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Synopsis

In this thesis we study some problems arising within the context of continuum mechanics in the

description of multi-phase physical situations. This analysis is carried out by means of tools from

the theory of dynamical systems More precisely, we consider the following three problems: (I)

the flow of binary mixtures, (II) p-n junctions in semiconductors under strain and (III) fatigue

in polycrystalline metals.

On the flow of binary mixtures. The flow of binary mixtures can be described by two

variables: the velocity of the medium u and an order parameter ψ. This last represents the

difference in the relative concentrations of the two constituents of the mixture. The basic model

we consider is the well known model H
$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ε∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∇ · pM∇µq

µ “ ε´1f 1pψq ´ ε∆ψ.

Here fpψq is a double-well potential describing the natural separation tendency of the two com-

ponents of the fluid. This system is an example of a diffuse interface model for binary flows,

a class of models, which has been proven to be effective for numerical simulations and applica-

tions. In Chapter 1, we account for the models considered and we briefly review the theory of

infinite-dimensional dynamical systems used in the rest of the first part. In particular, we prove

the following

• For non-newtonian fluids (shear-thickening fluids of Ladyzhenskaya type) on a bounded do-
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main of R3 and for a singular (i.e. logarithmic) double-well potential, we prove the existence

of solutions and the existence of a trajectory attractor (Chapter 2).

• For the original model H on a bounded domain of R2 with a polynomial potential, we show

the existence of a pullback exponential attractor. In particular, we explicitly account for

arbitrarily fast growth of the potential at infinity. Although we are able to deduce results on

the asymptotic behaviour of the system without limitations on the growth of the potential,

the estimates we deduce are not strong enough to pass to the limit for regular potentials

converging towards singular ones (Chapter 3).

• We then enquiry the effects of a reaction term on the behaviour of the binary fluid. This

can be seen as a model describing chemically reacting fluids, whose average composition

might vary over time. In particular, we prove the existence and the uniqueness of solutions

on bounded domains of R2 for polynomial potentials. Moreover, we deduce the existence of

a robust (with respect to the rate of the chemical reaction) family of exponential attractors

(Chapter 4).

• Finally we consider a non-local version of the Cahn-Hilliard equation with a singular inter-

action kernel. This is a preliminary step in the study of a non-local model H with singular

kernels. In the case of bounded domains in R
3 with a singular potential, we prove the

existence of variational solutions satisfying natural boundary conditions and study their

regularity. Although the natural boundary conditions for the phase variable seems difficult

to characterise in this setting, we are able to show that for regular solutions they reduce to

the usual homogeneous Neumann (no flux) boundary conditions (Chapter 5).

Several interesting but challenging issues remain open, for instance:

• the study of the regularity properties and in particular the regularity up to the boundary

for the non-local Cahn-Hilliard equation considered in Chapter 5;

• the investigation of the well-posedness properties and the asymptotic behaviour of the non-

local model-H with singular kernel;

• a further study of the long-term properties of the Navier-Stokes-Cahn-Hilliard-Oono sys-

tem already treated in Chapter 4. In particular, the problem of the convergence towards

stationary states for this system seems particularly worth investigation.

On the effects of strain on semiconductor-based p-n junctions. Semiconductor devices

essentially operate using the differences in the physical properties of two sharply separated regions,
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one rich in electrons and one rich in holes (or, equivalently, lacking of electrons), which can ideally

be considered as two phases of a continuum. However, with respect to the previous part, in this

case the position of the interfaces is in general a priori given by the knowledge of the doping

profile of the semiconductor.

Here we are interested in studying how deformations affect the properties of semiconductors.

Our line of reasoning is based on the following approach:

• we start by reviewing fundamental semiconductor physics both for intrinsic and for doped

silicon (Chapter 6).

• we then derive the drift-diffusion model and investigate which of its parameters depend on

strain. Moreover, we give explicit models for the effects of strain on the band-gap width,

on the mobilities and on the concentration of minority carriers in doped semiconductors

(Chapter 7).

• we derive the Shockley relation in dependence of strain. In particular, we discuss the

relevance of the reverse coupling of electronic properties on mechanical deformations through

Maxwell stresses and conclude that it can be neglected at first approximation (Chapter 8).

The analysis has shown that several questions have still to be answered as, for example:

• the construction of a complete thermodynamically consistent continuum model for the cou-

pled electro-mechanical effects in semiconductors;

• a rigourous treatment through perturbation analysis of the strain at the p-n junction;

• applications to other device architectures such as transistors and sensors.

On the lifetime estimate in high cycle fatigue regime for alloys. In the last part, we

apply the theory of finite-dimensional dynamical systems to the field of lifetime predictions of

polycrystalline metals in the high cycle fatigue regime. The model we consider is based on a

homogenisation procedure which will relate local strains and stresses in the elastic and plastified

grains at the microscopic level with the global strain and stress at the scale of the structure.

The fatigue predictions are carried out using techniques from dynamical systems to track the

progress of the accumulated plastic deformation in the grains. The proposed model for fatigue

lifetime predictions offers greater flexibility in accommodating experimental data than those al-

ready presented in the literature. At the same time, it remains amenable to explicit analytical

treatment.

Some possible developments of these results are:
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• the investigation of the effects of stochastic terms and, in particular, the treatment of the

resulting models within the framework of stochastic dynamical systems;

• the study of other loading regimes, such as quasiperiodic loadings or nondeterministic load-

ings;

• the extension to shape memory alloys accounting for the phase change occurring in these

materials.

Publications

Most of the results of this thesis are contained int he following research articles:

• S. Bosia, Analysis of a Cahn-Hilliard-Ladyzhenskaya system with singular potential , J.

Math. Anal. Appl. 397 (2013) 307–321, Chapter 2;

• S. Bosia, M. Grasselli, A. Miranville, On the longtime behavior of a 2D hydrodynamic model

for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci. (2013), Chapter 4;

• S. Bosia, A. Constantinescu, Fast time-scale average for a mesoscopic high cycle fatigue

criterion, Int. J. Fatigue 45 (2012), 39–47, Chapter 9;

• S. Bosia, S. Gatti, Pullback exponential attractors for a Cahn-Hilliard-Navier-Stokes system

in 2D , arXiv:1304.0933 (2013), submitted, Chapter 3

• H. Abels, S. Bosia, M. Grasselli, Cahn-Hilliard Equation with Nonlocal Singular Free Ener-

gies , arXiv:1311.3642 (2013), Chapter 5.

• S. Bosia, A. Constantinescu, M. Jabbour, N. Triantafyllidis, On the modelling of strained

semiconductors, in preparation, Chapters 7–8.

http://dx.doi.org/10.1016/j.jmaa.2012.07.053
http://dx.doi.org/10.1002/mma.2832
http://dx.doi.org/10.1016/j.ijfatigue.2012.06.015
http://arxiv.org/abs/1304.0933
http://arxiv.org/abs/1311.3642


Sinthèse

Cette thèse est dédiée à l’étude de certains problèmes de la mécanique des milieux continu qui

apparaissent lors de la modélisation de systèmes multi-phase. Cette analyse est conduite grâce aux

instruments de la théorie des systèmes dynamiques. Plus précisément, les trois problèmes suivant

sont considérés : (I) l’écoulement de fluides binaires (II) les jonctions p-n à semi-conducteur

soumises à déformations et (III) la fatigue dans les métaux polycristallins.

Sur l’écoulement de fluides binaires. L’écoulement d’un fluide binaire peut être décrit

par deux variables : la vitesse du milieux u et un paramètre d’ordre ψ. Ce dernier représente

la différence entre les concentrations relatives des deux composants du mélange. Le système

fondamental que nous considérons est connu sous le nom de modèle H et peut être ecrit comme

il suit : $
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ε∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∇ · pM∇µq

µ “ ε´1f 1pψq ´ ε∆ψ.

Ici fpψq est un potentiel à double puits qui décrit la tendance naturelle à la séparation des deux

composants du fluide. Ce système est un exemple d’un modèle à interface diffuse pour fluides

binaires, une famille de modèles qui s’est démontrée efficace pour les simulations numériques et

pour les applications. Le premier chapitre de cette thèse présente les modèles considérés tout en

fournissant une vue générale sur la théorie des systèmes dynamiques infini-dimensionnels utilisée

au cours du reste de la première partie. Plus précisément, on prouve les résultats suivants :
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• pour des fluides non-newtoniens (fluides rhéoépaississant du type de Ladyzhenskaya) dans

un domaine borné de R3 et dans le cas d’un potentiel singulier (c’est-à-dire logarithmique),

on prouve l’existence de solutions et l’existence d’un attracteur de trajectoires (Chapitre 2) ;

• dans le cas du modèle H originaire donné sur un domaine borné de R2 avec un potentiel

polynomial, on prouve l’existence d’un attracteur pullback exponentiel. Plus précisément,

on tien compte d’une croissance arbitrairement rapide du potentiel à l’infini. Tout en pou-

vant déduire ces résultats de dynamique asymptotique sans limitations sur la croissance du

potentiel, les estimations que nous dérivons ne sont pas suffisamment fortes pour passer à la

limite pour suites de potentiels singuliers convergents à un potentiel singulier (Chapitre 3) ;

• successivement, on étudie les effets d’un terme de réaction sur le comportement du fluide

binaire. Ceci représente un modèle qui décrit des fluides réagissant chimiquement, dont la

composition moyenne peut changer dans le temps. Plus précisément, en des domaines bornés

de R2 et pour des potentiels polynomiaux, on prouve l’existence et l’unicité de solutions.

On déduit aussi l’existence d’une famille robuste (par rapport à la vitesse de la réaction

chimique) de attracteurs exponentiels (Chapitre 4) ;

• enfin, on considère une version non-locale de l’équation de Cahn-Hilliard qui présente un

noyau d’interaction singulier. Ces résultats représentent un passage préalable pour l’étude

d’un model H non-local avec noyaux singuliers. Dans le cas d’un domaine borné en R3

avec un potentiel singulier, on prouve l’existence de solutions variationelles satisfaisant les

conditions aux limites naturelles et on étudie leurs régularité. Même si ces conditions aux

limites naturelles pour le paramètre d’ordre semblent difficiles à caractériser, on démontre

que, pour des solutions régulières, elles se réduisent aux usuelles conditions de Neumann

homogènes (Chapitre 5).

Plusieurs problèmes intéressants et difficiles restent sans solution. Parmi ceci on rappelle :

• l’étude des propriétés de régularité et en particulier la régularité jusqu’au bord pour l’équa-

tion de Cahn-Hilliard non-locale considérée au Chapitre 5 ;

• la réponse à la question si le modèle H non-locale est bien posé ou pas et l’examen de son

comportement asymptotique ;

• une investigation ultérieure des propriétés asymptotiques du système de Navier-StokesCahn-

Hilliard-Oono déjà étudié aux Chapitre 4. Plus précisément, le problème de la convergence

des solutions aux états stationnaires parait particulièrement intéressant.



Sinthèse-3

Sur les effets des déformations sur les jonctions p-n à semi-conducteur. Les dispositifs

électroniques travaillent on exploitant les différences entre les propriétés physiques de deux régions

nettement séparées, l’une riche en électrons et l’autre riche en trous (ou bien, pauvre en électrons),

qui idéalement peuvent être considérées comme deux phase d’un même milieu continu Tout-de-

même, par rapport à la partie précédente de cette thèse, dans ce cas la position des interfaces est

généralement donnée grâce à la connaissance du profil de dopage du semi-conducteur.

L’objet principal de notre étude est la compréhension de comment les déformations affectent

les propriétés des semi-conducteurs. Notre approche se base sur les phases qui suivent :

• on commence par présenter les éléments de physique des semi-conducteurs soit pour le

silicium intrinsèque, soit dopé (Chapitre 6) ;

• par la suite, on dérive le modèle de diffusion-dérive et on étudie quels de ses paramètres dé-

pendent des déformations. On donne aussi des lois explicites pour les effets des déformations

sur l’intervalle de bande, sur les mobilités des porteurs de charge et sur les concentrations

des porteurs de minorité dans les semi-conducteurs dopés (Chapitre 7) ;

• on obtient la loi de Shockley en dépendance des déformations. En particulier, on discute

l’importance des effets du couplage inverse entre les propriétés électroniques et les déforma-

tions mécaniques (contraintes de Maxwell) et on déduit que ceux-ci peuvent être négligés

en première approximation (Chapitre 8).

Nos analyses laissent ouverte des nombreuses questions comme, par exemple :

• la construction d’un modèle continu complet, thermodynamiquement consistent pour les

effets électromécaniques couplés dans les semi-conducteurs ;

• un traitement rigoureux des déformations à la jonction p-n par la théorie des perturbations ;

• les applications à autres dispositifs comme transistors et senseurs.

Sur l’estimation de la durée de vie des alliages en fatigue à grand nombre de cycles.

Dans la dernière partie, on utilise la théorie des systèmes dynamiques fini-dimensionnels dans le

contexte des prédictions de la durée de vie des métaux polycristallins suomis à un grand nombre de

cycles de chargement. Le model que l’on considère se base sur une procédure de homogénéisation

qui lie les contraintes et les déformations locales dans les grains élastiques et plastiques au niveau

microscopique avec les déformations et les contraintes à l’échelle de la structure. Les prédictions

de fatigue sont menées en utilisant des techniques de la théorie des systèmes dynamique qui

permettent de tracer l’évolution des déformations plastiques cumulées dans les grains. Le modèle
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de fatigue proposé offre, en comparaison avec les résultats déjà connus, une plus grande flexibilité

pour accommoder les données expérimentales. Au même temps, il reste accessible à une analyse

explicite.

Des possibles développements de ces résultats sont :

• l’étude des effets de termes stochastiques et, en particulier, le traitement des modèles résul-

tant dans le contexte de la théorie des systèmes dynamiques stochastiques ;

• l’examen d’autre genre d’histoires chargement, comme les chargements quasipériodiques ou

les chargements non-déterministe ;

• l’extension de ces techniques aux alliages à mémoire de forme tenant compte des transition

de phase qui se vérifient dans ces matériaux.

Publications

La plus grande partie des résultats de cette thèse sont contenus dans les articles suivants :

• S. Bosia, Analysis of a Cahn-Hilliard-Ladyzhenskaya system with singular potential , J.

Math. Anal. Appl. 397 (2013) 307–321, Chapitre 2 ;

• S. Bosia, M. Grasselli, A. Miranville, On the longtime behavior of a 2D hydrodynamic model

for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci. (2013), Chapitre 4 ;

• S. Bosia, A. Constantinescu, Fast time-scale average for a mesoscopic high cycle fatigue

criterion, Int. J. Fatigue 45 (2012), 39–47, Chapitre 9 ;

• S. Bosia, S. Gatti, Pullback exponential attractors for a Cahn-Hilliard-Navier-Stokes system

in 2D , arXiv :1304.0933 (2013), soumis à comité de lecture, Chapitre 3

• H. Abels, S. Bosia, M. Grasselli, Cahn-Hilliard Equation with Nonlocal Singular Free Ener-

gies , arXiv :1311.3642 (2013), soumis à comité de lecture, Chapitre 5.

• S. Bosia, A. Constantinescu, M. Jabbour, N. Triantafyllidis, On the modelling of strained

semiconductors, en préparation, Chapitres 7–8.

http://dx.doi.org/10.1016/j.jmaa.2012.07.053
http://dx.doi.org/10.1002/mma.2832
http://dx.doi.org/10.1016/j.ijfatigue.2012.06.015
http://arxiv.org/abs/1304.0933
http://arxiv.org/abs/1311.3642


Sintesi

Lo scopo di questa tesi è lo studio di alcuni problemi che traggono origine dalla descrizione di

processi fisici multifase nel contesto della dinamica dei continui e che possono essere affrontati

con strumenti della teoria dei sistemi dinamici. In particolare verranno considerate le seguenti tre

situazioni: (i) la dinamica di fluidi binari (ii) le proprietà dei semiconduttori inorganici sottoposti

a deformazioni e (iii) la fatica in metalli policristallini.

Della dinamica dei fluidi binari. Lo scorrimento di un fluido binario può essere descritto

tramite due variabili: la velocità del mezzo, di seguito indicata con il simbolo u, e un parametro

d’ordine per cui verrà utilizzato il simbolo ψ e che rappresenta la differenza tra le concentrazioni

relative dei due componenti della miscela. Il modello fondamentale considerato in questo lavoro

è il modello H che può essere scritto come segue

$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ε∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∇ · pM∇µq

µ “ ε´1f 1pψq ´ ε∆ψ.

Qui fpψq è un potenziale a doppio pozzo che descrive la naturale tendenza delle due componenti

del fluido a scindersi. Osserviamo che questo sistema è un esempio di modello a interfaccia diffusa

per la descrizione del flusso di fluidi binari. In particolare, i modelli a interfaccia diffusa si sono

rivelati particolarmente efficienti sia dal punto di vista numerico sia per le loro applicazioni.

Nel Capitolo 1 esamineremo in dettaglio questo modello per poi passare in rassegna la teoria dei
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sistemi dinamici infinito dimensionali usata in tutta la prima parte di questo lavoro. In particolare

dimostreremo i seguenti risultati:

• nel caso di fluidi non-newtoniani (fluidi dilatanti o fluidi ispessenti al taglio del tipo di

Ladyzhenskaya) su domini limitati di R3 e per un potenziale a doppio pozzo singolare (in

particolare di tipo logaritmico) dimostreremo che esistono soluzioni deboli e che il sistema

dinamico associato al modello considerato ammette un attrattore di traiettorie (Capitolo 2);

• considereremo poi il modello H originario su un dominio limitato di R2 con un potenziale

a doppio pozzo polinomiale. In questo caso dimostreremo l’esistenza di un attrattore pull-

back esponenziale tenendo conto in modo esplicito della crescita polinomiale all’infinito del

potenziale che potrà essere arbitrariamente rapida. Benché i risultati relativi alla caratte-

rizzazione del comportamento asintotico siano qualitativamente indipendenti dalla crescita

del potenziale, le stime dedotte non sono sufficientemente forti da permettere il passaggio

al limite per potenziali regolari che approssimino un potenziale singolare (Capitolo 3);

• indagheremo poi gli effetti di un termine di reazione sul comportamento del fluido binario.

Questo termine può, ad esempio, modellare fluidi che reagiscono chimicamente in cui una

delle componenti può trasformarsi nell’altra e viceversa e la cui composizione media, quindi,

può variare nel tempo. In particolare, dimostreremo l’esistenza e l’unicità delle soluzioni nel

caso di domini limitati di R2 e per potenziali polinomiali. Inoltre, proveremo l’esistenza di

una famiglia di attrattori esponenziali robusta rispetto alla costante cinetica della reazione

chimica (Capitolo 4);

• infine, studieremo anche una versione non-locale della equazione di Cahn-Hilliard con un

nucleo di interazione singolare. Questa indagine rappresenta un passaggio preliminare per lo

studio di un modello H non-locale con nuclei singolari. Più precisamente, nel caso di domini

limitati di R3 con un potenziale a doppio pozzo singolare (i.e. logaritmico), dimostreremo

l’esistenza di una soluzione variazionale che soddisfa condizioni al contorno di tipo naturale e

ne studieremo la regolarità. Benché in questo contesto le condizioni al contorno naturali per

il parametro di fase sembrino difficili da caratterizzare, mostreremo che, nel caso di soluzioni

regolari, queste si riducono all’usuale condizione di Neumann omogenea (Capitolo 5).

I risultati di questa parte lasciano aperti diversi ulteriori problemi interessanti e al contempo

difficili. Tra questi ricordiamo:

• lo studio delle proprietà di regolarità (e in particolare della regolarità fino al contorno) per

l’equazione di Cahn-Hilliard non-locale analizzata nel Capitolo 5;
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• l’indagine della buona-positura e del comportamento asintotico del modello H non-locale

con potenziali singolari;

• una analisi ulteriore delle proprietà asintotiche del sistema di Navier-Stokes-Cahn-Hilliard-

Oono già affrontato nel Capitolo 4, con particolare riferimento all’interessante problema

della convergenza delle soluzioni a singoli stati stazionari.

Dell’effetto delle deformazioni sulle giunzioni p-n. I dispositivi elettronici basati su ma-

teriali semiconduttori operano sfruttando le differenze nelle proprietà fisiche di due domini net-

tamente separati: i primi sono ricchi in elettroni; i secondi abbondano in lacune (o, equivalente-

mente, mancano di elettroni). Benché queste diverse zone possano essere considerate idealmente

come due diverse fasi di uno stesso mezzo continuo, a differenza di quanto visto nella prima parte

della presente tesi, in questo caso la posizione delle interfacce è generalmente nota a priori grazie

alla conoscenza del profilo di drogaggio del semiconduttore.

La motivazione principale del nostro lavoro è lo studio degli effetti delle deformazioni sulle

proprietà fisiche dei semiconduttori. In particolare, l’approccio da noi proposto all’analisi del

problema è il seguente:

• inizieremo con una breve revisione dei fondamenti della fisica dei semiconduttori dedicando

particolare attenzione al caso del silicio intrinseco e del silicio drogato (Capitolo 6);

• ripercorreremo poi la deduzione del modello di diffusione e trasporto evidenziando in parti-

colare quali dei suoi parametri dipendano dalle deformazioni. Introdurremo, inoltre, modelli

quantitativi per descrivere gli effetti delle deformazioni sulla banda proibita (band gap), sulle

mobilità e sulla concentrazione dei portatori di carica minoritari nei semiconduttori drogati

(Capitolo 7);

• infine, derivereremo la relazione di Shockley per giunzioni p-n evidenziandone la dipendenza

dalle deformazioni. In particolare, discuteremo l’importanza dell’accoppiamento inverso

relativo agli effetti delle proprietà elettroniche su quelle meccaniche tramite la valutazione

degli sforzi di Maxwell. I nostri risultati permetteranno di concludere che, almeno in prima

approssimazione, questo accoppiamento inverso può essere trascurato (Capitolo 8).

Le nostre analisi lasciano senza risposta numerosi quesiti interessanti, tra cui riportiamo, a

titolo di esempio, i seguenti:

• la costruzione di un modello continuo termodinamicamente consistente per i fenomeni

elettro-meccanici nei semiconduttori;
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• una trattazione rigorosa tramite la teoria degli sviluppi perturbativi dei campi di deforma-

zione in prossimità delle giunzioni p-n;

• l’applicazione dei risultati fin qui ottenuti ad altre architetture circuitali come transistor e

sensori più complessi.

Della stima della durata di vita per leghe sottoposte ad un alto numero di cicli di

carico. Nell’ultima parte del presente lavoro, applicheremo la teoria dei sistemi dinamici finito-

dimensionali al campo della predizione di vita dei metalli policristallini sottoposti al regime di

fatica materiale ad alto numero di cicli. Il modello da noi considerato è basato su una procedura di

omogeneizzazione che lega tra loro gli sforzi e le deformazioni locali nei grani elastici o deformati

plasticamente a livello microscopico con le analoghe quantità globali definite macroscopicamente

alla scala della struttura studiata. Le stime della durata di vita del materiale possono essere

ottenute tramite tecniche tratte dalla teoria dei sistemi dinamici che permettono di tenere conto

dell’avanzamento della deformazione plastica cumulata nei grani. Il modello proposto per la

predizione della durata di vita per materiali sottoposti ad un grande numero di cicli di carico

offre una maggiore adattabilità nei confronti dei dati sperimentali rispetto a quelli presenti in

letteratura rimanendo tuttavia trattabile in modo esplicito dal punto di vista analitico.

Alcuni possibili sviluppi dei risultati ottenuti in questa parte della tesi sono i seguenti:

• lo studio degli effetti di termini stocastici e in particolare il trattamento dei modelli risultanti

nel contesto della teoria dei sistemi dinamici stocastici;

• l’analisi di altri regimi di carico, come carichi quasiperiodici e/o nondeterministici;

• l’estensione dei risultati al caso delle leghe a memoria di forma, tenendo conto in particolare

delle transizioni di fase che hanno luogo in questi materiali.
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“When people thought the earth was flat, they were wrong. When people thought the

earth was spherical, they were wrong. But if you think that thinking the earth is

spherical is just as wrong as thinking the earth is flat, then your view is wronger than

both of them put together.”

(Isaac Asimov — The Relativity of Wrong)





Part I

Long term analysis of two fluid flows





Summary

The fist part of this thesis is devoted to the study of several model describing the evolution of

a binary fluid flow. The evolution partial differential equations considered belong to the class of

diffuse interface models and can be seen as generalisations of the well-known model H. Formally,

these equations can be seen as the result of the coupling between the Cahn-Hilliard equation

for phase separation and the Navier-Stokes equation describing the flow of the fluid. The gener-

alisations considered concern non-newtonian Ladyzhenskaya-type fluids and chemically reacting

mixtures. Non-local interactions between the constituents of the mixture are also partially con-

sidered.

The main results obtained concern the well-posedness of the systems studied as well as some

characterisation of the large-time behaviour of the solutions. In particular many of the known

techniques in the theory of infinite-dimensional dynamical systems find here an application.

Among these we recall, trajectory attractors, exponential attractors and pullback attractors.
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CHAPTER 1

Introduction to two-phase fluid flows models

Outline

In this chapter the mathematical literature concerning diffuse interface models for binary

fluids is reviewed. This is the source of the main motivation of the first part of the present

manuscript. In particular, the so-called model H and some of its generalisations are intro-

duced. A brief review of the main instruments used in describing the large-time dynamics

of evolution equation is given. Finally, the common notation, which will be used throughout

this part of the present work, is introduced and discussed.

T
he mathematical modeling of multi-phase flows is particularly challenging and crucial for

applications (see, e.g., Gurtin et al. (1996); Hohenberg and Halperin (1977); Heida et al.

(2012); Lamorgese et al. (2011); Morro (2010) and references therein). One of the most

interesting (and essentially still open) issue concerns efficient approaches to track the evolution

of the interfaces between the different phases of the flow. This problem has been traditionally

tackled from two different and complementary perspectives:

Sharp-interface models In this family of models, perfect immiscibility of the constituents of

the mixture is assumed. From the mathematical viewpoint, this corresponds to solving

for each constituent a suitable evolution equation in an unknown evolving domain, whose

boundary corresponds with the sharp interface itself. Concerning theoretical results, only

little regularity of the evolving boundaries can be expected in general (see e.g., Denisova

and Solonnikov (1991); Abels and Wilke (2013) and references therein). Moreover, sharp-

5
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interface modelling leads to severe numerical difficulties, in particular related to topological

reconnections of the interfaces themselves, occurring, for example, during coalescence phe-

nomena.

Diffuse-interface models This case accounts for a partial miscibility between the different

constituents of the fluid mixture. This leads to models in which a unique continuum is

described through a finite family of order-parameter fields (one order parameter in the case

of binary fluids) giving the local composition of the mixture. An archetype of this class

of models is given by the model H, which will be described in detail in Section 1.1 below.

These models seem to be much more flexible from the numerical point of view and therefore

relevant for applications (see Elliott et al. (2011) and references therein).

In the first part of this thesis, we will focus on the second class of models, discussing in

particular the large-time behaviour of several “variations” of the classical model H. We start this

introductory chapter by briefly reviewing both the model H and some of its modifications as well

as the theory of attractors for evolution equations.

1.1 Motivation—The model H

The so called model H was first proposed in Hohenberg and Halperin (1977) and Siggia (1979)

and then rigorously derived in Gurtin et al. (1996). The corresponding differential system appears

to be the coupling between the Navier-Stokes equation for fluid mechanics and the Cahn-Hilliard

equation describing, in the simplest case, the evolution of a mixture of two constituents, such as

an alloy. Before introducing the full model we briefly review both these equations and the main

mathematical questions related to them.

1.1.1 On the Cahn-Hilliard equation

The Cahn-Hilliard equations were first derived at the end of the 50s to model spinodal decom-

position and coarsening of metallic alloys during quenching (see Cahn and Hilliard (1958); Cahn

(1961)). During cooling of a metallic alloy, the originally stable uniform composition becomes

unstable. This leads to phase separation and to the appearance of complex patterns in which

domains having different chemical composition can be recognised (see Figure 1.1).

The spinodal decomposition differs significantly from phase transitions involving nucleation

and growth of one phase in another one (e.g., during the cooling and solidification of water into

ice). In the latter case, a thermodynamical barrier between the two phases of the continuum

involved in the transition has to be overcome. This leads to phase transitions starting in a
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Figure 1.1: The microstructure of a steel alloy after quenching.

very localised portion of the material (selected by stochastic fluctuations) and then invading all

the domain. Pertinent models for these phenomena can be found in the literature devoted to

free-boundary problems (see Meirmanov (1992); Visintin (1996)).

On the other hand, spinodal decomposition is not associated with nucleation phenomena,

but to a transition happening throughout the domain as soon as the homogeneous composition

state becomes thermodynamically unstable. This instability is seen to occour as soon as the

temperature of the mixture θ falls below a critical temperature θc. The microscopic explanation

of the phase separation phenomena observed during spinodal decomposition is to be found in

diffusion mechanisms of the different constituents of the mixture, which fails to lead to a stable

uniform composition for temperatures below the critical one.

In the mathematical model proposed by Cahn and Hilliard, spinodal decomposition of a binary

allow is modeled through a single order parameter field ψ representing the difference of the relative

concentrations of the two chemical species involved in the phase separation. Physically relevant

values for ψ thus belong to the interval r´1, 1s. A temperature dependent potential energy F pψq
can then be introduced. In order to consistently describe the physical situation just introduced,

F is assumed to be a temperature-dependent quadratic perturbation of a super-quadratic convex

function F0 so that for θ ă θc global convexity is lost:

F pψq “ F0pψq ` θ ´ θc

2
ψ2

Moreover, an energy functional is associated to the configuration of the order parameter field

accounting for both the phase separation and the “energetic cost” of the mixing regions. This
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leads to the following assumption

EP pψq “ ε

2

ż

Ω

|∇ψpxq|2 dx ` 1

ε

ż

Ω

F pψpxqqdx. (1.1.1)

Here, the first term penalises the size of the transition areas between the different domains of

(almost) pure composition, while, for under-critical temperatures, the second favours the phase

separation between the two constituents. The parameter ε appearing in this last expression is

seen to be related with the thickness (9?
ε) of the transition region between different phases.

Having introduced an energy for the order parameter field, the next step consists in the

derivation of an associated evolution equation describing spinodal decomposition. This goal can

be achieved by considering a gradient flow approach in a suitable Hilbert space. Choosing as

ambient space pH1pΩqq˚ (see Section 1.4 below for the notation generally used in this part), the

resulting system of partial differential equations is
$
’&
’%

Btψ “ ´∇ · pM∇µq

µ “ ´ε∆ψ ` 1
ε
f 1pψq.

(1.1.2)

Here, the variable µ is usually called chemical potential, while the quantityM is known as mobility

and will be kept positive and constant for all the extent of this work (see Cahn et al. (1996);

Elliott and Garcke (1996) for an account of the physical relevance of degenerate mobilities). This

system is usually supplemented with homogeneous Neumann boundary conditions both on the

order parameter field ψ and on the chemical potential µ.

Bnψ “ Bnµ “ 0.

The boundary condition on ψ corresponds to the physically relevant case of no-flux boundary

conditions leading to the conservation of the mean composition of the mixture
ż

Ω

ψptq, dx “
ż

Ω

ψpt0qdx,

while the assumption on the chemical potential is consistent with the observation that isolines of

equilibrium solutions are orthogonal to domain boundaries.

One of the major challenges associated with the Cahn-Hilliard equation is given by the an-

alytical form of the potential F . The derivation of the model from thermodynamical principles

leads to a singular expression for the potential F pψq, being bounded, but defined only on the

interval r´1, 1s (see Cahn (1961)):

F pψq “ θ

2
pp1 ` ψq lnp1 ` ψq ` p1 ´ ψq lnp1 ´ ψqq ´ θc

2
ψ2. (1.1.3)

However, the associated potential term fpψq appearing in (1.1.2) is not bounded thus leading to

some difficulties in the theory of the well-posedness and asymptotic behaviour of the Cahn-Hilliard
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system. A popular alternative to (1.1.3) is given by regular potentials of the form

F pψq “ ψp ´ ψ2, with p ą 2 (and often p “ 4).

These double-well smooth potentials are qualitatively similar to the theoretically relevant singular

potential introduced above featuring two symmetric minima separated by an energy barrier.

However, they lead to a much simpler well-posedness theory based exclusively on compactness

methods (see, e.g., Lions (1969) for a general introduction to these techniques). Moreover, smooth

potentials are much easier to implement in numerical simulations (see the seminal paper Elliott

and French (1987) as well as the references in Cherfils et al. (2011)). However, being the Cahn-

Hilliard equation a fourth order evolution equation, no comparison principle is available and

hence, when using smooth potentials, no guarantee is given that the solution will remain in the

physically significant interval r´1, 1s. Indeed, in simulations it is observed that this is not the

case. This justifies the interest in precise information on the behaviour of solution for smooth

potentials approximating the regular ones. This issue will be partially addressed in Chapter 3

(see also Frigeri and Grasselli (2012b,a)).

Finally, another important open problem associated with the singular potential F is the so

called “separation from pure phases property”. Indeed, for solutions of the Cahn-Hilliard equation

on bounded domains in R2, it can be seen that after a sufficiently long time (which is however

uniform with respect to the norm of the initial data) the order parameter field ψ is uniformly

separated from the pure phases 1 and ´1 (see Miranville and Zelik (2004)). This property is still

unknown in the three-dimensional case and the techniques used in its proof do not seem to be

carried over in a physically significant way to the full model H. We refer the interested reader

to Cherfils et al. (2011) for a recent thorough review of the mathematical theory associate to the

Cahn-Hilliard equation.

1.1.2 On the Navier-Stokes equations

In order to describe the flow of an incompressible fluid, one of the best known models is given

by Navier-Stokes equations. These model linear viscous fluids where the stress tensor σ linearly

depends on the (symmetric part of) velocity gradient Du through a relation of the form

τ “ ´πI ` 2νDu. (1.1.4)

Here and in the following, the velocity of the fluid will be denoted by u, while π will be the

isotropic component of the stress (pressure) and ν the viscosity coefficient. This gives rise to the
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following system of partial differential equations

$
’&
’%

Btu ` pu ·∇qu ´ ν∆u “ ∇π ` g

∇ ·u “ 0.

(1.1.5)

Natural boundary conditions are given by the no-slip boundary conditions

u “ 0

Although the Navier-Stokes equations are among the most studied equations of mathematical

physics (see Temam (1984) for an thorough introduction), very little has been discovered on their

well-posedness after the seminal work of Leray in the 30’s (see Leray (1934)). The situation, as

known today for bounded domains, is as follows

2D case In this case, the Navier-Stokes equations are well posed in the Hadamard sense. By

this we mean that for square integrable initial data and forcig term g, there exists a unique

weak solution, which depends continuously on these data. Moreover, for more regular initial

conditions, also strong solutions can be constructed and these are unique as well.

3D case On bounded domains in R3, equation (1.1.5) admits a weak solution starting from

square-integrable initial data. However, this solution is not known to be unique. Nonethe-

less, one can show the following “strong-weak” uniqueness property: if a strong solution

exists (i.e., a solution belonging to L2p0, T ;H2pΩqq X Cpr0, T s;H1pΩqq—see Section 1.4 for

the notation), then it is unique in the class of weak solutions. The question whether strong

solutions exist for any regular (i.e. H1pΩq) initial datum remains still unanswered.

For a thorough introduction to the mathematical theory of Navier Stokes equations, we refer the

interested reader to the monographs Temam (1984, 1995).

1.1.3 Coupling Cahn-Hilliard and Navier-Stokes models

Having briefly reviewed the Cahn-Hilliard and the Navier-Stokes equations, we can now introduce

the system of partial differential equations resulting from the physical description of a binary fluid.

As stated before, we will discuss the so called model H, which can also be seen as arising from

the coupling of the two models just discussed. This model has been rigourously derived in the

works by Gurtin et al. Gurtin et al. (1996), by Hohenberg and Halperin Hohenberg and Halperin

(1977) and, more recently, in the works by Morro Morro (2010) and Heida Heida et al. (2012).

One of the fundamental assumptions in its derivation is that both constituents have the same

density (see Abels (2009b) for the “unmatched densities” case).
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The resulting system, which will be the object of investigation in the next four chapters is

$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ε∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∇ · pM∇µq

µ “ ε´1f 1pψq ´ ε∆ψ.

(1.1.6)

We use here a notation consistent to the one described for the Cahn-Hilliard and the Navier-

Stokes equation earlier in this section. However, we emphasise the exact meaning, which has to

be given to the velocity u in this setting. In principle, one can assume that a velocity can be

assigned to each fluid constituting the mixture (and, indeed, this can be done in the derivation

of the model from basic principles of continuum mechanics). In the case of “matched densities”

fluids considered here, u is the averaged velocity of the two constituents of the mixture. We

also observe that in system (1.1.6) the coupling between the Navier-Stokes equations and the

Cahn-Hilliard equation occours in three places:

• in the additional convective term pu ·∇qψ appearing in the evolution equation for the order

parameter field (cf. equation (1.1.2));

• in the Korteweg force ∇ · p∇ψ b ∇ψq giving rise to an additional bulk force in the Navier

Stokes equations. We note that, up to a gradient term (which can however be easily reab-

sorbed in the pressure π), this term can also be conveniently written as µ∇ψ or as ´ψ∇µ;

• in the viscous term of the momentum equation in the form of an order-parameter-dependent

viscosity τ “ νpψq∇u (cf. equation (1.1.5)).

Finally, system (1.1.6) is usually supplemented by no-slip boundary conditions on the velocity

field and by no-flux boundary conditions on the order-parameter field and chemical potential:

u “ 0, Bnψ “ 0, Bnµ “ 0, on BΩ. (1.1.7)

and by a given initial datum

up0q “ u0, ψp0q “ ψ0, in Ω.

In the case of Newtonian fluids (i.e. for τ pDuq .“ 2νDu), the well-posedness of the model H

(also referred to as Cahn-Hilliar-Navier-Stokes system—CHNS—in the following) has been widely

investigated in the literature (see also Liu and Shen (2003) for contributions to a very similar

model). As can be easily expected from our preliminary discussion of the Cahn-Hilliard and

Navier-Stokes equations, when discussing existence results for the model H, the space dimension
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and the hypothesis on the double-well potential play a crucial role. System (1.1.6)–(1.1.7) has

been firstly studied in Starovoitov (1997) for Ω “ R2 and regular potential. Then, in the case

of bounded domains in R2 and for non-constant viscosity ν “ νpψq, global existence results for

both weak and strong solutions were obtained in Boyer (1999) (see also Boyer (2001) as well

as Abels and Feireisl (2008) for the compressible case). More recently, the case of logarithmic

potentials has been considered in Abels (2009b) (see also Abels (2009a)), where, in the absence

of non-gradient external forces, the convergence of solutions to a single equilibrium has been

established. This issue has also been investigated in Zhao et al. (2009) for smooth potentials. A

further related contribution (see Abels (2009b)) proves the existence of a (weak) global attractor

(which is strong in dimension two—see Section 1.3 for pertinent definitions). A rather complete

picture of the longtime behavior in the case of bounded domain in R2 can be found in Gal and

Grasselli (2010a). Finally, in the case of 3D bounded domains and assuming time-dependent

external forces, existence of trajectory attractors has been demonstrated in Gal and Grasselli

(2010b).

Essentially, in all the above contributions to this field, the well-posedness results obtained

for the model H are equivalent to those known for the uncoupled Navier-Stokes equations. In

particular well-posedness in the Hadamard sense is obtained in the case of bounded domains in

R2, while only partial information as described in Section 1.1.2 above is available in the case of

bounded domain in R3.

The effectiveness of model H for numerical simulations has also been widely assessed. We

refer the interested reader to, among others, Badalassi et al. (2003); Kay et al. (2008); Kim et al.

(2004); Shen and Yang (2010) and references therein.

1.2 Some generalisations of the model H

Having reviewed the standard model H, we now introduce some of its generalisations that will

be discussed in the present work. These essentially involve two terms appearing in (1.1.6): mod-

ifications in the viscosity term ∇ · τ with respect to the linear assumption (1.1.4) lead to the

so called non-Newtonian fluid models; changes in the description of the interaction between the

constituents of the mixture, may lead to chemically reacting and/or non-local interactions. We

will briefly discuss these phenomena in this section.

1.2.1 Non-newtonian fluids

The so-called Ladyzhenskaya model for non-Newtonian fluids was proposed in the 60’s (see La-

dyzhenskaya (1967)) both on physical and mathematical grounds. Through the introduction of
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a suitable non-linearity in the stress-velocity gradient relation, both shear-thinning (as lava or

blood) and shear-thickening fluids (like cornstarch–water mixtures or soaked sand) can be effec-

tively modeled. These materials exhibit smaller and smaller (respectively greater and greater)

resistance to motion as the gradient of the deformation rate becomes larger. In particular, for

binary fluid flows, the following non-linear constitutive relation for the fluid may be assumed

τ pDu, ψq .“
`
ν1pψq ` ν2pψq|Du|p´2

˘
Du (1.2.1)

where ν1 and ν2 are suitable positive and sufficiently smooth functions and where the exponent p

is assumed to be larger than 1. The case p ă 2 corresponds to a concave relation between stress

and velocity gradient and can model shear thinning fluids. On the contrary, for p ą 2, τ is a

convex function of Du and therefore, shear-thickening fluids are described. In the case p “ 2 the

standard Navier-Stokes equations are recovered.

Concerning the mathematical theory of single component Ladyzhenskaya fluids, many inter-

esting results have been obtained in recent years (see Feireisl and Pražák (2010) for a recent

review on the subject). In particular, focusing on the case of bounded domains of R3 and for

shear-thickening fluids, it has been shown that full well-posedness in the Hadamard sense can be

recovered. This is in contrast to what happens for the standard Navier-Stokes equations. Indeed,

in the regime p ą 11
5

, existence and uniqueness of weak solutions can be proven for the system

$
’&
’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDuqq ` g

∇ ·u “ 0

with homogeneous Dirichlet boundary conditions u “ 0 (see Ladyzhenskaya (1967); Lions (1969).

The key point for obtaining these enhanced well-posedness results lies in a change of the functional

setting where solutions are searched: instead of the usual weak regularity L2pH1
0,divpΩqq, one

can now look for weak solutions belonging to LppW1,p
0,divpΩqq (see Section 1.4 for the notation

used here). This allows testing the equation against a solution obtained through any suitable

approximation method (or through monotonicity arguments, like in Lions (1969)) thus deducing

energy identities for the solution as well as suitable continuous dependence estimates.

Concerning the system arising from (1.1.6) with (1.2.1) (which may be called Ladyzhenskaya-

Cahn-Hilliard—or LCH—system), some results are already available in the literature. In par-

ticular, the case of a regular double well potential F has been studied in Kim et al. (2006) and

well-posedness results obtained, that are analogous to those just discussed in the case of a single

fluid. A complete overview of the regular case can be found in Grasselli and Pražák (2011),

where also the large-time behaviour of the system is studied and the existence of global as well

as exponential attractors proven (see Section 1.3 below).
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One could expect the situation to be similar also in the case of singular potentials. However, as

we shall see in Chapter 2, for the LCH system with singular (i.e., logarithmic) potential a complete

well-posedness theory seems to be out-of-reach. This is due to the worsening in the time regularity

of the velocity field when p becomes larger (see the Remark 2.5.1). In particular we will discuss

existence results as well as a characterisation of the large-time behaviour of solutions through

trajectory attractors (see Section 1.3 below).

1.2.2 Oono reaction term

The model H can also be suitably modified to account for possible transitions between the two

components of the mixture. This is particularly relevant in the case of chemically reacting fluid

flows (see Huo et al. (2003, 2004); Teramoto and Nishiura (2002); Villain-Guillot (2010)). Usually,

the corresponding modified Cahn-Hilliard equation for describing the phase separation process in

the presence of chemical reaction is known as the Cahn-Hilliard-Oono equation—CHO—see Oono

and Puri (1987). Moreover, such an equation also arises in slightly different contexts (e.g., phase

separation in diblock polymers) with other names (see, for instance, Aristotelous et al. (2012);

Choksi et al. (2011) and references therein). In particular, the resulting CHO system is

$
’&
’%

Btψ ` ǫpψ ´ c0q “ ´∇ · pM∇µq

µ “ ´ε∆ψ ` 1
ε
f 1pψq.

(1.2.2)

where ǫ is proportional to the reaction rate and c0 is the thermodynamical equilibrium composition

of the mixture considered. As for the boundary conditions, the usual no-flux boundary conditions

used in the Cahn-Hilliard equation can be retained also in this case.

Several features distinguish the solutions of the usual Cahn-Hilliard equation from those of

the CHO system. First, the equilibria of the CHO equation display some clear periodic patter,

such as dots or lamellæ according to the relative equilibrium concentration of the constituents (see

Figure 1.2). Secondly, the mean composition of the mixture is not fixed by the initial condition (as

happens, e.g., for an alloy), but changes with time converging to the prescribed thermodynamical

equilibrium c0 (see equation (1.2.4) for the analogous result for the full variation on the model H

below).

Coupling the CHO system with the Navier-Stokes equations and proceeding exactly as in

the derivation of the model H, one obtains the following system of Partial differential equations
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Figure 1.2: Pattern formation in a mixture of diblock copolimers. Observe the regular dotted

regions and the lamellæ appearing as a consequence of small local fluctuations of the mean

composition of the mixture. Compare with the pattern arising in alloys (see Figure 1.1).

usually called the Navier-Stokes-Cahn-Hilliard-Oono system (or NSCHO system, for short)

$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu ´ ∇ · pνpψqDuq “ ∇π ` µ∇ψ

∇ ·u “ 0

Btψ ` pu ·∇qψ ` ǫpψ ´ c0q “ ∆µ

µ “ ´∆ψ ` fpψq.

(1.2.3)

This system can be supplemented by the same boundary conditions used for the model H itself

(see (1.1.7)).

As anticipated above for the simpler CHO system, an important feature of the NSCHO model

concerns the evolution of the mean composition of the mixture. Indeed, integrating the third

equation in (1.2.3) over the domain Ω and taking (1.1.7) into account, we obtain the following

evolution equation for the (spatial) average xψy

Btxψy ` ǫpxψy ´ c0q “ 0,

from which we deduce

xψy ptq “ c0 ` e´ǫtpxψ0y ´ c0q. (1.2.4)

Hence, if xψ0y “ c0, then the total mass is conserved as in the classical Cahn-Hilliard equation.

Otherwise, we are in the off-critical mixture case, i.e. the order parameter average at steady state

differs from xψ0y (cf. Huo et al. (2003) where numerical simulations are performed in 2D by taking
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periodic boundary conditions). This feature leads to interesting problems for the description of

the long-term behaviour of solutions.

In Chapter 4, we will study the well-posedness as well as robustness of the asymptotic be-

haviour of solution with respect to the parameter ǫ.

1.2.3 Non-local models

The Cahn-Hilliard equation derived from the potential energy (1.1.1) implicitly assumes that the

interactions between the components of the mixture are short-ranged (i.e., local). However, we

may also assume that the interaction energy between two particle of the mixture at points x and

y is given by a Kac potential of the form

γnKpγ|x ´ y|q with γ ą 0.

In this case, a statistical mechanical derivation of the model leads to the following non-local total

energy for the system (see Giacomin and Lebowitz (1997, 1998))

EP pψq “ ε

2

ż

Ω

ż

Ω

Kp|x ´ y|q|ψpxq ´ ψpyq|2 dxdy

` ε

ż

Ω

ż

Ω

Kp|x ´ y|qψpxqp1 ´ ψpxqqdxdy ` 1

ε

ż

Ω

F pψpxqqdx.

The resulting Cahn-Hilliard equation is then given by

$
’&
’%

Btψ “ ´∇ · pM∇µq

µ “ εaψ ´ εK ˚ ψ ` 1
ε
f 1pψq.

where apxq is defined by

apxq .“
ż

Ω

Kp|x ´ y|qdy

and where ˚ denotes the convolution operator. In the case of smooth interaction kernels K,

this system has been studied in Gajewski and Zacharias (2003); Bates and Han (2005). We also

note that the non-local model can be reduced to the classical local one by suitably rescaling the

interaction kernel K so that its mass is concentrated around the origin.

An interesting problem related to this non-local formulation of the Cahn-Hilliard equations is

given by its effects on the properties of the full model H when it is substituted to the local Cahn-

Hilliard one. In the case of regular interaction kernels, this issue has recently been addressed in

a series of research papers (see Colli et al. (2012); Frigeri and Grasselli (2012a,b)). In particular,

in these papers, well-posedness results have been obtained and a description of the asymptotic

behaviour of the system has been given.
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However, not only regular kernels can be studied, but also singular ones are of great interest

for applications. This choice leads to operators somehow similar to the so-called s-Laplacian,

although defined on bounded domains (see Silvestre (2007) for an introduction to these operators

on the whole space). We will give some preliminary results on the well-posedness of the Cahn-

Hilliard equation with non-local interactions described by a singular kernel in Chapter 5. These

have to be considered a preliminar work towards the study of the full nonlocal model H with

singular kernels.

1.3 Large-time behaviour for solutions of parabolic systems

We now wish to review some of the theory of (infinite dimensional) dynamical system introducing

the tools that will be used to describe the large-time behaviour of solutions to evolution equations.

We refer the interested reader to the monographs Temam (1997); Robinson (2001) for a more

comprehensive introduction to the subject (see also the review Miranville and Zelik (2008)). After

briefly recalling the basic theory of global attractors we shortly discuss some of its generalisations,

which are needed to study the behaviour exhibited by evolution equations arising in examples of

practical interest. In order not to break the exposition into pieces, we refer to Section 1.4 for a

detailed description of the notation used in this section and in the remaining of this part of the

present manuscript.

1.3.1 Short overview of the classical theory of attractors

The theory of attractors for infinite-dimensional dynamical systems was originally developed by

Ladyzhenskaya, Vishik and collaborators in the 70s (see Babin and Vishik (1992) for an early

account on the subject). For the sake of clarity, we will briefly discuss here only the case of

autonomous systems referring to Section 1.3.4 for the discussion of the pertinent setting for the

non-autonomous case (see also Section 3.2 as well as Carvalho et al. (2013) and the references

therein).

The starting point of the theory of (global) attractors is an abstract reinterpretation of the

structure of the solutions of an evolution equations through the notion of (possibly non-linear)

semigroup.

Definition 1.3.1. Let H be a metric. A family of operators tSptqutPR` s.t. Sptq : H Ñ H for all

t ě 0 is called semigroup if the following properties hold

• Sp0q “ I

• Spt` sq “ Sptq ˝ Spsq for all non-negative s, t (semigroup property).
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The variable t is usually called time.

Remark 1.3.1. For the purposes of this work we will always assume that H is an Hilbert or a

Banach space.

One of the main goals of the contemporary theory of dynamical systems is to prove significant

properties on the solutions of an evolution equation after large time. Among many others, natural

question are whether the solutions eventually regularise (this may also happen after a finite time,

e.g., in the case of parabolic systems as those which will be studied in the present work), how

complex the asymptotic behaviour of the system can be and how fast this significant regime can

be reached (at least from a practical point of view). The theory of (global) attractors for evolution

PDEs tries to give an answer to these question by constructing “small” sets in the phase space H ,

which contain the eventual evolution of the system. Moreover, precious quantitative information

may be deduced from the fractal dimension of these sets and from the rate at which they attract

all other physically possible initial data.

From the abstract semigroup description just introduced, the answers to the above questions

can be translated in simple properties of the semigroup in the phase space. In particular, reg-

ularising properties are epitomised in the requirement that there exists a compact subset of H

which absorbs all solutions in the sense made precise by the following definition.

Definition 1.3.2. Let tSptqutPR` be a semigroup on a metric space H . A subset B is absorbing

for the semigroup tSptqutPR` if for all bounded sets U Ă H , there exists a time t “ tpBq such

that

SptqU Ă B @t ě t.

In order to describe more precisely (and quantitatively) the behaviour of solutions we will also

need to use the metric structure of the phase space H . In particular, we introduce the Hausdorff

semi-distance between sets

Definition 1.3.3. Let H be a metric space with distance d : H ˆH Ñ R. Given two sets A and

B the Hausdorff semi-distance between A and B is given by

distHpA,Bq .“ sup
xPA

inf
yPB

dpx, yq.

We can now introduce the main object of interest of this section.

Definition 1.3.4. Let tSptqutPR` be a semigroup on a metric space H . The global attractor for

tSptqutPR` is a set A Ă H such that

• A is compact;
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• A is invariant (i.e. SptqA “ A, for all t ě 0);

• A attracts all bounded subsets B Ă H . By this we mean that

lim
tÑ8

distHpSptqB,Aq “ 0 for all B Ă H with B bounded.

It is easy to see that, if the (global) attractor exists, then, by invariance, it has to be unique.

Loosely speaking, the attractor contains all the “relevant” information for understanding the

persistent dynamics of the evolution equation (or semigroup) of interest. To give examples re-

lated to the questions introduced before, the complexity of the asymptotic dynamics can be

measured through the evaluation of the fractal dimension of the (global) attractor. Moreover,

the rate at which solutions approach the asymptotic regime(s) corresponds to the rate at which

distHpSptqB,Aq goes to 0.

We only recall the following fundamental existence result for (global) attractors (cf. (Temam,

1997, Theorem 1.1))

Theorem 1.3.1. Let tSptqutPR` be a (non-linear) semigroup acting on a metric space H. Assume

that Sptq is continuous for any t ě 0 and that there exists a compact absorbing set B Ă H. Then,

tSptqutPR` has a (compact) global attractor A. Moreover

A “
č

sě0

ď

těs
SptqB

H

holds.

1.3.2 Trajectory attractors

The simple picture of global attractors just introduced, although appealing, cannot in general

be used as it is to deal with the solution semigroups arising from applications. Without any

attempt of completeness, we would now like to bring to the attention of the reader some of its

possible extensions and the subjacent reasons for their development. In particular, we will focus

on possible cures to the lack of uniqueness (also related to possible issues with the continuity of

the semigroup), on the problems related with the rate of decay of solutions towards the attractor

itself and on a possible extension of the theory of global attractors to the non-autonomous case.

We start here by addressing the issue related to non-uniqueness.

In the case when uniqueness of solutions is not known, a possible approach to the description of

the asymptotic behaviour is given by the theory of trajectory attractors developed by Chepyzhov

and Vishik (see Chepyzhov and Vishik (2002, 1997)). This theory was introduced to address,

among others, the issues related to the lack of information concerning uniqueness of solutions for

the Navier-Stokes equations on 3D domains. The key ingredient of this approach is a different
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interpretation of the phase space. Solutions are no longer considered as points evolving in the

phase space H , but represented as trajectories (i.e. whole functions from R` taking values in H),

which are translated (with respect to time) by the actions of the semigroup. More rigourously,

one can define the phase space to be

Θ`
w,loc

.“ L
p
locpR`;Hq,

for some p ě 1, endowed with a suitable (weak) topology (see Section 2.6 for more details on this

technique). The corresponding translation semigroup acting on Θ`
w,loc is then simply defined by

T phq : up · q ÞÑ up · ` hq @u P Θ`
w,loc.

It is easy to see that, if the evolution equation studied is well-posed and a continuous semigroup

can be defined on the original phase space, the classical and the trajectory semigroup approach

are equivalent. The trajectory attractor is then defined as the usual (global) attractor in this

novel functional setting.

We briefly comment on some technical issues related to the technique of trajectories attractors.

First, one could wonder how the compactness required in Theorem 1.3.1 is recovered in this new

setting. However, the required compactness can usually be easily deduced by Aubin-Lions’ type

lemmata (for the details in a practical functional setting see, e.g., Lemma 2.6.2 below). Moreover,

in the case both are well defined, the relation between this attractor in the space of trajectories

and the (global) attractor of the previous section seems unclear. However, one can easily prove

(see Chepyzhov and Vishik (2002)) that in this case the attractor in the trajectory space can

be defined for all real times t P R (and not only for positive ones) and that it is invariant with

respect to time-shifts. Moreover, the global attractor defined before coincides with sections at

fixed time of the trajectory attractor just introduced.

Finally, we note that the theory of trajectory attractors can also be extended to the case

of non-autonomous dynamical systems. This leads to some regularity assumptions on the time-

dependent terms, which are mainly related to compactness requirements in the theory. We refer

again the interested reader to the results contained in Chepyzhov and Vishik (2002) as well to

Chapter 2 below.

In Chapter 2, we will use the theory of trajectory attractors to describe the asymptotic

behaviour of solutions of the LCH model briefly discussed in Section 1.2.1

1.3.3 Exponential attractors

In general, no information can be obtained on the rate of convergence of solutions towards the

attractor when working in the framework of global attractors. Indeed, counterexamples are well-
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known also in the simpler case of finite-dimensional dynamical system. For example, consider the

ordinary differential equation

y1pxq “ ´1

2
y3pxq, yp0q “ y0

which admits the global attractor A “ t0u, but whose solutions

y “ 1?
x` C

, C ě 0

are easily seen to decay polynomially fast to 0.

Since the global attractor as defined before is unique, if one wishes to ensure an exponential

attraction property, some other requirements on the attractor itself have to be loosened. Moreover,

in order to lead to significant results, the sought exponentially attracting object should also be

finite-dimensional. One is thus led to the following definition of exponential attractor (see Eden

et al. (1994); Efendiev et al. (2000, 2005)

Definition 1.3.5. Let tSptqutPR` be a semigroup on a metric space H . An exponential attractor

for tSptqutPR` is a set B Ă H such that

• B is positively invariant (i.e. SptqB Ă B, for all t ě 0);

• B is compact and has finite fractal dimension;

• B attracts all bounded subsets B Ă H exponentially fast. By this we mean that there exist

two positive constants C “ CpBq and α such that

distHpSptqB,Bq ď Ce´αt

holds.

In the Banach-space theory proposed by Efendiev, Miranville and Zelik, exponential attractors

can be shown to exist for a semigroup tSptqutě0 as soon as the following two conditions are met:

i) the semigroup satisfies the so-called smoothing property. If H1 is a compact subspace of H ,

this is equivalent to asking that there exists an absorbing set B and a time t such that

SptqOδpBq Ă B

and

}Sptqu´ Sptqv}H1
ď C}u´ v}H for all u, v P OδpBq

hold, where OδpBq .“ tv P V | infwPB }v ´ w}H1
ă δu is a δ-neighbourhood of the set B in

H1;
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ii) the semigroup is Hölder continuous in time, i.e., there exist positive C and γ P r0, 1s such

that

}Sptqu´ u}H1
ď C|t|γ for all u P OδpBq

holds.

Concerning the results known for the model H, we refer the interested reader to Gal and Gras-

selli (2010a), where the authors prove the existence of exponential attractors for system (1.1.6)–

(1.1.7) on bounded domain in R
2 and for smooth double-well potentials. We also refer to (see

also Abels (2009b); Gal and Grasselli (2010b, 2011); Zhao et al. (2009) for related contributions).

We will discuss the existence of exponential attractors for some variations on the model H in

Chapters 3 and 4.

1.3.4 Pullback attractors

We now wish to enquire the third and last question introduced before, concerning possible exten-

sions of the theory of global attractors to the case of non-autonomous forcing terms. In particular,

among the many possibilities, we will give here a brief account of the theory of pullback attractors

(see Section 3.2 for further details and Carvalho et al. (2013) for a comprehensive introduction to

this subject). We recall that this theory was first introduced in the context of stochastic differen-

tial equations in Schmalfuss (1992) and then brought to deterministic dynamical systems in the

works by Kloeden, who also introduced the terminology pullback attractor, see Kloeden (2000).

Pullback attractors theory gives a somehow different physical interpretation of the meaning of

the attracting set. However, before delving into some of the details, we would like to recall that

some other simple extensions of the standard theory of global attractors are also available.

The first issue one has to deal with in the non-autonomous setting is that the solution operator

no longer naturally generates a semigroup. Indeed, in order to predict the evolution of a non-

autonomous system, one not only needs to know the time that passed by, but also the time at

which the system was “started”. This leads to a generalisation of the notion of semigroup which

goes under the name of process.

Definition 1.3.6. Let H be a metric. A family of operators tUps, tqusětPR` s.t. Ups, tq : H Ñ H

for all s ě t ě 0 is called process if the following properties hold

• Ups, sq “ I for all s ě 0;

• Ups, tq “ Ups, τq ˝ Upτ, tq for all non-negative s, τ and t such that s ě τ ě t (composition

property).

However, processes can often be reduced to semigroups by suitably extending the phase space

on which they are defined. Assume that the time-dependence is summarised in only one (e.g.
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forcing) term defined on the whole real axis (X is here a suitable Hilbert or Banach space)

f : R Ñ X fp · q : t ÞÑ fptq.

If the natural phase space for the evolution problem is H , then we can define an extended phase

space rH as follows

rH .“ H ˆ R`

Moreover, the process tUps, tqusětPR` naturally gives rise to a semigroup trSptqutPR` on rH :

rSptq : H ˆ R` Ñ H ˆ R` rSptqpu, sq .“ pUpt ` s, squ, t` sq

A second difficulty now appears evident. This is related to the compactness usually required in

order to deduce the existence of a global attractor (see Theorem 1.3.1 above). Unless quite strong

assumptions are set on the forcing term f , the existence of a global attractor cannot be deduced

in general. One possibility is to assume f to be translation compact in X i.e.

ď

tPR
tfptqu ĂĂ X

(Here ĂĂ denotes compact inclusion—see Section 1.4). For further details, we refer the interested

reader to Chepyzhov and Vishik (2002). See also Bosia (2012) for an example of application of

this technique in the case of quasi-periodic non autonomous terms.

On the other hand, the theory of pullback attractors gives a different interpretation to the

physical meaning of the attractor itself. Instead of considering it as a representation of the final

evolution of the system studied, the attractor is seen as describing the present state of the system

arising from the past after an arbitrary long evolution. This change of viewpoint is summarized

both in a slight change in the definition of the process (now tUps, tqusět has to be defined for

s, t ď T where T P R is the present time) and in the reformulation of the attraction property as

follows.

Definition 1.3.7. Let tUps, tqtďsďT u be a process on a metric space H . The pullback attractor

for tUps, tqtďsďT u is a family of sets tAptqutďT Ă 2H such that

• Aptq is compact for all t ď T ;

• Ap · q is invariant with respect to Up · , · q, i.e.

Ups, tqAptq “ Apsq holds for all t ď s ď T ;

• Ap · q pullback attracts all bounded subsets, i.e., for all B Ă H there holds

lim
sÑ´8

distHpUpt, sqB,Aptqq “ 0 for all t ď T ;
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• Ap · q is minimal, i.e., if tCptqutďT is another family of sets satisfying the above properties,

then

Aptq Ă Cptq for all t ď T .

A few remarks are necessary. First, due to time-invariance, the definition of pullback and

global attractor are equivalent for autonomous evolution equations. However, in the general case

the two notions may differ significantly (see, e.g., the account of the Haraux example in Miranville

and Zelik (2008)). Finally, in contrast again with the autonomous case, the fourth requirement in

the definition of the pullback attractor is not redundant with invariance, but necessary in order

to guarantee uniqueness.

Among the many existence results known for pullback attractors, we only recall this simple

analogue of Theorem 1.3.1 (see (Carvalho et al., 2013, Theorem 2.12))

Theorem 1.3.2. Let tUps, tqutďsďT be a (non-linear) process acting on a metric space H. As-

sume that Ups, tq is continuous for any s ě t and that for any t there exists a compact set Bptq Ă H

pullback-attracting bounded subsets of H. Then, tUps, tqutďsďT has a pullback attractor tAtutďT .

Moreover

Aptq “
ď

BĂH
B bounded

č

τďs

ď

tďτ
Ups, tqB

H

holds.

The theory of pullback attractors for non-autonomous evolution equations is still undergoing

vigourous development. In particular, recent results suggest that, in comparison with other

proposals, it is effective in giving insight on the structure and properties of the attracting set

with detail similar to that achieved by the theory of global attractors in the autonomous setting

(see Carvalho et al. (2013) and references therein for an account of the state-of-the-art of the

theory).

We will give some results on the existence of (exponential) pullback attractors for the model H

in Chapter 3.

1.3.5 Convergence to stationary states

Finally, we also recall that a complementary approach to attractors is available in the study of

the asymptotic behaviour of the solutions of infinite dimensional dynamical systems. Studying

the convergence to stationary states of a dynamical system means looking for an answer to the

questions: “What happens to the system if all external energy source is switched off?”, “Does it

settle down to some equilibrium state?” and “Can we get rid of a priori possible, non-converging

evolutions also in the case of dissipative systems?”
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Although these queries may seem trivial when looking from the point of view of finite-

dimensional dynamical systems, subtleties may (and do often) arise in the infinite-dimensional

setting. For example, the Cahn-Hilliard equations admit a continuum of non-isolated equilibria

making the answer to the above questions delicate. Usually, one has to invoke some Łojasiewicz-

Simon type inequality (see Jendoubi (1998); Chill (2003)) to deduce convergence of a solution to

a single stationary state.

In the case of the model H, convergence of solutions to stationary states under various as-

sumptions has been deduced, e.g., in Abels (2009b); Gal and Grasselli (2010a); Zhao et al.

(2009).

1.4 Notation

In this section we review the general notation used throughout the first part of the present

manuscript. Additional specific notation might be introduced when needed in subsequent chap-

ters.

1.4.1 General notation

We will use the symbol
.“ in an expression as A

.“ P where A is a symbol and P is any well

formed expression, to indicate how the quantity appearing on the left hand side is defined.

We will assume that the notion of set (equivalently, family or collection) and of element of a

set are known to the reader. Given a set A and an element x we will write

x P A respectively x R A

if x belongs to A (respectively if x does not belong to A). If all the elements of a set A belong

also to a set B we will say that A is included in B and we will wite

A Ă B.

If A is any set, the notation 2A will stand for the set consisting of all the possible subsets of A.

Given a topological space X and a set A Ă X , we will denote by A
X

its closure with respect to

the topology of X . When clear from the context the superscript X might be dropped to simplify

notation. Moreover, BA will be the set of boundary points of A. If a subset A of X is compact

with respect to the topology of X we will write

A ĂĂ X

With the symbol Rn we will denote the n-dimensional Euclidean vector space endowed with

the topology generated by the Euclidean metric. We also introduce the notation R` for the set
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of non-negative real numbers. Moreover, by Rn` we will denote the n-dimensional half space

R
n
`
.“ tx P R

n | xn ě 0u.

In general, Ω Ă Rn, n “ 2, 3 will be a smooth bounded domain on which the differential

problem is given. The regularity of Ω will be specified from time to time, but, as a general rule,

it will always be large enough to justify all computations performed. We will also write

Qt
.“ Ω ˆ r0, tq Qt,s

.“ Ω ˆ rt, sq

to denote the parabolic domain on which the considered evolution PDEs is given.

In general, scalars will be denoted by normal fonts (like in f or σ), while we will use bold for

vectors and second rank tensors (e.g., f or σ) leaving to the context the distinction between these

quantities. The components of a vector u P Rn will be denoted by ui, while the components of

a rank two tensor σ will be identified by the symbol σij . The trace of a rank two tensor on Rn

will be denoted by

trA
.“

nÿ

i“1

Aii

The usual scalar product in Rn will be written as

u ·v
.“

nÿ

i“1

uivi.

For the composition of rank two tensors on R
n we will write

A ·B or AB where pABqij
.“

nÿ

k“1

AikBkj .

We also introduce a scalar product on the space of rank two tensors (also called saturation) by

the following rule

A :B
.“ trpABq “

nÿ

i,j“1

AijBij .

We will denote by a prime p1 the conjugate exponent to any given real number p P r1,8s. In

particular p1 is defined by
1

p
` 1

p1 “ 1 for p P p0,8q

and is set equal to 1 (respectively 8) for p “ 8 (respectively 1).

Derivatives with respect to time will be denoted by Btf . Concerning spatial derivatives, we

will use standard notation for the gradient of a scalar or vector valued function (e.g., ∇f), the

divergence of a vector or tensor field (e.g., ∇ · f) and for the Hessian matrix of any function (e.g.,

∇∇f). Moreover, we will denote by ∆f
.“ ∇ · p∇fq “ trp∇∇fq the Laplace operator.

Given a regular domain Ω, we will denote by n its outward pointing normal. Moreover, given

a regular function f defined on Ω, we will denote by Bnf the normal derivative of the function

on the boundary.
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We also introduce a special notation for the convolution operator. Indeed, given a set Ω Ă Rn

a function f defined on it and a kernel defined on the whole Euclidean space Rn we set

pK ˚ fqpxq .“
ż

Ω

Kpx ´ yqfpyqdy.

In all the computations the symbol C will denote a generic constant, which may change from

line to line or from passage to passage. The constant C will depend only on the domain Ω, and

on the physical parameters of the model considered. In particular, unless otherwise stated, C will

always be assumed independent of time. However, for the sake of clarity, all possible dependencies

of C on other quantities will be explicitly accounted in each of the subsequent chapters.

1.4.2 Functional spaces

Given a Banach or a Hilbert space X we will denote the norm of one of its element f P X by the

symbol }f}X . The dual space of X will be denoted by X˚. If a sequence txnunPN Ă X converges

strongly to x in X we will write

xn Ñ x in X.

Weak and weak-star convergences will be denoted by

xn á x or xn
˚á x in X.

The spaces LppΩq will be the usual Banach spaces of p-integrable, Lebesgue-measurable func-

tions defined on the set Ω, where p belongs to r1,8s. We shall use the bold symbols LppΩq for

the corresponding spaces of vector valued functions. We will use the special shorthand notation

| · |p for the norm in LppΩq spaces, 1 ď p ď 8.

The Sobolev-Hilbert space, which consists of k-times differentiable functions in the sense

of distributions with square integrable derivatives, will be denoted by HkpΩq. Again, the bold

symbols HkpΩq will be reserved to the corresponding spaces of vector valued functions. Moreover,

we will denote by W k,ppΩq the non-hilbertian Sobolev space, which consists of k-differentiable

functions in the sense of distributions with Lp integrable derivatives. As above, a bold symbol

Wk,ppΩq will be used for spaces of vector-valued functions. We also introduce consistent notation

for the fractional Sobolev spaces, by letting the index k take any positive real value: in this

case we will usually write HspΩq and W s,ppΩq (and we will introduce analogous notation for the

vector-valued case) to emphasize that s can also be non-integer. Concerning the norms used for

vector valued spaces we will adopt the following convention

|∇f |22
.“

nÿ

i“1

ż

Ω

ˇ̌
ˇ̌ Bf
Bxi

ˇ̌
ˇ̌
2

dx |∇f |22
.“

nÿ

i,j“1

ż

Ω

ˇ̌
ˇ̌ Bfi
Bxj

ˇ̌
ˇ̌
2

dx.
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We will denote with an additional subscript 0 to the above notations (e.g., Hk
0 pΩq) the spaces

of functions belonging to the “base” functional space (e.g., HkpΩq) and vanishing at the boundary

of Ω in the sense of distributions. In the case the domain Ω has infinite measure, the subscript

loc as in LplocpΩq will denote the local spaces for whose elements

}f}LppBq ď CB @B ĂĂ Ω

holds. Analogous notations will be used for Sobolev spaces (as H1
locpΩq or W

s,p
locpΩq).

Moreover, the mean value f a function over the domain Ω will be denoted by

xfy .“ 1

|Ω|

ż

Ω

f dx.

Additionally, the mean free part of f will be denoted by

f
.“ f ´ xfy .

We will also use the additional subscript pmq for the (affine) subspaces of a given functional space

consisting of prescribed mean functions:

Xpmq Ă X Xpmq
.“ tf P X | xfy “ mu.

In order to study the velocity field, we introduce the usual spaces of divergence-free (solenoidal)

functions. These will be denoted by a div subscript. In particular, let

V
.“ tφ P C8pΩ;Rnq | ∇ ·φ “ 0u

be the usual space of divergence-free test functions. The divergence-free spaces are defined by

Hs
divpΩq .“ V

HspΩq
,

L2
divpΩq .“ V

L2pΩq ” H0
divpΩq,

W
s,p
divpΩq .“ V

Ws,ppΩq
.

for s ą 0, p ě 1. Analogously, also the corresponding spaces with homogeneous Dirichlet bound-

ary conditions (as Hs
0,divpΩq) will be used. In view of the study of the equation for the velocity

field, we also introduce the Leray projector P : L2pΩq Ñ L2
divpΩq mapping every element of L2pΩq

to its divergence-free part.

The dual spaces of hilbertian and non-hilbertian Sobolev spaces will be denoted by

H´spΩq .“ pHs
0 pΩqq and W´s,p1 pΩq .“ pW s,p

0 pΩqq˚

whenever these notations make sense. Analogous notations will be used for the space of divergence

free functions.
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Moreover, we will denote by xf, gy both the scalar product in L2pΩq (or L2pΩq) and the duality

pairing between H´1pΩq and H1
0 pΩq (or their vector valued analogues), the exact meaning being

clear from the context. When needed we will also use the notation

X˚ xf, gyX

to denote the duality pairing between g P X and f P X˚ and the notation

xf, gyQ

when referring to the scalar product in L2pQq or to the duality pairing between H´1pQq and

H1
0 pQq.

We also introduce notation for the classical spaces of k-times continuously differentiable func-

tions defined on a set Ω and taking values in X : CkpΩ, Xq. This space will be endowed with

the usual maximum norm. We will usually drop the exponent k when referring to continuous

functions (i.e., when k “ 0). Moreover, when X “ R or when it will be clear from the context we

will also use the shorten notation CkpΩq. As before a subscript 0 (as in Ck
0pΩq) will denote the

subset of those functions vanishing at the boundary, while a subscript c (e.g., Ck
c pΩq) will refer

to those functions having support compactly contained in Ω.

Finally we also introduce suitable notation for the Bochner spaces, i.e., for Banach valued Lp

spaces. In particular, if X is a Banach space and s, t are real numbers such that s ą t, we will

denote by

Lppt, s;Xq

the set of all p-integrable Lebesgue-measurable functions defined on the interval rt, ss and taking

values in X . The norm in this space will be given by

}f}Lppt,s;Xq
.“
ˆż s

t

}fprq}pX dr

˙1{p

When no misunderstanding is possible, we will also use the shorthand notation LppXq for

Lppt, s;Xq. We will also use the notation

L
p
bpt, s;Xq

to refer to translation bounded spaces. In this case the norm will be defined by

}χ}Lp
b

pt,s;Xqq
.“ sup
τPrt,s´1s

ˆż τ`1

τ

}χpsq}pX ds

˙1{p
.
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CHAPTER 2

Analysis of a Cahn-Hilliard-Ladyzhenskaya system with singular potential

Outline

In this chapter we study a model for the evolution of a mixture of two incompressible

and (partially) immiscible fluids in a domain of R
3. The model we consider is given by

Ladyzhenskaya-Navier-Stokes type equations for the (average) fluid velocity coupled with a

convective Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. The former

is endowed with no-slip boundary conditions, while the latter is subject to no-flux boundary

conditions so that the total mass is conserved. We first prove the existence of a weak solu-

tion in three-dimensions and some regularity properties. Then we establish the existence of

a weak trajectory attractor for a sufficiently general time-dependent external force. Finally,

taking advantage of the validity of the energy identity, we show that the trajectory attractor

actually attracts solutions with respect to the strong topology.

W
e start our mathematical analysis of possible variations on the model H introduced

in the previous chapter (see equation (1.1.6) in previous chapter), by considering a

special class of non-newtonian fluids. In particular, we investigate the mathemat-

ical implications of choosing the following, apparently regularising, constitutive relation for the

stress-strain rate relation, which is commonly used to describe shear thickening fluids (e.g. corn

starch):

τ pDu, ψq .“
`
ν1pψq ` ν2pψq|Du|p´2

˘
Du. (2.0.1)

Here ν1 and ν2 are given positive constants and p ą 1. Moreover, Du is the symmetrized

gradient. This relation, when used in the derivation of Navier-Stokes equations in place of its

37
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standard linear counterpart, τ pDuq .“ 2νpψqDu, gives rise to the well-known Ladyzhenskaya

model (see Ladyzhenskaya (1967)), which has been widely investigated in the case of single fluids

(see, e.g., Feireisl and Pražák (2010) and its references). Using this relation in the initial boundary

value problem
$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

Btu ` pu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∆µ

µ “ fpψq ´ ∆ψ

u “ 0, Bnψ “ Bnµ “ 0 on BΩ ˆ p0,8q

up0q “ u0, ψp0q “ ψ0 in Ω

(2.0.2)

we obtain the system which will be the main objective of our investigation in this chapter. As

usual, here u is the velocity field, ψ is the order parameter field, while π stands for the pressure. In

order to simplify notations as much as possible, with respect to system (1.1.6), we took ε “ M “ 1.

Motivated by the above discussion, we will call system (2.0.2) Ladyzhenskaya-Cahn-Hilliard—or

LCH—system.

This kind of system has been recently analyzed in Grasselli and Pražák (2011) in the case of

regular potentials, periodic boundary conditions, g time independent and νi, i “ 1, 2, depending

on ψ. Well-posedness results and regularity results have been obtained for p ě 11
5

(see also Kim

et al. (2006)). Then, using the short trajectory approach, the existence of global and exponential

attractors has been established. Here we want to analyze the singular potential case, namely

F prq .“ θ

2
pp1 ` rq lnp1 ` rq ` p1 ´ rq lnp1 ´ rqq ´ θc

2
r2, (2.0.3)

with a non-autonomous external force and no-slip and no-flux boundary conditions as in Abels

(2009c).

The plan of our analysis goes as follows. We first establish the existence of a weak solution.

Contrary to the case of single fluids (see Bulíček et al. (2010); Feireisl and Pražák (2010)) or

regular potentials (cf. Grasselli and Pražák (2011)), uniqueness seems a rather challenging issue.

Indeed, observe that, in comparison with the Cahn-Hilliard-Navier-Stokes case (i.e., ν2 “ 0)

considered in Abels (2009c), Btu is less regular. This fact influences, through the convective

term, the smoothness of ψ so that, even in the 2D case, the Korteweg force is not always as

smooth as needed to guarantee uniqueness when p is large (see also Remark 2.5.1 below). In

order to characterize the asymptotic behavior of system (2.0.2) since uniqueness of solution is not

known, we resort to the theory of trajectory attractors according to Chepyzhov and Vishik (1997)

(cf. Section 1.3.2 and see also Foias and Temam (1987) and Sell (1996) for earlier contributions to
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this field). This approach considers as phase space the set of the solutions on the interval r0,8q for

the system endowed with a suitable topology so that the dynamical system generated by (2.0.2)

reduces to a shift operator on this space. Working within this framework, in Sections 2.6 we

establish the existence of a trajectory attractor in a suitably chosen weak topology on the space

of trajectories. Finally, observing that any weak solution satisfies the energy equality, we can

show that the attraction property holds with respect to the strong topology.

2.1 Functional setting

In this chapter Ω is a given bounded domain in R
3 with smooth boundary (say of class C2). We

recall the notation Qt
.“ Ω ˆ r0, tq, Qt,s .“ Ω ˆ rt1, t2q introduced in Section 1.4.1 for parabolic

domains.

To study the velocity field, we introduce the usual space of solenoidal test functions

V0
.“ tφ P C8

c pΩ;Rnq | ∇ ·φ “ 0u

as well as the distribution spaces L2
0,divpΩq, Hs

0,divpΩq and W
s,r
0,divpΩq (cf. Section 1.4.2). Moreover,

to simplify notation we also define

VrpΩq .“ W
1,r
0,divpΩq.

As far as the order parameter is concerned, on account of mass conservation, we use Sobolev

spaces with fixed mean value as L2
pmqpΩq, Hs

pmqpΩq and W
s,p

pmqpΩq. Moreover, we use a similar

notation for dual spaces whenever it makes sense. Consistently with Section 1.4.2, we define

H´1
p0q pΩq .“ pH1

p0qpΩqq˚.

We end this section by recalling a simple result, which will be used in the proofs below (see

also (Colli et al., 2012, Lemma 1)).

Lemma 2.1.1. Let Ω Ă R be an open subset (not necessarily bounded) and let tfnu Ă L8pΩq
be a sequence such that |fn|8 ď C and fn Ñ f strongly in L2pΩq. Let tgnu Ă LppΩq be another

sequence such that gn á g weakly in LppΩq. Then fngn á fg weakly in LppΩq.

Proof. The statement can be easily proved using the density of C8
0 pΩq in L2pΩq and the estimate

|fngn|p ď |fn|8|gn|p.
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2.2 Main assumptions and weak formulation

Here we list some properties of the stress tensor that will be assumed in this chapter. In particular,

τ pS, ψq will be a function acting on SˆR with values in S (here S is the space of symmetric 3ˆ3

tensors) such that

τ p0, ϕq “ 0

pτ pS1, ϕq ´ τ pS2, ϕqq : pS1 ´ S2q ě ν˚ p1 ` |S1| ` |S2|qp´2 |S1 ´ S2|2

|τ pS1, ϕq ´ τ pS2, ϕq| ď Cν˚ p1 ` |S1| ` |S2|qp´2 |S1 ´ S2|

|τ pS, ϕ1q ´ τ pS, ϕ2q| ď Cν# p1 ` |S|qp´1 |ϕ1 ´ ϕ2|

for all ϕ, ϕi P R, i “ 1, 2 and for all S, Si P S, i “ 1, 2, where ν˚, ν˚, ν# P R are strictly positive

constants and where p is assumed to be greater than 2. Under these assumptions, τ induces

an operator, still denoted by τ , acting on LppΩq ˆ MpΩq with values in Lp
1 pΩq (here MpΩq is

the space of measurable functions on Ω). Moreover, the operator τ p · , ψq is hemicontinuous from

LppΩq into Lp
1 pΩq for any fixed ψ P MpΩq.

In the case of the constitutive law (2.0.1), all the above properties are implied by the assump-

tion

νi P C1pR,Rq

by setting

min
yPR

|νipyq| ě ν˚ ą 0, max
yPR

|νipyq| ď ν˚, max
yPR

|ν1
ipyq| ď ν#

The reader is referred to Bulíček et al. (2010) or (Feireisl and Pražák, 2010, Section 7.1.1) for a

more thorough discussion of the above assumptions and their possible generalisations.

As far as the potential F is concerned, following Abels (2009c), we will assume that F P
Cpr´1, 1sq X C2pp´1, 1qq) and

F psq “ F0psq ´ β

2
s2 ` γs

F0p0q “ f0p0q “ 0

lim
tÑ˘1

F ptq P R

lim
tÑ˘1

fptq “ ˘8.

for some β ě 0, γ P R.

Remark 2.2.1. We observe that the logarithmic double-well potential (2.0.3) satisfies the above

assumptions.

Let us now introduce the total energy associated with our system:

Epψ,uq .“ EP pψq ` 1

2

ż

Ω

|vpxq|2 dx,
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where EP pψq is the potential energy for the Cahn-Hilliard equation as given in Section 1.1.1 (cf.

equation (1.1.1))

EP pψq .“ 1

2

ż

Ω

|∇ψpxq|2 dx `
ż

Ω

F pψpxqqdx.

We can now give the definition of weak solution to problem (2.0.2).

Definition 2.2.1. Let pu0, ψ0q P L2
0,divpΩq ˆH1

p0qpΩq and let T ą 0 be given. A triplet pu, ψ, µq
such that

u P Lpp0, T ;Vpq XW 1,p1 p0, T ;V˚
p q

ψ P L8p0, T ;H1
p0qpΩqq XH1p0, T ;H´1

p0q pΩqq

fpψq P L2p0, T ;L2pΩqq

µ P L2p0, T ;H1pΩqq

is called a weak solution to (2.0.2) on p0, T q if

xBtu,vyQT
` xpu ·∇qu,vyQT

` xτ pDu, ψq, DvyQT

“ xµ∇ψ,vyQT
` xg,vyQT

, @v P C8pr0, T q;Vq (2.2.1)

xBtψ, φyQT
` xu ·∇ψ, φyQT

“ ´ p∇µ,∇φqQT

pµ, ξqQT
“ pfpψq, ξqQT

` p∇ψ,∇ξqQT

for all φ and ξ in C8pr0, T q;H1pΩqq and if the energy inequality

Epψptq,uptqq ` }∇µ}2L2pQt0 ,tq ` Cν1}∇u}2L2pQt0,tq ` Cν2}∇u}p
LppQt0,tq

ď Epψpt0q,upt0qq ` C}g}2L2pH´1q

holds for a.e. t0 P r0, T q and all t P rt0, T q.

Remark 2.2.2. Note that any weak solution is such that u P Cpr0, T s;L2
0,divpΩqq. Moreover, it is

easy to deduce that ψ P L2p0, T ;H2pΩqq. Furthermore, we will see that ψ P Cpr0, T s;H1
p0qpΩqq.

Remark 2.2.3. We observe that due to the assumptions on the singular potential F (namely

limtÑ˘1 fptq “ ˘8), the requirement fpψq P L2p0, T ;L2pΩqq in the definition of weak solutions

immediately implies that |ψ| ă 1 a.e. in QT .

Remark 2.2.4. Since the Cahn-Hilliard equation with homogeneous Neumann boundary condi-

tions on the chemical potential µ conserves the total mass of the order parameter
ş
Ω
ψ d3x, a

suitable shift in the values of the order parameter field is sufficient to ensure that

ż

Ω

ψptqd3x “ 0 @t ě 0 (2.2.2)
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holds as soon as
ş
Ω
ψ0 d

3x “ 0. This choice for the values of the order parameter can always

be made compatible with the above assumptions on the potential F (namely F0p0q “ 0 and

f0p0q “ 0) by suitably adjusting the constant γ in the decomposition of the potential F and by

adding an uninfluential constant to F itself. Therefore, in the remaining part of this chapter we

will assume that (2.2.2) holds true.

In this chapter, C will always be a generic constant, which may change from line to line or

from passage to passage, depending only on the domain Ω, and on the physical parameters of the

model (ν1, ν0 and on the potential F ). In particular C will always be assumed independent of

time.

2.3 The convective Cahn-Hilliard equation

Here we report a result from Abels (2009c) on the convective Cahn-Hilliard equation. Let us

consider the following problem

$
’’’’’’’’&
’’’’’’’’%

Btψ ` pvptq ·∇qψ “ ∆µ in Ω ˆ p0,8q

µ “ fpψq ´ ∆ψ in Ω ˆ p0,8q

Bnψ “ Bnµ “ 0 on BΩ

ψp0q “ ψ0 in Ω

(2.3.1)

where the velocity field v is given.

Definition 2.3.1. Let ψ0 P H1
p0qpΩq and let T ą 0 be given. A pair pψ, µq such that

ψ P L8p0, T ;H1
p0qpΩqq Btψ P L2p0, T ;H´1

p0qpΩqq

µ P L2p0, T ;H1pΩqq

F pψptqq P L1pΩq q.o. t P r0, T s

is a weak solution on the interval r0, T s to (2.3.1) if, for a.e. t P r0, T s, it satisfies

xBtψ, φy ` xpvptq ·∇qψ, φy ` p∇µ,∇φq “ 0 @φ P H1pΩq

pµ, ηq “ pfpψq, ηq ` p∇µ,∇ηq @η P H1pΩq

ψp0q “ ψ0

Under rather general assumptions problem (2.3.1) is well posed. Indeed we have

Theorem 2.3.1 ((Abels, 2009c, Theorem 6)). Let Ω be a regular domain in R3 and let v P
L2
locpr0,8q;V2q X L8pr0,8q;L2

0,divpΩqq. Then for any ψ0 P H1
p0qpΩq with EP pψ0q ă 8 there is a
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unique weak solution ψ of the Cahn-Hilliard system (2.3.1) with ψ P BCpr0,8q;H1
p0qpΩqq. This

solution satisfies the energy equality

EP pψptqq `
ż

Qt

|∇µ|2 dxdt “ EP pψ0q ´
ż

Qt

µpv ·∇qψ dxdt @t ě 0 (2.3.2)

and the energy estimates

}ψ}2L8pr0,8q;H1

p0qq ` }Btψ}2
L2

loc
pr0,8q;H´1

p0q q ` }∇µ}2L2
loc

pr0,8q;L2q

ďC
´
EP pψ0q ` }v}2L2

loc
pr0,8q;L2q

¯
,

}ψ}2
L2

loc
pr0,8q;W 2,r

p0q q ` }fpψq}2L2
loc

pr0,8q;Lrq ď C
´
EP pψ0q ` }v}2L2

loc
pr0,8q;L2q ` 1

¯

where the constants C do not depend on either v or ψ0. Also, it fulfills the regularity properties

ψ P Y .“ L2
locpr0,8q;W 2,6pΩqq XH1

locpr0,8q;H´1
p0q pΩqq.

Moreover, the solution depends continuously on the data pφ0,vq in H1pΩqˆL2
locpr0,8q;L2

0,divpΩqq
such that EP pψ0q ` }v}L2pr0,8q;H1q ď R, with respect to the weak topology of Y and the strong

topology of H1pΩq ˆ L2
locpr0,8q;L2

0,divpΩqq.

2.4 Some results on the Ladyzhenskaya model

In this section we summarize some of the results known on the well-posedness of the Ladyzhen-

skaya model. We start by recalling that the Ladyzhenskaya model for non-Newtonian fluids is
$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu “ ´∇p` ∇ · pτ pDuqq ` fptq in Ω ˆ p0,8q

∇ ·u “ 0 in Ω ˆ p0,8q

u “ 0 on BΩ

up0q “ u0 in Ω

(2.4.1)

where τ is given by (2.0.1).

The well posedness of system (2.4.1) has been extensively studied in the literature. In the

shear-thickening case (i.e. p ě 2), existence and uniqueness of solutions have been obtained as

soon as p ě 11
5

(see, for instance, Feireisl and Pražák (2010) and references therein). Although

we will not use directly the results of this section in our results, we observe that the same mathe-

matical difficulties (i.e. uniqueness is an open issue for p ă 11
5

) hold both for the Ladyzhenskaya

model as well as for the coupled model we are studying.

Definition 2.4.1. Let u0 P L2
0,divpΩq and let T ą 0 be given. A function u such that

u P Lpp0, T ;VppΩqq Btu P Lp1 p0, T ; pVppΩqq˚q
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is a weak solution on the interval r0, T s to problem (2.4.1) if for a.e. t P r0, T s

xBtu,φy ` xpu ·∇qu,φy ` pτ pDuq, Dφq ` xfptq,φy @φ P VppΩq

up0q “ u0.

Definition 2.4.2. A function u such that

u P Lplocpr0,8q;VppΩqq Btu P Lp
1

locpr0,8q; pVppΩqq˚q

is a global weak solution to problem (2.4.1) if it is a weak solution on r0, T s for any T ą 0.

Then, thanks to the results in (Feireisl and Pražák, 2010, Chapter 7.1) (see also Málek et al.

(2001) for some more detailed results), we have

Theorem 2.4.1. Let p ě 11
5
. If f P H1

locpr0,8q;H´1pΩqq. Then there exists a unique global weak

solution u to problem (2.4.1) which satisfies

u P L8pr0,8q;L2
0,divpΩqq X L

p
locpr0,8q;Vpq XW

1,p1

loc pr0,8q;V˚
p q.

Moreover u also satisfies the following energy equality

1

2

d

dt
|u|22 `

ż

Ω

τ pDuq :Du dx “
ż

Ω

f ·u dx.

2.5 Weak solutions and energy estimates

Here we prove the existence of a weak solution to problem (2.0.2) revisiting the fixed-point

argument devised in (Abels, 2009c, Theorem 9).

Theorem 2.5.1. Let p ą 11
5

and let g P L
p1

locpr0,8q;V˚
p q. Then, for any given T ą 0, there

exists a weak solution pu, ψ, µq to problem (2.0.2). In addition, ψ P Cpr0, T s;H1
p0qpΩqq.

Proof. We will first prove the existence of solutions for the following approximated problem:
$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

Btu ` pΦǫu ·∇qu “ ´∇π ` ∇ · pτ pDu, ψqq ´ ∇ · p∇ψ b ∇ψq ` gptq

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∆µ

µ “ fpψq ´ ∆ψ

u “ 0, Bnψ “ Bnµ “ 0 on BΩ ˆ p0,8q

up0q “ u0, ψp0q “ ψ0 in Ω.

(2.5.1)

The operator Φǫ appearing above is a suitable regularization defined as

Φǫw “ Pppφǫ ˙ wq
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where φǫpxq “ ǫ´3φpx{ǫq P C8pR3q, ǫ ą 0 is a smoothing kernel and where Pp is the bounded

analogue of the Leray’s projector from the spaces LppΩq to Vp (see the results on the Helmholtz

decomposition in (Fabes et al., 1998, Section 11)). The definition of weak solution for the ap-

proximated system (2.5.1) reads as Definition 2.2.1 with the only slight change in (2.2.1) due to

the introduction of the regularization.

The existence of weak solutions for the approximated problem can be shown by a fixed point

argument. We will consider

X “ Lpp0, T ;Vpq XW 1,p1 p0, T ;V˚
p q

and

Y “ L2p0, T ;W 2,6

p0q pΩqq XH1p0, T ;H´1
p0q pΩqq

as functional spaces for the velocity and the order parameter field respectively. The fixed point

map Ψ: X Ñ X is defined by first finding the solution ψ to problem (2.3.1), where the velocity

field v is assumed to be known, and then by determining the solution u to the system

$
’’’’’’’’&
’’’’’’’’%

Btu ´ ∇ · pτ pDu, ψqq “ ´∇p` hptq in QT

∇ ·u “ 0 in QT

u “ 0 on BΩ ˆ r0, T q

up0q “ u0 in Ω.

(2.5.2)

with

hptq “ ´pΦǫv ·∇qv ´ ∇ · p∇ψ b ∇ψq ` gptq.

The map Ψ is the operator associating to the velocity field v the solution u of (2.5.2), i.e.

Ψ: v ÞÑ u.

Theorem 2.3.1 ensures that SCH : v ÞÑ ψ is strong-weak continuous from X to Y . On the

other hand, by Aubin-Lions’ lemma, we have that

Y ĂĂ L2p0, T ;C1pΩqq.

Using Theorem 2.3.1 again, we obtain that SCH is bounded with values in Y XL8p0, T ;H1
p0qpΩqq

so that ∇ψ “ ∇SCHpvq P L4p0, T ;L4pΩqq and ∇ψ b ∇ψ P L2p0, T ;L2pΩqq. From this we also

deduce that the mapping

v ÞÑ ´∇ · p∇ψ b ∇ψq ´ pΦǫv ·∇qv

is continuous and compact from X into Lp
1 p0, T ;V˚

p q. Since τ pDu, ψq is uniformly monotone and

hemicontinuous (w.r.t. ψ P MpΩq) a standard application of the theory of monotone operators
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(see Lions (1969)) shows that the solution operator to problem (2.5.2) SP : phptq, ψq ÞÑ u is well

defined and continuous from Lp
1 p0, T ;V˚

p q ˆ L2p0, T ;L2
p0qpΩqq into X .

By the above discussion we conclude that the operator

Ψpvq “ SP ˝ SCHpvq.

is continuous being a composition of continuous mappings and is precompact thanks to Aubin-

Lions’ lemma as shown above.

In order to apply the Leray-Schauder fixed point theorem and conclude our proof we still need

a suitable a priori bound on the solutions of the equation

sΨpuq “ u s P r0, 1s.

By multiplying the above equation by u and integrating over Ω, we obtain

d

dt
|u|22 ` Cν1|∇u|22 ` Cν2|∇u|pp ď s2C}g}p

1

V˚
p

´ sC pp∇ψ b ∇ψq,∇uq .

Recalling the useful vector identity

xpu ·∇qψ, µy “ pp∇ψ b ∇ψq,∇uq (2.5.3)

and energy equality (2.3.2), we get

sEpψ,uq ` s}∇µ}2L2pQT q ` |upT q|22 ` Cν˚}∇u}2L2pQT q ` Cν˚}∇u}p
LppQT q

ďEpψ0,u0q ` s2C}g}p
Lp1 pVpq,

which in particular entails an a priori estimate on }∇u}LppVpq which is uniform with respect to

s and independent of ǫ.

Thanks to Theorem 2.3.1 we can also obtain uniform estimates for ∇ψ in L8pL2pΩqq and in

L2pL8pΩqq. Thus }Btu}Lp1 ppVpq˚q can be uniformly (w.r.t. s) bounded as follows

}Btu}
Lp1 ppVpq˚q ď C}u}

5p´9

5p´6

L8pL2q}u}
3

5p´6

L
2p1 3

5p´6 pVpq
}Φǫu}

5p´9

5p´6

L8pL2q}Φǫu}
3

5p´6

L
2p1 3

5p´6 pVpq

` Cν˚}u}p´1

LppVpq ` C}∇ψ}
2

p1

L8pL2q}ψ}
2

p

L
2
p1

p pW 2,3q
` }g}

Lp1 ppVpq˚q.

as soon as

2p1 3

5p´ 6
ď p i.e. p ě 11

5
.

Moreover we observe that this bound is uniform also in ǫ for p ě 11
5

. This concludes the proof of

the existence of solutions for the approximate problem (2.5.1).

We now want to pass to the limit for ǫ Ñ 0 and recover solutions for the original model as

soon as p ě 11
5

. By considering the weak solutions to problem (2.5.1) puǫ, ψǫ, µǫq on the time
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interval r0, Tǫq, Tǫ “ 1
ǫ

and extended to zero for times greater than Tǫ, the above discussion gives

a sequence ǫk Ñ 0 such that

uǫ á u in Lplocpr0,8q;Vpq

uǫ
˚á u in L8

locpr0,8q;L2
0,divpΩqq

Btuǫ á Btu in Lp
1

locpr0,8q;V˚
p q

τ pDuǫ, ψq á χ in Lp
1

locpr0,8q;V˚
p q

ψǫ á ψ in L2
locpr0,8q;W 2,6

p0q pΩqq

ψǫ
˚á ψ in L8pr0,8q;L2pΩqq

∇µǫ á ∇µ in L2
locpr0,8q;L2pΩqq.

Moreover, Aubin-Lions’ lemma implies that uǫ Ñ u strongly in L
p
locpr0,8q;Lq0,divpΩqq for all

q ă 3p
3´p so that

pΦǫuǫ ·∇quǫ á pu ·∇qu in Lp
1

locpr0,8q;V˚
p q

as soon as p ą 11
5

. By using Aubin-Lions’ lemma once more, we also have that ψǫ Ñ ψ strongly in

L2
locpr0,8q;H1

p0qpΩqq. This in turn implies strong convergence of ψǫ to ψ in L4
locpr0,8q;L4

p0qpΩqq
and

∇ψǫ b ∇ψǫ Ñ ∇ψ b ∇ψ in L2
locpr0,8q;L2pΩqq,

In order to pass to the limit in the stress term, we observe that for all v P Vp we have

x∇ · pτ pDuǫ, ψǫqq,vy “ x∇ · pτ pDuǫ, ψǫq ´ τ pDuǫ, ψqq,vy ` x∇ · pτ pDuǫ, ψqq,vy

By the assumptions on τ we have
ż T

0

|x∇ · pτ pDuǫ, ψǫq ´ τ pDuǫ, ψqq,vy| ď
ż

Ωˆr0,T s
|ψǫ ´ ψ| p1 ` |Duǫ|qp´1 |∇v| , (2.5.4)

which is easily seen to converge to 0 by using Lemma 2.1.1 up to a subsequence after noting that

p1`|Duǫ|qp´1 is bounded in Lp
1 p0, T ;V˚

p1 q, that ψ converges strongly to ψ in L2p0, T ;L2
p0qpΩqq for

any T ą 0 and that |ψǫ| ď 1 a.e. in Ω ˆ r0,8q. Using again a standard monotonicity argument

(see (Lions, 1969, Chapter 2)), we can now identify the limit χ with τ pDu, ψq and pass to the

limit in all the terms in the linear momentum equation.

We can also easily pass to the limit in the Cahn-Hilliard equation thanks to the continuous

dependence results in Theorem 2.3.1 and to the strong convergence of uǫ in L2
locpr0,8q;L2

0,divpΩqq
obtaining therefore that ψ and µ satisfy the order parameter equation with convective term u ·∇ψ.

This proves that pu, ψ, µq satisfies system (2.0.2) in a weak sense.

In order to have a weak solution we still have to show that our candidate solution pu, ψ, µq
satisfies the energy inequality. However this easily follows by noting that the approximate so-

lutions puǫ, ψǫ, µǫq satisfy an analogous equality and that from the strong convergence of uǫ in
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L2
locpr0,8q;L2

0,divpΩqq and of ψǫ in L2
locpr0,8q;H1

p0qpΩqq we have strong convergence of uǫptq in

L2
0,divpΩq and of ψǫptq in H1

p0qpΩq for almost every positive t. Finally we conclude thanks to the

weak lower semicontinuity of norms.

As a consequence (cf. also Remark 2.2.2), we can say that there exists a global weak solution

to problem (2.0.2) (i.e. defined on p0,8q). We now show that any (global) weak solution satisfies

an energy equality. This fact will play a basic role in the subsequent analysis of the longtime

behavior (see the next sections).

Theorem 2.5.2. Any weak solution pu, ψ, µq to problem (2.0.2) satisfies the following (differen-

tial) energy equality, for a.e. t ą 0:

d

dt
Epψ,uq `

ż

Ω

τ pDu, ψq :Du dx `
ż

Ω

fpψqψ dx ` |∇µ|22 ` |∇ψ|22

“ xgptq,uy ` pµ, ψq . (2.5.5)

Proof. Let pu, ψ, µq be any (global) weak solution to problem (2.0.2). Before starting, we recall

the following identity (see (Colli et al., 2007, Proposition 4.2))

ż

Ω

µBtψ “ 1

2

ż

Ω

d

dt
p2F pψq ` |∇ψ|2q.

Testing now the linear momentum balance by u and the evolution equation for the order parameter

by µ, recalling identity (2.5.3) and adding the resulting estimates together, we obtain

d

dt
Epu, ψq `

ż

Ω

τ pDu, ψq :Du dx ` |∇µ|22 “ xgptq,uy

Multiplying the equation for the chemical potential in (2.0.2) by ψ and integrating over Ω, we

also get

pµ, ψq “ |∇ψ|22 `
ż

Ω

fpψqψ dx

from which the claim easily follows.

Corollary 2.5.3 ((Grasselli and Pražák, 2011, Theorem 3.1)). Any global weak solution to prob-

lem (2.0.2) satisfies the following dissipative estimate, for a.e. t ą 0:

d

dt
Epψ,uq ` cEpψ,uq ` c|∇u|22 ` c|∇u|pp ` c|∇µ|22 ď C

´
}g}2

H
´1

div

` 1
¯
. (2.5.6)

where the positive constants c and C depend only on the structural parameters of the model and

on Ω.
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Proof. The viscous term in (2.5.5) can be estimated from below owing to the monotonicity of

τ p · , ψq for fixed ψ. The term arising from potential F can be handled easily as follows

ż

Ω

fpψqψ dx “
ż

Ω

f0pψqψ dx ´ β

ż

Ω

ψ2 dx ` γ

ż

Ω

ψ dx

ě
ż

Ω

F0pψqdx ´ β

ż

Ω

ψ2 dx “
ż

Ω

F pψqdx ´ β

2

ż

Ω

ψ2 dx

where we used the convexity of F0 and F0p0q “ 0 (see page 40). The dissipativity estimate then

follows from Poincaré’s inequality.

Remark 2.5.1. Due to the low time regularity of the acceleration field ut for large p, in general

we cannot ensure uniqueness even in the 2D case. In particular this lower regularity prevents

us from obtaining a suitable time-regularity for the order parameter field (e.g. boundedness of

ψ in L8pr0,8q;W 1,8
p0q q) needed to prove uniqueness of solutions for system (2.0.2). This issue is

related to the presence of the singular potential in our model (see Grasselli and Pražák (2011)

for a thorough discussion of the regular case).

2.6 A weak trajectory attractor

In this section we define a (trajectory) dynamical system associated with problem (2.0.2) and then

we establish the existence of a trajectory attractor by using the general results of Chepyzhov and

Vishik (2002).

We start by recalling the main pertinent definitions to our case. The set of all non-autonomous

terms appearing in (2.0.2), considered as functions from R
` “ r0,8q into a suitable Banach space

Ξ, will be called the symbol of the equation and will be denoted by σ (in our case, σ “ g). The

space of all admissible symbols will be called the symbol space and will be denoted by Σ. It is

possible to define a natural semigroup on the symbol space, the translation semigroup tT ptqutPR`

that simply translates in time the non-autonomous symbols:

rT ptqσspsq “ σpt ` sq @s ą 0.

In order to guarantee good asymptotic properties one usually needs the symbol space to

be positively translation invariant (i.e. positively invariant under the action of the translation

semigroup, T ptqΣ Ă Σ @t ě 0). In particular we will assume that:

Σ “ Hpσ0q .“ tT ptqσ0 | t P R`uΞ

where σ0psq is a suitable translation compact function in Ξ. In our case σ0 “ g0 will be a

translation compact function in L2
locpR;H´1

divpΩqq. We recall the following useful proposition.
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Proposition 2.6.1 ((Chepyzhov and Vishik, 2002, Proposition V.3.3)). Let E be a Banach space.

A function σpsq is translation compact in L
p
locpR;Eq if and only if:

1. for any h ą 0 the set #ż t`h

t

σpsqds | t P R

+

is precompact in E;

2. there exists a function αpsq, limsÑ0` αpsq “ 0` such that

ż t`1

t

}σpsq ´ σps ` lq}pE ds ď αp|l|q @t P R.

We can now introduce the trajectory space, that is the set of all (weak) solutions to prob-

lem (2.0.2) for any given pair pu0, ψ0q P L2
0,divpΩq ˆH1

p0qpΩq.

Definition 2.6.1. The set K`
σ , σ P Σ given by

K
`
σ
.“ tpup · q, ψp · q, µp · qq | pu, ψ, µq is a weak solution to (2.0.2) with symbol σ

u P Lplocpr0,8q;Vpq X L8pr0,8q;L2
0,divpΩqq XW 1,p1 pr0,8q;V˚

p q,

ψ P L8
locpr0,8q;H1

p0qpΩqq XH1pr0,8q;H´1
p0q pΩqq,

fpψq P L2
locpr0,8q;L6pΩqq,

µ P L2
locpr0,8q;H1pΩqq u

is the trajectory space to problem (2.0.2) with symbol σ.

Definition 2.6.2. The set

K
`
Σ

.“
ď

σPΣ
K

`
σ

is the united trajectory space associated with problem (2.0.2).

On account of the previous section, we know that K`
σ is non-empty for any σ P Σ. Moreover,

K
`
Σ can be embedded in a natural ambient space, namely:

F
`
loc

.“ tpup · q, ψp · q, µp · qq |

u P Lpp0, T ;Vpq X L8p0, T ;L2
0,divpΩqq XW 1,p1 p0, T ;V˚

p q,@T ą 0,

ψ P L8p0, T ;H1
p0qpΩqq XH1p0, T ;H´1

p0q pΩqq,@T ą 0,

fpψq P L2p0, T ;L6pΩqq,@T ą 0,

µ P L2p0, T ;H1pΩqq,@T ą 0u.

Furthermore we introduce a suitable topology on the enveloping space F`
loc, which will be inherited

by the trajectory space. In this section we consider the following
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Definition 2.6.3. The sequence tpun, ψn, µnqunPN Ă F
`
loc is said to converge to pu, ψ, µq P F

`
loc

in the local weak sequential topology Θ`
w,loc if

un á u in Lpp0, T ;Vpq

un
˚á u in L8p0, T ;L2

0,divpΩqq

Btun á Btu in Lp
1 p0, T ;V˚

p q

ψn
˚á ψ in L8p0, T ;H1

p0qpΩqq

Btψn á Btψ in L2p0, T ;H´1
p0q pΩqq

µn á µ in L2p0, T ;H1pΩqq

for all T ą 0.

In what follows we will also assume that the family of trajectory space tK`
σ uσPΣ is translation

coordinated, i.e. T ptqK`
σ Ă K

`
T ptqσ, for all t ě 0. This readily follows from the action of time

shifts in equation (2.0.2) and from the definition of the translation semigroup T p · q. Let us now

introduce a notion of closedness in the space of trajectories.

Definition 2.6.4. The family of trajectory spaces tKσuσPΣ is pΘ`
w,loc,Σq-closed if the set

ď

σPΣ
K

`
σ ˆ tσu

is closed in Θ`
w,loc ˆ Σ endowed with the standard product topology.

We can prove that our trajectory space is closed. Indeed we have

Lemma 2.6.2. The trajectory space K`
σ , σ P Σ is pΘ`

w,loc,Σq-closed in F
`
loc.

Proof. Let tpun, ψn, µnqunPN be any sequence of solutions of (2.0.2) with symbol σn P Σ such

that pun, ψn, µnq Ñ pu, ψ, µq in Θ`
w,loc and σn Ñ σ in L2

locpr0,8q;H´1
divpΩqq. We only have to

show that pu, ψ, µq is a global weak solution to problem (2.0.2) with symbol σ.

Thanks to the regularity results of the previous sections we know that (up to subsequences)

ψn converges to ψ weakly in L2p0, T ;W 2,6

p0q q and strongly in L4p0, T ;W 1,4

p0q pΩqq (see the proof of

Theorem 2.5.1). Thus we can pass to the limit in the non-linear coupling term in the momentum

equation. Moreover a standard estimate (see, e.g., Bulíček et al. (2010)) shows that
ˇ̌
ˇ̌
ż

T

ż

Ω

pu ·∇qw ·φ dxdt

ˇ̌
ˇ̌ ď |φ|p,Vp

|∇w|p,p|u| p
p´2

, 3p
4p´6

.

From the weak convergence of un we know that tunu is bounded in LppVpq X L8pL2pΩqq and,

thanks to Aubin-Lions’ lemma, it is also precompact in L2pL2q so that un Ñ u strongly in

L
p
p´2 pL

3p
4p´6 pΩqq as soon as p ą 11

5
. We can therefore pass to the limit also in the convective

term of the momentum equation.
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Possibly extracting a further subsequence, we can also assume that ψn Ñ ψ a.e. ΩˆR` so that

by the dominated convergence theorem ψn converges strongly to ψ in LqpLqp0qpΩqq for all q P r1,8q.
We can therefore pass to the limit also in the convective term in the order parameter equation.

From the equation for µ and the boundedness of µn in L2pH1pΩqq and of ψn in L2pW 2,6pΩqq, we

deduce that fpψnq is bounded in L2pL6pΩqq. Therefore, we also have fpψnq á χ in L2pL6pΩqq
up to a subsequence. We want to show that χ “ fpψq. From the convergence of ψn to ψ a.e in

ΩˆR`, for a.e. t ą 0 and any m P N we can find a subset of measure |Ω| ´ 1
2m

on which ψn Ñ ψ

uniformly. Thanks to the regularity assumed for the potential F , for almost every time t and any

m P N, we can also find δ ą 0 and a set of measure |Ω| ´ 1
2m

on which |ψ| ď 1 ´ δ. Therefore,

for a.e. t ą 0 we can find a subset of Ω of measure |Ω| ´ 1
m

on which |ψn| ď 1 ´ δ
2

definitively

so that fpψnq Ñ fpψq a.e except on a set of measure 1
m

. By taking the union of such sets over

m we deduce that fpψnq Ñ fpψq a.e. so that fpψq “ χ by the uniqueness of weak and pointwise

a.e. limits.

We still have to pass to the limit in the viscous part of the linear momentum equation. Thanks

to the boundedness of τ as an operator acting on Lpp0, T ;Vpq into Lp
1 p0, T ;V˚

p q for any T ą 0,

we can assume that τ pun, ψq weakly converges to χ P V˚
p up to a subsequence. As in the proof

of Theorem 2.5.1, using the continuity of τ pDu, ϕq with respect to ϕ (see estimate (2.5.4)), the

uniform (w.r.t. ϕ) monotonicity of τ p · , ϕq and the convergence of the other nonlinearities previ-

ously discussed (see (Lions, 1969, Chapter 2)), we can identify the limit point χ with τ pDu, ψq
and pass to the limit in all the terms of the equation. Finally, a standard contradiction argument

gives the convergence of the whole sequence.

In addition, a straightforward consequence of the above definition of trajectory space and of

the action of the semigroup tT phquhě0 on it is

Lemma 2.6.3. The translation semigroup is continuous on the extended phase space Θ`
w,loc ˆΣ.

Having defined the trajectory space and studied its main topological properties, we now in-

troduce a suitable notion of dissipativity. We start by considering the linear subspace of F`
loc of

uniformly bounded functions, F`
b :

F
`
b

.“ tpup · q, ψp · q, µp · qq |

u P Lpbpr0,8q;Vpq X L8pr0,8q;L2
0,divpΩqq XW

1,p1

b pr0,8q;V˚
p q,

ψ P L8pr0,8q;H1
p0qpΩqq XH1

bpr0,8q;H´1
p0q pΩqq,

µ P L2
bpr0,8q;H1pΩqqu
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endowed with the norm

}pu, ψ, µq}
F

`
b

.“}u}Lp
b

pr0,8q;Vpq ` }u}L8pr0,8q;L2pΩqq ` }u}
W

1,p1

b
pr0,8q;V˚

p q

` }ψ}L8pr0,8q;H1

p0qpΩqq ` }ψ}H1
b

pr0,8q;H´1

p0q pΩqq ` }µ}L2

b
pr0,8q;H1pΩqq

where we recall (see Section 1.4.2)

}χ}Lp
b

pR`;Xq
.“ sup
tě0

ˆż t`1

t

}χpsq}pX ds

˙1{p
.

Arguing as in the proof of Lemma 2.6.2 above, we immediately deduce that sets of trajectories

bounded in F
`
b are automatically compact in Θ`

w,loc.We now introduce the main dissipativity

notion for non-autonomous trajectory attractors.

Definition 2.6.5. A set B0 Ă Θ is uniformly (w.r.t. σ P Σ) absorbing for the family of trajectory

spaces tK`
σ uσPΣ in the topology Θ if for any set B Ă K

`
Σ bounded in F

`
b there exists a time

t1 “ t1pBq ą 0 such that T ptqB Ă B0 for all t ě t1.

Lemma 2.6.4. The set

B0
.“ tpu, ψ, µq P K

`
Σ | }pu, ψ, µq}

F
`
b

ď R0u

where

R0 “ CpΩ, β, νq
´

}g}L2
b

pH´1

div
q ` 1

¯

is uniformly (w.r.t. σ P Σ) absorbing for the trajectory space K
`
Σ in Θ`

w,loc.

Proof. The proof consists in showing that, for a sufficiently large time, all the norm appear-

ing in the definition of F
`
b are bounded by a constant times }g}L2

b
pH´1

div
q ` 1. We start by

applying Gronwall’s lemma to the energy estimate (2.5.6) getting a suitable bound for u P
L
p
bpr0,8q;Vpq X L8pr0,8q;L2

0,divpΩqq, ψ P L8pr0,8q;H1
p0qpΩqq, F pψq P L8pr0,8q;L1pΩqq and

µ P L2
bpr0,8q;H1pΩqq. From this results we also deduce that also EP pψq is definitely bounded

by a constant times }g}L2
b

pH´1

div
q ` 1.

Starting now from a sufficiently large time t, which however depends only on the norms of the

original initial conditions and on the norm of the forcing term g, Theorem 2.3.1 gives the desired

estimates on ψ P L2
bpr0,8q;W 2,6

p0q pΩqq X H1
bpr0,8q;H´1

p0q pΩqq. Finally, directly from the equation

for the linear momentum we can control the time derivative of u obtaining the absorbtion property

for u P W 1,p1

b pr0,8q;V˚
p q.

Moreover, on account of the preceding analysis, we have
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Lemma 2.6.5. The absorbing set B0 defined above is positively invariant and compact.

Proof. The invariance is an immediate consequence of the definition of B0 and of the translation

semigroup. In order to prove the compactness, we can repeat the same argument used in the

proof of Lemma 2.6.2 above.

We can now recall a couple of basic definitions (see Chepyzhov and Vishik (2002))

Definition 2.6.6. A set B1 Ă Θ is uniformly (w.r.t. σ P Σ) attracting for the family of trajectory

spaces tK`
σ uσPΣ in the topology Θ if for any set B Ă K

`
Σ bounded in F

`
b and for any neighbour-

hood OpB1q of B1 in Θ, there exists a time t1 “ t1pB,OpB1qq ą 0 such that T ptqB Ă OpB1q for

all t ě t1.

Definition 2.6.7. A set Aσ Ă K` is the weak trajectory attractor for problem (2.0.2) if

1. it is compact in Θ`
w,loc and bounded in F

`
b ;

2. it is uniformly (w.r.t. σ P Σ) attracting in Θ`
w,loc;

3. is strictly invariant, i.e. T ptqAΣ “ AΣ, @t ě 0.

We can now recall the general existence result for the trajectory attractor of an abstract

evolution equation

Btu “ Aσptqpuq, t P R. (2.6.1)

Theorem 2.6.6 ((Chepyzhov and Vishik, 2002, Theorem XIV.3.1)). Let Σ be a compact metric

space and let a continuous translation group tT ptqutPR act on Σ, T ptqΣ Ă Σ. Assume that the

family of trajectory spaces tK`
σ uσPΣ, K`

σ Ă F
`
loc corresponding to equation (2.6.1) is translation

coordinated and pΘ`
w,loc,Σq-closed. Assume further that there exists a uniformly (w.r.t. σ P Σ)

absorbing set B for tK`
σ uσPΣ in Θ`

w,loc such that B is compact in Θ`
w,loc and bounded in F

`
b .

Then the translation semigroup tT ptqutě0 acting on K
`
Σ possesses the uniform (w.r.t. σ P Σ)

trajectory attractor AΣ Ă K
`
Σ XB.

In our case we deduce

Theorem 2.6.7. Let gptq be translation compact in L2
locpr0,8q;H´1

divpΩqq. Then system (2.0.2)

has the uniform (with respect to σ P Σ “ Hpgq) trajectory attractor AΣ.

Proof. The claim follows from Lemmata 2.6.2, 2.6.3, 2.6.4 and 2.6.5.
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2.7 A strong trajectory attractor

Here we exploit the energy equality (2.5.5) which allows us to use the argument devised in Vishik

et al. (2010), to prove that the weak trajectory attractor actually attracts trajectories with respect

to the strong topology. More precisely, the attraction property also holds in the strong local

convergence topology defined below.

Definition 2.7.1. A sequence tpun, ψn, µnqunPN Ă F
`
loc converges to pu, ψ, µq P F

`
loc in the strong

local convergence topology Θ`
s,loc if, for any T ą 0, we have

lim
nÑ8

}un ´ u}Lpp0,T ;Vpq “ 0, lim
nÑ8

}Btun ´ Btv}Lp1 p0,T ;V˚
p q “ 0

lim
nÑ8

}ψn ´ ψ}L2p0,T ;H1

p0qpΩqq “ 0, lim
nÑ8

}Btψn ´ Btψ}L2p0,T ;H´1

p0q pΩqq “ 0

lim
nÑ8

}µn ´ µ}L2p0,T ;H1pΩqq “ 0.

Indeed, we now prove the following

Theorem 2.7.1. Let gptq be translation compact in L2
locpr0,8q;H´1

divpΩqq. Then the uniform

(w.r.t. σ P Σ “ Hpgq) trajectory attractor AΣ is the strong uniform (w.r.t. σ P Σ “ Hpgq)
trajectory attractor, i.e. it attracts trajectories in the strong topology Θ`

s,loc.

Proof. In order to prove this result it is sufficient to show that, whenever tpun, ψn, µnqunPN Ă B0

is a weakly convergent sequence of solutions of equation (2.0.2), then it also converges strongly

for sufficiently large times. Indeed, if this is true, the weak compactness of the attractor implies

its compactness in the strong topology Θ`
s,loc and the weak attraction property is carried over to

the strong topology as well.

Therefore, the proof reduces to showing that, whenever tpun, ψn, µnqunPN Ă B0 X K
`
Σ weakly

converges to ppu, pψ, pµq, then T p1qpun, ψn, µnq Ñ T p1qppu, pψ, pµq strongly on any bounded interval

sufficiently far from the origin. In the computations below for the sake of simplicity we will

consider the time interval r1, 2s.
We now multiply (2.5.5) by the time t and integrate it from 0 to 2 obtaining, for all n P N,

2Epψnp2q,unp2qq ´ 1

2

ż 2

0

|un|22 dt ´ 1

2

ż 2

0

|∇ψn|22 dt ´
ż 2

0

ż

Ω

F pψnqdxdt

`
ż 2

0

t xτ pDun, ψnq, Duny dt`
ż 2

0

ż

Ω

tfpψnqψn dxdt `
ż 2

0

t|∇µn|22 dt

`
ż 2

0

t|∇ψn|22 dt “
ż 2

0

t xgnptq,uny dt `
ż 2

0

t pµn, ψnq dt. (2.7.1)

We observe that the limit solution ppu, pψ, pµq satisfies an analogous identity.

We now want to pass to the limit in (2.7.1). We recall that, on account of the regularity of

weak solutions, using Aubin-Lions’ compactness lemma and the dominated convergence theorem,
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the first three integrals on the left hand side of (2.7.1) converge to their limiting counterparts.

Arguing as in the proof of Lemma 2.6.2 we deduce that fpψnq is bounded in L2pL6q. By the

strong convergence of ψn in L2pL2q we see that we can also pass to the limit in the other term

arising from the potential F . By compactness we can also easily pass to the limit in the two

terms on the right hand side of (2.7.1). Therefore, only the following four terms are left

|unp2q|22, |∇ψnp2q|22,
ż 2

0

t|∇µn|22 dt,
ż 2

0

t xτ pDun, ψnq, Duny dt.

Thanks to the monotonicity of τ we have for a.e. px, tq P Ω ˆ r0, 2s

pτ pDun, ψnq ´ τ pDpu, ψnqq : pDun ´Dpuq ě 0.

Multiplying by t, integrating on Ω ˆ r0, 2s and using Lemma 2.1.1, we deduce
ż 2

0

t
A
τ pDpu, pψq, Dpu

E
dt ď lim inf

nÑ8

ż 2

0

t xτ pDun, ψnq, Duny dt.

Analogously, from the weak lower semicontinuity of norms we deduce
ż 2

0

t|∇pµ|22 dt ď lim inf
nÑ8

ż 2

0

t|∇µn|22 dt

|pup2q|22 ď lim inf
nÑ8

|unp2q|22

|∇ pψp2q|22 ď lim inf
nÑ8

|∇ψnp2q|22

In order to conclude the proof we need the following elementary lemma

Lemma 2.7.2. Let tanunPN and tbnunPN be sequences of real numbers such that

a ď lim inf
nÑ8

an b ď lim inf
nÑ8

bn

and

lim
nÑ8

an ` bn “ a ` b.

Then

lim
nÑ8

an “ a, lim
nÑ8

bn “ b.

Applying this result to the sum

|unp2q|22 ` |∇ψnp2q|22 `
ż 2

0

t|∇µn|22 dt `
ż 2

0

t xτ pDun, ψnq, Duny dt

appearing on the left hand side of (2.7.1) we deduce

lim
nÑ8

|unp2q|22 “ |pup2q|22

lim
nÑ8

|∇ψnp2q|22 “ |∇ pψp2q|22

lim
nÑ8

}∇µn}L2
t p0,2;L2pΩqq “ }∇µ}L2

tp0,2;L2pΩqq

lim
nÑ8

ż 2

0

t xτ pDun, ψnq, Duny dt “
ż 2

0

t
A
τ pDpu, pψq, Dpu

E
dt.
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The last limit and the assumptions on the stress tensor, combined again with Lemma 2.1.1

(see Bulíček et al. (2010)), give
ż 2

0

t|∇un ´ ∇pu|pp dt ď
ż

Ωˆr0,2s
tpτ pDun, ψnq ´ τ pDpu, pψqq : pDun ´Dpuqdx dt

`
ż

Ωˆr0,2s
tpτ pDpu, pψq ´ τ pDpu, ψnqq : pDun ´Dpuqdx dt

where the right hand side converges to zero as n Ñ 8. Thus, on account of the uniform convexity

of the Bochner spaces involved (see, e.g., (Brezis, 2011, Proposition 3.32) we can deduce the

desired strong convergences on the time interval r0, 2s with weight t. However, we note that this

weight is nondegenerate on r1, 2s so that the strong convergence holds in the original un-weighted

space on the interval of interest r1, 2s. Finally, by the arbitrariness of t “ 2 as upper bound in

the time integration, we also infer the strong convergence of un in L8
locp1,8;L2

0,divpΩqq thanks

to the continuous injection LppVpq XLp
1 pV˚

p q ãÑ CpL2
0,divpΩqq. Also we can immediately deduce

the strong convergence and of ψn in L2
locp1,8;H1

p0qpΩqq.

Remark 2.7.1. Actually, one can show a slightly stronger convergence for the order parameter

field. Indeed, by recalling the results of the previous section we know that the trajectory attrac-

tor attracts the ψ component of solutions also in the weak-˚ topology of L8pr0,8q;H1
p0qq. By

standard interpolation results we have

}ψn ´ ψ}LppH1

p0qq ď C}ψn ´ ψ}
2

p

L2pH1

p0qq}ψn ´ ψ}
p´2

p

L8pH1

p0qq

so that strong attraction in Lplocpr0,8q;H1
p0qq for any p P r2,8q for the order parameter field ψ is

easily seen to hold.

Remark 2.7.2. A more subtle question seems to be whether the attraction of the order parameter

field holds also in the strong topology of L8pr0,8q;H1
p0qq or not. This would be implied by

some additional time-regularity (e.g. Hölder continuity) of the order parameter field seen as a

continuous function of time with values in H1
p0q. However, this regularity seems to be out of reach

on account of our present knowledge.

This chapter has been dedicated to the study of a particular variation on the model H,

accounting for non-Newtonian fluid dynamics of the fluid mixture described. As discussed, the

incomplete knowledge on the uniqueness of weak solutions led us to using trajectory attractors

theory in order to give a description of the long term behaviour of solutions of system (2.0.2). We

now wish to bring our attention back to the original model H on a bounded domain in R2 and

study the behaviour of its solutions under the action of non-autonomous forcing bulk force. In

doing this we will assume a regular double-well potential and we will pay special care in dealing

with its growth at infinity. This will lead us to the use of the theory of exponential pullback

attractors, which will also be reviewed in the next chapter.
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CHAPTER 3

Pullback exponential attractors for a Cahn-Hilliard-Navier-Stokes system

in 2D

Outline

We consider a model for the evolution of a mixture of two incompressible and partially immis-

cible Newtonian fluids in a two dimensional bounded domain. More precisely, we address the

well-known model H consisting of the Navier-Stokes equation with non-autonomous external

forcing term for the (average) fluid velocity, coupled with a convective Cahn-Hilliard equa-

tion with polynomial double-well potential describing the evolution of the relative density

of atoms of one of the fluids. We study the long term behavior of solutions and prove that

the system possesses a pullback exponential attractor. In particular, the regularity estimates

we obtain depend on the initial data only through fixed powers of their norms and these

powers are uniform with respect to the growth of the polynomial potential considered in the

Cahn-Hilliard equation.

W
e started the previous chapter by introducing a possible variation on the model H,

useful to describe shear-thickening fluids. We ended our analysis of the system

considered there by proving the existence of trajectory attractors in a suitable

sense. Resort to this technique was motivated by partial knowledge on the well-posedness of the

system and in particular by the lack of definite information concerning the uniqueness of weak

solutions to the system considered.

We now take a break from the flow of “variations” on the model H. In this chapter we want to

61
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give some insight on a different possible approach to the description of the long-term dynamics

of an evolution system. In particular, we are interested in studying the Cahn-Hilliard-Navier-

Stokes equations with a non-autonomous forcing term. In doing this, we will use the theory of

pullback exponential attractors. This is a new instrument recently introduced in the literature

(see Langa et al. (2010)). The related theory combines both the advantages of pullback attractors

for non-autonomous dynamical systems (cf. Section 1.3.4 for a quick overview on this approach

and Carvalho et al. (2013) for a comprehensive introduction to the theory of pullback attractors)

and of the exponential attractors in Banach spaces in their most general form known today

(see Efendiev et al. (2000) and cf. Section 1.3.3).

More precisely, given a bounded and smooth domain Ω Ă R2, assuming that the viscosity of

the mixture is a constant ν ą 0, we will consider the system (cf. equation (1.1.6))

$
’’’’’’’’&
’’’’’’’’%

Btu ` u ·∇u ´ ν∆u “ ∇π ` µ∇ψ ` g, in Ω,

∇ ·u “ 0, in Ω,

Btψ ` pu ·∇qψ “ M∆µ, in Ω,

µ “ ´ε∆ψ ` 1
ε
fpψq, in Ω.

(3.0.1)

As in Chapter 1, here µ is the so called chemical potential with constant mobility M ě 0, g is a

time-dependent bulk force, f is the derivative of a double-well potential F while π is the pressure.

In particular, as we discussed in Section 1.1, ǫ is related with the small but not negligible thickness

of the interface.

As usual, we complement this system with homogeneous Dirichlet boundary conditions on the

velocity field, no flux boundary conditions on the order parameter field and chemical potential,

namely,

u “ 0, Bnψ “ 0 and Bnµ “ 0, on BΩ. (3.0.2)

Being the problem non-autonomous, we specify the initial values at a given time τ P R for the

state variables, that is,

upτq “ u0, ψpτq “ ψ0, in Ω

and assume that (3.0.1) holds in Qτ,T for T ą τ (with T possibly equal to `8). We recall that,

in this model, the chemical potential of the binary mixture µ is given by the variational derivative

of the free energy functional for the Cahn-Hilliard equation (cf. equation (1.1.1))

EP pψq .“
ż

Ω

ˆ
ε

2
|∇ψpxq|2 ` 1

ε
F pψpxqq

˙
dx,

where F pψq is a suitable double-well potential characterizing the phase decomposition of the

mixture. Since F 1 “ f , the fourth equation in (3.0.1) follows.
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In the original setting of spinodal decomposition and coarsening during quenching of alloys, the

thermodynamically consistent double-well potential F appearing in the Cahn-Hilliard equation is

naturally seen to be logarithmic (see Cahn (1961) and references therein). However, this singular

form for the potential causes major difficulties in the numerical and theoretical study of the

Cahn-Hilliard system so that in applications it is often replaced by a polynomial approximation

like

F pψq “ Cp1 ´ ψ2q2.

In this context, a possible approach to deal with the physically relevant case consists in suitably

approximating the singular potential by polynomials of increasing order (see Frigeri and Grasselli

(2012a,b) for an application of this technique to a system closely related to the model H). In this

chapter we consider a polynomial potential F of arbitrary order p ` 3, for p ě 1 (in fact, lower

order growth are much easier to analyse) and focus on the dependence on the exponent p of the

a priori estimates relevant for system (3.0.1).

The main result in this chapter is the proof of existence of a pullback exponential attractor

for the system (3.0.1)-(3.0.2). As a byproduct, we derive several regularity estimates for the

solutions to the Cahn-Hilliard-Navier-Stokes system. These have an interest of their own due to

their uniform structure with respect to the growth of the double-well potential F . Indeed, if the

potential fpψq is assumed to satisfy |fpψq| ď Cp|ψ|p`2 ` 1q, we are able to control the solutions

only by suitable powers of the norms of the initial data independent of p. This is not an easy task

since the computations repeatedly involve fpψq and its derivatives, which are naturally estimated

as

|fpψq|q ď Cp|ψ|p`2
8 ` 1q ď Cp|ψ|pp ` 2q{2

2 |∆ψ|pp ` 2q{2
2 ` 1q,

carrying the polynomial character of F directly into play. This obstacle is circumvented by

suitably handling the nonlinear terms so that the dependence on the “shape” of the potential is

confined to the multiplicative constants appearing in our results.

Therefore, these estimates can be seen as a preliminary step forwards an effective approximat-

ing procedure able to deal with the more physically relevant case given by the singular potential.

The plan of the chapter goes as follows. In Section 3.1 we introduce the functional setting

required to study system (3.0.1) and the main results obtained in this chapter. After recalling

the theory of pullback exponential attractors in Section 3.2, we first derive basic energy estimates

(Section 3.3) and then higher order regularity estimates (Section 3.4): in particular, our results

are uniform w.r.t. the shape of F in the sense made precise above. We then derive continuity

results and time regularity for solutions in Sections 3.5 and 3.6. Finally, in Section 3.7 we are

able to check for system (3.0.1) all the assumptions of the abstract results of Section 3.2, thus

concluding the proof of our main theorem.
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3.1 Functional setting and main results

In this chapter, Ω will be a smooth bounded domain of R2. In order to study the velocity field u

we introduce the usual space of divergence-free test functions

V0
.“ tφ P C8

c pΩ;R2q | ∇ ·φ “ 0u.

and the related distribution spaces L2
0,divpΩq and H1

0,divpΩq (cf. Section 1.4.2. We also introduce

the Leray projector P : L2pΩq Ñ L2
0,divpΩq mapping every element of L2pΩq to its divergence-free

part. Furthermore, we will indicate by H´1
divpΩq the dual space of H1

0,divpΩq. In H1
0 pΩq and

H1
0,divpΩq we will consider the following norms

}f}2H1
0

pΩq
.“ |∇f |22 “

nÿ

i“1

ż

Ω

|f,i|2 dx }f}2H1
0,divpΩq

.“ |∇f |22 “
nÿ

i,j“1

ż

Ω

|fi,j |2 dx.

Since the second equation in (3.0.1) together with the boundary condition imply that the bulk

integral of the order parameter is preserved by the evolution, we need to suitably account for this

feature. We recall from Section 1.4.2 the notation for the mean value of f over the domain Ω

xfy .“ 1

|Ω|

ż

Ω

f dx,

and the definition of its mean free part

f
.“ f ´ xfy .

Without loss of generality, only a shift of the order parameter field being required, we can always

assume that the mean of ψ is zero at the initial time and, due to the conservation of mass enforced

by the Neumann boundary conditions, this will remain true for all positive times. Then the order

parameter will belong to the spaces Lpp0qpΩq and Hk
p0qpΩq consisting of functions with zero mean.

We will use Poincaré’s inequality (and some of its variants) at several stages when estimating

the Sobolev norms of ψ. Indeed, the boundary conditions and the above definitions imply that

ż

Ω

ψ “ 0, Bnψ “ 0 on BΩ,
ż

Ω

∆ψ “
ż

BΩ
Bnψ “ 0, Bn∆ψ “ 0 on BΩ.

Therefore, all the norms }ψ}Hj , j “ 1, . . . , 4 are equivalent to the L2-norms of the derivatives of

order j. Moreover, Korn’s inequality holds. Thus we have

}ψ}H1 „ |∇ψ|2, }ψ}H2 „ |∆ψ|2, }ψ}H3 „ |∇∆ψ|2, }ψ}H4 „ |∆2ψ|2.

Finally, the functional spaces for the whole solution pu, ψq are

H0
.“ L2

divpΩq ˆH1
p0qpΩq H1

.“ H1
0,divpΩq ˆH2

p0qpΩq,
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which arise naturally in the study of the process generated by the solution of system (3.0.1).

We can now list the assumptions on the potential F pψq, which will be used in this chapter.

We start with some hypotheses concerning its regularity and growth:

(A.1) F P C5pRq.

(A.2) F pyq grows at most polynomially fast at infinity, namely

|f2pyq| ď Cf p1 ` |y|pq,

for some positive constants p and Cf .

(A.3) The potential is coercive, i.e. there exist positive real numbers q and cf such that

F pyq ě cf
`
|y|2`q ´ 1

˘

holds for all y P R.

Recalling that the potential F appears in system (3.0.1) only through its derivative, without loss

of generality we can further assume that

(A.4) the functional F is strictly positive, i.e. F pyq ą 0, @y P R.

We now give some additional assumptions concerning the shape of the double-well potential F .

(A.5) F pyq is a quadratic perturbation of a regular convex function defined on the whole R, that

is,

F pyq “ F0pyq ´ αy2 ` γy ` β,

where F0 P C5pRq is convex and α P R is a positive constant.

(A.6) Up to a suitable choice of the constants β and γ in Assumption (A.5), the convex part of

the potential F0 satisfies:

F0p0q “ F 1
0p0q “ 0.

In order to obtain higher order estimates having uniform structure with respect to the growth of

f , we will assume that F behaves as a polynomial at infinity. In particular we will suppose

(A.7) The relation q “ p ` 1 holds in Assumptions (A.2) and (A.3). Moreover, for any k “
0, 1, 2, 3, 4 there exists a positive constant ck such that

|f pkqpyq| ď ckr1 ` F pyqpp ` 2 ´ kq{pp ` 3qs, @y P R. (3.1.1)
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Remark 3.1.1. We will use Assumption (A.7) in order to estimate the Lr norm of the derivatives

of the potential F in terms of some Ls norm of the potential itself. In particular, when dealing

with higher order estimates we will often use the immediate consequence of Assumption (A.7)

|f pkqpψq|pp ` 3q{pp ` 2 ´ kq

p`3

p`2´k

ď Cp1 ` |F pψq|1q,

for any ψ such that F pψq P L1pΩq and for some constant C depending on k and Ω.

Remark 3.1.2. Throughout this chapter, we will always assume that p ě 2, being much easier

the case when the potential F pyq grows at most as y5 at infinity. In particular, all estimates in

the following sections hold for p ě 1, except for (3.5.5) below. However, note that a suitable

estimate for this term can be produced also in the case p P r1, 2q (cf. Remark 3.5.1) under the

assumption

f pivqpyq ď C @y P R.

The case p “ 1 is particularly relevant for applications since the polynomial potential F pyq “
py2 ´ 1q2, which is often used in numerical simulations, falls in this setting.

Finally, we assume the non-autonomous forcing term (symbol) g appearing in equation (3.0.1)

satisfies the following conditions:

(B.1) g P L2
locpR;L2

divpΩqq.

(B.2) g P L2
ulocp´8, t;L2

divpΩqq, for any t P R, that is,

Mgptq .“ sup
rďt

ż r

r´1

|gpsq|22 ds ă 8, @t P R.

(B.3) There exist t0 P R and q ą 2 such that g P Lqulocp´8, t0;L
2
divpΩqq, namely,

Mg,qpt0q .“ sup
rďt0

ż r

r´1

|gpsq|q2 ds ă 8.

In this chapter we will prove the following main results:

Theorem 3.1.1. Assume that g satisfies (B.1) and (B.3) and let Ugpt, τq : H0 Ñ H0 be the

solution operator for the system (3.0.1). Then there exists a family ĂMUg
“ t ĂMUg

ptq : t ď t0u of

nonempty compact subsets of H1, which is a pullback exponential attractor for system (3.0.1) (see

Theorem 3.2.2 below) in the topology of H1.

Corollary 3.1.2. Under the same assumptions of Theorem 3.1.1, if, moreover, g satisfies (B.3)

uniformly for t0 P R (as in (B.2)), then the process Ugpt, τq : H1 Ñ H1 has a family ĂMUg
“

t ĂMUg
ptq : t P Ru of nonempty compact subsets of H1, which is a pullback exponential attractor

for system (3.0.1) (see Theorem 3.2.3 below) in the topology of H1.
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3.2 Exponential pullback attractors

In this section we briefly review the theory of exponential pullback attractors as developed

in Langa et al. (2010). Below, pH, | · |q and pV, } · }q will be two Banach spaces such that V is com-

pactly embedded in H . Both spaces have a metric structure therefore, given any two nonempty

subsets D1, D2 of the metric space X “ H,V , the Hausdorff semidistance and distance are well

defined respectively as

distXpD1, D2q .“ sup
v1PD1

inf
v2PD2

}v1 ´ v2}X

and

distsymX pD1, D2q .“ maxtdistXpD1, D2q, distXpD2, D1qu.

As in the usual case of exponential attractors (cf. Efendiev et al. (2000)) the key point of the

argument is the introduction of a set of mappings which enjoy a suitable “smoothing property” (see

also Section 1.3.3). This is responsible for the exponential convergence of the trajectories of the

system to an exponentially attracting finite-dimensional compact set (an exponential attractor)

as soon as the trajectories have entered a sufficiently small neighbourhood of the attractor itself.

Let δ,K P R be positive constants and let B be a bounded and closed subset of V . Define

Sδ,KpBq to be the class of mappings S : V Ñ V such that the smoothing property holds on a

δ-neighbourhood (in V ) of B, i.e.

SpOδpBqq Ă B

and

}Sv1 ´ Sv2} ď K|v1 ´ v2| for all v1, v2 P OδpBq,

where OδpBq .“ tv P V | infwPB }v ´ w} ă δu is a δ-neighbourhood of the set B in V .

We introduce a suitable class of family of mappings, which are the abstract, discrete-time,

dynamical system representation of the evolution equations we will be interested in. In particular,

let n0 P Z be fixed and consider the class UdpV, n0q of all families U “ tUpm,nq | n,m P Z, n ď
m ď n0u of mappings Upm,nq : V Ñ V such that

1. Upn, nq “ Id for all n ď n0;

2. Upm, kqUpk, nq “ Upm,nq for any n ď k ď m ď n0.

When dealing with pullback attractors, only the evolution of the system up to the “present” time

n0 is of interest. The key question is how perturbations of the system in the past affect the

present dynamic and what actually is the state of the system observed. This is the reason why

elements belonging to the class UdpV, n0q are defined up to time n0 and not necessarily beyond.

We can say that element of the discrete time class UdpV, τ0q possess a discrete time pullback

exponential attractor in the sense made precise by the following theorem
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Theorem 3.2.1 ((Langa et al., 2010, Theorem 2.1)). Let n0 P Z, δ ą 0, K ą 0 and B Ă V be

fixed with B bounded and closed in V . Then, there exist positive constants C1, C2, ǫ and α only

depending on V , H, δ, K and B, such that, for each U P UdpV, n0q satisfying

Upn, n´ 1q P Sδ,KpBq for all n ď n0,

there exists a family MU “ tMU pnq | n ď n0u, of nonempty subsets of V , which satisfies

a) MU is positively invariant i.e.

Upm,nqMU pnq Ă MU pmq for all n ď m ď n0,

b) MU pnq Ă B is a compact subset of V , with finite fractal dimension estimated by

log2NǫpMU pnq, V q ď C1 log2
1

ǫ
` C2 for all 0 ă ǫ ă ǫ and any n ď n0,

where NǫpMU pnq, V q is the minimal number of ǫ-balls in V , which are necessary to cover

MU pnq,

c) MU attracts B exponentially in a pullback sense i.e.

distV pUpm,nqB,MU pmqq ď C1e
´αpm´nq for all n ď m ď n0,

d) for every integer k ď 0

MU pn` kq “ MTkU pnq for all n ď n0,

where TkUpm,nq .“ Upm` k, n` kq.

Remark 3.2.1. The results in Langa et al. (2010) also include robustness of a discrete-time expo-

nential pullback attractor w.r.t. to a suitable metric in the space of discrete time processes. For

simplicity we do not mention all the pertinent details here. However, we recall that this result

is important in deducing the analogue continuous-time theory and, in particular, in obtaining

continuity in time of an exponential pullback attractor.

Having in mind the more relevant continuous-time setting, we now introduce a suitable ana-

logue of the class UdpV, n0q. Let t0 P R be any time, and consider the class UpV, t0q of all families

U “ tUpt, sq | s, t P R, s ď t ď t0u of mappings Upt, sq : V Ñ V such that

1. Ups, sq “ Id for all s ď t0;

2. Upt, rqUpr, sq “ Upt, sq for any s ď r ď t ď t0.
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In this setting, a natural way to introduce a smoothing property is to consider only those families

U P UpV, t0q such that there exists a positive time span τ0 for which

Upt, t ´ τ0q P Sδ,KpBq (3.2.1)

holds for all t ď t0. Thanks to Theorem 3.2.1, for any t ď t0 the family U t P UdpV, 0q given by

U tpm,nq .“ Upt `mτ0, t` nτ0q for all n ď m ď 0

possesses a discrete time exponential pullback attractor.

In order to obtain a satisfactory dynamical description of the system also in the continuous-

time case, we will need some additional assumptions on the time regularity and continuous de-

pendence of the family U P UpV, t0q. In particular we will assume

(H.1) Continuity w.r.t. the forcing terms: there exist real positive constants C0, ǫ0 and γ such

that ǫ0 ď τ0 and that for all t ď t0, τ0 ď r ď 2τ0, 0 ď s ď ǫ0 and v P OδpBq

}Upt, t´ rqv ´ Upt´ s, t´ r ´ sqv} ď C0|s|γ .

(H.2) Past continuous dependence on initial data: there exists a positive constant CB such that

}Upt, t´ sqv ´ Upt, t ´ sqw} ď CB}v ´ w}

for all v, w P B and any t ď t0, 0 ď s ď 2τ0.

(H.3) Time continuity of solutions: there exist positive constants C 1
0 and γ1 such that for all t ď t0,

τ0 ď r ď 2τ0, 0 ď s ď ǫ0 and v P B

}Upt, t´ rqv ´ Upt´ s, t´ rqv} ď C 1
0|s|γ

1

.

We can now state the main result on exponential pullback attractors

Theorem 3.2.2 ((Langa et al., 2010, Theorem 2.2)). If U P UpV, t0q satisfies (3.2.1) and As-

sumption (H.2), with B Ă V bounded and closed in V , then the family MU “ tMU ptq | t ď t0u,
defined by

MU ptq .“
ď

sPr0,τ0s
Upt, t ´ s´ τ0qMUt´s´τ0 p0q for all t ď t0,

satisfies

a) Upt, τqMU pτq Ă MU ptq for all τ ď t ď t0,

b) MT´τU ptq “ MU pt ´ τq for all τ ě 0 and any t ď t0, where T´τUpt, sq .“ Upt ´ τ, s´ τq,
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c) for all τ ě 0 and any t ď t0

distV pUpt, t ´ τqB,MU ptqq ď Ce´α̃τ ,

d) if, for any D Ă V bounded, there exists a time sD ě 0 such that

Upt, t´ sDqD Ă B for all t ď t0

then

distV pUpt, t´ τqD,MU ptqq ď Ceα̃sDe´α̃τ for all τ ě sD and any t ď t0. (3.2.2)

If, moreover, U also satisfies Assumptions (H.1) and (H.3), then

e) MU ptq is a compact subset of V , with finite fractal dimension, for all t ď t0,

f) for all 0 ď r ď ǫ0 and any t ď t0,

distsymV pMU ptq,MU pt ´ rqq ď C|r|γ̃ .

Finally consider the case of processes on V . Let U be a family U “ tUpt, sq | s, t P R, s ď tu
of mappings Upt, sq : V Ñ V such that

1. Ups, sq “ Id for all s P R;

2. Upt, rqUpr, sq “ Upt, sq for any s ď r ď t.

This corresponds to a dynamical system defined not only up to the present time t0, but also

for positive times. Considering processes corresponds to investigating what the eventual fate of

the system under scrutiny will be. Therefore, it is interesting to investigate the relation between

this eventual fate and the present state of the system, which is itself, in a way of speaking, the

outcome of an arbitrary long evolution.

We will need the following additional assumption, which is a slight modification of (H.2)

(H.4) Future continuous dependence on initial data: for any t ą t0 and D1, D2 bounded subsets

of V , there exists a positive constant Lpt,D1, D2q such that

}Upt, t0qv ´ Upt, t0qw} ď Lpt,D1, D2q}v ´ w} for all v P D1, w P D2.

Theorem 3.2.3 ((Langa et al., 2010, Theorem 2.3)). Assume that U is a process on V and, for

some t0 P R, the subfamily of U given by the operators Upt, sq when s ď t ď t0 satisfies (3.2.1)
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and Assumption (H.2), with B Ă V bounded and closed in V . Under these assumptions, the

family ĂMU “ t ĂMU ptq | t P Ru defined by

ĂMU ptq “

$
’&
’%
MU ptq if t ď t0,

Upt, t0qMU pt0q if t ą t0,

where MU is the family given in Theorem 3.2.2, satisfies:

a) Upt, τq ĂMU pτq Ă ĂMU ptq, for all τ ď t,

b) ĂMT´τU ptq “ ĂMU pt ´ τq for all τ ě 0 and any t ď t0 and

ĂMT´τU ptq Ă ĂMU pt ´ τq for all τ ě 0 and any t ą t0,

where T´τUpt, sq .“ Upt´ τ, s´ τq.

If in addition (H.4) holds, then

c) if, for any D Ă V bounded, there exists a positive time sD such that

Upt, t´ sqD Ă B for all s ě sD and any t ď t0,

then ĂMU satisfies (3.2.2) for all t ď t0 and

distV pUpt, t ´ τqD, ĂMU ptqq ď rLpt, B, ĂMU pt0qqeα̃psD`t´t0qe´α̃τ

for all t ą t0 and any τ ě sD ` t´ t0.

Moreover, if U also satisfies Assumptions (H.1) and (H.3), then

d) ĂMU ptq is a compact subset of V with finite fractal dimension for all t P R,

e) for all 0 ď r ď ǫ0 and any t ď t0

distsymV p ĂMU ptq, ĂMU pt ´ rqq ď C|r|γ̃ .

Remark 3.2.2. We recall that in Langa et al. (2010) also explicit estimates on a fractal dimension

of the pullback exponential attractor have been derived. For the sake of simplicity, we neglect

them here.

3.3 Existence results and basic energy estimate

In this section we recall some basic energy estimates, which are obtained naturally when proving

existence of solution to system (3.0.1). First of all, for the sake of simplicity, we set ε “ M “ 1

and we write the definition of weak solution to system (3.0.1).
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Definition 3.3.1. Let z0
.“ pu0, ψ0q P L2

divpΩqˆH1
p0qpΩq and let τ P R. Then a couple z “ pu, ψq

such that

u P L2pτ, T ;H1
0,divpΩqq XH1pτ, T ;H´1

divpΩqq

ψ P L2pτ, T ;H3pΩqq XH1pτ, T ;H´1pΩqq

is called a weak solution to (3.0.1) if

xBtuptq,vy ` xpuptq ·∇quptq,vy ` xν∇uptq,∇vy “ xµptq∇ψptq,vy

xBtψptq, φy ` xuptq ·∇ψptq, φy “ ´ p∇µptq,∇φq

hold for a.e. t P rτ, T s, for all v P V and for all φ in C8pΩq, if

µptq “ fpψptqq ´ ∆ψptq

holds for a.e. t P rτ, T s in H1pΩq with µ P L2pτ, T ;H1pΩqq and if

lim
tÑτ`

uptq “ u0 in L2
divpΩq, lim

tÑτ`
ψptq “ ψ0 in H1

p0qpΩq.

The well-posedness for problem (3.0.1)-(3.0.2) is justified in a suitable Galerkin scheme, thanks

to the following a priori estimates and the subsequent Lemma 3.5.1(see e.g. Boyer (1999); Gal

and Grasselli (2010a)).

Theorem 3.3.1. Let assumptions (A.1)–(A.6) hold. If g satisfies (B.1) and z0
.“ pu0, ψ0q P H0,

then there exists a unique weak solution zptq “ puptq, ψptqq departing at time τ from the initial

datum z0.

We now obtain the first basic energy estimates that will be the basis for the estimates of the

following sections.

Lemma 3.3.2. If g satisfies (B.1) and zptq “ puptq, ψptqq is the solution departing at time τ

from the initial datum z0
.“ pu0, ψ0q P H0, denoting by µptq the corresponding chemical potential,

there holds

|uptq|22 ` |∇ψptq|22 ` 2|F pψptqq|1 `
ż t

τ

”
ν}upsq}2H1

0,divpΩq ` |∇µpsq|22
ı
ds (3.3.1)

ď|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 ` C

ż t

τ

|gpsq|22 ds.

Besides, there hold
ż t

τ

|∇ψpsq|22 ds `
ż t

τ

|F pψpsqq|1 ds `
ż t

τ

|∆ψpsq|22 ds (3.3.2)

ďC
ˆ

|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 `
ż t

τ

|gpsq|22 ds
˙

` Cpt ´ τq
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as well as
ż t

τ

|∆ψpsq|42 ds (3.3.3)

ďC
ˆ

|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 `
ż t

τ

|gpsq|22 ds
˙2

` Cpt ´ τq
ˆ

|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 `
ż t

τ

|gpsq|22 ds
˙
.

Proof. In order to obtain our first (dissipative) a priori estimate, we multiply the first equation

in (3.0.1) by u and the third by µ. Recalling the antisymmetric property of the convective term

in the Navier Stokes equation and exploiting the useful vector identity

pBtψ, µq “ ´ pBtψ,∆ψq ` pfpψq, Btψq

“1

2

d

dt
|∇ψ|22 ` pfpψq, Btψq

“1

2

d

dt

`
|∇ψ|22 ` 2|F pψq|1

˘
,

we obtain
1

2

d

dt

`
|u|22 ` |∇ψ|22 ` 2|F pψq|1

˘
` ν|∇u|22 ` |∇µ|22 “ pg,uq . (3.3.4)

Poincaré’s inequality for u and integration with respect to time give (3.3.1).

We now have to “complete the norms” on the left hand side of (3.3.4). From the definition of

the chemical potential µ (i.e. from the fourth equation in (3.0.1)) we have

pµ, ψq “ |∇ψ|22 ` pψ, fpψqq .

Since, by assumption, ψ is mean free, we also deduce

pµ, ψq “ pµ´ xµy , ψq ď 1

2
|∇µ|22 ` C|ψ|22,

where C is a constant, which only depends on the domain Ω. From assumption (A.5) on the

potential F we further deduce

pfpψq, ψq “ pf0pψq, ψq ´ 2α|ψ|22,

being f0 “ F 1
0. Taking into account the convexity of F0 we can also bound the right hand side of

this identity from below:

pf0pψq, ψq ě |F0pψq ´ F0p0q|1.

Putting the last four estimates together and recalling Assumption (A.6), we obtain

|∇µ|22 ` C|ψ|22
ě|∇ψ|22 ` |F0pψq ´ F0p0q|1 ´ 2α|ψ|22
“|∇ψ|22 ` |F pψq|1 ´ α|ψ|22.
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Therefore we get

|∇ψ|22 ` |F pψq|1 ď |∇µ|22 ` C|ψ|22 ď |∇µ|22 ` δ|ψ|2`q
2`q ` C,

where q is a positive real number, δ is a (small) positive constant, which will be determined later,

and C is a positive constant, which depends only on the domain Ω and is independent of the

exponent q as soon as q ě q ą 0.

Remark 3.3.1. We observe that under assumption (A.7) we immediately have q ě 2 so that in

our case the constant C really depends only on Ω.

By adding this last estimate and (3.3.4) together, choosing δ small enough, we finally deduce

the basic energy estimate for system (3.0.1)-(3.0.2)

d

dt

`
|u|22 ` |∇ψ|22 ` 2|F pψq|1

˘
` C

`
|∇u|22 ` |∇ψ|22 ` 2|F pψq|1 ` |∇µ|22

˘

ď C
`
1 ` |g|22

˘
. (3.3.5)

Integrating with respect to time from τ to t, we then obtain the first part of estimate (3.3.2).

Noticing that

x∇µ,∇ψy “ ´ xµ,∆ψy “ |∆ψ|22 ´ xfpψq,∆ψy “ |∆ψ|22 `
@
f 1pψq∇ψ,∇ψ

D
ě |∆ψ|22 ´ 2α|∇ψ|22,

we have

|∆ψ|22 ď |∇µ|2|∇ψ|2 ` 2α|∇ψ|22, (3.3.6)

which, integrated in time, on account of the above estimate (3.3.1), gives the second part of

estimate (3.3.2).

In order to prove (3.3.3), we square (3.3.6), obtaining

|∆ψ|42 ď Cp|∇µ|22|∇ψ|22 ` |∇ψ|42q ď Cp|∇µ|22|∇ψ|22 ` |∇ψ|22|∆ψ|22q.

By an integration in time, in view of (3.3.1) and (3.3.2) we accomplish our purpose.

Corollary 3.3.3. If g satisfies (B.1) and (B.2) and zptq “ puptq, ψptqq is the solution departing

at time τ from the initial datum z0
.“ pu0, ψ0q P H0, the following dissipative estimate holds

|uptq|22 ` |∇ψptq|22 ` 2|F pψptqq|1 (3.3.7)

ď
`
|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1

˘
e´Cpt´τq ` C p1 `Mgptqq , @t ě τ.

Proof. The claimed dissipative estimate easily follows from the basic energy estimate (3.3.5) using
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Poincaré’s and Gronwall’s inequalities as well as the known estimate

e´Ct
ż t

τ

eCs|gpsq|22 ds

ďe´Ct
8ÿ

n“0

ż t´n

t´pn`1q
eCs|gpsq|22 ds ď e´Ct

8ÿ

n“0

eCpt´nq sup
rďt

ż r

r´1

|gpsq|22 ds

ďC sup
rďt

ż r

r´1

|gpsq|22 ds,

which holds for g P L2
ulocp´8, t;L2pΩqq.

Remark 3.3.2. A bound on ∇∆ψ in L2pτ, T ;L2pΩqq can also be easily deduced by computing the

L2 norm of the gradient of the equation for the chemical potential µ in (3.0.1) thus leading to

the regularity of the order parameter field required by Definition 3.3.1. However, this estimate

cannot be easily made uniform with respect to the shape of the potential F (and in particular

with respect to the growth exponent p).

Remark 3.3.3. From the above computations we deduce the following regularity for weak solutions

of system (3.0.1)

u P L8pτ, T ;L2
divpΩqq X L2pτ, T ;H1

0,divpΩqq

ψ P L8pτ, T ;H1pΩqq X L4pτ, T ;H2pΩqq

F pψq P L8pτ, T ;L1pΩqq

∇µ P L2pτ, T ;L2pΩqq

for any T P R, T ą τ .

3.4 Higher regularity estimates

In order to obtain estimates having uniform structure with respect to the growth exponent of

f , we henceforth assume that F satisfies (A.7). Although all exponents and norms that appear

in this and in the following sections are independent of p, the general constant C will quickly

become larger as p grows.

In particular, Assumption (A.7) and Lemma 3.3.2 imply

|f pkqpψptqq| p`3

p`2´k
ď Cp|F pψptqq|1 ` 1q (3.4.1)

ď C

ˆ
|u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 `

ż t

τ

|gpsq|22 ds` 1

˙
,

being puptq, ψptqq the solution to (3.0.1)-(3.0.2) departing from pu0, ψ0q P H0 at time τ .

The goal of this section is to improve “by one order” the basic regularity result already obtained.

In particular, under suitable assumptions, we will get to u P L8pH1
0,divpΩqq XL2pH2

0,divpΩqq and



76 CHAPTER 3. A 2D CHNS SYSTEM

ψ P L8pH2pΩqq X L2pH4pΩqq. This will be achieved in several steps gaining before spatial

regularity for fpψq and µ and later time regularity as well: first in Lemma 3.4.1 we will deduce

fpψq P L2pL2pΩqq and µ P L2pL2pΩqq; then fpψq P L2pLqpΩqq and ∆ψ P L2pLqpΩqq for any q ě 1,

as shown in Lemma 3.4.2; this will give µ P L8pL2pΩqq (cf. Lemma 3.4.3) and the final result

(see Lemma 3.4.4).

Notation. In order to simplify notation, we will denote by At,τ the quantity

At,τ
.“ 1 ` |u0|22 ` |∇ψ0|22 ` 2|F pψ0q|1 `

ż t

τ

|gpsq|22 ds,

which depends only on the initial data u0, ψ0, on the forcing term g and on the times t and τ .

Besides, C stands for a generic positive constant depending only on Ω and possibly on p and is

allowed to vary even in the same line.

Lemma 3.4.1. If zptq “ puptq, ψptqq is the solution departing at time τ from the initial datum

z0
.“ pu0, ψ0q P H0, denoting by µptq the corresponding chemical potential, there holds

ż t

τ

p|fpψpsq|22 ` |µpsq|22qds ď CA2
t,τ ` Cpt ´ τqAt,τ (3.4.2)

for any t ě τ , τ P R.

Proof. Remark 2.1 allows to bound the mean value of fpψq as

|xfpψqy| ď C|fpψq| p`3

p`2

ď Cp1 ` |F pψq|1q,

for some C ą 0 depending on p only through the constant c0 in Assumption (A.7). Recalling the

equation defining the chemical potential in (3.0.1) and estimate (3.3.6), we further deduce

|fpψq ´ xfpψqy |22 ď 2|µ´ xµy |22 ` 2|∆ψ|22 ď C|∇µ|22 ` 4α|∇ψ|22.

Therefore, we gain full control on the L2-norm of fpψq, bounding its time integral as

ż t

τ

|fpψpsqq|22 ds

ďC
ż t

τ

|∇µpsq|22 ds ` 4α

ż t

τ

|∇ψpsq|22 ds` C

ż t

τ

p1 ` |F pψpsqq|1q2 ds

ďCA2
t,τ ` Cpt ´ τqAt,τ ,

where we used (3.3.1) and (3.3.2) from Lemma 3.3.2. The second part of estimate (3.4.2) follows

from

|µ|22 ď 2p|∆ψ|22 ` |fpψq|22q,

the above bound and (3.3.2).
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As announced before, the integrability of fpψq can be further improved in two steps.

Lemma 3.4.2. If zptq “ puptq, ψptqq is the solution departing at time τ from the initial datum

z0
.“ pu0, ψ0q P H0, then, for any b ą 0 there exists Cb ą 0 such that

ż t

τ

`
|fpψpsqq|2b`2 ` |∆ψpsq|2b`2

˘
ds ď CbA

2
t,τ ` Cbpt ´ τqAt,τ ,

meaning that fpψq, ∆ψ P L2pτ, t;Lb`2pΩqq, for any b ą 0.

Remark 3.4.1. We note that this estimate extends to singular functional f , without appealing to

approximation arguments as in Abels (2009c) but with the same order of control.

Proof. Multiplying the equation for the chemical potential by fpψq|fpψq|b and integrating over

Ω, we have
@
µ, fpψq|fpψq|b

D
“ |fpψq|b`2

b`2 ´
@
∆ψ, fpψq|fpψq|b

D
. (3.4.3)

We now exploit assumption (A.5) on F , proving after an integration by parts

´
@
∆ψ, fpψq|fpψq|b

D
“ pb ` 1q

@
f 1pψq, |fpψq|b|∇ψ|2

D
ě ´2αpb` 1q

@
|fpψq|b, |∇ψ|2

D
.

Replacement of this estimate in (3.4.3) above leads to

|fpψq|b`2
b`2 ď 2αpb` 1q

@
|fpψq|b, |∇ψ|2

D
`
@

|µ|, |fpψq|b`1
D
.

Hölder’s and Young’s inequalities then provide

|fpψq|b`2
b`2 ď 2αpb` 1q|fpψq|bb`2|∇ψ|2b`2 ` |µ|b`2|fpψq|b`1

b`2 ď 1

2
|fpψq|b`2

b`2 ` Cb
`
|∇ψ|b`2

b`2 ` |µ|b`2
b`2

˘
.

Recalling that from standard interpolation the inequality

|h|b`2
b`2 ď Cb|h|22}h}bH1 ,

holds, we end up with

|fpψq|b`2
b`2 ď Cb

`
|∇ψ|22|∆ψ|b2 ` |µ|22}µ}bH1

˘
. (3.4.4)

A further application of Young’s inequality then gives

|fpψq|2b`2 ď Cb

´
|∇ψ|4{pb ` 2q

2 |∆ψ|2b{pb ` 2q

2 ` |µ|4{pb ` 2q

2 |∇µ|2b{pb ` 2q

2 ` |µ|22
¯

ď Cb
`
|∇ψ|22 ` |∆ψ|22 ` |µ|22 ` |∇µ|22

˘
.

Finally, integration with respect to time, leads to

ż t

τ

|fpψpsqq|2b`2 ds ď Cb

ż t

τ

`
|∇ψpsq|22 ` |∆ψpsq|22 ` |µpsq|22 ` |∇µpsq|22

˘
ds,



78 CHAPTER 3. A 2D CHNS SYSTEM

thus Lemmata 3.3.2 and 3.4.1 provide the first part of the desired estimate. To complete our

argument, it is sufficient to exploit the equation for the chemical potential µ and this last estimate

together with Lemmata 3.3.2 and 3.4.1:

|∆ψ|2b`2 ď 2
`
|µ|2b`2 ` |fpψq|2b`2

˘
ď 2

`
|µ|22 ` |∇µ|22 ` |fpψq|2b`2

˘
.

Remark 3.4.2. Provided that F satisfies (A.7), estimates (3.3.1) and (3.1.1) entail (cf. Re-

mark 3.1.1)

fpψq P L8pτ, t;Lpp`3q{pp`2qpΩqq.

Besides, the above Lemma 3.4.2 implies fpψq P L2pτ, t;Lb`2pΩqq for any b ą 0. Being pp`3q{pp`
2q ą 1, by the interpolation inequality

|h|2 ď |h|θp`3

p`2

|h|1´θ
b`2 , where θ “ bpp` 3q

2pbp` 2b` p` 1q ,

we deduce that, when 4p1 ´ θq “ 4
pb` 2qpp ` 1q

2pbp` 2b` p ` 1q “ 2, that is, b “ 1 ` p,

ż t

τ

|fpψpsqq|42 ds ď}fpψq}2
L8pτ,t;L

p`3

p`2 pΩqq

ż t

τ

|fpψpsq|2p`3 ds

ďCA4
t,τ ` Cpt ´ τqA3

t,τ .

On account of (3.1.1), Lemmata 3.3.2 and 3.4.2, it thus follows fpψq P L4pτ, t;L2pΩqq and, in

particular,

}fpψq}4L4pτ,t;L2pΩqq ď CA4
t,τ ` Cpt ´ τqA3

t,τ .

Lemma 3.4.3. If zptq “ puptq, ψptqq is the solution departing at time τ from any initial datum

z0
.“ pu0, ψ0q P H1 so that µ0

.“ fpψ0q ´ ∆ψ0 P L2pΩq, then there exists C ą 0 depending only

on p such that the chemical potential µ is bounded in L8pτ, T ;L2pΩqq X L2pτ, T ;H2pΩqq for all

T ą τ and there hold

|µptq|22 ď C
`
|µpτq|22 `A3

t,τ ` pt ´ τqAt,τ
˘
eCpA4

t,τ`pt´τqA3

t,τ q

and

ż t

τ

|∆µpsq|22 ds ď C
`
|µpτq|22 `A3

t,τ ` pt ´ τqAt,τ
˘ `
A4
t,τ ` pt´ τqA3

t,τ

˘
eCpA4

t,τ `pt´τqA3

t,τq.

Proof. The evolution of the chemical potential µ is governed by

Btµ “ f 1pψq∆µ ´ f 1pψqpu ·∇qψ ´ ∆2µ` ∆ppu ·∇qψq,

as can be seen by formally differentiating with respect to time the last equation in (3.0.1) and

by taking into account the third one. The product of this equality by µ gives rise to three terms
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from the right hand side: in order to exploit the lower bound on f 1, the first one can be written

as

@
f 1pψq∆µ, µ

D

“ ´
@
f 1pψq∇µ,∇µ

D
´
@
f2pψq∇ψ, µ∇µ

D

“ ´
@
f 1pψq∇µ,∇µ

D
´ 1

2

@
f2pψq∇ψ,∇pµ2q

D

“ ´
@
f 1pψq∇µ,∇µ

D
` 1

2

@
f2pψq∆ψ, µ2

D
` 1

2

A
f3pψq |∇ψ|2 , µ2

E
.

Thanks to the incompressibility condition, the second one reads as

´
@
f 1pψqpu ·∇qψ, µ

D
“ xfpψq,u ·∇µy .

Finally, noticing that the third equation in (3.0.1) and the boundary conditions (3.0.2) imply

Bnp∆µ´ u ·∇ψq “ BnBtψ “ 0 on BΩ, the last term is

´
@
∆2µ ´ ∆pu ·∇ψq, µ

D
“ ´|∆µ|22 ` xu ·∇ψ,∆µy .

These computations lead us to

1

2

d

dt
|µ|22 ` |∆µ|22

“ ´
@
f 1pψq∇µ,∇µ

D
` 1

2

@
f2pψq∆ψ, µ2

D
` 1

2

A
f3pψq |∇ψ|2 , µ2

E
` xfpψqu,∇µy

` xpu ·∇qψ,∆µy . (3.4.5)

By Assumption (A.5) on the potential F , the first term on the right hand side of identity (3.4.5)

is easily controlled by 2α|∇µ|22 while the last one can be bounded by

|xpu ·∇qψ,∆µy|

ď|u|4|∇ψ|4|∆µ|2

ďC|u|1{2
2 |∇u|1{2

2 |∇ψ|1{2
2 |∆ψ|1{2

2 |∆µ|2

ď1

8
|∆µ|22 ` C|u|2|∇u|2|∇ψ|2|∆ψ|2.

We are left to consider the other terms in (3.4.5). Having in mind (3.4.1), we prove

1

2

ˇ̌@
f2pψq∆ψ, µ2

Dˇ̌

ď1

2
|f2pψq| p`3

p
|∆ψ|p`3|µ|2p`3

ďC|f2pψq| p`3

p
|∆ψ|p`3}µ}2H1

ďC|f2pψq| p`3

p
|∆ψ|p`3p|µ|22 ` |µ|2|∆µ|2q

ď1

8
|∆µ|22 ` C

´
|f2pψq|2p`3

p

` 1
¯

p|∆ψ|2p`3 ` 1q|µ|22.
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Analogously we have

1

2

ˇ̌@
f3pψq|∇ψ|2, µ2

Dˇ̌

ď1

2
|f3pψq| p`3

p´1

|∇ψ|2p`3|µ|2p`3

ďC|f3pψq| p`3

p´1

|∆ψ|22}µ}2H1

ďC|f3pψq| p`3

p´1

|∆ψ|22p|µ|22 ` |µ|2|∆µ|2q

ď1

8
|∆µ|22 ` Cp|f3pψq|2p`3

p´1

` 1qp|∆ψ|42 ` 1q|µ|22.

There also holds

|xfpψq,u ·∇µy|

ď|fpψq| p`3

p`2

|u|2pp`3q|∇µ|2pp`3q

ďC|fpψq| p`3

p`2

|∇u|2}µ̄}H2

ď1

8
|∆µ|22 ` C|∇µ|22 ` C|fpψq|2p`3

p`2

|∇u|22.

Collecting the above estimates and recalling (3.4.1), we have

d

dt
|µ|22 ` |∆µ|22 ď h|µ|22 ` g, (3.4.6)

where

h “ Cp1 ` |F pψq|1q2p1 ` |∆ψ|42 ` |∆ψ|2p`3q

g “ C|∇µ|22 ` C|u|2|∇u|2|∇ψ|2|∆ψ|2 ` Cp1 ` |F pψq|1q2|∇u|22.

In view of (3.3.3), Lemmata 3.3.2 and 3.4.2, h and g are integrable quantities. Indeed, we have
ż t

τ

hpsqds ď C
`
A4
t,τ ` pt´ τqA3

t,τ

˘
,

ż t

τ

gpsqds ď C
`
A3
t,τ ` pt´ τqAt,τ

˘
.

By Gronwall’s lemma we further deduce

|µptq|22 ď
´

|µpτq|22 `
ż t

τ

gpsqds
¯
exp

´ ż t

τ

hpsqds
¯

that is,

|µptq|22 ď C
`
|µpτq|22 `A3

t,τ ` pt´ τqAt,τ
˘
eCpA4

t,τ`pt´τqA3

t,τq.

Moreover, integrating (3.4.6), from the estimates above we also deduce
ż t

τ

|∆µpsq|22 ds

ď|µpτq|22 `
ż t

τ

hpsq|µpsq|22 ds`
ż t

τ

gpsqds

ďC
`
|µpτq|22 `A3

t,τ ` pt´ τqAt,τ
˘ `
A4
t,τ ` pt´ τqA3

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τ q.
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Remark 3.4.3. The above Lemma has several consequences. First of all, from the third equation

of (3.0.1) we easily obtain |Btψ|22 ď Cp|∆µ|22 ` |u|2|∇u|2|∇ψ|2|∆ψ|2q. Thus, Lemmata 3.3.2

and 3.4.3 yield

ż t

τ

|Btψpsq|22 ds

ď C
`
|µpτq|22 `A3

t,τ ` pt ´ τqAt,τ
˘ `
A4
t,τ ` pt ´ τqA3

t,τ

˘
eCpA4

t,τ pt´τqA3

t,τ q. (3.4.7)

Besides, by (3.4.4) with b “ 2, we have

|fpψq|44 ď Cp|∇ψ|22|∆ψ|22 ` |µ|42 ` |µ|22|∇µ|22q,

hence Lemmata 3.4.1 and 3.4.3 entail fpψq P L4pτ, t;L4pΩqq, with

ż t

τ

|fpψpsqq|44 ds

ď C
`
|µpτq|22 `A3

t,τ ` pt ´ τqAt,τ
˘ `
A2
t,τ ` pt ´ τqAt,τ

˘
eCpA4

t,τ`pt´τqA3

t,τ q. (3.4.8)

Remark 3.4.4. Actually, even more uniform estimates can be deduced from the above Lemmata.

For example, from (3.4.4), using Ladyzhenskaja inequality and interpolation estimates, we deduce

|fpψq|84 ď C
`
|∇ψ|42|∆ψ|42 ` |µ|82 ` |µ|42|∇µ|42

˘

ď C
`
|∇ψ|42|∆ψ|42 ` |µ|82 ` |µ|62|∆µ|22

˘
,

i.e. fpψq P L8pτ, t;L4pΩqq. In particular,

ż t

t´1

|fpψpsqq|84 ds ď C

ż t

t´1

`
|∇ψpsq|42|∆ψpsq|42 ` |µpsq|82 ` |µpsq|62|∆µpsq|22

˘
ds (3.4.9)

ď C
`
|µpt´ 1q|22 `A3

t,t´1

˘4
A4
t,t´1e

CA4

t,t´1 .

Thanks to our assumptions on f and to the previous results, we can now obtain estimates on

the higher norms of the solution, which have uniform structure w.r.t. the shape of the potential.

Dependence on the growth of the potential F is limited to the constants C, which appear in the

estimate.

Lemma 3.4.4. Given any initial datum z0
.“ pu0, ψ0q P H1 so that µ0

.“ fpψ0q ´ ∆ψ0 P L2pΩq,
the solution departing at time τ from z0 satisfies

}zptq}2H1

ď C
`
}z0}2H1

` |µ0|22 `A3
t,τ ` pt´ τqAt,τ

˘ `
A5
t,τ ` pt ´ τqA4

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τq (3.4.10)
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for some constant C ą 0 depending on the exponent p and on the domain Ω but independent on

the initial data. Moreover,

ż t

τ

`
|∆2ψpsq|22 ` |∆upsq|22

˘
ds

ď C
`
}z0}2H1

` |µ0|22 `A3
t,τ ` pt ´ τqAt,τ

˘ `
A7
t,τ ` pt´ τqA6

t,τ

˘
eCpA4

t,τ `pt´τqA3

t,τq.

Proof. In this proof, we will exploit the following inequality

ˇ̌
f 1pyq

ˇ̌
`
ˇ̌
f2pyq

ˇ̌
ď C p1 ` |fpyq|q , @y P R,

which can be easily obtained from Assumptions (A.3), (A.4), (A.5), (A.6) and (A.7) by means of

the Young’s inequality. In particular, we will take advantage of its straightforward consequence

|f 1pψq|4 ` |f2pψq|4 ď C p1 ` |fpψq|4q .

Adding together the product of the first equation in (3.0.1) by 2Au “ ´2P∆u and of the third

one by 2∆2ψ, we obtain

d

dt

`
|∇u|22 ` |∆ψ|22

˘
` 2ν|Au|22 ` 2|∆2ψ|22 (3.4.11)

“2 xg, Auy ´ 2 xpu ·∇qu, Auy ` 2 xµ∇ψ,Auy ´ 2
@

pu ·∇qψ,∆2ψ
D

` 2
@
∆fpψq,∆2ψ

D
.

The first two terms arising from Navier-Stokes equations can be dealt with by writing

|´2 xpu ·∇qu, Auy ` 2 xg, Auy|

ďCp|u|1{2
2 |∇u|2|Au|3{2

2 ` |g|2|Au|2q

ďν

2
|Au|22 ` C|u|2|∇u|42 ` C|g|22.

Since xµ∇ψ,Auy “ ´ x∆ψ∇ψ,Auy, from the Agmon’s inequality we easily have

|2 xµ∇ψ,Auy|

ď2|∆ψ|8|∇ψ|2|Au|2

ďC|∆ψ|1{2
2 |∆2ψ|1{2

2 |∇ψ|2|Au|2

ďν

2
|Au|22 ` 1

3
|∆2ψ|22 ` C|∇ψ|42|∆ψ|22.

Then, by Ladyzhenskaja inequality and standard estimates

ˇ̌
2
@

pu ·∇qψ,∆2ψ
Dˇ̌

ď2|u|4|∇ψ|4|∆2ψ|2

ďC|u|1{2
2 |∇u|1{2

2 |∇ψ|1{2
2 |∆ψ|1{2

2 |∆2ψ|2
ď1

3
|∆2ψ|22 ` C|u|22|∇u|22 ` C|∇ψ|22|∆ψ|22.



3.4. HIGHER REGULARITY ESTIMATES 83

We are left to consider the last term in (3.4.11), for which we exploit

|∆ψ|2|∇∆ψ|2 ď C|∇ψ|2|∆2ψ|2,

namely,

2
ˇ̌@
∆fpψq,∆2ψ

Dˇ̌

“
ˇ̌
2
@
f 1pψq∆ψ,∆2ψ

D
` 2

@
f2pψq|∇ψ|2,∆2ψ

Dˇ̌

ďCp1 ` |fpψq|4qp|∆ψ|4 ` |∇ψ|8|∇ψ|4q|∆2ψ|2

ďCp1 ` |fpψq|4qp|∆ψ|1{2
2 |∇∆ψ|1{2

2 ` |∇ψ|1{2
2 |∇∆ψ|1{2

2 |∇ψ|1{2
2 |∆ψ|1{2

2 q|∆2ψ|2

ďCp1 ` |fpψq|4qp|∇ψ|1{2
2 |∆2ψ|1{2

2 ` |∇ψ|3{2
2 |∆2ψ|1{2

2 q|∆2ψ|2

ď1

3
|∆2ψ|22 ` Cp1 ` |fpψq|44qp1 ` |∇ψ|62q.

We finally deduce the differential inequality

d

dt

`
|∇u|22 ` |∆ψ|22

˘
` ν|Au|22 ` |∆2ψ|22 (3.4.12)

ďC|u|22|∇u|42
` C

`
|u|22|∇u|22 ` p1 ` |fpψq|44qp|∇ψ|62 ` 1q ` p|∇ψ|42 ` 1q|∆ψ|22 ` |g|22

˘
.

Introducing

h “ C|u|22|∇u|22
g “ C

`
|u|22|∇u|22 ` p1 ` |fpψq|44qp|∇ψ|62 ` 1q ` p|∇ψ|42 ` 1q|∆ψ|22 ` |g|22

˘
,

the above differential inequality reads as

d

dt
}z}2H1

ď h}z}2H1
` g. (3.4.13)

Thus Gronwall’s lemma gives

}zptq}2H1
ď
ˆ

}zpτq}2H1
`
ż t

τ

gpsqds
˙
e
ş
t

τ
hpsq ds

where, by (3.4.8) and Lemma 3.3.2 we have
ż t

τ

hpsqds ď CA2
t,τ

ż t

τ

gpsqds ď C
`
|µpτq|22 `A3

t,τ ` pt´ τqAt,τ
˘ `
A5
t,τ ` pt ´ τqA4

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τ q

and the estimate (3.4.10). Moreover, integrating (3.4.12), we also have

ż t

τ

`
|∆2ψpsq|22 ` |∆upsq|22

˘
ds

ď C
`
}z0}2H1

` |µpτq|22 `A3
t,τ ` pt ´ τqAt,τ

˘ `
A7
t,τ ` pt ´ τqA6

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τq.
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In the case of regular initial data, i.e. z0 P H1, we thus have the sought higher regularity for

solutions:

u P L8pτ, T ;H1
0,divpΩqq X L2pτ, T ;H2

0,divpΩqq

ψ P L8pτ, T ;H2pΩqq X L2pτ, T ;H4pΩqq

Btψ P L2pτ, T ;L2pΩqq

Corollary 3.4.5. Given any symbol g satisfying (B.1) and (B.2) and any t0 P R, there exists

a positive constant Cgpt0q such that, for any bounded set D Ă H0, there exists T “ T p|D|q ą 0

depending only on |D| .“ maxt1, supzPD }z}H0
u such that

}zptq}H1
` |µptq|2 ď Cgpt0q, t ď t0, τ ď t ´ 4 ´ T p|D|q,

where zptq is the solution to the problem with symbol g, departing at time τ from the initial datum

z0 P D, and µptq is the corresponding chemical potential. Besides, the following integral estimates

hold true ż t

t´1

|fpψpsq|84 ds ď QpMgpt0qq

for t ď t0, τ ď t´ 4 ´ T p|D|q, and, for t ď t0, τ ď t´ 5 ´ T p|D|q,
ż t

t´1

`
|∆upsq|22 ` |∆2ψpsq|22

˘
ds ď QpMgpt0qq,

for some nonnegative increasing function Q depending on p only through a multiplicative constant.

Proof. In order to prove the claim, we divide our argument in several steps. At each step, thanks

to the estimates of the previous sections, we will be able to improve the regularity of the solution

of (3.0.1)-(3.0.2) by letting the system evolve for a time interval sufficiently large (with the only

exception of the initial step, however, all time steps will be taken equal to 1).

Firstly, thanks to Corollary 3.3.3, for any t0 P R, any symbol g as above and any bounded set

D Ă H0, there exists T “ T p|D|q ą 0 such that

}zptq}2H0
` 2|F pψptqq|1 ď 1 ` Cp1 `Mgpt0qq ď Cp1 `Mgpt0qq, t ď t0, τ ď t ´ T,

for any z0 P D. Moreover integrating (3.3.5) and (3.3.6), for t ď t0
ż t

t´1

`
}zpsq}2H1

` |∇µpsq|22
˘
ds ď Cp1 `Mgpt0qq ` }zpt ´ 1q}2H0

` 2|F pψpt´ 1qq|1, τ ď t´ 1,

so that, provided that τ ď t´ 1 ´ T , we deduce

ż t

t´1

`
}zpsq}2H1

` |∇µpsq|22
˘
ds ď Cp1 `Mgpt0qq

as well as

At,s ď Cp1 `Mgpt0qq, τ ` T ď t´ 1 ď s ď t ď t0. (3.4.14)
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It thus follows from Lemmata 3.3.2, 3.4.1 and 3.4.2

ż t

t´1

`
|∆ψpsq|42 ` |∆ψpsq|2p`3 ` |µpsq|22

˘
ds ď CA2

t,t´1 ď Cp1 `M2
gpt0qq, τ ď t´ 1 ´ T,

allowing to prove that the functions h and g in the differential inequality (3.4.6), for τ ` T ă
t´ 1 ă t ď t0, satisfy

ż t

t´1

hpsqds ď CA4
t,t´1 ď Cp1 `M4

gpt0qq,
ż t

t´1

gpsqds ď CA3
t,t´1 ď Cp1 `M3

gpt0qq.

Hence, by the Uniform Gronwall’s lemma and (3.4.14), it follows

|µptq|22 ď C
`
1 `M3

gpt0q
˘
eCp1`M4

g
pt0qq, τ ` T ` 2 ď t ď t0 (3.4.15)

as well as

ż t

t´1

|∆µpsq|22ds ď C
`
1 `M7

gpt0q
˘
eCp1`M4

g
pt0qq, τ ` T ` 3 ď t ď t0.

Then the first claimed integral estimate follows from (3.4.9) and (3.4.15), while the functions h

and g in (3.4.13) satisfy

ż t

t´1

hpsqds ď C
`
1 `M2

gpt0q
˘ ż t

t´1

gpsqds ď C
`
1 `M8

gpt0q
˘
eCp1`M4

g
pt0qq,

provided that τ ` T ` 3 ď t ď t0. Therefore, applying the Uniform Gronwall’s lemma to (3.4.13)

we deduce

}zptq}2H1
ď C2

gpt0q, τ ` T ` 4 ď t ď t0,

where

C2
gpt0q .“ C

`
1 `M8

gpt0q
˘
eCp1`M4

g
pt0qq.

Finally, provided that τ ď t ´ 5 ´ T , integrating (3.4.12) over pt ´ 1, tq we obtain

ż t

t´1

`
|∆upsq|22 ` |∆2ψpsq|22

˘
ds ď C

`
1 `M10

g pt0q
˘
eCp1`M4

g
pt0qq.

3.5 Continuous dependence

In this section we obtain continuous dependence estimates of the solutions w.r.t. initial data and

forcing terms (see Lemmata 3.5.1 and 3.5.2).

In order to address the first issue and to simplify notation, throughout the section we indicate

by symbols with no subscripts the difference between quantities denoted by subscripts 1 and 2,

i.e.,

f
.“ f1 ´ f2.
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From (3.0.1)-(3.0.2) we easily see that the difference between two solutions z1 “ pu1, ψ1q and

z2 “ pu2, ψ2q satisfies the system

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

Btu ` pu ·∇qu1 ` pu2 ·∇qu ´ ν∆u “ µ1∇ψ1 ´ µ2∇ψ2 ` g

∇ ·u “ 0

Btψ ` u ·∇ψ1 ` u2 ·∇ψ “ ∆µ

µ “ ´∆ψ ` fpψ1q ´ fpψ2q

ψpτq “ ψ01 ´ ψ02, upτq “ u01 ´ u02

in Ω, (3.5.1)

with the boundary conditions

u “ 0, Bnψ “ 0, Bnµ “ 0, on BΩ.

Lemma 3.5.1. Let z01, z02 P H0 be any pair of initial data and let g1,g2 P L2
locp´8, t;L2

divpΩqq
be any pair of symbols. Then there exists a constant C such that, if ziptq, i “ 1, 2, are the solutions

of (3.0.1)-(3.0.2) with initial data z0i at time τ and symbol gi, then the following estimates hold

}zptq}2H0
ď
ˆ

}z0}2H0
`
ż t

τ

|gpsq|22 ds
˙
eCpAt,τ

6`pt´τqAt,τ
5q

and

ż t

τ

`
|∇upsq|22 ` |∇∆ψpsq|22

˘
ds

ďC
ˆ

}z0}2H0
`
ż t

τ

|gpsq|22 ds
˙´

At,τ
6 ` pt ´ τqAt,τ

5
¯
eCpAt,τ

6`pt´τqAt,τ
5q,

where At,τ is defined by At,τ
.“ At,τ p1q ` At,τ p2q and At,τ piq is the quantity corresponding to the

initial datum zi and the forcing term gi, for i “ 1, 2.

Proof. Recalling that, thanks to the incompressibility assumption on the velocity fields ui, for

i “ 1, 2, we have

xµi∇ψi,uiy

“ ´ x∆ψi∇ψi,uiy ` xfpψiq∇ψi,uiy “ ´ x∆ψi∇ψi,uiy ` x∇F pψiq,uiy

“ ´ x∆ψi∇ψi,uiy .

Moreover, the product of the first equation in (3.5.1) by 2u gives

d

dt
|u|22 ` 2ν|∇u|22 ` 2 xpu ·∇qu1,uy “ ´2 x∆ψ∇ψ1,uy ´ 2 x∆ψ2∇ψ,uy ` 2 xg,uy . (3.5.2)
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Noticing that

x∆µ,∆ψy

“ x∆r´∆ψ ` fpψ1q ´ fpψ2qs,∆ψy

“|∇∆ψ|22 `
@
f 1pψ1q∆ψ,∆ψ

D
`
@

rf 1pψ1q ´ f 1pψ2qs∆ψ2,∆ψ
D

`
@
f2pψ1q∇ψp∇ψ1 ` ∇ψ2q,∆ψ

D
`
@

rf2pψ1q ´ f2pψ2qs|∇ψ2|2,∆ψ
D

ě|∇∆ψ|22 ´ 2α|∆ψ|22 `
@

rf 1pψ1q ´ f 1pψ2qs∆ψ2,∆ψ
D

`
@
f2pψ1q∇ψp∇ψ1 ` ∇ψ2q,∆ψ

D
`
@

rf2pψ1q ´ f2pψ2qs|∇ψ2|2,∆ψ
D
,

the product of the third equation in (3.5.1) by ´2∆ψ yields

d

dt
|∇ψ|22 ` 2|∇∆ψ|22 ´ 2 xpu ·∇qψ1,∆ψy ´ 2 xpu2 ·∇qψ,∆ψy

ď4α|∆ψ|22 ´ 2
@

rf 1pψ1q ´ f 1pψ2qs∆ψ2,∆ψ
D

´ 2
@
f2pψ1q∇ψp∇ψ1 ` ∇ψ2q,∆ψ

D
´ 2

@
rf2pψ1q ´ f2pψ2qs|∇ψ2|2,∆ψ

D
.

Adding this last inequality to (3.5.2) we have

d

dt

`
|u|22 ` |∇ψ|22

˘
` 2ν|∇u|22 ` 2|∇∆ψ|22 (3.5.3)

ď4α|∆ψ|22 ´ 2
@

rf 1pψ1q ´ f 1pψ2qs∆ψ2,∆ψ
D

´ 2
@
f2pψ1q∇ψp∇ψ1 ` ∇ψ2q,∆ψ

D

´ 2
@

rf2pψ1q ´ f2pψ2qs|∇ψ2|2,∆ψ
D

` 2 xpu2 ·∇qψ,∆ψy

´ 2 xpu ·∇qψ,∆ψ2y ´ 2 xpu ·∇qu1,uy ` 2 xg,uy .

Since |∆ψ|22 ď |∇ψ|2|∇∆ψ|2, we immediately obtain

4α|∆ψ|22 ď 4α|∇ψ|2|∇∆ψ|2 ď 1

5
|∇∆ψ|22 ` C|∇ψ|22.

Before dealing with the terms arising from the double-well potential F , we introduce some

useful estimates for terms of the form |f pkqpψ1q´f pkqpψ2q|. Indeed from the fundamental theorem

of calculus and by assumptions (A.7) and (A.5) we have

ˇ̌
ˇf pkqpψ1q ´ f pkqpψ2q

ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ

ż ψ1

ψ2

f pk`1qpsqds
ˇ̌
ˇ̌
ˇ ď

ż ψ2

ψ1

ˇ̌
ˇf pk`1qpsq

ˇ̌
ˇ ds ď C

ż ψ2

ψ1

´
1 ` F psqpp ` 1 ´ kq{pp ` 3q

¯
ds

ďC
´
1 ` F pψ1qpp ` 1 ´ kq{pp ` 3q ` F pψ2qpp ` 1 ´ kq{pp ` 3q

¯
|ψ1 ´ ψ2|.
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Moreover, we can estimate suitable Lq norms of this difference as follows

|f pkqpψ1q ´ f pkqpψ2q| p`3

p`2´k
(3.5.4)

ďC
ˆż

Ω

p1 ` F pψ1q ` F pψ2qqpp ` 1 ´ kq{pp ` 2 ´ kq |ψ1 ´ ψ2|pp ` 3q{pp ` 2 ´ kq dx

˙pp ` 2 ´ kq{pp ` 3q

ďC
ˆż

Ω

p1 ` F pψ1q ` F pψ2qq dx

˙pp ` 1 ´ kq{pp ` 3q ˆż

Ω

|ψ1 ´ ψ2|p`3 dx

˙1{pp ` 3q

ďC
´
1 ` |F pψ1q|pp ` 1 ´ kq{pp ` 3q

1 ` |F pψ2q|pp ` 1 ´ kq{pp ` 3q

1

¯
|ψ|p`3.

In light of this bound, we can now resume the estimation of the terms in the right hand side

of (3.5.3). We have

ˇ̌
2
@`
f 1pψ1q ´ f 1pψ2q

˘
∆ψ2,∆ψ

Dˇ̌

ď2|f 1pψ1q ´ f 1pψ2q| p`3

p`1

|∆ψ2|p`3|∆ψ|p`3

ďC
´
1 ` |F pψ1q|p{pp ` 3q

1 ` |F pψ2q|p{pp ` 3q

1

¯
|∇ψ|2|∆ψ2|p`3|∇∆ψ|2

ď1

5
|∇∆ψ|22 ` C

´
1 ` |F pψ1q|p{pp ` 3q

1 ` |F pψ2q|p{pp ` 3q

1

¯2

|∆ψ2|2p`3|∇ψ|22.

Analogously we also obtain

ˇ̌
´2

@`
f2pψ1q ´ f2pψ2q

˘
|∇ψ2|2,∆ψ

Dˇ̌

ď2|f2pψ1q ´ f2pψ2q| p`3

p

|∇ψ2|2p`3|∆ψ|p`3

ďC
´
1 ` |F pψ1q|pp ´ 1q{pp ` 3q

1 ` |F pψ2q|pp ´ 1q{pp ` 3q

1

¯
|∇ψ|2|∆ψ2|22|∇∆ψ|2

ď1

5
|∇∆ψ|22 ` C

´
1 ` |F pψ1q|pp ´ 1q{pp ` 3q

1 ` |F pψ2q|pp ´ 1q{pp ` 3q

1

¯2

|∆ψ2|42|∇ψ|22.

The last term involving the potential F and its derivatives can be dealt with in a similar way.

Again the assumptions on F provide

ˇ̌
´2

@
f2pψ1q∇ψp∇ψ1 ` ∇ψ2q,∆ψ

Dˇ̌

ď2|f2pψ1q| p`3

p
|∇ψ|p`3 p|∇ψ1|p`3 ` |∇ψ2|p`3q |∆ψ|p`3

ďC
´
1 ` |F pψ1q|p{pp ` 3q

1

¯
|∆ψ|2 p|∆ψ1|2 ` |∆ψ2|2q |∇∆ψ|2

ďC
´
1 ` |F pψ1q|p{pp ` 3q

1

¯
|∇ψ|1{2

2 |∇∆ψ|1{2
2 p|∆ψ1|2 ` |∆ψ2|2q |∇∆ψ|2

ď1

5
|∇∆ψ|22 ` C

`
1 ` |F pψ1q|41

˘ `
|∆ψ1|42 ` |∆ψ2|42

˘
|∇ψ|22.

We also bound the last four terms on the right hand side of (3.5.3), which arise from the linear
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momentum equation. Thanks to Agmon’s inequality, we have |∇ψ|28 ď C|∇ψ|2|∇∆ψ|2, and thus

|2 xpu2 ·∇qψ,∆ψy ´ 2 xpu ·∇qψ,∆ψ2y|

ď2|u2|2|∇ψ|8|∆ψ|2 ` 2|u|2|∇ψ|8|∆ψ2|2

ďC|u2|2|∇ψ|2|∇∆ψ|2 ` C|u|2|∇ψ|1{2
2 |∇∆ψ|1{2

2 |∆ψ2|2

ď1

5
|∇∆ψ|22 ` ν

2
|∇u|22 ` Cp|u2|22 ` |∆ψ2|42q|∇ψ|22

holds. Finally, by Ladyzhenskaja inequality, it follows

|´2 xpu ·∇qu1,uy ` 2 xg,uy|

ďC|u|24|∇u1|2 ` C|g|2|∇u|2

ďC|u|2|∇u|2|∇u1|2 ` C|g|2|∇u|2

ďν

2
|∇u|22 ` C|∇u1|22|u|22 ` C|g|22.

Replacing the above estimates in (3.5.3), we see that }zptq}2
H0

“ |uptq|22 ` |∇ψptq|22 satisfies

d

dt
}z}2H0

` ν|∇u|22 ` |∇∆ψ|22 ď C|g|22 ` h}z}2H0
,

where h is given by

h
.“C

`
1 ` |∇u1|22 ` |∇u2|22

˘

` C
`
1 ` |F pψ1q|41 ` |F pψ2q|41

˘ `
|∆ψ1|42 ` |∆ψ2|42 ` |∆ψ2|2p`3

˘
.

By the results of the previous section we deduce

ż t

τ

hpsqds ď C
´
At,τ

6 ` pt ´ τqAt,τ
5
¯

so that Gronwall’s lemma finally gives the claimed estimates.

In order to apply the abstract framework described in Section 3.2, we also need the following

higher order continuous dependence estimate.

Lemma 3.5.2. Let z01, z02 P H1 be any pair of initial data so that µ0i
.“ fpψ0iq ´∆ψ0i P L2pΩq,

i “ 1, 2 and let g1,g2 P L2
locp´8, t;L2

divpΩqq be any pair of symbols. Then there exists a constant

C such that, if ziptq, i “ 1, 2 are the solutions of (3.0.1)-(3.0.2) with initial data z0i at time τ

and symbol gi, then the following estimate holds

}zptq}2H1
ď eQpAt,τ ,t´τqp1`}z01}2

H1
`}z02}2

H1
`|µ01|2

2
`|µ02|2

2q
ˆ

}z0}2H1
`
ż t

τ

|gpsq|22 ds
˙
,

where Q is a nonnegative increasing function of its arguments.
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Proof. We start by multiplying the first equation in (3.5.1) by 2Au “ ´2P∆u, getting

d

dt
|∇u|22 ` 2ν|Au|22

“ ´ 2 xpu ·∇qu1, Auy ´ 2 xpu2 ·∇qu, Auy ´ 2 x∆ψ1∇ψ1, Auy ` 2 x∆ψ2∇ψ2, Auy ` 2 xg, Auy .

The product of the third equation in (3.5.1) by 2∆2ψ, after an integration by parts, provides

d

dt
|∆ψ|22 ` 2|∆2ψ|22

“ ´ 2
@
u ·∇ψ1,∆

2ψ
D

´ 2
@
u2 ·∇ψ,∆2ψ

D
´ 2

@
f 1pψ1q∇∆ψ,∇∆ψ

D

´ 2
@

rf 1pψ1q ´ f 1pψ2qs∇∆ψ2,∇∆ψ
D

´ 2
@
f2pψ1q∇ψ∆ψ1,∇∆ψ

D

´ 2
@

rf2pψ1q ´ f2pψ2qs∇ψ2∆ψ1,∇∆ψ
D

´ 2
@
f2pψ2q∇ψ2∆ψ,∇∆ψ

D

´ 4
@
f2pψ1q∇2ψ1∇ψ,∇∆ψ

D
´ 4

@
pf2pψ1q ´ f2pψ2qq∇2ψ1∇ψ2,∇∆ψ

D

´ 4
@
f2pψ2q∇2ψ∇ψ2,∇∆ψ

D
´ 2

A
f3pψ1q∇ψ |∇ψ1|2 ,∇∆ψ

E

´ 2
@
f3pψ1q∇ψ2∇ψ · p∇ψ1 ` ∇ψ2q,∇∆ψ

D

´ 2xrf3pψ1q ´ f3pψ2qs∇ψ2|∇ψ2|2,∇∆ψy.

Adding together the two equations, by Assumption (A.5) we obtain

d

dt

´
}u}2H1

0,divpΩq ` |∆ψ|22
¯

` 2ν|Au|2L2

div
pΩq ` 2|∆2ψ|22

ď ´ 2 xpu ·∇qu1, Auy ´ 2 xpu2 ·∇qu, Auy ´ 2 x∆ψ∇ψ1, Auy ´ 2 x∆ψ2∇ψ,Auy

` 2 xg, Auy ´ 2
@
u ·∇ψ1,∆

2ψ
D

´ 2
@
u2 ·∇ψ,∆2ψ

D
` 4α|∇∆ψ|22

´ 2
@

rf 1pψ1q ´ f 1pψ2qs∇∆ψ2,∇∆ψ
D

´ 2
@
f2pψ1q∇ψ∆ψ1,∇∆ψ

D

´ 2
@

rf2pψ1q ´ f2pψ2qs∇ψ2∆ψ1,∇∆ψ
D

´ 2
@
f2pψ2q∇ψ2∆ψ,∇∆ψ

D

´ 4
@
f2pψ1q∇2ψ1∇ψ,∇∆ψ

D
´ 4

@
pf2pψ1q ´ f2pψ2qq∇2ψ1∇ψ2,∇∆ψ

D

´ 4
@
f2pψ2q∇2ψ∇ψ2,∇∆ψ

D
´ 2

A
f3pψ1q∇ψ |∇ψ1|2 ,∇∆ψ

E

´ 2
@
f3pψ1q∇ψ2∇ψ · p∇ψ1 ` ∇ψ2q,∇∆ψ

D

´ 2
@

rf3pψ1q ´ f3pψ2qs∇ψ2|∇ψ2|2,∇∆ψ
D
.

We now show that all the eighteen terms on the right hand side of the last inequality can be

bounded by

h
`
|∇u|22 ` |∆ψ|22

˘
,

where h is an integrable quantity. Standard computations for the Navier-Stokes equation lead to

|´2 xpu ·∇qu1, Auy ´ 2 xpu2 ·∇qu, Auy|

ďC|u|1{2
2 |Au|1{2

2 |∇u1|2|Au|2 ` C|u2|1{2
2 |∇u2|1{2

2 |∇u|1{2
2 |Au|3{2

2

ďν

3
|Au|22 ` C|∇u1|42|u|22 ` C|u2|22|∇u2|22|∇u|22.
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Exploiting Agmon’s inequality and the interpolation inequality |φ|8 ď C|φ|2{3
2 }φ}1{3

H3 , we can

bound the following three terms

|´2 x∆ψ∇ψ1, Auy ´ 2 x∆ψ2∇ψ,Auy ` 2 xg, Auy|

ď2r|∆ψ|8|∇ψ1|2 ` |∆ψ2|2|∇ψ|8 ` |g|2s|Au|2

ď2r|∆ψ|1{22 |∆2ψ|1{2
2 |∇ψ1|2 ` |∆ψ2|2|∇ψ|2{3

2 |∆2ψ|1{3
2 ` |g|2s|Au|2

ďν

3
|Au|22 ` 1

7
|∆2ψ|22 ` C|∇ψ1|42|∆ψ|22 ` C|∆ψ2|32|∇ψ|22 ` C|g|22

as well as the next two

ˇ̌
´2

@
u ·∇ψ1,∆

2ψ
D

´ 2
@
u2 ·∇ψ,∆2ψ

Dˇ̌

ď2|u|8|∇ψ1|2|∆2ψ|2 ` 2|u2|2|∇ψ|8|∆2ψ|2

ďC|u|1{2
2 |Au|1{2

2 |∇ψ1|2|∆2ψ|2 ` C|u2|2|∇ψ|2{3
2 |∆2ψ|4{3

2

ďν

3
|Au|22 ` 1

7
|∆2ψ|22 ` C|∇ψ1|42|u|22 ` C|u2|32|∇ψ|22.

The terms arising from the double well potential can be treated using similar techniques. By

interpolation, we have

4α|∇∆ψ|22 ď 1

7
|∆2ψ|22 ` C|∆ψ|22,

while, by (3.5.4), we obtain

ˇ̌
´2

@
rf 1pψ1q ´ f 1pψ2qs∇∆ψ2,∇∆ψ

Dˇ̌

ď2|f 1pψ1q ´ f 1pψ2q| p`3

p`1

|∇∆ψ2|p`3|∇∆ψ|p`3

ďC
´
1 ` |F pψ1q|p{pp ` 3q

1 ` |F pψ2q|p{pp ` 3q

1

¯
|∇ψ|2|∆2ψ2|2|∆2ψ|2

ď1

7
|∆2ψ|22 ` C p1 ` |F pψ1q|1 ` |F pψ2q|1q2 |∆2ψ2|22|∇ψ|22.

Using also Korn’s inequality, from Assumptions (A.2) and (A.3) we deduce

ˇ̌
´2

@
f2pψ1q∇ψ∆ψ1,∇∆ψ

D
´ 4

@
f2pψ1q∇2ψ1∇ψ,∇∆ψ

Dˇ̌

ďC|f2pψ1q| p`3

p
|∇ψ|p`3|∆ψ1|p`3|∇∆ψ|p`3

ďCp1 ` |F pψ1q|p{pp ` 3q

1 q|∆ψ|2|∆ψ1|p`3|∆2ψ|2

ď1

7
|∆2ψ|2 ` C p1 ` |F pψ1q|1q2 |∆ψ1|2p`3|∆ψ|22.

Arguing as in the proof of Lemma 3.5.1, namely, exploiting (3.5.4) for the first two terms, and
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Assumptions (A.2) and (A.3) for the second two, as well as Korn’s inequality again, we obtain

ˇ̌
´2

@
rf2pψ1q ´ f2pψ2qs∇ψ2∆ψ1,∇∆ψ

D
´ 4

@`
f2pψ1q ´ f2pψ2q

˘
∇

2ψ1∇ψ2,∇∆ψ
D

´ 2
@
f2pψ2q∇ψ2∆ψ,∇∆ψ

D
´ 4

@
f2pψ2q∇2ψ∇ψ2,∇∆ψ

Dˇ̌

ďC
´
1 ` |F pψ1q|pp ´ 1q{pp ` 3q

1 ` |F pψ2q|pp ´ 1q{pp ` 3q

1

¯
|∆ψ2|2|∆ψ1|p`3|∇ψ|2|∆2ψ|2

` C
´
1 ` |F pψ2q|p{pp ` 3q

1

¯
|∆ψ2|2|∇∆ψ|2|∆2ψ|2

ď1

7
|∆2ψ|22 ` C

`
1 ` |F pψ1q|21 ` |F pψ2q|21

˘
|∆ψ2|22|∆ψ1|2p`3|∇ψ|22

` C
`
1 ` |F pψ2q|41

˘
|∆ψ2|42|∆ψ|22.

We are left to consider

ˇ̌
´2

@
f3pψ1q∇ψ|∇ψ1|2,∇∆ψ

D
´ 2

@
f3pψ1q∇ψ2 ∇ψ · p∇ψ1 ` ∇ψ2q ,∇∆ψ

D
(3.5.5)

´ 2
@

rf3pψ1q ´ f3pψ2qs∇ψ2|∇ψ2|2,∇∆ψ
Dˇ̌

ďCp1 ` |F pψ1q|pp ´ 1q{pp ` 3q

1 qp|∆ψ1|22 ` |∆ψ1|2||∆ψ2|2 ` |∆ψ2|22q|∆ψ|2|∆2ψ|2
` C

´
1 ` |F pψ1q|pp ´ 2q{pp ` 3q

1 ` |F pψ2q|pp ´ 2q{pp ` 3q

1

¯
|∆ψ2|32|∇ψ|2|∆2ψ|2

ď1

7
|∆2ψ|22 ` Cp1 ` |F pψ1q|21qp|∆ψ1|42 ` |∆ψ2|42q|∆ψ|22
` C

`
1 ` |F pψ1q|21 ` |F pψ2q|21

˘
|∆ψ2|62|∇ψ|22.

Remark 3.5.1. In the case p P r1, 2q, under the assumption f pivqpyq bounded for y P R we can

still derive the estimate for the term

@
|f3pψ1q ´ f3pψ2q|∇ψ2|∇ψ2|2,∇∆ψ

D
ď C|∇ψ|2|∆ψ2|32|∇∆ψ|p`3,

which gives the same result as above.

From the above inequalities, collecting terms we obtain

d

dt

`
|∇u|22 ` |∆ψ|22

˘
` ν|Au|22 ` |∆2ψ|22

ďC |g|22 ` C
`
|∇ψ1|42 ` |∇u1|42 ` |u2|22|∇u2|22

˘
|∇u|22

`C
`
|u2|32 ` |∆ψ2|32 `

`
1 ` |F pψ1q|21 ` |F pψ2q|21

˘ `
|∆2ψ2|22 ` |∆ψ2|62 ` |∆ψ2|22|∆ψ1|2p`3

˘˘
|∇ψ|22

`C
`
1 ` |∇ψ1|42 `

`
1 ` |F pψ1q|21

˘ `
|∆ψ1|42 ` |∆ψ2|42 ` |∆ψ1|2p`3

˘
`
`
1 ` |F pψ2q|41

˘
|∆ψ2|42

˘
|∆ψ|22.

Denoting by

h “ C
`
1 ` |∇ψ1|42 ` |u2|32 ` |∇u1|42 ` |u2|22|∇u2|22 ` |∆ψ2|32

`
`
1 ` |F pψ1q|21 ` |F pψ2q|21

˘ `
|∆2ψ2|22 ` |∆ψ2|62 ` |∆ψ2|22|∆ψ1|2p`3

˘

`
`
1 ` |F pψ1q|21

˘ `
|∆ψ1|42 ` |∆ψ2|42 ` |∆ψ1|2p`3

˘
`
`
1 ` |F pψ2q|41

˘
|∆ψ2|42

˘
,
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the above differential inequality reads as

d

dt
}zptq}2H1

ď hptq}zptq}2H1
` C|gptq|22 (3.5.6)

and depends on p only through the constants C included in the definition of h. Therefore, the

estimate obtained by Gronwall’s lemma below has the structure

}zptq}2H1
ď eQpAt,τ ,t´τqp1`}z01}2

H1
`}z02}2

H1
`|µ01|2

2
`|µ02|2

2q
ˆ

}z0}2H1
`
ż t

τ

|gpsq|22 ds
˙

where, for any potential F satisfying the assumptions (A.1)–(A.7), the function Q depends on

At,τ only through some of its powers, which, in particular, do not depend on the growth exponent

p (i.e. the shape) of F .

3.6 Time regularity

In this section we evaluate the distance in H0 between the solution and the initial datum in terms

of the time span (Lemma 3.6.1), and we show a smoothing property for difference of solutions

(Lemma 3.6.2). This will be crucial to show that Assumptions (H.1) and (H.3) in Theorems 3.2.2

and 3.2.3 hold true for system (3.0.1).

Lemma 3.6.1. Given any symbol g satisfying (B.1) and (B.2), there exists a positive constant

C such that the solution zptq, departing at time τ from an arbitrary initial datum z0 P H1, so

that µ0 P L2pΩq satisfies

}zptq ´ z0}2H0

ď
?
t ´ τ

`
}z0}2H1

` |µ0|22 `A3
t,τ ` pt ´ τqAt,τ

˘ `
A8
t,τ ` pt ´ τqA7

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τq,

for τ ď t ď t0.

Proof. The different features of the Navier-Stokes and the Cahn-Hilliard equations force to handle

separately the two variables. We preliminarily observe that, denoting the solution and the initial

datum as zptq “ puptq, ψptqq and z0 “ pu0, ψ0q, respectively,

|uptq ´ u0|2 ď
ż t

τ

|Btupsq|2 ds ď
?
t ´ τ }Btu}L2pτ,t;L2

div
pΩqq,

meaning that we only need to properly bound the last norm. The product of the first equation

in (3.0.1) by 2Btu gives

ν
d

dt
|∇u|22 ` 2|Btu|22 “ ´2 xu ·∇qu, Btuy ` 2 xµ∇ψ, Btuy ` 2 xg, Btuy .

Here, having observed that

|2 xµ∇ψ, Btuy| “ |2 xψ∇µ, Btuy| ď 2|∇µ|2|ψ|8|Btu|2 ď C|∇µ|2|ψ|1{2
2 |∆ψ|1{2

2 |Btu|2,
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the right hand side can be controlled as

|´2 xpu ·∇qu, Btuy ` 2 xµ∇ψ, Btuy ` 2 xg, Btuy|

ď|Btu|22 ` C|u|2|∇u|22|u|H2
0,divpΩq ` C|∇µ|22|ψ|2|∆ψ|2 ` C|g|22.

Replacing this estimate in the differential equality above, we have

ν
d

dt
|∇u|22 ` |Btu|22 ď C

´
|u|2|∇u|22|u|H2

0,divpΩq ` |∇µ|22|ψ|2|∆ψ|2 ` |g|22
¯
,

thus, integrating in time over pτ, tq, thanks to Lemmata 3.3.2 and 3.4.4, we deduce
ż t

τ

|Btupsq|22 ds

ď
ˆ
ν|∇upτq|22 ` C

ż t

τ

|gpsq|22ds ` C

ż t

τ

r|∇µpsq|22}ψpsq}H1}ψpsq}H2 ` |upsq|22|upsq|2H2
0,divpΩqsds

˙

ďCAt,τ
`
}zpτq}2H1

` |µpτq|22 `A3
t,τ ` pt´ τqAt,τ

˘ `
A7
t,τ ` pt ´ τqA6

t,τ

˘
eCpA4

t,τ`pt´τqA3

t,τq,

which provides the desired estimate. We now turn our attention to the order parameter. By

interpolation, exploiting (3.4.7) and Lemma 3.4.4 again, we obtain

}ψpt, τq ´ ψ0}2H1pΩq

ď|ψpt, τq ´ ψ0|2}ψpt, τq ´ ψ0}H2pΩq

ďC
?
t´ τ

´ż t

τ

|Btψps, τq|22 ds
¯1{2

sup
sPrτ,ts

}ψpsq}H2pΩq

ďC
?
t´ τ

`
}zpτq}2H1

` |µpτq|22 `A3
t,τ ` pt ´ τqAt,τ

˘ `
A5
t,τ ` pt´ τqA4

t,τ

˘
eCpA4

t,τ `pt´τqA3

t,τq.

The following smoothing property is crucial to show that our problem fits in the theoretical

setting of Langa et al. (2010), which was presented in Section 3.2.

Lemma 3.6.2. There exists a positive function Qp · , · q, increasing in both arguments, such that,

given a pair of symbols g1,g2 satisfying (B.1) and (B.2) and any pair of initial data z01, z02 P H1

so that µ0i P L2pΩq, i “ 1, 2, there holds

pt ´ τq}zptq}2H1

ď
ˆ

}z0}2H0
` Cp1 ` t ´ τq

ż t

τ

|gpsq|22 ds
˙
eQpAt,τ ,t´τqp1`}z01}2

H1
`}z02}2

H1
`|µ01|2

2
`|µ02|2

2q

where ziptq stands for the solution to problem (3.0.1)-(3.0.2) corresponding to symbol gi originat-

ing at time τ from the initial datum zi0.

Proof. Multiplying (3.5.6) by pt ´ τq, we obtain the differential inequality

d

dt

`
pt´ τq}zptq}2H1

˘

ď}zptq}2H1
` Cpt ´ τq|gptq|22 ` hptqpt ´ τq}zptq}2H1

,
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where the function h is given as in the proof of Lemma 3.5.2. By the second estimate in

Lemma 3.5.1, we deduce

ż t

τ

}zpsq}2H1
ds ď C

ˆ
}z0}2H0

`
ż t

τ

|gpsq|22 ds
˙´

At,τ
6 ` pt´ τqAt,τ

5
¯
eCpAt,τ

6`pt´τqAt,τ
5q,

while the integral of h can be bounded as in Lemma 3.5.2. Thus, the Gronwall’s lemma entails

pt´ τq}zptq}2H1

ďC
ˆ

}z0}2H0
` p1 ` t´ τq

ż t

τ

|gpsq|22 ds
˙´

At,τ
6 ` pt ´ τqAt,τ

5
¯
eCpAt,τ

6`pt´τqAt,τ
5q

eQpAt,τ ,t´τqp1`}z01}2
H1

`}z02}2
H1

`|µ01|2
2

`|µ02|2
2q,

which is, the desired estimate.

3.7 Proof of the main results

In this section we show how, properly choosing the spaces and the operators, relying on the results

of previous sections, we can apply Theorem 3.2.2, and subsequently Theorem 3.2.3, to our system

so to prove Theorem 3.1.1 and Corollary 3.1.2.

Let V and H be the spaces H1 and H0 respectively. Observe that, whenever the symbol g

satisfies assumptions (B.1) and (B.2), thanks to Theorem 3.3.1 and Lemma 3.5.1 the solution

operator associated to system (3.0.1)-(3.0.2) is well-defined and continuous on H . Moreover,

thanks to Corollary 3.4.5, in studying the asymptotic behavior of solutions of (3.0.1)-(3.0.2) we

can further restrict our attention to the bounded subset of V given by

B
.“ tz P V | }z}H1

` |µ|2 ď Cgpt0qu,

which is uniformly (w.r.t. the diameter of the set of initial data) absorbing for the solutions

of (3.0.1)-(3.0.2). Since the constraint |µ|2 “ |fpψq ´ ∆ψ|2 ď C is closed w.r.t. the topology of

V , we can further restrain our attention to the set

O
µ
δ pBq .“ OδpBq X t|µ|2 ď Cgpt0qu

when discussing the exponential decay of solution towards an exponential pullback attractor.

Let τ P R be given and let g satisfy (B.1) and (B.3) (so that (B.2) holds true as well for t ď t0,

which is enough for our scopes), we denote by Ugpt, τq the solution operator to problem (3.0.1)-

(3.0.2) at time t ě τ with symbol g and initial data in V . Thanks to Lemmata 3.4.4 and 3.5.2

the process Ugpt, τq : V Ñ V is well-defined and continuous on O
µ
δ . Therefore, if t0 is the time

appearing in assumption (B.3), the restricted family tUgpt, τq : τ ď t ď t0u belongs to the class
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UpV, t0q. Since the set O
µ
δ is uniformly absorbing for the family tUgpt, τqu, fixing δ “ 1 and the

time span

τ0
.“ 5 ` T p|Oµ

1 pBq|q ,

we deduce by Corollary 3.4.5 and Lemma 3.6.2 that Ugpt, t ´ τ0q P S1,LpBq, where the constant

L depends increasingly on τ0, Cgpt0q and Mgpt0q.
In this framework we can now verify assumptions (H.1)–(H.3) for system (3.0.1)-(3.0.2). In-

deed, (H.2) is a straightforward consequence of Lemma 3.5.2. The coupling between the Navier-

Stokes and the convective Cahn-Hilliard equations makes more involved the validation of as-

sumptions (H.1) and (H.3). In order to avoid further requirements over the symbols but (B.3),

we exploit Lemma 3.6.1 and interpolation, thanks to a smoothing in the solution. The technical

details of our argument are contained in the following lemma.

Lemma 3.7.1. Assume that g satisfies (B.1) and (B.3). Then there exists a positive constant C

depending on the exponent q in (B.3) such that, for any initial datum z0 P O
µ
1 pBq, the solution

zptq “ puptq, ψptqq “ Ugpt, τqz0 satisfies

}uptq}
H

p2q ´ 2q{q
0,div pΩq ` }ψptq}H3 ď C, (3.7.1)

for any t ď t0 ´ 1 and τ ď t´ 1 ´ τ0.

Proof. In this proof, we consider the two equations separately: first, as in Langa et al. (2010), we

apply the Giga-Sohr argument (see Giga and Sohr (1991)) to the equation

Btu ´ νP∆u “ h,

where

h
.“ ´Pu ·∇u ` Pµ∇ψ ` g.

By Hölder’s and Gagliardo-Nirenberg’s inequalities, we obtain

|u ·∇u|2 ď C|u|q|∇u|2q{pq ´ 2q ď C|∇u|2pq ´ 1q{q
2 |∆u|2{q

2 .

Moreover, recalling that fpψq∇ψ P L2pΩq and fpψq∇ψ P L2
divpΩqK

|Pµ∇ψ|2 ď |∆ψ∇ψ|2 ď C|∆ψ|2pq ´ 1q{q
2 |∆2ψ|2{q

2 ,

(actually this estimate is not optimal but, due to the previous estimates on the velocity field above,

this does not have any influence on the final outcome) then Corollary 3.4.5 and assumption (B.3)

ensure ż t

t´2

|hpsq|q2ds ď QpMg,qpt0qq, τ ď t´ 6 ´ T p|Oµ
1 pBq|q “ t´ 1 ´ τ0,
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which is identical to (Langa et al., 2010, Equation (84)). From this estimate, arguing as in Langa

et al. (2010) we deduce the bound on u

}uptq}
H

p2q ´ 2q{q
0,div pΩq ď QpMg,qpt0qq,

which is the first part of (3.7.1).

We now turn our attention to the Cahn-Hilliard equation. The product of the third equation

in (3.0.1) by ´2∆Btψ leads to

d

dt
|∇∆ψ|22 ` 2|∇Btψ|22

“ ´ 2 xu ·∇Btψ,∆ψy ` 2
@
f 1pψq∇∆ψ,∇Btψ

D
` 2

@
f2pψq∇ψ∆ψ,∇Btψ

D

` 4
@
f2pψq∇ψ∇2ψ,∇Btψ

D
` 2

@
f3pψq∇ψ|∇ψ|2,∇Btψ

D
.

By Ladyzhenskaja inequality and interpolation, the first term on the right hand side can be

controlled as

|´2 xu ·∇Btψ,∆ψy|

ď2|u|4|∆ψ|4|∇Btψ|2

ďC|u|1{2
2 |∇u|1{2

2 |∆ψ|3{4
2 |∆2ψ|1{4

2 |∇Btψ|2

ď1

4
|∇Btψ|22 ` |∆2ψ|22 ` C|u|4{3

2 |∇u|4{3
2 |∆ψ|22

and, similarly, the second one is

ˇ̌
2
@
f 1pψq∇∆ψ,∇Btψ

Dˇ̌

ď2|f 1pψq|4|∇∆ψ|4|∇Btψ|2

ďC|f 1pψq|4|∆ψ|1{4
2 |∆2ψ|3{4

2 |∇Btψ|2
ď1

4
|∇Btψ|2 ` |∆2ψ|22 ` C|f 1pψq|84|∆ψ|42.

Taking advantage also of Agmon’s and Korn’s inequalities, we compute

ˇ̌
2
@
f2pψq∇ψ∆ψ,∇Btψ

D
` 4

@
f2pψq∇ψ∇2ψ,∇Btψ

Dˇ̌

ď2|f2pψq|4|∇ψ|8|∆ψ|4|∇Btψ|2 ` 4|f2pψq|4|∇ψ|8|∇2ψ|4|∇Btψ|2

ďC|f2pψq|4|∇ψ|1{2
2 |∇∆ψ|1{2

2 |∆ψ|1{2
2 |∇∆ψ|1{2

2 |∇Btψ|2
ďC|f2pψq|4|∇ψ|1{2

2 |∆ψ|2|∆2ψ|1{2
2 |∇Btψ|2

ď1

4
|∇Btψ|22 ` |∆2ψ|22 ` C|f2pψq|44|∇ψ|22|∆ψ|42.

Finally,

ˇ̌
2
@
f3pψq∇ψ|∇ψ|2,∇Btψ

Dˇ̌
ď C|f3pψq|4|∆ψ|32|∇Btψ|2 ď 1

4
|∇Btψ|22 ` C|f3pψq|24|∆ψ|62.
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Collecting the above estimates, we obtain

d

dt
|∇∆ψ|22 ď h,

where

h “ C
´

|∆2ψ|22 ` |f 1pψq|84|∆ψ|42 ` |u|4{3
2 |∇u|4{3

2 |∆ψ|22 ` |f2pψq|44|∇ψ|22|∆ψ|42 ` |f3pψq|24|∆ψ|62
¯
.

Having observed that by Assumption (A.6) we have

|f 1pψq|4 ` |f2pψq|4 ` |f3pψq|4 ď |fpψq|4,

then Corollary 3.4.5 provides
ż t

t´1

hpsqds ď QpMgpt0qq, τ ď t´ 5 ´ T p|Oµ
1 pBq|q,

by the Uniform Gronwall’s lemma, we deduce

|∇∆ψptq|22 ď QpMgpt0qq t ě τ ` 5 ` T p|Oµ
1 pBq|q.

We can now show that (H.1) holds true. Having fixed g satisfying (B.1) and (B.3), we

denote by C a generic positive constant depending only on Mg,qpt0q. Then we observe that by

Corollary 3.4.5 there holds

sup
z0POµ

1
pBq

}Ugpt, τqz0}H1
ď C

for t ď t0 and τ ď t ´ τ0. Besides, Corollary 3.3.3 entails

At,τ ď C, t ď t0, τ ď t´ τ0, @z0 P O
µ
1 pBq. (3.7.2)

Therefore, arguing as in Lemma 3.6.1, for any initial datum z0 P O
µ
1 pBq, we have

}Ugpt, τqz0 ´ Ugpt ´ s, τqz0}H0
ď C

?
s, (3.7.3)

for t ď t0 ´1, 0 ď s ď 1 and τ ď t´ τ0. To proceed in our argument, we need to consider the two

variable separately: thus, for any initial datum z0 P O
µ
1 pBq, we set pupt, τq, ψpt, τqq “ Ugpt, τqz0.

Provided that t ď t0 ´ 1, 0 ď s ď 1, τ0 ď r ď 2τ0, by interpolation and Lemma 3.7.1, we have

}upt, t´ rq ´ upt ´ s, t´ s´ rq}H1
0,divpΩq

ďC}upt, t ´ rq ´ upt ´ s, t´ s ´ rq}pq ´ 2q{p2q ´ 2q

L2
div

pΩq }upt, t´ rq ´ upt´ s, t ´ s´ rq}q{p2q ´ 2q

H
p2q ´ 2q{q
0,div pΩq

ďC}upt, t ´ rq ´ upt ´ s, t´ s ´ rq}pq ´ 2q{p2q ´ 2q

L2
div

pΩq ,

as well as

}ψpt, t´ rq ´ ψpt´ s, t ´ s´ rq}H2pΩq

ďC}ψpt, t´ rq ´ ψpt ´ s, t´ s´ rq}1{2
H1pΩq}ψpt, t´ rq ´ ψpt ´ s, t´ s ´ rq}1{2

H3pΩq

ďC}ψpt, t´ rq ´ ψpt ´ s, t´ s´ rq}1{2
H1pΩq.
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Thus we are left to control a H0-norm which can be split into two parts as

}Ugpt, t´ rqz0 ´ Ugpt ´ s, t´ s´ rqz0}H0

ď}Ugpt, t´ rqz0 ´ Ugpt ´ s, t´ rqz0}H0
` }Ugpt ´ s, t´ rqz0 ´ Ugpt ´ s, t´ s´ rqz0}H0

ďC
?
s ` }Ugpt´ s, t ´ rqz0 ´ Ugpt ´ s, t´ s ´ rqz0}H0

,

thanks to (3.7.3). In order to control the last term, we observe that, by (3.3.7) with initial datum

Ugpt ´ r, t ´ s´ rqz0, it follows

At´s,t´r

“
ˆ
1 ` }zpt ´ r, t´ s´ rq}2H0

` 2|F pψpt´ r, t ´ s´ rqq|1 `
ż t´s

t´r
|gpsq|22 ds

˙

ďC
`
p1 ` }z0}2H0

` 2|F pψ0q|1qe´Cs `Mgpt0q
˘

ďCp1 `Mgpt0qq.

Exploiting Lemma 3.5.1 with z1 “ z0 and z2 “ Ugpt´ s, t ´ s´ rqz0 together with τ0 ď r ď 2τ0

and (3.7.2), the desired norm can be written as

}Ugpt ´ s, t´ rqz0 ´ Ugpt ´ s, t´ s´ rqz0}H0

“}Ugpt ´ s, t´ rqz0 ´ Ugpt ´ s, t´ rqUgpt ´ r, t´ s´ rqz0}H0

ďC}z0 ´ Ugpt´ r, t ´ s´ rqz0}H0
eCp1`Mgpt0q6q.

Finally, we can use Lemma 3.6.1 and (3.7.2) so to obtain

}z0 ´ Ugpt´ r, t ´ s´ rqz0}H0
ď C

?
s
`
|µpt ´ s´ rq|22 `A3

t´r,t´s´r
˘
A8
t´r,t´s´re

CA4

t´r,t´s´r ,

where the first term on the right hand side is bounded by

|µpt ´ r ´ sq|22 ď C2
gpt0q

as a consequence of Corollary 3.4.5 and of the absorbing set considered. This together with the

Hölder’s inequality and (3.7.2) yields the uniform estimate

At´r,t´s´r ď Cp1 `Mgpt0qq

for all t ď t0 ´ 1, 0 ď s ď 1 and τ0 ď r ď 2τ0. We thus obtain

}z0 ´ Ugpt ´ r, t´ s ´ rqz0}H0
ď C

?
s,
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which, replaced in the above inequalities, gives

}Ugpt, t ´ rqz0 ´ Ugpt ´ s, t´ s ´ rqz0}H1

ďC}Ugpt, t´ rqz0 ´ Ugpt´ s, t ´ s´ rqz0}pq ´ 2q{2pq ´ 1q

H0

ďCspq ´ 2q{4pq ´ 1q ` C}z0 ´ Ugpt ´ r, t´ s ´ rqz0}pq ´ 2q{2pq ´ 1q

H0

ďCspq ´ 2q{4pq ´ 1q,

for any z0 P O
µ
1 pBq and t ď t0 ´ 1, 0 ď s ď 1 “ ǫ0, τ0 ď r ď 2τ0, so that (H.1) holds true.

We now turn our attention to (H.3), whose proof is now straightforward and follows from

interpolation, Lemmata 3.7.1 and 3.6.1: indeed, for any z0 P B,

}Ugpt, t ´ rqz0 ´ Ugpt´ s, t ´ rqz0}H1
ď Cs

pq ´ 2q{4pq ´ 1q,

for any t ď t0, τ0 ď r ď 2τ0, 0 ď s ď 1 “ ǫ0. This end the proof of Theorem 3.1.1.

Finally, if (B.3) holds uniformly for t0 P R (exactly as (B.2)), then it is easy to see that the

above argument applies for all times to the process Ugpt, τq. In particular, (H.4) follows from

Lemma 3.5.2. This proves Corollary 3.1.2.

In this and in the previous chapter, we studied the large-time behaviour of solutions of a

given dynamical system, making use of the theory trajectory attractors or exponential pullback

attractors depending on the setting of the problem. In both the case studied, all parameters of

the system were considered given and kept fixed. However, in practice, the parameters of a model

are only known up to a certain uncertainty. Therefore, a great importance has to be given to

the question of the sensitivity on these parameters of the description of the asymptotic behaviour

of the systems considered. This study is generally known under the name of “robustness” of the

attractors under perturbations of the parameters of the model. We will tackle this problem in a

special situation in the next chapter.
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CHAPTER 4

A 2D hydrodynamic model for chemically reacting binary fluid mixtures

Outline

A 2D diffuse interface model for a chemically reacting incompressible binary fluid in a

bounded domain is considered. The corresponding evolution system consists of the Navier-

Stokes equations for the (averaged) fluid velocity which are nonlinearly coupled with a con-

vective Cahn-Hilliard-Oono type equation for the difference ψ of the two fluid concentrations.

The effects of a (reversible) chemical reaction is represented in the latter equation by an ad-

ditional term of the form ǫpψ ´ c0q, ǫ ą 0. Here c0 is the stationary spatial average of ψ,

provided that, e.g., no-slip and no-flux boundary conditions are considered. The mass is not

necessarily conserved unless the spatial average of the initial datum for ψ coincides with c0.

When ǫ “ 0 (i.e. in the absence of chemical reaction) the model reduces to the well-known

model H. The global dynamic behavior of the system can be shown to be robust with respect

to ǫ. More precisely, a family of exponential attractors is constructed, which is continuous

with respect to ǫ.

A
s we saw in Chapter 1, the phase separation of a binary mixture of incompressible

and (partially) immiscible fluids (e.g., polymers) can be described through a diffuse

interface model (cf., for instance, Anderson et al. (1998) and references therein). If,

in addition, a (reversible) chemical reaction takes place, then the model H, usually used in this

setting (cf. Section 1.1 and in particular equation (1.1.6) with M “ ε “ 1) can be modified as

103
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follows (see Huo et al. (2003, 2004) and references therein)

$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu ´ ∇ · pνpψqDuq “ ∇π ` µ∇ψ

∇ ·u “ 0

Btψ ` pu ·∇qψ ` ǫpψ ´ c0q “ ∆µ

µ “ ´∆ψ ` fpψq

(4.0.1)

in Ω ˆ p0,8q, Ω being a bounded domain in R2. Consistently with the notation used elsewhere,

u is the (averaged) velocity of the two fluids, ψ is the difference of the two fluid concentrations, ν

is the viscosity and π is the pressure, the symbol Du denotes the symmetric gradient of u defined

as Du
.“ 1

2
p∇u`∇uT q. Moreover, the constant ǫ ą 0 is proportional to the reaction rates, while

c0 is the stationary spatial average of ψ. We recall that µ, known as chemical potential, is the

first variation of a Ginzburg-Landau functional EP pψq characterized by a double-well potential

F whose derivative is f (see equation (1.1.1)). In this chapter, we will assume the potential F

to be regular, growing at most polynomially at infinity (see also Section 4.1 below). A physically

reasonable set of boundary conditions is given by no-slip for u and no-flux for the (convective)

Cahn-Hilliard-Oono equation, namely,

u “ 0, Bnψ “ Bnµ “ 0 on BΩ ˆ p0,8q. (4.0.2)

Observe that, if ǫ “ 0, then system (4.0.1) reduces to the well-known model H or Cahn-

Hilliard-Navier-Stokes system (1.1.6), which has been widely studied (see also Chapter 3 for some

results concerning the asymptotic behaviour of its solutions). Moreover, if we take u “ 0 in

the last two equations, then (4.0.1) we obtain the so-called Cahn-Hilliard-Oono system (see, e.g.,

Teramoto and Nishiura (2002); Villain-Guillot (2010) and the discussion in Section 1.2.2).

Some relevant information on the mean of the order parameter field (i.e., on the average

composition of the fluid considered), can be easily deduced from (4.0.1). Indeed, integrating

the third equation in (4.0.1) over the domain Ω and taking (4.0.2) into account, we obtain the

following evolution equation for the (spatial) average xψy of the order parameter field

Btxψy ` ǫpxψy ´ c0q “ 0, (4.0.3)

from which we deduce

xψy ptq “ c0 ` e´ǫtpxψ0y ´ c0q. (4.0.4)

Hence, if xψ0y “ c0, then the total mass is conserved as in the classical Cahn-Hilliard equation.

Otherwise, we are in the off-critical mixture case, i.e. the order parameter average at steady state

differs from xψ0y (cf. Huo et al. (2003) where numerical simulations are performed in 2D by

taking periodic boundary conditions).



105

System (4.0.1) endowed with (4.0.2) dissipates energy (cf. Theorem 4.1.1 below). However,

the set of stationary states can have a complex structure. For instance, if c0 does not coincide

with the pure phases (say ψ “ ˘1), then oscillations can be induced between the phases. This

happens even in the case u “ 0 (see Choksi et al. (2011)). Thus, in case of a binary fluid, the

picture might get more complicated (see Remark 4.1.3 below). In particular, it does not seem

possible to prove the convergence to a single equilibrium of a given trajectory like in the case

ǫ “ 0 (cf. Abels (2009c); Gal and Grasselli (2010a); Zhao et al. (2009)), provided that f is real

analytic, unless some rather strong restrictions (e.g., on the size of Ω) are imposed.

Nonetheless the global non-transient behavior of (4.0.1)-(4.0.2) can be analyzed within the

theory of infinite-dimensional dynamical systems. In particular, it is possible to find sufficiently

small (i.e. compact) invariant objects in the phase space which attract all the evolutions of

bounded sets of initial data (see, e.g., Miranville and Zelik (2008) and references therein). More

precisely, here we establish the existence of the global attractor and of an exponential attractor

for (4.0.1)-(4.0.2). As discussed in Section 1.3, the former is fully invariant (hence unique),

while the latter is only positively invariant and uniqueness does not hold. However, exponential

attractors have finite fractal dimension, they attract solutions exponentially fast and they are

robust with respect to perturbations (e.g., of some parameter). In addition, the existence of the

global attractor (of finite fractal dimension) follows, as a by-product, from the existence of an

exponential attractor.

The existence of exponential attractors for (4.0.1)-(4.0.2) with ǫ “ 0 in 2D has been proven

in Gal and Grasselli (2010a). We recall that the existence of a robust family of exponential

attractors for the Cahn-Hilliard-Oono equation has been obtained in Miranville (2011). Here

the main goal is to construct a family of exponential attractors tEǫu for (4.0.1)-(4.0.2), which is

robust (i.e. continuous) with respect to ǫ. In order to achieve this, we need to show first that

(4.0.1)-(4.0.2) generates a (nonlinear) semigroup Sǫptq which acts on a suitable phase-space and

possesses a bounded absorbing set. The required existence and the pertinent dissipative estimate

are deduced in Section 4.2. This semigroup is also Lipschitz continuous with respect to the initial

data and ǫ as shown in Section 4.3. In Section 4.4 we then obtain some higher-order dissipative

estimates which entail the existence of a suitable smooth invariant set. Starting from this set,

in Section 4.5, we show some further features of Sǫptq (e.g., the so-called smoothing property).

Thanks to a suitable abstract result, such properties allow us to finally prove our main result.



106 CHAPTER 4. 2D NSCHO

4.1 Functional setting and main results

The aim of this section is to introduce the specific notation, which will be used throughout this

chapter, as well as to state the results proven in the following sections (cf. Theorems 4.1.1, 4.1.3

and 4.1.9 below).

We will denote by Ω a smooth bounded domain of R2. As usual, we will use the standard

spaces of solenoidal distributions L2
0,div and H1

0,div to study the velocity field u (see Section 1.4.2).

We also need the affine subspaces of LppΩq and HkpΩq consisting of functions with prescribed

average. We recall the pertinent notation introduced before:

L
p

pcqpΩq .“ tv P LppΩq | xvy “ cu, Hk
pcqpΩq .“ tv P HkpΩq | xvy “ cu.

In this chapter we will assume that the potential F pψq, whose derivative fpψq “ F 1pψq appears

in (4.0.1), is assumed to be a quadratic perturbation of a regular convex function defined on the

whole real line R, that is,

F pψq “ F0pψq ´ αψ2

where F0 P C3pRq is convex and α P R is a positive constant. We will also assume that F grows

at most polynomially fast at infinity, namely

|f2pyq| ď Cf p1 ` |y|rq

for some positive constants r and Cf . Moreover, the potential will be coercive, i.e. there exist

positive real numbers q and cf such that

F pyq ě cf
`
|y|2`q ´ 1

˘
(4.1.1)

holds for all y P R.

We suppose that the order-parameter-dependent viscosity satisfies the bounds

0 ă ν1 ď νpyq ď ν2 ă `8 @y P R, (4.1.2)

with ν1 and ν2 strictly positive. In addition, we assume that ν P C1,1pRq with

|ν1pyq| ď ν˚ @y P R,

for some ν˚ ě 0.

We can now introduce the definition of weak solution for system (4.0.1) that will be used in

this chapter.
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Definition 4.1.1. Let pu0, ψ0q P L2
0,divpΩq ˆH1pΩq. Then a triplet pu, ψ, µq such that

u P L2p0, T ;H1
0,divpΩqq XH1p0, T ;H´1

divpΩqq

ψ P L2p0, T ;H3pΩqq XH1p0, T ;H´1pΩqq

µ P L2p0, T ;H1pΩqq

is called a weak solution to (4.0.1) if

xBtuptq,vy ` xpuptq ·∇quptq,vy ` xνpψptqqDuptq,∇vy “ xµptq∇ψptq,vy

xBtψptq, φy ` xuptq ·∇ψptq, φy ` ǫ pψptq ´ c0, φq “ ´ p∇µptq,∇φq

pµptq, ξq “ pfpψptqq, ξq ` p∇ψptq,∇ξq

hold for a.a. t P r0, T s, for all v P V , for all φ, ξ in C8
c pΩq and for all T ą 0 and if

lim
tÑ0`

uptq “ u0 in L2
0,divpΩq, lim

tÑ0`
ψptq “ ψ0 in H1pΩq.

In order to study the well-posedness and asymptotic behavior of system (4.0.1) it is convenient

to introduce the mean-free component of ψ:

ψ
.“ ψ ´ xψy .

Since the behavior of the average of ψ is explicitly known (see equation (4.0.4)) we can rewrite

system (4.0.1) as $
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu ´ ∇ · pνpψqDuq “ ∇p ` µ∇ψ

∇ ·u “ 0

Btψ ` pu ·∇qψ ` ǫψ “ ∆µ

µ “ ´∆ψ ` fpψq.

(4.1.3)

This formulation is particularly convenient since we can use Poincaré’s inequality (and some of

its variants) at several stages when estimating the Sobolev norms of ψ. Indeed, the boundary

conditions (4.0.2) and the above definitions imply that

ż

Ω

ψ “ 0, Bnψ “ 0 on BΩ,
ż

Ω

∆ψ “
ż

BΩ
Bnψ “ 0, Bn∆ψ “ 0 on BΩ.

Therefore, all the norms }ψ}Hj , j “ 1, . . . , 4, are equivalent to the L2-norms of the derivatives of

order j. Moreover, Korn’s inequality holds. Thus we have

}ψ}H1 „ |∇ψ|2, }ψ}H2 „ |∆ψ|2, }ψ}H3 „ |∇∆ψ|2, }ψ}H4 „ |∆2ψ|2.

The main results we will prove in this chapter are the following.
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Theorem 4.1.1. Let pu0, ψ0q P L2
0,divpΩq ˆ H1pΩq. Then there exists at least a weak solution

pu, ψ, µq to system (4.0.1). Moreover, all weak solutions satisfy the dissipative estimate

d

dt

ˆ
|u|22 ` |∇ψ|22 ` 2

ż

Ω

F pψq
˙

` C1

ˆ
|∇u|22 ` |∇µ|22 ` |∇ψ|22 `

ż

Ω

F pψq
˙

ď ǫC2

ˆż

Ω

F pc0q ` pxψ0y ´ c0q2 ` 1

˙
` C2F pxψ0yq ` C2, (4.1.4)

where the generic positive constants C1 and C2 only depend on the domain Ω and on the poten-

tial F .

Thanks to the dissipative estimate (4.1.4), weak solutions can always be extended up to any

time T ą 0.

Corollary 4.1.2. Let pu0, ψ0q P L2
0,divpΩq ˆ H1pΩq. Then there exists a global weak solution

pu, ψ, µq to system (4.0.1) defined for all positive times.

Remark 4.1.1. Existence of a global weak solution can also be proven in dimension three with

some growth restrictions on F (in the case ǫ “ 0 see, e.g., Gal and Grasselli (2010b), cf. also

Abels (2009c) for singular potentials).

In the following we will assume that the viscosity is constant νpyq ” ν ą 0 for all y P R. This

assumption seems essential in order to obtain uniqueness of (weak) solutions within the present

framework. However, the higher order dissipative estimate, from which Lemma 4.1.5 below is

deduced, may still be derived even by assuming a nonconstant viscosity. In addition, we will also

fix c0 P r´1, 1s and let ǫ P r0, 1s.

Theorem 4.1.3. Let pu0,1, ψ0,1q and pu0,2, ψ0,2q be two pairs of initial data in L2
0,divpΩqˆH1pΩq

and let ǫ1, ǫ2 P r0, 1s. Then any two weak solutions pu1, ψ1, µ1q and pu2, ψ2, µ2q satisfying (4.0.1)

with initial data pu0,1, ψ0,1q and pu0,2, ψ0,2q and with parameter ǫ equal to ǫ1 and ǫ2, respectively,

also satisfy the following estimate

|u1ptq ´ u2ptq|22 ` }ψ1ptq ´ ψ2ptq}2H1

ď p|u0,1 ´ u0,2|22 ` }ψ0,1 ´ ψ0,2}2H1qeCt ` pǫ1 ´ ǫ2q2 eCt
ż t

0

|∇ψ1psq|22 ds

for all t ě 0, where C ě 0 depend only on the domain Ω, the potential F , the norms of the initial

data and on maxtǫ1, ǫ2u.

We thus deduce uniqueness of weak solutions.

Corollary 4.1.4. Let pu0, ψ0q P L2
0,divpΩq ˆ H1pΩq. Then there exists a unique weak solution

pu, ψ, µq to system (4.0.1).
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Thanks to the well-posedness results in Theorems 4.1.1 and 4.1.3, it is possible to define on

the phase space L2
0,divpΩq ˆ H1pΩq the semigroup Sǫptq associated with the solution operator of

system (4.0.1). The dissipative estimate (4.1.4) shows that there exists a bounded absorbing set

in the phase space, which uniformly attracts all solutions. Moreover, it is possible to show that

a compact absorbing set exists entailing the existence of the (connected) global attractor for our

system. Indeed we have

Lemma 4.1.5. System (4.0.1) possesses a compact absorbing set B1 defined as follows

B1
.“ tpu, ψq P L2

0,divpΩq ˆH1pΩq | }u}2H1 ` }ψ}2H2 `
ż

Ω

F pψq ď ρ0u.

Moreover, we have:

ż t`1

t

|∆upsq|22 ds `
ż t`1

t

|∆2ψpsq|22 ds `
ż t`1

t

|Btψpsq|22 ds ď ρ0

for any time t greater than an entry time t0 which depends only on the norms of the initial data.

Here ρ0 is a positive constant depending on Ω, F , ν only.

Remark 4.1.2. Note that, in the case ǫ “ 0, for any fixed physically significant c P r´1, 1s, the

existence of a bounded absorbing set is ensured in L2
0,divpΩq ˆH1

pcqpΩq as well.

For every fixed ǫ, Lemma 4.1.5 implies that system (4.0.1) has the global attractor. Sys-

tem (4.0.1) also possesses a robust (w.r.t. ǫ) family of exponential attractors. This can be proved

by means of the following abstract results (see (Miranville, 2011, Proposition 5.1) and references

therein)

Proposition 4.1.6. Let H and H1 be two Banach spaces such that H1 is compactly embedded in

H, let B be a bounded subset of H and let Lǫ : B Ñ B, ǫ ě 0, be a family of operators such that:

• for every x1, x2 P B and every ǫ ě 0

}Lǫx1 ´ Lǫx2}H1
ď C}x1 ´ x2}H

holds, where the constant C is independent of ǫ;

• for every ǫ1, ǫ2 ě 0, for every i P N and every x P B

}Liǫ1x´ Liǫ2x}H ď C|ǫ1 ´ ǫ2|

holds, where the constant C is independent of ǫ1 and ǫ2.

Then, there exists a robust family Mǫ Ă B such that Mǫ is an exponential attractor for the

discrete dynamical system generated by Lǫ i.e.
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• the set Mǫ has finite fractal dimension and is positively invariant

LǫMǫ Ă Mǫ;

• the set Mǫ attracts B exponentially fast

distHpLiB,Mǫq ď Ce´Ci, i P N, C ą 0

where distH denotes the Hausdorff semidistance between sets;

• the family Mǫ is Hölder continuous at every ǫ, i.e. there exist some α P p0, 1q such that

distsym,HpMǫ1 ,Mǫ2q ď C|ǫ1 ´ ǫ2|α,

where distsym,H denotes the Hausdorff symmetric distance between sets.

We note that for our system, the following two lemmata, which will be proved in Section 4.5

hold

Lemma 4.1.7 (Smoothing property). Let pu0,1, ψ0,1q and pu0,2, ψ0,2q be two pairs of initial data

belonging to the absorbing set B1 defined in Lemma 4.1.5 and let ǫ P r0, 1s be fixed. Then any

two weak solutions pu1, ψ1, µ1q and pu2, ψ2, µ2q satisfying (4.0.1) with initial data pu0,1, ψ0,1q and

pu0,2, ψ0,2q also satisfy the following estimate

|∇upt0q|22 ` |∇ψpt0q|22 ` |∆ψpt0q|22 ` ǫ|ψpt0q|22 ď C
`
|u0|22 ` }ψ0}2H1

˘
` C

ǫ
xψ0y2 ,

where t0 ą 0 is a fixed positive time and where the constant C ě 0 depends only on the domain

Ω, the potential F and the norms of the initial data.

Lemma 4.1.8. Let pu, ψ, µq be any weak solution belonging to the set B1 for all times. Then for

any T ą 0, pu, ψq : r0, T s Ñ L2
0,divpΩq ˆ H1pΩq is an Hölder continuous function with respect to

time.

Using the abstract result contained in Proposition 4.1.6 and the two above Lemmata, we can

prove the main result of this chapter.

Theorem 4.1.9. For every ǫ ą 0 the semigroup Sǫptq acting on L2
0,divpΩq ˆ H1 possesses an

exponential attractor Mǫ (i.e. a bounded positively invariant, finite dimensional exponentially

attracting subset of the phase space). Moreover, the family Mǫ is robust, i.e.,

distsym,L2

0,divˆH1 pMǫ1 ,Mǫ2q ď C|ǫ1 ´ ǫ2|α, α P p0, 1q.

Furthermore, if we restrict the phase space to L2
0,divpΩq ˆ H1

pc0q, then the family of exponential

attractors Mǫ is also robust at the origin, that is,

distsym,L2
0,divˆH1

pc0q
pMǫ,M0q ď Cǫα, α P p0, 1q.



4.2. EXISTENCE AND DISSIPATION 111

Remark 4.1.3. System (4.1.3) can be rewritten into the form (assuming, for simplicity, constant

viscosity)
$
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu ´ ν∆u “ ∇p` µ̃∇ψ ´ ǫp´∆q´1pψq∇ψ

∇ ·u “ 0

Btψ ` pu ·∇qψ “ ∆µ̃

µ̃ “ ´∆ψ ` fpψq ` ǫp´∆q´1pψq

where p´∆q´1 is the inverse of the laplace operator with homogeneous boundary conditions.

This system is formally equivalent to the standard Cahn-Hilliard-Navier-Stokes system but for

the additional nonlocal forcing term ǫp´∆q´1pψq∇ψ. Let us assume that c0 is not a pure phase

and ψ be a solution which does not converge to c0 as t goes to 8. Then it cannot converge to

a pure phase due to (4.0.4). Moreover, the coupling term in the momentum equation might not

vanish and therefore u might not converge to 0 as it happens in the case ǫ “ 0. Indeed, the

system does not seem to have any Lyapunov functional. From the energy identity (4.2.1) where

the term
ş
Ω

pψ ´ c0qfpψq apparently has no well-defined sign.

4.2 Existence and dissipation

In this section and in the following one, we discuss the proofs of the main results summarized

above. We start by proving our an existence result, Theorem 4.1.1. The a priori estimates

obtained in our argument will provide a dissipative estimate which will be essential in the following

proofs.

Proof of Theorem 4.1.1. In order to prove the existence of solutions to equation (4.0.1), a stan-

dard Galerkin scheme may be used. The finite dimensional vector spaces generated by the first

eigenfunctions of the Stokes operator constitute suitable approximation spaces for the velocity

field. Moreover, equation (4.0.4) suggests to chose a constant function plus a basis of L2
p0qpΩq to

approximate the order parameter field. In this section we will only derive the a priori bounds

needed to justify the convergence of the Galerkin scheme, leaving the straightforward technical

details to the interested reader. We only observe that existence of solutions to system (4.0.1) is

equivalent to proving the existence of solutions to system (4.1.3). Therefore we will work with

the latter, which leads to simpler considerations.

In order to obtain our first (dissipative) a priori estimate, we multiply the first equation
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in (4.1.3) by u and the third by µ. Recalling the useful vector identity

ż

Ω

Btψµ “ ´
ż

Ω

Btψ∆ψ `
ż

Ω

fpψqBtψ

“1

2

d

dt
|∇ψ|22 `

ż

Ω

fpψqBtψ ` ǫpxψy ´ c0q
ż

Ω

fpψq

“1

2

d

dt

ˆ
|∇ψ|22 ` 2

ż

Ω

F pψq
˙

` ǫpxψy ´ c0q
ż

Ω

fpψq

we obtain

1

2

d

dt

ˆ
|u|22 ` |∇ψ|22 ` 2

ż

Ω

F pψq
˙

`
ż

Ω

νpψq |Du|2 ` |∇µ|22

` ǫ
`
ψ, µ

˘
` ǫpxψy ´ c0q

ż

Ω

fpψq “ 0.

From the definition of the chemical potential µ we also have

`
ψ, µ

˘
“ |∇ψ|22 `

ż

Ω

ψfpψq

which further implies the following energy balance

1

2

d

dt

ˆ
|u|22 ` |∇ψ|22 ` 2

ż

Ω

F pψq
˙

`
ż

Ω

νpψq |Du|2 ` |∇µ|22 ` ǫ|∇ψ|22

` ǫ

ż

Ω

pψ ´ c0qfpψq “ 0. (4.2.1)

In order to obtain the sought dissipative estimate, only the last term in this relation requires

some additional care. We observe that this factor represents the interplay between the chemical

reacting term, which drives the system towards the ψ ” c0 equilibrium, and the phase separation

potential F , which pushes the dynamics toward the two pure phases. Thanks to the assumptions

on the structure of the potential, by the convexity of F0, we have

F0pψq ď F0pc0q ` pψ ´ c0qf0pψq

and hence

F pψq ď F pc0q ` pψ ´ c0qfpψq ` α

2
pψ ´ c0q2.

Therefore, recalling also equation (4.1.2), we deduce

1

2

d

dt

ˆ
|u|22 ` |∇ψ|22 ` 2

ż

Ω

F pψq
˙

` ν1|Du|22 ` |∇µ|22 ` ǫ|∇ψ|22 ` ǫ

ż

Ω

F pψq

ď ǫ

ż

Ω

F pc0q ` ǫ
α

2
|ψ ´ c0|22.

We can further estimate the last term on the right hand side by resorting to the coercivity

assumption (4.1.1) on F and to the known evolution law (4.0.4) for xψy as follows

|ψ ´ c0|22 ď 2|ψ|22 ` 2pxψy ´ c0q2|Ω| ď δ|ψ|2`q
2`q ` C ` Cpxψ0y ´ c0q2.
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Here δ is a small positive constant and all the other constants depend only on the domain Ω and

on the features of the potential F . Therefore, we obtain

1

2

d

dt

ˆ
|u|22 ` |∇ψ|22 ` 2

ż

Ω

F pψq
˙

` ν1|Du|22 ` |∇µ|22 ` ǫ|∇ψ|22 ` ǫ

ż

Ω

F pψq

ď ǫC

ˆż

Ω

F pc0q ` pxψ0y ´ c0q2 ` 1

˙
.

In order to get a dissipative estimate, we still have to “reconstruct the norm” on the left hand

side. Testing the fourth equation in (4.1.3) by ψ we find

`
µ, ψ

˘
“ |∇ψ|22 `

`
fpψq, ψ

˘
.

Using the structure of the potential F and arguing as above we can deduce

`
fpψq, ψ

˘
` α

2
|ψ|22 `

ż

Ω

F pxψyq ě
ż

Ω

F pψq

so that ż

Ω

F pψq ` |∇ψ|22 ď
`
µ, ψ

˘
` α

2
|ψ|22 ` |Ω|F pxψyq.

Since ψ has zero mean, we also have

`
µ, ψ

˘
“

`
µ, ψ

˘
ď C|ψ|22 ` |∇µ|22

and hence ż

Ω

F pψq ` |∇ψ|22 ď C|ψ|22 ` CF pxψyq ` |∇µ|22. (4.2.2)

Moreover, we note that

|ψ|22 ď δ|ψ|2`q
2`q ` CpΩ, qq

where δ is a small constant, which will be chosen later. By substituting in (4.2.2), recalling the

coercivity assumptions on the potential F and fixing δ, we finally infer

ż

Ω

F pψq ` |∇ψ|22 ď C
`
1 ` F pxψyq ` |∇µ|22

˘

where all the constants depend only on Ω and on the structural constants of F . Moreover, from

the monotonicity of xψy (see (4.0.4)) and from the regularity assumptions on F , we also have

F pxψyq ď CF pxψ0yq ` C

where the constants only depend on the potential F . Putting all these estimates together and

recalling Korn’s inequality, we finally obtain estimate (4.1.4).

Besides the existence of global solutions for system (4.0.1), a few further consequences may

be deduced from this result. For example, a straightforward use of Gronwall’s inequality gives

the following lemma.
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Lemma 4.2.1. There exists a constant ρ2 such that the system (4.0.1) admits an absorbing set

B0 Ă L2
0,divpΩq ˆH1pΩq defined by:

B0
.“ tpu, ψq P L2

0,divpΩq ˆH1pΩq | |u|22 ` }ψ}2H1 `
ż

Ω

F pψq ď ρ2u.

Moreover we have ż t`1

t

|∇upsq|22 ds `
ż t`1

t

|∇µpsq|22 ds ď ρ2

for any time t greater than an entry time t0 depending only on the norms of the initial data.

Remark 4.2.1. An immediate implication of the above lemma is that

ż t`1

t

|∆ψ|22 ds

is uniformly bounded for any time t greater than t0. It suffices to compute the L2-norm of the

last equation in (4.1.3) and observe that the average of µ and fpψq over Ω are equal and bounded.

Remark 4.2.2. It is also easy to deduce that

ż t`1

t

|∇∆ψ|22 ds

is uniformly bounded for any time t greater than t0. This indeed follows straightforwardly by

computing the L2-norm of the gradient of the last equation in (4.1.3).

Remark 4.2.3. More generally, from the above estimates we can deduce that any solution pu, ψq
to (4.0.1) is uniformly bounded (w.r.t. the norm of the initial conditions) in

u P L2p0, T ;H1
0,divpΩqq X L8p0, T ;L2

0,divpΩqq

ψ P L2p0, T ;H3pΩqq X L8p0, T ;H1pΩqq

for any T ą 0.

4.3 Continuous dependence

Having obtained existence of global solutions for system (4.0.1) and uniform bounds on the

energy norms of the solutions, we can now prove the continuous dependence result stated in

Theorem 4.1.3. Since our main goal is to obtain robustness of the dynamics of system (4.0.1)

with respect to perturbations of the parameter ǫ, we will study continuous dependence of solutions

not only with respect to the initial data, but also with respect to this kinetic parameter ǫ. We

recall that from this section onward the viscosity νpψq will be considered constant: νpψq ” ν ą 0

for all ψ P R. In order to simplify our argument we will further assume ν “ 1.
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Remark 4.3.1. We underline that all our results on the asymptotic dynamics for system (4.0.1)

remain valid also in the original setting. Indeed, in the general setting, one can prove uniqueness

of strong solutions following Boyer (1999). One can easily see by adapting the results of the

following section (in particular the proof of Lemma 4.1.5) that the solutions to (4.0.1) regularize

(uniformly) in finite time. Therefore, the general robustness results follow by arguing as in the

constant viscosity case analyzed here, as soon as the solution semigroup starts from any positive

time t0 ą 0.

Proof of Theorem 4.1.3. We will denote by pu1, ψ1q and pu2, ψ2q two solutions to system (4.0.1)

originating from the initial conditions pu0,1, ψ0,1q and pu0,2, ψ0,2q and satisfying (4.0.1) with ǫ

equal to ǫ1 and ǫ2 respectively. In order to shorten notation, we will also denote by u (with no

subscript!) the difference between u1 and u2 (i.e. u
.“ u1 ´u2). Analogous notation will be used

for the other functions appearing in the computations below. Moreover, we will assume ǫ1 to be

greater than ǫ2 so that ǫ
.“ ǫ1 ´ ǫ2 ě 0.

By taking the difference of the “mean-free” equations satisfied by pu1, ψ1q and pu2, ψ2q we

obtain $
’’’’’’’’&
’’’’’’’’%

Btu ` pu ·∇qu1 ` pu2 ·∇qu ´ ∆u “ ∇p ` µ∇ψ1 ` µ2∇ψ

∇ ·u “ 0

Btψ ` pu ·∇qψ1 ` pu2 ·∇qψ ` ǫψ1 ` ǫ2ψ “ ∆µ

µ “ ´∆ψ ` fpψ1q ´ fpψ2q.

(4.3.1)

Before going through the main estimates involving this system, we immediately observe that also

the difference xψy between the average of ψ1 and of ψ2 can easily be controlled by equation (4.0.3),

which gives

Btxψy ` ǫ2 xψy “ ǫpc0 ´ xψ1yq.

This in turn implies the continuous dependence (indeed stability if ǫ1 and ǫ2 are both different

from zero) of xψy ptq with respect to initial data

xψy ptq “ e´ǫ1t pc0 ´ xψ10yq ´ e´ǫ2t pc0 ´ xψ20yq

“
`
e´ǫ1t ´ e´ǫ2t˘ pc0 ´ xψ10yq ` e´ǫ2t xψ0y . (4.3.2)

We consider now the difference system (4.3.1) and multiply the first equation by u and the

third by ´∆ψ obtaining respectively

1

2

d

dt
|u|22 ` xpu ·∇qu1,uy ` |∇u|22 “

@
µ∇ψ1,u

D
`
@
µ2∇ψ,u

D
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and

1

2

d

dt
|∇ψ|22 ´

@
u ·∇ψ1,∆ψ

D
´
@
u2 ·∇ψ,∆ψ

D
´ ǫ

@
ψ1,∆ψ

D
` ǫ2|∇ψ|22

“ ´
@
∆µ,∆ψ

D
“ ´|∇∆ψ|22 `

@
∇pfpψ1q ´ fpψ2qq,∇∆ψ

D
.

Summing these two identities and reordering terms we get

1

2

d

dt

`
|u|22 ` |∇ψ|22

˘
` |∇u|22 ` |∇∆ψ|22 ` ǫ2|∇ψ|22

“ ´ xpu ·∇qu1,uy `
@
µ∇ψ1,u

D
`
@
µ2∇ψ,u

D
`
@
u ·∇ψ1,∆ψ

D

`
@
u2 ·∇ψ,∆ψ

D
´ ǫ

@
∇ψ1,∇ψ

D
`
@
∇pfpψ1q ´ fpψ2qq,∇∆ψ

D
. (4.3.3)

We now have to estimate the seven terms appearing on the right hand side of the last equality.

The first estimate is immediate:

| xpu ·∇qu1,uy | ď |u|24|∇u1|2 ď C|u|2|∇u|2|∇u1|2 ď 1

8
|∇u|22 ` C|∇u1|22|u|22.

Indeed, recall that, thanks to the results of Lemma 4.2.1, the coefficient |∇u1|22 is integrable.

Some more work is needed to estimate the second term in (4.3.3). We have

|
@
µ∇ψ1,u

D
| “ |

@
ψ1∇µ,u

D
| ď|∇µ|2|u|4|ψ1|4

ď|∇µ|2|u|1{2
2 |∇u|1{2

2 |ψ1|1{2
2 |∇ψ1|1{2

2 . (4.3.4)

By the last equation in (4.3.1) we can bound the chemical potential term |∇µ|2 by

|∇µ|2 ď |∇∆ψ|2 ` |∇pfpψ1q ´ fpψ2qq|2.

A direct computation also gives

∇pfpψ1q ´ fpψ2qq “ f 1pψ1q∇ψ1 ´ f 1pψ2q∇ψ2

“ f 1pψ1q∇ψ ` pf 1pψ2q ´ f 1pψ2qq∇ψ2 “ f 1pψ1q∇ψ ` f2pξqψ∇ψ2

where we have used the mean value theorem and ξ is a suitable function bounded by maxtψ1, ψ1u
from above and by mintψ1, ψ2u from below. We then have

|∇µ|2

ď|∇∆ψ|2 ` |f 1pψ1q∇ψ|2 ` |f2pξqψ∇ψ2|2

ď|∇∆ψ|2 ` |f 1pψ1q|4|∇ψ|4 ` |ψ|8|∇ψ2|4|f2pξq|8

ď|∇∆ψ|2 ` C|f 1pψ1q|4|∇ψ|3{4
2 |∇∆ψ|1{4

2

` C|∇ψ2|1{2
2 |∆ψ2|1{2

2 |f2pξq|8p|∇ψ|2 ` xψyq

ď2|∇∆ψ|2 ` C
´

|f 1pψ1q|4{3
4 ` |∇ψ2|1{2

2 |∆ψ2|1{2
2 |f2pξq|8

¯
|∇ψ|2

` C|∇ψ2|1{2
2 |∆ψ2|1{2

2 |f2pξq|8 xψy
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Substituting this estimate in (4.3.4) and using Young’s inequality, we get

|
@
µ∇ψ1,u

D
|

ď1

8
|∇u|22 ` 1

10
|∇∆ψ|22 ` C

`
|ψ1|22|∇ψ1|22

˘
|u|22

` C
´

|f 1pψ1q|8{3
4 ` |∇ψ2|2|∆ψ2|2|f2pξq|28

¯
|∇ψ|22

` C
`
|∇ψ2|2|∆ψ2|2|f2pξq|28

˘
xψy2

where all the coefficients enclosed in parenthesis are easily seen to be integrable thanks to

Lemma 4.2.1 and where xψy is a known bounded function of time depending only on xψ10y,
xψ20y, ǫ1 and on ǫ2 (see equation (4.3.2)). We can now consider the remaining terms on the right

hand side of (4.3.3). The third one gives

|
@
µ2∇ψ,u

D
|

ď|u|4|∇ψ|4|µ2|2

ďC|u|1{2
2 |∇u|1{2

2 |∇ψ|3{4
2 |∇∆ψ|1{4

2 |µ2|2

ď1

8
|∇u|22 ` 1

10
|∇∆ψ|22 ` C|µ2|22|u|22 ` C|µ2|4{3

2 |∇ψ|22,

while the fourth and fifth can be estimated as

|
@
u ·∇ψ1,∆ψ

D
|

“|
@
u ·∇∆ψ, ψ1

D
|

ď|u|4|∇∆ψ|2|ψ1|4

ďC|u|1{2
2 |∇u|1{2

2 |∇∆ψ|2|ψ1|4

ď1

8
|∇u|22 ` 1

10
|∇∆ψ|22 ` C|ψ1|44|u|22

and

|
@
u2 ·∇ψ,∆ψ

D
|

“|
@
u2 ·∇∆ψ, ψ

D
|

ď|u2|4|∇∆ψ|2|ψ|4

ďC|u2|1{2
2 |∇u2|1{2

2 |∇∆ψ|2|∇ψ|2

ď 1

10
|∇∆ψ|22 ` p|u2|2|∇u2|2q |∇ψ|22.

Moreover we have

ǫ|
@
∇ψ1,∇ψ2

D
| ď ǫ|∇ψ1|2|∇ψ|2 ď ǫ2|∇ψ1|22 ` 1

4
|∇ψ|22.
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Arguing as for the second term above, the last term in (4.3.3) is bounded by

|
@
∇pfpψ1q ´ fpψ2qq,∇∆ψ

D
|

“|
@
f 1pψ1q∇ψ ` f2pξqψ∇ψ2,∇∆ψ

D
|

ď|∇ψ|4|f 1pψ1q|4|∇∆ψ|2 ` |f2pξq|8|ψ|8|∇ψ2|4|∇∆ψ|2

ď 1

10
|∇∆ψ|22 ` C

´
|f 1pψ1q|8{3

4 ` |∇ψ2|2|∆ψ2|2|f2pξq|28
¯

|∇ψ|22

` C
`
|∇ψ2|2|∆ψ2|2|f2pξq|28

˘
xψy2 .

We can now combine all the above estimates in order to infer from (4.3.3) the following

inequality

d

dt

`
|u|22 ` |∇ψ|22

˘
` |∇u|22 ` |∇∆ψ|22 ` ǫ2|∇ψ|22

ďC
`
|∇u1|22 ` |ψ1|22|∇ψ1|22 ` |µ2|22 ` |ψ1|44

˘
|u|22

` C
´

|f 1pψ1q|8{3
4 ` |∇ψ2|2|∆ψ2|2|f2pξq|28 ` |µ2|4{3

2 ` |u2|2|∇u|2
¯

|∇ψ|22

` C
`
1 ` |∇ψ2|2|∆ψ2|2|f2pξq|28

˘
xψy2

` ǫ2|∇ψ1|22 (4.3.5)

from which continuous dependence of solutions can easily be deduced. In particular, thanks to

Lemma (4.2.1) again, we observe that, for solutions to (4.0.1) starting from the same initial datum

with different ǫ’s, the continuous dependence estimate reduces to

|u|22 ` |∇ψ|22 ď ǫ2eCt
ż t

0

|∇ψ1|22,

which will be essential when studying the continuity of the family of exponential attractors as a

function of ǫ.

4.4 Higher-order dissipative estimate

Our next goal will be to obtain suitable higher-order dissipative estimates for system (4.0.1). In

particular we will show the existence of a compact absorbing set, which absorbs all the solutions

to system (4.0.1) in a finite time depending only on the size of the initial data (see Lemma 4.1.5).

As above we will proceed through formal estimates, which can be made rigorous using the ap-

proximation scheme given by the Galerkin method on the basis made up by the eigenfunctions of

the Stokes operator. We recall that these eigenfunctions tϕnunPN Ă V are regular and that ∆ϕn

is divergence-free. Moreover, the identity xϕ ·∇ϕ,∆ϕy “ 0 holds for any function v in L2
0,divpΩq

for which ∆v is also divergence-free as is the case of Stokes eigenfunctions. For the following
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estimates to hold, we will also assume that the solution has already entered the absorbing set B0

introduced in Lemma 4.2.1.

Proof of Lemma 4.1.5. The first step in our argument is to multiply the first equation in (4.1.3)

by ´∆u and to integrate the resulting equation over Ω. After some integrations by parts, we

obtain

1

2

d

dt
|∇u|22 ´ xpu ·∇qu,∆uy `

ż

Ω

νpψq|∆u|2

“ ´
@
µ∇ψ,∆u

D
´
@
ν1pψq∇ψ ·∇u,∆u

D
. (4.4.1)

We immediately observe that the convective term vanishes due to the well-known properties of

the trilinear form in the case of Dirichlet (or periodic) boundary conditions in R
2 (see, e.g., the

proof of (Temam, 1984, Theorem III.3.10)). Next we multiply the third equation in (4.1.3) by

∆2ψ thus obtaining

1

2

d

dt
|∆ψ|22 `

@
u ·∇ψ,∆2ψ

D
` ǫ|∆ψ|22 “

@
∆p´∆ψ ` fpψqq,∆2ψ

D
.

Simple computations then give

1

2

d

dt
|∆ψ|22 ` ǫ|∆ψ|22 ` |∆2ψ|22

“ ´
@
u ·∇ψ,∆2ψ

D
`
@
f2pψq|∇ψ|2,∆2ψ

D
`
@
f 1pψq∆ψ,∆2ψ

D
. (4.4.2)

Summing (4.4.1) and (4.4.2) together, we get

1

2

d

dt

`
|∇u|22 ` |∆ψ|22

˘
`
ż

Ω

νpψq |∆u|2 ` ǫ|∆ψ|22 ` |∆2ψ|22

“ ´
@
µ∇ψ,∆u

D
´
@
ν1pψq∇ψ ·∇u,∆u

D
´
@
u ·∇ψ,∆2ψ

D

`
@
f2pψq|∇ψ|2,∆2ψ

D
`
@
f 1pψq∆ψ,∆2ψ

D
. (4.4.3)

We now only have to estimate the five terms appearing on the right hand side of the last

equality. We recall that, thanks to Lemma 4.2.1, ψ is bounded in H1pΩq and u is bounded in

L2
0,divpΩq. Since Lemma 4.2.1 implies

ż

Ω

µ “
ż

Ω

∆ψ `
ż

Ω

fpψq “
ż

Ω

fpψq ď Cpψ0q

and since the fourth equation in (4.1.3) gives

|µ|2 ď |∆ψ|2 ` |fpψq|2 ď |∇ψ|2{3
2 |∆2ψ|1{3

2 ` C,
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the first term can be estimated as

|
@
µ∇ψ,∆u

D
|

ď |∆u|2|∇ψ|4|µ|4

ď C|∆u|2|∇ψ|5{6
2 |∆2ψ|1{6

2 |µ|1{2
2 p1 ` |∇µ|1{2

2 q

ď C|∆u|2|∇ψ|7{6
2 |∆2ψ|1{3

2 ` C|∆u|2|∇ψ|7{6
2 |∆2ψ|1{3

2 |∇µ|1{2
2

` C|∆u|2|∇ψ|5{6
2 |∆2ψ|1{6

2 ` C|∆u|2|∇ψ|5{6
2 |∆2ψ|1{6

2 |∇µ|1{2
2

ď ν1

6
|∆u|22 ` 1

10
|∆2ψ|22 ` Cp1 ` |∇ψ|7{2

2 qp1 ` |∇µ|3{2
2 q.

Here, the L2-norm of ∇ψ is already known to be bounded. Moreover the L2-norm of ∇µ is

integrable and uniformly bounded

sup
tět0

ż t`1

t

|∇µpsq|22 ds ď ρ1.

The next two terms can be easily handled using Hölder’s and Young’s inequalities

|
@
ν1pψq∇ψ ·∇u,∆u

D
|

ďν˚|∇ψ|8|∇u|2|∆u|2

ďC|∇ψ|2{3
2 |∆2ψ|1{3

2 |u|1{2
2 |∆u|3{2

2

ďν1

6
|∆u|22 ` 1

8
|∆2ψ|22 ` C|u|62|∇ψ|82

and

|
@
u ·∇ψ,∆2ψ

D
|

ď|∆2ψ|2|∇ψ|2|u|8

ďC|∆2ψ|2|∇ψ|2|u|1{2
2 |∆u|1{2

2

ďν1

6
|∆u|22 ` 1

8
|∆2ψ|22 ` C|u|22|∇ψ|42

where the last terms in both the above estimates are bounded for sufficiently large times. The

fourth and fifth terms in (4.4.3) thus give

|
@
f2pψq|∇ψ|2,∆2ψ

D
|

ď|f2pψq|2|∇ψ|28|∆2ψ|2
ďC|f2pψq|2|∇ψ|4{3

2 |∆2ψ|5{3
2

ď 1

10
|∆2ψ|22 ` C|f2pψq|62|∇ψ|82
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and

|
@
f 1pψq∆ψ,∆2ψ

D
|

ď|f 1pψq|4|∆ψ|4|∆2ψ|2

ďC|f 1pψq|4|∇ψ|1{2
2 |∆2ψ|3{2

2

ď 1

10
|∆2ψ|22 ` C|f 1pψq|44|∇ψ|22.

Again the terms on the right hand side of the above estimates can either be reabsorbed in the

left hand side of equation (4.4.3) or are bounded by the results of Lemma 4.2.1.

Substituting the above estimates in (4.4.3) and reordering we obtain

d

dt

`
|∇u|22 ` ν1|∆ψ|22

˘
` |∆u|22 ` ǫ|∆ψ|22 ` |∆2ψ|22

ď Cp1 ` |∇ψ|7{2
2 qp1 ` |∇µ|3{2

2 q ` C|u|22|∇ψ|42 ` C|u|62|∇ψ|82
` C|f2pψq|62|∇ψ|82 ` C|∇ψ|22|f 1pψq|44

where all the terms on the right hand side except the first are easily seen to be bounded. Poincaré’s

inequality implies

d

dt

`
|∇u|22 ` |∆ψ|22

˘
` C

`
|∇u|22 ` |∆ψ|22

˘
ď C|∇µ|22 ` C

where all the constants C are positive. A standard application of Gronwall’s inequality yields the

sought higher regularity estimate

|∇uptq|22 ` |∆ψptq|22

ď
`
|∇upt0q|22 ` |∆ψpt0q|22

˘
e´Cpt´t0q ` C

ż t

t0

|∇µpsq|22e´Cpt´sq ds` C.

Here the integral term involving the chemical potential is bounded since |∇µpsq|22 is translation

bounded in time. Thanks to Lemma 4.2.1, we finally deduce the existence of the compact absorb-

ing set B1 defined above. A simple integration in time from t to t`1 finally entails the remaining

uniform bound of Lemma 4.1.5 thus concluding our proof.

Remark 4.4.1. With the results obtained so far, we can conclude that, for fixed ǫ ą 0, sys-

tem (4.0.1) possesses the (compact) global attractor in L2
0,divpΩq ˆH1pΩq. In the case ǫ “ 0, we

recover the known result in the phase space L2
0,divpΩq ˆH1

pc0qpΩq.

4.5 A robust family of exponential attractors

The final section of this chapter is devoted to the proof of the existence and robustness with

respect to ǫ of exponential attractors for system (4.0.1) (Theorem 4.1.9). However, before giving

the proof of our main result we prove Lemmata 4.1.7 and 4.1.8.
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Proof of Lemma 4.1.7. In order to establish the required smoothing property, we will consider

again the approximation scheme given by the Galerkin method on the space generated by the

eigenfunctions of the Stokes operator. We start by (formally) multiplying by ´∆u the first equa-

tion of system (4.3.1) with ǫ1 “ ǫ2 “ ǫ and integrating the resulting identity over Ω. Therefore,

we obtain

1

2

d

dt
|∇u|22 ´ xpu ·∇qu1,∆uy ´ xpu2 ·∇qu,∆uy ` |∆u|22

“ ´
@
µ1∇ψ,∆u

D
´
@
µ∇ψ2,∆u

D
. (4.5.1)

Then we consider the third equation in (4.3.1), we multiply it by ´∆ψ and we integrate once

again over Ω getting

1

2

d

dt
|∇ψ|22 ´

@
u1 ·∇ψ,∆ψ

D
´
@
u ·∇ψ2,∆ψ

D
` ǫ|∇ψ|22 “

@
∆µ,∆ψ

D
.

Thanks to the fourth equation in (4.3.1), we can rewrite the forcing term in the right hand side

of the last identity as

´
@
∆µ,∆ψ

D
“

@
∇µ,∇∆ψ

D
“ ´|∇∆ψ|22 `

@
f 1pψ1q∇ψ1 ´ f 1pψ2q∇ψ2,∇∆ψ

D

thus obtaining

1

2

d

dt
|∇ψ|22 ` ǫ|∇ψ|22 ` |∇∆ψ|22

“
@
u1 ·∇ψ,∆ψ

D
`
@
u ·∇ψ2,∆ψ

D
`
@
f 1pψ1q∇ψ1 ´ f 1pψ2q∇ψ2,∇∆ψ

D
. (4.5.2)

Considering the third equation in (4.3.1) once more, multiplying it by Btψ this time and integrating

over Ω, we further deduce

|Btψ|22 `
@
u1 ·∇ψ, Btψ

D
`
@
u ·∇ψ2, Btψ

D
` ǫ

2
|ψ|22 “

@
∆µ, Btψ

D
. (4.5.3)

Using once more the definition of the chemical potential µ (see the last equation in (4.3.1)) we

see that the right hand side of the last equation can be rewritten as follows

@
∆µ, Btψ

D
“

@
µ,∆Btψ

D
“ ´1

2

d

dt
|∆ψ|22 `

@
fpψ1q ´ fpψ2q,∆Btψ

D

“ ´1

2

d

dt
|∆ψ|22 `

@
∆fpψ1q ´ ∆fpψ2q, Btψ

D
.

Summing the three above identities (4.5.1), (4.5.2) and (4.5.3), after reordering of the terms
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and some computations, we get

1

2

d

dt

`
|∇u|22 ` |∇ψ|22 ` |∆ψ|22 ` ǫ|ψ|22

˘
` |∆u|22 ` |∇∆ψ|22 ` |Btψ|22 ` ǫ|∇ψ|22

“ xpu ·∇qu1,∆uy ` xpu2 ·∇qu,∆uy ´
@
µ1∇ψ,∆u

D
´
@
µ∇ψ2,∆u

D

`
@
u1 ·∇ψ,∆ψ

D
`
@
u ·∇ψ2,∆ψ

D

`
@

pf 1pψ1q ´ f 1pψ2qq∇ψ1,∇∆ψ
D

`
@
f 1pψ2q∇ψ,∇∆ψ

D

`
@
u1 ·∇ψ, Btψ

D
`
@
u ·∇ψ2, Btψ

D
`
@

pf2pψ1q ´ f2pψ2qq|∇ψ1|2, Btψ
D

`
@
f2pψ2q∇ψ1 ·∇ψ, Btψ

D
`
@
f2pψ2q∇ψ ·∇ψ2, Btψ

D

`
@

pf 1pψ1q ´ f 1pψ2qq∆ψ1, Btψ
D

`
@
f 1pψ2q∆ψ, Btψ

D
. (4.5.4)

We now have to bound the 15 terms appearing on the right hand side of this last identity. For

brevity, we will refer to them with the roman numbers I to XV estimating them according to the

order specified above. The bounds obtained will always be of the form:

δ|∆u|22 ` δ|∇∆ψ|22 ` δ|Btψ|22 ` Cptq|∇u|22 ` Cptq|∇ψ|22 ` Cptq|∆ψ|22 ` Cptq xψy2

where the δ’s are suitable small positive constants and where the time-dependent constants are

integrable. The first four terms can be estimated as follows

|I| “ | xpu ·∇qu1,∆uy |

ď |u|8|∇u1|2|∆u|2

ď C|u|1{2
2 |∇u1|2|∆u|3{2

2

ď 1

8
|∆u|22 ` C|∇u1|42|∇u|22,

|II| “ | xpu2 ·∇qu,∆uy |

ď |u2|4|∇u|4|∆u|2

ď C|u2|1{2
2 |∇u2|1{2

2 |∇u|1{2
2 |∆u|3{2

2

ď 1

8
|∆u|22 ` C|u2|22|∇u2|22|∇u|22,

|III| “ |
@
µ1∇ψ,∆u

D
|

ď |µ1|4|∇ψ|4|∆u|2

ď C|µ1|1{2
2 }µ1}1{2

H1 |∇ψ|3{4
2 |∇∆ψ|1{4

2 |∆u|2

ď 1

8
|∆u|22 ` 1

8
|∇∆ψ|22 ` C|µ1|4{3

2 }µ1}4{3
H1 |∇ψ|22,
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|IV| “ |
@
µ∇ψ2,∆u

D
|

ď |µ|2|∇ψ2|8|∆u|2

ď C
`
|fpψ1q ´ fpψ2q|2 ` |∆ψ|2

˘
|∇ψ2|1{2

2 |∇∆ψ2|1{2
2 |∆u|2

ď C
´

|fpξq|8|ψ|2 ` |∇ψ|1{2
2 |∇∆ψ|1{2

2

¯
|∇ψ2|1{2

2 |∇∆ψ1|1{2
2 |∆u|2

ď 1

8
|∆u|22 ` 1

8
|∇∆ψ|22 ` C|∇ψ2|22|∇∆ψ2|22|∇ψ|22

` C|fpξq|28|∇ψ2|2|∇∆ψ2|2 xψy2 ` C|fpξq|28|∇ψ2|2|∇∆ψ2|2|∇ψ|22

where ξ is a function bounded by maxtψ1, ψ2u from above and by mintψ1, ψ2u from below. As

far as the fifth to the twelfth are concerned we have

|V| “ |
@
u1 ·∇ψ,∆ψ

D
|

ď |u1|4|∇ψ|4|∆ψ|2

ď C|u1|1{2
2 |∇u1|1{2

2 |∇ψ|1{2
2 |∆ψ|3{2

2

ď C|∆ψ|22 ` C|u1|22|∇u1|22|∇ψ|22,

|VI| “ |
@
u ·∇ψ2,∆ψ

D
|

ď |u|4|∇ψ2|4|∆ψ|2

ď C|∇u|2|∇ψ2|1{2
2 |∆ψ2|1{2

2 |∆ψ|2
ď C|∇u|22 ` C|∇ψ2|2|∆ψ2|2|∆ψ|22,

|VII| “ |
@

pf 1pψ1q ´ f 1pψ2qq∇ψ1,∇∆ψ
D

|

ď |f2pξq|8|ψ|2|∇ψ1|8|∇∆ψ|2

ď C|f2pξq|8|∇ψ1|1{2
2 |∇∆ψ1|1{2

2 |ψ|2|∇∆ψ|2

ď 1

8
|∇∆ψ|2 ` C|f2pξq|28|∇ψ1|2|∇∆ψ1|2 xψy2 ` C|f2pξq|28|∇ψ1|2|∇∆ψ1|2|∇ψ|22,

|VIII| “ |
@
f 1pψ2q∇ψ,∇∆ψ

D
|

ď |f 1pψ2q|8|∇ψ|2|∇∆ψ|2

ď 1

8
|∇∆ψ|22 ` C|f 1pψ2q|28|∇ψ|22,
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|IX| “ |
@
u1 ·∇ψ, Btψ

D
|

ď |u1|4|∇ψ|4|Btψ|2

ď C|u1|1{2
2 |∇u1|1{2

2 |∇ψ|1{2
2 |∆ψ|1{2

2 |Btψ|2

ď 1

14
|Btψ|22 ` C|∆ψ|22 ` C|u1|22|∇u1|22|∇ψ|22,

|X| “ |
@
u ·∇ψ2, Btψ

D
|

ď |u|4|∇ψ2|4|Btψ|2

ď C|∇u|2|∇ψ2|1{2
2 |∆ψ|1{2

2 |Btψ|2

ď 1

14
|Btψ|22 ` C|∇ψ2|2|∆ψ2|2|∇u|22,

|XI| “ |
@

pf2pψ1q ´ f2pψ2qq|∇ψ1|2, Btψ
D

|

ď |f3pξq|8|∇ψ1|28|ψ|2|Btψ|2

ď 1

14
|Btψ|22 ` C|f3pξq|28|∇ψ1|48 xψy2 ` C|f3pξq|28|∇ψ1|48|∇ψ|22.

|XII| “ |
@
f2pψ2q∇ψ1 ·∇ψ, Btψ

D
|

ď |f2pψ2q|8|∇ψ1|8|∇ψ|2|Btψ|2

ď 1

14
|Btψ|22 ` C|f2pψ2q|28|∇ψ1|28|∇ψ|22.

The remaining terms can be bounded exactly in the same way giving

|XIII| “ |
@
f2pψ2q∇ψ ·∇ψ2, Btψ

D
|

ď 1

14
|Btψ|22 ` C|f2pψ2q|28|∇ψ2|28|∇ψ|22,

|XIV| “ |
@

pf 1pψ1q ´ f 1pψ2qq∆ψ1, Btψ
D

|

ď |f2pξq|8|ψ|4|∆ψ1|4|Btψ|2

ď C|f2pξq|8|ψ|1{2
2 }ψ}1{2

H1 |∆ψ1|1{2
2 |∇∆ψ1|1{2

2 |Btψ|2
ď C|f2pξq|8

`
xψy ` |∇ψ|2

˘
|∆ψ1|1{2

2 |∇∆ψ1|1{2
2 |Btψ|2

ď 1

14
|Btψ|22 ` C|f2pξq|28|∆ψ1|2|∇∆ψ1|2 xψy2 ` C|f2pξq|28|∆ψ1|2|∇∆ψ1|2|∇ψ|22,
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|XV| “ |
@
f 1pψ2q∆ψ, Btψ

D
|

ď |f 1pψ2q|8|∆ψ|2|Btψ|2

ď 1

14
|Btψ|22 ` C|f 1pψ2q|28|∆ψ|22.

Having successfully bounded all the terms on the right hand side of (4.5.4), we can use the above

estimates to deduce the following inequality

d

dt

`
|∇u|22 ` |∇ψ|22 ` |∆ψ|22 ` ǫ|ψ|22

˘
` |∆u|22 ` |∇∆ψ|22 ` |Btψ|22 ` ǫ|∇ψ|22

ďC
`
1 ` |∇u1|42 ` |u2|22|∇u2|22 ` |∇ψ2|2|∆ψ2|2

˘
|∇u|22

` C
´

|µ1|4{3
2 }µ1}4{3

H1 ` |fpξq|28|∇ψ2|2|∇∆ψ2|2 ` |∇ψ2|22|∇∆ψ2|22 ` |∆ψ|22

` |u1|22|∇u1|22 ` |f2pξq|28|∇ψ1|2|∇∆ψ1|2 ` |f 1pψ2q|28 ` |f3pξq|28|∇ψ1|48
` |f2pψ2q|28|∇ψ1|28 ` |f2pψ2q|28|∇ψ2|28 ` |f2pξq|28|∆ψ1|2|∇∆ψ1|2

¯
|∇ψ|22

` C
`
1 ` |∇ψ2|2|∆ψ2|2 ` |f 1pψ2q|28

˘
|∆ψ|22

` C
´

|fpξq|28|∇ψ2|2|∇∆ψ2|2 ` |f2pξq|28|∇ψ1|2|∇∆ψ1|2

` |f3pξq|28|∇ψ1|48 ` |f2pξq|28|∆ψ1|2|∇∆ψ1|2
¯

xψy2 .

It is easy to see that all the coefficients multiplying the quantities |∇u|22, |∇ψ|22, |∆ψ|22 and xψy2

on the right hand side of this last estimate are (uniformly w.r.t. ǫ) integrable as soon as the

solution to system (4.0.1) belongs to the compact invariant set B introduced above. Recalling

that from (4.3.2) we have xψy ptq “ e´ǫt xψ0y, we can apply the uniform Gronwall inequality

(see (Temam, 1997, Lemma III.1.1)) obtaining

|∇uptq|22 ` |∇ψptq|22 ` |∆ψptq|22 ` ǫ|ψptq|22

ď
ˆ
1

t

ż t

0

`
|∇upsq|22 ` |∇ψpsq|22 ` |∆ψpsq|22 ` ǫ|ψ|22

˘
ds` 1

2ǫ
xψ0y2

˙
eCptq.

for any positive time t. However, by the continuous dependence estimate (4.3.5) we also know

that ż t

0

`
|∇upsq|22 ` |∇ψpsq|22 ` |∆ψpsq|22 ` ǫ|ψ|22

˘
ds ď C

`
|u0|22 ` }ψ0}2H1

˘
,

which gives the sought smoothing property.

Proof of Lemma 4.1.8. We prove here the uniform (w.r.t. ǫ) Hölder time-continuity for solutions

of equation (4.0.1). In particular, we are interested in showing that this holds on B1. We just

recall that

}gptq ´ gpτq}X ď pt ´ τq1{2}Btg}L2pτ,t;Xq
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where X is a Banach space and t ě τ . For our purpose, it will be sufficient to estimate the

L2ppH1
0,divq˚q-norm of Btu and the L2pL2q-norm of Btψ. In particular, from the first equation

in (4.1.3) we have

}Btu}pH1
0,divq˚

ď}pu ·∇qu}pH1
0,divq˚ ` }∆u}pH1

0,divq˚ ` }µ∇ψ}pH1
0,divq˚

ď|u|24 ` C|∇u|2 ` C|µ|4|∇ψ|2
ďC

´
|u|2|∇u|2 ` |∇u|2 ` |µ|1{2

2 |∇µ|1{2
2 |∇ψ|2

¯

where the right hand side is easily seen to be square integrable. Analogously, starting from the

third and fourth equation in (4.1.3) we obtain

|Btψ|2

ď|u ·∇ψ|2 ` ǫ|ψ|2 ` |∆2ψ|2 ` |∇fpψq|2

ď|u|4|∇ψ|4 ` ǫ|ψ|2 ` |∆2ψ|2 ` |f2pψq|2|∇ψ|28 ` |f 1pψq|4|∆ψ|4
ď
´

|u|1{2
2 |∇ψ|1{2

2 |∇u|1{2
2 |∆ψ|1{2

2 ` ǫ|ψ|2 ` |∆2ψ|2

` |f2pψq|2|∇ψ|2|∆2ψ|2 ` |f 1pψq|4|∇ψ|1{2
2 |∆2ψ|1{2

2

¯
.

From the above estimates we deduce that pu, ψq is Hölder continuous with respect to time with

values in pH1
0,divpΩqq˚ ˆL2pΩq. On the other hand, we also know that pu, ψq is uniformly bounded

in H1
0,div ˆH2pΩq. Thus, by interpolation, we deduce that the solution is Hölder continuous with

values in L2
0,divpΩq ˆH1pΩq.

Proof of Theorem 4.1.9. In order to prove our result we only need to verify that all the as-

sumptions of Proposition 4.1.6 are satisfied by our system. This will give us a robust family of

discrete-time exponential attractors. In order to complete the proof deducing the existence of

a family of continuous-tie exponential attractors, as in (Miranville, 2011, Theorem 5.1), we will

only need the uniform Hölder time-continuity for the solution semigroup of system (4.0.1), which

has been proved in Lemma 4.1.8.

We start our argument by noticing that by the results of the previous section (in particular

by Lemma 4.1.5) system (4.0.1) possesses a positively invariant absorbing set, which is given by

B “
ď

ǫě0

¨
˚̋ ď

t“nT0

nPN

SǫptqB1

˛
‹‚

where Sǫptq is the solution semigroup associated with system (4.0.1) with the reaction parameter

equal to ǫ. In this expression T0 is the absorbing time of the set B1 into itself and may depend
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on ǫ. However, inspecting the dissipative estimates obtained so far, it is easy to see that this

absorbing time T0 can be increased so to be uniform (with respect to ǫ in a bounded interval).

We already obtained the continuous dependence estimate w.r.t. initial data and ǫ in Sec-

tion 4.3. Therefore, we are only left with verifying that the solution semigroup tSǫutě0 satisfies

the required uniform smoothing property and the above mentioned time regularity. However, in

the case ǫ ě ǫ0 ą 0 on the phase space L2
0,divpΩq ˆ H1pΩq the required smoothing property is

showed by Lemma 4.1.7. From this we deduce the existence of a robust (w.r.t. ǫ ą 0) discrete-

time exponential attractor. Moreover, arguing as in (Miranville, 2011, Theorem 5.1), the Hölder

time continuity proved in Lemma 4.1.8 gives the existence of a robust family of continuous-time

exponential attractors. Finally, the other case addressed in Theorem 4.1.9 (namely robustness

up to ǫ “ 0) easily follows by the same computations.
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CHAPTER 5

Cahn-Hilliard Equation with Nonlocal Singular Free Energies

Outline

A Cahn-Hilliard equation, which is the conserved gradient flow of a nonlocal total free en-

ergy functional, is considered on a bounded domain. This functional is characterised by a

Helmholtz free energy density, which can be of logarithmic type. As a consequence, the equa-

tion for the chemical potential contains an integral operator with singular kernel acting on the

order parameter, instead of the usual Laplace operator. First the existence and uniqueness of

a weak solution and some regularity properties are established. Then the existence of a (con-

nected) global attractor for the system considered is proved. Due to the lack of information

concerning the regularity of solutions up to the boundary, the differential formulation of the

weak problem considered is not fully known. However, a Neumann-like boundary condition

can be recovered for the order parameter field provided that it is supposed to be regular

enough.

I
n this chapter we conclude the presentation of our results concerning the model H and some

of its generalisation by reporting some preliminary results about a nonlocal version of the

Cahn-Hilliard equation. In particular, this can be seen to arise as a conserved gradient flow

of the first variation of the following nonlocal total free energy functional E

Epψq “ 1

2

ż

Ω

ż

Ω

pψpxq ´ ψpyqq2kpx, y, x´ yqdxdy `
ż

Ω

fpψpxqqdx

where Ω Ă Rn is a bounded domain with C2-boundary BΩ (n P t1, 2, 3u in applications), k is the

interaction kernel and f is the (singular) Helmholtz free energy density.

131
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The chemical potential µ is the first variation of E and the Cahn-Hilliard equation can be

then written as follows

Btψ “ ∇ · pM∇µq,

where M is the so-called mobility. Therefore we consider the following problem

Btψ “ ∆µ in Ω ˆ p0,8q (5.0.1)

µ “ Lc` f 1pψq in Ω ˆ p0,8q (5.0.2)

Bnµ “ 0 on BΩ ˆ p0,8q (5.0.3)

ψ|t“0 “ ψ0 in Ω. (5.0.4)

where L is a non-local linear operator defined as follows

Lupxq “ p. v.

ż

Ω

pupxq ´ upyqqkpx, y, x´ yqdy (5.0.5)

“ lim
ǫÑ0

ż

ΩzBǫpxq

pupxq ´ upyqqkpx, y, x´ yqdy,

and k : Rn ˆ Rn ˆ pRnzt0uq Ñ R is assumed to be pn ` 2q-times continuously differentiable and

satisfies the following conditions (see Abels and Kassmann (2007)):

kpx, y, zq “ kpy, x,´zq, (5.0.6)

|BβxBγyBδzkpx, y, zq| ď Cβ,γ,δ|z|´n´α´|δ|, (5.0.7)

c0|z|´n´α ď kpx, y, zq ď C0|z|´n´α. (5.0.8)

for all x, y, z P R
n, z ‰ 0 and β, γ, δ P N

n
0 with |β| ` |γ| ` |δ| ď n ` 2 where α is the order

of the operator. Unless specified otherwise, throughout this chapter we will always consider the

case α P p1, 2q. An example of a kernel kp · , · , · q satisfying the above assumptions is given

by kpx, y, zq “ ωpx, yq|z|´n´α with ω P Cn`2
b pRnq. Note that the definition of the operator L

depends on Ω. Formally, in the case Ω “ Rn and kpx, y, zq “ |z|´n´α one has L “ C ˆ p´∆qα
2

where p´∆qα
2 is a fractional power of the Laplace operator. If Ω is a bounded domain, the

operator L has the same form as the generator of a censored stable process, cf., e.g., Bogdan

et al. (2003) and is also known as reginal fractional Laplacian.

The well-posedness of the weak formulation of problem (5.0.1)–(5.0.4) together with a natural

boundary condition for ψ, which will be part of the weak formulation itself, is the main result

of this chapter. In the above (strong) formulation (5.0.1)–(5.0.4), a boundary condition for the

variable ψ is missing. A further result is concerned with the characterisation of such a condition,

provided that the weak solution is smooth enough (say, ψ P C1,βpΩq) and k fulfills suitable

assumptions. More precisely, we prove that

∇ψpx0q ·nx0
“ 0,
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where nx0
depends on the interaction kernel k (see (5.5.2) below).

This condition reduces to the usual homogeneous Neumann boundary condition for ψ for

symmetric kernels (cf. Theorem 5.5.1 and Remarks 5.5.2 and 5.5.3 below). Unfortunately, we are

unable to prove that a weak solution is indeed as regular as it is required for this characterisation.

Nonetheless, the weaker regularity results presenter here is sufficient to prove that the dissipative

dynamical system generated by (5.0.1)–(5.0.4) has a (connected) global attractor.

This chapter is organised as follows. In Section 5.1 we introduce some basic notation and

function spaces as well as we account for some preliminary results. Section 5.2 is essentially

devoted to the computation of the subgradient of the (convex) functional

F pψq “ 1

2

ż

Ω

ż

Ω

pψpxq ´ ψpyqq2kpx, y, x´ yqdxdy `
ż

Ω

φpψpxqqdx

and to the characterisation of its domain (see Theorem 5.2.3 below). Here φ is the convex part

of f (see Assumption 1). Combining the results of Sections 5.1 and 5.2 we give the proof of the

well-posedness theorem (Theorem 5.1.1) in Section 5.3. The existence of the global attractor is

established in Section 5.4. Finally, in Section 5.5 we show that a regular weak solution ψ does

satisfy the above boundary condition.

5.1 Basic tools and well-posedness

Given a set M , its power set will be denoted by 2pMq. Moreover, we denote R
n
` “ tx P R

n |
xn ą 0u and R` “ R1

`. If X is a (real) Banach space and X˚ is its dual, then

xf, gy ” X˚ xf, gyX “ fpgq, f P X˚, g P X,

denotes the duality product. Moreover, if H is a (real) Hilbert space, p · , · qH will indicate its

inner product. In the following, all Hilbert spaces will be separable.

5.1.1 Function spaces

Throughout this chapter Ω Ď Rn will be a bounded domain with C2-boundary. Let LppΩq,
1 ď p ď 8, be the set of p-integrable (or essentially bounded) functions f : Ω Ñ R and set

| · |p ” } · }LppΩq. In the case of the L2pΩq Hilbert space, we will use the simplified notation

pf, gq .“ pf, gqL2pΩq @f, g P L2pΩq

to indicate the inner product when no ambiguity from the context may arise. Moreover, HmpΩq,
m P N, indicates the usual L2-Sobolev space of order m and Hm

0 pΩq is the closure of C8
0 pΩq in

HmpΩq.
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Given f P L1pΩq, we set

xfy .“ 1

|Ω|

ż

Ω

fpxqdx

and, for m P R we define

L2
pmqpΩq .“ tf P L2pΩq | xfy “ mu,

so that P0f
.“ f ´mpfq denotes the orthogonal projection onto L2

p0qpΩq.

We then introduce

H1
p0q “ H1

p0qpΩq “
 
ψ P H1pΩq | xψy “ 0

(

equipped with the inner product

pc, dqH1

p0qpΩq “ p∇c,∇dqL2pΩq, c, d P H1
p0qpΩq.

Observe that H1
p0qpΩq is a Hilbert space due to Poincaré’s inequality. Moreover, let H´1

p0q ”
H´1

p0q pΩq “ H1
p0qpΩq˚ and consider the Riesz isomorphism R : H1

p0qpΩq Ñ H´1
p0q pΩq given by

H´1

p0q
xRc, dyH1

p0q
“ pc, dqH1

p0q
“ p∇c,∇dqL2 , c, d P H1

p0qpΩq,

i.e., R “ ´∆N is the Laplacian with Neumann boundary conditions in the variational sense.

Therefore we equip H´1
p0q pΩq with the inner product

pf, gqH´1

p0q
“ p∇∆´1

N f,∇∆´1
N gqL2 “ p∆´1

N f,∆´1
N gqH1

p0q
.

Moreover, we embed H1
p0qpΩq and L2

p0qpΩq into H´1
p0q pΩq in the canonical way, that is,

H´1

p0q
xc, ϕyH1

p0q
“
ż

Ω

cpxqϕpxqdx, @ϕ P H1
p0qpΩq, c P L2

p0qpΩq.

Finally, we need to introduce the so-called fractional L2-Sobolev-Slobodeckii spaces as follows.

Let s P p0, 1q. Then, for any u P L2pΩq, set

}u}2HspΩq
.“ |u|22 `

ż

Ω

ż

Ω

|upxq ´ upyq|2
|x´ y|n`2s

dxdy

and

HspΩq .“ tf P L2pΩq | }f}HspΩq ă 8u.

Let us denote by Hs
0pΩq the closure of C8

0 pΩq in HspΩq, while H´spΩq and H´s
p0qpΩq will be the

dual spaces of HspΩq and Hs
p0qpΩq, respectively. We refer the reader to Adams (1975) for the

interpolation results for such spaces which will be used hereafter.
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5.1.2 Weak formulation and main result

Before introducing a weak formulation of our problem we state our assumptions on f . As already

mentioned, these assumptions are motivated by the so called regular solution model free energy

suggested by Cahn and Hilliard Cahn and Hilliard (1958):

fpψq “ θ

2
pp1 ` ψq lnp1 ` ψq ` p1 ´ ψq lnp1 ´ ψqq ´ θc

2
ψ2, ψ P r´1, 1s (5.1.1)

where θ, θc ą 0, a “ ´1, b “ 1. Here the logarithmic terms are related to the entropy of the

system. This free energy can be justified rigourously within the framework of statistical mechanics

(see Giacomin and Lebowitz (1997, 1998)). Moreover, we note that f is convex if and only if

θ ě θc. In this case the mixed phase is stable. On the other hand, if 0 ă θ ă θc, the mixed phase

is unstable and phase separation occurs.

Namely, we suppose

Assumption 1. f : ra, bs Ñ R, a ă 0 ă b, is a continuous function, which is twice continuously

differentiable in pa, bq, such that

lim
sÑa

f 1psq “ ´8, lim
sÑb

f 1psq “ 8,

and f2psq ě ´d for some d ě 0.

Since f is defined on an interval ra, bs, we also extend fpxq by `8 if x R ra, bs. Hence Epcq ă 8
implies cpxq P ra, bs for almost every x P Ω. Note that, although f is in general non-convex, it

can be considered as a perturbation of a convex potential. Indeed, thanks to Assumption 1, we

have that there exists a positive number d ą 0 and a continuous, convex and twice continuously

differentiable in pa, bq function φ : ra, bs Ñ R such that the potential f can be decomposed as

fpsq “ φpsq ´ d
2
s2. This will be the key point in the following analysis, which is based on a

decomposition of the associated operators in a monotone operator plus a Lipschitz perturbation.

The condition limcÑa φ
1pcq “ ´8, limcÑb φ

1pcq “ 8 will force c to take values in the interval

ra, bs and ensures that the subgradient of the associated functional is single-valued with a suitable

domain.

Let us introduce the symmetric bilinear form associated to L

Epu, vq “ 1

2

ż

Ω

ż

Ω

pupxq ´ upyqqpvpxq ´ vpyqqkpx, y, x ´ yqdxdy

for all u, v P Hα{2pΩq.
The notion of weak solution to problem (5.0.1)-(5.0.2) is given by

Definition 5.1.1. Let ψ0 P H
α{2pΩq such that Epψ0q ă 8 be given. A pair pψ, µq is a global

(weak) solution to (5.0.1)-(5.0.4) if µ P L2p0, T ;H1pΩqq for all T ą 0, ψ P L8pR`;H
α{2
p0qpΩqq and
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Btψ P L2pR`;H
´1
p0q pΩqq hold, if pψ, µq satisfies

H´1

p0q
xBtψptq, ηyH1

p0q
“ ´ p∇µptq,∇ηq (5.1.2)

pµptq, ϕqL2 “ Epψptq, ϕq ` pf 1pψptqq, ϕqL2 (5.1.3)

for all η P H1
p0qpΩq, all ϕ P Hα{2pΩq and a.e. t ą 0, and if

lim
tÑ0

ψptq “ ψ0 in H
α{2pΩq.

The main result of this chapter is the following.

Theorem 5.1.1. Let Assumption 1 hold. For every ψ0 P H
α{2pΩq with Epψ0q ă 8, there is a

unique (global) solution ψ P BCpr0,8q;Hα{2pΩqq to (5.0.1)-(5.0.4) in the sense of Definition 5.1.1

which satisfies the energy identity

EpψpT qq `
ż T

0

}∇µptq}2L2pΩq dt “ Epψ0q (5.1.4)

for all T ą 0. Furthermore, the following regularity properties hold

κφ1pcq P L8pR`;L
2pΩqq,

κµ P L8pR`;H
1pΩqq, and

κBtc P L8pR`;H
´1
p0q pΩqq X L2pR`;H

α{2
p0qpΩqq,

where κptq “
´

t
1`t

¯ 1

2

. In addition, if n ď 3, then there is some β ą 0 depending only on n, such

that

κψ P L8pR`;C
βpΩqq.

Finally, setting Zm
.“
!
rψ P Hα{2pΩq | Ep rψq ă 8,

A
rψ
E

“ m
)
, where m P pa, bq is given, the map-

ping Zm Q ψ0 ÞÑ ψptq P Hγ

pmqpΩq, γ ă α
2

is strongly continuous.

5.1.3 Evolution equations with monotone operators

We refer, e.g., to Brézis Brézis (1973) and Showalter Showalter (1997) for results in the theory of

monotone operators. In the following we just summarise some basic facts and definitions. Let H

be a real-valued and separable Hilbert space. Recall that A : H Ñ PpHq is a monotone operator

if

pw ´ z, x´ yqH ě 0 for all w P Apxq, z P Apyq.

Moreover, DpAq “ tx P H | Apxq ‰ Hu. Now let ϕ : H Ñ R Y t`8u be a convex function. Then

dompϕq “ tx P H : ϕpxq ă 8u and ϕ is called proper if dompϕq ‰ H. Moreover, the subgradient

Bϕ : H Ñ PpHq is defined by w P Bϕpxq if and only if

ϕpξq ě ϕpxq ` pw, ξ ´ xqH for all ξ P H.
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Then Bϕ is a monotone operator and, if additionally ϕ is lower semicontinuous, then Bϕ is maximal

monotone, cf. (Brézis, 1973, Exemple 2.3.4).

The proof of Theorem 5.1.1 is based on the following result for the evolution problem associated

to Lipschitz perturbations of monotone operators (see, e.g., (Abels and Wilke, 2007, Theorem 3.1))

Theorem 5.1.2. Let H0, H1 be real, separable Hilbert spaces such that H1 is densely embedded

into H0. Moreover, let ϕ : H0 Ñ R Y t`8u be a proper, convex and lower semicontinuous

functional such that ϕ “ ϕ1`ϕ2, where ϕ2 ě 0 is convex and lower semicontinuous, domϕ1 “ H1,

and ϕ1|H1
is a bounded, coercive, quadratic form on H1 and set A “ Bϕ. Furthermore, assume

that B : H1 Ñ H0 is a globally Lipschitz continuous function. Then for every u0 P DpAq and

f P L2p0, T ;H0q there is a unique u P H1p0, T ;H0q X L8p0, T ;H1q with uptq P DpAq for a.e.

t ą 0 solving

d

dt
uptq ` Apuptqq Q Bpuptqq ` fptq for a.e. t P p0, T q (5.1.5)

up0q “ u0 (5.1.6)

Moreover, ϕpuq P L8p0, T q.

5.1.4 Results on the nonlocal operator L

Assumptions (5.0.6)–(5.0.8) allow us to deduce the following norm equivalence results.

Lemma 5.1.3. Let u P Hα{2pΩq. Then there exist two positive constants c and C such that

c}u}2Hα{2pΩq ď | xuy |2 ` Epu, uq ď C}u}2Hα{2pΩq @u P Hα{2pΩq.

Corollary 5.1.4. The following norm equivalences hold:

Epu, uq „ }u}2
H

α{2
p0qpΩq @Hα{2

p0qpΩq, (5.1.7)

Epu, uq ` | xuy |2 „ }u}2Hα{2pΩq @Hα{2pΩq. (5.1.8)

We now consider the variational extension of the nonlocal linear operator L (see (5.0.5)). More

precisely, abusing the notation, we define L : H
α{2pΩq Ñ H´α{2pΩq by setting

H´α{2xLu, ϕyHα{2 “ Epu, ϕq for all ϕ P Hα{2pΩq.

In particular we have

xLu, 1y “ Epu, 1q “ 0

by definition.

Remark 5.1.1. This definition of L agrees with (5.0.5) as soon as u P Hα
locpΩq X H

α{2pΩq and

ϕ P C8
0 pΩq, cf. (Abels and Kassmann, 2007, Lemma 4.2).



138 CHAPTER 5. NONLOCAL CH

We will also need the following regularity result, which essentially states that the operator L

is of lower order with respect to the usual Laplace operator.

Lemma 5.1.5. Let g P L2
p0qpΩq and θ ą 0. Then the unique solution u the problem

´ θ

ż

Ω

∇u ·∇ϕ ` Epu, ϕq “ pg, ϕq in Ω, (5.1.9)

for all ϕ P H1
p0qpΩq, belongs to H2

locpΩq XH1
p0qpΩq and satisfies the estimate

θ}∇u}2L2 ` }u}2Hα{2 ď C}g}2L2 ,

where C is independent of θ ą 0.

Proof. Existence and uniqueness of a solution u P H1
p0qpΩqto (5.1.9) easily follow from the con-

tinuity and coercivity of the bilinear form Ep · , · q through the Lax-Milgram theorem. Also, the

estimate can be obtained by choosing ϕ “ u. The claimed inner regularity u P H2
locpΩq can be

shown by arguing as in (Abels and Kassmann, 2007, Lemma 4.3).

The following regularity result is more involved. Its proof is obtained by using ideas of the

proof of (Abels and Kassmann, 2007, Lemma 5.4).

Lemma 5.1.6. Let BΩ of class C2 and let u P Hα{2pΩq such that φ1puq P L2pΩq and

Epu, ϕq `
ż

Ω

φ1puqϕdx “
ż

Ω

gϕ dx @ϕ P Hα{2pΩq (5.1.10)

for some given g P H1pΩq. Then u P CβpΩq for some β P p0, 1q depending only on n and there is

a constant C ą 0 independent of u and g such that

}u}CβpΩq ď C
`
}g}H1pΩq ` }u}Hα{2pΩq ` }φ1puq}L2pΩq

˘
. (5.1.11)

Proof. First, let us consider first the case of the half-space Ω “ Rn`. By approximating the

tangential derivatives by difference quotients, we will prove that u P H
α{2pR`;H1pRn´1qq X

L2pR`;H1`α{2pRn´1qq. Then, using the interpolation inequality

}f}H1`spRn´1q ď C}f}
2s
α

H1`α{2pRn´1q}f}1´ 2s
α

H1pRn´1q

and direct estimates, one obtains

u P Hα{2pR`;H
1pRn´1qq X L2pR`;H

1`α{2pRn´1qq

ãÑ H
α{2´spR`;H

1`s1 pRn´1qq ãÑ CβpR`, H
1`s1 pRn´1qq ãÑ CβpRn`q,

for any 0 ă s1 ă s ă α
2

´ 1
2
, where we have used (Simon, 1990, Corollary 26).
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We denote

τj,sfpxq “ fpx` sejq, ∆`
j,hfpxq “ τj,hfpxq ´ fpxq, ∆´

j,hfpxq “ fpxq ´ τj,´hfpxq,

for h ą 0, where ej is the jth canonical unit vector, j “ 1, . . . , n´ 1. Replacing ϕ by ´h´s∆´
j,hϕ

with s P r0, 1s, j P t1, . . . , n´ 1u in (5.1.10), we obtain that vh “ h´s∆`
j,hu solves

Epvh, ϕq ` h´s
ż

Ω

∆`
j,hpφ1puqqϕdx “ ´Ej,hpτj,hu, ϕq ´

ż

Ω

gh´s∆´
j,hϕdx

for all ϕ P C8
0 pΩq, where Ej,h is the bilinear form with kernel h´spkpx`hej , y`hej, zq´kpx, y, zqq.

Note that by (5.0.7) the latter kernel is bounded by C|z|´d´α uniformly in h ą 0.

First we discuss an auxiliary estimate, which will be needed to deal with some terms in the

localisation procedure. To this end let s P p1
2
, α
2

q. Then choosing ϕ “ vh, using (5.1.8) and

ż

Ω

∆`
j,hpφ1puqq∆`

j,hu dx “
ż

Ω

`
φ1pupx` hejqq ´ φ1pupxqq

˘
pupx` hejq ´ upxqq dx ě 0

we conclude

}vh}2Hα{2pRn
`q ď C

´
}g}L2pRn

`q }h´s∆´
j,hvh}L2pRn

`q ` }vh}2L2pRn
`q ` }u}2Hα{2pRn

`q

¯

We now use the inequality

}h´s∆˘
j,hw}L2pRn

`q ď C}w}HspRn
`q ď C}w}Hα{2pRn

`q,

which follows from interpolation of }h´1∆j,hw}L2pRn
`q ď C}w}H1pRn

`q and the simple estimate

}∆j,hw}L2pRn
`q ď 2}w}L2pRn

`q. Hence, we have

sup
j“1,...,n´1

›››h´2sp∆`
j,hq2u

›››
L2pRn

`q
ď }vh}Hα{2pRn

`q ď C
´

}g}L2pRn
`q ` }u}Hα{2pRn

`q

¯
,

which implies that u P L2pR`;B2s
2,8pRn´1qq ãÑ L2pR`;H1pRn´1qq (cf. (Bergh and Löfström,

1976, Theorem 6.2.5)). Also, we get

sup
j“1,...,n´1

››Bxj
u
››
L2pRn

`q ď C
´

}g}L2pRn
`q ` }u}Hα{2pRn

`q

¯

Next we choose s “ 1 in the definition of vh and we obtain similarly

}vh}Hα{2pRn
`q ď C

ˆ
sup

j“1,...,n´1

››Bxj
g
››
L2pRn

`q ` }vh}L2pRn
`q ` }u}Hα{2pRn

`q

˙

ď C

ˆ
sup

j“1,...,n´1

››pBxj
g, Bxj

uq
››
L2pRn

`q ` }u}Hα{2pRn
`q

˙
.

Hence vh “ h´1∆`
j,hu, h ą 0, is uniformly bounded in H

α{2pRn`q and therefore Bxj
u P Hα{2pRn`q.
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In order to prove the statement for a bounded domain Ω, it is sufficient to show that for every

x P Ω and for some open neighbourhood U of x we have that u P CβpΩ XUq. Let U0 be an open

neighbourhood of x and F : Rn Ñ Rn be a C2-diffeomorphism which maps U0 X Ω onto Rn` X V0

for some open set V0. Moreover, let χ P C8
0 pU0q with χ ” 1 on some neighbourhood U1 Ť U0 of

x, let V1 be an open set such that V1 X Rn` “ F pU1 X Ωq and let F˚lpxq “ lpF pxqq denote the

pull-back of l by F . For ϕ P C8
0 pRn`q we obtain that v

.“ F˚,´1pχuq P Hα{2
0 pRn`q solves

rEpv, ϕq `
ż

Rn
`

φ1pvqϕω dx

“ Epχu, F˚pϕqq “ Epu, χF˚pϕqq ` prL, χsu, F˚pϕqqL2pΩq

“ pg, χF˚pϕqqL2pΩq ` prL, χsu, F˚pϕqqL2pΩq

“ pg̃, ϕqL2pRn
`q ` prL, χsu, F˚pϕqqL2pΩq

where

rEpϕ, χq “
ż

Rn
`

ż

Rn
`

pϕpxq ´ ϕpyqqpχpxq ´ χpyqqk̃px, y, x ´ yqdxdy (5.1.12)

k̃px, y, zq “ kpF´1pxq, F´1pyq, Apx, yqzqωpxqωpyq, (5.1.13)

and

Apx, yq “
ż 1

0

DF´1pp1 ´ sqy ` sxqds,

g̃pxq “ gpF´1pxqqωpxq, ωpxq “ detDF´1pxq.

Moreover, rL denotes the integral operator associated to rE . It is not difficult to prove that

k̃ P KαpR1q for some R1 “ R1pR,F q. Now all terms on the right-hand side of the equation

above define a functional on L2pRn`q (see (Abels and Kassmann, 2007, Lemma 3.6)). Hence

v P L2pR`;H1pRn´1qq by the first arguments in the case Rn`. Choosing now another χ P C8
0 pU1q

such that χ ” 1 on an open neighbourhood U2 Ť U1 of x, one obtains that v
.“ F˚,´1pχuq solves

rEpv, ϕq “ pg̃, ϕqL2pRn
`qq ´ pηu, rL, χsF˚pϕqqL2pΩq ` prL, χsp1 ´ ηqu, F˚pϕqqL2pΩq

“ pg̃, ϕqL2pRn
`q ´ pη̃v, r rL, χ̃sϕqL2pRn

`q ` prL, χsp1 ´ ηqu, F˚pϕqqL2pΩq

for all ϕ P C8
0 pRn`q, where η P C8

0 pU1q with η ” 1 on suppχ, and χ̃ “ F˚,´1pχq, η̃ “ F˚,´1pηq.
Let us replace ϕ by ´h´1∆´

j,hϕ. We obtain

rEpv,´h´1∆´
j,hϕq ` h´1

ż

Ω

∆`
j,hpφ1puqqϕω dx

“ ph´1∆`
j,hg̃ ´ τhpφ1pvqqh´1∆`

j,hω, ϕqL2pRn
`q ´ ph´1∆`

j,hpη̃vq, r rL, χ̃sϕqL2pRn
`q

` pη̃v, h´1r∆´
j,h, r rL, χ̃ssϕqL2pRn

`q ` ph´1∆`
j,hF

˚,´1prL, χsp1 ´ ηquq, ϕqL2pRn
`q.
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Observe now that

}h´1∆`
j,hg̃ ´ τhpφ1pvqqh´1∆`

j,hω}L2pRn
`q ď C

´
}Bxj

g̃}L2pRn
`q ` }φ1pvq}L2pRn

`q
¯

ď C
`
}g}H1pΩq ` }φ1puq}L2pΩq

˘
.

On the other hand, since Bxj
pη̃vq, Bxj

g̃ P L2pRn`q, then h´1∆`
j,hpη̃vq and h´1∆`

j,hg̃ are bounded

in L2pRn`q. Moreover, we have

prL, χsp1 ´ ηquqpxq “ ´χpxqpLp1 ´ ηquqpxq

“
ż

Ω

χpxqp1 ´ ηpyqqupyqkpx, y, x´ yq dy

because of χp1 ´ ηq ” 0, where χp1 ´ ηqk P C1pΩ ˆ Ωq since suppχ X suppp1 ´ ηq “ H and

kpx, y, x´ yq is continuously differentiable for x ‰ y. Therefore prL, χsp1 ´ ηquq P C1pΩq and

h´1∆`
j,hF

˚,´1prL, χsp1 ´ ηquq P L2pRn`q

is uniformly bounded. Finally,

rh´1∆´
j,h, r rL, χ̃ssϕ “ r rL, h´1r∆´

j,h, χ̃ssϕ` rχ̃, r rL, h´1∆´
j,hssϕ

“ r rL, h´1p∆´
j,hχ̃qτj,´hsϕ ` rχ̃, rL´

j,hsϕ,

where rL´
j,h is the integral operator with kernel h´1pk̃px ` hej, y ` hej, zq ´ k̃px, y, zqq and by

(5.0.7) the latter kernel is bounded by C|z|´d´α uniformly in h ą 0. This implies that

}rh´1∆´
j,h, r rL, χ̃ssϕ}L2pRn

`q ď C}ϕ}Hα{2pΩq

uniformly in h ą 0. Hence choosing ϕ “ h´1∆`
j,hv one obtains arguing as in the half-space case

that Bxj
v P Hα{2pRn`q, j “ 1, . . . , n´ 1. This entails Hölder continuity of u in a neighbourhood of

x. Estimate (5.1.11) thus follows from the estimates obtained in this proof.

5.2 Subgradients

Let φ : ra, bs Ñ R be a continuous function and set φpxq “ `8 for x R ra, bs. Then fix θ ě 0 and

consider the functional

Fθpψq “ θ

2

ż

Ω

|∇ψ|2 dx` Epψ, ψq `
ż

Ω

φpψpxqqdx (5.2.1)

where

domF0 “
!
ψ P Hα{2pΩq X L2

pmqpΩq : φpψq P L1pΩq
)
,

domFθ “ H1pΩq X domF0 if θ ą 0.
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for a fixed m P pa, bq. Moreover, let

Eθpu, vq “ θ

ż

Ω

∇u ·∇v dx` Epu, vq

for all u, v P H1pΩq if θ ą 0 and u, v P Hα{2pΩq if θ “ 0.

We denote by BFθpψq : L2
pmqpΩq Ñ PpL2

p0qpΩqq the subgradient of Fθ at ψ P domF in the

sense that w P BFθpψq if and only if

pw, c1 ´ cqL2 ď Fθpc1q ´ Fθpψq @ c1 P L2
pmqpΩq.

Note that L2
pmqpΩq is an affine subspace of L2pΩq with tangent space L2

p0qpΩq. Therefore the

standard definition of BF for functionals on Hilbert spaces does not apply. But the definition

above is the obvious generalisation to affine subspaces of Hilbert spaces.

First of all let us prove the following

Lemma 5.2.1. Let φ : ra, bs Ñ R be a continuous and convex function. Then, for any θ ě 0, Fθ

defined as in (5.2.1) is a proper, lower semicontinuous, convex functional.

Proof. We only need to prove the lower semicontinuity. The case θ ą 0 may be handled as

in (Abels and Wilke, 2007, Lemma 4.1). On the other hand, if θ “ 0, let ψk P L2
pmqpΩq be such

that limkÑ8 ψk “ ψ in L2pΩq and lim infkÑ8 Fθpψkq ă 8. By adding a suitable constant to

φ, we can reduce to the case φ ě 0. Up to a subsequence, we can assume that ψk P domFθ

and ψk á ψ˚ in H
α{2pΩq. Hence ψk Ñ ψ˚ in L2pΩq and almost everywhere in Ω. Thus we

get ψ “ ψ˚. Moreover, Fatou’s lemma and the (weak) continuity of E imply ψ P domFθ and

Fθpψq ď lim infkÑ8 Fθpψkq.

Corollary 5.2.2. Let φ and Fθ be as in Lemma 5.2.1 and let m “ 0. Then, for any θ ě 0, BFθ
is a maximal monotone operator on H “ L2

p0qpΩq.

Proof. In view of Lemma 5.2.1, this fact follows from Corollary 1.2 and Lemma 1.3 in (Showalter,

1997, Chapter IV).

We now state our main result on the following characterisation of BF pψq:

Theorem 5.2.3. Let φ : ra, bs Ñ R be a convex function that is twice continuously differentiable

in pa, bq and satisfies limxÑa φ
1pxq “ ´8, limxÑb φ

1pxq “ `8. Moreover, we set φ1pxq “ `8 for

x R pa, bq and let Fθ be defined as in (5.2.1). Then

DpBF0q “
!
ψ P Hα

locpΩq XH
α{2pΩq X L2

pmqpΩq : φ1pψq P L2pΩq, Df P L2pΩq :

Epψ, ϕq `
ż

Ω

φ1pψqϕdx “
ż

Ω

fϕdx @ϕ P Hα{2pΩq
)
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if θ “ 0 and

DpBFθq “
!
ψ P H2

locpΩq XH1pΩq X L2
pmqpΩq : φ1pψq P L2pΩq, Df P L2pΩq :

Eθpψ, ϕq `
ż

Ω

φ1pψqϕdx “
ż

Ω

fϕdx @ϕ P H1pΩq
)

if θ ą 0 as well as

BFθpψq “ ´θ∆ψ ` Lψ ` P0φ
1pψq in D

1pΩq for θ ě 0.

Moreover, the following estimates hold

θ}c}2H1 ` }c}2Hα{2 ` }φ1pψq}22 ď C
`
}BFθpψq}22 ` }c}22 ` 1

˘
(5.2.2)ż

Ω

ż

Ω

pφ1pψpxqq ´ φ1pcpyqqqpψpxq ´ cpyqqkpx, y, x´ yqdxdy

ď C
`
}BFθpψq}22 ` }c}22 ` 1

˘

θ

ż

Ω

φ2pψq|∇ψ|2 dx ď C
`
}BFθpψq}22 ` }c}22 ` 1

˘

for some constant C ą 0 independent of ψ P DpBFθq and θ ě 0.

Proof. We will follow the same strategy as in (Abels and Wilke, 2007, Theorem 4.3). Let us

introduce first some technical tools and simplifications. If we replace ψpxq by ψ̄pxq “ ψpxq ´ m

and φ by φ̄pψq “ φpψ ` mq, we can assume w.l.o.g. that m “ 0 P pā, b̄q. Moreover, replacing

φpψq by φ̄pψq “ φpψq ` b1ψpxq ` b2, bj P R means changing F only by an affine linear functional,

for which the subgradient is trivial. In this way, we may also assume that φ1p0q “ φp0q “ 0.

Furthermore, we define φ`pψq “ φpψq if ψ ą 0, φ`pψq “ 0 if ψ ď 0 and φ´pψq “ φpψq ´ φ`pψq.
Then φ˘ : R Ñ R Y t`8u are convex functions, which are continuously differentiable in pa, bq.

In the following, we would like to evaluate the directional derivative of Fθpψq along φ1pψq.
Formally, this requires the estimate of }φ1pψq}2, but we cannot do this directly due to the sin-

gular behaviour of φ. Therefore we approximate φ1
` (and analogously φ1

´) from below by a

sequence f`
n of smooth potentials as follows. Since φ1 is continuous and monotone, φ1p0q “ 0,

and limψÑb φ
1pψq “ `8, for every n P N sufficiently large there is some ψn P p b

2
, bq such that

φ1pψnq “ n. Therefore we can define

f`
n pψq “

$
’’’’&
’’’’%

φ1pψq for ψ P r b
2
, ψnq

n` φ2pψnqpψ ´ ψnq for ψ ě ψn

0 for ψ ď 0

for ψ R p0, b
2

q. Moreover, we can extend f`
n to R such that f`

n : R Ñ R are C1-functions with

0 ď f`
n ď φ1

` and with first derivative bounded by Mn
.“ sup0ďxďψn

φ2pxq.
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We have to work in the subspace L2
p0qpΩq. Then we will use “bump functions” supported in

suitable sets to correct the mean value of functions. For this let ψ P H1
p0qpΩq be fixed and let

I Ă ra, bs be an interval such that |tψpxq P Iu| ą 0. We say that ϕ is a bump function supported in

tψ P Iu if ϕ P H1pΩq XL8pΩq, ϕ ě 0, ϕpxq “ 0 if ψpxq R I and if mpϕq “ 1. Such a function can

be constructed as follows. Choose a smooth function ζ : R Ñ r0, 1s with bounded first derivative

such that ζpsq “ 0 if s R I and ζpsq ą 0 otherwise. Then ϕ “ ζpψq
mpζpψqq has the stated properties.

Furthermore, we note that, if I “ ra, a1s with a1 P pa, bq, then we can choose ζ such that ζ 1psq ď 0.

This implies that the constructed function ϕ has the property

p∇ψ,∇ϕqL2pΩq “ 1

mpζpψqq

ż

Ω

ζ 1pψq|∇ψ|2 dx ď 0 (5.2.3)

as well as

Epψ, ϕq “ 1

2 xζpψqy

ż

Ω

ż

Ω

pψpxq ´ ψpyqqpζpψpxqq ´ ζpψpyqqqkpx, y, x ´ yqdxdy

“ 1

2 xζpψqy

ż

Ω

ż

Ω

ζ 1pξqpψpxq ´ ψpyqq2kpx, y, x´ yqdxdy ď 0 (5.2.4)

where ξpx, yq is a measurable function which is bounded above and below by maxtψpxq, ψpyqu
and mintψpxq, ψpyqu respectively. Given such a bump function ϕ, we define Mϕ : L

2pΩq Ñ
H1pΩq X L8pΩq by

pMϕfqpxq “ mpfqϕ, f P L2pΩq.

Then f ´Mϕf P L2
p0qpΩq and

}Mϕf}H1 ď C

ˇ̌
ˇ̌
ż

Ω

fpxqdx
ˇ̌
ˇ̌ @ f P L2pΩq. (5.2.5)

Observe now that

|tψpxq ´ a ě tu| ď 1

t

ż

Ω

pψpxq ´ aqdx “ |a||Ω|
t

for t ą 0 since ψ P L2
p0qpΩq. This implies that |tψ ă b

2
u| ě b

b`2|a| |Ω| ą 0. Hence the interval

I “ ra, b
2

q is admissible for the construction of bump functions supported in tψ P pa, b
2

qu.
After these preliminary considerations, let ψ P DpBFθq. We define rψtpxq, 0 ă t ď 2

Mn
, x P Ω,

as solution of

rψtpxq “ ψpxq ´ tf`
n p rψtpxqq, (5.2.6)

which exists by the contraction mapping principle. Then rψtpxq “ ψpxq if ψpxq ă 0 since

f`
n p rψtpxqq “ 0 in this case. Moreover, we have that 0 ď rψtpxq “ ψpxq ´ tf`

n p rψtpxqq ď ψpxq if

ψpxq ě 0. More formally, rψt can be expressed in the form rψtpxq “ Fnt pψpxqq, where Fnt : ra, bs Ñ
ra, bs is a continuous differentiable mapping with Fnt pxq Ñ x, pFnt q1pxq Ñ 1 as t Ñ 0` uniformly
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in ra, bs. Hence, if θ ą 0, rψt P H1pΩq and rψt ÑtÑ0 ψ in H1pΩq and almost everywhere. If else

θ “ 0, we deduce rψt P Hα{2pΩq and rψt ÑtÑ0 ψ in H
α{2pΩq and almost everywhere.

Since, in general, rψtpxq R L2
p0qpΩq, we set ψt “ rψt ` tMϕpf`

n p rψtqq, where ϕ is a bump function

supported in tψpxq ă b
2

u satisfying (5.2.3) and (5.2.4). Then ψt P L2
p0qpΩq. Furthermore, ψtpxq “

rψtpxq and f`
n pψtpxqq “ f`

n p rψtpxqq if ψpxq ą b
2

and ψtpxq “ rψtpxq ` tMϕpf`
n pψtqq P ra, 3

4
bs if

ψpxq ď b
2

and if 0 ă t ă b
4M 1

n
where M 1

n “ sup0ďtďb f
`
n ptq}ϕ}8. We denote dt “ Mϕpf`

n p rψtqq.
We now assume that w P BFθpψq. Thus we have

Fθpψq ´ Fθpψtq ď tpw, f`
n p rψtq ´ dtqL2pΩq.

Moreover, if t ą 0 is sufficiently small, a direct computation involving the definition of F and the

above construction gives

Fθpψq ´ Fθpψtq

“
ż

Ω

pφpψpxqq ´ φpψtpxqqqdx ` θtp∇ψ,∇f`
n p rψtqqL2 ´ θtmpf`

n p rψtqqp∇ψ,∇ϕqL2

´ θ
t2

2
}∇pf`

n p rψtq ´ dtq}2L2 ´ Epψ ´ ψt, ψ ´ ψtq

` t

ż

Ω

ż

Ω

pf`
n p rψtpxqq ´ f`

n p rψtpyqqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

´ t
A
f`
n p rψtq

E ż

Ω

ż

Ω

pϕpxq ´ ϕpyqqpψpxq ´ ψpyqqkpx, y, x ´ yqdxdy

Therefore, we deduce

Fθpψq ´ Fθpψtq

ět
ż

tψpxqą b
2

u
φ1pψtpxqqf`

n pψtpxqqdx ` t

ż

tψpxqď a
2

u
pφpψpxqq ´ φpψpxq ` tdtqq dx

`
ż

t a
2

ďψpxqď b
2

u

´
φpψpxqq ´ φp rψtpxq ` tdtq

¯
dx` θtp∇ψ,∇f`

n pψ̃tqq

` t

ż

Ω

ż

Ω

pf`
n p rψtpxqq ´ f`

n p rψtpyqqqpψpxq ´ ψpyqqkpx, y, x ´ yqdxdy

´ Epψ ´ ψt, ψ ´ ψtq ´ θ
t2

2
}∇pf`

n p rψtq ´ dtq}2L2 .

Hence

Fθpψq ´ Fθpψtq

ět
ż

tψpxqą b
2

u
f`
n pψtpxqq2 dx` θtp∇ψ,∇f`

n p rψtqq ´ θ
t2

2
}∇pf`

n p rψtq ´ dtq}2L2

`
ż

t a
2

ďψpxqď b
2

u
pφpψpxqq ´ φpψpxq ` tdtqq dx´ Epψ ´ ψt, ψ ´ ψtq

` t

ż

Ω

ż

Ω

pf`
n p rψtpxqq ´ f`

n p rψtpyqqqpψpxq ´ ψpyqqkpx, y, x ´ yqdxdy,
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where we have used that φpψq ´φpψtq ě φ1pψtqpψ ´ψtq and ψt ă ψ if ψ ą b
2
, φ1pψtq ě f`

n pψtq as

well as (5.2.3), (5.2.4) and φpψq ´ φpψ ` tdtq ě 0 if ψ ď a
2

and t ď a
2M 1

n
. Hence we deduce

pw, f`
n p rψtq ´ dtqL2pΩq

ě
ż

tψpxqą b
2

u
f`
n pψtpxqq2 dx` θp∇ψ,∇f`

n p rψtqq ´ θ
t

2
}∇pf`

n pψtq ´ dtq}2L2

`
ż

Ω

ż

Ω

pf`
n p rψtpxqq ´ f`

n p rψtpyqqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

´ t

2
Epf`

n p rψtq ´ dt, f
`
n p rψtq ´ dtq

`
ż

t a
2

ďψpxqď b
2

u

1

t

´
φpψpxqq ´ φp rψtpxq ` tdtq

¯
dx,

which yields for t Ñ 0

pw, f`
n pψq ´Mϕpf`

n pψqqqL2pΩq

ě
ż

tψpxqě b
2

u
f`
n pψpxqq2 dx

`
ż

t a
2

ďψpxqď b
2

u
φ1pψpxqqpf`

n pψpxqq ´Mϕpf`
n pψqqqdx

` θ
`
∇ψ,∇f`

n pψq
˘

`
ż

Ω

ż

Ω

pf`
n pψpxqq ´ f`

n pψpyqqqpψpxq ´ ψpyqqkpx, y, x ´ yqdxdy

since limtÑ0
rψt “ ψ in H1pΩq for θ ą 0 (in H

α{2pΩq for θ “ 0) and almost everywhere and since

φpψq is continuously differentiable in ra
2
, 3
4
bs. Observe now that

θ
`
∇ψ,∇f`

n pψq
˘

“ θ

ż

Ω

pf`
n q1pψpxqq|∇ψpxq|2 dx ě 0,

ż

Ω

ż

Ω

pf`
n pψpxqq ´ f`

n pψpyqqqpψpxq ´ ψpyqqkpx, y, x ´ yqqdxdy

“
ż

Ω

ż

Ω

pf`
n q1pξqpψpxq ´ ψpyqq2kpx, y, x´ yqdxdy ě 0,

where ξpx, yq is a measurable function which is bounded above and below by maxtψpxq, ψpyqu
and mintψpxq, ψpyqu, respectively, and use the fact that }Mϕpf`

n pψqq}2 ď C}f`
n pψq}2 on account

of (5.2.5). Therefore, we get

}f`
n pψq}2L2pΩq ` θ

ż

Ω

pf`
n q1pψpxqq|∇ψpxq|2 dx

`
ż

Ω

ż

Ω

pf`
n pψpxqq ´ f`

n pψpyqqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

ďC
˜

}w}2L2pΩq `
ż

t a
2

ďψpxqď b
2

u
|φ1pψpxqq|2 dx` 1

¸

ďC 1
ˆ

}w}2L2pΩq `
ż

Ω

|ψpxq|2 dx` 1

˙
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by Young’s inequality and letting n Ñ 8 we infer

}φ1
`pψq}2L2pΩq ` θ

ż

Ω

φ2
`pψpxqq|∇ψpxq|2 dx

`
ż

Ω

ż

Ω

pφ1
`pψpxqq ´ φ1

`pψpyqqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

ď C
´

}w}2L2pΩq ` |c|22 ` 1
¯

(5.2.7)

by Fatou’s lemma. By symmetry the same is true for φ´ instead of φ` and therefore also for φ.

In particular, φ1pψq P L2pΩq implies ψpxq P pa, bq almost everywhere in Ω. Thus |tψpxq P
pa ` δ, b ´ δqu| ą 0 for sufficiently small δ ą 0. Because of this, we can use a bump function ϕ

supported in tψpxq P pa ` δ, b´ δqu for some fixed δ ą 0. Moreover, let ζM : R Ñ r0, 1s, M P N,

be smooth functions such that ζM psq “ 0 if |s| ě M ` 1, ζM psq “ 1 if |s| ď M , and |ζ 1
M psq| ď 2.

Set χM pxq “ ζM pφ1pψpxqqq. Then χM P H1pΩq and χM pxq “ 0 if φ1pψpxqq ě M ` 1. Moreover,

χM ÑMÑ8 1 almost everywhere and in LppΩq, 1 ď p ă 8. On the other hand, we have

p∇ψ,∇pχM ζqqL2pΩq “ p∇ψ, χM∇ζqL2pΩq

`
ż

Ω

φ2pψpxqq|∇ψpxq|2ζpxqζ 1
M pφ1pψpxqqdx

for all ζ P C8pΩq if θ ą 0. Since φ2pψq|∇ψ|2 P L1pΩq due to (5.2.7) and ζ 1
M pφ1pψpxqqq ÑMÑ8 0

almost everywhere, we conclude

lim
MÑ8

p∇ψ,∇pχM ζqqL2pΩq “ p∇ψ,∇ζqL2pΩq @ ζ P C8pΩq (5.2.8)

as soon as θ ą 0. Analogously, for all ζ P C8pΩq, we also have

Epψ, χMζq

“1

2

ż

Ω

ż

Ω

pψpxq ´ ψpyqqpχM pxqζpxq ´ χM pyqζpyqqkpx, y, x ´ yqdxdy

“1

2

ż

Ω

ż

Ω

pψpxq ´ ψpyqqχM pxqpζpxq ´ ζpyqqkpx, y, x´ yqdxdy

` 1

2

ż

Ω

ż

Ω

pψpxq ´ ψpyqqpχM pxq ´ χM pyqqζpyqkpx, y, x ´ yqdxdy.

Recalling that φ1 is monotone and |ζ 1
M psq| ď 2, for any positive and bounded ζ we have

|pψpxq ´ ψpyqqpχM pxq ´ χM pyqqζpyqkpx, y, x ´ yq|

ď 2pψpxq ´ ψpyqqpφ1pψpxqq ´ φ1pψpyqqqζpyqkpx, y, x ´ yq

and therefore we deduce

pψpxq ´ ψpyqqpχM pxq ´ χM pyqqζpyqkpx, y, x ´ yq P L1pΩ ˆ Ωq.
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Moreover, χM pxq ´ χM pyq Ñ 0 almost everywhere in Ω ˆ Ω and χM pxq Ñ 1 almost everywhere

in Ω, so that by the dominated convergence theorem we obtain, for all θ ě 0,

lim
MÑ8

Epψ, χMζq “ Epψ, ζq @ ζ P C8pΩq. (5.2.9)

We now set ψMt “ ψ ´ tχMζ ` tMϕpχMζq, ζ P C8pΩq, t ą 0, M P N. Then ψMt P domFθ for

sufficiently small t ą 0 (depending on M) and

t pw, χMζ ´MϕpχMζqq

ěFθpψq ´ FθpψMt q

“
ż

tφ1pψpxqqďM`1u

`
φpψpxqq ´ φpψMt pxqq

˘
dx` θtp∇ψ,∇pχMζ ´MϕpχMζqqqL2

´ θt2

2
|∇pχMζ ´MϕpχMζqq|22

´ t2EpχMζ ´MϕpχMζq, χMζ ´MϕpχMζqq

` t

ż

Ω

ż

Ω

pχM pxqζpxq ´ χM pyqζpyqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

´ t xχMζy
ż

Ω

ż

Ω

pϕpxq ´ ϕpyqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy.

Dividing by t and passing to the limit t Ñ 0, we conclude

pw, χMζ ´MϕpχMζqq

ě
ż

Ω

φ1pψpxqqpχM ζ ´MϕpχMζqqdx ` θp∇ψ,∇pχM ζ ´MϕpχMζqqqL2

`
ż

Ω

ż

Ω

pχM pxqζpxq ´ χM pyqζpyqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

´ xχMζy
ż

Ω

ż

Ω

pϕpxq ´ ϕpyqqpψpxq ´ ψpyqqkpx, y, x´ yqdxdy

for all ζ P C8pΩq. Replacing ζ by ´ζ, we obtain equality in the above inequality. Finally, letting

M Ñ 8, we get

pw, ζqL2pΩq “ pφ1pψq, ζqL2pΩq ` θp∇ψ,∇ζqL2pΩq ` Epψ, ζq

for all ζ P C8pΩq, xζy “ 0, where we have used (5.2.5), (5.2.8), (5.2.9), and

lim
MÑ8

ż

Ω

χMζ dx “ lim
MÑ8

ż

Ω

pχM ´ 1qζ dx “ 0 if mpζq “ 0.

Hence ´θ∆Nψ`Lψ “ w´P0φ
1pψq P L2

p0qpΩq. Using Lemma 5.1.5 we deduce θ
1{2ψ P H2

locpΩq,
ψ P Hα

locpΩq XH
α{2pΩq and

θ
1

2 }ψ}H1 ` }ψ}Hα{2 ď C|φ1|2 ` C|w|2.
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Using this last estimate and (5.2.7), we obtain (5.2.2). Moreover, the previous observations imply

that BFθpψq “ ´θ∆ψ ` Lψ ` P0φ
1pψq is single-valued and DpBFθq is contained in the set on the

right-hand side of the identities for DpBFθq (see statement of this theorem).

Conversely, recalling the definition of subdifferential, the properties of coercive bilinear forms

p∇u,∇vq and Epu, vq as well as the convexity of φ, it can be easily checked that ´θ∆ψ ` Lψ `
P0φ

1pψq P BFθpψq for any ψ in the set on the right-hand side of the identities for DpBFθq. This

finishes the proof.

Corollary 5.2.4. Let θ ą 0 and let the functional Fθ be defined as above. Extend Fθ to a

functional ĂFθ : H´1
p0q pΩq Ñ R Y t`8u by setting ĂFθpψq “ Fθpψq if ψ P domFθ and ĂFθpψq “ `8

else. Then ĂFθ is a proper, convex, and lower semicontinuous functional, BĂFθ is a maximal

monotone operator with BĂFθpψq “ ´∆NBFθpψq and

DpBĂFθq “ tψ P DpBFθq | BFθpψq “ ´θ∆ψ ` Lψ ` P0φ
1pψq P H1

p0qpΩqu. (5.2.10)

Proof. The lower semicontinuity is proved in the same way as in Lemma 5.2.1. Then the fact that

BĂFθ is a maximal monotone operator follows from Corollary 1.2 and Lemma 1.3 in (Showalter,

1997, Chapter IV).

First, let ψ P DpBĂFθq and w P BĂFθpψq, i.e.,

pw,ψ1 ´ ψqH´1

p0q
ď ĂFθpψ1q ´ ĂFθpψq for all ψ1 P H´1

p0q pΩq. (5.2.11)

Then let µ0 “ ´∆´1
N w and choose ψ1 P L2pΩq. Thus we have

pµ0, ψ
1 ´ ψqL2

“ ´ p∇µ0,∇∆´1
N pψ1 ´ ψqqL2 “ p∇∆´1

N w,∇∆´1
N pψ1 ´ ψqqL2

“pw,ψ1 ´ ψqH´1

p0q
ď ĂFθpψ1q ´ ĂFθpψq “ Fθpψ1q ´ Fθpψq

for all ψ1 P L2pΩq. Hence µ0 “ ´θ∆ψ ` Lψ ` P0φ
1pψq P DpBFθq. On the other hand, µ0 “

´∆´1
N w P H1

p0qpΩq. This implies that BĂFθpψq “ ´∆NBFθpψq and

DpBĂFθq Ď
!
ψ P DpBFθq | µ0 “ ´θ∆ψ ` Lψ ` P0φ

1pψq P H1
p0qpΩq

)
.

Conversely, let ψ P DpBFθq such that µ0 “ ´θ∆ψ`Lψ`P0φ
1pψq “ BFθpψq P H1

p0qpΩq. Then one

easily verifies that w “ ´∆Nµ0 satisfies (5.2.11) arguing as above. Hence ψ P DpBFθq and (5.2.10)

follows.
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5.3 Existence of unique solutions

We first prove the existence of a weak solution. Let us consider the regularized (formal) problem

$
’’’’’’’’&
’’’’’’’’%

Btψθ “ ∆µθ in Ω ˆ p0,8q

µθ “ ´θ∆ψθ ` Lψθ ` f 1pψθq in Ω ˆ p0,8q

Bνµθ “ Bνψθ “ 0 on BΩ ˆ p0,8q

ψθ|t“0 “ ψ0θ in Ω

(5.3.1)

where θ ą 0 is a (small) positive real number.

Without loss of generality we suppose

xψ0θy “ 1

|Ω|

ż

Ω

ψ0θ dx “ 0. (5.3.2)

As in the previous section we can reduce to this case by a simple shift. Since (5.3.2) and the

definition of L imply that any solution of (5.3.1) as in Theorem 5.1.1 satisfies

d

dt

ż

Ω

ψθpx, tqdx “
ż

Ω

∆µθ dx “ 0,

we conclude xψθptqy “ 0 for almost all t ą 0.

Problem (5.3.1) can be formulated as follows (see (Abels and Wilke, 2007, Theorem 1.2))

Btψθ ` Aθpψθq ` Bψθ “ 0, t ą 0, (5.3.3)

ψθ|t“0 “ ψ0θ (5.3.4)

where

H´1

p0q
xAθpψθq, ϕyH1

p0q
“ p∇µθ,∇ϕqL2 with µθ “ ´θ∆ψθ ` Lψθ ` φ1pψq

H´1

p0q
xBψθ, ϕyH1

p0q
“ dp∇ψθ,∇ϕqL2

for all ϕ P H1
p0qpΩq and

DpAθq “
 
ψ P H2

locpΩq XH1pΩq | ψpxq P ra, bs @x P Ω, φ1pψq P L2pΩq,
ż

Ω

ż

Ω

pφ1pψpxqq ´ φ1pψpyqqqpψpxq ´ ψpyqqkpx, y, x ´ yqdxdy ă 8,

φ2pψq|∇ψ|2 P L1pΩq, BFθpψq P H1pΩq, Bνψ|BΩ “ 0
(

DpBq “ H1
p0qpΩq Ă H´1

p0q pΩq.

In other words

Aθpψq “ ´∆Np´θ∆ψ ´ Lψ ` P0φ
1pψqq, Bψ “ ´d∆Nψ,
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where ∆N : H1
p0qpΩq Ă H´1

p0q pΩq Ñ H´1
p0q pΩq is the Laplace operator with Neumann boundary

conditions as above, which is considered as an unbounded operator on H´1
p0q pΩq. Moreover, the

initial datum ψ0θ appearing in (5.3.1) is a regularisation of the given original datum for prob-

lem (5.0.1)–(5.0.4). In particular, we need ψ0θ to satisfy

xψ0θy “ xψ0y , lim
θÑ0

θ}ψ0θ}H1 “ 0 and lim
θÑ0

ψ0θ “ ψ0 in H
α{2pΩq.

This can be obtained by considering ψ0θ “ Ψǫpθq ˚ ψ0 where Ψǫ is a suitable mollifier (e.g., a

gaussian kernel) and ǫpθq is chosen to be sufficiently slowly convergent to 0 if θ Ñ 0. Finally, we

also introduce a suitable regularized energy for system (5.3.1), namely,

Eθpψq .“ Eθpψ, ψq `
ż

Ω

fpψpxqqdx.

In order to apply Theorem 5.1.2 for θ strictly positive we recall that, on account of Corol-

lary 5.2.4, A “ BĂFθ is a maximal monotone operator with ĂFθ “ ϕ1 ` ϕ2,

ϕ1pψq “ θ

2

ż

Ω

|∇ψpxq|2 dx` Epψ, ψq, domϕ1 “ H1
p0qpΩq,

ϕ2pψq “
ż

Ω

φpψpxqqdx,

domϕ2 “ domϕ “ tψ P H1
p0qpΩq | ψ P ra, bs a.e. in Ωu

Obviously, ϕ1|H1

p0qpΩq is a bounded, coercive quadratic form on H1
p0qpΩq.

We apply Theorem 5.1.2 with H1 “ H1
p0qpΩq, H0 “ H´1

p0q pΩq, f “ 0, and ϕ1, ϕ2 as above,

where we assume that φpψq ě 0 without loss of generality. As a consequence there exists a

unique solution ψ : r0,8q Ñ H0 to (5.3.3)-(5.3.4) such that ψ P H1p0, T ;H0q X L8p0, T ;H1q,
ϕpψq P L8p0, T q for every T ą 0 and ψptq P DpAθq for almost all t ą 0.

In order to prove the equivalence of (5.1.4), namely

Eθpψθptqq `
ż t

0

|∇µθpsq|22 ds “ Eθpψ0θq for all t ą 0, (5.3.5)

we take advantage of the identity

Eθpψθptqq “ ĂFθpψθptqq ´ d

2
|ψθptq|22.

Because of Lemma 4.3 in (Showalter, 1997, Chapter IV), we have

d

dt
ĂFθpψθptqq “ pBĂFθpψθptqq, BtψθptqqH´1

p0q
“ ´}Btψθptq}2

H´1

p0q

´ pBψθptq, BtψθptqqH´1

p0q
.

Moreover, we have

pBψθptq, BtψθptqqH´1

p0q
“ ´dp∆Nψθptq, BtψθptqqH´1

p0q
“ dp∇ψθptq,∇∆´1

N BtψθptqqL2

“ ´dH´1

p0q
xBtψθptq, ψθptqyH1

p0q
“ ´d

2

d

dt
|ψθptq|22
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due to (Zeidler, 1990, Proposition 23.23) and }Btψθptq}H´1

p0q
“ }∆Nµθptq}H´1

p0q
“ }µθptq}H1

p0q
. Hence

an integration over r0, ts yields

Epψθptq, ψθptqq ` θ

2
|∇ψθptq|22 `

ż

Ω

fpψθpx, tqqdx `
ż t

0

|∇µθpsq|2 ds

“ Epψ0θ , ψ0θq ` θ

2
|∇ψ0θ|22 `

ż

Ω

fpψ0θpxqqdx.

In particular, this implies

Btψθ “ ∆Nµθ P L2pR`;H´1
p0q pΩqq, θ

1{2ψθ P L8pR`;H1
p0qpΩqq.

In order to derive higher regularity, we apply Bht to (5.3.3) and take the inner product with

Bht ψθ in H´1
p0q pΩq, where Bht fptq “ 1

h
pfpt ` hq ´ fptqq, t, h ą 0. For any 0 ă s ă t, this gives

1

2
}Bht ψθptq}2

H´1

p0q

` θ

ż t

s

p∇Bht ψθpτq,∇Bht ψθpτqqL2 dτ `
ż t

s

EpBht ψθpτq, Bht ψθpτqqdτ

ďd
ż t

s

}Bht ψθpτq}2L2 dτ ` 1

2
}Bht ψθpsq}2

H´1

p0q

ďψ0

2

ż t

s

}Bht ψθpτq}2
H

α{2
p0q

dτ ` C

ż t

s

}Bht ψθpτq}2
H´1

p0q

dτ ` 1

2
}Bht ψθpsq}2

H´1

p0q

,

where we have used Ehrling’s Lemma applied to H
α{2
p0qpΩq ãÑãÑ L2

p0qpΩq ãÑ H´1
p0q pΩq and

pBht Aθpψθpτqq, Bht ψθpτqqH´1

p0q
ě θpBht ψθpτq, Bht ψθpτqqH1 ` EpBht ψθpτq, Bht ψθpτqq.

Here ψ0 ą 0 is such that Epu, uq ě ψ0}u}2
H

α{2
p0q

. Furthermore, since Btψθ P L2pR`;H
´1
p0q pΩqq, there

holds

}Bht ψθpsq}H´1

p0q
ď 1

h

ż s`h

s

}Btψθpτq}H´1

p0q
dτ ÑhÑ0 }Btψθpsq}H´1

p0q

for almost every s ą 0 and }Bht ψθ}L2pR`;H´1

p0q q ď }Btψθ}L2pR`;H´1

p0q q. Hence θ}Bht ψθ}2
L2ps,t;H1

p0q
q,

}Bht ψθ}
L2ps,t;Hα{2

p0qpΩqq and }Bht ψθptq}H´1

p0q
are uniformly bounded in h ą 0, for all 0 ă s ă t. On the

other hand, we have

Bht ψθ ÑhÑ0 Btψθ

in L2pR`;H
´1
p0q pΩqq. Therefore, the uniform (w.r.t. h ą 0) bounds on Bht ψθ yield that Btψθ P

L2ps, t;Hα{2
p0qpΩqq X L8ps, t;H´1

p0q pΩqq for every 0 ă s ă t.

In order to derive the estimate near t “ 0, we again apply Bht to (5.3.3) and take the inner

product with tBht ψθ. This gives

t

2
}Bht ψθptq}2

H´1

p0q

` θ

ż t

0

τ |∇Bht ψθpτq|22 dτ `
ż t

0

τEpBht ψθpτq, Bht ψθpτqqdτ

ď C

ż t

0

p1 ` τq|Bht ψθpτq|22 dτ.
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Proceeding as above, we get

t
1{2Btψθ P L2p0, 1;Hα{2

p0qpΩqq X L8p0, 1;H´1
p0q pΩqq.

This implies κµθ “ κ∆´1
N Btψθ P L8pR`;H1

p0qpΩqq. Thus (5.2.2) yields κφ1pψθq P L8pR`;L2pΩqq
since κBFθpψq “ κµθ ` κdψθ P L8pR`;L2pΩqq. All these norms are uniformly bounded in

θ P p0, 1s.
We are now ready to pass to the limit for θ Ñ 0 in (5.3.3). Indeed, for any θ ą 0 we have

proven that there exist (unique) functions ψθptq and µθptq satisfying

$
’&
’%

Btψθ “ ∆Nµθ

pµθ, ζqL2 ` θp∇ψθ,∇ζqL2 ` Epψθ, ζq ` pφ1pψθq, ζqL2 “ dpψθ, ζqL2

(5.3.6)

for all ζ P H1
p0qpΩq and for almost every t ą 0. Moreover, from the previous estimates, for all

θ P p0, 1s, we have

ψθ P L8pR`;H
α{2
p0qpΩqq

θ
1{2ψθ P L8pR`;H

1pΩqq

κBtψθ P L8pR`;H
´1
p0q pΩqq X L2pR`;H

α{2
p0qpΩqq

µθ P L2p0, T ;H1pΩqq for all T ą 0

κµθ P L8pR`;H
1pΩqq

κφ1pψθq P L8pR`;L
2pΩqq

where all the bounds deduced are uniform with respect to θ. Therefore, there exists a sequence

tθnunPN, θn ÑnÑ8 0 such that ψθn , µθn and φ1pψθnq converge weakly (or weakly˚) in the above

spaces to ψ, µ and χ respectively as θ vanishes. More precisely, by a suitable diagonal argument

on intervals of the form r0,ms, we can assume that also µθn Ñ µ in L2p0,m;H1pΩqq for any

m P N. We can easily pass to the limit in the first equation of (5.3.6) deducing

Btψptq “ ∆µptq in H´1
p0q pΩq, for a.e. t ą 0

Let ζ P C8pΩq and let s ą 0. Thanks to the convergences listed above, for almost any t ą s we

can pass to the limit for θ Ñ 0 in the second equation in (5.3.6) to find

pµptq, ζqL2pΩq ` Epψptq, ζq ` pχptq, ζqL2pΩq “ dpψptq, ζqL2pΩq

for almost all t ą 0 since s can be taken arbitrarily small.

In order to prove the existence of a weak solution for (5.0.1)–(5.0.4) on R`, we only have to

identify the (weak) limit χ “ limnÑ8 φ1pψθnq. Let 0 ă s ă t and m P N be fixed. Thanks to
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Aubin-Lions Lemma, Btψθn P L2p0, T ;H´1
p0q pΩqq and ψθn P L8p0, T ;Hα{2

p0qpΩqq uniformly in n for

all T ą 0 imply the convergence ψθn Ñ ψθn (up to a subsequence) in Cpr0, T q;L2
p0qpΩqq for any

T ą 0. Therefore, we deduce ψθnptq Ñ ψptq almost everywhere in Ω. On the other hand, thanks

to Egorov’s theorem, there exists a set Ωm Ă Ω such that |Ωm| ě |Ω|´ 1
2m

and on which ψθn Ñ ψ

uniformly. We now use the (uniform with respect to θ ą 0) estimate on φ1pψθnptqq in L2pΩq. By

definition, the quantity

Mδ,n
.“ |tx P Ω | |ψθnpxq| ą 1 ´ δu|

is decreasing in δ for all n P N. Since φ1pyq is unbounded for y Ñ ˘1, we set

ψδ
.“ inf

|ψ|ě1´δ
|φ1pψq| ÑδÑ0 8,

and we have the uniform Tchebychev inequality

ż

Ω

|φ1pψθnq|2 dx ě ψ2
δ |Mδ,n|.

From the uniform (with respect to θ) estimate on the norm of φ1pψθnq in L2pΩq we obtain

|Mδ,n| Ñ 0 for δ Ñ 0, uniformly in n P N.

Therefore, we deduce

lim
δÑ0

|tx P Ω | |ψθnpxq| ą 1 ´ δu| “ 0 uniformly in n P N.

Thus there exists δ “ δpmq, independent of n, such that

|tx P Ω | |ψθnpxq| ą 1 ´ δu| ď 1

2m
@n P N.

Consider now N P N so large that by uniform convergence we have |ψθn ´ ψ| ă δ
2
, @n ą N on

Ωm and let Ω1
m Ă Ωm be defined by

Ω1
m
.“ Ωm X tx P Ω | |ψθN pxq| ă 1 ´ δu.

By the above construction we immediately deduce that |Ω1
m| ą |Ω| ´ 1

m
and that |ψθnpxq| ă 1´ δ

2

for all n ě N and for all x P Ω1
m. Therefore, by the regularity assumptions on the potential

φ1 we deduce that φ1pψθnq Ñ φ1pψq uniformly on Ω1
m. Since m and s are arbitrary we have

φ1pψθnq Ñ φ1pψq almost everywhere in Ω ˆ R`. Finally, the uniqueness of weak and pointwise

limits gives χ “ φ1pψq as claimed1.

1Let tfnunPN be a sequence of functions such that fn á f in LppΩq and that fnpxq Ñ gpxq for a.e. x P Ω.

Assume that f ‰ g on a set of finite positive measure Ω0 Ă Ω on which g is bounded. By Egorov’s theorem there

exists a set of positive measure Ω1 Ă Ω0 such that fn Ñ g uniformly in Ω1. Therefore, fn Ñ g in LppΩ1q and

hence fn á g in LppΩ1q. This contradicts the uniqueness of weak limits and therefore implies f “ g throughout

Ω.



5.3. EXISTENCE OF UNIQUE SOLUTIONS 155

We now prove uniqueness of weak solutions. To this end let ψj0 P Z0, j “ 1, 2, and let ψjptq
be weak solutions to (5.3.3) with initial values ψjp0q “ ψ

j
0. Set ψ

.“ ψ1 ´ ψ2 and µ
.“ µ1 ´ µ2.

Then multiplying the equation

Btψ “ ∆Nµ

by ψptq in H´1
p0q pΩq we deduce

1

2

d

dt
}ψptq}2

H´1

p0q

` Epψptq, ψptqq `
`
φ1pψptqq, ψptq

˘
“ d|ψptq|22.

Using the inequality

|w|22 ď }w}4{p2 ` αq

H
α{2
p0q

}w}2α{p2 ` αq

H´1

p0q

ď Cǫ}w}2
H´1

p0q

` ǫ}w}2
H

α{2
p0q

and the coercivity of E , that is,

1

C
}ψptq}2

H
α{2
p0q

ď Epψptq, ψptqq `
`
φ1pψptqq, ψptq

˘
,

we infer
1

2

d

dt
}ψptq}2

H´1

p0q

` 1

C
}ψptq}2Hα{2 ď C}ψptq}2

H´1

p0q

.

Hence Gronwall’s lemma implies

}ψptq}2
H´1

p0q

ď e2Ct}ψ0}2
H´1

p0q

, (5.3.7)

which entails uniqueness whenever ψ1
0 “ ψ2

0 .

Let us now prove the energy identity (5.1.4). First we observe that by taking η “ p´∆N q´1ψ

and ϕ “ ψ in (5.1.2) and (5.1.3) respectively we deduce (5.1.4) for almost any t ą 0 in the same

way as in (Abels and Wilke, 2007, Proof of Theorem 1.2). In order to obtain the energy identity for

all times, we observe that any weak solution can be approximated by a family of functions tψθuθą0

defined by (5.3.1). From the regularity of the solution ψ, we know that ψ P Cpr0, T s;HβpΩqq
for all β ă α

2
, Moreover, for all positive times t, we have ψθ P Cpr0, T s;Hα{2pΩqq and therefore

ψθptq P H
α{2pΩq with uniform bound in θ. Passing to the limit for θ Ñ 0 and arguing by

contradiction, we deduce ψptq P Hα{2pΩq for all positive times. Finally, since solution departing

from ψptq P H
α{2pΩq are unique and since we already know that the energy identity holds for

almost all times, for any t ą 0 we can find t ą t such that the two following identities hold

Epψptqq `
ż t

0

|∇µpsq|22 ds “ Epψ0q

Epψptqq `
ż t

t

|∇µpsq|22 ds “ Epψptqq.

Taking the difference we deduce for any time t

Epψptqq `
ż t

0

|∇µpsq|22 ds “ Epψ0q,
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which is the desired energy identity for all t ą 0.

We still have to prove the continuity of the map ψ0 ÞÑ ψptq. Observe that the strong continuity

in H´1
p0q pΩq is an immediate consequence of the continuous dependence estimate (5.3.7). Moreover,

since

Z0 Q ψ0 ÞÑ ψptq P Hα
locpΩq XH

α{2
p0qpΩq

is a bounded mapping, interpolation yields the continuity ψ0 ÞÑ ψptq with respect to the Hγ

p0qpΩq-
norm with γ ă α

2
. Because of the boundedness of r0,8q Q t ÞÑ ψptq P Hα

p0qpΩq, this mapping is

also weakly continuous.

Finally, note that the energy equality holding for all t ą 0 entails the continuity of solutions

ψptq with values in H
α{2
p0qpΩq so that ψptq ÑtÑ0 ψ0 in H

α{2
p0qpΩq using that weak convergence plus

convergence of norms imply strong convergence. This finishes the proof.

5.4 Long-time behaviour

Here we describe the global asymptotic behaviour of the dynamical system associated with (5.1.2)–

(5.1.3). As above we can reduce to the case that ψ0 has mean value zero by adding a suitable

constant. Let us define the (metric) phase-space

X “
"
z P Hα{2

p0qpΩq :

ż

Ω

fpzqdx ă 8
*

endowed with the metric

dX pz1, z2q “ }z1 ´ z2}
H

α{2
p0qpΩq `

ˇ̌
ˇ̌
ż

Ω

fpz1qdx ´
ż

Ω

fpz2qdx
ˇ̌
ˇ̌ .

Thanks to Theorem 5.1.1 and inequality (5.3.7), we can define a closed semigroup (see Pata and

Zelik (2007)) on X by setting Sptqψ0 “ ψptq, where ψ is the unique weak solution to (5.1.2)–(5.1.3)

with initial datum ψ0.

Our result is the following

Theorem 5.4.1. The dynamical system pX , Sptqq has a (connected) global attractor.

Proof. Let us show first that the dynamical system has a bounded absorbing set. Consider

equation (5.1.3) defining the chemical potential and choose ψ as test function. From this we

deduce that

Epψptq, ψptqq `
`
f 1pψptqq, ψptq

˘
“ pµptq, ψptqq “ pµptq ´ xµptqy , ψptqq

ďC
ż

Ω

|∇µpx, tq| dx ď 1

2
|∇µ|22 ` C (5.4.1)
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holds for almost every t ě 0. Here we used the fact that ψptq has zero mean and that it is

pointwise bounded. Moreover, from the assumptions on the potential f we have

fpψq “ φpψq ´ d

2
ψ2

where φ is convex. By the convexity of φ we deduce

φ1psqs ě φpsq ´ φp0q @s

and therefore we can write

`
f 1pψptqq, ψptq

˘
“
`
φ1pψq, ψ

˘
´ d|ψptq|22

ě
ż

Ω

φpψptqqdx ´ |Ω|φp0q ´ d|ψptq|22 “
ż

Ω

fpψptqqdx´ C.

Substituting this estimate from below in the inequality (5.4.1) above we get

Epψptq, ψptqq `
ż

Ω

fpψptqqdx ď 1

2
|∇µptq|22 ` C.

We now consider the energy identity (5.1.4) and differentiate it with respect to time. This gives

d

dt

ˆ
Epψptq, ψptqq `

ż

Ω

fpψptqqdx
˙

` |∇µptq|22 ď 0.

Summing the last two inequalities together, we infer

d

dt

ˆ
Epψptq, ψptqq `

ż

Ω

fpψptqqdx
˙

` Epψptq, ψptqq `
ż

Ω

fpψptqqdx ď C

for almost every t ě 0. Gronwall’s Lemma thus gives

Epψptq, ψptqq `
ż

Ω

fpψptqqdx ď e´t
ˆ
Epψ0, ψ0q `

ż

Ω

fpψ0qdx
˙

` C

where the constant C appearing on the right hand side is independent of the initial datum ψ0.

This proves that there is a bounded absorbing set B in X .

On account of (Pata and Zelik, 2007, Theorem 2), we only need to prove that there exists

a divergent sequence ttnu such that αpSptnqBq “ 0 as n goes to 8. Here αpEq denotes the

Kuratowski measure of noncompactness. Actually we prove more, that is, αpSptqBq “ 0 for all

t ą 0.

Let tψ0nu Ă X be bounded and set ψnptq “ Sptqψ0n. From estimates analogous to those

deduced in our proof of existence of solutions in Section 5.3 and thanks to the existence of the

absorbing set deduced above, we have the following (uniform with respect to n) estimates:

ψn P L8p0, T ;Hα{2
p0qpΩqq for all T ą 0

Btψn P L2ps, T ` s;H
α{2
p0qpΩqq uniformly in s ě ε ą 0, for all T ą 0

µn P L2ps, T ` s;H1pΩqq uniformly in s ě 0, for all T ą 0

f 1pψnq P L8pǫ, T ;L2pΩqq for all T ą ǫ ą 0.
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Arguing as in the proof of existence, up to a subsequence, we deduce that there exist functions

ψ, µ satisfying for any fixed ǫ and T

ψn
˚á c in L8p0, T ;Hα{2

p0qpΩqq

Btψn á Btψ in L2ps, T ` s;H
α{2
p0qpΩqq

µn á µ in L2ps, T ` s;H1pΩqq

f 1pψnq ˚á f 1pψq in L8pǫ, T ;L2pΩqq

as n Ñ 8. Here ψ and µ satisfy (5.1.2)–(5.1.3). On the other hand we also know that

ψn P Cpr0, T s;Hα{2
p0qpΩqq for all T ą 0

with a uniform bound in n. Moreover, the estimate on Btψn implies that the family tψnunPN

is also equicontinuous with values in H
α{2
p0qpΩq. Indeed, this follows from the following simple

computation

}ψnptq ´ ψnpsq}
H

α{2
p0qpΩq

ď
ż t

s

}Btψnpτq}
H

α{2
p0qpΩq dτ ď pt ´ sq1{2

ˆż t

s

}Btψnpτq}2
H

α{2
p0q

dτ

˙1{2
.

Moreover, we know that

Lψptq “ µptq ´ f 1pψptqq P L2
p0qpΩq

holds for almost any t ą 0. In particular, in the last expression, the right hand side is uniformly

bounded for all t ě ǫ ą 0. Since L2
p0qpΩq ĂĂ H

´α{2
p0q pΩq and since L´1 is continuous as an operator

from H
´α{2
p0q pΩq to H

α{2
p0qpΩq we deduce that

ψptq P Kǫ ĂĂ H
α{2
p0qpΩq for a.e. t ě ǫ ą 0

holds with Kǫ independent of t. Moreover, thanks to the continuity of the solutions ψn taking

values in H
α{2
p0qpΩq this is true for all t ě ǫ ą 0. Appealing to the Ascoli-Arzelà Theorem (see,

for instance, (Folland, 1999, Theorem 4.43)), this implies that, up to a subsequence, ψn Ñ ψ in

Cprǫ, T s;Hα{2
p0qpΩqq uniformly on the interval rǫ, T s. Applying the above argument to intervals of

the form rm´1,ms, m P N and performing a diagonal selection procedure, we finally obtain

ψnptq Ñ ψptq in H
α{2
p0qpΩq, for all t ą 0.

We now consider the convergence

ż

Ω

fpψnptqqdx Ñ
ż

Ω

fpψptqqdx for all t ą 0.
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This follows as a consequence of the dominated convergence on account of the boundedness of f

and pointwise convergence almost everywhere in Ω of tfpψnp · , tqqu. The latter is implied by the

strong convergence of ψnptq in H
α{2
p0qpΩq. Summing up we have that, up to a subsequence, ψnptq

converges to ψptq in X for any t ą 0. Therefore we are in a position to apply (Pata and Zelik,

2007, Theorem 2 and Proposition 4) to conclude the proof.

Remark 5.4.1. In order to prove the connectedness of the attractor, in Pata and Zelik (2007)

(see comments after Theorem 2) it is assumed that balls of the phase space X are connected.

However, connectedness of the attractor can be obtained by assuming only that the whole phase

space is connected as was shown in (Ball, 1997, Theorem 4.2 and Corollary. 4.3) (cf. also Ball

(1998)). In our case, although connectedness of the balls of X does not seem evident, nonetheless

the d-convexity of F implies that X is connected.

5.5 Boundary conditions for variational solutions

In this section we want to discuss the natural boundary condition satisfied by the weak solution

u to the problem

Epu, ζq “ pg, ζq @ζ P Hα{2
p0qpΩq. (5.5.1)

Here g is a given function with mpgq “ 0. Of course, we can confine ourselves to consider the

linear nonlocal equation neglecting the derivative of the potential f . Note that (5.5.1) also holds

true for all ζ P Hα{2pΩq since both sides vanish on constants. For simplicity we only consider the

case Ω “ Rn`. But the case of a bounded sufficiently smooth domain can be reduced to this case

by standard techniques.

The main theorem is a conditional result, namely,

Theorem 5.5.1. Let Ω “ Rn` and 1 ď p ď 8 such that α ´ 1 ą n
p
. Let α ą 3

2
and let

u P H
α{2
p0qpΩq X Hα

locpΩq be a solution to (5.5.1) with g P L
p

p0qpΩq. Suppose that u P C1,βpΩq. If

n ě 2, we assume that the following limit exists

nx0
“ lim
δÑ0

δ´1´n`α
ż

Ω

ż

Ω

px´ yqpϕδpxq ´ ϕδpyqqkpx, y, x ´ yqdxdy (5.5.2)

and is non-zero, where

ϕδpxq “

$
’&
’%
1 ´ |x´x0|

δ
if |x´ x0| ă δ

0 otherwise.

If n “ 1, let nx0
“ 1. Then we have

∇upx0q ·nx0
“ 0 @x0 P BΩ. (5.5.3)
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Remark 5.5.1. Observe that (5.5.1) holds in particular for any ζ P C8
0 pΩq. Arguing as in (Abels

and Kassmann, 2007, Lemma 4.2) (see also (Abels and Kassmann, 2007, Lemma 3.5)), we have

Epu, ζq

“ lim
ǫÑ0

1

2

ż

t|x´y|ąǫuXΩ

pupxq ´ upyqqpζpxq ´ ζpyqqkpx, y, x ´ yqdxdy

“ lim
ǫÑ0

1

2

ż

Ω

ż

ΩzBǫpxq
pupxq ´ upyqqζpxqkpx, y, x ´ yqdxdy

` lim
ǫÑ0

1

2

ż

Ω

ż

ΩzBǫpxq
pupxq ´ upyqqζpxqkpy, x, y ´ xqdxdy

“ lim
ǫÑ0

ż

Ω

ż

ΩzBǫpxq
pupxq ´ upyqqkpx, y, x´ yqdy ζpxqdx

“
ż

Ω

Lupxqζpxqdx

provided that u P Hα
locpΩq XH

α{2pΩq. Therefore,

pLu, ζq “ pg, ζq

holds for all ζ P C8
0 pΩq. This implies that the weak solution u to (5.5.1) satisfies the equation

Lupxq “ gpxq a.e. x P Ω.

Hence Lu P LppΩq since g P LppΩq. Unfortunately, we cannot say anything on the boundary

condition due to the lack of information about the regularity of u. More precisely, we cannot

answer to the question: Does u belong to Hα
p0qpΩq with α ą 3

2
. In addition, assuming that the

limit (5.5.2) exists, we do not know if

∇upx0q ·nx0
“ 0

holds on BΩ in the sense of traces under general assumptions.

We can thus just conjecture that u should satisfy (5.5.3).

Remark 5.5.2. The limit (5.5.2) exists in many examples of interaction kernel which are interesting

for applications. Among them there are kernels given by a homogeneous principal part of order

α perturbed by lower order terms. For instance

kpx, y, x´ yq “ C

|x´ y|n`α ` op|x´ y|´n´αq (5.5.4)

or, more generally,

kpx, y, x´ yq “ gpx, yq
|x´ y|n`α ` op|x´ y|´n´αq

with g P CpΩˆΩq. In the latter cases a simple calculation using the homogeneity of |x´ y|´n´α

and the continuity of g in px0, x0q yields

nx0
“

ż

Rn
`

ż

Rn
`

px´ yqpϕ1pxq ´ ϕ1pyqqkpx0, x0, x´ yqdxdy.



5.5. BOUNDARY CONDITIONS FOR VARIATIONAL SOLUTIONS 161

Remark 5.5.3. In the case (5.5.4), using the higher-order term symmetry, we have

nx0
“

ż

Rn
`

ż

Rn
`

px´ yqpϕ1pxq ´ ϕ1pyqqkpx0, x0, x´ yqdxdy. “ Cν

where ν is the unit outward normal to the boundary and C ‰ 0. Therefore, in this case we

recover the usual Neumann boundary conditions.

5.5.1 Proof of Theorem 5.5.1: case n “ 1

Before proving Theorem 5.5.1 in the case n ě 2, we first discuss the simpler one-dimensional case.

For Rn` with n ě 2 the same general strategy applies with the required changes (see Section 5.5.2).

Throughout this section we assume that u is as in the assumption of Theorem 5.5.1 and n “ 1.

Consider the cut-off function at x “ 0 defined by

ϕδpxq “

$
’&
’%
1 ´ x

δ
for x P r0, δq,

0 otherwise.

Observe also that the function ϕδ is Lipschitz continuous and hence belongs to HγpΩq for any

γ P r0, 1s and thus to H
α{2pΩq.

Using (5.5.1), we obtain

|Epu, ϕδq| “
ˇ̌
ˇ̌
ż 8

0

gpxqϕδpxqdx
ˇ̌
ˇ̌

ď }g}p}ϕδ}p1 ď C}g}pδ1{p1 “ Opδ1{p1 q as δ Ñ 0.

We now consider the quantity Epu, ϕδq in more detail. We have

Epu, ϕδq

“1

2

ż 8

0

ż 8

0

pupxq ´ upyqqpϕδpxq ´ ϕδpyqqkpx, y, x´ yqdxdy

“1

2

ż δ

0

ż δ

0

pupxq ´ upyqq
´´

1 ´ x

δ

¯
´
´
1 ´ y

δ

¯¯
kpx, y, x´ yqdxdy

` 1

2

ż 8

δ

ż δ

0

pupxq ´ upyqq
´
1 ´ x

δ

¯
kpx, y, x´ yqdxdy

´ 1

2

ż δ

0

ż 8

δ

pupxq ´ upyqq
´
1 ´ y

δ

¯
kpx, y, x´ yqdxdy

“I1 ` I2 ` I3. (5.5.5)

The first integral reduces to

I1 “ 1

2δ

ż δ

0

ż δ

0

pupxq ´ upyqqpy ´ xqkpx, y, x ´ yqdxdy.
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By using Taylor series expansion near 0 for u, this integral can be estimated by

I1 „ 1

2δ

ż δ

0

ż δ

0

u1p0qpx´ yqpy ´ xqkpx, y, x´ yqdxdy

` C

δ

ż δ

0

ż δ

0

px ´ yq1`βpy ´ xqkpx, y, x´ yqdxdy

“ ´ 1

2δ
u1p0q

ż δ

0

ż δ

0

px´ yq2kpx, y, x´ yqdxdy `Opδ2`β´αq,

Here the notation A „ B means that the quantities A and B are equivalent for δ Ñ 0, i.e., that,

for δ sufficiently small, there exist two positive constants c and C such that cB ď A ď CB.

Indeed, notice that by assumption (5.0.8), px ´ yq1`αkpx, y, x ´ yq is uniformly bounded away

from zero from below and from above.

In the sequel, ωpδγq indicates a quantity which is asymptotical to δγ in the following sense

gpδq P ωpδγq if c ď lim inf
δÑ0

gpδq
δγ

ď lim sup
δÑ0

gpδq
δγ

ď C, c, C ą 0.

From the above computations we deduce

I1 “ ´u1p0qωpδ2´αq `Opδ2`β´αq.

The remaining two terms I2 and I3 in (5.5.5) are equivalent. Thus it suffices to observe that

I3 “
ż δ

0

ż 8

δ

pupyq ´ upxq ` u1pyqpx´ yqq
´
1 ´ y

δ

¯
kpx, y, x´ yqdxdy

`
ż δ

0

ˆż 8

δ

py ´ xqkpx, y, x ´ yqdx
˙
u1pyq

´
1 ´ y

δ

¯
dy.

However, the first of these two terms are of order Opδ2`β´αq, while we can easily estimate the

inner integral appearing in the second one as

ż 8

δ

py ´ xqkpx, y, x´ yqdx „
ż 8

δ

py ´ xq|x´ y|´1´α dx

„ ´
ż 8

δ

px´ yq´α dx „ ´pδ ´ yq1´α,

where we used the fact that x ą y always when I3 will be computed. Therefore we deduce

I3 „ ´
ż δ

0

pδ ´ yq1´αu1pyq
´
1 ´ y

δ

¯
dy `Opδ2`β´αq

„ ´ 1

δ

ż δ

0

pδ ´ yq2´αu1p0qdy `Opδ2`β´αq

„1

δ
u1p0q pδ ´ yq3´α

3 ´ α

ˇ̌
ˇ̌
δ

0

`Opδ2`β´αq „ ´u1p0qδ2´α `Opδ2`β´αq.

Combining all the above estimates we obtain, for some positive constants c and C,

´Cu1p0qδ2´α ´ Cδ2`β´α ď Epu, ϕδq ď ´cu1p0qδ2´α ` Cδ2`β´α.
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Because of (5.5.1), we have

Epu, ϕδq “
ż 8

0

gpxqϕδpxqdx

so that

´u1p0qδ2´α `Opδ2`β´αq “ Opδ1{p1 q as δ Ñ 0.

However, since α ´ 1 ą 1
p
, one readily sees that this is possible only if u1p0q “ 0.

5.5.2 Proof of Theorem 5.5.1: case n ě 2

Here we consider the case n ě 2 in the statement of Theorem 5.5.1. In this section, unless

otherwise stated, we will denote by B`
δ the half ball of centre x0 P BRn` contained in the half-

space Rn` and having radius δ. Before giving the details of the proof we prove a useful technical

lemma.

Lemma 5.5.2. Let r be a real number such that r ą ´1 ´ n. Then the following relation holds

Ir
.“
ż

B
`
δ

ż

B
`
δ

|x´ y|r ||x´x0| ´ |y´x0|| dxdy “ ωpδ1`r`2nq for δ Ñ 0.

Proof. First of all by a simple translation we can reduce to the case x0 “ 0. Then using the

change of variable x “ δx̃, y “ δỹ we obtain

Ir “ δ1`r`2n

ż

B`
1

ż

B`
1

|x´ y|r ||x| ´ |y|| dxdy,

where the last integral can be estimate as

ż

B
`
1

ż

B
`
1

|x´ y|r ||x| ´ |y|| dxdy ď
ż

B
`
1

ż

B
`
1

|x´ y|r`1 dxdy ă 8

since r ` 1 ą ´n. Since the integral on the left-hand side is obviously positive, the statement

follows.

The main idea of our proof is to consider an appropriate family of test functions concentrating

at one point of the boundary. Let us consider the bilinear form

Epu, vq “ 1

2

ż

Rn
`

ż

Rn
`

pupxq ´ upyqqpvpxq ´ vpyqqkpx, y, x´ yqdxdy.

Let x0 be a point belonging to the boundary of Rn` and consider the test function ϕδ P CpRn`q X
H1pRn`q Ă H

α{2pRn`q defined by

ϕδpxq “

$
’&
’%
1 ´ x´x0

δ
if |x´ x0| ă δ and x P Rn`,

0 otherwise.
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In particular, we have by (5.5.1)

|Epu, ϕδq| “
ˇ̌
ˇ̌
ˇ

ż

Rn
`

gpxqϕδpxqdx
ˇ̌
ˇ̌
ˇ ď }g}LppRn

`q}ϕδ}Lp1 pRn
`q.

Moreover, there holds

}ϕδ}LppRn
`q “

˜ż

B
`
δ

ˆ
1 ´ |x´ x0|

δ

˙p1

dx

¸1{p1

„ δ
n{p1
.

Observe now that

Epu, ϕδq “1

2

ż

Rn
`

ż

Rn
`

pupxq ´ upyqqpϕδpxq ´ ϕδpyqqkpx, y, x´ yqdxdy

“ 1

2δ

ż

B`
δ

ż

B`
δ

pupxq ´ upyqq p|x´ x0| ´ |y ´ x0|q kpx, y, x´ yqdxdy

` 1

2

ż

B
`
ąδ

ż

B
`
δ

pupxq ´ upyqq
ˆ
1 ´ |x´ x0|

δ

˙
kpx, y, x´ yqdxdy

` 1

2

ż

B`
δ

ż

B`
ąδ

pupxq ´ upyqq
ˆ
1 ´ |y ´ x0|

δ

˙
kpx, y, x´ yqdxdy

“J1 ` J2 ` J3. (5.5.6)

Here B`
ąδ denotes the set

B`
ąδ

.“ tx P R
n
` | |x´ x0| ą δu.

We must evaluate the asymptotic behaviour of J1, J2 and J3 as δ Ñ 0. Concerning the first one,

using Taylor expansion, up to the first order we can write

upxq ´ upyq “ ∇upx0q · px ´ yq `Opδβq|x´ y| for x, y P Bδ

where we have used

upxq ´ upyq ´ ∇upx0q · px´ yq

“
ż 1

0

p∇upx` spy ´ xqq ´ ∇upx0qq · px´ yqds

“Opδβq|x´ y|

for all x, y P Bδ. Therefore, we obtain

J1 “ 1

2δ
∇upx0q ·

ż

B`
δ

ż

B`
δ

px´ yq p|x´ x0| ´ |y ´ x0|q kpx, y, x´ yqdxdy

`Opδ1`β`n´αq.

We are now left to analyse J2 and J3 (see (5.5.6)). This can be done similarly as in the case
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n “ 1. Indeed, we have

J2 “1

2

ż

B`
δ

ż

B`
ąδ

pupxq ´ upyqq
ˆ
1 ´ |x´ x0|

δ

˙
kpx, y, x´ yqdxdy

“1

2
∇upx0q ·

ż

B`
δ

˜ż

B`
ąδ

px´ yq
ˆ
1 ´ |x´ x0|

δ

˙
kpx, y, x´ yqdx

¸
dy

`Opδβq
ż

B`
δ

˜ż

B`
ąδ

|x´ y|
ˆ
1 ´ |x´ x0|

δ

˙
kpx, y, x´ yqdx

¸
dy

” J2,1 ` J2,2

Thus, in this case, we only have to bound integrals of the form

J4
.“
ż

B`
δ

˜ż

B`
ąδ

|x´ y|1´α´n
ˆ
1 ´ |x´x0|

δ

˙
dy

¸
dx

“
ż

B
`
δ

ˆ
1 ´ |x´x0|

δ

˙˜ż

B
`
ąδ

|x´ y|1´α´n dy

¸
dx.

Let us set

Jx
.“
ż

B`
ąδ

|x´ y|1´α´n dy

and observe that

Jx ď
ż

Bąpδ´|x|q

|y|1´α´n dy “
ż `8

δ´|x|
ρ´α dρ „ pδ ´ |x|q1´α.

Then we have

J4 ď C
1

δ

ż

B`
δ

pδ ´ |x|q2´α dx “ Cδ1`n´α
ż 1

0

p1 ´ tq2´αtn´1 dt „ δ1`n´α.

From such estimates we deduce

J2 “ J2,1 `Opδ1`β`n´αq.

The quantity J3 is controlled in the same way, just interchanging the role of x and y.

Recalling that

Epu, ϕδq “
ż

Rn
`

Lupxqϕδpxqdx

and using the above estimates for J1, J2 and J3, we get

∇upx0q ·

ż

Rn
`

ż

Rn
`

px´ yqpϕδpxq ´ ϕδpyqqkpx, y, x´ yqdxdy

`Opδ1`β`n´αq “ Opδn{p1 q.

Since the double integral belongs to ωpδ1`n´αq by Lemma 5.5.2, on account of (5.5.2), and

1 ` n´ α ă n
p1 (which is equivalent to α ´ 1 ą n

p1 ), we finally deduce

∇upx0q ·nx0
“ 0.
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Part II

Strain deformation in p-n junctions





Summary

The second part of this thesis studies the coupling mechanisms between mechanical deformations

and electronic properties in semiconductors. The description of these phenomena is of outmost

importance for the development of thin film electronics such as sensors and solar cells. As it is

the case of most semiconductor-based electronic devices, the concentration of charge carriers (i.e.

electrons ad holes) shows sharp transitions and carriers separation at the boundaries between

differently doped regions in the devices.

First of all, the classical drift-diffusion model is reviewed. The mobilities of the charge carriers,

the band gap and the minority carriers equilibrium concentrations are then identified as the terms

with the most relevant strain dependency and models for these quantities proposed. Finally, the

Shockley relation for the p-n junction under deformations is deduced.

171



172



Notation used in Part II

r ¨ s jump through a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.189

Cpxq doping profile, specific number of dopants (kg´1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.191

Dn electrons’ diffusion constant (m2{s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.191

Dn electrons’ diffusion constant tensor (m2{s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.192

Dp holes’ diffusion constant (m2{s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.191

Dp holes’ diffusion constant tensor (m2{s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.192

d electric displacement field (C{m2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.189

E Young modulus (Pa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.219

EC energy of the conduction band (J or eV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.177

EF Fermi level (J or eV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.184

Eg energy gap in the semiconductor (J or eV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.178
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CHAPTER 6

Statement of the problem with an overview of semiconductor physics

Outline

The main problem considered in the second part of this thesis is presented in this chapter

and its relevance for application is discussed. Challenges and open questions in the modelling

of strained semiconductors are outlined. Moreover, a brief review of semiconductor’s solid

state physics and band structure is also given. The band structure of silicon is discussed and

its influence on macroscopic electric properties reviewed. These will be used in later chapters

in order to understand the effects of deformations.

I
n the latest years commercial thin films electronic devices have lost their status of fancy

science-fiction gadgets and have started to play an important role in the electronic market.

Many promising technologies, both based on organic and inorganic materials, have been

developed recently and show properties interesting for mass-market applications (we refer the

interested reader to Rogers et al. (2010) and references therein for a recent overview of the state

of the art).

Traditional semiconductors are very sensible to mechanical deformations and usually are not

able to sustain deformations larger than 1% before breaking and loosing their electronic properties.

Therefore, in the development of flexible electronic devices only two approaches seem possible:

either using new semiconducting materials which have better mechanical properties (such as

polymers) or devising special microstructured components, which can accomodate large strains.

Particular film architectures can be designed such that the electronic material has to sustain
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only a small fraction of the global strain (see Rogers et al. (2010) for an example). In thin films

electronics, this can be achieved, e.g., by moving the active part of the device as near as possible

to the neutral surface of the film, which is not stretched during bending (see Park et al. (2008)).

Possible applications of flexible electronic devices include wearable electronics, enhanced non

planar sensors (like CCD sensors) or solar cells. In particular, the size of these lasts and the rel-

evance of the bulk properties of the semiconducting material suggest a treatment of the coupling

effects between electronic and mechanical properties within the framework of continuum mechan-

ics. Furthermore, in the case of inorganic electronic materials, if the construction of the device is

done with precaution, typical deformation of the active electronic components range at most to a

fraction of 1%. However, experimental evidence suggests that many relevant electronic properties

vary significantly within this range of deformations (see Sun et al. (2009) and references therein).

Therefore, a consistent, continuum-mechanics-based modelling of the strain effects on the

electronic properties of semiconductors under small strains (i.e. |ǫ| ď 1%) seems to be critical in

the description and improvement of these new classes of electronic devices.

Among different silicon-based technologies, we recall three main options. Silicon displays

interesting semiconducting properties both in its amorphous phase as well as in its polycrystalline

and crystalline phase. Due to the simpler description one can give to crystalline silicon over

amorphous one, we will consider, in this first attempt to model this problem, that all the device

considered is made up by crystalline silicon. From the microscopical point of view, in a crystalline

semiconductor the forbidden band (band gap, see below) is essentially empty of energy levels.

This leads to a description of the conducting properties of the semiconductor in terms of charge

carriers only (the so called drift-diffusion model, see, e.g., Markowich et al. (1990)). On the other

hand, in the case of amorphous silicon, the number of energy levels populating the band-gap is

much higher, so that a description of the continuum through the number of electrons and holes

only is no longer satisfactory. Therefore, a more precise model taking into account the probability

distribution of charges in the band-gap and the so called deep states is required (see Shur and

Hack (1984); Shur et al. (1989) or Street (2005)). The case of polycrystalline In order to keep

our arguments as simple as possible, we will consider here only the case of crystalline silicon.

Our strategy in tackling this problem will be as follows. First, in this chapter, we will review

the standard modelling of solid state semiconductors focusing, in particular, on silicon. In Chap-

ter 7, we will introduce the well-known drift-diffusion model, describing the electronic properties

of a semiconductor. We will also discuss on which terms of this model the effects of strain are

important. Finally in Chapter 8, we will study the p-n junction and will deduce A simple 1D

model predicting the characteristic curve of this device.

Our preliminary results can be summarised as follows: by the end of Chapter 8 we will have
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identified the most relevant coupling mechanisms and will be able to give a qualitative as well as

quantitative evaluation of the strain effects on the I-V curve of a p-n junction.

6.1 On the physics of semiconductors

A semiconductor is a material, whose electric conductivity is between the one of a conductor

(such as metals) and the one of an insulator (such has ceramics or glass). Typical examples of

semiconductors include both pure substances (as silicon), compounds (such as gallium arsenide)

as well as organic materials (such as polyacetylene). In this section we will follow a standard

approach to the description of the electronic properties of semiconductors. The interested reader

can find more detailed accounts in Casey (1999); Sapoval and Hermann (1990); Sze and Ng (2007)

among other books on this subject.

Most of the electric properties of a semiconducting material can be understood from its elec-

tronic band structure. This band structure is the result of the interaction of the electronic energy

levels of all the atoms constituting the solid (often a crystal) being studied. When one considers

the interaction between a very large number of atoms, the initially sharply defined admissible

electronic energy levels associated to each atom blur. As a result, instead of a discrete number

of well spaced energy states admissible for the electrons of a given crystal, the energy diagram

shows clustering of admissible electronic levels, which become undistinguishable one from the

other as the number of atoms constituting the crystal becomes infinite. The typical situation

is represented in Figure 6.1. In all these diagrams the absolute zero temperature state (i.e. the

bands occupancy at 0 K) is depicted, with electrons always occupying the lowest possible energy

levels. The occupied energy levels in this fundamental state make up the valence band(s) while

the free energy levels constitute the conduction band.

In the case of conductors, the highest energy level occupied by electrons is in the middle of

an energy band. Therefore, a small amount of energy is needed in order to promote one electron

stuck in the full valence band to a free conduction energy level. Therefore, even at temperatures

of a few Kelvin degrees, when the classical physics description of conductivity looses its validity,

the number of electrons free to move through the crystal is very large and hence the solid is a

conductor.

The case of insulators is drastically different. In this case, between the valence and the con-

duction bands there is a large band gap of prohibited energy levels, where no electron can stand.

The size of the band gap can be evaluated more precisely by comparing it to the thermal energy

of electrons, but usually its order of magnitude is of a few eVs. Referring to Figure 6.1 again,

we will denote by EV the highest energy among those of the energy levels in the valance band.
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Figure 6.1: Simplified representation of the energy band structure of conductors, semiconductors

and insulators. The difference in the macroscopic electric behaviour can be understood in terms

of the energy required by electrons to be promoted to a free (conduction) level compared to the

thermal agitation energy. Here EC and EV are the energies of the conduction and valence bands

respectively (see text for more details).

Similarly, EC will be the energy of the lowest energy level in the conduction band. Obviously,

the band gap will be defined by

Eg “ EC ´ EV

In the case of insulators, the energy gap has a width proportional to several times the mean

energy of electrons of the crystal. Thus, although even in this case some electrons get promoted

from the valence to the conduction band due to thermal agitation, the number of carriers in the

conduction band is so small that it can be neglected when compared to the conductor case.

Semiconductors have intermediate properties between these two classes of materials. Although

their energy band diagram resembles the one of insulators, the band gap is small when compared

to the mean thermal energy of electrons. This results in a significant number of electrons being

promoted to the conduction level. However, their number is not sufficient to guarantee properties

comparable to the conductors’ ones. Although only electrons are free to more in usual semicon-

ductor crystals and although in principle a description of the electronic state of a semiconductor

is possible in terms of the electrons’ energy occupancy levels only, it is often a useful conceptual

tool to think that every electron being promoted from the valance to the conduction band leaves

behind him a “gap” in the electronic structure of lower energy levels, where an expected electron is

missing. Therefore, a description of the charge carriers in the valence band is possible in terms of

virtual positive charges called holes, which represent missing electrons in the sense just specified.

From the microscopic point of view, an hole moving in the valence band of a semiconductor can
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Figure 6.2: A representation of the crystalline structure of silicon. The diamond cubic crystalline

structure is clearly visible on the left hand side of the picture, with the coordination number

equal to four apparent on the right part of the picture.

be thought as an empty seat at the end of a otherwise full row of seats in a theatre, with people

(electrons) sliding along the row one seat at a time to occupy it. However, from a macroscopic

point of view a hole can be thought as a virtual particle on its own right having its equivalent

mass and subject to laws of motion in all aspects analogous to those obeyed by electrons.

6.1.1 Energy bands

As a result of the previous discussion, a more detailed understanding of the electronic properties

of semiconductors involves a finer description of the energy bands. In particular, this involves a

brief discussion of the crystalline structure of semiconductors. Though this information is today

known for most semiconductors used in applications, w e will focus here on the case of silicon. As

represented in Figure 6.2, silicon (as well as gallium arsenide) exhibits a diamond cubic crystalline

structure with coordination number equal to four. An eight of its Brillouin zone (i.e. its basic

crystallographic element in the space of wave vectors) is represented in Figure 6.3. In this section,

Γ will be the centre of the Brillouin zone, X will be its border in the ∆ direction (this corresponds

to the directions r100s and symmetric ones), while L will be its border in the Λ direction (i.e. in

the r111s direction).

In order to better account for the band structure of a semiconductor, one has to give a

description of the energy of electrons in the crystal as a function of their wave vector. In principle,

the energy levels should be known for any point in the Brillouin zone introduced above. Due to

symmetry reasons, for most practical considerations it is enough to know the behaviour of energy

levels along the symmetry axis ∆ and Λ only. The band structure of crystalline silicon and of
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Figure 6.3: An eight of the Brillouin zone for a silicon crystal.

gallium arsenide is depicted in Figure 6.4.

A first major difference between the two diagrams in Figure 6.4 is evident: in the case of

gallium arsenide, the maximum of the valence band and the minimum of the conduction band

are located at the same point in the Brillouin zone (in particular both these extremal values are

reached at Γ, i.e. for the wave vector r0, 0, 0s). On the other hand, in silicon, the maximum of the

valence band is attained at Γ again, but this does not hold for the minimum of the conduction

band. Indeed, due to symmetry, the conduction band has six minima, two along each of the

three ∆ directions. Semiconductors as gallium arsenide showing corresponding extrema in the

conduction and valence are called direct band gap semiconductor, while those like silicon, having

“mismatched” extrema are called indirect band gap semiconductors.

Not only the level of the energy bands at a certain wave vector is important, but also the

curvature of the isoenergetic levels of the bands plays a crucial role in determining the macroscopic

electrical properties of a semiconductor. Indeed, the curvature of these bands is associated to the

electric resistance of the material through the effective mass (m˚) of the charge carriers. This

last can be interpreted as a parameter summarising the interaction of a charge with a periodic

(lattice) potential: charges moving in a periodic crystal essentially behave as free particles as soon

as one considers a different value for their mass. In particular, the (density-of-states) effective

mass tensor of the carriers is given by the formula (see (Sze and Ng, 2007, Section 1.3))

1

pm˚qij
“ 1

h2
B2Epkq
BkiBkj

, (6.1.1)

Together with the models introduced later in Chapter 7, which describe the relation between

effective mass and mobility (see Section 7.3.5), this implies that the higher the curvature of the
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Figure 6.4: The energy band diagram for silicon and gallium arsenide. See text for a discussion.

bands, the higher the conductivity of the medium. In the case of the conduction band of silicon,

the effective mass of electrons is given by .92m0 in the longitudinal direction and by .19m0 in the

transversal one. Here m0 is the rest mass of electrons (see Vv.Aa. for these and other material

properties of silicon and common semiconductors).

As mentioned before, in this work we will focus on crystalline silicon electronics. Let us briefly

describe in greater detail the band structure of this semiconductor. As it has already been stated,

the conduction band in crystalline silicon shows six minima oriented in the three ∆ directions.

These can be described my means of the six-valley model (see Sze and Ng (2007) and references

therein) in which the isoenergetic curves at all these minima have the same ellipsoidal shape

(cf. Figure 6.5a). In particular, the isoenergetic curve at these minima can be approximated by

revolution ellipsoids having the major axis directed towards the r000s wave vector and two minor

axis orthogonal to the first one.

On the other hand, the structure of the valence band is more complex. Near the maximum

energy point in the valence band, at least two different energy bands are seen to interact. As it

is apparent from Figure 6.4, the two interacting bands have different curvature at the maximum

point (Γ). Recalling the formula (6.1.1), these two bands are called the light holes band (LH—

the more sharply peaked one) and heavy holes band (HH—the more shallow one). These bands

strongly interact with each other. Therefore, a simple description of the resulting energy levels
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by means of quadratic forms, as it was the case for the minima of the conduction band, is not

possible (see Figure 6.5b for a representation of the isoenergetic levels at the maximum of the

valence band). Moreover, at energies slightly beneath the edge of the valence band, a third

band exists. This is known as split-off band and also has a maximum for k “ r000s, which is

however slightly lower than the top of the valence band (44meV lower in silicon, see Vv.Aa.).

The closedness of the split-off band to HH and LH bands causes strong interactions between the

three, in particular a strong warping of the resulting valence band under small strains. This, in

turn, implies a strong effect on the effective masses of holes and therefore on their mobility.

In order to model the shape of these degenerate energy band, a quantum mechanical descrip-

tion is required. The valence band can be calculated from a perturbation theory argument giving

rise to the Luttinger Hamiltonian (see Luttinger and Kohn (1955); Luttinger (1956))
»
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(6.1.2)

where

P “ ~2

2m0

γ1pk2x ` k2y ` k2zq

Q “ ~2

2m0

γ2pk2x ` k2y ´ 2k2zq

L “
?
3~2

m0

γ3pkx ´ ikyqkz

M “ ´
?
3~2

2m0

pγ2pk2x ´ k2yq ´ 2iγ3kxkyq.

Here, m0 is the rest mass of the electron, the γis are the Luttinger parameters, while ∆ is the

split-off energy (see Sun et al. (2007) for a description of the parameters of this model). Significant

values for the parameters appearing in these and in the above expressions defining the Luttinger

Hamiltonian are (see (Sun et al., 2007, Table II))

γ1 « 4.22, γ2 « 0.39 and γ3 « 1.44. (6.1.3)

The eigenvalues of the above Hamiltonian, which depends on k, represent the energy level of

the three bands making up the valence band of Si. The values prescribed are relative to the top

of the conduction band. Indeed, a straightforward computation shows that for k “ r000s, there

are four coinciding 0 eigenvalues corresponding to the HH and LH bands and two eigenvalues

equal to ´∆ which describe the split-off band.
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Figure 6.5: The shape of the isoenergetic surfaces in wave vector space for the energy bands

of crystalline silicon. In the picture the conduction band can be modelled through a six-valleys

model. On the right hand side, strong interaction between different bands belonging to the valence

energy levels is observed, resulting in irregular isoenergetic surface. Image 6.5b credits (Sun et al.,

2009, Figure 4.33).

Finally we recall that a possible, simpler model can be obtained from the Luttinger Hamil-

tonian above by considering only the interactions between HH and LH bands. This amounts

to keeping only the 4x4 north-western extracted Hamiltonian from the previous expression. In

particular, one can deduce the following expression for the edge of the valence band as a function

of the wave vector

Epkq “ ´P ˘
a
Q2 ` L2 `M2.

6.1.2 Doping

The relevance of semiconductor to technology is essentially due to another aspect beyond their

particular band structure. Indeed, the number of the freely moving electrons in the conduction

band and the number of holes in the valence band can easily be modified through the introduction

in a pure silicon crystal of small fraction of suitably chosen chemical elements. This technique is

called doping, and the resulting semiconductor is called doped.

The typical doping concentrations are very low (usually no more than a few atoms of dopant

every million atoms of silicon). In doping silicon, usually elements from the IIIB (like boron) and

VB groups (like phosphorus) are used. If a boron atom is added to a silicon crystal lattice, the

resulting effect will be a missing electron in the valence band or, describing this situation from
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Figure 6.6: The effects of doping on the energy levels of a semiconductor. The dashes represent

the additional energy states introduced through doping.

the reciprocal point of view, an additional hole. The situation can be depicted as on the left hand

side of Figure 6.6. The introduction of boron atoms creates additional unoccupied energy levels

in the band-gap near to the border of the valence band corresponding to electrons sequestrated

from the valence band and newly introduced holes. The resulting doped semiconductor, showing

a higher density of holes, is called p-doped semiconductor.

Similarly, an addition of phosphorus atoms to crystalline silicon supplies a larger number of

electrons in the conduction band. Again this is explained in terms of additional energy levels

in the band gap near the border of the conduction band, which, due to thermal agitation, free

electrons directly to the adjacent conduction band. The resulting semiconductor is called n-doped.

We will always assume that the doping concentrations in the semiconductor are not too

high. By this we mean that all doped atoms can be considered ionised. Therefore, in p-doped

semiconductors a net negative charge will be considered attached to the lattice, while in n-doped

semiconductors, ionised phosphorus atoms will give to the lattice a net positive charge. Obviously,

the overall charge of the semiconductor will remain balanced: only a bias is the relative abundance

of fixed and moving charge carriers is introduced through doping.

A further comment is important at this point. By changing the energy distribution of charge

carriers, doping also affects the Fermi level (EF ) of the semiconductor. This is the theoretical

energy level which would have 50% of probability of being occupied at any given time at thermo-

dynamical equilibrium. In a pure semiconductor, considerations from statistical mechanics (see,

e.g., Sapoval and Hermann (1990)) imply that the Fermi level is near the middle of the band gap.

On the other hand, in doped semiconductors, the newly introduced energy levels push it towards

the edge of the band gap: up towards the conduction band for n-doped semiconductors and down

towards the valence band for p-doping.

The Fermi energy levels will be of crucial importance in understanding the functioning of

semiconductor devices such as the p-n junction, which will be thoroughly studied in Chapter 8.
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CHAPTER 7

The Drift-Diffusion model and strain

Outline

The drift-diffusion model for electronic effects in semiconductors in considered. The micro-

scopic effects of strain on the electronic properties of solid state semiconductors are discussed

and those relevant at a macroscopic level are identified. In particular, the case of crystalline

silicon is studied. Among others, the changes in the band gap and in the shape of the va-

lence and conduction bands are discussed and their effects on the main parameters of the

drift-diffusion model estimated. Finally, simple macroscopic models for the strain-dependent

mobilities and band gap are proposed.

T
he drift-diffusion (DD) model for semiconductors was first derived in Van Roosbroeck

(1950) in 1950. Since then the DD model has enjoyed a wide popularity due to both

its simplicity and its effectiveness in describing electronic properties under quite a large

range of standard working conditions for electronic devices (see (Sze and Ng, 2007, Section 1.8) for

an introduction overview of this model). In particular, only three quantities are used to describe

the state of the semiconductor: the electric potential through the device and the concentrations of

the two change carriers, electrons and holes. Moreover, the DD model offers a simple explanation

of the working mechanism of some of the key electronic devices such has p-n junctions (see

187
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Chapter 8 for a discussion of this kind of devices). The standard DD system reads as follows

$
’’’’&
’’’’%

∇ · pǫs∇Φq “ qρ ppn ´NDq ´ pp ´NAqq

qBtpρnq “ ∇ ·Jn ´ qRnpn, pq Jn “ qDn∇pρnq ´ qµnρn∇Φ

qBtpρpq “ ´∇ ·Jp ´ qRppn, pq Jp “ qDp∇pρpq ` qµpρp∇Φ.

(7.0.1)

Here the unknown quantities are the electric potential (Φ), as well as the specific number of

electrons and holes (i.e. the number of carriers per unit mass) denoted by n and p respectively.

Moreover, ρ will be the density of the continuum considered. This slightly unusual choice for

the meaning of the relevant quantities n and p can be justified keeping in mind the macroscopic,

continuum-mechanical description of strained semiconductors, which is one of the main goal of

our research and which will be addressed in great detail in a forthcoming paper (see Bosia et al.).

We refer to Section 7.1 for a comprehensive description of all other physical constants appearing

in (7.0.1).

From the point of view of applications, the DD model is particularly well-suited for the

description of the behaviour of crystalline semiconductors where valence bands are well separated

(see Chapter 6) and only a few energetic levels populate the band-gap. Moreover, this model

can also be given firm theoretical grounds: it was rigourously derived in the context of statistical

mechanics in Poupaud (1988) through a perturbation argument inspired by the works of Hilbert.

We refer the interested reader to (Markowich et al., 1990, Section 2.2) for a brief discussion of

this argument.

In order to clarify the phenomena described by the drift-diffusion system, we only discuss in

Section 7.1 the original derivation of this model due to Van Roosbroek (see also Van Roosbroeck

(1950)). After reviewing the standard DD model, we discuss in Section 7.3 the possibile influences

of strain on the electronic properties of a semiconductor. We will focus on crystalline silicon and

we will identify which parameters of the DD model require modelling in order to account for

strain effects. Moreover, modelling of the relevant quantities as functions of strain will be given

in the case of uniaxial traction and compression.

7.1 Derivation of the DD model

We will assume that our continuum occupies a region Ω Ă Rn with n “ 2 or n “ 3. As it is the

case for many phenomenological physical models, the drift-diffusion system is the composition

of general physical laws with constitutive equations accounting for the particular phenomena

observed in the considered system. In particular, for the DD model, the physical laws involved

reduce to the Gauss law, to the Maxwell law and to the charge conservation laws. Together
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with three constitutive equations for the polarisation of the semiconductor, for the charge density

and the current flow through the device, these lead to the closed-form system (7.0.1). We start

this section by briefly reviewing these fundamental relations; later we deduce from these the DD

system stated above as well as we introduce some additional constitutive equations which are

usually verified in practical situations.

The electrostatic equation Let d be the electric displacement field. Gauss law in finite form

can be written as (see e.g. Griffiths (1998))

ż

BΩ
d ·ν dσ “

ż

Ω

ΘdΩ (7.1.1)

where Θ is the total charge density and ν is the outward pointing unit vector normal to the

boundary of Ω. Localisation of this equation gives

∇ ·d “ Θ and n · rds “ 0.

The first of these relations holds where the field d is regular and the second is true at its discon-

tinuities. Here, n denotes a normal unit vector to the discontinuity surface Σ and r · s denotes the

jump through the discontinuity surface.

Maxwell law We also introduce the Maxwell law to derive the system (7.0.1). In the absence

of magnetic fields, Maxwell equation in finite form can be written as

ż

BΣ
e · t dl “ 0

where Σ is a closed surface in R3, t is the tangent versor to the boundary of Σ and e is the electric

field. Hence, through localisation, we deduce

∇ ˆ e “ 0 and n ˆ res “ 0.

If the electric field is regular and if the domain Ω is simply connected, these last relations imply

that e admits a potential Φ satisfying

e “ ´∇Φ (7.1.2)

The continuity equation The third fundamental law of physics necessary to derive the DD

model is the continuity equation or conservation of charge. By writing the change in the elec-

trons’ number density as the sum of a bulk source term (recombination) and of the charge flow

contribution, we have

Btpρnq “ ´Rn ` 1

q
∇ ·Jn.
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Here q denotes the elementary (positive) charge, ρ is the mass density of the continuum being

described, Rn is the volumetric electrons’ recombination rate while Jn represents the electrons’

current density. We use here the following (slightly) nonstandard notation that is motivated

by the continuum mechanics framework we would like to comply with: n represents the specific

number of free electrons (i.e. the number of free electrons per unit mass in the solid). An analogous

equation also holds for the holes’ number density, namely

Btpρpq “ ´Rp ´ 1

q
∇ ·Jp.

Here all the quantities with a p-subscript instead of a n-subscript refer to holes instead of elec-

trons. The change in the sign in front of the flow term conforms to the widely agreed upon sign

conventions for the currents.

In order to guarantee the conservation of charge we will further assume that

R
.“ Rn “ Rp (7.1.3)

so to ensure that the total charge is conserved. Moreover, we will also assume that the reaction

term R only depends on the carrier concentrations ρn and ρp and (possibly) on the position x.

Indeed, equation (7.1.3) easily implies the following law for the evolution of the total charge in

the semiconductor:

qBtpρpp ´ nqq “ ´∇ ·J.

Here the total current density J is defined by

J
.“ Jn ` Jp.

The electric displacement equation This equation relates the electric displacement to the

electric field and is the first constitutive relation we introduce. We will assume that the semi-

conductor (usually silicon for our purposes), behaves as a linear dielectric. Denoting by p the

electric polarisation of the medium, e, d and p are related by (see (Griffiths, 1998, Section 4.3))

d “ ǫ0e ` p

where ǫ0 is the vacuum permittivity. If we assume that the dielectric is linear and isotropic, i.e.

p “ ǫ0χe.

Here the quantity χ is the electric susceptibility. Collecting terms we deduce

d “ ǫ0ǫre
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where ǫr is the relative permittivity given by ǫr “ χ ` 1. In the case of silicon, the relative

permittivity is approximately equal to 11.68. In order to simplify the notation we also introduce

the permittivity of the semiconductor ǫs given by

ǫs
.“ ǫ0ǫr

In the general situation, when the crystalline structure has fewer symmetries (e.g. under

strain), the relative dielectric permittivity (and hence the dielectric permittivity) can be repre-

sented by a second rank tensor ǫr. In this case, the constitutive relation for the electric displace-

ment takes the form

d “ ǫ0ǫre.

The charge density equation Two contributions make up the total charge in the continuum:

lattice charges and free charges. As discussed in Chapter 6, apart from the clouds of free electrons

and holes, one has to account for the lattice charges associated to polarised doping atoms. By

denoting by NA and ND the specific number of acceptors and donors respectively, under the

assumption of total polarisation of dopants, the total charge in the semiconductor Θ appearing

in (7.1.1) can be written as

Θ “ ´qρ ppn ´NDq ´ pp ´NAqq .

It is convenient to introduce the doping profile Cpxq, which summarises the distribution of dopants

throughout the domain considered. In particular, the doping profile depends on the position and

can be define as

Cpxq “ ND ´NA

thus leading to the following form for the charge density equation

Θ “ ´qρ pn´ p´ Cq .

We will always assume here that the doping profile C is a given data of the problem we are

interested in,. On the other hand, the specific numbers of charges n and p will be unknown. This

relation is the second constitutive relation needed in the derivation of the DD model.

The current density equation We now introduce the third and last constitutive equation we

need. Indeed, in order to obtain a system in closed form, we still lack a suitable link between the

currents and the other physical variables of the model. The particular form of this constitutive

relation is one of the reasons for the simplicity and success enjoyed by the DD model in the last

decades. We will assume that only two phenomena account for the total current densities: a
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drift current and a diffusion current. To keep the initial model as simple as possible, as a first

approximation, we will assume this constitutive law to be linear in its arguments. Taking into

account the usual sign conventions we write

Jn “ qµnρne ` qDn∇pρnq

Jp “ qµpρp e ´ qDp∇pρpq
(7.1.4)

where µn (resp. µp) is the electrons’ mobility (resp. the holes’ mobility) and Dn (resp. Dp) is the

electrons’ diffusion constant (resp. the holes’ diffusion constant).

In the general setting, when the crystalline structure cannot be considered isotropic, the

mobility and diffusion constants can be replaced by the more significant mobility and diffusion

tensors µn and Dn (as well as µp and Dp)

The resulting model We have now introduced all the relations needed in order to write the

full DD system. Some simple computations give the following system of differential equations

describing the evolution of an isotropic semiconductor

$
’’’’&
’’’’%

∇ · pǫs∇Φq “ qρ pn´ p ´ Cq

Btpρnq “ ∇ · pDn∇pρnq ´ µnρn∇Φq ´Rpn, p, ρq

Btpρpq “ ∇ · pDp∇pρpq ` µpρp∇Φq ´Rpn, p, ρq.

(7.1.5)

In the case of a homogeneous body with constant density this system further simplifies to

$
’’’’&
’’’’%

ǫs∆Φ “ qρ pn´ p´ Cq

Btn “ Dn∆n´ µn∇n ·∇Φ ´ µnn∆Φ ´ 1
ρ
Rpn, p, ρq

Btp “ Dp∆p` µp∇p ·∇Φ ` µpp∆Φ ´ 1
ρ
Rpn, p, ρq.

We recall that, in the general case (e.g. when the semiconductor is deformed), Dn, Dp, µn,

µp and ǫs are tensor quantities, which can possibly depend on the strains imposed to the solid.

Indeed, for a deformed silicon crystal, some symmetries are lost and anisotropic behaviour is

possible. We refer to Section (7.2) below for a discussion of these phenomena.

The recombination term A few comments are still necessary before system (7.1.5) can be

of practical use for applications. In particular, in order to start the analytical and numerical

study of the solutions of system (7.1.5) we need some explicit expression for the recombination

term. Depending on the band structure and operating conditions of the semiconductor considered,

several recombination mechanisms might be relevant. In the case of silicon (and more generally

for indirect semiconductors—see Chapter 6) a satisfactory expression for Rpn, pq is given by the

Shockley-Read-Hall model (see Sze and Ng (2007)).
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The Shockley-Read-Hall model, denoted shortly as SRH in the sequel (see Shockley and

Read Jr (1952) and Hall (1952)), is particularly relevant when the recombination process involves

carriers having different wave vectors, as it is the case in silicon (and in indirect semiconduc-

tors). This recombination mechanism invokes the existence of energy states in the middle of the

band gap (the so called deep levels, which correspond to lattice defects in the crystal). These

act as catalysers of the recombination reaction. In particular, in order to ensure momentum

conservation, a recombination event in an indirect band semiconductor has to be a three particle

event, which involves, besides the two carriers, also an interaction with the crystal (e.g. through

a phonon). The just mentioned deep levels model this interaction. After some probabilistic ar-

gument, one can deduce the following expression for the recombination term given by the SRH

model:

Rpn, p, ρq “ ρ
np´ nini

τppn ` niq ` τnpp` niq
(7.1.6)

where τn and τp are the mean recombination times for electrons and holes and where ni is the

thermal equilibrium specific number of carriers. In order to derive this expression for the (net)

recombination rate, only thermal effects were taken into account (while other contributions, like

radiative ones, were discarded).

We observe that the expression (7.1.6) corresponds to a source term in the conservation law for

electrons and holes as soon as the concentrations of carriers are low (in particular when np ă n2
i ),

while it acts naturally as a recombination term at higher concentrations of carriers (namely when

np ą n2
i ). It might also be helpful to note that the numerator of this reaction term is exactly

equal to the one, which would be expected in the description of a chemical reaction between two

chemical species. In this framework, the denominator can be interpreted as a slowdown of the

recombination rate due to the above-described three particle interaction mechanism involved in

the SRH model.

The thermal equilibrium specific number of carriers ni for both electrons and holes varies

upon the doping of the semiconductor. For pure (undoped) silicon at room temperature (300 K)

the typical value for ni is ρni « 1.6 ˆ 1016 m´3.

Einstein’s relation Finally, we also discuss a relation between the coefficients appearing

in (7.0.1), which leads to an important reduction in the number of parameters to be experi-

mentally determined in the model. This is widely known under the name of Einstein’s relation

and states a connection between the diffusion constant and the mobility of elctrons (an analogous

relation holds also for holes). Indeed, when the carriers’ concentration is not too high and the

doping is not too strong (that is when the semiconductor is nondegenerate), one can show that
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(see (Sze and Ng, 2007, Section 1.5.5))

D “ kBθ

q
µ (7.1.7)

holds both for electrons and for holes. Here kB is the Boltzmann constant, while θ is the absolute

temperature of the medium. In the case of silicon, typical values for the electrons’ and holes’

mobilities are given by

µn « 1.45 ˆ 10´1 m2{V s and µp « 5 ˆ 10´2 m2{V s.

We observe that an analogous identity also holds for the tensor quantities.

The rationale behind this relation is that the average propagation speed of charged particles

depends on the lattice properties of the crystal. These are responsible, through collisions, both

for the braking of the charged particles accelerated by an electric field and for the scattering of

diffusing electrons and holes. This microscopic link between drift and diffusion is the underlying

reason for (7.1.7) to hold.

7.2 A brief history of strain effects on SCs’ properties

The effects of strain on the electronic properties of semiconductors have been reported in pioneer-

ing results since the ’50s (see Bardeen and Shockley (1950) and Smith (1954)). These coupling

mechanisms were initially employed for the manufacturing of high-precision miniaturised sensors

(see Smith (1954) for an early account of piezoresistance effects in silicon).

Later in the 90s, strained semiconductors became particularly attractive for a wider range

of applications when geometrical scaling of the current CMOS technology started to reach its

physical limits (see Sun et al. (2009) for an overview on the theoretical and technological issues

involved). In order to stick with Moore’s law, geometric scaling alone became insufficient and

other strategies effective in enhancing the properties of the electronic circuits had to be devised.

In particular, pre-strained semiconductors were found to be particularly effective in enhancing

the mobilities of carriers in the channel of CMOS. Intel introduced the new concept of strain-

enhanced electronic devices already in 2002 (see Sun et al. (2009) as well as Thompson et al.

(2006) for an account on the introduction of the first commercial feature-enhanced devices into

the market) and since then strained CMOS technology has become the standard technique to

attain even higher density integrated circuits.

However, most of the research was focused on understanding and controlling the properties

of silicon (or other semiconductors) at fixed strain. This is largely justified by the fact that the

current silicon wafer technology does not easily allow the development and the construction of
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deformable electronic circuits (sensors are the only notable exception to this otherwise general

rule). The newly developed soft electronic technologies pose several questions concerning the

effects of large mechanical deformation on the electronic properties of semiconductor circuits.

The goal of the remaining part of this chapter is to give an account of these effects, which can

be more easily understood in terms of the band structure of semiconductors (and in particular of

silicon) discussed in Chapter 6.

7.3 Strain effects in silicon

Among the mechanisms responsible of the change of the electronic properties of a strained semi-

conductor with respect to the unperturbed situation, we will discuss the shift in the energy bands

and in the Fermi levels as well as the changes strain induces on the mobilities and on the effective

masses of carriers. In turn, these effects imply other macroscopically relevant phenomena, such

as changes in the amplitude of the band-gap and in the thermal equilibrium number of carriers.

Moreover, the above mentioned effects are both qualitatively and quantitatively easily described

taking into account the energy band structure discussed in the previous chapter.

7.3.1 Shift of the energy bands

From an atomistic point of view, the conduction and valence band in a semiconductor can be

seen to arise as follows. The atomic bonds between two atoms of the same specie usually involve

the combination in even number of electronic orbitals belonging to the two atoms and having

the same energy. Due to fundamental quantum properties of the wave function, from an even

number of orbitals of the original atoms, an equal number of molecular orbitals is expected to

arise. However, these molecular orbitals do not have the same energy: usually one with lower

energy than the original atomic one appears (bonding orbital) together with one with higher

energy (anti-bonding orbital). We illustrate this schematically in Figure 7.1.

When considering the situation of a crystal, a similar scheme can be thought to occur, with

molecular orbitals replaced by non-localised wave functions extending over the whole crystal.

Thus the bonding orbital corresponds to the valence band, while the anti-bonding one to the

conduction band.

We now investigate how the energy levels of the just introduced molecular orbitals depend

on the relative distance of the atoms involved. One can reasonably expect that, the farther the

atoms, the weaker the interaction and therefore the more the molecular orbitals should resemble

to the original atomic ones. Thus as the atoms are brought apart from their equilibrium bonded

position, the bonding and anti-bonding molecular orbitals should near. Viceversa, upon the closer
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E

ESi ESi

antibonding

bonding

Figure 7.1: Schematic representation of the molecular orbitals arising from the interaction of two

atomic orbitals having the same energy. The bonding orbital can be thought to correspond to the

valence band of a semiconductor crystal, while the anti-bonding one to the conduction band. The

effects of compression in the lattice direction and the consequent enhanced interaction between

wave functions are represented in red. See text for description.

they are pushed, the wider the resulting gap should be.

This simple picture should also translate to corresponding relative displacement in the con-

duction and valence bands of a semiconductor crystal upon traction and compression. Although

the basic phenomena occurring are explained by this argument, one should remember that a

crystal is a three dimensional structure much more complicated than a simple linear molecule.

We consider the case of silicon atoms and start our analysis by focusing on the conduction

band only. For the sake of simplicity, assume that the crystal is uniformly stretched along the

r100s direction and that it is free to deform in the other directions. Since the Poisson ratio of

silicon is positive (from experimental results ν « 0.25), we expect a contraction of the crystal in

the r010s and r001s directions. Recalling the six-valleys model for the conduction band introduced

in Chapter 6, one can expect the two valleys in the r100s direction to lower its energy, while the

other four will move to (slightly) higher energies. Obviously, an opposite behaviour is to be

expected in the case of compression along the r100s direction—see Figure 7.2.

Although the conduction band of silicon presents six different minima, from the above ar-

gument one can expect a linear behaviour of the energy level of each of them with respect to

deformations. To be more quantitative, for each valley, the so called deformation potentials Ξ

can be introduced giving rise to the following approximate law

∆EC “ Ξijǫij .

Here ∆EC represents the shift in the energy level of one of the valleys is the conduction band.

We also note that, from the macroscopic point of view we are interested in, the deformation
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r1, 0, 0s

r0, 1, 0s

r0, 0, 1s

(a) Traction along r100s

r1, 0, 0s

r0, 1, 0s

r0, 0, 1s

(b) Compression along r100s

Figure 7.2: The effects of uniaxial compression and deformation on the conduction band of

cystalline silicon.

potentials Ξij are material parameters, which have to be determined either experimentally or

from atomistic computations. Due to the symmetries of the conduction band for the valley in

the k “ r100s direction, the tensor Ξ can only depend on two independent variables. These are

known in the literature as Ξd for the pure dilation component and Ξu for the pure shear one

(see Herring and Vogt (1956)). Therefore, we can write

Ξ “

»
———–

Ξd ` Ξu 0 0

0 Ξd 0

0 0 Ξd

fi
ffiffiffifl .

For silicon, pertinent values for these deformation potentials are (see Fischetti and Laux (1996)

and references therein)

Ξd “ 1.1 eV

Ξu “ ´10 eV.

From these values we can estimate the shift in the edge of the conduction band as

∆EC « 0.1 eV

for strains of approximately 1%.

The study of the energy shift of the valence band seems to be more complicated. In order to

asses the change in this part of the electronic structure of silicon under deformations, it is necessary

to resort to the Luttinger Hamiltonian introduced in Section 6.1 above (see equation (6.1.2)).
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Under strain, to each of the four terms P , Q, L and M , a “deformation” counterpart has to be

added. The suitable corrections are

Pǫ “ ´avpǫxx ` ǫyy ` ǫzzq

Qǫ “ ´ b

2
pǫxx ` ǫyy ´ 2ǫzzq

Lǫ “ ´dpǫxz ´ iǫyzq

Mǫ “
?
3

2
bpǫxx ´ ǫyyq ´ idǫxy.

Significant values for the parameters appearing in these expressions are (see equation (6.1.3) as

well as (Sun et al., 2007, Table II))

av « 2.46 eV, b « ´2.1 eV and d « ´4.8 eV.

We refer the interested reader to Sun et al. (2007) and references therein for a more detailed

description of the model just introduced.

In contrast to the case of the conduction band of silicon, for the valence band, no explicit com-

putation seems to be available to compute the effects of strain. However, due to the degeneracy of

the bands, one can expect that strain has only little effects on the energy level of the conduction

band. Indeed an explicit computation in the case of the reduced 4 ˆ 4 Luttinger Hamiltonian

gives the following expression for the energy levels as a function of the wave vector

Epkq “ ´P ´ Pǫ ˘
a

|Q`Qǫ|2 ` |L` Lǫ|2 ` |M `Mǫ|2

For k “ 0 and for uniaxial deformations of the form

ǫ “

»
———–

1 0 0

0 ´ν 0

0 0 ´ν

fi
ffiffiffifl ǫ (7.3.1)

this expression reduces to

Epr0, 0, 0sq “ avp1 ´ 2νqǫ˘ b

2
p1 ` νqǫ.

If ǫ is of the order of 1%, the resulting shift of the energy bands amounts to 10 ˜ 20meV, which

can be considered smaller than the effects on the conduction band (of the order of 100meV for

similar strains as discussed above).

As a result of the preceding discussion, in the following we will ignore the energy shifts of the

valence band due to strain and consider only those of the conduction band. In particular, due

to the six-valley model for the conduction band, for uniaxial deformation of the form (7.3.1) the
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Figure 7.3: The effects of strain on the energy level of the valence band in silicon. On the left side

the unstressed energy bands; only the HH and LH bands are shown for simplicity. On the right

hand side the conduction band configuration for moderate uniaxial tensile strain (approximately

0.8%). Image credits Sun et al. (2007).

resulting shift of the edge of the conduction band ∆EC is given by

∆EC “ ∆Eg “

$
’&
’%

pp1 ´ 2νqΞd ` Ξuq ǫ « ´9eV · ǫ for ǫ ą 0

pp1 ´ 2νqΞd ´ νΞuq ǫ « ´1.5eV · ǫ otherwise

As a consequence of the above discussion, this is also equal to the change in the energy gap, ∆Eg.

7.3.2 Changes in effective masses

We now discuss the effects of strain on the effective masses of charge carriers. As seen in equa-

tion (6.1.1), these quantities are strictly related to the shape of the energy bands. In particular,

one can write
1

m˚
ij

“ 1

~2

B2Epkq
BkiBkj

.

for the tensor valued mass and

m˚
v “ vTm˚v.

for the resulting effective mass in the direction of the unit vector v.

As it was the case for the effects of strain on the shift of the band edges of silicon, also for

effective masses the description of the conduction band is simpler than the one of the valence

band. Indeed, in the case of the conduction band, the band warping is very slight. Hence one can

consider the curvature of the energy bands to be constant under small deformations. Moreover,

symmetry constraints impose the energy levels near the six energy minima (valleys) along the ∆
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directions to be ellipsoids of revolution with two equal semiaxis. Considering, for example, the

valley in the r100s direction, this implies that the longitudinal and transverse electronic effective

masses ml and mt may be (and in practice are) different. We have already seen that, when

the semiconductor is stretched along one of the symmetry axes, two of the six valley lower,

while the other four rise. These relative shifts of energy minima trigger a redistribution of free

electrons among the valleys, therefore changing the overall electrons’ mass tensor, which has to

be calculated as the weighted mean over the six valleys of the effective masses in a given direction.

As a first approximation, we can therefore assume that the change of the electrons’ effective mass

under small strains is linear in the deformation. Therefore we will have

m “

»
———–

ml 0 0

0 mt 0

0 0 mt

fi
ffiffiffifl

at the minimum of the conduction band in the r100s direction. As a consequence, the density of

states effective mass of each valley, that is the geometric mean of the eigenvalues of m, will be

equal to

mdn “ pmlm
2
t q1{3 (7.3.2)

for the six valleys and will remain constant under small deformations. For silicon, the longitudinal

and transverse effective masses are given by

ml « 0.98m0 and mt « 0.19m0

where m0 is the rest mass of a free electron.

The situation for the valence band is much more complicated. As we saw above, the in-

teractions between the HH, LH and split-off bands causes a strong warping of the bands and

consequently a strong dependence of the holes’ effective mass on deformations. These interac-

tions are not only very significant but also strongly nonlinear as can clearly be seen by inspecting

the shapes of the energy levels for the conduction band (see Figure 7.4). In order to get a precise

picture of strain effects on the effective mass of holes, a solution (either approximate or numerical)

of the Luttinger Hamiltonian is necessary.

Once the new holes’ effective masses for the three interacting bands have been evaluated, the

total density of states effective mass for the holes can be evaluated as (see (Sze and Ng, 2007,

Equation 1.25))

m
3{2
dp “ wlhm

3{2
lh ` whhm

3{2
hh ` wsom

3{2
so (7.3.3)

where mlh, mhh and mso represent the density of states effective mass respectively for the light

holes, heavy holes and split-off bands and wlh, whh and wso are suitable weights given by the
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Figure 7.4: The effects of strain on the isoenergetic curves of the valence band in silicon. The

very interaction between light and heavy holes bands causes significant band warping. Image

credits (Sun et al., 2009, Figure 4.33).

Boltzmann statistic:

wi “ e
∆Ei

V
kBθ .

Here the relative energies of the valence bands ∆EiV are measured with respect to the edge of

the valence band itself.

We also emphasise that the density of states effective mass will be relevant in what follows

in two main respects: first, in Section 7.3.3, we will use it to evaluate the change in the Fermi

level of doped semiconductors; then, in Section 7.3.5, we will discuss its effects on the mobilities

of the carriers. We anticipate that the effects on the Fermi levels can be neglected at first

approximation (see below), while the effects on the mobilities are relevant. Since due to the

difficulties encountered in this section, we do not have an explicit estimate of the effective mass

for holes in the valence band of silicon, we will introduce suitable approximate models for holes

mobilities in the following.

7.3.3 Shift of the Fermi level

As discussed in Section 6.1, the Fermi level of a semiconductor is the median energy of the

electrons populating its valence and conduction bands. We recall that the Fermi level for an

intrinsic semiconductor is given by (see (Sapoval and Hermann, 1990, Equation IV.25))

EF “ 1

2
pEc ` Evq ` 3

4
kBθ ln

mp

mn

. (7.3.4)

In what follows, we will focus on p-n junctions, which are realised by juxtaposing two differ-

ently doped semiconductors. Therefore, in this section we will consider the effects of strain on

the Fermi level of doped silicon only. In particular, in this setting, the relation (7.3.4) can be

rewritten as (compare (Sapoval and Hermann, 1990, Equations IV.30 and IV.38) or (Sze and Ng,
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2007, Equations 1.44 and 1.47))

EF “ EC ` kBθ ln
ND

NC
(7.3.5)

for n-doped semiconductors

EF “ EV ` kBθ ln
NV

NA
(7.3.6)

in the p-doped case. Here, NV and NC are the effective specific number of states in the valence

and conduction bands respectively. In order to evaluate this unknown quantities, we recall two

further equations (see (Sapoval and Hermann, 1990, Equations IV.16 and IV.18) as well as (Sze

and Ng, 2007, Equations 1.18 and 1.24))

NC “ 2

ˆ
2πmdnkBθ

h2

˙3{2
MC (7.3.7)

NV “ 2

ˆ
2πmdpkBθ

h2

˙3{2
(7.3.8)

where MC is the weighted number of valleys in the conduction band of the semiconductor. In

the case of silicon, MC is defined by

MC “
6ÿ

i“1

e
´ ∆Ei

C
kBθ ,

where ∆EiC are the relative energies of the six valleys measured with respect to the edge of

the conduction band. We note that in the unstrained case, all ∆EiC are equal to zero and this

expression reduces to the expected MC “ 6, as expected for the six valleys model.

We now try to estimate the effects of deformations on the Fermi level. Indeed, in the case

of n-doped silicon, only the above expressions for the conduction band are relevant. Since from

Section 7.3.2 the density of states effective mass mdn is not affected by deformation, we need to

evaluate only the changes to the Fermi level due to the weighted number of valleys MC . However,

due to the six-valleys model discussed before, this changes from six to four or two depending on

the particular stress state imposed to the material. Since this factor enters in (7.3.5) through a

logarithm, we can estimate the maximum shift in the Fermi level with respect to the conduction

band edge as

∆maxpEF ´ ECq “ kBθ ln 3 « 28meV

which is small when compared to the global shift in the conduction band (which is of the order

of 100meV as discussed above).

In the case of the valence band, a different effect has to be taken into account. In particular,

in this case the effective mass mdp is greatly decreased by strain due to the decoupling of the

HH and LH valence bands. From the data in Figure 7.3 (see also Sun et al. (2007)), we can
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trace down to a factor 2˜ 3 this reduction (note however, that due to the high anisotropy of the

isoenergetic curves, this factor might be much larger along selected directions). This corresponds

to a maximum shift in the Fermi level with respect to the valence band edge of a few tens of

meVs, which can again be neglected when compared to the overall changes in the size of the

band-gap.

7.3.4 Changes in the thermal equilibrium specific number of carriers

We can now discuss the effects of strain on the thermal equilibrium specific number of carriers ni.

These are a consequence of the changes in the effective specific number of states of the valence

and conduction bands as well as in the size of the band gap. Due to the Fermi-Dirac distribution

of electrons in the semiconductor, these effects can be summarised by the following expression

for ni in terms of the (see (Sapoval and Hermann, 1990, equation IV.22))

n2
i “ NCNV e

´ Eg
qUT .

From the analysis above, the variation of term at exponent is approximately given by

∆Eg
qUT

« 2 ˜ 3

while the effects on the effective specific number of states bring each a reduction of a factor 3

to the thermal equilibrium specific number. Altogether these effects roughly compensate. As a

consequence we will neglect the effect of strain on ni and hence on the reaction term R appearing

in the DD system (7.0.1).

7.3.5 Changes in mobilities

Finally, we investigate the effects of the strain upon the mobilities of the charge carriers. This

requires to delve again in the electronic structure of silicon. As before, the situation for the

conduction and the valence bands is quite different.

Two main effects contribute to the mobility changes in the deformed conduction band: redis-

tribution of electrons in the different valleys due to energy shift of the minima of the conduction

band and changes in the scattering of electrons between valleys (see Dhar et al. (2005)). In order

to evaluate the first contribution we write

µn “
6ÿ

i“1

πiµin

where µin represents the mobility tensor for the i-th valley of the conduction band, while πi is the

fraction of free electrons in the i-th valley. The πis may be easily computed from the Boltzmann
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statistics and are given by

πi “
exp

´
∆Ei

C

kBθ

¯

ř6

j“1 exp
´

∆E
j
C

kBθ

¯ .

On the other hand, the tensor mobilities µin can be written as the product of a scalar mobility

and a scaled inverse mass tensor (see (Dhar et al., 2005, Equations 5–7))

µin “ µns
`
pmi
n

˘´1
.

Here the mass matrix are different for the different valleys. Up to symmetries we have

pmr100s
n “ 1

m0

»
———–

ml 0 0

0 mt 0

0 0 mt

fi
ffiffiffifl .

as well as analogous expressions for the minima in the r010s and r001s directions. The electrons’

scalar mobility µns summarises here all the contributions due to scattering phenomena. Among

these, momentum relaxation due to intravalley scattering, intervalley scattering and impurity

scattering should be considered. We recall that the intervalley scattering depends on the shift of

the conduction bands, while the impurity scattering is sensible to the doping concentration. For

the sake of simplicity we will assume this scalar mobility to be constant throughout the material

and we will set

µns “ qtn

m0

where tn is a suitable relaxation time summarising all scattering events. Assuming this parameter

to be independent of strain, from the discussion of the preceding paragraphs, due to the relative

shifts of the valleys in the conduction band, we conclude that, in silicon, the mobility-strain

relation is not differentiable for zero strains. However, in the case of uniaxial stresses, a reasonable

first approximation is to consider µn as a piecewise linear function of the deformation, with a

kink at the origin (cf. Figure 7.5). In particular, for strains of the form (7.3.1), and for ǫ small

(up to 1%) we will assume

µnpǫq “

$
’&
’%
µn0 ` αǫ for ǫ ą 0

µn0 ` βǫ otherwise

(7.3.9)

where µn0 is the electrons’ (longitudinal) mobility in the unstrained case and is given by

µn0 « 1.45 ˆ 10´1 m2{V s.

The parameters α and β can be estimated from Figure 7.5 as follows

α « 1.5 ˆ 101 m2{V s and β « 5 m2{V s.
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Figure 7.5: An semi-empirical computation of the electrons’ and holes’ mobilities in uniaxially

strained silicon. the dots refer to to the longitudinal mobilities, while the circles to the transverse

ones. The triangles corresponds to results obtained following a different approach (see Jacoboni

et al. (1981)). Image credits (Fischetti and Laux, 1996, Figure 10).

The dependence of the holes’ mobility with respect to strain is again more complicated due

to the strong effect of band warping on the final mobility. A possible approach, which explicitly

accounts for scattering kernels, can be found in Fischetti and Laux (1996) (see, in particular

Equations 16 and 19). From the qualitative point of view, we observe that as soon as the

semiconductor is strained, the HH and LH bands decouple, hence leading to a reduced effective

mass for the carriers and to an enhanced mobility. Incidentally, we remark that this (relevant)

effect has been one of the main reasons for the study of the properties of strained p-doped silicon

for applications to very large scale integration (VLSI) in the ’90s.

The most relevant results of the approach in Fischetti and Laux (1996), which can be used

both for electrons and holes, are summarised in Figure 7.5. In particular, in the case of the

uniaxial strain given by (7.3.1), we will assume

µppǫq “ µp0 ` α1|ǫ| (7.3.10)

where µp0 is the holes’ mobility in the unstrained case and is given by

µp0 « 5 ˆ 10´2 m2{V s.

Moreover, the parameter α1 can be estimated again from Figure 7.5 as follows

α1 « 1.5 ˆ 101 m2{V s.

Summarising the discussion of this section, the strain effects on the electronic properties of a

semiconductor described by the DD model can be modelled through suitable expressions for the
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mobilities of electrons and holes. In the next chapter we will investigate what are the consequences

of this coupling for a fundamental electronic component as the p-n junction. In particular we will

study how the characteristic of the junction is affected by strain and whether the reverse coupling

between electronic and mechanical properties is relevant or not in this kind of applications.
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CHAPTER 8

P-N junctions under strain

Outline

We study the effects of strain on the electronic properties of the p-n junction. After reviewing

the physics of this electronic device, the Shockley relation for strained junctions is deduced.

Hence a simple (semi-empirical) expression for the strain-dependent characteristic curve of a

p-n junction is obtained. The assumptions leading to this result are then verified a posteriori.

This enables us to evaluate also the Maxwell stresses at the interface between p- and n-

doped semiconductors. As a result we conclude that Maxwell stresses as well as the reverse

coupling between electronic effects and mechanical properties can be neglected at a first

approximation.

I
n contemporary solid state electronics technology, p-n junctions (also known as diodes) rep-

resent a simple, but at the same time fundamental device. This can easily be seen as one of

the few basic bricks constituting most of the electronic devices being developed today. From

a macroscopic point of view, a p-n junction is an “asymmetric” device, enabling a current flow

only in one direction and being essentially an open circuit in the opposite one (see Figure 8.4).

The basic functioning of diodes was first understood by Shockley in the ’40s (see Shockley

(1949) and Shockley et al. (1963)). Since then the theory has developed along many different

directions both proposing refined models describing the behaviour of p-n junction in particular

settings and deducing the Shockley relation in more rigourous way from the general models

describing semiconductors. Among these we recall the approaches through rigourous asymptotics

in Markowich et al. (1990).

209
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In this section we will focus on the relation between strain and the current-voltage characteris-

tic of the p-n junction. As it has been discussed in the previous chapter, the mechanical coupling

may take place through the variation in the band gap, through the changes in the equilibrium

electrons’ and holes’ number densities n0
p and p0n as well as through the diffusion (or mobility)

constants. From equations (8.2.6) and(8.2.8) below, in order to understand the dependence of n0
p

and p0n on strain we further have to discuss the dependence on deformations of the energy bands

and Fermi levels as well as of the effective masses of electrons and holes. In order to simplify the

following discussion and to keep in touch with our main application to solar cells, we will focus

on the case of doped silicon only (see Sun et al. (2007)).

The plan of this chapter is as follows. In Section 8.1 we briefly review the physics explaining

the functioning of p-n junctions. Then we derive the Shockley relation for a uniaxially strained

junction. Our approach involves several ansatz, which are motivated by physical consideration.

Finally, in Section 8.3 we verify that all our assumptions are verified in the present setting.

Moreover we discuss the possible reverse coupling describing the mechanical effects of the strong

electric fields encountered in the device.

8.1 P-N junctions in operation

A p-n junction is an electronic device built by matching two differently doped semiconductors. In

the simplest design, a p-doped and a n-doped semiconductor are combined. In practice, this can

be achieved by diffusing some dopants (e.g. donors) on top of a uniformly doped (e.g. p-doped)

silicon. This leads to a (sharp) gradient in the doping profile of the device (see, e.g., Jäger (2002)

for an overview of integrated circuits fabrication technologies).

Due to the properties of doped semiconductors discussed in Section 6.1.2, the concentrations

of electrons and holes in a p- and in a n-doped semiconductor are significantly different. When

such materials are at contact, diffusion will cause electrons originating from the conduction band

in the n-doped semiconductor to flow towards the p-doped domain. At the same time, their hole

counterparts will diffuse in the opposite direction in compliance with the concentration gradient.

The net imbalance of charges through the interface will then generate an electric field at the

junction, which will prevent the flow of further charges through the contact. In particular, the

process reaches a stationary configuration when the relative energies (Fermi levels) of the charge

carriers at both sides of the junction are equal. In Figure 8.1 we have depicted the stationary

equilibrium state for an unperturbed p-n junction. The drift effects are here easily visualised

recalling that in Figure 8.1b, the electrons move downward while the holes naturally try to rise

in the energy diagram.
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(b) A p-n junction at equilibrium

Figure 8.1: A representation of the ideal sharp p-n junction. On the left hand side, the energy

diagram for the isolated doped semiconductors, on the right hand side the resulting energy di-

agram for the whole junction. In these diagrams, electrons are represented as blue dots, while

holes as red ones. Note that in this diagram, electrons tend to lower energy levels due to electric

drift, while holes move in the opposite direction. A net difference of potential (built-in potential)

develops through the device. The hatched area indicates the depletion zone. See text for details.

As a result of the net movement of charges between the differently doped semiconductors, an

electric field develops through the junction. Eventually, the n-doped semiconductor will have an

higher potential than the p-doped one (recall that, according to the usual sign conventions, the

electric potential is opposite to the energy bands for electrons depicted in figure 8.1b). Recalling

the expressions for the Fermi level in a doped semiconductor (see equations (7.3.5) and (7.3.6)),

the built-in potential difference through the junction is given by

φbi “ Eg

q
` kBθ

q
ln
NAND

NCND
.

Since in a nondegenerate semiconductor the doping concentrations NA and ND are smaller than

the density of states NC and ND, we immediately see that the build-in potential is (slightly)

smaller than the bandgap. For a silicon p-n junction and for standard doping profiles, φbi is

approximately given by 0.7 V.

We can think that the resulting (strong) electric field at the junction is able to wipe away

all remaining free charges near the interface between the n- and the p-doped semiconductor.

Therefore a region depleted of electrons and holes arises at the junction, which is called depletion

zone. Therefore, we can approximate the electric field at a p-n junction at equilibrium by assuming

that, in the depletion zone, the specific charge density is given by ND on its n-doped side and by

NA on the other one. A simple 1D computation assuming a piecewise constant right hand side in
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e

x

p n

´dp dn

Φ

x
p n

´dp dn

Figure 8.2: The approximate solution for the electric field e and for the electric potential Φ at a

p-n junction given by equation (8.1.1).

the first equation of (7.0.1) leads to the following approximate expression for the electric field e

e “

$
’&
’%

´ qρNA

ǫ0ǫr
px` dpq for x P r´dp, 0s,

qρND

ǫ0ǫr
px´ dnq for x P r0, dns.

(8.1.1)

Here dn (resp. dp) is the depth of the depletion zone in the n-doped (resp. p-doped) part of the

device. These are given by (see (Sapoval and Hermann, 1990, Section VII.2)

dn “
ˆ
2ǫ0ǫrφ

qρ

˙1{2 ˆ
NA

NDpNA `NDq

˙1{2

dp “
ˆ
2ǫ0ǫrφ

qρ

˙1{2 ˆ
ND

NApNA `NDq

˙1{2

where φ is the difference of the electric potential through the junction. As a first approximation,

the total width of the junction is therefore given by

dn ` dp “
ˆ
2ǫ0ǫrφ

qρ

˙1{2 ˆ
NA `ND

NAND

˙1{2
.

In particular we observe that this quantity is closely related to the Debye length

lDebye “
d
ǫ0ǫrUT

qρC

which arises naturally in the nondimensionalisation of the Gauss equation for the electric potential

(see the first equation of (7.0.1) again). Here UT is the thermal voltage given by

UT “ kBθ

q
« 25mV at room temperature.

and C is the characteristic value of the doping profile. Indeed, in the case of a symmetric junction,

the quantity NA`ND

NAND
is equal to 2

C
and therefore, dn ` dp is proportional to the Debye length up
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Figure 8.3: The effects of an external bias on the energy bands diagram of a p-n junction. In the

case of direct external voltage (i.e., when the potential of the p-doped region is lifted), the energy

barrier is reduced and hence many more charge carriers can diffuse through the junction. In the

case of reverse bias the opposite phenomenon occurs.

to the substitution of the external electric field with the thermal voltage. We also recall that the

Debye length (or Debye radius) arises in the context of multi-body interactions as a measure of

the radius of the nonlocal electromagnetic interaction among charges (electrons and holes) within

the semiconductor (see Lifshitz et al. (1981) for an introduction to plasma physics).

We conclude this section by quickly reviewing the effects of an external applied voltage between

the two extrema of the p-n junction. We will denote by φe this external applied voltage. In

particular, φe will be positive if it raises the potential of the p-doped region with respect to the

one of the n-doped domain. In order to understand the effects of this applied potential on the

operations of the p-n junction we refer to Figure 8.3. When φe is positive we will say that the

junction is directly biased. The applied voltage opposes to the built-in potential and therefore,

the drift current at the junction is significantly reduced. As we will discuss quantitatively in the

next section, the resulting effect is an exponentially increasing current through the junction as a

function of the external voltage (see equation (8.2.7)).

In the opposite case, for φe ă 0 (reverse bias), the field at the interface is strengthened.

Electrons could easily move from the p side to the n side of the junction (and holes move in the

reverse direction), but only very few such charge carriers are available there. Therefore, only a

little current is seen to flow through the junction at reverse bias (this is the so called saturation

current).

The usual characteristic curve for a p-n junction (diode) as given by equation (8.2.7) is rep-

resented in Figure 8.4.
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J

φeJS

Figure 8.4: Characteristic curve for a p-n junction. Remark the different behaviour under direct

and reverse external voltage. The saturation current density Js is clearly identifiable for reverse

applied external voltages.

8.2 The Shockley relation with strain effects

We will now discuss the operation of the biased p-n junction in more detail. In particular, in

this section we will derive the current-voltage characteristic of this device (the so called Shockley

relation). In doing this we will be careful in underlying the possible effects of strain on our

arguments. Our approach will be a standard physical one (see, e.g., Sapoval and Hermann

(1990)). We refer also the interested reader to Markowich et al. (1990) for a different perspective

on this problem based on rigourous asymptotic expansions of the solution near the interface.

We will assume that the material properties of the p-n junction can be modeled though the

drift-diffusion system (7.0.1) described in the previous chapter. We also assume that the domain

representing the area occupied by the device is divided into two adjacent parts on which the

doping profile is (essentially) constant. The doping profile will change abruptly (we do not make

assumptions on whether continuously or with a jump) at the contact between the two domains.

In order to derive the Shockley relation, in this section we make the following two assumption:

• a depletion region exists. By this we mean that there is a region surrounding the boundary

between the p- and n-doped regions of the device where the two fields n and p appearing

in (7.0.1) are small with respect to the reference values of the doping profile. Moreover, we

will assume that the concentration of charges, n and p, as well as the electric potential Φ

vary quickly in this area;
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• in the remaining part of the device the zero charge approximation holds. Our assumption is

that the Gauss law for the electric potential (the first equation in (7.0.1)) can be substituted

by the simpler algebraic relation

n´ p´ C “ 0.

As it was discussed in the previous chapter, in order to capture the most relevant effects of strain

on the functioning of the p-n junction, one has to assume strain-dependent mobilities and band

gap. In the case of an unknown displacement field, this implies that these quantities may depend

on the position. To fix ideas we will assume that the strain field through the junction is uniform

plus a perturbation, which is localised near the junction. Moreover, we will assume that the

density is constant (for example, considering a linear elastic continuum). This accounts for the

possible inverse coupling effects linking the strong electric fields to additional mechanical stresses

on the material. We will check in Section 8.3 that the implicit assumption of smallness for these

terms is verified a posteriori using the results we will deduce in this section.

The first step in our argument moves from the assumption that a depletion region exists.

We assume that the junction coincides with x “ 0, that the n-doped region extends for positive

values of the coordinate x and that for x ă 0 the semiconductor is p-doped. The depletion zone

will extend from x “ ´dp to x “ dn. Outside this region we will assume that the zero charge

approximation (essentially) holds (see Figure 8.3).

In particular, in the depletion zone we expect a sharp gradient in the variables n, p and Φ.

Recall the constitutive equation for the electrons’ current

Jn “ µρ pkBθ∇n ´ qn∇Φq

From the above discussion on the form of the electric potential through the junction, we expect the

drift and the diffusion currents to be opposite and much larger than the total resulting electrons’

current. In particular we assume

|Jn| ! |µρqn∇Φ| « |µρkBθ∇n| (8.2.1)

In the 1D case, the above current equation reduces to

µρ
`
kBθn

1 ´ qnΦ1˘ « 0 (8.2.2)

which is satisfied for any µ “ µpxq if

kBθn
1 “ qnΦ1.

Upon integration this relation gives

npxq “ C exp
qΦpxq
kBθ

(8.2.3)
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where the constant C can be determined by the “boundary conditions” for n and Φ at the limits

of the depletion zone. From (8.2.3) we further deduce

np´dpq “ npdnq exp ´qpΦpdnq ´ Φp´dpqq
kBθ

We recall that the potential difference through the junction is given by Φpdnq ´ Φp´dpq “ φbi ´
φe. Moreover, at x “ dn the concentration of electrons has essentially reached the equilibrium

value imposed by the doping concentration of donors, i.e. npdnq “ ND holds. Therefore the

concentration of electrons on the p-side of the junction is

np´dpq “ ND exp´qpφbi ´ φeq
kBθ

. (8.2.4)

We note that in this passage, no information is required on the size of the depletion zone, except

that it exists.

We estimate the electrons’ current through the junction by evaluating the effect of the just

computed electron density being injected on the p-side of the junction. To do this we derive a

suitable approximation of the drift-diffusion system holding true in the bulk of the n- and p-doped

regions. In particular, linearising the conservation of charge for holes around the state p ” ND

we deduce the equation

Dnn
2 ´

n´ n0
p

τn
“ 0

where n0
p is the equilibrium specific number of electrons in the p-doped semiconductor. It is

important to emphasise that this approximation holds true only if the concentration of the injected

minority carriers is small when compared to the doping profile, i.e., when

n0
p ! NA and respectively p0n ! ND (8.2.5)

hold in the n-doped (resp. p-doped) parts of the domain. We also recall that the general expression

for the equilibrium concentration of carriers is and is given by (see (Sapoval and Hermann, 1990,

equation IV.15))

n0 “ NC exp´EC ´ EF

kBθ
. (8.2.6)

As discussed before, here we assume that the mobilities (and hence the diffusion terms) are

constant with respect to the space variable (uniform strain). From this equation and from the

boundary data np´dpq computed above we deduce the following expression for the profile of the

density of the injected electrons in the p-doped part od the device

npxq “ n0
p ` pnp´dpq ´ n0

pq exp´ ´dp ´ x?
Dnτn

for x ă ´dp.

In this part of the device, from the zero space charge approximation we deduce that the electric

potential has to be linear. Moreover, we assume that it varies slowly with respect to the space
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variable. Therefore, the expression for the electrons’ current reduces to

Jn “ Dnqρn
1.

Hence, at x “ ´dp we obtain

Jnp´dpq “ qρ

c
Dn

τn
pnp´dpq ´ n0

pq

Some care is now needed to rewrite the term np´dpq ´n0
p in order to simplify this expression.

In particular we would like to factor out the term n0
p. Indeed, evaluating expression (8.2.6) on

both sides of the junction, we obtain

n0
p

n0
n

“ NCp

NCn
exp

ECp ´ ECn

kBθ

where we have used the fact that the Fermi level is the same at the two side of a junction

at equilibrium. We also observe that the difference ECp ´ ECn is proportional to the voltage

difference through the junction equilibrium φbi and that n0
n “ ND. Since the strain in the device

is assumed to be constant plus perturbation concentrated in the depletion zone, we can further

assume that the specific number of states NCn and NCp, though possible different from the

unstrained values, are equal at both sides of the junction. Therefore, we deduce

ND “ n0
n “ n0

p exp
qφe

kBθ

so that the electrons’ current can be rewritten as

Jnp´dpq “ qρn0
p

c
Dn

τn
pe

qφe
kBθ ´ 1q.

We emphasise that this result is independent of the particular profile of the mobility as soon as

µ does not vary too much in the depletion zone and that the approximation (8.2.2) holds true.

We will check this assumption a posteriori in Section 8.3.

An analogous expression can be deduced for the current of the holes through the junction.

Taking into account the usual sign conventions we have

Jppdnq “ qρp0n

d
Dp

τp
pe

qφe
kBθ ´ 1q.

Therefore, the total current through the biased junction is given by

J “ Jn ` Jp “ qρ

˜
n0
p

c
Dn

τn
` p0n

d
Dp

τp

¸
pe

qφe
kBθ ´ 1q “ Jspe

qφe
kBθ ´ 1q. (8.2.7)

Here Js is the so called saturation current and corresponds to the theoretical maximum current

density that can flow through a p-n junction under reverse bias and is given by

Js “ qρ

˜
n0
p

c
Dn

τn
` p0n

d
Dp

τp

¸
.
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Figure 8.5: The ratio of the normalised saturation current density JSpǫq{JSp0q versus the strain

ǫ in the case of a p-n junction under uniaxial strain. See text for description.

Relation (8.2.7) is known as Shockley relation. In particular, it follows from the above discus-

sion that it may depend upon strain only through the mobilities (or diffusion coefficients) and

through the changes in the equilibrium specific number of minority carriers in the bulk of the

semiconductor. These last are given by (8.2.6) and by

p0 “ NV exp´EF ´ EV

kBθ
. (8.2.8)

Moreover, in order to assess the effects of strain on the characteristic curve of the p-n junction,

we should take into account (7.3.7) and (7.3.8) as well as (7.3.9) and (7.3.10). The resulting

dependence of Js on strain in the case of a uniaxial load is depicted in Figure 8.5.

We observe that the effects of enhanced mobilities and reduced band-gap, both contribute to

the increase of the saturation current. However, this is more relevant in the case of tension rather

than under compression. This prediction of our model is due both to the asymmetric behaviour

of the electrons’ mobility and to the stronger reduction of the band-gap under traction rather

than under compressione. Experimental verification of the model proposed is currently under

investigation.

8.3 Maxwell stresses and reverse coupling

In this section we will check a posteriori all the assumptions that let us derive the Shockley

relation (8.2.7) for a strained p-n junction. We can evaluate the reverse coupling contribution of

electric on mechanical properties introducing the so called Maxwell stresses (see (Kovetz, 2000,

Chapter 15). In the case of a linear dielectric and neglecting the contribution of the displacement
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current (stationary case), the Maxwell stresses can be written as

σM “ ǫ0p2ǫr ´ 1qe b e ´ ǫ0

2
|e|2I.

In order to estimate the order of magnitude of these stresses and compare them to the usual

loads experienced by real thin film devices, we have to derive an estimate for the maximum

value of the electric field e. However, this can be easily achieved by considering the approximate

expression (8.1.1) deduced above. In particular, the maximum electric field at the junction is

given by

|e|max “ qρNA

ǫ0ǫr
dp “ qρND

ǫ0ǫr
dn.

We recall that the relative permittivity of silicon is ǫr “ 11.9. Moreover, for standard doping

concentrations, we may assume that ρNA and ρND do not exceed 1025 m´3, while the built in

potential φbi is approximately equal to 0.7 V. This leads to the following approximations from

below for the size of the depletion zone

dn « dp « 10´8 m,

for the maximum value of the electric field

|e|max « 108 V{m

and for the intensity of Maxwell stresses

|σM |max « 2ǫ0ǫr|e|2max « 2 MPa.

Recalling that the Young modulus of silicon is approximately given by

E « 150 GPa

the electric field induced strains can be estimated by

ǫM « 10´5.

These are at least a couple of order of magnitude smaller than the usual strains considered for

flexible electronic devices (usually up to 1% deformation).

Our assumption that the strain field through a strained p-n junction can be considered uniform

plus a small perturbation localised at the interface is therefore a posteriori verified. However,

we still have to check whether assumption (8.2.1) holds true and if the injected minority carrier

concentrations are small with respect to the doping profile (see equation (8.2.5)).

Concerning the concentrations of injected minority carriers, from equation (8.2.4) we have

ρnp´dpq « 1013 m´3.
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Moreover, an analogous estimate also holds for the injected holes on the n-side of the junction.

These values are much smaller than the typical concentrations of dopants in the current silicon

based technology, which usually range in the interval 1019 ˜ 1025 m´3. Therefore, also assump-

tion (8.2.1) is verified a posteriori

Finally, we have to consider the relative sizes of the drift and diffusion current densities.

We recall that the typical values for the mobilities of carriers in silicon range in the interval

0.5 ˜ 5 ˆ 10´1 m2{V s. Therefore, considering the electrons concentration at the middle of the

junction given by (8.2.3) (n « 1018), we have

Jdrift « 106 A{m2.

Moreover, by construction, the diffusion current has a similar order of magnitude. On the other

hand, recalling that the typical life-time for carriers in silicon is τn « 10´3 s, the current densities

as given by equation (8.2.7) can be estimated as

J « 10´6 A{m2.

Again, the a priori assumption (8.2.1) seems to be widely confirmed a posteriori.

Therefore, we conclude that the reverse coupling effects of the electronic properties on the

mechanical deformations in a semiconductor can be neglected at first approximation. However,

an energetic framework seems necessary in order to assess the thermodynamical consistency of

the models considered in this chapter and in the previous one. This would also lead to a firmer

justification of the computations proposed in this section. Such a development will be the focus

of further investigation (see Bosia et al.).
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Part III

High cycle fatigue in alloys





Summary

In the third part of this manuscript is dedicated to a possible dynamical system approach to the

estimate of the time to failure in alloys subjected to periodic loading. The proposed model, though

introducing some additional flexibility with respect to the existing literature, is still amenable to

explicit analytical study.

From the point of view of applications, the model considered conjugates both a greater flexi-

bility in accommodating experimental data with only a small overhead in computing time when

compared to similar explicit methods known in the literature.
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CHAPTER 9

Fast time-scale average for a mesoscopic high cycle fatigue criterion

Outline

This chapter discusses the lifetime prediction of structures in high-cycle fatigue based on

the two-scale fatigue criteria of Dang Van type and several of its extensions in finite lifetime

regime. The main assumptions for this criteria are (i) the material is polycrystalline and

undergoes localised plasticity in one of the misoriented grains and (ii) crack initiation arises

as a consequence of cumulated plasticity in this grain.

The model proposed has two distinguishing features. On the one hand a generalisation of

mesoscopic plasticity model is presented, on the other a fast time scale average is introduced

for tracking the cyclic material behaviour and the subsequent evolution of damage. The

tracking method is based on the split between a quick quasi-periodic response of the system

to the cyclic load and a slow evolution of the internal hardening and damage parameters of

the material at the mesoscopic scale. Moreover, a comparison between predicted and exper-

imental lifetimes is presented. The results are discussed in terms of prediction capabilities

and also in terms of the identification procedure of parameters of the mesoscopic model.

A
class of fatigue prediction models for the cyclic behaviour of structures is based

on multiscale analysis. These try to bridge the gap between the fine evolution of

the defects at the scale of the microstructure and the load transmitted from the

macroscopic scale of the structure. The analysis usually involves homogenisation techniques for

the smaller scales and is based on the concept of shakedown. This amounts to characterising

the cyclic behaviour through an asymptotic limit cycle, which is either plastic or elastic denoting
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respectively presence or absence of dissipation.

This chapter addresses the question of finite lifetime in the high cycle fatigue (HCF) regime

for metallic polycristalline materials. Within HCF, it is common to assume that the structure is

in elastic shakedown at the macroscospic scale but undergoes elastic or plastic shakedown at the

mesoscale (i.e. scale of the grains) for infinite or finite lifetime respectively. In the case of finite

lifetime, we will refer to the time to failure of the material with the expression lifetime.

In this general framework, the fatigue criterion proposed by Dang Van (DVK) in Dang-

Van (1993) (and extended in Papadopoulos (1987, 1993, 1995); Papadopoulos et al. (1997); Pa-

padopoulos (1998)) has been highly successful in predicting failure or endurance of structures.

The DVK fatigue criterion decides whether or not the structure will have an infinite lifetime by

considering the shakedown limit of the slip system in the different grains. This approach was ex-

pressed later in a more general term through the Melan-Koiter shakedown theorem (see Dang Van

(1999); Nguyen (2003) and references therein). The hydrostatic stress is considered in order to

account for the local heterogenous structure. This has only recently been justified using a precise

homogenisation procedure Monchiet et al. (2006); Charkaluk et al. (2002).

In order to give quantitative estimates of the lifetime, several extensions of the DVK criterion

have been proposed. Among others we recall the models of Morel Morel (1998, 2000) and of Mai-

tournam et al. Jabbado (2006); Maitournam et al. (2011). In the first case, a simple mesoscopic

plastic model is introduced. The evolution of the cumulated plastic strain up to final failure at the

mesoscopic level is evaluated to effectively predict lifetime under cyclic and variable loading. The

second model differs from this approach by (i) proposing a mesoscopic plastic model depending

on the hydrostatic stress component to account for the damage process; (ii) estimating the plastic

shakedown cycle at the mesoscopic scale using a classical fatigue criterion based on the range of

plastic strain.

The extension discussed in this chapter is constructed under similar assumptions to those of

Morel’s model Morel (1998, 2000). However, it is grounded on a generalisation of the mesoscopic

plasticity model and introduces a new fast time scale average for tracking the cyclic material

behaviour and the subsequent evolution of damage. This separation of time scales is justified by

the great number of cycles usually considered in HCF experiments (104–107 cycles). The cyclic

material behaviour can be viewed as the succession of (a) a short hardening (or softening) transient

up to a saturation point, (b) a long phase close to a stable cycle and (c) a final brief softening

leading to failure. The long transient observed in the second phase above can be described through

the theory of dynamical systems as the presence of a saddle-node ghost (see Strogatz (1994) and

references therein) and is therefore amenable to precise analytical study.

The chapter starts with a short presentation of the two scale model used in the HCF theory.
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We then introduce three different constitutive laws and the relative techniques to compute life-

times. In particular we discuss: (i) Maitournam’s et al., (ii) Morel’s and (iii) the present model.

Sections 2 and 3 discuss the main analytical tools from dynamical systems theory, namely sep-

aration of time-scales and saddle-node ghost estimates. In Section 4 the identification method

for the parameters of the model is detailed. Finally Sections 5 and 6 present the prediction ca-

pabilities for experiments extracted from literature and conclusions. An appendix completes the

presentation with an extended computation of the lifetime using the saddle-node ghost estimates.

9.1 The models at the mesoscopic scale

In the framework of HCF for metallic polycristalline materials, one can assume that only a few

grains of the material undergo plastic deformations whilst most of the material remains elastic. We

can therefore consider the material point at the macroscopic scale as a representative elementary

volume (REV) at the mesoscopic scale. This volume is a non-homogeneous medium, which can

be assimilated under the given assumptions to an elastic matrix and an elasto-plastic inclusion

(grain).

The loading of the REV, i.e. macroscopic stresses Σ and strains E, can be computed in

the framework of the standard continuum theory (macroscale) and will be considered as given

here. In order to evaluate the mesoscopic state, i.e. mesoscopic stresses σ and strains ǫ, several

homogenisation techniques have been considered in the literature. The models of Bui, Lin-Taylor,

Kröner-Budansky-Wu and Sachs have been described in relation with the DVK fatigue criterion

for example in Cano et al. (2004); Dang Van (1999); Jabbado (2006); Maitournam et al. (2011).

Without restraining the generality, we shall adopt here the Lin-Taylor homogenisation scheme,

which is based on the equality of macroscopic and mesoscopic strain:

ǫ “ E.

As pointed out by Dang Van (see Dang Van (1971, 1999) and references therein), when dealing

with the description of HCF, Lin-Taylor’s approximation is particularly effective as it permits

to accept the existence of mesoscopic plastic strain and residual stress fields. Therefore, we will

limit the presentation to this particular case.

Let us denote by C and c the macroscopic and mesoscopic elasticity tensor, and by L and l the

macroscopic and mesoscopic compliance tensors. For completeness reasons we also introduce both

the mesoscopic plastic strain tensor ǫp and the macroscopic plastic strain tensor Ep. However,

as in HCF the structure is in elastic shakedown at the macroscopic level, it follows that

Ep “ 0.
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Figure 9.1: Path of the macroscopic shear stress on the material plane identified by n at the

point O and the corresponding path of the macroscopic resolved shear stress T acting on a glide

direction.

With this notation the main assumptions of Lin-Taylor model are equality of macroscopic and

mesoscopic elasticity tensors and equality of the respective strains:

C “ c E “ ǫ.

Assuming that the behaviour at the macroscopic scale is purely elastic, from the expressions of

the elastic Hooke’s law at the macroscopic and mesoscopic scale we deduce

σ “ AΣ ´ ACpǫp ´ Epq (9.1.1)

where the fourth-order tensor A is the localisation tensor defined by

A
.“ c : L.

The next step in the modelling is the introduction of a suitable material behaviour at the

mesoscopic scale in order to take into account fatigue. The experimental evidence leads to consider

a three-phase model involving an initial hardening (or softening) phase, followed by a stable

saturation phase and a final softening Morel and Petit (1996); Morel (1998, 2000) as schematically

displayed in Figure 9.2. Under these assumptions, failure corresponds to vanishing mesoscopic

yield limit. As the yield limit is directly related to the cumulated plastic mesostrain, denoted

by Γ hereafter (see equation (9.1.8) below), one can also express failure as limit of cumulated
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Figure 9.2: Scheme for the evolution of the yield limit (continuous line) and of the damage

(cumulated plastic mesostrain—dashed line) in function of the number of cycles. The material

behavior involves a hardening phase (I), a saturation phase (II) and a final softening (III). Recall

that under periodic loading, number of cycles and time are equivalent up to a constant factor.

plastic mesostrain rΓ:

Γ “ rΓ.

We recall that cumulated plastic mesostrain is a monotonic increasing function of the number

of loading cycles the system has endured and that the plastic models considered here are rate

independent. Therefore, it can be appropriately chosen as an independent variable to represent

the evolution of the yield limit instead of time or of number of cycles. This approach will be

followed in the present formulation (see also Figure 9.3 later on).

Assuming further that only one glide plane is active for any plastically deforming inclusion of

the medium (grain), it has been shown in Papadopoulos (1993) that relation (9.1.1) for a perfectly

elastic matrix can be reduced to

τ “ T ´ µγpm (9.1.2)

where T and τ are the macroscopic and mesoscopic resolved shear stresses acting along the slip

direction m of the plane identified by its normal n and µ is the shear modulus of the λ, µ Lamè

constants Constantinescu and Korsunsky (2007); Germain (1962). Explicitly the later are defined

by:

T “ pm b n :Σqm

τ “ pm b n : σqm.

Denoting by b the mesoscopic kinematical hardening vector and by τy the shear limit of a

crystal, the mesoscopic plastic model is now determined by defining:

• the yield function fpτ ,b, τyq
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• the hardening rule, assumed to be in the general form

9τy “ gpΓq 9Γ (9.1.3)

which implies by integration that

τy “ GpΓq (9.1.4)

where G is a suitable primitive function of g.

If this plastic model is brought into the three-phase description of cyclic material behaviour

previously introduced, one has to require G to be a concave function increasing when Γ is small

and decreasing for larger values of the mesoscopic shear plastic strain. Moreover there will be a

unique value for the cumulated plastic mesostrain denoted by rΓ for which the following hold:

GprΓq “ 0, GprΓq1 ă 0. (9.1.5)

In this terms, the lifetime defined as the failure of the REV, or equivalently as the initiation of

a macroscopic crack is defined as the unique time instant rt for which

Γprt q “ rΓ.

As a consequence of the definition of rΓ, one can equally express the lifetime by a vanishing plastic

yield at the mesoscale (see (9.1.4)).

A large panel of choice for the definition of the yield function f and for the evolution of the

yield limit τy is possible. Among the different models proposed in the literature, we shall only

recall the proposals of Maitournam et al. and the one of Morel.

Maitournam’s model Maitournam et al. (2011)

The proposal of this model is to consider a plastic material behaviour at the mesoscale with a

dependence of the yield function not only on the deviatoric part of the stress but also on the

hydrostatic part. A kinematic hardening under the assumptions of associative plasticity is also

considered. The mesoscopic yield function can therefore be written as

fpσ, ǫpd, pq .“
c

1

2
pσ ´ hǫ

p
dq : pσ ´ hǫ

p
dq ´ kppq

with

kppq “ β ´ αpptq or kppq “

$
’&
’%
β ´ αp if p ě 0

β ´ γp if p ă 0

and where p is the mesoscopic hydrostatic stress, ǫ
p
d is the deviatoric part of the mesoscopic

plastic strain tensor and α, β, γ and h are suitable parameters.
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The underlying hypothesis of this model consider that the mesostructure can be computed

from the macroscopic structure. Fatigue will then be determined from the plastic shakedown

cycle and from a phenomenological fatigue law linking lifetime and cumulated mesoscopic plastic

strain ǫpc:

N “ gpǫpcq.

which is a Manson-Coffin type fatigue criterion.

Morel’s model Morel (1998), Morel (2000)

This model considers a complete description for the mesoscopic plastic yield limit as introduced

above. Three sharply separated phases account for the hardening of the mesoscopic inclusion.

The dependence of the yield limit on plastic strain is piece-wise linear (see Figure 9.3). Moreover,

the yield function is defined in terms of the resolved shear stress and has both isotropic and

kinematic hardening terms:

fpτ ,b, τyq “ pτ ´ bq · pτ ´ bq ´ τ2y . (9.1.6)

In this case, the three phase of the plastic inclusion are defined as:

9τy “

$
’’’’&
’’’’%

g 9Γ during hardening;

0 during the saturation phase;

´h 9Γ during softening;

(9.1.7)

9b “ c 9γp

where γp is the mesoscopic shear plastic strain, c is the kinematic hardening parameter and Γ is

the cumulated plastic mesostrain given by

9Γ
.“
b

9γp · 9γp. (9.1.8)

Power law model

The model proposed here replaces the piecewise-linear dependence in the evolution of the yield

limit with a power law. When compared with the model of Morel, one immediately notices the

advantages arising from the piecewise-linear description. Indeed, in this latter case, for periodic

macroscopic loadings it is possible to obtain explicitly the lifetime (see Morel (1998)). However,

the hardening rule (9.1.7) is a rough approximation of the actual behaviour of materials, for

which the sharp transitions between hardening and saturation regimes as well as from saturation

to softening regimes are difficult to justify.
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Figure 9.3: The three-phase evolution of the plastic yield limit. Comparison between the piecewise

linear model (Morel—continuous line) and the power model (dashed line).

An alternative model is given by the following constitutive power law

GpΓq .“ ∆T0
2

´ |Γ ´ Γ0|α
β

(9.1.9)

with α ą 1, which naturally satisfies the constraints of concavity and monotonicity introduced

above (see Figure 9.3). Th term ∆T0 appearing in the last relation is the amplitude of the

macroscopic resolved shear stress on the critical plane for limit loading.

When compared with the piecewise linear model of Morel, one cannot hope to retrieve exact

lifetime estimates for this model. However, as we shall see below, precise a-priori analytical

estimates can be derived in this setting under mild regularity assumption on the behaviour of the

function G, which are satisfied by the power law (9.1.9). Before delving into the details of such

estimates, we will derive a suitable approximation for the just introduced constitutive laws in the

case of periodic loadings. In particular we now want to consider a time-average over each cycle

of the loading.

9.2 Separation of time scales

In the regime of HCF we can distinguish between a quick quasi-periodic response of the system

to the cyclic charge and a slow evolution of the inner parameter describing the hardening and

damage of the material itself. This separation of time scales is justified by the great number of

cycles usually considered in HCF experiments (104 ´ 107 cycles). It seems therefore sound to

look for a slowly-varying approximation for this internal variable and for the cumulated plastic

mesostrain Γ, by averaging out the periodic behaviour of the system. This process is also known

as “time-homogenization” (see Bender and Orszag (1999); Guckenheimer and Holmes (1990)).
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By differentiating the yield function (9.1.6) with respect to time we obtain:

9f “ 2pτ ´ bq · 9τ ` 2pb ´ τ q · 9b ´ 2τy 9τy.

Since during plastic deformations the yield function f is constant (f ” 0), by recalling rela-

tion (9.1.2), we deduce

9T ´ µ 9γp ´ c 9γp “ gpΓq 9Γ

where we have set

γp “ γpm.

From definition (9.1.8) we have

9Γ “ | 9γp|

and therefore

9Γ “ | 9T |
gpΓq ` c` µ

,

which represents the evolution law for the cumulated plastic mesostrain during plastic deforma-

tions. Obviously Γ is constant during the elastic part of the loading so that we can deduce the

following ordinary differential equation describing the evolution of the cumulated plastic mesos-

train

9Γ “

$
’&
’%

| 9T |
gpΓq`c`µ when f “ 0,

0 when f ă 0.

(9.2.1)

We recall that the cumulated plastic mesostrain Γ is a nondecreasing function of time also if the

resolved plastic mesostrain γp oscillates. Indeed, Γ accounts for all the plastic deformations the

material has endured up to the current time.

We now want to simplify the evolution law (9.2.1) in the special case of cyclic loadings. By the

above discussion it is easy to see that under a periodic loading of equivalent amplitude comparable

to ∆T0, the plastic mesostrain changes only slightly during one charge/discharge cycle. Therefore,

the increase per cycle of the cumulated plastic mesostrain is small when compared with the

variation of the mesoscopic strain. This justify us stating that the evolution of cumulated plastic

strain is slow with respect to the evolution of the mesoscopic strain. As a consequence, we can

assume that Γ constant during each cycle.

By considering Γ as constant during one period of the forcing term, we can decouple the

quick dynamic of the elasto-plastic response of the material to the external loading and the slow

evolution of the internal damaging mechanism (i.e. the slow drift of Γ). We denote by ∆T the

amplitude of the macroscopic resolved shear stress. In order to integrate (9.2.1) on a single cycle,

we observe that during a complete unloading-loading phase from ´∆T {2 to ∆T {2, the mesoscopic
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Figure 9.4: Illustration of the relation between the periodic resolved plastic shear stress and the

evolution of the cumulated plastic mesostrain. Notice that only the heavily thickened part of the

loading cycle contributes to plastic deformations. The amplitude of the hatched regions has been

emphasise for clarity of expositions.

inclusion will be in elastic regime (f ă 0) up to T “ ´∆T {2 ` 2τy. therefore, we obtain (see

Figure 9.4 and (Morel, 2000, Appendix A))

ż

f“0

9T “ ∆T

2
´
ˆ

´∆T

2
` 2τy

˙
“ ∆T ´ 2τy.

By taking into account the second half of the loading cycle (i.e. the transition of T from ∆T {2
to ´∆T {2), and using this result in (9.2.1) we finally have

∆cycleΓ “
ż

cycle

9Γ “ 4

µ ` c` gpΓq

ˆ
∆T

2
´ τy

˙
.

where ∆cycleΓ represents the (small) change in Γ during a single complete loading cycle.

The behaviour of the simple system we are studying can therefore be reduced to a system of

an ordinary differential equation and a difference equation

$
’&
’%
∆cycleΓ “ 4

µ`c`gpΓq
`
∆T
2

´ τypΓq
˘

9τy “ gpΓq 9Γ.

If we consider an adimensionalized time period equal to 1 for the cycle forcing term ∆cyclet “ 1

(i.e. if we measure time by the number of cycles of the periodic loading the system has undergone),

we can average the evolution equation for the cumulated plastic mesostrain getting the following

ordinary differential equation system

$
’&
’%

9Γ « ∆cycleΓ

∆cyclet
“ 4

µ`c`gpΓq
`
∆T
2

´ τypΓq
˘

9τy “ gpΓq 9Γ.
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Figure 9.5: The dependence of the mesoscopic hardening law on the the “flatness” parameter α.

Note that for larger αs (dashed line) the plateau is longer.

Recalling the integral relation (9.1.4) for the shear limit τy, we finally get the following ordinary

differential equation describing the evolution of our medium

9Γ “ 4

µ ` c` gpΓq

ˆ
∆T

2
´GpΓq

˙
. (9.2.2)

We recall that the proposed power law model for mesoscopic hardening is determined by 5

parameters. As we will discuss later, of these ∆T0 can be directly identified by knowing the

characteristic of the loading. Of the remaining parameters, α has a clear physical significance

representing the “flatness” of the hardening law (see Figure 9.5). This parameter with the other

remaining three, namely Γ0, β and the sum µ ` c will be identified through a fitting procedure.

9.3 Lifetime estimates in HCF

In the discussion of the previous section no explicit reference to the analytic form of the consti-

tutive relation GpΓq has been made. We now want to particularize the above results by choosing

as constitutive hardening relation the power model (9.1.9) introduced above.

In this case, equation (9.2.2) exhibits a threshold behaviour controlled by the value of ∆T . If

∆T
2

is smaller than ∆T0

2
(i.e. if it is smaller than the maximum value attained by GpΓq), then the

system will undergo elastic shakedown and be in an infinite endurance regime. If, otherwise, ∆T
2

is above this value, then the material will eventually fail (i.e. GpΓq Ñ 0).

Due to the hypothesis of concavity and regularity on GpΓq, for values of ∆T near the threshold

value, the system will show a very long transient regime, which is proceeded and followed by two

phases of faster evolution. The time span of this transient regime will constitute the fundamental

element for our estimate of the lifetime of the material in HCF regime. Incidentally, we observe
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that this kind of estimates will essentially be unaffected by changes of the expression of GpΓq far

away from its maximal value.

Starting from (9.1.9), we immediately deduce

gpΓq “ ´α

β
|Γ ´ Γ0|α´1 sgnpΓ ´ Γ0q

so that our model (9.2.2) reduces to

$
’&
’%

9Γ “ 4
µ`c´ α

β
|Γ´Γ0|α´1 sgnpΓ´Γ0q

´
∆T´∆T0

2
` |Γ´Γ0|α

β

¯

Γp0q “ 0.

(9.3.1)

From the mathematical theory of dynamical systems an explicit lower (i.e. conservative)

estimate can be deduced for the lifetime of the material (see Section 9.4):

rt ě γopt ` 1

γopt

πpµ ` cq
2α sin π

α

β
1

α

ˆ
∆T ´ ∆T0

2

˙ 1´α
α

´ α

4pα ´ 1q
1

γopt ´ 1
´ βpµ ` cq

4pα ´ 1qΓ
1´α
0 (9.3.2)

where γopt is given by

γopt “
π
´

2
βp∆T´∆T0q

¯α´1

α `
c
π α2

βpα´1qpµ`cq

´
2

βp∆T´∆T0q

¯α´1

α

sin π
α

π
´

2
βp∆T´∆T0q

¯α´1

α ´ α2

βpα´1qpµ`cq sin
π
α

. (9.3.3)

In order to get some insight in this expression, we can consider its limit for great values of α,

that is when the plateau of the saturation phase becomes flat. This corresponds to the setting of

Morel’s works (see Morel (1998) and Morel (2000)). Indeed, we obtain

lim
αÑ8

γopt “
2 `

b
2βp∆T´∆T0q

µ`c

2 ´ ∆T´∆T0

µ`c
« 1

and

lim
αÑ8

rt ě γopt ` 1

γopt

µ` c

∆T ´ ∆T0
´ 1

4

1

γopt ´ 1
« 2pµ ` cq

∆T ´ ∆T0

where the approximations at the end of the previous computations hold for small ∆T ´ ∆T0.

This estimate corresponds to (Morel, 2000, Equation (A9)).

Unfortunately, no simple and efficient expression could be derived for an analytical upper

bound on the lifetime for our model.

9.4 A priori estimates

In this section we will derive the bound (9.3.2), (9.3.3) for the dynamical system (9.3.1). In order

to simplify the notation and focus on the main analytical argument, we will consider the following
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equivalent Cauchy problem $
’&
’%

9y “ hpyq .“ ǫ`A|y|α
1´B|y|α´1 sgn y

yp0q “ y0.

(9.4.1)

with y0 ď 0. We observe that all the results of this section can be readily adapted to our original

model (9.3.1) by setting:

ǫ “ 4

µ ` c

∆T ´ ∆T0
2

A “ 4

µ ` c

1

β

B “ 1

µ ` c

α

β

y0 “ ´Γ0.

We start by rigourously defining the lifetime for our system.

Definition 9.4.1. The lifetime for system (9.4.1) is the time tξy0 that is necessary for any solution

to travel from y0 to ξ where ξ is the vertical asymptote of h, given by the (unique) real root of

1 ´B|ξ|α´1 sgn ξ “ 0.

Before stating the main estimate, we recall an elementary result, which will be very important

in the following. (see (Strogatz, 1994, Exercise 4.3.10)).

Theorem 9.4.1. The time required for a solution of the differential equation

9y “ ǫ`Ayα

to go from ´8 to `8 is given by

t`8
´8 “ π

α
2
sin π

α

A´ 1

α ǫ
1´α
α .

Consider now equation (9.4.1). In order to estimate the lifetime from below (conservative

estimate of the endurance of the material) we will consider the following approximation from

above of h:

hpyq ď rhpyq .“

$
’’’’&
’’’’%

ǫ`A|y|α if y ď 0

γpǫ`A|y|αq if 0 ď y ď x1

`8 otherwise

where x1 is defined by:

γpǫ`A|x1|αq “ hpx1q, x1 P p0, ξq i.e x1 “
ˆ
γ ´ 1

Bγ

˙ 1

α´1

(9.4.2)
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and γ will be determined later. Since solutions of the dynamical system associated to rh travel

slower than those of (9.4.1), we immediately deduce that

tξy0 “ t 0y0 ` tx1

0 ` tξx1
ě t̃ 0

y0
` t̃ x1

0

where with t̃ ba we denote the time required by a solution of the dynamical system

9y “ rhpyq

to travel from a to b.

We start by estimating t̃ 0
y0

, always from below. We consider the further approximation

9y “ rrhApyq .“ A|y|α. (9.4.3)

Reasoning as above, we deduce

t̃ 0
y0

“ t̃ 0
´8 ´ t̃

y0
´8 ě t̃ 0

´8 ´ ˜̃tA
y0
´8

By symmetry, Theorem 9.4.1 implies

t̃ 0
´8 “ π

α sin π
α

A´ 1

α ǫ
1´α
α

whereas a direct integration of equation (9.4.3) gives

˜̃tA
y0
´8 “ 1

A

1

α ´ 1
|y0|1´α

from which we deduce

t̃ 0
y0

ě π

α sin π
α

A´ 1

α ǫ
1´α
α ´ 1

A

1

α ´ 1
|y0|1´α.

We now consider the lower approximation of the travelling time t̃
ξ
0 from 0 to ξ (failure).

Arguing as before we deduce:

t̃
ξ
0 ě t̃ `8

0 ´ ˜̃tγA
`8
x1

“ π

αγ sin π
α

A´ 1

α ǫ
1´α
α ´ 1

γA

1

α ´ 1
x1´α
1

Using the definition of x1 given above (see (9.4.2)) we finally get

t̃
ξ
0 ě π

αγ sin π
α

A´ 1

α ǫ
1´α
α ´ B

Apα ´ 1q
1

γ ´ 1

which is minimised when

γ “ γopt
.“
π
`
A
ǫ

˘α´1

α `
b
πB α

α´1

`
A
ǫ

˘α´1

α sin π
α

π
`
A
ǫ

˘α´1

α ´ α
α´1

B sin π
α

for ǫ small enough.
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Figure 9.6: The approximations to the function hpyq used in deriving the lower bound on the

failure time for system (9.4.1).

Putting all the above results together we finally obtain the following estimate from below to

the lifetime of our model:

tξy0 ě γopt ` 1

γopt

π

α sin π
α

A´ 1

α ǫ
1´α
α ´ B

Apα ´ 1q
1

γopt ´ 1
´ 1

A

1

α ´ 1
|y0|1´α.

After substitution of the values for A, B, ǫ and y0 arising in our model, we finally deduce the

desired estimate on the lifetime.

9.5 Identification of parameters from fatigue experiments

In the constitutive relation (9.1.9) for GpΓq and in equation (9.2.2), five different parameters

appear: namely µ`c, ∆T0, Γ0, α and β. Moreover, since our model is essentially one-dimensional,

∆T has also to be evaluated starting from each 3D macroscopic loading state of interest.

In order to evaluate ∆T and ∆T0 we adopt the same approach used by Morel in Morel (1998).

Starting from the Dang Van criterion (see Dang Van (1971) and Dang-Van (1993)), we assume

that the material undergoes elastic shakedown if

∆T `ASHmax ď B,

where SHmax is the maximum value reached by the mesoscopic (and macroscopic) hydrostatic stress
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during the periodic loading, while ∆T is a suitable measure of the resolved shear stress acting

along the most solicited slip direction plane. In particular, we will use the following definition

(see Morel Morel (1998) and Papadopoulos Papadopoulos (1993))

∆T “ max
θ,φ

Tσpθ, φq

where

Tσpθ, φq “

dż 2π

0

pTapθ, φ, ψqq2 dψ.

Here θ and φ are angular variables used to identify the plane orthogonal to the versor

n “

¨
˚̊
˚̋

sin θ cosφ

sin θ sinφ

cos θ

˛
‹‹‹‚,

in the physical space, ψ is an angle parametrizing all possible direction m in the slide plane

identified by n and Tapθ, φ, ψq is the amplitude of the variation of the mesoscopic resolved shear

stress τ defined above.

The material parameters A and B can be related to the fatigue limits under fully reversed

tension compression f´1, and under fully reversed torsion t´1:

A “
?
π
´
t´1 ´ f´1

2

¯

f´1

3

, B “
?
π t´1.

In the simple case of sinusoidal loading, that is for loadings in the form

Σ “

¨
˚̊
˚̋

σmxx ` σaxx sinpωtq τaxy sinpωt ` ϕq 0

τaxy sinpωt` ϕq 0 0

0 0 0

˛
‹‹‹‚ (9.5.1)

for a suitable reference frame, where σmxx is the mean normal stress in the x direction, σaxx and τaxy

are the amplitude of the normal and shear stresses, ∆T and ∆T0 can be explicitly computed and

are given by the following expressions:

• In phase tension and torsion (ϕ “ 0˝)

∆T0 “
t´1f´1 ´

´
t´1 ´ f´1

2

¯
σmxx

f´1 `
´
t´1 ´ f´1

2

¯
σa
xxb

pσa
xxq2

4
`pτa

xyq2

∆T “
t´1f´1´

´
t´1´ f´1

2

¯
σm
xx

f´1ppσa
xxq2`pτa

xyq2q`2
´
t´1´ f´1

2

¯
pσa

xxq2

·
c

pσa
xxq2`pτa

xyq2

2

?
pσa

xxq2`pτa
xyq2`|pσa

xxq2´3pτa
xyq2|
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• Out of phase tension and torsion (ϕ “ 90˝)

∆T0 “
c

pσmxxq2
4

` pτaxyq2

∆T “
a

pσaxxq2 ` pτaxxq2
2

?
2σaxx

b
pσaxxq2 ` pτaxyq2 ` |pσaxxq2 ´ 3pτaxyq2|

We now consider the other modelling parameters. We observe that the kinematic hardening

parameter c and the Lamè shear modulus µ may in principle be considered material constants

already known from other experiments. However, here we will identify them together with the

other material constants appearing in (9.1.9) and (9.2.2): Γ0, α and β. We note, moreover, that

µ and c always appear together in the above expressions (in particular, see equation (9.2.2)) so

that only a joint estimate of the sum µ` c can be obtained with this model. The identification of

these four remaining parameters will be achieved through optimisation of a suitable cost function

(see e.g. Maitournam et al. (2011)). Two choices seem natural in this context:

• minimising the sum of the squared errors between the experimental lifetimes and the sim-

ulated ones;

• minimising the sum of the squared relative errors between the experimental lifetimes and

the simulated ones.

These two approaches have led to very similar results in the experimental validation of our model

of the next sections. Following Maitournam et al. (2011), we will therefore report only the results

using the first of the two approaches.

9.6 Results and discussion

In order to assess the efficiency of the estimate for the predicted lifetime obtained above, we

compared the numerical solution of system (9.2.2) describing the evolution of the cumulated

mesoscopic plastic strain, to the analytical approximation of lifetime given by estimates (9.3.2)

and (9.3.3). The complete integration of (9.2.2) was performed using a high-order Runge-Kutta

scheme (in particular a Runge Kutta p4, 5q method was used—see (The MathWorks Inc., 2011,

routine ode45)). We emphasise that the estimate (9.3.2) is a lower bound for the lifetime and

therefore it is a theoretical conservative estimate.

On account of the many different tests done, we report in Figure 9.7 the results of some nu-

merical experiments showing a good agreement of approximation (9.3.2) for physically meaningful

parameters, when the “flatness” parameter α is large enough. In order to assess the efficiency of
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Figure 9.7: The dependence of the efficiency ratio η (ratio between the analytical estimate (9.3.2)

and the lifetime obtained by numerical integration of (9.3.1), see text) vs. the load ∆T ´ ∆T0

for different values of the parameter α of the model. See text for description.

the analytical approximation deduced previously, we introduce the following efficiency ratio

η “ lifetime given by (9.3.2)

lifetime obtained by numerical integration of (9.3.1)
.

We observe that values of η near 1 correspond to efficient estimates and that if η ă 1 the analytical

bound is conservative. In particular, as soon as α is greater than 4 or 5, the approximation is

efficient for all the values of ∆T´∆T0, which arise in experiments and which can be accounted for

with this kind of model (usually ∆T ´ ∆T0 « 100 ˜ 103MPa for metallic materials). In order to

keep the discussion as simple as possible, only integer values of α were considered here. However,

α can be any real number greater than 1.

In Figure 9.7 the behaviour of η with respect to the load ∆T ´ ∆T0 is shown. The different

lines correspond to the representative values for α, α “ 2, 3, 4 and 6. All other parameters

are physically relevant and have been kept constant to ease comparison. In particular we have

considered Γ0 “ 66, µ` c “ 2800000MPa, β “ 70000MPa´1 ∆T0 “ 445MPa. The horizontal line

at height 1 represents a perfect estimate. As expected, the analytical estimate derived above is

confirmed to be conservative.

We have finally checked the effectiveness of our model in fitting experimental results and

in predicting failure. To this end, we use some of the experimental data which can be found

in the literature (see Dubar et al. (1992); Jabbado (2006); Lee (1985); Morel and Petit (1996);
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Figure 9.8: The computed versus observed lifetimes from different fatigue tests. The data used to

fit the model for each material are highlighted in red (training points) while the other observations

used to check the validity of the approximation are in blue (control points).

Nishihara and Kawamoto (1945)). In each case, we have used the data coming from simple

tension compression tests (called training points in the sequel) to fit the parameters of the model

and to make predictions for the other observations. The results of these experiments (predicted

endurance limit vs. experimental values) can be found in Figure 9.8. Data used to fit the model

(training points) are highlighted in red, while the remaining observation used to check the model

(control points) are in blue. In this plot the diagonal represents perfect agreement between the

model and the experimental values, whereas the two dashed limes represent a factor 2 acceptable

tolerance.

As can be seen from Figure 9.8, the agreement between estimated and observed lifetimes is

quite satisfactory. Most of the experimental points fall between the two dashed tolerance lines

for a wide range of the experimental parameters and a variety of materials considered. Scatter

of experimental data up to 3-5 times that of the fatigue curve is indeed typical of HCF, which is

due to individual properties of the material local zones. That is why, scatter of data presented

in Figure 9.8 can be considered as regular if individual properties of the specimen are not taken

into account.
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9.7 Conclusions

We have proposed a new model for the lifetime of materials in the HCF regime. This model

is a refinement of the one introduced by Morel in Morel (2000) based on the DVK criterion.

In oarticular, it provides a more thorough understanding of the basic phenomena and gives an

explanation of the long transient behaviour observed in material between the initial accomodation

and the final breakdown (or crack initialisation).

Our approach allows us to consider a richer mesoscopic hardening rule than already done in

the literature. As in Morel (1998, 2000) our model involves an initial hardening, a long saturation

phase and a final softening leading to failure. The nonlinear power law proposed depends on 5

different parameters. The a priori analysis and the numerical tests reveal that the most relavant

among the parameters is α, which describes the “flatness” of the hardening law. Moreover, α

is directly related to the lifetime estimate (9.3.2). All the parameters of the mesoscopic model

can be estimated using a simple and efficient least-square optimisation procedure. Nevertheless,

study of the relations between more refined microscopic models and the parameters should be

performed in the future.

The additional detail of description introduced has only a minor impact on the computational

cost of the model. Indeed, when studying crack initiation problems, the main computational tasks

are related to the solution of stresses and strains on the whole structure of interest. Therefore,

any algebraic criterion for failure detection (in opposition to more complex local relations) is

practically equivalent from the point of view of computational costs.

The lifetime estimates obtained account well for the experiments. The residual unpredicted

variability is consistent with the usual scattering of HCF experimental data.

The main advantage of the proposed method based on dynamical systems techniques is the

possibility of extending it to a large class of local material behaviour involving not only plasticity,

but also crack and damage evolution, while keeping a simple closed-form formula for the prediction

of the lifetime.

Finally we note that the extension of this approach to more complex periodic and quasi-

periodic multiaxial loadings and to a larger base of materials constitute interesting fields of

research, which are relevant for applications and which remain still largely unexplored.
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Summary

This work discusses a series of modelling problems in continuum mechanics. The first part is devoted to the mathematical analysis of some

diffuse interface models in phase separation of binary mixtures (e.g., coarsening of alloys or bistable polymeric fluids). The second part

discusses the function of electronic devices (in particular p-n junctions) under mechanical deformations. The third part presents a model for

lifetime predictions in polycrystalline metals under periodic loading.

A typical phase separation model is the well-known model H, constructed by coupling the convective Cahn-Hilliard equation with the

Navier-Stokes system through the so-called Korteweg force. Here we consider some variants of the model which account, e.g., for shear

dependent viscosity or chemically reacting components. We first study basic issues like existence, uniqueness and regularity of solutions.

Then we analyze the long-time behaviour of the infinite dimensional dissipative dynamical systems generated by the systems studied.

More precisely, we prove the existence of global attractors, exponential attractors, pullback attractors and trajectories attractors for the

corresponding dynamical systems. Also, we discuss the robustness of such invariant sets with respect to perturbations of some parameters

of the model. The results obtained represent natural extensions of the properties known for single fluid flows, whose features are considered

a benchmark for all new techniques proposed in the literature. Finally, as a more realistic description of phase separation phenomena, we

introduce a Cahn-Hilliard equation accounting for nonlocal interactions through a singular kernel. In this case some well-posedness and

regularity results are demonstrated.

The second part of this work is devoted to the study of the coupling effects between mechanical and electronic properties in semiconduc-

tors. The modelling of the electronic device is based on the drift-diffusion model for electrons and holes. The device is viewed as a standard

macroscopic continuum and the objective is to understand the effects of mechanical strain on the electronic properties of the semiconductor

and in particular its effects on the characteristic curve of a p-n junction. This permits to propose a variational formulation of the classical

drift-diffusion system and to derive a thermodynamically consistent model for the coupled electromechanical phenomena. The strain mainly

influences the mobility coefficients and the generation/recombination term. Two approximate solutions are discussed, one based on only

physical assumptions and one involving asymptotic expansions. This part of the work is a preliminary step towards the understanding of the

properties of flexible electronic devices.

The final part of the thesis presents an application of the theory of dynamical systems to predict the lifetime of polycrystalline metals

undergoing a high cycle fatigue regime. A new model is proposed and compared with the existing literature.

Résumé

Ce travail de thèse affronte l’étude de divers problèmes surgissant de la mécanique du milieu continu. La première partie du manuscrit est

dédiée à l’étude mathématique de certains modèles à interfaces diffuses qui décrivent la séparation de phase de mixtures binaires (par exemple,

le grossissement de la taille des grains dans un alliage ou bien l’écoulement des fluides polymériques bistables). La seconde partie examine

le fonctionnement de certains dispositifs électroniques, comme les jonctions p-n, sous l’effet de déformations mécaniques. La troisième partie

présente un model pour la prédiction de la durée de vie pour des métaux polycristallins en régime de chargement cyclique.

Un modèle typique de séparation de phase est le modèle H, qui est constitué d’une équation de Cahn-Hilliard convective couplée avec

le système de Navier-Stokes par la force dite de Korteweg. On considère des variations de ce modèle qui tiennent compte, par exemple,

d’une viscosité du fluide dépendante du cisaillement ou de constituants réagissant chimiquement entre eux. Tout d’abord, on étudie des

questions de base comme l’existence, l’unicité et la régularité des solutions. Par la suite, on analyse le comportement asymptotique des

systèmes dynamiques infini-dimensionnels générés par les systèmes étudiés. Plus précisément, on démontre l’existence d’attracteurs globaux,

d’attracteurs exponentiels, d’attracteurs pullback et d’attracteurs de trajectoires pour les systèmes dynamique correspondants. On discute

aussi la robustesse de ces ensembles invariants par rapport à des perturbations de certains paramètres du modèle. Nos résultats constituent

une extension naturelle des propriétés connues pour le cas de l’écoulement d’un fluide simple qui représentent le cas de référence pour toute

nouvelle technique proposée en littérature. Enfin, comme description plus précise des phénomènes de séparation de phase, on considère une

équation de Cahn-Hilliard modélisant des interactions non-locales à travers un noyau singulier. En ce cas, des résultats d’existence et de

régularité sont donnés.

La seconde partie de cette thèse est dédiée à l’étude des effets de couplage entre les propriétés mécaniques et électroniques des semi-

conducteurs. La modélisation des dispositifs électroniques choisie se base sur le modèle de diffusion et transport pour les électrons et les

trous. Le dispositif est décrit comme un continu macroscopique standard avec, pour objectif, la compréhension des effets des déformations

sur les propriétés électroniques du semi-conducteur et, en particulier, sur la caractéristique d’une jonction p-n. Ceci permet de proposer une

formulation variationelle du système classique de diffusion et transport et de dériver un modèle thermodynamiquement consistent pour les

effets électromécaniques couplés. Les déformations ont des effets en particulier sur les coefficients de mobilité et sur le terme de génération

et recombinaison des porteurs. Deux solutions approximées sont étudiées : une développé à partir d’hypothèses physiques et l’autre qui

comporte une expansion asymptotique. Ces résultats constituent une étape préalable pour la compréhension des dispositifs électroniques

flexibles.

La dernière partie de la thèse présente une application de la théorie des systèmes dynamiques à la prédiction de la durée de vie des métaux

polycristallins sous chargement périodique pour grand nombre de cycle de chargement. Un nouveaux model est proposé et ses prévisions

comparées avec les résultats connus dans la littérature.
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