑ = π) poles and is vanishing on the equator (ϑ = π

2 ). Note also that in
the limit c2 we recovered the homogeneous metric case for ν = 1.
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Flat (ν = 0) The new parameters a and n are now defined as follows:

c1 = 2(a− n),
c2 = 2a2(a− 4n),
c3 = a(5a− 12n). (4.218)

Let us now do the following coordinate transformations:

x = κ(σ2 )2,

y = λϕ, (4.219)

with
κ = 1, λ = 2. (4.220)

With these transformations the two-dimensional base space in the metric (4.175)
takes the form of squashed R2:

d`2 = dσ2

∆σ

+ σ2∆σdϕ2 (4.221)

with

∆σ = (2 + a2σ2)(8− 24anσ2 + a4σ4 − 8a3nσ4 + 2a2σ2(3 + 8n2σ2))
16 . (4.222)

The coordinates range as σ ∈ R+ and ϕ ∈ [0, 2π]. The full 2+1-dimensional metric
is ds2 = −u2 + d`2, where the velocity field takes the form

u = −dt+ b(σ)dϕ , b(σ) = σ2

4
(
4(a− n) + a2(a− 4n)σ2

)
. (4.223)

The scalar vorticity is then given by

q = (n− a)
(
2 + a2σ2

)
, (4.224)

while the constant c appearing in Cotton–York tensor is:

c = 2n(−a2 + 4n2). (4.225)

Hyperbolic case (ν = −1) This case is very similar to the spherical one, with
trigonometric functions traded for hyperbolic ones. We define a and n using:

c1 = 2(a− n),
c2 = 2a(1 + a2 − 4an),
c3 = 1 + 5a2 − 12an. (4.226)
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The appropriate coordinate transformations are:

x = κ sinh2 σ

2 ,

y = λϕ, (4.227)

with
κ = 1

1− a(4n− a) , λ = 2
κZ

and Z = 1 + a2. (4.228)

With these transformations the two-dimensional base space in the metric (4.175)
takes the form of squashed H2:

d`2 = dσ2

∆σ

+ sinh2 σ∆σ

Ξ2 dϕ2 (4.229)

with
∆σ = 1− a cosh σ(4n− a cosh σ). (4.230)

The coordinates range as σ ∈ R+ and ϕ ∈ [0, 2π]. In the full 2 + 1-dimensional
metric ds2 = −u2 + d`2, the velocity field takes the form

u = −dt+ b(σ)dϕ , b(σ) = 2(a− 2n+ a cosh σ)
Z

sinh2 σ

2 . (4.231)

The scalar vorticity is
q = 2 (n− a cosh σ) , (4.232)

while the constant c appearing in the Cotton–York tensor is

c = 2n(−1− a2 + 4n2). (4.233)

Uniform parameterisation It is possible to use a uniform notation to include
the three different cases:

c1 = 2(a− n),
c2 = 2a(−ν + a2 − 4an),
c3 = −ν + 5a2 − 12an. (4.234)

The general coordinate transformations are:

x = κf 2
ν (θ2),

y = λϕ, (4.235)

with fν as in (4.192), and

κ = 1
1 + νa(4n− a) , λ = 2

κZν
and Zν = 1− νa2. (4.236)
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The constant c appearing in Cotton–York tensor takes the form:

c = 2n(ν − a2 + 4n2). (4.237)

Before moving to the general case c4 = 0, a comment is in order here. One ob-
serves from (4.237) that the Cotton tensor of the monopole–dipole 2+1 geometries
may vanish in two distinct instances. The first is when the charge n itself vanishes,
which corresponds to the absence of the monopolar component. The second occurs
when

ν − a2 + 4n2 = 0. (4.238)

For vanishing a, only the case ν = −1 is relevant: n = ±1
2 and geometry AdS3.

For non-vanishing a, we obtain a conformally flat, non-homogeneous deformation
of the n-squashed.

Vanishing c4

When the parameter c̃4 ≡ c4 is vanishing, it is not possible to perform the change
of variables (4.184) and thus we have a different class of metrics. We are left with
the parameters c̃1 ≡ c1, c̃2 ≡ c2, c̃3 ≡ c3 and c̃5 ≡ c5. We decide not to set to
zero the latter in order to avoid a possible metric singularity (see (4.177)) when
c2 = c3 = 0. The boundary metric is in this case given by

b(x) = c1x+ c2x
2,

G(x) = c5 + c3x
2 + c2x

3(2c1 + c2x),
(4.239)

with
c = c1

(
c3 − c2

1

)
. (4.240)

For the flat horizon case c3 = 0, this class of metrics appears as boundary of
Einstein solutions studied in [46]. When c2 = 0 we have a homogeneous geometry
and what we concluded on transport coefficients for the case before is still valid: it
is not possible to constrain any of them holographically, because the corresponding
tensors vanish kinematically.

As in the previous situation, the boundary geometries at hand can be confor-
mally flat. This occurs either when c1 vanishes, or when

c3 = c2
1. (4.241)

4.8.5 Geometries without space-like isometries
The perfect-Cotton geometries we have constructed in Sect. 4.8.4 possess at least
one space-like Killing vector.
Our motivation for studying perfect-Cotton geometries was holographic. These par-
ticular 2+1-dimensional Randers-Papapetrou geometries turn out to be boundaries
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of exact 3 + 1-dimensional bulk Einstein metrics, as we will discuss in detail. This
property is not limited to the sole perfect-Cotton stationary geometries that ad-
mit space-like isometries: it is indeed valid in general. In absence of the additional
Killing vector, the coefficients of the metric will depend on both the x and the y co-
ordinates. It is thus harder to solve the perfect-Cotton conditions (4.169)-(4.171),
and so to find the explicit form of the metric. Such solutions would anyway be con-
sistent from the perspective of existence theorems of general relativity. It would be
of course interesting to find those metrics, which would be new Einstein solutions,
both because we would be able to go beyond the dipole geometries and because
more non-vanishing dangerous tensors would appear, requiring thus to probe more
transport coefficients.

4.9 Perfect geometries and their bulk realization

The perfect-Cotton geometries we have constructed in Sec. 4.8.4 possess at least
one space-like Killing vector. Our motivation for studying such perfect-Cotton
geometries was holographic, and, in particular, these metrics appear as boundaries
of exact 3 + 1-dimensional bulk Einstein metrics, as we will see in Sec. 4.10. This
property is not limited to the sole perfect-Cotton stationary geometries that admit
space-like isometries: any perfect-Cotton Papapetrou–Randers metric qualifies. It
seems however very difficult to find explicit (x, y)-dependent solutions when the
additional isometry is not present. Such solutions would play important role to
go beyond the dipole and introduce more dangerous tensors, hence probe more
transport coefficients. In the absence of exact solutions, we could proceed with
probing further transport properties perturbatively. We leave this for the future.

4.10 The bulk duals of perfect equilibrium

4.10.1 Generic bulk reconstruction

When the boundary geometry is of the perfect-Cotton type and the boundary
stress tensor is that of a fluid in perfect equilibrium, the bulk solution can be
exactly determined. This is highly non-trivial because it generally involves an
infinite resummation i.e. starting from the boundary data and working our way to
the bulk.

Our main observation is that to the choice (??) for the boundary data corre-
sponds the following exact bulk Einstein metric in Eddington–Finkelstein coordi-
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nates (where grr = 0 and grµ = −uµ):

ds2 = −2u
(

dr − 1
2dxρuσηρσµ∇µq

)
+ ρ2d`2

−
(
r2 + δ

2 −
q2

4 −
1
ρ2

(
2Mr + qc

2

))
u2, (4.242)

with
ρ2 = r2 + q2

4 . (4.243)

The metric above is manifestly covariant with respect to the boundary metric.
Taking the limit r →∞ it is easy to see that the boundary geometry is indeed the
general stationary Papapetrou–Randers metric in (4.88) with

u = −dt+ b dy. (4.244)

The various quantities appearing in (4.242) (like δ, q, c) satisfy Eqs. (4.169),
(4.170) and (4.171), and this guarantees that Einstein’s equations are satisfied.
Performing the Fefferman–Graham expansion of (4.242) we indeed recover the per-
fect form of the boundary energy–momentum tensor with

ε = M

4πGN
. (4.245)

where GN is the four-dimensional Newton’s constant. The corresponding holo-
graphic fluid has velocity field u, vorticity strength q and behaves like a perfect
fluid.

In the choice of gauge given by (4.172) and (4.173), the bulk metric (4.242)
takes the form:

ds2 = −2u
(

dr − 1
2

(
dyB
A
∂xq − dxA

B
∂yq

))
+ ρ2d`2

−
(
r2 + δ

2 −
q2

4 −
1
ρ2

(
2Mr + qc

2

))
u2, (4.246)

where q is as in (4.174). Note δ and c can be readily obtained from q, A and B
using (4.171) and (4.169) respectively.

It is clear from the explicit form of the bulk spacetime metric (4.242) that the
metric has a curvature singularity when ρ2 = 0. The locus of this singularity is at
:

r = 0, q(x, y) = 0. (4.247)

However, we will find cases where ρ2 never vanishes because q2 never becomes zero.
In such cases, the bulk geometries have no curvature singularities, but they might
have regions with closed time-like curves.
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Since A, B and b are functions of x and y the metric has only a Killing vector
∂t. Although this is of unit norm at the boundary coinciding with the velocity
vector of the boundary fluid, it’s norm is not any more unity in the interior. The
Killing vector becomes null at the ergosphere r = R(x) where:

r2 + δ

2 −
q2

4 −
1
ρ2

(
2Mr + qc

2

)
= 0. (4.248)

Beyond the ergosphere no observer can remain stationary, and hence he experiences
frame dragging, as ∂t becomes space-like.

One could ask whether similar properties hold in higher dimensions, following
the already observed exactness of the lowest term for Kerr. In particular one may
wonder what replaces the perfect-Cotton geometry in higher dimensions, where
there is no Cotton–York tensor. As we stressed, the bulk gravitational duality
is a guiding principle that translates precisely to the boundary Cotton/energy–
momentum relationship used in this paper. A similar principle is not available in
every dimension and we expect only a limited number of cases where the observation
made in [30, 26] about Kerr could be generalised to more general Einstein spaces.

4.10.2 Absence of naked singularities

We will focus here on the situation where we have an additional spatial isometry.
We will show explicitly that for all perfect-Cotton geometries in this class, the bulk
geometries have no naked singularities for appropriate range of values of the black
hole mass. Our general solutions will be labeled by three parameters - namely the
angular momentum a, the nut charge n and the black hole massM . This will cover
all known solutions and also give us some new ones, as will be shown explicitly later
in Appendix 4.11.

In order to analyse the bulk geometry we need to know the boundary geometry
explicitly. In the previous section, we have been able to find all the perfect-Cotton
geometries with at least one additional spatial Killing vector explicitly. These
geometries are given by (4.175), (4.186) and (4.187), and are labelled by three
continuously variable parameters c1, c2 and c3. We have shown that without loss
of generality, we can rewrite these parameters in terms of the angular momentum
a, the nut charge n and a discrete variable ν as in Eq. (4.234).

The holographic bulk dual (4.242) for perfect equilibrium in these general
boundary geometries then reads:

ds2 = −2u
(

dr − G

2 ∂xq dy
)

+ ρ2
(dx2

G
+Gdy2

)
−
(
r2 + δ

2 −
q2

4 −
1
ρ2

(
2Mr + qc

2

))
u2, (4.249)
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where u = −dt + bdy, and b and G are determined by three geometric c1, c2 and
c3 as in (4.186) and (4.187). Therefore q, c and δ are as in (4.178), (4.179) and
(4.180) respectively.

It is convenient for the subsequent analysis to move from Eddington–Finkelstein
to Boyer–Linqvist coordinates. These Boyer–Linqvist coordinates make the loca-
tion of the horizon manifest. These are the analogue of Schwarzschild coordinates
in presence of an axial symmetry. In the case when the geometric parameter c4
is non-vanishing, the transition to Boyer–Linqvist coordinates can be achieved via
the following coordinate transformations:

dt̃ = dt− 4(c2
1 + 4r2)

3c4
1 + 8c1c2 − 4c2

1(c3 + 6r2) + 16r(2M + c3r − r3)dr, (4.250)

dỹ = dy + 16c2

3c4
1 + 8c1c2 − 4c2

1(c3 + 6r2) + 16r(2M + c3r − r3)dr. (4.251)

Note even after changing t, y to t̃, ỹ, the boundary metric still remains the same -
the difference between the old and new coordinates die off asymptotically.

After these transformations the bulk metric takes the form (we replace r̃ and ỹ
with r and y):

ds2 = ρ2

∆r

dr2 − ∆r

ρ2 (dt+ βdy)2 + ρ2

∆x

dx2 + ∆x

ρ2 (c2dt− αdy)2 , (4.252)

where

ρ2 = r2 + q2

4 = r2 + (c1 + 2c2x)2

4 , (4.253)

∆r = − 1
16
(
3c4

1 + 8c1c2 − 4c2
1(c3 + 6r2) + 16r(2M + c3r − r3)

)
, (4.254)

∆x = G = x+ c3x
2 + 2c1c2x

3 + c2
2x

4, (4.255)

α = −1
4
(
c2

1 + 4r2
)
, (4.256)

β = −b = −c1x− c2x
2. (4.257)

Note the coordinates r and x do not change as we transform from Eddington–
Finkelstein to Boyer–Linqvist coordinates. Therefore ρ2 is exactly the same as
before. Also note that ∆r and α are functions of r only, while ∆x and β are
functions of x only.

It is easy to see that the horizons are at r = r∗ where:

∆r(r = r∗) = 0, with r∗ > 0. (4.258)

At most we can have four horizons. These horizon(s) should clothe the curvature
singularity located at ρ2 = 0 or equivalently at:

r = 0, x = − c1

2c2
. (4.259)
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It is not hard to see that for fixed values of the geometric parameters c1, c2 and c3,
there exists a positive definite solution to Eq. (4.258) for an appropriate range of
the black hole mass M . Hence the curvature singularity is not naked.

Clearly we have only two Killing vectors generically - namely ∂t and ∂y. Each
horizon r = r∗ is generated by the Killing vector:

∂t + ΩH(r∗)∂y. (4.260)

which is an appropriate linear combination of the two Killing vectors. ΩH(r∗) is a
constant given by:

ΩH(r∗) = c2

α(r∗)
(4.261)

and is the rigid velocity of the corresponding horizon.
The bulk geometry can have at most four ergospheres where the Killing vector

∂t becomes null. These are given by r = R(x) where R(x) is a solution of:

gtt = 0, i.e. ∆r = c2
2G. (4.262)

We have seen in Section 4.8.4 that the geometric structure of the boundary
geometries is better revealed as fibrations over squashed S2, R2 or H2 if we do
a further coordinate transformation in x and y. We will do the same coordinate
transformations given by (4.235) in the bulk metric separately for ν = 1, 0,−1.
We will also need to exchange parameters c1, c2 and c3 with a, n and ν using
(4.234). Note in these coordinate transformations the radial coordinate r and the
time coordinate t do not change, while the spatial coordinates x and y transform
only as functions of themselves. This preserves the Boyer–Linqvist form of the
metric (4.288). We can apply the same strategy to locate the horizon(s) and the
ergosphere(s).

The advantage of doing these coordinate transformations is that for ν = 1, 0,−1
we will see that the horizon will be a squashed S2, R2 andH2 respectively. The met-
rics are given explicitly in Appendix 4.11, where we will also show that we recover
all known rotating black hole solutions for which the horizons will be squashed S2

or H2. As far as we are aware of the literature, the case of squashed R2 horizon
(4.272) is novel.

For the case of vanishing c4, we can similarly proceed to change coordinates
an bring the bulk metric to Boyer–Linqvist form. The details are presented in
Appendix 4.11, Eq. (4.288). Except for the special case (4.294), all such solutions
in this class will be novel as far as we are aware of the literature.

Interestingly when c2 = 0, ρ2 > c2
1/4, hence it never vanishes. Therefore the

bulk geometry has no curvature singularity. In terms of a, n and ν, this happens
when

• for ν = 1: n > a;

• for ν = 0: n > a or n < a
4 ;
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• for ν = −1: n < a or |n| ≤ 1
2 .

In such cases horizon(s) may exist, but in absence of a curvature singularity, it is
not necessary for the horizon to exist in order that the solution is a good solution.

4.10.3 The case of no spatial isometry
We comment now on the case of perfect Cotton geometries with no spatial isometry.
Though we do not have explicit examples of such boundary metrics, we know that
their uplift leads to the exact solutions given in (4.242). However, the coefficient
of the bulk geometry are not explicitly known, and therefore we cannot analyze in
detail the presence of naked singularities in the bulk.
It is also that the perfect Cotton condition itself will force the geometry to have at
least an additional spatial isometry. This is consistent with the rigidity theorem
in 3 + 1-dimensional which requires all stationary black hole solutions in flat space
to have an axial symmetry. However, as far as we are aware, it is not known if
this theorem is valid for 3 + 1-dimensional space-times in AdS for an arbitrary
stationary boundary geometry.

4.11 Explicit bulk solutions
The dual of perfect-Cotton boundary geometries can be written as an exact solution
of Einstein’s equations. Such solutions are different depending on the value of c4
and on the geometry of the horizon. We present in this section the complete
classification when an extra isometry is present.

Non-vanishing c4: Kerr–Taub–NUT metrics
We start from the boundary metrics studied in Sec. 4.8.4 and uplift them using
(4.288).

Spherical (ν = 1) We set

c1 = 2(a− n),
c2 = 2a(−1 + a2 − 4an),
c3 = −1 + 5a2 − 12an. (4.263)

By doing this, we recover the spherical-horizon Kerr–Taub–NUT metric [?]:

ds2 = ρ2

∆r

dr2 − ∆r

ρ2 (dt+ βdφ)2 + ρ2

∆ϑ

dϑ2 + sin2 ϑ∆ϑ

ρ2 (adt+ αdφ)2 , (4.264)
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with

ρ2 = r2 + (n− a cosϑ)2, (4.265)
∆r = r4 + r2(1 + a2 + 6n2)− 2Mr + (a2 − n2)(1 + 3n2), (4.266)
∆ϑ = 1 + a cosϑ(4n− a cosϑ), (4.267)

β = −b(θ) = −2(a− 2n+ a cosϑ)
Ξ sin2 ϑ

2 , (4.268)

α = −r
2 + (n− a)2

Ξ , (4.269)

Ξ = 1− a2. (4.270)

Flat (ν = 0) We set

c1 = 2(a− n),
c2 = 2a2(a− 4n),
c3 = a(5a− 12n). (4.271)

and get the flat-horizon Kerr–Taub–NUT metric:

ds2 = ρ2

∆r

dr2− ∆r

ρ2 (dt+ βdφ)2 + ρ2

∆σ

dσ2 + σ2∆σ

ρ2

(
a2(a− 4n)dt+ αdφ

)2
, (4.272)

with

ρ2 = r2 + 1
4
(
2a− 2n+ a2σ2(a− 4n)

)2
, (4.273)

∆r = r4 + r2(a2 + 6n2)− 2Mr + 3n2(a2 − n2), (4.274)

∆σ = (2 + a2σ2)(8− 24anσ2 + a4σ4 − 8a3nσ4 + 2a2σ2(3 + 8n2σ2))
16 ,(4.275)

β = −b(θ) = σ2

4
(
4(n− a) + a2σ2(4n− a)

)
, (4.276)

α = r2 + (n− a)2. (4.277)

It seems that this metric was never quoted in the literature. It provides the AdS
generalisation of the asymptotically flat metric of [?].

Hyperbolic (ν = −1) We set

c1 = 2(a− n),
c2 = 2a(1 + a2 − 4an),
c3 = 1 + 5a2 − 12an. (4.278)

and obtain the hyperbolic-horizon Kerr–Taub–NUTmetric (also mentioned in [46]):

ds2 = ρ2

∆r

dr2 − ∆r

ρ2 (dt+ βdϕ)2 + ρ2

∆θ

dθ2 + sinh2 θ∆θ

ρ2 (adt+ αdφ)2 , (4.279)

105



CHAPTER 4. HOLOGRAPHIC PERFECT-LIKE FLUIDS, BLACK HOLE UNIQUENESS AND
TRANSPORT COEFFICIENTS

with

ρ2 = r2 + (n− a cosh θ)2, (4.280)
∆r = r4 + r2(−1 + a2 + 6n2)− 2Mr + (a2 − n2)(−1 + 3n2), (4.281)
∆θ = 1− a cosh θ(4n− a cosh θ), (4.282)

β = −b(θ) = −2(a− 2n+ a cosh θ)
Z

sinh2 θ

2 , (4.283)

α = r2 + (n− a)2

Z
, (4.284)

Z = 1 + a2. (4.285)

Vanishing c4

When c4 = 0, the bulk metric is obtained in Boyer–Linqvist form from (4.246) by
doing the following coordinate transformations

dt̃ = dt− 4(c2
1 + 4r2)

3c4
1 − 4c2

1(c3 + 6r2)− 16(c2
2c5 − 2Mr − c3r2 + r4)dr, (4.286)

dỹ = dy + 16c2

3c4
1 − 4c2

1(c3 + 6r2)− 16(c2
2c5 − 2Mr − c3r2 + r4)dr. (4.287)

The metric is explicitly given by (we replace r̃ and ỹ with r and y):

ds2 = ρ2

∆r

dr2 − ∆r

ρ2 (dt+ βdy)2 + ρ2

∆x

dx2 + ∆x

ρ2 (c2dt− αdy)2 , (4.288)

where

ρ2 = r2 + q2

4 = r2 + (c1 + 2c2x)2

4 , (4.289)

∆r = − 1
16
(
3c4

1 − 4c2
1(c3 + 6r2)− 16(c2

2c5 − 2Mr − c3r
2 + r4)

)
, (4.290)

∆x = G = c5 + c3x
2 + 2c1c2x

3 + c2
2x

4, (4.291)

α = −1
4
(
c2

1 + 4r2
)
, (4.292)

β = −b = −c1x− c2x
2. (4.293)

According to our knowledge, solutions of these kind are not known in literature
except for the special case where c1, c2, c3 and c5 are given by

c1 = 2n, c2 = a, c3 = 0 and c5 = 1, (4.294)

with n being the nut charge and a being the angular momentum. In this case we
recover the flat-horizon solution of [46], which is however different from the above
flat-horizon solution (4.272), or, at n = 0, the rotating topological black hole of [?].
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Geometries with conformally flat boundarties
As discussed at the end of Secs. 4.8.4 and 4.8.4, the boundary geometries become
conformally flat for some specific values of the parameters: for non-vanishing c4 this
happens when (4.238) is satisfied, whereas for c4 = 0 the requirement is (4.241).

4.12 Constraints on transport coefficients
In the previous section, we have shown that we can find exact black hole solutions
corresponding to perfect equilibrium of the dual field theory in perfect-Cotton
boundary geometries. From the perspective of the boundary fluid dynamics, we
are ensured by construction that the energy-momentum tensor is exactly of the
perfect type. Thus, any dangerous tensor that this deformed boundary may have,
will necessarily couple to vanishing transport coefficients. This gives non-trivial
information about strongly coupled holographic conformal fluids in the classical
gravity approximation.
Exact black hole solutions indeed imply holographic fluids at strong coupling, and
in the classical gravity approximation such fluids can have infinitely many vanishing
non-dissipative transport coefficients. The condition of perfect-Cotton geometries
at the boundary is not enough to constrain all non-dissipative transport coefficients.
This is because many Weyl-covariant, traceless and transverse tensors which do not
contribute to dissipation will vanish kinematically.
Perfect-Cotton geometries with an additional spatial isometry only can be uplifted
to exact black hole solutions without naked singularities for generic values of four
parameters characterizing them. Let us now examine the presence of dangerous
tensors in these geometries.
For concreteness, we begin at the third order in derivative expansion. The list of
possible dangerous tensors is in (4.166). We note that 〈Cµν〉 vanishes in any perfect-
Cotton geometry, because the transverse part of Cµν is pure trace, meaning it is
proportional to ∆µν . Therefore, it is not a dangerous tensor in any perfect-Cotton
geometry, as a result we cannot constrain the corresponding transport coefficient
γ(3)1.
We work in the Weyl-covariant formalism described in section 4.3.2. It is possible
to show that in equilibrium the Weyl-covariant derivative Dµ reduces to the covari-
ant derivative ∇µ. This facilitates our hunt for dangerous tensors.
For any boundary geometry of the class described in Sect. ??, 〈DµVν〉 vanishes.
Thus, it is not a dangerous tensor in these class of geometries and we cannot con-
strain the transport coefficient γ(3)1. It could possibly be a dangerous tensor in
perfect-Cotton geometries without any spatial isometry. Even though we know
that such boundary metrics uplift to exact solutions in the bulk, we do not know
these geometries explicitly. Consequently, we cannot investigate the presence of
horizons in the bulk. So, we cannot use black hole solutions to constrain this
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transport coefficient yet.
The first dangerous tensor we encounter is 〈DµWν〉. Not only such term is non-
vanishing, but it is also not conserved, meaning that ∇µ〈DµWν〉 6= 0. Perfect equi-
librium can exist only if the corresponding dangerous transport coefficient γ(3)3
vanishes. Thus, this transport coefficient vanishes for all strongly coupled holo-
graphic fluids in the regime of validity of classical gravity approximation.
We can similarly show that infinite number of tensors of the form of (CαβCαβ)l〈DµWν〉,
(V αVα)m〈DµWν〉 and (WαWα)n〈DµWν〉 for l,m and n being arbitrary positive in-
tegers, are dangerous tensors in geometries of Sect. ??. We conclude that the
infinitely many non-dissipative transport coefficients corresponding to these dan-
gerous tensors should vanish.
For example, at the fourth order in the derivative expansion, we get new kind of
dangerous tensors of the form 〈VµVν〉, 〈WµWν〉 and 〈DµDν(ωαβωαβ)〉 in geometries
of Sect. ??. This further implies existence of infinite number of dangerous tensors,
of the form of (CαβCαβ)l〈VµVν〉, (V αVα)m〈VµVν〉, (WαWα)n〈VµVν〉, etc. in the ge-
ometries of section ??. Once again this leads us to conclude that infinite number
of new dangerous transport coefficients vanish.
The constraints on transport coefficients follow from requiring the bulk to be an
exact solutions of Einstein’s equations: infinitely many non-dissipative transport
coefficients that would destroy the unique perfect-fluid solution are required to
vanish in holographic systems. Not that if this was not the case, we would had get
a contradiction of the black-hole uniqueness theorem.
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Conclusions

Different gravitational backgrounds in four-dimensions have been studied in this
Thesis, inspired mainly by holographic motivations.

In the first chapter we studied self-dual gravitational instantons endowed with
a product structure R×M3,M3 being an homogeneous three-dimensional mani-
fold of Bianchi type. We studied the general conditions under which such solutions
can be mapped into geometric flows. The temporal evolution of the instanton
is then given a Ricci flow plus a Yang-Mills connection, accompanied by diffeo-
morphism. This correspondence holds for both unimodular and non-unimodular
Bianchi classes, where in the latter case an additional term proportional to the met-
ric itself appears in the Ricci part of the flow. The self-duality constraint does not
affect some classes of solutions, namely Bianchi VIII and IX, for which the metric
remains generic. It does however further restrict the metric for all other Bianchi
groups, without altering the consistency flow equation. In particular, among non-
unimodular groups, Bianchi III is the only group where non-singular gravitational
instantons, corresponding to non-degenerate geometric flows, exist.
We should stress the specificity of four dimensions in respect to the relationship
between geometric flows and gravitational instantons. Even though self-duality
can be imposed in other dimensions, such as 7 or 8 thanks respectively to the G2
structure and to the octonions, the holonomy group has no factorization property,
which is essential for the correspondence. It seems thus more difficult, although we
cannot exclude it, to find for such dimensions a class of instantons that could be
interpreted as geometric flows of a lower-dimensional geometry.

In the second chapter we studied a procedure to embed the general solution for non-
BPS extremal asymptotically flat static and under-rotating black-holes in abelian
gauged N = 2 supergravity, in the limit where the scalar potential vanishes but
the gauging does not. The bosonic Lagrangian of the two theories is the same,
but the solutions are not, due to the different fermionic sectors and thus to the
different supersymmetric properties. Nevertheless, the attractor geometries, and
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therefore also the microscopic counting, for BPS asymptotically AdS black holes
and for asymptotically flat extremal non-BPS black holes fall within a common
class of supersymmetric AdS2 × S2 spaces, or their rotating generalizations.
An interesting extension of the abelian gauged theory is given by the possibility of
including gauged hypermultiplets. An extra term enters into the scalar potential,
but models with identically flat potentials are still possible, and it is an interesting
subject on its own to explore the allowed gaugings. Nevertheless, the extension of
the squaring procedure with inclusion of hypermultiplets is not known yet.
Also, it would be interesting to extend our procedure to the non-extremal case.

In the last chapter we studied phases of strongly coupled conformal holographic
systems in various stationary backgrounds. The corresponding gravity counterpart
is given by the analysis of stationary black holes in AdS space with non-trivial
boundary geometries. The boundary spaces taken into account enjoy the presence
of a unique time-like Killing vector field of unit norm. In this case the global equilib-
rium is described by a perfect fluid, that is relativistic Euler equations are satisfied.
Those equations admit a unique solution describing equilibrium. If this perfect fluid
configuration indeed describes the equilibrium of the three-dimensional strongly
coupled conformal matter, the corresponding black hole in four-dimensional Ein-
stein’s gravity is unique. This is nothing else then the holographic version of the
black hole uniqueness theorem. It is then interesting to investigate the additional
properties a stationary background with a unique time-like Killing vector of unit
norm should satisfy such that the equilibrium of the holographic system is described
by a perfect fluid. The perfect form of the Cotton-York tensor turns out to be a
sufficient condition for this to happen. This automatically implies that infinitely
many non-dissipative transport coefficients, which are in principle allowed by the
geometry but would destroy the unique perfect fluid solution, should vanish.
From the gravity point of view, if those transport coefficients would have been
non-zero, then the energy-momentum tensor of the equilibrium state of the dual
system would not have been perfect-fluid like by holographic dictionary. From the
boundary point of view, it the transport coefficients were non-vanishing, then the
equilibrium solution would not have been unique, since the fluid mechanics would
have had higher order derivative corrections up to an arbitrary order. This would
have been in contradiction with the black hole uniqueness theorem.
Moreover, when the Cotton-York tensor is perfect-fluid like, the expansion from
the boundary to the bulk can be exactly resummed, leading to a classification of
all possible exact black hole geometries corresponding to such fluids. It is a nat-
ural to ask whether the condition on the Cotton-York tensor can be relaxed and
whether it is possible to find necessary, and not only sufficient, conditions for the
resummation to be exact and for the fluid to be perfect.
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Abstract
We investigate four-dimensional, self-dual gravitational instantons endowed
with a product structure R × M3, where M3 is a homogeneous three-
dimensional manifold of Bianchi type. We analyze the general conditions under
which Euclidean-time evolution in the gravitational instanton can be identified
with a geometric flow of a metric on M3. This includes both unimodular and
non-unimodular groups, and the corresponding geometric flow is a general
Ricci plus Yang–Mills flow accompanied by a diffeomorphism.

PACS numbers: 02.40.Ky, 02.40.Sf

An intriguing relationship between three-dimensional geometric flows and gravitational
instantons in four dimensions has recently been investigated in [1]. It states that self-dual
solutions of vacuum Einstein equations for Euclidean M4 = R × M3 foliations, with
homogeneous sections M3 of Bianchi type, are mapped onto geometric flows on the three-
dimensional manifold M3. The geometric flows appear as a combination of Ricci and Yang–
Mills flows.

This observation, originally made in [2–4] for Bianchi IX, has been extended in [1] for
all unimodular Bianchi groups, under the assumption of diagonal metrics. Although for these
groups any metric can eventually be taken diagonal, such a choice obscures the reach of the
correspondence, which might ultimately appear as a technical coincidence. Furthermore, it
invalidates it for non-unimodular groups, where diagonal metrics are not the most general.

The aim of this paper is to show that this correspondence holds generally, without any
assumption on the metric and for all Bianchi classes, including the non-unimodular groups. The
latter case requires the addition of an extra term to the Ricci part of the flow, proportional to the
metric and available only in the non-unimodular class, as well as a prescribed diffeomorphism.
Our understanding of the phenomenon at hand is now complete and gives confidence that
it might hold similarly for Einstein gravity in higher dimensional set-ups admitting self-
dual solutions—much like it does for non-relativistic gravity under the detailed-balance
condition [5, 6].

0264-9381/11/245004+09$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1
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Table 1. Basis of invariant forms and restrictions on γ —unimodular groups.

Type n, η, a = 0 Restrictions from (18) Restrictions from (17)

I n = 0 η = 1 None None rank-1
II n = diag(0, 1, 0) γ12 = 0 = γ23 γ12 = 0 = γ23: rank-0

η = 1 γ13 = 0 and/or γ11 = γ33: rank-1
VIII n = η = diag(1, −1, −1) None None rank-0

None rank-3: I = η
IX n = η = 1 None None rank-0

None rank-3: I = η
VI−1 n = diag(0, 1, −1) γ12 = 0 = γ13 γ12 = 0 = γ13

η = diag(−1, 1, −1) Rank-0,1
VII0 n = diag(1, 1, 0) γ12 = 0 = γ23 γ13 = 0 = γ23

η = diag(1, 1, 1) Rank-0,1

Table 2. Basis of invariant forms and restrictions on γ —non-unimodular groups.

Type n, η, a Restrictions from (18) Restrictions from (17)

III n = diag(0, 1, −1) a = (1, 0, 0) γ12 = γ13 γ11, γ13 given in (A.9)
η = diag(−1, 1, −1) γ22 = γ33

IV n = diag(0, 1, 0) γ12 = 0 = γ13, Singular from (A.1)
η = 1 a = (1, 0, 0) γ23 = γ22 + γ33 γ22 = 0 = γ33

V n = 0 η = 1 γ12 = 0 = γ13 Singular from (A.1)
a = (1, 0, 0) γ22 = −γ33 γ22 = 0 = γ23

VIh>−1 n = diag(0, 1, −1) a = (h + 1, 0, 0) γ12 = 0 = γ13 Singular from (A.1)
η = diag(−1, 1, −1) γ22 = γ33 γ22 = γ23

VIIh>0 n = diag(1, 1, 0) η = 1 γ13 = 0 = γ23 Singular from (A.1)
a = (0, 0, h) γ11 = −γ22 γ11 = 0 = γ12

A metric on M4 is generally of the following type:

g = dt2 + gi jσ
iσ j. (1)

We implicitly choose a gauge with trivial shift and lapse functions. The prescribed isometry
requires gi j be a function of t only, while {σ i, i = 1, 2, 3} are the left-invariant Maurer–Cartan
forms of the Bianchi group. They obey

dσ i = 1
2 ci

jkσ
j ∧ σ k. (2)

The structure constants can be put in the form (see e.g. [7])

ck
i j = −εi j�n�k + δk

j ai − δk
i a j, (3)

where n�k are the elements of a symmetric matrix n and ai the components of a covector a. We
also define the antisymmetric matrix m with entries

mi j ≡ εi jkak. (4)

With these definitions, the Jacobi identity of the above algebra reads

εi jkmi j(nk� − mk�) = 0 ⇔ aknk� = 0, (5)

whereas the trace of the structure constants is c j
i j = 2ai. Unimodular groups have zero trace

and are referred to as Bianchi A; Bianchi B are the others. Our choice for the structure constants
is presented in tables 1 and 2.

Self-duality conditions are naturally implemented in an orthonormal frame, where

gi jσ
iσ j = ηi jθ

iθ j, (6)
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and

ηi jθ
j = γi jσ

j. (7)

Two remarks are in order here, which are at the heart of the advertized correspondence. First,
for real self-duality, only η = 1 or diag(1,−1,−1), up to a permutation, are allowed. The
latter situation is more natural than the Euclidean one for Bianchi VIII (SL(2, R) group) and
for all other Bianchi groups obtained by or related to contractions of the latter (III and VI). With
this choice, the geometric-flow correspondence can be achieved without any complexification.
Secondly, we will not consider the most general vielbeins, but only those for which γi j is
symmetric. Although it might be restrictive1, this choice is unavoidable because γi j appears
ultimately as the metric on M3,

ds2 = γi jσ
iσ j, (8)

whose appropriate flow coincides with the dynamics of the gravitational instanton. It should be
stressed here, and kept in mind as an important—and still puzzling—feature of our analysis,
that the flowing metric on M3 is not the metric on the spatial section of the corresponding
gravitational instanton induced by (1), but rather its ‘square root’2.

In four dimensions, spin connection and curvature forms belong to the antisymmetric
6 representation of the group of local rotations SO(4) (or SO(2, 2), when η �= 1). This
group factorizes as SO(3) ⊗ SO(3) (or SO(2, 1) ⊗ SO(2, 1)) and both the connection and
the curvature forms can be reduced as 6 = 3 ⊗ 1 ⊕ 1 ⊗ 3, referred to as self-dual and
anti-self-dual components. The spin-connection one-form is defined by the torsionless and
metric-compatibility equations:

dθa + ωa
b ∧ θb = 0, ωab = −ωba. (9)

Its decomposition in self-dual and anti-self-dual parts is

ςi = 1
2

(
ω0i + 1

2εi jkω
jk
)
, (10)

αi = 1
2

(
ω0i − 1

2εi jkω
jk
)
. (11)

A similar decomposition holds for the curvature two-form.
Requiring self-duality of the curvature (see [1, 8] for details) states that the anti-self-dual

Lévi–Cività SO(3) (or SO(2, 1)) connection triplet {αi, i = 1, 2, 3} must be a pure gauge field:
dαi + εi jkα

j ∧ αk = 0. This is achieved with

αi = 1
2 Ii jσ

j, (12)

where the first integral I = {Ii j} satisfies (the prime stands for d/dt)

I′
i j = 0, Ii�c�

jk + εimnη
mpηnqIp jIqk = 0. (13)

We can compute the spin connection using equations (9) and our metric ansatz (1), (6).
Inserting its expression into (11) and (12), we find the first-order dynamics of the vielbein

1 Symmetric vielbeins are exhaustive only for unimodular algebras. A detailed account for this issue is available
in [8], where a comprehensive and systematic analysis of all self-dual gravitational instantons of Bianchi type is
presented in a purely Euclidean framework, without assuming symmetric vielbeins. Particular attention is drawn to
the use of symmetries for reducing the redundant components of the vielbein. Our perspective is different here, since
we want to interpret γi j as a metric in order to translate its dynamics into a geometric flow but, within this assumption,
we want to keep it as general as possible.
2 We thank A Petkou for drawing to our attention similar properties of scalar fields in some holographic set-ups
(unpublished work).
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components γi j defined in (7). These first-order equations can be put in a compact form, useful
for the subsequent developments, by introducing a three-dimensional matrix

� = det 
(
γ nγ − γ mγ − η

2
tr(γ nγ η)

)
. (14)

The matrix notation is self-explanatory: γ and  are inverse of each other with entries γi j

and i j, η stands for both ηi j and ηi j, which are equal, γ η = γi jη
jk, .... One thus obtains two

equations: a first-order evolution equation

γ ′ = −�ηγ − I (15)

and a constraint

[γ ′η, η] = 0, (16)

equivalent, using (15), to

[�η + I, γ η] = 0. (17)

Since γ is required to be symmetric, γ ′ must also be, which imposes through (15) the constraint

a(�ηγ + I) = 0, (18)

with the notation a(P) = 1/2
(
P − PT

)
. Constraint (18) restricts the form of γ : not all

symmetric vielbeins are eligible for satisfying the self-duality conditions. The precise form
of γ depends on the Bianchi class—as well as on the basis chosen for the invariant forms
(2), captured by the set of data {n, a} entering (3) (ours are displayed in tables 1 and 2). Note
finally that under (18), constraint (17) is equivalent to

a(� + Iη) = 0 ⇔ γ mγ = a(IMη), (19)

where M = Adj(γ ) is the adjoint matrix of γ , i.e. the matrix of the 2 × 2 subdeterminants
of γ .

For the reader’s convenience, it is useful at this stage to outline our strategy for the
next steps. The dynamics of self-dual gravitational instantons with symmetric vielbeins γi j is
governed by the evolution equation (15), under any two independent constraints among (17),
(18) and (19). All these equations depend explicitly on the first integral I, which solves (13).
We will therefore (i) classify the possible solutions I, (ii) re-express accordingly constraint
(18) as well as the evolution equation (15) and (iii) interpret the resulting evolution equation
as a specific geometric flow for γ viewed as a metric on M3. Constraint (17) (or equivalently
(19)) will be finally used to further restrict the allowed form of γ .

Any solution of equation (13) corresponds to an algebra homomorphism G3 → SO(3),
G3 being a Bianchi algebra; it can be of rank 0, 1 or 3. The general solutions are as follows.

• For Bianchi VIII and IX (n = η, a = 0),

– rank 0: I = 0,
– rank 3: I = η (Cayley–Hamilton theorem on Iη).

In these cases, constraint (18) is satisfied without restricting the form of γ .
• In all other Bianchi classes det n = 0, and besides rank-0 solutions I = 0, only rank-1

solutions exist, for which (13) becomes3

I(n + m) = 0 ⇔ (n − m)IT = 0, (20)

and they are necessarily of the form Ii j = ρiτ j. Even though Ii j need not a priori
be symmetric, the combination of constraints (18) and (17) as well as the integrability

3 Equation (13) is strictly equivalent to I(n + m) = ηAdj(I)T—vanishing if I is rank-1.
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requirement of the latter (validity at any time, i.e. compatibility with the evolution equation
(15)) implies, after a tedious computation, that

I = IT. (21)

Under (20) and (21), constraint (18) is equivalent to

ηγ (n + m) = (n − m)γ η ⇔ [nη, ηγ ] = {mη, ηγ }. (22)

This condition (also satisfied for Bianchi VIII and IX with generic γ ) restricts the form a
symmetric vielbein γ must have in order to be consistent with the self-duality evolution
equation (15).

In all Bianchi classes, the matrix n is idempotent:

nηn = n. (23)

Furthermore, as a consequence of the identities relating the structure constants, one obtains

nηm + mηn = m tr nη. (24)

According to this formula, the non-unimodular Bianchi algebras fall into three classes:

• III, VIh>−1, VIIh>0: nηm = mηn = m;
• IV: nηm + mηn = m;
• V: nηm = mηn = 0.

Hence, (23) and condition (22) imply

nγ (n + m) = (n − nηm)γ η ⇔ ηγ (n + mηn) = (n − m)γ n, (25)

with, as corollary,

nγ m + mγ n = (m − nηm)γ η + ηγ (m − mηn). (26)

So far we have analyzed the solutions I of equation (13) and processed constraint (18),
with the help of various algebraic properties of the structure constants. The resulting key
equations are (21) and (25), which allow for expressing the evolution equation (15) as

γ ′ = − det 

(
γ nγ nγ − 1

2
(γ mγ nγ − γ nγ mγ ) − γ

2
tr(γ n)2

)
− I

− 1

2
det 

(
γ ηγ (m − mηn)γ − γ (m − nηm)γ ηγ − γ

2
tr(γ ηγ (nηm − mηn))

)
,

(27)

where I is now symmetric. This self-duality evolution equation is valid for all symmetric
metrics γ satisfying (22) and with I being a symmetric solution of (20), or I = η for rank-3
Bianchi VIII and IX. Thanks to identity (24) we observe that the second line of equation (27)
vanishes identically for all Bianchi classes but IV and V. It turns out that it also vanishes
for those classes, as a consequence of condition (17), which has not yet been taken into
consideration (we will elaborate on this in the appendix). In fact, self-duality constraint (17)
must be fulfilled for a solution of (27) under (22) to provide a self-dual gravitational instanton.

Before analyzing the actual restrictions (17) sets on the form of γ , we would like to pause
and interpret the non-vanishing part of equation (27),

γ ′ = − det 

(
γ nγ nγ − 1

2
(γ mγ nγ − γ nγ mγ ) − γ

2
tr(γ n)2

)
− I, (28)

as a geometric flow, which is the main purpose of this paper. This was achieved in [1] for
Bianchi A (non-unimodular) under the assumption of diagonal γ . The geometric flow was
shown to be a Ricci flow combined with a Yang–Mills flow produced by a flat, non-flowing

5
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and diagonal SO(3) Yang–Mills connection on M3. The origin of the Yang–Mills connection
was the flat anti-self-dual part of the Lévi–Cività connection on M4, appearing as the first
integral (12).

For general metrics γ (see (8)) on G3-left-invariant M3, the Ricci tensor reads4

R[γ ] = N + det 
(
γ nγ nγ − γ mγ nγ + γ nγ mγ − γ

2
tr(γ n)2

)
+ a ⊗ a − 2γ aa. (29)

In the last term, aa stands for ai
i ja j, while N is the Cartan–Killing metric of the G3 algebra,

Ni j = − 1
2ε�imεk jnnmknn� − aia j. (30)

The appropriate Yang–Mills connection to consider here is SO(2, 1) for Bianchi VI or
VIII, and SO(3) otherwise, since it reflects, in each case, the four-dimensional anti-self-dual
Lévi–Cività connection: A ≡ Aiσ

i = −λi jT jσ i with [Ti, Ti] = −εi jkT k. As usual T i = ηi jTj

with η = 1 for SO(3) and diag(1,−1,−1) for SO(2, 1). The absence of flow for the Yang–
Mills connection states that A′ = 0, while flatness requires

F = dA + [A, A] ≡ 0 ⇔ λi�c�
jk + εi jkη

jmηknλm jλnk = 0. (31)

It is straightforward to show5 that −1/2 tr(AiAj) = ηk�λkiλ� j. Combining the latter with (29),
we conclude that equation (28) is recast as6

dγ

dt
= −R[γ ] + s(∇a) − γ aa − 1

2
tr (A ⊗ A) . (32)

This describes a geometric flow driven by the Ricci tensor, combined with Yang–Mills as well
as a diffeomorphism generated by a and an invariant component of the scalar curvature. The
matching requires the following relationship to hold between the flat anti-self-dual Lévi–Cività
connection Ii j and the flat Yang–Mills connection λi j:

N − I = λTηλ, (33)

where I (symmetric) and λ satisfy (13) and (31), respectively. This equation is indeed
consistent.

• For Bianchi VIII and IX, N = η, I = 0 or η and λ = η or 0. Thus, (33) translates onto
I + λ = η.

• For all other types, equations (13) and (31) are equivalent to I(n + m) = (n − m)I = 0
and λ(n + m) = (n − m)λT = 0, respectively. Since N(n + m) = (n − m)N = 0 (as a
consequence of Jacobi identity (5)), any rank-0 or rank-1 solution I provides, through (33),
a solution for λ and vice versa.

It should finally be stressed that the consistency condition (21) was instrumental in
reaching (25) from (18), and therefore in rewriting (15) as (28), and further as (32) (for
Bianchi IV and V, constraint (17) was also necessary to ensure the equivalence of (27) and
(28)—see the appendix).

The above demonstrates the advertized general correspondence between gravitational
instantons and geometric flows for metrics γ satisfying (22) (and (17) for Bianchi IV and V),
and first integral I satisfying (21). Two questions are in order at this stage. The first concerns
the self-consistency of the geometric flow (32). Within the framework of self-dual gravitational

4 The scalar curvature is S[γ ] = tr(R[γ ]) = tr(N) − det 
2 tr(γ n)2 − 5aa.

5 Note also the normalization of the generators: tr(TiTj ) = −2ηi j .
6 Here s(∇a) stands for the symmetric part of ∇a: s(∇a) = det 

2 (γ nγ mγ − γ mγ nγ ) + a ⊗ a − γ aa.
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instantons, the metrics γ are forced to fulfill (22) (and (17) for Bianchi IV and V). Is the flow
evolution compatible with this constraint? The answer is positive and one easily checks that γ ′

satisfies (22) if γ does. The second question is whether any consistent geometric flow of this
type is eligible as a gravitational instanton. The answer in this case is negative, because only
γ s further restricted to (17), the constraint that has not yet been taken explicitly into account,
can be promoted to four-dimensional self-dual solutions.

The self-duality constraint (17) does not affect Bianchi VIII or IX, for which γ remains
generic. It does however further restrict γ in the other Bianchi groups, without altering the
consistency of the flow equation (28) (this follows immediately from the original formulation
of the self-duality constraint (16)). For the non-unimodular Bianchi class, (17) or equivalently
(19) imposes that all rank-0 (I = 0) metrics must have det γ = 0. This corresponds to
singular gravitational instantons or degenerate geometric flows. The same holds for rank-1
(I �= 0) except for Bianchi III, which admits non-singular self-dual gravitational instantons
corresponding to regular geometric flows. These properties are collected in the appendix;
more details on the analysis of (17) can be found in [8] for general vielbeins (as opposed
to the symmetric ones used here)7. For the reader’s convenience, the case of Bianchi III
will be presented in the appendix, whereas we summarize the results for the other classes in
tables 1 and 2. There, the forms of symmetric γ s complying with (22) are displayed, together
with their restriction following the self-duality constraint (17). These expressions depend on
the basis of invariant forms, which are also specified.

The above developments conclude on the advertized correspondence among gravitational
instantons and geometric flows. It would be interesting to provide a satisfactory geometrical
interpretation of the ‘square root’ of g as the flowing metric on M3, and to understand how
the first-order self-duality equations (15) could emerge directly from the action—as they do
for g in the non-relativistic set-up under detailed balance [5, 6]—following the split formalism
of [9, 10]. The analysis of general geometric flows of type (32), satisfying (22) but not (17),
i.e. beyond those which are interpreted as self-dual gravitational instantons, is also an open
and challenging problem. Interesting issues such as the existence of entropy functionals or
universality properties in the large-time behavior deserve further investigation.

Let us finally stress the specificity of four dimensions in respect to the relationship between
geometric flows and gravitational instantons. Even though self-duality can be imposed in other
dimensions (such as 7 or 8 thanks to the G2 structure and to the octonions [11]), the holonomy
group has not the factorization property of SO(4) or SO(3, 1), which was instrumental here.
Although not excluded, it seems more difficult to find a class of instantons that could be
interpreted as geometric flows of a lower dimensional geometry.
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Appendix. On non-unimodular groups

For metrics γ obeying (18), the self-duality evolution equation (15) translates into (27).
The second line of this equation vanishes identically in all Bianchi classes for which
nηm = mηn = m. This excludes IV and V (see (24)). For the latter classes, it turns out
that the terms at hand vanish provided γ is subject to the self-duality constraint (17) or
equivalently (19). This statement is based on the simple fact that for all groups but Bianchi III,

γ mγ = 0, (A.1)

as a consequence of (19) in combination with (17). Proving that the second line of (27) vanishes
is thus a matter of simple algebra with the help of expressions (22)–(26).

The proof of (A.1) goes as follows. For all non-unimodular groups, a first integral I solving
(20) is either vanishing or rank-1. In the first case, (19) demonstrates (A.1). In the second, the
general solution for symmetric I is

Ii j = κaia j, (A.2)

(κ is an arbitrary constant) for Bianchi IV, V, VI and VII. Constraint (19), written in Poincaré-
dual form and combined with (18), reads

2

κ
Mi�a� = ni jη jkMk�a�, (A.3)

where Mi� are the entries of Adj(γ ). From equation (A.3), we observe that Mi�a� are the
components of an eigenvector of nη with eigenvalue 2/κ . Multiplying iteratively (A.3) by nη

from the left and using (23), we conclude that the eigenvalue of the eigenvector at hand is an
arbitrary natural power of 2/κ . This is possible only if Mi�a� vanish. Since

εi jk(γ mγ )i j = 2Mk�a�, (A.4)

(A.1) is proven in full generality, without reference to any particular choice of basis.
Note that following (A.1), a j is an eigenvector of Mi j with zero eigenvalue. Therefore,

det γ = 0, as already announced, for all self-dual gravitational instantons based on non-
unimodular Bianchi groups, except for III.

For Bianchi III, the above do not hold because (A.2) does not provide the most general
symmetric solution of (20). The generic first integral I satisfying (20) and (21) is instead

I =
⎛
⎝μ χ χ

χ −ν −ν

χ −ν −ν

⎞
⎠, χ2 + μν = 0. (A.5)

Bianchi III is the only non-unimodular case admitting non-degenerate γ s, once all constraints
(17) and (18) are taken into account. The consistency of symmetric γ , equation (25), sets

γ12 = γ13, γ22 = γ33, (A.6)

whereas using (A.5), the evolution equation (28) matches the geometric-flow equation (32)
provided λ satisfies (31) and (33). The general solution of (31) is

λ =
⎛
⎝ρ1λ ρ1ζ ρ1ζ

ρ2λ ρ2ζ ρ2ζ

ρ3λ ρ3ζ ρ3ζ

⎞
⎠. (A.7)

Requiring (33) with (A.5) leads to the following set of equations,

(ρ1λ)2 = 2 + μ,
(
ρ2

1 − ρ2
2 + ρ2

3

)
λζ = χ,

(
ρ2

1 − ρ2
2 + ρ2

3

)
ζ 2 = −ν, (A.8)

which always admit a solution, either for first integral I of rank-0 (μ = ν = χ = 0), or of
rank-1 (either μ, ν or χ non-zero).
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Self-duality also demands (17) to be satisfied. The further constraints on γ are

γ11 = χ2 + 2ν

2ν2
(γ23 + γ33) , γ13 = − χ

2ν
(γ23 + γ33) (A.9)

and the general solution of the evolution equation (28) reads

γ11(t) =
(

1 − μ

2

)
t + γ11(0),

γ13(t) = −χ

2
t + γ13(0),

(A.10)
γ33(t) = γ33(0)

(
1 + νt

γ33(0) + γ23(0)

)
,

γ23(t) = γ23(0)

(
1 + νt

γ33(0) + γ23(0)

)
,

where the initial conditions are related by (A.9), and μ, ν, χ constrained by (A.5).
Self-dual Bianchi-III gravitational instantons of the above type were analyzed in [8], for

the general case of non-symmetric vielbein. Among others, they exhibit naked singularities
(points where Kretschmann’s invariant becomes infinite). From the viewpoint of the geometric
flow, γ is a metric on M3 evolving under (32). Its components are linearly expanding or
shrinking, depending on the parameters μ and ν, and on the initial values γ23(0) and γ33(0).
In particular, the scalar curvature depends on time as

S = 8ν

γ33(0) + γ23(0) + νt
, (A.11)

and can describe the relaxation of a singular configuration toward flatness, or the appearance
of a singularity from an ancient flat space. Any attempt to go deeper in this analysis requires
a more general study of flows of type (32), which stands beyond our present motivation.
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Energy Phys. JHEP04(2010)131 (arXiv:1002.0062 [hep-th])
[7] Ryan M P and Shepley L C 1975 Homogeneous Relativistic Cosmologies (Princeton Series in Physics)

(Princeton, NJ: Princeton University Press)
[8] Bourliot F, Estes J, Petropoulos P M and Spindel P 2010 G3-homogeneous gravitational instantons Class.

Quantum Grav. 27 105007 (arXiv:0912.4848 [hep-th])
[9] Mansi D S, Petkou A C and Tagliabue G 2009 Gravity in the 3 + 1-split formalism: I. Holography as an initial

value problem Class. Quantum Grav. 26 045008 (arXiv:0808.1212 [hep-th])
[10] Mansi D S, Petkou A C and Tagliabue G 2009 Gravity in the 3 + 1-split formalism: II. Self-duality and

the emergence of the gravitational Chern–Simons in the boundary Class. Quantum Grav. 26 045009
(arXiv:0808.1213 [hep-th])

[11] Corrigan E, Devchand C, Fairlie D B and Nuyts J 1983 First-order equations for gauge fields in spaces of
dimension greater than four Nucl. Phys. B 214 452

9





CHAPTER 6. LIST OF PUBLICATIONS

Ungauging black holes and hidden supercharges

K. Hristov, S. Katmadas, V.P.

125





J
H
E
P
0
1
(
2
0
1
3
)
1
1
0

Published for SISSA by Springer

Received: November 9, 2012

Accepted: December 12, 2012

Published: January 16, 2013

Ungauging black holes and hidden supercharges

Kiril Hristov,a Stefanos Katmadasb and Valentina Pozzolib

aDipartimento di Fisica, Universitá di Milano-Bicocca,

I-20126 Milano, Italy
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1 Introduction

The interplay between the macroscopic description of black holes in supergravity and their

corresponding microscopic description within string theory has been a source of important

insights into the structure of the theory. In this respect, the most detailed investigations

have been carried out for asymptotically flat black holes preserving some amount of su-

persymmetry, which provides additional control over various aspects of these systems. In

particular, the microscopic counting of black hole entropy [1, 2] as well as the construc-

tion of the corresponding black hole geometries [3–5], depend crucially on the presence of

unbroken supercharges.

Beyond the supersymmetric sector, the non-BPS class of asymptotically flat black holes

in supergravity has attracted attention, based on a deeper understanding of the first order

systems underlying extremal static and under-rotating solutions (i.e. rotating black holes

without an ergo-region) [6–20]. While these systems are considerably more complicated

than the corresponding BPS ones, they are in principle exactly solvable, since they are
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described by first order differential equations. In addition, various similarities to the BPS

branch have been observed at the formal level, for example through the existence of a fake

superpotential [21–25].

More recently, the interest in four-dimensional black holes was extended to the more

general case of asymptotically anti-de Sitter (AdS) spacetimes, described as solutions to

gauged supergravity theories [26–32]. Although not fully exhaustive, the existing classifica-

tion of black holes in AdS shows a rich variety of possibilities with both static and rotating

BPS solutions, as well as new horizon topologies. While a microscopic account of their

entropy is not available yet, they provide interesting new examples in the context of the

AdS/CFT correspondence. In addition, understanding phase transitions of extremal and

thermal black holes in this class could lead to insight into the phase structure of physically

interesting field theories at strong coupling.

A priori, the above mentioned classes of black holes in Minkowski and AdS spaces

are unrelated, as they usually arise as solutions to different supergravity theories and

respectively in different string theory compactifications, when these exist. Consequently,

the two systems are usually clearly distinguished and studied by different methods, while

the problems of microscopic entropy counting for asymptotically flat and AdS black holes

are viewed independently ([1, 2] vs. [33, 34]). However, our purpose in this paper is to show

that such distinction is not always present. In particular, we show that one can embed

asymptotically flat non-BPS black hole solutions in certain special D = 4 N = 2 gauged

supergravity theories. Moreover, we show that the attractor geometries, and therefore

also the microscopic counting, for BPS black holes in AdS4 [28–30, 35] and asymptotically

flat extremal non- BPS black holes [36–41] fall within a common class of supersymmetric

AdS2×S2 spaces,1 or their rotating generalizations.

Let us be slightly more precise and consider the bosonic Lagrangian of abelian gauged

N =2 supergravity in four dimensions with an arbitrary number nv of vector multiplets and

no hypermultiplets (i.e. we consider constant gauging Fayet-Iliopoulos (FI) parameters).

Such theories are described in [45, 46] and we give more details in the following sections. For

presenting the main argument we only need to know that the bosonic part of the Lagrangian

is modified with respect to the one for the ungauged theory, Lbos0 , by the introduction of a

scalar potential term for the vector multiplet complex scalars, ti, i = 1 . . . nv as

Lbosg = Lbos0 + V (t, t̄) , (1.1)

with

V (t, t̄) = Zi(G) Z̄i(G)− 3 |Z(G)|2 , (1.2)

where G = {gI , gI} is a symplectic vector of arbitrary constant FI parameters and Z(G),

Zi(G) denote its scalar dependent central charges. An interesting possibility arises in

broad classes of vector multiplet moduli spaces when the FI parameters are chosen in a

way as to make the scalar potential identically zero [47], without reducing the theory to

1This class of horizons was called magnetic AdS2×S2 in [42] for the reason that, just like for asymp-

totically magnetic AdS4 spacetimes, the fermions flip their spin and become SU(2) scalars [43, 44]. We

elaborate on this more in the following sections.
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Figure 1. The two bubbles above represent the space of BPS solutions to ungauged and abelian

gauged supergravity with a flat potential, as subspaces of all bosonic solutions, common to both

theories. Note the presence of two distinct AdS2×S2 backgrounds that are supersymmetric only

within one theory. The blue line represents the BPS black hole solutions, interpolating between

Minkowski space and the fully BPS AdS2×S2. The solutions described in this paper, represented

by a red line, interpolate between Minkowski and the so called magnetic AdS2×S2 vacuum.

the ungauged one. This requires at least one FI parameter to be non zero, thus leading to

a different supersymmetric completion of the same bosonic Lagrangian, since Lbosg = Lbos0

when the potential V (t, t̄) vanishes, but the fermionic sector of the gauged theory still

involves the vector G linearly. It is then immediately obvious that all purely bosonic

background solutions of the ungauged supergravity are also solutions of this “flat” gauged

supergravity. However, due to their different fermionic sectors, the supersymmetric vacua

of the two theories do not coincide. It is in fact easy to show that none of the BPS solutions

of the ungauged theory are supersymmetric with respect to the gauged theory and vice

versa (see section 3). This situation is summarised in figure 1.

Given the above, it is not surprising that some known non-BPS solutions in ungauged

supergravity might be supersymmetric in these special gauged theories. Indeed, our anal-

ysis shows that all extremal under-rotating black holes2 preserve some supersymmetry in

their near horizon region. Restricting to the static solutions, we further show that these

horizon solutions are part of a larger class of supersymmetric horizons based on FI terms,

2In what follows, we refer for simplicity to under-rotating solutions having in mind that this includes

also the static case, when the rotation vanishes.
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that do not a priori satisfy the flat potential restriction and pertain to the static BPS black

holes in AdS4, [28–30, 35, 43]. It follows that one needs to address together the problems of

microscopic entropy counting of asymptotically flat and AdS black holes in this case. We

come back to this point in the concluding section of this paper, which we leave for more

general discussion.

The following main sections of the paper address various aspects of the connection

between solutions in gauged and ungauged theories sketched above, and are largely inde-

pendent of each other. For the convenience of the reader, we give an overview of the main

results presented in detail in each of these sections, as follows.

In section 2, we show that asymptotically flat extremal non-BPS black holes can be

viewed as solutions to N = 2 abelian gauged supergravity, if the FI gaugings are assumed

to be such that the potential is trivial. The prime example of gauged theories with an

identically flat potential can be found within the interesting class of cubic prepotentials

arising in the ungauged case from Calabi-Yau compactifications of string/M-theories, as

first discussed in [47]. This condition is enforced by introducing a Lagrange multiplier,

which allows us to write the action of the extended system as a sum of squares, similar to

the 1/4-BPS squaring in [29], while demanding that the metric is asymptotically flat, as

is appropriate for a theory without a potential. The result is a first order system that is

otherwise identical to the corresponding one describing asymptotically AdS4 BPS solutions,

except for the presence of the Lagrange multiplier, which is determined independently by

its own equation of motion. We finally show that the general non-BPS solutions, in the

form cast in [20], are solutions to the system above, once a suitable regularity constraint

is imposed. This includes the identification of the auxiliary very small vector appearing in

that work as the vector of FI terms in the gauged theory.

In section 3, we consider the near horizon limit of our system, making use of the

fact that the Lagrange multiplier above reduces to an irrelevant constant. It follows that

the attractor equations for general asymptotically flat static black holes can be cast as

a particular case of the attractor equations of gauged supergravity [29]. The latter are

expected to belong to the family of attractors in [43] preserving four supersymmetries,

which we show explicitly to be the case. We therefore obtain the result that all static

non-BPS attractors in ungauged supergravity can be viewed as 1/2-BPS attractors once

embedded in an abelian gauged supergravity with appropriately tuned FI terms. Finally,

we generalise this result in section 3.2, where we show that the under-rotating attractors

of all asymptotically flat black holes [48], again in the form described in [20], preserve

two supercharges, i.e. they are 1/4-BPS. Note that this implies the presence of the same

number of supercharges in the near horizon region of any particular center of a non-BPS

multi-center solution.

In section 4 we consider the 1/4-BPS flow equations of [29] for gauged supergravity,

without restricting the FI terms, and show that some of the structures found in asymptot-

ically flat solutions are present in the more general case. Most importantly, the regularity

constraint used to define the single center flow in [20] is shown to hold even for an un-

restricted vector of FI terms. Since this constraint implies that only half of the charges

can be present once a vector of gaugings is specified, we expect it to be of importance
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in understanding the moduli space of AdS4 solutions. In section 5 we briefly discuss the

possibility of further embedding the asymptotically flat solutions above in theories with

gauged hypermultiplets. In such a scenario, the additional potential induced by the hyper-

multiplets must also vanish, which we show to be possible in rather generic theories that

result from string compactifications.

We conclude in section 6, where we comment on the implications of our results for mi-

croscopic models of black holes and on relations to recent developments in the construction

of non-BPS supergravity solutions. Finally, in the appendices we present some details of

our conventions, we extend the discussion of section 2 to the embedding of asymptotically

flat under-rotating solutions in gauged supergravity, and we discuss an example solution

in some detail for clarity.

2 Ungauging black holes

In this section, we present the essential argument of the ungauging procedure for black hole

solutions and provide an explicit example by considering the static case for simplicity. The

starting point is the bosonic action for abelian gauged supergravity [45, 46], which reads

S4D =
1

16π

∫

M4

(
R ? 1− 2 gī dt

i ∧ ?dt̄̄ − 1

2
F I ∧GI + 2Vg ? 1

)
, (2.1)

and describes neutral complex scalars ti (belonging to the nv vector multiplets) and abelian

gauge fields Fµν
I , I = 0, i = 0, . . . nv (from both the gravity multiplet and the vector

multiplets), all coupled to gravity.3 The dual gauge fields GµνI are given in terms of the

field strengths and the scalar dependent period matrix NIJ , by

G−µνI = NIJF−µνJ , (2.2)

where the expression for the period matrix will not be needed explicitly. Finally, the scalar

potential Vg takes the form

Vg = Zi(G) Z̄i(G)− 3 |Z(G)|2 = 〈G, JG〉 − 4 |Z(G)|2 , (2.3)

where we used the definition of the scalar dependent matrix J in (A.12), and the symplectic

vector G = {gI , gI} stands for the FI terms, which control the coupling of the vector fields.

In the abelian class of gaugings we consider in this paper, these couplings occur only in the

fermionic sector of the theory, through the minimal coupling of the gravitini to the gauge

fields, as the kinetic term is proportional to

εµνρσψ̄µiγν Dρψσ
i ≡ εµνρσψ̄µiγν

(
∂ρ +

i

2
〈G,Aρ〉

)
ψσ

i , (2.4)

〈G,Aµ〉 = gIAµ
I − gIAµI .

This coupling is in general non-local, due to the presence of the dual gauge fields AµI .

However, as for any vector, G can always be rotated to a frame such that it is purely electric,

3We refer to appendix A for some of our conventions in N =2 supergravity.
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i.e. gI = 0, leading to a local coupling of the gauge fields. More generally, one can consider

couplings of magnetic vectors as well, using the embedding tensor formalism [43, 49], which

requires the introduction of extra auxiliary fields.

For the theories discussed in this paper however, the bosonic action is only affected

through the nontrivial potential (2.3), which can be straightforwardly written in an elec-

tric/magnetic covariant way, as above. Based on this observation, we take the pragmatic

view4 of using covariant versions of all quantities, keeping in mind that while the equations

involving fermions strictly apply only to the electrically gauged theory, all results for the

bosonic backgrounds must necessarily be covariant under electric/magnetic duality. We

therefore employ covariant notation when dealing with the bosonic sector and covariantise

the fermionic supersymmetry variations (see section 3), so that we do not have to choose

a frame for the FI terms explicitly.

Given these definitions, we now discuss the connection of the gauged action above to

the ungauged theory, at the bosonic level. As one would expect, ungauged supergravity is

immediately recovered by putting G = 0 in the above Lagrangian. However, it turns out

that this is not the most general choice if one is interested in the bosonic sector only, as the

scalar potential is not positive definite, and one can find nonzero G for which the potential

is identically zero [47]. The appropriate FI terms are then described by a so-called very

small vector, characterised by

3 |Z(G)|2 = Zi(G) Z̄i(G) . (2.5)

In the context of symmetric scalar geometries such vectors are viewed as points of the

doubly critical orbit, S, defined as the set of vectors such that (2.5) is satisfied for any

value of the scalars [50, 51]. Explicitly, they can be always brought to the frame where

there is only one component, e.g.

G0 = g {0 , δ 0
I } , (2.6)

but we will not impose any restriction other than (2.5). In what follows, we will be using

the fact that this orbit exists for symmetric models, but the same arguments can be applied

whenever (2.5) has a solution for any model. For example, (2.6) is an example solution

for any cubic model, symmetric or not, and one may construct more general examples by

acting with dualities.5

Given this special situation, it is natural to consider the possibility of finding asympto-

tically flat backgrounds in a gauged theory with a flat gauging as above. Indeed, a vector

of parameters in a doubly critical orbit was recently encountered in [20, 52, 53], which

considered the general under-rotating extremal black hole solutions in ungauged extended

supergravity. As we now show, the presence of such a vector in asymptotically flat solutions

can be seen to arise naturally by viewing the ungauged theory as a gauged theory with

G ∈ S, leading to an interpretation of the auxiliary parameters introduced in [20, 52, 53]

as residual FI terms.
4A similar point of view was used in [29].
5In fact, our treatment, as well as those of [20, 29] whose results we connect, is duality covariant, so that

the form of the prepotential is not fixed.
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2.1 Squaring of the action

In order to study extremal solutions in abelian gauged supergravity with a flat potential, we

consider the squaring of the action for such backgrounds [4], following closely the derivation

of the known flow equations of [29] for asymptotically AdS4 black holes that preserve 1/4

of the supersymmetries. The only additional ingredient we require is the introduction of a

Lagrange multiplier that ensures the flatness of the potential.

As we are interested in static solutions, we consider a spherically symmetric metric

ansatz of the type

ds2 = −e2Udt2 + e−2U
(
dr2 + e2ψdθ2 + e2ψ sin2 θdφ2

)
, (2.7)

as well as an analogous ansatz for the gauge field strengths

F Iθϕ =
1

2
pI sin θ , GIθϕ =

1

2
qI sin θ . (2.8)

Here, eU , eψ are two scalar functions describing the scale factor of the metric and the

three dimensional base space, and Γ = {pI , qI} denotes the vector of electric and magnetic

charges. Using these ansatze, the action (2.1) can be shown to be expressible in the form [29]

S1d =

∫
dr

{
−1

2
e2(U−ψ)〈E , J E〉 − e2ψ

[
(Qr + α′) + 2e−U Re(e−iαW )

]2

− e2ψ
[
ψ′ − 2e−U Im(e−iαW )

]2 − (1 + 〈G,Γ〉)

−2
d

dr

[
e2ψ−U Im(e−iαW ) + eU Re(e−iαZ)

]}
, (2.9)

where e−iα is an arbitrary phase, we defined

E ≡ 2e2ψ
(
e−U Im(e−iαV)

)′ − e2(ψ−U) JG+ 4e−2U Re(e−iαW ) Re(e−iαV) + Γ , (2.10)

and we introduced special notation for the central charges of Γ and G as

Z ≡ Z(Γ) , Zi ≡ Zi(Γ) , W ≡ Z(G) , Wi ≡ Zi(G) , (2.11)

for brevity. The equations of motion following from this effective action imply the equa-

tions of motion for the scalars as well as the tt-component of the complete Einstein equa-

tion, whereas the remaining Einstein equations are identically satisfied upon imposing the

Hamiltonian constraint

e2ψψ
′2 − 1− e2ψU

′2 − e2ψgī t
i ′ t̄i ′ + e2(U−ψ)VBH + e2(ψ−U)Vg = 0 . (2.12)

Solutions of this system have been discussed in [28–30]. These works analysed in some

detail the asymptotically AdS4 solutions associated to generic values of the gaugings G,

and we return to this case in section 4.

We now proceed to an analysis of the ungauged limit of the bosonic sector of the theory,

by imposing that the vector of FI gaugings G lies in the doubly critical orbit, G ∈ S, so

that the potential is identically flat for any value of the scalars. Given the homogeneity of
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the potential in terms of G, we introduce a Lagrange multiplier in the original action (2.1),

through a rescaling of the type

G→ eϕG . (2.13)

Here and henceforth ϕ will be treated as an independent field, whose equation of motion

is exactly (2.5), enforcing the flatness of the potential. One can then write the action as a

sum of squares in a similar way as above, up to an extra term originating from the partial

integration involved. The result reads

S1d =

∫
dr

{
−1

2
e2(U−ψ)〈E , J E〉 − e2ψ

[
(Qr + α′) + 2e(ϕ−U) Re(e−iαW )

]2

− e2ψ
[
ψ′ − 2e(ϕ−U) Im(e−iαW )

]2

− (1 + eϕ 〈G,Γ〉) + 2 e2ψ e(ϕ−U)ϕ′ Im(e−iαW )

}
, (2.14)

where we discarded a total derivative. We note here that E , originally defined in (2.10),

now contains the multiplier eϕ due to the rescaling in (2.13) above.

Note that since the addition of the Lagrange multiplier eϕ in the original action leads

to an ungauged theory, it is possible at this stage to proceed in solving the equations of

motion by simply putting eϕ = 0, which is a consistent solution that eliminates all instances

of the vector of gaugings. However, it is clear that it is not necessary to make this choice

for this function a priori. Indeed, making instead a choice for the metric function eψ = r, so

that the base metric in (2.7) is flat three dimensional space, one can obtain a more general

squaring of the ungauged bosonic action. In this case, the kinetic term for the function eψ

is trivial and the action can be further rearranged into

S1d =

∫
dr

{
−1

2
e2(U−ψ)〈E , J E〉 − e2ψ

[
(Qr + α′) + 2e−U Re(e−iαW )

]2

−
[
2 r eϕ−U Im(e−iαW )−

(
1 +

1

2
r ϕ′
)]2

+r4eϕ
(

(r−1e−ϕ/2)′
)2
− (2 + eϕ 〈G,Γ〉)

}
, (2.15)

which is manifestly a sum of squares for the physical fields, along with an extra kinetic

term and a Liouville-type potential for the multiplier ϕ, that decouples from the rest of

the action.

One can now solve the equations of motion for the physical fields by imposing that

each of the squares vanishes, as

E = 0 , (2.16)

Qr + α′ = −2eϕe−U Re(e−iαW ) , (2.17)

2 r e−U Im(e−iαW ) = e−ϕ
(

1 +
1

2
r ϕ′
)
. (2.18)

These equations describe the flow of the scalars and the scale factor eU , as well as fix the

function eϕ in terms of physical fields. In addition, one still has to impose the Hamiltonian
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constraint (2.12) above, as well as the equation of motion for the Lagrange multiplier ϕ,

which reads
d

dr

(
r2 u′

)
− 〈G,Γ〉 r−2 e−2u = 0 , (2.19)

where we used the variable eu ≡ r−1e−ϕ/2 for convenience.

The flow equations above are closely related to the ones obtained in [29] for gauged

supergravity, with the difference that the function eψ describing the spatial part of the

metric is now fixed to eψ = r and that we have included the additional function eϕ. One

can decompose the scalar flow equations (2.16) in components to find

U ′ = − r−2 eU Re(e−iαZ) + eϕe−U Im(e−iαW ) , (2.20)

ti′ = − eiαgī
(

eU−2ψZ̄̄ + i eϕe−UW̄̄

)
, (2.21)

along with one more equation for the Kähler connection

Qr + α′ = −r−2 eU Im(e−iαZ)− eϕe−U Re(e−iαW ) . (2.22)

Combining the last relation with (2.17) leads to the constraint

r−2 eU Im(e−iαZ) = eϕe−U Re(e−iαW ) , (2.23)

which in the case of genuinely gauged supergravity in [29], can be shown to be equiva-

lent to the Hamiltonian constraint (2.12). However, for the theory at hand, (2.12) is not

automatically satisfied upon using (2.20)–(2.23), but takes the form

〈G,Γ〉+ 4r2 e−2Ueϕ
(
Im(e−iαW )

)2
= 0 , (2.24)

which relates eϕ to the physical fields.

2.2 Asymptotically flat solutions

We can now look for solutions to the above system, starting with the observation that (2.19)

can be solved explicitly. The general solution can be written in terms of exponentials of

the type e±1/r, which are badly singular at r = 0 and lead to unphysical results. However,

this differential equation also has the particular enveloping solution

eu ≡ r−1e−ϕ/2 = 〈Γ, G〉−1/2

(
v +
〈Γ, G〉
r

)
= 〈Γ, G〉−1/2 V , (2.25)

where v is a constant and we assumed that 〈Γ, G〉>0, so that the distinguished harmonic

function V defined above is positive definite. From (2.24), we obtain

2e−U Im(e−iαW ) = V , (2.26)

where the positive root was chosen by imposing (2.18). The last relation implies that the

solution can be expressed in terms of harmonic functions, as shown in [20].

Indeed, the flow equations (2.20) and (2.21) with the particular solution for ϕ given

by (2.25), can be straightforwardly shown to be identical to the static limit of the flow
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equations derived in [20] for the single centre class of asymptotically flat black holes, upon

identifying the gaugings G with the auxiliary vector R̂∗ used to express the solution.6 Note

that in [20] the auxiliary vector R̂∗ was required to be very small by consistency of the

Einstein equations for asymptotically flat black holes. Moreover, in that work it was found

that regularity requires an additional constraint on the system, which can be expressed

in several equivalent ways. In terms of the scalars, this constraint takes the form of the

reality condition

e−iαdti − i eKcijk Ŵj gkk̄dt̄
k̄ + Ŵ Ŵ i Ŵ ı̄dt̄

ı̄ = Ŵ i
(

1 + e−iαŴ
)
dU , (2.27)

where we defined the following shorthand expressions for convenience

Ŵ = |W |−1W , Ŵa = |W |−1 eiaWi . (2.28)

The reality condition (2.27) can be used to show the existence of a second constant very

small vector throughout the flow, given by

R = −4
e−2U

|Y |2 V 2
Re
[
Y 3 W̄ V + |Y |2 Y W̄ iDiV

]
, (2.29)

Y ≡ (1 + im e2U ) . (2.30)

Here, m is an arbitrary constant that is promoted to a dipole harmonic function in the

rotating case (see appendix B). This vector can be shown to be mutually local with Γ,

〈R,Γ〉 = 0, using the flow equations above, but is nonlocal with G, as 〈G,R〉 = −4, and in

simple cases it can be viewed as the magnetic dual of G. Alternatively, one can derive the

constraint (2.27) by demanding that the vector R be constant.

Given the definitions above, the solution to the system (2.20)–(2.22) is given by

2 Im(e−Ue−iαV) = H− 2
〈G,H〉
〈G,R〉 R+

m

〈G,H〉 G , (2.31)

where H are harmonic functions carrying the charges as

H = h +
Γ

r
, (2.32)

and the distinguished harmonic function 〈G,H〉 is fixed by (2.26) as

〈G,H〉 = −V . (2.33)

The reality constraint (2.27) can now be recast in terms of the harmonic functions

describing the solution. Using the flow equations (2.20) and (2.21) to express the derivatives

of the scalars in terms of the gauge fields, one can show that an equivalent form of the

same reality condition can be obtained, as

1

2
I
′M
4 (H, G) = 〈G,H〉HM − 2

〈G,H〉2
〈G,R〉 R

M . (2.34)

6The interested reader can find an outline of this identification in appendix B, where the full rotating

single center class is considered.
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Here, we use the index M,N, . . . to denote both electric and magnetic components and

I
′M
4 is the derivative of the quartic invariant, defined in terms of a completely symmetric

tensor tMNPQ as

I4(H) ≡ 1

4!
tMNPQHMHNHPHQ

I
′M
4 (H, G) ≡ ∂2I4(H)

∂HM∂HN
GN =

1

2
tMNPQHNHPGQ . (2.35)

In [20] it was shown that if G, and thus R, are very small, this constraint implies that the

harmonic functions H lie in a Lagrangian submanifold that includes R. Near the horizon,

one finds the same constraint for the charges, so that a particular choice of G restricts the

physical charges to lie in the same Lagrangian submanifold. We refer the interested reader

to that work for details on the derivation of these results.

This concludes our analysis of the embedding of extremal asymptotically flat black

holes in gauged supergravity for the static case. We refer to appendix B for a similar anal-

ysis in the rotating case. It turns out that the inclusion of a Lagrange multiplier in exactly

the same way leads to the same equation of motion (2.19) and the same solution (2.25)

as above. The result is an extension of the static embedding of this section to the most

general asymptotically flat extremal under-rotating black holes, as obtained in [20]. The

solution turns out to take exactly the same form as in (2.31) with the constant m replaced

by a dipole harmonic function describing the rotation.

3 BPS attractors in abelian gauged theories

As already announced in the introduction, the embedding of asymptotically flat black holes

in the flat gauged theories we consider in this paper allows to show that their near-horizon

geometries are in fact supersymmetric. In the previous section we saw a close similarity

between the static flow equations for asymptotically flat and 1/4-BPS black holes in AdS.

Below we further establish that static horizons in both Minkowski and AdS spaces in fact

belong to a common 1/2 BPS class of solutions7 already discussed in [43]. Beyond the

static class, we further analyze the near-horizon geometry of extremal under-rotating black

holes [48], whose flow equations are discussed in appendix B. These turn out to preserve

1/4 of the supercharges, which completes the statement that all asymptotically flat static

and under-rotating extremal black holes have BPS horizons.

In order to study supersymmetric solutions, we only need to explicitly ensure that

the supersymmetry variations of the fermions vanish. All supersymmetry variations for

the bosons are automatically zero by the assumption of vanishing fermions. The fermionic

fields that belong to the supermultiplets appearing in the action (2.1) are the gravitini ψµA
for the gravity multiplet and the gaugini λiA for the vector multiplets. The corresponding

7This is in accordance with our results in section 2. From this point of view, the crucial factor that

allows for a unified discussion is that the expression for the Lagrange multiplier reduces to a constant in

the near horizon region (cf. the solution in (2.25)), thus diminishing any difference between the flat and

AdS case. This is the case even for under-rotating black holes, as shown in appendix B.
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supersymmetry variations are:8

δψµA = DµεA − 2iXI IIJ F
J−
µν γν εABε

B − 1

2
W σ3

ABγµ ε
B ,

δλiA = −i/∂ti εA − D̄iX̄I IIJ F
J−
µν γµν εABεB + i W̄ i σ3,ABεB , (3.1)

where the covariant derivative Dµ reads

DµεA =

(
∂µ −

1

4
ωabµ γab +

i

2
Qµ

)
εA +

i

2
〈G,Aµ〉σ3

A
BεB , (3.2)

and W and Wi are the central charges defined in (2.11). The symplectic product 〈G,Aµ〉 in

the standard electrically gauged supergravity just involves the electric gauge fields AΛ
µ [54],

but has a straightforward generalization, as shown in [43, 49]. We also used the shorthand

IIJ = ImNIJ for the period matrix. The presence of this matrix seems to spoil duality

covariance on first sight, but it is possible to rewrite the relevant terms in a form convenient

for our purposes, as in [55]

δψµA = DµεA + Z(F)−µν γ
ν εABε

B − 1

2
W σ3

ABγµ ε
B ,

δλiA = −i/∂ti εA +
i

2
Z̄(F)i−µν γ

µν εABεB + i W̄ i σ3,ABεB . (3.3)

Here, the central charges of the electric and magnetic field strengths are computed

component-wise as in (A.6), as

Z(F)µν = 〈Fµν ,V〉 , Z(F)i,µν = 〈Fµν , DiV〉 , (3.4)

which are already anti-selfdual and selfdual respectively due to (A.11) and (A.10).

Note that the FI parameters G above are assumed to be generic, and include the par-

ticular choice of FI parameters such that the scalar potential is identically zero. In that

limit, we obtain a theory with a bosonic Lagrangian identical to ungauged supergravity,

but with a different fermionic sector that involves a nonzero very small vector of FI terms

explicitly. Therefore, the supersymmetry variations above are strictly valid only for gauged

supergravity, even though the associated bosonic backgrounds we describe below are solu-

tions to both gauged and ungauged supergravity. The supersymmetric solutions of the two

theories however do not overlap and form two disjoint sets. This is easy to see because the

ungauged supersymmetry variations are again given by (3.3) after setting G = 0, leading to

the vanishing of W,W i. Suppose now that we have a supersymmetric background solution

of the ungauged theory and let us focus for simplicity on the gaugino variation. If we also

want it to be a solution of the flat gauged theory, we require that it automatically satisfies

W i = 0, since otherwise one cannot make the variation vanish both in the gauged and in

the ungauged theory. Now, using the vanishing of the scalar potential (2.3) we find

|W |2 =
1

3
WiW̄

i ,

8Here we choose to orient the FI terms along direction 3 of the quaternionic moment maps, as done

in [30].
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which means that we also need W = 0 for the hypothetical BPS solution in both theories.

However, it is a special geometry property that
(
〈V, G〉
〈DiV, G〉

)
= 0 , ⇒ G = 0 , (3.5)

since one can invert the matrix multiplying G in this equation. This leads us back to

the ungauged case, and we find a contradiction. Therefore every BPS solution of the

ungauged theory (e.g. the asymptotic Minkowski spacetime connected to the asymptotically

flat black holes) is not supersymmetric in the flat gauged theory, and vice versa (e.g. the

black hole attractor geometries are BPS in the gauged theory, as shown below, but break

supersymmetry in the ungauged theory) as schematically illustrated by figure 1.

We now move on to the explicit analysis of the supersymmetries preserved by the

various horizon geometries. In doing so, we will be using a timelike Killing spinor ansatz,

ensuring that once the BPS equations hold we already have supersymmetric solutions, i.e.

the BPS equations together with the Maxwell equations and Bianchi identities imply the

validity of the Einstein and scalar equations of motion (see [56, 57]). This is important for

the discussion of backgrounds with non-constant scalars, which are the ones relevant for

rotating attractors.

In section 3.1 we verify that the attractor equations obtained as a limit of the full

1/4-BPS static solutions in AdS4 in [29], do exhibit supersymmetry enhancement to 4 real

supercharges. We then identify the attractor equations of static asymptotically flat non-

BPS black holes of [20] as a subset of the BPS attractors in gauged supergravity, in the

limit of flat gauging where the FI terms are restricted to be a very small vector. Similarly,

in section 3.2 we show that the general under-rotating attractor solutions of [20] preserve

1/4 of the supersymmetries.

3.1 Static attractors

We first concentrate on the near horizon solutions of static black holes, therefore we con-

sider metrics of the direct product form AdS2×S2 with radii v1 and v2 of AdS2 and S2,

respectively:

ds2 = −r
2

v2
1

dt2 +
v2

1

r2
dr2 + v2

2 (dθ2 + sin2 θdφ2) . (3.6)

The corresponding vielbein reads

eaµ = diag
( r
v1
,
v1

r
, v2, v2 sin θ

)
, (3.7)

whereas the non-vanishing components of the spin connection turn out to be

ω01
t = − r

v2
1

, ω23
φ = cos θ . (3.8)

We further assume that the gauge field strengths are given in terms of the charges Γ =

(pI , qI)
T by

Fµν ≡ (F Iµν ;GIµν) , F Iθϕ =
1

2
pI sin θ , GIθφ =

1

2
qI sin θ , (3.9)
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which are needed in the BPS equations below. The scalars are assumed to be constant

everywhere, ∂µz = 0, as always on the horizon of static black holes. This ansatz for gauge

fields and scalars automatically solves the Maxwell equations and Bianchi identities in full

analogy to the case of ungauged supergravity.

Anticipating that the near horizon geometries of the solutions described in the previ-

ous section preserve half of the supersymmetries, we need to impose a projection on the

Killing spinor. This is in accordance with the fact that these solutions cannot be fully

supersymmetric once we require that not all FI terms vanish (see [58, 59] for all fully BPS

solutions in N =2 theories in 4d). Taking into account spherical symmetry, there are only

two possibilities in an AdS2×S2 attractor geometry, as shown in [43]. Namely, one either

has full supersymmetry, and therefore no projection is involved, or 1/2-BPS geometries

satisfying the projection

εA = iσ3
A
B γ23 εB = σ3

A
B γ01 εB , (3.10)

with the last equality due to the fact that spinors are chiral in the chosen conventions (these

are exhaustively listed in [42, 54]). Note that a Killing spinor satisfying this projection

is rather different from the standard timelike Killing spinor projection that appears in

asymptotically flat 1/2-BPS solutions (shown in (3.28) below, see e.g. [3]), but is exactly

the same as one of the projections appearing in asymptotically AdS4 1/4-BPS solutions

(see [29, 30]).

Analysis of the BPS conditions. Now we have all the data needed to explicitly write

down the supersymmetry variations of the gravitini and gaugini. To a certain extent this

analysis was carried out in section 8 of [43] and will not be exhaustively repeated here.

One can essentially think of the Killing spinors as separating in two - a part on AdS2 and

another part on S2. It turns out that the AdS2 part transforms in the standard way under

the SO(2, 1) isometries of the AdS space, while the spherical part remains a scalar under

rotations. The t and r components of the gravitino variation are therefore non-trivial due to

the dependence of the spinor on these coordinates. We are however not directly interested

in the explicit dependence, but only consider the integrability condition for a solution to

exist, given by D[tDr]εA = 0 for all A = 1, 2. Plugging the metric and gauge field ansatz,

this results in the equations

1

2v2
1

= |W |2 +
1

v4
2

|Z|2 , 〈G,Ftr〉 = 0 . (3.11)

The solution of this equation therefore ensures the vanishing of the gravitino variation on

AdS2. Turning to the spherical part, with the choice of Killing spinor ansatz it is easy to

derive two independent equations that already follow trivially from the analysis of [30],

i
1

v2
2

Z = −W , (3.12)

and

〈G,Γ〉 = −1 , (3.13)
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which is the usual Dirac quantization condition9 that seems to accompany the solutions of

“magnetic” type.10 Note that (3.12) can be used to simplify the first of (3.11), so that we

can cast the above conditions in a more suggestive form for our purposes, as

v−2
1 = 4 |W |2 , v2

2 = −i Z
W

. (3.14)

Moving on to the gaugino variation, the condition that the scalars remain constant

leaves us with only one (for each scalar) additional condition on the background solution,

− i Zi = v2
2 Wi . (3.15)

This concludes the general part of our analysis - it turns out that in FI gauged supergravity

one can ensure that AdS2×S2 with radii v1 and v2 preserves half of the supersymmetries by

satisfying equations (3.13)–(3.15) within the metric and gauge field ansatz chosen above.

These equations are in agreement with the analysis of [29, 35]. Moreover, the attractors

above are a realisation of the 1/2-BPS class of AdS2×S2 vacua of [43], which are described

by the superalgebra SU(1, 1|1)× SO(3), as opposed to the fully BPS AdS2×S2 vacua that

are described by SU(1, 1|2).

The above equations can be written in terms of symplectic vectors (e.g. as in [29]), so

that they can be directly compared to [20]. To this end, one can straightforwardly see that

the condition

− 4 Im(Z̄V) = Γ + v2
2 JG , (3.16)

is equivalent to (3.12) and (3.15), while the first of (3.14) has to be used to fix the AdS2

radius. Alternatively, one may write the attractor equations by solving for V in terms

of the charges and gaugings. Since all the above equations are invariant under Kähler

transformations, we need to introduce an a priori arbitrary local phase eiα, which is defined

to have unit Kähler weight. One can then combine (3.11) and (3.15) to obtain

2
v2

2

v1
Im(e−iαV) = Γ + v2

2 JG , (3.17)

while (3.12) has to be viewed as an additional constraint. Taking the inner product of (3.17)

with Γ + v2
2 JG identifies the phase eiα as the phase of the combination in (3.12), which

drops out from that relation.

In order to show that these BPS conditions above do indeed admit solutions describing

asymptotically flat black holes, one can consider the inner product of (3.16) with the

gaugings, using (3.13), to show that the sphere radius is given by

v−2
2 = 2 gīWiW ̄ − 2 |W |2 . (3.18)

9From the point of view of the flow equations derived in section 2, 〈Γ, G〉 can be an arbitrary non-

vanishing constant. This is exactly the value of the Lagrange multiplier in (2.25) at the horizon, thus

rescaling the gauging vector as G′ = 〈Γ, G〉−1G in the solution (2.31) in that limit. It follows that 〈G′,Γ〉 =

−1, which is the choice made in [28–30] for the full solution and we adopt it here, dropping the primes on

the gaugings, to make our notation in sections 2 and 3 consistent without any loss of generality.
10The solution at hand, called magnetic AdS2×S2 in [42], is the near horizon geometry of asymptotically

magnetic AdS4 black holes [44, 60].
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Upon imposing triviality of the potential as in (2.5), the above expression and the first

of (3.14) imply that v2 =v1, which is necessary for asymptotically flat black holes. Indeed,

using the definition (2.29) in this special case, the generic BPS attractor equation in the

form (3.17) can be written as

2 v1 Im(e−iαV) = Γ +
1

2
R . (3.19)

These are exactly the general attractor equations for asymptotically flat black holes found

in [20] for the ungauged case.11 We conclude that the near horizon region of static asymp-

totically flat extremal black holes can be viewed as a special case of the general attractor

geometry for BPS black holes in abelian gauged supergravity, upon restricting the FI pa-

rameters to be a very small vector, thus leading to a flat potential.

In addition, when all FI parameters are set to zero, one immediately obtains the BPS

attractor equations of ungauged supergravity, preserving full N =2 supersymmetry [61–63].

This provides us with a unifying picture, since the BPS attractor equations (3.16) appear to

be universal for static extremal black holes inN =2 theories, independent of the asymptotic

behavior (Minkowski or AdS) or the amount of supersymmetry preserved.

One intriguing aspect of this result is that, while in the ungauged theory (G = 0),

the attractor equation leads to a well defined metric only when the quartic invariant of

the charges, I4(Γ), is positive, the presence of a nontrivial G does not seem to allow for

a charge vector Γ with a positive quartic invariant, i.e. in all known examples I4 < 0 iff

G 6= 0, both for asymptotically flat and AdS black holes. Similarly, the explicit AdS4

solutions of [28–30], also have a negative quartic invariant of the charges, contrary to the

intuition one might have from the asymptotically flat case. It is natural to expect that

the quartic invariant of charges allowed for asymptotically AdS4 BPS solutions is negative

even though this is not the only quantity that controls the horizon in that case.

In view of the above, it is interesting at this point to make some comments on the

potential microscopic counting of degrees of freedom, which can be now safely discussed

due to the presence of supercharges on the horizon. From a microscopic string theory

perspective we know that the FI parameters are usually some particular constants corre-

sponding to topological invariants of the compactification manifolds, see [64] for a clear

overview and further references. This means that one is not free to tune the value of the

vector G. We further know that one of the electromagnetic charges is uniquely fixed by the

choice of G, meaning that we are not free to take the large charge limit in this particular

case. We then find that the black hole entropy, S, which is proportional to the area of the

horizon, scales as S ∼ Γ3/2, a behavior that is in between the usual S ∼ Γ2 of 1/2 BPS

asymptotically flat black holes12 and the S ∼ Γ case of 1/4 BPS asymptotically magnetic

AdS black holes [28, 30]. This is of course not a puzzle on the supergravity side, where we

know that some charges are restricted, but it provides a nontrivial check on any potential

microscopic descriptions of black hole states in string theory.

11We remind the reader that the inner product 〈Γ, G〉 has to be rescaled to unity in the original reference

for a proper comparison with this section.
12Note however, that the entropy of asymptotically flat 1/2-BPS black holes in five dimensions scales

exactly as Γ3/2, see e.g. [1].
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3.2 Under-rotating attractors

We now turn to the more general case of extremal under-rotating attractors corresponding

to asymptotically flat solutions [48]. These are described by a more general fibration of S2

over AdS2 that incorporates rotation as

ds2 = −e2U r2 (dt+ ω)2 + e−2U

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
,

e−4U = −I4(Γ)− j2 cos2 θ , ω = j
sin2 θ

r
dφ , (3.20)

where j is the asymptotic angular momentum. It is easy to see that this metric reduces

to (3.6) for v2
1 = v2

2 =
√
−I4(Γ) upon setting j = 0 above. We choose the vielbein

e0
t = reU , e1

r =
e−U

r
, e2

θ = e−U , e3
φ = e−U sin θ , e0

φ = j eU sin2 θ , (3.21)

which leads to the following non-vanishing components of the spin connection:

ω01 = −r e2U

(
dt+

1

2
ω

)
, ω23 = −e4U cos θ (j r dt+ ṽ dφ) , (3.22)

ω02 = j r e6U sin θ cos θ (
j

2
rdt+ ṽdφ) , ω03 = − j

2r
e2U (sin θ dt− r cos θdφ) , (3.23)

ω12 = − 1

2r
j2 e4U sin θ cos θ dr , ω13 =

1

2
j r e4U sin θ(dt+ ω) , (3.24)

where we defined the function

ṽ = I4 −
1

2
j2(1 + cos2 θ) . (3.25)

The gauge fields for this class of solutions read [20]

F = d
[
ζ r (dt+ ω)

]
+ Γ sin θ dθ ∧ dφ , ζ = −2 eU Re[e−iαV] +G , (3.26)

where we used the fact that the section depends on the radial coordinate by an overall r−1

in the near horizon region, as for the static case. We refrain from giving the full solution

for the scalars at this stage, since it will be derived from the BPS conditions below. Here

we note that the physical scalars ti only depend on the angular coordinate θ in the near

horizon region, and we give the expression for the Kähler connection

Q+ dα =
1

2
j e2U sin θ dθ , (3.27)

for later reference. The interested reader can find an explicit example solution t the STU

model in appendix C, both at the attractor and for the full flow.

As already mentioned above, the backgrounds we are interested in only preserve two

supercharges, i.e. they are 1/4-BPS. The fact that we now need a second projection on

the Killing spinor, in addition to (3.10), can be derived directly by considering the BPS

equations, e.g. the gaugino variation. We omit details of this derivation, which is straight-

forward, and just give the resulting additional projection

γ0 εA = i eiαεAB ε
B , (3.28)

which is the same as the one used in e.g. [3, 29, 30, 57].
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As in the static case, we make use of the complex self-duality of F , so that we only

need to use half of its components. We therefore choose for convenience F0â and F23, where

â = 2, 3 is a flat index on the sphere, given by

F23 = e2U Γ + ζ r (dω)23 = e2U (Γ + 2 ζ j cos θ) , F0â = −∂âζ . (3.29)

Since the central charges of these quantities appear in the BPS conditions, we note for

clarity the following relations

Z(ζ) = −i eUeiα +W , Zi(ζ) = Wi , (3.30)

Z(∂âζ) = −i eUeiα
[
∂âU + i(Qâ + ∂âα)

]
, Zi(∂âζ) = i eUeiαgī∂ât̄

̄ , (3.31)

which can be straightforwardly derived from (3.26) using (A.4).

Analysis of the BPS conditions. Given the backgrounds described above, we proceed

with the analysis of the conditions for unbroken supersymmetry. This is parallel to the

discussion in section 3.1, but differs in that we only analyze the supersymmetry preserved

by the attractors corresponding to asymptotically flat black holes as given by (3.20) rather

than derive the general conditions for 1/4-BPS backgrounds. This is because there is at

present no evidence that asymptotically AdS under-rotating black holes can be constructed

and the near horizon properties of such hypothetical solutions is unclear. However, we note

that there is no argument against the existence of such solutions in AdS and one can try to

generalize our analysis by rescaling the sizes of the AdS2 and S2 also in the rotating case.

We now turn to the analysis, starting with the gravitino variation and imposing (3.10)

and (3.28) on the spinor εA. In the conditions below, we arrange all terms with two gamma

matrices in the 0â and 23 components, in order to simplify calculations. We start from the

spherical components of the variation, which can be shown to vanish if the spinor εA does

not depend on φ and the following conditions are imposed

(∂θ +
i

2
Qθ)εA +

i

2
Z(F)−0θ e−iα εA = 0 , (3.32)

i 〈G,Aâ〉+ i ω− 23
â + e−iαZ(F)−0

b̂ εb̂â = 0 , (3.33)

1

2
εµ̂â ω− 0

µ̂ âe
iα + i Z(F)−23 +W = 0 , (3.34)

where the last relation represents a term present in both components. Using (3.20)

and (3.26) for the metric and gauge fields, these are simplified as follows. The first leads

to an equation that determines the angular dependence of the spinor as

2 ∂θεA = ∂θU εA , (3.35)

while the second relation reduces to (3.13). Finally, the third relation boils down to

Z − i eU j cos θ eiα + (2 j cos θ − i e−2U )W = 0 , (3.36)

which generalises (3.12) in the rotating case.
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Turning to the AdS2 part, we analyse the time component of the Killing spinor equa-

tion, which upon assuming time independence13 of εA, implies the following constraints

i 〈G,At〉+ i ω− 23
t − reUZ(F)−23 e−iα − i reU W e−iα = 0 , (3.37)

ω− 0
t â eiα = i reUZ(F)−0â , (3.38)

where the second equation is identically satisfied by using (3.29) and (3.31). The first

relation leads to

2 eU Re(e−iαW ) = e4U j cos θ ,

e−U + e−iα Z + 2 j cos θ
(
e−iαW − i eU

)
+ i e−2UW e−iα = 0 . (3.39)

Finally we consider the radial component, which leads to the constraints

2 ∂rεA + r−1e−UZ(F)−23 e−iα + i r−1e−UW eiα = 0 , (3.40)

ω− 0b̂
r εb̂â eiα = −r−1e−UZ(F)−0â . (3.41)

These are also satisfied by using (3.29) and (3.39), for a spinor that depends on the radial

coordinate according to

∂rεA =
1

2 r
εA , (3.42)

where we used (3.36) and (3.39) to obtain this result. Using the last equation and (3.35),

find that the spacetime dependence of the Killing spinors is given by

εA(r, θ) = eU/2
√
r ε0

A , (3.43)

for arbitrary constant spinors ε0
A that obey the two projections (3.10) and (3.28) imposed

above.

In addition, we need to consider the BPS conditions arising from the gaugino variation

in (3.1), which in this case lead to

e2U Zi + 2 e2U j cos θ Zi(ζ)− iWi = 0 , ∂ât
i = i eiα Z̄i(∂âζ) . (3.44)

The second condition is identically satisfied upon using the ζ given in (3.26), whereas the

first reads

e2U Zi + 2 e2U jWi cos θ − iWi = 0 . (3.45)

This concludes our analysis of the BPS conditions for rotating attractors. The value

of the scalar fields at the horizon can now be cast in terms of an attractor equation gener-

alising (3.17) to the rotating case, as

2 e−U Im
[
(1 + 2 i e2U j cos θ) e−iαV

]
= Γ + e−2U JG+ 2 j cos θ G , (3.46)

where one still has to impose (3.36) as a constraint.

The BPS conditions above can be straightforwardly seen to be the horizon limit of the

single center rotating black holes of [20], using the definition (2.29) to simplify the result

as in the static case. Since these were shown to be the most general asymptotically flat

extremal under-rotating black holes, we have thus shown that all under-rotating attrac-

tor solutions are 1/4-BPS (i.e. preserve two supercharges) when embedded in a gauged

13This assumption is consistent as we eventually show that all BPS equations are satisfied and we explicitly

derive the spacetime dependence of the Killing spinors, which only depend on the r and θ coordinates.

– 19 –



J
H
E
P
0
1
(
2
0
1
3
)
1
1
0

Attractor Global

G ∈ S, flat

j = 0 1/2 BPS non−BPS

j 6= 0 1/4 BPS non−BPS

G /∈ S, AdS

j = 0 1/2 BPS 1/4 BPS

j 6= 0 ? ?

Table 1. An overview of supersymmetry properties of under-rotating attractors and full solutions

in abelian gauged theories without hypermultiplets, depending on whether the vector of gaugings

G lies in the very small orbit S or not. The “?” for the under-rotating case in AdS signify that

the existence of such solutions is not certain, not only that their supersymmetry properties are

not analyzed.

supergravity with a flat potential.14 Upon taking limits of vanishing angular momentum

and gaugings one finds that supersymmetry is enhanced, since the static attractors in the

previous section are 1/2-BPS when G 6= 0 and fully BPS when the gauging vanishes. In

table 1 we summarise the findings of this section for all static and under-rotating attractors

in abelian gauged N =2 theories.

4 Asymptotically AdS4 BPS black holes

In section 2 we introduced a procedure to obtain first order equations for asymptotically

flat non-supersymmetric black holes by mimicking the squaring of the action that leads to

asymptotically AdS4 BPS black holes in an abelian gauged theory. Given the very close

similarity between the equations describing the two systems, it is possible to clarify the

structure of asymptotically AdS4 static black holes by recycling some of the objects used

in the asymptotically flat case.

14The acute reader might notice that in the static case the mAdS2×S2 superalgebra SU(1, 1|1)× SO(3)

can be broken to SU(1, 1|1) × U(1) without breaking more supersymmetries. This means that one could

expect the rotating attractors to also preserve half of the original supercharges. Here we explicitly showed

that these attractors are 1/4 BPS by imposing (3.10) and (3.28), but this does not exclude the existence of a

more general 1/2 BPS projection that also ensures the supersymmetry variations vanish. The flat rotating

attractors here might also be part of a more general class of rotating attractors in gauged supergravity,

such as the ones constructed in [65]. We do not pursue this subject further as our present purpose is to

show that all asymptotically flat attractors are supersymmetric without focusing on the exact amount of

preserved supercharges.
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In this case, the appropriate form for the metric is the one in (2.7), which allows for

a non-flat three dimensional base. The relevant effective action now is the one in (2.9),

where no assumptions were made for the vector G. The flow equations that follow from

this squaring are similar to (2.16)–(2.17), with vanishing Lagrange multiplier ϕ, together

with an equation for the nontrivial eψ, as in [29]:

E = 0, (4.1)

ψ′ = 2 e−U Im(e−iαW ), (4.2)

Qr + α′ = −2e−U Re(e−iαW ) , (4.3)

and we repeat the expression for E ,

E ≡ 2e2ψ
(
e−U Im(e−iαV)

)′
+ e2(ψ−U) JG+ 4e2ψ−U (Qr + α′)Re(e−iαV) + Γ , (4.4)

for the readers convenience.

Since our goal is to show the similarities between the solutions of this system to the

asymptotically flat ones, we will use an ansatz and similar definitions as in section 2.2. Here

however, we use the same relations restricting the constant m = 0, as one can check by

analysing the asymptotic fall-off of the terms in (4.4) that a nonzero m spoils the asymptotic

behavior of the scale factor of the metric. Thus, the role of the constant m is drastically

changed with respect to the asymptotically flat context, where it is “dressed” with the

Lagrange multiplier and is in fact crucial to obtain the most general static solution.

The flow equations (4.4) can be simplified by defining a vector R from G, as in the

non-BPS asymptotically flat case. Using the definition (2.29) with m = 0, we find15

−|W |2R = JG . (4.5)

The crucial difference with the previous situation is that here R is neither constant nor

small, since G is not. This allows to rewrite the flow equation for the section as

2e2ψ
(
e−U Im(e−iαV)

)′ − 2 e2ψ |W |2R+ 4e2ψ−U (Qr + α′)Re(e−iαV) + Γ = 0 . (4.6)

It order to describe solutions, me employ the natural ansatz of [28–30], which only depends

on a vector of single center harmonic functions H as

2 e−U Im(e−iαV) = r e−ψH , (4.7)

and immediately leads to a vanishing Kähler connection, as

Qr + α′ = 0 . (4.8)

Note that (4.7) reduces to the asymptotically flat solution (2.31) for eψ = r and m = 0, as

expected. In the more general case, equations (4.2) and (4.7) determine the function eψ by

(eψ)′ = r 〈G,H〉 , (4.9)

which can be easily integrated.

15See (B.26) for the general case including m.
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In order to integrate the flow equation (4.6) above, one can follow the direct approach

of [28–30], that leads to explicit solutions (see the example below). Nevertheless, some

intuition from the asymptotically flat case can be used, in order to simplify this process.

In particular, we claim that the constraint (2.34), which we repeat here

1

2
I
′
4(H, G) = 〈G,H〉H − 2

〈G,H〉2
〈G,R〉 R , (4.10)

as written in the context of asymptotically flat solutions for very small vectors G and R,

is relevant also in the more general case, where these vectors are generic. Note that this

might again be related to a reality constraint on the scalar flow as in (2.27), but we do not

require any such assumption.

In view of the similarity in the flow equations and the fact that the ansatze in (2.31)

and (4.7) are related by rescaling with a function, it is conceivable that a constraint ho-

mogeneous in all H, G and R as the one in (4.10) may indeed be common in the two

cases. Using the explicit examples in [28–30], one can see that this is indeed the case, as

we show below.

Example STU solution. In order to see how the constraint above is relevant, we con-

sider the STU model, defined by the prepotential

F =
X1X2X3

X0
, (4.11)

as an example where fairly generic explicit solutions are known, and the expression of R

can be computed explicitly. Following [28–30], we choose a frame where the FI terms are

G =
(
0, gi ; g0, 0

)T
, (4.12)

and consider a vector of single center harmonic functions

H =
(
−H0, 0 ; 0, Hi

)T
, (4.13)

where

H0 = α0 +
β0

r
, Hi = αi +

βi
r
. (4.14)

The corresponding asymptotically flat solution, where the gauging is only along the g0

direction is given in appendix C. The reader can easily compare the expressions below with

those in the appendix to appreciate the close similarity of the two systems.

With the above expressions one can compute from (4.7) that

e−U Re(e−iαV) = r e−ψ e2U

(
0,

1

2
H0 |εijk|HjHk ; H1H2H3, 0

)T
, (4.15)

and

r−4 e4ψ e−4U = 4H0H1H2H3 . (4.16)

Finally, we consider a solution to (4.9), given by

〈G,H〉 = 2 , eψ = r2 + c , (4.17)

where c is an arbitrary constant and the first equation is a simplifying condition.
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One can now impose the flow equation (4.6) using the assumptions above, to find the

constraints

α0g0 = αigi , p0 = cα0 − 2(β0)2g0 , −qi = cαi − 2(βi)
2gi, (4.18)

where all equations are valid for each value of the index i separately and there is no implicit

sum. The explicit expression for R in (4.5) then reads

R0 = g0 (H0)2 , Ri = gi (Hi)
2 , (4.19)

where again there is no implicit sum.

One can now straightforwardly evaluate the constraint (4.10) using the harmonic func-

tions H in (4.13) and the expression for R in (4.19), to find that it is identically satisfied.

We conclude that this constraint is also relevant for asymptotically AdS4 solutions, since

(similar to the asymptotically flat case) one can invert the procedure above to find R

from (4.10) rather than performing the tedious computation of the matrix J in (A.11).

Additionally, the near horizon limit of (4.10), leads to a nontrivial constraint on the

charges in terms of G, exactly as in the asymptotically flat non-BPS case. This is equivalent

to the constraints found in [28–30] by solving the BPS flow equations in the STU model

explicitly. From that point of view, (4.10) appears to be a duality covariant form of the

constraints on the charges in this class of solutions, valid for other symmetric models

beyond STU.

5 Extensions including hypermultiplets

Given the results of section 2 on the embedding of asymptotically flat black holes in gauged

theories, it is natural to consider the possibility of extending the abelian gauged theory to

include hypermultiplets. Indeed, the appearance of the vector of gaugings G multiplied by

a universal function, introduced as a Lagrange multiplier, that is determined independently

from the vector multiplet scalars, is a tantalising hint towards such an embedding. In this

scenario, one would require the gauging of a single U(1) factor in the hypermultiplet sector,

where the overall Lagrange multiplier eϕ in (2.13) is now promoted to a dynamical field,

identified with the corresponding moment map, and G is identified with the embedding

tensor [43, 49]. In this section, we explore the possibilities of constructing such a theory,

without explicitly considering the embedding of the known asymptotically flat solutions.

In doing so, we consider the explicit compactifications of M-theory on Calabi-Yau

manifolds fibered over a circle described in [66–68], (see [64] for a recent overview). This

setting is very convenient for our purposes, as it automatically leads to a flat potential

for the vector multiplets (2.3), since there is only one U(1) isometry gauged, along the

vector shown in (2.6), identified with the embedding tensor. The hypermultiplet scalars,

qu, u = 1 . . . 4nh, in these models parametrise target spaces in the image of the c-map,

and describe a fibration of a 2nh + 2 dimensional space with coordinates (a , ã , ξ), where

ξ = (ξA , ξ̃A) is a 2nh dimensional symplectic vector, over a special Kähler manifold of

dimension nh−1, with coordinates arranged in a complex symplectic section Ω = (ZA , GA),

similar to the vector multiplets.
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Within this setting, we consider the gauging along the Killing vector

kU = (UΩ)A
∂

∂ZA
+ (UΩ̄)A

∂

∂Z̄A
+ (Uξ)A

∂

∂ξA
+ (Uξ)A

∂

∂ξ̃A
, (5.1)

where U is a symplectic matrix whose explicit form can be found in [64, 68], but is not of

immediate importance for what follows. This leads to the standard minimal coupling term

for hypermultiplets, by replacing derivatives by covariant derivatives in the kinetic term as

huvDµq
uDµqv = huv

(
∂µq

u + kuU 〈G,Aµ〉
)(
∂µqv + kvU 〈G,Aµ〉

)
, (5.2)

where huv denotes the hyper-Kähler metric. The potential of the gauged theory is now

given by

V = Vg + Vhyp , (5.3)

where Vg is a modification of (2.3) as

Vg = Zi(G) Z̄i(G)P2 − 3 |Z(G)|2 P2 = 〈G, JG〉 P2 − 4 |Z(G)|2 P2 , (5.4)

and P2 stands for the square of the triplet of moment maps, {P x, P y, P z} corresponding

to (5.1), given by

P2 = (P x)2 + (P y)2 + (P z)2 . (5.5)

The second term in the scalar potential (5.3) arises from the hypermultiplet gauging and

reads

Vhyp = 8huv k
u
U k

v
U |〈G,V〉|2 . (5.6)

In order for the Einstein equation to allow for asymptotically flat solutions, one must

impose the condition

huv k
u
U k

v
U = 0 , (5.7)

which eliminates both the potential Vhyp and the term quadratic in gauge fields in the scalar

kinetic term. Since the vector G in (2.6) lies in the doubly critical orbit S, the vector

multiplet potential (5.4) vanishes identically, as usual. Note however that the vector of

gaugings naturally appears multiplied by an overall function, the moment map P, coming

from the hypermultiplet sector. We can further simplify (5.7), using the facts that the

quaternionic metric huv is positive definite and only a single U(1) is gauged, to find that16

kuU = 0 . (5.8)

This way the hypermultiplets condense to their supersymmetric constant values, a pro-

cess described in detail in [57]. The resulting theory is again the abelian gauged theory

of section 2, since the moment map P, which also controls the gravitino gauging, is in

general nonvanishing. Note that this is consistent despite the initial presence of a charged

hypermultiplet, due to the vanishing of the quadratic term in gauge fields by (5.7), which

would otherwise produce a source in the Maxwell equations.

16We thank Hagen Triendl for pointing out a mistake in a previous version of this paper.
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We now show more explicitly how this can be realised in a simple example involving the

universal hypermultiplet [69], which is present in all Type II/M-theory compactifications

to four dimensions, and is thus included in all the target spaces in the image of the c-

map described above. Moreover, the possible gaugings for this multiplet are described by

particular choices for U in the Killing vector (5.1). We use the following metric for the

universal hypermultiplet, parametrised by four real scalars ρ, σ, τ and χ as

ds2
hyp =

1

ρ2

(
dρ2 + ρ (dχ2 + dτ2) +

(
dσ + χdτ

)2)
, (5.9)

which has eight Killing vectors (see appendix D of [42]). Now, consider the particular linear

combination of Killing vectors

kc = −τ∂χ + χ∂τ +
1

2
(τ2 − χ2)∂σ − c ∂σ , (5.10)

parametrised by the arbitrary constant c. Now, the expression (5.7) becomes

huvk
u
c k

v
c =

χ2 + τ2

ρ
+

(χ2 + τ2 − 2 c)2

4ρ2
, (5.11)

which can vanish in two distinct situations. One is the physical minimum, corresponding

to (5.8), for which

χ = τ = 0 , ρ > 0 , c = 0 , (5.12)

while the second solution, given by

ρ = −(χ2 + τ2 − 2 c)2

4(χ2 + τ2)
< 0 , (5.13)

is unphysical, since the metric (5.9) is only positive definite when 0 < ρ < ∞ and (5.13)

implies that it is of signature (2, 2) instead.

The triplet of moment maps associated to the Killing vector above is given by

P =

{
τ√
|ρ|

,
χ√
|ρ|

, 1− χ2 + τ2 − 2 c

4ρ

}
, (5.14)

and reduces to P = {0, 0, 1} for the physical solution in (5.12), while it is a nontrivial

function of χ and τ when pulled back on the hypersurface defined by (5.13). This is an

explicit realisation of the scenario sketched above, since we have obtained a gauged theory

with an everywhere vanishing scalar potential, but with nontrivial moment maps. From

this standpoint, the embedding of the asymptotically flat solution of section 2 applies

directly to these models, similar to examples discussed in [57].

From this simple discussion it follows that a single U(1) hypermultiplet gauging can

only lead to asymptotically flat solutions with the hypermultiplet scalars fixed to constants,

leading to a constant moment map. If the resulting value of the moment map is non-zero

we are back in the case of FI term gauging that allows for a BPS horizon but non-BPS

asymptotics at infinity. If on the other hand the moment maps vanish, one is in the

ungauged case with BPS Minkowski vacuum and non-BPS horizon. Note however, that

the existence of unphysical solutions of the type (5.13) may be helpful in constructing new

solutions without hypermultiplets, where the remaining unfixed scalars may play the role

of the unphysical Lagrange multiplier in section 2.
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Finally, the interesting problem of obtaining solutions with physical charged hyper-

multiplets remains. Given the above, it is clear that one must gauge bigger groups (at

least U(1)2) of the hypermultiplet isometries to construct such BPS solutions, preserving

supersymmetry both at the horizon and at infinity, see e.g. [59, 70]. We can then expect

that such a theory, if existent, would allow for solutions preserving two supercharges in

the bulk (1/4-BPS solution), given that the attractor preserves N = 1 supersymmetry, as

established in section 3. Constructing such a theory seems to be a nontrivial but rather

interesting task for future investigations.

6 Conclusion and outlook

In this paper we presented in some detail a novel connection between the solutions of

ungauged supergravity and gauged supergravity with an identically flat potential in four

dimensions. In particular, we identified the recently constructed general solution for under-

rotating asymptotically flat black holes as special solutions to abelian gauged supergravity

with a flat potential, where nontrivial gaugings are still present and are reflected on the

solutions. As an application, we further showed explicitly that the attractor geometries of

these black holes belong to the generic class of 1/2-BPS AdS2×S2 attractor backgrounds

that pertain to (generically asymptotically AdS4) black holes in abelian gauged theories.

These results are interesting from several points of view, respectively discussed in the main

sections above. In this final section, we discuss the implications of our results for possible

string models of extremal black holes as well some intriguing similarities to recent results

in the study of black holes in the context of supergravity.

The somewhat surprising result of obtaining hitherto hidden supercharges in the near

horizon geometries of all extremal under-rotating black holes, deserves some additional

attention. Firstly, the supercharges at hand only exist when appropriate FI terms are

turned on for given charges, and are not present in general. This means that not all

attractors characterised by a negative quartic invariant I4(Γ) of the charges can be made

supersymmetric simultaneously, in contrast to the ones with I4(Γ)> 0, which correspond

to globally BPS solutions. This situation is reminiscent of the example solutions studied

recently in [71, 72], which preserve supersymmetry only when embedded in a larger theory,

but appear as non-BPS in any N = 2 truncation. In combination with these examples,

our results show that any supercharges preserved by a solution in a higher dimensional

theory, may only be realised in more general compactifications as opposed to a naive

dimensional reduction. This fits very well with the fact that asymptotically Taub-NUT

non-BPS black holes in five dimensions can preserve the full N = 2 supersymmetry near

their horizons [12]. Indeed, while a direct dimensional reduction along the Taub-NUT

fiber breaks all supersymmetries, our results imply that the Scherk-Schwarz reduction

of [68] preserves half of them. It would be interesting to develop a higher dimensional

description of our alternative embedding along these lines, especially in connection to

possible microscopic models.

Indeed, one of the most intriguing implications of the presence of supersymmetry for

asymptotically flat under-rotating black holes is the possibility of obtaining control over
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the microscopic counting of the entropy, similar to globally BPS black holes. According to

standard lore, one expects a dual microscopic CFT living on the worldvolume of appropriate

D-branes to be the relevant description at weak coupling. Such models have been proposed

in e.g. [73–77], and arguments on the extrapolation of the entropy counting for non-BPS

black holes were formulated in [78, 79], based on extremality. However, our results indicate

that one may be able to do better, if a supersymmetric CFT dual for extremal black

holes can be found. At this point, one is tempted to conjecture that such a CFT should

be a deformation of the known theories describing BPS black holes [1, 2], where half

of the supercharges are broken by the presence of appropriate deformation parameters,

corresponding to nonzero FI terms. Obtaining a description along these lines would be

also very interesting from the point of view of black hole physics in AdS, since it would

shed some light on the role of the gaugings in a microscopic setting.

A related question in this respect is the possibility of extending our embedding of

asymptotically flat solutions to theories including gauged hypermultiplets. As briefly dis-

cussed in section 5, such models with identically flat potentials are possible, and exploring

the various gaugings allowed is an interesting subject on its own. From a higher dimen-

sional point of view, the particular gaugings described in [68] represent a natural choice,

since they can be formulated in terms of a twisted reduction of ungauged five dimensional

supergravity along a circle. A similar twist was recently used in [80] in connection to the

near horizon geometry of over-rotating black holes.

Parallel to the implications on the asymptotically flat solutions, one may use the

connection established here to learn more about 1/4-BPS black holes in AdS. The somehow

surprising fact that the constraint on the charges defined in [20] in the case of flat gauging,

is relevant in the more general setting where the gaugings are unrestricted is a hint towards

a better understanding of the moduli space of these solutions. Indeed, since this constraint

is relevant throughout the flow connecting two uniquely fixed vacua, the asymptotic AdS4

vacuum of the theory and the BPS attractor, it may be relevant for establishing existence

criteria for given charges. In addition, it would be interesting to extend our procedure to

the non-extremal case, by connecting the results of [31, 32] with those of [81]. We hope to

return to some of these questions in future work.
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A Conventions on N = 2 supergravity

In this paper we follow the notation and conventions of [20]. In this appendix we col-

lect some basic definitions that are useful in the main text, referring to that paper for

more details.

The vector fields naturally arrange in a symplectic vector of electric and magnetic

gauge field strengths, whose integral over a sphere defines the associated electromagnetic

charges as

Fµν =

(
F Iµν
GI µν

)
, Γ =

(
pI

qI

)
=

1

2π

∫

S2

F . (A.1)

The physical scalar fields ti, which parametrize a special Kähler space of complex

dimension nv, appear through the so called symplectic section, V. Choosing a basis, this

section can be written in components in terms of scalars XI as

V =

(
XI

FI

)
, FI =

∂F

∂XI
, (A.2)

where F is a holomorphic function of degree two, called the prepotential, which we will

always consider to be cubic

F = −1

6
cijk

XiXjXk

X0
, (A.3)

for completely symmetric cijk, i = 1, . . . nv. The section V is subject to the constraints

〈V̄,V〉 = i 〈D̄īV̄, DjV〉 = −i gīj , (A.4)

with all other inner products vanishing, and is uniquely determined by the physical scalar

fields ti = Xi

X0 up to a local U(1) transformation. Here, gı̄j is the Kähler metric and the

Kähler covariant derivative DiV contains the Kähler connection Qµ, defined through the

Kähler potential as

Q = Im[∂iK dti] , K = −ln

(
i

6
cijk(t− t̄)i(t− t̄)j(t− t̄)k

)
. (A.5)

We introduce the following notation for any symplectic vector Γ

Z(Γ) = 〈Γ,V〉 , (A.6)

Zi(Γ) = 〈Γ, DiV〉 , (A.7)

with the understanding that when an argument does not appear explicitly, the vector of

charges in (A.1) should be inserted. In addition, when the argument is form valued, the

operation is applied component wise. With these definitions it is possible to introduce

a scalar dependent complex basis for symplectic vectors, given by (V, DiV), so that any

vector Γ can be expanded as

Γ = 2 Im[−Z̄(Γ)V + gı̄jZ̄ı̄(Γ)DjV] , (A.8)
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whereas the symplectic inner product can be expressed as

〈Γ1,Γ2〉 = 2 Im[−Z(Γ1) Z̄(Γ2) + gīZi(Γ1) Z̄̄(Γ2)] . (A.9)

In addition, we introduce the scalar dependent complex structure J, defined as

JV = −iV , JDiV = iDiV , (A.10)

which can be solved to determine J in terms of the period matrix NIJ in (2.2), see e.g. [55]

for more details. With this definition, we can express the complex self-duality of the gauge

field strengths as

JF = − ∗ F , (A.11)

which is the duality covariant form of the relation between electric and magnetic compo-

nents. Finally, we record the important relation

〈Γ, J Γ〉 = |Z(Γ)|2 + gīZi(Γ) Z̄̄(Γ) ≡ VBH(Γ) , (A.12)

where we defined the black hole potential VBH(Γ).

B First order flows for rotating black holes

In this appendix we discuss the rewriting of the effective action as a sum of squares and the

corresponding flow equations for stationary black holes in four dimensional abelian gauged

N = 2 supergravity. In section B.1 we present the general case, while in section B.2 we

specialise to the case of flat potential to show that the general asymptotically flat under-

rotating black holes are indeed solutions of the theory in this limit. We largely follow [4, 29]

with respect to the method and notational conventions.

B.1 Squaring of the action

We start with a timelike reduction to three spatial dimensions using the metric ansatz:

ds2 = −e2U (dt+ ω)2 + e−2U
(
dr2 + e2ψdθ2 + e2ψ sin2 θdφ2

)
, (B.1)

which generalises (2.7) by the addition of the angular momentum vector ω. In this setting

we allow for a dependence of the fields on all spatial coordinates, so that a timelike reduction

is appropriate [82]. The effective three-dimensional action reads:

S4D = − 1

16π

∫
dt

∫

M3

[
− 2 (dψ ∧ ?dψ − ?1) + 2dU ∧ ?dU − 1

2
e4Udω ∧ ?dω (B.2)

+ 2gī dt
i ∧ ?dt̄̄ + (F ,F) + e−2U 〈G, �G〉 ? 1− 8e−2U |Z(G)|2 ? 1

]
,

where F is the spatial projection of the four dimensional field strengths, ? denotes the

Hodge dual in three dimensions and we discarded a boundary term. The scalar dependent

inner product denoted by (, ) is a generalisation of (A.12) in the rotating case that is

explicitly given by [4]

(A,B) =
e2U

1− w2

∫
A ∧

[
? (JB)− ?(w ∧ JB)w + ?(w ∧ ?B)

]
, (B.3)
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for any two symplectic vectors of two-forms A, B, and we define w = e2Uω, as a short-

hand below. In order to stay as close as possible to the static case, we treat the gauging

parameters G as gauge field strengths in the three dimensional base space. We then define

G = G ? η . (B.4)

where η is a one-form which we require to be invariant under the vector ω, but is otherwise

undetermined at this stage. The choice η = dr is the one relevant for the static solutions.

Inspired by [29], we can use the above definitions to recombine the gauge kinetic term

and the potential using the following combination (Z(G) = 〈G,V〉)

F̃ = F − e−2U (JG− w ∧ ?G) + 4 e−2U Re
[
ReZ(e−iαG)eiαV + iReZ(e−iα ? G) ∧ weiαV

]
,

(B.5)

which is such that

(F̃ , F̃) =(F ,F) + e−2U 〈G, JG〉 ? η ∧ η + 2〈F , ?G〉+ 8 Im eiαZ(F) ∧ Re e−iαZ(?G) , (B.6)

and eiα is an arbitrary phase as in the static case. The scalars can be repackaged in a

similar way using the standard combination [4]

W = 2 Im ?D(e−Ue−iαV)− 2 ReD(eUe−iαV ω) , (B.7)

D = d+ i

(
Q+ dα+

1

2
e2U ? dω

)
, (B.8)

which in turn is such that

2 dU ∧ ?dU − 1

2
e4Udω ∧ ?dω + 2 gī dt

i ∧ ?dt̄̄

= (W,W)− 2

(
Q+ dα+

1

2
e2U ? dω

)
∧ dw + d [ 2w ∧ (Q+ dα) ] , (B.9)

so that the action reads

S4D = − 1

16π

∫
d4x

[
(W,W)− 2 (Q+ dα+

1

2
e2U ? dω) ∧ dw

+ (F̃ , F̃)− 2〈F , ?G〉 − 8e−2U |Z(G)|2 ? 1

− 8
(

Im(e−iαZ(F))− w ∧ Im(eiαZ(?G))
)
∧ Re e−iαZ(?G)

− 2 (dψ ∧ ?dψ − ?1)

]
. (B.10)

We now proceed to write the action as a sum of squares, making use of the further

definitions

E = F̃ −W , (B.11)

Im〈E , eUe−iαV〉 = eU Im
(
e−iαZ(F)

)
+e−U Re

(
e−iαZ(G)

)
−e−Uw ∧ Im

(
e−iαZ(?G)

)
+

1

2
dw .

(B.12)
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After some rearrangements one obtains the result

S4D =− 1

16π

∫
dt

∫

R3

[
(E , E)−4

(
Q+ dα+2e−U ReZ(?G)+

1

2
e2U ? dω

)
∧ Im〈E , eUe−iαV〉

− 2
[
〈F + 2 Re d(eUe−iαV ω), ?G〉 − ?1

]

− 2
(
?dψ − 2 e−U Im(e−iαZ(G))

)
∧
(
dψ − 2 e−U Im(e−iαZ(?G))

)

+ 4e−Ue2ψ Im(e−iαZ(G)) d
(

e−2ψ ? η
)]

. (B.13)

Note that we added and subtracted a term in order to obtain the squaring of the third

line, which leads to the additional factor e−2ψ in the derivative of the last line.

The last form of the action is a sum of squares, except for the terms involving the

derivative of η and 〈F , ?G〉, which one should demand to be a total derivative, thus con-

straining the one-form η. However, since an analysis of the resulting equations of motion

is outside the scope of this appendix, we restrict ourselves to the case of an identically

flat potential, mentioning that the general equations have the same structure as the BPS

equations of [83] and may reproduce them once η is specified.

B.2 Asymptotically flat solutions

Turning to the asymptotically flat case, we assume that the FI terms are given by a very

small vector and we choose the one-form η in (B.4) as

η = eϕ dr , (B.14)

where we absorbed the Lagrange multiplier ϕ of the static squaring in section 2, allowing

it to depend on all spatial coordinates. Similar to the static case, we impose that the base

space is flat, so that eψ = r, which leads to a modified rewriting of the action as

S4D =− 1

16π

∫
dt

∫

R3

[
(E , E)−4

(
Q+dα+2e−U ReZ(?G)+

1

2
e2U ? dω

)
∧ Im〈E , eUe−iαV〉

− 2 〈F + 2 Re d(eUe−iαV ω), ?G〉+ 2 du ∧ ?du

− 2
(
2 e−U Im(e−iαZ(G))− ?du

)
∧
(
2 e−U Im(e−iαZ(?G))− du

) ]
. (B.15)

where we discarded a non-dynamical term and u is the scalar defined in (2.19). The

equations of motion following from this action are solved by the relations

E = F̃ −W = 0 , (B.16)

Q+ dα+ 2e−U Re(e−iαZ(?G)) +
1

2
e2U ? dω = 0 , (B.17)

2 e−U Im(e−iαZ(?G))− du = 0 , (B.18)

along with the equation of motion for the Lagrange multiplier, which reads

d (?du)− dr ∧ 〈G,F + 2 Re d(eUe−iαV ω)〉 r−2 e−2u = 0 . (B.19)
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Despite the apparent complication of the equations above, one can show that the

rotating black holes of [20] are solutions to the equations above, in the following way.

Firstly, we introduce the decomposition of the spatial field strengths in electromagnetic

potentials and vector fields as

F = d(ζ ω) + dw , (B.20)

where the explicit expression for ζ follows from (B.5), (B.7) and (B.16), as

dζ = −2 Re d(eUe−iαV) + ?G , (B.21)

whose integrability condition implies through (B.4) and (B.14) that η is exact and thus

eϕ is a total derivative with respect to the radial component. Considering a single center

solution, the vector fields dw define the charges Γ through harmonic functions H, so that

the equation of motion for the Lagrange multiplier takes the form

d (?du)− r−2 dr ∧ 〈G,Γ〉 e−2u ? 1 = 0 , (B.22)

and thus admits the same enveloping solution (2.25), which we adopt henceforth. Note

that this is indeed such that eϕ is a total derivative as

eϕ = ∂r

(
1

V

)
. (B.23)

We are then in a position to write the linear system to be solved in the asymptotically

flat case, explicitly given by

ζ = −2 Re(eUe−iαV) + d

(
1

V

)
G , (B.24)

dw − e−2U Ĝ + 4 e−2U ReZ(e−iαG) Re
(
eiαV

)
= 2 Im ?D(e−Ue−iαV)− 1

V
dωG . (B.25)

This can be simplified using the definition (2.29)–(2.30) for the second very small vector,

and the associated decomposition

JG = − 1

2
e2U V 2R+M e2U G+ 4M V e3U Re

(
e−iα V

)
, (B.26)

that follows from it, as one can compute directly. Note that here we have upgraded the

constant m in (2.30) to a function M , which will turn out to control the angular momentum.

Multiplying the last relation with the Lagrange multiplier in (B.23) we find

e−2U JG =
1

2
? dV R+M ? d

(
1

V

)
G+ 4M V ? d

(
1

V

)
eU Re

(
e−iα V

)
, (B.27)

which can in turn be used in (B.25) to obtain

dw − 1

2
? dV R−M ? d

(
1

V

)
G+

1

V
dωG− 2 Im ?d(e−Ue−iαV)

= −4

[
2 e−2U ReZ(e−iαG) −M V ? d

(
1

V

)
eU
]

Re
(

e−iα V
)
. (B.28)
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Here and henceforth we assume that the very small vector R is a constant, which will be

shown to be a consistent choice at the end. Imposing that the terms proportional to the

real part of the section in (B.28) cancel, leads to the constraint

2 e−2U ReZ(e−iαG) = M V ? d

(
1

V

)
eU , (B.29)

which together with the additional condition

? dω = −dM , (B.30)

that implies that both M and ω are harmonic, results to the system of equations

dw − 1

2
? dV R− ?d

(
M

V

)
G = 2 Im ?d(e−Ue−iαV) . (B.31)

Integrating the last equation leads to a generalisation of (2.31), given by

2 Im(e−Ue−iαV) =H− 1

2
V R− M

V
G , (B.32)

where the vector fields are given by the harmonic functions H as

dw = ?dH . (B.33)

One can now compare the above to the explicit equations for the general asymptotically

flat under-rotating single center solutions of [20], which turn out to be described by (B.29)–

(B.31) with ω → −ω and for R being a constant very small vector, as in the static case.

Indeed, one could have started from the system (B.25) to establish that the scalar flow

equations are the ones of [20] up to a constraint generalising (2.27), which is again equivalent

to the constancy of the vector R, as we did in section 2. However, we chose to present

the symplectic covariant derivation of the equations both for simplicity and completeness.

The analysis of [20] ensures that this is a consistent solution of the full Einstein equations,

so that we do not have to consider the Hamiltonian constraint that has to be imposed on

solutions to the effective action in (B.15), as in the static case (see [84] for details on this

constraint).

C Example STU solution

Full solution. In this appendix we present the known rotating seed solution in a specific

duality frame [14], as an example to use in the main body. For comparison, we use the

STU model, in (4.11) in what follows. The charges of the solution are given by poles in

the following choice of harmonic functions

H =
(
H0, 0 ; 0, Hi

)T
, (C.1)

Hi = hi +
qi
r
, H0 = h0 +

p0

r
. (C.2)
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In this duality frame the constant small vectors can be chosen as

R̂ = (−4, 0 ; 0, 0)T , G = (0, 0 ; 1, 0)T , (C.3)

but we point out that the choice is not unique, see [20] for a detailed discussion. The scalar

fields are given by solving (B.32), leading to the physical scalars

ti =
M − ie−2U

2H0Hi
, (C.4)

as well as to the real part of the section

2 e−U Re(e−iαV) = e2U

(
M H0, −H0 |εijk|HjHk ; −M

2

H0
− 2H1H2H3, M Hi

)T
. (C.5)

The metric is given by (B.1) with

e−4U = 4H0H1H2H3 −M2 , ?dω = −dM , (C.6)

where M is a dipole harmonic function

M = m +
j cos θ

r2
. (C.7)

Finally, the gauge fields are given by (B.20), with the ζ given by (B.24) and (C.5), while

the dw are given by (B.33).

Near horizon solution. We now take the near horizon of the solution above, which is

obtained by dropping the constants in all harmonic functions. The scalars (C.4) become

ti =
j cos θ − ie−2U

2 p0 qi
, (C.8)

whereas the near horizon metric still given by

ds2 = −e2U r2 (dt+ ω)2 + e−2U

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
,

e−4U = 4 p0 q1q2q3 − j2 cos2 θ ω = j
sin2 θ

r
dφ . (C.9)

For convenience we give the near horizon gauge fields, which are given by (B.20) us-

ing (B.24) and (B.33) as

F = d
[
ζ r (dt+ ω)

]
+ Γ sin θ dθ ∧ dφ , ζ = −2 eU Re[e−iαV] +

1

q0
G , (C.10)

where the real part of the section follows from (C.5) by replacing harmonic functions by

their poles, as above.
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four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].

[67] O. Aharony, M. Berkooz, J. Louis and A. Micu, Non-Abelian structures in compactifications

of M-theory on seven-manifolds with SU(3) structure, JHEP 09 (2008) 108

[arXiv:0806.1051] [INSPIRE].

[68] H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz

reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].

[69] S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of

Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].

[70] J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in

Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].

[71] I. Bena, H. Triendl and B. Vercnocke, Camouflaged supersymmetry in solutions of extended

supergravities, Phys. Rev. D 86 (2012) 061701 [arXiv:1111.2601] [INSPIRE].

[72] I. Bena, H. Triendl and B. Vercnocke, Black Holes and Fourfolds, JHEP 08 (2012) 124

[arXiv:1206.2349] [INSPIRE].

[73] R. Emparan and G.T. Horowitz, Microstates of a Neutral Black Hole in M-theory, Phys.

Rev. Lett. 97 (2006) 141601 [hep-th/0607023] [INSPIRE].

[74] R. Emparan and A. Maccarrone, Statistical description of rotating Kaluza-Klein black holes,

Phys. Rev. D 75 (2007) 084006 [hep-th/0701150] [INSPIRE].

[75] H.S. Reall, Counting the microstates of a vacuum black ring, JHEP 05 (2008) 013

[arXiv:0712.3226] [INSPIRE].

[76] G.T. Horowitz and M.M. Roberts, Counting the Microstates of a Kerr Black Hole, Phys.

Rev. Lett. 99 (2007) 221601 [arXiv:0708.1346] [INSPIRE].

[77] E.G. Gimon, F. Larsen and J. Simon, Constituent Model of Extremal non-BPS Black Holes,

JHEP 07 (2009) 052 [arXiv:0903.0719] [INSPIRE].

– 38 –



J
H
E
P
0
1
(
2
0
1
3
)
1
1
0

[78] A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without

supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].

[79] D. Astefanesei, K. Goldstein and S. Mahapatra, Moduli and (un)attractor black hole

thermodynamics, Gen. Rel. Grav. 40 (2008) 2069 [hep-th/0611140] [INSPIRE].

[80] I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows,

arXiv:1203.4227 [INSPIRE].

[81] P. Galli, T. Ort́ın, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4

supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].

[82] P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from

Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].

[83] S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions

of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008)

097 [arXiv:0804.0009] [INSPIRE].

[84] A. Van Proeyen and B. Vercnocke, Effective action for the field equations of charged black

holes, Class. Quant. Grav. 25 (2008) 035010 [arXiv:0708.2829] [INSPIRE].

– 39 –



CHAPTER 6. LIST OF PUBLICATIONS

Vorticity in holographic fluids

M.M. Caldarelli, R.G. Leigh, A.C. Petkou, P.M. Petropou-
los, V.P., K. Siampos

167





P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
6

Vorticity in holographic fluids

Marco M. Caldarelli§
CPHT – Ecole Polytechnique, CNRS UMR 7644, 91128 Palaiseau Cedex, France
LPT – Université de Paris-Sud 11, CNRS UMR 8627, Bât. 210, 91405 Orsay cedex, France
E-mail: marco.caldarelli@cpht.polytechnique.fr

Robert G. Leigh∗

Department of Physics, University of Illinois
1110 W. Green Street, Urbana IL 61801, U.S.A.
E-mail: rgleigh@illinois.edu

Anastasios C. Petkou†

Department of Physics, University of Crete, 71003 Heraklion, Greece
E-mail: petkou@physics.uoc.gr

P. Marios Petropoulos‡§

CPHT – Ecole Polytechnique, CNRS UMR 7644, 91128 Palaiseau Cedex, France
E-mail: marios@cpht.polytechnique.fr

Valentina Pozzoli§
CPHT – Ecole Polytechnique, CNRS UMR 7644, 91128 Palaiseau Cedex, France
E-mail: pozzoli@cpht.polytechnique.fr

Konstadinos Siampos§

CPHT – Ecole Polytechnique, CNRS UMR 7644, 91128 Palaiseau Cedex, France
E-mail: ksiampos@cpht.polytechnique.fr

In view of the recent interest in reproducing holographically various properties of conformal flu-
ids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with
vorticity require four-dimensional bulk geometries with either angular momentum or nut charge,
whose boundary geometries fall into the Papapetrou–Randers class. The boundary fluids emerge
in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows,
evolving in compact or non-compact supports. A rich network of Einstein’s solutions arises, nat-
urally connected with three-dimensional Bianchi spaces. We use Fefferman–Graham expansion
to handle holographic data from the bulk and discuss the alternative for reversing the process and
reconstruct the exact bulk geometries.

Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics
and Gravity
September 4-18, 2011
Corfu, Greece

∗Research supported by the U.S. Department of Energy contract FG02-91-ER4070.
†Research supported by the European grant FP7-REGPOT-2008-1: CreteHEPCosmo-228644.
‡Speaker.
§Research supported by the LABEX P2IO, the ANR contract 05-BLAN-NT09-573739, the ERC Advanced Grant

226371, the ITN programme PITN-GA-2009-237920, the IFCPAR CEFIPRA programme 4104-2.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
6

Holographic fluids P. Marios Petropoulos

1. Introduction

The relationship of fluid dynamics with general relativity goes back to the work of Damour [1].
Lately, a different and perhaps more concrete shape of this relationship has been given by the
so-called fluid/gravity correspondence (see for example the recent review [2]). According to the
latter, the gravitational degrees of freedom that reside in the boundary of an asymptotically AdSD

spacetime describe the hydrodynamics of a relativistic fluid in D− 1 dimensions. Consequently,
the dynamical equations of the latter systems (e.g. Euler or Navier–Stokes) are encoded in the
asymptotic behaviour of the bulk Einstein equations.

The fluid/gravity correspondence framework appears to be capable of describing different
facets of relativistic fluids, such as superfluidity and dissipation. This appears to be a novel mech-
anism of emergence in physics whereby the low-energy effective degrees of freedom arise holo-
graphically in the boundary of a gravitational system. At a practical level, fluid/gravity correspon-
dence currently occupies a large part of the AdS/CMT correspondence as are collectively called
the efforts to find new computational tools for strongly coupled condensed matter systems using
holography (see e.g. the reviews [3, 4, 5]).

Despite some important results in the study of holographic fluids, the issue of vorticity has
been less well understood. This is important if one wants to extend the realm of AdS/CMT to
interesting condensed matter systems such as rotating Bose or Fermi gases [6, 7], turbulence or
wave propagation in moving metamaterials (e.g. [8]). With such extensions in mind, we review
here our recent attempt to setup a holographic framework for the description of fluids with vorticity.
Even without touching the thorny question of dissipation, i.e. assuming local equilibrium and
non-dissipating kinematics, our studies reveal a remarkably rich structure as soon as vorticity is
switched on. In particular, we note the intimate relationship of our neutral rotating holographic
fluids with charged fluids in magnetic fields, as well as with the problem of wave propagation in
moving media. We believe that the latter observation can lead to the holographic description of
analogue gravity systems [9, 10, 11, 12].

In the present review we choose to devote most of our discussion to the gravitational side
of the duality and we extensively discuss in Sec. 2 relativistic fluids, in Sec. 3 the general sta-
tionary Papapetrou–Randers and Zermelo geometries and in Sec. 4 various concrete examples of
stationary geometries in 2+1 dimensions. In Sec. 5 we review the Fefferman–Graham construc-
tion of holographic fluids in 2+ 1 dimensions focusing on the Kerr–AdS4, the Taub–NUT–AdS4

and the hyperbolic NUT–AdS4 solutions. In Sec. 6 we give an overview of some new results,
to be presented elsewhere [13], that aim to connect our approach with alternative descriptions of
holographic fluids. Section 7 contains our conclusions.

2. Relativistic fluids

In this section, we recall the salient features of relativistic fluid dynamics (see e.g. [14, 15]).
This includes aspects of vector-field congruences and properties of the energy–momentum tensor.
We work in arbitrary spacetime dimension D.
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2.1 Vector-field congruences

We consider a manifold endowed with a spacetime metric of the generic form

ds2 = gµνdxµdxν = ηabêaêb. (2.1)

We will use a,b,c, . . .= 0,1, . . . ,D−1 for transverse Lorentz indices along with α,β ,γ = 1, . . . ,D−
1. Coordinate indices will be denoted µ,ν ,ρ, . . . for spacetime x ≡ (t,x) and i, j,k, . . . for spatial
x directions. The dual of the orthonormal coframe êa is the frame ěa, which satisfies êa(ěb) = δ a

b .
To define parallel transport we take the Levi–Civita connection coefficients Γa

bc defined via the
spin-connection one-form ω̂a

b as

dêa + ω̂a
b∧ êb = 0, ω̂a

b = Γa
bcêc, ∇ěa ěb = Γc

aběc. (2.2)

Consider now an arbitrary timelike vector field û = uaêa, normalized as ηabuaub = −1, later
identified with the fluid velocity. Its integral curves define a congruence which is characterized by
its acceleration, shear, expansion and vorticity:

∇aub =−uaab +
1

D−1
Θhab +σab +ωab (2.3)

with1

aa = ub∇bua, Θ = ∇aua, (2.4)

σab =
1
2

h c
a h d

b (∇cud +∇duc)−
1

D−1
habhcd∇cud (2.5)

= ∇(aub)+a(aub)−
1

D−1
hab∇cuc, (2.6)

ωab =
1
2

h c
a h d

b (∇cud−∇duc) = ∇[aub]+a[aub]. (2.7)

The latter allows to define the vorticity form as

2ω = ωab êa∧ êb = dû+ û∧ â . (2.8)

These tensors satisfy several simple identities:

uaaa = 0, uaσab = 0, uaωab = 0, ua∇bua = 0, hc
a∇buc = ∇bua. (2.9)

Killing vector fields, satisfying ∇(aξb) = 0, are congruences with remarkable properties. We
quote two of them, the proof of which is straightforward:

• A Killing vector field has vanishing expansion.

• A constant-norm2 Killing vector field is furthermore geodesic and shearless. It can only carry
vorticity.

1Our conventions are: A(ab) = 1/2(Aab +Aba) and A[ab] = 1/2(Aab−Aba).
2This is not an empty statement since Killing vectors cannot be normalized at will. When their norm is constant, it

can be consistently set to −1,0 or +1.
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The timelike vector field ǔ can be used to decompose any tensor field on the manifold in
transverse and longitudinal components with respect to itself. The decomposition is performed by
introducing the longitudinal and transverse projectors:

Ua
b =−uaub, ha

b = uaub +δ a
b , (2.10)

where hab is also the induced metric on the surface orthogonal to ǔ. The projectors satisfy the usual
identities:

Ua
cU

c
b =Ua

b, Ua
chc

b = 0, ha
chc

b = ha
b, Ua

a = 1, ha
a = D−1. (2.11)

For example, any rank-two symmetric tensor Tab can be decomposed in longitudinal, transverse
and mixed components:

Tab = euaub +Sab−uaqb−ubqa, (2.12)

the non-longitudinal part being
Σab = Sab−uaqb−ubqa. (2.13)

We have defined
e = uaubTab, Sab = h c

a h d
b Tcd , qa = h b

a Tbcuc, (2.14)

such that
uaqa = 0, uaSab = 0. (2.15)

Finally
uaTab = qb− eub. (2.16)

2.2 The energy–momentum tensor

The mere existence of a metric and a timelike vector-field congruence does not necessarily
imply the presence of a relativistic fluid. If we wish to identify the timelike vector ǔ with the
velocity of a relativistic fluid, then we should require the presence of an additional symmetric
rank-two tensor field – the energy–momentum tensor Tab whose projection along ǔ is the (positive)
energy density ε of the fluid

Tabuaub = ε , (2.17)

as measured in the local proper frame. The latter concept deserves a comment. In non-relativistic
fluids, the velocity field is unambiguously defined as the velocity of the mass flow of the fluid. In
the relativistic case, it requires a more formal definition as energy and mass cannot be distinguished,
and energy flows can be the result of dissipative phenomena or thermal conduction. One way to
define the velocity, which amounts to defining a specific local proper frame known as Landau
frame, is to demand the absence of mixed terms in (2.13):

uaΣab = 0. (2.18)

Let us continue applying the decomposition (2.12) to the energy–momentum tensor. Insert-
ing (2.13) in (2.18), Eqs. (2.15) imply that qa vanishes in the Landau frame, where the energy–
momentum is thus

Tab = εuaub +Sab. (2.19)

4
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The last piece Sab is the stress tensor, purely transverse.
For a perfect fluid, all information is encapsulated in a further unique piece of data: the pres-

sure p measured in the local proper frame. Hence, the stress tensor reads:

Sperf.
ab = phab. (2.20)

For a viscous fluid, the stress tensor contains friction terms:

Sab = phab + tab, (2.21)

where tab is usually expressed as an expansion in the derivatives of the velocity field. At lowest
order one finds

tab =−2ησab−ζ habΘ (2.22)

with η ,ζ the shear and bulk viscosities. In 2+1 dimensions there exists another term at this order,
breaking the parity symmetry: ζHεcd(aucσd

b). The coefficient ζH is the rotational Hall viscosity. It
characterizes a transport phenomenon similar to the Hall conductivity of charged fluids in magnetic
fields.

The dynamical equations for the fluid (Euler, Navier–Stokes, . . . ) are all encoded in the co-
variant conservation of the energy–momentum tensor

∇aTab = 0 . (2.23)

In the non-relativistic limit, Eq. (2.23) also delivers a matter-current conservation, which, for rela-
tivistic fluids, must be introduced separately as a consequence of charge conservation, if any.

2.3 Effectively perfect fluids

Relativistic fluids in the hydrodynamic regime are long wavelength approximations of finite-
chemical-potential and finite-temperature states of certain (unknown) quantum field theories3. Quite
generically all such fluids exhibit dissipative phenomena as they describe media with non-zero
shear viscosity. However, all such fluids can be in special kinematic configurations where the ef-
fects of dissipation are ignorable4. In this case, their dynamics is captured by the perfect part of the
stress tensor and the equations of motion read5:

{
(ε + p)Θ+∇ǔε = 0

(ε + p)â−∇⊥p = 0
(2.24)

3A special class of such fluids, actually the one that naturally arises in holography, are conformal fluids, i.e. those
having vanishing energy–momentum trace: (D− 1)p− ε = (D− 1)ζ Θ. This equation is supposed to hold for any
kinematic configuration, in particular when the fluid is at rest, where ε = (D− 1)p. The latter is therefore adopted as
a thermodynamic equation of state valid always locally. When the fluid is not at rest, we conclude then that ζ Θ = 0,
which must hold for any Θ. In this scheme, the bulk viscosity for a conformal fluid is thus vanishing identically. Similar
conclusions are reached for higher-order viscosity coefficients entering the traceful part of the energy–momentum tensor.

4A fluid can be stationary and altogether dissipate energy provided it is not isolated. These situations are better
designated as forced steady states. On curved boundary backgrounds, the forcing task can be met by gravity through
the boundary conditions. This was discussed in [16]. As this feature does not appear in the backgrounds that will be
analyzed in the forthcoming sections, we will not pursue this further.

5The interested reader can find more information on these specific issues in e.g. [17, 18].
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(∇⊥ = ∇+ û∇ǔ stands for the covariant derivative along the directions normal to the velocity field).
Under this assumption, taking also into account the conformality (ε = (D−1)p ∝ T D), Eqs. (2.24)
lead to {

∇ǔε = 0

â = ∇⊥p
Dp .

(2.25)

The energy density is conserved along the fluid lines and in the absence of spatial pressure gradients
(i.e. for energy and pressure constants in spacetime), the flow is geodesic.

In several instances, the velocity of the fluid turns out to be a Killing vector field. Then, from
the discussion of Sec. 2.1 several straightforward conclusions can be drawn:

• The flow is geodesic, shearless and expansionless.

• The internal energy density is conserved and the pressure is spatially homogeneous.

• If the fluid is conformal then ε = (D−1)p ∝ T D is constant in spacetime.

Therefore, despite its viscosity, the kinematic state of the fluid can be steady and non-dissipative.
For this to happen, however, the existence of a constant-norm timelike Killing vector is required.
In other words, the background geometry must itself be stationary6. In this case, the constant-
norm timelike Killing vector congruence allows for the definition of a global time coordinate, with
associated inertial frames. The latter are comoving with the fluid. All the examples that we will
discuss in the following fall into this class.

3. Papapetrou–Randers stationary geometries

Starting with appropriate time-independent bulk backgrounds7, conformal fluids appear holo-
graphically, evolving generally on stationary but not necessarily static boundary geometries. Those
fluids possess therefore non-dissipative dynamics inherited from the gravitational environment and
this dynamics contains in general vorticity. We will present here some basic properties of the
boundary backgrounds arising in this context and explain how they affect the fluid dynamics. We
postpone to Sec. 5 the actual holographic analysis relating some of these backgrounds to exact bulk
Einstein spacetimes.

3.1 General properties, geodesic congruences and Papapetrou–Randers frame

Stationary metrics appearing in the holographic analysis we will be presenting later on are of
the generic form

ds2 = B2 (−(dt−bidxi)2 +ai j(x)dxidx j) , (3.1)

where B,bi,ai j are x-dependent functions. These metrics were introduced by Papapetrou in [19].
They will be called hereafter Papapetrou–Randers because they are part of an interesting network

6More generally, it can be shown that the velocity field uµ of a stationary fluid flow has to be proportional to a
Killing vector field of the background geometry [17].

7Notice that in some instances time independence is not met in the bulk, but stationarity remains valid on the
boundary as a consequence of appropriate boundary conditions [16]. These cases belong to the class of forced dissipative
steady-states mentioned in footnote 4.
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of relationships involving the Randers form [20], discussed in detail in [21] and more recently used
in [22, 23].

For later convenience, we introduce ai j,bi and γ such that

ai ja jk = δ i
k, bi = ai jb j, γ2 =

1
1−ai jbib j

. (3.2)

The metric components read:

g00 =−B2, g0i = B2bi, gi j = B2(ai j−bib j), (3.3)

and those of the inverse metric:

g00 =− 1
γ2B2 , g0i =

bi

B2 , gi j =
ai j

B2 . (3.4)

Finally, √−g = BD√a, (3.5)

where a is the determinant of the symmetric matrix with entries ai j.
In the natural frame of the above coordinate system {∂t ,∂i}, any observer at rest has normal-

ized velocity ǔ = 1
B ∂t and dual form û = −B(dt − b) (we set b = bidxi). The normalized vector

field ǔ is not in general Killing – as opposed to ∂t . For this observer, the acceleration is thus non
vanishing:

ǎ = ∇ǔǔ = gi j∂i lnB(∂ j +b j∂t) . (3.6)

As already mentioned, the motion is inertial if and only if B is constant. It will be enough for our
purposes to consider the case B = 1, and all subsequent formulas will assume this choice. We will
furthermore introduce a frame

ě0 = ∂t , ěα = E i
α (bi∂t +∂i) , E i

α Eβ
i = δ β

α (3.7)

adapted to the geodesics at hand and its dual coframe (orthonormal as in Eq. (2.1))

ê0 = dt−b, êα = Eα
idxi, Eα

iE
β

iδαβ = ai j. (3.8)

This will be referred to as the Papapetrou–Randers frame.
The constant-norm Killing vector field ǔ= ě0 = ∂t (with û=−ê0 =−dt+b) defines a geodesic

congruence (the orbits of all observers at rest in the Papapetrou–Randers frame). As was shown in
Sec. 2.3, the latter has zero shear and expansion, but non-trivial vorticity (see Eqs. (2.7), (2.8)):

ω =
1
2

db ⇒ ω0i = 0, ωi j =
1
2
(∂ib j−∂ jbi) . (3.9)

The physical effect of vorticity is seen in the obstruction to the parallel transport of the spatial
frame ěα along the congruence:

∇ě0 ěα = ωPR
αβ δ βγ ěγ ⇔ ∇∂t ∂i = ωi ja jk (∂k +bk∂t) (3.10)

(ωi j given in (3.9) are the spacetime components of the vorticity, while ωPR
αβ = E i

α E j
β ωi j are its

components in the Papapetrou–Randers frame). Embarked gyroscopes undergo a rotation.
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Papapetrou–Randers metrics do not exhibit ergoregions since8 g00 = −1. However, regions
where hyperbolicity is broken (i.e. where constant-t surfaces become timelike) are not excluded.
This happens whenever there exist regions where bib jai j > 1. Indeed, in these regions, the spatial
metric ai j− bib j possesses a negative eigenvalue, and constant-t surfaces are no longer spacelike.
Therefore the extension of the physical domain accessible to the inertial observers moving along
ǔ = ∂t is limited to spacelike disks in which bib jai j < 1 holds. We will come back to this important
issue in Secs. 3.3 and 5.2.

Before moving to the next topic, we would like to make a last remark. Following Eqs. (2.25),
the shearless and expansionless geodesic congruence under consideration could describe the fluid
lines of a dissipationless stationary, conformal fluid, under the assumption that energy (and pres-
sure) be conserved and constant all over space. As we will see in Sec. 5, this is exactly the dynamics
that emerges through holography.

3.2 Zermelo frame

Trading the data (ai j,bi) for (hi j,W i) defined as

hi j =
ai j−bib j

γ2 , hikhk j = δ i
j, (3.11)

W i =−γ2bi, Wi = hi jW j =− bi
γ2 , (3.12)

the Papapetrou–Randers metric (3.1) can be recast in the following form

ds2 = γ2 [−dt2 +hi j
(
dxi−W idt

)(
dx j−W jdt

)]
. (3.13)

The latter is called Zermelo metric because it first appeared in the framework of the Zermelo
problem [24], yet another member of the relationship network mentioned above9.

The Zermelo form of the metric suggests the following orthonormal coframe and its dual
frame:

ẑ0 = γdt , ẑα = Lα
i(dxi−W idt), L i

α Lβ
i = δ α

β , (3.14)

ž0 =
1
γ
(
∂t +W i∂i

)
, žα = L i

α ∂i, Lα
iL

β
jδαβ = γ2hi j. (3.15)

We will call the latter the Zermelo frame. Its timelike vector field ž0 defines a congruence of
accelerated lines (∇ž0 ž0 6= 0). Thus, this frame in not inertial. It is instructive to compare the
Papapetrou–Randers frame introduced previously (in (3.7), (3.8)) with the Zermelo frame at hand.
Being both orthonormal, they are related by a local Lorentz transformation, as one sees by com-
bining the above formulas:

ě0 = γ
(

ž0−W β žβ

)
, (3.16)

ěα = Γ β
α

(
žβ −Wβ ž0 +

γ2−1
γ2

(
WβW γ

W 2 −δ γ
β

)
žγ

)
, (3.17)

8Ergoregions would require a conformal factor in (3.1) that could vanish and become negative.
9The Zermelo problem is formulated as follows: find the minimal-time navigation road on a geometry d`2 =

hi jdxidx j, in the presence of a moving fluid creating a drift current (wind or tide) W = W i∂i with a ship of fixed pro-
pelling velocity (i.e. fixed with respect to the frame comoving with the fluid or, put differently, of given power). The
answer is reached by searching for null geodesics of (3.13).
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where

Γ β
α = γ2E i

α Lβ
i, W α = 1

γ Lα
iW

i, Wα = δαβW β , (3.18)

W 2 =W αWα =W iWi = 1− 1
γ2 . (3.19)

The interpretation of these expressions is clear. Each spacetime point is the intersection of two
lines, belonging each to the two congruences under consideration. At this point W α are the spatial
velocity components of the inertial observer in the spatial frame of the accelerated observer and
1/γ2 = 1−W 2 the corresponding Lorentz factor.

It is worth making several further comments. The synchronous hypersurface for the inertial
observer is by definition dual to the time vector. Since dt(∂i) = 0 (equivalent to ẑ0(žα) = 0), this
hypersurface is spanned by {∂i}, and hence is not orthogonal to the inertial congruence (∂t ·∂i = bi).
The orthogonal lines to the Papapetrou–Randers (inertial) observer’s synchronous hypersurface are
nothing but the accelerated congruence tangent to the vector field ž0 (defining the corresponding
Zermelo frame) because ž0 · ∂i = 0, whereas the hyperplanes orthogonal to the the inertial con-
gruence (tangent to ě0 = ∂t) are spanned by {bi∂t + ∂i}. Therefore, since (dt− b)(∂i + bi∂t) = 0
(equivalent to ê0(ěα) = 0), the time τ of Zermelo observers, i.e. the dual of the hypersurface every-
where tangent to the latter hyperplanes, would satisfy dτ = dt−b. Such a time cannot be defined
since db = 2ω 6= 0. Put differently, no hypersurface exists tangent to the hyperplanes spanned by
{bi∂t +∂i} – Fröbenius theorem. This is a well known manifestation of vorticity.

The last statement again distinguishes the Papapetrou–Randers and Zermelo observers, which
are otherwise dual to each other. As for the perception of the rotation, Papapetrou–Randers ob-
servers feel it through embarked gyroscopes (see (3.10)), whereas their inertial motion as witnessed
by Zermelo observers satisfies

∇ž0 ǔ = ωZ
0αδ αβ žβ . (3.20)

Here ǔ = ě0 is the velocity of the inertial observers, while ωZ
ab are the vorticity components as

observed in the Zermelo frame: ωZ
αβ = L i

α L j
β ωi j and ωZ

0β =W αωZ
αβ . Hence, for the accelerated

observers, the inertial ones are subject to a Coriolis force: Zermelo observers are rotating them-
selves. The velocity vector ǔ = ě0 of the inertial observers undergoes a precession around the
worldline of a Zermelo observer tangent to ž0. The latter being accelerated, the variation of ǔ is
actually better captured as a Fermi derivative along ž0:

Dž0 ǔ =
(
ωZ

0α − žα(γ)
)

δ αβ žβ +W α žα(γ)ž0 , (3.21)

where žα(γ) = L i
α ∂iγ . The extra terms result from the rotation of the Zermelo frame and contribute

to the observed precession of the velocity vector ǔ.
One can try to tune rotating frames so as to make the perceived angular momentum of a given

congruence disappear, i.e. make its Fermi derivative vanish with respect to the rotating frame. This
leads to the so called zero angular momentum frames (ZAMO [25]). In general, Zermelo frames
are not ZAMO frames for the Papapetrou–Randers congruences, as the Fermi derivative (3.21) is
generically non-zero. It can however be zero under the necessary and sufficient condition

W jω ji = γ∂iγ, (3.22)

9
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since this implies that the combination ωZ
0α− žα(γ) as well as the coefficient of ž0 vanish. Equation

(3.22) carries intrinsic information about the background and can indeed be recast as

Lž0 ê0 = 0. (3.23)

When fulfilled, the Zermelo observers coincide with the locally non-rotating (or ZAMO) frames
[25]. Remarkably, this occurs for a particular case that will be discussed in our subsequent devel-
opments.

3.3 Further properties and analogue gravity interpretation

In the above analysis and particularly in the change of frame from Papapetrou–Randers to Zer-
melo, it has been implicitly assumed that W 2 < 1. The velocity of Papapetrou–Randers observers
with respect to the Zermelo frame is however dictated by the geometry itself since W 2 = bibi, and
nothing a priori guarantees that bibi < 1 everywhere. There are regions in x-space where indeed
bibi > 1 bounded by a hypersurface where bibi = 1. The latter was called velocity-of-light hyper-
surface in [21] since this is the edge where the Papapetrou–Randers observer reaches the speed of
light with respect to the Zermelo frame.

The problem raised here is a manifestation of the global hyperbolicity breakdown. Indeed,
we have seen that in geometries of the Papapetrou–Randers form (3.1), constant-t surfaces are not
everywhere spacelike. The extension of the physical domain accessible to the inertial observers
moving along ǔ = ∂t is limited to spacelike disks in which b2 < 1 holds, bounded by the velocity-
of-light surface, where these observers become luminal.

The breaking of hyperbolicity is usually accompanied with the appearance of closed timelike
curves (CTCs). These are ordinary spacelike circles, lying in constant-t surfaces, which become
timelike when these surfaces cease being spacelike, i.e. when b2 > 1. The CTCs at hand differ in
nature from those due to compact time (as in the SL(2,R) group manifold), and cannot be removed
by unwrapping time. They require an excision procedure for consistently removing, if possible,
the b2 > 1 domain, in order to keep a causally safe spacetime. This is comparable to what happens
in the case of the three-dimensional Bañados–Teitelboim–Zanelli black hole [26] – although in the
latter case the trouble is not due to hyperbolicity issues. We will come back to the CTCs when
studying the anti-de Sitter Taub–NUT geometry.

Although the issue of hyperbolicity is intrinsic to our stationary geometries, moving from the
form (3.1) to the form (3.13) may provide alternative or complementary views. In the Zermelo form
(3.13) the trouble is basically encapsulated in the conformal factor. However, some problems such
as the original Zermelo navigation problem referred to in footnote 9 are sensitive to the general
conformal class10 of (3.13), and the conformal factor γ2 can be dropped or replaced. Doing so
can leave us with a geometry potentially sensible everywhere. This instance appears precisely in
analogue gravity systems.

Metrics of the form (3.13) are in fact known as acoustic or optical (see the original works
[27, 28] or e.g. [11] for an up-to-date review). They are used for describing the propagation of

10In the Zermelo navigation problem we look for null geodesics. In that framework, going to regions where γ2 < 0
means having a drift current faster than what the ship can overcome.
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sound/light disturbances in relativistic or non-relativistic fluids moving with velocity W i in spa-
tial geometry hi j, and subject to appropriate thermodynamic/hydrodynamic assumptions. In this
approach, the full metric (3.13) is an analogue metric and is not the actual metric of physical
spacetime. Under this perspective, peculiarities such as CTCs, potentially present in the analogue
geometry, have no real, physical existence. They are manifestations of other underlying physical
properties such as supersonic/superluminal regimes in the flowing medium.

In order to be concrete, we would like to quote two examples. The first is the original one,
where a fluid is flowing on a geometry d`2 = hi jdxidx j with velocity field W = W i∂i. Assuming
the fluid is non-relativistic, isolated, with mass density ρ and pressure p, in barotropic evolution
(i.e. such that the enthalpy variations satisfy dh = dp/ρ) and with sound velocity cs = 1/

√
∂ρ/∂ p, one

finds that irrotational acoustic perturbations propagate along null geodesics of the metric

ds2 =
ρ
cs

(
−c2

s dt2 +hi j
(
dxi−W idt

)(
dx j−W jdt

))
, (3.24)

and satisfy the corresponding scalar field equation. The metric (3.24) is of the form (3.13). It is
however analogue and not the actual spacetime geometry, which is Galilean. This analogue metric
is called acoustic in the case at hand. Similar results are available for light propagation, leading to
optical geometries (see e.g. [12, 29]).

Similarly we can quote the case of a relativistic conformal fluid, at rest in the Papapetrou–
Randers frame of a Papapetrou–Randers geometry (3.1) – with B = 1. In this case, fluid lines are
tangent to ǔ = ∂t , the kinematics is shearless and expansionless with vorticity (3.9), and thus it is
non-dissipative. It is also geodesic (see (3.6)) and Eqs. (2.25) imply that ε, p and T are constant
everywhere. The propagation of irrotational perturbations in this set up is captured by the following
acoustic metric11:

ds2 =
T D−2
√

D−1

(
−(dt−bidxi)2 +(D−1)ai j(x)dxidx j) , (3.25)

of the Papapetrou–Randers form, which can be recast in the Zermelo form (3.13), following (3.11)
and (3.12).

4. Examples in 2+1 dimensions

Examples of Papapetrou–Randers geometries are numerous, possessing diverse properties re-
garding their isometries, their curvature, the regularity of their Randers–Zermelo transformation,
etc. Their expressions can be simple in Papapetrou–Randers form and complicated in the Zermelo
representation or vice versa. All this depends in particular on the dimension12. We will here focus
on a few three-dimensional examples that turn out to emerge as holographic duals of exact four-
dimensional bulk spacetimes. Although the nature of the boundary three-dimensional spacetime
regarding Einstein’s equations plays little role in holography, some underlying intrinsic properties
appear to be generic for the backgrounds under consideration, and would deserve further inves-
tigation. Furthermore, all examples below are homogeneous spaces13, even though neither was

11This result is easy to establish, following e.g. similar reasoning as in [30].
12See [21] for a detailed account of properties and examples in 3+1 dimensions.
13Following [31, 32], homogeneous three-manifolds include all 9 Bianchi groups plus 3 coset spaces, which are H3,

H2×S1, S2×S1 (Sn and Hn are spheres and hyperbolic spaces respectively).
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homogeneity an a priori criterion, nor did our list provide an exhaustive classification of stationary
backgrounds with a spatially homogeneous timelike Killing vector field.

4.1 Warped three-spheres: Bianchi IX

Warped three-spheres, earlier more appropriately called biaxially squashed three-spheres, are
deformations of the standard homogeneous and isotropic (round) S3. This deformation breaks the
original SU(2)× SU(2) isometry group down to SU(2) or SU(2)×U(1). These spaces can be
endowed with the metric

ds2 =
3

∑
i=1

(
γiσ i)2

, (4.1)

where γi are constants and σ i are the left-invariant Maurer–Cartan forms of SU(2). In terms of
Euler angles 0≤ θ ≤ π,0≤ φ ≤ 2π,0≤ ψ ≤ 4π , these one-forms read:





σ1 = sinθ sinψ dφ + cosψ dθ

σ2 = sinθ cosψ dφ − sinψ dθ

σ3 = cosθ dφ +dψ.

(4.2)

For reasons that will become clear in the following, we will consider situations where γ1 =

γ2. The spaces obtained in this way are called Berger spheres. They are axisymmetric i.e. have
SU(2)×U(1) isometry group. Since we are interested in spaces with Lorentzian signature, we
must set negative γ2

3 and the metric finally reads:

ds2 = L2
[
(σ1)2 +

(
σ2)2

]
−4n2 (σ3)2

=−4n2 (dψ + cosθdφ)2 +L2 (dθ 2 + sin2 θdφ 2) , (4.3)

where 2L is the radius of the original undeformed S3 and 2nk the deformation parameter (k = 1/L).
The time coordinate in (4.3) is ψ . In the original Euclidean sphere this was an angle, but there

is no reason to keep it compact in the Lorentzian version at hand14. Introducing a non-compact
time t =−2n(ψ +φ), the metric (4.3) assumes the form:

ds2 =−
(
dt +4nsin2 θ/2 dφ

)2
+L2 (dθ 2 + sin2 θdφ 2) . (4.4)

This metric is of Papapetrou–Randers type (3.1). The base dx2 = ai j(x)dxidx j is a two-sphere of
radius L, while b =−4nsin2 θ/2 dφ is a Dirac-monopole-like potential. The latter creates a constant
– in the Papapetrou–Randers orthonormal coframe – vorticity

ω =−nsinθdθ ∧dφ =−nk2 ê1∧ ê2 (4.5)

for the geodesic congruence tangent to ǔ ≡ ě0 = ∂t (up to a delta-function contribution of the
“Misner point” at the southern pole – this name will be justified later).

As already quoted, the space at hand is homogeneous and belongs to the family of spaces
invariant under a four-parameter group of motions [33, 34], here generated by the following Killing

14This point deserves some comments, which we postpone to the discussion on the bulk geometries leading to (4.3)
as boundary.
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vectors: 



ξ1 =−sinφ cotθ ∂φ + cosφ ∂θ −2n sinφ
sinθ (1− cosθ)∂t

ξ2 = cosφ cotθ ∂φ + sinφ ∂θ +2n cosφ
sinθ (1− cosθ)∂t

ξ3 = ∂φ −2n∂t

e3 =−2n∂t .

(4.6)

The three former generate the left SU(2), whereas the latter generates an extra R factor (instead of
U(1) since t is non-compact).

The background (4.4) is not globally hyperbolic. Even though it is homogeneous, constant-t
surfaces are not and γ = 1/

√
1−4n2k2 tan2 θ/2 diverges when θ reaches θ∗ = 2arctan L/2n. Hyperbolicity

holds in the disk 0 < θ < θ∗, whereas it breaks down in the complementary disk (θ∗ < θ < π)
centered at the Misner point, where ∂φ becomes timelike. As a consequence, the circles tangent
to ∂φ become CTCs for θ∗ < θ < π . Homogeneity implies furthermore that CTCs are present
everywhere, passing through any arbitrary point of spacetime. In particular, for 0 < θ < θ∗ the
CTCs are sections of cylinders normal to the constant-t surfaces. The time coordinate t evolves
periodically along these elliptically shaped CTCs.

As we will see in the forthcoming sections, the situation described here is quite generic
for three-dimensional homogeneous spacetimes. These include the case of Som–Raychaudhuri
(Bianchi II) and the celebrated Gödel space (Bianchi VIII). They are illustrative examples of how
homogeneity combined with rotation often leads to the breakdown of hyperbolicity and the emer-
gence of CTCs. Gödel space in particular was the first to be recognized as plagued by CTCs. The
CTCs present in these spaces, however, are not geodesics [34, 35, 36]. Their presence is therefore
harmless for classical causality. This is why Gödel-like solutions like the case under consideration
have never been truly discarded, leaving open the possibility of quantum mechanical validity15.

Let us incidentally mention that the above three-dimensional geometry (4.4) – when lifted to
four dimensions by taking the direct product with an extra flat direction – has been shown to satisfy
Einstein’s equations with cosmological constant and energy–momentum tensor produced by some
specific charged fluid [34]. Alternatively, it also satisfies the equations of topologically massive
gravity [42], subject to a Kerr–Schild [46] deformation16

Rµν −
R
2

gµν +Λ(3)gµν =
1

4nk2Cµν +
k2
(
1+4n2k2

)

4
uµuν , (4.7)

where û =−ê0 =−dt−4nsin2 θ/2dφ , Λ(3) = k2/4 is the cosmological constant for an undeformed
S3 and Cµν are the components of the Cotton–York tensor defined as

Cµν =
εµρσ
√−g

∇ρ

(
Rν

σ −
1
4

Rδ ν
σ

)
. (4.8)

For the background (4.4) this tensor is

Cµνdxµdxν = nk4 (1+4n2k2)[2û2 +L2 (dθ 2 + sin2 θdφ 2)] . (4.9)
15Attempts, among others in string theory within holography, were proposed a few years ago (see e.g. [36, 37, 38,

39, 40, 41] and references therein).
16It should be mentioned that the metric (4.4) solves also topological massive gravity equations without Kerr–Schild

deformation [43, 44, 45], provided one tunes appropriately the relationship among L2 and k2. This holds for generic
warped homogeneous spaces like AdS3, studied in Sec. 4.2.

13



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
6

Holographic fluids P. Marios Petropoulos

For later convenience we also quote:

Rµνdxµdxν = 2k4n2û2 +
(
1+2n2k2)(dθ 2 + sin2 θdφ 2) (4.10)

and
R = 2k2 (1+n2k2) . (4.11)

4.2 Warped AdS3: Bianchi VIII

Following the paradigm of squashed three-spheres, studied in Sec. 4.1, we analyze here the
deformations of AdS3. The latter is the (universal covering of the) SL(2,R) group manifold and has
left and right SL(2,R) isometries. Homogeneous deformations can break partially or completely
one SL(2,R) factor.

There are many realizations of the Maurer–Cartan forms of SL(2,R). The one we choose here
is convenient for the specific deformation we will consider in the following:





ρ0 =−dτ + coshσ dφ

ρ1 =−sinτ dσ − sinhσ cosτ dφ

ρ2 = cosτ dσ + sinhσ sinτ dφ ,

(4.12)

where 0 ≤ φ ≤ 2π,0 ≤ σ < +∞, and τ ∈ [0,2π] or better R if we consider the universal covering
of the space. The metrics under consideration are of the form

ds2 =−
(
γ0ρ0)2

+
(
γ1ρ1)2

+
(
γ2ρ2)2

. (4.13)

The γs being constant, this geometry is homogeneous. When ∀i,γi = L, we recover radius-2L AdS3.
We will restrict ourselves here to the elliptically-squashed AdS3, obtained with γ0 = 2p ∈ R

and γ1 = γ2 = L. These geometries have a 4-parameter isometry group SL(2,R)×R. The Abelian
factor is the remaining one-parameter subgroup of the broken isotropy symmetry – U(1) before
taking the universal covering.

Elliptic deformations were studied as such in [47] and the continuous line obtained there coin-
cides – when uplifted to four dimensions – with the family of spacetime-homogeneous Gödel-type
metrics discussed in [34]. After a coordinate transformation trading τ for t = 2p(τ −φ) ∈ R, the
metric (4.13) reads:

ds2 =−
(
dt−4psinh2 σ/2 dφ

)2
+L2 (dσ2 + sinh2 σ dφ 2) . (4.14)

This is a timelike fibration over a hyperbolic plane H2.
Alternative inequivalent deformations exist in SL(2,R), such as the hyperbolic or the parabolic

ones which lead to spacelike fibrations over AdS2 or plane-wave superpositions with AdS3. They
have been studied extensively in the framework of string theory [38, 39, 40] and more recently
in holography [45]. However, these are not of the Papapetrou–Randers form (3.1), as opposed to
the elliptic deformation for which b = 4psinh2 σ/2 dφ while the base dx2 = ai j(x)dxidx j is radius-L
Lobatchevsky plane. The “non-compact Dirac potential” b creates for the geodesic congruence
tangent to ǔ ≡ ě0 = ∂t a homogeneous vorticity, which – in the Papapetrou–Randers orthonormal
coframe – reads:

ω = psinhσ dσ ∧dφ = pk2 ê1∧ ê2. (4.15)
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In the case at hand, the base is non-compact and the Misner point is rejected to infinity.
The hyperbolicity properties of the background (4.14) are richer than for (4.4). Indeed, for

the space at hand, the Lorentz factor relating Zermelo and Papapetrou–Randers observers is γ =
1/
√

1−4p2k2 tanh2 σ/2. This factor remains finite for finite σ provided p≤ L/2 – the limiting case p = L/2

corresponding to the undeformed AdS3. Under this condition, the space is globally hyperbolic and
constant-t surfaces are spacelike everywhere. When p> L/2 this property breaks down for σ >σ∗=
2arctanh L/2p. Constant-t surfaces are spacelike on a disk only, centered at σ = 0 and bounded by a
velocity-of-light surface located at σ = σ∗. The breakdown of hyperbolicity is accompanied with
the appearance of CTCs, present everywhere as a consequence of homogeneity. This happens in
particular for p = L/

√
2 corresponding to Gödel’s solution.

As mentioned earlier, the absence of hyperbolicity in the backgrounds considered in our gen-
eral framework is closely related to the combination of vorticity and homogeneity. This is even
better illustrated in the AdS3, where the non-compact nature of the base makes it possible to evade
the breakdown, provided the vorticity is small enough with respect to the scale L set by the cur-
vature. The isometry group is in the present case SL(2,R)×R generated by the following Killing
vectors: 




ζ0 = ∂φ −2p∂t

ζ1 =−cosφ cothσ ∂φ − sinφ ∂σ −2p cosφ
sinhσ (1− coshσ)∂t

ζ2 =−sinφ cothσ ∂φ + cosφ ∂σ −2p sinφ
sinhσ (1− coshσ)∂t

q0 =−2p∂t .

(4.16)

For completeness we also quote the Levi–Civita curvature properties of the metric (4.14):

Cµν dxµdxν = pk4 (1−4p2k2)[2û2 +L2 (dσ2 + sinh2 σ dφ 2)] , (4.17)

Rµν dxµdxν = 2k4 p2û2−
(
1−2p2k2)(dσ2 + sinh2 σ dφ 2) , (4.18)

R = −2k2 (1− p2k2) , (4.19)

where û =−dt +4psinh2 σ/2 dφ .

4.3 Rotating Einstein universes

In the limit n→ 0, the geometry (4.4) becomes a homogeneous metric on R× S2. This is
the Einstein static universe, which is a trivial case of static Papapetrou–Randers geometry. The
isometry group remains unaltered and generated by the Killing vectors (4.6). The metric reads:

ds2 =−dt2 +L2 (dθ 2 + sin2 θ dφ 2) . (4.20)

Trading (θ ,φ) for (θ ′,φ ′) defined as

φ = φ ′+Ω∞t, Dθ ∆θ ′ = Ξ, Ξ = 1−L2Ω2
∞, Dθ = 1−L2Ω2

∞ sin2 θ , ∆θ ′ = 1−L2Ω2
∞ cos2 θ ′,

(4.21)
we obtain

ds2 =−dt2 +
ΞL2

∆2
θ ′

(
dθ ′2 +

∆θ ′

Ξ
sin2 θ ′

[
dφ ′+Ω∞dt

]2
)
. (4.22)

This is the Einstein universe uniformly rotating at angular velocity Ω∞ in spheroidal coordinates.
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The metric (4.22) is in a Zermelo form (3.13). It can be brought to Papapetrou–Randers form
using the general transformations (3.11) and (3.12):

ds2 =
Ξ

∆θ ′

(
−
[

dt− L2Ω∞

Ξ
sin2 θ ′dφ ′

]2

+
L2dθ ′2

∆θ ′
+

L2∆θ ′

Ξ2 sin2 θ ′dφ ′2
)
. (4.23)

In order to reach a canonical Papapetrou–Randers form (3.1) with B = 1, a conformal transforma-
tion is required with conformal factor Φ = ∆θ ′/Ξ. The resulting geometry,

ds2 =−
[

dt− L2Ω∞

Ξ
sin2 θ ′dφ ′

]2

+
L2dθ ′2

∆θ ′
+

L2∆θ ′

Ξ2 sin2 θ ′dφ ′2, (4.24)

appears as the boundary of Kerr–AdS four-dimensional bulk geometry [48]. We would like to
stress that although (4.23) is still invariant under SU(2)×R generated by (4.6) (at n = 0), this is
no longer true for (4.24), where the isometry group is reduced to U(1)×R generated by ∂φ and ∂t ,
while ξ1 and ξ2 in (4.6) become conformal Killing vectors.

Let us finally mention that we can in a similar fashion consider the limit p→ 0 in the ellip-
tically deformed AdS3 geometries, given in (4.14). This leads to a Einstein-static-universe-like
geometry of the type R×H2, which can be brought into the form

ds2 =
Z

Θσ ′

(
−
[

dt− L2Ω∞

Z
sinh2 σ ′dφ ′

]2

+
L2dσ ′2

Θσ ′
+

L2Θσ ′

Z2 sinh2 σ ′dφ ′2
)
, (4.25)

after a coordinate transformation (σ ,φ) 7→ (σ ′,φ ′) with

φ = φ ′+Ω∞t, Hσ Θσ ′ =Z, Z = 1+L2Ω2
∞, Hσ = 1−L2Ω2

∞ sinh2 σ , Θσ ′ = 1+L2Ω2
∞ cosh2 σ ′.

(4.26)
One can similarly perform a conformal transformation leading to

ds2 =−
[

dt− L2Ω∞

Z
sinh2 σ ′dφ ′

]2

+
L2dσ ′2

Θσ ′
+

L2Θσ ′

Z2 sinh2 σ ′dφ ′2. (4.27)

The geometry described by (4.27) is globally hyperbolic without any restriction. For the met-
ric (4.24), global hyperbolicity holds under the condition Ω∞ < k. Again this is a bound on the
magnitude of the vorticity

ω =
L2Ω∞ sin2θ ′

2Ξ
dθ ′∧dφ ′ (4.28)

carried by the geodesic congruence ǔ = ě0 = ∂t in this background – and is relaxed for the non-
compact base (squashed H2 in (4.27) versus squashed S2 in (4.24)), where

ω =
L2Ω∞ sinh2σ ′

2Z
dσ ′∧dφ ′. (4.29)

4.4 Zooming at the poles: Bianchi II and VII0

We can further analyze the geometries met so far by zooming around their poles. This exhibits
new backgrounds of Papapetrou–Randers type, interesting for their own right.
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Som–Raychaudhuri and Heisenberg algebra. The geometry around θ ≈ 0 in (4.4) or σ ≈ 0 in
(4.14) is

ds2 ≈−
(
dt−L2Ω∞χ2dφ

)2
+L2 (dχ2 +χ2dφ 2) (4.30)

with χ = θ or σ , and Ω∞ =−nk2 or pk2. This very same geometry appears also around θ ≈ 0 or
π in (4.24) and around σ ≈ 0 in (4.27) – upon appropriate definitions of χ involving Ξ or Z.

Metric (4.30) is the Som–Raychaudhuri space, found in [49] by solving Einstein equations
with rotating, charged dust with zero Lorentz force. It belongs to the general family of three-
dimensional homogeneous spaces possessing 4 isometries studied in [33, 34], which include the
various metrics that we have discussed so far here. In the case of Som–Raychaudhuri (Eq. (4.30))
the isometries are generated by the following Killing vectors:





Kx = k sinφ
χ ∂φ − k cosφ ∂χ −LΩ∞χ sinφ ∂t

Ky = k cosφ
χ ∂φ + k sinφ ∂χ −LΩ∞χ cosφ ∂t

K0 = 2Ω∞ ∂t

K = ∂φ .

(4.31)

The vectors Kx,Ky and K0 form a Heisenberg algebra, and indeed the Som–Raychaudhuri metric
can be built as the group manifold of the Heisenberg group (Bianchi II) at an extended-symmetry
(isotropy) point with an extra symmetry generator17 ∂φ . Actually, this corresponds to a contraction
of SU(2)×R into a semi-direct product of the Heisenberg group with an extra U(1) generated
by Kx = −kξ1,Ky = kξ2,K0 = k2e3,K = ξ3 − e3 (see (4.6)). It can similarly emerge from the
SL(2,R)×R algebra (4.16).

Similarly to Gödel space, Som–Raychaudhuri space contains non-geodesic closed timelike
curves. These are circles of radius χ larger than 1/Ω∞ [50].

Flat vortex and E(2) geometry. The southern pole of (4.4) is not captured in the above scheme.
Indeed this is a fixed point of the transformation generated by the Killing vector ξ3+e3 (see (4.6)),
which we referred to as the Misner point. Around this point

ds2 ≈−
(
dt +n

(
4−χ2)dφ

)2
+L2 (dχ2 +χ2dφ 2) , (4.32)

where χ = π−θ . The latter is known as a flat vortex geometry, homogeneous and invariant under
an E(2)×R algebra (E(2) is Bianchi VII0) generated by18





Lx = kξ1 = k sinφ
χ
(
∂φ −4n∂t

)
− k cosφ ∂χ

Ly =−kξ2 = k cosφ
χ
(
∂φ −4n∂t

)
+ k sinφ ∂χ

L0 = ξ3 = ∂φ −2n∂t

L = e3 =−2n∂t .

(4.33)

It also appears as a contraction of the SU(2)×R.

17[Kx,Ky
]
= K0, [Kx,K0] =

[
Ky,K0

]
= 0, [K,Kx] = Ky,

[
K,Ky

]
=−Kx and [K,K0] = 0.

18[Lx,Ly
]
= 0, [L0,Lx] = Ly,

[
L0,Ly

]
=−Lx and everything commutes with L.
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5. Holography in the Fefferman–Graham expansion: from 3+1 to 2+1

In this section we study the properties of holographic fluids, as they arise in the Fefferman–
Graham expansion along the holographic radial coordinate. The set of data reached in this man-
ner contains the boundary frame i.e. the geometrical background hosting the fluid, as well as the
energy–momentum tensor, which describes the fluid dynamics. This general method is applied
to selected four-dimensional solutions of Einstein’s equations, whose boundaries coincide with
Papapetrou–Randers geometries studied in Sec. 4.

5.1 Split formalism and Fefferman–Graham in a nutshell

We find illuminating to discuss holographic fluid dynamics in D = 2+ 1 dimensions starting
from the 3+1-split formalism introduced in [51, 52, 53]. We begin with the Einstein–Hilbert action
in the Palatini first-order formulation

S =− 1
32πGN

∫
εABCD

(
RAB− Λ

6
EA∧EB

)
∧EC ∧ED =

1
16πGN

∫
d4x
√−g(R−2Λ), (5.1)

where GN is Newton’s constant. We also assume negative cosmological constant expressed as
Λ = −3/L2 = −3k2. We denote the orthonormal coframe EA, A = r,a and use for the bulk metric
the signature +−++. The first direction r is the holographic one and x≡ (t,x1,x2)≡ (t,x).

Bulk solutions are taken in the Fefferman–Graham form

ds2 =
L2

r2 dr2 +
r2

L2 ηabEa(r,x)Eb(r,x) . (5.2)

For torsionless connections there is always a suitable gauge choice such that the metrics (5.2) are
fully determined by two coefficients êa and f̂ a in the expansion of the coframe one-forms Êa(r,x)
along the holographic coordinate r ∈ R+

Êa(r,x) =
[

êa(x)+
L2

r2 F̂a(x)+ · · ·
]
+

L3

r3

[
f̂ a(x)+ · · ·

]
. (5.3)

The asymptotic boundary is at r→ ∞ and it is endowed with the geometry

ds2
bry. = lim

r→∞

ds2

k2r2 . (5.4)

The ellipses in (5.3) denote terms that are multiplied by higher negative powers of r. Their coeffi-
cients are determined by êa and f̂ a, and have specific geometrical interpretations19, though this is
not relevant for our discussion.

The 3+ 1-split formalism makes clear that êa(x) and f̂ a(x), being themselves vector-valued
one-forms in the boundary, are the proper canonical variables playing the role of boundary “coor-
dinate” and “momentum” for the (hyperbolic) Hamiltonian evolution along r. For the stationary
backgrounds under consideration, describing thermally equilibrated non-dissipating boundary fluid
configurations, êa and f̂ a are t-independent.

The boundary “coordinate” is given by the set of one-forms êa. For this coframe we must
determine the “momentum” of the boundary data. For example, when the boundary data carry

19For example, the coefficient F̂a is related to the boundary Schouten tensor.
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zero mass, we expect this to be zero. In this case f̂ a(x) = 0 and the unique exact solution of the
Einstein’s equations is pure AdS4.

More generally, the vector-valued one-form f̂ a satisfies

f̂ a∧ êa = 0 , εabc f̂ a∧ êb∧ êc = 0 , εabcD f̂ b∧ êc = 0 , (5.5)

where the action of the generalized exterior derivative D on a vector-valued one-form V̂ a is defined
as

DV̂ a = dV̂ a + εa
bcB̂b∧ êc , (5.6)

and the “magnetic field” B̂a is the Levi–Civita spin connection associated with êa [52]. One can
easily see that conditions (5.5) imply, respectively, symmetry, absence of trace and covariant con-
servation of the tensor T = T a

běa⊗ êb, defined as

f̂ a =
1
κ

T (êa) =
1
κ

T a
bêb , κ =

3
8πGNL

. (5.7)

Hence we can interpret the latter as the covariantly conserved energy–momentum tensor of a con-
formal field theory. Here we are interested in particular stationary bulk solutions for which we
expect the energy–momentum tensor be reduced to the perfect relativistic form, Eqs. (2.19) and
(2.20):

T a
b = (ε + p)uaub + pδ a

b . (5.8)

Although the two necessary ingredients for the description of a relativistic perfect fluid, namely
the boundary frame and the velocity one-form, are nicely packaged in the leading and subleading
independent boundary data, until now we did not assume any specific relationship between them.
Nevertheless it is clear that such a relationship would be imposed by any exact solution of the
bulk gravitational equations, given the interior boundary conditions. We will soon observe that
the Fefferman–Graham expansion of the exact solutions of Sec. 5.2 yield the same form for the
boundary energy–momentum tensor, namely

f̂ 0 =−2M
3L

ê0 , f̂ α =
M
3L

êα . (5.9)

The boundary frame one-forms êa are themselves, of course, different in the three solutions. Com-
paring (5.7), (5.8) and (5.9), we find

ε = 2p = 2κ
M
3L
, (5.10)

constant as already advertised. The solutions under consideration describe thus the same conformal
fluid in different kinematic states. More importantly, (5.9) fixes the direction of the velocity field
with respect to the boundary frame to be

ǔ = ě0 . (5.11)

As explained in Sec. 3.1, in the Papapetrou–Randers geometry (Eq. (3.1)), this congruence is
tangent to a constant-norm Killing field and has thus zero shear, expansion and acceleration (con-
sistent, according to (2.25), with the constant pressure found in (5.10)). It also shows that the
observer’s frame ěa is comoving. Therefore, in the Fefferman–Graham expansion the kinematic
properties of holographic fluids are determined by the geometric properties of the boundary co-
moving frame.
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5.2 Some exact geometries and their fluid interpretation

We present here three examples of holographic fluids with vorticity that reside at the boundary
of two exact solutions of the bulk vacuum Einstein equations; the Kerr–AdS4, the Taub–NUT–AdS4

and the hyperbolic NUT–AdS4 black hole solutions.
The four-dimensional Kerr solution of Einstein’s equation with Λ =−3k2 reads:

ds2 =
dr2

V (r,θ)
−V (r,θ)

[
dt− a

Ξ
sin2 θ dφ

]2
+

ρ2

∆θ
dθ 2 +

sin2 θ∆θ

ρ2

[
adt− r2 +a2

Ξ
dφ
]2

, (5.12)

where
V (r,θ) =

∆r

ρ2 (5.13)

and {
∆r = (r2 +a2)(1+ k2r2)−2Mr

ρ2 = r2 +a2 cos2 θ

{
∆θ = 1− k2a2 cos2 θ

Ξ = 1− k2a2.
(5.14)

The geometry has inner (r−) and outer (r+) horizons, where ∆r vanishes, as well as an ergosphere
at gtt = 0. The solution at hand describes the field generated by a mass M rotating with an angular
velocity

Ω =
a(1+ k2r2

+)

r2
++a2 (5.15)

as measured by a static observer at infinity [54, 55]. Note that asymptotic observer associated with
a natural frame of the coordinate system at hand is not static, but has an angular velocity

Ω∞ = ak2. (5.16)

The boundary metric of Eq. (5.12) is (4.24) (without primes in the angular coordinates).
The Taub–NUT–AdS4 geometry is a foliation over squashed three-spheres solving Einstein’s

equations with negative cosmological constant (the σs are given in (4.2)):

ds2 =
dr2

V (r)
+
(
r2 +n2)((σ1)2 +

(
σ2)2

)
−4n2V (r)

(
σ3)2

(5.17)

=
dr2

V (r)
+
(
r2 +n2)(dθ 2 + sin2 θ dφ 2)−V (r)

[
dt +4nsin2 θ

2
dφ
]2

, (5.18)

where
V (r) =

∆r

ρ2 (5.19)

and {
∆r = r2−n2−2Mr+ k2

(
r4 +6n2r2−3n4

)

ρ2 = r2 +n2.
(5.20)

Besides the mass M and the cosmological constant Λ = −3k2, this solution depends on an extra
parameter n: the nut charge.

The solution at hand has generically two horizons (V (r±) = 0) and is well-defined outside the
outer horizon r+, where V (r)> 0. The nut is the endpoint of a Misner string [56], departing from
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r = r+, all the way to r→∞, on the southern pole at θ = π . The geometry is nowhere singular along
the Misner string, which appears as a coordinate artifact much like the Dirac string of a magnetic
monopole is a gauge artifact. In order for this string to be invisible, coordinate transformations
displacing the string must be univalued everywhere, which is achieved by requiring the periodicity
condition t ≡ t−8πn.

One can avoid periodic time and keep the Misner string as part of the geometry. This semi-
infinite spike appears then as a source of angular momentum, integrating to zero [57, 58], and
movable at wish using the transformations generated by the above vectors. This will be our view-
point throughout this work. However, despite the non-compact time, the Taub–NUT–AdS geometry
is plagued with closed timelike curves, which disappear only in the vacuum limit k→ 0 [59]. Even
though this is usually an unwanted situation, it is not sufficient for rejecting the geometry, which
from the holographic perspective has many interesting and novel features. The boundary geometry
of (5.18), reached by following (5.4), is (4.4) and this is the background where the fluid is evolving.
What we called Misner point for the latter in Sec. 4.1 is the endpoint of the bulk Misner string.

On a non-compact horizon, the nut charge can be pushed to infinity. This happens in hyperbolic
NUT black holes, obtained as foliations over three-dimensional anti-de Sitter spaces20. Using the
SL(2,R) Maurer–Cartan forms (4.12), we obtain the following solution of Einstein’s equations with
cosmological constant Λ =−3k2:

ds2 =
dr2

V (r)
+
(
r2 + p2)((ρ1)2 +

(
ρ2)2

)
−4p2V (r)

(
ρ0)2

(5.21)

=
dr2

V (r)
+
(
r2 + p2)(dσ2 + sinh2 σ dφ 2)−V (r)

[
dt−4psinh2 σ

2
dφ
]2

(5.22)

with V (r) given in (5.19) and

{
∆r =−r2 + p2−2M̂r+ k2

(
r4 +6p2r2−3p4

)

ρ2 = r2 + p2.
(5.23)

Here M̂ is the mass parameter and p characterizes the non-trivial S1 fibration over the H2 base.
In this case no Misner string is however present, and the space is globally hyperbolic provided
p ≤ L/2. The boundary metric of (5.22) is (4.14), which plays the role of host for the holographic
fluid. Interestingly, this family of solutions is connected to the Kerr–AdS4 black hole, as we will
now show.

The Kerr–AdS4 black hole (5.12) has a rotation parameter a restricted to a2 < L2, and is
singular for a2 = L2. It has however a finite, maximally spinning limit if the a→ L limit is taken
keeping the horizon size finite and simultaneously zooming into the pole [61]. More explicitly, we
trade the angle θ in (5.12) for a new coordinate σ according to

sinθ =
√

Ξ sinh2 σ/2. (5.24)

20In their Euclidean section these geometries have no nut, but only a bolt [60]. We shall nevertheless conform to
standard use and call them – with a slight abuse of language – hyperbolic NUT black holes, to stress the presence of a
non-trivial S1 fibration over H2. Physically, they represent rotating black hyperboloid membranes [61].
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Then, the resulting metric has a regular a→ L limit,

ds2 =
dr2

V (r)
+

1+ k2r2

4k2

(
dσ2 + sinh2 σdφ 2)−V (r)

[
dt− 1

k
sinh2 σ

2
dφ
]2

, (5.25)

with

V (r) = 1+ k2r2− 2k2Mr
1+ k2r2 . (5.26)

This is again a rotating black hyperboloid membrane. Indeed, performing the rescaling r 7→ 2r,
t 7→ t/2, this metric is cast in the form (5.22)–(5.23) with parameters M̂ = M/8 and p = L/2, and
the boundary of (5.25) takes the form (4.14) with this value of p. The boundary is therefore the
undeformed AdS3 spacetime that can equivalently be recovered by performing the coordinate trans-
formation (5.24) directly on the Kerr–AdS boundary metric (4.24), followed by the a→ L limit.
As we saw, this special value corresponds to the limiting case that enjoys global hyperbolicity.
Accordingly, from the Kerr–AdS point of view, it is obtained as the ultraspinning limit for which
the boundary Einstein static universe rotates effectively at the speed of light [48]. In this way, we
nicely connected fluids on warped AdS3 backgrounds to fluids living on a rotating Einstein static
universe into a single, continuous family.

There are many other exact bulk four-dimensional geometries that one could study under
the perspective of describing boundary fluids with vorticity. One can for instance consider the
case of flat horizon reached when the trigonometric sinus in (5.18) (or the hyperbolic sinus in
(5.22)) is traded for a linear function and the potential adapted by dropping the first two terms (see
e.g. [59, 60]). This bulk solution, also plagued by the global hyperbolicity problem, gives rise to a
boundary fluid moving on the Som–Raychaudhuri geometry (4.30). Alternatively, the flat-horizon
bulk solution can be obtained as an appropriate pole-zooming of the four-dimensional Kerr–AdS,
consistent with the observed relationships among the boundary geometries. Limits at n, p→ 0 lead
to the so-called topological black holes [62, 63, 64]. These are interesting in their own right [65]
even though the holographic fluid dynamics has no intrinsic vorticity – their boundaries are Einstein
static universes R×S2 given in (4.20) or R×H2, where no fiber appears that would create vorticity.
Hyperbolic Kerr–AdS or other exact bulk metrics can be found to reproduce on the boundary (4.27)
or (4.32) [66]. One can also find solutions that combine nut charge and ordinary rotation [67] such
as Kerr–Taub–NUT–AdS. We will neither pursue any longer the general analysis of this rich web
of backgrounds exhibiting many interrelations, nor delve into a quantitative presentation, but move
instead into another interesting approach to holographic fluids, which can be easily exemplified
with the backgrounds at hand.

The above bulk geometries describe holographically a conformal fluid at rest without shear
and expansion in the Papapetrou–Randers frame of a Papapetrou–Randers geometry (3.1). These
fluids have a non-trivial kinematics, though, because of the vorticity of the geodesic congruence
they fill. The vorticity is different in the various cases: it is given in Eqs. (4.28), (4.5) and (4.15),
for Kerr–AdS, Taub–NUT–AdS and hyperbolic NUT–AdS. In the first case, the fluid undergoes a
cyclonic motion with maximal vorticity at the poles and vanishing at the equator. In the other two
backgrounds, the vorticity is constant as a consequence of the homogeneity. The velocity fields are
not homogeneous, though, and behave differently in Taub–NUT–AdS and hyperbolic NUT–AdS.

Even though the boundary spacetime of Taub–NUT–AdS is homogeneous, the constant-t sur-
faces are not. Inertial observers, comoving with the fluid have therefore a different perception

22



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
6

Holographic fluids P. Marios Petropoulos

depending on whether they are at 0 < θ < θ∗ or in the disk θ∗ < θ < π , surrounding the Misner
string. This gives a physical existence to the b2 = 1 edge, the meaning of which is better ex-
pressed in the Zermelo frame. In the latter, the fluid becomes superluminal and the Misner string
is interpreted as the core of the vortex with homogeneous vorticity.

The various troublesome features which appear in Gödel-like spaces as the ones at hand are
intimately related with the non-trivial rotational properties combined with the homogeneous char-
acter of these manifolds. In other words, for the Taub–NUT–AdS boundary, they are due to the
existence of a monopole-like Misner vortex21. Although no satisfactory physical meaning has ever
been given to Gödel-like spaces, the causal consistency of the latter being still questionable, they
seem from our holographic perspective to admit a sensible interpretation in terms of conformal
fluids evolving in homogeneous vortices (4.5)22 or (4.15).

The case of hyperbolic NUT–AdS, Eq. (5.22), is yet of a different nature. This bulk geom-
etry leads again to homogeneous boundary (4.14). Hence, the fluid has constant vorticity (4.15).
However, in the case at hand, the spatial sections dx2 = ai jdxidx j are non-compact and negatively
curved as opposed to the boundary of Taub–NUT–AdS. As a consequence, the combination of
vorticity and homogeneity does not break global hyperbolicity, as long as p ≤ L/2. In this regime,
the velocity of the fluid is well-defined everywhere, and its Lorentz factor with respect to Zermelo
observer is increasing with σ and bounded as γ ≤ 1/

√
1−4p2k2. For this observer, the fluid is at rest

in the center (i.e. at the north pole) and fast rotating at infinity. When p = L/2, it reaches the speed
of light when σ → ∞, whereas for p > L/2 this happens at finite σ = σ∗, along the surface-of-light
edge. The latter situation is similar to what happens in the Taub–NUT–AdS irrespectively of the
value of the nut charge n. In the hyperbolic case, the major differerence is however that the vortex,
together with the Misner point are sent to spatial infinity (σ → ∞).

The above discussion holds in the perspective of interpreting the holographic data as a genuine
stationary fluid. There is however an alternative viewpoint already advertised, consisting in the ana-
logue gravity interpretation of the boundary gravitational background. From the latter, the physical
data are still (hi j,W i) i.e. a two-dimensional geometry and a velocity field. However, their combi-
nation into (3.13) is not a physical spacetime. The would be light cone, in particular, is narrowed
down to the sound or light velocities in the medium under consideration – necessarily smaller than
the velocity of light in vacuum. Consequently, the breaking of hyperbolicity or the appearance of
CTCs are not issues of concern, and the regions where γ becomes imaginary keep having a satis-
factory physical interpretation as portions of space, where the medium is supersonic/superluminal
with respect to the sound/light velocity in the medium and not in the vacuum. Finally, the virtual
spacetime (3.13) governs the mode propagation through the fluid. This way of thinking opens
up a new chapter that requires adjusting suitably the standard holographic dictionary. The latter
provides indirect information on the physical system that must be retrieved.

21Since the bulk theory is such that the boundary does not have access to a charge current, the Misner vortex cannot
be associated with a vortex in an ordinary superfluid, but is related to the spinning string of [68], the metric of which,
Eq. (4.32), indeed appears when zooming in on the southern pole.

22As already stressed, one should add a δ -function contribution to the Taub–NUT–AdS vorticity (4.5) because we
keep the Misner string physical with non-compact time [22, 23].
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6. Alternative expansion: from 2+1 to 3+1

The holographic fluids we have described so far emerge from exact bulk four-dimensional so-
lutions of vacuum Einstein’s equations with negative cosmological constant. They appear as a set
of two pieces of boundary data – the coframe and the energy–momentum current – following the
Fefferman–Graham expansion at large (appropriately chosen) radial coordinate. This is a top-down
approach as opposed to the alternative bottom-up method initiated in [2]. The latter aims at recon-
structing perturbatively a bulk solution starting from boundary data. The perturbative expansion of
the bulk geometry obtained in this way is, however, orthogonal in spirit to that of the Fefferman–
Graham series, since it is a derivative (of the velocity field) rather than a large-radius expansion.
It captures therefore from the very first order the presence of a regular horizon of the black object
that generates the dynamics of the boundary fluid.

As a matter of principle, one could generally follow the above procedure and perturbatively re-
construct the bulk solution corresponding to any boundary background of the Papapetrou–Randers
type in terms of the data (bi,ai j) containing the full dynamics of the fluid. Our viewpoint is different
though, and we are here interested in modestly discussing the interplay between the perturbative
expansion developed in [2, 16, 69] and the exact solutions we have analyzed in Sec. 5. This is
motivated by the observation made in [16, 69], according to which the proposed bulk perturbative
reconstruction of the Kerr–AdS boundary fluid (in several dimensions) does coincide exactly with
the original bulk geometry at second order – modulo a specific resummation, indicative of the gen-
uinely all-order nature of the solution. This is remarkable and leads to the deeper question: why
and under which conditions does this occur?

The question raised here is twofold. Given an exact bulk solution, what can make it be ex-
pressed in the form of a limited expansion in terms of its boundary data obtained via the Fefferman–
Graham procedure? Given a set of arbitrary boundary data, what could ensure the corresponding
bulk series be exact at finite order?

Making progress in this direction would require delving into the physics of dissipative phe-
nomena and their holographic expressions. This analysis stands beyond our present scope. We
can nevertheless make an observation that might ultimately be relevant. In all backgrounds un-
der consideration, the bulk can be expressed exactly as a limited derivative expansion provided
an extra term (with respect to the expansion proposed in [16, 69]) involving the Cotton tensor of
the boundary geometry is appropriately added, and after performing a resummation similar to that
of Kerr–AdS. This holds for all Papapetrou–Randers backgrounds presented in Sec. 4. To keep
our presentation compact, we will only consider those for which we studied the bulk realisation in
Sec. 5, namely Kerr–AdS, Taub–NUT–AdS and hyperbolic NUT–AdS.

The starting point for this analysis is the expression in Eddington–Finkelstein coordinates of
the bulk metrics. For Kerr–AdS, Eq. (5.12) this is achieved by performing the following coordinate
change:

{
dt 7→ dt− r2+a2

∆r
dr

dφ 7→ dφ − aΞ
∆r

dr
(6.1)

with all quantities defined in (5.20). Similarly for Taub–NUT–AdS, Eqs. (5.18) and (5.20), one
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performs

dt 7→ dt− r2 +n2

∆r
dr, (6.2)

while the same holds with n 7→ p for the hyperbolic NUT–AdS given in (5.22) and (5.23). All three
bulk metrics assume then the following generic form:

ds2 =−2ûdr+ r2k2ds2
bry.+

1
k2 Σµνdxµdxν +

û2

ρ2

(
2Mr+

uλCλ µεµνσ ωνσ

2k6√−gbry.

)
, (6.3)

where all the quantities refer to the boundary metric ds2
bry.. The latter being of the Papapetrou–

Randers form (3.1), û =−dt +b and ω = 1
2 db. Furthermore Cλ µ are the components of the Cotton

tensor (zero for Kerr–AdS, and displayed in Eqs. (4.9) and (4.17) for the other cases). Finally

Σµνdxµdxν = −2û∇νων
µdxµ −ω λ

µ ωλνdxµdxν − û2 R
2
, (6.4)

ρ2 = r2 +
1

2k4 ωµνωµν , (6.5)

and ρ2, as computed in (6.5), coincides with the quantities defined in Eqs. (5.14), (5.20) and (5.23).
The above result (6.3) deserves a discussion. It appears as a limited derivative expansion on

the velocity field of the boundary geodesic congruence ǔ = ∂t . The latter carries neither expansion,
nor shear (see Secs. 2.1 and 3.1) but only vorticity given in Eqs. (4.28), (4.5) and (4.15) for the
three backgrounds under investigation Kerr–AdS (5.12), Taub–NUT–AdS (5.18) and the hyperbolic
NUT–AdS (5.22). It seems that at most two derivatives of the velocity field are involved, but this
counting is naive. Indeed, the vorticity being ultimately an intrinsic property of the geometry23, R∼
ω2, while Cω ∼ ω4. Furthermore, 1/ρ2 is a resummed power series in even powers of the vorticity.
As already advertised, this resummation betrays the infinite perturbative expansion underlying the
method, that would otherwise appear as limited to the fourth order.

The metric (6.3) yields an exact solution of AdS4 gravity for a large class of boundary Randers
data (bi,ai j). In addition to the cases described above, one can rewrite in this form the full Kerr–
Taub–NUT–AdS4 family of metrics, as well as all rotating topological black holes found in [66]:
the rotating black cylinder and the rotating hyperbolic black membrane. All these metrics belong
to the Plebański–Demiański type-D class of solutions [70]. It is an interesting problem to find to
see if it is possible to extend this collection and find the most general set of Randers data (bi,ai j)

generating an exact solution through (6.3).
It is remarkable that all known exact AdS4 black hole solutions can be set in the above form

(6.3), much like Kerr–AdS, provided an extra term (one should say an extra resummed series)
based on the Cotton tensor is added. This term, of fourth order in the derivatives of the velocity
field24, was absent in the original expressions of [16, 69], only valid up to second order. In five
or higher bulk dimensions, terms involving the Weyl tensor appear at the second order [16, 69],
but obviously do not contribute in the four-dimensional case under consideration. Our expression

23Vorticity components are directly related to the connection coefficients, as e.g. Γi
t j =−ω i

j.
24The Cotton tensor itself is third order in the derivatives of the velocity field, but it cannot appear at this order in

the fluid/gravity metric because it has the wrong parity. The fourth order is indeed the smallest order for which it can
appear.

25



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
7
6

Holographic fluids P. Marios Petropoulos

(6.3) shows that in four dimensions analogous terms, involving the Cotton tensor, appear in the
derivative expansion starting from the fourth order.

7. Conclusions

In this review we presented an extensive discussion of the holographic description of vorticity.
This is the first step in efforts to extend AdS/CMT to systems such a rotating atomic gases of
analogue gravity systems. The upshot is that even the simplest setup, namely non-dissipating
fluids in local equilibrium with non-zero vorticity, has an extremely rich geometric structure whose
detailed analysis should lead to new and interesting physical results. One such result, presented
in [23] was the calculation of the classical rotational Hall viscosity coefficient of neutral 2+ 1
dimensional fluids having uniform vorticity Ω

ζH =
ε + p

Ω
, (7.1)

which we were not able to find in recent works on parity broken hydrodynamics in 2+ 1 dimen-
sions.

The next steps in our program will certainly reveal interesting physical consequences. For ex-
ample, the study of scalar, vector and ultimately graviton fluctuations around the above geometries
should lead to the determination of various transport coefficients for rotating neutral fluids. These
developments might also shed light on the thermalization processes that are expected near analogue
horizons. Furthermore, we believe that our approach offers a well-defined path to study the issue
of time-dependence in conjunction with irreversible, non-equilibrium dynamics as it can appear in
dissipative fluid configurations or in the vicinity of analogue horizons.

In the present work we have emphasized the importance of the nut charge in the holographic
description of vorticity. In superfluids this is a quantized quantity, hence one might wonder whether
and how nut-charge quantization could emerge in their holographic description. The latter is in
fact incomplete and the formation of vortices in rotating condensates calls for a more complete
understanding, which justifies our efforts.

An issue worth mentioning is the relationship of our work with alternative approaches of
fluid/gravity correspondence. We have presented some preliminary results in Sec. 6 and we plan
to elaborate on that subject in a forthcoming work. Many other roads seem open for further in-
vestigation, which we have not discussed. One could for example try to describe fluids in more
complicated kinematic states, with multipolar vorticity – as a generalization of the monopole-like
configurations created by nut charges, or the dipoles corresponding to Kerr cyclonic motions. This
would require the generalization of the Weyl multipole solutions to asymptotically AdS spaces.
The magnetic paradigm of the geodesic motion in Papapetrou–Randers geometries (see e.g. [21])
might turn in a powerful tool for that task. Let us finally mention that analogue-gravity applications
are very rich and diverse. Setting the bridge with holographic techniques would however require a
more systematic study.
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Abstract: We investigate background metrics for 2+1-dimensional holographic theories

where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic

description. We introduce stationary perfect-Cotton geometries, where the Cotton tensor

takes the form of the energy–momentum tensor of a perfect fluid. Fluids in equilibrium

in such boundary geometries have non-trivial vorticity. The corresponding bulk can be

exactly reconstructed to obtain 3 + 1-dimensional stationary black-hole solutions with no

naked singularities for appropriate values of the black-hole mass. It follows that an infinite

number of transport coefficients vanish for holographic fluids. Our results imply an intimate

relationship between black-hole uniqueness and holographic perfect equilibrium. They also

point towards a Cotton/energy–momentum tensor duality constraining the fluid vorticity,

as an intriguing boundary manifestation of the bulk mass/nut duality.



Contents

Contents 1

1 Introduction 2

2 Hydrodynamics and the equilibrium 4

2.1 Relativistic hydrodynamics on 2 + 1-dimensional curved backgrounds 4

2.2 Perfect equilibrium 6

3 Fluids in Papapetrou–Randers geometries 8

4 Perfect-Cotton geometries 11

4.1 Definition 11

4.2 Geometries with space-like Killing vectors 12

4.2.1 Non-vanishing c4 12

4.2.1.1 Monopoles: homogeneous spaces or too-perfect geometries 13

4.2.1.2 Dipolar geometries: axisymmetric spaces 16

4.2.2 Vanishing c4 20

4.3 Geometries without space-like isometries 20

5 The bulk duals of perfect equilibrium 20

5.1 Generic bulk reconstruction 20

5.2 Absence of naked singularities 23

5.3 Comments on the rigidity theorem 25

5.4 Black hole uniqueness from perfect fluidity 26

6 Constraints on transport coefficients 27

7 Conclusions and Outlook 28

A On vector-field congruences 30

B Weyl-covariant traceless transverse tensors in hydrodynamics 31

C Recovering known solutions 32

Bibliography 34

– 1 –



1 Introduction

It is known that thermodynamics may not be sufficient to describe the equilibrium state of

systems when they are put on generic curved backgrounds. This would be possible if the

system is in perfect equilibrium, namely its energy–momentum tensor has the perfect fluid

form. This is because equilibrium is a special solution of hydrodynamics where entropy

production is absent. Such a solution, if it exists at all, it need not be unique. Hence it

is an important question to investigate which stationary background geometries support

perfect equilibrium. We will call such geometries perfect geometries and their study in a

holographic setup is the main issue of the present work.

Relativistic hydrodynamics provides the long wavelength1 effective description for

many-body quantum systems in local thermal equilibrium with an underlying Lorentz

symmetry. In the hydrodynamical regime a neutral system (i.e. one without globally

conserved charges) is described by a conserved energy–momentum tensor Tµν ,
2 which is a

function of the macroscopic hydrodynamical variables, namely the local temperature T (x)

and the velocity vector field uµ(x) that determines the flow. In addition, the system’s

description depends on the background metric, gµν(x), which in the hydrodynamic limit is

weakly curved, i.e. its curvature radius is much larger than the mean free path.

The hydrodynamic energy–momentum tensor can be constructed in well-known phe-

nomenological expansion, the so-called derivative expansion (see for example [1] and [2]).

The expansion parameter is the ratio of the mean-free path to the typical length scale

of variation of hydrodynamic variables. The leading term is the perfect-fluid energy–

momentum tensor constructed purely out of thermodynamic inputs:

Tµν = (ε+ p)uµuν + pgµν ,

where ε and p are the energy density and the pressure respectively. Then, the conservation

equation i.e. ∇µTµν = 0 leads to the relativistic Euler equations.

The higher-order corrections are accompanied by transport coefficients which are in-

dependent of the background but are functions of the temperature and the couplings of

the underlying microscopic theory, and can be obtained from the low-energy limit of corre-

lation functions involving the energy–momentum tensor. These transport coefficients can

be divided into dissipative and non-dissipative ones. The dissipative ones lead to entropy

production, so they play a role only in non-equilibrium situations. On the other hand, non-

dissipative transport coefficients do not contribute to entropy production, and therefore do

play a role in determining the equilibrium description of the fluid.

1This means that the scale on which physical quantities vary is much larger than the mean free path of

the microscopic theory, hence a derivative expansion is justifiable.
2The hydrodynamic energy–momentum tensor is the expectation value of the corresponding quantum

operator in the vacuum state of the theory. The fact that it is non-zero means that Lorentz symmetry is

broken in the vacuum and this is equivalent to the existence of the non-trivial velocity field uµ. Notice also

that in quantum field theory, vacuum expectation values are usually evaluated in the absence of sources.

However, in a hydrodynamic system the source is actually the background metric, hence it does not make

sense to set it to zero. It does make sense, however, to start from the simplest possible case where the

background metric is the Minkowski one.
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Holography asserts the existence of a one-to-one correspondence between states of a

conformal fluid theory on the boundary and its dual bulk geometry (see e.g. [3, 4]). The

latter is required to be a solution of vacuum Einstein equations with a regular horizon,

which in turn implies the existence of a relation between the boundary metric and energy–

momentum tensor. We consider here 2 + 1-dimensional holographic fluids in perfect equi-

librium and determine the corresponding perfect geometries that can support them. This

amounts to fixing the form of the energy–momentum tensor and looking for the boundary

geometry that gives regular bulk solution. Such a procedure is rather unconventional in

AdS/CFT, where usually one fixes the boundary metric instead. We further impose such

perfect geometries to be stationary with a unique time-like Killing vector of unit norm. As

a consequence, the corresponding Einstein metric will be stationary as well.

An important clue to answering this question is provided by conformally self-dual grav-

itational instantons of four-dimensional Euclidean Einstein’s gravity with negative cosmo-

logical constant. When mapped into Lorentzian signature, the self-duality of the Weyl ten-

sor hints at a certain duality between the Cotton–York tensor and the energy–momentum

tensor of the boundary geometry [5–8]. This duality implies that the Cotton–York tensor

of the boundary geometry is proportional to the energy–momentum tensor, and we call ge-

ometries with such property perfect-Cotton geometries. We will prove that perfect-Cotton

boundary geometries correspond to resummable exact bulk solutions of Einstein’s equa-

tions. This result is an important achievement of the present work. The reverse statement

is an open interesting question. Its relationship with the gravitational duality is also far

reaching, although putting it on firmer grounds requires more work.

Moreover, when an extra spatial isometry is present in the background boundary met-

ric, we are able to write the explicit form of the bulk Einstein solutions, recovering well-

known four-dimensional stationary black-hole metrics such as the AdS–Kerr–NUT, as well

as less studied solutions.

Finally, our analysis shows as well that holography fixes to zero the value of infinitely

many boundary transport coefficients that would spoil the perfect-fluid form of the energy–

momentum tensor. Indeed, non-vanishing transport coefficient would give derivative cor-

rections to the energy–momentum tensor up to arbitrary high orders, which would have

been in contradiction with black-hole uniqueness.

Recently, using purely field-theoretic arguments it has been possible to put constraints

on non-dissipative transport coefficients order by order in derivative expansion [9]. Such

constraints are valid in any field theory and they are not tied to the existence of a holo-

graphic description. One can also derive similar constraints by requiring that the fluid

mechanics should have a local entropy current with positive-definite divergence [10]. Even

though this requirement does not make any use of holography, it seems to be valid in

holographic theories only, as the entropy current of the boundary fluid is related to the

generalized second law for dynamical black-hole horizons. It is puzzling that the equilib-

rium partition function approach of [9] is claimed to be sufficient to prove the existence

of an entropy current in fluid mechanics. According to the analysis presented here, only a

restricted class of boundary geometries can accommodate perfect fluidity for holographic

theories, and this feature is provided holographically by black-hole dynamics. Hence, the
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consequence that infinitely many transport coefficients of a certain kind vanish in holo-

graphic theories cannot be derived entirely from either of the general approaches based

on the partition function or the entropy current arguments. A detailed discussion of this

important issue is beyond the scope of the present work.

The organization of the paper is as follows. In Sec. 2, we briefly review equilibrium

as a solution of relativistic fluid mechanics and give necessary and sufficient condition for

perfect equilibrium to exist. In Sec. 3, we discuss the stationary geometries in Papapetrou–

Randers form and the kinematics of fluids in perfect equilibrium in such geometries. In Sec.

4, we study perfect-Cotton geometries and explicitly classify all of them in the special case

when the boundary metric has an additional spatial isometry. Fluids in perfect equilibrium

in such perfect-Cotton geometries will be studied in Sec. 5, followed by the the uplift of

the corresponding boundary data to exact black-hole solutions. The validity of the rigidity

theorem is also discussed. In Sec. 6, we find that an infinite number of transport coefficients

should vanish for perfect-Cotton geometries to be exactly upliftable. Finally, we conclude

with some comments and further directions of research.

2 Hydrodynamics and the equilibrium

We focus here on the 2 + 1-dimensional boundary fluid system, presenting briefly its equi-

librium description, and then analyzing the special case when the equilibrium is given by

a perfect fluid.

2.1 Relativistic hydrodynamics on 2 + 1-dimensional curved backgrounds

As mentioned, in the hydrodynamic limit the energy–momentum tensor Tµν of a neutral

fluid is a function of the local temperature T (x), of the velocity field uµ(x), of the back-

ground metric gµν(x) and of their covariant derivatives. The hydrodynamic equations are

simply given by the covariant conservation of the energy–momentum tensor

∇µTµν = 0. (2.1)

One way to define the basic thermodynamic variables is within the so-called Landau frame,

where the non-transverse part of the energy-momentum tensor vanishes when the pressure

is zero. This implies that uµ is an eigenvector of the energy–momentum tensor with the

eigenvalue being the local energy density ε(x), namely Tµνuν = −εuµ. If we moreover

require the velocity field to be a time-like vector of unit norm, then u is uniquely defined

at each point in space and time. Furthermore, we can use the equation of state for static

local equilibrium3 ε = ε(T ) to define the temperature T . Once we have defined a local

temperature T , we can again use the equation of state to define the pressure p(x). A local

3For the global equilibrium case, the internal energy is a function of both T and the angular velocity Ω,

(which can be defined if the background metric has a Killing vector corresponding to an angular rotation

symmetry). In the case of local equilibrium, ε is a function of T alone because a dependence on Ω would

not be compatible with the derivative expansion. Indeed, Ω is first-order in derivatives but ε is zeroth

order. The global energy function E(T,Ω) can be reproduced by integrating the various components of the

equilibrium form of Tµν [12].
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entropy density s(x) can be also introduced. Both p and s can be readily obtained from

the thermodynamic identities: ε+p = Ts and dε = Tds. In a conformal 2 + 1-dimensional

system, ε and p are proportional to T 3 while s is proportional to T 2.

Under the assumptions above, the energy–momentum tensor of a neutral hydrody-

namic system can be expanded in derivatives of the hydrodynamical variables, namely

Tµν = Tµν(0) + Tµν(1) + Tµν(2) + · · · , (2.2)

where the subscript denotes the number of covariant derivatives. Note that the inverse

length scale introduced by the derivatives is taken to be large compared to the microscopic

mean free path. The zeroth order energy–momentum tensor is the so called perfect-fluid

energy–momentum tensor:

Tµν(0) = εuµuν + p∆µν , (2.3)

where ∆µν = uµuν + gµν is the projector onto the space orthogonal to u. This corresponds

to a fluid being locally in static equilibrium. The conservation of the perfect-fluid energy–

momentum tensor leads to the relativistic Euler equations:

{
∇uε+ (ε+ p)Θ = 0,

∇⊥p− (ε+ p)a = 0,
(2.4)

where ∇u = u · ∇, Θ = ∇ · u, ∇⊥µ = ∆ ν
µ ∇ν , and aµ = (u · ∇)uµ (more formulas on

kinematics of relativistic fluids are collected in App. A).

The higher-order corrections to the energy–momentum tensor involve the transport co-

efficients of the fluid. These are phenomenological parameters that encode the microscopic

properties of the underlying system. In the context of field theories, they can be obtained

from studying correlation functions of the energy–momentum tensor at finite temperature

in the low-frequency and low-momentum regime (see for example [13]).

Transport coefficients are of two kinds: dissipative and non-dissipative ones. The for-

mer potentially contribute to the entropy production in systems evolving out of global

thermodynamic equilibrium.4 The phenomenological discussion of hydrodynamic trans-

port is precisely based on the existence of an entropy current whose covariant divergence

describes entropy production and hence must be positive-definite. This puts bounds on the

dissipative transport coefficients and imposes relations between non-dissipative transport

coefficients order by order in the derivative expansion [10]. A complete classification of all

transport coefficients is clearly a huge task. For the purposes of this work it is sufficient to

distinguish the non-dissipative transport coefficients from the dissipative ones by whether

or not the tensor structures they couple to are invariant under time inversion (T-even).

A conformal fluid has traceless and Weyl-covariant energy–momentum tensor leading,

in 2+1 dimensions, to the relation ε = 2p. Furthermore, the Landau-frame choice requires

transversality. These properties need of course to be valid order by order in the derivative

expansion, i.e. for every term appearing in (2.2). In App. B we give details of the

4Local thermodynamic equilibrium will always be assumed in our discussions as it is required for the

hydrodynamic description to make sense.
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construction of such Weyl-covariant traceless and transverse tensors. We will here provide

a few illustrative examples.

If we do not require parity invariance, at first order in 2 + 1 dimensions, we can

have only two such tensors, namely σµν given in (A.4) (or (A.5)) and η
ρλ(µ

uρσ
ν)
λ , where

ηµνρ = εµνρ/
√−g is the covariant fully antisymmetric tensor with ε012 = −1. The first-order

correction to the energy–momentum tensor thus reads:

Tµν(1) = −2ησµν − ζHηρλ(µuρσ ν)
λ . (2.5)

The first term in (2.5) involves the shear viscosity η, which is a dissipative transport

coefficient. The second is present in systems that break parity and involves the non-

dissipative rotational-Hall-viscosity coefficient ζH in 2 + 1 dimensions. Notice that the

bulk-viscosity term ζ∆µνΘ cannot appear in a conformal fluid because it is tracefull, namely

for conformal fluids ζ = 0.

The next-order terms in (2.2) can be worked out for the fluids at hand. One can

easily see that there are no T-even tensors at second order. But at third order the T-even

tensors non-vanishing at equilibrium, which also do not depend on acceleration, shear and

expansion are:

Tµν(3) = γ(3)1〈Cµν〉+ γ(3)2〈DµW ν〉, (2.6)

where Cµν is the Cotton–York tensor. For a second rank tensor Aµν we have introduced

〈Aµν〉 =
1

2
∆µα∆νβ(Aαβ +Aβα)− 1

2
∆µν∆αβAαβ. (2.7)

The Weyl-covariant derivative Dµ is defined in App. B, and Wµ is given by

Wµ = ηµνρuνVρ, V µ = ∇α⊥ωµα + uµωαβω
αβ, (2.8)

with ωαβ being the vorticity defined in (A.6) (or (A.7)). At the fourth order in derivative

expansion, there will be non-dissipative transport coefficients corresponding to T-invariant

tensors like 〈VµVν〉, 〈WµWν〉, etc.

2.2 Perfect equilibrium

Stationary solutions5 of the relativistic equations of motion (2.1), when they exist, describe

a fluid in global thermodynamic equilibrium.6 The prototype example of such a situation

is the one of an inertial fluid in Minkowski background with globally defined constant

temperature, energy density and pressure. In this case, irrespective of whether the fluid

itself is viscous, its energy–momentum tensor, evaluated at the solution, takes the zeroth-

order (perfect) form (2.3) because all derivatives of the hydrodynamic variables vanish and

Eqs. (2.4) are satisfied.

5It is admitted that a non-relativistic fluid is stationary when its velocity field is time-independent. This

is of course an observer-dependent statement. For relativistic fluids, one could make this more intrinsic

saying that the velocity field commutes with a globally defined time-like Killing vector, assuming that the

later exists.
6This should not be confused with a steady state, where we have stationarity due to a balance between

external driving forces and internal dissipation. Such situations will not be discussed here.
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Local thermodynamic equilibrium, in general, does not require the zeroth-order equa-

tions (2.4) to be satisfied. It is however relevant to ask: are there other situations where

the hydrodynamic description of a system is also perfect i.e. the energy–momentum ten-

sor, in equilibrium, takes the perfect form (2.3) solving Eqs.(2.4)? As anticipated in the

introduction, we call these special configurations perfect equilibrium states, where global

thermodynamic description applies. One should stress, however, that more general equi-

librium states can exist, for which only the full equations (2.1) with (2.2) are satisfied.

Owing to the fact that global thermodynamic equilibrium is incompatible with entropy

production, all dissipative terms in (2.2) for these more general equilibrium states neces-

sarily vanish,7 either because the dissipative transport coefficients are zero, or because the

corresponding tensors vanish kinematically – requiring in particular a special relationship

between the fluid’s velocity and the background geometry. Clearly, for perfect equilib-

rium states, all higher-derivative terms in (2.2) are absent, making their realization more

challenging. In this work we will provide classes of perfect equilibrium states.

Consider a hydrodynamic system with a stationary background metric, having a unique

time-like, normalised Killing vector ξ = ξµ∂µ, namely

∇(µξν) = 0, ξµξ
µ = −1. (2.9)

Although not exhaustive, these systems are interesting in view of their intimate connection

with holography, as we will see in the following. Congruences defined by ξµ have vanishing

acceleration, shear and expansion (see App. A), but non-zero vorticity ω = 1
2dξ ⇔ ωµν =

∇µξν . Then, it is easy to show that a special solution of the Euler equations (2.4) is:

u = ξ, T = constant, ε = 2p = constant. (2.10)

In fact this is the unique equilibrium solution, if the background has only a unique

time-like Killing vector field of unit norm. Non-zero acceleration, shear and expansion can

all contribute to dissipation, these vanish only when u is the Killing vector field ξ itself.

For the above configuration (2.10) to be a perfect equilibrium state, one must show that all

higher-derivative corrections in (2.2) are actually absent. Since the congruence is shearless,

the first corrections (2.5) vanish. If higher-order corrections do also vanish, the fluid indeed

reaches this specific global equilibrium state, in which it aligns itself with the congruence

of the Killing vector field. For observers whose worldlines are identified with the Killing

congruence at hand, the fluid is at rest: the fluid and the observers are comoving. Had the

higher-derivative corrections been non-zero, this comoving state with constant temperature

would not have been necessarily an equilibrium state as it would not have been a solution

of the equations of motion given by (2.1). Equations (2.4) would have been altered, leading

in general to u = ξ + δu(x) and T = T0 + δT (x). Such an excursion will be stationary or

not depending on whether the non-vanishing corrections to the perfect energy–momentum

tensor are non-dissipative or dissipative.

In order to analyze under which conditions on the transport coefficients, perfect fluid

equilibrium (2.10) is realized, we must list, assuming (2.9), the Weyl-covariant, trace-

7See e.g. [10] for a recent discussion.
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less and transverse tensors Tµν that are non-vanishing and whose divergence is also non-

vanishing, when evaluated in the perfect equilibrium solution (2.10).

We call such tensors dangerous tensors. Their presence can destroy the existence of the

perfect equilibrium solution, unless the corresponding transport coefficients are vanishing.

At every order in the derivative expansion we have a finite number of linearly independent

dangerous tensors and each one of them is associated with a transport coefficient, which

we call dangerous transport coefficient. Hence, a necessary and sufficient8 condition for the

existence of perfect equilibrium in backgrounds with a normalized time-like Killing vector

field is that all dangerous transport coefficients vanish. The vanishing of the latter is a

statement about the underlying microscopic theory about which we can thus gain new

non-trivial information.

We will encounter non-trivial special backgrounds (a trivial example being the Minkowski

space) where no dangerous tensors are present. On the other hand, we will also consider

a large class of backgrounds with a unique normalized time-like Killing vector field, which

have infinitely many non-zero dangerous tensors; thus we will be able to probe that an

infinite number of non-dissipative transport coefficients vanish. Nevertheless, the question

of whether our analysis regarding all possible transport coefficients is exhaustive or not lies

beyond the scope of the present work. It is clear that further insight on this matter can

only be gained by perturbing the perfect equilibrium state.

3 Fluids in Papapetrou–Randers geometries

A stationary metric can be written in the generic form

ds2 = B2
(
−(dt− bidxi)2 + aijdx

idxj
)
, (3.1)

where B, bi, aij are space-dependent but time-independent functions. These metrics were

introduced by Papapetrou in [14]. They will be called hereafter Papapetrou–Randers be-

cause they are part of an interesting network of relationships involving the Randers form

[15], discussed in detail in [16] and more recently used in [17–19].

In order for the time-like Killing vector ∂t to be normalized to −1, we must restrict

ourselves to the case B = 1. Then, ∂t is identified with the generically unique normalized

time-like Killing vector of the background and draws the geodesic congruence associated

with the fluid worldlines. The normalised three-velocity one-form of the stationary perfect

fluid is then

u = −dt+ b, (3.2)

where b = bidx
i. We will often write the metric (3.1) as

ds2 = −u2 + d`2 , d`2 = aij dxidxj . (3.3)

8Although this condition is necessary if one assumes the specific perfect equilibrium with alignment of u

along the Killing vector ξ, we cannot, on general grounds, exclude other perfect equilibrium configurations.

Since this subtlety is irrelevant for our subsequent analysis, we will not make any stronger statement about

the precise nature of the condition.
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We will adopt the convention that hatted quantities will be referring to the two-dimensional

positive-definite metric aij , therefore ∇̂ for the covariant derivative and R̂ij dxidxj = R̂
2 d`2

for the Ricci tensor built out of aij . For later convenience, we introduce the inverse two-

dimensional metric aij and bi such that

aijajk = δik, bi = aijbj . (3.4)

The three-dimensional metric components read:

g00 = −1, g0i = bi, gij = aij − bibj , (3.5)

and those of the inverse metric:

g00 = aijbibj − 1, g0i = bi, gij = aij . (3.6)

Finally, √−g =
√
a, (3.7)

where a is the determinant of the symmetric matrix with entries aij .

A perfect fluid at equilibrium, or a fluid at perfect equilibrium (whenever this is possi-

ble, along the discussion of Sec. (2.2), on a Papapetrou–Randers background is such that

the worldline of every small part of it is aligned with a representative of the congruence

tangent to ∂t. Since ∂t is a unit-norm Killing vector, the fluid’s flow is geodesic, has neither

shear, nor expansion, but does have vorticity, which is inherited from the fact that ∂t is not

hypersurface-orthogonal.9 Using (3.2) and (A.7) we find that the vorticity can be written

as the following two-form

ω =
1

2
ωµνdxµ ∧ dxν =

1

2
db. (3.8)

The Hodge-dual of ωµν is

ψµ = ηµνρωνρ ⇔ ωνρ = −1

2
ηνρµψ

µ. (3.9)

In 2 + 1 dimensions it is aligned with the velocity field:

ψµ = quµ, (3.10)

where

q(x) = −ε
ij∂ibj√
a

(3.11)

is a static scalar field that we call the vorticity strength, carrying dimensions of inverse

length. Together with R̂(x), the above scalar carries all relevant information for the curva-

ture of the Papapetrou–Randers geometry. We quote for latter use the three-dimensional

curvature scalar:

R = R̂+
q2

2
, (3.12)

9For this very same reason, Papapetrou–Randers geometries may in general suffer from global hyperbol-

icity breakdown. This occurs whenever regions exist where bib
i > 1. There, constant-t surfaces cease being

space-like, and potentially exhibit closed time-like curves. This issues were discussed in detail in [17–19].
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the three-dimensional Ricci tensor

Rµν dxµdxν =
q2

2
u2 +

R̂+ q2

2
d`2 − u dxρuσηρσµ∇µq, (3.13)

as well as the three-dimensional Cotton–York tensor [20]:

Cµν dxµdxν =
1

2

(
∇̂2q +

q

2
(R̂+ 2q2)

) (
2u2 + d`2

)

−1

2

(
∇̂i∇̂jq dxidxj + ∇̂2q u2

)

−u

2
dxρuσηρσµ∇µ(R̂+ 3q2). (3.14)

The latter is a symmetric and traceless tensor defined in general as

Cµν = ηµρσ∇ρ
(
Rνσ −

1

4
Rδνσ

)
. (3.15)

In three-dimensional geometries it replaces the always vanishing Weyl tensor. In particular,

conformally flat backgrounds have zero Cotton–York tensor and vice versa.

The fluid in perfect equilibrium on Papapetrou–Randers backgrounds has the energy–

momentum tensor

T (0)
µν dxµdxν = p

(
2u2 + d`2

)
, (3.16)

with the velocity form being given by (3.2) and p constant. We have used here ε = 2p.

We recall that ε has dimensions of energy density or equivalently (length)−3, therefore the

energy–momentum tensor and the Cotton–York tensor have the same natural dimensions.

This is crucial for the following.

As discussed in the previous section, the fluid can attain perfect equilibrium if and

only if all the dangerous transport coefficients vanish. It is not hard to see that this will

imply constraints on transport coefficients as these stationary backgrounds will generically

have infinitely many associated dangerous tensors. For example, there exist non-vanishing

tensor structures involving ∇nu,∇nq with n > 1, which are traceless, transverse and Weyl-

covariant, with q being evaluated on the perfect fluid solution as in (3.11). One simple

example of such a tensor is 〈DµWν〉 (one of the terms in (2.6)) which, when evaluated

with u as in (3.2), will be given in terms of covariant derivatives of q. Also generically

∇µ〈DµWν〉 6= 0 in these stationary backgrounds. This is a dangerous tensor and the

corresponding dangerous transport coefficient must vanish, in order that the fluid can

attain perfect equilibrium.

When the stationary background has additional isometries, most Weyl-covariant, trace-

less and transverse tensors built from derivatives of u as given by (3.2) will vanish. This

will make it hard for dangerous tensors to exist. In the following Sec. 4.2.1.1 and 4.2,

we will find examples with (i) homogeneous and (ii) axisymmetric spaces, where indeed

such a conspiracy will happen. Many possible dangerous tensors will vanish, therefore the

corresponding transport coefficients need not vanish in order for perfect equilibrium to

exist. As expected, the higher the symmetry of a background, the less number of transport

coefficients we will be able to probe by demanding that perfect equilibrium should exist.
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4 Perfect-Cotton geometries

The existence of perfect geometries is an issue unrelated to holography. However, in the

context of the fluid/gravity correspondence a special class of Papapetrou–Randers back-

ground geometries for holographic fluids are perfect geometries. In this section we prove

that this is the case if the Cotton–York tensor of the boundary metric takes the same of

form of the perfect-fluid energy–momentum tensor

Cµν =
c

2
(3uµuν + gµν), (4.1)

where c is a constant with the dimension of an energy density. We call such geometries

perfect-Cotton geometries, and we present here their properties, as well as the complete

classification when an extra spatial isometry is present. Moreover, perfect-Cotton geome-

tries appear as boundaries of 3+1-dimensional exact Einstein spaces, which will be studied

in the next section.

4.1 Definition

Consider a Papapetrou–Randers metric (3.1). Requiring its Cotton–York tensor (3.14) to

be of the form (4.1) is equivalent to impose the conditions:

∇̂2q + q(δ − q2) = 2c (4.2)

aij

(
∇̂2q +

q

2
(δ − q2)− c

)
= ∇̂i∇̂jq (4.3)

R̂+ 3q2 = δ, (4.4)

with δ being a constant relating the curvature of the two-dimensional base space R̂ with

the vorticity strength q.

Without loss of generality, we can choose the two-dimensional coordinates x and y in

such a way that the base metric aij is diagonal

d`2 = A2(x, y)dx2 +B2(x, y)dy2 (4.5)

and that the spatial component of the velocity vector takes the form:

b = b(x, y) dy. (4.6)

The vorticity strength (3.11) reads thus

q = − ∂xb
AB

. (4.7)

Further gauge fixing is possible and will be made when appropriate10. The explicit form

of Eqs. (4.2)–(4.4) in terms of A(x, y), B(x, y) and b(x, y) is not very illuminating and we

do not present it here.

10For example, since any two-dimensional space is conformally flat it is possible to set A = B. We should

however stress that all these choices are local, and the range of coordinates should be treated with care in

order to avoid e.g. conical singularities.
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4.2 Geometries with space-like Killing vectors

The presence of an additional unique space-like isometry simplifies the conditions for a

Papapetrou–Randers metric to be perfect-Cotton. Without loss of generality, we take the

additional Killing vector to be ∂y and we chose a representation such that A2 = 1/G(x),

B2 = G(x) and b = b(x). The metric takes then the form

ds2 = − (dt− b(x) dy)2 +
dx2

G(x)
+G(x)dy2, (4.8)

and we are able to solve (4.2)–(4.4) in full generality. The solution is written in terms of 6

arbitrary parameters ci:

b(x) = c0 + c1x+ c2x
2, (4.9)

G(x) = c5 + c4x+ c3x
2 + c2x

3 (2c1 + c2x) . (4.10)

It follows that the vorticity strength takes the linear form

q(x) = −c1 − 2c2x, (4.11)

and the constants c and δ are given by:

c = −c31 + c1c3 − c2c4, (4.12)

δ = 3c21 − 2c3. (4.13)

Finally, the Ricci scalar of the two-dimensional base space is given by

R̂ = −2 (c3 + 6c2x(c1 + c2x)) , (4.14)

and using (3.12) one can easily find the form of the three-dimensional scalar as well. Not

all the six parameters ci correspond to physical quantities: some of them can be just

reabsorbed by change of coordinates. In particular, we set here c0 = 0 by performing the

diffeomorphism t → t + py, with constant p, which does not change the the form of the

metric.

4.2.1 Non-vanishing c4

To analyze this class, we first use perform the further diffeomorphism x → x + s, with

constant s, which keeps the form of the metric. By tuning the value of s we can set c5 to

zero. Therefore, without loss of generality we can choose:

b(x) = c1x+ c2x
2, (4.15)

G(x) = c4x+ c3x
2 + c2x

3 (2c1 + c2x) . (4.16)

We are thus left with four arbitrary geometric parameters. For consistency we can check

that q(x), c, δ, R and R̂ indeed depend only on these four parameters. Moreover, by

performing the change of variables

x̃ = c4x , ỹ = c4y , t̃ = c4t , (4.17)
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and defining new variables

c̃3 =
c3
c24
, c̃1 =

c1
c4
, c̃2 =

c2
c24
, (4.18)

we can see that c4 is an overall scaling factor of the metric. Indeed, we have

b(x) = c̃1x̃+ c̃2x̃
2, (4.19)

G(x) = x̃+ c̃3x̃
2 + c̃2x̃

3 (2c̃1 + c̃2x̃) , (4.20)

which depend now on the three parameters c̃1, c̃2 and c̃3. Using the above variables the

metric becomes ds̃2 = c24ds
2. Since we are dealing with a conformal theory, we can set

c4 = 1 and use dimensionless quantities from now on. For simplicity then we drop all the

tildes in the following.

4.2.1.1 Monopoles: homogeneous spaces or too-perfect geometries Consider

the vorticity strength (4.11). The simplest example that can be considered is the one

of constant q, that is when c2 = 0. We call the corresponding geometries monopolar

geometries, a terminology that we will justify in the following. The two-dimensional Ricci

scalar (4.14) is in this case constant: R̂ = −2c3. This means that the parameter c3
labels the curvature signature of the two-dimensional base space and that, without loss of

generality, we can set

c3 = −ν = 0,±1 . (4.21)

Thus, we are left with one continuous parameter, c1, which we rename as

c1 = −2n . (4.22)

Moreover, the Cotton–York tensor is proportional to

c = 2n(ν + 4n2) , (4.23)

hence the parameter n determines whether the geometry is conformally flat or not. Note

that, apart from the trivial case n = 0, the space is conformally flat also when ν = −1 and

4n2 = 1. The functions b(x) and G(x) take now the form

b(x) = −2nx , G(x) = x(1 + νx) , (4.24)

The form of G(x) motivates the parametrization

x = f2ν (σ/2) ,





f1(σ) = sinσ

f0(σ) = σ

f−1(σ) = sinhσ

, y = 2φ , φ ∈ [0, 2π] . (4.25)

Then, the geometries (4.8) take the form

ds2 = −
(
dt+ 4nf2ν (σ/2) dφ

)2
+ dσ2 + f2ν (σ)dφ2 , (4.26)
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which is that of fibrations over S2,R2 and H2 for ν = 1, 0,−1 respectively. The two-

dimensional base spaces are homogeneous with constant curvature having three Killing

vectors; the three-dimensional geometry has in total four Killing vectors.

These geometries appear at the boundary of asymptotically anti-de Sitter Taub–NUT

Einstein spaces with n being the bulk nut charge. They were analyzed in detail years ago

as families of three-dimensional geometries possessing 4 isometries [21, 22]. As homoge-

neous space–times, they are of the Bianchi type IX (warped S3, here as Gödel space), II

(Heisenberg group) and VIII (elliptically warped AdS3). The second space is also known

as Som–Raychaudhuri [23].

We want now to discuss the presence of dangerous tensors. The velocity one-form is:

u = −dt− 4nf2ν (σ/2)dφ, (4.27)

while the vorticity has constant strength:

q = 2n. (4.28)

Furthermore, the geometric data ensures the following structure:

Rµν dxµdxν =
(
ν + 4n2

)
u2 +

(
ν + 2n2

)
ds2 (4.29)

The above condition implies that all hydrodynamic scalars, vectors and tensors that can be

constructed from the Riemann tensor, its covariant derivatives and the covariant derivatives

of u are algebraic. More specifically

• all hydrodynamic scalars are constants,

• all hydrodynamic vectors are of the form kuµ with constant k, and

• all hydrodynamic tensors are of the form auµuν + bgµν with constant a and b.

This means that there exists no traceless transverse tensor that can correct the hydrody-

namic energy–momentum tensor in perfect equilibrium. In other words, there exists no

dangerous tensor. Thus, in the case of monopolar geometries it is not possible to know the

value of any transport coefficient.

This above result is not surprising. Indeed, we called Papapetrou–Randers configu-

rations given by (4.25) and (4.26) of monopolar type because the vorticity is constant,11

as a consequence of the homogeneous nature of these space–times. In such a highly sym-

metric kinematical configuration, the fluid dynamics cannot be sensitive to any dissipative

or non-dissipative coefficient. This result provides a guide for the subsequent analysis: to

have access to the transport coefficients, we must perturb the geometry away from the ho-

mogeneous configuration. The above discussion suggests that this perturbation should be

organized as a multipolar expansion: the higher the multipole in the geometry, the richer

the spectrum of transport coefficients that can contribute, if non-vanishing, to the global

equilibrium state, and that we need to set to zero for perfect fluids.

11Note also that b, as given in (4.6) and (4.24), has the same form as the gauge potential of a Dirac

monopole on S2, R2 or H2. This magnetic paradigm can be made more precise – see e.g. [16].
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Finally, we note that the form of the Cotton–York tensor for monopolar geometries is

Cµνdxµdxν = n(ν + 4n2)(3u2 + ds2). (4.30)

The above expression can be combined (4.29), giving:

Rµν −
R

2
gµν + λgµν =

1

µ
Cµν . (4.31)

The latter shows that monopolar geometries solve the topologically massive gravity equa-

tions [24] for appropriate constant λ and µ. This is not surprising, as it is a known

fact that, for example, squashed anti-de-Sitter or three-spheres solve topologically massive

gravity equations [25]. However, what is worth stressing here is that requiring a generic

Papapetrou–Randers background (3.1) to solve (4.31) leads necessarily to a monopolar

geometry. The argument goes as follows. Using the expression for the Ricci tensor for

Papapetrou–Randers geometries (3.13), the left side of (4.31) reads:

(
R̂+

q2

2
− 6λ

)
u2

2
+

(
q2

4
+ λ

)(
2u2 + d`2

)
− u dxρuσηρσµ∇µq. (4.32)

As the right side of (4.31) is traceless, so should be the left side. This leads to:

λ =
R̂

6
+
q2

12
. (4.33)

Equations (4.31) can now be analyzed using the expression for the Cotton–York tensor

(3.14) and (4.16) together with (4.33). The off-diagonal components u dxρ imply that q

must be constant. With this at hand, the rest of the equations are automatically satisfied

with:

q =
2µ

3
. (4.34)

In order to provide the general form of a Papapetrou–Randers metric satisfying (4.31), we

can now combine (4.33) with (4.34). These lead to the conclusion that all solutions are

fibrations over a two-dimensional space with metric d`2 of constant curvature R̂ = 6λ−2µ2/9.

They are thus homogeneous spaces of either positive (S2), null (R2) or negative curvature

(H2).

The reader might be puzzled by the present connection with topologically massive

gravity. The 2 + 1-dimensional geometries analyzed here are not supposed to carry any

gravity degree of freedom since they are ultimately designed to serve as holographic bound-

aries. Hence, the emergence of topologically massive gravity should not be considered as a

sign of dynamics, but rather as a constraint for the algebrization of the operator ∇, which

destroys any potential dangerous tensor. Any perfect-Cotton geometry allowing for such

tensors, and thereby probing transport coefficients, will necessarily require a deviation from

topologically massive gravity.

More recently, topologically massive gravity has also attracted attention from the holo-

graphic perspective [25, 26]. In these works, the homogeneous solutions appear as 2 + 1-

dimensional bulk backgrounds, whereas in the present work (see also [19]), they will turn

out to be naturally leading to boundary geometries. Investigating the interplay between

these two viewpoints might be of some relevance, beyond our scope though.
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4.2.1.2 Dipolar geometries: axisymmetric spaces When c2 6= 0, the vorticity is

not constant and hence the space ceases to be homogenous. If some symmetry remains, this

must be in the form of a space-like Killing vector: therefore, these are axisymmetric spaces.

When the parameter c1 is vanishing, a non-zero c2 introduces a global rigid rotation, and

the metric is conformally flat. We call such geometries dipolar geometries, as their axial

symmetry connects them with the gauge potential of electric or magnetic dipoles. It is of

course also possible to consider the case of both c1 and c2 are non-vanishing, corresponding

to a superposition of monopoles and dipoles.

For simplicity, we start considering a pure dipolar geometry, namely a nontrivial con-

formally flat metric and see how it is parametrized in terms of c2 and c3. We start from

R× S2 where we set to one the sphere’s radius

ds2 = −dt2 + dϑ2 + sin2 ϑdϕ2. (4.35)

We do then a conformal rescaling by a function Ω(ϑ), which preserves the axial symmetry

around ϕ

ds2 → Ω−2(ϑ)ds2. (4.36)

The vector field ∂t is no longer of unit norm, hence it does not generate the congruences

of a fluid in equilibrium. However, if Ω(ϑ) simply corresponds to a rotation,12 then by a

coordinate transformation we could go to a new system where Killing vector ∂t continues

to have unit norm and still describes the trajectories of the fluid’s elements in equilibrium.

Consider hence the change of coordinates

ϕ 7→ ϕ+ at, (4.37)

where a being a constant parameter. In order for ∂t to have unit norm, the following

condition must be satisfied:

Ω−2(ϑ) = 1− a2 sin2 ϑ. (4.38)

The resulting metric is

ds2 = −
(

dt− a sin2 ϑ

1− a2 sin2 ϑ
dϕ

)2

+
dϑ2

1− a2 sin2 ϑ
+

sin2 ϑ

(1− a2 sin2 ϑ)2
dϕ2. (4.39)

We want now to bring this metric in the form (4.8). We first set

sin2 ϑ

1− a2 sin2 ϑ
=

sin2 ϑ′

1− a2 ⇒ dϑ2 =
1− a2

(1− a2 cos2 ϑ′)2
dϑ′2, (4.40)

finding

ds2 = −
(

dt− a sin2 ϑ′

1− a2 dϕ

)2

+
dϑ′2

1− a2 cos2 ϑ′
+

sin2 ϑ′(1− a2 cos2 ϑ′)
(1− a2)2 dϕ2. (4.41)

Finally, by performing the change of coordinates

x =
1

1− a2 sin2 ϑ′/2 =
1− cosϑ′

2(1− a2) , y = 2ϕ, (4.42)

12Essentially to a precession, hence we call this the precession trick.
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we find can bring the metric into the for (4.8) with

b(x) = 2ax
(
1− (1− a2)x

)
, (4.43)

G(x) = x− (1− 5a2)x2 − 8a2(1− a2)x3 + 4a2(1− a2)2x4. (4.44)

It is easy then to read the parameters

c1 = 2a , c2 = −2a(1− a2) , c3 = 5a2 − 1. (4.45)

The metric describes cyclonic rotation with vorticity is given

q = −2a cosϑ′ (4.46)

while being conformally flat with c = 0. In this case we only have one parameter a and

this is consistent with the analysis of [27, 28] on conformally flat 2 + 1 dimensions.

We can then generalize to non-conformally flat geometries with x-dependent vorticity.

These are the dipolar-monopolar metrics. In those cases the precession trick mentioned

above does not suffice and one needs to work case by case in order to find the correct

parametrizations. Nevertheless, our previous explicit examples serve both as a guiding

rule as well as a test for our results. We present just the results and spare the reader from

the non-illuminating technicalities.

Spherical (ν = 1) Let us define the new parameters a and n by:

c1 = 2(a− n),

c2 = 2a(−1 + a2 − 4an),

c3 = −1 + 5a2 − 12an. (4.47)

We also perform the following coordinate transformations:

x = κ sin2(ϑ/2),

y = λϕ, (4.48)

with

κ =
1

1 + a(4n− a)
, λ =

2

κΞ
and Ξ = 1− a2. (4.49)

The two-dimensional base space in the metric (4.8) takes then the form:

d`2 =
dϑ2

∆ϑ
+

sin2 ϑ∆ϑ

Ξ2
dϕ2 (4.50)

with

∆ϑ = 1 + a cosϑ(4n− a cosϑ). (4.51)

The coordinates range as ϑ ∈ [0, π] and ϕ ∈ [0, 2π]. The full 2 + 1-dimensional metric is of

the Papapetrou–Randers form: ds2 = −u2 + d`2. The velocity field takes the form

u = −dt+ b(ϑ)dϕ , b(θ) =
2(a− 2n+ a cosϑ)

Ξ
sin2(ϑ/2). (4.52)
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The scalar vorticity strength is given by

q = 2 (n− a cosϑ) , (4.53)

while the constant c appearing in the the Cotton–York tensor is

c = 2n(1− a2 + 4n2). (4.54)

The base space (4.50) is a squashed S2. The vorticity (4.53) has two terms: the constant

monopole and the dipole. It is maximal on the northern (ϑ = 0) and southern (ϑ = π)

poles and is vanishing on the equator (ϑ = π/2). Note also that in the limit c2 we recovered

the homogeneous metric case for ν = 1.

Flat (ν = 0) The new parameters a and n are now defined as follows:

c1 = 2(a− n),

c2 = 2a2(a− 4n),

c3 = a(5a− 12n). (4.55)

Let us now do the following coordinate transformations:

x = κ(σ/2)2,

y = λϕ, (4.56)

with

κ = 1, λ = 2. (4.57)

With these transformations the two-dimensional base space in the metric (4.8) takes the

form of squashed R2:

d`2 =
dσ2

∆σ
+ σ2∆σdϕ2 (4.58)

with

∆σ =
(2 + a2σ2)(8− 24anσ2 + a4σ4 − 8a3nσ4 + 2a2σ2(3 + 8n2σ2))

16
. (4.59)

The coordinates range as σ ∈ R+ and ϕ ∈ [0, 2π]. The full 2 + 1-dimensional metric is

ds2 = −u2 + d`2, where the velocity field takes the form

u = −dt+ b(σ)dϕ , b(σ) =
σ2

4

(
4(a− n) + a2(a− 4n)σ2

)
. (4.60)

The scalar vorticity is then given by

q = (n− a)
(
2 + a2σ2

)
, (4.61)

while the constant c appearing in Cotton–York tensor is:

c = 2n(−a2 + 4n2). (4.62)
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Hyperbolic case (ν = −1) This case is very similar to the spherical one, with trigono-

metric functions traded for hyperbolic ones. We define a and n using:

c1 = 2(a− n),

c2 = 2a(1 + a2 − 4an),

c3 = 1 + 5a2 − 12an. (4.63)

The appropriate coordinate transformations are:

x = κ sinh2(σ/2),

y = λϕ, (4.64)

with

κ =
1

1− a(4n− a)
, λ =

2

κZ
and Z = 1 + a2. (4.65)

With these transformations the two-dimensional base space in the metric (4.8) takes the

form of squashed H2:

d`2 =
dσ2

∆σ
+

sinh2 σ∆σ

Ξ2
dϕ2 (4.66)

with

∆σ = 1− a coshσ(4n− a coshσ). (4.67)

The coordinates range as σ ∈ R+ and ϕ ∈ [0, 2π]. In the full 2 + 1-dimensional metric

ds2 = −u2 + d`2, the velocity field takes the form

u = −dt+ b(σ)dϕ , b(σ) =
2(a− 2n+ a coshσ)

Z
sinh2(σ/2). (4.68)

The scalar vorticity is

q = 2 (n− a coshσ) , (4.69)

while the constant c appearing in the Cotton–York tensor is

c = 2n(−1− a2 + 4n2). (4.70)

Uniform parametrization It is possible to use a uniform notation to include the three

different cases:

c1 = 2(a− n),

c2 = 2a(−ν + a2 − 4an),

c3 = −ν + 5a2 − 12an. (4.71)

The general coordinate transformations are:

x = κf2ν (θ/2),

y = λϕ, (4.72)

with fν as in (4.25), and

κ =
1

1 + νa(4n− a)
, λ =

2

κZν
and Zν = 1− νa2. (4.73)

The constant c appearing in Cotton–York tensor takes the form:

c = 2n(ν − a2 + 4n2). (4.74)
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4.2.2 Vanishing c4

When the parameter c4 is vanishing, it is not possible to perform the change of variables

(4.17) and thus we have a different class of metrics. We are left with the parameters c1,

c2, c3 and c5. We decide not to set to zero the latter in order to avoid a possible metric

singularity (see (4.10)) when c2 = c3 = 0. The boundary metric is in this case given by

b(x) = c1x+ c2x
2,

G(x) = c5 + c3x
2 + c2x

3(2c1 + c2x).
(4.75)

For the flat horizon case c3 = 0, this class of metrics appears as boundary of Einstein

solutions studied in [29]. When c2 = 0 we have a homogeneous geometry and what we

concluded on transport coefficients for the case before is still valid: it is not possible to

constraint any of them holographically, because the corresponding tensors vanish kinemat-

ically.

4.3 Geometries without space-like isometries

The perfect-Cotton geometries we have constructed in Sec. 4.2 possess at least one space-

like Killing vector. Our motivation for studying such perfect-Cotton geometries was holo-

graphic, and, in particular, these metrics appear as boundaries of exact 3 + 1-dimensional

bulk Einstein metrics, as we will see in Sec. 5. This property is not limited to the sole

perfect-Cotton stationary geometries that admit space-like isometries: any perfect-Cotton

Papapetrou–Randers metric qualifies. It seems however very difficult to find explicit (x, y)-

dependent solutions when the additional isometry is not present. Such solutions would play

important role to go beyond the dipole and introduce more dangerous tensors, hence probe

more transport coefficients. In the absence of exact solutions, we could proceed with prob-

ing further transport properties perturbatively. We leave this for the future.

5 The bulk duals of perfect equilibrium

5.1 Generic bulk reconstruction

When the boundary geometry is of the perfect-Cotton type and the boundary stress tensor

is that of a fluid in perfect equilibrium, the bulk solution can be exactly determined. This

is highly non-trivial because it generally involves an infinite resummation i.e. starting from

the boundary data and working our way to the bulk.

The apparent resummability of the boundary data discussed above into exact bulk

geometries is remarkable, but not too surprising. An early simple example was given in

[30] where it was shown that setting the boundary energy–momentum tensor to zero and

starting with a conformally flat boundary metric, one can find the (conformally flat) bulk

solution resuming the Fefferman–Graham series. In fact, in that case the resummation

involved just a few terms.

The next non-trivial example was presented in [7]. There it was shown that in Eu-

clidean signature, imposing the condition

Cµν = ±8πGNTµν (5.1)
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is exactly equivalent to the (anti)-self duality of the bulk Weyl tensor, hence it leads to

(anti)-self dual solutions13 However, in these cases it is not clear whether the boundary

theory describes a hydrodynamical system.

Here we study a particular extension of the (anti)-self dual boundary condition of [7],

which is Lorentzian and reads

Cµν = χTµν , χ =
c

ε
, (5.2)

with both Tµν and Cµν having the perfect fluid form and χ 6= 8πGN generically.

Our main observation is that to the choice (5.2) for the boundary data corresponds the

following exact bulk Einstein metric in Eddington–Finkelstein coordinates (where grr = 0

and grµ = −uµ):

ds2 = −2u

(
dr − 1

2
dxρuσηρσµ∇µq

)
+ ρ2d`2

−
(
r2 +

δ

2
− q2

4
− 1

ρ2

(
2Mr +

qc

2

))
u2, (5.3)

with

ρ2 = r2 +
q2

4
. (5.4)

The metric above is manifestly covariant with respect to the boundary metric. Taking the

limit r →∞ it is easy to see that the boundary geometry is indeed the general stationary

Papapetrou–Randers metric in (3.1) with

u = −dt+ bdy. (5.5)

The various quantities appearing in (5.3) (like δ, q, c) satisfy Eqs. (4.2), (4.3) and (4.4),

and this guarantees that Einstein’s equations are satisfied. Performing the Fefferman–

Graham expansion of (5.3) we indeed recover the perfect form of the boundary energy–

momentum tensor with

ε =
M

4πGN
. (5.6)

where GN is the four-dimensional Newton’s constant. The corresponding holographic fluid

has velocity field u, vorticity strength q and behaves like a perfect fluid.

In the choice of gauge given by (4.5) and (4.6), the bulk metric (5.3) takes the form:

ds2 = −2u

(
dr − 1

2

(
dy
B

A
∂xq − dx

A

B
∂yq

))
+ ρ2d`2

−
(
r2 +

δ

2
− q2

4
− 1

ρ2

(
2Mr +

qc

2

))
u2, (5.7)

13More generally, the boundary Cotton tensor is an asymptotic component of the bulk Weyl tensor e.g.

Eq. (2.8) of [6]. However, a non-vanishing Weyl does not necessarily imply a non-vanishing Cotton, as for

example in the Kerr–AdS4 case. A non-vanishing Cotton, on the other hand, requires the Weyl be non-zero.

Non-cyclonic vorticity on the boundary requires precisely non-zero Cotton, as we discuss in Sec. 4 (see also

[17, 18], as well as [11]). The structure of the perfect Cotton puts therefore constraints on the bulk Weyl

tensor.
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where q is as in (4.7). Note δ and c can be readily obtained from q, A and B using (4.4)

and (4.2) respectively.

It is clear from the explicit form of the bulk spacetime metric (5.3) that the metric has

a curvature singularity when ρ2 = 0. The locus of this singularity is at :

r = 0, q(x, y) = 0. (5.8)

However, we will find cases where ρ2 never vanishes because q2 never becomes zero. In

such cases, the bulk geometries have no curvature singularities, but they might have regions

with closed time-like curves.

Since A, B and b are functions of x and y only the metric has a Killing vector ∂t.

Although this is of unit norm at the boundary coinciding with the velocity vector of the

boundary fluid, it’s norm is not any more unity in the interior. The Killing vector becomes

null at the ergosphere r = R(x) where:

r2 +
δ

2
− q2

4
− 1

ρ2

(
2Mr +

qc

2

)
= 0. (5.9)

Beyond the ergosphere no observer can remain stationary, and hence she experiences frame

dragging, as ∂t becomes space-like.

Before closing this section, a last comment is in order, regarding the exactness of the

bulk solution (5.3)–(5.4), obtained by uplifting 2 + 1-dimensional perfect boundary data

i.e. perfect energy–momentum tensor (2.3) and perfect-Cotton boundary geometry (4.1).

The Fefferman–Graham expansion, quoted previously as a way to organize the bound-

ary (holographic) data, is controlled by the inverse of the radial coordinate 1/r. An alterna-

tive expansion has been proposed in [3, 4]. This is a derivative expansion (long wavelength

approximation) that modifies order by order the bulk geometry, all the way from the hori-

zon to the asymptotic region. It has been investigated from various perspectives in bulk

dimension greater that 4. In the course of this investigation, it was observed [31, 32]

that for AdS–Kerr geometries, at least in 4 and 5 dimensions, the derivative expansion

obtained with a perfect energy–momentum tensor and the Kerr boundary geometry, turns

out to reproduce exactly the bulk geometry, already at first order, modulo an appropriate

resummation that amounts to redefining the radial coordinate.

Lately, it has been shown [19] that the above observation holds for the Taub–NUT

geometry in 4 dimensions provided the quoted derivative expansion includes a higher-order

term involving the Cotton–York tensor of the boundary geometry. The derivative expansion

up to that order reads:

ds2 = −2udr + r2ds2bry. + Σµνdxµdxν +
u2

ρ2

(
2Mr +

1

2
uλCλµη

µνσωνσ

)
, (5.10)

where all the quantities refer to the boundary metric ds2bry. of the Papapetrou–Randers

type (3.1), and u is the velocity field of the fluid that enters the perfect energy–momentum

tensor (2.2), whose energy density is related to M according to (5.6). Furthermore,

Σµνdxµdxν = −2u∇νωνµdxµ − ω λ
µ ωλνdxµdxν − u2R

2
, (5.11)

ρ2 = r2 +
1

2
ωµνω

µν , (5.12)
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where, as usual ωµν are the components of the vorticity and R the curvature of the boundary

geometry. Metric (5.10) is the expansion stopped at the fourth derivative of the velocity

field (the Cotton–York counts for three derivatives).14 It was shown to be exact for the

Taub–NUT boundary in [19] – as well as for Kerr whose boundary has vanishing Cotton.

Metric (5.10) coincides precisely with (5.3) for perfect-Cotton boundary geometries.

This identification explains a posteriori the observation of [31, 32] about the exactness

of the limited derivative expansion (up to the redefinition ρ(r)), and generalizes it to

all perfect-Cotton geometries with perfect-fluid energy–momentum tensor. It raises also

the question whether similar properties hold in higher dimensions, following the already

observed exactness of the lowest term for Kerr. In particular one may wonder what replaces

the perfect-Cotton geometry in higher dimensions, where there is no Cotton–York tensor.

As we stressed, the bulk gravitational duality is a guiding principle that translates precisely

to the boundary Cotton/energy–momentum relationship used in this paper. A similar

principle is not available in every dimension and we expect only a limited number of cases

where the observation made in [31, 32] about Kerr could be generalized to more general

Einstein spaces.

5.2 Absence of naked singularities

We will focus here on the situation where we have an additional spatial isometry. We will

show explicitly that for all perfect-Cotton geometries in this class, the bulk geometries have

no naked singularities for appropriate range of values of the black hole mass. Our general

solutions will be labeled by three parameters - namely the angular momentum a, the nut

charge n and the black hole mass M . This will cover all known solutions and also give us

some new ones, as will be shown explicitly later in Appendix C.

In order to analyze the bulk geometry we need to know the boundary geometry explic-

itly. In the previous section, we have been able to find all the perfect Cotton geometries

with at least one additional spatial Killing vector explicitly. These geometries are given by

(4.8), (4.19) and (4.20), and are labelled by three continuously variable parameters c1, c2
and c3. We have shown that without loss of generality, we can rewrite these parameters

in terms of the angular momentum a, the nut charge n and a discrete variable ν as in Eq.

(4.71).

The holographic bulk dual (5.3) for perfect equilibrium in these general boundary

geometries then reads:

ds2 = −2u

(
dr − G

2
∂xq dy

)
+ ρ2

(dx2

G
+Gdy2

)

−
(
r2 +

δ

2
− q2

4
− 1

ρ2

(
2Mr +

qc

2

))
u2, (5.13)

where u = −dt + bdy, and b and G are determined by three geometric c1, c2 and c3 as in

(4.19) and (4.20). Therefore q, c and δ are as in (4.11), (4.12) and (4.13) respectively.

14Strictly speaking, the redefinition ρ(r) (5.12) accounts for a full series with respect to the vorticity, i.e.

contains terms up to infinite velocity derivatives.
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It is convenient for the subsequent analysis to move from Eddington–Finkelstein to

Boyer–Linqvist coordinates. These Boyer–Linqvist coordinates make the location of the

horizon manifest. These are the analogue of Schwarzschild coordinates in presence of an

axial symmetry. The transition to Boyer–Linqvist coordinates can be achieved via the

following coordinate transformations:

dt̃ = dt− 4(c21 + 4r2)

3c41 + 8c1c2 − 4c21(c3 + 6r2) + 16r(2M + c3r − r3)
dr, (5.14)

dỹ = dr +
16c2

3c41 − 4c21c3 + 8c1c2 + 32Mr − 24c21r
2 + 16c3r2 − 16r4

dr. (5.15)

Note even after changing t, y to t̃, ỹ, the boundary metric still remains the same - the

difference between the old and new coordinates die off asymptotically.

After these transformations the bulk metric takes the form (we replace r̃ and ỹ with r

and y):

ds2 =
ρ2

∆r
dr2 − ∆r

ρ2
(dt+ βdy)2 +

ρ2

∆x
dx2 +

∆x

ρ2
(c2dt− αdy)2 , (5.16)

where

ρ2 = r2 +
q2

4
= r2 +

(c1 + 2c2x)2

4
, (5.17)

∆r = − 1

16

(
3c41 + 8c1c2 − 4c21(c3 + 6r2) + 16r(2M + c3r − r3)

)
, (5.18)

∆x = G = x+ c3x
2 + 2c1c2x

3 + c22x
4, (5.19)

α = −1

4

(
c21 + 4r2

)
, (5.20)

β = −b = −c1x− c2x2. (5.21)

Note the coordinates r and x do not change as we transform from Eddington–Finkelstein

to Boyer–Linqvist coordinates. Therefore ρ2 is exactly the same as before. Also note that

∆r and α are functions of r only, while ∆x and β are functions of x only.

It is easy to see that the horizons are at r = r∗ where:

∆r(r = r∗) = 0, with r∗ > 0. (5.22)

At most we can have four horizons. These horizon(s) should clothe the curvature singularity

located at ρ2 = 0 or equivalently at:

r = 0, x = − c1
2c2

. (5.23)

It is not hard to see that for fixed values of the geometric parameters c1, c2 and c3, there

exists a positive definite solution to Eq. (5.22) for an appropriate range of the black hole

mass M . Hence the curvature singularity is not naked.

Clearly we have only two Killing vectors generically - namely ∂t and ∂y. Each horizon

r = r∗ is generated by the Killing vector:

∂t + ΩH(r∗)∂y. (5.24)
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which is an appropriate linear combination of the two Killing vectors. ΩH(r∗) is a constant

given by:

ΩH(r∗) =
c2

α(r∗)
(5.25)

and is the rigid velocity of the corresponding horizon.

The bulk geometry can have at most four ergospheres where the Killing vector ∂t
becomes null. These are given by r = R(x) where R(x) is a solution of:

gtt = 0, i.e. ∆r = c22G. (5.26)

We have seen in Section 4.2.1.2 that the geometric structure of the boundary geometries

is better revealed as fibrations over squashed S2, R2 or H2 if we do a further coordinate

transformation in x and y. We will do the same coordinate transformations given by (4.72)

in the bulk metric separately for ν = 1, 0,−1. We will also need to exchange parameters

c1, c2 and c3 with a, n and ν using (4.71). Note in these coordinate transformations the

radial coordinate r and the time coordinate t do not change, while the spatial coordinates

x and y transform only as functions of themselves. This preserves the Boyer–Linqvist form

of the metric (5.16). We can apply the same strategy to locate the horizon(s) and the

ergosphere(s).

The advantage of doing these coordinate transformations is that for ν = 1, 0,−1 we

will see that the horizon will be a squashed S2, R2 and H2 respectively. The metrics are

given explicitly in Appendix C, where we will also show that we recover all known rotating

black hole solutions.

Interestingly when c2 = 0, ρ2 > c21/4, hence it never vanishes. Therefore the bulk

geometry has no curvature singularity. In terms of a, n and ν, this happens when

• n > a for ν = 1,

• n < a/4 and n > a for ν = 0 and

• n < a for ν = −1.

In such cases horizon(s) may exist, but in absence of a curvature singularity, it is not

necessary for the horizon to exist in order that the solution is a good solution. However,

if there are regions in the bulk with closed time-like curves, then these should be covered

by horizons. On the other hand if this is not the case, then there is no restriction on the

black hole mass M as we do not need a horizon. We may ask if negative values of M is

physically acceptable in such cases. We leave this question for future investigations.

5.3 Comments on the rigidity theorem

We now discuss the intriguing case of perfect Cotton geometries with no spatial isometry.

Though we do not have explicit examples of such metrics, we do know that perfect equi-

librium in such metrics should lift to exact bulk solutions given by Eq. (5.3) as discussed

before. We are however unable to analyze the absence of naked singularities in the bulk

geometries as we do not know the boundary geometries explicitly.

There are two possibilities:
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• The perfect Cotton condition itself will force the geometry to have at least an addi-

tional spatial isometry. This is consistent with the rigidity theorem in 3+1-dimensions

which requires all stationary black hole solutions in flat space to have an axial sym-

metry. However, as far as we are aware, it is not known if this theorem is valid for

3 + 1-dimensional asymptotically AdS stationary black holes.

• We will be able to find explicit perfect Cotton boundary geometries without any

spatial isometry, but the dual bulk solutions given by (5.3) will always have naked

singularities for any value of M . This naked singularity need not be the curvature

singularity but also regions with closed time-like curves not covered by a horizon.

In the future we will investigate which of the above is the correct possibility. If the

second possibility is true, then perfect Cotton-ness will not be sufficient to ensure that per-

fect equilibrium can exist. We will also require an extra spatial isometry in the background

geometry.

5.4 Black hole uniqueness from perfect fluidity

In the generic boundary geometries discussed here, there is a unique time-like Killing

vector of unit norm. Physically this corresponds to the fluid velocity field of the perfect

equilibrium state at the boundary.

The basic observation is that if all stationary black holes in anti-de Sitter space are dual

to perfect equilibrium states in the CFT, then they are generically unique and are labeled

by the mass M for a fixed boundary geometry. The uniqueness is simply a consequence of

the fact that there is a unique solution of fluid mechanics which is in perfect equilibrium

in the boundary geometry, as given by Eq. (2.10).

For certain values of parameters we will get instances where there will be extra isome-

tries (like boosts in flat space) which are broken by the perfect equilibrium fluid config-

uration. In that case we can generate new solutions by applying these isometries on the

fluid configuration (like boosting u). For each such isometry, we will have an additional

parameter labelling these black hole solutions (as in the case of boosted black branes).

In case of space-times with an additional spatial isometry discussed here, the black hole

solutions are uniquely described by four parameters - namely M and the three geometric

parameters a, n and ν for generic values. Note the perfect equilibrium solution preserves

the additional spatial isometries, hence the latter cannot be used to generate any new

solution.

The local equation of state is independent of the geometry and is an intrinsic property

of the microscopic theory. In fact in a CFT it is simply ε = 2p (which is also imposed as a

constraint of Einstein’s equation in the bulk). However, global thermodynamics describing

the black hole geometry will depend on the choice of boundary geometry. The thermody-

namic charges can be constructed by suitably integrating Tµν over the boundary manifold

[33]. In fact some of the geometric parameters will be related to conserved charges - like a

will be related to the angular momentum. The intrinsic variables - namely the temperature

T and the rotation Ω can be determined either by using thermodynamic identities or by

using the properties of the outermost horizon.
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6 Constraints on transport coefficients

In the previous section, we have shown that we can find exact black-hole solutions corre-

sponding to perfect equilibrium of the dual field theory in perfect-Cotton boundary geome-

tries. From the perspective of the boundary fluid dynamics, we are ensured by construction

that the energy–momentum tensor is exactly of the perfect type. Thus any dangerous ten-

sor that this deformed boundary may have, will necessarily couple to vanishing transport

coefficients. This gives non-trivial information about strongly coupled holographic confor-

mal fluids in the classical gravity approximation.

We will explicitly show here that exact black-hole solutions indeed imply holographic

fluids at strong coupling and in the classical gravity approximation have infinitely many

vanishing transport coefficients. On a cautionary note, using perfect-Cotton geometries at

the boundary, we will not be able to constrain all transport coefficients. This is because

many Weyl-covariant, traceless and transverse tensors will vanish kinematically. We will

need to know all possible holographic perfect geometries, or equivalently all exact black-

hole solutions with regular horizons, in order to know which transport coefficients vanish

in three-dimensional conformal holographic fluids at strong coupling and in the classical

gravity approximation. This is possibly not true and it’s investigation is also beyond the

scope of the present work.

We have seen in Sec. 4.2.1.1 that a class of perfect-Cotton geometries corresponding

to homogeneous backgrounds have no dangerous tensors. Therefore, all conformal fluids

in equilibrium in such boundary geometries are also in perfect equilibrium. In absence

of dangerous tensors, we cannot use these boundary geometries to constrain transport

coefficients.

Therefore we turn to perfect-Cotton geometries with an additional spatial isometry

only discussed in Sec. 4.2.1.2. We have found in Sec. 5 that we can uplift these geometries

to exact black-hole solutions without naked singularities for generic values of four param-

eters characterizing them. Let us now examine the presence of dangerous tensors in these

geometries.

For concreteness, we begin at the third order in derivative expansion. The list of

possible dangerous tensors is in (2.6). We note that 〈Cµν〉 vanishes in any perfect-Cotton

geometry, because the transverse part of Cµν is pure trace, meaning it is proportional to

∆µν . Therefore, it is not a dangerous tensor in any perfect-Cotton geometry, as a result

we cannot constrain the corresponding transport coefficient γ(3)1.

We recall from Sec. 2.2 that we need to evaluate the possible dangerous tensors on-

shell, meaning we need to check if they do not vanish when u = ξ. We have shown in

App. B that in equilibrium, i.e. on-shell, the Weyl-covariant derivative Dµ reduces to the

covariant derivative ∇µ. This facilitates our hunt for dangerous tensors.

The first dangerous tensor we encounter is 〈DµWν〉. It is because it is non-vanishing and

also it is not conserved, meaning ∇µ〈DµWν〉 6= 0 in all geometries discussed in Sec. 4.2.1.2.

Perfect equilibrium can exist only if the corresponding dangerous transport coefficient γ(3)2
vanishes. Thus this transport coefficient vanishes for all strongly coupled holographic fluids

in the regime of validity of classical gravity approximation.
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We can similarly show that infinite number of tensors of the form of (CαβCαβ)`〈DµWν〉,
(V αVα)m〈DµWν〉 and (WαWα)n〈DµWν〉 for `,m and n being arbitrary positive integers, are

dangerous tensors in geometries of Sec. 4.2.1.2. We conclude that the infinitely many non-

dissipative transport coefficients corresponding to these dangerous tensors should vanish.

At the fourth order in the derivative expansion, we get new kind of dangerous tensors of

the form 〈VµVν〉, 〈WµWν〉 and 〈DµDν(ωαβωαβ)〉 in geometries of Sec. 4.2.1.2. This further

implies existence of infinite number of dangerous tensors, of the form of (CαβCαβ)l〈VµVν〉,
(V αVα)m〈VµVν〉, (WαWα)n〈VµVν〉, etc. in the geometries of Sec. 4.2.1.2. Once again this

leads us to conclude that infinite number of new dangerous transport coefficients vanish.

We do not want to give an exhaustive list of all possible holographic transport co-

efficients we can constrain using exact black-hole solutions. Such an exhaustive list will

require us to explore perfect-Cotton geometries with no spatial isometry and furthermore

all possible perfect geometries which uplift to exact black-hole solutions. We leave this

investigation for the future.

We want to conclude this section by arguing that the constraints on transport coeffi-

cients derived here cannot be obtained from partition-function [9] or entropy-current [10]

based approaches. The latter are very general and independent of holography. On the

other hand, our constraints follow from exact solutions of Einstein’s equations. In particu-

lar, a certain form of duality between the Cotton–York and energy–momentum tensors at

the boundary is crucial for us to find these exact solutions. This duality has no obvious

direct interpretation in the dual field theory and no obvious connection with general ap-

proaches for constraining hydrodynamic transport coefficients. Unfortunately, the general

approaches mentioned above have been explicitly worked out up to second order in deriva-

tive expansion only. On the other hand, the first non-trivial constraint in our approach

comes at the third order in the derivative expansion. So presently we cannot give an ex-

plicit comparison of our approach with these general approaches. It will be interesting

to find explicit examples where holographic constraints on transport coefficients discussed

here cannot be obtained from other approaches.

7 Conclusions and Outlook

We end here with a discussion on possible future directions. Perhaps the most outstanding

question is the classification of all possible perfect geometries for holographic systems. The

difficulty in studying this question is to make a formulation which is independent of any

ansatz for the metric which will sum over infinite orders in the derivative expansion. It is

difficult to show that only a specific ansatz will exhaust all possibilities. In fact it is not

clear whether it is necessary to have an exact solution in the bulk in order to have perfect

equilibrium in the boundary. There can be derivative corrections to all orders in the bulk

metric which cannot be resummed into any obvious form, though such corrections may

vanish for the boundary stress tensor.

Recently an interesting technique has been realized for addressing such questions in-

volving the idea of holographic renormalization-group flow in the fluid/gravity limit [34].

In this approach, a fluid is constructed from the renormalized energy–momentum tensor at
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any hypersurface in the bulk. For a unique hypersurface foliation – namely the Fefferman–

Graham foliation – the radial evolution of the transport coefficients and hydrodynamic

variables is first order and can be constructed without knowing the bulk spacetime metric

explicitly. Once this radial evolution is solved, the bulk metric can be constructed from it

for a given boundary geometry.

The advantage of this formulation is that the holographic renormalization-group flow

of transport coefficients and hydrodynamic variables automatically knows about the regu-

larity of the horizon. The renormalization-group flow terminates at the horizon and there

exists a unique solution which corresponds to non-relativistic incompressible Navier–Stokes

equation at the horizon. This unique solution determines the values of the transport co-

efficients of the boundary fluid to all orders in the derivative expansion. It is precisely

these values which give solutions with regular horizons. Though it has not been proved,

this agreement between the renormalization-group flow and regularity has been checked

explicitly for first and second order transport coefficients.

The relevance of this approach to perfect geometries is as follows. In the special case

of perfect equilibrium, we know that the boundary fluid should also flow to a fluid in

perfect equilibrium at the horizon. The latter can happen only if the boundary geometry

is a perfect geometry, which will impose appropriate restrictions on the fluid kinematics.

The question of classification of perfect boundary geometries is thus well posed using deep

connections between renormalization-group flow and horizon regularity – independently of

any specific ansatz. In this approach we will also be able to know the full class of transport

coefficients which should necessarily vanish such that perfect equilibrium can exist both at

the boundary and the horizon.

The second immediate question involves further analysis of the black-hole solutions

with at least one extra spatial isometry discussed here. This is particularly necessary for the

particular values of the geometric parameters where there exists no curvature singularities

in the bulk for all values of the mass. The question is what restricts the mass from being

arbitrarily negative – is it possibly just the requirement that regions of space–time with

closed time-like curves should be hidden by horizons? Or do we need new principles? Also

we should construct the global thermodynamics of such geometries in detail and investigate

if there is anything unusual.

On the same note, we should also investigate the case of perfect-Cotton boundary

geometries with no spatial isometries and check the (in)validity of the rigidity theorem in

the bulk dual. It will be interesting to see if perfect geometries for holographic theories

need not have any spatial isometry. More generally our guiding principle in searching

perfect fluidity is the mass/nut bulk duality, which is a non-linear relationship emerging a

priori in Euclidean four-dimensional gravity. Its manifestation in Lorentzian geometries is

holographic and operates linearly via the Cotton/energy–momentum duality on the 2 + 1-

dimensional boundary; it is a kind of duality relating the energy density with the vorticity,

when the later is non-trivial i.e. when the Cotton–York tensor is non-vanishing. This

relationship should be further investigated as it provides another perspective on gravity

duality [35].

Finally, it will be interesting to find exact solutions in the bulk with matter fields
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corresponding to steady states in the boundary. These steady states will be sustained

by non-normalizable modes of the bulk matter fields. Perhaps the simplest and the most

interesting possibility is adding axion fields with standard kinetic term in the bulk which

couple also to the Gauss–Bonnet term. Such bulk actions have been studied recently

[36–38]. In fact, it has been shown that this leads to simple mechanism for generating

vortices in the boundary spontaneously. These simple vortices describe transitions in the

θ vacuum across an edge and support edge currents. It will be interesting to see if there

could be non-trivial exact solutions in the bulk describing more general steady state vortex

configurations in the bulk. The relevant question analogous to the one studied in this work

will be which boundary geometries and axionic configurations can sustain steady vortex

configurations.
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française de Belgique, and by IISN-Belgium (convention 4.4511.06).

A On vector-field congruences

We consider a manifold endowed with a space–time metric of the generic form

ds2 = gµνdxµdxν = ηabe
aeb. (A.1)

We will use a, b, c, . . . = 0, 1, . . . , D − 1 for transverse Lorentz indices along with α, β, γ =

1, . . . , D − 1. Coordinate indices will be denoted µ, ν, ρ, . . . for space–time x ≡ (t, x) and

i, j, k, . . . for spatial x directions. Consider now an arbitrary time-like vector field u, nor-

malized as uµuµ = −1, later identified with the fluid velocity. Its integral curves define a

congruence which is characterized by its acceleration, shear, expansion and vorticity (see

e.g. [39, 40]):

∇µuν = −uµaν +
1

D − 1
Θ∆µν + σµν + ωµν (A.2)
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with15

aµ = uν∇νuµ, Θ = ∇µuµ, (A.3)

σµν =
1

2
∆ ρ
µ ∆ σ

ν (∇ρuσ +∇σuρ)−
1

D − 1
∆µν∆ρσ∇ρuσ (A.4)

= ∇(µuν) + a(µuν) −
1

D − 1
∆µν∇ρuρ, (A.5)

ωµν =
1

2
∆ ρ
µ ∆ σ

ν (∇ρuσ −∇σuρ) = ∇[µuν] + u[µaν]. (A.6)

The latter allows to define the vorticity form as

2ω = ωµν dxµ ∧ dxν = du + u ∧ a . (A.7)

The time-like vector field u has been used to decompose any tensor field on the manifold

in transverse and longitudinal components with respect to itself. The decomposition is

performed by introducing the longitudinal and transverse projectors:

Uµν = −uµuν , ∆µ
ν = uµuν + δµν , (A.8)

where ∆µν is also the induced metric on the surface orthogonal to u. The projectors satisfy

the usual identities:

UµρU
ρ
ν = Uµν , Uµρ∆

ρ
ν = 0, ∆µ

ρ∆
ρ
ν = ∆µ

ν , Uµµ = 1, ∆µ
µ = D − 1, (A.9)

and similarly:

uµaµ = 0, uµσµν = 0, uµωµν = 0, uµ∇νuµ = 0, ∆ρ
µ∇νuρ = ∇νuµ. (A.10)

B Weyl-covariant traceless transverse tensors in hydrodynamics

The presentation here will mostly follow [4]. It is possible to express the hydrodynamics

tensors in a manifest Weyl-covariant way. To do so, we first need to define a torsionless

Weyl-connection ∇Weyl
ρ over (M, C), where M is the three-dimensional manifold and C is

the conformal class of metrics on the manifold:

∇Weyl
ρ gµν = 2Aρgµν . (B.1)

In the latter, gµν is any metric in the conformal class C and Aµ is a one-form. Using

the Weyl-connection it is possible to define a Weyl-covariant derivative DWeyl
µ = ∇µ +

ωAµ, where ω is the conformal weight of the tensor on which the derivative is acting. If

the behavior of a tensor Qµ...ν... under conformal transformation is Qµ...ν... = e−ωφQ̃µ...ν..., then

under the same transformation the derivative will transform in a covariant way, that is

DWeyl
ρ Qµ...ν... = e−ωφDWeyl

ρ Q̃µ...ν... . The explicit expression of the Weyl-covariant derivative is

given by

DρQµ...ν... ≡ ∇ρQµ...ν... + ωAρQµ...ν...

+
(
gρσAµ − δµρAσ − δµσAρ

)
Qσ...ν... + · · ·

−
(
gρνAσ − δσρAν − δσνAρ

)
Qµ...σ... + · · ·

(B.2)

15Our conventions are: A(µν) = 1/2 (Aµν +Aνµ) and A[µν] = 1/2 (Aµν −Aνµ).
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From (B.1) it follows immediately that the Weyl-covariant derivative is metric-compatible:

Dρgµν = 0, (B.3)

since the metric tensor has weight ω = −2. The connection one-form Aµ is uniquely

determined by demanding the Weyl-covariant derivative of the velocity of the fluid to be

transverse and traceless

uρDρuν = 0, Dρuρ = 0, (B.4)

which imply

Aµ = uρ∇ρuµ −
1

D − 1
uµ∇ρuρ ≡ aµ −

1

D − 1
Θuµ. (B.5)

From the latter it is straightforward to see that for all the configurations we considered

Aµ = 0, since both the acceleration and the expansion rate are vanishing, and thus the

Weyl-covariant derivative reduces to the normal derivative.

C Recovering known solutions

The dual of perfect-Cotton boundary geometries can be written as an exact solution of

Einstein’s equations. Such solutions are different depending on the value of c4 and on the

geometry of the horizon.

Non-vanishing c4: Kerr–Taub–NUT metrics

We start from the boundary metrics studied in Sec. 4.2.1.2 and uplift them using (5.16).

Spherical (ν = 1) We set

c1 = 2(a− n),

c2 = 2a(−1 + a2 − 4an),

c3 = −1 + 5a2 − 12an. (C.1)

By doing this, we recover the spherical-horizon Kerr–Taub–NUT metric [41]:

ds2 =
ρ2

∆r
dr2 − ∆r

ρ2
(dt+ βdφ)2 +

ρ2

∆ϑ
dϑ2 +

sin2 ϑ∆ϑ

ρ2
(adt+ αdφ)2 , (C.2)

with

ρ2 = r2 + (n− a cosϑ)2, (C.3)

∆r = r4 + r2(1 + a2 + 6n2)− 2Mr + (a2 − n2)(1 + 3n2), (C.4)

∆ϑ = 1 + a cosϑ(4n− a cosϑ), (C.5)

β = −b(θ) = −2(a− 2n+ a cosϑ)

Ξ
sin2(ϑ/2), (C.6)

α = −r
2 + (n− a)2

Ξ
, (C.7)

Ξ = 1− a2. (C.8)
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Flat (ν = 0) We set

c1 = 2(a− n),

c2 = 2a2(a− 4n),

c3 = a(5a− 12n). (C.9)

and get the flat-horizon Kerr–Taub–NUT metric [42]:

ds2 =
ρ2

∆r
dr2 − ∆r

ρ2
(dt+ βdφ)2 +

ρ2

∆σ
dσ2 +

σ2∆σ

ρ2
(
a2(a− 4n)dt+ αdφ

)2
, (C.10)

with

ρ2 = r2 +
1

4

(
2a− 2n+ a2σ2(a− 4n)

)2
, (C.11)

∆r = r4 + r2(a2 + 6n2)− 2Mr + 3n2(a2 − n2), (C.12)

∆σ =
(2 + a2σ2)(8− 24anσ2 + a4σ4 − 8a3nσ4 + 2a2σ2(3 + 8n2σ2))

16
, (C.13)

β = −b(θ) =
σ2

4

(
4(n− a) + a2σ2(4n− a)

)
, (C.14)

α = r2 + (n− a)2. (C.15)

Hyperbolic (ν = −1) We set

c1 = 2(a− n),

c2 = 2a(1 + a2 − 4an),

c3 = 1 + 5a2 − 12an. (C.16)

and get the hyperbolic-horizon Kerr-Taub-NUT metric:

ds2 =
ρ2

∆r
dr2 − ∆r

ρ2
(dt+ βdϕ)2 +

ρ2

∆θ
dθ2 +

sinh2 θ∆θ

ρ2
(adt+ αdφ)2 , (C.17)

with

ρ2 = r2 + (n− a cosh θ)2, (C.18)

∆r = r4 + r2(−1 + a2 + 6n2)− 2Mr + (a2 − n2)(−1 + 3n2), (C.19)

∆θ = 1− a cosh θ(4n− a cosh θ), (C.20)

β = −b(θ) = −2(a− 2n+ a cosh θ)

Z
sinh2(θ/2), (C.21)

α =
r2 + (n− a)2

Z
, (C.22)

Z = 1 + a2. (C.23)
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Vanishing c4

In this case we recover a class of bulk metrics which for in the flat-horizon case were studied

in [29]. We set:

c1 = 2n,

c2 = 2,

c3 = 0,

c5 = 1. (C.24)

and find

ds2 = −∆r

ρ2
(
dt− (2nu+ au2)dv

)2
+
ρ2

∆r
dr2 +

ρ2

∆u
du2 +

∆u

ρ2
(
(r2 + n2)dv + adt

)2
,

(C.25)

where

∆u = 1 + (a2u2 + 4anu)u2,

ρ2 = r2 + (n+ au)2,

∆r = a2 + r4 + 6n2r2 − 2Mr − 3n4.

(C.26)

Note that for hyperbolic and spherical horizon geometries we find back the case of non-

vanishing c4.
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