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advice provided at Fontainebleau. Since my first day at the office and up to now, she
has always been there ready to offer her advice regarding any preoccupation I may have.
I also thank Dominique Vassiliadis from the Geosciences Center who helped me solving
administrative matters.

I would like to thank my first officemates Nidhal Belayouni, Sébastien Penz and
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Abstract

In the context of hydrocarbon exploration, seismic imaging is widely used to characterise
the first few kilometres of the Earth’s interior. Information is carried on by elastic waves
after their propagation through the Earth. Elastic waves can be divided in two groups:
body and surface waves. The latter are the most energetic. However, body waves are
more commonly used for seismic imaging while surface waves are usually considered as
coherent noise.

Surface waves can be used to reconstruct the properties of the near surface (engi-
neering, archaeological and environmental studies) and the Earth’s deep interior (global
seismology). Current surface wave inversion techniques derive local 1D property profiles,
mainly by analysing wave properties from picked dispersion curves. Lateral variations
are difficult to be handled with this approach. 2D surface wave imaging is thus needed.

A more general scheme to process seismic data is Full Waveform Inversion (FWI).
In theory, FWI can be used to explain the complete wave propagation recorded in seis-
mograms. In the presence of energetic surface waves, FWI needs a very accurate initial
velocity model for preventing local minima problems.

This PhD thesis proposes an alternative methodology for waveform inversion applied
to surface waves. It has been named windowed-Amplitude Waveform Inversion (w-AWI).
It is similar to FWI, but formulated in the f − k domain. The functional measures the
misfit between the absolute value of f −k spectra for computed and recorded data. With
the absolute value, the phase information is partially destroyed. This is compensated
for by considering local spatial windowing before computing f − k spectra. As in FWI,
waveform modelling is used. Local windowing also exists in classical analysis of dispersion
curves, but here dispersion curve picking is not needed.

We have implemented the novel methodology in 2D elastic isotropic media. For nu-
merical modelling, we use a finite-difference approach discretised in curved grids such
that smoothly curved topography and interfaces can be handled. We have paid a par-
ticular attention to the free-surface conditions. As in classical FWI, local optimisation
techniques can be used. The gradient of the objective function is computed using the
adjoint-state method and then used in a quasi-Newton approach.

We have analysed w-AWI through synthetic tests comparing results to FWI, with
a particular attention to low frequency data content. These tests show that w-AWI is
more robust than FWI with respect to the choice of the initial velocity model. We have
found that the length of the spatial windowing has a direct influence on the shape of
the misfit functional: this additional parameter is an important element and can vary to
help for converging towards the global minimum. We show how to estimate the source
wavelet. Furthermore, we have applied the classical 1D surface wave inversion, FWI
and the modified technique to a real data set acquired in an ultra-shallow high-velocity
contrast environment. The w-AWI approach reveals some interesting features, even if
further work would be needed to improve the results.

Keywords: surface waves, inverse problem, seismic modelling, waveform inversion.
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Résumé

Dans le cadre de l’exploration pétrolière, l’imagerie sismique est largement utilisée pour
caractériser les premiers kilomètres de l’intérieur de la Terre. Les propriétés de la sub-
surface (vitesse, densité, . . . ) modifient la propagation des ondes élastiques. Ces ondes
peuvent être séparées en deux groupes : les ondes de volume et les ondes de surface. Les
dernières sont les plus énergétiques ; cependant les ondes de volume sont traditionnelle-
ment utilisées pour l’imagerie sismique pétrolière, tandis que les ondes de surface sont
généralement considérées comme du bruit cohérent.

Les ondes de surface sont utilisées dans d’autres contextes pour reconstruire des pro-
priétés de la proche sub-surface (pour des études d’ingénierie, archéologie, environnement)
et de l’intérieur profond de la Terre (en sismologie globale). Les techniques communes
d’analyse des ondes de surface se basent sur l’inversion des courbes de dispersion et es-
timent des profils des propriétés localement 1D. Les variations latérales sont difficiles à
traiter avec cette approche. Une technique d’imagerie 2D avec des ondes de surface est
donc nécessaire.

L’inversion des formes d’onde complète (Full Waveform Inversion, FWI) est un schéma
général pour l’imagerie. En principe, cette approche peut être utilisée pour expliquer la
propagation de toutes les ondes sismiques enregistrées par les sismogrammes. Mais en
présence d’ondes de surface, la FWI a besoin d’un modèle de vitesse initial très précis
pour s’affranchir des problèmes de minimaux locaux de la fonction objective.

Nous proposons une méthodologie alternative pour l’inversion des ondes de surface.
Elle a été appellée ici comme “windowed-Amplitude Waveform Inversion” (w-AWI). Cette
méthodologie est très proche de la FWI, mais elle est formulée dans le domaine de Fourier
f−k. La fonction objective mesure le résidu au sens des moindres carrés entre les valeurs
absolues des transformées f − k des données calculées et des données enregistrées. Avec
la valeur absolue, l’information de phase est partiellement détruite. Cela est compensé
par le fenêtrage spatial appliqué avant de calculer les transformées f −k. Comme dans la
FWI, la modélisation complète de la forme d’onde est utilisée. Le fenêtrage local existe
aussi dans l’analyse classique des courbes de dispersion, mais dans la w-AWI les courbes
de dispersion ne sont pas pointées.

Nous considérons des milieux 2D élastiques isotropes. Pour la modélisation numérique,
nous utilisons une approche de différences finies discrétisée sur des grilles curvilignes (to-
pographie et interfaces courbes peuvent être considérées). Une attention particulière a
porté sur les conditions de la surface libre. Comme dans la FWI classique, des techniques
d’optimisation locales sont utilisées. Le gradient de la fonction objective est calculé selon
la méthode de l’état adjoint et est ensuite introduit dans une approche quasi-Newton.

Nous analysons la w-AWI avec des tests synthétiques en comparant les résultats à ceux
de la FWI. Nous proposons une analyse du rôle du contenu basse fréquence des données.
Ces tests montrent que la w-AWI est plus robuste que la FWI en ce qui concerne le choix
du modèle de vitesse initial. Nous avons constaté que la longueur du fenêtrage spatial a
une influence directe sur la forme de la fonction objective : ce paramètre supplémentaire
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est un élément important et peut être modifié pour aider à converger vers le minimum
global. Nous montrons aussi comment estimer l’ondelette source. Enfin, nous comparons
trois approches sur un jeu de données réelles : l’inversion classique 1D des ondes de
surface, la FWI et la technique modifiée. Le jeu de données réelles est acquis dans
contexte d’imagerie des premiers mètres, avec de forts contrastes de vitesse. L’approche
w-AWI révèle des caractéristiques intéressantes, même si des travaux supplémentaires
seraient nécessaires pour affiner les résultats.

Mots clés : ondes de surface, problème inverse, modélisation sismique, inversion des
formes d’onde.
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14 Chapter 1. Introduction

The characterisation of the subsurface using seismic techniques consists of recording
a propagated wavefield, determining the properties of the propagation, and using the
inferred properties for an imaging or inversion procedure. This process leads to a quan-
titative estimation of the geometrical characteristics and the dynamic behaviour of the
parameters that have influenced the wave propagation. The quantitative estimation can
be achieved by analysing the propagation of different types of waves (body and surface
waves) recorded with different techniques and acquisition geometries and their conversion
phenomena (reflection, refraction, diffraction, dispersion).

In the context of hydrocarbon exploration, the traditional seismic imaging techniques
are based on body-wave analysis (in particular P-wave reflections) because these spread
energy into the Earth’s interior and carry interesting information about the deep sub-
surface. On the contrary, surface waves (often referred to as ground-roll) are usually
considered as coherent noise that must be removed or attenuated, since they blur target
reflections from deeper depths. Figure 1.1 shows an example of common shot gathers
with highly-energetic surface waves masking reflections at short offsets.

Conventional methods for suppressing surface waves exploit differences between body
and surface waves like their apparent velocity (by f−k filtering (Yilmaz, 2001) or stacking-
based analysis (Ulrych et al., 1999)), their polarisation (de Franco and Musacchio, 2001),
or both (Donno et al., 2008). Stacking-based analysis consists of separating signal from
noise by selecting an appropriate mask to Radon transformed data. However, when data
is poorly spatially sampled, spatial aliasing might prevent an efficient f − k filtering.
In such a case, singular value decomposition (SVD) can be used used to estimate and

Figure 1.1: Land seismic shot gathers: radial (left) and vertical (right) components.
Surface waves are below the white dashed line.
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Figure 1.2: Characterisation of the subduction zone under America proposed by Mégnin
and Romanowicz (2000). Body, surface and higher-mode waveforms have been analysed
to obtain this mantle image.

separate interfering polarised wavefields (de Franco and Musacchio, 2001).

Surface waves play a curious role in seismic methods. While oil exploration handles
them as noise, solid Earth seismology have been employing them for characterising the
crust and the upper mantle structure during the last 60 years (Aki, 1960b,a; Dorman
et al., 1960; Kanamori, 1970). These waves can travel around the Earth for a long time,
even passing through the same location several times after large earthquakes. Lower
frequencies (≪ 1 Hz) propagate deeper and travel faster while higher frequencies usually
provide coverage of the upper mantle. Romanowicz and Durek (2000) have reviewed the
studies and applications of surface wave dispersion carried out during the second half
of the 20th century in the context of solid Earth seismology. As an example, recordings
of long period surface waves (also called mantle waves) were used by Woodhouse and
Dziewonski (1984) to obtain the first 3D Vs characterisation of the upper mantle. Mégnin
and Romanowicz (2000) derived a 3D Vs model of the whole mantle from the information
analysis of body, surface and higher-mode waveforms (Figure 1.2). Moreover, in Godinho
Ferreira (2005), lateral variations have been considered by surface wave modelling with
ray theory.

There are other applications of surface waves. At a very small scale, ultrasonic
Rayleigh waves have been used in non-destructive testing (NDT) for material characteri-
sation. In this context, mechanical and structural properties are estimated to discover, for
example, surface defects or the presence of cracking (Thompson and Chimenti, 1997). At
an intermediate scale, surface waves are employed in geotechnical engineering to identify
mechanical properties of the shallow subsurface (Stokoe II et al., 1988).

Only recently, the oil exploration industry has increased its interest in the large
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Figure 1.3: Example of tomography result (here a depth slice) extracted from Taillandier
et al. (2009). The resulting velocity model after inversion (in red) better fits with the
real model (in green) when the near surface is known (bottom plot) versus the case of
unknown near surface (top plot). The initial velocity before inversion is in blue.

amount of information contained in surface waves. About 67% of the energy generated
by a vertical source at the air-ground interface of a homogeneous half-space propagates
in the form of surface waves (Lamb, 1904; Richart et al., 1970). This is a very strong
reason for exploiting them.

For hydrocarbon exploration, the near surface is often a major source of wavefield
distortion in land acquisition. The quality of the image at the exploration target level is
reduced because of near surface effects. The types and properties of surface waves depend
on the elastic parameters of the shallow subsurface. Lateral variations and heterogeneities
strongly influence surface wave propagation. Therefore, surface wave properties can be
inverted to provide a near-surface model. In seismic exploration, the proper knowledge of
the near surface would allow improving static corrections (Mari, 1984) and model building
in depth. Figure 1.3 shows an example of the improvements in depth of tomography when
the first 100 m near the surface are known. Moreover, after using the information carried
by surface waves, they can be removed before further processing by using tailored (with
the inferred properties) filtering methods.

The objective of this PhD thesis is to investigate an innovative technique for near
surface characterisation using surface waves. In this Chapter, we first analyse surface wave
properties and then we review currently used techniques for near-surface characterisation
using surface waves as well as the limitations of such methods. Finally, we present the
outline of this thesis.

1.1 Surface-wave properties

The main properties of surface waves have to be reviewed to better understand surface-
wave inversion methods. The properties of waves created along a free surface were first
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Figure 1.4: In homogeneous media (left), there is no geometric dispersion, while in het-
erogeneous media (right), each wavelength propagates with a different velocity (extract
adapted from Strobbia (2002)).

investigated by Rayleigh (1885) in elastic isotropic media considering P-SV wave propaga-
tion, as well as by Love (1911) considering SH wave propagation. This particular group of
waves can be described in terms of their propagation velocity, energy and particle motion.

Surface waves propagate parallel to the Earth’s surface. Their amplitude decreases
exponentially with the depth while at the surface their amplitude decreases with the
square root of the distance from the source r (as for body waves in 2D). Thus, most of
their energy propagates in a shallow zone with depth (roughly) above the shear wavelength
λs for a considered frequency-velocity pair (Ewing et al., 1957). They propagate at slow
velocities compared to body waves. For these reasons, surface waves are energetic and
they mask body waves at their arrival at the geophones. A property of Rayleigh waves
is its polarisation: their particle motion observed at the surface describes a retrograde
ellipse in the vertical plane that contains the direction of propagation.

The propagation of surface waves in vertically heterogeneous media shows dispersive
behaviour (Thomson, 1950; Haskell, 1953). Dispersion is associated with propagation of
different frequencies at different phase velocities. In particular, surface waves are char-
acterised by the geometric dispersion which depends on the survey geometry and the
properties of the evaluated model, in opposition to the intrinsic dispersion of materi-
als. Since the penetration depth of surface waves depends on the wavelength, the high
frequencies (short wavelengths) usually propagate in shallow layers and their velocity de-
pends on the shallow properties, while the low frequencies (long wavelengths) propagate
in thicker layers and their velocity is influenced by deeper zone properties. In a homoge-
neous medium (Figure 1.4, left), the different wavelengths“sample” different depths of the
subsurface, but being always the same medium, all the wavelengths have the same veloc-
ity. Such velocity, in the case of Rayleigh waves, ranges from 0.87 to 0.96 times the S-wave
velocity (the maximum being reached in media with Poisson ratio equal to 0.5), while
Love waves only can exist in the presence of heterogeneities (Love, 1911). If the medium
is vertically heterogeneous (Figure 1.4, right), each wavelength propagates with different
phase velocities. Hence, the velocity of propagation is strongly frequency-dependent and
is function of the geometric distribution of subsurface properties.

The relation between the surface wave phase velocities and the frequency is repre-
sented by dispersion curves (Figure 1.5). Dispersion curves describe fundamental and
higher modes of surface wave propagation (Strobbia, 2002). The fundamental mode com-



18 Chapter 1. Introduction

Figure 1.5: Scheme of surface-wave methods (extract adapted from Strobbia (2002)).

monly (but not always) corresponds to the most energetic one and identifies the slowest
phase velocity for each frequency. Higher modes usually propagate faster than the fun-
damental mode but without exceeding the maximum shear-wave velocity in the model.
Higher modes exist only above a certain frequency value (cut-off frequency).

1.2 1D inversion of surface waves

The geometric dispersion of surface waves is the principal property behind classical
surface-wave analysis. Surface-wave methods consist of three phases (Figure 1.5, adapted
from Strobbia (2002)): modelling of the surface-waves, processing of the real seismic data
to estimate the dispersive characteristics at a site, and then inversion of these data to
estimate the subsoil properties.

Surface-wave modelling commonly consists of the computation of dispersion curves.
The subsurface is represented as a 1D profile with homogeneous elastic layers charac-
terised by four parameters: thickness h, mass density ρ, and two mechanical parameters
like, for example shear-wave V s and compressional-wave velocity V p. The 1D model is
the most widely used in seismological and characterisation applications.

The dispersion curve can be experimentally measured from raw acquired data. Many
methods have been proposed for the processing and extraction of dispersion curves. The
most popular method consists of picking energy maxima in the frequency-wavenumber
(f − k) spectrum of data (Nolet and Panza, 1976; Tselentis and Delis, 1998), and then
computing the phase velocities as v = f/k. The picked dispersion curves can be used to
numerically estimate the subsoil properties by solving an inverse problem. After inversion,
modelled dispersion curve should fit the curves picked from experimental data. Surface-
wave inverse problem is non-linear and often mix-determined, because the information
about the shallow layers is carried by all the frequencies, while that concerning deeper
layers is carried by the low frequencies only.
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Socco et al. (2010) presents a comprehensive review of the surface-wave inversion
methods, mainly in the context of exploration geophysics and geo-technical engineering.
After the introduction of the spectral analysis of surface waves (SASW) by Nazarian and
Stokoe II (1984), higher modes were rapidly incorporated to such analysis (Gabriels et al.,
1987). Furthermore, as larger acquisition capabilities were achieved, Park et al. (1999)
and Xia et al. (1999) proposed the multichannel analysis of surface waves (MASW).
In Strobbia (2002) and Socco and Strobbia (2004), dispersion curves plotted in the
frequency-velocity (f − v) domain are used to retrieve plane-layered V s and h profiles.
Higher modes are incorporated in inversion to improve resolution and coverage (like in
seismology) because they usually penetrate deeper with smaller wavelengths (Xia et al.,
2003; Luo et al., 2007). Attenuation properties can also be incorporated in inversion (Lai,
1998). In this context, new misfit functionals and new ways of handling lateral variations
have been recently proposed (Socco et al., 2009; Maraschini et al., 2010; Maraschini and
Foti, 2010; Bergamo et al., 2012; Samyn et al., 2013).

The main limitation of these methods is that they only allow retrieving locally 1D
models. In practice, it is also efficient because synthetic dispersion curves can be obtained
by solving a well-known eigenproblem (Thomson, 1950; Haskell, 1953; Hisada, 1995; Lai,
1998). However, if the 1D model hypothesis is not verified at the scale of observation
(which is often the case), then lateral variations can affect the results.

Dispersion curve picking can be a cumbersome task particularly difficult to be achieved
in large seismic datasets. The fundamental mode is not always the most energetic one
and sometimes only apparent dispersion curves can be obtained (Socco and Strobbia,
2004). Moreover, the computation of dispersion curves in 2D media is not clear. Several
investigations have resulted in improvements regarding the high frequency stability of the
original numerical solutions presented by Thomson (1950) and Haskell (1953). However,
at least 2D modelling is necessary to handle lateral variations especially present at certain
imaging scales.

1.3 Full Waveform Inversion

To overcome the limitations of 1D dispersion curve techniques, inversion of waveforms
could be considered. Full waveform inversion (FWI) is a technique potentially able to
explain even dispersive surface waves present in seismic gathers. In this technique, the
objective is to explain the entire seismogram by simulating the full wavefield propagation
in a 3D elastic model. As a result, such elastic model characterises the real medium
where seismic data has been acquired. Figure 1.6 shows differences between a snapshot
of acoustic (top) and elastic (bottom) wave propagation. Surface waves are generated
at the elastic free surface, and they strongly complicate the interpretation of the seismic
gathers.

Originally investigated by Lailly (1983), Tarantola (1984) and Mora (1987), FWI is a
data-fitting procedure, often solved with a local optimisation method. The usual fitting
criterium consists of the least-squares misfit between recorded and modelled data. De-
pending on the objectives, the forward problem has been formulated within the acoustic
(Tarantola, 1984) or the elastic (Tarantola, 1986; Mora, 1987) wave equations, either in
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Free surface

Free surface

Figure 1.6: Snapshot of the wave propagation in acoustic (top) and elastic (bottom)
homogeneous media with a free surface. Rayleigh waves are originated at the free-surface
contact in the P-SV elastic case. A monochromatic wave source has been employed.

the time domain (Virieux, 1986; Gauthier et al., 1986) or in the frequency domain (Pratt
and Chapman, 1990; Pratt et al., 1996). As convergence strategy, gradient methods as
well as Newton type methods can be implemented (Pratt et al., 1998).

This inverse problem is ill-posed in the sense of Hadamard (1902). Besides, wave
amplitudes are non-linear with respect to the Earth properties. Many studies has been
carried out searching for mitigation of non-linear effects. Bunks et al. (1995) observed
that at low frequencies, the objective function shape is smoother, therefore the initial
model has more chances of belonging to the global minimum basin. Relying on frequency
domain modelling, Sirgue and Pratt (2004) proposed a strategy for choosing the correct
frequency to ensure the continuity of wavenumber coverage. Multiscale strategies were
also adopted either in the case of 2D acoustic (Sirgue, 2003) and 2D elastic modelling
(Brossier et al., 2009).

Local minima effects in FWI are enhanced by the energetic surface waves. The choice
of initial velocity model is restrictively constrained in the presence of high frequency
surface waves (Gélis et al., 2007). In order to avoid falling into a secondary minimum,
the initial model should provide data that is in general accurate within less than half the
wavelength. The usual techniques to select the initial velocity model consists of searching
a (smooth) model that explains the kinematics of the data, for example using ray-based
inversion methods and/or tomography. Furthermore, time-damping strategies have been
proposed either to reduce strong non-linearities introduced by surface waves in the first
iterations (Brossier et al., 2008; Romdhane et al., 2011), or to focus inversion onto the
early arrivals (Sheng et al., 2006; Sears et al., 2008). However, there are not yet clear
strategies in the context of FWI with surface waves.

Figure 1.7 show an example of application of FWI to a real land dataset with surface
waves. In this case, acoustic FWI was used to find the model explaining diving waves
propagated in a sedimentary context. Moreover, a recent hybrid approach has shown
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Figure 1.7: A real data set explained by FWI (Plessix et al., 2012). Acoustic FWI was
used to find the model explaining diving waves propagated in a sedimentary context.

the potential of including near surface data from dispersion curve inversion and FWI for
velocity model building (Droujinine et al., 2012).

We can now raise the following question: is the combination of time-damping and
multiscale approaches, besides the choice of a smooth initial model, enough to handle
highly-energetic surface waves in FWI?

1.4 Research objectives

In this thesis, the main objective consists of proposing an alternative formulation for in-
version of surface waves in 2D media. Based on the analysis of two approaches potentially
able to deal with surface waves at seismic exploration scale, we aim at combining their
advantages in an intermediary approach that overcomes some of the identified drawbacks.

In this work, we have focused on 2D isotropic media considering that the passage
to 3D anisotropic media is less difficult. Multiparameter inversion has not been deeply
studied here and most of our efforts have been concentrated on the inversion of Lamé
parameters (and density in a couple of examples).

Three specific tasks are addressed in order to accomplish our research objective. The
first one is programming a wave propagation code able to handle free surface, topography
and curved interfaces. The modelling tool should be simple with low computational cost,
but should be capable of handling waveform propagation in complex models. Attenuating
boundary conditions must also be implemented to make this code suited to be used in
waveform modelling and iterative seismic inversion.

The second task is to better understand the theoretical and practical aspects of SWA
and FWI. This leads to the identification of the desired properties that can be used in a
novel inversion approach.

Finally, we propose and analyse the novel inversion approach. We compare the charac-
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teristics and the results provided by FWI to the novel approach. Synthetic data inversion
is used to evaluate the role of the initial velocity model and the final resolution. An ap-
plication to real data is also considered.

1.5 Thesis outline

This thesis is organised into five chapters and one appendix. Chapter 2 deals with the
wave propagation modelling. Chapter 3 is a review of the theory of 1D surface-wave
inversion methods and FWI. The proposed approach for inversion of surface waves is
described in Chapter 4, where synthetic examples are shown. Finally, Chapter 5 presents
an application to real data. In the next few paragraphs, we give more details on the
methods and results presented in each chapter.

In Chapter 2, we present the formulation of the wave propagation modelling. We
have implemented the classical velocity-stress formulation for 2D elastic isotropic media
presented by Virieux (1986), but discretised in a different staggered grid and implemented
in a curved domain. Two implementations of free-surface conditions (Levander, 1988; Xu
et al., 2007) have been compared to an analytical solution in order to choose the most
accurate one. We have also analysed the theoretical computational cost of two approaches
able to handle curved interfaces and topography: the chain rule (Zhang and Chen, 2006)
and the tensorial approach (Komatitsch et al., 1996). We have found that the chain
rule approach is better suited if less than sixth-order finite-difference discretisation is
employed. Our code is second order in time and space and is programmed in Fortran 90.
The codes are parallelised using a combination of MPI and OpenMP. We have employed
one of the collocation grids described by Saenger et al. (2000). The attenuating boundary
conditions proposed by Komatitsch and Martin (2007) were implemented.

In Chapter 3, we study the theory of seismic inversion in the context of SWA and FWI.
We present original dispersion curve inversion examples as well as others considered in
literature for benchmarking (Luo et al., 2007). We have programmed the inversion code
in Matlab following the Marquardt-Levenberg approach presented by Xia et al. (1999).
To compute dispersion curves in plane-layered media, we have employed the forward
modelling code programmed by Lai (1998). Dispersion curves are extracted from shot
gathers under our own processing workflow. On the side of FWI, we have studied gradient
and Newton convergence strategies (Pratt et al., 1998). The gradient computation is
investigated within the adjoint-state method (Plessix, 2006). We give explicit formula
for computing the gradient with respect to Lamé parameters and density within the 2D
isotropic velocity-stress formulation employed in Chapter 2. We have also analysed the
wavelet estimation either as solution of a linear inverse problem (Pratt, 1999) and as part
of the adjoint-state method (Tarantola, 1986).

In Chapter 4, we start by presenting the theory of the proposed inversion approach,
which we call “windowed-Amplitude Waveform Inversion” (w-AWI). This approach is
based on a modification of the classical FWI objective function. We develop the for-
mulation for the residual source computation (using the adjoint-state method) and the
wavelet estimation. We use a preconditioning approach proposed in the context of resis-
tivity imaging (Plessix and Mulder, 2008). As convergence strategy, we employ a quasi-
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Newton approach (Nocedal, 1980). We have implemented FWI and w-AWI in Fortran 90
including MPI and OpenMP. Several numerical tests are presented with the objective of
analysing the characteristics of w-AWI in comparison to FWI. We highlight the fact that
w-AWI has the same global minimum of FWI, but it is less constrained with respect to
the choice of initial velocity model. We demonstrate through examples that the global
minimum basin is wider in w-AWI. Finally, we support the numerical analysis by pre-
senting synthetic inversion results. We use two exact velocity models: one inspired by a
real model (Deidda and Balia, 2001) and also a layered model with curved interfaces.

In Chapter 5, we show an application to ultra-shallow real seismic data. The data
were acquired on the ground model presented by Deidda and Balia (2001). Preprocessing
applied to the data set includes amplitude correction, frequency filtering and noise at-
tenuation. On the side of SWA, we invert a pseudo 2D Vs model from picked dispersion
curves. Then, waveform inversion (FWI and w-AWI) is applied to the dataset. Different
frequency bands are evaluated: low frequencies, high frequencies and full spectrum. The
wavelet source is numerically estimated both with FWI and w-AWI. The obtained results
are encouraging so that these techniques should be considered for further analysis.
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Résumé du chapitre
Dans ce chapitre, nous étudions des méthodes de résolution numérique pour la propaga-
tion des ondes dans des milieux élastiques. Nous nous sommes intéressés à prendre en
compte des topographies variées mais toujours lisses. Plus précisément, nous analysons
des approches par différences finies sur des grilles carrées ou courbées. Les conditions aux
bords à la surface libre ainsi que les conditions absorbantes sont regardées avec attention.
Enfin, nous présentons des tests numériques pour comparer les solutions obtenues à des
solutions analytiques. Un exemple de modélisation dans un milieu complexe est discuté
à la fin du chapitre.

Dans la partie 2.2, nous introduisons d’abord les équations de propagation des on-
des dans les milieux élastiques (Aki and Richards, 1980). Nous avons choisi de résoudre
ces équations pour les milieux 2D isotropes en utilisant la formulation vitesse-contrainte
présentée par Virieux (1986). Une attention particulière a été portée aux conditions de
surface libre. Deux approches ont été évaluées, par comparaison avec une solution ana-
lytique, aux grands offsets (distance source-récepteur) : Stress image method (Levander,
1988) et acoustic-elastic approach (Xu et al., 2007). Grâce aux bonnes performances
cinématiques, nous préférons la première approche. Pour les conditions absorbantes, la
méthode Convolutional Perfect Match Layer présentée par Komatitsch and Martin (2007)
a été choisie. Des tests numériques ont été réalisés pour le problème de Lamb (Lamb,
1904), de Garvin (Garvin, 1956) et pour une interface entre deux milieux élastiques (Berg
et al., 1994). Des comparaisons avec la solution analytique trouvée par la méthode de
Cagniard-de Hoop (de Hoop, 1960) ont montré les très bonnes performances de notre
outil de modélisation sur des grilles carrées (corrélation plus grande que 99% et erreur
RMS inférieure à 1%).

Dans la partie 2.3, nous analysons deux approches pour la modélisation des ondes sur
des grilles courbées. Ces approches sont la tensorial approach (Komatitsch et al., 1996) et
la chain rule (Zhang and Chen, 2006). La méthode chain rule sera choisie après évaluation
théorique des coûts de calcul numérique. La grille en quinconce doit être modifiée car la
grille classique (Virieux, 1986) n’est pas adaptée pour la méthode choisie. Nous utilisons
donc la grille en quinconce analysée dans Saenger et al. (2000). Les conditions à la surface
libre ainsi qu’aux bords absorbants sont analysées pour les mettre en œuvre correctement
sur des grilles courbées. Les mêmes tests réalisés pour des grilles carrées (section 2.2)
sont aussi réalisés pour les grilles courbées, mais ici les interfaces sont toutes inclinées.
Les résultats montrent que cette approche est également très performante. Cependant,
le coût de calcul et la consommation de mémoire sont deux fois plus élevés que pour les
grilles carrées. Néanmoins, des topographies faiblement courbées peuvent être prises en
compte avec cette approche de modélisation de propagation des ondes élastiques dans
des milieux isotropes 2D.
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2.1 Introduction

Elastic wave propagation is commonly modelled by numerically solving the differential
equations established in the velocity-stress formulation (Virieux, 1986). Several numerical
methods have been proposed offering fast and reliable results when computing the propa-
gation of shear and compressional waves in different (structured and unstructured) grids
(Saenger et al., 2000; Kaser and Igel, 2001). We mainly consider here finite-difference
approaches. Surface waves can be modelled by implementing free-surface conditions on
these grids using one of the multiple proposed approaches (Levander, 1988; Robertsson,
1996; Mittet, 2002; Bohlen and Saenger, 2006; Xu et al., 2007). However, elastic wave
propagation in realistic media with non-rectilinear (lateral and vertical) interfaces cannot
be accurately modelled using classical approaches dedicated to rectangular grids. In this
chapter, we revisit the way how to model the elastic wave propagation in 2D isotropic
media with curved free surface and curved internal interfaces using finite-difference meth-
ods.

Four principal alternatives are described in the literature for accomplishing this goal.
They are described as follows.

• The shape of layers (including the free surface) can be taken into account by im-
plementing a rectangular grid and refining the grid in the vicinity of the interface
contact (Robertsson, 1996; Moczo et al., 2007). Curved interfaces are approximated
by small straight lines. This method is stable and easy to implement. However,
some spurious diffractions can be generated from the squared ending of the grid,
mostly when curved interfaces are discretised.

• The curved free surface can be implemented in rectangular grids by building fic-
titious values of the solution near the boundaries as presented in Lombard et al.
(2007). In this approach, the curved shape of the surface is implicitly taken into
account in the formulation. Internal curved interfaces can be modelled using a sim-
ilar modelling approach (Lombard and Piraux, 2004). This method accounts for
stability; the accuracy does not depend on the relative position of the boundary
with respect to the grid. This approach requires defining all the unknown values at
the same grid points, and thus only single-grid schemes can be used.

• Unstructured grids can be used for modelling the wave propagation in curved media.
Differential operators can be implemented by using finite volume, finite element or
spectral element methods (Kaser and Igel, 2001; Kaser and Dumbser, 2006). By
implementing these methods on unstructured grids, the wave propagation can be
modelled in complex curved media because the mesh can be adapted to a wide
range of shapes. However, the accuracy may depend on the quality of the mesh
built for each particular medium. Also, these methods are computationally more
expensive than finite-difference methods.

• The velocity-stress formulation can be solved in curved grids built to fit the shapes
described by the free surface and the internal interfaces. The formulation must be
adapted to be solved when the discretised variables are distributed along curvilinear
grids. The method we propose here is based on a finite-difference staggered-grid
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alternative implemented on curved grids. In the following, we concentrate on this
approach and analyse it more carefully.

Some formulations have been proposed with a topography-dependent modelling ap-
proach using the chain rule for horizontal derivatives only (Hestholm and Ruud, 1994,
1998, 2001; Tarrass et al., 2011). The vertical grid lines must always be straight. This
restriction leads to difficulties in the implementation of more complex media.

A more general solution consists of considering the propagating variables as tensorial
fields (McConnell, 1957; Malvern, 1969). The numerical tests conducted by (Komatitsch
et al., 1996) show that wave propagation can be computed in general for any curved co-
ordinate system. Nevertheless, we show in this chapter that the splitting of the covariant
derivative, necessary for the divergence to be invariant under coordinate transformations,
increases the computational cost when the transformed system is not rectilinear.

Differently from the methods mentioned above, we propose here to apply the chain
rule in a completely curved system (i.e. all axes are curved). This solution is both
general and computationally affordable, and allows us to address the problem of a wave
propagating in complex media with curved interfaces. This approach is potentially suited
for implementations in the spectral domain (Tessmer et al., 1992; Carcione and Wang,
1993; Carcione, 1994), as well as for finite-difference approaches (Zhang, 1997; Zhang and
Chen, 2006).

For the numerical implementation of the chain rule, we use a modified staggered grid
improving both computational cost and accuracy aspects. Free-surface conditions are set
in the curved system by defining the normal vector to the surface. We have adapted the
theory of the Convolutional Perfect Matching Layer (CPML) to curved staggered grids
for avoiding reflective boundaries (Komatitsch and Martin, 2007). For the modelling
of explosive and directional sources, we have found a constant which allows us (when
numerical dispersion is negligible) to avoid the application of any additional amplitude
correction, when the numerical results are compared to the analytical solution. The
precision of the approach is tested by comparing the numerical result with the analytical
one obtained by the Cagniard-de Hoop solution (de Hoop, 1960) in the horizontal and
tilted Lamb’s problem (Lamb, 1904), Garvin’s problem (Garvin, 1956) and elastic/elastic
interface problem (Berg et al., 1994). The results of these tests demonstrate the high
accuracy of the implementation. Optimal results are obtained when the angle between
the axes at the free surface tends to perpendicularity. As shown through an example, this
approach allows us to model the wave propagation in more complex media, revealing its
potential as a tool for further applications in models with topography or lateral varying
velocities, among others. In very complex media though, curved grids are not well suited
because they are rather adapted to smooth interface curvatures.

This chapter is organised as follows. Section 2.2 deals with the wave propagation in
rectangular domains by describing the approach for the finite-difference formulation, the
modelling of the free-surface, the non-reflective boundary conditions, and the implemen-
tation of the source. New aspects are developed in section 2.3 but dealing with the wave
propagation in curved domains. The free-surface condition is very important for proper
surface wave modelling. Numerical results are presented at the end of each section.
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2.2 Wave propagation in rectangular domains

This section describes the so-called velocity-stress finite-difference formulation solved in
Cartesian coordinates for the modelling of elastic waves in isotropic media (section 2.2.1).
In section 2.2.2, we present two approaches for free-surface modelling. A performance
analysis allows us to choose the stress image method (SIM) for our implementation.
The CPML theory is described in section 2.2.3. For the implementation of explosive and
directional sources (in section 2.2.4), we have found the constant that allows us to directly
compare the numerical results to the analytical ones. Finally, we test the performance
of the implementation by comparing our numerical results with the analytical solutions
available in literature (section 2.2.5).

2.2.1 Velocity-stress formulation

The propagation of waves in the Earth is represented by a 3D elastic anisotropic equation
(Aki and Richards, 1980). Such equation can be solved either in the frequency-space
domain or in the time-space domain. As surface waves are dispersive waves (Chapter 1),
we need to study the full frequency range of the wave propagation. Thus, we need an
equation defined in the time domain (this reduces computational costs of full frequency
computation). In general, this equation is represented in time t and space x by

C(m|x, t)u(x, t)− s(x, t) = 0, (2.1)

where C(m|x, t) is the matrix with partial differentiators and elastic model parameters,
u(x, t) represents wave field variables and s(x, t) represents the wave source components.

In this thesis, we implement a 2D elastic wave propagation modelling because it is
computationally more affordable than full 3D modelling. The wave propagation system
is formulated as a first-order hyperbolic system (Virieux, 1986) and it is discretised in
staggered grids making its implementation to be straightforward. The elastodynamic
equations of the velocity-stress formulation (Virieux, 1986) in 2D isotropic media are:

v̇x =
1

ρ
(∂xσxx + ∂zσxz) + ϕvx ,

v̇z =
1

ρ
(∂xσxz + ∂zσzz) + ϕvz ,

σ̇xx = (λ+ 2µ)∂xvx + λ∂zvz + ϕσxx ,

σ̇zz = (λ+ 2µ)∂zvz + λ∂xvx + ϕσzz ,

σ̇xz = µ(∂zvx + ∂xvz) + ϕσxz ,

(2.2)

where x and z are the Cartesian coordinates; λ, µ and ρ are elastic model parame-
ters (Lamé parameters and density) (part of C(m|x, t) in equation 2.1), (vx, vz) and
(σxx, σzz, σxz) are velocity and stress components (u(x, t) in equation 2.1)) and ϕ rep-
resents the source term (s(x, t) in equation 2.1)). A dot over a variable denotes time
differentiation. The symbols ∂x = ∂/∂x and ∂z = ∂/∂z represent the partial derivatives
for each Cartesian direction. Velocities of different kind of waves are related to the Lamé
parameters and density such that, in this kind of media, compressional-wave velocity is
expressed as Vp =

√
(λ+ 2µ)/ρ, and shear-wave velocity is Vs =

√
µ/ρ.
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Figure 2.1: Staggered grid with the bold solid line specifying the free-surface boundary.
Solid lines identify the principal grid and dashed lines represent the auxiliary staggered
grid.

The source term considered in equation 2.2 is equivalent to an infinite line with cylin-
drical radiation in 3D media. A 2D to 3D amplitude correction can be applied by con-
sidering the principles of geometrical spreading: (1) body waves are attenuated as 1/r
in 3D media and as 1/

√
r in 2D media and (2) surface waves are attenuated as 1/

√
r

in 3D media and are not attenuated in 2D media. Hence, the 2D data can be partially
corrected by using the so-called 1/

√
t filter (Bleistein, 1986), if the medium is such that

it can be considered homogeneous in the y direction (2.5 D). Anisotropy can be modelled
(Thomsen, 1986; Tsvankin, 2005), but with the purpose of analysing surface waves, in this
study, we have decided to use equation 2.2 which is focused on heterogeneous isotropic
media.

For the implementation of equation 2.2 in rectangular grids, we use the staggered
grid proposed by Virieux (1986). In such a grid, the discretisation of equations 2.2 can
conveniently (in computational terms) be implemented as presented in Figure 2.1.

We use a centred second-order discretisation in time and space. The time and space
derivatives of a generic function f(xi) are discretised as

ḟ(xi) ≅
1

∆t
(f t+

1

2 (xi)− f t−
1

2 (xi)),

∂xjf(xi) ≅
1

∆xj
(f(x1, ., xj+ 1

2

, ., xn)− f(x1, ., xj− 1

2

, ., xn)),
(2.3)

where ∆t and ∆xj represent the time and space differentiation steps. As it can be seen
from Figure 2.1, the calculation of a variable is straightforward because its value depends
on the centred numerical derivatives related to its four nearest neighbouring values.

The proper spatial sampling of the grid ∆xj is found according to the maximum
dispersion condition accepted in each specific simulation, such that

∆xj ≤
λmin
nλ

=
Vmin
fmax

1

nλ
, (2.4)

where λmin corresponds to the minimum wavelength in the medium, Vmin to the minimum
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velocity in the medium, fmax is the maximum frequency of the source; the value nλ is
defined as the number of grid points per wavelength. It is commonly set above 16 points
per minimum wavelength in order to perform a correct modelling of waves. Increasing
nλ reduces numerical dispersion (Virieux, 1986; Levander, 1988).

The time step ∆t is found by satisfying the Courant condition for numerical stability

∆tVmax

√
1

(∆x)2
+

1

(∆z)2
≤ 1, (2.5)

where Vmax is the maximum velocity in the medium and ∆x = ∆z = ∆xj for j = 1, 2.

2.2.2 Free-surface conditions

The free surface can be modelled according to the theoretical condition of zero stress
for the component normal to the surface (Aki and Richards, 1980; Chapman, 2004). In
rectangular grids, this condition can be achieved either via the so-called stress image
method (SIM) (Levander, 1988; Robertsson, 1996), or by changing the elastic properties
of the medium at the free surface (Mittet, 2002; Xu et al., 2007). The comparison of these
methods has quantitatively shown their high accuracy when compared to the analytical
solution for distances between the source and receiver below 10 times the shear wavelength
(Bohlen and Saenger, 2006; Xu et al., 2007). In this paragraph, we present the formulation
for the two approaches, and a comparison between the two methods for long offsets (up
to 100 times the shear wavelength). We conclude that the SIM method presents a better
performance.

Stress image method

Let n̂fsi = ẑ be the vector normal to the free surface. By imposing the zero-stress condition
for the component normal to the surface σfsji n̂

fs
i = 0 and by substituting in the set of

equations 2.2, we get:

σfsji n̂
fs
i = 0 ⇒

[
σxx σxz
σxz σzz

] [
0
1

]
=

[
0
0

]
⇒ σzz = 0 → ∂zvz = − λ

λ+2µ
∂xvx,

σxz = 0 → ∂zvx = −∂xvz.
(2.6)

This definition can be implemented in the finite-difference staggered-grid scheme by
declaring the free-surface boundary at the position indicated by the bold line in Figure
2.1. The variables σzz, σxx and vx are the variables at the boundary. Taking equation 2.6
and defining indices (i, j, k) as the discretised x-axis, z-axis and time, if we put the free-
surface boundary in j = 1, as indicated in Figure 2.1, then the finite-difference scheme
for the variables present at this boundary is formulated as
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Figure 2.2: Discretisation scheme for the free-surface implementation.

σkzz(i+
1

2
, 1) = 0,

σkxx(i+
1

2
, 1) = σk−1

xx (i+
1

2
, 1)

+ ∆t
4µ(λ+ µ)

λ+ 2µ
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k−1/2
x (i+ 1, 1)− v

k−1/2
x (i, 1)

∆x
,

vk+1/2
x (i, 1) = vk−1/2

x (i, 1) +
∆t

ρ

{
σkxx(i+

1
2
, 1)− σkxx(i− 1

2
, 1)

∆x

+
σkxz(i, 1 +

1
2
) + σkxz(i, 1 +

1
2
)

∆z

}
,

(2.7)

where the required value for the vacuum, σkxz(i, 1 − 1
2
), is found after supposing an

odd parity of the stress with respect to the free-surface boundary (i.e. σkxz(i, 1 − 1
2
) =

−σkxz(i, 1 + 1
2
)). This approach is known as the Stress Image Method (SIM) (Levander,

1988; Robertsson, 1996).

Acoustic-elastic approach

An alternative method for modelling the free surface proposes a change in the elastic
properties of the medium at the vacuum-solid contact (Mittet, 2002). An improved
version of this method, called acoustic-elastic approach (AEA), consists of changing the
Lamé parameters at the free-surface contact under the following rules: ρfs = 0.5ρ, λfs = 0
and µfs = µ (Xu et al., 2007).

Accuracy test with respect to offset

The performances of these two methods have been compared with the analytical solution
for a homogeneous medium (Berg et al., 1994). We have analysed the numerical dispersion
of Rayleigh waves at far offsets, for distances between receiver and source up to 100 times
the shear wavelength. In homogeneous media, the Rayleigh-wave velocity is constant and
frequency independent (Dunkin, 1965). We use this property to compare the Rayleigh
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Figure 2.3: Numerical dispersion observed in Rayleigh-wave propagation for offsets up
to 100 times the shear wavelength. The SIM (centre) and AEA (right) methods were
implemented with nλ = 30 points per shear wavelength. They are compared to the
analytical solution (left). The same move-out correction has been applied to all the three
shot gathers.

wave arrival times for each offset, after move-out correction. In Figure 2.3, we compare
the analytical, SIM and AEA solutions. The results show an increasing phase shift for far
offsets mainly in the AEA solution. The solution provided by SIM becomes numerically
dispersive.

The derivative of the phase with respect to frequency can be used to know the delay
of the signal with respect to frequency and offset (Oppenheim et al., 1998). In Figures 2.4
and 2.5, we present the phase in the frequency-offset domain (top left), the derivative
of the phase with respect to frequency (top right) and a comparison of analytical and
numerical Rayleigh waves for offsets equal to 5 (bottom left) and 33 (bottom right) times
the shear wavelength. These results show that the SIM approach presents higher fidelity
with the analytical solution for a wider range of offsets than the AEA approach. The
SIM method shows a phase shift due to the numerical dispersion, which can be corrected
by using more samples per wavelength for the discretisation (Bohlen and Saenger, 2006).
The AEA method presents an increasing negative phase delay for far offsets, which cannot
be explained by numerical dispersion. As a consequence, we have chosen in this work
the direct implementation of the theoretical free-surface conditions as in the SIM method
because of its higher accuracy for a variety of offsets.

2.2.3 Non-reflective boundary conditions

We chose to implement the CPML approach for its proven attenuating and non-reflective
properties (Komatitsch and Martin, 2007). The formulation proposed by Komatitsch
and Martin (2007) improves the behaviour of classical PML (Bérenger, 1994; Collino and
Tsogka, 2001) at grazing incidence and is based on an unsplit convolutional approach.
In literature, it is recommended that the length of the attenuation zone is at least 0.5 to
1 times the considered wavelength. Therefore, the number of needed grid points in the
attenuation zone depends on the number of grid points per wavelength.

The CPML approach consists of substituting the derivatives in the absorbing layer
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Figure 2.4: Rayleigh-wave properties for SIM method. Top left: phase angle in the
frequency-offset domain. Top right: phase angle derivative with respect to frequency.
Bottom: comparison between numerical and analytical signals using 30 points per shear
wavelength for offsets equal to 5 (left) and to 33 (right) times the shear wavelength.

Offset [Shear wavelength]

F
re

q
u

e
n

c
y
 [

H
z
]

 

 

20 40 60 80

20

40

60

80

100

−0.5

−0.4

−0.3

−0.2

−0.1

0

Offset [Shear wavelength]

F
re

q
u

e
n

c
y
 [

H
z
]

 

 

20 40 60 80

20

40

60

80

100

−3

−2

−1

0

1

2

3

0 0.05 0.1 0.15

−2

−1

0

1

2

A
m

p
lit

u
d
e
 [
m

/s
]

Time interval [s]

 

 

AEA − 30 pts

Analytical

0 0.05 0.1 0.15

−2

−1

0

1

2

A
m

p
lit

u
d
e
 [
m

/s
]

Time interval [s]

 

 

AEA − 30 pts

Analytical

Figure 2.5: Rayleigh-wave properties for AEA method. Top left: phase angle in the
frequency-offset domain. Top right: phase angle derivative with respect to frequency.
Bottom: comparison between numerical and analytical signals using 30 points per shear
wavelength for offsets equal to 5 (left) and to 33 (right) times the shear wavelength.
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Figure 2.6: Top: General scheme for the boundary conditions. Bottom left: attenuation
functions ax and bx for a specific case. Bottom right: CPML parameter dx for a specific
case (∆t=1 ms; f = 50 Hz and V = 2000 m/s).

zone with:
∂x̃ = ∂x + ψx, (2.8)

where ψx is a memory variable defined, for a discretised time n, as

ψnx = bxψ
n−1
x + ax(∂x)

n−1/2, (2.9)

where

bx = e−(dx+αx)∆t,

ax =
dx

dx + αx
(bx − 1),

αx = πf
Lx − x

Lx
,

dx = d0V

(
x

Lx

)2

,

d0 = − 3

2Lx
log(R),

(2.10)

the variable x represents the Cartesian direction, the constant R is defined as R = 0.001,
the parameter V is a chosen velocity in the model (commonly the maximum velocity Vp),
f is a chosen frequency (commonly the source central frequency) and Lx is the length of
the attenuation zone for the trajectory x. Figure 2.6 shows the ax, bx (bottom left) and
dx (bottom right) parameters of boundary conditions with respect to the length Lx for a
specific case (∆t=1 ms; f = 50 Hz and V = 2000 m/s).
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2.2.4 Source term

Two different sources of energy can be implemented in the modelling: explosive and
directional source. The explosive source is modelled as

ϕσxx = ϕσzz = Ca(λ+ 2µ)Asrc,

ϕvx = ϕvz = ϕσxz = 0,
(2.11)

while the directional source is modelled as

ϕvx = Ca
1

ρ
Asrc sin θ,

ϕvz = Ca
1

ρ
Asrc cos θ,

ϕσxx = ϕσzz = ϕσxz = 0,

(2.12)

where Asrc defines the amplitude and wave shape required in the model (usually deriva-
tives of the Gaussian function) and θ is the inclination angle of the source with respect
to the horizontal surface. The constant Ca is a necessary amplitude correction to match
analytical and numerical responses. We used a heuristic approach with different velocity
models to find the value of this constant. The value is

Ca =
2.52

(∆x∆z)
(2.13)

for 2D models.

2.2.5 Numerical results

Three different experiments were used in order to evaluate the performances of the
presented finite-difference method: Lamb’s problem (Lamb, 1904), Garvin’s problem
(Garvin, 1956) and elastic/elastic problem (Berg et al., 1994). The grid used for the
test as well as source and receiver positions are shown in Figure 2.7. A second layer
at the bottom was used only in the case of the elastic/elastic problem; otherwise the
entire grid describes a homogeneous medium with Vp = 2500 m/s, Vs = 1200 m/s,
ρ = 1000 kg/m3. The analytical response was obtained through the Cagniard-de Hoop
semi-analytical solution (de Hoop, 1960). For the finite-differences calculation, the second
order discretisation in time and space has been used.

Lamb’s problem

The Lamb’s problem consists of considering the propagation of Rayleigh, P, and S waves
in an infinite homogeneous medium with a free surface and a directional (vertical) source
(Lamb, 1904). The grid has 430 × 150 points with the same spatial steps in the two
Cartesian directions equal to 0.5 m (Figure 2.7). A first-order Gaussian wavelet with
central frequency fc = 75 Hz and time delay t0 = 50 ms is applied in the vertical
component of velocity (i.e. θ = −90o). As the shear wavelength is 16 m, the number of
grid points per shear wave is 32 (equation 2.4). The source and receiver R1 are located
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Figure 2.7: Grid used to validate the finite-difference approach on rectangular domains.
Lines are plotted every 5 grid points. The lighter parts of the grid identify the CPML
attenuation zone.

0.25 m (one grid point) below the surface. The receiver R2 is located 50.75 m below the
surface. The distance between receivers and source is 146 m for R1 and 130.2 m for R2.
These distances correspond to 9.1 and 8.1 times the shear wavelength. The simulated
time is 200 ms with time step ∆t = 0.1 ms.

In this experiment, we expect to have high-amplitude Rayleigh wave and low-amplitude
coupled body waves (P and S waves) in R1. In the case of R2, body waves (P and S) are
separated and show higher amplitudes, while the Rayleigh wave have lower amplitude.
The seismograms are shown in Figure 2.8, each one with its respective mean squared
error (MSE) and correlation (Corr) coefficients with respect to the analytical response,
without any additional amplitude correction. Low values of MSE and high values of Corr
lead to conclude that the method properly simulates the propagation of the seismic wave
in the presence of free surface with high agreement in both Rayleigh and body waves,
when a directional source is applied.

Garvin’s problem

The Garvin’s problem consists of considering the propagation of Rayleigh, P, and S waves
in an infinite homogeneous medium with a free surface and an explosive source (P-wave
source) (Garvin, 1956). Equation 2.11 is used to model this source. We have used a
first-order Gaussian wavelet with frequency f = 75 Hz and time delay t0 = 50 ms. The
distances between source and receivers are the same as in the Lamb’s Problem. The
simulated time is 200 ms with a time step ∆t = 0.1 ms.

The results are shown in Figure 2.9. In quantitative terms, the MSE between the
analytical and the numerical result is low, while Corr is high. With this result, the
accuracy of this finite-difference implementation for modelling the explosive source with
free-surface conditions is demonstrated.

Elastic/elastic problem

This problem consists of modelling the direct and reflected P and S waves when an
interface between two infinite homogeneous media is considered. In order to run this
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Figure 2.8: Analytical and numerical seismograms for the Lamb’s problem. Vertical (top)
and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right).
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Figure 2.9: Analytical and numerical seismograms for the Garvin’s problem. Vertical
(top) and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right).
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Figure 2.10: Analytical and numerical seismograms for the elastic/elastic problem. Ver-
tical (top) and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right).

experiment, a second layer at the bottom part of the model shown in Figure 2.7 is
added. The properties of the second layer are Vp = 3000 m/s, Vs = 1600 m/s, ρ =
1500 kg/m3. The source is explosive and free-surface conditions do not apply to this
problem. In fact, as the objective of this experiment is the verification of results for direct
and reflected waves, the free-surface conditions have been replaced by CPML conditions,
so that Rayleigh waves are not created. In the 380×380 point grid with ∆x = ∆z = 0.5 m,
the explosive source is located 120 m above the top of the second layer. This source
is described with the same properties as the one used in the Lamb’s problem. The
receivers R1 and R2 are located in the first medium at a horizontal distance of 146 m
from the source and at vertical distances from the top of the second layer of 119.25 m
and 19.25 m, respectively. The normalised distance between source and receiver is 9.1
shear wavelengths for R1 and 11.1 shear wavelengths for R2.

Due to the contrast in velocity and density between the two media and the use of a
single P-wave source (explosive source), the expected results should show a low-amplitude
direct P-wave, high-amplitude PP-wave (reflected) and PS-wave (reflected) in R1. For
R2, the result should display a high-amplitude P-wave, low-amplitude PP-wave and PS-
wave (a low-energy direct P-wave is transmitted to the second medium due to the specific
contrast properties). Seismograms of the vertical and horizontal components of velocity
are shown in Figure 2.10. The good agreement between analytical and numerical results
is confirmed by the low MSE and high correlation values. The arrow in the top left plot
indicates a non-physical reflection coming from the CPML zone, which is too close to the
R1 position. Finally, the results confirm that the approach presented in this section is
an effective modelling method with high accuracy when directional and explosive sources
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are used in free-surface and contrasted layer media.

2.3 Wave propagation in curved domains

For curved domains, some aspects need special consideration, in particular, the free-
surface implementation, attenuating boundaries and computational cost. We present for-
mulation for the chain-rule approach and the tensorial approach (sections 2.3.1 and 2.3.2).
Both approaches are general and solve the elastic wave propagation in curvilinear do-
mains. The chain-rule approach is finally chosen based on a computational-cost criterion
(section 2.3.3). Free-surface conditions are presented in section 2.3.4 considering the nor-
mal vector to the curved vacuum-solid interface. The CPML conditions are presented
in section 2.3.5, taking into account the change in the direction of the derivative for
curvilinear domains. The implementation of the source terms and their constants is pre-
sented in section 2.3.6. Numerical results are shown in section 2.3.7. We evaluate the
implemented approach for the same reference cases: the tilted Lamb’s problem, the tilted
Garvin’s problem and the tilted elastic/elastic interface. We analyse the case of non-
perpendicular angles between the axes in the staggered grid at the free surface, and show
an example of wave propagating in a laterally varying medium.

2.3.1 Chain-rule approach

The chain-rule approach consists in finding the contribution of each directional deriva-
tive of velocity and stress fields, when velocity and stress are discretised over a curved
distribution of grid points in space with respect to the Cartesian components. In this
case, the modelling grid obeys a curvilinear distribution defined by the functions ξ(x, z)
and η(x, z), with x and z being the components in Cartesian coordinates and ξ and η
being the so-called distribution functions. Using this approach, the partial derivative of
a generic function f(x, z) with respect to ξ(x, z) is given by

∂ξf = (∂ξx)(∂xf) + (∂ξz)(∂zf), (2.14)

while the derivative of f(x, z) with respect to η(x, z) is calculated by

∂ηf = (∂ηx)(∂xf) + (∂ηz)(∂zf). (2.15)

The derivatives of x and z with respect to ξ(x, z) and η(x, z) can be calculated starting
from the system of equations

∂xx = 1 = (∂xξ)(∂ξx) + (∂xη)(∂ηx),

∂xz = 0 = (∂xξ)(∂ξz) + (∂xη)(∂ηz),

∂zx = 0 = (∂zξ)(∂ξx) + (∂zη)(∂ηx),

∂zz = 1 = (∂zξ)(∂ξz) + (∂zη)(∂ηz),

(2.16)

so that

∂ξx = J ∂zη, ∂ηx = −J ∂zξ,
∂ξz = −J ∂xη, ∂ηz = J ∂xξ,

J = (∂zη∂xξ − ∂xη∂zξ)
−1,

(2.17)
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Figure 2.11: Staggered grid for rectangular domains. The arrows indicate how an aver-
aging process would be performed in the case of curved domains.

where J is the Jacobian of the transformation. Note that J should be determined and
non-zero at all points of the surface.

Applying the transformation described by equations 2.14 and 2.15 into the system
of equations 2.2, we obtain the set of equations modelling the wave propagation in the
curved system:

v̇x =
1

ρ
(∂ξx∂xσxx + ∂ξz∂zσxx + ∂ηx∂xσxz + ∂ηz∂zσxz) + ϕvx ,

v̇z =
1

ρ
(∂ξx∂xσxz + ∂ξz∂zσxz + ∂ηx∂xσzz + ∂ηz∂zσzz) + ϕvz ,

σ̇xx = (λ+ 2µ)(∂ξx∂xvx + ∂ξz∂zvx) + λ(∂ηx∂xvz + ∂ηz∂zvz) + ϕσxx ,

σ̇zz = (λ+ 2µ)(∂ηx∂xvz + ∂ηz∂zvz) + λ(∂ξx∂xvx + ∂ξz∂zvx) + ϕσzz ,

σ̇xz = µ(∂ηx∂xvx + ∂ηz∂zvx + ∂ξx∂xvz + ∂ξz∂zvz) + ϕσxz ,

(2.18)

where the notations for Lamé parameters, density, velocity, stress and source term are
kept unchanged with respect to section 2.2.

Implementation in the staggered grid

The derivatives in the numerical curved domain can be computed using the finite-difference
approximation described in equation 2.3. Nonetheless, if we use the same staggered grid
as for rectangular domains (Virieux, 1986) then some of the partial derivatives of the
system of equations 2.18 could not be directly computed in the needed grid points. For
instance, in Figure 2.11 an example of the calculation for vz in such a grid is showed.
In this case, the derivatives ∂zσxz and ∂xσzz cannot be directly found. These derivatives
would need to be computed at the surrounding points and then a linear averaging process
would provide the needed values (see Figure 2.11). As a result, the computational cost
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Figure 2.12: Modified staggered grid for curved domains. Velocity components are placed
at the points identified with a triangle. The stress components are placed at the points
identified with a circle. The arrows indicate how each centred derivative is computed.
The bold line identifies interface with the free surface.

would be increased and, more importantly, numerical imprecisions would be introduced
as a result of the averaging process.

We propose to adopt a different staggered grid to overcome the described computation
difficulties. In our approach, two discretisation grids separated by half the spatial step
are used: one for velocity components and the other for stress components (see Figure
2.12). The new staggered grid is different from the classical one (Virieux, 1986) because
an additional grid point is introduced in the middle of every 4 points for each velocity and
stress components (and also for the elastic model parameters). This approach requires to
save in memory twice the grid point number of the classical approach, but no numerical
imprecisions are introduced to the chain rule approach. The advantages of using this grid,
where the components are placed in the needed position for straightforward computation,
have been explained in details by Saenger et al. (2000) (Figure 1c in the article). The
collocation method for this grid is well adapted for discretising the chain rule approach.

In the 2D curved system, the numerical stability is ensured when the Courant condi-
tion holds

∆tVmax

√
1

(∆ξmax)2
+

1

(∆ηmax)2
≤ 1, (2.19)

where ∆ξmax and ∆ηmax are the maximum spatial steps for each component in the curved
distribution. We now present an alternative approach.

2.3.2 Tensorial approach

A set of universal equations for the wave propagation in solid media can be written by
considering that the mechanics of continuous media must be invariant in any system of
coordinates. In the tensorial approach, we preserve notation used in section 2.2, except
for Einstein’s notation which is used to denote summation over a repeated index.

The equation for the conservation of linear momentum is written in its invariant
expression, for a general coordinate system defined by ξj, as (McConnell, 1957; Malvern,
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1969; Komatitsch et al., 1996)
ρv̇i = ∇ξjσ

j
i + ϕi, (2.20)

where the invariant divergence term of the stress tensor is

∇ξjσ
j
i =

∂σji
∂ξj

− Γabiσ
j
a + Γjbaσ

a
i , (2.21)

with indices i, j, a and b representing the spatial dimension (i.e. in 2D their only pos-
sible values are 1 and 2); the superscripts indicating the contra-variant component and
subscripts the covariant component; and the symbol Γcab being the needed function (not
tensor) to make the differentiation invariant under coordinate transformations (commonly
called Christoffel symbols of the second kind). The definition of the Christoffel symbols
of the second kind is presented at the end of this section.

The strain-velocity invariant relation is defined as

ε̇ij =
1

2
(∇ξivj +∇ξjvi), (2.22)

where ε represents the finite-strain tensor, and the covariant derivative of velocity is
defined as

∇ξjvi =
∂vi
∂ξj

− Γabiva. (2.23)

The Hooke’s law is the physical relationship, between stress and strain, that completes
the continuum mechanics theory solved with the tensorial approach

σ̇ji = λδji ε̇
k
k + 2µε̇ji , (2.24)

where δji is the Kronecker delta, defined as 1 when subscript and superscript have the
same value and 0 for any other combination; index k represents the spatial dimension.

The expression relating the covariant tensor with the mixed tensor for the finite-strain
tensor is given by:

εji = gmjεim, (2.25)

where index m represents the spatial dimension. The metric tensor gmj carries on the
complete information of the coordinate transformation. In this formulation, the metric
tensor is defined by the products of the first order partial derivatives of the transformed
coordinate system ξj with respect to the Cartesian coordinates (Komatitsch et al., 1996).
For this reason, gmj is constant only in the case in which the transformed coordinate
system is rectilinear (McConnell, 1957). This property has a direct influence in the com-
putational cost of the tensorial approach implementation.

As seen before, the Christoffel symbols of the second kind are the necessary compo-
nents to preserve invariance for the covariant derivatives under coordinate system trans-
formations (McConnell, 1957). These functions depend only on the metric tensor, such
that

Γcab =
1

2
gcn(

∂gbn
∂ξa

+
∂gan
∂ξb

− ∂gab
∂ξn

). (2.26)

where indices c and n represent the spatial dimension. From equation 2.26, we can note
that the Christoffel symbols are equal to 0 only in the case of a rectilinear transformation
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for the coordinate system (i.e. when the metric tensor is constant). In such a case, the
wave propagation equations are very similar to those we have when considering Cartesian
coordinates (Cartesian coordinates are a specific case of rectangular coordinates). The
only difference would be a constant in equation 2.25, which in its turn implies a propor-
tional (constant) modification of the strain-velocity relation (equation 2.22) with respect
to the Hooke’s law (equation 2.24).

2.3.3 Computational cost

The two approaches presented above describe the wave propagation in curved domains.
We have chosen to implement the chain-rule approach in our work on the basis of a
computational-cost analysis. In this analysis, we calculate the number of operations
required to model the wave propagation in a general curved domain. Even if, depending
on the chosen programming strategy, the computational cost may slightly vary, our result
leads to conclude that the chain-rule approach is less costly for low orders of finite-
difference discretisation.

Chain-rule approach

Solving equations 2.18 at particular point in time and space implies the computation of
6 partial derivatives related to the stress and 4 partial derivatives related to the velocity.
Let l be the number of operations required to calculate a partial derivative. The num-
ber of additional operations needed, without taking into account the source term, is: 6
additions and 10 multiplications for both components of velocity; and 7 additions and
13 multiplications (considering λ+ 2µ as a fixed matrix during computation) for all the
stress components. Overall, the order of the computation is

Ocr(n× (10l + 36)), (2.27)

where n is the total number of spatial and time nodes (points) in the simulation scheme.

For comparison, 8 partial derivatives per node must be computed in the classical rect-
angular domain (equation 2.2), where 4 are needed for stress and 4 for velocity. Moreover,
2 additions and 2 multiplications are required for velocity component computation, and
3 additions and 5 multiplications are required for stress component computation. Hence,
the order of the calculation is Ord(n × (8l + 12)). For the second-order finite difference
scheme (two operations per partial derivative), the computational cost of the chain-rule
approach is twice the computational cost of the classical approach (O2

cr(n × 56) and
O2
rd(n× 28)).

Tensorial approach

Komatitsch et al. (1996) demonstrated that the computational cost for the tensorial
approach is less than for the chain-rule approach when performing rectilinear transfor-
mations. However, 2D heterogeneous media impose using curvilinear coordinates instead
of rectilinear coordinates. Therefore, the Christoffel symbols of the second kind are not
zero and they must be taken into account in the computation of each variable.
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The computational cost to compute the velocity components using equation 2.20 is
calculated as follows. The number of operations required for the computation of the stress
divergence in curvilinear 1D media is found from equation 2.21, where 2 multiplications, 2
additions and 1 partial derivative are needed. In the 2D case, we consider that the spatial
indices (i, j, a, b) can be equal to 1 and 2, and that the computation of one stress-tensor
divergence component needs the same number of operations as for 1D. The stress tensor
is defined by 4 different components in 2D, so that the computational cost for the two
velocity components in equation 2.20 is 4(l + 4) + 4. The additional 4 operations are 2
divisions by ρ and 2 additions of the corresponding stress-tensor divergence component
for each velocity component.

An equivalent procedure can be used to find the strain tensor at a particular point.
From equation 2.23, the number of operations needed to calculate one component of
the covariant derivative of velocity are: 1 partial derivative, 2 multiplications and 2
additions (for instance, if i = j = 1, the free index a can have two possible values).
The number of operations required for the computation of the covariant strain tensor
in equation 2.22 when subindex i and j are equal (considering the fact that, in this
case, a mathematical reduction of operations can be done), is 1 partial derivative, 2
additions and 2 multiplications. If it is not the case (i 6= j), we need to compute the two
components of the covariant derivative of velocity, thus requiring 2 partial derivatives,
2 multiplications and 2 additions (in this case the Christoffel symbols are the same for
both components of covariant velocity derivatives). Moreover we need two additional
operations: 1 to compute the addition of the 2 components of the velocity derivative and
1 to compute the division by 2. Taking into account the fact that the strain tensor is
symmetric (i.e. ε12 = ε21), the number of operations to calculate the covariant strain
tensor is: 2(l + 4) + (2l + 4 + 2).

The computation of the mixed strain tensor requires 1 addition and 2 multiplications
for each of the 4 components (all of them are different even if the strain tensor is defined
symmetrical in the covariant case). The total cost to compute the mixed strain tensor is:
2(l + 4) + (2l + 4 + 2) + 4× 3.

The mixed stress tensor, found from the Hooke’s law (equation 2.24), requires 8 addi-
tional operations for the 4 components: 2 additions and 6 multiplications. Summarising,
the computational cost of this method is:

Ots(n× (8l + 54)). (2.28)

Comparing the computational cost of the two approaches for curved domains, we can
note that, even if the number of partial derivatives in the tensorial approach is lower
than in the chain rule case, the number of additional operations is higher, meaning the
existence of a threshold dependent on the number of calculations per partial derivative
(Figure 2.13). As the two curves intersect at around 10 operations per partial derivative,
we conclude that the computational cost for the chain-rule approach is lower than for the
tensorial approach, when using a centred finite-difference scheme up to the 6th order of
discretisation.
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Figure 2.13: Theoretical computational cost of tensorial and chain rule solutions per node
vs. number of operations per partial derivative

2.3.4 Free-surface conditions

The theoretical definition of the free-surface boundary condition states that the compo-
nent of stress normal to the surface is equal to zero (Aki and Richards, 1980; Chapman,
2004). The vector normal to the surface needs to be defined. In our implementation, the
free surface coincides with the top of the grid defined by the distribution functions ξ(x, z)
and η(x, z). For this reason, the normal vector to the free surface can be easily found
using the geometry defined by these distribution functions in the Cartesian coordinates
(this result is also shown in Zhang and Chen (2006)). The normal vector to the free
surface is

nfs = x̂∂ξz + ẑ∂ξx, (2.29)

where superscript ‘fs’ denotes variables at the free surface.

The theoretical definition of the free-surface conditions is then

σfsji n̂
fs
i = 0 →

[
σfsxx σfsxz
σfsxz σfszz

] [
∂ξz
∂ξx

]
=

[
0
0

]
. (2.30)

In our implementation, we need to express these vertical derivatives which cannot be
calculated at the free surface: ∂zvx and ∂zvz. The set of equations in 2.18 are used to
replace the stress values in equation 2.30 (considering that equation 2.30 is invariant
in time), so that the vertical derivatives of velocity can be found with respect to their
horizontal derivatives as [

∂zvx
∂zvz

]
= −X−1Y

[
∂xvx
∂xvz

]
, (2.31)

where X and Y are defined as

X =

[
χ∂ξz∂ξz + µ∂ξx∂ηz λ∂ξz∂ηz + µ∂ξx∂ξz
λ∂ξx∂ξz + µ∂ξz∂ηz χ∂ξx∂ηz + µ∂ξz∂ξz

]
,

Y =

[
χ∂ξz∂ξx+ µ∂ξx∂ηx λ∂ξz∂ηx+ µ∂ξx∂ξx
λ∂ξx∂ξx+ µ∂ξz∂ηx χ∂ξx∂ηx+ µ∂ξz∂ξx

]
,

(2.32)

with χ = λ+ 2µ.

In the case of stress, if the vertical grid line is perpendicular to the free surface then
the same SIM method used for rectangular domains can be implemented. If angles are
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Figure 2.14: Example of the differentiation direction defined by ξ in the CPML attenua-
tion zone of a curved domain.

non-perpendicular, the equivalence of equation 2.30 can be employed. For instance, if the
value of ∂zσxx is needed to find a component of velocity (equation 2.18), the expression
(derived from equation 2.30)

σfsxx = −∂ξx
∂ξz

σfsxz , (2.33)

is used together with a modification of the discretisation order. This modification is a
reduction from centred finite difference to one-sided finite difference. In section 2.3.7,
numerical results for different angles between the axes at the free surface are presented.

2.3.5 Non-reflective boundary conditions

The absorbing boundaries presented for rectangular domains can also be applied in curved
domains. The CPML proposed by Komatitsch and Martin (2007) is based on a modifica-
tion of the derivative in the attenuation zone. As a result, we consider that the directional
derivatives used in the chain-rule approach can be approximated using equation 2.8 in
the attenuation zone. In this process, the direction of the variable x, in equation 2.8, is
the one that defines the variables required by equations 2.9 and 2.10. In curved domains,
the direction x must describe the curved lines. In Figure 2.14, we show an example for
a curved differentiation trajectory in the case of a generic variable ξ (curved version of
x for the CPML formulation). In such a case, the derivative with respect to ξ can be
implemented by replacing the partial derivative with the expression

∂ξ̃ = ∂ξ + ψξ, (2.34)

where ψξ is found using equation 2.9.

2.3.6 Source term

The source can be modelled using the set of equations 2.11 and 2.12. Furthermore, consid-
ering that the use of distribution functions ξ(x, z) and η(x, z) can make the spatial steps
to be variable, the constant for the amplitude correction must be modified accordingly.
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Figure 2.15: Curved grid used for numerical validation. The circle represents the source
and the triangles represent the receivers. The lighter parts of the grid identify the CPML
attenuation zone. Only one every 5 grid lines is plotted.

The modified constant is

Ca =
2.52

∆x∆z
(∂ξx(xs, zs)∂ηz(xs, zs) + ∂ηx(xs, zs)∂ξz(xs, zs)), (2.35)

where the coordinates (xs, zs) define the position of the source in the 2D media. This
definition generalises the Cartesian grid constant to curved grids.

2.3.7 Numerical results

To analyse the chain-rule approach for curved domains, we propose comparing analytical
and numerical solutions for three numerical experiments and a tilted free surface. We use
the tilted Lamb’s problem, the tilted Garvin’s problem and the tilted elastic/elastic prob-
lem. Analytical solutions exist because the tilted-interface problems are rotated versions
of the classical problem. For finite-difference calculation, a second-order discretisation
scheme has been used. We have preserved orthogonality between axes at the free surface
for the three mentioned experiments but we also present an analysis when this is not
true. Finally, we compute seismograms for a complex model.

Tilted Lamb’s problem

In order to validate the method, we perform a comparison between the analytical and
numerical solutions when the free surface has a slope of 30o. The homogeneous model is
identified with the properties Vp = 2500 m/s, Vs = 1200 m/s, ρ = 1000 kg/m3. The grid
is shown in Figure 2.15. For this experiment, no special angles between axes are used,
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Figure 2.16: Analytical and numerical seismograms for the tilted Lamb’s problem. Ver-
tical (top) and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right),
accordingly to the scheme of Figure 2.15.

except for the free surface grid points, where a 90o angle has been preserved. The source
is placed 1.3975 m below the surface. One of the receivers is located at a horizontal
distance of 162.1149 m from the source and 1.3975 m below the surface. The location of
the second receiver with respect to the first one is -146.4859 m in the horizontal direction
and 61.0350 m in the vertical direction. In all cases, the horizontal distance is supposed
to be parallel to the surface and the vertical distance is perpendicular to the surface. The
normalised distance between source and receiver is 10.1 shear wavelengths for R1 and 3.9
shear wavelengths for R2.

The grid used in this experiment is made of 430×150 points. The range of spatial steps
defined by the distribution functions are ∆ξ = [0.5 − 0.75] m and ∆η = [0.5 − 0.75] m.
The source has the same properties as the one used in the classical Lamb’s problem.
After calculating the Courant stability condition, the proper time step was found to be
∆t = 0.1 ms. The total simulation time is 220 ms.

Since the classical Lamb’s problem is defined with a force source applied on the surface
along a direction perpendicular to the surface, a rotation of the directional source, with
θ = 30o, is applied. Moreover, a rotation of the numerical results must be applied using
the transformation described in the following equation

(
vRx
vRz

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
vx
vz

)
. (2.36)

Using the rotated numerical velocities vRx and vRz , the comparison with the analytical
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Figure 2.17: Analytical and numerical seismograms for the tilted Garvin’s problem. Ver-
tical (top) and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right),
accordingly to the scheme of Figure 2.15.

solution can be performed. The MSE criteria gives a quantitative measure of misfit
between the results. In the case of the vertical component, the misfit for R1 and R2 are
1.43% and 0.04% respectively. For the horizontal component they are 0.20% and 0.24%
confirming the good agreement also shown by the high values (> 99%) of Corr (Figure
2.16).

Tilted Garvin’s problem

The compressional source modelled for this experiment is the one described in equation
2.11. It produces a spherical P-wave. The medium considered in this experiment cor-
responds to the one used in the tilted Lamb’s problem. The numerical results must be
rotated as described by equation 2.36. The positions of source and receivers are the same
as for the tilted Lamb’s problem, except for the vertical location of the source which, for
this experiment, is 1.04 m below the surface.

Referring to the results shown in Figure 2.17, the highest MSE percentage is 0.6815 %,
while the lowest Corr percentage is 99.72%, both for the vertical velocity component in
R1. These results allow us to conclude that the propagation due to an explosive source in
a homogeneous medium is modelled with high accuracy when compared to the analytical
solution for surface and body waves, at least for smoothly curved grids.



2.3. Wave propagation in curved domains 51

20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

 Layer 1

 Layer 2

o
v R1

v R2

Distance [m]

D
is

ta
n
c
e
 [
m

]

Figure 2.18: Grid used to model the two-layer medium for the tilted elastic/elastic prob-
lem.

Tilted elastic/elastic problem

A dipping interface between two homogeneous media is used in this experiment (see
Figure 2.18). The properties of the top layer are Vp = 2500 m/s, Vs = 1200 m/s,
ρ = 1000 kg/m3. The second layer is identified by Vp = 3000 m/s, Vs = 1600 m/s,
ρ = 1500 kg/m3. An explosive source (identified by a circle in Figure 2.18) is placed
95.13 m above the interface. The P-wave source has the same properties as the one
used in the Garvin’s problem. One of the receivers is placed at 86.64 m above the
interface and at 119.74 m horizontally from the source. The second receiver is at 34.35 m
above the surface and is 17.16 m horizontally from the source. These locations are given
accordingly with the 10% dipping slope of the interface. Horizontal distances are parallel
to the interface and vertical distances are perpendicular to it. The normalised distance
between source and receiver is 6 shear wavelengths for R1 and 4 shear wavelengths for
R2.

As the coordinate system is rotated, the results are compared after applying the
transformation described by equation 2.36. As shown in Figure 2.19, the MSE misfits
are 0.44% and 0.80% for R1 and R2 for the vertical component of velocity, and 0.66%
and 0.74% for the horizontal component. The results displayed in Figure 2.19 show the
expected match in the direct P-wave, reflected P-wave and reflected S-wave for the two
velocity components at both receiver locations.

The relative error between analytical and numerical solutions expressed by MSE and
Corr values can be used to compare rectangular and curved domain implementations.
These quantities are summarised in Table 2.1. In this comparative table, the relative
distance (in terms of the shear wavelength) between source and receivers is included. In
the tests with a free surface, the near surface receiver is one wavelength closer to the
source in the rectangular case. The results are slightly better in the rectangular case
both in terms of MSE and Corr values. For the buried receiver and free surface, the
results are better in the curved case. However, the distance between source and receiver



52 Chapter 2. Elastic wave modelling in curved 2D isotropic media

0 0.05 0.1 0.15 0.2

−15

−10

−5

0

5

10

A
m

p
lit

u
d
e
 [

m
/s

]

V
z
R1: MSE = 0.4487%; Corr = 99.78%

 

 

Numeric

Analytic

0 0.05 0.1 0.15 0.2

−150

−100

−50

0

50

100

V
z
R2: MSE = 0.8056%; Corr = 99.6%

0 0.05 0.1 0.15 0.2

−100

−50

0

50

Time [ms]

V
x
R1: MSE = 0.6677%; Corr = 99.67%

A
m

p
lit

u
d

e
 [

m
/s

]

0 0.05 0.1 0.15 0.2

−40

−20

0

20

Time [ms]

V
x
R2: MSE = 0.7423%; Corr = 99.63%

Figure 2.19: Analytical and numerical seismograms for the tilted elastic/elastic problem.
Vertical (top) and horizontal (bottom) velocities are plotted for R1 (left) and R2 (right),
accordingly to the scheme of Figure 2.18.

Receiver → d R1 Vx R1 Vz R1 d R2 Vx R2 Vz R2
Test ↓ (λs) (MSE; Corr) (MSE; Corr) (λs) (MSE; Corr) (MSE; Corr)
Lamb 9.1 0.15; 99.92 0.92; 99.54 8.1 0.40; 99.90 0.54; 99.73

Tilted Lamb 10.1 0.21; 99.91 1.43; 99.31 3.9 0.25; 99.88 0.04; 99.98
Garvin 9.1 0.07; 99.97 0.37; 99.83 8.1 0.13; 99.93 0.17; 99.91

Tilted Garvin 10.1 0.11; 99.97 0.68; 99.72 3.9 0.20; 99.90 0.20; 99.90
Elastic/elastic 9.1 0.68; 99.66 0.43; 99.79 11.1 0.72; 99.64 0.79; 99.61
Tilted e./e. 6 0.67; 99.67 0.45; 99.78 4 0.74; 99.63 0.81; 99.60

Table 2.1: Results using rectangular and curved domain implementations (Figures 2.8 to
2.10, 2.16, 2.17 and 2.19). The ‘d ’ stands for distance between source and receiver and
λs for shear wavelength.
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Figure 2.20: Top: different grids with 45o to 90o angles between axes have been used.
Only the first and the last grid are plotted. Bottom: relative position of source and
receivers for the complete set of experiments.

is half the distance of the rectangular case. For the elastic/elastic interface tests, the
MSE and Corr values are fairly similar for both implementations although the distance
is shorter in the curved one (66 % for R1 and 36 % for R2). The results given by the
rectangular domain implementation are relatively better than the curved domain results.
Nevertheless, the MSE is always smaller than 1.5% and the Corr is always higher than
99% for source-receiver distances up to 11.1 times the shear wavelength, which is an
evidence of accuracy.

Analysis of variable angles at the free surface

The free-surface experiments presented so far have been run using orthogonal axes at the
free surface. In this paragraph, we analyse results for angles at the free surface ranging
from 45o to 90o (Figure 2.20). MSE and Corr are used to evaluate precision with respect
to the angle between axes.

The medium is homogeneous with Vp = 2500 m/s, Vs = 1200 m/s, ρ = 1000 kg/m3

and is discretised in a 450 × 450 grid. An explosive source (75 Hz Ricker wavelet) has
been used. 32 points per shear wavelength and a Courant number of 0.48 in all the
experiments ensures stability and comparability.
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Figure 2.21: MSE for the range of angles from 45o to 90o measured at the two receivers
described in Figure 2.20.

In Figure 2.20, the relative position of source and receivers is shown. The distance
between the receiver located near the free surface and the source is 9.5 times the shear
wavelength. For the buried one, the distance to the source is 5 times the shear wavelength.
Note that the relative position of R2 is not exactly constant (Figure 2.20). Nevertheless,
such position varies within 4% of the shear wavelength.

The angle has a stronger impact on the quality of the signal at the free surface (R1)
than deeper in the model (R2) (Figures 2.21 and 2.22). The maximum MSE percentage is
6% and the minimum Corr percentage is 96.7%, both of them, for an angle of 45o and for
receiver R1. In the case of R2, the vertical component presents almost no variations with
angle (top left of Figures 2.21 and 2.22). Smaller variations in the horizontal component
(R2) are principally related to the slight variation of its relative position.

We explain these results by considering the reduction in the order of the finite-difference
discretisation at the free surface. In fact, in our approach we reduce the second-order dis-
cretisation to first order at the free surface. Moreover, as well as in the case of rectangular
grids (see for example Xia et al. (2007)), the match between analytical and numerical
solutions can be increased by considering more nλ points. Further research could be done
to find a more accurate implementation in the case of non-perpendicular grid angles at
the free surface.

Wave propagation modelling in a complex medium

As an example of wave propagation modelling in a complex medium, we have created a
velocity model with curved layers and a normal fault (Figure 2.23 top). The structure of
this model has been implemented using a curved grid by letting the interfaces between
layers coincide with the distribution functions ξ(x, z) and η(x, z). The implementation
of such a grid avoids interpolations in the modelling of the structure. The profiles for Vp
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Figure 2.22: Correlation for the range of angles from 45o to 90o measured at the two
receivers described in Figure 2.20.

and Vs, as well as the density ρ and the Poisson ratio are shown in Figure 2.23 (bottom),
for the two locations indicated by arrows.

The spatial steps for modelling were defined in the ranges ∆ξ = [0.25− 0.45] m and
∆η = [0.25 − 0.45] m. The curved grid is implemented with 860×300 points. In order
to satisfy the stability condition, the time step is ∆t = 0.037.5 ms. An explosive source
(75 Hz Ricker wavelet delayed by 50 ms) was implemented.

The grid and a snapshot at t=0.125 ms are shown in Figure 2.24. Elastic waves have
been identified in the snapshot (Figure 2.24): body (direct, transmitted, reflected) and
surface (Rayleigh (1885)) waves. Rayleigh waves (P-SV media) are commonly known as
ground roll in exploration seismology. Figure 2.25 shows vertical and horizontal velocities
for a line of receivers located at the surface. We use this numerical result to show that
elastic wave propagation in 2D isotropic media with curved interfaces and topography
in addition to lateral variations can be handled with our implementation. Nonetheless,
derivatives of the distribution functions must exist and the Jacobian of the transformation
must be different than zero at all the grid points (i.e. smoothly curved grids).

2.4 Conclusions

We have presented an approach for elastic wave modelling in rectangular and curved
grid domains. We have applied the chain rule to the velocity-stress formulation. As
discretisation strategy, we have implemented second-order finite-differences in a modified
staggered grid. Two distribution functions are used for the design of the grid, so that the
partial derivatives of the stress and velocity are evaluated with respect to the distribution
functions. Free-surface conditions have been modelled by implementing the theoretical
definition (given in continuous mechanics) in curved grids and defining the free surface at
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Figure 2.23: Complex medium. Top: 2D S-wave velocity model. Bottom: 1D elastic
parameter profiles for the positions indicated in the 2D model by the black and the grey
lines.
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the top of the grid. In such implementation, the required vector (normal to the surface)
is found from the geometry defined by the distribution functions. We have implemented
CPML attenuation conditions considering that the trajectory of differentiation depends
on the distribution functions.

We have tested this approach by comparing analytical and numerical solutions for 2D
homogeneous isotropic elastic wave propagation, both with horizontal and tilted inter-
faces, and using explosive and directional sources (Lamb’s problem, Garvin’s problem and
elastic/elastic problem). The high agreement between analytical and numerical solutions
demonstrates the reliability of this modelling approach. When varying the angle between
the axes at the free surface, better results are obtained if the axes are orthogonal. Finally,
we have computed the elastic wave propagation in a complex medium, using a curved
grid, to show that our approach can be used to obtain the complete propagated field
(surface and body waves) in the presence of curved interfaces, topography and lateral
variations. This chain-rule based approach for modelling the elastic wave propagation in
curved domains is an accurate tested modelling tool that will be employed in the following
chapters for waveform inversion.

On the side of limitations, the chain-rule approach works only if the derivatives of the
distribution functions exist and the Jacobian of the transformation is not equal to zero at
all grid points. Therefore, our tool is limited to smoothly varying grids. In the presence of
strongly distorted grids, numerical errors are expected. If strong heterogeneity / interface
roughness is present, then staircase representation of the interfaces has to be used for the
modelling.
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Résumé du chapitre
Dans ce chapitre, nous introduisons la théorie du problème inverse. Cette théorie est
ensuite appliquée à l’analyse des ondes de surface (Surface Wave Analysis, SWA) et
puis à l’inversion des formes d’onde (Full Waveform Inversion, FWI). Une discussion est
proposée à la fin du chapitre. Dans cette discussion, l’objectif est de donner au lecteur un
aperçu des avantages et des limitations à prendre en compte pour le choix d’une nouvelle
formulation (explicitée dans le chapitre 4).

Dans la section 3.2, la théorie du problème inverse est présentée de manière générale
(Tarantola, 2005). Cette généralité est privilégié car cela nous permet de l’appliquer aux
deux méthodes spécifiques d’inversion développées ici. La fonction objective classique
mesure la différences au sens des moindres carrés entre les données observées et les données
modélisées (calculées avec l’outil numérique developpé dans le chapitre précédent). Les
paramètres du modèle sont actualisés dans la direction dictée par le gradient de la fonc-
tion objective. L’aspect essentiel consiste à calculer de manière efficace ce gradient ;
c’est ce qui est fait en utilisant la méthode de l’état adjoint (Plessix, 2006). Enfin, les
différentes stratégies d’actualisation du modèle sont abordées : Newton, Gauss-Newton,
quasi-Newton, régularisations de la fonction objective.

Dans la section 3.3, les approches classiques de la SWA utilisées actuellement pour
des applications dans la proche sub-surface sont présentées en détails. De plus, des
développements originaux sont proposés : une méthodologie pour extraire les courbes
de dispersion des enregistrements en point tir, et des règles heuristiques pour aider à la
convergence de l’inversion. Pour les exemples d’inversion, nous considérons soit le mode
fondamental des ondes de surface représenté par une seule courbe de dispersion (Xia et al.,
1999), soit les multiples modes représentés par plusieurs courbes de dispersion (Socco
and Strobbia, 2004; Luo et al., 2007). L’utilisation des plusieurs courbes de dispersion
améliore les résultats. Cependant, les données sont parfois ambiguës car elles peuvent être
expliquées par plusieurs modèles élastiques. En inversion des ondes de surface, tout le
spectre de données doit être pris en compte puisque ces ondes sont sensibles aux différents
paramètres en profondeur en fonction de la fréquence.

Dans la section 3.4, les aspects théoriques de la FWI sont introduits (Lailly, 1983;
Tarantola, 1986; Virieux and Operto, 2009). Les équations de l’état adjoint pour le
calcul du gradient de la fonction objective sont développées pour la formulation vitesse-
contrainte utilisée dans le chapitre 2. L’estimation de l’ondelette source pour la propaga-
tion est en soi un problème inverse. Nous analysons deux approches pour cette estimation
: une qui tire profit de la linéarité de ce problème inverse (par rapport à la source) (Pratt,
1999) et une autre qui utilise le gradient de la fonction objective et l’état adjoint (Taran-
tola, 1984). Enfin, nous présentons une revue bibliographique des fonctions objectives
alternatives, car dans le chapitre 4 nous allons développer une approche intermédiaire
basée sur une nouvelle fonction objective intermédiaire entre celle de la SWA et celle de
la FWI.
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3.1 Introduction

Interface waves (Rayleigh, Stoneley) are created at the interface between two media with
contrasted P and S wave velocities. Seismic surface waves usually appear at the interface
between the Earth and the air (Rayleigh, 1885). These waves can easily be observed
because they are often the most energetic seismic events recorded in land datasets. In
simple configurations, their amplitude decays as 1/

√
t, where t is the traveltime, whereas

the decay is as 1/t for body waves. Surface waves have been mostly studied in global
seismology. For oil industry applications, the number of research works studying surface
waves has increased through the last 20 years (Chapter 1). These waves either present
challenging issues for imaging methods, or (as it has recently been recognised) they are
a great source of information for near surface characterisation (less than a few hundred
of metres). Socco et al. (2010) presented a review of the current approaches for the
characterisation of the near surface using surface waves.

In this chapter, we present the solution of the inverse problem and its specific ap-
plication in surface wave analysis (SWA), as well as in Full Waveform Inversion (FWI).
These two methods are of interest because they can be used to retrieve the velocity model
from surface waves. The first inversion method is used to invert for locally 1D layered
velocity models by analysing dispersion curves. The second inversion method is used to
retrieve 2D or 3D high-resolution velocity models by inversion of the complete recorded
seismic data. We have implemented codes to analyse the 1D method in details. We then
use this analysis as a guide to propose an intermediary approach in which we try to take
advantage of both the 1D and the FWI methods. The new formulation is presented in
Chapter 4 along with applications to synthetic data.

SWA

The penetration depth of surface waves depends on the wavelength. In heterogeneous
media, surface waves are dispersive (each frequency propagate at different phase velocity)
(Strobbia et al., 2010). In the presence of heterogeneities, surface waves propagate in
several modes referred to as fundamental and higher modes (Dunkin, 1965; Ewing et al.,
1957). In contrast, the Rayleigh wave (coupled P-SV motion) velocity is unique and
slightly smaller than the S-wave velocity in homogeneous media, while Love waves (SH
motion only) can only be present in heterogeneous media.

Surface wave propagation is usually analysed through dispersion curves plotted in
frequency-velocity (f − v) domain. The dispersion curves can be obtained from common
shot gathers after application of established processing flows, as explained later in this
chapter.

Surface wave velocity for tabular media depends on four layer parameters: P-wave
velocity, S-wave velocity, density and layer thicknesses (Thomson, 1950; Haskell, 1953).
Consequently, these parameters can potentially be inverted from recorded surface waves
(Dziewonski et al., 1969; Hermann, 1973). Xia et al. (1999) presents an inversion ap-
proach, taking into account the fundamental mode only, to obtain the S-wave velocity
profile. Subsequently, several approaches have been proposed including higher modes in
the analysis to improve results considering that inversion is better constrained in this way
(Beaty et al., 2002; Xia et al., 2003; Luo et al., 2007; Maraschini et al., 2010). The objec-
tive function is usually the least-squares misfit between the dispersion curves extracted
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from recorded data and synthetic dispersion curves computed for some specific frequency
values. In a 1D layered velocity model, synthetic dispersion curves can be computed (Lai,
1998). This is however less clear in 2D or 3D models. For this reason, SWA is usually
restricted to locally 1D models.

As convergence approach, local search methods are more commonly used. However,
global search methods have also been used, as for example, the Monte-Carlo approach
proposed by Maraschini and Foti (2010). Some lateral variations (pseudo-2D inversion)
can been handled using laterally constrained inversion or by applying spatial interpolation
of 1D results (Luo et al., 2009; Socco et al., 2009; Vignoli et al., 2011).

FWI

FWI is not restricted to 1D velocity models. The misfit to be minimised is the least-
squares distance between the recorded shot gathers and the synthetic shot gathers (Lailly,
1983; Tarantola, 1984; Virieux and Operto, 2009). As FWI is a general method, it should
in principle also handle surface waves in addition to transmitted and reflected waves. The
expected velocity model resolution is then higher than picking-based techniques such as
ray-based tomography or SWA.

FWI is commonly formulated within the local optimisation theory because otherwise
inversion would be excessively demanding of computational resources (Tarantola, 1986).
Compared to SWA, where dispersion curves should be picked, FWI also considers both
the phase and the amplitude of the signal. However, FWI objective function is also known
to have a large number of local minima. The non-linearity of seismic inversion can be
reduced in FWI by implementing multi-scale approaches and time windowing (Bunks
et al., 1995; Sirgue and Pratt, 2004; Brossier et al., 2009), at least for transmitted or
reflected waves.

Including surface waves in inversion is a challenging issue (Gélis et al., 2007). One solu-
tion consists in gradually including them by considering larger time windows (Romdhane
et al., 2011). Working with real data seems to be more challenging as, for the moment,
only the low frequency components have been successfully inverted (Shafer et al., 2004).
Other ways of reducing non-linearity, and the inherent dependence on the choice of ini-
tial model, consist in considering alternative objective functions (Shin and Cha, 2008;
Liu et al., 2011; Bozdag et al., 2011).

This chapter is organised as follows. First, we present the theory behind the seismic
inverse problem solution (Section 3.2). Second, we describe the classical method for 1D
inversion of surface waves illustrated with some examples (Section 3.3). Finally, we recap
the theory of FWI in elastic isotropic media (Section 3.4). These elements are important
for understanding the alternative method presented in Chapter 4.

3.2 Inverse problem theory

The seismic inverse problem consists of exploring the model space to find the model
parameter values that minimise a misfit functional between recorded and modelled data
(Tarantola, 2005). If the least-squares misfit is considered, then the objective function to
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be minimised is

Φ(m) =
1

2

∫
(d(m|x, t)− dobs(x, t))TP(x, t)(d(m|x, t)− dobs(x, t))dt, (3.1)

where Φ(m) represents the data misfit value for a model parameter m(x), d(m|x, t)
is the synthetic data modelled for m(x), dobs(x, t) is the recorded data, P(x, t) is a
weighting matrix that scales the relative contribution of each component, x are the spatial
coordinates, t represents the time and T denotes matrix transpose. The weighting matrix
is defined as P = LT L, where L is a diagonal matrix (Xia et al., 1999; Brossier et al.,
2009). The data are obtained as a result of a physical experiment whose behaviour is
usually non-linear. The whole set of equations representing the physics of the seismic
experiment can be associated with the model parameters by using a non-linear operand
as

d(m|x, t) = g(m(x), t), (3.2)

where g is the non-linear forward operand relating the data d(m|x, t) and the model
m(x). For example, the operand g can represent the elasto-dynamic equations that
describe the wave propagation in 2D elastic isotropic media shown in Chapter 2 (equa-
tion 2.2 in Section 2.2.1).

To minimise the objective function in equation 3.1, the model space can be explored
using global or local optimisation methods. In global optimisation, a pseudo-random ex-
ploration is used to find the best solution within the considered part of the model space
(e.g. Monte Carlo method, Tarantola (2005)). In local optimisation, the model param-
eters are retrieved starting from an initial set of model parameters. Local optimisation
methods are computationally better suited than global methods for seismic waveform
inversion as the seismic model space is defined by several thousands of parameters, mak-
ing computation too expensive for a global exploration of the model space. One of the
consequences of this solution is the existence of secondary minima (mainly originated by
the non-linear nature of the problem). Thus, the local search must ideally be started in
the vicinity of the objective function global minimum.

In this section, we describe the solution of the non-linear inverse problem with an
iterative local search approach. We have made an effort to preserve generality so that
both SWA and FWI can be explained with the same theory. There are two approaches
to update the model parameter (equation 3.8): (1) by employing the gradient G(mk)

and the Hessian inverse
[
H(mk)

]
−1
, or (2) by employing the Jacobian Jk and the Jaco-

bian derivative ∂JTk /∂m
T . The corresponding formulations are provided in the following

paragraphs.

3.2.1 Inverse problem solution

The non-linear nature of the direct problem prevents us from estimating the model pa-
rameter in only one iteration. The inverse problem is then solved iteratively to minimise
the value of Φ(m) (equation 3.1). To compute the model parameter update, a linear ap-
proximation is applied to the misfit functional through truncation of its associated Taylor
series (Pratt et al., 1998). The related equations are obtained as follows.
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The model parameter at iteration k+1 is expressed as the sum of a background model
parameter plus a perturbation as

mk+1 = mk + δm, (3.3)

where mk is the model parameter at iteration k and δm is the model parameter pertur-
bation. The misfit functional is represented through the Taylor series expansion as

Φ(mk+1) = Φ(mk + δm)

= Φ(mk) + δmTG(mk) +
1

2
δmTH(mk)δm+O(δm3),

(3.4)

where

G(mk) =
∂Φ(mk)

∂m
(3.5)

and

H(mk) =
∂G(mk)

∂m
=
∂2Φ(mk)

∂m2
(3.6)

The term G(m) is referred to as (objective function) gradient and H(m) as Hessian
matrix. The higher order terms O(δm3) are not equal to zero except for quadratic
functions. The objective function reaches its minimum when its first order derivative is
equal to zero. This condition gives

∂Φ(mk+1)

∂m
= G(mk) +H(mk)δm = 0, (3.7)

where 0 is the zero vector. In equation 3.7, we can isolate δm and then replace it into
equation 3.3 to obtain the model parameter update:

mk+1 = mk −
[
H(mk)

]
−1

G(mk). (3.8)

The objective function (equation 3.1) can also be differentiated with respect to the
model parameter to obtain formula in terms of the Fréchet derivatives for the terms in
equation 3.8. The first order derivative yields

G(mk) =

∫
JTkP

(
d(mk)− dobs

)
dt, (3.9)

where

Jk =
∂d(mk)

∂m
(3.10)

is the Jacobian matrix at iteration k. The second order derivative yields

H(mk) =

∫ ([
∂JTk
∂mT

]
P
[(
d(mk)− dobs

)
...
(
d(mk)− dobs

)]
+ JTkPJk

)
dt, (3.11)

where the special notation for the Jacobian derivative defined by Pratt et al. (1998) has
been used.
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3.2.2 Adjoint-state method

In seismic inversion, the adjoint-state method is used to compute the gradient of a misfit
functional (Plessix, 2006). This method can be used to numerically evaluate the gradient
(equation 3.5) without needing explicit expressions of the Fréchet derivatives.

In this paragraph, we will work with the general wave equation given in Section 2.2.1
(equation 2.1). The misfit is considered to be a functional of the wave field u(x, t) and is
expressed as

Φ(u) =
1

2

∫
(K(x)u(x, t)− dobs(x, t))TP(x, t)(K(x)u(x, t)− dobs(x, t))dt, (3.12)

where K(x) is used to select the signals at receiver positions as d(x, t) = K(x)u(x, t).

We use the Lagrangian formulation presented by Plessix (2006). The associated aug-
mented Lagrangian is

L(u,υ,m) = Φ(u)− 〈υ(x, t), C(m|x, t)u(x, t)− s(x, t)〉 , (3.13)

where υ is the adjoint-state variable. The differentiation of the augmented Lagrangian
gives

dL(u,υ,m)

dm
=
∂L(m)

∂m
+
∂u

∂m

∂L(u)
∂u

+
∂υ

∂m

∂L(υ)
∂υ

, (3.14)

In order to avoid the computation of the Fréchet derivatives (e.g. ∂u/∂m), we suppose
∂L(u)/∂u = 0 and ∂L(u)/∂υ = 0. It implies that dL/dm = ∂L/∂m. The condition
∂L(u)/∂υ = 0 means that it should satisfy the state equation (forward propagation).
∂L(u)/∂u = 0 leads to

C∗(m|x, t)υ(x, t)− ∂Φ

∂u
= 0, (3.15)

where C∗(m|x, t) is the adjoint-state equation. It is straightforward to associate equation
3.15 with the propagation system in equation 2.1. υ(x, t) can be computed with a wave
propagation code only if C(m|x, t) is auto-adjoint (with ∂Φ/∂u as wave source). Because
both second and third terms in the right-hand side of equation 3.14 are equal to zero,
the gradient is defined as

G(m) =
∂L
∂m

= −
〈
υ(x, t),

∂C(m|x, t)
∂m

u(x, t)

〉
. (3.16)

For auto-adjoint systems, the gradient computation needs solving two direct problems:
one to obtain u(x, t) and the other to obtain υ(x, t). Moreover, the gradient is given by
the special correlation defined in equation 3.16, considering the operator ∂C(m|x, t)/∂m.
Explicit formula for the gradient computation in the case of the velocity-stress formulation
(Virieux, 1986) is given later in Section 3.3.

3.2.3 Strategy for updating the parameters

The inverse of the Hessian matrix can be interpreted as a preconditioning matrix applied
to the gradient and used to improve convergence (Pratt et al., 1998). The Hessian matrix
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in equation 3.11 is obtained by retaining the Taylor-series terms up to quadratic order
(Tarantola, 2005). The convergence strategy known as the Newton method uses the
inverse of the exact Hessian.

The inverse of the exact Hessian (equation 3.11) is difficult to compute especially
regarding the second-order differential term (Jacobian derivative). However, the conver-
gence can be improved, with respect to gradient-based approaches such as simple gradient
and conjugate gradient, if preconditioning with (at least) an approximation of the inverse
Hessian matrix is used. This argument is demonstrated by, for example, Pratt et al.
(1998) and Métivier et al. (2012).

The approximate Hessian matrix, written as

Ha(m
k) =

∫
JTkPJk dt, (3.17)

can be used if the second order differential term is sufficiently small to be ignored, which
happens when (Tarantola, 2005): “the residuals are small or the forward equation is quasi-
linear”. Indeed, if the forward equation is linear, then the Jacobian does not depend on
the model parameter and the exact Hessian, in such case, corresponds to the definition of
equation 3.17. The convergence strategy that implements the Hessian defined in equation
3.17 is known as the Gauss-Newton method.

Regularisation may be needed before inverting the Hessian. The damped Hessian is
defined as

Hd = Ha + αI, (3.18)

where α is the damping term. This approach can otherwise be obtained by considering
a simple regularisation to form the objective function

Φt = Φ+ αΦm, (3.19)

where Φ = Φ(m) remains as defined in equation 3.1, α represents the damping term and

Φm =
1

2
(m−m0)

T I (m−m0) , (3.20)

with m0 being an initial model parameter estimation. Equation 3.20 defines the simplest
case of the general Tikhonov regularisation (Tikhonov and Arsenin, 1977), where a spe-
cialised weighting matrix is used instead of the identity matrix. The inversion method
that implements the damped Hessian is commonly known as the Levenberg-Marquardt
method (Levenberg, 1944; Marquardt, 1963).

Finally, the quasi-Newton method consists in interactively computing an approxi-
mated version of the Hessian inverse. In particular, the L-BFGS algorithm (named after
Broyden-Fletcher-Goldfarb-Shanno and with the L standing for limited memory, Nocedal
(1980)) computes a good approximation, as proven by Métivier et al. (2012), by saving the
computed gradient in memory for a few iterations and then performing scalar products
and additions between the vectors.

In general, the seismic inverse problem is non-linear. The model is usually updated
through a local search either by explicitly computing the Jacobian (equation 3.9) or
by employing the adjoint-state method (3.16). We have presented both formulations
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Figure 3.1: Synthetic shot-gather (left) computed for a 1D layered medium (right) using
our finite-difference modelling code (Chapter 2). Rayleigh waves in the shot gather are
dispersive and are indicated by the double arrow.

because SWA is often based on the first approach while FWI is based on the latter. As
strategy for convergence, SWA will be formulated with a regularised method (Levenberg-
Marquardt) and FWI with a quasi-Newton method. In the next two sections, we present
the application of the theory presented here in SWA and FWI.

3.3 Surface wave analysis (SWA)

In surface wave methods, the data to be inverted are the dispersion curves (Lai, 1998;
Xia et al., 1999; Socco and Strobbia, 2004). These curves are a representation of the
surface wave velocity with respect to the frequency. This representation is valid for
wave propagation in 1D layered velocity models. In this section, we first review the
data processing to extract dispersion curves from common shot gathers. Second, we
present the classical inversion algorithms together with some examples of fundamental
mode inversion and multi-modal inversion. Some of these examples are adapted from the
literature, others are proposed here to better illustrate our observations. The objective is
to analyse in more details the methods and underline some drawbacks especially regarding
ambiguity due to insufficiently constrained inversion.
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Figure 3.3: Spectrum amplitude for the shot gather in Figure 3.1. In this case, the
fundamental mode is easily recognised because of its high energy. The energy indicated
by the circle might not be a Rayleigh-wave mode (explanation given in the text).

3.3.1 Processing workflow for dispersion curve extraction

In this section, we show the steps used to build dispersion curves from shot gathers. As
an example, we consider the shot gather shown in Figure 3.1, left, (computed for the
elastic model shown in Figure 3.1, right) and identify the dispersion curves of Rayleigh
waves. The dispersion curves obtained with the processing approach presented here
are compared to a theoretical solution for plane-layered elastic media. We obtain this
theoretical solution with the code implemented by Lai (1998), which is based on the work
of Kennett and Kerry (1979); Luco and Apsel (1983); Chen (1983) and Hisada (1995).
More details on surface wave modelling in plane-layered media are given later on when
describing direct and inverse problems (section 3.3.2).

The processing steps to get the dispersion curves in the f −v domain are described in
the workflow of Figure 3.2. The f −k spectrum is obtained by computing the 2D Fourier
transform of the shot gather d(x, t) as

D(k, f) =

∫∫
d(x, t)e−i2πftei2πkxdtdx, (3.21)

where k is the wavenumber, f is the frequency, x is the horizontal Cartesian coordinate.

The maximum offset of the shot gather (Figure 3.1) is xmax = 850 m and the maximum
recorded time is tmax = 1 s. The sampling intervals are ∆x = 2 m and ∆t = 2 ms, hence,
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the Nyquist wavenumber is kN = 1/(2∆x) = 0.25 m−1 and the Nyquist frequency is
fN = 1/(2∆t) = 250 Hz. The fundamental mode of Rayleigh-wave propagation is easily
recognised in the f−k domain because of its high energy (Figure 3.1). Some other modes
can be observed as well. The energy identified with a circle must be analysed in order to
define whether it corresponds to surface waves or not. This analysis is done later in this
section when presenting the relationship between f − k and f − v domains.

Referring to the workflow in Figure 3.2, the step called “local maxima picking” consists
in tracking dispersion curves. In this example, we have used a simple semi-automatic
semblance-based (Neidell and Taner, 1971) algorithm that identifies the “location” of
each propagation mode in the f − k image (Figure 3.3). The first step is to select each
one of the propagation modes by manually picking one single pixel for each mode. Then,
the algorithm “tracks” each selected mode by searching the pattern that identifies it
within the image. This tracking step is done by a pattern recognition algorithm using
the semblance criterium. Once the algorithm has identified the location of all the selected
modes, a simple determination of the energy peaks gives the f − k coordinates of the
dispersion curves.

The described semi-automatic picking algorithm works properly if the dispersion
modes are sufficiently separated in a particular domain. Some model parameter and
acquisition geometry configurations yield overlapped propagation modes. In such cases,
the extraction of dispersion curves is difficult and should be performed manually. In
addition, high resolution of the f − k spectrum might be useful to avoid errors in the
semi-automatic or manual identification. In some configurations, only “apparent” dis-
persion curves can be identified and used in inversion (Strobbia, 2002).

The dispersion curves identified in the f − k domain are transformed to the f − v
domain. The expression that relates frequency, wavenumber and velocity is

v =
f

k
. (3.22)

This transformation step can be interchanged with the previous one such that the dis-
persion curve picking is done in the f − v image instead. In that case, if the resolution is
not modified then the semi-automatic picking should give similar results but unphysical
velocity values could be rapidly identified. In the literature, the identification is done
in the f − k domain (Nolet and Panza, 1976; Tselentis and Delis, 1998), in the f − v
domain (Xia et al., 1999; Strobbia, 2002; Luo et al., 2007) and also in the f − p (p stands
for slowness) domain (McMechan and Yedlin, 1981; Luo et al., 2008, 2009). The latter
is done by application of the Radon transform instead of the Fourier transform, which
especially accounts for high resolution (Luo et al., 2009).

Equation 3.22 can also be used to analyse the modes identified by a circle in Fig-
ure 3.3. The Rayleigh-wave velocity is theoretically defined to be in the range [0.87-
0.96]×vs for homogeneous media (Strobbia, 2002). For the medium described in Figure
3.1, the Rayleigh-wave velocity related the fundamental mode cannot be faster than
0.96 × 1800 m/s (1728 m/s) and can not be slower than 0.87 × 1200 m/s (1044 m/s).
For higher modes the maximum Rayleigh-wave velocity is equal to the maximum S-wave
velocity 1800 m/s. In Figure 3.4, we plotted the f − v region bounded by the maximum
and minimum expected Rayleigh-wave velocities (left) and the corresponding f − v do-
main (right) for the f − k spectrum of Figure 3.3. Therefore, we can conclude that the
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side image.

modes identified with a circle in Figure 3.3 correspond to seismic events different from
Rayleigh waves, probably P guided waves (explained by their higher velocity). When
working with real data, the theoretical limit of Rayleigh-wave velocity cannot be known
without considering a priori model information. In such case, high energy and small
velocity values should be a natural way to distinguish surface waves from other seismic
events in the f − k domain. By contrast, a priori information could be used to enhance
Rayleigh waves while attenuating other waves.

The output of the processing workflow described in Figure 3.2 is dispersion curves
plotted in the f − v domain. In Figure 3.5, the theoretical dispersion curves are shown
for comparison. This solution has been computed with the implementation developed
by Lai (1998) (details will be given in section 3.3.2). The extracted from processing
and the theoretical curves have similar characters. The greatest mismatch is observed
for the fundamental mode at frequencies below 20 Hz. This mismatch comes from a
strong stretching applied to the low-frequency part of the spectrum when transforming
the data from f−k to the f−v domain (see Figure 3.4). As a result, at lower frequencies
the semi-automatic identification algorithm has reduced resolution. For instance, if a
constant velocity v = 1000 m/s should be picked in the f−k domain, then at f = 100 Hz
a wavenumber overestimation ∆k = 0.01 m−1 yields an error in velocity ∆v = −91 m/s,
while at f = 10 Hz the same wavenumber overestimation yields an error ∆v = −500 m/s.
Therefore, the dispersion curves picked in the f − k domain and then transformed to
the f − v domain using equation 3.22 might contain erroneous information in the low
frequencies. A velocity decay is also observed at frequencies above 200 Hz. This decay
is not physical and is a consequence of grid dispersion in the finite-difference modelling
code (Levander, 1988).
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Figure 3.5: Dispersion curves corresponding to the model shown in Figure 3.1. The curves
identified with processing (Figure 3.2) are plotted with solid lines. The theoretical curves
are plotted with dashed lines.

3.3.2 Inversion of dispersion curves

Surface waves propagate dispersively in heterogeneous media. Dispersion is a property
of surface waves whose propagation velocity depends on the frequency. In theoretical
studies (Dunkin, 1965; Strobbia, 2002), it was demonstrated that surface waves present
an exponential energy decay with depth. Most of the energy propagates within the zone
with a maximum depth of 2×λs, λs being the shear wavelength. Therefore, surface waves
are dispersive and propagate in different dispersion modes only if the medium presents
heterogeneities (in P-wave velocity, S-wave velocity or density) within 2×λs (Dunkin,
1965; Strobbia, 2002). In homogeneous media, Rayleigh waves propagate with constant
velocity (Rayleigh, 1885) and Love waves can not exist (Love, 1911).

In this section, the SWA problem is described using the classical Levenberg-Mardquart
formulation (Xia et al., 1999; Socco and Strobbia, 2004). The forward and the inverse
problem representations are explained. We use some synthetic data examples to show the
inversion of fundamental mode as well as the combined inversion of fundamental mode
plus higher modes.

Description of the direct and the inverse problem

The forward problem in SWA is defined as computing dispersion curves for a known set
of 1D model parameters (P-wave velocity vp, S-wave velocity vs, density ρ and layer
thickness h). The inverse problem consists in finding the model parameters when the
only known information are the recorded surface waves usually represented by picked
dispersion curves. (Figure 3.6). Mathematical definitions are given in the next paragraphs
We begin by briefly reviewing the previously mentioned dispersion curve computation
(Lai, 1998).

The Rayleigh and the Love wave dispersion theory is a solution of the Helmholtz-
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the zone of Rayleigh wave propagation (2 × λs). Each layer is identified with model
parameters mi = (vpi, vsi, ρi, hi) for i = 1, 2, ..., n. Right: the dispersion curves for the
Rayleigh waves propagating in this medium.

theorem based representation of the Navier equation of elasticity (Aki and Richards, 1980)
(page 63). The velocity, displacement and energy of Rayleigh waves can be analytically
obtained in homogeneous media (Strobbia, 2002). In such media, the Rayleigh wave
velocity depends on the Poisson ratio and ranges over vR = [0.87; 0.96] × vs, where the
maximum value is reached for a Poisson ratio of 0.5.

In heterogeneous 1D layered media, the Rayleigh and the Love wave velocities are
found by solving an eigenvalue problem developped as a secular equation. In general, the
mathematical representation of the “dispersion equation” is

D(c, k) = det|UTTV| = 0, (3.23)

where U and V represent the boundary conditions (free-surface and infinite half-space
conditions) andT is the propagator matrix imposing conditions of stress and displacement
continuity across the layers. The eigenvalues are then the only non-trivial solutions of
the dispersion equation (secular function) and those (frequency and wavenumber) couple
of values describe each dispersion mode.

A review of the development of numerical methods for dispersion curve computation
was presented by Buchen and Ben-Hador (1996). Thomson (1950) and Haskell (1953)
pioneered the theory of Love and Rayleigh wave dispersion in plane-layered models. Later
on, in the 60’s and 70’s, several developments were proposed either for correcting the
high-frequency instabilities of the original method (Pestel and Leckie, 1963; Dunkin,
1965; Thrower, 1965; Abo-Zena, 1979), or for introducing fundamental modifications in
its implementation (Knopoff, 1964; Schwab and Knopoff, 1970). Such unstable effects
were subsequently avoided by employing the so-called Reflection-Transmission matrix
method (Kennett and Kerry, 1979; Luco and Apsel, 1983). Lai (1998) has implemented
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the Reflection-Transmission method based on the revisitation made by Chen (1983) and
Hisada (1995). This is the code, we have employed for dispersion curve computation
in this section. The computational cost remains low mainly because there are only few
model parameters in comparison to waveform modelling.

In our study, the (non-linear) forward problem is stated as

dc(f |m) = g(m), (3.24)

where dc(f |m) represents the dispersion curves computed for a 1D layered model, g(m)
is the non-linear operand for the direct problem and m represents the four model pa-
rameters. Equation 3.24 can be discretised for a finite number l of frequencies fj =
(f1, f2, ..., fl) and a finite number n of layers, such that, for instance, the S-wave veloci-
ties are vsi = (vs1, vs2, ..., vsn).

In the inverse problem, the objective function to be minimised is

Φ(m) =
1

2
(dc(fj|m)− dobsc (fj))

TP(dc(fj|m)− dobsc (fj)), (3.25)

where dobsc (fj) represents the (observed) dispersion curves picked from recorded data. To
update the model parameter, the Gauss-Newton and the Levenberg-Marquardt methods
are usually preferred (see Section 3.2.3 for details on these methods). We use here the
Levenberg-Marquardt method as presented by Xia et al. (1999). The model parameter
is updated as

mk+1 = mk −
(
JTkPJk + αI

)
−1

JTkP
(
dkc (fj)− dobsc (fj)

)
. (3.26)

where Jk = ∂d(fj)/∂m
k is the Jacobian matrix computed for discretised dispersion curves

in a layered model and I is the n× n identity matrix.

The model parameters reconstructed in inversion are usually the S-wave velocity vs
and/or thickness h (Socco and Strobbia, 2004; Socco et al., 2010). The other two param-
eters (vp and ρ) cannot be easily inverted because surface waves are mostly sensitive to
vs and h. Conclusions regarding sensitivity have been presented by Song et al. (1989)
and Xia et al. (1999) in the case of Rayleigh waves.

Besides local search methods, like the one presented here, global search methods
have also been employed because of the low forward-modelling computational cost. For
example, a Monte-Carlo approach is used by Maraschini and Foti (2010).

Examples

We illustrate the sensitivity matrix analysis, the inversion algorithm, and the inversion
results of 9 different problems. Inversion was set to retrieve the S-wave velocity or the
thickness. The input data are either the fundamental mode only or the fundamental
mode plus higher modes (multi-modal inversion). We start from the simple three-layer
profile of Figure 3.1 and end with a 7-layer model presented by Luo et al. (2007). We
show that in complex models the initial model should be well constrained. Finally, a test
demonstrates that the data can be completely explained by a velocity model different
from the exact one.
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Figure 3.7: Dispersion curves for the model of Figure 3.1. The box indicates the region
of chosen frequencies for a fundamental mode sensitivity analysis.

Sensitivity matrix: We analyse the sensitivity of the Rayleigh-wave fundamental
mode for model in Figure 3.1. We compute the theoretical dispersion curves using the
implementation of Lai (1998). We define a set of 35 frequencies with uniformly-sampled
values in the range (25-60) Hz. One (fundamental mode) or two (fundamental and one
higher modes) Rayleigh-wave dispersion modes are present for each frequency value (see
Figure 3.7) but we only consider the fundamental mode in this sensitivity analysis.

The sensitivity matrix corresponds here to the Jacobian matrix representing the
derivative of the fundamental mode (represented by dc(fj), where j = 1, ..., 35) with
respect to the S-wave velocities (vsi, where i = 1, 2, 3 and vs1 is the shallowest layer
velocity). The size of the Jacobian matrix is 35× 3. We compute the partial derivatives
using second-order finite differences as

J =
∂dc(fj)

∂vsi
≈ d+

c (fj)− d−

c (fj)

0.002× vsi
(3.27)

where the d+
c (f) and d−

c (f) represent the velocities of the fundamental mode computed
for (1 + 0.001)vsi and (1 − 0.001)vsi, respectively, and sampled at the chosen frequency
values. The normalised Jacobian matrix (equation 3.27 divided by its norm) is plotted in
Figure 3.8. The three lines in this Figure represent the sensitivity of the Rayleigh-wave
fundamental-mode velocity with respect to the three S-wave velocities for the chosen range
of frequencies. This sensitivity analysis shows some important properties of Rayleigh
waves in layered media: as expected, the higher frequencies are more sensitive to vs1, and
thus, tend to propagate with low velocity. The lower frequencies are more sensitive to
vs3, and thus, tend to propagate faster.

Inversion algorithm and example: We present the inversion algorithm using the
Marquardt-Levenberg method and we apply it to retrieve the S-wave velocities for the
model depicted in Figure 3.1). The other three model parameters are considered known
and equal to the exact profile. The observed data are a set of 15 Rayleigh-wave ve-
locities sampled from the fundamental mode (represented by dc(f)) corresponding to
15 uniformly-spaced frequencies into the range (25-60) Hz (Figure 3.7). The inversion
algorithm consists of the following steps:
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Figure 3.8: Sensitivity analysis for the Rayleigh-wave fundamental mode of Figure 3.7
with respect to the S-wave velocities. The velocity model is shown in Figure 3.1.

1. Select a good initial model: the initial profile velocity values v0si differ from the exact
profile values up to 50%. The set of initial values is calculated as v0s1 = 0.8×vs1 = 960 m/s,
v0s2 = 1.2× vs2 = 1800 m/s, and v0s3 = 1.5× vs3 = 2700 m/s.

2. Compute the dispersion curves: the Rayleigh-wave fundamental mode is computed
using the theoretical solution for the model parameters at iteration k. The corresponding
Rayleigh-wave dispersion curve is dkc (fj).

3. Compute the Jacobian matrix: the approximated Jacobian matrix for the current
dispersion curve dkc (f) and model vksi is computed using equation 3.27. For the three-
layer model, 6 forward modelling problems are computed because a second-order finite
difference approximation was considered.

4. Update the model parameter: the S-wave velocity model is updated using equation
3.26 for mk = vksi. The damping factor α is exponentially decreasing with iterations, such
that, at the final iterations the variations in the model parameter are unpenalised and
the misfit value may descend to zero (only in ideal cases).

The algorithm iterates from step 2 to 4 until the S-wave velocity model presents small
variations with respect to the previous iteration. For the current example, 5 iterations
are necessary to correctly converge. The chosen α values and the vksi through iterations
are shown in Figure 3.9.

The computational cost of the inversion algorithm is proportional to the number of
forward problem computations performed in step 3. Here, the cost of the forward problem
depends on the number of model layers. As we were interested in the analysis for a small
number of parameters, we have not defined more efficient approaches (e.g. adjoint-state
method).

Estimation of 5 and 7 layer S-wave velocity using the fundamental mode only:
We have carried out S-wave velocity inversions for two different models: (1) a 5-layer
model (Table 3.1) and (2) a 7-layer model (Table 3.2). vp, ρ and h are considered known
and equal to the exact ones. We consider the 7-layer model as more complex than the 5-
layer one. The purpose behind these two examples is to show that convergence is usually
achieved only if the choice of initial velocity model is well constrained. Furthermore, a
damping factor dynamically changing with iterations can improve convergence.
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Figure 3.9: Damping factor (left) and S-wave velocities (right) for each iteration using the
Marquardt-Levenberg method for surface-wave inversion applied to the model of Figure
3.1.

Layer number vs (m/s) vs (m/s) ρ (kg/m3) h (m)
1 1200 2500 1000 6
2 1500 3000 1200 9
3 1800 3500 1400 13
4 2040 4125 1500 15
5 2160 4250 1600 ∞

Table 3.1: Elastic parameters for a 1D 5-layer medium.

Layer number vs (m/s) vp (m/s) ρ (kg/m3) h (m)
1 800 1500 750 5
2 1000 2300 1000 9
3 1440 3000 1200 11
4 1680 3500 1400 12
5 2040 4125 1500 15
6 2160 4250 1600 18
7 2400 4500 1750 ∞

Table 3.2: Elastic parameters for a 1D 7-layer medium.
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Figure 3.10: 5-layer model (Table 3.1) inversion with constant damping factor and no
weighting. Left: fundamental mode of Rayleigh-wave velocity. Right: S-wave velocities
for each iteration using the Marquardt-Levenberg inversion method.
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Figure 3.11: 7-layer model (Table 3.2) inversion without weighting or regularisation. Left:
the data are 25 samples of the fundamental mode of Rayleigh-wave velocity. Right: S-
wave profiles.

For the 5-layer medium, the observed dispersion curve contains 25 values of the
fundamental mode corresponding to 25 uniformly-sampled frequencies within the range
15-80 Hz (Figure 3.10, left). The initial S-wave velocity model is homogeneous with
v0s(li) = 1000 m/s, for i = 1, 2, ..., 5. The inversion algorithm correctly converged to the
exact model velocities after 7 iterations (Figure 3.10, right). The initial velocity model
is easy to be chosen because the exact model is simple (5 layers) in addition to known vp
and ρ.

For the 7-layer medium, the observed data are the fundamental mode sampled with
the same frequency range used in the 5-layer case (Figure 3.11, left). The initial S-
velocity model is homogeneous (v0s(li) = 1000 m/s). In this case, inversion diverged when
regularisation and weighting were not included (Figure 3.11). We have computed the
objective function for several models whose velocities range from the initial S-velocity
model to the exact one (Figure 3.12). As there are no secondary minima (at least in
the considered velocity range), the non-regularised inversion probably overestimated the
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Figure 3.12: Objective function when the initial Vs model is controlled by one single
model parameter. For mp=0, the initial model is the exact one. For mp=1, the initial
model is the constant model shown in 3.11. No local minima is observed in this range.

model update based on the strong misfit at low frequencies which leads to instability.
Furthermore, convergence is achieved when considering dynamic weighting and dynamic
regularisation (Figure 3.13).

The strategy consists in including heuristic criteria to chose L and α in inversion.
The diagonal values of L (Lj) are related to the misfit for each frequency value. The
objective is to decrease excessively high misfit contributions like, for example, the misfit
of low frequencies in Figure 3.11. At each iteration the weighting values are computed as

Lj = minval

{
0.1;

rmax
dkc (fj)− dobsc (fj)

}
, (3.28)

where ‘minval’ means minimum value and rmax = maxval{dkc (fj)− dobsc (fj)} is the max-
imum misfit value. A minimum weight value (0.1) is included because too small misfit
contributions might lead to neglecting the related residuals whereas we want to fit the
complete data set.

For the damping factor, we have considered that it should be smaller when approach-
ing convergence, i.e., objective function global minimum and smaller gradient projection.
Each iteration starts with αk0 = ¯|Gk|Φ(mk), where Gk = JTkL(d

k
c (fj) − dobsc (fj)). This

starting factor is simply the average of the absolute value of the gradient multiplied by
the objective function. The damping factor is then linearly decreased (αk = 10−pαk0) such
that the objective function is minimised for one p ranging from 0 to 20.

We analyse an additional result with the 7-layer model. We have switched the order
of layers 3 and 4, and 5 and 6, to test the inversion algorithm in the presence of velocity
inversions. Referring to Table 3.2, the order of layers for this test is: 1, 2, 4, 3, 6, 5, 7.
The inversion converged when using the dynamic damping and weighting (Figure 3.14).
In this particular case, it has been proved that this inversion method can retrieve the
correct velocity model even in the presence of velocity inversions in the model.

The Marquardt-Levenberg method with dynamic damping and weighting and invert-
ing only the fundamental mode of Rayleigh waves yields excellent results when the 1D
inverse surface-wave problem is well constrained: initial velocity model sufficiently close
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Figure 3.13: 7-layer model (Table 3.2) inversion including dynamic weighting and dynamic
regularisation. Top: data (left) and S-wave profiles (right). Bottom: dynamic damping
factor (left) and objective function (right) with iterations.
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Figure 3.14: 7-layer model (Table 3.2) inversion when the order of layers is changed to 1,
2, 4, 3, 6, 5, 7. Dynamic weighting and dynamic regularisation are included. Top: data
(left) and S-wave profiles (right). Bottom: dynamic damping factor (left) and objective
function (right) with iterations.
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Figure 3.15: 7-layer model (Table 3.2) thickness inversion. Left: the data are 25 samples
of the fundamental mode of Rayleigh-wave velocity. Right: thickness values through
iterations.
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Figure 3.16: Sensitivity analysis of the Rayleigh-wave velocity with respect to variations
in thickness for the model of Table 3.2. The dashed blue line indicates the beginning of
the chosen frequencies for the inversion process (15-80 Hz).

to the exact one, a non-overlapped fundamental mode and good a priori information
(P-wave velocity, density and thickness were supposed to be known in these examples).
When the other model parameters are unknown higher-order Rayleigh-wave modes should
be included in the inversion to correctly converge (Strobbia, 2002; Luo et al., 2007).

The set of frequencies should be chosen in a range such that the fundamental mode
is sensitive to all the layer’s velocity. For instance, if a small S-wave velocity variation in
one of the layers does not reflect any considerable change in the Jacobian matrix, then the
S-wave velocity of this layer cannot be retrieved by inversion. Finally, the convergence
rate appears to be controlled by the damping factor and the weighting matrix as shown
here using a heuristic definition.

Thickness estimation using the fundamental mode only: We used inversion to
estimate layer thickness for the 7-layer model (Table 3.2). The initial values of thickness
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Layer number vs (m/s) vp (m/s) ρ (kg/m3) h (m)
1 275 650 1820 1.2
2 325 650 1820 1.2
3 375 750 1860 1.2
4 425 750 1860 1.2
5 475 1400 1910 1.2
6 525 1400 1910 1.2
7 575 1800 1960 1.2
8 625 1800 1960 1.2
9 675 2150 2020 1.2
10 725 2150 2020 1.2
11 775 2150 2020 1.2

Half space 825 2800 2090 ∞

Table 3.3: Parameters of a model whose layer thicknesses are proportional to the exact
model ones (Table 3.2).

are 7 m for the first three layers and 15 m for the other four layers. vp, vs and ρ are con-
sidered known and equal to the exact ones. The layer thicknesses are correctly retrieved
after 10 iterations (Figure 3.15). In this example, the thicknesses of the three shallowest
layers are retrieved at the 5th iteration (Figure 3.15, right), while the thicknesses of the
deepest layers are retrieved at the 10th iteration. Such a behaviour can be explained by
a sensitivity analysis with respect to thickness. The rows of the Jacobian matrix are
plotted in Figure 3.16. This Figure shows that Rayleigh waves are less sensitive to vari-
ations in the thickness of the deepest layers for the chosen range of frequencies. In this
case, the convergence rate can be improved if the range of frequencies starts from 5 Hz
instead of 15 Hz. However, resolution issues of the dispersion curves at lower frequen-
cies could prevent us from including such low frequencies. An alternative solution that
can improve the sensitivity to deepest layers consists in including higher-order modes in
inversion (following example).

Inversion of one, two or three dispersion curves: In this example, the exact model
is the 7-layer one presented in Luo et al. (2007). For the first three tests, the initial model
parameters are taken from Luo et al. (2007) (Table 3.3). Although the initial values of
thickness are supposed to be unknown, they are considered here as being proportional to
the thicknesses in the exact model. We inverted either the fundamental mode (test 1),
fundamental plus one higher mode (test 2) or fundamental plus two higher modes (test
3). The results of inversion are shown in Figure 3.17. For test 1, the inversion algorithm
succeeded at matching observed and modelled data. However, the retrieved velocity
model does not correspond to the exact velocity model (Figure 3.17, top). For test 2,
the two considered dispersion curves are correctly explained and the retrieved velocity
model is closer to the exact one than for test 1 (Figure 3.17, middle). For test 3, the
three considered dispersion curves are correctly reconstructed and the retrieved velocity
model indeed corresponds to the exact velocity model (Figure 3.17, bottom). We can
therefore conclude that the lack of initial information about the thickness generated an
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Figure 3.17: Inverted data (left) and S-wave velocity profile (right) for exact, initial and
reconstructed models (legends are the same at right and left). Exact model thicknesses
are multiples of the initial model ones. Top: inversion of only the fundamental mode.
Middle: inversion of two modes. Bottom: inversion of three modes.
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Layer number vs (m/s) vp (m/s) ρ (kg/m3) h (m)
1 275 650 1820 1
2 275 650 1820 1
3 325 700 1840 1
4 325 750 1860 1
5 375 750 1860 1
6 425 1400 1910 1
7 475 1400 1910 1
8 525 1800 1960 1
9 575 1800 1960 1
10 575 1950 1990 1
11 625 2150 2020 1
12 675 2150 2020 1
13 725 2150 2020 1
14 775 2800 2090 1
15 825 2800 2090 1

Half space 825 2800 2090 ∞

Table 3.4: Parameters of a model whose layer thicknesses are not proportional to the
exact model ones (Table 3.2).
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Figure 3.18: Same as Figure 3.17 but exact model thicknesses are not multiples of the
initial model ones.
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erroneous velocity model after inversion of only the fundamental mode. The solution
to this problem is to consider more dispersion curves. The best result was obtained by
inversion of three dispersion curves.

In a final test, we invert three dispersion curves as for test 3 but with a different initial
model. We choose different values of thickness such that the exact model thicknesses are
not multiples of the initial model ones (see the elastic parameters in Table 3.4). The
results of this test are shown in Figure 3.18. The data are correctly reconstructed but the
velocity model does not coincide with the exact velocity model. In this case, the observed
data are ambiguous as two different velocity models can completely explain the observed
data. The objective behind this test was to show the data ambiguity in SWA.

3.3.3 Conclusions

The estimation of model parameters from surface waves recorded in the field is usually
done in three steps: data acquisition, processing and inversion (Socco and Strobbia, 2004).
We have described the last two steps presenting (1) the classical processing approach used
to extract the dispersion curves from shot gathers and (2) a least-squares fitting method
to solve the inverse problem.

The classical processing approach consists of computing the f − k spectrum, via the
2D Fourier transform, identifying the dispersion curves, and transforming them to the
f − v domain. The extraction of dispersion curves is successful only if certain conditions
are honoured. For example, the f − k resolution can affect the result especially at low
frequencies due to the f − k to f − v transformation. Moreover, the mode identification
in the f −k image can be difficult if the propagation modes are not sufficiently separated
and distinguishable. The first drawback could be avoided if the mode identification is
done directly in the f − v domain and some a priori information is available. The second
drawback is difficult to be handled and in some cases only apparent dispersion curves can
be extracted.

The goal of inversion is to find a set of 1D model parameters that minimise the
dispersion curve mismatch. The dispersion curves can be computed for 1D velocity models
but their computation is not clear for 2D and 3D models. Inversion can be applied to
one (fundamental mode) or several (fundamental and higher modes) dispersion curves.
The inverted model parameter is usually the distribution of S-wave velocity as a function
of depth because surface waves are more sensitive to this parameter. We have presented
examples using the least-squares inversion method with dynamic damping and dynamic
weighting. The results are satisfactory in well constrained inversion problems. However,
the dispersion curves can be explained by more than one velocity model, hence the data
are sometimes ambiguous in SWA. The inversion convergence depends on several factors:
initial velocity model sufficiently close to the exact one, good a priori information on
the other three model parameters, non-overlapped dispersion curves in the f − k image,
and the choice of a frequency range broad enough such that the surface-wave velocity is
sensitive to all the relevant S-wave velocities.
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3.4 Full waveform inversion (FWI)

The objective of FWI is to minimise the misfit between recorded shot gathers and syn-
thetic ones, from now on referred to as recorded data and modelled data. The synthetic
shot gathers are computed with wave propagation modelling. We work with the velocity-
stress formulation presented by Virieux (1986) (details in Chapter 2). In this section,
we present explicit formula for the gradient computation with the adjoint-state method
in 2D elastic isotropic media. A description of the two approaches used for the wavelet
source estimation is then given. Finally, we describe some alternatives to FWI that in-
clude modified objective functions. Numerical experiments are not presented here but in
Chapter 4 (different than for section 3.2).

3.4.1 Gradient computation

The misfit functional Φ(m) is defined in equation 3.12, with u = [vx, vz, σxx, σxz, σzz].
The model parameter m(x) for isotropic elastic media corresponds, for example, to the
Lamé parameters and density (λ(x), µ(x), ρ(x)), velocities and density (vp(x), vs(x),
ρ(x)), or impedances and density (Ip(x), Is(x), ρ(x)) (Tarantola, 1986). We only work
with the first set of model parameters understanding that any other combination can be
chosen depending on the objectives of inversion (Forgues and Lambaré, 1997; Prieux et al.,
2013a,b). Diffraction pattern analysis useful to define the best set of model parameters
for inversion of surface waves have not been done in this work.

Equations for elastic isotropic media

We would like to compute the gradient of the misfit function (equation 3.12) in the case
of the velocity-stress formulation (equation 2.2). The augmented Lagrangian is defined
in this case as

L(u,υ,m) = Φ(u)−
∑

src

∫ (
〈β∗

x, ρ∂tvx − ∂xσxx − ∂zσxz − ϕvx〉

+ 〈β∗

z , ρ∂tvz − ∂xσxz − ∂zσzz − ϕvz〉
+ 〈σ∗

xx, ∂tσxx − (λ+ 2µ)∂xvx − λ∂zvz〉
+ 〈σ∗

zz, ∂tσzz − (λ+ 2µ)∂zvz − λ∂xvx〉
+ 〈σ∗

xz, ∂tσxz − µ(∂xvz − ∂zvx〉
)
dt,

(3.29)

where υ = [β∗

x, β
∗

z , σ
∗

xx, σ
∗

xz, σ
∗

zz] is the adjoint-state variable. The initial boundary condi-
tions of state variables have been set to zero and are not shown in equation 3.29. These
conditions are equal to the final boundary conditions of the adjoint-state variable.

For conveniency in the implementation, we would like to find an auto-adjoint system.
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Thus, we have considered a change of variables for the adjoint stress components as

s∗xx = (λ+ 2µ)σ∗

xx + λσ∗

zz,

s∗zz = (λ+ 2µ)σ∗

zz + λσ∗

xx,

s∗xz = µσ∗

xz,

(3.30)

with [s∗xx, s
∗

xzs
∗

zz] being the new adjoint stress variables. The adjoint-state equations
are obtained by differentiation of the augmented Lagrangian with respect to the state
variable, as shown in equations 3.14 and 3.15. The result is the same either if the change
of variables is applied before or after differentiation.

The adjoint-state equations are obtained by differentiating equation 3.29 by applying
the change of variables of equation 3.30. This operation yields

∂tβ
∗

x =
1

ρ
(∂xs

∗

xx + ∂zs
∗

xz) +
∂Φ

∂vx
,

∂tβ
∗

z =
1

ρ
(∂xs

∗

xz + ∂zs
∗

zz) +
∂Φ

∂vz
,

∂ts
∗

xx = (λ+ 2µ)∂xβ
∗

x + λ∂zβ
∗

z ,

∂ts
∗

zz = (λ+ 2µ)∂zβ
∗

z + λ∂xβ
∗

x,

∂ts
∗

xz = µ(∂zβ
∗

x + ∂xβ
∗

z ).

(3.31)

These equations are similar to those of the direct functional but with different source
terms ∂Φ/∂vx and ∂Φ/∂vz, which are so-called residual sources. The equation system
3.31 has final boundary conditions equal to zero, which in the practice means that residual
sources must be back-propagated in time. Residual sources are obtained by differentiating
the objective function (equation 3.12) with respect to the components of velocity. Such
procedure gives

∂Φ

∂vx
(x, t) = Px(x, t)Kx(x)(Kx(x)vx(x, t)− dobsx (x, t)),

∂Φ

∂vz
(x, t) = Pz(x, t)Kz(x)(Kz(x)vz(x, t)− dobsz (x, t)),

(3.32)

where Px(x, t), Pz(x, t), Kx(x) andKz(x) are the functional representations of the weight-
ing matrix P(x, t) and the receiver selecting matrix K(x) in equation 3.12.

The expression for the gradient is obtained by differentiating equation 3.29 with re-
spect to the model parameters. The results of this operation considering the Lamé pa-
rameters and density are

∂Φ

∂λ
(x) = G(λ) =

∑

src

∫
(s∗xx + s∗zz) (∂xvx + ∂zvz)

2(λ+ µ)
dt, (3.33)

∂Φ

∂µ
(x) = G(µ) =

∑

src

∫ (
((λ+ 2µ)s∗xx − λs∗zz) ∂xvx

2µ(λ+ µ)

+
((λ+ 2µ)s∗zz − λs∗xx) ∂zvz

2µ(λ+ µ)

+
s∗xz (∂xvz + ∂zvx)

µ

)
dt,

(3.34)
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and
∂Φ

∂ρ
(x) = G(ρ) = −

∑

src

∫
(β∗

x∂tvx + β∗

z∂tvz) dt, (3.35)

where G(λ), G(µ) and G(ρ) are respectively the gradients with respect to λ, µ and ρ.

3.4.2 Source wavelet estimation

In real seismic inversion, the source wavelet is usually unknown. The estimation of the
source wavelet is in itself an inverse problem that can be solved either using the adjoint-
state method (Tarantola, 1984) or directly solving the linear inverse problem (Pratt,
1999).

Solution with the adjoint-state method

In the approach of (Tarantola, 1984), the wavelet source is stated as

ϕvz(x, t) = s(t)δ(x− xs), (3.36)

where s(t) is the source wavelet (or wavelet signature) and δ(x−xs) is a Dirac distribution
indicating the spatial position of the source at xs. In these equations, we refer only to
source on the vertical component ϕvz , but equations are the same for the horizontal
component ϕvx . The source wavelet estimate is iteratively updated according to

sk+1(t) = sk(t)−W
∂Φ

∂s(t)
, (3.37)

where W represents the inverse of the Hessian matrix or its approximation. The aug-
mented Lagrangian in equation 3.29 can be used to find an expression for the gradient
as

∂Φ

∂s(t)
=

∂L
∂s(t)

=

∫
βz(x, t)δ(x− xs)dx = βz(xs, t). (3.38)

In this approach, the gradient of equation 3.38 needs modelling the wave propagation
only once to obtain βz(xs, t) (back-propagation of residual sources).

Solution with linear inverse problem

In the approach of (Pratt, 1999), a component of the modelled data can be written as

dz(x, t) = s(t) ∗ uz(x, t), (3.39)

where s(t) is the source wavelet, the symbol ∗ denotes convolution in the time domain
and uz(x, t) is the Green’s function which can also be written as uz(x, t) = S(x)pz(x, t),
where S(x) is the matrix that selects the signals at the position of receivers and pz(x, t)
is the complete velocity field for an impulsive source ϕvz(x, t) = δ(x−xs). From equation
3.39, the objective function for a single source is

Φ =
1

2

∫ ∫
(s(t) ∗ uz(x, t)− doz(x, t))

2 dxdt. (3.40)
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The perturbation theory can be used to find the source wavelet as

s(t) = s0(t)−
(
∂2Φ

∂s20(t)

)
−1

∂Φ

∂s0(t)
, (3.41)

where s0(t) is a known background wavelet source,

∂Φ

∂s0(t)
=

∫
uz(x, t) ∗ (s0(t) ∗ uz(x, t)− doz(x, t)) dx (3.42)

and
∂2Φ

∂s20(t)
=

∫
uz(x, t) ∗ uz(x, t)dx. (3.43)

Expressions 3.42 and 3.43 can be substituted in equation 3.41 to obtain

s(t) = s0(t)− s0(t) ∗
∫
uz(x, t) ∗ uz(x, t)dx∫
uz(x, t) ∗ uz(x, t)dx

+

∫
uz(x, t) ∗ doz(x, t)dx∫
uz(x, t) ∗ uz(x, t)dx

(3.44)

and finally find the expression

s(t) =

∫
uz(x, t) ∗ doz(x, t)dx∫
uz(x, t) ∗ uz(x, t)dx

. (3.45)

As wave propagation modelling codes are usually used to compute dz(x, t) for a wavelet
source sc(t) (index c stands for current), equation 3.45 can be computationally imple-
mented as

s(t) = sc(t) ∗
∫
dz(x, t) ∗ doz(x, t)dx∫
dz(x, t) ∗ dz(x, t)dx

. (3.46)

The wavelet source estimation of equation 3.46 is often implemented in the frequency
domain (see Pratt (1999)). In such implementation, convolutions are replaced by multi-
plications. It is also a common practice to include a weighting matrix to focus the source
estimation on chosen seismic traces, for example on the near offset ones (Plessix and Cao,
2011).

In conclusion, the wavelet source can be numerically estimated with two different ap-
proaches. One of them is a gradient-based method (Tarantola, 1984). Back-propagation
of residuals is needed to obtain such gradient. The other approach includes the Hes-
sian and, because the inverse problem with respect to the source is linear in FWI, the
best source wavelet for the current velocity model is obtained in one iteration (Pratt,
1999). We are interested in the first approach because in Chapter 4 we will work with an
objective function which is non-linear with respect to the source wavelet.

In the next section, we briefly describe one of the usual ways of analysing the resolu-
tion in FWI. Then, we review some research works that investigate FWI with modified
objective functions. This information is needed because we are presenting an alternative
formulation in Chapter 4.
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3.4.3 Resolution and surface waves

Acoustic media
The interpretation of the wavepath can give an insight into the resolution power of FWI
(Virieux and Operto, 2009). We have implemented the equations presented in Wood-
ward (1992) to obtain the wavepath for a source-receiver pair in a 3D acoustic model
(Figure 3.19). The model is homogeneous with V p=2000 m/s. Free-surface conditions
are not considered. The maximum extension of the first Fresnel zone is F1 =

√
λosr, where

λ is the wavelength and osr is the source-receiver offset. λ depends on the considered
frequency.

The wavepaths for two mono-frequency sources are shown in Figure 3.19 (F1 is indi-
cated in blue and a vertical section across the wavepath is plotted in red). The length of
F1 defines the resolution of transmitted/refracted waves (Williamson, 1991; Pratt et al.,
1996). Outside the first Fresnel zone, isochrones can be observed (the first one is F1).
The distance between the peaks in the vertical section defines the resolution of reflected
waves. Such distance decreases as the frequency of the source is increased which in-
dicates the improvement of resolution offered by the high frequencies. FWI is a high
resolution inversion method because in principle it can invert all the events belonging to
the wavepath.

Elastic media
In the presence of elasticity and free surface, near surface interference is created by surface
waves. This effect represents an additional difficulty in elastic FWI (Brossier et al., 2009;
Gélis et al., 2007). To show this, we have computed two shot gathers (Figure 3.20)
considering the 1D velocity profiles employed in one example of SWA (Figure 3.13). In
this case, the initial data present strong phase shifs with respect to observed data due to
dispersion effects (Figure 3.20). Besides, even if the V p and ρ models are known, the lack
of heterogeneities in V s will prevent FWI from converging because of the initial phase
mismatch. The 1D gradients of the misfit function computed for this example show high
amplitudes concentrated in the first 10 m depth (Figure 3.21). Phase shifs of more than
half the wavelength and gradients with excessively concentrated amplitude in the near
surface are surface wave effects that need to be corrected.

Alternatives to reduce surface wave effects include, for example, the application of
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Figure 3.19: Acoustic wavepaths in a 3D medium (Woodward (1992)). Two monochro-
matic sources have been employed. The limit of the first Fresnel zone F1 is indicated in
blue. A vertical section across the wavepath is plotted in red.
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Figure 3.20: Elastic shot gathers (vertical component of velocity) at the surface for two
different Vs models (Figure 3.13, top right). Left: the Vs model is layered. Right: the Vs
model is homogeneous. The Vp and ρ models are identical for both shot gathers. Strong
phase differences prevent FWI from converging.
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Figure 3.21: 1D FWI gradients (for µ on the left, for λ on the right) considering the
initial profile of Figure 3.13. Higher values are concentrated in the first 10 m depth.
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temporal windows which increase the first arrival energy and attenuate surface waves
(Brossier et al., 2009; Romdhane et al., 2011). A different approach formulated in the
f − k domain will be presented and analysed in Chapter 4.

3.4.4 Alternative objective functions

FWI is a high resolution imaging technique that can be used to invert the complete
recorded seismograms (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009). Non-
linearities lead to local minima in the classical least-squares objective function. The
global minimum of the misfit function is related to the frequency content of the data:
high frequencies reduce the basing of the global minimum, Bunks et al. (1995). In the
presence of dispersive surface waves, high energy is expected in the high frequency content.
Frequency and time masking strategies have widely been investigated (Pratt et al., 1998;
Shin and Cha, 2008; Brossier et al., 2009; Bozdag et al., 2011; Liu et al., 2011; Romdhane
et al., 2011; Métivier et al., 2012; Moghaddam and Mulder, 2012; Alkhalifah and Choi,
2013; Baek et al., 2013; Masoni et al., 2013).

In some research works, it is proposed to solve the difficulties in the application of FWI
by implementing alternative objective functions. Those objective functions are usually
designed to make inversion more robust by reducing local minima effects, complement
the classical approach, or reduce the difficulty of including surface waves in inversion.
In this section, we briefly comment on some of those research works. We study this
because we are proposing an alternative objective function that hopefully will improve
the performance of waveform inversion when the data contains dispersive surface waves
(Chapter 4).

An alternative formulation that works in the Laplace domain is presented in Shin and
Cha (2008). The modified objective function is

Φa(m) =
1

2

∑

src

∫ S

−S

(ln(ṽ(m))− ln(d̃obs))2ds (3.47)

where the variables with the tilde ( ˜ ) have been transformed to the Laplace domain
and ln denotes the natural logarithm. The direct problem is formulated in the Laplace
domain and the gradient is computed with similar formula as for classical FWI. There is
however a difference with respect to FWI related to the residual source (more details can
be found in Shin and Cha (2008)). In that work, it is shown that the implementation
of an alternative objective function is useful to reconstruct a large wavelength (smooth)
model with almost no a priori information.

Another couple of alternative objective functions is presented in Bozdag et al. (2011).
In that work, the authors compare two misfit functions based on the envelope and on the
instantaneous phase of signals. The two considered measurements are found by means
of the analytic signal constructed from the seismograms and their Hilbert transform.
The adjoint kernels of the considered misfit functions are presented through numerical
examples in global seismology. Bozdag et al. (2011) conclude that the weighting char-
acteristics yielded by the proposed misfit functions help mitigating problems related to
high amplitudes. The authors suggest using these inversion procedures to complement
FWI.
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Another example of implementation of an alternative objective function is introduced
in Liu et al. (2011). In this case, the objective function is written as

Φd(m) =
1

2

∑

src

∫∫ Tm

0

(∫ t
0
(P (x, τ))2dτ

n(P (x, t))
−
∫ t
0
(P obs(x, τ))2dτ

n(P obs(x, t))

)2

dtdx, (3.48)

where P (x, t)) = P (x, t|m) is the pressure field for model m(x) and the denominators in
the right-hand side term are functions that compute normalisation factors as n(P (x, t)) =∫ Tm
0

(P (x, τ))2dτ and n(P obs(x, t)) =
∫ Tm
0

(P obs(x, τ))2dτ , with Tm representing the total
recorded time. By construction, the approach compares signals increasing with time and
not oscillatory signals as in the classical formulation. Therefore local minima effects are
reduced (Chauris et al., 2012; Donno et al., 2013). The residual source for the adjoint-
state computation is found by differentiation of the objective function of 3.48 with respect
to the pressure.

Some other strategies have been proposed to overcome the difficulty of defining an
initial velocity model. Alkhalifah and Choi (2013) propose an objective function based
on the instantaneous traveltime that can be used in inversion as a natural transition
from travel time tomography to FWI. Baek et al. (2013) proposes a least-squares misfit
based on registration as in image processing. The results with synthetic data show that
this inversion approach can converge to the exact velocity model in the presence of some
cycle-skipping problems.

Alternative objective functions are designed to deal with surface wave inversion in
(Masoni et al., 2013). The implementation of the least-squares misfit in addition to
weighted cross-correlation (van Leeuwen and Mulder, 2008) may result in a wider global
minimum basin. The singular value decomposition (SVD), which has several applications
in the context of surface waves could also be included in inversion (Moghaddam and
Mulder, 2012).

We will focus here on the f−k domain. We have seen that the main problem related to
surface wave inversion using FWI is related to the mismatch of data phase (Figure 3.20).
For this reason, special attention will be paid to the amplitude of surface waves in the
f − k domain while the phase will be partially neglected or ignored.

3.4.5 Conclusions

We have described the theoretical solution of the inverse seismic problem in the context
of full waveform inversion (FWI). The model parameter is updated trough a local search
whose direction is given by the gradient of the objective function. The adjoint-state
method proves efficienct for the computation of the gradient. The Hessian matrix can be
used in the context of Newton methods. The inverse of the exact Hessian matrix is how-
ever difficult to compute efficiently. However, the L-BFGS algorithm can be implemented
to compute an approximation (Nocedal, 1980).

We have developed mathematical expressions for the computation of the misfit func-
tion gradient with the adjoint-state method for Lamé parameters and density in 2D
elastic isotropic media (velocity-stress formulation) (Virieux, 1986). In our 2D elastic
Lagrangian formulation, the wave-propagation system is auto-adjoint, and therefore, the
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same implementation can be used for forward propagation and back-propagation mod-
elling. The inverse problem to estimate the source wavelet is linear in FWI. We will focus
on the gradient-based approach to solve this problem because we are proposing in Chapter
4 an alternative objective function which is non-linear with respect to the source wavelet
(see Chapter 4). We did not considere other elastic parameters as radiation patterns are
not yet investigated in the specific case of surface waves.

FWI is a high resolution imaging technique because all the recorded seismic waves can
theoretically be fitted to synthetic data computed for a set of model parameters. Some
potential problems may be encountered. For example, the global minimum vicinity is
strongly related to the frequency content of the data. The choice of initial model is more
difficult in the presence of surface waves. Some of the approaches proposed to overcome
these difficulties include the formulation of FWI with alternative objective functions.
We have reviewed some of these approaches because an alternative objective function is
proposed in Chapter 4. Several numerical tests will be used to evaluate results of classical
FWI and the novel technique (Chapter 4).

3.5 Discussion

We have reviewed two seismic inversion methods that can potentially deal with surface
waves: SWA and FWI. Inversion of dispersion curves yields excellent results when the
problem is well constrained in terms of a good initial model and good sensitivity with
respect to the relevant model parameters. If the problem is not well constrained, then
the retrieved velocity model is not equal to the exact one due to data ambiguities and
non-uniqueness of the solution. The retrieved model in such cases satisfies the same
boundary and continuity conditions across the layers. On the other hand, FWI can in
principle invert the amplitude and phase of recorded seismic waves. The dispersion of
surface waves creates and additional difficulty in the choice of the initial velocity model.
We consider the advantages and limitations of these two inversion techniques in order to
propose an intermediate approach for the inversion of surface waves.

In the next Chapter, we present an intermediate inversion approach together with an
analysis of its characteristics. We compare results of the proposed approach to FWI to
see if the constraint regarding the initial velocity model is reduced.
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Résumé du chapitre
Dans ce chapitre, nous présentons une nouvelle approche pour l’inversion des ondes de
surface dans des milieux 2D que nous appelons windowed-Amplitude Waveform Inversion
(w-AWI). Cette approche utilise une fonction objective définie dans le domaine f−k. Elle
est intermédiaire entre celles utilisées en Surface Wave Analysis (Xia et al., 1999; Socco
and Strobbia, 2004) et Full Waveform Inversion (Lailly, 1983; Tarantola, 1986; Pratt
et al., 1998; Virieux and Operto, 2009). La modélisation de la propagation des ondes est
faite avec le champ d’onde complet en utilisant la formulation vitesse-contrainte (Virieux,
1986) détaillée au chapitre 2. L’objectif de l’approche d’inversion intermédiaire consiste à
rendre plus flexible le choix du modèle de départ par comparaison avec la FWI. En outre,
les courbes de dispersion n’ont pas à être pointées comme pour la SWA. Une série des
tests numériques sur des données synthétiques démontre les avantages de cette nouvelle
approche.

La section 4.2 est consacrée aux développements théoriques de la w-AWI. La mise-à-
jour du modèle est réalisée avec une approche basée sur gradient de la nouvelle fonction
objective. Ce gradient est efficacement calculé selon la méthode de l’état adjoint (Plessix,
2006). L’ondelette source est estimée avec une approche de gradient car la nouvelle
fonction objective n’est pas linéaire par rapport à cette ondelette. Nous présentons aussi la
régularisation et le préconditionnement appliqué au gradient pour aider à la convergence.

La section 4.3 montre les résultats des tests numériques réalisés pour analyser et com-
parer les fonctions objectives des approches w-AWI et FWI. Nous étudions en particulier
la forme de la fonction objective, le phénomène de saut de phase, l’influence de la longueur
de la fenêtre en w-AWI et aussi le rôle des basses fréquences. D’après ces analyses, w-AWI
est une approche dont sa fonction objective a un bassin d’attraction autour du minimum
global plus large que celui pour la FWI. Les minimaux secondaires sont plus loin et moins
présents que pour la FWI grâce à la définition de la fonction objective dans le domaine
f −k. La longueur des fenêtres est un atout en w-AWI qui peut être exploité pour définir
des stratégies d’inversion. Enfin, tout le spectre de fréquences des données peut être
utilisé en w-AWI.

La partie 4.4 est dédiée aux tests d’inversion de données synthétiques avec w-AWI
et FWI. Nous montrons des exemples où le modèle initial est éloigné du modèle exact.
L’ondelette source est supposée inconnue dans certains tests. Les résultats montrent que
w-AWI est plus flexible que FWI en ce qui concerne le choix du modèle initial. L’approche
w-AWI peut retrouver un modèle de vitesse Vs qui est proche du modèle exact. La FWI
pourrait être appliquée ensuite pour reconstruire la phase des données qui n’a pas été
prise en compte par w-AWI. Le modèle élastique final sera ainsi amélioré.

Cette nouvelle formulation sera ensuite appliquée à un jeux de données réelles dont
les résultats sont présentés dans le chapitre 5.



4.1. Introduction 97

Abstract

We propose an alternative approach based on waveform inversion for reconstructing 2D
model parameters from surface waves. We replace the classical full waveform inversion
(FWI) objective function with a similar but alternative objective function formulated
in a different domain. The classical FWI objective function suffers from severe local
minima problems in the presence of reflected or dispersive waves. The presence of local
minima requires an excellent initial model. In our approach, the data are first split
using windows in the time-space t − x domain. For each window, the amplitude of the
frequency-wavenumber f − k spectrum is computed. The objective function is the least-
squares misfit between the observed and modelled 2D Fourier transformed datasets. We
call this formulation the windowed amplitude waveform inversion (w-AWI). The w-AWI
objective function reduces local minima problems as shown here through some numerical
examples. The global minimum basin is wider in the w-AWI approach than in the FWI
one. 2D inversion examples show that convergence towards the correct velocity model
can be achieved even when cycle-skipping is observed in the t − x domain. Besides,
full advantage of surface waves can be taken as w-AWI performs a good weighting of
low and high frequencies. This surface-wave inversion procedure can be used to retrieve
near-surface model parameters in lateral-varying media.

4.1 Introduction

The characterisation of the near surface (the first hundreds of meters) is essential for
improving seismic imaging of both shallow and deeper exploration targets. Conven-
tional seismic characterisation is done by analysing body waves. For example, first-arrival
traveltime tomography is used to reconstruct the long wavelength velocity model (Tail-
landier et al., 2009). Moreover, near-surface characterisation based on common-depth-
point (CDP) reflection profiling requires ultra high-frequency seismic data acquisition (a
few hundred Hz) (Knapp and Steeples, 1986). In these imaging methods, surface waves
are considered to be coherent noise that should be eliminated from the seismograms to
enhance body waves. However, surface waves commonly represent more than half the
seismic energy recorded in shot gathers and carry useful information. Surface waves are
dispersive in heterogeneous media (Thomson, 1950). Such property can be used to retrieve
model parameters and characterise the near surface (Nazarian and Stokoe II, 1984; Park
et al., 1999). Our objective is to use surface waves for reconstructing 2D high-resolution
near-surface velocity models. We propose a surface-wave inversion approach based on a
combination of the properties of two classical techniques: Surface Wave Analysis (SWA)
and Full Waveform Inversion (FWI).

In SWA, the objective function consists of the least-squares misfit between extracted-
from-shotgathers and modelled dispersion curves (Socco et al., 2010). The dispersion
curves are a representation of the frequency-dependent surface-wave velocities mapped
in the frequency-velocity (f − v) domain. We can often distinguish the fundamental and
the higher dispersion modes. Xia et al. (1999) used a Marquardt-Levenberg (Marquardt,
1963) inversion approach to estimate the S-wave velocity profile from the fundamental
mode only. Later on, multi-modal inversion was implemented to achieve reconstruction of
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more complex models (Xia et al., 2003; Socco and Strobbia, 2004). Classical multimodal
SWA requires separation and identification of different dispersion modes in the spectrum
(Maraschini et al., 2010). Difficulties can arise when the fundamental mode can not easily
be distinguished from higher modes.

The result of classical multi-modal SWA is a plane-layered depth-dependent model
described in terms of S-wave velocity, P-wave velocity and density. Surface-wave prop-
agation is more sensitive to S-wave velocity (Nazarian and Stokoe II, 1984; Xia et al.,
1999). As a consequence, surface-wave inversion is commonly used to reconstruct S-wave
velocity as a function of depth. Elastic waveform modelling is not required in this in-
version approach. Only the dispersion curves must be modelled (Lai, 1998) requiring
only modest computational efforts. Lateral velocity variations are usually handled by
interpolating 1D results (Tian et al., 2003), or by laterally constrained inversion (Socco
et al., 2009; Bergamo et al., 2012).

On the other side, FWI is an inversion procedure used to estimate a high resolution
model of the subsurface. The classical objective function consists of the least-squares
misfit between the complete recorded dataset and a synthetic dataset obtained by wave
propagation modelling (Lailly, 1983; Tarantola, 1984; Gauthier et al., 1986; Mora, 1988;
Pratt et al., 1998). In FWI, the inverse problem is currently solved with a local optimi-
sation approach. The gradient of the objective function is computed at each iteration by
cross-correlating forward and back-propagated wave fields (Tarantola, 1986). The syn-
thetic data are computed in the frequency domain (Brossier et al., 2009), or in the time
domain, by means of finite-element methods (Marfurt, 1984) or finite-difference methods
(Virieux, 1986). FWI has a high computational cost but is in principle able to exploit
the whole information carried by body and/or surface waves for the reconstruction of
the velocity model and other elastic parameters. Virieux and Operto (2009) presented an
overview of FWI including also the identification of the principal challenges to make FWI
as popular as migration techniques. They enumerated the challenges as (1) building accu-
rate starting models, (2) implementing minimisation criteria to increase robustness when
performing multi-parameter inversion, and (3) improving the computational efficiency to
make 3D elastic FWI feasible. In the 2D approximation, present-time computers are able
to handle elastic wave propagation in reasonable time; however local minima effects due
to inaccurate starting models are still an important challenge when inverting data that
contains reflections and/or dispersive waves.

In this chapter, we present an inversion approach designed to reconstruct 2D elastic
properties by inverting seismic data containing surface waves. We call it windowed-
Amplitude Waveform Inversion (w-AWI). It is based on a modification of the classical
FWI objective function proposed here for the purpose of reducing the presence of local
minima. In our alternative objective function, some simple preprocessing of data are
needed before computing the objective function value: (1) the data are split into sub-
sets of consecutive receivers (spatial windowing), (2) each subset is transformed to the
frequency-wavenumber (f − k) domain and only the f − k amplitude is considered, and
(3) the least-squares misfit between recorded and modelled subsets is computed. The
general objective function value is obtained by summing the misfits of each individual
spatial windowed subset. The data spatial windowing guarantees that the surface-wave
properties contributing to the objective function in a particular area are associated to



4.2. The windowed amplitude waveform inversion (w-AWI) 99

the medium that is below the considered receivers. In the same area, this is a way of
decreasing the dependence on the initial velocity model, and therefore, reducing local
minima. Besides, since the misfit is defined in the f − k domain, the w-AWI objective
function minimises not only the distance between dispersion modes as in SWA, but also
the wave energy as in FWI.

This chapter starts by presenting the theory underlying w-AWI (section 4.2). We show
that the model update in w-AWI is computed in similar ways as in FWI with the adjoint-
state method. We give details on the source wavelet estimation and the preconditioning
approach implemented by us. In section 4.3, we analyse the effects of local minima,
cycle skipping, width of spatial windows, residual source, gradient and low frequencies
in w-AWI compared to FWI. In section 4.4, we show several examples of synthetic data
inversion with or without a priori information. We also include examples regarding multi-
parameter inversion and low-pass data filtering. We present these examples with the
aim of explaining the advantages and limitations of the proposed surface-wave inversion
technique.

4.2 The windowed amplitude waveform inversion (w-

AWI)

We propose an inversion procedure that we call windowed-Amplitude Waveform Inversion
(w-AWI). The w-AWI is an approach similar to FWI but it uses a different objective
function. The goal of implementing such objective function is to increase the inversion
robustness when the seismic data contains surface waves while retrieving a high resolution
velocity model. The proposed objective function is a measure of the least-squares misfit
between the modes of propagation of surface waves present in modelled and observed
data mapped as amplitude information into the f − k spectrum. In this section, we
present the w-AWI objective function and compare the gradient computation to classical
FWI. Moreover, we explain how to estimate the source wavelet. Finally, we discuss
the regularisation and preconditioning used to improve the convergence rate and the
illumination weighting.

4.2.1 Model update and objective function

This inversion approach consists of a local search of a model parameter m in the model
space M that minimises a least-squares misfit functional Φ(m). The misfit functional is
stated as

Φ(m) =
1

2

∑

src

RT (m)R(m) (4.1)

where src stands for sources and R(m) = R(d(m),dobs) is a residual vector (defined
later in equation 4.3) between the synthetic data d(m) computed for a model parameter
m and the recorded (or observed) data dobs. The data consist of a physical measure of
the propagated wave, usually the particle velocity at the surface. The data are associated
with this velocity information as d(m) = Kv(m), where K is the matrix used to select
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velocity v(m) components at receiver positions. The computation of velocity v(m),
which defines the forward problem, is done with equations 2.2 (Chapter 2).

The model parameter m vector is updated through iterations. This means that a
model parameter at iteration k + 1, represented by mk+1, is updated starting from an
initial model parameter m0. In this approach, the misfit functional gradient is employed
to update the model parameter using a quasi-Newton method (details in section 3.2).
The model parameter is updated by

mk+1 = mk −W−1(mk)G(mk), (4.2)

whereG(mk) is the misfit functional gradient andW−1(mk) is the approximate inverse of
the Hessian. The gradient and Hessian correspond to the first and second order derivatives
of the objective function with respect to the model, respectively.

As in FWI, the w-AWI model parameter m vector contains at least a few thousands
of elements. Besides, wave propagation modelling is needed to explain the complete set
of registered data. These two characteristics impose computational restrictions on the
computation of gradient and inverse of the Hessian. Therefore, the gradient is computed
using the adjoint-state method (Plessix, 2006), and the approximate inverse of the Hes-
sian is computed using the limited memory-Broyden-Fletcher-Goldfarb-Shanno algorithm
including boundaries to prevent unphysical model updates (L-BFGS-B) (Nocedal, 1980).

Objective function

In w-AWI, the misfit depends on the absolute value of the f − k spectra of modelled and
observed data such that both the energy and dispersion properties of surface waves are
considered. Let us define the following intermediary residual

R(m) = (|D(m)| − |Dobs|), (4.3)

where |.| denotes the absolute value,

D(m) = F2D{d(m|t, x)} = F2D{d}(m|f, k) (4.4)

and

Dobs = F2D{dobs(t, x)} = F2D{dobs}(f, k), (4.5)

with F2D denoting the 2D Fourier transform expressed for a generic function g(t, x) as

F2D{g}(f, k) =
∫∫

g(t, x)e−i2πftei2πkxdtdx, (4.6)

where t represents time, x the horizontal Cartesian coordinate, f the frequency and k the
wavenumber. In classical FWI, the residual vector is defined as R(m) = d(m)−dobs. In
this chapter, the weighting matrix P(x, t) (equation 3.1) is equal to one, thus it is not
included in the objective function.

Please note that the residual defined in equation 4.3 is not equivalent to the classi-
cal FWI residual because the absolute value is applied to modelled and observed data
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Figure 4.1: Workflow for w-AWI residual computation (equation 4.8).

separately. On the contrary, a residual like R̃(m) = |D(m) − Dobs| defines an objec-
tive function similar to the classical FWI objective function (this can be proven using
Parseval’s theorem, Oppenheim et al. (1999), p. 60).

The phase information is neglected in the intermediary residual (equation 4.3). As a
result, lateral variations cannot be handled because velocity model perturbations could
not be properly localised. In such a case, inversion would only be successful for 1D models.
Otherwise, the local dependence of surface-wave dispersion can be used to relocalise
velocity perturbations. For this reason, w-AWI employs spatial windows to separate the
data into subsets of consecutive receivers. In this way, the residual principally depends
on the dispersion effect that occurred within the zone below the considered receivers.

The spatial windows are represented by wT
r (t, x) for r = 1, ..., nw with nw being the

number of windows. The w-AWI objective function is

Φ̃(m) =
1

2

∑

src

∑

r

RT
r (m)Rr(m), (4.7)

where the residual is defined as

Rr(m) = (|Dr(m)| − |Dobs
r |), (4.8)

and the data are computed as

Dr(m|f, k) = F2D{wT
r (t, x)d(m|t, x)} (4.9)

and
Dobs
r (f, k) = F2D{wT

r (t, x)d
obs(t, x)}. (4.10)

Equations 4.8 to 4.10 have been represented in the workflow shown in Figure 4.1

An example of the data considered in the w-AWI residual is shown in Figure 4.2. The
synthetic shot gather d(m|t,x) is shown on the top left (Figure 4.2). Besides, two differ-
ent windows named wa(t, x) and wb(t, x) are shown on the top right (Figure 4.2). These
windows will be used for computation of transformed data Dr(m|f, k) (equation 4.9).
The result of multiplying the shot gather by the windows is shown in the middle panels
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Figure 4.2: Example of data considered in the w-AWI residual. Top left: input shot
gather. Top right: two windows used to select traces in the shot gather (equation 4.9).
Middle: two subsets obtained by multiplying the shot gather by the windows (wa(t, x)
on the left; wb(t, x) on the right). Bottom: absolute value of the 2D Fourier transforms
of the two subsets shown in the middle.
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(Figure 4.2). The two images at the bottom (Figure 4.2) correspond to the f − k trans-
formed data |Dr(m|f, k)| to be used in the w-AWI residual (equation 4.8). Numerical
examples will show that this data transformation allows reducing objective function lo-
cal minima (created by phenomena like cycle skipping) while retrieving the same global
minimum as in FWI. A detailed numerical comparison of FWI and w-AWI is presented
in section 4.3.

4.2.2 Gradient computation

The misfit functional gradient is obtained using the adjoint-state method (Plessix, 2006).
As described in Chapter 3, this method requires computing one forward modelling and
one backward modelling. The gradient corresponds to the correlation between forward
propagated and back-propagated data.

The forward wave propagation in 2D isotropic elastic media is modelled with a first-
order hyperbolic system (Virieux, 1986). This system is

∂tvx =
1

ρ
(∂xσxx + ∂zσxz) + ϕvx ,

∂tvz =
1

ρ
(∂xσxz + ∂zσzz) + ϕvz ,

∂tσxx = (λ+ 2µ)∂xvx + λ∂zvz,

∂tσzz = (λ+ 2µ)∂zvz + λ∂xvx,

∂tσxz = µ(∂zvx + ∂xvz),

(4.11)

where x and z are the Cartesian coordinates, λ and µ are the Lamé parameters, ρ is
the density, (vx, vz) are the velocity components, (σxx, σzz, σxz) are the stress components
and (ϕvx , ϕvz) represent the source term.

The adjoint-state system (or back-propagation system) is found with equation 3.29 as

∂tβ
∗

x =
1

ρ
(∂xs

∗

xx + ∂zs
∗

xz) +
∂Φ̃

∂vx
,

∂tβ
∗

z =
1

ρ
(∂xs

∗

xz + ∂zs
∗

zz) +
∂Φ̃

∂vz
,

∂ts
∗

xx = (λ+ 2µ)∂xβ
∗

x + λ∂zβ
∗

z ,

∂ts
∗

zz = (λ+ 2µ)∂zβ
∗

z + λ∂xβ
∗

x,

∂ts
∗

xz = µ(∂zβ
∗

x + ∂xβ
∗

z ),

(4.12)

where β∗

x, β
∗

z , s
∗

xx, s
∗

xz and s
∗

zz are the adjoint-state variables (details in Section 3.4). Note
that these equations are similar to those of the wave propagation system but with some
modified sources ∂Φ̃/∂vx and ∂Φ̃/∂vz. The adjoint-state system can be computed with
the same forward wave propagation code. We refer the reader to Chapter 2 for more de-
tails on the forward modelling implemented here (second-order finite-difference on curved
grids).

The adjoint-state system (equation 4.11) has the following final boundary conditions:
at t = Tmax, the adjoint-state variables and their time derivatives are equal to zero. These
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conditions are a result of the initial boundary conditions of the state equations. The
practical implementation of the final boundary conditions consists of back-propagating
residual sources in time (Plessix, 2006). For more details, please refer to section 3.4.

The backward propagation system defined in equation 4.12 is almost exactly the same
as in FWI for 2D elastic isotropic media (equation 3.31). The only difference between
the gradient computation of FWI and w-AWI is the residual source (∂Φ̃/∂vx, ∂Φ̃/∂vz).
These new sources are retrieved by differentiating the misfit functional (equation 4.7)
with respect to velocity. This operation yields

∂Φ̃(m)

∂v(m)
= KT

∑

r

wrℜ
{
F−1

2D

{
Dr(m)

|Dr(m)|Rr(m)

}}
, (4.13)

where ℜ stands for the real part and F−1
2D represents the 2D inverse Fourier transform.

In general, equation 4.13 can be divided into three terms: (1) the multipliers KT and
wr, (2) the normalised term Dr(m)/|Dr(m)| and (3) the residual Rr(m). The multi-
pliers are the transposed of the ones used in the residual (equation 4.8), the normalised
term is related to the differentiation of |Dr(m)|, and the residual comes from considering
the least-squares misfit functional (equation 4.7). Details on the mathematical develop-
ment leading to equation 4.13 are shown in Appendix A. For comparison, the residual
source in FWI corresponds to ∂Φ(m)/∂v(m) = KTR(m). Indeed, the expression of the
w-AWI residual source is slightly more complicated than the FWI one. However, its com-
putation represents a minor computational cost in comparison to the wave-propagation
modelling. In the practice, if the term |Dr(m)| approaches to zero, then a small (10−3 of
the maximum amplitude) term ǫ0 is added to avoid numerical errors.

The equations for the correlation used to compute the w-AWI gradient are identical
to those of FWI (see Chapter 3 for details). We have defined the Lamé parameters (λ
and µ) and the density (ρ) as model parameters. The gradients for λ, µ and ρ are

G(λ) =
∂Φ̃

∂λ
=
∑

src

∫
(s∗xx + s∗zz) (∂xvx + ∂zvz)

2(λ+ µ)
dt, (4.14)

G(µ) =
∂Φ̃

∂µ
=
∑

src

∫
((λ+ 2µ)s∗xx − λs∗zz) (∂xvx)

2µ(λ+ µ)

+
((λ+ 2µ)s∗zz − λs∗xx) (∂zvz)

2µ(λ+ µ)

+
(s∗xz) (∂xvz + ∂zvx)

µ
dt,

(4.15)

and

G(ρ) =
∂Φ̃

∂ρ
= −

∑

src

∫
β∗

x∂tvx + β∗

z∂tvzdt. (4.16)

4.2.3 Source wavelet estimation

The source wavelet is an additional unknown in seismic data inversion. To estimate
this unknown, Pratt (1999) takes into account the linearity of the source wavelet inverse
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problem in FWI and retrieves formula to directly compute the optimal wavelet at each
iteration. The expression for the source wavelet estimation in FWI is stated as

sP (f) =
uT (f)dobs(f)

uT (f)u(f)
, (4.17)

where sP (f) is the source wavelet in frequency f , u(f) is the data modelled for an
impulsive source and dobs(f) represents the observed data in frequency (Pratt, 1999).
In w-AWI, however, the source wavelet inverse problem is non-linear because of the
definition of its residual (equation 4.8). Tarantola (1984) presented a gradient-based
wavelet estimation approach using the adjoint-state variable. We propose estimating the
source at each iteration using the quasi-Newton method.

The source wavelet must minimise the same misfit functional used for the model pa-
rameter inversion (equation 4.7). The unknown is the source wavelet and the model
parameter is considered to be known at iteration k. The modelled data are defined as a
convolution of the source wavelet and the Green’s function. The data d(mk|t) of equation
4.9 is represented in the frequency domain at iteration k by

d(mk|f) = ss(f)u(m
k|f), (4.18)

where ss(f) represents the source wavelet (or wavelet signature) defined in the frequency
domain and d(mk|f) represents the Fourier transform in time of the modelled data.

The source wavelet is updated iteratively using

sl+1
s = sls −W−1

s Gs, (4.19)

where Gs = ∂Φ̃(sls)/∂s
l
s represents the gradient of the misfit functional with respect to

the source wavelet, and Ws = ∂2Φ̃(sls)/∂(s
l
s)

2 is the inverse of the Hessian matrix (or an
approximation). In this work, the approximate inverse of the Hessian is computed using
the L-BFGS method (Nocedal, 1980). For the gradient, the first order derivative can be
separated as

∂Φ̃(ss)

∂ss
=
∂d(ss)

∂ss

∂Φ̃(ss)

∂d(ss)
, (4.20)

such that the needed gradient is written as

Gs(ss) = uT (mk)F
{
∂Φ̃(ss)

∂d(ss)

}
, (4.21)

where F{∂Φ̃(ss)/∂d(ss)} corresponds to the Fourier transform in time of the residual
source stated in equation 4.13 without including the term KT . For each source update,
this approach needs computing the 2D Fourier transform. Back-propagation of residuals
is not required.

4.2.4 Gradient regularisation and preconditioning

The convergence rate can be improved by gradient preconditioning and/or regularisation.
We have implemented here depth-dependent preconditioning and gradient smoothing.
The implemented approach is defined as follows.
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Surface-wave amplitude decays exponentially with depth similarly to electromagnetic-
wave amplitude. Therefore, an amplitude compensation used in resistivity imaging with
electromagnetic data could also be applied in surface-wave inversion (Plessix and Mulder,
2008). We included a scaling of the model with depth such that the scaled model is

m̂ =
1

z
m, (4.22)

which turns the objective function into

Φ̂(m̂) = Φ(zm̂) = Φ(m), (4.23)

and the gradient into
∂m̂Φ̂(m̂) = z∂mΦ(m) (4.24)

The scaled model is updated with

m̂k+1 = m̂k − (Ŵ∂m̂Φ̂(m̂))k (4.25)

where Ŵ is the approximate inverse of the Hessian for Φ̂(m̂) and m̂.

As a gradient regularisation approach, we smooth the gradient at each iteration by
means of a 2D gaussian window. This window is computed as

g(x0, z0) =
1

παxαz
e−(

x−x0
αx

)
2

e−(
z−z0
αz

)
2

(4.26)

where (x0, z0) is the position of the sample to be smoothed in the model and (αx, αz)
define the shape and the dimensions of the 2D gaussian window.

4.3 Analysis of w-AWI

FWI is used to solve an ill-posed and non-linear inverse problem. The presence of local
minima in the objective function is only avoidable if very low frequencies are considered
(Bunks et al., 1995; Mulder and Plessix, 2008). Convergence toward a secondary minimum
is commonly caused by the so-called cycle-skipping problems (phase difference of more
than half the wavelength) (Bunks et al., 1995; Virieux and Operto, 2009). In FWI, the
data may not suffer from cycle skipping in the t − x domain. The w-AWI objective
function is formulated in the f − k domain and therefore an analysis of its behaviour
with respect to cycle skipping and local minima in this domain must be performed.

The aim of this section is to analyse the properties and performance of the w-AWI
objective function and to compare it to FWI using 2D synthetic data. Please note that we
compute the gradients with respect to Lamé parameters and density (equations 4.14, 4.15
and 4.16), but inversion results are shown from now on in terms of Vp (P-wave velocity)
and Vs (S-wave velocity) as these parameters are more commonly used in geophysics.
Regarding the tests conducted in this section, we evaluate the objective function shape
using a simple 2D velocity model. In our example, w-AWI shows a global minimum basin
wider than FWI. We also evaluate the role of the window width in w-AWI approach.
Finally, we show some examples where low-pass frequency filtering is necessary to avoid
cycle-skipping effects in FWI but is not necessary in w-AWI.
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Figure 4.3: Elastic models used to compute synthetic data representing our observed
data. Left: P-wave velocity (top) and density (bottom) homogeneous models. Right:
S-wave velocity model (top) and the discretisation grid (bottom) conforming with the
anomaly.
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Figure 4.4: Horizontal (left) and vertical (right) velocity component of observed data. The
data represent surface recordings and were computed for the model shown in Figure 4.3.

4.3.1 Objective function shape and local minima

We perform here a numerical evaluation of w-AWI and FWI objective functions using a
simple model that depends only on two parameters. The 450×100 m model has constant
P-wave and density (Vp = 2000 m/s and ρ = 1000 kg/m3, see Figure 4.3). The S-wave
velocity profile consists of a homogeneous background (Vs0 = 800 m/s) containing a non-
rectangular velocity anomaly (Vs1 = 980 m/s) as shown in Figure 4.3 (top right). The
grid conforms with the anomaly to prevent the appearance of non-physical diffractions
(Figure 4.3 bottom right). Free-surface conditions are imposed on the top boundary of
the model and CPML conditions are set on the lateral and bottom boundaries.

The observed data are the horizontal and vertical velocity components. The source
considered is a 40 Hz Ricker wavelet applied on the vertical component of velocity and
placed 0.5 m below the surface at the horizontal position of 50 m (see Figure 4.3). A
total of 450 receivers placed at the source depth and equally spaced of 1 m apart were
considered to compute the vertical and horizontal components of velocity. The observed
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Figure 4.5: Normalised objective function value with respect to two parameters: back-
ground (Vs0) and anomaly (Vs1) velocities. Left: FWI. Rigth: w-AWI.

800 1000 1200 1400

0.2

0.4

0.6

0.8

1

Vs
0
 (m/s)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

 

 

FWI

w−AWI

600 800 1000 1200 1400

0.2

0.4

0.6

0.8

1

x

Vs
1
 (m/s)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Figure 4.6: Normalised objective function curves taken from Figure 4.5 at Vs1=980 m/s
(left) and Vs0 = 800 m/s (right). The red ‘x’ on the right-hand side plot indicates
Vs1=920 m/s.

shot gathers are displayed in Figure 4.4. The observed data contains dispersive surface
waves that are created when the direct S wave impinges onto the velocity anomaly. A
direct P wave and some other low-energy reflections from surface waves can be observed
as well.

We compute the objective function values using several velocity models with different
background and anomaly S-wave velocities. The P-wave velocity and density profiles
remain unchanged and equal to the exact model. The S-wave background velocities
range from 600 m/s to 1400 m/s whereas the anomaly velocities range from 400 m/s to
1400 m/s. In w-AWI computation, the overlapping windows used for data separation are
spaced 4 m and are 128 m wide. The resulting objective function for FWI and w-AWI
are shown in Figure 4.5. This example shows that w-AWI has a wider global minimum
basin than FWI. As an interpretation of this result, one can say that convergence with w-
AWI is guaranteed for the complete evaluated velocity range while FWI should converge
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velocity is Vs1 = 1.15Vs0. The black circle indicates the source position.
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Figure 4.8: Objective function with respect to one model parameter α and computed with
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legend is the same for the four plots.

only for a reduced zone (i.e. the global minimum basin). Two slices of the objective
functions of Figure 4.5 are shown in Figure 4.6. Those slice plots are taken (1) for the
correct background velocity and varying anomaly velocity and (2) for the correct anomaly
velocity and varying background velocity as indicated by the white lines in Figure 4.5.
We can observe that for both tests the w-AWI basin is at least 3 times wider than the
FWI basin. However, the shape of w-AWI basin does not seem to conform with a typical
quadratic function.

As an additional test, we computed FWI and w-AWI objective functions using Ricker
wavelets with different central frequencies. We aim at evaluating the frequency value that
FWI needs to provide a global minimum basin having similar width than that of w-AWI.
The P-wave and density models are homogeneous (Vp=2500 m/s and ρ = 1000 kg/m3).
The S-wave velocity model is homogeneous (Vs0=1200 m/s) and contains an anomaly
with velocity Vs1 = (1 + α)Vs0, where α is the anomaly parameter. The exact S-wave
velocity model is homogeneous (α = 0) and, as initial models, we consider several values
of the anomaly parameter ranging from α = −0.5 to α = 0.5. An example of initial
velocity model, with α = 0.15, is shown in Figure 4.7.

The results are shown in Figure 4.8. The FWI and w-AWI global minimum basins
are similarly wide if a 12.5 Hz Ricker wavelet is used in FWI and a 40 Hz one is used in
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Figure 4.9: Same as Figure 4.8 but using monochromatic signal sources. The legend is
the same for the three plots.

w-AWI (Figure 4.8, top left). Moreover, there is equivalence between FWI at 20 Hz and
w-AWI at 70 Hz (Figure 4.8, top right), FWI at 30 Hz and w-AWI at 100 Hz (bottom
left) and finally FWI at 60 Hz and w-AWI at 200 Hz (bottom right). In average, the
width of the FWI global minimum basin is similar to the w-AWI one if the FWI Ricker
wavelet central frequency is approximately 0.3 times the frequency of the w-AWI one.

The previous test can be complemented by considering monochromatic source time
functions instead of the Ricker wavelet. The results (Figure 4.9) indicate that FWI and
w-AWI global minimum basins are similar if the frequency used in FWI is approximately
half the frequency used in w-AWI.

The w-AWI objective function has a wider global minimum basin when using both a
broad-band source and a monochromatic source, which might be the result of a better
frequency weighting in w-AWI. As a consequence, the minimum source frequency related
to the choice of an initial velocity model is at least two times higher in w-AWI than in
FWI.

4.3.2 Cycle skipping

We present an analysis of the cycle skipping in FWI and w-AWI. We consider the ob-
served data obtained with the model of Figure 4.3, and the S-wave velocity initial models
shown in Figure 4.10. Two S-wave initial models are homogeneous with Vs0=600 m/s
(model 1) and Vs0=800 m/s (model 2). The third initial model has background velocity
Vs0=800 m/s and contains an anomaly with Vs1=920 m/s (model 3). The modelled data
(d) for the three different models are shown in Figure 4.11. Dispersive surface waves are
present only in the data computed for the model containing the anomaly. For the two
other cases, the Rayleigh wave velocity is constant because the model is homogeneous.
In Figures 4.12, 4.13 and 4.14, we compare seismic traces of observed and modelled data
at three different offsets indicated by the red dashed lines in Figure 4.11. For model 1,
the Rayleigh wave of modelled data has cycle skipping for the three offsets. For model 2,
the Rayleigh waves propagate with similar velocities but the dispersion generated by the
velocity anomaly create phase problems in traces 2 and 3 (Figure 4.13). Finally, none of
the three traces for model 3 are cycle skipped because the initial model anomaly is only
6 % lower than the exact one. Indeed, model 3 is the only initial model falling into the
basin of the objective function global minimum (the red cross in Figure 4.5, right).

We now consider the input data processed in the f − k domain. First, we present
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Figure 4.11: Initial data (vertical component of velocity) computed with the S-wave
velocity models of Figure 4.10. Left: model 1. Centre: model 2. Right: model 3.
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Figure 4.12: Observed and modelled data for model 1 (Figure 4.10) taken at three offset
positions: 62 m (top), 164 m (middle) and 286 m (bottom).
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Figure 4.13: Observed and modelled data for model 2 (Figure 4.10) taken at three offset
positions: 62 m (top), 164 m (middle) and 286 m (bottom).
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Figure 4.14: Observed and modelled data for model 3 (Figure 4.10) taken at three offset
positions: 62 m (top), 164 m (middle) and 286 m (bottom).
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Figure 4.15: Real part of the 2D Fourier transform of observed and modelled data for
model 1 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.16: Real part of the 2D Fourier transform of observed and modelled data for
model 2 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.17: Real part of the 2D Fourier transform of observed and modelled data for
model 3 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.18: Absolute value of the 2D Fourier transform of observed and modelled data
for model 1 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.19: Absolute value of the 2D Fourier transform of observed and modelled data
for model 2 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.20: Absolute value of the 2D Fourier transform of observed and modelled data
for model 3 (Figure 4.10) taken at k = 0.05 m−1. The lw = 128 m windows used here are
centred at 62 m (top), 164 m (middle), and 286 m (bottom).
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Figure 4.21: Same as Figure 4.18 (model 1 ) but using lw = 64 m windows.

comparisons of sections taken at k = 0.05 m−1 in the real part of the f − k spectra
of the seismic responses of the initial and exact models. We computed the 2D Fourier
transform of three subsets of the shot gathers using windows whose centres coincide with
the selected three traces shown in Figures 4.12 to 4.14. The window width is lw = 128 m.
Results are shown in Figures 4.15, 4.16 and 4.17. For model 1 (Figure 4.15), the slices
are not in correct cycle matching for any of the three positions similarly to the result of
Figure 4.12. For model 2 (Figure 4.16), the slices have less cycle mismatch than for the
seismic traces (Figure 4.13), however, it is not clear if they are in correct cycle matching.
Finally, as for seismic traces (Figure 4.14), the three slices associated to model 3 are in
correct cycle match (Figure 4.17) because the initial model is quite close to the exact
model.

Contrary to the seismic traces and the real part of Fourier transformed data, the
absolute value of Fourier transformed data can be in correct cycle matching even for
the most different exact and initial models of these tests. We computed the 2D Fourier
transform of observed and initial data using the same spatial selection windows as for
the real part of the f − k spectra (shown previously). In Figures 4.18, 4.19 and 4.20,
we show the amplitude of spectra for the same wavenumber value (k = 0.05 m−1) as
for the real part. The comparisons show that observed and initial transformed data are
in correct cycle match for models 2 and 3 (Figures 4.19 and 4.20). Note however that
there is a cycle mismatch in model 1 (Figure 4.18) We have found that it can be avoided
if a smaller spatial window is used. As an example, we show in Figure 4.21 the slices
for model 1 when the windows width is reduced to lw = 64 m. We observe that the
energy of the fundamental mode is more extended in the frequency domain than for the
result using the wider window. This result is interesting when designing strategies for
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Figure 4.22: Exact and initial elastic models. The exact and initial P-wave velocity (top,
left) and density (bottom, left) models are homogeneous. The exact (top, right) and
initial (bottom, right) S-wave velocity models only differ for the velocity inclusion.
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Figure 4.23: Shot gathers showing the vertical component of velocity. Observed data
(left) and initial data (right).

convergence from initial models that are significantly different from the exact model.
However, implementing shorter windows may generate losses in resolution when applying
the 2D Fourier transform.

The images presented in this section support the results shown in section 4.3.1 as
there are no visible secondary minima in w-AWI for the evaluated range of velocities (see
Figure 4.5). However, this result does not mean that w-AWI does not have secondary
minima. This example is a numerical test that shows how wide the global minimum
basin can be with w-AWI with respect to FWI. We use this result as a motivation for
inversion examples where the FWI reconstructed model does not converge because of
cycle-skipping phenomena generating local minima effects, and we check if w-AWI would
instead converge.

4.3.3 Width of spatial windows

In this section, we analyse the influence of the width of the spatial window in w-AWI
(equations 4.9 and 4.10) on the smoothness of the objective function. We consider ob-



118 Chapter 4. An alternative approach for inversion of surface waves

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−2

0

2

Time (s)

V
z
 (

m
/s

)

 

 

Observed

Initial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−2

0

2

Time (s)

V
z
 (

m
/s

)

 

 

Observed

Initial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−2

0

2

Time (s)

V
z
 (

m
/s

)

 

 

Observed

Initial

Figure 4.24: Observed and modelled seismic traces taken at three offset positions: 62 m
(top), 164 m (middle) and 286 m (bottom).

served and initial data computed for two simple elastic models. The exact and initial
P-wave and density models are homogeneous with Vp = 2000 m/s and ρ = 1000 kg/m3

as shown in Figure 4.22 (left). The S-wave exact model consists of a homogeneous back-
ground (Vs = 1000 m/s) containing a velocity anomaly (Vs = 1200 m/s) as shown in
Figure 4.22 (top, right). The initial S-wave velocity model is completely homogeneous
(Vs = 1000 m/s, see Figure 4.22 bottom right). The observed and initial data are the
vertical component of velocity recorded by 450 receivers equally spaced 1 m at a depth
of 0.5 m. The source time function is Ricker wavelet with a dominant frequency of 40 Hz
placed at the horizontal position of 50 m at 0.5 m depth, as indicated by the red circle in
the P-wave model of Figure 4.22. The computed shot gathers are shown in Figure 4.23.
The main difference is the presence of slightly dispersive waves and reflections in the ob-
served data generated by the anomaly, whereas for the initial data the Rayleigh wave has
constant velocity and no reflections are present. Three seismic traces, before/within/after
the anomaly, as indicated in Figure 4.23, are compared in Figure 4.24. The traces before
the anomaly (top of the figure) are almost identical (the difference are the very low-energy
reflections at 0.25 s and 0.35 s). The traces within and after the anomaly are more differ-
ent. Please note that the Rayleigh wave after the anomaly should have the same velocity
as before the anomaly, however the seismic traces after the anomaly are different as the
waveform is modified when it passes through the anomaly. This seems to be quite obvious
but later on we will show that the input data of w-AWI behaves differently, depending
on the length of the employed spatial windows.

In Figure 4.25, we show the 2D Fourier transform of the whole observed (on the left)
and initial (on the right) shot gathers. The two sets of transformed data do not seem to
be identical but it is not possible to localise the anomaly as we could do with the shot
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Figure 4.25: Absolute value of the 2D Fourier transform of observed (left) and initial
(right) data. The window used here contains the whole set of traces (lw = 450 m).
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Figure 4.26: Slices of the data shown in Figure 4.25 taken at k = 0.05 m−1.

gathers of Figure 4.23. Moreover, we can take a slice of the data for a given wavenumber
value, as shown in Figure 4.26, to confirm that by taking the 2D Fourier transform of the
whole shot gather it is not possible to know where the anomaly is localised. That is the
consequence of ignoring the phase in the computation of the objective function in w-AWI.
This is the reason for using a spatial windowing that reintroduces some information about
the lateral localisation of model misfits (i.e. velocity anomalies).

We use several windows to gather subsets of receiver traces before applying the 2D
Fourier transform. Each 2D window includes a sin2(2πα) taper at the four boundaries,
with α being the length of the taper to avoid ringing when applying the Fourier trans-
form. Three different window lengths are considered: lw =256 m, 128 m and 64 m. In
Figure 4.27, we show the amplitude of the 2D Fourier transform of the observed and
initial data for three windows with lw =256 m whose centres are indicated by the ar-
rows of Figure 4.22 (top left). Observed and initial data spectra are different, but it is
not possible to identify the anomaly position (Figure 4.27). The slice plot (Figure 4.28)
comparing initial and observed data for a given wavenumber value displays a clear misfit
for the three windows. But in this case, the parameter lw defines a long window that
includes the receivers above the anomaly in all three windows. The spectra for windows
with lw = 128 m are shown in Figure 4.29. Even if spectra seem similar, the slice com-
parison (Figure 4.30) reveals differences only in one of the three windows: the window
centred above the velocity anomaly. In this case, the other two windows do not include
any of the receivers located above the anomaly. For lw = 64 m (Figure 4.31), the energy
of the fundamental mode is extended and is not as concentrated in the frequency domain
as for the previous cases. In the slice comparison (Figure 4.32), we observe that the only
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Figure 4.27: Absolute value of the 2D Fourier transform of observed (top) and initial
(bottom) data. The lw = 256 m windows are centred at 62 m (left), 174 m (middle), and
286 m (right).
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Figure 4.28: Slices of the data shown in Figure 4.27 taken at k = 0.05 m−1. The
lw = 256 m windows are centred at 62 m (top), 174 m (middle), and 286 m (bottom).
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Figure 4.29: Same as Figure 4.27 but using lw = 128 m windows.
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Figure 4.30: Slices of the data shown in Figure 4.29 taken at k = 0.05 m−1. The
lw = 128 m windows are centred at 62 m (top), 174 m (middle), and 286 m (bottom).
There is almost no difference in the bottom panel because the corresponding windows
mostly select receivers (222-350 m) that are not above the anomaly (200-250 m).
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Figure 4.31: Same as Figure 4.27 but using lw = 64 m windows.
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Figure 4.32: Slices of the data shown in Figure 4.31 taken at k = 0.05 m−1. The lw = 64 m
windows are centred at 62 m (top), 174 m (middle), and 286 m (bottom).
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Figure 4.33: Adjoint sources computed with windows of different widths lw. All the
windows centres are separated by 4 m, at the exception of the one with lw = 450 m.

window with a remarkable misfit is the one including receivers located above the anomaly
(i.e. the central window).

4.3.4 Adjoint source and gradient

In this test, we evaluate the adjoint-state residual source and the gradient for w-AWI.
The observed and initial data are the ones shown in Figure 4.23. We compute the residual
source related to the vertical component of velocity. Different than for the test in section
4.3.3, we use 4 sliding windows with lw = 450, 256, 128 and 64 m. For the lw = 450 m
window, the complete shot gather is transformed only once because the window width
is equal to the shot gather width. For the other windows, several windows are used to
separate the shot gather into subsets of receiver traces. Their centres are separated by
4 m. Please note that the computation of the residual source consists in separating the
shot gather into windows of width lw, then computing equation 4.13 which includes the
sum of the 2D inverse Fourier transform over the windows.

The adjoint sources computed with the 4 different window widths are shown in Fig-
ure 4.33. For the 450 m window, the adjoint source contains several repetitions of the
residual misfit. This effect is a consequence of the absolute value that neglects the phase
information and thus the location of events in the t−x domain. For the 3 other windows,
the adjoint source contains more concentrated energy with less repetitions. The source
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Figure 4.34: The w-AWI gradient computed with the window configurations of Figure
4.33. The position of the exact velocity anomaly of the model is contoured in black.

obtained with the 256 m wide window contains less repetitions as some information about
the phase is reintroduced thanks to the implementation of the localised windows. How-
ever, the energy is excessively spread over the middle section which could prevent the
localisation of the anomaly in the gradient. The 128 m window provides a good adjoint
source as the anomaly location can be identified by the energy concentration towards the
centre of the gather. The 64 m window offers the clearest adjoint source as most of the
energy is concentrated between offsets 150 m and 200 m, which is the actual location of
the anomaly.

The gradients obtained with the 4 sliding windows are shown in Figure 4.34. The
use of the 450 m window leads to a gradient with maximum amplitude distribution
non-centred with respect to the exact anomaly position because the phase is neglected.
Besides, the amplitude is excessively extended outside of the anomaly limits (Figure 4.34).
This gradient would update the model in an erroneous direction. The gradient computed
with the 256 m window has an amplitude centred with respect to the anomaly position.
However, the amplitude is still extended outside the anomaly position. For the last
two window widths, the amplitude distribution is correctly centred with respect to the
anomaly and coincides more with its location. However, the gradient obtained with
the 64 m wide window exhibits some amplitude oscillations that might affect the model
update. We conclude that even if the 128 m window is roughly 2.5 times longer than the
anomaly (50 m as shown in Figure 4.22), the gradient shows a good trade-off among all
the analysed results.

4.3.5 Low frequencies

Low frequencies in the data can help reducing the phase mismatch between observed and
modelled data. Multi-scale approaches have been proposed to reduce the phase mismatch
by starting the inversion with lowpass-filtered data and then gradually introducing higher
frequency contents (Bunks et al., 1995; Brossier et al., 2009; Romdhane et al., 2011; Köhn
et al., 2012). We have not yet established if a multi-scale approach would be suitable
in waveform inversion of surface waves as it is the case for transmitted/diving wave
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Figure 4.35: S-wave velocity profile consisting of a homogenous background and a velocity
anomaly.
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Figure 4.36: Seismic common shot gather showing the vertical component of velocity
recorded near the surface. The source signature is a 40 Hz Ricker wavelet. Source
excitation is along the vertical direction.

inversion (Mulder and Plessix, 2008; Plessix et al., 2012). In this paragraph, we analyse
the advantage offered by inversion of low frequencies in shot gathers containing surface
waves.

We consider a 450× 100 m velocity model whose P-wave velocity and density models
are homogeneous (Vp = 2000 m/s and ρ = 1000 kg/m3). The S-wave velocity model
(Figure 4.35) consists of a homogeneous background (Vs0 = 800 m/s) with a non-perfectly
rectangular velocity anomaly (Vs1 = 920 m/s). Unphysical diffractions are avoided by
employing a discretisation grid conforming with the anomaly shape.

The observed data are a synthetic shot gather (a single source). The source time
function is a 40 Hz Ricker wavelet and is applied on the vertical component of velocity,
placed at 0.5 m depth and x=0 m (Figure 4.35). A total of 112 receivers placed at
the source depth and spaced 4 m apart have recorded the vertical component of velocity
(Figure 4.36). The observed data contains dispersive surface waves that are created when
the direct S wave impinges on the velocity anomaly. A direct P wave and some low-energy
reflections of surface waves can be observed as well.

A seismic shot gather computed with the same geometry as the one employed for
the observed data but with a second velocity model is used as initial data. The second
model has the same velocity and density values as the exact model but does not contain
the velocity anomaly. In Figure 4.37 (top), three groups of 16 seismic traces of the
observed shot gather are compared to the corresponding traces of modelled data in the
same offset intervals. From Figures 4.35 and 4.37, it can be established that the observed
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Figure 4.37: Observed (black) and modelled (red) seismic traces for three different source-
receiver offset intervals indicated on the horizontal axes. Top: data computed with a
40 Hz Ricker wavelet. Bottom: band-passed filtered data (5-30 Hz).

Figure 4.38: Gradients of FWI objective function with respect to µ. Left: data computed
with a 40 Hz Ricker wavelet. Right: band-passed filtered data (5-30 Hz). The initial
model is the same for both gradients.
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Figure 4.39: Absolute value of the 2D Fourier transform of observed (black) and mod-
elled (red) data (Figure 4.37). Wiggle plotting is used for graphical purposes regarding
amplitude match.

Figure 4.40: Gradients of w-AWI objective function with respect to µ using windows
spaced 4 m apart. The initial model is the same for both gradients. Left: windows with
lw=128 m. Right: windows with lw=256 m.

waveforms differ from the modelled waveforms for offsets greater than 125 m, location
which propagated waves are physically modified by the velocity anomaly. Besides, most of
the observed traces are not in phase with modelled traces as a consequence of the velocity
anomaly. The computation of the classical FWI gradient is useful to show the effect of
phase problems. In Figure 4.38 (left), the FWI gradient exhibits positive amplitude
within the anomaly location. However, the value of µ is greater in the anomaly than
in the homogenous model. The expression for the model update (equation 4.2) tells us
that the gradient should have the opposite sign of the needed model update. Given that
the necessary model update should be positive, the positive amplitude of the gradient
suggest that the FWI gradient is in the wrong direction for this example.

We applied a band-pass filter (5-30 Hz) to observed and modelled data. In Figure 4.37
(bottom), the filtered data are plotted for the three offset ranges. Seismic traces in this
frequency band are correctly matched because the wavelengths are larger than those
of unfiltered data for similar propagation velocities. The FWI gradient computed with
filtered data (shown in Figure 4.38 right) exhibits negative amplitude within the anomaly
location which suggests that, contrary to the result of unfiltered data, the gradient is now
in the good direction.

A different behaviour regarding cycle matching can be observed in the f − k domain
when w-AWI formulation is used. The f − k transformation is applied separately to the
seismic data in the three offset intervals shown in Figure 4.37. The absolute value of
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Figure 4.41: Objective function value for several initial models with different background
and anomaly S-wave velocities. Left: w-AWI with lw = 128 m. Middle: FWI. Right:
FWI with band-pass (5-30 Hz) filtered data. The white cross indicates the exact model.
The white circle indicates a model with homogeneous S-wave velocity of 800 m/s.

transformed data are plotted in Figure 4.39. The data are in correct cycle match for
the three offset intervals (cycle is associated to amplitude lobes). The velocity anomaly
generates a more visible difference between the cycles in the middle window (Figure 4.39,
middle). This difference is expected because most of the receivers included in this window
are located above the model velocity anomaly. Moreover, modelled data remains very
close to observed data at the right of the anomaly (Figure 4.39, right) almost as they were
at the left (Figure 4.39, left). The implicit phase removal in the misfit function explains
the correct cycle match in the right-hand side window. In FWI, a low-pass frequency
filtering is necessary to avoid cycle-skipping effects. In w-AWI, such a filtering is not
necessary because there is no cycle skipping in the data. The w-AWI gradient using
non-filtered data are in the good direction for convergence because negative amplitude is
contained within the anomaly location as shown in Figure 4.40. However, the precision
in the lateral localisation of velocity anomalies can be impacted by the window width in
w-AWI. As an example, two w-AWI gradients are computed using windows spaced 4 m
apart with widths lw = 128 m and lw = 256 m (Figure 4.40). The gradient computed
with lw = 128 m shows good lateral localisation of the anomaly (e.g. 100 m wide).
But in the lw = 256 m gradient the energy seems to be smeared out on both sides of
the anomaly position. Nonetheless, the gradient seems to be in the good direction and
properly centred in both w-AWI gradients.

The results of this test can be explained through an analysis of the shape of the objec-
tive functions of FWI and w-AWI. We compute the objective function values for synthetic
data coming from models with different background and anomaly S-wave velocities. The
considered background velocities ranges from 600 m/s to 1400 m/s whereas the anomaly
velocity ranges from 400 m/s to 1400 m/s. In w-AWI computation, the windows used for
data selection are spaced 4 m apart and are 128 m wide. In FWI, the objective function
is computed for non-filtered data and band-pass filtered data (5 − 30 Hz). Results are
shown in Figure 4.41.

For non-filtered data, this test shows that among the two considered objective func-
tions w-AWI has the widest global minimum basin. When performing inversion with an
initial model within the velocity values of Figure 4.41, the presence of secondary minima
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in FWI may prevent convergence toward the global minimum, whereas in the case of
w-AWI convergence may be achieved as only one minimum is observed. The objective
functions computed for the data in the lower frequency band (5-30 Hz) show that the
FWI global minimum basin can be broadened thus reducing constraints with respect to
the initial model (Bunks et al., 1995). Local minima effects in low-frequency FWI are
reduced as longer wavelengths are less sensitive to velocity variations in the model (Mul-
der and Plessix, 2008). The initial model for computation of FWI gradients is located at
the position indicated by the white circle in the objective function image (Figure 4.41).
The low-frequency FWI gradient (Figure 4.38, right) is in the good direction because the
starting point is already in the FWI global minimum basin.

4.4 Inversion of synthetic data

In this section, we show inversion results using w-AWI and FWI for synthetic 2D velocity
models. Please note that we compute the gradients with respect to the Lamé parameters
and density and, to ease interpretation, we only show inversion results for Vp, Vs and
ρ. In a first example, we test inversion considering that a-priori information is unknown.
In this example, the initial velocity model consists of a linear velocity gradient. We use
initial velocity models that are close to, or on the contrary, far from the exact velocity
model to evaluate convergence results in FWI and w-AWI. The source wavelet is unknown
in the second example. In a third example, we test multi-parameter inversion and show
the result that best minimises the data misfit. Finally, we analyse results for frequency
filtered data.

4.4.1 No a priori information and known source wavelet

We evaluate FWI and w-AWI for the reconstruction of a 2D elastic model (Figure 4.42).
The exact model consists of a heterogenous elastic medium composed of several areas
where the velocity is either constant or increasing with depth. This synthetic model
is inspired on the ground model of Deidda and Balia (2001). The internal interfaces
between velocity zones are parallel to the Cartesian axes or tilted. Both P-wave and
S-wave velocities are, in general, increasing with depth with the exception of the layer
located under the two high velocity zones. These high velocity zones have both parallel-
to-Cartesian-axes and tilted interfaces. For the density, we consider two profiles: one 2D
(third panel of Figure 4.42) and one homogeneous with ρ = 1000 kg/m3 (bottom panel
of Figure 4.42). The observed data consists of 20 common shot gathers modelled for
sources that are evenly distributed between x=0 m and x=47 m as indicated by the red
circles in Figure 4.42. The sources are all located 0.2 m below the surface. The source
wavelet is a 40 Hz Ricker wavelet applied on the vertical component of velocity. The data
are computed for 151 vertical velocity receivers spaced 0.4 m apart and located between
x=-5 m and x=55 m at the source depth.

We perform three inversion tests (inversion 1, 2 and 3) using FWI and w-AWI. The
source wavelet is considered known. The inversion reconstructs Lamé parameters λ and
µ. Density is homogeneous and known in inversions 1 and 2 (and thus it is not updated).
In inversion 3, the 2D density profile is included in the exact model (Figure 4.42) but it is
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Figure 4.42: Exact velocity model for 2D inversion. Red circles indicate the position
of 20 seismic sources used to generate the data. Density is either 2D (third panel) or
homogenous (bottom panel) depending on the test.
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assumed to be homogeneous in inversion (similarly to inversions 1 and 2). We employ the
L-BFGS-B (Nocedal, 1980) and precondition the gradient as described in section 4.2.4.
The boundaries of the L-BFGS-B algorithm are chosen to be 0.25 and 4 times the initial
values. A small 2D gaussian window with 0.9 m radius (0.9 = αx = αz in equation 4.26)
is used to smooth the gradient at each iteration. As initial models, we consider linear
increases of the properties with depth. Therefore, no a priori information is considered
in the initial velocity model. The initial models are close to and far from the exact model
in inversion 1 and 2, respectively. The initial model of inversion 3 is the same as for
inversion 2 (far) but the density profile is considered unknown as mentioned previously.
The objective behind inversions 1 and 2 is to evaluate the w-AWI result when the initial
velocity model causes cycle skipping prevents convergence of FWI towards the global
minimum. In inversion 3, we will mostly evaluate the accuracy of the w-AWI result when
the density is variable and unknown.

The initial model and the result of inversion 1 with FWI and w-AWI are shown
in Figure 4.43. The initial P-wave and S-wave velocity models are correctly updated
by reconstruction of µ and λ both with FWI and w-AWI. The reconstructed Vp and Vs
models contain the velocity features of the exact model and display a good representation
of the tilted interfaces. 1D profiles of Vp and Vs show the high similarity of inversion
results compared to the exact profiles (Figure 4.44), notably in the low-velocity zones
under and between the two high-velocity zones. Observed and initial shot gathers for
one source are shown in Figure 4.45. Although both shot gathers are similar in character
regarding diving and Rayleigh waves, surface wave dispersion is stronger in observed data
(Figure 4.45). The initial model for this inversion is close enough to the exact one and
small phase problems do not prevent convergence towards the correct result. The shot
gathers are completely reconstructed as shown in Figure 4.46. Moreover, the least-squares
misfit is reduced to 0.24 % by FWI and to 0.11 % by w-AWI. The very good minimisation
is confirmed by comparing seismic traces (Figure 4.46). FWI and w-AWI results match
almost perfectly the observed data. This result is a reference for the following inversion
tests.

Figure 4.47 shows the initial model together with the FWI and w-AWI results for
inversion 2. The utilisation of an initial model far from the exact one results in non-
convergence with FWI and convergence with w-AWI. The model retrieved by FWI is
mostly updated at the very near surface but local minima yield inaccurate results in
deeper parts. The divergent character of the FWI result can be observed in 1D profiles
(Figure 4.48). Conversely, good profile similarity is obtained by w-AWI (Figure 4.48).
These results are explained by the marked difference between initial and observed shot
gathers as it can be observed in Figure 4.49. Indeed, observed and initial shot gathers
differ both in diving and surface waves. This causes a strong cycle-skipping effect in FWI
preventing convergence. A secondary minimum is the solution retrieved by the local
search. By contrast, w-AWI converges because the global minimum basin of its objective
function is wider as it depends on different input data ensuring correct convergence. In
this case, in spite of the presence of cycle-skipping in the t−x domain (section 4.3.1). The
error is reduced to 23.98 % by FWI and to 0.11 % by w-AWI. As shown in Figure 4.50,
the evolution of w-AWI objective function with iterations is similar to inversion 1 while
less significant minimisation is observed in FWI. The comparison of traces allows us to
observe that FWI converged to a secondary minimum (Figure 4.50) as the final data
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Figure 4.43: Inversion 1. Initial model (first and second panels), FWI result (third and
fourth panels) and w-AWI result (fifth and last panels). Density is considered known
(homogeneous) and is not updated during inversion.
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Figure 4.44: Inversion 1. 1D profiles of exact, initial and reconstructed models by w-AWI
and FWI. Top: P-wave velocity profiles. Bottom: S-wave velocity profiles. From left to
right: x = 13, 20, 27, 39 m.
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Figure 4.45: Example of observed (left) and initial (right) common shot gathers.
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Figure 4.46: Inversion 1. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.
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Figure 4.47: Inversion 2. Initial model (first and second panels), FWI result (third and
fourth panels) and w-AWI result (fifth and last panels). Density is considered known
(homogeneous) and is not updated during inversion.
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Figure 4.48: Inversion 2. 1D profiles of exact, initial and reconstructed models by w-AWI
and FWI. Top: P-wave velocity profiles. Bottom: S-wave velocity profiles. From left to
right: x = 13, 20, 27, 39 m.

Offset (m)

T
im

e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

Offset (m)

T
im

e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

Figure 4.49: Inversion 2. Observed (left) and initial (right) common shot gathers. Only
one shot gather is shown.



4.4. Inversion of synthetic data 137

0 20 40 60
10

−3

10
−2

10
−1

10
0

Iteration number

N
o

rm
a
li
z
e
d
 m

is
fi
t

 

 

w−AWI FWI

Offset (m)

T
im

e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

Offset (m)
T

im
e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

0

1

Time (s)

V
z
 (

m
/s

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

0

1

Time (s)

V
z
 (

m
/s

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

0

1

Time (s)

V
z
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5
 

 

Exact Initial FWI result w−AWI result

Figure 4.50: Inversion 2. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.
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Figure 4.51: Inversion 3. FWI result (first and second panels) and w-AWI result (third
and last panels). The exact density model is 2D (Figure 4.42). The initial density model
is homogeneous and is not updated during inversion.
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Figure 4.52: Inversion 3. 1D profiles of exact, initial and reconstructed models by w-AWI
and FWI. Top: P-wave velocity profiles. Bottom: S-wave velocity profiles. From left to
right: x = 13, 20, 27, 39 m.

Offset (m)

T
im

e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

Offset (m)

T
im

e
 (

s
)

0 20 40

0

0.1

0.2

0.3

0.4

Figure 4.53: Inversion 3. Observed (left) and initial (right) common shot gathers. Only
one shot gather is shown.
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Figure 4.54: Inversion 3. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.
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Figure 4.55: Exact (left) and initial (right) source wavelets.

seem to be more or less in phase with observed data but their amplitudes are smaller.
FWI tried to explain the surface waves of observed data with a model whose near surface
velocity is close to the exact one but deeper velocities are erroneous. On the contrary,
with w-AWI, the data show almost no differences with observed data.

For inversion 3, the initial velocity models are the same as for inversion 2 (Figure 4.47,
first and second panels), but in this case the exact density model is not homogeneous
(Figure 4.42, third panel). The result of FWI diverges from the exact model because
the initial model was already far in addition to the unknown density model (Figure 4.51,
first and second panels). The result of w-AWI converges to the exact model especially
in the case of S-wave velocity (Figure 4.51, third and last panels). The 1D profiles
(Figure 4.52) show that FWI updates the very near surface and w-AWI reconstructs
the whole model. However, the result of w-AWI is less accurate than in inversions 1
and 2 because the method has adjusted the velocity parameters to compensate for the
strong density difference. Among the P-wave and S-wave velocities, the first one is the
most affected by compensation effects as indicated by the stronger velocity oscillations
(Figure 4.52, first row). The analysis presented by Tarantola (1986) and Forgues and
Lambaré (1997) explains that density perturbations may cause updates in λ (and vice-
versa) as their diffraction patterns are similar for P-P diffractions at short offsets. We
have not analysed diffraction patterns in the case of surface waves. But our results seem
to agree with body wave analysis. Finally, the error is minimised to 24.38 % and to
0.37 % of its initial value by FWI and w-AWI respectively. In data reconstruction, FWI
retrieved data in phase with observed data but with incorrect amplitude, while w-AWI
reconstructs the observed data although showing a slightly reduced accuracy than for
inversion 1 and 2 due to the difference in density (Figure 4.54).

4.4.2 Inversion with unknown source wavelet

In this section, we evaluate FWI and w-AWI when the source wavelet is unknown. We
propose three different tests (called test 1, 2 and 3). For the three tests, the observed data
are computed with the model shown in Figure 4.42 including the homogeneous density
model. The exact source wavelet is a 40 Hz Ricker wavelet (Figure 4.55, left). In test
1, we apply inversion considering the source wavelet as known to have a reference result.
Test 2 is similar but the source wavelet is considered as unknown. The initial model for
these two tests is a version of the exact model smoothed with an elliptical 2D gaussian
window with vertical axis of 8 m (αz in equation 4.26) and horizontal axis of 16 m (αx
in equation 4.26). In test 3, the source wavelet is considered as unknown and no a-priori
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Figure 4.56: Observed (left) and initial common shot gathers (centre for test 1 and 2 and
right for test 3). Only shot gathers due to one of the 20 considered sources are displayed.

information is considered in the initial velocity model. The initial velocity model in test
3 is the same as in inversion 1 of Section 4.4.1 (close velocity gradient). For tests 2 and
3 (unknown source wavelet), the initial data are computed with a source wavelet defined
as

ϕz(x, t) = δ(x− xs)(0.3R
0(t, 40Hz) + 0.003R1(t, 60Hz)), (4.27)

where xs defines the horizontal position of the source and Rn(t, f) is the nth derivative
of a Ricker wavelet with central frequency f . This initial wavelet is shown in Figure 4.55
(right). FWI and w-AWI are used to reconstruct the Lamé parameters only. Density is
considered known and is not updated in inversion. The near offset traces are masked in
inversion because in real data inversion the near offset geophones are commonly saturated
in energy, which often make them non-usable. Observed data are represented by the
shot gather in Figure 4.56 (for a source located at a horizontal position of 0 m). The
corresponding initial shot gathers computed with the wavelet defined in equation 4.27
are shown as well (Figure 4.56, centre for the smooth initial model and right for simple-
gradient initial model).

The inversion results for test 1 (known source wavelet) are shown in Figure 4.57.
Four 1D profiles are shown in Figure 4.58. The overall results are excellent, as expected,
because the initial velocity model contains good a priori information. The final misfit is
smaller in w-AWI than in FWI (Figure 4.59). The data reconstructed by these two meth-
ods coincide almost perfectly with the observed data as shown in the traces comparison
of Figure 4.59. The error between exact and final velocity model is slightly smaller in
w-AWI (we present this result later on using a comparative table).

For test 2, the source wavelet is estimated at the begin of each L-BFGS-B iteration
using the approach of (Pratt, 1999) in the case of FWI and the formulation presented in
Section 4.2.3 in the case of w-AWI. The resulting source wavelets after inversion are shown
in Figure 4.60 (left for FWI and right for w-AWI). Some oscillations that are not present
in the exact wavelet are created in the FWI wavelet probably as a compensation for the
lacking dispersion in the reconstructed data. The shape of the w-AWI source wavelet
is not similar to the shape of the exact wavelet because the phase of the data are not
used in the w-AWI inversion. The 2D velocity models retrieved with the two inversion
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Figure 4.57: Test 1. Initial model (first and second panels), FWI (third and fourth panels)
and w-AWI results (fifth and last panels). Density is known (homogeneous) and is not
updated during inversion. Source wavelet is known and is not updated during inversion.
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Figure 4.58: Test 1. 1D plots of exact, initial and reconstructed models by FWI and w-
AWI. Top: P-wave velocity profile. Bottom: S-wave velocity profile. From left to right:
x = 13, 20, 27, 39 m.

procedures correctly correspond to the exact velocity models as shown in Figure 4.61.
The 1D profiles shown in Figure 4.62 display an abnormal high velocity in the Vs result
of FWI. This kind of fictitious layers are usually created in the presence of deeper velocity
contrasts as is the case with the interface located at 4 m depth approximately. The data
misfit is better minimised in w-AWI (on the order of 10−3) than in FWI (on the order of
10−2) as shown at Figure 4.63. However, the comparison of seismic traces shown on the
bottom of Figure 4.63 reveals that in w-AWI the reconstructed data are not in phase with
the exact data. This is a result of ignoring the phase of data in inversion. As a solution
for shot-gathers reconstruction, a few iterations of FWI after w-AWI should suffice to
give in-phase data because w-AWI has already converged to the exact velocity model.
The same solution can be applied to reconstruct the phase of the source wavelet.

For test 3, we respectively obtain a convergent and a divergent result (from the exact
model) with w-AWI and FWI. The final source wavelets are shown in Figure 4.64. The
waveform of the FWI estimated source wavelet differs with the exact source wavelet
(Figure 4.64, left). The w-AWI source wavelet is similar to the one estimated in the
test 2 (Figure 4.64, right). The final 2D velocity profiles are shown in Figure 4.65. In
these results, the FWI velocity features do not match with the exact model ones. The
model reconstructed with w-AWI preserves similarities with the exact velocity model,
however results are less good than for the first and second tests. 1D profiles are shown
in Figure 4.66. FWI results show large velocity model updates but less divergent results
than in Section 4.4.1. In the case of w-AWI, the velocity profiles show oscillating values
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Figure 4.59: Test 1. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.
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Figure 4.60: Test 2. Final source wavelets estimated with FWI (left) and w-AWI (right).
The estimated wavelet is more similar to the exact one (Figure 4.55 left) in the case of
FWI because, differently from w-AWI, the phase is taken into account.
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Figure 4.61: Test 2. FWI (first and second panels) and w-AWI results (third and last
panels). Density is known (homogeneous) and is not updated during inversion. Source
wavelet is unknown and updated during inversion.
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Figure 4.62: Test 2. 1D plots of exact, initial and reconstructed models by FWI and w-
AWI. Top: P-wave velocity profile. Bottom: S-wave velocity profile. From left to right:
x = 13, 20, 27, 39 m.

that are not present in the exact profiles. The data misfit is minimised with w-AWI to
a value in the order of 10−3 like in test 2 (Figure 4.67). The data reconstructed with
w-AWI (Figure 4.67) shows again a mismatch in phase that can be fixed with a few FWI
iterations.

We have computed the relative error between initial and exact velocity models as well
as between reconstructed and exact velocity models. These values are shown in Table 4.1.
Table 4.1 shows that the error is smaller in w-AWI than in FWI for all the tests. Results
are better when the wavelet is known. When the wavelet is unknown and estimated
through iterations, the result is better when using the smooth initial model, i.e., when
considering a-priori information.

4.4.3 Multi-parameter inversion

In this section, we employ FWI and w-AWI to reconstruct multiple model parameters
(λ, µ and ρ) considering no a-priori information (except for the source wavelet which is
considered known). In our computations, we tested different inversion strategies divided
in “steps”. In each step, the inversion codes are used to reconstruct one, two or the three
model parameters. Among the considered inversion strategies, we have only obtained one
result in which the data are well explained. In this test, the final relative error between
velocity models is smaller than the starting one. However, this relative error is not strictly
minimised in all the steps Indeed, the error sometimes increases while the data misfit is
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Figure 4.63: Test 2. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.
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Figure 4.64: Test 3. Final source wavelets estimated with FWI (left) and w-AWI (right).
The wavelet estimated with FWI shows convergence problems as it do not coincide to
the exact one (Figure 4.55 left). The wavelet estimated with w-AWI allows convergence
even if its shape is not similar to the exact one, which is a result of neglecting the phase.
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Figure 4.65: Test 3. FWI (first and second panels) and w-AWI results (third and last
panels). Density is known (homogeneous) and is not updated during inversion. Source
wavelet is unknown and updated during inversion.

Test 1 2 3
Wavelet and velocity Known wavelet, Unknown wavelet, Unknown wavelet,
model →. Parameter ↓ smooth model smooth model close velocity gradient

Vp (initial) 4.12 4.12 11.1
Vs (initial) 4.25 4.25 11.41
Vp (FWI) 3.24 3.97 9.49
Vs (FWI) 3.13 4.15 11.91

Vp (w-AWI) 2.67 3.24 4.2
Vs (w-AWI) 2.78 3.31 4.7

Table 4.1: Relative error in % of reconstructed models using exact or estimated wavelet.
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Figure 4.66: Test 3. 1D plots of exact, initial and reconstructed models by FWI and w-
AWI. Top: P-wave velocity profile. Bottom: S-wave velocity profile. From left to right:
x = 13, 20, 27, 39 m.

minimised. We have obtained this result using w-AWI while FWI results diverged for all
the considered strategies (probably due to the initial model). The inversion parameters
and the best inversion strategy (among the considered ones) are described in the next
paragraph.

The observed data are obtained with the model of Figure 4.42 including the 2D
density profile. As initial velocity models, we have considered the same as for inversion
1 of section 4.4.1. The initial density model is a simple linear gradient (shown later in
Figure 4.71). We apply inversion in three steps (1) simultaneous λ and µ reconstruction,
(2) ρ inversion and (3) simultaneous λ and µ reconstruction. Step 1 is chosen based on
the result of inversion 3 (section 4.4.1) where the compensation for density was small. In
step 2, the density is updated supposing an already good velocity model. Finally, step 3
is necessary to tune the λ and µ distributions with an improved density model (from step
2). Step 1 results are shown in Figure 4.68 (2D profiles) and Figure 4.69 (1D profiles). As
in inversion 1 (section 4.4.1), results are close to the exact model and the compensation
for density is not strong because the initial model is close to the exact one. The misfit is
reduced to 1.06 % after 22 L-BFGS-B iterations (Figure 4.70). The data are in general
well reconstructed, except for a small phase mismatch (Figure 4.70). In step 2, only the
density is updated. The result shows similarities to the exact model in the shallow part
but some oscillations are created in the deeper part (Figures 4.71 and 4.71). However,
the final data show a good match with almost imperceptible misfit with respect to the
observed data (Figure 4.72. The misfit minimisation with respect to initial data (final
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Figure 4.67: Test 3. Misfit minimisation (top left) and final data obtained with FWI
(top centre) and w-AWI (top right). Bottom panels: seismic traces for 3 offset positions
as indicated in the shot gathers.



152 Chapter 4. An alternative approach for inversion of surface waves

Horizontal position (m)

D
e
p
th

 (
m

)

 

 

0 10 20 30 40 50

0

5

10 333

680

Vp (m/s)

Horizontal position (m)

D
e
p
th

 (
m

)

 

 

0 10 20 30 40 50

0

5

10 160

340

Vs (m/s)

Figure 4.68: w-AWI multi-step inversion result. First step: only λ and µ are updated.

Step number and initial 1 2 3
considered parameter → error λ and µ ρ λ and µ

Vp 11.1 5.7 6.4 5.9
Vs 11.4 5.5 6.1 5.6
ρ 7.5 7.5 8 8

Table 4.2: Relative error (in %) of models at the beginning (initial error) and at the end
of each inversion step for a multi parameter inversion strategy using w-AWI.

data of step 1) is 52.88 %. Results of step 3 are shown in Figure 4.73 (2D) and Figure 4.74
(1D). The observed data are completely reconstructed as shown in Figure 4.75 with an
additional misfit minimisation of 56.91 %. Overall, the misfit is minimised to 0.32 %
after the three inversion steps. The final model error of this strategy, obtained after step
3, is smaller than the error at the beginning of inversion for λ and µ (see Table 4.2). The
first step is the only one in which the errors are reduced but these quantities have been
measured all over the model (including shallow and deeper parts). In the second and
third steps, the error is increased but the data are better explained. The main problem
in ρ came from the inversion in the deeper part of the model (Figure 4.71).

4.4.4 Inversion with low frequencies

In this test, we compare the result of FWI with w-AWI with low-frequency data.

The exact velocity model is layered with curved interfaces; velocity increases with
depth and there is one lateral discontinuity at a horizontal position of 400 m (Figure 4.76).
The grid conforms with the curved interfaces to avoid numerical diffractions. The ob-
served data consists of 16 common shot gathers computed for sources applied on the
vertical component of velocity and buried 0.5 m. The source signature is a 40 Hz Ricker
wavelet. The initial data are computed with the same wavelet. The initial velocity models
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Figure 4.69: 1D plots of exact, initial and reconstructed models by w-AWI. Top: P-wave
velocity profile. Bottom: S-wave velocity profile. From left to right: x = 13, 20, 27, 39
m.
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Figure 4.70: Misfit minimisation (top left) and final data obtained with w-AWI (top
right). Bottom: seismic traces for 3 offset positions as indicated in the shot gathers.
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Figure 4.71: w-AWI multi-step inversion result. Second step: only density is updated.
Top: final 2D density model. Bottom: 1D exact, initial and final density profiles. From
left to right: x=13, 20, 27, 39 m.

are scaled versions of the exact models and they are defined as

mi = (1− am)me + ammh, (4.28)

where mi defines the initial model for Vp, Vs and ρ; me is the exact model and mh is
a homogeneous model defined for each parameter as Vph=2500 m/s, Vsh=1500 m/s and
ρh=1000 kg/m3. In this example, am is equal to 0.15.

The purpose is to quantitatively evaluate inversion results. Thus, the relative errors
of final models after FWI and w-AWI have been computed when considering non-filtered
data (Figure 4.77) and band-pass filtered (2-9 Hz) data (Figure 4.78). The model retrieved
from unfiltered data (Figure 4.77) shows smaller errors for w-AWI than for FWI. In w-
AWI, velocities up to 60 m depth are reconstructed (dark blue in Figure 4.77). FWI
recovers velocities up to 35 m depth including some stronger error zones near the surface
(red zones in Figure 4.77). For filtered data, both methods show a similar behaviour;
they are able to recover velocities up to the maximum considered depth (Figure 4.78).
The final model relative errors (normalised by the initial error) are shown in Table 4.3.
For low frequencies, FWI and w-AWI present similar results regarding these final errors
(Table 4.3). The results of unfiltered data inversion show that the global minimum basin
is wider in w-AWI since the first 60 m depth were reconstructed, even in the presence of
energetic high frequencies.

The misfit is minimised down to 70.66 % by FWI and down to 6.96 % by w-AWI
when considering unfiltered data. For low-frequency filtered data, the misfit is minimised
down to 0.31 % by FWI and down to 1.89 % by w-AWI. FWI obtained the result in less
iterations than w-AWI for unfiltered data while for filtered data the opposite behaviour
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Figure 4.72: Misfit minimisation (top left) and final data obtained with w-AWI (top right)
after density inversion. Bottom panels: seismic traces for 3 offset positions as indicated
in the shot gathers.
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Figure 4.73: w-AWI multi-step inversion result. Third step: only λ and µ are updated.
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Figure 4.74: 1D plots of exact, initial and reconstructed models by w-AWI. Top: P-wave
velocity profile. Bottom: S-wave velocity profile. From left to right: x = 13, 20, 27, 39
m.

FWI FWI w-AWI w-AWI
unfiltered (2-9 Hz) unfiltered (2-9 Hz)

Vp 107.32 51.18 71.19 51.8
Vs 103.56 50.88 67.53 51.9

Table 4.3: Relative error (ξ) in % of reconstructed models with filtered and unfiltered
data. These values have been normalised dividing by the initial error.
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Figure 4.75: Misfit minimisation (top left) and final data obtained with w-AWI (top
right). Bottom: seismic traces for 3 offset positions as indicated in the shot gathers.
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is observed (Figure 4.79). A comparison between observed and initial data show the high
energy of dispersive waves in the case of filtered data and how the frequency filtering
can help avoiding cycle-skipping (Figure 4.80). The representation of seismic traces for
observed, initial, and final data (with FWI and w-AWI) help observing the mismatch
in the phase that resulted in FWI problems at the near surface (Figure 4.81 and 4.82)
On the other side, the phase match accomplished with low-pass filtering resulted in the
improvement of the FWI result. For w-AWI, the result is not affected by cycle-skipping
effects in the tested inversions either with filtered or unfiltered data.

As stated in (Rix and Leipski, 1991), surface-wave imaging is expected to have an
illumination depth equal to the wavelength λf of the considered frequency. For unfiltered
data, considering a central frequency of 40 Hz this value is λ40Hz=960(m/s)/40(Hz)=24 m.
For 9 Hz, the maximum wavelength is λ9Hz=960(m/s)/9(Hz)=106.67 m. Let us compare
these values with the misfit function gradient at the first iteration (Figures 4.83 and 4.84).
As expected, FWI and w-AWI gradients with unfiltered data show high amplitudes up
to λ40Hz. The divergence from the exact model obtained by FWI (Figure 4.77) could be
related with an overestimation of the near-surface layer, especially at the left of the lateral
discontinuity (horizontal position of 400 m). In the case of w-AWI, the first gradient
exhibits energy up to λ40Hz. Moreover, w-AWI has deepened the illumination up to at
least 2λ40Hz as shown in Figure 4.77, mostly because of its larger global minimum basin.
For filtered data, the energy is extended over the whole gradient because λ9Hz is slightly
larger than the maximum model depth. In this case, the low frequency illumination is
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Figure 4.76: Exact model. From top to bottom: Vs, Vp, ρ and grid for modelling and
inversion.
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Figure 4.77: Unfiltered data inversion. Relative error between final and exact models.
Top: Vp and Vs errors for FWI. Bottom: Vp and Vs errors for w-AWI.
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Figure 4.78: Bandpass filtered (2-9 Hz) data inversion. Relative error between final and
exact models. Top: Vp and Vs errors for FWI. Bottom: Vp and Vs errors for w-AWI.
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Figure 4.79: Objective function evolution with iterations. Left: unfiltered data. Right:
filtered data.
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Figure 4.80: Shot gathers of observed (left) and initial (right) data without filtering (top)
and with bandpass filtering (2-9 Hz) (bottom). Clipping level is equal for images in the
same row.



4.4. Inversion of synthetic data 163

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

0

5

Time (s)

V
z
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

0

5

Time (s)

V
z
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

0

5

Time (s)

V
z
 (

m
/s

)

0 0.1 0.2 0.3 0.4 0.5
 

 

Exact Initial FWI result w−AWI result

Figure 4.81: Comparison of seismic traces for unfiltered data at three offsets: 150 m, 375
m and 600 m.
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Figure 4.82: Comparison of seismic traces for filtered data (2-9 Hz) at three offsets: 150
m, 375 m and 600 m.
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Figure 4.83: Gradient of the FWI (top) and w-AWI (bottom) objective function with
unfiltered data.

Figure 4.84: Gradient of the FWI (top) and w-AWI (bottom) objective function with
filtered (2-9 Hz) data.
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mainly accomplished by waves propagating at approximately v=1440 m/s (Figure 4.80).
Such velocity value can either belong to the range of low-frequency surface-wave dispersion
or correspond to S-wave diving events.

4.5 Conclusions

We have presented a methodology to invert surface waves in 2D media. The windowed
amplitude waveform inversion (w-AWI) is an intermediary approach between Full Wave-
form Inversion (FWI) and classical Surface Wave Analysis (SWA). The principal differ-
ence with respect to FWI is the misfit functional. The new misfit functional is more
similar to the one used in SWA. In order compute the misfit, the seismic gathers are first
separated using spatial windows, and then the 2D Fourier transform is applied to the
different (windowed) gathers. The misfit value is equal to the sum, over the windows, of
the least-squares misfit between the absolute value of transformed gathers. By taking only
the absolute value of the transform, some local minima effects can be avoided. Besides,
the implementation of windows helps improving the localisation of velocity perturbations,
provided a proper window width is chosen. The windows help reintroducing information
about the phase.

Analysis of w-AWI

We have performed numerical tests comparing the properties of w-AWI and FWI. An
analysis of local minima has shown that the basin of the global minimum of the objective
function is wider in w-AWI. In the considered tests, the w-AWI basin is at least twice as
wide as the FWI basin. We have explained this result by analysing the “cycle skipping”
due to errors in the initial velocity model. In FWI, there is cycle skipping if the phase
shift between observed and modelled data is larger than half the dominant wavelength.
We have shown that in w-AWI, the cycle-skipping limit is more than half the wavelength,
although rarely greater than a complete wavelength. This result proves that w-AWI is
approximately twice as flexible as FWI regarding the choice of an initial velocity model,
which is a needed property when inverting dispersive surface waves.

In other numerical tests, we have shown that the w-AWI gradient resolution obeys a
spatial-windows width trade-off: small windows can improve the localisation of velocity
perturbations but excessively small windows lead to resolution problems in the Fourier
transform. It is known that in FWI, cycle skipping can sometimes be avoided by inverting
low-frequent data content first. We have shown that w-AWI may achieve convergence in
the case of unfiltered data. Furthermore, low-pass filtered data may increase surface-wave
illumination depth in both techniques.

Inversion of synthetic data

We have also analysed the influence of the source wavelet in FWI and w-AWI. The two
inversion techniques yield similarly good results if the inversion is well constrained and
if the source wavelet is known. Moreover, if the initial model is far from the exact one
(high errors in the model) then w-AWI may converge because it is less constrained with
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respect to the choice of initial model. In our examples, energetic high frequency surface
waves can explain divergence in FWI. If the source wavelet is unknown and inversion
converges, then the data reconstructed by w-AWI usually contain the amplitudes of the
data only (because of the absolute value consideration). The final data are then visually
different from the observed data due to the missing phase in the definition of the objective
function. However, the data phase could be recovered by applying FWI after w-AWI.

The inversion of density is difficult with all the considered techniques. If the density
is not updated in inversion, then Vp and Vs models tend to explain the errors in density.
However, if the density is updated then the density errors may increase even if the data
misfit decreases. This result could be due to a stronger non-linearity with respect to the
density that easily leads to ambiguous results. This observation could be validated by
diffraction pattern analysis in the presence of a free surface in elastic media.

Finally, a test conducted with unfiltered data have revealed that w-AWI is able to
converge towards the correct model even when the data contain all low and high frequen-
cies, extending the normal illumination depth to at least 2λfcs (two times the S wavelength
for the central frequency). For the same test, FWI did not converge. Moreover, FWI and
w-AWI can be used to recover deeper parts of the model if low frequency data are used.
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Résumé du chapitre

Dans ce chapitre applicatif, nous nous sommes intéressés à estimer un modèle élastique
qui explique des données sismiques réelles. Ces données ont été acquises sur un milieu
connu et présenté par Deidda and Balia (2001). L’objectif de l’inversion est d’imager
une structure en béton qui se caractérise par une vitesse de propagation élevée. Nous
appliquons l’approche 1D Surface Wave Inversion (SWA), et aussi les approches en forme
d’onde Full Waveform Inversion (FWI) et windowed-Amplitude Waveform Inversion (w-
AWI). Les résultats obtenus sont encourageants, même si des analyses supplémentaires
seront nécessaires pour améliorer le résultat d’inversion.

Dans la partie 5.2, nous présentons le jeu de données réelles et le modèle Vp préliminaire
issu de la tomographie. La ligne sismique est composée de 61 point de tirs, chacun associés
à 72 géophones. Même si la qualité des données est bonne, des étapes de pré-traitement
doivent être appliquées pour l’inversion. Nous considérons une correction d’amplitude
de 3D à 2D (Bleistein, 1986; Pratt, 1999). Des interpolations (Spitz, 1991; Naghizadeh
and Sacchi, 2007) sont réalisées pour améliorer la cohérence des événements sismiques.
Enfin, un masque relatif aux temps d’arrivée ainsi que des filtrages en fréquence sont
considérés pour les tests d’inversion. Un modèle de vitesse des ondes P (Vp) obtenu par
tomographie des temps d’arrivée nous a été fourni par Gian Piero Deidda (qui a aussi
mené l’acquisition des données sismiques). Ce modèle sera le modèle de départ pour les
inversions de forme d’onde.

Dans la section 5.3, les résultats des tests d’inversion sont montrés et analysés. Nous
faisons séparément des inversions avec les approches SWA, FWI et w-AWI. Une inversion
jointe qui consiste à utiliser la w-AWI dans un premier temps, puis à appliquer la FWI, est
préféré car le résultat montre une structure à vitesse élevée placée à la position théorique
de la structure en béton. Dans d’autres tests, l’importance de la fréquence minimale
des données est démontrée. Cependant, la w-AWI a aussi besoin de fréquences élevées
puisque la sensibilité des ondes de surface est répartie sur le spectre (partie 3.3).

Enfin, une discussion est proposée avec pour but d’analyser les résultats obtenus
(partie 5.4). Comme conclusion, nous obtenons que tout le spectre des données devrait
être inclus dans l’inversion menée avec w-AWI car cette méthode travaille surtout avec
des ondes de surface.
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5.1 Introduction

We present an application on a ultra-shallow seismic dataset with a target at around 5
metre depth. The objective is to evaluate Surface Wave Analysis (SWA), Full Waveform
Inversion (FWI) and windowed-Amplitude Waveform Inversion (w-AWI) implementa-
tions. Note that waveform-based techniques applied to engineering and environmental
studies are not common approaches (Gao et al., 2007; Gélis, 2005).

The real seismic dataset under study was acquired in 2013 on the purpose-built ground
model presented in Deidda and Balia (2001). The acquisition was carried out by the
cited authors. The subsurface is described in simple terms as 3 laterally-varying layers
which are from bottom to top: (1) unconsolidated sediment layer (silt and clay) (2)
concrete layer and (3) compacted back fill material. Filling material refers to sediments
extracted before concrete casting. The model (Figure 5.1) was originally built with
the purpose of evaluating common-depth-point seismic reflection surveys in geological
targets typically encountered in engineering investigations. The acquisition geometry
and geophone description for our seismic dataset is given in detail in section 5.2.

The P-wave and S-wave velocities (Vp and Vs) shown in Figure 5.1 were measured in
walk-away preliminary tests (Deidda and Balia, 2001). These velocity values are much
lower than normally expected for the unconsolidated part. Compressional wave speeds are
around 345 m/s in the air (1 bar and 20C) and 3500 m/s in quartz. An unconsolidated
medium with porosity close to 40 % at the surface has a velocity even slower than in

Figure 5.1: Purpose-built ground model, extracted from Deidda and Balia (2001). Ve-
locity and density values obtained with walk-away tests are indicated. The displayed
distances are in metres. Piezometers were placed to check water table levels.
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Figure 5.2: Theoretical wave speed values in the near surface. Left: waves can propagate
as slow as 20 m/s (at critical porosity) (Bachrach et al., 1998). Right: velocity increases
rapidly with depth, Bachrach and Nur (1998).
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Figure 5.3: The apparent velocity within the first 3 m offset is around 115 m/s (shot-
gather 20 of the real dataset).

the air. This has been noticed by some authors as Lester (1932); Domenico (1974);
Bachrach et al. (1998). The key element defining near surface velocities is porosity. High
porosity values represent almost suspension of grains in the air. When an acoustic wave
propagates in such a medium, part of the energy is transformed to grain motion. Density
of the sand grains is about 2000 times higher than density in the air. As a result, the
wave propagates with velocity lower than the velocity in the air. Maybe surprisingly,
Bachrach et al. (1998) presented simple formula for which compressional wave can be as
slow as 13 m/s. Using the same equation, we show that for unconsolidated sand and for
porosity values between 10 to 40 % the velocity is slower than 36 m/s (Figure 5.2). The
lowest velocity measured by Bachrach et al. (1998) is 50 m/s. These low values are only
expected at ultra-shallow depth (tens of centimetres). For depths larger than a few tens
of cm, the velocity rapidly increases due to compaction effects and wave speed can be
in the order of 230 m/s at 1 m depth Bachrach and Nur (1998). The lowest apparent
velocity in our real data set is close to 115 m/s (Figure 5.3).

This chapter is organised as follows. The seismic data acquisition parameters and
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Figure 5.4: Sketch of the acquired seismic line and the ground model. Geophone and
source positions are respectively indicated in green and red. Top: cross section. Middle:
3D view. Bottom: cross-line cross section.

data preprocessing are presented in section 5.2. We show the compressional-wave veloc-
ity model reconstructed with first-arrival traveltime tomography. This model was kindly
provided by Gian Piero Deidda. Section 5.3 is devoted to seismic inversion results. Trav-
eltime tomography Vp model is used as initial model in our tests. We have applied SWA
based on the fundamental mode only (results are presented in Section 5.3.1). Shear-wave
velocity was reconstructed from this analysis. Finally, we use FWI and w-AWI to invert
filtered data using different frequency bands (results in Section 5.3.3).

5.2 Seismic dataset

The seismic line direction is perpendicular to the inline direction of the concrete body.
The seismic dataset consists of 61 shot gathers with sources spaced 0.6 m apart. A total
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Figure 5.5: Representative raw shot gathers 10 and 30 before preprocessing.

of 72 vertical geophones were used at the surface according to the geometry shown in
Figure 5.4 (sources in red, receivers in green). The distance between geophones is 0.3 m.
The first geophone is positioned at 8.1 m outside of one of the lateral model boundaries,
while the first source point is 7.2 m from the first geophone (15.3 m from the model
boundary). The source line is laterally offset by 15 cm relative to the geophone line. The
maximum source-receiver distance (offset) is 25.2 m.

Sledgehammer blows on a metallic base plate were used as a seismic source (one per
source position). Geophone frequency response is flat between 4.5 and 160 Hz. Three
different groups of geophones were employed (differing by date of fabrication). This is
an additional difficulty for this dataset as geophone may possibly differ in amplitude and
frequency.

Two raw seismic shot gathers are shown in Figure 5.5. The data quality is in general
good. However, some traces on the left (negative horizontal position) seem to be noisy.
The energy recorded by near offset geophones exceeds their dynamic range. As a result,
the near-offset traces are clipped and do not contain clear seismic wave information.

5.2.1 Preprocessing

The goal is to preprocess the data for subsequent processing (SWA, FWI and w-AWI).
The preprocessing stages that we have applied are

• 3D-to-2D geometrical spread correction. The first stage consists in multiplying the
data by

√
t, where t is the recorded time. This correction works for surface and

body waves in 2.5D media (Bleistein, 1986; Pratt, 1999).

• Seismic event coherency improvement. The coherency was improved by replacing
noisy traces with interpolated ones. First, all the signals were checked to identify
good and noisy traces. Then, one of two interpolation approaches was applied.
F-X interpolation was applied, if both the traces on the left and on the right were
good (Spitz, 1991). If such condition is not satisfied, then linear prediction filters are
applied. Such filters are especially suited for irregularly missing data reconstruction
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Figure 5.6: Shot gather 30 after different preprocessing stages. Top left: after interpo-
lation to remove noisy traces. Top right: after interpolation and geometrical spreading
correction. Bottom left: mask used to mute near offset traces and late arrivals. Bottom
right: preprocessed data after multiplication with the muting mask. The mask is tapered
to prevent inversion artifacts.
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Figure 5.7: Left: frequency-space spectrum of raw shot gather 30 (Figure 5.5). Right:
example of the 10th-order Butterworth band-pass filter considered for inversion. In this
case, the band-passed is 10-80 Hz.
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Figure 5.8: Vp model obtained with first-arrival traveltime tomography. The white points
indicate the theoretical position of the concrete anomaly.

(Naghizadeh and Sacchi, 2007). Interpolation was applied in no more than 10 % of
the seismic traces.

• Near offset and late arrivals muting. A mask was considered here (Figure 5.6) to
remove unwanted events enhancing useful signals of surface and transmitted body
waves.

The result of preprocessing is presented for shot gather 30 (Figure 5.6).

Further preprocessing includes frequency filtering (for waveform inversion). We em-
ployed 10th-order zero-phase digital Butterworth band-pass frequency filters (Oppenheim
et al., 1998). We selected a 10 Hz low-cut frequency after spectra inspection. This fre-
quency should commonly be dictated by the geophone low-cut frequency, although we
have chosen it by inspection because different types of geophones were employed. In Fig-
ure 5.7, the absolute value of the spectrum for a representative shot gather is shown. The
high-cut frequency is chosen between 18, 25, 36, 50 or 80 Hz depending on the waveform
inversion objectives (results shown in Section 5.3). One of the considered frequency filters
(10-80 Hz) is shown in Figure 5.7 (right).

5.2.2 Initial velocity model

A smooth Vp velocity model was obtained and kindly provided to us by Gian Piero
Deidda using picked first-arrival traveltime tomography (Figure 5.8). The velocity is
restricted to the first 5 m. Nevertheless, this result will be used as initial velocity model
in waveform inversion because the first arrivals have been explained with a low RMS error
(1.6 %). The Vs and density (ρ) models are less known and the only indication consists
of the values indicated in Figure 5.1.

5.3 Seismic inversion

We have applied the inversion techniques presented in Chapters 3 and 4 (SWA, FWI
and w-AWI) to the considered real dataset. The main objective of this application is
to retrieve a model anomaly (Vp, Vs, ρ) in the central part of the model (Figures 5.4
and 5.8). In the concrete, higher velocity values are expected. In the next paragraphs,
we describe the inversion tests and associated results.
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Figure 5.9: Left: fundamental mode plotted in the f-v domain (top) and with respect to
pseudo depth (bottom). Right: surface-wave fundamental mode picked in gather # 34
(dashed black line).

5.3.1 SWA

The analysis here consists in inverting several 1D Vs models located at different horizontal
positions which can then form a pseudo 2D model. The surface-wave fundamental mode
was picked in 72 f − k gathers. These gathers were obtained as follows

• Each shot gather was separated using 72 different spatial windows centred around
each geophone position. The window only selects traces with offset smaller than
9.3 m for a maximum of 64 traces per window.

• The f − k gathers were obtained by computing the 2D Fourier transform of each
individual window.

• 72 stacked f−k gathers were obtained by summing individual gathers corresponding
to identical receiver positions: this means that different shots may contribute to
the same f − k gather.

• The fundamental mode was semi-automatically picked in the stacked gathers. A
manual picking correction was applied when it was considered necessary (mostly at
frequency below 30 Hz).

One of the results of the picking process is represented in Figure 5.9 (right). On the top
left, the picked mode plotted in the frequency-velocity axis is shown. A pseudo-depth
(λ/2.5) velocity model is shown on the bottom left (Figure 5.9). This profile is used as
initial model for fundamental mode inversion.

The extracted dispersion curves were inverted using the approach described in Chapter
3. The Vp model used in inversion was obtained by averaging and layering the Vp to-
mography model where high velocity contrasts were observed (Figure 5.8). Surface waves
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Figure 5.10: Pseudo 2D Vs model formed by 72 1D Vs profiles. The white points indicate
the velocity anomaly. A higher velocity (≈ 250 m/s) zone can be distinguished at the
approximate anomaly position. Constant ρ = 2000 kg/m3 was kept fixed during inversion.

Figure 5.11: Waveform modelling for the final model retrieved with SWA (Figure 5.10).
The same gathering process of real data are applied to modelled data. The fundamental
mode picked from real data (dashed line) is near to the fundamental mode of modelled
data but not centred at its energy maximum.
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are less sensitive to density (Xia et al., 1999), and thus we have considered homogeneous
profiles with ρ = 2000 kg/m3 (around the values initially provided, Figure 5.1). The final
Vs model is shown in Figure 5.10. Below 5 m depth, the retrieved velocities are vertically
constant because we chose this limit for the half space in SWA and thickness was not
inverted. A higher velocity zone was retrieved by inversion at the approximate anomaly
position. The corresponding velocity value (inside the mentioned shape) is in average 250
m/s. This value is low in comparison to the expected value (Figure 5.1). Nonetheless, a
velocity contrast around the theoretical anomaly position has been retrieved.

In SWA, dispersion curves are built locally, based on a 1D assumption. This is why
contributions from different shots were stacked. To check the validity of the result, we
compute the data in the final model and in a fully 2D sense. For that, we perform wave-
form modelling (Chapter 2). Then, we apply the same gathering process to the modelled
data. Finally, the fundamental mode extracted from real data gathers is superposed
to the f − k gather of synthetic data. The real data fundamental mode approximately
corresponds to the fundamental mode on synthetic data (Figure 5.11).

The Vs model has been determined employing SWA. Vp and ρ were not inverted
because surface waves are less sensitive to these parameters. The theoretical anomaly
position has been identified by velocity contrasts. Determined velocities are higher inside
the anomaly position. However, they are low in comparison to the expected values
(250 m/s compared to 900 m/s). This result could be due to a lack of surface wave
interaction with the anomaly. However, in order to obtain a more meaningful result,
higher modes should be included in inversion. It seem possible to pick them in the f − k
gathers (Figure 5.9). Fundamental plus higher modes can better constrain inversion as
shown in Chapter 3.

5.3.2 FWI and w-AWI

In this section, we apply waveform inversion techniques (FWI and w-AWI) to the real
data set. The goal is to identify a high velocity value at the anomaly position (Figure 5.4).
Besides, different frequency bands of data are considered in inversion.

The initial Vp model is obtained by traveltime tomography (Figure 5.8). We per-
formed a first waveform inversion test using the SWA Vs result as initial model, but
the velocity at depths below 5 m was too high and surface waves could not penetrate.
Besides, there was no clear strategy for selecting appropriate Vs values below 6 m depth.
Because of this, we decide using a linear velocity gradient ranging from 50 m/s at the
surface to 250 m/s at 12 m depth. In the literature, a linear gradient is considered to be
appropriate for FWI when considering surface waves, at least in low-frequency inversion
(Schäfer et al., 2013) . The ρ model is a linear gradient ranging from 2000 to 2800 kg/m3.
The previously described initial models are depicted in Figure 5.12.

For all the inversions, a preconditioning factor equal to the depth was applied to the
gradient. Besides, the gradient was smoothed using a 1.6 m radius 2D Gaussian window
(see Chapter 4 for details). The Lamé parameters (λ and µ) are the inversion unknowns,
while ρ is not updated in inversion. The window length used in all w-AWI inversions has
been fixed in lw = 9.3 m (equivalent to 32 consecutive receivers).

Contrary to for the tests shown in Chapter 4, a single L-BFGS-B routine was used to
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Figure 5.12: Initial Vp (top left), Vs (top right) and ρ (bottom) models for FWI and
w-AWI.

compute only one approximate inverse of the Hessian for both λ and µ at each iteration.
The objective was to take into account the possible coupling between λ and µ in inversion.

The unknown source wavelet is estimated using the approach presented by Pratt
(1999) in the case of FWI, and using the approach described in Chapter 4 for w-AWI.
The initial wavelet is a Ricker wavelet with dominant frequency of 25 Hz, except for
low-frequency (10-18 Hz) inversion. In this case, a 14 Hz Ricker wavelet is employed.

Filtered data inversion

The results of inverting filtered data (with high-cut frequencies at 18, 25, 36, 50 and 70 Hz)
are shown in Figures 5.13, 5.14, 5.15 and 5.16. The Vp final model does not change for
depths greater than 5 m for any of the considered frequency bands (Figure 5.13). The
Vp update has mostly acted in the shallow part of the model and is principally due to
the updates of µ (Figure 5.14).

The Vs final models for the low frequency data (top of Figures 5.15 and 5.16) are
smooth and mostly updated with positive values. For the other frequency ranges, the
final Vs models contain a pair of high-low velocity layers updated between 0.5 and 3.5 m
depth approximately (Figure 5.15). We have initially identified two main reasons for
this (two other reasons are given below in the text). The first one is related to the
high Vp values starting at 5 m depth. That feature partially prevents modelled waves
from penetrating deeper and inversion must explain real waves by including a phantom
reflector. The other possible reason can be associated with the very strong contrast
between the low velocity unconsolidated top layer and the concrete structure. In this
case, the initial velocity model is probably rather far from the objective function global
minimum, which leads the inversion algorithms fall into a secondary minimum.

In our opinion, an interesting model update is the one obtained by w-AWI when
considering the 10-70 Hz band-passed data. Besides the previously described pair of
layers, there is a stronger velocity update at the approximate vertical position of the
anomaly (bottom left of Figures 5.15 and 5.16). Horizontally, this update is smeared out
from the anomaly position. However, we chose to analyse this result in more detail as it
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Figure 5.13: Vp final models obtained with FWI (left) and w-AWI (right). The high-cut
frequencies are considered from top to bottom as 18, 25, 36, 50 and 70 Hz.
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Figure 5.14: Vpmodel updates obtained with FWI (left) and w-AWI (right). The high-cut
frequencies are considered from top to bottom as 18, 25, 36, 50 and 70 Hz.
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Figure 5.15: Vs final models obtained with FWI (left) and w-AWI (right). The high-cut
frequencies are considered from top to bottom as 18, 25, 36, 50 and 70 Hz.
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Figure 5.16: Vs model updates obtained with FWI (left) and w-AWI (right). The high-cut
frequencies are considered from top to bottom as 18, 25, 36, 50 and 70 Hz.



5.3. Seismic inversion 183

10 20 30 40
0

0.2

0.4

0.6

0.8

1

Iteration number

N
o
rm

a
li
z
e
d
 m

is
fi
t

 

 

FWI

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iteration number

N
o
rm

a
li
z
e
d
 m

is
fi
t

 

 

w−AWI

FWI

Figure 5.17: Objective function evolution with iterations for the 10-70 Hz bandpass
data. Left: FWI results. Right: w-AWI was employed, but the FWI objective function
computed through w-AWI iterations is also shown.
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Figure 5.18: Representative result (shot gather 30) for FWI with 10-70 Hz band-passed
data. Top: initial (red), reconstructed (blue) data superposed to observed (black) data.
Bottom: initial (left) and final (right) residuals.
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is the one that best defines the anomaly position.

The misfit value minimisation is shown in Figure 5.17. On the right, the w-AWI
and FWI misfit values are shown when using w-AWI for the model update. On the
left (Figure 5.17), only the FWI misfit is shown when using FWI. The minimisation is
apparently more effective with w-AWI. This is however not an indicator of better results
in this case because the data phase is neglected in w-AWI. We observe that the data
misfit is approximately the same (around 0.42) when employing FWI or w-AWI.

We study the data in order to better analyse this result. The FWI result for one of
the shot gathers (30) is displayed in Figure 5.18. The quality of initial data (in red) is
good with respect to observed data thanks to a pre-inversion wavelet estimation. At the
end of iterations, the synthetic data (in blue) correctly mimics the observed data. This
result principally explains surface waves. Regarding first arrivals, the result is not the
same (almost no first arrivals are explained). The missing Vp update is one of the causes
for this, besides the unknown and not updated density model. Nevertheless, the residuals
confirm the surface wave reconstruction (bottom of Figure 5.18).

In the case of w-AWI, the data are shown in Figure 5.19 for a spatial window including
negative offset receivers, and in Figure 5.20 for positive offsets. In these figures, the fun-
damental mode (most energetic one) appears to be correctly explained. However, higher
modes are not completely explained. In the spectra slice comparison, similar features
are displayed between observed and final data. The misfit minimisation (Figure 5.17) is
confirmed by the comparison of residual data (Figures 5.19 and 5.20). Furthermore, the
real data negative offset window (Figure 5.19) shows an uncommon fundamental mode.
Fundamental and higher modes seem to be mixed at approximately 35 Hz and 0.1 m−1.
This can be due to the real medium configuration, or this could be a third reason for
the appearance of the pair of layers previously described. Indeed, interpolation and the
presence of noise could have changed the spectrum and masked or destroyed some of the
useful information.

Common shot gathers obtained with w-AWI are shown in Figure 5.21. The initial
data are different than in FWI (Figure 5.18) even if the initial model is the same because
a source wavelet is estimated before starting inversion. The final data are not in correct
phase with real data because w-AWI partially neglects the phase. Some information about
the phase is reintroduced by using horizontal windows (see Chapter 4 for more details).
However, the frequency amplitude is well explained as shown previously (Figures 5.19
and 5.20).

This result (w-AWI, 10-70 Hz band-passed data) can be considered as an initial model
for a supplementary FWI run. The Vs and Vp models are smoothed before the supple-
mentary FWI run in order to reduce some of the oscillatory effects caused by the shallow
pair of layers (between 0.5 and 3.5 m). An elliptical (2.5 m vertically and 5 m horizon-
tally) Gaussian window was employed for this purpose. The source wavelets found after
w-AWI are the initial ones for FWI.

We first show the objective function minimisation (Figure 5.22). At the end of w-AWI,
the measured misfit value (measured with FWI objective function) was approximately
42 % of the initial value; now by applying FWI in a second inversion run the misfit value
was additionally reduced to 70 % of the w-AWI result. This roughly means that by
applying this two stage (w-AWI then FWI) inversion the data misfit was minimised to
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Figure 5.19: Representative result (shot gather 30, negative offset window) for w-AWI
with 10-70 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Middle: spectra slice comparison. Bottom: initial (left) and final (right) residuals.

28 % of the initial value. This result can be observed in Figure 5.23, where initial (after
w-AWI) and final data are shown. The final data seem indeed closer to real data than in
the previous tests. Besides, the final data residual have also smaller amplitude. Finally,
one of the effects of w-AWI can be observed in the source wavelets (Figure 5.24). After
the first stage (w-AWI), the wavelets are in phase. After the second stage (FWI), the
wavelets are shifted. This phase shift could be related to high velocities in the model
which are compensated for by FWI with wavelet delays.

The velocity model obtained after the two stage inversion (Figure 5.25) seems to
explain features of the real structure (Figure 5.4). However, the two abnormal shallow
layers described in the first stage result (with w-AWI) are still present. Nevertheless,
their shapes are smoother after the second stage (with FWI).

Local minima in w-AWI

The results of two tests applied to data filtered with higher low-cut frequencies are shown
in this section. Instead of leaving the initial 10 Hz low-cut frequency (from preprocessing,
Figure 5.6), we have employed low-cut frequencies of 25 and 36 Hz. We only applied w-
AWI to this data to evaluate the effect of missing low-frequencies.
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Figure 5.20: Representative result (shot gather 30, positive offset window) for w-AWI
with 10-70 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Middle: spectra slice comparison. Bottom: initial (left) and final (right) residuals.
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Figure 5.21: Representative result (shot gather 30) for w-AWI with 10-70 Hz band-passed
data. The differences are mainly related to the phase. Top: initial (red), reconstructed
(blue) data superposed to observed (black) data. Bottom: initial (left) and final (right)
residuals.
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Figure 5.22: Objective function evolution with iterations. This is the second stage of
inversion (FWI after w-AWI).
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Figure 5.23: Representative result (shot gather 30) for FWI with 10-70 Hz band-passed
data after w-AWI. Top: initial (red), reconstructed (blue) data superposed to observed
(black) data. Bottom: initial (left) and final (right) residuals.
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Figure 5.24: Source wavelets found after w-AWI (top) and w-AWI + FWI (bottom)
inversion. Wavelets found by w-AWI are not shifted mainly because the phase is not
inverted.
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Figure 5.25: Second stage inversion result (FWI after w-AWI). Final result for Vp (top)
and Vs (bottom).

In this case, a high velocity layer is created in the shallow part of the model after
inversion (results in Figures 5.26 and 5.27). The usual low-velocity layer retrieved by
inversion starting at 10 Hz (previously referred to as pair of layers) is not present in these
results. Regarding the update at the anomaly position, the 25-80 Hz inversion has tried
to do it correctly although at an erroneous vertical position. On the contrary, the 36-80
Hz inversion was not successful in updating the anomaly velocity.

The misfit was minimised to lower values in comparison to low frequency inversions
(less than 0.1 compared to 0.15, Figure 5.28). However, the surface wave fundamental
mode was only partially reconstructed (Figures 5.29 to 5.32). Besides, for the higher
frequency band (36-80 Hz), the fundamental mode of synthetic data seems to be erro-
neously explaining one of the real data higher modes. Consequently, very shallow high
velocity layers had to be created in order to match the synthetic fundamental mode to
with one of the real data higher mode. This is a clear effect of local minima created by
“cycle skipped” modes in f − k gathers.

5.4 Discussion

We have applied SWA, FWI and w-AWI to a 2D real seismic profile at ultra-shallow
depth with 61 shot gathers (containing 72 traces each). The data ware acquired above
a purpose-built ground model, where a concrete anomaly was casted after digging a pit.
The data quality is in general good, although some preprocessing stages had to be applied,
especially for solving coherency problems between adjacent traces. Besides, the data were
high-pass filtered by the geophones at around 10 Hz. This value is not constant for all the
receivers because three different types of geophones were used during acquisition. The
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Figure 5.26: Result of w-AWI with 25-80 Hz band-passed data. Top: Vp (left) and Vs
(right) final result. Bottom: final update for Vp (left) and Vs (left).
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Figure 5.27: Result of w-AWI with 36-80 Hz band-passed data. Top: Vp (left) and Vs
(right) final result. Bottom: final update for Vp (left) and Vs (left).
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Figure 5.28: Objective function evolution with iterations. Left: 25-80 Hz. Right: 36-
80 Hz. Only w-AWI was employed, but both w-AWI and FWI misfits are displayed.
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Figure 5.29: Representative result (shot gather 30, negative offset window) for w-AWI
with 25-80 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Bottom: initial (left) and final (right) residuals.
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Figure 5.30: Representative result (shot gather 30, positive offset window) for w-AWI
with 25-80 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Bottom: initial (left) and final (right) residuals.
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Figure 5.31: Representative result (shot gather 30, negative offset window) for w-AWI
with 36-80 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Bottom: initial (left) and final (right) residuals.
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Figure 5.32: Representative result (shot gather 30, positive offset window) for w-AWI
with 36-80 Hz band-passed data. Top: observed (left), initial (centre) and final (right)
data. Bottom: initial (left) and final (right) residuals.
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two nearest offset traces have been muted in preprocessing to avoid introducing spurious
or distorted events.

As initial model, we considered a smooth Vp model inverted via first-arrival traveltime
tomography. Some information about Vs and ρ is given by Deidda and Balia (2001).
However, below 5 m, none of the elastic parameters are known. Besides, the concrete
structure was placed around 13 years ago, and this, in addition to the sedimentary nature
of the geological context, gives a reason to interrogate ourselves about the current anomaly
position. The initial model could be improved by considering low-frequency FWI to wide
aperture data (Gao et al., 2007; Plessix et al., 2012). However, the data set considered
here mainly contains surface waves and early arrivals (transmitted waves) which are not
sufficiently separated from other seismic waves.

SWA
We have applied a simple SWA inversion strategy using the picked fundamental mode.
The dispersion curves were semi-automatically extracted from stacked f−k gathers. This
inversion was useful for us to better understand the data. The SWA analysis allowed
us to identify a Vs = 250 m/s structure at the approximate anomaly position. We
believe this result can be improved if higher modes are included in inversion; they can be
distinguished and picked in the f − k gathers. This new information could improve the
anomaly resolution because higher modes penetrate deeper. For example, for a frequency
of 20 Hz (contained in the data) the fundamental mode penetrates approximately up to
4 m (considering an average of Vs = 80 m/s in the first two meters). As the anomaly is
placed between 3 and 5 m depth, we should be able to improve results in depth only by
extending the fundamental mode penetration by a factor of 1.25.

FWI and w-AWI
Concerning waveform inversion, we have applied FWI and w-AWI to different frequency
bands of data: 10-18 Hz, 10-25 Hz, 10-36, 10-50 and 10-70 Hz. With the lower frequency
band, a smooth result was obtained with both techniques, but the anomaly position
could not be defined. For all other intermediate frequency bands, a pair of high and low
velocity layers was imaged by inversion in the near surface (0.5 to 3.5 m depth). We have
identified four main reasons for this effect:

• High Vp values starting from 5 m depth. Our strategy for complementing the
smooth 5 m thick Vp model (from traveltime tomography) consisted in extending
the velocity to greater depths. This, however, might not correspond to reality
because there should be a second velocity contrast below the anomaly, at around
5 m depth.

• High velocity contrast in the real medium. The interface between the sediments
and the concrete is likely to create strong reflections that impose more constraints
on the choice of initial velocity model.

• Noisy traces as well as data interpolation might have created the unclear funda-
mental mode observed in the negative abscissa part of the profile (Figure 5.19).

• Non-modelled physical aspects. As a final reason, we consider that anisotropy,
attenuation and 3D effects are not modelled in our codes.
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The integrated inversion process including a first w-AWI run followed by FWI has
recovered a high velocity body (≈ 200 m/s) near the approximate anomaly position.
Besides, low velocities were imaged below this anomaly shape. The near-surface transi-
tions appear smooth. Therefore, this result seems to explain some of the ground-model
features.

5.5 Conclusion

Contrary to FWI, the best w-AWI strategy does not consist in starting inversion from the
low-frequency content and then gradually including the higher frequencies. The useful
information for w-AWI is the dispersion of surface waves. This technique needs to take
into account the complete range of frequencies contained in the data. This is the reason
why time domain modelling is necessary in w-AWI. In SWA, the dispersion curves must
be sensitive to all the layers in the model. As w-AWI objective function is similar to SWA
(in the sense of dispersion analysis), the complete data spectrum has to be included. This
was shown in this chapter by inverting low to high frequency bands. The best result was
obtained when considering the entire spectrum. Nonetheless, low-frequency content is
also needed, as without it a high-velocity superior mode could erroneously be explained
at high frequencies by the low-velocity fundamental mode.



Chapter 6

Conclusions and Perspectives

6.1 Conclusions

Surface Wave Analysis (SWA) can be used to determine elastic properties of the Earth
at two different scales to image the near surface (less than 100 m) or the Earth’s deep
interior (crust and mantle). However, surface waves are rarely used in the intermediate
scale, for example, to improve seismic imaging at exploration target depth (less than 10
km). Their propagation remain in the near surface and far from the target. They are
thus often considered as coherent noise. Instead, body waves are preferred in seismic
exploration techniques. In this PhD thesis, we have tried to see if the concept of SWA
can be used to modify a technique commonly applied to body waves, Full Waveform
Inversion (FWI), in order to characterise 2D media with surface waves. As a result, we
have proposed an intermediary approach between SWA and FWI that we call windowed-
Amplitude Waveform Inversion (w-AWI). This research focused on three main aspects.
The conclusions of our study are presented as follows.

6.1.1 Waveform modelling

As a first matter of research, we implemented elastic wave propagation modelling with
free-surface conditions in 2D elastic isotropic media (Chapter 2). The classical velocity-
stress formulation was revisited to make it work in the presence of smoothly curved
interfaces and topography. A computational cost analysis indicates that the chain rule
approach is theoretically less costly than the tensorial approach if finite-difference stencils
of less than the sixth order are employed. As one of our goals concerns the implementation
of a modelling tool computationally efficient for FWI, we implemented the chain-rule
approach with second-order finite differences. Our solution is implemented in the time-
space domain because in this way surface wave dispersion can be modelled with less
computational cost compared to frequency-space domain waveform modelling approaches.

We propose employing a modified staggered grid which makes the computation of
partial derivatives to be straightforward within the chain-rule modelling framework. The
accuracy of the proposed modelling scheme was evaluated by comparing results to an an-
alytical solution (Cagniard-de Hoop method) showing high accuracy at least for Rayleigh
and direct waves in homogenous media. The computational cost remains approximately
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twice as large as the one corresponding to to the classical rectangular domain implementa-
tion. Nonetheless, wave propagation can be modelled without grid artefacts in smoothly
curved 2D media.

6.1.2 Analysis of inversion techniques

The characteristics of SWA have been investigated. This research started with a biblio-
graphic review followed by an analysis of synthetic data examples (Chapter 3). Dispersion
curves representing surface wave propagation in plane-layered media is the essential ele-
ment used in SWA. In dispersion curve inversion, even if the computational cost of the
differential eigenvalue direct problem (secular function approach) remains low (allowing
testing inversion results several times), searching the damping factor that guarantees both
convergence through objective function minimisation can be a cumbersome task. Thus,
we showed that the classical Levenberg-Marquardt method used in SWA can be improved
in terms of convergence if the damping factor changes dynamically with iterations instead
of being a fixed factor chosen on a trial-and-error basis. We have proposed a heuristic
approach in which the damping ratio and residual weighting are chosen automatically
according to the minimisation of the objective function at each iteration. In addition,
a Tikhonov regularisation could also be considered (second-order Laplacian operator,
weighting covariance matrix, etc).

The exact 1D Vs model can be found by inverting dispersion curves if accurate initial
Vp and density models are provided, as well as a good approximation of the expected
layer thicknesses. Moreover, inversion can find a model explaining the dispersion curves,
even completely, but not corresponding to the exact model. In such a case, dispersion
curves are ambiguous data as they can be explained by different models satisfying the
same data. In some cases, even the use of higher mode incorporation fails to better
constrain inversion. Therefore, more information should be incorporated to this surface
wave inversion approach. This is one of the motivation for having analysed alternative
approaches for surface wave inversion such as FWI (Chapter 3).

In principle, surface waves could be inverted by FWI directly from seismic shot gath-
ers. This approach seems however difficult to apply successfully because high frequencies
of surface waves increase the presence of local minima in the objective function. The
global minimum basin becomes smaller which makes it difficult to choose an appropriate
initial velocity model. When using FWI with body waves, starting inversion with low fre-
quencies can retrieve a preliminary velocity model that explains the long to intermediate
wavelengths. However, it is still not clear if such a strategy would guarantee a good result
in the case of dispersive surface waves. Hence, the combination of SWA-type dispersion
analysis and waveform modelling was investigated to find a waveform inversion approach
especially suited for surface waves.

Separation of shot gathers into subsets of receivers was initially analysed with the
purpose of developing a better understanding of surface wave dispersion in 2D media.
It was observed that surface waves are dispersive only if there are model heterogeneities
within a depth range smaller than two wavelengths. This result is already demonstrated
in SWA. Furthermore, by separating the shot gathers into subsets and then analysing the
absolute value of their 2D Fourier transform, we realised that the dispersion “observed”
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in each subset of receivers is principally due to the medium properties localised below
the position of each subset. This initial observation prompted our interest in modifying
the classical FWI objective function in order to measure the misfit like in SWA but in
2D media and without picking dispersion curves.

Closed-form equations for gradient computation in the specific case of the velocity-
stress formulation for 2D media using the adjoint-state method has been provided as well
(given in the FWI theoretical review in Chapter 3). We applied a change of variables in or-
der to make wave propagation auto-adjoint in the sense of the adjoint-state method which
is practical because the same code can be used for propagation and back-propagation of
residuals.

6.1.3 A novel approach

In Chapter 4, the theory of an alternative surface-wave inversion approach, w-AWI, is
developed and then analysed through several numerical tests. The use of windows that
select consecutive receivers has been introduced in this work. The classical FWI objective
function has been consequently modified in order to include the previously mentioned
observations (spatial windows, 2D Fourier transform, absolute value).

Implementing a different objective function evidently implies that its gradient is dif-
ferent than that of classical FWI. Nonetheless, we have used the adjoint-state method
for gradient computation which only differs from classical FWI in the residual source for
the adjoint-state variable.

The incorporation of windows and the absolute value lead to a wider global minimum
basin compared to classical FWI. Synthetic tests using mono-frequency sources show that
the w-AWI global minimum basin is as wide as the FWI one if the frequency considered in
the latter is half the one considered in w-AWI. This feature of w-AWI is essential in surface
wave inversion as it is automatically translated into a relaxation of constraints regarding
the choice of initial velocity model. We proved this characteristic in the presence of surface
waves but we did not consider the case of body waves (an analysis especially appealing in
the case of reflections). Besides, the basin of the global minimum can potentially be tuned
by including a smaller number of receivers (shorter windows). Lost of resolution in the
f−k domain is prevented by imposing a minimum number of receivers in each considered
window. Conversely, too wide windows may result in unwanted property averaging.

The proposed technique w-AWI has been evaluated through synthetic data inversion
tests and has been applied to a real seismic data set to image the shallow depths. We
can summarise our results as follows.

• Provided that there is an initial velocity model that is close enough to the exact
one (within the global minimum basin), both techniques can potentially find global
minimums that are closely related. Resolution of w-AWI is principally controlled by
the spatial window shape. We have qualitatively observed the change of resolution
in the gradient computed with different window lengths. The number of receivers
included in each window can be changed if needed in each inversion test.

• The capacity of w-AWI to find the correct model when the source wavelet is un-
known has been proven. Formulation for source wavelet estimation has been pro-
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vided in this work. We have tested it in the case the initial velocity model is either
a smooth version of the exact one (an smooth initial model close to exact one) or
a simple linear velocity gradient. The correct velocity model was retrieved in both
cases.

• In some configurations, w-AWI correctly converges when FWI does not. This was
observed on both synthetic and real data inversions (real data was acquired above a
purpose-built ground model, thus with a good idea of the underground structure).
This effect is mostly due to its wider global minimum basin. Such minimum basin
is approximately twice as wide as for classical FWI. Local minima effects have been
observed when high-pass filtering the real data. In w-AWI, a superior mode of
observed data may erroneously be explained by the fundamental mode of modelled
data if low-frequency data content is not included.

The proposed approach can be used to retrieve 2D properties of the near surface using
surface waves. Wider frequency bands are needed in order to perform a complete disper-
sion analysis in w-AWI. By inverting wider frequency bands, localised features like fluid
parameter variations could be estimated since higher frequencies can improve the imaging
resolution especially needed in time-lapse reservoir monitoring (4D seismic) (Asnaashari,
2013). Synthetic tests have demonstrated this along with a real data inversion. An ad-
ditional inversion strategy has been introduced by spatially windowing the data. Real
data inversion has shown that w-AWI is likely situated somewhere between low-frequency
transmitted-wave FWI and full spectra FWI. An accurate Vs model can be inverted from
surface waves by exploiting their larger sensitivity to this elastic parameter. However, if a
sufficiently accurate Vp (and also density) model is not provided, w-AWI has to explain
surface wave propagation by creating lower or higher velocity layers in the Vs model.
Besides, the presence of noisy seismic traces is still a matter of research. For this reason,
multiple perspectives are envisaged.

6.2 Perspectives

Surface waves carry information about the near surface properties that have influenced
their propagation. Some strategies can be explored in order to extend the results pre-
sented here.

6.2.1 Multi-scale strategies

The spatial windows defined in w-AWI can be used in different ways. It is possible to
make the basin wider by including less receivers into each windowed subset. By doing this,
resolution of the velocity model will be impacted. Thus, a smooth velocity background
will result in this case. If this first step is successful, then the number of receivers per
window can be increased. However, this number of receivers should be related to the
target dimensions as averaging effects can decrease resolution in the end.

As a second strategy, multi-frequency and f − k masking can be explored. Low to
high frequency inversion strategies are usually incorporated in elastic and acoustic FWI
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(Bunks et al., 1995; Sirgue, 2003; Sirgue and Pratt, 2004; Brossier et al., 2008; Romdhane
et al., 2011). Surface waves are in general more sensitive to Vs (Xia et al., 1999; Song
et al., 1989), however the sensitivity analysis could be revisited by considering low and
high frequencies separately in addition to considering also the energy of dispersion modes.
Moreover, masking can be applied to different zones in the f − k gathers of w-AWI. This
is a novel feature introduced by w-AWI. FWI usually includes masking in time and
frequency but not in the f −k domain. As an example, once the fundamental mode have
been explained, f − k masking could be used to focus inversion on higher modes. As
well, dynamic weighting of specific zones in the f − k domain could be applied similarly
to SWA, where weighting is applied to the misfit between dispersion curves in the f − v
domain. In such a way, low weights could be assigned to unwanted high energy effects in
the fundamental mode (effects due to noise or acquisition problems) in inversion.

As a third option, we suggest a workflow integrating w-AWI in this order: traveltime
tomography, low-frequency FWI, w-AWI and full spectra FWI. First, tomography can
be used to obtain a long-wavelength velocity model that will be the starting model for
low-frequency FWI. FWI is then applied to long-offset wide-aperture seismic events (div-
ing/transmitted waves) (Gao et al., 2007; Plessix et al., 2012). This second step leads
to higher resolution in Vp and density. Then, w-AWI could be applied to full frequency
data in order to find an accurate Vs model from surface waves. Finally, full band FWI
can be applied leading to reconstruction of the missed data phase while improving reso-
lution of the model. Results of this strategy could be validated in locally 1D media by
comparing results to SWA and evaluating if surface wave dispersion modes have been
correctly explained.

6.2.2 Include more of the Earth’s physics in modelling

The effect of near surface anisotropy in the amplitude of surface waves needs further in-
vestigation. In global seismology, surface waves have been used to characterise anisotropic
features in the upper mantle (Gaherty, 2004). Surface wave attenuation can also be used
in inversion in order to determine medium elastic properties (Lai, 1998).

6.2.3 Extension to 3D

In this work, we have addressed the problem of 2D surface wave inversion. We consider
the transfer of the developed methodology to 3D is feasible and without major difficul-
ties. Besides, 3D wave propagation modelling leads to reliable amplitudes an this should
improve the result of amplitude based techniques (w-AWI). Dispersion analysis in the
extra dimension is not fundamentally different from what it is in 2D (dispersion gathers
in the f − k domain). Finally, spatial aliasing should be considered in 3D seismics. If it
is present, then the missing information will be in the high-frequency large-wavenumber
events which mostly correspond to the tail of the surface wave fundamental mode. This
part of the fundamental mode is mainly sensitive to the slow velocities of the very shal-
low near surface. Thus, the effect of spatial aliasing may decrease the quality of the near
surface seismic imaging.
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Appendix A

Residual source for the adjoint-state
variable in w-AWI

We define the w-AWI objective function shown in equation 4.7 as

Φ̃(m) =
1

2

∑

src

∑

r

∫ K

−K

∫ F

−F

(|Dr(m|f, k)| − |Dobs
r (f, k)|)2dfdk, (A.1)

where, instead of using the least-squares representation, we use the frequency and wavenum-
ber integrals. The adjoint-state residual source ∂Φ̃(m)/∂v(m) in w-AWI is defined as

∂Φ̃(m)

∂v(m)
=
∑

src

∑

r

∫ K

−K

∫ F

−F

∂|Dr(m|f, k)|
∂v(m)

(|Dr(m|f, k)| − |Dobs
r (f, k)|)dfdk (A.2)

We must first find a solution for

∂|Dr(m|f, k)|
∂v(m)

=
∂|F2D{ST (x, z)wr(x, t)v(m|x, z, t)}|

∂v(m)
. (A.3)

To do this, we replace the absolute value to its expression in terms of the real and
imaginary parts as

|Dr| =
√
ℜ2{Dr} − ℑ2{Dr}, (A.4)

where ℜ and ℑ are the operands that take the real and imaginary parts, respectively (we
have neglected the dependence of Dr on the model parameter and the coordinates). By
using equation A.4, we obtain

∂|Dr|
∂v

=
1

2
√

ℜ2{Dr} − ℑ2{Dr}
∂ (ℜ2{Dr} − ℑ2{Dr})

∂v

=
1

|Dr(f, k)|

(
ℜ{Dr}

∂ℜ{Dr}
∂v

−ℑ{Dr}
∂ℑ{Dr}
∂v

) (A.5)

To find the result of equation A.5, let us rewritten the 2D Fourier transform by using
the identity eiθeiψ = cos(θ + ψ) + i · sin(θ + ψ) as

F2D{g(x, t))} =

∫∫
g(x, t)(cos(2π(kx− ft)) + i sin(2π(kx− ft)))dtdx, (A.6)
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such that the real and imaginary parts of the 2D Fourier transform are expressed as

ℜ{F2D{g(x, t))}} =

∫∫
g(x, t)(cos(2π(kx− ft)))dtdx, (A.7)

and

ℑ{F2D{g(x, t))}} =

∫∫
g(x, t)(sin(2π(kx− ft)))dtdx. (A.8)

The derivatives of real and imaginary parts of the 2D Fourier transform with respect to
g(x, t) are

∂ℜ{F2D{g(x, t))}}
g(x, t)

= cos(2π(kx− ft)), (A.9)

and
∂ℑ{F2D{g(x, t))}}

g(x, t)
= sin(2π(kx− ft)), (A.10)

We use equations A.9 and A.10 to develop equation A.5 to

∂|Dr|
∂v

=
STwr

|Dr|
(ℜ{Dr} cos(2π(kx− ft))−ℑ{Dr} sin(2π(kx− ft))) . (A.11)

We consider the identity

ℜ{Dr} cos(2π(kx− ft))−ℑ{Dr} sin(2π(kx− ft)) = ℜ
{
e−i2π(kx−ft)Dr

}
, (A.12)

to replace it into the second term at the right-hand side of equation A.11 and obtain
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With the result of equation A.12, we can find an expression for equation A.2 as
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which can be expressed as

∂Φ̃
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Dr
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where the operand F−1
2D stands for the inverse 2D Fourier transform.
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en deux dimensions. Application á la caractérisation de la subsurface dans le cadre de
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Imagerie sismique de la proche sub-surface : modification de l'inversion des 

formes d'onde pour l'analyse des ondes de surface 

RESUME 

L’amélioration des images sismiques peut aider à mieux contraindre l’exploration des 

hydrocarbures. Les ondes élastiques qui se propagent dans la Terre peuvent être classifiées 

comme ondes de volume et ondes de surface. Si ces dernières sont les plus énergétiques, 

seules les ondes de volume sont couramment considérées comme des signaux utiles. 

Cependant, les ondes de surface sont utiles pour caractériser la proche sub-surface. 

Classiquement, les ondes de surface sont analysées dans des contextes de propriétés 

élastiques localement 1D.  

Nous proposons une modification de l’inversion des formes d’onde classique pour 

reconstruire des profils de propriétés 2D (la windowed-Amplitude Waveform Inversion, w-

AWI). La w-AWI est spécialement robuste en ce qui concerne le choix du modèle initial. 

Nous appliquons la w-AWI aux données synthétiques ainsi qu’aux données réelles, montrant 

que cette approche permet de récupérer des propriétés 2D. 

 

Mots clés : ondes de surface, problème inverse, modélisation sismique, inversion des 

formes d’onde. 

 

Two-dimensional near-surface seismic imaging with surface waves:  

alternative methodology for waveform inversion 

ABSTRACT 

High-resolution seismic imaging is essential to improve results of hydrocarbon exploration. 

Elastic waves propagate in the Earth as body and surface waves, the latter being the most 

energetic ones. Body waves are preferred for exploration seismic imaging while surface 

waves are usually considered to be noise. However, it has been recognised that the near 

surface can be characterised by analysing surface waves and that such result may improve 

the outcome of body-wave processing. Currently, surface waves analysis leads to retrieve 

local 1D property profiles.  

We propose a waveform-based inversion procedure to derive 2D velocity models from 

surface waves. This method consists of a misfit functional modification of classical Full 

Waveform Inversion and we call it windowed-Amplitude Waveform Inversion (w-AWI). We 

show that w-AWI is robust regarding the choice of initial velocity model. We apply w-AWI to 

synthetic and real data obtaining encouraging near-surface imaging results. 

 

Key words: surface waves, inverse problem, seismic modelling, waveform inversion. 
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