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Stochastic expansion for the diffusion processes and applications to option pricing

Abstract: This thesis deals with the approximation of the expectation of a functional (possibly depend-
ing on the whole path) applied to a diffusion process (possibly multidimensional).

The motivation for this work comes from financial mathematics where the pricing of options is re-
duced to the calculation of such expectations. The rapidity for price computations and calibration proce-
dures is a very strong operational constraint and we provide real-time tools (or at least more competitive
than Monte Carlo simulations in the case of multidimensional diffusions) to meet these needs.

In order to derive approximation formulas, we choose a proxy model in which analytical calculus
are possible and then we use stochastic expansions around the proxy model and Malliavin calculus to
approach the quantities of interest. In situation where Malliavin calculus can not be applied, we develop
an alternative methodology combining Itô calculus and PDE arguments. All the approaches (from PDEs
to stochastic analysis) allow to obtain explicit formulas and tight error estimates in terms of the model
parameters. Although the final result is generally the same, the derivation can be quite different and we
compare the approaches, first regarding the way in which the corrective terms are made explicit, second
regarding the error estimates and the assumptions used for that.

We consider various classes of models and functionals throughout the four Parts of the thesis.
In the Part I, we focus on local volatility models and provide new price, sensitivity (delta) and implied

volatility approximation formulas for vanilla products showing an improving accuracy in comparison to
previous known formulas. We also introduce new results concerning the pricing of forward start options.

The Part II deals with the analytical approximation of vanilla prices in models combining both local
and stochastic volatility (Heston type). This model is very difficult to analyze because its moments can
explode and because it is not regular in the Malliavin sense. The error analysis is original and the idea
is to work on an appropriate regularization of the payoff and a suitably perturbed model, regular in the
Malliavin sense and from which the distance with the initial model can be controlled.

The Part III covers the pricing of regular barrier options in the framework of local volatility models.
This is a difficult issue due to the indicator function on the exit times which is not considered in the
literature. We use an approach mixing Itô calculus, PDE arguments, martingale properties and temporal
convolutions of densities to decompose the approximation error and to compute correction terms. We
obtain explicit and accurate approximation formulas under a martingale hypothesis.

The Part IV introduces a new methodology (denoted by SAFE) for the efficient weak analytical
approximation of multidimensional diffusions in a quite general framework. We combine the use of a
Gaussian proxy to approximate the law of the multidimensional diffusion and a local interpolation of
the terminal function using Finite Elements. We give estimates of the complexity of our methodology.
We show an improved efficiency in comparison to Monte Carlo simulations in small and medium
dimensions (up to 10).

Keywords: Stochastic expansion, diffusion process, weak approximation, financial mathemat-
ics, option pricing, stochastic analysis, Malliavin calculus, partial differential equation, local volatility
model, stochastic volatility, hitting time, barrier option, finite elements.



Développement stochastique pour les processus de diffusion et applications à la
valorisation d’options

Résumé: Cette thèse est consacrée à l’approximation de l’espérance d’une fonctionnelle (pouvant
dépendre de toute la trajectoire) appliquée à un processus de diffusion (pouvant être multidimensionnel).

La motivation de ce travail vient des mathématiques financières où la valorisation d’options se réduit
au calcul de telles espérances. La rapidité des calculs de prix et des procédures de calibration est une
contrainte opérationnelle très forte et nous apportons des outils temps-réel (ou du moins plus compétitifs
que les simulations de Monte Carlo dans le cas multidimensionnel) afin de combler ces besoins.

Pour obtenir des formules d’approximation, on choisit un modèle proxy dans lequel les calculs
analytiques sont possibles, puis nous utilisons des développements stochastiques autour de ce modèle
proxy et le calcul de Malliavin afin d’approcher les quantités d’intérêt. Dans le cas où le calcul de
Malliavin ne peut pas être appliqué, nous développons une méthodologie alternative combinant calcul
d’Itô et arguments d’EDP. Toutes les approches (allant des EDPs à l’analyse stochastique) permettent
d’obtenir des formules explicites et des estimations d’erreur précises en fonction des paramètres du
modèle. Bien que le résultat final soit souvent le même, la dérivation explicite du développement peut
être très différente et nous comparons les approches, tant du point de vue de la manière dont les termes
correctifs sont rendus explicites que des hypothèses requises pour obtenir les estimées d’erreur.

Nous considérons différentes classes de modèles et fonctionnelles lors des quatre Parties de la thèse.
Dans la Partie I, nous nous concentrons sur les modèles à volatilité locale et nous obtenons des

nouvelles formules d’approximation pour les prix, les sensibilités (delta) et les volatilités implicites des
produits vanilles surpassant en précision les formules connues jusque-là. Nous présentons aussi des
nouveaux résultats concernant la valorisation des options à départ différé.

La Partie II traite de l’approximation analytique des prix vanilles dans les modèles combinant volatil-
ité locale et stochastique (type Heston). Ce modèle est très délicat à analyser car ses moments ne sont
pas tous finis et qu’il n’est pas régulier au sens de Malliavin. L’analyse d’erreur est originale et l’idée est
de travailler sur une régularisation appropriée du payoff et sur un modèle habilement modifié, régulier
au sens de Malliavin et à partir duquel on peut contrôler la distance par rapport au modèle initial.

La Partie III porte sur la valorisation des options barrières régulières dans le cadre des modèles à
volatilité locale. C’est un cas non considéré dans la littérature, difficile à cause de l’indicatrice des temps
de sorties. Nous mélangeons calcul d’Itô, arguments d’EDP, propriétés de martingales et de convolutions
temporelles de densités afin de décomposer l’erreur d’approximation et d’expliciter les termes correctifs.
Nous obtenons des formules d’approximation explicites et très précises sous une hypothèse martingale.

La Partie IV présente une nouvelle méthodologie (dénotée SAFE) pour l’approximation en loi
efficace des diffusions multidimensionnelles dans un cadre assez général. Nous combinons l’utilisation
d’un proxy Gaussien pour approcher la loi de la diffusion multidimensionnelle et une interpolation
locale de la fonction terminale par éléments finis. Nous donnons une estimation de la complexité de
notre méthodologie. Nous montrons une efficacité améliorée par rapport aux simulations de Monte
Carlo dans les dimensions petites et moyennes (jusqu’à 10).

Mots clés: Développement stochastique, processus de diffusion, approximation en loi, mathé-
matiques financières, valorisation d’options, analyse stochastique, calcul de Malliavin, équation aux
dérivées partielles, modèle à volatilité locale, volatilité stochastique, temps d’atteinte, option barrière,
éléments finis.





Contents

1 Introduction 1
1.1 Application context and overview of different computational approaches . . . . . . . . . 3
1.2 Notations used throughout the introduction Chapter . . . . . . . . . . . . . . . . . . . . 5
1.3 An overview of approximation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Large and small strikes, at fixed maturity . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Long maturities, at fixed strike . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Long maturities, with large/small strikes . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Non large maturities and non extreme strikes . . . . . . . . . . . . . . . . . . . 9
1.3.5 Asymptotic expansion versus non-asymptotic expansion . . . . . . . . . . . . . 17

1.4 Structure of thesis and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I New expansion formulas in local volatility models 27

2 Revisiting the Proxy principle in local volatility models 29
2.1 Approximation based on proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Proxy approximation: a primer using the local volatility at spot . . . . . . . . . . 31
2.1.3 Towards Call option approximations with the local volatility at strike and at mid-

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.4 Second order expansion of the implied volatility . . . . . . . . . . . . . . . . . 37

2.2 Proofs: a comparative discussion between stochastic analysis and PDE techniques . . . . 39
2.2.1 A pure stochastic analysis approach . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Mixing stochastic analysis and PDE . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 A pure PDE approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Higher-order proxy approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1 Third order approximation with the local volatility at spot and at strike. . . . . . 45
2.3.2 Third order approximation with the local volatility at mid-point. . . . . . . . . . 46
2.3.3 Third order expansion of the implied volatility . . . . . . . . . . . . . . . . . . 51

2.4 Approximation of the Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 The set of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.2 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.3 CEV Delta approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.1 Computations of derivatives of CallBS w.r.t the log spot, the log strike and the

total variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.2 Derivatives of CallBA w.r.t the spot, the strike and the total variance . . . . . . . 63
2.6.3 Derivatives of δBS w.r.t the log spot, the log strike and the total variance . . . . . 64
2.6.4 Proof of Lemma 2.1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.5 Applications of the expansions for time-independent CEV model . . . . . . . . 65



vi Contents

3 Forward implied volatility expansions in local volatility models 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 Second and third order forward implied volatility expansions . . . . . . . . . . . . . . . 87

3.3.1 Second order forward implied volatility expansion of type A . . . . . . . . . . . 87
3.3.2 Third order forward implied volatility expansion of type A . . . . . . . . . . . . 89
3.3.3 Forward implied volatility expansions of type B . . . . . . . . . . . . . . . . . . 92

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.1 Results on Vega, the Vomma and the Ultima . . . . . . . . . . . . . . . . . . . . 95
3.5.2 Proofs of Lemmas 3.3.2.1-3.3.2.2-3.3.2.3 . . . . . . . . . . . . . . . . . . . . . 95
3.5.3 Proof of Theorem 3.3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5.4 Forward implied volatilities in time-independent local volatility models . . . . . 97

4 Discussion on the parameterization and on the proxy model 103
4.1 Revisiting the parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Normal proxy on log(S ) or Log-normal proxy on S . . . . . . . . . . . . . . . . . . . . 105
4.3 Towards a displaced log-normal proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1 Comparison of the implied volatility behaviors in the displaced log-normal and
CEV models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 Comparison of the Gaussian, log-normal and displaced log-normal proxys for
the CEV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

II Models combining local and stochastic volatility 119

5 Price expansion formulas for model combining local and stochastic volatility 121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Third order approximation price formula . . . . . . . . . . . . . . . . . . . . . 126
5.2.3 Corollaries and outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.1 Approximation of X, V , Λ and error estimates . . . . . . . . . . . . . . . . . . . 130
5.3.2 Regularization of the function h by adding a small noise perturbation . . . . . . 134
5.3.3 Malliavin integration by parts formula and proof of estimate (5.40) . . . . . . . . 135
5.3.4 Proof of Lemma 5.3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Expansion formulas for the implied volatility . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.1 Implied volatility expansion at spot . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2 Implied volatility expansion at mid-point . . . . . . . . . . . . . . . . . . . . . 142

5.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6.1 Change of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.6.2 Explicit computation of the corrective terms of Theorem 5.2.2.1 . . . . . . . . . 147
5.6.3 Computations of derivatives of CallBS w.r.t the log spot and the volatility . . . . 152
5.6.4 Applications of the implied volatility expansion at mid-point for time-

independent local and stochastic volatility models with CIR-type variance . . . . 153



Contents vii

6 Smile and Skew behaviors for the CEV-Heston model 157

III Price approximation formulas for barrier options 165

7 Price expansions for regular down barrier options 167
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Derivation of the expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2.2 Second order expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.3 Third order expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3 Calculus of the corrective terms and error analysis . . . . . . . . . . . . . . . . . . . . . 178
7.3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3.2 Calculus of vP,φt

o,t and estimate of its spatial derivatives . . . . . . . . . . . . . . . 179
7.3.3 Proof of the error estimate in Theorem 7.2.2.1 . . . . . . . . . . . . . . . . . . . 183
7.3.4 Calculus of vP,ψt

o,t , vP,ρs,t
o,s and estimates of their derivatives . . . . . . . . . . . . . 183

7.3.5 Proof of the error estimate in Theorem 7.2.2.1 . . . . . . . . . . . . . . . . . . . 186
7.4 Applications to the pricing of down and in barrier options . . . . . . . . . . . . . . . . . 187
7.5 Applications to regular down and out Call options . . . . . . . . . . . . . . . . . . . . . 188

7.5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.5.2 Regular down barrier Call option approximations with the local volatility at mid-

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5.3 Reductions in the time-homogeneous framework . . . . . . . . . . . . . . . . . 190
7.5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.6.1 Properties of the Gaussian density, the Gaussian cumulative function and the

Gaussian hitting times density . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.6.2 Proof of Lemmas 7.3.4.4-7.3.4.5. . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6.3 Proof of Propositions 7.5.2.1-7.5.3.1. . . . . . . . . . . . . . . . . . . . . . . . 205

IV Efficient weak approximations in multidimensional diffusions 209

8 Stochastic Approximation Finite Element method: analytical formulas for multidimen-
sional diffusion process 211
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.2.1 Second order weak approximation and Monte Carlo simulations on the Proxy . . 215
8.2.2 An efficient algorithm using multilinear finite elements . . . . . . . . . . . . . . 217
8.2.3 Final approximation and complexity of the SAFE algorithm based on multilinear

finite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.2.4 SAFE with multiquadratic finite elements . . . . . . . . . . . . . . . . . . . . . 222

8.3 Proof of the error estimate in Theorem 8.2.1.1 . . . . . . . . . . . . . . . . . . . . . . . 223
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Chapter 1

Introduction

The Sections 1.1, 1.2 and 1.3 of this introduction Chapter have been published in the Chapter "Asymp-
totic and non asymptotic approximations for option valuation" of the book "Recent Developments in
Computational Finance Foundations, Algorithms and Applications", Thomas Gerstner and Peter Kloe-
den (Ed.) 2012, World Scientific Publishing Company.

Contents
1.1 Application context and overview of different computational approaches . . . . . . . 3
1.2 Notations used throughout the introduction Chapter . . . . . . . . . . . . . . . . . . . 5
1.3 An overview of approximation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Large and small strikes, at fixed maturity . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Long maturities, at fixed strike . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Long maturities, with large/small strikes . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Non large maturities and non extreme strikes . . . . . . . . . . . . . . . . . . . . 9

1.3.5 Asymptotic expansion versus non-asymptotic expansion . . . . . . . . . . . . . . 17
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The aim of this thesis is to provide analytical approximations of the law of (Xt)t∈[0,T ] solution of the
following stochastic differential equation (SDE):

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs, (1.1)

with applications to financial mathematics, where W is a Brownian motion (possibly multidimensional)
and b and σ are functions which the regularity is not specified for the moment. More precisely we want
to obtain explicit approximation formulas of the expectation of a functional ϕ possibly involving the
whole trajectory of X on [0,T ]:

E[ϕ(Xt : 0 ≤ t ≤ T )]. (1.2)

These problems are connected to the pricing of financial derivative products which prices can be rep-
resented with expectations of the form (1.2). Apart from some particular cases of processes X or func-
tionals ϕ, the explicit calculus of (1.2) is not possible. Among them we cite the case where ϕ is a
function of the terminal value of the process X and where the density of XT (like in the Gaussian or log-
normal models) or its characteristic function (like in the affine models) are explicitly known. Otherwise
one must turn to numerical methods like PDE techniques or Monte Carlo simulations. The principal
drawback of these numerical methods is that there are time-costing whereas the rapidity in the different
computations and calibration procedures is a very strong operational constraint in the financial industry.
An other approach to obtain real-time and explicit formulas is to derive analytical approximations. The
approximations can be of very different nature: asymptotic or non-asymptotic approach, large choice of
parameters under consideration, methodology used (rather stochastic analysis or rather PDE). . . In Sec-
tion 1.3 we give a broad overview of approximation methods to derive analytical formulas for accurate
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and quick evaluation of option prices. We compare different approaches, from the theoretical point of
view regarding the tools they require, and also from the numerical point of view regarding their perfor-
mances. We nevertheless mention some limitations of certain methods quoted further that we would like
to circumvent:

• The approximation is oftenly explicit under a condition of time-homogeneity of the coefficients
b and σ of the diffusion (see (1.1)), because its determination involves time-change of variable-
change techniques or necessitates the explicit resolution of elliptic PDEs.

• Some works perform an asymptotic expansion which the accuracy is given in terms of a small
parameter ε. However this accuracy may depend on the regularity of the functional ϕ and on the
magnitude of the diffusion coefficients b and σ. Thus there might be a competition between these
parameters and ε, what rises some problems of interpretation of the obtained theoretical accuracy.

• Sometimes, only the existence of an expansion is proven without the explicit calculation of the
coefficients. On the contrary an heuristic expansion can be performed using formal calculations
but rigorous error estimates are not provided (especially in the difficult cases of irregular diffusion
coefficients or non smooth terminal functions).

To overcome these drawbacks, Benhamou, Gobet and Miri [Benhamou 2009] provide a new non asymp-
totic methodology, the so called "proxy principle". The idea is to:

1. choose a proxy model in which analytical calculus are possible,

2. find a way to establish a connexion between the initial model and the proxy model,

3. perform a non asymptotic expansion to approach the quantities of interest. The expansions take
the following generic form (written in the particular case where ϕ is a function of XT ):

E[ϕ(XT )] = E[ϕ(XP
T )] +

∑
α

wα ∂
|α|
εα1 ...εα|α|

E
[
ϕ(XP

T + ε)
]
|ε=0 + Error,

where:

• ∂|α|εα1 ...εα|α|
E
[
ϕ(XP

T + ε)
]
|ε=0 are sensitivities in the Proxy model,

• wα are explicit and depend on b, σ and T .

4. Estimate Error according to the magnitude of b, σ and their derivatives as well T and the regularity
of ϕ.

The choice of the proxy is left to the expertise of the user. As an evidence of the efficiency of this
approach, we cite some cases where it has been possible to handle the pricing of European and exotic
options with very accurate and real-time approximation formulas:

• in local volatility models [Benhamou 2010a], taking as proxy the Black-Scholes model obtained
by freezing the local volatility at spot,

• possibly incorporating Gaussian jumps [Benhamou 2009] choosing as proxy the Merton model
[Merton 1976] or incorporating Hull & White type interest rates [Hull 1990] handled with the
Black model proxy [Black 1976],

• in time-dependent Heston model [Benhamou 2010b] (see [Heston 1993] for the Heston model)
using a suitable Black-Scholes model proxy obtained by vanishing the volatility of volatility,
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• in general average options like Asian or Basket options [Gobet 2012a] taking as proxy Gaussian
averages.

This thesis proposes to continue these works and to deepen them in several directions:

• improvement of the approximations in the local volatility models: freezing the local volatility
function at different points that the spot, implied volatility expansions, analytical formulas for the
sensitivities, choice of more accurate proxy models. . . Forward implied volatility expansions for
the pricing of forward start options,

• approximation formulas for models combining local and stochastic volatility,

• expansion formulas of some path-dependent products like Barrier options,

• weak approximations and efficient calculations in multidimensional diffusions,

and thus to contribute to the development of real-time stochastic tools allowing to provide risk manage-
ment indicators on advanced models or sophisticated products.
This introduction Chapter is organized as follows. In Section 1.1 we develop the application context and
we list the different computational approaches. We give in Section 1.2 some useful notations repeatedly
used throughout this Chapter and sometimes utilized in the remainder of the thesis. Section 1.3 of this
Chapter gives an overview of asymptotic and non-asymptotic results: wing formulas, long maturity be-
havior, large deviations type results, regular and singular perturbation for PDEs, asymptotic expansions
of Wiener functionals and other stochastic analysis approaches. The choice of the small/large parameter
is of course crucial and is usually left to the expertise of the user. In particular, we compare in Subection
1.3.5 the asymptotic and non-asymptotic approaches and we show that there might be a competition
between different small/large parameters and the accuracy order might not be the natural one. This mo-
tivates for deriving non asymptotic results and this is our emphasize throughout the next Chapters of the
thesis. Besides we already provide a brief presentation of the "proxy principle" in Subsection 1.3.4.4.
The outline and the main results of the thesis are given in Section 1.4.

1.1 Application context and overview of different computational ap-
proaches

In the two last decades, numerous works have been devoted to designing efficient methods in order to
give exact or approximative pricing formulas for many financial products in various models. This quest
of efficiency originates in the need for more and more accurate methods, when one takes into account an
increasing number of sources of risk, while maintaining a competitive computational time. The current
interest in real-time tools (for pricing, hedging, calibration) is also very high.

Let us give a brief overview of different computational approaches. While explicit formulas are
available in simple models (Black-Scholes model associated to log-normal distribution [Black 1973],
or Bachelier model related to normal distributions [Bachelier 1900] for instance), in general no closed
forms are known and numerical methods have to be used. As a numerical method, it is usual to perform
PDE solvers for one or two-dimensional sources of risk (see [Achdou 2005] for instance) or Monte Carlo
methods for higher dimensional problems [Glasserman 2004]: both approaches are popular, efficiently
developed and many improvements have been proposed for years. However, these methods are not
intrinsically real-time methods, due to the increasing number of points required in the PDE discretization
grid or due to the increasing number of paths needed in the Monte Carlo procedure. Not being real-time
method means, for example, that when used for calibration routine based on data consisting of (say) 30
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vanilla options, it usually takes more than one minute (in the most favorable situations) to achieve the
calibration parameters. The approaches presented below are aimed at reducing this computational time
to less than one second.

The class of affine models (such as Heston model, exponential Levy model . . . ) offers an alternative
approach related to Fourier computations: on the one hand, in such models the characteristic function
of the marginal distribution of the log-asset is explicitly known; on the other hand, there are general
relations between Call/Put prices and the characteristic function of the log-asset. These relations write
as follows.
• Following Carr and Madan [Carr 1998b], consider the difference zT (k) between the Call price in

a given model and that price in an arbitrary Black-Scholes model (with volatility σ), both with
maturity T and log-strike k. For zero interest rate (to simplify), it is equal to zT (k) = E(eXT −ek)+−

CallBS(k), where X is the logarithm of the asset. A direct computation gives explicitly the Fourier
transform ẑT (v) in the log-strike variable:

ẑT (v) =

∫
R

eivkzT (k)dk =
ΦX

T (1 + iv)−ΦBS
T (1 + iv)

iv(1 + iv)
,

where Φ
X,BS
T (u) := E(euXT ) is either computed in the X model or in the Black-Scholes model. Since

ΦX
T (·) is required to be known, we get the X-model Call price zT (k)+CallBS(k) simultaneously for

any log-strike using a Fast Fourier Transform.

• Alternatively, following the Lewis approach [Lewis 2000, Chapter 2], let α > 0 be a damping con-
stant, set h(y) = (ey−K)+e−(1+α)y which belongs to L2(R,Leb.) and assume that E(e(1+α)XT ) < +∞:
from the Parceval-Plancherel identity, assuming that the density pXT of XT w.r.t. the Lebesgue
measure exists, we obtain

E(eXT −K)+ =

∫
R

h(y)e(1+α)y pXT (y)dy

=
1

2π

∫
R

ĥ(−ξ) ̂[e(1+α)·pXT (·)](ξ)dξ

=
1

2π

∫
R

e−(α+iξ) log(K)

(iξ+α)(iξ+α+ 1)
ΦX

T (1 +α+ iξ)dξ.

The final identity still holds without assuming the existence of density: this can be proved by
adding a small Brownian perturbation (considering XT +εWT instead of XT ), and taking the limit
as the perturbation ε goes to 0. From the above formula, using an extra numerical integration
method (to compute the ξ-integral), we recover Call prices. For higher numerical performance,
Lewis recommends a variant of the formula above, obtained through the decomposition (eXT −

K)+ = eXT −min(eXT ,K): it finally writes

E(eXT −K)+ = S 0−
1

2π

∫
R

e( 1
2−iξ) log(K)

1
4 + ξ2

ΦX
T (

1
2

+ iξ)dξ. (1.3)

Regarding computational time, both Fourier-based approaches perform well, since they are essentially
reduced to a one-dimensional integration problem. But they can be applied only to specific models for
which the characteristic function is given in an explicit and tractable form: in particular, it rules out the
local volatility models, the local and stochastic volatility models.

The last approach consists of explicit analytical approximations and this is the main focus of this
thesis: it is based on the general principle of expanding the quantity of interest (price, hedge, implied
volatility. . . ) with respect to some small/large parameters (possibly multidimensional). The parameters
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under consideration may be of very different nature: for instance in the case of Call/Put options of
strike K and maturity T , it ranges from the asymptotic behavior as K is small or large, to the case of
short or long maturity T , passing through coupled asymptotics, or small/fast volatility variations, and
so on. . . A detailed description with references is presented in Section 1.3 of this introduction Chapter.
Due to the plentiful and recent litterature on the subject, it is likely that we will not be exhaustive in
the references. But we will do our best to give the main trends and to expose whenever possible what
are the links between different viewpoints; we will compare the mathematical tools to achieve these
approximations (rather PDE techniques or stochastic analysis ones), in order to provide to the reader a
clarified presentation of this prolific topic.

1.2 Notations used throughout the introduction Chapter

B Models. In all this Chapter, financial products are written w.r.t. a single asset, which price at time t
is denoted by S t. The dynamics of S is modeled through a filtered probability space (Ω,F , (Ft)t≥0,P)
where (Ft)t≥0 is the natural filtration of a standard linear Brownian motion W, augmented by the P-null
sets. The risk-free rate is set1 to 0; most of the time and unless stated otherwise, S follows a local
volatility model, i.e. it is solution of the stochastic diffusion equation

dS t = S tσ(t,S t)dWt, (1.4)

where the dynamics is directly under the pricing measure. Assumptions on the local volatility σ are
given later. We assume that the complete market framework holds and that an option with payoff h(S T )
paid at maturity T has a fair value at time 0 equal to E(h(S T )).

For positive S , we define the log-asset X = log(S ) which satisfies

dXt = a(t,Xt)dWt −
1
2

a2(t,Xt)dt, (1.5)

where a(t, x) = σ(t,ex).

B Call options. Let us denote by Call(S 0,T,K) the price at time 0 of a Call option with maturity T and
strike K, written on the asset S . "Price" usually means the price given by a model on S , that is

Call(S 0,T,K) = E(S T −K)+. (1.6)

This Model Price should equalize the Market Price taken from Market datas (calibration step). As usual,
ATM (At The Money) Call refers to S 0 ≈ K, ITM (In The Money) to S 0 � K, OTM (Out The Money)
to S 0� K.

B Black-Scholes Call price function. For convenience of the reader, we give the Black-Scholes Call
price function depending on log-spot x, total variance y and log-strike z:

CallBS(x,y,z) = exN(d1(x,y,z))− ezN(d2(x,y,z)) (1.7)

where:

N(x) =

∫ x

−∞

N ′(u)du, N ′(u) =
e−u2/2
√

2π
,

1for non-zero but deterministic risk-free rate, we are reduced to the previous case by considering the discounted asset; see
also the discussion in [Benhamou 2012] for stochastic interest rates.
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d1(x,y,z) =
x− z
√

y
+

1
2
√

y, d2(x,y,z) =d1(x,y,z)−
√

y.

This value CallBS(x,y,z) equals Call(ex,T,ez) in (1.6) when the volatility in (1.4) is only time-dependent
and y =

∫ T
0 σ2(t)dt. Note that CallBS is a smooth function (for y > 0) and there is in addition a simple

relation between its partial derivatives:

∂yCallBS(x,y,z) =
1
2

(∂2
x2 −∂x)CallBS(x,y,z) =

1
2

(∂2
z2 −∂z)CallBS(x,y,z). (1.8)

In the following, x0 = log(S 0) (which is the initial value of the process X defined in (1.5)) will represent
the log-spot, k = log(K) the log-strike, xavg = (x0 +k)/2 = log(

√
S 0K) the mid-point between the log-spot

and the log-strike, m = x0− k = log(S 0/K) the log-moneyness.
The reader can find in Proposition 2.6.1.2 of Chapter 2 Section 2.6 the definition of VegaBS, VommaBS

and UltimaBS which are the first three derivatives of CallBS w.r.t. a volatility parameter.
For (x,T,z) given, the implied Black-Scholes volatility of a price Call(ex,T,ez) is the unique non-

negative parameter σI(x,T,z) such that

CallBS(x,σ2
I (x,T,z)T,z

)
= Call(ex,T,ez). (1.9)

B Bachelier Call price function. We now recall the Bachelier Call price as a function of spot S , total
variance Y and strike Z:

CallBA(S ,Y,Z) =(S −Z)N
(S −Z
√

Y

)
+
√

YN ′
(S −Z
√

Y

)
, (1.10)

which coincides with Call(S ,T,Z) when the volatility in (1.4) is such that xσ(t, x) = Σ(t) and Y =∫ T
0 Σ2(t)dt. The function CallBA is smooth (for Y > 0) and we have:

∂YCallBA(S ,Y,Z) =
1
2
∂2

S 2CallBA(S ,Y,Z) =
1
2
∂2

Z2CallBA(S ,Y,Z).

We frequently use the notation S avg = (S 0 + K)/2 and M = S 0−K for the Bachelier moneyness. Propo-
sition 2.6.2.2 postponed to Chapter 2 Section 2.6 defines the sensitivities of CallBA w.r.t. the volatility
parameter: VegaBA, VommaBA and UltimaBA.

For (S ,T,Z) given, the implied Bachelier volatility of a price Call(S ,T,Z) is the unique non-negative
parameter ΣI(S ,T,Z) such that

CallBA(
S ,Σ2

I (S ,T,Z)T,Z
)

= Call(S ,T,Z). (1.11)

Black-Scholes and Bachelier implied volatilities are compared in [Schachermayer 2008].

1.3 An overview of approximation results

The increasing need in evaluating financial risks at a very global level and in a context of high-frequency
market exchanges is a significant incentive for the computational methods to be efficient in evaluating
the exposure of large portfolio to market fluctuations (VaR computations, sensitivity analysis), in quickly
calibrating the models to the market data. Hence, in the two last decades, many numerical methods have
been developed to meet these objectives: in particular, regarding the option pricing, several approxima-
tion results have been derived, following one or another asymptotic point of view. We give a summary
of these different approaches, stressing the limits of applicability of the methods.
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1.3.1 Large and small strikes, at fixed maturity

The Call price Call(S 0,T,K) as a function of strike is convex and its left/right derivatives are related
to the distribution function of S T [Musiela 2005, Chapter 7]: ∂−KCall(S 0,T,K) = −P(S T ≥ K) and
∂+

KCall(S 0,T,K) = −P(S T > K). Beyond the important fact that the family of Call prices {Call(S 0,T,K) :
K ≥ 0} completely characterizes the marginal distribution of S T , this relation also shows that the tails
of the law of S T are intrinsically related to the decay of Call(S 0,T,K) as K→ +∞. In terms of implicit
volatility, the heuristics is the following: the larger the implied volatility of OTM options, the larger
the right tail of S T . This is similar for small strikes K, using Put options. Lee [Lee 2005] has been
the first one to quantify these features relating the behavior of implied volatility to the tails of S T , with
an encoding of the tails through the existence of positive/negative moments. These are model-free re-
lations, that can be applied to any model with E(S T ) < +∞ and not only to local volatility ones like in
(1.4). The well-known Lee moment formulas write as follows, using the log-variables x0 = log(S 0) and
m = log(S 0/K) = x0− k.

Theorem 1.3.1.1. Define
• the maximal finite positive moment order pR := sup{p ≥ 0 : E(S 1+p

T ) < +∞},
• the maximal finite negative moment order2 pL := sup{p ≥ 0 : E(S −p

T ) < +∞}. Then, the right tail-wing
of the Black-Scholes implied volatility defined in (1.9) is such that

limsup
m→−∞

Tσ2
I (x0,T, x0−m)
|m|

= φ(pR) := βR,

while the left tail-wing is such that

limsup
m→+∞

Tσ2
I (x0,T, x0−m)

m
= φ(pL) := βL,

where φ(x) = 2−4(
√

x2 + x− x) ∈ [0,2].

Proof. We refer to [Lee 2005] for a detailed proof. We only give the two main arguments for proving
the right tail-wing, the left one being similar.
• The first argument relies on a tight connection between moments and asymptotics of Call/Put as
K→ +∞. Indeed, on the one hand, convexity inequalities give (s−K)+ ≤

sp+1

p+1
( p

p+1
)p 1

K p (for p ≥ 0), and
taking the expectation yields

Call(S 0,T,K) ≤
E(S p+1

T )
p + 1

( p
p + 1

)p 1
K p . (1.12)

In other words, the more integrability of S T , the faster the decay of Call(S 0,T,K) as K → +∞. Con-
versely, the Carr formula states that the Call/Put prices form a pricing generating system for any payoff

equal to a difference of convex functions: making this principle particular to the power payoff, we obtain

E(S 1+p
T ) =

∫ ∞

0
p(p + 1)K p−1Call(S 0,T,K)dK, (1.13)

i.e. the faster the decreasing of Call(S 0,T,K) as K→ +∞, the higher the integrability of S T .
• The second argument is based on exponential decreasing behaviors of Call/Put in terms of Black-
Scholes implied volatility, as the log-moneyness m → ±∞. Reparameterizing the implied volatility

21 + pR and pL are respectively called right-tail and left-tail indices.
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σI(x0,T, x0 −m) =
√
β|m|/T with β ∈ (0,2] (β is interpreted as a slope of the total variance per log-

moneyness), we obtain

CallBS(x0,β|m|, x0−m) = S 0N(−
√

f−(β)|m|)−S 0e−mN(−
√

f+(β)|m|)

where f±(β) = 1
β +

β
4 ±1. Then, a direct computation shows a dichotomic behavior related to β:

lim
m→−∞

e−cmCallBS(x0,β|m|, x0−m) = +∞1c> f−(β)/2. (1.14)

Comparing (1.12-1.13-1.14) and setting pR := f−(βR)/2 (or equivalently βR = φ(pR)) yields the tail-wing
formulas. �

Since the original contribution of Lee, several improvements to Theorem 1.3.1.1 have been estab-
lished. For instance, the lim sup can be removed by a simple limit, under the additional assumptions that
S T has a regularly varying density, see [Benaim 2009]. More recently, Gulisashvili [Gulisashvili 2010]
and his co-authors have proved refined expansions of the form

σI(x0,T,k) =

√
2
√

T

[√
log K + log

1
Call(S 0,T,K)

−
1
2

loglog
1

Call(S 0,T,K)

−

√
log

1
Call(S 0,T,K)

−
1
2

loglog
1

Call(S 0,T,K)

]
+ O

((
log

1
Call(S 0,T,K)

)− 1
2
)

as K becomes large, which allows precise asymptotics of σI(x0,T,k) through those of Call(S 0,T,K).
These kinds of asymptotics are now well-known for most of the usual models, like CEV models

(no right tail-wing), Heston model (tail-wing depending on the maturity). . . see [Gulisashvili 2012] for
more references. Different models may have the same strike asymptotics. We can use this information
on extreme strikes in different manners: first, comparing with the asymptotic market implied volatility
smile, it allows for selecting a coherent model. Second, it helps the calibration procedure by setting
approximately some parameter values (those having an impact on the tails). Third, it can be used to
appropriately extrapolate market data.

In practice, these asymptotic formulas refer to far OTM or ITM options, for which the accuracy of
market data is really questionable (large bid-ask spread, low liquidity). Thus, a direct application is
usually not straightforward.

1.3.2 Long maturities, at fixed strike

Another asymptotics is large maturity. It has been studied by Rogers and Tehranchi, see
[Tehranchi 2009] and [Rogers 2010], proving the following.

Theorem 1.3.2.1. Assume that S remains positive with probability 1. Then, for any λ > 0,

limT→+∞ sup|m|≤λ
∣∣∣∣σI(x0,T, x0−m)−

√
8
T | ln(E(S T ∧S 0))|

∣∣∣∣ = 0.

As before, the proof is based on the careful derivation of asymptotics of Black-Scholes formula
(1.7). The above limit states that for strikes in a fixed neighborhood of the spot S 0, the implied volatility

behaves like
√

8
T | ln(E(S T ∧S 0))| for large maturity, and thus it does not depend on the strike. In other

words, the implied volatility surface flattens as maturity becomes large, which is coherent with market
data. There are also some refined and higher order asymptotics: assuming that the a.s. large-time limit
of the martingale S is 0, then

Tσ2
I (x0,T,k) =8| ln(E(S T ∧

K
S 0

))| −4ln(| ln(E(S T ∧
K
S 0

))|) + 4ln(
K
πS 0

) + o(1),

where the reminder is locally uniform in the log-moneneyss m = x0− k.
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1.3.3 Long maturities, with large/small strikes

In view of the preceeding results, the asymptotics of the smile for large maturity becomes very simple
regarding the strike variable, unless one allows the strike to be large/small together with the maturity.
Indeed to recover interesting information at the limit, we should consider strikes of the form K = S 0exT

with x , 0, or equivalently k = x0 + xT . From the linearization of the payoff, one obtains

Call(S 0,T,S 0exT ) = E
(
S T1S T≥S 0exT

)
−S 0exTP(S T ≥ S 0exT )

= S 0P
S
( 1
T

log(S T/S 0) ≥ x
)
−S 0exTP

( 1
T

log(S T/S 0) ≥ x
)

where the new measure PS is the one associated to the numéraire S . Under this form, it appears clearly
that for x large enough (say larger than the asymptotic P-mean or PS -mean of 1

T log(S T/S 0) whenever
it exists), both probabilities above correspond to the evaluation of large deviation events. The role of
Large Deviation Principle satisfied by the sequence ( 1

T log(S T/S 0))T≥0 as T → +∞ has been outlined in
[Forde 2011] in the case of Heston model, and in [Jacquier 2011] for more general affine models. Saddle
point arguments combined with Lewis formula (1.3) have been performed in [Gatheral 2011] for the He-
ston model, to recover the Stochastic Volatility Inspired parameterization of Gatheral [Gatheral 2004]:
the squared implied volatility σ2

I (x0,T, x0 + xT ) has the simple asymptotic shape

σ2
∞(x) =

ω1

2
(
1 +ω2ρx +

√
(ω2x +ρ)2 + 1−ρ2). (1.15)

For more general affine models like Heston model, without or with jumps, or Bates model, or Barndorff-
Nielsen-Shephard model (see [Duffie 2003] and [Jacquier 2011]), it is possible to derive similar limits.
Let Λt(u) = log(E(S u

t )) be the exponent of the moment generating function, which is convex in u: in
the aforementioned model we can define and compute its asymptotic average Λ(u) = limt→∞

1
t Λt(u),

which still satisfies to the convexity feature. We associate its Fenchel-Legendre transform Λ∗(x) =

supu∈R(ux−Λ(u)) and it turns out that ( 1
T log(S T/S 0))T≥0 satisfies a LDP under P (resp. PS ) with rate

function x 7→ Λ∗(x) (resp. x 7→ Λ∗(x)− x).

Theorem 1.3.3.1. Under some assumptions (see [Jacquier 2011]), for any x ∈R, the asymptotic implied
volatility σ∞(x) is given by

lim
T→∞

σI(x0,T, x0 + xT ) =
√

2
[
sgn(Λ′(1)− x)

√
Λ∗(x)− x + sgn(x−Λ′(0))

√
Λ∗(x)

]
.

In the Black-Scholes model with constant volatility σ, one has Λ(u) = σ2

2 (u2 − u), Λ∗(x) = 1
2σ2

(
x +

σ2

2
)2, and we get obviously σ∞(x) =σ. For Heston model, Λ is explicit as well and we finally recover the

SVI parsimonious parameterization (1.15). Here again, different models may have the same asymptotic
smiles, see [Jacquier 2011].

1.3.4 Non large maturities and non extreme strikes

To obtain approximation formulas in that situation, the asymptotics should originate from different
large/small parameters that are rather related to the model and not to the contract characteristics (matu-
rity and strike). These different asymptotics are generally well intuitively interpreted. For the sake of
clarity, we spend time to detail a bit the arguments, in order to make clearer the differences between the
further expansion results and the tools to obtain them. To the best of our knowledge, such comparative
presentation does not exist in the literature and the reader may find it interesting.
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1.3.4.1 Small noise expansion

This is inspired by the Freidlin-Wentzell approach [Freidlin 1998] in which the noise in the Stochastic
Differential Equation of interest is small. Denote by Y the scalar SDE under study (which can be X or S
in our framework), solution of

dYt = µ(t,Yt)dt + ν(t,Yt)dWt, Y0 given. (1.16)

Assume that ν is small, or equivalently that ν becomes εν with ε→ 0: after making this small noise
parameterization, the model writes

dYε
t = µ(t,Yε

t )dt +εν(t,Yε
t )dWt, Yε

0 = Y0.

For ε = 0, it reduces to an ODE

Y0
t = y0,t = Y0 +

∫ t

0
µ(s,y0,s)ds (1.17)

and this deterministic model serves as a zero-order approximation for the further expansion. Under
smooth coefficient assumptions [Freidlin 1998], we can derive a stochastic expansion of Yε in powers of
ε:

Yε
t = y0,t +εY1,t +

1
2
ε2Y2,t + o(ε2). (1.18)

For instance Y1 solves a linear Gaussian SDE

Y1,t =

∫ t

0
∂xµ(s,y0,s)Y1,sds +

∫ t

0
ν(s,y0,s)dWs =

∫ t

0
e
∫ t

s ∂xµ(r,y0,r)drν(s,y0,s)dWs.

Similarly, Y2 solves

Y2,t =

∫ t

0
[∂xµ(s,y0,s)Y2,s +∂2

xµ(s,y0,s)Y2
1,s]ds +

∫ t

0
2∂xν(s,y0,s)Y1,sdWs

=

∫ t

0
e
∫ t

s ∂xµ(r,y0,r)dr(∂2
xµ(s,y0,s)Y2

1,sds + 2∂xν(s,y0,s)Y1,sdWs
)
.

Higher order expansions are available under higher smoothness assumptions. The notation o(ε2) in
(1.18) means that the related error term has a Lp-norm (for any p) that can be neglected compared to ε2

as ε→ 0. The stochastic expansion (1.18) becomes a weak expansion result when we compute E(h(YT ))
for a test function h.

B The case of smooth h. If h is smooth enough, we obviously obtain

E(h(YT )) =h(y0,T ) +εh′(y0,T )E(Y1,T )

+ε2(h′(y0,T )E(
Y2,T

2
) +

1
2

h′′(y0,T )E(Y2
1,T )

)
+ o(ε2).

Observe that E(Y1,T ) = 0 since Y1,T is a Wiener integral. To make the above expansion fully effec-
tive in practice, it is necessary to make the coefficients E(Y2,T ) and E(Y2

1,T ) explicit: this is quite
straightforward thanks to the linear equations solved by Y1,. and Y2,.. The L2-isometry property
of the Wiener integral yields E(Y2

1,t) =
∫ t

0 e2
∫ t

s ∂xµ(r,y0,r)drν2(s,y0,s)ds. In addition, we have E(Y2,t) =∫ t
0 e

∫ t
s ∂xµ(r,y0,r)dr∂2

xµ(s,y0,s)E(Y2
1,s)ds. The coefficients computation is reduced to the evaluation of nested

time-integrals which are simple to compute using standard n-points integral discretization, with a com-
putational complexity3 of order n. The above expansion analysis is a regular perturbation analysis,
using a stochastic analysis point of view.

3Observe that although the time integrals are multidimensional, we are reduced to iterative one-dimensional computations
since the function to integrate is separable in all its variables.
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To derive this expansion in powers of ε, we could alternatively use a PDE point of view based on
Feynman-Kac representation, which states that uε : (t, x) 7→ uε(t, x) =E(h(Yε

T )|Yε
t = x) solves the perturbed

PDE  ∂tuε(t, x) +µ(t, x)∂xuε(t, x) + 1
2ε

2ν2(t, x)∂2
xuε(t, x) = 0 for t < T ,

uε(T, x) = h(x).

Setting Lε = ∂t +µ∂x + 1
2ε

2ν2∂2
x :=L0 +ε2L2, the above PDE writes Lεuε = 0 plus boundary conditions

at time T . Seeking an expansion of the form uε = u0 +εu1 + 1
2ε

2u2 + o(ε2), we obtain

L0u0 +εL0u1 +ε2[
1
2
L0u2 +L2u0] + o(ε2) = 0.

A formal identification of each coefficient of εi (i = 0,1 . . . ) to 0, we obtain a system of PDEs:

L0u0 = 0, L0u1 = 0,
1
2
L0u2 +L2u0 = 0,

with the boundary conditions u0(T, .) = h(.),u1(T, .) = u2(T, .) = 0. The justification of this kind of expan-
sion and its related error analysis can be made under appropriate smoothness assumptions on h, µ and
ν; we refer to [Fleming 1986, Theorem 5.1], [Fournié 1997, Theorem 3.1] or [Fouque 2011, Chapter 4]
where a similar error analysis is made. The PDE solutions are then given by

u0(t, x) = h(yt,x
T ), u1 ≡ 0, u2(t, x) =

∫ T

t
2L2u0(s,yt,x

s )ds

where (yt,x
s )s≥t stands for the solution of the ODE (1.17) with initial condition (t, x). Under this form of

system of PDEs, the derivation of an explicit expression for u2 is not as easy as within the stochastic
analysis approach. However, we can obtain the same expansion (fortunately!), i.e. the same formula for
u2 at (0,Y0):

u2(0,Y0) = h′(y0,T )E(Y2,T ) + h′′(y0,T )E(Y2
1,T ) (1.19)

with E(Y2,T ) and E(Y2
1,T ) given as before. To see this, start from L2 and write u2(t, x) =∫ T

t ν2(s,yt,x
s )∂2

yu0(s,yt,x
s )ds. We have ∂xu0(t, x) = h′(t,yt,x

T )∂xyt,x
T and ∂2

xu0(t, x) = h′(t,yt,x
T )∂2

xyt,x
T +

h′′(t,yt,x
T )(∂xyt,x

T )2. Then to recover (1.19), use the notation y0,t = y0,Y0
t , the flow property yt,y0,t

s = y0,s for
s ≥ t, and the explicit expressions for ∂xyt,x

s and ∂2
xyt,x

s : for instance ∂xyt,x
s = 1 +

∫ s
t ∂xµ(r,yt,x

r )∂xyt,x
r dr =

e
∫ s

t ∂xµ(r,yt,x
r )dr. We skip further details. This completes the PDE approach to derive a regular perturbation

analysis. Observe that the derivation of explicit formula is delicate because of the system of PDEs to
solve (more complicate than solving the system of SDEs arising within the stochastic analysis approach).

B The case of non-smooth h. The previous derivation which involves h′,h′′ and possibly higher deriva-
tives is mathematically incorrect if h is not smooth. This fact is clear using the stochastic analysis
approach. It is also clear using PDE arguments: indeed, it would involve the perturbed PDE solution
(t, x) 7→ E(h(Yε

T )|Yε
t = x), that is not uniformly smooth (because the regularization parameter ε shrinks to

0). If h(x) = 1x≥K (like digital payoff), i.e. we evaluate pε = P(Yε
T ≥ K), and y0,T , K, large deviation

arguments [Azencott 83] show that the probability pε is exponentially close to 0 or 1 w.r.t. 1/ε2 (i.e.
log(pε) ≈ −c/ε2 if y0,T < K), and thus an expansion in power of ε provides zero coefficients at any order.
To get a non degenerate and interesting situation, we should consider the case K is close to y0,T in the
sense K = y0,T +λ ε, that is

pε = P(Yε
T ≥ y0,T +λ ε) = P(

Yε
T − y0,T

ε
≥ λ).
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In other words, to overcome the difficulty of the singularity of h, we have leveraged a homogeniza-
tion argument (singular perturbation), by considering the rescaled variable (usually called fast variable)
Zεt =

Yεt −y0,t
ε = Y1,t +

1
2εY2,t +o(ε). If the law of Y1,T is non degenerate (for instance Gaussian law with non-

zero variance), the latter quantity can be expanded in powers of ε. Actually, for less specific functions
h, Watanabe [Watanabe 1987] has developed a Malliavin calculus-based machinery to establish a gen-
eral expansion result of E(h(ZεT )) in powers of ε, available even for Schwartz distributions h, assuming
stochastic expansions in Malliavin sense of

ZεT = Z0,T +εZ1,T +ε2Z2,T + · · ·+εnZn,T + O(εn+1)

for any n ≥ 1 and asymptotic (in ε) non-degeneracy in Malliavin sense of ZεT :

limsup
ε→0

‖1/det(γZεT )‖p < +∞ (1.20)

for any p ≥ 1, where γZ is the Malliavin covariance matrix of a random variable Z. The Watanabe result
states the existence of random variables (πk)k≥1 such that for any polynomially bounded function h, we
have

E(h(ZεT )) = E(h(Z0,T )) +

n∑
k=1

εkE(h(Z0,T )πk) + O(εn+1), ∀n ≥ 1. (1.21)

Compared to the non-smooth case, the possibility to get an expansion result is due to the non-degeneracy
condition which has a (asymptotic) regularization effect on the non-smooth function h. With our previ-
ous notation ZεT =

YεT−y0,T

ε = Y1,T + 1
2εY2,T + o(ε), the asymptotic non-degeneracy (1.20) implies that the

Gaussian random variable Y1,T has a non-zero variance, i.e.
∫ T

0 e2
∫ T

s ∂xµ(r,y0,r)drν2(s,y0,s)ds > 0: in the
case of time-independent coefficient µ(s,y) = µ(y), ν(s,y) = ν(y), it reads ν(y0,T ) , 0. The converse result
(ν(y0,T ) , 0 implies (1.20)) holds true in the case of time-independent coefficient and in a multidimen-
sional setting, see [Watanabe 1987, Theorem 3.4]. Yoshida [Yoshida 1992b, Theorem 2.2] has weakened
the assumption (1.20) into a localized version allowing degeneracy on a set of polynomially small prob-
ability measure. This approach has been successfully applied to different pricing problems in finance,
mainly by Yoshida, Takahashi and their co-authors: see [Yoshida 1992a, Uchida 2004, Kunitomo 2001]
or the unpublished work [Osajima 2007]. Their methodology consists in expanding the density of the
random variable ZεT =

YεT−y0,T

ε using the Gaussian density as the zero-order term, and then going back
to E(h(Yε

T )) by suitable integration computations. The advantage of this approach is that the expansion
result (1.21) holds in a large generality, provided that we assume infinitely differentiable coefficients and
uniform non degeneracy. However, observe two difficulties or restrictions:

• within usual financial models like Heston model, the required regularity assumption is not satisfied
and we even know that the Malliavin differentiability of high order may fail, see [Alòs 2008].

• the existence of the Malliavin weights (πk)k does not provide an explicit and numerically com-
putable expansion: very involved additional computations are required to obtain explicit formu-
las. One might compare these tricky computations to those necessary to solve the aforementioned
system of PDEs.

Last, this approach usually leads to normal approximations of financial models (Bachelier prices)
whereas log-normal approximations (Black-Scholes prices) might be more accurate (numerical evi-
dences are given in Chapter 2 Section 2.5).

After this presentation of singular perturbation using stochastic analysis, we now turn to the PDE
approach. It has been developed in the financial context by Hagan and co-authors [Hagan 1999,
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Hagan 2002]. To be as close as possible to the quoted work, assume that the drift coefficient is µ ≡ 0. In
the case of Call payoff, the original valuation PDE uε writes ∂tuε(t, x) + 1

2ε
2ν2(t, x)∂2

xuε(t, x) = 0 for t < T ,

uε(T, x) = (x−K)+;

now, if we consider ATM strikes (K−Y0 = O(ε) similarly to before), we should consider the fast variable
y = (x−K)/ε and the rescaled solution vε(t,y) = 1

εuε(t,K +εy) which solves ∂tvε(t,y) + 1
2ν

2(t,K +εy)∂2
yvε(t,y) = 0 for t < T ,

vε(T,y) = y+.
(1.22)

At this stage, the analysis follows the routine similar to before, by seeking a solution under the form

vε = v0 +εv1 + o(ε) (1.23)

solving Lεvε = 0 where Lε = ∂t + 1
2ν

2(t,K + εy)∂2
y = L0 + εL1 + o(ε) with L0 = ∂t + 1

2ν
2(t,K)∂2

y , L1 =

νν′(t,K)y∂2
y . A formal identification leads to a system of PDEs:

L0v0 = 0, v0(T,y) = y+ and L0v1 +L1v0 = 0, v1(T,y) = 0.

The solution v0 is obviously given by the Call price in a Bachelier model (1.10) dXBA
t =

ν(t,K)dWt with time-dependent diffusion coefficient, and the first correction is given by v1(t,y) =

E(
∫ T

t L1v0(s,XBA
s )ds|XBA

t = y). Although the new terminal function h(y) = y+ is not infinitely smooth,
non-zero function ν induces a smoothing effect due to a non-degenerate heat kernel (this feature is anal-
ogous to the previous non-degeneracy in the Malliavin sense): hence, v0 is smooth with derivatives
possibly blowing up as time gets close to T and a careful analysis shows that v1 is well defined too. Here
again, the explicit computation of v1 is not an easy exercise and it requires some tricks. Finally v1 can be
written as the weighted sum of derivatives of v0 (interpreted as Greeks). In Chapter 2 Sections 2.1 and
2.3, we provide a more direct and generic way to compute this kind of correction terms using stochastic
analysis instead of PDE arguments.
Regarding the careful justification of the above PDE regular expansion with error estimates, quite sur-
prisingly we have not been able to find literature references when the terminal condition is non-smooth
(like y 7→ y+). We nevertheless cite the works of Fouque et al. [Fouque 2003, Fouque 2004] in which
error estimates are provided for Call options in the homogenization framework (see below). But these
estimates are obtained at the cost of loss of accuracy during the regularization step of the payoff function.
Once obtained the expansion of vε for a given local volatility function σ(., .) (i.e. ν(t,y) = y σ(t,y)), one
can derive an expansion of the Black-Scholes implied volatility σI by identifying the previous expan-
sion with that in the case (νI(t,y) = y σI): see [Hagan 1999] where the analysis is successfully performed
for time-independent volatility σ(t,y) = σ(y) (or separable function σ(t,y) = σ(y)α(t) by a simple time-
change). It is possible that the case of general time-dependent volatility has been considered out of reach
by the authors of [Hagan 1999, Hagan 2002] using PDE arguments, whereas we will see later how much
stochastic analysis tools are suitable even in the case time-dependent coefficients.

1.3.4.2 Short maturity

In this asymptotics, the terminal time T is small. When one has to evaluate E(h(YT )) for Y solution
of the SDE (1.16) and for h smooth (say infinitely differentiable with bounded derivatives), iterative
applications of Itô’s formula give

E(h(YT )) = h(Y0) +

∫ T

0
E([Lh](t,Yt))dt
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= h(Y0) + T [Lh](0,Y0) +

∫ T

0

∫ t

0
E([L2h](s,Ys))dsdt

where L is the infinitesimal generator associated to Y . Iterating the procedure, we obtain an expansion
in powers of T :

E(h(YT )) =

n∑
k=0

T k

k!
[Lkh](0,Y0) + O(T n+1), n ≥ 0.

The numerical evaluation of such formula is straightforward. We refer the reader to [Kloeden 1995,
Chap. 5] for a more comprehensive exposure of related Itô-Taylor expansions.

As in the case of small noise expansion, the case of non-smooth h requires a different treatment
because Lkh is not defined. For this, we transform the problem of small terminal time with fixed coef-
ficients into a problem of fixed terminal time with small coefficients, by leveraging the scaling property
of the Brownian motion. Actually, having T small is equivalent to replace T by ε2T with ε→ 0: then,
starting from the SDE (1.16), we consider the time-rescaled process (Yε2t)0≤t≤T which has the same
distribution as (Yε

t )0≤t≤T defined as the solution of

dYε
t = ε2µ(ε2t,Yε

t )dt +εν(ε2t,Yε
t )dWt, Yε

0 = Y0, (1.24)

see [Watanabe 1987, p.17]. Observe that this leads to a different parameterization compared to the small
noise case (in particular, the drift coefficient is multiplied by ε2). However the expansion methodology
is similar: in the case of non-smooth function, it is more appropriate to rescale the process by setting
Zεt =

Yεt −y0,t
ε = Y1,t + 1

2εY2,t + o(ε), where

Y1,t = ∂εYε
t |ε=0 = ν(0,Y0)Wt,

Y2,t = ∂2
εY

ε
t |ε=0 = 2µ(0,Y0)t + 2∂yν(0,Y0)

∫ t

0
Y1,sdWs

= 2µ(0,Y0)t +∂yν(0,Y0)ν(0,Y0)(W2
t − t).

Once the fast variable is selected, observe that we are reduced to a regular perturbation problem, that
can be handled using stochastic analysis tools (namely Watanabe approach [Watanabe 1987]) or using
PDE tools. We skip details since it is similar to what have been presented before. See also the book by
Henry-Labordère [Henry-Labordère 2008], where short-time asymptotics of density functions are de-
rived through geometry considerations or the work of Gatheral et al. [Gatheral 2012] where the authors
obtain approximations of European Call option prices and of implied volatilities for small maturities in
local volatility models.

Parametrix approach and Fourier methods. We also mention the so called parametrix approach of
Pascucci et al. [Corielli 2010] based on PDE tools and heat kernel expansions. The method consists
in decomposing the density of the underlying process as a series of time iterated integrals of heat ker-
nels. Then the authors propose an approximation of the density by truncating the series and performing
approximations in short maturity framework. That leads to explicit results which are accurate if the
maturity T is small.
In [Pagliarani 2011], Pascucci and Pagliarani revisit the work of Hagan and Woodward [Hagan 1999] to
derive an expansion of the transition density in local volatility models in the context of small maturity.
Pascucci, Pagliarani et al. extend the framework to local volatility-Lévy jumps models
[Pagliarani 2013b] and local-stochastic volatility with Lévy jumps [Pagliarani 2013a] and provide ex-
pansions of the characteristic function. Pricing formulas are obtained using Fourier methods. We also
mention the recent work of Lorig, Pascucci and Pagliarani [Lorig 2013b] in which the authors provide
a general explicit approximation formula based on Taylor expansions at any order and in any dimension
for local and stochastic volatility models.
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1.3.4.3 Fast volatility

Since the end of the nineties, another popular approximation approach has been developed by Fouque,
Papanicolaou and Sircar, see [Papanicolaou 1999, Fouque 2000]. It emphasizes that the asset volatility
(σt)t≥0 has usually slow variations compared to the variations of the asset itself (multiscale modeling).
This is achieved in two different ways.

• Either the natural time scale of stochastic volatility is short, which leads to a model of the
form (1.24) for (σt)t, while the asset dynamics is unchanged. Thus, at order zero, we obtain a
Black-Scholes model with a constant volatility equal to the initial stochastic volatility σ0, see
[Papanicolaou 1999, Section 2].

• Or the fluctuations of the stochastic volatility (σt)t are so fast that they give the appearance of a
constant (in time) volatility, when considered at a longer time scale. This second point of view has
been much developed by Fouque, Papanicolaou and Sircar and their co-authors, in many respects,
and this is presented below.

As an illustration of their methodology, we consider the asset model dS t = S tσtdWt and an Ornstein-
Uhlenbeck process for modeling (σt = f (Σt))t with

dΣt =
1
ε

(Σ∞−Σt)dt + v

√
2
ε

dBt.

For instance in the Scott model [Scott 1987], f (x) = ex and (W,B) is a standard bi-dimensional correlated
Brownian motion (d〈W,B〉t = ρdt). As time goes to infinity, the random variable Σt weakly converges

to the stationary Gaussian distribution with mean Σ∞ and variance (v
√

2
ε )2/(2 1

ε ) = v2. In other words,
although the fluctuations are fast (the characteristic time being ε), the distribution remains the same (at
least for time larger than ε). It allows the application of ergodic theorem to obtain large-time asymptotics
of integrals of the realized volatility: for any polynomially bounded function Ψ, we have

lim
T→+∞

1
T

∫ T

0
Ψ(σs)ds =

∫
R

Ψ(ey)
1
√

2πv2
e−(y−Σ∞)2/(2v2)dy := σ2

BS

in the almost sure sense and in the L1-sense. For Ψ(y) = y2, we obtain a constant large-time approxi-
mation of 1

T

∫ T
0 σ2

sds to be used as a zero-order approximation in a Black-Scholes formula. To derive
correction terms, the authors employ singular pertubation PDE techniques: indeed, the price function
uε(t, x,y) = E(h(S T )|S t = x,Σt = y) solves Lεuε = 0 with

Lε = ∂t +
1
2

x2 f 2(y)∂2
xx +

√
2
ε
ρvx f (y)∂2

xy +
1
ε

(v2∂2
y + (Σ∞− y)∂y)

:=L0 +
1
√
ε
L1 +

1
ε
L2.

As in the previous approaches, by decomposing uε in powers of
√
ε and by gathering the contributions

of the same order, we obtain a system of PDEs characterizing the main order term and the correction
terms. Actually the analysis is quite intricate because one has to take into account the ergodic property
of σ (which leads to solving elliptic PDEs of the form of Poisson equation): see [Fouque 2000, Chapter
5] where the error analysis is made for smooth payoffs and [Fouque 2003] for the Call options case. The
final approximation pricing formula writes

E(S T −K)+ = CallBS(log(S 0),Tσ2
BS , log(K))
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+
√
ε× linear combination of ∂i

S iCallBS(log(S 0),Tσ2
BS , log(K)) for i = 2,3 + . . .

with some explicit coefficients as the factors for the Greeks. Consequently, the approximation formula
is straightforward to evaluate on a computer since Black-Scholes price and Greeks are known in closed
form and available in any pricing software. In this analysis and similarly to any PDE approaches,
assuming time homogeneous coefficients simplifies much the derivation of explicit formula. In the
context of fast volatility, some extensions are possible, see [Fouque 2004].

1.3.4.4 Proxy expansion

We complete our overview section by presenting a different point of view, which is going to be developed
further in the next Chapters of the thesis. As a difference with previous works, this is rather a non-
asymptotic approach, relying on the a priori knowledge of proxy of the model to handle; for this reason,
it may appear as more understandable and more intuitive for practioners. Consider the model (1.4) on
S :

dS t = S tσ(t,S t)dWt,

and assume that by expertise, S behaves closely to a Gaussian model, i.e. the fluctuations of S tσ(t,S t)
are small. Then, it is reasonable to take the Bachelier model S P with parameter (Σt = S 0σ(t,S 0))t as a
proxy, that is

dS P
t = ΣtdWt, S P

0 = S 0. (Normal Proxy)

The Call price in S model should be close to that in the proxy; since this approximation may be too
crude, it is recommended to add correction terms.
Alternatively, one could guess that S rather behaves as a log-normal model with parameter (at)t, i.e.
X = log(S ) may be approximated by

dXP
t = −

1
2

a2
t dt + atdWt, XP

0 = x0. (Log-Normal Proxy)

The proxy volatility may be taken to at = a(t, x0) = σ(t,S 0) for instance, but another point could be cho-
sen (for instance, the strike K or the mid-point (K + S 0)/2). This description does not put an emphasize
on a specific asymptotic, but one has to quantify how S tσ(t,Xt) ≈ Σt or a(t,Xt) ≈ at.

To compute correction terms to the relation E(S T −K)+ ≈ E(S P
T −K)+ or E(eXP

T −K)+, it is necessary
to derive a convenient representation of the distance to the proxy S T − S P

T or XT − XP
T . The linear

interpolation Xη
T = XP

T + η(XT − XP
T ) does not lead to illuminating computations. It is much better to

consider the following interpolation: for η ∈ [0,1], define

dXη
t = η(−

1
2

a2(t,Xη
t )dt + a(t,Xη

t )dWt), Xη
0 = x0. (1.25)

Note that η is not a small parameter but an interpolation parameter. Observe also that this parameteriza-
tion is different from that in small time or small noise asymptotics.

A direct computation shows that X1
t = Xt, X0

t = x0 and ∂ηXη
t |η=0 =

∫ t
0 a(s, x0)[dWs −

1
2 a(s, x0)ds]:

this shows that Xt −XP
t = X1

t − (X0
t + ∂ηXη

t |η=0) writes as a Taylor formula at order 1. Thus, the natural
candidate for the first contribution in Xt −XP

t is 1
2∂

2
ηXη

t |η=0. The above interpolation is equivalent to

dX̂η
t = −

1
2

a2(t, x0 +η(X̂η
t − x0))dt + a(t, x0 +η(X̂η

t − x0))dWt, X̂η
0 = x0, (1.26)

which is related to Xη
t by the relation Xη

t = x0 + η(X̂η
t − x0). We refer the reader to Chapter 4 for a

discussion on the choice of the proxy process and of the parameterization to link the initial process and
its proxy.
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1.3.5 Asymptotic expansion versus non-asymptotic expansion

Deriving an asymptotic expansion sheds the light on the crucial role of one model parameter compared
to the other ones, to explain and approximate the option prices: for instance, in small noise expansion,
we focus only on the volatility by putting an ε in front of the dW-term, and so on. It finally leads to a
generic expansion of the form

uε = u0 +εu1 +
1
2
ε2u2 + . . . (1.27)

or in powers of
√
ε in the fast volatility framework. Our previous discussion has shown how this ex-

pansion is obtained in a Markovian framework using PDE (regular or singular pertubations), or more
generally using Malliavin calculus (Watanabe approach).

Actually, it is important to observe that writing such an expansion implicitly means that apart of the
parameter related to ε, the other parameters have no important asymptotics for the problem under con-
sideration. Below we consider a simple toy example to show that there might be a competition between
all the model parameters, and moreover there is a necessary trade-off with the payoff regularity. In other
words, deriving (1.27) does not necessarily mean that the first order approximation u0 + εu1 is really
accurate and taking more terms do not necessarily improve the accuracy, because of the possible cru-
cial influence of other large or small parameters. Our toy example is the following perturbed Brownian
model:

Xε
1 = σW1 +

√
εB1

where (W,B) is a two-dimensional Brownian motion, and σ is positive. This toy model can be viewed
as the simplest way to perturb a volatility model (we could have taken B = W without changing the
conclusion of the discussion below) and thus, it is quite realistic compared to the further situations to
handle.

1. Case h(x) = 1 + x2. We have E[h(Xε
1)] = 1 +σ2 +ε = E[h(X0

1)] +ε.

2. Case h(x) = 1 + x+. By a scaling argument, we have:

E[h(Xε
1)] = 1 +

√
σ2 +εE[(W1)+] =E[h(X0

1)] +
1
2
ε

σ
E[(W1)+] + O(

ε2

σ3 ).

3. Case h(x) = 1x≤x0 . We have:

E[h(Xε
1)] =N

(
x0

√
σ2 +ε

)
=N

( x0

σ

)
−N ′

( x0

σ

) x0

σ

ε

2σ2 + O(
ε2

σ4 ).

These simple computations show that the expansion order depends on the relative magnitude of ε and
σ, and also on the regularity of the function h. For instance, if σ is also small, say ε = σ3→ 0, then the
expansion order w.r.t. σ in the case (1), (2), (3) is respectively equal to 3, 2 and 1. These subtleties do
not appear in the expansions (1.21) of Watanabe type or (1.23) of PDE type, because the focus is made
only on a single small parameter ε.

It means that in some situations, asymptotic expansions may be misleading or may not give the
best possible approximations; then, we should take into account the influence of all (or many) model
parameters. In the context of fast volatility, multi-scale modeling and its related asymptotic analysis are
very recently developed in [Fouque 2011, Chapter 4]; see also [Kevorkian 1985, Chapter 3 and Section
4.4].

In the sequel of this thesis, we consider non asymptotic expansions, mainly for local volatility models
(except in Part II of the thesis where the case of model combining local and stochastic volatility is
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investiguated), and analyse the approximation error taking into account several parameters at the same
time, in order to determine in which extent they play complementary or opposite roles. For instance, it
is informative to see the simultaneous influences of maturity, of volatility amplitude or of derivatives of
volatility function on the option prices. Their impacts depend on the payoff smoothness: the accuracy is
expected to be improved for smooth payoff compared to non-smooth payoffs.

Final considerations. After this (hopefully complete) overview, the reader may wonder what is the
best approximation method among those presented. Of course, it depends on the required accuracy and
the computational time allowed for the numerical evaluation. From this point of view, all methods are
not equivalent. The choice of relevant asymptotics/approximations guarantees to catch the main features
of the pricing problem, and as a consequence, it will likely lead to an expansion of low order to achieve a
good accuracy (with low computational time or complexity). In these respects, the proxy expansion has
immediate advantages: the better or the more intuitive the proxy, the smaller the number of correction
terms.

One should also take care of the preservation of some model properties in the approximation.

• One of them is the martingale property of S = eX (serving as a base for Call/Put parity relation).
For instance, a small noise approximation of X defined in (1.5) does not maintain the martingale
property since the volatility coefficient is scaled by ε while the drift remains unchanged: as a
result, the final approximation may suffer from numerical arbitrage. On the contrary the tran-
sition density approximations provided in [Pagliarani 2011] integrate to one, thus avoiding the
introduction of arbitrage opportunities.

• Another property is positivity of S . Taking a Normal Proxy for S may give wrong results if
the values of S close to 0 have a prominent role in the computation of E(h(S T )) (for instance,
Call/Put with small strikes). The inadequacy of the Normal Proxy is also widely examined in
[Pagliarani 2011].

These kinds of consideration may help to choose between different methods, with the additional help of
comparative numerical tests.

1.4 Structure of thesis and main results

The thesis contains four Parts which deal with different problematics and models:

• The Part I provides new expansion formulas for the local volatility models for vanilla products
and introduces new results concerning the pricing of forward start options.

• The Part II deals with the analytical approximation of vanilla prices in models combining both
local and stochastic volatility (Heston type).

• The Part III covers the pricing of regular barrier options.

• The Part IV gives a new methodology for the efficient weak analytical approximation of multidi-
mensional diffusions.

B Part I. This Part is divided into three chapters. Chapter 2 deals with local volatility models (see
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Equations (1.4)-(1.5)) and the aim is to revisit the Proxy principle and to provide new analytical ap-
proximations for Call options and the delta of the options which is defined as the first sensitivity w.r.t.
the spot S 0:

δ = ∂S 0Call(S 0,T,K) = ∂S 0E(S T −K)+.

As seen in Subsection 1.3 of this Chapter, the literature on this subject is very profuse. Using the
Proxy principle presented in Subsection 1.3.4.4, which seems to us to be an intuitive methodology and
providing very accurate results, we develop new approximation formulas. We show that for the pricing
of Call options in local volatility models, a good proxy is to consider Gaussian models with the local
volatility frozen at mid-point between the strike and the spot:

dXP
t =−

1
2

a2(t, log(
√

S 0K)
)
dt + a

(
t, log(

√
S 0K)

)
dWt, XP

0 = x0 (Log-Normal Proxy),

dS P
t =Σ

(
t,

S 0 + K
2

)
dWt, S P

0 = S 0. (Normal Proxy),

and that efficient approximations of the Call option are given by:

E(S T −K)+ =


E(eXP

T −K)+ +

6∑
i=1

ηi
(
a; log(

√
S 0K)

)T
0 ∂

i
xi

0
E(eXP

T −K)+ + ErrorLN,

E(S P
T −K)+ +

6∑
i=1

ζi
(
Σ;

S 0 + K
2

)T
0 ∂

i
S i

0
E(S P

T −K)+ + ErrorN,

where:

• the weights η (respectively ζ) in front of the Greeks w.r.t. the log-spot (respectively the spot) are
multiple time-integrals of a

(
., log(

√
S 0K)

)
and its spatial derivatives (respectively Σ(., S 0+K

2 )).

• ErrorLN (respectively ErrorN) is an error term estimated w.r.t. the magnitude of a (respectively
Σ) and its derivatives as well the maturity T . Basically if we denote by M(a) a control on a
and its derivatives, ErrorLN is of order

(
M(a)

√
T
)m with m = 3 (order 2 expansion) or 4 (order 3

expansion).

These new results are resumed in Theorems 2.1.3.2 and 2.3.2.1. To obtain more tractable (and hope-
fully more accurate) formulas, we also provide expansions of the implied volatility (of type Black-
Scholes or Bachelier, see (1.9)-(1.11)) to say that the price approximation is simply a Black-Scholes
(or Bachelier) Call price with a suitable volatility parameter. For example with the Log-Normal Proxy,
our implied volatility expansions read as polynomials of order one or two w.r.t. the log-moneyness
log

( S 0
K
)

with an error of order 3 or 4 (see Theorems 2.1.4.1-2.3.3.1). In addition we give approxima-
tions of the option delta (see Theorems 2.4.0.2-2.4.0.3 ). We prove throughout many numerical exper-
iments the extreme accuracy of our formulas, greatly improving the previous expansions (developed in
[Benhamou 2010a]) with the local volatility at spot and outperforming standard approximations given by
Hagan [Hagan 1999] and Henry-Labordère [Henry-Labordère 2008]. That confirms the duality played
by the variables spot and strike and that there is a theoretical (symmetric formulas with sometimes some
reductions) as well a practical (extreme accuracy) interest to use the local volatility at mid-point.
We also propose an alternative technique of proof to derive the formulas based on arguments mixing Itô
calculus and PDE tools instead of a pure stochastic analysis point of view. We compare the different
approaches and give early stages for a third method involving only PDE arguments in Section 2.2.
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In Chapter 3, we focus on the pricing of a forward start option, which can be view as a forward on
an option. More precisely, if ti > 0 denotes the forward date and ti +T with T > 0 the expiration date, we
are interesting by the accurate numerical evaluation of: CallFS,A(S 0, ti,T,K) = E[(

S ti+T

S ti
−K)+] = E[(eXti+T−Xti − ek)+],

CallFS,B(S 0, ti,T,K) = E[(S ti+T −S ti K)+] = E[(eXti+T − ek+Xti )+],

where S is the solution assumed to be positive of the stochastic diffusion equation (1.4) and X = log(S )
(see (1.5)). For (x0, ti,T,k) given, the forward implied Black-Scholes volatilities of type A and B are the
unique non-negative parameters σI,F,A(x0, ti,T,k) and σI,F,B(x0, ti,T,k) such that: CallFS,A(ex0 , ti,T,ek) = CallBS(0,σ2

I,F,A(x0, ti,T,k)T,k),
CallFS,B(ex0 , ti,T,ek) = CallBS(x0,σ

2
I,F,B(x0, ti,T,k)T, x0 + k).

Using a conditioning argument and the results of vanilla implied volatility expansions developed in
Chapter 2, we express the price of the forward start option of type A as an expectation of the Black-
Scholes price function with a volatility depending on the local volatility function frozen at some stochas-
tic point involving Xti , plus an error. Then we provide forward implied volatility of type A approxima-
tions by performing a volatility expansion to freeze the local volatility function at some deterministic
point. The results are obtained under a uniform (w.r.t. time and space variables) ellipticity condition:
inf(t,x)∈[0,T ]×R a(t, x) > 0 . Forward implied volatility of type B approximations are obtained employing
a change of probability measure argument. Numerical results confirm the very good accuracy of the
developed approximation formulas.

In Chapter 4 which concludes this Part, we discuss and give insight about two essential facts in the
Proxy Principle: the choice of the parameterization to link the initial and the Proxy processes, and the
choice of the Proxy process. All parameterizations and approaches are not equivalent and even if they
can lead to the same result, the difficulty in the intermediate calculations and the required assumptions
can be quite different. We illustrate this fact with some examples and we notably show how to consider
a Log-Normal proxy with a direct suitable parameterization of the initial process S itself rather than its
logarithm X (see Theorem 4.2.0.2).
The choice of the Proxy process is also crucial and relies both on the initial process and on the practi-
tioner intuition. So far, only zero order Proxy processes have been studied (Normal or Log-normal), i.e.
capturing the behaviour of the local volatility only throughout its value at a specific spatial point. Order
one Proxy processes can be considered by incorporating the knowledge of the skew (i.e. the first deriva-
tive of the local volatility frozen at some suitable point) in their dynamic. The most natural surrogate is
probably the following Displaced Log-Normal process in the time-homogeneous framework:

dS P
t = [Σ(S 0) +Σ(1)(S 0)(S P

t −S 0)]dWt, S P
0 = S 0. (1.28)

We give means to link S and S P using an appropriate transformation of the model and we provide in
Theorem 4.3.0.3 2nd and 3rd Call options approximations using the Displaced Log-Normal Proxy S P.
Interestingly, the obtained expansions contain less terms than those using zero order Proxy processes
and consequently seem more tractable. We also show with some numerical tests how this approach
looks promising.

B Part II. This Part contains two chapters. In Chapter 5 we focus on models combining both

local and stochastic volatility:

dXt = σ(t,Xt)
√

VtdWt −
1
2
σ2(t,Xt)Vtdt, X0 = x0, (1.29)
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dVt = αtdt + ξt
√

VtdBt, V0 = v0, (1.30)

d〈W,B〉t = ρtdt.

where:

• Xt is the logarithm of the asset price,

• Vt is the stochastic variance modelled with a square-root process,

• v0 is the initial square of volatility,

• α is the drift parameter of the stochastic variance,

• ξ is the volatility of volatility,

• ρ is the correlation.

Notice that the general form of the local volatility allows (owing to a suitable space-change) to cover
the case of a CIR process for the stochastic variance dVt = κt(θt −Vt)dt + ξt

√
VtdBt where κ is the mean

reversion parameter and θ the long-term variance level. In this Chapter we aim at:

• providing an accurate analytical approximation of non only Call-Put options but also all vanilla
options (depending on XT ) writing as E[h(XT )] with h a Lipschitz bounded payoff function,

• valid for both short and long maturities and covering general local volatility functions, non-null
correlation as well time-dependent parameters,

• achieving a computational time close to zero on the contrary to very time consuming Monte Carlo
simulations,

• providing a complete mathematical justification.

To achieve this we use as Proxy the time-dependent Black-Scholes model obtained by vanishing the
volatility of volatility and by freezing spatially the local volatility at x0:

dXP
t =σ(t, x0)

√
vtdWt −

1
2
σ2(t, x0)vtdt,

vt =v0 +

∫ t

0
αsds.

To link the initial process (1.29)-(1.30) with the above proxy process, we introduce a two-dimensional
parameterized process given by:

dXη
t =σ(t,ηXη

t + (1−η)x0)
√

Vη
t dWt −

1
2
σ2(t,ηXη

t + (1−η)x0)Vη
t dt, Xη

0 = x0,

dVη
t =αtdt +ηξt

√
Vη

t dBt, v0,

where η is an interpolation parameter lying in the range [0,1], such that for η = 1, X1
t = Xt and V1

t = Vt,
and for η = 0, X0

t = XP
t and V0

t = vt. The derivation of an expansion and its justification is far from
straightforward due to the irregularity of the square root coefficient in the stochastic variance (1.30) and
due to the function h supposed to be only Lipschitz. In spite of the inspiration by [Benhamou 2010a], the
mathematical analysis must be quite different since the model (1.29)-(1.30) is not smooth in the Malli-
avin sense (because of the square-root process, see [Alòs 2008, De Marco 2011]). We briefly explain
how we overcome this major problem: we use Malliavin calculus for a suitably perturbed payoff hδ and a
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suitably perturbed random variable X̄T . We consider the Gaussian regularization hδ(x) := E[h(x+δWT )]
for an independent Brownian motion W and a small parameter δ > 0 suitably fixed. Then write the
decomposition:

E[h(XT )] ≈ E[hδ(X̄T )] ≈ E[hδ(XP
T )] +E[h′δ(X

P
T )(X̄T −XP

T )] + . . .

i) Since h is Lipschitz, the first approximation is easily justified if δ is small enough and if XT and
X̄T are close enough in Lp-sense.

ii) The last expectation is computed (eventually up to an error) using the Malliavin calculus and can
be expressed as a linear combination of sensitivities in the Proxy model.

iii) The hard part of the analysis is related to the global error control, which enlightens the right choice
of δ and X̄T . To account for non-smooth payoffs we use an integration by parts formula, which
relies on the non-degeneracy of the interpolated random variable Xλ := λX̄T + (1−λ)XP

T (for any
fixed λ ∈]0,1[). This excludes to take X̄T = XT that is not sufficiently Malliavin differentiable.
Alternatively, we select a X̄T ∈D

∞ which on the one hand, is close enough to XT in Lp, and which
on the other hand, is such that Xλ is uniformly non-degenerate or at least non-degenerate with high
probability under the sole assumption

∫ T
0 σ2(t, x0)vtdt > 0 (which reads as a pointwise ellipticity

assumption). By construction, X̄T is potentially not uniformly non-degenerate what does not allow
the use of an integration by parts formula. To handle this last problem we use a splitting noise
property by writing hδ(x) = E[hδ/

√
2(x + δW T

2
)]. Thus Xλ + δW T

2
is uniformly non-degenerate and

we can obtain nice estimates provided that δ is not too small.

A precise tuning of δ and a construction of X̄T are possible without loss of accuracy in the regularization
step and the final approximation formula (see Theorem 5.2.2.1) takes the form of an explicit Gaussian
representation under a local non-degeneracy condition:

E[h(XT )] = E[h(XP
T )] +

6∑
i=1

ηi,T∂
i
xi

0
E[h(XP

T )] + Error3,h,

where:

• ηi,T are integral operators depending on (∂ j
x jσ(., x0)) j∈{0,1,2}, ρ., ξ., v. and T ,

• the error is estimated as Error3,h =O
(
LhM(σ)[M(σ)+ξsup]3T 2) where Lh is the Lipschitz constant

associated to h and M(σ) denotes a control on σ and its derivatives. This reads as a multi-
parameter estimate.

From the price expansion formula, we also derive for the particular case of Call options (for which
the results are valid owing to the Call/Put parity) an expansion of the implied volatility with the local
volatility frozen at mid-point (see Theorems 5.4.2.1):

E[(eXT − ek)+] =CallBS(x0, σ̃
2
3,IT,k) + ErrorI

3,

where:

• σ̃3,I = π0,T +π1,T (x0− k) +π2,T (x0− k)2,

• πi,T are integral operators depending on (∂ j
x jσ(., x0+k

2 )) j∈{0,1,2}, ρ., ξ., v. and T ,

• ErrorI
3 = O

(
ekM(σ)[M(σ) + ξsup]3T 2).
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Numerical experiments show that our formulas, in addition to be computable in quasi real-time, present
an accuracy turning out to be excellent.

In Chapter 6, we provide numerical results concerning the smile and the skew behaviors in the
CEV-Heston model. We notably study the impact of the volatility of volatility, the correlation and the
skew parameter of the CEV part on the implied volatility represented as a function of the log-moneyness
and the maturity.

B Part III. In Chapter 7, we look at the efficient price approximation of regular down Bar-
rier options, price which can be written as:

E[h(XT )1 inf
t∈[0,T ]

Xt > b] = E[h(XT )1τb>T ],

where:

• X is the log-asset process solution to Xt = x0 +
∫ t

0 σ(s,Xs)(dWs−
σ(s,Xs)

2 ds),

• b < x0 is the level of the barrier,

• h is a locally Lipschitz payoff function such that h(x) = 0, ∀x ≤ b,

• τb = inf{t > 0 : Xt = b} is the first hitting time of the level b for the process X.

As usual we use a Gaussian proxy process (XP
t )t∈[0,T ] obtained by freezing the space variable in the

function σ:

XP
t = x0 +

∫ t

0
σ(s, x0)(dWs−

σ(s, x0)
2

ds),

and we introduce τP
b = inf{t > 0 : XP

t = b} the first hitting time of the level b for XP. At first glance we
replace the unknown joint law of (XT , inf

t∈[0,T ]
Xt) by that of (XP

T , inf
t∈[0,T ]

XP
t ) fully specified and to derive

corrective terms, we represent the error E[h(XT )1τb>T ]−E[h(XP
T )1τP

b>T ] using the PDE associated to the
Proxy:

vP,h
o,T (t, x) = E[h(XP

T )1 inf
s∈[t,T ]

XP
s > b|X

P
t = x].

Under an intermediate ellipticity condition (uniform in the time variable for x = x0): inft∈[0,T ]σ(t, x0) >
0 , vP,h

o,T ∈ C
∞([0,T [×[b,+∞[) and is the explicit solution of the Cauchy-Dirichlet problem:

∂tv
P,h
o,T (t, x) +

1
2
σ2(t, x0)(∂2

x2 −∂x)vP,h
o,T (t, x) = 0, (t, x) ∈ [0,T [×[b,+∞[,

vP,h
o,T (t,b) = 0, t ∈ [0,T ],

vP,h
o,T (T, x) = h(x), x ∈]b,+∞[.

Then using the regularity of the payoff, the ellipticity assumption, the Itô’s formula for vP,h
o,T (T ∧τb,XT∧τb)

and simplifications coming from the above PDE, we establish a Robustness-type formula:

E[ h(XT )1τb>T︸        ︷︷        ︸
=vP,h

o,T (T∧τb,XT∧τb )

] =E[h(XP
T )1τP

b>T ]︸            ︷︷            ︸
=vP,h

o,T (0,x0)

+
1
2
E
[∫ T∧τb

0
[σ2(t,Xt)−σ2(t, x0)](∂2

x2 −∂x)vP,h
o,T (t,Xt)dt

]
.
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Then combining expansions of σ, nested Robustness fomulas, Itô calculus, PDE arguments, martingale
properties

(
(∂n

xnvP,h
o,T (t∧ τP

b ,X
P
t∧τP

b
))t∈[0,T [ is a martingale for any integer n

)
and convolution of densities,

we finally derive analytical price approximations writing as:

E[h(XT )1τb>T ] =E[h(XP
T )1τP

b>T ] +
∑

i

ηi(σ; x0)T
0 ∂

i
xiv

P,h
o,T (0, x)|x=x0

−
∑

i

E
[
1τP

b≤Tηi(σ; x0)T
τP

b
∂i

xiv
P,h
o,T (τP

b , x)|x=b
]
+ Errorh,b,

where:

• ηi(σ; x0)t
s are integral operators between the dates s ≤ t belonging to [0,T ] and depending on

(∂ j
x jσ(., x0)) j∈{0,1,2}. Notice that if x0 = b, all the corrective terms vanish what is coherent with the

fact that E[h(XT )1τb>T ] = 0.

• Errorh,b = O
(
[M(σ)

√
T ] j) with j = 3 (order 2 expansion, see Theorem 7.2.2.1) or j = 4 (order 3

expansion, see Theorem 7.2.3.1).

Besides, we provide some corollaries related to the particular case of Barrier Call options pricing. First
we derive expansion formulas with the local volatility at mid-point between the strike and the spot (see
Theorem 7.5.2.1). Second if all the expansion coefficients remain explicit up to a numerical integration
of the terms written as an expectation involving τP

b , we show that if σ is time-independent, we get very
simple formulas involving only Gaussian cumulative and density functions owing to nice convolution
properties of densities (see Proposition 7.5.3.1). Last but not least we give numerical examples of the
excellent accuracy of our approximation formulas.

B Part IV. In this Part which contains two Chapters, we are interesting by the weak approxima-

tions and the efficient calculations in multidimensional diffusions in a quite general framework. Our
goal is to provide a generic methodology applicable to a large class of terminal functions in order
to broaden the scope of application beyond financial mathematics. We introduce in Chapter 8 a new
method called Stochastic Approximation Finite Elements (SAFE for short) which combines the use
of a Gaussian proxy to approximate the law of a multidimensional diffusion and a local interpolation
of the terminal function applied to the diffusion using Finite Elements. More formally, considering for
d ≥ 1 a d-dimensional stochastic differential equation (SDE) defined by:

Xt = x0 +

q∑
j=1

∫ t

0
σ j(s,Xs)dW j

s +

∫ t

0
b(s,Xs)ds,

where (Wt)t≥0 is a standard Brownian motion in Rq, σ is a d×q matrix and b is a d-dimensional vector,
we aim at providing an analytical approximation of

E[h(XT )],

for a given function h, at least Lipschitz continuous. As usual we begin with an approximation of the law
of X by considering the Gaussian proxy process obtained by freezing at x = x0 the diffusion coefficients:

XP
t = x0 +

q∑
j=1

∫ t

0
σ j(s, x0)dW j

s +

∫ t

0
b(s, x0)ds.



1.4. Structure of thesis and main results 25

Adapting the stochastic tools developed in the previous Parts of the thesis to the multidimensional case,
we derive a weak approximation in the form (see Theorem 8.2.1.1):

E[h(XT )] ≈ E[h(XP
T )] +

∑
|α|≤3

wα,T∂
|α|
εα1 ...εα|α|

(
E[h(XP

T + ε)]
)∣∣∣
ε=0,

where α ∈ {1, . . . ,d}|α| is a multi-index and wα,T are weights depending explicitly on the SDE coefficients.
Most of the time, although the law of XP

T is known, the explicit calculus of the main term E[h(XP
T )] and of

the sensitivities ∂|α|εα1 ...εα|α|

(
E[h(XP

T +ε)]
)∣∣∣
ε=0 is not possible due to the general form of h. However a simple

expectation form can be derived for straightforward Monte Carlo simulations (see Theorem 8.2.1.2)
always faster than Monte Carlo simulations on the initial diffusion owing to the lack of discretization
for the proxy simulation. The idea is to use the Malliavin calculus to express the sensitivities as an
expectation of h(XP

T ) weighted with an explicit random variable. One has for an explicit Malliavin
weightW:

E[h(XP
T )] +

∑
|α|≤3

wα,T∂
|α|
εα1 ...εα|α|

(
E[h(XP

T + ε)]
)∣∣∣
ε=0 = E

[
h(XP

T )
(
1 +W

)]
.

To obtain fully analytical formulas, an other ingredient is needed: we suitably approximate the function
h. Using interpolations based on Finite Elements, we get the final structure of approximation:

E[h(XT )] ≈ E[ĥ(XP
T )] +

∑
|α|≤3

wα,T∂
|α|
εα1 ...εα|α|

(
E[ĥ(XP

T + ε)]
)∣∣∣
ε=0,

where ĥ denotes the resulting interpolation of h (based on multilinear or multi-quadratic Finite Elements
of type Lagrange, see Theorems 8.2.2.1 and 8.2.4.1). The interpolation procedure is done in such a
way (ĥ is build depending on the law of XP

T ) that the calculus of the above expectations becomes fully
explicit with very simple formulas involving the one-dimensional Gaussian cumulative function and
its derivatives. We also provide an accuracy analysis (see Theorems 8.2.2.2-8.2.3.1) according to the
h-regularity and show how tune the interpolation parameters (size of the grid, grid mesh) to obtain a
global error of order at most equal to:

E = [M(σ,b)
√

T ]3,

whereM(σ,b) denotes a control on the diffusion coefficients. We finally give estimates of the complexity
of our methodology (see Corollaries 8.2.3.1-8.2.4.1) and show an improved efficiency in comparison to
Monte Carlo simulations in small and medium dimensions (up to 10). The theoretical performance of
our algorithm is confirmed throughout various numerical experiments. For high dimensions (from 20 to
100) we also show the efficiency of the Monte Carlo simulations based on the proxy (exact and without
discretization) which present a speed gain by a factor 100 (whatever is the dimension) in comparison to
Monte Carlo simulations of the initial diffusion.

In Chapter 9, we provide additional numerical results concerning the pricing of multi-asset products
(Basket, Geometrical mean, Worst of and Best of Put options) in multidimensional CEV models using
the SAFE method.
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Publications and submissions. Every Part of this thesis has been or should be published. More pre-
cisely:

• Sections 1.1, 1.2 and 1.3 of this introduction Chapter and Chapter 2 have been published in
the Chapter "Asymptotic and non asymptotic approximations for option valuation" of the book
"Recent Developments in Computational Finance Foundations, Algorithms and Applications",
Thomas Gerstner and Peter Kloeden (Ed.) 2012, World Scientific Publishing Company. This is a
joint work with my supervisor Emmanuel Gobet.

• Chapter 3 "Forward implied volatility expansions in local volatility models" is in preparation to
be submitted soon. This is a common work with Julien Hok.

• Chapter 5 "Price expansion formulas for model combining local and stochastic volatility" will be
the subject of a forthcoming publication.

• Chapter 7 "Price expansions for regular down barrier options" is too in preparation for an upcom-
ing submission.

• Chapter 8 "Stochastic Approximation Finite Element method: analytical formulas for multidi-
mensional diffusion process" have been submitted in SIAM Journal of Numerical Analysis.
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We develop in this Chapter the principle of high order approximations related to an intuitive proxy
and in the case of local volatility models with general time-dependency, we derive new formulas in terms
of both prices and implied volatilities using the local volatility function at the mid-point between strike
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and spot: in general, our approximations outperform previous ones by Hagan and Henry-Labordère. We
also provide approximations of the option delta.
Here is the outline of the Chapter. In Section 2.1, we consider the simplest case of second order ap-
proximation in local volatility models, using log-normal or normal proxys. We give pedagogic proofs.
Section 2.2 is devoted to a more detailed analysis: we first give arguments based on stochastic analysis
(martingales, Malliavin calculus). We compare this derivation with a method mixing stochastic analysis
and PDE, and with a pure PDE approach: we show in which respect our methodology is different. In
Section 2.3, we provide various high-order approximation using proxys. In Section 2.4, approxima-
tions of the option delta are provided. Section 2.5 is gathering numerical experiments illustrating the
performance of our formulas compared to those of Hagan et al. [Hagan 1999] and of Henry-Labordère
[Henry-Labordère 2008]. Some intermediate and complementary results are postponed to Section 2.6.
In all this Chapter, we keep the notations introduced in the previous Chapter 1 Section 1.2.

2.1 Approximation based on proxy

2.1.1 Notations and definitions

The following notations and definitions are repeatedly used in this Chapter and the next Chapter 4.

B Differentiation. If these derivatives have a meaning, we write l(i)t (x) = ∂i
xi l(t, x) for any function l of

two variables.

B Integral Operator. The integral operator ωT is defined as follows: for any measurable and bounded
function l, we set

ω(l)T
t =

∫ T

t
ludu,

for t ∈ [0,T ]. Its n-times iteration is defined analogously: for any measurable and bounded functions
(l1, · · · , ln), we set

ω(l1, · · · , ln)T
t = ω(l1ω(l2, · · · , ln)T

. )T
t ,

for t ∈ [0,T ].

B Time reversal. For any measurable and bounded function l, we denote by l̃ the function l̃t = lT−t for
any t ∈ [0,T ]. Notice the relation

ω(̃l1, l̃2, .., l̃n)T
0 = ω(ln, ln−1, .., l1)T

0 (2.1)

available for any measurable and bounded functions (l1, · · · , ln): in other words, reversing the time of
integrands is equivalent to change the order of integration.

B Quadratic mean on [0,T ]. For any measurable function (l(t, x))(t,x)∈[0,T ]×R of two variables, bounded
w.r.t. the time variable for any x ∈ R, we denote by lz its quadratic mean on [0,T ] at the spatial point z
defined by:

lz =

√
1
T

∫ T

0
l2t (z)dt.

This notation is frequently used for the function a at the points z = x0,k, xavg and for the function Σ at
z = S 0,K,S avg.

B Assumptions on a and Σ.
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• (Ha): a is a bounded measurable function of (t, x) ∈ [0,T ]×R, and five times continuously differ-
entiable in x with bounded1 derivatives. Set

M1(a) = max
1≤i≤5

sup
(t,x)∈[0,T ]×R

|∂i
xia(t, x)| andM0(a) = max

0≤i≤5
sup

(t,x)∈[0,T ]×R
|∂i

xia(t, x)|.

In addition, there exists a constant ca > 0 such that |a(t, x)| ≥ ca for any (t, x) ∈ [0,T ]×R.

• (Ha
z ): assume (Ha) by replacing the last uniform ellipticity by the single condition∫ T

0 |a(t,z)|2dt > 0.

The above hypothesis will be considered at z = x0,z = k or z = xavg.
We define similarly (HΣ) or (HΣ

z ) by replacing a by Σ in (Ha) and (Ha
z ). Then the hypothesis will be

considered at z = S 0,z = K or z = S avg.

B Constants. Our next error estimates are stated following the notation below.

• "A = O(B)" means that |A| ≤ CB: here, C stands for a generic constant that is a non-negative
increasing function of T ,M1(a),M0(a) and of the oscillation ratio M0(a)

ca
(if (Ha) is fulfilled) or

[M0(a)]2T∫ T
0 |a(t,z)|2dt

(if (Ha
z ) is fulfilled).

If (HΣ) or (HΣ
z ) is satisfied, in the above dependence a has to replaced by Σ.

Usually, a generic constant may depend on S 0, x0,K and k; nevertheless, it remains uniformly
bounded in these variables: it is possible to derive exact dependency but we skip it to keep the
analysis short.

• Similarly, if A is positive, A ≤c B means that A ≤CB for a generic constant C.

2.1.2 Proxy approximation: a primer using the local volatility at spot

B Log-normal proxy. Assume by expertise that the model (1.4) introduced in the Chapter 1 Section
1.2 behaves closely to a log-normal model, in the sense that a log-normal approximation seems to be
reasonable. For instance, in the case of CEV type model (see [Cox 1975] and [Emanuel 1982])

Sσ(t,S ) = νtS βt , (2.2)

a log-normal heuristics is associated to β close to 1. Some numerical illustrations are given later.
As a first log-normal approximation, we freeze the volatility in space to the initial spot value: re-

garding the log-asset X defined in (1.5) Chapter 1 Section 1.2, it writes

dXP
t = −

1
2

a2(t, x0)dt + a(t, x0)dWt, XP
0 = x0.

We refer to this proxy model as log-normal proxy with volatility at spot. The evaluation of the next
correction terms requires a suitable representation of the distance between the model and the proxy: for
this, we use the interpolated process (1.25) given by

dXη
t = η(−

1
2

a2(t,Xη
t )dt + a(t,Xη

t )dWt), Xη
0 = x0.

for an interpolation parameter η ∈ [0,1]. Under (Ha
x0

), the three first derivatives of η 7→ Xη
t are well

defined (a.s. simultaneously for any t, see [Kunita 1984, Theorem 2.3]). Denote by Xη
i,t and Xi,t the i-th

derivative respectively at η and η = 0. Direct computations yield

dXη
1,t =−

1
2

a2(t,Xη
t )dt + a(t,Xη

t )dWt +ηXη
1,t(−[a∂xa](t,Xη

t )dt +∂xa(t,Xη
t )dWt), Xη

1,0 = 0. (2.3)

1the boundedness assumption of a and its derivatives could be weakened to Lp-integrability conditions, up to extra works.
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dXη
2,t =2Xη

1,t(−[a∂xa](t,Xη
t )dt +∂xa(t,Xη

t )dWt) +ηXη
2,t(−[a∂xa](t,Xη

t )dt +∂xa(t,Xη
t )dWt)

+η[Xη
1,t]

2(−∂x[a∂xa](t,Xη
t )dt +∂2

xa(t,Xη
t )dWt), Xη

2,0 = 0. (2.4)

dXη
3,t =3Xη

2,t(−[a∂xa](t,Xη
t )dt +∂xa(t,Xη

t )dWt) + 3[Xη
1,t]

2(−∂x[a∂xa](t,Xη
t )dt +∂2

xa(t,Xη
t )dWt),

+ηXη
3,t(−[a∂xa](t,Xη

t )dt +∂xa(t,Xη
t )dWt) + 3η[Xη

1,t][X
η
2,t](−∂x[a∂xa](t,Xη

t )dt +∂2
xa(t,Xη

t )dWt)

+η[Xη
1,t]

3(−∂2
x[a∂xa](t,Xη

t )dt +∂3
xa(t,Xη

t )dWt), Xη
3,0 = 0. (2.5)

Observe that Xη
t |η=0 = x0, thus the derivatives at η = 0 have simpler expressions:

dX1,t =−
1
2

a2(t, x0)dt + a(t, x0)dWt = dXP
t ,

dX2,t =2X1,t(−[a∂xa](t, x0)dt +∂xa(t, x0)dWt),

with Xi,0 = 0 for i ≥ 1. Then notice that XP
t = x0 + X1,t: hence

XT −XP
T = X1

T − (x0 + X1,T ) =

∫ 1

0
(1−λ)Xλ

2,T dλ (2.6)

=
1
2

X2,T +

∫ 1

0

(1−λ)2

2
Xλ

3,T dλ (2.7)

using the Taylor expansion formula. As a consequence of the above representation, we obtain an ap-
proximation of E(h(XT )) for a smooth function h:

E[h(XT )] = E[h(XP
T +

X2,T

2
+ ...)] = E[h(XP

T )] +E[h(1)(XP
T )

X2,T

2
] + ... (2.8)

The first term is related to a log-normal model and thus, it is expected to be easily computable numeri-
cally. The second term is more delicate: actually, we transform it into a weighed sum of sensitivities of
E[h(XP

T + ε)] w.r.t. ε = 0. To achieve this transformation, we use a key lemma which proof is given in
Subsection 2.6.4

Lemma 2.1.2.1. Let ϕ be a C∞b function and (λt)t be a measurable and bounded deterministic function.
Let N ≥ 1 be fixed, and consider measurable and bounded deterministic functions t 7→ li,t for i = 1, . . . ,N.
Then, using the convention dW1

t = dWt and dW0
t = dt, for any (I1, . . . , IN) ∈ {0,1}N we have:

E
(
ϕ(

∫ T

0
λtdWt)

∫ T

0
lN,tN

∫ tN

0
lN−1,tN−1 . . .

∫ t2

0
l1,t1dW I1

t1 . . .dW IN−1
tN−1

dW IN
tN

)
= ω(̂l1, . . . , l̂N)∂I1+···+IN

εI1+···+IN
E
(
ϕ(

∫ T

0
λtdWt +ε)

)
|ε=0, (2.9)

where l̂k,t := lk,t if Ik = 0 and l̂k,t := λtlk,t if Ik = 1.

Now, apply the above identity to ϕ(·) = h(1)(x0−
1
2

∫ T
0 a2(t, x0)dt + ·), λt = a(t, x0) and

X2,T

2
=

∫ T

0

(∫ t2

0
(−

1
2

a2(t1, x0)dt1 + a(t1, x0)dWt1)
)
(−[a∂xa](t2, x0)dt2 +∂xa(t2, x0)dWt2),

to get

E[h(1)(XP
T )

X2,T

2
] = C1(a; x0)T

0 (∂3
ε3 −

3
2
∂2
ε2 +

1
2
∂ε)E

(
h(XP

T +ε)
)
|ε=0
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where the operator C1 is defined by:

C1(l;z)T
0 = ω(l2(z), l(z)l(1)(z))T

0 =

∫ T

0
l2t (z)

∫ T

t
ls(z)l(1)

s (z)dsdt. (2.10)

Combine this with (2.8) to obtain that E(h(XT )) can be approximated by

E[h(XP
T )] +C1(a; x0)T

0 (∂3
ε3 −

3
2
∂2
ε2 +

1
2
∂ε)E

(
h(XP

T +ε)
)
|ε=0.

So far, the payoff function h is smooth and this does not fit the Call/Put setting; actually, an extra
regularization argument and a careful passing to the limit enables to extend the previous formula to any
locally Lipschitz h. Additionally, some error estimates are available (see [Gobet 2012a, Theorem 2.2]).
All the results are gathered in the following theorem.

Theorem 2.1.2.1. (2nd order log-normal approximation with local volatility at spot). Assume (Ha
x0

).
Assume that h is locally Lipschitz in the following sense: for some constant Ch ≥ 0,

|h(x)| ≤CheCh |x|, |
h(y)−h(x)

y− x
| ≤CheCh(|x|+|y|) (∀y , x).

Then

E[h(XT )] = E[h(XP
T )]+C1(a; x0)T

0 (∂3
ε3 −

3
2
∂2
ε2 +

1
2
∂ε)E

[
h(XP

T +ε)
]
|ε=0 +O(M1(a)[M0(a)]2T

3
2 ).

where the operator C1 is defined in (2.10) and O depends notably of the constant Ch.

This formula is referred to as a second order approximation because the residual term is of order
three with respect to the amplitude of the volatility coefficient.

Remark 2.1.2.1. The reader should notice that the expansion formulas are exact for the particular
payoff function h(x) = ex (indeed E[h(XT )] = E[h(XP

T )] = ∂i
εiE

[
h(XP

T + ε)
]
|ε=0 = ex0 and the sum of the

corrective terms is equal to zero). This notably implies that the Call/Put parity relationship is preserved
within these approximations, which is an essential property. The reader can verify in Section 2.3 that
this martingale property is preserved for higher order approximation formulas.

Under the current assumptions (
∫ T

0 a2(t, x0)dt > 0), the law of XP
T is a non-degenerate Gaussian r.v.

and thus, the above derivatives are meaningful even for non-smooth h. Following [Gobet 2012a], the
Lipschitz regularity can be weakened to Hölder regularity but error estimates in the case of discontinuous
function h are not available so far under the current set of assumptions.

B Normal proxy. Alternatively to a log-normal proxy, we could prefer the use of normal proxy on the
asset S : for CEV-type model described in (2.2), it can be justified for β close to 0. The same analysis
can be done by considering the normal proxy with diffusion coefficient computed at spot: it writes

dS P
t = Σ(t,S 0)dWt, S P

0 = S 0.

Then, the distance to the proxy is represented through the interpolation process

dS η
t = ηΣ(t,S η

t )dWt, S η
0 = S 0.

All the previous computations are very similar, and even simpler because there is no dt-term. We skip
details and state directly the result (see [Gobet 2012a, Theorem 2.1]).
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Theorem 2.1.2.2. (2nd order normal approximation with local volatility at spot). Assume (HΣ
S 0

).
Assume that h is locally Lipschitz in the following sense: for some constant Ch ≥ 0,

|h(x)| ≤Ch(1 + |x|Ch), |
h(y)−h(x)

y− x
| ≤Ch(1 + |x|Ch + |y|Ch) (∀y , x).

Then

E[h(S T )] = E[h(S P
T )] +C1(Σ;S 0)T

0 ∂
3
ε3E

[
h(S P

T +ε)
]
|ε=0 +O(M1(Σ)[M0(Σ)]2T

3
2 ).

Remark 2.1.2.2. As for the log-normal proxy (see Remark 2.1.2.1), the approximation formulas in-
volving the normal proxy do not suffer from numerical arbitrage when using Call/Put payoffs: in-
deed they are exact for the particular payoff function h(x) = x (indeed E[h(S T )] = E[h(S P

T )] = S 0 and
∂i
εiE

[
h(S P

T + ε)
]
|ε=0 = 0, ∀i ≥ 2). This property holds again when considering higher order expansions

(see Section 2.3).

Applying two previous results to the pricing of Call option (i.e. h(x) = (ex − K)+ in the case of
log-normal proxy, and h(x) = (x−K)+ in the case of normal proxy), we obtain two different expansions
using respectively Black-Scholes formula and Bachelier formula.

Theorem 2.1.2.3. (2nd order approximations for Call options with local volatility at spot). Assuming
(Ha

x0
) and using the log-normal proxy, one has

Call(ex0 ,T,ek) =CallBS(x0, ā2
x0

T,k) +C1(a; x0)T
0 (∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

x0
T,k)

+O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
S 0

) and using the normal proxy, one has

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
S 0

T,K) +C1(Σ;S 0)T
0 ∂

3
S 3CallBA(S 0, Σ̄

2
S 0

T,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ).

2.1.3 Towards Call option approximations with the local volatility at strike and at mid-
point

For general payoff functions, the most natural choice seems to choose a proxy with the local volatility
frozen at spot. When we are dealing with Call or Put payoffs, the spot and strike variables play a
symmetrical role [Dupire 1994], and there is a priori no reason to advantage one or the other one. A first
attempt to exploit this duality in proxy expansion is analysed in [Gobet 2012b]. In this subsection, we
briefly recall the expansion formulas with a local volatility at strike and then we present new expansion
formulas with a local volatility at mid-point xavg = (x0 + k)/2 = log

√
S 0K or S avg = (S 0 + K)/2. We

detail the analysis only for the log-normal proxy. The proofs for the normal proxy are very similar and
are left as an exercise to the reader.

To directly obtain expansions formulas with local volatility frozen at strike, the idea is to follow the
Dupire approach [Dupire 1994], using explicitly the PDE satisfied by the Call price function
(T,K) 7→ Call(S 0,T,K) = E[(S T −K)+]. Indeed we have that:∂T Call(S 0,T,K) = 1

2σ
2(T,K)K2∂2

K2Call(S 0,T,K),

Call(S 0,0,K) = (S 0−K)+.
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Thus we do not consider anymore a PDE in the backward variables (t,S ) with a Call payoff as a terminal
condition, but we now handle a PDE in the forward variables (T,K), with a put payoff as initial condition.
This dual PDE has a probabilistic Feynman-Kac representation:

Call(S 0,T,K) = E[(S 0− ekT )+], (2.11)

where (kt)t∈[0,T ] is the diffusion process defined by:

dkt = a(T − t,kt)dWt −
1
2

a2(T − t,kt)dt, k0 = k = log(K),

where we recall that a(t,z) = σ(t,ez). Thus we are in a position to apply Theorem 2.1.2.1 for the Put
payoff function h(z) = (ex0 − ez)+ with log-strike x0 = log(S 0), with a log-normal proxy starting from
K = ek and with the local volatility ã(t,z) = a(T − t,z). In the same way, we can apply Theorem 2.1.2.2
with a normal proxy. As a result, we obtain a variant of Theorem 2.1.2.3 where the Greeks w.r.t. the
kT -variable are naturally transformed into Greeks w.r.t. the strike variable. The final statement is the
following result.

Theorem 2.1.3.1. (2nd order approximations for Call options with local volatility at strike). Assuming
(Ha

k ) and using the log-normal proxy, one has

Call(ex0 ,T,ek) =CallBS(x0, ā2
kT,k) +C1(̃a;k)T

0 (∂3
z3 −

3
2
∂2

z2 +
1
2
∂z)CallBS(x0, ā2

kT,k)

+O(M1(a)[M0(a)]2T
3
2 ).

Assuming (HΣ
K) and using the normal proxy, one has

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
KT,K) +C1(Σ̃; K)T

0 ∂
3
Z3CallBA(S 0, Σ̄

2
KT,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ).

Now, in order to obtain approximation formulas for the mid-points xavg or S avg, we perform a Taylor
expansion of the local volatility function around these mid-points. We start from the expansions at spot
and strike given in Theorems 2.1.2.3 and 2.1.3.1, we consider the average of these expansions and we
transform each term to freeze the local volatility function at xavg or S avg. We only give details for the
log-normal proxy. We first analyze the corrective terms.

Lemma 2.1.3.1. Assume (Ha
x0

)-(Ha
k )-(Ha

xavg
). We have:

1
2

C1(a; x0)T
0 (∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

x0
T,k) +

1
2

C1(̃a;k)T
0 (∂3

z3 −
3
2
∂2

z2 +
1
2
∂z)CallBS(x0, ā2

kT,k)

=
1
2

[
C1(a; xavg)T

0 −C1(̃a; xavg)T
0

]
(∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k) +O(M1(a)[M0(a)]2T

3
2 ).

Proof. We begin with the x0-Greeks. Perform a zero order Taylor formula for the function
y 7→ (∂3

x3 −
3
2∂

2
x2 + 1

2∂x)CallBS(x0,y,k) at y = ā2
x0

T = ω(a2(x0))T
0 around y = ā2

xavg
T = ω(a2(xavg))T

0 and
∀t ∈ [0,T ], for the function x 7→ a2

t (x) at x = x0 around x = xavg to obtain:

C1(a; x0)T
0 (∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

x0
T,k)

=[C1(a; xavg)T
0 + R1][(∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k) + R2

]
=C1(a; xavg)T

0 (∂3
x3 −

3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k) + (∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k)R1 +C1(a; x0)T

0 R2,
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where:

R1 =
(x0− k)

2

∫ 1

0
(∂xC1(a; x)T

0 )|x=λx0+(1−λ)xavgdλ,

R2 = T (ā2
x0
− ā2

xavg
)
∫ 1

0
(∂4

yx3 −
3
2
∂3

yx2 +
1
2
∂2

yx)CallBS(x0,y,k)|y=T (λā2
x0 +(1−λ)ā2

xavg )dλ,

T (ā2
x0
− ā2

xavg
) =

(x0− k)
2

∫ 1

0
(∂xω(a2(x))T

0 )|x=λx0+(1−λ)xavgdλ.

In view of the definition (2.10) of C1, the identity (1.8) in Chapter 1 Section 1.2, Corollary 2.6.1.1 and
(Ha

x0
)-(Ha

xavg
), we readily obtain

∣∣∣(∂3
x3 −

3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k)R1

∣∣∣
≤

1
2

∣∣∣(∂3
x3 −

3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k)(x0− k)

∣∣∣∣∣∣∫ 1

0
(∂xC1(a; x)T

0 )|x=λx0+(1−λ)xavgdλ
∣∣∣

≤c[ā2
xavg

T ]−
1
2M1(a)[M0(a)]3T 2 ≤cM1(a)[M0(a)]2T

3
2 ,

∣∣∣C1(a; x0)T
0 R2

∣∣∣ ≤c[M0(a)]3M1(a)T 2M0(a)M1(a)T
∫ 1

0
[T (λā2

x0
+ (1−λ)ā2

xavg
)]−

3
2 dλ

≤cM1(a)[M0(a)]2T
3
2 .

Similarly, using in addition (Ha
k ) we show that:

C1(̃a;k)T
0 (∂3

z3 −
3
2
∂2

z2 +
1
2
∂z)CallBS(x0, ā2

kT,k)

= C1(̃a; xavg)T
0 (∂3

z3 −
3
2
∂2

z2 +
1
2
∂z)CallBS(x0, ā2

xavg
T,k) +O(M1(a)[M0(a)]2T

3
2 ),

= −C1(̃a; xavg)T
0 (∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k) +O(M1(a)[M0(a)]2T

3
2 ),

where we have used at the last equality the relation (2.49) in Proposition 2.6.1.3. That completes the
proof. �

Second, we analyze the leading order of the formula given in Theorems 2.1.2.3 and 2.1.3.1:

Lemma 2.1.3.2. Assume (Ha
x0

)-(Ha
k )-(Ha

xavg
). We have:

1
2

[CallBS(x0, ā2
x0

T,k) + CallBS(x0, ā2
kT,k)] = CallBS(x0, ā2

xavg
T,k) +O(M1(a)[M0(a)]2T

3
2 ).

Proof. Apply a first order Taylor formula twice; firstly for the function y 7→ CallBS(x0,y,k) at y = ā2
x0

T
around y = ā2

xavg
T and secondly, for the function x 7→ a2

t (x) at x = x0 around x = xavg, ∀t ∈ [0,T ]. It gives

CallBS(x0, ā2
x0

T,k) =CallBS(x0, ā2
xavg

T,k) +∂yCallBS(x0, ā2
xavg

T,k)T (ā2
x0
− ā2

xavg
) + R1,

=CallBS(x0, ā2
xavg

T,k) +∂yCallBS(x0, ā2
xavg

T,k)ω(a(xavg)a(1)(xavg))T
0 (x0− k) + R2 + R1.

where:

R1 = T 2(ā2
x0
− ā2

xavg
)2

∫ 1

0
(∂2

y2CallBS(x0,y,k))|y=T (λā2
x0 +(1−λ)ā2

xavg )(1−λ)dλ,
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R2 = ∂yCallBS(x0, ā2
xavg

T,k)
(x0− k)2

4

∫ 1

0
(∂2

x2ω(a2(x))T
0 )|x=λx0+(1−λ)xavg(1−λ)dλ.

Similar arguments previously employed in the proof of Lemma 2.1.3.1 easily lead to:

|R1| ≤c[M1(a)]2[M0(a)]2T 2
∫ 1

0
[T (λā2

x0
+ (1−λ)ā2

xavg
)]−

1
2 dλ ≤cM1(a)[M0(a)]2T

3
2 ,

|R2| ≤cM1(a)[M0(a)]2T
3
2 .

Similarly we have:

CallBS(x0, ā2
kT,k) =CallBS(x0, ā2

xavg
T,k)−∂yCallBS(x0, ā2

xavg
T,k)ω(a(xavg)a(1)(xavg))T

0 (x0− k)

+O(M1(a)[M0(a)]2T
3
2 ).

We are finished. �

Lemmas 2.1.3.1 and 2.1.3.2 lead to the following Theorem for the log-normal proxy, while similar
arguments apply for the normal proxy.

Theorem 2.1.3.2. (2nd order approximations for Call options with local volatility at mid-point). Under
(Ha

x0
)-(Ha

k )-(Ha
xavg

), we have

Call(ex0 ,T,ek) =CallBS(x0, ā2
xavg

T,k) +
C1(a; xavg)T

0 −C1(̃a; xavg)T
0

2
(∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+O(M1(a)[M0(a)]2T
3
2 ), (2.12)

Under (HΣ
S 0

)-(HΣ
K)-(HΣ

S avg
), we have

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
S avg

T,K) +
C1(Σ;S avg)T

0 −C1(Σ̃;S avg)T
0

2
∂3

S 3CallBA(S 0, Σ̄
2
S avg

T,K)

+O(M1(Σ)[M0(Σ)]2T
3
2 ). (2.13)

Remark 2.1.3.1. If a (and consequently Σ) is time-independent or has separable variables, observe that
the corrective terms vanish and we obtain remarkably simple formulas: the expansion formulas (2.12)
and (2.13) reduce to only a Black-Scholes price and a Bachelier price, with the local volatility function
frozen at the mid-point.

2.1.4 Second order expansion of the implied volatility

Interestingly, the previous expansions of Call price (Theorems 2.1.2.3, 2.1.3.1 and 2.1.3.2) can be turned
into expansions of Black-Scholes and Bachelier implied volatility defined respectively in (1.9) and (1.11)
(see Chapter 1 Section 1.2). To achieve this, we use the relations between Greeks postponed in Propo-
sitions 2.6.1.3 and 2.6.2.3 in order to write the different approximation formulas in terms of the Vega.
For example consider the second order log-normal expansion formula based on the ATM local volatility
(Theorem 2.1.2.3): thanks to (2.49) in Proposition 2.6.1.3, it becomes:

Call(ex0 ,T,ek) =CallBS(x0, ā2
x0

T,k)−VegaBS(x0, ā2
x0

T,k)
C1(a; x0)T

0 m

ā3
x0T 2

+O(M1(a)[M0(a)]2T
3
2 ),

≈CallBS
(
x0, (āx0 −

C1(a; x0)T
0

ā3
x0T 2

m)2T,k
)
,

where m is the log-moneyness m = x0− k = log(S 0/K). We have paved the way for the following result:
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Theorem 2.1.4.1. (2nd order expansions of the implied volatility). Assuming (Ha
x0

)-(Ha
k )-(Ha

xavg
) and

using the log-normal proxy, we have

σI(x0,T,k) =āx0 −
C1(a; x0)T

0

ā3
x0T 2

m + ErrorI
2,x0

, (2.14)

σI(x0,T,k) =āk +
C1(̃a;k)T

0

ā3
kT 2

m + ErrorI
2,k, (2.15)

σI(x0,T,k) =āxavg +
(C1(̃a; xavg)T

0 −C1(a; xavg)T
0 )

2ā3
xavgT 2

m + ErrorI
2,xavg

. (2.16)

Assuming (HΣ
S 0

)-(HΣ
K)-(HΣ

S avg
) and using the normal proxy, we have

ΣI(S 0,T,K) =Σ̄S 0 −
C1(Σ;S 0)T

0

Σ̄3
S 0

T 2
M + ErrorI

2,S0
,

ΣI(S 0,T,K) =Σ̄K +
C1(Σ̃; K)T

0

Σ̄3
KT 2

M + ErrorI
2,K,

ΣI(S 0,T,K) =Σ̄S avg +
(C1(Σ̃;S avg)T

0 −C1(Σ;S avg)T
0 )

2Σ̄3
S avg

T 2
M + ErrorI

2,Savg
,

where S avg =
S 0+K

2 and M = S 0−K.

Remark 2.1.4.1. We retrieve in our implied volatility approximation formulas the well-known properties
that at the money (i.e. m = 0) and for short maturity, the value of the implied volatility is equal to the
value of the local volatility function and the slope of the local volatility function is twice the slope of
the implied volatility. We justify this assertion for the Black-Scholes implied volatility, the work being
similar for the Bachelier one. If T � 1, in view of (2.14) and the definition (2.10) of C1, assuming that
a(t, x0) and a(1)(t, x0) are continuous at t = 0, we obtain:

[σI(x0,T,k)]|k=x0 ≈ a(0, x0),

∂k[σI(x0,T,k)]|k=x0 ≈ ∂k[āx0]|k=x0 −
C1(a; x0)T

0

ā3
x0T 2

∂k[(x0− k)]|k=x0 ≈ 0 +
a3(0, x0)a(1)(0, x0) T 2

2

a3(0, x0)T 2 =
a(1)(0, x0)

2
.

We obtain the same estimates starting from (2.15) and (2.16), we skip details.

To conclude this paragraph, we estimate the residual terms of the above implied volatility expan-
sions, in terms ofM0(a),M1(a) and so on. Since the Vega is very small for far OTM/ITM Call options,
deriving error bounds on implied volatility from Theorems 2.1.2.3, 2.1.3.1 and 2.1.3.2 gives poor esti-
mates for extreme strikes. Actually, in the further numerical experiments, we also observe inaccuracies
for extreme strikes. To obtain accurate theoretical error bounds, we restrict to log-moneyness m (resp
moneyness M) belonging to a small ball by assuming that |m| ≤ ξM0(a)

√
T (resp. |M| ≤ ξM0(Σ)

√
T )

for a given ξ > 0.
For the sake of brevity, we only analyze the expansion (2.14), the other approximations being treated
similarly. We assume in addition that M0(a), M1(a) and T are globally small enough to ensure that

āx0 −
C1(a;x0)T

0
ā3

x0 T 2 m > 0. Note that at the money (i.e. m = 0), this condition is automatically satisfied. A first

order expansion readily gives

CallBS(x0,
(
āx0 −

C1(a; x0)T
0

ā3
x0T 2

m
)2T,k) =CallBS(x0, ā2

x0
T,k)−

C1(a; x0)T
0

ā3
x0T 2

mVegaBS(x0, ā2
x0

T,k)
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+
(C1(a; x0)T

0

ā3
x0T 2

m
)2

∫ 1

0
VommaBS(x0,a2T,k)|

a=āx0−λ
C1(a;x0)T0

ā3
x0

T2 m
(1−λ)dλ

=CallBS(x0,σ
2
I (x0,T,k)T,k) +O(M1(a)[M0(a)]2T

3
2 )

+
(C1(a; x0)T

0

ā3
x0T 2

m
)2

∫ 1

0
VommaBS(x0,a2T,k)|

a=āx0−λ
C1(a;x0)T0

ā3
x0

T2 m
(1−λ)dλ,

applying Theorem 2.1.2.3 and using the definition of the Black-Scholes implied volatility. Expanding

a 7→ CallBS(x0,a2T,k) at a = σI(x0,T,k) around a = āx0 −
C1(a;x0)T

0
ā3

x0 T 2 m gives:

ErrorI
2,x0

∫ 1

0
VegaBS(x0,a2T,k)|

a=āx0−
C1(a;x0)T0

ā3
x0

T2 m+λ ErrorI
2,x0

dλ

=O(M1(a)[M0(a)]2T
3
2 )−

(C1(a; x0)T
0

ā3
x0T 2

m
)2

∫ 1

0
VommaBS(x0,a2T,k)|

a=āx0−λ
C1(a;x0)T0

ā3
x0

T2 m
(1−λ)dλ.

In view of the expression of VegaBS (see (2.42) in Proposition 2.6.1.2) and (2.45) in Corollary 2.6.1.2,
the hypotheses made on m,M0(a),M1(a) and T guarantee the existence of a constant C > 0 (depending
on S 0) such that: ∫ 1

0
VegaBS(x0,a2T,k)|

a=āx0−
C1(a;x0)T0

ā3
x0

T2 m+λ ErrorI
2,x0

dλ ≥C
√

T > 0.

In addition (2.46) and (Ha
x0

) readily yield

∣∣∣(C1(a; x0)T
0

ā3
x0T 2

m
)2

∫ 1

0
VommaBS(x0,a2T,k)|

a=āx0−λ
C1(a;x0)T0

ā3
x0

T2 m
(1−λ)dλ

∣∣∣
≤c(M1(a)M0(a)

√
T )2

√
T

infλ∈[0,1] āx0 −λ
C1(a;x0)T

0
ā3

x0 T 2 m
≤cM1(a)[M0(a)]2T

3
2 ,

where the generic constant depends in an increasing way on ξ (and on the oscillation ratio
M0(a)

infλ∈[0,1] āx0−λ
C1(a;x0)T0

ā3
x0

T2 m
). That finally implies:

ErrorI
2,x0

= O(M1(a)[M0(a)]2T ).

In view of the above upper bound, we interpret our implied volatility formulas as second order expansion
ones.

2.2 Proofs: a comparative discussion between stochastic analysis and
PDE techniques

In this section, our aim is to show how three different techniques ranging from stochastic analysis to
PDE may lead to the same formulas given in Theorem 2.1.2.1. Although the final result is the same, the
derivation is quite different, first regarding the way in which the expansion coefficients are made explicit,
second regarding the error estimates and the assumptions used for that.
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We shall admit that our preference is for the stochastic analysis approach, because it is flexible regard-
ing the model and the functionals under consideration, and it is slightly less demanding regarding the
assumptions (pointwise ellipticity versus uniform ellipticity for instance). But the reader may argue dif-
ferently, depending on its own fields of expertise.
As an illustration of flexibility of the stochastic analysis approach, it has been possible to handle
Call/Put/digital options in local volatility models with Gaussian jumps [Benhamou 2009], Call/Put op-
tions in local volatility models with stochastic Gaussian interest rates [Benhamou 2012], Call/Put op-
tions in time-dependent Heston model [Benhamou 2010b], general average options (including Asian
and Basket options) in local volatility models [Benhamou 2010a], and more recently local stochastic
volatility models (we refer to Chapter 5 of the thesis).

2.2.1 A pure stochastic analysis approach

This is basically the derivation that we have performed in Subsection 2.1.2.

Smooth payoff h. We first deal with the case of infinitely differentiable function h with exponentially
bounded derivatives. Resuming from (2.6-2.7-2.8) and using Taylor’s formula, write

E[h(XT )] =E[h(XP
T )] +E[h(1)(XP

T )(XT −XP
T )] +

∫ 1

0
E
[
h(2)(XP

T +λ(XT −XP
T ))(XT −XP

T )2](1−λ)dλ

=E[h(XP
T )] +E[h(1)(XP

T )
X2,T

2
] +

∫ 1

0
E
[
h(1)(XP

T )
(1−λ)2

2
Xλ

3,T
]
dλ

+

∫ 1

0
E
[
h(2)(XP

T +λ(XT −XP
T ))(

∫ 1

0
Xη

2,T (1−η)dη)2](1−λ)dλ

:=E[h(XP
T )] +E[h(1)(XP

T )
X2,T

2
] + Error2(h). (2.17)

The first correction term E[h(1)(XP
T ) X2,T

2 ] is made explicit using the key Lemma 2.1.2.1, and it is equal
to a weighted summation of sensitivities ∂i

εE[h(XP
T +ε)]|ε=0 for i = 1,2,3 (see the statement of Theorem

2.1.2.1).
The evaluation of Error2(h) requires to estimate the Lp-norms of Xλ

2,T and Xλ
3,T (uniformly in

λ ∈ [0,1]). Direct and standard stochastic calculus inequalities from (2.3-2.4-2.5) yield

|Xλ
2,T |p ≤cM1(a)M0(a)T, |Xλ

3,T |p ≤cM1(a)[M0(a)]2T 3/2 (2.18)

for any p ≥ 1 and any λ ∈ [0,1]. Combining these estimates with Hölder and Minkowski inequalities
readily gives Error2(h) = O(M1(a)[M0(a)]2T

3
2 ), which completes the proof if h is smooth as above.

Observe that we have only required the coefficients to be smooth enough, and nothing has been imposed
on the non-degeneracy of a.

Locally Lipschitz function h. We now extend the analysis to functions satisfying conditions of The-
orem 2.1.2.1 (thus almost everywhere differentiable), assuming additionally (Ha

x0
): observe that the

pointwise ellipticity condition
∫ T

0 a2(t, x0)dt > 0 is necessary to ensure that XP-Greeks are well defined.
The analysis below shows that the condition is also sufficient to obtain the expansion.
The new ingredient consists in appropriately smoothing h and in using integration-by-parts formula
from Malliavin calculus to get rid of the derivatives of h; this follows the arguments of [Gobet 2012a].
Let B be another scalar Brownian motion independent of W and for δ > 0, set

hδ(x) := E(h(x +δB2T )) = E(hδ/
√

2(x +δBT )).
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For any δ > 0, the function hδ is smooth and its derivatives are exponentially bounded, so that we can
apply the previous expansion to hδ instead of h in order to obtain:

E[hδ(XT )] =E[hδ(XP
T )] +C1(a; x0)T

0 (∂3
ε3 −

3
2
∂2
ε2 +

1
2
∂ε)E

[
hδ(XP

T +ε)
]
|ε=0 + Error2(hδ).

Take δ =M1(a)[M0(a)]2T : then replacing E(hδ(XT )) and E(hδ(XP
T )) by E(h(XT )) and E(h(XP

T )) readily
yields an extra error O(M1(a)[M0(a)]2T

3
2 ) which has the right magnitude regarding the expected global

error. Moreover using (Ha
x0

), we can also prove that computing the sensitivities with respect to h or to
hδ does not deteriorate the global accuracy (see [Gobet 2012a, Lemma 4.2]). It remains to prove that
Error2(hδ) = O(M1(a)[M0(a)]2T

3
2 ). An inspection of the representation (2.17) of Error2(hδ) shows im-

mediately that the first contribution with h(1)
δ is a O(M1(a)[M0(a)]2T

3
2 ), by simply using the exponential

growth condition on h(1) and the finiteness of exponential moments of Xη
T .The second contribution with

h(2)
δ is the integral over (η1,η2,λ) ∈ [0,1]3 of (1−η1)(1−η2)(1−λ) times

E
[
h(2)
δ (XP

T +λ(XT −XP
T ))Xη1

2,T Xη2
2,T

]
=E

[
h(2)
δ/
√

2
(XP

T +λ(XT −XP
T ) +δBT )Xη1

2,T Xη2
2,T

]
=E

[
h(1)
δ/
√

2
(XP

T +λ(XT −XP
T ) +δBT )Hδ,η1,η2,λ

1
]
.

The first equality follows from the definition of hδ, whereas the second one is an integration by parts
formula from Malliavin calculus [Nualart 2006, Proposition 2.1.4]. We do not enter into the deriva-
tion details, we only emphasize two points: first, it is allowed since XP

T + λ(XT − XP
T ) + δBT is a non-

degenerate random variable (in Malliavin sense) thanks to the additional perturbation δBT , and its Malli-
avin matrix has an inverse of order (

∫ T
0 a2(t, x0)dt)−1 in Lp-norms, owing to the ellipticity assumption

in (Ha
x0

). Second, the Malliavin norms of Xη
2,T can be estimated similarly to (2.18) and it finally gives

that (E|Hδ,η1,η2,λ
1 |2)1/2 =O(M1(a)[M0(a)]2T

3
2 ). This finishes the proof. Slight modifications in the above

arguments would enable to handle functions with local Hölder smoothness.

Arbitrary function h. Here, we do not assume any regularity on h, only exponential growth. The
analysis is similar but the regularization step for h is more complex, see [Benhamou 2009]: the expan-
sion analysis has been done under the uniform ellipticity condition on (Ha), and not only under the
pointwise ellipticity in (Ha

x0
).

As a conclusion to this stochastic analysis approach:

• the derivation of expansion coefficients is direct and easy;

• the error analysis relies on delicate Malliavin calculus estimates;

• it applies to general function h under mild non-degeneracy condition.

2.2.2 Mixing stochastic analysis and PDE

Here, we directly prove the expansion result for locally Lipschitz function h. We represent the error
E[h(XT )]−E[h(XP

T )] using the PDE associated to the proxy:

uP,h(t, x) = E[h(XP
T )|XP

t = x]

Our methodology presents analogies with the decomposition approach of Alòs [Alòs 2012] who com-
bines PDE arguments and the Itô calculus to obtain approximation formulas in the Heston model.
To get a smooth solution uP, assume that a(t, x0) , 0 for any t ∈ [0,T ] (H̃a

x0
), which is stronger that
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∫ T
0 a2(t, x0)dt > 0 considered in (Ha

x0
). The generic constants appearing in our next error estimates de-

pend in an increasing way on the oscillation ratio M0(a)
inf

t∈[0,T ]
a(t, x0) . Then,

∂tuP,h(t, x) + 1
2 a2(t, x0)(∂2

x2 −∂x)uP,h(t, x) = 0, for t < T ,

uP,h(T, x) = h(x),
(2.19)

|∂n
xnuP,h(t, x)| ≤c ec|x|(

∫ T

t
a2(s, x0)ds)−

n−1
2 . (2.20)

The estimates (2.20) directly follow from the differentiation of the Gaussian density of XP
T conditionally

to Xp
t = x, taking into account the exponential growth of h. Then, apply Itô’s formula to uP,h(t,Xt)

between t = 0 and t = T , combine this with simplifications coming from the PDE solved by uP,h; it gives

E[h(XT )] =E[h(XP
T )] +

1
2
E
[∫ T

0
(a2(t,Xt)−a2(t, x0))(∂2

x2 −∂x)uP,h(t,Xt)dt
]

(2.21)

=E[h(XP
T )] +

1
2

∫ T

0
∂x[a2](t, x0)E

[
(Xt − x0)(∂2

x2 −∂x)uP,h(t,Xt)
]
dt

+
1
2
E
[∫ T

0
[a2(t,Xt)−a2(t, x0)−∂x[a2](t, x0)(Xt − x0)](∂2

xx−∂x)uP,h(t,Xt)dt
]
. (2.22)

Remark 2.2.2.1. The equality (2.21) says that if h is smooth (infinitely differentiable with compact
support), then the approximation E[h(XT )] ≈ E[h(XP

T )] is already of order 2 and thus there is no need to
additional corrective terms . We namely have in this case:

∣∣∣E[h(XT )]−E[h(XP
T )]

∣∣∣ ≤c

∫ T

0
M0(a)M1(a)|Xt − x0|4dt ≤cM1(a)[M0(a)]2T

3
2 . (2.23)

In light with Chapter 1 Subsection 1.3.5, we retrieve the fact that to achieve a target order error, the
expansion strongly depends on the regularity of the function h. With the stochastic analysis approach, a
straightforward and naive estimate using a Taylor expansion gives:

∣∣∣E[h(XT )]−E[h(XP
T )]

∣∣∣ ≤c
∣∣∣∫ 1

0
E
[
h(1)(XP

T +λ(XT −XP
T ))(XT −XP

T )
]
dλ

∣∣∣ = O(M1(a)M0(a)T ).

However, we can refine the above estimate using the h-smoothness by writing h(1)(XP
T +λ(XT −XP

T )) =

h(1)(x0) + h(1)(XP
T +λ(XT −XP

T ))−h(1)(x0) to get:

∣∣∣E[h(XT )]−E[h(XP
T )]

∣∣∣ =
∣∣∣h(1)(x0)E[XT −XP

T ] +

∫ 1

0
E
[(

h(1)(XP
T +λ(XT −XP

T ))−h(1)(x0)
)
(XT −XP

T )
]
dλ

∣∣∣
≤c(|h(1)|∞+ |h(2)|∞)M1(a)[M0(a)]2T

3
2 ,

using the fact that E[XT −XP
T ] = − 1

2E
[ ∫ T

0 (a2
t (Xt)−a2

t (x0))dt
]
= O(M1(a)[M0(a)]2T

3
2 ) and that∣∣∣h(1)(XP

T +λ(XT −XP
T ))−h(1)(x0)

∣∣∣ ≤ |h(2)|∞
(
|XP

T − x0|+ |XT −XP
T |
)
. We finally retrieve the estimate (2.23).

Taking advantage of (2.20), we can easily bound the last term in (2.22) by

C
∫ T

0
M0(a)M1(a)|Xt − x0|

2
4(
∫ T

t
a2(s, x0)ds)−

1
2 dt = O(M1(a)[M0(a)]2T

3
2 )
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using standard increment estimates and uniform lower and upper bounds on a2. Observe that the Lips-
chitz regularity of h gives rise to singular terms of the form (T − t)−

1
2 , which are fortunately integrable

at T .
Regarding the second term in (2.22), we have to approximate E

[
(Xt − x0)(∂2

x2 − ∂x)uP,h(t,Xt)
]

for any
t ∈ [0,T [: we apply again the previous decomposition by replacing T by t and h(x) by φt(x) =

(x− x0)(∂2
xx −∂x)uP,h(t, x). We denote by vP,φ

t (s, x) = E[φt(XP
t )|XP

s = x] the solution of the system (2.19)
on [0, t[×R but with terminal condition φt. The term under study is thus equal to

E[φt(XP
t )] +

1
2
E[

∫ t

0
(a2(s,Xs)−a2(s, x0))(∂2

x2 −∂x)vP,φ
t (s,Xs)ds].

It remains to make explicit vP,φ
t (s, x) in order to compute the first term and to estimate the second. For

this, the trick lies in the observation that for any k ≥ 0, Mk,t = ∂k
xk u

P,h(t,XP
t ) is a martingale for t < T :

this directly follows from the application of Itô’s formula, combined with (2.19) and (2.20). Hence,
successive applications of the equalities E[Mk,t|XP

s = x] = ∂k
xk u

P,h(s, x) for s ≤ t and of the Lemma 2.1.2.1
give:

vP,φ
t (s, x) =E

[
(XP

t − x0)(∂2
x2 −∂x)uP,h(t,XP

t )|XP
s = x

]
=(x− x0)E

[
(∂2

x2 −∂x)uP,h(t,XP
t )|XP

s = x
]
+E

[
(XP

t −XP
s )(∂2

x2 −∂x)uP,h(t,XP
t )|XP

s = x
]

=(x− x0)(∂2
x2 −∂x)uP,h(s, x)−

1
2

∫ t

s
a2(ξ, x0)dξE

[
(∂2

x2 −∂x)uP,h(t,XP
t )|XP

s = x
]

+E
[(∫ t

s
a(ξ, x0)dWξ

)
(∂2

x2 −∂x)uP,h(t, x−
1
2

∫ t

s
a2(ξ, x0)dξ+

∫ t

s
a(ξ, x0)dWξ)|XP

s = x
]

=(x− x0)(∂2
x2 −∂x)uP,h(s, x)−

1
2

∫ t

s
a2(ξ, x0)dξ(∂2

x2 −∂x)uP,h(s, x)

+

∫ t

s
a2(ξ, x0)dξE

[
(∂3

x3 −∂
2
x2)uP,h(t,XP

t )|XP
s = x

]
=(x− x0)(∂2

x2 −∂x)uP,h(s, x) +

∫ t

s
a2(ξ, x0)dξ(∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)uP,h(s, x).

In particular the above calculus yields E[φt(XP
t )] = vP,φ

t (0, x0) =
∫ t

0 a2(s, x0)ds(∂3
x3 −

3
2∂

2
x2 + 1

2∂x)uP,h(0, x0)
and by multiplying by 1

2∂x[a2](t, x0) and integrating over t ∈ [0,T ] in (2.22), we recover the correction
terms from Theorem 2.1.2.1.

On the other hand, combining (2.20) and the ellipticity assumption (H̃a
x0

), we easily obtain∣∣∣(∂2
x2 −∂x)vP,φ

t (s,Xs)
∣∣∣
p ≤c|Xs− x0|2p

∣∣∣(∂4
x4 −2∂3

x3 +∂2
x2)uP,h(s,Xs)

∣∣∣
2p +

∣∣∣(2∂3
x3 −3∂2

x2 +∂x)uP,h(s,Xs)
∣∣∣
p

+

∫ t

s
a2(ξ, x0)dξ

∣∣∣(∂5
x5 −

5
2
∂4

x4 + 2∂3
x3 −

1
2
∂2

x2)uP,h(s,Xs)
∣∣∣
p

≤c

√
s

inf
s∈[0,T ]

a2(s, x0)(T − s)
3
2

+
1

inf
s∈[0,T ]

a2(s, x0)(T − s)
,

for any p ≥ 1, t ∈ [0,T [, s ∈ [0, t[. Consequently we obtain for the final error:

∣∣∣∫ T

0
∂x[a2](t, x0)E

[∫ t

0
(a2(s,Xs)−a2(s, x0))(∂2

x2 −∂x)vP,φ
t (s,Xs)ds

]
dt

∣∣∣
≤cM1(a)M0(a)

∫ T

0

∫ t

0
|Xs− x0|2[

√
s

(T − s)
3
2

+
1

(T − s)
]dsdt



44 Chapter 2. Revisiting the Proxy principle in local volatility models

≤cM1(a)[M0(a)]2T
3
2 .

We have retrieved the error estimate provided in Theorem 2.1.2.1. Once again, we would like to point
out that the singular terms (T − s)−3/2 and (T − s)−1 appearing in the above time iterated integral remain
integrable.

As a conclusion to this approach mixing stochastic analysis and PDE:

• the error analysis relies on usual estimates of derivatives of heat equations (PDE satisfied by the
proxy) and it may be considered easier; however for digital options, the singularities arising in
iterated time integrals are not integrable and the current approach seems to be inappropriate.

• this approach requires stronger non-degeneracy assumptions compared to the previous stochastic
analysis approach;

• the explicit derivation of expansion coefficients is tricky and relies on appropriate combination of
martingale properties and Itô calculus;

• we nevertheless mention that this approach could be potentially used in a framework where the
Malliavin calculus fails, e.g. for barrier options: see Chapter 7 of the thesis.

Actually for higher order expansion, the latter explicit martingale computation is harder to write down,
whereas a direct application of Lemma 2.1.2.1 remains direct.

2.2.3 A pure PDE approach

Alternatively, inspired by the interpolation (1.25-1.26) (see Chapter 1 Subsection 1.3.4.4), consider the
solution of the PDE∂tuη(t, x) + 1

2 a2(t, x0 +η(x− x0))(∂2
x2 −∂x)uη(t, x) = 0, for t < T ,

uη(T, x) = h(x).

Observe that u1(0, x0) coincides with E(h(XT )) whereas u0(0, x0) coincides with E(h(XP
T )). This PDE has

similarities with that of Hagan (1.22) (see Chapter 1 Subsection 1.3.4.4) but it differs here, because the
space variable has not been rescaled around the strike. In addition the solution of the principal PDE in
the Hagan approach is a Call price in a Bachelier model, whereas u0(0, x0) is a Call price in a Black-
Scholes model.
To derive the correction terms, we shall apply a regular perturbation analysis by writing
uη = u0 +ηu1 + . . . , with u0 = u0, and

Lη = ∂t +
1
2

a2(t, x0 +η(x− x0))(∂2
x2 −∂x) = L0 +η

1
2
∂x[a2](t, x0)(x− x0)(∂2

x2 −∂x) + . . . .

A formal identification of the system to PDEs to solve gives[
∂t +

1
2

a2(t, x0)(∂2
x2 −∂x)

]
u0(t, x) = 0, L0u1 = −

1
2
∂x[a2](t, x0)(x− x0)(∂2

x2 −∂x)u0

with u0(T, x) = h(x) and u1(T, x) = 0. As mentioned before, in our opinion, an explicit resolution of u1

is difficult to exhibit without knowing the solution. However, after tedious calculus involving Gaussian
kernels and convolutions, we can retrieve the corrective terms of Theorem 2.1.2.1.
Also, a PDE error analysis (which we have not been able to find in the literature in the case of irreg-
ular h) may presumably give error estimates only in powers of η (which equals 1 here!) and not as
O(M1(a)[M0(a)]2T

3
2 ). Additionally, due to the form of the proxy, our intuition is that the error at (0, x0)

(where we aim at computing the solution) is smaller that the error at arbitrary (t, x). All these reasons in-
dicate that a PDE approach to derive correction terms and error analysis in our proxy setting is probably
irrelevant.
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2.3 Higher-order proxy approximation

In this section, we give several expansions formulas with a third order accuracy. First, we recall without
proof results obtained in [Benhamou 2010a] and [Gobet 2012b] for expansions based on local volatility
at spot and at strike. Second we introduce a new expansion with local volatility frozen at mid-point.
Finally new expansions of implied volatility are provided.

2.3.1 Third order approximation with the local volatility at spot and at strike.

We define some integral operators useful to state the next theorems.

Definition 2.3.1.1. If the derivatives and the integrals have a meaning, we define for a two variables
function l the above operators:

C1(l;z)T
0 =ω(l2(z), l(z)l(1)(z))T

0 , C2(l;z)T
0 =ω(l2(z), (l(1)(z))2 + l(z)l(2)(z))T

0 ,

C3(l;z)T
0 =ω(l2(z), l2(z), (l(1)(z))2 + l(z)l(2)(z))T

0 , C4(l;z)T
0 =ω(l2(z), l(z)l(1)(z), l(z)l(1)(z))T

0 .

We frequently use some linear combinations of these operators:

η1(l;z)T
0 =

C1(l;z)T
0

2
−

C2(l;z)T
0

2
−

C3(l;z)T
0

4
−

C4(l;z)T
0

2
,

η2(l;z)T
0 =−

3C1(l;z)T
0

2
+

C2(l;z)T
0

2
+

5C3(l;z)T
0

4
+

7C4(l;z)T
0

2
+

[C1(l;z)T
0 ]2

8
,

η3(l;z)T
0 =C1(l;z)T

0 −2C3(l;z)T
0 −6C4(l;z)T

0 −
3[C1(l;z)T

0 ]2

4
,

η4(l;z)T
0 =C3(l;z)T

0 + 3C4(l;z)T
0 +

13[C1(l;z)T
0 ]2

8
,

η5(l;z)T
0 =−

3[C1(l;z)T
0 ]2

2
, η6(l;z)T

0 =
[C1(l;z)T

0 ]2

2
,

ζ2(l;z)T
0 =

C2(l;z)T
0

2
, ζ3(l;z)T

0 =C1(l;z)T
0 ,

ζ4(l;z)T
0 =C3(l;z)T

0 + 3C4(l;z)T
0 , ζ6(l;z)T

0 =
[C1(l;z)T

0 ]2

2
.

Theorem 2.3.1.1. (3rd order approximations for Call options with the local volatility at spot). Assum-
ing (Ha) and using the log-normal proxy, one has

Call(ex0 ,T,ek) =CallBS(x0, ā2
x0

T,k) +

6∑
i=1

ηi(a; x0)T
0 ∂

i
xiCallBS(x0, ā2

x0
T,k) +O(M1(a)[M0(a)]3T 2).

Assuming (HΣ) and using the normal proxy, one has

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
S 0

T,K) +
∑

i∈{2,3,4,6}

ζi(Σ;S 0)T
0 ∂

i
S iCallBA(S 0, Σ̄

2
S 0

T,K) +O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 2.3.1.1.

The magnitude of the residual terms in the previous formulas justifies the label of third order ap-
proximations.
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The above theorem is a straightforward application of [Benhamou 2010a, Theorems 2.2, 2.3 and
4.2], taking into account that we slightly modify the notations of the Greek coefficients. Namely, for
convenience we merge certain ω operators: for instance the reader can easily check that:

[C1(l;z)T
0 ]2 = [ω(l(z)2, l(z)l(1)(z))T

0 ]2 = 4ω(l(z)2, l(z)2, l(z)l(1)(z), l(z)l(1)(z))T
0

+ 2ω(l(z)2, l(z)l(1)(z), l(z)2, l(z)l(1)(z))T
0 .

We should mention that it seems possible to relax the strong hypothesis (Ha) which appears in
[Benhamou 2010a, Theorems 2.2 and 4.2]. As for the second order approximations, (Ha

x0
) may be

sufficient.
Using the duality argument introduced in Subsection 2.1.3 and [Benhamou 2010a, Theorems 2.2,

2.3 and 4.2], approximations using the volatility at strike are available too.

Theorem 2.3.1.2. (3rd order approximations for Call options with the local volatility at strike). As-
suming (Ha) and using the log-normal proxy, one has

Call(ex0 ,T,ek) =CallBS(x0, ā2
kT,k) +

6∑
i=1

ηi(̃a;k)T
0 ∂

i
ziCallBS(x0, ā2

kT,k) +O(M1(a)[M0(a)]3T 2),

Assuming (HΣ)and using the normal proxy, one has

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
KT,K) +

∑
i∈{2,3,4,6}

ζi(Σ̃; K)T
0 ∂

i
ZiCallBA(S 0, Σ̄

2
KT,K) +O(M1(Σ)[M0(Σ)]3T 2).

The operators ζi and ηi in the above expansions are defined in Definition 2.3.1.1.

2.3.2 Third order approximation with the local volatility at mid-point.

We now state a new result related to third order expansions based on the local volatility at mid-point
xavg or S avg. For a clearer proof, we change the presentation of the corrective terms in comparison with
Theorems 2.3.1.1 and 2.3.1.2: instead of gathering them according the order of the Greeks, we put them
together according to the operators Ci introduced in Definition 2.3.1.1.

Theorem 2.3.2.1. (3rd order approximations for Call options with the local volatility at mid-point).
Assuming (Ha) and using the log-normal proxy, one has

Call(ex0 ,T,ek) =CallBS(x0, ā2
xavg

T,k) +
C1(a; xavg)T

0 −C1(̃a; xavg)T
0

2
(∂3

x3 −
3
2
∂2

x2 +
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+
C2(a; xavg)T

0 +C2(̃a; xavg)T
0

2
(
1
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+
C3(a; xavg)T

0 +C3(̃a; xavg)T
0

2
(∂4

x4 −2∂3
x3 +

5
4
∂2

x2 −
1
4
∂x)CallBS(x0, ā2

xavg
T,k)

+
C4(a; xavg)T

0 +C4(̃a; xavg)T
0

2
(3∂4

x4 −6∂3
x3 +

7
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+
[C1(a; xavg)T

0 ]2 + [C1(̃a; xavg)T
0 ]2

2
(
1
2
∂6

x6 −
3
2
∂5

x5 +
13
8
∂4

x4 −
3
4
∂3

x3 +
1
8
∂2

x2)CallBS(x0, ā2
xavg

T,k)

− (x0− k)2C5(a; xavg)T
0 (

1
8
∂2

x2 −
1
8
∂x)CallBS(x0, ā2

xavg
T,k)

− (x0− k)2C6(a; xavg)T
0 (

1
4
∂4

x4 −
1
2
∂3

x3 +
1
4
∂2

x2)CallBS(x0, ā2
xavg

T,k)

+O(M1(a)[M0(a)]3T 2), (2.24)
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where the operators Ci for i = 1 . . .4 are defined in Definition 2.3.1.1 and where the time reversal invari-
ant2 operators C5 and C6 are defined by:

C5(l;z)T
0 = ω((l(1)(z))2 + l(z)l(2)(z))T

0 , C6(l;z)T
0 = ω(l(z)l(1)(z), l(z)l(1)(z))T

0 .

Assuming (HΣ)and using the normal proxy, one has

Call(S 0,T,K) =CallBA(S 0, Σ̄
2
S avg

T,K) +
C1(Σ;S avg)T

0 −C1(Σ̃;S avg)T
0

2
∂3

S 3CallBA(S 0, Σ̄
2
S avg

T,K)

+
C2(Σ;S avg)T

0 +C2(Σ̃;S avg)T
0

4
∂2

S 2CallBA(S 0, Σ̄
2
S avg

T,K)

+
C3(Σ;S avg)T

0 +C3(Σ̃;S avg)T
0

2
∂4

S 4(S 0, Σ̄
2
S avg

T,K)

+ 3
C4(Σ;S avg)T

0 +C4(Σ̃;S avg)T
0

2
∂4

S 4(S 0, Σ̄
2
S avg

T,K)

+
[C1(Σ;S avg)T

0 ]2 + [C1(Σ̃;S avg)T
0 ]2

4
∂6

S 6(S 0, Σ̄
2
S avg

T,K)

− (x0− k)2 C5(Σ;S avg)T
0

8
∂2

S 2CallBA(S 0, Σ̄
2
S avg

T,K)

− (x0− k)2 C6(Σ;S avg)T
0

4
∂4

S 4(S 0, Σ̄
2
S avg

T,K)

+O(M1(Σ)[M0(Σ)]3T 2).

Proof. We only prove the result for the log-normal proxy. The case of normal proxy is similar, and it
is left to the reader as an exercise. The idea is again to consider the average of the third order formulas
in spot and strike provided in Theorems 2.3.1.1 and 2.3.1.2 and to perform an expansion around the
mid-point.
B Step 1: expansion of the leading term. Firstly we aim at showing that:

(CallBS(x0, ā2
x0

T,k) + CallBS(x0, ā2
kT,k))/2

=CallBS(x0, ā2
xavg

T,k) +
(x0− k)2

4
C5(a; xavg)T

0 ∂yCallBS(x0, ā2
xavg

T,k)

+ (x0− k)2C6(a; xavg)T
0 ∂

2
y2CallBS(x0, ā2

xavg
T,k) +O(M1(a)[M0(a)]3T 2), (2.25)

where the operators C5 and C6 are defined in Theorem 2.3.2.1. Perform Taylor expansions to obtain:

CallBS(x0, ā2
x0

T,k) =CallBS(x0, ā2
xavg

T,k) +∂yCallBS(x0, ā2
xavg

T,k)T (ā2
x0
− ā2

xavg
)

+
1
2
∂y2CallBS(x0, ā2

xavg
T,k)T 2(ā2

x0
− ā2

xavg
)2 + R1

=CallBS(x0, ā2
xavg

T,k) +∂yCallBS(x0, ā2
xavg

T,k)ω(a(xavg)a(1)(xavg))T
0 (x0− k)

+
1
4
∂yCallBS(x0, ā2

xavg
T,k)C5(a; xavg)T

0 (x0− k)2

+∂2
y2CallBS(x0, ā2

xavg
T,k)C6(a; xavg)T

0 (x0− k)2 + R1 + R2 + R3, (2.26)

where we have used the relations ∂zω(l2(z))T
0 = 2ω(l(z)l(1)(z))T

0 , ∂2
z2ω(l2(z))T

0 = 2C5(l;z)T
0 ,

[ω(l(z)l(1)(z))T
0 ]2 = 2C6(l;z)T

0 and where R1, R2 and R3 are defined by:

R1 =T 3(ā2
x0
− ā2

xavg
)3

∫ 1

0
(∂3

y3CallBS(x0,y,k))|y=T (λā2
x0 +(1−λ)ā2

xavg )
(1−λ)2

2
dλ,

2that is C5(l̃;z)T
0 = C5(l;z)T

0 and C6(l̃;z)T
0 = C6(l;z)T

0 using (2.1).
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R2 =∂yCallBS(x0, ā2
xavg

T,k)
(x0− k)3

8

∫ 1

0
(∂3

xω(a2(x))T
0 )|x=λx0+(1−λ)xavg

(1−λ)2

2
dλ,

R3 =
1
2
∂2

y2CallBS(x0, ā2
xavg

T,k)
(x0− k)2

4

∫ 1

0
(∂2

xω(a2(x))T
0 )x=λx0+(1−λ)xavg(1−λ)dλ

×
[ (x0− k)2

4

∫ 1

0
(∂2

xω(a2(x))T
0 )x=λx0+(1−λ)xavg(1−λ)dλ+ 2ω(a(xavg)a(1)(xavg))T

0 (x0− k)
]
.

Using (1.8) in Chapter 1 Section 1.2, Corollary 2.6.1.1 and (Ha) we obtain

|R1 + R2 + R3| ≤cM1(a)[M0(a)]3T 2.

Similarly, we show that:

CallBS(x0, ā2
kT,k) =CallBS(x0, āxavg ,k)−∂yCallBS(x0, ā2

xavg
T,k)ω(a(xavg)a(1)(xavg))T

0 (x0− k)

+
1
4
∂yCallBS(x0, ā2

xavg
T,k)C5(a; xavg)T

0 (x0− k)2

+∂2
y2CallBS(x0, ā2

xavg
T,k)C6(a; xavg)T

0 (x0− k)2 +O(M1(a)[M0(a)]3T 2).

Combine this with (2.26) to obtain (2.25).

B Step 2: expansion of the corrective terms. Firstly we treat the corrective terms with the opera-
tors C2, C3, C4 and [C1]2 in Theorems 2.3.1.1 and 2.3.1.2. We let the reader verify that in the for-
mula with volatility at spot (respectively in strike), we can replace the point x0 (respectively k) by the
point xavg in all the corrective terms involving these operators: indeed it induces an extra error of order
M1(a)[M0(a)]3T 2. This is very similar to the proof of Lemma 2.1.3.1 so we skip it. Then we can
replace derivatives w.r.t. z with derivatives w.r.t. x in CallBS thanks to Proposition 2.6.1.3, equations
(2.49)-(2.51)-(2.52)-(2.53). That leads to:

1
2

C2(a; x0)T
0 (

1
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

x0
T,k) +

1
2

C2(̃a;k)T
0 (

1
2
∂2

z2 −
1
2
∂z)CallBS(x0, ā2

kT,k) (2.27)

+
1
2

C3(a; x0)T
0 (∂4

x4 −2∂3
x3 +

5
4
∂2

x2 −
1
4
∂x)CallBS(x0, ā2

x0
T,k)

+
1
2

C3(̃a;k)T
0 (∂4

z4 −2∂3
z3 +

5
4
∂2

z2 −
1
4
∂z)CallBS(x0, ā2

kT,k)

+
1
2

C4(a; x0)T
0 (3∂4

x4 −6∂3
x3 +

7
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

x0
T,k)

+
1
2

C4(̃a;k)T
0 (3∂4

z4 −6∂3
z3 +

7
2
∂2

z2 −
1
2
∂z)CallBS(x0, ā2

kT,k)

+
1
2

[C1(a; x0)T
0 ]2(

1
2
∂6

x6 −
3
2
∂5

x5 +
13
8
∂4

x4 −
3
4
∂3

x3 +
1
8
∂2

x2)CallBS(x0, ā2
x0

T,k)

+
1
2

[C1(̃a;k)T
0 ]2(

1
2
∂6

z6 −
3
2
∂5

z5 +
13
8
∂4

z4 −
3
4
∂3

z3 +
1
8
∂2

z2)CallBS(x0, ā2
kT,k)

=
C2(a; xavg)T

0 +C2(̃a; xavg)T
0

2
(
1
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+
C3(a; xavg)T

0 +C3(̃a; xavg)T
0

2
(∂4

x4 −2∂3
x3 +

5
4
∂2

x2 −
1
4
∂x)CallBS(x0, ā2

xavg
T,k)

+
C4(a; xavg)T

0 +C4(̃a; xavg)T
0

2
(3∂4

x4 −6∂3
x3 +

7
2
∂2

x2 −
1
2
∂x)CallBS(x0, ā2

xavg
T,k)

+
[C1(a; xavg)T

0 ]2 + [C1(̃a; xavg)T
0 ]2

2
(
1
2
∂6

x6 −
3
2
∂5

x5 +
13
8
∂4

x4 −
3
4
∂3

x3 +
1
8
∂2

x2)CallBS(x0, ā2
xavg

T,k)

+O(M1(a)[M0(a)]3T 2).
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Secondly, we pass to the corrective terms in which appears the operator C1. For the sake of clarity, we
introduce the following notation Ax = ∂3

x3 −
3
2∂

2
x2 + 1

2∂x and Az = ∂3
z3 −

3
2∂

2
z2 + 1

2∂z. For example ∂yAx

stands for the differential operator ∂4
yx3 −

3
2∂

3
yx2 + 1

2∂
2
yx and similarly for ∂2

y2Ax. We recall the following

relationAxCallBS = −AzCallBS (see (2.49) in Proposition 2.6.1.3). Our purpose is to prove that:

1
2

C1(a; x0)T
0AxCallBS(x0, ā2

x0
T,k) +

1
2

C1(̃a;k)T
0AzCallBS(x0, ā2

kT,k) (2.28)

=
1
2

(C1(a; xavg)T
0 −C1(̃a; xavg)T

0 )AxCallBS(x0, ā2
xavg

T,k)

+
(x0− k)

4
[4C6(a; xavg)T

0 +C2(a; xavg)T
0 +C2(̃a; xavg)T

0 ]AxCallBS(x0, ā2
xavg

T,k)

+ [C4(a; xavg)T
0 +C4(̃a; xavg)T

0 +ω(a(xavg)a(1)(xavg),a2(xavg),a(xavg)a(1)(xavg))T
0 ]

× (x0− k)∂yAxCallBS(x0, ā2
xavg

T,k) +O(M1(a)[M0(a)]3T 2).

Perform a second order Taylor expansion for the function y 7→AxCallBS(x0,y,k) at y = ā2
x0

T =ω(a2(x0))T
0

around y = ā2
xavg

T = ω(a2(xavg))T
0 and for the function x 7→C1(a; x)T

0 at x = x0 around x = xavg:

C1(a; x0)T
0AxCallBS(x0, ā2

x0
T,k) (2.29)

=
{
C1(a; xavg)T

0 +∂x(C1(a; x)T
0 )|x=xavg

(x0− k)
2

+ R1
}

×
{
AxCallBS(x0, ā2

xavg
T,k) +∂yAxCallBS(x0, ā2

xavg
T,k)T (ā2

x0
− ā2

xavg
) + R2

}
=
{
C1(a; xavg)T

0 +∂x(C1(a; x)T
0 )|x=xavg

(x0− k)
2

+ R1
}

×
{
AxCallBS(x0, ā2

xavg
T,k) + R3 + R2 +∂yAxCallBS(x0, ā2

xavg
T,k)ω(a(xavg)a(1)(xavg))T

0 (x0− k)
}

=C1(a; xavg)T
0AxCallBS(x0, ā2

xavg
T,k)

+∂x(C1(a; x)T
0 )|x=xavg

(x0− k)
2
AxCallBS(x0, ā2

xavg
T,k)

+C1(a; xavg)T
0 ∂yAxCallBS(x0, ā2

xavg
T,k)ω(a(xavg)a(1)(xavg))T

0 (x0− k)

+ R,

where:

R =C1(a; x0)T
0 [R3 + R2] + R1AxCallBS(x0, ā2

xavg
T,k)

+ (x0− k)∂yAxCallBS(x0, ā2
xavg

T,k)ω(a(xavg)a(1)(xavg))T
0 [R1 +∂x(C1(a; x)T

0 )|x=xavg

(x0− k)
2

],

R1 =
(x0− k)2

4

∫ 1

0
(∂2

x2(C1(a; x)T
0 ))|x=λx0+(1−λ)xavg(1−λ)dλ,

R2 =T 2(ā2
x0
− āxavg)2

∫ 1

0
(∂2

y2AxCallBS(x0,y,k))|y=T (λā2
x0 +(1−λ)āxavg )(1−λ)dλ,

R3 =∂yAxCallBS(x0, ā2
xavg

T,k)
(x0− k)2

4

∫ 1

0
(∂2

x2(ω(a2(x))T
0 ))|x=λx0+(1−λ)xavg(1−λ)dλ.

On the one hand, we have:

∂z(C1(l;z)T
0 ) = 2C6(l;z)T

0 +C2(l;z)T
0 ,

C1(l;z)T
0ω(l(z)l(1)(z))T

0 = 2C4(l;z)T
0 +ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T

0 ,

and on the other hand, with (1.8) in Chapter 1 Section 1.2, Corollary 2.6.1.1 and (Ha), it comes:

|R| ≤cM1(a)[M0(a)]3T 2.



50 Chapter 2. Revisiting the Proxy principle in local volatility models

We skip further details. Consequently we can write (2.29) as follows:

C1(a; x0)T
0AxCallBS(x0, ā2

x0
T,k) (2.30)

=C1(a; xavg)T
0AxCallBS(x0, ā2

xavg
T,k) +

(x0− k)
2

[2C6(a; xavg)T
0 +C2(a; xavg)T

0 ]AxCallBS(x0, ā2
xavg

T,k)

+ [2C4(a; xavg)T
0 +ω(a(xavg)a(1)(xavg),a2(xavg),a(xavg)a(1)(xavg))T

0 ](x0− k)∂yAxCallBS(x0, ā2
xavg

T,k)

+O(M1(a)[M0(a)]3T 2).

Then using the relationAxCallBS = −AzCallBS, the time reversal invariance of l 7→C6(l,z)T
0 and

l 7→ ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 (for any z), one obtains similarly:

C1(̃a;k)T
0AzCallBS(x0, ā2

x0
T,k) (2.31)

=−C1(̃a; xavg)T
0AxCallBS(x0, ā2

xavg
T,k) +

(x0− k)
2

[2C6(a; xavg)T
0 +C2(̃a; xavg)T

0 ]AxCallBS(x0, ā2
xavg

T,k)

+ [2C4(̃a; xavg)T
0 +ω(a(xavg)a(1)(xavg),a2(xavg),a(xavg)a(1)(xavg))T

0 ](x0− k)∂yAxCallBS(x0, ā2
xavg

T,k)

+O(M1(a)[M0(a)]3T 2).

Compute the average of (2.30) and (2.31) to complete the proof of (2.28).

B Step 3: mathematical reductions. We gather terms coming from (2.25) and (2.28). In view of (1.8)
in Chapter 1 Section 1.2 and equations (2.48) and (2.49) in Proposition 2.6.1.3, we have:

(x0− k)2

4
C5(a; xavg)T

0 ∂yCallBS(x0, ā2
xavg

T,k) +
(x0− k)

4
[C2(a; xavg)T

0 +C2(̃a; xavg)T
0 ]AxCallBS(x0, ā2

xavg
T,k)

=
(x0− k)2

4
∂yCallBS(x0, ā2

xavg
T,k)

(
C5(a; xavg)T

0 −2
[C2(a; xavg)T

0 +C2(̃a; xavg)T
0 ]

ω(a2(xavg))T
0

)
=

(x0− k)2

4
∂yCallBS(x0, ā2

xavg
T,k)(C5(a; xavg)T

0 −2C5(a; xavg)T
0 )

=−
(x0− k)2

8
C5(a; xavg)T

0 (∂2
x2 −∂x)CallBS(x0, ā2

xavg
T,k), (2.32)

where we have used at the second equality the relation C5(l;z)T
0ω(l2(z))T

0 = C2(l;z)T
0 +C2(̃l;z)T

0 obtained
easily with (2.1). Then (1.8) in Chapter 1 Section 1.2, (2.48) and (2.49) yield

∂yAxCallBS(x0, ā2
xavg

T,k) =∂y((−
2(x0− k)

y
∂y)CallBS(x0,y,k))|y=ā2

xavg T

=
2(x0− k)

ω(a2(xavg))T
0

[∂yCallBS(x0, ā2
xavg

T,k)

ω(a2(xavg))T
0

−∂2
y2CallBS(x0, ā2

xavg
T,k)

]
,

and straightforward calculus allows to obtain with (2.1):

C6(l;z)T
0ω(l2(z))T

0 = C4(l;z)T
0 +C4(̃l;z)T

0 +ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 .

These two intermediate results give:

(x0− k)C6(a; xavg)T
0
[
AxCallBS(x0, ā2

xavg
T,k) + (x0− k)∂2

y2CallBS(x0, ā2
xavg

T,k)
]

+ [C4(a; xavg)T
0 +C4(̃a; xavg)T

0 +ω(a(xavg)a(1)(xavg),a2(xavg),a(xavg)a(1)(xavg))T
0 ]

× (x0− k)∂yAxCallBS(x0,ω(a2(xavg))T
0 ,k)

=−2
(x0− k)2

ω(a2(xavg))T
0

C6(a; xavg)T
0 ∂yCallBS(x0, ā2

xavg
T,k)
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+ (x0− k)2C6(a; xavg)T
0 ∂

2
y2CallBS(x0, ā2

xavg
T,k)

+ (x0− k)[C6(a; xavg)T
0ω(a2(xavg))T

0 ]
2(x0− k)

ω(a2(xavg))T
0

×
[∂yCallBS(x0,ω(a2(xavg))T

0 ,k)

ω(a2(xavg))T
0

−∂2
y2CallBS(x0,ω(a2(xavg))T

0 ,k)
]

=− (x0− k)2C6(a; xavg)T
0 ∂

2
y2CallBS(x0, ā2

xavg
T,k)

=−
(x0− k)2

4
C6(a; xavg)T

0 (∂4
x4 −2∂3

x3 +∂2
x2)CallBS(x0, ā2

xavg
T,k). (2.33)

Finally, sum the relations (2.25-2.28-2.27) taking into account the simplifications (2.32-2.33) and apply
Theorems 2.3.1.1 and 2.3.1.2 to obtain the announced result (2.24). �

2.3.3 Third order expansion of the implied volatility

We define extra integral operators in order to state a new result about third order expansions of the
implied volatility.

Definition 2.3.3.1. Provided that the derivatives and the integrals below have a meaning, we define the
following operators for a two variables non-negative function l such that lz > 0:

γ0(l;z)T
0 =lz +

C2(l;z)T
0

2lzT
−

C4(l;z)T
0

4lzT
−

C3(l;z)T
0

l
3
z T 2

−
3C4(l;z)T

0

l
3
z T 2

+
[C1(l;z)T

0 ]2

8l
3
z T 2

+
3[C1(l;z)T

0 ]2

2l
5
z T 3

,

γ1(l;z)T
0 =

C1(l;z)T
0

l
3
z T 2

, γ2(l;z)T
0 =

C3(l;z)T
0

l
5
z T 3

+ 3
C4(l;z)T

0

l
5
z T 3

−
3[C1(l;z)T

0 ]2

l
7
z T 4

;

π0(l;z)T
0 =

γ0(l;z)T
0 +γ0(̃l;z)T

0

2
, π1(l;z)T

0 =
γ1(̃l;z)T

0 −γ1(l;z)T
0

2
,

π2(l;z)T
0 =

γ2(l;z)T
0 +γ2(̃l;z)T

0

2
−

C5(l;z)T
0

8lzT
+

C6(l;z)T
0

4l
3
z T 2

;

χ0(l;z)T
0 =lz +

C2(l;z)T
0

2lzT
−

C3(l;z)T
0

l
3
z T 2

−
3C4(l;z)T

0

l
3
z T 2

+
3[C1(l;z)T

0 ]2

2l
5
z T 3

,

χ1(l;z)T
0 =γ1(l;z)T

0 , χ2(l;z)T
0 = γ2(l;z)T

0 ;

Ξ0(l;z)T
0 =

χ0(l;z)T
0 +χ0(̃l;z)T

0

2
, Ξ1(l;z)T

0 = π1(l;z)T
0 , Ξ2(l;z)T

0 = π2(l;z)T
0 .

Theorem 2.3.3.1. (3rd order expansions of the implied volatility). Assume (Ha). We have:

σI(x0,T,k) =γ0(a; x0)T
0 −γ1(a; x0)T

0 m +γ2(a; x0)T
0 m2 + ErrorI

3,x0
, (2.34)

σI(x0,T,k) =γ0(̃a;k)T
0 +γ1(̃a;k)T

0 m +γ2(̃a;k)T
0 m2 + ErrorI

3,k, (2.35)

σI(x0,T,k) =π0(a; xavg)T
0 +π1(a; xavg)T

0 m +π2(a; xavg)T
0 m2 + ErrorI

3,xavg
. (2.36)

Under (HΣ) we have

ΣI(S 0,T,K) =χ0(Σ;S 0)T
0 −χ1(Σ;S 0)T

0 M +χ2(Σ;S 0)T
0 M2 + ErrorI

3,S0
, (2.37)



52 Chapter 2. Revisiting the Proxy principle in local volatility models

ΣI(S 0,T,K) =χ0(Σ̃; K)T
0 +χ1(Σ̃; K)T

0 M +χ2(Σ̃; K)T
0 M2 + ErrorI

3,K, (2.38)

ΣI(S 0,T,K) =Ξ0(Σ;S avg)T
0 +Ξ1(Σ;S avg)T

0 M +Ξ2(Σ;S avg)T
0 M2 + ErrorI

3,Savg
. (2.39)

The operators γi, πi, χi and Ξi used in the above expansions are defined in Definition 2.3.3.1.

Remark 2.3.3.1. We have obtained Black-Scholes (respectively Bachelier) implied volatility approxi-
mations which are written as a quadratic function w.r.t. the Black-Scholes log-moneyness (respectively
w.r.t. the Bachelier moneyness). At the money, observe that the corresponding approximations are not
equal to the local volatility function computed at spot. However, in view of the definition of the operators
C1, C2, C3 and C4 (see Definition 2.3.1.1) and the operators γ0 and χ0 (see Definition 2.3.3.1), we easily
obtain the estimate:

|γ0(a; x0)T
0 − āx0 |+ |γ0(̃a; x0)T

0 − āx0 |+ |χ0(Σ;S 0)− Σ̄S 0 |+ |χ0(Σ̃;S 0)− Σ̄S 0 | ≤c T.

It shows that when the maturity tends to zero, our implied volatility approximations at the money become
equal to the local volatility function frozen at spot. We therefore interpret the difference between our
implied volatility approximations ATM and the local volatility function frozen at spot as a maturity bias.

Proof. We first focus on the formula (2.34), the treatment of (2.35-2.37-2.38) being similar. Start from
Theorem 2.3.1.1 and apply Proposition 2.6.1.3 in order to write the Greeks w.r.t. x (for each operator
Ci) in terms of the VegaBS and the VommaBS. Thus the third order expansion formula based on the ATM
local volatility with log-normal proxy can be transformed into:

Call(ex0 ,T,ek)

=CallBS(x0, ā2
x0

T,k) + VegaBS(x0, ā2
x0

T,k)
[
−

C1(a; x0)T
0 m

ā3
x0T 2

+
C2(a; x0)T

0

2āx0T
+

C3(a; x0)T
0 m2

ā5
x0T 3

−
C3(a; x0)T

0

ā3
x0T 2

+
3C4(a; x0)T

0 m2

ā5
x0T 3

−
3C4(a; x0)T

0

ā3
x0T 2

−
C4(a; x0)T

0

4āx0T
+

[C1(a; x0)T
0 ]2

8ā3
x0T 2

+
3[C1(a; x0)T

0 ]2

2ā5
x0T 3

−
3[C1(a; x0)T

0 ]2m2

ā7
x0T 4

]
+

1
2

VommaBS(x0, ā2
x0

T,k)
(C1(a; x0)T

0 m

ā3
x0T 2

)2
+O(M1(a)[M0(a)]3T 2)

=CallBS(x0, ā2
x0

T,k) + VegaBS(x0, ā2
x0

T,k)
[
γ0(a; x0)T

0 − āx0 −γ1(a; x0)T
0 m +γ2(a; x0)T

0 m2]
+

1
2

VommaBS(x0, ā2
x0

T,k)[γ1(a; x0)T
0 m]2 +O(M1(a)[M0(a)]3T 2)

≈CallBS(x0,
[
γ0(a; x0)T

0 −γ1(a; x0)T
0 m +γ2(a; x0)T

0 m2]2T,k).

This reads as an expansion of the implied volatility and achieves the proof of (2.34).

Now we give the main lines of the derivation of the error estimate in (2.36), while (2.39) is left to
the reader. Again, we apply Theorem 2.3.2.1 and Proposition 2.6.1.3 in order to replace the x0-Greeks
with the VegaBS and the VommaBS. One obtains similarly:

Call(ex0 ,T,ek) (2.40)

=CallBS(x0, ā2
xavg

T,k) + VegaBS(x0, ā2
xavg

T,k)
[γ0(a; xavg)T

0 +γ0(̃a; xavg)T
0

2
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0

2
m

+
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0

2
m2−
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0

8āxavgT
m2 +

C6(a; xavg)T
0

4ā3
xavgT 2

m2 +
C6(a; xavg)T

0

16āxavgT
m2−

C6(a; xavg)T
0

4ā5
xavgT 3

m4
]

+
1
2

VommaBS(x0, ā2
xavg

T,k)m2
( [γ1(a; xavg)T

0 ]2 + [γ1(̃a; xavg)T
0 ]2

2

)
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+O(M1(a)[M0(a)]3T 2).

Then write
( [γ1(a;xavg)T

0 ]2+[γ1 (̃a;xavg)T
0 ]2

2

)
=

(γ1 (̃a;xavg)T
0 −γ1(a;xavg)T

0
2

)2
+

(γ1 (̃a;xavg)T
0 +γ1(a;xavg)T

0
2

)2
, use the fact that

(see the definition (2.43) of VommaBS and the definition of γ1 in Definition 2.3.3.1)

1
2

VommaBS(x0, ā2
xavg

T,k)m2(γ1(̃a; xavg)T
0 +γ1(a; xavg)T

0

2
)2

=VegaBS(x0, ā2
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T,k)(C1(̃a; xavg)T
0 +C1(a; xavg)T

0 )2[−
m2

32ā5
xavgT 3

+
m4

8ā9
xavgT 5

],

and finally, use the above identity (obtained with the definitions of C1,C6 and with the relation (2.1)):(
C1(̃l; x)T

0 +C1(l; x)T
0 )2 =2[ω(l2(z))T

0 ]2C6(l;z)T
0 = 4ω(l2(z), l2(z))T

0ω(l(z)l(1)(z), l(z)l(1)(z))T
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to cancel the terms
C6(a;xavg)T

0
16āxavg T m2, −

C6(a;xavg)T
0

4ā5
xavg T 3 m4 and 1

2 VommaBS(x0, ā2
xavg

T,k)m2(γ1 (̃a;xavg)T
0 +γ1(a;xavg)T

0
2

)2 in

(2.40). That achieves the proof of (2.36). �

In addition to these implied volatility expansions, one can under additional technical assumptions
upper bound the residuals terms. For instance, let us consider (2.34), for which we can prove

ErrorI
3,x0

= O(M1(a)[M0(a)]3T
3
2 ), (2.41)

which justifies the label of third order expansion. This is available under the assumptions that
|m| ≤ ξM0(a)

√
T (for a given ξ ≥ 0) and thatM0(a),M1(a) and T are globally small enough to ensure

that the implied volatility approximation γ0(a; x0)T
0 −γ1(a; x0)T

0 m +γ2(a; x0)T
0 m2 is bounded away from

0. The method of proof is analogous to that in Subsection 2.1.4, by performing a third order expansion
of the Black-Scholes price w.r.t. the volatility, using the estimate (2.47) on UltimaBS (see Corollary
2.6.1.2), and carefully gathering terms and evaluating their magnitudes.

2.4 Approximation of the Delta

In this section, we investigate the approximation of the delta of the Call price, i.e. the derivative w.r.t.
the spot, by deriving similar expansion formulas. For the sake of brevity we present only results using a
log-normal proxy. The results are new.
To achieve this goal, we follow again the Dupire approach taking advantage of the symmetry between
spot and strike. We start from the Feynman-Kac representation (2.11) which leads to a nice expression
for the delta:

δ(S 0,T,K) = ∂S 0E[(S 0− ekT )+] = P(ekT < S 0) = P(kT < x0).

Thus we are reduced to compute the price of a binary option on the fictitious asset (kt)t. This binary
payoff is not anymore differentiable, but we can however apply directly [Benhamou 2010a, Theorems
2.1, 2.2 and 4.3] to obtain



54 Chapter 2. Revisiting the Proxy principle in local volatility models

Theorem 2.4.0.2. (1st and 2nd order approximations for delta using local volatility at strike). Assume
(Ha). Then we have:

δ(ex0 ,T,ek) =δBS(x0, ā2
kT,k) +C1(̃a;k)T

0 (∂3
z3 −

3
2
∂2

z2 +
1
2
∂z)δBS(x0, ā2

kT,k) +O(M1(a)M0(a)T ),

δ(ex0 ,T,ek) =δBS(x0, ā2
kT,k) +

6∑
i=1

ηi(̃a;k)T
0 ∂

i
kiδ

BS(x0, ā2
kT,k) +O(M1(a)[M0(a)]2T

3
2 ),

where δBS is Black-Scholes delta function defined by δBS(x,y,z) = N(d1(x,y,z)), with x the log-spot, y
the total variance and z the log-strike.

Remark 2.4.0.2. In view of the error estimate, observe that the corresponding second and third order
formulas for vanilla payoffs are respectively first and second order approximations for binary payoffs.
This is due to the lack of regularity of the payoff (see our discussion in Chapter 1 Subsection 1.3.5).

Like in the previous price approximation formulas, it is possible to perform additional Taylor expan-
sions in order to obtain similar formulas using local volatility function frozen at spot or at mid-point.
We announce two Lemmas which proof is very similar to those of Lemmas 2.1.3.1 and 2.1.3.2 and The-
orem 2.3.2.1 and consequently is left to the reader. Extra technical results are postponed in Appendix,
Subsection 2.6.3.

Lemma 2.4.0.1. Let x ∈ {x0, xavg}. Assume (Ha), then we have
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where C7(l;z)T
0 = ω(l(z)l(1)(z))T

0 .

Lemma 2.4.0.2. Let x ∈ {x0, xavg}. Assume (Ha), then we have
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Then remark that:

C1(̃a; x)T
0 C7(̃a; x)T

0 = 2C4(̃a; x)T
0 +C8(̃a; x)T

0 ,

where the operator C8 is defined as follows:

C8(l;z)T
0 = C8(̃l;z)T

0 = ω(l(z)l(1)(z), l2(z), l(z)l(1)(z))T
0 .

An application of Proposition 2.6.3.2 finally yields the theorem below.
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Theorem 2.4.0.3. (1st and 2nd order approximations for delta using local volatility at spot and mid-
point). Assume (Ha) and let x ∈ {x0, xavg}. We have:

δ(ex0 ,T,ek) =δBS(x0,a2
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2.5 Numerical experiments

2.5.1 The set of tests

For the numerical experiments, we consider a CEV model with constant parameters: σ(t,S ) = νS β−1.
We choose a spot value S 0 equal to 1 and we test two values of ν (a parameter interpreted as a level of
volatility): firstly we set ν = 0.25 and we consider either β = 0.8 (a priori close to the log-normal case) or
β = 0.2 (a priori close to the normal case). Then we investigate the case of a larger volatility with ν = 0.4
and β = 0.5. For the sake of completeness, we give in Appendix 2.6.5 the expressions of corrective
coefficients allowing the computation of our various approximation formulas proposed throughout the
Chapter.

We compare the accuracy of different approximations, for various maturities and various strikes
gathered in 5 categories. The strikes evolve approximately as S 0 exp(cν

√
T ) where c takes the value

Table 2.1: Set of maturities and strikes for the numerical experiments
T/K far ITM ITM ATM OTM far OTM
3M 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.30 1.35
6M 0.65 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.25 1.35 1.50
1Y 0.55 0.65 0.75 0.80 0.90 0.95 1.00 1.05 1.15 1.25 1.40 1.50 1.80
1.5Y 0.50 0.60 0.70 0.75 0.85 0.95 1.00 1.10 1.15 1.30 1.50 1.65 2.00
2Y 0.45 0.55 0.65 0.75 0.85 0.90 1.00 1.10 1.20 1.35 1.55 1.80 2.30
3Y 0.35 0.50 0.55 0.70 0.80 0.90 1.00 1.10 1.25 1.45 1.75 2.05 2.70
5Y 0.25 0.40 0.50 0.60 0.75 0.85 1.00 1.15 1.35 1.60 2.05 2.50 3.60
10Y 0.15 0.25 0.35 0.50 0.65 0.80 1.00 1.20 1.50 1.95 2.75 3.65 6.30

of various quantiles of the standard Gaussian law (1%-5%-10%-20%-30%-40%-50%-60%-70%-80%-
90%-95%-99%) which allows to cover far ITM and far OTM options. We report in Tables 2.2, 2.3 and
2.4 the Black-Scholes implied volatilities corresponding to the exact Call prices with constant parameters
[Schroder 1989].
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Table 2.2: CEV model (β = 0.8, ν = 0.25): BS implied volatilities in %.

3M 25.90 25.73 25.56 25.41 25.26 25.13 25.00 24.88 24.76 24.65 24.45 24.35 24.26
6M 26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.00
1Y 26.53 26.10 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.56
1.5Y 26.78 26.30 25.91 25.73 25.41 25.13 25.00 24.77 24.66 24.35 24.00 23.77 23.31
2Y 27.06 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.92 23.56 22.98
3Y 27.73 26.78 26.53 25.91 25.57 25.27 25.01 24.77 24.45 24.09 23.63 23.25 22.60
5Y 28.64 27.38 26.79 26.31 25.74 25.42 25.01 24.66 24.27 23.85 23.26 22.79 21.94
10Y 30.08 28.66 27.75 26.80 26.12 25.59 25.02 24.57 24.02 23.39 22.57 21.92 20.69

Table 2.3: CEV model (β = 0.2, ν = 0.25): BS implied volatilities in %.

3M 28.75 28.00 27.31 26.67 26.08 25.53 25.01 24.53 24.07 23.64 22.84 22.48 22.13
6M 29.59 28.02 27.32 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
1Y 31.54 29.62 28.05 27.35 26.12 25.56 25.04 24.55 23.66 22.87 21.81 21.19 19.60
1.5Y 32.71 30.57 28.83 28.07 26.74 25.58 25.06 24.11 23.68 22.51 21.20 20.36 18.73
2Y 34.03 31.62 29.69 28.10 26.76 26.16 25.08 24.13 23.29 22.18 20.92 19.62 17.62
3Y 37.34 32.84 31.70 28.92 27.46 26.21 25.12 24.17 22.93 21.55 19.88 18.56 16.40
5Y 42.07 35.80 33.00 30.82 28.27 26.91 25.20 23.80 22.26 20.71 18.59 17.01 14.38
10Y 47.85 41.60 37.46 33.14 30.08 27.76 25.38 23.53 21.41 19.09 16.35 14.32 10.99

Table 2.4: CEV model (β = 0.5, ν = 0.4): BS implied volatilities in %.

3M 43.69 42.97 42.29 41.67 41.08 40.53 40.02 39.53 39.07 38.63 37.82 37.45 37.09
6M 44.51 42.99 42.31 41.68 41.10 40.55 40.03 39.55 39.09 38.23 37.84 37.10 36.11
1Y 46.38 44.55 43.03 42.35 41.13 40.58 40.06 39.58 38.68 37.86 36.78 36.13 34.45
1.5Y 47.49 45.46 43.80 43.06 41.75 40.61 40.10 39.14 38.71 37.51 36.15 35.27 33.52
2Y 48.73 46.47 44.63 43.10 41.79 41.20 40.13 39.17 38.31 37.17 35.87 34.49 32.31
3Y 51.76 47.62 46.55 43.90 42.48 41.26 40.18 39.22 37.97 36.54 34.79 33.36 30.97
5Y 55.94 50.30 47.73 45.69 43.27 41.95 40.28 38.87 37.30 35.69 33.42 31.68 28.66
10Y 60.86 55.20 51.48 47.60 44.80 42.63 40.36 38.55 36.41 33.98 30.97 28.64 24.51

The purpose of the numerical tests is to compare the following approximations:

1. ImpVol(AppPriceLN(2,z)) and ImpVol(AppPriceN(2,z)): the BS implied volatility of the
second order expansions based respectively on the log-normal and normal proxy with local volatil-
ity frozen at point z, z being respectively equal to x0, k or xavg and to S 0, K or S avg. See Theorems
2.1.2.3-2.1.3.1-2.1.3.2.

2. AppImpVolLN(2,z) and AppImpVolN(2,z): the second order implied volatility expansions
(Theorem 2.1.4.1). All the results are converted into Black-Scholes implied volatility. Namely,
for the normal proxy, once we have computed Bachelier implied volatility expansions, we first
evaluate the price with the Bachelier formula and then compute the related implied Black-Scholes
volatility.

3. ImpVol(AppPriceLN(3,z)) and ImpVol(AppPriceN(3,z)): the implied volatility of the
third order expansions (Theorems 2.3.1.1 and 2.3.1.2). In addition for the log-normal proxy,
we test the average of approximations based on strike and on spot and we denote it by
Av.ImpVol(AppPriceLN(3,.)).

4. AppImpVolLN(3,z) and AppImpVolN(3,z): the third order implied volatility expansions (The-
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orem 2.3.3.1). We use the notation Av.AppImpVolLN(3,.) for the average of the expansions in
strike and in spot.

5. Hagan and Henry-Labordère formulas denoted by (HF) and (HLF) in the following: benchmark
implied volatility approximations of Hagan et al. [Hagan 1999, formula (7) p.149] and Henry-
Labordère [Henry-Labordère 2008, formula (5.41) p.141]. For the sake of completeness, we recall
these well-know implied volatility approximations in the CEV model:

σI(x0,T,k) ≈ ν(
S 0 + K

2
)β−1

(
1 +

(1−β)(2 +β)
6

(
S 0−K
S 0 + K

)2 +
(β−1)2ν2T

24
(
S 0 + K

2
)2β−2

)
, (HF)

σI(x0,T,k) ≈
ν(1−β) log( S 0

K )

S 1−β
0 −K1−β

(
1 +

(β−1)2ν2T
24

(
S 0 + K

2
)2β−2

)
. (HLF)

We recall that these formulas are essentially available for time-independent volatility, while our
formulas allow time dependency.

Our goal is to demonstrate the interest of our approximation formulas in comparison to those of
Hagan and Henry-Labordere. We are rather exhaustive with our numerical experiments in order to, on
the one hand, select the best approximation formulas among ours, and on the other hand to show that
our methods with log-normal proxy involving the mid-point generally outperform Hagan and Henry-
Labordère formulas. Full details allow the reader to easily reproduce the results.

In Tables 2.7 and 2.9, we report the errors expressed in bps (basis points) on implied volatility
for (β,ν) = (0.8,0.25) using the second and the third order price expansions. Tables 2.8 and 2.10
give results for the second and the third order implied volatility expansions. Next in Table 2.11,
we report the errors in bps obtained with the averaged expansions Av.ImpVol(AppPriceLN(3,.))
and Av.AppImpVolLN(3,.) and the benchmarks (HF) and (HLF). Then in Table 2.12, we compare
Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xavg)), Av.AppImpVolLN(3,.) and
AppImpVolLN(3,xavg) with the benchmarks (HF) and (HLF).
After we analyse the case (β,ν) = (0.2,0.25) and we report in Tables 2.13 and 2.14 the errors
using ImpVol(AppPriceLN(3,xavg)), ImpVol(AppPriceN(3,S avg)), AppImpVolLN(3,xavg),
AppImpVolN(3,S avg) and the benchmarks (HF) and (HLF). Because the other methods in general give
globally less accurate results, we just report and compare the best approximations.
Finally in Tables 2.15 and 2.16 we establish a comparison between ImpVol(AppPriceLN(3,xavg)),
AppImpVolLN(3,xavg) and the benchmarks Hagan and (HLF) for (β,ν) = (0.5,0.4).

For example, on the first row of Table 2.7, the value −12 corresponds to the approximation error of
ImpVol(AppPriceLN(2,x0)) for the first strike of the maturity T = 3M (i.e. K = 0.7), whereas on the
second row, the value -3 corresponds to the approximation error of ImpVol(AppPriceLN(2,k)) for
the third strike of the maturity T = 6M (i.e. K = 0.8). If the price approximation does not belong to
the non-arbitrage interval for Call options (it may happen for extreme strikes) we just report ND in the
tabular.

2.5.2 Analysis of results

B Influence of T and K. We notice in Tables 2.7, 2.8, 2.9, 2.10 that errors are increasing w.r.t. T
for all the different approximations: this is coherent with the T 3/2 or T 2-factor of our theoretical error
estimates. For ATM options, all the approximations are excellent and errors remain small for a large
range of strikes and maturities: with the log-normal proxy, usually smaller than 10 bps up to 10Y for
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strikes corresponding to the Gaussian quantiles range [10%,90%].

B Influence of the proxy. As expected, approximations based on log-normal proxy perform better than
approximations based on normal proxy. On the one hand, we obtain simpler approximation formulas
with the normal proxy: on the other hand, the errors become significant when considering slightly OTM
or ITM options, even for short maturities and for advanced methods (order 3, local volatility frozen at
the mid-point. . . ).

B Influence of the order. Regarding firstly Tables 2.7-2.9 and then Tables 2.8-2.10, we notice that
as expected, third order approximations are more accurate than second order ones. In addition, for
the log-normal proxy case, second order approximations in spot or strike often underestimate the
true implied volatility values whereas third order approximations in spot overestimate the true values
for OTM options and yield underestimation for ITM options; the converse occurs for the third order
approximations in strike. Because the errors have approximately the same magnitude but with opposite
signs, approximations are improved by considering the average between the approximations. It is
discussed below.

B Influence of the point. Unquestionably, methods using the local volatility at mid-point sys-
tematically give the best results. With ImpVol(AppPriceLN(2,xavg)) (Table 2.7), errors do not
exceed 15 bps for the whole set of strikes and maturities, which is already really good, whereas
ImpVol(AppPriceLN(3,xavg)) and AppImpVolLN(3,xavg) provide errors close to 0 proving an
extreme accuracy.

B Price expansions vs implied volatility expansions. Generally speaking, the implied volatility
expansions are more precise and stable. This can be easily observed by comparing on the one hand
Tables 2.7 and 2.8 and on the other hand Tables 2.9 and 2.10. Sometimes, especially for extreme strikes,
a simple direct second order second implied volatility expansion is more accurate than the corresponding
third order price expansion. Since in addition the formulas are easier to compute, we recommend the
use of implied volatility expansions. Moreover, the difference between ImpVol(AppPriceLN(3,xavg))

and AppImpVolLN(3,xavg) is not clear, both methods giving similar and excellent results (see Tables
2.12 or 2.13) although the direct implied volatility expansion remains more stable especially for β = 0.2
and/or for large maturities. Last, when the local volatility function is frozen at spot or at strike, there
is really an improvement in using implied volatility expansions instead of the corresponding price
expansions.

B Comparison with the benchmarks. In Table 2.11, we report the performance of the methods
Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.) and the benchmarks (HF) and (HLF).
Errors on the implied volatility are equal to zero bp for the whole range of maturities and strikes for
Av.AppImpVolLN(3,.) and the (HLF) approximation, whereas Av.ImpVol(AppPriceLN(3,.))
and (HF) provide errors smaller than 45 and 70 bps in absolute value respectively. In Ta-
ble 2.12, we compare Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xavg)),
Av.AppImpVolLN(3,.) and AppImpVolLN(3,xavg) with the benchmarks (HF) and (HLF). In
order to observe more clearly the accuracy of the different methods, we partially gather the results and
we report the average of errors for different categories of strike (far ITM, ITM, ATM, OTM and far
OTM, see Table 2.1), using a scientific notation for the errors. Computing the average per categories
of strikes gives an advantage to methods which errors have non constant sign. These methods may be
more reliable than those giving a systematic over/under-estimation.
The best method is clearly AppImpVolLN(3,xavg) which yields errors of 10−5 bps for short maturities
and 10−2 bps for long maturities. The method gives better results than the excellent approximation
proposed by Henry-Labordère (errors of 10−4 bps for short maturities and 10−1 bps for long maturities).
ImpVol(AppPriceLN(3,xavg)) seems to be slightly better than (HLF) but is less robust for extreme
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strikes than AppImpVolLN(3,xavg). Significantly better results are obtained by averaging the expan-
sions in spot and strike, thanks to the symmetrical roles played by these two variables. The results are
close to those of the corresponding expansions with the mid-point, but they remain less accurate and
less robust for extreme strikes. The problem of this averaging method is the risk of huge inaccuracy
if one of two approximations in spot and strike fails. (HF) is clearly less accurate than all the other
approximations.

B Influence of β. In the Table 2.13, as expected the log-normal proxy provides larger errors than for
β = 0.8. Although the results of the normal proxy are better in comparison with the case β = 0.8, they
remain less accurate and less robust than those obtained with the log-normal proxy. Up to the maturity
5Y , AppImpVolLN(3,xavg) yields errors in bps smaller than 7 bps which is truly excellent. (HLF) gives
comparable results. (HF) seems less accurate and cruder for extreme strikes. For the maturity 10Y ,
we observe that AppImpVolLN(3,xavg) (maximal error close to 159 bps) behaves better than (HLF)
(maximal error close to 271 bps) for very small strikes, whereas for very large strikes (HLF) is slightly
better (−5 bps for AppImpVolLN(3,xavg) versus −1 bp for (HLF)). Surprisingly (HF) yields the smallest
maximal error (close to 112 bps) but is more inaccurate for OTM. (HLF) and AppImpVolLN(3,xavg)

give excellent results with errors of the order of 10−3 bps for short maturity (3M) and 10−1 bps for the
maturity 3Y . We nevertheless notice that ATM, (HLF) is better.

B Impact of ν. The level of volatility ν plays a similar role to
√

T , and in Tables 2.15 and 2.16,
we analyse the impact of a larger volatility on our approximations. We take ν = 40% and β = 0.5.
We notice that up to the maturity 5Y , the errors in bps do not exceed 6 bps for the methods
ImpVol(AppPriceLN(3,xavg)) or AppImpVolLN(3,xavg) with a maximal error of 92 bps for the
maturity 10Y . Their accuracy is better than those of (HF) or (HLF) for short and long maturities. (HLF)
is much more inaccurate ITM for the maturity 10Y (maximal error of 286 bps). In Table 2.16, we
aggregate the results per categories of strike up to the maturity 3Y and we observe a good accuracy of
ImpVol(AppPriceLN(3,xavg)) and AppImpVolLN(3,xavg): 10−3 bps for the maturity 3M and 10−1

for the maturity 3Y . In particular we notice that ATM, (HF) and (HLF) are less accurate.

In view of all these tests, we may conclude that ImpVol(AppPriceLN(3,xavg)) and particulary
AppImpVolLN(3,xavg) give very satisfying results, being at least as good as the Henry-Labordère for-
mula in the worst situations (β = 0.2 or ν = 0.4) and being often better in the case β = 0.8. The different
current tests prove that our direct implied volatility approximations outperform the corresponding price
approximations. In addition, a normal proxy seems not to be the most appropriate for the approximation
of a CEV model, in view of the large errors obtained especially for very small strikes. This presumably
explains why the Hagan formula is much less accurate than our approximations with log-normal proxy
and than that of Henry-Labordère. The Hagan formula is namely close in the spirit to our approximation
formulas with normal proxy.
To conclude, our approximations maintain very tight error estimates and allow to deal naturally with
general time-dependent local volatility (or with stochastic interest rates, see [Benhamou 2012]) which is
a significant advantage compared to other approaches.

2.5.3 CEV Delta approximations

Now we test our approximation formulas for the deltas, by choosing again a CEV model with spot value
S 0 = 1 and constant parameters. We test the values (β,ν) = (0.8,0.25) and (β,ν) = (0.2,0.25). We report
in Tables 2.5 and 2.6 the exact delta values for the set of maturities and strikes defined in Table 2.1.



60 Chapter 2. Revisiting the Proxy principle in local volatility models

Table 2.5: CEV model (β = 0.8, ν = 0.25): deltas in %.

3M 99.75 98.89 96.38 90.83 81.18 67.67 51.99 36.60 23.57 13.91 3.78 1.76 0.76
6M 99.20 95.10 90.44 83.56 74.58 64.05 52.82 41.80 31.77 16.33 11.09 4.64 1.01
1Y 99.09 96.04 88.90 83.53 69.78 61.97 53.98 46.15 31.98 20.75 9.76 5.55 0.82
1.5Y 98.76 95.68 89.46 85.06 74.11 61.40 54.88 42.35 36.62 22.35 10.35 5.44 1.03
2Y 98.75 95.94 90.58 82.55 72.45 66.93 55.63 44.75 34.97 23.04 12.30 5.15 0.75
3Y 99.13 95.36 93.13 83.51 75.22 66.13 56.88 47.99 36.04 23.46 11.44 5.25 0.86
5Y 99.23 95.93 91.89 86.53 76.75 69.63 58.86 48.70 36.85 25.21 12.05 5.54 0.79
10Y 99.13 97.10 93.95 87.68 80.34 72.60 62.46 53.06 40.92 27.19 12.88 5.57 0.54

Table 2.6: CEV model (β = 0.2, ν = 0.25): deltas in %.

3M 99.37 98.08 95.04 89.11 79.43 66.09 50.50 34.98 21.76 12.08 2.60 1.01 0.34
6M 98.13 92.97 88.01 81.08 72.24 61.88 50.71 39.59 29.35 13.70 8.60 2.85 0.35
1Y 97.34 93.15 85.45 80.09 66.66 58.97 51.00 43.08 28.51 17.00 6.39 2.91 0.14
1.5Y 96.23 92.03 85.29 80.89 70.22 57.76 51.23 38.45 32.50 17.73 6.20 2.35 0.13
2Y 95.71 91.77 85.84 77.85 68.06 62.67 51.43 40.30 30.09 17.68 7.29 1.81 0.04
3Y 95.62 90.10 87.57 77.87 69.86 61.01 51.76 42.61 30.02 16.82 5.53 1.36 0.03
5Y 94.70 89.45 84.88 79.47 70.04 63.12 52.32 41.69 28.91 16.52 4.53 0.87 0.00
10Y 94.37 90.36 86.11 79.22 71.81 64.05 53.52 43.32 29.65 14.59 2.76 0.23 0.00

We test the 6 following approximations:

1. AppDeltaLN(1,x0), AppDeltaLN(1,k) and AppDeltaLN(1,xavg): first order delta expansions
based on the log-normal proxy with local volatility frozen at point x0, k and xavg.

2. AppDeltaLN(2,x0), AppDeltaLN(2,k) and AppDeltaLN(2,xavg): second order delta expan-
sions based on the log-normal proxy with local volatility frozen at point x0, k and xavg.

Tables 2.17-2.18 (respectively 2.19) give errors on deltas (expressed in bps) using all the approximations
with β = 0.8 (respectively β = 0.2).
Regarding the results, the accuracy for β = 0.8 is excellent because, except for AppDeltaLN(1,x0), we
obtain a maximal error (in absolute value) equal to 36 bps. Generally speaking, approximations with
local volatility at spot are not as good as related approximations at strike. In addition, for second order
formulas, we do not observe any symmetry between the spot and strike approximations (which often
overestimate the exact delta), whereas the symmetry slightly appears for the first order expansions (not
exactly with the same magnitude but opposite signs). Maybe in this situation, the optimal expansion
point is not exactly the convex combination xavg = (x0 + k)/2. However the methods with the mid-point
are truly excellent, in particular AppDeltaLN(2,xavg) which yields a maximal error (in absolute value)
close to 1 bps. From Table 2.18, we observe that in average, the errors for AppDeltaLN(2,xavg) range
from 10−3 for short maturities to 10−1 for long maturities.

In Table 2.19 (β = 0.2), without surprise the errors are larger compared to β = 0.8. The best ap-
proximation is still AppDeltaLN(2,xavg) which provides errors smaller than 27 bps up to 5Y with a
global maximal error of 157 bps, which remains quite good. Curiously, for ATM options, the first order
approximation may give better estimates even if the related errors quickly increase for large or small
strikes in comparison with the second order approximations.
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2.6 Appendix

2.6.1 Computations of derivatives of CallBS w.r.t the log spot, the log strike and the total
variance

In the following Proposition, we make explicit the formula for the derivatives at any order of CallBS

w.r.t. x and z:

Proposition 2.6.1.1. Let x,z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂n
xnCallBS(x,y,z) =exN(d1(x,y,z)) +1n≥2 exN ′(d1(x,y,z))

n−1∑
k=1

(
n−1

k

)
(−1)k−1 Hk−1(d1(x,y,z))

y
k
2

,

∂z
znCallBS(x,y,z) =− ezN(d2(x,y,z)) +1n≥2 ezN ′(d2(x,y,z))

n−1∑
k=1

(
n−1

k

)
Hk−1(d2(x,y,z))

y
k
2

,

where (Hk)k∈N are the Hermite polynomials defined for any n ∈ N and for any x ∈ R by:

Hn(x) = (−1)nex2/2∂n
xn(e−x2/2)

Proof. For n = 1 the formulas are easy to obtain. For n ≥ 2, apply the Leibniz formula to the products
exN(d1(x,y,z)) and ezN(d2(x,y,z)). �

We deduce a very useful Corollary:

Corollary 2.6.1.1. Let x,z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we have:

|∂n
xnCallBS(x,y,z)|+ |∂n

znCallBS(x,y,z)| ≤c y
1−n

2 ,

|x− z|m|∂n
xnCallBS(x,y,z)− exN(d1(x,y,z))| ≤c y

1−n+m
2 ,

|x− z|m|∂n
znCallBS(x,y,z) + ezN(d2(x,y,z))| ≤c y

1−n+m
2 ,

where the generic constants depend polynomially on y.

Remark 2.6.1.1. In practice the two last estimates are used when we want to bound

(x− z)m
n∑

i=1

αi∂
i
xiCallBS(x,y,z) or (x− z)m

n∑
i=1

αi∂
i
ziCallBS(x,y,z) (with

n∑
i=1

αi = 0) by a power of y with the

highest possible degree.

Proof. We recall that for any polynomial function P, x 7→ P(x)N ′(x) is a bounded function. Then the
first inequality follows directly from Proposition 2.6.1.1. For the second and the third, write (x− z) =

d1(x,y,z)
√

y− 1
2 y = d2(x,y,z)

√
y + 1

2 y and conclude similarly. �

In the next Proposition, we provide the formulas of the first, the second and the third derivatives of
CallBS w.r.t. a positive volatility:

Proposition 2.6.1.2. Let x,z ∈ R, ν > 0 and T > 0. We have:

VegaBS(x, ν2T,z) =∂νCallBS(x, ν2T,z) = ex
√

TN ′(d1(x, ν2T,z)) = ez
√

TN ′(d2(x, ν2T,z)), (2.42)

VommaBS(x, ν2T,z) =∂νVegaBS(x, ν2T,z) =
VegaBS(x, ν2T,z)

ν
d1(x, ν2T,z)d2(x, ν2T,z)

=
VegaBS(x, ν2T,z)

ν
[
(x− z)2

ν2T
−
ν2T

4
], (2.43)
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UltimaBS(x, ν2T,z) =∂νVommaBS(x, ν2T,z) = −
VegaBS(x, ν2T,z)

ν2 [d1d2(1−d1d2) + d2
1 + d2

2](x, ν2T,z)

=−
VegaBS(x, ν2T,z)

ν2 [
(x− z)2

2
+

3(x− z)2

ν2T
+
ν2T

4
−

(x− z)4

ν4T 2 −
ν4T 2

16
]. (2.44)

The above Proposition directly implies the following result:

Corollary 2.6.1.2. Let x,z ∈ R, ν > 0 and T > 0. We have the following estimates:

0 < VegaBS(x, ν2T,z) ≤c
√

T , (2.45)

|VommaBS(x, ν2T,z)| ≤c

√
T
ν
, (2.46)

|UltimaBS(x, ν2T,z)| ≤c

√
T
ν2 , (2.47)

where the generic constants depend polynomially of ν.

We finally state relations between the derivatives w.r.t. x or z, the VegaBS and the VommaBS. These
relations allow on the one hand to replace derivatives w.r.t. z with derivatives w.r.t. x and on the other
hand to write the differential operators w.r.t. x or z in terms of the VegaBS and the VommaBS. The
verification of these identities is tedious but without mathematical difficulties. For instance, we have
used Mathematica to check these relations.

Proposition 2.6.1.3. Let x,z ∈ R, ν > 0 and T > 0. We have:

(∂2
x2 −∂x)CallBS(x, ν2T,z) =(∂2

z2 −∂z)CallBS(x, ν2T,z)

=
ex

ν
√

T
N ′(d1(x, ν2T,z)) =

VegaBS(x, ν2T,z)
νT

, (2.48)

(∂3
x3 −

3
2
∂2

x2 +
1
2
∂x)CallBS(x, ν2T,z) =− (∂3

z3 −
3
2
∂2

z2 +
1
2
∂z)CallBS(x, ν2T,z)

=−
ex(x− z)

ν3T
3
2

N ′(d1(x, ν2T,z)) = −VegaBS(x, ν2T,z)
(x− z)
ν3T 2 ,

(2.49)

(
1
4
∂4

x4 −
1
2
∂3

x3 +
1
4
∂2

x2)CallBS(x, ν2T,z) =(
1
4
∂4

z4 −
1
2
∂3

z3 +
1
4
∂2

z2)CallBS(x, ν2T,z)

=exN ′(d1(x, ν2T,z))
[ (x− z)2

4ν5T
5
2

−
1

16ν
√

T
−

1

4ν3T
3
2

]
=VegaBS(x, ν2T,z)

[ (x− z)2

4ν5T 3 −
1

16νT
−

1
4ν3T 2

]
, (2.50)

(∂4
x4 −2∂3

x3 +
5
4
∂2

x2 −
1
4
∂x)CallBS(x, ν2T,z) =(∂4

z4 −2∂3
z3 +

5
4
∂2

z2 −
1
4
∂z)CallBS(x, ν2T,z)

=exN ′(d1(x, ν2T,z))
[ (x− z)2

ν5T
5
2

−
1

ν3T
3
2

]
=VegaBS(x, ν2T,z)

[ (x− z)2

ν5T 3 −
1

ν3T 2

]
, (2.51)

(3∂4
x4 −6∂3

x3 +
7
2
∂2

x2 −
1
2
∂x)CallBS(x, ν2T,z) =(3∂4

z4 −6∂3
z3 +

7
2
∂2

z2 −
1
2
∂z)CallBS(x, ν2T,z)

= exN ′(d1(x, ν2T,z))
[
3

(x− z)2

ν5T
5
2

−
3

ν3T
3
2

−
1

4ν
√

T

]
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= VegaBS(x, ν2T,z)
[
3

(x− z)2

ν5T 3 −
3

ν3T 2 −
1

4νT
]
, (2.52)

(
1
2
∂6

x6 −
3
2
∂5

x5 +
13
8
∂4

x4 −
3
4
∂3

x3 +
1
8
∂2

x2)CallBS(x, ν2T,z)

=(
1
2
∂6

z6 −
3
2
∂5

z5 +
13
8
∂4

z4 −
3
4
∂3

z3 +
1
8
∂2

z2)CallBS(x, ν2T,z)

=exN ′(d1(x, ν2T,z))
[ (x− z)4

2ν9T
9
2

−
(x− z)2

8ν5T
5
2

−3
(x− z)2

ν7T
7
2

+
1

8ν3T
3
2

+
3

2ν5T
5
2

]
=VegaBS(x, ν2T,z)

[
−3

(x− z)2

ν7T 4 +
1

8ν3T 2 +
3

2ν5T 3

]
+

1
2

VommaBS(x, ν2T,z)
(x− z)2

ν6T 4 . (2.53)

2.6.2 Derivatives of CallBA w.r.t the spot, the strike and the total variance

Proposition 2.6.2.1. Let S ,Z ∈ R and Y > 0. For any integer n ≥ 1, we have:

∂n
S nCallBA(S ,Y,Z) =1n=1N(

S −Z
√

Y
) +1n≥2N

′(
S −Z
√

Y
)(−1)n−2

Hn−2( S−Z√
Y

)

Y
n−1

2

,

∂n
ZnCallBA(S ,Y,Z) =−1n=1N(

S −Z
√

Y
) +1n≥2N

′(
S −Z
√

Y
)
Hn−2( S−Z√

Y
)

Y
n−1

2

.

Corollary 2.6.2.1. Let S ,Z ∈ R and Y > 0. For any integers n ≥ 2 and m ≥ 1, we have:

|S −Z|m
(
|∂n

S nCallBA(S ,Y,Z)|+ |∂n
ZnCallBA(S ,Y,Z)|

)
≤cY

1−n+m
2 ,

where the generic constants depend polynomially on Y.

Proposition 2.6.2.2. Let S ,Z ∈ R, V > 0 and T > 0. We have:

VegaBA(S ,V2T,Z) =∂VCallBA(S ,V2T,Z) =
√

TN ′(
S −Z

V
√

T
),

VommaBA(S ,V2T,Z) =∂VVegaBA(S ,V2T,Z) =
VegaBA(S ,V2T,Z)

V
(S −Z)2

V2T
,

UltimaBA(S ,V2T,Z) =∂VVommaBA(S ,V2T,Z) = −
VegaBA(S ,V2T,Z)

V2 [
3(S −Z)2

V2T
−

(S −Z)4

V4T 2 ].

Corollary 2.6.2.2. Let S ,Z ∈ R V > 0 and T > 0. We have the following estimates:

0 < VegaBA(S ,V2T,Z) ≤c
√

T ,

|VommaBA(S ,V2T,Z)| ≤c

√
T

V
,

|UltimaBA(S ,V2T,Z)| ≤c

√
T

V2 ,

where the generic constants depend polynomially on V.

Proposition 2.6.2.3. Let S ,Z ∈ R V > 0 and T > 0. We have:

∂2
S 2CallBA(S ,V2T,Z) = ∂2

Z2CallBA(x,V2T,Z) =
VegaBA(S ,V2T,Z)

VT
,

∂3
S 3CallBA(S ,V2T,Z) =−∂3

Z3CallBA(S ,V2T,Z) = −VegaBA(S ,V2T,Z)
(S −Z)
V3T 2 ,



64 Chapter 2. Revisiting the Proxy principle in local volatility models

∂3
S 4CallBA(S ,V2T,Z) =∂4

Z4CallBA(S ,V2T,Z) = VegaBA(S ,V2T,Z)
[ (S −Z)2

V5T 3 −
1

V3T 2

]
,

∂6
S 6CallBA(S ,V2T,Z) =∂6

Z6CallBA(S ,V2T,Z) = VegaBA(S ,V,T,Z)
[
−6

(S −Z)2

V7T 4 +
3

V5T 3

]
+ VommaBA(S ,V2T,Z)

(S −Z)2

V6T 4 .

2.6.3 Derivatives of δBS w.r.t the log spot, the log strike and the total variance

Proposition 2.6.3.1. Let x,z ∈ R and y > 0. For any integer n ≥ 1, we have:

∂n
xnδBS(x,y,z) =(−1)n−1N ′(d1(x,y,z))

Hn−1(d1(x,y,z))

y
n
2

,

∂n
znδBS(x,y,z) =−N ′(d1(x,y,z))

Hn−1(d1(x,y,z))

y
n
2

.

Corollary 2.6.3.1. Let x,z ∈ R and y > 0. For any integers n ≥ 1 and m ≥ 1, we have:

|x− z|m
(
|∂n

xnδBS(x,y,z)|+ |∂n
znδBS(x,y,z)|

)
≤cy

m−n
2 ,

where the generic constants depend polynomially on y.

Proposition 2.6.3.2. Let x,z ∈ R and y > 0. We have:

∂yδ
BS(x,y,z) =

1
2

(∂2
z2 −∂z)δBS(x,y,z) = −

N ′(d1(x,y,z))
2y

d2(x,y,z).

2.6.4 Proof of Lemma 2.1.2.1

We proceed by induction. The key is to prove the above technical result:

Lemma 2.6.4.1. Let (mt)t∈[0,T ] be a square integrable and predictable process, (λt)t∈[0,T ] be a measur-
able and bounded deterministic function and ϕ be a C∞b function. Then, we have:

E
(
ϕ(

∫ T

0
λtdWt)

∫ T

0
mtdWt

)
= E

(
ϕ(1)(

∫ T

0
λtdWt)

∫ T

0
λtmtdt

)
.

Proof. We propose two proofs: firstly we employ a PDE argument and secondly we show that this is
a straightforward application of the Malliavin calculus theory. In the two points of view, we use the
common notation for the diffusion process (Zt)t∈[0,T ] = (

∫ t
0 λsdWs)t∈[0,T ] and we recall that (Ft)t∈[0,T ]

denotes the augmented filtration of the Brownian motion W.
B PDE argument. We introduce u(t, x) = E[ϕ(ZT )|Zt = x] which solves the following PDE with terminal
condition:  ∂tu(t, x) + 1

2λ
2
t ∂

2
xxu(t, x) = 0, (t, x) ∈]0,T [×R,

u(T, x) = ϕ(x), x ∈ R.

Thanks to the above PDE and the assumption on ϕ, ∀i ∈ N, ∂i
xi(u(t,Zt))t∈[0,T ] is a martingale and

∀t ∈ [0,T ], we have:

∂i
xiu(t,Zt) = E[ϕ(i)(ZT )|Ft] =E[ϕ(i)(ZT )] +

∫ t

0
∂i+1

xi+1u(s,Zs)λsdWs.
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Then applying the L2-isometry for the product u(T,ZT )
∫ T

0 mtdWt = ϕ(ZT )
∫ T

0 mtdWt, it readily comes:

E
(
ϕ(ZT )

∫ T

0
mtdWt

)
=

∫ T

0
E[∂xu(t,Zt)λtmt]dt = E

(
ϕ(1)(ZT )

∫ T

0
λtmtdt

)
,

where at the last equality we have used the martingale property of ∂x(u(t,Zt))t∈[0,T ].
B Malliavin calculus approach. The result directly comes from the duality relationship of Malliavin
calculus (see [Nualart 2006, Lemma 1.2.1]) identifying the Itô integral

∫ T
0 mtdWt with the Skorohod

operator and observing that (ϕ(1)(ZT )λt)t∈[0,T ] is the first Malliavin derivative of ϕ(ZT ). �

Lemma 2.6.4.1 is a particular case of Lemma 2.1.2.1 for N = 1 and IN = 1 noting that ∀i ∈ N,

E
(
ϕ(i)(

∫ T
0 λtdWt)

)
= ∂i

εiE
(
ϕ(

∫ T
0 λtdWt +ε)

)
|ε=0, thanks to the regularity of ϕ. For N = 1 and IN = 0, there

is nothing to prove. Suppose that the formula (2.9) is true for N ≥ 2. Then apply Lemma 2.6.4.1 if
IN+1 = 1 to obtain:

E
(
ϕ(

∫ T

0
λtdWt)

∫ T

0
lN+1,tN+1

∫ tN+1

0
lN,tN . . .

∫ t2

0
l1,t1dW I1

t1 . . .dW IN
tN dW IN+1

tN+1

)
=E

(
ϕ(IN+1)(

∫ T

0
λtdWt)

∫ T

0
l̂N+1,tN+1

∫ tN+1

0
lN,tN

∫ tN

0
. . .

∫ t2

0
l1,t1dW I1

t1 . . .dW IN
tN dtN+1

)
=E

(
ϕ(IN+1)(

∫ T

0
λtdWt)

∫ T

0

(∫ T

tN
l̂N+1,sds

)
lN,tN

∫ tN

0
. . .

∫ t2

0
l1,t1dW I1

t1 . . .dW IN
tN

)
,

where at the last equality we have used the fact that
∫ T

0 ftZtdt =
∫ T

0 (
∫ T

t fsds)dZt for any continuous semi-
martingale Z starting from 0 and any measurable and bounded deterministic function f (apply the Itô’s
formula to the product (

∫ T
t fsds)Zt). We easily conclude with the induction hypothesis and leave the

details to the reader.

2.6.5 Applications of the expansions for time-independent CEV model

We specify in this section the results and the practical calculus of the various expansion coefficients
when the volatility has the form:

σ(S ) = νS β−1,

i.e. a CEV-type time-independent volatility with a level ν and a skew β ≤ 1. Although the volatility
and its derivatives are not bounded, we expect that our expansions can be generalized to that model.
Alternatively, to fit our assumptions, we would need to modify the CEV volatility function σ near 0
and +∞, so that the ellipticity and regularity conditions are met. The impact of such a modification has
been studied in the case of Limited CEV model in [Andersen 2000] where the authors show a very small
impact on prices. Observe in addition that the correction terms in our expansions do no depend on the
modification of σ at 0 and +∞.

To apply our different expansion theorems, we need to give the expressions of the coefficients
(Ci)1≤i≤8 defined in Definition 2.3.1.1, in Theorem 2.3.2.1 and in Lemmas 2.4.0.1-2.4.0.2. A straight-
forward calculus leads to:

a(x) =νex(β−1), a(1)(x) =(β−1)a(x), a(2)(x) =(β−1)2a(x),

a(x0) =νS β−1
0 , a(k) =νKβ−1, a(xavg) =ν(S 0K)

β−1
2 ,

Σ(S ) =νS β, Σ(1)(S ) =β
Σ(S )

S
, Σ(2)(S ) =β(β−1)

Σ(S )
S 2 ,



66 Chapter 2. Revisiting the Proxy principle in local volatility models

Σ(S 0) =νS β
0, Σ(K) =νKβ, Σ(S avg) =ν(

S 0 + K
2

)β.

Thus for β ∈ [0,1], the magnitudes ofM0(a) andM1(a) are mainly linked to those of ν and ν(β−1). At
the limit case β = 1, the model coincides with the log-normal proxy andM1(a) = 0. In the same spirit,
ν and νβ are respectively linked toM0(Σ) andM1(Σ). At the limit case β = 0, the model coincides with
the normal proxy andM1(Σ) = 0.

Finally, the expression of the coefficients (Ci)1≤i≤8 are:

C1(a; x)T
0 =(β−1)a4(x)

T 2

2
, C2(a; x)T

0 =(β−1)2a4(x)T 2,

C3(a; x)T
0 =(β−1)2a6(x)

T 3

3
, C4(a; x)T

0 =C8(a; x)T
0 = (β−1)2a6(x)

T 3

6
,

C5(a; x)T
0 =2(β−1)2a2(x)T, C6(a; x)T

0 =(β−1)2a4(x)
T 2

2
,

C7(a; x)T
0 =(β−1)a2(x)T,

C1(Σ;S )T
0 =β

Σ4(S )
S

T 2

2
, C2(Σ;S )T

0 =β(2β−1)
Σ4(S )

S 2

T 2

2
,

C3(Σ;S )T
0 =β(2β−1)

Σ6(S )
S 2

T 3

6
, C4(Σ;S )T

0 =C8(Σ;S )T
0 = β2 Σ6(S )

S 2

T 3

6
,

C5(Σ;S )T
0 =β(2β−1)

Σ2(S )
S 2 T, C6(Σ;S )T

0 =β2 Σ4(S )
S 2

T 2

2
,

C7(Σ;S )T
0 =β

Σ2(S )
S

T,

where x = x0,k, xavg and S = S 0,K,S avg.
We now give the expressions of the coefficients γi, πi, χi and Ξi defined in Definition 2.3.3.1 useful

to compute the implied volatility expansions:

γ0(a; x)T
0 =

(β−1)2

24
a3(x)T [1−

a2(x)T
4

], γ1(a; x)T
0 =

(β−1)
2

a(x),

γ2(a; x)T
0 =

(β−1)2

12
a(x), π0(a; x)T

0 =γ0(a; x)T
0 ,

π1(a; x)T
0 =0, π2(a; x)T

0 =−
(β−1)2

24
a(x),

χ1(Σ;S )T
0 =

βΣ(S )
2S

, χ0(Σ;S )T
0 =

β(β−2)
24S 2 Σ3(S )T,

χ2(Σ;S )T
0 =

β(β−2)
12S 2 Σ(S ), Ξ0(Σ;S )T

0 =χ0(Σ;S )T
0 ,

Ξ2(Σ;S )T
0 =−

β(β+ 1)
24S 2 Σ(S ), Ξ1(Σ;S )T

0 =0.

For example, the second and third order Black-Scholes and Bachelier implied volatility expansions based
on the mid-points are explicitly given by:

σI(x0,T,k) ≈ ν(S 0K)
β−1

2 ,

σI(x0,T,k) ≈ ν(S 0K)
β−1

2
[
1 +

(β−1)2ν2T
24

(S 0K)β−1(1−
ν2T (S 0K)β−1

4
)−

(β−1)2

24
log2(

S 0

K
)
]
,

ΣI(S 0,T,K) ≈ ν(
S 0 + K

2
)β,

ΣI(S 0,T,K) ≈ ν(
S 0 + K

2
)β
[
1 +

β(β−2)ν2T
24

(
S 0 + K

2
)2β−2−

β(β+ 1)
6

(
S 0−K
S 0 + K

)2],
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which are very simple formulas. The last formula coincides with the intermediate equation (A.28b) in
[Hagan 1999].
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Table 2.7: CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using the
6 second order price approximations ImpVol(AppPriceLN(2,x0)), ImpVol(AppPriceLN(2,k)),
ImpVol(AppPriceLN(2,xavg)), ImpVol(AppPriceN(2,S 0)), ImpVol(AppPriceN(2,K)) and
ImpVol(AppPriceN(2,S avg)).

3M −12 −6 −2 −1 0 0 0 0 0 −1 −3 −5 −8
−17 −7 −3 −1 0 0 0 0 0 −1 −2 −4 −7

0 0 0 0 0 0 0 0 0 0 0 0 0
−577 −79 −18 −1 2 2 2 2 2 0 −22 −44 −73
−124 −59 −20 −2 2 2 2 2 2 1 −21 −53 −125

21 14 9 6 3 2 2 2 3 4 9 11 15
6M −13 −3 −1 −1 0 0 0 0 0 −1 −2 −4 −15

−17 −4 −2 −1 0 0 0 0 0 −1 −2 −4 −11
1 0 0 0 0 0 0 0 0 0 0 0 1
−269 −18 0 5 5 4 3 4 4 1 −5 −35 −117
−138 −26 −4 4 5 4 3 4 4 3 −2 −30 −238

33 16 11 7 5 4 3 3 4 8 10 16 26
1Y −23 −8 −2 −1 0 0 0 0 0 −1 −4 −8 −37

−34 −9 −2 −1 0 0 0 0 0 −1 −4 −7 −23
1 1 0 0 0 0 0 0 0 0 0 0 1
−848 −48 6 10 8 7 6 7 9 6 −21 −59 −235
−240 −69 −1 8 8 7 6 7 9 9 −9 −45 ND

64 36 20 14 8 7 6 7 9 13 22 29 54
1.5Y −28 −11 −3 −2 −1 0 0 0 −1 −2 −6 −12 −50

−41 −12 −4 −2 −1 0 0 0 −1 −2 −5 −10 −30
2 1 0 0 0 0 0 0 0 0 0 1 2
−644 −50 10 16 14 10 9 11 12 10 −31 −95 −299
−291 −90 −4 10 14 10 9 11 12 13 −9 −71 ND

89 52 30 23 14 10 9 11 12 19 32 44 74
2Y −36 −14 −5 −2 −1 −1 −1 −1 −1 −2 −6 −18 −91

−56 −17 −6 −2 −1 −1 −1 −1 −1 −2 −6 −14 −44
2 1 0 0 0 0 −1 0 0 0 0 1 2
ND −65 12 22 18 15 13 14 17 13 −27 −138 −418
−373 −129 −13 18 18 15 13 14 17 18 −1 −107 ND

119 72 44 27 17 15 13 14 17 25 39 60 105
3Y −64 −18 −11 −3 −1 −1 −1 −1 −1 −3 −10 −27 −141

−122 −21 −13 −3 −1 −1 −1 −1 −1 −3 −9 −21 −57
4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
ND −43 6 35 28 22 19 20 25 17 −62 −208 −534
−638 −154 −68 27 28 22 19 20 25 27 −8 −159 −2260

208 102 81 41 28 21 19 20 25 37 61 87 146
5Y −106 −31 −13 −6 −2 −1 −1 −1 −2 −5 −17 −45 −472

−256 −38 −14 −6 −2 −1 −1 −1 −2 −5 −15 −32 −88
7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5
ND −41 53 64 49 39 32 35 41 25 −116 −334 −753
−1000 −295 −55 34 48 39 32 35 43 47 −4 −249 ND

377 183 119 80 49 38 32 34 43 60 99 140 233
10Y −172 −69 −30 −10 −4 −3 −2 −2 −4 −9 −35 −103 ND

ND −95 −34 −10 −4 −3 −2 −2 −4 −9 −28 −61 −159
15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
ND 40 158 146 109 82 67 70 80 32 −271 −625 −1100
−1531 −762 −232 75 103 82 67 70 85 95 16 −781 ND

786 451 289 166 108 80 67 68 84 120 192 267 439
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Table 2.8: CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using the 6 second
order implied volatility approximations AppImpVolLN(2,x0), AppImpVolLN(2,k), AppImpVolLN(2,xavg),
AppImpVolN(2,S 0), AppImpVolN(2,K) and AppImpVolN(2,S avg).

3M −1 −1 0 0 0 0 0 0 0 0 0 −1 −1
−1 −1 −1 0 0 0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
27 18 12 7 4 2 2 2 3 5 11 15 19
29 19 12 7 4 2 2 2 3 5 11 15 18
21 14 9 6 3 2 2 2 3 4 9 11 15

6M −2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1
−2 −1 −1 0 0 0 0 0 0 0 −1 −1 −1

1 0 0 0 0 0 0 0 0 0 0 0 1
41 20 13 9 5 4 3 4 5 10 13 21 36
44 21 14 9 6 4 3 4 5 9 12 20 33
33 16 11 7 5 4 3 3 4 8 10 16 26

1Y −3 −2 −1 −1 0 0 0 0 0 −1 −1 −2 −3
−4 −2 −1 −1 0 0 0 0 0 −1 −1 −1 −3

1 1 0 0 0 0 0 0 0 0 0 0 1
79 44 24 17 9 7 6 7 10 16 28 39 74
88 48 25 17 9 7 6 7 10 15 27 36 67
64 36 20 14 8 7 6 7 9 13 22 29 54

1.5Y −4 −3 −1 −1 −1 0 0 0 −1 −1 −2 −2 −4
−5 −3 −2 −1 −1 0 0 0 −1 −1 −2 −2 −4

2 1 0 0 0 0 0 0 0 0 0 1 2
108 64 36 27 15 10 9 11 13 23 42 59 104
123 69 38 28 15 10 9 11 13 22 39 54 91
89 52 30 23 14 10 9 11 12 19 32 44 74

2Y −6 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −6
−7 −4 −2 −1 −1 −1 −1 −1 −1 −1 −2 −3 −5

2 1 0 0 0 0 −1 0 0 0 0 1 2
145 87 52 31 19 15 13 14 19 30 50 80 149
167 97 55 32 19 15 13 14 18 29 47 72 127
119 72 44 27 17 15 13 14 17 25 39 60 105

3Y −10 −5 −4 −2 −1 −1 −1 −1 −1 −2 −3 −5 −9
−12 −6 −4 −2 −1 −1 −1 −1 −1 −2 −3 −4 −7

4 1 1 0 −1 −1 −1 −1 0 0 1 1 3
249 121 96 47 31 22 19 20 28 45 80 120 212
301 136 105 49 31 22 19 20 28 43 73 106 176
208 102 81 41 28 21 19 20 25 37 61 87 146

5Y −18 −9 −5 −4 −2 −1 −1 −1 −2 −3 −5 −8 −14
−23 −10 −6 −4 −2 −1 −1 −1 −2 −3 −5 −7 −11

7 2 1 0 −1 −1 −1 −1 −1 0 1 2 5
443 216 140 92 52 39 32 35 48 74 132 196 352
571 252 155 98 53 40 32 35 47 69 117 167 277
377 183 119 80 49 38 32 34 43 60 99 140 233

10Y −33 −19 −12 −7 −4 −3 −2 −2 −3 −6 −10 −16 −29
−47 −24 −14 −7 −4 −3 −2 −2 −3 −5 −9 −12 −21

15 6 2 0 −2 −2 −2 −2 −1 0 2 5 10
904 522 333 188 117 82 67 70 94 149 264 394 725
1289 660 390 203 120 83 67 70 91 137 224 313 510
786 451 289 166 108 80 67 68 84 120 192 267 439
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Table 2.9: CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using the 6 third order price
approximations ImpVol(AppPriceLN(3,x0)), ImpVol(AppPriceLN(3,k)), ImpVol(AppPriceLN(3,xavg)),
ImpVol(AppPriceN(3,S 0)), ImpVol(AppPriceN(3,K)) and ImpVol(AppPriceN(3,S avg)).

3M −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
6 −4 −2 −1 0 0 0 0 0 0 2 0 −6
−22 −1 2 1 0 0 0 0 0 0 −2 −3 −2
−1 0 0 0 0 0 0 0 0 0 0 0 0

6M −1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
−17 −4 −1 0 0 0 0 0 0 1 2 4 −12
−13 4 2 0 0 0 0 0 0 −1 −1 −5 −12
−1 0 0 0 0 0 0 0 0 0 0 0 −1

1Y 1 1 0 0 0 0 0 0 0 0 0 0 1
−2 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0
−62 −15 −2 −1 0 0 0 0 0 1 6 9 −56
−34 13 3 1 0 0 0 0 0 −1 −5 −12 −45
−3 0 0 0 0 0 0 0 0 0 0 0 −3

1.5Y −2 0 0 0 0 0 0 0 0 0 0 0 4
3 0 0 0 0 0 0 0 0 0 0 0 −3
0 0 0 0 0 0 0 0 0 0 0 0 0
−100 −23 −4 −2 0 0 0 0 0 2 11 14 −83
−36 21 7 3 0 0 0 0 0 −1 −8 −23 −98
−4 −1 0 0 0 0 0 0 0 0 0 −1 −5

2Y −3 −1 0 0 0 0 0 0 0 0 0 1 10
4 1 0 0 0 0 0 0 0 0 0 −1 −7
0 0 0 0 0 0 0 0 0 0 0 0 0
−163 −36 −8 −1 0 0 0 0 0 3 14 17 −177
−63 31 14 2 0 0 0 0 0 −2 −9 −38 −243
−7 −1 0 0 0 0 0 0 0 0 0 −1 −12

3Y −9 −1 0 0 0 0 0 0 0 0 0 1 16
11 1 0 0 0 0 0 0 0 0 0 −1 −10
0 0 0 0 0 0 0 0 0 0 0 0 0
−818 −48 −23 −2 −1 0 0 0 1 5 29 16 −275
−250 52 41 4 1 0 0 0 −1 −3 −19 −69 ND
−24 −2 −1 0 0 0 0 0 0 0 −1 −3 −23

5Y −18 −1 0 0 0 0 0 0 0 0 1 2 39
23 1 0 0 0 0 0 0 0 0 −1 −2 −21
0 0 0 0 0 0 0 0 0 0 0 0 0
ND −103 −26 −7 −2 −1 0 0 1 12 57 −10 −522
−597 90 65 17 1 1 0 −1 −2 −5 −38 −143 ND
−73 −5 −1 −1 0 0 0 0 0 0 −2 −7 −76

10Y −34 −5 −1 0 0 0 0 0 0 0 1 7 147
28 3 1 0 0 0 0 0 0 0 −1 −7 −59
0 0 0 0 0 0 0 0 0 0 0 0 0
ND −340 −83 −16 −6 −4 −1 1 4 42 109 −222 −987
−1200 −42 230 49 5 1 −1 −3 −4 −13 −94 −588 ND
−214 −29 −7 −3 −2 −1 −1 −1 −1 −1 −6 −28 ND
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Table 2.10: CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using the 6 third
order implied volatility approximations AppImpVolLN(3,x0), AppImpVolLN(3,k), AppImpVolLN(3,xavg),
AppImpVolN(3,S0), AppImpVolN(3,K) and AppImpVolN(3,S avg).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 1 0 0 0 0 0 0 0 −1 −2 −3
−5 −3 −1 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0
6M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 1 0 0 0 0 0 0 −1 −1 −3 −8
−10 −3 −1 0 0 0 0 0 0 0 1 2 5

0 0 0 0 0 0 0 0 0 0 0 0 0
1Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
17 6 2 1 0 0 0 0 0 −1 −4 −7 −25
−30 −10 −2 −1 0 0 0 0 0 1 3 5 14

1 0 0 0 0 0 0 0 0 0 0 0 1
1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
25 10 3 2 0 0 0 0 0 −2 −7 −15 −43
−49 −17 −5 −2 0 0 0 0 0 1 5 9 22

2 1 0 0 0 0 0 0 0 0 0 1 2
2Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
37 16 6 1 0 0 0 0 0 −2 −9 −24 −79
−80 −29 −9 −2 0 0 0 0 0 2 6 14 35

4 1 0 0 0 0 0 0 0 0 0 1 4
3Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
77 23 15 2 0 0 0 0 −1 −5 −20 −47 −143
−214 −48 −28 −4 0 0 0 0 0 3 11 23 55

12 2 1 0 0 0 0 0 0 0 1 2 8
5Y −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
160 50 22 7 0 −1 0 0 −2 −10 −47 −108 −350
−618 −130 −47 −15 −1 0 0 −1 0 6 22 43 102

36 7 2 0 0 0 0 0 0 0 2 6 21
10Y −1 −1 −1 0 0 0 0 0 0 0 1 1 1

2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
362 155 68 16 0 −3 −1 1 −4 −34 −153 −368 −1307
−2195 −631 −216 −44 −6 1 −1 −3 0 14 53 102 231

113 34 10 0 −1 −1 −1 −1 −1 1 8 21 70
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Table 2.11: CEV model (β = 0.8, ν = 0.25): errors in bps on the BS implied volatility using the 4 approximations
Av.ImpVol(AppPriceLN(3,.)), Av.AppImpVolLN(3,.), (HF), and (HLF).
3M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −1 0 0 0 0 0 0 0 0 0 0 −2

0 0 0 0 0 0 0 0 0 0 0 0 0
2Y 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0
−3 −1 0 0 0 0 0 0 0 0 0 −1 −3

0 0 0 0 0 0 0 0 0 0 0 0 0
3Y 1 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0
−9 −2 −1 0 0 0 0 0 0 0 −1 −2 −6

0 0 0 0 0 0 0 0 0 0 0 0 0
5Y 2 0 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0
−24 −5 −2 0 0 0 0 0 0 0 −2 −4 −14

0 0 0 0 0 0 0 0 0 0 0 0 0
10Y −3 −1 0 0 0 0 0 0 0 0 0 0 44

0 0 0 0 0 0 0 0 0 0 0 0 0
−69 −24 −8 −1 0 0 0 0 0 −1 −6 −14 −44

0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2.12: CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in bps on the BS im-
plied volatility using the 6 approximations Av.ImpVol(AppPriceLN(3,.)), ImpVol(AppPriceLN(3,xavg)),
Av.AppImpVolLN(3,.), AppImpVolLN(3,xavg), (HF), and (HLF).

far ITM ITM ATM OTM far OTM
3M 6.7E−2 1.4E−4 −7.9E−6 1.8E−4 1.5E−2

−2.4E−4 −1.4E−5 −1.3E−5 −1.3E−5 −9.9E−5
4.3E−4 9.1E−5 −8.2E−6 7.3E−5 2.6E−4
−3.4E−5 −9.6E−6 −1.3E−5 −8.7E−6 −1.7E−5
−9.1E−2 −8.6E−3 2.0E−4 −7.3E−3 −4.8E−2
−6.4E−5 1.7E−4 2.4E−4 1.5E−4 −9.8E−6

6M 3.6E−2 1.6E−4 −4.3E−5 1.5E−4 3.2E−2
−3.0E−4 −4.3E−5 −5.3E−5 −3.6E−5 −2.4E−4

1.0E−3 1.5E−4 −4.3E−5 1.4E−4 7.8E−4
−6.5E−5 −4.3E−5 −5.3E−5 −3.5E−5 −4.9E−5
−1.6E−1 −7.9E−3 9.2E−4 −8.6E−3 −1.3E−1

2.5E−4 8.6E−4 9.5E−4 7.1E−4 1.3E−4
1Y 9.6E−2 5.1E−4 −1.9E−4 4.4E−4 1.9E−1

−1.1E−3 −1.8E−4 −2.1E−4 −1.4E−4 −1.1E−3
4.2E−3 4.3E−4 −1.9E−4 5.5E−4 3.0E−3
−2.5E−4 −1.8E−4 −2.1E−4 −1.4E−4 −2.1E−4
−6.3E−1 −2.2E−2 3.8E−3 −3.6E−2 −5.1E−1

1.2E−3 3.7E−3 3.8E−3 2.8E−3 4.4E−4
1.5Y 9.2E−2 1.2E−3 −3.9E−4 7.5E−4 2.8E−1

−1.8E−3 −4.0E−4 −4.5E−4 −3.2E−4 −2.1E−3
8.5E−3 1.1E−3 −3.9E−4 1.1E−3 6.1E−3
−4.9E−4 −3.9E−4 −4.5E−4 −3.0E−4 −4.0E−4
−1.2E+0 −5.5E−2 8.3E−3 −7.3E−2 −9.9E−1

3.9E−3 8.4E−3 8.6E−3 6.2E−3 1.1E−3
2Y 1.4E−1 1.7E−3 −6.4E−4 1.4E−3 8.7E−1

−3.1E−3 −7.1E−4 −7.9E−4 −5.3E−4 −4.7E−3
1.5E−2 1.8E−3 −6.4E−4 1.7E−3 1.1E−2
−8.9E−4 −7.1E−4 −7.9E−4 −5.1E−4 −8.1E−4
−2.0E+0 −9.6E−2 1.5E−2 −1.0E−1 −1.9E+0

7.5E−3 1.5E−2 1.5E−2 1.1E−2 1.2E−3
3Y 5.8E−1 2.5E−3 −1.5E−3 1.9E−3 1.5E+0

−9.9E−3 −1.6E−3 −1.7E−3 −1.1E−3 −9.4E−3
3.7E−2 5.3E−3 −1.5E−3 3.8E−3 2.2E−2
−2.4E−3 −1.5E−3 −1.7E−3 −1.1E−3 −1.6E−3
−5.2E+0 −3.5E−1 3.4E−2 −2.6E−1 −3.8E+0

1.8E−2 3.5E−2 3.5E−2 2.4E−2 3.1E−3
5Y 1.2E+0 6.2E−3 −3.6E−3 1.2E−3 4.5E+0

−3.0E−2 −4.0E−3 −4.2E−3 −2.7E−3 −2.7E−2
1.0E−1 1.2E−2 −3.5E−3 9.4E−3 5.4E−2
−7.2E−3 −3.9E−3 −4.3E−3 −2.5E−3 −4.4E−3
−1.5E+1 −6.9E−1 9.4E−2 −6.7E−1 −9.1E+0

6.5E−2 1.1E−1 9.7E−2 6.3E−2 7.6E−3
10Y −2.1E+0 −4.6E−2 −1.1E−2 −3.2E−2 2.2E+1

−9.7E−2 −1.1E−2 −1.2E−2 −7.5E−3 −1.3E−1
2.8E−1 3.8E−2 −1.1E−2 2.9E−2 1.7E−1
−2.3E−2 −1.1E−2 −1.3E−2 −6.9E−3 −1.8E−2
−4.6E+1 −3.1E+0 3.8E−1 −2.4E+0 −2.9E+1

4.4E−1 4.8E−1 4.0E−1 2.3E−1 2.2E−2
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Table 2.13: CEV model (β = 0.2, ν = 0.25): errors in bps on the BS implied volatility using the
6 approximations ImpVol(AppPriceLN(3,xavg)), AppImpVolLN(3,xavg), ImpVol(AppPriceN(3,S avg)),
AppImpVolN(3,S avg), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
6M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
1Y 0 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
−5 −1 0 0 0 0 0 0 0 0 0 −1 −2

0 0 0 0 0 0 0 0 0 0 0 0 0
1.5Y −1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
−9 −3 −1 0 0 0 0 0 0 0 −1 −1 −4
−1 0 0 0 0 0 0 0 0 0 0 0 0

2Y −1 0 0 0 0 0 0 0 0 0 0 0 −3
−1 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 1
−15 −5 −1 0 0 0 0 0 0 0 −1 −3 −8
−1 −1 0 0 0 0 0 0 0 0 0 0 0

3Y −4 −1 −1 −1 −1 −1 0 0 0 0 0 −1 −8
−2 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1

7 2 2 1 0 0 0 0 0 0 0 0 0
8 3 2 1 0 0 0 0 0 0 0 1 1
−45 −9 −5 −1 0 0 0 0 0 −1 −2 −5 −15
−4 −1 −1 0 0 0 0 0 0 0 0 0 0

5Y 2 −1 −2 −2 −2 −2 −1 −1 −1 0 0 −2 −37
7 −1 −2 −2 −2 −2 −1 −1 −1 0 0 0 −1
47 13 6 4 2 1 1 1 1 1 1 1 0
50 13 7 4 2 1 1 1 1 1 1 1 3
−117 −26 −9 −3 0 0 0 0 0 −1 −6 −12 −31

4 0 0 0 0 0 0 0 0 0 −1 −1 −1
10Y 148 84 41 12 2 −2 −3 −2 −2 −1 −2 −13 ND

159 85 41 12 2 −2 −3 −2 −2 −1 −1 −1 −5
530 221 109 45 21 11 6 3 2 2 2 2 −8
541 224 111 45 21 11 6 3 2 2 2 3 6
−112 −6 18 18 12 8 4 2 −1 −5 −17 −33 −73

271 123 65 29 14 8 4 2 0 −1 −1 −1 −1
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Table 2.14: CEV model (β = 0.2, ν = 0.25): average per categories of strikes of errors in bps on the
BS implied volatility using the 6 approximations ImpVol(AppPriceLN(3,xavg)), AppImpVolLN(3,xavg),
ImpVol(AppPriceN(3,S avg)), AppImpVolN(3,S avg), (HF) and (HLF).

far ITM ITM ATM OTM far OTM
3M −5.4E−2 −4.0E−3 −3.4E−3 −3.3E−3 −2.9E−2

−9.3E−3 −3.1E−3 −3.4E−3 −1.9E−3 −4.1E−3
2.5E−2 6.3E−3 1.8E−3 3.7E−3 8.9E−3
3.9E−2 7.2E−3 1.8E−3 4.5E−3 1.6E−2
−3.8E−1 −3.9E−2 7.9E−5 −2.9E−2 −1.6E−1
−2.1E−2 −4.6E−3 3.2E−4 −2.6E−3 −7.9E−3

6M −6.9E−2 −1.5E−2 −1.4E−2 −7.5E−3 −7.4E−2
−2.1E−2 −1.4E−2 −1.4E−2 −7.2E−3 −1.1E−2

6.8E−2 1.6E−2 6.9E−3 9.6E−3 2.5E−2
9.0E−2 1.7E−2 6.9E−3 1.0E−2 4.3E−2
−7.2E−1 −4.5E−2 1.5E−3 −3.9E−2 −4.3E−1
−5.6E−2 −7.4E−3 1.8E−3 −5.4E−3 −2.2E−2

1Y −2.5E−1 −6.6E−2 −5.5E−2 −2.8E−2 −3.8E−1
−9.9E−2 −6.6E−2 −5.5E−2 −2.6E−2 −4.6E−2

3.2E−1 6.4E−2 2.8E−2 3.5E−2 7.8E−2
4.1E−1 6.7E−2 2.8E−2 3.8E−2 1.5E−1
−3.0E+0 −1.4E−1 8.2E−3 −1.5E−1 −1.6E+0
−2.6E−1 −2.3E−2 8.8E−3 −1.9E−2 −7.2E−2

1.5Y −4.4E−1 −1.6E−1 −1.2E−1 −6.2E−2 −7.4E−1
−2.4E−1 −1.6E−1 −1.2E−1 −5.6E−2 −8.8E−2

7.4E−1 1.7E−1 6.2E−2 7.1E−2 1.5E−1
8.8E−1 1.8E−1 6.2E−2 7.8E−2 2.9E−1
−5.6E+0 −3.5E−1 1.7E−2 −3.0E−1 −3.0E+0
−5.6E−1 −5.8E−2 1.9E−2 −3.5E−2 −1.3E−1

2Y −8.0E−1 −3.1E−1 −2.2E−1 −9.6E−2 −1.9E+0
−4.9E−1 −3.1E−1 −2.2E−1 −9.0E−2 −1.8E−1

1.5E+0 3.2E−1 1.2E−1 1.1E−1 2.1E−1
1.7E+0 3.3E−1 1.2E−1 1.2E−1 5.1E−1
−1.0E+1 −6.1E−1 3.0E−2 −4.3E−1 −5.5E+0
−1.1E+0 −9.2E−2 3.6E−2 −5.5E−2 −2.1E−1

3Y −2.3E+0 −8.0E−1 −4.8E−1 −2.0E−1 −4.3E+0
−1.4E+0 −8.0E−1 −4.8E−1 −1.7E−1 −3.5E−1

4.8E+0 9.8E−1 2.8E−1 2.4E−1 3.4E−1
5.4E+0 1.0E+0 2.8E−1 2.6E−1 9.3E−1
−2.7E+1 −2.1E+0 8.9E−2 −1.0E+0 −9.9E+0
−2.7E+0 −2.7E−1 9.7E−2 −1.1E−1 −3.7E−1



76 Chapter 2. Revisiting the Proxy principle in local volatility models

Table 2.15: CEV model (β = 0.5, ν = 0.4): errors in bps on the BS implied volatility using the 4 approximations
ImpVol(AppPriceLN(3,xavg)), AppImpVolLN(3,xavg), (HF) and (HLF).

3M 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
6M 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0
1Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−4 −1 0 0 0 0 0 0 0 0 0 −1 −3

0 0 0 0 0 0 0 0 0 0 0 0 0
1.5Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−8 −2 0 0 0 0 0 0 0 0 −1 −2 −5

0 0 1 1 0 0 0 0 0 0 0 0 0
2Y 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
−13 −4 0 1 1 1 1 1 1 0 −1 −3 −10

1 1 1 1 1 1 1 1 1 0 0 0 0
3Y −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0
−37 −5 −2 2 2 2 2 2 1 0 −2 −6 −19

3 3 3 3 2 2 2 2 1 1 0 0 0
5Y 6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 −1

6 1 0 −1 −1 −1 −1 −1 −1 −1 0 0 0
−88 −9 4 7 8 7 6 5 3 1 −5 −14 −43

25 15 12 10 8 7 6 5 3 2 1 0 −1
10Y 92 61 40 22 13 8 4 2 1 0 0 −1 −8

91 61 40 22 13 8 4 2 1 0 0 0 −1
−58 54 76 69 54 42 31 23 15 4 −17 −44 −118

286 173 120 79 56 42 31 23 16 9 4 1 −2
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Table 2.16: CEV model (β = 0.5, ν = 0.4): average per categories of strikes of errors in bps on the BS implied
volatility using the 4 approximations ImpVol(AppPriceLN(3,xavg)), AppImpVolLN(3,xavg), (HF) and (HLF).

far ITM ITM ATM OTM far OTM
3M −6.9E−3 −5.3E−3 −5.4E−3 −3.6E−3 −3.2E−3

−4.6E−3 −5.3E−3 −5.4E−3 −3.6E−3 −2.2E−3
−3.8E−1 −2.9E−2 1.1E−2 −2.4E−2 −1.8E−1
−5.9E−3 8.0E−3 1.1E−2 5.4E−3 −3.0E−3

6M −2.3E−2 −2.3E−2 −2.1E−2 −1.5E−2 −1.1E−2
−2.1E−2 −2.3E−2 −2.1E−2 −1.5E−2 −8.3E−3
−6.8E−1 4.2E−3 4.4E−2 −1.1E−2 −4.8E−1

1.1E−2 4.4E−2 4.5E−2 2.8E−2 −3.4E−3
1Y −9.9E−2 −9.5E−2 −8.2E−2 −5.3E−2 −4.2E−2

−9.5E−2 −9.4E−2 −8.2E−2 −5.3E−2 −2.8E−2
−2.6E+0 8.3E−2 1.8E−1 −5.3E−2 −1.8E+0

8.7E−2 2.0E−1 1.8E−1 1.0E−1 −1.5E−2
1.5Y −2.3E−1 −2.1E−1 −1.7E−1 −1.1E−1 −7.9E−2

−2.2E−1 −2.1E−1 −1.7E−1 −1.1E−1 −5.2E−2
−4.7E+0 2.0E−1 4.1E−1 −7.7E−2 −3.5E+0

3.4E−1 5.0E−1 4.1E−1 2.4E−1 −2.5E−2
2Y −4.0E−1 −3.6E−1 −2.9E−1 −1.8E−1 −1.5E−1

−3.9E−1 −3.6E−1 −2.9E−1 −1.8E−1 −8.1E−2
−8.2E+0 4.3E−1 7.6E−1 −3.7E−2 −6.7E+0

8.1E−1 9.7E−1 7.7E−1 4.2E−1 −6.8E−2
3Y −7.0E−1 −7.2E−1 −5.7E−1 −3.3E−1 −3.0E−1

−6.6E−1 −7.2E−1 −5.8E−1 −3.3E−1 −1.4E−1
−2.1E+1 7.9E−1 1.8E+0 −2.2E−1 −1.3E+1

3.0E+0 2.6E+0 1.8E+0 8.8E−1 −1.2E−1
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Table 2.17: CEV model (β = 0.8, ν = 0.25): errors in bps on the deltas using the 6 approximations
AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xavg), AppDeltaLN(2,x0), AppDeltaLN(2,k) and
AppDeltaLN(2,xavg).

3M 1 2 2 1 1 0 0 0 −1 −1 −2 −2 −2
1 0 0 −1 −1 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 3 3 2 1 1 1 0 −1 −1 −2 −3 −4 −4
1 −1 −1 −1 −1 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1Y 5 5 3 3 1 1 0 −1 −2 −4 −6 −8 −9
1 −2 −3 −2 −1 0 0 0 1 2 2 1 −3
0 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1.5Y 7 7 5 4 2 1 0 −2 −3 −5 −9 −13 −15
0 −3 −4 −3 −2 0 0 1 1 3 3 1 −4
0 0 1 1 1 0 0 −1 −1 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

2Y 9 9 7 5 3 2 0 −2 −4 −7 −12 −18 −20
0 −4 −6 −4 −2 −1 0 1 2 4 5 0 −6
0 0 1 1 1 1 0 −1 −1 −1 −1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 2
1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

3Y 12 12 10 6 4 2 0 −3 −6 −11 −19 −28 −32
0 −8 −8 −6 −3 −1 0 1 3 6 6 −1 −9
0 0 1 1 1 1 0 −1 −2 −2 −1 0 1
1 0 0 0 0 0 0 0 0 0 1 1 4
1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

5Y 16 17 13 10 7 4 0 −5 −10 −18 −34 −51 −61
−3 −13 −14 −10 −5 −2 0 1 5 10 9 −4 −15

0 1 2 2 2 1 0 −2 −3 −3 −1 0 1
3 1 1 0 0 0 0 0 0 1 1 3 10
3 1 0 0 0 0 0 0 0 0 1 2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

10Y 24 26 21 16 12 7 −1 −8 −19 −37 −76 −118 −145
−16 −26 −26 −17 −9 −4 −1 2 8 20 13 −17 −23
−1 1 3 4 4 2 −1 −3 −5 −6 −2 1 2

4 2 1 1 1 1 1 1 1 2 3 8 36
6 2 0 0 0 1 1 1 0 0 3 5 −6
0 0 0 0 0 1 1 1 1 0 0 −1 −1
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Table 2.18: CEV model (β = 0.8, ν = 0.25): average per categories of strikes of errors in bps on the deltas using
the 2 approximations AppDeltaLN(1,xavg) and AppDeltaLN(2,xavg).

far ITM ITM ATM OTM far OTM
3M −3.1E−2 7.1E−2 −1.9E−3 −8.0E−2 4.0E−2

−1.8E−3 2.4E−4 3.6E−3 4.7E−4 −2.4E−3
6M −1.1E−2 2.3E−1 −6.0E−3 −2.3E−1 4.8E−2

−4.6E−3 5.0E−3 1.1E−2 4.4E−3 −6.1E−3
1Y −4.0E−2 4.5E−1 −1.9E−2 −4.5E−1 7.9E−2

−1.4E−2 1.7E−2 3.0E−2 1.2E−2 −1.6E−2
1.5Y −1.9E−2 6.8E−1 −1.2E−1 −6.6E−1 1.4E−1

−2.4E−2 2.8E−2 5.3E−2 2.4E−2 −3.2E−2
2Y −2.4E−2 8.7E−1 −4.8E−2 −9.6E−1 2.1E−1

−3.6E−2 4.4E−2 7.9E−2 3.9E−2 −4.9E−2
3Y 3.9E−2 1.2E+0 −9.4E−2 −1.4E+0 3.6E−1

−5.7E−2 6.7E−2 1.4E−1 6.2E−2 −9.5E−2
5Y 6.3E−2 2.0E+0 −1.9E−1 −2.3E+0 6.5E−1

−1.2E−1 1.4E−1 2.8E−1 1.2E−1 −2.1E−1
10Y 8.9E−2 3.4E+0 −5.6E−1 −4.3E+0 1.5E+0

−3.4E−1 2.5E−1 6.2E−1 2.3E−1 −6.1E−1
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Table 2.19: CEV model (β = 0.2, ν = 0.25): errors in bps on the deltas using the 6 approximations
AppDeltaLN(1,x0), AppDeltaLN(1,k), AppDeltaLN(1,xavg), AppDeltaLN(2,x0), AppDeltaLN(2,k) and
AppDeltaLN(2,xavg).

3M 19 27 25 18 11 6 0 −6 −11 −17 −30 −31 −27
9 −1 −10 −13 −9 −3 0 3 7 9 −3 −7 −6
−1 −1 0 2 2 2 0 −2 −2 −1 0 0 0

5 3 2 1 1 0 0 0 0 1 2 3 5
3 3 2 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0

6M 51 45 34 24 16 9 0 −8 −15 −31 −41 −59 −58
−7 −29 −27 −19 −10 −3 0 4 9 17 13 −6 −11
−2 2 4 5 5 3 0 −2 −4 −3 −2 0 1

10 3 2 2 1 1 1 1 1 2 2 5 13
10 3 1 1 1 1 1 1 0 1 2 3 −2
−1 0 0 0 1 1 1 1 1 0 0 0 0

1Y 99 90 59 46 24 13 1 −10 −32 −53 −93 −117 −113
−54 −69 −52 −37 −11 −3 1 5 19 32 12 −14 −9
−3 3 9 11 8 5 1 −3 −7 −7 −2 1 1

24 10 5 4 3 2 2 2 3 4 7 12 41
28 9 2 2 2 2 2 2 1 1 6 6 −4
−2 0 1 1 2 2 2 2 1 1 0 −1 0

1.5Y 146 126 86 70 43 16 2 −26 −38 −77 −140 −183 −180
−123 −114 −81 −60 −23 −3 2 13 21 45 12 −27 −10
−2 7 15 17 15 7 2 −7 −9 −10 −3 1 1

35 16 10 8 5 4 4 4 4 7 13 24 72
37 12 3 3 4 4 4 3 2 2 11 7 −6
−3 0 2 3 4 4 4 3 3 1 −1 −1 −1

2Y 189 163 17 81 51 36 3 −29 −58 −102 −173 −254 −224
−197 −164 −115 −63 −23 −11 3 14 33 58 23 −40 −4

0 11 20 23 19 14 3 −7 −13 −13 −5 2 1
50 24 15 11 7 6 5 6 7 11 18 40 125
45 15 5 5 6 6 5 3 3 14 4 −3
−4 0 3 5 6 6 5 5 4 2 −1 −2 −1

3Y 262 218 188 118 82 45 6 −33 −86 −157 −286 −393 −354
−377 −245 −204 −93 −40 −10 6 18 49 82 −3 −54 −3

0 24 30 36 31 20 6 −7 −19 −18 −4 3 1
95 36 29 19 14 11 10 10 13 0 35 77 230
51 13 9 9 11 11 10 8 5 6 26 −4 −2
−8 2 5 9 10 10 10 9 6 3 −2 −4 −1

5Y 373 323 253 197 131 85 11 −61 −148 −258 −497 −684 −592
−641 −409 −276 −169 −60 −19 11 34 84 121 −43 −59 0

0 43 59 64 53 38 11 −13 −30 −28 −3 4 0
156 62 47 39 28 23 20 20 26 38 73 170 533
−156 −19 3 15 22 23 20 15 8 13 38 −22 0
−27 2 13 19 22 21 20 17 12 5 −6 −6 0

10Y 390 381 325 262 06 134 18 −102 −269 −529 −1075 −1477 −1164
−174 −486 −447 −269 −123 −36 18 56 49 175 −127 −23 0
−71 −8 39 76 78 58 18 −21 −53 −44 0 4 0

75 −5 3 25 32 34 38 43 57 88 189 536 1725
−1252 −598 −237 −43 18 7 38 32 15 47 5 −21 0
−157 −97 −49 −3 23 34 38 36 26 6 −16 −10 0
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In this Chapter, we provide analytical approximations to efficiently price forward start option on eq-
uity in the local volatility model. We use a conditional argument to represent the price as an expectation
of a Black-Scholes formula computed with a stochastic implied volatility depending on the value of the
equity at the forward date. Then we perform a volatility expansion to derive analytical approximations
of the forward implied volatility with a precise error estimate. We also illustrate the accuracy of our
formulas with some numerical experiments.

3.1 Introduction

B The forward volatility risk and associated derivative products. The volatility allows to quantify
the risk associated to the return of an underlying asset. Many products are actively traded on financial
markets to manage the observed volatility smile and skew whereas a lot of models (as the local volatility
model [Dupire 1994], the stochastic volatility model [Heston 1993] or a mixture of both of them known
as the stochastic local volatility model [Britton-Jones 2000]) have emerged in the two last decades to
try to reproduce these phenomena. Thus practitioners and researchers began to have a good intuition of
the implied volatility behaviour associated to the pricing of plain vanilla options with the Black-Scholes
(see [Black 1973]) formula. Despite the significant research on implied volatility asymptotics, only a
few studies have been carried out on the asymptotic of the forward smile. The forward volatility risk is
harder to manage and forward skew and smile shapes are still open to research. Recently a large class
of new exotic options have emerged in order to take a bet or to hedge its exposure on the behaviour of
the forward volatility surface, as the family of cliquet options which are commonly interpreted through
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levels of implied volatility at some future date and at some future level of the underlying asset. The
evaluation and the hedging of such products are by far not trivial and the market has not yet settled for
an agreed reference model. In this article, we focus on the pricing for the forward start option, which
constitutes the building block for more complex cliquet structures as the Napoleons, the Multiplicative
cliquets or the reverse cliquets (see [Gatheral 2006]). Basically it can be considered as a forward on an
option. More precisely this is an option which begins at some specified future date ti > 0, the forward
date and with an expiration further in the future ti + T with T > 0, the premium being paid in advance at
the initial date t0 = 0. Denoting by S t the price at time t of the underlying asset, we can distinguish two
types of payoffs:

• (
S ti+T

S ti
−K)+ (type A) for a given strike K > 0. It is essentially an option on the return of the asset

between the dates ti and ti + T .

• (S ti+T −KS ti)+ (type B) with K > 0, which can be view as an option with a stochastic strike which
will be determined at the forward date ti. This looks like a spread option with the same underlying
but considered at different dates.

From these payoffs one can build more complex structures of derivatives products. For instance a serie
of consecutive forward start options creates a cliquet option with payoffs of the forms:

n∑
i=1

(
S ti+1

S ti
−Ki)+ or

n∑
i=1

(S ti+1−KiS ti)+,

the valuation of such products being easily obtained summing the value of every legs.

BLiterature review on the forward start options pricing. Regarding the pricing of forward start op-
tions, many approaches could be considered as in the plain vanilla case. Basically on has to choose the
mathematical modelling employed for the underlying asset (local volatility model, stochastic volatility
model etc) and the analytical approximation methodology to be performed, closed-form formulas being
available only in some very particular cases like in Gaussian or log-normal models. However it seems
that many authors to have been interested by the pricing of forward start options have mainly consid-
ered the case of models with stochastic volatility like the Heston model: see for instance [Lucic 2003],
[Hong 2004] or [Kruse 2005]. Brigo and Mercurio consider in the context of interest rates the Hull-
White model in [Brigo 2006]. In all these works, owing to the properties of the affine models, it is
possible if the model parameters are time-homogeneous to compute the forward characteristic function
using the tower property for conditional expectations. Thus one can derive, up to numerical integration,
(semi) analytical formulas. We also cite the work of Glasserman an Wu [Glasserman 2011] where the
authors investigate the notion of forward implied volatility in the framework of stochastic volatility mod-
els applied to the currency markets. Then using the analytical approximation of the implied volatility in
the SABR model (see [Hagan 2002]) and the asymptotic expansion for the bivariate density of both the
underlying and its stochastic volatility developed in [Wu 2010], they provide tools for fast computation
of the conditional expectations arising in the estimation of the forward implied volatility.
An alternative modeling is the use of Lévy processes proposed for instance in [Beyer 2008]. If the sim-
ple exponential Lévy model induces the same forward volatility curve for all futures times, a non trivial
subordinator changes its dynamic. The authors derive the forward characteristic function and employ a
Fourier transform machinery to obtain analytical pricing formulas for forward start options in various
models including the Variance Gamma model and the NIG model subordinated by a CIR process. We
also cite the work of Keller-Ressel and Kilin [Keller-Ressel 2008] who derive a semi-analytical formula
for the pricing of forward start option in the Barndoff-Nielsen-Stephard (see [Barndorff-Nielson 2001])
model using its affine property.
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We finally mention the very recent work of Jacquier and Roome [Jacquier 2012] in which is provided
an expansion formula of the forward implied volatility using calculations based on the forward charac-
teristic function and large deviations techniques. Remarkably their results can be applied for both small
and large maturities in a large class of models, from the Heston model passing to the time-changed ex-
ponential Lévy processes.
In the class of models mentioned above, we start with a price process or a joint process price-volatility
and deduce more and less the dynamic of the future volatility. To get a better control on the dynamic
of the implied volatility, the most natural modeling approach is to model directly the implied volatility
surface. This idea has been explored by Schonbucher [Schonbucher 1999]. But the method has been
hampered by the difficulty of ensuring no arbitrage in future smiles or skew. To overcome the difficulty,
Bergomi modelises jointly the dynamic for the forward variance swap and the spot consistently and dis-
cuss about the calibration and pricing in [Bergomi 2005], [Bergomi 2008].
Such an enthusiasm for the stochastic volatility models or more generally for two or more factors models
in the literature can be explained by at least two reasons:

• At first glance the use of local volatility models, in which the volatility is a deterministic function
of the random asset price, could seem inadequate to price forward start options which values
appear to depend specifically on the random nature of the volatility itself. In addition it is well
known that Skew/Smile generated by the non-constant local volatility function flattens for long
maturities. As the forward start option depends on σ(t,S t)t∈[ti,ti+T ], we can expect it to be almost
constant in S for large forward date ti.

• The stochastic volatility models seem to induce more forward smile on [ti, ti + T ], which depends
on the time-averaged stochastic volatility on [ti, ti + T ], than the implied volatility curve on [0, ti +
T ]. Besides the availability of closed-form formulas is very attractive for practical uses.

Such important quantity of theoretical and practical studies show that we are far from having a reference
model and that the model uncertainty associated to the pricing and hedging for the forward start option
is high. We find important to consider a family of models, which are intuitive to the user and are able to
replicate the market observed skew-smile as much as possible, in order to quantify properly the model
risk. Indeed, Glassermann and Wu in ([Glasserman 2011]) show that the observed implied volatility does
not contain relevant information for the future volatility. Moreover, even perfectly calibrated models
can give quite different prices for exotic products, especially for the forward start option, because they
generally generate different transition probabilities.
So it seems to us that there is a theoretical and a practical interest to provide analytical formulas for
the forward implied volatility generated by local volatility models. First this is a challenge because as
previously mentioned there is no closed-form formula and only few authors have been focused on the
question. Second there is a risk of underestimation of the forward smile which can adversely affect when
pricing forward start options too cheap as mentioned in [Gatheral 2003]. The purpose of this work is
to overcome these drawbacks and to propose an accurate and tractable analytical approximation of the
forward implied volatility in local volatility models with a precise estimation of the error.

BFormulation of the problem and contribution of our study. In this work, we consider financial
products in a world with null interest rate written w.r.t. a single asset which price at time t denoted by
S t assumed to pay no dividend. We consider a linear Brownian motion defined on a filtered probability
space (Ω,F , (Ft)t≥0,P) where (Ft)t≥0 is the completion of the natural filtration of W. We suppose that S
follows the local volatility model under the measure P, i.e. it is solution of the next SDE:

dS t = S tσ(t,S t)dWt, S 0 > 0. (3.1)
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We assume that S is positive, we define the log-asset X by posing X = log(S ) which satisfies:

dXt = a(t,Xt)dWt −
1
2

a2(t,Xt)dt, x0 = log(S 0), a(t, x) = σ(t,ex). (3.2)

We are interested by the price at time 0 of a forward start call option of type A and B written as: CallFS,A(S 0, ti,T,K) = E[(
S ti+T

S ti
−K)+] = E[(eXti+T−Xti − ek)+],

CallFS,B(S 0, ti,T,K) = E[(S ti+T −S ti K)+] = E[(eXti+T − ek+Xti )+],
(3.3)

where ti > 0 is the forward date, T > 0 the forward maturity and K = ek > 0 the strike and E stands for the
expectation operator. Notice that if S follows a log-normal model with deterministic volatility (σt)t∈[0,T ],
we have an analytical formula for the price of the forward start Call option of type A. The price is given
in term of the Black-Scholes formula by:

E
[
(
S ti+T

S ti
−K)+

]
= CallBS(0,

∫ ti+T

ti
σ2

t dt,k), (3.4)

where CallBS(x,y,z) denotes the Black-Scholes Call price function depending on log-spot x, total vari-
ance y and log-strike z and defined by:

CallBS(x,y,z) =exN(d1(x,y,z))− ezN(d2(x,y,z)),

N(x) =

∫ x

−∞

e−u2/2
√

2π
du, d1(x,y,z) =

x− z
√

y
+

1
2
√

y, d2(x,y,z) = d1(x,y,z)−
√

y.

For forward start options of type B in the Black-Scholes framework, we readily have using the tower
property for the expectations, the Markov property of S and the independence of

S ti+T

S ti
and S ti :

E[(S ti+T −KS ti)+] =E
[
S ti(

S ti+T

S ti
−K)+

]
= E

[
S tiE

[
(
S ti+T

S ti
−K)+|S ti

]]
= E[S ti]CallBS(0,

∫ ti+T

ti
σ2

t dt,k)

=S 0CallBS(0,
∫ ti+T

ti
σ2

t dt,k) = CallBS(x0,

∫ ti+T

ti
σ2

t dt, x0 + k). (3.5)

with x0 = log(S 0). As a conclusion, the log-normal assumption on S leads to analytical formulas us-
ing the Black-Scholes pricer with the quadratic mean of the deterministic volatility on [ti, ti + T ]. If the
choice of a local volatility model allows to take into account the implied volatility skew usually observed
on the equity market, no closed-form formulas are available in general even for the plain vanilla case (i.e.
ti = 0). Instead of resorting to time-costing (especially for large forward maturity T ) numerical method
like PDE techniques or Monte Carlo simulations, we aim at providing an accurate analytical approxima-
tion involving the same computational time than the application of the Black-Scholes formula. For this,
we use the proxy principle introduced in [Benhamou 2009] and [Benhamou 2010a]. A broad overview
of this non-asymptotic methodology as well comparisons with existing approximation methods to derive
analytical formulas for quick an accurate evaluation of option prices is given in Chapters 1 and 2 of the
thesis. We notably provide in Chapter 2 new approximations of the implied volatility very accurate and
this is the starting point of our work. To derive an approximation of the forward implied volatility for
the pricing of forward start option of type A, we use a conditioning argument and the results of Chap-
ter 2 to express the price (3.3) of the forward start option as an expectation of the Black-Scholes price
function with a stochastic volatility argument involving the local volatility function frozen at Xti , plus
an error. Then we perform a volatility expansion to consider the local volatility function frozen at some
deterministic point. A change of probability measure argument allows to adapt the results and to deduce



3.2. Notations 85

forward implied volatility of type B approximations.
The Chapter is organised as follows. First we give in Section 3.2 some usefull notations. Then we
expose in Section 3.3 the main results of the Chapter with a second and third order forward implied
volatility expansions of type A provided in Theorems 3.3.1.1-3.3.2.1 and forward implied volatility ap-
proximations of type B in Theorem 3.3.3.1. Section 3.4 is devoted to numerical experiments illustrating
the behaviour of the forward implied volatilities and the accuracy of our approximations. We give in Ap-
pendix 3.5 some technical results and proofs as well as the explicit form of the forward implied volatility
approximations in the context of time-independent local volatility function.

3.2 Notations

B Assumptions on a. (Ha): a is a bounded measurable function of (t, x) ∈ [0,T + ti]×R, and five times
continuously differentiable in x with bounded derivatives. Set

M1(a) = max
1≤i≤5

sup
(t,x)∈[0,T+ti]×R

|∂i
xia(t, x)| andM0(a) = max

0≤i≤5
sup

(t,x)∈[0,T+ti]×R
|∂i

xia(t, x)|.

In addition, there exists Ca ∈]0,1] such that |a(t, x)| ≥CaM0(a) > 0 for any (t, x) ∈ [0,T + ti]×R.

B Temporal shift of the local volatility function a. We introduce the time-shifted local volatility
function α defined by α(t, x) = a(t + ti, x) for any (t, x) ∈ [0,T ]×R.

B Time-space shifted local volatility process. We introduce the time-space shifted local volatility
process starting from 0 defined for any x ∈ R by the following SDE:

dZx
t = α(t,Zx

t + x)dWt −
1
2
α2(t,Zx

t + x)dt, z0 = 0. (3.6)

B Integral operators. For any n ≥ 1, any l1,..,ln measurable and bounded functions of t ∈ [0,T + ti], any
0 ≤ s < t ≤ T + ti, we set:

ω(l1, .., ln)t
s =

∫ t

s
l1(r1)

∫ t

r1

l2(r2)...
∫ t

rn−1

ln(rn)drndrn−1..dr2dr1.

B Quadratic mean and total variance. We define the quadratic mean for any bounded measurable
function g of (t, x) ∈ [0,T + ti]×R and for any non empty [s, t] ⊆ [0,T + ti] at the spatial point x on [s, t]
by setting:

gs,t
x =

√
1

t− s

∫ t

s
g2(r, x)dr.

For any bounded measurable function g of (t, x) ∈ [0,T + ti]×R and for any non empty [s, t] ⊆ [0,T + ti],
we define the total variance of g at x on [s, t] as:

V(g; x)t
s =

∫ t

s
g2(r, x)dr =

(
gs,t

x
)2(t− s).

We finally introduce some integral operators C, γ and π already used in Chapter 2:

Definition 3.2.0.1. If the derivatives and the integrals have a meaning, we define for any non empty
[s, t] ⊆ [0,T + ti] and for any bounded measurable function (l(t,z))(t,z)∈[0,T+ti]×R the next operators:

C1(l;z)t
s =ω

(
l2(z), l(z)l(1)(z)

)t
s, C2(l;z)t

s =ω
(
l2(z),

(
l(1)(z)

)2
+ l(z)l(2)(z)

)t
s,
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C3(l;z)t
s =ω

(
l2(z), l2(z),

(
l(1)(z)

)2
+ l(z)l(2)(z)

)t
s, C4(l;z)t

s =ω
(
l2(z), l(z)l(1)(z), l(z)l(1)(z)

)t
s,

C5(l;z)t
s =ω

((
l(1)(z)

)2
+ l(z)l(2)(z)

)s
t , C6(l;z)t

s =ω
(
l(z)l(1)(z), l(z)l(1)(z)

)s
t ,

C7(l;z)t
s =ω

(
l(z)l(1)(z)

)s
t .

We can define similarly the reverse operators C̃ obtained by changing the order of integration. For
example C̃1(l;z)t

s = ω(l(z)l(1)(z), l2(z))t
s.

Supposing in addition that l is non-negative such that l
s,t
z > 0, we define the following operators:

γ0(l;z)t
s =l

s,t
z +

C2(l;z)t
s

2l
s,t
z (t− s)

−
C4(l;z)t

s

4l
s,t
z (t− s)

−
C3(l;z)t

s

(l
s,t
z )3(t− s)2

−
3C4(l;z)t

s

(l
s,t
z )3(t− s)2

+
[C1(l;z)t

s]
2

8(l
s,t
z )3(t− s)2

+
3[C1(l;z)t

s]
2

2(l
s,t
z )5(t− s)3

,

γ1(l;z)t
s =

C1(l;z)t
s

(l
s,t
z )3(t− s)2

, γ2(l;z)t
s =

C3(l;z)t
s

(l
s,t
z )5(t− s)3

+ 3
C4(l;z)t

s

(l
s,t
z )5(t− s)3

−
3[C1(l;z)t

s]
2

(l
s,t
z )7(t− s)4

,

π0(l;z)t
s =

γ0(l;z)t
s + γ̃0(l;z)t

s

2
, π1(l;z)t

s =
γ̃1(l;z)t

s−γ1(l;z)t
s

2
,

π2(l;z)t
s =

γ2(l;z)t
s + γ̃2(l;z)t

s

2
−

C5(l;z)t
s

8l
s,t
z (t− s)

+
C6(l;z)t

s

4(l
s,t
z )3(t− s)2

,

where the reverse operators γ̃ are obtained using the reverse operators C̃.

Remark 3.2.0.1. Any of the previously defined operators applied with the function α and the spatial
point x ∈ R between the dates 0 and T gives the same result as that obtained with a and x between the
dates ti and T + ti. For example:

C1(α; x)T
0 =ω(α2(x),α(x)α(1)(x))T

0 =

∫ T

0
α2

t (x)
∫ T

t
αs(x)α(1)

s (x)dsdt

=

∫ T

0
a2

t+ti(x)
∫ T

t
as+ti(x)a(1)

s+ti(x)dsdt =

∫ T+ti

ti
a2

t (x)
∫ T+ti

t
as(x)a(1)

s (x)dsdt

=ω(a(x),a(x)a(1)(x))T+ti
ti = C1(a; x)T+ti

ti .

B Forward implied Black-Scholes volatility of type A and B. For (x0, ti,T,k) given, the forward im-
plied Black Scholes volatilities of type A and B are the unique non-negative parameters σI,F,A(x0, ti,T,k)
and σI,F,B(x0, ti,T,k) such that: CallFS,A(ex0 , ti,T,ek) = CallBS(0,σ2

I,F,A(x0, ti,T,k)T,k),
CallFS,B(ex0 , ti,T,ek) = CallBS(x0,σ

2
I,F,B(x0, ti,T,k)T, x0 + k).

(3.7)

If a does not depend on the spatial component (Black-Scholes framework), we have

σI,F,A(x0, ti,T,k) = σI,F,B(x0, ti,T,k) =

√
1
T

∫ ti+T

ti
a2

t dt = ati,ti+T = α0,T .

B New log-strike and new mid-point. We use the notation k′ = k
2 and x′avg = x0 + k′ = x0 + k

2 .
B About the constants. All our error estimates are stated throughout the paper using the notations:

• "A = O(B)" means that |A| ≤ CB where C stands for a generic constant that is a non-negative
increasing function of T , ti,M0(a),M1(a) and the oscillation ratio 1

C a.

• Similarly, if A is non-negative, A ≤c B means that A ≤CB for a generic constant C.
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3.3 Second and third order forward implied volatility expansions

3.3.1 Second order forward implied volatility expansion of type A

We provide in the next Theorem a second order forward volatility expansion of type A:

Theorem 3.3.1.1. (2nd order expansion of the forward implied volatility of type A). Assume (Ha) and
suppose thatM1(a),M0(a) , T , ti and |k| are globally small enough to ensure the existence of C1(k) > 0
and C2(k) > 0 such that:

ᾱ0,T
x − kπ1(α; x)T

0 = āti,T+ti
x − kπ1(a; x)T+ti

ti > C1(k)M0(a) > 0, ∀x ∈ R, (3.8)

σ̃
2,x′avg

I,F,A (x0, ti,T,k) = āti,T+ti
x′avg

−
1
2

C7(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
V(a; x0)ti

0 − kπ1(a; x′avg)T+ti
ti > C2(k)M0(a) > 0, (3.9)

where the operator π1 is defined in Definition 3.2.0.1. Then σ̃
2,x′avg

I,F,A (x0, ti,T,k) is a second order approxi-
mation of σI,F,A(x0, ti,T,k) in the following sense:

CallFS,A(ex0 , ti,T,ek) =CallBS
(
0,

(
σ̃

2,x′avg

I,F,A (x0, ti,T,k)
)2T,k

)
+O

(
M1(a)[M0(a)]2

√
T (
√

ti +
√

T )2), (3.10)

where the constant in the above estimate notably depends on C1(k) and C2(k).

Remark 3.3.1.1. If T tends to 0, the error in (3.10) becomes null. This is coherent with the fact that

CallFS,A(ex0 , ti,0,ek) = (1− ek)+. If ti tends to 0 (orM1(a) tends to 0) the term − 1
2

C7(a;x′avg)T+ti
ti

āti ,T+ti
x′avg

T
V(a; x0)ti

0

vanishes. We namely have:

∣∣∣∣12 C7(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
V(a; x0)ti

0

∣∣∣∣ ≤cM1(a)[M0(a)]2ti. (3.11)

Hence for x0 = 0, we retrieve the expansion of the vanilla case (see Theorem 2.1.4.1 in Chapter 2). This
additional term due to the forward start is therefore interpreted as a forward bias.

Remark 3.3.1.2. In view of the magnitude of the term − 1
2

C7(a;x′avg)T+ti
ti

āti ,T+ti
x′avg

T
V(a; x0)ti

0 (see (3.11)) and owing

to the Lemma 3.5.1.1, one can replace V(a; x0)ti
0 by V(a; x′avg)ti

0 without changing the magnitude of the
error. Thus the approximation of the forward implied volatility with the local volatility frozen at x′avg
reads:

σI,F,A(x0, ti,T,k) ≈ āti,T+ti
x′avg

−
1
2

C7(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
V(a; x′avg)ti

0 − kπ1(a; x′avg)T+ti
ti . (3.12)

Proof. We use the Markov property of the process X to get:

CallFS,A(ex0 , ti,T,ek) = E
[
E[(eXti+T−Xti − ek)+|Xti]

]
. (3.13)

Then using the deterministic time change t 7→ t + ti for any t ∈ [0,T ] and [Revuz 1999, Propositions 5.1.4
and 5.1.5], we easily see that under the conditional knowledge of Xti , Xti+T −Xti has the same law that
Z

Xti
T where (Zx

t )t∈[0,T ] is the solution of the SDE (3.6). Hence we can write:

E[(eXti+T−Xti − ek)+|Xti] = E[(eZ
Xti
T − ek)+|Xti]. (3.14)
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Next remark that E[(eZ
Xti
T − ek)+|Xti] is nothing else but the price of a Call option at time 0 with maturity

T , strike ek, spot 1 written on the log-asset Z
Xti
T with local volatility function (t, x) 7→ α(t, x + Xti).

Then owing to the assumed positivity of ᾱ0,T
x − kπ1(α; x)T

0 , ∀x ∈ R, we can follow the proof of Theorem
2.1.4.1 in Chapter 2 and one easily obtains with Lemma 3.5.1.1:

E[(eZ
Xti
T − ek)+|Xti] = CallBS(0, (ᾱ0,T

k′+Xti
− kπ1(α;k′+ Xti)

T
0
)2T,k

)
+ Error2,k′(Xti), (3.15)

where ᾱ0,T
k′+Xti

− kπ1(α;k′ + Xti)
T
0 is the order 2 implied volatility expansion and where a.s.∣∣∣Error2,k′(Xti)

∣∣∣ ≤c M1(a)[M0(a)]2T
3
2 (see remark 3.3.1.3 below). Then the price (3.13) can be written

as:

CallFS,A(ex0 , ti,T,ek) =E
[
CallBS(0, (ᾱ0,T

k′+Xti
− kπ1(α;k′+ Xti)

T
0 )2T,k

)]
+O(M1(a)[M0(a)]2T

3
2 ) (3.16)

=E
[
CallBS(0, (āti,T+ti

k′+Xti
− kπ1(a;k′+ Xti)

T+ti
ti )2T,k

)]
+O(M1(a)[M0(a)]2T

3
2 ).

Then we apply Taylor expansions twice: firstly for the smooth function ν 7→ CallBS(0, ν2T,k) at ν =

āti,T+ti
k′+Xti

−kπ1(a;k′+ Xti)
T+ti
ti around ν = āti,T+ti

x′avg
−kπ1(a; x′avg)T+ti

ti and secondly for the functions x 7→ āti,T+ti
x

and x 7→ π1(a; x)T+ti
ti at x = k′+ Xti around x = k′+ x0 = x′avg:

E
[
CallBS(0, (āti,T+ti

k′+Xti
− kπ1(a;k′+ Xti)

T+ti
ti

)2T,k
)]

(3.17)

=CallBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)

+ VegaBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)

×E
[(

āti,T+ti
k′+Xti

− āti,T+ti
x′avg

+ k(π1(a; x′avg)T+ti
ti −π1(a;k′+ Xti)

T+ti
ti )

)]
+ R1,

=CallBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)

+ VegaBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
E[(Xti − x0)]

+ R1 + R2 + R3,

where the operator C7 is defined in Definition 3.2.0.1, VegaBS,VommaBS in Lemma 3.5.1.1 and where:

R1 =E
[(

āti,T+ti
k′+Xti

− āti,T+ti
x′avg

+ k(π1(a; x′avg)T+ti
ti −π1(a;k′+ Xti)

T+ti
ti )

)2

×

∫ 1

0
VommaBS(0, ν2T,k)|

ν=(1−λ)(āti ,T+ti
x′avg

−kπ1(a;x′avg)T+ti
ti

)+λ(āti ,T+ti
k′+Xti

−kπ1(a;k′+Xti )
T+ti
ti

)(1−λ)dλ
]
,

R2 =E
[
VegaBS(0, (āti,T+ti

x′avg
− kπ1(a; x′avg)T+ti

ti )2T,k
)
(Xti − x0)2

∫ 1

0
∂2

x2 āti,T+ti
x |x=k′+λXti +(1−λ)x0(1−λ)dλ

]
,

R3 =E
[
VegaBS(0, (āti,T+ti

x′avg
− kπ1(a; x′avg)T+ti

ti )2T,k
)
k(x0−Xti)

∫ 1

0
∂xπ1(a; x)T+ti

ti |x=k′+λXti +(1−λ)x0dλ
]
.

Then using Equations (2.18)-(2.6) of Chapter 2, one has the following weak approximation:

E[Xti − x0] = E[X1,ti] +O(M1(a)M0(a)ti) = −
1
2
V(a; x0)ti

0 +O(M1(a)M0(a)ti), (3.18)

where (X1,t)t∈[0,T+ti] is the corrective (Gaussian) process defined by:

dX1,t =a(t, x0)dWt −
1
2

a2(t, x0)dt, X1,0 = 0. (3.19)
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Then using Lemma 3.5.1.1 we easily get with (3.18):

VegaBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
E[(Xti − x0)] (3.20)

=−
1
2

VegaBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
V(a; x0)ti

0 +O(M1(a)[M0(a)]2ti
√

T ).

Next we bound the remainders. We readily have using Lemma 3.5.1.1:

R1 =O(M1(a)[M0(a)]2ti
√

T ), R2 =O(M1(a)[M0(a)]2ti
√

T ), R3 =O(M1(a)[M0(a)]2 √tiT ).

Combining these estimates with (3.16)-(3.17)-(3.20) and using (3.11) and Lemma 3.5.1.1 finally yields
to:

CallFS,A(ex0 , ti,T,ek) =CallBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)

−
1
2

VegaBS(0, (āti,T+ti
x′avg

− kπ1(a; x′avg)T+ti
ti

)2T,k
)C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
V(a; x0)ti

0

+O
(
M1(a)[M0(a)]2

√
T (
√

ti +
√

T )2)
=CallBS

(
0,

(
āti,T+ti

x′avg
−

1
2

C7(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
V(a; x0)ti

0 − kπ1(a; x′avg)T+ti
ti

)2T,k
)

+O
(
M1(a)[M0(a)]2

√
T (
√

ti +
√

T )2).
Remark 3.3.1.3. In can be easily proven that the error Error2,k′(Xti) defined in (3.15) involves a depen-
dence w.r.t. Xti only throughout the local volatility function a (as a shift parameter) and its derivatives
which are bounded functions. One can notice that the employed conditional argument seems a priori
inadequate to handle stochastic volatility models like the Heston model. A carefully introspection of the
work of Gobet et al. [Benhamou 2010b] namely reveals that the error in the Heston Call price approx-
imation depends on v−p

0 with v0 the initial variance process value and p > 1. In the context of forward
start options, we may bound negative moments of vti which can explode, see [Bossy 2007, Lemma A.1].

�

3.3.2 Third order forward implied volatility expansion of type A

We announce the main result of the Chapter:

Theorem 3.3.2.1. (3rd order expansion of the forward implied volatility of type A). Assume (Ha) and
suppose thatM1(a),M0(a) , T , ti and |k| are globally small enough to ensure the existence of C3(k) > 0
and C4(k) > 0 such that:

πk(α; x)T
0 = πk(a; x)ti+T

ti = π0(α; x)T
0 − kπ1(α; x)T

0 + k2π2(α; x)T
0 > C3(k)M0(a) > 0, ∀x ∈ R, (3.21)

σ̃
3,x′avg

I,F,A (x0, ti,T,k) (3.22)

=πk(a; x′avg)T+ti
ti +

C7(a; x′avg)T+ti
ti

2āti,T+ti
x′avg

T

[
−V(a; x0)ti

0 +C1(a; x0)ti
0
]

(3.23)

+
[C5(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
−

C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)3T 2

][
V(a; x0)ti

0 +
1
4
V2(a; x0)ti

0
]
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+
[ k2(
πk(a; x′avg)T+ti

ti
)2T
−

(
πk(a; x′avg)T+ti

ti
)2T

4

] C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)2πk(a; x′avg)T+ti
ti T 2

V(a; x0)ti
0

+
k
2

[
C2(ã; x′avg)T+ti

ti −C2(a; x′avg)T+ti
ti

2(āti,T+ti
x )3T 2

+ 3
C7(a; x′avg)T+ti

ti (C1(a; x′avg)T+ti
ti −C1(ã; x′avg)T+ti

ti )

2(āti,T+ti
x )5T 3

]V(a; x0)T+ti
ti

>C4(k)M0(a) > 0,

where the operators π0, π1, π2, C5, C6 and C7 are defined in Definition 3.2.0.1. Then σ̃
3,x′avg

I,F,A (x0, ti,T,k)
is a third order approximation of σI,F,A(x0, ti,T,k) in the following sense:

CallFS,A(ex0 , ti,T,ek) =CallBS
(
0,

(
σ̃

3,x′avg

I,F,A (x0, ti,T,k)
)2T,k

)
+O

(
M1(a)[M0(a)]3

√
T (
√

ti +
√

T )3), (3.24)

where the constant in the above estimate notably depends on C3(k) and C4(k).

Remark 3.3.2.1. If ti = 0, the above forward implied volatility approximation reduces to πk(a; x′avg)T+ti
ti

what is the approximation of the implied volatility expansion given in Theorem 2.3.3.1 of Chapter 2.
Owing to their magnitude, all the new terms due to the forward start can be considered with the local
volatility frozen at x′avg instead of x0 without changing the magnitude of the final error, thanks to Lemma
3.5.1.1.

Proof. Using the assumption on πk(a; x)T+ti
ti , we can apply Theorem 2.3.3.1 of Chapter 2 and using the

same methodology previously employed for the second order, we get

CallFS,A(ex0 , ti,T,ek) = E
[
CallBS(0, (πk(a;k′+ Xti)

T+ti
ti )2T,k

)]
+O(M1(a)[M0(a)]3T 2). (3.25)

Then apply a Taylor expansion for the smooth function ν 7→ CallBS(0, ν2T,k) at ν = πk(a;k′ + Xti)
T+ti
ti

around ν = πk(a; x′avg)T+ti
ti :

E
[
CallBS(0, (πk(a;k′+ Xti)

T+ti
ti

)2T,k
)]

(3.26)

=CallBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
)

+ VegaBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
)
E
[
πk(a;k′+ Xti)

T+ti
ti −πk(a; x′avg)T+ti

ti
]

+
1
2

VommaBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
)
E
[(
πk(a;k′+ Xti)

T+ti
ti −πk(a; x′avg)T+ti

ti
)2]

+ R.

where:

R =E
[(
πk(a;k′+ Xti)

T+ti
ti −πk(a; x′avg)T+ti

ti
)3

×

∫ 1

0
UltimaBS(0, ν2T,k)|

ν=(1−λ)πk(a;x′avg)T+ti
ti

+λπk(a;k′+Xti )
T+ti
ti

(1−λ)2

2
dλ

]
,

and where UltimaBS is defined in Lemma 3.5.1.1. First notice that we readily have using Lemma 3.5.1.1:

R = O(M1(a)[M0(a)]3t
3
2
i

√
T ). (3.27)

Then we expand the functions x 7→ āti,T+ti
x , x 7→ π0(a; x)T+ti

ti − āti,T+ti
x and x 7→ πi(a; x)T+ti

ti , i ∈ {1,2}. We
announce three technical Lemmas, the proofs being postponed to Appendix 3.5.2. First we give in the
next Lemma expansion results for āti,T+ti

x :
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Lemma 3.3.2.1. (Expansion of āti,T+ti
x ). Under the hypotheses of Theorem 3.3.2.1, we have:

VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
E[āti,T+ti

k′+Xti
− āti,T+ti

x′avg
]

=VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

){C7(a; x′avg)T+ti
ti

2āti,T+ti
x′avg

T

[
−V(a; x0)ti

0 +C1(a; x0)ti
0
]

+
[C5(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
−

C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)3T 2

][
V(a; x0)ti

0 +
1
4
V2(a; x0)ti

0
]}

+O(M1(a)[M0(a)]3t
3
2
i

√
T ),

1
2

VommaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
E[(āti,T+ti

k′+Xti
− āti,T+ti

x′avg
)2]

=
1
2

VommaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

){(C7(a; x′avg)T+ti
ti

2āti,T+ti
x′avg

T
V(a; x0)ti

0
)2

+ 2
C6(a; x′avg)T+ti

ti

(āti,T+ti
x′avg

)2T 2
V(a; x0)ti

0

}
+O(M1(a)[M0(a)]3t

3
2
i

√
T ).

We now announce an expansion result for π1(a; x)T+ti
ti :

Lemma 3.3.2.2. (Expansion of π1(a; x)T+ti
ti ). Under the hypotheses of Theorem 3.3.2.1, we have:

VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
kE[π1(a; x′avg)T+ti

ti −π1(a;k′+ Xti)
T+ti
ti ]

=VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)k
2
V(a; x0)T+ti

ti [
C2(ã; x′avg)T+ti

ti −C2(a; x′avg)T+ti
ti

2(āti,T+ti
x )3T 2

+ 3
C7(a; x′avg)T+ti

ti (C1(a; x′avg)T+ti
ti −C1(ã; x′avg)T+ti

ti )

2(āti,T+ti
x )5T 3

] +O(M1(a)[M0(a)]3Tti).

Last, we show that all the remaining terms are negligible. The following Lemma summarises the
results:

Lemma 3.3.2.3. Under the hypotheses of Theorem 3.3.2.1, we have:

VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
×E

[
π0(a;k′+ Xti)

T+ti
ti − āti,T+ti

k′+Xti
−π0(a; x′avg)T+ti

ti + āti,T+ti
x′avg

+ k2(π2(a;k′+ Xti)
T+ti
ti −π2(a; x′avg)T+ti

ti )
]

≤cM1(a)[M0(a)]3
√

T (
√

ti +
√

T )3,

VommaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
E
[
(πk(a;k′+ Xti)

T+ti
ti −πk(a; x′avg)T+ti

ti
)2
− (āti,T+ti

k′+Xti
− āti,T+ti

x′avg
)2]

≤cM1(a)[M0(a)]3
√

T (
√

ti +
√

T )3.

Combining (3.25)-(3.26)-(3.27), Lemmas 3.3.2.1-3.3.2.2-3.3.2.3 and identity (3.38) yields that:

CallFS,A(ex0 , ti,T,ek) (3.28)

=CallBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
)

+ VegaBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
){C7(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T

[
−V(a; x0)ti

0 +C1(a; x0)ti
0
]

+ [
C5(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
−

C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)3T 2
][V(a; x0)ti

0 +
1
4
V2(a; x0)ti

0]
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+
[ k2(
πk(a; x′avg)T+ti

ti
)2T
−

(
πk(a; x′avg)T+ti

ti
)2T

4

] C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)2πk(a; x′avg)T+ti
ti T 2

V(a; x0)ti
0

+
k
2
[C2(ã; x′avg)T+ti

ti −C2(a; x′avg)T+ti
ti

2(āti,T+ti
x )3T 2

+ 3
C7(a; x′avg)T+ti

ti (C1(a; x′avg)T+ti
ti −C1(ã; x′avg)T+ti

ti )

2(āti,T+ti
x )5T 3

]
V(a; x0)T+ti

ti

}
+

1
2

VommaBS(0, (πk(a; x′avg)T+ti
ti

)2T,k
)(C7(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
V(a; x0)ti

0
)2

+O
(
M1(a)[M0(a)]3

√
T (
√

ti +
√

T )3),
what allows to easily achieve the proof using Lemma 3.5.1.1 and the magnitude of the terms. �

3.3.3 Forward implied volatility expansions of type B

In this Subsection we provide approximations of the forward implied volatilities related to the pricing of
forward start options of type B. We introduce the stopped process (X̃ti

t )t∈[0,ti+T ] = (Xt∧ti)t∈[0,ti+T ] and we

interpret e
X̃

ti
ti+T

ex0 = eXti

ex0 as a Radon-Nikodym derivative of a new measure P̃ w.r.t. P on FT under which

W̃t = Wt −

∫ t∧ti

0
σ(s,S s)ds, (3.29)

is a standard Brownian motion. Thus we can write the value of a forward start call option of type B as:

CallFS,B(S 0, ti,T,K) = E[(eXti+T − ek+Xti )+] = E[eX̃ti
ti+T (eXti+T−Xti − ek)+] = ex0Ẽ[(eXti+T−Xti − ek)+]. (3.30)

Thus we are reduced to compute similar expectations that those involved by the forward start options of
type A but under the new measure P̃. This leads to the next Theorem, the proof being given in Appendix
3.5.3:

Theorem 3.3.3.1. (2nd and 3rd order expansions of the forward implied volatility of type B). Assume
(Ha) and suppose thatM1(a),M0(a) , T , ti and |k| are globally small enough to ensure the existence of
C1(k) > 0, C5(k) > 0, C3(k) > 0 and C6(k) > 0 such that:

ᾱ0,T
x − kπ1(α; x)T

0 = āti,T+ti
x − kπ1(a; x)T+ti

ti > C1(k)M0(a) > 0, ∀x ∈ R,

σ̃
2,x′avg

I,F,B (x0, ti,T,k) = āti,T+ti
x′avg

+
1
2

C7(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
V(a; x0)ti

0 − kπ1(a; x′avg)T+ti
ti > C5(k)M0(a) > 0, (3.31)

πk(α; x)T
0 = πk(a; x)ti+T

ti = π0(α; x)T
0 − kπ1(α; x)T

0 + k2π2(α; x)T
0 > C3(k)M0(a) > 0, ∀x ∈ R,

σ̃
3,x′avg

I,F,B (x0, ti,T,k) (3.32)

=πk(a; x′avg)T+ti
ti +

C7(a; x′avg)T+ti
ti

2āti,T+ti
x′avg

T

[
+V(a; x0)ti

0 +C1(a; x0)ti
0
]

(3.33)

+
[C5(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
−

C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)3T 2

][
V(a; x0)ti

0 +
1
4
V2(a; x0)ti

0
]

+
[ k2(
πk(a; x′avg)T+ti

ti
)2T
−

(
πk(a; x′avg)T+ti

ti
)2T

4

] C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)2πk(a; x′avg)T+ti
ti T 2

V(a; x0)ti
0
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+
k
2

[
C2(ã; x′avg)T+ti

ti −C2(a; x′avg)T+ti
ti

2(āti,T+ti
x )3T 2

+ 3
C7(a; x′avg)T+ti

ti (C1(a; x′avg)T+ti
ti −C1(ã; x′avg)T+ti

ti )

2(āti,T+ti
x )5T 3

]V(a; x0)T+ti
ti

>C6(k)M0(a) > 0.

Then σ̃
2,x′avg

I,F,B (x0, ti,T,k) and σ̃
3,x′avg

I,F,B (x0, ti,T,k) are respectively a second and a third order approximation
of σI,F,B(x0, ti,T,k) in the following sense:

CallFS,B(ex0 , ti,T,ek) =CallBS
(
x0,

(
σ̃

2,x′avg

I,F,B (x0, ti,T,k)
)2T, x0 + k

)
+O

(
M1(a)[M0(a)]2

√
T (
√

ti +
√

T )2),
(3.34)

CallFS,B(ex0 , ti,T,ek) =CallBS
(
x0,

(
σ̃

3,x′avg

I,F,B (x0, ti,T,k)
)2T, x0 + k

)
+O

(
M1(a)[M0(a)]3

√
T (
√

ti +
√

T )3),
(3.35)

where the constants in the above estimates notably depend on C1(k), C3(k), C5(k), and C6(k).

3.4 Numerical Experiments

To illustrate the accuracy of our formulas, we choose the time-homogeneous CEV model for the stock
value which the dynamic is given by:

dS t = νS β
t dWt, S 0 > 0,

with β ∈ [0,1]. Although the asset price S t can reach 0 with a probability strictly positive and although the
hypotheses of boundedness and ellipticity are not fulfilled, we reasonably expect that our approximation
formulas remain valid for this model and we consider a fictitious log-asset with local volatility given by

a(x) = νe(β−1)x.

Thus our forward implied volatility approximation formulas read applying Proposition 3.5.4.1:

σ̃
2,x′avg

I,F,C (x0, ti,T,k) =ν(S 2
0K)

β−1
2
{
1 + (1C=B−1C=A)

(β−1)ν2ti
2

S 2(β−1)
0

}
, (3.36)

πk(a; x′avg)ti+T
ti =ν(S 2

0K)
β−1

2
{
1 +

(β−1)2ν2T
24

(S 2
0K)β−1(1−

ν2T (S 2
0K)β−1

4
)−

(β−1)2

24
log2(K)

}
,

σ̃
3,x′avg

I,F,C (x0, ti,T,k) =πk(a; x′avg)ti+T
ti +

(β−1)
2

ν3ti(S 6
0K)

β−1
2
{
β−21C=A +

3(β−1)ν2ti
4

S 2(β−1)
0

+
(β−1)ν(S 2

0K)
β−1

2

πk(a; x′avg)ti+T
ti

[ log2(K)

(πk(a; x′avg)ti+T
ti )2T

−
(πk(a; x′avg)ti+T

ti )2T

4
]}
, (3.37)

∀C ∈ {A,B}. From the formula (3.36), it seems that at least around the money (i.e. K = 1) and for short
maturity (i.e. T << 1), the forward implied volatility of type A is higher than the corresponding vanilla
implied volatility (i.e. ti = 0) which is itself greater than the forward implied volatility of type B. From
the third order approximation formula (3.37), we can expect that for options reasonably far from the
money, the forward implied volatility of type A still remains higher than the forward implied volatility of

type B. The term
[ log2(K)

(πk(a;x′avg)ti+T
ti

)2T
−

(πk(a;x′avg)ti+T
ti

)2T
4

]
is negative around the money but can become positive

far from the money. This may suggest that it is possible for the forward implied volatility of type B to
be higher than the vanilla implied volatility far from the money. All these features are confirmed by the
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following numerical tests.
For numerical experiments, we choose the values S 0 = 1, ν = 20%, β = 0.5 and we allow the maturities,
the forward dates and the strikes to vary. We test the forward dates 0, 1M, 3M, 6M and 1Y and the
maturities vary from 3M to 10Y. Then the strikes approximately behave as eqν

√
T where q denotes the

value of various quantiles of the standard Normal law (from 1% to 99%) to cover around the money as
well far from the money options. The set of strikes are given w.r.t. the set maturities in Table 3.1.
As a benchmark, we use Monte Carlo methods using the conditional argument which is the central idea
of our proofs. More precisely for each sample path, we simulate with an Euler scheme the process:

dXt = νe(β−1)Xt (dWt −
1
2
νe(β−1)Xt dt),

under both the probabilities P and P̃ up to the forward date ti. Then we evaluate for the whole set of
strikes and maturities E[(eXti+T−Xti −K)+|Xti] and Ẽ[(eXti+T−Xti −K)+|Xti] using the closed-form formula of
a Call in the CEV model provided by [Schroder 1989], using as level of volatility νe(β−1)Xti . This method
allows a quick and accurate estimation of the whole set of forward implied volatilities. For instance, us-
ing 106 sample paths and a time discretization of 300 steps by year, we obtain, using C++ on a Intel(R)
Core(TM) i5 CPU@2.40GHz with 4 GB of ram, all the estimations of the forward implied volatilities
for a given forward date with a computational time smaller than 2h and with confidence interval widths
reduced to less than 1 bp1 for all the strikes and maturities. We report in Tables 3.2-3.3 the estimations
of the forward implied volatilities without indicating the confidence intervals for the sake of brevity and
taking into account that errors on these estimates are lower than ±1 bp. On Tables 3.4, 3.5, we report
the errors using the third order formulas. These errors as estimated by subtracting to the value obtained
by the approximation formula the bound of the confidence interval of the Monte Carlo estimator cor-
responding to the worst case. That is if the value estimated by the approximation formula is greater
(respectively lower) than the Monte Carlo estimator we subtract to this value the lower (respectively
higher) bound of the confidence interval.

BBehaviours of the forward implied volatilities. From Table 3.2, we notice that the forward implied
volatility of type A is always higher than the vanilla implied volatility and is growing with ti. Far from
the money, the forward volatility is even greater: more than 1% of difference between ti = 0 and ti = 1Y.
Regarding Table 3.3, we see that the forward implied volatility of type B decreases with ti at the money
and is increasing with ti far from the money and is always smaller than the forward implied volatility of
type A.

BAccuracy of the approximation formulas. We notice in Table 3.4 that for the forward implied volatil-
ity of type A, the results are very good with a maximum error of 11.39 bps for T = 10Y and ti = 1Y. The
errors become higher when ti, T or |k| increase. Up to maturity 5Y, we observe that the approximation
formula generally overestimates the true forward implied volatility for small values of ti and then yields
to an underestimation for large ti. For the maturity 10Y, there is almost always an overestimation. The
results are also very satisfying for the forward implied volatility of type B with a maximum error of
17.21 bps for T = 10Y and ti = 1Y. The magnitudes of the errors are very close but we nevertheless ob-
serve a fairly frequent overestimation with slightly underestimations around the money for small value
of T and medium values of ti.

11 bp (basis point) is equal to 0.01%.
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Table 3.1: Set of maturities and strikes for the numerical experiments

T\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.30 1.35
6M 0.65 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.20 1.25 1.35 1.50
1Y 0.55 0.65 0.75 0.80 0.90 0.95 1.00 1.05 1.15 1.25 1.40 1.50 1.80
1.5Y 0.50 0.60 0.70 0.75 0.85 0.95 1.00 1.10 1.15 1.30 1.50 1.65 2.00
2Y 0.45 0.55 0.65 0.75 0.85 0.90 1.00 1.10 1.20 1.35 1.55 1.80 2.30
3Y 0.35 0.50 0.55 0.70 0.80 0.90 1.00 1.10 1.25 1.45 1.75 2.05 2.70
5Y 0.25 0.40 0.50 0.60 0.75 0.85 1.00 1.15 1.35 1.60 2.05 2.50 3.60
10Y 0.15 0.25 0.35 0.50 0.65 0.80 1.00 1.20 1.50 1.95 2.75 3.65 6.30

3.5 Appendix

3.5.1 Results on Vega, the Vomma and the Ultima

We announce a technical result related to the Vega, the Vomma and the Ultima very useful for the proofs
of the expansions .

Lemma 3.5.1.1. Let x,k ∈ R, ν > 0 and T > 0. For any integer m ≥ 0, we have:

|x− k|m|VegaBS(x, ν2T,k)| ≤c
√

T (ν
√

T )m,

|x− k|m|VommaBS(x, ν2T,k)| ≤c T (ν
√

T )m−1,

|x− k|m|UltimaBS(x, ν2T,k)| ≤c T
3
2 (ν
√

T )m−2,

where the generic constants depend polynomially on ν
√

T .

Proof. For the first inequality, apply Proposition 2.6.1.3 of Chapter 2 to write that VegaBS(x, ν2T,k) =

νT (∂2
x2 −∂x)CallBS(x, ν2T,k) and conclude with 2.6.1.1. For the second use Proposition 2.6.1.2 to write

that:

VommaBS(x, ν2T,k) =
VegaBS(x, ν2T,k)

ν
[
(x− k)2

ν2T
−
ν2T

4
] (3.38)

and conclude again with Proposition 2.6.1.3 and Corollary 2.6.1.1.
The last inequality is handled similarly using Propositions 2.6.1.2, 2.6.1.3 and Corollary 2.6.1.1. �

3.5.2 Proofs of Lemmas 3.3.2.1-3.3.2.2-3.3.2.3

B Proof of Lemma 3.3.2.1 We begin with the first assertion. Expand āti,T+ti
x to write:

E[āti,T+ti
k′+Xti

− āti,T+ti
x′avg

] =
C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
E[(Xti − x0)] +

1
2
∂2

x2 āti,T+ti
x |x=x′avgE[(Xti − x0)2] + R1, (3.39)

∂2
x2 āti,T+ti

x |x=x′avg =
C5(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
−

[C7(a; x′avg)T+ti
ti ]2

(āti,T+ti
x′avg

)3T 2
=

C5(a; x′avg)T+ti
ti

āti,T+ti
x′avg

T
−2

C6(a; x′avg)T+ti
ti

(āti,T+ti
x′avg

)3T 2
, (3.40)

R1 =E
[
(Xti − x0)3

∫ 1

0
∂3

x3 āti,T+ti
x |x=k′+λXti +(1−λ)x0

(1−λ)2

2
dλ

]
,
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where the operators C5, C6 and C7 are defined in Definition 3.2.0.1. We readily have using Lemma
3.5.1.1:

R1VegaBS(0, (πk(a; x′avg)T+ti
ti )2T,k

)
= O(M1(a)[M0(a)]3t

3
2
i

√
T ).

Then introducing the corrective process (X2,t)t∈[0,T+ti] depending on the Gaussian process X1 (see (3.19)):

dX2,t =2a(1)(t, x0)X1,t
(
dWt −a(t, x0)dt

)
, X2,0 = 0,

we obtain using Equations (2.3)-(2.6)-(2.7)-(2.18) of Chapter 2 the following weak approximations:

E[Xti − x0] =E[X1,ti] +
1
2
E[X2,ti] +O(M1(a)[M0(a)]2t

3
2
i )

=−
1
2
V(a; x0)ti

0 −

∫ ti

0
at(x0)a(1)

t (x0)E[X1,t]dt +O(M1(a)[M0(a)]2t
3
2
i )

=−
1
2
V(a; x0)ti

0 +
1
2

C1(a; x0)ti
0 +O(M1(a)[M0(a)]2t

3
2
i ), (3.41)

E[(Xti − x0)2] =E[X2
1,ti] +O(M1(a)[M0(a)]2t

3
2
i )

=−

∫ ti

0
a2

t (x0)E[X1,t]dt +V(a; x0)ti
0 +O(M1(a)[M0(a)]2t

3
2
i )

=
1
4
V2(a; x0)ti

0 +V(a; x0)ti
0 +O(M1(a)[M0(a)]2t

3
2
i ). (3.42)

Combining (3.39)-(3.40)-(3.41)-(3.42) and Lemma 3.5.1.1 leads to the announced result.
We now pass to the second equality. Similarly we write using (3.42):

E[(āti,T+ti
k′+Xti

− āti,T+ti
x′avg

)2] =
(C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T

)2E[(Xti − x0)2] + R2,

=
(C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T

)2(1
4
V2(a; x0)ti

0 +V(a; x0)ti
0
)
+O(M1(a)[M0(a)]4t

3
2
i ) + R2

=
(C7(a; x′avg)T+ti

ti

2āti,T+ti
x′avg

T
V(a; x0)ti

0
)2

+ 2
C6(a; x′avg)T+ti

ti

(āti,T+ti
x′avg

)2T 2
V(a; x0)ti

0 +O(M1(a)[M0(a)]4t
3
2
i ),

(3.43)

R2 =E
[
R2

3 + 2R3
C7(a; x′avg)T+ti

ti

āti,T+ti
x′avg

T
(Xti − x0)

]
= O(M1(a)[M0(a)]4t

3
2
i ),

R3 =(Xti − x0)2
∫ 1

0
∂2

x2 āti,T+ti
x |x=k′+λXti +(1−λ)x0(1−λ)dλ.

We achieve the proof with (3.43) and Lemma 3.5.1.1.
B Step 2: Expansion of π1(a; x)T+ti

ti . We have using the definition of π1:

E[π1(a;k′+ Xti)
T+ti
ti −π1(a; x′avg)T+ti

ti ] =∂xπ1(a; x)T+ti
ti |x=x′avgE[Xti − x0] + R4 (3.44)

∂xπ1(a; x)T+ti
ti =

1
2
(
∂x

C1(ã; x)T+ti
ti

(āti,T+ti
x )3T 2

−∂x
C1(a; x)T+ti

ti

(āti,T+ti
x )3T 2

)
, (3.45)

∂x
C1(a; x)T+ti

ti

(āti,T+ti
x )3T 2

=
C2(a; x)T+ti

ti + 2C6(a; x)T+ti
ti

(āti,T+ti
x )3T 2

−3
C7(a; x)T+ti

ti C1(a; x)T+ti
ti

(āti,T+ti
x )5T 3

, (3.46)

R4 =E
[
(Xti − x0)2
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×

∫ 1

0
∂2

x2π1(a; x)T+ti
ti |x=k′+λXti +(1−λ)x0(1−λ)dλ

]
.

=O(M1(a)[M0(a)]2ti). (3.47)

Hence using (3.18)-(3.45)-(3.46)-(3.47) and the symmetry of the operator C6, we get for (3.44):

E[π1(a;k′+ Xti)
T+ti
ti −π1(a; x′avg)T+ti

ti ]

=−
1
2
V(a; x0)T+ti

ti
[C2(ã; x′avg)T+ti

ti −C2(a; x′avg)T+ti
ti

2(āti,T+ti
x )3T 2

+ 3
C7(a; x′avg)T+ti

ti (C1(a; x′avg)T+ti
ti −C1(ã; x′avg)T+ti

ti )

2(āti,T+ti
x )5T 3

]
+O(M1(a)[M0(a)]2ti).

We conclude with an application of Lemma 3.5.1.1.
B Proof of Lemma 3.3.2.3 Although the explicit form of the residuals is tedious to write, there is no
extra difficulty so we let it as an exercise to the reader.

3.5.3 Proof of Theorem 3.3.3.1

We only detail the main differences with the proof of Theorems 3.3.1.1-3.3.2.1. First notice that:

Xti+T −Xti =

∫ ti+T

ti
a(t,Xt)(dWt −

1
2

a(t,Xt)dt) = Xti+T −Xti =

∫ ti+T

ti
a(t,Xt)(dW̃t −

1
2

a(t,Xt)dt),

in view of the definition of W̃ (see (3.29)). Thus combining this observation with (3.30), the same
conditional expectation argument previously employed yields:

CallFS,A(ex0 , ti,T,ek) =Ẽ
[
CallBS(x0,

(
āti,T+ti

k′+Xti
− kπ1(a;k′+ Xti)

T+ti
ti

)2T, x0 + k
)]

+O(M1(a)[M0(a)]2T
3
2 ,

=Ẽ
[
CallBS(x0,

(
πk(a;k′+ Xti)

T+ti
ti

)2T, x0 + k
)]

+O(M1(a)[M0(a)]3T 2).

Next few changes occur after the volatility expansion when computing the expectations
Ẽ[(Xti − x0)], Ẽ[(Xti − x0)2]. The dynamic of (Xt)t∈[0,ti] under P̃ is given by :

dXt = a(t,Xt)
(
dW̃t +

1
2

a(t,Xt)dt
)
, X0 = x0.

The following weak approximations come with
{

dX1,t = a(t, x0)dW̃t + 1
2 a2(t, x0)dt, X1,0 = 0,

dX2,t = 2a(1)(t, x0)X1,t
(
dW̃t + a(t, x0)dt

)
, X2,0 = 0,

Ẽ[Xti − x0] =Ẽ[X1,ti] +O(M1(a)M0(a)ti) = +
1
2
V(a; x0)ti

0 +O(M1(a)M0(a)ti)

=Ẽ[X1,ti] +
1
2
Ẽ[X2,ti] +O(M1(a)[M0(a)]2t

3
2
i ) = +

1
2
V(a; x0)ti

0 +
1
2

C1(a; x0)ti
0 +O(M1(a)[M0(a)]2t

3
2
i ),

Ẽ[(Xti − x0)2] =Ẽ[X2
1,ti] +O(M1(a)[M0(a)]2t

3
2
i ) =

1
4
V2(a; x0)ti

0 +V(a; x0)ti
0 +O(M1(a)[M0(a)]2t

3
2
i ).

Taking into account these modifications allows to easily complete the proof.

3.5.4 Forward implied volatilities in time-independent local volatility models

We give in this Subsection the explicit form of our forward implied volatility expansions given in Theo-
rems 3.3.1.1-3.3.2.1-3.3.3.1 when a is time-independent.
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Proposition 3.5.4.1. Under the hypotheses of Theorems 3.3.1.1-3.3.2.1-3.3.3.1, one has if a is time-
independent for any C ∈ {A,B}:

σ̃
2,x′avg

I,F,C (x0, ti,T,k) =a(x′avg) + (1C=B−1C=A)
1
2

a(1)(x′avg)a2(x0)ti, (3.48)

πk(a; x)ti+T
ti =a(x)

{
1 + T

[a(x)a(2)(x)
12

− (a(1))2(x)(
1
24

+
a2(x)T

96
)
]
+ k2[ a(2)(x)

24a(x)
−

(a(1))2(x)
12a2(x)

]}
, (3.49)

σ̃
3,x′avg

I,F,C (x0, ti,T,k) =πk(a; x′avg)ti+T
ti + a2(x0)ti

{a(1)(x′avg)

2
[
(1C=B−1C=A) +

a(x0)a(1)(x0)ti
2

]
+

a(2)(x′avg)

2
[
1 +

a2(x0)ti
4

]
+

(
a(1)(x′avg)

)2

2πk(a; x′avg)T+ti
ti

[ k2(
πk(a; x′avg)T+ti

ti
)2T
−

(
πk(a; x′avg)T+ti

ti
)2T

4

]}
.

(3.50)
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Table 3.2: CEV model (β = 0.5, ν = 0.2): BS forward implied volatilities of type A in % estimated by
Monte Carlo.

T ti\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 0 21.84 21.48 21.14 20.83 20.53 20.26 20.00 19.76 19.53 19.31 18.91 18.72 18.54

1M 21.96 21.56 21.20 20.87 20.57 20.29 20.03 19.78 19.56 19.35 18.97 18.80 18.64
3M 22.21 21.75 21.34 20.97 20.64 20.34 20.08 19.84 19.63 19.44 19.11 18.97 18.85
6M 22.59 22.03 21.54 21.12 20.75 20.43 20.16 19.92 19.73 19.56 19.32 19.23 19.17
1Y 23.35 22.59 21.95 21.41 20.96 20.60 20.31 20.09 19.93 19.82 19.74 19.75 19.80

6M 0 22.24 21.48 21.14 20.83 20.54 20.26 20.00 19.76 19.53 19.11 18.91 18.54 18.04
1M 22.33 21.53 21.19 20.86 20.56 20.29 20.03 19.79 19.56 19.14 18.95 18.60 18.14
3M 22.53 21.66 21.28 20.94 20.63 20.34 20.08 19.84 19.62 19.22 19.05 18.73 18.34
6M 22.83 21.84 21.42 21.05 20.72 20.42 20.16 19.92 19.71 19.34 19.19 18.93 18.64
1Y 23.43 22.20 21.71 21.28 20.91 20.59 20.31 20.08 19.88 19.58 19.47 19.32 19.24

1Y 0 23.15 22.24 21.48 21.15 20.54 20.27 20.01 19.77 19.32 18.91 18.37 18.05 17.21
1M 23.24 22.30 21.52 21.18 20.57 20.29 20.03 19.79 19.34 18.95 18.42 18.11 17.31
3M 23.43 22.43 21.61 21.26 20.63 20.34 20.08 19.84 19.40 19.02 18.52 18.23 17.53
6M 23.72 22.63 21.75 21.37 20.71 20.43 20.16 19.92 19.49 19.12 18.67 18.42 17.85
1Y 24.29 23.01 22.01 21.59 20.88 20.58 20.32 20.08 19.67 19.34 18.97 18.79 18.49

1.5Y 0 23.69 22.68 21.85 21.49 20.84 20.27 20.01 19.54 19.32 18.73 18.05 17.61 16.74
1M 23.77 22.74 21.89 21.52 20.87 20.30 20.04 19.56 19.35 18.76 18.10 17.67 16.84
3M 23.95 22.86 21.98 21.60 20.93 20.35 20.09 19.62 19.40 18.83 18.20 17.80 17.04
6M 24.21 23.05 22.12 21.72 21.02 20.43 20.17 19.70 19.49 18.93 18.34 17.98 17.35
1Y 24.74 23.42 22.39 21.95 21.20 20.59 20.32 19.86 19.65 19.14 18.64 18.36 17.96

2Y 0 24.29 23.16 22.25 21.49 20.84 20.55 20.02 19.54 19.12 18.55 17.90 17.22 16.13
1M 24.37 23.22 22.30 21.53 20.87 20.57 20.04 19.57 19.14 18.58 17.94 17.28 16.24
3M 24.54 23.35 22.39 21.60 20.93 20.63 20.09 19.62 19.20 18.65 18.04 17.41 16.46
6M 24.81 23.54 22.53 21.71 21.02 20.71 20.17 19.70 19.29 18.75 18.17 17.60 16.80
1Y 25.33 23.91 22.81 21.92 21.19 20.88 20.32 19.85 19.46 18.96 18.45 17.99 17.46

3Y 0 25.76 23.71 23.18 21.87 21.17 20.56 20.02 19.55 18.93 18.22 17.35 16.64 15.45
1M 25.85 23.76 23.22 21.90 21.19 20.58 20.05 19.57 18.95 18.25 17.39 16.70 15.56
3M 26.03 23.88 23.33 21.98 21.26 20.64 20.10 19.63 19.01 18.32 17.49 16.83 15.78
6M 26.32 24.06 23.48 22.09 21.35 20.72 20.18 19.70 19.09 18.42 17.63 17.03 16.11
1Y 26.88 24.42 23.80 22.30 21.53 20.88 20.33 19.86 19.26 18.63 17.92 17.42 16.76

5Y 0 27.83 25.01 23.73 22.72 21.52 20.87 20.04 19.35 18.57 17.77 16.65 15.79 14.29
1M 27.92 25.06 23.78 22.76 21.55 20.89 20.06 19.37 18.60 17.80 16.69 15.85 14.40
3M 28.11 25.18 23.87 22.84 21.61 20.95 20.12 19.42 18.65 17.87 16.79 15.98 14.63
6M 28.39 25.37 24.02 22.95 21.71 21.03 20.19 19.50 18.74 17.97 16.93 16.18 14.97
1Y 28.96 25.73 24.30 23.19 21.89 21.20 20.35 19.65 18.90 18.17 17.22 16.57 15.66

10Y 0 31.20 27.91 25.86 23.79 22.33 21.23 20.08 19.17 18.10 16.89 15.40 14.25 12.21
1M 31.28 27.97 25.91 23.82 22.36 21.25 20.10 19.19 18.12 16.92 15.45 14.31 12.33
3M 31.46 28.10 26.01 23.90 22.43 21.31 20.15 19.24 18.18 16.99 15.54 14.45 12.60
6M 31.72 28.29 26.16 24.02 22.52 21.39 20.23 19.32 18.26 17.09 15.69 14.66 12.99
1Y 32.23 28.67 26.46 24.25 22.71 21.56 20.38 19.47 18.42 17.29 15.98 15.07 13.77
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Table 3.3: CEV model (β = 0.5, ν = 0.2): BS forward implied volatilities of type B in % estimated by
Monte Carlo.

T ti\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 0 21.84 21.48 21.14 20.83 20.53 20.26 20.00 19.76 19.53 19.31 18.91 18.72 18.54

1M 21.92 21.53 21.17 20.84 20.53 20.25 19.99 19.75 19.53 19.32 18.94 18.77 18.61
3M 22.10 21.64 21.23 20.86 20.54 20.24 19.98 19.74 19.53 19.34 19.01 18.88 18.76
6M 22.36 21.80 21.32 20.90 20.54 20.22 19.95 19.72 19.53 19.36 19.12 19.04 18.97
1Y 22.85 22.11 21.49 20.97 20.53 20.18 19.90 19.68 19.52 19.41 19.32 19.34 19.38

6M 0 22.24 21.48 21.14 20.83 20.54 20.26 20.00 19.76 19.53 19.11 18.91 18.54 18.04
1M 22.29 21.50 21.15 20.83 20.53 20.25 20.00 19.75 19.53 19.11 18.92 18.57 18.11
3M 22.42 21.55 21.17 20.83 20.52 20.24 19.98 19.74 19.52 19.13 18.95 18.64 18.25
6M 22.59 21.62 21.21 20.84 20.51 20.22 19.96 19.72 19.51 19.15 18.99 18.74 18.45
1Y 22.93 21.74 21.26 20.84 20.48 20.17 19.90 19.67 19.48 19.18 19.07 18.92 18.83

1Y 0 23.15 22.24 21.48 21.15 20.54 20.27 20.01 19.77 19.32 18.91 18.37 18.05 17.21
1M 23.20 22.27 21.49 21.15 20.53 20.26 20.00 19.76 19.31 18.91 18.39 18.08 17.28
3M 23.31 22.32 21.50 21.15 20.52 20.24 19.98 19.74 19.31 18.92 18.43 18.14 17.44
6M 23.48 22.39 21.53 21.15 20.50 20.22 19.96 19.72 19.29 18.93 18.48 18.23 17.66
1Y 23.78 22.54 21.56 21.15 20.46 20.17 19.90 19.67 19.27 18.94 18.58 18.40 18.09

1.5Y 0 23.69 22.68 21.85 21.49 20.84 20.27 20.01 19.54 19.32 18.73 18.05 17.61 16.74
1M 23.73 22.70 21.86 21.49 20.83 20.26 20.00 19.53 19.32 18.73 18.07 17.64 16.81
3M 23.82 22.75 21.87 21.49 20.82 20.25 19.99 19.52 19.30 18.73 18.10 17.71 16.96
6M 23.96 22.82 21.90 21.50 20.81 20.22 19.96 19.50 19.29 18.74 18.16 17.80 17.17
1Y 24.22 22.94 21.93 21.50 20.77 20.17 19.91 19.45 19.25 18.75 18.25 17.98 17.58

2Y 0 24.29 23.16 22.25 21.49 20.84 20.55 20.02 19.54 19.12 18.55 17.90 17.22 16.13
1M 24.33 23.18 22.26 21.49 20.84 20.54 20.01 19.54 19.11 18.55 17.91 17.25 16.21
3M 24.42 23.23 22.28 21.49 20.82 20.53 19.99 19.52 19.10 18.56 17.94 17.32 16.38
6M 24.55 23.30 22.30 21.49 20.81 20.50 19.97 19.50 19.09 18.56 17.99 17.42 16.62
1Y 24.80 23.42 22.34 21.47 20.76 20.45 19.91 19.45 19.06 18.57 18.07 17.62 17.08

3Y 0 25.76 23.71 23.18 21.87 21.17 20.56 20.02 19.55 18.93 18.22 17.35 16.64 15.45
1M 25.80 23.72 23.19 21.87 21.16 20.55 20.02 19.54 18.92 18.22 17.37 16.67 15.53
3M 25.90 23.76 23.21 21.86 21.15 20.53 20.00 19.53 18.91 18.23 17.40 16.75 15.70
6M 26.05 23.81 23.25 21.86 21.13 20.51 19.97 19.51 18.90 18.24 17.45 16.85 15.94
1Y 26.32 23.91 23.31 21.85 21.09 20.46 19.92 19.45 18.87 18.25 17.55 17.06 16.40

5Y 0 27.83 25.01 23.73 22.72 21.52 20.87 20.04 19.35 18.57 17.77 16.65 15.79 14.29
1M 27.87 25.02 23.74 22.72 21.52 20.86 20.03 19.34 18.57 17.77 16.67 15.82 14.38
3M 27.96 25.06 23.75 22.72 21.50 20.85 20.01 19.32 18.56 17.78 16.70 15.90 14.56
6M 28.10 25.11 23.77 22.72 21.49 20.82 19.99 19.30 18.55 17.79 16.76 16.01 14.82
1Y 28.35 25.20 23.80 22.71 21.44 20.77 19.93 19.25 18.52 17.80 16.86 16.22 15.32

10Y 0 31.20 27.91 25.86 23.79 22.33 21.23 20.08 19.17 18.10 16.89 15.40 14.25 12.21
1M 31.23 27.93 25.86 23.79 22.33 21.22 20.07 19.16 18.09 16.90 15.42 14.29 12.31
3M 31.30 27.96 25.88 23.78 22.31 21.20 20.05 19.15 18.09 16.90 15.47 14.38 12.53
6M 31.39 28.00 25.89 23.77 22.29 21.18 20.02 19.12 18.07 16.92 15.53 14.50 12.85
1Y 31.56 28.08 25.92 23.75 22.25 21.12 19.96 19.07 18.04 16.93 15.65 14.75 13.46
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Table 3.4: CEV model (β = 0.5, ν = 0.2): error in bps on the BS forward implied volatilities of type A
using the third order formula.

T ti\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1M 0.65 0.49 0.38 0.30 0.24 0.21 0.20 0.21 0.23 0.26 0.37 0.45 0.54
3M −0.26 −0.33 −0.35 −0.34 −0.32 −0.30 −0.29 −0.29 −0.30 −0.31 −0.31 −0.29 −0.24
6M −0.87 −0.99 −0.96 −0.86 −0.75 −0.68 −0.65 −0.66 −0.71 −0.78 −0.88 −0.87 −0.78
1Y −2.00 −2.24 −2.05 −1.69 −1.33 −1.07 −0.98 −1.04 −1.23 −1.49 −1.94 −1.96 −1.78

6M 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1M 0.53 0.35 0.29 0.25 0.23 0.21 0.20 0.20 0.21 0.25 0.28 0.36 0.52
3M −0.31 −0.35 −0.34 −0.33 −0.31 −0.30 −0.29 −0.29 −0.29 −0.30 −0.31 −0.30 −0.21
6M −0.96 −0.94 −0.86 −0.78 −0.72 −0.67 −0.65 −0.66 −0.68 −0.76 −0.80 −0.85 −0.71
1Y −2.19 −1.95 −1.68 −1.40 −1.18 −1.04 −0.99 −1.01 −1.11 −1.43 −1.60 −1.85 −1.65

1Y 0 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 −0.01
1M 0.53 0.38 0.29 0.26 0.22 0.21 0.21 0.20 0.21 0.24 0.29 0.35 0.57
3M −0.29 −0.35 −0.34 −0.33 −0.31 −0.30 −0.30 −0.29 −0.29 −0.30 −0.30 −0.28 0.29
6M −0.93 −0.96 −0.86 −0.80 −0.71 −0.68 −0.66 −0.66 −0.68 −0.73 −0.80 −0.80 −0.45
1Y −2.10 −2.02 −1.62 −1.42 −1.12 −1.04 −1.01 −1.02 −1.13 −1.33 −1.64 −1.75 −1.09

1.5Y 0 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 −0.01
1M 0.52 0.39 0.30 0.27 0.23 0.21 0.21 0.21 0.21 0.24 0.29 0.36 0.56
3M −0.28 −0.34 −0.34 −0.34 −0.32 −0.30 −0.30 −0.29 −0.29 −0.30 −0.29 −0.26 0.33
6M −0.91 −0.96 −0.88 −0.82 −0.74 −0.68 −0.67 −0.67 −0.68 −0.72 −0.78 −0.76 −0.35
1Y −2.05 −1.99 −1.66 −1.49 −1.21 −1.05 −1.03 −1.05 −1.10 −1.31 −1.60 −1.67 −0.87

2Y 0 0.05 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 −0.03
1M 0.56 0.42 0.33 0.28 0.24 0.23 0.22 0.21 0.22 0.24 0.29 0.37 0.63
3M 0.26 −0.33 −0.34 −0.33 −0.31 −0.30 −0.29 −0.29 −0.29 −0.29 −0.28 −0.23 0.49
6M −0.86 −0.95 −0.89 −0.80 −0.73 −0.71 −0.67 −0.67 −0.68 −0.72 −0.76 −0.71 0.64
1Y −1.95 −1.98 −1.71 −1.42 −1.19 −1.11 −1.04 −1.05 −1.13 −1.31 −1.54 −1.58 1.16

3Y 0 0.15 0.15 0.13 0.09 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.01 −0.06
1M 0.73 0.49 0.44 0.33 0.28 0.26 0.24 0.23 0.24 0.25 0.31 0.38 0.63
3M 0.48 −0.26 −0.28 −0.30 −0.29 −0.28 −0.28 −0.28 −0.28 −0.28 −0.25 −0.18 0.60
6M −0.60 −0.89 −0.89 −0.80 −0.74 −0.70 −0.67 −0.66 −0.68 −0.71 −0.72 −0.62 0.93
1Y −1.50 −1.90 −1.81 −1.45 −1.25 −1.12 −1.06 −1.06 −1.14 −1.31 −1.51 −1.40 1.82

5Y 0 0.75 0.55 0.42 0.32 0.22 0.18 0.15 0.12 0.11 0.09 0.06 0.02 −0.18
1M 1.39 0.90 0.69 0.55 0.43 0.37 0.33 0.30 0.29 0.30 0.34 0.41 0.68
3M 1.23 0.61 0.43 0.33 0.25 0.22 −0.21 −0.22 −0.23 −0.23 −0.20 0.24 0.95
6M 1.09 −0.56 −0.67 −0.69 −0.66 −0.64 −0.62 −0.62 −0.64 −0.66 −0.64 −0.43 1.84
1Y 1.05 −1.56 −1.57 −1.43 −1.21 −1.11 −1.04 −1.05 −1.13 −1.28 −1.39 −1.03 3.93

10Y 0 7.81 4.33 2.81 1.70 1.15 0.84 0.62 0.49 0.39 0.30 0.17 −0.03 −0.80
1M 8.57 4.74 3.09 1.91 1.33 1.02 0.78 0.66 0.56 0.49 0.46 0.45 0.65
3M 8.75 4.50 2.80 1.65 1.11 0.83 0.62 0.50 0.39 0.31 0.29 0.44 2.03
6M 9.19 4.20 2.37 1.24 0.76 0.52 0.34 −0.32 −0.41 −0.47 −0.40 0.55 4.95
1Y 10.86 4.10 1.94 0.82 −0.49 −0.61 −0.70 −0.78 −0.92 −1.10 −0.99 0.86 11.39
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Table 3.5: CEV model (β = 0.5, ν = 0.2): error in bps on the BS forward implied volatilities of type B
using the third order formula.

T ti\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1M 0.54 0.37 0.25 0.17 0.12 −0.14 −0.14 −0.13 0.11 0.15 0.27 0.35 0.44
3M 0.58 0.38 0.28 0.22 −0.21 −0.21 −0.21 −0.21 −0.20 0.20 0.28 0.36 0.47
6M 1.39 0.79 0.48 0.33 −0.31 −0.32 −0.32 −0.32 −0.30 0.29 0.52 0.76 1.13
1Y 5.57 3.41 2.20 1.57 1.27 1.14 1.10 1.11 1.19 1.38 2.34 3.26 4.57

6M 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1M 0.41 0.22 0.17 0.13 −0.13 −0.14 −0.14 −0.14 −0.12 0.14 0.17 0.25 0.43
3M 0.44 0.26 0.22 −0.21 −0.21 −0.21 −0.21 −0.21 −0.20 0.19 0.21 0.27 0.47
6M 0.91 0.41 0.32 −0.32 −0.33 −0.33 −0.32 −0.32 −0.31 −0.27 0.31 0.49 1.09
1Y 3.80 1.94 1.54 1.31 1.18 1.12 1.09 1.09 1.12 1.31 1.50 2.20 4.34

1Y 0 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 −0.01
1M 0.40 0.25 0.16 0.13 −0.13 −0.14 −0.14 −0.14 −0.12 0.12 0.19 0.24 0.48
3M 0.45 0.28 0.22 −0.21 −0.21 −0.21 −0.21 −0.20 −0.20 −0.19 0.22 0.26 0.58
6M 0.89 0.45 −0.31 −0.33 −0.33 −0.33 −0.32 −0.32 −0.31 −0.29 0.34 0.47 1.41
1Y 3.64 2.08 1.45 1.30 1.15 1.11 1.09 1.09 1.11 1.21 1.60 2.10 5.25

1.5Y 0 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 −0.01
1M 0.38 0.25 0.17 0.15 −0.12 −0.13 −0.13 −0.13 −0.12 0.12 0.19 0.25 0.47
3M 0.43 0.29 0.23 0.22 −0.21 −0.20 −0.20 −0.20 −0.19 0.19 0.22 0.28 0.59
6M 0.81 0.44 −0.31 −0.33 −0.33 −0.32 −0.32 −0.31 −0.31 −0.29 0.34 0.51 1.42
1Y 3.28 2.01 1.46 1.33 1.18 1.11 1.10 1.08 1.09 1.18 1.58 2.20 5.16

2Y 0 0.05 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 −0.03
1M 0.41 0.28 0.20 0.15 0.12 −0.12 −0.12 −0.12 −0.11 0.13 0.18 0.27 0.54
3M 0.47 0.32 0.25 0.23 0.21 0.21 0.20 0.19 0.19 0.19 0.21 0.30 0.77
6M 0.84 0.47 0.33 −0.33 −0.32 −0.32 −0.31 −0.31 −0.30 −0.28 0.31 0.56 1.89
1Y 3.30 2.06 1.52 1.28 1.17 1.14 1.10 1.08 1.09 1.16 1.47 2.36 6.48

3Y 0 0.15 0.15 0.13 0.09 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.01 −0.06
1M 0.55 0.35 0.30 0.20 0.16 0.14 0.13 0.12 0.13 0.15 0.20 0.28 0.54
3M 0.67 0.39 0.34 0.28 0.25 0.24 0.23 0.22 0.21 0.20 0.23 0.33 0.86
6M 1.16 0.50 0.42 0.32 −0.30 −0.29 −0.29 −0.28 −0.28 −0.26 0.35 0.63 2.12
1Y 3.99 1.99 1.72 1.32 1.22 1.16 1.13 1.10 1.09 1.15 1.57 2.52 6.97

5Y 0 0.75 0.55 0.42 0.32 0.22 0.18 0.15 0.12 0.11 0.09 0.06 0.02 −0.18
1M 1.18 0.75 0.56 0.43 0.31 0.26 0.22 0.20 0.19 0.20 0.24 0.31 0.58
3M 1.37 0.78 0.60 0.49 0.40 0.36 0.32 0.29 0.26 0.24 0.27 0.39 1.18
6M 1.93 0.88 0.64 0.52 0.43 0.40 0.36 0.33 0.29 0.28 0.40 0.76 3.02
1Y 4.99 2.40 1.83 1.55 1.36 1.29 1.21 1.15 1.11 1.15 1.63 2.81 9.22

10Y 0 7.81 4.33 2.81 1.70 1.15 0.84 0.62 0.49 0.39 0.30 0.17 −0.03 −0.80
1M 8.27 4.55 2.95 1.80 1.23 0.92 0.69 0.56 0.47 0.40 0.36 0.35 0.54
3M 8.64 4.62 2.98 1.86 1.32 1.02 0.79 0.66 0.53 0.43 0.40 0.56 2.23
6M 9.43 4.78 3.02 1.87 1.35 1.06 0.83 0.69 0.55 0.45 0.58 1.20 6.17
1Y 13.11 6.65 4.34 2.93 2.31 1.97 1.70 1.51 1.33 1.28 1.91 3.85 17.21
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In this Chapter, we discuss the choice of the parameterization and of the proxy model. First we
show that different parameterizations can lead to the same expansions and we compare their advantages
and drawbacks. Then we see how to directly obtain a log-normal proxy model without performing
the classical exponential change of function for the payoff function and for the diffusion coefficients.
This allows a comparison between the use of a normal proxy on the log-asset and the use of a log-
normal proxy on the asset. Next we investigate the use of a displaced log-normal proxy in the time
homogeneous framework and we finally gather some numerical results illustrating our discussions. We
keep the notations of the Chapters 1 (see Section 1.2) and 2 (see Subsection 2.1.1 and Definition 2.3.1.1).

4.1 Revisiting the parameterization

In this section we assume that the local volatility function a is bounded, infinitely differentiable with
bounded derivatives. We recall the interpolated process used to link the initial model and the proxy:

dXη
t = η(−

1
2

a2(t,Xη
t )dt + a(t,Xη

t )dWt), Xη
t = x0, (4.1)

for an interpolation parameter η lying in [0,1]. We have seen that the Gaussian proxy process (obtained
by freezing at x0 the local volatility function a) is equal to XP

t = X0
t +∂ηXη

t |η=0 and thus we approximate

at the order n the difference Xt −XP
t with the partial sum

n∑
j=2

1
j!

(∂ j
η j X

η
t )|η=0.

We could consider instead of Xη
t , the following interpolated process:

dX̂η
t = −

1
2

a2(t, x0 +η(X̂η
t − x0))dt + a(t, x0 +η(X̂η

t − x0))dWt, X̂η
0 = x0. (4.2)

Observe that this parametization is more user friendly because there is no need to derive w.r.t. η to see
the link between Xt and XP

t . Actually Xt is nothing else but X̂1
t whereas XP

t = X̂0
t . This parameterization
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seems more natural than (4.1) and simply consists in doing an interpolation of the spatial argument of
the local volatility function between Xt and x0.
The question is: do the two interpolated processes lead to the same approximations? The answer is yes
because the two processes are related by the relation Xη

t = x0 +η(X̂η
t − x0). Posing Yη

t = x0 +η(X̂η
t − x0),

an application of the Itô’s formula namely yields to:

dYη
t =ηdX̂η = η(−

1
2

a2(t, x0 +η(X̂η
t − x0))dt + a(t, x0 +η(X̂η

t − x0))dWt)

=η(−
1
2

a2(t,Yη
t )dt + a(t,Yη

t )dWt), Yη
t = 0.

We retrieve exactly the dynamic (4.1) with the same initial condition and we conclude with an unique-
ness argument.
Thus we have: X0

t = 0, (∂ηXη
t )|η=0 = X̂0

t − x0 = XP
t − x0 and for any i ≥ 2:

(∂i
ηi X

η
t )|η=0 = [∂i

ηiη(X̂η
t − x0)]|η=0 = i(∂i−1

ηi−1 X̂η)|η=0.

Consequently, if one considers a n-th order expansion, one has:

Xt −XP
t ≈

n∑
j=2

1
j!

(∂ j
η j X

η
t )|η=0 =

n−1∑
j=1

1
j!

(∂ j
η j X̂

η
t )|η=0.

An other advantage of this equivalent parameterization (4.2), is that to perform a n-th order expansion,
one only needs to compute the n first derivatives of X̂η

t w.r.t. η (the n-th is for the error estimate)
instead of the n + 1 first derivatives of Xη

t w.r.t. η. As a consequence, it is sufficient to assume that
the local volatility function is Cn+1(R,R) instead of being Cn+2(R,R) (see [Kunita 1984, Theorem 2.3]).
For all these advantages, it seems better to use the interpolated process (4.2) and we use a similar
parameterization in the next Parts of the thesis.
There are doubtless many other suitable parameterizations allowing to perform similar expansions. For
example we mention:

dX̃η
t = −

1
2

(ηa2(t, X̃η) + (1−η)a2(t, x0))dt + (ηa(t, X̃η
t ) + (1−η)a(t, x0))dWt, X̃η

0 = x0. (4.3)

We have obviously X̃1 = Xt and X̃0
t = XP

t . But this interpolation is less convenient than (4.2) because the
first corrective process (∂ηX̃η

t )|η=0 is not explicit. We have indeed with the notation (∂ηX̃η
t )|η=0 = X̃1,t:

dX̃1,t = −
1
2

(a2(t,XP
t )−a2(t, x0))dt + (a(t,XP

t )−a(t, x0))dWt, X̃η
1,0 = 0.

One could approximate X̃1,t by X̂1,t solution of:

dX̂1,t = −a(t, x0)a(1)(t, x0)(XP
t − x0)dt + a(1)(t, x0)(XP

t − x0)dWt, X̂η
1,0 = 0.

A careful analysis of the SDE satisfied by the difference process (X̃1,t− X̂1,t)t∈[0,T ] leads without difficulty
to the estimate sup

t∈[0,T ]
||X̃1,t − X̂1,t||p = O(M1(a)[M0(a)]2T

3
2 ) for any p ≥ 1, what is the magnitude of the

error when performing a second order expansion.
It finally seems more straightforward to directly consider the interpolated process (4.2).
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4.2 Normal proxy on log(S ) or Log-normal proxy on S

To consider a log-normal proxy, we worked in Chapter 2 with the log-asset X = log(S ) where S is
assumed to be a positive process solution of the next SDE:

dS t = S tσ(t,S t)dWt, S 0 = ex0 > 0, (4.4)

and we envisaged a Gaussan proxy process for X. One had to carefully change the volatility function (a
in (4.1) is defined by a(t, x) = σ(t,ex)) and the payoff function: E[g(S T )] = E[h(XT )] with h(x) = g(ex).
As a result, we have obtained an expansion formula with corrective terms which are sensitivities w.r.t.
the X-variable. We recall the second order formula with the volatility frozen at x0:

Theorem 4.2.0.1. (2nd order log-normal approximation with Greeks w.r.t. to the X-variable). Assume
(Ha

x0
) and suppose that h is locally Lipschitz with exponential growth in the following sense: for some

constant Ch ≥ 0,

|h(x)| ≤CheCh |x|, |
h(y)−h(x)

y− x
| ≤CheCh(|x|+|y|) (∀y , x).

Then

E[h(XT )] =E[h(XP
T )] +

[∫ T

0
a2(t, x0)

(∫ T

t
a(s, x0)a(1)(s, x0)ds

)
dt

]
(∂3

x3
0
−

3
2
∂2

x2
0
+

1
2
∂x0)E[h(XP

T )]

+O(M1(a)[M0(a)]2T
3
2 ).

One could prefer an expression in terms of (usual) Greeks w.r.t. the S -variable (this is done for
instance in [Gobet 2012b] up to the third order formula). We define the log-normal proxy S P, proxy
model of the process S by:

dS P
t = S P

t σ(t,S 0)dWt. (4.5)

One has:

∂x0E[h(XP
T )] = ∂x0E[g(eXP

T )] = ∂x0E[g(
S P

T

S 0
ex0)] = ex0∂S 0E[g(

S P
T

S 0
S 0)] = S 0∂S 0E[g(S P

T )].

Using the Faà di Bruno’s formula (see [Faà di Bruno 1857]), one obtains more generally for any n ≥ 1:

∂n
xn

0
E[h(XP

T )] =
∑

k=(k1,··· ,kn)∈Nn∑n
j=1 jk j=n

n!∏n
j=1 k j!( j!)k j

S
∑n

j=1 k j

0 ∂
∑n

j=1 k j

S
∑n

j=1 k j
0

E[g(S P
T )]. (4.6)

Applying this formula to the expansion proposed in Theorem 4.2.0.1, we obtain:

Theorem 4.2.0.2. (2nd order log-normal approximation with Greeks w.r.t. to the S -variable). Assume
(Ha

x0
) and suppose that h = g ◦ exp is locally Lipschitz with exponential growth (in the sense described

in Theorem 4.2.0.1). Then:

E[g(S T )] =E[g(S P
T )] +

[∫ T

0
σ2(t,S 0)

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
dt

]
(S 3

0∂
3
S 3

0
+

3
2

S 2
0∂

2
S 2

0
)E[g(XP

T )]

+O(M1(a)[M0(a)]2T
3
2 ).
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We would like to find a parameterization directly on the process S allowing to retrieve the results of
the above Theorem. In the spirit of the interpolated process (4.2), we propose an interpolation based on
the geometrical mean between S t and S 0 in the function σ and we define for any η ∈ [0,1]:

dS η
t = S η

t σ(t, (S η
t )ηS 1−η

0 )dWt, S η
0 = ex0 > 0, (4.7)

so that S 1
t = S t and S 0

t = S P
t . It’s not hard to verify that (eX̂η

t )t∈[0,T ] (see (4.2)) follows the dynamic (4.7)
and hence that S η

t = eX̂η
t for any t ∈ [0,T ] and any η ∈ [0,1]. If we work with h(X̂η

T ), we retrieve the
results of the Theorem 4.2.0.1 (see Section 4.1). To directly obtain the corrective terms of the expansion
proposed in Theorem 4.2.0.2, we focus on S η. Assume:

• (Hσ
S 0

): σ is a bounded measurable function of (t,S ) ∈ [0,T ]×R+, and five times continuously
differentiable in S with bounded derivatives. Set

M1(σ) = max
1≤i≤5

sup
(t,S )∈[0,T ]×R+

|∂i
S iσ(t,S )| andM0(σ) = max

0≤i≤5
sup

(t,S )∈[0,T ]×R+

|∂i
S iσ(t,S )|.

In addition we assume that
∫ T

0 σ2(t,S 0)dt > 0.

A straightforward differentiation of (4.7) w.r.t. η gives using the notation S η
1,t = ∂ηS

η
t :

dS η
1,t =

{
S η

1,tσ(t, (S η
t )ηS 1−η

0 ) + S η
t σ

(1)(t, (S η
t )ηS 1−η

0 )(S η
t )ηS 1−η

0 [(X̂η
t − x0) +ηX̂η

1,t]
}
dWt, S η

1,0 = 0,

and thus we get for η = 0, noting S 1,t = (∂ηS
η
t )|η=0:

dS 1,t =
{
S 1,tσ(t,S 0) + S P

t S 0σ
(1)(t,S 0)(XP

T − x0)
}
dWt, S 1,0 = 0.

This linear equation can be solved in closed-form (see [Protter 2004, Theorem 52]):

S 1,t = S P
t

∫ t

0
S 0σ

(1)(s,S 0)(XP
s − x0)(dWs−σ(s,S 0)ds).

For the formal following calculus, we assume that g is a smooth function with compact support (on can
relax this assumption and apply a regularization argument, we skip details). One has to compute the
corrective term E[g(1)(S P

T )S 1,T ]. We have:

• using the Malliavin duality relationship,

• identifying the Itô integrals with the Skorokhod integrals,

• using that for any t ≤ T , and any n,m ≥ 1,

Dt(g(n)(S P
T )(S P

T )m) =g(n+1)(S P
T )(S P

T )mDt(S P
T ) + mg(n)(S P

T )(S P
T )m−1Dt(S P

T )

={g(n+1)(S P
T )(S P

T )m+1 + mg(n)(S P
T )(S P

T )m}σ(t,S 0),

that:

E[g(1)(S P
T )S 1,T ] =E[g(1)(S P

T )S P
T

∫ T

0
S 0σ

(1)(t,S 0)(XP
t − x0)dWt]

−E[g(1)(S P
T )S P

T

∫ T

0
σ(s,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt]

=E[(g(2)(S P
T )(S P

T )2 + g(1)(S P
T )S P

T )
∫ T

0
σ(t,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt]
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−E[g(1)(S P
T )S P

T

∫ T

0
σ(s,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt]

=E[g(2)(S P
T )(S P

T )2
∫ T

0
σ(t,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt]

Then we write using the Itô’s formula for the product (XP
t − x0)

∫ T
t σ(s,S 0)S 0σ

(1)(s,S 0)ds:∫ T

0
σ(t,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt =

∫ T

0

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
d(XP

t − x0)

=

∫ T

0

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
(−

1
2
σ2(t,S 0)dt +σ(t,S 0)dWt).

Thus we obtain applying again the same tools:

E[g(2)(S P
T )(S P

T )2
∫ T

0
σ(t,S 0)S 0σ

(1)(t,S 0)(XP
t − x0)dt]

=−
1
2

∫ T

0
σ2(t,S 0)

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
dtE[g(2)(S P

T )(S P
T )2]

+E[g(2)(S P
T )(S P

T )2
∫ T

0

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
σ(t,S 0)dWt]

=−
1
2

∫ T

0
σ2(t,S 0)

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
dtE[g(2)(S P

T )(S P
T )2]

+E[{g(3)(S P
T )(S P

T )3 + 2g(2)(S P
T )(S P

T )2}

∫ T

0

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
σ2(t,S 0)dt]

=

∫ T

0
σ2(t,S 0)

(∫ T

t
σ(s,S 0)S 0σ

(1)(s,S 0)ds
)
dt

(
E[g(3)(S P

T )(S P
T )3] +

3
2
E[g(2)(S P

T )(S P
T )2]

)
.

The final trick lies in the observation that

∂n
S n

0
E[g(S P

T )] = ∂n−1
S n−1

0
E[g(1)(S P

T )
S P

T

S 0
] = · · · = E[g(n)(S P

T )(
S P

T

S 0
)n],

for any n ≥ 1. We exactly retrieve the corrective terms of Theorem 4.2.0.2.
We nevertheless mention that the explicit derivation of the expansion coefficients is a little bit more
tricky. First, the corrective processes (∂n

ηnS η)|η=0 are not anymore a sequence of iterated Wiener inte-
grals but a sequence of nested processes solutions of linear SDEs. If an explicit form remains available,
the manipulation of such processes seems a little less tractable. Second one has to carefully apply
the Malliavin calculus on log-normal processes. Finally the identification of the Greeks is slightly less
straightforward and relies on knowledge of martingales properties (for any n ∈N, ((S t)n∂n

S nv(t,S P
t ))t∈[0,T [

is a martingale where v(t,S ) = E[g(S P
T )|S P

t = S ]) or flow properties.
If we wanted to perform a rigorous error analysis in terms ofM0(σ),M1(σ), T and the growth assump-
tions on the function g (a good hypothesis could be to assume that g has polynomial growth), it would
be necessary to estimate the Lp norms of S t−S P

t −S P
1,t =

∫ 1
0 (1−η)∂2

η2S η
t dη and the Malliavin derivatives

of S t − S P
t =

∫ 1
0 S η

1,tdη. Although the methodology is the same as that previously employed with the
Gaussian proxys, the calculus seem a little bit more tedious similarly to the corrective terms derivation
step.
Finally we should mention that the parameterization (4.7) is not very natural without the knowledge of
the interpolated process (4.2) for the log-asset. This parameterization (4.7) fortunately allows an explicit
calculus of the expansion terms (this is its raison d’être) but this is not obvious to guess it directly.
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As a conclusion, when considering a proxy process which is a function of a Gaussian process (as the
log-normal process), it seems more convenient to apply a transformation on the initial process and on
the payoff function to go back to Gaussian proxys.

4.3 Towards a displaced log-normal proxy

So far we only have considered Gaussian and log-normal proxys. Such proxys are obtained with a zero
order approximation of the diffusion coefficients. In order to reduce the number of corrective terms
in the expansions, we could envisage higher order proxys. In the context of time-homogeneous1 local
volatility, a natural surrogate is the displaced log-normal proxy obtained with a first order expansion of
the diffusion coefficients. We consider the solution of the following SDE:

dS t = Σ(S t)dWt, S 0 > 0, (4.8)

where we assume that Σ satisfies:

• (H̃Σ): Σ is a bounded measurable function of S ∈ R+, and five times continuously differentiable
with bounded derivatives. Set

M1(Σ) = max
1≤i≤5

sup
S∈R+

|Σ(i)(S )| andM0(Σ) = max
0≤i≤5

sup
S∈R+

|Σ(i)(S )|.

In addition, there exists a constant cΣ > 0 such that min(Σ(1)(S 0), inf
S∈R+

Σ(S )) > cΣ.

Then the corresponding displaced log-normal proxy is defined by:

dS P
t = [Σ(S 0) +Σ(1)(S 0)(S P

t −S 0)]dWt, S P
0 = S 0 (Displaced Log-Normal Proxy). (4.9)

Remark 4.3.0.1. We assume that Σ(1)(S 0) , 0, otherwise the proxy (4.9) is equivalent to the Gaussian
proxy. We suppose w.l.g. that Σ(1)(S 0) > 0, the case Σ(1)(S 0) < 0 being handled similarly.

Using standard inequalities and Gronwall’s Lemma, one easily obtains the estimate sup
t∈[0,T ]

||S t −

S p
t ||p = O(M1(σ)[M0(σ)]2T

3
2 ), for any p ≥ 1. This error magnitude means that when considering a

payoff function g locally Lipschitz with polynomial growth, the approximation E[g(S T )] ≈ E[g(S P
t )] is

already of order 2 w.r.t. the model parameters. A closed-form formula is available for E[g(S P
t )] because

(S p
t )t∈[0,T ] is connected to a log-normal process (YP

t )t∈[0,T ] through the relations:

YP
t =Σ(S 0) +Σ(1)(S 0)(S P

t −S 0), (4.10)

dYP
t =Σ(1)(S 0)dS P

t = Σ(1)(S 0)YP
t dWt, YP

0 = Σ(S 0). (4.11)

As discussed in the Section 4.2, to find a interpolated process allowing to connect S and S P and to
compute corrective terms in order to improve the approximation E[g(S T )] ≈ E[g(S P

t )] seems not to be
an easy task at first glance.

BA direct approach. A first attempt could be to consider the next parameterization:

dS η
t = {ηΣ(S η

t ) + (1−η)[Σ(S 0) +Σ(1)(S 0)(S η
t −S 0)]}dWt, S η

0 = S 0.

With the notation (∂ηS
η
t )|η=0 = S 1,t, it comes:

dS 1,t = {Σ(1)(S 0)S 1,t +Σ(S P
t )− [Σ(S 0) +Σ(1)(S 0)(S P

t −S 0)]}dWt, S 1,0 = 0.

1We consider time-independent parameters to make explicit the calculus using the displaced log-normal proxy.



4.3. Towards a displaced log-normal proxy 109

The solution of this linear SDE does not lead to illuminating computations. In view of the discussion at
the end of the Section 4.1, we consider:

dS̃ 1,t = {Σ(1)(S 0)S̃ 1,t +
Σ(2)(S 0)

2
(S P

t −S 0)2}dWt, S̃ 1,0 = 0,

and once again classical inequalities combined with the Gronwall’s Lemma yield to the estimate
sup

t∈[0,T ]
||S 1,t − S̃ 1,t||p = O(M1(σ)[M0(σ)]3T 2). Then we write in closed-form S̃ 1,t using (4.11) and (4.10):

S̃ 1,t =YP
t

∫ t

0
(YP

s )−1 Σ(2)(S 0)
2

(S P
s −S 0)2(dWs−Σ(1)(S 0)ds)

=YP
t

∫ t

0
(YP

s )−1 Σ(2)(S 0)
2(Σ(1)(S 0))2 (YP

s −Σ(S 0))2(dWs−Σ(1)(S 0)ds).

For the formal following calculus, we assume that the function g is smooth with compact support. Using

the fact that and DtYP
T = Σ(1)(S 0)YP

T and DtS P
T =

DtYP
T

Σ(1)(S 0) = YP
T for any t ≤ T (see (4.10)) and the Malliavin

tools developed in the Section 4.2, we obtain without difficulty:

E[g(1)(S P
T )S̃ 1,T ] =

Σ(2)(S 0)
2(Σ(1)(S 0))2E[g(2)(S P

T )(YP
T )2

∫ T

0
(YP

s )−1(YP
s −Σ(S 0))2ds].

But how to continue the computation is not clear because Y satisfies a linear equation as a log-normal
process and consequently the application of the same arguments would be endless. An idea could be to
consider a Gaussian approximation of (YP

s )−1(YP
s −Σ(S 0))2.

BUsing a transformation on the model. As an alternative, as explained in Section 4.2, we could apply
a transformation to the payoff function and to the initial process.
The heuristic is the following: if S is closed to the displaced log-normal process S P, the process Y =

Σ(S 0) +Σ(1)(S 0)(S t −S 0) behaves closely to the log-normal process YP. Y is solution of the next SDE:

dYt = Σ(1)(S 0)dS t = Σ(1)(S 0)Σ(S t)dWt = Σ(1)(S 0)Σ(S 0 +
Yt −Σ(S 0)
Σ(1)(S 0)

)dWt, Y0 = Σ(S 0). (4.12)

Then assuming that Y is strictly positive, we define the process (Xt = log(Yt))t∈[0,T ] solution of:

dXt = a(Xt)(dWt −
1
2

a(Xt)dt), x0 = log(Σ(S 0)). (4.13)

where a(x) = e−xΣ(1)(S 0)Σ(S 0 +
ex−Σ(S 0)
Σ(1)(S 0) ). Now assume (Ha). Straightforward calculus show that:

a(x0) =Σ(1)(S 0), a(1)(x0) =0, a(2)(x0) =
Σ(S 0)Σ(2)(S 0)

Σ(1)(S 0)
.

Thus if we want to price a Call option written on the asset S with strike K, we write using the strict
positivity of Σ(1)(S 0):

E[(S T −K)+] =
1

Σ(1)(S 0)
E[(eXT − [Σ(S 0) +Σ(1)(S 0)(K −S 0)])+]

Next we suppose that the new strike Kd = [Σ(1)(S 0)(K −S 0) + Σ(S 0)] > 0 (this is the case for OTM and
ATM options) otherwise the price is equal to S 0 −K and we apply the Theorem 2.3.1.1 of Chapter 2
Section 2.3 to directly obtain the following result:
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Theorem 4.3.0.3. (2nd and 3rd order displaced log-normal approximations for Call options). Assume
(H̃Σ) and (Ha) where a(x) = e−xΣ(1)(S 0)Σ(S 0 +

ex−Σ(S 0)
Σ(1)(S 0) ). Suppose that

Kd = [Σ(1)(S 0)(K−S 0)+Σ(S 0)]> 0 and let xd = x0 = log(Σ(S 0)), ad = a(xd) = Σ(1)(S 0), and kd = log(Kd).
Then we have using the displaced log-normal proxy:

Call(S 0,T,K) =
1

Σ(1)(S 0)
CallBS(xd,a2

dT,kd) +O(M1(a)[M0(a)]2T
3
2 ), (4.14)

=
1

Σ(1)(S 0)
CallBS(xd,a2

dT,kd) +
C2(a; xd)T

0

Σ(1)(S 0)
(−

1
2
∂x +

1
2
∂2

x2)CallBS(xd,a2
dT,kd) (4.15)

+
C3(a; xd)T

0

Σ(1)(S 0)
(−

1
4
∂x +

5
4
∂2

x2 −2∂3
x3 +∂4

x4)CallBS(xd,a2
dT,kd) +O(M1(a)[M0(a)]3T 2),

where:

C2(a; xd)T
0 =

T 2

2
a3(xd)a(2)(xd) =

T 2

2
Σ(S 0)(Σ(1)(S 0))2Σ(2)(S 0),

C3(a; xd)T
0 =

T 3

6
a5(xd)a(2)(xd) =

T 2

2
Σ(S 0)(Σ(1)(S 0))4Σ(2)(S 0).

We notice that the above expansions contain less terms (owing to the fact that a(1)(x0) = a(1)(xd) = 0)
than the corresponding order 2 and order 3 approximations using the log-normal proxy. The second
order formula (4.14) reduces to only a suitably rescaled Black-Scholes price 1

Σ(1)(S 0) CallBS(xd,a2
dT,kd).

The simplicity of the formulas is a significant advantage.
In addition, if Σ(2) is null (i.e. if Σ is affine and thus Σ(1) is constant), the corrective terms are equal to
zero what is coherent because the initial model coincides with the displaced log-normal proxy model.
Moreover the error term is obviously equal to zero because in this case, for any x ∈ R, we have:

a′(x) = −Σ(1)(S 0)e−xΣ(S 0 +
ex−Σ(S 0)
Σ(1)(S 0)

) +Σ(1)(S 0 +
ex−Σ(S 0)
Σ(1)(S 0)

) = −Σ(1)(S 0) +Σ(1)(S 0) = 0,

and hence M1(a) = 0. Numerical tests of these approximations and comparisons with the normal and
log-normal proxys are postponed to Subsection 4.4.2.

4.4 Numerical experiments

4.4.1 Comparison of the implied volatility behaviors in the displaced log-normal and
CEV models

In this Subsection, we compare the behaviors of the implied volatility in the displaced log-normal and
the CEV models and the accuracy of the approximation formulas developed in Chapter 2. We consider
the processes S d (displaced log-normal) and S c (CEV) solution of:

dS d
t =ν(1−β+βS d

t )dWt, S d
0 = 1,

dS c
t =ν(S c

t )β, S d
0 = 1,

for β ∈ [0,1] and ν > 0. With the notation Σd(S ) = ν(1−β+βS ), ad(x) = ν(1−β+βex)e−x, Σc(S ) = νS β

and ac(x) = νe(β−1)x, we readily have:

Σd(1) =ν, Σ
(1)
d (1) =νβ, Σ

(2)
d (1) =0, ad(0) =ν, a(1)

d (0) =ν(β−1), a(2)
d (0) =ν(1−β)

Σc(1) =ν, Σ
(1)
c (1) =νβ, Σ

(2)
c (1) =νβ(β−1), ac(0) =ν, a(1)

c (0) =ν(β−1), a(2)
c (0) =ν(β−1)2.
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We deduce from these simple calculus that the two models induce a similar short term implied volatility
ATM because the corresponding local volatility functions are equal at spot (directly connected to the
level of the implied volatility ATM for short maturity) and have the same slope at spot (approximately
equal to the double of the slope of the implied volatility ATM for short maturity). Besides the order 2
approximations (see Theorem 2.1.2.3 of Chapter 2 Section 2.1) give the same price approximations for
the two models. However the curvature of the local volatility functions at spot are different and we can
consequently expect a different behaviour far ITM and far OTM and/or for long maturities.
For the numerical experiments, we set ν = 0.25 and we consider either β = 0.8 (a priori close to the
log-normal case) or β = 0.2 (a priori close to the normal case) and compare the true values of the implied
volatility in the two models as well their approximations with the order 2 and 3 price approximations at
spot (and then evaluating the corresponding implied volatilities) using the normal and log-normal proxys
(see Theorems 2.1.2.3 and 2.3.1.1 of Chapter 2 Section 2.1) for various maturities and strikes.
We use the following maturities T : 6 months, 1 year, 2 years and 5 years and the strikes evolve approxi-
mately as S 0 exp(cν

√
T ) where c takes the value of various quantiles of the standard Gaussian law from

1% to 99% in order to cover far ITM and far OTM options.
We report in Tables 4.1-4.2-4.3-4.4 for the value β = 0.8 (one table for each maturity):

• The true values of the implied volatility in the displaced log-normal model denoted by True LND,
the implied volatility approximations obtained with the second order price approximation at spot
with the normal and log-normal proxys using the notations AppN2 and AppLN2 and with the third
order price approximation at spot with the normal and log-normal proxys denoted by AppNDLN3 and
AppLNDLN3 ,

• The true values of the implied volatility in the CEV model denoted by True CEV, the implied
volatility approximations obtained with the second order price approximation at spot with the
normal and log-normal proxys using the notations AppN2 and AppLN2 (similar to the displaced
log-normal model) and with the third order price approximation at spot with the normal and log-
normal proxys denoted by AppNCEV

3
and AppLNCEV

3
,

We do the same work in Tables 4.5-4.6-4.7-4.8 for the value β = 0.2. When the price approximation does
not belong to the non-arbitrage interval ](S 0−K)+,S 0[, we just report ND in the tabular.

Table 4.1: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.8 and T = 6M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

True DLN 26.24 25.80 25.61 25.44 25.28 25.14 25.01 24.89 24.78 24.58 24.49 24.32 24.11
AppN2 23.41 25.54 25.56 25.46 25.31 25.17 25.03 24.91 24.81 24.56 24.39 23.91 22.83
AppLN2 25.96 25.69 25.55 25.40 25.26 25.13 25.00 24.88 24.76 24.54 24.43 24.21 23.85
AppNDLN3 26.17 25.76 25.60 25.44 25.28 25.14 25.01 24.89 24.78 24.59 24.50 24.35 23.93
AppLNDLN3 26.19 25.79 25.61 25.44 25.28 25.14 25.01 24.89 24.78 24.58 24.49 24.34 24.16

True CEV 26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.00
AppN2 23.41 25.54 25.56 25.46 25.31 25.17 25.03 24.91 24.81 24.56 24.39 23.91 22.83
AppLN2 25.96 25.69 25.55 25.40 25.26 25.13 25.00 24.88 24.76 24.54 24.43 24.21 23.85
AppNCEV

3
25.92 25.69 25.55 25.41 25.27 25.13 25.00 24.88 24.76 24.56 24.47 24.30 23.88

AppLNCEV
3

26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.01
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Table 4.2: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.8 and T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

True DLN 26.83 26.26 25.81 25.62 25.30 25.15 25.02 24.90 24.69 24.50 24.26 24.12 23.78
AppN2 18.04 25.62 25.79 25.67 25.35 25.20 25.07 24.95 24.74 24.51 23.96 23.41 21.21
AppLN2 26.29 26.02 25.71 25.55 25.26 25.13 25.00 24.88 24.65 24.44 24.13 23.93 23.19
AppNDLN3 26.47 26.14 25.79 25.61 25.30 25.15 25.02 24.90 24.69 24.51 24.31 24.18 23.05
AppLNDLN3 26.69 26.22 25.80 25.62 25.30 25.15 25.02 24.90 24.69 24.50 24.27 24.15 23.93

True CEV 26.53 26.10 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.56
AppN2 18.04 25.62 25.79 25.67 25.35 25.20 25.07 24.95 24.74 24.51 23.96 23.41 21.21
AppLN2 26.29 26.02 25.71 25.55 25.26 25.13 25.00 24.88 24.65 24.44 24.13 23.93 23.19
AppNCEV

3
25.91 25.95 25.71 25.56 25.27 25.13 25.00 24.88 24.66 24.46 24.24 24.10 23.00

AppLNCEV
3

26.51 26.09 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.59

Table 4.3: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.8 and T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

True DLN 27.63 26.86 26.29 25.84 25.48 25.32 25.05 24.81 24.61 24.35 24.07 23.80 23.39
AppN2 ND 25.88 26.22 25.95 25.59 25.42 25.13 24.91 24.72 24.39 23.65 22.18 18.80
AppLN2 26.69 26.39 26.05 25.71 25.41 25.26 25.00 24.76 24.54 24.24 23.86 23.39 22.07
AppNDLN3 26.59 26.56 26.21 25.82 25.47 25.32 25.05 24.82 24.62 24.38 24.20 23.86 21.25
AppLNDLN3 27.34 26.76 26.25 25.83 25.47 25.32 25.05 24.82 24.62 24.37 24.11 23.89 23.81

True CEV 27.06 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.92 23.56 22.98
AppN2 ND 25.88 26.22 25.95 25.59 25.42 25.13 24.91 24.72 24.39 23.65 22.18 18.80
AppLN2 26.69 26.39 26.05 25.71 25.41 25.26 25.00 24.76 24.54 24.24 23.86 23.39 22.07
AppNCEV

3
25.43 26.17 26.02 25.72 25.41 25.27 25.00 24.77 24.55 24.29 24.07 23.73 21.21

AppLNCEV
3

27.02 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.93 23.57 23.08
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Table 4.4: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.8 and T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

True DLN 30.59 28.25 27.33 26.66 25.93 25.56 25.12 24.77 24.41 24.07 23.62 23.31 22.83
AppN2 ND 26.97 27.32 26.95 26.23 25.81 25.33 25.01 24.68 24.11 22.10 19.45 14.41
AppLN2 27.58 27.07 26.66 26.25 25.72 25.41 25.00 24.65 24.25 23.81 23.09 22.33 17.23
AppNDLN3 ND 27.38 27.04 26.56 25.90 25.54 25.12 24.78 24.44 24.20 24.09 22.83 16.74
AppLNDLN3 29.12 27.89 27.17 26.58 25.90 25.54 25.12 24.78 24.43 24.11 23.76 23.63 24.13

True CEV 28.64 27.38 26.79 26.31 25.74 25.42 25.01 24.66 24.27 23.85 23.26 22.79 21.94
AppN2 ND 26.97 27.32 26.95 26.23 25.81 25.33 25.01 24.68 24.11 22.10 19.45 14.41
AppLN2 27.58 27.07 26.66 26.25 25.72 25.41 25.00 24.65 24.25 23.81 23.09 22.33 17.23
AppNCEV

3
ND 26.35 26.52 26.24 25.72 25.41 25.01 24.67 24.28 23.97 23.83 22.69 16.72

AppLNCEV
3

28.46 27.36 26.78 26.31 25.74 25.42 25.01 24.66 24.27 23.86 23.26 22.81 22.33

Table 4.5: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.2 and T = 6M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

True DLN 29.73 28.09 27.37 26.72 26.11 25.55 25.03 24.55 24.09 23.27 22.89 22.20 21.29
AppN2 29.66 28.08 27.37 26.72 26.11 25.55 25.03 24.55 24.09 23.27 22.88 22.16 21.15
AppLN2 28.07 27.54 27.10 26.59 26.05 25.51 25.00 24.51 24.04 23.10 22.57 21.15 ND
AppNDLN3 29.73 28.09 27.37 26.71 26.11 25.55 25.03 24.55 24.09 23.27 22.89 22.20 21.28
AppLNDLN3 29.34 28.03 27.35 26.71 26.11 25.55 25.03 24.55 24.10 23.28 22.91 22.31 22.37

True CEV 29.59 28.02 27.32 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
AppN2 29.66 28.08 27.37 26.72 26.11 25.55 25.03 24.55 24.09 23.27 22.88 22.16 21.15
AppLN2 28.07 27.54 27.10 26.59 26.05 25.51 25.00 24.51 24.04 23.10 22.57 21.15 ND
AppNCEV

3
29.60 28.02 27.33 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18

AppLNCEV
3

29.28 27.98 27.31 26.68 26.09 25.54 25.02 24.54 24.08 23.24 22.86 22.21 22.13

Table 4.6: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.2 and T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

True DLN 31.83 29.79 28.13 27.41 26.15 25.59 25.06 24.58 23.69 22.92 21.90 21.31 19.83
AppN2 31.72 29.76 28.13 27.42 26.15 25.59 25.07 24.58 23.70 22.92 21.88 21.24 19.49
AppLN2 28.96 28.57 27.70 27.16 26.05 25.51 25.00 24.51 23.59 22.68 21.04 19.15 ND
AppNDLN3 31.82 29.79 28.13 27.41 26.15 25.59 25.06 24.58 23.69 22.92 21.90 21.31 19.70
AppLNDLN3 31.00 29.61 28.09 27.39 26.14 25.58 25.06 24.58 23.70 22.94 21.99 21.58 23.43

True CEV 31.54 29.62 28.05 27.35 26.12 25.56 25.04 24.55 23.66 22.87 21.81 21.19 19.60
AppN2 31.72 29.76 28.13 27.42 26.15 25.59 25.07 24.58 23.70 22.92 21.88 21.24 19.49
AppLN2 28.96 28.57 27.70 27.16 26.05 25.51 25.00 24.51 23.59 22.68 21.04 19.15 ND
AppNCEV

3
31.57 29.65 28.06 27.36 26.12 25.56 25.04 24.55 23.66 22.86 21.80 21.18 19.62

AppLNCEV
3

30.90 29.51 28.02 27.34 26.11 25.56 25.04 24.56 23.67 22.88 21.86 21.37 23.04
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Table 4.7: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.2 and T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

True DLN 34.59 31.96 29.89 28.22 26.83 26.22 25.13 24.18 23.34 22.26 21.07 19.86 18.06
AppN2 34.48 31.93 29.89 28.23 26.84 26.23 25.13 24.18 23.35 22.27 21.03 19.68 17.30
AppLN2 30.08 29.74 28.90 27.79 26.62 26.05 25.00 24.05 23.16 21.85 19.67 ND ND
AppNDLN3 34.59 31.95 29.89 28.22 26.83 26.22 25.13 24.18 23.34 22.27 21.07 19.86 17.87
AppLNDLN3 33.13 31.53 29.75 28.16 26.80 26.20 25.12 24.19 23.37 22.32 21.24 20.90 25.77

True CEV 34.03 31.62 29.69 28.10 26.76 26.16 25.08 24.13 23.29 22.18 20.92 19.62 17.62
AppN2 34.48 31.93 29.89 28.23 26.84 26.23 25.13 24.18 23.35 22.27 21.03 19.68 17.30
AppLN2 30.08 29.74 28.90 27.79 26.62 26.05 25.00 24.05 23.16 21.85 19.67 ND ND
AppNCEV

3
34.16 31.69 29.73 28.12 26.77 26.17 25.08 24.13 23.28 22.16 20.90 19.61 17.65

AppLNCEV
3

32.98 31.36 29.62 28.07 26.74 26.15 25.08 24.14 23.30 22.21 21.01 20.39 25.32

Table 4.8: True Implied Black-Scholes volatilities (%) for the displaced log-normal and CEV models and order
2 and 3 approximations using normal and log-normal proxys for ν = 0.25, β = 0.2 and T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

True DLN 44.35 36.83 33.65 31.24 28.50 27.07 25.32 23.91 22.40 20.91 18.96 17.56 15.36
AppN2 44.17 36.81 33.66 31.26 28.52 27.09 25.33 23.93 22.41 20.91 18.77 16.97 13.50
AppLN2 31.86 31.87 31.02 29.81 27.85 26.63 25.00 23.60 21.95 19.90 ND ND ND
AppNDLN3 44.33 36.82 33.65 31.24 28.50 27.07 25.32 23.91 22.40 20.92 18.97 17.51 14.36
AppLNDLN3 38.18 35.47 33.04 30.89 28.34 26.97 25.30 23.94 22.48 21.09 19.84 21.57 29.94

True CEV 42.07 35.80 33.00 30.82 28.27 26.91 25.20 23.80 22.26 20.71 18.59 17.01 14.38
AppN2 44.17 36.81 33.66 31.26 28.52 27.09 25.33 23.93 22.41 20.91 18.77 16.97 13.50
AppLN2 31.86 31.87 31.02 29.81 27.85 26.63 25.00 23.60 21.95 19.90 ND ND ND
AppNCEV

3
43.13 36.20 33.23 30.94 28.33 26.94 25.21 23.80 22.24 20.65 18.53 17.04 14.21

AppLNCEV
3

37.93 35.11 32.72 30.65 28.18 26.85 25.19 23.82 22.31 20.80 19.09 20.42 29.37

We observe as expected that whatever is the value of β, the behaviors of the true implied volatilities
of the displaced log-normal and the CEV models are very similar for short maturity and around the
money. We notice a negative skew (the implied volatilities are larger ITM than ATM and smaller OTM
than ATM) and the relative skew (w.r.t. the relative strikes) becomes more important when the maturity
increases or when the slope of the local volatility function at spot (connected to β− 1) increases (in
absolute value) corresponding to values of β close to 0 as β = 0.2.
However we can remark that the skew and the general level of the implied volatility seem more important
for the displaced log-normal model. The difference is notably significant for long maturity and/or for
far ITM or far OTM options. For the two values of β and for the maturity 5Y , the implied volatility
corresponding to the displaced log-normal model far ITM (respectively far OTM) is approximately 200
bps2 higher (respectively 100 bps higher) than the implied volatility corresponding to the CEV model.
This divergence for high maturities and very large moneyness in absolute value can be deduced from
the difference in the curvatures of the local volatilities function. More precisely, if we refer to Theorem

21 bp (basis point) is equal to 0.01%.
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2.3.3.1 of Chapter 2 Section 2.3, the third order Black-Scholes implied volatility at spot reads:

σI(x0,T,k) = γ0(a; x0)T
0 −γ1(a; x0)T

0 m +γ2(a; x0)T
0 m2

where we recall that x0 is the log spot, k the log-strike and m = x0 − k the log moneyness. Using the
definition of the coefficients γ (see Definitions 2.3.1.1 and 2.3.3.1 of Chapter 2 Section 2.3), one obtains
that:

1. the contribution of a(2)(x0) in γ0 is exactly a2(x0)a(2)(x0)T
12 ,

2. the contribution of a(2)(x0) in γ1 is null,

3. the contribution of a(2)(x0) in γ2 is exactly a(2)(x0)
6 .

Now using a(2)
d (0) = ν(1−β) ≥ a(2)

c (0) = ν(β−1)2 ≥ 0 for any β ∈ [0,1], we deduce that the maturity bias
is higher in the displaced log-normal model (i.e. the smile is shifted from maturity to maturity with a
higher value) as well the moneyness bias (i.e. the implied volatility in the displaced log-normal model
is higher ITM and OTM than the corresponding CEV implied volatility).
The fact that the displaced log-normal model induces more skew yields to less accurate approximation
formulas what can be observed in the tests especially for β = 0.8. As the order 2, the approximations (for
both normal and log-normal proxys) generally underestimate the true CEV implied volatility, the results
are even less accurate for the displaced log-normal model which induces higher implied volatility than
the CEV model. For the order 3 approximation with log-normal proxy, we observe for the maturity 5Y
errors greater than 100 bps when considering the displaced log-normal proxy for a maximal error of 39
bps for the CEV model.
For β= 0.2, curiously the order 2 approximation with normal proxy is closer to the true displaced implied
volatility than the true CEV volatility far ITM but closer to the true CEV volatility far OTM. We similarly
observe that the corresponding order 3 approximations yield to small errors far ITM (2 or less bps) for
the displaced log-normal model and to large errors far OTM (up to 100 bps for T = 5Y), the converse
being realised for the CEV model.

4.4.2 Comparison of the Gaussian, log-normal and displaced log-normal proxys for the
CEV model

In this Subsection we compare the performance of the approximations at spot using a normal, a log-
normal and a displaced log-normal proxy for the pricing in the CEV model. Note that for any β ∈ [0,1],
any S 0 ∈]0,1] and any K > 0 we have Σ(S 0) = S β

0, Σ(1)(S 0) = βS β−1
0 > 0 and

Kd = Σ(S 0) + Σ(1)(S 0)(K − S 0) = βK + S β
0 − βS 0 > βK + (1− β)S 0 > 0 as required in the hypotheses of

Theorem 4.3.0.3.
For the numerical experiments, we set again ν = 0.25, S 0 = 1 and we allow β to vary by choosing the
two values β = 0.8 and β = 0.2. We keep the same sets of maturities and strikes and report in Tables
4.9-4.10-4.11-4.12-4.13-4.14-4.15-4.16:

• The true value of the implied volatility in the CEV model denoted by True CEV.

• The implied volatility approximations obtained with the second order price approximations using
the normal, the log-normal and the displaced log-normal proxys (see Theorem 4.3.0.3 equation
(4.14)) denoted respectively by AppNCEV

2
, AppLNCEV

2
and AppDLNCEV

2
.

• The implied volatility approximations obtained with the third order price approximations using
the normal, the log-normal and the displaced log-normal proxys (see Theorem 4.3.0.3 equation
(4.15)) denoted by AppNCEV

3
, AppLNCEV

3
and AppDLNCEV

3
.
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Table 4.9: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.8 and T = 6M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

True CEV 26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.00
AppNCEV

2
23.41 25.54 25.56 25.46 25.31 25.17 25.03 24.91 24.81 24.56 24.39 23.91 22.83

AppLNCEV
2

25.96 25.69 25.55 25.40 25.26 25.13 25.00 24.88 24.76 24.54 24.43 24.21 23.85
AppDLNCEV

2
26.24 25.80 25.61 25.44 25.28 25.14 25.01 24.89 24.78 24.58 24.49 24.32 24.11

AppNCEV
3

25.92 25.69 25.55 25.41 25.27 25.13 25.00 24.88 24.76 24.56 24.47 24.30 23.88
AppLNCEV

3
26.09 25.73 25.56 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.45 24.26 24.01

AppDLNCEV
3

26.11 25.73 25.57 25.41 25.27 25.13 25.00 24.88 24.76 24.55 24.44 24.25 23.98

Table 4.10: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.8 and T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

True CEV 26.53 26.10 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.56
AppNCEV

2
18.04 25.62 25.79 25.67 25.35 25.20 25.07 24.95 24.74 24.51 23.96 23.41 21.21

AppLNCEV
2

26.29 26.02 25.71 25.55 25.26 25.13 25.00 24.88 24.65 24.44 24.13 23.93 23.19
AppDLNCEV

2
26.83 26.26 25.81 25.62 25.30 25.15 25.02 24.90 24.69 24.50 24.26 24.12 23.78

AppNCEV
3

25.91 25.95 25.71 25.56 25.27 25.13 25.00 24.88 24.66 24.46 24.24 24.10 23.00
AppLNCEV

3
26.51 26.09 25.73 25.56 25.27 25.13 25.00 24.88 24.65 24.45 24.17 24.00 23.59

AppDLNCEV
3

26.58 26.12 25.74 25.57 25.27 25.13 25.00 24.88 24.65 24.44 24.16 23.98 23.51

Table 4.11: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.8 and T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

True CEV 27.06 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.92 23.56 22.98
AppNCEV

2
ND 25.88 26.22 25.95 25.59 25.42 25.13 24.91 24.72 24.39 23.65 22.18 18.80

AppLNCEV
2

26.69 26.39 26.05 25.71 25.41 25.26 25.00 24.76 24.54 24.24 23.86 23.39 22.07
AppDLNCEV

2
27.63 26.86 26.29 25.84 25.48 25.32 25.05 24.81 24.61 24.35 24.07 23.79 23.39

AppNCEV
3

25.43 26.17 26.02 25.72 25.41 25.27 25.00 24.77 24.55 24.29 24.07 23.73 21.21
AppLNCEV

3
27.02 26.53 26.10 25.73 25.41 25.27 25.01 24.77 24.55 24.26 23.93 23.57 23.08

AppDLNCEV
3

27.18 26.59 26.13 25.74 25.42 25.27 25.01 24.77 24.55 24.25 23.90 23.51 22.81
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Table 4.12: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.8 and T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

True CEV 28.64 27.38 26.79 26.31 25.74 25.42 25.01 24.66 24.27 23.85 23.26 22.79 21.94
AppNCEV

2
ND 26.97 27.32 26.95 26.23 25.81 25.33 25.01 24.68 24.11 22.10 19.45 14.41

AppLNCEV
2

27.58 27.07 26.66 26.25 25.72 25.41 25.00 24.65 24.25 23.81 23.09 22.33 17.23
AppDLNCEV

2
30.59 28.25 27.33 26.66 25.93 25.56 25.12 24.77 24.41 24.07 23.62 23.31 22.83

AppNCEV
3

ND 26.35 26.52 26.24 25.72 25.41 25.01 24.67 24.28 23.97 23.83 22.69 16.72
AppLNCEV

3
28.46 27.36 26.78 26.31 25.74 25.42 25.01 24.66 24.27 23.86 23.26 22.81 22.33

AppDLNCEV
3

29.25 27.61 26.91 26.38 25.77 25.43 25.01 24.66 24.25 23.81 23.15 22.57 21.18

Table 4.13: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.2 and T = 6M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

True CEV 29.59 28.02 27.32 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
AppNCEV

2
29.66 28.08 27.37 26.72 26.11 25.55 25.03 24.55 24.09 23.27 22.88 22.16 21.15

AppLNCEV
2

28.07 27.54 27.10 26.59 26.05 25.51 25.00 24.51 24.04 23.10 22.57 21.15 ND
AppDLNCEV

2
29.73 28.09 27.37 26.72 26.11 25.55 25.03 24.55 24.09 23.27 22.89 22.20 21.29

AppNCEV
3

29.60 28.02 27.33 26.69 26.09 25.54 25.02 24.53 24.08 23.24 22.85 22.13 21.18
AppLNCEV

3
29.28 27.98 27.31 26.68 26.09 25.54 25.02 24.54 24.08 23.24 22.86 22.21 22.13

AppDLNCEV
3

29.62 28.03 27.33 26.69 26.09 25.54 25.02 24.53 24.08 23.23 22.85 22.12 21.15

Table 4.14: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.2 and T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

True CEV 31.54 29.62 28.05 27.35 26.12 25.56 25.04 24.55 23.66 22.87 21.81 21.19 19.60
AppNCEV

2
31.72 29.76 28.13 27.42 26.15 25.59 25.07 24.58 23.70 22.92 21.88 21.24 19.49

AppLNCEV
2

28.96 28.57 27.70 27.16 26.05 25.51 25.00 24.51 23.59 22.68 21.04 19.15 ND
AppDLNCEV

2
31.83 29.79 28.13 27.41 26.15 25.59 25.06 24.58 23.69 22.92 21.90 21.31 19.83

AppNCEV
3

31.57 29.65 28.06 27.36 26.12 25.56 25.04 24.55 23.66 22.86 21.80 21.18 19.62
AppLNCEV

3
30.90 29.51 28.02 27.34 26.11 25.56 25.04 24.56 23.67 22.88 21.86 21.37 23.04

AppDLNCEV
3

31.61 29.66 28.06 27.36 26.12 25.56 25.04 24.55 23.66 22.86 21.80 21.16 19.52

BSecond order approximations. For β = 0.8, the results of the second order approximation using
the displaced log-normal proxy are very close to the results of the second order approximation using the
log-normal proxy. Generally the use of the log-normal proxy underestimates the true implied volatility
whereas the use of the displaced log-normal proxy overestimates the true implied volatility. We remark
that up to the maturity 5Y , the log-normal proxy yields to smaller errors far ITM and to larger errors
OTM than those obtained with the displaced log-normal proxy.
For β = 0.2, the behaviour of the displaced log-normal proxy is closed to the behaviour of the normal
proxy. Although the use of the Gaussian proxy yields to slightly better results, the use of the displaced
log-normal proxy remains a good alternative.
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Table 4.15: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.2 and T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

True CEV 34.03 31.62 29.69 28.10 26.76 26.16 25.08 24.13 23.29 22.18 20.92 19.62 17.62
AppNCEV

2
34.48 31.93 29.89 28.23 26.84 26.23 25.13 24.18 23.35 22.27 21.03 19.68 17.30

AppLNCEV
2

30.08 29.74 28.90 27.79 26.62 26.05 25.00 24.05 23.16 21.85 19.67 ND ND
AppDLNCEV

2
34.59 31.96 29.89 28.22 26.83 26.22 25.13 24.18 23.34 22.26 21.07 19.86 18.06

AppNCEV
3

34.16 31.69 29.73 28.12 26.77 26.17 25.08 24.13 23.28 22.16 20.90 19.61 17.65
AppLNCEV

3
32.98 31.36 29.62 28.07 26.74 26.15 25.08 24.14 23.30 22.21 21.01 20.39 25.32

AppDLNCEV
3

34.21 31.71 29.74 28.13 26.77 26.17 25.08 24.13 23.28 22.16 20.88 19.54 17.39

Table 4.16: True Implied Black-Scholes volatilities (%) for the CEV model and order 2 and 3 approximations
using normal, log-normal and displaced lognormal proxys for ν = 0.25, β = 0.2 and T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

True CEV 42.07 35.80 33.00 30.82 28.27 26.91 25.20 23.80 22.26 20.71 18.59 17.01 14.38
AppNCEV

2
44.17 36.81 33.66 31.26 28.52 27.09 25.33 23.93 22.41 20.91 18.77 16.97 13.50

AppLNCEV
2

31.86 31.87 31.02 29.81 27.85 26.63 25.00 23.60 21.95 19.90 ND ND ND
AppDLNCEV

2
44.35 36.83 33.65 31.24 28.50 27.07 25.32 23.91 22.40 20.91 18.96 17.56 15.36

AppNCEV
3

43.13 36.20 33.23 30.94 28.33 26.94 25.21 23.80 22.24 20.65 18.53 17.04 14.21
AppLNCEV

3
37.93 35.11 32.72 30.65 28.18 26.85 25.19 23.82 22.31 20.80 19.09 20.42 29.37

AppDLNCEV
3

43.29 36.24 33.24 30.95 28.33 26.94 25.21 23.79 22.23 20.64 18.41 16.68 13.49

BThird order approximations. The observations are similar to the second order case.
For β = 0.8, the results of the displaced log-normal proxy are almost so good as the results of the
log-normal proxy. The use of the log-normal proxy yields to underestimation ITM and overestimation
OTM, the converse being realised for the displaced log-normal proxy.
Similarly for β = 0.2, the use of the displaced log-normal proxy yields to errors almost of the same
magnitude than those obtained with the normal proxy. The approximation with the displaced log-
normal overestimates ITM the true implied volatility and underestimates OTM the true implied volatility.

Consequently the approximation formulas using the displaced log-normal proxy yield to very good
results for large as well for small values of β and we never obtain price outside the non-arbitrage bounds.
This stability is a significant advantage because it is safe to use a method which is competitive in all sit-
uations instead of employing an approximation which is excellent in some situations but leads to poor
results in other situations. In addition we pay attention to the simplicity of the second order approxi-
mation using the displaced log-normal proxy which reduces to a suitable rescaled Black-Scholes price.
The third order approximation using the displaced log-normal proxy contains less terms than the cor-
responding formulas using the normal and log-normal proxys. For all these advantages the use of the
displaced log-normal proxy is very promising.
It could be interesting to adapt for the displaced log-normal proxy some heuristics developed in the
previous Chapter 2 (to freeze the local volatility at some intermediate point between the strike and the
spot, to translate the price approximation in volatility expansion. . . ) in order to achieve better numerical
accuracy. These extensions are left for further research.
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This Chapter consists in introducing an option price expansion for model combining local and
stochastic volatility with tight error estimates. The local volatility part is considered as general but
has to satisfy some growth and boundedness assumptions. For the stochastic part, we choose a square
root process, which is usually used for modelling the behaviour of the variance process. In the particular
case of Call options, we also provide expansions of the Black-Scholes implied volatility which allow to
obtain very simple and rapid formulas in comparison to the Monte Carlo approach while maintaining a
very competitive accuracy.

5.1 Introduction

Models combining local and stochastic volatility have emerged in the last decade to offer more flexibility
in the skew and smile management. This includes for instance the well known SABR model introduced
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by Hagan et al. in [Hagan 2002] or more recently the CEV-Heston model studied notably by Forde et
al. [Forde 2012b] (see [Cox 1975] for the CEV model and [Heston 1993] for the Heston model). If the
interest of such models is increasing, their use is still challenging because of the lack of closed-form
formulas. The price to be paid for the more realistic dynamic is the use of time costly numerical meth-
ods like PDE engine or Monte Carlo simulations. In this work we focus on models with general local
volatility function and a stochastic variance modelled by a square root process and in a perspective of
real time calibration procedures, we aim at providing analytical approximations.

BComparison with the literature. In the two last decades, an impressive number of papers have been
devoted to the analytical approximations and their applications to finance. Although the large body of
the existing literature is mainly focusing on pure local volatility or pure stochastic volatility models, we
count recently some studies focusing on hybrid local and stochastic volatility models. We cite among
them regrouping the similar approaches:
Geodesic approach and small maturity expansions: we refer to Hagan et al. [Hagan 2002], Beresty-
cki et al. [Berestycki 2004], Henry-Labordère [Henry-Labordère 2005]-[Henry-Labordère 2008] and
Lewis [Lewis 2007] who used an explicit computation of the geodesic distance in the SABR model to
derive short maturity implied volatility expansions. More recently we cite the work of Jordan et al.
[Jordan 2011] who utilise the WKB or ray method (see [Keller 1978]) and boundary layer corrections
to derive the asymptotic behavior of the density function in the SABR model for small maturities. We
finally cite Forde et al. [Forde 2012a]: using small noise expansions inspired by [Freidlin 1998] and
large deviation arguments, the authors provide small-time implied volatility expansions in general local
and stochastic volatility models but under restrictive conditions: null correlation, strong hypotheses of
the stochastic volatility coefficients (excluding square root processes) and uniform ellipticity condition
for the local volatility function. Drawbacks of the geodesic approach are: 1) accuracy restricted to short
maturities; 2) validity only for time homogeneous parameters.
Long maturities point of view with fixed strike/large strike regime: Forde et al. study in
[Forde 2012b] the large-time asymptotic of SABR and CEV-Heston models in different regime of strikes
using the large deviation theory and saddlepoint methods. But limitations are: 1) only available for time-
independent parameters; 2) limited to null correlation.
Ergodic approach: see Fouque et al. [Choi 2010] where an asymptotic expansion w.r.t. a fast mean
reversion parameter of the volatility is performed in a particular hybrid model built on a CEV-type local
volatility and a stochastic volatility driven by an Ornstein Uhlenbeck process.
Perturbation methods: we cite the very recent paper of Pascucci et al. [Pagliarani 2013a] which pro-
vides an expansion of the characteristic function in a general local and stochastic volatility model (pos-
sibly incorporating also Lévy jumps). To perform the approximation of the characteristic function, the
authors used their so-called Adjoint Expansion PDE method which is inspired of the well-known singu-
lar perturbations in the work of Hagan et al. [Hagan 1999] for the CEV model. Then they obtain option
price approximation formulas using Fourier methods. Drawbacks of the method are: 1) error estimates
only available under condition of uniform parabolic PDEs; 2) necessary to perform finely numerical
integrations in the Fourier inversion step.
Some improvements of the methodology have been proposed in [Lorig 2013a]: 1) more general expan-
sions are considered extending the framework to the multidimensional case; 2) expansion coefficients
are fully explicit without numerical integration; 3) analytical approximation of implied volatilities are
provided.

As a difference with several quoted papers which doesn’t satisfy all the following conditions, we
aim at giving an explicit and accurate analytical formula:

1. covering both short and long maturities,
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2. handling general local volatility function, non-null correlation as well time-dependent parameters,

3. with computational time close to zero,

4. with complete mathematical justification.

To achieve this, we use the so called Proxy principle introduced in [Benhamou 2009] and
[Benhamou 2010a] to perform a non-asymptotic expansion with the help of a Proxy process.

BComparison with previous works and contribution of the Chapter. The approach still consists
in expanding the price w.r.t. parameters of the model using a smart parameterization and in comput-
ing the correction terms using Malliavin calculus in the Gaussian framework. As a difference with the
work on Heston models [Benhamou 2010b] for which one can use a conditioning argument to represent
the price as a simple expectation related to the variance process, we follow a direct approach like in
[Benhamou 2010a] or [Benhamou 2009], with a suitable parameterization of both the price and variance
processes. We provide an explicit third order formula order w.r.t. the interest parameters, the leading
term being a suitable Black-Scholes price, while the other terms are sensitivities in the Black-Scholes
framework weighted with functionals of the model parameters. This allows in particular to retrieve the
results of [Benhamou 2010a] for pure local volatility models and of [Benhamou 2010b] for pure Heston
models. To go even further than the cited references, we also provide implied volatility expansions for
the particular case of Call options.
Note also that the Malliavin differentiability of local and stochastic volatility models is not standard and
may fail for high order (see [Alòs 2008] for Heston models). To overcome this difficulty, we use the
Malliavin calculus on smooth processes very close in Lp to the initial one in order to prove the accuracy
of our formulas.

BFormulation of the problem. We are given a maturity T > 0 (typically the maturity of the financial
product we attempt to price) and we consider the solution of the stochastic differential equation (SDE):

dXt = σ(t,Xt)
√

VtdWt −
1
2
σ2(t,Xt)Vtdt, X0 = x0, (5.1)

dVt = αtdt + ξt
√

VtdBt, V0 = v0, (5.2)

d〈W,B〉t = ρtdt,

where (Bt,Wt)0≤t≤T is a two-dimensional correlated Brownian motion on a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on the filtration (Ft)0≤t≤T . In our setting, (Xt)t∈[0,T ] is
the log of the forward price, σ the local volatility function and (Vt)t∈[0,T ] is a square root process with
an initial value v0 > 0, a measurable, positive and bounded drift function (αt)t∈[0,T ] and a measurable,
positive and bounded volatility of volatility function (ξt)t∈[0,T ].
We work with the model of stochastic variance (5.2) for the sake of clarity in the calculus, but the results
developed throughout the Chapter can be adapted for a time-dependent CIR process:

dYt = κt(θt −Yt)dt +γt
√

YtdBt.

A simple space-change y 7→ e
∫ t

0 κsdsy allows us namely to retrieve the formulation (5.2). See details in
Appendix 5.6.1.
Our aim is to give an accurate analytical approximation of any European option price of the form:

E[h(XT )], (5.3)

where E stands for the standard expectation operator (under a risk neutral probability measure) and h
is a given Lipschitz bounded payoff function. To accomplish this, we choose a proxy model in which
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analytical calculus are possible. At first glance we approximate the process (Xt,Vt)t∈[0,T ] defined in
(5.1)-(5.2) by the following Gaussian process:

dXP
t =σ(t, x0)

√
vtdWt −

1
2
σ2(t, x0)vtdt, (5.4)

vt =v0 +

∫ t

0
αsds. (5.5)

Such an approximation can be justified if one of the two following situations holds: i) the volatility of
volatility is quite small leading to the approximation Vt ≈ vt (which is realistic in practice) and the local
volatility function σ(t, ·) has small variations, which means that σ(t,Xt) ≈ σ(t, x0); ii) the local part of
the diffusion component is small (i.e. |σ|∞ small) which implies Xt ≈ x0, and thus σ(t,Xt) ≈ σ(t, x0).
Besides we expect to have additionally better approximations for small maturities (leading to Xt ≈ x0

and Vt ≈ v0, t ∈ [0,T ]).

Remark 5.1.0.1. The proposed Proxy is one-dimensional and thus its single use without correction
term does not capture the effect of the correlation. It could be interesting to consider a two-dimensional
Gaussian Proxy. This is left for further research.

To link the initial process (5.1)-(5.2) and the proxy process (5.4)-(5.5), we introduce a two-
dimensional parameterized process given by:

dXη
t =σ(t,ηXη

t + (1−η)x0)
√

Vη
t dWt −

1
2
σ2(t,ηXη

t + (1−η)x0)Vη
t dt, Xη

0 = x0, (5.6)

dVη
t =αtdt +ηξt

√
Vη

t dBt, v0, (5.7)

where η is an interpolation parameter lying in the range [0,1], such that on the one hand for η = 1,
X1

t = Xt and V1
t = Vt, and on the other hand for η = 0, X0

t = XP
t and V0

t = vt. This parameterization is
only a way to connect X and the proxy model XP and to derive successive corrective processes in order
to obtain a tractable approximation formula.

BOutline of the Chapter. The Chapter is organised as follows. In Section 5.2 we present a third
order price approximation formula in Theorem 5.2.2.1 which is the main result of the Chapter. We also
provide the magnitude of the error term. The result is followed by an outline of the proof to present
in an heuristic way the methodology to perform the expansion and to draw the attention of the reader
to the main difficulties. The explicit calculus of the expansion coefficients is postponed to Appendix
5.6.2. Section 5.3 is devoted to the complete proof of the error estimate. Analyse the accuracy of the
formula is far from straightforward and constitutes the technical core of the Chapter. In the Section 5.4
we apply our expansion formula to the particular case of Call/Put options to derive implied volatility
expansions with local volatility frozen at spot and at mid-point between the strike and the spot. Results
are stated in Theorems 5.4.1.1 and 5.4.2.1. Section 5.5 is gathering numerical experiments illustrating
the performance and the rapidity of our implied volatility formulas in comparison to the Monte Carlo
simulations. In Appendix 5.6, we give intermediate and complementary results.

5.2 Main Result

5.2.1 Notations and definitions

The following notations and definitions are frequently used in the following.

BExtremes of deterministic functions. For measurable and bounded functions f : [0,T ] → R
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and g : [0,T ] ×R → R, we denote fin f = inf
t∈[0,T ]

ft, fsup = sup
t∈[0,T ]

ft, |g|∞ = sup
t∈[0,T ],x∈R

|g(t, x)| and ginf =

inf
t∈[0,T ],x∈R

g(t, x).

BDifferentiation and Integration. If these derivatives have a meaning, we write: ψ(i)
t (x) = ∂i

xiψ(t, x) for
any measurable function ψ of (t, x) ∈ [0,T ]×R. When considering the spatial point x0, we oftenly use if
unambiguous the notations ψt = ψt(x0) and ψ(i)

t = ψ(i)
t (x0).

Definition 5.2.1.1. Integral Operator. The integral operatorωT is defined as follows: for any integrable
function l, we set:

ω(l)T
t =

∫ T

t
ludu,

for t ∈ [0,T ]. Its n-times iteration is defined analogously: for any integrable functions (l1, · · · , ln), we set:

ω(l1, · · · , ln)T
t = ω(l1ω(l2, · · · , ln)T

. )T
t ,

for t ∈ [0,T ].

Definition 5.2.1.2. Greeks. Let Z be a random variable and h a payoff function. The i-th Greek for the
variable Z is defined by the quantity (when it has a meaning):

Gh
i (Z) =

∂iE[h(Z + x)]
∂xi

∣∣∣
x=0.

Given appropriate smoothness assumptions concerning h, one also has:

Gh
i (Z) = E[h(i)(Z)].

BAssumptions on σ and (Vt)t≤T .

• (Hσ
x0

): σ is a bounded measurable function of (t, x) ∈ [0,T ]×R and three times continuously
differentiable w.r.t. x with bounded1 derivatives. Set

M1(σ) = max
1≤i≤3

|∂i
xiσ(t, x)|∞ andM0(σ) = max

0≤i≤3
|∂i

xiσ(t, x)|∞.

In addition, we assume the following ellipticity condition:
∫ T

0 σ2
t vtdt > 0 (local non-degeneracy

condition).

• (P): α and ξ are measurable, bounded on [0,T ] and positive. In addition ξinf > 0 and 2( α
ξ2 )inf ≥ 1.

Remark 5.2.1.1. Because there exists a unique process (Vt)t≤T satisfying the SDE (5.2), (Hσ
x0

) guar-
antees the existence and the uniqueness of a solution for (5.1), considering generalized stochastic in-
tegration w.r.t. semi-martingales (see [Protter 2004, Theorem 6 p. 249]). In addition (P) implies that
∀η ∈ [0,1], P(∀t ∈ [0,T ] : Vη

t > 0) = 1 (See Lemma [Benhamou 2010b, Lemma 4.2], and replace in the
original paper κ by 0 and κθt by αt).

We define the stochastic volatility process:

Definition 5.2.1.3. Λ
η
t =

√
Vη

t , ∀t ∈ [0,T ], ∀η ∈ [0,1].

1the boundedness assumption of σ and its derivatives could be weakened to Lp-integrability conditions, up to extra works.
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In addition, we introduce (λt)t∈[0,T ] defined for any t ∈ [0,T ] by:

λt = Λ
η=0
t =

√
V0

t =
√

vt =

√
v0 +

∫ t

0
αsds. (5.8)

BAssumptions on the payoff function h. We denote by C∞0 (R), the space of real-valued infinitely
differentiable functions with compact support. For practical applications in finance, assuming that
h ∈ C∞0 (R) is too strong and we introduce Lipb(R), the space of Lipschitz bounded real-valued functions
in the following sense: for some positive constants Ch and Lh: |h(x)| ≤Ch ∀x ∈ R,

|
h(y)−h(x)

y−x | ≤ Lh ∀(x,y) ∈ R2, x , y,

This space includes the classical Put payoff function x 7→ (K − ex)+ with strike K. Assume that h
and/or its first derivative (defined a.e.) is exponentially bounded could lead to technical difficulties
in the Lp-estimates because exponential moments of integrated square root processes explode (see
[Andersen 2006]).

BGeneric constants and upper bounds. We keep the same notation C for all non-negative constants
depending on: universal constants, on a number p ≥ 1 arising in Lp-estimates, in a non decreasing way
on ξsup,M0(σ),M1(σ), T , |σ|2∞T∫ T

0 σ2
t vtdt

and αsup. Usually, a generic constant may depend on v0 (and notably

depends on negative powers of v0). A generic constant does not depend on x0 or remains uniformly
bounded in this variable.
We frequently use the short notation A ≤c B for positive A which means that A ≤ CB for a generic con-
stant C. Similarly "A = O(B)" means that |A| ≤CB for a generic constant C.

BMiscellaneous. The Lp-norm of a random variable is denoted, as usual, by ||.||p

5.2.2 Third order approximation price formula

We state the main result of the Chapter:

Theorem 5.2.2.1. (3rd order approximation price formula.) Assume (Hσ
x0

) and (P). Then for any
h ∈ Lipb(R), we have:

E[h(XT )] = E[h(XP
T )] +

6∑
i=1

ηi,TG
h
i (XP

T ) + Error3,h, (5.9)

where:

η1,T =
Cl

1,T

2
−

Cl
2,T

2
−

Cl
3,T

4
−

Cl
4,T

2
−Cls

1,T ,

η2,T =−
3Cl

1,T

2
+

Cl
2,T

2
+

5Cl
3,T

4
+

7Cl
4,T

2
+

(Cl
1,T )2

8
−

Cs
1,T

2

+
Cs

3,T

4
+Cls

1,T +
Cls

2,T

2
+

Cls
3,T

2
+Cls

4,T +
Cls

5,T

2
+

Cls
6,T

4
,

η3,T =Cl
1,T −2Cl

3,T −6Cl
4,T −

3(Cl
1,T )2

4
+

Cs
1,T

2
−

Cs
2,T

2
−

Cs
3,T

2

−
3Cls

2,T

2
−

3Cls
3,T

2
−

5Cls
4,T

2
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5,T −
3Cls

6,T

4
−

Cl
1,TCs

1,T

4
,
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η4,T =Cl
3,T + 3Cl

4,T +
13(Cl

1,T )2

8
+

Cs
2,T

2
+

Cs
3,T

4
+Cls

2,T

+Cls
3,T +

3Cls
4,T

2
+

Cls
5,T

2
+

Cls
6,T

2
+

(Cs
1,T )2

8
+Cl

1,TCs
1,T ,

η5,T =−
3(Cl

1,T )2

2
−

(Cs
1,T )2

4
−

5Cl
1,TCs

1,T

4
,

η6,T =
(Cl

1,T )2

2
+

(Cs
1,T )2

8
+

Cl
1,TCs

1,T

2
,

and:

Cl
1,T = ω(σ2v,σσ(1)v)T

0 , Cl
2,T = ω(σ2v, ((σ(1))2 +σσ(2))v)T

0 ,

Cl
3,T = ω(σ2v,σ2v, ((σ(1))2 +σσ(2))v)T

0 , Cl
4,T = ω(σ2v,σσ(1)v,σσ(1)v)T

0 , Cs
1,T = ω(ρξσv,σ2)T

0 ,

Cs
2,T = ω(ρξσv,ρξσ,σ2)T

0 , Cs
3,T = ω(ξ2v,σ2,σ2)T

0 , Cls
1,T = ω(ρξσv,σσ(1))T

0 ,

Cls
2,T = ω(ρξσv,σ2v,σσ(1))T

0 , Cls
3,T = ω(σ2v,ρξσv,σσ(1))T

0 , Cls
4,T = ω(ρξσv,σ2,σσ(1)v)T

0 ,

Cls
5,T = ω(ρξσv,σσ(1)v,σ2)T

0 , Cls
6,T = ω(σ2v,ρξσ(1)v,σ2)T

0 .

Then the approximation error is estimated as follows:

Error3,h = O
(
Lh|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2). (5.10)

Remark 5.2.2.1. Under (Hσ
x0

), XP
T is a non-degenerate normal random variable and consequently, what-

ever is the regularity of h, the Greeks Gi
h(XP

T ) introduced in (5.2.1.2) exist and are well defined for any
integer i. Note also that on the contrary to [Benhamou 2010b, Theorem 2.2], we do not assume anymore
that the correlation is bounded away to −1 and 1.

Remark 5.2.2.2. The magnitude of Error3,h provided in (5.10) justifies the label of third order ap-
proximation formula because using the notation M = max(M0(σ), ξsup), we readily have Error3,h =

O
(
(M
√

T )4). Besides, making reference to the introduction, we retrieve that if |σ|∞ = 0 or
max(M1(σ), ξsup) = 0 or T = 0, the approximation formula (5.9) is exact (the model and the proxy
coincide and the C coefficients vanish). In addition if Lh = 0 (i.e. h is constant), the error is equal to
zero as well the sensitivities.

Remark 5.2.2.3. If one prefers to restrict to a second order approximation, it simply writes:

E[h(XT )] =E[h(XP
T )] +Cl

1,T [
1
2
Gh

1(XP
T )−

3
2
Gh

2(XP
T ) +Gh

3(XP
T )] +

Cs
1,T

2
[−Gh

2(XP
T ) +Gh

3(XP
T )]

+O
(
Lh|σ|∞[ξ2

sup +M1(σ)(M0(σ) + ξsup)]T
3
2
)
.

We let the reader verify that the additional corrective terms of the expansion (5.9) are bounded up
to generic constants by Lh|σ|∞[ξ2

sup +M1(σ)(M0(σ) + ξsup)]T
3
2 using standard upper bounds for the

derivatives of the Gausssian density and the magnitude of the additional coefficients C.

5.2.3 Corollaries and outline of the proof

BParticular cases of pure local volatility models and pure stochastic volatility models.
a) Observe that if ξsup is equal to zero, all the coefficients Cs and Cls are null and then we exactly retrieve
the expansion of the pure local volatility model proposed in [Benhamou 2010a] (taking into account the
contribution of λt). The terms Cl therefore read as purely local contributions.
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b) IfM1(σ) = 0 (case of pure Heston model), all the coefficients Cl and Cls are equal to zero: we retrieve
the development that was found in [Benhamou 2010b] (with the contributions of σt and considering that
κ = 0 whereas κθt = αt). To see this, one has to transform the sensitivities w.r.t. the total variance which
appear in [Benhamou 2010b, Theorem 2.2] in terms of sensitivities w.r.t. the log-spot.
c) Finally we interpret the coefficients Cls as a mixture contribution of both the local and stochastic parts
of the volatility. All these terms notably depend on the correlation.
In case of independence of W and B, all the coefficients are equal to 0 except the Cl terms and Cs

3,T .

BApplications to Call payoff function. One can directly apply this Theorem for the Put payoff function
h(x) = (K − ex)+. The reader should remark that the above expansion formula is exact for the particular
payoff function h(x) = exp(x) (indeed E[h(XT )] =E[h(XP

T )] =G
exp
i (XP

T ) = ex0 and the sum of the corrective
terms is equal to zero). This implies that the expansion remains valid for the Call payoff function
h(x) = (ex −K)+ although h < Lipb(R) (one can replace Ch and Lh by the strike K) and that the Call/Put
parity relationship is preserved within these approximations.

BOutline of the proof. We present here a sketch of proof in order to fix the main ideas and to point the
finger at the principal difficulties.
The first step is to construct corrective processes to approximate XT in Lp. Consider the parameterized
process defined in (5.6)-(5.7). We recall that the Gaussian proxy process (XP

t )t∈[0,T ] defined in (5.4) is
obtained by setting η = 0. The next corrective processes (Xi,t)t∈[0,T ]-(Vi,t)t∈[0,T ]-(Λi,t)t∈[0,T ] for i ∈ {1,2}
are obtained by a formal i-times differentiation of (5.6)-(5.7) w.r.t. η and by taking η = 0 thereafter. For
the first corrective processes, we obtain:

dX1,t =[(XP
t − x0)σ(1)

t λt +Λ1,tσt](dWt −σtλtdt), X2,0 = 0, (5.11)

V1,t =

∫ t

0
ξsλsdBs, (5.12)

Λ1,t =
V1,t

2λt
. (5.13)

The second corrective processes are:

dX2,t =
{
λt[(XP

t − x0)2σ(2)
t + 2X1,tσ

(1)
t ] + 2(XP

t − x0)Λ1,tσ
(1)
t

}
(dWt −σtλtdt) (5.14)

+
{
Λ2,tσtdWt − [(XP

t − x0)V1,tσ
(1)
t σt + (XP

t − x0)2(σ(1)
t )2vt +

V2,t

2
σ2

t ]dt
}
, X2,0 = 0,

V2,t =

∫ t

0
ξs

V1,s

λt
dBs, (5.15)

Λ2,t =
V2,t

2λt
−

V2
1,t

4(λt)3 . (5.16)

The reader will notice that under (Hσ
x0

), these corrective processes (Xi,t)t∈[0,T ]-(Vi,t)t∈[0,T ]-(Λi,t)t∈[0,T ] for
i ∈ {1,2} are well defined.
The second step is to compute the corrective terms. Assuming that h ∈ C∞0 (R), we perform a third order
Taylor expansion for the function h at x = XT around x = XP

T :

E[h(XT )] =E[h(XP
T )] +E[h(1)(XP

T )(XT −XP
T )] +

1
2
E[h(2)(XP

T )(XT −XP
T )2] (5.17)

+E
[
(XT −XP

T )3
∫ 1

0
h(3)(XP

T +η(XT −XP
T ))

(1−η)2

2
dη

]
=E[h(XP

T )] +E[h(1)(XP
T )X1,T ] +E[h(1)(XP

T )
X2,T

2
] +

1
2
E[h(2)(XP

T )X2
1,T ] + Error3,h,
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Error3,h =E
[
h(1)(XP

T )(XT −

2∑
j=0

X j,T

j!
)
]
+

1
2
E[h(2)(XP

T )(XT −XP
T −X1,T )(XT −XP

T + X1,T )]

+E
[
(XT −XP

T )3
∫ 1

0
h(3)(XP

T +η(XT −XP
T ))

(1−η)2

2
dη

]
,

with the convention XP
T = X0

T = X0,T . Then we transform the terms E[h(1)(XP
T )X1,T ], E[h(1)(XP

T ) X2,T
2 ] and

1
2E[h(2)(XP

T )X2
1,T ] into a weighted sum of sensitivities. To achieve this transformation, we apply a key

lemma which proof is postponed to Appendix 5.6.2:

Lemma 5.2.3.1. Let ϕ be a C∞0 (R) function and ( ft)t be a measurable and bounded deterministic func-
tion. Let N ≥ 1 be fixed, and consider measurable and bounded deterministic functions t 7→ li,t for
i = 1, . . . ,N. Then, using the convention dW0

t = dt, dW1
t = dWt and dW2

t = dBt, for any
(I1, . . . , IN) ∈ {0,1,2}N we have:

E

(
ϕ(

∫ T

0
ftdWt)

∫ T

0
lN,tN

∫ tN

0
lN−1,tN−1 . . .

∫ t2

0
l1,t1dW I1

t1 . . .dW IN−1
tN−1

dW IN
tN

)
= ω(̂l1, . . . , l̂N)Gϕ#{k:Ik,0}(

∫ T

0
ftdWt), (5.18)

where l̂k,t :=


lk,t if Ik = 0,
ftlk,t if Ik = 1,
ftρtlk,t if Ik = 2.

Details of the complete derivation of the corrective terms appearing in (5.9) are given in Appendix
5.6.2. Remind that these weighted sensitivities are well defined even if h is not smooth.
Last but not least, one has to estimate the residual term. In the smooth case, owing to (5.17), it is

sufficient to estimate the Lp-norms of the residual processes XT −

i∑
j=0

X j,T

j!
for i ∈ {1,2}. Under the sole

assumption that h ∈ Lipb(R), the reflex is to regularize h and to try to employ some Malliavin integration
by parts formula like in [Benhamou 2010b]. But a straightforward application of this methodology using
the representation (5.17) fails because the random variable XP

T +η(XT −XP
T ) does not belong to the space

D∞ for η , 0:

• The coefficient function of the square root model does not satisfy the standard assumptions. Malli-
avin differentiability is studied by hand in [Alòs 2008] up to the second order.

• There are moments explosion for processes having a stochastic volatility part and a local volatility
function at least linear. See for instance the Heston model in [Andersen 2006].

To overcome this difficulty, the trick is to replace XT by the smooth random variable (in Malliavin sense)
XP

T +X1,T +
X2,T

2 close to XT in Lp. Considering a regularization hδ of h (which will be specified in (5.37)),
we can write:

E[hδ(XT )] =E[hδ(XP
T + X1,T +

X2,T

2
)] +E

[
(XT −

2∑
j=0

X j,T

j!
)
∫ 1

0
h(1)
δ ((1−η)

2∑
j=0

X j,T

j!
+ηXT )dη

]
=E[hδ(XP

T )] +E[h(1)
δ (XP

T )(X1,T +
X2,T

2
)] +

1
2
E[h(2)

δ (XP
T )X2

1,T ] + Error3,hδ , (5.19)

Error3,hδ =E
[
(XT −

2∑
j=0

X j,T

j!
)
∫ 1

0
h(1)
δ ((1−η)

2∑
j=0

X j,T

j!
+ηXT )dη

]
+

1
2
E[h(2)

δ (XP
T )(X1,T X2,T +

X2
2,T

4
)]
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+E
[
(X1,T +

X2,T

2
)3

∫ 1

0

(1−η)2

2
h(3)
δ (XP

T +η(X1,T +
X2,T

2
))dη

]
. (5.20)

As h is supposed Lipschitz bounded, the first term of (5.20) which involves only the first derivative of
hδ can be handled without Malliavin calculus. The two last terms of (5.20) contain higher derivatives
of hδ with the random variables XP

T , X1,T and X2,T belonging to D∞ but XP
T +η(X1,T +

X2,T
2 ) suffers from

degeneracy (in the Malliavin sense) for η , 0. To fix this last problem, we use a standard Malliavin
Calculus routine which consists in adding a small noise perturbation (see for instance [Gobet 2005] or
[Gobet 2012a]). A nice feature of our methodology is that the regularization of h is done in such a way
that there is no loss of accuracy.
The complete analyse of the error is given in the following subsection.

5.3 Error analysis

We establish the estimate (5.10) in several steps:

1. Lp-norms estimates of the residual processes,

2. small noise perturbation to smooth the function h,

3. careful use of Malliavin integration by parts formulas to achieve the proof.

5.3.1 Approximation of X, V , Λ and error estimates

Approximation of V , Λ and error estimates

Definition 5.3.1.1. Assume (P). We introduce for i ∈ {0,1,2} the Λ-residual processes defined by

(RΛ
i,t = Λt −

i∑
j=0

Λ j,t

j!
)t∈[0,T ]

where by convention Λ0,t = λt and the corrective processes
(
(Λ j,t)t∈[0,T ]

)
j∈{1,2} are defined in (5.13)-(5.16).

Replacing Λ by V, we define similarly the V-residual processes using the notation RV .

Proposition 5.3.1.1. Assume (P). Then for any p ≥ 1, we have:

√
v0 ≤ λinf ≤ λsup ≤

√
v0 + Tαsup, (5.21)

sup
t∈[0,T ]

||Λi,t||p ≤c (ξsup
√

T )i, ∀i ∈ {1,2}, (5.22)

sup
t∈[0,T ]

||RΛ
i,t||p ≤c (ξsup

√
T )i+1, ∀i ∈ {0,1,2}. (5.23)

Proof. (5.21) is obvious in view of (5.8). The proofs of (5.22) and (5.23) can be found in
[Benhamou 2010b, Propositions 4.6, 4.7 and 4.8 ] replacing in the original paper κ by zero and κθt

by αt. �

Corollary 5.3.1.1. Assume (P). Then one has for any p ≥ 1:

v0 ≤ vinf ≤ vsup ≤v0 + Tαsup, (5.24)

sup
t∈[0,T ]

||Vt||p ≤c1 + v0, (5.25)
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sup
t∈[0,T ]

||Vi,t||p ≤c(ξsup
√

T )i, ∀i ∈ {1,2}, (5.26)

sup
t∈[0,T ]

||RV
i,t||p
≤c(ξsup

√
T )i+1, ∀i ∈ {0,1,2}. (5.27)

Proof. The proof of (5.24) and (5.25) are easy. (5.26) are obtained readily with (5.12), (5.15) and (5.22).
Proofs of (5.27) are available in [Benhamou 2010b, Corollary 4.9] replacing in the original paper κ by
zero and κθt by αt. �

Approximation of X and error estimates.

Definition 5.3.1.2. Assume (Hσ
x0

). We introduce for i ∈ {0,1,2} the X-residual processes defined by

(RX
i,t = Xt −

i∑
j=0

X j,t

j!
)t∈[0,T ]

where by convention X0,t = X0
t = XP

t and the corrective processes
(
(X j,t)t∈[0,T ]

)
j∈{1,2} are defined in (5.11)-

(5.14). When writing a Taylor expansion of σt(.) at x = Xt around x = x0, we denote by Rn,σ(Xt) the nth

Taylor residual:

Rn,σ(Xt) = σt(Xt)−
n∑

i=0

(Xt − x0)i

i!
σ(i)

t . (5.28)

Replacing σ by σ2, we use the similar notation Rn,σ2(Xt).

Standard computations involving Burkholder-Davis-Gundy and Hölder inequalities yield:

||Xt − x0||
p
p ≤ct

p
2−1

∫ t

0
||σs(Xs)

√
Vs||

p
pds + tp−1

∫ t

0
||σ2

s(Xs)Vs||
p
pds

≤ct
p
2−1|σ|

p
∞

∫ t

0
E[V p/2

s ]ds + tp−1|σ|
2p
∞

∫ t

0
E[V p

s ]ds ≤c (|σ|∞
√

T )p, (5.29)

for any p ≥ 2, where we have applied the estimate (5.25) at the last line. We now intend to handle
X-residual processes, and the next results are intermediate steps. In the next Lemma, we provide Lp-
estimates of XP

t − x0, X1,t and X2,t.

Lemma 5.3.1.1. Assume (Hσ
x0

) and (P). For any p ≥ 1:

sup
t∈[0,T ]

||XP
t − x0||p ≤c|σ|∞

√
T , (5.30)

sup
t∈[0,T ]

||Xi,t||p ≤c|σ|∞[ξi
sup +M1(σ)(M0(σ) + ξsup)i−1]T

i+1
2 , ∀i ∈ {1,2}. (5.31)

Proof. (5.30) is similar to (5.29). For (5.31) i = 1: starting from (5.11), the same computations as before
give:

||X1,t||p ≤cM1(σ)
√

T (1 +M0(σ)
√

T ) sup
t∈[0,T ]

||XP
t − x0||p + |σ|∞

√
T (1 +M0(σ)

√
T ) sup

t∈[0,T ]
||V1,t||p.

We conclude using (5.30) and (5.26). For (5.31) i = 2, one has from (5.14):

||X2,t||p ≤cM1(σ)
√

T (1 +M0(σ)
√

T )( sup
t∈[0,T ]

||(XP
t − x0)2||p + sup

t∈[0,T ]
||X1,t||p)

+ |σ|∞
√

T (1 +M0(σ)
√

T ) sup
t∈[0,T ]

||V2,t||p + |σ|∞
√

T sup
t∈[0,T ]

||V2
1,t||p

+M1(σ)
√

T (1 +M0(σ)
√

T ) sup
t∈[0,T ]

||XP
t − x0||2p sup

t∈[0,T ]
||V1,t||2p.

We conclude using (5.30), (5.31) i = 1 and (5.26). �
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We give in the following Lemma the explicit equations solved by the X-residual processes:

Lemma 5.3.1.2. Assume (Hσ
x0

) and (P). One has:

dRX
0,t =[λtR0,σ(Xt) +σt(Xt)RΛ

0,t]dWt −
1
2

[vtR0,σ2(Xt) +σ2
t (Xt)RV

0,t]dt, RX
0,0 = 0, (5.32)

dRX
1,t =[λtR1,σ(Xt) +Λ1,tR0,σ(Xt) +σt(Xt)RΛ

1,t +λtσ
(1)
t RX

0,t]dWt

−
1
2

[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) +σ2
t (Xt)RV

1,t + 2vtσtσ
(1)
t RX

0,t]dt, RX
1,0 = 0, (5.33)

dRX
2,t =[λtR2,σ(Xt) +Λ1,tR1,σ(Xt) +

Λ2,t

2
R0,σ(Xt) +σt(Xt)RΛ

2,t +λtσ
(1)
t RX

1,t +λt
σ(2)

t

2
RX

0,t(Xt + XP
t )

+Λ1,tσ
(1)
t RX

0,t]dWt −
1
2

[vtR2,σ2(Xt) + V1,tR1,σ2(Xt) +
V2,t

2
R0,σ2(Xt) +σ2

t (Xt)RV
2,t + 2vtσtσ

(1)
t RX

1,t

+ vt((σ
(1)
t )2 +σ(2)

t σt)RX
0,t(Xt + XP

t ) + 2V1,tσtσ
(1)
t RX

0,t]dt, RX
2,0 = 0. (5.34)

Proof. The verification of these identities is tedious but without mathematical difficulties. For conve-
nience, we detail some computations. To obtain (5.32), start from (5.1) and (5.4) and write:

dRX
0,t =[σt(Xt)Λt −σtλt]dWt −

1
2

[σ2
t (Xt)Vt −σ

2
t vt]dt

=[λt(σt(Xt)−σt) +σt(Xt)(Λt −λt)]dWt −
1
2

[vt(σ2
t (Xt)−σ2

t ) +σ2
t (Xt)(Vt − vt)]dt

=[λtR0,σ(Xt) +σt(Xt)RΛ
0,t]dWt −

1
2

[vtR0,σ2(Xt) +σ2
t (Xt)RV

0,t]dt.

Similarly for (5.33), using (5.32) and (5.11), we get:

dRX
1,t =dRX

0,t −dX1,t

=[λtR0,σ(Xt) +σt(Xt)RΛ
0,t]dWt −

1
2

[vtR0,σ2(Xt) +σ2
t (Xt)RV

0,t]dt

− [(XP
t − x0)σ(1)

t λt +Λ1,tσt](dWt −σtλtdt)

=[λtR0,σ(Xt) +Λ1,tR0,σ(Xt) +σt(Xt)RΛ
1,t]dWt −

1
2

[vtR0,σ2(Xt) + V1,tR0,σ2(Xt) +σ2
t (Xt)RV

1,t]dt

− (XP
t − x0)σ(1)

t λt(dWt −σtλtdt)

=[λtR1,σ(Xt) +Λ1,tR0,σ(Xt) +σt(Xt)RΛ
1,t +λtσ

(1)
t RX

0,t]dWt

−
1
2

[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) +σ2
t (Xt)RV

1,t + 2vtσtσ
(1)
t RX

0,t]dt.

Now consider (5.34). Start from (5.33)-(5.14) and write:

dRX
2,t =dRX

1,t −
1
2

dX2,t

=[λtR1,σ(Xt) +Λ1,tR0,σ(Xt) +σt(Xt)RΛ
1,t +λtσ

(1)
t RX

0,t]dWt

−
1
2

[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) +σ2
t (Xt)RV

1,t + 2vtσtσ
(1)
t RX

0,t]dt

−
1
2
{
λt[(XP

t − x0)2σ(2)
t + 2σ(1)

t X1,t] + 2(XP
t − x0)Λ1,tσ

(1)
t

}
(dWt −σtλtdt)

−
1
2
{
Λ2,tσtdWt − [(XP

t − x0)V1,tσ
(1)
t σt + (XP

t − x0)2(σ(1)
t )2vt +

V2,t

2
σ2

t ]dt
}

=[λtR1,σ(Xt) +Λ1,tR0,σ(Xt) +
Λ2,t

2
R0,σ(Xt) +σt(Xt)RΛ

2,t +λtσ
(1)
t RX

1,t]dWt
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−
1
2

[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) +
V2,t

2
R0,σ2(Xt) +σ2

t (Xt)RV
2,t + 2vtσtσ

(1)
t RX

1,t]dt

−
1
2
{
λt(XP

t − x0)2σ(2)
t + 2(XP

t − x0)Λ1,tσ
(1)
t

}
(dWt −σtλtdt)

+
1
2

[(XP
t − x0)V1,tσ

(1)
t σt + (XP

t − x0)2(σ(1)
t )2vt]dt

=[λtR2,σ(Xt) +Λ1,tR0,σ(Xt) +
Λ2,t

2
R0,σ(Xt) +σt(Xt)RΛ

2,t +λtσ
(1)
t RX

1,t +λt
σ(2)

t

2
RX

0,t(Xt + XP
t )]dWt

−
1
2

[vtR2,σ2(Xt) + V1,tR0,σ2(Xt) +
V2,t

2
R0,σ2(Xt) +σ2

t (Xt)RV
2,t + vt((σ

(1)
t )2 +σ(2)

t σt)RX
0,t(Xt + XP

t )

+ 2vtσtσ
(1)
t RX

1,t]dt− (XP
t − x0)Λ1,tσ

(1)
t (dWt −σtλtdt) +

1
2

(XP
t − x0)V1,tσ

(1)
t σtdt

=[λtR2,σ(Xt) +Λ1,tR1,σ(Xt) +
Λ2,t

2
R0,σ(Xt) +σt(Xt)RΛ

2,t +λtσ
(1)
t RX

1,t +λt
σ(2)

t

2
RX

0,t(Xt + XP
t )

+Λ1,tσ
(1)
t RX

0,t]dWt −
1
2

[vtR2,σ2(Xt) + V1,tR1,σ2(Xt) +
V2,t

2
R0,σ2(Xt) +σ2

t (Xt)RV
2,t + 2vtσtσ

(1)
t RX

1,t

+ vt((σ
(1)
t )2 +σ(2)

t σt)RX
0,t(Xt + XP

t ) + 2V1,tσtσ
(1)
t RX

0,t]dt.

�

An intermediate result is the estimates of Rn,σ(Xt) and Rn,σ2(Xt). Assuming (Hσ
x0

), from the Taylor-
Lagrange inequality, we have |Rn,σ(Xt)| ≤c |Xt− x0|

n+1M1(σ) and |Rn,σ2(Xt)| ≤c |Xt− x0|
n+1M0(σ)M1(σ).

Combined with (5.29), this readily gives ∀p ≥ 2 and ∀ j ∈ {0, ..,2}:

sup
t∈[0,T ]

||R j,σ(Xt)||p ≤c (|σ|∞
√

T ) j+1M1(σ), sup
t∈[0,T ]

||R j,σ2(Xt)||p ≤c (|σ|∞
√

T ) j+1M0(σ)M1(σ). (5.35)

We now state the result related to the estimates of the residuals processes:

Proposition 5.3.1.2. Assume that (Hσ
x0

) and (P) hold. Then for any p ≥ 1, we have:

sup
t∈[0,T ]

||RX
j,t||p
≤c |σ|∞

{
ξ

j+1
sup +M1(σ)(M0(σ) + ξsup) j}T j

2 +1, ∀ j ∈ {0,1,2}. (5.36)

Proof. We leverage the explicit equations solved by the residuals (RX
j,t)t∈[0,T ] (see Lemma 5.3.1.2). We

begin with RX
0,t. Starting from (5.32) and using standard inequalities, it readily follows:

||RX
0,t||p ≤c

√
T [sup

t≤T
||R0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

0,t||p] + T [sup
t≤T
||R0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV

0,t||p
].

We conclude using (5.35)-(5.23)-(5.27). Similarly for RX
1,t given in (5.33), we obtain:

||RX
1,t||p ≤c

√
T
{
sup
t≤T
||R1,σ(Xt)||p + sup

t≤T
||Λ1,tR0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

1,t||p +M1(σ)sup
t≤T
||RX

0,t||p

}
+ T

{
sup
t≤T
||R1,σ2(Xt)||p + sup

t≤T
||V1,tR0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV

1,t||p
+ |σ|∞M1(σ)sup

t≤T
||RX

0,t||p

}
.

Then, plugging in the above upper bound the estimates (5.22)-(5.23)-(5.26)-(5.27)-(5.35)-(5.36) i = 0,
we complete the proof of (5.36) for i = 1. Finally for RX

2,t, starting from (5.34), we readily have:

||RX
2,t||p ≤c

√
T
{
sup
t≤T
||R2,σ(Xt)||p + sup

t≤T
||Λ1,tR1,σ(Xt)||p + sup

t≤T
||Λ2,tR0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

2,t||p

+M1(σ)sup
t≤T
||RX

1,t||p +M1(σ)sup
t≤T
||RX

0,t(Xt + XP
t )||

p
+M1(σ)sup

t≤T
||Λ1,tRX

0,t||p

}
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+ T
{
sup
t≤T
||R2,σ2(Xt)||p + sup

t≤T
||V1,tR1,σ2(Xt)||p + sup

t≤T
||V2,tR0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV

2,t||p

+ |σ|∞M1(σ)sup
t≤T
||RX

1,t||p +M1(σ)M0(σ)sup
t≤T
||RX

0,t(Xt + XP
t )||

p
+ |σ|∞M1(σ)sup

t≤T
||V1,tRX

0,t||p

}
.

The proof is completed as before using (5.22)-(5.23)-(5.26)-(5.27)-(5.35)-(5.36) i = 0 and 1. �

5.3.2 Regularization of the function h by adding a small noise perturbation

To overcome some problems of degeneracy in the Malliavin sense and to compensate the lack of smooth-
ness of the payoff function h, we introduce an extra scalar Brownian motion W independent of W and B
even if it means enlarge the initial filtration and the initial sigma field. Then we define:

hδ(x) = E[h(x +δWT )]. (5.37)

for a small parameter δ > 0. Clearly the function hδ is of class C∞(R) thanks to the smoothness of the
Gaussian density and remarkably we can notice that using a conditioning:

hδ(x) = E[hδ/
√

2(x +δW T
2
)]. (5.38)

In addition h ∈ Lipb(R)⇒ hδ ∈ Lipb(R) with Chδ ≤Ch and Lhδ ≤ Lh. The next Lemma estimates the error
in terms of δ induced by considering hδ instead of h in the calculus of expectations and sensitivities
which appear in the Theorem 5.2.2.1.

Lemma 5.3.2.1. Let δ > 0. Assume that h ∈ Lipb(R) and that (Hσ
x0

) is satisfied. Then we have:∣∣∣E[h(XT )]−E[hδ(XT )]
∣∣∣+ ∣∣∣E[h(XP

T )]−E[hδ(XP
T )]

∣∣∣ ≤cLhδ
√

T ,∣∣∣∂i
xiE[h(XP

T + x)]|x=0−∂
i
xiE[hδ(XP

T + x)]|x=0
∣∣∣ ≤cLh

δ
√

T

(
∫ T

0 σ2
t vtdt)i/2

, ∀i ≥ 1.

Proof. The first estimate is obvious using the lipschitzianity of h and classical estimates for the auxiliary
Brownian motion. For the second write:

E[hδ(XP
T + x)] =

∫
R
E[h(y−

∫ T
0 σ2

t vtdt

2
+δWT )]

e
−

(y−x)2

2
∫ T
0 σ2

t vtdt√
2π

∫ T
0 σ2

t vtdt
dy,

to obtain:

∂i
xiE[h(XP

T + x)]|x=0−∂
i
xiE[hδ(XP

T + x)]|x=0

=

∫
R
E
[
h(y−

∫ T
0 σ2

t vtdt

2
+δWT )−h(y−

∫ T
0 σ2

t vtdt

2
)
]
∂i

xi

{ e
−

(y−x)2

2
∫ T
0 σ2

t vtdt√
2π

∫ T
0 σ2

t vtdt

}
|x=0dy.

Then we complete the proof using again the lipschitzianity of h and standard upper bounds for the
derivatives of the Gaussian density. �

In view of the magnitude of the coefficients Cl
i,T , Cs

i,T and Cls
i,T defined in Theorem 5.2.2.1, applying

Lemma 5.3.2.1, we readily obtain :

∣∣∣Error3,h
∣∣∣ =

∣∣∣E[h(XT )]−E[h(XP
T )]−

6∑
i=1

ηi,TG
h
i (XP

T )
∣∣∣
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≤
∣∣∣E[h(XT )]−E[hδ(XT )]

∣∣∣+ ∣∣∣E[hδ(XP
T )]−E[h(XP

T )]
∣∣∣

+

6∑
i=1

|ηi,T |
∣∣∣Ghδ

i (XP
T )−Ghδ

i (XP
T )

∣∣∣+ ∣∣∣Error3,hδ

∣∣∣
≤cLh δ

√
T +

∣∣∣Error3,hδ

∣∣∣.
Assume now without loss of generality thatM1(σ)+ξsup , 0. We prove the estimate (5.10) if we choose
as value for δ:

δ = |σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2] T

3
2 (5.39)

and establish that:

|Error3,hδ | ≤c Lh|σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2]T 2, (5.40)

This is the purpose of the next Subsection.

5.3.3 Malliavin integration by parts formula and proof of estimate (5.40)

We write Wt =
∫ t

0 ρsdBs +
∫ t

0

√
1−ρ2

sdB⊥s where (B⊥t )0≤t≤T is a Brownian motion independent of Bt

and we consider the calculus of stochastic variations w.r.t. the three-dimensional Brownian mo-
tion (B,B⊥,W), the Malliavin derivative operator w.r.t. B,B⊥ and W being respectively denoted by
(D1

t (.))t∈[0,T ], (D2
t (.))t∈[0,T ] and (D3

t (.))t∈[0,T ]. For the second derivatives, we use the obvious notation
(Di, j(.))s,t∈[0,T ] for i, j ∈ {1,2,3} and so on for the higher derivatives. We freely adopt the notations of
[Nualart 2006] for the Sobolev space Dk,p associated to the norm ||.||k,p.
In the following Lemma, we provide estimates of the Malliavin derivatives of (XP

t )t∈[0,T ], (X1,t)t∈[0,T ] and
(X2,t)t∈[0,T ].

Lemma 5.3.3.1. Assume that (Hσ
x0

) and (P) hold. Then, ∀t ∈ [0,T ], XP
t ,X1,t, X2,t, V1,t and V2,t ∈ D

3,∞.
Moreover, we have the following estimates, ∀p ≥ 1, uniformly in q,r, s, t ∈ [0,T ]:

||D1
s XP

t ||p + ||D2
s XP

t ||p ≤c |σ|∞, (5.41)

||D1
sΛn,t||p + ||D1

sVn,t||p ≤c ξ
n
supT

n−1
2 , ∀n ∈ {1,2}, (5.42)

||D1
s Xn,t||p + ||D2

s Xn,t||p ≤c |σ|∞[ξn
sup +M1(σ)(M0(σ) + ξsup)n−1]T

n
2 , ∀n ∈ {1,2} (5.43)

||D1,1
r,s Λ2,t||p + ||D1,1

r,s V2,t||p ≤c ξ
2
sup, (5.44)∑

i, j∈{1,2}

||Di, j
r,sXn,t||p ≤c |σ|∞[ξn

sup +M1(σ)(M0(σ) + ξsup)n−1]T
n−1

2 , ∀n ∈ {1,2}, (5.45)∑
i, j,k∈{1,2}

||Di, j,k
q,r,sX2,t||p ≤c |σ|∞[ξ2

sup +M1(σ)(M0(σ) + ξsup)]. (5.46)

Proof. It is obvious that all the variables are in D3,∞ because by construction we take face to multiple
Wiener integrals and temporal integrals of multiple Wiener integrals (see (5.4)-(5.11)-(5.14)-(5.12)-
(5.15)). Then the calculus of the derivatives and the Lp-estimates are classical so we skip details. In
particular, all the derivatives w.r.t. the third Brownian motion W are null as well as the derivatives of
V1,t, Λ1,t, V2,t and Λ2,t w.r.t. B⊥. �

We now state the result related to integration by parts formulas which is proven later:
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Lemma 5.3.3.2. Assume (Hσ
x0

) and (P). For any η ∈ [0,1], we define the random variable Gη
δ = XP

T +

η(X1,T +
X2,T

2 ) + δWT/2. Then for any Y in D1,∞, there exist random variables Y2,η and Y3,η in ∩p≥1Lp

such that ∀i ∈ {2,3}:

E[Yh(i)
δ/
√

2
(Gη

δ)] =E[Yi,ηh
(1)
δ/
√

2
(Gη

δ)], (5.47)

where for any p ≥ 1 and any i ∈ {2,3}:

sup
η∈[0,1]

||Yi,η||p ≤c ||Y ||i−1,p+ 1
2
(
∫ T

0
σ2

t vtdt)−
(i−1)

2 . (5.48)

We are now in position to achieve the proof of (5.40). Consider Error3,hδ explicitly written in (5.20).
The first term of (5.20) is handled easily using (5.36) i = 3. For the second term of (5.20), using (5.38),

applying the Lemma 5.3.3.2 with Y = X1,T X2,T +
X2

2,T
4 and using (5.31)-(5.43), we obtain:

∣∣∣E[h(2)
δ (XP

T )(X1,T X2,T +
X2

2,T

4
)]
∣∣∣ =

∣∣∣E[h(2)
δ/
√

2
(G0

δ)(X1,T X2,T +
X2

2,T

4
)]
∣∣∣ =

∣∣∣E[h(1)
δ/
√

2
(G0

δ)Y1,0]
∣∣∣

≤cLh||Y ||1,2(
∫ T

0
vtσ

2
t dt)−1/2 ≤c Lh|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2.

The last term of (5.20) is handled similarly; apply the Lemma 5.3.3.2 with Y = (X1,T +
X2,T

2 )3 and use
(5.31)-(5.43)-(5.45)-(5.46) to obtain the announced result. To complete the proof, it remains to establish
the Lemma 5.3.3.2. This is done in the following Subsection.

5.3.4 Proof of Lemma 5.3.3.2

XP
T is a non-degenerate random variable with Malliavin covariance matrix equal to

∫ T
0 σ2

t vtdt > 0 thanks

to (Hσ
x0

) but Gη = XP
T + η(X1,T +

X2,T
2 ) is degenerate for η > 0 and this is the second reason to have

introduced the small perturbation δWT/2. Consider the random variable Gη
δ = Gη + δWT/2 defined in

Lemma 5.3.3.2: clearly it belongs to D3,∞ with Malliavin covariance matrix obviously invertible:

γGη
δ

=

2∑
i=1

∫ T

0
(Di

tG
η)2dt +δ2 T

2
= γGη +δ2 T

2
> δ2 T

2
> 0.

Then with (5.39)-(5.41)-(5.43)-(5.45)-(5.46) it readily comes for any i ∈ {1,2} and any p ≥ 1:

||(D1Gη
δ,D

2Gη
δ,D

3Gη
δ)||i,p ≤c|σ|∞

√
T . (5.49)

Hence, applying [Nualart 2006, Proposition 1.5.6 and Proposition 2.1.4] and using (5.49) we get the
existence of Y2,η and Y3,η such that for any i ∈ {2,3} and any p ≥ 1:

||Yi,η||p ≤c||Y ||i−1,p+ 1
2
||DGη

δ ||
i−1
i−1,2i−1 p(2p+1)||γ

−1
Gη
δ

||i−1
i−1,2i−1 p(2p+1) (5.50)

≤c||Y ||i−1,p+ 1
2
(|σ|∞

√
T )i−1||γ−1

Gη
δ

||i−1
i−1,2i−1 p(2p+1).

It remains to finely estimate the norms related to the inverse of the Malliavin covariance matrix γGη
δ
.

First notice that using the definitions of Gη and γGη we have:

γGη =γXP
T

+γ
η(X1,T +

X2,T
2 )

+ 2η
2∑

i=1

∫ T

0
Di

t(X
P
T )Di

t(X1,T +
X2,T

2
)dt
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=

∫ T

0
σ2

t vtdt +η2
2∑

i=1

∫ T

0
[Di

t(X1,T +
X2,T

2
)]2dt + 2η

2∑
i=1

∫ T

0
σtvtDi

t(X1,T +
X2,T

2
)dt

and hence estimates (5.41)-(5.43), (Hσ
x0

) and (P) easily yield to:

sup
η∈[0,1]

∣∣∣∣∣∣γGη −

∫ T

0
σ2

t vtdt
∣∣∣∣∣∣

p ≤c |σ|
2
∞(ξsup +M1(σ))T

3
2 , (5.51)

for any p ≥ 1. This intermediate estimate allows to prove the next Lemma:

Lemma 5.3.4.1. Assume (Hσ
x0

) and (P). Then (γGη
δ
)−1 ∈ D2,∞ and we have for any p ≥ 1:

sup
η∈[0,1]

||(γGη
δ
)−1||p ≤c(

∫ T

0
σ2

t vtdt)−1, (5.52)

sup
t∈[0,T ], η∈[0,1]

∑
i∈{1,2}

||Di
t(γGη

δ
)−1||p ≤c(M1(σ) + ξsup)(

∫ T

0
σ2

t vtdt)−1, (5.53)

sup
s,t∈[0,T ], η∈[0,1]

∑
i, j∈{1,2}

||Di, j
s,t(γGη

δ
)−1||p ≤c[ξ2

sup +M1(σ)(M0(σ) + ξsup)](
∫ T

0
σ2

t vtdt)−1. (5.54)

Proof. For the sake of brevity, we only prove (5.52) and (5.53) because there is no extra difficulties for
(5.54). For (5.52), we have for any p ≥ 1 and q ≥ 1:

E[(γGη
δ
)−p] = E[(γGη

δ
)−p1

γGη≤
1
2

∫ T
0 σ2

t vtdt
] +E[(γGη

δ
)−p1

γGη>
1
2

∫ T
0 σ2

t vtdt
]

≤ (δ2 T
2

)−pP(
∫ T

0
σ2

t vtdt−γGη ≥

∫ T
0 σ2

t vtdt

2
) +

(1
2

∫ T

0
σ2

t vtdt
)−p

≤c (δ2T )−p(∫ T

0
σ2

t vtdt
)−q∣∣∣∣∣∣γGη −

∫ T

0
σ2

t vtdt
∣∣∣∣∣∣q

q +
(∫ T

0
σ2

t vtdt
)−p

≤c
(∫ T

0
σ2

t vtdt
)−p[(δ2T )−p(∫ T

0
σ2

t vtdt
)−q+p∣∣∣∣∣∣γGη −

∫ T

0
σ2

t vtdt
∣∣∣∣∣∣q

q] + 1
]
,

where we have used the Markov inequality at the second inequality. Then choosing q = 6p and using
(5.39)-(5.51), we readily obtain:

||(γGη
δ
)−1||p ≤c

(∫ T

0
σ2

t vtdt
)−1

[(
|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2)−2(T |σ|2∞)−5(|σ|2∞[ξsup +M1(σ)]T
3
2
)6

+ 1
]

≤c(
∫ T

0
σ2

t vtdt)−1.

(5.53) is a straightforward application of [Nualart 2006, Lemma 2.1.6]; we have ∀t ∈ [0,T ], ∀i ∈ {1,2}:

Di
t(γGη

δ
)−1 = −

Di
tγGη

δ

γ2
Gη
δ

= −2

∫ T
0 [D1

uGηDi,1
t,uGη + D2

uGηDi,2
t,uGη]du.

γ2
Gη
δ

Then using (5.41)-(5.43)-(5.45)-(5.52) we get readily ∀p ≥ 1:

sup
t∈[0,T ]

||Di
t(γGη

δ
)−1||p ≤c T |σ|2∞(M1(σ) + ξsup)(

∫ T

0
σ2

t vtdt)−2,

which leads to the announced result. �

Now plug (5.52)-(5.53)-(5.54) in (5.50) to complete the proof.
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5.4 Expansion formulas for the implied volatility

In this section we apply our third approximation formula to the particular payoff function
h(x) = (ex − K)+, i.e. a Call payoff function with strike K for which the expansion remains valid
(see Subsection 5.2.3). The risk-free rate and the dividend yield2 are set to 0. In order to obtain more
tractable and accurate formulas, we aim at extracting implied volatility expansions from the price
approximation formula. It has been shown in Chapter 2 that, in addition to their simplicity, direct
implied volatility expansions are more accurate than the corresponding price formulas.

Notations.
B Call options. We denote by Call(S 0,T,K) the price at time 0 of a Call option with spot S 0 = ex0 ,
maturity T and strike K, written on the asset S = eX that is Call(S 0,T,K) = E(eXT −K)+. As usual, ATM
(At The Money) Call refers to S 0 ≈ K, ITM (In The Money) to S 0 � K, OTM (Out The Money) to
S 0� K.

B Black-Scholes Call price function. For the sake of completeness, we give the Black-Scholes Call
price function depending on log-spot x, total variance y and log-strike k:

CallBS(x,y,k) = exN(d1(x,y,k))− ekN(d2(x,y,k)) (5.55)

where:

N(x) =

∫ x

−∞

N ′(u)du, N ′(u) =
e−u2/2
√

2π
, d1(x,y,k) =

x− k
√

y
+

1
2
√

y, d2(x,y,k) =d1(x,y,k)−
√

y.

In the following, x0 = log(S 0) will represent the log-spot, k = log(K) the log-strike, xavg = (x0 + k)/2 =

log(
√

S 0K) the mid-point between the log-spot and the log-strike, m = x0 − k = log(S 0/K) the log-
moneyness. The value CallBS(x0,

∫ T
0 σ2

t vtdt,k) = E[(eXP
T − ek)+] equals Call(S 0,T,K) = E[(eXT − K)+]

whenM1(σ) = ξsup = 0. For (x,T,k) given, the implied Black-Scholes volatility of a price Call(ex,T,ek)
is the unique non-negative volatility parameter σI(x,T,k) such that:

CallBS(x,σ2
I (x,T,k)T,k

)
= Call(ex,T,ek). (5.56)

The reader can find in Proposition 5.6.3.2 the definition of VegaBS and VommaBS which are the first two
derivatives of CallBS w.r.t. the volatility parameter.

BQuadratic mean of the volatility on [0,T ]. For any spatial point z ∈ R, we denote by σz the quadratic
mean on [0,T ] of (σt(z)

√
vt)t∈[0,T ] defined by:

σz =

√
1
T

∫ T

0
σ2

t (z)vtdt. (5.57)

This notation is frequently used for the points x0 and xavg. When applied in x0, we simply write σ̄ if
unambiguous.

2Adaptation of the results for non-zero but deterministic risk-free rate and dividend yield is straightforward by considering
the discounted asset.
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5.4.1 Implied volatility expansion at spot

We introduce new corrective coefficients useful for the implied volatility expansions:

Definition 5.4.1.1. Assume (Hσ
x0

). We define the following corrective coefficients:

γ0a,T =σ̄+
Cs

1,T

4σ̄T
,

γ0b,T =
Cl

9,T

2σ̄3T 2 −
Cl

10,T

4σ̄3T 2 −
3Cl

10,T

σ̄5T 3 +
Cs

2,T

8σ̄T
−

Cs
2,T

2σ̄3T 2 −
Cs

3,T

16σ̄T
−

Cs
3,T

4σ̄3T 2 +
3(Cs

1,T )2

8σ̄5T 3

+
Cls

8,T

σ̄3T 2 −
Cls

4,T

8σ̄T
−

3Cls
4,T

2σ̄3T 2 −
Cls

5,T

8σ̄T
−

Cls
5,T

2σ̄3T 2 −
Cls

6,T

2σ̄3T 2 +
(Cl

1,TCs
1,T )

8σ̄3T 2 +
3(Cl

1,TCs
1,T )

2σ̄5T 3 ,

γ1a,T =−
Cl

1,T

σ̄3T 2 −
Cs

1,T

2σ̄3T 2 ,

γ1b,T =−
Cs

2,T

2σ̄3T 2 +
3(Cs

1,T )2

8σ̄5T 3 −
Cls

2,T +Cls
3,T

2σ̄3T 2 −
Cls

4,T

2σ̄3T 2 −
Cls

6,T

4σ̄3T 2 +
3(Cl

1,TCs
1,T )

4σ̄5T 3 ,

γ2,T =
Cl

3,T

σ̄5T 3 −
3Cl

4,T

σ̄5T 3 + 6
Cl

10,T

σ̄7T 4 +
Cs

2,T

2σ̄5T 3 +
Cs

3,T

4σ̄5T 3 −
3(Cs

1,T )2

4σ̄7T 4 +
Cls

2,T +Cls
3,T

σ̄5T 3

+
3Cls

4,T

2σ̄5T 3 +
Cls

5,T

2σ̄5T 3 +
Cls

6,T

2σ̄5T 3 −
3(Cl

1,TCs
1,T )

σ̄7T 4 ,

where (Cl
i,T )1≤i≤4-(Cs

i,T )1≤i≤3-(Cls
i,T )1≤i≤6 are defined in Theorem 5.2.2.1 and Cl

9,T -Cl
10,T -Cls

8,T are defined
by:

Cl
9,T =ω(σ2v, ((σ(1))2 +σσ(2))v,σ2v)T

0 , Cl
10,T =ω(σ2v,σσ(1)v,σσ(1)v,σ2v)T

0 ,

Cls
8,T =ω(ρξσv,σσ(1),σ2v)T

0 .

To obtain an implied volatility expansion, we use the relations between the Greeks w.r.t. the log-spot
which naturally appear when applying the expansion of Theorem 5.2.2.1 and the sensitivities w.r.t. the
volatility parameter. These relations are available on Appendix 5.6.3. Applying Proposition 5.6.3.3, the
third order approximation formula (5.9) can be transformed into:

Call(S 0,T,K) (5.58)

=CallBS(x0, σ̄
2T,k) + VegaBS(x0, σ̄

2T,k)
[
−

Cl
1,T

σ̄3T 2 m +
Cl

2,T

2σ̄T
−

Cl
3,T

σ̄3T 2 +
Cl

3,T

σ̄5T 3 m2−
Cl

4,T

4σ̄T
−

3Cl
4,T

σ̄3T 2

+
3Cl

4,T

σ̄5T 3 m2 +
(Cl

1,T )2

8σ̄3T 2 +
3(Cl

1,T )2

2σ̄5T 3 −
3(Cl

1,T )2

σ̄7T 4 m2 +
Cs

1,T

4σ̄T
−

Cs
1,T

2σ̄3T 2 m +
Cs

2,T

8σ̄T
−

Cs
2,T

2σ̄3T 2 −
Cs

2,T

2σ̄3T 2 m

+
Cs

2,T

2σ̄5T 3 m2−
Cs

3,T

16σ̄T
−

Cs
3,T

4σ̄3T 2 +
Cs

3,T

4σ̄5T 3 m2 +
3(Cs

1,T )2

8σ̄5T 3 +
3(Cs

1,T )2

8σ̄5T 3 m−
3(Cs

1,T )2

4σ̄7T 4 m2 +
Cls

1,T

σ̄T

−
(Cls

2,T +Cls
3,T )

σ̄3T 2 −
(Cls

2,T +Cls
3,T )

2σ̄3T 2 m +
(Cls

2,T +Cls
3,T )

σ̄5T 3 m2−
Cls

4,T

8σ̄T
−

3Cls
4,T

2σ̄3T 2 −
Cls

4,T

2σ̄3T 2 m +
3Cls

4,T

2σ̄5T 3 m2

−
Cls

5,T

8σ̄T
−

Cls
5,T

2σ̄3T 2 +
Cls

5,T

2σ̄5T 3 m2−
Cls

6,T

2σ̄3T 2 −
Cls

6,T

4σ̄3T 2 m +
Cls

6,T

2σ̄5T 3 m2 +
(Cl

1,TCs
1,T )

8σ̄3T 2 +
3(Cl

1,TCs
1,T )

2σ̄5T 3

+
3(Cl

1,TCs
1,T )

4σ̄5T 3 m−
3(Cl

1,TCs
1,T )

σ̄7T 4 m2
]

+
1
2

VommaBS(x0, σ̄
2T,k)

[( Cl
1,T

σ̄3T 2

)2m2 + (Cs
1,T )2(−

m
2σ̄3T 2 +

1
4σ̄T

)2 + (Cl
1,TCs

1,T )(
m2

σ̄6T 4 −
m

2σ̄4T 3 )
]
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+O(K |σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2] T 2).

Using the following relations easy to establish:

Cls
1,Tω(σ2v)T

0 =Cls
2,T +Cls

3,T +Cls
8,T , Cl

2,Tω(σ2v)T
0 =Cl

9,T + 2Cl
3,T , Cl

4,Tω(σ2v)T
0 =Cl

10,T +
(Cl

1,T )2

2
,

we can write that:

Cls
1,T

σ̄T
−

Cls
2,T +Cls

3,T

σ̄3T 2 =
Cls

8,T

σ̄3T 2 ,
Cl

2,T

2σ̄T
−

Cl
3,T

σ̄3T 2 =
Cl

9,T

2σ̄3T 2 ,

−
Cl

4,T

4σ̄T
+

[Cl
1,T ]2

8σ̄3T 2 −
3Cl

4,T

σ̄3T 2 +
3[Cl

1,T ]2

2σ̄5T 3 =−
Cl

10,T

4σ̄3T 2 −
3Cl

10,T

σ̄5T 3 , 3
Cl

4,T

σ̄5T 3 −
3[Cl

1,T ]2

σ̄7T 4 =−
3Cl

4,T

σ̄5T 3 + 6
Cl

10,T

σ̄7T 4 ,

and finally obtain for (5.58):

Call(S 0,T,K)

=CallBS(x0, σ̄
2T,k) + VegaBS(x0, σ̄

2T,k)
[
(γ0a,T +γ0b,T )− σ̄+ (γ1a,T +γ1b,T )m +γ2,T m2]

+
1
2

VommaBS(x0, σ̄
2T,k)[γ0a,T − σ̄+γ1a,T m]2 +O(K |σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2] T 2)

≈CallBS(x0,
[
(γ0a,T +γ0b,T ) + (γ1a,T +γ1b,T )m +γ2,T m2]2T,k),

This reads as an expansion of the implied volatility and proves the next Theorem:

Theorem 5.4.1.1. (3rd order expansion of the implied volatility). Assume (Hσ
x0

) and (P). We have:

σI(x0,T,k) =γ0a,T +γ0b,T + (γ1a,T +γ1b,T )m +γ2,T m2 + ErrorI
3,x0

. (5.59)

At fixed maturity T , the implied volatility approximation is written as a quadratic function w.r.t. the
log-moneyness m with the coefficients γ defined in Definition 5.4.1.1.

Corollaries of Theorem 5.4.1.1.

BEstimates of ErrorI
3,x0

. In addition to the above implied volatility expansion, one can under additional
technical assumptions upper bound the residual terms. Assume that |m| ≤ K|σ|∞

√
T for a given K > 0

and thatM1(σ),M0(σ), ξsup and T are globally small enough to ensure that
γ = γ0a,T +γ0b,T + (γ1a,T +γ1b,T )m +γ2,T m2 > 0. Under these assumptions, one can prove that:

|ErrorI
3,x0
| = O(|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T
3
2 ),

where the generic constant depends in an increasing way on K , what justifies the label of third order
expansion. Although tedious to write, the proof does not contain huge mathematical difficulties and is
performed in Chapter 2 Subsection 2.1.4 in the case of pure local volatility models for the second order.
For the sake of brevity we leave it as an exercise to the reader giving only the outline: perform a second
order expansion of σ 7→ CallBS(x0,σ

2T,k) at γ around σ̄, a zero order expansion at σI(x0,T,k) around
γ, apply Theorem 5.2.2.1, use classical estimates for ∂n

σnCallBS(x0,σ
2T,k) for n = 1,2,3 (see Chapter 2

Corollary 2.6.1.1) and carefully gather terms and evaluate their magnitude.

BShort maturity skew and smile behaviours. We analyse the behaviour of the approximation formula
(5.59) at the money (i.e. m ≈ 0) and for short maturity (i.e. T � 1). In view of (5.59) and the various
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coefficients Cl, Cs, Cls and γ (see Definition 5.4.1.1 and Theorem 5.2.2.1), assuming that σt, σ
(1)
t and

σ(2)
t are continuous at t = 0, we obtain for the level, the slope and the curvature ATM:

[σI(x0,T,k)]|k=x0 ≈γ0a,T +γ0b,T ≈ σ0
√

v0,

∂k[σI(x0,T,k)]|k=x0 ≈−γ1a,T −γ1b,T ≈ −γ1a,T ≈
σ(1)

0
√

v0

2
+
ρ0ξ0

4
√

v0
, (5.60)

∂2
k2[σI(x0,T,k)]|k=x0 ≈2γ2,T =

σ(2)
0
√

v0

3
−

[σ(1)
0 ]2 √v0

6σ0
−

5ρ2
0ξ

2
0

24σ0v
3
2
0

+
ξ2

0

12σ0v
3
2
0

, (5.61)

where we have used the following estimate:

|γ0a,T +γ0b,T − σ̄|+ |γ1b,T | ≤c T,

and consequently neglected these terms considered as maturity bias. We observe that:
1) In case of null correlation, our approximation coincides with [Forde 2012a, Theorem 4.1]. Otherwise,
we notice that the terms Cls involving simultaneously ρ0, ξ0 and σ(1)

0 vanish and that the slope of the
implied volatility is modified. The correlation is therefore interpreted as a skew parameter and there
might be a competition between σ(1)

0 and ρ in the calibration procedures.
2) For pure local volatility models (i.e. ξsup = 0), we retrieve the results of Theorem 2.3.3.1 of Chapter
2.
3) For pure Heston models (i.e. M1(σ) = 0), we recover the expansion given in [Forde 2009, Theorem
2.5]. In the case of zero correlation, the approximation formula (5.59) becomes for short maturity:

σI(x0,T,k) ≈ σ̄−
Cs

3,T

16σ̄T
−

Cs
3,T

4σ̄3T 2 +
Cs

3,T

4σ̄5T 3 m2 ≈ σ̄−
ξ2

0σ0T

24
√

v0
[
σ2

0v0T

4
+ 1] +

ξ2
0

24σ0v
3
2
0

m2.

We have retrieved that an uncorrelated Heston model induces a symmetric smile w.r.t. the moneyness.
The implied volatility ATM is slightly smaller than the local volatility function ATM and becomes larger
ITM or OTM, the smile increasing with the volatility of volatility ξ0. If we consider a negative correla-
tion, in view of (5.60) (the slope becomes negative and increases in absolute value with |ρ0|) and (5.61)
(the curvature is decreasing until reaching zero for |ρ0| =

√
2/5 ≈ 0.63), the center of the short maturity

smile is shifted to the right and the smile changes from a symmetric shape to a negative skew. The
converse is realised for a positive correlation.

BCalibration issues for time independent parameters. Generally the local volatility function is com-
pletely determined by a level and a slope parameters identified respectively with the local volatility and
its first derivative ATM. This is for instance the case of the CEV model (see (5.71)). For general local
and stochastic volatility models, the level of the volatility can be fixed throughout the local volatility
function whereas the stochastic variance process can be normalised with an initial value v0 equal to 1.
We have seen that for an uncorrelated local and stochastic volatility model:
i) The level parameter of the local volatility is linked to the short time implied volatility ATM,
ii) The skew parameter of the local volatility is connected to the short time slope of the implied volatility
ATM,
iii) Once the local volatility function is identified, the volatility of volatility parameter is linked to the
short time curvature of the implied volatility ATM.
These features allow us to suggest good surrogates for these three parameters in view of a calibration
procedure by simply estimate the market implied volatility curve for short maturity. But we have ob-
served that the correlation modify the short term skew and it is well known that the mean reversion
parameter of a CIR process plays a similar role than the volatility of volatility but in the inverse way.
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Thus we can find models having different parameters but reproducing the same smile for one maturity:
like for the Heston model, the calibration with a single maturity is an ill-posed problem.

5.4.2 Implied volatility expansion at mid-point

It has been empirically proven in Chapter 2 Section 2.5 throughout exhaustive numerical experiments
that for the pure local volatility case, expansions with local volatility function frozen at mid-point
xavg = (x0 + k)/2 = log(

√
S 0K) give better results. First we introduce new notations and definitions.

Notations.

B Corrective coefficients frozen at mid-point. The coefficients Cl, Cs, Cls and γ was naturally defined
in Theorem 5.2.2.1 and Definition 5.4.1.1 for the local volatility function σ at log-spot x0. To consider
the same coefficients but with local volatility function frozen at point z where z is generally equal to xavg

or x0, we use the notations Cl
i,T (z), Cs

i,T (z),Cls
i,T (z) and γi,T (z).

B New ellipticity assumption at xavg. We define similarly (Hσ
xavg

) and (Hσ
x0

) by replacing x0 by xavg.

The generic constant in the further estimates will depend in an increasing way on |σ|2∞T∫ T
0 σ2

t (xavg)vtdt
.

B Time reversal. For the coefficients Cl
i,T (xavg), we introduce the notation C̃l

i,T (xavg) which means that
we have inverted the order of integration of the integrands. For example
C̃l

1,T (xavg) = ω(σ(xavg)σ(1)(xavg)v,σ2(xavg)v)T
0 instead of Cl

1,T (xavg) = ω(σ2(xavg)v,σ(xavg)σ(1)(xavg)v)T
0 .

Definition 5.4.2.1. Assume (Hσ
xavg

). We define the following corrective coefficients:

π0a,T (xavg) =γ0a,T (xavg),

π0b,T (xavg) =γ0b,T (xavg),

π1a,T (xavg) =
C̃l

1,T (xavg)−Cl
1,T (xavg)

2σ̄3
xavgT 2

−
Cs

1,T (xavg)

2σ̄3
xavgT 2

,

π1b,T (xavg) =γ1b,T (xavg) +
Cls

1,T (xavg)

4σ̄xavgT
+

Cls
9,T (xavg)

8σ̄xavgT
−

Cls
4,T (xavg) +Cls

5,T (xavg) +Cls
10,T (xavg)

8σ̄3
xavgT 2

,

π2,T (xavg) =
C̃l

3,T (xavg) +Cl
3,T (xavg)

2σ̄5
xavgT 3

−
3(C̃l

4,T (xavg) +Cl
4,T (xavg))

2σ̄5
xavgT 3

−
Cl

5,T (xavg)

8σ̄xavgT
+

Cl
6,T (xavg)

4σ̄3
xavgT 2

+ 6
Cl

10,T (xavg)

σ̄7
xavgT 4

+
Cs

2,T (xavg)

2σ̄5
xavgT 3

+
Cs

3,T (xavg)

4σ̄5
xavgT 3

−
3(Cs

1,T (xavg))2

4σ̄7
xavgT 4

+
Cls

2,T (xavg) +Cls
3,T (xavg)

σ̄5
xavgT 3

+
3Cls

4,T (xavg)

2σ̄5
xavgT 3

+
Cls

5,T (xavg)

2σ̄5
xavgT 3

+
Cls

6,T (xavg)

2σ̄5
xavgT 3

−
3(Cl

1,TCs
1,T )(xavg)

σ̄7
xavgT 4

−
Cls

1,T (xavg)

2σ̄3
xavgT 2

−
Cls

9,T (xavg)

4σ̄3
xavgT 2

+ 3
Cls

4,T (xavg) +Cls
5,T (xavg) +Cls

10,T (xavg)

4σ̄5
xavgT 3

,

where Cl
5,T (xavg), Cl

6,T (xavg), Cls
9,T (xavg) and Cls

10,T (xavg) are defined by:

Cl
5,T (xavg) =ω(((σ(1))2 +σσ(2))(xavg)v)T

0 , Cl
6,T (xavg) =ω(σ(xavg)σ(1)(xavg)v,σ(xavg)σ(1)(xavg)v)T

0 ,

Cls
9,T (xavg) =ω(ρξσ(1)(xavg)v,σ2(xavg))T

0 , Cls
10,T (xavg) =ω(σ(xavg)σ(1)(xavg)v,ρξσ(xavg)v,σ2(xavg))T

0 .
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To obtain a new implied volatility approximation, we consider the formula 5.59 and we perform a
Taylor expansion around the mid-point. First we analyse the leading term σ̄x0 of 5.59:

Lemma 5.4.2.1. Assume (Hσ
x0

)-(Hσ
xavg

) and suppose that |m| ≤ K|σ|∞
√

T for a given K > 0. Then we
have:

σ̄x0 =σ̄xavg +
ω((σσ(1))(xavg)v)T

0

2σ̄xavgT
m +

Cl
5,T (xavg)

8σ̄xavgT
m2−

Cl
6,T (xavg)

4σ̄3
xavgT 2

m2 +O(|σ|∞M0(σ)2M1(σ)T
3
2 ), (5.62)

where Cl
5,T and Cl

6,T are defined in Definition 5.4.2.1.

Proof. First notice that (Hσ
x0

)-(Hσ
xavg

) implies the strict positivity of uσ2
x0

+ (1−u)σ2
xavg

for any u ∈ [0,1].

Then apply the Taylor formula twice: firstly for the function y 7→
√

y at y =
ω(σ2(x0)v)T

0
T around

y =
ω(σ2(xavg)v)T

0
T and secondly for the function x 7→ σ2

t (x) at x = x0 around x = xavg, for any t ∈ [0,T ]. It
gives:

σ̄x0 =

√
ω(σ2(x0)v)T

0

T
= σ̄xavg +

ω(σ2(x0)v)T
0 −ω(σ2(xavg)v)T

0

2σ̄xavgT
−

[ω(σ2(x0)v)T
0 −ω(σ2(xavg)v)T

0 ]2

8σ̄3
xavgT 2

+ R1

=σ̄xavg +
ω((σσ(1))(xavg)v)T

0

2σ̄xavgT
m +

ω(((σ(1))2 +σσ(2))(xavg)v)T
0

8σ̄xavgT
m2−

[ω((σσ(1))(xavg)v)T
0 ]2

8σ̄3
xavgT 2

m2

+ R1 + R2 + R3,

where:

R1 =(ω(σ2(x0)v)T
0 −ω(σ2(xavg)v)T

0 )3
∫ 1

0

3

8T 3(uσ2
x0

+ (1−u)σ2
xavg

)
5
2

(1−u)2

2
du,

R2 =
m3

16σ̄xavgT

∫ 1

0
∂3

x3(ω(σ2(x)v)T
0 )|x=ux0+(1−u)xavg

(1−u)2

2
du,

R3 =−
(ω(σ2(x0)v)T

0 −ω(σ2(xavg)v)T
0 + mω((σσ(1))(xavg)v)T

0 )

8σ̄3
xavgT 2

m2

4

×

∫ 1

0
∂2

x2(ω(σ2(x)v)T
0 )|x=ux0+(1−u)xavg(1−u)du.

Next remark that ω(((σ(1))2 +σσ(2))(xavg)v)T
0 = Cl

5,T (xavg) and that [ω((σσ(1))(xavg)v)T
0 ]2 = 2Cl

6,T (xavg).
Then we readily obtain with the assumption on m and (Hσ

x0
)-(Hσ

xavg
) that

R1 + R2 + R3 = O(|σ|∞M0(σ)2M1(σ)T
3
2 ). �

Second we analyse the corrective terms:

Lemma 5.4.2.2. Assume (Hσ
x0

)-(Hσ
xavg

) and suppose that |m| ≤ K|σ|∞
√

T for a given K > 0. Then we
have:

γ0a,T (x0)− σ̄x0 +γ1a,T (x0)m (5.63)

=γ0a,T (xavg)− σ̄xavg +
Cls

9,T (xavg) + 2Cls
1,T (xavg)

8σ̄xavgT
m−

ω(σ(xavg)σ(1)(xavg)v)T
0 Cs

1,T (xavg)

8σ̄3
xavgT 2

m +γ1a,T (xavg)m

−
Cl

2,T (xavg) + 2Cl
6,T (xavg)

2σ̄3
xavgT 2

m2 + 3
ω(σ(xavg)σ(1)(xavg)v)T

0 Cl
1,T (xavg)

2σ̄5
xavgT 3

m2−
Cls

9,T (xavg) + 2Cls
1,T (xavg)

4σ̄3
xavgT 2

m2
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+ 3
ω(σ(xavg)σ(1)(xavg)v)T

0 Cs
1,T (xavg)

4σ̄5
xavgT 3

m2 +O(|σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2]T

3
2 ),

γ0b,T (x0) +γ1b,T (x0)m +γ2,T (x0)m2 (5.64)

=γ0b,T (xavg) +γ1b,T (xavg)m +γ2,T (xavg)m2 +O(|σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2]T

3
2 ).

Proof. The above expansions can be proved similarly than the expansion of Lemma 5.4.2.1 with long
and tedious computations. Since there is no extra difficulty, we skip further details. �

Lemmas 5.4.2.1 and 5.4.2.2 lead to the next Theorem:

Theorem 5.4.2.1. (3rd order expansion of the implied volatility at mid-point). Assume (Hσ
x0

)-(Hσ
xavg

)
and (P). We have:

σI(x0,T,k) =π0a,T (xavg) +π0b,T (xavg) + (π1a,T (xavg) +π1b,T (xavg))m +π2,T (xavg)m2 + ErrorI
3,xavg

, (5.65)

where the corrective coefficients π are defined in Definition 5.4.2.1.

Proof. We gather terms coming from Lemmas 5.4.2.1 and 5.4.2.2. First notice that:

ω((σσ(1))(xavg)v)T
0ω(σ2(xavg)v)T

0 = Cl
1,T (xavg) + C̃l

1,T (xavg).

to get:

ω((σσ(1))(xavg)v)T
0

2σ̄xavgT
m−

Cl
1,T (xavg)

σ̄3
xavgT 2

m =
C̃l

1,T (xavg)−Cl
1,T (xavg)

2σ̄3
xavgT 2

m. (5.66)

Second remark that:

ω(σ(xavg)σ(1)(xavg)v)T
0 Cs

1,T (xavg) =Cls
4,T (xavg) +Cls

5,T (xavg) +Cls
10,T (xavg), (5.67)

ω(σ(xavg)σ(1)(xavg)v)T
0 Cl

1,T (xavg) =2Cl
4,T (xavg) +ω((σσ(1))(xavg)v,σ2(xavg)v, (σσ(1))(xavg)v)T

0 . (5.68)

Then use the following relation easy to verify:

Cl
3,T (xavg)−

Cl
2,T (xavg)ω(σ2(xavg)v)T

0

2
+

Cl
5,T (xavg)[ω(σ2(xavg)v)T

0 ]2

4
=

Cl
3,T (xavg) + C̃l

3,T (xavg)

2
,

to write that:

Cl
3,T (xavg)
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xavgT 3

m2−
Cl

2,T (xavg)

2σ̄3
xavgT 2

m2 +
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Cl
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2σ̄5
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m2−
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8σ̄xavgT
m2. (5.69)

Next, take advantage of the identity:

ω((σσ(1))(xavg)v,σ2(xavg)v, (σσ(1))(xavg)v)T
0 −Cl

6,T (xavg)ω(σ2(xavg)v)T
0 = −[Cl

4,T (xavg) + C̃l
4,T (xavg)],

to obtain:
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Cl
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xavgT 3

+
3
2

[2Cl
4,T (xavg) +ω((σσ(1))(xavg)v,σ2(xavg)v, (σσ(1))(xavg)v)T

0 ]

σ̄5
xavgT 3

−
Cl

6,T (xavg)
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xavgT 2

−
Cl

6,T (4xavg)

σ̄3
xavgT 2

=−3
[Cl

4,T (xavg) + C̃l
4,T (xavg)]

2σ̄5
xavgT 3

+
Cl

6,T (xavg)

4σ̄3
xavgT 2

. (5.70)

Finally sum the relations (5.62)-(5.63)-(5.64) and take into account the mathematical reductions (5.66)-
(5.67)-(5.68)-(5.69)-(5.70) to obtain the announced result. �
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5.5 Numerical experiments

BModel and benchmark. Here we give numerical examples of the accuracy of our implied volatility
approximation formula with local volatility at mid-point (see (5.65) in Theorem 5.4.2.1). We consider a
time-independent CEV-Heston model:

dS t =µS β
t

√
YtdWt, S 0 = ex0 , (5.71)

dYt =κ(θ−Yt)dt +
√

YtξdBt, Y0 = v0,

d〈W,B〉t =ρdt.

This model is applied directly to the asset price and we apply our various expansion results by con-
sidering a fictive log-asset with local volatility function σ(x) = µe(β−1)x. Using Proposition 5.6.4.2 in
Appendix 5.6.4, the implied volatility formula (5.65) writes explicitly:

σI(x0,T,k) ≈µ(S 0K)
β−1

2
√

v
{
1 +

ρξµ(S 0K)
β−1

2 Rs
1T

8v
+
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24
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4
) (5.72)

+
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32v
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−
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96
]

+
ρξ(β−1)µ(S 0K)
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−
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] log(
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log2(
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] log2(
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}
,

where the coefficients v, Rs
1, Rs

2, Rs
3 and Rls

2 are defined in Proposition 5.6.4.1 of Appendix 5.6.4. Note
that if the correlation is equal to zero, many terms vanish and the formula becomes very simple.
As a benchmark, we use Monte Carlo methods with a variance reduction technique. The simulated
random variable is (S T −K)+ using an Euler scheme (see [Glasserman 2004, Section 3.4]) and in or-
der to reduce the statistical error, we use the Heston control variate (S H

T −K)+ −E[(S H
T −K)+] where

(S H
t )t∈[0,T ] follows (5.71) with β fixed at 1. The latter expectation is computed using the Lewis formula

[Lewis 2000]. In [Benhamou 2010b], the authors have studied the numerical accuracy of price approxi-
mations w.r.t. κ, θ, ξ and ρ in the context of Heston models whereas the influence of the parameters β and
µ has been considered in details in Chapter 2 of the thesis in the case of pure local volatility models. This
is the reason why we decide to freeze at realistic values the set of model parameters (with an important
negative skew) and allow the maturity and the strike to vary in order to see the global accuracy. In all
the tests we use the values:

S 0 = 1, µ = 0.25, β = 0.5, v0 = 1, θ = 1.2, κ = 3, ξ = 1.5, ρ = −70%, (5.73)

and we execute the Monte Carlo simulations with 107 sample paths and a time discretization of 300
steps by year. Using the Heston control variate, this number of simulations allows to obtain confidence
intervals with width reduced to a few bps3 for a large range of strikes and maturities. All the following
computations are performed using C++ on a Intel(R) Core(TM) i5 CPU@2.40GHz with 4 GB of ram.

31 bp (basis point) is equal to 0.01%.
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BAccuracy of the implied volatility formula (5.65). In Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 (corre-
sponding to the maturities 6M, 1Y , 2Y , 3Y , 5Y and 10Y) we give for various strikes the Black-Scholes
implied volatilities estimated by Monte Carlo (MC), the bounds of the 95%-confidence interval of the
Monte Carlo estimator (MC- and MC+) and the implied volatilities given by the approximation formula
(5.72) (AF(xavg)). We use the parameters as in (5.73) and the strikes are chosen to be approximately
equal to S 0eqµ

√
θT where q takes the value of various quantiles of the standard Gaussian law (1%-5%-

10%-20%-30%-40%-50%-60%-70%-80%-90%-95%-99%) which allows to cover far ITM and far OTM
options. For the sake of completeness, we indicate the computational time to perform the Monte Carlo
simulations.
Regarding the results, we see that our approximation formula (5.72) is very accurate, giving errors on
implied volatilities smaller than 20 bps for a large range of strikes and maturities. The results for ATM
options are truly excellent but we nevertheless observe inaccuracies for extreme strikes, especially for
OTM options (however for such strikes the accuracy of the Monte Carlo estimates is less good) and for
short maturity. This asymmetry in the errors is probably due to the important correlation. Higher errors
for short maturities is a counterintuitive fact with our error estimate (5.10) which was already observed
in [Benhamou 2010b] for Heston models. This could be explained by the convergence of the stochastic
variance to its stationary regime for long maturities whereas the skew is very important for short ma-
turities owing to the correlation. Thus we observe a maximal error for the whole range of strikes and
maturities of approximately 150 bps in Table 5.1 realized for the maturity 6M and the extreme strike
0.65. For long maturities (3Y , 5Y and 10Y), errors on implied volatility are smaller than 15 bps if we
except the largest strike for which the Monte Carlo estimate is questionable because of the very large
confidence interval. For instance we sometimes report ND in the tabulars corresponding to the maturi-
ties 5Y and 10Y meaning that the corresponding prices are outside the non-arbitrage bounds.
Last but not least, regarding the computational cost, we observe that we need approximately 2m30s per
month of the maturity for the Monte Carlo simulations (4h54m27s for the maturity 10Y!), whereas the
whole set of implied volatilities is computed in less than 1 ms with the implied volatility approximation
formula. This is a very significant advantage allowing real-time calibration procedures.
As a conclusion our implied volatility approximation provides very good accuracy with a computational
cost close to real-time and is able to deal naturally with general time-dependent local volatility functions.

Table 5.1: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
17m02s) and the approximation AF(xavg) expressed as a function of strikes for T = 6M.

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

MC 34.86 31.86 30.49 29.18 27.94 26.74 25.61 24.52 23.50 21.64 20.82 19.45 18.01
MC- 34.85 31.86 30.49 29.18 27.93 26.74 25.61 24.52 23.50 21.64 20.82 19.44 17.95
MC+ 34.87 31.87 30.49 29.18 27.94 26.75 25.61 24.53 23.50 21.64 20.83 19.46 18.07
AF(xavg) 35.04 31.93 30.52 29.19 27.93 26.74 25.60 24.52 23.48 21.53 20.61 18.86 16.45
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Table 5.2: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
31m33s) and the approximation AF(xavg) expressed as a function of strikes for T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

MC 36.36 33.49 31.01 29.89 27.85 26.91 26.02 25.17 23.61 22.22 20.43 19.44 17.32
MC- 36.34 33.48 31.01 29.89 27.84 26.90 26.01 25.17 23.61 22.22 20.43 19.43 17.16
MC+ 36.37 33.49 31.02 29.90 27.85 26.91 26.02 25.17 23.62 22.23 20.44 19.45 17.47
AF(xavg) 36.56 33.58 31.05 29.92 27.85 26.90 26.00 25.15 23.57 22.12 20.16 18.97 15.83

Table 5.3: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
1h4m11s) and the approximation AF(xavg) expressed as a function of strikes for T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

MC 37.22 34.46 32.19 30.26 28.59 27.83 26.44 25.20 24.07 22.58 20.89 19.16 16.72
MC- 37.20 34.45 32.18 30.26 28.59 27.83 26.44 25.19 24.07 22.58 20.88 19.14 16.26
MC+ 37.24 34.47 32.20 30.27 28.60 27.84 26.45 25.20 24.08 22.59 20.89 19.18 17.05
AF(xavg) 37.32 34.52 32.22 30.28 28.59 27.83 26.43 25.18 24.04 22.52 20.76 18.87 15.84

5.6 Appendix

5.6.1 Change of model

In this section, we justify why we work without loss of generality with the model (5.1)-(5.2). If we
consider a general time-dependent CIR process, the formulation becomes:

dXt =Σ(t,Xt)
√

Yt(dWt −
Σ(t,Xt)

√
Yt

2
dt), X0 = x0,

dYt =κt(θt −Yt)dt +γt
√

YtdBt, Y0 = v0 > 0,

with a correlation (ρt)t∈[0,T ] between W and B. We assume the next hypothesis:
(P)’: κ, θ and γ are positive, measurable and bounded on [0,T ] with γin f > 0, and 2( κθ

γ2 )inf ≥ 1. Now set

Vt = e
∫ t

0 κsdsYt. A direct application of the Itô’s formula leads to:

dVt = (e
∫ t

0 κsdsκtθt)dt + (e
1
2

∫ t
0 κsdsξt)

√
VtdBt, V0 = v0 > 0,

while the dynamic of X becomes:

dXt = Σ(t,Xt)e−
1
2

∫ t
0 κsds

√
Vt(dWt −

Σ(t,Xt)e−
1
2

∫ t
0 κsds √Vt

2
dt), X0 = x0.

Setting αt = e
∫ t

0 κsdsκtθt and ξt = e
1
2

∫ t
0 κsdsγt for any t ∈ [0,T ], σ(t, x) = Σ(t, x)e−

1
2

∫ t
0 κsds for any (t, x) ∈

[0,T ]×R, we obtain a formulation equivalent to (5.1)-(5.2). Observe that (P′)⇐⇒ (P) and that the local
volatility functions σ and Σ have the same space regularity.

5.6.2 Explicit computation of the corrective terms of Theorem 5.2.2.1

We give the full derivation of the corrective terms in the approximation (5.9) of Theorem 5.2.2.1. We
begin with the proof of Lemma 5.2.3.1 and next we give the details of the computation of the corrective
terms.
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Table 5.4: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
1h31m44s) and the approximation AF(xavg) expressed as a function of strikes for T = 3Y .

Strikes 0.35 0.50 0.55 0.70 0.80 0.90 1 1.10 1.25 1.45 1.75 2.05 2.70

MC 39.08 34.73 33.59 30.74 29.19 27.84 26.65 25.57 24.16 22.55 20.57 18.97 16.32
MC- 39.04 34.71 33.58 30.74 29.19 27.84 26.64 25.57 24.15 22.54 20.55 18.94 15.58
MC+ 39.11 34.74 33.60 30.75 29.20 27.85 26.65 25.58 24.16 22.55 20.58 19.00 16.79
AF(xavg) 39.13 34.76 33.62 30.76 29.20 27.85 26.65 25.58 24.15 22.52 20.49 18.82 15.97

Table 5.5: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
2h29m18s) and the approximation AF(xavg) expressed as a function of strikes for T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

MC 41.27 36.15 33.81 31.93 29.68 28.44 26.86 25.52 24.01 22.45 20.25 18.53 15.59
MC- 41.21 36.12 33.79 31.91 29.67 28.43 26.85 25.51 24.01 22.45 20.23 18.48 ND
MC+ 41.33 36.18 33.82 31.94 29.69 28.45 26.86 25.53 24.02 22.46 20.27 18.57 16.76
AF(xavg) 41.27 36.16 33.82 31.94 29.69 28.45 26.87 25.53 24.03 22.46 20.24 18.51 15.44

5.6.2.1 Proof of Lemma 5.2.3.1

We proceed by induction. One needs the following technical result:

Lemma 5.6.2.1. Let (Mt)t∈[0,T ] be a square integrable and predictable process, ( ft)t∈[0,T ] be a measur-
able and bounded deterministic function and ϕ ∈ C∞0 (R). Then, we have:

E
(
ϕ(

∫ T

0
ftdWt)

∫ T

0
MtdWt

)
=E

(
ϕ(1)(

∫ T

0
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∫ T

0
ft Mtdt

)
,

E
(
ϕ(

∫ T

0
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∫ T

0
MtdBt

)
=E

(
ϕ(1)(

∫ T

0
ftdWt)

∫ T

0
ρt ft Mtdt

)
Proof. These results directly come from the duality relationship of the Malliavin calculus (see Lemma
1.2.1 in [Nualart 2006]). �

If N = 1 and IN = 0, there is nothing to prove. If N = 1 and IN ∈ {1,2}, Lemma 5.6.2.1 is a particular

case of Lemma 5.2.3.1 noting that ∀i ∈ N, E
(
ϕ(i)(

∫ T
0 ftdWt)

)
= G

ϕ
i (

∫ T
0 ftdWt), thanks to the regularity of

ϕ. Suppose that the formula (5.18) is true for N ≥ 2. Then apply Lemma 5.6.2.1 if IN+1 ∈ {1,2} to obtain:
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where at the last equality we have used the fact that
∫ T

0 gtZtdt =
∫ T

0 (
∫ T

t gsds)dZt for any continuous
semi-martingale Z starting from 0 and any measurable and bounded deterministic function g (apply the
Itô’s formula to the product (

∫ T
t gsds)Zt). We conclude without difficulty with the induction hypothesis

and leave the details to the reader.
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Table 5.6: Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time:
4h54m27s) and the approximation AF(xavg) expressed as a function of strikes for T = 10Y .

Strikes 0.15 0.25 0.35 0.50 0.65 0.80 1 1.20 1.50 1.95 2.75 3.65 6.30

MC 44.71 39.62 36.40 33.11 30.77 28.97 27.09 25.59 23.81 21.79 19.28 17.33 15.31
MC- 44.60 39.56 36.36 33.08 30.75 28.95 27.07 25.58 23.80 21.78 19.25 17.22 ND
MC+ 44.83 39.69 36.44 33.14 30.79 28.98 27.10 25.60 23.82 21.81 19.31 17.43 16.28
AF(xavg) 44.69 39.63 36.41 33.12 30.78 28.98 27.10 25.61 23.83 21.81 19.28 17.30 13.70

5.6.2.2 Calculus of the corrective terms

We recall our order 3 approximation:

E[h(XP
T )] +E[h(1)(XP

T )X1,T ] +E[h(1)(XP
T )

X2,T

2
] +

1
2
E[h(2)(XP

T )X2
1,T ].

We compute each correction term separately, and pay attention to the different nature contributions in
these corrections (pure local volatility part, pure stochastic volatility part and both local and stochastic
part).

BStep 1: contribution with X1,T . Apply the Lemma 5.2.3.1 to ϕ(·) = h(1)(x0−
1
2
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and:

X1,T =

∫ T

0

(
σ(1)

t2 λt2

∫ t2

0
σt1λt1(dWt1 −

σt1λt1

2
dt1) +

σt2

2λt2

∫ t2

0
ξt1λt1dBt1

)
(dWt2 −σt2λt2dt2), (5.74)

to get:
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where:
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BStep 2: contribution with X2,T . In view of (5.14)-(5.12)-(5.13)-(5.15)-(5.16), we have:
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where applying the Itô’s formula:
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(5.74)-(5.76)-(5.77)-(5.78) and applications of Lemma 5.2.3.1 allow to obtain:
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3(XP
T ) +
Gh

2(XP
T )

2
]

+ (Cls
2,T +Cls

3,T )[
Gh

4(XP
T )

2
−

5Gh
3(XP

T )
4

+
Gh

2(XP
T )

2
] +Cls

1,T [
Gh

2(XP
T )

2
−Gh

1(XP
T )]

+Cl
3a,T [−Gh

3(XP
T ) +Gh

2(XP
T )−
Gh

1(XP
T )

4
]−

Cl
2a,T

2
Gh

1(XP
T ) +

Cs
2,T

4
[Gh

4(XP
T )−Gh

3(XP
T )],

where:

Cl
2a,T = ω(σ2v, (σ(1))2v)T

0 , Cl
2b,T = ω(σ2v,σσ(2)v)T

0 , Cl
3a,T = ω(σ2v,σ2v, (σ(1))2v)T

0 ,

Cl
3b,T = ω(σ2v,σ2v,σσ(2)v)T

0 , Cl
4,T = ω(σ2v,σσ(1)v,σσ(1)v)T

0 , Cs
2,T = ω(ρξσv,ρξσ,σ2)T

0 ,

Cls
1,T = ω(ρξσv,σσ(1))T

0 , Cls
2,T = ω(ρξσv,σ2v,σσ(1))T

0 , Cls
3,T = ω(σ2v,ρξσv,σσ(1))T

0 ,

Cls
4,T = ω(ρξσv,σ2,σσ(1)v)T

0 .

BStep 3: contribution with X2
1,T . Starting from (5.14) and applying the Itô’s formula we have:

1
2

X2
1,T =

∫ T

0
X1,t((XP

t − x0)σ(1)
t λt +

V1,tσt

2λt
)(dWt −σtλtdt) (5.80)

+
1
2

∫ T

0
((XP

t − x0)2(σ(1)
t )2vt + (XP

t − x0)V1,tσtσ
(1)
t )dt +

1
8

∫ T

0

V2
1,t

vt
σ2

t dt,

where:

X1,t(XP
t − x0) =

∫ t

0
[(XP

t1 − x0)2σ(1)
t1 λt1 +

(XP
t1 − x0)V1,t1σt1

2λt1
](dWt1 −σt1λt1dt1)

+

∫ t

0
X1,t1σt1λt1(dWt1 −

σt1λt1

2
dt1) +

∫ t

0
[(XP

t1 − x0)σt1σ
(1)
t1 vt1 +

V1,t1

2
σ2

t1]dt1, (5.81)

X1,tV1,t =

∫ T

0
[(XP

t1 − x0)V1,t1σ
(1)
t1 λt1 +

V2
1,t1
σt1

2λt1
](dWt1 −σt1λt1dt1) +

∫ t

0
X1,t1ξt1λt1dBt1

+

∫ t

0
ρt1ξt1[(XP

t1 − x0)σ(1)
t1 vt1 +

V1,t1σt1

2
]dt1, (5.82)

V2
1,t =2

∫ t

0

(∫ t

0
ξt1λt1dBt1

)
ξt2λt2dBt2 +

∫ t

0
ξ2

t vtdt (5.83)

From Lemma 5.2.3.1 and (5.81)-(5.76)-(5.74)-(5.77) it follows that:

E
[
h(2)(XP

T )
∫ T

0
X1,t(XP

t − x0)σ(1)
t λt(dWt −σtλtdt)

]
(5.84)

=Cl
11a,T [2Gh

6(XP
T )−6Gh

5(XP
T ) +

13Gh
4(XP

T )
2

−3Gh
3(XP

T ) +
Gh

2(XP
T )

2
] +Cl

4,T [Gh
4(XP

T )−2Gh
3(XP

T ) +Gh
2(XP

T )]

+ (Cls
7a,T +Cls

7b,T )[
Gh

6(XP
T )

2
−

5Gh
5(XP

T )

4
+Gh

4(XP
T )−
Gh

3(XP
T )

4
] +Cls

4,T [
Gh

4(XP
T )

2
−Gh

3(XP
T ) +
Gh

2(XP
T )

2
]
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+Cl
11b,T [Gh

6(XP
T )−3Gh

5(XP
T ) +

13Gh
4(XP

T )
4

−
3Gh

3(XP
T )

2
+
Gh

2(XP
T )

4
] +Cls

7c,T [
Gh

6(XP
T )

2
−

5Gh
5(XP

T )

4
+Gh

4(XP
T )

−
Gh

3(XP
T )

4
] +Cl

4,T [Gh
4(XP

T )−
3Gh

3(XP
T )

2
+
Gh

2(XP
T )

2
] +

Cls
4,T

2
[Gh

4(XP
T )−Gh

3(XP
T )].

where:

Cl
11a,T = ω(σ2v,σ2v, (σσ(1))v, (σσ(1))v)T

0 , Cl
11b,T = ω(σ2v, (σσ(1))v,σ2v, (σσ(1))v)T

0 ,

Cls
7a,T = ω(ρξσv,σ2v,σ2,σσ(1)v)T

0 , Cls
7b,T = ω(σ2v,ρξσv,σ2,σσ(1)v)T

0 ,

Cls
7c,T = ω(ρξσv,σ2,σ2v,σσ(1)v)T

0 .

Similarly, using Lemma 5.2.3.1 and (5.82)-(5.77)-(5.83)-(5.74), we have:

1
2
E
[
h(2)(XP

T )
∫ T

0

X1,tV1,tσt

λt
(dWt −σtλtdt)

]
(5.85)

=(Cls
7d,T +Cls

7e,T )[
Gh

6(XP
T )

2
−

5Gh
5(XP

T )

4
+Gh

4(XP
T )−
Gh

3(XP
T )

4
] +Cls

5,T [
Gh

4(XP
T )

2
−Gh

3(XP
T ) +
Gh

2(XP
T )

2
]

+
Cs

4a,T

2
[Gh

6(XP
T )−2Gh

5(XP
T ) +Gh

4(XP
T )] +

Cs
3,T

4
[Gh

4(XP
T )−2Gh

3(XP
T ) +Gh

2(XP
T )]

+Cls
7 f ,T [
Gh

6(XP
T )

2
−

5Gh
5(XP

T )

4
+Gh

4(XP
T )−
Gh

3(XP
T )

4
] +

Cs
4b,T

4
[Gh

6(XP
T )−2Gh

5(XP
T ) +Gh

4(XP
T )]

+Cls
6,T [
Gh

4(XP
T )

2
−

3Gh
3(XP

T )
4

+
Gh

2(XP
T )

4
] +

Cs
2,T

4
[Gh

4(XP
T )−Gh

3(XP
T )].

where:

Cs
2,T = ω(ρξσv,ρξσ,σ2)T

0 , Cs
3,T = ω(ξ2v,σ2,σ2)T

0 ,

Cs
4a,T = ω(ρξσv, ξρvσ,σ2,σ2)T

0 , Cs
4b,T = ω(ρξvσ,σ2,ρξσv,σ2)T

0 ,

Cls
5,T = ω(ρξσv,σσ(1)v,σ2)T

0 , Cls
6,T = ω(σ2v,ρξσ(1)v,σ2)T

0 ,

Cls
7d,T = ω(ρξσv,σ2v,σσ(1)v,σ2)T

0 , Cls
7e,T = ω(σ2v,ρξσv,σσ(1)v,σ2)T

0 ,

Cls
7 f ,T = ω(σ2v,σσ(1)v,ρξσv,σ2)T

0 .

Then using again Lemma 5.2.3.1 and (5.76)-(5.77) it comes:

1
2
E
[
h(2)(XP

T )
∫ T

0
((XP

t − x0)2(σ(1)
t )2vt + (XP

t − x0)V1,tσtσ
(1)
t )dt

]
(5.86)

=Cl
3a,T [Gh

4(XP
T )−Gh

3(XP
T ) +
Gh

2(XP
T )

4
] +

Cl
2a,T

2
Gh

2(XP
T ) + (Cls

2,T +Cls
3,T )[
Gh

4(XP
T )

2
−
Gh

3(XP
T )

4
] +

Cls
1,T

2
Gh

2(XP
T ).

Finally, we sum the contributions (5.84)-(5.85)-(5.86) to obtain in view of (5.80):

1
2
E
[
h(2)(XP

T )X2
1,T ]−

1
8
E[h(2)(XP

T )
∫ T

0

V2
1,t

vt
σ2

t dt
]

(5.87)

=(2Cl
11a,T +Cl

11b,T )[Gh
6(XP

T )−3Gh
5(XP

T ) +
13Gh

4(XP
T )

4
−

3Gh
3(XP

T )
2

+
Gh

2(XP
T )

4
]

+Cl
4,T [2Gh

4(XP
T )−

7Gh
3(XP

T )
2

+
3Gh

2(XP
T )

2
] +Cls

4,T [Gh
4(XP

T )−
3Gh

3(XP
T )

2
+
Gh

2(XP
T )

2
]

+ (Cls
7a,T +Cls

7b,T +Cls
7c,T +Cls

7d,T +Cls
7e,T +Cls

7 f ,T )[
Gh

6(XP
T )

2
−

5Gh
5(XP

T )

4
+Gh

4(XP
T )−
Gh

3(XP
T )

4
]
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+Cls
5,T [
Gh

4(XP
T )

2
−Gh

3(XP
T ) +
Gh

2(XP
T )

2
] +

Cs
3,T

4
[Gh

4(XP
T )−2Gh

3(XP
T ) +Gh

2(XP
T )] +

Cs
2,T

4
[Gh

4(XP
T )−Gh

3(XP
T )]

+ (2Cs
4a,T +Cs

4b,T )[
Gh

6(XP
T )

4
−
Gh

5(XP
T )

2
+
Gh

4(XP
T )

4
] +Cls

6,T [
Gh

4(XP
T )

2
−

3Gh
3(XP

T )
4

+
Gh

2(XP
T )

4
]

+Cl
3a,T [Gh

4(XP
T )−Gh

3(XP
T ) +
Gh

2(XP
T )

4
] +

Cl
2a,T

2
Gh

2(XP
T ) + (Cls

2,T +Cls
3,T )[
Gh

4(XP
T )

2
−
Gh

3(XP
T )

4
] +

Cls
1,T

2
Gh

2(XP
T ).

BStep 4: some mathematical reductions. There are some relations between the expansion coeffi-
cients.The reader can easily verify that:

(Cs
1,T )2

2
=2Cs

4a,T +Cs
4b,T ,

(Cl
1,T )2

2
=2Cl

11a,T +Cl
11b,T ,

Cl
1,TCs

1,T =Cls
7a,T +Cls

7b,T +Cls
7c,T +Cls

7d,T +Cls
7e,T +Cls

7 f ,T .

The first identity is proved in [Benhamou 2010b, section 5.4] and the others are similar. In addition we
set Cl

2,T = Cl
2a,T +Cl

2b,T and Cl
3,T = Cl

3a,T +Cl
3b,T .

BFinal step. Taking advantage of the above simplifications and gathering the different contributions
(5.75)-(5.79)-(5.87) of steps 1−2−3, we obtain the announced formula (5.9), putting together the cor-
rective terms according to the order of the Greeks.

5.6.3 Computations of derivatives of CallBS w.r.t the log spot and the volatility

In the following Proposition, we give the derivatives at any order of CallBS w.r.t. x:

Proposition 5.6.3.1. Let x,k ∈ R and y > 0. For any integer n ≥ 1, we have:

∂n
xnCallBS(x,y,k) =exN(d1(x,y,k)) +1n≥2 exN ′(d1(x,y,k))

n−1∑
j=1

(
n−1

j

)
(−1) j−1 H j−1(d1(x,y,k))

y
j
2

,

where (H j) j∈N are the Hermite polynomials defined by H j(x) = (−1) jex2/2∂
j
x j(e−x2/2) ∀( j, x) ∈ N×R.

In the next Proposition, we provide the formulas of the VegaBS and the VommaBS:

Proposition 5.6.3.2. Let x,k ∈ R, σ > 0 and T > 0. We have:

VegaBS(x,σ2T,k) =∂σCallBS(x,σ2T,k) = ex
√

TN ′(d1(x,σ2T,k)),

VommaBS(x,σ2T,k) =∂σVegaBS(x,σ2T,k) =
VegaBS(x,σ2T,k)

σ
d1(x,σ2T,k)d2(x,σ2T,k)

=
VegaBS(x,σ2T,k)

σ
[
(x− k)2

σ2T
−
σ2T

4
].

We finally state relations (obtained with Mathematica) between the derivatives of CallBS w.r.t. x and
the VegaBS and the VommaBS:

Proposition 5.6.3.3. Let x,k ∈ R, σ > 0 and T > 0. We have:

(∂2
x2 −∂x)CallBS(x,σ2T,k) =

VegaBS(x,σ2T,k)
σT

,

(∂3
x3 −

3
2
∂2

x2 +
1
2
∂x)CallBS(x,σ2T,k) = −VegaBS(x,σ2T,k)

(x− k)
σ3T 2 ,

(∂4
x4 −2∂3

x3 +
5
4
∂2

x2 −
1
4
∂x)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)

[ (x− k)2

σ5T 3 −
1

σ3T 2

]
,
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(3∂4
x4 −6∂3

x3 +
7
2
∂2

x2 −
1
2
∂x)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)

[
3

(x− k)2

σ5T 3 −
3

σ3T 2 −
1

4σT
]
,

(
1
2
∂6

x6 −
3
2
∂5

x5 +
13
8
∂4

x4 −
3
4
∂3

x3 +
1
8
∂2

x2)CallBS(x,σ2T,k)

=VegaBS(x,σ2T,k)
[
−3

(x− k)2

σ7T 4 +
1

8σ3T 2 +
3

2σ5T 3

]
+

1
2

VommaBS(x,σ2T,k)
(x− k)2

σ6T 4 ,

(
1
2
∂3

x3 −
1
2
∂2

x2)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)[−
(x− k)
2σ3T 2 +

1
4σT

],

(
1
2
∂4

x4 −
1
2
∂3

x3)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)[
(x− k)2

2σ5T 3 +
1

8σT
−

1
2σ3T 2 −

(x− k)
2σ3T 2 ],

(
1
4
∂4

x4 −
1
2
∂3

x3 +
1
4
∂2

x2)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)[
(x− k)2

4σ5T 3 −
1

16σT
−

1
4σ3T 2 ],

(∂4
x4 −

3
2
∂3

x3 +
1
2
∂2

x2)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)[
(x− k)2

σ5T 3 −
1

σ3T 2 −
(x− k)
2σ3T 2 ],

(
3
2
∂4

x4 −
5
2
∂3

x3 +∂2
x2)CallBS(x,σ2T,k) = VegaBS(x,σ2T,k)[

3(x− k)2

2σ5T 3 −
3

2σ3T 2 −
(x− k)
2σ3T 2 −

1
8σT

],

(
1
2
∂6

x6 −
5
4
∂5

x5 +∂4
x4 −

1
4
∂3

x3)CallBS(x,σ2T,k)

=VegaBS(x,σ2T,k)[−3
(x− k)2

σ7T 4 +
3

2σ5T 3 +
3(x− k)
4σ5T 3 +

1
8σ3T 2 ]

+
VommaBS(x,σ2T,k)

2
[
(x− k)2

σ6T 4 −
(x− k)
2σ4T 3 ],

(
1
8
∂6

x6 −
1
4
∂5

x5 +
1
8
∂4

x4)CallBS(x,σ2T,k)

=VegaBS(x,σ2T,k)[−3
(x− k)2

4σ7T 4 +
3

8σ5T 3 +
3(x− k)
8σ5T 3 ] +

VommaBS(x,σ2T,k)
2

[−
(x− k)
2σ3T 2 +

1
4σT

]2.

5.6.4 Applications of the implied volatility expansion at mid-point for time-independent
local and stochastic volatility models with CIR-type variance

We specify in this section the form of the implied volatility approximation at mid point when considering
the time-independent local and stochastic volatility model with CIR-type variance:

dXt = σ(Xt)
√

Yt[dWt −
σ(Xt)

√
Yt

2
dt], X0 = x0,

dYt = κ(θ−Yt)dt + ξ
√

YtdBt, Y0 = v0,

d〈W,B〉t = ρdt.

In view of 5.6.1, we can apply our different price and implied volatility expansion theorems by consid-
ering in the various corrective coefficients C (defined in Theorem 5.2.2.1 and Definitions 5.4.1.1 and
5.4.2.1) the time dependent volatility function σ(t, x) = σ(x)e−

κt
2 , the time dependent deterministic vari-

ance function vt = v0 + θ(eκt −1) and the time-dependent volatility of volatility function ξt = ξe
κt
2 . Thus

the coefficients are obtained by simple iterated integrations of exponential functions. Using Mathemat-
ica, we derive the following explicit expressions:

Proposition 5.6.4.1. For σ(t, x) = σ(x)e−
κt
2 , vt = v0 + θ(eκt −1), ξt = ξe

κt
2 and ρt = ρ, one has:∫ T

0
vte−κtdt =vT, Cl

1,T (x) =
σ3(x)σ(1)(x)v2T 2

2
,
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Cl
2,T (x) =

σ2(x)[(σ(1))2 +σσ(2)](x)v2T 2

2
, Cl

3,T (x) =Cl
9,T (x) =

σ4(x)[(σ(1))2 +σσ(2)](x)v3T 3

6
,

Cl
4,T (x) =

σ4(x)(σ(1))2(x)v3T 3

6
, Cl

10,T (x) =
σ6(x)(σ(1))2(x)v4T 4

24
,

Cl
5,T (x) =[(σ(1))2 +σσ(2)](x)vT, Cl

6,T (x) =
[σσ(1)]2(x)v2T 2

2
,

Cs
1,T (x) =

ρξσ3(x)Rs
1T 2

2
, Cs

2,T (x) =
ρ2ξ2σ4(x)Rs

2T 3

6
,

Cs
3,T (x) =

ξ2σ4(x)Rs
3T 3

6
, Cls

1,T (x) =Cls
9,T (x) =

ρξσ2(x)σ(1)(x)Rs
1T 2

2
,

Cls
2,T (x) =Cls

5,T (x) =
ρξσ4(x)σ(1)(x)Rls

1 T 3

6
, Cls

3,T (x) =Cls
6,T (x) = Cls

10,T (x) =
ρξσ4(x)σ(1)(x)Rls

2 T 3

6
,

Cls
4,T (x) =Cls

8,T (x) =
ρξσ4(x)σ(1)(x)Rls

3 T 3

6
,

where:

v =(v0− θ)
e−κT

(
−1 + eκT

)
κT

+ θ,

Rs
1 =(v0− θ)

e−κT
(
−2κT + 2eκT −2

)
κ2T 2 + θ

e−κT
(
2κTeκT −2eκT + 2

)
κ2T 2 ,

Rs
2 =(v0− θ)

e−κT
(
−3κT (κT + 2) + 6eκT −6

)
κ3T 3 + θ

e−κT
(
6eκT (κT −2) + 6κT + 12

)
κ3T 3 ,

Rs
3 =(v0− θ)

e−2κT
(
−6eκT κT + 3e2κT −3

)
κ3T 3 + θ

e−2κT
(
12eκT + 3e2κT (2κT −3)−3

)
2κ3T 3 ,

Rls
1 =

3
2κ3T 3

{
e−2κT (v0− θ)

(
v0(3 + 2κT )− θ(5 + 2κT )

)
+ 2e−κT

(
θ2(4 + κT (6 + κT ))

− θv0(−2 + κT (4 + κT ))−2v2
0
)
+ θ2(4κT −13) + 4θv0 + v2

0
}
,

Rls
2 =

3
κ3T 3

{
− e−2κT (v0− θ)2 + e−κT

(
θ2(−4 + κT (−2 + κT ))− θv0(−2 + κT (−4 + κT ))−2κTv2

0
)

+ θ2(5 + κT (−4 + κT )
)
+ 2θv0(−2 + κT ) + v2

0
}
,

Rls
3 =

3
2κ3T 3

{
e−2κT (v0− θ)

(
v0(3 + 2κT )− θ(5 + 2κT )

)
−4e−κT (v0−2θ)2

+ θ2(11 + 2κT (−4 + κT )
)
+ 4θv0(−2 + κT ) + v2

0
}
.

We have in addition the relation:

vT
Rs

1T 2

2
=

(Rls
1 + Rls

2 + Rls
3 )T 3

6
. (5.88)

Using the relation (5.88), one gets without difficulty:

Cls
8,T (x)

σ̄3
xT 2

−
3Cls

4,T (x)

2σ̄3
xT 2

−
Cls

5,T (x)

2σ̄3
xT 2
−

Cls
6,T (x)

2σ̄3
xT 2

+
3(Cl

1,TCs
1,T )(x)

2σ̄5
xT 3

=
(Cl

1,TCs
1,T )(x)

2σ̄5
xT 3

,

−
Cls

4,T (x)

8σ̄xT
−

Cls
5,T (x)

8σ̄xT
+

(Cl
1,TCs

1,T )(x)

8σ̄3
xT 2

=
Cls

6,T (x)

8σ̄xT
−

(Cl
1,TCs

1,T )(x)

8σ̄3
xT 2

,

−
(Cls

2,T +Cls
3,T )(x)
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Then the above mathematical reductions allow to obtain the following expressions for the coefficients γ
and π defined in Definitions 5.4.1.1 and 5.4.2.1:

Proposition 5.6.4.2. For σ(t, x) = σ(x)e−
κt
2 , vt = v0 + θ(eκt −1), ξt = ξe
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2 and ρt = ρ, one has:
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Chapter 6

Smile and Skew behaviors for the
CEV-Heston model

The aim of this Chapter is to study the impact of the CEV-Heston model parameters on the smile and
the skew behaviors w.r.t. the maturity and the strike in order to illustrate numerically the discussion of
the previous Chapter 5 Section 5.4. This is done for time-independent parameters using the third order
implied volatility approximation formula at mid-point (see Chapter 5 Theorem 5.4.2.1 and Equation
5.72). We use our approximation formula for the sake of brevity instead of performing various time
costing Monte Carlo simulations and we are confident with the fact that although not perfectly equal to
the true implied volatilities, the estimations provided by our expansion formula are enough accurate to
give a good overview of the influence of the model parameters.
We mainly focus on the volatility of volatility ξ, the skew parameter β and the correlation ρ. We allow
these parameters to vary (independently or simultaneously) and we fix during all the tests the values of
x0, µ, v0, θ (connected to the level of the long term variance at spot) and κ (which plays a similar role
that the volatility of volatility but in the inverse way). We choose the following values:

x0 =0, µ =25%, v0 =1, θ =1.2, κ =3.

The maturity varies from T = 3M to T = 10Y and the log-moneyness to m = −0.8 to m = 0.8. We
start from the symmetrical situation given with the choice of the values ξ = 1.5, β = 1 and ρ = 0 and
then we study the impact of modifications of these values on the smile and the skew. The approximation
of the implied volatility surface in this symmetrical situation is given in Figure 6.1 and we notice a
marked smile symmetric w.r.t. the log-moneyness for short maturity (this confirms the property proved
in [Renault 1996]). The smile flattens for long maturity and the long term volatility converges to the
value µ

√
θ ≈ 27.40% as it is proved in [Lewis 2000, Chapter 6].
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Figure 6.1: Implied Black-Scholes volatilities written as function of log-moneyness and maturities.
Parameters: ξ = 1.5, β = 1 and ρ = 0.

BImpact of the skew parameter β. We remark from the figure 6.2 that:

• When β decreases, the center of the short maturity smile is shifted to the right and a negative skew
progressively appears.

• For long maturities and small values of β, we observe an important negative skew whereas the
curvature decreases. That justifies the name of "skew parameter" because β induces a negative
skew at both short and long maturity.

Figure 6.2: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (on
the left for β = 0.8, at the center for β = 0.5 and on the right for β = 0.2). Other parameters: ξ = 1.5 and
ρ = 0.
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BImpact of the correlation ρ. We notice on figure 6.3 that:

• For negative values of ρ and short maturity, the impact of the correlation is close to the impact
of the skew parameter β. We nevertheless mention that when ρ increases in absolute value, the
curvature quickly decreases and for ρ close to −1, the curve seems to become concave.

• For positive values of ρ, the center of the short maturity smile is shifted to the left. More ρ is close
to 1, more the smile shape changes from a symmetric smile to an inverted skew slightly concave.

• For all the correlations, we observe for long maturity an almost flat curve approximately equal to
µ
√
θ ≈ 27.40%. We therefore interpret ρ as a short term skew parameter.

Figure 6.3: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (from
left to right and from top to bottom: ρ = −20%, ρ = −50%, ρ = −70%, ρ = 20%, ρ = 50%, ρ = 70%).
Other parameters: ξ = 1.5 and β = 1.

BImpact of the volatility of volatility ξ. We notice on figure 6.4 that:

• For small values of ξ, the short term implied volatility is not far from a flat surface. When ξ

increases, the smile for short maturity progressively appears and we notice a U shape.

• For long maturities , the implied volatility flattens to the value µ
√
θ ≈ 27.40% whatever is the

volatility of volatility. This confirms that ξ is a short term smile or curvature parameter.

Figure 6.4: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (on
the left for ξ = 0.6 and on the right for ξ = 3). Other parameters: β = 1 and ρ = 0.
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BJoint impact of ξ and β. We notice on figure 6.5 that:

• For small values of ξ and β, we observe an important negative skew at both short and long maturity.
The surface is close to an inclined plane and we retrieve the features of pure local volatiliy models.

• For large ξ and small β, we observe for short maturity and negative log-moneyness a negative skew
(the curvature seems less emphasized in this left side) whereas the smile is more noticeable on the
right side: the curve is pulled up with a strong convexity. For long maturity only the influence of
β is visible and we observe a quite important negative skew.

Figure 6.5: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (on
the left for ξ = 0.6 and on the right for ξ = 3). Other parameters: β = 0.2 and ρ = 0.

BJoint impact of ξ and ρ. We notice on figure 6.6 that:

• For ξ close to 0 and ρ close to −1, there is an important negative skew for short maturity, skew
which vanishes for long maturity.

• When ξ increases, the negative skew is more emphasized for short maturity what seems to indicate
that, when ρ is large enough (in absolute value), its impact prevails over the influence of ξ and
that increasing ξ emphasizes the skew. As expected the implied volatility curve flattens for long
maturity.

Figure 6.6: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (on
the left for ξ = 0.6 and on the right for ξ = 3). Other parameters: β = 1 and ρ = −0.7.

BJoint impact of ρ and β. We notice on figure 6.7 that:

• For small β and ρ close to −1 we observe for short maturity a very important negative skew as if
the influence of β and ρ were added. At long maturity, it remains only the influence of β and the
skew is less emphasized.
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• For ρ close to zero, the influences of β and ξ prevail. We are close to the behaviour observed on
figure 6.5 right-side.

• For ρ close to 1, we notice for short maturity a positive skew du to the important correlation which
the influence dominates the impact of β and at long maturity an important negative skew due to
β. We thus observe a twisted implied volatility surface and we do not know if this behaviour may
correspond to something observable in financial markets.

Figure 6.7: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (from
left to right and from top to bottom: ρ = −70%, ρ = −50%, ρ = −20%, ρ = 20%, ρ = 50%, ρ = 70%).
Other parameters: ξ = 1.5 and β = 0.5.
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BJoint impact of ξ, ρ and β. We notice on figures 6.8 and 6.9 that:

• When ξ is close to 0, ρ close to 1 and β = 0.5, we observe an almost flat curve for short maturity
as if the impact of ρ (reduced by the small value of ξ) was of the same magnitude of the impact of
β but in the opposite way, so that the both influences are cancelled. For long maturities, a negative
skew appears due to β.

• When we fix ρ to 0.7, the more ξ is large and the more β is close to 1, the more the positive skew
is important for short maturity. For long maturity the negative skew seems to depend only on β.

• When we fix ξ to 3 and β to 0.5 and allow ρ to vary from −0.6 to −0.3 (10% per 10%), the
short-term negative skew progressively becomes less emphasized and a smile with center slightly
centred on the right progressively appears. It remains a negative skew for long maturities only due
to β.

Figure 6.8: Implied Black-Scholes volatilities written as function of log-moneyness and maturities.
From left to right and from top to bottom: (ξ = 0.6, ρ = 0.7, β = 0.5), (ξ = 2.5, ρ = 0.7, β = 0.5), (ξ = 1.5,
ρ = 0.7, β = 0.2), (ξ = 2.5, ρ = 0.7, β = 0.2).
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Figure 6.9: Implied Black-Scholes volatilities written as function of log-moneyness and maturities (from
left to right and from top to bottom: ρ = −60%, ρ = −50%, ρ = −40%, ρ = −30%). Other parameters:
ξ = 3 and β = 0.5.
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We introduce in this Chapter option price expansions for regular barrier options focusing on the
down and out case and deducing from it the down and in case. In the framework of time-dependent
local volatility models, we derive new formulas using a method mixing Itô calculus and PDE approach.
We choose a Gaussian proxy model and express the difference with the local volatility model using
the PDE associated to the Gaussian proxy process. Then we smartly combine expansion of the local
volatility function, Itô calculus, key relations (involving martingales, convolution simplifications) and
PDE arguments to obtain the approximation formulas with tight error estimates using the derivatives of
the Gaussian proxy kernel. The presence of the hitting times complicates the analysis and this framework
has not been very studied in the literature even with pure PDE point of view (because only the joint use of
stochastic analysis and PDE arguments may presumably lead to the key reductions). In order to simplify
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this already quite delicate analysis, we assume that the risk-free rate and the dividend yield are equal to 0
and consider martingale assets. The excellent accuracy of our formulas is illustrated throughout various
numerical experiments.

7.1 Introduction

Barrier options belong to the most popular path-dependent derivatives. For example a down and out
option with level of barrier equal to B, written on the underlying S starting from an initial value greater
than B and with terminal payoff h at the maturity T pays to its owner h(S T ) at time T if the barrier
has not be reached by the underlying by that time. If the asset price hits the barrier, the option expires
worthless. On the contrary, a down and in option expires worthless unless the underlying reaches the
barrier before expiry. Analogously we can define the upper barrier options. Note that in this work we
only consider the case of regular barrier option, i.e. with payoff function equal to zero beyond the level
of the barrier. This is for example the case of a down and out/in Call option with strike greater than the
barrier level. These options present the particularity to have a bounded delta.

BComparison with the literature. The literature on pricing and hedging barrier options is very profuse
and it is obvious that we will not pay tribute to it in just few references. Explicit formulas are available
for the Black-Scholes or Bachelier models because the joint law of the asset price and its running mini-
mum (or maximum) is known. We refer to Reiner et al. [Reiner 1991] for straightforward computations
or to the works of Carr et al. [Carr 1998a] and El Karoui et al. [El Karoui 1999] where the authors use
the reflection principle, which can be seen as a symmetry property of the Brownian motion, to deduce
prices and hedges of barrier options.
In general no closed-form formulas are available for time-dependent local volatility models. If the joint
law of the asset price and its running minimum is not known or if, in a dual point of view, one can
not solve the associated PDE with boundary conditions, one needs to use numerical methods like finite
difference approaches (see Boyle et al. [Boyle 1998]) or sophisticated Monte Carlo simulations (see
Pham [Pham 2010] or Gobet [Gobet 2009] for general reviews). In addition to not being real-time meth-
ods, their application in the context of barrier option is quite delicate in comparison to the plain-vanilla
framework. For example, it is well known that the usual Euler scheme in Monte Carlo simulations
yields to approximations overestimating the exact value because there is no control of the diffusion path
between two successive discrete dates. As a consequence, if we consider a n-time discretization with
the step T

n , we obtain an error between the real barrier option price and the price obtained by the Euler

scheme of order
√

T
n instead of the classical order T

n for standard European options (see [Gobet 2010]).
This is the reason why we find in the literature advanced Monte Carlo schemes (as in the previous cited
references) to improve the discretization order of convergence like Brownian bridge techniques to take
into account eventual exits of the diffusion outside the domain between two consecutive discretization
dates (see [Baldi 1995] or [Gobet 2001]) or methods of shifting the barrier inside the activation zone
of the option to compensate the overestimation bias (see Costantini et al. [Costantini 2006], Gobet and
Menozzi [Gobet 2010] or the works of Broadie et al. [Broadie 1997, Broadie 1999] where on the con-
trary the authors use a continuity correction to price discrete barrier options with continuous barrier
formulas).
An other point of view consists of deriving explicit analytical approximations of continuous-time barri-
ers and this is the purpose of the Chapter. We adapt the Proxy principle developed in [Benhamou 2009]
and [Benhamou 2010a] (which consists roughly speaking in performing a non-asymptotic expansion
of the quantity of interest around a Proxy model) in order to avoid the use of the stochastic analysis
which seems inadequate to handle the hitting times. As a result we provide explicit and accurate ana-
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lytical formulas with tight error estimates (written in terms of the magnitude of the model parameters
and the maturity) for the pricing of regular down barrier options written on an asset following a time-
inhomogeneous diffusion. We firstly concentrate on the down and out case and then easily deduce the
down and in case. By symmetry, all the results can be transposed for regular up barrier options. To the
best of our knowledge, no other analytical and tractable approximation of barrier options prices allowing
to deal with general time-dependent local volatility models is available in the literature. We mention the
very recent work of Kato et al. [Kato 2012] who perform an asymptotic expansion of the solution of
the PDE with Cauchy-Dirichlet boundary condition associated to the expectation to approximate. But
as mentioned before, results are available only for time-homogeneous diffusions and as discussed in
Chapter 2 of the thesis, a PDE error analysis (which is far from straightforward) gives error estimates
only in power of the perturbation parameter ε considering that the other model parameters (magnitude
of the volatility, skew of the local volatility function. . . ) and the maturity have no important asymptotic
whereas the influence of the regularity of the payoff function is not taken into account.
An other approach, very developed in the last decade, is the dual problem of the research of an exact
or at least approximate static hedge which consists to compute or approximate the price of a barrier
option with an European-type contingent claim of the same maturity. See for instance Andersen et al.
[Andersen 2002], Giese et al. [Giese 2007], Maruhn et al. [Maruhn 2009] or Ilhan et al. [Ilhan 2009].
However it has been shown in Bardos et al. [Bardos 2002] that exact static hedging strategies may not be
available although the authors show the existence of an approximate static hedge for any smooth enough
diffusion model, approximate static hedge which has to be computed numerically as in many quoted ref-
erences. More recently, we cite Carr et al. [Carr 2011] in which the authors find for time-homogeneous
diffusions an explicit analytical expression for the payoff function allowing the static hedge under some
regularity assumptions. Some limitations of these methods are: 1)once the payoff function is found, it
remains for pricing issues to effectively compute the price of the vanilla option, which is possible only
if the law of the asset price is known and thus this generally leads to untractable formulas; 2)results
are oftenly available only for time-independent coefficients due to the use of the Laplace transform and
Sturm-Liouville equations (we refer to [Davydov 2001] or [Davydov 2003]).

BFormulation of the problem. In this Chapter, we consider financial products written on a single asset
which the log price at time t is denoted by Xt. We model the dynamic of X through a linear Brownian
motion defined on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P), where T > 0 is a fixed terminal time
and (Ft)0≤t≤T is the completion of the natural filtration of W. We consider that the risk-free rate and the
dividend yield are equal to 0 1 and we directly model the log asset by setting:

Xt = x0 +

∫ t

0
σ(s,Xs)(dWs−

σ(s,Xs)
2

ds). (7.1)

Our main objective is to give an accurate analytic approximation of a down and out regular barrier
option, written as:

E[h(XT )1 inf
t∈[0,T ]

Xt > b] = E[h(XT )1τb>T ], (7.2)

where E stands for the standard expectation operator under the risk neutral probability, b < x0 is the level
of the barrier, h is a locally Lipschitz payoff function such that h(x) = 0, ∀x≤ b and τb = inf{t > 0 : Xt = b}
is the first hitting time of the level b for the process X.
Following the proxy approach developed in [Benhamou 2009] [Benhamou 2010b], the idea is to use a
Gaussian proxy process (XP

t )t∈[0,T ] obtained by freezing the space variable in the coefficient σ:

XP
t = x0 +

∫ t

0
σ(s, x0)(dWs−

σ(s, x0)
2

ds). (7.3)

1The case of non trivial cost of carry seems not to be a straightforward extension and this is left for further research.



170 Chapter 7. Price expansions for regular down barrier options

Similarly, we introduce the first hitting time of the level b for the proxy process XP: τP
b = inf{t > 0 :

XP
t = b}. The practical interest of this proxy is that the joint law of (XP

T , inf
t∈[0,T ]

XP
t ) is known. Heuristi-

cally, this law is expected to be close to the law of (XT , inf
t∈[0,T ]

Xt) if the spatial derivatives of the local

volatility function σ are small, or if |σ|∞ is small, or if the maturity T is short. But we do not only
replace (XT , inf

t∈[0,T ]
Xt) by (XP

T , inf
t∈[0,T ]

XP
t ), we also provide correction terms in order to achieve a higher

accuracy (see Theorems 7.2.2.1 and 7.2.3.1).

BComparison with previous works and contribution of the Chapter. As a difference with pre-
vious works using the proxy approach [Benhamou 2009], [Benhamou 2010b], [Benhamou 2010a],
[Benhamou 2012] or Parts I and II of the thesis, we do not use a parameterization to link the initial
model and the proxy model and we do not employ the stochastic analysis to justify our expansions.
There are two difficulties: firstly the hitting times are not smooth w.r.t. regular perturbations and sec-
ondly one can not directly apply the Malliavin calculus on them because of the indicator function on the
minimum (see [Nualart 2006]) whereas even the minimum of a Brownian motion is only once Malliavin
differentiable (see [Nualart 2006]).
To overcome these difficulties, we follow an approach presented in Chapter 2 Subsection 2.2.2 mixing
Itô calculus and PDE. The idea is to represent the error E[h(XT )1τb>T ]−E[h(XP

T )1τP
b>T ] using the PDE

associated to the proxy:
vP,h

o,T (t, x) = E[h(XP
T )1 inf

s∈[t,T ]
XP

s > b|X
P
t = x].

Then we smartly combine expansion of the local volatility function, Itô calculus, martingale proper-
ties and PDEs to obtain approximation formulas. The calculus of the corrective terms is not anymore
performed using the Malliavin integration by parts formula, which can be view as a static operation
focusing only on the law of a random variables (typically XP

T ), but we follow an approach involving
all the dynamic structure of the processes (Xt)t∈[0,T ] and (XP

t )t∈[0,T ]. If the tools remain more standard,
the explicit derivation of the expansion coefficients is a rather tricky and one has to carefully combine
martingale properties and Itô calculus (this is somewhat related to Bismut-Elworthy-Li formula like in
[Thalmaier 1998] and [Delarue 2003]).
We provide explicit second and third order formulas which coincide with [Benhamou 2010a, Theorems
2.1 and 2.2] if the level of the barrier b tends to −∞. In case of non trivial barrier level, the corrective
terms are composed of new terms of the form E[1τP

b≤T ~ω(m1, ..,mn)T
τP

b
∂i

xiv
P,h
o,T (τP

b ,b)], where ~ω is an inte-

gral operator defined in the following Subsection and (m1(t), ..,mn(t))t∈[0,T ] are functions depending on
σ2 and its spatial derivatives computed at x = x0.

BOutline of the Chapter. The Chapter is organised as follows. In Section 7.2, we state our main ap-
proximation results: in the general time-dependent local volatility framework, we provide order 2 and
order 3 approximations of regular down and out barrier options prices (see Theorems 7.2.2.1-7.2.3.1)
with an estimation of the error justifying the order. Section 7.3 is devoted to the derivation of the ex-
pansion and the justification of the error magnitude. We give in Section 7.4 Corollaries on the pricing
of regular down and in barrier options prices (see Theorems 7.4.0.1-7.4.0.2). Then in Section 7.5 we
apply our approximation formulas to the particular case of regular down barrier Call options and derive
new expansions with the local volatility frozen at mid-point between the log-spot and the log-strike.
In addition, we show that in the time-homogeneous framework, our expansion formulas reduced to to-
tally explicit and very simple expressions and we finally gather numerical experiments illustrating the
high-performance of our approximation formulas. In Appendix 7.6.1 we give some additional results
concerning the Gaussian density and the Gaussian hitting times density (relations between their partial
derivatives and convolution properties). Appendices 7.6.2 and 7.6.3 are devoted to the proof of technical
results.
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7.2 Derivation of the expansion

7.2.1 Notations and definitions

The following notations and definitions are repeatedly used in this Chapter.

BDifferentiation. For any measurable function f of (t, x) ∈ [0,T ]×R, we write if these derivatives have
a meaning: ft(x) = f (t, x) and f (i)

t (x) = ∂i
xi f (t, x). When considering the spatial point x0, we omit if

unambiguous the dependence w.r.t. the spatial component and write ft = f (t, x0) and f (i)
t = ∂i

xi f (t, x0).
For instance we have σt := σ(t, x0) and σ(i)

t := ∂i
xiσ(t, x0).

BTotal variance. We define the local variance function by Σt(x) = σ2
t (x). Then we define the total

variance for the process XP on the period [t,T ] for any t ∈ [0,T ] byVT
t =

∫ T
t Σsds.

B Integral Operator. We define the integral operator ~ω as follows: for any measurable and bounded
function l of t ∈ [0,T ], for any s ≤ t ≤ T , we set:

~ω(l)t
s =

∫ t

s
ludu

For any measurable and bounded functions (l1, · · · , ln), we define its n-times iteration by:

~ω(l1, · · · , ln)t
s = ~ω(l1~ω(l2, · · · , ln).s)

t
s, ∀s ≤ t ≤ T.

The reader should pay attention to the fact that the Definition of the operator ~ω is different from the

previous Chapters. We adopt here a forward convention instead of a backward convention due to the
new methodology employed in the Chapter. For instance, ~ω(l1, l2)T

0 =
∫ T

0 l1(t)
( ∫ t

0 l2(s)ds
)
dt instead of

the old Definition ω(l1, l2)T
0 =

∫ T
0 l1(t)

( ∫ T
t l2(s)ds

)
dt.

B Assumption (H̃σ
x0

) on σ. σ is a bounded measurable function of (t, x) ∈ [0,T ]×R, and three times
continuously differentiable in x with bounded derivatives. Using the notation |σ|∞ = sup

(t,x)∈[0,T ]×R
|σ(t, x)|,

we set:
M1(σ) = max

1≤i≤3
sup

(t,x)∈[0,T ]×R
|∂i

xiσ(t, x)| andM0(σ) = max(|σ|∞,M1(σ)).

In addition, there exists a constant Cσ > 0 such that σinf(x0) = inf
t∈[0,T ]

σt(x0) ≥Cσ.

The reader can notice the stronger ellipticity assumption assumed for the proxy process in comparison
to the previous Chapters where we supposed (Hσ

x0
):

∫ T
0 σ2(x0)dt > 0 (which implies that XP

T is a non-
degenerate Gaussian variable). Our dynamic approach leverages all the trajectory of the proxy process
and our assumption ensures that ∀t ∈ [0,T ], XP

t defined in (7.3) is a non-degenerate Gaussian variable.

B Assumptions on the payoff function h. h belongs to Lip(R,b) the space of real valued locally Lips-
chitz functions such that h(x) = 0 for any x ≤ b. There exists a constant Ch ≥ 0 such that:

|h(x)| ≤CheCh |x|, |
h(y)−h(x)

y− x
| ≤Che

Ch
2 (|x|+|y|) (∀y , x).

In particular, h is a.e. differentiable with |h(1)(x)| ≤CheCh |x| . This space includes the Call payoff function
h(x) = (ex− ek)+ with log-strike k ≥ b.

Remark 7.2.1.1. By symmetry, all the results of the Chapter are naturally extended to regular up barrier
options, i.e. for any payoff function h ∈ Lip(R,b) the space of real valued functions locally Lipschitz null
on [b,+∞]. This space notably includes the Put payoff function h(x) = (ek − ex)+ with log-strike k ≤ b.
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BConstants and error estimates. We use the following notations to state our error estimates throughout
the Chapter:

• "A = O(B)" means that |A| ≤ CB where C stands for a generic constant that is a non-negative
increasing function of T ,M0(σ),M1(σ) and of the oscillation ratio |σ|∞Cσ

.

• Similarly, if A is positive, A ≤c B means that A ≤CB for a generic constant C.

• The Lp-norm of a random variable Z is denoted as usual by ||Z||p = E[|Z|p]
1
p .

BDifferential operators. Some specific differential operators are frequently utilized in this Chapter. For
convenience we introduce notations to denote them:

Definition 7.2.1.1.

Lx
1 =∂x−

1
2
I, Lx

2 =∂2
x2 −∂x,

Lx
3 =Lx

2 ◦L
x
1 = ∂3

x3 −
3
2
∂2

x2 +
1
2

x, Lx
4 =Lx

2 ◦L
x
2 = ∂4

x4 −2∂3
x3 +∂2

x2 ,

Lx
5 =Lx

2 ◦L
x
3 = ∂5

x5 −
5
2
∂4

x4 + 2∂3
x3 −

1
2
∂2

x2 , Lx
6 =Lx

2 ◦L
x
4 = ∂6

x6 −3∂5
x5 + 3∂4

x4 −∂
3
x3 ,

where I denotes the identity operator. We have in addition the following relations easy to obtain:

Lx
1 ◦L

x
1 =Lx

2 +
1
4
I, Lx

1 ◦L
x
3 =Lx

4 +
1
4
Lx

2,

Lx
1 ◦L

x
4 =Lx

3 ◦L
x
2 =Lx

5, Lx
1 ◦L

x
5 =Lx

6 +
1
4
Lx

4.

B Density of the Proxy and its hitting times. The Gaussian Proxy process at time t ∈ [0,T ]
XP

t = x0−
1
2V

t
0 +

∫ t
0 σsdWs has the explicit density:

DP(0, t, x0,y) :=DP(0, t,y− x0) =
e
−

(y−x0+ 1
2V

t
0)2

2Vt
0√

2πVt
0

.

With the conditional information that XP
s = x for 0 ≤ s < t ≤ T , the conditional law of XP

t is given by the
density:

DP(s, t, x,y) :=DP(s, t,y− x) =
e
−

(y−x+ 1
2V

t
s)2

2Vt
s√

2πVt
s

. (7.4)

We use the notation N(x) =
∫ x
−∞

e−
y2
2

√
2π

dy for the cumulative Gaussian function at point x and we denote

by N(x) = 1−N(x) =
∫ ∞

x
e−

y2
2

√
2π

dy its associated complementary function. The derivative of N which is

the standard Gaussian density is naturally denoted by N ′(x) = e−
x2
2

√
2π
.

We define the first hitting time of b for XP after time s ∈ [0,T [ by:

τP
s,b = inf{t > s : XP

t = b}, (7.5)
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with the convention τP
0,b = τP

b . The density of the hitting times for a drifted Brownian with constant

volatility is well known (see [Karatzas 1991]). Using a regular time-change thanks to (H̃σ
x0

) (see
[Revuz 1999]) on can deduce the time-inhomogeneous case. The first hitting time τP

b for the level b < x0 Romain: detailler le
chgt de temps ?

for the Gaussian proxy process XP has the density JP:

JP(0, t, x0,b) :=JP(0, t,b− x0) = Σt
|b− x0|

Vt
0

e
−

(b−x0+ 1
2V

t
0

2Vt
0

)2√
2πVt

0

= Σt
(x0−b)
Vt

0
DP(0, t,b− x0),

for any t ≥ 0. Consequently with the conditional information that XP
s = x > b for s < T , the density of

the first hitting time τP
s,b of the level b after the time s is given by:

JP(s, t, x,b) :=JP(s, t,b− x) = Σt
(x−b)
Vt

s
DP(s, t,b− x)1t≥s, (7.6)

for any t ∈ [s,T ]. We summarize in Appendix 7.6.1 some useful properties ofDP, JP and N .

BProxy pricing kernel. We introduce the proxy pricing kernel for the down and out option defined for
any x ≥ b and any t ≤ T by:

vP,h
o,T (t, x) = E[h(XP

T )1τP
t,b>T |X

P
t = x]. (7.7)

We denote similarly by vP,h
T (t, x) = E[h(XP

T )|XP
t = x] the proxy pricing kernel for the plain vanilla option.

We prefer work firstly with the down and out case because vP,h
o,T (t, x) is naturally connected to a Cauchy-

Dirichlet problem. Under the ellipticity assumption (H̃σ
x0

) ,whatever is the regularity of the payoff func-
tion h, the proxy pricing kernel is C∞([0,T [×[b,+∞[) and satisfies the following parabolic PDE with
Dirichlet boundary condition and with Cauchy terminal condition (see [Cattiaux 1986]-[Cattiaux 1991]):

∂tv
P,h
o,T (t, x) +

1
2

ΣtL
x
2vP,h

o,T (t, x) = 0, (t, x) ∈ [0,T [×[b,+∞[,

vP,h
o,T (t,b) = 0, t ∈ [0,T ],

vP,h
o,T (T, x) = h(x), x ∈]b,+∞[.

(7.8)

The solution in closed-form is given ∀(t, x) ∈ [0,T ]× [b,+∞[ by:

vP,h
o,T (t, x) =

∫ ∞

b
h(y)(1− e

−
2(x−b)(y−b)
VT

t )DP(t,T,y− x)dy

=

∫ ∞

b
h(y)DP(t,T,y− x)dy− e(x−b)

∫ ∞

b
h(y)DP(t,T,y + x−2b)dy, (7.9)

where DP is the density of the Proxy defined in (7.4). If h ∈ Lip(R,b), we can consider the integration
on the whole real axis (because h(x) = 0, ∀x ≤ b) and the first term in the r.h.s. of (7.9) is exactly equal
to vP,h

T (t, x) classical solution of the system (7.8) without the boundary condition.
Our further calculations are based on two key Lemmas of these kernels of pricing. The first Lemma
gives relations for the sensitivities w.r.t. x computed at the barrier:

Lemma 7.2.1.1. Assume (H̃σ
x0

). For any t ∈ [0,T [, we have:

Lx
nvP,h

o,T (t,b) =0, ∀n ∈ {2,4,6} (7.10)

Lx
nvP,h

o,T (t,b) =2Lx
nvP,h

T (t,b), ∀n ∈ {1,3,5}, (7.11)

where we recall that the differential operators Lx are defined in Definition 7.2.1.1.
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Proof. The PDE solved by vP,h
o,T (t, x) (see (7.8)) and the Definition 7.2.1.1 allow to interpret Lx

nvP,h
o,T (t,b),

∀n ∈ {2,4,6}, as iterated derivatives of vP,h
o,T (t, x) w.r.t. t at x = b. Besides we have vP,h

o,T (t,b) = 0, ∀t ∈ [0,T [
(see the boundary condition in (7.8)). For (7.11), it is sufficient in view of the Definition 7.2.1.1 to show
that Lx

1vP,h
o,T (t,b) = ∂xvP,h

o,T (t,b) = 2Lx
1vP,h

T (t,b) which can be proven by a straightforward calculus. �

The second Lemma is a Martingale property which can be proven using standard arguments involv-
ing Itô’s formula and PDE simplifications (see [Thalmaier 1998] and [Delarue 2003]):

Lemma 7.2.1.2. Assume (H̃σ
x0

). ∀0 ≤ s ≤ t < T, ∀x ≥ b and for any n ∈ N, we have:

E[∂n
xnvP,h

o,T (t∧τP
s,b,X

P
t∧τP

s,b
)|XP

s = x] = ∂n
xnvP,h

o,T (s, x).

The above Lemmas are oftenly used to decompose sensitivities computed before τP
b in a martingale

part and a part (eventually null) with sensitivities computed at (τP
b ,b). For example we have, ∀t ∈ [0,T [,

∂xvP,h
o,T (t,XP

t )1τP
b>t = ∂xvP,h

o,T (t∧τP
b ,X

P
t∧τP

b
)−1τP

b≤t∂xvP,h
T (τP

b ,b) and E[∂xvP,h
o,T (t∧τP

b ,X
P
t∧τP

b
)] = ∂xvP,h

o,T (0, x0).

7.2.2 Second order expansion

Applying the Itô’s formula to vP,h
o,T (t,Xt) between 0 and T ∧ τb where vP,h

o,T is the proxy pricing kernel
defined in (7.7) and (Xt)t∈[0,T ] defined in (7.1) we obtain:

vP,h
o,T (T ∧τb,XT∧τb) (7.12)

=vP,h
o,T (0, x0) +

∫ T∧τb

0
σt(Xt)∂xvP,h

o,T (t,Xt)dWt +

∫ T∧τb

0
(∂t +

1
2

Σt(Xt)Lx
2)vP,h

o,T (t,Xt)dt

=E[h(XP
T )1τP

b>T ] +

∫ T∧τb

0
σt(Xt)∂xvP,h

o,T (t,Xt)dWt +
1
2

∫ T∧τb

0
(Σt(Xt)−Σt)Lx

2vP,h
o,T (t,Xt)dt,

where we used the fact at the second equality that vP,h
o,T follows the PDE (7.8) on ]0,T [×]b,+∞[. Then

notice that:

vP,h
o,T (T ∧τb,XT∧τb) = vP,h

o,T (T,XT )1τb>T + vP,h
o,T (τb,b)1τb≤T︸             ︷︷             ︸

=0

= vP,h
o,T (T,XT )1τb>T = h(XT )1τb>T ,

and that
( ∫ t∧τb

0 σs(Xs)∂xvP,h
o,T (s,Xs)dWs

)
t∈[0,T ] is a true (Ft)t∈[0,T ]-martingale owing to (H̃σ

x0
) and to

Lemma 7.3.1.3 postponed to Section 7.3. Thus taking the expectation in (7.12), we finally get:

Proposition 7.2.2.1. (Robustness-type formulation). Assume (H̃σ
x0

). For any h ∈ Lip(R,b), we have:

E[h(XT )1τb>T ] =E[h(XP
T )1τP

b>T ] +
1
2
E
[∫ T∧τb

0
(Σt(Xt)−Σt)Lx

2vP,h
o,T (t,Xt)dt

]
. (7.13)

Remark 7.2.2.1. We have obtained some kind of Black-Scholes robustness formula w.r.t. the log-asset
like in [El Karoui 1998]. This expresses the difference between the barrier prices in the local volatility
model and in the proxy model, or equivalently the expectation of the tracking error when we try to hedge
with the proxy model a barrier option with real underlying following the SDE (7.1). The result indicates
that the error is the expectation of a temporal integral of sensitivities (involving the operator Lx

2) of the
proxy pricing kernel computed along the path of the initial process X, sensitivities which are weighted
with the difference of the instantaneous variances in the two models.
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Employing a first order expansion for the function Σt(.) at x = Xt around x = x0 gives:

E[h(XT )1τb>T ] =E[h(XP
T )1τP

b>T ] +
1
2
E
[∫ T

0
(Xt − x0)Σ(1)

t L
x
2vP,h

o,T (t,Xt)1τb>tdt
]

+
1
2
E
[∫ T∧τb

0
(Xt − x0)2{∫ 1

0
(1−α)Σ(2)

t (x0 +α(Xt − x0))dα
}
Lx

2vP,h
o,T (t,Xt)dt

]
. (7.14)

We consider the last term as an error which will be analysed later. The second term can not be computed
in closed-form because of the presence of (Xt, τb) which law is not known. Observe that we can switch
the expectation and the temporal integral owing to the Lipschitz regularity of h which gives rise to sin-
gular terms of the form (T − t)−

1
2 but integrable at T (see Lemma 7.3.1.3) and to the integrability of X

thanks to (H̃σ
x0

) (see Lemma 7.3.1.1).
To approximate E

[
(Xt− x0)Σ(1)

t L
x
2vP,h

o,T (t,Xt)1τb>t
]

for any t ∈ [0,T [, we use similar arguments and Propo-

sition 7.2.2.1 by replacing T by t and h(x) by φt(x) = (x− x0)Lx
2vP,h

o,T (t, x). We introduce:

vP,φt
o,t (s, x) = E[φt(XP

t )1τP
s,b>t|X

P
s = x], (7.15)

for any s ∈ [0, t] and any x≥ b the solution of the system (7.8) on ]0, t[×]b,∞[ but with terminal condition
φt. We interpret vP,φt

o,t as the price function of a new down and out barrier option with maturity t and the
regular payoff φt (thanks to Lemma 7.2.1.1 equation (7.10), φt(b) = 0).
The methodology previously employed leads to:

Romain: detailler
pourquoi

∫ t∧τb

0 σs(Xs)
∂xvP,φt

o,t (s,Xs)
dWs est bien centrÃ©e
∀t < T ?

1
2
E
[∫ T

0
(Xt − x0)Σ(1)

t L
x
2vP,h

o,T (t,Xt)1τb>tdt
]

=
1
2

∫ T

0
Σ

(1)
t E[φt(Xt)1τb>t]dt =

1
2

∫ T

0
Σ

(1)
t E[vP,φt

o,t (t,Xt)1τb>t]dt =
1
2

∫ T

0
Σ

(1)
t E[vP,φt

o,t (t∧τb,Xt∧τb)]dt

=
1
2

∫ T

0
Σ

(1)
t vP,φt

o,t (0, x0)dt +
1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,φt
o,t (s,Xs)ds

]
dt. (7.16)

The last term is again neglected and the explicit calculus of the first term is given in the Lemma 7.3.2.1.
We have paved the way to the next Theorem which proof of the error estimate is postponed to Section
7.3.3:

Theorem 7.2.2.1. (2nd order approximation price formula for down and out regular barrier options).
Assuming (H̃σ

x0
), we have for any h ∈ Lip(R,b) and for any x0 ≥ b:

E[h(XT )1τb>T ] = E[h(XP
T )1τP

b>T ] +Cor1,o +Cor2,o +O
(
|σ|∞M1(σ)M0(σ)T

3
2
)
, (7.17)

where the differential operator Lx
3 is defined in Definition 7.2.1.1 and where:

Cor1,o =
1
2
~ω(Σ(1),Σ)T

0L
x
3vP,h

o,T (0, x0), Cor2,o =−
1
2
E[1τP

b≤T ~ω(Σ(1),Σ)T
τP

b
Lx

3vP,h
o,T (τP

b ,b)].

Remark 7.2.2.2. The above price approximation is the sum of three terms:

1. E[h(XP
T )1τP

b>T ]: The leading order which is the price of a regular down and out barrier option
in the Black-Scholes model which corresponds to the case of space-independent local volatility
function σ. There is a closed-form formula for Call options and one can apply a numerical
integration for general payoff functions.

2. Cor1,o: This term is a weighted sum of sensitivities w.r.t. the log-spot x0 at the initial date. We
interpret it as a correction due to the spatial dependence of the local volatility σ. This corrective
term is similar to the volatility correction terms of [Benhamou 2010a, Theorem 2.1].
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3. Cor2,o: This correction term reads as a barrier correction and we can interpret it as a sensitivity
w.r.t. the barrier level. For the Call payoff, we compute it easily with a numerical integration
on the segment [0,T ], the density of the hitting times being known (see (7.6)) and the sensitivity
Lx

3vP,h
o,T (t, x))|x=b being available in closed-form for any t ∈ [0,T [. Owing to (H̃σ

x0
), the weighted

sensitivities 1τP
b≤T ~ω(Σ(1),Σ)T

τP
b
Lx

3vP,h
o,T (τP

b ,b) are well defined and this term does not explode when

τP
b → T (see below).

Remark 7.2.2.3. The reader can notice that if b tends to −∞, the correction term Cor2,o vanishes. We
have indeed applying the Lemma 7.3.1.3 postponed to Section 7.3 owing to (H̃σ

x0
):

|Cor2,o| ≤c |σ|
2
∞M1(σ)M0(σ)E

[
1τP

b≤T (T −τP
b )2(VT

τP
b
)−1] ≤cM1(σ)M0(σ)TP(τP

b ≤ T ),

the above probability tending to 0 as b→ −∞. We have in addition convergence of the leading term
E[h(XP

T )1τP
b>T ] and the sensitivities Lx

3vP,h
o,T (0, x0) in Cor1,o towards vP,h

T (0, x0) and Lx
3vP,h

T (0, x0). As a
conclusion, we exactly retrieve the expansion of [Benhamou 2010a, Theorem 2.1] if b→−∞.
If b = x0, we have τP

b = 0 a.s. and thus E[h(XT )1τb>T ] = E[h(XP
T )1τP

b>T ] = 0 whereas Cor1,o +Cor2,o = 0.
Our price approximation is coherent with the fact that the price becomes equal to zero if b = x0.

7.2.3 Third order expansion

We start from the robustness formula (7.13) which we recall the expression:

E[h(XT )1τb>T ] =E[h(XP
T )1τP

b>T ] +
1
2
E
[∫ T∧τb

0
(Σt(Xt)−Σt)Lx

2vP,h
o,T (t,Xt)dt

]
.

Perform a second order expansion for the function Σ at x = XT around x = x0:

E[h(XT )1τb>T ] =E[h(XP
T )1τP

b>T ] +
1
2
E
[∫ T∧τb

0

{
(Xt − x0)Σ(1)

t +
1
2

(Xt − x0)2Σ
(2)
t

}
Lx

2vP,h
o,T (t,Xt)dt

]
+

1
2
E
[∫ T∧τb

0
(Xt − x0)3{∫ 1

0

(1−α)2

2
Σ

(3)
t ((1−α)x0 +αXt)dα

}
Lx

2vP,h
o,T (t,Xt)dt

]
. (7.18)

The last term is considered like an error. For the second term we introduce ∀0≤ t < T the payoff function
ψt(x) = (x− x0)2Lx

2vP,h
o,T (t, x). Then following the arguments previously employed in the Section 7.2.2,

we obtain that the second term of the r.h.s. of (7.18) is equal to:

1
2

∫ T

0

{
Σ

(1)
t E

[
φt(Xt)1τb>t

]
+

Σ
(2)
t

2
E
[
ψt(Xt)1τb>t

]}
dt

=
1
2

∫ T

0

{
Σ

(1)
t E

[
vP,φt

o,t (t,Xt)1τb>t
]
+

Σ
(2)
t

2
E
[
vP,ψt

o,t (t,Xt)1τb>t
]
dt

=
1
2

∫ T

0
(Σ(1)

t vP,φt
o,t (0, x0) +

1
2

Σ
(2)
t vP,ψt

o,t (0, x0))dt +
1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,φt
o,t (s,Xs)ds

]
dt

+
1
8

∫ T

0
Σ

(2)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,ψt
o,t (s,Xs)ds

]
dt, (7.19)

where for any 0 ≤ s ≤ t < T and any x ≥ b:

vP,ψt
o,t (s, x) = E[ψt(XP

t )1τP
s,b>t|X

P
s = x], (7.20)

is the solution of the system (7.8) on ]0, t[×]b,∞[ but having as terminal condition the regular payoff

function ψt. The magnitude of the last term will be analysed later. To obtain a global error of amplitude



7.2. Derivation of the expansion 177

4 w.r.t. the interest parameters, we need to approximate the second term. We write performing a first
order Taylor expansion:

1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,φt
o,t (s,Xs)ds

]
dt

=
1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0
(Xs− x0)Σ(1)

s L
x
2vP,φt

o,t (s,Xs)ds
]
dt (7.21)

+
1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0

{∫ 1

0
Σ

(2)
s ((1−α)x0 +αXs)(1−α)dα

}
(Xs− x0)2Lx

2vP,φt
o,t (s,Xs)ds

]
dt.

Then we neglect for the moment the last term and we refine the second term. Using the same methodol-
ogy we introduce ∀0 ≤ s < t < T the payoff functions ρs,t(x) = (x− x0)Lx

2vP,φt
o,t (s, x). Note that ρs,t(b) = 0

(see (7.39) in Lemma 7.3.2.3) and as previously, for any 0 ≤ u ≤ s < t < T and x ≥ b we denote by:

vP,ρs,t
o,s (u, x) = E[ρs,t(XP

s )1τP
u,b>s|X

P
u = x], (7.22)

the solution of (7.8) on ]0, s[×]b,∞[ associated to the regular payoff function ρs,t. Thus we get:

1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0
(Xs− x0)Σ(1)

s L
x
2vP,φt

o,t (s,Xs)ds
]
dt (7.23)

=
1
4

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s vP,ρs,t

o,s (0, x0)ds
)
dt +

1
8

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s E

[∫ s∧τb

0
(Σu(Xu)−Σu)Lx

2vP,ρs,t
o,s (u,Xu)du

]
ds

)
dt.

The explicit calculus of the new corrective terms coming from the r.h.s. of (7.19)-(7.23) is given in
Lemma 7.3.4.4 whereas the error analysis is performed in Section 7.3.5. This leads to the following
Theorem:

Theorem 7.2.3.1. (3rd order approximation price formula for down and out regular barrier options).
Assuming (H̃σ

x0
), we have for any h ∈ Lip(R,b) and any x0 ≥ b:

E[h(XT )1τb>T ] = E[h(XP
T )1τP

b>T ] +

5∑
n=1

Corn,o +O
(
|σ|∞M1(σ)[M0(σ)]2T 2), (7.24)

where the corrective terms Cor1,o and Cor2,o are defined in Theorem 7.2.2.1, where:

Cor3,o =
1
4
~ω(Σ(2),Σ)T

0L
x
2vP,h

o,T (0, x0) +
1
2
~ω(Σ(2),Σ,Σ)T

0 (Lx
4 +

1
4
Lx

2)vP,h
o,T (0, x0)

+
1
4
~ω(Σ(1),Σ(1),Σ)T

0 (3Lx
4 +

1
2
Lx

2)vP,h
o,T (0, x0) +

1
8
~ω2(Σ(1),Σ)T

0 (Lx
6 +

1
4
Lx

4)vP,h
o,T (0, x0),

Cor4,o =
1
4

(x0−b)E
[
1τP

b≤T
{
2
[
~ω(Σ(1),Σ(1))T

τP
b

+ ~ω(Σ(2),Σ)T
τP

b
+ ~ω(Σ(1))T

τP
b
~ω(Σ(1),Σ)

τP
b

0 (V
τP

b
0 )−1]Lx

3

+
[
2~ω(Σ(1),Σ(1),Σ)T

τP
b

+ ~ω(Σ(1),Σ,Σ(1))T
τP

b
+ ~ω(Σ(1),Σ)T

τP
b
~ω(Σ(1),Σ)

τP
b

0 (V
τP

b
0 )−1]Lx

5
}
vP,h

o,T (τP
b ,b)

]
,

Cor5,o =
1
4

∫ T

0
Σr(Vr

0)−1{2~ω(Σ(1))T
r L

x
3 + ~ω(Σ(1),Σ)T

r L
x
5
}
vP,h

o,T (r,b)

×E
[
1τP

b≤r
{
~ω(Σ(1),Σ)r

τP
b
V

τP
b

0 (Vr
τP

b
)−1− ~ω(Σ(1),Σ)

τP
b

0 −V
τP

b
0 ~ω(Σ(1))r

τP
b

}
DP(τP

b ,r,0)
]
dr,

and where the differential operators Lx are defined in Definition 7.2.1.1.

Remark 7.2.3.1. The reader will notice that if b→−∞, then Cor2,o +Cor4,o +Cor5,o→ 0 and we retrieve
the results of [Benhamou 2010a, Theorem 2.2], whereas if x0 = b, according to Lemma 7.2.1.1 equation
(7.10), all the corrective terms vanish.
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7.3 Calculus of the corrective terms and error analysis

7.3.1 Preliminary results

We begin with classical but useful estimates easily obtained with standard inequalities:

Lemma 7.3.1.1. Assume (H̃σ
x0

). For any p ≥ 1, we have:

sup
t∈[0,T ]

||Xt − x0||p ≤c|σ|∞
√

T , sup
t∈[0,T ]

||e|Xt |||p ≤ex0eCp |σ|
2
∞T ,

sup
(t,x)∈[0,T ]×R

|Σ
(1)
t (x)| ≤c|σ|∞M1(σ), sup

(t,x,i)∈[0,T ]×R×{2,3}
|Σ

(i)
t (x)| ≤cM0(σ)M1(σ),

for a constant Cp depending only on p.

We recall well known properties of the Gaussian cumulative and density functions:

Lemma 7.3.1.2. In this Lemma, P denotes an arbitrary polynomial function and C an arbitrary positive
constant.

• x 7→ P(x)eCxN ′(x) is a bounded function.

• For any x < 0 (respectively x > 0), we have N(x) ≤ N
′(x)
|x| (respectively N(x) ≤ N

′(x)
x ) and con-

sequently x 7→ |x|N(x) and x 7→ |x|eC|x|N(x) (respectively x 7→ xN(x) and x 7→ xeCxN(x)) are
bounded functions on ]−∞,0] (respectively [0;+∞[).

We now announce a Lemma related to the spatial derivatives of vP,h
o,T (t, x) and their estimates.

Lemma 7.3.1.3. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀(t, x) ∈ [0,T [×[b,+∞[ and ∀n ≥ 1, we have:

|∂n
xnvP,h

o,T (t, x)| ≤ceCh |x|(VT
t )−

n−1
2 , (7.25)

for a generic constant independent of x. We easily deduce that ∀t ∈ [0,T [ and for any p ≥ 1:

||vP,h
o,T (t,Xt)1τb>t||p ≤c C−(n−1)

σ (T − t)−
n−1

2 . (7.26)

Proof. Starting from (7.9), a straightforward calculus leads to the following expressions for the spatial
derivatives of vP,h

o,T (t, x), for any h ∈ Lip(R,b), ∀n ≥ 1, ∀(t, x) ∈ [0,T [×[b,+∞[:

∂n
xnvP,h

o,T (t, x)

=∂n−1
xn−1

{∫
R

h(1)(y + x)DP(t,T,y)dy− e(x−b)
∫
R

h(y)DP(t,T,y + x−2b)dy

+ e(x−b)
∫
R

h(1)(y− x)DP(t,T,y−2b)dy
}

=(VT
t )−

n−1
2

∫
R

h(1)(y)Hn−1(
(y− x + 1

2V
T
t )√

VT
t

)DP(t,T,y− x)dy− e(x−b)
∫
R

h(y)DP(t,T,y + x−2b)dy

+ e(x−b)
n∑

k=1

(
n
k

)
(−1)k−1

(VT
t )

k−1
2

∫
R

h(1)(y)Hk−1(
(y + x−2b + 1

2V
T
t )√

VT
t

)DP(t,T,y + x−2b)dy

=(VT
t )−

n−1
2

∫ ∞

b−x+ 1
2V

T
t√

VT
t

h(1)(y + x−
1
2
VT

t )Hn−1(y)N ′(y)dy− e(x−b)
∫ ∞

−b+x+ 1
2V

T
t√

VT
t

h(y− x + 2b−
1
2
VT

t )N ′(y)dy
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+ e(x−b)
n∑

k=1

(
n
k

)
(−1)k−1

(VT
t )

k−1
2

∫ ∞

−b+x+ 1
2V

T
t√

VT
t

h(1)(y− x + 2b−
1
2
VT

t )Hk−1(y)N ′(y)dy, (7.27)

where Hn denote the nth Hermite polynomial defined for any x ∈ R by:

Hn(x) = −(1)nex2/2∂n
xn(e−x2/2). (7.28)

Then using the assumption on h and the fact that x ≥ b, one obtains for any y ≥ −b+x+
VT

t
2√

VT
t

≥ 0:

∣∣∣e(x−b)h(1)(y− x + 2b−
VT

t

2
)
∣∣∣+ ∣∣∣e(x−b)h(y− x + 2b−

VT
t

2
)
∣∣∣ ≤c eCh |x|e(1+2Ch)(x−b)eChy.

Then, making the change of variable z = x−b, we show that for any k ∈ {1, . . . ,n}
z 7→ e(1+2Ch)z

∫ ∞
z+ 1

2V
T
t√

VT
t

eChy|Hk−1(y)|N ′(y)dy is a bounded function on R+ tending to 0 as z tends to ∞ (i.e.

b tends to −∞). For z enough large we indeed have |Hk−1(y)| ≤ eChy for any y ≥ z+ 1
2V

T
t√

VT
t

and then we can

write e(1+2Ch)z
∫ ∞

z+ 1
2V

T
t√

VT
t

e2ChyN ′(y)dy = e(1+2Ch)ze2C2
hN( z+ 1

2V
T
t√

VT
t

− 2Ch). We conclude with Lemma 7.3.1.2.

The result (7.25) follows without difficulty from these observations. Using the Lemma 7.3.1.1, (7.26) is
a straightforward consequence of (7.25). �

Remark 7.3.1.1. The above Lemma shows that the spatial regularity of the payoff function h allows to
obtain a first spatial derivative of vP,h

o,T bounded at maturity. Then the next derivatives explode at maturity

with the speed (T − t)
n−1

2 . If h is not a regular payoff (h(b) , 0) but still remains a.e. differentiable, the
first spatial derivative of vP,h

o,T becomes equal for any t < T and any x ≥ b to:

∂xvP,h
o,T (t, x) =

∫ ∞

b−x
h(1)(y + x)DP(t,T,y)dy− e(x−b)

∫ ∞

b
h(y)DP(t,T,y + x−2b)dy

+ e(x−b)
∫ ∞

b+x
h(1)(y− x)DP(t,T,y−2b)dy + h(b)

{
DP(t,T,b− x) + ex−bDP(t,T, x−b)

}
.

If h is not anymore a.e. differentiable, the derivative writes for any t < T and any x ≥ b:

∂xvP,h
o,T (t, x) =(VT

t )−
1
2

∫ ∞

b
h(y)

(y− x + 1
2V

T
t )√

VT
t

DP(t,T,y− x)dy− e(x−b)
∫ ∞

b
h(y)DP(t,T,y + x−2b)dy

+ (VT
t )−

1
2 e(x−b)

∫ ∞

b
h(y)

(y + x−2b + 1
2V

T
t )√

VT
t

DP(t,T,y + x−2b)dy,

Consequently, whatever is the regularity of h, vP,h
o,T (t, x) explodes at maturity and at the barrier with the

speed
√

T − t . For instance, we could replace (VT
t )−

n−1
2 by (VT

t )−
n
2 in (7.25) for a non regular payoff.

7.3.2 Calculus of vP,φt
o,t and estimate of its spatial derivatives

The first step is to make explicit vP,φt
o,t defined in (7.15) and to link it to the derivatives of the Proxy kernel

pricing vP,h
o,T . This is the purpose of the next Lemma:
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Lemma 7.3.2.1. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ s ≤ t < T and ∀x ≥ b, we have:

vP,φt
o,t (s, x) =(x− x0)Lx

2vP,h
o,T (s, x) +Vt

sL
x
3vP,h

o,T (s, x)−E[1τP
s,b≤tV

t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]. (7.29)

We deduce that for any x0 ≥ b, we have:

1
2

∫ T

0
Σ

(1)
t vP,φt

o,t (0, x0)dt =
1
2
~ω(Σ(1),Σ)T

0L
x
3vP,h

o,T (0, x0)−
1
2
E[1τP

b≤T ~ω(Σ(1),Σ)T
τP

b
Lx

3vP,h
o,T (τP

b ,b)].

Remark 7.3.2.1. In the expression (7.29), we retrieve the fact that ∀0 ≤ s ≤ t < T, vP,φt
o,t (s,b) = 0. By

Lemma 7.2.1.1 equation (7.10), we indeed have Lx
2vP,h

o,T (s,b) = 0 and the fact that τP
s,b = s a.s. if XP

s = b
allows to cancel all the remaining terms of the r.h.s. of (7.29).

Proof. By definition, we have, ∀x > b (we trivially obtain 0 if x = b):

vP,φt
o,t (s, x) =E[φt(XP

t )1τP
s,b>t|X

P
s = x] = E[(Xp

t − x0)Lx
2vP,h

o,T (t,XP
t )1τP

s,b>t|X
P
s = x]

=E[(XP
t∧τP

s,b
− x0)Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)|XP

s = x]− (b− x0)E[1τP
s,b≤tL

x
2vP,h

o,T (τP
s,b,b)|XP

s = x]

=E[(XP
t∧τP

s,b
− x0)Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)|XP

s = x],

where we used at the last line the fact that φt(b) = 0 (see (7.10)). Then apply the Itô’s Lemma for the
product (XP

t∧τP
s,b
− x0)Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
) to obtain:

(XP
t∧τP

s,b
− x0)Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)

=(XP
s − x0)Lx

2vP,h
o,T (s,XP

s ) +

∫ t∧τP
s,b

s
(XP

u − x0)(∂x ◦L
x
2)vP,h

o,T (u,XP
u )σudWu

+

∫ t∧τP
s,b

s
(XP

u − x0)(∂t +
1
2

ΣuL
x
2)Lx

2vP,h
o,T (u,XP

u )du

+

∫ t∧τP
s,b

s
Lx

2vP,h
o,T (u,XP

u )σu(dWu−
σu

2
du) +

∫ t∧τP
s,b

s
(∂x ◦L

x
2)vP,h

o,T (u,XP
u )Σudu.

Then taking the expectation with the conditional information that XP
s = x > b, the simplifications coming

from the PDE solved by vP,h
o,T (7.8) on the domain ]0,T [×]b,∞[ and the fact that

(∂x−
1
2I)◦Lx

2 =Lx
1 ◦L

x
2 =Lx

3 (see Definition 7.2.1.1) yield:

E[(XP
t∧τP

s,b
− x0)Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)|XP

s = x] =(x− x0)Lx
2vP,h

o,T (s, x) +E
[∫ t∧τP

s,b

s
Lx

3vP,h
o,T (u,XP

u )Σudu
∣∣∣XP

s = x
]
.

For the second term we use again a decomposition to get:

E
[∫ t∧τP

s,b

s
Lx

3vP,h
o,T (u,XP

u )Σudu
∣∣∣XP

s = x
]
= E

[∫ t

s
1τP

s,b>uL
x
3vP,h

o,T (u,XP
u )Σudu

∣∣∣XP
s = x

]
=E

[∫ t

s
Lx

3vP,h
o,T (u∧τP

s,b,X
P
u∧τP

s,b
)Σudu

∣∣∣XP
s = x

]
−E

[∫ t

s
1τP

s,b≤uL
x
3vP,h

o,T (τP
s,b,b)Σudu

∣∣∣XP
s = x

]
=Vt

sL
x
3vP,h

o,T (s, x)−E[1τP
s,b<tV

t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x],

where we applied at the last equality the Lemma 7.2.1.2. That achieves the proof of the first statement
of the Lemma. The second statement easily follows. �
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The next Lemma provides the estimate of Lx
2E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]:

Lemma 7.3.2.2. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ s < t < T, ∀x ≥ b, we have:

Lx
2E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x] =E[1τP

s,b≤t(2L
x
3 +Vt

τP
s,b
Lx

5)vP,h
o,T (τP

s,b,b)|XP
s = x]. (7.30)

In addition, we have the following estimates ∀0 ≤ s < t < T, ∀x ≥ b:∣∣∣Lx
2E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]

∣∣∣ ≤ceCh |x|{(V s+t
2

s )−
1
2 (VT

t )−
1
2 + (VT

s+t
2

)−1}, (7.31)

(x−b)
∣∣∣Lx

2E[1τP
s,b≤tV

t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]

∣∣∣ ≤ceCh |x|{(VT
t )−

1
2 + (VT

0 )
1
2 (VT

s+t
2

)−1}, (7.32)

where the generic constants are independent of x.

Proof. For the first part, using the explicit form of density of the hitting times (7.6) and the relation
(7.62) of Proposition 7.6.1.1, a straightforward calculus leads to, ∀0 ≤ s < t < T and ∀x > b:

Lx
2E[Vt

τP
s,b
1τP

s,b≤tL
x
3vP,h

o,T (τP
s,b,b)|XP

s = x] =Lx
2
{∫ t

s
JP(s,r, x,b)Vt

rL
x
3vP,h

o,T (r,b)dr
}

=

∫ t

s
Lx

2
{
JP(s,r, x,b)

}
Vt

rL
x
3vP,h

o,T (r,b)dr = 2
∫ t

s
Σ−1

r ∂r
{
JP(s,r, x,b)

}
Vt

rL
x
3vP,h

o,T (r,b)dr.

Then we perform an integration by parts, using the fact that JP(s,r, x,b) (respectively Vt
rL

x
3vP,h

o,T (r,b))
tends to 0 as r tends to s (respectively to t), to obtain:

Lx
2E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x] =−2

∫ t

s
Σ−1

r J
P(s,r, x,b)∂r

{
Vt

rL
x
3vP,h

o,T (r,b)
}
dr

=

∫ t

s
JP(s,r, x,b)(2I−

2
Σr
Vt

r∂r)Lx
3vP,h

o,T (r,b)dr =

∫ t

s
JP(s,r, x,b)(2I+Vt

rL
x
2)Lx

3vP,h
o,T (r, x)dr,

=

∫ t

s
JP(s,r, x,b)

{
2Lx

3 +Vt
rL

x
5
}
vP,h

o,T (r,b)dr,

using the PDE (7.8) solved by vP,h
o,T and the Definition of Lx

5 = Lx
3 ◦L

x
2 (see Definition 7.2.1.1). That

achieves the proof of (7.30). Note that up to a passing to the limit, the formula (7.30) remains valid if x
tends to b: one has to remove the expectations and replace τP

s,b by s.
For (7.31), we suppose that x > b, otherwise a straightforward application of Lemma 7.3.1.3 gives:∣∣∣Lx

2
{
E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]

}
|x=b

∣∣∣ =
∣∣∣2Lx

3vP,h
o,T (s,b) +Vt

sL
x
5vP,h

o,T (s,b)
∣∣∣

≤ceCh |x|{(VT
s )−1 +Vt

s(V
T
s )−2} ≤c eCh |x|(VT

s )−1.

Now, assuming that x > b, we only show the estimate for
∫ t

s J
P(s,r, x,b)Lx

3vP,h
o,T (r,b)dr, the treatment of

the term with Lx
5 being similar. We could use the estimate (7.25) to directly get:∣∣∣E[1τP
s,b≤tL

x
3vP,h

o,T (τP
s,b,b)|XP

s = x]
∣∣∣ ≤c P(τP

s,b ≤ t|XP
s = x)eCh |x|(VT

t )−1 ≤c eCh |x|(VT
t )−1,

but problems will arise in the error estimate of Theorem 7.2.2.1 because∫ T
0

∫ t
0 (T − t)−1dsdt =

∫ T
0

t
T−t dt =∞. To overcome this difficulty we split the domain of integration [s, t]

by writing [s, t] = [s, s+t
2 ]∪ [ s+t

2 , t]. For the first part, we apply Lemma 7.3.1.3 to obtain:

∣∣∣∫ s+t
2

s
JP(s,r, x,b)Lx

3vP,h
o,T (r,b)dr

∣∣∣ ≤cP(τP
s,b ≤

t + s
2
|XP

s = x)eCh |x|(VT
s+t
2

)−1 ≤c eCh |x|(VT
s+t
2

)−1. (7.33)
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For the second one, use the estimate (7.65) in Proposition 7.6.1.2, the estimate (7.25) and the Cauchy
Schwarz inequality to get:

∣∣∣∫ t

s+t
2

JP(s,r, x,b)Lx
3vP,h

o,T (r,b)dr
∣∣∣ (7.34)

≤ceCh |x|
∫ t

s+t
2

Σr(Vr
s)
−1(VT

r )−1dr ≤c eCh |x|

√∫ t

s+t
2

Σr(Vr
s)−2dr

√∫ t

s+t
2

Σr(VT
r )−2dr ≤c eCh |x|(V

s+t
2

s )−
1
2 (VT

t )−
1
2 ,

what allows us to conclude. It remains to show the bound (7.32). First we have similarly to (7.33) using
(7.65):

∣∣∣∫ s+t
2

s
(x−b)JP(s,r, x,b)Lx

3vP,h
o,T (r,b)dr

∣∣∣ ≤c eCh |x|(VT
s+t
2

)−1
∫ s+t

2

s
Σr(Vr

s)
− 1

2 dr ≤c eCh |x|(VT
s+t
2

)−1(V
s+t
2

s )
1
2 .

(7.35)

Then we refine the estimate (7.34) to achieve the proof:

∣∣∣∫ t

s+t
2

(x−b)JP(s,r, x,b)Lx
3vP,h

o,T (r,b)dr
∣∣∣ ≤c eCh |x|

∫ t

s+t
2

Σr(Vr
s)
− 1

2 (VT
r )−1dr ≤c eCh |x|(VT

t )−
1
2 . (7.36)

�

We now state in the following Lemma the estimate of Lx
2vP,φt

o,t (s, x):

Lemma 7.3.2.3. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ s < t < T and ∀x ≥ b, we have:

∣∣∣Lx
2vP,φt

o,t (s, x)
∣∣∣ ≤c eCh |x|{|x− x0|(VT

s )−
3
2 + (VT

s )−1 + (V
s+t
2

s )−
1
2 (VT

t )−
1
2 + (VT

s+t
2

)−1}, (7.37)

where the generic constant is independent of x. We deduce that for any 0 ≤ s < t < T and for any p ≥ 1:

||Lx
2vP,φt

o,t (s,Xs)1τb>s||p ≤c C−2
σ

{ √
T

(T − s)
3
2

+
1

T − s
+

1
√

(t− s)
√

T − t
+

1

T − (s+t)
2

}
(7.38)

In addition, we have:

Lx
2vP,φt

o,t (s,b) = 0. (7.39)

Proof. Combining Lemmas 7.3.2.1 and 7.3.2.2, we easily get ∀0 ≤ s < t < T and ∀x ≥ b:

Lx
2vP,φt

o,t (s, x) =2(Lx
1 ◦L

x
2)vP,h

o,T (s, x) + (x− x0)(Lx
2 ◦L

x
2)vP,h

o,T (s, x) +Vt
s(L

x
2 ◦L

x
3)vP,h

o,T (s, x)

−E[1τP
s,b≤t(2L

x
3 +Vt

τP
s,b
Lx

5)vP,h
o,T (τP

s,b,b)|XP
s = x]

=2Lx
3vP,h

o,T (s, x) + (x− x0)Lx
4vP,h

o,T (s, x) +Vt
sL

x
5vP,h

o,T (s, x)

−E[1τP
s,b≤t(2L

x
3 +Vt

τP
s,b
Lx

5)vP,h
o,T (τP

s,b,b)|XP
s = x], (7.40)

using the Definition 7.2.1.1 of the differential operators Lx. Then the estimate (7.37) is easily obtained
with the estimates (7.31) of Lemma 7.3.2.2 and (7.25) of Lemma 7.3.1.3. The estimate (7.38) directly
follows from (7.37) using the Lemma 7.3.1.1. For (7.39), use the Lemma 7.2.1.1 equation (7.10) to write
that Lx

4vP,h
o,T (s,b) = 0 and the result becomes obvious. �
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7.3.3 Proof of the error estimate in Theorem 7.2.2.1

Assuming (H̃σ
x0

) and that h ∈ Lip(R,b), we obtain in view of (7.14) and (7.16) that the error term in
Theorem 7.2.2.1 is equal to:

Error2,h =
1
2
E
[∫ T∧τP

b

0
(Xt − x0)2{∫ 1

0
(1−α)Σ(2)

t ((1−α)x0 +αXt)dα
}
Lx

2vP,h
o,T (t,Xt)dt

]
+

1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τP
b

0
(Σs(Xs)−Σs)Lx

2vP,φt
o,t (s,Xs)ds

]
dt. (7.41)

Then use Lemmas 7.3.1.3 and 7.3.1.1 and standard inequalities to get for first term of the r.h.s. of (7.41):

∣∣∣E[∫ T∧τP
b

0
(Xt − x0)2{∫ 1

0
(1−α)Σ(2)

t ((1−α)x0 +αXt)dα
}
Lx

2vP,h
o,T (t,Xt)dt

]∣∣∣
≤cM1(σ)M0(σ) sup

t∈[0,T ]
||Xt − x0||

2
4

∫ T

0
||1τP

b>tL
x
2vP,h

o,T (t,Xt)||2dt

≤cM1(σ)M0(σ)|σ|2∞TC−1
σ

∫ T

0

dt
√

T − t
≤c |σ|∞M1(σ)M0(σ)T

3
2 .

Regarding the second term of the r.h.s. of (7.41), utilize the Lemma 7.3.2.3 equation (7.38) to get:

∣∣∣∫ T

0
Σ

(1)
t E

[∫ t∧τP
b

0
(Σs(Xs)−Σs)Lx

2vP,φt
o,t (s,Xs)ds

]
dt

∣∣∣
≤cM1(σ)|σ|∞ sup

s∈[0,T ]
||Σs(Xs)−Σs||2C−2

σ

∫ T

0

∫ t

0

{ √
T

(T − s)
3
2

+
1

T − s
+

1
√

(t− s)
√

T − t
+

1

T − (s+t)
2

}
dsdt

≤c[M1(σ)]2 |σ|
3
∞

C2
σ

T
3
2 ≤c |σ|∞[M1(σ)]2T

3
2 .

We have finished the proof.

Remark 7.3.3.1. We would like to point out that the singular term
√

T

(T−s)
3
2

+ 1
T−s + 1

√
(t−s)

√
T−t

+ 1
T− (s+t)

2

appearing in the above double integral remains fortunately integrable. For non regular payoff func-
tions (Call payoffs with strike lower than the barrier for instance) or for digital options, the first spatial
derivative of vP,h

o,T may explode at maturity and the singularities arising in iterated integrals are not any-
more integrable. Our approach seems inappropriate and this is the reason why we restrict ourself to
regular and a.e. once time differentiable payoff function.
In case of trivial barrier level (b tends to −∞) and assuming the strong ellipticity condition

inf
(t,x)∈[0,T ]×R

σ(t, x) > 0 (Hσ), the reader familiar with the Malliavin calculus will notice that Malliavin

integration by parts could be performed to handle terms of the form E[(Xt − x0)kΣ
( j)
t (Xt)Lx

2vP,h
o,T (t,Xt)] by

reducing the order (and thus the irregularities) of the derivatives applied to vP,h
o,T and thus to treat the

case of binary payoff functions and retrieve the results of [Benhamou 2010a, Theorem 2.1 and 4.3].

7.3.4 Calculus of vP,ψt
o,t , vP,ρs,t

o,s and estimates of their derivatives

We begin with the calculus of vP,ψt
o,t defined in (7.20):

Lemma 7.3.4.1. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ s ≤ t < T and ∀x ≥ b, we have:

vP,ψt
o,t (s, x) =

{
(x− x0)2Lx

2 +Vt
sL

x
2 + 2(x− x0)Vt

sL
x
3 + ~ω(Σ,Σ)t

s(2L
x
4 +

1
2
Lx

2)
}
vP,h

o,T (s, x)
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+ 2(x0−b)E[1τP
s,b≤tV

t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x]. (7.42)

Proof. We follow the proof of Lemma 7.3.2.1. By definition of vP,ψt
o,t , an application of Lemma 7.2.1.1

equation (7.10) gives for any 0 ≤ s ≤ t < T and ∀x ≥ b:

vP,ψt
o,t (s, x) =E[(XP

t∧τP
s,b
− x0)2Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)|XP

s = x].

The application of the Itô’s formula for the product (XP
t∧τP

s,b
− x0)2Lx

2vP,h
o,T (t∧ τP

s,b,X
P
t∧τP

s,b
) and simplifica-

tions coming from PDE (7.8) yield:

E[(XP
t∧τP

s,b
− x0)2Lx

2vP,h
o,T (t∧τP

s,b,X
P
t∧τP

s,b
)|XP

s = x]

=(x− x0)2Lx
2vP,h

o,T (s, x) + 2E
[∫ t∧τP

s,b

s
(XP

u − x0)(Lx
1 ◦L

x
2)vP,h

o,T (u,XP
u )Σudu

∣∣∣XP
s = x

]
+E

[∫ t∧τP
s,b

s
Lx

2vP,h
o,T (u,XP

u )Σudu
∣∣∣XP

s = x
]
.

Using the fact thatLx
2vP,h

o,T (u,b) = 0 and the Lemma 7.2.1.2, the last term of the r.h.s. is obviously equal to

Vt
sL

x
2vP,h

o,T (s, x). For the second term, use the Definition 7.2.1.1 to write Lx
1 ◦L

x
2 =Lx

3, then the classical
decomposition, the Itô’s Lemma, the PDE (7.8) and the Lemma 7.2.1.2 give:

E
[∫ t∧τP

s,b

s
(XP

u − x0)Lx
3vP,h

o,T (u,XP
u )Σudu

∣∣∣XP
s = x

]
=(x0−b)E[1τP

s,b≤tV
t
τP

s,b
Lx

3vP,h
o,T (τP

s,b,b)|XP
s = x] + (x− x0)Vt

sL
x
3vP,h

o,T (s, x)

+E
[∫ t

s
Σu

(∫ u∧τP
s,b

s
(Lx

1 ◦L
x
3)vP,h

o,T (r,XP
r )Σrdr

)
du

∣∣∣XP
s = x

]
.

Then the relations Lx
1 ◦ L

x
3 = Lx

4 + 1
4L

x
2 (see Definition 7.2.1.1) and (Lx

4 + 1
4L

x
2)vP,h

o,T (τP
s,b,b) = 0 (see

Lemma 7.2.1.1 equation (7.10)) give that the last term of the above r.h.s. is equal to
~ω(Σ,Σ)t

s(L
x
4 + 1

4L
x
2)vP,h

o,T (s, x). Combining all the contributions achieves the proof. �

Lemma 7.3.4.2. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ s < t < T and ∀x ≥ b, we have:∣∣∣Lx
2vP,ψt

o,t (s, x)
∣∣∣ ≤ceCh |x|{|x− x0|

2(VT
s )−

3
2 + |x− x0|(VT

s )−1 + (VT
t )−

1
2 + |x− x0|(V

s+t
2

s )−
1
2 (VT

t )−
1
2 (7.43)

+ [(VT
0 )

1
2 + |x− x0|](VT

s+t
2

)−1},
for a generic constant independent of x. We deduce that ∀0 ≤ s < t < T, ∀x ≥ b and for any p ≥ 1:

||Lx
2vP,ψt

o,t (s,Xs)1τb>s||p ≤c C−1
σ

{ T

(T − s)
3
2

+

√
T

T − s
+

1
√

T − t
+

√
T

√
t− s
√

T − t
+

√
T

T − (s+t)
2

}
. (7.44)

Proof. Using Lemmas 7.3.4.1 and 7.3.2.2, we easily obtain ∀0 ≤ s < t < T , ∀x ≥ b:

Lx
2vP,ψt

o,t (s, x) =
{
(x− x0)2(Lx

2 ◦L
x
2) + 4(x− x0)(Lx

1 ◦L
x
2) + 2Lx

2 +Vt
s(L

x
2 ◦L

x
2) + 2(x− x0)Vt

s(L2 ◦L
x
3)

+ 4Vt
s(L

x
1 ◦L

x
3) + ~ω(Σ,Σ)t

s[2(Lx
2 ◦L

x
4) +

1
2

(Lx
2 ◦L

x
2)]

}
vP,h

o,T (s, x)

+ 2(x0−b)E[1τP
s,b≤t(2L

x
3 +Vt

τP
s,b
Lx

5)vP,h
o,T (τP

s,b,b)|XP
s = x].

Then writing x0 − b = x− b + x0 − x, the announced estimates (7.43) and (7.44) directly follow from
Lemmas 7.3.2.2, 7.3.1.3 and 7.3.1.1. We skip further details. �
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In the next Lemma, we give a useful Martingale property of vP,φt
o,t :

Lemma 7.3.4.3. For any h ∈ Lip(R,b), for any 0 ≤ u ≤ s < t < T, for any x ≥ b and for any n ∈ N , we
have:

E[∂n
xnvP,φt

o,t (s∧τP
u,b,X

P
s∧τP

u,b
)|XP

u = x] = ∂n
xnvP,φt

o,t (u, x).

Proof. The proof is similar to the proof of Lemma 7.2.1.2, so we skip it. �

We now give the explicit calculus of vP,ρs,t
o,s defined in (7.22) in the following Lemma which proof, a

little bit tedious to write, is postponed to Appendix 7.6.2:

Lemma 7.3.4.4. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ u ≤ s < t < T, ∀x ≥ b, we have:

vP,ρs,t
o,s (u, x)
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1
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}
vP,h

o,T (u, x)
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s
τP

u,b
Lx

5vP,h
o,T (τP

u,b,b)|XP
u = x] + (x−b)E[1τP
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x
3 +Vt

τP
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Lx

5)vP,h
o,T (τP
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u = x]

−Vs
uL

x
1E[1τP

u,b∈[s,t](2L
x
3 +Vt

τP
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Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x]

+E
[
1τP

u,b≤sV
s
τP

u,b

∫ t

s

Σr

Vr
τP

u,b

DP(τP
u,b,r,0)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr
∣∣∣XP

u = x
]
, (7.45)

where using the relation (7.64) in Proposition 7.6.1.1,
Vs

uL
x
1E[1τP

u,b∈[s,t](2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x] is equal to:

Vs
u

∫ t

s
Σr(

1
Vr

u
−

(x−b)2

(Vr
u)2 )DP(u,r,b− x)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr.

We deduce that for any x0 ≥ b, using the Definition of the corrective terms Cork,o in Theorem 7.2.3.1:

1
4

∫ T

0
Σ

(2)
t vP,ψt

o,t (0, x0)dt +
1
4
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0
Σ

(1)
t

(∫ t

0
Σ

(1)
s vP,ρs,t

o,s (0, x0)ds
)
dt =

5∑
n=3

Corn,o. (7.46)

We finally provide an estimate of Lx
2vP,ρs,t

o,s (u, x), the proof being performed in Appendix 7.6.2.

Lemma 7.3.4.5. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). ∀0 ≤ u < s < t < T and ∀x ≥ b, we have the
following estimate:∣∣∣Lx

2vP,ρs,t
o,s (u, x)

∣∣∣ (7.47)
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}
,

where the generic constant is independent of x. We deduce that ∀0 ≤ u < s < t < T, ∀p ≥ 1:

||Lx
2vP,ρs,t

o,s (u,Xu)1τb>u||p (7.48)
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7.3.5 Proof of the error estimate in Theorem 7.2.2.1

Assuming (H̃σ
x0

) and that h ∈ Lip(R,b), we obtain in view of (7.18)-(7.19)-(7.21)-(7.23) that the error
term in Theorem 7.2.2.1 is equal to:

Error3,h =
1
2
E
[∫ T∧τb

0
(Xt − x0)3{∫ 1

0

(1−α)2

2
Σ

(3)
t ((1−α)x0 +αXt)dα

}
Lx

2vP,h
o,T (t,Xt)dt

]
+

1
8

∫ T

0
Σ

(2)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,ψt
o,t (s,Xs)ds

]
dt

+
1
4

∫ T

0
Σ

(1)
t E

[∫ t∧τb

0

{∫ 1

0
Σ

(2)
s ((1−α)x0 +αXs)(1−α)dα

}
(Xs− x0)2Lx

2vP,φt
o,t (s,Xs)ds

]
dt

+
1
8

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s E

[∫ s∧τb

0
(Σu(Xu)−Σu)Lx

2vP,ρs,t
o,s (u,Xu)du

]
ds

)
dt. (7.49)

We easily bound the first term of the r.h.s. of (7.49) using Lemmas 7.3.1.3 and 7.3.1.1 and (H̃σ
x0

):

∣∣∣E[∫ T∧τb

0
(Xt − x0)3{∫ 1

0

(1−α)2

2
Σ

(3)
t ((1−α)x0 +αXt)dα

}
Lx

2vP,h
o,T (t,Xt)dt

]∣∣∣
≤cM1(σ)M0(σ)|σ|3∞T

3
2 C−1

σ

∫ T

0

dt
√

T − t
≤cM1(σ)M0(σ)|σ|2∞T 2.

For the second term of (7.49), we utilize the Lemma 7.3.4.2 to obtain:

∣∣∣∫ T

0
Σ

(2)
t E

[∫ t∧τb

0
(Σs(Xs)−Σs)Lx

2vP,ψt
o,t (s,Xs)ds

]
dt

∣∣∣
≤c[M1(σ)]2M0(σ)|σ|2∞

√
TC−1

σ

×

∫ T

0

(∫ t

0

{ T

(T − s)
3
2

+

√
T

T − s
+

1
√

T − t
+

√
T

√
t− s
√

T − t
+

√
T

T − (s+t)
2

}
ds

)
dt

≤c[M1(σ)]2M0(σ)|σ|∞T 2.

We now pass to the third term of (7.49) and to treat it, we use the Lemma 7.3.2.3 to get:

∣∣∣∫ T

0
Σ

(1)
t E

[∫ t∧τb

0

{∫ 1

0
Σ

(2)
s ((1−α)x0 +αXs)(1−α)dα

}
(Xs− x0)2Lx

2vP,φt
o,t (s,Xs)ds

]
dt

∣∣∣
≤c[M1(σ)]2M0(σ)|σ|3∞TC−2

σ

∫ T

0

(∫ t

0

{ √
T

(T − s)
3
2

+
1

T − s
+

1
√

(t− s)
√

T − t
+

1

T − (s+t)
2

}
ds

)
dt

≤c[M1(σ)]2M0(σ)|σ|∞T 2.

We finish with the last term of (7.49). An application of Lemma 7.3.4.5 yields:

∣∣∣∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s E

[∫ s∧τb

0
(Σu(Xu)−Σu)Lx

2vP,ρs,t
o,s (u,Xu)du

]
ds

)
dt

∣∣∣
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≤c[M1(σ)]3|σ|4∞
√

TC−3
σ

∫ T

0

(∫ t

0

(∫ s

0

{ T

(T −u)
5
2

+

√
T

(T − u+t
2 )2

+

√
T

(t−u)
3
2
√

T − t

+

√
T

(t−u)(T − s+t
2 )

+

√
T

√
s−u(T − s+t

2 )
3
2

+
1

(T − s+t
2 )

3
2

+
1

(t−u)
√

T − t

+
1

√
s−u(T − s+t

2 )
+

1

(s−u)
3
4 (T − t)

3
4

+
T

1
20

(s−u)
3
4 (T − t)

4
5

}
du

)
ds

)
dt

≤c[M1(σ)]3|σ|∞T 2.

That achieves the proof.

7.4 Applications to the pricing of down and in barrier options

We denote by vP,h
i,T (t, x) = E[h(XP

T )1τP
b≤T |X

P
t = x] ,∀(t, x) ∈ [0,T ]× [b,+∞[ , the proxy pricing kernel for

the down and in option and the obvious relation:

vP,h
o,T (t, x) + vP,h

i,T (t, x) = vP,h
T (t, x), (7.50)

allows us to deduce results for the down and in case from the down and out case, applying the results of
[Benhamou 2010a] for the plain-vanilla part. For h ∈ Lip(R,b),

vP,h
i,T (t, x) =

∫
R

h(y)e
−

2(x−b)(y−b)
VT

t DP(t,T,y− x)dy which is the second term of the r.h.s of (7.9). We easily
deduce from the relation (7.50) the next Lemma:

Lemma 7.4.0.1. Assume (H̃σ
x0

) and that h ∈ Lip(R,b). For any t ∈ [0,T [, we have:

Lx
nvP,h

i,T (t,b) =Lx
nvP,h

T (t,b), ∀n ∈ {2,4,6}, (7.51)

Lx
nvP,h

i,T (t,b) =−Lx
nvP,h

T (t,b) = −
1
2
Lx

nvP,h
o,T (t,b), ∀n ∈ {1,3,5}, (7.52)

We now announce directly the main results:

Theorem 7.4.0.1. (2nd order approximation price formula for down and in regular barrier options).
Assume (H̃σ

x0
). Then for any h ∈ Lip(R,b), we have for any x0 ≥ b:

E[h(XT )1τb≤T ] =E[h(XP
T )1τP

b≤T ] +Cor1,i +Cor2,i +O
(
|σ|∞M1(σ)M0(σ)T

3
2
)
, (7.53)

where:

Cor1,i =
1
2
~ω(Σ(1),Σ)T

0L
x
3vP,h

i,T (0, x0), Cor2,i =−E[1τP
b≤T ~ω(Σ(1),Σ)T

τP
b
Lx

3vP,h
i,T (τP

b ,b)].

Proof. We write E[h(XT )1τb≤T ] = E[h(XT )]−E[h(XT )1τb>T ] and we apply [Benhamou 2010a, Theorem
2.1] for the plain vanilla part and the Theorem 7.2.2.1 for the down and out option to readily obtain:

E[h(XT )1τb≤T ] =E[h(XP
T )]−E[h(XP

T )1τP
b>T ] +

1
2
~ω(Σ(1),Σ)T

0L
x
3 (vP,h

T (0, x)− vP,h
o,T (0, x))︸                     ︷︷                     ︸

vP,h
i,T (0,x)

|x=x0

+
1
2
E[1τP

b≤T ~ω(Σ(1),Σ)T
τP

b
Lx

3vP,h
o,T (τP

b ,b)] +O
(
|σ|∞M1(σ)M0(σ)T

3
2
)
.

Then by Lemma 7.4.0.1 equation (7.52), we have Lx
3vP,h

o,T (τP
b ,b) = 2Lx

3vP,h
T (τP

b ,b) = −2Lx
3vP,h

i,T (τP
b ,b). �



188 Chapter 7. Price expansions for regular down barrier options

Remark 7.4.0.1. Observe that if x0 = b, we take face to a plain vanilla option and owing to Lemma
7.4.0.1 we are coherent with [Benhamou 2010a, Theorem 2.1], whereas if b→ −∞, all the term of the
expansion vanish.

Theorem 7.4.0.2. (3rd order approximation price formula for down and in regular barrier options).
Assuming (H̃σ

x0
), we have for any h ∈ Lip(R,b) and any x0 ≥ b:

E[h(XT )1τb≤T ] = E[h(XP
T )1τP

b≤T ] +

5∑
n=1

Corn,i +O
(
|σ|∞M1(σ)[M0(σ)]2T 2), (7.54)

where the corrective terms Corn,i are obtained by replacing vP,h
o,T (0, x0) by vP,h

i,T (0, x0) and

vP,h
o,T (r,b) = 2vP,h

T (r,b) by 2vP,h
i,T (r,b) = −2vP,h

T (r,b) ∀r ∈ [0,T ] in the various corrective terms Cork,o defined
in Theorem 7.2.3.1.

Remark 7.4.0.2. If x0 = b, Cor4,i = Cor5,i = 0 and owing to Lemma 7.4.0.1 equation (7.51),
Lx

nvP,h
i,T (0, x0) = Lx

nvP,h
T (0, x0), ∀n ∈ {2,4,6}. We are consistent with [Benhamou 2010a, Theorem 2.2].

If b→−∞, all the corrective terms vanish.

7.5 Applications to regular down and out Call options

In this section, we apply our various price approximations to the particular case of regular down Call
options. The payoff function is now equal to h(x) = (ex − ek)+ with min(x0,k) ≥ b. In order to obtain
more accurate approximations (see Chapter 2), we derive new expansions with the local volatility frozen
at mid-point xavg =

x0+k
2 . Then we show that if the local volatility function is time-homogeneous, our

prices expansions reduce to totally closed-form formulas with a numerical cost close to zero.

7.5.1 Notations

B Barrier Call options. We denote by Call(S 0,T,K) the price at time 0 of a Call option with spot
S 0, maturity T and strike K, written on the asset S = eX that is Call(S 0,T,K) = E(eXT − K)+. We
use the notation DoCall(S 0,T,K,B) (respectively DiCall(S 0,T,K,B)) for the price at time 0 of a reg-
ular down and out (respectively in) barrier Call option with barrier level B = eb ≤ min(K,S 0) that is
DoCall(S 0,T,K,B) = E[(eXT −K)+1τb>T ] (respectively DiCall(S 0,T,K,B) = E[(eXT −K)+1τb≤T ]).
As usual, ATM (At The Money) Call refers to x0 ≈ k, ITM (In The Money) to x0 � k, OTM (Out The
Money) to x0� k.

B Barrier Black-Scholes Call price function. For the sake of completeness, we give the Black-Scholes
Call price function depending on log-spot x, total variance y > 0 and log-strike k:

CallBS(x,y,k) = exN(d1(x,y,k))− ekN(d2(x,y,k)) (7.55)

where:

d1(x,y,k) =
x− k
√

y
+

1
2
√

y, d2(x,y,k) =d1(x,y,k)−
√

y.

We recall that we have the simple following relation:

∂yCallBS(x,y,k) =
1
2
Lx

2CallBS(x,y,k) =
1
2
Lk

2CallBS(x,y,k). (7.56)
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We use the notation DoCallBS(x,y,k,b) (respectively DiCallBS(x,y,k,b)) for the price of a regular down
and out (respectively in) barrier Call option in the Black-Scholes model with log-barrier equal to b. For
convenience, we recall that we have the following formulas:

DiCallBS(x,y,k,b) = CallBS(b,y, x + k−b), DoCallBS(x,y,k,b) = CallBS(x,y,k)−DiCallBS(x,y,k,b).
(7.57)

Notice that ∂xDiCallBS(x,y,k,b) = ∂kCallBS(b,y,k)|k=x+k−b and the facts that
Lx

nCallBS(x,y,k) = Lk
nCallBS(x,y,k) for n ∈ {2,4,6} whereas Lx

nCallBS(x,y,k) = −Lk
nCallBS(x,y,k) for

n ∈ {3,5} (see Chapter 2 Proposition 2.6.1.3) allow to retrieve the results of Lemmas 7.2.1.1 and 7.4.0.1.
The expansions of Theorems 7.2.2.1-7.2.3.1 and Corollary 7.4.0.1 remain valid for the regular

Call payoff replacing in the various corrective coefficients Cor the sensitivities by the corresponding
derivatives w.r.t. x of the functions DoCallBS(x,y,k,b) or DiCallBS(x,y,k,b).
In the following, x0 = log(S 0) will represent the log-spot, k = log(K) the log-strike, b = log(B) ≤ k the
log-barrier and xavg = (x0 + k)/2 = log(

√
S 0K) the mid-point between the log-spot and the log-strike.

B Total volatility at xavg, τP,xavg

b and (H̃σ
xavg

). When freezing the local volatility and local vari-

ance functions σ and Σ in xavg, we denote by VT
t (xavg) =

∫ T
t Σs(xavg)ds the total variance at point

xavg on the period [t,T ]. We extend this notation for the integral operator ~ω acting on Σ and its
derivatives computed at xavg and we introduce the notation Cork,o(xavg) to denote the same correc-
tive terms introduced in Theorem 7.2.3.1 but with the local volatility frozen at xavg. For instance we have
~ω(Σ(1),Σ)T

0 (xavg) = ~ω(Σ(1)(xavg),Σ(xavg))T
0 andCor1,o(xavg) = 1

2 ~ω(Σ(1),Σ)T
0 (xavg)Lx

3DoCallBS(x0,V
T
0 (xavg),k,b).

Similarly we introduce the new proxy process (XP,xavg
t )t∈[0,T ] which is a Gaussian process defined like in

(7.3) but with the local volatility frozen at xavg. For this process we introduce the first hitting time of
the level b: τP,xavg

b = inf{t ≥ 0 : XP,xavg
t = b}. We denote byDP,xavg the density of XP,xavg

t and by JP,xavg the

density associated to the hitting times of (XP,xavg
t )t∈[0,T ].

Finally we define the assumption (H̃σ
xavg

) similarly to (H̃σ
x0

) replacing x0 by xavg in (H̃σ
x0

).

7.5.2 Regular down barrier Call option approximations with the local volatility at mid-
point.

To obtain new expansions with the local volatility frozen at xavg, we perform an expansion of the local
volatility in the approximation formulas given in Theorems 7.2.2.1-7.2.3.1 and Corollary 7.4.0.1. The
results are summarised in the following Proposition proven in Appendix 7.6.3.

Proposition 7.5.2.1. Assume (H̃σ
x0

)-(H̃σ
xavg

). We have for any b ≤min(x0,k):

DoCallBS(x0,V
T
0 ,k,b) =DoCallBS(x0,V

T
0 (xavg),k,b) +Cor6,o(xavg) +O

(
|σ|∞M1(σ)M0(σ)T

3
2
)

=DoCallBS(x0,V
T
0 (xavg),k,b) + (Cor6,o +Cor7,o)(xavg) +O

(
|σ|∞M1(σ)[M0(σ)]2T 2),

Cor1,o =Cor1,o(xavg) +O
(
|σ|∞M1(σ)M0(σ)T

3
2
)

= (Cor1,o +Cor8,o)(xavg) +O
(
|σ|∞M1(σ)[M0(σ)]2T 2),

Cor2,o =Cor2,o(xavg) +O
(
|σ|∞M1(σ)M0(σ)T

3
2
)

= (Cor2,o +Cor9,o)(xavg) +O
(
|σ|∞M1(σ)[M0(σ)]2T 2),

5∑
n=3

Corn,o =

5∑
n=3

Corn,o(xavg) +O
(
|σ|∞M1(σ)[M0(σ)]2T 2),

where:

Cor6,o(xavg) =
1
4

(x0− k)~ω(Σ(1)(xavg))T
0L

x
2DoCallBS(x0,V

T
0 (xavg),k,b),
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Cor7,o(xavg) =
1

16
(x0− k)2{~ω(Σ(2)(xavg))T

0L
x
2 + ~ω(Σ(1),Σ(1))T

0 (xavg)Lx
4
}
DoCallBS(x0,V

T
0 (xavg),k,b),

Cor8,o(xavg) =
1
4

(x0− k)
{
[~ω(Σ(1),Σ(1))T

0 + ~ω(Σ(2),Σ)T
0 ](xavg)Lx

3

+ [~ω(Σ(1),Σ(1),Σ)T
0 +

1
2
~ω(Σ(1),Σ,Σ(1))T

0 ](xavg)Lx
5
}
DoCallBS(x0,V

T
0 (xavg),k,b),

Cor9,o(xavg) =−
1
4

(x0− k)E
[
1
τ

P,xavg
b <T

{
[~ω(Σ(1),Σ(1))T

τ
P,xavg
b

+ ~ω(Σ(2),Σ)T
τ

P,xavg
b

+ ~ω(Σ(1))
τ

P,xavg
b

0 ~ω(Σ(1))T
τ

P,xavg
b

](xavg)Lx
3 + [~ω(Σ(1),Σ(1),Σ)T

τ
P,xavg
b

+
1
2
~ω(Σ(1),Σ,Σ(1))T

τ
P,xavg
b

+
1
2
~ω(Σ(1))

τ
P,xavg
b

0 ~ω(Σ(1),Σ)T
τ

P,xavg
b

](xavg)Lx
5
}
DoCallBS(b,VT

τ
P,xavg
b

(xavg),k,b)
]
.

We easily deduce from Proposition 7.5.2.1 the next Theorem:

Theorem 7.5.2.1. (2nd and 3rd order approximations for regular down barrier Call options with local
volatility at xavg).
Assume (H̃σ

x0
)-(H̃σ

xavg
). Then for any b ≤min(x0,k), we have:

DoCall(S 0,T,K,B) =DoCallBS(x0,V
T
0 (xavg),k,b) +

∑
n∈{1,2,6}

Corn,o(xavg) +O
(
|σ|∞M0(σ)M1(σ)T

3
2
)

=DoCallBS(x0,V
T
0 (xavg),k,b) +

9∑
n=1

Corn,o(xavg) +O
(
|σ|∞[M0(σ)]2M1(σ)T 2),

where the corrective coefficients Corn,o are defined in Theorems 7.2.2.1-7.2.3.1 and in Proposition
7.5.2.1. Under the same hypotheses, one has:

DiCall(S 0,T,K,B) =DiCallBS(x0,V
T
0 (xavg),k,b) +

∑
n∈{1,2,6}

Corn,i(xavg) +O
(
|σ|∞M0(σ)M1(σ)T

3
2
)

=DiCallBS(x0,V
T
0 (xavg),k,b) +

9∑
n=1

Corn,i(xavg) +O
(
|σ|∞[M0(σ)]2M1(σ)T 2),

where we define Corn,i(xavg), n ∈ {1, ..,9} by replacing in Corn,o(xavg) DoCallBS(x0,V
T
0 (xavg),k,b) by

DiCallBS(x0,V
T
0 (xavg),k,b), n ∈ {1,3,6,7,8} and by setting them equal to −Corn,o(xavg), n ∈ {2,4,5,9}.

7.5.3 Reductions in the time-homogeneous framework

The various formulas of Theorems 7.2.2.1-7.2.3.1-7.5.2.1 and Corollary 7.4.0.1 are explicit up to a
numerical integration of the terms expressed as an expectation involving the first hitting time of the
barrier. Remarkably, these formulas are available in closed-forms through an expression containing only
Gaussian functions if the local volatility is time-independent (extension to local volatility functions with
separable time and space variables is straightforward). To see this, we leverage convolution properties
of the Gaussian hitting times density postponed to Proposition 7.6.1.4. That leads to the following
Proposition proven in Appendix 7.6.3.

Proposition 7.5.3.1. We suppose that the local volatility function is time-homogeneous and we assume
(H̃σ

x0
)-(H̃σ

xavg
). Then for any b ≤min(x0,k), we have for any z ∈ {x0, xavg}:

Cor2,o(z)
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=
1
2

eb(k−b)
Σ(1)(z)
Σ(z)

{
(x0−b)N(

2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8 −VT

0 (z)DP,z(0,T,2b− x0− k)
}
,

Cor4,o(z)

=
1
2

eb(x0−b)(k−b)
Σ(2)(z)
Σ(z)

{
VT

0 (z)DP,z(0,T,2b− x0− k)− (x0−b)N(
2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8

}
+

1
8

eb(x0−b)(k−b)
(Σ(1))2(z)

Σ2(z)
{
(x0−b)[3 +

5
8
VT

0 (z) +
1
8

(x0− k)(x0 + k−2b)]N(
2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8

+
[
2(k−b)2 + (k−b)(x0−b)−VT

0 (z)(2 +
1
8

(x0−b)(x0− k) +
1
2
VT

0 (z))
]
DP,z(0,T,2b− x0− k)

}
,

Cor5,o(z)

=
1
8

eb(x0−b)(k−b)
(Σ(1))2(z)

Σ2(z)
{
(x0−b)N(

2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8 −VT

0 (z)DP,z(0,T,2b− x0− k)

+
1
8

(VT
0 (z))

3
2 e

x0+k
2 −b−

VT
0 (z)
8

×
(
−

1
6

H3(x)N(x)−
1
6

H2(x)N ′(x) +
1
2
N ′(x)−

(x0− k)

2
√
VT

0 (z)
[(H2(x) + 2)N(x) + xN ′(x)]

)∣∣∣
x=

2b−x0−k√
VT

0 (z)

}
,

Cor9,o(z)

=
1
4

eb(x0− k)(k−b)
Σ(2)(z)
Σ(z)

{
(x0−b)N(

2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8 −VT

0 (z)DP,z(0,T,2b− x0− k)
}

+
1
4

eb(x0− k)(k−b)
(Σ(1))2(z)

Σ2(z)
{
[
1
2
VT

0 (z) +
1
2

(2b− x0− k)(k−b) +
1
8

(VT
0 (z))2]DP,z(0,T,2b− x0− k)

− (x0−b)[1 +
1
8
VT

0 (z)]N(
2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8

}
.

Remark 7.5.3.1. We remarkably obtain very simple second order formulas with the local volatility at
mid-point. Combining the explicit forms of Cor1,o, Cor2,o and Cor6,o (see Propositions 7.5.2.1-7.5.3.1),
we easily get:

DoCall(S 0,T,K,B) =DoCallBS(x0,Σ(xavg)T,k,b) +Cor10,o +O
(
|σ|∞M0(σ)M1(σ)T

3
2
)
, (7.58)

DiCall(S 0,T,K,B) =DiCallBS(x0,Σ(xavg)T,k,b) −Cor10,o +O
(
|σ|∞M0(σ)M1(σ)T

3
2
)
, (7.59)

Cor10,o =
1
2

Σ(1)(xavg)
Σ(xavg)

(k−b)(x0−b)N(
2b− x0− k√
VT

0 (xavg)
)exavg−

VT
0 (xavg)

8 .

The expansions formulas (7.59) and (7.58) reduce to a suitable regular down barrier Call option price
with the local volatility frozen at xavg plus or minus a simple and explicit term Cor10,o symmetric w.r.t.
the variables x0 and k. Notice that if b = x0 or b = k, this additional term vanishes. In particular if b = k,
owing to (7.57), the expansion formula (7.59) is simply a Black-Scholes Put price with log-spot x0, log-
strike b and total variance equal to Σ(xavg)T, whereas the approximation formula (7.58) is the difference
of a Black-Scholes Call price and a Black-Scholes Put price with the same features, i.e. ex0 − eb. We let
the reader verify that the third order formulas also give these very simple approximations if b = k.
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7.5.4 Numerical experiments

BModel and benchmark. Here we give numerical examples of the accuracy of our third order ap-
proximation with local volatility at xavg (see Theorem 7.5.2.1), denoted by App(3,xavg), for regular
down out barrier Call options in the time-homogeneous framework because of the high simplicity of our
formulas owing to Proposition 7.5.3.1. As a benchmark model, we consider a time-independent CEV
model:

dS t =νS 1−β
0 S β

t dWt, S 0 = ex0 , (7.60)

with a spot spot value S 0 = 100, a level of volatility ν = 25% and a skew parameter β = 0.5. This model
is applied directly to the asset price and we apply our results by considering a fictive log-asset with local
volatility function σ(x) = νe(β−1)(x−x0). Although the local volatility function as well its derivatives are
not bounded, the following tests nevertheless prove the excellent accuracy of our formula. An advantage
of this model widely used by the practitioners in the industry of finance is that Call options prices (see
[Schroder 1989]) are available in closed-form as well as barrier Call options prices. Davydov et al.
derived in [Davydov 2001] closed-form formulas for the Laplace transforms of barrier options prices
under the CEV diffusion. Then they developed in [Davydov 2003] eigenfunctions expansions to invert
the Laplace transform. Alternatively, and this is the methodology chosen in this work, the Laplace
transform inversion can be performed with the Abate and Whitt algorithm (see [Abate 1995]).

BSet of parameters. We study the accuracy of App(3,xavg) for various maturities, strikes and levels of
barrier. We report in Table 7.1 the maturities and the strikes evolving approximately as S 0 exp(cν

√
T )

where c takes the value of various quantiles of the standard Gaussian law (1%-5%-10%-20%-30%-40%-
50%-60%-70%-80%-90%-95%-99%) to cover both far ITM and far OTM options. We report in Table
7.2 the maturities and the corresponding levels of barrier evolving similarly to the strikes (but with
quantiles lower than 50% because the level of barrier has to be smaller than the spot 100). For the sake
of completeness we also consider the case B = 0 (pure vanilla case) associated to the quantile 0. Then
we report in Tables 7.3 and 7.4 the values of the down out barrier Call option prices for the whole set
of maturities, strikes and barriers (keeping only the strikes greater than the barriers to consider regular
options) obtained with the closed-form formula and in Tables 7.5 and 7.6, the errors on prices using
App(3,xavg).
BAnalysis of the results. The Tables 7.5 and 7.6 show that App(3,xavg) is extremely accurate for all the
maturities, strikes and barriers. The maximum error in absolute value for the whole set of parameters
is about 10−2 obtained for the largest maturities. For small maturities (see Table 7.5), the errors are
generally of magnitude 10−4 −10−5 (with smallest errors of magnitude 10−7 !) and for large maturities
(see Table 7.6), of magnitude 10−3 − 10−4 (with smallest errors of magnitude 10−6 !). The errors are
increasing w.r.t. T and at fixed maturity, are globally of the same magnitude according to K and B.
In particular we notice that the barrier prices approximations are as accurate than those of the vanilla
prices. This reinforces our belief that the accuracy of the expansion strongly depends on the regularity
of the involved functionals which are comparable in the case of regular barrier options and plain vanilla
options. We nevertheless remark that the errors are slightly smaller for very OTM options (certainly
because the price is close to 0) and are very small for ITM options with K = B (at most 10−5). As
noticed in Remark 7.5.3.1, K = B is a particular situation with a price approximation given by S 0 −K
what is very close to the real price as seen in Tables 7.3 and 7.4.
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Table 7.1: Set of maturities and strikes for the numerical experiments

T\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
3M 70 75 80 85 90 95 100 105 110 115 125 130 135
6M 65 75 80 85 90 95 100 105 110 120 125 135 150
1Y 55 65 75 80 90 95 100 105 115 125 140 150 180
1.5Y 50 60 70 75 85 95 100 110 115 130 150 165 200
2Y 45 55 65 75 85 90 100 110 120 135 155 180 230
3Y 35 50 55 70 80 90 100 110 125 145 175 205 270
5Y 25 40 50 60 75 85 100 115 135 160 205 250 260
10Y 15 25 35 50 65 80 100 120 150 195 275 365 630

Table 7.2: Set of maturities and barriers for the numerical experiments

T\B 0% 1% 5% 10% 20% 30% 40% 45% 49%
3M 0 70 75 80 85 90 95 97.5 99.5
6M 0 65 75 80 85 90 95 97.5 99.5
1Y 0 55 65 75 80 90 95 97.5 99.5
1.5Y 0 50 60 70 75 85 95 97.5 99
2Y 0 45 55 65 75 85 90 97.5 99
3Y 0 35 50 55 70 80 90 95 99
5Y 0 25 40 50 60 75 85 90 98.5
10Y 0 15 25 35 50 65 80 90 98

7.6 Appendix

7.6.1 Properties of the Gaussian density, the Gaussian cumulative function and the
Gaussian hitting times density

We give in the following Propositions some simple relations between the partial derivatives of DP and
JP, some estimates of their derivatives and integration results for N :

Proposition 7.6.1.1. Assume (H̃σ
x0

). For any 0 ≤ s < t ≤ T, for any x,y ∈ R and any b < x, we have:

∂sD
P(s, t, x,y) =−

Σs

2
Lx

2D
P(s, t, x,y), ∂tD

P(s, t, x,y) =
Σt

2
Lx

2D
P(s, t, x,y), (7.61)

∂sJ
P(s, t, x,b) =−

Σs

2
Lx

2J
P(s, t, x,b), ∂tJ

P(s, t, x,b) =
Σt

2
Lx

2J
P(s, t, x,b), (7.62)

JP(s, t, x,b) =−ΣtL
x
1D

P(s, t, x,b), (7.63)

Lx
1J

P(s, t, x,b) =Σt(
1
Vt

s
−

(x−b)2

(Vt
s)2 )DP(s, t, x,b) =

Σt

Vt
s
DP(s, t, x,b)−

(x−b)
Vt

s
JP(s, t, x,b)

=−Σt(Lx
2 +

1
4
I)DP(s, t, x,b) = −(2∂t +

1
4

ΣtI)DP(s, t, x,b). (7.64)

Proposition 7.6.1.2. Assume (H̃σ
x0

). Using the fact that for any polynomial function P, x 7→ P(x)N ′(x)
is a bounded function, we have for any 0 ≤ s < t ≤ T, for any (x,y) ∈]−∞,0]×R and any integers n and
m:

|y|m
∣∣∣∂n

ynD
P(s, t,y)

∣∣∣ ≤c(Vt
s)

m−n−1
2 , |x|m

∣∣∣∂n
xnJ

P(s, t, x)
∣∣∣ ≤cΣt(Vt

s)
m−n−2

2 . (7.65)

The results remain valid if we assume (H̃σ
xavg

) and considerDP,xavg , JP,xavg , Σt(xavg) andVt
s(xavg).
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Table 7.3: Down out barrier Call options prices in the CEV model (β = 0.5, ν = 0.25) obtained with the
closed-form formula for the maturities T = 3M, T = 6M, T = 1Y and T = 1.5Y .

B\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
0% 30.02 25.07 20.22 15.61 11.41 7.82 4.98 2.94 1.59 0.79 0.15 0.06 0.02
1% 30.00 25.06 20.22 15.61 11.41 7.82 4.98 2.94 1.59 0.79 0.15 0.06 0.02
5% 25.00 20.20 15.60 11.41 7.82 4.98 2.94 1.59 0.79 0.15 0.06 0.02

10% 20.00 15.54 11.39 7.81 4.98 2.93 1.59 0.79 0.15 0.06 0.02
20% 15.00 11.17 7.74 4.96 2.93 1.59 0.79 0.15 0.06 0.02
30% 10.00 7.18 4.72 2.84 1.56 0.78 0.15 0.06 0.02
40% 5.00 3.51 2.23 1.29 0.67 0.14 0.05 0.02
45% 1.75 1.18 0.72 0.39 0.09 0.04 0.01
49% 0.48 0.34 0.21 0.12 0.03 0.01 0.00
0% 35.08 25.46 20.95 16.76 12.99 9.74 7.05 4.91 3.29 1.32 0.79 0.25 0.03
1% 35.00 25.45 20.94 16.75 12.99 9.74 7.05 4.91 3.29 1.32 0.79 0.25 0.03
5% 25.00 20.73 16.66 12.95 9.72 7.04 4.91 3.29 1.32 0.79 0.25 0.03

10% 20.00 16.27 12.75 9.63 7.00 4.89 3.28 1.32 0.79 0.25 0.03
20% 15.00 12.00 9.21 6.77 4.78 3.23 1.31 0.78 0.25 0.03
30% 10.00 7.91 5.97 4.31 2.97 1.24 0.75 0.24 0.03
40% 5.00 3.94 2.95 2.11 0.94 0.59 0.20 0.03
45% 1.83 1.41 1.04 0.49 0.31 0.11 0.02
49% 0.49 0.38 0.29 0.14 0.09 0.03 0.01
0% 45.15 35.58 26.68 22.62 15.51 12.53 9.95 7.77 4.50 2.44 0.86 0.40 0.03
1% 45.00 35.55 26.67 22.61 15.51 12.53 9.95 7.77 4.50 2.44 0.86 0.40 0.03
5% 35.00 26.50 22.52 15.48 12.52 9.95 7.77 4.50 2.44 0.86 0.40 0.03

10% 25.00 21.54 15.10 12.29 9.81 7.69 4.48 2.43 0.86 0.40 0.03
20% 20.00 14.35 11.79 9.49 7.49 4.40 2.40 0.85 0.39 0.03
30% 10.00 8.50 7.07 5.75 3.56 2.03 0.76 0.36 0.03
40% 5.00 4.25 3.54 2.29 1.36 0.54 0.26 0.02
45% 1.88 1.59 1.06 0.65 0.27 0.13 0.01
49% 0.49 0.42 0.28 0.18 0.07 0.04 0.00
0% 50.27 40.83 32.04 27.98 20.70 14.69 12.18 8.11 6.52 3.18 1.06 0.43 0.04
1% 50.00 40.75 32.01 27.96 20.70 14.69 12.18 8.11 6.51 3.18 1.06 0.42 0.04
5% 40.00 31.71 27.78 20.63 14.66 12.17 8.11 6.51 3.17 1.06 0.42 0.04

10% 30.00 26.57 20.06 14.41 12.00 8.04 6.47 3.16 1.06 0.42 0.04
20% 25.00 19.19 13.97 11.69 7.89 6.37 3.14 1.06 0.42 0.04
30% 15.00 11.41 9.74 6.80 5.58 2.85 0.99 0.40 0.04
40% 5.00 4.40 3.26 2.75 1.52 0.58 0.25 0.03
45% 1.90 1.44 1.23 0.70 0.28 0.12 0.01
50% 0.98 0.74 0.64 0.37 0.15 0.07 0.01

Proposition 7.6.1.3. Using standard properties of the Hermite polynomials defined in (7.28), we have
∀n ∈ N and ∀x ∈ R: ∫ x

−∞

Hn(y)N(y)dy =
1

n + 1
(
Hn+1(x)N(x) + Hn(x)N ′(x)

)
. (7.66)

We summarize in the next Proposition some useful convolution properties ofDP and JP:

Proposition 7.6.1.4. Assume (H̃σ
x0

). One has for any 0 ≤ r < t ≤ T and for any a,b < 0:∫ t

r
JP(r, s,a)JP(s, t,b)ds =JP(r, t,a + b), (7.67)∫ t

r
JP(r, s,a)DP(s, t,b)ds =DP(r, t,a + b), (7.68)
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Table 7.4: Down out barrier Call options prices in the CEV model (β = 0.5, ν = 0.25) obtained with the
closed-form formula for the maturities T = 2Y , T = 3Y , T = 5Y and T = 10Y .

B\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
0% 55.35 45.96 37.17 29.22 22.30 19.26 14.05 9.94 6.84 3.69 1.48 0.41 0.02
1% 55.00 45.84 37.13 29.21 22.30 19.26 14.05 9.94 6.84 3.69 1.48 0.41 0.02
5% 45.00 36.76 29.05 22.23 19.22 14.03 9.94 6.83 3.69 1.48 0.41 0.02

10% 35.00 28.12 21.76 18.89 13.87 9.87 6.80 3.68 1.48 0.41 0.02
20% 25.00 19.87 17.45 13.06 9.42 6.57 3.60 1.46 0.41 0.02
30% 15.00 13.43 10.41 7.75 5.56 3.15 1.33 0.38 0.02
40% 10.00 7.94 6.04 4.42 2.58 1.12 0.33 0.02
45% 4.48 3.50 2.62 1.58 0.72 0.22 0.01
49% 0.98 0.78 0.60 0.37 0.18 0.06 0.00

0% 65.37 51.45 47.09 35.09 28.17 22.20 17.17 13.05 8.36 4.37 1.47 0.44 0.02
1% 65.00 51.36 47.03 35.08 28.17 22.20 17.17 13.05 8.36 4.37 1.47 0.44 0.02
5% 50.00 46.04 34.72 27.99 22.11 17.13 13.03 8.36 4.37 1.47 0.44 0.02

10% 45.00 34.25 27.73 21.97 17.05 12.99 8.34 4.36 1.47 0.44 0.02
20% 30.00 24.94 20.19 15.95 12.31 8.03 4.26 1.46 0.44 0.02
30% 20.00 16.62 13.44 10.59 7.10 3.87 1.37 0.42 0.02
40% 10.00 8.34 6.77 4.73 2.71 1.02 0.33 0.02
45% 4.59 3.79 2.71 1.60 0.63 0.21 0.01
49% 0.98 0.82 0.60 0.36 0.15 0.05 0.00

0% 75.55 61.90 53.47 45.71 35.44 29.54 22.08 16.17 10.37 5.70 1.74 0.47 0.01
1% 75.00 61.72 53.39 45.68 35.43 29.53 22.08 16.17 10.37 5.70 1.74 0.47 0.01
5% 60.00 52.38 45.08 35.16 29.38 22.01 16.14 10.36 5.69 1.74 0.47 0.01

10% 50.00 43.49 34.31 28.83 21.73 16.00 10.30 5.68 1.74 0.47 0.01
20% 40.00 32.19 27.33 20.85 15.50 10.08 5.59 1.73 0.47 0.01
30% 25.00 21.75 17.15 13.11 8.78 5.03 1.61 0.45 0.01
40% 15.00 12.16 9.54 6.60 3.91 1.32 0.38 0.01
45% 8.75 6.96 4.91 2.97 1.04 0.31 0.01
49% 1.47 1.20 0.88 0.55 0.21 0.07 0.00

0% 86.12 77.50 69.43 58.41 48.71 40.28 30.90 23.41 15.12 7.53 1.97 0.39 0.00
1% 85.00 76.87 69.06 58.23 48.62 40.24 30.88 23.41 15.12 7.53 1.97 0.39 0.00
5% 75.00 67.80 57.53 48.22 40.01 30.77 23.35 15.10 7.52 1.97 0.39 0.00

10% 65.00 55.75 47.09 39.29 30.38 23.14 15.01 7.50 1.97 0.39 0.00
20% 50.00 43.03 36.44 28.63 22.07 14.51 7.34 1.95 0.38 0.00
30% 35.00 30.28 24.37 19.18 12.93 6.74 1.85 0.37 0.00
40% 20.00 16.58 13.40 9.37 5.10 1.49 0.32 0.00
45% 9.16 7.55 5.43 3.07 0.95 0.21 0.00
49% 1.97 1.65 1.21 0.71 0.23 0.05 0.00

∫ t

r
ΣsD

P(r, s,a)DP(s, t,b)ds =N(
a + b√
Vt

r

)e−
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2 −
1
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t
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r
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8V
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(7.69)

∫ t

r
ΣsN(

a√
Vs

r
)e−

a
2−

1
8V
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r
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sJ
P(s, t,b)ds =−ΣtbDP(r, t,a + b), (7.71)∫ t

r
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r
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(a+b)
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1
8V

t
r , (7.72)
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Table 7.5: Errors on down out barrier Call options prices in the CEV model (β = 0.5, ν = 0.25) using
App(3,xavg) for the maturities T = 3M, T = 6M, T = 1Y and T = 1.5Y .

B\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
0% −8E−7 −6E−7 −4E−7 −3E−7 −6E−7 −1E−6 −1E−6 −9E−7 −6E−7 −3E−7 −3E−7 −4E−7 −5E−7
1% −5E−7 −5E−6 −5E−6 8E−7 −6E−6 7E−6 −2E−7 −6E−7 −6E−7 −3E−7 −3E−7 −4E−7 −5E−7
5% −3E−6 −2E−5 1E−5 1E−5 6E−7 2E−6 3E−7 −4E−7 −3E−7 −3E−7 −4E−7 −5E−7

10% −2E−5 −2E−5 2E−5 3E−5 3E−5 1E−5 4E−6 1E−6 −3E−7 −4E−7 −5E−7
20% −1E−5 −1E−5 5E−6 4E−5 4E−5 3E−5 1E−5 1E−6 −6E−8 −4E−7
30% −1E−5 −4E−6 4E−6 1E−5 2E−5 2E−5 6E−6 2E−6 4E−7
40% −1E−5 1E−5 7E−6 −3E−6 −9E−6 −8E−6 −5E−6 −3E−6
45% 2E−6 8E−6 4E−6 −2E−6 −1E−5 −8E−6 −6E−6
49% −6E−6 2E−6 2E−6 7E−7 −2E−6 −3E−6 −2E−6
0% −4E−6 −2E−6 −2E−6 −3E−6 −5E−6 −6E−6 −6E−6 −5E−6 −4E−6 −2E−6 −1E−6 −2E−6 −2E−6
1% −6E−7 4E−5 9E−5 8E−5 4E−5 2E−5 1E−6 −3E−6 −3E−6 −2E−6 −1E−6 −2E−6 −2E−6
5% −1E−6 −4E−5 2E−5 1E−4 2E−4 2E−4 1E−4 7E−5 1E−5 5E−6 −7E−7 −2E−6

10% 8E−7 −5E−6 4E−6 8E−5 1E−4 2E−4 1E−4 6E−5 3E−5 6E−6 −2E−6
20% 3E−6 2E−5 2E−5 3E−5 6E−5 9E−5 8E−5 6E−5 2E−5 4E−7
30% −1E−8 4E−5 4E−5 2E−5 1E−6 −1E−6 2E−6 4E−6 −3E−7
40% 8E−7 3E−5 4E−5 3E−5 −2E−5 −4E−5 −5E−5 −2E−5
45% 5E−6 2E−5 2E−5 3E−6 −1E−5 −3E−5 −2E−5
49% −2E−6 4E−6 6E−6 3E−6 −3E−7 −6E−6 −6E−6
0% −2E−5 −1E−5 −1E−5 −2E−5 −3E−5 −3E−5 −3E−5 −3E−5 −2E−5 −1E−5 −6E−6 −8E−6 −1E−5
1% −9E−6 −5E−5 4E−4 4E−4 1E−4 6E−5 2E−5 −6E−6 −2E−5 −1E−5 −6E−6 −8E−6 −1E−5
5% −2E−5 −1E−4 2E−4 7E−4 7E−4 6E−4 4E−4 2E−4 5E−5 2E−6 −6E−6 −1E−5

10% −2E−5 1E−5 4E−5 2E−4 4E−4 6E−4 6E−4 4E−4 1E−4 4E−5 −1E−5
20% −1E−5 7E−5 5E−5 9E−5 2E−4 3E−4 3E−4 2E−4 9E−5 −6E−6
30% −2E−5 1E−4 2E−4 2E−4 2E−5 −1E−4 −1E−4 −1E−4 −3E−5
40% −1E−5 8E−5 1E−4 1E−4 3E−6 −1E−4 −2E−4 −7E−5
45% 1E−5 4E−5 6E−5 4E−5 −4E−5 −7E−5 −5E−5
49% −4E−6 7E−6 2E−5 1E−5 −6E−6 −2E−5 −1E−5
0% −6E−5 −3E−5 −4E−5 −6E−5 −8E−5 −9E−5 −9E−5 −8E−5 −7E−5 −3E−5 −2E−5 −2E−5 −3E−5
1% 3E−5 −3E−4 1E−3 1E−3 8E−4 3E−4 2E−4 3E−6 −2E−5 −3E−5 −2E−5 −2E−5 −3E−5
5% 3E−5 −4E−4 1E−4 1E−3 2E−3 1E−3 9E−4 6E−4 2E−4 7E−6 −2E−5 −3E−5

10% 3E−5 9E−5 1E−5 6E−4 1E−3 1E−3 1E−3 9E−4 2E−4 6E−5 −3E−5
20% 2E−5 2E−4 1E−4 3E−4 7E−4 8E−4 8E−4 4E−4 1E−4 −2E−5
30% 1E−5 4E−4 4E−4 1E−4 3E−5 −1E−4 −9E−5 −5E−5 −3E−5
40% 1E−5 1E−4 2E−4 2E−4 6E−5 −2E−4 −3E−4 −2E−4
45% 2E−5 1E−4 1E−4 7E−5 −7E−5 −1E−4 −1E−4
49% 5E−6 5E−5 6E−5 5E−5 −2E−5 −6E−5 −5E−5
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Table 7.6: Errors on down out barrier Call options prices in the CEV model (β = 0.5, ν = 0.25) using
App(3,xavg) for the maturities T = 2Y , T = 3Y , T = 5Y and T = 10Y .

B\K 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%
0% −1E−4 −7E−5 −8E−5 −1E−4 −2E−4 −2E−4 −2E−4 −2E−4 −1E−4 −7E−5 −3E−5 −5E−5 −5E−5
1% −2E−6 −9E−4 2E−3 2E−3 1E−3 1E−3 3E−4 4E−5 −6E−5 −6E−5 −3E−5 −5E−5 −5E−5
5% 8E−6 −8E−4 9E−4 3E−3 3E−3 2E−3 2E−3 8E−4 2E−4 2E−5 −4E−5 −5E−5

10% 3E−6 −1E−4 2E−4 8E−4 2E−3 2E−3 2E−3 1E−3 4E−4 3E−5 −5E−5
20% 6E−6 5E−4 4E−4 2E−4 4E−4 8E−4 1E−3 7E−4 2E−4 −4E−5
30% 7E−6 4E−4 7E−4 4E−4 4E−5 −4E−4 −4E−4 −2E−4 −6E−5
40% 5E−6 5E−4 6E−4 3E−4 −2E−4 −6E−4 −6E−4 −1E−4
45% 2E−4 3E−4 4E−4 1E−4 −3E−4 −5E−4 −2E−4
49% 3E−6 6E−5 9E−5 7E−5 −2E−5 −1E−4 −6E−5
0% −4E−4 −2E−4 −2E−4 −4E−4 −4E−4 −5E−4 −5E−4 −4E−4 −3E−4 −2E−4 −8E−5 −1E−4 −1E−4
1% 5E−5 4E−4 3E−3 4E−3 2E−3 1E−3 2E−4 −1E−4 −2E−4 −2E−4 −8E−5 −1E−4 −1E−4
5% 1E−5 −8E−4 4E−4 4E−3 6E−3 6E−3 5E−3 2E−3 7E−4 4E−5 −1E−4 −1E−4

10% 2E−5 −8E−4 1E−3 4E−3 6E−3 6E−3 4E−3 2E−3 3E−4 −7E−5 −1E−4
20% 1E−5 1E−3 6E−4 4E−4 8E−4 2E−3 2E−3 1E−3 4E−4 −1E−4
30% 1E−5 1E−3 1E−3 8E−4 −1E−4 −6E−4 −4E−4 −2E−4 −1E−4
40% 3E−6 8E−4 1E−3 8E−4 −2E−4 −1E−3 −1E−3 −3E−4
45% 2E−4 6E−4 7E−4 2E−4 −6E−4 −9E−4 −3E−4
49% 9E−6 1E−4 2E−4 1E−4 −7E−5 −2E−4 −1E−4
0% −1E−3 −7E−4 −8E−4 −1E−3 −1E−3 −2E−3 −2E−3 −1E−3 −9E−4 −5E−4 −3E−4 −4E−4 −3E−4
1% 6E−6 −1E−3 1E−2 1E−2 8E−3 4E−3 6E−4 −5E−4 −7E−4 −5E−4 −3E−4 −4E−4 −3E−4
5% 2E−5 −4E−3 −2E−3 1E−2 2E−2 2E−2 1E−2 5E−3 2E−3 −6E−5 −4E−4 −3E−4

10% 2E−5 −2E−4 −4E−4 4E−3 1E−2 1E−2 1E−2 7E−3 1E−3 −2E−4 −3E−4
20% 1E−5 2E−3 7E−4 1E−3 5E−3 8E−3 8E−3 3E−3 4E−4 −3E−4
30% 6E−6 3E−3 3E−3 2E−3 −8E−4 −2E−3 −8E−4 −4E−4 −2E−4
40% 2E−6 2E−3 3E−3 1E−3 −2E−3 −4E−3 −3E−3 −5E−4
45% 1E−3 2E−3 2E−3 −9E−5 −3E−3 −3E−3 −6E−4
49% 3E−5 3E−4 4E−4 3E−4 −3E−4 −6E−4 −2E−4
0% 7E−5 1E−3 −3E−4 −3E−3 −5E−3 −6E−3 −6E−3 −5E−3 −4E−3 −2E−3 −1E−3 −2E−3 −4E−4
1% −4E−6 −4E−2 1E−2 7E−2 6E−2 3E−2 1E−2 2E−3 −1E−3 −1E−3 −1E−3 −2E−3 −4E−4
5% 1E−5 −2E−2 −3E−3 5E−2 7E−2 6E−2 4E−2 1E−2 2E−3 −9E−4 −2E−3 −4E−4

10% 1E−5 −8E−3 −6E−3 2E−2 5E−2 6E−2 4E−2 2E−2 8E−4 −2E−3 −4E−4
20% −5E−7 7E−3 2E−3 3E−4 9E−3 2E−2 3E−2 8E−3 −8E−4 −4E−4
30% 3E−6 9E−3 9E−3 3E−3 −5E−3 −4E−3 4E−4 −1E−3 −4E−4
40% 4E−6 7E−3 9E−3 4E−3 −8E−3 −1E−2 −8E−3 −5E−4
45% 2E−3 5E−3 5E−3 2E−5 −9E−3 −8E−3 −6E−4
49% 1E−4 8E−4 1E−3 8E−4 −1E−3 −2E−3 −2E−4

=
1
2

(Vt
r)

3
2
{
−

1
6

H3(x)N(x)−
1
6

H2(x)N ′(x) +
1
2
N ′(x) +

(a−b)

2
√
Vt

r

[(H2(x) + 2)N(x) + xN ′(x)]
}∣∣∣

x= a+b√
Vt

r

,

where Hn denote the nth Hermite polynomial defined in (7.28). The results remain valid if we assume
(H̃σ

xavg
) and considerDP,xavg , JP,xavg and the local variance function frozen at xavg.

Remark 7.6.1.1. There are some natural intuitions of the equalities (7.67)-(7.68) if we consider the case
of the standard Brownian motion. By independence of the increments we have that τa +τb = τa+b in law.
Similarly we have P(Wt < a + b) = E[1τa<tP(Wt−τa < b)].

Proof. We introduce the auxiliary process
(
Zt =

∫ t
0 σsdWs

)
t∈[0,T ] and for y < 0 and 0 ≤ r < t ≤ T , we set
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τZ
r,y = inf{s > r : Zs−Zr = y}. Zt −Zr and τZ

r,y admit the densities:

D(r, t,z) =
e
− z2

2Vt
r√

2πVt
r

, J(r, s,y) = −
Σsy
Vs

r
D(r, s,y)1s≥r = Σs∂yD̃(r, s,y)1s≥r. (7.76)

We aim at showing that D and J satisfy equivalent convolution properties and then we will conclude

using the fact that − (a+ 1
2V

s
r )2

2Vs
r
−

(b+ 1
2V

t
s)

2

2Vt
s

= − a2

2Vs
r
− b2

2Vt
s
−

(a+b)
2 − 1

8V
t
r .

First for (7.67) we have using the definition of J and the independent increments of Z:∫ t

r
J(r, s,a + b)ds =P(τZ

r,a+b ≤ t) = E[1τZ
r,a≤tP(τ

Z
τZ

r,a,b
≤ t)]

=

∫ t

r
P(τZ

s,b ≤ t)J(r, s,a)ds =

∫ t

r

(∫ t

s
J(s,u,b)du

)
J(r, s,a)ds.

Then derive w.r.t. t to get
∫ t

r J(r, s,a)J(s, t,b)ds =J(r, t,a + b).
Then for (7.68) utilize (7.76) and (7.67) to get by integration:∫ t

r
J(r, s,a)D(s, t,b)ds =

∫ t

r
J(r, s,a)

( 1
Σt

∫ b

−∞

J(s, t, x)dx
)
ds

=
1
Σt

∫ b

−∞

(∫ t

r
J(r, s,a)J(s, t, x)ds

)
dx =

1
Σt

∫ b

−∞

J(r, t,a + x)dx =D(r, t,a + b)

Similarly we deduce (7.69) from (7.68) using again an integration. The proof of (7.70) is analogous
using (7.66) and (7.69). We skip details. For (7.71), we use (7.68) and write∫ t

r
J(r, s,a)Vt

sJ(s, t,b)ds = −Σtb
∫ t

r
J(r, s,a)D(s, t,b)ds = −ΣtbD(r, t,a + b).

Then by integration it comes:∫ t

r
J(r, s,a)Vt

sD(s, t,b)ds = −

∫ b

−∞

xD(r, t,a + x)dx

=−

∫ b

−∞

(a + x)D(r, t,a + x)dx + a
∫ b

−∞

D(r, t,a + x)dx =Vt
rD(r, t,a + b) + aN(

a + b√
Vt

r

).

We now pass to (7.73). Use (7.72) to get:∫ t

r
J(r, s,a)(Vt

s)
2J(s, t,b)ds = −Σtb

∫ t

r
J(r, s,a)Vt

sD(s, t,b)ds = −ΣtbVt
rD(r, t,a + b)−ΣtabN(

a + b√
Vt

r

).

Then by integration, starting from (7.72) and using (7.66), one obtains:∫ t

r
ΣsD(r, s,a)Vt

sD(s, t,b)ds =

∫ a

−∞

(
Vt
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.
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Finally, we get using (7.74) and (7.66):∫ t

r
ΣsN(

a√
Vs

r
)Vt

sD(s, t,b)ds =

∫ a

−∞

1
2
Vt

r
{
N(

y + b√
Vt

r

) +
(y−b)√
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r

[
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r
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Vt

r
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=
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(Vt
r)

3
2
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=
1
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(Vt
r)

3
2
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2
√
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r

[H2(x)N(x) + xN ′(x) + 2N(x)]

−
1
2
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x= a+b√
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=
1
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3
2
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2
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−
1
6
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=
1
2

(Vt
r)

3
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6
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.

�

7.6.2 Proof of Lemmas 7.3.4.4-7.3.4.5.

BProof of Lemma 7.3.4.4. As Lx
2vP,φt

o,T (u,b) = 0 for any u ∈ [0,T [ (see Lemma 7.3.2.3 equation (7.11)),
we have following the proof of Lemma 7.3.2.1 and using Lemma 7.3.4.3 that for any 0 ≤ u ≤ s < t < T
and any x ≥ b:

vP,ρs,t
o,s (u, x) =E[(XP

s∧τP
u,b
− x0)Lx

2vP,φt
o,t (s∧τP

u,b,X
P
s∧τP

u,b
)|XP

u = x] (7.77)

=(x− x0)Lx
2vP,φt

o,t (u, x) +E[
∫ s∧τP

u,b

u
Lx

3vP,φt
o,t (r,XP

r )Σrdr|XP
u = x]

=(x− x0)Lx
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o,t (u, x) +Vs
uL

x
3vP,φt

o,t (u, x)−E[Vs
τP

u,b
1τP

u,b≤sL
x
3vP,φt

o,t (τP
u,b,b)|XP

u = x].

We now intend to express vP,ρs,t
s (u, x) in term of derivatives of vP,h

o,T . First, we have with (7.40):

(x− x0)Lx
2vP,φt

o,t (u, x) =(x− x0)
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2Lx

3 + (x− x0)Lx
4 +Vt
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x
5
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x
3 +Vt
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u = x].

Then write Lx
3vP,φt

o,t (u, x) = (Lx
1 ◦L

x
2)vP,φt

o,t (u, x) and use Definition 7.2.1.1 to obtain on the one hand:
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and on the other hand with Lemma 7.2.1.1:

E[1τP
u,b≤sV

s
τP

u,b
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=(b− x0)E[1τP
u,b≤sV
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u,b,b)|XP
u = x]

−E
[
1τP

u,b≤sV
s
τP

u,b
lim

(r,y)→(τP
u,b,b)
L

y
1
{
E[1τP

r,b≤t(2L
x
3 +Vt

τP
r,b
Lx

5)vP,h
o,T (τP

r,b,b)|XP
r = y]

}∣∣∣XP
u = x

]
. (7.80)

Then using the relation (7.64) of Proposition 7.6.1.1, we obtain:
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(7.81)

+ lim
ε↑0
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We now treat the second term of the above r.h.s.. Write thatVs
τP

u,b
=Vr
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+Vs
r , use again the Proposition

7.6.1.1 and utilize the convolution results postponed to Proposition 7.6.1.4 to get:
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Regrouping the intermediate results (7.81)-(7.82) leads to:
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Combine (7.77)-(7.78)-(7.79)-(7.80)-(7.83) to achieve the proof of (7.45). We now pass to the proof of
(7.46). First use Lemma 7.3.4.1 to get for the contributions coming from vP,ψt

o,t :

1
4

∫ T

0
Σ

(2)
t vP,ψt

o,t (0, x0)dt =
1
4
Lx

2vP,h
o,T (0, x0)

∫ T

0
Σ

(2)
t V

t
sdt +

1
2

(x0−b)
∫ T

0
Σ

(2)
t E[1τP

b≤tV
t
τP

b
Lx

3vP,h
o,T (τP

b ,b)]dt

+
1
2

(Lx
4 +

1
4
Lx

2)vP,h
o,T (0, x0)

∫ T

0
Σ

(2)
t ~ω(Σ,Σ)t

0dt

=
1
4
~ω(Σ(2),Σ)T

0L
x
2vP,h

o,T (0, x0) +
1
2

(x0−b)E[1τP
b≤T ~ω(Σ(2),Σ)T

τP
b
Lx

3vP,h
o,T (τP

b ,b)]

+
1
2
~ω(Σ(2),Σ,Σ)T

0 (Lx
4 +

1
4
Lx

2)vP,h
o,T (0, x0). (7.84)

For vP,ρs,t
o,s , we have:

1
4

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s vP,ρs,t

o,s (0, x0)ds
)
dt =

1
4

5∑
n=1

Tn(vP,ρs,t
o,s ), (7.85)

where T1(vP,ρs,t
o,s ) is equal to:

(3Lx
4 +

1
2
Lx

2)vP,h
o,T (0, x0)

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s V

s
0ds

)
dt + (Lx

6 +
1
4
Lx

4)vP,h
o,T (0, x0)

∫ T

0
Σ

(1)
t V

t
0
(∫ t

0
Σ

(1)
s V

s
0ds

)
dt

=~ω(Σ(1),Σ(1),Σ)T
0 (3Lx

4 +
1
2
Lx

2)vP,h
o,T (0, x0) +

1
2
~ω2(Σ(1),Σ)T

0 (Lx
6 +

1
4
Lx

4)vP,h
o,T (0, x0),

where T2(vP,ρs,t
o,s ) is equal to:

(x0−b)
∫ T

0
Σ

(1)
t

∫ t

0
Σ

(1)
s E[1τP

b≤sV
s
τP

b
Lx

5vP,h
o,T (τP

b , x)]dsdt = (x0−b)E[1τP
b≤T ~ω(Σ(1),Σ(1),Σ)T

τP
b
Lx

5vP,h
o,T (τP

b ,b)],

where T3(vP,ρs,t
o,s ) is equal to:

(x0−b)
∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s E

[
1τP

b≤s(2L
x
3 +Vt

τP
b
Lx

5)vP,h
o,T (τP

b ,b)
]
ds

)
dt

=(x0−b)E
[
1τP

b≤T
{
2~ω(Σ(1),Σ(1))T

τP
b
Lx

3 + (~ω(Σ(1),Σ(1),Σ)T
τP

b
+ ~ω(Σ(1),Σ,Σ(1))T

τP
b
)Lx

5
}
vP,h

o,T (τP
b ,b)

]
,

where T4(vP,ρs,t
o,s ) is equal to:

−

∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s V

s
0
(∫ t

s
Σr(

1
Vr

0
−

(x0−b)2

(Vr
0)2 )DP(0,r,b− x0)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr
)
ds

)
dt

=−

∫ T

0

Σr

Vr
0
~ω(Σ(1),Σ)r

0
{
2~ω(Σ(1))T

r L
x
3 + ~ω(Σ(1),Σ)T

r L
x
5
}
vP,h

o,T (r,b)DP(0,r,b− x0)dr

+ (x0−b)E
[
1τP

b≤T ~ω(Σ(1),Σ)
τP

b
0 (V

τP
b

0 )−1{2~ω(Σ(1))T
τP

b
Lx

3 + ~ω(Σ(1),Σ)T
τP

b
Lx

5
}
vP,h

o,T (τP
b ,b)

]
,

and where T5(vP,ρs,t
o,s ) is equal to:∫ T

0
Σ

(1)
t

(∫ t

0
Σ

(1)
s E

[
1τP

b≤sV
s
τP

b

∫ t

s
Σr(Vr

τP
b
)−1DP(τP

b ,r,0)(2Lx
3 +Vt

rL
x
5)vP,h

o,T (r,b)dr
]
ds

)
dt

=

∫ T

0
Σr

{
2~ω(Σ(1))T

r L
x
3 + ~ω(Σ(1),Σ)T

r L
x
5
}
vP,h

o,T (r,b)E
[
1τP

b≤r~ω(Σ(1),Σ)r
τP

b
(Vr

τP
b
)−1DP(τP

b ,r,0)
]
dr,
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Then we write that:

~ω(Σ(1),Σ)r
τP

b
(Vr

τP
b
)−1 =~ω(Σ(1),Σ)r

τP
b
(Vr

0)−1 + ~ω(Σ(1),Σ)r
τP

b

V
τP

b
0

Vr
0V

r
τP

b

=~ω(Σ(1),Σ)r
0(Vr

0)−1−

∫ τP
b

0
Σt

(∫ r

t
Σ

(1)
s ds

)
dt(Vr

0)−1 + ~ω(Σ(1),Σ)r
τP

b

V
τP

b
0

Vr
0V

r
τP

b

=~ω(Σ(1),Σ)r
0(Vr

0)−1− [~ω(Σ(1),Σ)
τP

b
0 +V

τP
b

0 ~ω(Σ(1))r
τP

b
](Vr

0)−1 + ~ω(Σ(1),Σ)r
τP

b

V
τP

b
0

Vr
0V

r
τP

b

.

In addition, up to a passing to the limit, an application of Proposition 7.6.1.4 relation (7.68) yields:

E
[
1τP

b≤rD
P(τP

b ,r,0)
]
=

∫ r

0
JP(0, θ,b− x0)DP(θ,r,0)dθ =DP(0,r,b− x0).

The two above mathematical reductions allow us to obtain for the sum T4(vP,ρs,t
o,s ) + T5(vP,ρs,t

o,s ):

(x0−b)E
[
1τP

b≤T ~ω(Σ(1),Σ)
τP

b
0 (V

τP
b

0 )−1{2~ω(Σ(1))T
τP

b
Lx

3 + ~ω(Σ(1),Σ)T
τP

b
Lx

5
}
vP,h

o,T (τP
b ,b)

]
+

∫ T

0
Σr(Vr

0)−1{2~ω(Σ(1))T
r L

x
3 + ~ω(Σ(1),Σ)T

r L
x
5
}
vP,h

o,T (r,b)E
[
1τP

b≤r
{
~ω(Σ(1),Σ)r

τP
b
V

τP
b

0 (Vr
τP

b
)−1

− ~ω(Σ(1),Σ)
τP

b
0 −V

τP
b

0 ~ω(Σ(1))r
τP

b

}
DP(τP

b ,r,0)
]
dr (7.86)

Combine (7.84)-(7.85)-(7.86) and the expressions of Tn(vP,ρs,t
o,s ) for n = 1,2,3 to finish the proof.

BProof of Lemma 7.3.4.5. Let 0 ≤ u < s < t < T and x > b. In view of (7.45), we have

Lx
2vP,ρs,t

o,s (u, x) =

6∑
n=1

Θn(u, s, t, x) where:

Θ1(u, s, t, x) =Lx
2
{
(x− x0)[2Lx

3 + (x− x0)Lx
4 +Vt

uL
x
5] (7.87)

+Vs
u[3Lx

4 +
1
2
Lx

2 + (x− x0)Lx
5 +Vt

u(Lx
6 +

1
4
Lx

4)]
}
vP,h

o,T (u, x),

Θ2(u, s, t, x) =−Lx
2
{
(x− x0)E[1τP

u,b≤t(2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x]

}
, (7.88)

Θ3(u, s, t, x) =(x0−b)Lx
2E[1τP

u,b≤sV
s
τP

u,b
Lx

5vP,h
o,T (τP

u,b,b)|XP
u = x], (7.89)

Θ4(u, s, t, x) =Lx
2
{
(x−b)E[1τP

u,b≤s(2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x]

}
, (7.90)

Θ5(u, s, t, x) =−Vs
u(Lx

2 ◦L
x
1)E[1τP

u,b∈[s,t](2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)
∣∣∣XP

u = x], (7.91)

Θ6(u, s, t, x) =−Lx
2E

[
1τP

u,b≤sV
s
τP

u,b

∫ t

s

Σr

Vr
τP

u,b

DP(τP
u,b,r,0)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr
∣∣∣XP

u = x
]
, (7.92)

With Lemma 7.3.1.3, we easily obtain for (7.87):

|Θ1(u, s, t, x)| ≤c eCh |x|{|x− x0|
2(VT

u )−
5
2 + |x− x0|(VT

u )−2 + (VT
u )−

3
2
}

(7.93)

We now pass to (7.88). We have Θ2(u, s, t, x) = Θ2a(u, s, t, x) + 2Θ2b(u, s, t, x) with:

Θ2a(u, s, t, x) = −(x− x0)Lx
2E[1τP

u,b≤t(2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x],
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Θ2b(u, s, t, x) = −Lx
1E[1τP

u,b≤t(2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP

u,b,b)|XP
u = x]

For Θ2a(u, s, t, x), following the proof of Lemma 7.3.2.2, split the domain of integration by writing
[u, t] = [u, u+t

2 ]∪ [ u+t
2 , t] to get using Proposition 7.6.1.1 relation (7.62), Lemma 7.3.1.3, an integration

by parts, the Cauchy-Schwarz inequality and estimates (7.47)-(7.65):

|Θ2a(u, s, t, x)|

=|x− x0|
∣∣∣∫ u+t

2

u
Σ−1

r ∂rJ
P(u,r, x,b)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr +

∫ t

u+t
2

Lx
2J

P(u,r, x,b)(2Lx
3 +Vt

rL
x
5)vP,h

o,T (r,b)dr
∣∣∣

≤c|x− x0|
{∣∣∣JP(u,

u + t
2
, x,b)Σ−1

u+t
2

(2Lx
3 +Vt

u+t
2
Lx

5)vP,h
o,T (

u + t
2
,b)

∣∣∣
+

∣∣∣∫ u+t
2

u
Σ−1

r J
P(u,r, x,b)∂r

{
(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)
}
dr

∣∣∣+ eCh |x|
∫ t

u+t
2

Σr(Vr
u)−2(VT

r )−1dr
}

≤c|x− x0|eCh |x|{(V u+t
2

u )−1(VT
u+t
2

)−1 +

∫ u+t
2

u
JP(u,r, x,b)(VT

r )−2dr + (V
u+t
2

u )−
3
2 (VT

t )−
1
2
}

≤c|x− x0|eCh |x|{(V u+t
2

u )−1(VT
u+t
2

)−1 + (VT
u+t
2

)−2 + (V
u+t
2

u )−
3
2 (VT

t )−
1
2
}
.

For Θ2b(u, s, t, x), use Proposition 7.6.1.1 relation (7.64) to obtain with the same arguments:

|Θ2b(u, s, t, x)|

=
∣∣∣∫ u+t

2

u
(2∂r +

Σr

4
I)DP(u,r, x,b)(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)dr +

∫ t

u+t
2

Lx
1J

P(u,r, x,b)(2Lx
3 +Vt

rL
x
5)vP,h

o,T (r,b)dr
∣∣∣

≤c
∣∣∣DP(u,

u + t
2
, x,b)(2Lx

3 +Vt
u+t
2
Lx
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2
,b)

∣∣∣
+

∣∣∣∫ u+t
2

u
DP(u,r, x,b)(∂r +ΣrI)

{
(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)
}
dr

∣∣∣+ eCh |x|
∫ t

u+t
2

Σr(Vr
u)−

3
2 (VT

r )−1dr

≤ceCh |x|{(V u+t
2

u )−
1
2 (VT
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2

)−1 +

∫ u+t
2

u
ΣrD

P(u,r, x,b)(VT
r )−2dr + (V

u+t
2

u )−1(VT
t )−

1
2
}

≤ceCh |x|{(V u+t
2

u )−
1
2 (VT

u+t
2

)−1 + (V
u+t
2

u )
1
2 (VT

u+t
2

)−2 + (V
u+t
2

u )−1(VT
t )−

1
2
}
.

Thus with the above intermediate results, one deduces:

|Θ2(u, s, t, x)| ≤ceCh |x|{|x− x0|(V
u+t
2

u )−1(VT
u+t
2

)−1 + |x− x0|(VT
u+t
2

)−2 + |x− x0|(V
u+t
2

u )−
3
2 (VT

t )−
1
2

+ (V
u+t
2

u )−
1
2 (VT

u+t
2

)−1 + (V
u+t
2

u )
1
2 (VT

u+t
2

)−2 + (V
u+t
2

u )−1(VT
t )−

1
2
}
. (7.94)

For Θ3(u, s, t, x), following the proof of Lemma 7.3.2.2, we easily obtain with an integration by parts:

Θ3(u, s, t, x) = (x0−b)E[1τP
u,b≤s(2L

x
5 +Vs

τP
u,b
Lx

2 ◦L
x
5)vP,h

o,T (τP
u,b,b)|XP

u = x].

Then we write x0−b = x−b− (x− x0) and we readily obtain using Lemma 7.3.1.3, the Cauchy-Schwarz
inequality and (7.47)-(7.65):

|Θ3(u, s, t, x)| (7.95)

≤c(|x−b|+ |x− x0|)
∣∣∣∫ u+s

2

u
JP(u,r, x,b)(2Lx

5 +Vs
rL

x
2 ◦L

x
5)vP,h

o,T (r,b)dr
∣∣∣
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+ (|x−b|+ |x− x0|)
∣∣∣∫ s

u+s
2

JP(u,r, x,b)(2Lx
5 +Vs

rL
x
2 ◦L

x
5)vP,h

o,T (r,b)dr
∣∣∣

≤ceCh |x|{(VT
u+s

2
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∫ u+s
2
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[(Vr
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1
2 + |x− x0|J

P(u,r, x,b)]dr +

∫ s

u+s
2

Σr[(Vr
u)−

1
2 + |x− x0|(Vr

u)−1](VT
r )−2dr

}
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2
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u+s

2
u )

1
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2

)−2|x− x0|+ (VT
s )−

3
2 + |x− x0|(V
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2

u )−
1
2 (VT

s )−
3
2
}
.

Then we focus on (7.90). We have Θ4(u, s, t, x) = Θ4a(u, s, t, x) +Θ4b(u, s, t, x) with:

Θ4a(u, s, t, x) = (x−b)Lx
2E[1τP

u,b≤s(2L
x
3 +Vt

τP
u,b
Lx

5)vP,h
o,T (τP
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Θ4b(u, s, t, x) = 2Lx
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x
3 +Vt

τP
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Lx

5)vP,h
o,T (τP
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u = x].

Using integrations by parts, one gets for Θ4a(u, s, t, x):

Θ4a(u, s, t, x) =(x−b)Σ−1
s J

P(u, s, x,b)(2Lx
3vP,h

o,T (s,b) +Vt
sL

x
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and thus we easily obtain using similar arguments employed for Θ3(u, s, t, x):

|Θ4a(u, s, t, x)| ≤c eCh |x|{(V u+s
2

u )
1
2 (VT

u+s
2

)−2 + (VT
s )−

3
2 + (Vs

u)−
1
2 (VT

s )−1}.
Then using notably Proposition 7.6.1.1 relation (7.64), one obtains for Θ4b(u, s, t, x):

|Θ4b(u, s, t, x)|

≤c
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2
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Combining the estimates for Θ4a(u, s, t, x) and Θ4b(u, s, t, x) leads to:

Θ4(u, s, t, x) ≤c eCh |x|{(V u+s
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(7.96)

Next we treat (7.91). Again the same tools previously employed yield:

|Θ5(u, s, t, x)| (7.97)
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+Vs
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o,T (r,b)
}
dr

∣∣∣+ eCh |x|Vs
u

∫ t

s+t
2

Σr(Vr
u)−

5
2 (VT

r )−1dr

≤ceCh |x|{Vs
u(Vs

u)−
3
2 (VT

s )−1 +Vs
u(V

s+t
2

u )−
3
2 (VT

s+t
2

)−1 +Vs
u

∫ s+t
2

s
Σr(Vr

u)−
3
2 (VT

r )−2dr +Vs
u(V

s+t
2

u )−2(VT
t )−

1
2
}

≤ceCh |x|{(Vs
u)−

1
2 (VT

s+t
2

)−1 + (VT
s+t
2

)−
3
2 + (V

s+t
2

u )−1(VT
t )−

1
2
}
.

We finally estimate Θ6(u, s, t, x) defined in (7.92). Perform an integration by parts with and use Hölder
inequalities to obtain :

|Θ6(u, s, t, x)|

=
∣∣∣∫ t

s
Σr(2Lx

3 +Vt
rL

x
5)vP,h

o,T (r,b)
{∫ s

u
Lx

2J
P(u, l, x,b)

Vs
l

Vr
l
DP(l,r,0)dl

}
dr

∣∣∣
≤c

∣∣∣∫ t

s
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3 +Vt
rL

x
5)vP,h
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{∫ s

u
JP(u, l, x,b)(Σl)−1∂l

{Vs
l

Vr
l
DP(l,r,0)

}
dl

}
dr

∣∣∣
≤ceCh |x|

∫ t

s
Σr(VT

r )−1{∫ s

u
JP(u, l, x,b)(Vr

l )−
3
2 dl

}
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s
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r )−1(Vr
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2
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3
2 dr +

∫ t
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r )−1{∫ s

u+s
2

Σl(Vl
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3
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}
≤ceCh |x|{(∫ t

s
Σr(VT
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1
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s
Σr(Vr
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3
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s
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2
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) 1
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2

Σl(Vr
l )−2dl

) 3
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}
≤ceCh |x|{(VT

t )−
3
4 (Vs
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2
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3
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u+s
2

u )−
3
4

∫ t

s
Σr(VT

r )−1(Vr
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− 3

4 dr
}

≤ceCh |x|{(VT
t )−

3
4 (Vs

u+s
2

)−
3
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2
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3
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s
Σr(VT
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1
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− 15
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≤ceCh |x|{(VT

t )−
3
4 (Vs
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3
4 + (V

u+s
2
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4 (VT
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4
5 (Vt

s)
1
20
}
. (7.98)

We conclude combining the estimates (7.93)-(7.94)-(7.95)-(7.96)-(7.97)-(7.98) which remain valid if x
tends to b with a passing to the limit.

7.6.3 Proof of Propositions 7.5.2.1-7.5.3.1.

BProof of Proposition 7.5.2.1. We skip the proof for the leading term DoCallBS(x0,V
T
0 ,k,b) and for

the corrective terms Cor1,o and Cor3,o, the proof being very similar to the proof of Lemmas 2.1.3.1
and 2.1.3.1 and Theorem 2.3.2.1 of Chapter 2. For instance for the part CallBS(b,y, x0 + k − b) in
DoCallBS(x0,y,k,b), we have |x0 − k| ≤ x0 + k − 2b for b ≤ min(x0,k) and an application of Corollary
2.6.1.1 of Chapter 2 allows to easily estimate the residuals in the expansions.
We now prove the expansion for Cor2,o. Let y > 0. By Lemma 7.2.1.1, we have
Lx

3DoCallBS(x,y,k,b)|x=b = 2Lx
3CallBS(b,y,k) and by Proposition 2.6.1.3 of Chapter 2, we have

Lx
3CallBS(b,y,k) = eb (k−b)

y
3
2
N ′( b−k+ 1

2 y
√

y ). Consequently in view of the density of the hitting times (see

(7.6)), we can write JP,x(0, τP,x
b ,b− x0) = e−bΣt(x)Lx

3CallBS(x,V
τP,x

b
0 (x), x0)|x=b to get:

Cor2,o =−E[1τP
b<T ~ω(Σ(1),Σ)T

τP
b
Lx

3CallBS(b,VT
τP

b
,k,b)]

=− e−b
∫ T

0
ΣtL

x
3CallBS(b,Vt

0, x0)~ω(Σ(1),Σ)T
t L

x
3CallBS(b,VT

t ,k)dt.
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Perform a Taylor expansion of Λt : z 7→−e−bΣt(z)Lx
3CallBS(b,Vt

0(z), x0)~ω(Σ(1),Σ)T
t (z)Lx

3CallBS(b,VT
t (z),k)

at z = x0 around z = xavg to obtain with (7.56):

E[1τP
b<T ~ω(Σ(1),Σ)T

τP
b
Lx

3CallBS(b,VT
τP

b
,k)]

=E[1
τ

P,xavg
b <T

~ω(Σ(1),Σ)T
τ

P,xavg
b

(xavg)Lx
3CallBS(b,VT

τ
P,xavg
b

(xavg),k,b)]

+
1
2

(x0− k)E
[
1
τ

P,xavg
b <T

{
[~ω(Σ(1),Σ(1))T

τ
P,xavg
b

+ ~ω(Σ(2),Σ)T
τ

P,xavg
b

](xavg)Lx
3

+ [~ω(Σ(1),Σ(1),Σ)T
τ

P,xavg
b

+
1
2
~ω(Σ(1),Σ,Σ(1))T

τ
P,xavg
b

](xavg)Lx
5
}
CallBS(b,VT

τ
P,xavg
b

(xavg),k)
]

+
e−b

2
(x0− k)

∫ T

0
Lx

3CallBS(b,Vt
0(xavg), x0)[Σ(1)

t ~ω(Σ(1),Σ)T
t ](xavg)Lx

3CallBS(b,VT
t (xavg),k)dt

+
e−b

2
(x0− k)

∫ T

0
∂y

{
Lx

3CallBS(x,y, x0)|x=b
}
|y=Vt

0(xavg)[Σt~ω(Σ(1))t
0~ω(Σ(1),Σ)T

t ](xavg)Lx
3CallBS(b,VT

t (xavg),k)dt

+ R,

where R = 1
4 (x0− k)2

∫ T
0

{ ∫ 1
0 (1−α)Λ(2)

t (αxavg + (1−α)x0)dα
}
dt. Using the decomposition

(x0 − k) = x0 − b + b− k, the hypotheses (H̃σ
x0

)-(H̃σ
xavg

), standard inequalities and Corollary 2.6.1.1 of
Chapter 2, one obtains R = O

(
|σ|∞M1(σ)[M0(σ)]2T 2). Besides we easily show that:

E[1τP
b<T ~ω(Σ(1),Σ)T

τP
b
Lx

3CallBS(b,VT
τP

b
,k)]

=E[1
τ

P,xavg
b <T

~ω(Σ(1),Σ)T
τ

P,xavg
b

(xavg)Lx
3CallBS(b,VT

τ
P,xavg
b

(xavg),k)] +O
(
|σ|∞M1(σ)[M0(σ)]2T

3
2
)
.

Then write Σt(xavg)∂y
{
Lx

3CallBS(x,y, x0)|x=b
}
|y=Vt

0(xavg) = ∂t
{
Lx

3CallBS(x,Vt
0(xavg), x0)|x=b

}
and perform

an integration by parts to get with (7.56) and Lemma 7.2.1.1:

e−b
∫ T

0
∂y

{
Lx

3CallBS(x,y, x0)|x=b
}
|y=Vt

0(xavg)[Σt~ω(Σ(1))t
0~ω(Σ(1),Σ)T

t ](xavg)Lx
3CallBS(b,VT

t (xavg),k)dt

=− e−b
∫ T

0
Lx

3CallBS(b,Vt
0(xavg), x0)[Σ(1)

t ~ω(Σ(1),Σ)T
t ](xavg)Lx

3CallBS(b,VT
t (xavg),k)dt

+E
[
1
τ

P,xavg
b <T

~ω(Σ(1))
τ

P,xavg
b

0 (xavg)
{
~ω(Σ(1))T

τ
P,xavg
b

(xavg)Lx
3 +

1
2
~ω(Σ(1),Σ)T

τ
P,xavg
b

(xavg)Lx
5
}
CallBS(b,VT

τ
P,xavg
b

(xavg),k)
]
.

Combine the intermediate results to achieve the proof. Although tedious to write, the proofs for Cor3,o,
Cor4,o and Cor5,o are very similar and do not contain huge mathematical difficulty so we left it as an
exercise to the reader.

BProof of Proposition 7.5.3.1. We begin with Cor2,o(z). First using Proposition 2.6.1.3 of Chapter
2, we can write Lx

3CallBS(x,VT
τP,z

b

(z),k)|x=b = eb

Σ(z)J
P,z(τP,z

b ,T,b− k) and then by definition (see Theorem

7.2.2.1), one has Cor2,o(z) = − 1
2

eb

Σ(z)Σ(z)Σ(1)(z)
∫ T

0 J
P,z(0, t,b− x0)(T − t)2JP,z(t,T,b− k)dt. One con-

cludes with Proposition 7.6.1.4 Relation (7.73).
We now pass to Cor4,o(z). By definition we have (see Theorem 7.2.3.1):

Cor4,o(z) = (x0−b)[
1
2
Cor4a,o(z) +

1
8
Cor4b,o(z)], (7.99)

where:

Cor4a,o(z) = E
[
1τP,z

b ≤T
{
Σ(z)Σ(2)(z)(T −τP,z

b )2 + (Σ(1))2(z)(T −τP,z
b )T

}
Lx

3CallBS(b,VT
τP,z

b
(z),k)

]
,
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Cor4b,o(z) = E
[
1τP,z

b ≤T Σ(z)(Σ(1))2(z)
{
(T −τP,z

b )3 + (T −τP,z
b )2T

}
Lx

5CallBS(b,VT
τP,z

b
(z),k)

]
.

Using Proposition 7.6.1.4 relations (7.73) and (7.71), we easily get:

Cor4a,o(z) =eb(k−b)
Σ(2)(z)
Σ(z)

{
VT

0 (z)DP,z(0,T,2b− x0− k)− (x0−b)N(
2b− x0− k√
VT

0 (z)
e

x0+k
2 −b−

VT
0 (z)
8 )

}
+ eb(k−b)

(Σ(1))2(z)
Σ2(z)

VT
0 (z)DP,z(0,T,2b− x0− k). (7.100)

Then a straightforward calculus yields:

Lx
5CallBS(b,VT

τP,z
b

(z)),k) = (Lx
2 ◦L

x
3)CallBS(x,VT

τP,z
b

(z),k)|x=b (7.101)

=eb{ (k−b)3

(VT
τP,z

b

(z))3
−3

(k−b)
(VT

τP,z
b

(z))2
−

1
4

(k−b)
VT
τP,z

b

(z)
}
DP,z(τP,z

b ,T,b− k).

Thus it comes with Proposition 7.6.1.4 relations (7.67)-(7.68)-(7.72)-(7.74):

E
[
1τP,z

b ≤T Σ(z)(Σ(1))2(z)
{
(T −τP,z

b )3 + (T −τP,z
b )2T

} (k−b)3
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b
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]

=(k−b)2 (Σ(1))2(z)
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}
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}
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DP,z(0,T,2b− x0− k)[2(k−b) + (x0−b)];

E
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{
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b )3 + (T −τP,z
b )2T
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b

)2(z)
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]

=(k−b)
(Σ(1))2(z)

Σ2(z)
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{
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0 (z)
8

}
;

E
[
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{
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b )2T

} (k−b)
VT
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b

(z)
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]
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(Σ(1))2(z)

Σ2(z)
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0
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t (z){2VT
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{
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0 (z)DP,z(0,T,2b− x0− k)[
1
2
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1
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VT

0 (z)
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8 [(x0− k)(2b− x0− k)−5VT

0 (z)]
}
.

Combining the intermediate results gives with (7.101):

Cor4b,o(z)
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=eb(k−b)
(Σ(1))2(z)

Σ2(z)
{
(x0−b)[3 +

5
8
VT

0 (z) +
1
8
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1
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}
,

what leads to the announced result with (7.99)-(7.100).
Next we treat Cor5,o(z). We have by definition (see Theorem 7.2.3.1):

Cor5,o(z) = −
1
2
Cor5a,o(z)−

1
8
Cor5b,o(z), (7.102)

where:

Cor5a,o(z) =

∫ T
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Then, applying the Proposition 7.6.1.1 relation (7.69), it comes up to a passing to the limit:
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Thus we easily get on the one hand using relation (7.70):
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}
,

and on the other hand using relations (7.69)-(7.70)-(7.75) and equation (7.101):

Cor5b,o(z)

=eb(x0−b)(k−b)
(Σ(1))2(z)

Σ2(z)

∫ T

0
N(

b− x0√
Vr

0(z)
)e

x0−b
2 −

1
8V

r
0(z)

×
{
(k−b)JP,z(r,T,b− k)−3Σ(z)DP,z(r,T,b− k)−

1
4

Σ(z)VT
r (z)DP,z(r,T,b− k)

}
dr

=eb(x0−b)(k−b)
(Σ(1))2(z)

Σ2(z)
{
(k−b)N(

2b− x0− k√
VT

0 (z)
)e

x0+k
2 −b−

VT
0 (z)
8 −3VT

0 (z)DP,z(0,T,2b− x0− k)
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}
.

That achieves the proof. We leave the proof for Cor9,o(z) defined in Proposition 7.5.2.1 to the reader
which is very similar to that of Cor4,o(z).
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We derive an analytical weak approximation of a multidimensional diffusion as coefficients or time
are small. Our methodology combines the use of Gaussian proxys to approximate the law of the diffusion
and a Finite Element interpolation of the terminal function applied to the diffusion. We call this method
Stochastic Approximation Finite Element (SAFE for short) method. We provide error bounds of our
global approximation depending on the diffusion process coefficients, the time horizon and the regularity
of the terminal function. Then we give estimates of the computational cost of our algorithm. This shows
an improved efficiency compared to Monte-Carlo methods in small and medium dimensions (up to 10),
which is confirmed by numerical experiments. For high dimensions (greater than 10) we can perform
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Monte-Carlo simulations on the proxy and this shows a speed gain by a factor 100 in comparison to
Monte-Carlo methods applied on the diffusion owing to the exact simulation without discretization of
the proxy.

8.1 Introduction

Motivation and contribution of the Chapter. We consider for d ≥ 1 a d-dimensional stochastic dif-
ferential equation (SDE) defined by:

Xt = x0 +

q∑
j=1

∫ t

0
σ j(s,Xs)dW j

s +

∫ t

0
b(s,Xs)ds,

where (Wt)t≥0 is a standard Brownian motion in Rq on a filtered probability space (Ω,F , (Ft)t≥0,P) with
the usual assumptions on the filtration (Ft)t≥0. Here, σ is a d×q matrix and b is a d-dimensional vector,
their entries being regular and bounded functions. We are interested in deriving analytical approxima-
tions of

E[h(XT )] (8.1)

for a given function h, at least Lipschitz continuous, and a fixed time horizon T > 0. The explicit calculus
of (8.1) is most of the time impossible because the marginal law of the diffusion X is not known and
because of the general form of the function h. Hence it is usual to perform a numerical method. For low
dimension (say d ≤ 3), we may use PDE schemes since (x0,T ) 7→ E[h(XT )] solves a linear parabolic PDE
but the complexity is increasing very quickly with the dimension d. For higher dimension, Monte-Carlo
methods are preferred, but although almost insensitive to the dimension, they only evaluate the above
expectation for a single (x0,T ). The aim of this work is to provide an alternative numerical method,
based on analytical approximation, and we highlight an approach suiting well to general functions h
without specific form (under reasonable conditions) and to rather general diffusion models. The quick
and efficient approximation of SDE distributions is fundamental, it is widely used as a cornerstone of
probabilistic algorithms related to the dynamic programming problems which necessitate the evaluation
of many nested conditional expectations (for instance, see [Bally 2003] for optimal stopping problems
and [Lemor 2006] for Backward SDEs).
Our subsequent numerical method (called Stochastic Approximation Finite Element, SAFE for short)
relies both on the weak approximation of the marginal law of XT and on the approximation of the
function h. Firstly, to approximate the law of X, we consider the Gaussian proxy process obtained by
freezing at x = x0 the diffusion coefficients:

XP
t = x0 +

q∑
j=1

∫ t

0
σ j(s, x0)dW j

s +

∫ t

0
b(s, x0)ds. (8.2)

Using the Proxy principle of [Gobet 2012a] , we derive a weak approximation in the form (see Theorem
8.2.1.1):

E[h(XT )] ≈ E[h(XP
T )] +

∑
|α|≤3

wα,T∂
|α|
εα1 ...εα|α|

(
E[h(XP

T + ε)]
)∣∣∣
ε=0, (8.3)

where α ∈ {1, . . . ,d}|α| is a multi-index, wα,T are weights depending explicitly on the SDE coefficients
and where the sensitivities ∂|α|εα1 ...εα|α|

(
E[h(XP

T + ε)]
)∣∣∣
ε=0 are well defined as soon as the law of XP

T is non
degenerate. Apart from few specific cases of functions h (for example if h has separable variables
combined with the independence of the XP

T components), the representation (8.3) can not be directly
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computed in closed forms: however, it can be rewritten in a simple expectation form suitable for simple
and direct Monte-Carlo simulations (see Theorem 8.2.1.2). To obtain fully analytical formulas, another
ingredient is needed. The second step is to approximate the function h by a local interpolation based on
suitable shape functions of Finite Element Methods (see Theorems 8.2.2.1-8.2.2.2-8.2.4.1). Denoting
by ĥ the resulting interpolation of h, the final structure of approximation becomes

E[h(XT )] ≈ E[ĥ(XP
T )] +

∑
|α|≤3

wα,T∂
|α|
εα1 ...εα|α|

(
E[ĥ(XP

T + ε)]
)∣∣∣
ε=0,

which accuracy and complexity are given in Theorems 8.2.3.1-8.2.4.1 and Corollaries 8.2.3.1-8.2.4.1.
The convergence holds as b,σ or T go to 0 in a suitable sense. The key feature in this methodology
is that the interpolation procedure is done in such a way that the calculus of the above expectations is
fully explicit and reduces to computations involving the c.d.f. of a one-dimensional Gaussian r.v. and its
derivatives (see Subsection 8.2.2). The flexibility and the accuracy of our formulas allow their use as it
stands or alternatively it could serve as a control variates tool to improve Monte-Carlo methods.

Background results. We briefly describe the main known approaches to approximate the distribu-
tion of a SDE. Time discretization schemes are broadly described in [Kloeden 2010]: they consist in
replacing X by an approximation X̂ easier to simulate, the evaluation of E(h(X̂T )) is then made using
Monte-Carlo simulations. The balance between discretization and integration errors is described in
[Duffie 1995].

Alternatively, the cubature on Wiener space by Kusuoka-Lyons-Victoir [Kusuoka 2004, Lyons 2004]
is a well-established theory. It is based on a smart discrete approximation of the Wiener measure,
which leads to solving ODEs in order to approximate X. The splitting method by Ninomiya-Victoir
[Ninomiya 2008] also reduces to solving ODEs. Clearly, these approaches are different from ours.

The quantization method [Graf 2000] is aimed at approximating the distribution of XT with a fixed
number of points, optimally w.r.t. a Lp-norm; for applications to stochastic processes, see for instance
[Bally 2003]. This differs from the current work.

The use of asymptotic methods has been much developed during the recent years, mostly in the fields
of mathematical finance. As opposed to our setting, the related works deal mainly with one-dimensional
processes and specific h. Mathematical approaches are numerous, see [Fouque 2011, Lorig 2013a] and
the Chapter 2 of the thesis among others. We nevertheless count some studies devoted to the multidi-
mensional case in the framework of averaged diffusions. Among them we cite the work of Pascucci et
al. [Foschi 2013] for the pricing of Asian options in local volatility models, the work of Tankov and
Gulisashvili [Gulisashvili 2013] concerning the asymptotic approximation for sums of log-normal r.v.
with application to basket option approximations and the work of Avellaneda et al. [Avellaneda 2003]
in which is provided an asymptotic formula of the implied volatility in the framework of basket options
assuming that each stock follows a one-factor risk-neutral process (with eventually a correlation between
the assets).

Here, we address the multi-dimensional case with general functions h and general diffusions X,
extending much the setting of previous references.

Organization of the Chapter. In the following, we introduce notations and assumptions that are used
throughout the paper. We state in Section 8.2 the main results of the Chapter:

• We first provide in Theorem 8.2.1.1 a second order weak approximation of E[h(XT )] using the
Gaussian proxy, the magnitude of the error being estimated w.r.t. the SDE coefficients and the time
horizon T . The previous approximation, involving correction terms as expectation sensitivities,
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has an interesting representation as a simple expectation, much suitable for direct Monte-Carlo
simulations, see Theorem 8.2.1.2.

• We then perform a suitable multilinear interpolation of the function h in Theorem 8.2.2.1, the
accuracy results being given in Theorem 8.2.2.2 according to the regularity of h. The resulting
formulas are fully explicit.

• We finally establish a final approximation combining both the weak expansion and the interpola-
tion of h in Theorem 8.2.3.1, providing tight error estimates as well a complexity analysis (Corol-
lary 8.2.3.1).

• Results are extended in Theorem 8.2.4.1 and Corollary 8.2.4.1 considering multiquadratic finite
elements.

The proof of the error estimates of Theorems 8.2.1.1 and 8.2.2.2 are respectively given in Sections 8.3
and 8.4. Numerical experiments illustrating the performance of our algorithm in comparison to Monte-
Carlo methods are presented in Section 8.5. Appendix 8.6.1 is devoted to the explicit derivation of the
corrective terms of the weak expansion provided in Theorem 8.2.1.1.

Notations, definitions and assumptions.

BLinear algebra. The j-th column of a matrix A will be denoted by A j (or A j,t if A is a time-dependent
matrix) and its i-th row by Ai. A∗ denotes the transpose of A and if it is a squared matrix, det(A) stands
for its determinant. Im denotes the m-dimensional identity matrix, 〈·, ·〉 the inner product on Rm and | · |
is the Euclidean norm on Rm.

B Functions. As usual, Ck(O1,O2) stands for the set of functions g : O1→ O2 that are k-times contin-
uously differentiable, where O1,O2 are some subsets of Euclidean spaces. Let p1, p2 be in N\{0}. For
any function g = (g1, . . . ,gp2)∗ : [0,T ]×Rp1 → Rp2 , we denote |g|∞ = sup

(t,x)∈[0,T ]×Rp1
|g(t, x)|. If g is suffi-

ciently differentiable w.r.t. the variable x, its gradient which takes values in Rp2 ⊗Rp1 is simply denoted
∇g(t, x) = (∂x1g(t, x), . . . ,∂xp1

g(t, x)); when p2 = 1, we denote its Hessian matrix by
H(g)(t, x) = (∂2

xi,x j
g(t, x))i, j∈{1,...,p1}. Furthermore, we often use the short notation ∂αg(t, x) for

∂|α|xα1 ...xα|α|
g(t, x), i.e. the partial derivative of g w.r.t. a multi-index α according to the space vari-

able. We denote by Lipb(Rd,R) the space of Lipschitz functions h : Rd → R satisfying CLip,h :=
supx,y∈Rd ,x,y

|h(x)−h(y)|
|x−y| < +∞.

B About the Gaussian proxy. Whenever unambiguous, we use the notations σt := σ(t, x0) and
bt := b(t, x0) for any t ∈ [0,T ] and we denote by Σt := σtσ

∗
t the d-dimensional non-negative definite

covariance matrix at time t associated to the Gaussian process XP defined in (8.2). We start with an easy
result, which notations are used throughout the work.

Proposition 8.1.0.1.

1. The distribution of XP
T is normal with mean mP

T = x0 +
∫ T

0 btdt and covariance matrixVP
T =

∫ T
0 Σtdt.

2. There is a d-dimensional orthogonal matrixUV such thatVP
T =UVD

P
TU

−1
V

where
DP

T := diag(λ2
1T, . . . ,λ2

dT ) is a d-dimensional diagonal matrix containing the eigenvalues ofVP
T .
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B Assumption (Hσ,b
x0 ) on σ and b.

(Hσ,b
x0 )-i) σ and b are bounded measurable functions from [0,T ]×Rd to Rd×q and Rd respectively, they

are twice continuously differentiable w.r.t. x, with uniformly bounded derivatives, and their second
derivatives are locally α ∈ (0,1]-Hölder continuous w.r.t. x. We set:

M1(σ,b) =
∑

α:1≤|α|≤2

(|∂ασ|∞+ |∂αb|∞) and M0(σ,b) = max(|σ|∞, |b|∞,M1(σ,b)).

To avoid uninteresting situations, we assumeM0(σ,b) > 0.

(Hσ,b
x0 )-ii) There is a constant CV ≥ 1 such that

CVM0(σ,b) ≥ max
i∈{1,...,d}

λi ≥ min
i∈{1,...,d}

λi ≥ (CV)−1M0(σ,b).

In particular, the matrixVP
T is positive definite.

From (Hσ,b
x0 ) and Property 8.1.0.1 we easily deduce

Proposition 8.1.0.2.

1. The distribution of XP
T has a density f P(x) = e−

1
2 (x−mP

T )∗(VP
T )−1(x−mP

T )

(2π)
d
2
√

det(VP
T )

, such that for any multi-index α

∣∣∣∂α f P(x)
∣∣∣ ≤Cα,d(M0(σ,b)

√
T )−(d+|α|)exp

(
−

|x−mP
T |

2

Cα,d[M0(σ,b)]2T

)
, (8.4)

for a constant Cα,d > 0 that depends in a non-decreasing way on T ,M0(σ,b) and CV.

2. For any measurable function φ : Rd → R exponentially bounded, define
φ

P
: ε ∈ Rd 7→ φ

P
(ε) = E[φ(XP

T + ε)]. Then φ
P

is of class C∞ and all the derivatives

∂|α|εα1 ...εα|α|
φ

P
(0) := ∂|α|εα1 ...εα|α|

φ
P
(ε)|ε=0 exist for any multi-index α ∈ {1, . . . ,d}|α|.

BMiscellaneous. We use the following notations to state our error estimates throughout the Chapter:

• "A = O(B)" means that |A| ≤CB where C stands for a generic constant that is a non-negative non-
decreasing function of the parameters d, T ,M0(σ,b),M1(σ,b) and CV. Unless made explicit, a
generic constant may depend on the test function h.

• Similarly, if A is non-negative, A ≤c B means that A ≤CB for a generic constant C.

Lastly, for a r.v. Y ∈ Rm (m ≥ 1) and for p ≥ 1, ||Y ||p = (E|Y |p)
1
p stands for its Lp-norm.

8.2 Main results

8.2.1 Second order weak approximation and Monte Carlo simulations on the Proxy

The model proxy has the advantage to have an explicit Gaussian law and the accuracy of the approxi-
mations σ(t,Xt) ≈ σ(t, x0) and b(t,Xt) ≈ b(t, x0) can be justified ifM1(σ,b),M0(σ,b) and T are globally
small enough (see Lemma 8.3.1.1). Nevertheless, we can not reasonably expect
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E[h(XT )] ≈ h
P
(0) = E[h(XP

T )] to be solely accurate enough and we provide correction terms. To derive
them, we make an intensive use of the next interpolated process:

Xη
t = x0 +

q∑
j=1

∫ t

0
σ j(s,ηXη

s + (1−η)x0)dW j
s +

∫ t

0
b(s,ηXη

s + (1−η)x0)ds, η ∈ [0,1], (8.5)

so that Xη=1 = X and Xη=0 = XP. Under (Hσ,b
x0 )-i), almost surely for any t, η 7→ Xη

t is C2([0,1],Rd),
see [Kunita 1997]. The dynamics of the two first derivatives (Ẋη

t := ∂ηXη
t )t≥0 and (Ẍη

t := ∂2
η2 Xη

t )t≥0 are
obtained by a straight differentiation of the SDE satisfied by Xη:

Ẋη
t =

q∑
j=1

∫ t

0
∇σ j(s, x0 +η(Xη

s − x0))(Xη
s − x0 +ηẊη

s )dW j
s

+

∫ t

0
∇b(s, x0 +η(Xη

s − x0))(Xη
s − x0 +ηẊη

s )ds, (8.6)

(Ẍη
t )i =

q∑
j=1

∫ t

0

[
(Xη

s − x0 +ηẊη
s )∗H(σi

j)(s, x0 +η(Xη
s − x0))(Xη

s − x0 +ηẊη
s )

+∇σi
j(s, x0 +η(Xη

s − x0))(2Ẋη
s +ηẌη

s )
]
dW j

s

+

∫ t

0

[
(Xη

s − x0 +ηẊη
s )∗H(bi)(s, x0 +η(Xη

s − x0))(Xη
s − x0 +ηẊη

s )

+∇bi(s, x0 +η(Xη
s − x0))(2Ẋη

s +ηẌη
s )
]
ds, ∀i ∈ {1, . . . ,d}. (8.7)

Setting σ′j,t := ∇σ j(t, x0), Σ′j,t := ∇Σ j(t, x0) and b′t := ∇b(t, x0), Ẋ := Ẋη=0 is solution of the SDE:

Ẋt =

q∑
j=1

∫ t

0
σ′j,s (XP

s − x0)dW j
s +

∫ t

0
b′s (XP

s − x0)ds. (8.8)

Then combining Taylor expansions for the interpolated process Xη and the function h (here assumed to
be smooth enough for the sake of brevity), we propose the following weak stochastic approximation:

E[h(XT )] = E[h(XP
T )] +E[∇h(XP

T )ẊT ] + ErrorSA
2,h, (8.9)

where the explicit calculus of the corrective term E[∇h(XP
T )ẊT ] is performed in Proposition 8.6.1.1

whereas the estimate of the error ErrorSA
2,h is postponed to Section 8.3. This leads to the following

Theorem (stated for only Lipschitz function h).

Theorem 8.2.1.1. (Second order weak approximation using the Gaussian proxy).
Assume (Hσ,b

x0 ) and suppose that h ∈ Lipb(Rd,R). Then we have:

E[h(XT )] =E[h(XP
T )] + Cor2,h + ErrorSA

2,h, (8.10)

where:

Cor2,h =∇h
P
(0)

∫ T

0
b′t

(∫ t

0
bsds

)
dt +

d∑
i, j=1

∂2
εi,ε j

h
P
(0)

[∫ T

0
(bi

t)
′(∫ t

0
Σ j,sds

)
dt +

1
2

∫ T

0
(Σi

j,t)
′(∫ t

0
bsds

)
dt

]
+

1
2

d∑
i, j,k=1

∂3
εi,ε j,εk

h
P
(0)

∫ T

0
(Σi

j,t)
′(∫ t

0
Σk,sds

)
dt, (8.11)

recalling b′t =∇b(t, x0) and (Σi
j,t)
′ =∇[σσ∗]i

j(t, x0). The stochastic approximation error term is estimated
as follows:

|ErrorSA
2,h | ≤c CLip,hM1(σ,b)[M0(σ,b)]2T

3
2 . (8.12)
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Remind that Cor2,h is well defined whatever the smoothness of h (see Property 8.1.0.2).

Remark 8.2.1.1. The weak approximation is constituted by a leading order h
P
(0) plus a sum of weighted

sensitivities, i.e. derivatives of h
P

at zero, up to the third order. The error is of order 3 w.r.t. the standard
deviationM0(σ,b)

√
T and is null ifM1(σ,b) = 0 or if CLip,h = 0 (i.e. h is constant). That justifies the

label of second order weak approximation. When h(x) = φ(
∑d

i=1 ηixi) with ηi ≥ 0, the above expansion
coincides with that of [Gobet 2012a, Theorem 2.1]related to averaged diffusions.

Although the density of the Gaussian proxy is known, the approximation formula (8.10) does not
reduce to fully explicit calculations, due to the general form of h. Nevertheless, we can derive another
representation as an expectation of h(XP

T ) modified by an explicit weight: this is easily obtained by

transferring the ε-differentiation of the expectation h
P
(ε) (associated to correction terms) into a differen-

tiation of the proxy Gaussian density f P. This is a somewhat standard argument, in particular regarding
the Malliavin calculus applications [Nualart 2006, Section 6.2], we skip details of the derivation. The
advantage of this representation as an expectation is to make possible its evaluation by standard Monte-
Carlo methods involving only simulations of the Gaussian proxy XP

T (exact and without discretization),
see our subsequent numerical experiments.

Theorem 8.2.1.2. Under the notations and assumptions of Theorem 8.2.1.1, the main terms of the
stochastic approximation are

E[h(XP
T )] + Cor2,h = E

[
h(XP

T )
{
1 +W[Σ,b; x0]T

0
(
[VT

0 ]−1(XP
T −mP

T )
)}]
, (8.13)

where we set, for Y ∈ Rd,

W[Σ,b; x0]T
0 (Y) =< Y,

∫ T

0
b′t

(∫ t

0
bsds

)
dt >

+

d∑
i, j=1

{
YiY j− ([VT

0 ]−1)i
j

}[∫ T

0
(bi

t)
′(∫ t

0
Σ j,sds

)
dt +

1
2

∫ T

0
(Σi

j,t)
′(∫ t

0
bsds

)
dt

]
+

1
2

d∑
i, j,k=1

{
YiY jYk −Yk([VT

0 ]−1)i
j−Y j([VT

0 ]−1)i
k −Yi([VT

0 ]−1) j
k

}∫ T

0
(Σi

j,t)
′(∫ t

0
Σk,sds

)
dt.

As an alternative to a Monte-Carlo evaluation based on (8.13), we provide in the following Sub-
section a new numerical method to approximate the expansion formula (8.10) taking advantage of a
multilinear interpolation with hat functions, which theoretical accuracy is given according to the h-
smoothness. The extension to multiquadratic interpolation is presented afterwards.

8.2.2 An efficient algorithm using multilinear finite elements

We define the hat function Λ
µ
z with center z ∈ R and size parameter µ > 0 by:

Λ
µ
z (y) =

y− (z−µ)
µ

1y∈[z−µ,z[ +
z +µ− y

µ
1y∈[z,z+µ]. (8.14)

Observe that E(Λµ
z (G1)) is known in explicit form when G1 is a scalar Gaussian r.v. (like the proxy):

therefore, replacing h by a linear interpolation ĥ (using the Λ
µ
z -function) leads to a fully explicit formula

for (8.10). To extend to the d-dimensional case, we wish to use tensor products of such a function
basis in all directions to provide an interpolation of h. However remark that for any (G1,G2) Gaussian
vector and any z1,z2,µ1,µ2, the calculus of E

[
Λ
µ1
z1 (G1)Λµ2

z2

(
G2

)]
is not tractable, except in the case of
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zero correlation; thus an additional ingredient is necessary to maintain explicit formulas. In order to
be placed in a situation of uncorrelated Gaussian r.v., we introduce an affine transformation A of the
space, composed of a rotation using the d-dimensional diagonal matrix UV (involved in the diagonal
decomposition ofVP

T ) and a translation of vector mP
T (the expectation of XP

T ). The following presentation
is aimed at providing the construction of the right grid (nodes, directions, size).

B Description of the methodology. We consider a finite product grid in Rd defined by:

Y = (y j
i )(i, j)∈{1,...,d}×{0,...,N}, y j

i = −Ri + jδi, Ri = Rλi
√

T , δi = δλi
√

T , δ =
2R
N
, (8.15)

where we recall that λ2
i T are the eigenvalues of the covariance matrixVP

T and where the grid parameters
R and δ are to be specified according to the final approximation accuracy desired. We assume N ∈ N∗.
The gridY contains Nd small hypercubes and their vertices are the nodes with coordinates (y j1

1 , . . . ,y
jd
d )∗

for any j1, . . . , jd ∈ {0, . . . ,N}. Then we define a new grid X = (x j1,..., jd ) j1,..., jd∈{0,...,N} image of Y by the
transformationA : x 7→ Ax = mP

T +UVx:

x j1,..., jd = (x j1,..., jd
1 , . . . , x j1,..., jd

d )∗ :=A(y j1
1 , . . . ,y

jd
d )∗.

The convex hull of Y is the hypercube DP, and let us introduce its image D̃P byA:

DP = [−R1,R1]× · · ·× [−Rd,Rd], D̃P :=A(DP). (8.16)

Then we define the multilinear interpolation of h based on the grid X by setting, for any x ∈ Rd,

h(x) ≈ ĥ(x) :=
∑

j1,..., jd∈{0,...,N}

h(x j1,..., jd )
d∏

i=1

Λ
δi

y ji
i

(
(U−1
V

(x−mP
T ))i). (8.17)

Notice that ĥ is continuous, vanishes outside the domainA
(
[−R1−δ1,R1 +δ1]×· · ·×[−Rd−δd,Rd +δd]

)
,

and the restriction of ĥ to DP is Lipschitz continuous with a Lipschitz constant at most equal to CLip,h.
The above construction is very similar to multilinear Lagrange finite elements on d-parallelotope, see
[Brenner 2008] for a general reference.

B Explicit approximation. Using (8.17) and taking the expectation, we get for the leading order of
the expansion (8.10):

E[h(XP
T )] ≈ E[ĥ(XP

T )] =
∑

j1,..., jd∈{0,...,N}

h(x j1,..., jd )E
[ d∏

i=1

Λ
δi

y ji
i

(
(U−1
V

(XP
T −mP

T ))i)], (8.18)

where U−1
V

(XP
T −mP

T ) has the centered Gaussian law with independent components. Thus combining
independence and scaling argument, setting

y0 = (y j
0) j∈{−1,...,N+1} := (−R + jδ) j∈{−1,...,N+1} (8.19)

and using (8.14)-(8.15)-(8.19), a straightforward calculus leads to

E
[ d∏

i=1

Λ
δi

y ji
i

(
(U−1
V

(XP
T −mP

T ))i)] =

d∏
i=1

E
[
Λ
δi

y ji
i

(
λi
√

TW1
1 )

]
=

d∏
i=1

E
[
Λδ

y ji
0

(W1
1 )

]
=

d∏
i=1

βδji(y0), (8.20)
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where

βδj(y0) :=
β(y j+1

0 )−2β(y j
0) +β(y j−1

0 )

δ
, β(x) := xN(x) +N ′(x), N(x) :=

∫ x

−∞

e−
y2
2

√
2π

dy = β′(x). (8.21)

Next for the corrective terms (8.11), we similarly replace h by ĥ, which gives Cor2,h ≈ Cor2,ĥ. For any

multi-index α ∈ {1, . . . ,d}|α|, we get for the derivatives of ĥ
P

using (8.18)-(8.20):

∂|α|εα1 ,...,εα|α|
ĥ

P
(ε) =

∑
j1,..., jd∈{0,...,N}

h(x j1,..., jd )∂|α|εα1 ,...,εα|α|

d∏
i=1

E
[
Λ
δi

y ji
i

(λi
√

TW1
1 + (U−1

V
ε)i)

]
,

E
[
Λ
δi

y ji
i

(λi
√

TW1
1 + (U−1

V
ε)i)

]
= E

[
Λδ

y ji
0 −

(U−1
V

ε)i

λi
√

T

(W1
1 )

]
= βδji

(
y0−

(U−1
V
ε)i

λi
√

T

)
.

Thus it is sufficient to compute the perturbed coefficients βδ as in (8.21) according to the new translated

grid y0 −
(U−1
V
ε)i

λi
√

T
and then to differentiate w.r.t. ε at ε = 0, which leads to explicit calculations. The next

result summarizes the previous analysis, in combination with Theorem 8.2.1.1.

Theorem 8.2.2.1. (SAFE method with multilinear finite elements).
Assume (Hσ,b

x0 ) and suppose that h ∈ Lipb(Rd,R). Define

ĥ
P
(ε) :=

∑
j1,..., jd∈{0,...,N}

h(x j1,..., jd )
d∏

i=1

βδji

(
y0−

(U−1
V
ε)i

λi
√

T

)
.

where the weight functions βδji and the grid y0 are respectively defined in (8.21) and (8.19). Then we
have

E[h(XT )] =ĥ
P
(0) + Cor2,ĥ + ErrorSA

2,h + ErrorFEL
h , (8.22)

where

Cor2,ĥ =∇ĥ
P
(0)

∫ T

0
b′t

(∫ t

0
bsds

)
dt +

d∑
i, j=1

∂2
εi,ε j

ĥ
P
(0)

[∫ T

0
(bi

t)
′(∫ t

0
Σ j,sds

)
dt +

1
2

∫ T

0
(Σi

j,t)
′(∫ t

0
bsds

)
dt

]
+

1
2

d∑
i, j,k=1

∂3
εi,ε j,εk

ĥ
P
(0)

∫ T

0
(Σi

j,t)
′(∫ t

0
Σk,sds

)
dt,

and where the error using the multilinear finite elements approximation is defined by:

ErrorFEL
h := h

P
(0)− ĥ

P
(0) + Cor2,h−Cor2,ĥ. (8.23)

B Accuracy results. The accuracy of multilinear interpolation depends on the smoothness of the func-
tion h to approximate. Our goal is not to be exhaustive in this respect but rather to give few settings
relevant for the practical applications that we have in mind. For a detailed exposure on Finite Elements
accuracy, see [Brenner 2008]. We distinguish three kinds of increasingly strong assumptions:

(H1) : h ∈ Lipb(Rd,R).

(H2) : h ∈ Lipb(Rd,R), piecewise C2, in the sense that there are an integer Nh ∈ N
∗, Nh domains (non

empty open connected sets of Rd) (Di)i∈{1,...,Nh}, such that:
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1. ∀i ∈ {1, . . . ,Nh}, either the domain Di has a compact boundary ∂Di of class C2, or Di is a
half-space,

2. Rd =

i=Nh⋃
i=1

Di,

3. ∀i ∈ {1, . . . ,Nh}, the restriction of h to Di, which is denoted by hi, is a C2(Di,Rd)-function
with bounded derivatives.

(H3) : h ∈ C2(Rd,R) with bounded derivatives.

We state the accuracy results in the following Theorem, which proof is postponed to Section 8.4.

Theorem 8.2.2.2. (Accuracy of SAFE method with multilinear finite elements).
Assume (Hσ,b

x0 ) and suppose that h satisfies at least (H1) . Recalling the density f P of XP
T in (8.4) and

the domain D̃P in (8.16), for any multi-index α set

G
α,T
h =

∫
Rd
1y<D̃Ph(y)∂α( f P(y− ε))

∣∣∣
ε=0dy, G

α,I
h =

∫
Rd
1y∈D̃Ph(y)∂α( f P(y− ε))

∣∣∣
ε=0dy. (8.24)

Then, define CorT
2,h (respectively CorI

2,h) replacing in Cor2,h the sensitivities ∂αh
P
(0) byGα,Th (respectively

G
α,I
h ) so that Cor2,h = CorT

2,h + CorI
2,h; proceed similarly with Gα,T

ĥ
, Gα,I

ĥ
, CorT

2,ĥ
and CorI

2,ĥ
. Then the

multilinear finite elements error (8.23) is decomposed as

ErrorFEL
h = ErrorFEL,T

h + ErrorFEL,I
h ,

where the Truncation Error

ErrorFEL,T
h := E[(h(XP

T )− ĥ(XP
T ))1XP

T <D̃
P] + CorT

2,h−CorT
2,ĥ

strongly depends on the size parameter R introduced in (8.15), and where the Interpolation Error on D̃P

ErrorFEL,I
h := E[(h(XP

T )− ĥ(XP
T ))1XP

T ∈D̃P] + CorI
2,h−CorI

2,ĥ

depends on the grid mesh δ. On the one hand, for h ∈ Lipb(Rd,R), the truncation error is such

|ErrorFEL,T
h | ≤c(|h(mP

T )|+ CLip,h)exp(−R2/4). (8.25)

On the other hand, the Interpolation Error is estimated as follows, according to the regularity of h:

ErrorFEL,I
h ≤ c


CLip,hδM0(σ,b)

√
T under (H1) ,{

CLip,h + max
i≤Nh, α:|α|=2

|∂αhi|∞
}
δM0(σ,b)

√
T
[
δ+M0(σ,b)

√
T
]

under (H2) ,

sup
α:|α|=2

|∂αh|∞ δ2[M0(σ,b)
√

T ]2 under (H3) ,
(8.26)

where the generic constant c in case (H2) depends on the domains.

8.2.3 Final approximation and complexity of the SAFE algorithm based on multilinear
finite elements

Combining Theorems 8.2.1.1 (weak approximation with the Gaussian proxy) and 8.2.2.2 (suitable in-
terpolation of h using the hat functions), we derive a final approximation of E[h(XT )] with a choice of
parameters R and δ (see (8.15)) allowing to obtain a global error of order at most equal to

E = [M0(σ,b)
√

T ]3.

The proof of the following Theorem is left to the reader.
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Theorem 8.2.3.1. Assume (Hσ,b
x0 ) and suppose that h satisfies at least (H1) . Consider the local

approximation ĥ of h defined in (8.17) with parameters R and δ set as follows:

R := 2
√

log(1/E), δ := c


[maxiλi

√
T ]2 under (H1) ,

maxiλi
√

T under (H2) ,[
maxiλi

√
T
] 1

2 under (H3) ,

for an arbitrary fixed constant c. Then, the global error is of order 3 w.r.t. M0(σ,b)
√

T:

E[h(XT )] = E[ĥ(XP
T )] + Cor2,ĥ +O

(
[M0(σ,b)

√
T ]3).

Now, let us analyze the algorithm complexity w.r.t. the target error E, according to the regularity of
h.

Denote by C(d) the computational cost for the elementary operations at each node x j1,..., jd of the
local approximation: apart from the evaluation of h(x j1,..., jd ), computations are mainly dedicated to the
calculus of the β weights defined in (8.21) and their derivatives, which is simple and can even be made
off-line. Therefore, the total computational cost of the algorithm is CFEL

calculus = O
(
C(d)(N + 1)d

)
. Since

N = 2R/δ, the complexity of the algorithm to reach the target error E = [M0(σ,b)
√

T ]3 can be evaluated
in the following manner.

Corollary 8.2.3.1. With the previous notations and assumptions, as E→ 0 we have

CFEL
calculus =


O
(
[log(1/E)]d/2E−

2d
3
)

under (H1) ,

O
(
[log(1/E)]d/2E−

d
3
)

under (H2) ,

O
(
[log(1/E)]d/2E−

d
6
)

under (H3) .

(8.27)

Let us briefly discuss the theoretical efficiency of our algorithm in comparison to a direct Monte-
Carlo method. If we perform M simulations of the diffusion XT via an Euler scheme X∆t

T with time
step ∆t, the total computational cost is of order M × (T/∆t), whereas the mean square error is (see
[Duffie 1995])

Var[h(X∆t
T )]M−1 +

(
E[h(XT )]−E[h(X∆t

T )]
)2
.

The first term (statistical error) is approximately equal to

Var[h(XT )]M−1 = Var[h(XT )−h(x0)]M−1 = O
(
[CLip,hM0(σ,b)

√
T ]2M−1).

The second error term (discretization error) is a bit delicate to analyze under our assumptions: Kebaier
shows in [Kebaier 2005, Proposition 2.2] that for any α ∈ ( 1

2 ,1], there is a Lipschitz function h so that the
discretization error is O((∆t)α). In [Talay 1990, Bally 1996], the order α = 1 is established for smooth
h or for uniform (hypo)-elliptic σ, but these assumptions are not fulfilled in our setting. To encompass
general results, we rather use strong convergence estimates, and we specialize them to our setting:∣∣∣E[h(XT )]−E[h(X∆t

T )
∣∣∣ ≤ CLip,hE|XT −X∆t

T | ≤c CLip,h[M0(σ,b)]2
√

T
√

∆t.

We now tune the parameters to achieve a L2-error of the same order as the SAFE method when E→ 0, i.e.
to have a mean square error E2 = [M0(σ,b)

√
T ]6: this is achieved by taking M−1 ∼ [M0(σ,b)

√
T ]4 = E

4
3

and ∆t ∼ [M0(σ,b)]2T 2 = E
2
3 T . Therefore, the computational cost is CMC

calculus = O(E−2), independently
of the dimension. Thus, in view of (8.27) and neglecting logarithmic factors, the SAFE method with
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multilinear finite elements is (in the sense of this theoretical comparison) more competitive than Monte-
Carlo methods up to the dimension

d = 3 under (H1) , d = 6 under (H2) , d = 12 under (H3) .

We now analyse the efficiency of the SAFE methodology with multilinear finite elements in comparison
to Monte-Carlo simulations on the Gaussian proxy XP

T (see (8.13)). The simulation of XP
T is exact and

without discretization, and thus similar arguments to those previously employed lead to a computational
cost CMC Proxy

calculus = O(M) = O(E−
4
3 ). Consequently, in view of (8.27), the SAFE method with multilinear

finite elements presents a better theoretical efficiency than Monte-Carlo simulations on the proxy up to
the dimension:

d = 2 under (H1) , d = 4 under (H2) , d = 8 under (H3) .

Subsequent experiments are coherent with these rules.

8.2.4 SAFE with multiquadratic finite elements

For smooth functions at least of class C3(Rd,R), we propose an extension using multiquadratic finite
elements [Brenner 2008, Section 3.5] allowing to reach a given accuracy with a lower computational
cost. We define two basis functions of center and size parameters z ∈ R and µ > 0:

ζ
µ
z (y) =

y− (z−µ)
µ

(
2(

y− (z−µ)
µ

)−1
)
1y∈[z−µ,z[ +

z +µ− y
µ

(
2(

z +µ− y
µ

)−1
)
1y∈[z,z+µ],

Ξ
µ
z (y) =

(y− (z−µ))
µ

(z +µ− y)
µ

1y∈[z−µ,z+µ].

To obtain a multiquadratic interpolation of h, for any i ∈ {1, . . . ,d} and any j ∈ {0, . . . ,N − 1} we denote

by y
j+ 1

2
0 = −R+ ( j+ 1

2 )δ and y
j+ 1

2
i = −Ri + ( j+ 1

2 )δi the middles of respectively the segments [y j
0,y

j+1
0 ] and

[y j
i ,y

j+1
i ]. Then we naturally extend

X = (x j1,..., jd ) j1,..., jd∈{0, 1
2 ,...,N−

1
2 ,N}

=
(
A(y j1

1 , . . . ,y
jd
d )∗

)
j1,..., jd∈{0, 1

2 ,...,N−
1
2 ,N}

and the multiquadratic interpola-
tion of h is defined by:

Qh(x) :=
∑

j1,..., jd∈{0, 1
2 ,...,N−

1
2 ,N}

h(x j1,..., jd )
d∏

i=1

[
ζδi

y ji
i

(
(U−1
V

(x−mP
T ))i)12 ji≡0[2] +Ξ

δi/2

y ji
i

(
(U−1
V

(x−mP
T ))i)12 ji≡1[2]

]
,

which is a continuous approximation, piecewise quadratic in all directions on D̃P and vanishing outside
the domain A

(
[−R1 − δ1,R1 + δ1]× · · · × [−Rd − δd,Rd + δd]

)
. A direct computation (a little bit tedious

but without mathematical difficulty) yields:

E
[( (U−1

V
(XP

T −mP
T ))i− y ji−1

i )

δi

)2
1

(U−1
V

(XP
T−mP

T ))i∈[y ji−1
i ,y ji

i [

+
(y ji+1

i − (U−1
V

(XP
T −mP

T ))i

δi

)2
1

(U−1
V

(XP
T−mP

T ))i∈[y ji
i ,y

ji+1
i ]

]
= 2Bδji(y0),

E
[
ζδi

y ji
i

(
(U−1
V

(XP
T −mP

T ))i)] = 4Bδji(y0)−βδji(y0),

E
[
Ξ
δi/2

y ji
i

(
(U−1
V

(XP
T −mP

T ))i)] = −2Bδ/2ji
(y0) + 2βδ/2ji

(y0),
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where the function β is defined in (8.21) and where:

Bδj(y0) :=
B(y j+1

0 )−B(y j−1
0 )−2δB′(y j

0)

δ2 , B(x) :=
∫ x

−∞

β(u)du =
(x2 + 1)N(x) + xN ′(x)

2
, (8.28)

βδ/2j (y0) :=
β(y j+1/2

0 )−2β(y j
0) +β(y j−1/2

0 )

δ/2
, B

δ/2
j (y0) :=

B(y j+1/2
0 )−B(y j−1/2

0 )−2(δ/2)B′(y j
0)

(δ/2)2 .

We are now in a position to announce the following Theorem, which proof is very similar to those of
Theorems 8.2.2.1-8.2.2.2 and is thus left to the reader.

Theorem 8.2.4.1. (SAFE using multiquadratic finite elements).
Assume (Hσ,b

x0 ) and suppose that h ∈ C3(Rd,R) with bounded derivatives. Define

Qh
P
(ε) :=

∑
j1,..., jd∈{0, 1

2 ,...,N−
1
2 ,N}

h(x j1,..., jd )
d∏

i=1

[(
4Bδji

(
y0−

(U−1
V
ε)i

λi
√

T

)
−βδji

(
y0−

(U−1
V
ε)i

λi
√

T

))
12 ji≡0[2]

+
(
−2Bδ/2ji

(
y0−

(U−1
V
ε)i

λi
√

T

)
+ 2βδ/2ji

(
y0−

(U−1
V
ε)i

λi
√

T

))
12 ji≡1[2]

]
,

where the weight functions Bδji , B
δ/2
ji

, βδji and βδ/2ji
and the grid y0 are defined in (8.28), (8.21) and (8.19).

Then

E[h(XT )] =Qh
P
(0) + Cor2,Qh +O

(
CLip,hM1(σ,b)[M0(σ,b)]2T

3
2
)
+ ErrorFEQ,T

h + ErrorFEQ,I
h ,

where the truncation error ErrorFEQ,T
h is estimated as in (8.25) and where the interpolation error using

the multiquadratic interpolation is estimated as follows: ErrorFEQ,I
h = O

(
δ3[M0(σ,b)

√
T ]3).

In order to achieve a global accuracy E = [M0(σ,b)
√

T ]3, we conclude as for Corollary 8.2.3.1:
namely, take R = 2

√
log(1/E) and δ = c for an arbitrary fixed constant c > 0. It leads to the following

complexity result, which demonstrates a better asymptotic theoretical efficiency compared to Monte-
Carlo methods in any dimension.

Corollary 8.2.4.1. With the previous notations and assumptions, as E→ 0 we have
C

FEQ
calculus = O

(
[log(1/E)]d/2

)
.

For functions mixing various local regularity properties, we have better to use different shape func-
tions and different mesh sizes, and possibly sparse grids [Bungartz 2004]. It can be done easily according
to the examples to handle, we do not develop further this adaptive viewpoint.

8.3 Proof of the error estimate in Theorem 8.2.1.1

The estimate of ErrorSA
2,h provided in (8.12) is proved in three steps:

1. Lp-estimates of the interpolated process Xη and of its derivatives;

2. Gaussian regularization of h with a small Brownian perturbation;

3. Malliavin integration by parts formula.

We may stress that the step 2 with Gaussian regularization is a crucial ingredient for a secured use of
Malliavin calculus integration by parts under the sole pointwise ellipticity (Hσ,b

x0 ).
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8.3.1 Lp-norm estimates of Xη− x0, Ẋη and Ẍη

Lemma 8.3.1.1. Assume (Hσ,b
x0 ). We have the following estimates ∀p ≥ 1:

sup
t∈[0,T ],η∈[0,1]

||Xη
t − x0||p ≤cM0(σ,b)

√
T , (8.29)

sup
t∈[0,T ],η∈[0,1]

||Ẋη
t ||p ≤cM1(σ,b)M0(σ,b)T, sup

t∈[0,T ],η∈[0,1]
||Ẍη

t ||p ≤cM1(σ,b)[M0(σ,b)]2T
3
2 . (8.30)

Proof. W.l.o.g. we can assume p ≥ 2. The estimate (8.29) is standard using classic inequalities and the
upper bounds on b and σ in (Hσ,b

x0 ). Regarding the estimate of Ẋη, start from (8.6): usual computations
based on Burkholder-Davis-Gundy inequalities and the Gronwall lemma lead to

E|Ẋη
t |

p ≤c(M1(σ,b)
√

T )p sup
t∈[0,T ]

E|Xη
t − x0|

p,

with some generic constant c uniform in t ∈ [0,T ] and η ∈ [0,1]. Then plug the estimate (8.29) into
this inequality to conclude. Finally for the last estimate of (8.30), start from (8.7) and apply the same
inequalities to obtain:

E|Ẍη
t |

p ≤c(M1(σ,b)
√

T )p
{

sup
t∈[0,T ]

E|Xη
t − x0|

2p + sup
t∈[0,T ]

E|Ẋη
t |

2p + sup
t∈[0,T ]

E|Ẋη
t |

p
}
;

using the previous estimates easily achieves the proof. �

8.3.2 Regularization of h with a small noise perturbation

Let W be an extra independent d-dimensional Brownian motion defined on the same probability space,
suppose thatM1(σ,b) , 0 w.l.o.g. and define the small parameter ξ =M1(σ,b)[M0(σ,b)]2T > 0 and the
C∞(Rd,R)-function :

hξ(x) = E[h(x + ξWT )] = E[hξ/
√

2(x + ξW T
2
)]. (8.31)

Replacing h by hξ in our expansion analysis (8.10) induces extra errors quantified below.

Lemma 8.3.2.1. Assume (Hσ,b
x0 ). For any h ∈ Lipb(Rd,R) and any multi-index α, we have:

|h−hξ |∞ ≤cCLip,hM1(σ,b)[M0(σ,b)]2T
3
2 ,∣∣∣∂αh

P
(0)−∂αhξ

P
(0)

∣∣∣ ≤cCLip,hM1(σ,b)[M0(σ,b)]2T
3
2
(
M0(σ,b)

√
T
)−|α|

.

Proof. The first estimate readily follows from (8.31) and h ∈ Lipb(Rd,R). About the second estimate,
using the density f P of XP

T (see (8.4)), write

∂αh
P
(0)−∂αhξ

P
(0) =

∫
Rd

[h(y)−hξ(y)]∂α
(
f P(y− ε)

)∣∣∣
ε=0dy,

and complete the proof by combining the first estimate with standard upper bounds for the derivatives
of f P (see Property 8.1.0.2). �

An important consequence of the above lemma is a nice control of correction and error terms w.r.t.
h and hξ. The proof is straightforward and we skip it.
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Corollary 8.3.2.1. Under the assumptions of Lemma 8.3.2.1, we have∣∣∣∣Cor2,h−Cor2,hξ

∣∣∣∣ ≤c [M1(σ,b)]2[M0(σ,b)]2T 2,∣∣∣∣ErrorSA
2,h −ErrorSA

2,hξ

∣∣∣∣ :=
∣∣∣∣E[h(XT )]−E[h(XP

T )]−Cor2,h−
(
E[hξ(XT )]−E[hξ(XP

T )]−Cor2,hξ
)∣∣∣∣

≤cM1(σ,b)[M0(σ,b)]2T
3
2 .

Hence, proving the error estimate (8.12) is reduced to prove the following Proposition:

Proposition 8.3.2.1. Under previous assumptions, we have |ErrorSA
2,hξ
| ≤c CLip,hM1(σ,b)[M0(σ,b)]2T

3
2 .

8.3.3 Malliavin integration by parts formula and proof of Proposition (8.3.2.1)

This step is aimed at deriving error estimates related to hξ, depending only on CLip,hξ ≤ CLip,h and not on
higher derivatives of hξ, thanks to Malliavin integration by parts formula: we make it possible because
of the extra independent noise ξWT/2 in (8.31) which plays an important role on the degeneracy event
(see Lemma 8.3.4.1). This ingredient is crucial to make our error analysis available.

Let us detail the argumentation. We consider the Malliavin calculus w.r.t the (q + d)-dimensional
Brownian motion (W,W), the Malliavin derivatives associated to W (respectively W) being denoted by
D (respectively D). We refer to [Nualart 2006] for the related theory and the notations. First we extend
the estimates provided in Lemma 8.3.1.1 to the norms || · ||k,p related to the Sobolev space Dk,p, k = 1,2.

Lemma 8.3.3.1. Under (Hσ,b
x0 ), for any η ∈ [0,1], i ∈ {1, . . . ,d} and t ∈ [0,T ], (Xη

t )i ∈ D2,∞ and
(Ẋη

t )i ∈ D1,∞. In addition we have the following estimates for any p ≥ 1:

||Dr(X
η
t )i||p ≤cM0(σ,b), ||D2

r,s(X
η
t )i||p ≤cM0(σ,b)M1(σ,b), (8.32)

||Dr(Ẋ
η
t )i||p ≤cM1(σ,b)M0(σ,b)

√
T , (8.33)

uniformly in r, s, t ∈ [0,T ], i ∈ {1, . . . ,d} and η ∈ [0,1].

Proof. The inclusions in D1,∞ and D2,∞ are standard to justify under our assumptions, we skip it and
we focus on the Lp-estimates. W.l.o.g. we assume p ≥ 2. We only detail the computations for Ẋη

t . Start
from (8.6) to get ∀t ∈ [0,T ], ∀r ∈ [0, t], ∀(i,k) ∈ {1, . . . ,d}× {1, . . . ,q}:

(DrẊη
t )i

k =∇σi
k(r, x0 +η(Xη

r − x0))(Xη
r − x0 +ηẊη

r )

+

q∑
j=1

∫ t

r
(Xη

u − x0 +ηẊη
u)∗H(σi

j)(u, x0 +η(Xη
u − x0))(DrXη

u)kdW j
u

+

q∑
j=1

∫ t

r
∇σi

j(u, x0 +η(Xη
u − x0))(DrXη

u +ηDrẊη
u)kdW j

u

+

∫ t

r
(Xη

u − x0 +ηẊη
u)∗H(bi)(u, x0 +η(Xη

u − x0))(DrXη
u)kdu

+

∫ t

r
∇bi(u, x0 +η(Xη

u − x0))(DrXη
u +ηDrẊη

u)kdu.

Then apply the Young, Burkholder-Davis-Gundy and Hölder inequalities combined to the Gronwall
lemma: it gives

E|(DrẊη
t )k|

p ≤c[M1(σ,b)]p
{
E|Xη

r − x0|
p +E|Ẋη

r |
p + sup

u∈[0,T ]

√
E|(DrXη

u)k|
2p T p/2
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×
(

sup
u∈[0,T ]

√
E|Xη

u − x0|2p +

√
sup

u∈[0,T ]
E|Ẋη

u |
2p

)
+ sup

u∈[0,T ]
E|(DrXη

u)k|
p T p/2

}
.

In view of (8.29), (8.30) and (8.32), the announced result (8.33) is proved. �

We now state the key result to establish Proposition (8.3.2.1).

Proposition 8.3.3.1. Assume (Hσ,b
x0 ). For η ∈ [0,1], we consider the d-dimensional random variable:

Fη = XP
T +η(XT −XP

T ) + ξW T
2
. (8.34)

Then for any Y ∈ D1,∞ and any i, j ∈ {1, . . . ,d}, there exists a random variable Y j,η ∈ ∩p≥1Lp such that

E[∂2
xi,x j

hξ/
√

2(Fη)Y] = E[∂xihξ/
√

2(Fη)Y j,η],

where ||Y j,η||p ≤c ||Y ||1,3p(M0(σ,b)
√

T )−1, uniformly in η ∈ [0,1], for any p ≥ 1.

Before proving it, let us complete the proof of Proposition 8.3.2.1. Define the residual processes

R0,X
T := XT −XP

T =

∫ 1

0
Ẋη

T dη, R1,X
T := XT −XP

T − ẊT =

∫ 1

0
(1−η)Ẍη

T dη, (8.35)

which enable us to represent the error (8.9) as follows:

ErrorSA
2,hξ =E[∇hξ(XP

T )R1,X
T ] +E

(∫ 1

0
(1−η)[R0,X

T ]∗H(hξ)(XP
T +η(XT −XP

T ))R0,X
T dη

)
. (8.36)

The first error term is easily handled combining (8.35), Lemma 8.3.1.1 and CLip,hξ ≤ CLip,h:

E[∇hξ(XP
T )R1,X

T ] = O
(
CLip,h(M1(σ,b)[M0(σ,b)]2T

3
2
)
.

For the second error term of (8.36), use (8.31), apply for any i, j ∈ {1, . . . ,d} the above Proposition 8.3.3.1
with Y = (RX

0,t)i(RX
0,t) j and use Lemmas 8.3.1.1 and 8.3.3.1 combined with (8.35) to get:

E
[∫ 1

0
(1−η)[R0,X

T ]∗H(hξ)(XP
T +η(XT −XP

T ))R0,X
T dη

]
=

∫ 1

0
(1−η)E

[
[R0,X

T ]∗H(hξ/
√

2)(Fη)R0,X
T

]
dη

= O(CLip,h[M1(σ,b)]2M0(σ,b)T
3
2 ).

Proposition 8.3.2.1 is proved.

8.3.4 Proof of Proposition 8.3.3.1

It is clear that under (Hσ,b
x0 ), Fη defined in (8.34) is in D2,∞ and is non degenerate since its Malliavin

covariance matrix γFη is such that

γFη =

∫ T

0
Dt(XP

T +η(XT −XP
T )) [Dt(XP

T +η(XT −XP
T ))]∗dt + ξ2 T

2
Id ≥ ξ

2 T
2
Id, (8.37)

γF0 =VP
T + ξ2 T

2
Id ≥ (CV)−2[M0(σ,b)]2TId. (8.38)

Then [Nualart 2006, Propositions 2.1.4 and 1.5.6] proves the existence of Y j,η such that for any p ≥ 1,

||Y j,η||p ≤c ||Y ||1,3p||γ
−1
Fη ||1,3p||(DFη,DFη)||1,3p ≤c ||Y ||1,3p||γ

−1
Fη ||1,3p||M0(σ,b)

√
T ,

where we have used (8.32) and the value of ξ. To complete the proof of Proposition 8.3.3.1, apply the
following estimates related to γ−1

Fη :
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Lemma 8.3.4.1. Assume (Hσ,b
x0 ). For any p ≥ 1 and any η ∈ [0,1], we have:

||det−1(γFη)||p ≤c(M0(σ,b)
√

T )−2d, (8.39)

||(γ−1
Fη )i

j||p ≤c(M0(σ,b)
√

T )−2, sup
t∈[0,T ]

||Dt(γ−1
Fη )i

j||p ≤cM1(σ,b)(M0(σ,b)
√

T )−2, (8.40)

uniformly in η ∈ [0,1].

Proof. Here we rely much on the assumption (Hσ,b
x0 ) about the oscillation of eigenvalues ofVP

T . All the
next generic constants are uniform in η ∈ [0,1]. Using the definition of γFη (8.37), write

γFη −γF0 = η

∫ T

0

{
DtXP

T [Dt(XT −XP
T )]∗+ Dt(XT −XP

T )
[
DtXP

T +ηDt(XT −XP
T )

]∗}dt.

Then, combining (8.35), (8.32) and (8.33), it readily follows (∀p ≥ 1)

||γFη −γF0 ||p ≤cM1(σ,b)[M0(σ,b)]2T
3
2 , ||γFη ||p ≤c(M0(σ,b)

√
T )2. (8.41)

Thus, it is an easy exercice (using the Leibniz formula for determinant) to deduce

||det(γFη)−det(γF0)||p
det(γF0)

≤c
M1(σ,b)[M0(σ,b)]2T

3
2 (M0(σ,b)

√
T )2(d−1)

(M0(σ,b)
√

T )2d
≤M1(σ,b)

√
T . (8.42)

We are in a position to prove (8.39). For any given p ≥ 1 and m ≥ 1,

E[det−p(γFη)] =E[det−p(γFη)1det(γFη )≤ 1
2 det(γF0 )] +E[det−p(γFη)1det(γFη )> 1

2 det(γF0 )]

≤c(ξ2T )−dpP
(
det(γF0)−det(γFη) ≥

det(γF0)
2

)
+ det−p(γF0)

≤c([M1(σ,b)]2[M0(σ,b)]4T 3)−dpdet−m(γF0)E[|det(γFη)−det(γF0)|m] + (M0(σ,b)
√

T )−2pd

≤c([M1(σ,b)]2[M0(σ,b)]4T 3)−dp(M1(σ,b)
√

T )m + (M0(σ,b)
√

T )−2pd,

where we have notably used (8.37) at the first inequality, the Markov inequality, the definition of ξ and
(8.38) at the second one and (8.42) at the last one. Then choose m = 4pd to readily obtain:

E[det−p(γFη)] ≤c(M0(σ,b)
√

T )−2pd.

The first estimate of (8.40) readily follows from (8.39)-(8.41). Regarding the second one, it is a con-
sequence of Dt(γ−1

Fη )i
j = −

∑d
m,l=1(γ−1

Fη )i
m(γ−1

Fη )l
jDt(γFη)m

l (see [Nualart 2006, Lemma 2.1.6]) and of the
estimate ||Dt(γFη)i

j||p ≤cM1(σ,b)[M0(σ,b)]2T which comes from (8.32). �

8.4 Proof of Theorem 8.2.2.2

8.4.1 Truncation Error ErrorFEL,T
h

BEstimate of E[(h− ĥ)(XP
T )1XP

T <D̃
P]. By construction of ĥ, we have

|ĥ(x)| ≤ sup
|x|∈D̃P |h(x)| ≤ |h(mP

T )|+ CLip,h
√

d maxi Ri, which becomes
|ĥ(x)| ≤ |h(mP

T )|+
√

d maxi Ri
mini Ri

CLip,h|x−mP
T | for x < D̃P. Besides, |h(x)| ≤ |h(mP

T )|+ CLip,h|x−mP
T |. Therefore

|h(x)− ĥ(x)| ≤ 2|h(mP
T )|+

(
1 +
√

d
maxi Ri

mini Ri

)
CLip,h|x−mP

T |, ∀x < D̃P. (8.43)
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Then using the Cauchy-Schwarz inequality and Lemma 8.3.1.1, we get:

|E[(h− ĥ)(XP
T )1XP

T <D̃
P]| ≤c |h(mP

T )|P(XP
T < D̃P) + CLip,hM0(σ,b)

√
T
[
P(XP

T < D̃P)
] 1

2 .

By the definition (8.16) of the domains DP and D̃P, we have

P(XP
T < D̃P) = P(W1 < [−R,R]d) ≤ d P(|W1

1 | > R) ≤ 2de−
R2
2 (8.44)

using a standard Gaussian concentration inequality. Finally, we have proved

|E[(h− ĥ)(XP
T )1XP

T <D̃
P]| ≤c (|h(mP

T )|+ CLip,h)e−
R2
4 . (8.45)

BEstimate of CorT
2,h −CorT

2,ĥ
. Starting from the definition (8.24) and using the inequality (8.43), the

estimates (8.29)-(8.44) and the Hölder inequality, we derive that
∣∣∣Gα,Th −G

α,T
ĥ

∣∣∣ is bounded by

{∫
Rd
1y<D̃P

∣∣∣h(y)− ĥ(y)
∣∣∣4 f P(y)dy

} 1
4
{∫
Rd

∣∣∣( f P(y))−1∂α( f P(y− ε))
∣∣∣
ε=0

∣∣∣4 f P(y)dy
} 1

4
{∫
Rd
1y<D̃P f P(y)dy

} 1
2

≤c(|h(mP
T )|+ CLip,h) (M0(σ,b)

√
T )−|α|e−

R2
4 ,

which easily leads to |CorT
2,h−CorT

2,ĥ
| ≤c (|h(mP

T ))|+CLip,h)e−
R2
4 . Combining this last estimate with (8.45)

achieves the proof of (8.25).

8.4.2 Interpolation Error ErrorFEL,I
h

For any j1, . . . , jd ∈ {0, . . . ,N − 1} we denote by DP, j1,.. jd the hyperrectangle [y j1
1 ,y

j1+1
1 ]× · · · × [y jd

d ,y
jd+1
d ]

and we set D̃P, j1,.. jd =A(DP, j1,.. jd ).
BEstimate of E[(h− ĥ)(XP

T )1XP
T ∈D̃P], cases (H1) and (H3) . Our local approximation consists in

using a tensor product finite elements of order 1 on d-parallelotope. We have for any
j1, . . . , jd ∈ {0, . . . ,N −1}

diam(D̃P, j1,.. jd ) := max
x,x′∈D̃P, j1 ,.. jd

|x− x′| = diam(DP, j1,.. jd )

=
( d∑

i=1

δ2
i

) 1
2

= δ
( d∑

i=1

λ2
i T

) 1
2
≤ µ := CV

√
dδM0(σ,b)

√
T . (8.46)

Hence an application of [Brenner 2008, Theorem 4.6.14] yields that

sup
j1,..., jd

sup
x∈D̃P, j1 ,.. jd

∣∣∣∣h(x)− ĥ(x)
∣∣∣∣ ≤ c0

 CLip,h µ, case (H1) ,(∑
α:|α|=2 |∂

αh|∞
)
µ2, case (H3) , (8.47)

where c0 is a universal constant. This obviously leads to :

∣∣∣E[(h− ĥ)(XP
T )1XP

T ∈D̃P]
∣∣∣ ≤c

 CLip,hδM0(σ,b)
√

T , case (H1) ,(∑
α:|α|=2 |∂

αh|∞
)
δ2[M0(σ,b)

√
T ]2, case (H3) . (8.48)

BEstimate of E[(h− ĥ)(XP
T )1XP

T ∈D̃P], case (H2) . We denote by J the set of integers

j = ( j1, . . . , jd) ∈ {0, . . . ,N}d such that D̃P, j1,.. jd does not intersect
⋃Nh

i=1 ∂Di: for j ∈ J , the restriction of h
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to D̃P, j1,.. jd coincides with a C2-function, to which we can apply the estimate (8.47) in the case (H3).
Otherwise, we can nevertheless use the estimate in the case (H1). It gives∣∣∣∣E[(h− ĥ)(XP

T )1XP
T ∈D̃P]

∣∣∣∣ ≤ c0

∑
j∈J
E
(
µ2 max

i∈{1,...,Nh}
(

∑
α:|α|=2

|∂αhi|∞)1XP
T ∈D̃P, j1 ,.. jd

)
+ c0

∑
j<J
E
(
µCLip,h1XP

T ∈D̃P, j1 ,.. jd

)
.

Moreover, by the definition of µ (see (8.46)), x ∈ D̃P, j1,.. jd for some j < J implies that d(x,∂Di) ≤ µ
for some i: therefore,

∑
j<J P

(
XP

T ∈ D̃P, j1,.. jd
)
≤

∑Nh
i=1P(d(XP

T ,∂Di) ≤ µ). An application of the following
lemma finally leads to∣∣∣E[(h− ĥ)(XP

T )1XP
T ∈D̃P]

∣∣∣ ≤c
(
CLip,h + max

i∈{1,...,Nh}
(

∑
α:|α|=2

|∂αhi|∞)
)
δ2M0(σ,b)

√
T . (8.49)

Lemma 8.4.2.1. Assume (Hσ,b
x0 ) and (H2) , let µ = CV

√
dδM0(σ,b)

√
T. Then ∀i ∈ {1, . . . ,Nh}, we

have:

P
(
d(XP

T ,∂Di) ≤ µ
)
≤c δ.

Proof. We give here a proof in the particular case where Di is a half-space of the form
Di = {x ∈ Rd, x1 > 0}. Using the bound (8.4) for the density of Xp

T , we have

P
(
d(XP

T ,∂Di) ≤ µ
)
≤c

∫
Rd
1−µ<x1≤µ

e
−

|x−mP
T |

2

C∅,d [M0(σ,b)]2T

(M0(σ,b)
√

T )d
dx ≤c

∫ µ

−µ

e
−

|x1−(mP
T )1 |

2

C∅,d [M0(σ,b)]2T

(M0(σ,b)
√

T )
dx1,

the last integral being obviously bounded by 2µ
M0(σ,b)

√
T
≤c δ. For the general case, the idea is to locally

map Di into a half-space by using local charts, so that we are reduced to the first case. We skip these
standard computations and refer for instance to [Gobet 2001]. �

BEstimate of CorI
2,h −CorI

2,ĥ
. Using the definition (8.24), the estimates (8.47) of |1y∈D̃P(h− ĥ)(y)|,

the upper bounds (8.4) on ∂α f P, we easily get:

∣∣∣Gα,Ih −G
α,I
ĥ

∣∣∣ ≤c


CLip,hδ(M0(σ,b)

√
T )1−|α|, cases (H1) and (H2) ,{ ∑

α:|α|=2

|∂αh|∞
}
δ2(M0(σ,b)

√
T )2−|α|, case (H3) .

It readily follows that

∣∣∣CorI
2,h−CorI

2,ĥ

∣∣∣ ≤c


CLip,hδ(M0(σ,b)

√
T )2, cases (H1) and (H2) ,{ ∑

α:|α|=2

|∂αh|∞
}
δ2(M0(σ,b)

√
T )3, case (H3) .

Gathering the above estimate with (8.48)-(8.49) yields the announced result (8.26).

8.5 Numerical experiments

8.5.1 Model and set of parameters

For the numerical tests, we consider the case of d independent one-dimensional elliptic diffusions
(Xi)i∈{1,...,d} driven by their own scalar Brownian motion (d = q). We choose the same dynamics for
all diffusions: for any i ∈ {1, . . . ,d}, set

σ(x) = 1−
x

1 + x + x2 , dXi
t =

(
µ+

1
2
ν2σ(1)(Xi

t)
)
σ(Xi

t)dt + νσ(Xi
t)dW i

t , Xi
0 = x0.
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We easily check that σ takes values in [ 2
3 ,2] and is of class C∞ with bounded derivatives, the first

derivative vanishing at ±1. A key feature of this diffusion model is that (owing to the Lamperti transform,
see [Karatzas 1991, p. 294-295]) Xi

t = g( f (x0) +µt + νW i
t ) where g is the inverse function of

f (x) =

∫ x

0

dy
σ(y)

= x +
1
2

log(1 + x2).

Thus, using numerical inversions of f to evaluate g, we can exactly simulate XT without discretization
scheme to get our reference values. We consider four types of terminal functions from the most regular
case to the less regular one:

h1(x) =
100e

1
d
∑d

i=1 xi

1 + e
1
d
∑d

i=1 xi
(C∞ with bounded derivatives, case (H3) ),

h2(x) =100e
1
d
∑d

i=1 xi (C∞, case (H3) with unbounded derivatives),

h3(x) =
100
d

( d∑
i=1

xi
)
+ (Lipschitz, case (H2) ),

h4(x) =100max(x1, . . . , xd) (Lipschitz, case (H1) ).

Besides, we investigate three sets of parameters:

(P1): x0 = 0, ν = 20%, µ = 0 (standard situation);

(P2): x0 = 0, ν = µ = 20% (large drift);

(P3): x0 = 1, ν = 20%, µ = 0, (small magnitude and variations of σ).

In all the numerical tests, we set T = 1 and the purpose is to compare the following approximations:

1. SAFE Lin (H1) - (H2) - (H3) : the SAFE method using multilinear finite elements (see
Theorem 8.2.2.1) and fixing its parameters as follows (according to Theorems 8.2.2.2-8.2.3.1):
R = 4 and δ = [νσ(x0)]2, δ = νσ(x0) and δ = [νσ(x0)]

1
2 for respectively (H1) - (H2) - (H3) .

2. SAFE Quad 1-2-3-4-5: the SAFE method using multiquadratic finite elements (see Theorem
8.2.4.1) using R = 4 and δ = 0.5, δ = 1, δ = 2, δ = 4 and δ = 8 for respectively 1-2-3-4-5. The
methods SAFE Quad 4-5 using large steps are only investigated in dimension 10.

3. MC: the estimation by Monte-Carlo simulations without discretization scheme. Keep in mind that
the execution times reported in the test tables should be multiplied by about a factor 100 to take
into account the usual time discretization effort. In all the tests we use 107 sample paths. The
value in parentheses is the half-width of the related 95%-symmetric confidence interval.

4. MC Proxy: the estimation by Monte-Carlo simulations of the stochastic approximation formula
(8.10) (see Theorem (8.2.1.2)). In all the tests we use 107 sample paths. We provide additional
tests to show the efficiency of this method (which is always faster than MC) in high dimensions
(greater than 20 and up to 100) for which the SAFE methods seem too slow to be applied.

8.5.2 Results

We study both the accuracy and the speed of the SAFEmethod in comparison to Monte-Carlo simulations
up to dimension 10. For high dimensions (from 20 to 100) we show the accuracy of MC Proxy which is
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Table 8.1: Estimation of the expectations in dimension 2 with MC, MC proxy, SAFE methods (set of
parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.99 4.89 9.70 1m2s

(±2.3E−2) (±9.0E−3) (±4.5E−3) (±9.5E−3)
MC Proxy 49.49 99.01 4.84 9.67 43s

(±1.1E−2) (±2.3E−2) (±5.5E−3) (±1.1E−2)
SAFE Lin (H1) 49.49 99.02 4.85 9.70 < 10−4s
SAFE Lin (H2) 49.49 99.02 4.86 9.71 < 10−4s
SAFE Lin (H3) 49.49 99.05 4.97 9.79 < 10−4s
SAFE Quad 1 49.49 99.02 4.85 9.66 < 10−4s
SAFE Quad 2 49.49 99.01 4.87 9.55 < 10−4s
SAFE Quad 3 49.49 99.01 4.86 9.24 < 10−4s

Table 8.2: Estimation of the expectations in dimension 3 with MC, MC proxy, SAFE methods (set of
parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.62 3.84 15.01 1m40s

(±1.9E−3) (±7.4E−3) (±3.7E−3) (±8.2E−3)
MC Proxy 49.48 98.64 3.78 14.98 1m12s

(±1.3E−2) (±2.7E−2) (±4.6E−3) (±1.1E−2)
SAFE Lin (H1) 49.48 98.66 3.80 15.02 16s
SAFE Lin (H2) 49.48 98.67 3.81 15.04 0.1s
SAFE Lin (H3) 49.49 98.69 3.87 15.17 0.02s
SAFE Quad 1 49.48 98.66 3.79 14.96 0.08s
SAFE Quad 2 49.48 98.66 3.81 14.78 0.02s
SAFE Quad 3 49.49 98.66 3.85 14.18 < 10−4s

always faster by a factor 100 than MC whatever is the dimension. In Tables 8.1-8.2-8.3-8.4-8.5-8.6-8.7-
8.8-8.9-8.10-8.11-8.12-8.13, we report the results in dimensions 2-3-4-5-6-7-8-9-10-20-30-50-100, with
execution times, for all methods and all terminal functions using the set of parameters (P1). In Tables
8.14-8.15 we give the results in dimension 4 using the sets of parameters (P2) and (P3). We finally plot
in Figure 8.1 the relative errors (compared to the MC Proxy estimator) given by SAFE Lin and SAFE
Quad w.r.t. log(N), using R = 5, in dimension 4, for the four terminal functions. All these computations
have been coded in C++ on a Intel(R) Core(TM) i5 CPU@2.40GHz with 4 GB of ram.
BInfluence of the SAFE method. Regarding the Tables 8.1-8.2-8.3-8.4-8.5, first we notice that the

values obtained by MC and MC Proxy are close to each other (error smaller than 1% in absolute value)
which indicates a very good accuracy of the stochastic approximation of Theorems 8.2.1.1 and 8.2.1.2.
The mesh size δ is larger for SAFE Quad than for SAFE Lin; nevertheless we remark that SAFE Lin
and Quad give close results and give good deterministic approximations of the values obtained by MC
Proxy (the value towards which we expect convergence) and MC (the target value). Their relative errors
in comparison to MC Proxy are often smaller than 1% in absolute value.
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Table 8.3: Estimation of the expectations in dimension 4 with MC, MC proxy, SAFE methods (set of
parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.45 3.22 18.30 2m1s

(±1.7E−3) (±6.4E−3) (±3.2E−3) (±7.4E−3)
MC Proxy 49.49 98.50 3.16 18.25 1m23s

(±1.5E−2) (±3.1E−2) (±4.0E−3) (±1.1E−2)
SAFE Lin (H1) 49.48 98.48 3.17 18.28 1h16m
SAFE Lin (H2) 49.48 98.49 3.18 18.31 7s
SAFE Lin (H3) 49.48 98.50 3.23 18.47 0.3s
SAFE Quad 1 49.48 98.48 3.17 18.20 3s
SAFE Quad 2 49.48 98.48 3.17 17.98 0.2s
SAFE Quad 3 49.48 98.49 3.22 16.92 0.02s

Table 8.4: Estimation of the expectations in dimension 5 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.34 2.78 20.63 2m38s

(±1.5E−3) (±5.8E−3) (±2.8E−3) (±6.9E−3)
MC Proxy 49.49 98.38 2.74 20.53 1m51s

(±1.7E−2) (±3.4E−2) (±3.6E−3) (±1.2E−2)
SAFE Lin (H2) 49.47 98.37 2.76 20.60 4m44s
SAFE Lin (H3) 49.48 98.39 2.81 20.79 4s
SAFE Quad 1 49.47 98.37 2.74 20.47 2m2s
SAFE Quad 2 49.48 98.37 2.73 20.21 2s
SAFE Quad 3 49.48 98.38 2.78 18.62 0.5s

Table 8.5: Estimation of the expectations in dimension 6 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.27 2.47 22.42 2m58s

(±1.3E−3) (±5.3E−3) (±2.5E−3) (±6.6E−3)
MC Proxy 49.47 98.29 2.43 22.25 2m2s

(±1.9E−2) (±3.7E−2) (±3.3E−3) (±1.3E−2)
SAFE Lin (H2) 49.47 98.30 2.44 22.33 4h56m
SAFE Lin (H3) 49.48 98.31 2.49 22.54 2m7s
SAFE Quad 1 49.47 98.29 2.43 22.19 1h30m
SAFE Quad 2 49.48 98.30 2.43 21.90 1m30s
SAFE Quad 3 49.48 98.31 2.46 19.77 2s
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Table 8.6: Estimation of the expectations in dimension 7 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.22 2.23 23.85 3m38s

(±1.3E−3) (±4.9E−3) (±2.3E−3) (±6.3E−3)
MC Proxy 49.46 98.22 2.18 23.61 2m36s

(±2.0E−2) (±4.0E−2) (±3.1E−3) (±1.4E−2)
SAFE Lin (H3) 49.47 98.26 2.24 23.93 47m7s
SAFE Quad 2 49.47 98.24 2.19 23.24 34m22s
SAFE Quad 3 49.48 98.25 2.20 20.62 21s

Table 8.7: Estimation of the expectations in dimension 8 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.17 2.03 25.04 3m57s

(±1.2E−3) (±4.6E−3) (±2.1E−3) (±6.1E−3)
MC Proxy 49.46 98.18 1.99 24.74 2m41s

(±2.2E−2) (±4.3E−2) (±2.9E−3) (±1.5E−2)
SAFE Quad 3 49.48 98.21 2.00 21.29 3m39s

Table 8.8: Estimation of the expectations in dimension 9 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.14 1.87 26.05 4m40s

(±2.0E−3) (±4.3E−3) (±2.1E−3) (±5.9E−3)
MC Proxy 49.46 98.15 1.83 25.69 3m6s

(±2.3E−2) (±4.6E−2) (±2.8E−3) (±1.7E−2)
SAFE Quad 3 49.48 98.18 1.83 21.85 36m25s

BInfluence of the number of points in SAFE methods. We observe in Tables 8.1-8.2-8.3-8.4-8.5
that as expected, with fewer points (SAFE Lin (H3) or Quad 3), we globally lose accuracy.

BInfluence of the dimension and the terminal function. Generally speaking, for h1,h2,h3 the
accuracy is very good whatever the dimension is. For h4, results get worse as d increases. We no-
tice in Tables 8.5-8.6-8.7-8.8-8.9-8.10-8.11-8.12-8.13 that in high dimension, the SAFE methods and
MC Proxy give more accurate results for h3 (probably because the average of the r.v. induces smaller
fluctuations) but less accurate for h4 (certainly due to the regularity breakdown of the function max in
high-dimension).
BSpeed results. Regarding the execution times, we notice that in dimension 2, the use of SAFE is

almost instantaneous versus 1 or 2 minutes for accurate Monte-Carlo simulations. For the dimension 3,
all the method take less than 1s except SAFE Lin (H1) which need 16s what remains very quick.
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Table 8.9: Estimation of the expectations in dimension 10 with MC, MC proxy and SAFE methods (set
of parameters (P1)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.12 1.73 26.93 4m50s

(±1.0E−3) (±4.1E−3) (±1.9E−3) (±5.8E−3)
MC Proxy 49.49 98.18 1.70 26.52 3m15s

(±2.4E−2) (±4.8E−2) (±2.7E−3) (±1.8E−2)
SAFE Quad 3 49.47 98.15 1.69 22.35 5h49m
SAFE Quad 4 49.48 98.16 1.82 13.32 1m
SAFE Quad 5 49.48 98.17 1.60 21.05 0.39s

Table 8.10: Estimation of the expectations in dimension 20 with MC, MC proxy and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 98.00 1.01 32.18 9m35s

(±7.4E−4) (±2.9E−3) (±1.2E−3) (±5.0E−3)
MC Proxy 49.50 98.10 0.99 31.28 6m33s

(±3.4E−2) (±6.8E−2) (±1.8E−3) (±2.8E−2)

Table 8.11: Estimation of the expectations in dimension 30 with MC, MC proxy and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 97.97 0.70 34.91 14m38s

(±6.0E−4) (±2.3E−3) (±9.2E−4) (±4.7E−3)
MC Proxy 49.49 98.03 0.69 33.59 9m52s

(±4.2E−2) (±8.3E−2) (±1.7E−3) (±3.6E−2)

Table 8.12: Estimation of the expectations in dimension 50 with MC, MC proxy and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 97.94 0.42 38.07 23m50s

(±4.7E−4) (±1.8E−3) (±6.3E−4) (±4.3E−3)
MC Proxy 49.48 98.00 0.41 36.17 16m12s

(±5.4E−2) (±1.1E−1) (±1.3E−3) (±5.0E−2)

In dimension 4, it takes 1h16 for SAFE Lin (H1) , 7s for SAFE Lin (H2) and less for the other
SAFEmethods. Even if 1h16 seems to be quite important, it is still faster than MC (taking into account the
discretization effort) but slower than MC Proxy. We notice that in dimension 5 SAFE Lin (H2) and
Quad 1 need 4m44s and 2m2s, a performance which is close to MC Proxy. In dimension 6, SAFE Lin
(H2) takes almost 5h which is comparable to MC. SAFE Quad 1 takes 1h30 but SAFE Lin (H3)
(2m7s), Quad 2 and 3 (1m30s ands 2s) are very competitive. In dimension 7, SAFE Lin (H3) ,
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Table 8.13: Estimation of the expectations in dimension 100 with MC, MC proxy and execution time.

method / function h1 h2 h3 h4 exec. time
MC 49.47 97.92 0.17 41.94 47m37s

(±3.3E−4) (±1.3E−3) (±3.3E−4) (±3.9E−3)
MC Proxy 49.46 97.94 0.17 39.12 33m10s

(±7.7E−2) (±1.5E−1) (±9.0E−4) (±7.8E−2)

Table 8.14: Estimation of the expectations in dimension 4 with MC, MC proxy, SAFE methods (set of
parameters (P2)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 54.26 119.15 17.27 34.55 2m1s

(±1.4E−3) (±6.5E−3) (±5.3E−3) (±6.7E−3)
MC Proxy 54.15 118.56 16.86 32.91 1m23s

(±2.4E−4) (±5.5E−2) (±1.3E−2) (±2.4E−2)
SAFE Lin (H1) 54.20 118.70 16.91 33.01 1h16m
SAFE Lin (H2) 54.19 118.68 16.90 33.04 7s
SAFE Lin (H3) 54.18 118.68 16.91 33.21 0.3s
SAFE Quad 1 54.19 118.68 16.90 32.91 3s
SAFE Quad 2 54.19 118.66 16.89 32.63 0.2s
SAFE Quad 3 54.18 118.64 16.88 31.62 0.02s

Table 8.15: Estimation of the expectations in dimension 4 with MC, MC proxy, SAFE methods (set of
parameters (P3)) and execution time.

method / function h1 h2 h3 h4 exec. time
MC 73.08 272.43 100.00 113.76 2m1s

(±8.1E−4) (±1.1E−2) (±4.1E−3) (±5.8E−3)
MC Proxy 73.09 272.44 100.00 113.75 1m23s

(±8.3E−4) (±1.1E−2) (±4.2E−3) (±6.0E−3)
SAFE Lin (H1) 73.07 272.37 99.97 113.71 7h10m
SAFE Lin (H2) 73.07 272.38 99.98 113.73 35s
SAFE Lin (H3) 73.08 272.41 99.99 113.81 0.6s
SAFE Quad 1 73.08 272.41 99.99 113.67 3s
SAFE Quad 2 73.08 272.40 99.99 113.54 0.2s
SAFE Quad 3 73.07 272.39 99.98 113.04 0.02s

Quad 2 and 3 respectively necessitate 47m, 34m and 21s. In higher dimension (≥ 8), only SAFE Quad
3 is competitive with very satisfying results except for the max terminal function. It takes 3m39s in
dimension 8 (close to MC Proxy), about 36m in dimension 9 and almost 6h in dimension 10 (comparable
to MC). Of course, this huge amount of computations can be easily split among parallel processors: this
is a nice feature of the SAFE method. Also, the efficiency may be much improved by using sparse grids
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Figure 8.1: Relative errors (in %) in comparison to MC Proxy of SAFE Lin and Quad w.r.t. log(N) in
dimension 4 (from left to right and from top to bottom: terminal functions h1, h2, h3 and h4).

[Bungartz 2004], this is left to further investigation. With very few points, SAFE Quad 4-5 give in
dimension 10 very good results for h1 and h2, good results for h3 (relative errors of order 5%) and pretty
poor results with h4, for execution times of respectively 1m and less than 1s. This shows that for smooth
functions, we may reach very high accuracies with few points.
When the dimension becomes high (≥ 20) the SAFE methodology is probably less competitive and we
may prefer to use MC Proxy which presents a speed gain by a factor 100 in comparison to MC due to the
lack of discretization. Besides the accuracy is very good for the terminal functions h1, h2 and h3 and
remains satisfying for h4 (relative errors for h4 are or order −3%,−4%,−5% and −7% for respectively
dimensions 20, 30, 50 and 100). The calculations are performed in approximately 6m, 10m, 16m and
33m in respectively dimensions 20, 30, 50 and 100 what is promising.
As a conclusion, for small and medium dimensions (≤ 10) and enough smooth functions the use of
SAFE is very efficient and for high dimensions (> 10), the utilization of MC Proxy is a good alternative
which gives rise to very good approximations and to always faster calculations than MC whatever is the
dimension.

BConvergence results of SAFE. We notice from Figure 8.1 that the convergence is quite fast for
both SAFE Lin and Quad. Moreover the more regular the terminal function, the faster the convergence.
For large regularity of h, only few points are needed to achieve convergence. On the contrary for the
function max, the convergence speeds are similar (taking into account that the computational cost at
fixed N is higher for SAFE Quad).

BInfluence of the drift and the initial point. Table 8.14 (parameters (P2)) shows that the accuracy
is worsened as the drift gets larger, inaccuracies increasing with the irregularity of the terminal function.
This transport term probably increases the deviations of the diffusion and worsens the accuracy of the
proxy. On the contrary, considering an initial point at 1 which induces for σ small variations and
magnitude leads to better results as presented in Table 8.15 (parameters (P3)), notably for the function
h3. All these observations are coherent with our error estimates in Theorems 8.2.1.1-8.2.3.1-8.2.4.1.
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8.6 Appendix

8.6.1 Computation of the correction terms in Theorems 8.2.1.1 and representation as
sensitivities

We follow the routine of [Gobet 2012a], with some adaptations due the multidimensional setting. We
first provide integration by parts formulas useful for the explicit derivation of the correction terms. In
the following, ct : [0,T ]→ R1×q, Ct : [0,T ]→ Rd×q are square integrable and predictable processes,
At : [0,T ]→ Rd×q is a square integrable and deterministic process and ψ, ψ1, . . . ,ψd : Rd→ R are smooth
functions with bounded derivatives.

Lemma 8.6.1.1. One has:

E
[
ψ(

∫ T

0
AtdWt)

∫ T

0
ctdWt

]
=E

[
∇ψ(

∫ T

0
AtdWt)

∫ T

0
Atc∗t dt

]
, (8.50)

E
[(
ψ1(

∫ T

0
AtdWt), . . . ,ψd(

∫ T

0
AtdWt)

)∫ T

0
CtdWt

]
=

d∑
i, j=1

E
[
∂x jψi(

∫ T

0
AtdWt)

∫ T

0
(AtC∗t ) j

i dt
]
. (8.51)

Proof. We begin with (8.50). The process A being deterministic, the Malliavin derivative Ds
∫ T

0 AtdWt

is equal to As1s≤T and ψ(
∫ T

0 AtdWt) ∈D1,∞ with Ds[ψ(
∫ T

0 AtdWt)] = ψ′(
∫ T

0 AtdWt)As1s≤T . Then identify∫ T
0 ctdWt with the Skorohod operator and apply the duality relationship [Nualart 2006, Definition 1.3.1

and Proposition 1.3.11]. To derive (8.51), apply (8.50) with ct = Ci
t for any i ∈ {1, . . . ,d}:
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�

We are now in a position to prove:

Proposition 8.6.1.1. Assume (Hσ,b
x0 ). For any smooth function φ : Rd 7→ R with bounded derivatives, we

have:

E[∇φ(XP
T )ẊT ] =Cor2,φ,

where Cor2,φ is defined in (8.11).

Proof. In the proof, we repeatedly use the identity E(∂αφ(XP
T )) = ∂αφ

P
(0) for any multi-index α. In view

of (8.9) and (8.8), one has to transform E[∇φ(XP
T )ẊT ] = I1 + I2 with
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[
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T )
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t
]
.

We begin with I1. Writing XP
t − x0 =

∫ t
0 σsdWs +

∫ t
0 bsds, we obtain I1 = I1a + I1b with

I1a :=E
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I1b :=E
[
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The contribution I1a is in its final form. Regarding I1b, for any t ∈ [0,T ] apply formula (8.51) with
(ψ1, . . . ,ψd)(x) =∇φ(mP

T + x), (As)s∈[0,T ] = (σs)s∈[0,T ] and (Cs)s∈[0,T ] = (1s≤tb′tσs)s∈[0,T ] to directly obtain:
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We now handle the term I2. Let Dt be the d-dimensional square matrix whose j-th column is equal to
σ′j,t (XP

t − x0): using again (8.51), we derive
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Thanks to the symmetry of the Hessian matrix H(φ), we also have
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From this point, the computations are similar to those for I1; briefly, writing XP
t − x0 =

∫ t
0 σsdWs +

∫ t
0 bsds,

we decompose I2 = 1
2 (I2a + I2b) with
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Then use (8.50) and the symmetry of Σt in order to get
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Gathering all the contributions achieves the proof. �



Chapter 9

Price approximations in multidimensional
CEV models using the SAFE methods

The purpose of this Chapter is to present additional numerical tests for the pricing of multi-asset products
(Basket, Geometrical mean, Worst of and Best of Put options) in multidimensional CEV models using
the SAFE methods. We apply the results of the previous Chapter 8.

Model and set of parameters. We consider d independent one-dimensional diffusions (Xi)i∈{1,...,d}

modelling the log-assets defined by the SDEs:

dXi
t =σ(Xi

t)[dW i
t −

1
2
σ(Xi

t)dt], Xi
0 = xi

0 = log(100), (9.1)

with σ(x) = 0.2e−0.2(x−log(100)). We are interesting by the pricing of multi-asset Put options with payoffs:

(K −
1
d

d∑
i=1

exp(xi))+ (Basket) , (K − exp(
1
d

d∑
i=1

xi))+ (Geo. mean)

(K − min
i∈{1,..,d}

exp(xi))+ (Worst of) , (K − max
i∈{1,..,d}

exp(xi))+ (Best of) ,

where the strike K takes the values 90,95,100,105 and 110. In all the tests, we set T = 1 and the aim of
the numerical experiments is to compare the following approximations:

1. SAFE Lin (H1) - (H2) - (H3) : the SAFE method using multilinear finite elements (see
Theorem 8.2.2.1) and fixing its parameters as follows (according to Theorems 8.2.2.2-8.2.3.1):
R = 4 and δ = (0.2)2, δ = 0.2 and δ = (0.2)

1
2 for respectively (H1) - (H2) - (H3) .

2. SAFE Quad 1-2-3-4-5: the SAFE method using multiquadratic finite elements (see Theorem
8.2.4.1) using R = 4 and δ = 0.5, δ = 1, δ = 2, δ = 4 and δ = 8 for respectively 1-2-3-4-5. The
methods SAFE Quad 4-5 using large steps are only investigated in dimension 10.

3. MC : the estimation by Monte-Carlo simulations using in all the tests a time discretization of 300
steps by year and 107 sample paths. The value in parentheses is the half-width of the related 95%-
symmetric confidence interval. Note that in dimension 1, one can use the closed-form formula
(see [Schroder 1989]) denoted by True Price.

4. MC Proxy: the estimation by Monte-Carlo simulations of the stochastic approximation formula
(8.10) (see Theorem (8.2.1.2)). In all the tests we use 107 sample paths. In dimension 1, the
stochastic approximation formula (8.10) is explicit and we denote its calculus by Proxy Price.
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Table 9.1: Estimation of the Put prices with the closed-form formula, the proxy method, SAFE method
and execution time.

payoff method / strikes 90 95 100 105 110 exec. time
Put True Price 3.66 5.56 7.97 10.87 14.22 < 10−4s

Proxy Price 3.66 5.56 7.97 10.87 14.22 < 10−4s
SAFE Lin (H1) 3.66 5.56 7.96 10.86 14.22 < 10−4s
SAFE Lin (H2) 3.66 5.55 7.93 10.85 14.21 < 10−4s
SAFE Lin (H3) 3.80 5.65 8.11 10.98 14.34 < 10−4s
SAFE Quad 1 3.68 5.56 7.99 10.87 14.25 < 10−4s
SAFE Quad 2 3.55 5.67 8.06 10.87 14.06 < 10−4s
SAFE Quad 3 4.13 5.88 8.21 11.40 14.59 < 10−4s

Results. In Tables 9.1-9.2-9.3-9.4-9.5-9.6-9.7-9.8-9.9-9.10, we report the results in dimensions 1-2-3-
4-5-6-7-8-9-10, with execution times, for all methods, all payoffs and all strikes. For all these computa-
tions, we used C++ on a Intel(R) Core(TM) i5 CPU@2.40GHz with 4 GB of ram.
BInfluence of the method and of the number of points. We notice on Tables 9.2-9.3-9.4-9.5-9.6

that the values obtained by MC and MC Proxy are very close to each other whatever the strike is (1 or 2
bps of error) and that all the SAFE methods provide results very close to MC Proxy. As expected, the
methods with more points give better results. It seems that globally the results are a little bit better than
those obtained for the elliptic diffusion in Chapter 8.

BInfluence of the dimension, the payoff and the strikes. We remark on Table 9.1 that in di-
mension 1, Proxy Price and True Price are extremely close with errors smaller than 1 bp. The best
SAFE methods (SAFE Lin (H1) -SAFE Lin (H2) -SAFE Quad 1) yield to error reduced to few
bps. For the other dimensions, the Basket and the Geo. Mean payoffs present very good accuracy
whatever the strike is. The results for the more irregular payoffs (Worst of and Best of) get worse as
d increases.

BSpeed results. We retrieve the same results that those obtained with the elliptic diffusion in
Chapter 8 except that all the execution times are a little bit more important because there are 5 strikes
to compute per payoff (and for MC, we have to use discretization which greatly increases the execution
time):

• SAFE Lin (H1) is more competitive than MC Proxy up to the dimension 3 and than MC up to
the dimension 4,

• SAFE Lin (H2) -SAFE Quad 1 are close to MC Proxy in dimension 5 and are comparable to
MC in dimension 6,

• SAFE Lin (H3) -SAFE Quad 2 are close to MC Proxy in dimension 6 and are comparable to
MC in dimension 7,

• SAFE Quad 3 is more competitive than MC Proxy up to the dimension 8 and than MC up to the
dimension 10,

• SAFE Quad 4-SAFE Quad 5 are faster than MC Proxy in dimension 10.
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Table 9.2: Estimation of the Put prices in dimension 2 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 1.83 3.39 5.65 8.61 12.18 2h20m

(2.7E−3) (3.7E−3) (4.8E−3) (5.8E−3) (6.7E−3)
MC Proxy 1.82 3.39 5.64 8.60 12.17 2m40s

(2.8E−3) (3.8E−3) (4.9E−3) (5.9E−3) (6.8E−3)
SAFE Lin (H1) 1.82 3.39 5.64 8.60 12.17 < 10−4s
SAFE Lin (H2) 1.83 3.40 5.66 8.61 12.18 < 10−4s
SAFE Lin (H3) 1.87 3.46 5.73 8.67 12.22 < 10−4s
SAFE Quad 1 1.82 3.39 5.65 8.60 12.17 < 10−4s
SAFE Quad 2 1.82 3.41 5.65 8.62 12.16 < 10−4s
SAFE Quad 3 1.85 3.55 5.47 8.67 12.08 < 10−4s

Geo. Mean MC 2.05 3.74 6.14 9.23 12.92
(2.8E−3) (3.9E−3) (5.0E−3) (6.0E−3) (6.8E−3)

MC Proxy 2.04 3.73 6.13 9.22 12.91
(3.0E−3) (4.0E−3) (5.1E−3) (6.1E−3) (7.0E−3)

SAFE Lin (H1) 2.04 3.73 6.13 9.22 12.91
SAFE Lin (H2) 2.05 3.75 6.13 9.23 12.92
SAFE Lin (H3) 2.11 3.83 6.24 9.32 12.99
SAFE Quad 1 2.04 3.73 6.13 9.22 12.91
SAFE Quad 2 2.05 3.76 6.15 9.25 12.91
SAFE Quad 3 2.05 3.82 6.15 9.35 12.90

Worst of MC 6.61 9.69 13.34 17.45 21.91
(5.4E−3) (6.4E−3) (7.3E−3) (7.9E−3) (8.4E−3)

MC Proxy 6.60 9.68 13.33 17.45 21.90
(5.7E−3) (6.7E−3) (7.6E−3) (8.3E−3) (8.8E−3)

SAFE Lin (H1) 6.60 9.68 13.33 17.44 21.90
SAFE Lin (H2) 6.62 9.70 13.37 17.47 21.91
SAFE Lin (H3) 6.82 9.80 13.51 17.56 22.03
SAFE Quad 1 6.63 9.67 13.34 17.42 21.89
SAFE Quad 2 6.41 9.74 13.36 17.40 21.69
SAFE Quad 3 7.04 9.93 13.40 17.74 22.09

Best of MC 0.71 1.43 2.60 4.28 6.54
(1.7E−3) (2.5E−3) (3.5E−3) (4.5E−3) (5.6E−3)

MC Proxy 0.71 1.43 2.59 4.28 6.53
(1.7E−3) (2.5E−3) (3.5E−3) (4.5E−3) (5.6E−3)

SAFE Lin (H1) 0.71 1.43 2.60 4.28 6.54
SAFE Lin (H2) 0.71 1.45 2.63 4.31 6.54
SAFE Lin (H3) 0.78 1.50 2.71 4.40 6.66
SAFE Quad 1 0.73 1.46 2.64 4.32 6.60
SAFE Quad 2 0.70 1.59 2.76 4.33 6.44
SAFE Quad 3 1.22 1.84 3.02 5.05 7.08
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Table 9.3: Estimation of the Put prices in dimension 3 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 1.11 2.46 4.62 7.63 11.36 3h44m

(1.9E−3) (2.9E−3) (4.0E−3) (5.0E−3) (5.8E−3)
MC Proxy 1.11 2.45 4.61 7.62 11.36 3m16s

(2.0E−3) (3.0E−3) (4.1E−3) (5.1E−3) (5.9E−3)
SAFE Lin (H1) 1.11 2.45 4.61 7.62 11.36 46s
SAFE Lin (H2) 1.12 2.46 4.62 7.63 11.36 0.4s
SAFE Lin (H3) 1.16 2.51 4.66 7.66 11.37 0.05s
SAFE Quad 1 1.11 2.45 4.61 7.62 11.36 0.2s
SAFE Quad 2 1.11 2.45 4.62 7.62 11.36 0.03s
SAFE Quad 3 1.17 2.51 4.59 7.57 11.36 < 10−4s

Geo. Mean MC 1.36 2.90 5.28 8.51 12.43
(2.1E−3) (3.1E−3) (4.2E−3) (5.2E−3) (5.9E−3)

MC Proxy 1.35 2.89 5.28 8.50 12.42
(2.2E−3) (3.3E−3) (4.3E−3) (5.3E−3) (6.1E−3)

SAFE Lin (H1) 1.35 2.89 5.27 8.50 12.42
SAFE Lin (H2) 1.36 2.90 5.29 8.51 12.43
SAFE Lin (H3) 1.41 2.97 5.34 8.57 12.46
SAFE Quad 1 1.35 2.89 5.27 8.50 12.41
SAFE Quad 2 1.36 2.87 5.29 8.49 12.43
SAFE Quad 3 1.37 2.97 5.34 8.41 12.45

Worst of MC 9.03 12.82 17.12 21.74 26.56
(5.8E−3) (6.6E−3) (7.2E−3) (7.5E−3) (7.8E−3)

MC Proxy 9.01 12.81 17.11 21.74 26.56
(6.3E−3) (7.1E−3) (7.7E−3) (8.2E−3) (8.4E−3)

SAFE Lin (H1) 9.01 12.81 17.10 21.73 26.55
SAFE Lin (H2) 9.03 12.84 17.14 21.76 26.57
SAFE Lin (H3) 9.26 12.94 17.28 21.85 26.67
SAFE Quad 1 9.02 12.78 17.09 21.69 26.51
SAFE Quad 2 8.74 12.79 17.04 21.62 26.32
SAFE Quad 3 9.14 12.77 16.85 21.62 26.38

Best of MC 0.17 0.44 1.01 1.99 3.51
(7.1E−4) (1.2E−3) (2.0E−3) (2.9E−3) (3.9E−3)

MC Proxy 0.17 0.45 1.01 1.99 3.51
(7.2E−4 (1.2E−3) (2.0E−3) (2.9E−3) (3.9E−3)

SAFE Lin (H1) 0.17 0.45 1.01 1.99 3.51
SAFE Lin (H2) 0.17 0.45 1.03 2.01 3.51
SAFE Lin (H3) 0.20 0.49 1.09 2.10 3.63
SAFE Quad 1 0.18 0.47 1.04 2.04 3.58
SAFE Quad 2 0.18 0.56 1.14 2.02 3.45
SAFE Quad 3 0.42 0.64 1.28 2.58 3.88
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Table 9.4: Estimation of the Put prices in dimension 4 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.74 1.92 4.00 7.06 10.94 4h34m

(1.4E−3) (2.4E−3) (3.5E−3) (4.5E−3) (5.2E−3)
MC Proxy 0.74 1.91 4.00 7.05 10.93 3ms40s

(1.5E−3) (2.5E−3) (3.5E−3) (4.5E−3) (5.3E−3)
SAFE Lin (H1) 0.74 1.91 4.00 7.05 10.93 2h35m
SAFE Lin (H2) 0.75 1.92 4.00 7.06 10.93 17s
SAFE Lin (H3) 0.77 1.96 4.04 7.08 10.93 0.7s
SAFE Quad 1 0.74 1.91 4.00 7.05 10.93 7s
SAFE Quad 2 0.74 1.92 4.00 7.06 10.93 0.5s
SAFE Quad 3 0.74 1.91 3.97 7.02 10.88 0.03s

Geo. Mean MC 0.98 2.39 4.77 8.10 12.19
(1.6E−3) (2.7E−3) (3.7E−3) (4.7E−3) (5.4E−3)

MC Proxy 0.97 2.38 4.76 8.09 12.18
(1.7E−3) (2.8E−3) (3.9E−3) (4.8E−3) (5.5E−3)

SAFE Lin (H1) 0.97 2.38 4.75 8.09 12.18
SAFE Lin (H2) 0.98 2.39 4.76 8.10 12.19
SAFE Lin (H3) 1.02 2.45 4.81 8.13 12.20
SAFE Quad 1 0.97 2.38 4.76 8.09 12.18
SAFE Quad 2 0.98 2.38 4.76 8.10 12.19
SAFE Quad 3 0.99 2.43 4.81 8.13 12.19

Worst of MC 11.02 15.27 19.90 24.74 29.68
(5.9E−3) (6.5E−3) (6.9E−3) (7.1E−3) (7.2E−3)

MC Proxy 11.01 15.26 19.89 24.74 29.68
(6.5E−3) (7.2E−3) (7.7E−3) (8.0E−3) (8.2E−3)

SAFE Lin (H1) 11.00 15.25 19.88 24.72 29.66
SAFE Lin (H2) 11.03 15.28 19.91 24.75 29.68
SAFE Lin (H3) 11.25 15.38 20.05 24.84 29.79
SAFE Quad 1 11.00 15.21 19.85 24.66 29.61
SAFE Quad 2 10.69 15.14 19.73 24.55 29.42
SAFE Quad 3 10.72 14.83 19.26 24.17 29.09

Best of MC 0.04 0.15 0.42 1.00 2.02
(3.2E−4) (6.6E−4) (1.2E−3) (1.9E−3) (2.9E−3)

MC Proxy 0.04 0.15 0.42 1.00 2.02
(3.3E−4) (6.5E−4) (1.2E−3) (1.9E−3) (2.8E−3)

SAFE Lin (H1) 0.04 0.15 0.42 1.00 2.02
SAFE Lin (H2) 0.04 0.16 0.44 1.01 2.02
SAFE Lin (H3) 0.06 0.18 0.47 1.10 2.12
SAFE Quad 1 0.05 0.16 0.45 1.04 2.09
SAFE Quad 2 0.06 0.22 0.51 1.01 2.01
SAFE Quad 3 0.15 0.22 0.60 1.42 2.25
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Table 9.5: Estimation of the Put prices in dimension 5 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.52 1.56 3.58 6.68 10.67 5h43m

(5.7E−3) (2.0E−3) (3.1E−3) (4.1E−3) (4.8E−3)
MC Proxy 0.52 1.56 3.58 6.68 10.67 4m11s

(1.2E−3) (2.1E−3) (3.2E−3) (4.2E−3) (4.9E−3)
SAFE Lin (H2) 0.52 1.56 3.58 6.68 10.66 14m25s
SAFE Lin (H3) 0.54 1.59 3.61 6.69 10.65 15s
SAFE Quad 1 0.52 1.56 3.58 6.68 10.67 5m10s
SAFE Quad 2 0.52 1.56 3.58 6.68 10.67 11s
SAFE Quad 3 0.54 1.55 3.57 6.67 10.66 0.5s

Geo. Mean MC 0.73 2.04 4.41 7.84 12.06
(1.3E−3) (2.3E−3) (3.4E−3) (4.3E−3) (4.9E−3)

MC Proxy 0.73 2.04 4.40 7.83 12.06
(1.4E−3) (2.4E−3) (3.5E−3) (4.5E−3) (5.1E−3)

SAFE Lin (H2) 0.74 2.04 4.41 7.83 12.05
SAFE Lin (H3) 0.76 2.08 4.46 7.87 12.07
SAFE Quad 1 0.73 2.03 4.39 7.82 12.05
SAFE Quad 2 0.73 2.04 4.38 7.83 12.05
SAFE Quad 3 0.72 2.05 4.44 7.84 12.04

Worst of MC 12.70 17.23 22.04 26.97 31.95
(5.9E−3) (6.4E−3) (6.6E−3) (6.7E−3) (6.7E−3)

MC Proxy 12.68 17.21 22.02 26.95 31.93
(6.7E−3) (7.2E−3) (7.6E−3) (7.8E−3) (8.1E−3)

SAFE Lin (H2) 12.69 17.23 22.03 26.96 31.94
SAFE Lin (H3) 12.91 17.33 22.17 27.06 32.05
SAFE Quad 1 12.65 17.14 21.95 26.87 31.85
SAFE Quad 2 12.33 17.01 21.79 26.71 31.65
SAFE Quad 3 11.95 16.37 21.01 25.98 30.94

Best of MC 0.01 0.05 0.19 0.52 1.21
(1.5E−4) (3.6E−4) (7.3E−4) (1.3E−3) (2.1E−3)

MC Proxy 0.01 0.05 0.19 0.52 1.21
(1.5E−4) (3.5E−4) (7.1E−4) (1.3E−3) (2.0E−3)

SAFE Lin (H2) 0.01 0.06 0.20 0.54 1.21
SAFE Lin (H3) 0.02 0.07 0.22 0.61 1.30
SAFE Quad 1 0.01 0.06 0.20 0.56 1.27
SAFE Quad 2 0.02 0.09 0.24 0.52 1.24
SAFE Quad 3 0.05 0.08 0.30 0.83 1.36
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Table 9.6: Estimation of the Put prices in dimension 6 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.38 1.31 3.27 6.41 10.50 6h52m

(9.1E−4) (1.8E−3) (2.9E−3) (3.8E−3) (4.5E−3)
MC Proxy 0.38 1.30 3.27 6.41 10.50 4m36s

(9.5E−4) (1.8E−3) (2.9E−3) (3.9E−3) (4.6E−3)
SAFE Lin (H2) 0.38 1.31 3.27 6.41 10.49 8h2m
SAFE Lin (H3) 0.40 1.33 3.29 6.41 10.47 4m47s
SAFE Quad 1 0.38 1.30 3.26 6.41 10.50 3h2m
SAFE Quad 2 0.38 1.30 3.26 6.41 10.50 3m25s
SAFE Quad 3 0.38 1.32 3.26 6.40 10.47 5s

Geo. Mean MC 0.57 1.78 4.14 7.65 11.98
(1.1E−3) (2.1E−3) (3.2E−3) (4.1E−3) (4.6E−3)

MC Proxy 0.56 1.78 4.13 7.64 11.98
(1.2E−3) (2.2E−3) (3.3E−3) (4.2E−3) (4.8E−3)

SAFE Lin (H2) 0.57 1.79 4.14 7.65 11.97
SAFE Lin (H3) 0.60 1.82 4.19 7.68 11.99
SAFE Quad 1 0.56 1.78 4.13 7.64 11.97
SAFE Quad 2 0.56 1.77 4.13 7.64 11.97
SAFE Quad 3 0.58 1.76 4.16 7.62 11.98

Worst of MC 14.12 18.82 23.72 28.69 33.68
(5.9E−3) (6.2E−3) (6.3E−3) (6.3E−3) (6.4E−3)

MC Proxy 14.09 18.80 23.70 28.67 33.66
(6.7E−3) (7.2E−3) (7.5E−3) (7.8E−3) (8.0E−3)

SAFE Lin (H2) 14.11 18.81 23.71 28.67 33.66
SAFE Lin (H3) 14.31 18.93 23.84 28.79 33.78
SAFE Quad 1 14.05 18.72 23.62 28.58 33.57
SAFE Quad 2 13.73 18.55 23.42 28.39 33.36
SAFE Quad 3 12.94 17.56 22.33 27.32 32.31

Best of MC 3.2E−3 0.02 0.08 0.28 0.75
(7.5E−5) (2.0E−4) (4.6E−4) (9.1E−4) (1.6E−3)

MC Proxy 3.2E−3 0.02 0.08 0.28 0.75
(7.5E−5) (2.0E−4) (4.5E−4) (8.8E−4) (1.5E−3)

SAFE Lin (H2) 3.3E−3 0.02 0.09 0.29 0.75
SAFE Lin (H3) 5.1E−3 0.03 0.10 0.35 0.81
SAFE Quad 1 3.9E−3 0.02 0.09 0.31 0.80
SAFE Quad 2 8.1E−3 0.04 0.12 0.27 0.80
SAFE Quad 3 1.8E−2 0.03 0.17 0.50 0.84
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Table 9.7: Estimation of the Put prices in dimension 7 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.28 1.11 3.03 6.21 10.38 7h43m

(7.5E−4) (1.6E−3) (2.6E−3) (3.6E−3) (4.3E−3)
MC Proxy 0.28 1.11 3.03 6.21 10.38 5m9s

(7.9E−4) (1.6E−3) (2.7E−3) (3.7E−3) (4.4E−3)
SAFE Lin (H3) 0.30 1.14 3.04 6.20 10.34 1h36m
SAFE Quad 2 0.28 1.11 3.02 6.20 10.38 1h2m
SAFE Quad 3 0.29 1.12 3.02 6.18 10.36 46s

Geo. Mean MC 0.45 1.58 3.93 7.52 11.94
(9.6E−4) (1.9E−3) (3.0E−3) (3.8E−3) (4.3E−3)

MC Proxy 0.45 1.58 3.93 7.51 11.93
(1.0E−3) (2.0E−3) (3.1E−3) (4.0E−3) (4.6E−3)

SAFE Lin (H3) 0.47 1.62 3.97 7.54 11.94
SAFE Quad 2 0.44 1.58 3.93 7.51 11.93
SAFE Quad 3 0.43 1.57 3.94 7.52 11.92

Worst of MC 15.32 20.14 25.09 30.07 35.07
(5.8E−3) (6.0E−3) (6.0E−3) (6.1E−3) (6.1E−3)

MC Proxy 15.30 20.11 25.06 30.05 35.05
(6.8E−3) (7.2E−3) (7.5E−3) (7.8E−3) (8.1E−3)

SAFE Lin (H3) 15.51 20.25 25.20 30.18 35.18
SAFE Quad 2 14.94 19.83 24.76 29.74 34.73
SAFE Quad 3 13.77 18.53 23.38 28.37 33.37

Best of MC 8.9E−4 0.01 0.04 0.15 0.47
(3.7E−5) (1.2E−4) (3.0E−4) (6.4E−4) (1.2E−3)

MC Proxy 9.3E−4 0.01 0.04 0.16 0.47
(3.8E−5) (1.1E−4) (2.9E−4) (6.2E−4) (1.2E−3)

SAFE Lin (H3) 1.6E−3 0.01 0.05 0.21 0.52
SAFE Quad 2 3.3E−3 0.02 0.06 0.14 0.54
SAFE Quad 3 6.3E−3 0.01 0.10 0.31 0.53
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Table 9.8: Estimation of the Put prices in dimension 8 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.21 0.96 2.83 6.05 10.30 9h11m

(6.2E−4) (1.4E−3) (2.5E−3) (3.4E−3) (4.0E−3)
MC Proxy 0.21 0.96 2.83 6.05 10.29 5m36s

(6.6E−4) (1.5E−3) (2.5E−3) (3.5E−3) (4.2E−3)
SAFE Quad 3 0.22 0.96 2.82 6.03 10.28 6m36

Geo. Mean MC 0.36 1.42 3.76 7.41 11.91
(8.3E−4) (1.7E−3) (2.8E−3) (3.7E−3) (4.1E−3)

MC Proxy 0.36 1.42 3.76 7.41 11.90
(8.9E−4) (1.8E−3) (2.9E−3) (3.8E−3) (4.4E−3)

SAFE Quad 3 0.36 1.43 3.76 7.41 11.90
Worst of MC 16.37 21.26 26.23 31.22 36.22

(5.7E−3) (5.8E−3) (5.8E−3) (5.8E−3) (5.8E−3)
MC Proxy 16.35 21.23 26.20 31.20 36.20

(6.8E−3) (7.2E−3) (7.5E−3) (7.8E−3) (8.1E−3)
SAFE Quad 3 14.50 19.34 24.24 29.24 34.24

Best of MC 2.5E−4 2.7E−3) 0.02 0.09 0.30
(1.9E−5) (6.7E−5) (1.9E−4) (4.6E−4) (9.2E−4)

MC Proxy 2.8E−4 2.8E−3 0.02 0.09 0.30
(1.9E−5) (6.6E−5) (1.9E−4) (4.4E−4) (8.9E−4)

SAFE Quad 3 2.2E−3 3.4E−3 0.06 0.19 0.33
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Table 9.9: Estimation of the Put prices in dimension 9 with MC, MC proxy, SAFE methods and execu-
tion time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.16 0.84 2.67 5.92 10.24 9h47m

(5.3E−4) (1.3E−3) (2.3E−3) (3.3E−3) (3.9E−3)
MC Proxy 0.16 0.84 2.67 5.92 10.23 6m10s

(5.6E−4) (1.3E−3) (2.4E−3) (3.4E−3) (4.0E−3)
SAFE Quad 3 0.17 0.84 2.66 5.91 10.22 1h5m

Geo. Mean MC 0.29 1.29 3.63 7.33 11.90
(7.2E−4) (1.6E−3) (2.7E−3) (3.5E−3) (3.9E−3)

MC Proxy 0.29 1.29 3.62 7.33 11.89
(7.8E−4) (1.7E−3) (2.8E−3) (3.7E−3) (4.2E−3)

SAFE Quad 3 0.29 1.30 3.61 7.32 11.88
Worst of MC 17.29 22.22 27.20 32.20 37.20

(5.5E−3) (5.6E−3) (5.7E−3) (5.7E−3) (5.7E−3)
MC Proxy 17.27 22.19 27.18 32.18 37.18

(6.8E−3) (7.2E−3) (7.5E−3) (7.9E−3) (8.2E−3)
SAFE Quad 3 15.14 20.04 24.98 29.98 34.97

Best of MC 7.2E−5 1.1E−3 0.01 0.05 0.19
(8.8E−6) (4.0E−5) (1.3E−4) (3.3E−4) (7.1E−4)

MC Proxy 7.6E−4 1.1E−3 0.01 0.05 0.19
(9.5E−5) (3.8E−5) (1.2E−4) (3.1E−4) (6.8E−4)

SAFE Quad 3 7.8E−3 1.2E−3 0.04 0.12 0.21
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Table 9.10: Estimation of the Put prices in dimension 10 with MC, MC proxy, SAFE methods and
execution time.

payoff method / strikes 90 95 100 105 110 exec. time
Basket MC 0.13 0.74 2.53 5.82 10.19 10h1m

(4.5E−4) (1.2E−3) (2.2E−3) (3.2E−3) (3.7E−3)
MC Proxy 0.13 0.74 2.53 5.82 10.19 6m28s

(4.8E−4) (1.2E−3) (2.3E−3) (3.3E−3) (3.9E−3)
SAFE Quad 3 0.13 0.74 2.53 5.80 10.17 10h24m
SAFE Quad 4 0.16 0.81 2.46 5.48 9.76 1m45s
SAFE Quad 5 0.10 0.66 2.73 6.41 10.35 0.7s

Geo. Mean MC 0.24 1.18 3.51 7.27 11.89
(6.4E−4) (1.5E−3) (2.6E−3) (3.4E−3) (3.7E−3)

MC Proxy 0.24 1.18 3.51 7.27 11.88
(6.9E−4) (1.6E−3) (2.7E−3) (3.5E−3) (4.0E−3)

SAFE Quad 3 0.24 1.19 3.49 7.27 11.88
SAFE Quad 4 0.21 1.26 3.63 7.28 11.81
SAFE Quad 5 0.21 1.19 3.39 7.33 11.96

Worst of MC 18.11 23.06 28.05 33.05 38.05
(5.4E−3) (5.5E−3) (5.5E−3) (5.5E−3) (5.5E−3)

MC Proxy 18.08 23.03 28.02 33.02 38.02
(6.8E−3) (7.2E−3) (7.6E−3) (8.0E−3) (8.3E−3)

SAFE Quad 3 15.14 20.04 24.98 29.97 34.97
SAFE Quad 4 14.25 18.80 23.53 28.53 33.53
SAFE Quad 5 11.55 12.81 15.55 20.55 25.55

Best of MC 3.1E−5 4.5E−4 4.4E−3 0.03 0.13
(6.1E−06) (2.6E−5) (8.7E−5) (2.4E−4) (5.6E−4)

MC Proxy 2.2E−5 4.0E−4 4.2E−3 0.03 0.13
(4.5E−06) (2.2E−5) (7.8E−5) (2.2E−4) (5.3E−4)

SAFE Quad 3 0.0 0.0 0.0 0.00 0.00
SAFE Quad 4 0.0 0.0 0.0 0.00 0.00
SAFE Quad 5 0.0 0.0 0.0 0.00 0.00
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