
HAL Id: pastel-00927122
https://pastel.hal.science/pastel-00927122v1

Submitted on 11 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear Perron-Frobenius theory and max-plus
numerical methods for Hamilton-Jacobi equations

Zheng Qu

To cite this version:
Zheng Qu. Nonlinear Perron-Frobenius theory and max-plus numerical methods for Hamilton-Jacobi
equations. Optimization and Control [math.OC]. Ecole Polytechnique X, 2013. English. �NNT : �.
�pastel-00927122�

https://pastel.hal.science/pastel-00927122v1
https://hal.archives-ouvertes.fr


Thèse présentée pour obtenir le grade de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
Spécialité : Mathématiques Appliquées

par

Zheng QU

Nonlinear Perron-Frobenius theory and max-plus
numerical methods for Hamilton-Jacobi equations.

Attenuation of the curse of dimensionality

soutenue le 21 Octobre 2013 devant le jury composé de :

Philippe Bougerol Université Pierre et Marie Curie examinateur
Nicole El Karoui Université Pierre et Marie Curie examinateur
Maurizio Falcone Roma 1 La Sapienza rapporteur
Stéphane Gaubert INRIA Saclay & CMAP, Polytechnique directeur
Éric Goubault CEA président du jury
William McEneaney University of Carlifornia, San diego examinateur
Pierre Rouchon École des Mines de Paris rapporteur
Shanjian Tang Fudan University codirecteur





Remerciements

Je tiens en premier lieu à exprimer ma profonde reconnaissance envers Stéphane Gaubert
dans son rôle de directeur de thèse. J’ai eu la chance de bénéficier pendant trois ans de son
fort soutien mathématique, de ses encouragements me motivant à surmonter les difficultés, de
sa confiance me laissant une grande liberté et de sa disponibilité malgré un agenda fortement
rempli. Ses larges connaissances dans de nombreux domaines des mathématiques, sa passion
pour la recherche, sa patience et sa générosité pour ses élèves restent pour moi un exemple à
suivre.

Je tiens à remercier également Shanjian Tang, codirecteur de cette thèse. Il a spontané-
ment accepté de m’encadrer et m’a accueillie dans de meilleures conditions pendant chacune
de mes visites à Shanghai. Il m’a constamment encouragée, m’a donné de précieuses sug-
gestions et remarques, et il a inspiré une partie importante de ma thèse. Je le remercie aussi
de venir de loin pour être membre de mon jury.

Le lecteur remarquera sans peine que la thèse part d’une méthode développée par William
McEneaney, qui est à l’origine des premières méthodes numériques max-plus en contrôle
optimal. Je lui suis extrêmement redevable et le remercie également de participer à la soute-
nance.

Je remercie Pierre Rouchon et Maurizio Falcone qui m’ont fait l’honneur d’être rappor-
teurs de thèse pour le temps qu’ils ont consacré à la lecture et pour leurs commentaires
permettant d’améliorer mon manuscrit. Je remercie vivement Philippe Bougerol, Nicole El
Karoui, et Éric Goubault, d’avoir accepté de participer à mon jury en tant qu’examinateurs.

Je voudrais aussi remercier les membres de l’équipe "max plus": Marianne Akian, Xavier
Allamigeon, Cormac Walsh, Olivier Fercoq, Pascal Benchimol, Andreas Marchesini, pour
les discussions et les échanges qui m’ont aidée à progresser dans mon travail. Mes remer-
ciements s’adressent également aux autres doctorants du CMAP, surtout à Anna Kazeyk-
ina, Georgios Michailidis, Laetitia Giraldi, Gabriel Delgado, Matteo Santacesaria, Gwenael
Mercier, Zixian Jiang, Camille Coron, Laurent Pfeiffer, Xavier Dupuis, avec qui je partage
une période importante de ma vie et qui m’ont tous donné un coup de main à un moment ou
à un autre.

Un grand merci à Sylvain Ferrand, chargé d’informatique du CMAP, pour ses aides et
sa grande patience. Merci à Wallis Filippi, l’ancienne assistante de l’équipe "max plus". Je
pense également à toutes nos chères assistantes du CMAP, Nasséra Naar, Alexandra Noiret,
Nathalie Hurel et Sandra Schnakenbourg.





Abstract

Dynamic programming is one of the main approaches to solve optimal control problems. It re-
duces the latter problems to Hamilton-Jacobi partial differential equations (PDE). Several techniques
have been proposed in the literature to solve these PDE. We mention, for example, finite difference
schemes, the so-called discrete dynamic programming method or semi-Lagrangian method, or the
antidiffusive schemes. All these methods are grid-based, i.e., they require a discretization of the
state space, and thus suffer from the so-called curse of dimensionality. The present thesis focuses
on max-plus numerical solutions and convergence analysis for medium to high dimensional deter-
ministic optimal control problems. We develop here max-plus based numerical algorithms for which
we establish theoretical complexity estimates. The proof of these estimates is based on results of
nonlinear Perron-Frobenius theory. In particular, we study the contraction properties of monotone or
non-expansive nonlinear operators, with respect to several classical metrics on cones (Thompson’s
metric, Hilbert’s projective metric), and obtain nonlinear or non-commutative generalizations of the
"ergodicity coefficients" arising in the theory of Markov chains. These results have applications in
consensus theory and also to the generalized Riccati equations arising in stochastic optimal control.

Résumé

Une approche fondamentale pour la résolution de problèmes de contrôle optimal est basée sur le
principe de programmation dynamique. Ce principe conduit aux équations d’Hamilton-Jacobi, qui
peuvent être résolues numériquement par des méthodes classiques comme la méthode des différences
finies, les méthodes semi-lagrangiennes, ou les schémas antidiffusifs. À cause de la discrétisation de
l’espace d’état, la dimension des problèmes de contrôle pouvant être abordés par ces méthodes clas-
siques est souvent limitée à 3 ou 4. Ce phénomène est appellé “malédiction de la dimension”. Cette
thèse porte sur les méthodes numériques max-plus en contôle optimal deterministe et ses analyses de
convergence. Nous étudions et developpons des méthodes numériques destinées à attenuer la malé-
diction de la dimension, pour lesquelles nous obtenons des estimations théoriques de complexité. Les
preuves reposent sur des résultats de théorie de Perron-Frobenius non linéaire. En particulier, nous
étudions les propriétés de contraction des opérateurs monotones et non expansifs, pour différentes
métriques de Finsler sur un cône (métrique de Thompson, métrique projective d’Hilbert). Nous don-
nons par ailleurs une généralisation du "coefficient d’ergodicité de Dobrushin" à des opérateurs de
Markov sur un cône général. Nous appliquons ces résultats aux systèmes de consensus ainsi qu’aux
équations de Riccati généralisées apparaissant en contrôle stochastique.
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CHAPTER 1
Introduction

1.1 Context and motivations

Optimal control deals with the problem of determining the inputs (control) for a given system in
order to maximize a functional of the state trajectory. A typical finite horizon optimal control problem
can be described as follows:

v(x,T ) := sup
u

∫ T

0
`(x(s),u(s))ds+φ(x(T )) ;

ẋ(s) = f (x(s),u(s)), x(0) = x, x(s) ∈ X ⊂ Rd ,u(s) ∈U . (1.1)

Here, T > 0 denotes the horizon, X is the state space, U is the control space, x ∈ X is an initial state,
x(·) : [0,T ]→ Rd is the state trajectory , u(·) : [0,T ]→ U is the control trajectory and (x(·),u(·))
satisfy the system (1.1). The functions f : X ×U → Rd , ` : X ×U → R and φ : X → R are called the
dynamics, Lagrangian and the terminal reward, respectively. The value v gives the optimum of the
objective as a function of the initial state x and of the horizon T .

The optimal control problems are most often solved numerically. One classical approach is to
apply Pontryagin’s Maximum Principle [PBGM62]. The latter provides a necessary optimality con-
dition involving a two point boundary problem for an ordinary differential equation (ODE) in the
state and costate variables, which can then be solved by various numerical schemes like the shoot-
ing method [Mau76, ABM11]. Since the complexity of ODE integration schemes grows polyno-
mially (sometimes even linearly) with the dimension d, this approach can be applied to problems
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of large dimension. However, unless the dynamics and the Lagrangian satisfy restrictive structural
assumptions leading to a convex optimization problem, Pontryagin’s maximum principle (which is
only a necessary condition) may not provide the global optimum. An alternative class of meth-
ods, also widely used, called "direct methods" [Kra85], consist in discretizing the optimal control
problem, leading to nonlinear optimization problem, which can be solved by various numerical algo-
rithms [Bet01, GMSW86, BMG12], some of which run in polynomial time (but are still not guaranteed
to provide the global optimum). Note also that with the Pontryagin and direct approaches, the optimal
control is not given in feedback form. In particular, if the initial state x changes, we have to solve the
problem again.

An alternative class of methods relies on Bellman’s Dynamic Programming Principle [Bel52],
which leads to the Hamilton-Jacobi Partial Differential Equation (HJ PDE) [FR75]:{

∂v
∂ t −H(x, ∂v

∂x) = 0, ∀(x, t) ∈ X× (0,T ] ,
v(x,0) = φ(x), ∀x ∈ X .

(1.2)

where
H(x, p) = sup

u∈U
p′ f (x,u)+ `(x,u), x ∈ X , p ∈ Rd

denotes the Hamiltonian of the optimal control problem. Under rather general assumptions, the value
function is known to be a viscosity solution of the HJ PDE [CL83, LS85]. A first interest of this
method is that it leads to the global optimum. A further interest of dynamic programming lies in its
generality, as it can be extended to stochastic optimal control problem [Lio89], and to zero-sum game
problem [ES84].

In the dynamic programming approach, the HJ PDE must be solved numerically. The need of ac-
curate schemes has motivated the development of several methods. We mention, for example, the finite
difference schemes [CL84], the discrete dynamic programming method by Capuzzo Dolcetta [CD83]
or the semi-Lagrangian method developed by Falcone, Ferretti and Carlini [Fal87, FF94, CFF04], the
high order ENO schemes introduced by Osher, Sethian and Shu [OS88, OS91], the discontinuous
Galerkin method by Hu and Shu [HS99], the ordered upwind methods for convex static Hamilton-
Jacobi equations by Sethian and Vladimirsky [SV03] which is an extension of the fast marching
method for the Eikonal equations [Set99], and the antidiffusive schemes for advection of Bokanowski
and Zidani [BZ07]. However, these methods require a discretization of the state space, and so, they are
subject to the curse of dimensionality (the term was coined by Richard Bellman in [Bel57]). Indeed, a
full grid in Rd with M nodes in every dimension comprises a total of Md nodes, and so, the execution
time of the scheme is exponential in the dimension of the state space d of the controlled dynamical
system (1.1).

The question of the attenuation of the curse of dimensionality has received much attention by the
numerical optimal control community. We mention the domain decomposition algorithm [CFLS94,
FLS94] and the patchy domain decomposition technique [NK07, CCFP12]. In the discrete dynamic
programming community, specially in the study of Markov decision processes, various techniques
have also been proposed to reduce the curse of dimensionality, including the approximate policy
iteration [Ber11], the classification-based policy iteration [LGM10] and the point based value itera-
tion [CLZ97].

Recently numerical methods of new type for solving HJ PDE, which are not grid-based, have
been developed after the work of Fleming and McEneaney [FM00]. These methods are referred to
as max-plus basis methods since they all rely on max-plus or tropical algebra. Their common idea is
to approximate the value function by a supremum of finitely many basis functions and to propagate
the supremum forward in time by exploiting the max-plus linearity of the Lax-Oleinik semigroup,
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which is the evolution semigroup of the HJ PDE. The max-plus linearity properties of Lax-Oleinik
semigroups were considered previously by several authors, mostly for theoretical purposes [Mas87,
KM97, AQV98].

Various max-plus methods have been developed after the initial one [FM00], concerning differ-
ent optimal control problems. In particular, McEneaney developed in [McE04] a method adapted to
eigenvector/ergodic problems, and then in [McE07] a method adapted to switched linear quadratic
problems. Akian, Gaubert and Lakhoua [AGL08] developed a max-plus analogue of the classical
finite element method, with a control of the error in terms of (non euclidean) projections. The anal-
ysis of the max-plus finite element methods also showed connection with Falcone’s semi-Lagrangian
schemes, as one particular choice of the max-plus finite element yields the simplest method of the lat-
ter class, see Section 3.6 of [LAK07] for details. More recent works on max-plus methods include the
ones of McEneaney, Deshpande and Gaubert [MDG08], of Sridharan et al. [SGJM10] on a quantum
control problem, and of Dower and McEneaney [DM11].

The method developed by McEneaney after [McE07], referred to as curse of dimensionality free
method, is specially appealing since the complexity growth of the algorithm is polynomial (actually
only cubic) with respect to the state space dimension d. In its initial form, the method applies to
an infinite horizon switched optimal control problem with Hamiltonian written as the supremum of
finitely many quadratic forms:

H(x, p) = max
m∈M

(Amx)′p+
1
2

x′Dmx+
1
2

p′Σm p, ∀x, p ∈ Rd .

Although the complexity is polynomial in d for a fixed required precision, the number of basis func-
tions which are generated is a power of the number of switches |M |, and this power grows quickly as
the required precision increases. This is referred to as a curse of complexity. The latter can be reduced
by applying a pruning procedure, which selects a subset of basis functions contributing most to the
approximation. With an SDP-based pruning technique developed in [MDG08], the curse of complex-
ity can be reduced efficiently, allowing one to deal with problems of dimension up to 15 [SGJM10],
inaccessible by classical grid based methods.

The analysis of this new class of methods leads to several questions which will be addressed in
this thesis. First, the issue of the reduction of the curse of dimensionality by max-plus basis meth-
ods can be phrased as an approximation problem: given a value function satisfying certain convexity
and regularity properties, what is the minimum number of max-plus basis functions needed to ap-
proximate it with a prescribed accuracy? Next, we shall look for tighter error estimates applying to
McEneaney’s curse of dimensionality free method. Indeed, the known estimates are too conservative,
i.e., the efficiency that the method shows in practice is much higher than the one guaranteed by the
error bound given by McEneaney and Kluberg [MK10]. Also, the pruning procedure, which is a de-
cisive ingredient in the efficient implementation of the curse of dimensionality free method, should
be understood from the theoretical point of view, in order to allow further improvements. Finally, we
shall look for new methods of max-plus type, possibly more efficient on some instances, and leading
also to an attenuation of the curse of dimensionality.

1.2 Nonlinear Perron-Frobenius theory

Contraction properties play a key role in the error analysis of many approximate dynamic pro-
gramming algorithms which have been developed so far. Indeed, in the case of the max-plus finite
element method [AGL08], the nonexpansiveness or contraction in the sup norm of the Lax-Oleinik
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semigroup is used to bound the total error. In the works on approximate value iteration (in which the
value function is approximated by a classical linear combination of basis functions), strict contrac-
tion properties in the sup-norm, or sometimes in other Lp norms, are also essential to establish the
existence of the fixed point and a fast convergence. Then, most known results on approximate value
iteration concern discounted problems and require the discount rate to be bounded away from 1, see
for example [TVR97, NB03, BY12]. There is, however, no discount factor in the optimal control
problem to which McEneaney’s curse of dimensionality free method applies, and so, to get tighter
error estimates, one should look for contraction properties of a different nature.

Actually, the curse of dimensionality free method relies on the solution of indefinite Riccati dif-
ferential equations. We shall see that tight error estimates can be derived if the indefinite Riccati flows
are local strict contractions in Thompson’s part metric, which is a metric classically considered in
Perron-Frobenius theory. The latter metric can be be thought of as a sup-norm “with log-glasses”. It
can be defined on any closed convex pointed cone in a Banach space, and it is a Finsler metric. For
positive definite matrices A,B, it is simply given by dT (A,B) = logmax(λmax(A−1B),λmax(B−1A)). It
has the property of being invariant by the action of the linear group on positive definite matrices.

A series of results in the theory of Riccati equations concern the contraction properties of the
standard Riccati flow with respect to various classical (invariant) Finsler metrics on the cone of pos-
itive semidefinite matrices. These include the invariant Riemannian metric, considered by Bougerol
[Bou93], and Thompson’s part metric, considered by Liverani and Wojtkowski [LW94] and Lawson
and Lim [LL07]. General invariant Finsler metrics were considered by Lee and Lim [LL08]. These
results, which exploit the symplectic properties of the standard Riccati flow, only apply to the class
of Riccati equations arising from deterministic control problem in which the quadratic cost function
is positive semidefinite. However, in the study of complexity of McEneaney’s curse of dimension-
ality free method, it is an essential feature that the quadratic cost is indefinite. Moreover, there are
other important classes of generalized Riccati equations, arising for instance from stochastic control
problems in which the volatility is controlled (with a bilinear term in the control and in the noise), for
which the symplectic structure is lost, and it is natural to ask to what extent the known contraction
properties carry over to more general Riccati equations.

These motivations led us to study several general questions in nonlinear Perron-Frobenius theory,
concerning the contraction properties of linear and nonlinear, sometimes order-preserving, flows with
respect to various natural metrics, including Thompson’s part metric and Hilbert’s projective metric.
Further motivations for the present work arise from the generalization of the classical Birkhoff’s the-
orem [Bir57] to nonlinear maps or flows. Birkhoff’s theorem characterizes the contraction rate with
respect to Hilbert’s projective metric of bounded monotone linear operators preserving a cone. It is
a fundamental result in the theory of monotone or nonexpansive operators. In particular, a version
of the Perron-Frobenius theorem can be deduced from Birkhoff’s contraction property. It is therefore
interesting to find a general characterization of the contraction rate of nonlinear operators with respect
to Hilbert’s projective metric. Also, contraction estimates of linear or nonlinear maps on cones ap-
pear to be useful in several fields, including classical consensus theory [Mor05, OT09] and quantum
information [NC00, SSR10, RKW11], in which “noncommutative consensus” problems arise.

1.3 Contributions

In Chapter 2 we give an explicit (computable) formula for the exponential contraction rate in
Thompson’s part metric of any order-preserving flow on the interior of a (possibly infinite dimen-
sional) closed convex pointed cone.
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As a first application, we show that the contraction results of Liverani and Wojtkowski [LW94]
and of Lawson and Lim [LL07] concerning the standard Riccati equation, as well as new contraction
results in the indefinite case, can be recovered, or obtained, by an application of our explicit formula.
This provides an alternative to the earlier approaches, which rely on the theory of symplectic semi-
groups. In particular, we establish a necessary condition for indefinite Riccati flows to be local strict
contraction, which we recall is the original motivation of this chapter.

As a second application, we show that the flow of the generalized Riccati equation arising in
stochastic linear quadratic control is a local contraction on the cone of positive definite matrices and
characterize its Lipschitz constant by a matrix inequality. We also show that the same flow is no
longer a contraction in other invariant Finsler metrics on this cone, including the standard invariant
Riemannian metric.

We make a detailed comparison with Nussbaum’s approach [Nus94], which relies on the Finsler
structure of Thompson’s metric and is widely applicable in its spirit but leads to different technical
assumptions, including geodesic convexity, whereas our proof relies on a flow invariance argument.
We construct an example in R2, for which Nussbaum’s approach does not imply the nonexpansiveness
but our explicit formula leads to establish the strict contraction of the flow and global exponential
convergence of the solutions to a fixed point.

In Chapter 3, we consider contraction properties with respect to Hilbert’s seminorm (which is
also known as Hopf oscillation, or as the diameter – Tsitsiklis’ Lyapunov function in consensus the-
ory). The Hilbert seminorm is the infinitesimal norm associated to Hilbert’s projective metric. In
Rn equipped with its usual partial order, it is nothing but the difference between the maximum and
minimum of a vector. We consider here an abstract (closed convex pointed ) cone in a Banach space,
equipped with the order induced by this cone. We give a general characterization of the contraction
ratio with respect to Hilbert’s seminorm of a bounded linear map, in terms of the extreme points of a
certain abstract “simplex” (elements of the dual cone of unit mass). Some ingredients to establish our
results include the observation that Hilbert’s seminorm is a quotient norm of Thompson’s norm (the
infinitesimal norm associated to Thompson’s part metric) and duality considerations.

The present results generalize classical results concerning the contraction rate of Markov oper-
ators. Indeed, when applying our characterization to stochastic matrices (linear operators leaving
invariant the standard positive cone of Rn, and preserving the unit vector), we recover the formula
of Dobrushin’s ergodicity coefficient [Dob56]. This coefficient determines both the contraction rate
of a consensus system with respect to the diameter semimetric [MDA05], and the contraction rate
of a stochastic matrix acting on the set of probability vectors, equipped with the total variation dis-
tance [LPW09]. When applying our result to the space of Hermitian matrices, equipped with the
Loewner order, we therefore obtain a noncommutative version of Dobrushin’s ergodicity coefficient,
which gives the contraction ratio of a Kraus map (representing a quantum channel or a “noncommu-
tative Markov chain”) with respect to the diameter of the spectrum. We shall see that it coincides with
the contraction ratio of the dual operator with respect to the total variation distance.

Whereas contraction properties are easy to check for stochastic matrices, the verification of their
noncommutative analogues require efforts. Using the noncommutative Dobrushin’s ergodicity coef-
ficient, we show that a number of decision problems concerning the contraction rate of Kraus maps
reduce to finding a rank one matrix in linear spaces satisfying certain conditions. We then show
that an irreducible Kraus map is primitive if and only if the associated noncommutative consensus
system is globally convergent. We show that this can be checked in polynomial time if the map is
irreducible. However, we prove that unlike in the case of standard nonnegative matrices, deciding
whether a Kraus map is strictly positive (meaning that it sends the cone to its interior) is NP-hard. We
also show that deciding whether the noncommutative Dobrushin’s ergodicity coefficientis strictly less
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than 1 is equivalent to a finding a clique of cardinality two in a quantum graph.
In Chapter 4, we apply the formula of the contraction ratio in Hilbert’s seminorm of linear maps,

obtained in Chapter 3, to finite dimensional nonlinear flows. We first deduce a characterization for-
mula for the contraction rate in Hilbert’s seminorm of nonlinear flows. Our characterization leads to
an explicit computable formula in the case of Rn equipped with its standard positive cone. In particu-
lar, we obtain explicit contraction rate bound for a class of nonlinear consensus protocols [SM03]. The
circumstances in which this bound leads to global convergence result are not as general as Moreau’s
graph connectivity condition [Mor05]. However, our method gives an explicit exponential contraction
rate for this class of nonlinear consensus protocols. Using Nussbaum’s Finsler approach [Nus94],
we also derive from the formula obtained in Chapter 3 a characterization of the contraction rate of
a nonlinear flow in Hilbert’s projective metric. We apply the general formula to a nonlinear matrix
differential equation and obtain an explicit contraction rate bound in Hilbert’s projective metric.

In Chapter 5, we first review the general principle of max-plus basis methods. Then, we es-
tablish a negative result, showing that some form of curse dimensionality is unavoidable for these
methods, but also for more classical approximate dynamic programming methods like stochastic dual
dynamic programming [Sha11], in which a convex value function is approximated by a supremum
of affine functions. Indeed, we show that asymptotically, the minimal approximation error in the L1
or L∞ norm, for a smooth convex function, using at most n affine minorants, is equivalent to 1/n2/d ,
as the number of basis functions n goes to infinity. We derive the latter result as an analogue of
Gruber’s best asymptotic error estimates of approximating a convex body using circumscribed poly-
topes [Gru93a, Gru93b]. We also give explicit asymptotic constants, respectively for the L1 or L∞

norm. Both constants rely on the determinant of the Hessian matrix of the convex function to approx-
imate. We deduce that an attenuation of the curse of dimensionality occurs (fewer basis functions
are needed) when the convex function to be approximated is “flat” in some direction, i.e., when its
Hessian matrix has some eigenvalues close to zero.

In Chapter 6, we focus on the algorithmic aspects of McEneaney’s curse of dimensionality free
method introduced in [MDG08] and propose several refinements of the algorithm. We show that
the optimal pruning problem, which is a critical step in the implementation of the method, can be
formulated as a continuous version of the facility location or k-center combinatorial optimization
problems, in which the connection costs arise from a Bregman distance. Hence, we propose several
heuristics (combining facility location heuristics and Shor SDP relaxation scheme). Experimental
results show that by combining the primal version of the method with improved pruning algorithms,
a higher accuracy is reached for a similar running time, by comparison with the results reported
in [MDG08].

In Chapter 7, we provide an improved error analysis of McEneaney’s curse of dimensionality free
method, restricted to the case when the Hamiltonian is the pointwise maximum of pure quadratic
forms (without affine terms). We use the contraction result for the indefinite Riccati flow in Thomp-
son’s metric, established in Chapter 2, to show that under different technical assumptions, still cover-
ing an important class of problems, the error is only of order O(e−αNτ)+O(τ) for some α > 0, where
τ is the time discretization step and N is the number of iterations. This improves the approximation
error bound O(1/(Nτ))+O(

√
τ) obtained in previous works of McEneaney and Kluberg. Besides, our

approach allows to incorporate the pruning error in the analysis and we show that if the pruning error
is O(τ2), than the same approximation error order holds. This allows us to tune the precision of the
pruning procedure, which in practice is a critical element of the method.

In Chapter 8, we develop a new max-plus basis method, called max-plus randomized algorithm,
for the class of infinite horizon switched optimal control problems with easily computable Hamiltoni-
ans. We give a first convergence proof of the method and present some experimental results. We apply
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the method to several instances with dimension varying from 4 to 15, and with the number of switches
varying from 6 to 50. Experimental results show that the max-plus randomized algorithm can reach
the same precision order obtained by the SDP-based method (introduced in [MDG08] and refined in
Chapter 6) with a speedup around 10 up to 100 and that the maximal precision order which can be
reached by the new algorithm is much better than what can be done by the SDP based algorithm. Be-
sides, with the new randomized algorithm we are now able to deal with instances of more number of
switches for which the previous SDP-based curse of dimensionality method can not reduce the initial
backsubstitution error in a reasonable running time. This will allow us, in the future work, to consider
more general infinite horizon optimal control problems with semiconvex Hamiltonians, because the
latter one can be approximated by the supremum of a large number of linear quadratic functions.

1.4 Organization

The manuscript is divided into two parts. Part I contains all the results on nonlinear Perron-
Frobenius theory. Part II contains all the results on max-plus basis methods.

Part I – In Chapter 2, we establish an explicit formula for the contraction rate in Thompson’s
metric of arbitrary order-preserving flow on cones;

– In Chapter 3, we characterize the contraction ratio in Hilbert’s seminorm of bounded linear
maps and study the applications to noncommutative consensus.

– In Chapter 4, we give a characterization of the contraction rate of nonlinear flows in
Hilbert’s seminorm and in Hilbert’s projective metric.

Part 2 – In Chapter 5, we review the general principle of max-plus basis methods and show that
the curse of dimensionality is unavoidable for the class of max-plus basis methods in
which the value function is smooth, convex and approximated by affine basis functions.

– In Chapter 6, we focus on the algorithmic aspects of McEneaney’s curse-of-dimensionality
free method introduced in [MDG08] and propose several refinements of the algorithm.

– In Chapter 7, we provide an improved error analysis of McEneaney’s curse of dimension-
ality free method.

– In Chapter 8, we propose a new max-plus basis randomized algorithm for the class of
infinite horizon switched optimal control problems.

Appendix A contains some well-known differential calculus formula used in several chapters in
the manuscript.

Chapter 2 is based on the preprint [GQ12a], accepted pending minor revision for J. Differential
Equations. Chapter 3 is an extended version of an ECC conference article [GQ13]. Chapter 4 is part
of the preprint [GQ12b]. Chapter 5 and Chapter 6 are an extended version (with complete proofs) of
a CDC conference article [GMQ11]. Chapter 7 is based on the preprint [Qu13a], under revision for
SICON. An abridged version of this chapter is included in the ECC conference proceedings [Qu13b].
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Part I

Nonlinear Perron-Frobenius theory





CHAPTER 2

The contraction rate in

Thompson's part metric of

order-preserving �ows on a cone

We give a formula for the Lipschitz constant in Thompson’s part metric of any order-preserving
flow on the interior of a (possibly infinite dimensional) closed convex pointed cone. This shows
that in the special case of order-preserving flows, a general characterization of the contraction rate
in Thompson metric, given by Nussbaum, leads to an explicit formula. As an application, we show
that the flow of the generalized Riccati equation arising in stochastic linear quadratic control is a
local contraction on the cone of positive definite matrices and characterize its Lipschitz constant by a
matrix inequality. We also show that the same flow is no longer a contraction in other invariant Finsler
metrics on this cone, including the standard invariant Riemannian metric. This is motivated by a series
of contraction properties concerning the standard Riccati equation, established by Bougerol, Liverani,
Wojtkowski, Lawson, Lee and Lim: we show that some of these properties do, and that some other do
not, carry over to the generalized Riccati equation.

This chapter is based on the preprint [GQ12a], accepted pending minor revisions in Journal of
Differential Equations.
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2.1 Introduction

The standard discrete or differential Riccati equation arising in linear-quadratic control or opti-
mal filtering problems has remarkable properties. In particular, Bougerol [Bou93] proved that the
standard discrete Riccati operator is non-expansive in the invariant Riemannian metric on the set of
positive definite matrices, and that it is a strict contraction under controllability/observability con-
ditions. Liverani and Wojtkowski [LW94] proved that analogous contraction properties hold with
respect to Thompson’s part metric. These results, which were obtained from algebraic properties of
the linear symplectic semigroup associated to a Riccati equation, are reminiscent of Birkhoff’s theo-
rem in Perron-Frobenius theory (on the contraction of positive linear operators sending a cone to its
interior [Bir57]). Lawson and Lim [LL07] generalized these results to the infinite dimensional setting,
and derived analogous contraction properties for the flow of the differential Riccati equation

Ṗ = A′P+PA−PΣP+Q, P(0) = G , (2.1)

where A is a square matrix, Σ,Q are positive semidefinite matrices, and G is a positive definite matrix.
Moreover, Lee and Lim [LL08] showed that the same contraction properties hold more generally for
a family of Finsler metrics invariant under the action of the linear group (the latter metrics arise from
symmetric gauge functions).

It is natural to ask whether the contraction properties remain valid for more general equations, like
the following constrained differential Riccati equation,

Ṗ = A′P+PA+C′PC+Q
−(PB+C′PD+L′)(R+D′PD)−1(B′P+D′PC+L),

P(0) = G
R+D′PD positive definite,

(2.2)

which has received a considerable attention in stochastic linear quadratic optimal control. The equa-
tion (2.2) is known as the generalized Riccati differential equation (GRDE) or as the stochastic Riccati
differential equation. Up to a reversal of time, it is a special case (deterministic matrix coefficients) of
the Backward stochastic Riccati differential equation, which has been extensively studied, see in par-
ticular [YZ99, CLZ98, RCMZ01]. The reader is referred to the monograph by Yong and Zhou [YZ99]
for an introduction. Even for the simpler Riccati equation (2.1), contraction properties have not been
established when the matrices Q,Σ are not positive semidefinite, whereas this situation does occur in
applications (see Chapter 7).

In this chapter, motivated by the analysis of the generalized Riccati equation, we study the general
question of computing the contraction rate in Thompson’s part metric of an arbitrary order-preserving
(time-dependent) flow defined on a subset of the interior of a closed convex and pointed cone in a
possibly infinite dimensional Banach space. Recall that the order associated with such a cone C is
defined by x 4 y⇔ y− x ∈ C , and that the Thompson metric can be defined on the interior of C by
the formula

dT (x,y) := log(max{M(x/y),M(y/x)})

where

M(x/y) := inf{t ∈ R : ty < x}= sup
ψ∈C ?

ψ(x)
ψ(y)

,

and C ? denotes the dual cone of C . More background can be found in Section 2.2.1.
Our first main result can be stated as follows.
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Theorem 2.1. Assume that the flow of the differential equation ẋ(t) = φ(t,x(t)) is order-preserving
with respect to the cone C , and let U denote an open domain included in the interior of this cone
such that λU ⊂U holds for all λ ∈ (0,1]. Then, the contraction rate of the flow over a time interval
J, on the domain U , with respect to Thompson metric, is given by the formula

α :=− sup
s∈J, x∈U

M
(
(Dφs(x)x−φ(s,x))/x

)
. (2.3)

Here, Dφs(x) denotes the derivative of the map (s,x) 7→ φ(s,x) with respect to the variable x. We
make some basic technical assumptions (continuity, Lipschitz character on the function φ with respect
to the second variable) to make sure that the flow is well defined. We refer the reader to Section 2.3
for more information, and in particular to Theorem 2.5 below, where the definition of the contraction
rate can be found. We also show that under additional technical assumptions, the bound (2.3) on
the contraction can be refined, the supremum over s ∈ J being replaced by a mean over s ∈ J, see
Theorem 2.7 below.

The idea of the proof is to construct a special flow-invariant set, appealing to a generalization due
to Martin [Mar73] of theorems of Bony [Bon69] and Brezis [Bre70] on the geometric characteriza-
tion of flow invariance. Formula (2.3) should be compared with results of Nussbaum, who studied the
more general question of computing the contraction rate of a not necessarily order-preserving flow
in Thompson metric [Nus94] , and obtained an explicit formula in the special case of the standard
positive cone. The effective evaluation of the contraction rate becomes difficult in the non-order-
preserving case, whereas the more special characterization (2.3) is useful from an algorithmic per-
spective (evaluating the term M(·/·) there reduces to computing the dominant eigenvalue of a positive
definite matrix). We also note that Nussbaum’s approach, which relies on the Finsler structure of
Thompson’s part metric, is widely applicable in its spirit but leads to different technical assumptions,
including geodesic convexity. See Section 2.7 for a detailed comparison.

As a first illustration, we show, in Section 2.4.2, that the contraction results of Liverani and Wo-
jtkowski [LW94] and of Lawson and Lim [LL07] concerning the standard Riccati equation (2.1) with
positive semidefinite matrices Σ,Q, as well as new contraction results in the case when Σ is not posi-
tive semidefinite, can be recovered, or obtained, by an application of Formula (2.3). This provides an
alternative to the earlier approaches, which relied on the theory of symplectic semigroups. This will
allow us to handle as well situations in which the symplectic structure is missing, as it is the case of
the generalized Riccati differential equation, see Section 2.5.

Our second main result shows that the flow of the generalized Riccati differential equation is a
local contraction in Thompson metric.

Theorem 2.2. Assume that the coefficients of the generalized Riccati differential equation (2.2) are
constant, and that the matrix

(
Q L′
L R

)
is positive definite. Then, the flow of this equation is a strict

contraction on the interior of the cone of positive definite matrices, and this contraction is uniform on
any subset that is bounded from above in the Loewner order.

This theorem follows from Theorem 2.11 in Section 2.5, where an explicit bound for the contrac-
tion rate on an interval in the Loewner order is given. We shall also see in Section 2.5 that the flow of
the generalized Riccati equation is no longer a uniform contraction on the interior of the cone, which
reveals a fundamental discrepancy with the case of the standard Riccati equation. Then, motivated by
earlier results of Chen, Moore, Ait Rami, and Zhou (see [RCMZ01] and [RZ00]) on the asymptotic
behavior of the GRDE, we identify (Theorem 2.13) different assumptions under which a trajectory
of the GRDE converges exponentially to a stable solution of the associated Generalized Algebraic
Riccati Equation (GARE). We also establish (Section 2.5.4) analogous results concerning the discrete
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time case. Then, we give a necessary and sufficient condition (Proposition 2.19) for the generalized
discrete Riccati operator to be a strict global contraction.

Finally, in Section 2.6, we establish the following negative result, which shows that the Thompson
metric is essentially the only invariant Finsler metric in which the flow of the GRDE is non-expansive
for all admissible values of the matrix data.

Theorem 2.3. The flow of the generalized Riccati differential equation is non-expansive in the in-
variant Finsler metric arising from a symmetric gauge function, regardless of the matrix parameters
(A,B,C,D,L,Q,R), if and only if this symmetric gauge function is a scalar multiple of the sup-norm.

In particular, the flow of the GRDE is not non-expansive in the invariant Riemannian metric,
showing that Bougerol’s theorem on the contraction of the standard discrete Riccati equation does not
carry over to the GRDE.

2.2 Preliminaries

2.2.1 Thompson's part metric

We first recall the definition and basic properties of Thompson’s part metric.
Throughout the chapter, (X ,‖ · ‖) is a real Banach space. Denote by X ? the dual space of X .

For any x∈X and q∈X ?, denote by 〈q,x〉 the value of q(x). Let C ⊂X be a closed pointed convex
cone, i.e., αC ⊂ C for α ∈ R+, C +C ⊂ C and C ∩ (−C ) = 0. The dual cone of C is defined by

C ? = {z ∈X ? : 〈z,x〉> 0 ∀x ∈ C } .

We denote by C0 the interior of C . We define the partial order 4 induced by C on X by

x 4 y⇔ y− x ∈ C

so that
x 4 y⇒ 〈z,x〉6 〈z,y〉 , ∀z ∈ C ?.

We also define the relation ≺ by
x≺ y⇔ y− x ∈ C0 .

For x 4 y we define the order intervals:

[x,y] := {z ∈X |x 4 z 4 y}, (x,y) := {z ∈X |x≺ z≺ y}.

For x ∈X and y ∈ C0, following [Nus88], we define

M(x/y) := inf{t ∈ R : x 4 ty}
m(x/y) := sup{t ∈ R : x < ty} (2.4)

Observe that since y ∈ C0, and since C is closed and pointed, the two sets in (2.4) are non-empty,
closed, and bounded from below and from above, respectively. In particular, m and M take finite
values.

Definition 2.1 ([Tho63]). The Thompson part metric between two elements x and y of C0 is

dT (x,y) := log(max{M(x/y),M(y/x)}) . (2.5)
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It can be verified [Tho63] that dT (·, ·) defines a metric on C0, namely for any x,y,z ∈ C0 we have

dT (x,y)> 0, dT (x,y) = dT (y,x), dT (x,z)6 dT (x,y)+dT (y,z), dT (x,y) = 0⇔ x = y.

The cone C is normal if there is a constant K > 0 such that

0 4 x 4 y⇒‖x‖6 K‖y‖.

Note that in finite dimensional case, a (closed convex pointed) cone C is automatically a normal
cone. A sufficient condition for C0 to be complete with respect to dT (·, ·) is that C is a normal cone,
see [Tho63]. We shall consider specially the following two examples: the standard orthant cone and
the cone of positive semidefinite matrices.

Example 2.1. We consider the space X = Rn and the standard orthant cone C = Rn
+. We denote by

intRn
+ the interior of Rn

+. It can be checked that the partial order 4 is the pointwise order, i.e., for all
x,y ∈ Rn,

x 4 y⇔ xi 6 yi, 1 6 i 6 n.

Besides, for all x,y ∈ C0,
M(x/y) = max

16i6n
xi/yi ,

and Thompson’s part metric can be explicitly computed from (2.5).

Example 2.2. Let X = Sn, the space of Hermitian matrices of dimension n and C = S+
n ⊂ Sn (resp.

C0 = Ŝ
+
n ), the cone of positive semidefinite matrices (resp. the cone of positive definite matrices).

Then the partial order 4 is the Loewner order, i.e., for all A,B ∈ Sn,

A 4 B⇔ x′Ax 6 x′Bx, ∀x ∈ Rn .

It can be checked that, for all A,B ∈ C0,

M(A/B) = max
16i6n

λi ,

where λ1, . . . ,λn are the eigenvalues of the matrix B−1A (the latter eigenvalues are real and positive)
so that Thompson’s part metric dT can be explicitly computed from (2.5).

2.2.2 Characterization of �ow invariant sets

We next recall some known results on the characterization of flow-invariant sets in terms of tangent
cones, which will be used to characterize order-preserving non-expansive flows in Thompson’s part
metric.

In the sequel, J = [0,T )⊂ R is a possibly unbounded interval, D ⊂X is an open set, and φ(t,x)
is a function from J×D to X . For x ∈X and S ⊂X we define the distance function:

d(x,S ) = inf{|x− y| : y ∈S }.

We study the following Cauchy problem:{
ẋ(t) = φ(t,x(t)),
x(s) = x0.

(2.6)
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By a solution of (2.6) on [s,a) ⊂ J we mean a differentiable function t 7→ x(t) : [s,a)→ D such that
x(s) = x0 and ẋ(t) = φ(t,x(t)) for all t ∈ [s,a). By an absolutely continuous solution of (2.6) on
[s,a) ⊂ J we mean an absolutely continuous function t 7→ x(t) : [s,a)→ D such that x(s) = x0 and
ẋ(t) = φ(t,x(t)) for almost everywhere t ∈ [s,a).

Let S be a closed subset of X . We say that the system (S ∩D ,φ) is flow-invariant if every
absolutely continuous solution of (2.6) leaves S invariant, in the sense that for any s ∈ J and x0 ∈
S ∩D , the solution x(t) must be in ∈S ∩D , for all t ∈ [s,a).

Characterizations of flow invariant sets go back to the works of Bony [Bon69] and Brezis [Bre70].
Several improvements, together with extensions to the infinite dimensional case can be found in
[Red72], [Mar73], [Cla75] and [RW75]. We shall actually need here an immediate consequence
of a theorem of Martin [Mar73].

Theorem 2.4 (Theorem 1 of [Mar73]). Suppose that the following conditions hold:

(C1) ψ is a continuous function on J×D;

(C2) For every closed bounded set K ⊂D , there is a constant L > 0 such that

|ψ(t,x)−ψ(t,y)|6 L|x− y|, ∀t ∈ J,x,y ∈ K ;

(C3) For all t ∈ J and x ∈S ∩D ,

lim
h↓0

d(x+hψ(t,x),S ∩D)

h
= 0 .

(C4) S is convex.

Then the system (S ∩D ,ψ) is flow-invariant.

It is not difficult to prove that for x ∈S ∩D , v ∈X and sufficiently small h > 0,

d(x+hv,S ) = d(x+hv,S ∩D).

Thus, Condition (C3) is equivalent to:

(C5) For all t ∈ J and x ∈S ∩D ,

lim
h↓0

d(x+hψ(t,x),S )

h
= 0.

Condition (C2) is a local Lipschitz condition for the function ψ , with respect to the second variable.
Condition (C3) is a tangency condition (the vector field ψ should not point outward the set S ∩D).

Definition 2.2 (Tangent cone [Cla75]). The tangent cone to a closed set S ⊂X at a point x ∈S ,
written TS (x), is the set of vectors v such that:

liminf
h↓0

d(x+hv,S )

h
= 0. (2.7)

Remark 2.3. When S is a closed convex, we know that the limit in (2.7) exists. Thus, Condition
(C5), equivalent to (C3) in Theorem 2.4, can be replaced by:
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(C6) For all t ∈ J and x ∈S ∩D ,
ψ(t,x) ∈ TS (x).

Besides, this definition coincides with the one in convex analysis, i.e.,

Proposition 2.1 (Proposition 5.5, Exercice 7.2 [CLSW98]). Let S be a closed convex set of X , then,

TS (x) = cl{v : ∃λ > 0 with x+λv ∈S }, ∀x ∈S .

Now the flow-invariance can be checked by verifying if φ(t,x) lies in the tangent cone of S . To
this end, we need to compute the tangent cone at each point of S . In some cases the tangent cone can
be expressed in a simple way:

Lemma 2.2 (Exercise 2.5.3 [CLSW98]). Let S1,S2 ⊂X be closed subsets, x = (x1,x2) ∈S1×S2.
Then

TS1×S2(x) = TS1(x1)×TS2(x2).

We shall consider specially S = C . Then, using Proposition 2.1 and the Hahn-Banach separation
theorem, one can show that

TC (x) = {v|〈q,v〉> 0 if q ∈ C ? and 〈q,x〉= 0}, x ∈ C . (2.8)

2.3 Contraction rate in Thompson metric of order-preserving

�ow

2.3.1 Preliminary results

From now until the end, the function φ(t,x) is assumed to be continuous on J×D and Fréchet
differentiable in x. The derivative of φ with respect to the second variable at point (t,x) is denoted
by Dφt(x). We also assume that the derivative is bounded on any closed bounded set, i.e., for any
bounded set K ⊂D , there is a constant L such that:

|Dφt(x)|6 L, ∀t ∈ J,x ∈ K.

Therefore Condition (C1) and Condition (C2) are both satisfied. The existence and uniqueness of the
solution of (2.6) follow from the Cauchy-Lipschitz Theorem. We then define the flow M··(·) associated
to the system by:

Mt
s(x0) = x(t), s ∈ J, t ∈ [s,a)

where x(t) : t ∈ [s,a) is the maximal solution of (2.6). (Note that in general the flow is defined only
on a subset of J× J×D .) For each open subset U ⊂D and initial value x0 ∈U we define tU (s,x0)
as the first time when the trajectory leaves U , i.e.,

tU (s,x0) = sup{b ∈ (s,a)|Mt
s(x0) ∈U , ∀t ∈ [s,b)}.

When φ is independent of time t, we denote simply

Mt(x0) := Mt
0(x0), tU (x0) := tU (0,x0), ∀x0 ∈D ,U ⊂D .

By uniqueness of the solution, the flow has the group property:

Mt
s(x0) = Mt1

s (M
t
t1(x0)), ∀ 0 6 s 6 t1 6 t < tD(s,x0) .



28 Chapter 2. The contraction rate in Thompson's part metric of order-preserving �ows

Definition 2.3 (Order-preserving flow). Let U be an open subset of D . The flow M··(·) is said to be
order-preserving on U if for all x1,x2 ∈U such that x1 4 x2,

Mt
s(x1)4 Mt

s(x2), ∀ 0 6 s 6 t < tU (s,x1)∧ tU (s,x2).

Definition 2.4 (Non-expansiveness and contraction). Suppose that C0 ⊂D . The flow M··(·) is said to
be contractive on C0 with rate α in Thompson metric if for all x1,x2 ∈ C0,

dT (Mt
s(x1),Mt

s(x2))6 e−α(t−s)dT (x1,x2), ∀ 0 6 s 6 t < tC0(s,x1)∧ tC0(s,x2)

If the latter inequality holds with α = 0, the flow is said to be non-expansive.

In the following, our primary goal is to characterize the best contraction rate for order-preserving
flows in Thompson part metric. We shall need the following proposition, which provides a charac-
terization of monotonicity in terms of the function φ . The equivalence of the first two assertions was
proved in [RW75].

Proposition 2.3 (Compare with Theorem 3 in [RW75]). Let U be an open subset of D . The following
conditions are equivalent:

(a) The flow M··(·) is order-preserving on U .

(b) For all s ∈ J and x1,x2 ∈U such that x1 < x2, φ(s,x1)−φ(s,x2) ∈ TC (x1− x2).

If U is convex, then the above conditions are equivalent to:

(c) For all s ∈ J, x ∈U and v ∈ C ,

〈q,Dφs(x)v〉> 0, ∀q ∈ {q ∈ C ? : 〈q,v〉= 0}. (2.9)

Proof. We only need to prove the equivalence between (b) and (c), since the equivalence between (a)
and (b) follows from [RW75]. In view of (2.8), Condition (b) is equivalent to the following:

for all s ∈ J and x1,x2 ∈U such that x1 < x2,

〈q,φ(s,x1)−φ(s,x2)〉> 0, ∀q ∈ {q ∈ C ? : 〈q,x1− x2〉= 0}.

Now suppose that (b) is true. Then for any s ∈ J, x ∈U and any v ∈ C , there is δ > 0 such that for
any 0 6 ε 6 δ

〈q,φ(s,x+ εv)−φ(s,x)〉> 0, ∀q ∈ {q ∈ C ? : 〈q,v〉= 0}.
Since φ is differentiable at point x, dividing by ε the latter inequality, and letting ε tend to 0, we get

〈q,Dφs(x)v〉> 0, ∀q ∈ {q ∈ C ? : 〈q,v〉= 0}.

Next suppose that Condition (c) holds. Fix any s ∈ J and x1,x2 ∈U such that x1 < x2. Fix any q ∈ C ?

such that 〈q,x1− x2〉= 0. Define the function g : [0,1]→ R by:

g(λ ) = 〈q,φ(s,λx1 +(1−λ )x2)−φ(s,x2)〉.

Then we have g(0) = 0 and in view of convexity of U and (2.9),

g′(λ ) = 〈q,Dφs(λx1 +(1−λ )x2)(x1− x2))〉> 0, ∀0 6 λ 6 1.

A standard argument establishes that:

g(1) = 〈q,φ(s,x1)−φ(s,x2)〉> 0. (2.10)

Since s,x1,x2 and q are arbitrary, we deduce Condition (b).
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2.3.2 Characterization of the contraction rate in terms of �ow invariant sets

The following is a key technical result in the characterization of the contraction rate of the flow.

Proposition 2.4. Let U ⊂D be an open set such that λU ⊂U for all λ ∈ (0,1]. If the flow M··(·) is
order-preserving on U , then the following conditions are equivalent:

(a) For all x ∈U and λ > 1 such that λx ∈U ,

Mt
s(λx)4 λ

e−α(t−s)
Mt

s(x), 0 6 s 6 t < tU (s,x)∧ tU (s,λx).

(b) For all s ∈ J and x ∈U ,
Dφs(x)x−φ(s,x)4−αx.

(c) For all x,y ∈U and λ > 1 such that y 4 λx,

Mt
s(y)4 λ

e−α(t−s)
Mt

s(x),0 6 s 6 t < tU (s,x)∧ tU (s,y).

Proof. Suppose Condition (a) holds. Let x be any point in U . Fix any λ > 1 such that λx ∈U , we
must have:

Mt
s(λx)4 λ

e−α(t−s)
Mt

s(x), 0 6 t < tU (s,x)∧ tU (s,λx). (2.11)

where it must be the case that tU (s,x)∧tU (s,λx)> 0. Since the terms on both sides of (2.11) coincide
when t = s, taking the derivative of each of these terms at t = s, we obtain

φ(s,λx)4 λφ(s,x)−α(λ lnλ )x (2.12)

Since this inequality holds for all λ > 1 such that λx ∈U , with equality for λ = 1, the derivation of
the two sides of the above inequality at λ = 1 leads to:

Dφs(x)x−φ(s,x)4−αx

for all x ∈U . Condition (b) is deduced.
Now suppose that Condition (b) is true. We shall derive Condition (c) by constructing an invariant

set. Denote:
X̃ := X ×X ×R,

D̃ := U ×U ×R+\{0},

S := {(x1,x2,λ ) ∈ X̃ : x2 4 λx1,λ > 1}.

Define the differential equation on D̃ : ẋ1
ẋ2

λ̇

= Φ(t,x1,x2,λ ) :=

 φ(t,x1)
φ(t,x2)
−αλ lnλ

 (2.13)

It is not difficult to see that Condition (c) is equivalent to the flow-invariance of the system (S ∩D̃ ,Φ).
It would be natural to show directly the latter flow-invariance by appealing to Theorem 2.4, but the
set S is not convex, making it harder to check the assumptions of this theorem. Therefore, we make
a change of variable to replace S by a convex set.
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Define the smooth function F : X̃ → X̃ by:

F(x1,x2,λ ) = (x1,λx1− x2,λ −1), ∀(x1,x2,λ ) ∈ X̃ .

Denote
S ′ = X ×C ×R+.

By Lemma 2.2, for (y1,y2,κ) ∈S ′,

TS ′(y1,y2,κ) = X ×TC (y2)×TR+(κ).

Observe that S = {x ∈ X̃ |F(x) ∈S ′} and that F has a smooth inverse G : X̃ → X̃ given by:

G(y1,y2,κ) = (y1,(κ +1)y1− y2,κ +1).

Therefore F(D̃) = G−1(D̃) is an open set. Let (y1,y2,κ) = F(x1,x2,λ ) and consider the system:

(ẏ1, ẏ2, κ̇)
′ = Ψ(t,y1,y2,κ) (2.14)

where

Ψ(t,y1,y2,κ) :=

 φ(t,y1)
−α(κ +1) ln(κ +1)y1 +(κ +1)φ(t,y1)−φ(t,(κ +1)y1− y2)
−α(κ +1) ln(κ +1)


One can verify that the invariance of the system (S ∩ D̃ ,Φ) is equivalent to the invariance of the
system (S ′∩F(D̃),Ψ).

Now the function Ψ : J×F(D̃)→ X̃ defined as above is continuous and differentiable to the
second variable with bounded derivative on bounded set. Besides S ′ is convex. By applying Theo-
rem 2.4, the system (S ′∩F(D̃),Ψ) is flow-invariant if the following condition is satisfied:

Ψ(s,y1,y2,κ) ∈ TS ′(y1,y2,κ), ∀s ∈ J,(y1,y2,κ) ∈S ′∩F(D̃). (2.15)

That is, for any (y1,y2,κ) ∈S ′∩F(D̃) and s ∈ J,
φ(s,y1) ∈X
−α(κ +1) ln(κ +1)y1 +(κ +1)φ(s,y1)−φ(s,(κ +1)y1− y2) ∈ TC (y2)
−α(κ +1) ln(κ +1) ∈ TR+(κ)

It suffices to check the second condition because the others hold trivially. By applying the bijection
F , this condition becomes: for any s ∈ J and (x1,x2,λ ) ∈S ∩ D̃ ,

−αλ lnλx1 +λφ(s,x1)−φ(s,x2) ∈ TC (λx1− x2).

Let any s ∈ J, x1,x2 ∈U and λ > 1 such that x2 4 λx1. Let any q ∈ C ? such that 〈q,λx1− x2〉 = 0.
By (2.8) we only need to prove:

〈q,−αλ lnλx1 +λφ(s,x1)−φ(s,x2)〉> 0. (2.16)

By the assumptions, we know that λ−1x2 ∈U . Then, it suffices to prove: for any x1,x2 ∈U such that
x1 < x2, let q ∈ C ? such that 〈q,x1− x2〉= 0, then for any λ > 1 such that λx2 ∈U we have:

〈q,−αλ lnλx1 +λφ(s,x1)−φ(s,λx2)〉> 0.
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Define the function f : [1,λ ]→ R by:

f (τ) = 〈q,−α lnτx1 +φ(s,x1)− τ
−1

φ(s,τx2)〉

Notice that the function f is well defined on [1,λ ]. By hypothesis of monotonicity and Proposition 2.3,

f (1) = 〈q,φ(s,x1)−φ(s,x2)〉> 0.

Differentiating f gives, for all τ ∈ [1,λ ],

f ′(τ) = 〈q,−τ
−1

αx1 + τ
−2

φ(s,τx2)− τ
−1Dφs(τx2)x2〉

> 〈q,−τ
−1

αx1 + τ
−1

αx2〉 (by Condition (b))

= 0 .

A standard argument establishes that f (λ ) > 0, and so (2.16) is proved, whence the flow-invariance
of (S ∩ D̃ ,Φ), which is exactly Condition (c). Finally, Condition (a) follows from Condition (c) by
considering y = λx.

We next state the main results. Recall that J = [0,T )⊂ R.

Theorem 2.5 (Contraction rate). Assume that φ is defined on J×U where U ⊂ C0 is an open set in
the interior of the cone such that λU ⊂U for all λ ∈ (0,1]. If the flow M··(·) is order-preserving on
U , then the best constant α such that

dT (Mt
s(x1),Mt

s(x2))6 e−α(t−s)dT (x1,x2), 0 6 s 6 t < tU (s,x1)∧ tU (s,x2) (2.17)

holds for all x1,x2 ∈U is given by

α :=− sup
s∈J, x∈U

M
(
(Dφs(x)x−φ(s,x))/x

)
. (2.18)

Proof. If (2.17) holds for all x1,x2 ∈U , then Condition (a) in Proposition (2.4) holds. It follows that
the constant α must satisfy

Dφs(x)x−φ(s,x)4−αx, ∀s ∈ J,x ∈U . (2.19)

Now conversely if (2.19) holds. Then Condition (c) in Proposition 2.4 holds. For any x1,x2 ∈U , let
λ = edT (x1,x2), then

Mt
s(x1)4 λ

e−α(t−s)
Mt

s(x2),0 6 s 6 t < tU (s,x2)∧ tU (s,x1) .

The same is true if we exchange the roles of x1 and x2, and so, (2.17) holds for all x1,x2 ∈ U .
Consequently the best constant α such that (2.17) holds for all x1,x2 ∈U must be the greatest constant
α such that (2.19) holds, which is precisely (2.18).

Remark 2.4. The reason that we suppose λU ⊂ U for all λ ∈ (0,1] is to have λ−1x2 ∈ U for all
x1,x2 ∈U and λ > 1 such that x2 4 λx1 (see the proofs after (2.16)). Such condition can be weakened
in the following way. Let

λ0 = sup
x,y∈U

M(x/y).
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Denote
α(U ,λ0) :=− sup

s∈J,λ−1
0 6λ61

x∈λU

M((Dφs(x)x−φ(s,x))/x).

Suppose that we know a priori that the flow is order-preserving and non-expansive, then for all x1,x2 ∈
U ,

dT (Mt
s(x1),Mt

s(x2))6 e−α(U ,λ0)(t−s)dT (x1,x2), 0 6 s 6 t < tU (s,x1)∧ tU (s,x2)

Clearly the assumption λU ⊂U for all λ ∈ (0,1] is like taking λ0 =+∞.

Now we get a direct corollary.

Theorem 2.6. Suppose that φ is defined on J×C0. Let α ∈ R. If the flow is order-preserving on C0,
then the following are equivalent:

(a) For all x1,x2 ∈ C0:

dT (Mt
s(x1),Mt

s(x2))6 e−α(t−s)dT (x1,x2), 0 6 s 6 t < tC0(s,x1)∧ tC0(s,x2).

(b) For all s ∈ J and x ∈ C0,
Dφs(x)x−φ(s,x)4−αx.

If any of these conditions holds, then the flow leaves C0 invariant, i.e., for any s ∈ J and x ∈ C0,
tC0(s,x) = T .

Proof. The equivalence between (a) and (b) follows from Theorem 2.5. Now suppose that Condition
(b) holds. Let any s ∈ J and x1,x2 ∈ C0. Let t1 = tC0(s,x1) and t2 = tC0(s,x2). Suppose that t1 < t2.
Then it must be the case that t1 < +∞. Thus the set {Mr

s (x2) : r ∈ [s, t1]} is compact and included in
C0. Denote

K = max{dT (Mr
s (x2),Mt1

s (x2))| r ∈ [s, t1]}<+∞

and K0 = K +max{e−α(t1−s),1}dT (x1,x2). Note that there exists s < r̄ < t1 such that

dT (Mr̄
s (x1),Mt1

s (x2))> K0,

otherwise tC0(s,x1)> t1. But for any s < r < t1,

dT (Mr
s (x1),Mt1

s (x2)) 6 dT (Mr
s (x1),Mr

s (x2))+dT (Mr
s (x2),Mt1

s (x2))

6 e−α(r−s)dT (x1,x2)+dT (Mr
s (x2),Mt1

s (x2))
6 K0.

The contradiction implies that t1 < t2 is impossible. We then showed that there exists T̄ ∈ (0,+∞]
such that for any s ∈ J and x ∈ C0, tC0(s,x) = T̄ . From the group property of the flow action, we
deduce that T̄ = T .

2.3.3 Characterization of a time-dependent contraction rate in terms of �ow
invariant sets

We next refine the previous estimates of the contraction rate in the time-dependent case: Theo-
rem 2.7 shows that the supremum over time s ∈ J in the formula of Theorem 2.5 can be replaced by a
mean over time. However, in the infinite-dimensional setting, we need to make stronger assumptions
to arrive at this tighter estimate.

In particular we shall need to use the following notion. We say that a set S is a distance set if for
all x ∈X , there is y ∈ S such that d(x,S) = |x− y|.
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Theorem 2.7. Let φ be defined on J×U where U ⊂ C0 is an open set in the interior of the cone
such that λU ⊂U for all λ ∈ (0,1]. Assume that the function α(·,U ) : J→ R defined by

α(s,U ) =− sup
x∈U

M((Dφs(x)x−φ(s,x))/x), ∀s ∈ J

is locally integrable. Assume in addition that C is a distance set. If the flow M··(·) is order-preserving
on U , then for all x,y ∈U ,

dT (Mt
s(x),M

t
s(y))6 exp

(
−
∫ t

s
α(r,U )dr

)
dT (x,y), 0 6 s < t < tU (s,x)∧ tU (s,y).

If we redo the proof of Proposition 2.4, we shall need to prove the invariance of the system
(S′∩F(D̃),Ψ) where S′, F and D̃ are the same and Ψ is now defined by:

Ψ(t,y1,y2,κ) :=

 φ(t,y1)
−α(t,U )(κ +1) ln(κ +1)y1 +(κ +1)φ(t,y1)−φ(t,(κ +1)y1− y2)
−α(t,U )(κ +1) ln(κ +1)


Note that Ψ may not be continuous with respect to time so that Theorem 2.4 is no longer directly
applicable to show the invariance. In fact, in this case we only have the existence of an absolutely
continuous solution of system (2.13) and thus of System (2.14), the constant α being replaced by a
time-dependent function α(·,U ). In order to prove the invariance of (S′∩F(D̃),Ψ), we shall use the
following invariance characterization:

Theorem 2.8 ([RW75]). Suppose that the following conditions hold:

(C1) For every closed bounded set K ⊂ D , there is a locally integrable function w(·) : J→ R such
that

|ψ(t,x)−ψ(t,y)|6 w(t)|x− y|, ∀t ∈ J,x,y ∈ K ;

(C2) For all t ∈ J and x ∈S ∩D ,

lim
h↓0

d(x+hψ(t,x),S ∩D)

h
= 0 .

(C3) S is a distance set.

Then the system (S ∩D ,ψ) is flow-invariant.

Theorem 2.8 follows from Theorem 2 in [RW75]. Assumption (C1) corresponds to the uniqueness
condition (U2) there. Assumption (C3) requires the distance set assumption. Note that Redheffer and
Walter considered invariance for solutions in the strong sense. It is easy to check that the proofs are
also valid for absolutely continuous solutions.

Once we have Theorem 2.8, Theorem 2.7 can be proved in the same way as Theorem 2.5. There-
fore we omit the detail of the proofs.

Remark 2.5. In a reflexive Banach space, every closed convex set is a distance set [FHH+01, 3.104].
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2.3.4 Convergence rate characterization to a �xed point

In the sequel we suppose that the dynamics φ are independent of time and study the convergence
of an orbit of the flow to a fixed point in the interior of the cone. Let x̄ ∈ C0 be such that φ(x̄) = 0. Let
µ > 1. Denote by U the open interval (µ−1x̄,µ x̄). We look for the best constant α ∈ R such that:

dT (Mt(x), x̄)6 e−αtdT (x, x̄), ∀x ∈U ,0 6 t < tU (x). (2.20)

Theorem 2.9 (Convergence rate). We assume that φ is independent of time, defined on C0 and such
that the flow is order-preserving on C0. Let x̄ ∈ C0 be a zero point of φ . Then the best constant α such
that (2.20) holds is given by

α = inf
µ−1<λ<µ

m
(
(−(λ lnλ )−1

φ(λ x̄))/x̄
)
. (2.21)

Moreover, if the latter α is non-negative, then for all x ∈ [µ−1x̄,µ x̄],

dT (Mt(x), x̄)6 e−αtdT (x, x̄), ∀t > 0. (2.22)

Proof. Suppose that α satisfies (2.20). Let any λ ∈ (1,µ). Then λ x̄ ∈U and

Mt(λ x̄)4 λ
e−αt

x̄, 0 6 t < tU (λ x̄).

Since tU (λ x̄)> 0 and both sides of the former inequality coincide when t = 0, we get the inequality
for the derivative at t = 0:

φ(λ x̄)4−αλ (lnλ )x̄ , (2.23)

and so

α x̄ 4−(λ lnλ )−1
φ(λ x̄), ∀1 < λ < µ. (2.24)

Similarly, for λ ∈ (µ−1,1),
λ

e−αt
x̄ 4 Mt(λ x̄), 0 6 t < tU (λ x̄),

thus

−αλ lnλ x̄ 4 φ(λ x̄) (2.25)

leading to

α x̄ 4−(λ lnλ )−1
φ(λ x̄), ∀µ

−1 < λ < 1. (2.26)

It follows that α is bounded above by the expression in (2.21). To prove that conversely, (2.20) holds
when α is given by (2.21), we use an invariance argument as in the proof of Proposition 2.4. Denote:

X̃ := X ×R,

D := U × (1,µ),

S1 := {(x,λ ) ∈ X̃ : x 4 λ x̄},

S2 := {(x,λ ) ∈ X̃ : x̄ 4 λx},
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and define the differential equation:(
ẋ
λ̇

)
= Φ(x,λ ) :=

(
φ(x)
−αλ lnλ

)
. (2.27)

Then (2.20) holds if (S1∩D ,Φ) and (S2∩D ,Φ) are invariant systems. Given the convexity of S1,
we can directly apply Theorem 2.4 to prove the invariance of the system (S1 ∩D ,Φ). The tangent
cone of S1 at point (x,λ ) ∈S1 is given by:

TS1(x,λ ) = {(z,η) : 〈q,η x̄− z〉> 0,∀q ∈ C ∗,〈q,λ x̄− x〉= 0}.

For any q ∈ C ∗ such that 〈q,λ x̄− x〉= 0, by the order-preserving assumption and Proposition 2.3,

〈q,φ(λ x̄)〉> 〈q,φ(x)〉.

Now, using the expression of α in (2.21),

〈q,−αλ lnλ x̄−φ(x)〉> 〈q,−αλ lnλ x̄−φ(λ x̄)〉> 0.

This shows that
Φ(x,λ ) ∈ TS1(x,λ ), ∀(x,λ ) ∈D ∩S1,

whence the invariance of (S1∩D ,Φ). For the invariance of system (S2∩D ,Φ), we define a bijection
on D :

F(x,λ ) = (λx− x̄,λ )

whose inverse is:
G(y,κ) = (κ−1(x̄+ y),κ).

If (x(·),λ (·)) ∈ D follows the dynamics of (2.27), then (y(·),κ(·)) = F(x(·),λ (·)) is the solution of
the following differential equation:(

ẏ
κ̇

)
= Ψ(y,κ) =

(
−α lnκ(x̄+ y)+κφ(κ−1(x̄+ y))
−ακ lnκ

)
. (2.28)

Thus the invariance of system (F(D)∩F(S2),Ψ) implies the invariance of system (D∩S2,Φ). Note
that F(S2) = C ×R. Therefore by Theorem 2.4 the system (F(D)∩F(S2),Ψ) is invariant if

Ψ(y,κ) ∈ TF(S2)(y,κ), ∀(y,κ) ∈ F(D)∩F(S2).

The tangent cone of F(S2) at point (y,κ) ∈ F(S2) is given by:

TF(S2)(y,κ) = {z : 〈q,z〉> 0,∀q ∈ C ∗,〈q,y〉= 0}×R.

Again by the order-preserving assumption, for any q ∈ C ∗ such that 〈q,y〉= 0,

〈q,φ(κ−1(x̄+ y))〉> 〈q,φ(κ−1(x̄))〉

Using again the expression of α in (2.21),

〈q,κφ(κ−1(x̄))〉> 〈q,(α lnκ)x̄〉
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because κ ∈ (1,µ). Therefore

〈q,−(α lnκ)(x̄+ y)+κφ(κ−1(x̄+ y))〉> 0,

which implies
Ψ(y,κ) ∈ TF(S2)(y,κ), ∀(y,κ) ∈ F(D)∩F(S2),

whence the invariance of (F(S2)∩F(D),Ψ) and that of (S2∩D ,Φ).
Finally, if α > 0, then the set U is invariant (by (2.20)). Thus tU (x) = +∞ for all x ∈U . Since

the closure [µ−1x̄,µ x̄] of U is in the interior of the cone, we conclude that the relation (2.20) holds as
well for x ∈ [µ−1x̄,µ x̄].

2.3.5 The discrete time case

For completeness, we give in this section the results analogous to Proposition 2.3 and Theorem 2.5
for discrete operators. These results are of a simpler character. In this section we consider a differ-
entiable map F : C0→ C0. The first proposition characterizes order-preserving maps, its elementary
proof is left to the reader.

Proposition 2.5. Let U ⊂ C0 be any open convex set. Then F is order-preserving on U if and only if

DF(P) ·Z > 0, ∀P ∈U ,Z ∈ C

Let G ⊂ C0. The Lipschitz constant of F on G , denoted by Lip(F ;G ), is defined as:

Lip(F ;G ) := sup
P1,P2∈G

dT (F(P1),F(P2))

dT (P1,P2)
. (2.29)

Proposition 2.6. Let G ⊂ C0 be a set such that tG ⊂ G for any t > 1. If F is order-preserving on G ,
then

Lip(F ;G ) = inf{α : DF(P) ·P 4 αF(P), ∀P ∈ G }.
Proof. It suffices to prove the equivalence between the following two conditions:

(a) dT (F(P1),F(P2))6 αdT (P1,P2), ∀P1,P2 ∈ G

(b) DF(P) ·P 4 αF(P), ∀P ∈ G

As was pointed out in Remark 1.9 [Nus94], if F is order-preserving, then Condition (a) is true if and
only if:

λ
−αF(λP)4 F(P),∀P ∈ G ,λ > 1.

Condition (b) is a necessary condition (differentiate the above inequality at λ = 1). For the sufficiency,
note that the derivative of the left-hand side is

λ
−α−1(DF(λP) · (λP)−αF(λP))

which is always negative semidefinite given that Condition (b) is true.

Remark 2.6. Nussbaum treated the discrete case in [Nus94], as an intermediate step before considering
differential equations. Corollary 1.3 there shows that for any open subset G ⊂C0 such that for all u,v∈
G there exists a piecewise C 1 minimal geodesic contained in G (geodesic convexity assumption), the
Lipschitz constant of the map F on G satisfies :

Lip(F ;G ) = inf{α :−αF(P)4 DF(P) ·Z 4 αF(P), ∀P ∈ G ,−P 4 Z 4 P} (2.30)

Thus, when the map F is order-preserving, a variant of Proposition 2.6, in which the domain G satisfies
the previous geodesic convexity assumption can be easily obtained as a corollary of this result.
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2.4 First applications and illustrations

In this section, we show that several known contraction results, which were originally obtained
in [LW94] and [LL07] by means of symplectic semigroups, as well as new ones concerning the stan-
dard Riccati equation with indefinite coefficients, can be obtained readily from Theorem 2.5. The
extension of these results to the generalized Riccati equation will be dealt with in Section 2.5.

2.4.1 Contraction rate of order-preserving �ows on the standard positive cone

Let us consider the standard cone C =Rn
+ in X =Rn (see Example 2.1) and an order-preserving

flow M··(·) associated to a differentiable function φ : J×C → Rn. For a subset U ⊂ C0, define the
best contraction rate on U to be the greatest value of α satisfying:

dT (Mt
s(x1),Mt

s(x2))6 e−α(t−s)dT (x1,x2),∀x1,x2 ∈U ,0 6 s 6 t < tU (s,x1)∧ tU (s,x2) (2.31)

A direct application of Theorem 2.5 is the following:

Corollary 2.7 (Compare with [Nus94, Th. 3.10]). Let U ⊂ C0 be an open set satisfying λU ⊂ U
for all λ ∈ (0,1]. For s ∈ J and x ∈U define gi(s,x) by:

gi(s,x) =−x−1
i [

n

∑
j=1

∂φi

∂x j
(s,x)x j−φi(s,x)] (2.32)

then the best contraction rate on U is given by:

α = inf{gi(s,x) : 1 6 i 6 n,x ∈U ,s ∈ J} (2.33)

Nussbaum [Nus94] showed that a modification of this formula, with an absolute value enclosing
each term ∂φi

∂x j
(s,x) for i 6= j, holds for a not necessarily order-preserving flow. We defer a detailed

comparison to Section 2.7.

2.4.2 Standard Riccati �ow

One major application of the above analysis is the Riccati operator, arising from the Linear
Quadratic (LQ) control problem. Let E be a real Hilbert space with inner product 〈·, ·〉. The set
of bounded linear operators on E is denoted by End(E). For A ∈ End(E), let A′ denote the adjoint of
A. The set of symmetric bounded linear operators is denoted by Sym(E). A symmetric bounded linear
operator A is positive semidefinite if 〈x,Ax〉> 0 for all x ∈ E. Following [LL07], let Sym+(E) (resp.
Sym+

0 (E)) be the set of positive semidefinite (resp. positive semidefinite invertible) bounded symmet-
ric linear operators of E. Then Sym+(E) is a convex closed pointed cone with interior Sym+

0 (E) and
induces the Loewner order ’4’ on Sym(E):

P 4 Q⇐⇒ Q−P ∈ Sym+(E).

Then we may define Thompson’s part metric on Sym+
0 (E). This is of course a special case of the

definition in Section 2.2.1. Note that equipped with the operator norm, the cone Sym+(E) is nor-
mal [Nus88]. Therefore the metric space (Sym+

0 (E);dT ) is complete [Tho63].
Consider the Riccati differential equation defined on Sym(E):

Ṗ(t) = φ(t,P) := A(t)′P(t)+P(t)A(t)+D(t)−P(t)Σ(t)P(t). (2.34)
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where A :R→End(E), D :R→ Sym(E), Σ :R→ Sym(E) are assumed to be continuous and bounded
maps. First we check the order-preserving property of the flow associated to (2.34) on Sym+

0 (E). The
latter property is a standard result for finite-dimensional Riccati equations. For infinite-dimensional
case, we found a statement of this property in [EM82, Thm 2.4] without proof. For completeness we
give here a short elementary proof, following Coppel [Cop71, Prop. 6, Page 50].

Lemma 2.8. The flow associated to (2.34) is order-preserving on Sym+
0 (E).

Proof. Let P1(t),P2(t) be two solutions of (2.34) on an interval [0, t0]. Let V (t) = P1(t)−P2(t) and
U(t) = (P1(t)+P2(t))/2. Then

V̇ (t) = A(t)′V (t)+V (t)A(t)−U(t)Σ(t)V (t)−V (t)Σ(t)U(t)

= (A(t)−Σ(t)U(t))′V (t)+V (t)(A(t)−Σ(t)U(t)), t ∈ [0, t0].

Hence, defining X(t) as the solution of Ẋ(t) = X(t)(A(t)−Σ(t)U(t)) with the initial condition X(0) =
I, we get

V (t) = X(t)′V (0)X(t), t ∈ [0, t0].

Therefore if P1(0)< P2(0), then P1(t)< P2(t) for all t ∈ [0, t0].

The least contraction rate of the flow on Sym+
0 (E) is the best constant α such that for all P1,P2 ∈

Sym+
0 (E) and s > 0,

dT (Mt
s(P1),Mt

s(P2))6 e−α(t−s)dT (P1,P2), ∀s 6 t < tSym+
0 (E)

(s,P1)∧ tSym+
0 (E)

(s,P2). (2.35)

An immediate consequence of Theorem 2.6 is:

Theorem 2.10. The least contraction rate defined as in (2.35) satisfies:

α = sup{β ∈ R : PΣ(t)P+D(t)< βP, ∀t > 0,P ∈ Sym+
0 (E)} (2.36)

Remark 2.7. Even if in the statement of Theorem 2.10 we do not require Σ and D to be positive
semidefinite, the set to which applies the supremum in (2.36) is easily seen to be empty as soon as
Σ or D are not positive semidefinite. Hence, the finiteness of the constant α in Theorem 2.10 does
require Σ and D to be positive semidefinite and then we must have α > 0. This shows a dichotomy:
either the flow is non-expansive, or it is not uniformly Lipschitz.

Corollary 2.9 (Theorem 8.5 [LL07]). We suppose that D(t),Σ(t) ∈ Sym+(E) for all t > 0. Then the
least contraction rate is given by:

α = 2 inf
t>0

√
m((Σ(t)1/2D(t)Σ(t)1/2)/I)

Proof. The best contraction rate is given by:

α = sup{β > 0 : PΣ(t)P+D(t)< βP, ∀t > 0,P ∈ Sym+
0 (E)}

Consider all P = λ I, then

α 6 sup{β > 0 : λ
2
Σ(t)< βλ I−D(t), ∀t > 0,λ > 0}
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If Σ(t) ∈ Sym+(E) is not invertible, then m(Σ/I) = 0. Thus

α 6 sup{β > 0 : 0 > βλ +m(−D(t)/I), ∀t > 0,λ > 0}= 0

Now suppose that Σ(t) ∈ Sym+
0 (E), ∀t > 0. In that case, PΣ(t)P+D(t)< βP if and only if

Σ(t)
1
2 PΣ(t)PΣ(t)

1
2 +Σ(t)

1
2 D(t)Σ(t)

1
2 −βΣ(t)

1
2 PΣ(t)

1
2

= (Σ(t)
1
2 PΣ(t)

1
2 )2−βΣ(t)

1
2 PΣ(t)

1
2 +Σ(t)

1
2 D(t)Σ(t)

1
2

= (Σ(t)
1
2 PΣ(t)

1
2 − β

2 I)2 +Σ(t)
1
2 D(t)Σ(t)

1
2 − β 2

4 I < 0

Therefore,
α = sup{β > 0 : β 6 2

√
m((Σ(t)1/2D(t)Σ(t)1/2)/I), ∀t > 0}

= 2 inf
t>0

√
m((Σ(t)1/2D(t)Σ(t)1/2)/I).

The above theorem was proved by Lawson and Lim in [LL07], Theorem 8.5, using a Birkhoff
contraction formula of the fractional transformation on symmetric cones. Their approach requires
the coefficients Σ(t) and D(t) to be positive semidefinite. By Remark 2.7, this condition is also
necessary to the existence of a global contraction rate. However, a local contraction may occur even
the coefficients are not positive semidefinite.

2.4.3 Inde�nite Riccati �ow

In this section, we consider the finite dimensional case when E=Rn and Sym(E) = Sn. The cone
is the set of positive semidefinite matrices, i.e., Sym+(E) = S+

d . We consider the time-independent
matrix coefficients (A,D,Σ). Let

Φ(P) = A′P+PA+D−PΣP .

The time-invariant Riccati equation is
Ṗ = Φ(P) .

The following lemma is standard and can be proved directly by considering the corresponding linear
quadratic optimal control problem.

Lemma 2.10. If D < 0, then S+
d is invariant by the Riccati flow associated to function Φ.

Lemma 2.11. Let 0 4 P0 4 Q0. If Φ(P0)< 0 and Φ(Q0)4 0, then the interval [P0,Q0] is invariant by
the Riccati flow.

Proof. It is sufficient to remark that if P(·) : [0,T ]→ Sd is a solution of

Ṗ(t) = Φ(P(t)), t ∈ [0,T ] ,

then P(t)−P0 : [0,T ]→ Sd is a solution of

Q̇(t) = Ψ(Q(t)), t ∈ [0,T ] ,

where
Ψ(Q) = (A′−P0Σ)Q+Q(A−ΣP0)−QΣQ+Φ(P0) .

Hence by Lemma 2.10, if Φ(P0) < 0, then the interval [P0,∞) is invariant by the Riccati flow. The
same we can prove that if Φ(Q0)4 0, then the interval (−∞,Q0] is invariant by the Riccati flow.
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The common fixed point of the flow Mt for all t must satisfy the algebraic Riccati equation(ARE)
equation:

A′P+PA+D−PΣP = 0

If Σ,D ∈ Ŝ
+
d , by Corollary 2.9 and the completeness of the metric space (Ŝ

+
d ;dT ) we know that the

solution of ARE exists and is unique. We next give sufficient conditions for the existence of solutions
of ARE even when Σ is not positive semidefinite. Below is a direct consequence of Theorem 2.5.

Corollary 2.12. Let P0 � 0 and α ∈ R. The following are equivalent:

(a) For all P1,P2 ∈ (0,P0),

dT (Mt(P1),Mt(P2))6 e−αtdT (P1,P2), ∀t < t(0,P0)(P1)∧ t(0,P0)(P2).

(b) For all P ∈ (0,P0),
D+PΣP < αP.

In particular, this corollary allows to prove the local contraction property of the Riccati equa-
tion (2.34) when Σ is not positive definite. Let cA,cD,mD,cΣ ∈ R such that:

A+A′ 4−2cAI, mDI 4 D 4 cDI, −Σ 4 cΣI.

The situation considered in the next corollary is motivated by the analysis of a method of reduction
of the curse of dimensionality introduced by McEneaney [McE07]. This method applies to a control
problem in which one can switch between several linear-quadratic models, see Chapter 6 for an in-
troduction to the method. We will see in Chapter 7 that the next corollary is crucial to an improved
convergence bound.

Corollary 2.13. Suppose that cA,cD > 0,mD,cΣ > 0 and

c2
A > cDcΣ, cΣmD > (cA−

√
c2

A− cDcΣ)
2,

then for any λ ∈ [
cA−
√

(c2
A−cDcΣ)

cΣ
,
√

mD
cΣ
), there is α > (mD− cΣλ 2)/λ such that for all P1,P2 ∈ (0,λ I]

dT (Mt(P1),Mt(P2))6 e−αtdT (P1,P2), ∀t > 0.

In particular, there exists a unique solution P̄ to ARE in (0,λ I] and for any P ∈ (0,λ I],

dT (Mt(P), P̄)6 e−αtdT (P, P̄), ∀t > 0.

Proof. Let any λ ∈ [
cA−
√

(c2
A−cDcΣ)

cΣ
,
√

mD
cΣ
). Since

φ(λ I) = λ (A+A′)+D−λ 2Σ 4 (−2λcA + cD +λ 2cΣ)I 4 0.

we deduce from Lemma 2.11 that the closed set (0,λ I] is invariant by the Riccati flow. It is not
difficult to show that given λ0 ∈ (λ ,

√
mD
cΣ
) there is α > (mD− cΣλ 2

0 )/λ0 such that

D+PΣP < αP, ∀P ∈ (0,λ0I).
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Indeed, note that a sufficient condition would be:

mDI− cΣP2 < αP, ∀P ∈ (0,λ0I)

which is equivalent to:
mD− cΣλ

2
0 > αλ0.

By Corollary 2.12, for any P1,P2 ∈ (0,λ I]⊂ (0,λ0I),

dT (Mt(P1),Mt(P2))6 e−αtdT (P1,P2), ∀t > 0

Since the metric space ((0,λ I];dT ) is complete, we deduce that there is a unique fixed point P̄∈ (0,λ I]
and all solutions with initial value in (0,λ I] converge exponentially to P̄ with rate α .

Another interesting case is when Σ < 0 not invertible. In that case, Corollary 2.9 tells that the
least contraction rate on S+

d is 0. However, using Corollary 2.12 we can say something more about
the asymptotic behavior of the trajectories.

Corollary 2.14. Suppose that cA > 0,mD > 0 and cΣ = 0. Then for any λ > cD
cA

, there is α > 0 such
that the flow is α-contractive on the set (0,λ I]. In particular, the existence and uniqueness of solution
P̄ ∈ Ŝ

+
d to ARE is insured and for any P ∈ Ŝ

+
d ,

dT (Mt(P), P̄)6 e−αtdT (P, P̄), ∀t > 0.

where α = min(m(I/P), cA
cD
)mD.

We leave the proof to the reader, which is similar to the one of Corollary 2.13.

2.5 Application to stochastic Riccati di�erential equations

In the sequel, we apply the previous results to the cone of positive semidefinite matrices, i.e.
X = Sn , C = S+

n and C0 = Ŝ
+
n (see Example 2.2). Note that here C ? = C . We shall use the notation

< (and �) for the (strict) Loewner order, and dT for Thompson’s part metric induced by S+
n (see

Section 2.2.1).

2.5.1 Stochastic LQ problem and GRDE

Consider the following stochastic linear quadratic optimal control problem:

v(s,y) = min
u(·)

E
∫ T

s
[x(t)′Q(t)x(t)+2u′(t)L(t)x(t)+u(t)′R(t)u(t)]dt +E[x(T )′Gx(T )]

s.t.
{

dx(t) = (A(t)x(t)+B(t)u(t))dt +(C(t)x(t)+D(t)u(t))dW (t), ∀t ∈ [s,T ],
x(s) = y.

where the functions appearing above satisfy:{
A(·),C(·) ∈ L∞∩C0(0,T ;Rn×n), B(·),D(·),L(·) ∈ L∞∩C0(0,T ;Rn×k),

Q(·) ∈ L∞∩C0(0,T ;Sn), R(·) ∈ L∞∩C0(0,T ;Sk).

Here W is a standard Brownian motion defined on a complete probability space. We refer the reader
to [YZ99] Chapter 6, for the precise definition of this control problem. In [YZ99], the above functions
are only assumed to be bounded. In our case, the continuity is necessary to apply the previous results.
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The above stochastic LQ control problem over the time interval [s,T ] is solvable, i.e., admits an
optimal control for all y ∈ Rn if the solution of the following constrained differential matrix equation
exists: 

Ṗ+A′P+PA+C′PC+Q =
(PB+C′PD+L′)(R+D′PD)−1(B′P+D′PC+L), t ∈ [s,T ]

P(T ) = G
R(t)+D(t)′P(t)D(t)� 0, t ∈ [s,T ]

(2.37)

which we refer to as generalized Riccati differential equation (GRDE). In that case, the value function
of the optimal control problem is given by

v(s,y) = y′P(s)y. (2.38)

2.5.2 GRDE with semide�nite weighting matrices

The solvability of the GRDE (2.37) with indefinite matrix coefficients has been treated by Chen,
Moore, Ait Rami, and Zhou in [RCMZ01]. In order to apply our previous results, we only consider
the case: (

Q(t) L(t)′

L(t) R(t)

)
< 0, kerR(t)∩kerD(t) = {0}, ∀t ∈ [0,T ], (2.39)

so that the function

φ(t,P) = PA+A′P+C′PC+Q−
(B′P+D′PC+L)′(R+D′PD)−1(B′P+D′PC+L)

(2.40)

is well defined on [0,+∞)× Ŝ
+
n and satisfies the assumptions made at the beginning of section 2.3.

We are going to apply the preceding results to show the monotonicity and the non-expansiveness of
the GRDE differential equation defined on Ŝ

+
n :{
Ṗ = φ(t,P),
P(0) = G

(2.41)

Proposition 2.15. Assume that (2.39) holds. Then the flow associated to (2.41) is order-preserving
and non-expansive on Ŝ

+
n .

Proposition 2.15 could be derived by exploiting the relation between the solution of the Riccati
equation and the value function of the stochastic control problem (see (2.38)). Here we choose to
prove it from the infinitesimal characterizations of Proposition 2.3 and Theorem 2.6.

Proof. By Proposition 2.3, if suffices to prove that for any P∈ Ŝ
+
n , any Q,Z ∈ S+

n such that 〈Q,Z〉= 0:

〈Q,Dφt(P)Z〉> 0.

Indeed,
Dφt(P)Z = ZA(t)+A(t)′Z +C(t)′ZC(t)− (B(t)′Z +D(t)′ZC(t))′Nt(P)

−Nt(P)′(B(t)′Z +D(t)′ZC(t))+Nt(P)′D(t)′ZD(t)Nt(P)
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where Nt(P) = (R(t) +D(t)′PD(t))−1(B(t)′P+D(t)′PC(t) + L(t)). Remark that if Q,Z ∈ S+
n and

〈Q,Z〉= 0 then QZ = 0. Therefore,

〈Q,Dφt(P)Z〉 = 〈Q,C(t)′ZC(t)−C(t)′ZD(t)Nt(P)−Nt(P)′D(t)′ZC(t)
+Nt(P)′D(t)′ZD(t)Nt(P)〉

= 〈Q,
(
C(t)−D(t)Nt(P)

)′Z(C(t)−D(t)Nt(P)
)
〉> 0.

Now for non-expansiveness, by Theorem 2.6 it remains to verify that for any P∈ Ŝ
+
n and any t ∈ [0,T ],

Dφt(P)P−φ(t,P)4 0.

Indeed,

Dφt(P)P−φ(t,P)
=−Q(t)+Nt(P)′L(t)+L′(t)Nt(P)−Nt(P)′R(t)Nt(P)

= Ht(P)′
(
−Q(t) −L(t)′

−L(t) −R(t)

)
Ht(P)4 0

(2.42)

where Ht(P)′ =
(

I −Nt(P)′
)
.

Remark 2.8. A fundamental discrepancy with the standard Riccati equation is that the flow of the
generalized Riccati equation is not a global contraction. This is because there is no α > 0 such that
the condition

Dφt(P)P−φ(t,P)4−αP, ∀P ∈ Ŝ
+
n ,

which by Theorem 2.6 is necessary to the global contraction property of the flow, is satisfied. However,
we shall see in the next section that a local contraction property does hold.

2.5.3 Asymptotic behavior of GRDE

We are going to investigate the behavior of the GRDE flow as time horizon goes to infinity. All
the matrices A,B,C,D,L,Q,R are assumed to be constant. First we show a local contraction property
under the condition (

Q L′

L R

)
� 0. (2.43)

More precisely,

Theorem 2.11. Assume that (2.43) holds. Let U ⊂ Ŝ
+
n be an open set such that λU ⊂ U for all

λ ∈ (0,1]. Assume that there is P0 ∈ Ŝ
+
n such that U ⊂ (0,P0] and let α = m(Q−L′R−1L/P0), then

for all P1,P2 ∈U ,

dT (Mt(P1),Mt(P2))6 e−αtdT (P1,P2), 0 6 t < tU (P1)∧ tU (P2)

Proof. By applying Theorem 2.5, we need to prove

Dφ(P)P−φ(P)4−αP, ∀P ∈U

Indeed, for all P ∈U ,
Q−αP−L′R−1L < Q−αP0−L′R−1L < 0.
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Besides, the previous calculation yields

Dφ(P)P−φ(P)+αP

= H(P)′
(
−Q+αP −L′

−L −R

)
H(P)

(2.44)

where H(P)′ =
(

I −N(P)′
)

and N(P) = (R+D′PD)−1(B′P+D′PC+L). By Schur’s complement
lemma [BTEGN09, Lemma 6.3.4], we get

Dφ(P)P−φ(P)4−αP, ∀P ∈U .

The fixed point of the GRDE flow associated to (2.41), if it exists, satisfies the so-called general
algebraic Riccati equation (GARE): {

φ(P) = 0.
R+D′PD� 0

(2.45)

where φ(P) := A′P+PA+C′PC+Q− (B′P+D′PC+L)′(R+D′PD)−1(B′P+D′PC+L). The ex-
istence of solutions of GARE and the asymptotic behavior of the GRDE flow have been studied
in [RCMZ01] and [RZ00]. The authors assumed the following mean-square stabilizability condition:

Definition 2.5 (Definition 4.1 [RZ00]). The system of matrices (A,B,C,D) is said to be mean-square
stabilizable if there exists a control law of feedback form

u(t) = Kx(t),

where K is a constant matrix, such that for every initial (t0,x0), the closed loop system{
dx(t) = (A+BK)x(t)dt +(C+DK)x(t)dW (t)
x(0) = x0

satisfies
lim

t→+∞
E[x(t)′x(t)] = 0

Under the mean-square stabilizability assumption, they established a necessary and sufficient con-
dition for the existence of a solution. To make a comparison, let us first quote their theorem:

Theorem 2.12 (Theorem 4.1 [RCMZ01]). Under the mean-square stabilizability assumption, there
exists a solution of the GARE (2.45) if and only if there exists P0 ∈ Sn such that

φ(P0)< 0, R+D′P0D < 0 .

Moreover, for any such P0, the solution P(t) of (2.41) with initial condition P(0) = P0 converges to a
solution to the GARE as t→ ∞.

It follows directly from the above theorem that under the mean-square stabilizability assump-
tion, if (2.43) is true, then there must be a solution to the GARE (2.45). We next show a necessary
and sufficient condition for the existence of a stable solution without the mean-square stabilizability
assumption.
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Theorem 2.13. Assume that the condition (2.43) holds. Then, the GARE admits a solution P̄ ∈ Ŝ
+
n if

and only if there exists P0 ∈ Ŝ
+
n such that:

φ(P0)4 0. (2.46)

In that case, for any P ∈ Ŝ
+
n :

dT (Mt(P), P̄)6 e−αtdT (P, P̄), ∀t > 0,

where

α >
1− e−dT (P,P̄)

dT (P, P̄)
m((Q−L′R−1L)/P̄)> 0. (2.47)

In particular, the solution is unique in Ŝ
+
n .

Proof. If P̄∈ Ŝ
+
n is a solution of the GARE, then (2.46) is satisfied by considering P0 = P̄. Conversely,

note that if φ(P0) 4 0 for some P0 ∈ Ŝ
+
n , then (0,P0] is an invariant set. Consider the open set U =

(0,P0 + I). By Theorem 2.11, there is α > 0 such that for all P1, P2 ∈ (0,P0]⊂U , we have:

dT (Mt(P1),Mt(P2))6 e−αtdT (P1,P2), ∀0 6 t 6 tU (P1)∧ tU (P2),

Since [0,P0] ⊂ U is invariant, we have that tU (P1), tU (P2) = +∞. Thus the flow Mt is contractive
in the complete metric space ((0,P0],dT ). There must be a unique fixed point P̄ ∈ (0,P0] such that
φ(P̄) = 0. Next, assuming the existence of a solution P̄ ∈ C0 to the GARE, we apply Theorem 2.9 to
obtain the rate of convergence. A basic calculation yields:

λ−1φ(λ P̄)
= (B′P̄+D′P̄C̃)′((R+D′P̄D)−1− (λ−1R+D′P̄D)−1)(B′P̄+D′P̄C̃)+(λ−1−1)Q̃

where C̃ =C−DR−1L and Q̃ = Q−L′R−1L. Therefore, if λ > 1, then

λ
−1

φ(λ P̄)4 (λ−1−1)Q̃ (2.48)

and

λφ(λ−1P̄)< (λ −1)Q̃. (2.49)

Now for any P ∈ Ŝ
+
n 6= P̄, let µ = edT (P,P̄) and α = 1−µ−1

ln µ
m(Q̃/P̄)> 0. Then

(λ−1−1)Q̃ 4−α(lnλ )P̄,(λ −1)Q̃ < α(lnλ )P̄, ∀λ ∈ (1,µ)

and (2.48) and (2.49) lead to:

α ln(λ )P̄ 4 λφ(λ−1P̄), α ln(λ )P̄ 4−λ−1φ(λP), ∀λ ∈ (1,µ).

Thus,

0 < α 6 inf
µ−1<λ<µ

m
(
(−(λ lnλ )−1

φ(λ P̄))/P̄
)
. (2.50)

By virtue of (2.50) and Theorem 2.9, we have

dT (Mt(P), P̄)6 e−αtdT (P, P̄), ∀t > 0.
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2.5.4 Discrete Generalized Riccati operator

The linear quadratic stochastic control problem has a discrete time analogue [ARCZ01], which
leads to the generalized discrete Riccati operator F : Sn→ Sn:

F(P) = A′PA+C′PC+Q− (B′PA+D′PC)′(R+B′PB+D′PD)−1(B′PA+D′PC) (2.51)

where A,C ∈ Rn×n, B,D ∈ Rn×m and Q,R ∈ Sn. We assume that Q� 0 and R� 0. Then by applying
the Schur complement condition for positive definiteness, one can prove that F sends Ŝ

+
n to itself.

Note that when C = D = 0, we recover the standard Riccati operator:

T (P) = A′PA+Q−A′PB(R+B′PB)−1B′PA. (2.52)

The object of this section is to get the Lipschitz constant of F on Ŝ
+
n (see (2.29)). First we show that

this operator is order-preserving on Ŝ
+
n .

Proposition 2.16. The operator F is order-preserving on Ŝ
+
n .

Proof. Let any P ∈ Ŝ
+
n and Z ∈ S+

n . A simple calculation show that:

DF(P) ·Z = (A−BN)′Z(A−BN)+(C−DN)′Z(C−DN)< 0

where N =(R+B′PB+D′PD)−1(B′PA+D′PC). By Proposition 2.3, F is order-preserving on Ŝ
+
n .

Next we apply Proposition 2.6 to get:

Lip(F ; Ŝ
+
n ) = inf{α > 0 : DF(P) ·P 4 αF(P),∀P ∈ Ŝ

+
n }. (2.53)

The following two lemmas will be useful.

Lemma 2.17. Let
(

B
D

)
=
(

B̄
D̄

)
W be a rank factorization (so that the last two factors have maximal

column and row rank, respectively). Then the operator F defined in (2.51) satisfies:

F(P) = A′PA+C′PC+Q− (B̄′PA+ D̄′PC)′(R̄+ B̄′PB̄+ D̄′PD̄)−1(B̄′PA+ D̄′PC) (2.54)

where R̄ = (WR−1W ′)−1.

Proof. To simplify the notation, denote X(P) = B̄PB̄+ D̄′PD̄. Notice that since the matrix
(

B̄
D̄

)
is of

full column rank, X(P) is invertible for all P ∈ Ŝ
+
n . It follows from (2.51) that:

F(P) = A′PA+C′PC+Q− (B̄′PA+ D̄′PC)′W (R+W ′X(P)W )−1W ′(B̄′PA+ D̄′PC)

Now appealing to the Woodbury matrix identity [Mey00, Sec 3.8], we obtain:

W (R+X(P)W )−1W ′ =W (R−1−R−1W ′(X(P)−1 +WR−1W ′)−1WR−1)W ′

=WR−1W ′−WR−1W ′(X(P)−1 +WR−1W ′)−1WR−1W ′

= ((WR−1W ′)−1 +X(P))−1
(2.55)

from which we get (2.54).

Lemma 2.18. Let δ > 2, then

X−X(R+X)−1(δR+X)(R+X)−1X 4
R

4(δ −1)
, ∀X ∈ S+

n (2.56)
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Proof. Let any X ∈ S+
n . Since X commutes with I, we have that:

X−X(I +X)−1(δ I +X)(I +X)−1X
= (I +X)−1(X(I +X)2−X2(δ I +X))(I +X)−1

= (I +X)−1((2−δ )X2 +X− 1
4(δ−1)(I +X)2)(I +X)−1 + 1

4(δ−1) I
=−(I +X)−1((2δ −3)X− I)2(I +X)−1 + 1

4(δ−1) I
4 1

4(δ−1) I.

To obtain (2.56), it suffices to notice that:

R−
1
2 (X−X(R+X)−1(δR+X)(R+X)−1X)R−

1
2

= Y −Y (I +Y )−1(δ I +Y )(I +Y )−1Y

where Y = R−
1
2 XR−

1
2 .

Proposition 2.19. The operator F is non-expansive: Lip(F ; Ŝ
+
n )6 1. Let(

B
D

)
=

(
B̄
D̄

)
W

be a rank factorization. Then a necessary and sufficient condition to have Lip(F ; Ŝ
+
n )< 1 is that there

is a matrix S such that: (
A
C

)
=

(
B̄
D̄

)
S. (2.57)

In that case,

Lip(F ; Ŝ
+
n )6

M(S′R̄S/Q)

(1+
√

1+M(S′R̄S/Q))2
< 1

where R̄ = (WR−1W ′)−1.

Proof. Lemma 2.17 implies that it is sufficient to prove the proposition for the case W = I, i.e. when(
B
D

)
is of full column rank. A simple calculation shows that:

DF(P) ·P−αF(P) = (1−α)(A′PA+C′PC)−αQ
−(1−α)N(P)′(R+X(P))−1N(P)
−N(P)′(R+X(P))−1R(R+X(P))−1N(P)

where
N(P) = B′PA+D′PC, X(P) = B′PB+D′PD.

Then it is evident that Lip(F ; Ŝ
+
n )6 1. Now let S ∈Rn×m such that (2.57) holds. Then N(P) = X(P)S,

A′PA+C′PC = S′X(P)S and

DF(P) ·P−αF(P) = (1−α)S′X(P)S−αQ
−(1−α)S′X(P)(R+X(P))−1X(P)S
−S′X(P)′(R+X(P))−1R(R+X(P))−1X(P)S

To simplify the notation, let X := X(P) and δ := 2−α

1−α
, then

DF(P) ·P−αF(P) = (1−α)S′(X−X(R+X)−1(δR+X)(R+X)−1X)S−αQ.
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By Lemma 2.18:

X−X(R+X)−1(δR+X)(R+X)−1X 4 1
4(δ−1)R = 1−α

4 R, ∀X ∈ S+
n .

Therefore

(1−α)S′(X−X(R+X)−1(δR+X)(R+X)−1X)S 4
(1−α)2

4
S′RS.

Consequently if α is such that: 4α

(1−α)2 = M(S′RS/Q), then

DF(P) ·P−αF(P)4 0, ∀P ∈ S+
n .

Together with (2.53) this shows that

Lip(F ; Ŝ
+
n )6

M(S′RS/Q)

(1+
√

1+M(S′RS/Q))2
.

Next we prove the necessity of condition (2.57). Remember that since the matrix
(

B
D

)
has full rank,

X(P) is always invertible for P ∈ Ŝ
+
n . Besides, there is α < 1 such that

DF(P) ·P−αF(P)4 0, ∀P ∈ Ŝ
+
n

if and only if for any P ∈ Ŝ
+
n ,

(A′PA+C′PC)− α

1−α
Q−N(P)′(R+X(P))−1(2−α

1−α
R+X(P))(R+X(P))−1N(P)4 0.

That is, for any P ∈ Ŝ
+
n and λ > 0,

(A′PA+C′PC)− αλ−1

1−α
Q−N(P)′( 1

λ
R+X(P))−1( 2−α

λ (1−α)R+X(P))( 1
λ

R+X(P))−1N(P)4 0.

Letting λ go to infinity, by continuity, we obtain that:

(A′PA+C′PC)−N(P)′X(P))−1N(P)4 0.

The above expression is the Schur complement of the positive semidefinite matrix(
B′PB+D′PD B′PA+D′PC
A′PB+C′PD A′PA+C′PC

)
=

(
B′

A′

)
P
(

B A
)
+

(
D′

C′

)
P
(

D C
)
.

Therefore for any x ∈ Rn there is u ∈ Rm such that

〈
(

u
x

)
,

(
B′PB+D′PD B′PA+D′PC
A′PB+C′PD A′PA+C′PC

)(
u
x

)
〉= 0. (2.58)

That is, for any x ∈ Rn there is u ∈ Rm such that:(
B A
D C

)(
u
x

)
= 0.

This is equivalent to say that there is S ∈ Rm×n such that:(
A
C

)
=

(
BS
DS

)
.
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The contraction rate of the standard discrete Riccati operator T : Ŝ
+
n → Ŝ

+
n can now be recovered

as a corollary:

Corollary 2.20 (Compare with [LL08]). The standard Riccati operator T defined in (2.52) is non-
expansive: Lip(T ; Ŝ

+
n )6 1. A necessary and sufficient condition to have the strict contraction property

is that the matrix B is of full row rank. In that case, let B = B̄W be a rank factorization, then

Lip(T ; Ŝ
+
n )6

M(S′R̄S/Q)

(1+
√

1+M(S′R̄S/Q))2
< 1

where S = B̄−1A and R̄ = (WR−1W ′)−1.

Remark 2.9. Condition (2.57) leads to a formal argument explaining why strict global contraction
cannot be hoped for the GRDE flow. Indeed, we can approximate the continuous-time LQ control
problem in Section 2.5 over a small time horizon ε by the following one-step discrete-time stochastic
linear quadratic control problem:

min
u∈Rm

E(〈x0,εQx0〉+ 〈u,εRu〉+ 〈xε ,Gxε〉)
s.t. xε = (I + εA)x0 + εBu+(

√
εCx0 +

√
εDu)w

where w∼N (0,1). Without loss of generality, we suppose that
(

B
D

)
is of full column rank. If a strict

contraction result was valid for the continuous time system, we would expect the same to be true for
its discrete approximation if ε is sufficiently small. However, the strict global contraction condition
requires the existence of S such that:(

I + εA√
εC

)
=

(
εBS√

εDS

)
,

which can not hold for a set of ε converging to 0 if C and D are not zero.

2.6 Loss of non-expansiveness of the GRDE �ow in other in-

variant Finsler metrics

The standard Riccati flow is known to be a contraction in the standard Riemannian metric [Bou93],
and more generally in any invariant Finsler metric (with the same bound on the contraction rate)
[LL08]. We next construct an explicit counter example showing that Thompson’s part metric is es-
sentially the only invariant Finsler metric in which the GRDE Riccati flow is non-expansive.

2.6.1 Preliminary results

We first recall the definition of symmetric gauge functions and of the associated invariant Finsler
metrics on the interior of the cone of positive definite matrices. Then, we will show some conditions
that are necessary for an order-preserving flow to be non-expansive in a given metric of this kind.

Definition 2.6 (Symmetric gauge function). A symmetric gauge function ν : Rn → R is a convex,
positively homogeneous of degree 1 function such that for any permutation σ ,

ν(λ1, · · · ,λn) = ν(|λσ(1)|, · · · , |λσ(n)|), ∀ λ = (λ1, · · · ,λn) ∈ Rn.
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The next lemma collects several useful properties of subdifferentials of symmetric gauge function
(see [Roc70] for more background on subdifferentials). The straightforward proof is left to the reader.

Lemma 2.21. Let ν : Rn→ R be a symmetric gauge function. The following properties hold:

1 For all λ ∈ Rn and µ ∈ ∂ν(λ ),

µiλi > 0, ∀i = 1, · · · ,n.

2 For all λ ∈ Rn and µ ∈ ∂ν(λ ),
〈µ,λ 〉= ν(λ ).

3 For all λ ,λ ′ ∈ Rn and µ ∈ ∂ν(λ ),µ ′ ∈ ∂ν(λ ′),

〈µ−µ
′,λ 〉> 0.

For every symmetric gauge function ν , we define a spectral function ν̂ : Sn→ R:

ν̂(P) = ν(λ (P)).

where λ (P) is the vector of eigenvalues of P.

Theorem 2.14 ([Lew96]). If ν is a symmetric gauge function, then ν̂ is a convex function on Sn.
Moreover, Z ∈ ∂ ν̂(P) if and only if there exists y ∈ ∂ν(λ (P)) such that:

Z =V diag(y)V T ,

where V is the unitary matrix such that P =V diag(λ (P))V T .

Following [Bha03], [LL08] and [ACS00], we define a metric on Ŝ
+
n as follows,

dν(P,Q) = ν̂(log(P−1/2QP−1/2)).

It coincides with the Finsler metric obtained by thinking of Ŝ
+
n as a manifold and taking

‖dQ‖P = ν̂(P−
1
2 (dQ)P−

1
2 )

as the length of an infinitesimal displacement in the tangent space at point P. This metric is invariant
by the canonical action on the linear group on Ŝ

+
n .

We shall consider specially, as in [ACS00], the p-norm function:

ν(λ ) = ‖λ‖p = (
n

∑
i=1
|λi|p)1/p,

so that the metric dν is Thompson’s part metric for p =+∞ and the Riemannian metric for p = 2.

Lemma 2.22. Let ν be a symmetric gauge function and dν be the associated metric on Ŝ
+
n . Let

M : S+
n → S+

n be a differentiable function such that:

dν(M(P),M(Q))6 dν(P,Q), ∀ P,Q ∈ Ŝ
+
n , (2.59)

then
ν̂(M(P)−1/2(DM(P) ·Z)M(P)−1/2)6 ν̂(P−1/2ZP−1/2), ∀ P ∈ Ŝ

+
n ,Z ∈ Sn .
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Proof. Let any P ∈ Ŝ
+
n and Z ∈ Sn. There exists δ > 0 such that for any 0 6 ε 6 δ , P+ εZ ∈ Ŝ

+
n . By

(2.59) and the definition of dν :

ν̂ log(M(P)−1/2M(P+ εZ)M(P)−1/2)6 ν̂ log(P−1/2(P+ εZ)P−1/2).

Divide the two sides by ε and take the limit:

lim
ε→0

ν̂ log(M(P)−1/2M(P+ εZ)M(P)−1/2)

ε
6 lim

ε→0

ν̂ log(P−1/2(P+ εZ)P−1/2)

ε

In view of homogeneity and continuity of the function ν̂ ,

ν̂(lim
ε→0

log(M(P)−1/2M(P+ εZ)M(P)−1/2)

ε
)6 ν̂(lim

ε→0

logP−1/2(P+ εZ)P−1/2

ε
)

The matrix function log is differentiable at I:

lim
‖U‖→0

log(I +U)−U
‖U‖

= 0. (2.60)

Hence by chain rule:

ν̂(M(P)−1/2(DM(P) ·Z)M(P)−1/2)6 ν̂(P−1/2ZP−1/2)

We consider the following time independent differential equation:{
ẋ(t) = Φ(x(t)),
x(s) = x0.

(2.61)

where Φ is differentiable on Ŝ
+
n . We assume that the associated flow M·(·) : (0,+∞)× Ŝ

+
n → Sn leaves

Ŝ
+
n invariant and is globally defined.

Lemma 2.23. Let ν be a symmetric gauge function. If there exists ε > 0 such that for any 0 6 t 6 ε ,

ν̂(Mt(I)−1/2(DMt(I) ·Z)Mt(I)−1/2)6 ν̂(Z), ∀ Z ∈ Sn . (2.62)

then
〈diag(µ),DΦ(I) ·diag(λ )−diag(λ )Φ(I)〉6 0, ∀λ ∈ Rn, µ ∈ ∂ν(λ ).

Proof. Let any Z ∈ Sn. For readability, denote

Pt := Mt(I), Ht := P1/2
t , Qt := P−1/2

t , Gt := P−1
t ,

and
Ut := DMt(I) ·Z, Jt :=UtGt , Kt = QtJtHt .

The derivative of Jt with respect to t is:

J̇t = U̇tGt −UtGt ṖtGt

= (DΦ(Pt) ·Ut)Gt −UtGtΦ(Pt)Gt .
(2.63)
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The derivative of Kt with respect to t is:

K̇t = Qt J̇tHt + Q̇tJtHt +QtJtḢt

= Qt J̇tHt −QtḢtQtJtHt +QtJtḢt

= Qt J̇tHt −QtḢtKt +KtQtḢt

Hence,
J̇t |t=0 = DΦ(I) ·Z−ZΦ(I),

and

K̇t |t=0 = DΦ(I) ·Z−ZΦ(I)− (Ḣt |t=0)Z +Z(Ḣt |t=0). (2.64)

By Theorem 2.14, the right derivative of the function ν̂(Kt) with respect to t exists:

ν̂(Kt)
′
+ = sup

y∈∂ ν̂(K(t))
〈y, K̇t〉 = sup

µ∈∂ν(λ ),VV ′=I
V ′KtV=diag(λ )

〈V diag(µ)V ′, K̇t〉.

Since
ν̂(Kt)6 ν̂(K0), t ∈ [0,δ ),

the right derivative at t = 0 must be negative:

ν̂(Kt)
′
+|t=0 6 0.

Namely,

sup
µ∈∂ν(λ ),VV ′=I
V ′ZV=diag(λ )

〈V diag(µ)V ′,DΦ(I) ·Z−ZΦ(I)− (Ḣt |t=0)Z +Z(Ḣt |t=0)〉6 0.

Note that for any unitary matrix V such that V ′ZV = diag(λ ), we have

〈V diag(µ)V ′,(Ḣt |t=0)Z〉= 〈V diag(µ)V ′,Z(Ḣt |t=0)〉

Hence by taking Z = diag(λ ) and V = I, we obtain a necessary condition of (2.62):

〈diag(µ),DΦ(I) ·diag(λ )−diag(λ )Φ(I)〉6 0

for all λ ∈ Rn and µ ∈ ∂ν(λ ).

The above two lemmas lead to the following conclusion:

Proposition 2.24. If the flow M·(·) : (0,+∞)× Ŝ
+
n → Ŝ

+
n is non-expansive in the metric dν , then,

〈diag(µ),DΦ(I) ·diag(λ )−diag(λ )Φ(I)〉6 0 (2.65)

for all λ ∈ Rn and µ ∈ ∂ν(λ ).
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2.6.2 The counter example

We finally arrive at the announced counter example: we give a system of matrix parameters
(A,B,C,D,L,Q,R) such that the corresponding Φ of GRDE does not satisfy the necessary condi-
tion (2.65) of non-expansiveness in any Finsler metric other than Thompson’s part metric.

Recall that

Φ(P) = A′P+PA+C′PC+Q− (B′P+D′PC+L)′(R+D′PD)−1(B′P+D′PC+L).

Let In denote the n-dimensional identity matrix and e = (e1, · · · ,en−1)
′ ∈ Rn−1 be a vector. The

parameters are chosen as follows:

A = In, B =
( (ε−

√
1− ε)In−1 0

−(
√

1− ε)e′ ε

)
, C =

( (1+
√

1− ε)In−1 e
0

√
1− ε

)
,

and
D = (

√
1− ε)In, L = 0, R = εIn, Q = εIn

to make

R+D′D = In, B′+D′C = In, C−D = (
In−1 e
0 0

)

An elementary calculation yields

DΦ(I) ·Z−ZΦ(I)
= A′Z +ZA+C′ZC− (B′Z +D′ZC)′(R+D′D)−1(B′+D′C)
−(B′+D′C)(R+D′D)−1(B′Z +D′ZC)
+(B′+D′C)(R+D′D)−1D′ZD(R+D′D)−1(B′+D′C)
−Z(A′+A+C′C+Q− (B′+D′C)′(R+D′D)−1(B′+D′C))

= 2Z +C′ZC− (B′Z +D′ZC)′− (B′Z +D′ZC)+D′ZD−Z−ZC′C−Z′Q
= Z +(C−D)′Z(C−D)−B′Z−ZB′−ZC′C−ZQ

Now let any λ = (λ1, · · · ,λn) ∈ Rn and µ ∈ ∂ν(λ ). Then

〈diag(µ),DΦ(I) ·diag(λ )−diag(λ )Φ(I)〉
=−2ε〈µ,λ 〉+µn(−λn|e|2 +∑

n−1
i=1 λie2

i )

Recall that
〈µ,λ 〉= ν(λ ), ∀µ ∈ ∂ν(λ ).

So if there is any λ ∈ Rn and µ ∈ ∂ν(λ ) such that

µn(−λn|e|2 +
n−1

∑
i=1

λie2
i )> 0,

then there always exists ε ∈ (0,1) such that

〈diag(µ),DΦ(I) ·diag(λ )−diag(λ )Φ(I)〉> 0.

Finally we need a lemma to conclude:



54 Chapter 2. The contraction rate in Thompson's part metric of order-preserving �ows

Lemma 2.25. If for all λ ∈ Rn, µ ∈ ∂ν(λ ) and e ∈ Rn−1 we have

µn(−λn‖e‖2 +
n−1

∑
i=1

λie2
i )6 0,

then
ν(λ1, · · · ,λn) = cmax

i
|λi|

for some constant c > 0.

Proof. First consider e = ei the i-th standard basis vector of Rn−1 for all i = 1, · · · ,n−1. We see that

µn(−λn +λi)6 0, ∀i = 1, · · · ,n−1

for all λ = (λ1, · · · ,λn) ∈ Rn and µ = (µ1, · · · ,µn) ∈ ∂ν(λ ). By the symmetric property of ν , this
implies actually

µ j(−λ j +λi)6 0, ∀i, j = 1, · · · ,n (2.66)

Therefore, for any λ 6= 0 if λ j = 0 then µ j = 0 for all µ ∈ ∂ν(λ ). Next, let any i∈ {1, · · · ,n}, consider
the following set

Λi := {λ 6= 0 : λ1 = λ2 = · · ·= λi > λi+1 > . . .λn > 0}.
Let any λ ∈ Λi and µ ∈ ∂ν(λ ). By Property 1 in Lemma 2.21, µ > 0. Using (2.66), we know that:

µ j 6 0, ∀ j = i+1, . . . ,n.

Hence,
µ j = 0, ∀ j = i+1, . . . ,n.

Now let any λ 1,λ 2 ∈ Λi and µ1 ∈ ∂ν(λ 1), µ2 ∈ ∂ν(λ 2). By Property 3 in Lemma 2.21,

〈µ1−µ
2,λ 1〉> 0.

It follows that
i

∑
j=1

µ
1
j >

i

∑
j=1

µ
2
j .

We deduce that ∑
i
j=1 µ1

j = ∑
i
j=1 µ2

j . Hence there is a constant ci > 0 such that

ν(λ ) = 〈µ,λ 〉=
j

∑
i=1

µ jλ j = λ1

j

∑
i=1

µ j = ciλ1, ∀λ ∈ Λi,µ ∈ ∂ν(λ ).

It remains to prove that ci = c1 for all i = 1, . . . ,n. To see this, again we use Property 3 in Lemma 2.21.
First consider λ = (1, . . . ,1,0, . . . ,0) ∈ Λi and any µ ∈ ∂ν(λ ), then

〈µ− (c1,0, . . . ,0)′,λ 〉=
i

∑
j=1

µ j− c1 = ci− c1 > 0.

On the other hand, for all λ 1 ∈ Λ1

〈(c1,0, . . . ,0)′−µ,λ 1〉= (c1−µ1)λ
1
1 −

i

∑
j=2

µ jλ
1
j > 0

This implies c1 =
i

∑
j=1

µ j = ci for all i = 1, . . . ,n.

The proof of Theorem 2.3 is now complete.
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2.7 Comparison with a theorem of Nussbaum

We next recall a characterization of the contraction rate in Thompson’s part metric of a not nec-
essarily order-preserving flow established by Nussbaum [Nus94]. The result there is established in
the finite dimensional setting. We slightly modified the statement of [Nus94] in order to unify the
notation and thus to make easier the comparison with our results.

Theorem 2.15 (Thm 3.9 in [Nus94]). Consider a finite dimensional vector space X . Suppose that
the dynamics φ(·, ·) is defined on J×C0. Let D0 ⊂ C0 be a compact set. Let 0 6 t0 < t1 such that the
flow is defined on [t0, t1]× [t0, t1]×D0. Define D1 ⊂ C0 by

D1 = {Mt
t0(x) : x ∈ D0, t0 6 t 6 t1}.

Let D2 be a compact set satisfying the following property: for all x,y ∈ D1, there exists a piecewise
C1 minimal geodesic (with respect to the part metric) ϕ : [0,1]→ C0 with ϕ(0) = x, ϕ(1) = y and
ϕ(t) ∈ D2 for 0 6 t 6 1. Then for any points x1,x2 ∈ D0, we have

dT (Mt
t0(x1),Mt

t0(x2))6 exp
(∫ t

t0
k(s,D2)dr

)
dT (x1,x2), t0 6 t 6 t1

where

k(s,D2) := limsup
∆→0+

c(s,∆,D2)−1
∆

, (2.67)

and

c(s,∆,D2) :=

sup
x∈D2

inf{λ > 0 :−λ (x+∆φ(s,x))4 z+∆Dφs(x)z 4 λ (x+∆φ(s,x)),∀− x 4 z 4 x}.

Nussbaum’s proofs rely on the Finsler nature of Thompson’s part metric. In the case of a finite-
dimensional order-preserving flow, we deduce from his result the following corollary.

Corollary 2.26. Consider a finite dimensional vector space X . Let φ be defined on J×U where
U ⊂ C0 is an open set. Let Ū ⊃U be a closed set satisfying the following property: for all x,y ∈U ,
there exists a piecewise C1 minimal geodesic (with respect to the part metric) ϕ : [0,1]→ C0 with
ϕ(0) = x, ϕ(1) = y and ϕ(t) ∈ Ū for 0 6 t 6 1. Assume that the function α(·,Ū ) : J→R defined by

α(s,Ū ) =− sup
x∈Ū

M((Dφs(x)x−φ(s,x))/x), s ∈ J

is locally integrable. If the flow M··(·) is order-preserving on U , then for all x1,x2 ∈U ,

dT (Mt
s(x1),Mt

s(x2))6 exp
(∫ t

s
−α(r,Ū )dr

)
dT (x1,x2), 0 6 s 6 t < tU (s,x1)∧ tU (s,x2). (2.68)

Proof. Let x1,x2 ∈U and 0 6 t0 < t1 < tU (t0,x1)∧ tU (t0,x2). Define

D0 = {x1,x2}, D1 = {Mt
t0(x) : x ∈ D0, t0 6 t 6 t1}.

Then by the closure of Ū and the boundedness of D1, there is a compact D2 ⊂ Ū satisfying the
geodesic condition in Theorem 2.15. Therefore,

dT (Mt
t0(x1),Mt

t0(x2))6 exp
(∫ t

t0
k(s,D2)ds

)
dT (x1,x2), t0 6 t 6 t1.



56 Chapter 2. The contraction rate in Thompson's part metric of order-preserving �ows

We next show that
k(s,D2) = sup

x∈D2

M((Dφs(x)−φ(s,x))/x), t0 6 s 6 t1.

By definition, for a ∆ > 0 sufficiently small,

c(s,∆,D2) = sup
x∈D2

sup
−x4z4x

sup
q∈C ∗
|q|∗=1

| 〈q,z+∆Dφs(x)z〉 |
〈q,x+∆φ(s,x)〉

(2.69)

= sup
x∈D2

sup
−x4z4x

sup
q∈C ∗
|q|∗=1

〈q,z+∆Dφs(x)z〉
〈q,x+∆φ(s,x)〉

(2.70)

For fixed s and D2, the function c(s, ·,D2) : R+→R is a subsmooth function (see Appendix A). Then
we apply (A.3) to calculate its one-side derivative at point 0:

lim
∆→0+

c(s,∆,D2)−1
∆

= sup
x∈D2

sup
−x4z4x

sup
〈q,x−z〉=0

q∈C ∗,|q|∗=1

lim
∆→0+

〈q,z+∆Dφs(x)z〉/〈q,x+∆φ(s,x)〉−1
∆

Since the flow is order-preserving, by Proposition 2.3, for all q ∈ C ?,z 4 x such that 〈q,x〉= 〈q,z〉 we
must have

〈q,z+∆Dφs(x)z〉6 〈q,x+∆Dφs(x)x〉.
Therefore,

k(s,D2) = lim
∆→0+

c(s,∆,D2)−1
∆

6 sup
x∈D2

sup
q∈C ∗
|q|∗=1

lim
∆→0+

〈q,x+∆Dφs(x)x〉/〈q,x+∆φ(s,x)〉−1
∆

= sup
x∈D2

sup
q∈C ∗
|q|∗=1

〈q,Dφs(x)x−φ(s,x)〉
〈q,x〉

= sup
x∈D2

M((Dφs(x)x−φ(s,x))/x).

Define
c̃(s,∆,D2) := sup

x∈D2

inf{λ > 0 : x+∆Dφs(x)x 4 λ (x+∆φ(s,x))}.

It is clear that

c(s,∆,D2)> c̃(s,∆,D2).

Besides,

lim
∆→0+

c̃(s,∆,D2)−1
∆

> sup
x∈D2

lim
∆→0+

M((x+∆Dφs(x)x)/(x+∆φ(s,x)))−1
∆

> sup
x∈D2

sup
q∈C ∗
|q|∗=1

lim
∆→0+

〈q,x+∆Dφs(x)x〉/〈q,x+∆φs(x)〉−1
∆

= sup
x∈D2

M((Dφs(x)x−φ(x))/x).
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Therefore,

k(s,D2) = lim
∆→0+

c(s,∆,D2)−1
∆

> sup
x∈D2

M((Dφs(x)x−φ(x))/x)

Hence we proved that

k(s,D2) =−α(s,D2)6−α(s,Ū ), t0 6 s 6 t1.

It follows that

dT (Mt
t0(x1),Mt

t0(x2))6 exp
(∫ t

t0
−α(s,Ū )ds

)
dT (x1,x2), t0 6 t 6 t1.

Since 0 6 t0 < t1 < tU (t0,x1)∧ tU (t0,x2) are arbitrary, we deduce (2.68).

Remark 2.10. The formula (A.3) used in the proof to get the directional derivative of c(s, ·,D2) at
point 0 requires that the supremum of (2.69) be taken over compact sets. In an infinite-dimensional
setting, the interval [−x,x] for some x ∈D2 is in general not a compact set. In that case, one may need
other techniques to obtain (2.68) as a corollary of Nussbaum’s result.

Remark 2.11. For a finite dimensional order-preserving flow, the main difference between Corol-
lary 2.26 and Theorem 2.7 is the following. Let U ⊂ C0 be an arbitrary open set. Theorem 2.7 shows
that

dT (Mt
s(x1),Mt

s(x2))6 exp
(∫ t

s
−α(r,Ũ )dr

)
dT (x1,x2), 0 6 s 6 t < tU (s,x1)∧ tU (s,x2).

where Ũ is defined to be the following “radial closure” of U :

Ũ := {λU : λ ∈ (0,1]}.

Similarly, we may find a set Ū ⊃ U (“geodesic convex hull”) satisfying the geodesic constraint
in Corollary 2.26, and then, Corollary 2.26, obtained through Nussbaum’s theorem (Theorem 2.15),
shows that

dT (Mt
s(x1),Mt

s(x2))6 exp
(∫ t

s
−α(r,Ū )dr

)
dT (x1,x2), 0 6 s 6 t < tU (s,x1)∧ tU (s,x2).

In a number of concrete examples, the geodesic convexity condition of Nussbaum is satisfied (U =
Ū ) and leads to optimal estimates. In fact in the previous applications to the deterministic and stochas-
tic Riccati equations the domains considered are all geodesically convex. However, there are exam-
ples of domains and maps for which our approach yields a tighter estimate of the contraction rate,
because the “geodesic convex hull” Ū is too large. Below is an example for which α(s,Ũ ) > 0 but
α(s,Ū )< 0.

Example 2.12. Consider the following differential equation defined on int(R2
+):{

Ẋ = Xφ1(lnX , lnY )
Ẏ = Y φ2(lnX , lnY )

(2.71)

where φ1,φ2 : R2→ R are defined by:

φ1(x,y) = xarctanx− 1
2 ln(1+ x2)+ arctany− (1+π

2 )x− π

2
φ2(x,y) = x

8 −
y
4
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It is clear that (X(·),Y (·)) : [0,T )→ int(R2
+) is a solution of (2.71) if and only if (ln(X(·)), ln(Y (·))) :

[0,T )→ R2 is a solution of {
ẋ = φ1(x,y)
ẏ = φ2(x,y)

(2.72)

Since φ1 and φ2 are globally Lipschitz functions, we know that the flow associated to (2.72) exists
globally. Hence, the flow associated to (2.71) leaves int(R2

+) invariant and also exists globally. Since
ln(·) is an increasing function, the flow of (2.71) is order-preserving if and only if the one of (2.72) is.
We verify the Kamke condition [HS05] for System (2.72):

∂φ1

∂y
(x,y) =

1
1+ y2 > 0,

∂φ2

∂x
(x,y) =

1
8
> 0

Hence the system (2.71) is order-preserving on int(R2
+). Let h = 3/2. Now consider the following

open set
U = {(X ,Y ) ∈ int(R2

+) : hY > X or Y 2 < hX−1}

Interested reader can verify that for any δ ∈ [1,h), the closed set

{(X ,Y ) ∈ int(R2
+) : δY > X or Y 2 6 δX−1} ⊂U

is invariant with respect to the flow of (2.71). Therefore, for any Z = (X ,Y ) ∈ U , the leaving time
tU (Z) equals to +∞.

It is clear that λU ⊂U for all λ ∈ (0,1]. Now we calculate α(U ). By definition,

−α(U ) = sup
(X ,Y )∈U

max(
∂φ1

∂x
(lnX , lnY )+

∂φ1

∂y
(lnX , lnY ),

∂φ2

∂x
(lnX , lnY )+

∂φ2

∂y
(lnX , lnY )).

Denote

V = {(x,y) ∈ R2 : (ex,ey) ∈U }= {(x,y) ∈ R2 : y > x− lnh or y <−x− lnh
2
}.

Then

−α(U ) = sup
(x,y)∈V

max(
∂φ1

∂x
(x,y)+

∂φ1

∂y
(x,y),

∂φ2

∂x
(x,y)+

∂φ2

∂y
(x,y)).

We have:
∂φ1

∂x
(x,y)+

∂φ1

∂y
(x,y) = arctanx+

1
1+ y2 −

1+π

2
,

and
∂φ2

∂x
(x,y)+

∂φ2

∂y
(x,y) =−1

8
.

Next we show that every set Ū ⊃ U satisfying the geodesic constraint in Corollary 2.26 contains
int(R2

+). Note that the minimal geodesics with respect to Thompson’s part metric in intR2
+ are in one

to one correspondence (by a logarithmic transformation) with the minimal geodesics with respect to
the sup-norm in R2. The unique minimal geodesic with respect to the sup-norm between two points
(a,b) ∈ R2 and (c,d) ∈ R2 such that | a− c |=| b− d | is the straight line. Hence, for any (X ,Y ) ∈
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int(R2
+)\U , the minimal geodesic (with respect to Thompson’s part metric) from (

√
XY
2 ,2
√

XY )∈U
to (2X2Y 2, 1

2XY ) ∈U is unique and passes through (X ,Y ). Therefore,

−α(Ū ) =−α(int(R2
+)) =

1
2
.

Hence Corollary 2.26 yields that for any two solutions Z1(·),Z2(·) : [0,+∞)→U of (2.71):

dT (Z1(t),Z2(t))6 e
t−s

2 dT (Z1(s),Z2(s)), 0 6 s < t <+∞.

However, it can be checked that the level line

{(x,y) : arctanx+
1

1+ y2 =
π

2
+

3
8
}

does not intersect the boundary of V :

{(x,y) : x > 0,y = x− lnh or y =−x− lnh
2
}.

Therefore,

α(U )>
1
8
,

and Theorem 2.5 implies that the system (2.71) is a strict contraction on the domain U with a con-
traction rate at least equal to 1/8. That is, for any two solutions Z1(·),Z2(·) : [0,+∞)→U of (2.71)
we have:

dT (Z1(t),Z2(t))6 e−
t−s

8 dT (Z1(s),Z2(s)), 0 6 s < t <+∞.

We deduce from the latter formula the existence and uniqueness of a fixed point in the domain U
and the exponential convergence of all the trajectories to that fixed point with a uniform rate at least
equal to 1/8.

Remark 2.13. Although the estimation of the global contraction rate in Theorem 2.5 can be recovered
as a corollary of Nussbaum’s theorem when the domain is geodesically convex, invariance arguments
used in the proof lead to tighter estimates of the convergence rate to a fixed point (Theorem 2.9). More
precisely, the convergence rate (2.47) in Theorem 2.13 follows from Theorem 2.9 and is tighter than
the one obtained by applying Theorem 2.5, which is:

α > e−dT (P,P̄)m((Q−L′R−1L)/P̄).
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CHAPTER 3
Dobrushin ergodicity coe�cient for

consensus operators on cones

In the previous chapter, we determined the contraction rate of nonlinear order-preserving maps
or flows in Thompson’s metric. A related problem is to characterize the contraction rate of nonlinear
maps or flows in Hilbert’s projective metric, which is a weak Finsler metric. In the present chapter we
consider contraction properties with respect to Hilbert’s seminorm, which is the infinitesimal distance
associated to Hilbert’s projective metric. We give a characterization of the contraction ratio of bounded
linear maps in Banach space with respect to Hilbert’s seminorm, in terms of the extreme points of
a certain abstract “simplex”. The formula is then applied to abstract consensus operators defined
on arbitrary cones, which extend the row stochastic matrices acting on the standard positive cone
and the completely positive unital maps acting on the cone of positive semidefinite matrices. When
applying our characterization to a stochastic matrix, we recover the formula of Dobrushin’s ergodicity
coefficient. When applying our result to a completely positive unital map, we therefore obtain a
noncommutative version of Dobrushin’s ergodicity coefficient, which gives the contraction ratio of
the map (representing a quantum channel or a “noncommutative Markov chain”) with respect to the
diameter of the spectrum. The contraction ratio of the dual operator (Kraus map) with respect to the
total variation distance will be shown to be given by the same coefficient.

We finally consider some complexity issues for Kraus maps. Whereas contraction properties
are easy to check for stochastic matrices, the verification of their noncommutative analogues require
efforts. Using the noncommutative Dobrushin’s ergodicity coefficient, we show that a number of
decision problems concerning the contraction rate of Kraus maps reduce to finding a rank one matrix



62 Chapter 3. Dobrushin ergodicity coe�cient for consensus operators on cones

in linear spaces satisfying certain conditions. We then show that an irreducible Kraus map is primitive
if and only if the associated noncommutative consensus system is globally convergent, which can
be checked in polynomial time if the map is irreducible. However, we prove that unlike in the case
of standard nonnegative matrices, deciding whether a Kraus map is strictly positive (meaning that it
sends the cone to its interior) is NP-hard.

This chapter is an extended version of an ECC conference article [GQ13].

3.1 Introduction

3.1.1 Motivation: from Birkho�'s theorem to consensus dynamics

Hilbert’s projective metric dH on the interior of a (closed, convex, and pointed) cone C in a
Banach space X can be defined by:

dH(x,y) := log inf{β

α
: α,β > 0, αx 4 y 4 βx},

where 4 is the partial order induced by C . Birkhoff [Bir57] characterized the contraction ratio with
respect to dH of a linear map T preserving the interior C 0 of the cone C ,

sup
x,y∈C 0

dH(T x,Ty)
dH(x,y)

= tanh(
diamT (C 0)

4
), diamT (C 0) := sup

x,y∈C 0
dH(T x,Ty) .

This fundamental result, which implies that a linear map sending the cone C into its interior is a strict
contraction in Hilbert’s metric, can be used to derive the Perron-Frobenius theorem from the Banach
contraction mapping theorem, see [Bus73, KP82, EN95] for more information.

Hilbert’s projective metric is related to the following family of seminorms. To any point e ∈ C 0 is
associated the seminorm

x 7→ ω(x/e) := inf{β −α : αe 4 x 4 βe}

which is sometimes called Hopf’s oscillation [Hop63, Bus73] or Hilbert’s seminorm [GG04]. Nuss-
baum [Nus94] showed that dH is precisely the weak Finsler metric obtained when taking ω(·/e) to be
the infinitesimal distance at point e. In other words,

dH(x,y) = inf
γ

∫ 1

0
ω(γ̇(s)/γ(s))ds

where the infimum is taken over piecewise C1 paths γ : [0,1]→ C 0 such that γ(0) = x and γ(1) = y.
He deduced that the contraction ratio, with respect to Hilbert’s projective metric, of a nonlinear map
f : C 0→ C 0 that is positively homogeneous of degree 1 (i.e. f (λx) = λ f (x) for all λ > 0), can be
expressed in terms of the Lipschitz constants of the linear maps D f (x) with respect to a family of
Hopf’s oscillation seminorms:

sup
x,y∈U

dH( f (x), f (y))
dH(x,y)

= sup
x∈U

sup
z∈X

ω(z/x)6=0

ω(D f (x)z/ f (x))
ω(z/x)

. (3.1)
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Hence, to arrive at an explicit formula for the contraction rate of nonlinear maps in Hilbert’s projective
metric , a basic issue is to determine the Lipschitz constant of a bounded linear map T : X →X with
respect to Hopf’s oscillation seminorm, i.e.,

‖T‖H := sup
z∈X , ω(z/e)6=0

ω(T (z)/T (e))
ω(z/e)

. (3.2)

The problem of computing the contraction rate (3.2) also arises in the study of consensus algorithms.
A consensus operator is a linear map T which preserves the positive cone C and fixes a unit element
e ∈ C 0:

T (e) = e .

A discrete time consensus system can be described by

xk+1 = Tk+1(xk), k ∈ N, (3.3)

where T1,T2, . . . is a sequence of consensus operators preserving the same unit element e. The main
concern of consensus theory is the convergence of the orbit xk to a consensus state, which is repre-
sented by a scalar multiple of the unit element.

This model includes in particular the classical linear consensus system case when X = Rn, C =
Rn
+, e = (1, · · · ,1)> and

xk+1 = Axk, k ∈ N , (3.4)

where A is a row stochastic matrix. This has been studied in the field of communication networks,
control theory and parallel computation [Hir89, BT89, BGPS06, Mor05, VJAJ05, OT09, AB09]. A
widely used Lyapunov function for the consensus dynamics, first considered by Tsitsiklis (see [TBA86]),
is the “diameter” of the state x defined as

∆(x) = max
16i, j6n

(xi− x j),

which is precisely Hopf’s oscillation seminorm ω(x/e). It turns out that the latter seminorm can still
be considered as a Lyapunov function for a consensus operator T , with respect to an arbitrary cone.
When C = Rn

+, it is well known that if the contraction ratio of the stochastic matrix A with respect to
the diameter is strictly less than one, then the orbits of the consensus dynamics (3.4) converge expo-
nentially to a consensus state. We shall see here that the same remains true in general (Theorem 3.4).
For time-dependent consensus systems, a common approach is to bound the contraction ratio of every
product of p consecutive operators Ti+p◦· · ·◦Ti+1, i= 1,2, . . . , for a fixed p, see for example [Mor05].
Moreover, if {Tk : k > 1} is a stationary ergodic random process, then the almost sure convergence
of the orbits of (3.3) to a consensus state can be deduced by showing that E[log‖T1+p . . .T1‖H ] < 0
for some p > 0, see Bougerol [Bou93]. Hence, in consensus applications, a central issue is again to
compute the contraction ratio (3.2).

3.1.2 Main results

Our first result characterizes the contraction ratio (3.2), in a slightly more general setting. We
consider a bounded linear map T from a Banach space X1 to a Banach space X2. The latter are
equipped with normal cones Ci ⊂Xi, and unit elements ei ∈ C 0

i .



64 Chapter 3. Dobrushin ergodicity coe�cient for consensus operators on cones

Theorem 3.1 (Contraction rate in Hopf’s oscillation seminorm). Let T : X1 →X2 be a bounded
linear map such that T (e1) ∈ Re2. Then

sup
z∈X1

ω(z/e1)6=0

ω(T (z)/e2)

ω(z/e1)
=

1
2

sup
ν ,π∈extrP(e2)

ν⊥π

‖T ?(ν)−T ?(π)‖?T = sup
ν ,π∈extrP(e2)

ν⊥π

sup
x∈[0,e1]

〈ν−π,T (x)〉.

The notations and notions used in this theorem are detailed in Section 3.5. In particular, we denote
by the same symbol 4 the order relations induced by the two cones Ci, i = 1,2; P(e2) = {µ ∈ C ?

2 :
〈µ,e2〉 = 1} denotes the abstract simplex of the dual Banach space X ?

2 of X2, where C ?
2 is the dual

cone of C2; extr denotes the extreme points of a set; ⊥ denotes a certain disjointness relation, which
will be seen to generalize the condition that two measures have disjoint supports; and T ? denotes the
adjoint of T . We shall make use of the following norm, which we call Thompson’s norm,

‖z‖T = inf{α > 0 : −αe1 4 z 4 αe1}

on the space X1, and denote by ‖ · ‖?T the dual norm.
When C = Rn

+, and T (z) = Az for some stochastic matrix A, we shall see that the second supre-
mum in Theorem 3.1 is simply

1
2

max
i< j

∑
16k6n

|Aik−A jk|=
1
2

max
i< j
‖Ai·−A j·‖`1 ,

where Ai· denotes the ith row of the matrix A. This quantity is called Doeblin contraction coefficient
in the theory of Markov chains; it is known to determine the contraction rate of the adjoint T ? with
respect to the `1 (or total variation) metric, see [LPW09]. Moreover, the last supremum in Theorem 3.1
can be rewritten more explicitly as

1−min
i< j

n

∑
s=1

min(Ais,A js) ,

a term which is known as Dobrushin’s ergodicity coefficient [Dob56]. Note that in general, the norm
‖ · ‖?T can be thought of as an abstract version of the `1 or total variation norm.

When specializing to a unital completely positive map T on the cone of positive semidefinite
matrices, representing a quantum channel [SSR10, RKW11], we shall see that the last supremum in
Theorem 3.1 coincides with the following expression, which provides a non commutative analogue of
Dobrushin’s ergodicity coefficient (see Corollary 3.9):

1− min
X=(x1,...,xn)

XX∗=In

min
u,v:u∗v=0

u∗u=v∗v=1

n

∑
i=1

min{u∗T (xix∗i )u,v
∗T (xix∗i )v} .

We finally address some complexity issues using the latter noncommutative version of Dobrushin’s
ergodicity coefficient. More precisely we address three decision problems for Kraus map, all straight-
forward for classical stochastic matrix. First, we study the complexity of checking irreducibility and
the primitivity of a Kraus map (Section 3.8.2). We show that the global convergence of a noncommu-
tative consensus system is equivalent to the existence of a rank one matrix in certain matrix subspace
(Theorem 3.6). It follows from this characterization a noncommutative extension of the property that
a Markov matrix is primitive if and only if it is irreducible and aperiodic (Proposition 3.13), as in
the classical stochastic matrix case. This result implies that deciding if a (rational) noncommutative
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consensus system is globally convergent can be done in polynomial time if the consensus operator is
irreducible (Corollary 3.15). Secondly we consider the complexity of deciding the strict positivity of
a Kraus map (Section 3.8.3). We show that deciding if there is a rank one matrix orthogonal to the
space generated by the Kraus operators is NP-hard, by reducing a 3SAT problem to it (Theorem 3.8),
which implies that deciding if a completely positive unital map is strictly positive is NP-hard (Corol-
lary 3.20). Finally we deduce from Corollary 3.10 the equivalent between the strict contraction of a
Kraus map and a quantum clique problem.

3.2 Thompson's norm and Hilbert's seminorm

We start by some preliminary results. Some of the notations are already introduced in Sec-
tion 2.2.1.

In the whole chapter, (X ,‖ · ‖) is a real Banach space with dual space X ?. Let C ⊂X be a
closed pointed convex cone with non empty interior C0 and 4 be the partial order induced by C . For
x ∈X and y ∈X0, we call oscillation [Bus73] the difference between M(x/y) and m(x/y):

ω(x/y) := M(x/y)−m(x/y).

Let e denote a distinguished element in C0, which we shall call a unit. For x ∈X , define

‖x‖T := max(M(x/e),−m(x/e))

which we call Thompson’s norm, with respect to the element e, and

‖x‖H := ω(x/e)

which we call Hilbert’s seminorm with respect to the element e.

Remark 3.1. These terminologies are motivated by the fact that Thompson’s part metric and Hilbert’s
projective metric are Finsler metrics (see [Nus94]) for which the infinitesimal distances at the point
e∈C 0 are respectively given by ‖·‖T and ‖·‖H . The seminorm ‖·‖H is also called Hopf’s oscillation
seminorm [Bus73].

We assume that the cone is normal. It is known that under this assumption the two norms ‖ ·‖ and
‖ · ‖T are equivalent, see [Nus94]. Therefore the space X equipped with the norm ‖ · ‖T is a Banach
space. Since Thompson’s norm ‖ · ‖T is defined with respect to a particular element e, we write
(X ,e,‖ · ‖T ) instead of (X ,‖ · ‖T ). By the definition and (2.4), Thompson’s norm can be rewritten
by:

‖x‖T = sup
z∈C ?

|〈z,x〉|
〈z,e〉

. (3.5)

Example 3.2. We consider the finite dimensional vector space X = Rn, the standard orthant cone
C = Rn

+ and the unit vector e = 1 := (1, . . . ,1)T . It can be checked that Thompson’s norm with
respect to 1 is nothing but the sup norm

‖x‖T = max
i
|xi|= ‖x‖∞,

whereas Hilbert’s seminorm with respect to 1 is the so called diameter:

‖x‖H = max
16i, j6n

(xi− x j) = ∆(x).
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Example 3.3. Let X = Sn, the space of Hermitian matrices of dimension n and C = S+
n , the cone of

positive semidefinite matrices. Let the identity matrix In be the unit element: e= In. Then Thompson’s
norm with respect to In is nothing but the sup norm of the spectrum of X , i.e.,

‖X‖T = max
16i6n

λi(X) = ‖λ (X)‖∞,

where λ (X) := (λ1(X), . . . ,λn(X)), is the vector of ordered eigenvalues of X , counted with multiplic-
ities, whereas Hilbert’s seminorm with respect to In is the diameter of the spectrum:

‖X‖H = max
16i, j6n

(λi(X)−λ j(X)) = ∆(λ (X)).

3.3 Abstract simplex in the dual space and dual unit ball

We denote by (X ?,e,‖ · ‖?T ) the dual space of (X ,e,‖ · ‖T ) where the dual norm ‖ · ‖?T of a
continuous linear functional z ∈X ? is defined by:

‖z‖?T := sup
‖x‖T=1

〈z,x〉.

We define the abstract simplex in the dual space by:

P(e) := {µ ∈ C ? | 〈µ,e〉= 1} . (3.6)

Remark 3.4. For the standard orthant cone (Example 3.2, X = Rn, C = Rn
+ and e = 1), the dual

space X ? is X = Rn itself and the dual norm ‖ · ‖?T is the `1 norm:

‖x‖?T = ∑
i
|xi|= ‖x‖1.

The abstract simplex P(1) is the standard simplex in Rn:

P(1) = {ν ∈ Rn
+ : ∑

i
νi = 1},

i.e., the set of probability measures on the discrete space {1, . . . ,n}.
Remark 3.5. For the cone of semidefinite matrices (Example 3.3, X = Sn, C = S+

n and e = In), the
dual space X ? is X = Sn itself and the dual norm ‖ · ‖?T is the trace norm:

‖X‖?T = ∑
16i6n

|λi(X)|= ‖X‖1, X ∈ Sn

The simplex P(In) is the set of positive semidefinite matrices with trace 1:

P(In) = {ρ ∈ Sn
+ : trace(ρ) = 1}.

The elements of this set are called density matrices in quantum physics. They are thought of as
noncommutative analogues of probability measure.
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We denote by B?
T (e) the dual unit ball:

B?
T (e) = {x ∈X ? | ‖x‖?T 6 1} .

We denote by conv(S) the convex hull of a set S. The next lemma relates the abstract simplex P(e)
to the dual unit ball B?

T (e).

Lemma 3.1. The dual unit ball B?
T (e) of the space (X ?,e,‖ · ‖?T ), satisfies

B?
T (e) = conv(P(e)∪−P(e)) . (3.7)

Proof. For simplicity we write P instead of P(e) and B?
T instead of B?

T (e) in the proof. It follows
from (3.5) that

‖x‖T = sup
µ∈P
|〈µ,x〉|= sup

µ∈P∪−P
〈µ,x〉 . (3.8)

Hence ‖z‖?T 6 1 if and only if,

〈z,x〉6 ‖x‖T = sup
µ∈P∪−P

〈µ,x〉, ∀x ∈X . (3.9)

By the strong separation theorem [FHH+01, Thm 3.18], if z did not belong to the closed convex hull
conv(P ∪−P), the closure being understood in the weak star topology of X ?, there would exist a
vector x ∈X and a scalar γ such that

〈z,x〉> γ > 〈µ,x〉, ∀µ ∈P ∪−P ,

contradicting (3.9). Hence,
B?

T = conv(P ∪−P) .

We claim that the latter closure operation can be dispensed with. Indeed, by the Banach Alaoglu
theorem, B?

T is weak-star compact. Hence, its subset P , which is weak-star closed, is also weak-star
compact. If µ ∈ B?

T , by the characterization of B?
T above, µ is a limit, in the weak star topology,

of a net {µa = saνa− taπa : a ∈ A } with sa + ta = 1, sa, ta > 0 and νa,πa ∈P for all a ∈ A . By
passing to a subnet we can assume that {sa, ta : a ∈A } converge respectively to s, t ∈ [0,1] such that
s+ t = 1 and {νa,πa : a ∈ A } converge respectively to ν ,π ∈P . It follows that µ = sν − tπ ∈
conv(P ∪−P).

Remark 3.6. We make a comparison with [RKW11]. In a finite dimensional setting, Reeb, Kasto-
ryano, and Wolf defined a base B of a proper cone K in a vector space V to be a cross section of
this cone, i.e., B is the intersection of the cone K with a hyperplane given by a linear functional in
the interior of the dual cone K ?. Their vector space V corresponds to our dual space X ?, and, since
V is of finite dimension, their dual space V ? corresponds to our primal space X . Our cone C ⊂X
corresponds to their dual cone K ?. Modulo this identification, the base B can be written precisely as

B = {µ ∈K | 〈µ,e〉= 1} ,

for some e in the interior of K ?, so that the base B coincides with our abstract simplex P(e). They
defined the base norm of µ ∈ V with respect to B by:

‖µ‖B = inf{λ > 0 : µ ∈ λ conv(B∪−B)}.
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They also defined the distinguishability norm of µ ∈ V by:

‖µ‖M̃ = sup
04x4e

〈µ,2x− e〉. (3.10)

And Theorem 14 in their paper [RKW11] states that the distinguishability norm is equal to the base
norm:

‖µ‖M̃ = ‖µ‖B . (3.11)

In a finite dimensional setting, Lemma 3.1 is equivalent to the duality result (3.11) of Reeb et al. and
the two approaches are dual to each other.

3.4 Characterization of extreme points of the dual unit ball

The next lemma states that Hilbert’s seminorm coincides with the quotient norm on the quotient
Banach space X /Re.

Lemma 3.2. For all x ∈X , we have:

‖x‖H = 2 inf
λ∈R
‖x+λe‖T

Proof. The expression

‖x+λe‖T = max(M(x/e)+λ ,−m(x/e)−λ )

is minimal when M(x/e)+ λ = −m(x/e)− λ . Substituting the value of λ obtained in this way in
‖x+λe‖T , we arrive at the announced formula.

A standard result [Con90, P.88] of functional analysis shows that if W is a closed subspace of a
Banach space (X ,‖ ·‖), then the quotient space X /W is complete. Besides, the dual of the quotient
space X /W can be identified isometrically to the space of continuous linear forms on X that vanish
on W , equipped with the dual norm ‖ · ‖? of X ?. Specializing this result to W = Re, we get:

Lemma 3.3. The quotient normed space (X /Re,‖ ·‖H) is a Banach space. Its dual is (M (e),‖ ·‖?H)
where

M (e) := {µ ∈X ?|〈µ,e〉= 0},

and

‖µ‖?H :=
1
2
‖µ‖?T , ∀µ ∈M (e). (3.12)

The above lemma implies that the unit ball of the space (M (e),‖·‖?H), denoted by B?
H(e), satisfies:

B?
H(e) = 2B?

T (e)∩M (e). (3.13)

Remark 3.7. In the case of standard orthant cone (X = Rn, C = Rn
+ and e = 1), Lemma 3.3 implies

that for any two probability measures µ,ν ∈P(1), the dual norm ‖µ − ν‖?H is the total variation
distance between µ and ν :

‖µ−ν‖?H =
1
2
‖µ−ν‖1 = ‖µ−ν‖TV
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Before giving a representation of the extreme points of B?
H(e), we define a disjointness relation ⊥

on P(e).

Definition 3.1. For all ν ,π ∈P(e), we say that ν and π are disjoint, denoted by ν ⊥ π , if

µ =
ν +π

2

for all µ ∈P(e) such that µ < ν

2 and µ < π

2 .

We have the following characterization of the disjointness property.

Lemma 3.4. Let ν ,π ∈P(e). The following assertions are equivalent:

(a) ν ⊥ π .

(b) The only elements ρ,σ ∈P(e) satisfying

ν−π = ρ−σ

are ρ = ν and σ = π .

Proof. (a)⇒ (b): Let any ρ,σ ∈P(e) such that

ν−π = ρ−σ .

Then it is immediate that
ν +σ = π +ρ.

Let µ = ν+σ

2 = π+ρ

2 . Then µ ∈P(e), µ < ν

2 and µ < π

2 . Since ν ⊥ π , we obtain that µ = ν+π

2 . It
follows that ρ = ν and σ = π .

(b)⇒ (a): Let any µ ∈P(e) such that µ < ν

2 and µ < π

2 . Then

ν−π = (2µ−π)− (2µ−ν).

From (b) we know that 2µ−π = ν .

We denote by extr(·) the set of extreme points of a convex set.

Proposition 3.5. The set of extreme points of B?
H(e), denoted by extrB?

H(e), is characterized by:

extrB?
H(e) = {ν−π | ν ,π ∈ extrP(e),ν ⊥ π}.

Proof. It follows from (3.7) that every point µ ∈ B?
T (e) can be written as

µ = sν− tπ

with s+ t = 1,s, t > 0, ν ,π ∈P(e). Moreover, if µ ∈M (e), then

0 = 〈µ,e〉= s〈ν ,e〉− t〈π,e〉= s− t,

thus s = t = 1
2 . Therefore every µ ∈ B?

T (e)∩M (e) can be written as

µ =
ν−π

2
, ν ,π ∈P(e).
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Therefore by (3.13) we proved that

B?
H(e) = {ν−π : ν ,π ∈P(e)}. (3.14)

Now let ν ,π ∈ extrP(e) and ν ⊥ π . We are going to prove that ν−π ∈ extrB?
H(e). Let ν1,π1,ν2,π2 ∈

P(e) such that

ν−π =
ν1−π1

2
+

ν2−π2

2
.

Then
ν−π =

ν1 +ν2

2
− π1 +π2

2
.

By Lemma 3.4, the only possibility is 2ν = ν1 +ν2 and 2π = π1 + π2. Since ν ,π ∈ extrP(e) we
obtain that ν1 = ν2 = ν and π1 = π2 = π . Therefore ν−π ∈ extrB?

H(e).
Now let ν ,π ∈P(e) such that ν−π ∈ extrB?

H(e). Assume by contradiction that ν is not extreme
in P(e) (the case in which π is not extreme can be dealt with similarly). Then, we can find ν1,ν2 ∈
P(e), ν1 6= ν2, such that ν = ν1+ν2

2 . It follows that

µ =
ν1−π

2
+

ν2−π

2
,

where ν1−π,ν2− π are distinct elements of B?
H(e), which is a contradiction. Next we show that

ν ⊥ π . To this end, let any ρ,σ ∈P(e) such that

ν−π = ρ−σ .

Then
ν−π =

ν−π +ρ−σ

2
=

ν−σ

2
+

ρ−π

2
.

If σ 6= π , then ν −σ 6= ν −π and this contradicts the fact that ν −π is extremal. Therefore σ = π

and ρ = ν . From Lemma 3.4, we deduce that ν ⊥ π .

Remark 3.8. In the case of standard orthant cone (X = Rn, C = Rn
+ and e = 1), the set of extreme

points of P(1) is the set of standard basis vectors {ei}i=1,...,n. The extreme points are pairwise dis-
joint.

Remark 3.9. In the case of cone of semidefinite matrices (X = Sn, C = S+
n and e = In), the set of

extreme points of P(In) is

extrP(In) = {xx∗ | x ∈ Cn,x∗x = 1} ,

which are called pure states in quantum information terminology. Two extreme points xx∗ and yy∗

are disjoint if and only if x∗y = 0. To see this, note that if x∗y = 0 then any Hermitian matrix X such
that X < xx∗ and X < yy∗ should satisfy X < xx∗+ yy∗. Hence by definition xx∗ and yy∗ are disjoint.
Inversely, suppose that xx∗ and yy∗ are disjoint and consider the spectral decomposition of the matrix
xx∗− yy∗, i.e., there is λ 6 1 and two orthonormal vectors u,v such that xx∗− yy∗ = λ (uu∗− vv∗).
It follows that xx∗− yy∗ = uu∗− ((1−λ )uu∗+λvv∗). By Lemma 3.4, the only possibility is yy∗ =
(1−λ )uu∗+λvv∗ and xx∗ = uu∗ thus λ = 1, u = x and v = y. Therefore x∗y = 0.
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3.5 The operator norm induced by Hopf's oscillation seminorm

Consider two real Banach spaces X1 and X2. Let C1 ⊂X1 and C2 ⊂X2 be respectively two
closed pointed convex normal cones with non empty interiors C 0

1 and C 0
2 . Let e1 ∈ C 0

1 and e2 ∈ C 0
2 .

Then, we know from Section 3.4 that the two quotient spaces (X1/Re1,‖ · ‖H) and (X2/Re2,‖ ·
‖H) are Banach spaces. The dual spaces of (X1/Re1,‖ · ‖H) and (X2/Re2,‖ · ‖H) are respectively
(M (e1),‖ · ‖?H) and (M (e2),‖ · ‖?H) (see Lemma 3.3).

Let T denote a continuous linear map from (X1/Re1,‖ · ‖H) to (X2/Re2,‖ · ‖H). The operator
norm of T , denoted by ‖T‖H , is given by:

‖T‖H := sup
‖x‖H=1

‖T (x)‖H = sup
ω(T (x)/e2)

ω(x/e1)
.

By definition, the adjoint operator T ? : (M (e2),‖ · ‖?H)→ (M (e1),‖ · ‖?H) of T is:

〈T ?(µ),x〉= 〈µ,T (x)〉, ∀µ ∈M (e2),x ∈X1/Re1.

The operator norm of T ?, denoted by ‖T ?‖?H , is then:

‖T ?‖?H := sup
µ∈B?

H(e2)

‖T ?(µ)‖?H .

A classical duality result (see [AB99, § 6.8]) shows that an operator and its adjoint have the same
operator norm. In particular,

‖T‖H = ‖T ?‖?H .

Theorem 3.2. Let T : X1→X2 be a bounded linear map such that T (e1) ∈ Re2. Then,

‖T‖H =
1
2

sup
ν ,π∈P(e2)

‖T ?(ν)−T ?(π)‖?T = sup
ν ,π∈P(e2)

sup
x∈[0,e1]

〈ν−π,T (x)〉.

Moreover, the supremum can be restricted to the set of extreme points:

‖T‖H =
1
2

sup
ν ,π∈extrP(e2)

ν⊥π

‖T ?(ν)−T ?(π)‖?T = sup
ν ,π∈extrP(e2)

ν⊥π

sup
x∈[0,e1]

〈ν−π,T (x)〉. (3.15)

Proof. We already noted that ‖T‖H = ‖T ?‖?H . Moreover,

‖T ?‖?H = sup
µ∈B?

H(e2)

‖T ?(µ)‖?H .

By the characterization of B?
H(e2) in (3.14) and the characterization of the norm ‖ · ‖?H in Lemma 3.3,

we get

sup
µ∈B?

H(e2)

‖T ?(µ)‖?H = sup
ν ,π∈P(e2)

‖T ?(ν)−T ?(π)‖?H =
1
2

sup
ν ,π∈P(e2)

‖T ?(ν)−T ?(π)‖?T

For the second equality, note that

‖T ?(ν)−T ?(π)‖?T = sup
x∈[0,e1]

〈T ?(ν)−T ?(π),2x− e1〉

= 2 sup
x∈[0,e1]

〈T ?(ν)−T ?(π),x〉 .



72 Chapter 3. Dobrushin ergodicity coe�cient for consensus operators on cones

We next show that the supremum can be restricted to the set of extreme points. By the Banach-Alaoglu
theorem, B?

H(e2) is weak-star compact, and it is obviously convex. The dual space M (e2) endowed
with the weak-star topology is a locally convex topological space. Thus by the Krein-Milman theorem,
the unit ball B?

H(e2), which is a compact convex set in M (e2) with respect to the weak-star topology,
is the closed convex hull of its extreme points. So every element ρ of B?

H(e2) is the limit of a net
(ρα)α of elements in conv

(
extrB?

H(e2)
)
. Observe now that the function

ϕ : µ 7→ ‖T ?(µ)‖?H = sup
x∈BH(e1)

〈T ?(µ),x〉= sup
x∈BH(e1)

〈µ,T (x)〉

which is a sup of weak-star continuous maps is convex and weak-star lower semi-continuous. This
implies that

ϕ(ρ)6 liminf
α

ϕ(ρα)

6 sup{ϕ(µ) : µ ∈ conv
(

extrB?
H(e2)

)
}

= sup{ϕ(µ) : µ ∈ extrB?
H(e2)} .

Using the characterization of the extreme points in Proposition 3.5, we get:

sup
µ∈B?

H(e2)

‖T ?(µ)‖?H = sup
µ∈extrB?

H(e2)

‖T ?(µ)‖?H = sup
ν ,π∈extrP(e2)

ν⊥π

‖T ?(ν)−T ?(π)‖?H .

Remark 3.10. When X1 is of finite dimension, the set [0,e1] is the convex hull of the set of its extreme
points, hence, the supremum over the variable x ∈ [0,e1] in (3.15) is attained at an extreme point.
Similarly, if X2 is of finite dimension, the suprema over (ν ,π) in the same equation are also attained,
because the map ϕ in the proof of the previous theorem, which is a supremum of an equi-Lipschitz
family of maps, is continuous (in fact, Lipschitz).

Remark 3.11. Theorem 3.2 should be compared with Proposition 12 of [RKW11] which can be stated
as follows.

Proposition 3.6 (Proposition 12 in [RKW11]). Let V ,V ′ be two finite dimensional vector spaces and
L : V → V ′ be a linear map and let B ⊂ V and B′ ⊂ V ′ be bases. Then

sup
v1 6=v2∈B

‖L(v1)−L(v2)‖B′
‖v1− v2‖B

=
1
2

sup
v1,v2∈extrB

‖L(v1)−L(v2)‖B′ (3.16)

The first term in (3.16) is called the contraction ratio of the linear map L, with respect to base
norms (see Remark 3.6). One important applications of this proposition concerns the base preserving
maps L such that L(B)⊂B′. Let us translate this proposition in the present setting. Consider a linear
map T : X1/Re1→X2/Re2. Then T ? : X ?

2 →X ?
1 is a base preserving linear map (T ?(P(e2)) ⊂

P(e1)) and so, Proposition 12 of [RKW11] shows that:

sup
ν ,π∈P(e2)

ν 6=π

‖T ?(ν−π)‖?T
‖ν−π‖?T

=
1
2

sup
ν ,π∈extrP(e2)

‖T ?(ν)−T ?(π)‖?T (3.17)

Hence, by comparison with [RKW11], the additional information here is the equality between the
contraction ratio in Hilbert’s seminorm of a unit preserving linear map, and the contraction ratio with
respect to the base norms of the dual base preserving map. The latter is the primary object of interest
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in quantum information theory whereas the former is of interest in the control/consensus literature.
We also proved that the supremum in (3.17) can be restricted to pairs of disjoint extreme points ν ,π .
Finally, the expression of the contraction rate as the last supremum in Theorem 3.2 leads here to an
abstract version of Dobrushin’s ergodic coefficient, see Eqn (3.21) and Corollary 3.9 below.

Let us recall the definition of Hilbert’s projective metric.

Definition 3.2 ([Bir57]). Hilbert’s projective metric between two elements x and y of C0 is

dH(x,y) = log(M(x/y)/m(x/y)). . (3.18)

Consider a linear operator T : X1→X2 such that T (C 0
1 ) ⊂ C 0

2 . Following [Bir57, Bus73], the
projective diameter of T is defined as below:

diamT = sup{dH(T (x),T (y)) : x,y ∈ C 0
1 }.

Birkhoff’s contraction formula [Bir57, Bus73] states that the oscillation ratio equals to the contraction
ratio of T and they are related to its projective diameter.

Theorem 3.3 ([Bir57, Bus73]).

sup
x,y∈C 0

1

ω(T (x)/T (y))
ω(x/y)

= sup
x,y∈C 0

1

dH(T (x),T (y))
dH(x,y)

= tanh(
diamT

4
).

The projective diameter of T ? is defined by:

diamT ? = sup{dH(T ?(u),T ?(v)) : u,v ∈ C ?
2 \0}.

Note that diamT = diamT ?. This is because

sup
x,y∈C 0

1

M(T (x)/T (y))
m(T (x)/T (y))

= sup
x,y∈C 0

1

sup
u,v∈C ?

2 \0

〈u,T (x)〉〈v,T (y)〉
〈u,T (y)〉〈v,T (x)〉

= sup
u,v∈C ?

2 \0

M(T ?(u)/T ?(v))
m(T ?(u)/T ?(v))

Corollary 3.7 (Compare with [RKW11]). Let T : X1 → X2 be a bounded linear map such that
T (e1) ∈ Re2 and T (C 0

1 )⊂ C 0
2 , then:

‖T ?‖?H = ‖T‖H 6 tanh(
diamT

4
) = tanh(

diamT ?

4
)

Proof. It is sufficient to prove the inequality. For this, note that

‖T‖H = sup
x∈X1

ω(x/e1)6=0

ω(T (x)/e2)/ω(x/e1) = sup
x∈C 0

1
ω(x/e1)6=0

ω(T (x)/e2)/ω(x/e1).

Then we apply Birkhoff’s contraction formula.

Remark 3.12. Reeb et al. [RKW11] showed in a different way that

‖T ?‖?H 6 tanh(
diamT ?

4
) ,

in a finite dimensional setting. The proof above shows that as soon as the duality formula ‖T ?‖?H =
‖T‖H has been obtained, the latter inequality follows from Birkhoff’s contraction formula.
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3.6 Application to discrete consensus operators on cones

A classical result, which goes back to Dœblin and Dobrushin, characterizes the Lipschitz constant
of a Markov matrix acting on the space of measures (i.e., a row stochastic matrix acting on the left),
with respect to the total variation norm (see the discussion in Section 3.7 below). The same constant
characterizes the contraction ratio with respect to the “diameter” (Hilbert’s seminorm) of the consen-
sus system driven by this Markov matrix (i.e., a row stochastic matrix acting on the right). Consensus
operators on cones extend Markov matrices. In this section, we extend to these abstract operators a
number of known properties of Markov matrices.

A bounded linear map T : X →X is a consensus operator with respect to a unit vector e in the
interior C 0 of a closed convex pointed cone C ⊂X if it satisfies the two following properties:

(i) T is positive, i.e., T (C )⊂ C .

(ii) T preserves the unit element e, i.e., T (e) = e.

A time invariant discrete time consensus system can be described by

xk+1 = T (xk), k ∈ N, (3.19)

The main concern of consensus theory is the convergence of the orbit xk to a consensus state, which
is represented by a scalar multiple of the unit element. The case when ‖T‖H < 1 or equivalently
‖T ?‖?H < 1 is of special interest; the following theorem shows that the iterates of T converge to a rank
one projector with a rate bounded by ‖T‖H .

Theorem 3.4 (Geometric convergence to consensus). Let T : X →X be a consensus operator with
respect to the unit element e. If ‖T‖H < 1 or equivalently ‖T ?‖?H < 1, then there is π ∈P(e) such
that for all x ∈X

‖T n(x)−〈π,x〉e‖T 6 (‖T‖H)
n‖x‖H ,

and for all µ ∈P(e)
‖(T ?)n(µ)−π‖?H 6 (‖T‖H)

n.

Proof. The intersection
∩n[m(T n(x)/e),M(T n(x)/e)]⊂ R

is nonempty (as a non-increasing intersection of nonempty compact sets), and since ‖T‖H < 1 and

ω(T n(x)/e)6 (‖T‖H)
n
ω(x/e),

this intersection must be reduced to a real number {c(x)} ⊂ R depending on x, i.e.,

c(x) = ∩
n
[m(T n(x)/e),M(T n(x)/e)] .

Thus for all n ∈ N,
−ω(T n(x)/e)e 6 T n(x)− c(x)e 6 ω(T n(x)/e)e.

Therefore by definition:

‖T n(x)− c(x)e‖T 6 ω(T n(x)/e).6 (‖T‖H)
n‖x‖H .

It is immediate that:
c(x)e = lim

n→∞
T n(x)
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from which we deduce that c : X → R is a continuous linear functional. Thus there is π ∈X ? such
that c(x) = 〈π,x〉. Besides it is immediate that 〈π,e〉= 1 and π ∈ C ? because

x ∈ C ⇒ c(x)e ∈ C ⇒ c(x)> 0⇒ 〈π,x〉> 0.

Therefore π ∈P(e). Finally for all µ ∈P(e) and all x ∈X we have

〈(T ?)n(µ)−π,x〉 = 〈µ,T n(x)−〈π,x〉e〉
6 ‖µ‖?T‖T n(x)−〈π,x〉e‖T

6 (‖T‖H)
n‖x‖H .

Hence
‖(T ?)n(µ)−π‖?H 6 (‖T‖H)

n.

A time-dependent consensus system is described by

xk+1 = Tk+1(xk), k ∈ N (3.20)

where {Tk : k > 1} is a sequence of consensus operators sharing a common unit element e ∈C 0. Then
if there is an integer p > 0 and a constant α < 1 such that for all i ∈ N

‖Ti+p . . .Ti+1‖H 6 α,

then the same lines of proof of Theorem 3.4 imply the existence of π ∈P(e) such that for all {xk}
satisfying (3.20),

‖xk−〈π,x0〉e‖T 6 α
b k

p c‖x0‖H , n ∈ N.

Moreover, if {Tk : k > 1} is a stationary ergodic random process, then the almost sure convergence of
the orbits of (3.20) to a consensus state can be deduced by showing that

E[log‖T1+p . . .T1‖H ]< 0

for some p > 0, see Bougerol [Bou93]. Hence, in consensus applications, a central issue is to compute
the operator norm ‖T‖H of a consensus operator T .

A direct application of Theorem 3.2 leads to following characterization of the operator norm.

Corollary 3.8. Let T : X →X be a consensus operator with respect to e. Then,

‖T‖H = ‖T ?‖?H = 1− inf
ν ,π∈extrP(e)

ν⊥π

inf
x∈[0,e]

〈π,T (x)〉+ 〈ν ,T (e− x)〉.

Proof. Since T (e) = e, we have:

sup
ν ,π∈extrP(e)

ν⊥π

sup
x∈[0,e]

〈ν−π,T (x)〉= sup
ν ,π∈extrP(e)

ν⊥π

sup
x∈[0,e]

1−〈π,T (x)〉−〈ν ,T (e− x)〉.
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3.7 Applications to classical linear consensus

In this section, we specialize the previous general results to the case of of the standard orthant
cone (X = Rn, C = Rn

+ and e = 1, Example 3.2). We recover the classical Dobrushin’s ergodicity
coefficient and some known convergence results of the consensus system.

A linear map T : Rn→ Rn given by

T (x) = Ax, x ∈ Rn

is a consensus operator if and only if A is a row stochastic matrix. The operator norm corresponds to
the contraction ratio of the matrix A with respect to the diameter ∆:

‖T‖H = τ(A) := sup
∆(x)6=0

∆(Ax)
∆(x)

,

and the dual operator norm corresponds to the Lipschitz constant of A′ with respect to the total varia-
tion distance on the space of probability measures:

‖T‖?H = δ (A) := sup
µ 6=ν∈P(1)

‖A′µ−A′ν‖1

‖µ−ν‖1

The value δ (A) is known as Dobrushin’s ergodicity coefficient of the Markov chain with transition
probability matrix A′, see [LPW09]. Specializing Corollary 3.8 to this case, we get

τ(A) = δ (A) = 1−min
i 6= j

min
I⊂{1,...,n}

(∑
k∈I

Aik +∑
k/∈I

A jk) .

The latter formula yields directly the following explicit form of Dobrushin’s ergodicity coefficient
[Dob56]:

τ(A) = δ (A) = 1−min
i 6= j

n

∑
s=1

min(Ais,A js). (3.21)

The above equality is a known result in the study of Markov chain. It is known that if τ(A)< 1, then
the Markov chain associated to A is ergodic [Sen91].

A (time-invariant) consensus system associated to the matrix A is described by:

xk+1 = Axk, k ∈ N . (3.22)

By Theorem 3.4, if τ(A) < 1, then the consensus system (3.22) converges to a multiple of 1 with an
exponential rate τ(A).

Remark 3.13. A simple classical situation in which τ(A) < 1 is when there is a Dœblin state, i.e.,
an element j ∈ {1, . . . ,n} such that Ai j > 0 holds for all i ∈ {1, . . . ,n}. Besides, a Dœblin state is
represented by a node connected to all other nodes in the graph associated to a matrix A. Based on
this observation, some graph connectivity conditions [VJAJ05, OT09, Mor05, AB09] characterizing
the exponential convergence of consensus systems can be derived directly from Dobrushin’s ergodicity
coefficient (3.21). As far as we know, such connection between Dobrushin’s ergodicity coefficient and
the convergence of consensus system has been firstly observed in [MDA05].
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Remark 3.14. For example, consider a time-variant linear consensus system:

xk+1 = Akxk, k ∈ N , (3.23)

where {Ak} is a sequence of stochastic matrices. Moreau [Mor05] showed that if all the non-zero
entries of the matrices {Ak} are bounded from below by a positive constant α > 0 and if there is
p ∈ N such that for all i ∈ N there is a node connected to all other nodes in the graph associated to
the matrix Ai+p . . .Ai+1, then the system 3.23 is globally uniformly convergent. These two conditions
imply exactly that there is a Dœblin state associated to the matrix Ai+p . . .Ai+1. The uniform bound α

is to have an upper bound on the contraction rate, more precisely,

τ(Ai+p . . .Ai+1)6 1−α, ∀i = 1,2, . . .

3.8 Applications to noncommutative consensus

In this section, we specialize the previous general results to a finite dimensional noncommutative
space (X = Sn, C = S+

n and e = In, Example 3.3).
A completely positive unital linear map Φ : Sn→Sn is characterized by a set of matrices {V1, . . . ,Vm}

satisfying

m

∑
i=1

V ∗i Vi = In (3.24)

such that the map Φ is given by:

Φ(X) =
m

∑
i=1

V ∗i XVi, ∀X ∈ Sn . (3.25)

The matrices {Vi} are called Kraus operators. The dual operator of Φ is given by:

Ψ(X) =
m

∑
i=1

ViXV ∗i , X ∈ Sn .

It is a completely positive and trace-preserving map, called Kraus map. The map Φ and Ψ represent
a purely quantum channel [SSR10, RKW11]. The map Φ acts between spaces of measures while the
adjoint map Ψ is trace-preserving and acts between spaces of states (density matrices). The operator
norm of Φ : Sn /RIn→ Sn /RIn is the contraction ratio with respect to the diameter of the spectrum:

‖Φ‖H = sup
X∈Sn

λmax(Φ(X))−λmin(Φ(X))

λmax(X)−λmin(X)
.

The operator norm of the adjoint map Ψ : P(In)→P(In) is the contraction ratio with respect to the
trace norm (the total variation distance):

‖Ψ‖?H = sup
ρ1,ρ2∈P(In)

‖Ψ(ρ1)−Ψ(ρ2)‖1

‖ρ1−ρ2‖1
.

The values ‖Φ‖H and ‖Ψ‖?H are respectively the noncommutative counterparts of τ(·) and δ (·).
Specializing Corollary 3.8 to the case of quantum operations, we obtain the noncommutative

version of Dobrushin’s ergodic coefficient.
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Corollary 3.9. Let Φ be a completely positive unital linear map defined in (3.25). Then,

‖Φ‖H = ‖Ψ‖?H = 1− min
u,v:u∗v=0

u∗u=v∗v=1

min
X=(x1,...,xn)

XX∗=In

n

∑
i=1

min{u∗Φ(xix∗i )u,v
∗
Φ(xix∗i )v} (3.26)

Proof. It can be easily checked that

extr[0, In] = {P ∈ Sn : P2 = P}.

Hence, Corollary 3.8 and Remark 3.9 yield:

‖Φ‖H = ‖Ψ‖?H = 1− min
u,v:u∗v=0

u∗u=v∗v=1

min
P2=P

u∗Φ(In−P)u+ v∗Φ(P)v

= 1− min
u,v:u∗v=0

u∗u=v∗v=1

min
X=(x1,...,xn)

XX∗=In

min
J⊂{1,...,n}∑i∈J

u∗Φ(xix∗i )u+∑
i/∈J

v∗Φ(xix∗i )v

from which (3.26) follows.

Remark 3.15. For the noncommutative case, it is not evident whether more effective characterization
of the contraction rate exists. Note that the dual operator norm was studied in quantum information
theory, see [RKW11] and references therein. They provided a Birkhoff type upper bound (Corollary
9 in [RKW11]):

‖Ψ‖∗H 6 tanh(diamΨ/4) .

The value diamΨ is not directly computable. This upper bound is equal to 1 if and only if diamΨ=∞,
which is satisfied if and only if there exist a pair of nonzero vectors u,v ∈ Cn such that:

span{Viu : 1 6 i 6 m} 6= span{Viv : 1 6 i 6 m}.

We next provide a much tighter, in fact necessary and sufficient, condition for the operator norm to be
1.

Corollary 3.10. The following conditions are equivalent:

1. ‖Φ‖H = ‖Ψ‖?H = 1.

2. There are nonzero vectors u,v ∈ Cn such that

〈Viu,Vjv〉= 0, ∀i, j ∈ {1, . . . ,m}.

3. There is a rank one matrix Y ⊂ Cn×n such that

trace(V ∗i VjY ) = 0, ∀i, j ∈ {1, · · · ,m}.

Proof. From Corollary 3.9 we know that ‖Φ‖H = 1 if and only if there exist an orthonormal basis
{x1, . . . ,xn} and two vectors u,v ∈ Cn of norm 1 such that

n

∑
i=1

min{
m

∑
j=1

u∗V ∗j xix∗i Vju,
m

∑
j=1

v∗V ∗j xix∗i Vjv}= 0 .
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This is equivalent to that for each i ∈ {1, . . . ,n}, either

x∗i Vju = 0, ∀ j = 1, . . . ,m

is true, or
x∗i Vjv = 0, ∀ j = 1, . . . ,m

is true. This is equivalent to
〈Viu,Vjv〉= 0, ∀i, j ∈ {1, . . . ,m} .

The equivalence between the second and the third condition is trivial by taking Y = vu∗.

3.8.1 Convergence condition of noncommutative consensus system

We consider a time-invariant noncommutative consensus system:

Xt+1 = Φ(Xt), Xt ∈ Sn, t = 1,2, . . . (3.27)

where Φ is a completely positive unital map. To study the convergence of such system, Sepulchre,
Sarlette and Rouchon [SSR10] proposed to study the contraction ratio

α := sup
X�0

dH(Φ(X), In)/dH(X , In) .

They applied Birkhoff’s contraction formula (Theorem 3.3) to give an upper bound on the contraction
ratio α:

α 6 tanh(diamΦ/4) .

The following theorem is a direct corollary of Nussbaum [Nus94].

Theorem 3.5. (Corollary of [Nus94, Thm2.3])

‖Φ‖H = lim
ε→0+

(
sup{dH(Φ(X), In)

dH(X , In)
: 0 < dH(X , In)6 ε}

)
,

By this theorem, it is clear that the contraction ratio used in [SSR10] is an upper bound of the
operator norm ‖Φ‖H :

‖Φ‖H 6 α .

We next provide an algebraic characterization of the global convergence of system (3.27). Let us
consider a sequence of matrix subspaces defined by:

H0 = span{In}, Hk+1 = span{V ∗i XVj : X ∈ Hk, i, j = 1, . . . ,m} ,k = 0,1, . . . , (3.28)

Lemma 3.11. There is k0 6 n2−1 such that

Hk0+s = Hk0 , ∀s ∈ N.

Proof. It follows from (3.24) that Hk+1 ⊇ Hk for all k ∈ N. Besides, if for some k0 ∈ N such that

Hk0+1 = Hk0 ,

then
Hk0+s = Hk0 , ∀s ∈ N.
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This property also implies that if for some k0 ∈ N

Hk0+1 6= Hk0 ,

then
Hk0−s+1 6= Hk0−s ,∀1 6 s 6 k0 .

Since the dimension of Hk can not exceed n2, the case

Hk0+1 6= Hk0 ,

can not happen more than n2 times.

For all k ∈ N, let Gk be the orthogonal complement of Hk. Then there is k0 6 n2−1 such that

Gk ⊇ Gk+1, ∀k ∈ N; Gk0 = Gk0+s, ∀s ∈ N (3.29)

Theorem 3.6. The following conditions are equivalent:

(1) There exists k such that ‖Φk‖H < 1.

(2) Every orbit of the system (3.27) converges to an equilibrium co-linear to In.

(3) The subspace ∩kGk does not contain a rank one matrix.

(4) There exists k0 6 n2−1 such that ‖Φk0‖H < 1.

Proof. (1)⇒ (2): We apply Theorem 3.4 to the application Φk.
(2)⇒ (1): Hilbert’s seminorm defines a norm in the orthogonal space to the identity matrix In. It

follows from Gelfand’s formula that

lim
k→+∞

‖Φk‖1/k
H = max{|λ | : Φ(X +X∗) = λX +λ

∗X∗,X ⊥ In}

Thus if (1) is not true, then there is X ∈ Sn and λ ∈ C such that |λ |= 1, X ⊥ I and Φ(X) = λX . The
system is therefore not globally convergent to an equilibrium co-linear to In.

(3)⇔ (1): Note that for all k ∈ N,

Φ
k(X) = ∑

i1,...,ik

V ∗ik . . .V
∗
i1 XVi1 . . .Vik .

By Corollary 3.10, we know that ‖Φk‖H = 1 if and only if the subspace Gk contains a a rank one
matrix. Therefore , ‖Φk‖H = 1 for all k ∈ N if and only if the subspace ∩kGk contains a rank one
matrix.

(3)⇒ (4): By (3.29), there is k0 6 n2−1 such that Gk0 = ∩kGk. It follows that if (3) is true then
there is k0 6 n2− 1 such that Gk0 does not contain a rank one matrix. Then by Corollary 3.10 we
deduce that ‖Φk0‖< 1 if (3) is true.

Remark 3.16. A sufficient condition for the global convergence of the system (3.27) would be that
there is k0 6 n2−1 such that

Hk0 = Cn×n.

Such condition can be checked in polynomial time.
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3.8.2 Irreducibility, primitivity and a complexity result

In this subsection, we first recall the definition of irreducibility and primitivity for the completely
positive unital map Φ. Then we show that the global convergence of system (3.27) is equivalent to the
primitivity of Φ if Φ is irreducible.

We denote by Sk(Φ) the linear space spanned by all the products of k Kraus operators {V1, . . . ,Vm},
and by Dk(Φ) the linear space spanned by all the products of at most k Kraus operators. We denote
by A (Φ) = ∪k>1Dk(Φ) the algebra generated by the Kraus operators {V1, . . . ,Vm}.

Lemma 3.12. There is p 6 n2 such that A (Φ) = Dp(Φ).

Proof. We know that

Dk+1 ⊃ Dk∪{ViX : X ∈ Dk, i = 1, . . . ,m} ,k = 1,2, . . . ,

The remaining part of the proof is identical to that of Lemma 3.11.

We next give some definitions analogous to the standard nonnegative matrix case. Usually, they
are given for the Kraus map Ψ. It is equivalent to define them for the unital map Φ.

Definition 3.3 (Irreducibility [Far96]). The map Φ is irreducible if there is no face of S+
n invariant by

Φ, where a face F of S+
n is a closed cone strictly contained in S+

n such that if P ∈F then [0,P] ∈F .

Definition 3.4 (Strict positivity). The map Φ is strictly positive if for all X < 0, Φ(X)� 0.

Definition 3.5 (Primitivity [SPGWC10]). The map Φ is primitive if there is p > 0 such that Φp is
strictly positive.

Proposition 3.13. The map Φ is irreducible if and only if the algebra A (Φ) is the whole n×n matrix
algebra.

Proof. It was shown [Far96, Theorem 2] that the reducibility is equivalent to the existence of a non-
trivial (other than {0} or Cn) common invariant subspace of all {Vi}. By Burnside’s theorem on matrix
algebra (see [LR04]), the latter property holds if and only if the algebra A (Φ) is not the whole matrix
space.

The following proposition is a noncommutative analogue of the property that a irreducible matrix
is primitive if and only if it is aperiodic.

Proposition 3.14. If Φ is irreducible, then the system (3.27) is globally convergent if and only if Φ is
primitive.

Proof. If Φ is primitive then there is k such that the unital map Φk is strictly positive. By Corol-
lary 3.9, this implies that ‖Φk‖H < 1. Then we use Theorem 3.6 to obtain the global convergence of
system (3.27).

Inversely, if there is k > 0 such that α = ‖Φk‖H < 1 then by Theorem 3.4, there is a unique
invariant density matrix Π ∈P(In) of Ψk such that for all P ∈P(In),

‖Ψnk(P)−Π‖?H 6 α
n, ∀n > 0.

Since
Ψ

k(Π) = Π,
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we know that
Ψ

k(Ψ(Π)) = Ψ(Π) .

Since Ψk has only one invariant matrix, it follows that Π is also the unique invariant density matrix of
Ψ. We deduce that Π is of full rank by the irreducibility of Ψ. Again by Theorem 3.4, for all x ∈ Cn

with norm equal to 1,
‖Φnk(xx∗)− (x∗Πx)In‖T 6 α

n.

That is,
−α

nIn 6 Φ
nk(xx∗)− (x∗Πx)In 6 α

nIn

Since Π is a density matrix of full rank, there is n0 such that for all x ∈ Cn,

Φ
n0k(xx∗)<

(
λmin(Π)−α

n0
)
In > 0.

Thus Φ is primitive.

We shall use a characterization of primitivity given in [SPGWC10].

Theorem 3.7 ([SPGWC10]). The unital completely positive map Φ is primitive if and only if there is
q 6 (n2−m+1)n2 such that the space Sq(Φ) is of dimension n2.

Corollary 3.15. Let Φ be a unital completely positive map determined by rational Kraus operators.
Then checking whether Φ is irreducible can be done in polynomial time. If Φ is irreducible, then
checking whether the system (3.27) is globally convergent can be done in polynomial time.

Proof. To decide if Φ is irreducible, we shall compute the increasing sequence of matrix subspaces
Ds(Φ), s = 1,2, . . . , and look for the first integer k 6 n2 such that Dk(Φ) = Dk+1(Φ). For a given s,
we shall represent Ds(Φ) by a basis, i.e.,

Ds(Φ) = span{M1, · · · ,Ml}

where Mi ∈ Cn×n are linearly independent matrices. Recall that extracting a basis from a family of
rational vectors can be done in polynomial time in the bit model. It follows that the number of bits
needed to code the basis elements remain polynomially bounded in the length of the input. Hence, a
basis representation of the algebra A (Φ) can be obtained in polynomial time.

Suppose now that Φ is irreducible. Then by Proposition 3.14, deciding if the system (3.27) is
globally convergent reduces to checking whether Φ is primitive. By Theorem 3.7, Φ is primitive
if and only if Sq(Φ) is of dimension n2 for some q 6 (n2−m+ 1)n2. Arguing as above, a basis
representation of Sq(Φ) can be computed in polynomial time.

Remark 3.17. A natural method to decide whether Φk is a contraction for k large enough, would be
to check whether 1 is the only eigenvalue of Φ on the unit circle and if it is algebraically simple.
However, doing so in exact arithmetic appear to be not so tractable, whereas Corollary 3.15 leads to
a polynomial algorithm in the bit model, when the map Φ is irreducible. When Φ is reducible, we do
not know the algorithmic complexity of checking the conditions of Theorem 3.6. The application to
noncommutative consensus over infinite dimensional Hilbert spaces also remains to be developed.
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3.8.3 NP-hardness of deciding the strict positivity of a Kraus map

We have seen in Section 3.8.1 that deciding if ‖Φ‖H < 1 and if the noncommutative consensus
system 3.27 is globally convergent can both be reduced to finding a rank one matrix in certain matrix
subspaces (Corollary 3.10 and Theorem 3.6). In this section, we study the complexity of deciding if
a matrix subspace contains a rank one matrix. Our main result shows that deciding if there is a rank
one matrix orthogonal to a given subspace of Cn×n is NP-hard, even if this space is given as the linear
span of the matrices arising in the representation of a Kraus map. Formally, we consider the following
problem.

Problem 3.1 (Rank one matrix). Input: integers n,m, and matrices V1, . . . ,Vm ⊂ Cn×n with rational
entries, satisfying

m

∑
i=1

V ∗i Vi = In .

Question: is there a rank one matrix in the orthogonal complement of the subspace of Cn×n spanned
by {V1, . . . ,Vm}?

Theorem 3.8. The 3SAT problem is reducible in polynomial time to Problem 3.1.

The proof is based on the following remark. An instance of 3SAT problem with N Boolean
variables X1, . . . ,XN and M clauses can be coded by a system of polynomial equations in N complex
variables x1, . . . ,xN , {

(1+ pixk1
i
)(1+qixk2

i
)(1+ rixk3

i
) = 0, i = 1, · · · ,M

x2
i = 1, i = 1, · · · ,N

(3.30)

where k1
i ,k

2
i ,k

3
i ∈ {1, . . . ,N}, pi,qi,ri ∈ {±1} and k1

i 6= k2
i 6= k3

i for all 1 6 i 6 M. The Boolean
variable Xi is true if xi = 1 and false if xi =−1. For instance, the clause X1∨¬X2∨X4 corresponds to
the polynomial (1−x1)(1+x2)(1−x4) and the clause ¬X6∨¬X1∨X2 corresponds to the polynomial
(1+ x6)(1+ x1)(1− x2).

Therefore, to prove Theorem 3.8, it is sufficient to construct in polynomial time a set of Kraus
operators {V1, . . . ,Vm} ⊂ Cn satisfying

m

∑
i=1

V ∗i Vi = In

such that there is a solution to (3.30) if and only if there are two nonzero vectors x,y ∈ Cn such that

x∗Viy = 0, ∀i = 1, . . . ,m .

We begin by the following basic lemma.

Lemma 3.16. Let ak(·, ·) : Cn×Cn → C, 1 6 k 6 M be a finite set of bilinear forms. There is a
solution x ∈ Cn to the system

ak(x,x) = 0, 1 6 k 6 M

if and only if there is a pair of non-zero vectors x = (xi)16i6n,y = (yi)16i6n ∈Cn satisfying the system{
ak(x,y) = 0, 1 6 k 6 M
xiy j− x jyi = 0, 1 6 i < j 6 n .

(3.31)
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It is sufficient to note that the second equations require that x be proportional to y.
The next lemma shows that system (3.30) can be transformed into a set of homogeneous equations.

Lemma 3.17. Let N,M ∈ N. Let (k1
i )i,(k2

i )i,(k3
i )i be three sequences of integers in {1, · · · ,N}. Let

(pi)i,(qi)i,(ri)i be three sequences of real numbers. Consider the following system of equations on
the variables (xi)16i6N:{

(1+ pixk1
i
)(1+qixk2

i
)(1+ rixk3

i
) = 0, i = 1, · · · ,M

x2
i = 1, i = 1, · · · ,N

(3.32)

The system (3.32) has a solution x∈CN if and only if there is a pair of nonzero vectors x=(xi)06i6N+2M,y=
(yi)06i6N+2M ∈ CN+2M+1 satisfying the following system:

(x0 + pixk1
i
+qixk2

i
+ piqixN+i)yN+M+i = 0, i = 1, · · · ,M

xk1
i
yk2

i
− x0yN+i = 0, i = 1, · · · ,M

(x0 + rixk3
i
− xN+M+i)y j = 0, i = 1, · · · ,M, j = 0, . . . ,N +2M

xiyi− x0y0 = 0, i = 1, · · · ,N +M
xiy j− x jyi = 0, 0 6 i < j 6 N +2M

(3.33)

Proof. A simple rewriting of the system (3.32) is:{
(1+ pixk1

i
+qixk2

i
+ piqixk1

i
xk2

i
)(1+ rixk3

i
) = 0, i = 1, · · · ,M

x2
i = 1, i = 1, · · · ,N

(3.34)

By introducing 2M extra variables, denoted by {xN+i}16i62M, to replace the variables {xk1
i
xk2

i
,1+

rixk3
i
}i6M, we rewrite the system (3.34) as:

(1+ pixk1
i
+qixk2

i
+ piqixN+i)xN+M+i = 0, i = 1, · · · ,M

xk1
i
xk2

i
− xN+i = 0, i = 1, · · · ,M

1+ rixk3
i
− xN+M+i = 0, i = 1, · · · ,M

x2
i = 1, i = 1, · · · ,N +M

(3.35)

We next add an extra variable x0 to replace the affine term 1 to construct a system of homogeneous
polynomial equations of degree 2:

(x0 + pixk1
i
+qixk2

i
+ piqixN+i)xN+M+i = 0, i = 1, · · · ,M

xk1
i
xk2

i
− x0xN+i = 0, i = 1, · · · ,M

(x0 + rixk3
i
− xN+M+i)x j = 0, i = 1, · · · ,M, j = 0, . . . ,N +2M

x2
i − x2

0 = 0, i = 1, · · · ,N +M

(3.36)

Then that there is a solution to (3.35) if and only if there is a solution x = (xi)06i6N+2M to (3.36) such
that x0 6= 0. By Lemma 3.16, we know that the system (3.36) has a solution x = (xi)06i6N+2M with
x0 6= 0 if and only if there is a pair of non-null vectors x = (xi)06i6N+2M and y = (yi)06i6N+2M with
x0y0 6= 0 satisfying (3.33).

So far, we proved that there is a solution to (3.32) if and only if there is a pair of nonzero vectors
x,y ∈ CN+2M+1 satisfying (3.33) such that x0y0 6= 0. We next prove by contradiction that all nonzero
pair of solutions to (3.33) satisfy x0y0 6= 0.

Let x = (xi)06i6N+2M and y = (yi)06i6N+2M be a pair of nonzero solutions to (3.33) such that
x0y0 = 0. Since by the last constraint in (3.33), x and y are proportional to each other, we know that
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x0 = y0 = 0. Suppose that there is 1 6 i0 6 N +M such that xi0 6= 0, then by the fourth equation
of (3.33) we know that:

xi0yi0 = 0,

thus yi0 = 0. This implies that y is a zero vector because x and y are proportional to each other. Hence
xi = 0 for all i 6 N +M. Now we apply this condition to the third equation in (3.33) to obtain:

xN+M+iy j = 0, i = 1, . . . ,M, j = 0, . . . ,N +2M .

If x is a nonzero vector, necessarily there is i0 such that xN+M+i0 6= 0, in that case y is a zero vector.
Therefore we deduce that for all nonzero solution of (3.33), it is necessary that x0y0 6= 0.

Lemma 3.18. Consider the system (3.32) in Lemma 3.17. We suppose in addition that k1
i 6= k2

i for all
1 6 i 6 M and that (pi)i,(qi)i,(ri)i are sequences of numbers in {±1}. Let n = N+2M+1. There are
a finite number of matrices {Vi}16i6m ⊂ C n×n with entries in {0,±1,±1

3} such that the system (3.32)
has a solution if and only if there is a rank one matrix in the matrix subspace:

B := {X ∈ Cn×n : trace(ViX) = 0, ∀i = 1, . . . ,m}.

Besides, the integer m can be bounded by a polynomial en N and M and the matrices {Vi}16i6m

satisfy:
m

∑
i=1

V ∗i Vi = (2N +7M+4)2In

Proof. We denote by {ei}06i6N+2M the standard basis vectors in CN+2M+1. We know from Lemma 3.17
that the system (3.32) admits a solution if and only if there is a pair of non-null vectors x,y ∈ Cn sat-
isfying 

xT (e0 + piek1
i
+qiek2

i
+ piqieN+i)eT

N+M+iy = 0, i = 1, · · · ,M
xT (ek1

i
eT

k2
i
− e0eT

N+i)y = 0, i = 1, · · · ,M
xT (e0 + riek3

i
− eN+M+i)eT

j y = 0, i = 1, · · · ,M, j = 0, . . . ,N +2M
xT (eieT

i − e0eT
0 )y = 0, i = 1, · · · ,N +M

xT (eieT
j − e jeT

i )y = 0, 0 6 i < j 6 N +2M

(3.37)

The system (3.37) has 3N + 8M + 1 bilinear equations. Let m0 = 3N + 8M + 1 and denote by
{Ai}16i6m0 the matrices corresponding to the m0 bilinear forms in (3.37). Recall that (pi)i,(qi)i,(ri)i

are sequences with numbers in {1,−1}. Therefore we transformed the system (3.32) to finding a rank
one matrix in the matrix subspace given by:

B0 := {X ∈ Cn×n : trace(AiX) = 0, ∀i = 1, . . . ,m0}.

where Ai have entries in {0,1,−1}. We check the five lines in (3.37) and obtain that

m0

∑
i=1

A∗i Ai =
M

∑
i=1

4eN+M+ieT
N+M+i +

M

∑
i=1

(ek2
i
eT

k2
i
+ eN+ieT

N+i)

+
M

∑
i=1

N+2M

∑
j=0

3e jeT
j +

N+M

∑
i=1

(eieT
i + e0eT

0 )

+∑
i< j

(e jeT
j + eieT

i )
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Therefore we have that

m0

∑
i=1

A∗i Ai =


k1

k2
. . .

kn


where ki 6 2N +7M+4 for all 1 6 i 6 n. Remark that due to the third line of equations in (3.37), for
each 0 6 j 6 N +2M, there is an integer 1 6 n j 6 m0 such that

A∗n j
An j = 3e jeT

j .

By letting B j = An j/3 we get that:
3B∗jB j = e jeT

j .

For all 1 6 j 6 n let l j = (2N +7M+4)2−n j. Let m = m0 +3∑
n
j=1 l j and {Vi}16i6m be the sequence

of matrices containing {Ai}16i6m0 and 3l j times the matrix B j for all 1 6 j 6 n. Then we have
m

∑
i=1

V ∗i Vi =
m0

∑
i=1

A∗i Ai +
n

∑
j=1

3l jB∗jB j = (2N +7M+4)2In.

Since for all j, B j is co-linear to a matrix in {Ai}i6m0 . The matrix subspace given by

B := {X ∈ Cn×n : trace(ViX) = 0, ∀i = 1, . . . ,m}

is equal to B0. Thus the system (3.32) admits a solution if and only if there is a rank one matrix in
B.

We now give a proof for Theorem 3.8.

Proof. Let k1
i ,k

2
i ,k

3
i ∈ {1, . . . ,N}, pi,qi,ri ∈ {±1} and k1

i 6= k2
i 6= k3

i for all 1 6 i 6 M. Let{
(1+ pixk1

i
)(1+qixk2

i
)(1+ rixk3

i
) = 0, i = 1, · · · ,M

x2
i = 1, i = 1, · · · ,N

(3.38)

be a system corresponding to an instance of 3SAT problem with N Boolean variables and M clauses.
By Lemma 3.18, we can construct in polynomial time (with respect to N and M) a sequence of n×n
matrices {Vi}16i6m with entries in {0,±1

l ,±
1
3l} where l = (2N+7M+4) such that there is a solution

to (3.38) if and only if there is a rank one matrix in the subspace

B := {X ∈ Cn×n : trace(ViX) = 0, i = 1, . . . ,m}.

Besides, the matrices {Vi}16i6m satisfy
m

∑
i=1

V ∗i Vi = In.

Lemma 3.19. A completely positive map Φ : S+
n → S+

n given by:

Φ(X) =
m

∑
i=1

V ∗i YVi (3.39)

is strictly positive if and only if there do not exist two nonzero vectors x,y ∈ Cn such that

x∗Viy = 0, ∀i = 1, . . . ,m.
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Proof. By definition, the map Φ is strictly positive if and only if for all nonzero vector x ∈ Cn, the
matrix

Φ(xx∗) =
m

∑
i=1

V ∗i xx∗Vi

is positive definite. This is equivalent to that for all nonzero vector y ∈ Cn,

m

∑
i=1

y∗V ∗i xx∗Viy =
n

∑
i=1

(x∗Viy)2 > 0.

Therefore Φ is not strictly positive if and only if we can find nonzero vectors x,y ∈ Cn such that

x∗Viy = 0, ∀i = 1, . . . ,m.

Then we get a corollary from Theorem 3.8 and Lemma 3.19.

Corollary 3.20. Deciding whether a completely positive unital map Φ is strictly positive is NP-hard.

Remark 3.18. Corollary 3.10 shows that ‖Φ‖H = 1 is equivalent to the existence of two vectors u,v ∈
Cn of norm 1 such that

〈Viu,Vjv〉= 0, ∀i, j ∈ {1, . . . ,m} .

This condition is known to be equivalent to the existence of two pure distinguishable pure states which
the quantum channel Φ takes into two orthogonal subspaces, see [MA05]. This distinguishability of
two quantum states is a fundamental property of quantum systems [NC00]. Beigi and Shor [BS08]
defined the quantum analogue of the classical clique problem in a graph. Namely, they denote by
α(Φ) the maximum number of distinguishable pure states in the quantum channel Φ. It is immediate
that ‖Φ‖H = 1 if and only if α(Φ)> 2. We refer to [BS08] for more information on complexity issues
concerning the quantum clique problem.

3.8.4 Complexity of determining the global convergence of a noncommutative
consensus system: an open question

We showed in Corollary 3.15 that deciding whether a noncommutative consensus system is glob-
ally convergent can be done in polynomial time if the quantum map is irreducible. However the
complexity of determining the global convergence of a noncommutative consensus system is left un-
known. We recall that by Theorem 3.6, this is equivalent to the following decision problem:

Problem 3.2. Input: integers n,m, and matrices V1, . . . ,Vm ⊂ Cn×n with rational entries, satisfying

m

∑
i=1

V ∗i Vi = In .

Question: Let H be the smallest subspace containing the identity matrix and satisfying:

In ∈ H, V ∗i XVj ∈ H ∀X ∈ H .

Is there a rank one matrix in the orthogonal complement of the subspace H?

Indeed, the subspace H considered in the latter question corresponds to the union of the subspaces
∪kHk defined in (3.28).
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CHAPTER 4
The contraction rate in Hilbert's

projective metric of �ows on cones

In this chapter, we apply the formula of the contraction ratio of linear maps in Hilbert’s seminorm,
obtained in the previous chapter, to finite dimensional nonlinear flows. In other words, we deal with
the continuous time analogue of the results of the previous chapter. We first deduce a characterization
formula for the contraction rate in Hilbert’s seminorm of nonlinear flows. Our characterization leads to
an explicitly calculable formula in Rn equipped with the standard partial order. In particular, we obtain
an explicit contraction rate bound for a class of nonlinear consensus protocols. Using Nussbaum’s
Finsler approach, we also derive from the formula obtained in the previous chapter a characterization
of the contraction rate of nonlinear maps in Hilbert’s projective metric. We apply the general formula
to a nonlinear matrix differential equation and obtain an explicit contraction rate bound in Hilbert’s
projective metric.

This chapter is part of the preprint [GQ12b].

4.1 Introduction

In this chapter, we consider a finite dimensional vector space X , a closed pointed convex cone
C ⊂X with interior C0 and a distinguished element e ∈ C0. Let D ⊂X be an open set and φ :
D →X be a continuously differentiable application. Since φ is locally Lipschitz, we know that for
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all x0 ∈D , there is a maximal interval J(x0) such that a unique solution x(·;x0) : J(x0)→D of

ẋ(t) = φ(x(t)), x(0) = x0 (4.1)

exists. Recall that the flow associated to (4.1) is an application M·(·) : R×D →D defined by:

Mt(x0) = x(t;x0), t ∈ J(x0).

The flow M·(·) may not be everywhere defined on R×D . Since φ is continuously differentiable, the
flow is differentiable with respect to the state variable. We denote by DMt(x) the derivative of the flow
M with respect to the state variable at point (t,x). Recall that

˙DMt(x)z = Dφ(Mt(x))(DMt(x)z), t ∈ J(x),z ∈X .

Let U ⊂D be a convex open set. For x0 ∈U define:

tU(x0) := sup{t0 6 J(x0) : x(t;x0) ∈U, ∀t ∈ [0, t0)}

the time when the solution of (4.1) leaves U .
Consider a continuously differentiable map φ : X →X such that

φ(x+λe) = φ(x), ∀λ ∈ R,x ∈X .

Then the flow is additively homogeneous with respect to e, i.e.,

Mt(x+λe) = Mt(x)+λe, λ ∈ R,x ∈X , t ∈ J(x) .

Our first main result concerns the optimal contraction rate of additively homogeneous flows in Hilbert’s
seminorm. More precisely, the latter contraction rate can be formulated as:

α(U) := sup{β ∈ R : ‖Mt(x)−Mt(y)‖H 6 e−β t‖x− y‖H ,∀x,y ∈U, t 6 tU(x)∧ tU(y)} .

We apply the characterization of the contraction ratio of linear maps in Hilbert’s seminorm in Theo-
rem 3.2 to obtain the following characterization (Theorem 4.1):

α(U) = inf
x∈U

inf
ν ,π∈extrP(e)

inf
z∈extr([0,e])

〈ν ,z〉+〈π,e−z〉=0

〈ν ,Dφ(x)z〉+ 〈π,Dφ(x)(e− z)〉.

The notations are already introduced in Chapter 3. We apply the latter formula to nonlinear differential
consensus system and deduce explicit contraction rates for some consensus systems studied in [SM03,
Mor05], see Section 4.5.1 and 4.5.2.

Next suppose that φ is defined on the interior of the cone C0 and positively homogeneous:

φ(λx) = λφ(x) ,∀λ > 0,x ∈ C0 .

Such condition implies that the flow is also positively homogeneous, i.e.,

Mt(λx) = λMt(x), t ∈ J(x) .

Let U ⊂ C0 be a convex open set. The second object of this chapter is to characterize the the optimal
contraction rate on U in Hilbert’s projective metric, that is,

κ(U) := sup{α ∈ R : dH(Mt(x1),Mt(x2))6 e−αtdH(x1,x2),∀x1,x2 ∈U, t 6 tU(x1)∧ tU(x2)}.
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Our second main result shows that (Theorem 4.3):

κ(U) = inf
x∈U

inf
z∈[0,x]

inf
ν ,π∈P(x)

〈π,z〉+〈ν ,x−z〉=0

〈π,Dφ(x)z〉+ 〈ν ,Dφ(x)(x− z)〉 . (4.2)

To obtain formula (4.2), we apply Nussbaum’s characterization of the contraction ratio of nonlinear
maps in Hilbert’s projective metric [Nus94, Coro 2.1] and our formula of the contraction ratio of linear
maps in Hilbert’s seminorm (Theorem 3.2).

For applications, we specialize the general formulas respectively to Rn equipped with the standard
partial order (Section 4.5) and to the space of Hermitian matrices equipped with the Loewner order
(Section 4.6). In particular, we obtain an explicit contraction rate bound for a class of nonlinear
consensus protocols (Corollary 4.5).

4.2 Contraction rate of linear �ows in Hilbert's seminorm

In this section, we consider the case when φ : X →X is a linear application. The set of linear
transformations on X is denoted by End(X ) and I : X →X denotes the identity transformation.
Let L ∈ End(X ) such that L(e) = 0. The next proposition characterizes the contraction rate of the
flow associated to the linear differential equation

ẋ = L(x),

with respect to Hilbert’s seminorm.

Proposition 4.1. Let L ∈ End(X ) be a linear transformation from X to X such that L(e) = 0. The
optimal constant α such that

‖exp(tL)x‖H 6 e−αt‖x‖H , ∀t > 0,x ∈X

can be characterized by:

h(L) := inf
ν ,π∈extrP(e)

inf
x∈extr([0,e])

〈ν ,x〉+〈π,e−x〉=0

〈ν ,L(x)〉+ 〈π,L(e− x)〉. (4.3)

Proof. We define a functional on End(X ) by:

F(W ) = sup
ν ,π∈P(e)

sup
x∈[0,e]

〈π−ν ,W (x)〉, ∀W ∈ End(X ) .

By Theorem 3.2, the optimal constant α is:

α =− lim
ε→0+

ε
−1(‖exp(εL)‖H −1)

=− lim
ε→0+

ε
−1(F(exp(εL))−F(I)) . (4.4)

Note that
F = sup

ν ,π∈P(e)
sup

x∈[0,e]
Fν ,π,x

where Fν ,π,x : End(X )→ R is defined by:

Fν ,π,x(W ) = 〈π−ν ,W (x)〉, ∀W ∈ End(X ) .
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Since the function Fν ,π,x is continuously differentiable on End(X ) and the functions Fν ,π,x(W ) and
DFν ,π,x(W ) are jointly continuous on (ν ,π,x,W ), we know that F : End(X )→R defines a subsmooth
function (see Appendix A). The limit in (4.4) coincides with the one-side directional derivative of F at
point I in the direction L. Hence, by the formula of the one-side directional derivative of a subsmooth
function (A.3), we get:

F(I;L) = sup
ν ,π,x∈T (I)

〈π−ν ,L(x)〉

where
T (I) = argmax{Fν ,π,x(I) : x ∈ [0,e],ν ,π ∈P(e)}.

Hence,
α =−F(I;L)

=− sup
ν ,π∈P(e)

sup
x∈[0,e]
〈π−ν ,x〉=1

〈π−ν ,L(x)〉

= inf
ν ,π∈P(e)

inf
x∈[0,e]

〈ν ,x〉+〈π,e−x〉=0

〈ν ,L(x)〉+ 〈π,L(e− x)〉.

Since X is finite dimensional, the sets P(e) and [0,e] are both compact, and they are the convex hull
of their extreme points. Henceforth, arguing as in Remark 3.10, we can replace P(e) and [0,e] by
extrP(e) and extr([0,e]), respectively.

We now state the analogous result to Proposition 4.1, which applies to time dependent linear flows.
Let t0 > 0 and L·(·) : [0, t0)×X →X be a continuous application linear in the second variable such
that Lt(e) = 0 for all t ∈ [0, t0). We denote by U(s, t) the evolution operator of the following linear
time-varying differential equation:

ẋ(t) = Lt(x), t ∈ [0, t0).

Then a slight modification of the proof of Proposition 4.1 leads to the following result.

Proposition 4.2. The optimal constant α such that

‖U(s, t)x‖H 6 e−α(t−s)‖x‖H , ∀s, t ∈ [0, t0),x ∈X .

can be characterized by:

inf
t∈[0,t0)

h(Lt) = inf
t∈[0,t0)

inf
ν ,π∈extrP(e)

inf
x∈extr([0,e])

〈ν ,x〉+〈π,e−x〉=0

〈ν ,Lt(x)〉+ 〈π,Lt(e− x)〉. (4.5)

4.3 Contraction rate of nonlinear �ows in Hilbert's seminorm

Suppose that the dynamics φ : X →X satisfy

φ(x+λe) = φ(x), ∀λ ∈ R,x ∈X . (4.6)

It follows that:

Dφ(x)e = 0, ∀x ∈X . (4.7)
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We denote by M the flow associated to the differential equation (see Section 4.1 for notations):

ẋ = φ(x). (4.8)

By uniqueness of the solution, it is clear that for all x0 ∈X and λ ∈ R,

Mt(x0 +λe) = Mt(x0)+λe, t ∈ J(x0). (4.9)

Let U be a convex open set. In this section we characterize the contraction rate of the flow associated
to φ on U with respect to Hilbert’s seminorm:

α(U) := sup{β ∈ R : ‖Mt(x)−Mt(y)‖H 6 e−β t‖x− y‖H ,∀x,y ∈U, t 6 tU(x)∧ tU(y)}. (4.10)

Theorem 4.1. Let φ satisfy (4.6) and U ⊂X be a convex open set. We have

α(U) = inf
x∈U

h(Dφ(x))

where h is defined in (4.3).

Proof. Denote
β = inf

x∈U
h(Dφ(x)).

For any x ∈U , define:
Lt = Dφ(Mt(x)), t ∈ [0, tU(x)).

Then by (4.7) we see that
Lt(e) = 0, t ∈ [0, tU(x)).

Let any z ∈ X . Then DMt(x)z : t ∈ [0, tU(x)) is the solution of the following linear time-varying
differential equation: {

ẋ = Lt(x), t ∈ [0, tU(x)),
x(0) = z.

By Proposition 4.2, it is immediate that:

ω(DMt(x)z/e)6 e−β t
ω(z/e), t ∈ [0, tU(x)),z ∈X . (4.11)

Let x,y ∈U . Denote γ(s) = sx+(1− s)y : s ∈ [0,1] and let any

0 < h < min{tU(γ(s)) : s ∈ [0,1]} .

Then by applying (4.11) to every x = γ(s) we get:

ω(Mh(x)−Mh(y)/e)6
∫ 1

0
ω(DMh(γ(s))(x− y)/e)ds 6 e−βh

ω(x− y/e).

Therefore, for all x,y ∈U ,

limsup
h→0+

‖Mh(x)−Mh(y)‖H

h
6−β‖x− y‖H .

We deduce that for all x,y ∈U and t < tU(x)∧ tU(y),

limsup
h→0+

‖Mt+h(x)−Mt+h(y)‖H

h
6−β‖Mt(x)−Mt(y)‖H .



94 Chapter 4. The contraction rate in Hilbert's projective metric of �ows on cones

Therefore,
‖Mt(x)−Mt(y)‖H 6 e−β t‖x− y‖H , t < tU(x)∧ tU(y).

This implies that
α(U)> β .

Inversely, for all x ∈U , there is t0 > 0 and ε0 > 0 such that for all h 6 t0, 0 < ε 6 ε0 and z ∈X

‖Mh(x+ εz)−Mh(x)‖H 6 e−α(U)h‖εz‖H .

Therefore,

‖DMh(x)(z)‖H = ‖ lim
ε→0+

Mh(x+ εz)−Mh(x)
ε

‖H

= lim
ε→0+

‖Mh(x+ εz)−Mh(x)‖H

ε
6 e−α(U)h‖z‖H .

Recall from (4.9) that:
DMh(x)e = e .

Hence by Theorem 3.2,

sup
z
‖DMh(x)(z)‖H/‖z‖H = ‖DMh(x)‖H = sup

ν ,π∈P(e)
sup

z∈[0,e]
〈ν−π,DMh(x)z〉 .

Hence for all h 6 t0,
sup

ν ,π∈P(e)
sup

z∈[0,e]
〈ν−π,DMh(x)z〉6 e−α(U)h.

It is then immediate that for h 6 t0,

sup
ν ,π∈extrP(e)

sup
z∈extr([0,e])

〈ν ,z〉+〈π,e−z〉=0

−〈ν ,DMh(x)(e− z)〉−〈π,DMh(x)z〉6 e−α(U)h−1.

Dividing the two sides by h and passing to the limit as h→ 0 we get:

−h(Dφ(x))6−α(U).

Therefore β > α(U).

4.4 Contraction rate of nonlinear �ows in Hilbert's projective

metric

In this section, we apply Theorem 3.2 to determine the contraction rate of nonlinear flows in
Hilbert’s projective metric. Let φ : C 0→X be a continuously differentiable function defined on the
interior of the cone such that

φ(λx) = λφ(x) ,∀λ > 0,x ∈ C 0 .

We denote by M the flow associated to the differential equation (see Section 4.1 for notations):

ẋ = φ(x). (4.12)
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By uniqueness of the solution, it is clear that for all x ∈ C 0,

Mt(λx) = λMt(x), t ∈ J(x). (4.13)

Let U ⊂C 0 be a convex open set. Define the optimal contraction rate of the flow in Hilbert’s projective
metric on U by:

κ(U) := sup{α ∈ R : dH(Mt(x1),Mt(x2))6 e−αtdH(x1,x2),∀x1,x2 ∈U, t 6 tU(x1)∧ tU(x2)}.
(4.14)

For x ∈ C 0, define:

c(x) := inf
z∈[0,x]

inf
ν ,π∈P(x)

〈π,z〉+〈ν ,x−z〉=0

〈π,Dφ(x)z〉+ 〈ν ,Dφ(x)(x− z)〉 (4.15)

Arguing as in the proof of Proposition 4.1, we get

c(x) = inf
z∈extr[0,x]

inf
ν ,π∈extrP(x)
〈π,z〉+〈ν ,x−z〉=0

〈π,Dφ(x)z〉+ 〈ν ,Dφ(x)(x− z)〉 (4.16)

Proposition 4.3. For all x ∈ C0,

c(x) =− lim
t→0+

t−1(sup
z

ω(DMt(x)z/Mt(x))
ω(z/x)

−1).

Proof. Let x ∈ C0. Define a function F : End(X )→ R by:

F(W ) = sup
z∈[0,x]

sup
π,ν∈P(x)

〈 ν

〈ν ,W (x)〉
− π

〈ν ,W (x)〉
,W (z)〉, ∀W ∈ End(X ) .

Recall from (4.13) that
DMt(x)x = Mt(x) , t ∈ J(x) .

Hence for all t ∈ J(x), the function DMt(x) : X /Rx → X /RMt(x) defines a linear map and by
applying Theorem 3.2, we get:

‖DMt(x)‖H = sup
z∈[0,x]

sup
ν ,π∈P(Mt(x))

〈ν−π,DMt(x)z〉

= sup
z∈[0,x]

sup
ν ,π∈P(x)

〈 ν

〈ν ,DMt(x)x〉
− π

〈π,DMt(x)x〉
,DMt(x)z〉

= F(DMt(x)).

Therefore,

lim
t→0+

t−1(sup
ω(DMt(x)z/Mt(x))

ω(z/x)
−1)

= lim
t→0+

t−1(‖DMt(x)‖H −1)

= lim
t→0+

t−1(F(DMt(x))−F(I))

(4.17)

Recall that the function DMt(x) : [0,J(x))→ End(X ) satisfies:

lim
t→0+

t−1(DMt(x)− I) = Dφ(x).
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The following reasoning is similar to that in the proof of Proposition 4.1. First for ν ,π ∈P(x) and
z ∈ [0,x] define the function Fν ,π,z : End(X )→X by:

Fν ,π,z(W ) = 〈 ν

〈ν ,W (x)〉
− π

〈π,W (x)〉
,W (z)〉, ∀W ∈ End(X ) .

It is clear that Fν ,π,z(W ) and the derivative DFν ,π,z(W ) are jointly continuous on (ν ,π,z,W ). Therefore
the function F , which can be written as

F = sup
z∈[0,x]

sup
π,ν∈P(x)

Fν ,π,z ,

is a subsmooth function. The limit in (4.17) equals to the one-side directional derivative of F at I in
the direction Dφ(x). By applying the formula of the one-side directional derivative of a subsmooth
function (A.3) we get:

lim
t→0+

t−1(F(DMt(x))−F(I))

= sup
ν ,π,z∈T (I)

DFν ,π,z(I)(Dφ(x))

where
T (I) = {ν ,π ∈P(x),z ∈ [0,x] : 〈ν−π,z〉= 1}.

The derivative of Fν ,π,z at point I in the direction Dφ(x) is:

DFν ,π,z(I)(Dφ(x))

=
〈ν ,Dφ(x)z〉〈ν ,x〉−〈ν ,z〉〈ν ,Dφ(x)x〉

〈ν ,x〉2
− 〈π,Dφ(x)z〉〈π,x〉−〈π,z〉〈π,Dφ(x)x〉

〈π,x〉2
= 〈 ν

〈ν ,x〉 ,Dφ(x)z〉−〈 ν

〈ν ,x〉 ,z〉〈
ν

〈ν ,x〉 ,Dφ(x)x〉−〈 π

〈π,x〉 ,Dφ(x)z〉+ 〈 π

〈π,x〉 ,z〉〈
π

〈π,x〉 ,Dφ(x)x〉.

For (ν ,π,z) ∈ T (I), it is easy to check that

〈ν ,z〉= 1, 〈π,z〉= 0 .

Therefore, for all (ν ,π,z) ∈ T (I), we have

DFν ,π,z(I)(Dφ(x))
= 〈ν ,Dφ(x)z〉−〈ν ,Dφ(x)x〉−〈π,Dφ(x)z〉.

Hence,

lim
t→0+

t−1(sup
ω(DMt(x)z/Mt(x))

ω(z/x)
−1)

lim
t→0+

t−1(F(DMt(x))−F(I))

= sup
ν ,π,z∈T (I)

DFν ,π,z(W )(Dφ(x))

= sup
z∈[0,x]

sup
ν ,π∈P(x)
〈ν−π,z〉=1

〈ν ,Dφ(x)z〉−〈ν ,Dφ(x)x〉−〈π,Dφ(x)z〉

=−c(x).

We shall need to use Nussbaum’s characterization of the contraction ratio of nonlinear maps in
Hilbert’s projective metric, in terms of the oscillation ratio of the derivative.
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Theorem 4.2 (Coro 2.1, [Nus94]). Let U ⊂ C 0 be a convex open set such that tU ⊂U for all t > 0.
Let f : U → C 0 be a continuously differentiable map such that ω( f (x)/ f (y)) = 0 whenever x,y ∈U
and ω(x/y) = 0. For each x ∈U define λ (x), λ0 and k0 by:

λ (x) := inf{c > 0 : ω(D f (x)z/ f (x))6 cω(z/x) for all z ∈X },

λ0 := sup{λ (x) : x ∈U},
k0 := inf{c > 0 : dH( f (x), f (y))6 cdH(x,y) for all x,y ∈U}.

Then it follows that λ0 = k0.

Below is the main theorem of this section, which characterizes the contraction rate κ(U).

Theorem 4.3. Let U ⊂ C 0 denote a convex open set such that λU =U for all λ > 0. Then

κ(U) = inf
x∈U

c(x). (4.18)

Proof. Fix x0 ∈U . By the Cauchy-Lipschitz theorem, there is r > 0 and t0 > 0 such that the flow is
well-defined on [0, t0]×B(x0;r) where B(x0;r) is the open ball of radius r centered at x0. We assume
that B(x0;r)⊂U and

tU(x)> t0, ∀x ∈ B(x0;r) .

Denote the set
G := ∪

λ>0
λB(x0;r) .

By (4.14), for every t 6 t0, the application Mt is well defined on G and

dH(Mt(x),Mt(y))6 e−κ(U)tdH(x,y), ∀x,y ∈ G.

By Theorem 4.2, the latter formula implies that:

ω(DMt(x)z/Mt(x))6 e−κ(U)t
ω(z/x) ∀x ∈ G,z ∈X .

Therefore by Proposition 4.3,

−c(x0) = limsup
t→0+

1
t
(sup

z

ω(DMt(x0)z/Mt(x0))

ω(z/x0)
−1)6−κ(U).

It follows that
κ(U)6 inf

x∈U
c(x).

Next we show the inverse inequality. Denote

c = inf
x∈U

c(x).

Then for all x ∈U , z ∈X and t ∈ tU(x),

limsup
h→0+

ω(DMt+h(x)z/Mt+h(x))−ω(DMt(x)z/Mt(x))
h

= limsup
h→0+

ω(DMh(Mt(x))(DMt(x)z))/Mh(Mt(x)))−ω(DMt(x)z/Mt(x))
h

= limsup
h→0+

ω(DMt(x)z/Mt(x))
h

(
ω(DMh(Mt(x))(DMt(x)z))/Mh(Mt(x))

ω(DMt(x)z/Mt(x))
−1)

6−c(Mt(x))ω(DMt(x)z/Mt(x))
6−cω(DMt(x)z/Mt(x)).
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Note that the first inequality in the last formula is due to Proposition 4.3. Therefore, for all x ∈U ,
z ∈X and t ∈ tU(x) we have that,

ω(DMt(x)z/Mt(x))6 e−ct
ω(z/x).

Let x,y∈U and define γ(s) = (1−s)x+sy, 06 s6 1. By the compactness of the set {γ(s) : s∈ [0,1]},
we know that

t0 := inf{tU(γ(s)) : s ∈ [0,1]}> 0.

Therefore, using the Finsler structure of Hilbert’s projective metric ([Nus94, Thm 2.1]), we get that
for every t 6 t0,

dH(Mt(x),Mt(y))6
∫ 1

0 ω(DMt(γ(s))(y− x)/Mt(γ(s)))ds
6
∫ 1

0 e−ctω(y− x/γ(s))ds
= e−ctdH(x,y).

Consequently we proved that for all x,y ∈U

limsup
h→0+

dH(Mh(x),Mh(y))−dH(x,y)
h

6−cdH(x,y).

This implies that for all x,y ∈U and t < tU(x)∧ tU(y):

limsup
h→0+

dH(Mt+h(x),Mt+h(y))−dH(Mt(x),Mt(y))
h

= limsup
h→0+

dH(Mh(Mt(x)),Mh(Mt(y)))−dH(Mt(x),Mt(y))
h

6−cdH(Mt(x),Mt(y)).

It follows that
dH(Mt(x),Mt(y))6 e−ctdH(x,y), ∀x,y ∈U, t < tU(x)∧ tU(y).

Therefore
κ(U)> c.

4.5 Applications to standard positive cone

In this section, we apply the previous results to the case X = Rn, C = Rn
+ and e = 1. For x ∈ Rn

we denote by δ (x) the diagonal matrix with entries x.

4.5.1 Contraction rate of linear �ows in Hilbert's seminorm

In this subsection, we specialize Proposition 4.1 to Rn equipped with the standard partial order.

Corollary 4.4. Let A ∈Rn×n be a square matrix such that A1 = 0. Then the best constant α such that

∆(eAtx)6 e−αt
∆(x), ∀x ∈ Rn, t > 0 ,

can be characterized by:

h(A) = min
i 6= j

(
A ji +Ai j + ∑

k/∈{i, j}
min(Aik,A jk)

)
. (4.19)
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Proof. Recall that

extr(P(1)) = {e1, . . . ,en},
extr[0,1] = {∑

i∈I
ei : I ⊂ {1, . . . ,n}}.

Therefore we have:

h(A) = min
i6= j

min
I⊂{1,...,n}

i/∈I, j∈I

∑
k∈I

Aik +∑
k/∈I

A jk

= min
i6= j

Ai j +A ji + min
I⊂{1,...,n}

i/∈I, j∈I

∑
k∈I\{ j}

Aik + ∑
k/∈I∪{i}

A jk

= min
i6= j

Ai j +A ji + ∑
k/∈{i, j}

min(Aik,A jk).

Consider the order-preserving case, i.e. Ai j > 0 for i 6= j. Such situation was studied extensively in
the context of consensus dynamics. In particular, let G=(V,E) be a graph and equip each arc (i, j)∈E
a weight Ci j > 0 (the node j is connected to i). One of the consensus systems that Moreau [Mor05]
studied is:

ẋi = ∑
(i, j)∈E

Ci j(x j− xi), i = 1, . . . ,n .

This can be written as ẋ = Ax, where Ai j = Ci j for i 6= j and Aii = ∑ j Ci j is a discrete Laplacian. A
general result of Moreau implies that if there is a node connected by path to all other nodes in the
graph G, then the system is globally convergent. Our results show that if h(C) > 0 then the system
converges exponentially to consensus with rate h(C).

Remark 4.1. The condition h(C) = 0 means that there are two nodes disconnected with each other
(Ci j+C ji = 0) and all other nodes are connected by arc to at most one of them (∑k/∈{i, j}min(Cik,C jk) =
0). The condition h(C)> 0, though more strict than Moreau’s connectivity condition, gives an explicit
contraction rate.

In addition, our result applies to not necessarily order-preserving flows. For example, consider the
matrix

A =

 −3 1 2
1 0 −1
1 1 −2

 .

A basic calculus shows that h(A) = 1. Therefore, every orbit of the linear system ẋ = Ax converges
exponentially with rate 1 to a multiple of the unit vector.

Remark 4.2. We point out that as a contraction constant, h(A) makes sense only when A1 = 0. How-
ever, as a functional h is well defined on the space of square matrices. Moreover, since the diagonal
elements do not account in the formula (4.19), it is clear that for any square matrix B ∈ Rn×n and
x ∈ Rn

h(B) = h(B−δ (x)).
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4.5.2 Applications to nonlinear di�erential consensus systems

Let G = (V,E) denote a directed graph. We equip every arc (i, j) ∈ E with a weight Ci j > 0. For
(i, j) /∈ E, we set Ci, j = 0. Consider the following nonlinear consensus protocol [SM03]:

ẋk = ∑
(i,k)∈E

Cik fik(xi− xk), k = 1, . . . ,n, (4.20)

where we suppose that every map fik : R→ R is differentiable. When every fik is the identity map,
the operator at the right hand-side of (4.20) is the discrete Laplacian of the digraph G, in which Cik is
the conductivity of arc (i,k).

Corollary 4.5. Let w > 0. Suppose that

α := inf{ f ′ik(t) : t ∈ [−w,w],(i,k) ∈ E}> 0. (4.21)

Consider the convex open set
U(w) = {x ∈ Rn : ∆(x)< w}.

For all x(·) : [0,T ]→ Rn satisfying x(0) ∈U(w) and (4.20), we have:

∆(x(t))6 e−h(C)αt
∆(x(0)), ∀0 6 t 6 T.

Proof. For all x ∈U(w),

h(Dφ(x)) = min
i 6= j

∂φi(x)
∂x j

+
∂φ j(x)

∂xi
+ ∑

k 6=i, j
min(

∂φi(x)
∂xk

,
∂φ j(x)

∂xk
),

where
∂φi(x)

∂x j
=Ci j f ′i j(x j− xi), i 6= j.

Hence for all x ∈U(w),

h(Dφ(x))> min
i6= j

Ci jα +C jiα + ∑
k 6=i, j

min(Cikα,C jkα) = αh(C).

We apply Theorem 4.1 and consider y = 1 in (4.10) to get:

∆(x(t))6 e−αh(C)t
∆(x(0)), t 6 tU(w)(x(0)) .

Since α > 0 and h(C)6 0, we deduce that

∆(x(t))6 ∆(x(0))6 w, t 6 tU(w)(x(0)) .

Hence the set U(w) is invariant. In other words, for all x(·) : [0,T ]→ Rn satisfying x(0) ∈ U(w)
and (4.20), we know that

{x(t) : t ∈ [0,T ]} ⊂U(w) .
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Example 4.3. The Kuramoto equation [Str00] is a special case of the protocol (4.20).

θ̇i = ∑
j:(i, j)∈E

Ci j sin(θ j−θi), i = 1, . . . ,n. (4.22)

Let w < π/2. Then
inf{cos(t) : t ∈ [−w,w]}> cosw > 0.

We apply Corollary 4.5 and obtain that for all θ(·) : [0,T ] → Rn satisfying equation (4.22) and
∆(θ(0))< w, we have:

∆(θ(t))6 e−h(C)cos(w)t
∆(θ(0)), ∀t > 0.

In particular, for all θ(0) ∈ (−π/4,π/4)n, the solution of equation (4.22) satisfies:

∆(θ(t))6 e−h(C)cos(∆(θ(0)))t
∆(θ(0)), ∀t > 0.

Remark 4.4. Moreau [Mor05] showed that if there is a node connected by path to all other nodes in
the graph (V,E), then the Kuramoto system (4.22) is globally convergent on the set (−π/2,π/2)n.
Compared to his results (see Remark 4.1), our condition for convergence is more strict but we obtain
an explicit exponential contraction rate.

Example 4.5. Another class of maps satisfying (4.21) is when fik(t) = arctan(t) for all i,k∈ {1, . . . ,n}.
Consider the following system

ẋi = ∑
j:(i, j)∈E

Ci j arctan(x j− xi), i = 1, . . . ,n. (4.23)

Then we obtain in the same way as in Example 4.3 that for all x(0) ∈ Rn, the solution of (4.23)
satisfies:

∆(x(t))6 e
− h(C)t

1+∆(x(0))2 ∆(x(0)), ∀t > 0.

Example 4.6. (Discrete p-Laplacian) We now analyze the degenerate case of the p-Laplacian con-
sensus dynamics for p ∈ (1,2)∪ (2,+∞). Then latter can be described by the following dynamical
system in Rn:

v̇i = ∑
j:(i, j)∈E

Ci j(v j− vi)
∣∣Ci j(vi− v j)

∣∣p−2
, i = 1, . . . ,n. (4.24)

Let α > 0 and consider the convex open set:

U(α) := {v : max
i 6= j
|vi− v j|< α}.

Let 0 < β < α and consider a convex open set V (β ) contained in {v : mini 6= j |vi−v j|> β} so that the
vector field of (4.24) is C1 in V (β ). A basic calculus shows that for v ∈V (β ),

∂φi(v)
∂v j

=

{
0, (i, j) /∈ E
(p−1)|vi− v j|p−2Cp−1

i j , (i, j) ∈ E

Let Cp−1 denote the matrix with entries Cp−1
i j . Recall that h(Cp−1)> 0. Then we have:

h(Dφ(x))>
{

(p−1)h(Cp−1)β p−2, p > 2,x ∈V (β ) ,
(p−1)h(Cp−1)α p−2, 1 < p < 2 ,x ∈V (β )∩U(α) .

We remark that the contraction rate on V (β ) tends to +∞ when p tends to +∞.
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4.5.3 Contraction rate of nonlinear �ows in Hilbert's projective metric

Suppose that φ : intRn
+→ Rn is a continuously differentiable function such that

φ(λx) = λφ(x), ∀λ > 0,x ∈ intRn
+ .

We specialize Theorem 4.3 to obtain a contraction rate characterization in Hilbert’s projective metric
of the flow associated to the equation:

ẋ = φ(x) . (4.25)

Corollary 4.6. Let U ⊂ intRn
+ be a convex open set. When X = Rn and C = R+

n , the contraction
rate on U in Hilbert’s projective metric of the flow associated to (4.25) can be characterized as below:

κ(U) = inf
x∈U

c(x) = inf
x∈U

h(A(x)),

where
A(x) = δ (x)−1Dφ(x)δ (x)

and h is defined in (4.19).

Proof. It is sufficient to remark that in this special case:

extrP(x) = δ (x)−1 extrP(1) ,

and
extr[0,x] = δ (x)extr([0,1]) .

Therefore,

c(x) = inf
z∈extr[0,x]

inf
π,ν∈extrP(x)
〈ν ,z〉+〈π,x−z〉=0

〈ν ,Dφ(x)z〉+ 〈π,Dφ(x)(x− z)〉

= inf
z∈extr[0,1]

inf
π,ν∈extrP(1)
〈ν ,z〉+〈π,x−z〉=0

〈δ (x)−1
ν ,Dφ(x)δ (x)z〉+ 〈δ (x)−1

π,Dφ(x)δ (x)(1− z)〉

= h(A(x)).

Remark 4.7. Consider the linear flow in Rn of the following equation:

ẋ = Ax,

where Ai j > 0, for all i 6= j, so that the flow is order-preserving. Let x be in the interior of Rn
+. Then

we have
δ (x)−1Aδ (x)i j = Ai j

x j

xi
, i, j = 1, . . . ,n.

Therefore,
h(δ (x)−1Aδ (x)) = min

i 6= j
A ji

xi

x j
+Ai j

x j

xi
+ ∑

k/∈{i, j}
min(Aik

xk

xi
,A jk

xk

x j
).

The global contraction rate (restricted to C 0) is then

inf
x∈C 0

h(δ (x)−1Aδ (x)) = min
i6= j

2
√

Ai jA ji.
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(This formula may be alternatively obtained by differentiating with respect to t, at point 0, the con-
traction ratio of I + tA, using Birkhoff’s theorem.)

It follows that a positive global contraction rate exists if and only if Ai j > 0 for all i 6= j. However,
a strict local contraction may occur even if there is Ai j = 0 for some i 6= j. Let K > 1 and consider the
convex open set

U(K) = {x ∈ Rn :
1
K

6
xi

x j
6 K}.

Then the local contraction rate with respect to U(K) is

inf
x∈U(K)

h(δ (x)−1Aδ (x))>
h(A)

K
.

Therefore, h(A)> 0 is sufficient to have a strict local contraction. Moreover, the above bound on the
contraction rate increases (faster convergence) as the orbit approaches to consensus, i.e., a multiple of
1.

4.6 Applications to the space of Hermitian matrices

We now specialize our general results to the case X = Sn, C = S+
n and e = In.

4.6.1 Contraction rate of a linear �ow in Hilbert's seminorm

In this subsection, we specialize Formula (4.3) to a linear flow in Sn associated to

Ẋ = φ(X) (4.26)

where φ : Sn→ Sn is linear and φ(In) = 0.

Corollary 4.7. The contraction rate of the linear flow associated to (4.26) can be characterized by:

h(φ) = inf
X=(x1,...,xn)

XX∗=In

(
x∗1φ(x2x∗2)x1 + x∗2φ(x1x∗1)x2 +

n

∑
k=3

min(x∗1φ(xkx∗k)x1,x∗2φ(xkx∗k)x2)
)
. (4.27)

where xi is the i-th column vector of each unitary matrix X.

Proof. Recall that

extr(P(In)) = {xx∗ : x ∈ Cn,x∗x = 1}, extr[0, In] = {P ∈ Sn : P2 = P}.

Then,

h(φ) = inf
x∗1x1=x∗2x2=1

inf
P2=P

Px1=0,Px2=x2

x∗1φ(P)x1 + x∗2φ(In−P)x2

= inf
x∗1x1=x∗2x2=1

inf
P=x2x∗2+...xkx∗k

P2=P,Px1=0

k

∑
i=2

x∗1φ(xix∗i )x1 + x∗2φ(In−P)x2

=
(

inf
x∗1x1=x∗2x2=1

x∗1φ(x2x∗2)x1 + x∗2φ(x1x∗1)x2

+ inf
X=(x1,x2,...,xn)

XX∗=In

k

∑
i=3

x∗1φ(xix∗i )x1 +
n

∑
i=k+1

x∗2φ(xix∗i )x2
)
.
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As pointed out in Remark 4.2, h is a functional well defined for all linear applications from Sn

to Sn. It is interesting to remark that for any linear application Ψ : Sn → Sn and any square matrix
Z ∈ Cn×n,

h(Ψ) = h(Φ)

where Φ is defined by
Φ(X) = Ψ(X)−ZX−XZ∗, ∀X ∈ Sn .

4.6.2 Contraction rate of nonlinear �ows in Hilbert's projective metric

Suppose that φ : Ŝ
+
n → Sn is a continuously differentiable function such that

φ(λX) = λφ(X), ∀λ > 0,X ∈ Ŝ
+
n .

We specialize the contraction formula (4.18) to obtain the contraction rate in Hilbert’s projective
metric of the flow associated to the following equation on Ŝ

+
n :

Ẋ = φ(X) . (4.28)

Corollary 4.8. Let U ⊂ Ŝ
+
n be a convex open set, the contraction rate on U of the flow associated

to (4.28) in Hilbert’s projective metric can be characterized by:

κ(U) = inf
P∈U

c(P) = inf
P∈U

h(Φ(P))

where Φ(P) : S+
n → S+

n is a linear application given by:

Φ(P)(Z) = P−
1
2 Dφ(P)(P

1
2 ZP

1
2 )P−

1
2 (4.29)

and h : Sn→ R is defined in (4.27).

Proof. Remark that in this special case,

extr[0,P] = P
1
2 (extr[0, In])P

1
2 ,

and
extr(P(P)) = P−

1
2 (extrP(In))P−

1
2 .

The desired formula is obtained the same way as in the proof of Corollary 4.6.

Example 4.8. As an example, let us show a calculus of contraction rate using Corollary 4.8 for the
following differential equation in Sn:

Ṗ = φ(P) :=
−PBP

trace(CP)
+AP+PA∗ (4.30)

where B,C ∈ Ŝ
+
n . Let P̂ ∈ S+

n . Then the linear application Φ(P) : Sn→ Sn defined in (4.29) is given
by:

Φ(P)(Z) = P−
1
2 Dφ(P)(P

1
2 ZP

1
2 )P−

1
2

= (−ZP
1
2 BP

1
2 −P

1
2 BP

1
2 Z) trace(CP)−1

+P
1
2 BP

1
2 trace(CP)−2 trace(CP

1
2 ZP

1
2 )+P−

1
2 AP

1
2 Z +ZP

1
2 A∗P−

1
2 , ∀Z ∈ Sn .
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Therefore let x,y ∈ Cn such that x∗y = 0 then

y∗Φ(P)(xx∗)y = (y∗P
1
2 BP

1
2 y)(x∗P

1
2 CP

1
2 x) trace(CP)−2.

Let {x1, . . . ,xn} be an orthonormal basis. Denote

α1 = x∗1P
1
2 BP

1
2 x1 ,

α2 = x∗2P
1
2 BP

1
2 x2 ,

β1 = x∗1P
1
2 CP

1
2 x1 ,

β2 = x∗2P
1
2 CP

1
2 x2 .

Without loss of generality, we assume that α1 6 α2. Then

x∗1Φ(P)(x2x∗2)x1 + x∗2Φ(P)(x1x∗1)x2 +
n

∑
k=3

min(x∗1Φ(P)(xkx∗k)x1,x∗2Φ(P)(xkx∗k)x2)

=
(
α1β2 +α2β1 +α1

n

∑
k=3

x∗kP
1
2 CP

1
2 xk
)

trace(CP)−2

=
(
α1β2 +α2β1 +α1(trace(CP)−β1−β2)) trace(CP)−2

=
(
α1 trace(CP)+β1(α2−α1)) trace(CP)−2

> λmin(BP) trace(CP)−1.

Therefore by the definition in (4.27),

h(Φ(P))> λmin(BP) trace(CP)−1.

Let us consider the convex open set

U = {P ∈ Ŝ
+
n : dH(P, In)< K}.

Then,
inf

P∈U
h(Φ(P)) > infP∈U λmin(BP) trace(CP)−1

>
λmin(BP)

nλmax(CP)
>

λmin(B)λmin(P)
nλmax(C)λmax(P)

>
λmin(B)

nλmax(C)eK

Let α =
λmin(B)

nλmax(C)eK . Then by Corollary 4.8, for all P1,P2 ∈U we have:

dH(Mt(P1),Mt(P2))6 e−αtdH(P1,P2), 0 6 t < tU(P1)∧ tU(P2).

If A,B,C are matrices such that for some λ0 ∈ R,

φ(In) =−B trace(C)−1 +A+A′ = λ0In,

then we know that
Mt(In) = eλ0tIn.

In that case, for P ∈U we have:

dH(Mt(P),eλ0tIn)6 e−αtdH(P, In), 0 6 t < tU(P).

It follows that tU(P) = +∞ and therefore every solution of equation (4.30) converges exponentially to
a scalar multiplication of In.
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Part II

Max-plus based numerical methods

for optimal control problems





CHAPTER 5

Max-plus basis methods: general

principle and asymptotic

approximation error estimates

In this chapter, we first review the general principle of max-plus basis methods. Then, we establish
a negative result, showing that some form of curse dimensionality is unavoidable for these methods,
but also for more classical approximate dynamic programming methods like stochastic dual dynamic
programming, in which a convex value function is approximated by a supremum of affine functions.
Indeed, we show that asymptotically, the minimal approximation error in the L1 or L∞ norm, for a
smooth convex function, using at most n affine minorants, is equivalent to 1/n2/d , as the number of
basis functions n goes to infinity. We derive the latter result as an analogue of Gruber’s best asymptotic
error estimates of approximating a convex body using circumscribed polytopes. We also give explicit
asymptotic constants, respectively for the L1 or L∞ norm. Both constants rely on the determinant
of the Hessian matrix of the convex function to approximate. We deduce that an attenuation of the
curse of dimensionality occurs (fewer basis functions are needed) when the convex function to be
approximated is “flat” in some direction, i.e., when its Hessian matrix has some eigenvalues close to
zero.

This chapter extends the theoretical part of the conference article [GMQ11].
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5.1 Introduction

In this chapter, we consider the following finite horizon optimal control problem

Problem 5.1.
v(x,T ) := sup

u∈UT

∫ T

0
`(x(s),u(s))ds+φ(x(T )) ;

ẋ(s) = f (x(s),u(s)), x(0) = x, x(s) ∈ X ,u(s) ∈U . (5.1)

Here, X ⊂ Rd is the set of states, U ⊂ Rm is the set of actions, T denotes the horizon and UT

denotes the locally integrable control functions with values in U :

UT := L1([0,T ];U) .

The Lagrangian ` : X ×U → R, the terminal reward φ : X → R, and the dynamics f : X ×U → Rd

are given functions. The supremum is taken over all the control functions u and system trajectories
x satisfying (5.1), and v is the value function, depending on the initial condition x ∈ X and the final
horizon T > 0. We will assume here for simplicity that the set X is invariant by the dynamics (5.1) for
all choices of the control function u∈UT . Under certain regularity assumptions, it is known that v(x, t)
is a viscosity solution of the Hamilton-Jacobi partial differential equation (HJ PDE)[CL83, LS85]:{

∂v
∂ t −H(x, ∂v

∂x) = 0, ∀(x, t) ∈ X× (0,T ] ,
v(x,0) = φ(x), ∀x ∈ X .

(5.2)

where
H(x, p) = sup

u∈U
p′ f (x,u)+ `(x,u), x ∈ X , p ∈ Rd

denotes the Hamiltonian of the optimal control problem. Several techniques have been proposed in the
literature to solve the latter HJ PDE. We mention, for example, the finite difference schemes [CL84],
the discrete dynamic programming method by Capuzzo Dolcetta [CD83] or the semi-Lagrangian
method developed by Falcone, Ferretti and Carlini [Fal87, FF94, CFF04], the high order ENO schemes
introduced by Osher, Sethian and Shu [OS88, OS91], the discontinuous Galerkin method by Hu and
Shu [HS99], the ordered upwind methods for convex static Hamilton-Jacobi equations by Sethian
and Vladimirsky [SV03] which is an extension of the fast marching method for the Eikonal equa-
tions [Set99], and the antidiffusive schemes for advection of Bokanowski and Zidani [BZ07]. How-
ever, these methods generally require the generation of a grid on the state space. Thus they suffer from
the so-called curse of dimensionality, meaning that the execution time grows exponentially with the di-
mension of the state space. The question of the attenuation of the curse of dimensionality has received
much attention by the numerical optimal control community. We mention the domain decomposition
algorithm [CFLS94, FLS94] and the patchy domain decomposition technique [NK07, CCFP12]. In
the discrete dynamic programming community, specially in the study of Markov decision processes,
various techniques have also been proposed to reduce the curse of dimensionality, including the ap-
proximate policy iteration [Ber11], the classification-based policy iteration [LGM10] and the point
based value iteration [CLZ97].

Recently a new class of methods has been developed after the work of Fleming and McEneaney
[FM00], see also the works of McEneaney [McE07], of Akian, Gaubert and Lakhoua [AGL08], of
McEneaney, Deshpande and Gaubert [MDG08], of Sridharan et al. [SGJM10], and of Dower and
McEneaney [DM11].. These methods are referred to as max-plus basis methods since they all rely on
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max-plus algebra. Their common idea is to approximate the value function by a supremum of finitely
many "basis functions" and to propagate the supremum forward in time by exploiting the max-plus
linearity of the Lax-Oleinik semigroup.

To compare this new class of methods with the classical ones, the first question to understand
is why, and to what extent, max-plus techniques can attenuate the curse of dimensionality. To this
end, based on the Gruber’s best error estimates of convex body covering by circumscribed poly-
topes [Gru93a, Gru93b], we establish asymptotic minimal error estimates of semiconvex function
approximation by finitely quadratic basis functions (Theorem 5.3 and 5.4). Our results imply that
the curse of dimensionality is unavoidable for all class of numerical methods which approximate a
smooth convex function by a finite number of affine functions, including the stochastic dual dynamic
programming method [Sha11]. However, the asymptotic constants show that an attenuation of the
curse of dimensionality is possible for value functions with negligible determinant of Hessian matrix.

The main object of this chapter is to recall the general principle of max-plus basis methods and
to show the inherent curse of dimensionality to the family of max-plus basis methods based on c-
semiconvex transforms. In Section 5.2, we review the general principle of the methods. In Section 5.3,
we state the asymptotic best error estimates of semiconvex based approximation. The proof is given
is Section 5.4.

5.2 Max-plus numerical methods to solve optimal control prob-

lems

5.2.1 The Lax-Oleinik semigroup

Let (ST )T>0 be the Lax-Oleinik semigroup, i.e., the evolution semigroup of the Hamilton-Jacobi
equation (5.2). Then for every horizon T > 0, ST is a map which associates to the terminal reward φ

the value function v(x,T ) on horizon T :

ST [φ ](x) = v(x,T ) = sup
∫ T

0
`(x(s),u(s))ds+φ(x(T )) ; (5.3)

ẋ(s) = f (x(s),u(s)), x(0) = x, x(s) ∈ X ,u(s) ∈U . (5.4)

By semigroup, we mean that
St+s = St ◦Ss, ∀t,s > 0 .

Recall that the max-plus semiring, Rmax, is the set R∪{−∞}, equipped with the addition (a,b) 7→
max(a,b) and the multiplication (a,b) 7→ a+b. For all functions f ,g from X to Rmax and λ ∈ Rmax,
we denote by f ∨g the pointwise maximum of f and g, namely,

( f ∨g)(x) = max( f (x),g(x)), x ∈ X ,

and by λ + f the function f modified by the constant λ :

(λ + f )(x) = λ + f (x), x ∈ X .

It is known that the semigroup St is max-plus linear [Mas87, KM97, AQV98], i.e.,

St [ f ∨g] = St [ f ]∨St [g], St [λ +g] = λ +St [g] . (5.5)

We shall see that the max-plus basis methods exploit these properties to solve the optimal control
problem (5.3).
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5.2.2 Max-plus linear spaces

A set W of functions from Rd to Rmax is a max-plus linear space if for all φ1,φ2 ∈W and λ ∈ R,
the functions φ1∨φ2 and λ +φ1 belong to W . A max-plus linear space W is (conditionally) complete
if the pointwise supremum of any family of functions of W that is bounded from above by an element
of W is finite.

Let B be a set of functions from Rd to R (max-plus basis functions). The complete max-plus (lin-
ear) space spanB of functions generated by B is defined to be the set of arbitrary linear combinations
of elements of B, in the max-plus sense, so that an element φ of spanB reads

sup
ω∈B

(a(ω)+ω)

for some family (a(ω))w∈B of elements in Rmax. The (non complete) space spanB is defined in a
similar way, but the linear combination must now involve a finite family, meaning that a(ω) should
equal to −∞ for all but finitely many values of ω ∈ B. We refer the reader to [LMS01, CGQ04,
McE06] for more background on max-plus linear spaces.

If W is a complete max-plus linear space of functions Rd → Rmax, and if ψ is any function
Rd → Rmax, the max-plus projection of ψ onto W is defined to be

PW (ψ) := max{φ ∈W | φ 6 ψ} (5.6)

(by writing max, we mean that the supremum element of the set under consideration belongs to this
set, which follows from the completeness of W ).

All the previous definitions can be dualized, replacing max by min, and −∞ by +∞. In particular,
a complete min-plus linear space is a set Z of functions Rd → R∪{+∞} such that −Z := {−w |
w ∈Z } is a complete max-plus linear space. Then, we define the dual projector PZ by

PZ (ψ) := min{φ ∈Z | φ > ψ} ,

for all functions ψ : Rd → R∪{+∞}.
We list below some typical choices of basis functions, appearing in the literature (see [FM00,

AGL08, McE07]).

Example 5.1 (linear basis functions [FM00]). Consider linear basis functions:

BS := {p′x : p ∈ S} ,

where S is a possibly infinite subset of Rd . Then the complete max-plus linear space WS spanned by
BS is:

WS := {sup
p∈S

p′x+a(p) : a ∈ RS
max}.

If ψ is a convex function, then
PWS(ψ) = sup

p∈S
p′x−ψ

∗(p) ,

where ψ∗ denotes the convex conjugate of function ψ . Figure 5.1 is an illustration of max-plus
projection of one dimensional convex function where the convex function is

ψ(x) =
x2

2
,
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and the set S is
S = {−1,1}.

If S = Rd , then it follows from Fenchel-Moreau theorem that the space spanBS coincides with the
space of convex (lower semicontinuous) functions. We then say that linear basis functions are adapted
for approximating convex functions.

Example 5.2 (quadratic basis functions [FM00, AGL08]). Quadratic basis functions, with the same
Hessian c > 0, refer to the basis set:

Bc,S := {− c
2
|x|2 + p′x : p ∈ S} , (5.7)

where S is a possibly infinite subset of Rd . The complete max-plus linear space Wc,S spanned by Bc,S

is then:
Wc,S := {sup

p∈S
− c

2
|x|2 + p′x+a(p) : a ∈ RS

max}.

Denote by Id the identity matrix of dimension d. We abuse the notation to denote the quadratic
function

Id(x) := x′x, x ∈ Rd .

Recall that a function ψ is c-semiconvex if the function ψ + c
2 Id is convex. It is direct that

PWc,S(ψ) = PWS(ψ +
c
2

Id)−
c
2

Id ,

and
PWc,S(ψ) = sup

p∈S
− c

2
|x|2 + p′x− (ψ +

c
2

Id)
∗(p).

Figure 5.2 is an illustration of max-plus projection of one dimensional semiconvex function where
c = 1, the c-semiconvex function is

ψ(x) = sin(x), x ∈ R ,

and the set S is
S = {−4,0,1.8,3.5}.

The same, if S =Rd , then it follows from Fenchel-Moreau theorem that the space Wc,S coincides with
the space of c-semiconvex (lower semicontinuous) functions. In [AGL08], such basis functions are
called P2 finite elements.

Example 5.3 (P1 finite element [AGL08]). The P1 finite elements or Lipschitz finite elements, with
constant b > 0, refer to basis functions of the following form:

Tb,S := {−b|x− x0|1 : x0 ∈ S}

where S is a possibly infinite subset of Rd . The min-plus linear space Zb,S spanned by −Tb,S is then:

Zb,S := { inf
x0∈S

b|x− x0|1 +a(x0) : a ∈ RS
min}.

If ψ is a Lipschitz function with constant b, then

PZb,S(ψ) = inf
x0∈S

b|x− x0|1 +ψ(x0).
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(a) convex function ψ(x) =
x2/4

(b) projection PW (ψ) = x−1∨−x−1

Figure 5.1: An example of max-plus projection of convex function

Figure 5.3 is an illustration of min-plus projection of Lipschitz function using P1 finite elements where
b = 1, the b-Lipschitz function is

ψ(x) = cos(x), ∀x ∈ R ,

and the set S is
S = {1,±π,±π

2
} .

5.2.3 Max-plus basis methods-general principle

The general approach of max-plus basis methods for solving the optimal control problem (Prob-
lem 5.1) works as follows. First we discretize the time interval [0,T ] by small step τ > 0 such that
T = Nτ for some integer N > 0. Choose a set of basis functions B. For k ∈ {0, . . . ,N}, the value
function v(·,kτ) at time kτ will be approximated by a finite max-plus linear combination vk

h of basis
functions, i.e.,

v(x,kτ)' vk
h(x) = sup

i∈Ik

(λ k
i +wk

i (x)), k = 0,1, . . . ,N−1 ,

where {wk
i : i ∈ Ik} ⊆B for all k. Then, the coefficients {λ k

i }i∈Ik and the functions {wk
i }i∈Ik+1 need to

be inductively determined. Using the semigroup property, we know that

v(·,(k+1)τ) = Sτ [v(·,kτ)], k = 0,1, . . . ,N−1 . (5.8)

We require the max-plus basis approximation vk
h of v(·,kτ) to satisfy the analogous relation, at least

approximately:

vk+1
h ' Sτ [vk

h] = sup
i∈Ik

(λ k
i +Sτ [wk

i ]), k = 0, . . . ,N−1 . (5.9)

Next we decompose the problem into two subproblems:

1. Semigroup approximation:
Sτ [wk

i ]' S̃τ(wk
i ), i ∈ Ik ;

2. Max-plus projection:
sup
i∈Ik

(λ k
i + S̃τ [wk

i ])' sup
i∈Ik+1

λ
k+1
i +wk+1

i .

Depending on the problem structure, the way that we address the two subproblems can be different.
In the next section, we present some examples of max-plus basis methods.
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(a) semiconvex function ψ(x) = sinx

(b) projection PW (ψ) =− x2

2 +1.55∨− (x−1.8)2

2 +2.8∨− (x+4)2

2 +2.3∨− (x−3.5)2

2 +1.35

Figure 5.2: An example of max-plus projection of semi-convex function

(a) semiconvex function ψ(x) = cosx

(b) projection PZ (ψ) = |x|+1∧|x− π

2 |∧|x+
π

2 |∧|x+π|+
1∧|x−π|−1

Figure 5.3: An example of min-plus projection of Lipschitz function



116 Chapter 5. Max-plus basis methods

5.2.4 Max-plus basis methods-examples

The first subproblem is the simplest one: computing Sτ [wk
i ] is equivalent to solving an optimal

control problem, but the horizon τ is small, and the terminal reward wk
i (typically a quadratic func-

tion) has a regularizing and a “concavifying” effect, which implies that the global optimum can be
accurately approached (by reduction to a convex programming problem), leading to various approx-
imations with a consistency error of O(τr), with r = 3/2,2, or sometimes better, depending on the
scheme, see [McE06, AGL08, LAK07].

We next present two different approaches to solve the second subproblem.

Example 5.4 (Method of Flemming and McEneaney). In the original paper [FM00], the authors
choose a finite set of basis functions

B = {ωi : i = 1, . . . ,n}.

Denote by W the max-plus linear space spanned by B. The approximation functions {vk
h}k are re-

quired to satisfy:
vk+1

h =
n

sup
i=1

λ
k
i +PW (S̃[ωi]), k = 0, . . . ,N−1 .

Let B be a n by n matrix such that:

PW (S̃τ [ωi]) =
n

sup
j=1

B ji +ω j, ∀i = 1, . . . ,n.

Then the recursive equations of the coefficients {λ k}k are:

λ
k+1
i =

n
sup
j=1

Bi j +λ
k
j , i = 1, . . . ,n, k = 0, . . . ,N−1 .

Example 5.5 (Max-plus finite element). In the max-plus finite element method of Akian, Gaubert and
Lakhoua [AGL08], the authors choose a finite set of basis functions:

B = {ωi : i = 1, . . . ,n},

and a finite set of test functions:
T = {zi : i = 1, . . . ,m}.

Denote by W the max-plus linear space spanned by B and Z the min-plus linear space spanned by
T . The approximation functions {vk

h}k are required to satisfy:

vk+1
h = PZ PW ((

n
sup
i=1

λ
k
i + S̃τ [ωi])), k = 0, . . . ,N−1 .

Let K and M be two n by m matrices such that:

PZ (ωi) =
m

inf
j=1

M ji + z j, PZ (S̃τ [ωi]) =
m

inf
j=1

K ji + z j, i = 1, . . . ,n.

Then the recursive equations of the coefficients {λ k}k are

λ
k+1
i = min

j=1,...,n
(−M ji + max

l=1,...,m
(K jl +λ

k
l )) i = 1, . . . ,n, k = 0, . . . ,N−1 .
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5.2.5 Max-plus basis methods-complexity and error bound

According to the general principle of max-plus basis methods, there is no direct discretization of
the state space (only a discretization of the time interval). That is the special feature of max-plus
basis methods, compared to the classical numerical methods. The accuracy of the method is limited
by the semigroup approximation and the max-plus projection (see Section 5.2.3). We measure the
approximation error in Lp norm:

‖v(·,T )− vN
h ‖p :=

{
(
∫

X |v(x,T )− vN
h (x)|pdx)1/p, p > 0

sup
x∈X
|v(x,T )− vN

h (x)|, p =+∞

Most often we consider the L∞ norm because the semigroup St is nonexpansive with respect to the L∞

norm.

5.2.5.a Method of Flemming and McEneaney The arithmetic complexity of the method of
Flemming and McEneaney, presented in Example 5.4, is polynomial with respect to the number of
basis functions n and to the number of steps N.

The following lemma regarding the approximation error is immediate:

Lemma 5.1. If the semigroup approximation is a subapproximation, namely,

S̃τ [ωi]6 Sτ [ωi], ∀i = 1, . . . ,n ,

then for all p,

‖v(·,T )− vN
h ‖p > ‖v(·,T )−PW (v(·,T ))‖p .

5.2.5.b Max-plus �nite element method The arithmetic complexity of the max-plus finite ele-
ment methods, presented in Example 5.5, is polynomial with respect to the number of basis functions
n, to the number of test functions m and to the number of steps N.

In [AGL08], the following error bound is proved by using the nonexpansive property of the semi-
group St in the sup norm.

Lemma 5.2 ( [AGL08]). The approximation error of max-plus finite element method, presented in
Example 5.5, is bounded by the sum of the semigroup approximation error and the projection error:

‖v(·,T )− vN
h ‖∞ 6 (1+N)

(
max

i=1,...,n
‖Sτ [ωi]− S̃τ [ωi]‖∞

+ max
k=0,...,N

‖v(·,kτ)−PW (v(·,kτ))‖∞

+ max
k=0,...,N

‖v(·,kτ)−PZ (v(·,kτ))‖∞

)
Actually the above error bound also holds for the method of Flemming and McEneaney:

Lemma 5.3. The approximation error of the method of Flemming and McEneaney, presented in Ex-
ample 5.4, is bounded by the sum of the semigroup approximation error and the projection error:

‖v(·,T )− vN
h ‖∞ 6 (1+N)

(
max

i=1,...,n
‖Sτ [ωi]− S̃τ [ωi]‖∞

+ max
i=1,...,n

‖PW (S̃τ [ωi])− S̃τ [ωi]‖∞

)
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The proof follows the same idea as that of Lemma 5.2.
As we discussed in Section 5.2.4, the semigroup approximation error is often of order O(τ2) or

O(τ), depending on the approximation scheme. If we want to have a better idea about the complexity
of the method, we need to estimate the error order with respect to the number of basis functions n. For
this, let us focus at the max-plus projection error estimates (the min plus projection error estimates
can be done in the same way). The following projection error bound is given in [LAK07], Proposition
64.

Proposition 5.4 ([LAK07]). Let X be a bounded convex subset of Rd and S ⊂ Rd be a finite set.
Let 0 < a < c and let ψ : Rd → R be a (c− a)-semiconvex function. Assume that for all x ∈ riX,
∂ (ψ + c

2 Id)∩ convS 6= /0.Let Ŝ = (∪x∈riX ∂ (ψ + c
2 Id)(x))∩ convS, then

‖ψ−PWc,S(ψ)‖∞ 6
1
2a

(
sup
x∈Ŝ

inf
y∈S
|x− y|2

)2
.

The term supx∈Ŝ infy∈S |x− y|2 corresponds to the maximal diameter of the Voronoi tessellation
of the domain Ŝ by the discrete set S (see [OBSC00]). This proposition reveals the hidden space
discretization nature in max-plus basis methods. It is known [Hla49, Rog64] that the minimal number
n(ε) of discrete points to get a Voronoi tessellation of diameter ε of a compact in Rd is equivalent to
ε−d as ε goes to infinity:

n(ε)∼ 1
εd , as ε → 0.

Thus we know that the minimal projection error is bounded by O( 1

n
2
d
).

min
|S|=n
‖ψ−PWc,S(ψ)‖∞ = O(

1

n
2
d
), as n→+∞.

However, an upper bound on the minimal projection error is not enough to understand to what extent
the max-plus basis methods can attenuate the curse of dimensionality. The object of the next section
is to give an asymptotic estimation of the minimal max-plus projection error of semiconvex functions,
as the number of basis functions n tends to infinity.

5.3 Curse of dimensionality for semiconvex based approxima-

tions

In this section, we give an asymptotic estimate of the minimal max-plus projection error as the
number of basis functions tends to infinity, in the special case in which the basis functions take the
form:

Bc,S = {−
c
2
|x|2 + p′x : p ∈ S}.

as in the max-plus basis method [FM00], or in the P2 type finite element method of [AGL08, LAK07].
Let X ⊆ Rd be a full dimensional compact convex subset. For two functions f and g from Rd to

R, denote by

δ
1
X( f ,g) :=

∫
X
| f (x)− f (x)|dx, δ

∞
X ( f ,g) := sup

x∈X
| f (x)−g(x)|

respectively the L1 and the L∞ metric between two functions f and g, measured on the compact X .
Let c ∈R, ε > 0 and ψ : Rd→R be a (c−ε)-semiconvex function. The minimal L1 and L∞ max-plus
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(a) approximate a convex body by cir-
cumscribed polytope

(b) approximate a convex function by supre-
mum of its finitely affine minorants

Figure 5.4: Similarity between the two approximation problems

approximation error on X of ψ using at most n basis functions in Bc,Rd is defined by:

δ
1
X ,n(ψ,c) = inf{δ 1

X
(
ψ,PWc,S(ψ)

)
: S⊆ Rd , |S|= n} (5.10)

δ
∞
X ,n(ψ,c) = inf{δ ∞

X
(
ψ,PWc,S(ψ)

)
: S⊆ Rd , |S|= n} (5.11)

When c = 0, we denote simply δ 1
X ,n(ψ) and δ ∞

X ,n(ψ).

Remark 5.6. As noted in Example 5.2, if ψ is c-semiconvex, then

PWc,S(ψ) = PWS(ψ +
c
2

Id)−
c
2

Id .

Hence, for a (c− ε)-semiconvex function ψ , we have

δ
∞
X ,n(ψ,c) = δ

∞
X ,n(ψ +

c
2

Id), δ
1
X ,n(ψ,c) = δ

1
X ,n(ψ +

c
2

Id).

In other words, the error estimation of max-plus projection of semiconvex function using quadratic
basis functions is equivalent to that of max-plus projection of convex function using linear basis func-
tions. By considering the epigraph, the latter approximation is closely related to the approximation of
a convex body by a circumscribed polytope, see an illustration in Figure 5.4.

The error estimates of approximating a convex body using polytopes have been studied by many
authors, see [Hla49, Sch87, Lud99, Bör00, Gru93a, Gru93b]. Following [Gru93a, Gru93b], let C⊂Rd

be a convex body of non empty interior and PC
(n) be the set of polytopes having at most n facets and

circumscribed to C. For P ∈PC
(n), the approximation error of C by P related to the Hausdorff metric

δ H and to the volume difference δV are defined respectively by:

δ
H(C,P) := max

x∈C
min
y∈P
‖x− y‖, δ

V (C,P) := vol(C\P).

Gruber [Gru93a, Gru07] considered the minimal approximation errors with respect to the Hausdorff
metric and the volume difference:

δ
H
n (C) := inf{δ H(C,P) : P ∈PC

(n)}

δ
V
n (C) := inf{δV (C,P) : P ∈PC

(n)}
He established the following asymptotic formulas:
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Theorem 5.1. [Gru93a] Let C ⊂ Rd be a convex body with non empty interior. Suppose that the
boundary of C is of class C 2 and the Gaussian curvature κC is strictly positive. Then,

δ
H
n (C)∼ 1

2
(

ϑd−1

Kd−1

∫
∂C
(κC(x))

1
2 dσ(x))

2
d−1 n

2
1−d , as n→ ∞

where Kd and ϑd denote respectively the volume of the unit ball in Rd and the minimum density of
covering of Rd with Euclidean balls of unit radius (see Theorem 5.6 below).

Theorem 5.2. [Gru93b] Let C ⊂ Rd be a convex body as in Theorem 5.1. Then, there is a constant
δd depending only on d, such that:

δ
V
n (C)∼ δd

2
(
∫

∂C
κC(x)

1
d+1 dσ(x))

d+1
d−1 n

2
1−d , as n→ ∞.

Here, σ is the ordinary surface area measure on the boundary of C.

In both of the proofs of the last two theorems, the boundary ∂C is partitioned into finitely many
pieces, each of which is associated to a supporting hyperplane of C. For each supporting hyperplane
H, a Cartesian coordinate system in H with origin at the intersection point p and the interior unit
normal vector of ∂C at p form a Cartesian coordinate system in Rd . Let P ∈PC

(n). The lower part of
∂C and ∂P with respect to the last coordinate can be represented by the graph of a strongly convex
function f and the graph of supi∈I gi where {gi : i ∈ I} is a finite set of affine minorants of f . Then,
δ H(C,P) and δV (C,P) are estimated through the L1 or the L∞ metric between the strongly convex
function f and the supremum of its affine minorants supi∈I gi, on the Cartesian coordinate system
associated to each supporting hyperplane.

It is not difficult to see that the technique used by Gruber can be adapted directly to obtain similar
asymptotic formulas for the max-plus approximation error of a strongly convex function by the supre-
mum of its affine minorants, as the number of minorants goes to infinity. In fact our problem is simpler
since now we have a universal hyperplane (H = Rd−1) thus a universal Cartesian coordinate system.
Below are the analogous results for the asymptotic semiconvex based max-plus approximation error
estimates:

Theorem 5.3 (L∞ approximation error). Let c ∈R, ε > 0 and let X ⊂Rd denote any full dimensional
compact convex subset. If ψ(x) : Rd → R is (c− ε)-semiconvex of class C 2, then we have:

δ
∞
X ,n(ψ,c)∼ 1

2

(
ϑd

Kd

∫
X
(det(ψ ′′x + cId))

1
2 dx
) 2

d
n−

2
d , as n→ ∞.

Theorem 5.4 (L1 approximation error). Let c, ε , X and ψ(x) be as in Theorem 5.3. Then we have:

δ
1
X ,n(ψ,c)∼ δd

2

(∫
X
(det(ψ ′′x + cId))

1
d+2 dx

) d+2
d

n−
2
d , as n→ ∞.

Here det means determinant.
The proof of these theorems is reported to Section 5.4, it builds on analogous methods and results

of Theorem 5.1 and 5.2 in [Gru93a, Gru93b].
The following theorem is a direct corollary:

Theorem 5.5. Assume that the value function of Problem 5.1 is C 2 and c-semiconvex. Then, for any
max-plus basis method providing an approximation from below of of the value function by a supremum
of n quadratic functions, the L1 and L∞ approximation error are both Ω

( 1
n2/d

)
as n→ ∞.
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Remark 5.7. Theorem 5.5 states that the curse of dimensionality is unavoidable in max-plus basis
methods for certain class of optimal control problems. However, Theorems 5.3 and 5.4 also show that
if the determinant of the Hessian matrix of ψ + c

2 Id is close to zero, then the asymptotic constants will
be close to zero. In that case, an attenuation of the curse of dimensionality should be observed.

5.4 Proof of asymptotic estimates

In this section, we present the proof of Theorems 5.3 and 5.4. The proof follows in essence the
same lines as that of Theorem 5.1 and 5.2 by Gruber [Gru93a, Gru93b]. However, we choose to
include a full proof in order to make the thesis self-contained. Throughout the section, X is a convex
compact in Rd , f : Rd→R a strictly convex function of class C 2. We prove the following asymptotic
L∞ and L1 error estimates:

δ
∞
X ,n( f )∼ 1

2

(
ϑd

Kd

∫
X
(det( f ′′x ))

1
2 dx
) 2

d
n−

2
d , as n→ ∞. (5.12)

δ
1
X ,n( f )∼ δd

2

(∫
X
(det( f ′′x ))

1
d+2 dx

) d+2
d

n−
2
d , as n→ ∞. (5.13)

As noted in Remark 5.6, once the last two formulas are proved, Theorems 5.3 and 5.4 can be deduced
immediately.

5.4.1 Preparations of the proof

We gather in this subsection the notions and theorems needed for the proof. We shall need the
following notion of Bregman distance:

Definition 5.1 ([Brè67]). For any two points x and y of X , the Bregman distance from x to y, associated
to the function f , is defined by

distB(x;y) = f (x)− f (y)−〈∇ f (y),x− y〉. (5.14)

One interpretation of the Bregman distance distB(x;y) is the error at point x by approximating the
convex function f by its affine minorant which is exact at point y. We call y the contact point of the
affine minorant f (y)+〈∇ f (y),x−y〉. Note that the Bregman distance is positive definite (distB(x,y)>
0 and the equality holds if and only if x = y), but it may not be symmetric. Besides, in general the
Bregman distance does not satisfy the triangular inequality.

The hessian matrix of f at point x defines a positive definite quadratic form, denoted by f ′′x . Then
the family of positive definite forms { f ′′x : x ∈ Rd} defines a Riemannian metric and a Riemannian
measure on Rd .

Definition 5.2 (Riemannian metric). Let x,y ∈ Rd . The Riemannian metric between x and y with
respect to the family { f ′′x : x ∈ Rd}, denoted by γ(x,y), is equal to:

γ(x,y) = inf{
∫ 1

0
(u̇′t f ′′ut

u̇t)
1
2 dt|ut ∈ C 1([0,1];Rd),u0 = x,u1 = y}.
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Definition 5.3 (Riemannian measure). The Riemannian measure (area) of a compact J ⊂ Rd with
respect to the family { f ′′x : x ∈ Rd}, denoted by Aγ(J), is defined by:

Aγ(J) :=
∫

J
(det f ′′x )

1
2 dx (dx = dx1 · · ·dxd).

The distance between two sets U,V ⊂ Rd with respect to γ is defined as:

distγ(U,V ) = inf{γ(x,y) : x ∈U,y ∈V}.

For x ∈ Rd and ρ > 0, a Riemannian disc Bγ(x;ρ) centered at x with radius ρ > 0 is the set
{y ∈ Rd : γ(x,y) 6 ρ}, distinguished with an Euclidean disc B(x;ρ) centered at x with radius ρ > 0
which is the set {y ∈ Rd : ‖x− y‖ 6 ρ}. A Bregman disc Bb(x;ρ) centered at x with radius ρ > 0 is
the set {y ∈Rd : distB(y;x)6 ρ}. For a compact J ⊆Rd and ρ > 0, we denote by n(J,ρ), n̂(J,ρ) and
k(J,ρ) respectively the minimal number of Euclidean, Riemannian and Bregman discs of radius ρ to
cover J.

The following asymptotic estimate on the minimal covering number of manifold with Riemannian
discs is essential in the proof of (5.12). It is a direct consequence of Lemma 1 in [Gru93a].

Lemma 5.5 (Corollary of [Gru93a, Lemma 1]). Let J ⊂ Rd be a compact.

n̂(J,ρ)∼ ϑd

Kd

(∫
J
(det f ′′x )

1
2 dx
)

ρ
−d , as ρ → 0 . (5.15)

This lemma uses essentially the continuity between the Euclidean metric and Riemannian metric,
together with the following result on minimum covering with Euclidean discs proved by Hlawka
[Hla49].

Theorem 5.6. [Hla49, Satz 29] Let J be a convex body in Rd of measure v(J), then there is a constant
ϑd independent of J such that:

ϑd = lim
τ→0

n(J,τ)Kdτ
d/v(J).

We shall need the following theorem on optimum quantization in the proof of (5.13):

Theorem 5.7. [Gru07, Thm 33.2] Let J⊆Rd a subset of measure v(J)> 0. Let q be a positive definite
quadratic form on Rd , then:

inf
S⊆Rd ,|S|=m

∫
J

min
t∈S
{q(s− t)} ds∼ δdv(J)

d+2
d (detq)

1
d

1

m
2
d
, as m→ ∞.

Finally, we state some useful assertions that can be checked directly.
Let 0 < ρ0 < 1. By the strict convexity of f and the compactness of X , there is a compact X̃ ⊃ X

such that

distB(y;x)> ρ0, ∀y ∈ X ,x /∈ X̃ . (5.16)

In other words, if there is a set of affine minorants { fi}i=1,...,n such that

δ
∞
X ( f ,sup

i
fi)6 ρ0,
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then the contact points {xi}i=1,...,n are all in X̃ . We may also assume that

γ(x,y)> ρ0, ∀y ∈ X ,x /∈ X̃ . (5.17)

In the following we fix δ0 and X̃ satisfying (5.16) and (5.17).
Let λ > 1. By the continuity of f ′′, for any p ∈ Rd , there is an open convex U 3 p such that:

1
λ 2 f ′′x 4 f ′′p 4 λ

2 f ′′x , ∀ x ∈U. (5.18)

Now let 0 < δ < 1
2 distγ(p,∂U), then there is an open set V ⊂ U containing p such that:

distγ(V,∂U)> δ . (5.19)

5.4.2 Proof of sup norm error asymptotic estimate

We give the proof of L∞ error asymptotic L∞ error estimate (5.12).

Proof. Let λ > 1. By the compactness of X̃ , there are points pl ∈ X̃ , l = 1, . . . ,m with corresponding
neighborhoods Ul , Vl and ρl > 0 such that {U1, . . . ,Um} are all convex and the followings hold:

X̃ ⊂V1∪ . . .Vm, Vl ⊂Ul, l = 1, . . . ,m (5.20)

distγ(Vl,∂Ul)> ρl, l = 1, . . . ,m (5.21)
1

λ 2 f ′′x 4 f ′′l 4 λ
2 f ′′x , ∀x ∈Ul, l = 1, . . . ,m, (5.22)

where f ′′l = f ′′pl
. We proceed by proving several claims.

Claim 1:

x,y ∈Ul,γ(x,y)< distγ(x,∂Ul)⇒ λ−2 6 γ2(x,y)/(x− y)′ f ′′l (x− y)6 λ 2 .

Let x,y ∈Ul . By the convexity of Ul , the straight line ut = x+ t(y− x), t ∈ [0,1] is included in Ul .
Hence,

γ(x,y)6
∫ 1

0
((x− y)′ f ′′ut

(x− y))
1
2 dt

6 λ

∫ 1

0
((x− y)′ f ′′l (x− y))

1
2 dt by (5.22)

= λ ((x− y)′ f ′′l (x− y))
1
2 .

If γ(x,y) < distγ(x,∂Ul), then all geodesic lines (with respect to the Riemannian metric) between x
and y are included in Ul . Consider a geodesic line ut : [0,1]→Ul between x and y, we have:

((x− y)′ f ′′l (x− y))
1
2 6

∫ 1

0
(u̇′t f ′′l u̇t)

1
2 dt

6 λ

∫ 1

0
(u̇′t f ′′ut

u̇t)
1
2 dt by (5.22)

= λγ(x,y) .

We then proved Claim 1.
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Claim 2:

x,y ∈Ul,γ(x,y)< distγ(x,∂Ul)⇒ 1
2λ 4 6 distB(x,y)/γ(x,y)2 6 λ 4

2 .

Let x,y ∈Ul . By Taylor’s formula, there is ξ ∈ [0,1] such that:

distB(x,y) =
1
2
(x− y)′ f ′′x+ξ (y−x)(x− y) (5.23)

By (5.22) and Claim 1:

distB(x,y) =
1
2
(x− y)′ f ′′x+ξ (y−x)(x− y)

6
1
2

λ
2(x− y)′ f ′′l (x− y) by (5.22)

6
1
2

λ
4
γ(x,y)2 by Claim 1.

The same,

distB(x,y) =
1
2
(x− y)′ f ′′x+ξ (y−x)(x− y)

>
1

2λ 2 (x− y)′ f ′′l (x− y)

>
1

2λ 4 γ(x,y)2

We then proved Claim 2.

Claim 3:

There is M > 1 such that
γ(x,y)2

distB(x,y)
6 M, ∀x,y ∈ X̃ . (5.24)

Claim 3 follows directly from Claim 2 and the compactness of X̃ .

Claim 4:

Let ρ <min{ρ0,ρ1, . . . ,ρm}2/M. If { fi}n
i=1 is a set of affine minorants with contact points {x1, . . . ,xn}

such that

δ
∞
X ( f ,

n
sup
i=1

fi)6 ρ, (5.25)

then X is covered by n Riemannian discs with centers {x1, . . . ,xn} ⊆ X̃ and radius λ 2√2ρ .
By the definition of Bregman distance, the inequality (5.25) implies that

max
y∈X

min
i=1,...,n

distB(y;xi)6 ρ.

Thus by (5.16) we may assume that {x1, . . . ,xn} ⊂ X̃ . Moreover, for all y ∈ X , there is i ∈ {1, . . . ,n}
such that distB(y;xi)6 ρ . By Claim 3, we have:

γ(xi,y)6
√

Mρ 6 min{ρ1, . . . ,ρm}.
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By (5.20), there is l ∈ {1, . . . ,m} such that xi ∈Vl . Now using (5.21) we obtain that

γ(xi,y)< ρl < distγ(Vl,∂Ul)6 distγ(xi,∂Ul).

Thus by Claim 2, we obtain that
γ(xi,y)6 λ

2
√

2ρ.

We then proved Claim 4.

Claim 5:

Let ρ < min{ρ0, . . . ,ρm} . If X is covered by n Riemannian discs of radius ρ with centers {x1, . . . ,xn},
then

δ
∞
X ( f ,

n
sup
i=1

fi)6
ρ2λ 4

2

where fi(x) = f (xi)+ 〈∇ f (xi),x− xi〉, for i = 1, · · · ,n.
For all y ∈ X , there is i ∈ {1, . . . ,n} such that γ(xi,y) 6 ρ . By (5.17) we may assume that

{x1, . . . ,xn} ⊂ X̃ . Let l ∈ {1, . . . ,m} such that xi ∈Vl . Then by (5.21) we obtain that:

γ(xi,y)< ρl < distγ(Vl,∂Ul)6 distγ(xi,∂Ul).

Now using Claim 2 we deduce that:

distB(xi,y)6
λ 4

2
γ(xi,y)2 6

ρ2λ 4

2
.

We then proved Claim 5.
By Claim 4 et Claim 5, for ρ > 0 sufficiently small we have:

n̂(X ,
√

2ρλ
2)6 k(X ,ρ), k(X ,

ρ2λ 4

2
)6 n̂(X ,ρ)

i.e. for τ sufficiently small,

n̂(X ,
√

2τλ
2)6 k(X ,τ)6 n̂(X ,

√
2τ

λ 2 ).

By Lemma 5.5, we obtain that:

n̂(X ,
√

2τλ
2)∼ ϑdAγ(X)/Kd(

√
2τλ

2)d , as τ → 0

n̂(X ,

√
2τ

λ 2 )∼ ϑdAγ(X)/Kd(

√
2τ

λ 2 )d , as τ → 0

Since λ > 1 is arbitrary, it follows that:

k(X ,τ)∼ ϑdAγ(X)/Kd(2τ)
d
2 , as τ → 0.

Denote β = (ϑdAγ(X)/Kd)
d
2 /2. We then have

τk(X ,τ)
2
d ∼ β , as τ → 0. (5.26)
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Consider the decreasing sequence τi =
1
i with i ∈ N. Then there is an increasing sequence of integers

ni with i ∈ N such that ni = k(X ,τi). Let n ∈ [ni,ni+1), then

τi+1 < δ
∞
X ,n( f )6 τi.

It follows that
τi+1n

2
d
i

n
2
d

< δ
∞
X ,n( f )6

τin
2
d
i+1

n
2
d

.

Note that (5.26) implies that τin
2
d
i+1 ∼ β and τi+1n

2
d
i ∼ β as i goes to infinity. In consequence,

δ
∞
X ,n( f )∼ β

n
2
d

where
β =

1
2
( ϑd

Kd

∫
X
(det f ′′)

1
2 dx
) 2

d .

5.4.3 Proof of average error asymptotic estimate

We give the proof of asymptotic L1 error estimate (5.13).

Proof. Let λ > 1. By the compactness of X , there are points pl ∈ X , l = 1, . . . ,m with corresponding
neighborhoods Ul , Vl and ρl > 0 such that {U1, . . . ,Um} are convex and the followings hold:

X ⊂V1∪ . . .Vm, Vl ⊂Ul, l = 1, . . . ,m (5.27)

distγ(Vl,∂Ul)> ρl, l = 1, . . . ,m (5.28)
1
λ

f ′′x 4 f ′′l 4 λ f ′′x ,
1
λ

det f ′′x 6 det f ′′l 6 λ det f ′′x ∀x ∈Ul, l = 1, . . . ,m. (5.29)

where f ′′l = f ′′pl
. We may assume

X = ∪
l
Vl ; Vi∩Vj = /0, i 6= j. (5.30)

Let
ε = min{ρ1, . . . ,ρm}.

Now for each l ∈ {1, . . . ,m}, there is a compact Jl ⊂Vl such that

dist(Jl,bdUl)> ε , (5.31)∫
Jl

(det fx)
1

d+2 dx >
1
λ

∫
Vl

(det f ′′x )
1

d+2 dx . (5.32)

It follows that

X ⊃ ∪m
l=1Jl ; Ji∩ J j = /0, i 6= j, (5.33)

and
m

∑
l=1

∫
Jl

(det fx)
1

d+2 dx >
1
λ

∫
X
(det f ′′x )

1
d+2 dx . (5.34)
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Claim 1:

For sufficiently large n,

δ
1
X ,n( f )>

δ

2λ
3d+3

d
(
∫

X
(det f ′′)

1
d+2 )

d+2
d

1

n
2
d
. (5.35)

Let { fi}i=1,...,n be a set of affine minorants of f given by the contact points {si : i = 1, . . . ,n} such that

δ
1
X ,n( f ) =

∫
X

(
f (x)− n

sup
i=1

fi(x)
)

dx.

For i ∈ {1,2, · · · ,n}, denote:

Fi := {x ∈ X :
n

sup
j=1

f j(x) = fi(x)}.

For each l ∈ {1,2, · · · ,m}, denote:

Kn,l := {i : Fi∩ Jl 6= /0}, kn,l = |Kn,l|.

By (5.31), we know that for sufficiently large n:

si ∈Ul, ∀i ∈ Kn,l, l ∈ {1, . . . ,m}. (5.36)

By the strict convexity of f , we know that as n goes to infinity:

kn,l → ∞, ∀l ∈ {1,2, . . . ,m}. (5.37)

By (5.33), we know that as n goes to infinity:

kn,1 + kn,2 + · · ·+ kn,m 6 n. (5.38)

The L1 approximation error on the compact Jl is given by:

∫
Jl

( f (x)− n
sup
i=1

fi(x))dx

= ∑
i∈Kn,l

(
∫

Fi∩Jl

f (x)− f (si)−〈∇ f (si),x− si〉)dx.

Applying Taylor’s formula and using (5.36), the convexity of Ul and (5.29), we know that for all
l = 1, . . . ,m:

∫
Jl

( f (x)− n
sup
i=1

fi(x))dx

> ∑
i∈Kn,l

∫
Fi∩Jl

1
2λ

(x− si)
′ f ′′l (x− si)dx
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Hence:

δ
1
X ,n( f )> δ

1
X( f ,

n
sup
i=1

fi)

>
m

∑
l=1

∫
Jl

( f (x)− n
sup
i=1

fi(x))dx by (5.33)

>
1

2λ

m

∑
l=1

∑
i∈Kn,l

∫
Fi∩Jl

(x− si)
′ f ′′l (x− si)dx

>
1

2λ

m

∑
l=1

∫
Jl

min
i∈Kn,l

(x− si)
′ f ′′l (x− si)dx

>
1

2λ

m

∑
l=1

inf
S⊂Ed

|S|=kn,l

∫
Jl

min
y∈S

(x− y)′ f ′′l (x− y)dx

Now we apply the asymptotic formula given in Theorem 5.7. For sufficiently large n, as kn,l → +∞

we have:

δ 1
X ,n( f ) >

δd

2λ 2 ∑
l

v(Jl)
d+2

d (det f ′′l )
1
d k
− 2

d
n,l

=
δd

2λ 2 (
kn,1 + · · ·+ kn,m

kn,1 + · · ·+ kn,m
)

m

∑
l=1

kn,l
(
v(Jl)(det f ′′l )

1
d+2 k−1

n,l

) d+2
d

=
δd

2λ 2 (kn,1 + · · ·+ kn,m)
m

∑
l=1

kn,l
(
v(Jl)(det f ′′l )

1
d+2 k−1

n,l

) d+2
d

kn,1 + · · ·+ kn,m

Recall that for a convex function g from R to R, for all y1, . . . ,ym ∈ R and k1, . . . ,km > 0 we have:

m

∑
l=1

klg(yl)

kl + · · ·+ km
> g(

m

∑
l=1

klyl

k1 + · · ·+ km
).

Thus,

δ
1
X ,n( f )>

δd

2λ 2 (kn,1 + · · ·+ kn,m)
( m

∑
l=1

v(Jl)(det f ′′l )
1

d+2

kn,1 + · · ·+ kn,m

) d+2
d

=
δd

2λ 2 (kn,1 + · · ·+ kn,m)
− 2

d
( m

∑
l=1

v(Jl)(det f ′′l )
1

d+2
) d+2

d

>
δdn−

2
d

2λ 2

( m

∑
l=1

∫
Jl

(det f ′′l )
1

d+2 dx
) d+2

d by (5.38)

>
δdn−

2
d

2λ 2+ 1
d

( m

∑
l=1

∫
Jl

(det f ′′x )
1

d+2 dx
) d+2

d by (5.29)

>
δdn−

2
d

2λ 2+ 1
d +

d+2
d

(∫
X
(det f ′′x )

1
d+2 dx

) d+2
d by (5.34)

We then proved Claim 1.

Claim 2:
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For sufficiently large n,

δ
1
X ,n( f )6

λ
2d+3

d δdn−
2
d

2
(∫

X
(det f ′′x )

1
d+2 dx

) d+2
d (5.39)

For l = 1, . . . ,m, let

τl =

∫
Vl
(det f ′′x )

1
d+2 dx∫

X(det f ′′x )
1

d+2 dx
(5.40)

and kn,l = bτlnc. We have:
kn,1 + kn,2 + · · ·+ kn,m 6 n (5.41)

kn,l >
τln
λ

, l = 1, . . . ,m, as n→+∞ (5.42)

kn,l →+∞, l = 1, . . . ,m, as n→+∞ (5.43)

For each l = 1, . . . ,m, choose kn,l points {sn,l,i|i = 1,2, · · · ,kn,l} ⊆ Rd such that∫
Vl

min
i6kn,l

(x− sn,l,i)
′ f ′′l (x− sn,l,i)dx = inf

|S|=kn,l

∫
Vl

min
s∈S

(s− x)′ f ′′l (s− x)dx. (5.44)

For each point sn,l,i, we take the affine function:

fn,l,i(x) = f (sn,l,i)+ 〈∇ f (sn,l,i),x− sn,l,i〉.

Therefore,

δ
1
X ,n( f )6

∫
X

f (x)− sup
l,i

fn,l,i(x)dx

=
m

∑
l=1

∫
Vl

f (x)− sup
l,i

fn,l,i(x)dx by (5.30)

6
m

∑
l=1

∫
Vl

f (x)− sup
i6kn,l

fn,l,i(x)dx

=
m

∑
l=1

∫
Vl

min
i6kn,l

f (x)− f (sn,l,i)−〈∇ f (sn,l,i),x− sn,l,i〉dx.

Again by Taylor’s formula, the last term equals to

m

∑
l=1

∫
Vl

min
i6kn,l

1
2
(x− sn,l,i)

′ f ′′sn,l,i+ξ (x)(x−sn,l,i)
(x− sn,l,i)dx

where ξ : Rd → [0,1]. By (5.28), we know that for sufficiently large n, sn,l,i ∈Ul for all i = 1, . . . ,kn,l .
Therefore we deduce from the convexity of Ul that sn,l,i + ξ (x)(x− sn,l,i) ∈ Ul for all x ∈ Vl , l ∈
{1, . . . ,m} and i ∈ {1, . . . ,kn,l}. Now using (5.29) we get:

δ 1
X ,n( f ) 6

m

∑
l=1

∫
Vl

min
i6kn,l

1
2
(x− sn,l,i)

′ f ′′sn,l,i+ξ (x)(x−sn,l,i)
(x− sn,l,i)dx

6 λ

2

m

∑
l=1

∫
Vl

min
i=16kn,l

(x− sn,l,i)
′ f ′′l (x− sn,l,i)dx
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Now by the asymptotic formula in Theorem 5.7, we get:

δ
1
X ,n( f )6

λ 2δd

2

m

∑
l=1

v(Vl)
d+2

d (det f ′′l )
1
d k
− 2

d
n,l

Therefore,

δ
1
X ,n( f )6

λ 2+ 2
d δd

2 ∑
l

v(Vl)
d+2

d (det f ′′l )
1
d (τln)−

2
d

=
λ

2d+2
d δd

2 ∑
l

(
v(Vl)(det f ′′l )

1
d+2
) d+2

d (τln)−
2
d

6
λ

2d+2
d + 1

d δd

2 ∑
l

(∫
Vl

(det f ′′x )
1

d+2 dx
) d+2

d (τln)−
2
d by (5.29)

=
λ

2d+3
d δdn−

2
d

2 ∑
l

(∫
Vl

(det f ′′x )
1

d+2
)(∫

X
( f ′′x )

1
d+2 dx

) 2
d by (5.40)

=
λ

2d+3
d δdn−

2
d

2
(∫

X
(det f ′′x )

1
d+2 dx

) d+2
d

Then we proved Claim 2.
Since (5.35) and (5.39) are shown for arbitrary λ > 1, we deduce the asymptotic formula (5.13).



CHAPTER 6
A re�nement of McEneaney's curse

of dimensionality free method

The curse of dimensionality free method, introduced by McEneaney for infinite horizon switched
optimal control problems, is a special interesting class of max-plus basis methods by its cubic growth
rate with respect to the dimension of the state space. In this chapter we focus on the algorithmic
aspects of McEneaney’s curse of dimensionality free method. We show that the optimal pruning
problem, which is a critical step in the implementation of the method, can be formulated as a con-
tinuous version of the facility location or k-center combinatorial optimization problems, in which the
connection costs arise from a Bregman distance. We derive from our approach a refinement of the
curse of dimensionality free method introduced previously by McEneaney, with a higher accuracy for
a comparable computational cost.

This chapter extends the algorithmic part of the conference article [GMQ11].

6.1 Introduction

In the previous chapter, we established a negative result showing that the curse of dimensionality
is inherent to the family of max-plus basis methods based on c-semiconvex transforms. However,
this theoretical negative result is contrasted by the experimental efficiency of McEneaney’s curse
of dimensionality free method, firstly developed in [McE07] (see also [MK10, MDG08, SGJM10]),
which often give approximations of an acceptable accuracy for a modest amount of basis functions.
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In its original form [McE07], the method applies to an infinite-horizon optimal switching problem
involving M linear quadratic models such that the corresponding HJ PDE is written as:

0 = H(x,∇V ) = max
m∈M
{Hm(x,∇V )} (6.1)

where M = {1,2, · · · ,M} and each Hm is a linear/quadratic form, originating from a linear quadratic
optimal control problem:

Hm(x, p) = (Amx)′p+
1
2

x′Dmx+
1
2

p′Σm p,

where (Am,Dm,Σm) are matrices meeting certain conditions.
The solution of (6.1) is approximated by iterating a finite-horizon semigroup until a large enough

propagation horizon is reached. This finite-horizon semigroup itself is approximated by a semigroup
for a system where the switch is only allowed to happen at the integer multiples of a time step τ .
The value function V is then approximated by a supremum of quadratic forms which are obtained by
solving Riccati equations. If we keep all the other parameters fixed, the growth of the execution time is
only cubic as the dimension grows, related to the solution of Riccati equations. However, the number
of quadratic forms is multiplied by the number of systems M at each iteration thus the complexity
still grows exponentially as the required accuracy tends to zero. Hence the curse of dimensionality is
replaced by a curse of complexity.

In [MDG08], the method has been extended directly to a larger problem class where the Hamilto-
nian is now given or well-approximated by pointwise maximum of linear quadratic functions (possibly
with linear terms). More specifically, the corresponding HJ PDE is now

0 = H(x,∇V ) = max
m∈M
{Hm(x,∇V )} , (6.2)

where M = {1,2, · · · ,M} and each Hm has the form:

Hm(x, p) = (Amx)′p+
1
2

x′Dmx+
1
2

p′Σm p+(lm
1 )
′x+(lm

2 )
′p+α

m ,

where (Am,Dm,Σm, lm
1 , l

m
2 ,α

m) are parameters of proper dimension meeting certain conditions. The
motivation for this problem class is that pointwise maximum of quadratic functions possibly with
linear terms can approximate, arbitrarily closely, any semiconvex function. In [MDG08], the authors
developed an SDP based pruning method in order to attenuate the curse of complexity. In this way,
high dimensional instances (with state dimensions from 6 to 15) inaccessible by other methods could
be solved [MDG08, SGJM10].

In this chapter, we focus our attention on the algorithmic aspects of McEneaney’s curse of dimen-
sionality free method. In Section 6.2, we restate the problem and the assumptions in order to make the
thesis self-contained. In Section 6.3 we review the principle of the method and the SDP based pruning
algorithm proposed in [MDG08]. Then, we show in Section 6.4.2 that the optimal pruning problem
can be formulated as a continuous version of the k-median or k-center problem, depending on the
choice of the norm. The discrete versions of these problems are NP-hard. Hence, we propose several
heuristics (combining facility location heuristics and Shor SDP relaxation scheme). Experimental
results are given in Section 6.5, showing that by combining the primal version of the method with
improved pruning algorithms, a higher accuracy is reached for a similar running time, by comparison
with [McE07, MDG08].
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6.2 Problem class

We consider the optimal control problem for switched linear quadratic system studied in [MDG08]
(see also [McE07, MK10]). Let d be the dimension of the state space and k be the dimension of the
control space. Let M = {1,2, . . . ,M}. For each m ∈M , there is a linear quadratic optimal control
problem with matrix parameters given by Am,Dm ∈ Rd×d , σm ∈ Rd×k, lm

1 , l
m
2 ∈ Rd , and γ,αm ∈ R.

The infinite horizon switched optimal control problem is:

Problem 6.1.
V (x) = sup

u∈W
sup

µ∈D∞

sup
T<∞

J(x,T ;u,µ)

where

J(x,T ;u,µ) =
∫ T

0
Lµ(s)(x(s))− γ2

2
|u(s)|2 ds ,

D∞

.
= {µ : [0,∞)→M : measurable} ,

W .
= Lloc

2 ([0,∞);Rk) ,

Lm(x) =
1
2

x′Dmx+(lm
1 )
′x+α

m, m ∈M .

and the state dynamics are given by

ẋ(s) = Aµ(s)x(s)+σ
µ(s)u(s)+ lµ(s)

2 ; x(0) = x ∈ Rd . (6.3)

The problem has its origin in H∞ control of nonlinear systems, see [Sor96, McE98, Ali11]. The
control (u(·),µ(·)) here should be identified with the disturbance term in a H∞ control system without
active control. The function L(·)(·) : M ×Rd→R corresponds to the output or response in H∞ control
system. The parameter γ is the H∞ attenuation bound and the value function V is the available storage.
Denote by St the evolution semigroup associated to Problem 6.1. That is, for a function φ : Rd → R

and x ∈ Rd , we have
St [φ ](x) = sup

u∈Wt

sup
µ∈Dt

J(x, t;u,µ)+φ(x(t))

where

Dt
.
= {µ : [0, t]→M : measurable} , (6.4)

Wt
.
= Lloc

2 ([0, t];Rk) , (6.5)

and x(·) : [0, t]→ Rd absolutely continuous satisfies

ẋ(s) = Aµ(s)x(s)+σ
µ(s)u(s)+ lµ(s)

2 , s ∈ [0, t]; x(0) = x .

For every m ∈M , denote

Σ
m =

1
γ2 σ

m(σm)′ .

The corresponding Hamiltonian is:

H(x, p) = max
m∈M
{Hm(x, p)}, (6.6)



134 Chapter 6. A re�nement of McEneaney's curse of dimensionality free method

where for each m, Hm has the form:

Hm(x, p)=
1
2

x′Dmx+
1
2

p′Σm p+(Amx)′p+(lm
1 )
′x+(lm

2 )
′p+α

m . (6.7)

The concept of H is constructed so as to resemble the Hamiltonian of some given nonlinear control
problem which has a finite solution. We suppose that H is an approximation of H̃ and problem

0 =−H̃(x,∇V ), V (0) = 0 (6.8)

has finite value. Besides, the following assumptions are first made in [MDG08].

Assumption 6.1.

• Assume there exists unique viscosity solution Ṽ to (6.8) in QK for some K ∈ (0,∞), where

QK = {φ : Rd → R : φ is semiconvex and 0 6 φ(x)6 K/2|x|2, ∀x ∈ Rd}

is the domain of semigroup (St)t .

• Assume that
H(x, p)6 H̃(x, p), x, p ∈ Rd .

• Assume there exists cA > 0 such that

x′Amx 6−cA|x|2, ∀m ∈M ,x ∈ Rd .

• Assume H1(x, p) has coefficients satisfying the following: l1
1 = l1

2 = 0; α1 = 0; D1 � 0; and
γ2/c2

σ > cD/c2
A, where cD is such that D1 4 cDId and cσ := |σ1|.

• Assume that system (6.3) is controllable in the sense that given x,y ∈ Rd and T > 0, there exist
processes u ∈W and µ measurable with range in M such that x(T ) = y when x(0) = x and one
applies controls u and µ .

• Assume there exist c1,c2 < ∞ such that for all ε ∈ (0,1], x ∈Rd , and all ε-optimal pair (µε , uε)
for problem 6.1 with initial state x, one has

‖uε‖2
L2[0,T ] 6 c1 + c2|x|2, ∀T > 0 .

The following theorem shows the existence of the value function and the convergence of the
semigroup as time horizon tends to infinity.

Theorem 6.2 ([McE09]). Under Assumption 6.1, the value function V defined in Problem 6.1 is the
unique continuous solution of V = ST [V ] in the class QK for any T > 0. Besides, V is also the unique
viscosity solution in the class QK of the static HJ PDE:

0 =−H(x,∇V ), ∀x ∈ Rd ; V (0) = 0 . (6.9)

Further, given any V0 ∈ QK such that 0 6V0 6V , we have

V = lim
T→∞

ST [V0] (6.10)

uniformly on compact sets.
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6.3 Principle of the algorithm

6.3.1 Single semigroup operator

For every m ∈M , define the semigroup (Sm
t )t as follows. For a function φ : Rd → R and x ∈ Rd ,

we have
Sm

t [φ ](x) := sup
u∈W

J(x, t;u,m)+φ(x(t))

where x(·) : [0, t]→ Rd satisfies

ẋ(s) = Amx(s)+σ
mu(s)+ lm

2 , s ∈ [0, t]; x(0) = x .

Then it is clear that for all function φ , all t > 0 and m ∈M , we have St [φ ]6 Sm
t [φ ]. Since we assume

QK as the domain of St , we know that QK is also the domain of Sm
t .

6.3.2 Computation of single semigroup operator

The propagation of a quadratic function φ by Sm
τ reduces to solving a differential Riccati equation

(DRE). Suppose there are only quadratic terms, i.e., lm
1 = 0, lm

2 = 0,αm = 0. Let φ(x) = 1
2 xT P0x, then

Sm
t [φ ](x) =

1
2 xT P(t)x, where P(t) satisfies the following differential Riccati equation

Ṗ(t) = (Am)′P(t)+P(t)Am +P(t)ΣmP(t)+Dm, P(0) = P0. (6.11)

Moreover, it is well-known that one can recover the solution of a DRE from a system of Hamiltonian
linear differential equations (see, e.g., [Rei72]). More specifically, the solution of (6.11) also satisfies
P(t) = Y (t)X(t)−1 and (X(t),Y (t)) are the solution of:

(
Ẋ
Ẏ

)
=

(
−Am −Σm

Dm (Am)′

)(
X
Y

)
X(0) = Id , Y (0) = P0

. (6.12)

We denote by A the matrix coefficient in the above linear system. Note that the invertibility of X(t)
can be derived from the fact that the value function V is finite. Given a fixed time step τ > 0, the
fundamental solution exp(A τ) of the previous linear system satisfies:(

X(τ)
Y (τ)

)
= exp(A τ)

(
Id
P0

)
.

In the presence of linear or constant terms in the control system or in the quadratic function, the
problem can be easily transformed into a purely quadratic one by adding a constant state variable.
The above analysis shows that, given a fixed propagation time τ , computing Sm

τ [φ ], for every quadratic
form φ , reduces to a matrix multiplication and an inverse operation, which can be done in O(d3)
incremental time.

6.3.3 Max-plus based approximation

We review the basic steps of the max-plus algorithm proposed in [McE07, MDG08] to approx-
imate the value function V . Choose an initial function V0 inferior to the value function V . First we
approximate V by ST [V0] for some sufficiently large T . We then choose a time-discretization step τ > 0
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and a number of iterations N such that T = Nτ . For each k = 0, . . . ,N, denote V k
h the approximation

of Skτ [V0]. The algorithm iterates as follows. For k = 1, . . . ,N,

Skτ [V0]'V k
h = S̃τ [V k−1

h ] := sup
m∈M

Sm
τ [V

k−1
h ].

It follows that if V k−1
h is the pointwise maximum of |nk−1| quadratic functions, then V k

h is the pointwise
maximum of M|nk−1| quadratic functions. At the end of N iterations, we get our approximated value
function represented by:

V ' SNτ [V0]' {S̃τ}N [V0] = sup
i1,··· ,iN∈M

SiN
τ · · ·Si1

τ [V
0].

If we choose V0 as a quadratic function, then the approximated value function at the end of N iterations
will be the supremum of |M |N quadratic functions. The computational growth in the space dimension
is cubic, as shown in Section 6.3.2. However, the number of quadratic forms grows by a factor of
M at each iteration. This so-called curse of complexity can be reduced by performing a pruning
process at each iteration of the algorithm to remove some quadratic functions. More precisely, let
F = {1,2, . . . ,n f } and {φi}i∈F be a finite set of quadratic functions and

φ = sup
i∈F

φi. (6.13)

A pruning operation P applied to φ produces a subapproximation of φ by selecting a subset J ⊂ F :

φ 'P[φ ] = sup
j∈J

φ j.

If we take into account the pruning procedure, then the value function V is approximated by

V ' SNτ [V0]' {P ◦ S̃τ}N [V0] .

Remark 6.1. In [McE07] and [MDG08], the approximated semigroup is propagated in a dual space.
Here we consider the primal curse of dimensionality free method: it is equivalent if no pruning is
performed, but it avoids the use of dual representations.

6.3.4 Error bound of the algorithm

We restate the error bound of the algorithm proved by McEneaney in [McE09]. For this, we need
to add two more additional assumptions.

Assumption 6.3. Assume
σ

m = σ , m ∈M .

Assumption 6.4. Assume there exist T , c1 > 0 such that for all x ∈ Rd , all ε ∈ (0,1], and all µε ,uε

which are ε-optimal for Problem 6.1, one has∫ T

0
Lµε (t)(xε(t))dt > c1

∫ T

0
|xε(t)|2 dt, ∀T > T ,

where xε satisfies ẋε(t) = Aµε (t)xε(t)+σ µε (t)uε(t)+ lµε (t)
2 ,x(0) = x.
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Theorem 6.5. [McE09] Under Assumption 6.1 and Assumption 6.4, given any V0 ∈ QK such that
0 6V0 6V , there is K1 > 0 such that we have

0 6V (x)−ST [V0](x)6 K1/T (1+ |x|2), ∀x ∈ Rd ,T > T . (6.14)

Under Assumption 6.1 and 6.3, there is a constant K2 > 0 such that for sufficiently small τ > 0

0 6 ST [V0](x)−{S̃τ}N [V0](x)6 K2(M+1)4(1+ |x|2)(1+T )τ, ∀x ∈ Rd ,T > 0. (6.15)

We will see in Chapter 7 that Assumption 6.3 is not necessary to obtain (6.15) (see Section 7.8.1).

6.4 SDP based pruning algorithms

We have seen that the number of quadratic functions grows exponentially with respect to the
number of iterations N. To reduce this curse of complexity, a pruning procedure is needed at each it-
eration. Some SDP relaxation based pruning method was proposed in [MDG08] to reduce the number
of quadratic forms. After a quick review of their pruning algorithm, we discuss improvements of this
pruning method, still partly SDP based, but now exploiting the combinatorial nature of the problem.
Let F = {1,2, . . . ,n f } and {φi}i∈F be a finite set of quadratic functions. Suppose that n f is too large
and we want to select some of the quadratic functions in order to approximation the function φ defined
in (6.13).

6.4.1 SDP based pruning method

We review in this subsection the pruning algorithm proposed in [MDG08]. Roughly speaking, to
each basis function φ j(x) we associate an importance metric :

ν j = max
x∈Rd

min
j′ 6= j

(φ j(x)−φ j′(x))/(1+ |x|2) . (6.16)

Then ν j is the normalized L∞ error caused by pruning the function φ j(x). In some sense the bigger ν j

is, the more useful the function φ j(x) is. In particular, when ν j 6 0 the function φ j(x) is dominated by
the others and it can be pruned without generating any approximation error. Let

Q j′
j =

1
2
[ c j− c j′ bT

j −bT
j′

b j−b j′ A j−A j′

]
= Q j−Q j′ .

The problem in (6.16) is equivalent to:

ν j= max
ν∈R;y∈Rd+1

{ν : y1 6= 0;‖y‖= 1;yT Q j′
j y > ν ,∀ j′ 6= j}. (6.17)

This nonconvex QCQP(quadratically constrained quadratic program) [BV04] has its SDP relaxation
given by:

ν j= max
ν∈R,Y<0

{
ν

∣∣∣∣∣ Y11 > 0; Tr(Y ) = 1; Y < 0;
Tr(Y Q j′

j )> ν , ∀ j′ 6= j.

}
. (6.18)

Then ν j is an upper bound of the importance metric ν j. In [MDG08], the authors proposed to sort
all the upper bounds {ν j : j ∈ F} and to pick up the k first ones. We call their method the sort upper
bound method.



138 Chapter 6. A re�nement of McEneaney's curse of dimensionality free method

6.4.2 Reduction of pruning to k-center and k-median problems for a Bregman
type distance

We first give a general formulation for the pruning problem appearing in the curse of dimen-
sionality free methods. To measure the approximation error, we introduce a Bregman type distance
distφ (x; j) between each point x ∈ Rd and each basis function φ j(·), such that for all x ∈ Rd the fol-
lowing two conditions hold:

∃ j0 ∈ F, s.t. distφ (x; j0) = 0;

i, j ∈ F, distφ (x; i)6 distφ (x; j)⇔ φ j(x)6 φi(x)

In other words, the distance distφ (x; j) measures the loss at point x caused when approximating φ(·)
by φ j(·). For example, the simplest choice is to let distφ (x; j) = φ(x)−φ j(x). Consider a compact set
X ⊂ Rd on which we measure the loss. One may minimize the total loss (L1 metric) or the maximal
loss (L∞ metric) on X .

• L1 metric and k-median problem

δ
1
k (φ) = min

S⊂F,|S|=k

∫
X
[min

j∈S
distφ (x; j)]dx . (6.19)

• L∞ metric and k-center problem

δ
∞
k (φ) = min

S⊂F,|S|=k
max
x∈X

[min
j∈S

distφ (x; j)] . (6.20)

We recognize in (6.19) and (6.20) the classical k-median and the k-center facility location problem
with continuous demand area and discrete service points. The facility location problem, discrete or
continuous, is known to be NP-hard even with euclidean distance. Besides, we remark that a subprob-
lem of Problem (6.19) is the volume computation for polytopes, which is known to be #P-hard. To
the best of our knowledge, the only few references that discuss this general class of location problems
replace the continuous demand with a discrete one with large number of points, see [DD97]. In the
following, we consider a specific case and propose a method based on SDP relaxation to generate
discrete points.

6.4.3 Re�nements of SDP based pruning method

We consider the following normalized Bregman type distance function, following [MDG08],

distφ (x; j) =
φ(x)−φ j(x)

1+ |x|2
.

The SDP relaxation (6.18) provides not only an upper bound on the importance metric but also a
rather simple way to generate feasible solutions.

Suppose that (Y ,ν) is a solution of program (6.18). We use the randomization technique [Fer00]
to get feasible points: we pick up y as a Gaussian random variable satisfying y ∼ N (0,Y ). Then
over this distribution, in (6.17) the constraints are satisfied and the maximum is reached on average.
By sampling y a sufficient number of times, we get a y close to the optimal solution such that the
inequality constraints in (6.17) are all satisfied. Then, setting x = (y2/y1, . . . ,yd+1/y1)

′ provides a
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lower bound of (6.16). The proposed procedure provides in practice a good lower bound, although
there is no theoretical guarantee in the present generality.

For each j ∈ F , we sample an equal number of points following the optimal solution of the cor-
responding SDP program. By this randomization technique, we get a discrete set X ′ which in some
sense reflect rather well the importance of each basis function. We replace the compact set X by this
discrete set X ′ and seek to minimize the total loss on X ′. This gives the discrete k-median problem:

δ = min
S⊂F,|S|=k

∑
x∈X ′

[min
j∈S

distφ (x; j)] . (6.21)

This central problem in combinatorial optimization has seen a succession of papers designing approx-
imations algorithms.

Based on the above observation, we propose the following pruning algorithms.

6.4.3.a 'sort lower bound' For each basis function φ j(x) we calculate the lower bound ν j of the
importance metric by:

ν j = max
x∈X ′

min
j′ 6= j

(φ j(x)−φ j′(x))/(1+ |x|2) .

Then the sort lower bound method consists in sorting all of the lower bounds {ν j, j ∈ F} and keep
the k first ones.

Our two last pruning methods are merely two heuristics for the k-median problem (6.21).

6.4.3.b 'J-V facility location' Lin and Vitter [LV92] proved that the constant factor approxima-
tion for general k-median problem is NP-hard. For metric distance, Jain and Vazirani [Vaz01] pro-
posed a primal-dual 6-approximation algorithm. This algorithm is interesting not only due to its con-
stant factor, but also because it is combinatorial (there is no need to solve a linear program). Although
the constant factor approximation no longer holds for the present Bregman type distances (which are
not metric in the usual sense), we implemented the primal-dual algorithm for the sake of compari-
son. The execution time of the primal-dual algorithm is O(m(logm)(log |X ′|L)), here m = |X ′|n f and
L = max{distφ (x; j) : x ∈ X ′, j ∈ F}. In the present context, it is used as an heuristic (without any
bound estimates).

6.4.3.c 'greedy facility location' The fourth method is the greedy heuristic. Remember that
the function to be minimized in the facility location problem is supermodular, which implies that the
greedy heuristic has a bound estimate (even without the triangular inequality on the distance function).
Let δ be the optimal value of (6.21) and δG be the value of a particular solution constructed by the
greedy heuristic, then we have [NWF78]:

δG 6 (1−α
k)δ +α

k(max
j∈F

∑
x∈X ′

distφ (x; j)), (6.22)

where α = k−1
k . The execution time of the greedy heuristic is O(km).

6.5 Experimental results

6.5.1 Problem instance

To compare with the sort upper bound pruning technique (Section 6.4) proposed in [MDG08],
we use the same instance tested in [MDG08] with parameters chosen so that the problem shows a
complex behavior. The dimension d of the instance is 6 and the number of discrete controls M is 6.
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6.5.2 Backsubstitution error

Without the exact value function, we do not have a direct error estimation. Recall that the value
function V is the unique viscosity solution of the following HJ equation:

0 =−H =−max
m∈M
{Hm(x,∇V )}, (6.23)

where Hm is defined in (6.7). The value of Hamiltonian is then used to measure the approximation
and we refer to it as the backsubstitution error.

6.5.3 Numerical results

We try different time step: τ = 0.1 andτ = 0.05. The overpruning threshold is the same as in
[MDG08]: at iteration k we keep at most 20+ 6k quadratic functions. All of our results1 are shown
along the x1-x2 axes with the 4 other coordinates of x set to 0.

Figure 6.1 shows the value of Hamiltonian H at the end of 25 iterations, with τ = 0.1 and using the
greedy pruning algorithm (see Section 6.4.3.c). Comparing with the error plot shown in [MDG08],
which is in the same scale but has a peak of error of order 1 (versus 0.15 here), we see that the primal
max-plus basis method yields a small improvement.
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Figure 6.1: Visualization of backsubstitution error and control policy (switch) on the plane x1-x2,
square [−2,2]× [−2,2], τ = 0.1, N = 25, with greedy pruning method

Figure 6.2 shows the backsubstitution error at the end of 50 iterations, with smaller discretization
step τ = 0.05 and using the greedy facility location algorithm (see Section 6.4.3.c).

Figure 6.3 compares the four pruning methods with τ = 0.1 and τ = 0.05. They both show that
the sort lower bound and the greedy facility location pruning method are better than the two others.

1The code was mostly written in Matlab (version 7.11.0.584), calling YALMIP (version 3) and SeDuMi (version 1.3)
for the resolution of SDP programs. The computation of the distance function and Jain & Vazirani’s primal dual algorithm
were written in C++. The results were obtained on a single core of an Intel quad core running at 2.66GHz, with 8Gb of
memory.
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Figure 6.2: Visualization of backsubstitution error and control policy (switch) on the plane x1-x2,
square [−2,2]× [−2,2], τ = 0.05, N = 50, with greedy pruning method

Table 6.1: CPU time
τ=0.2, K=25 Total time Propagation SDP Pruning
sort lower 1.04h 1.85% 98.15% 0.00%
sort upper 1.34h 1.52% 98.43% 0.05%
J-V p-d 1.38h 1.45% 89.47% 9.08%
greedy 1.43h 1.63% 97.84% 0.53%

6.5.4 Discussion

Our experimental results confirm that the total approximation error comes both from the approx-
imation error of the Lax-Oleinik semi-group and from the pruning error. The error of approximation
of the semi-group can be improved by decreasing the discretization-time step-size τ , while the prun-
ing error depends on the pruning techniques and the number of basis functions kept at each iteration.
We introduced here refined pruning techniques, still SDP based and combining facility location al-
gorithms and semidefinite relaxations, which improve the final precision (see Figure 6.3 ). However,
these pruning techniques remain time-consuming (see Table 6.1), in particular, when τ becomes small,
the pruning appears to be the bottleneck. Therefore, new ideas are needed to develop more efficient
methods. Besides, our experiments also show that the error appears smaller than the bound of O(

√
τ)

established in [MK10]. In next chapter, we show that under an additional assumption, the error bound
is indeed of order O(τ).
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Figure 6.3: Comparison of the four pruning techniques by the evolution of the discrete L1 norm of
backsubstitution error on the rectangle [−2,2]× [−2,2] of the x1−x2 plane, with respect to the number
of iterations.



CHAPTER 7

An improved convergence analysis

of the max-plus curse of

dimensionality free method

In the previous chapter, we reviewed McEneaney’s curse of dimensionality free method, which
applies to the Hamilton Jacobi equations where the Hamiltonian takes the form of a (pointwise) max-
imum of affine/quadratic functions. In this chapter, we focus on the convergence analysis of the
method, restricted to the case when the Hamiltonian is the pointwise maximum of pure quadratic
forms (without affine terms). In previous works of McEneaney and Kluberg, the approximation error
of the method was shown to be O(1/(Nτ))+O(

√
τ) where τ is the time discretization step and N is the

number of iterations. Here we use the contraction result for the indefinite Riccati flow in Thompson’s
part metric, established in Chapter 2, to show that under different technical assumptions, still covering
an important class of problems, the error is only of order O(e−αNτ)+O(τ) for some α > 0. Besides,
our approach allows to incorporate the pruning error in the analysis and we show that if the pruning
error is O(τ2), than the same approximation error order holds. This allows us to tune the precision of
the pruning procedure, which in practice is a critical element of the method.

This chapter is based on the preprint [Qu13a]. An abridged version of this chapter is included in
the ECC conference proceeding [Qu13b].
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7.1 Introduction

We study the error bound of McEneaney’s curse of dimensionality method presented in the pre-
vious chapter. We consider the pure quadratic case, i.e., the Hamiltonian Jacobi equation takes the
form:

0 =−H(x,∇V ) =−max
m∈M
{Hm(x,∇V )} (7.1)

where M = {1,2, · · · ,M} and

Hm(x, p) = (Amx)′p+
1
2

x′Dmx+
1
2

p′Σm p . (7.2)

This Hamilton-Jacobi equation corresponds to a linear quadratic switched optimal control problem
(Section 7.2.1) where the control switches between several linear quadratic systems. The solution V
of equation (7.1) is the value function of the corresponding infinite horizon switched optimal con-
trol problem. The method consists of two successive approximations (see Section 6.3). First we
approximate the infinite horizon problem by a finite horizon problem. Then we approximate the value
function of the finite horizon switched optimal control problem by choosing an optimal strategy which
does not switch on small intervals.

We denote by (St)t>0 and (Sm
t )t>0 for all m ∈M respectively the semigroup corresponding to H

and Hm for all m ∈M . Let V0 be a given initial function and T > 0 be the finite horizon. The first
approximation uses ST [V0] to approximate V and introduces the finite-horizon truncation error at point
x ∈ Rd :

ε0(x,T,V0) :=V (x)−ST [V0](x).

Let τ > 0 be a small time step and N > 0 such that T =Nτ . Denote by S̃τ the semigroup of the optimal
control problem where the control does not switch on the interval [0,τ]. The second approximation
approximates ST [V0] by {S̃τ}N [V0] where

S̃τ = sup
m∈M

Sm
τ .

The error at point x of this time discretization approximation is denoted by:

ε(x,τ,N,V0) := ST [V0](x)−{S̃τ}N [V0](x).

The total error at a point x is then simply ε0(x,T,V0) + ε(x,τ,N,V0). The computational cost is
O(MNd3), with a cubic growth in the state dimension d. In this sense it is considered as a curse of
dimensionality free method. However, we see that the computational cost is bounded by a number
exponential in the number of iterations, which is referred to as the curse of complexity. In practice, a
pruning procedure denoted by Pτ removing at each iteration a number of functions less useful than
others is needed in order to reduce the curse of complexity. We denote the error at point x of the time
dicretization approximation incorporating the pruning procedure by:

ε
Pτ (x,τ,N,V0) = ST [V0](x)−{Pτ ◦ S̃τ}N [V0](x).
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7.1.1 Main contributions

In this chapter, we analyze the growth rate of ε0(x,T,V0) as T tends to infinity and the growth rate
of εPτ (x,τ,N,V0) as τ tends to 0, incorporating a pruning procedure Pτ of error O(τr) with r > 1.
The error ε(x,τ,N,V0) in the absence of pruning can be obtained by taking r =+∞.

We show that under technical assumptions (Assumption 7.1 and 7.2),

sup
x 6=0

ε0(x,T,V0)/|x|2 = O(e−αT ), as T →+∞

uniformly for all initial quadratic functions V0(x) = 1
2 x′Px where P is a matrix in a certain compact

(Theorem 7.4). We also show that given a pruning procedure generating an error O(τr) with r > 1,

sup
x 6=0

ε
Pτ (x,τ,N,V0)/|x|2 = O(τmin{1,r−1}), as τ → 0

uniformly for all N ∈ N and V0 as above (Theorem 7.5). As a direct corollary, we have

sup
x 6=0

ε(x,τ,N,V0)/|x|2 = O(τ), as τ → 0

uniformly for all N ∈ N and V0 as above.

7.1.2 Comparison with earlier estimates

McEneaney and Kluberg showed in [MK10, Thm 7.1] that under Assumption 7.1, for a given V0,

sup
x

ε0(x,T,V0)/(1+ |x|2) = O(
1
T
), as T →+∞ (7.3)

They also showed [MK10, Thm 6.1] that if in addition to Assumption 7.1, the matrices Σm are all
identical for m ∈M , then for a given V0,

sup
x

ε(x,τ,N,V0)/(1+ |x|2) = O(
√

τ), as τ → 0 (7.4)

uniformly for all N ∈ N. Their estimates imply that to get a sufficiently small approximation error
ε we can use a horizon T = O(1/ε) and a discretization step τ = O(ε2). Thus asymptotically the
computational cost is:

O(MO(1/ε3)d3), as ε → 0.

The same reasoning applied to our estimates shows a considerably smaller asymptotic growth rate of
the computational cost (Corollary 7.11):

O(MO(− log(ε)/ε)d3), as ε → 0

McEneaney and Kluberg [MK10] gave a technically difficult proof of the estimates (7.3) and (7.4),
assuming that all the Σm’s are the same. They conjectured that the latter assumption can at least be
released for a subclass of problems. This is supported by our results, showing that for the subclass
of problems satisfying Assumption 7.2, this assumption can be omitted. To this end, we use a to-
tally different approach. Our main idea is to use Thompson’s part metric to measure the error. In
Chapter 2, we showed (Corollary 2.13) that the indefinite Riccati flows has a strict local contraction
property in Thompson’s part metric under some technical assumptions. This local contraction result
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on the indefinite Riccati flow constitutes an essential part of our proofs. Indeed Assumption 7.2 is
made to guarantee the strict local contraction property of the indefinite Riccati flows. We shall see
in Corollary 7.8 that when all the cost functions are the same, then Assumption 7.2 can be dispensed
with.

Our approach derives a tighter estimate of ε0(x,T,V0) and ε(x,τ,N,V0) compared to previous re-
sults as well as an estimate of εPτ (x,τ,N,V0) incorporating the pruning procedure. This new result
justifies the use of pruning procedure of error O(τ2) without increasing the asymptotic total approxi-
mation error order.

The chapter is organized as follows. In Section 7.2, we recall the switched linear quadratic control
problem and the max-plus approximation method. In Section 7.3, we recall the contraction results on
the indefinite Riccati flow as well as the extension of Thompson’s part metric to the space of supremum
of quadratic functions. In Sections 7.4 and 7.5, we present the estimates of the two approximation
errors and part of the proofs. In Section 7.7, we show the proofs of some technical lemmas. Finally
in Section 7.8, we give some remarks and some numerical illustrations of the theoretical estimates.

7.2 Problem statement

We recall briefly the problem class and present some basic concepts and necessary assumptions.
The reader can find more details in [McE07].

7.2.1 Problem class

We consider Problem 6.1 without affine terms, i.e., the following infinite horizon switched optimal
control problem:

Problem 7.1.
V (x) = sup

u∈W
sup

µ∈D∞

sup
T<∞

J(x,T ;u,µ)

where

J(x,T ;u,µ) =
∫ T

0

1
2

x(s)′Dµ(s)x(s)− γ2

2
|u(s)|2 ds ,

D∞ = {µ : [0,∞)→M : measurable} ,

W .
= Lloc

2 ([0,∞);Rk) ,

and the state dynamics are given by

ẋ(s) = Aµ(s)x(s)+σ
µ(s)u(s); x(0) = x ∈ Rd . (7.5)

As in Chapter 6, we denote by (St)t the evolution semigroup associated to Problem 7.1. That is, for a
function φ : Rd → R and x ∈ Rd , St [φ ](x) is the value function at point x of the finite horizon optimal
control problem with terminal reward φ :

Problem 7.2.
St [φ ](x) = sup

u∈Wt

sup
µ∈Dt

J(x, t;u,µ)+φ(x(t))

where Wt and Dt are defined in (6.4) and x(·) : [0, t]→ Rd satisfies

ẋ(s) = Aµ(s)x(s)+σ
µ(s)u(s), s ∈ [0, t]; x(0) = x .
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For m ∈M , define the semigroup (Sm
t )t associated to the linear quadratic problem indexed by m.

More specifically, for a function φ : Rd → R and x ∈ Rd , we have:

Sm
t [φ ](x) := sup

u∈Wt

J(x, t;u,m)+φ(x(t))

where x(·) : [0, t]→ Rd satisfies

ẋ(s) = Amx(s)+σ
mu(s), s ∈ [0, t]; x(0) = x .

As in Chapter 6, for m ∈M , denote

Σ
m :=

1
γ2 σ

m(σm)′ ,

and
Φ

m(P) = (Am)′P+PAm +PΣ
mP+Dm.

For each m ∈M , denote by Mm
· (·) the flow associated to the Riccati equation

Ṗ = Φ
m(P).

Then it is standard that (see [YZ99])

φ(x) =
1
2

x′Px, ∀x ∈ Rd ⇒ Sm
t [φ ](x) =

1
2

x′Mm
t (P)x, ∀m ∈M ,x ∈ Rd . (7.6)

The corresponding Hamiltonian can be written as:

H(x, p) = max
m∈M

Hm(x, p)

where for each m, Hm takes the form

Hm(x, p) =
1
2

x′Dmx+
1
2

p′Σm p+(Amx)′p. (7.7)

We made some assumptions on the matrix parameters in Chapter 6, in order to guarantee the existence
of the value function of the infinite horizon problem. Here the assumptions are somewhat different
since we restrict to the case without affine terms. As in [McE07], we make the following assumptions
to Problem 7.1.

Assumption 7.1.

• There exists cA > 0 such that:

x′Amx 6−cA|x|2, ∀x ∈ Rd ,m ∈M

• There exists cσ > 0 such that:
|σm|6 cσ , ∀m ∈M

• All Dm are positive definite, symmetric, and there is cD such that:

x′Dmx 6 cD|x|2, ∀x ∈ Rd ,m ∈M ,

and

c2
A >

cDc2
σ

γ2
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7.2.2 Steady HJ equation

For any δ ∈ (0,γ), define

Gδ := {V semiconvex : V (x)6
cA(γ−δ )2

c2
σ

|x|2, ∀x}. (7.8)

Then the value function V is the unique viscosity solution of the following corresponding HJ PDE in
the class Gδ for sufficiently small δ [McE07]:

0 =−H(x,∇V ) =−max
m∈M

Hm(x,∇V ). (7.9)

where Hm is defined in (7.7). It was shown in [McE07] that for δ sufficiently small and V0 ∈ Gδ ,

lim
T→∞

ST [V0] =V (7.10)

uniformly on compact sets.

7.2.3 Max-plus based approximation errors

We refer the reader to Section 6.3.3 the basic steps of the curse of dimensionality algorithm pro-
posed in [McE07] to approximate the value function V . As pointed out in [MK10], the approximation
error comes from two parts. The first error source is due to the approximation of the infinite horizon
problem by a finite horizon problem. At a point x ∈ Rd , this error is denoted by:

ε0(x,T,V0) :=V (x)−ST [V0](x) . (7.11)

The second source of error is caused by the approximation of the semigroup by a time-discretization.
At a point x ∈ Rd , the latter error is denoted by:

ε(x,τ,N,V0) := SNτ [V0](x)−{S̃τ}N [V0](x),

Recall that
S̃τ = sup

m∈M
Sm

τ .

In Section 6.3.3 we mentioned that in practice a pruning procedure is needed so as to reduce the
number of quadratic functions. If we take into account the pruning procedure, then the second error
source should be written as:

ε
Pτ (x,τ,N,V0) = SNτ [V0](x)−{Pτ ◦ S̃τ}N [V0](x), (7.12)

where Pτ represents a given pruning rule. We mark the subscript τ since it is expected that the
pruning procedure be adapted with the time step τ .

7.3 Contraction properties of the inde�nite Riccati �ow

As already noted in Section 7.1, the essential ingredient of our proof is the local contraction
property of the indefinite Riccati flow, presented in Chapter 2. Below is the additional assumption
needed to apply this new contraction result:
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Assumption 7.2. There is mD > 0 such that

x′Dmx > mD|x|2, ∀x ∈ Rn,m ∈M .

Besides,
λ1 < λ2

where

λ1 =
γ2(cA−

√
c2

A− cDc2
σ/γ2)

c2
σ

, (7.13)

and

λ2 :=
√

mDγ2/c2
σ . (7.14)

Remark 7.1. Note that when mD = cD, Assumption 7.2 is automatically satisfied if Assumption 7.1
holds. To see this, it suffices to remark that for all a > b > 0 such that b2 > a we have:

b−
√

b2−a <
√

a .

The condition mD = cD implies exactly that all the matrices Dm equal to a multiple of identity matrix:

Dm = cDI, ∀m ∈M .

The main ingredient to make our proofs is the following theorem, which is direct from Corol-
lary 2.13.

Theorem 7.3. Under Assumptions 7.1 and 7.2, for any λ ∈ (0,λ2), there is α > 0 such that for all
P1,P2 ∈ (0,λ I],

dT (Mm
t (P1),Mm

t (P2))6 e−αtdT (P1,P2), ∀t > 0,m ∈M .

Remark 7.2. Assumption 7.2 is better understood by considering a special case of Problem 6.1 with
dimension equal to 1 and switching number equal to 1, satisfying Assumption 7.1. The coefficients
D1,Σ1 and A1 can now be replaced respectively by the scalars cD, c2

σ/γ2 and −cA. The Riccati differ-
ential equation associated to this special case is then:

ṗ = Φ
1(p) (7.15)

where

Φ
1(p) =

c2
σ

γ2 p2−2cA p+ cD, ∀p ∈ R .

Theorem 7.3 can be interpreted as follows: the scalar Riccati flow associated to (7.15) is a strict
contraction in (0,λ2), uniformly on compact sets, where λ2 is defined in (7.14). Besides, it turns
out that the scalar value λ1 defined in (7.13) is the stable equilibrium point of the Riccati differential
equation (7.15). Thus Assumption 7.2 requires that the stable equilibrium point of (7.15) be less than
the right end point of the contraction interval of the flow associated to (7.15). This is automatically
satisfied in this special case without switching because we can take mD = cD (see Remark 7.1). In
Figure 7.1, we show the plot of the function Φ1(p) = (p− 5)(p− 1). The stable equilibrium point
λ1 = 1 is marked in blue and the contraction limit point λ2 =

√
5 is marked in red.
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λ2
√

51

λ1

Φ1

Figure 7.1: A scalar Riccati dynamic function. The stable equilibrium point is in blue (λ1). The right
end point of the contraction interval is in red (λ2).

However, still in dimension 1, if the switching control number |M | is greater than 1, than λ1
gives an upper bound on the stable equilibrium points and λ2 gives a lower bound on the end points
of contraction intervals. Assumption 7.2 is made to guarantee that the maximal stable equilibrium
point is less than the minimal end point of all the contraction intervals. In Figure 7.2(a), we show an
example of three Riccati dynamic functions such that all the stable equilibrium points (in blue) are
less than the end points (in red) of contraction intervals. In Figure 7.2(b), we give an example not
satisfying Assumption 7.2.

Remark 7.3. Under Assumption 7.2, we can choose ε1 > 0 sufficiently small so that

Mm
t0 (0)< ε1I, for some t0 > 0,m ∈M . (7.16)

Since Φm(0) = Dm < mDId for all m ∈M , we can let ε be sufficiently small such that Φm(ε1I) < 0
for all m ∈M . Besides, for any λ ∈ [λ1,λ2), we have Φm(λ I) 4 0 for all m ∈M . Then it follows
from Lemma 2.11 that:

Mm
t (P0) ∈ [ε1I,λ I], ∀m ∈M , t > 0,P0 ∈ [ε1I,λ I]. (7.17)

7.3.1 Extension of the contraction result to the space of functions

Now we extend the definition of Thompson’s part metric to the space of non-negative functions.
For two functions f ,g : Rn→ R, we consider the standard partial order "6" by:

f 6 g⇔ f (x)6 g(x), ∀x ∈ Rn,

which coincides with the Loewner order on the set of quadratic forms. Similarly, for f ,g : Rd → R+

we define
M( f/g) := inf{t > 0 : f 6 tg}

We say that f and g are comparable if M( f/g) and M(g/ f ) are finite. In that case, we can define the
"Thompson metric" between f ,g : Rd → R+ by:

dT ( f ,g) = log(max{M( f/g),M(g/ f )}). (7.18)

Then the following lemma can be easily proved using the definition:
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Φ3

Φ1

Φ2

(a)

Φ3

Φ1

Φ2

(b)

Figure 7.2: Plot of the scalar Riccati dynamic functions associated to an one dimensional instance
satisfying Assumption 7.2 (left). Variant in which Assumption 7.2 is not satisfied (right).

Lemma 7.1. Let f ,g : Rd → R+ be given by pointwise maxima of non-negative functions

f := sup
i∈I

fi, g := sup
i∈I

gi

Then

dT ( f ,g)6 sup
i∈I

dT ( fi,gi). (7.19)

The following result is a consequence of the order-preserving character of the Riccati flow and of
the contraction property in Theorem 7.3.

Lemma 7.2. Under Assumptions 7.1 and 7.2, let λ ∈ [λ1,λ2) and ε1 > 0 such that (7.17) holds. Then
there is α > 0 such that for any two functions V1 and V2 of the form:

V1(x) = sup
j∈J

1
2

x′Pjx, V2(x) =
1
2

x′Qx,

where Q,Pj ∈ [ε1I,λ I] for all j ∈ J, we have

dT (S
iN
t/N · · ·S

i1
t/N [V1],S

iN
t/N · · ·S

i1
t/N [V2])6 e−αt log(

λ

ε
)

for all t > 0, N ∈ N and (i1, · · · , iN) ∈M N .

Proof. For all P,Q ∈ [ε1I,λ I], by (7.17) and Theorem 7.3 we have

dT (M
iN
t/N · · ·M

i1
t/N(P),M

iN
t/N · · ·M

i1
t/N(Q))6 e−αtdT (P,Q)
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for all t > 0, N ∈ N and (i1, · · · , iN) ∈M N . Now by the max-plus linearity of the semigroup,
Lemma 7.1 and the relationship between the semigroup and the flow (7.6), we get

dT (S
iN
t/N · · ·S

i1
t/N [V1],S

iN
t/N · · ·S

i1
t/N [V2])

6 sup
j∈J

dT (M
iN
t/N · · ·M

i1
t/N(Pj),M

iN
t/N · · ·M

i1
t/N(Q))

6 e−αt sup
j∈J

dT (Pj,Q)6 e−αt log(
λ

ε
).

7.4 Finite horizon error estimate

We first study the finite horizon truncation error ε0(x,T,V0) in (7.11). Below is one of our main
results:

Theorem 7.4. Under Assumptions 7.1 and 7.2, let λ ∈ [λ1,λ2) and ε1 > 0 such that (7.16) and (7.17)
hold. There exist α > 0 and K > 0 such that,

ε0(x,T,V0)6 Ke−αT |x|2, ∀x,

for all T > 0 and V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I].

The remaining part of the section is devoted to the proof of the above theorem. We shall need the
following technical lemma. The proof is deferred to Section 7.7.1.

Lemma 7.3 (Approximation by piecewise constant controls). Let V0 : Rd → R be a given locally
Lipschitz function. For any T > 0 we have

ST [V0] = sup
N

sup
i1,···iN

SiN
T/N · · ·S

i1
T/N [V0].

From now on we make Assumptions 7.1 and 7.2. We also fix λ ∈ [λ1,λ2) and ε1 > 0 satisfying
(7.16) and (7.17).

Remark 7.4. Since the interval [ε1I,λ I] is invariant by any operator {Sm
τ }τ>0,m∈M , it is direct from

Lemma 7.3 that

ε1

2
|x|2 6 ST [V0](x)6

λ

2
|x|2, ∀T > 0 (7.20)

for all V0(x) = 1
2 x′Px with P ∈ [ε1I,λ I].

Corollary 7.4. The value function V is a pointwise supremum of quadratic functions

V (x) = sup
j∈J

1
2

x′Pjx

where Pj ∈ [ε1I,λ I] for all j ∈ J.
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Proof. By definition, we have:
V (x) = sup

T>0
ST [0](x), ∀x.

By (7.16), there is t0 > 0 and m ∈M such that

Mm
t0 (0)> ε1I.

Besides, by the monotonicity of the semigroup,

ST [Sm
t0 [0]](x)6 ST [St0 [0]](x), ∀x,T > 0

and
ST [0](x)6 ST [Sm

t0 [0]](x), ∀x,T > 0.

Since
V (x) = sup

T>0
ST [0](x) = sup

T
ST [St0 [0]](x), ∀x ,

we get that:
sup

T
ST [Sm

t0 [0]](x)6V (x)6 sup
T

ST [Sm
t0 [0]](x), ∀x .

Hence by Lemma 7.3:

V = sup
T

ST [Sm
t0 [0]] = sup

T
sup

N
sup

i1,···iN
SiN

T/N · · ·S
i1
T/NSm

t0 [0]. (7.21)

Now using the invariance of the interval [ε1I,λ I] in (7.17), we know that

MiN
T/N · · ·M

i1
T/NMm

t0 (0) ∈ [ε1I,λ I],

for all T > 0, N ∈ N and i1, . . . , iN ∈M . Consequently V is a pointwise maximum of quadratic
functions 1

2 x′Pjx with Pj ∈ [ε1I,λ I].

Using the above lemma we show that:

Proposition 7.5. There is α > 0 such that for all V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I],

dT (V,ST [V0])6 e−αT log(
λ

ε
), ∀T > 0.

Proof. By Corollary 7.4, the value function V is a pointwise supremum of quadratic functions:

V (x) = sup
j∈J

1
2

x′Pjx

where Pj ∈ [ε1I,λ I] for all j ∈ J. Let any V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I]. By Corollary 7.2, we

have:

dT (S
iN
T/N · · ·S

i1
T/N [V ],SiN

T/N · · ·S
i1
T/N [V0])6 e−αT log(

λ

ε
)

for all T > 0, N ∈ N and (i1, · · · , iN) ∈M N . We also know from Lemma 7.3 that

V = ST [V ] = sup
N

sup
i1,...,iN

SiN
T/N . . .Si1

T/N [V ],
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and that
ST [V0] = sup

N
sup

i1,...,iN
SiN

T/N . . .Si1
T/N [V0].

Therefore by Lemma 7.1,

dT (V,ST [V0]) = dT (ST [V ],ST [V0])

6 sup
N

sup
i1,···iN

dT (S
iN
T/N · · ·S

i1
T/N [V ],SiN

T/N · · ·S
i1
T/N [V0])

6 e−αT log(λ

ε
).

Now we have all the necessary elements to prove Theorem 7.4.

Proof of Theorem 7.4. Let any V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I]. By Proposition 7.5 and (7.18), there

is α > 0 such that
V (x)6 ee−αT log(λ/ε)ST [V0](x), ∀T > 0,x ∈ Rd .

Thus there is constant L > 0 such that

V (x)6 (1+Le−αT )ST [V0](x), ∀T > 0,x ∈ Rd

This leads to

ε0(x,T,V0)6 Le−αT ST [V0](x)6
λL
2

e−αT |x|2, ∀T > 0,x ∈ Rd .

where the last inequality follows from (7.20). It is clear that the constant K = λL
2 is independent of

P0 ∈ [ε1I,λ I].

7.5 Discrete-time approximation error estimate

In this section we analyze the discrete-time approximation error εPτ (x,τ,N,V0). We say that Pτ

is a pruning procedure generating an error O(τr) if there is L > 0 such that for all function f of the
form (6.13),

Pτ [ f ]6 f 6 (1+Lτ
r)Pτ [ f ]. (7.22)

The special case without pruning procedure can be recovered by considering r =+∞. Our main result
is:

Theorem 7.5. Let r > 1. Suppose that for each τ > 0 the pruning operation Pτ generates an error
O(τr) (see (7.22)). Under Assumptions 7.1 and 7.2, let λ ∈ [λ1,λ2) and ε1 > 0 such that (7.17) holds.
Then there exist τ0 > 0 and L > 0 such that

ε
Pτ (x,τ,N,V0)6 Lτ

min{1,r−1}|x|2, ∀x,

for all N ∈ N, τ 6 τ0 and V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I].

The remaining part of the section is devoted to the proof of Theorem 7.5. We first state a technical
lemma which is proved in Section 7.7.2.
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Lemma 7.6. Let K ⊂ Sd be a compact convex subset. There exist τ0 > 0 and L > 0 such that

Sτ [V0](x)6 S̃τ [V0](x)+Lτ
2|x|2, ∀x,

for all τ ∈ [0,τ0] and V0(x) = 1
2 x′P0x with P0 ∈K .

Now we take into account the pruning procedure and analyze the error of the following approxi-
mation

Sτ 'Pτ ◦ S̃τ .

Below is a direct consequence of Lemma 7.6 and (7.17).

Corollary 7.7. Let ε , λ , r and Pτ be as in Theorem 7.5. Then there exist τ0 > 0 and L > 0 such that:

Sτ [V0](x)6 (1+Lτ
min{2,r})Pτ ◦ S̃τ [V0](x), ∀x,

for all τ ∈ [0,τ0] and V0(x) = 1
2 x′P0x with P0 ∈ [ε1I,λ I].

We are ready to give a proof of Theorem 7.5:

Proof of Theorem 7.5. Denote s = min{2,r}. Let any λ ′ > 0 such that

λ < λ
′ < λ2.

Denote δ = λ ′/λ . Consider the two compact convex subsets K0 = [ε1I,λ I] and K1 = [ε1I,λ ′I]. It is
easily verified that:

Φ
m(λ ′I)6 0, ∀m ∈M .

Therefore for all P0 ∈K0, P1 ∈K1, t > 0 and m ∈M ,

Mm
t (P0) ∈K0, Mm

t (P1) ∈K1. (7.23)

By Corollary 7.7, there is τ0 and L > 0 such that for all τ ∈ [0,τ0] and V0 =
1
2 x′Px with P ∈K1:

Sτ [V0]6 (1+Lτ
s)Pτ ◦ S̃τ [V0]. (7.24)

Let τ0 > 0 be sufficiently small such that:

(1+Lτ
s)

1
1−e−ατ 6 δ , ∀τ ∈ [0,τ0].

Let any V0(x) = 1
2 x′P0x with P0 ∈K0 and τ ∈ [0,τ0], we are going to prove by induction on N ∈N the

following inequalities:

SNτ [V0]6 (1+Lτ
s)1+e−ατ+···+e−(N−1)ατ{Pτ ◦ S̃τ}N [V0], ∀N ∈ N.

The case N = 1 is already given in (7.24). Suppose that the above inequality is true for some k ∈ N,
that is,

Skτ [V0]6 Lk{Pτ ◦ sup
m

Sm
τ }k[V0]

where Lk = (1+Lτs)1+e−ατ+···+e−(k−1)ατ

. We denote by Ik ⊂M k the subset such that

{Pτ ◦ sup
m

Sm
τ }k[V0] = sup

(i1,··· ,ik)∈Ik

Sik
τ · · ·Si1

τ [V0].
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Thus,

Skτ [V0]6 sup
(i1,··· ,ik)∈Ik

LkSik
τ · · ·Si1

τ [V0]. (7.25)

From (7.23), we know that for all (i1, · · · , ik) ∈ Ik

Mik
τ · · ·Mi1

τ (P0) ∈K0. (7.26)

Besides,
1 6 Lk 6 (1+Lτ

s)
1

1−e−ατ 6 δ .

Thus for all (i1, · · · , ik) ∈ Ik,

Lk(Mik
τ · · ·Mi1

τ (P0)) ∈K1 (7.27)

Recall that
LkSik

τ · · ·Si1
τ [V0](x) =

Lk

2
x′(Mik

τ · · ·Mi1
τ (P0))x,

then by applying (7.25) and (7.24), we obtain that

S(k+1)τ [V0] = Sτ [Skτ [V0]]

6 sup
(i1,··· ,ik)∈Ik

Sτ [LkSik
τ · · ·Si1

τ [V0]]

6 sup
(i1,··· ,ik)∈Ik

(1+Lτ
s)Pτ ◦ S̃τ [[LkSik

τ · · ·Si1
τ [V0]]]

(7.28)

Now by Theorem 7.3, there is α > 0 such that for all P1,P2 ∈K1 and m ∈M

dT (Mm
τ (P1),Mm

τ (P2))6 e−ατdT (P1,P2)

Therefore from (7.26) and (7.27) we get that for any (i1, . . . , ik) ∈ Ik and m ∈M

dT (Mm
τ Mik

τ · · ·Mi1
τ (P0),Mm

τ [Lk(M
ik
τ · · ·Mi1

τ (P0))])

6 e−ατdT (M
ik
τ · · ·Mi1

τ (P0),Lk(M
ik
τ · · ·Mi1

τ (P0))) = e−ατ logLk.

This implies that

Mm
τ [Lk(Mik

τ · · ·Mi1
τ (P0))]6 Le−ατ

k Mm
τ Mik

τ · · ·Mi1
τ (P0), ∀m ∈M

which is,
Sm

τ [LkSik
τ · · ·Si1

τ [V0]]6 Le−ατ

k Sm
τ Sik

τ · · ·Si1
τ [V0], ∀m ∈M .

Therefore we deduce from the inequality (7.28):

S(k+1)τ [V0] 6 (1+Lτs)Pτ [ sup
m∈M ,(i1,··· ,ik)∈Ik

Sm
τ [LkSik

τ · · ·Si1
τ [V0]]]

6 (1+Lτs)Le−ατ

k Pτ [ sup
m∈M ,(i1,··· ,ik)∈Ik

Sm
τ Sik

τ · · ·Si1
τ [V0]]

= (1+Lτs)1+e−ατ+···+e−kατ{Pτ ◦ S̃τ}k+1[V0].

Thereby we proved that

SNτ [V0]6 (1+Lτ
s)

1
1−e−ατ {P ◦ S̃τ}N [V0], ∀N ∈ N.
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Note that

lim
τ→0+

(1+Lτs)
1

1−e−ατ −1
τs−1 =

L
α
,

from which we deduce the existence of τ0 and K > 0 such that for all τ ∈ [0,τ0], N ∈ N and V0(x) =
1
2 x′Px with P ∈ [ε1I,λ I]

{Sτ}N [V0]6 (1+Kτ
s−1){P ◦ S̃τ}N [V0].

which leads to

ε
Pτ (x,τ,N,V0)6 Kτ

min{1,r−1}{P ◦ S̃τ}N [V0]6
Kλ

2
τ

min{1,r−1}|x|2.

Remark 7.5. It should be pointed out that the crucial point is having α > 0. If this is not the case
(α = 0), then the iteration (7.28) only leads to:

dT (SNτ [V0],{Pτ ◦ S̃τ}N [V0])6 LNτs, ∀N ∈ N.

7.6 A special case

For every m ∈M , let V m be the quadratic function associated to the infinite horizon linear
quadratic optimal control problem indexed by m, namely,

V m = lim
T→∞

Sm
T [0] .

We next show that if all the Lagrangian functions are the same, then Assumption 7.2 is not necessary
to obtain the same error bounds as in Theorem 7.4 and Theorem 7.5.

Corollary 7.8. Under Assumption 7.1, if the Lagrangian functions are all the same, i.e., Dm = D for
all m ∈M , then there exist α > 0, τ0 > 0, L > 0 and K > 0 such that

ε0(x,T,V m)6 Ke−αT |x|2, ε
Pτ (x,τ,N,V m)6 Lτ

min{1,r−1}|x|2, ∀x,

for all T > 0, N ∈ N, τ 6 τ0 and m ∈M .

Proof. If all the matrices Dm are equal to a same matrix D, then by taking y = D
1
2 x Problem 7.1 is

equivalent to the following switching optimal control problem:

Problem 7.3.

W (y) = sup
u∈W

sup
µ∈D∞

sup
T<∞

∫ T

0

1
2
|y(s)|2− γ2

2
|u(s)|2 ds

where the state dynamics are given by

ẏ(s) = D
1
2 Aµ(s)D−

1
2 y(s)+D

1
2 σ

µ(s)u(s); y(0) = y ∈ Rd . (7.29)

By Remark 7.1, the matrix parameters of Problem 7.3 satisfy Assumption 7.1 and Assumption 7.2,
hence the error bounds obtained in Theorem 7.4 and Theorem 7.5 hold for Problem 7.3. Therefore
the same error bounds hold as well for Problem 7.1 with all Dm = D.
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Corollary 7.8 should be compared with Theorem 6.1 and 7.1 in [MK10]. Recall that ε(x,τ,N,V m)
equals to the discrete-time approximation error εPτ (x,τ,N,V m) when r =+∞.

Theorem 7.6 ( [MK10]). Under Assumption 7.1, there exists K > 0 such that

ε0(x,T,V m)6 K(1+ |x|2)/T, ∀x ∈ Rd ,

for all T > 0 and m ∈M . If in addition, the dynamics are all the same, i.e., σm = σ for all m ∈M ,
then there exist τ0 > 0 and L > 0 such that

ε(x,τ,N,V m)6 L(τ +
√

τ)(1+ |x|2), ∀x ∈ Rd ,

for all N ∈ N, τ 6 τ0 and m ∈M .

7.7 Proofs of the technical lemmas

7.7.1 Proof of Lemma 7.3

For two functions µ,ν ∈DT we consider the metric d(µ,ν) defined by the measure of subset on
which the two controls µ and ν differ from each other:

d(µ,ν) =
∫ T

0
1µ 6=νdt. (7.30)

The proof of Lemma 7.3 needs the next lemma. It shows that the objective function is continued on
the variable µ ∈DT with respect to the metric d defined in (7.30).

Lemma 7.9. Let V0 : Rd → R be a locally Lipschitz function. Let x ∈ Rn and T > 0. Given µ ∈ DT

and u ∈WT , for any ε > 0, there is δ0 > 0 such that

|J(x,T ;u,µ)+V0(x(T ))− J(x,T ;u, µ̃)−V0(x̃(T ))|6 ε,

for all µ̃ ∈DT such that d(µ, µ̃)6 δ0 and (x,u,µ), (x̃,u, µ̃) satisfying (7.5).

Proof. Let any µ̃ ∈DT and denote:
δ = d(µ, µ̃).

Let x and x̃ be respectively the solutions to (7.5) under the control (u,µ) and (u, µ̃) and with initial
state x(0) = x. Thus

x(t)− x̃(t) =
∫ t

0
Aµ(s)x(s)+σ

µ(s)u(s)− (Aµ̃(s)x̃(s)+σ
µ̃(s)u(s))ds, ∀t ∈ [0,T ].

Denote

L = max(max
m
‖Am‖,max

m
|σm|,max

m
‖Dm‖,(

∫ T

0
(|x(s)|+ |u(s)|)2ds)1/2).

We have:

|x(t)− x̃(t)| 6
∫ t

0 |Aµ(s)x(s)−Aµ̃(s)x(s)|+ |Aµ̃(s)x(s)−Aµ̃(s)x̃(s)|+ |σ µ(s)−σ µ̃(s)||u(s)|ds
6
∫ t

0 L|x(s)− x̃(s)|ds+
∫ t

0 1µ 6=µ̃(‖Aµ(s)−Aµ̃(s)‖|x(s)|+ |σ µ(s)−σ µ̃(s)||u(s)|)ds
6
∫ t

0 L|x(s)− x̃(s)|ds+2L
∫ t

0 1µ 6=µ̃(|x(s)|+ |u(s)|)ds
6
∫ t

0 L|x(s)− x̃(s)|ds+2L(
∫ t

0 1µ 6=µ̃ds)1/2(
∫ t

0(|x(s)|+ |u(s)|)2)1/2

6
∫ t

0 L|x(s)− x̃(s)|ds+2L2δ
1
2 , ∀t ∈ [0,T ].
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By Gronwall’s Lemma,

|x(t)− x̃(t)|6 2L2
δ

1
2 eLt 6 Lδ

1
2 , ∀t ∈ [0,T ].

Then
|x̃(t)|6 sup

t∈[0,T ]
|x(t)|+Lδ

1
2 6 L,∀t ∈ [0,T ].

Note that L is independent of µ̃ . Now by the local Lipschitz property of V0 and the boundedness of x
and x̃, there is L > 0 such that:

|V0(x(T ))−V0(x̃(T ))|6 L|x(T )− x̃(T )|6 Lδ
1
2

Besides,

|
∫ T

0 x(t)′Dµ(t)x(t)− x̃(t)′Dµ̃(t)x̃(t)dt|
6
∫ T

0 |x(t)′Dµ(t)(x(t)− x̃(t))|+ |x̃(t)′Dµ(t)(x(t)− x̃(t))|+ |x̃(t)′(Dµ(t)−Dµ̃(t))x̃(t)|dt
6 L

∫ T
0 (|x(t)− x̃(t)|+1µ 6=µ̃)dt

6 L(δ
1
2 +δ )

Thus there is a constant L independent of µ̃ such that:

|J(x,T ;u,µ)+V0(x(T ))− J(x,T ;u, µ̃)−V0(x̃(T ))|6 L(δ
1
2 +δ )

whence for any ε > 0 there is δ0 > 0 such that

|J(x,T ;u,µ)+V0(x(T ))− J(x,T ;u, µ̃)−V0(x̃(T ))|6 ε

for all µ̃ ∈DT such that d(µ, µ̃)6 δ0.

Using this, we can prove Lemma 7.3:

Proof of Lemma 7.3. Let V0 be a locally Lipschitz function. Fix x ∈ Rd . Let µ ∈ Dτ and u ∈Wτ be
ε

2 -optimal for the optimal control problem Sτ [V0](x) (Problem 7.2), that is:

Sτ [V0](x)6 J(x,τ;u,µ)+V0(x(τ))+
ε

2
. (7.31)

By Lemma 7.9, there is δ0 > 0 such that:

|J(x,τ;u,µ)+V0(x(τ))− J(x,τ;u, µ̃)−V0(x̃(τ))|6
ε

2
(7.32)

for all µ̃ ∈ Dτ such that d(µ, µ̃) 6 δ0. Now it remains to prove that there is at least one piecewise
constant function µ̃ ∈ Dτ such that d(µ, µ̃)6 δ0. To this end, by Lusin’s theorem [Fol99], there is a
compact K ⊂ [0,τ] such that ∫

τ

0
1K(t)dt > τ−δ0

and the restriction of µ on K is continuous, thus uniformly continuous. Let δ > 0 such that for all
t,s ∈ K and |t− s|6 δ ,

|µ(t)−µ(s)|6 1
2
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which implies
µ(t) = µ(s).

Now let N0 ∈ N such that 1
N0

< δ . We construct a piecewise constant function µ̃ ∈ Dτ as following.
For i ∈ {0,1 · · · ,N0−1}, let

µ̃(
i

N0
τ) =

{
µ(s), if there is s ∈ K∩ [ i

N0
τ, i+1

N0
τ)

1, else

and

µ̃(t) = µ̃(
i

N0
τ), t ∈ [

i
N0

τ,
i+1
N0

τ).

Since µ(s) = µ(t) for all s, t ∈ K∩ [ i
N0

τ, i+1
N0

τ), it follows that

µ(t) = µ̃(t), ∀t ∈ K.

Thus ∫
τ

0
1µ 6=µ̃dt 6

∫
τ

0
1−1Kdt 6 δ0.

So d(µ, µ̃) 6 δ0 and µ̃ is constant on interval [ i
N0

τ, i+1
N0

τ) for all i ∈ {0,1, · · · ,N0 − 1}. Hence,
by (7.32),

J(x,τ;u,µ)+V0(x(τ))6 J(x,τ;u, µ̃)+V0(x̃(τ))+
ε

2
6 sup

i1,··· ,iN0

S
iN0
τ/N0
· · ·Si1

τ/N0
[V0](x)+

ε

2

Now by (7.31), we get

Sτ [V0](x)6 sup
i1,··· ,iN0

S
iN0
τ/N0
· · ·Si1

τ/N0
[V0](x)+ ε 6 sup

N
sup

i1,··· ,iN
SiN

τ/N · · ·S
i1
τ/N [V0](x)+ ε.

This is true for any ε > 0, we conclude that:

Sτ [V0](x) = sup
N

sup
i1,··· ,iN

SiN
τ/N · · ·S

i1
τ/N [V0](x)

for all x ∈ Rd . Thus
Sτ [V0] = sup

N
sup

i1,··· ,iN
SiN

τ/N · · ·S
i1
τ/N [V0].

7.7.2 Proof of Lemma 7.6

The proof of Lemma 7.6 shall need the following estimates:

Lemma 7.10. Let K ⊂ Sd be a compact convex set. There exist τ0 > 0 and L > 0 such that

‖Mm
τ (P)−P− τΦ

m(P0)‖6 Lτ
2 +Lτ‖P−P0‖

for all P,P0 ∈K , τ ∈ [0,τ0] and m ∈M .
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Proof. Let τ0 > 0 such that for all P ∈K , m ∈M , the Riccati equation

Ṗ = Φ
m(P), P(0) = P,

has a solution in [0,τ0]. Therefore,

˜K := {Mm
t (P) : t ∈ [0,τ0],P ∈K ,m ∈M }

is compact. Besides, for P ∈K and m ∈M , the function Mm
· (P) : [0,τ0]→ Sd is twice differentiable

in the variable t and it satisfies:

Ṁm
t (P) = Φ

m(Mm
t (P)), M̈m

t (P) = DΦ
m(Mm

t (P))◦Φ
m(Mm

t (P)), t ∈ [0,τ0].

By the mean value theorem, for all P,P0 ∈K and τ ∈ [0,τ0]

‖Mm
τ (P)−P− τΦ

m(P)‖6 sup
t∈(0,τ)

‖DΦ
m(Mm

t (P))◦Φ
m(Mm

t (P))‖τ2

and
‖Φm(P)−Φ

m(P0)‖6 sup
Q∈K

‖DΦ
m(Q)‖‖P−P0‖.

Let
L = max{sup

m
sup

P∈ ˜K

‖DΦ
m(P)◦Φ

m(P)‖,sup
m

sup
P∈K
‖DΦ

m(P)‖},

then we have
‖Mm

τ (P)−P− τΦ
m(P0)‖6 Lτ

2 +Lτ‖P−P0‖

for all P,P0 ∈K , τ ∈ [0,τ0] and m ∈M .

Using Lemma 7.10 we give a proof of Lemma 7.6:

Proof of Lemma 7.6. Let any 0 < δ < 1 and ˜K ⊂ Sd be the compact convex set defined by:

˜K := conv(∪P0∈K B(P0,δ )).

By Lemma 7.10, there exists τ1,L1 > 0 such that for all m ∈M , P,P0 ∈ ˜K and τ ∈ [0,τ1]

Mm
τ (P)6 P+ τΦ

m(P0)+(L1τ
2 +L1τ‖P−P0‖)I. (7.33)

Let
L2 = sup{‖Φm(P)‖ : m ∈M ,P ∈K },
L0 = max(L1,L1L2),

τ0 = min( δ

2L2
,
√

δ

2eL0
, 1

L1
,τ1).

Let any N ∈N ,(i1, · · · , iN) ∈M N , τ ∈ [0,τ0] and V0(x) = 1
2 x′P0x with P0 ∈K . We are going to prove

by induction on k ∈ {1, · · · ,N} that:

Mik
τ/N . . .Mi1

τ/N(P0)6 P0 +
τ

N
Φi1(P0)+ · · ·+

τ

N
Φik(P0)+L0(1+

1
N
)k τ2k2

N2 I (7.34)

When k = 1, since τ

N ∈ [0,τ0] and P0 ∈ ˜K , by (7.33) we get:

Mi1
τ/N(P0) 6 P0 +

τ

N Φi1(P0)+L1(
τ

N )
2I

6 P0 +
τ

N Φi1(P0)+L0(1+ 1
N )(

τ

N )
2I.
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Suppose that (7.34) is true for some k ∈ {1, · · · ,N−1}. That is:

Mik
τ/N · · ·M

i1
τ/N(P0)6 P0 +∆k (7.35)

where ∆k =
τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+L0(1+ 1
N )

k τ2k2

N2 I. Since

‖∆k‖ 6 kτ

N L2 +L0(1+ 1
N )

k τ2k2

N2

6 τL2 +L0eτ2 6 δ ,

we have that P0 +∆k ∈ ˜K and by (7.33):

Mik+1
τ/N(P0 +∆k) 6 P0 +∆k +

τ

N Φik+1(P0)+(L1
τ2

N2 +L1
τ

N ‖∆k‖)I
6 P0 +

τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+L0(1+ 1
N )

k τ2k2

N2 I
+ τ

N Φik+1(P0)+L1
τ2

N2 I +L1
τ

N [
kτ

N L2 +L0(1+ 1
N )

k τ2k2

N2 ]I
= P0 +

τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+
τ

N Φik+1(P0)
τ2

N2 [L0(1+ 1
N )

kk2 +L1 +L1L2k+L1L0(1+ 1
N )

k τk2

N ]I
6 P0 +

τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+
τ

N Φik+1(P0)

+ τ2

N2 [L0(1+ 1
N )

k(k2 + k+1)+L0(1+ 1
N )

k k2

N ]I
6 P0 +

τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+
τ

N Φik+1(P0)

+ τ2(k+1)2

N2 L0(1+ 1
N )

k+1I

Thus, by (7.35) and the monotonicity of the flow:

Mik+1
τ/NMik

τ/N · · ·M
i1
τ/N(P0)6 Mik+1

τ/N(P0 +∆k)

6 P0 +
τ

N Φi1(P0)+ · · ·+ τ

N Φik(P0)+
τ

N Φik+1(P0)+L0(1+ 1
N )

k+1 τ2(k+1)2

N2 I.

We conclude that:

MiN
τ/N · · ·M

i1
τ/N(P0) 6 P0 +

τ

N Φi1(P0)+ · · ·+ τ

N ΦiN (P0)+ eL0τ2I

Denote:
g(x) = sup

m∈M

1
2
(x′P0x+ x′Φm(P0)x).

By Lemma 7.10 we have that

P0 + τΦ
m(P0)6 Mm

τ (P0)+L1τ
2I, ∀τ ∈ [0,τ0],m ∈M .

That is
g(x)6 Sm

τ [V0](x)+
L1

2
τ

2|x|2, ∀τ ∈ [0,τ0],m ∈M .

Therefore,

SiN
τ/N · · ·S

i1
τ/N [V0](x) = 1

2 x′MiN
τ/N · · ·M

i1
τ/N(P0)x

6 1
2(x
′P0x+ τ

N x′Φi1(P0)x+ · · ·+ τ

N x′ΦiN (P0)x+ eL0τ2|x|2)
6 g(x)+ eL0

2 τ2|x|2
6 supm Sm

τ [V0](x)+Lτ2|x|2, ∀x ∈ Rd

where L = eL0+L1
2 is clearly independent of V0, N, (i1, · · · , iN) and τ 6 τ0. We conclude that:

sup
N

sup
i1,··· ,iN

SiN
τ/N · · ·S

i1
τ/N [V0](x)6 sup

m
Sm

τ [V0](x)+Lτ
2|x|2

for all τ ∈ [0,τ0] and V0(x) = x′P0x with P0 ∈K . Finally we apply Lemma 7.3 to obtain the desired
result.
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7.8 Further discussions and a numerical illustration

7.8.1 Linear quadratic Hamiltonians

The contraction result being crucial to our analysis (see Remark 7.5), it is impossible to extend
the results to the general case with linear terms as in [McE09]. However, the one step error analy-
sis (Lemma 7.6) is not restricted to the pure quadratic Hamiltonian. The interested reader can verify
that the one step error O(τ2) still holds in the case of [McE09]. Then by simply adding up the errors
to time T , we get that:

ε(x,τ,N,V0)6 L(1+ |x|2)Nτ
2 = L(1+ |x|2)T τ.

Note that the term |x|2 is replaced by (1+ |x|2) for the general Hamiltonian with linear terms. This
estimate is of the same order as in [McE09] with much weaker assumption, especially the assumption
on Σm.

7.8.2 A tighter bound on the complexity

From Theorem 7.4 and 7.5, we obtain a tighter bound on the complexity of the algorithm (com-
pared with [MK10]):

Corollary 7.11. Under Assumptions 7.1 and 7.2, to get an approximation of V of order ε , the number
of iterations is

O(
− logε

ε
), as ε → 0,

whence the number of arithmetic operations is:

O(MO(− logε

ε
)d3), as ε → 0. (7.36)

7.8.3 A numerical illustration

In this subsection, we present some numerical experiments to illustrate our convergence analysis.
We use the following 2-dimensional instance with 3 switching controls.

A1 =

[
−1.9 0.7
0.7 −1.8

]
, A2 =

[
−1.5 0.15
0.15 −1.5

]
, A3 =

[
−1.6 0.8
0.8 −2.1

]
D1 =

[
1.5 0.2
0.2 1.5

]
, D2 =

[
1.3 0
0 1.6

]
, D3 =

[
1.2 0.12
0.12 1.3

]
Σ1 =

[
0.17 −0.01
−0.01 0.57

]
Σ2 =

[
0.27 0.1
0.1 0.27

]
, Σ3 =

[
0.27 −0.01
−0.01 0.27

]
It can be checked that Assumption 7.1 and 7.2 are satisfied by taking cA = 1.01, cD = 1.7, mD = 1.12
and c2

σ/γ2 = 0.571.
We will divide the unit circle into pieces of length ∆ and select the basis functions active at the

discretized points. The pruning error obtained in this way is of the same order as ∆. Given a time
step τ , a propagation horizon T and a length ∆, the curse of dimensionality method will result an
approximation function Ṽ . Since we do not know the exact value function, we consider the normalized
backsubstitution error

|H(Ṽ )|∞ := sup
|x|=1

H(x,∇Ṽ (x)) .
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instead of the approximation error V − Ṽ , studied in this chapter. This can be justified by the fact
that the backsubstitution error is of same order as the approximation error, i.e., there are constants
C1 >C2 > 0 such that

C2|H(Ṽ )|∞ 6 sup
|x|=1

V (x)−Ṽ (x)6C1|H(Ṽ )|∞ ,

for all 06 Ṽ 6V given by the supremum of finitely many quadratic functions in G0. The left inequality
can be deduced from Lemme 8.6 and the right inequality can be derived from Proposition 8.5.

Remark 7.6. We implement the numerical method to show the consistency between theoretical esti-
mates and observed experimental results. We need to run the algorithm for sufficiently small τ (from
0.05 to 0.0005) and for sufficiently large number of iterations N (up to 5000). Therefore the instance
used is of small dimension d and with small number of values of the switched control |M |.
Remark 7.7. We do not use the SDP based pruning algorithm (Chapter 6) for two reasons. First,
the instance is of dimension 2 and all the basis functions are quadratic without affine terms thus
homogeneous of degree 2. Therefore, we only need to discretize the unit circle, which is of dimension
1. The second reason is due to the difficulty in the control of the pruning error if we use the SDP
relaxation technique and the heuristic algorithms.

In Figure 7.3(a) we show the plot of the logarithm of the backsubstitution error log(|H|∞) with
respect to the propagation horizon T , for time step τ fixed to 0.005 and different divided length ∆.
We see from Figure 7.3 that for every ∆, the logarithm of |H|∞ decreases linearly with respect to
the propagation horizon T with a same rate. This coincides with the exponential decreasing error
bound of the finite horizon truncation error in Theorem 7.4. The error stops decreasing after a certain
propagation horizon because the semigroup approximation error can not be reduced by extending the
propagation horizon. In Figure 7.3(a), for ∆ = 4e-3 (blue curve), ∆ = 2e-3 (green curve) and ∆ = 1e-3
(red curve) we observe an obvious oscillation of the backsubstitution error after it stops decreasing.
The oscillation magnitude decreases as the discretized length ∆ decreases and becomes invisible to
the naked eye for ∆ sufficiently small. Thus it is clear that the oscillation occurs when the pruning
error is too large that it covers the semigroup approximation error. Besides, for all ∆ smaller than
7e-4 we obtain a same curve without visible oscillation. This indicates that the pruning error is now
sufficiently small that it is dominated by the semigroup approximation error and improving further the
pruning accuracy will no longer decrease the backsubstitution error.

In Figure 7.3(b), we show the plot of the logarithm of the backsubstitution error log(|H|∞) with
respect to the propagation horizon T , for fixed ∆ = 1e-4 and different time step τ . Note that the
fixed ∆ = 1e-4 is sufficiently small for all the time steps used so that the backsubstitution error does
not oscillate after it stops decreasing. As we mentioned, for every τ , there is a horizon threshold T0
after which the backsubstitution error stops decreasing and we refer to this error level as the final
backsubstitution error.

The final backsubstitution error decreases as τ decreases. By Theorem 7.5, the final error de-
creases at least linearly to the time step τ . In Figure 7.4(a) we see a linear decreasing rate of the final
error with respect to the time step τ . This experimental result leads to believe that our error bound
O(τ) is optimal.

In Figure 7.4(b) we show the plot of horizon threshold T0 obtained by different time step τ . We
see that T0 grows less than O(− log(τ)). This coincides once again with the exponential decreasing
rate of the finite truncation error in Theorem 7.4.

The reader is referred to Table 7.1 for the running time of the algorithm.
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Table 7.1: computational time table

τ ∆ T0 cpu time |H|∞
0.005 8e-4 1.65 60s 8.1e-04
0.004 5.7e-4 1.72 96s 6.4e-4
0.003 4.4e-4 1.79 223s 5e-4
0.002 3e-4 1.91 495s 3.1e-4
0.001 1.5e-4 2.07 2.6e+3s 1.5e-4
9e-4 1.3e-4 2.08 3.4e+3s 1.4e-4
6e-4 8e-5 2.16 1.21e+4s 9.3e-5
5e-4 7.7e-5 2.19 3.19e+4s 8e-5
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Figure 7.3: Plot of the log backsubstitution error log(|H|∞) w.r.t. the horizon T for time step τ fixed
to 0.005 and divided length ∆ varying from 4e-3 to 4e-4 (left). Plot of the log backsubstitution error
log(|H|∞) w.r.t. the horizon T for divided length ∆ fixed to 1e-4 and time step τ varying from 0.001
to 0.005 (right).
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threshold T0 w.r.t log(1/τ) (right).



CHAPTER 8
A new max-plus based algorithm for

in�nite horizon control problems

In Chapter 6, we introduced McEneaney’s curse of dimensionality free method, which applies
to the class of infinite horizon switched optimal control problems for which the Hamiltonian takes
the form of a supremum of quadratic functions. The method can then be used to approximate any
infinite horizon optimal control problem with semiconvex Hamiltonians. The geometric growth rate
of the number of basis functions of the method requires an efficient pruning algorithm in the practical
implementation. We presented several SDP based pruning algorithms in the same chapter. While the
method provides rather good approximation in a reasonable time inaccessible by classical grid based
method, the large computational effort required by the SDP based pruning procedure appears to be
the bottleneck of the method if we want to reduce the discretization step thus increase the precision
order.

In this chapter, we develop a new max-plus based randomized algorithm for the same class of
infinite horizon optimal control problems. The major difference between the new algorithm and the
previous SDP based curse of dimensionality free method is that, instead of adding a large number of
functions and then pruning the less useful ones, the new algorithm finds quickly (linearly in the current
number of basis functions), by a randomized procedure, useful quadratic functions and adds only those
functions to the set of basis functions. The efficiency of the new algorithm is reflected by a comparison
of the running time of the SDP based method and that of the new algorithm for a backsubstitution
error of the same order. Experimental results show a speedup around 10 for small instances (small
dimension and small number of values of the switch control), up to 100 for instances of more number
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of switches. We also observe that, the maximal precision order which can be reached in a reasonable
running time by the new algorithm is much better than what can be done by the SDP based algorithm.
Besides, with the new randomized algorithm we are now able to deal with instances of more number
of switches for which the previous SDP based curse of dimensionality method can not reduce the
initial backsubstitution error in a reasonable running time. This will allow us, in the future work,
to consider more general infinite horizon optimal control problems with semiconvex Hamiltonians,
because the latter one can be approximated fairly well by the supremum of a large number of linear
quadratic functions. Finally we give a first convergence result, showing the consistency of the new
algorithm.

8.1 Introduction

We have seen (Chapter 6 and 7) that McEneaney’s curse of dimensionality free method applies to
the class of infinite horizon optimal control problems where the Hamiltonian is given or approximated
by the supremum of finitely quadratic functions. The corresponding HJ PDE is written as:

0 =−H(x,∇V ) =−max
m∈M

Hm(x,∇V )

where
Hm(x, p) = (Amx)′p+

1
2

x′Dmx+
1
2

p′Σm p .

For simplicity we consider here the pure quadratic case such that Assumption 7.1 holds. Using
Lemma 7.3 we know that:

V = sup
T

ST [0] = sup
T

sup
N

sup
i1,···iN

SiN
T/N · · ·S

i1
T/N [0]. (8.1)

In essence, in McEneaney’s curse of dimensionality free method, we choose a sufficiently large T > 0,
a sufficiently large integer N ∈ N to approximate the value function V as follows:

V ' sup
i1,···iN

SiN
T/N · · ·S

i1
T/N [0] .

Each basis function is a quadratic form and can be obtained by solving a sequence of Riccati equations.
However, the number of basis functions is exponential to the number of iterations N. To keep the
approximation tractable, we need to execute a pruning operation at each iteration, keeping only those
basis functions that contribute most to the approximation. The pruning algorithm first introduced
in [MDG08] is based on solving the same number of semidefinite programs as the number of basis
functions. Further refinement and adaptation of the algorithm in [GMQ11], [SGJM10] and [Sri12]
also require to solve a large amount of SDP programs for the pruning phase. Without pruning, the
method suffers from the curse of complexity. However, the so far developed pruning procedure is
time consuming (see the computation time distribution reported in Table 6.1), and it turns out to be
the bottleneck of the method as the required accuracy increases.

The pruning algorithms select in essence "useful" basis functions. The usefulness of a basis func-
tion refers to the improvement it can bring to the approximation of the value function. A way to get
around the pruning procedure is then to develop a method adding only the most useful basis functions.
The next question is then how to identify quickly a basis function which brings a significant improve-
ment to the approximation. For this purpose, first we observe that for a matrix P ∈ S+

d , a state point
x0 ∈ Rd and an index m ∈M , if

Hm(x0,Px0)> 0 ,
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then for sufficiently small t > 0, we have (Lemma 8.2):

x′0Mm
t (P)x0 > x′0Px0 . (8.2)

Next suppose that we have a subapproximation Ṽ 6 V which is the supremum of finitely many
quadratic forms:

Ṽ (x) = sup
i∈I

1
2

x′Pix, x ∈ Rd .

Then at every differentiability point x of Ṽ , we have:

H(x,∇Ṽ ) = max{Hm(x,Pix) : m ∈M ,
1
2

x′Pix = Ṽ (x)} . (8.3)

Hence if there is a differentiability point x0 such that H(x0,∇Ṽ ) > 0 then we can find, in linear time
(with respect to the number of basis functions), the indices i ∈ I and m ∈M reaching the maximum
in (8.3) at point x = x0 and satisfying

Hm(x0,Pix0)> 0.

By the above analysis, we can find quickly (by dichotomy for example) a time step t > 0 such that the
strict inequality (8.2) holds, so that the new quadratic form associated to the matrix Mm

t (Pi) improves
the approximation at least at point x0.

We show that if Ṽ 6 V is not equal to V , then the set of differentiability points x0 such that
H(x0,∇Ṽ ) > 0 is of positive measure (Proposition 8.11). To find such points, we randomly generate
a number of points and select those at which the value of Hamiltonian is positive. This also takes
a linear computation time (with respect to the current number of basis functions) for each sampled
point. The advantages of this method are as follows. First adding a basis function only requires a
number of arithmetical operations that is linear to the number of basis functions. Thus, such an ele-
mentary step can be done quickly. Secondly, the time discretization step is automatically adapted by
the method, and each added basis function is guaranteed to be useful in some region of the state space,
at least at the step when we add it. Numerical experiments (Section 8.4) show that to reach a back-
substitution of the same order, the new algorithm takes much less time than the SDP based pruning
algorithm (103s vs >10h for the instance used in [MDG08]). We might make a connection between
this randomized method for infinite horizon optimal control problems and the so-called "point-base
value iteration" [CLZ97, ZZ01] for Partially Observable Markov Decision Process (POMDP). Al-
though developed in very different settings, the two methods share the idea that improving quickly the
approximate value function at randomly generated witness points leads to a better performance than
improving uniformly but slowly the approximated value function.

The present chapter is organized as follows. In Section 8.2 we present the key observations leading
to the new algorithm. In Section 8.3 we state the pseudocode of the algorithm. In Section 8.4 we show
the experimental results obtained by the new algorithm and by the SDP based pruning algorithm, for
11 instances of dimension from 4 to 15. Finally, Section 8.5 contains a proof of the almost sure
convergence of the randomized algorithm, under some technical assumptions.

8.2 Main ideas of the algorithm

We state the essential observations leading to the new algorithm for solving Problem 7.1, all the
notations follow from Section 7.2. We make Assumption 7.1 throughout the Chapter. We shall see
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that the method can be extended directly to the more general class of problems to which McEneaney’s
curse of dimensionality applies. Let δ > 0 be sufficiently small such that Gδ defined in (7.8) is the
domain of the semigroup (St)t and that

lim
T→+∞

ST [V0] =V, V0 ∈ Gδ . (8.4)

Denote

P̄ =
cA(γ−δ )2

c2
σ

Id ,

and let
G = [0, P̄] ,

be the set of positive semidefinite matrices bounded by P̄ in the Loewner order. Then it can be checked
by basic calculus that

Φ
m(0)< 0, Φ

m(P̄)4 0 , ∀m ∈M .

Hence using Lemma 2.11 we know that for each m ∈M , the interval G ⊂ S+
d is invariant by the flow

Mm
· (·) associated to the function Φm.

We show an extension of formula (8.1).

Lemma 8.1. Let P1 ∈ G which defines a quadratic function:

V0(x) =
1
2

x′P1x, x ∈ Rd .

If V0 6V , then

V (x) = sup
T>0

sup
N

sup
iN ,...,i1

1
2

x′
(
MiN

T/N . . .Mi1
T/N(P1)

)
x, ∀x ∈ Rd . (8.5)

Proof. By the monotonicity of the semigroup we know that if V0 6V and T > 0, then

ST [V0]6 ST [V ] =V .

Now by (8.4), we get
sup
T>0

ST [V0] =V .

Next by Lemma 7.3, this can be written as:

V = sup
T

sup
N

sup
i1,···iN

SiN
T/N · · ·S

i1
T/N [V0] .

Using the relation between the semigroup and the Riccati flow (7.6), we get immediately (8.5).

Lemma 8.1 shows that V is the supremum of quadratic functions, each of which is obtained by
solving a sequence of Riccati equations. The new algorithm selects only a finite number of them to
approximate V . The selection principle is based on the following basic observation.

Lemma 8.2. Let P ∈ Sd . If there are x ∈ Rd and m ∈M satisfying:

Hm(x,Px)> 0 ,

then there is t0 > 0 such that for all 0 < t 6 t0:

x′Mm
t (P)x > x′Px.
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Proof. Define the continuously differentiable function f : [0,T )×Rd → R by

f (t) =
1
2

x′Mm
t (P)x.

Then
f ′(0) = Hm(x0,Px0)> 0.

Thus there is t0 > 0 such that f ′(t)> 0 for all t ∈ [0, t0]. Therefore f (t)> f (0) for all 0 < t 6 t0.

Definition 8.1. Let {Pi ∈ S+
d : i ∈ I} be a finite set of positive semidefinite matrices. We say that a

function Ṽ is associated to {Pi : i ∈ I} if

Ṽ (x) = sup
i∈I

1
2

x′Pix, ∀x ∈ Rd .

Define δH(Ṽ ) as the maximal backsubstitution error on the unit sphere if we approximate V by Ṽ , i.e.,

δH(Ṽ ) := sup{H(x, p) : x ∈ Sd(1), p ∈ ∂Ṽ (x)} (8.6)

where Sd(1) denotes the unit sphere in Rd and ∂ denotes the subdifferential operator.

Corollary 8.3. Let {Pi ∈ S+
d : i ∈ I} be a finite set of positive semidefinite matrices and Ṽ be the

function associated to {Pi : i ∈ I}:

Ṽ (x) = sup
i∈I

1
2

x′Pix, x ∈ Rd (8.7)

such that Ṽ 6V . If δH(Ṽ )> 0, then there is x0 ∈ Sd(1), t0 > 0, i0 ∈ I and m0 ∈M such that:

Ṽ (x0)<
1
2

x′0Mm0
t (Pi0)x0, t ∈ (0, t0]

Besides,

1
2

x′Mm0
t (Pi0)x 6V (x), ∀x ∈ Rd . (8.8)

Proof. Remark that if δH(Ṽ )> 0, then there is x0 ∈ Sd(1) such that

sup
q∈∂Ṽ (x0)

H(x0,q)> 0, (8.9)

By (A.2), we know that:

∂Ṽ (x0) = conv{Pix0 :
1
2

x′0Pix0 = Ṽ (x0)}. (8.10)

The function H(x0, ·) is convex and the set ∂Ṽ (x0) is a polytope thus the supremum in (8.9) is
attained at an extreme point of the set ∂Ṽ (x0). By (8.10), there is i0 ∈ argmaxi∈I x′0Pix0 such that

sup
q∈∂Ṽ (x0)

H(x0,q) = H(x0,Pi0x0) .
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Let

m0 ∈ argmax
m∈M

Hm(x0,Pi0x0) ,

so that

sup
q∈∂Ṽ (x0)

H(x0,q) = Hm0(x0,Pi0x0) .

Then by (8.9),

Hm0(x0,Pi0x0)> 0.

Now by virtue of Lemma 8.2 we know that there is t0 > 0 such that for all 0 < t 6 t0

x′0Mm0
t (Pi0)x0 > x′0Pi0x0

Since i0 ∈ argmaxi∈I x′0Pix0, we know that 1
2 x′0Pi0x0 = Ṽ (x0). Finally the last inequality (8.8) follows

from the monotonicity of the semigroup.

Corollary 8.3 implies that there is a feasible way to improve a subapproximation at those points
where the backsubstitution error is positive. We next show that δH(Ṽ ) > 0 as long as Ṽ is not the
exact value function V . Moreover, the normalized approximation error can be bounded through the
normalized maximal backsubstitution error δH(Ṽ ).

First let us recall a useful lemma:

Lemma 8.4. ([McE98, Lemma 2.3],[MK10, Lemma 6.7]) Under Assumption 7.1, there is a constant
K > 0, independent of (x,T ), such that for all ε 6 1 and all ε-optimal solution xε(·) : [0,T ]→ Rd of
the optimal control problem ST [0](x) (Problem 7.2), the following inequality holds:

∫ T

O
|xε(s)|2 ds 6 K(|x|2 +1).

Proposition 8.5. Under Assumption 7.1, let K > 0 be the constant appearing in Lemma 8.4. Then for
all Ṽ associated to a finite set of positive semidefinite matrices {Pi : i ∈ I} satisfying 0 6 Ṽ 6 V , we
have:

V (x)6 Ṽ (x)+KδH(Ṽ )(1+ |x|2), ∀x ∈ Rd .

Proof. Let any x ∈ Rd and T > 0. Let 0 < ε 6 1 and (uε(·),µε(·),xε(·)) be an ε-optimal pair of the
optimal control problem ST [0](x) (Problem 7.2). Since Ṽ is a subsmooth function, we know that:

Ṽ (xε(T ))−Ṽ (x)

=
∫ T

0
sup

p∈∂Ṽ (xε (t))
p′ẋε(t)dt

=
∫ T

0
sup

p∈∂Ṽ (xε (t))
p′(Aµε (t)xε(t)+σ

µε (t)uε(t))dt
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Therefore,

ST [0](x)

6
∫ T

0

1
2
(xε(t))′Dµε (t)xε(t)− γ2

2
|uε(t)|2dt + ε

6 Ṽ (x)+Ṽ (xε(T ))−Ṽ (x)+
∫ T

0

1
2
(xε(t))′Dµε (t)xε(t)− γ2

2
|uε(t)|2dt + ε (since Ṽ > 0)

= Ṽ (x)+
∫ T

0
sup

p∈∂Ṽ (xε (t))
p′(Aµε (t)xε(t)+σ

µε (t)uε(t))+
1
2
(xε(t))′Dµε (t)xε(t)− γ2

2
|uε(t)|2 dt + ε

6 Ṽ (x)+
∫ T

0
sup

p∈∂Ṽ (xε (t))
H(xε(t), p)dt + ε

Now note that Problem 7.1 is without affine terms, and so H is positively homogeneous of degree 2.
By (8.10) we see that the subdifferential of Ṽ is positively homogeneous of degree 1. Hence for all
x ∈ Rd ,

sup
p∈∂Ṽ (x)

H(x, p) = sup
p∈∂Ṽ (x/|x|)

H(x/|x|, p)|x|2 .

Hence,

ST [0](x)6 Ṽ (x)+δH(Ṽ )
∫ T

0
|xε(t)|2 dt + ε

Now we use Lemma 8.4 and let ε tend to 0 to get:

ST [0](x)6 Ṽ (x)+KδH(Ṽ )(1+ |x|2) .

Since this is true for arbitrary x ∈ Rd and T > 0, using (8.1) we get:

V (x)6 Ṽ (x)+KδH(Ṽ )(1+ |x|2), ∀x ∈ Rd .

8.3 Algorithm

Based on the above analysis, we propose the following max-plus randomized descent algorithm
(Algorithm 1).
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Algorithm 1 Max-plus randomized descent algorithm
1: Parameter: a threshold ϑ > 0;
2: Input: a finite set of matrices P0 ⊂ G such that the associated function Ṽ0 is inferior to V ;
3: for k = 0,1,2, . . . do
4: Randomly choose a point xk on the unit sphere Sd(1);
5: Pk← argmax{x′Px : P ∈Pk};
6: qk← Pkxk;
7: hk←max{Hm(xk,qk) : m ∈M }, mk← argmax{Hm(xk,qk) : m ∈M } ;
8: if hk > ϑ , then
9: Q←Ψ(Pk,mk,xk);

10: Pk+1←Pk∪{Q};
11: else
12: Pk+1←Pk;
13: end if
14: end for

Algorithm 2 Function Ψ(P,m,x) // propagate the matrix P by the m-th Riccati flow
1: Parameter: a constant C > 0;
2: Input: a matrix P; an index m ∈M ; a state point x ∈ Rd ;
3: q← Hm(x,Px);
4: t← 2q/C;
5: Q←Mm

t (P);
6: Output: matrix Q.

8.3.1 Parameters and distribution law

Algorithm 1 requires two parameters C and ϑ where ϑ is a precision parameter. The constant C
should satisfy:

C > sup{‖DΦ
m(P)

(
Φ

m(P)
)
‖, m ∈M , P ∈ G } , (8.11)

where hereinafter ‖ · ‖ denotes the spectral norm in the space of symmetric matrices. We also need
to precise a distribution law on the unit sphere for the random generation in Algorithm 1. Intuitively
we prefer those points with large backsubstitution error. However we do not have a priori information
on the distribution of the backsubstitution error. Thus we should treat each point on the unit sphere
equally and the random generation of points follows the uniform distribution on the unit sphere.

8.3.2 Initial input matrices

The initial set of matrices P0 can be chosen as {P1, . . . ,PM} where for every m ∈M , the matrix
Pm is the solution in G of the algebraic Riccati equation:

(Am)′P+PAm +PΣ
mP+Dm = 0 .

Indeed, Assumption 7.1 guarantees that for every m ∈M , the value function of the infinite horizon
linear quadratic optimal control problem indexed by m is exactly the quadratic function associated to
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the matrix Pm. More precisely,

lim
T→+∞

Sm
T [0](x) =

1
2

x′Pmx, ∀x ∈ Rd ,m ∈M .

Since
Sm

T [0]6 ST [0] ∀T > 0 ,m ∈M

we deduce that
Ṽ0 = sup

m∈M

1
2

x′Pmx 6V (x), ∀x ∈ Rd ,

thus Ṽ0 defined in this way satisfy the constraint require in Algorithm 1.

8.3.3 Complexity analysis

We add the number of operations at each line. It is clear that at iteration k, the number of arith-
metical operations is O(|Pk|+ |M |+d3).

8.3.4 Practical issues

In practice, we randomly generate a large number of points uniformly distributed on the unit
sphere and keep those with large backsubstitution error values. This can be seen as a learning proce-
dure of the backsubstitution error distribution.

Also, the evaluation of the bound in (8.11) is often coarse, leading to a big parameter C and so,
the time step estimated in line 4 of Algorithm 2 is too small (of order 10−5). In practice, we start
from a proper time step and divide it by two until we find a sufficiently small time step such that the
propagation improves strictly the approximation at some point. This procedure will stop after a finite
number of searches, actually the number of division is bounded by log2(q/C).

8.3.5 Extension to other switched in�nite horizon optimal control problem

Although Algorithm 1 is designed for solving Problem 7.1, the same idea can be extended to other
class of switched infinite horizon optimal control problems to which McEneaney’s curse of dimen-
sionality free methods apply. More precisely, such class of problems can be described as follows.
First, the Hamiltonian is given or approximated by a supremum of finitely many simpler Hamiltoni-
ans:

H(x, p) = sup
m∈M

Hm(x, p) .

Secondly, there is a set of basis functions B such that for each m ∈M and t > 0, the semigroup Sm
t

associated to Hm preserves the structure of basis functions, i.e.,

Sm
t [φ ] ∈B, ,∀φ ∈B ,

and Sm
t [φ ] is easily computable. If the above two conditions are satisfied, then under some other

necessary assumptions for the existence of the solution, Algorithm 1 can be directly adapted to solving
the static HJ PDE:

H(x,∇V ) = 0, ∀x ∈ Rd ;V (0) = 0 .

From this observation, it is clear that we can easily adapt Algorithm 1 solve Problem 6.1, sharing the
same structure with Problem 7.1 but with affine terms.
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Sridharan et al. [SGJM10] applied the curse of dimensionality free techniques to quantum systems.
They obtained an approximate solution for an optimal gate synthesis problem which can be formulated
as an optimal control problem with the special unitary group SU(4) as the state space. This leads to
a problem of dimension 15 that is computationally intractable by grid based approaches. We briefly
recall the problem and refer the reader to the original paper for more details.

Determine the bounds on the number of one and two qubit gates required to perform a desired
unitary operation is a problem of special interest in quantum algorithms. One approach to this task of
constructing an optimal circuit is to to find a least path-length trajectory on a Riemannian manifold.
Let {−iH1, . . . ,−iHM} correspond to the set of available one and two qubit Hamiltonians. The span
of the set {−iH1, . . . ,−iHM} and all brackets thereof is assumed to be the Lie algebra of the special
unitary group SU(4). Let {e1, . . . ,eM} be the standard basis vectors of RM. The geodesic distance
between U0 and the identity element I is approximated by the following switched optimal cost control
problem:

C0(U0) = inf
v∈Vg
{
∫ tU0 (v)

0

√
v(s)′Rv(s)ds},

where the state dynamics are given by

dU
dt

=−i{
M

∑
k=1

vk(t)Hk}U, U ∈ SU(4) , (8.12)

and the control space is

Vg = {v(·) | vk : [0,∞)→{e1, . . . ,eM} measurable }.

Moreover, tU0(v) denotes the time to reach the identity element starting from U0:

tU0(v) = inf{t > 0 : U(0) =U0,U(t) = I,U : [0, t]→ SU(4) satisfying (8.12)}

The HJ equation of the above optimal cost control problem is given by

H(U,∇C) = 0, ∀U ∈ SU(4) ,C(I) = 0 , (8.13)

with
H(U, p) := sup

k∈{1,...,M}
Hk(U, p) ,

where
Hk(U, p) = trace[−ipHkU ]−

√
e′kRek .

The basis functions are chosen to be the affine functions on the space SU(4). For every k∈ {1, . . . ,M},
the semigroup associated to Hk preserves the affine structure. In [SGJM10], the authors applied
McEneaney’s curse of dimensionality free method with an SDP based pruning strategy to solve 8.13.
Our randomized algorithm can be easily adapted to solving equation 8.13.

8.4 Experimental results

In this section, we report the experimental results. A convergence proof will be given in Sec-
tion 8.5. We compare the numerical results obtained respectively by the SDP based curse of dimen-
sionality free method (Chapter 6) and by the max-plus randomized descent algorithm (Algorithm 1).
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The pruning algorithm used is the greedy algorithm (see Section 6.4.3.c), which was shown to be the
most efficient (see Figure 6.3) compared to the other ones. The code was mostly written in Matlab
(version 7.11.0.584), calling YALMIP (version 3) and SeDuMi (version 1.3) for the resolution of SDP
programs. The results were obtained on a single core of an Intel quad core running at 3.10GHz, with
8Gb of memory.

We test the SDP based curse of dimensionality free method and the max-plus randomized algo-
rithm for 11 instances, with dimension d varying from 4 to 15 and the number of discrete controls
M varying from 6 to 50. The instances are numbered from 1 to 11. The instance No.4 is the same
6-dimensional instance used in [MDG08] and also in Chapter 6. The instance No. 11 is the 15-
dimensional quantum instance with state in SU(4) used in [SGJM10]. All the other 9 instances are
generated randomly, all following in the class of Problem 7.2.1 without affine terms. The instances
are available upon request and will appear on line later.

Table 8.1 exposes the experimental results for the 11 instances, obtained by the two different
methods. The first column gives the number of the instance. The second and third column display
the dimension d and the number of the discrete controls M. The fourth column is the (normalized)
initial backsubstitution error. The fifth column represents the final backsubstitution error obtained
by the SDP based COD-free method after the execution time in the sixth column, or by the max-
plus randomized algorithm after the execution time in the eighth column. The seventh and ninth
column are respectively the corresponding number of basis functions at the end of execution of the
two algorithms. The mark ’-’ means that the error order in the fifth column can not be obtained by the
method in less than 20 hours.

For every instance numbered from 1 to 10, we randomly generate a unitary matrix of the same
dimension, and measure the backsubstitution error on the plane generated by the two first column
vectors of the unitary matrix. We denote the 10 unitary matrices by {U1, . . . ,U10}, with the sub-
scribed number corresponding to the number of instance. For instance No.4, the backsubstitution
error reported in Table 8.1 is the maximal value of Hamiltonian of the approximation function on the
rectangle [−2,2]× [−2,2] on the plane generated by e1 and e2, with e1,e2 the two first standard basis
in R6. For instance No.11, the error reported is the maximal value of Hamiltonian of the approxima-
tion function on the plane generated by σx⊗ I and σz⊗ I in the Lie algebra of the special group SU(4).
For the 9 instances randomly generated, the backsubstitution error is homogeneous with degree 2 and
we report the maximal normalized error on the planes.

In short, the two main messages that we get from Table 8.1 are as follows:

• First, the max-plus randomized algorithm can reach the same precision order obtained by the
SDP based method with a speedup of order 10 up to 100.

• Second, for instances with more number of discrete controls M, whereas the SDP based curse
of dimensionality free method fails to give much more accurate approximation than the initial
value function V0, the max-plus randomized algorithm still achieves to reduce the backsubstitu-
tion error in an acceptable running time.

For illustration, we choose some instances and show in Figures 8.1, 8.2, 8.3, 8.4 the 3D plots of the
backsubstitution errors obtained by the two methods, on the randomly generated planes. Note that
until now, we compare the two methods through the backsubstitution error, which by Proposition 8.5
provides a bound of the maximal normalized approximation error. Hence, from a theoretical point
of view, a smaller backsubstitution error implies a smaller maximal approximation error. However, a
smaller backsubstitution error does not imply a better subapproximation everywhere in the state space.
What we observe in practice is that the randomized algorithm provides a subapproximation much
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Table 8.1: Backsubstitution error table
Instance d M initial backsub. SDP based randomized algo
nb. backsub.

error
error cpu time basis nb. cpu time basis nb.

1 4 10 1.2 0.8 280s 100 10s 345
1 4 10 1.2 0.007 - - 527s 26605
2 4 20 4.5 0.14 - - 184s 9925
2 4 20 4.5 0.024 - - 2900s 75831
3 4 50 3.8 1.5 5923s 80 41s 120
3 4 50 3.8 0.1 - - 155s 5938
3 4 50 3.8 0.034 - - 3650s 99848
4 6 6 2.3 0.21 188s 170 27s 1231
4 6 6 2.3 0.12 1.5h 170 37s 1636
4 6 6 2.3 0.08 >10h 320 103s 3281
4 6 6 2.3 0.0257 - - 1217s 10227
5 8 20 0.13 0.1 163s 50 16s 56
5 8 20 0.13 0.01 - - 90s 8108
5 8 20 0.13 0.0045 - - 1887s 32860
6 8 30 0.16 0.012 - - 151s 13698
6 8 30 0.16 0.012 - - 2994s 76393
7 8 50 0.21 0.01 - - 120s 10011
7 8 50 0.21 0.0044 - - 3124s 67515
8 12 20 0.7 0.01 - - 1485s 44894
8 12 20 0.7 0.0052 - - 5368s 93292
9 12 30 0.83 0.012 - - 1322s 39987
9 12 30 0.83 0.007 - - 6512s 99803
10 12 50 0.8 0.12 - - 296s 10026
10 12 50 0.8 0.104 - - 6619s 99992
11 15 6 159 79 >10h 1100 129s 3995
11 15 6 159 31 - - 15438s 300000
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better than the one obtained by the SDP based algorithm on some region in the state space. However,
there exits also some region where the subapproximation obtained by the randomized algorithm is
worse than the one by SDP based algorithm, see the plot of the difference between the approximation
functions in Figures 8.1, 8.2, 8.3, 8.4.

8.5 Convergence result for Algorithm 1

In this section, we give a convergence proof of Algorithm 1, restricted to Problem 7.1.
Algorithm 1 generates a sequence of independent random variables (x1,x2, . . .) uniformly dis-

tributed on the sphere Sd(1). Let (Ω,F ,P) be the standard probability space on which is defined the
stochastic sequence (x1,x2, . . .) equipped with the uniform measure, so that for all k ∈N, t1, . . . , tk ∈N
and borel sets F1, . . . ,Fk ⊆ Sd(1), we have:

P(xt1 ∈ F1, . . . ,xtk ∈ Fk) =
k

∏
i=1

A(Fi)

A(Sd(1))
. (8.14)

Here A(·) denotes the area.
The output of Algorithm 1 (P1,P2, . . .) is a nondecreasing sequence of sets of semidefinite

matrices which determines then a nondecreasing sequence of functions (Ṽ1,Ṽ2, . . .) as follows:

Ṽk(x) = sup{1
2

x′Px : P ∈Pk}, x ∈ Rd , k = 1,2,3, . . .

At each iteration k ∈ N, the function Ṽk is a subapproximation of the value function V . Denote by ek
the approximation error at iteration k measured by the sup-norm distance on the unit sphere:

ek := sup{V (x)−Ṽk(x) : x ∈ Sd(1)} . (8.15)

The main result of this section is:

Theorem 8.1. Let K > 0 be the constant in Lemma 8.4. Under Assumption 7.1, surely Algorithm 1
stops adding new quadratic function after a finite number of iterations and almost surely the approxi-
mation error obtained by Algorithm 1 is bounded by Kϑ , i.e.:

P( lim
n→+∞

en 6 Kϑ) = 1 , (8.16)

where {en}n∈N is defined in 8.15.

The proof shall need three technical results.
The first technical result (Proposition 8.7) states that each time we add a new quadratic function,

the maximal increased value on the unit sphere is not smaller than ϑ 2/C.
The second technical result (Lemma 8.9) states that for every possible sequence (x1,x2, . . . ,), the

corresponding sequence of subapproximation functions converges uniformly on the unit sphere.
The third technical result (Proposition 8.11) states that for any δ > 0 strictly less than the maximal

normalized backsubstitution error of a subapproximation function Ṽ , there is a set of positive area on
the unit sphere, containing only differentiability points of Ṽ with Hamiltonian value larger than δ .

The first and second technical results imply that for every sequence (x1,x2, . . . ,), Algorithm 1
only adds finitely many basis functions, because otherwise the sequence of subapproximation func-
tions cannot converge uniformly. The third technical result implies that almost surely, the maximal
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Figure 8.1: Instance number 1, dimension d = 4, number of discrete controls M = 10; The error is
visualized on the plane generated by two vectors U1e1 and U1e2, where e1 and e2 are the first two
standard basis vectors in R4. Recall that VRandomized 6 V and VSDP 6 V where V is the exact value
function to approximate.
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Figure 8.2: Instance number 4, dimension d = 6, number of discrete controls M = 6; The error is
visualized on the plane generated by two vectors e1 and e2, where e1 and e2 are the first two standard
basis vectors in R6. Recall that VRandomized 6 V and VSDP 6 V where V is the exact value function to
approximate.
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Figure 8.3: Instance number 5, dimension d = 8, number of discrete controls M = 20; The error is
visualized on the plane generated by two vectors U5e1 and U5e2, where e1 and e2 are the first two
standard basis vectors in R8. Recall that VRandomized 6 V and VSDP 6 V where V is the exact value
function to approximate.
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Figure 8.4: Instance number 11, dimension d = 15, number of discrete controls M = 6; The error
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group SU(4). Recall that CostRandomized >C0 and CostSDP >C0 where C0 is the exact cost function to
approximate.
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normalized backsubstitution error tends to a value less than the threshold ϑ , because otherwise Algo-
rithm 1 will generate infinitely many times a point at which the backsubstitution error is larger than
the threshold ϑ and thus add infinitely many quadratic basis functions.

Finally we use Proposition 8.5 to show that as long as the maximal approximation error on the
unit sphere at iteration n is not sufficiently small (en > Kϑ ), the maximal backsubstitution error on
the sphere at iteration n is larger than the threshold (δH(Ṽn) > ϑ ). It follows that almost surely the
maximal approximation error on the unit sphere tends to a sufficiently small value (limn→+∞ en 6Kϑ ).

We present in the next three subsections the proof for the latter three technical results. The proof
of Theorem 8.1 is in Section 8.5.4.

In what follows, (x1, . . . ,xn, . . .) denotes the sequence of independent random points on the unit
sphere, drawn with the uniform distribution. The sequence (P1, . . . ,Pn, . . .) denotes the correspond-
ing output of Algorithm 1.

8.5.1 Preparation for the proof of Theorem 8.1: �rst part

In this subsection, we show (Proposition 8.7) that each time we add a new quadratic function, the
maximal increased value on the unit sphere is not smaller than ϑ 2/C.

Below is an extended version of Lemma 8.2.

Lemma 8.6. Let P ∈ G . If there are x0 ∈ Sd(1) and m ∈M satisfying:

q0 := Hm(x0,Px0)> 0,

then setting t0 to 2q0
C we have:

1
2

x′0Mm
t0 (P)x0 >

1
2

x′0Px0 +q2
0/C.

Proof. As in the proof of Lemma 8.2, we denote by f : [0,T )×Rd → R the function defined by

f (t) =
1
2

x′0Mm
t (P)x0, t ∈ [0,T ).

It follows that:
f ′(t) =

1
2

x′0Φ
m(Mm

t (P))x0, t ∈ [0,T ),

and
f ′′(t) =

1
2

x>0 DΦ
m(Mm

t (P))◦ (Φm(Mm
t (P)))x0, t ∈ [0,T ).

Therefore,

f ′(0) = Hm(x0,Px0) = q0 . (8.17)

Recall that Mt(P) ∈ G for all t ∈ [0,T ). Thus by (8.11),

f ′′(t)6C/2, t ∈ [0,T ). (8.18)

Now by mean value theorem, (8.17) and (8.18), we have:

f (t)> f (0)+ tq0−
C
4

t2, ∀t ∈ (0,T ).
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Now take t0 = 2q0/C we get:

f (t0)> f (0)+q2
0/C =

1
2

x′0Px0 +q2
0/C .

Let n, l ∈ N. The approximation function Ṽn+l is greater than or equal to the approximation func-
tion Ṽn. Denote by wn,n+l the maximal increased value on the unit sphere from iteration n to iteration
n+ l:

wn,n+l := sup{Ṽn+l(x)−Ṽn(x) : x ∈ Sd(1)}. (8.19)

Proposition 8.7. Let n ∈ N and k ∈ N be such that Pn+k 6= Pn, then

wn,n+k > ϑ
2/C .

Proof. If |Pn+k| 6= |Pn|, then at least a new quadratic basis function is added after step n and before
step n+ k. Without loss of generality suppose that a new quadratic basis function is added at step
n+1. This only happens when the Boolean test at line 8 in Algorithm 1 is verified. That is, there is
P ∈Pn, x ∈ Sd(1) and m ∈M such that

P = argmax{x′Qx : Q ∈Pn}, Hm(x,Px)> ϑ .

The newly added quadratic function is associated to the matrix propagated by the m-th Riccati flow
Ψ(P,m,x) (see Algorithm 2). By Lemma 8.6, it is clear that

1
2

x′Ψ(P,m,x)x >
1
2

x′Px+ϑ
2/C = ϑ

2/C+Ṽn(x) .

Hence

wn,n+k > ϑ
2/C .

8.5.2 Preparation for the proof of Theorem 8.1: second part

In this subsection, we show (Lemma 8.9) that each sequence of subapproximation functions con-
verges uniformly on the unit sphere.

Lemma 8.8. Let {Pi : i ∈ I} be a finite set of matrices contained in the interval G = [0, P̄]. Let Ṽ be
the function:

Ṽ (x) = sup
i∈I

1
2

x′Pix, x ∈ Rd .

Then Ṽ is a Lipschitz function on the unit sphere with Lipschitz constant ‖P̄‖.
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Proof. For all x,y ∈ Sd(1),

Ṽ (x)−Ṽ (y)6 sup
i∈I

1
2

x′Pix−
1
2

y′Piy

=
1
2

sup
i∈I

x′Pi(x− y)+ y′Pi(x− y)

6
1
2

sup
i∈I
|x||Pi(x− y)|+ |y||Pi(x− y)|

= sup
i∈I
|Pi(x− y)|

6 sup
i∈I
‖Pi‖|x− y|

Now for all i ∈ I, since 0 4 Pi 4 P̄, we know that ‖Pi‖6 ‖P̄‖. Therefore,

Ṽ (x)−Ṽ (y)6 ‖P̄‖|x− y| .

Lemma 8.9. Every sequence of subapproximation functions (Ṽ1,Ṽ2, · · · ,) generated by Algorithm 1
converges uniformly on the unit sphere Sd(1).

Proof. Let (Ṽ1,Ṽ2, · · · ,) be a sequence of subapproximation functions generated by Algorithm 1. Re-
call that for all n the function Ṽn is associated to a matrix contained in G . Since G in bounded, it is
clear that the functions {Ṽ1, . . . ,Ṽn, . . . ,} are uniformly bounded on unit sphere. The equicontinuity
property of the sequence follows directly from Lemma 8.8. Now applying the Arzelà-Ascoli theorem,
we know that there is a subsequence of functions converging uniformly on the unit sphere. We also
know that the sequence (Ṽ1,Ṽ2, . . .) is nondecreasing (pointwise). Therefore the sequence converges
uniformly on the unit sphere.

The following lemma is a direct corollary of Lemma 8.9.

Lemma 8.10. For all δ > 0,
lim

n→+∞
P(sup

l>0
wn,n+l > δ ) = 0.

Proof. Let δ > 0. By Lemma 8.9, for every sequence (x1,x2, . . . ,), the corresponding sequence of
approximation functions (Ṽ1,Ṽ2, . . . ,) converges uniformly on the unit sphere. Therefore, for all ω ∈
Ω, there is n ∈ N such that for all l ∈ N:

sup{Ṽn+l(x)−Ṽn(x) : x ∈ Sd(1)}6 δ .

This can be summarized by:
Ω = {ω : ∪

n∈N
∩

l∈N
wn,n+l 6 δ}.

Therefore
P( ∩

n∈N
{ ∪

l∈N
wn,n+l > δ}) = 0,

which is equivalent to:
lim

n→+∞
P( ∪

l∈N
{wn,n+l > δ}) = 0.
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8.5.3 Preparation for the proof of Theorem 8.1: third part

Let P be a finite set included in G and Ṽ be the function associated to P . Let δ > 0. Define

A (Ṽ ,δ ) := ∪
P∈P

B(P,δ ) , (8.20)

where for P ∈P , the set B(P,δ ) describes the points on the unit sphere where the matrix P is the
only active one and the backsubstitution error is strictly bigger than δ , i.e.,

B(P,δ ) := {x ∈ Sd(1) : x′Px > max{x′Qx : Q ∈P,Q 6= P}, H(x,Px)> δ}

The main object of this subsection is to show that for all 0 < δ < δH(Ṽ ), the area of A (Ṽ ,δ ) is
positive (Proposition 8.11). We remark that A (Ṽ ,δ ) is an open set relative to Sd(1).

Proposition 8.11. For all δ < δH(Ṽ ), the area of A (Ṽ ,δ ) is positive:

A(A (Ṽ ,δ ))> 0 .

Proof. Let δ < δH(Ṽ ). Since A (Ṽ ,δ ) is open, we only need to show that the set is not empty. Recall
that

δH(Ṽ ) := sup{H(x, p) : x ∈ Sd(1), p ∈ ∂Ṽ (x)} .

Then there is x0 ∈ Sd(1) such that

sup{H(x0, p) : p ∈ ∂Ṽ (x0)}>
δ +δH(Ṽ )

2
.

We assume that there is more than one matrix active at point x0 (otherwise x0 ∈A (Ṽ ,δ )). By (A.2)
and the convexity of H in p:

sup{H(x0, p) : p ∈ ∂Ṽ (x0)}= max{H(x0,Px0) : P ∈P,
1
2

x′0Px0 = Ṽ (x0)} . (8.21)

Let P ∈P be a matrix reaching the maximum in the latter formula. Then by the continuity of the
function H, there is ε > 0 such that

H(x,Px)> δ , ∀x ∈ B(x0;ε) . (8.22)

If there is a set A ⊂ Sd(1)∩B(x0;ε) of positive area such that

1
2

x′Px > max{1
2

x′Qx : Q ∈P,Q 6= P}, ∀x ∈A , (8.23)

then by definition A ⊂A (Ṽ ,δ ) and so the area of A (Ṽ ,δ ) is positive. Now suppose that there is no
A ⊂ Sd(1)∩B(x0;ε) of positive area such that 8.23 holds. Define a function W : Rd → R by

W (x) = sup{1
2

x′Qx,Q ∈P,Q 6= P} ∀x ∈ Rd .

Then V and W differs on a set of measure 0 in the neighborhood B(x0;ε). By the continuity of V and
W we get:

W (x) = Ṽ (x), ∀x ∈ B(x0;ε).

In other words, we can remove the quadratic function associated to P without changing the local
structure of Ṽ in a neighborhood around x0. Thus there must be another matrix Q ∈P reaching
the maximum in (8.21). That explains why there is always a matrix P ∈P and a set A of positive
Lebesgue measure such that (8.22) and (8.23) hold at the same time.
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The next lemma shows that if the randomly generated point at iteration k is in the set A (Ṽk,ϑ +
δ/2), then a new quadratic basis function is added and the maximal increased value on the unit sphere
from iteration k to iteration k+1 is larger than some fixed value.

Lemma 8.12. For all δ > 0. If xk ∈A (Ṽk,ϑ +δ/2), then

wk,k+1 > ϑ
2/C .

Proof. If xk ∈A (Ṽk,ϑ +δ/2), then by definition, there is a matrix Pk ∈Pk such that

x′kPkxk > max{x′kQxk : Q ∈Pk,Q 6= P}, H(xk,Pkxk)> ϑ .

Therefore, the output at line 5 of Algorithm 1 is Pk. The output of line 7 of Algorithm 1 is hk =
H(xk,Pkxk)> ϑ . Thus the Boolean function at line 8 in Algorithm 1 is verified. Hence, a new matrix
is added, i.e.

|Pk+1|= |Pk|+1 .

By Proposition 8.7, this implies that wk,k+1 > ϑ 2/C.

8.5.4 Proof of Theorem 8.1

We are now ready to give a proof of the convergence of Algorithm 1 (Theorem 8.1).

Proof. By Lemma 8.9, for every possible sequence (x1,x2, . . . ,), the corresponding sequence of sub-
approximation functions converges uniformly on the unit sphere. By Proposition 8.7, each time we
add a new quadratic function, the maximal increased value on the unit sphere is not smaller than ϑ 2/C.
Therefore, surely Algorithm 1 stops adding quadratic function after a finite number of iterations.

Let δ > 0, n ∈ N and l ∈ N\{0}. By Proposition 8.7, we know that if wn,n+l−1 6 ϑ 2/C, then no
quadratic function has been added after step n until step n+ l−1. In that case,

A (Ṽn,ϑ +δ/2) = A (Ṽn+l−1,ϑ +δ/2) ,

because Ṽn = Ṽn+l−1. Therefore, if

wn,n+l−1 6 ϑ
2/C, xn+l−1 ∈A (Ṽn,ϑ +δ/2) ,

then
xn+l−1 ∈A (Ṽn+l−1,ϑ +δ/2) .

If the latter condition is true, then by Lemma 8.12,

wn,n+l > wn+l−1,n+l > ϑ
2/C.

In other words,

{wn,n+l−1 6 ϑ
2/C}∩{xn+l−1 ∈A (Ṽn,ϑ +δ/2)}

⊆ {wn,n+l−1 6 ϑ
2/C}∩{wn,n+l > ϑ

2/C} .

Hence,

∪
06k6l−1

{xn+k ∈A (Ṽn,ϑ +δ/2)} ⊆ {wn,n+l > ϑ
2/C} .
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Then we have:

P({en > K(ϑ +δ )}∩{wn,n+l > ϑ
2/C})

> P( ∪
06k6l−1

{xn+k ∈A (Ṽn,ϑ +δ/2)}∩{en > K(ϑ +δ )})

= P({en > K(ϑ +δ )})−P({ ∩
06k6l−1

{xn+k /∈A (Ṽn,ϑ +δ/2)}∩{en > K(ϑ +δ )}) .

Now denote:
α(x1, . . . ,xn−1) := A(A (Ṽn,ϑ +δ/2))/A(Sd(1)) .

Then by the independence of random variables (x1,x2, . . .), we get:

P( ∩
06k6l−1

xn+k /∈A (Ṽn,ϑ +δ/2)∩{en > K(ϑ +δ )})

= E(1en>K(ϑ+δ )(1−α(x1, . . . ,xn−1))
l) .

Hence we have:

P({en > K(ϑ +δ )}∩{wn,n+l > ϑ
2/C}) (8.24)

> P({en > K(ϑ +δ )})−E(1en>K(ϑ+δ )(1−α(x1, . . . ,xn−1))
l) . (8.25)

By Proposition 8.5, we know that
Ω = {en 6 KδH(Ṽn)}.

Thus
{en > K(ϑ +δ )} ⊆ {δH(Ṽn)> ϑ +δ}.

By Proposition 8.11, we know that

{δH(Ṽn)> ϑ +δ} ⊆ {α(x1, . . . ,xn−1)> 0}.

Therefore, we obtain that:

{en > K(ϑ +δ )} ⊆ {α(x1, . . . ,xn−1)> 0}. (8.26)

Hence, we apply the dominated convergence theorem and obtain that:

lim
l→+∞

E(1en>K(ϑ+δ )(1−α(x1, . . . ,xn−1))
l) = 0 . (8.27)

Therefore,

P({sup
l∈N

wn,n+l > ϑ
2/C})

= lim
l→+∞

P({wn,n+l > ϑ
2/C})

> lim
l→+∞

P({en > K
√

ϑ +δ}∩{wn,n+l > ϑ
2/C})

> P(en > K(ϑ +δ ))− lim
l→+∞

E(1en>K(ϑ+δ )(1−α(x1, . . . ,xn−1))
l) by (8.25)

= P(en > K(ϑ +δ )). by (8.27)
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Now by Lemma 8.10, we know that

lim
n→+∞

P(sup
l∈N

wn,n+l > ϑ
2/C) = 0.

Hence we have:

lim
n→+∞

P(en > K(ϑ +δ ))6 lim
n→+∞

P(sup
l∈N

wn,n+l > ϑ
2/C) = 0.

Since δ > 0 is arbitrary, this implies that

P( lim
n→+∞

en 6 Kϑ) = 1.

8.6 Conclusion and remarks

This chapter is constituted of the most recent work of the thesis. We developed a new max-plus
based algorithm, which by experimental results improves the previous SDP based curse of dimension-
ality method both in terms of the speed and the accuracy. We gave a first convergence proof showing
that the method is consistent.

With this new algorithm which allows now to handle infinite horizon switched optimal control
problem with more number of switches, we will consider, in the future work, to extend the method to
more general class of Hamiltonians, in particular, those which can be locally well approximated by
the supremum of linear quadratic forms. For example, semiconvex Hamiltonians will satisfy this re-
quirement. As we showed in Chapter 5, the curse of dimensionality is unavoidable if we approximate
smooth semiconvex function by quadratic forms. Hence, the number of switches needed for a given
precision order will increase exponentially with respect to the dimension d of the state space. This
prevent us from extending the new algorithm to more general class of Hamiltonians in high dimen-
sional case. On the other hand, we remarked a possible reduced need of number of basis functions
in the case when the semiconvex function to approximate is flat, see Remark 5.7. This leads us to
study the class of optimal control problems with semiconvex and “flat“ Hamiltonians, to which we
will apply the algorithm developed in the present chapter.

Besides, although we proved the convergence of the algorithm, the complexity (or the convergence
speed) of the algorithm for a given precision is not clear at all at the moment. We shall explore more
theoretical studies on the complexity of the algorithm, to see to what extent this new algorithm can
reduce the curse of dimensionality.



APPENDIX A
On the di�erential calculus of

pointwise max of �nitely many

smooth functions

We gather some standard results concerning the differential caluclus of pointwise max of finitely
many smooth functions. We refer the reader to the book of Rockafellar and Wets’ [RW98] and of
Clarke et al. [CLSW98] for more background. For a function f :Rd→R, the proximal subdifferential
of f at point x ∈ Rd , denoted by ∂̂ f (x), is defined as:

∂̂ f (x) = {v : f (y)> f (x)+ 〈v,y− x〉+o(|y− x|), ∀y ∈ Rd}.

The (general) subdifferential of f at point x ∈ Rd , written as ∂ f (x), is defined by:

∂ f (x) = {lim
i

vi : vi ∈ ∂̂ f (xi),xi→ x} .

If f is a convex function, then ∂̂ f and ∂ f coincide with the subgradient set of f , i.e.,

∂̂ f (x) = ∂ f (x) = {v : f (y)> f (x)+ 〈v,y− x〉, ∀y ∈ Rd} .

Consider a function f : Rd → R represented by:

f = sup
a∈A

fa (A.1)
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where A is a compact and every function fa : Rn→ R is of class C1. If further, the functions (a,x)→
fa(x) and (a,x)→ D fa(x) are continuous, then f is called subsmooth function in [RW98].

The following theorem is Theorem 10.31 in [RW98].

Theorem A.1 ([RW98]). Let f be a subsmooth function of form (A.1). The subdifferential of f at
point x ∈ Rd is:

∂ f (x) = conv{D fa(x) : fa(x) = f (x),a ∈ A}. (A.2)

The one-side directional derivative of f at point x in the direction v is:

f ′(x;v) = sup
a∈A, fa(x)= f (x)

D fa(x)v, ∀x,v ∈ Rn. (A.3)
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