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Chapter 2

Introduction NONUMBER

2.1 Context and motivation NONUMBER

The goal of this thesis is to bring new methods for statistical mixture mod-
els which rely on the theoretical methods proposed by the framework of in-
formation geometry. The main idea behind the algorithms presented here
is to introduce a geometrical point of view to statistical problems, which are
not obviously geometrical at first look: the link between statistical models
and geometry is allowed by the use of information geometry.

Information geometry is at the frontier between statistics and geome-
try: intuitively, it amounts to doing statistics and probabilities with geo-
metric tools like distance, geodesic, centroids, etc. It thus can be seen as
a translation table between statistical problems and geometric ones: pa-
rameter estimation of a distribution will be a centroid, a maximum like-
lihood problem will amount to finding a minimum distance, Expectation-
Maximization will be a soft clustering, etc. We can also imagine novel prob-
lems like Voronoi diagrams between distributions.

The field of information geometry finds its roots in the seminal work
of Radhakrishna Rao [104] in the 1940’s who was the first to add a geo-
metric structure on top of statistical objects by defining the Rao distance
between distributions and to bring a structure of a Riemaniann manifold
on the parameters of the distribution: from his work comes the fundamen-
tal idea that statistical objects (distributions) exist by themselves as points
in the manifold of distributions and that the parameters (means and vari-
ances for Gaussians for example) of a distribution are its coordinates in
some coordinate system. Introducing a notion of coordinate system raises
new questions about the invariances we can expect: since distributions are
points and parameter coordinates, a legitimate hope is to have geometri-
cal tools which do not depend on the choice of the coordinate system. The
independence with respect to the coordinate system is called the invari-
ance to reparameterization: it is a fundamental property since it allows to
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use the most convenient coordinate system without changing the geomet-
ric properties of the studied objects. The Rao Riemaniann metric is the only
one to possess this property in a Riemaniann context but other kinds of dif-
ferential manifolds have been studied in the literature. Cencov [29] studied
in the 1980’s these notions of invariance in the non-Riemaniann case with
a categorical point of view (in the sense of the category theory) and in-
troduced a new kind of connections, the dual affine α-connections. These
connections and the α-divergences naturally associated to them have been
studied independently by Amari [7] which introduced the general notion
of dually flat spaces. Related divergences such as the β-divergences and the
more generic (α, β) divergences are getting more and more interest nowa-
days [31, 39].

A particular class of families of distributions is often used in the con-
text of information geometry: the exponential families. These families are
useful from a computational point of view: with the help of their bijec-
tion with Bregman divergences [12], a lot of statistical problems can be
solved in the Bregman geometric domain. A fundamental tool is that the
famous Kullback-Leibler divergence between members of the same expo-
nential family amounts to a Bregman divergence between the parameters
of the two distributions. The use of exponential families and of Bregman
divergences allowed to go from the purely mathematical information ge-
ometry to the growing field of computational information geometry: in
addition to the mathematical developments, information geometry is now
looked at with a computational point of view which takes into account the
algorithmic considerations.

Bregman geometry is interesting in itself since Bregman divergences
encompass a lot of usual dissimilarity measures. Problems which are com-
mon in Euclidean geometry have been studied and extended to the Breg-
man setup: Bregman Voronoi diagrams [91], clustering with Bregman di-
vergences [12], data structures with Bregman balls tree [102, 95], Bregman
centroids [94] (which are known in closed-form), etc. Due to the bijection
with exponential families, a lot of these methods translate naturally to the
statistical setup allowing to solve statistical problems with Bregman geo-
metric tools.

A big issue in computational information geometry is the availability
of closed-form formulas. The Rao distance is a neat theoretical tool but is
hardly usable in practice since its evaluation requires often a numerical ap-
proximation scheme to approximate geodesics. Even for distribution for
which a formula is known, like the univariate Gaussian case, useful tools
are missing (the Rao centroid for the univariate Gaussian is only known
when the mean of all points is 0, greatly limiting the practical utility in the
context of mixture models). The Bregman divergences are more computa-
tionally friendly: the distance itself and the centroids are known in closed-
form. However, the application of these closed-form formulas to particu-
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lar Bregman divergences (and associated exponential families) depends on
the knowledge of some other formulas which may be difficult to write (the
problem is often to express the Legendre-Fenchel dual of some function or
to inverse a bijective function): everything goes well for the classical Gaus-
sian distribution but some distributions like the Gamma or Beta laws are
difficult to manipulate in the framework of exponential families.

This thesis deals mainly with the problem of the estimation of an un-
known density which is an important problem in many applications. Three
main approaches are possible: the parametric estimation learns the param-
eter of a particular distribution (often with a maximum likelihood esti-
mator or with the method of moments); the semi-parametric models use
a finite mixture to model the density as a weighted sum of distributions
(usually with Expectation-Maximization or a variant); the non-parametric
models represent the density as a non-weighted sum of distributions, each
observation leading to a component (with a kernel density estimator). The
parametric estimation is often not powerful enough to model complex den-
sities so the semi-parametric and non-parametric approaches are often used
in practice.

2.2 Contributions NONUMBER

The contributions presented in this manuscript are divided in two main
parts: the first part is devoted to results on simplification of kernel density
estimators and the second describes methods to build mixtures of general-
ized Gaussian distributions and of Gamma laws using a variant of k-MLE.

A kernel density estimator (KDE) is a non-parametric statistical method
which estimates an unknown density by using a non-weighted sum of ker-
nels centered on each point of the observation set (we use here Gaussian
kernels). Compared to Expectation-Maximization which usually models a
density with few components, KDE builds very large models since it needs
to remember each of the observations. The idea we introduce here relies
on Bregman Hard Clustering, an algorithm to cluster exponential families.
The clustering has already been used to simplify mixtures models but we
use it here to simplify the kernel density estimator: from a very large model
with one component by observation, we build a compact model which is
easy to use (the memory consumption is smaller, evaluating the density is
faster, and so on for drawing random values, or for evaluating approx-
imations of the Kullback-Leibler divergence). Along with the Bregman
Hard Clustering which performs the simplification using Bregman diver-
gences and Bregman centroids, we propose another strategy which makes
use of the Fisher-Rao distance. Since Fisher-Rao centroids are not known in
closed-form we use Model centroids. These centroids, which are defined on
constant curvature spaces, are used as an approximation of the Fisher-Rao
centroids on the hyperbolic space of the parameters of the Gaussian distri-
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bution. All these developments come with a Python library called pyMEF
implementing the proposed algorithms.

The k-MLE algorithm has been recently introduced for mixtures of ex-
ponential families (a weighted sum of components coming from the same
exponential family): while producing models as good as the one produced
by Expectation-Maximization (EM), it is faster. Contrary to EM which uses
a soft assignment procedure, k-MLE uses a hard assignment to fasten the
computation. It thus maximizes the complete log-likelihood (with origins
of observations known) instead of the log-likelihood maximized by EM. We
introduce here a generalization of k-MLE called Extended k-MLE which al-
lows to build mixtures where all the components do not share the same
family. This new method is first applied to mixtures of generalized Gaus-
sian distributions. Two generalized Gaussian distributions are in the same
family only when their mean and shape are identical. We thus cannot use
k-MLE for this type of exponential family (except for mixtures of general-
ized Gaussian with common mean and shape, but this is a less interesting
case): with Extended k-MLE, we are able to choose the exponential family
of each component by selecting the best mean and shape parameters. Ex-
tended k-MLE is also applied to mixtures of Gamma laws: although it may
seem surprising at first glance since Gamma is an exponential family (for
all its parameters), some necessary formulas for the direct application of
k-MLE are not known in closed-form. Without these closed-form formulas,
we may need costly numerical schemes to run the algorithm. Our method
relies on the following remark: Gamma laws with a fixed rate parameter
are still exponential families and all the needed formulas are available in
closed-form. We are thus in the same case as for generalized Gaussian: we
build a mixture where all the components do not belong to the same family
(since we are now manipulating Gamma with fixed rate, and not classi-
cal Gamma) where the rate parameters are chosen independently for each
family.

2.3 Outline NONUMBER

The content of this manuscript is organized in three parts. Part I makes
a review of results on information geometry and presents all the neces-
sary preliminaries. Part II presents results on simplification of kernel den-
sity estimators to produce mixture models with Bregman Hard Clustering
and Model Hard Clustering. Part III introduces new geometrical methods
to build mixtures of Gamma laws and mixtures of generalized Gaussian
which are difficult or impossible to build with existing methods working
on exponential families.

The most used abbreviations and notations of the document are sum-
marized in Annex A. In Annex B, the reader will find tables summarizing
the decomposition in exponential families of all the distributions used in
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this thesis and in Annex C a list of the publications related to results pre-
sented here. The manuscript concludes with an index and the bibliograph-
ical references.
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Chapter 3

Information geometry and
exponential families

3.1 Exponential families

Exponential families form a very large class of families of probability dis-
tributions which are known since the seminal work of Andersen [10], Dar-
mois [36], Fisher [45], Koopman [70] and Pitman [103] in the 1930’s. They
encompass a lot of very common distributions such as the Gaussian, Dirich-
let, Rayleigh, Beta, Gamma, Weibull, Von Mises-Fisher, Pareto, Laplace,
Wishart, exponential, multinomial, generalized Gaussian laws. Some no-
table exceptions are the Cauchy and the Student laws. Another one is the
uniform law (but it can be approximated with a generalized Gaussian with
a large enough shape parameter, see Section 11.4.1 in Chapter 11 for more
details).

This class of distributions provides a very generic framework to study
all these probability distributions. This allows to build algorithms which
are not written for a particular distribution but which will be available for
any exponential family. The difficulty is not anymore to derive a specifi-
cally tailored algorithm from a given distribution but to write the needed
mathematical developments in order to use the generic algorithm (which
raises problems of closed-form formula and of computational efficiency).

3.1.1 Definitions

Let X be a subset of Rn, and x a point of this space.

Definition 3.1. An exponential family is a set of probability distributions
whose probability density function (pdf) can be expressed as the follow-
ing canonical form:
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pF(x; θ) = exp (〈θ|t(x)〉 − F(θ) + k(x)) (3.1)

where

• θ is called the natural parameters of the family,

• F is called the log-normalizer ,

• k(x) is a normalization coefficient called carrier measure ,

• t(x) is a function over the support of the family,

• 〈�|�〉 is a scalar product.

Note 1. When we speak about probability density functions, we mean the
Radon-Nikodym derivative of the probability measure which allows to use
a common framework for both continuous and discrete probabilities and
the integrals are made on the support of the considered distribution.

Proposition 1 (Barndorf-Nielsen, 1978). The function t is a sufficient statistic
of the distribution and is even a minimal one.

Remark 1. The carrier measure k ensures the normalization of the family to
1. It is often not needed (that is, equals to 0 for any x) which simplifies the
manipulation of the family: this is the case for Gaussian distribution for
example.

The natural parameters come from the natural parameter space defined
as:

Θ =

{
θ

∣∣∣∣ ∫X exp (〈θ|t(x)〉 − F(θ) + k(x)) dx < ∞
}

(3.2)

The family is said to be regular if Θ is open and the dimension of the space
Θ is called the order of the family.

Definition 3.2. The log-normalizer characterizes the exponential family [25].
It is a strictly convex and differentiable function which is equal to:

F(θ) = log
∫

x
exp(〈θ|t(x)〉+ k(x))dx (3.3)

Remark 2. The usual form of the distributions which are exponential fam-
ilies is often not the form introduced previously: the parameters used to
describe the distribution may not be the natural parameters. It means that
we have (at least) two different parameterizations of an exponential family:
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• the natural parameters,

• the usual parameters, known as the source parameters .

Example 3.1 (Gaussian distribution). The usual form of the Gaussian dis-
tribution (in the univariate case) is:

p(x; µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(3.4)

with (µ, σ2) ∈ R×R+. µ and σ2 are the source parameters of the Gaussian
family. With a few work, we can rewrite the Gaussian density function in
the form

pF(x; θ1, θ2) = exp (〈θ1, θ2|t(x)〉 − F(θ1, θ2) + k(x)) (3.5)

where

• t(x) = (x, x2),

• (θ1, θ2) =

(
µ

σ2 ,− 1
2σ2

)
,

• F(θ1, θ2) = −
θ2

1
4θ2

+
1
2

log
(
− π

θ2

)
,

• k(x) = 0,

• 〈θ1, θ2|t(x)〉 = θ1x + θ2x2.

We have a one-to-one mapping between the source parameters λ and
the natural parameters through the following bijection:

• λ→ θ : (µ, σ2) 7→
(

µ

σ2 ,− 1
2σ2

)
,

• θ → λ : (θ1, θ2) 7→
(
− θ1

2θ2
,− 1

2θ2

)
.

3.1.2 Dual parameterizations

We have so far two different ways to describe a particular member of an
exponential family. We will now introduce a third kind of parameteriza-
tion, which is based on a dual representation of the log-normalizer. Let’s
begin with some definitions from convex analysis from the reference book
by Rockafellar [107].
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Definition 3.3 (Essentially smooth function). A proper convex function f
is essentially smooth if:

• C = int(dom f ) is not empty,

• f is differentiable on C,

• limi→∞ |∇ f (xi)| → +∞ when the sequence (xi) converges to a bound-
ary point of C.

Proposition 2. If a closed proper convex function f is essentially smooth, ∇ f is
a bijection and we can define its inverse function ∇F−1.

Definition 3.4 (Legendre-Fenchel conjugate). Let C be an open subset ofRd

and f a differentiable function C → R. The Legendre-Fenchel conjugate of
the pair (C, f ) is the pair (D, f ?) such that D = ∇ f (C) and that

f ?(x?) = sup
x∈C
{〈x|x?〉 − f (x)} (3.6)

Notice that at this time, this conjugate has no reason to be well-defined.
When it is well defined, we call it the Legendre-Fenchel transform .

Theorem 3. If f is a closed proper convex function and C = int dom f is not
empty, then the Legendre-Fenchel conjugate (D, f ?) of the pair (C, f ) is well de-
fined with D = int dom∇F.

The Legendre-Fenchel conjugate of a closed proper convex function is
usually not a closed proper convex function: this means that even if the
Legendre conjugate of a function exists, the Legendre conjugate of the Leg-
endre conjugate has no reason to be well defined. If we want a bijective
mapping, we need more hypotheses on the considered function.

Definition 3.5 (Legendre type function). An essentially smooth and strictly
convex function f on an open convex C = int dom f is called a Legendre type
function.

Proposition 4. The Legendre conjugate of a Legendre type function (C, f ) is a
Legendre type function (C?, f ?) with C? = ∇ f (C) and the Legendre conjugate
of (C?, f ?) is (C, f ). Moreover, ∇ f is a bijective mapping between C and C? and
∇ f ? = (∇ f )−1.

When talking about exponential families, a link arises naturally through
the log-normalizer which is a strictly convex function on an open subset of
Rn.

We can thus deduce the existence of the Legendre-Fenchel conjugate
F? of the log-normalizer F. In the general case, we cannot apply the re-
sult from Proposition 4. To get a full duality between F and F? through
the Legendre-Fenchel transform, we need to restrict to exponential fami-
lies with a Legendre type log-normalizer.
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Definition 3.6 (Steep exponential family). An exponential family is steep if
its log-normalizer is essentially smooth.

Any regular family is steep but the converse is not true (the inverse
Gaussian is a counter-example) [25].

Proposition 5. When the exponential family is steep, the following properties
hold:

• (Θ?, F?) is well defined and is a convex function of Legendre type,

• (Θ??, F??) = (Θ, F),

• ∇F is a bijection,

• ∇F? = (∇F)−1.

Moreover, the dual of F can be computed trough the definition of the
Legendre-Fenchel transform F?(η) = supθ∈C {〈θ|η〉 − F(θ)} by noticing
that the supremum is reached for θ = (∇F)−1(η).

This result gives two dual parameter spaces: the natural parameter
space Θ and its dual H =′ Θ? which will be called the expectation parameter
space. The expectation parameter η associated to a natural parameter θ is its
image by the reparameterization function ∇F. Conversely, we can trans-
form an expectation parameter to a natural parameter using the function
(∇F)−1:

η(θ) = ∇F(θ) θ(η) = ∇F−1(η) (3.7)

Remark 3. The name expectation parameter comes from the following equal-
ity:

η = η(θ) = Ep[X] =
∫

xp(x)dx (3.8)

Along with the source and natural parameters, we now have a third
parameterization of an exponential family. All three are bijective with one
another (see Figure 3.1).

3.1.3 Statistical manifold

The first geometric point of view on distribution theory has been brought
by Rao [104] in 1945 1 by considering a family of distributions pθ with sup-
port Rd and parameters θ ∈ RD (D is known as the order of the family).
The following set is called the population parameter space :

1First work begins in the 1930’s and were carried out with Hotelling [58]
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Legendre Transform
(F, Θ)↔ (F?, H)

θ ∈ Θ
Natural Parameters

η ∈ H
Expectation Parameters

θ = ∇F?(η) η = ∇F(θ)

Source Parameters (not unique)
λ1 ∈ Λ1, λ2 ∈ Λ2, . . . , λn ∈ Λn

Multiple source parameterizations

Two canonical parameterizations

Figure 3.1: Dual parameterizations of an exponential family. The three pa-
rameter spaces, source, natural and expectation, are in bijection. The bijec-
tion between the natural parameter space and the expectation parameter
space comes from the Legendre transform of the log-normalizer F.

Θ =

{
θ ∈ RD|

∫
x

pθ(x)dx = 1
}

(3.9)

In this setup, a distribution pθ is seen as a point and the parameter space
Θ is a coordinate system which can be used to describe the members of the
family of distributions. Rao’s key contribution was to add a metric struc-
ture on top of this set of distributions. Let us begin with a first definition:

Definition 3.7 (Fisher Information Matrix). The Fisher Information Matrix is
the positive definite matrix whose coefficient are:

Iij(θ) = E
[

∂ log pθ

∂θi

∂ log pθ

∂θi

]
(3.10)

= E
[

1
pθ

∂pθ

∂θi

1
pθ

∂pθ

∂θi

]
(3.11)

This matrix serves as a basis for defining a metric between two infinitely
close points θ and θ + dθ:

Definition 3.8 (Rao metric). The Rao metric is defined as the following quadratic
form:
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ds = ds2(θ) =
D

∑
i=1

D

∑
j=1

Iij(θ)dθidθj (3.12)

= (∇θ)T I(θ)∇θ (3.13)

The Fisher Information Matrix thus defines a scalar product on the tan-
gent space around θ, bringing a Riemannian structure to the statistical man-
ifold .

Since the Fisher Information Matrix is invariant to a bijective transfor-
mation of the parameter space, the Rao metric is thus invariant to a bijective
reparameterization, making it a tool of choice to look at intrinsic properties
of the distributions without being parasited by an arbitrary choice of the
coordinate system.

Chencov [29] proved that the Fisher-Rao metric is the unique invariant
information metric (up to a constant scaling factor) in the discrete case. This
result has been recently extended in [76] to a more general case.

From the metric, the Fisher-Rao distance (FR) is then defined as the
geodesic distance between two points θ1 and θ2 of the statistical manifold,
that is, in Riemannian geometry, the length of the shortest path joining θ1
and θ2.

Definition 3.9 (Fisher-Rao distance). The geodesic length between two points
θ1 and θ2 of the statistical manifold is known as the Fisher-Rao distance and
is written:

FR(θ1, θ2) = min
θ(t) st θ(0)=θ1,θ(1)=θ2

∫ 1

0

√
ds2dt (3.14)

In practice, it is often difficult to compute this geodesic: it requires ei-
ther to compute a numerical approximation which amounts to solving an
ordinary differential equation [7] or to find a closed-form expression of the
distance (which may be difficult or impossible to obtain).

There are however some interesting particular cases where the Fisher-
Rao geometry is fully known:

• for the multinomial law, the geometry amounts to the spherical ge-
ometry [72, 64],

• for the location-scale family (including the Gaussian law) we get the
hyperbolic geometry [64].

Lemma 6. For two multinomial laws p and p′ with parameters (αi)1≤i≤n and
(α′i)1≤i≤n (with ∑i αi = 1 and ∑i α′i = 1), the Fisher-Rao distance between p and
p′ is the spherical distance:
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D(p, p′) = 2 arccos

(
∑

i

√
αiα
′
i

)
(3.15)

Lemma 7. For a probability density function p, the associated location-scale man-
ifold {

1
σ

p
(

x− µ

σ

)
|(µ, σ) ∈ R×R+

}
(3.16)

is a space with a constant negative curvature, that is an hyperbolic geometry.

Part II makes use of this result to compute the Fisher-Rao distance be-
tween two Gaussian distributions.

3.1.4 Invariances

As stated before, the Rao metric is invariant to reparameterizations of the
parameter space. It is known since the Erlangen program of Felix Klein [67]
that invariant transformations are a key concept of any geometry (think
of the group of rigid transformations in Euclidean geometry: translations,
rotations, reflections). The idea is that points exist by themselves, indepen-
dently of the coordinate system used to represent them.

The family of Csiszár f -divergences is the only family of divergences
which has the property of invariance by reparameterization. This family
of divergences has been introduced independently by Csiszár [35], by Mo-
rimoto [83] and by Ali and Silvey [2] and is thus also known as Csiszár
divergences, Csiszár-Morimoto divergences or Ali and Silvey divergences.

Definition 3.10. For a convex and derivable function f such that

• f (1) = f ′(1)

• f ′′(1) = 1

the f -divergence is:

D f (p‖q) =
∫

x
p(x) f

(
q(x)
p(x)

)
dx (3.17)

An interesting special case is the Kullback-Leibler divergence (KL) gener-
ated by the convex function f (x) = x log x:

KL (p‖q) =
∫

x
p(x) log

p(x)
q(x)

dx (3.18)
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The Kullback-Leibler divergence is related to the Shannon entropy through
the following relation:

KL (p‖q) = H×(p; q)− H(p) (3.19)

where H×(p; q) =
∫
−p(x) log q(x)dx and H(p) = H×(p; p). The KL

divergence between p and q thus measures the information which is lost
when q (coming from an estimation algorithm) is used to approximate p
(the true distribution).

Moreover, at the infinitesimal scale, KL is related to the Rao distance
and we have:

D(θ, θ + dθ) =
√

2KL (θ‖θ + dθ) (3.20)

3.1.5 Maximum likelihood estimator

Given a sequence of n i.i.d. observations x1, x2, . . . , xn sampled from an
exponential family pF(x; θ), we define the following quantities:

Definition 3.11. The likelihood function is:

l(x1, . . . , xn; θ) =
n

∏
i=1

pF(xi; θ) (3.21)

In practice, it is often easier to use the average log-likelihood defined
as:

ll(x1, . . . , xn; θ) =
1
n

n

∑
i=1

log pF(xi; θ) (3.22)

The maximum likelihood estimator (MLE) is then:

θ̂ = arg max
θ

l(x1, . . . , xn; θ) = arg max
θ

ll(x1, . . . , xn; θ) (3.23)

The following results directly from the general expression of an expo-
nential family:

Theorem 8. The maximum likelihood estimator of an exponential family is:

θ̂ = ∇F?

(
1
n

n

∑
i=1

t(xi)

)
(3.24)
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Proof. From the definition of an exponential family, we have:

arg max
θ

ll(x1, . . . , xn; θ) = arg max
θ

1
n

n

∑
i=1

(〈θ|t(xi)〉 − F(θ) + k(xi)) (3.25)

(3.26)

The maximum θ̂ will be reached for a 0 of the derivative of the log-
likelihood:

∂ll
∂θ

=
1
n

n

∑
i=1

(t(xi)−∇F(θ)) (3.27)

We thus get that

∇F(θ̂) =
1
n

n

∑
i=1

t(xi) (3.28)

θ̂ = ∇F−1

(
1
n

n

∑
i=1

t(xi)

)
(3.29)

θ̂ = ∇F?

(
1
n

n

∑
i=1

t(xi)

)
(3.30)

Using the bijection between the coordinate systems of an exponential
family, we get that an estimator for the expectation parameters is simply:

η̂ =
1
n

n

∑
i=1

t(xi) (3.31)

Note 2. The maximum likelihood estimator of an exponential family admits
a geometric interpretation as the barycenter of the sufficient statistics of the
observed points.

Proposition 9. For a steep family, the MLE exists and is unique if and only if η̂
is in the interior of the convex closure of Θ [13].

A sufficient condition for the existence of the MLE [21] is that the matrix

T =

 1 t1(x1) . . . tD(x1)
...

...
...

...
1 t1(xn) . . . tD(xn)

 (3.32)
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has rank D+ 1 (where D is the order of the exponential family). This condi-
tion means that among the n vectors t(xi) used for the estimation, we need
at least D + 1 linearly independent vectors.

When speaking about an estimator, it is also important to discuss its
quality. A lower bound on the variance of any unbiased estimator has been
proposed independently by Cramér [34], Rao [104] and Fréchet [46] (but
we will still use the common name Cramér-Rao bound):

Theorem 10 (Cramér-Rao bound). For an unbiased estimator λ̃, the following
inequality between the variance of the estimator and the Fisher Information Matrix
holds:

V[λ̃] � I(λ)−1 (3.33)

where I(λ) is the Fisher information matrix Iij(λ) = E
[

∂ log p(x;λ)
∂λi

∂ log p(x;λ)
∂λi

]
and � denotes the Löwner partial ordering on positive definite matrices (A � B
iff A− B is positive definite).

3.1.6 Examples of exponential families

Some examples of Exponential Families are given here; along with the re-
sulting expression for the decomposition of each family, some steps of cal-
culus are given in order to illustrate the process of rewriting the pdf of
distribution to look like the canonical decomposition of a family. A syn-
thetic view of all the families which appear in this document is available in
Annex B.

1. Multivariate Gaussian

The multivariate Gaussian (see Figure 3.2) is the d-dimensional exten-
sion of the classical Gaussian law. For a Gaussian with support Rd,
the order of the family is d + d(d+1)

2 (a vector of size d and a positive
definite matrix of size d× d). The associated pdf is:

f (x; µ, Σ) =
1

(2π)d/2
√

det(Σ)
exp

(
(x− µ)TΣ(x− µ)

2

)
(3.34)

= exp
(
(x− µ)TΣ(x− µ)

2
− log

(
(2π)d/2

√
det(Σ)

))
(3.35)

= exp

1
2
(xTΣx− µTΣx− xTΣµ)︸ ︷︷ ︸

〈(θ1,θ2)|t(x)〉

+
1
2

µTΣµ− 1
2

log det(Σ)− d
2

log(2π)︸ ︷︷ ︸
F(θ1,θ2)


(3.36)
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Figure 3.2: Density of a two-dimensional multivariate Gaussian law with

mean [0, 0] and covariance matrix
(

10 5
5 10

)
.

We can build an exponential family decomposition:

(a) Source parameters: (µ, Σ) ∈ Rd ×Rd×d

(b) Source to Natural: (θ1, θ2) =
(
Σ−1µ, 1

2 Σ−1)
(c) Natural to Source: (µ, Σ) =

(
1
2 θ−1

2 θ1, 1
2 θ−1

2

)
(d) Source to Expectation: (η1, η2) =

(
µ,−(Σ + µµT)

)
(e) Expectation to Source: (µ, Σ) =

(
η1,−(η2 + η1ηT

1 )
)

(f) Log-normalizer: F(θ1, θ2) =
1
4 tr
(

θ−1
2 θ1θT

1

)
− 1

2 log det θ2 +
d
2 log π

(g) Dual log-normalizer: F?(η1, η2) =
1
2 log(1+ ηT

1 η−1
2 η1)− 1

2 log det(−η2)−
d
2 log(2πe)

(h) Natural to Expectation:

∇F(θ1, θ2) =
(

1
2 θ−1

2 θ1,− 1
2 θ−1

2 − 1
4

(
θ−1

2 θ1

) (
θ−2

2 θ1
)T
)

(i) Expectation to Natural:

∇F?(η1, η2) =
(
−
(
η2 + η1ηT

1

)−1
η1,− 1

2

(
η2 + η1ηT

1

))
(j) Sufficient statistic: t(x) = (x,−xxT)

(k) Carrier measure: k(x) = 0

2. Poisson distribution

Contrary to the previous one, this distribution (see Figure 3.3) uses
only one parameter, with a probability mass function expressed as:
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Figure 3.3: Density of a Poisson law with various values for λ (notice that
Poisson is a discrete probability law and that the points are only linked to
improve readability).

f (x; λ) =
λx exp(−λ)

x!
(3.37)

= exp(x log λ︸ ︷︷ ︸
〈t(x)|θ〉

− λ︸︷︷︸
F(θ)

− log x!)︸ ︷︷ ︸
k(x)

(3.38)

(3.39)

for x ∈ N+.

The decomposition is:

(a) Source parameters: λ ∈ R+

(b) Source to Natural; θ = log λ

(c) Natural to Source: λ = exp θ

(d) Source to Expectation: η = λ

(e) Expectation to Source: λ = η

(f) Log-normalizer: F(θ) = exp θ

(g) Natural to Expectation: ∇F(θ) = exp θ

(h) Expectation to Natural: ∇F?(η) = (∇F)−1(η) = log η

(i) Dual log-normalizer: F?(η) = η log η − η

(j) Sufficient statistic: t(x) = x

(k) Carrier measure: k(x) = − log x!
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Figure 3.4: Density of a Laplace law with mean µ = 4 and scale λ = 3.

3. Laplace law

The Laplace law (see Figure 3.4) is parameterized by its mean µ and
another parameter σ. However, the Laplace distribution is only an ex-
ponential family when the mean is fixed so the only source parameter
will be σ for some fixed µ.

fµ(x; λ) =
1

2σ
exp

(−|x− µ|
σ

)
(3.40)

= exp

−|x− µ| 1
σ︸ ︷︷ ︸

〈t(x)|θ〉

+ log
(

1
2

σ

)
︸ ︷︷ ︸
−F(θ)

 (3.41)

for x ∈ R.

We get the decomposition:

(a) Source parameters: λ ∈ R+

(b) Source to Natural; θ = − 1
σ

(c) Natural to Source: λ = − 1
θ

(d) Source to Expectation: η = σ

(e) Expectation to Source: λ = η

(f) Log-normalizer: F(θ) = log
(
− 2

θ

)
(g) Natural to Expectation: ∇F(θ) = − 1

θ

(h) Expectation to Natural: ∇F?(η) = (∇F)−1(η) = − 1
η
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Figure 3.5: Density of a Beta law with different values for the parameters α
and β.

(i) Dual log-normalizer: F?(η) = − log η

(j) Sufficient statistic: t(x) = |x− µ|
(k) Carrier measure: k(x) = 0

4. Beta distribution

Even if the full decomposition is known in closed-form for the previ-
ous distributions, there are also cases where some expressions are not
known. The Beta law and the Gamma law are two of them: functions
F? and ∇F? are not known in closed-form, which limits the practical
utility of the exponential families framework for these distributions.
We present here only the limitations for the Beta law, the case of the
Gamma law will be presented in Chapter 11 with a workaround to
avoid the computation of the unknown functions.

f (x; α, β) =
1

B(α, β)
xα−1(1− x)β−1 (3.42)

for x ∈ R and with B(α, β) = Γ(α)Γ(β)
Γ(α+β)

.

The known elements of the decomposition are written as:

(a) Source parameters: (α, β) ∈ R+ ×R+

(b) Source to Natural: (θ1, θ2) = (α− 1, β− 1)

(c) Natural to Source: (α, β) = (θ1 + 1, θ2 + 1)

(d) Log-normalizer: F(θ) = log B(θ1 + 1, θ2 + 1)
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(e) Natural to Expectation: ∇F(θ) = (ψ(θ1 + 1)−ψ(θ1 + θ2 + 2), ψ(θ1 +
1)− ψ(θ1 + θ2 + 2))

(f) Sufficient statistic: t(x) = (log x, log(1− x))

(g) Carrier measure: k(x) = 0
The previous functions are the only ones which are known in
closed-form: the F? and∇F? functions are not available in closed-
form. As we will see in the next chapter, this lack of easy-to-use
expressions is a major problem for the application of generic ex-
ponential families algorithms on the Beta law.

3.2 Bregman geometry

3.2.1 Definition and properties

Definition 3.12 (Bregman divergence). Given a strictly convex function F :
X → R defined on a closed convex subset of Rd and differential over the
relative interior of X , the Bregman divergence associated to the generator
F is:

BF (x‖y) = F(x)− F(y)− 〈x− y,∇F(y)〉 (3.43)

We deal here with differentiable generators: some other work extend
the definition of the Bregman divergence to non-differentiable functions
using sub-gradients [37].

Remark 4. A Bregman divergence is not symmetric in the general case.

The lack of symmetry of the Bregman divergence leads to two different
notions of a Bregman ball of radius r and center c (see Figure 3.6):

• the left-sided Bregman balls: {x|BF (x‖c) < r}

• the right-sided Bregman balls: {x|BF (c‖x) < r}

Proposition 11 (Non-negativity). For all x, y, we have BF (x‖y) ≥ 0 and equal-
ity holds if and only if x = y.

Proposition 12 (Convexity). A Bregman divergence is convex in its first argu-
ment. In other words, the function x 7→ BF (x‖y) for a fixed y is convex.

Corollary 1. Left-sided Bregman balls are convex.

Proposition 13 (Linearity). A Bregman divergence is linear with respect to the
generator function:

• BF1+F2 (x‖y) = BF2 (x‖y) + BF2 (x‖y)
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Figure 3.6: Left- and right- sided Itakura-Saito balls

• BcF (x‖y) = cBF (x‖y) for c ∈ R+

Proposition 14 (Duality between Bregman divergences). For a Legendre type
generator F, we have the following equality:

BF (x‖y) = BF? (∇F(y)‖∇F(x)) (3.44)

From the three-points property:

BF (x‖z) = BF (x‖y) + BF (y‖z)− 〈(y− x)|∇F(y)−∇F(x)〉 (3.45)

we deduce the following theorem:

Proposition 15 (Bregman-Pythagoras theorem). For any x, y, z such that 〈(y−
x)|∇F(x)−∇F(y)〉 = 0, we have:

BF (x‖z) = BF (x‖y) + BF (y‖z) (3.46)

Definition 3.13 (Separable divergence). A divergence D onRd (or a subset)
is said to be separable when it is generated by a scalar divergence d on R
(or a subset). That is, for two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd),
the divergence can be written as:

D(x, y) =
d

∑
i=1

d(xi, yi) (3.47)

This is useful in practice since the divergence value can be computed
by independent evaluations on each dimension of the studied vectors.

37



x

y

z

BF (x‖y)

BF (y‖z)

BF (x‖z)

Figure 3.7: Bregman Pythagoras theorem between points x, y and z.

3.2.2 Examples

The family of Bregman divergences is parameterized by a convex function,
thus providing a very large class of divergences. Among all the possible
divergences, we retrieve a lot of usual divergences used in many applica-
tions.

1. Squared Euclidean distance

The most famous distance which is a Bregman divergence is with-
out any doubt the squared Euclidean distance which can be obtained
with the generator F(x) = x2.

d2(p, q) = ∑
i
(pi − qi)

2 (3.48)

= ∑
i

p2
i + q2

i − 2piqi (3.49)

= ∑
i

p2
i − q2

i − 2piqi + 2q2
i (3.50)

= ∑
i

F(pi)− F(qi)− 〈pi − qi|2qi〉 (3.51)

= ∑
i

F(pi)− F(qi)− 〈pi − qi|∇F(qi)〉 (3.52)

= BF (p‖q) (3.53)

The squared Euclidean distance is symmetrical and separable.

2. Squared Mahalanobis distance

Not all the divergences are separable: it is not the case for the Ma-
halanobis distance. It is not surprising since the heart of the Maha-
lanobis distance is to take into account the dependencies between di-
mensions with the help of a covariance matrix [77]:

DΣ(p, q) = (p− q)TΣ(p− q) (3.54)
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where Σ is a positive definite matrix.

The square of the Mahalanobis distance is a Bregman divergence for
the generator F(x) = xTΣx.

The Mahalanobis distance is not separable except for the particular
case of a diagonal matrix Σ (meaning that all the dimensions are in-
dependent). It is also a symmetric divergence, the only one among
the Bregman divergences [22] (with Euclidean distance, which is a
special case of Mahalanobis).

3. Kullback-Leibler divergence

The Kullback-Leibler divergence is of primary importance for sta-
tistical applications. It is a Bregman divergence for the generator
F(x) = x log x (the negative of the Shannon entropy).

4. Itakura-Saito divergence

A less common example is the Itakura-Saito divergence [51] which is
generated by the Burg entropy F(x) = − log x:

IS(p, q) = ∑
i

pi

qi
− log

pi

qi
− 1 (3.55)

We can see immediately that this divergence is separable and not
symmetrical.

3.2.3 Bijection with the exponential families

It is known since the work of Banerjee, Merugu, Dhillon, and Ghosh [12]
that there is a bijection between regular exponential families and regular
Bregman divergences through the convex function: for each regular expo-
nential family, there is a unique regular Bregman divergence, and for each
regular Bregman divergence there is a unique regular exponential family.

We give here the first part of the bijection:

Lemma 16. A regular exponential family with log-normalizer F can be rewritten
in terms of a regular Bregman divergence with generator F?, the Legendre dual of
F:

pF(x; θ) = exp (−BF? (t(x)‖η) + F? (t(x)) + k(x)) (3.56)

where η = ∇F(θ) is the expectation parameter associated to the natural parameter
θ.
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Proof. The result is straightforward using the expression of pF and the for-
mula for the dual of F:

F?(η) = 〈∇F?(η)|η〉 − F(∇F?(η)) (3.57)
= 〈θ|η〉 − F(θ) (3.58)

We thus have:

pF(x; θ) = exp (〈θ|t(x)〉 − F(θ) + k(x)) (3.59)
= exp (〈θ|t(x)〉 − 〈θ|η〉+ F?(η) + k(x)) (3.60)
= exp (〈θ|t(x)− η〉+ F?(η) + k(x)) (3.61)
= exp (〈∇F?(η)|t(x)− η〉+ F?(η) + k(x)) (3.62)
= exp (−BF? (t(x)‖η) + F?(t(x)) + k(x)) (3.63)

This leads to an essential result which allows to compute the Kullback-
Leibler divergence between two members of the same exponential family
with a closed-form formula.

Proposition 17. The Kullback-Leibler divergence between two members of the
same exponential family is a Bregman divergence between the parameters of these
families (with swapped order):

KL (pF(x, θ1)‖pF(x, θ2)) = BF? (η1‖η2) (3.64)
= BF (θ2‖θ1) (3.65)

Remark 5. It is interesting to notice that the Kullback-Leibler divergence be-
tween two members of the same exponential family can be computed with
the Bregman divergence generated by the log-normalizer of the family but
that the Kullback-Leibler divergence is also in itself a Bregman divergence.

3.2.4 Dually flat geometry

In its pioneering work Amari [7] brought a new point of view on informa-
tion geometry and extended the Riemannian vision of the Rao statistical
manifold by introducing a new family of dually affine connections pairs(
∇(+α),∇(−α)

)
known as the α-connections (intuitively, a connection de-

scribes the way to transform a tangent space into another, defining the way
to move on the manifold).
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In this new setup, the geodesics are not anymore the shortest paths be-
tween two points but rather the curves ensuring parallel transport of vec-
tors between the points. The Levi-Civita connection of the Riemannian Rao
geometry is obtained for α = 0 (and a geodesic in this geometry is thus
both a shortest path curve and an auto-parallel one). With

(
∇(+1),∇(−1)

)
we retrieve the dually flat structure of the dual affine parameters (natural
and expectation) of the exponential families.

3.3 Centroids

3.3.1 Euclidean centroids

In Euclidean geometry, it is straightforward to define the centroid of a set
of n points {p1, . . . , pn}: it is simply the center of mass 1

n ∑i pi of the points.
A more general case is when the set of points is weighted by a vector
(ω1, . . . , ωn) (with ∑i ωi = 1):

c = ∑
i

ωi pi (3.66)

This Euclidean centroid can also be expressed as the solution of a min-
imization problem. The centroid is the point which minimizes the average
squared Euclidean distances, that is:

c = arg min
c′

∑ ωi‖c′ − pi‖2 (3.67)

Note 3 (Fermat-Weber point). If we omit the square in the previous for-
mula, we get the Fermat-Weber point [127], that is, the generalization of
the median point in any dimension.

When not dealing with Euclidean geometry, different approaches are
possible: the two main approaches are the mean by axiomatization and the
mean by optimization.

3.3.2 Mean by axiomatization

When we look for a definition of a centroid, the key point is to build a
representant, a point which is able to faithfully describe a set of points. Ob-
viously, only one point is not enough to represent a set of numerous points,
so the centroid will necessarily be a compromise. One may think of vari-
ous properties which may be desirable for a centroid: for example one may
want the centroid not to depend on the ordering of the points, or the cen-
troid of identical points to be the considered point, etc. We will give here
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Name Expression f function

Arithmetic mean
x1 + x2

2
x 7→ x

Geometric mean
√

x1x2 x 7→ log x

Harmonic mean
2

1
x1
+ 1

x2

x 7→ 1
x

Table 3.1: Means and their expressions as f -means

the axiomatization first introduced by Kolmogorov [68] and independently
by Nagumo [86] in 1930 and later refined by Aczél [1]. These axioms can be
described without loss of generality for two non-negative numbers x1 and
x2 with the centroid function M:

• Reflexivity: M(x, x) = x;

• Symmetry: M(x1, x2) = M(x2, x1);

• Continuity and strict monotonicity: the function M(., .) is continu-
ous and M(x1, x2) < (x′1, x′2) if x1 < x′1;

• Anonymity: M(M(x1, x2), M(x3, x4)) = M(M(x1, x3), M(x2, x4)). The
centroid can be computed with the help of partial centroids computed
on subsets of the original points set.

It has been shown that there is only one family of functions which sat-
isfy these axioms, the so-called family of f -means. Each member M f of
this family is parameterized by a strictly monotonous function f and can
be written as:

M f (x1, x2) = f−1
(

f (x1) + f (x2)

2

)
(3.68)

Some usual mean function can be expressed as f -means with a well-
chosen f function like the arithmetic mean, the geometric mean or the har-
monic mean (see Table 3.1 for the corresponding f functions).

The next step is to describe the generalization to an arbitrary number of
points.
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Observation space f -represented observations

x1

x2 x3

x4

x6

x5

x7

f (x1)

f (x3)
f (x2)

f (x6)f (x4)

f (x7)

f (x5)

∑ f (xi)

f−1 (∑ f (xi))

Figure 3.8: Quasi-arithmetic mean. The f -mean is an arithmetic mean in
the f -represented space (right): since f is a bijection, we can come back to
the original space (left).

Definition 3.14 ( f -mean). Given a strictly increasing function f , the f -mean
of a set of n points x1, . . . , xn with weights ω1, . . . , ωn is:

M f (x1, . . . , xn; ω1, . . . , ωn) = f−1

(
n

∑
i=1

ωi f (xi)

)
(3.69)

This centroid can be seen as a quasi-arithmetic mean (see Figure 3.8): it is
an arithmetic mean on the f -represented numbers f (x1), . . . , f (xn).

3.3.3 Mean by optimization

The other possible point of view is to define the mean as the solution of a
minimization problem using a distance function: the mean will be the point
which minimizes the average distance between the mean and the other
points and thus the solution of the following problem (for some distance-
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Name Expression f function of the f -divergence

Arithmetic mean ∑
i

ωixi x 7→ − log x + x

Geometric mean ∏
i
(xi)

ωi x 7→ x log x− x

Harmonic mean
1

∑i
1
xi

x 7→ (1− x)2

Table 3.2: Means and their expressions as entropic means

like function d):

min
x ∑ ωid(x, xi) (3.70)

The distance-like function is a dissimilarity measure such that:

d(x, y)

{
= 0 if x = y
> 0 if x 6= y

(3.71)

Entropic mean

For n positive numbers x1, . . . , xn and weights ω1, . . . ωn (∑i ωi = 1), Ben-
Tal, Charnes, and Teboulle [16] studied the particular case of the optimiza-
tion problem given by the family of f -divergences (Definition 3.10):

min
x ∑ ωiD f (x, xi) = min

x ∑ x f
(

x
xi

)
dx (3.72)

The previous problem is convex and thus admits a unique solution
M f (x1, . . . , xn) which is called the entropic mean of the points set.

Proposition 18. The entropic mean is linear scale-invariant:

M f (λx1, . . . , λxn) = λM f (x1, . . . , xn) (3.73)

Some common means can be expressed as an entropic mean, see Table
3.2 for some examples.
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Bregman centroids

The centroids for the class of Bregman divergences can be studied through
mean by optimization. According to the previous definition, the Bregman
centroid will be the solution of the following problem:

(MEAN) min
x ∑ ωiBF (x‖pi) (3.74)

From the convexity of the Bregman divergence with respect to its first
argument (see Proposition 12), it follows that this problem admits a unique
minimizer. Moreover, it is known [12, 94] that this solution can be ex-
pressed in closed-form as a quasi-arithmetic mean:

c = arg min
x ∑

i
ωiBF(x, pi) (3.75)

=∇F∗
(

∑
i

ωi∇F(pi)

)
(3.76)

where F? is the Legendre dual of the generator F.
But since Bregman divergences are not symmetrical in the general case,

we can define one more notion of centroid with the following optimization
problem:

(MEAN’) min
x ∑ ωiBF (pi‖x) (3.77)

Even if this problem is not convex in the general case (a counter-example
appears with F(x) = − log x), the problem admits a unique solution which
will be called the right-sided Bregman centroid [94] . Although in the case of
f -divergences (which can always be made symmetrical), this new problem
leads to the same point as the problem (MEAN), we get for Bregman diver-
gence a different point. Like the left-sided Bregman centroid , the right-sided
centroid admits a closed-form formula which is simply the center of mass
of the points:

cR = arg min
x ∑

i
ωiBF(pi, x) (3.78)

=∑
i

ωi pi (3.79)

Remark 6. Although these two results on left-sided and right-sided are es-
sential since it allows efficient algorithms using Bregman centroids, the
practical efficiency of the closed-form formula may be limited if an expres-
sion for ∇F∗ = (∇F)−1 is not available (thus requiring numerical approxi-
mation).
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The use of asymmetric divergences may not be desirable for some ap-
plications but each time we have an asymmetric divergence, it is possible
to build a new symmetric divergence. For example, some work has been
done on Bregman metrization [28] but the most straightforward is however
the Jeffreys approach [60] known as Jeffreys-Bregman divergences in the case
of Bregman divergences [94]:

SF(p, q) =
BF (p‖q) + BF (q‖p)

2
(3.80)

Another possible approach is inspired by the Jensen divergence [26] and
is called Jensen-Bregman divergence [92]:

JF(p, q) =
1
2

(
BF

(
p‖ p + q

2

)
+ BF

(
p + q

2
‖q
))

(3.81)

The Jensen-Bregman divergence is actually the Burbea-Rao divergence
generated by F [92]:

JF(p, q) =
1
2

(
BF

(
p‖ p + q

2

)
+ BF

(
p + q

2
‖q
))

(3.82)

=
1
2

(
F(p)− F(

p + q
2

)− 〈p− p + q
2

,∇F(
p + q

2
)〉+ (3.83)

F(
p + q

2
)− F(q)− 〈 p + q

2
− q,∇F(q)〉

)
=

1
2

(
F(p)− F(q)− F

(
p + q

2

))
(3.84)

=BRF(p, q) (3.85)

It is obvious that these two new families of divergences are symmetrical
but the main drawback is that the centroids are not known is closed-form
anymore [94]. Actually, these two symetrizations can be generalized by re-
placing the 1

2 coefficient by an α between 0 and 1, leading to the skewed
versions described in Section 3.4.2.

3.4 Information-geometric divergences

In addition to the already cited divergences, there is an impressive number
of families of divergences which rely on different foundations. We give
here just a quick look but an extensive review by Basseville is available in
[14] (the Encyclopedia of Distances by Deza and Deza [40] provides an even
larger view of the notion of distance).
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3.4.1 Bhattacharyya coefficient

The Bhattacharyya coefficient [18] allows to measure the amount of overlap-
ping between two distributions p and q:

C(p, q) =
∫ √

p(x)q(x)dx (3.86)

This coefficient is not a divergence but it is rather a similarity measure
since it falls in the interval [0, 1] with 1 as the value obtained for maximal
similarity and 0 obtained for minimal similarity. It can be changed into a
divergence with the Bhattacharyya distance [18] :

B(p, q) = − log C(p, q) (3.87)

But this is still not a metric. A metrized version is available through the
Hellinger metric [56] (or Matusita metric [79] ) which can be expressed in
terms of the Bhattacharyya coefficient:

H(p, q) =

√
1
2

∫ (√
p(x)−

√
q(x)

)2

dx (3.88)

=

√
1
2

∫
p(x) + q(x)− 2

√
p(x)q(x)dx (3.89)

=
√

1− C(p, q) (3.90)

An important result is that the Bhattacharyya distance between two
members of the same exponential family can be computed using a Burbea-
Rao divergence between the parameters of the distributions [92]:

B
(

pF
(
x, θp

)
, pF

(
x, θq

))
= BRF

(
θp, θq

)
(3.91)

3.4.2 Skew divergences

Let us recall the expression of the Jeffreys-Bregman and Jensen-Bregman
divergences:

SF(p, q) =
BF (p‖q) + BF (q‖p)

2
(3.92)

JF(p, q) =
1
2

(
BF

(
p‖ p + q

2

)
+ BF

(
p + q

2
‖q
))

(3.93)
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These two expressions divergences extend naturally to two new fami-
lies of divergences parameterized by a real number between 0 and 1 which
are called skew Jeffreys-Bregman divergences and skew Jensen-Bregman
divergences:

Definition 3.15. Given α ∈ [0, 1], the skew Jeffreys-Bregman divergence be-
tween p and q is:

S(α)
F (p‖q) = αBF (p‖q) + (1− α)BF (q‖p) (3.94)

Definition 3.16. Given α ∈ [0, 1], the skew Jensen-Bregman divergence be-
tween p and q is:

J(α)F (p‖q) = αBF (p‖αp + (1− α)q) + (1− α)BF (αp + (1− α)q‖q) (3.95)

The equality between the Jeffreys-Bregman divergence and the Burbea-
Rao divergence remains true by defining a skew version of the Burbea-Rao
divergence:

Definition 3.17. Given α ∈ [0, 1], the skew Burbea-Rao divergence between p
and q is:

BR(α)
F (p‖q) = αF(p) + (1− α)F(q)− F (αp + (1− α)q) (3.96)

With this new skew divergence, we have thus the equality J(α)F (p‖q) =
BR(α)

F (p‖q).

3.5 Conclusion

This chapter presented an introduction course to the field of information
geometry. Using this background, the next chapter will describe some al-
gorithms on mixture model with a computational information geometry
point of view.
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Chapter 4

Statistical mixture models

4.1 Definition

Finite mixture models [81] are a tool of choice to model unknown probabil-
ity density functions (pdf) in a lot of applications (image and video retrieval
[8], classification of gene expression on microarrays [19], telecommunica-
tion network modeling [5], ultrasound image analysis [122], etc). The pdf
of a mixture model can be written as a weighted sum of n parametric dis-
tributions (called the components of the mixture):

m(x) =
n

∑
i=1

ωi fi(x) (4.1)

where the weights (ωi)i are a vector of positive reals with ∑i ωi = 1 (to
ensure normalization of the mixture distribution).

Usually, all the fi come from the same distribution: the most common
case is certainly the mixture of Gaussian in which each component is a
Gaussian distribution. We have in this case:

m(x; µ, σ, ω) = ∑
i

ωi N (x; µi, σ2
i ) (4.2)

where N is the normal distribution.

Proposition 19 (Universality of Gaussian mixtures [32]). Any smooth density
with R for support can be approached within arbitrary precision with a sufficient
number of components.

The previous property justifies the wide use of the Gaussian mixtures
to model arbitrary densities. However, other densities have this property
of universality: for example, the Gamma mixtures are universal on R+.
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Figure 4.1: A Rayleigh mixture model.

Even if Gaussian mixtures are the most widespread kind of mixture
models, a lot of other mixtures have been of use for various applications:
mixtures of Laplace distributions [8], of Gamma laws [80], of Rayleigh [122],
of Wishart [52], of Poisson [73], of Bernoulli [9] and many others.

We focus here on mixtures of exponential families, a particular case of mix-
ture for which each component is an exponential family (the same for each
component). The pdf is now expressed as:

m f (x; θ, ω) = ∑
i

ωi pF(x; θi) (4.3)

where pF is an exponential family with log-normalizer F as described in
Chapter 3.

The use of a generic mixture such as a mixture of exponential families
allows to build algorithms and methods which are generic for any expo-
nential family, contrary to specifically tailored algorithms which have been
used in many applications.

Remark 7. When learning an unknown mixture model from observed data
points, it is obvious that one of the goals will be to estimate the parameter
vectors θ and ω. One should not forget that the number of components is
also a parameter of the distribution and is often the most challenging value
to determinate.

4.2 A generative model

A mixture model is able to describe an unknown distribution but it is also
a generative model : from the model, one can generate points following the
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(a) Original image (b) Representation of the
Gaussians of the mixture

(c) Statistical image

Figure 4.2: Statistical image: the RGBxy point set is modeled with a 5d mix-
ture of Gaussian (ellipsoids show the marginal laws on xy with the RGB
mean for color) and points are sampled from this mixture. The mixture
has lost all the low-frequency information from the original image. This
output has been produced with the jMEF Java library [99] for mixtures of
exponential families.

distribution of the mixture model (see Figure 4.2 for an illustration of the
process). The sampling is done with a doubly stochastic process:

1. Choose a component according to the weights.

2. Draw a point from the distribution of the chosen component.

The first step, choosing the component, is made by drawing a ran-
dom number from a multinomial distribution with n possible outcomes
weighted by the vector ω. The second step is made by any method able to
draw points from the components distribution.

Remark 8. It is thus straightforward to draw points from a mixture model
provided we have an algorithm to draw points from the components. If
this algorithm is not available, one can rely on generic drawing methods
such as the rejection method [87] or the Metropolis-Hastings algorithm [82,
55].

4.3 Mixtures as Hidden Markov Models

When points are drawn from the algorithm described in the previous sec-
tion, we know the component from which the sample comes. However,
in the general case of an unknown density modeled by a mixture model,
there is uncertainty about the origin of each observation: given a point it
is not possible to know the component from which it comes. In this case,
the origin of each sample is said to be a hidden variable (or a latent variable).
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The Expectation-Maximization algorithm described in 4.4.1 has been origi-
nally proposed by Dempster, Laird, and Rubin [38] to learn parameters of
a model with missing observations, another kind of hidden variable.

Mixtures are actually a special case of a more generic class of models
called Hidden Markov Models [15]: in such a model, instead of having inde-
pendence in the choice of the origin distribution, the latent variables are
thus related by a Markov process.

4.4 Learning mixtures

Since mixture models are a commonly used set of tools for many practical
applications, a lot of algorithms to build mixture models have been pro-
posed. A selection of these methods is presented here, without extensivity
in mind: the goal is to present some common algorithms which will be used
as a basis for most of the new approaches introduced in the next parts.

For each of the following algorithms, the goal will be to learn a mixture
model with n components given a set of N observations xi.

4.4.1 Expectation-Maximization

The general case of the Expectation-Maximization (EM) algorithm [38] looks
for the parameters of a model which maximizes the likelihood of the model
when the considered kind of models depends on hidden variables. As ex-
plained in Section 4.3, this is exactly the case of a mixture model.

EM is an iterative algorithm which converges to a local maximum of
the likelihood of the mixture [38]. It consists into two parts:

• the expectation step (E-step) estimates the expected likelihood given
the current estimate of the parameters;

• the maximization step (M-step) updates the parameters in order to op-
timize the expected likelihood.

These two steps are iterated until the convergence of the likelihood has
been reached.

Expectation step The posterior probability for the i-th component of the
mixture given the observation xt and the current estimate λ of the parame-
ters is:

p(i|xt, λ) =
ωi p(xt; λi)

∑k
j=1 ωj p(xt; λj)

(4.4)

52



Maximization step For the component i of the mixture, the new weights
are:

ωi =
1
N

N

∑
t=1

p(i|xt, λ) (4.5)

and the update of the parameters is:

λi = arg max
λ′

∑
t

p(i|xt, λ) log p(xt; λ′) (4.6)

Remark 9 (Initialization). Since EM is an iterative algorithm, it heavily de-
pends on the initialization (here, an initial guess for the parameters and the
weights of the component). It is known that a bad initialization for EM can
lead to an arbitrary bad estimate so it is a crucial point for real applications
(a popular choice is to cluster the observations using k-means and learn a
MLE on each cluster).

4.4.2 Bregman Soft Clustering

Even if the principle of EM is not limited to Gaussian mixtures, its appli-
cation needs to manually compute the formula used in steps E and M. A
more satisfying solution would be to have the distribution as a parameter
of the algorithm: this is the idea of the Bregman Soft Clustering algorithm
[12] which allows to build mixtures of exponential families (the family of
the components is now simply a parameter of the algorithm).

The Bregman Soft Clustering relies heavily on the bijection between Ex-
ponential families and Bregman divergences. With this bijection, the E- and
M-steps can be rewritten in a generic way:

Expectation step If we replace each appearance of an exponential family
in the posterior probability by its expansion using a Bregman divergence,
we get:

p(i|xt, η) =
ωi exp (−BF? (t(xi)‖ηi)) exp k(xt)

∑k
j=1 ωj exp

(
−BF?

(
t(xt)‖ηj

))
exp k(xt)

(4.7)

=
ωi exp (−BF? (t(xt)‖ηi))

∑k
j=1 ωj exp

(
−BF?

(
t(xt)‖ηj

)) (4.8)

(4.9)

Since BF?(p‖q) = F?(p)− F?(q)− 〈p− q,∇F?(q)〉 we can expand the
expression of the Bregman divergence in the previous equation:
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p(i|xt, η) =
ωi exp (−F?(t(xt))− F?(ηi)− 〈t(xt)− ηi,∇F?(ηi)〉)

∑k
j=1 ωj exp

(
−F?(t(xt))− F?(ηj)− 〈t(xt)− ηj,∇F?(ηj)〉

)
(4.10)

=
ωi exp (F?(ηi) + 〈t(xt)− ηi,∇F?(ηi)〉)

∑k
j=1 ωj exp

(
F?(ηj) + 〈t(xt)− ηj,∇F?(ηj)〉

) (4.11)

Maximization step This step relies on the generic maximum likelihood
estimator for exponential families [12]. The weights estimations are un-
changed and the parameters which maximize the likelihood are the fol-
lowing:

ωi =
1
N

N

∑
t=1

p(i|xt, η) (4.12)

ηi =
N

∑
t=1

p(i|xt, η)

∑N
t=1 p(i|xt, η)

t(xt) (4.13)

Remark 10. It justifies the naming Bregman Soft Clustering. The E-step and
the weights estimations are equivalent to a soft assignment and the estima-
tion of the new ηi parameters is a Bregman centroid.

The Bregman Soft Clustering algorithm is a particular instance of the
EM framework applied to exponential families. It is more generic than
the classical applications of EM to mixtures since any exponential family
can be passed as a parameter of the algorithm. There are however some
limitations: to use an EF, one needs to know some functions from the de-
composition of the family (see Annex B). The functions used are:

• the sufficient statistic t,

• the dual of the log-normalizer F?,

• and its gradient ∇F?.

The problem comes from the two functions F? and ∇F?: these func-
tions may not be known in closed-form (see Section 3.1.6). For distribu-
tions where these formulas are not available in closed-form, the numerical
scheme needed at each step of the algorithm may render it unusable in
practice.
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4.4.3 Kernel density estimators

Strictly speaking, a Kernel Density Estimator (KDE, also known as Parzen
window method [100, 109]) is not a mixture model: it is a non-parametric
estimator and there is no concept of a latent hidden variable involved.
However, if we only look at the expression of the pdf, it can be seen as
a mixture. The generic expression of an estimator built with the Parzen
window method is the following:

m(x) =
1
N

N

∑
i=1

1
h

K
(

x− xi

h

)
(4.14)

where K is known as the kernel function (a symmetric and normalized to 1
function) and h ∈ R+ is known as the bandwidth. In other words, build-
ing a KDE means putting a kernel centered on each of the N observations
(leading to a sum with N terms).

Various kernels have been proposed in the literature (see Table 6.1 in
Chapter 6 for some examples) but for convenience reasons the Gaussian
kernel is often used (actually, a standard Gaussian law with mean 0 and
variance 1).

Contrary to the choice of the kernel which is often not critical, the band-
width is the most important parameter of the KDE. This parameter controls
the smoothness of the density and is a compromise between a very smooth
curve where all information has been lost and a sharp curve with thin peaks
on each observation (see Figure 6.1 in Chapter 6 for the impact of the band-
width on the quality of the estimation).

Due to its importance, a lot of work is devoted to the choice of this pa-
rameter but a consensus has been reached for now with two main methods:
plugin selector [123, 110] and cross validation [23, 53].

4.5 Comparing mixtures

4.5.1 Kullback-Leibler divergence between mixtures

It is of interest in a lot of applications to compare mixture models. The
well-known Kullback-Leibler (KL) divergence would be a tool of choice
but unfortunately, there is no closed-form formula available for mixtures
of Exponential families. For two mixtures m1 with n1 components and m2
with n2 components, the KL divergence becomes:
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KL (m1‖m2) =
∫

m1(x) log
m1(x)
m2(x)

dx (4.15)

=
∫

∑
i

ω
(1)
i pF(x; θ

(1)
i ) log

∑i ω
(1)
i pF(x; θ

(1)
i )

∑i ω
(2)
i pF(x; θ

(2)
i )

dx (4.16)

Except for the degenerated case where the two mixtures have exactly
one component (in this case, the KL divergence between the two mixtures
amounts to a KL divergence between two exponential families, that is the
Bregman divergence between the parameters), there is no closed-form avail-
able to compute the divergence1. Due to the importance of the KL diver-
gence in many applications, a lot of different methods have been proposed
in the literature.

4.5.2 Some Kullback-Leibler approximations

It has been proposed in [57] (and also [42]) an extensive review of the exist-
ing KL approximations, we simply detail here a few of them. Each method
can be evaluated using various criteria depending on the application and
the goals:

• Error of the approximation

• Computation time

• Does the similarity property (KL (p‖p) = 0) hold ?

• Does the identification property (KL (p‖q) = 0 iff p = q) hold ?

• Does the positivity property (KL (p‖q) ≥ 0 for any p and q) hold ?

Monte-Carlo sampling

One of the most used method to estimate the Monte-Carlo sampling is a
Monte-Carlo method which relies on the following observation:

KL (p‖q) =
∫

p(x) log
p(x)
q(x)

dx (4.17)

= Ep

[
log

p
q

]
(4.18)

From a set of i.i.d. points xi, . . . , xn sampled from the mixture p we
can estimate the expectation Ep

[
log p

q

]
and get an approximation of the

1It does not mean the closed-form does not exist, the problem is still open.
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Kullback-Leibler. We thus define the Monte-Carlo Kullback-Leibler diver-
gence as:

K̃LMC(p‖q) = 1
n ∑

i
log

p(xi)

q(xi)
(4.19)

−→
n→∞

KL (p‖q) (4.20)

The big advantage of the Monte-Carlo approximation is that it is the
only method which converges to the KL divergence [57]: it is thus the
method of choice when a precise approximation is required. However, this
property comes with a price: a lot of samples are needed in order to get
a good estimation of the divergence (a common value is 106 [42], 105 still
gives a significant deviation from the true value [57]).

When used with a lot of samples (there is no point in trying to speed
up the method with few samples since better methods are available when
speed matters), the properties of the Monte-Carlo approximation are the
following:

• precise,

• slow,

• similarity holds,

• identification holds in practice (but may fail with probability 0 on
unlikely examples),

• positivity does not hold.

Goldberger approximation

For two mixtures which share the same number of components, an upper
bound can be derived from the log-sum inequality:

∑ ai log ∑ ai

∑ bi
≤∑ ai log

ai

bi
(4.21)

when ∑ ai = 1 and ∑ bi = 1.
A first inequality can thus be written:
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KL (m1‖m2) =
∫

m1 log
m1

m2
(4.22)

=
∫ ( n

∑
i=0

ω
(1)
i p(1)i

)
log

∑n
i=0 ω

(1)
i p(1)i

∑n
i=0 ω

(2)
i f (1)i )

dx (4.23)

≤
∫

∑ ω
(1)
i p(1)i log

ω
(1)
i p(1)i

ω
(2)
i p(2)i

(4.24)

=
∫

∑ ω
(1)
i p(1)i

(
log ω

(1)
i + log p(1)i − log ω

(2)
i − log p(2)i

)
(4.25)

= ∑
(∫

p(1)i

)
ω

(1)
i log

ω
(1)
i

ω
(2)
i

+ ∑ ω
(1)
i

∫
p(1)i log

p(1)i

p(2)i

(4.26)

= ∑ ω
(1)
i log

ω
(1)
i

ω
(2)
i

+ ∑ ω
(1)
i

∫
p(1)i log

p(1)i

p(2)i

(4.27)

KL (m‖m2) ≤ KL
(

ω(1)‖ω(2)
)
+ ∑ ω

(1)
i KL

(
p(1)i ‖p(2)i

)
(4.28)

Note 4. The notation KL
(

ω(1)‖ω(2)
)

is the KL divergence between normal-
ized arrays (or equivalently the KL divergence between multinomial laws).

The previous inequality has been used in some applications like texture
classification [41]. However, a slightly better upper-bound can be obtained
by noticing that the order of the components of a mixture does not matter:

m(x) = ∑
i

ωi pi(x) (4.29)

= ∑
i

ωσ(i)pσ(i)(x) (4.30)

for any permutation σ.
It is straightforward to see that Inequality (4.28) is true for any permuta-

tion of the components of one of the mixture: we thus have a better upper-
bound by taking the permutation which minimizes the value. The Gold-
berger approximation is thus defined as:

K̃LGoldberger(p‖q) = arg min
σ

KL
(

ω(1)‖σ(ω(2))
)
+ ∑ ω

(1)
i KL

(
p(1)i ‖p(2)

σ(i)

)
(4.31)

= arg min
σ

∑ ω
(1)
i

(
log

ω
(1)
i

ω
(2)
i

+ KL
(

p(1)i ‖p(2)
σ(i)

))
(4.32)
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This problem of finding the best permutation is known as the assignment
problem (and can be seen as a discrete case of the optimal transport theory)
and a solution can be found in polynomial time O(n3) [43] using the Kuhn-
Munkres algorithm [71, 84] also known as the Hungarian algorithm.

Note 5 (Historical note). This algorithm has a lot of names: Kuhn intro-
duced the algorithm in 1955 and called it the Hungarian algorithm since it
used early work by two Hungarian mathematicians Kőnig and Egerváry.
Munkres then published a study of its complexity in 1957 [84] which popu-
larized the name Kuhn-Munkres algorithm or even simply Munkres algo-
rithm. However it deserves to be known that some forgotten work [59] by
Jacobi have been recently rediscovered in 2006 and show that he already
proposed a solution during the 19th century 2.

Properties of the Goldberger approximation can be summarized as fol-
lows:

• upper bound (but not a very good one [99]),

• fast with a small number of components (unusable on a kernel den-
sity estimator),

• similarity does not hold,

• identification does not hold,

• positivity holds.

Variational approximation

The variational approximation [57] comes from the Jensen inequality and
provides a closed-form approximation of the Kullback-Leibler divergence
which can be expressed as:

K̃LVariational(p‖q) =
n1

∑
i=1

ω
(1)
i log

∑n1
i′=1 ω

(1)
i′ exp

(
−KL

(
p(1)i ‖p(1)i′

))
∑n2

j=1 ω
(2)
j exp

(
−KL

(
p(1)i ‖p(2)j

)) (4.33)

The variational approximation has the following properties:

• accurate,

• fast (closed-form),

• similarity holds,

2See http://www.lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm for a
history of this rediscovery and translation of the original Latin articles.
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• identification does not hold,

• positivity does not hold.

In addition to these properties, K̃LVariational is interesting since gradient
with respect to p or q can be easily computed which can be of use for opti-
mization problems. This approximation can be seen as an extension of the
Goldberger approximation where variational coefficients are extension of
the permutation used in K̃LGoldberger.

There is also an upper-bound version of the variational approximation
which is not in closed-form anymore [57].

Choosing an approximation

The choice of the approximation method depends on the application and
on the needed properties. If precision is the primary concern, the Monte-
Carlo method is obviously the best choice, since it is the only one which
converges to the true value, when the number of samples grows. This pre-
cision comes with the price of a high computational cost: when speed mat-
ters, it is probably better to use a closed-form approximation. Among these
(which are not all described here), the variational approximation is the most
accurate [57].

4.5.3 Closed-form distances between mixtures

Along with the work to build better approximations of the Kullback-Leibler
divergence, there are also some new divergences which are available in
closed-form [89] for mixtures of exponential families such as the Cauchy-
Schwartz divergence [62, 63], the Jensen-Rényi divergence [126] and the
total Square Loss [74].

4.6 Conclusion

We recalled in this chapter the basics on mixture model, and more partic-
ularly on mixture of exponential families. This serves as a foundation for
the contributions presented in the next two parts.
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Part II

From kernels to mixtures with
simplification
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This part presents results already published in the ICASSP 2012 arti-
cle “Model centroids for the simplification of Kernel Density estimators”
[116] and in a chapter “Learning Mixtures by Simplifying Kernel Density
Estimators” [115] of the book Matrix Information Geometry[97]. A previous
version of the software library was presented in [118]. The full bioinformat-
ics application (in which most part is not related to statistical models and
thus not relevant here) is described in details in [124].

This work has been developed in collaboration with Julie Bernauer (LIX
- Amib team, École Polytechnique - Inria Saclay) who was the pillar of the
bioinformatics applications presented in [124].
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Chapter 5

Introduction NONUMBER

Statistical methods are nowadays commonplace in modern signal process-
ing. There are basically two major approaches for modeling experimental
data by probability distributions: we may either consider a semi-parametric
modeling by a finite mixture model learned using the famous Expectation-
Maximization (EM) procedure, or alternatively choose a non-parametric
modeling using a Kernel Density Estimator (KDE).

On the one hand mixture modeling requires to fix or learn the num-
ber of components but provides a useful compact representation of data.
On the other hand, KDE finely describes the underlying empirical distribu-
tion at the expense of a dense model size. In this part, we present a novel
statistical modeling method that simplifies efficiently a KDE model with re-
spect to an underlying distance between Gaussian kernels. We consider the
Fisher-Rao metric and the Kullback-Leibler divergence. Since the underly-
ing Fisher-Rao geometry of Gaussians is hyperbolic without a closed-form
equation for the centroids, we rather adopt an approximation that bears
the name of hyperbolic model centroid, and show its use in a single-step clus-
tering method. We report on our experiments that the KDE simplification
paradigm is a competitive approach over the classical EM, in terms of both
processing time and quality.

In Chapter 6 we present the simplification algorithms: we begin with
a description of the kernel density estimation method, then we introduce
the Bregman Hard Clustering and Model Hard Clustering algorithms and
their applications to kernel density estimators simplifications.

In Chapter 7, we describe our new software library pyMEF aimed at the
manipulation of mixtures of exponential families. The goal of this library is
to unify the various tools used to build mixtures which are usually limited
to one kind of exponential family. The use of the library is further explained
with a short tutorial.

In Chapter 8, we study experimentally the performance of our methods
through two applications. First, we experimentally check the convergence
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of Model Hard Clustering. Next, we give a simple example of the model-
ing of the intensity histogram of an image which shows that the proposed
methods are competitive in terms of log-likelihood. Last, a real-world ap-
plication in bio-informatics is presented where the models built by the pro-
posed methods are compared to reference state-of-the-art models built us-
ing Dirichlet Process Mixtures.
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Chapter 6

Simplification

6.1 Kernel density estimators

6.1.1 Definition

The Kernel density estimation (KDE) method has been independently pro-
posed by Parzen [100] (hence the common name Parzen window method) and
Rosenblatt [109]. It is a non-parametric method to estimate an unknown
density from a set of observations sampled from a random variable. Strictly
speaking this kind of estimator is thus not a mixture model (which is semi-
parametric and which involves hidden variable). However, the pdf coming
from a KDE can be expressed as a non-weighted sum of components. For
a set of N observations (xi, . . . , xN) sampled from the density we want to
estimate, the kernel density estimator is:

m(x) =
1
N

N

∑
i=1

1
h

Kh(x− xi) (6.1)

The function Kh is called the kernel and the parameter h is called the band-
width.

6.1.2 Kernels

Definition 6.1. A kernel is a non-negative function K which is

• integrable and normalized:
∫

K(x)dx = 1,

• symmetric: K(−x) = K(x) for all x.

The scaled kernel Kh used in Eq. (6.1) is expressed as:

Kh(x) =
1
h

K
( x

h

)
(6.2)
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Name Expression Comment

Epanechnikov 3
4 (1− x2) if |x| ≤ 1, 0 otherwise Optimal

Triangular (1− |x|) if |x| ≤ 1, 0 otherwise

Quartic 15
16 (1− x2)2 if |x| ≤ 1, 0 otherwise

Gaussian N (0, 1) Exponential family

Table 6.1: Some common kernels.

A large range of kernels has been proposed in the literature: the Epanech-
nikov kernel

K(x) =

{
3
4 (1− x2) if |x| ≤ 1
0 otherwise

(6.3)

is the optimal kernel in the sense of the mean-squared error [44] but the
other common kernels (triangular, quartic, cosine, etc, see Table 6.1) are
known to be nearly as efficient in practice and the Gaussian kernel is very
often used in many applications. Since we deal with exponential families,
the most interesting for us is the Gaussian kernel (any EF which is sym-
metrical may actually be used, such as the Laplace law, but they are not
widespread in applications).

6.1.3 Bandwidth

The choice of the kernel is often not critical and will not really influence the
quality of the estimation. However, the choice of the other parameter, the
bandwidth, is critical. This parameter controls the smoothness of the estima-
tor: a too small value will produce a KDE with sharp kernels centered on
each point and the values of the density outside the nearby neighborhood
of the observations will not be meaningful; a too large value will produce
a very smooth curve where all the meaningful information will be lost (see
Figure 6.1 for an illustration of the influence of the bandwidth). The exten-
sive study by Sheather and Jones [123] allowed to get a consensus for the
best bandwidth selection method.

6.2 Simplification of kernel density estimators

Since mixtures with a low number of components have proved their capac-
ity to model complex data (Figure 6.2), it would be useful to build a mixture
avoiding the costly learning step of EM.
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Figure 6.1: Influence of the bandwidth on the KDE. A too low value (red
curve) gives meaningless peaks, a too large value (cyan curve) gives a large
support density where information is diluted. The value in between (green
curve) gives a good compromise.

We rely here on a clustering procedure, using a k-means like method,
and we present two different variants of the simplification procedure. The
first one is the Bregman Hard Clustering algorithm as introduced in [48] for
the simplification of mixture models: it exploits the dually flat geometry in-
duced by the Bregman divergence and converges monotonically to a local
optimum of the cost function. The second one is a variant which makes
use of the hyperbolic geometry induced by the Fisher-Rao distance (for the
Gaussian law): instead of the true Fisher-Rao centroids which are compu-
tationally not tractable, we use the model centroids by Galperin [47]. Since
we do not use the centroid associated to the distance in the k-means, we do
not have the local convergence property, however the algorithm converges
in practice.

6.2.1 Bregman Hard Clustering

The Bregman Hard Clustering algorithm is an extension of the celebrated k-
means clustering algorithm to the class of Bregman divergences [12]. It has
been proposed in Garcia, Nielsen, and Nock [48] to use this method for the
simplification of mixtures of exponential families. Similarly to the Lloyd k-
means algorithm, the goal is to minimize the following cost function, for the
simplification of n components mixture to a k components mixture (with
k < n):

L = min
θ′1,...,θ′k

∑
1<j≤k

∑
i

BF

(
θ′j‖θi

)
(6.4)
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where F is the log-normalizer of the considered exponential family, the θi
are the natural parameters of the source mixture and the θ′j are the natural
parameters of the target mixture.

With the bijection between exponential families and Bregman diver-
gences, the cost function L can be written in terms of Kullback-Leibler di-
vergences:

L = min
c1,...,ck

∑
1<j≤k

∑
i

KL
(
xi‖cj

)
(6.5)

where the xi are the components of the original mixture and the cj are the
components of the target mixture. With this reformulation, the Bregman
Hard Clustering is shown to be a k-means with the Kullback-Leibler diver-
gence (instead of the usual L2-based distance). As in the L2 version, the
k-means involves two steps: assignment and centroid updates. The cen-
troids of the cluster are here computed using the closed-formula presented
in Section 3.3.3.

Though left-, right-sided and symetrized formulations of this optimiza-
tion problem can be used, it has been shown experimentally in [48] that the
right-sided Bregman Hard Clustering performs better in terms of Kullback-
Leibler error. This experimental result is explained theoretically by a the-
orem stating that the right-sided centroid is the best single-component ap-
proximation of a mixture model, in terms of Kullback-Leibler divergences.
Introduced by Pelletier [101], a complete and more precise proof of this re-
sult is given in the following section.

6.2.2 Kullback-Leibler centroids as geometric projections

Pelletier proved ([101], Theorem 4.1) that the right-sided KL centroid p̄∗

can be interpreted as the information-theoretic projection of the mixture model
distribution p̃ ∈ P onto the model exponential family sub-manifold EF:

p̄∗ = arg min
p∈EF

KL ( p̃‖p) (6.6)

Since the mixture of exponential families is not an exponential family
(p̃ 6∈ EF),1 it yields a neat interpretation: the best KL approximation of a
mixture of components of the same exponential family is the exponential
family member defined using the right-sided KL centroid of mixture pa-
rameters.

Let θ
j
i for j ∈ {1, ..., d} be the d coordinates in the primal coordinate

system of parameter θi.
Let us write for short θ = θ(p), and θ̄∗ = θ( p̄∗) the natural coordinates

of p and p̄∗, respectively. Similarly, denote by η = η(p), η̄ = η( p̄), and
η̄∗ = η( p̄∗) the dual moment coordinates of p and p̄∗, respectively.

1The product of exponential families is an exponential family.
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Figure 6.2: Top to bottom, left to right: original image, original intensity
histogram, raw KDE (14400 components) and simplified mixture (8 compo-
nents). Even with very few components compared to the mixture produced
by the KDE, the simplified mixture still reproduces very well the shape of
the histogram.
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We have

KL ( p̃‖p) =
∫

p̃(x) log
p̃(x)
p(x)

dx (6.7)

= Ep̃[log p̃]− Ep̃[log p] (6.8)
= Ep̃[log p̃]− Ep̃[〈θ, t(x)〉 − F(θ) + k(x)] (6.9)
= Ep̃[log p̃] + F(θ)− 〈θ, Ep̃[t(x)]〉 − Ep̃[k(x)] (6.10)

since Ep̃[F(θ)] = F(θ)
∫

p̃(x)dx = F(θ).
Using the fact that

Ep̃[t(x)] = E∑n
i=1 wi pF(x;θi)[t(x)] (6.11)

=
n

∑
i=1

wiEpF(x;θi)[t(x)] (6.12)

=
n

∑
i=1

wiηi = η̄∗ (6.13)

it follows that

KL ( p̃‖p) = Ep̃[log p̃] + F(θ)− Ep̃[k(x)]−
〈

θ,
n

∑
i=1

wiηi

〉
(6.14)

= Ep̃[log p̃] + F(θ)− Ep̃[k(x)]− 〈θ, η̄∗〉. (6.15)

Let us now add for mathematical convenience the neutralized sum
F(θ̄∗) + 〈θ̄∗, η̄∗〉 − F(θ̄∗)− 〈θ̄∗, η̄∗〉 = 0 to the former equation.

Since

KL ( p̄∗‖p) = BF(θ‖θ̄∗) = F(θ)− F(θ̄∗)− 〈θ − θ̄∗, η̄∗〉, (6.16)

and

KL ( p̃‖ p̄∗) = Ep̃[log p̃]− Ep̃[k(x)] + F(θ̄∗)− 〈θ̄∗, η̄∗〉, (6.17)

We end up with the following Pythagorean sum:

KL ( p̃‖p) = Ep̃[log p̃] + F(θ)− Ep̃[k(x)]− 〈η̄∗, θ〉 (6.18)
+F(θ̄∗) + 〈θ̄∗, η̄∗〉 − F(θ̄∗)− 〈θ̄∗, η̄∗〉 (6.19)

KL ( p̃‖p) = KL ( p̄∗‖p) + KL ( p̃‖ p̄∗) (6.20)

This expression is therefore minimized for KL ( p̄∗‖p) = 0 (since we
have KL ( p̄∗‖p) ≥ 0), that is for p = p̄∗. The closest distribution of EF to p̃ ∈
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EF

p

Figure 6.3: Projection operation from the mixture manifold to the model
exponential family sub-manifold.

P is given by the dual centroid. In other words, distribution p̄∗ is the right-
sided KL projection of the mixture model onto the model sub-manifold.
Geometrically speaking, it is the projection of p̃ via the mixture connection:
the m-connection. Figure 6.3 illustrates the projection operation.

This theoretically explains why the right-sided KL centroid (ie., left-
sided Bregman centroid) is preferred for simplifying mixtures [99] emanat-
ing from a kernel density estimator.

6.2.3 Model Hard Clustering

Hyperbolic distance

The statistical manifold of the parameters of exponential families can be
studied through the framework of Riemaniann geometry. It has been proved
by Chencov [29] and Lê [76] that the Fisher-Rao metric is the only Riema-
niann metric on the statistical manifold which is invariant by reparameter-
ization:

I(θ) =
[
gij
]
= E

[
d log p

d θi

d log p
d θj

]
(6.21)

The Fisher-Rao distance (FR) between two distributions is computed
using the length of the geodesic path between the two points on the statis-
tical manifold:

FR(p(x; θ1), p(x; θ2)) = min
θ(t)

∫ 1

0

√(
d θ

d t

)T

I (θ(t))
d θ

d t
dt (6.22)

with θ such that θ(0) = θ1 and θ(1) = θ2.
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Figure 6.4: Right-sided (dashed line) and left-sided (dotted line) Kullback-
Leibler centroids of a 2-components Gaussian mixture model. The left-
sided centroid focuses on the highest mode of the mixture while the right-
sided one tries to cover the supports of all the components. Pelletier’s result
says the right-sided centroid is the closest Gaussian to the mixture.

This integral is not known in the general case and is usually difficult to
compute (see [106] for a numerical approximation in the case of the Gamma
distribution).

However, it is known in the case of a normal distribution that the Fisher-
Rao metric yields an hyperbolic geometry [65, 33].

For univariate Gaussian distributions, a closed-form formulation of the
Fisher-Rao distance can be expressed, using the Poincaré hyperbolic dis-
tance in the Poincaré upper half-plane:

FR( f (x; µp, σ2
p), f (x; µq, σ2

q ))

=
√

2 ln
‖( µp√

2
, σp)− (

µq√
2
, σq)‖+ ‖( µp√

2
, σp)− (

µq√
2
, σq)‖

‖( µp√
2
, σp)− (

µq√
2
, σq)‖ − ‖( µp√

2
, σp)− (

µq√
2
, σq)‖

(6.23)

where ‖(u, v)‖ =
√

u2 + v2 denotes the Euclidean norm.

Model centroid

In order to perform the k-means iterations using the Fisher-Rao distance,
we need to define centroids on the hyperbolic space. Model centroids, in-
troduced by Galperin [47] and successfully used in [108] for hyperbolic
centroidal Voronoi tesselations, are a way to define centroids in the three
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kinds of constant curvature spaces (namely, Euclidean, hyperbolic or spher-
ical). For a d-dimensional curved space, it starts with finding a (k + 1)-
dimensional model in the Euclidean space. For a 2D hyperbolic space, it
will be the Minkowski model , that is the upper sheet of the hyperboloid
−x2 − y2 + z2 = 1.

O

ω1p
′
1

ω2p
′
2

p′1

p′2

ω1p
′
1 + ω2p

′
2

p1 p2

Minkowski model

Klein disk
c

c′

Figure 6.5: Computation of the centroid c given the system
(ω1, p1), (ω2, p2).

First, each point p (with coordinates (xp, yp)) lying on the Klein disk is
embedded in the Minkowski model:

xp′ =
xp√

1− (x2
p + y2

p)
yp′ =

yp√
1− (x2

p + y2
p)

zp′ =
1√

1− (x2
p + y2

p)

(6.24)
Next the center of mass of the points is computed

c′′ = ∑ ωi p′i (6.25)

This point needs to be normalized to lie on the Minkowski model, so
we look for the intersection between the vector Oc′′ and the hyperboloid:

c′ =
c′′

−x2
c′′ − y2

c′′ + z2
c′′

(6.26)
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From this point in the Minkowski model, we can use the reverse trans-
form in order to get a point in the original Klein disk [93]:

xc =
xc′

zc′
yc =

yc′

zc′
(6.27)

Although this scheme gives the centroid of points located on the Klein
disk, it is not sufficient since parameters of the Gaussian distribution are
in the Poincaré upper half-plane [33]. Thus we need to convert points from
one model to another, using the Poincaré disk as an intermediate step. For a
point (a, b) on the half-plane, let z = a + ib, the mapping with the Poincaré
disk is:

z′ =
z− i
z + i

z =
i(z′ + 1)

1− z′
(6.28)

And for a point p on the Poincaré disk, the mapping with a point k on the
Klein disk is:

k =
2

1 + 〈p|p〉 p (6.29)

p =
1−

√
1− 〈k|k〉
〈k|k〉 k (6.30)

(6.31)
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Figure 6.6: Model (dashed line) and Fisher (dotted line) Kullback-Leibler
centroids of a 2-components Gaussian mixture model. The two notions
of centroids give visually very different Gaussians: both centroids have
roughly the same mean but the Model centroid has a large variance.
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Figure 6.7: Model (dashed line) and left-sided Kullback-Leibler (dotted
line) centroids of a 2-components Gaussian mixture model.

Contrary to the Bregman Hard Clustering algorithm, which use the
Bregman divergence and the corresponding centroid, we do not use for the
Model Hard Clustering the notion of centroid which is associated to the
Fisher-Rao distance. Since the Update step of the k-means procedure does
not minimize anymore the mean of the squared Fisher distances between
points and clusters, we do not have the local convergence property. We see
on Figure 6.6 that the two centroids are very different. Although there is no
theoretical proof of the convergence, it appears that the algorithm works
in practice and converges to a local minimum (see experiments in Section
8.1).

Quasi-arithmetic mean

The model centroid can be interpreted in a summarized version as a quasi-
arithmetic mean:

c = q−1

(
1

‖∑i q
(
µi, σ2

i

)
‖M

∑
i

k
(
µi, σ2

i
))

(6.32)

where ‖(x, y, z)‖M =
√

z2 − (y2 + z2) is the Minkowski norm .
The representation function q maps a couple of parameters

(
µi, σ2

i
)

to
the vector (x, y, z) according the following formula (|u| denotes the modu-
lus of a complex number):
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x

y

z

 =



Re k√
1−|k|2

Im k√
1−|k|2

1√
1−|k|2


(6.33)

where


p =

µ + i (σ2 − 1)
µ + i (σ2 + 1)

k =
2

1 + |p|2 p
(6.34)

The inverse mapping q−1 which maps the vector (x, y, z) to the parameters
(µ, σ2), is given by the equations:

 µ

σ2

 =

 Re i (p+1)
1−p

Im i (p+1)
1−p

 (6.35)

where


k =

x
z
+ i

y
z

p =
1−

√
1− |k|2
|k|2 k

(6.36)

6.3 Conclusion

After an introduction about kernel density estimator, this chapter presented
two variants of the simplification algorithm: the first one is based on the
classical Bregman Hard Clustering whereas the second one uses the Fisher
distance and the model centroids. Along with these two methods, a proof
of the equality between the right-sided Kullback-Leibler centroids and geo-
metric projection of a mixture model onto the exponential family manifold
is given. The algorithms presented here are implemented in a Python li-
brary which is described in the next chapter.
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Chapter 7

Software library

7.1 Presentation

Several tools are already available to build mixture models, either for mix-
tures of Gaussian distributions or for mixtures of other distributions. But
these tools are usually dedicated to a particular family of distributions.

In order to provide a unified and powerful framework for the manip-
ulation of arbitrary mixture models, we develop pyMEF, a Python library
dedicated to the mixtures of exponential families.

Given the success of the Gaussian mixture models, there are already
numerous other software available to deal with it:

• some R packages: MCLUST
(http://www.stat.washington.edu/mclust/) and MIX
(http://icarus.math.mcmaster.ca/peter/mix/),

• MIXMOD [20] which also works on multinomial and provides bindings
for Matlab and Scilab,

• PyMIX [49], another Python library which goes beyond simple mixture
with Context-specific independence mixtures and dependence trees,

• scikits.learn, a Python module for machine learning
(http://scikit-learn.sf.net),

• jMEF [99, 48] which is the only other library dealing with mixtures of
exponential families, written in Java.

Although exponential families other than normal distributions have
been successfully used in the literature, it was made using an implemen-
tation specific to the underlying distribution per se. The improvement of
libraries such as jMEF and pyMEF is to introduce genericity: changing the
exponential family means simply changing a parameter of the Bregman
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Soft Clustering (equivalent to performing an EM task), and not completely
rewriting the algorithm.

Moreover, the choice of the best distribution is a difficult problem in
itself, and is often inspected experimentally, by looking at the shape of the
histogram or by comparing a performance score (the log-likelihood or any
meaningful score in the considered application) computed with mixtures of
various distributions. It is worth here to use a unified framework instead
of using different libraries from various sources with various interfaces.

The goal of the pyMEF library is to provide a consistent framework with
various algorithms to build mixtures (Bregman Soft Clustering) and vari-
ous Information-theoretic simplification methods (Bregman Hard Cluster-
ing, Fisher Hard Clustering) along with some widespread exponential fam-
ilies:

• univariate Gaussian,

• multivariate Gaussian,

• Generalized Gaussian,

• multinomial,

• Rayleigh,

• Laplace.

7.2 Extending pyMEF

The set of available exponential families can be easily extended by users.
Following the principles of Flash Cards introduced in [99] for jMEF it is suf-
ficient to implement in a Python class the function describing the distribu-
tion:

• the core of the family (the log-normalizer F and its gradient ∇F, the
carrier measure k and the sufficient statistic t),

• the dual characterization with the Legendre dual of F (F? and ∇F?)

• the conversion between three parameters space (source to natural,
natural to expectation, expectation to source and their reciprocal).

7.3 An example with a Gaussian Mixture Model

We present here a basic example of a pyMEF session. The following can be
used interactively in the Python toplevel or be part of a larger software.
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This allows both a rapid exploration of a dataset and the development of a
real application with the same tools.

We begin with loading the required modules:

import numpy
from matplotlib import pyplot

from pyMEF.Build import BregmanSoftClustering, KDE
from pyMEF.Simplify import BregmanHardClustering
from pyMEF.Families import UnivariateGaussian

An example dataset (6550 samples) is loaded using standard numpy func-
tions:

data = numpy.loadtxt("data.txt")
data = data.reshape(data.shape[0], 1)

An 8-component mixture model is built on this dataset using the Breg-
man Soft Clustering algorithm (also known as EM in the Gaussian case):

em = BregmanSoftClustering(data, 8, UnivariateGaussian, ())
mm_em = em.run()

Another mixture is built using Kernel Density Estimation (leading to a
6550-component mixture).

mm_kde = KDE(data, UnivariateGaussian, ())

This very large model is then simplified into an 8-component mixture
with the Bregman Hard Clustering algorithm:

kmeans = BregmanHardClustering(mm_kde, 8)
mm_s = kmeans.run()

We finally compute the log-likelihood of the models (original and sim-
plified).

print "EM:", mm_em.logLikelihood(data)
print "KDE:", mm_kde.logLikelihood(data)
print "Simplified KDE:", mm_s.logLikelihood(data)

For illustration purposes (see Figure 7.1), we plot the histogram of the
original data and the three computed models (pyMEF does not provide any
display functions, we rely instead on the powerful matplotlib 1 library).

1The matplotlib library can be downloaded on http://matplotlib.sourceforge.
net/
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Model Log-likelihood
EM -18486.7957123
KDE -18985.4483699
Simplified KDE -19015.0604457

Table 7.1: Log-likelihood of the three computed models. EM still gives the
best value and the simplified KDE has nearly the same log-likelihood than
the original KDE.

pyplot.subplot(2, 2, 1)
pyplot.hist(data, 1000)

pyplot.xlim(0, 20)
x = numpy.arange(0,20,0.1)

pyplot.subplot(2, 2, 2)
pyplot.plot(x, mm_em(x))

pyplot.subplot(2, 2, 3)
pyplot.plot(x, mm_kde(x))

pyplot.subplot(2, 2, 4)
pyplot.plot(x, mm_s(x))

pyplot.show()

A real application would obviously use multiple runs of the soft and
hard clustering algorithms to avoid being trapped in a bad local optimum
that can be reached by the two local optimization methods.

In this example, the Bregman Soft clustering gives the best result in
terms of log-likelihood (Table 7.1) but the model is visually not really sat-
isfying (there is a lot of local maxima near the first mode of the histogram,
instead of just one mode). The models relying on Kernel Density Estima-
tion give a bit worse log-likelihood but are visually more convincing. The
important point is the quality of the simplified model: while having a lot
less components (8 instead of 6550) the simplified model is nearly identical
to the original KDE (both visually and in terms of log-likelihood).
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Figure 7.1: Output from the pyMEF demo. Top-left the histogram from the data; top-right, the model computed by EM;
bottom-left the one from KDE; bottom-right the simplified KDE. Visual appearance is quite bad for EM while it is very good
for both KDE and simplified KDE, even with a lot less components in the simplified version.
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7.4 Examples with other exponential families

Although the Gaussian case is the more widespread and the more universal
case, lots of other exponential families are useful in particular applications.
We present here two examples implemented in pyMEF using the formula
detailed in [99].

Rayleigh distribution The Rayleigh mixture models are used in the field
of Intravascular UltraSound Imaging [122] for segmentation and classifica-
tion tasks. We present in Figure 7.2 an example of the learning of a Rayleigh
mixture model on a synthetic dataset built from a 5-components mixture of
Rayleigh distributions. The graphics shown in this figure have been gen-
erated with the following script (for the sake of brevity, we omit here the
loops used to select the best model among some tries). Notice how simi-
lar this code is to the previous example, showing the genericity of our li-
brary: using different exponential families for the mixtures is just a matter
of changing one parameter in the program.

import sys, numpy

from pyMEF import MixtureModel
from pyMEF.Build import BregmanSoftClustering
from pyMEF.Simplify import BregmanHardClustering
from pyMEF.Families import Rayleigh

# Original mixture
k = 5
mm = MixtureModel(5, Rayleigh, ())
mm[0].source((1.,))
mm[1].source((10.,))
mm[2].source((3.,))
mm[3].source((5.,))
mm[4].source((7.,))

# Data sample
data = mm.rand(10000)

# Bregman Soft Clustering k=5
em5 = BregmanSoftClustering(data, 5, Rayleigh, ())
em5.run()
mm_em5 = em5.mixture()

# Bregman Soft Clustering k=32 + Simplification
em32 = BregmanSoftClustering(data, 32, Rayleigh, ())
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em32.run()
mm_em32 = em.mixture()

kmeans5 = BregmanHardClustering(mm_em32, 5)
kmeans.run()
mm_simplified = kmeans.mixture()

Laplace distribution Although Laplace distributions are only exponen-
tial families when their means is fixed, zero-mean Laplacian mixture mod-
els are used in various applications. Figure 7.3 presents the same experi-
ments as in Figure 7.2 and has been generated with the same script, by re-
placing all occurrences of the word Rayleigh by the word CenteredLaplace.
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Figure 7.2: Rayleigh mixture models. The top left figure is the true mixture (synthetic data) and the top right one is the
histogram of 10000 sample drawn from the true mixture. The bottom left figure is a mixture build with the Bregman Soft
Clustering algorithm (with 5 components) and the bottom right one is a mixture built by first getting a 32 components
mixture with Bregman Soft Clustering and then simplifying it to a 5 components mixtures with the Bregman Hard Clustering
algorithm.
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Figure 7.3: Laplace mixture models. The top left figure is the true mixture (synthetic data) and the top right one is the
histogram of 10000 sample drawn from the true mixture. The bottom left figure is a mixture build with the Bregman Soft
Clustering algorithm (with 5 components) and the bottom right one is a mixture built by first getting a 32 components
mixture with Bregman Soft Clustering and then simplifying it to a 5 components mixtures with the Bregman Hard Clustering
algorithm.
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7.5 Conclusion

The pyMEF library presented in this chapter implements the two simplifi-
cation algorithms alongside with other mixture model learning methods.
This is both an easy to use and an easy to extend library which allows prac-
tical use of information geometric algorithms for mixture models which are
evaluated in the next chapter.
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Chapter 8

Applications and experiments

8.1 Local convergence of Model Hard Clustering

Since we do not have a theoretical proof of the convergence of Model Hard
Clustering, it is import to experimentally check that the convergence hap-
pens in practice. In all the experiments presented in the following two
sections, the cost function decreases and we get a local minimum. Figure
8.1 presents the decrease of the k-means cost function on one of the obser-
vations set from Section 8.3.
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Figure 8.1: Evolution of the cost function of Model Hard Clustering wrt the
number of iterations. We reach a local minimum of the cost.

8.2 Experiments on images

We study here the quality, in terms of log-likelihood, and the computa-
tion time of the proposed methods compared to a baseline Expectation-
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Figure 8.2: Log-likelihood of the simplified models and computation time.
All the algorithms reach the same log-likelihood maximum with quite few
components (but the one-step model centroid needs a few more compo-
nents than all the others). Model centroid based clusterings are the fastest
methods, Kullback-Leibler clustering is even slower than EM due to the
computational cost of the KL distance and centroids.
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Maximization algorithm. The source distribution is the intensity histogram
of the famous Lena image (see Figure 6.2). As explained in Section 6.2.1,
for the Kullback-Leibler divergence, we report only results for right-sided
centroids since it performs better (as indicated by the theory) than the two
other flavors and has the same computation cost. The third and fourth
methods are the Model centroid, both with a full k-means and with only
one iteration.

The top part of Figure 8.2 shows the evolution of the log-likelihood as
a function of the number of components k. First, we see that all the algo-
rithms perform nearly the same and converge very quickly to a maximum
value (the KL curve is merged with the EM one).

Kullback-Leibler divergence and Fisher-Rao metric perform similarly
but they are rather different from a theoretical standpoint: KL assumes an
underlying flat geometry while Fisher-Rao is related to the curved hyper-
bolic geometry of Gaussian distributions. However at infinitesimal scale
(or on dense compact clusters) they behave the same.

The bottom part of Figure 8.2 describes the running time (in seconds) as
a function of k. Despite the fact that the quality of mixtures is nearly iden-
tical, the costs are very different. Kullback-Leibler divergence is very slow
(even in closed-form, the formulas are quite complex to calculate). While
achieving the same log-likelihood, model centroid is the fastest method,
significantly faster than EM.

While being slower to converge when k increases, the one step model
clustering performs still well and is roughly two times faster than a com-
plete k-means.

8.3 Prediction of 3D structures of RNA molecules

RNA molecules play an important role in many biological processes. The
understanding of the functions of these molecules depends on the study of
their 3D structure. A common approach is to use knowledge-based poten-
tial built from inter-atomic distance coming from experimentally determin-
ing structures. Recent work use mixture models [17] to model the distribu-
tion of the inter-atomic distances.

In the original work by Bernauer, Huang, Sim, and Levitt [17] the au-
thors use Dirichlet Process Mixtures [105] to build the mixture models. This
gives high quality mixtures, both in terms of log-likelihood and in the con-
text of the application, but with a high computational cost which is not
affordable for building thousands of mixtures.

We study here the effectiveness of our proposed simplification mixtures
compared to reference high quality mixtures built with Dirichlet Process
Mixtures. We evaluate the quality of our simplified models by computing
mixture in an absolute way, with the log-likelihood, and in a relative way,
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Method Log-likelihood
DPM -18420.6999452
KDE -18985.4483699
KDE + Bregman Hard Clustering -18998.3203038
KDE + Model Hard Clustering -18974.0717664
KDE + One step Model Hard Clustering -19322.2443988

Table 8.1: Log-likelihood of the model built by the state-of-the-art Dirichlet
Process Mixture, by Kernel Density Estimation, and by our new simplified
models. DPM is better but the proposed simplification methods perform as
well as the KDE.

KL DPM KDE BHC MHC One step MHC
DPM 0.0 0.051 0.060 0.043 0.066
KDE 0.090 0.0 0.018 0.002 0.016

Table 8.2: Kullback-Leibler divergence matrix for models built by Dirichlet
Process Mixture (DPM), by Kernel Density Estimation (KDE), by the Breg-
man Hard Clustering (BHC), by the Model Hard Clustering (MHC) and by
the one-step Model Hard Clustering. We limit the lines of the table to only
DPM and KDE since by the nature of Kullback-Leibler, the left term of the
divergence is supposed to be the "true" distribution and the right term the
estimated distribution (left term comes from the lines and right term from
the columns).

with the Kullback-Leibler divergence between a mixture built with Dirich-
let and a simplified mixture.

Only the relevant statistical part of this application is described: the
computational chemistry process of constructing potential from the mix-
ture models and the bio-informatic analysis which follows is out of scope
here and the readers will find all the details in [124].

Both DPM and KDE produce high quality models (see Table 8.1): for
the first with high computational cost, for the second with a high num-
ber of components. Moreover, these two models are very close for the
Kullback-Leibler divergence: this means that one may choose between the
two algorithms depending on the most critical point, time or size, in their
application.

Simplified models get nearly identical log-likelihood values. Only the
one-step Model Hard Clustering leads to a significant loss in likelihood.

Simplified models using Bregman and Model Hard Clustering are both
close to the reference DPM model and to the original KDE (Table 8.2).
Moreover, the Model Hard Clustering outperforms the Bregman Hard Clus-
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tering in the two cases. As expected, the one-step Model Hard Clustering
is the furthest: it will depend on the application to know if the decrease in
computation time is worth the loss in quality.
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Chapter 9

Conclusion NONUMBER

We presented a novel modeling paradigm which is both fast and accurate.
From the Kernel Density Estimates which are precise but difficult to use
due to their size, we are able to build new models which achieve the same
approximation quality while being faster to compute and compact. We in-
troduce a new mixture simplification method, the Model Hard Clustering,
which relies on the Fisher-Rao metric to perform the simplification. Since
closed-form formulas are not known in the general case we exploit the un-
derlying hyperbolic geometry, allowing to use the Poincaré hyperbolic dis-
tance and the Model centroids, which are a notion of centroids in constant
curvature spaces.

Models simplified by the Bregman Hard Clustering and by Model Hard
Clustering have both a quality comparable to models built by Expectation-
Maximization or by Kernel Density Estimation. But the Model Hard Clus-
tering does not only give very high quality models, it is also faster than
the usual Expectation-Maximization. The quality of the models simplified
by the Model Hard Clustering justifies the use of the Model centroids as a
substitute for the Fisher-Rao centroids.

Both Model and Bregman Hard Clustering are also competitive with
state-of-the-art approaches in a bio-informatics application for the model-
ing of the 3D structure of a RNA molecule, giving models which are very
close, in terms of Kullback-Leibler divergence, to reference models built
with Dirichlet Process Mixtures.
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Part III

Extended k-MLE: mixtures of
Gamma and Generalized
Gaussian distributions
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This part presents results already published in the ICPR 2012 article “k-
MLE for mixtures of generalized Gaussians” [121] and in the SIMBAD 2013
article “Fast Learning of Gamma Mixture Models with k-MLE” [114].

The work about generalized Gaussian distributions in [121] has been
carried out with Aurélien Schutz and Yannick Berthoumieu (Laboratoire
IMS, Université de Bordeaux).
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Chapter 10

Introduction NONUMBER

After decades of successful use, statistical mixture models are still an active
research field: while the Expectation-Maximization method can be used for
any kind of mixture (of Gaussians, of Laplace, of Gamma, etc), other works
want to improve some particular points. The k-Maximum Likelihood Es-
timator algorithm (k-MLE) recently introduced by Nielsen [96, 90] aims at
improving the speed of learning a mixture of exponential families. k-MLE
exploits a different paradigm than the classical EM: instead of working as
a soft clustering algorithm, it performs a hard clustering of the observa-
tions. The quantity which is optimized is not anymore the expected log-
likelihood but the complete log-likelihood and this optimization problem
can be solved with the help of the Bregman Hard Clustering algorithm [12].
Although it maximizes a slightly different quantity, it appears that k-MLE
also produces mixtures with a high log-likelihood while being significantly
faster. k-MLE works in the framework of exponential families which may
be limitating in some conditions: this is the case when we do not want the
same exponential family for each component (as for the generalized Gaus-
sian mixtures) or when the necessary closed-form formulas (for efficient
computation) are not known (as for the Gamma mixtures).

The first contribution introduced here is the following: generalized Gaus-
sian distributions (GG) are a powerful generalization of the Gaussian dis-
tribution which contain many distributions from heavy-tailed laws to the
limit case of the uniform distribution. Although a generalized Gaussian is
an exponential family when the parameter which controls the shape of den-
sity is fixed, two generalized Gaussian with two different shape parameters
are not in the same family which renders the k-MLE algorithm unsuitable.
To unleash the full power of GG, we introduce here an extension of k-MLE
which allows to learn mixtures of generalized Gaussian with various shape
parameters.

The second contribution is to provide an efficient way to build Gamma
mixture models. In fact, a Gamma law is an exponential family (for all the

101



parameters, contrary to the generalized Gaussian) so the exponential fam-
ilies tools like k-MLE are theoretically usable but this is not true in prac-
tice. Some necessary functions are not known in closed-form, rendering
the original k-MLE too slow (with numerical approximation to replace the
closed-form formula) to be useful. We rely here on a computational trick:
a Gamma law with a fixed rate parameter is still an exponential family (of
order 1) for which all the formulas are known in closed-form. Using this
remark, we can now apply the same extended k-MLE as the one used for
generalized Gaussian: the goal is to learn a mixture of fixed-rate Gamma
laws where the rates are different among the components.

In Chapter 11, we first present the necessary background on exponen-
tial families and Bregman divergences and introduce the original k-MLE
algorithm. The extension allowing to learn mixtures where all the compo-
nents are not part of the same exponential family is then described.

In Chapter 12, we describe libmef, the software library used in the ex-
periments. This library is written in the C language and is complementary
to the pyMEF Python library described in the previous part since it focuses
on speed rather than on the ease of use in a dynamic programming lan-
guage. In the long term, the two libraries should merge in order to provide
a fast C backend with a neat Python API.

In Chapter 13, we present some experimental results: k-MLE for gen-
eralized Gaussian is compared to an EM for generalized Gaussian; k-MLE
for Gamma is a compared to an EM for Gamma laws. In both cases, the
comparison is made in terms of log-likelihood and computation time.
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Chapter 11

Extended k-MLE

11.1 Motivation and prior work

k-MLE is a rather new algorithm for mixtures of exponential families but it
finds its roots on previous work which studied the meaning of the soft clus-
tering procedure. It is very close to the Hard EM algorithm introduced by
Banerjee, Dhillon, Ghosh, and Sra [11] for Von Mises-Fisher distributions
which suggests to replace the soft assignment step of EM with a simpler
hard assignment; it is also similar to Classification EM [27]. As a compro-
mise between hard and soft assignment, it has also been proposed in the
literature [88] to sparsify the posterior probability matrix by filtering out
some values. Transforming the soft assignment into a hard one in EM has
also been suggested for Hidden Markov Model with an algorithm called
Viterbi Training [61, 69].

The main contribution of k-MLE, providing a generic algorithm for ex-
ponential families, is not enough for the two distributions we consider here:
although theoretically possible, the method is computationally unsuitable
for Gaussian mixtures and two generalized Gaussian with different shape
parameters are simply not in the same family, which imposes to use the
same value for all the components with the original k-MLE.

The generalized Gaussian distribution is historically strongly linked
with applications related to texture classification or retrieval: from semi-
nal work by Mallat [78] on wavelets, this family of distributions has been
used for modeling wavelet decomposition of textures [41] and is still ac-
tively used [112]. An Expectation-Maximization algorithm for generalized
Gaussian has been introduced by Allili [3, 4]: we will use this method as a
reference in the chapter about experimental evaluation.

Gamma mixture models are a very interesting kind of mixture models
since like the Gaussian mixtures, they have the property of universality:
contrary to the Gaussian mixtures which are universal on full R, Gamma
mixtures are universal for densities with a positive support. This makes
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mixtures of Gamma laws a natural and more statistically meaningful kind
of mixtures to model densities from positive observations such as the dis-
tances used in Part II. Some algorithms are available in the literature for
these mixtures, with various applications in mind: telecommunication net-
work modeling [5], medical service analysis [125] or in bio-informatics to
model molecular sequence evolution [80]. We will use here in experiments
the EM variant for Gamma laws by Almhana, Liu, Choulakian, and Mc-
Gorman [5] as a reference.

11.2 Learning mixtures of exponential families with
k-MLE

Assume we have a set X = {x1, . . . , xn} of n observations which have been
sampled from a finite mixture model with k components. The joint proba-
bility distribution of these samples with the missing components zi (indi-
cating from which component each observation xi comes from) is:

p(x1, z1, . . . , xn, zn) = ∏
i

p(zi|ω)p(xi|zi, θ) (11.1)

Since the variables zi are not observed in practice, we marginalize them
and we get:

p(x1, . . . , xn|ω, θ) = ∏
i

∑
j

p(zi = j|ω)p(xi|zi = j, θ) (11.2)

The straightforward way to optimize this distribution would be to test
the kn labels but this is not tractable in practice. Instead, Expectation-
Maximization optimizes the following quantity, the average log-likelihood:

ll(x1, . . . , xn) =
1
n

log p(x1, . . . , xn) (11.3)

=
1
n ∑

i
log ∑

j
p(zi = j|ω)p(xi|zi = j, θ) (11.4)

Contrary to this approach, the k-Maximum Likelihood Estimator maxi-
mizes the average complete log-likelihood:
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ll′(x1, z1, . . . , xn, zn) =
1
n

log p(x1, z1, . . . , xn, zn) (11.5)

=
1
n ∑

i
log ∏

j

((
ωj pF(xi, θj)

)δ(zi)
)

(11.6)

=
1
n ∑

i
∑

j
δj(zi)

(
log pF(xi, θj) + log ωj

)
, (11.7)

where δj(zi) = 1 if and only if zi emanates from the j-th component.
Since pF is an exponential family, we have:

log pF(xi, θj) = −BF∗
(
t(x)‖ηj

)
+ F?(t(x)) + k(x)︸ ︷︷ ︸

does not depend on θ

(11.8)

The terms which do not depend on θ are of no interest for the maxi-
mization problem and can be removed: we can then rewrite Eq. (11.7) to
get the equivalent problem:

arg min ∑
i

∑
j

δ(zi)
(

BF∗
(
t(x)‖ηj

)
− log ωj

)
(11.9)

As stated in [96] this problem can be solved for a fixed set of weights
ωi using the Bregman k-means algorithm with the Bregman divergence
BF∗ (actually, any heuristic for k-means is convenient such as the Hartigan
procedure [54], used for Wishart mixtures with k-MLE by Saint-Jean and
Nielsen [111]).

The weights can now be optimized by taking ωi =
|Ci |
n (where |Ci| is the

number of observations put in the cluster Ci by the solution of the previous
clustering problem). This step amounts to maximizing the cross-entropy of
the mixture [96].

The full algorithm can be summarized as follows (see Fig. 11.2 for a
block diagram):

1. Initialization (choose seeds θi randomly or by using k-MLE ++[96]);

2. Assignment zi = arg maxj log(ωj pF(xi|θj));

3. Update of the η parameters ηi =
1
nj

∑x∈Cj
t(x);

Goto step 2 until local convergence;

4. Update of the parameters ω j;
Goto step 2 until local convergence of the complete likelihood.
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Figure 11.1: Block diagram for the k-MLE algorithm.
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Using the Lloyd k-means heuristic may lead to empty clusters, espe-
cially with a large number of clusters and high-dimensional data [111].
Another problem is degenerate clusters: when there are not enough ob-
servations (less than the order of the family) in the cluster, the MLE does
not exist (see Section 3.1.5 in Chapter 3 more details).

The strategy used here is to remove empty or to small clusters when
they appear: this allows to select a number of components larger than nec-
essary since the number will decrease during the iterations. Another strat-
egy is to use the Hartigan clustering heuristic [54] which can be tuned to
avoid empty clusters [111]. In the Agglomerative Bregman Clustering algo-
rihm [37], a smoothing procedure to deal with degenerate clusters has also
been proposed.

11.3 Extension to the non-fixed family case

11.3.1 Choosing the exponential family

The original k-MLE algorithm builds mixture models where all the com-
ponents belong to the same exponential family. The extended k-MLE aims
at building mixtures where the family is not fixed a priori but chosen at
each step (see Figure 11.2): the convergence to a local maximum of the
complete log-likelihood is preserved when each component is part of a dif-
ferent family and this maximization can still be done with a Bregman Hard
Clustering-like algorithm. It is not anymore the original Bregman Hard
Clustering but a generalized version in which the cost function is now:

k

∑
j=1

∑
i∈Cj

(
BFj

∗
(
t(xi)‖ηj

)
− Fj

∗(t(xi))− k j(xi)− log ωj

)
(11.10)

where Cj is the set of the indices of the observations sampled from the j-th
component.

This new extended k-MLE algorithm can be summarized as follows (see
Figure 11.2):

1. Initialization (random or using k-MLE ++[96]);

2. Assignment zi = arg maxj log(ωj pFj(xi|θj));

3. Update of the η parameters ηi =
1
nj

∑x∈Cj
log(x);

Goto step 2 until stability (local convergence of the k-means);

4. Update of the weights ω;
Choice of the exponential family of each components;
Goto step 2 until local convergence of the complete likelihood.
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Figure 11.2: Block diagram for Extended k-MLE.

108



11.3.2 New cost function

As the one proposed for generalized Gaussian, this algorithm converges
to a local maximum of the complete log-likelihood. We want to minimize
the same cost function as the original k-MLE algorithm, the complete av-
erage log-likelihood of the mixture, with the slight difference that the log-
normalizer is not shared among components but now depends on the com-
ponent j; and is thus now written Fj instead of F:

ll′(x1, z1, ..., xn, zn|w, θ) =
1
n

n

∑
i=1

k

∑
j=1

δj(zi)(log pFj(xi|θj) + log ωj) (11.11)

=
1
n

n

∑
i=1

k

∑
j=1

δj(zi)
(
− BFj

∗
(
t(xi)‖ηj

)
+ Fj

∗(t(xi)) + k j(xi) + log ωj

) (11.12)

Maximizing the complete average log-likelihood ll′ is equivalent to min-
imizing the cost function K = −ll′:

K = −ll′ =
1
n

k

∑
j=1

∑
i∈Cj

Uj
(
xi, ηj

)
(11.13)

where

Uj(xi, ηj) =−
(

log pFj(xi|θj) + log ωj

)
(11.14)

= BFj
∗
(
t(xi)‖ηj

)
− Fj

∗(t(xi))− k j(xi)− log ωj (11.15)

is the cost for the observation i to have been sampled from the component
j. Notice this cost depends on j since each component has a different gen-
erator Fj and a different auxiliary carrier measure k j.

This minimization problem can be solved with the Lloyd k-means algo-
rithm [75] using the cost function U (which is not a distance nor a diver-
gence and can even be negative): the proof of this statement is given in the
next section.

After the execution of the Lloyd algorithm (or any other heuristic), the
log-likelihood has been optimized for fixed ωj and a fixed family pFj . The
final step is to update the weights using the proportion of samples in each
cluster and to choose the exponential family (for generalized Gaussian and
Gamma distributions this amounts to estimating the fixed parameters but
we may imagine even more generic mixtures where the family of each com-
ponent is chosen at each step among a discrete dictionary for exponential
families).
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11.3.3 Convergence to a local maximum

We now prove that the Lloyd method allows to find a local minimum by de-
creasing monotonically the cost function. The Lloyd method iterates over
two main steps: assignment and centroid updates. The sketch of the proof is
very similar to the usual proof, but we emphasize the fact the costs Uj are
not distances nor divergences and may even be negative.

Let us denote by C(t)i the content of the cluster i at the t-th iteration and

by η
(t)
i the center of the cluster i at the t-th iteration. The cost function at

the iteration t is:

K(t) =
1
n

k

∑
j=1

∑
i∈C(t)j

Uj

(
xi, η

(t)
j

)
(11.16)

The assignment step allocates each point xi to the center ηj which mini-
mizes the cost Uj(xi, ηj), so we have:

K(t) ≤ 1
n

k

∑
j=1

∑
i∈C(t+1)

j

Uj

(
xi, η

(t)
j

)
(11.17)

For each cluster, the centroid update step must solve the optimization
problem η

(t+1)
j = arg minη∗j ∑i∈C(t+1)

j
Uj

(
xi, η∗j

)
where the cost function is:

∑
i∈C(t+1)

j

BFj
∗
(
t(xi)‖ηj

)
− Fj

∗(t(xi))− k j(xi)− log ωj

By removing the constant terms −Fj
∗(t(xi))− k j(xi)− log ωj which do

not depend on the centroids η
(t)
i the original problem becomes equivalent

to the following problem: η
(t+1)
j = arg minη∗ ∑i∈C(t+1)

j
BFj

∗
(
t(xi)‖ηj

)
which

is the problem of the computation of a right-sided Bregman centroid [94]:
this centroid is known in closed-form [12] η

(t+1)
j = ∑i∈C(t+1)

j
t(xi). Since the

centroid update minimizes the average cost to each centroid, we now have:

1
n

k

∑
j=1

∑
i∈C(t+1)

j

Uj

(
xi, η

(t+1)
j

)
≤ 1

n

k

∑
j=1

∑
i∈C(t+1)

j

Uj

(
xi, η

(t)
j

)
(11.18)

Combining the equations (11.17) and (11.18) we get a global inequality
which characterizes the monotonic decrease of the cost function.
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Figure 11.3: Probability density function for various β (with a normal dis-
tribution β = 2.0, a Laplace β = 1.0 and a nearly uniform distribution
β = 10.0).

11.4 Mixtures of generalized Gaussians with various
shape parameters

11.4.1 Generalized Gaussian distributions

The generalized Gaussian (GG) [78, 85] replaces the square in the usual
Gaussian distribution by a parameter β. This family thus contains the nor-
mal law (β = 2), the Laplace law (β = 1) and even the uniform law as a
limit case (β→ +∞):

f (x; µ, α, β) =
β

2αΓ(1/β)
exp

(
−|x− µ|β

αβ

)
(11.19)

with α > 0 (the scale parameter) and β > 0 (the shape parameter).
Generalized Gaussian distributions have been successfully used in prob-

lems of texture classification [41, 30] and mixtures of these distributions
have been used for image and video segmentation [4]. We focus here on
one dimensional distributions but a multivariate generalized Gaussian can
be written as a product of one dimensional laws.
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Generalized Gaussian are exponential families for fixed µ and β with
the parameters (refer to Table B.6 in Annex B for full details):

• t(x) = −|x− µ|β,

• θ = α−β,

• F(θ) = β log θ − log β + log
(

2Γ
(

1
β

))
,

• k(x) = 0.

11.4.2 Maximum likelihood estimator for a fixed shape

There is no maximum likelihood estimator known in closed-form but a nu-
merical scheme to estimate the parameters α and β has been proposed in
[41] . Using results from the framework of exponential families, we can es-
timate the expectation parameters η = ∇F∗(θ) = − 1

θ = ∑N
i=1 t(xi) which is

equivalent to the proposed estimator for α.
The shape parameter β can be estimated as the solution of the equation:

1 +
ψ(1/β)

β
− ∑N

i=1 |xi − µ|β log |xi − µ|
∑N

i=1 |xi − µ|β
+

β
N ∑N

i=1 |xi − µ|β
β

= 0 (11.20)

This can be solved using the Newton-Raphson method initialized by a
dichotomic search between β = 0 and β = 20 (for a high enough β the gen-
eralized Gaussian law is very close to a uniform law). In some applications,
it may be worth limiting the estimation to this dichotomic search in order
to reduce the computation time.

11.5 Efficient learning of mixtures of Gamma distri-
butions

11.5.1 Gamma distribution

The general case of the Gamma distribution is

p(x; α, β) =
βαxα−1 exp(−βx)

Γ(α)
(11.21)

with α, β > 0: α is called the shape parameter and β is called the rate param-
eter (or inverse scale parameter).

This distribution is an exponential family with the following parame-
terization:

Natural parameters (θ1, θ2) = (−β, α− 1)

112



Sufficient statistics t(x) = (x, log x)

Log normalizer F(θ1, θ2) = (−(θ2 + 1) log(−θ1) + log Γ(θ2 + 1))

Gradient log normalizer ∇F(θ1, θ2) =
(

θ2+1
−θ1

,− log(−θ1) + ψ(θ2 + 1)
)

Dual log normalizer F?(η1, η2) =〈
(∇F)−1(η1, η2), (η1, η2)

〉
− F

(
(∇F)−1(η1, η2)

)
Although the log-normalizer F is known in closed-form, it is not the

case for its dual F?. It thus requires numerical approximation, which is
computationally costly.

11.5.2 Restriction of the exponential family

The previous section was devoted to the full exponential family of the Gamma
distribution, we now focus on a restricted exponential family, that is, the
Gamma distribution with fixed parameter β:

pβ(x; α) =
βαxα−1 exp(−βx)

Γ(α)
(11.22)

with α, β > 0.
Such a restriction can be seen as a particular case of restricted exponen-

tial family [66, 6]: we consider only a subset of the possible parameters by
imposing constraints on the space of parameters.

This is still an exponential family with the following parameterization
(full details in Table B.8):

Natural parameters θ = α− 1

Log normalizer F(θ) = −(θ + 1) log(β) + log Γ(θ + 1))

Gradient log normalizer ∇F(θ) = − log(β) + ψ(θ + 1)

Dual log normalizer F?(η) = 〈∇F?(η), η〉 − F (∇F?(η))
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Gradient of the dual log normalizer ∇F?(η) = (∇F)−1(η)

The∇F can be inverted in closed-form with respect to the inverse digamma
function ψ−1, giving:

(∇F)−1(η) = ψ−1(η + log β)− 1 = ∇F?(η) (11.23)

We can now compute the F? function by directly applying the Legendre
transform to the log-normalizer F:

F?(η) = 〈∇F?(η), η〉 − F (∇F?(η)) (11.24)

= η (ψ−1(η + log β)− 1) + ψ−1(η + log β) log β

− log Γ
(

ψ−1(η + log β)
) (11.25)

The function ψ−1 can be efficiently computed with a dichotomic search
(see Algorithm 1).

Algorithm 1 Computation of the inverse digamma function ψ−1

Require: y = ψ(x), a precision ε
Ensure: x̃ ≈ x

L← 1
x̃ ← exp(y)
while L > ε do

if y− ψ(x̃) > 0 then
x̃ ← x̃ + L

else
x̃ ← x̃− L

end if
end while
return x̃

11.5.3 Maximum likelihood estimator

Results from exponential families give an estimator for the expectation pa-
rameters of the fixed rate family:

η̂ =
1
n ∑ t(xi) = − log α̂ + ψ(β) (11.26)

By derivation of the likelihood function, we get an estimator for the rate
parameter β:
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β̂ =
nα̂

∑ xi
(11.27)

11.6 Conclusion

After a presentation of the original k-MLE algorithm, the extended k-MLE
algorithm is introduced: this generalization allows to deal with mixture in
which the exponential family is not the same for all the components. Such
an extension allows to build efficiently mixtures of generalized Gaussian
and of Gamma laws. In the next chapter, we present libmef which is the C
library implementing this algorithm.
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Chapter 12

Software library

12.1 Presentation

The pyMEF library used in Chapter 7 was a first step to have a generic li-
brary to deal with mixtures of exponential families but it is not adapted
to all use cases: it inherits from the Python drawback of being rather slow
(even with the use of the couple numpy and scipy), it is unsuitable for bind-
ings to foreign languages such as Scilab or Matlab; moreover it had been
designed for mixtures of exponential families in the strict sense, where all
the components share the same exponential family. For all these reasons,
we decided to build a new library written in the C language (with the help
of the GNU GSL library [50] for scientific computing): it is faster, allowing
to compete with state-of-art methods on the field of computation time; it is
easier to write bindings to others languages, easing the spread of our meth-
ods; it is designed to bear mixture with different families inside, allowing
to build mixtures of generalized Gaussian distributions.

12.2 Learning mixtures

12.2.1 Manually creating a mixture

In the following example (see Figure 12.1 for the complete listing), a mix-
ture of Gaussian with 3 components is created from scratch: the mixture is
then displayed (in a human friendly format), the densities of the mixture
and all its individual components are printed.

The first part is to create an empty container that will receive the com-
ponents:

mixture mix = mixture_create(3);

We then create the family which will be shared between all the compo-
nents and put it inside each component:
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#include <stdio.h>
#include <mef.h>

int main(int argc, char **argv) {
mixture mix = mixture_create(3);

Gaussian_family ef = Gaussian();
mix->ef[0] = (family)ef;
mix->ef[1] = (family)ef;
mix->ef[2] = (family)ef;

mix->params[0] = (param)Gaussian_create_source(ef, \
0., 1.);

mix->params[1] = (param)Gaussian_create_source(ef, \
-10., 3.);

mix->params[2] = (param)Gaussian_create_source(ef, \
5., 5.);

mix->weights[0] = 0.2;
mix->weights[1] = 0.5;
mix->weights[2] = 0.3;

mixture_fprint(stderr, mix);

unsigned int n = 1000;
double x_min = -20., x_max = 20., dx = (x_max-x_min)/n;
double x = x_min;
for(int i=0; i < n; i++) {

printf("%f %f %f %f %f\n", x, mixture_pdf(mix, x),
mix->weights[0] * ef->pdf(ef, x, mix->params[0]),
mix->weights[1] * ef->pdf(ef, x, mix->params[1]),
mix->weights[2] * ef->pdf(ef, x, mix->params[2])
);

x += dx;
}

}

Figure 12.1: Building a mixture by hand with libmef
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Gaussian_family ef = Gaussian();
mix->ef[0] = (family)ef;
mix->ef[1] = (family)ef;
mix->ef[2] = (family)ef;

What we create with the constructor Gaussian is a pointer to a C struct
of type Gaussian_family but in order to use it with the generic mixture
structure we need to "forget" the fact that it is a Gaussian with the cast
(family)ef. (The libmef library relies heavily on this kind of pseudo sub-
typing using cast and struct.)

The next step is to create the parameters and the weights used for the
components: we choose here to create source parameters but constructors
are also available for natural and expectation parameters.

mix->params[0] = (param)Gaussian_create_source(ef, 0., 1.);
mix->params[1] = (param)Gaussian_create_source(ef,-10., 3.);
mix->params[2] = (param)Gaussian_create_source(ef, 5., 5.);

mix->weights[0] = 0.2;
mix->weights[1] = 0.5;
mix->weights[2] = 0.3;

As for the family, we forget the precise family to build generic param-
eters with the cast (param): this ensures that the parameters can only be
used through the generic functions implemented in the family definition.

The mixture is then printed in a human friendly format with the func-
tion mixture_fprint:

mixture_fprint(stderr, mix);

which produces the following output:

0.200000 Gaussian(mu: 0.000000, sigma2: 1.000000)
0.500000 Gaussian(mu: -10.000000, sigma2: 3.000000)
0.300000 Gaussian(mu: 5.000000, sigma2: 5.000000)

The last step in this example is to output the values of the pdf. We see
here the use of the mixture_pdf function and of the pdf pseudo-methods
of each component (each struct describing a family contains pointers to
the functions which implements the canonical decomposition):

for(int i=0; i < n; i++) {
printf("%i %f %f %f %f %f\n", i, x,

mixture_pdf(mix, x),
mix->weights[0] * ef->pdf(ef, x, mix->params[0]),
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mix->weights[1] * ef->pdf(ef, x, mix->params[1]),
mix->weights[2] * ef->pdf(ef, x, mix->params[2])
);

x += dx;
}

12.2.2 Learning a mixture

The main interest of a library like libmef is obviously to learn a mixture
from a set of observations. The example of Figure 12.2 learns a Gaussian
mixture model using the Bregman Soft Clustering algorithm from a set of
random data (generated using the GSL built-in random generator).

After some initialization and the random generation part, we begin the
exponential families related part by creating an instance of the Gaussian
distribution which is then used to create the EM problem (the Gaussian_family
object is casted to the generic family type since Bregman Soft Clustering is
not supposed to know the precise family used):

Gaussian_family ef = Gaussian();
em em1 = em_create((family)ef, k, data, k*n, d);

The next step is to find an initialization of the iterative method. The
choice here is to use the best solution among 10 runs of k-means on the
observations and to use a MLE on each cluster:

double best_error = DBL_MAX;
kmeans km, km0;
for (unsigned int i=0; i<10; i++) {

km0 = kmeans_create(k, data, k*n, d);
kmeans_initialize_random(km0, rng);
kmeans_run(km0);

if (km0->old_error < best_error) {
km = km0;
best_error = km0->old_error;

}
else {

kmeans_destroy(km0);
}

}
em_initialize_from_clustering(em1, km->weights, km->affectation);

Given this initial solution, the EM is launched, displayed, and finally
destroyed:
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mixture mix = em_run(em1);
mixture_fprint(stdout, mix);
em_destroy(em1);

Contrary to Bregman Soft Clustering, some algorithms are intrinsically
linked to a specific family. In the example of Figure 12.3 which uses EM
for Gamma laws, the main difference is that there is no need to create the
family and to give it in argument to the problem creation function, since it
is already handled by this creation function. We thus simply have:

emgamma em = emgamma_create(k, data, k*n, d);

12.3 Extending libmef

The core of libmef is not only the algorithms on exponential families, it
is also the implementations of the different families. Since it is obviously
more time consuming to write a pure C code instead of a Python module us-
ing scipy and numpy, lots of efforts have been made to ease the production
of the necessary code. We illustrate the development of a family through
some extracts of the GammaFixedRate family.

The first point to help potential developers is the mechanism which al-
lows to describe at runtime the data structures used in the implementation:
with the following description lots of useful operations are available with-
out writing supplementary code (memory management, pretty printing,
arithmetic operations, dot product, etc).

unsigned int U(arguments_len) = 1;
struct dynamic_type U(arguments_descr)[1] = {

{"rate" , offsetof(struct family, rate), DOUBLE},
};

unsigned int U(source_len) = 1;
struct dynamic_type U(source_descr)[1] = {

{"shape", offsetof(struct source, shape), DOUBLE},
};

unsigned int U(natural_len) = 1;
struct dynamic_type U(natural_descr)[1] = {

{"theta1", offsetof(struct natural, theta1), DOUBLE},
};

unsigned int U(expectation_len) = 1;
struct dynamic_type U(expectation_descr)[1] = {
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#include <mef.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int main(int argc, char **argv) {
int k = 3, n = 5000, d = 1,
double *data = malloc(k * n * sizeof(double));
const gsl_rng_type *T; gsl_rng_env_setup();
T = gsl_rng_default; gsl_rng *rng = gsl_rng_alloc(T);
for (unsigned int i=0; i<n; i++) {

data[i] = gsl_ran_gaussian(rng, 1.0) + 1;
data[2 * i] = gsl_ran_gaussian(rng, 1.0) + 0;
data[3 * i] = gsl_ran_gaussian(rng, 1.0) + -10;

}

Gaussian_family ef = Gaussian();
em em1 = em_create((family)ef, k, data, k*n, d);

double best_error = DBL_MAX;
kmeans km, km0;
for (unsigned int i=0; i<10; i++) {

km0 = kmeans_create(k, data, k*n, d);
kmeans_initialize_random(km0, rng);
kmeans_run(km0);

if (km0->old_error < best_error) {
km = km0;
best_error = km0->old_error;

}
else {

kmeans_destroy(km0);
}

}
em_initialize_from_clustering(em1, km->weights, \

km->affectation);
mixture mix = em_run(em1);
mixture_fprint(stdout, mix);
em_destroy(em1);

Figure 12.2: Learning a mixture using Bregman Soft Clustering
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#include <mef.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int main(int argc, char **argv) {
int k = 3, n = 5000, d = 1;
double *data = malloc(k * n * sizeof(double));
/* random generation of observations in data as

in the previous example */

emgamma em = emgamma_create(k, data, k*n, d);
double best_error = DBL_MAX;
kmeans km, km0;
for (unsigned int i=0; i<10; i++) {

km0 = kmeans_create(k, data, k*n, d);
kmeans_initialize_random(km0, rng);
kmeans_run(km0);

if (km0->old_error < best_error) {
km = km0;
best_error = km0->old_error;

}
else {

kmeans_destroy(km0);
}

}

emgamma_initialize_from_clustering(em, km->weights,\
km->affectation);

emgamma_run(em);
mixture_fprint(stdout, em->mixture);

kmeans_destroy(km);
emgamma_destroy(em);

}

Figure 12.3: Learning a mixture with the EM-Gamma algorithm
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{"eta1", offsetof(struct expectation, eta1), DOUBLE},
};
}

The common functions such as the pdf have to be written by hand: we
rely heavily on the GNU Scientific Library for the special functions such
as Γ or ψ. Some functions must accept any type of parameters in argument:
these functions expect a generic param object which is converted to the de-
sired kind of parameter (for example, with (source)ef->as_source(ef,
p) in the function pdf).

double U(pdf)(family ef, double x, param p) {
CHECK_EF(ef, p);
source lambda = (source)ef->as_source(ef, p);
double alpha = lambda->shape;
double beta = ef->rate;

return pow(beta, alpha) * pow(x, alpha-1) * exp(-beta * x) \
/ gsl_sf_gamma(alpha);

}

Other functions expect a specific kind of argument (for example, the
type conversion functions, or the F, ∇F functions): in this case, we simply
use a macro to check the type of the parameters.

void U(lambda2theta)(family ef, param lambda0, param theta0) {
debug("lambda2theta\n");
CHECK_EF(ef, lambda0);
CHECK_EF(ef, theta0);
CHECK_TYPE(lambda0, SOURCE);
CHECK_TYPE(theta0, NATURAL);
source lambda = (source)lambda0;
natural theta = (natural)theta0;

double alpha = lambda->shape;

theta->theta1 = alpha - 1;
}

...

double U(F)(family ef, param theta0) {
CHECK_EF(ef, theta0);
CHECK_TYPE(theta0, NATURAL);
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double beta = ef->rate;
double theta = ((natural)theta0)->theta1;

return -(theta + 1) * log(beta) + log(gsl_sf_gamma(theta + 1));
}

void U(gradF)(family ef, param theta0, param eta0) {
CHECK_EF(ef, theta0);
CHECK_EF(ef, eta0);
CHECK_TYPE(theta0, NATURAL);
CHECK_TYPE(eta0, EXPECTATION);

double beta = ef->rate;
expectation eta = (expectation)eta0;
double theta = ((natural)theta0)->theta1;

eta->eta1 = -log(beta) + gsl_sf_psi(theta + 1);
}

The random generator is simply a wrapper around the corresponding
GSL function when it is available (but some families like the generalized
Gaussian may need more work):

double U(rand)(family ef, param param, gsl_rng *rng) {
source lambda = (source)ef->as_source(ef, param);

return gsl_ran_gamma(rng, lambda->shape, 1/ef->rate);
}

All the process of linking the runtime description of data structure to
dynamic pretty printer and other dynamic functions is handled automat-
ically with the help of some C preprocessor macros. All this architecture
allows the developer to focus on scientific computing rather than program-
ming details.

12.4 Conclusion

The libmef library about mixtures of exponential families has been intro-
duced: this C library implements the original and extended k-MLE algo-
rithm but also other mixture algorithms to serve as a reference. These im-
plementations are used in the next chapter to evaluate experimentally the
proposed methods.
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Chapter 13

Experiments

13.1 Introduction

The goal of these experiments is to evaluate the efficiency of the proposed
methods using two criteria: we look both at the quality of the mixtures
produced (using the log-likelihood) and at the computation time. The new
k-MLE methods are not evaluated for a particular application: we focus
here on the pure mixture modeling efficiency and we do not want to per-
turb the experiments with the other steps of a complete application. More-
over we expect these experiments to show the interest of k-MLE methods
for any application using mixture models: k-MLE can be seen as a drop-in
replacement in any process which uses mixture models.

13.2 Mixtures of generalized Gaussian

The k-MLE variant for mixtures of generalized Gaussians is evaluated against
the EM procedure proposed by Allili [3]. Since closed-form formulas for
the M-step are not known, Allili uses a Newton-Raphson approximation
scheme to estimate the β parameter of each component.

The results presented here are computed on textures from the Brodatz
textures dataset [24]. The task is to model the low frequency part of the
wavelet decomposition of each texture: this has originally been done with a
single generalized Gaussian [41] but it has been shown that mixture models
give better results [4].

We see on Figure 13.1 experimental results: the log-likelihood and the
computation time are shown with respect to the number of components of
the mixture. We plot here a relative value which is the ratio between the
value from k-MLE and the value from EM (the higher the better for log-
likelihood, the lower the better for time).

Figure 13.1(a) shows that we obtain results always very close to the ref-
erence EM algorithm. It is interesting to notice that even if k-MLE was not
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Figure 13.1: Ratio between k-MLE et EM for mixtures of generalized Gaus-
sian (EM is our reference and has always the score of 1). We get similar
qualities, but k-MLE is always faster.

designed to maximize the log-likelihood (it is rather maximizing the com-
plete log-likelihood) it still achieves very good performances on this point.

Figure 13.1(b) displays the computation time: we see that k-MLE is al-
ways faster than EM by 5 to 35 percents.

13.3 Mixtures of Gamma

The reference used in the experiments on Gamma mixtures is the EM vari-
ant introduced by Almhana, Liu, Choulakian, and McGorman with a spe-
cific M-step used for the α and β parameters. Given the current estimate for
the parameters ω, α and β, the new values can be computed in closed-form
with:

ω
(k+1)
i =

1
n

n

∑
t=1

p(i|xt, θ(k)) (13.1)

β
(k+1)
i =

α
(k)
i ∑n

t=1 p(i|xt, θ(k))

∑n
t=1 xt p(i|xt, θ(k))

(13.2)

α
(k+1)
i = α

(k)
i +

1
k

G (13.3)

where

G =
1
n

n

∑
t=1

(
log xt + log β

(k)
i − ψ(α

(k)
i )
)

p(i|xt, θ(k)) (13.4)

The experiments here are made on the same bio-informatics dataset as
in Part II: since this dataset is made of distance measures (which are pos-
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Figure 13.2: Ratio between k-MLE et EM for mixtures of Gamma laws (EM
is our reference and has always the score of 1). k-MLE behaves the same as
in the previous experiments: the qualities are similar, but k-MLE is always
faster.

itive), it is more meaningful to use a mixture of distributions defined on a
the positive support.

Figure 13.2 is made in the same way as Figure 13.1: we plot the ratio be-
tween the value from k-MLE and the value from EM (the higher the better
for log-likelihood, the lower the better for time).

k-MLE for Gamma behaves the same as k-MLE for generalized Gaus-
sian: we see on Figure 13.2(a) that the quality is the same as for EM and the
computation time is up to 35 percents lower.
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Chapter 14

Conclusion NONUMBER

We presented a powerful extension of the k-MLE algorithm for exponential
families: our extension allows to build mixture models where all the com-
ponents do not share the same exponential family. With this new work, we
are able to efficiently build mixtures of generalized Gaussian and mixtures
of Gamma laws. For both kinds of mixtures, we get a big improvement
in speed without losing quality: even if k-MLE maximizes the complete
log-likelihood instead of the log-likelihood, we still get high quality mix-
tures in terms of log-likelihood. Since our method is faster but as good as
EM, we may also imagine the extension of k-MLE to be used as a drop-in
replacement of EM in all applications which use mixture models.

Our extension also offers interesting perspectives: although it may seem
at first glance that our extension is a specialization of k-MLE either targeted
to generalized Gaussians or to Gamma laws, it is in reality a generalization
of the original algorithm. k-MLE is actually a special case of extended k-
MLE where the choice of the family is limited to only one possible family.

In the two applications of extended k-MLE described here, the families
were parameterized by a real number: we may imagine a more generic
setup where the choice is made among a discrete dictionary of available
families.
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Chapter 15

General conclusion and
perspectives NONUMBER

15.1 Concluding remarks NONUMBER

In this thesis, we proposed new information-geometric methods for mix-
ture model learning. This was not the first computational glance at infor-
mation geometry and mixture models but contrary to many of the previous
work, we did not looked for generalization at all cost: the aim was not to
build meta-algorithms where the exponential family or the divergence was
a new parameter of the algorithm (like Bregman Soft Clustering and k-MLE
for mixtures of exponential families, or all the other recent developments
on Bregman divergences). In fact, we accepted to specialize the proposed
methods to some families. In the work about simplification of kernel den-
sity estimators, we are dealing only with exponential families which can
also be considered as kernels and we focus on Gaussian mixtures since it
is one of the most widespread kind of kernels. The use of the Fisher-Rao
distance and model centroids specializes even more our method since we
are thus strictly limited to Gaussian distributions since the Fisher-Rao dis-
tance is only known in closed-form for Gaussians and the model centroid
needs the hyperbolic geometry of the parameters of the Gaussian (or any
other location-scale family). Even it may be theoretically possible to use the
simplification without closed-form, the practical use of the method would
be impossible, specially when working on kernel density estimators which
have a really big number of components. In the k-MLE part, we deal with
generalized Gaussian distributions and Gamma laws. Although extended
k-MLE can be seen as a generalization of k-MLE able to work on mixtures
of multiple exponential families and offers interesting perspectives for this
still unexplored kind of mixtures (using the framework of information ge-
ometry), it was not the primary goal. The goal was instead to solve prob-
lems which do not enter in the strict case of mixtures of exponential fam-
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ilies (either theoretically, like for generalized Gaussian, or practically, like
for Gamma laws). This kind of specialization can be seen as a limitation
of our tools compared to other existing generic algorithms but we prefer
to see it as a chance. The space of exponential families or Bregman diver-
gences is parameterized by the infinite space of convex functions and is
thus probably too wide to be explored in a smart and efficient way with
today knowledge. This is why most applications of generic algorithms
use generally well known families, such as Gaussian, Gamma, Wishart or
Von Mises-Fisher, or well known divergences, such as squared Euclidean,
Kullback-Leibler, Itakura-Saito or squared Mahalanobis. What we suggest
to do with the contributions here is to take the best of the world of spe-
cialized algorithms and of generic algorithms: mixture simplification and
extended k-MLE use a generic architecture and make a specialized adapta-
tion to solve a specific problem.

15.2 Future work NONUMBER

Although information geometry made a long walk since its early beginning
in the 1930’s, computational information geometry is still at its beginning:
we have a lot of powerful theoretical tools but they are difficult to use in
a computational point of view. First, some closed-form formulas may be
missing. The most striking example is the Fisher-Rao distance: although it
is the canonical divergence of information geometry, it is nearly impossible
to use in practice except in rare cases. Another example is the Legendre
dual of the log-normalizer of an exponential family (and its gradient) with-
out which it is nearly impossible to apply a generic algorithm. Second,
we have the problem of the choice of the family or of the divergence. The
catalog of divergences, distances, dissimilarity measures, metrics available
in the machine learning and related topics literature is nearly as vast as
the literature itself: information geometry provides a unified framework to
operate on a subclass of theses divergences but does not give any clue to
select a divergence among all the possibilities. This is probably the most
challenging and motivating problem for the long term: developing theo-
retical foundation helping this choice, or at least some rules of thumbs. A
track which is undoubtedly worth to explore is distance learning: using
a cross-validation setup, we may learn the parameters of the divergences
(beginning with a single real number for α-divergences, but we may imag-
ine for Bregman divergences to build a basis of common convex functions
and to learn weights using the property of linearity with respect to the gen-
erator of these divergences). The same kind of setup could be also used of
the family itself.

In shorter term, the full potential of Extended k-MLE is still to be ex-
plored: with this algorithm we are able to learn mixtures of multiple ex-
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ponential families but this has been used only for very limited cases when
the components are actually members of the same family of distributions.
Instead of choosing a parameter on the real line, the algorithm may pick
an exponential family from a dictionary of families by choosing the most
likely one. Using a dictionary here avoids the pitfall described previously
by artificially limiting the search space for the family.

We may also use a completely different approach to model complex
densities: instead of using a mixture of unimodal exponential families, it
may be possible to use a single multimodal family. The challenge in this
case would be to learn the log-normalizer of this family, along with the
other necessary parameters, probably using a likelihood criterion.
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Appendix A

Notations and abbreviations

A.1 Exponential families NONUMBER

EF Exponential family.

X , x Support of the exponential family, a
point from this subset.

d, D Dimension of the support, order of the
family.

pF(x, λ), pF(x, θ), pF(x, η) Exponential family with log-normalizer
F and source (resp. natural and expec-
tation) parameter λ (resp. θ, η).

λ, θ, η, Λ, Θ, H Source, natural and expectation pa-
rameters of an exponential family and
source, natural and expectation param-
eters spaces.

l(x1, . . . , xn; θ), ll(x1, . . . , xn; θ) Likelihood function and average log-
likelihood of a distribution with param-
eters θ.

N (x; µ, σ2) Gaussian law with mean µ and variance
σ2.

MLE Maximum likelihood estimator.
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A.2 Divergences and centroids NONUMBER

In the following, the ‖ notation emphasize the non-symmetry of the diver-
gences.

BF (·‖·) Bregman divergence with generator F.

FR(·, ·) Fisher-Rao distance.

c, cL, cR Respectively centroid associated with
a divergence, and left-sided and right-
sided centroids when the divergence is
not symmetrical.

KL(·‖·) Kullback-Leibler divergence.

A.3 Mixture models NONUMBER

m(x), m(x; θ, ω) Mixture model, mixture model with
vector of parameters θ and vector of
weights ω.

EM Expectation-Maximization

KDE Kernel Density Estimator

n, N Number of components of a mixture
model, of a kernel density estimator

A.4 Norms NONUMBER

| · | Modulus of a complex number.

‖ · ‖ Euclidean norm

‖ · ‖M Minkowski norm

138



Appendix B

Exponential families flashcards
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PDF f (x; µ, σ2) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
Λ→ Θ (θ1, θ2) =

( µ
σ2 ,− 1

2σ2

)
Θ→ Λ (µ, σ2) =

(
− θ1

2θ2
,− 1

2θ2

)
Λ→ H (η1, η2) =

(
µ, σ2 + µ2)

H → Λ (µ, σ2) = (η1, η2 − η2
1)

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ1, θ2) = − θ2
1

4θ2
+ 1

2 log
(
− π

θ2

)
Gradient log normalizer ∇F(θ) =

(
−−θ1

2θ2
,− 1

2θ2
+

θ2
1

4θ2
2

)
Dual log normalizer F?(η) = − 1

2 log
(
η2

1 − η2
)

Gradient dual log normalizer ∇F?(η) =
(
− η1

η2
1−η2 , 1

2(η2
1−η2)

)
Sufficient statistic t(x) = (x, x2)

Carrier measure k(x) = 0

Table B.1: Canonical decomposition of the Gaussian distribution
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PDF f (x; µ, Σ) =
1

(2π)d/2
√

det(Σ)
exp

(
(x−µ)TΣ(x−µ)

2

)
Λ→ Θ (θ1, θ2) =

(
Σ−1µ, 1

2 Σ−1)
Θ→ Λ (µ, Σ) =

(
1
2 θ−1

2 θ1, 1
2 θ−1

2

)
Λ→ H (η1, η2) =

(
µ,−(Σ + µµT)

)
H → Λ (µ, Σ) =

(
η1,−(η2 + η1ηT

1 )
)

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ1, θ2) = 1
4 tr
(

θ−1
2 θ1θT

1

)
−

1
2 log det θ2 +

d
2 log π

Gradient log normalizer ∇F(θ1, θ2) =(
1
2 θ−1

2 θ1,− 1
2 θ−1

2 − 1
4

(
θ−1

2 θ1

) (
θ−2

2 θ1
)T
)

Dual log normalizer F?(η1, η2) = 1
2 log(1 + ηT

1 η−1
2 η1) −

1
2 log det(−η2)− d

2 log(2πe)

Gradient dual log normalizer ∇F?(η1, η2) =(
−
(
η2 + η1ηT

1

)−1
η1,− 1

2

(
η2 + η1ηT

1

))
Sufficient statistic t(x) = (x,−xxT)

Carrier measure k(x) = 0

Table B.2: Canonical decomposition of the multivariate Gaussian distribu-
tion
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PDF f (x; λ) = λx exp(−λ)
x!

Λ→ Θ θ = log λ

Θ→ Λ λ = exp θ

Λ→ H η = λ

H → Λ λ = η

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ) = exp θ

Gradient log normalizer ∇F?(η) = (∇F)−1(η) = log η

Dual log normalizer F?(η) = η log η − η

Gradient dual log normalizer ∇F?(η) = log η

Sufficient statistic t(x) = x

Carrier measure k(x) = − log x!

Table B.3: Canonical decomposition of the Poisson law
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PDF fµ(x; λ) = 1
2σ exp

(
−|x−µ|

σ

)
Λ→ Θ θ = − 1

σ

Θ→ Λ λ = − 1
θ

Λ→ H η = σ

H → Λ λ = η

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ) = log
(
− 2

θ

)
Gradient log normalizer ∇F(θ) = − 1

θ

Dual log normalizer F?(η) = − log η

Gradient dual log normalizer ∇F?(η) = − 1
η

Sufficient statistic t(x) = |x− µ|

Carrier measure k(x) = 0

Table B.4: Canonical decomposition of the Laplace law
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PDF f (x; α, β) = 1
B(α,β)xα−1(1− x)β−1

Λ→ Θ (θ1, θ2) = (α− 1, β− 1)

Θ→ Λ (α, β) = (θ1 + 1, θ2 + 1)

Λ→ H unknown in closed-form

H → Λ unknown in closed-form

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ) = log B(θ1 + 1, θ2 + 1)

Gradient log normalizer ∇F(θ) = (ψ(θ1 + 1) − ψ(θ1 + θ2 +
2), ψ(θ1 + 1)− ψ(θ1 + θ2 + 2))

Dual log normalizer unknown in closed-form

Gradient dual log normalizer unknown in closed-form

Sufficient statistic t(x) = (log x, log(1− x))

Carrier measure k(x) = 0

Table B.5: Canonical decomposition of the Beta law
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PDF fµ,β(x; α) = β
2αΓ(1/β)

exp
(
− |x−µ|β

αβ

)
Λ→ Θ θ = α−β

Θ→ Λ α = θ−1/β

Λ→ H η = − αβ

β

H → Λ α = (−βη)1/β

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ) = − log θ
β − log β + log

(
2Γ
(

1
β

))
Gradient log normalizer ∇F(θ) = − 1

βθ

Dual log normalizer F?(η) = − 1
β − 1

β log(−βη) + log β −
log
(

2Γ
(

1
β

))
Gradient dual log normalizer ∇F?(η) = − 1

βη

Sufficient statistic t(x) = −|x− µ|β

Carrier measure k(x) = 0

Table B.6: Canonical decomposition of generalized Gaussian distribution

145



PDF f (x; α, β) = βαxα−1 exp(−βx)
Γ(α)

Λ→ Θ (θ1, θ2) = (−β, α− 1)

Θ→ Λ (α, β) = (θ2 + 1,−θ1)

Λ→ H unknown in closed-form

H → Λ unknown in closed-form

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ1, θ2) = (−(θ2 + 1) log(−θ1) +
log Γ(θ2 + 1))

Gradient log normalizer ∇F(θ1, θ2) =(
θ2+1
−θ1

,− log(−θ1) + ψ(θ2 + 1)
)

Dual log normalizer unknown in closed-form

Gradient dual log normalizer unknown in closed-form

Sufficient statistic t(x) = (x, log x)

Carrier measure k(x) = 0

Table B.7: Canonical decomposition of the Gamma law
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PDF fβ(x; α) = βαxα−1 exp(−βx)
Γ(α)

Λ→ Θ θ = α− 1

Θ→ Λ α = θ + 1

Λ→ H η = − log β + Ψ(α)

H → Λ α = ψ−1 (η + log β)

Θ→ H η = ∇F(θ)

H → Θ θ = ∇F?(η)

Log normalizer F(θ) = −(θ + 1) log β + log Γ(θ + 1)

Gradient log normalizer ∇F(θ) = − log β + ψ(θ + 1)

Dual log normalizer F?(η) = η(ψ−1(η + log β) − 1) +
ψ−1(η + log β) log β + log Γ(ψ−1(η +
log β))

Gradient dual log normalizer ∇F?(η) = ψ−1(η + log β)− 1

Sufficient statistic t(x) = log x

Carrier measure k(x) = −βx

Table B.8: Canonical decomposition of the Gamma law with fixed rate
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Appendix C

Publications

C.1 Book chapter NONUMBER

• Olivier Schwander and Frank Nielsen. “Learning Mixtures by Simpli-
fying Kernel Density Estimators.” In: (Jan. 2013). Ed. by Frank Nielsen
and Rajendra Bhatia, pp. 403–426

C.2 Journal articles NONUMBER

• Adelene Y. L. Sim, Olivier Schwander, Michael Levitt, and Julie Bernauer.
“Evaluating Mixture Models for Building RNA Knowledge-Based Po-
tentials.” In: Journal of Bioinformatics and Computational Biology 10.02
(Apr. 2012)

C.3 International conferences NONUMBER

• Olivier Schwander and Frank Nielsen. “Fast Learning of Gamma Mix-
ture Models with k-MLE.” In: Similarity-Based Pattern Recognition. Ed.
by Edwin Hancock and Marcello Pelillo. Lecture Notes in Computer
Science 7953. Springer Berlin Heidelberg, Jan. 2013, pp. 235–249

• Olivier Schwander, Aurélien Schutz, Frank Nielsen, and Yannick Berthoumieu.
“k-MLE for mixtures of generalized Gaussians.” In: 2012 21st Interna-
tional Conference on Pattern Recognition (ICPR). 2012, pp. 2825–2828

• Olivier Schwander and Frank Nielsen. “Model centroids for the sim-
plification of Kernel Density estimators.” In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2012,
pp. 737–740
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• Olivier Schwander and Frank Nielsen. “pyMEF: A framework for ex-
ponential families in Python.” In: 2011 IEEE Statistical Signal Process-
ing Workshop (SSP). 2011, pp. 669–672

• Olivier Schwander and Frank Nielsen. “Non-flat clustering with alpha-
divergences.” In: 2011 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2011, pp. 2100–2103

• Frank Nielsen, Sylvain Boltz, and Olivier Schwander. “Bhattacharyya
Clustering with Applications to Mixture Simplifications.” In: 2010 20th
International Conference on Pattern Recognition (ICPR). 2010, pp. 1437–
1440

• Olivier Schwander and Frank Nielsen. “Reranking with Contextual
Dissimilarity Measures from Representational Bregman k-Means.” In:
VISAPP (1). Ed. by Paul Richard and José Braz. INSTICC Press, 2010,
pp. 118–123

C.4 National conferences NONUMBER

• Olivier Schwander and Frank Nielsen. “Simplification de modèles de
mélange issus d’estimateur par noyau.” In: Gretsi 2011. 2011

• Olivier Schwander and Frank Nielsen. “Apprentissage rapide de mod-
èles de mélanges avec k-MLE et ses extensions.” In: Gretsi 2013. 2013

150



Index

f -mean, 42

affine connection, 40
Average Log-Likelihood, 29

Beta distribution, 35
Bhattacharyya coefficient, 47
Bhattacharyya distance, 47
Bregman ball, 36
Bregman divergence, 36

carrier measure, 22
Component of a mixture, 49
Cramér-Rao bound, 31
Csiszár f -divergences, 28

Epanechnikov kernel, 68
Erlangen program, 28
Euclidean centroid, 41
expectation parameter, 25
expectation parameter space, 25
expectation step, 52
Expectation-Maximization, 52
Exponential family, 21

Fisher Information Matrix, 26
Fisher-Rao distance, 27

Gaussian distribution, 23
Generative model, 50
Goldberger approximation, 57

Hellinger metric, 47
hidden markov model, 52

Itakura-Saito, 39

Jeffreys-Bregman divergence, 46

Jensen-Bregman divergence, 46

kernel, 67
Kernel density estimator, 55
Kullback-Leibler divergence, 28

Löwner partial ordering, 31
Laplace law, 34
left-sided Bregman centroid, 45
Legendre type function, 24
Legendre-Fenchel conjugate, 24
Legendre-Fenchel transform, 24
Levi-Civita connection, 41
Likelihood function, 29
log-normalizer, 22

Matusita metric, 47
maximization step, 52
maximum likelihood estimator, 29
Mean by axiomatization, 41
Minkowski model, 75
Minkowski norm, 77
mixture of exponential families, 50
Model centroid, 74
Monte-Carlo approximation, 56
Multivariate Gaussian, 31

natural parameter, 22
natural parameter space, 22

Order of an exponential family, 22

Parzen window method, 55
Poisson distribution, 32
population parameter space, 25

quasi-arithmetic mean, 43
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Radon-Nikodym derivative, 22
Rao metric, 26
Regular exponential family, 22
right-sided Bregman centroid, 45

Separable divergence, 37
Shannon entropy, 29
skew Burbea-Rao divergence, 48
skew Jeffreys-Bregman divergence ,

48
skew Jensen-Bregman divergence, 48
source parameter, 23
statistical manifold, 27
Steep exponential family, 25
Sufficient statistic, 22
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