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Résumé

Les réactions biochimiques sous-jacentes au fonctionnement des cellules sont des processus in-
trinséquement stochastiques. En conséquence, le fonctionnement de la cellule, considérée comme
un systéme, est aléatoire en raison des fluctuations de ses composantes fondamentales. Parmi
ces derniéres se trouvent les protéines, qui jouent un réle majeur dans les cellules. Le caractére
stochastique des protéines est tel qu’il est méme responsable des différences observées dans le
phénotype et ce méme dans le cas de cellules clonées exposées a des conditions environnementales
identiques. La grande difficulté rencontrée dans le développement de techniques quantitatives
fiables pour la mesure des fluctuations de I’expression génétique au niveau cellulaire a favorisé
le développement et 1'utilisation de modéles stochastiques essayant de capturer les principales
caractéristiques du systéme. Il est donc crucial que les modéles adoptent des hypothéses réalistes,
afin de pouvoir les utiliser comme un véritable outil d’investigation.

Dans ce travail de thése nous avons mis en place un nouveau cadre mathématique basé
sur les Processus Ponctuels de Poisson Marqués (MPPP) pour décrire les principales étapes de
la production d’une protéine spécifique, grace a une analogie entre le systéme de production de
protéines et les réseaux de files d’attente. Cette approche s’est avérée étre trés adaptée a la tache,
car elle permet de considérer des hypothéses générales pour certaines étapes, tout en gardant le
caractére analytique des modéles présents dans la littérature, qui se réduisent a un cas particulier
de cette approche générale pour des hypothéses spécifiques. Avec ce cadre, nous avons réussi
a surmonter I’hypothése fondamentale et restrictive des modéles classiques, qui exige une durée
exponentielle de toutes les étapes. La description non-markovienne de l’expression génétique
obtenue grace & ce nouveau cadre a permis d’aborder le probléme d’une maniére plus satisfaisante
et, en particulier, de proposer un modéle plus réaliste qui comprend des hypothéses réalistes de
I’étape d’élongation de la protéine et de la dilution des protéines en raison de la croissance du
volume. Eu égard aux résultats obtenus, cette nouvelle approche a montré que les modéles
classiques ont su capturer qualitativement les caractéristiques du bruit dans I'expression d’un
géne, mais leur pouvoir de prédiction est limité par le fait que les formules quantitatives obtenues
sont incorrectes. L’utilisation des MPPP a permis de d’évaluer I'impact de différents choix de
modélisation, tout en gardant la capacité d’obtenir des formules analytiques pour les premiers
moments des distributions des différents processus en fonction des paramétres biophysiques.

La modélisation du processus de production d’une seule protéine, bien que puissante, ne prend
pas en compte la description des interactions qui peuvent se produire en raison de la production
simultanée des différents types de protéines. Pour cette raison, nous avons proposé une premiére
modélisation de la production de plusieurs protéines en considérant les interactions comme le
résultat de la compétition pour des ressources communes. Plus précisément, les ribosomes sont
responsables de la traduction de tous les types de messagers et leur nombre est limité et stricte-
ment controlé dans la cellule. En pratique, le cotit élevé, en termes de ressources, associé a la
production des ribosomes oblige la cellule & optimiser leur usage et il s’avére qu’ils sont presque
toujours en train de traduire des messagers et restent trés peu inactifs aprés I’achévement de
leur tache. En conséquence, il y a une rude compétition entre les messagers pour avoir acces
& des ribosomes libres et la production globale en est affectée. Le systéme de production est
étudié par une approche de champ moyen & la fois dans les régimes de sous-charge et de sur-
charge d’utilisation des ribosomes. Le modéle multi-protéines est une approche novatrice dans le
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domaine qui ouvre une nouvelle direction dans I’étude des fluctuations des protéines au niveau
cellulaire.

En conclusion, la thése a porté sur I’étude de la nature stochastique de I’expression génétique,
en développant différents modéles afin de progresser vers une description plus réaliste des phéno-
meénes. Toutes ces études ont été menées en essayant de mettre la biologie au premier plan, car
nous croyons que ces modeéles représentent un outil fondamental dans I’étude et la compréhension
des processus biologiques complexes.
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Abstract

Biochemical reactions underlying the functioning of cells are inherently stochastic processes.
As a consequence, the whole system is noisy and undergoes fluctuations in its fundamental com-
ponents. Proteins are major players for the living. The behavior of cells as well as their stochastic
character manifests itself via striking differences in phenotype. The differences are apparent even
in the case of identical, cloned cells which underwent the same environmental conditions. The
extreme difficulty in obtaining reliable experimental quantitative results concerning fluctuations
in gene expression has fostered the development and intense use of stochastic models. These
models aim at capturing the main characteristics of the system. Given the context, it is crucial
that models embrace realistic assumptions.

We introduced a new mathematical framework based on Marked Poisson Point Processes
(MPPP) to describe the main steps of the production of a specific protein. We leveraged the
similarities between the protein production system and queueing networks. This approach has
proven to be perfectly suited, since it allowed us to consider general assumptions, while still
permitting the derivation of analytical formulas. This is one of the key features of the models
found in literature. Furthermore, the classic models are incorporated in this approach and well-
known results can be obtained for specific assumptions. This has been possible, since we were able
to overcome the restrictive assumption, crucial in classic framework, of exponentially distributed
duration of all steps. The non-Markovian description of gene expression obtained through this
new framework has permitted to tackle the problem in a more satisfying way and, in particular,
propose a more realistic model of gene expression, which includes realistic assumptions of protein
elongation step and protein dilution due to volume growth. Such a realistic model shows that if
on one hand the classic models have captured the qualitative behavior of the underlying biological
processes, on the other hand their quantitative results might have been inaccurate, resulting in
a limited predictive power. The MPPP framework has proved to serve as a testing platform,
allowing to quantify precisely the impact of different modeling choices, while keeping intact the
ability to obtain analytical formulas of statistics depending on the biophysical parameters.

The single-protein modelisation, although powerful, fails to describe the possible interactions
deriving from the simultaneous production of different types of proteins. For this reason, we
moved the first steps towards a modelisation of the production of many proteins, considering
interactions as the result of the competition for common resources. In particular, ribosomes
translate any type of messengers and turn to be present in limited and strictly controlled number
within a cell. In fact, the high cost in term of resources associated with the production of
ribosomes forces the system to have almost always active ribosomes translating messengers into
proteins. As a consequence, messengers compete against each other for the rare resource of
free ribosomes and the global production is affected. The system of production is studied via
a mean-field approach both in the underloaded and overloaded regimes of use of the ribosomes.
The multi-protein model brings a completely new approach in the domain and marks a new
direction in the investigation of protein fluctuations at the cellular level.

In conclusion, the thesis has focused on the study of the stochastic nature of gene expression,
by developing different models in order to progress towards a more realistic description of the
phenomena. All these studies have been conducted trying to put biology in the foreground, since
we believe these models represent a fundamental step in the investigation and understanding of
complex biological processes and are a complementary tool to biological experiments.
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Chapter 1

Introduction

Aussi la biologie est-elle, pour ’homme,
la plus signifiante de toutes les sciences;
celle qui a déja contribué, plus que toute
autre sans doute, a la formation de la
pensée moderne, profondément
bouleversée et définitivement marquée
dans tous les domaines |...]

Le hasard et la nécessité
JACQUES MoNoD, 1970

Nicolaus Copernicus proposed, in his De revolutionibus orbium coelestium, an heliocentric
model for the celestial objects. This theory led to a deep wound in the narcissistic simulacrum
that men built around the Ptolemaic model by putting away the man from the center of the
Universe.

The chance is then found to be responsible of the mutations and so of the evolution itself. If
the Theory of Evolution was well established and phenomenologically accepted since the end of
the XIX century, it required a physical theory of heredity in order to have a deeper acceptance
and solid foundations. This is the aim of the molecular theory of the genetic code, which tries
to connect concepts related to the chemical structure of the genetic material, the information
it contains and the molecular mechanisms for the morphogenetic and physiologic expression of
this information. The molecular biology has further pushed the man out of the center of the
Universe, redefining life in terms of molecular interactions.

In 1953, Watson and Crick proposed their helicoidal model of DNA structure, which, together
with subsequent works, has given insights on how genetic information is stocked in cells and how
it is possible to pass this information from a generation to the next. If DNA contains the
morphogenetic and functional information of an individual, the fulfillment of the cell project is
accomplished through the gene expression. The products of gene expression mainly consist of
proteins and functional RNAs in the case of non-protein coding genes such as ribosomal RNA
(rRNA) or transfer RNA (tRNA). The protein production is the central topic of this PhD work
and we will focus on its description via a mathematical modeling.

Since the early works of the 50’s, major advancements have taken place in the understanding of
gene expression leading to an extremely detailed biochemical model of the underlying processes.
However, if the description of the system is impressively highly detailed, there are still open
questions on the fundamental mechanisms, urging a systemic analytic description in order to
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identify the laws underlying gene expression. The encounter of different components is the
fundamental step common to all elementary biochemical reactions. This, together with the fact
that cytoplasm is a stiff disordered medium where different compounds move by diffusion, makes
the whole process inherently stochastic. Although the first indirect experimental evidences can
be traced back to the end of the 50’s [50], stochasticity has been clearly proven experimentally
only in recent years [40]. Noise has become a central topic in molecular biology, bearing new
challenges in order to reconcile the random biochemical reactions to the precise development of
organisms. It is clear that cells and in particular gene expression are robust with respect to
fluctuations both in the environment and in its fundamental components. If noise is firstly an
obstacle to the accomplishment of the genetic program, in some specific situations fluctuations
can be exploited, as in the case of the decision making process. However, despite observable
positive or negative consequences of noise, those mechanisms represent a small portion of the
whole picture and a characterization of the status of noise is still an open question.

Q: Before this knowledge how can we characterize the underlying stochastic process via a math-
ematical analysis?

The objective of mathematical biology is to extract information on the system and on its
specific mechanisms, via a mathematical description and characterization. Nevertheless, there is
a number of difficulties connected with gene expression due to the colossal number of elementary
steps and the mixing of deterministic and stochastic processes. Moreover, a complex interaction
pathway links different processes both at local and global scale making the analysis more and
more difficult. Hence the need to combine elementary steps into effective steps and focus on
a part of the system, once the level of detail has been decided and pertinent questions have
been formulated, with the necessity to be able to perform the analysis in some mathematical
framework.

If on one side experimental evidence and measures on the fluctuations in protein production
are recent, nevertheless the problem has been tackled since the end of 70’s and a quite large
literature has followed in subsequent years. These models of stochastic gene expression have
addressed the problem considering effective main steps in the production of a specific protein
under reasonable assumptions. These assumptions and this modeling approach have been pro-
posed when the process was not yet well studied and understood. A Markovian description of
the system has been then adopted, allowing a simplification of the analysis and leading to derive
analytic formulas of the mean and variance of the different processes modeled, but such descrip-
tion comes with a strong assumption, i.e. each step has an exponentially distributed duration.
If the obtained theoretical results are consistent with experiments with corresponding effective
biophysical parameters, however these models are “semi-quantitative”. In fact,if on one side it
is possible to find appropriate parameters to fit experimental data, however these models have
not been used in a predictive way, i.e. choose parameters beforehand and compare the outcomes
with the experiments.

If the Markovian description was adopted to simplify the mathematical analysis of the model,
the strong exponential assumption that comes with it has not been discussed in the light of the
findings of the last decades. However, in order to investigate the pertinence of the Markovian
description and of the strong assumption which comes with, we are forced to leave such classic
framework for a more general one. The aim of the thesis work is on one side to revisit the
reference model of stochastic gene expression [54] and discuss the assumptions with respect to the
knowledge acquired in the last years and, on the other side, to consider the coupling of different
proteins. The first objective lead us to introduce a new mathematical framework based on
Marked Poisson Point Processes (MPPP), in order to overcome the theoretical limitations of the
classic approach, providing a general context to test assumptions and mix processes of different



nature. The second objective is instead connected to the observation that all types of proteins
share common cellular machinery, such as ribosomes, present in limited numbers. The limited
availability of these resources lead to a rude competition between different protein production
chains. In particular, we analyze rigorously the impact of the competition of messengers for
ribosomes on the resulting fluctuations in protein copies and on the number of free ribosomes.

Presentation of subsequent chapters

Chapter 1: Introduction. In this chapter we give few elements of the complex biology that
underlies gene expression. In this perspective, this introductory biology-oriented chapter should
allow the non-biologist reader to better follow the next chapters. However, this chapter is not
intended to be exhaustive from the biological point of view, since the presentation of the biology
is functional to the following chapters. Important experimental results concerning stochasticity
in gene expression are then presented as well as a short description of few of the fundamental
models in the area. Few key concepts of stochastic gene expression are then recalled.

Chapter 2: MPPP description of gene expression. In this chapter we introduce the
MPPP mathematical framework and derive a non-Markovian description of the gene expression
of a single protein based on a three-stage model. Analytic formulas of mean and variance of the
various modeled processes at equilibrium are derived under general assumptions. Tests in this
first approach of possible choices of general steps point towards a counter-intuitive result in terms
of protein fluctuations: if the exponential duration of one step is replaced with a deterministic
one, the corresponding fluctuations in protein number result increased.

Chapter 3: Realistic model of gene expression. The framework introduced in Chapter
[2] is used to build a realistic model of gene expression, the four-stage model, including the
supplementary step of the protein elongation step and the description of protein dilution due to
volume growth. It is then discussed the choice of realistic biological assumptions and the model
is therefore specified and analyzed. In particular, the counter-intuitive result of Chapter [2] is
recovered when analyzing the impact of protein elongation on the overall fluctuations. Moreover,
the formulas derived with an accurate description of protein dilution prove that the formulas in
literature are oversimplified and rely possibly on too strong assumptions.

Chapter 4: Multi-protein model. In this chapter the problem of the interactions deriving
from the simultaneous production of many proteins types. Unlike the previous chapters, where
the amount of free ribosomes is constant, we suppose ribosomes are present in limited number
and consider their switching between actively elongating proteins and freely diffusing in the
cytoplasm. Messengers compete against each other for the (rare) resource of free ribosomes and
the protein production is globally affected. The system of production is studied, by considering
a large number of protein types with specific concentrations, via a mean-field approach both
in the underloaded and overloaded regimes of use of the ribosomes. In particular, under the
realistic biological assumption of overloaded ribosomes, we find that at equilibrium the number
of free ribosomes follows a Poisson distribution and the rate of production of each protein type
is obtained.

Appendix. Appendix[A]recall few fundamental definitions and theorems used in the manuscript.
Appendix [B] is devoted to recalls of biology. In particular, Section gives a more-in-depth
description of few fundamental biological mechanisms, while Section [B:2] serves as a biological
glossary, describing few specific cellular components.



4 CHAPTER 1. INTRODUCTION

1.1 Gene expression: main mechanisms

The rest of the chapter should introduce the non-biologist reader to the topic of gene expression
and its modeling, through a tour of the main biological mechanisms involved and the state-
of-the-art of experiments and models. However, this is not intended to be exhaustive and the
biological mechanisms described are oversimplified, since they are introduced in the perspective
of the mathematical modeling of the next chapters.

In 1953 James D. Watson and Francis Crick published in the journal Nature an article [72]
in which they expose their model of the structure of the DNA, which featured the anti-parallel
double helix held together by hydrogen bonds between pairing nucleotides. In those turbulent
years, theoretical biologists proposed models using the partial information at their disposal,
years before the first experimental results of molecular genetics were available. All the models
and mechanisms proposed were based on the information that could be extracted by indirect
observations and this was also the case for Watson and Crick, who used X-ray diffraction images
to propose their model.

The Watson-Crick model provided also key insights to explain how genetic information is
transferred from a generation to the next and how this information may be spread within the
cell. The authors, in the Nature article [72], write

It has not escaped our notice that the specific pairing we have postulated immediately
suggests a possible copying mechanism for the genetic material.

1.1.1 Central Dogma: fifty years of molecular biology

The central dogma of molecular biology, that was first stated by Crick in 1958 [II], was then
re-stated by the author in 1970 as follows:

The central dogma of molecular biology deals with the detailed residue-by-residue
transfer of sequential information. It states that such information cannot be trans-
ferred from protein to either protein or nucleic acid.

The two main concepts that were produced in the late 50s were those of sequential infor-
mation and of defined alphabets. At the time was already known that proteins have a specific
three-dimensional configuration, which affects the activity of the protein itself. The researchers
decoupled the problem supposing that the amino acid chain was able to fold itself up, reducing
the problem to a one dimensional one and allowing to focus just on the assembly of the polypep-
tide chain. It was well-established at that time that the alphabet of the proteins is composed by
twenty amino acids, but it was unknown the mechanisms that lead to their encoding.

At that time it was well known that DNA, RNA and proteins play a leading role in gene
expression and the central dogma is a possible solution to the problem consisting in the formu-
lation of general rules for the information transfer from a polymer with a defined alphabet to
another one.

Crick represents the flow of detailed sequence information from one chain to the other using
arrows, in a schema as in figure where all possible transfers are plotted. The transfers
could be divided in three group following the general opinion in the late fifties: those for which
that seemed to exist because of direct or indirect evidence, those which have no experimental
evidence nor a strong theoretical need and those which were unlikely to exist. Crick carries
out a progressive simplification of this scheme excluding first the processes in the last class and
validating those more likely to happen.
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(a) All possible flows of detailed sequence (b) Classification of the transfers by Crick
information in gene expression. in 1970 [12].

Figure 1.1: All possible flows are showed in figure @ Figure @ shows the picture resulting
in Crick’s paper [12]. The Solid arrows are “general transfers” (first class), dotted arrows are
“special transfers” (second class) and the absent arrows are the undetected transfers.

Using the classification made by Crick in 1970 [12], we can draw the schema shown in figure
Here the solid arrows represent the “general transfers” (first class), while the dotted arrows
are the “special transfers” (second class). The absent arrows are the undetected transfers.

The central dogma has to be read as a negative statement saying that there are no information
transfers from protein, stressing out which are the most likely transfers (solid lines) and which are
the probable ones (dotted lines). Nevertheless the central dogma does not say anything about the
machinery involved and the control mechanisms. It was an attempt to give theoretical insights
on the main principles which lead to the expression of a gene, using the partial information
available at the time and represents the very foundations of molecular biology.

Experiments have confirmed the correctness of the main principles stated by Crick and new
technologies have considerably increased the knowledge on the subject and have given a detailed
description of the underlying biochemical reactions. This descriptive approach seems to have no
end: finer mechanisms pop up when more accurate techniques are available and take their place
in the already complex scenario of gene expression.

Despite extensive researches in the field and the many knowledge acquired, little is known
about fundamental mechanisms and strategies underlying protein production, because of the
extreme complexity of the whole process and the stochastic nature of the elementary biochemical
reactions. For all these reasons, mathematical models represent a tool of investigation, in order
to isolate mechanisms and check hypothesis based on the acquired knowledge.

1.1.2 Gene expression: main biological mechanisms

The present section is devoted to a general short introduction of the main steps of gene expression
and of the main biological mechanisms which intervene in such complex process. This is not
intended to be exhaustive, but to introduce the basic terminology which will be used in the
following chapters. Specific biological mechanisms will be introduced through the manuscript
when needed.

Despite the Central Dogma gives the fundamental principles of information transfer in gene
expression in any cell type, the description of the process via mathematical modeling should
take into account the specificity of the cell types. In particular, models need to distinguish
between prokaryotic and eukaryotic cells, at least for specific mechanisms and for their different
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geometric organization. This PhD work focuses on prokaryotes and the subsequent modelisation
is therefore affected. However, we will make clear when a modeling choice is strictly connected
with prokaryotes; all other choices must be understood as common to both cell types.

Gene activation

Gene activation is the process which allows a gene to be expressed at a specific time. The way
this activation may occur varies a lot from gene to gene and from organism to organism. The
main mechanisms causing gene activation are the dissociation of a repressor and the association
of an activator.

A repressor is a DNA-binding protein that regulates the expression of a specific gene by
binding the operator, which is a segment of DNA that a regulator binds to. The binding of the
repressor blocks the attachment of RNA polymerase to the promoter and prevents the transcrip-
tion of the genes. If an inducer molecule is present, it can interact with the repressor and inhibit
its action by detaching it or preventing its binding to the operator.

An activator is a DNA-binding protein that regulates one or more genes by increasing the
transcription rate. RNA polymerase binds to the promoter region of the gene, forming a complex
which sometimes proceed to gene transcription. An activator recruits the RNA polymerase to
its promoter region.

If the two previous mechanisms are shared between
prokaryotic and eukaryotic cells, chromatin remodeling
is specific to eukaryotes. Chromatin is the complex of
DNA and histone proteins with which it associates. Hi-
stones are highly alkaline proteins found in eukaryotic
cell nuclei that package and order the DNA into struc-
tural units called nucleosomes. Chromatin on one side

serves as a way to condense DNA within the cellular L L0
- 1T
nucleus and, on the other side, as a control of gene ex-

pression. Raser and O’Shea [62] hypothesize that chro-
matin remodeling is the key regulation mechanism for
certain eukaryotic promoters.
Gene activation is a complex process resulting from
different mechanisms and it is gene and organism spe-
cific. Despite genes may show different states, in first
approximation it can be described as a two-states pro-
cess, i.e. the gene may show only two possible states,
active or inactive. Inactive gene
The number of copies of a gene within bacteria is a
fundamental factor and should be considered in a model
describing the expression of a specific gene. When bac- Figure 1.2: Gene activation. When the
teria are growing they duplicate their DNA, that leads repressor (red cartoon) binds to the
to a number of at least two copies per gene, since the gene, it inhibits the mRNA transcrip-
genetic information has to be split between daughter tion while the gene is activated when
cells. the repressor unbinds.

Active gene

Remark. Bacteria are often obliged to have more than

two copies of DNA, since the duration of replication (~ 40 minutes) is sometimes longer than
cell cycle time, which is ~ 20 minutes in Escherichia coli in fast growth conditions. For this
reason, in “normal” growth conditions we observe DNA regions with one, two or four copies of
genes, while in “regeneration” regime, where the cell division cycle takes about 20 minutes, we
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have up to eight copies of genes localized closer to the origin of replication.

Transcription

The transcription process can be described through the following fundamental steps:

1. initiation: the polymerase binds to one of the specificity factors ¢ to form a “holoenzyme”
in order to attach to a specific promoter in the DNA. The more similar is a sequence to a
“consensus sequence” the stronger is the binding to the DNA. After the first bond has been
synthesized, the RNA polymerase must clear the promoter (this phase is called promoter
clearance). During this time it may occur that a truncated transcript, called abortive
initiation, is released;

2. elongation: after the promoter clearance, the polymerase assembles in a controlled fashion
the mRNA chain;

3. termination: the p-independent transcription termination or the p-dependent transcrip-
tion termination. The first involves terminator sequences within the RNA that signals the
RNA polymerase to stop. The latter uses the p terminator factor to stop RNA synthesis.

For further details we refer to Appendix

.

B ———
Initiation Elongation

Figure 1.3: Transcription. The polymerase binds on the active gene and transcription initiation
takes place. Once the initiation step is completed, the polymerase starts copying one DNA strand
and elongates the mRNA, which is eventually released into the cytoplasm.

The transcription regulation controls the frequency and the number of produced messengers.
The gene transcription is subject to many control mechanisms and we just recall the most
common. The specificity factors alter the specificity of RNA polymerase for a given promoter or
set of promoters, making it more or less likely to bind to them, i.e. sigma factors in prokaryotic
transcription. Other regulations are made at gene level and have been enumerated in the previous
section. In post-transcriptional phase the regulatory machine controls the number of mRNAs
that are translated into proteins. The stability and distribution of the different transcripts is
regulated (post-transcriptional regulation) by means of RNA binding protein (RBP) that controls
the various steps and rates of the transcripts.

Prokaryotic and eukaryotic transcription shows peculiar characteristics. In fact, since there
is no precise spatial organization in prokaryotes, translation step can start when the polymerase
is still building the messenger. This is not possible in eukaryotes since transcription occurs in
the nucleus and, therefore, the messenger needs first to be exported out of the nucleus in order
that the translation can take place.
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1.1.3 Translation

Schematically prokaryotic translation consists of the following steps (see Figure for schematic
representation):

1. initiation: which involves the assemblage of components such as ribosomal subunits (50S
and 30S), mRNA, the first aminoacyl tRNA, GTP (energy) and initiation factors (IF1,
IF2, IF3). The tRNA (transfer RNA) serves as the physical link between the nucleotide
sequence of mRNA and the amino acid sequence of proteins. In particular, the aminoacyl
tRNA (or charged tRNA) carries an amino acid to the ribosome as directed by the three-
nucleotide sequence (codon) read by the ribosome. The ribosome has three sites: A, P and
E sites. The A site is the entry-point for aminoacyl tRNA, except for the first that binds
directly on the P site. In the P site the peptidyl tRNA is formed, i.e. a tRNA bound to
the peptide being synthesized, and in the E site the uncharged tRNA detaches from the
ribosome;

2. elongation: it is a controlled process in which the polypeptide chain is elongated with
the addition of amino acids to the carboxyl end of the growing end. Elongation involves
several elongation factors, a conformal change, bond formations, etc. The aminoacyl tRNA
attaches in the A site, then moves to the P site where the polypeptide is attached to the
growing chain and the uncharged tRNA is moved to the E site where exits from the complex;

3. termination: occurs when one of three terminating codons moves to the A site. These
codons are not recognized by any tRNA but by the so called release factors. These factors
trigger hydrolysis of the ester bond and release the newly produced protein in the cytoplasm.
The ribosome recycling step is responsible of ribosome disassembly in such a way to be
ready to start translation of other messengers.

Translation is carried out by more than one ribosome simultaneously. Because of relative large
size of ribosomes, they can only attach sites on mRNA at least 35 nucleotides apart. The so
called polysome is the complex of one mRNA and a number of ribosomes attached to it.

g §E Initiation g ; Elongation

Figure 1.4: Translation. The ribosome binds on the messenger and translation initiation takes
place, involving a series of controls in order to assure the right progress of translation. Once
the initiation step has completed, the ribosome starts the elongation of the protein chain and
eventually releases it into the cytoplasm.

The translation of mRNA can also be controlled by a number of mechanisms, mostly at the
level of initiation. Recruitment of the small ribosomal subunit can be modulated by mRNA
secondary structure, anti-sense RNA binding or protein binding. In both prokaryotes and eu-
karyotes there is a large number of RNA binding proteins, which are often directed to their target
sequence by the secondary structure of the transcript. This structure may change depending on
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certain conditions, such as temperature or the presence of a ligand. Moreover, some transcripts
act as ribozymes and self-regulate their expression.

mRNA degradation

The process of messenger degradation is an essential function for recycling nucleotides and for
regulating the level of gene expression and is performed by RNase. The decay process occurs on
short time scales, i.e. the typical half-life of a messenger is of about two minutes at 37°C in most
cases. This rapid decay process serves to permit to continuously adjust the number of specific
messengers to the population needs depending on the specific environmental conditions.

The decay process consists of two main steps [14]:

1. initiation: primarily due to endonucleolytic attack mediated by the RNase E enzyme in
E. Coli [4].

2. break-down: following the initial endonucleolytic cleavage, which is thought to inactivate
the message for translation. Additional cleavages take place and result in breakdown of the
mRNA into fragments.

Experiments have shown that prokaryotic mRNAs are more unstable and have shorter lives
than in eukaryotes. This is probably connected to the absence of a physical separation be-
tween the sites of RNA synthesis and RNA function; decay is possibly the major form of post-
transcriptional control in these organisms. The stability of the mRNA is connected also to the
competition of RNases and ribosomes to bind to messengers [58], i.e. genes with a weak affin-
ity of ribosomes and mRNAs show higher levels of mRNA degradation, since ribosome binding
protects the messenger from decay [3] [, [74].

Protein decay: proteolysis and volume dilution

Two main mechanisms of profoundly different nature are responsible of the decay of proteins:
proteolysis and volume dilution.

The first mechanism is analogous of the degradation mechanism of messengers, but it is now
mainly used to destroy possibly dangerous proteins, such as misfolded proteins, since protein’s
structure determines not only its specific cellular function, but also its intracellular stability. The
degradation machinery differs between eukaryotes and prokaryotes, as shown in the review article
of Goldberg [2I]. Prokaryotes, in particular, have developed an elaborate proteolytic machinery
to quickly destroy misfolded proteins. If protease is the enzyme that conducts proteolysis, nev-
ertheless, the machinery is much more complex, since if proteases were free to act in the cytosol,
“they would quickly convert the cell into a bag of amino-acids” [21]. In any case, the proteolysis
appears as a control mechanism to prevent the release/survival of malfunctioning proteins or to
remove damaged proteins. Actually, proteins are continuously subjected to stress, such as tem-
perature, that eventually causes the protein denaturation. The denatured protein needs to be
removed since its functioning has been compromised. This aging phenomenon of proteins occurs
on long timescales: the average protein lifetime is usually bigger than the protein cell cycle.

The second mechanism, protein dilution, is of completely different nature. Both prokaryotic
and eukaryotic cells double their internal components in order to give rise to two daughter
cells. The volume growth associated to the doubling affects the concentration of each cellular
component because of volume dilution. Intuitively, if we stop the production of proteins at some
point, their concentration will drop down as a consequence of the increase of cell volume. This
mechanism is therefore very different from the biochemical interactions which lead to proteolysis.
Dilution is strictly connected with the cell growth rate and it turns out to be continuous and
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deterministic, since growth rate is fixed, as long as environmental conditions are kept unchanged.
In normal conditions and for stable proteins, dilution is the leading degradation mechanism.

1.2 Stochasticity in gene expression: experiments

Randomness and determinism are constantly present in the development, growth and life of cells:
random biochemical reactions have to be reconciled to the precise development of organisms. The
biological implications of the stochastic fluctuations in gene expression has boosted researches in
the field, that have multiplied both theoretical and experimental works.

If the stochastic fluctuations were often taken apart by considering statistics on large numbers
and reducing the analysis to deterministic models, experimental scientists have become more and
more aware of the inherent stochastic nature of the gene expression. Researchers have found that
variability among cells in a genetically identical population is strongly connected with fluctuations
in the expression of single genes. Stochasticity in the protein production is often just considered
as a danger for the normal development of organisms. Nevertheless, some living organisms may
exploit the stochastic fluctuations in the expression of genes to introduce phenotypic diversity
in genetically identical cells. This variability can be advantageous in specific cases, like face to
drastic variations in environment or stress conditions, but it can also be very dangerous when it
turns out to be an obstacle to the realization of the cell program.

We focus on experimental results concerning stochasticity in the gene expression, from experi-
mental evidences of the stochastic nature of the phenomenon to negative or positive consequences
of fluctuations. Few models are considered here and we refer to Sections[L.3]and 2. Alfor a detailed
description.

In the late 50s Novick and Weiner [50] showed that the production beta-galactosidase (3-
galactosidase or (B-gal) was variable and random in individual cells, but those studies were
hindered by the lack of reliable measures and were not considered conclusive to prove stochasticity
in gene expression. One of the first studies which use an expression reporter in single cells was the
work of Ko et al.[40] in early 90s. In this work researchers have examined the effect of different
doses of glucocorticoid on the expression of the transgene encoding 3-gal and have found a large
cell-to-cell variability by directly measuring the amount of protein in different cells. Moreover,
as in Novick’s work, increasing the dose does not increase uniformly the expression in every cell,
but it increases the frequency of cells displaying high level of expression. The dose dependence
has been interpreted by authors as a change in the probability that an individual cell would
express the gene at high level, concluding that the gene expression is a stochastic process.

In 2002, Ozbudak et al.[5I] studied the fluctuations of gene expressing green fluorescent
protein (GFP) driven by an inducible promoter in Bacillus Subtilis. The authors tune the rate of
transcription by varying the level of induction of the promoter. Translation rate was modulated
by introducing mutations in the ribosome binding site (RBS). It results that the transcription
and translation rates affect the protein fluctuations and the results were interpreted using the
theoretical model proposed by Thattai and van Oudernaarden [71]. This model predicts that the
protein relative variance depends on the transcription rate, but it remains unchanged because of
variations in the rate of translation.

Elowitz et al.[T6] introduced the dual-reporter technique to measure the stochastic fluctuations
of proteins in Escherichia Coli. This technique allows to express two different fluorescent proteins,
the CFP and YFP, from identical promoters. Since the two proteins share the same regulatory
control, the differences between their expression can be attributed to the “intrinsic" stochasticity
of the gene expression process, because of the random microscopic events which govern each
reaction. On the other side, the “extrinsic" noise, which derives from cellular heterogeneity,
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such as regulatory proteins, ribosomes and polymerases, or stochastic events in upstream signal
transduction, will affect both proteins. We refer to Section for a deeper analysis on these
concepts. Authors showed that extrinsic noise represents a non-negligible portion of the overall
fluctuations and stressed the necessity to take into account both sources of noise when controlling
or minimizing the fluctuations of a system.

Jonathan M. Raser and Erin K. O’Shea [62] used the same technique to study gene expression
in yeast. The authors analysed three different promoters in the budding yeast Saccharomyces
cervisiae: the PHOS5, PHOS84 and GAL1 promoters. The total noise on the three promoters was
found to be dominated by the contribution of the external factors, such as cell shape and size,
cell cycle stage or gene-specific signaling. The authors reduced these possible factors of hetero-
geneity by using experimental techniques, like flow cytometry, used to isolate sub-populations
with homogeneous sizes. The extrinsic noise resulted to be diminished, but non dramatically.
Moreover the extrinsic noise was found to be not promoter-specific, since it resulted correlated
when the two fluorescent proteins were associated with promoters that are distinctly regulated.
This leads to hypothesize that the extrinsic noise will cause proteins to be maintained in constant
relative concentrations. In order to analyze the noise in eukaryotes, the authors use a three-stage
model similar to the model presented by Paulsson [54], see Section for details. The authors
claim the applicability of the three-stage model to both prokaryotes and eukaryotes, the main
difference being the specific mechanisms of gene regulations. Relative differences in the parame-
ters can lead to different scenarios which can be biologically interpreted. It can be easily showed
that two promoters can produce the same average number of mRNAs with different fluctuation
characteristics in this number: a promoter that undergoes frequent activation processes followed
by inefficient transcription will show smaller variability with respect to a promoter which has
rare activation processes followed by stable active state. The authors find three characteristic
regimes of gene regulation, defined in terms of the rates of the three-stage model and which result
in different noise profiles. In this paper, extrinsic noise seems to be predominant with respect to
intrinsic and seems to be of global nature, i.e. it affects the expression of any gene.

A global analysis of the production of proteins in Saccharomyces cerevisiae was conducted
independently by Bar et al.[2] and by Newman et al.[48] in 2006. Newman and collaborators
[48] studied fluctuations in more than 2500 proteins, using the pairing of high-throughput flow
cytometry and a library of GFP-tagged yeast strains to monitor protein levels at single cell reso-
lution. This new strategy for large-scale protein abundance measurements allowed the scientists
to deduce that abundance is the major factor governing protein variation, which most likely
originates from the stochastic production and destruction of mRNAs. Bar and collaborators
[2] studied 43 different proteins under 11 experimental conditions, founding that the variance is
roughly proportional to the mean, as predicted by models of stochastic gene expression. Highly
expressed genes seem differentiate from this trend since their variance appears uncorrelated with
respect to abundance, as showed also in [48]. The researches point to low-copy mRNA fluctu-
ations and gene regulation as the main responsible for protein fluctuations, which is consistent
with the scaling property observed. Moreover, using a dual-reporter diploid strain in similar
fashion than Elowitz [I6], they show that intrinsic noise contributes substantially to the overall
protein noise in the case of proteins with intermediate expression level, while it is much smaller
than extrinsic fluctuations for highly produced proteins. Both works [48] and [2] stress how pro-
teasome genes are characterized by low noise levels, while stress proteins are very noisy, which
indicates a precise structure in protein-specific variation and suggests that noise levels have been
selected to reflect costs and potential benefits.

The works of Yu et al.[75] and Cai et al.[§] have instead focused on the development of
techniques allowing real time observations with single cell sensitivity, in order to analyze gene
expressed at low levels. (-galactosidase is the protein studied in both works, since this is the
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standard reporter for gene expression both in prokaryotes and eukaryotes. A single molecule
B-gal can produce a large number of fluorescent product molecules by hydrolysing a synthetic
fluorogenic substrate, which makes [-gal an high-sensitivity cellular reporter. However, the
drawback of its use is the fast diffusion of the fluorescent products which are quickly dispersed.
Cai and collaborators [8] propose to trap the cells into a microfluidic device: cells are trapped
into closed microfluidic chambers, such that the fluorescent products expelled from the cells can
accumulate in the small volume of each chamber. Yu and collaborators [75] suggest another
technique: they designed a fusion protein consisting of YFP (yellow fluorescent protein) and a
membrane protein (¢sr), slowing down the dispersion of fluorescent material and allowing to take
measures. Both works were performed on FEscherichia coli cells with a target polypeptide ex-
pressed under repressed conditions. Thanks to the use of single-molecule fluorescence microscopy
on mRNA [61], 22] [42] and on proteins [75] [§], Taniguchi et al.[70] have performed a quantitative
system-wide analysis of mRNA and protein expression in individual cells in FEschierichia coli,
see Figure The authors, after normalization to account for cell size and gene copy number
variation due to cell cycle, have measured protein abundances ranging between 10~! and 10*
copies per cell. They found that while the noise scales with protein abundance for low expressed
proteins < 10, as in [2] 48], this is not the case for proteins produced in higher quantities, where
noise reaches a plateau suggesting that each protein has at least 30% of variation. They made
striking real-time measurements of mRNAs; using FISH technique, and proteins at same time on
137 strains for high expressed proteins, analyzing both mRNA production and mRNA-protein
correlation.

Noise and, in particular, intrinsic noise is an obstacle to the genetic program since the stochas-
ticity of biochemical reactions leads to uncertainty in the resulting amount of proteins which could
be deleterious to the achievement of the cell program. On the other hand, in specific cases these
fluctuations positively exploited by cells, as a source of heterogeneity or as fundamental tool of
decision making.

Starting with positive effects, fluctuations in gene expression are pointed as a major mech-
anism to obtain different phenotypes in an identical population. This differentiation can lead
to the spring of sub-populations which are committed to different responses to environmental
changes. Cell variability can be boosted in the presence of networks that can produce mutually
exclusive profiles such as ON and OFF expression of a gene: small variations in the gene ex-
pression can not cause the switch from one state to the other, but rare and large fluctuations
can lead to a transition. This is the case, for example, of the lysis - lysogeny decision in lambda
phage-infected E. Coli [43,[29] or of the lac operon in E. Coli [52]45] or the galactose utilization
network in yeast [33]. In particular, for the lysis - lysogeny decision the stochastic effects in
the expression of some regulatory factors could explain the “decision" of cells to take the lysic
or lysogenic pathway. The reason to choose for a stochastic based decisional network can be
connected with the performances of the resulting strategy. For example, in the presence of food
cells can adopt two different strategies: they can sense food in the environment and then activate
the metabolic machinery or they can stochastically decide to activate the metabolic networks in
some sub-populations in anticipation of possible food arrival. The first strategy is more effective
but it can be slow, while the second sacrifices few resources for a quick response. Researchers
have shown how the stochastic switching strategy could be a good alternative to the sensing
machinery in the cases in which stochastic fluctuations were more or less synchronized with the
environment fluctuations [I]. Cellular stress, such as lack of food or exposure to antibiotics,
is another case where stochastic decision could explain the observed behavior in bacterial pop-
ulations, as shown in the case of competence in Bacillus subtilis [42), 68]. In particular, it is
shown how the reduction of fluctuations results in lower percentage of competent cells, reducing
the chances of the survival of the population under stress conditions. Although the utilization
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Figure 1.5: Stochasticity in gene expression. Quantitative imaging of a YFP-fusion library.
Figures @ and @ are representative fluorescence images of two library strains, with respective
single-cell protein level histograms fitted to gamma distributions with parameters a and b.
The cytoplasmic protein Adk uniformly distributed intracellularly. @The DNA-binding protein
YjiE with clear intracellular localization. Adapted from [Taniguchi et al. ﬂm [70].

of noise for specific mechanisms, noise in gene expression has to be thought as deleterious for
organisms and for gene expression in particular, which reveals a robustness with respect to fluc-
tuations. The genome-wide works of Newman et al.[48] and Bar et al.[2] point how the variability
is gene specific, in particular stress-genes, which are non essential for cell functioning, show high
fluctuations, while proteasome genes are much less variables. This allocation of noise indicates
that different production strategies have been selected and are possibly the result of the tradeoff
between low level of noise in the protein production and the cost in term of resources of producing
a large number of proteins at any time.

1.3 Intrinsic and extrinsic noise

Biological systems are constituted by individuals interacting in changing environments. In par-
ticular, fluctuations in gene expression are due to the probabilistic nature of the underlying
biochemical reactions (“intrinsic noise”) as well as to the effect of environment on this production
(“extrinsic noise”). The measured fluctuations are therefore the result of the combined effect of
these two sources of randomness, which lead to a system hardly treatable. Decomposing noise
into separate terms, even if it does not provide information on the latent mechanisms, it al-
lows to evaluate models without the obligation to specify simultaneously extrinsic or intrinsic
mechanisms.

The concepts of intrinsic and extrinsic noise were introduced by Michael B. Elowitz et al.[16]
and Swain et al.[69] in 2002. The stochasticity inherent in biochemical processes underlying
gene expression, such as transcription and translation, is referred to as intrinsic noise, while
the fluctuation in local environment or in the states of any other cellular factor that affects
gene expression results in extrinsic noise. We make these definitions more clear by describing
the simple and ingenuous experimental approach designed by Elowitz et al.JI6] to perform this
separation. The researchers used two equivalent independent gene reporters placed in the same
cell and observed the two copies simultaneously. Correlations between the outcomes of the
two reporters reflect the influence of the common environment, ezxtrinsic see Figure [1.6a] while
differences in their expressions are the consequences of the random microscopic events governing
each reaction, intrinsic see Figure

If X denotes the number of proteins of interest in a given cell, we can always write the cell-to-
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Figure 1.6: Intrinsic and extrinsic noise. Two independent identical promoters marked with
CFP (green) and YFP (red) controlled by the same regulatory sequences. @ In the absence of
intrinsic noise, the proteins of the two promoter experiment fluctuate in a synchronous fashion,
because of changes in environment or on global factors impacting gene expression, i.e. number
of free ribosomes or gene copy number. This correlated fluctuations lead to a population with
same amounts of proteins in each cell, even if this amount could change from cell to cell because
of extrinsic factors. @ When considering the random nature of biochemical reactions the levels
of the two proteins vary in uncorrelated fashion and produce eventually heterogeneity in the cell
population. Figures from Elowitz et al.[16].

cell variability o3 by conditioning the data on the state Z of the extrinsic variables, i.e. number
of polymerases, ribosomes, ... Therefore, the cell-to-cell variability can be decomposed as

a§(: <U§(\z> + J(2X\Z> ) (1.3.1)

——
unexplained by Z  explained by Z

where we used the notation of [27] and where we used the law of total variance. In particular,
<a§(|2> is the variance of the random variable X in the subpopulation characterized with extrinsic
variables Z and the angular brackets denote the averages over all such subpopulations. The
term 0'<2X‘2> is the variance of the conditional expectation of X given Z. The decomposition
is equivalent to the decomposition in the original theoretical paper of Swain et al.[69].
However, conditioning on the state of the environment captures the correct contributions only
under the case of slow environmental fluctuations, but it is not well suited in the case of dynamic
environment.

The main issue of decomposition is that it looks at the environment at a precise point
in time, but the whole history matters and, to keep track of it, Hilfinger et al.[27] propose a new
decomposition

0% = (0X,1z00.0) T O xizi0.0); (1.3.2)
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where the first term in the right hand side is the variance of X; in a subpopulation sharing
an environmental history Z[0, t] averaged over all possible histories and the second term is the
variance of the conditional expectation of X; given a history Z[0, t], where ¢ = 0 corresponds to
the infinite past. In ergodic systems, the term o2, can be interpreted as the time variation of the
average, while o2, results the fluctuations around the average. By applying the decomposition
to the two-promoter reporter, see Figure we obtain that Cov(X,Y) = 02, where
X and Y are the numbers of the two identical and independent reporters in the same cell.
This brings back the original ideas of Elowitz et al.in [16], where they interpreted the extrinsic
contribution as the correlation between the two reporters, while the intrinsic noise is seen as
uncorrelated fluctuations of the reporters under investigation.
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The terms intrinsic and eztrinsic remind immediately to “inside” and “outside” of a specific
system. Therefore, their meaning depends on the definition of the system and the environment,
as pointed out by Paulsson [54] and Hilfinger [27], i.e. if we consider the proteins as a system,
then the contributions of gene activation/deactivation and of mRNAs on the protein fluctuations
can be classified as extrinsic, while all these fluctuations are intrinsic as long as we consider them
in the system under analysis. From a biological viewpoint, this noise classification could be
done according to the importance of a cellular compound for the gene expression. Nevertheless
in such a classification, ribosomes should be more likely considered intrinsic, since they are
essential to gene expression, while gene activation/inactivation may result from the regulation
machinery making it dependent on the state of the cell. The intrinsic noise could be connected
to the specificity of a protein with respect to the others. More in detail, the specificity of the
fluctuations of a protein comes from its birth and death processes and by its average number,
by its messengers fluctuations and, lastly, by the specificity of the activation/deactivation of
the relative gene. This last process can be less specific for some proteins, since it happens that
certain genes have a common regulator which can affect all genes in an operon (see Section
for details). Operon regulation may lead to complex correlations in the expression of different
proteins. Moreover there are fundamental factors of gene expression which are commonly shared
as ribosomes, polymerases, tRNAs, amino acids, ... For these reasons, when analyzing different
sources of noise, it is necessary to clearly define the system under analysis.
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Figure 1.7: Intrinsic and extrinsic contributions to noise with respect to protein concentration.
Noise for proteins produced in small quantities scales with the inverse of protein abundance, as
predicted by theoretical models of intrinsic noise, see [54), 57, [7T] and results in Chapters [2[ and
However, it reaches a plateau for proteins produced in high quantities, as shown in the plot.
Figures from Taniguchi et al.[70)].

In 2005 Rosenfeld et al.[66] focused on the dynamic evolution of fluctuations and were able
to estimate the time scales of both intrinsic and extrinsic noises. Extrinsic fluctuations exercise
their effect on the cell-cycle time scales, i.e. about 40 minutes, while intrinsic noise intervenes
on shorter time scales, less than 10 minutes. The slow dynamics and the amplitude of extrinsic
fluctuations cause the genetic networks to have a memory of about one cell cycle.

Large scale experiments have investigated the gene expression at large scale [2, 48] [70]. Despite
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differences of the organisms under analysis or quantitative differences in the results, all studies
show that at low or intermediate expression levels the intrinsic fluctuations are relevant, while
extrinsic fluctuations are prevalent for highly expressed genes. In particular, when intrinsic noise
is relevant the noise scales with protein abundance, while it reaches a plateau when extrinsic
noise is predominant, see Figure [I.7] for details. The extrinsic noise accounts for a large number
of possible fluctuations and can be divided into global, i.e. events that affect expression of all
genes, and gene specific, where for example fluctuations of a particular transcription factor affect
the expression of one specific gene. The large scale experiments point to global effects of noise
affecting all measured proteins, for this reason the noise is associated to fluctuations in cellular
components such as polymerases, metabolites and ribosomes.

In conclusion, the concepts of intrinsic and extrinsic noise are important when dealing with
experiments, since they permit to separate different sources of noise and allow to analyze in-
dependently the two components using specific modeling. However, these concepts do not give
any help in the characterization of the underlying mechanisms and further modeling is needed to
understand in deep the major steps affecting gene expression both at the level of a single protein
and of the whole cell.

1.4 Stochasticity in gene expression: models

Stochastic models of gene expression have been proposed long before the first experimental
evidence of the stochasticity of protein production. The works of Rigney and Schieve [1977] [64]
and Berg [1978] [5] in the late seventies are the first papers proposing a stochastic modeling of
gene expression.

At the time the experimental techniques did not allow to measure quantities in single cell, but
the approach was to measure the number of proteins by averaging over a subpopulation. This
approach clearly do not allow to take into account the eventual fluctuations between the individ-
uals of a bacterial population. On the other hand, few experiments aimed to show fluctuations in
protein production by indirect means, as done by Novick in [1957] [50], and there was a growing
belief that the gene expression is a complex stochastic process. This theory was corroborated by
physical reasons such as the fact that the chaotic motion of the molecules should reflect into fluc-
tuations in protein levels. Moreover, a direct visual evidence of fluctuations was the observation
of randomly distributed transcription initiations using electron miographs of microbial genetic
activity.

Given the previous context Rigney and Schieve proposed two models of gene expression. In
the simpler one, see [64], the authors consider the stochastic transcription as the main process
which affects the production of a specific protein. More in detail, they consider a two state
promoter:“occupied” status, when a polymerase is bounded on the gene, and “free” status oth-
erwise. They then compute characteristic quantities such as the average time of transcription
inter-initiation and, more importantly, they compute the average number of mRNAs initiated
per promoter and its variance at equilibrium. Moreover, they were able to recover few experi-
mental results, such as the fact that the average number of molecules per cell increases linearly
proportional to time, and to give a characterisation of the fluctuations around the mean value.
The description of the processes is Markovian: no matter of the history of the process, the state
at present is sufficient to determine the future path of our process. Despite the simplicity of
such model, Rigney and Schieve introduce the main tools of the classic approach. In fact, they
describe the time evolution of the probability density function via the Kolmogorov backward
equations, also referred to as master equation, and derive all the statistics of interest by using
classical tools of renewal theory, see [I0] for details. These results can also be derived by using the
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generating function approach whose main ideas will be recalled in Sections and . The
more complete model of Rigney [63] is a more detailed model of protein production in bacteria.
By using the same approach as in [64], the author proposes a complete description including
protein production and degradation and protein partitioning at cell division, thus proposing a
population description of protein production under constant conditions.

In the same period, Berg studied the production of proteins in a microbial population, see [5].
The aim of the author was to analyze more in detail the fluctuations of the number of proteins
at steady state, using a finer description of the process. The lack of single-cell experiments
made stochastic description the sole mean of investigation of the behavior of individual cells and,
because of its quantitative character, the characterisation of the fluctuations can bear information
on some mechanisms in protein production. Berg considered a microbial population at steady
state with specific doubling time, which is supposed to be deterministic. More in detail the
author described the dynamics of mRNAs, which, in turn, determine the number of proteins
produced in the population. Since the specific protein is assumed to be stable, the proteolysis is
not considered and the only mechanism which prevents an infinite accumulation is the binomial
partitioning of protein at cell division. The probability distributions of messengers and proteins
are then formally derived via the master equation and an explicit characterization of the average
and of variance of protein copy number is given by means of generating functions. All the results
depend on the cell age in the cell cycle and are valid for synchronously dividing cells. Moreover,
as for the work of Rigney and Schieve, the assumption of exponentially distributed durations
lead to a Markovian description of the whole process. One of the main results of the paper is the
confutation of the Poisson assumption for the produced proteins. In fact, up to that date, it was
supposed that the protein number follows a Poisson process. Berg showed how the fluctuations
of the protein number, when considering the transcription step, can be much wider of the Poisson
distribution, emphasizing the importance of an appropriate description of gene expression.
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Figure 1.8: Peccoud & Ycart model. The model describes the gene induction, represented as
a transition between active and inactive states, and the production of proteins. The level of gene
expression is proportional to the fraction of the regulatory factor in the activated state. Protein
degradation is considered as well.

Since the introduction of reliable single-cell experiments in the nineties such as the pioneering
work of Ko et al.[39], we have assisted to a renewed interest into stochastic models of gene expres-
sion. In 1995, Peccoud and Ycart [57], inspired by the work of Ko and collaborators, proposed a
simple Markovian description of gene expression. With respect to Rigney and Berg works, the
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authors focus on a simple gene regulation mechanism: the gene induction. An inducible gene is
normally silent, but can be expressed under the control of external signals, the reaction being
usually mediated by a regulatory factor. The activation of such regulatory factor is reversible
and is described as the switching between active and inactive states, as shown in figure [[.8] The
messenger dynamics are not considered, but the level of proteins is assumed to be proportional
to the time the gene spends in active state. The analysis is restricted to a single cell and it is
not considered the population dynamics, however the degradation of proteins allows the protein
number not to explode to infinity as long as we look at equilibrium dynamics. The statistics are
derived using similar tools as Rigney and Berg and, in particular, they give close formula for
the transient behavior of the mean number of protein copies and their variance. The asymptotic
statistics are then derived and a simple method of parameter estimation, using the information
that can be derived by experiments.

Paulsson in 2005 [54] gave a review on stochastic gene expression and proposed a model
which summarizes the main features of the models found in literature. As the works presented
above, the model aims to characterise the average and fluctuations of the number of copies of a
specific protein when equilibrium is reached. This model, with respect to the model of Peccoud
and Ycart presented above, considers also the dynamics of messengers. The described processes
of gene expression are the activation and deactivation of the gene by means of a repressor, the
dynamics of the corresponding mRNA and of protein. More in detail the gene can show two
different states, active and inactive, where the transition from one state to the other is supposed
to be exponentially distributed. If the gene is in active state, then it produces a new mRNA
following a Poisson process, which describes as well the mRNA degradation by means of RNase.
Proteins are translated by mRNAs and are degraded, both processes showing exponentially
distributed duration.
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Figure 1.9: Paulsson’s model. In this model gene activation/deactivation is described and is
represented here via the binding/unbinding of a repressor, in red. When the gene is in active
state it can undergo transcription and it produces a new mRNA at a certain rate. The mRNA
can then be translated by ribosomes, represented in blue in the figure, and produces proteins at
a certain rate. Both mRNAs and proteins can be degraded. Note that the duration of all the
described steps is exponentially distributed, which allows for a Markovian description of gene
expression and which is the fundamental common characteristic of classic modeling.
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1.4.1 Limits of classic models

In Section we have seen how the encounter of two cellular molecules is the fundamental
mechanism of the biochemical reactions underlying gene expression. The objective of mathe-
matical biology is to extract information on such system and on its specific mechanisms, via a
mathematical description and characterization. However, gene expression comprises a colossal
number of elementary steps, hence the need to combine those steps into effective steps and focus
on a part of the system. The intricate interaction pathway linking numerous processes both at
small and global scale contributes to the complexity of the system. The elementary processes un-
derlying gene expression are therefore grouped into critical steps, as we have seen in the Section
[2-A] where the main steps of transcription and translation are modeled globally as a first-order
chemical reaction, i.e. they are supposed to be exponentially distributed.

The models in literature, up to our knowledge, describe the duration of each step to be expo-
nentially distributed. Nevertheless, the suitability of these assumptions and of the description of
the gene expression process has been poorly investigated. We recall briefly the main ideas and
mathematical framework that stand behind classic models and the crucial assumption, that we
will refer to as “exponential assumption”.

The classic three stage model and mathematical toolbox

In the beginning of this section we have described few of the fundamental models used to describe
gene expression in literature, among which the three-stage model [54] is the reference model for
experimentalists. All these models share a common underlying description, that can be already
found in the first systematic and accurate studies of stochastic models for gene expression,
see Rigney [63] [64] and Berg [5]. In recent years the three-stage model has been used as the
fundamental structure in most well-known works of Shahrezaei and Swain [67], Paulsson [54]
and Peccoud and Ycart [57].

In these studies the promoter of the gene, corresponding to the specific protein of interest, can
be in one of two possible states, active or inactive, and the switching occurs up to a exponentially
distributed random time. Moreover, transcription, translation and the degradation of proteins
and messengers are supposed to be exponentially distributed (or geometrically distributed in
case of a discrete time setting).

The fundamental assumption of exponentially distributed duration of the various steps of the
three-stage model allows a Markovian modelling. Without loss of generality, we consider the
one gene case and denote with Y (¢) € {0,1} the state of the gene at time ¢, where Y (¢) = 1
indicates that the gene is active at time ¢, while Y (¢) = 0 if it is inactive. If we denote by Na(t)
the number of mRNAs and by N3(t) the number of proteins, then it turns out that (X(t)) =
(Y(t), Na(t), N3(t)) is a Markov process with values in {0, 1} x N? and this representation covers
most of the models described in the beginning of this section, see Section for further details.

As a consequence of the Markovian description, we obtain a system of linear differential
equations of order 1, the Fokker-Planck equations, of p(t, (y, na, n3)), i.e. the probability that X (¢)
is in state (y, n2,n3) at time ¢. The solution of the system has a unique stable point (7 (y, ng,ns3) :
(y,n2,n3) € {0,1} x N?), the invariant distribution of the Markov process. Although it is not
possible to obtain an explicit expression of the invariant distribution, it is still possible to get
information about the moments of the invariant distribution. In particular, since the coefficients
of the obtained Fokker-Planck equation are affine with respect to the variables n, the moments of
the invariant distribution satisfy a recurrence equation, giving an explicit expression for the first
two moments and, in particular, for the variance. This is the main theoretical result that has
been used in many papers in literature, see [54, [64] 5] [69, [7T], 57], and is possible exclusively under
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the assumption that all the durations of the main steps, such as mRNA and protein production,
are exponentially distributed.

Exponential assumption

We refer to exponential assumption when the time to produce a particular cellular component
and its lifetime are assumed to be exponentially distributed.

The exponential assumption is natural in the following simple situation: a large number of
trials are necessary to achieve some goal (like transcription or translation initiation) and each
trial requires some duration D and succeeds with probability ce. This scheme describes correctly
the duration of time to establish a binding and, therefore, it may describe properly the time
required for a successful binding of RNA polymerase to the gene and of ribosome to mRNA.

On the other side, this assumption may not be true if we consider the elongation time of an
mRNA or protein chain. In particular, the protein elongation results in an iterative procedure
in which each codon of the messenger chain is coupled with a particular tRNA, which adds
a new amino-acid to the growing polypeptide chain by means of ribosome, see Figure [[.10]
The insertion of a new amino-acid requires firstly the encounter of a charged tRNA and the
resulting distribution of the elongation step, which is the sum of exponentially distributed random

variables, is no longer exponential.
p@w '\ tRNA

Figure 1.10: Protein elongation.
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Another phenomenon is not described in the classic models: protein dilution. The volume
growth associated to cell doubling affects the concentration of all cellular component, and in
particular of proteins, because of dilution. During exponential growth phase, dilution is proven
to be the main cause of protein disappearing, while proteolysis play a minor role. Few papers
in literature [43] [71] affirm to consider dilution as the protein degradation mechanism, but its
description is wrong since it is modeled as a discrete stochastic process, while there is a wide
agreement on the fact that it is deterministic and continuous.

Unfortunately, there is no hope to include these two phenomena in the classic mathematical
framework, since this approach is strongly limited by the exponential assumption, which limits
the possibility to extend the existing models and to consider possibly more general mechanisms,
using the knowledge acquired on gene expression through experiments.



Chapter 2

MPPP description of gene
expression

The study of the fluctuations of the number of a specific protein in a cell is a crucial problem for
biologists in order to better understand the production of proteins and has already been tackled in
the past. In particular, researcher have obtained close-form analytic expressions of the mean and
variance of the number of copies of a protein for a simplified stochastic model of gene expression
(see Section for further details). A Markovian approach (via Fokker-Planck equations) is
classically used to derive analytic formulas of mean and variance of the number of proteins
at equilibrium, under the assumption that the duration of all modeled steps is exponentially
distributed. This assumption is, however, not completely satisfactory from the modeling point of
view since the duration of some steps is more likely to be Gaussian, if not quasi deterministic. In
such a setting, Markovian methods can no longer be used and a new approach allowing for more
general assumptions is required. This pathway is essential for obtaining a finer characterization
of the fluctuations of the number of proteins, which is of primary interest to understand the
general economy of the cell and to analyze the solutions imposed by the evolutionary force.

The present chapter is devoted to the introduction of a new description of gene expression
which uses the Marked Poisson Point Processes (MPPP) as the main mathematical tool and
allows to get rid of the exponential assumption. In the following sections, starting from the de-
scription of gene expression of the classic three-stage model (see Section, we will introduce
the technical tools of the MPPP description and derive the main theoretical results.

Plan of the Chapter. In Section [2.1] we describe the main biological processes, the effective
steps of the mathematical model and the limits of the classic models. The mathematical descrip-
tion of gene expression via MPPP is introduced in Section and the main general results are
derived in Section In Section [2.4] we derive results for specific choices of distributions.

The Appendix is devoted to the presentation of few techniques used in classical models.
In particular, the original approach of Rigney [64, [63] and the consolidated approach used in
more recent papers [64] [57] are presented.

2.1 Biology and mathematical assumptions

We present now the biological mechanisms which have motivated our description and show the
limitations of the classic approach, when it comes to include more realistic assumptions. In the

21
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biological section we will briefly recall the main steps of gene expression, for further details see

Section or Appendix [B]

2.1.1 Biological context

The gene expression is the biological process by which the genetic information contained into the
DNA of a cell is synthesized into a functional product, the proteins. The production of proteins
is the most important cellular activity, both for the functional role of its products and the high
cost in term of resources.

The information flow from DNA genes to proteins is a fundamental process, common to all
kinds of cells, and consists of two main elementary steps: transcription and translation. During
the transcription process, the RNA polymerase binds to an active gene, which corresponds to
a specific protein, and makes a complementary copy of a specific portion of a DNA strand,
a messenger RNA (mRNA). Each mRNA, which is a long chain of nucleotides, is a chemical
“blueprint” for a particular protein. The synthesis of the protein chain from the mRNA is
achieved by a large and complex molecule, the ribosome during the translation step. More
in detail, the ribosome binds to the messenger and assembles the polypeptide chain using the
mRNA as a template: to each mRNA codon, a triplet of nucleotides, corresponds a specific amino
acid, the fundamental brick of proteins. Once the polypeptide chain has been completed, the
amino acids fold spontaneously or with the help of chaperons, so that the protein may assume
its functional three-dimensional structure.

The gene expression is a highly stochastic process and results from the realization of a very
large number of elementary stochastic processes of different nature. The thermal excitation
affects many processes, since it implies for example the free diffusion in the cytoplasm in which
particles behave basically as if they were plunged into a viscous fluid. In a first approximation of
the production process, three fundamental mechanisms are combined in the protein production.
The first is the pairing of two cellular components freely diffusing through the cytoplasm and
is a direct consequence of the diffusion. The second mechanism is the “spontaneous” rupture
of such a binding, as the result of thermal excitation, and the subsequent release of the two
components. The last involved stochastic mechanism corresponds to the processing capability
of both polymerases and ribosomes and results in an active process, since it requires energy in
order to take place. The active steps associated to the polymerase and ribosome activity are
highly sophisticated and include, for example, dedicated proof reading mechanisms. In order
to proceed to transcription initiation, see Section [1.1.2] is required a successful pairing of the
polymerase to a specific DNA motif. Once initiation step has succeeded, the elongation step can
take place and this results as a series of specific stochastic processes, in which the polymerase
recruits one of the four nucleotides corresponding to the DNA template. In a similar fashion,
the translation step consists in the pairing/unpairing of ribosome to a specific sequence of the
mRNA and the subsequent elongation step. In particular, the protein elongation results in an
iterative energy-consuming procedure in which each codon of the messenger chain is associated
to a specific tRNA, which adds the corresponding amino acid to the growing polypeptide chain
by means of ribosome.

In summary, most of the elementary processes can be schematically seen as the encounter of
two components in a viscous fluid. However, the classic approach to gene expression modeling is
to group those elementary processes into critical steps as initiation, elongation and degradation,
which are common to both transcription and translation.
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2.1.2 Mathematical model of gene expression: three-stage model

The main steps of gene expression, as described shortly in the previous section, can be translated
into a mathematical model, whose main steps are now described. We will not dwell here in
detail, on the contrary, the aim of this section is to introduce the basic notation that will be used
throughout the chapter.

The total number of proteins of the specific type is a random variable P. The cell can be
seen as a complex system producing a given protein with an average concentration E [P], where
E [X] denotes the expected value of a random variable X. The protein concentration is directly
connected with the main parameters describing the different processes and this connection is
made explicit through a quite simple formula, as will be shown later on. We recall that the main
objective of the mathematical descriptions of gene expression is to derive explicit formulas of the
variance of the number of proteins in terms of the main model parameters.

Notation 2.1.1. If not specified differently, a process is said to occur at some rate A\, means
that the duration of such process is exponentially distributed with parameter \.

Gene activation. The initiation of
transcription is strongly regulated by wvari-
ous molecular mechanisms like the associa-
tion/dissociation of a repressor (see Figure )
and the association of an activator. The Active gene
gene is said “inactive” if a repressor prevents
the polymerase binding and is said “active”
otherwise. Usually the whole process is de- I T
scribed as a telegraph process for which a tran-
sition from inactive state 0 to active state 1
occurs at rate A\] and, similarly from state 1 AT AT
to state 0 at rate A;. Here the fundamental
assumption is that the distribution of these
steps is exponential. In a prokaryotic cell,
there may be several copies of a specific gene
and this fact has been included in few models
in the past years, see Paulsson [54]. Never-
theless, since we are interested in the variance
of the number of proteins, we will assume in

the following sections that there is only one Fjgure 2.1: Gene activation. The gene activa-

copy of the gene. The analogous result for the  tjon /deactivation occur at rate Af and AT re-
case with multiple copies is straightforward to spectively.

obtain since, by independence, the variance of
protein number is proportional to the number
of copies of the gene.

Transcription. A RNA polymerase binds on an active gene in an exponential time with rate
Ao. This effective rate measures the frequency of transcription initiation and takes into account
several physical parameters, including, for example, the affinity between the specific gene and
the polymerase. The distribution F» on R, of the lifetime o2 of a mRNA is assumed to be
general.

Translation. Similarly, the binding of a ribosome on an mRNA occurs in an exponentially
distributed time with rate A3, which measures the frequency of translation initiation and includes
also the affinity between messenger and ribosome. The distribution F3 of the lifetime o3 of the
protein is also general. The decay of the protein concentration occurs for two main reasons:

Inactive gene
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by proteolysis, i.e. the protein degradation into amino acids, or by cellular dilution, due to the
cellular volume increase of the bacterium during the exponential growth phase.

Remark. The analysis on gene expression of Chapters[2and [3]is focused on the complex process of
production of a specific protein. For this reason, the interaction of the specific protein production
chain with the production process of other proteins is not considered.

2.1.3 Limits of classic models: the exponential assumption

In the previous section we have recalled the main steps of gene expression and we have seen how
the elementary processes in the protein production can be seen schematically as the encounter
of two cellular components in a viscous fluid.

The classic approach is to group these elementary processes into critical steps, see Section
and will be recalled in Section In particular, the transcription (resp. translation) step
is modeled globally as a first-order chemical reaction, i.e. it is supposed to be exponentially
distributed. The same assumption is usually applied to the messenger and protein degradation.

Nevertheless, the suitability of these assumptions and of the chosen description of the gene
expression process has been poorly investigated. In this chapter we focus mainly on the model
assumptions and develop an alternative description of gene expression that allows to retrieve
analytic close formulas of mean and variance of proteins in a more general context.

Before introducing this new mathematical description of gene expression, we recall briefly
the main ideas and mathematical framework that stands behind classic models and discuss the
crucial “exponential assumption” that comes with.

The classic three-stage model and mathematical toolbox

The three stage model described in Section [2.1.2] is the fundamental approach to describe gene
expression in literature, as testified by the theoretical research on this model and its large use by
experimentalists. The key steps of this description can be already found in the first systematic
and accurate studies of stochastic models for gene expression, as Rigney [64] [63] and Berg [5].
In recent years the three-stage model has been used as the fundamental structure in most well-
known works of Shahrezaei and Swain [67], Paulsson [54] and Peccoud and Ycart [57]. See Figure
2.2

The promoter of the gene, corresponding to the specific protein of interest, can be in one of two
possible states: active or inactive. In these studies transcription, translation and the degradation
of proteins and messengers are modeled as first-order chemical reactions, i.e. they are supposed to
be exponentially distributed (or geometrically distributed in case of a discrete time setting). With
the above notations, this amounts to saying that both oo and o3 are exponentially distributed.

The assumption of exponentially distributed duration of the various phases of the three-stage
model leads naturally to a Markovian modeling. The overall dynamic of gene activation can be
described, see Paulsson [54], by the random variable Y'(¢) € {0,1}, where Y (¢) = 1 indicates that
the gene is active at time ¢, while Y(¢) = 0 if it is inactive. Recall that we consider, without
loss of generality, only the one gene case. If we denote by Na(t) the number of mRNAs and by
Ns(t) the number of proteins, then it turns out that (X (¢)) = (Y (¢), Na(t), N5(t)) is a Markov
process with values in {0,1} x N2, This representation is common to most of the models of the
literature. Some of them have, in fact, a lower dimensional state space because of assumptions
on the number of mRNAs for example. We denote with p(¢, (v, n2,n3)) the probability that X (¢)
is in state (y,nq2,n3) at time ¢, i.e.

p(t, (ya n2, 713)) =P [X(t) = (y’nQ’ni?)} :
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As a consequence, the general theory of Markov processes gives a system of linear differential
equations of order 1, the Fokker-Planck equations, for the functions p(t, (y, n2, n3)). The system
of equations has the general form

d
&p(t (y7n23n3)) = )\l(y)p(t7 (1 - y>n27n3)) + )‘2p(t7 (y7n2 - 1u nS))]]-{y:1}

+ pa(ng + 1)p(t, (y, n2 + 1,n3)) + Asnap(t, (y, n2,ng — 1))
+ :u3(n3 + 1)p(t7 (y7n27n3 + 1))’ (211)

where A\1(0) = A] and A1(1) = A\], p; = 1/E(0;) for i = 1, 2. The solution of the system has
a unique stable point (7(y,n2,n3), (y,n2,n3) € {0,1} x N?), the invariant distribution of the
Markov process, whose explicit expression is not known to the best of our knowledge. Neverthe-
less, since the coefficients of the right-hand-side of this equation are affine with respect to the
number of messengers ny and the number of proteins ng3, the moments of the invariant distribu-
tion satisfy a recurrence equation. This equation is not trivial, but gives an explicit expression
for the first two moments and, in particular, for the variance, which is the key quantity to in-
vestigate fluctuations. This is the main theoretical result that has been used in many papers in
literature, see [54) [64), [5], 69, [71].

It should be kept in mind that this approach is possible only under the assumption that
all the durations of the main steps (like the production time of an mRNA or of a protein) are
exponentially distributed. This assumption is now discussed.

Exponential assumption

We refer to exponential assumption when the time to produce a particular cellular component
and its lifetime are assumed to be exponentially distributed.

We discuss now the appropriateness of the use of the exponential assumption, with respect
to the biophysical process described. The exponential assumption is natural in the following
simple situation: a large number of trials are necessary to achieve some goal (like transcription
or translation initiation) and each trial requires some duration D and succeeds with probability
a. If G, is the total number of attempts to succeed, i.e. P(G,, > n) = (1 — )", then

lim P(aGy > 2) =e™* for x > 0.

a—0
In other words, if « is small then aG, ~ E;, where E; is an exponential random variable with
mean 1. Consequently, the total duration of time necessary to realize the objective is, due to the
averaging of the law of large numbers (G,, is large),

G

d E[D
ZDi ~ G.E[D] ~ %El
=1

and is therefore exponentially distributed with mean E [D] /.

As is seen, this scheme may describe correctly the duration of time to establish a binding of
a polymerase or of a ribosome. More in detail, it may describe properly the time required for a
successful binding of RNA polymerase to the gene and of ribosome to mRNA.

On the other side, this assumption may not be true if we consider the elongation time of
an mRNA or protein chain. In particular, during the polypeptide chain elongation, each tRNA,
transporting a specific amino acid (see for details), should bind to the ribosome. If
the distribution of the duration of this step is indeed exponential, nevertheless the fact that
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elongation steps requires an average number of 300 — 400 steps, one for each amino acid, then
the resulting distribution of the duration of the whole process is no longer exponential. In first
approximation, because of the large number of elongation steps, a deterministic elongation time
with a small Gaussian perturbation should be considered.

The description of elongation step and the impact of different choices for the distribution of
the duration of this step will be analyzed in detail in Chapter[3] In the present chapter we assume
that both messenger and protein are instantaneously produced, i.e. the duration of elongation is
zero. However, one of the main results of this chapter is to show, via convenient mathematical
tools, that the choice of the distributions has an important impact on the quantification of protein
fluctuations and, therefore, on the qualitative properties of the gene expression.

2.2 MPPP Description of Gene Expression

In this section, the various stochastic processes are introduced. The main results and notations
concerning the marked Poisson point processes (MPPP) is introduced in Section In the
entire manuscript, all the Poisson point process and the associated random variables are supposed
to be independent.

Gene activation

It is assumed that there is one active gene, which is activated at rate ] and inactivated at
rate A] . Recall that the assumption that ny,x, the maximum number of active genes, is 1 does
not restrict the generality of our results since the quantities analyzed in this paper (expected
values and variances) are proportional to npax. Let (E,) and (F,) be i.i.d. exponential random
variables with respective rates A and \|. The process of activation of the gene at equilibrium
can be represented as a stationary process (Y (¢),¢ € R) with values in {0,1}. Note that (Y (t)) is
defined on the whole real line, i.e. that the activation/inactivation process has started at t = —co.
As it will be seen, this is a convenient representation to describe properly the equilibrium of the
protein production process. The increasing sequence of the instants of activation of the gene is
denoted by (t,,n € Z) with the convention that to < 0 < ¢;. In particular

{tn,n€Z}={s€R:Y(s—)=0and Y(s) =1}

and t,, 11 — t, = E, + F,,. Because of our assumption (¢,) is a stationary renewal point process.

Since we are interested to study the system at equilibrium and since (Y'(¢)) is defined on R,
we can suppose that the process Y (¢) started at —oo and is at equilibrium at the instant 0. So,
instead of start the processes at time 0 and suppose they reach equilibrium after an infinite time,
we may suppose that the production machinery has started at —oo and it is then at equilibrium
at time 0. This convention will be used for all the processes investigated.

Production of mRNAs

When the gene is active, it produces mRNAs at rate Ay > 0 and F5(dy) denotes the distribution
on Ry of the lifetime of an mRNA. Let Ny,=((sn,02,),n € Z) be a MPPP on R x R with
intensity measure Ay dz ® Fo(dy).

If the gene is always active throughout the time interval [s, ], then the formula

N ([5:8] X R) =Y Tecs, <ty = /

]]-{sgugt}-/v.)\z (du7 dU)
neL RxR+
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vVﬂ
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Figure 2.2: Three-Stage model. The gene activation/deactivation occur at rate A\ and A,
respectively. Transcription and translation occur at rates Ao and A3 respectively. The degradation
times of mRNAs and proteins have probability distributions F5(dt) and F3(dt) respectively.

represents the total number of mRNAs created between time s and time ¢, and

D Laco iz b} = Ls<ust<uro}Na, (du, dv)
nez RxRy

is the number of mRNAs still alive at time ¢. More generally, if we include the gene dynamics
into the formula, we find that the number of messengers created in the time interval [s,t] and
still alive at time ¢ is

Z l{sSsnStﬁanraz,n,Y(sn)ZI} :/ ]l{SSUStSU-‘rv,Y(u):1]"/\/./\2 (du, dv).
nez RxR

Production of Proteins

A given mRNA produces proteins at rate A3 and F3(dy) is the distribution of the duration of
the lifetime of a protein.

For v € R, denote by /\f}fa a MPPP with intensity A3 dz ® F3(dy), this process describes in
the following the creation of proteins associated to a mRNA created at time u. We assume that
N, ;31 and N ;f; are independent for u; # us. In particular, if mRNA lifetime is v then

J\/}f3([u,u+v] XR+)=/ N, (dz, dy)
[u,u+v] xR4

is the total number of proteins created by such an mRNA during its lifetime.

Remark. If the gene is always active, i.e. Y (¢) = 1, the whole process of production of mRNAs
and proteins under this specific assumption can thus be described by the sequence

A= (Sn;O’Z,naN;;) .
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Recall that Ny : (2, F,P) = M,(R xRy), where M,(R x R ) is the set of point processes
on R x Ry. If we denote with @ the distribution of Ny, on M, (R x Ry ), the process A can
be seen as a marked Poisson point process on R x Ry x M, (R x R} ) with intensity measure
A3 dz® F3(dy)®Q. This observation will not be used in the following to keep the setting as simple
as possible but the proof of Proposition 2.3.5 below could be shortened by using it together with
Proposition

The notations with some definitions for the stochastic models used in this paper are now
summarized.

Notation 2.2.1.

o Gene activation.
The activation rate is [resp. inactivation rate] is A [resp. A]| and

AP P
0p =T and A= {47

e mRNA production.
The rate of production of mRNAs by an active gene is A9, Fy(dx) is the distribution of an
mRNA lifetime, oo denotes a random variable with distribution F» and

P2 dg' /\QE [0'2} = )\2/ I'Fg(dl')
Ry

e Protein production.
The rate of production of proteins by an mRNA is A3, the lifetime distribution of a protein
is F5(dx), o3 denotes a random variable with distribution F3 and

ps L XE 03] = A / zF3(dz).
Ry

2.3 General results of MPPP description of gene expression

In the previous section, using basic definitions about Poisson point processes, we have given a
first description of the main processes modeled in the three-stage model. In this section, using
the MPPP description, we derive general results concerning gene expression. In particular, the
number of the different processes at equilibrium and general formulas for the mean and the
variance of each process. We will not discuss here the results for specific assumptions of the
general distributions and we refer to the following section.

2.3.1 Gene state

The behavior of the process (Y (¢)) describing the state of the gene is well known in literature.
In particular, Y(¢) € {0,1} and is Bernoulli distributed at equilibrium. In order to obtain the
stationary distribution my of the process Y it is sufficient to write the detailed balance equation,
since (Y'(t)) is a reversible Markov process. Therefore,

/\Tﬂ'y(O) = )\1_7Ty(1)
7Ty(0) + 7Ty(1) =1,
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where my(0) = P[Y =0] and 7y (1) = P[Y =1]. Solving the previous system we obtain, at
equilibrium,

A
PYO0)=1=6=—""—=

From now on, it will be assumed that (Y'(¢)) is defined on R and is at equilibrium.
In order to obtain analytic expression of the number of messengers and proteins, we need also
to compute the covariance of the process (Y (t)). For t > 0,

P(Y(t) =1]Y(0) =1) =6, + (1 —d,)e ™, (2.3.1)
with A = A[ + \[, in fact, since the process (Y (¢)) is stationary, then

E[Y (W)Y (s)] = E[Y (Ju - s)Y(0)[¥(0) = JP[Y(0) = 1]
—P[Y(Ju—s]) = 1|Y(0) = 1| P[Y(0) = 1]

and we obtain the previous formula by solving the Kolmogorov forward equations, see Note [2.3.1]
See Norris [49] and Peccoud and Ycart [57] for detailed computations.

Note 2.3.1. The generator matriz Qy of the two-state continuous time Markov chain Y (t) €
{0,1} is given by
AN
=3 )

Denote with p;;(t) = P(Y (t) = j|Y(0) = i), with i,j € {0,1}. Recall that we want to compute
p11(t) = P(Y(t) = 1|Y(0) = 1). The Kolmogorov forward equation P'(t) = P(t)Qy, where
P(t) = (pij(t))ijeqo,1}, together with the identity po1 = 1 — p11 gives

Put) =X — (AT +AD)pu(t),  VE>0
pll(o) = 17

whose solution is formula (2.3.1)).

2.3.2 Messengers
Number of mRNAs

A result on the number of mRNAs at equilibrium and its distribution is derived in this section.
The techniques used to prove it will also be used to investigate the distribution of the number
of proteins in the next section. In order to present the MPPP approach, we will develop compu-
tations for mRNAs. They are simpler from the point of view of notations and they include the
main ideas.

Proposition 2.3.2. The number M of mRNA’s at equilibrium can be represented as

M = 1{u§0§u+v’y(u):1}/\/’)\2 (du, dv), (2.3.2)
RXR+

where Ny, is a Poisson marked point process with intensity Ay dz @ Fa(dy).
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Proof. Let M; denote the number of messengers born after time ¢ = 0 and still alive at time ¢.
Then M; is given by

+oo
M = Z l{Oﬁsngtgsﬁoz,mY(sn):l} = /R /O Liu<t<usto,y (uy=1} Nz (du, dv), (2.3.3)
n +

where Ny, = (s5,02,), see Section Recall that s,, is the (potential) n'" binding time of a
polymerase on the gene: an mRNA is created only if the gene is active, i.e. Y (s,) = 1. The term
o2 ,, represents the lifetime of the newly produced mRNA. The right-hand-side of the previous
equation accounts for the number of mRNAs produced in the interval [0, ¢] and still alive at time
t(u+v>t).

Since the process (Y (t)) is stationary as well as the Poisson marked point process, they are
both invariant by translation. By translating by —t, one gets that M; has the same distribution
as

0
dist.
M, :t/ / ]I{OS“’J“”Y(U):I}NA2(du7dv)’

by letting ¢ go to infinity, we obtain the desired result. O

It is crucial that the distribution of M; can be explicitly expressed as a functional of the
marked Poisson process Ny,. The same property is true for its limit. In this context, with
the help of the coupling argument, there is no need of a Markovian setting to prove that M;
converges in distribution as ¢ goes to infinity. As will be seen, the distribution of the limit M
can be obtained by using some properties of Poisson point processes. For all these reasons, there
is no need to assume o9 and o3 are exponentially distributed.

In the proof of the above result, we have in fact proved a more general following result. The
point process M representing the instants of creation of mRNAs and the associated lifetime at
equilibrium can be represented as

M = Ly (u)=130(u,0) N, (du, dv), (2.3.4)
RxR4

where 8, is the Dirac mass at z[1]
The number of mRNAs alive at equilibrium can thus be represented as

M:/l{ugong}/\/‘(du’dv) :/]]-{USOSquv,Y(u):l}N)\z(duadv)

which is precisely the expression of Proposition [2.3:2] When the activation rate of the gene goes
to infinity, the point process M is simply a marked Poisson point process and M has a Poisson
distribution with parameter ps = A\3E(03).

We now use this representation to get an explicit expression of the variance of the number of
mRNAs at equilibrium.

f f: R x Ry — R is integrable with respect to the measure M(du,dv), then

def

M(f) /R g, ) M) = /R e, =1 (00 N )

The point process M is identified by the sequence ((rn,02,n),n € Z), where 7y, are the times of messenger birth
conditionally to the gene activation and o2, the corresponding lifetimes. For this reason the point process M
can be represented also as M =3, (s, o, ,) hence the expression (2.3.4).
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Proposition 2.3.3. If the distribution of the lifetime of a mRNA is Fy(dx), the average of the
number M of mRNAs at equilibrium is given by

E(M) = 5+p2 = §+)\2E(02).

The variance of M is
+oo +oo o o
var(M) = E(M) + 2p35, (1 — 0.) / / e M Fy(u)Fo(u +v) du dv (2.3.5)
0 0

where Fy(z) = F5([0,2]) and Fo(z) = (1 — Fa(z))/E(oa), A = AT + A\ and 54 = X\ /A.

The formula for E(M) is in fact quite intuitive: d4 A2 is the production rate of mRNAs and
E(o3) is their mean lifetime.

Proof. Conditionally on the process (Y'(t)), M follows a Poisson distribution, hence for z € [0, 1],

0
E (M| (Y(t)) = exp <—)\2(1—2)/_ /R Liu<o<uto,y(u)=1} du Fz(dv)>

0
= exp ()\2(12)/ l{y(u)zl}P(Jg Z 7U) du) (236)
by taking f(u,v) = —1log(2)1{y(u)=1,u<0,u+v>0} in Relation (A.0.1). If we differentiate for-

mula (2.3.6) with respect to z and take z = 1, we obtain
0
QL (Y1) = [ LvwenPloe 2 —u) du,
Since (Y'(t)) is at equilibrium, P(Y (u) = 1) = 0., hence integrating the last relation gives
0
E(M) = 5+/\2/ P(oy > —u) du = 61 AE(02).

If we differentiate twice Formula (2.3.6) and substitute z = 1, we obtain

+o0 2
E(M(M — 1) | (Y (1)) = A2 ( / Ly (ouyeyPlos > ) du)

= )\g /2 l{y(,u)zlﬁy(,v)zl}P(Og > U)P(E > ’U) du dv,
R

1
which, integrated with respect to (Y (t)), gives

E (M?) —E(M) = A%/ P(Y(—u) = 1,Y(-v) = 1)P(02 > u,53 > v) du dv,

2
IR+

where the random variable 73 is independent of o5 and has the same distribution. Using rela-
tion (2.3.1)), for u < v and A = \] + \[, we get

P(Y(~u) = 1,Y(~v) = 1) = B(Y(—v) = )P(Y(~u) = 1| V(~v) = 1)
=0y (05 (1= 8y )0
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Therefore E(M?) — E(M) is the sum of
A36% /]R P(oy > u,03 > v) du dv = (A0, E(03))? = (E(M))?
+
and, up to the multiplicative factor 2A36, (1 — ), of
/]R2 P(oy > u,05 > v)e_A(“_“)]l{uSv} du dv.
2

The proposition is proved. O

Relative variance

The relative variance of the number M of mRNAs at equilibrium, see (2.3.2), is defined as

var(M) 1 1—04
B ER TS

Is,, (2.3.7)

by relation (2.3.5)), with
+oo . .
Ip, = / e_A”FQ(u)Fg(u +v) du dv,
0

where A = A\ + A\]. When the mean E(M) is fixed, Ir, is the only quantity which depends on
the distribution of the lifetime of an mRNA.

To conclude this section, we now apply the previous general formulas to specific choices
of the probability distribution. In particular, we will get an analytic formula of the previous
for exponential and deterministic distributions. These assumptions are not completely realistic
from a biological point of view; nevertheless they are used to stress the impact of probability
distribution on the messenger variance. If the distribution of the lifetime of an mRNA is the
exponential distribution E,, with parameter po, one gets

1

Ip, =
P 2p2(A + pi2)

If the lifetime of an mRNA is the deterministic distribution D,,, with a unit mass at 1/p9, the

above formula yields
1 A
Ip,, = 33 (eA/m -1+ ) :

Straightforward calculations with these formulas show that I B, <ID,,- The ratio I Dy, /T By,
varies in fact between 1 and 2, see Figure [2.3] The variance for the exponential distribution is
smaller than the one for the deterministic distribution with the same mean. This result is not
quite intuitive if one takes into account that the variance of the exponential distribution is quite
large.
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Figure 2.3: Variance of M: Comparison of Ip,, and I, defined by (2.3.7). Deterministic versus
Exponential.

2.3.3 Proteins

Recall that if an mRNA is created at time u and has a lifetime v, then on the time interval
[, u + v] proteins are created according to the marked Poisson point process N, , with intensity
A3 dz @ F3(dy). Denote with (s,,n € Z) the sequence of mRNA births, the point processes
N, f; are supposed to be independent. The instants of creation of proteins together with their
lifetimes can thus be represented by the following point process

P= M(du, dv) / O(z,y) Ny, (dz, dy), (2.3.8)
[w,u+v] xR

RXR+

where M is the point process defined by formula (2.3.2)).

Proposition 2.3.4. The number P of proteins at equilibrium can be represented by the random
variable

P:/ 1{Y(u)=1}N>\2(duadv)/ 1{x§0§x+y,u§m§u+1)}/\/}f3(dxady)' (2'3'9)
RxR RxR

Proof. The derivation is quite straightforward. If an mRNA alive between time u and u + v
generates a protein at time x with lifetime y, this protein will be present at time 0 if z < 0 < x+y.
The argument that this is indeed the representation of the number of proteins at equilibrium
follows the same lines of the proof of Proposition [2.3.2] O

Theorem 2.3.5. If the distribution of the lifetime of a mRNA [resp. protein] is Fo(dx) [resp.
F;(dy)/, then the expected value of the random variable P, which is the number of proteins at

equilibrium, is given by
E(P) = 61 p2p3 = 04 AaA3E(02)E(03)
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and its variance var(P) can be expressed as

400 (=s+t)N0 2
var(P) = E(P) + )\gp§5+/ / / F3(u) du
0 Ry

—S

dsFy(dt) (2.3.10)

2
+ 30504 (1 —84) / e~ M mu2)t =)l TTF, (u;) Fa (v) dus dug,

4
RY i=1

where, for j = 2, 3, Fj(z) = F;([0,2]) and Fj(z) = (1 — Fj(z))/E(oj), A = A\ + A\] and

The expression of E(P) can also be understood intuitively. Recall that E(M) = §; A2E(02)
is the mean number of mRNAs, A\3E(M) is therefore the production rate of proteins and E(o3)
is their mean lifetime.

Proof. We start with the simple case of the mean. For fixed u, v € R, formula (A.0.3) gives

E

r<u+v <z<u+v

/ 1{x§0§x+y, Nfg(dx»dy)] =>\3/ 1{x§05x+y, dz F3(dy)
RxRy4 u< RxR 4 u

Integrating this expression with respect to 1(y (4)=1} N, (du, dv) and taking its expectation, we
get

E[P | (Y(1)] =

= ME l/ Liyw=1}E
RxR4

= ME V Ly =13 V ﬂ{xsogm+y,} dz F3(dy)
RxRy RxRy ulz<utv

= >\3/ iy (w)=1} [/ 1{m§ogz+y, dx F3(dy)
RxRy4 RxR4 u<lz<utv

= )\2)\3/ ]l{y(u+m):1}l{mgo}ﬂ{ugo}ﬂp(ag > —u)P(o3 > —z) dz du,
R_xR

(M), (Y (#)) | N, (du, dv)

/ 1{z§0§x+y’ N/{‘B(dx,dy)
RxR u

<zLu+tv

N, (du, dv)

(Y(t))]

)\2 du F2 (dv)

where we have used again formula (A.0.3). A further integration gives finally the expectation

E(P) = )\ZAS/R i P(Y (u+ ) = 1)P(02 > —u)P(03 > —2x) dz du

= )\2)\35+/ P(oy > —u)P(o3 > —z) dz du
R_xR_
= 5+>\2E(O’2)>\3]E(03).

Recall that V), can also be represented as Ny, = (sp,02,) and

P:Z/

]l{y(sn):1}]l{ <0<z 4y, }Nfg(dx,dy)
nezBXR+

Sngxgsn"ra'?,n

(Y(#)
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Denote by E the conditional expectation E[- | (Y(t)), (sn,02.n)]. The conditional generating
function E [ZP ] can be written as

E (H exp <log(z)/ ]l{y(sn)zl}ll{ 2<0<z+y, }Nf;‘ (dx,dy)))
RXR+

nez $n<T<Sn+0o2,n

= H D) lexp (—log(z)/ ]l{y(sn):1}]l{ 2<0<a4y, }N;;‘ (dm,dy))] )
RxR4

nez Sn<w<sn+02.n
since the point processes N, ;:, n € Z, are independent.

The nth term of this product is, applying Proposition to the marked Poisson point
processes Ny,

exp (—Ag(l—z)]l{y(sn)_l}/R . ]l{ £<0<a+y, }deg(dy)>.
xRy

sn<x<spn+02n

By integrating E (zP ) with respect to Ny,, the generating function can thus be written as

exp <— /]RX]R+ g(u,v)/\&Jdu,dv))] ,

g(u,v) = A3(1 — Z)l{Y(u):u/ 1{w§0§x+y,} dz F3(dy).
R

Rx u<z<u+tv

E[7|(Y ()] =E

where

Applying again Proposition to the marked Poisson point process Ny,, we get
E(z"|(Y (1) =

u<0<u+wv,

= exp f)\g/du/ Fy(dv) | 1—exp —)\3(172)/ 1 (2<o<aty,) dzF3(dy)
R R+ RXR+ {Y( I )71}

In order to obtain an expression for E (P(P —1)|(Y(t))), we have to differentiate twice the
previous formula with respect to z and evaluate it at z = 1. The resulting formula should then
be integrated with respect to (Y (t)) and we can get formula , by using similar arguments
as in the proof of Proposition m (with more technical calculations). O

2.4 Results of MPPP description of Three-Stage model

To show the effectiveness of the analytic formula of the protein variance, we consider the
cases of exponential and deterministic distributions. More realistic distributions are considered
in Figure 2:6] and 25} This specific analysis will give insights of the impact of the distribution
choice on the protein variance.

Explicit formulas of protein variance

In each case the average lifetime of an mRNA [resp. protein| is 1/us [resp. 1/us]. Recall that
84 = A7 /A and A = A\ + A]. As for the case of mRNAs above, even if from a biological point
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of view these assumptions are not completely realistic, this analysis shows the impact of the
distribution on the variance, and therefore of the necessity of having closed form expressions for
a large set of distributions.

Exponential Distribution. If the distribution of the lifetime of an mRNA [resp. protein] is

exponential with parameter s [resp. ps|, then formula (2.3.10) gives the classical result on the
variance, see Paulsson [54],

(2.4.1)

var® (P) = B(P) (1 L As A - 04)(A +ﬂ3>) .

po +ps o (p2 + p3) (A4 p2) (A 4 ps)

Deterministic Case. If the lifetime of an mRNA is exponentially distributed with parameter
2 and the protein lifetime is deterministic, equal to 1/us, then formula (2.3.10)) gives the identity

var®) (P) = E(P) [1 PR (1 _bsg e_,w/ﬂg)>

M2 K2
200 A3(1 =0 )2 [ p3 {1 fA/us}
Zll—e
A% — 3 A

8N 1=l A [12 _ /H)] . (24.2)

Deterministic
Exponential

0.9

var(P)/E(P)2

0.1 :

01 02 03 04 05 06 07 08 09 1
mRNA Affinity As

Figure 2.4: Square root of relative variance of the number of proteins with a fixed mean. These
curves are obtained using the analytic formulas (2.4.1) and (2.4.2).

Numerical analysis: a counter-intuitive result

Relation ([2.3.10) gives an explicit, but intricate expression for the variance, we present some

numerical experiments based on this formula. Figures and consider the case when

the average number of proteins at equilibrium is fixed and equal to 300, that Ay = 0.02sec.™!,



2.4. RESULTS: EXPLICIT FORMULAS AND NUMERICAL ANALYSIS 37

Al = 0.01sec.”! and that the average of the lifetime of an mRNA [resp. protein| is 172sec. [resp.
1000sec.]. We have considered several possible choices for the distribution Fj, it is assumed that
all the other distributions are exponential. When the distribution F3 is Gaussian, .S denotes its
variance.

1.3905

T 1.39

S 1.3895

C

g 1389

o5

S 13885

:g 1.388

E 13875

g

8 1387

o Mean 1000 —— |

® 1.3865 Mean 700 ——

& 1386 [| Mean 300 —— ]
Mean 100 ——

1.3855 L= : :

05 1 15 2 25 3 35 4 45 5

mRNA Affinity\s

Figure 2.5: Ratio of the square root of relative variances of the number of proteins with de-
terministic and exponential lifetimes respectively. Each curve corresponds to different level of
protein expression and is obtained using the analytic formulas (2.4.1]) and (2.4.2). Note that the
mean is fixed along each curve.

Deterministic
09 Gauss 5=0.1
Gauss 5=0.3
Gauss 5=0.6

Gauss S=1
Exponential

0.2 1 1 1 1
0.1 0.15 0.2 0.25 03 0.35 04

mRNA Affinity A3

Figure 2.6: Square root of relative variance of the number of proteins with a fixed mean. The
curves corresponding to Gaussian distribution are indexed with respect to the parameter S =
on /E(N), where E(N) is the average of the Gaussian lifetime and o, its standard deviation.
The curves are obtained via Monte Carlo simulations and the statistics are obtained numerically.
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The counter-intuitive result studied at the end of Section 2.3.2] is now observed in the case
of proteins. The exponential distribution has large variance, in fact if X is exponentially dis-
tributed with parameter ), then var(X) = E?(X), while a deterministic lifetime has obviously
no fluctuations. Surprisingly, by replacing a noisy exponentially distributed protein lifetime with
a deterministic one, the fluctuations of the protein number result increased. This unexpected
result is valid for any choice of parameters and is shown in figure

If we consider a Gaussian distribution for the protein lifetime, the curves are comprised in
between the exponential and deterministic cases. Moreover, the profiles of variance correspond-
ing to a normal distribution show a precise behavior: the profile corresponding to a Gaussian
random variable with small variance is close to the deterministic curve and we obtain a monotone
decreasing sequence of curves as long as we increase the variance. These results are shown in

both figures 2.6] and
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2.A Appendix: survey of few classic models of gene expres-
sion

A systematic and accurate use of stochastic models to investigate gene expression can be traced
since the late 70s with the models proposed by David R. Rigney in the late 70s ([64], [63])
and by Otto G. Berg [5]. These models are still key references for the models of stochastic
gene expression, since, despite the many simplifications and assumptions, the authors develop a
complete mathematical analysis of their model, proposing analytic formulas for the first moments
of protein numbers in a single bacterium and within a population. Both works predicted mRNA
and proteins fluctuations taking into account deterministic cell growth, chromosome replication
at fixed time and partitioning of proteins between daughter cells.

These pioneering works and the techniques they used, were brushed up in the 90s by the
works of Peccoud and Ycart [57] and McAdams and Arkin [43]. In the last paper the authors
model gene expression using a stochastic formulation of chemical kinetics derived by Gillespie
[19], predicting noticeable variability in protein numbers between individual cells. This was the
beginning of an intense research and studies on stochastic models of gene expression (Paulsson
et alii [55), B3], [54], Swain et alii [69, 671], .. .).

In this section we present some of the most relevant models that can be found in the literature
that deal with stochastic modeling of gene expression in bacteria, concentrating on the models
which have been taken as a first reference for our work and serve as introduction to the classic
techniques used.

2.A.1 The Rigney’s model

We focus mainly on the model of protein production in a single cell, see [64]. We will discuss
briefly the model at population level, which considers new features such as as cell age and cell
division.

Introduction

Until recent years, experiments measured in vivo protein synthesis as an average over the sub-
populations of cells in each sample. However, few experiments in he early seventies observed
that the average number of molecules for certain enzymes increases linearly with respect to time,
during a cell cycle. When the gene is duplicated this behavior is still present, but it proceeds
with twice the previous rate.

These observations served as starting point of the modeling work of Rigney and Schieve,
which, up to our knowledge, were among the first to introduce a probabilistic description of the
synthesis of each protein specie within a single bacterium. There were in fact physical reasons to
believe that chaotic motion of molecules manifests in form of fluctuations and also direct a visual
evidence: the times between successive mRNA transcription initiations, by the DNA-directed-
RNA polymerase at given promoter, are randomly distributed, as was shown by Miller, Hamkalo
and Thomas in 1970. The subsequent transcription and translation events were also thought to
be random processes and a stochastic description of the phenomenon seemed natural.

The model

The model described in [64] should predict on one side the linearity in the average production
rate, on the other side it should allow individual cells to show fluctuations in their individual
rates of synthesis.
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The rate at which each protein species is produced in each cell is supposed to be principally
determined by the random frequency at which polymerase molecules bind to the corresponding
promoter site on the DNA.

The promoter region corresponding to a specific protein may be in one of two possible states:
either a polymerase molecule is bound to the promoter (state “on”), or it is not (state “off”).

This model does not considered at all the messenger degradation, nor the bacterial dilution.
The interest is focused mainly on the transition in which a bound polymerase molecule leaves
the promoter region to begin the production of mRNA strand. We denote with N; the number of
times this particular promoter becomes free over an arbitrary period of time ¢ and it is assumed

N; o (produced enzymes because of this promoter),

i.e. the number of transitions is proportional to the number of enzyme molecules eventually
produced. This allows to transfer directly the analysis on the promoter to the protein level.

The transitions allowed by the model may be described as a Markov jump process. With
few calculations is possible to compute the probability distribution for the time between suc-
cessive mRNA initiations at a specific promoter. This distribution can be used to calculate the
probability of certain mRNA initiations over the time period ¢.

Suppose that cells have been growing under constant conditions for several generations, then
the fraction of promoters in each of the states of the model will not change in time, that means
that the random process has reached a stationary state (there are changes at level of single
promoters but not at population level).

The model is intended to quantify the number of mRNA of a particular protein type initiated
on the ensemble of promoters over a period t. The problem can be stated in the context of
the renewal theory, where the holding times are here the time of detachment plus the time of
attachment of the promoter, and where the renewal process is represented by the number of
mRNA initiations N;. The standard renewal theory tells us that the average number of mRNAs
initiated on the promoters over a period t is linearly proportional to time. Since the number of
proteins is assumed to be proportional to initiated mRNA | the protein number should be linearly
proportional to time. These results are based on the assumption that the transition parameters
do not change during the cell cycle.

Here we counsider the two-states model as in [64], but we make direct calculations and we
slightly change notation with respect to the original paper.

Suppose that the promoter region of a particular gene has two possible states: state “0” the
promoter is free, state “1” the promoter is associated with a polymerase. The transition from 1
to 0 correspond to a mRNA initiation.

Be X, € {0, 1} a stochastic process such that the time E), it stays in state “0” is exponentially
distributed with parameter Ao, while the time it stays in state “1” is exponentially distributed
with parameter A\; and is denoted by E),. The process X; is a continuous time Markov chain
with state space I = {0,1} and with Q—matrix

(=X o
(3 %)
The Kolmogorov forward equations are

Pt/ =PQ
Po(i,j) = dij,
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which admit the solutions

Pi(1,1) = ﬁe—%“l)t + ﬁ (2.A.1)
P,(0,0) = ﬁe*mw + ﬁ (2.A.2)
P,(0,1) = fﬁe*“ﬁmt + ﬁ (2.A.3)
P,(1,0) = —ﬁe—%“l)t + ﬁ (2.A.4)

The stationary distribution is therefore given by w(0) = ﬁ, m(l) = /\O)f/\l.

In order to evaluate the number of produced mRNAs we have to compute the time interval
between two subsequent messenger initiation. Denote with 7' the random variable

T =Ey + Ey,. (2.A.5)

To compute the probability density function (p.d.f.) of T, we use the Laplace transform
as in the original paper of Rigney. Since E), and F), are independent, and since the Laplace
transform of a random variable exponentially distributed with parameter \; is given by

i

L(Bx)(2) =E[em*™] = =,

(2.A.6)

then
E(T)(Z) =FE [e_ZT] —F [e_Z(E)‘0+E*1)i|
AoA1 (2.A.7)

The previous formula can be written as a sum of the type £(T)(z) = Aoﬁ + Alﬁ, with

—E |:€sz>\0] E I:esz)\l} —

A1 Ao
Ay = = .
LD VD W DYDY
Using formula (2.A.6|), we have that the p.d.f of the random variable T is given by
AoA
fr(z) = Aghoe 0% + Ay e M7 = ﬁ(e#‘oz — 7M7), (2.A.8)
1= Ao

Using the previous formula we are able to compute the average inter-initiation time, which is

Ao + A1

2.A9
AO)\I ( )

E[T] = /Ooo tfr(t)dt =

It is possible to relate the distribution of the process Ny with the time T between two occur-

rences. In fact if we denote with Tj, i = 1,2..., the time between the (i — 1)*® and i*" event,
and with .,
S,p=>_1T; (2.A.10)
i=1

the total time up to the r*" occurrence, then we have the identity

{Ny <r}={S, >t}
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It is possible to derive then the statistics of the process IV; and it results that the average
number of initiated mRNAs over the interval [0, ] is

t Ao+ A1
E[N:] = = t 2.A.11
0= 5777 = [ R
Moreover the variance of the number of initiated mRNAs gives the formula
AoA1 2(XoA1)? ) 2(XoA1)? ~(otr
Var (N;) = - 1 — e~ GotAh), 2.A.12
ar( t) (>\O+>\1 ()\0+)\1)3 ()\0+>\1)4( € ) ( )

Rigney and Schieve in this article point out how the noise is inherent of the protein production
and not a mere consequence of the measurements. The mean mRNA can be derived also by
averaging over a population, but the variance gives important insights of the kinetics of the
protein production itself.

This model has lots of simplifications and look just on a specific part of the whole protein
production. Nevertheless, it shows how the analysis of a simple stochastic model of the protein
production can supply important information on the kinetics and, consequently, on the biological
and chemical mechanisms that lie behind gene expression.

Towards a population model

In the paper of Rigney 1979 [63] the author analyses few problematics concerning a population
of growing cells. The starting point of the author is the fact that the 90% of the DNA of
bacteria growing in a glucose are rarely transcribed. Let consider constitutive genes, i.e. promoter-
controlled structural genes which are rarely transcribed. The latter characteristic make stochastic
modeling well-suited for the analysis of the protein production to give an estimation of the
variability of the number of produced proteins.

Rigney considers here a population that is able to reach a steady-state, i.e. all the experimental
conditions and the characteristics of the bacterial population are constants and are such that
the probability that a cell, selected randomly, shows a property is independent of time. Such a
population is in the exponential growth phase.

The population can be divided in sub-populations, of a specific window of ages [a,a + Aal,
where a is the “age” with respect to cell cycle. This is fundamental when considering the pop-
ulation perspective, since we may not expect that the cells are synchronous. The aim of the
Rigney’s population model is to predict distributions of low-level, constitutive proteins.

The main random process under analysis is the number X (a) of a specific protein in a cell
in the bacterial population. Since the author deals with a whole asynchronous population of
bacteria, he makes further simplifications in order to have a treatable model. The probability A
that transcription initiates is supposed to be constant, independently of the cell age, the number
of polymerases, chromosome conformation and other characteristics of the cell itself. Each mRNA
is supposed to produce deterministically s proteins during its lifetime, and these s molecules are
supposed to be produced simultaneously since the inter-initiation time for constitutive proteins
is much greater of the mRNA lifetime, and of the order of the cell lifetime. In order to consider
cell growth and division still being able to perform mathematical analysis, Rigney supposes that
there is one or two copies of the gene depending on cell age. This is an approximation since the
number of gene copies depends on various factors, in primis on the position of the gene in the
DNA helix. Moreover, the duplication time 71 of the gene and the time, or age, of cell division
To are supposed to be deterministic, supposing that the proteins in the mother cell to be equally
probabilistically divided between the daughter cells.

The protein degradation is supposed to be exponentially distributed with parameter .
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The main mathematical tool used here are generating functions. The author starts by study-
ing the probability P(xg — ) that a cell, having xg molecules of the specific protein at the
time of its division, has a daughter cell having x molecules at the time of its own division. This
probability distribution can be used to derive the generating function of 7 (z,72), which is the
probability to have x molecules in a cell just before division, under the hypothesis that the sys-
tem has reached the equilibrium. This last distribution gives finally the generating function for
m(x, a), which is the probability to have x molecules of the protein in a cell of age a. The author
concludes the technical computations by showing how derive the moments of the probability
distribution.

Rigney proposes then a two-variables extension of its model. In this extension he considers
two proteins, which have different production characteristics. We point out that he does not
consider any competition in the production chain of the two-proteins model. The main difficulty
is that the final distribution will depend on the quantities of the two proteins.

The author underlines the importance of the hypothesis for the analytic tractability of the
model and he states

[...] for models in which the initiation or degradation transition probabilities are
non-linear functions of the random variables, it will generally be impossible to find
exact, analytical solutions.

Despite the simplifications made by Rigney, one of the key point of his population model is that
he derives the generating function for the probability distribution at population level.

2.A.2 Paulsson’s model survey

Johan Paulsson is one of the most prominent researcher in the field of stochastic gene expression
and this is testified by the number of important works he has published on this argument [55]
53, [54].

We focus on the Paulsson’s work [54] in which the author focuses on the common charac-
teristics of many stochastic models of gene expression, giving a widespread perspective on the
field.

Introduction

Stochastic models are proposed to take into account the fact that cellular events depends on
the random collision of molecules. Since many of the cellular events deal with small numbers
of molecules and are not independent, a probabilistic description is often the best description
of such processes. A stochastic model is fundamental if we want to investigate and understand
the process of gene expression, even in cases in which randomness is absent. In fact this lack of
randomness should be somehow explained in probabilistic terms.

Most of the stochastic models that can be found in literature focus on genes, mRNAs and
proteins, including all the other processes in effective transition rates. This fundamental descrip-
tion may be indefinitely complicated, but in order to better understand the first principles the
author chooses to focus just three main processes: gene activation/deactivation, transcription
and translation.

The model

Paulsson’s supposes to have a constant number of copies of the specific gene, denoted with nj*®*,
each copy switching independently between two states (active/inactive). The cell growth, cell
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division and gene replication are not included in this model. The author denotes with n; the
number of active genes.

The three main processes modeled, i.e. active genes, mRNAs and proteins, are supposed to
chase each other. In particular the active genes will affect the number ny of mRNAs, which in
turn will affect the number ng of proteins. Messengers and proteins are both degraded. The first
have short lifetimes, especially in eukaryotes, and are destroyed by the degradative machinery,
while proteins are more sensitive to the dilution which they undergo because of cell growth.

A A | M3
QD
T

‘ 9 Ce NS
o ST = V@PQ

& abo ¥

Figure 2.7: Three-Stage model. The gene activation/deactivation occur at rate A\; and p; re-
spectively. Transcription and translation occur at rates A and A3 respectively, while the mRNA
and protein degradation are supposed to be exponentially distributed with rates ps and ps.

The Kolmogorov equations for the Markov process (n1(t), n2(t), n3(t)) are then

dP
W =)\ ( X g+ 1)P(’fl1 — 1,n2,n3) )\1( pax _ nl)P(nl,ng,ng)
+ p1(n1 + 1)P(n1 + 1, n9,n3) — ping P(na, na, ng)
+ A2n1 P(n1,n2 — 1,m3) — Aona P(n1, n2, n3) (2.A.13)
+ p2(ng + 1)P(ny,ng + 1,n3) — pona P(n1,ng, n3)
+ A3ng P(ny,n2,n3 — 1) — Agna P(n1,n2,n3)

+ ,ug(ng + I)P(n17n27n3 + 1) — u3n3P(n1, na, ng),

where
P(nl, na, n3) =P [nl (t) =N, ng(t) = na, Tl3(t) = ’I’L3] . (2A14)

First moments of the modeled processes

We detail now the techniques used to obtain analytic formulas of the first moments in many
works found in literature. We may restrain our analysis to the case n]"® = 1, since the pro-
duction relative to each gene copy is independent. Therefore in the general case, because of this
independence, then the average and variance of the number of messengers and proteins will result

multiplied by the constant nj*®*.
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Since n; € {0,1}, we may restate the Chapman-Kolmogorov equations (2.A.13)) by condi-
tioning to the random variable n;. Define

Faa () = Plna(t) = z,m3(t) = y,na(t) = 0]