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de cette thèse, et Paul Kelly et Henri-Pierre Charles, qui ont accepté d’être
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Abstract

This thesis intends to show how to efficiently exploit the parallelism present
in applications in order to enjoy the performance benefits that multiproces-
sors can provide, using a new automatic task parallelization methodology
for compilers. The key characteristics we focus on are resource constraints
and static scheduling. This methodology includes the techniques required
to decompose applications into tasks and generate equivalent parallel code,
using a generic approach that targets both different parallel languages and
architectures. We apply this methodology in the existing tool PIPS, a com-
prehensive source-to-source compilation platform.

This thesis mainly focuses on three issues. First, since extracting task
parallelism from sequential codes is a scheduling problem, we design and
implement an efficient, automatic scheduling algorithm called BDSC for
parallelism detection; the result is a scheduled SDG, a new task graph data
structure. In a second step, we design a new generic parallel intermediate
representation extension called SPIRE, in which parallelized code may be
expressed. Finally, we wrap up our goal of automatic parallelization in a
new BDSC- and SPIRE-based parallel code generator, which is integrated
within the PIPS compiler framework. It targets both shared and distributed
memory systems using automatically generated OpenMP and MPI code.





Résumé

Le but de cette thèse est d’exploiter efficacement le parallélisme présent
dans les applications informatiques séquentielles afin de bénéficier des perfor-
mances fournies par les multiprocesseurs, en utilisant une nouvelle méthodol-
ogie pour la parallélisation automatique des tâches au sein des compila-
teurs. Les caractéristiques clés de notre approche sont la prise en compte
des contraintes de ressources et le caractère statique de l’ordonnancement
des tâches. Notre méthodologie contient les techniques nécessaires pour
la décomposition des applications en tâches et la génération de code par-
allèle équivalent, en utilisant une approche générique qui vise différents lan-
gages et architectures parallèles. Nous implémentons cette méthodologie
dans le compilateur source-à-source PIPS. Cette thèse répond principale-
ment à trois questions. Primo, comme l’extraction du parallélisme de tâches
des codes séquentiels est un problème d’ordonnancement, nous concevons et
implémentons un algorithme d’ordonnancement efficace, que nous nommons
BDSC, pour la détection du parallélisme ; le résultat est un SDG ordon-
nancé, qui est une nouvelle structure de données de graphe de tâches. Sec-
ondo, nous proposons une nouvelle extension générique des représentations
intermédiaires séquentielles en des représentations intermédiaires parallèles
que nous nommons SPIRE, pour la représentation des codes parallèles. En-
fin, nous développons, en utilisant BDSC et SPIRE, un générateur de code
que nous intégrons dans PIPS. Ce générateur de code cible les systèmes à
mémoire partagée et à mémoire distribuée via des codes OpenMP et MPI
générés automatiquement.
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Introduction (en français)
I live and don’t know how long, I’ll die and don’t know when, I am going and

don’t know where, I wonder that I am happy. Martinus Von Biberach

Contexte

La loi de Moore [83] postule que, tout au long de l’histoire du matériel
informatique, le nombre de transistors utilisés dans les circuits intégrés va
doubler tous les deux ans environ. Cette croissance s’accompagnait, jusqu’à
très récemment encore, de vitesses d’horloge toujours plus élevées, afin de
d’améliorer encore plus les performances des processeurs (ou cœurs). Le
passage de la fabrication de microprocesseurs uniques à la conception de
machines parallèles est en partie dû à la croissance de la consommation
exagérée d’énergie liée à cette augmentation de fréquence. Le nombre de
transistors continue toutefois à augmenter afin d’intégrer plus de cœurs et
assurer un passage à l’échelle proportionnel de performance pour des appli-
cations scientifiques toujours plus sophistiquées.

En dépit de la validité de la loi de Moore jusqu’à maintenant, la perfor-
mance des cœurs a ainsi cessé d’augmenter après 2003. Du coup, la scal-
abilité des applications, qui correspond à l’idée que les performances sont
accrues lorsque des ressources supplémentaires sont allouées à la résolution
d’un problème, n’est plus garantie. Pour comprendre ce problème, il est
nécessaire de jeter un coup d’œil à la loi dite d’Amdahl [16]. Selon cette loi,
l’accélération d’un programme à l’aide de plusieurs processeurs est limitée
par le temps nécessaire à l’exécution de sa partie séquentielle ; en plus
du nombre de processeurs, l’algorithme lui-même limite également cette
accélération.

Afin de profiter des performances que les multiprocesseurs peuvent fournir,
il faut bien évidemment toujours arriver à exploiter efficacement le par-
allélisme présent dans les applications. C’est une tâche difficile pour les pro-
grammeurs, surtout si ce programmeur est un physicien, un mathématicien
ou un informaticien pour qui la compréhension de l’application est difficile
car elle n’est pas la sienne. Bien sûr, nous pourrions dire au programmeur :
“penses parallèle” ! Mais les êtres humains ont tendance à penser, pour
l’essentiel, de manière séquentielle. Par conséquent, détecter le parallélisme
présent dans un code séquentiel et, automatiquement ou non, écrire un code
parallèle efficace équivalent a été, et restera sans doute pendant un certain
temps encore, un problème majeur.

Pour d’évidentes raisons économiques, une application parallèle, exprimée
dans un modèle de programmation parallèle, doit être non seulement effi-
cace mais également aussi portable que possible, c’est-à-dire être telle qu’il
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ne faille pas avoir à réécrire ce code parallèle pour utiliser une autre machine
que celle prévue initialement. Pourtant, la prolifération actuelle de modèles
de programmation parallèle distincts fait que le choix d’un modèle général
n’est, manifestement, pas évident, à moins de disposer d’un langage parallèle
à la fois efficace et capable d’être compilé pour tous les types d’architectures
actuelles et futures, ce qui n’est pas encore le cas. Par conséquent, cette
écriture de code parallèle doit être fondée sur une approche générique, c’est
à dire susceptible d’être facilement adaptée à un groupe de langages aussi
large que possible, afin d’offrir une meilleure chance de portabilité.

Motivation

Pour que la programmation pour multiprocesseurs conduise à de bonnes per-
formances sans aller jusqu’à avoir à penser “parallèle”, une plate-forme logi-
cielle de parallélisation automatique visant à exploiter efficacement les cœurs
est nécessaire. Si divers modes de parallélisme existent, la prolifération
de processeurs multi-cœurs offrant des pipelines courts et des fréquences
d’horloge relativement basses et la pression que le simple modèle de par-
allélisme de données impose à la bande passante de la mémoire ont fait
de telle sorte que la prise en compte du parallélisme à gros grain apparait
comme inévitable pour améliorer les performances.

La première étape d’un processus de parallélisation nous semble donc
être d’exposer la concurrence de tâche présente dans les programmes, en
décomposant les applications en groupes pipelinés d’instructions, puisque
les algorithmes peuvent souvent être décrits comme de tels ensembles de
tâches. Pour illustrer l’importance de la parallélisation au niveau tâche, nous
donnons ici un exemple simple : l’algorithme de recherche de coins dans une
image proposé par Harris [96]: il est fondé sur de l’autocorrélation pixel par
pixel, en utilisant une châıne de fonctions, à savoir Sobel, Multiplication,
Gauss, et Coarsity. La figure 1 illustre ce processus. Plusieurs chercheurs
ont déjà parallélisé et adapté cet algorithme sur des architectures parallèles
telles que le processeur CELL [95].

La figure 2 montre une instance de partitionnement possible, réalisée à la
main, de l’algorithme de Harris (voir aussi [95]). L’algorithme de Harris peut
ainsi être décomposé en une succession de deux à trois tâches simultanées
(ellipses sur la figure), en faisant par ailleurs abstraction du parallélisme
de données potentiellement présent. L’automatisation de cette approche
intuitive, et donc l’extraction automatique de tâches et la parallélisation
d’applications de ce type, est la motivation qui sous-tend cette thèse.

Cependant, la détection du parallélisme de tâches et la génération de
code efficace s’appuient sur des analyses complexes de dépendances de donné-
es, de communication, de synchronisation, etc. Ces différentes analyses
peuvent, de facto, être dès maintenant fournies en grande partie par des
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void main(int argc , char *argv []){

float (*Gx)[N*M], (*Gy)[N*M], (*Ixx)[N*M],

(*Iyy)[N*M], (*Ixy)[N*M], (*Sxx)[N*M],

(*Sxy)[N*M], (*Syy)[N*M], (*in)[N*M];

in = InitHarris ();

/* Now we run the Harris procedure */

// Sobel

SobelX(Gx, in);

SobelY(Gy, in);

// Multiply

MultiplY(Ixx , Gx, Gx);

MultiplY(Iyy , Gy, Gy);

MultiplY(Ixy , Gx, Gy);

// Gauss

Gauss(Sxx , Ixx);

Gauss(Syy , Iyy);

Gauss(Sxy , Ixy);

// Coarsity

CoarsitY(out , Sxx , Syy , Sxy);

return;

}

Figure 1: Une implementation séquentielle en C de la fonction main de
l’algorithme de Harris

plateformes logicielles de compilation. Ainsi, la délégation au logiciel du
“penser parallèle”, construite sur la mobilisation d’analyses automatiques
déjà existantes de dépendances de données, parait viable, et peut permet-
tre d’espérer voir gérées tout à la fois la granularité présente dans les codes
séquentiels et les contraintes de ressources telles que la taille de la mémoire
ou le nombre de processeurs, contraintes qui ont un impact certain sur ce
processus de parallélisation.

in

SobelX

SobelY

Gx

Gy

MultiplY

MultiplY

MultiplY

Ixx

Ixy

Iyy

Gauss

Gauss

Gauss

Sxx

Sxy

Syy

Coarsity out

Figure 2: Le graphe de flôts de données de l’algorithme de Harris

La parallélisation automatique de tâches a été étudiée depuis presque un
demi-siècle. Le problème de l’extraction d’un parallélisme optimal avec des
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communications optimales est, dans toute sa généralité, un problème NP-
complet [47]. Plusieurs travaux ont tenté d’automatiser la parallélisation
de programmes en utilisant différents niveaux de granularité. Métis [62]
et d’autres outils de partitionnement de graphe visent à attribuer la même
quantité de travail aux processeurs, avec de petites quantités de commu-
nication entre ces processeurs, mais la structure du graphe ne fait pas de
distinction entre les boucles, les appels de fonction, etc. Les étapes cruciales
de construction de graphe et de génération de code parallèle sont absents.
Sarkar [98] met en œuvre une méthode de compilation pour le problème
de partitionnement pour multiprocesseurs. Un programme est divisé en
tâches parallèles au moment de la compilation, puis celles-ci sont fusionnées
jusqu’à ce qu’une partition avec le plus petit temps d’exécution parallèle,
en présence des surcouts (ordonnancement et communication), soit trouvée.
Malheureusement, cet algorithme ne prend pas en compte les contraintes
de ressources, qui sont des facteurs importants pour cibler des architec-
tures réelles. Tous ces outils de parallélisation sont dédiés à un modèle de
programmation particulier : il y a manifestement un manque d’abstraction
générique du parallélisme (exécution parallèle, synchronisation et distribu-
tion de données). Ils ne répondent donc pas à la question de la portabilité.

Dans cette thèse, nous développons une méthodologie de parallélisation de
tâches automatique pour les compilateurs : les caractéristiques principales
sur lesquelles nous nous concentrons sont les contraintes de ressources et
l’ordonnancement statique. Elle comprend les techniques nécessaires pour
décomposer les applications en tâches et générer le code parallèle équivalent,
en utilisant une approche générique qui cible différents langages parallèles et
donc différentes architectures. Nous appliquons cette méthodologie à l’outil
existant PIPS [59], une plate-forme de compilation source-à-source.

Contributions

Notre objectif est de développer un nouvel outil et des algorithmes pour la
parallélisation automatique de tâches ; nous souhaitons qu’ils prennent en
compte certaines contraintes de ressources et également être utiles en général
pour les langages parallèles existants. Ainsi, les principales contributions de
cette thèse sont les suivantes :

1. un nouvel algorithme hiérarchique d’ordonnancement (HBDSC) qui
utilise :

• une nouvelle structure de données pour représenter les programmes
parallèles partitionnés sous forme d’un graphe acyclique que nous
nommons SDG,

• une extension, appelée “DSC borné” (BDSC), de l’algorithme
d’ordonnancement DSC [111] capable de gérer simultanément
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deux contraintes de ressources, à savoir une taille mémoire bornée
par processeur et un nombre borné de processeurs, qui sont des
paramètres clés lors de l’ordonnancement des tâches sur les mul-
tiprocesseurs réels,

• un nouveau modèle de coût fondé sur l’estimation de la com-
plexité en temps d’exécution, la définition d’approximations poly-
édriques convexes de la taille des tableaux de données et l’instrum-
entation de code pour l’étiquetage des sommets et les arêtes du
SDG ;

2. une nouvelle approche pour l’adaptation des plates-formes de par-
allélisation automatique aux langages parallèles via :

• SPIRE, une nouvelle méthodologie d’extension au parallélisme
des représentations intermédiaires (RI) utilisées dans les compi-
lateurs, pour la conception des RIs parallèles ,

• le déploiement de SPIRE pour la parallélisation automatique
au niveau tâche de programmes parallèles dans le compilateur
PIPS [59] ;

3. une implémentation dans le compilateur source-à-source PIPS de :

• la parallélisation fondée sur HBDSC des programmes encodés
dans la RI parallèle de PIPS dérivée de SPIRE,

• la génération de code parallèle fondée sur SPIRE pour deux lan-
gages parallèles : OpenMP [4] et MPI [3] ;

4. des mesures de performance de notre approche de parallélisation, sur
la base de :

• cinq programmes significatifs, ciblant à la fois les architectures
à mémoire partagée et distribuée : deux benchmarks de traite-
ment d’image et de signal, Harris [54] et ABF [52], le benchmark
equake [22] de SPEC2001,le benchmark IS [87] extrait de NAS et
un code de FFT [8],

• leurs translations automatiques en deux langages parallèles : Ope-
nMP [4] et MPI [3],

• et, enfin, une étude comparative entre notre implémentation de
parallélisme de tâche dans PIPS et celle du langage de traite-
ment de signal audio Faust [88], en utilisant deux programmes de
Faust : Karplus32 et Freeverb. Nous choisissons Faust puisqu’il
s’agit d’un compilateur open-source qui génère également des
tâches parallèles automatiquement en OpenMP.
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Organisation

Cette thèse est organisée en neuf chapitres. La figure 3 montre comment
ces chapitres peuvent être interprétés dans le contexte d’une châıne de par-
allélisation.

Le chapitre 2 fournit un bref historique des concepts d’architectures,
de parallélisme, des langages et des compilateurs utilisés dans les chapitres
suivants.

Le chapitre 3 examine sept langages de programmation parallèles actuels
et efficaces afin de déterminer et de classifier leurs constructions parallèles.
Cela permet de définir un noyau de langage parallèle qui joue le rôle d’une
représentation intermédiaire parallèle générique lors de la parallélisation de
programmes séquentiels.

Cette proposition, appelée la méthodologie SPIRE, est développée dans
le chapitre 4. SPIRE exploite les infrastructures de compilation existantes
pour représenter les constructions à la fois de contrôle et de données présentes
dans les langages parallèles tout en préservant autant que possible les anal-
yses existantes pour les codes séquentiels. Pour valider cette approche dans
la pratique, nous utilisons PIPS, une plate-forme de compilation source-
à-source, comme un cas d’utilisation pour mettre à jour sa représentation
intermédiaire séquentielle en une RI parallèle.

Puisque le but principal de cette thèse est la parallélisation automatique
de tâches, l’extraction du parallélisme de tâche des codes séquentiels est
une étape clé dans ce processus, que nous considérons comme un problème
d’ordonnancement. Le chapitre 5 introduit ainsi une nouvelle heuristique au-
tomatique et efficace d’ordonnancement appelée BDSC pour les programmes
parallèles en présence de contraintes de ressources sur le nombre de pro-
cesseurs et la taille de leur mémoire locale.

Le processus de parallélisation que nous introduisons dans cette thèse
utilise BDSC pour trouver un bon ordonnancement des tâches d’un pro-
gramme sur les machines cibles et SPIRE pour générer le code source par-
allèle. Le chapitre 6 couple BDSC avec des modèles de coûts sophistiqués
pour donner un nouvel algorithme de parallélisation.

Le chapitre 7 décrit comment nous pouvons générer des codes parallèles
équivalents dans les deux langages cibles OpenMP et MPI, sélectionnés lors
de l’étude comparative présentée dans le chapitre 3. Grâce à SPIRE, nous
montrons comment la génération de code s’avère efficace tout en restant
relativement simple.

Pour vérifier l’efficacité et la robustesse de notre travail, des résultats
expérimentaux sont présentés dans le chapitre 8. Ils suggèrent que la par-
allélisation fondée sur SPIRE et BDSC, tout en gérant efficacement des
ressources, conduit à des accélérations de parallélisation importantes sur les
deux systèmes à mémoire partagée et distribuée. Nous comparons également
notre implémentation de la génération de omp task dans PIPS avec la
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génération de omp sections dans le compilateur Faust.
Nous concluons dans le chapitre 9.

Code source C

Analyses de PIPS
(Chaptitre 2)

Complexités /
régions de

tableaux convexe
(Chapitre 2)

RI sequntielle
(Chapitre 2)

DDG
(Chaptitre 2)

Paralléliseur
basé sur BDSC

(Chapitres 5 et 6)

SPIRE(PIPS RI)
(Chapitre 4)

Génération
d’OpenMP
(Chapitre 7)

Génération
de MPI

(Chapitre 7)

Code OpenMP
(Chapitre 3)

Code MPI
(Chapitre 3)

Exécution

Résultats de
performance
(Chapitre 8)

Figure 3: Organisation de la thèse : le bleu indique les contributions de la
thèse ; une ellipse, un processus; et un rectangle, résultats





Chapter 1

Introduction
I live and don’t know how long, I’ll die and don’t know when, I am going and

don’t know where, I wonder that I am happy. Martinus Von Biberach

1.1 Context

Moore’s law [83] states that, over the history of computing hardware, the
number of transistors on integrated circuits doubles approximately every
two years. Recently, the shift from fabricating microprocessors to parallel
machines designs was partly because of the growth in power consumption
due to high clock speeds, required to improve performance in single processor
(or core) chips. The transistor count is still increasing in order to integrate
more cores and ensure proportional performance scaling.

In spite of the validity of Moore’s law till now, the performance of cores
stopped increasing after 2003. Thus, the scalability of applications, which
calls for increased performance when resources are added, is not guaranteed.
To understand this issue, it is necessary to take a look at Amdahl’s law [16].
This law states that the speedup of a program using multiple processors
is bounded by the time needed for its sequential part; in addition to the
number of processors, the algorithm also limits the speedup.

In order to enjoy the performance benefits that multiprocessors can pro-
vide, one should exploit efficiently the parallelism present in applications.
This is a tricky task for programmers, especially if this programmer is a
physicist or a mathematician or is a computer scientist for whom under-
standing the application is difficult since it is not his. Of course, we could
say to the programmer: “think parallel”! But humans tend to think se-
quentially. Therefore, one past problem is and will be for some time to
detect parallelism in a sequential code and, automatically or not, write its
equivalent efficient parallel code.

A parallel application, expressed in a parallel programming model, should
be as portable as possible, i.e. one should not have to rewrite parallel code
when targeting an other machine. Yet, the proliferation of parallel program-
ming models makes the choice of one general model not obvious, unless there
is a parallel language that is efficient and able to be compiled to all types of
current and future architectures, which is not yet the case. Therefore, this
writing of a parallel code needs to be based on a generic approach, i.e. how
well a range of different languages can be handled, in order to offer some
chance of portability.
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1.2 Motivation

In order to achieve good performance when programming for multiproces-
sors and go beyond having to “think parallel”, a platform for automatic
parallelization is required to exploit cores efficiently. Also, the proliferation
of multi-core processors with shorter pipelines and lower clock rates and the
pressure that the simpler data parallelism model imposes on their memory
bandwidth have made coarse grained parallelism inevitable for improving
performance.

The first step in a parallelization process is to expose concurrency by
decomposing applications into pipelined tasks, since an algorithm is often
described as a collection of tasks. To illustrate the importance of task par-
allelism, we give a simple example: the Harris algorithm [96] which is based
on pixelwise autocorrelation, using a chain of functions, namely Sobel, Mul-
tiplication, Gauss, and Coarsity. Figure 1.1 shows this process. Several
works already parallelized and mapped this algorithm on parallel architec-
tures such as the CELL processor [95].

Figure 1.2 shows a possible instance of a manual partitioning of Harris
(see also [95]). The Harris algorithm can be decomposed into a succession
of two to three concurrent tasks (ellipses in the figure), assuming no ex-
ploitation of data parallelism. Automating this intuitive approach and thus
the automatic task extraction and parallelization of such applications is our
motivation in this thesis.

However, detecting task parallelism and generating efficient code rest on
complex analyses of data dependences, communication, synchronization, etc.
These different analyses can be provided by compilation frameworks. Thus,
delegating the issue of “parallel thinking” to software is appealing, because
it can be built upon existing sophisticated analyses of data dependences,
and can handle the granularity present in sequential codes and the resource
constraints such as memory size or the number of CPUs that also impact
this process.

Automatic task parallelization has been studied around for almost half
a century. The problem of extracting an optimal parallelism with optimal
communications is NP-complete [47]. Several works have tried to automate
the parallelization of programs using different granularities. Metis [62] and
other graph partitioning tools aim at assigning the same amount of pro-
cessor work with small quantities of interprocessor communication, but the
structure of the graph does not differentiate between loops, function calls,
etc. The crucial steps of graph construction and parallel code generation
are missing. Sarkar [98] implements a compile-time method for the parti-
tioning problem for multiprocessors. A program is partitioned into parallel
tasks at compile time and then these are merged until a partition with the
smallest parallel execution time in the presence of overhead (scheduling and
communication overhead) is found. Unfortunately, this algorithm does not
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void main(int argc , char *argv []){

float (*Gx)[N*M], (*Gy)[N*M], (*Ixx)[N*M],

(*Iyy)[N*M], (*Ixy)[N*M], (*Sxx)[N*M],

(*Sxy)[N*M], (*Syy)[N*M], (*in)[N*M];

in = InitHarris ();

/* Now we run the Harris procedure */

// Sobel

SobelX(Gx, in);

SobelY(Gy, in);

// Multiply

MultiplY(Ixx , Gx, Gx);

MultiplY(Iyy , Gy, Gy);

MultiplY(Ixy , Gx, Gy);

// Gauss

Gauss(Sxx , Ixx);

Gauss(Syy , Iyy);

Gauss(Sxy , Ixy);

// Coarsity

CoarsitY(out , Sxx , Syy , Sxy);

return;

}

Figure 1.1: Sequential C implementation of the main function of Harris
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Figure 1.2: Harris algorithm data flow graph

address resource constraints which are important factors for targeting real
architectures.

All parallelization tools are dedicated to a particular programming model:
there is a lack of a generic abstraction of parallelism (multithreading, syn-
chronization and data distribution). They thus do not usually address the
issue of portability.

In this thesis, we develop an automatic task parallelization methodology
for compilers: the key characteristics we focus on are resource constraints
and static scheduling. It includes the techniques required to decompose ap-
plications into tasks and generate equivalent parallel code, using a generic
approach that targets different parallel languages and thus different architec-
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tures. We apply this methodology in the existing tool PIPS [59], a compre-
hensive source-to-source compilation platform.

1.3 Contributions

Our goal is to develop a new tool and algorithms for automatic task par-
allelization that take into account resource constraints and which can also
be of general use for existing parallel languages. For this purpose, the main
contributions of this thesis are:

1. a new BDSC-based hierarchical scheduling algorithm (HBDSC) that
uses:

• a new data structure, called the Sequence Data Dependence Graph
(SDG), to represent partitioned parallel programs,

• “Bounded DSC” (BDSC), an extension of the DSC [111] schedul-
ing algorithm that simultaneously handles two resource constraints,
namely a bounded amount of memory per processor and a bounded
number of processors, which are key parameters when scheduling
tasks on actual multiprocessors,

• a new cost model based on execution time complexity estimation,
convex polyhedral approximations of data array sizes and code
instrumentation for the labeling of SDG vertices and edges;

2. a new approach for the adaptation of automatic parallelization plat-
forms to parallel languages via:

• SPIRE, a new, simple, parallel intermediate representation (IR)
extension methodology for designing the parallel IRs used in com-
pilation frameworks,

• the deployment of SPIRE for automatic task-level paralleliza-
tion of explicitly parallel programs on the PIPS [59] compilation
framework;

3. an implementation in the PIPS source-to-source compilation frame-
work of:

• BDSC-based parallelization for programs encoded using SPIRE-
based PIPS IR,

• SPIRE-based parallel code generation into two parallel languages:
OpenMP [4] and MPI [3];

4. performance measurements for our parallelization approach, based on:



14 Chapter 1: Introduction

• five significant programs, targeting both shared and distributed
memory architectures: the image and signal processing bench-
marks, actually sample constituent algorithms hopefully repre-
sentative of classes of applications, Harris [54] and ABF [52], the
SPEC2001 benchmark equake [22], the NAS parallel benchmark
IS [87] and an FFT code [8],

• their automatic translations into two parallel languages: OpenM-
P [4] and MPI [3],

• and finally, a comparative study between our task parallelization
implementation in PIPS and that of the audio signal processing
language Faust [88], using two Faust applications: Karplus32 and
Freeverb. We choose Faust since it is an open-source compiler and
it also generates automatically parallel tasks in OpenMP.

1.4 Thesis Outline

This thesis is organized in nine chapters. Figure 1.3 shows how these chap-
ters can be put into the context of a parallelization chain.

Chapter 2 provides a short background to the concepts of architectures,
parallelism, languages and compilers used in the next chapters.

Chapter 3 surveys seven current and efficient parallel programming lan-
guages in order to determine and classify their parallel constructs. This
helps us to define a core parallel language that plays the role of a generic
parallel intermediate representation when parallelizing sequential programs.

Our proposal called the SPIRE methodology (Sequential to Parallel In-
termediate Representation Extension) is developed in Chapter 4. SPIRE
leverages existing infrastructures to address both control and data parallel
languages while preserving as much as possible existing analyses for sequen-
tial codes. To validate this approach in practice, we use PIPS, a compre-
hensive source-to-source compilation platform, as a use case to upgrade its
sequential intermediate representation to a parallel one.

Since the main goal of this thesis is automatic task parallelization, ex-
tracting task parallelism from sequential codes is a key issue in this process,
which we view as a scheduling problem. Chapter 5 introduces a new efficient
automatic scheduling heuristic called BDSC (Bounded Dominant Sequence
Clustering) for parallel programs in the presence of resource constraints on
the number of processors and their local memory size.

The parallelization process we introduce in this thesis uses BDSC to
find a good scheduling of program tasks on target machines and SPIRE to
generate parallel source code. Chapter 6 equips BDSC with a sophisticated
cost model to yield a new parallelization algorithm.

Chapter 7 describes how we can generate equivalent parallel codes in two
target languages, OpenMP and MPI, selected from the survey presented in
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Chapter 3. Thanks to SPIRE, we show how code generation is simple and
efficient.

To verify the efficiency and robustness of our work, experimental results
are presented in Chapter 8. They suggest that BDSC- and SPIRE-based
parallelization focused on efficient resource management leads to significant
parallelization speedups on both shared and distributed memory systems.
We also compare our implementation of the generation of omp task in PIPS
with the generation of omp sections in Faust.

We conclude in Chapter 9.
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Chapter 2

Perspectives: Bridging
Parallel Architectures and

Software Parallelism
You talk when you cease to be at peace with your thoughts. Kahlil Gibran

“Anyone can build a fast CPU. The trick is to build a fast system.” At-
tributed to Seymour Cray, this quote is even more pertinent when looking
at multiprocessor systems that contain several fast processing units; par-
allel system architectures introduce subtle system features to achieve good
performance. Real world applications, which operate on large amounts of
data, must be able to deal with constraints such as memory requirements,
code size and processor features. These constraints must also be addressed
by parallelizing compilers that are related to such applications, from the
domains of scientific, signal and image processing, and translate sequential
codes into efficient parallel ones. The multiplication of hardware intricacies
increases the importance of software in order to achieve adequate perfor-
mance.

This thesis was carried out under this perspective. Our goal is to de-
velop a prototype for automatic task parallelization that generates a parallel
version of an input sequential code using an algorithm of scheduling. We
also address code generation and parallel intermediate representation issues.
More generally, we study how parallelism can be detected, represented and
finally generated.

“Anyone can build a fast CPU. The trick is to build a fast system.” At-
tribuée à Seymour Cray, cette citation1 est d’autant plus pertinente quand on
considère les systèmes multiprocesseurs qui contiennent plusieurs unités de
traitement rapide ; les architectures parallèles présentent des caractéristiques
subtiles qu’il convient de bien gérer pour obtenir de bonnes performances.
Les applications du monde réel, qui nécessitent de grandes quantités de
données, doivent en plus être en mesure de faire face à des contraintes
telles que les besoins en mémoire, la taille du code et les fonctionnalités
du processeur. Ces contraintes doivent également être prises en compte par

1Tout un chacun peut construire un CPU rapide. Le plus difficile est de construire un
système rapide.
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les compilateurs de parallélisation, qui, surtout dans les domaines des ap-
plications scientifiques et de traitement du signal et d’image, s’efforcent de
traduire des codes séquentiels en des codes parallèles efficaces. L’accroisse-
ment de la complexité des matériels augmente l’importance du logiciel chargé
de les gérer, et ce afin d’obtenir une performance adéquate.

Cette thèse a été réalisée dans la perspective que nous venons d’esquisser.
Notre objectif est de développer un prototype logiciel de parallélisation au-
tomatique de tâches qui génère une version parallèle d’un code séquentiel
d’entrée en utilisant un algorithme d’ordonnancement. Nous abordons égale-
ment la génération de code parallèle, en particulier les problèmes de représen-
tation intermédiaire parallèle. Plus généralement, nous étudions comment
le parallélisme peut être détecté, représenté et finalement généré.

2.1 Parallel Architectures

Up to 2003, the performance of machines has been improved by increasing
clock frequencies. Yet, relying on single-thread performance has been in-
creasingly disappointing due to access latency to main memory. Moreover,
other aspects of performance have been of importance lately, such as power
consumption, energy dissipation, and number of cores. For these reasons,
the development of parallel processors, with a large number of cores that
run at slower frequencies to reduce energy consumption, is adopted and has
had a significant impact on performance.

The market of parallel machines is wide, from vector platforms, acceler-
ators, Graphical Processing Unit (GPUs) and dualcore to manycore2 with
thousands of on-chip cores. However, gains obtained when parallelizing and
executing applications are limited by input-output issues (disk read/write),
data communications among processors, memory access time, load unbal-
ance, etc. When parallelizing an application, one must detect the available
parallelism and map different parallel tasks on the parallel machine. In this
dissertation, we consider a task as a static notion, i.e., a list of instruc-
tions, while processes and threads (see Section 2.1.2) are running instances
of tasks.

In our parallelization approach, we make trade-offs between the avail-
able parallelism and communications/locality; this latter point is related to
the memory model in the target machine. Besides, extracted parallelism
should be correlated to the number of processors/cores available in the tar-
get machine. We also take into account the memory size and the number of
processors.

2Contains 32 or more cores.
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2.1.1 Multiprocessors

The generic model of multiprocessors is a collection of cores, each potentially
including both CPU and memory, attached to an interconnection network.
Figure 2.1 illustrates an example of a multiprocessor architecture that con-
tains two clusters; each cluster is a quadcore multiprocessor. In a multicore,
cores can transfer data between their cache memory (level 2 cache gener-
ally) without having to go through the main memory. Moreover, they may
or may not share caches (CPU-local level 1 cache in Figure 2.1 for example).
This is not possible at the cluster level, where processor cache memories are
not linked. Data can be transfered to and from the main memory only.

CPU

L1 Cache

CPU

L1 Cache

CPU

CPU

L1 Cache L1 Cache

L2 Cache L2 Cache

L1 Cache

CPU

L1 Cache

CPU

CPU

L1 CacheL1 Cache

CPU

Main Memory

Interconnect

Main Memory

Figure 2.1: A typical multiprocessor architectural model

Flynn [46] classifies multiprocessors in three main groups: Single In-
struction Single Data (SISD), Single Instruction Multiple Data (SIMD) and
Multiple Instruction Multiple Data (MIMD). Multiprocessors are generally
recognized to be MIMD architectures. We present the important branches of
current multiprocessors: MPSoCs and multicore processors, since they are
widely used in many applications such as signal processing and multimedia.

Multiprocessors System-on-Chip

A multiprocessor system-on-chip (MPSoC) integrates multiple CPUs in a
hardware system. MPSoCs are commonly used for applications such as
embedded multimedia on cell phones. The first MPSoC often considered
to be is the Lucent Daytona [9]. One distinguishes two important forms of
MPSoCs: homogeneous and heterogeneous multiprocessors. Homogeneous
architectures include multiple cores that are similar in every aspect. On the
other side, heterogeneous architectures use processors that are different in
terms of the instruction set architecture, functionality, frequency, etc. Field
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Programmable Gate Array (FPGA) platforms and the CELL processor3 [43]
are examples of heterogeneous architectures.

Multicore Processors

This model implements the shared memory model. The programming model
in a multicore processor is the same for all its CPUs. The first multicore
general purpose processors were introduced in 2005 (Intel Core Duo). Intel
Xeon Phi is a recent multicore chip with 60 homogeneous cores. The num-
ber of cores on a chip is expected to continue to grow to construct more
powerful computers. This emerging hardware approach will deliver petaflop
and exaflop performance with the efficient capabilities needed to handle
high-performance emerging applications. Table 2.1 illustrates the rapid pro-
liferation of multicores and summarizes the important existing ones; note
that IBM Sequoia, the second system in the Top500 list (top500.org) in
November 2012, is a petascale Blue Gene/Q supercomputer that contains
98,304 compute nodes where each computing node is a 16-core PowerPC A2
processor chip (sixth entry in the table). See [25] for an extended survey of
multicore processors.

Year Number of cores Company Processor

The early 1970s The 1st microprocessor Intel 4004

2005 2-core machine Intel Xeon Paxville DP

2005 2 AMD Opteron E6-265

2009 6 AMD Phenom II X6

2011 8 Intel Xeon E7-2820

2011 16 IBM PowerPC A2

2007 64 Tilera TILE64

2012 60 Intel Xeon Phi

Table 2.1: Multicores proliferation

In this thesis, we provide tools that automatically generate parallel pro-
grams from sequential ones, targeting homogeneous multiprocessors or mul-
ticores. Since increasing the number of cores on a single chip creates chal-
lenges with memory and cache coherence, as well as communication between
the cores, our aim in this thesis is to deliver the benefit and efficiency of mul-
ticore processors, by the introduction of an efficient scheduling algorithm,
to map parallel tasks of a program on CPUs, in the presence of resource
constraints on the number of processors and their local memory size.

3The Cell configuration has one Power Processing Element (PPE) on the core, acting
as a controller for eight physical Synergistic Processing Elements (SPEs).

top500.org
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2.1.2 Memory Models

The choice of a proper memory model to express parallel programs is an
important issue in parallel language design. Indeed, the ways processes
and threads communicate using the target architecture and impact the pro-
grammer’s computation specifications affect both performance and ease of
programming. There are currently three main approaches (see Figure 2.2
extracted from [64]).

Distributed Memory

Thread/Process

Memory Access

Address Space

Messages

Shared Memory PGAS

Figure 2.2: Memory models

Shared Memory

Also called global address space, this model is the simplest one to use [11].
Here, the address spaces of the threads are mapped onto the global memory;
no explicit data passing between threads is needed. However, synchroniza-
tion is required between the threads that are writing and reading the same
data to and from the shared memory. The OpenMP [4] and Cilk [26] lan-
guages use the shared memory model. Intel’s Larrabee [101] is homogeneous
general-purpose many-core machine with cache-coherent shared memory.

Distributed Memory

In a distributed-memory environment, each processor is only able to address
its own memory. The message passing model that uses communication li-
braries is usually adopted to write parallel programs for distributed-memory
systems. These libraries provide routines to initiate and configure the mes-
saging environment as well as sending and receiving data packets. Currently,
the most popular high-level message-passing system for scientific and engi-
neering applications is MPI (Message Passing Interface) [3]. OpenCL [70]
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uses a variation of the message passing memory model for GPUs. Intel
Single-chip Cloud Computer (SCC) [56] is a homogeneous, general-purpose,
many-core (48 cores) chip implementing the message passing memory model.

Partitioned Global Address Space (PGAS)

PGAS-based languages combine the programming convenience of shared
memory with the performance control of message passing by partitioning
logically a global address space into places; each thread is local to a place.
From the programmer’s point of view programs have a single address space
and one task of a given thread may refer directly to the storage of a different
thread. UPC [34], Fortress [13], Chapel [6], X10 [5] and Habanero-Java [30]
use the PGAS memory model.

In this thesis, we target both shared and distributed memory systems
since efficiently allocating the tasks of an application on a target architec-
ture requires reducing communication overheads and transfer costs for both
shared and distributed memory architectures. By convention, we call run-
ning instances of tasks, processes, in the case of distributed memory systems,
and threads, for shared memory and PGAS systems.

If reducing communications is obviously meaningful for distributed mem-
ory systems, it is also worthwhile on shared memory architectures since this
may impact cache behavior. Also, locality is an other important issue; a
parallelization process should be able to make trade-offs between locality
in cache memory and communications. Indeed, mapping two tasks to the
same processor keeps the data in its local memory, and even possibly its
cache. This avoids its copying over the shared memory bus. Therefore,
transmission costs are decreased and bus contention is reduced.

Moreover, we take into account the memory size, since this is an impor-
tant factor when parallelizing applications that operate on large amount of
data or when targeting embedded systems.

2.2 Parallelism Paradigms

Parallel computing has been looked at since computers exist. The market
dominance of multi- and many-core processors and the growing importance
and increasing number of clusters in the Top500 list are making parallelism
a key concern when implementing large applications such as weather mod-
eling [40] or nuclear simulations [37]. These important applications require
a lot of computational power and thus need to be programmed to run on
parallel supercomputers.

Parallelism expression is the fundamental issue when breaking an appli-
cation into concurrent parts in order to take advantage of a parallel computer
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and to execute these simultaneously on different CPUs. Parallel architec-
tures support multiple levels of parallelism within a single chip: the PE
(Processing Element) level [65], the thread level (e.g. Symmetric multi-
processing (SMT)), the data level (e.g. Single Instruction Multiple Data
(SIMD)), the instruction level (e.g. Very Long Instruction Word (VLIW)),
etc. We present here the three main types of parallelism (data, task and
pipeline).

Task Parallelism

This model corresponds to the distribution of the execution processes or
threads across different parallel computing cores/processors. A task can
be defined as a unit of parallel work in a program. We can classify its
implementation of scheduling in two categories: dynamic and static.

• With dynamic task parallelism, tasks are dynamically created at run-
time and added to the work queue. The runtime scheduler is respon-
sible for scheduling and synchronizing the tasks across the cores.

• With static task parallelism, the set of tasks is known statically and
the scheduling is applied at compile time; the compiler generates and
assigns different tasks for the thread groups.

Data Parallelism

This model implies that the same independent instruction is performed re-
peatedly and simultaneously on different data. Data parallelism or loop
level parallelism corresponds to the distribution of the data across differ-
ent parallel cores/processors, dividing the loops into chunks4. Data-parallel
execution puts a high pressure on the memory bandwidth of multi-core pro-
cessors. Data parallelism can be expressed using task parallelism constructs;
an example is provided in Figure 2.3 where loop iterations are distributed
differently among the threads: contiguous order generally in the left and
interleaved order in the right.

forall (i = 0; i < height; ++i)

for (j = 0; j < width; ++j)

kernel ();

(a) Data parallel example

for (i = 0; i < height; ++i) {

launchTask{

for (j = 0; j < width; ++j)

kernel ();

}

}

(b) Task parallel example

Figure 2.3: Rewriting of data parallelism using the task parallelism model

4A chunk is a set of iterations.
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Pipeline Parallelism

Pipeline parallelism applies to chains of producers and consumers that con-
tain many steps depending on each other. These dependences can be re-
moved by interleaving these steps. Pipeline parallelism execution leads to
reduced latency and buffering but it introduces extra synchronization be-
tween producers and consumers to maintain them coupled in their execution.

In this thesis we focus on task parallelism, often considered more difficult
to handle than data parallelism, since it lacks the regularity present in the
latter model; processes (threads) run simultaneously different instructions,
leading to different execution schedules and memory access patterns. Be-
sides, the pressure of the data parallelism model on memory bandwidth and
the extra synchronization introduced in the pipeline parallelism have made
coarse grained parallelism inevitable for improving performance.

Moreover, data parallelism can be implemented using the task paral-
lelism (see Figure 2.3). Therefore, our implementation of task parallelism is
also able to handle data parallelism after transformation of the sequential
code (see Section 8.4 that explains the protocol applied to task parallelize
sequential applications).

Task management must address both control and data dependences in
order to reduce execution and communication times. This is related to
another key enabling issue, compilation, which we detail in the following
section.

2.3 Mapping Paradigms to Architectures

In order to map efficiently a parallel program on a parallel architecture,
one needs to write parallel programs in the presence of constraints of data
and control dependences, communications and resources. Writing a parallel
application implies the use of a target parallel language; we survey in Chap-
ter 3 different, recent and popular task parallel languages. We can split
this parallelization process into two steps: understanding the sequential ap-
plication, by analyzing it, to extract parallelism, and then generating the
equivalent parallel code. Before reaching the writing step, decisions should
be made about an efficient task schedule (Chapter 5). To perform these
operations automatically, a compilation framework is necessary to provide a
base for analyses, implementation and experimentation. Moreover, to keep
this parallel software development process simple, generic and language-
independent, a general parallel core language is needed (Chapter 4).

Programming parallel machines requires a parallel programming lan-
guage with one of the previous paradigms of parallelism. Since in this thesis
we focus on extracting and generating task parallelism, we are interested in
task parallel languages, which we detail in Chapter 3. We distinguish two
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approaches for mapping languages to parallel architectures. In the first case,
the entry is a parallel language: it means the user wrote his parallel program
by hand; this requires a great subsequent effort for detecting dependences
and parallelism and writing an equivalent efficient parallel program. In the
second case, the entry is a sequential language; this calls for an automatic
parallelizer which is responsible for dependence analyses and scheduling in
order to generate an efficient parallel code.

In this thesis, we adopt the second approach: we use the PIPS compiler
presented in Section 2.6 as a practical tool for code analysis and paralleliza-
tion. We target both shared and distributed memory systems using two
parallel languages: OpenMP and MPI. They provide high-level program-
ming constructs to express task creation, termination, synchronization, etc.
In Chapter 7, we show how we generate parallel code for these two languages.

2.4 Program Dependence Graph (PDG)

Parallelism detection is based on the analyses of data and control depen-
dences between instructions encoded in an intermediate representation for-
mat. Parallelizers use various dependence graphs to represent such con-
straints. A program dependence graph (PDG) is a directed graph where
the vertices represent blocks of statements and the edges represent essential
control or data dependences. It encodes both control and data dependence
information.

2.4.1 Control Dependence Graph (CDG)

The CDG represents a program as a graph of statements that are control
dependent on the entry to the program. Control dependences represent
control flow relationships that must be respected by any execution of the
program, whether parallel or sequential.

Ferrante et al [45] define control dependence as follows: Statement Y
is control dependent on X when there is a path in the control flow graph
(CFG) (see Figure 2.4a) from X to Y that does not contain the immedi-
ate forward dominator Z of X. Z forward dominates Y if all paths from Y
include Z. The immediate forward dominator is the first forward domina-
tor (closest to X). In the forward dominance tree (FDT) (see Figure 2.4b),
vertices represent statements; edges represent the immediate forward domi-
nance relation; the root of the tree is the exit of the CFG. For the CDG (see
Figure 2.4c) construction, one relies on explicit control flow and postdomi-
nance information. Unfortunately, when programs contain goto statements,
explicit control flow and postdominance information are prerequisites for
calculating control dependences.

Harrold et al [55] have proposed an algorithm that does not require
explicit control flow or postdominator information to compute exact control
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Figure 2.4: Construction of the control dependence graph

dependences. Indeed, for structured programs, the control dependences are
obtained directly from Abstract Syntax Tree (AST). Programs that contain
what are called by the authors structured transfers of control such as break,
return or exit can be handled as special cases [55]. For more unstructured
transfers of control, via arbitrary gotos, additional processing based on the
control flow graph needs to be performed.

In this thesis, we only handle structured parts of a code, i.e. the ones
that do not contain goto statements. Therefore, regarding this context,
PIPS implements control dependences in its IR since it is in form of an AST
as above (for structured programs CDG and AST are equivalent).

2.4.2 Data Dependence Graph (DDG)

The DDG is a subgraph of the program dependence graph that encodes
data dependence relations between instructions that use/define the same
data element. Figure 2.5 shows an example of a C code and its data de-
pendence graph. This DDG has been generated automatically with PIPS.
Data dependences in a DDG are basically of three kinds [90] as shown in
the figure:

• true dependences or true data-flow dependences, when a value of an
instruction is used by a subsequent one (aka RAW), colored red in the
figure;

• output dependences, between two definitions of the same item (aka
WAW), colored blue in the figure;

• anti-dependences, between a use of an item and a subsequent write
(aka WAR), colored green in the figure.
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void main()

{

int a[10], b[10];

int i,d,c;

c=42;

for(i=1;i <=10;i++){

a[i] = 0;

}

for(i=1;i <=10;i++){

a[i] = bar(a[i]);

d = foo(c);

b[i] = a[i]+d;

}

return;

}

Figure 2.5: Example of a C code and its data dependence graph

Dependences are needed to define precedence constraints in programs.
PIPS implements both control (its IR in form of an AST) and data (in form
of a dependence graph) dependences. These data structures are the basis
for scheduling instructions, an important step in any parallelization process.

2.5 List Scheduling

Task scheduling is the process of specifying the order and assignment of start
and end times to a set of tasks, to be run concurrently on a multiprocessor,
such that the completion time of the whole application is as small as possi-
ble while respecting the dependence constraints of each task. Usually, the
number of tasks exceeds the number of processors; thus some processors are
dedicated to multiple tasks. Since finding the optimal solution of a general
scheduling problem is NP-complete [47], providing an efficient heuristic to
find a good solution is needed. This is a problem we address in Chapter 5.

2.5.1 Background

Scheduling approaches can be categorized in many ways. In preemptive
techniques, the current executing task can be preempted by an other higher-
priority task, while, in a non-preemptive scheme, a task keeps its processor
until termination. Preemptive scheduling algorithms are instrumental in
avoiding possible deadlocks and for implementing real-time systems, where
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tasks must adhere to specified deadlines; however, preemptions generate
run-time overhead. Moreover, when static predictions of task characteristics
such as execution time and communication cost exist, task scheduling can
be performed statically (offline). Otherwise, dynamic (online) schedulers
must make run-time mapping decisions whenever new tasks arrive; this also
introduces run-time overhead.

In the context of the automatic parallelization of scientific applications
we focus on in this thesis, we are interested in non-preemptive static schedul-
ing policies of parallelized code5. Even though the subject of static schedul-
ing is rather mature (see Section 5.4), we believe the advent and widespread
use of multi-core architectures, with the constraints they impose, warrant
to take a fresh look at its potential. Indeed, static scheduling mechanisms
have, first, the strong advantage of reducing run-time overheads, a key fac-
tor when considering execution time and energy usage metrics. One other
important advantage of these schedulers over dynamic ones, at least over
those not equipped with detailed static task information, is that the ex-
istence of efficient schedules is ensured prior to program execution. This
is usually not an issue when time performance is the only goal at stake,
but much more so when memory constraints might prevent a task being
executed at all on a given architecture. Finally, static schedules are pre-
dictable, which helps both at the specification (if such a requirement has
been introduced by designers) and debugging levels. Given the breadth of
the literature on scheduling, we introduce in this section the notion of list-
scheduling heuristics [74], since we use it in this thesis, which is a class of
scheduling heuristics.

2.5.2 Algorithm

A labeled direct acyclic graph (DAG) G is defined as G = (T,E,C), where
(1) T = vertices(G) is a set of n tasks (vertices) τ annotated with an
estimation of their execution time task time(τ), (2) E = edges(G), a set
of m directed edges e = (τi, τj) between two tasks annotated with their
dependences edge regions(e)6, and (3) C, a n × n sparse communication
edge cost matrix edge cost(e); task time(τ) and edge cost(e) are assumed
to be numerical constants, although we show how we lift this restriction in
Section 6.3. The functions successors(τ , G) and predecessors(τ , G)
return the list of immediate successors and predecessors of a task τ in the
DAG G. Figure 2.6 provides an example of a simple graph, with vertices τi;
vertex times are listed in the vertex circles while edge costs label arrows.

A list scheduling process provides, from a DAG G, a sequence of its
vertices that satisfies the relationship imposed by E. Various heuristics try

5Note that more expensive preemptive schedulers would be required if fairness concerns
were high, which is not frequently the case in the applications we address here.

6A region is defined in Section 2.6.3.
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entry 0

τ1 1 τ4 2

τ2 3

τ3 2

exit 0

0

0

2

1 1

0

0

step task tlevel blevel

1 τ4 0 7
2 τ3 3 2
3 τ1 0 5
4 τ2 4 3

Figure 2.6: A Directed Acyclic Graph (left) and its associated data (right)

to minimize the schedule total length, possibly allocating the various vertices
in different clusters, which ultimately will correspond to different processes
or threads. A cluster κ is thus a list of tasks; if τ ∈ κ, we note cluster(τ)
= κ. List scheduling is based on the notion of vertex priorities. The priority
for each task τ is computed using the following attributes:

• The top level tlevel(τ,G) of a vertex τ is the length of the longest
path from the entry vertex7 of G to τ . The length of a path is the sum
of the communication cost of the edges and the computational time of
the vertices along the path. Top levels are used to estimate the start
times of vertices on processors: the top level is the earliest possible
start time. Scheduling in an ascending order of top levels schedules
vertices in a topological order. The algorithm for computing the top
level of a vertex τ in a graph is given in Algorithm 1.

• The bottom level blevel(τ,G) of a vertex τ is the length of the longest
path from τ to the exit vertex of G. The maximum of the bottom level
of vertices is the length cpl(G) of a graph’s critical path, which has
the longest path in the DAG G. The latest start time of a vertex τ is
the difference (cpl(G)−blevel(τ,G)) between the critical path length
and the bottom level of τ . Scheduling in a descending order of bottom
levels tends to schedule critical path vertices first. The algorithm for
computing the bottom level of τ in a graph is given in Algorithm 2.

7One can always assume that a unique entry vertex exists, by adding it if need be and
connecting it to the original ones with null-cost edges. This remark also applies to the
exit vertex (see Figure 2.6).
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ALGORITHM 1: The top level of Task τ in Graph G

function tlevel(τ , G)

tl = 0;

foreach τi ∈ predecessors(τ , G)

level = tlevel(τi, G)+ task_time(τi)+ edge_cost(τi, τ );
if (tl < level) then tl = level;

return tl;

end

ALGORITHM 2: The bottom level of Task τ in Graph G

function blevel(τ , G)

bl = 0;

foreach τj ∈ successors(τ , G)

level = blevel(τj , G)+ edge_cost(τ , τj );
if (bl < level) then bl = level;

return bl+task_time(τ );
end

To illustrate these notions, the top levels and bottom levels of each vertex
of the graph presented in the left of Figure 2.6 are provided in the adjacent
table.

The general algorithmic skeleton for list scheduling a graph G on P
clusters (P can be infinite and is assumed to be always strictly positive) is
provided in Algorithm 3: first, priorities priority(τ) are computed for all
currently unscheduled vertices; then, the vertex with the highest priority
is selected for scheduling; finally, this vertex is allocated to the cluster that
offers the earliest start time. Function f characterizes each specific heuristic,
while the set of clusters already allocated to tasks is clusters. Priorities
need to be computed again for (a possibly updated) graph G after each
scheduling of a task: task times and communication costs change when tasks
are allocated to clusters. This is performed by the update priority values

function call. Part of the allocate task to cluster procedure is to ensure
that cluster(τ) = κ, which indicates that Task τ is now scheduled on
Cluster κ.

In this thesis, we introduce a new non-preemptive static list-scheduling
heuristic, called BDSC (Chapter 5), to extract task-level parallelism in the
presence of resource constraints on the number of processors and their local
memory size; it is based on a precise cost model and addresses both shared
and distributed parallel memory architectures. We implement BDSC in
PIPS.
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ALGORITHM 3: List scheduling of Graph G on P processors

procedure list_scheduling(G, P)

clusters = ∅;
foreach τi ∈ vertices(G)

priority(τi) = f (tlevel(τi, G), blevel(τi, G));

UT = vertices(G); // unscheduled tasks

while UT �= ∅
τ = select_task_with_highest_priority(UT);

κ = select_cluster(τ , G, P, clusters );

allocate_task_to_cluster(τ , κ, G);

update_graph(G);

update_priority_values(G);

UT = UT -{τ };
end

2.6 PIPS: Automatic Parallelizer and Code Trans-
formation Framework

We chose PIPS [59] to showcase our parallelization approach, since it is
readily available, well-documented and encodes both control and data de-
pendences. PIPS is a source-to-source compilation framework for analyzing
and transforming C and Fortran programs. PIPS implements polyhedral
analyses and transformations that are inter-procedural and provides detailed
static information about programs such as use-def chains, data dependence
graph, symbolic complexity, memory effects8, call graph, interprocedural
control flow graph, etc.

Many program analyses and transformations can be applied; the most
important are listed below.

Parallelization Several algorithms are implemented such as Allen & Ken-
nedy’s parallelization algorithm [14] that performs loop distribution
and vectorization selecting innermost loops for vector units, and coarse
grain parallelization, based on the convex array regions of loops (see
below) to avoid loop distribution and restrictions on loop bodies.

Scalar and array privatization This analysis discovers variables whose
values are local to a particular scope, usually a loop iteration.

Loop transformations [90] These include unrolling, interchange, normal-
ization, distribution, strip mining, tiling, index set splitting...

Function transformations PIPS supports for instance the inlining, out-
lining and cloning of functions.

8A representation of data read and written by a given statement.
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Other transformations These classical code transformations include dead-
code elimination, partial evaluation, 3-address code generation, control
restructuring, loop invariant code motion, forward substitution, etc.

We use many of these analyses for implementing our parallelization
methodology in PIPS, e.g. “complexity” and data dependence analyses.
These static analyses use convex polyhedra to represent abstractions of the
values within various domains . A convex polyhedron over Z is a set of
integer points in the n-dimensional space Z

n, and can be represented by
a system of linear inequalities. These analyses give impressive information
and results which can be leveraged to perform automatic task parallelization
(Chapter 6).

We present below the precondition, transformer, array region and com-
plexity analyses that are directly used in this thesis to compute dependences,
execution and communication times; then, we present the intermediate rep-
resentation (IR) of PIPS, since we extend it in this thesis to a parallel
intermediate representation (Chapter 4), which is necessary for simple and
generic parallel code generation.

2.6.1 Transformer Analysis

A transformer is an affine relation between variables values, in the memory
store, before (old values) and after (new values) the execution of a state-
ment. This analysis [59] is implemented in PIPS where transformers are
represented by convex polyhedra. Indeed, a transformer T is defined by
a list of arguments and a predicate system labeled by T ; a transformer is
empty (⊥) when the set of the affine constraints of the system is not feasible;
a transformer is equal to the identity, when no variables are modified.

This relation models the transformation, by the execution of a statement,
of an input memory store into an output memory store. For instance, in
Figure 2.7, the transformer of k, T (k), before and after the execution of the
statement k++; is the relation {k = k#init+1}, where k#init is the value
before executing the increment statement; its value before the loop is k#init
= 0.

The Transformer analysis is used to compute preconditions (see next sec-
tion, Section 2.6.2) and to compute the Path Transformer (see Section 6.4)
that connects two memory stores. This analysis is necessary for our depen-
dence test.

2.6.2 Precondition Analysis

A precondition analysis is a function that labels each statement in a program
with its precondition. A precondition provides information about the values
of variables; it is a condition that holds true before the execution of the
statement.



34 Chapter 2: Perspectives: Bridging Parallel ...

// T (i, k) {k = 0}
int i, k=0;

// T (i, k) {i = k + 1, k#init= 0}
for(i = 1; i<= 10; i++) {

// T () {}
a[i] = f(a[i]);

// T (k) {k = k#init+1}
k++;

}

Figure 2.7: Example of transformer analysis

This analysis [59] is implemented in PIPS, where preconditions are rep-
resented by convex polyhedra. Preconditions are determined before the
computing of array regions (see next section, Section 2.6.3), in order to have
precise information on the variables values. They are also used to perform
a sophisticated static complexity analysis (see Section 2.6.4). In Figure 2.8,
for instance, the precondition P over the variables i and j before the second
loop is {i = 11}, which is indeed the value of i after the execution of the
first loop. Note that no information is available for j at this step.

int i,j;

// P (i, j) {}
for(i = 1; i <= 10; i++)

// P (i, j) {1 ≤ i, i ≤ 10}
a[i]=f(a[i]);

// P (i, j) {i = 11}
for(j = 6; j <= 20; j++)

// P (i, j) {i = 11, 6 ≤ j, j ≤ 20}
b[j]=g(a[j],a[j+1]);

// P (i, j) {i = 11, j = 21}
...

Figure 2.8: Example of precondition analysis

2.6.3 Array Region Analysis

PIPS provides a precise intra- and inter-procedural analysis of array data
flow. This latter is important for computing dependences for each array
element. This analysis of array regions [36] is implemented in PIPS. A region
r of an array T is an abstraction of a subset of its elements. Formally, a
region r is a quadruplet of (1) a reference v (variable referenced in the
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region), (2) a region type t, (3) an approximation a for the region, EXACT
when the region exactly represents the requested set of array elements or
MAY if it is an over-or under-approximation, and (4) c a convex polyhedron
containing equalities and inequalities where parameters are the variables
values in the current memory store. We write < v− t−a− c > for Region r.

We distinguish four types of sets of regions: Rr,Rw,Ri and Ro. Read
Rr and Write Rw regions contain the array elements respectively read or
written by a statement. In regions Ri contain the arrays elements read and
imported by a statement. Out regions Ro contain the array elements written
and exported by a statement.

For instance, in Figure 2.9, PIPS is able to infer the following sets of
regions:

Rw1 = {< a(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ 10} >,
< b(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ 10} >}

Rr2 = {< a(φ1)−R− EXACT− {6 ≤ φ1, φ1 ≤ 21} >}

where the Write regions Rw1 of arrays a and b, modified in the first loop,
are EXACTly the array elements of a with indices in the interval. The Read
regions Rr2 of arrays a in the second loop represents EXACTly the elements
with indices in [6,21].

// < a(φ1)−R− EXACT− {1 ≤ φ1, φ1 ≤ 10} >
// < a(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ 10} >
// < b(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ 10} >

for(i = 1; i <= 10; i++) {

a[i] = f(a[i]);

b[i] = 42;

}

// < a(φ1)−R− EXACT− {6 ≤ φ1, φ1 ≤ 21} >
// < b(φ1)−W − EXACT− {6 ≤ φ1, φ1 ≤ 20} >

for(j = 6; j <= 20; j++)

b[j]=g(a[j],a[j+1]);

Figure 2.9: Example of array region analysis

We define the following set of operations on set of regions Ri (convex
polyhedra).

1. regions intersection(R1,R2) is a set of regions; each region r in
this set is the intersection of two regions r1 ∈ R1 of type t1 and r2 ∈ R2

of type t2 with the same reference. The type of r is t1t2 and the convex
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polyhedron of r is the intersection of the two convex polyhedra of r1
and r2 which is also a convex polyhedron.

2. regions difference(R1,R2) is a set of regions; each region r in this
set is the difference of two regions r1 ∈ R1 and r2 ∈ R2 with the same
reference. The type of r is t1t2 and the convex polyhedron of r is the
set difference between the two convex polyhedra of r1 and r2. Since
this is not generally a convex polyhedron, an under approximation is
computed in order to obtain a convex representation.

3. regions union(R1,R2) is a set of regions; each region r in this set is
the union of two regions r1 ∈ R1 of type t1 and r2 ∈ R2 of type t2 with
the same reference. The type of r is t1t2 and the convex polyhedron
of r is the union of the two convex polyhedra r1 and r2, which is again
not necessarily a convex polyhedron. An approximated convex hull is
thus computed in order to return the smallest enclosing polyhedron.

In this thesis, array regions are used for communication cost estimation,
dependence computation between statements, and data volume estimation
for statements. For example, if we need to compute array dependences be-
tween two compound statements S1 and S2, we search for the array elements
that are accessed in both statements. Therefore, we are dealing with two
statements set of regions R1 and R2; the result is the intersection between
the two sets of regions. However, two sets of regions should be in the same
memory store to make it possible to compare them; we should to bring a
set of region R1 to the store of R2 by combining R1 with the changes per-
formed, i.e. the transformer that connects the two memory stores. Thus, we
compute the path transformer between S1 and S2 (see Section 6.4). More-
over, we use operations on array regions for our cost model generation (see
Section 6.3) and communications generation (see Section 7.3).

2.6.4 “Complexity” Analysis

“Complexities” are symbolic approximations of the static execution time es-
timation of statements in term of number of cycles. They are implemented
in PIPS using polynomial approximations of execution times. Each state-
ment is thus labeled with an expression, represented by a polynomial over
program variables, assuming that each basic operation (addition, multiplica-
tion...) has a fixed, architecture-dependent execution time. Table 2.2 shows
the complexities formulas generated for each function of Harris (see the code
in Figure 1.1) using PIPS complexity analysis, where the N and M variables
represent the input image size.

We use this analysis provided by PIPS to determine an approximate
execution time for each statement in order to guide our scheduling heuristic.
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Function Complexity (polynomial)

InitHarris 9×N ×M
SobelX 60×N ×M
SobelY 60×N ×M

MultiplY 17×N ×M
Gauss 85×N ×M

CoarsitY 34×N ×M

Table 2.2: Execution time estimations for Harris functions using PIPS com-
plexity analysis

2.6.5 PIPS (Sequential) IR

PIPS intermediate representation (IR) [33] of sequential programs is a hier-
archical data structure that embeds both control flow graphs and abstract
syntax trees. We provide in this section a high-level description of the inter-
mediate representation of PIPS, which targets the Fortran and C imperative
programming languages; it is specified using Newgen [61], a Domain Specific
Language for the definition of set equations, from which a dedicated API is
automatically generated to manipulate (creation, access, IO operations...)
data structures implementing these set elements. This section contains only
a slightly simplified subset of the intermediate representation of PIPS, the
part that is directly related to the parallel paradigms addressed in this thesis.
The Newgen definition of this part is given in Figure 2.10:

instruction = call + forloop + sequence + unstructured;

statement = instruction x declarations:entity *;

entity = name:string x type x initial:value;

call = function:entity x arguments:expression *;

forloop = index:entity x

lower:expression x upper:expression x

step:expression x body:statement;

sequence = statements:statement *;

unstructured = entry:control x exit:control;

control = statement x

predecessors:control* x successors:control *;

expression = syntax x normalized;

syntax = reference + call + cast;

reference = variable:entity x indices:expression *;

type = area + void;

Figure 2.10: Simplified Newgen definitions of the PIPS IR

• Control flow in PIPS IR is represented via instructions, members of the
disjoint union (using the “+” symbol) set instruction. An instruction
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can be either a simple call or a compound instruction, i.e., a for loop,
a sequence or a control flow graph. A call instruction represents built-
in or user-defined function calls; for instance, assign statements are
represented as calls to the “:=” function.

• Instructions are included within statements, which are members of
the cartesian product set statement that also incorporates the decla-
rations of local variables; a whole function body is represented in PIPS
IR as a statement. All named objects such as user variables or built-
in functions in PIPS are members of the entity set (the value set
denotes constants while the “*” symbol introduces Newgen list sets).

• Compound instructions can be either (1) a loop instruction, which
includes an iteration index variable with its lower, upper and incre-
ment expressions and a loop body, (2) a sequence, i.e., a succession
of statements, encoded as a list, or (3) a control flow graph (unstruc-
tured). In Newgen, a given set component such as expression can be
distinguished using a prefix such as lower and upper here.

• Programs that contain structured (exit, break and return) and un-
structured (goto) transfers of control are handled in the PIPS inter-
mediate representation via the unstructured set. An unstructured
instruction has one entry and one exit control vertices; a control is a
vertex in a graph labeled with a statement and its lists of predecessor
and successor control vertices. Executing an unstructured instruction
amounts to following the control flow induced by the graph successor
relationship, starting at the entry vertex, while executing the vertex
statements, until the exit vertex is reached, if at all.

In this thesis, we use the IR of PIPS [59] to showcase our approach
SPIRE as a parallel extension formalism for existing sequential intermediate
representations (Chapter 4).

2.7 Conclusion

The purpose of this chapter is to present the context of existing hardware
architectures and parallel programming models according for which our the-
sis work is developed. We also outline how to bridge these two levels using
two approaches for writing parallel languages: manual and automatic ap-
proaches. Since in this thesis we adopt the automatic approach, this chapter
presents also the notions of intermediate representation, control and data
dependences, scheduling, and the framework of compilation PIPS where we
implement our automatic parallelization methodology.

In the next chapter, we survey in detail seven recent and popular parallel
programming languages and different parallel constructs. This analysis will
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help us to find a uniform core language that can be designed as a unique
but generic parallel intermediate representation by the development of the
methodology SPIRE (see Chapter 4).



Chapter 3

Concepts in Task Parallel
Programming Languages

L’inconscient est structuré comme un langage. Jacques Lacan

Existing parallel languages present portability issues such as OpenMP that
targets only shared memory systems. Parallelizing sequential programs to
be run on different types of architectures requires the writing of the same
application in different parallel programming languages. Unifying the wide
variety of existing programming models in a generic core language, as a par-
allel intermediate representation, can simplify the portability problem. To
design this parallel IR, we use a survey of existing parallel language con-
structs which provide a trade-off between expressibility and conciseness of
representation to design a generic parallel intermediate representation. This
chapter surveys seven popular and efficient parallel language designs that
tackle this difficult issue: Cilk, Chapel, X10, Habanero-Java, OpenMP, MPI
and OpenCL. Using as single running example a parallel implementation of
the computation of the Mandelbrot set, this chapter describes how the fun-
damentals of task parallel programming, i.e., collective and point-to-point
synchronization and mutual exclusion, are dealt with in these languages.
We discuss how these languages allocate and distribute data over memory.
Our study suggests that, even though there are many keywords and notions
introduced by these languages, they all boil down, as far as control issues
are concerned, to three key task concepts: creation, synchronization and
atomicity. Regarding memory models, these languages adopt one of three
approaches: shared memory, distributed memory and PGAS (Partitioned
Global Address Space).

Les langages parallèles existants tels que OpenMP, qui est un langage
utilisé pour les systèmes à mémoire partagée, posent des problèmes de porta-
bilité. La parallélisation de programmes séquentiels pour une exécution sur
des types différents d’architectures parallèles nécessite l’écriture de la même
application dans différents langages de programmation parallèle. L’unification
de la grande variété de modèles de programmation existants dans un cœur de
langage générique, comme une représentation intermédiaire (RI) parallèle,
devrait permettre de simplifier le problème de la portabilité. Pour concevoir
cette RI parallèle, nous effectuons une étude comparative des constructions
de certains langages parallèles existants, langages qui fournissent un com-
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promis entre capacité d’expression et concision de représentation, pour con-
cevoir une représentation intermédiaire parallèle générique. Ce chapitre
passe en revue sept langages parallèles populaires et efficaces qui abordent la
question difficile de la représentation du parallélisme : Cilk, Chapel, X10,
Habanero-Java, OpenMP, MPI et OpenCL. En utilisant comme exemple
récurrent le calcul de l’ensemble de Mandelbrot, ce chapitre décrit comment
les bases de la programmation parallèle de tâches, y compris la synchronisa-
tion collective et point-à-point et l’exclusion mutuelle, sont traitées dans ces
langages. Nous discutons comment ces langages répartissent et distribuent
des données sur la mémoire. Notre étude suggère que, même si beaucoup
de mots-clés et notions sont introduits par ces langages, ils se résument
tous, en ce qui concerne les questions relatives au contrôle, à trois concepts
de tâche clés : création, synchronisation et atomicité. En ce qui concerne
les modèles de mémoire, ces langages adoptent une parmi trois approches :
mémoire partagée, mémoire distribuée et PGAS.

3.1 Introduction

This chapter is a state-of-the-art of important existing task parallel pro-
gramming languages to help us to achieve two of our goals in this thesis of
(1) the development of a parallel intermediate representation which should
be as generic as possible to handle different parallel programming languages.
This is possible using the taxonomy produced at the end of this chapter, (2)
the languages we use as a back-end of our automatic parallelization process.
These are determined by the knowledge of existing target parallel languages,
their limits and their extensions.

Indeed, programming parallel machines as effectively as sequential ones
would ideally require a language that provides high-level programming con-
structs to avoid the programming errors frequent when expressing paral-
lelism. Programming languages adopt one of two ways to deal with this is-
sue: (1) high-level languages hide the presence of parallelism at the software
level, thus offering a code easy to build and port, but the performance of
which is not guaranteed, and (2) low-level languages use explicit constructs
for communication patterns and specifying the number and placement of
threads, but the resulting code is difficult to build and not very portable,
although usually efficient. Recent programming models explore the best
trade-offs between expressiveness and performance when addressing paral-
lelism.

Traditionally, there are two general ways to break an application into
concurrent parts in order to take advantage of a parallel computer and exe-
cute them simultaneously on different CPUs: data and task parallelisms. In
data parallelism, the same instruction is performed repeatedly and simul-
taneously on different data. In task parallelism, the execution of different



42 Chapter 3: Concepts in Task Parallel Prog...

processes (threads) is distributed across multiple computing nodes. Task
parallelism is often considered more difficult to specify than data paral-
lelism, since it lacks the regularity present in the latter model; processes
(threads) run simultaneously different instructions, leading to different ex-
ecution schedules and memory access patterns. Task management must
address both control and data dependences, in order to minimize execution
and communication times.

This chapter describes how seven popular and efficient parallel pro-
gramming language designs, either widely used or recently developed at
DARPA1, tackle the issue of task parallelism specification: Cilk, Chapel,
X10, Habanero-Java, OpenMP, MPI and OpenCL. They are selected based
on the richness of their constructs and their popularity; they provide simple
high-level parallel abstractions that cover most of the parallel programming
language design spectrum. We use a popular parallel problem, the compu-
tation of the Mandelbrot set [1], as a running example. We consider this an
interesting test case, since it exhibits a high-level of embarrassing parallelism
while its iteration space is not easily partitioned, if one wants to have tasks
of balanced run times. Our goal with this chapter is to study and compare
aspects around task parallelism for our automatic parallelization aim.

After this introduction, Section 3.2 presents our running example. We
discuss the parallel language features specific to task parallelism, namely
task creation, synchronization and atomicity in Section 3.3. In Section 3.4,
a selection of current and important parallel programming languages are
described: Cilk, Chapel, X10, Habanero Java, OpenMP, MPI and OpenCL.
For each language, an implementation of the Mandelbrot set algorithm is
presented. Section 3.5 contains comparison, discussion and classification of
these languages. We conclude in Section 3.6.

3.2 Mandelbrot Set Computation

The Mandelbrot set is a fractal set. For each complex c ∈ C, the set
of complex numbers zn(c) is defined by induction as follows: z0(c) = c
and zn+1(c) = z2n(c) + c. The Mandelbrot set M is then defined as {c ∈
C/ limn→∞ zn(c) < ∞}; thus, M is the set of all complex numbers c for
which the series zn(c) converges. One can show [1] that a finite limit for
zn(c) exists only if the modulus of zm(c) is less than 2, for some positive
m. We give a sequential C implementation of the computation of the Man-
delbrot set in Figure 3.2. Running this program yields Figure 3.1, in which
each complex c is seen as a pixel, its color being related to its convergence
property: the Mandelbrot set is the black shape in the middle of the figure.

1Three programming languages developed as part of the DARPA HPCS program:
Chapel, Fortress [13], X10.
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Figure 3.1: Result of the Mandelbrot set

unsigned long min_color = 0, max_color = 16777215;

unsigned int width = NPIXELS , height = NPIXELS ,

N = 2, maxiter = 10000;

double r_min = -N, r_max = N, i_min = -N, i_max = N;

double scale_r = (r_max - r_min )/width;

double scale_i = (i_max - i_min )/ heigth;

double scale_color = (max_color - min_color )/ maxiter;

Display *display; Window win; GC gc;

for (row = 0; row < height; ++row) {

for (col = 0; col < width; ++col) {

z.r = z.i = 0;

/* Scale c as display coordinates of current point */

c.r = r_min + (( double) col * scale_r );

c.i = i_min + (( double) (height -1-row) * scale_i );

/* Iterates z = z*z+c while |z| < N, or maxiter is reached */

k = 0;

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

++k;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

/* Set color and display point */

color = (ulong) ((k-1) * scale_color) + min_color;

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc , col , row);

}

}

Figure 3.2: Sequential C implementation of the Mandelbrot set

We use this base program as our test case in our parallel implemen-
tations, in Section 3.4, for the parallel languages we selected. This is an
interesting case for illustrating parallel programming languages: (1) it is an
embarrassingly parallel problem, since all computations of pixel colors can
be performed simultaneously, and thus is obviously a good candidate for
expressing parallelism, but (2) its efficient implementation is not obvious,
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since good load balancing cannot be achieved by simply grouping localized
pixels together because convergence can vary widely from one point to the
next, due to the fractal nature of the Mandelbrot set.

3.3 Task Parallelism Issues

Among the many issues related to parallel programming, the questions of
task creation, synchronization, atomicity are particularly important when
dealing with task parallelism, our focus in this thesis.

3.3.1 Task Creation

In this thesis, a task is a static notion, i.e., a list of instructions, while
processes and threads are running instances of tasks. Creation of system-
level task instances is an expensive operation, since its implementation, via
processes, requires allocating and later possibly releasing system-specific re-
sources. If a task has a short execution time, this overhead might make the
overall computation quite inefficient. Another way to introduce parallelism
is to use lighter, user-level tasks, called threads. In all languages addressed
in this chapter, task management operations refer to such user-level tasks.
The problem of finding the proper size of tasks, and hence the number of
tasks, can be decided at compile or run times, using heuristics.

In our Mandelbrot example, the parallel implementations we provide
below use a static schedule that allocates a number of iterations of the loop
row to a particular thread; we interleave successive iterations into distinct
threads in a round-robin fashion, in order to group loop body computations
into chunks, of size height/P , where P is the (language-dependent) number
of threads. Our intent here is to try to reach a good load balancing between
threads.

3.3.2 Synchronization

Coordination in task-parallel programs is a major source of complexity. It is
dealt with using synchronization primitives, for instance when a code frag-
ment contains many phases of execution where each phase should wait for
the precedent ones to proceed. When a process or a thread exits before
synchronizing on a barrier that other processes are waiting on or when pro-
cesses operate on different barriers using different orders, a deadlock occurs.
Programmers must avoid these situations (and be deadlock-free). Different
forms of synchronization constructs exist, such as mutual exclusion when
accessing shared resources using locks, join operations that terminate child
threads, multiple synchronizations using barriers2, and point-to-point syn-

2The term “barrier” is used in various ways by authors [89]; we consider here that
barriers are synchronization points that wait for the termination of sets of threads, defined
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chronization using counting semaphores [97].

In our Mandelbrot example, we need to synchronize all pixel computa-
tions before exiting; we also need to use synchronization to deal with the
atomic section (see the next section). Even though synchronization is rather
simple in this example, caution is always needed; an example that may lead
to deadlocks is mentioned in Section 3.5.

3.3.3 Atomicity

Access to shared resources requires atomic operations that, at any given
time, can be executed by only one process or thread. Atomicity comes in two
flavors: weak and strong [75]. A weak atomic statement is atomic only with
respect to other explicitly atomic statements; no guarantee is made regard-
ing interactions with non-isolated statements (not declared as atomic). By
opposition, strong atomicity enforces non-interaction of atomic statements
with all operations in the entire program. It usually requires specialized
hardware support (e.g., atomic “compare and swap” operations), although
a software implementation that treats non-explicitly atomic accesses as im-
plicitly atomic single operations (using a single global lock) is possible.

In our Mandelbrot example, display accesses require connection to the X
server; drawing a given pixel is an atomic operation since GUI-specific calls
need synchronization. Moreover, two simple examples of atomic sections are
provided in Section 3.5.

3.4 Parallel Programming Languages

We present here seven parallel programming languages and describe how
they deal with the concepts introduced in the previous section. We also
study how these languages distribute data over different processors. Given
the large number of parallel languages that exist, we focus primarily on
languages that are in current use and popular and that support simple high-
level task-oriented parallel abstractions.

3.4.1 Cilk

Cilk [105], developed at MIT, is a multithreaded parallel language based on
C for shared memory systems. Cilk is designed for exploiting dynamic and
asynchronous parallelism. A Cilk implementation of the Mandelbrot set is
provided in Figure 3.33.

in a language-dependent manner.
3From now on, variable declarations are omitted, unless required for the purpose of our

presentation.
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{

cilk_lock_init(display_lock );

for (m = 0; m < P; m++)

spawn compute_points(m);

sync;

}

cilk void compute_points(uint m) {

for (row = m; row < height; row += P)

for (col = 0; col < width; ++col) {

// Initialization of c, k and z

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

++k;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

color = (ulong) ((k-1) * scale_color) + min_color;

cilk_lock(display_lock );

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc , col , row);

cilk_unlock(display_lock );

}

}

Figure 3.3: Cilk implementation of the Mandelbrot set (P is the number of
processors)

Task Parallelism

The cilk keyword identifies functions that can be spawned in parallel. A
Cilk function may create threads to execute functions in parallel. The spawn
keyword is used to create child tasks, such as compute points in our example,
when referring to Cilk functions.

Cilk introduces the notion of inlets [2], which are local Cilk functions
defined to take the result of spawned tasks and use it (performing a reduc-
tion). The result should not be put in a variable in the parent function. All
the variables of the function are available within an inlet. Abort allows to
abort a speculative work by terminating all of the already spawned children
of a function; it must be called inside an inlet. Inlets are not used in our
example.

Synchronization

The sync statement is a local barrier, used in our example to ensure task ter-
mination. It waits only for the spawned child tasks of the current procedure
to complete, and not for all tasks currently being executed.
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Atomic Section

Mutual exclusion is implemented using locks of type cilk lockvar, such
as display lock in our example. The function cilk lock is used to test a
lock and block if it is already acquired; the function cilk unlock is used
to release a lock. Both functions take a single argument which is an object
of type cilk lockvar. cilk lock init is used to initialize the lock object
before it is used.

Data Distribution

In Cilk’s shared memory model, all variables declared outside Cilk functions
are shared. Also, variables addressed indirectly by passing of pointers to
spawned functions are shared. To avoid possible non-determinism due to
data races, the programmer should avoid the situation when a task writes
a variable that may be read or written concurrently by another task, or
use the primitive cilk fence that ensures that all memory operations of a
thread are committed before the next operation execution.

3.4.2 Chapel

Chapel [6], developed by Cray, supports both data and control flow paral-
lelism and is designed around a multithreaded execution model based on
PGAS for shared and distributed-memory systems. A Chapel implementa-
tion of the Mandelbrot set is provided in Figure 3.4.

coforall loc in Locales do

on loc {

for row in loc.id.. height by numLocales do {

for col in 1.. width do {

// Initialization of c, k and z

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

k = k+1;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

color = (ulong) ((k-1) * scale_color) + min_color;

atomic {

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc , col , row);

}

}}}

Figure 3.4: Chapel implementation of the Mandelbrot set
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Task Parallelism

Chapel provides three types of task parallelism [6], two structured ones and
one unstructured. cobegin{stmts} creates a task for each statement in
stmts; the parent task waits for the stmts tasks to be completed. coforall
is a loop variant of the cobegin statement, where each iteration of the
coforall loop is a separate task and the main thread of execution does not
continue until every iteration is completed. Finally, in begin{stmt}, the
original parent task continues its execution after spawning a child running
stmt.

Synchronization

In addition to cobegin and coforall, used in our example, which have an
implicit synchronization at the end, synchronization variables of type sync

can be used for coordinating parallel tasks. A sync [6] variable is either
empty or full, with an additional data value. Reading an empty variable and
writing in a full variable suspends the thread. Writing to an empty variable
atomically changes its state to full. Reading a full variable consumes the
value and atomically changes the state to empty.

Atomic Section

Chapel supports atomic sections; atomic{stmt} executes stmt atomically
with respect to other threads. The precise semantics is still ongoing work [6].

Data Distribution

Chapel introduces a type called locale to refer to a unit of the machine
resources on which a computation is running. A locale is a mapping of
Chapel data and computations to the physical machine. In Figure 3.4, Ar-
ray Locales represents the set of locale values corresponding to the machine
resources on which this code is running; numLocales refers to the number
of locales. Chapel also introduces new domain types to specify array distri-
bution; they are not used in our example.

3.4.3 X10 and Habanero-Java

X10 [5], developed at IBM, is a distributed asynchronous dynamic parallel
programming language for multi-core processors, symmetric shared-memory
multiprocessors (SMPs), commodity clusters, high end supercomputers, and
even embedded processors like Cell. An X10 implementation of the Man-
delbrot set is provided in Figure 3.5.

Habanero-Java [30], under development at Rice University, is derived
from X10, and introduces additional synchronization and atomicity primi-
tives surveyed below.
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finish {

for (m = 0; m < place.MAX_PLACES; m++) {

place pl_row = place.places(m);

async at (pl_row) {

for (row = m; row < height; row += place.MAX_PLACES ){

for (col = 0; col < width; ++col) {

// Initialization of c, k and z

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

++k;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

color = (ulong) ((k-1) * scale_color) + min_color;

atomic {

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc, col , row);

}

}}}}}

Figure 3.5: X10 implementation of the Mandelbrot set

Task Parallelism

X10 provides two task creation primitives: (1) the async stmt construct
creates a new asynchronous task that executes stmt, while the current thread
continues, and (2) the future exp expression launches a parallel task that
returns the value of exp.

Synchronization

With finish stmt, the current running task is blocked at the end of the
finish clause, waiting till all the children spawned during the execution of
stmt have terminated. The expression f.force() is used to get the actual
value of the “future” task f.

X10 introduces a new synchronization concept: the clock. It acts as a
barrier for a dynamically varying set of tasks [102] that operate in phases of
execution where each phase should wait for previous ones before proceeding.
A task that uses a clock must first register with it (multiple clocks can be
used). It then uses the statement next to signal to all the tasks that are
registered with its clocks that it is ready to move to the following phase,
and waits until all the clocks with which it is registered can advance. A
clock can advance only when all the tasks that are registered with it have
executed a next statement (see the left side of Figure 3.6).

Habanero-Java introduces phasers to extend this clock mechanism. A
phaser is created and initialized to its first phase using the function new.
The scope of a phaser is limited to the immediately enclosing finish state-
ment; this constraint guarantees the deadlock-freedom safety property of
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phasers [102]. A task can be registered with zero or more phasers, using one
of four registration modes: the first two are the traditional SIG and WAIT
signal operations for producer-consumer synchronization; the SIG WAIT
mode implements barrier synchronization, while SIG WAIT SINGLE en-
sures, in addition, that its associated statement is executed by only one
thread. As in X10, a next instruction is used to advance each phaser that
this task is registered with to its next phase, in accordance with this task’s
registration mode, and waits on each phaser that task is registered with, with
a WAIT submode (see the right side of Figure 3.6). Note that clocks and
phasers are not used in our Mandelbrot example, since a collective barrier
based on the finish statement is sufficient.

finish async {

clock cl = clock.make ();

for(j = 1;j <= n;j++) {

async clocked(cl) {

S;

next;

S�;

}

}

}

finish {

phaser ph=new phaser ();

for(j = 1;j <= n;j++) {

async phased(ph <SIG_WAIT >) {

S;

next;

S�;

}

}

Figure 3.6: A clock in X10 (left) and a phaser in Habanero-Java (right)

Atomic Section

When a thread enters an atomic statement, no other thread may enter it
until the original thread terminates it.

Habanero-Java supports weak atomicity using the isolated stmt primi-
tive for mutual exclusion. The Habanero-Java implementation takes a single-
lock approach to deal with isolated statements.

Data Distribution

In order to distribute data across processors, X10 and HJ introduce a type
called place. A place is an address space within which a task may run;
different places may however refer to the same physical processor and share
physical memory. The program address space is partitioned into logically
distinct places. Place.MAX PLACES, used in Figure 3.5, is the number of
places available to a program.

3.4.4 OpenMP

OpenMP [4] is an application program interface providing a multi-threaded
programming model for shared memory parallelism; it uses directives to ex-
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tend sequential languages. A C OpenMP implementation of the Mandelbrot
set is provided in Figure 3.7.

P = omp_get_num_threads ();

#pragma omp parallel shared(height ,width ,scale_r ,\

scale_i ,maxiter ,scale_color ,min_color ,r_min ,i_min)\

private(row ,col ,k,m,color ,temp ,z,c)

#pragma omp single

{

for (m = 0; m < P; m++)

#pragma omp task

for (row = m; row < height; row += P) {

for (col = 0; col < width; ++col) {

// Initialization of c, k and z

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

++k;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

color = (ulong) ((k-1) * scale_color) + min_color;

#pragma omp critical

{

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc , col , row);

}

}}}

Figure 3.7: C OpenMP implementation of the Mandelbrot set

Task Parallelism

OpenMP allows dynamic (omp task) and static (omp section) scheduling
models. A task instance is generated each time a thread (the encounter-
ing thread) encounters an omp task directive. This task may either be
scheduled immediately on the same thread or deferred and assigned to any
thread in a thread team, which is the group of threads created when an
omp parallel directive is encountered. The omp sections directive is a
non-iterative work-sharing construct. It specifies that the enclosed sections
of code, declared with omp section, are to be divided among the threads
in the team; these sections are independent blocks of code that the compiler
can execute concurrently.

Synchronization

OpenMP provides synchronization constructs that control the execution in-
side a team thread: barrier and taskwait. When a thread encounters
a barrier directive, it waits until all other threads in the team reach the
same point; the scope of a barrier region is the innermost enclosing paral-
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lel region. The taskwait construct is a restricted barrier that blocks the
thread until all child tasks created since the beginning of the current task
are completed. The omp single directive identifies code that must be run
by only one thread.

Atomic Section

The critical and atomic directives are used for identifying a section of code
that must be executed by a single thread at a time. The atomic directive
works faster than critical, since it only applies to single instructions, and
can thus often benefit from hardware support. Our implementation of the
Mandelbrot set in Figure 3.7 uses critical for the drawing function (not a
single instruction).

Data Distribution

OpenMP variables are either global (shared) or local (private); see Fig-
ure 3.7 for examples. A shared variable refers to one unique block of stor-
age for all threads in the team. A private variable refers to a different
block of storage for each thread. More memory access modes exist, such as
firstprivate or lastprivate, that may require communication or copy
operations.

3.4.5 MPI

MPI [3] is a library specification for message-passing used to program shared
and distributed memory systems. Both point-to-point and collective com-
munication are supported. The C MPI implementation of the Mandelbrot
set is provided in Figure 3.8.

Task Parallelism

The starter process may be a separate process that is not part of the MPI
application, or the rank 0 process may act as a starter process to launch the
remaining MPI processes of the MPI application. MPI processes are created
when MPI Init is called that defines also the initially universe intracommu-
nicator for all processes to drive various communications. A communicator
determines the scope of communications. Processes are terminated using
MPI Finalize.

Synchronization

MPI Barrier blocks until all processes in the communicator passed as an
argument have reached this call.
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int rank;

MPI_Status status;

ierr = MPI_Init (&argc , &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD , &rank);

ierr = MPI_Comm_size(MPI_COMM_WORLD , &P);

for (m = 1; m < P; m++){

if(rank == P){

for (row = m; row < height; row += P){

for (col = 0; col < width; ++col){

// Initialization of c, k and z

do {

temp = z.r*z.r - z.i*z.i + c.r;

z.i = 2*z.r*z.i + c.i; z.r = temp;

++k;

} while (z.r*z.r + z.i*z.i < (N*N) && k < maxiter );

color_msg[col] = (ulong) ((k-1) * scale_color) + min_color;

}

ierr = MPI_Send(color_msg , width , MPI_UNSIGNED_LONG , 0,0,

MPI_COMM_WORLD );

}

}

}

if(rank == 0){

for (row = 0; row < height; row ++){

ierr = MPI_Recv(data_msg , width , MPI_UNSIGNED_LONG ,

MPI_ANY_SOURCE , 0, MPI_COMM_WORLD , &status );

for (col = 0; col < width; ++col){

color = data_msg[col];

XSetForeground (display , gc, color );

XDrawPoint (display , win , gc , col , row);

}

}

}

ierr = MPI_Barrier(MPI_COMM_WORLD );

ierr = MPI_Finalize ();

Figure 3.8: MPI implementation of the Mandelbrot set (P is the number of
processors)

Atomic Section

MPI does not support atomic sections. Indeed, the atomic section is a
concept intrinsically linked to the shared memory. In our example, the
drawing function is executed by the master process (the rank 0 process).

Data Distribution

MPI supports the distributed memory model where it proceeds by point-to-
point and collective communications to transfer data between processors. In
our implementation of the Mandelbrot set, we used the point-to-point rou-
tines MPI Send and MPI Recv to communicate between the master process
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(rank = 0) and the other processes.

3.4.6 OpenCL

OpenCL (Open Computing Language) [70] is a standard for programming
heterogeneous multiprocessor platforms where programs are divided into
several parts: some called “the kernels” that execute on separate devices,
e.g., GPUs, with their own memories and the others that execute on the
host CPU. The main object in OpenCL is the command queue, which is
used to submit work to a device by enqueueing OpenCL commands to be
executed. An OpenCL implementation of the Mandelbrot set is provided in
Figure 4.5.

Task Parallelism

OpenCL provides the parallel construct clEnqueueTask, which enqueues a
command requiring the execution of a kernel on a device by a work item
(OpenCL thread). OpenCL uses two different models of execution of com-
mand queues: in-order, used for data parallelism, and out-of-order. In an
out-of-order command queue, commands are executed as soon as possible,
and no order is specified, except for wait and barrier events. We illustrate
the out-of-order execution mechanism in Figure 4.5, but currently this is an
optional feature and is thus not supported by many devices.

Synchronization

OpenCL distinguishes between two types of synchronization: coarse and
fine. Coarse grained synchronization, which deals with command queue
operations, uses the construct clEnqueueBarrier, which defines a barrier
synchronization point. Fine grained synchronization, which covers synchro-
nization at the GPU function call granularity level, uses OpenCL events via
ClEnqueueWaitForEvents calls.

Data transfers between the GPU memory and the host memory, via
functions such as clEnqueueReadBuffer and clEnqueueWriteBuffer, also
induce synchronization between blocking or non-blocking communication
commands. Events returned by clEnqueue operations can be used to check
if a non-blocking operation has completed.

Atomic Section

Atomic operations are only supported on integer data, via functions such
as atom add or atom xchg. Currently, these are only supported by some
devices as part of an extension of the OpenCL standard. Since OpenCL
lacks support for general atomic sections, the drawing function is executed
by the host in Figure 4.5.
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__kernel void kernel_main(complex c, uint maxiter , double scale_color ,

uint m, uint P, ulong color[NPIXELS ][ NPIXELS ]) {

for (row = m; row < NPIXELS; row += P)

for (col = 0; col < NPIXELS; ++col) {

// Initialization of c, k and z

do {

temp = z.r*z.r-z.i*z.i+c.r;

z.i = 2*z.r*z.i+c.i; z.r = temp;

++k;

} while (z.r*z.r+z.i*z.i<(N*N) && k<maxiter );

color[row][col] = (ulong) ((k-1)* scale_color );

}

}

cl_int ret = clGetPlatformIDs (1, &platform_id , &ret_num_platforms );

ret = clGetDeviceIDs(platform_id , CL_DEVICE_TYPE_DEFAULT , 1,

&device_id , &ret_num_devices );

cl_context context = clCreateContext( NULL , 1, &device_id ,

NULL , NULL , &ret);

cQueue=clCreateCommandQueue(context ,device_id ,

OUT_OF_ORDER_EXEC_MODE_ENABLE ,NULL);

P = CL_DEVICE_MAX_COMPUTE_UNITS;

memc = clCreateBuffer(context , CL_MEM_READ_ONLY , sizeof(complex), c);

// ... Create read -only buffers with maxiter , scale_color and P too

memcolor = clCreateBuffer(context , CL_MEM_WRITE_ONLY ,

sizeof(ulong )* height*width , NULL , NULL);

clEnqueueWriteBuffer(cQueue , memc , CL_TRUE , 0,

sizeof(complex), &c, 0, NULL , NULL);

// ... Enqueue write buffer with maxiter , scale_color and P too

program = clCreateProgramWithSource(context , 1, &program_source ,

NULL , NULL);

err = clBuildProgram(program , 0, NULL , NULL , NULL , NULL);

kernel = clCreateKernel(program , "kernel_main", NULL);

clSetKernelArg(kernel , 0, sizeof(cl_mem),(void *)& memc);

// ... Set kernel argument with

// memmaxiter , memscale_color , memP and memcolor too

for(m = 0; m < P; m++) {

memm = clCreateBuffer(context , CL_MEM_READ_ONLY , sizeof(uint), m);

clEnqueueWriteBuffer(cQueue , memm , CL_TRUE , 0, sizeof(uint), &m, 0,

NULL , NULL);

clSetKernelArg(kernel , 0, sizeof(cl_mem),(void *)& memm);

clEnqueueTask(cQueue , kernel , 0, NULL , NULL);

}

clFinish(cQueue );

clEnqueueReadBuffer(cQueue ,memcolor ,CL_TRUE ,0,space ,color ,0,NULL ,NULL);

for (row = 0; row < height; ++row)

for (col = 0; col < width; ++col) {

XSetForeground (display , gc , color[col][row ]);

XDrawPoint (display , win , gc , col , row);

}

Figure 3.9: OpenCL implementation of the Mandelbrot set

Data Distribution

Each work item can either use (1) its private memory, (2) its local mem-
ory, which is shared between multiple work items, (3) its constant mem-
ory, which is closer to the processor than the global memory, and thus
much faster to access, although slower than local memory, and (4) global
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memory, shared by all work items. Data is only accessible after being trans-
ferred from the host, using functions such as clEnqueueReadBuffer and
clEnqueueWriteBuffer that move data in and out of a device.

3.5 Discussion and Comparison

This section discusses the salient features of our surveyed languages. More
specifically, we look at their design philosophy and the new concepts they
introduce, how point-to-point synchronization is addressed in each of these
languages, the various semantics of atomic sections and the data distribution
issues. We end up summarizing the key features of all the languages covered
in this chapter.

Design Paradigms

Our overview study, based on a single running example, namely the com-
putation of the Mandelbrot set, is admittedly somewhat biased, since each
language has been designed with a particular application framework in mind,
which may, or may not, be well adapted to a given application. Cilk is well
suited to deal with divide-and-conquer strategies, something not put into
practice in our example. On the contrary, X10, Chapel and Habanero-Java
are high-level Partitioned Global Address Space languages that offer ab-
stract notions such as places and locales, which were put to good use in
our example. OpenCL is a low-level, verbose language that works across
GPUs and CPUs; our example clearly illustrates that this approach is not
providing much help here in terms of shrinking the semantic gap between
specification and implementation. The OpenMP philosophy is to add com-
piler directives to parallelize parts of code on shared-memory machines; this
helps programmers move incrementally from a sequential to a parallel im-
plementation. While OpenMP suffers from portability issues, MPI tackles
both shared and distributed memory systems using a low-level support for
communications.

New Concepts

Even though this thesis does not address data parallelism per se, note that
Cilk is the only language that does not provide support for data parallelism;
yet, spawned threads can be used inside loops to simulate SIMD process-
ing. Also, Cilk adds a facility to support speculative parallelism, enabling
spawned tasks abort operations via the abort statement. Habanero-Java
introduces the isolated statement to specify the weak atomicity property.
Phasers, in Habanero-Java, and clocks, in X10, are new high-level constructs
for collective and point-to-point synchronization between varying sets of
threads.
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Point-to-Point Synchronization

We illustrate the way the surveyed languages address the difficult issue of
point-to-point synchronization via a simple example, a hide-and-seek chil-
dren game in Figure 3.10. X10 clocks or Habanero-Java phasers help express
easily the different phases between threads. The notion of point-to-point
synchronization cannot be expressed easily using OpenMP or Chapel4. We
were not able to implement this game using Cilk high-level synchronization
primitives, since sync, the only synchronization construct, is a local barrier
for recursive tasks: it synchronizes only threads spawned in the current pro-
cedure, and thus not the two searcher and hider tasks. As mentioned above,
this is not surprising, given Cilk’s approach to parallelism.

finish async {

clock cl = clock.make ();

async clocked(cl) {

count_to_a_number ();

next;

start_searching ();

}

async clocked(cl) {

hide_oneself ();

next;

continue_to_be_hidden ();

}

}

finish async{

phaser ph = new phaser ();

async phased(ph) {

count_to_a_number ();

next;

start searching ();

}

async phased(ph) {

hide_oneself ();

next;

continue_to_be_hidden ();

}

}

cilk void searcher () {

count_to_a_number ();

point_to_point_sync ();// missing

start_searching ();

}

cilk void hidder () {

hide_oneself ();

point_to_point_sync ();// missing

continue_to_be_hidden ();

}

void main() {

spawn searcher ();

spawn hidder ();

}

Figure 3.10: A hide-and-seek game (X10, HJ, Cilk)

Atomic Section

The semantics and implementations of the various proposals for dealing with
atomicity are rather subtle.

4Busy-waiting techniques can be applied.
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Atomic operations, which apply to single instructions, can be efficiently
implemented, e.g. in X10, using non-blocking techniques such as the atomic
instruction compare-and-swap. In OpenMP, the atomic directive can be
made to work faster than the critical directive, when atomic operations
are replaced with processor commands such as GLSC [72] instructions, or
“gather-linked and scatter-conditional”, which extend scatter-gather hard-
ware to support advanced atomic memory operations; therefore, it is better
to use this directive when protecting shared memory during elementary op-
erations. Atomic operations can be used to update different elements of
a data structure (arrays, records) in parallel without using many explicit
locks. In the example of Figure 3.11, the updates of different elements of
Array x are allowed to occur in parallel. General atomic sections, on the
other hand, serialize the execution of updates to elements via one lock.

#pragma omp parallel for shared(x, index , n)

for (i=0; i<n; i++) {

#pragma omp atomic

x[index[i]] += f(i); // index is supposed injective

}

Figure 3.11: Example of an atomic directive in OpenMP

With the weak atomicity model of Habanero-Java, the isolated key-
word is used instead of atomic to make explicit the fact that the construct
supports weak rather than strong isolation. In Figure 3.12, Threads 1 and
2 may access to ptr simultaneously; since weakly atomic accesses are used,
an atomic access to temp->next is not enforced.

// Thread 1

ptr = head;//non isolated statement

isolated {

ready = true;

}

// Thread 2

isolated {

if(ready)

temp ->next = ptr;

}

Figure 3.12: Data race on ptr with Habanero-Java

Data Distribution

PGAS languages offer a compromise between the fine level of control of
data placement provided by the message passing model and the simplicity
of the shared memory model. However, the physical reality is that different
PGAS portions, although logically distinct, may refer to the same physical
processor and share physical memory. Practical performance might thus not
be as good as expected.

Regarding the shared memory model, despite its simplicity of program-
ming, programmers have scarce support for expressing data locality, which
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could help improve performance in many cases. Debugging is also difficult
when data races or deadlocks occur.

Finally, the message passing memory model, where processors have no
direct access to the memories of other processors, can be seen as the most
general one, in which programmers can both specify data distribution and
control locality. Shared memory (where there is only one processor manag-
ing the whole memory) and PGAS (where one assumes that each portion is
located on a distinct processor) models can be seen as particular instances
of the message passing model, when converting implicit write and read op-
erations with explicit send/receive message passing constructs.

Summary Table

We collect in Table 3.1 the main characteristics of each language addressed in
this chapter. Even though we have not discussed the issue of data parallelism
in this chapter, we nonetheless provide the main constructs used in each
language to launch data parallel computations.

Task Synchronization Data Memory
Langua- creation Task join Point-to- Atomic parallelism model

ge point section

Cilk (MIT) spawn sync — cilk lock — Shared
abort cilk unlock

Chapel begin sync sync sync forall PGAS
(Cray) cobegin atomic coforall (Locales)

X10 (IBM) async finish next atomic foreach PGAS
future force (Places)

Habanero- async finish next atomic foreach PGAS
Java (Rice) future get isolated (Places)

OpenMP omp task omp taskwait — omp critical omp for Shared
omp section omp barrier omp atomic

OpenCL EnqueueTask Finish events atom add, EnqueueND- Message
EnqueueBarrier ... RangeKernel passing

MPI MPI spawn MPI Finalize — — MPI Init Message
MPI Barrier passing

Table 3.1: Summary of parallel languages constructs

3.6 Conclusion

Using the Mandelbrot set computation as a running example, this chapter
presents an up-to-date comparative overview of seven parallel programming
languages: Cilk, Chapel, X10, Habanero-Java, OpenMP, MPI and OpenCL.
These languages are in current use, popular, offer rich and highly abstract
functionalities, and most support both data and task parallel execution mod-
els. The chapter describes how, in addition to data distribution and locality,
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the fundamentals of task parallel programming, namely task creation, col-
lective and point-to-point synchronization and mutual exclusion are dealt
with in these languages.

This study serves as the basis for the design of SPIRE, a sequential to
parallel intermediate representation extension that we use to upgrade the in-
termediate representations of PIPS [19] source-to-source compilation frame-
work to represent task concepts in parallel languages. SPIRE is presented
in the next chapter.

An earlier version of the work presented in this chapter was published
in [67].





Chapter 4

SPIRE: A Generic
Sequential to Parallel

Intermediate Representation
Extension Methodology

I was working on the proof of one of my poems all the morning, and took out a

comma. In the afternoon I put it back again. Oscar Wilde

The research goal addressed in this thesis is the design of efficient auto-
matic parallelization algorithms that use as a backend a uniform, simple
and generic parallel intermediate core language. Instead of designing from
scratch one such particular intermediate language, we take an indirect, more
general, route. We use the survey presented in Chapter 3 to design SPIRE,
a new methodology for the design of parallel extensions of the intermedi-
ate representations used in compilation frameworks of sequential languages.
It can be used to leverage existing infrastructures for sequential languages
to address both control and data parallel constructs while preserving as
much as possible existing analyses for sequential code. In this chapter, we
suggest to view this upgrade process as an “intermediate representation
transformer” at the syntactic and semantic levels; we show this can be done
via the introduction of only ten new concepts, collected in three groups,
namely execution, synchronization and data distribution, precisely defined
via a formal semantics and rewriting rules.

We use the sequential intermediate representation of PIPS, a comprehen-
sive source-to-source compilation platform, as a use case for our approach of
the definition of parallel intermediate languages. We introduce our SPIRE
parallel primitives, extend PIPS intermediate representation and show how
example code snippets from the OpenCL, Cilk, OpenMP, X10, Habanero-
Java, MPI and Chapel parallel programming languages can be represented
this way. A formal definition of SPIRE operational semantics is provided,
built on top of the one used for the sequential intermediate representation.
We assess the generality of our proposal by showing how a different sequen-
tial IR, namely LLVM, can be extended to handle parallelism using the
SPIRE methodology.

Our primary goal with the development of SPIRE is to provide, at a low
cost, powerful parallel program representations that ease the design of effi-
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cient automatic parallelization algorithms. More precisely, in this chapter,
our intent is to describe SPIRE as a uniform, simple and generic core lan-
guage transformer and apply it to PIPS IR. We illustrate the applicability
of the resulting parallel IR by using it as parallel code target in Chapter 7,
where we also address code generation issues.

L’objectif de la recherche abordée dans cette thèse est la conception d’algo-
rithmes de parallélisation efficaces automatiques qui utilisent comme langage-
cible une représentation intermédiaire uniforme, simple et générique. Au
lieu de concevoir à partir de zéro un tel langage intermédiaire particulier,
nous prenons une voie indirecte et plus générale. Nous utilisons l’étude
présentée dans le chapitre 3 pour concevoir SPIRE, une nouvelle méthodologie
pour la conception d’extensions parallèles des représentations intermédiaires
utilisées dans les compilateurs des langages séquentiels. Elle peut être utilisée
pour exploiter les infrastructures existant pour les langages séquentiels afin
de traiter à la fois les constructions parallèles de contrôle et de données
tout en préservant autant que possible les analyses existantes pour le code
séquentiel. Dans ce chapitre, nous suggérons de voir ce processus de mise
à niveau comme un “transformateur de représentation intermédiaire” aux
niveaux syntaxique et sémantique ; nous montrons que cela peut être fait
par l’introduction de dix nouveaux concepts, collectés dans trois groupes, à
savoir exécution, synchronisation et distribution de données, définis avec
précision par une sémantique formelle et des règles de réécriture.

Nous utilisons la représentation intermédiaire séquentielle de PIPS, une
plate-forme de compilation source-à-source, comme un cas d’utilisation de
notre approche de la définition des langages intermédiaires parallèles. Nous
présentons nos primitives parallèles déduites de SPIRE, étendons la représen-
tation intermédiaire de PIPS et montrons comment des extraits de codes
écrits dans les langages de programmation parallèles OpenCL, Cilk, OpenMP,
X10, Habanero Java, MPI et Chapel peuvent être représentés de cette façon.
Une définition formelle de la sémantique opérationnelle de SPIRE est présen-
tée, construite à partir de celle utilisée pour la représentation intermédiaire
séquentielle. Nous évaluons la généralité de notre proposition en montrant
comment une RI séquentielle différente, à savoir LLVM, peut être étendue
pour prendre en compte le parallélisme en utilisant la méthodologie SPIRE.

Notre principal objectif avec le développement de SPIRE est de fournir, à
un faible coût, de puissantes représentations de programmes parallèles qui fa-
cilitent la conception d’algorithmes de parallélisation automatique efficaces.
Plus précisément, dans ce chapitre, notre intention est de décrire SPIRE
comme un transformateur de langages uniforme, simple et générique et de
l’appliquer à la RI de PIPS. Nous illustrons l’applicabilité de la RI parallèle
résultante en l’utilisant comme cible de code parallèle au chapitre 7, où nous
abordons également les questions de génération de code.
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4.1 Introduction

The growing importance of parallel computers and the search for efficient
programming models led, and is still leading, to the proliferation of parallel
programming languages such as, currently, Cilk [105], Chapel [6], X10 [5],
Habanero-Java [30], OpenMP [4], OpenCL [70] or MPI [3], presented in
Chapter 3. Our automatic task parallelization algorithm which we inte-
grate within PIPS [59], a comprehensive source-to-source compilation and
optimization platform, should help in the adaptation of PIPS to such an
evolution. To reach this goal, we introduce an internal intermediate rep-
resentation (IR) to represent parallel programs into PIPS. The choice of a
proper parallel IR is of key importance, since the efficiency and power of
the transformations and optimizations the compiler PIPS can perform are
closely related to the selection of a proper program representation paradigm.
This seems to suggest the introduction of a dedicated IR for each parallel
programming paradigm. Yet, it would be better, from a software engineer-
ing point of view, to find a unique parallel IR, as general and simple as
possible.

Existing proposals for program representation techniques already pro-
vide a basis for the exploitation of parallelism via the encoding of control
and/or data flow information. HPIR [114], PLASMA [91] or InsPIRe [58]
are instances that operate at a high abstraction level, while the hierarchical
task, stream or program dependence graphs (we survey these notions in Sec-
tion 4.5) are better suited to graph-based approaches. Unfortunately many
existing compiler frameworks such as PIPS use traditional representations
for sequential-only programs, and changing their internal data structures to
deal with parallel constructs is a difficult and time-consuming task.

In this thesis, we choose to develop a methodology for the design of
parallel extensions of the intermediate representations used in compilation
frameworks of sequential languages in general, instead of developing a paral-
lel intermediate representation for PIPS only. The main motivation behind
the design of the methodology introduced in this chapter is to preserve the
many years of development efforts invested in huge compiler platforms such
as GCC (more than 7 million lines of code), PIPS (600 000 lines of code),
LLVM (more than 1 million lines of code),... when upgrading their inter-
mediate representations to handle parallel languages, as source languages
or as targets for source-to-source transformations. We provide an evolu-
tionary path for these large software developments via the introduction of
the Sequential to Parallel Intermediate Representation Extension (SPIRE)
methodology. We show that it can be plugged into existing compilers in a
rather simple manner. SPIRE is based on only three key concepts: (1) the
parallel vs. sequential execution of groups of statements such as sequences,
loops and general control-flow graphs, (2) the global synchronization char-
acteristics of statements and the specification of finer grain synchronization
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via the notion of events and (3) the handling of data distribution for different
memory models. To illustrate how this approach can be used in practice,
we use SPIRE to extend the intermediate representation (IR) [33] of PIPS.

The design of SPIRE is the result of many trade-offs between generality
and precision, abstraction and low-level concerns. On the one hand, and in
particular when looking at source-to-source optimizing compiler platforms
adapted to multiple source languages, one needs to (1) represent as many
of the existing (and, hopefully, future) parallel constructs, (2) minimize the
number of additional built-in functions that hamper compilers optimization
passes, and (3) preserve high-level structured parallel constructs to keep
their properties such as deadlock free, while minimizing the number of new
concepts introduced in the parallel IR. On the other hand, keeping only a
limited number of hardware-level notions in the IR, while good enough to
deal with all parallel constructs, would entail convoluted rewritings of high-
level parallel flows. We used an extensive survey of key parallel languages,
namely Cilk, Chapel, X10, Habanero-Java, OpenMP, OpenCL and MPI,
to guide our design of SPIRE, while showing how to express their relevant
parallel constructs within SPIRE.

The remainder of this chapter is structured as follows. Our parallel ex-
tension proposal, SPIRE, is introduced in Section 4.2, where we illustrate
its application to PIPS sequential IR, presented in Section 2.6.5; we also
show how simple illustrative examples written in OpenCL, Cilk, OpenMP,
X10, Habanero-Java, MPI and Chapel can be easily represented within
SPIRE(PIPS IR)1. The formal operational semantics of SPIRE is given in
Section 4.3. Section 4.4 shows the generality of SPIRE methodology by
showing its use on LLVM. We survey existing parallel IRs in Section 4.5.
We conclude in Section 4.6.

4.2 SPIRE, a Sequential to Parallel IR Extension

In this section, we present in detail the SPIRE methodology, which is used
to add parallel concepts to sequential IRs. After introducing our design
philosophy, we describe the application of SPIRE on the PIPS IR presented
in Section 2.6.5. We illustrate these SPIRE-derived constructs with code
excerpts from various parallel programming languages; our intent is not
to provide here general rewriting techniques from these to SPIRE, but to
provide hints on how such rewritings might possibly proceed. Note that, in
Section 4.4, using LLVM, we show that our methodology is general enough
to be adapted to other IRs.

1SPIRE(PIPS IR) means that the function of transformation SPIRE is applied on the
sequential IR of PIPS; it yields its parallel IR.
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4.2.1 Design Approach

SPIRE intends to be a practical methodology to extend existing sequential
IRs to parallelism constructs, either to generate parallel code from sequen-
tial programs or compile explicitly parallel programming languages. Inter-
estingly, the idea of seeing the issue of parallelism as an extension over
sequential concepts is in sync with Dijkstra’s view that “parallelism or con-
currency are operational concepts that refer not to the program, but to its
execution.” [41]. If one accepts such a vision, adding parallelism extensions
to existing IRs, as advocated by our approach with SPIRE, can thus, at a
fundamental level, not be seen as an afterthought but as a consequence of
the fundamental nature of parallelism.

Our design of SPIRE does not intend to be minimalist but to be as
seamlessly as possible integrable within actual IRs and general enough to
handle as many parallel programming constructs as possible. To be suc-
cessful, our design point must provide proper trade-offs between generality,
expressibility and conciseness of representation. We used an extensive sur-
vey of existing parallel languages to guide us during this design process.
Table 4.1, which extends the one provided in Chapter 3, summarizes the
main characteristics of seven recent and widely used parallel languages: Cilk,
Chapel, X10, Habanero-Java, OpenMP, OpenCL and MPI. The main con-
structs used in each language to launch task and data parallel computations,
perform synchronization, introduce atomic sections and transfer data in the
various memory models are listed. Our main finding from this analysis is
that, to be able to deal with parallel programming, one simply needs to
add to a given sequential IR the ability to specify (1) the parallel execu-
tion mechanism of groups of statements, (2) the synchronization behavior
of statements and (3) the layout of data, i.e., how memory is modeled in the
parallel language.

The last line of Table 4.1 summarizes the approach we propose to map
these programming concepts to our parallel intermediate representation ex-
tension. SPIRE is based on the introduction of only ten key notions, col-
lected in three groups:

• execution, via the sequential and parallel constructs;

• synchronization, via the spawn, barrier, atomic, single, signal and
wait constructs;

• data distribution, via send and recv constructs.

Small code snippets are provided below to sketch how the key constructs of
these parallel languages can be encoded in practice within a SPIRE-extended
parallel IR.
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Execution Synchronization Memory
Language Parallelism Task Task Point-to- Atomic model Data

creation join point section distribution

Cilk — spawn sync — cilk lock Shared —
(MIT)

Chapel forall begin sync sync sync PGAS (on)
(Cray) coforall atomic (Locales)

cobegin

X10 foreach async finish next atomic PGAS (at)
(IBM) future force (Places)

Habanero- foreach async finish next atomic PGAS (at)
Java (Rice) future get isolated (Places)

OpenMP omp for omp task omp taskwait — omp critical Shared private,
omp sections omp section omp barrier omp atomic shared...

OpenCL EnqueueND- EnqueueTask Finish events atom add, Distributed ReadBuffer
RangeKernel EnqueueBarrier ... WriteBuffer

MPI MPI Init MPI spawn MPI Finalize — — Distributed MPI Send
MPI Barrier MPI Recv...

sequential, signal, Shared,
SPIRE parallel spawn barrier wait atomic Distributed send, recv

Table 4.1: Mapping of SPIRE to parallel languages constructs (terms in
parentheses are not currently handled by SPIRE)

4.2.2 Execution

The issue of parallel vs. sequential execution appears when dealing with
groups of statements, which in our case study correspond to members of the
forloop, sequence and unstructured sets presented in Section 2.6.5. To
apply SPIRE to PIPS sequential IR, an execution attribute is added to
these sequential set definitions:

forloop’ = forloop x execution;

sequence’ = sequence x execution;

unstructured’ = unstructured x execution;

The primed sets forloop’ (expressing data parallelism) and sequence’

and unstructured’ (implementing control parallelism) represent SPIREd-
up sets for the PIPS parallel IR. Of course, the ‘prime’ notation is used here
for pedagogical purpose only; in practice, an execution field is added in the
existing IR representation. The definition of execution is straightforward:

execution = sequential:unit + parallel:unit;

where unit denotes a set with one single element; this encodes a simple enu-
meration of cases for execution. A parallel execution attribute asks for
all loop iterations, sequence statements and control nodes of unstructured
instructions to be run concurrently. Note that there is no implicit barrier
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after the termination of these parallel statements; in Section 4.2.3, we intro-
duce the annotation barrier that can be used to add an explicit barrier on
these parallel statements, if need be.

For instance, a parallel execution construct can be used to represent
data parallelism on GPUs, when expressed via the OpenCL clEnqueueNDRan-

geKernel function (see the top of Figure 4.1). This function call could be
encoded within PIPS parallel IR as a parallel loop (see the bottom of Fig-
ure 4.1), each iteration executing the kernel function as a separate task,
receiving the proper index value as an argument.

// Execute ’n’ kernels in parallel

global_work_size [0] = n;

err = clEnqueueNDRangeKernel(cmd_queue , kernel ,

1, NULL , global_work_size ,

NULL , 0, NULL , NULL);

forloop(I, 1,

global_work_size ,

1,

kernel (...),

parallel)

Figure 4.1: OpenCL example illustrating a parallel loop

An other example, in the left side of Figure 4.2, from Chapel, illustrates
its forall data parallelism construct, which will be encoded with a SPIRE
parallel loop.

forall i in 1..n do

t[i] = 0;

forloop(i, 1, n, 1,

t[i] = 0, parallel)

Figure 4.2: forall in Chapel, and its SPIRE core language representation

The main difference between a parallel sequence and a parallel unstruc-
tured is that, in a parallel unstructured, synchronizations are explicit using
arcs that represent dependences between statements. An example of an un-
structured code is illustrated in Figure 4.3, where the graph in the right
side is a parallel unstructured representation of the code in the left side.
Nodes are statements and edges are data dependences between them; for
example the statement u=x+1 cannot be launched before the statement x=3
is terminated. Figure 4.4, from OpenMP, illustrates its parallel sections

task parallelism construct, which will be encoded with a SPIRE parallel se-
quence. We can say that a parallel sequence is only suitable for fork-join
parallelism fashion whereas any other unstructured form of parallelism can
be encoded using the control flow graph (unstructured) set.
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x = 3; // statement 1

y = 5; // statement 2

z = x + y; // statement 3

u = x + 1; // statement 4

nop;
entry

x=3; y=5;

z=x+y;u=x+1;

nop;
exit

Figure 4.3: A C code, and its unstructured parallel control flow graph rep-
resentation

#pragma omp sections nowait

{

#pragma omp section

x = foo();

#pragma omp section

y = bar();

}

z = baz(x,y);

sequence(

sequence(x = foo(); y = bar(),

parallel );

z = baz(x,y),

sequential)

Figure 4.4: parallel sections in OpenMP, and its SPIRE core language
representation

Representing the presence of parallelism using only the annotation of
parallel constitutes a voluntary trade-off between conciseness and express-
ibility of representation. For example, representing the code of OpenCL in
Figure 4.1 in the way we suggest may induce a loss of precision regarding
the use of queues of tasks adopted in OpenCL and lead to errors; great
care must be taken when analyzing programs to avoid errors in translation
between OpenCL and SPIRE such as scheduling of these tasks.

4.2.3 Synchronization

The issue of synchronization is a characteristic feature of the run-time be-
havior of one statement with respect to other statements. In parallel code,
one usually distinguishes between two types of synchronization: (1) collec-
tive synchronization between threads using barriers, and (2) point-to-point
synchronization between participating threads. We suggest this can be done
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in two parts.

Collective Synchronization

The first possibility is via the new synchronization attribute, which can be
added to the specification of statements. SPIRE extends sequential interme-
diate representations in a straightforward way by adding a synchronization
attribute to the specification of statements:

statement’ = statement x synchronization;

Coordination by synchronization in parallel programs is often dealt with via
coding patterns such as barriers, used for instance when a code fragment
contains many phases of parallel execution where each phase should wait
for the precedent ones to proceed. We define the synchronization set via
high-level coordination characteristics useful for optimization purposes:

synchronization =

none:unit + spawn:entity + barrier:unit +

single:bool + atomic:reference;

where S is the statement with the synchronization attribute:

• none specifies the default behavior, i.e., independent with respect to
other statements, for S;

• spawn induces the creation of an asynchronous task S, while the value
of the corresponding entity is the user-chosen number of the thread
that executes S. SPIRE thus, in addition to decorating parallel tasks
using the parallel execution attribute to handle coarse grain par-
allelism, provides the possibility of specifying each task via the spawn
synchronization attribute in order to enable the encoding of finer
grain level of parallelism;

• barrier specifies that all the child threads spawned by the execution of
S are suspended before exiting until they are all finished – an OpenCL
example illustrating spawn to encode the clEnqueueTask instruction
and barrier to encode the clEnqueueBarrier instruction is provided
in Figure 4.5;

• single ensures that S is executed by only one thread in its thread
team (a thread team is the set of all the threads spawned within the
innermost parallel forloop statement) and a barrier exists at the end
of a single operation if its synchronization single value is true;

• atomic predicates the execution of S via the acquisition of a lock to
ensure exclusive access; at any given time, S can be executed by only



4.2. SPIRE, A SEQUENTIAL TO PARALLEL IR EXTENSION 71

mode = OUT_OF_ORDER_EXEC_MODE_ENABLE;

commands = clCreateCommandQueue(context ,

device_id , mode , &err);

clEnqueueTask(commands , kernel_A , 0, NULL , NULL);

clEnqueueTask(commands , kernel_B , 0, NULL , NULL);

// synchronize so that Kernel C starts only

// after Kernels A and B have finished

clEnqueueBarrier(commands );

clEnqueueTask(commands , kernel_C , 0, NULL , NULL);

barrier(

spawn(zero , kernel_A (...));

spawn(one , kernel_B (...))

);

spawn(zero ,kernel_C (...))

Figure 4.5: OpenCL example illustrating spawn and barrier statements

one thread. Locks are logical memory addresses, represented here by a
member of the PIPS IR reference set presented in Section 2.6.5. An
example illustrating how an atomic synchronization on the reference l
in a SPIRE statement accessing Array x can be translated in Cilk (via
Cilk lock and Cilk unlock) and OpenMP (critical) is provided in
Figure 4.6.

Cilk_lockvar l;

Cilk_lock_init(l);

...

Cilk_lock(l);

x[index[i]] += f(i);

Cilk_unlock(l);

#pragma omp critical

x[index[i]] += f(i);

Figure 4.6: Cilk and OpenMP examples illustrating an atomically-
synchronized statement

Event API: Point-to-Point Synchronization

The second possibility addresses the case of point-to-point synchronization
between participating threads. Handling point-to-point synchronization us-
ing decorations on abstract syntax trees is too constraining when one has
to deal with a varying set of threads that may belong to different parallel
parent nodes. Thus, SPIRE suggests to deal with this last class of coordi-
nation using a new class of values, of the event type. SPIRE extends the
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underlying type system of the existing sequential IRs with a new basic type,
namely event:

type’ = type + event:unit ;

Values of type event are counters, in a manner reminiscent of semaphores.
The programming interface for events is defined by the following atomic
functions:

• event newEvent(int i) is the creation function of events, initialized
with the integer i that specifies how many threads can execute wait

on this event without being blocked;

• void freeEvent(event e) is the deallocation function of the event e;

• void signal(event e) increments by one the event value2 of e;

• void wait(event e) blocks the thread that calls it until the value of
e is strictly greater than 0. When the thread is released, this value is
decremented by one.

In a first example of possible use of this event API, the construct future
used in X10 (see Figure 4.7) can be seen as the spawning of the computation
of foo(). The end result is obtained via the call to the force method; such
a mechanism can be easily implemented in SPIRE using an event attached
to the running task; it is signaled when the task is completed and waited
by the force method.

future <int > Fi = future{foo ()};

int i = Fi.force ();

Figure 4.7: X10 example illustrating a future task and its synchronization

A second example, taken from Habanero-Java, illustrates how point-to-
point synchronization primitives such as phasers and the next statement can
be dealt with using the Event API (see Figure 4.8, left). The async phased

keyword can be replaced by spawn. In this example, the next statement is
equivalent to the following sequence:

signal(ph);

wait(ph);

signal(ph);

where the event ph is supposed initialized to newEvent (-(n-1)); the second
signal is used to resume the suspended tasks in a chain-like fashion.

2The void return type will be replaced by int in practice, to enable the handling of
error values.
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finish{

phaser ph=new phaser ();

for(j = 1;j <= n;j++){

async phased(ph<SIG_WAIT >){

S;

next;

S�;

}

}

}

barrier(

ph=newEvent(-(n -1));

j = 1;

loop(j <= n,

spawn(j,

S;

signal(ph);

wait(ph);

signal(ph);

S’);

j = j+1);

freeEvent(ph)

)

Figure 4.8: A phaser in Habanero-Java, and its SPIRE core language rep-
resentation

In order to illustrate the importance of the constructs implementing
point-to-point synchronization and thus the necessity to handle them, we
show the code in Figure 4.9 extracted from [99], where phasers can be used to
implement one of main types of parallelism namely the pipeline parallelism
(see Section 2.2).

finish {

phaser [] ph = new phaser[m+1];

for (int i = 1; i < m; i++)

async phased (ph[i]<SIG >, ph[i-1]<WAIT >){

for (int j = 1; j < n; j++) {

a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]);

next;

}

}

}

}

Figure 4.9: Example of Pipeline Parallelism with phasers

Representing high-level point-to-point synchronization such as phasers
and futures using low-level functions of event type constitutes a trade-off
between generality and conciseness: we can represent any type of synchro-
nization via the low-level interface using events, and expressibility of repre-
sentation: we lose some of the expressiveness and precision of these high-level
constructs such as the deadlock-freedom safety property of phasers [102]. In-
deed, an Habanero-Java parallel code avoids deadlock since the scope of each
used phaser is the immediately enclosing finish. However, the scope of the
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events is less restrictive, the user can put them wherever he wants, and this
may lead to deadlock appearance.

4.2.4 Data Distribution

The choice of a proper memory model to express parallel programs is an im-
portant issue when designing a generic intermediate representation. There
are usually two main approaches to memory modeling: shared and mes-
sage passing models. Since SPIRE is designed to extend existing IRs for
sequential languages, it can be straightforwardly seen as using a shared
memory model when parallel constructs are added. By convention, we say
that spawn creates processes, in the case of message passing memory models,
and threads, in the other case.

In order to take into account the explicit distribution required by the
message passing memory model used in parallel languages such as MPI,
SPIRE introduces the send and recv blocking functions for implementing
communication between processes:

• void send(int dest, entity buf) transfers the value in Entity buf

to the process numbered dest;

• void recv(int source, entity buf) receives in buf the value sent
by Process source.

The MPI example in Figure 4.10 can be represented in SPIRE as a
parallel loop with index rank of size iterations whose body is the MPI
code from MPI Comm size to MPI Finalize. The communication of Variable
sum from Process 1 to Process 0 can be handled with SPIRE send/recv
functions.

Note that non-blocking communications can be easily implemented in
SPIRE using the above primitives within spawned statements (see Fig-
ures 4.11 and 4.12).

A non-blocking receive should indicate the completion of the communi-
cation. We may use for instance finish recv (see Figure 4.12) that can be
accessed later by the receiver to test the status of the communication.

Also, broadcast collective communications, such as defined in MPI, can
be represented via wrappers around send and recv operations. When the
master process and receiver processes want to perform a broadcast opera-
tion, then, if this process is the master, its broadcast operation is equivalent
to a loop over receivers, with a call to send as body; otherwise (receiver),
the broadcast is a recv function. Figure 4.13 illustrates the SPIRE repre-
sentation of a a broadcast collective communication of the value of sum.

Another interesting memory model for parallel programming has been
introduced somewhat recently: the Partitioned Global Address Space [113].
The uses of the PGAS memory model in languages such as UPC [34],
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MPI_Init (&argc , &argv []);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

if (rank == 0)

MPI_Recv(sum , sizeof(sum), MPI_FLOAT , 1, 1,

MPI_COMM_WORLD , &stat);

else if(rank == 1){

sum = 42;

MPI_Send(sum , sizeof(sum), MPI_FLOAT , 0, 1,

MPI_COMM_WORLD );

}

MPI_Finalize ();

forloop(rank ,0,size ,1,

if(rank==0,

recv(one ,sum),

if(rank==1,

sum =42;

send(zero ,sum),

nop)

),

parallel)

Figure 4.10: MPI example illustrating a communication, and its SPIRE core
language representation

spawn(new , send(zero , sum))

Figure 4.11: SPIRE core language representation of a non-blocking send

atomic(finish_recv = false);

spawn(new , recv(one , sum);

atomic(finish_recv = true)

)

Figure 4.12: SPIRE core language representation of a non-blocking receive

if(rank==0,

forloop(rank , 1, size , 1, send(rank ,sum),

parallel),

recv(zero ,sum))

Figure 4.13: SPIRE core language representation of a broadcast
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Habanero-Java, X10 and Chapel introduce various notions such as Place

or Locale to label portions of a logically-shared memory that threads may
access, in addition to complex APIs for distributing objects/arrays over these
portions. Given the wide variety of current proposals, we leave the issue of
integrating the PGAS model within the general methodology of SPIRE as
future work.

4.3 SPIRE Operational Semantics

The purpose of the formal definition given in this section is to provide a
solid basis for program analyses and transformations. It is a systematic
way to specify our IR extension mechanism, something seldom present in
IR definitions. It also illustrates how SPIRE leverages the syntactic and
semantic level of sequential constructs to parallel ones, preserving the traits
of the sequential operational semantics.

Fundamentally, at the syntactic and semantic levels, SPIRE is a method-
ology for expressing representation transformers, mapping the definition of
a sequential language IR to a parallel version. We define the operational
semantics of SPIRE in a two-step fashion: we introduce (1) a minimal core
parallel language that we use to model fundamental SPIRE concepts and
for which we provide a small-step operational semantics and (2) rewriting
rules that translate the more complex constructs of SPIRE into this core
language.

4.3.1 Sequential Core Language

Illustrating the transformations induced by SPIRE requires the definition
of a sequential IR basis, as is done above, via PIPS IR. Since we focus here
on the fundamentals, we use as core language a simpler, minimal sequential
language, Stmt. Its syntax is given in Figure 4.14, where we assume that
the sets Ide of identifiers I and Exp of expressions E are given.

S ∈ Stmt ::=

nop | I=E | S1;S2 | loop(E,S)

S ∈ SPIRE(Stmt )::=

nop | I=E | S1;S2 | loop(E,S) |

spawn(I,S) |

barrier(S) | barrier_wait(n) |

wait(I) | signal(I) |

send(I,I�) | recv(I,I�)

Figure 4.14: Stmt and SPIRE(Stmt) syntaxes
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Sequential statements are: (1) nop for no operation, (2) I=E for an as-
signment of E to I, (3) S1;S2 for a sequence and (4) loop(E,S) for a while
loop.

At the semantic level, a statement in Stmt is a very simple memory
transformer. A memory m ∈ Memory is a mapping in Ide → V alue, where
values v ∈ V alue = N + Bool can either be integers n ∈ N or booleans
b ∈ Bool. The sequential operational semantics for Stmt, expressed as
transition rules over configurations κ ∈ Configuration = Memory × Stmt,
is given in Figure 4.15; we assume that the program is syntax- and type-
correct. A transition (m, S) → (m�, S�) means that executing the statement
S in a memory m yields a new memory m� and a new statement S�; we
posit that the “→” relation is transitive. Rules 4.1 to 4.5 encode typical
sequential small-step operational semantic rules for the sequential part of
the core language. We assume that ζ ∈ Exp → Memory → V alue is the
usual function for expression evaluation.

v = ζ(E)m

(m, I = E) → (m[I → v], nop)
(4.1)

(m, nop; S) → (m, S) (4.2)

(m, S1) → (m�, S�1)

(m, S1; S2) → (m�, S�1; S2)
(4.3)

ζ(E)m

(m, loop(E,S)) → (m, S; loop(E,S))
(4.4)

¬ζ(E)m

(m, loop(E,S)) → (m, nop)
(4.5)

Figure 4.15: Stmt sequential transition rules

The semantics of a whole sequential program S is defined as the memory
m such that (⊥, S) → (m, nop), if the execution of S terminates.

4.3.2 SPIRE as a Language Transformer

Syntax

At the syntactic level, SPIRE specifies how a grammar for a sequential lan-
guage such as Stmt is transformed, i.e., extended, with synchronized parallel
statements. The grammar of SPIRE(Stmt) in Figure 4.14 adds to the se-
quential statements of Stmt (from now on, synchronized using the default
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none) new parallel statements: a task creation spawn, a termination barrier

and two wait and signal operations on events or send and recv operations
for communication. Synchronizations single and atomic are defined via
rewriting (see Subsection 4.3.3). The statement barrier wait(n), added
here for specifying the multiple-step behavior of the barrier statement in
the semantics, is not accessible to the programmer. Figure 4.8 provides the
SPIRE representation of a program example.

Semantic Domains

SPIRE is an intermediate representation transformer; As it extends gram-
mars, it also extends semantics. The set of values manipulated by SPIRE(Stmt)
statements extends the sequential V alue domain with events e ∈ Event = N ,
that encode events current values; we posit that ζ(newEvent(E))m = ζ(E)m.

Parallelism is managed in SPIRE via processes (or threads). We intro-
duce control state functions π ∈ State = Proc → Configuration×Procs to
keep track of the whole computation, mapping each process i ∈ Proc = N
to its current configuration (i.e., the statement it executes and its own view
of memory m and the set c ∈ Procs = P(Proc) of the process children it
has spawned during its execution.

In the following, we note domain(π) = {i ∈ Proc/π(i) is defined}
the set of currently running processes, and π[i → (κ, c)] the state π ex-
tended at i with (κ, c). A process is said to be finished if and only if all
its children processes, in c, are also finished, i.e., when only nop is left to
execute: finished(π, c) = (∀i ∈ c, ∃ci ∈ Procs, ∃mi ∈ Memory/π(i) =
((mi, nop), ci) ∧ finished(π, ci)).

Memory Models

The memory model of sequential languages is a unique address space for
identifier values. In our parallel extension, a configuration for a given pro-
cess or thread includes its view of memory. We suggest to use the same se-
mantic rules, detailed below, to deal with both shared and message passing
memory rules. The distinction between these models, beside the additional
use of send/receive constructs in the message passing model versus events
in the shared one, is included in SPIRE via constraints we impose on the
control states π used in computations. Namely, we introduce the variable
pids ∈ Ide, such that m( pids) ∈ P(Ide), that is used to harvest the
process identities and we posit that, in the shared memory model, for all
threads i and i� with π(i) = ((m, S), c) and π(i�) = ((m�, S�), c�), one has
∀I ∈ (domain(m) ∩ domain(m�))− (m( pids) ∪m�( pids)),m(I) = m�(I).
No such constraint is needed for the message passing model. Regarding the
notion of memory equality, note that the issue of private variables in threads
would have to be introduced in full-fledged languages. As mentioned above,
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PGAS is left for future work; some sort of constraints based on the charac-
teristics of the address space partitioning for places/locales would have to
be introduced.

Semantic Rules

At the semantic level, SPIRE is thus a transition system transformer, map-
ping rules such as the ones in Figure 4.15 to parallel, synchronized tran-
sition rules in Figure 4.16. A transition (π[i → ((m, S), c)]) �→ (π�[i →
((m�, S�), c�)]) means that the i-th process, when executing S in a memory
m, yields a new memory m� and a new control state π�[i → ((m�, S�), c�)] in
which this process now will execute S�; additional children processes may
have been created in c� compared to c. We posit that the “�→” relation is
transitive.

Rule 4.6 is a key rule to specify SPIRE transformer behavior, providing
a bridge between the sequential and the SPIRE-extended parallel semantics;
all processes can non-deterministically proceed along their sequential seman-
tics “→”, leading to valid evaluation steps along the parallel semantics “�→”.
The interleaving between parallel processes in SPIRE(Stmt) is a consequence
of (1) the non-deterministic choice of the value of i within domain(π) when
selecting the transition to perform and (2) the number of steps executed
by the sequential semantics. Note that one might want to add even more
non-determinism in our semantics; indeed, Rule 4.1 is atomic: loading the
variables in E and performing the store operation to I are performed in one
sequential step. To simplify this presentation, we do not provide the simple
intermediate steps in the sequential evaluation semantics of Rule 4.1 that
would have removed this artificial atomicity.

The remaining rules focus on parallel evaluation. In Rule 4.7, if Process
n does not already exist, spawn adds to the state a new process n that
inherits the parent memory m in a fork-like manner; the set of processes
spawned by n is initially equal to ∅. Otherwise, n keeps its memory mn

and its set of spawned processes cn. In both cases, the value of pids in the
memory of n is updated by the identifier I, n executes S and is added to
the set of processes c spawned by i. Rule 4.8 implements a rendezvous: a
new process n executes S, while process i is suspended as long as finished
is not true; indeed, the rule 4.9 resumes execution of process i when all the
child processes spawned by n have finished. In Rules 4.10 and 4.11, I is an
event, that is a counting variable used to control access to a resource or
to perform a point-to-point synchronization, initialized via newEvent to a
value equal to the number of processes that will be granted access to it. Its
current value n is decremented every time a wait(I) statement is executed
and, when π(I) = n with n > 0, the resource can be used or the barrier
can be crossed. In Rule 4.11, the current value n� of I is incremented; this
is a non-blocking operation. In Rule 4.12, p and p� are two processes that
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κ → κ�

π[i → (κ, c)] �→ π[i → (κ�, c)]
(4.6)

n = ζ(I)m
((mn, Sn), cn) = (n ∈ domain(π)) ? π(n) : ((m, S), ∅)

m�
n = mn[ pids → mn( pids) ∪ {I}]

π[i → ((m, spawn(I,S)), c)] �→
π[i → ((m, nop), c ∪ {n})][n → ((m�

n, S), cn)]

(4.7)

n �∈ domain(π) ∪ {i}

π[i → ((m, barrier(S)), c)] �→
π[i → (m, barrier wait(n)), c)][n → ((m, S), ∅)]

(4.8)

finished(π, {n})
π(n) = ((m�, nop), c�)

π[i → ((m, barrier wait(n)), c)] �→ π[i → ((m�, nop), c)]
(4.9)

n = ζ(I)m n > 0

π[i → ((m, wait(I)), c)] �→ π[i → ((m[I → n− 1], nop), c)]
(4.10)

n = ζ(I)m

π[i → ((m, signal(I)), c)]) �→ π[i → ((m[I → n+ 1], nop), c)]
(4.11)

p� = ζ(P�)m p = ζ(P)m�

π[p → ((m, send(P’, I)), c)][p� → ((m�, recv(P, I’)), c�)] �→
π[p → ((m, nop), c)][p� → ((m�[I’ → m(I)], nop), c�)]

(4.12)

Figure 4.16: SPIRE(Stmt) synchronized transition rules

communicate: p sends the datum I to p�, while this latter consumes it in
I’.

The semantics of a whole parallel program S is defined as the set of mem-
ories m such that ⊥[0 → ((⊥, S), ∅)] �→ π[0 → ((m, nop), c)], if S terminates.

4.3.3 Rewriting Rules

The SPIRE concepts not dealt with in the previous section are defined via
their rewriting into the core language. This is the case for both the treatment
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of the execution attribute and the remaining coarse-grain synchronization
constructs.

Execution

A parallel sequence of statements S1 and S2 is a pair of independent sub-
statements executed simultaneously by spawned processes I1 and I2 respec-
tively, i.e., is equivalent to:

spawn(I1,S1);spawn(I2,S2)

A parallel forloop (see Figure 4.2) with index I, lower expression low,
upper expression up, step expression step and body S is equivalent to:

I=low;loop(I<=up ,spawn(I,S);I=I+step)

A parallel unstructured is rewritten as follows. All control nodes present
in the transitive closure of the successor relation are rewritten in the same
manner. Each control node C is characterized by a statement S, predecessor
list ps and successor list ss. For each edge (c,C), where c is a predecessor of
C in ps, an event ec,C initialized at newEvent(0) is created, and similarly for
ss. The whole unstructured construct is replaced by a sequential sequence
of spawn(I,Sc), one for each C of the transitive closure of the successor
relation starting at the entry control node, where Sc is defined as follows:

barrier(spawn(one ,wait(eps[1],C));...;

spawn(m,wait(eps[m],C)));

S;

signal(eC,ss[1]);...; signal(eC,ss[m’])

where m and m’ are the lengths of the ps and ss lists; L[j] is the j-th
element of L.

The code corresponding to the statement z=x+y taken from the parallel
unstructured graph showed in Figure 4.3 is rewritten as:

spawn(three ,

barrier(spawn(one ,wait(e1,3));

spawn(two ,wait(e2,3)));

z = x + y; // statement 3

signal(e3,exit)

)

Synchronization

A statement S with synchronization atomic(I) is rewritten as:

wait(I);S;signal(I)



82 Chapter 4: SPIRE: A Generic Sequential to Par...

assuming that the assignment I = newEvent(1) is performed on the event
identifier I at the very beginning of the main function. A wait on an event
variable sets it to zero if it is currently equal to one to prohibit other threads
to enter the atomic section; the signal resets the event variable to one to
permit further access.

A statement S with a blocking synchronization single, i.e., equal to
true, is equivalent, when it occurs within an enclosing innermost parallel
forloop, to:

barrier(wait(I_S);

if(first_S ,

S; first_S = false ,

nop);

signal(I_S))

where first S is a boolean variable that ensures that only one process
among those spawned by the parallel loop will execute S; access to this
variable is protected by the event I S. Both first S and I S are respectively
initialized before loop entry to true and newEvent(1).

The conditional if(E,S,S’) can be rewritten using the core loop con-
struct as illustrated in Figure 4.17. The same rewriting can be used when the
single synchronization is equal to false, corresponding to a non-blocking
synchronization construct, except that no barrier is needed.

if(E,S,S�)

stop = false;

loop(E ∧ ¬stop , S; stop = true);

loop(¬E ∧ ¬stop , S�; stop = true)

Figure 4.17: if statement rewriting using while loops

4.4 Validation: SPIRE Application to LLVM IR

Assessing the quality of a methodology that impacts the definition of a data
structure as central for compilation frameworks as an intermediate repre-
sentation is a difficult task. This section illustrates how it can be used on a
different IR, namely LLVM, with minimal changes, thus providing support
regarding the generality of our methodology. We show how simple it is to
upgrade the LLVM IR to a “parallel LLVM IR” via SPIRE transformation
methodology.

LLVM [77] (Low-Level Virtual Machine) is an open source compilation
framework that uses an intermediate representation in Static Single Assign-
ment (SSA) [38] form. We chose the IR of LLVM to illustrate a second time
our approach because LLVM is widely used in both academia and indus-
try; another interesting feature of LLVM IR, compared to PIPS’s, is that it
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sports a graph approach, while PIPS is mostly abstract syntax tree-based;
each function is structured in LLVM as a control flow graph (CFG).

Figure 4.18 provides the definition of a significant subset of the sequential
LLVM IR described in [77] (to keep notations simple in this thesis, we use
the same Newgen language to write this specification):

• a function is a list of basic blocks, which are portions of code with one
entry and one exit points;

• a basic block has an entry label, a list of φ nodes and a list of instruc-
tions, and ends with a terminator instruction;

• φ nodes, which are the key elements of SSA, are used to merge the
values coming from multiple basic blocks. A φ node is an assignment
(represented here as a call expression) that takes as arguments an
identifier and a list of pairs (value, label); it assigns to the identifier
the value corresponding to the label of the block preceding the current
one at run time;

• every basic block ends with a terminator which is a control flow-
altering instruction that specifies which block to execute after ter-
mination of the current one.

An example of the LLVM encoding of a simple for loop in three basic
blocks is provided in Figure 4.19 where, in the first assignment, which uses
a φ node, sum is 42 if it is the first time we enter the bb1 block (from entry)
or sum otherwise (from the branch bb).

function = blocks:block *;

block = label:entity x phi_nodes:phi_node* x

instructions:instruction* x

terminator;

phi_node = call;

instruction = call;

terminator = conditional_branch +

unconditional_branch +

return;

conditional_branch = value:entity x label_true:entity x

label_false:entity;

unconditional_branch = label:entity;

return = value:entity;

Figure 4.18: Simplified Newgen definitions of the LLVM IR

Applying SPIRE to LLVM IR is, as illustrated above with PIPS, achieved
in three steps, yielding the SPIREd parallel extension of the LLVM sequen-
tial IR provided in Figure 4.20:
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sum = 42;

for(i=0; i<10; i++)

sum = sum + 2;

entry:

br label %bb1

bb: ; preds = %bb1

%0 = add nsw i32 %sum.0, 2

%1 = add nsw i32 %i.0, 1

br label %bb1

bb1: ; preds = %bb , %entry

%sum.0 = phi i32 [42,% entry ],[%0,%bb]

%i.0 = phi i32 [0,%entry ],[%1,%bb]

%2 = icmp sle i32 %i.0, 10

br i1 %2, label %bb , label %bb2

Figure 4.19: A loop in C and its LLVM intermediate representation

• an execution attribute is added to function and block: a parallel
basic block sees all its instructions launched in parallel, while all the
blocks of a parallel function are seen as parallel tasks to be executed
concurrently;

• a synchronization attribute is added to instruction; therefore, an
instruction can be annotated with spawn, barrier, single or atomic
synchronization attributes. When one wants to consider a sequence of
instructions as a whole, this sequence is first outlined in a “function”,
to be called instead; this new call instruction is then annotated with
the proper synchronization attribute, such as spawn, if the sequence
must be considered as an asynchronous task; we provide an example in
Figure 4.21. A similar technique is used for the other synchronization
constructs barrier, single and atomic;

• as LLVM provides a set of intrinsic functions [77], SPIRE functions
newEvent, freeEvent, signal and wait for handling point-to-point
synchronization, and send and recv for handling data distribution,
are added to this set.

function � = function x execution;

block � = block x execution;

instruction � = instruction x synchronization;

Intrinsic Functions:

send , recv , signal , wait , newEvent , freeEvent

Figure 4.20: SPIRE (LLVM IR)

Note that the use of SPIRE on the LLVM IR is not able to express
parallel loops as easily as was the case on PIPS IR. Indeed, the notion of a
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main()

{

int A, B, C;

A = foo();

B = bar(A);

C = baz();

...

}

call_AB(int *A,int *B){

*A = foo();

*B = bar(*A);

}

main (){

int A, B, C;

spawn(zero ,call_AB (&A,&B));

C = baz();

...

}

Figure 4.21: An example of a spawned outlined sequence

loop does not always exist in the definition of intermediate representations
based on control flow graphs, including LLVM; it is an attribute of some of its
nodes, which has to be added later on by a loop-detection program analysis
phase. Of course, such analysis could also be applied on the SPIRE-derived
IR, to thus recover this information. Once one knows that a particular loop
is parallel, this can be encoded within SPIRE using the same technique as
presented in Section 4.3.3.

More generally, even though SPIRE uses traditional parallel paradigms
for code generation purposes, SPIRE-derived IRs are able to deal with more
specific parallel constructs such as DOACROSS loops [57] or HELIX-like [29]
approaches. HELIX is a technique to parallelize a loop in the presence of
loop-carried dependences by executing sequential segments with exploiting
TLP between them and using prefetching of signal synchronization. Ba-
sically, a compiler would parse a given sequential program into sequential
IR elements. Optimization compilation phases specific to particular paral-
lel code generation paradigms such as those above will translate, whenever
possible (specific data and control-flow analyses will be needed here), these
sequential IR constructs into parallel loops, with the corresponding synchro-
nization primitives, as need be. Code generation will then recognize such
IR patterns and generate specific parallel instructions such as DOACROSS.

4.5 Related Work: Parallel Intermediate Repre-
sentations

In this section, we review several different possible representations of parallel
programs, both at the high, syntactic, and mid, graph-based, levels. We
provide synthetic descriptions of the key existing IRs addressing similar
issues to our thesis’s. Bird’s eye view comparisons with SPIRE are also
given here.
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Syntactic approaches to parallelism expression use abstract syntax tree
nodes, while adding specific built-in functions for parallelism. For instance,
the intermediate representation of the implementation of OpenMP in GCC
(GOMP) [86] extends its three-address representation, GIMPLE [79]. The
OpenMP parallel directives are replaced by specific built-ins in low- and
high-level GIMPLE, and additional nodes in high-level GIMPLE, such as
the sync fetch and add built-in function for an atomic memory access
addition. Similarly, Sarkar and Zhao introduce the high-level parallel in-
termediate representation HPIR [114] that decomposes Habanero-Java pro-
grams into region syntax trees, while maintaining additional data structures
on the side: region control-flow graphs and region dictionaries that contain
information about the use and the definition of variables in region nodes.
New abstract syntax tree nodes are introduced: AsyncRegionEntry and
AsyncRegionExit are used to delimit tasks, while FinishRegionEntry and
FinishRegionExit can be used in parallel sections. SPIRE borrows some
of the ideas used in GOMP or HPIR, but frames them in more structured
settings while trying to be more language-neutral. In particular, we try to
minimize the number of additional built-in functions, which have the draw-
back of hiding the abstract high-level structure of parallelism and affecting
compiler optimization passes. Moreover, we focus on extending existing AST
nodes rather than adding new ones (such as in HPIR) in order to not fatten
the IR and avoid redundant analyses and transformations on the same basic
constructs. Applying the SPIRE approach to systems such as GCC would
have provided a minimal set of extensions that could have also been used for
other implementations of parallel languages that rely on GCC as a backend,
such as Cilk.

PLASMA is a programming framework for heterogeneous SIMD sys-
tems, with an IR [91] that abstracts data parallelism and vector instruc-
tions. It provides specific operators such as add on vectors and special
instructions such as reduce and par. While PLASMA abstracts SIMD im-
plementation and compilation concepts for SIMD accelerators, SPIRE is
more architecture-independent and also covers control parallelism.

InsPIRe is the parallel intermediate representation at the core of the
source-to-source Insieme compiler [58] for C, C++, OpenMP, MPI and
OpenCL programs. Parallel constructs are encoded using built-ins. SPIRE
intends to also cover source-to-source optimization. We believe it could have
been applied to Insieme sequential components, parallel constructs being de-
fined as extensions of the sequential abstract syntax tree nodes of InsPIRe
instead of using numerous built-ins.

Turning now to mid-level intermediate representations, many systems
rely on graph structures for representing sequential code, and extend them
for parallelism. The Hierarchical Task Graph [49] represents the program
control flow. The hierarchy exposes the loop nesting structure; at each loop
nesting level, the loop body is hierarchically represented as a single node



4.6. CONCLUSION 87

that embeds a subgraph that has control and data dependence information
associated with it. SPIRE is able to represent both structured and unstruc-
tured control-flow dependence, thus enabling recursively-defined optimiza-
tion techniques to be applied easily. The hierarchical nature of underlying
sequential IRs can be leveraged, via SPIRE, to their parallel extensions; this
feature is used in the PIPS case addressed below.

A stream graph [31] is a dataflow representation introduced specifically
for streaming languages. Nodes represent data reorganization and process-
ing operations between streams, and edges, communications between nodes.
The number of data samples defined and used by each node is supposed to
be known statically. Each time a node is fired, it consumes a fixed number
of elements of its inputs and produces a fixed number of elements on its
outputs. SPIRE provides support for both data and control dependence
information; streaming can be handled in SPIRE using its point-to-point
synchronization primitives.

The parallel program graph (PPDG) [100] extends the program depen-
dence graph [45], where vertices represent blocks of statements and edges,
essential control or data dependences; mgoto control edges are added to rep-
resent task creation occurrences, and synchronization edges, to impose or-
dering on tasks. Kimble IR [24] uses an intermediate representation designed
along the same lines, i.e., as a hierarchical direct acyclic graphs (DAG) on
top of GCC IR, GIMPLE. Parallelism is expressed there using new types
of nodes: region, which is a subgraph of clusters, and cluster, a sequence
of statements to be executed by one thread. Like PPDG and Kimble IR,
SPIRE adopts an extension approach to “parallelize” existing sequential in-
termediate representations; this chapter showed that this can be defined
as a general mechanism for parallel IR definitions and provides a formal
specification of this concept.

LLVM IR [77] represents each function as control flow graphs. To en-
code parallel constructs, LLVM introduces the notion of metadata such
as llvm.loop.parallel for implementing parallel loops. A metadata is
a string used as an annotation on the LLVM IR nodes. LLVM IR lacks
support for other parallel constructs such as starting parallel threads, syn-
chronizing them, etc. We presented in Section 4.4 our proposal for a parallel
IR for LLVM via the application of SPIRE to LLVM.

4.6 Conclusion

SPIRE is a new and general 3-step extension methodology for mapping any
intermediate representation (IR) used in compilation platforms for repre-
senting sequential programming constructs to a parallel IR; one can leverage
it for the source-to-source and high- to mid-level optimization of control-
parallel languages and constructs.
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The extension of an existing IR introduces (1) a parallel execution at-
tribute for each group of statements, (2) a high-level synchronization at-
tribute on each statement node and an API for low-level synchronization
events and (3) two built-ins for implementing communications in message
passing memory systems. The formal semantics of SPIRE transformational
definitions is specified using a two-tiered approach: a small-step operational
semantics for its base parallel concepts and a rewriting mechanism for high-
level constructs.

The SPIRE methodology is presented via a use case, the intermediate
representation of PIPS, a powerful source-to-source compilation infrastruc-
ture for Fortran and C. We illustrate the generality of our approach by
showing how SPIRE can be used to represent the constructs of the current
parallel languages Cilk, Chapel, X10, Habanero-Java, OpenMP, OpenCL
and MPI. To validate SPIRE, we show the application of SPIRE on another
IR, namely the one of the widely-used LLVM compilation infrastructure.

The extension of the sequential IR of PIPS using SPIRE has been imple-
mented in the PIPS middle-end and used for parallel code transformations
and generation (see Chapter 7). We added the execution set (parallel and
sequential attributes), the synchronization set (none, spawn, barrier,
atomic and single attributes), events and data distribution calls. Chap-
ter 8 provides performance data, gathered using our implementation of
SPIRE on PIPS IR, to illustrate the ability of the resulting parallel IR
to efficiently express parallelism present in scientific applications. The next
chapter addresses the crucial step in any parallelization process, which is
scheduling.

An earlier version of the work presented in this chapter was presented
at CPC [68] and at the HiPEAC Computing Systems Week.





Chapter 5

BDSC: A
Memory-Constrained,

Number of
Processor-Bounded
Extension of DSC

Life is too unpredictable to live by a schedule. Anonymous

In the previous chapter, we have introduced an extension methodology for
sequential intermediate representations to handle parallelism. In this chap-
ter, as we are interested in this thesis in task parallelism, we focus on the
next step: finding or extracting this parallelism from a sequential code, to
be eventually expressed using a SPIRE-derived parallel intermediate rep-
resentation. To reach that goal, we introduce BDSC, which extends Yang
and Gerasoulis’s Dominant Sequence Clustering (DSC) algorithm. BDSC is
a new efficient automatic scheduling algorithm for parallel programs in the
presence of resource constraints on the number of processors and their local
memory size; it is based on the static estimation of both execution time and
communication cost. Thanks to the handling of these two resource parame-
ters in a single framework, BDSC can address both shared and distributed
parallel memory architectures. As a whole, BDSC provides a trade-off be-
tween concurrency gain and communication overhead between processors,
under two resource constraints: finite number of processors and amount of
memory.

Dans le chapitre précédent, nous avons mis en place une méthodologie
d’extension pour les représentations intermédiaires séquentielles afin de pou-
voir gérer le parallélisme. Dans ce chapitre, puisque nous nous intéressons
dans cette thèse à la parallélisation de tâches, nous nous concentrons sur
l’étape suivante : trouver ou extraire ce parallélisme d’un code séquentiel,
pour être finalement exprimé en utilisant une représentation intermédiaire
parallèle dérivée de SPIRE. Pour atteindre ce but, nous introduisons BDSC,
qui étend l’algorithme DSC (Dominant Sequence Clustering) de Yang et
Gerasoulis. BDSC est un nouvel algorithme d’ordonnancement automa-
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tique et efficace pour les programmes parallèles en présence de contraintes de
ressources sur le nombre de processeurs et la taille de leur mémoire locale.
Ces contraintes sont fondées sur l’estimation statique à la fois des temps
d’exécution et des coûts de communication. Grâce à la manipulation de ces
deux paramètres de ressources dans un cadre unique, BDSC peut traiter à
la fois les architectures parallèles à mémoire partagée et distribuée. Globale-
ment, BDSC offre un compromis entre le gain de concurrence et le coût de
communication entre les processeurs, sous deux contraintes de ressources :
un nombre fini de processeurs et une quantité limitée de mémoire.

5.1 Introduction

One key problem when attempting to parallelize sequential programs is to
find solutions to graph partitioning and scheduling problems, where vertices
represent computational tasks and edges, data exchanges. Each vertex is
labeled with an estimation of the time taken by the computation it per-
forms; similarly, each edge is assigned a cost that reflects the amount of
data that need to be exchanged between its adjacent vertices. Efficiency is
strongly dependent here on the accuracy of the cost information encoded in
the graph to be scheduled. Gathering such information is a difficult process
in general, in particular in our case where tasks are automatically generated
from program code.

We introduce thus a new non-preemptive static scheduling heuristic that
strives to give as small as possible schedule lengths, i.e., parallel execu-
tion time, in order to exploit the task-level parallelism possibly present in
sequential programs targeting homogeneous multiprocessors or multicores,
while enforcing architecture-dependent constraints: the number of proces-
sors, the computational cost and memory use of each task and the communi-
cation cost for each task exchange, to provide hopefully significant speedups
on shared and distributed computer architectures. Our technique, called
BDSC, is based on an existing best-of-breed static scheduling heuristic,
namely Yang and Gerasoulis’s DSC (Dominant Sequence Clustering) list-
scheduling algorithm [111] [48], that we equip to deal with new heuristics
that handle resource constraints. One key advantage of DSC over other
scheduling policies (see Section 5.4), besides its already good performance
when the number of processors is unlimited, is that it has been proven op-
timal for fork/join graphs: this is a serious asset given our focus on the
program parallelization process, since task graphs representing parallel pro-
grams often use this particular graph pattern. Even though this property
may be lost when constraints are taken into account, our experiments on
scientific benchmarks suggest that our extension still provides good perfor-
mance (see Chapter 8).

This chapter is organized as follows. Section 5.2 presents the original
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DSC algorithm that we intend to extend. We detail our heuristic extension,
BDSC, in Section 5.3. Section 5.4 compares the main existing scheduling
algorithms with BDSC. Finally Section 5.5 concludes the chapter.

5.2 The DSC List-Scheduling Algorithm

In this section, we present the list-scheduling heuristic called DSC [111] that
we extend and enhance to be useful for automatic task parallelization under
resource constraints.

5.2.1 The DSC Algorithm

DSC (Dominant Sequence Clustering) is a task list-scheduling heuristic for
an unbounded number of processors. The objective is to minimize the top
level of each task (see Section 2.5.2 for a review of the main notions of
list scheduling). A DS (Dominant Sequence) is a path that has the longest
length in a partially scheduled DAG; a graph critical path is thus a DS for the
totally scheduled DAG. The DSC heuristic computes a Dominant Sequence
(DS) after each vertex is processed, using tlevel(τ,G) + blevel(τ,G) as
priority(τ). Since priorities are updated after each iteration, DSC com-
putes dynamically the critical path based on both top level and bottom level
information. A ready vertex τ , i.e., all vertex all of whose all predecessors
have already been scheduled, on one of the current DSs, i.e., with the highest
priority, is clustered with a predecessor τp when this reduces the top level
of τ by zeroing, i.e., setting to zero, the cost of communications on the in-
cident edge (τp, τ). As said in Section 2.5.2, task time(τ) and edge cost(e)
are assumed to be numerical constants, although we show how we lift this
restriction in Section 6.3.

The DSC instance of the general list-scheduling Algorithm 3, presented in
Section 2.5.2, is provided in Algorithm 4 where select cluster is replaced
by the code in Algorithm 5 (new cluster extends clusters with a new empty
cluster; its cluster time is set to 0). The table in Figure 5.1 represents the
result of scheduling the DAG in the same figure using the DSC algorithm.

To decide which predecessor τp to select to be clustered with τ , DSC
applies the minimization procedure tlevel decrease presented in Algo-
rithm 6, which returns the predecessor that leads to the highest reduction
of top level for τ if clustered together, and the resulting top level; if no
zeroing is accepted, the vertex τ is kept in a new single vertex cluster. More
precisely, the minimization procedure tlevel decrease for a task τ , in Al-
gorithm 6, tries to find the cluster cluster(min τ) of one of its predecessors
τp that reduces the top level of τ as much as possible by zeroing the cost of
the edge (min τ, τ). All clusters start at the same time, and each cluster
is characterized by its running time, cluster time(κ), which is the cumu-
lated time of all tasks scheduled into κ; idle slots within clusters may exist
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ALGORITHM 4: DSC scheduling of Graph G on P processors

procedure DSC(G, P)

clusters = ∅;
foreach τi ∈ vertices(G)

priority(τi) = tlevel(τi, G) + blevel(τi, G);

UT = vertices(G); // unscheduled tasks

while UT �= ∅
τ = select_task_with_highest_priority(UT);

κ = select_cluster(τ , G, P, clusters );

allocate_task_to_cluster(τ , κ, G);

update_graph(G);

update_priority_values(G);

UT = UT -{τ };
end

ALGORITHM 5: DSC cluster selection for Task τ for Graph G on P processors

function select_cluster(τ , G, P, clusters)

(min_τ , min_tlevel) = tlevel_decrease(τ , G);

return (cluster(min_τ ) �= cluster_undefined) ?

cluster(min_τ ) : new_cluster(clusters );

end

and are also taken into account in this accumulation process. The condition
cluster(τp) �= cluster undefined is tested on predecessors of τ in order
to make it possible to apply this procedure for ready and unready vertices;
an unready vertex has at least one unscheduled predecessor.

5.2.2 Dominant Sequence Length Reduction Warranty

Dominant Sequence Length Reduction Warranty (DSRW) is a greedy heuris-
tic within DSC that aims to further reduce the scheduling length. A vertex
on the DS path with the highest priority can be ready or not ready. With the
DSRW heuristic, DSC schedules the ready vertices first, but, if such a ready
vertex τr is not on the DS path, DSRW verifies, using the procedure in Al-
gorithm 7, that the corresponding zeroing does not affect later the reduction
of the top levels of the DS vertices τu that are partially ready, i.e., such that
there exists at least one unscheduled predecessor of τu. To do this, we check
if the “partial top level” of τu, which does not take into account unexam-
ined (unscheduled) predecessors and is computed using tlevel decrease,
is reducible, once τr is scheduled.

The table in Figure 5.1 illustrates an example where it is useful to ap-
ply the DSRW optimization. There, the DS column provides, for the task
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τ1 1 τ4 2

τ2 3

τ3 2

2

1

1

step task tlevel blevel DS scheduled tlevel
κ0 κ1 κ2

1 τ4 0 7 7 0*
2 τ3 3 2 5 2 3*
3 τ1 0 5 5 0*
4 τ2 4 3 7 2* 4

Figure 5.1: A Directed Acyclic Graph (left) and its scheduling (right);
starred top levels (*) correspond to the selected clusters

ALGORITHM 6: Minimization DSC procedure for Task τ in Graph G

function tlevel_decrease(τ , G)

min_tlevel = tlevel(τ , G);

min_τ = τ ;
foreach τp ∈ predecessors(τ , G)

where cluster(τp) �= cluster_undefined

start_time = cluster_time(cluster(τp))),
foreach τ �p ∈ predecessors(τ , G) where

cluster(τ �p) �= cluster_undefined

if(τp �= τ �p) then

level = tlevel(τ �p, G)+ task_time(τ �p)+ edge_cost(τ
�

p, τ );

start_time = max(level , start_time );

if(min_tlevel > start_time) then

min_tlevel = start_time;

min_τ = τp;
return (min_τ , min_tlevel );

end

scheduled at each step, its priority, i.e., the length of its dominant sequence,
while the last column represents, for each possible zeroing, the correspond-
ing task top level; starred top levels (*) correspond to the selected clusters.
Task τ4 is mapped to Cluster κ0 in the first step of DSC. Then, τ3 is se-
lected because it is the ready task with the highest priority. The mapping
of τ3 to Cluster κ0 would reduce its top level from 3 to 2. But the zeroing
of (τ4, τ3) affects the top level of τ2, τ2 being the unready task with the
highest priority. Since the partial top level of τ2 is 2 with the zeroing of
(τ4,τ2) but 4 after the zeroing of (τ4,τ3), DSRW will fail, and DSC allocates
τ3 to a new cluster, κ1. Then, τ1 is allocated to a new cluster, κ2, since
it has no predecessors. Thus, the zeroing of (τ4,τ2) is kept thanks to the
DSRW optimization; the total scheduling length is 5 (with DSRW) instead
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ALGORITHM 7: DSRW optimization for Task τu when scheduling Task τr for

Graph G

function DSRW(τr, τu, clusters , G)

(min_τ , min_tlevel) = tlevel_decrease(τr, G);

// before scheduling τr
(τb,ptlevel_before) = tlevel_decrease(τu, G);

// scheduling τr
allocate_task_to_cluster(τr, cluster(min_τ ), G);

saved_edge_cost = edge_cost(min_τ , τr);
edge_cost(min_τ ,τr) = 0;

// after scheduling τr
(τa,ptlevel_after) = tlevel_decrease(τu, G);

if (ptlevel_after > ptlevel_before) then

// (min_τ ,τr) zeroing not accepted

edge_cost(min_τ , τr) = saved_edge_cost;

return false;

return true;

end

κ0 κ1
τ4 τ1
τ3 τ2

κ0 κ1 κ2
τ4 τ1
τ2 τ3

Figure 5.2: Result of DSC on the graph in Figure 5.1 without (left) and
with (right) DSRW

of 7 (without DSRW) (Figure 5.2).

5.3 BDSC: A Resource-Constrained Extension of
DSC

This section details the key ideas at the core of our new scheduling process
BDSC, which extends DSC with a number of important features, namely
(1) by verifying predefined memory constraints, (2) by targeting a bounded
number of processors and (3) by trying to make this number as small as
possible.
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5.3.1 DSC Weaknesses

A good scheduling solution is a solution that is built carefully, by having
knowledge about previous scheduled tasks and tasks to execute in the future.
Yet, as stated in [74], “an algorithm that only considers bottom level or only
top level cannot guarantee optimal solutions”. Even though tests carried out
on a variety of scheduling algorithms show that the best competitor among
them is the DSC algorithm [103], and DSC is a policy that uses the critical
path for computing dynamic priorities based on both the bottom level and
the top level for each vertex, it has some limits in practice.

The key weakness of DSC for our purpose is that the number of pro-
cessors cannot be predefined; DSC yields blind clusterings, disregarding re-
source issues. Therefore, in practice, a thresholding mechanism to limit the
number of generated clusters should be introduced. When allocating new
clusters, one should verify that the number of clusters does not exceed a
predefined threshold P (Section 5.3.3). Also, zeroings should handle mem-
ory constraints, by verifying that the resulting clustering does not lead to
cluster data sizes that exceed a predefined cluster memory thresholdM (Sec-
tion 5.3.3).

Finally, DSC may generate a lot of idle slots in the created clusters. It
adds a new cluster when no zeroing is accepted without verifying the possible
existence of gaps in existing clusters. We handle this case in Section 5.3.4,
adding an efficient idle cluster slot allocation routine in the task-to-cluster
mapping process.

5.3.2 Resource Modeling

Since our extension deals with computer resources, we assume that each ver-
tex in a task DAG is labeled with an additional information, task data(τ),
which is an over-approximation of the memory space used by Task τ ; its
size is assumed to be always strictly less than M . A similar cluster data

function applies to clusters, where it represents the collective data space
used by the tasks scheduled within it. Since BDSC, as DSC, needs execu-
tion times and communication costs to be numerical constants, we discuss
in Section 6.3 how this information is computed.

Our improvement to the DSC heuristic intends to reach a tradeoff be-
tween the gained parallelism and the communication overhead between pro-
cessors, under two resource constraints: finite number of processors and
amount of memory. We track these resources in our implementation of
allocate task to cluster given in Algorithm 8; note that the aggrega-
tion function regions union is defined in Section 2.6.3.

Efficiently allocating tasks on the target architecture requires reducing
the communication overhead and transfer cost for both shared and dis-
tributed memory architectures. If zeroing operations, that reduce the start
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ALGORITHM 8: Task allocation of Task τ in Graph G to Cluster κ, with re-

source management

procedure allocate_task_to_cluster(τ , κ, G)

cluster(τ ) = κ;
cluster_time(κ) = max(cluster_time(κ), tlevel(τ , G)) +

task_time(τ );
cluster_data(κ) = regions_union(cluster_data(κ),

task_data(τ ));
end

time of each task and nullify the corresponding edge cost, are obviously
meaningful for distributed memory systems, they are also worthwhile on
shared memory architectures. Merging two tasks in the same cluster keeps
the data in the local memory, and even possibly cache, of each thread and
avoids their copying over the shared memory bus. Therefore, transmission
costs are decreased and bus contention is reduced.

5.3.3 Resource Constraint Warranty

Resource usage affects the performance of running programs. Thus, par-
allelization algorithms should try to limit the size of the memory used by
tasks. BDSC introduces a new heuristic to control the amount of memory
used by a cluster, via the user-defined memory upper bound parameter M.
The limitation of the memory size of tasks is important when (1) executing
large applications that operate on large amount of data, (2) M represents
the processor local1 (or cache) memory size, since, if the memory limitation
is not respected, transfer between the global and local memories may oc-
cur during execution and may result in performance degradation, and (3)
targeting embedded systems architecture. For each task τ , BDSC uses an
over-approximation of the amount of data that τ allocates to perform read
and write operations; it is used to check that the memory constraint of
Cluster κ is satisfied whenever τ is included in κ. Algorithm 9 implements
this memory constraint warranty (MCW); regions union and data size

are functions that respectively merge data and yield the size (in bytes) of
data (see Section 6.3 in the next chapter).

The previous line of reasoning is well adapted to a distributed memory
architecture. When dealing with a multicore equipped with a purely shared
memory, such per-cluster memory constraint is less meaningful. We can
nonetheless keep the MCW constraint check within the BDSC algorithm
even in this case, if we set M to the size of the global shared memory. A
positive by-product of this design choice is that BDSC is able, in the shared

1We handle one level of the memory hierarchy of the processors.
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ALGORITHM 9: Resource constraint warranties, on memory size M and pro-

cessor number P

function MCW(τ , κ, M)

merged = regions_union(cluster_data(κ), task_data(τ ));
return data_size(merged) ≤ M;

end

function PCW(clusters , P)

return |clusters| < P;

end

memory case, to reject computations that need more memory space than
available, even within a single cluster.

Another scarce resource is the number of processors. In the original
policy of DSC, when no zeroing for τ is accepted, i.e. that would decrease
its start time, τ is allocated to a new cluster. In order to limit the number
of created clusters, we propose to introduce a user-defined cluster threshold
P . This processor constraint warranty PCW is defined in Algorithm 9.

5.3.4 Efficient Task-to-Cluster Mapping

In the original policy of DSC, when no zeroings are accepted because none
would decrease the start time of Vertex τ or DSRW failed, τ is allocated to a
new cluster. This cluster creation is not necessary when idle slots are present
at the end of other clusters; thus, we suggest to select instead one of these
idle slots, if this cluster can decrease the start time of τ , without affecting the
scheduling of the successors of the vertices already scheduled in this cluster.
To ensure this, these successors must have already been scheduled or they
must be a subset of the successors of τ . Therefore, in order to efficiently
use clusters and not introduce additional clusters without needing it, we
propose to schedule τ to this cluster that verifies this optimizing constraint,
if no zeroing is accepted.

This extension of DSC we introduce in BDSC amounts thus to re-
placing each assignment of the cluster of τ to a new cluster by a call
to end idle clusters. The end idle clusters function given in Algo-
rithm 10 returns, among the idle clusters, the ones that finished the most
recently before τ ’s top level or the empty set, if none is found. This assumes,
of course, that τ ’s dependencies are compatible with this choice.

To illustrate the importance of this heuristic, suppose we have the DAG
presented in Figure 5.3. The tables in Figure 5.4 exhibit the difference in
scheduling obtained by DSC and our extension on this graph. We observe
here that the number of clusters generated using DSC is 3, with 5 idle
slots, while BDSC needs only 2 clusters, with 2 idle slots. Moreover, BDSC
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ALGORITHM 10: Efficiently mapping Task τ in Graph G to clusters, if possible

function end_idle_clusters(τ , G, clusters)

idle_clusters = clusters;

foreach κ ∈ clusters

if(cluster_time(κ) ≤ tlevel(τ , G)) then

end_idle_p = TRUE;

foreach τκ ∈ vertices(G) where cluster(τκ) = κ
foreach τs ∈ successors(τκ, G)

end_idle_p ∧= cluster(τs) �= cluster_undefined ∨
τs ∈ successors(τ , G);

if(¬end_idle_p) then

idle_clusters = idle_clusters -{κ};
last_clusters = argmaxκ∈idle clusters cluster_time(κ);
return (idle_clusters != ∅) ? last_clusters : ∅;

end

achieves a better load balancing than DSC, since it reduces the variance of
the clusters’ execution loads, defined, for a given cluster, as the sum of the
costs of all its tasks Xκ =

�

τ∈κ task time(τ). Indeed, we compute first the
average of costs

E[Xκ] =

|clusters�1
�

κ=0

Xκ

|clusters|

and then the variance

V (Xκ) =

�|clusters�1
κ=0 (Xκ − E[Xκ])

2

|clusters|
.

For BDSC, E(Xκ) = 15
2 = 7.5 and V (Xκ) = (7−7.5)2+(8−7.5)2

2 = 0.25. For

DSC, E(Xκ) =
15
3 = 5 and V (Xκ) =

(5−5)2+(8−5)2+(2−5)2

3 = 6.

Finally, with our efficient task-to-cluster mapping, in addition to decreas-
ing the number of generated clusters, we gain also in the total execution time
since our approach reduces communication costs by allocating tasks to the
same cluster, e.g., by eliminating edge cost(τ5, τ6) = 2 in Figure 5.4; thus,
as shown in this figure (the last column accumulates the execution time for
the clusters), the execution time with DSC is 14, but is 13 with BDSC.

To get a feeling for the way BDSC operates, we detail the steps taken
to get this better scheduling in the table of Figure 5.3. BDSC is equivalent
to DSC until Step 5, where κ0 is chosen by our cluster mapping heuristic,
since successors(τ3, G) ⊂ successors(τ5, G); no new cluster needs to be
allocated.
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τ1
1

τ2
5

τ3
2

τ4
3

τ5
2

τ6
2

1

1

1 1

1

9

2

step task tlevel blevel DS scheduled tlevel
κ0 κ1

1 τ1 0 15 15 0*
2 τ3 2 13 15 1*
3 τ2 2 12 14 3 2*
4 τ4 8 6 14 7*
5 τ5 8 6 14 8* 10
6 τ6 13 2 15 11* 12

Figure 5.3: A DAG amenable to cluster minimization (left) and its BDSC
step-by-step scheduling (right)

κ0 κ1 κ2 cumulative time

τ1 1
τ3 τ2 7

τ4 τ5 10
τ6 14

κ0 κ1 cumulative time

τ1 1
τ3 τ2 7
τ5 τ4 10
τ6 13

Figure 5.4: DSC (left) and BDSC (right) cluster allocation

5.3.5 The BDSC Algorithm

BDSC extends the list scheduling template DSC provided in Algorithm 4 by
taking into account the various extensions discussed above. In a nutshell, the
BDSC select cluster function, which decides in which cluster κ a task τ
should be allocated, tries successively the four following strategies:

1. choose κ among the clusters of τ ’s predecessors that decrease the start
time of τ , under MCW and DSRW constraints;

2. or, assign κ using our efficient task-to-cluster mapping strategy, under
the additional constraint MCW;

3. or, create a new cluster if the PCW constraint is satisfied;

4. otherwise, choose the cluster among all clusters in MCW clusters min

under the constraint MCW. Note that, in this worst case scenario, the
top level of τ can be increased, leading to a decrease in performance
since the length of the graph critical path is also increased.

BDSC is described in Algorithms 11 and 12; the entry graph Gu is the
whole unscheduled program DAG, P , the maximum number of processors,
and M , the maximum amount of memory available in a cluster. UT de-
notes the set of unexamined tasks at each BDSC iteration, RL, the set of
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ready tasks and URL, the set of unready ones. We schedule the vertices of G
according to the four rules above in a descending order of the vertices’ prior-
ities. Each time a task τr has been scheduled, all the newly readied vertices
are added to the set RL (ready list) by the update ready set function.

ALGORITHM 11: BDSC scheduling Graph Gu, under processor and memory

bounds P and M

function BDSC(Gu, P, M)

if (P ≤ 0) then

return error(�Not enough processors �, Gu) ;

G = graph_copy(Gu);

foreach τi ∈ vertices(G)

priority(τi) = tlevel(τi, G) + blevel(τj , G);

UT = vertices(G);

RL = {τ ∈ UT / predecessors(τ , G) = ∅};
URL = UT - RL;

clusters = ∅;
while UT �= ∅

τr = select_task_with_highest_priority(RL);

(τm, min_tlevel) = tlevel_decrease(τr, G);

if (τm �= τr ∧ MCW(τr, cluster(τm), M)) then

τu = select_task_with_highest_priority(URL);

if (priority(τr) < priority(τu)) then

if (¬DSRW(τr, τu, clusters , G)) then

if (PCW(clusters , P)) then

κ = new_cluster(clusters );

allocate_task_to_cluster(τr, κ, G);

else

if (¬find_cluster(τr, G, clusters , P, M)) then

return error(�Not enough memory �, Gu);

else

allocate_task_to_cluster(τr, cluster(τm), G);

edge_cost(τm, τr) = 0;

else if (¬find_cluster(τr, G, clusters , P, M)) then

return error(�Not enough memory �, Gu);

update_priority_values(G);

UT = UT -{τr};
RL = update_ready_set(RL , τr, G);

URL = UT -RL;

clusters(G) = clusters;

return G;

end

BDSC returns a scheduled graph, i.e., an updated graph where some ze-
roings may have been performed and for which the clusters function yields
the clusters needed by the given schedule; this schedule includes, beside the
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ALGORITHM 12: Attempt to allocate κ in clusters for Task τ in Graph G,

under processor and memory bounds P and M, returning true if successful

function find_cluster(τ , G, clusters , P, M)

MCW_idle_clusters =

{κ ∈ end_idle_clusters(τ , G, clusters , P) /

MCW(τ , κ, M)};

if (MCW_idle_clusters �= ∅) then

κ = choose_any(MCW_idle_clusters );

allocate_task_to_cluster(τ , κ, G);

else if (PCW(clusters , P)) then

allocate_task_to_cluster(τ , new_cluster(clusters), G);

else

MCW_clusters = {κ ∈ clusters / MCW(τ , κ, M)};

MCW_clusters_min = argminκ ∈ MCW clusters cluster_time(κ);
if (MCW_clusters_min �= ∅) then

κ = choose_any(MCW_clusters_min );

allocate_task_to_cluster(τ , κ, G);

else

return false;

return true;

end

function error(m, G)

clusters(G) = ∅;
return G;

end

new graph, the cluster allocation function on tasks, cluster. If not enough
memory is available, BDSC returns the original graph, and signals its failure
by setting clusters to the empty set. In Chapter 6, we introduce an alter-
native solution in case of failure using an iterative, hierarchical scheduling
approach.

We suggest to apply here an additional heuristic, in which, if multiple
vertices have the same priority, the vertex with the greatest bottom level is
chosen for τr (likewise for τu) to be scheduled first to favor the successors
that have the longest path from τr to the exit vertex. Also, an optimization
could be performed when calling update priority values(G); indeed, after
each cluster allocation, only the top levels of the successors of τr need to be
recomputed instead of those of the whole graph.

Theorem 1. The time complexity of Algorithm 11 (BDSC) is O(n3), n
being the number of vertices in Graph G.

Proof. In the “while” loop of BDSC, the most expensive computation
among different if or else branches is the function end idle cluster used
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in find cluster that locates an existing cluster suitable to allocate there
Task τ ; such reuse intends to optimize the use of the limited of processors.
Its complexity is proportional to

�

τ∈vertices(G)

|successors(τ,G)|,

which is of worst case complexity O(n2). Thus the total cost for n iterations
of the “while” loop is O(n3).

Even though BDSC’s worst case complexity is larger than DSC’s, which
is O(n2log(n)) [111], it remains polynomial, with a small exponent. Our
experiments (see Chapter 8) showed that theoretical slowdown not to be a
significant factor in practice.

5.4 Related Work: Scheduling Algorithms

In this section, we survey the main existing scheduling algorithms; we com-
pare them to BDSC. Given the breadth of the literature on this subject,
we limit this presentation to heuristics that implement static scheduling of
task DAGs. Static scheduling algorithms can be divided into three principal
classes: guided random, metaheuristic and heuristic techniques.

Guided randomization and metaheuristic techniques use possibly ran-
dom choices with guiding information gained from previous search results
to construct new possible solutions. Genetic algorithms are examples of
these techniques; they proceed by performing a global search, working in
parallel on a population to increase the chance to achieve a global optimum.
The Genetic Algorithm for Task Scheduling (GATS 1.0) [39] is an example
of GAs. Overall, these techniques usually take a larger than necessary time
to find a good solution [74].

Cuckoo Search (CS) [112] is an example of the metaheuristic class. CS
combines the behavior of cuckoo species (throwing their eggs in the nests of
other birds) with the Lévy flight [28]. In metaheuristics, finding an initial
population and deciding when a solution is good are problems that affect
the quality of the solution and the complexity of the algorithm.

The third class is heuristics, including mostly list-scheduling-based al-
gorithms (see Section 2.5.2). We first compare BDSC with six scheduling
algorithms for a bounded number of clusters, namely HLFET, ISH, MCP,
HEFT, CEFT and ELT. Then, we compare BDSC with four scheduling
algorithms or techniques that regroup clusters on physical processors, i.e.,
LPGS, LSGP, Triplet and PYRROS.

5.4.1 Bounded Number of Clusters

The Highest Level First with Estimated Times (HLFET) [10] and Inser-
tion Scheduling Heuristic (ISH) [71] algorithms use static blevels for order-
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ing; scheduling is performed according to a descending order of blevels. To
schedule a task, they select the cluster that offers the earliest execution time,
using a non-insertion approach, i.e., not taking into account idle slots within
existing clusters to insert that task. If scheduling a given task introduces an
idle slot, ISH adds the possibility of inserting from the ready list tasks that
can be scheduled to this idle slot. Since, in both algorithms, only blevels are
used for scheduling purposes, optimal schedules for fork/join graphs cannot
be guaranteed.

The Modified Critical Path (MCP) algorithm [109] uses the latest start
times, i.e., the critical path length minus blevel, as task priorities. It con-
structs a list of tasks in an ascending order of latest start times, and searches
for the cluster yielding the earliest execution using the insertion approach.
As before, it cannot guarantee optimal schedules for fork/join structures.

The Heterogeneous Earliest-Finish-Time (HEFT) algorithm [107] selects
the cluster that minimizes the earliest finish time using the insertion ap-
proach. The priority of a task, its upward rank, is the task blevel. Since
this algorithm is based on blevels only, it cannot guarantee optimal schedules
for fork/join structures.

The Constrained Earliest Finish Time (CEFT) [69] algorithm schedules
tasks on heterogeneous systems. It uses the concept of constrained critical
paths (CCPs) that represent the tasks ready at each step of the scheduling
process. CEFT schedules the tasks in the CCPs using the finish time in the
entire CCP. The fact that CEFT schedules critical path tasks first cannot
guarantee optimal schedules for fork and join structures even if sufficient
processors are provided.

Contrarily to the five proposals above, BDSC preserves, when no re-
source constraints exist, the DSC characteristics of optimal scheduling for
fork/join structures, since it uses the critical path length for computing
dynamic priorities, based on blevels and tlevels. HLFET, ISH and MCP
guarantee that the current critical path will not increase, but they do not
attempt to decrease the critical path length; BDSC decreases the length
of each task DS and starts with a ready node to simplify the computation
time of new priorities. When resource scarcity is a factor, BDSC introduces
a simple, two-step heuristics for task allocation: to schedule tasks, it first
searches for possible idle slots in already existing clusters and, otherwise,
picks a cluster with enough memory. Our experiments suggest that such an
approach provides good schedules.

Extended Latency Time (ELT) algorithm [104] assigns tasks to a parallel
machine with shared memory. It uses the attribute of synchronization time
instead of communication time because this does not exist in a machine
with shared memory. BDSC targets both shared and distributed memory
systems.

Kwork and Ahmad [73] have implemented and compared 15 schedul-
ing algorithms. They found that, among the critical-path-based algorithms,
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dynamic-list algorithms such as DSC perform better than static-list ones.
The insertion technique, which puts tasks within idle slots, improves schedul-
ing. DSC does not implement this technique, while, thanks to our efficient
task-to-cluster mapping strategy, which uses an insertion technique, BDSC
yields better performance.

5.4.2 Cluster Regrouping on Physical Processors

The Locally Parallel-Globally Sequential (LPGS) [81] and Locally Sequential-
Globally Parallel (LSGP) [60] algorithms are two techniques that, from a
schedule for an unbounded number of clusters, remap the solutions to a
bounded number of clusters. In LSGP, clusters are partitioned into blocks,
each block being assigned to one cluster (locally sequential). The blocks
are handled separately by different clusters, which can be run in parallel
(globally parallel). LPGS links each original one-block cluster to one proces-
sor (locally parallel); blocks are executed sequentially (globally sequential).
BDSC computes a bounded schedule on the fly and covers many more other
possibilities of scheduling than LPGS and LSGP.

Triplet [32] is a clustering algorithm for heterogeneous architectures. It
proceeds, first, by clustering tasks while assuming an unbounded number of
clusters and, then, a second clustering of these first clusters is performed
to merge them on actual processors. Here, the sorting of tasks is based on
tlevel estimates only, contrarily to BDSC, which uses better information.

PYRROS [110] is also based on a two-step method for scheduling. The
first step assumes an unbounded number of clusters and uses the DSC al-
gorithm. Then, in the second step, an other clustering, on P processors, is
performed, using cluster merging. This mapping sorts the clusters in the
ascending order of their loads and then maps each cluster to a processor in
such a way that all processors are as well balanced as possible. An another
mapping is also used in order to minimize the communication costs between
the P processors, using a pairwise interchange and task reordering heuristic.
Note that, in this method, each step may change the decisions taken in the
precedent step. For example, the ordering of tasks performed using DSC is
modified during the second step. Also, in this second step, load balancing
may be lost when performing the communication reduction heuristic.

The main difference between BDSC and the techniques that remap clus-
ters on physical processors is that BDSC computes, by design, a bounded
schedule. This is efficient in term of algorithmic complexity. Moreover, com-
munication minimization is done once, while load balancing is ensured by
our efficient task-to-cluster mapping heuristic. BDSC handles completion
time and communication cost minimization and load balancing as parts of
a single process. Finally, BDSC is also the only scheduling algorithm that
takes into account the memory parameter, ignored in all the works surveyed
here.
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Note that all these works do not explain how information about costs
of communication or execution times of tasks is obtained; they also do not
address the construction of the DAG. Our paper provides a much broader
picture, from analyzing sequential codes up to the generation of scheduled
task graphs.

5.5 Conclusion

This chapter presents the memory-constrained, number of processor-bounded,
list-scheduling heuristic BDSC, which extends the DSC (Dominant Sequence
Clustering) algorithm. This extension improves upon DSC by dealing with
memory- and number-of-processors-constrained parallel architectures, and
introducing an efficient task-to-cluster mapping strategy.

This chapter leaves pending many questions about the practical use of
BDSC and how to estimate the execution times and communication costs as
numerical constants. The next chapter answers these questions and others
by showing (1) the practical use of BDSC within a hierarchical scheduling
algorithm called HBDSC for parallelizing scientific applications, and (2) how
BDSC will benefit from a sophisticated execution and communication cost
model, based on either static code analysis results provided by a compiler
infrastructure such as PIPS or a dynamic-based instrumentation assessment
tool.





Chapter 6

BDSC-Based Hierarchical
Task Parallelization

All sciences are now under the obligation to prepare the ground for the future

task of the philosopher, which is to solve the problem of value, to determine

the true hierarchy of values. Friedrich Nietzsche

To make a recapitulation of what we presented so far in the previous chap-
ters, recall we have handled two key issues in our automatic task paralleliza-
tion process, namely (1) the design of SPIRE to provide parallel program
representations and (2) the introduction of the BDSC list-scheduling heuris-
tic for mapping DAGs in the presence of resource constraints on the number
of processors and their local memory size. In order to reach our goal of
automatically task parallelizing sequential codes, we develop in this chapter
an approach based on BDSC that, first, maps this code into a DAG, then,
generates a cost model to label edges and vertices of this DAG and, finally,
applies BDSC on sequential applications.

Therefore, this chapter introduces a new BDSC-based hierarchical schedul-
ing algorithm that we call HBDSC. It introduces a new DAG data structure,
called the Sequence Dependence DAG (SDG), to represent partitioned par-
allel programs. Moreover, in order to label this SDG vertices and edges,
HBDSC uses a new cost model based on time complexity measures, convex
polyhedral approximations of data array sizes and code instrumentation.

Pour récapituler ce que nous avons présenté jusqu’ici dans les chapitres
précédents, rappelons que nous avons traité deux questions clés de notre pro-
cessus de parallélisation automatique de tâches, à savoir (1) la conception
de SPIRE pour fournir des représentations de programmes parallèles et (2)
l’introduction de l’heuristique d’ordonnancement par listes BDSC pour as-
socier DAGs et processeurs en présence de contraintes de ressources sur le
nombre de processeurs et la taille de leur mémoire locale. Afin d’atteindre
notre objectif de paralléliser automatiquement des codes séquentiels, nous
développons dans ce chapitre une approche fondée sur BDSC qui, tout d’abord,
représente ce code sous forme de DAG, ensuite, génère un modèle de coût
pour pondérer les sommets et arêtes de ce DAG et, enfin, applique BDSC
sur les applications séquentielles.

En pratique, ce chapitre introduit un nouvel algorithme d’ordonnance-
ment hiérarchique fondé sur BDSC, que nous appelons HBDSC. Il introduit
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une nouvelle structure de données de DAG, appelée SDG (Sequence Depen-
dence DAG), pour représenter les programmes parallèles partitionnés. En
outre, afin de pondérer les sommets et arêtes du SDG, HBDSC utilise un
nouveau modèle de coût fondé sur des mesures de complexité en temps, des
approximations polyédriques convexes de la taille des tableaux de données et
de l’instrumentation de code.

6.1 Introduction

If static scheduling algorithms are key issues in sequential program paral-
lelization, they need to be properly integrated into compilation platforms
to be used in practice. These platforms are in particular expected to pro-
vide the data required for scheduling purposes. However, gathering such
information is a difficult problem in general, in particular in our case where
tasks are automatically generated from program code. Therefore, in addi-
tion to BDSC, this chapter introduces also new static program analyses to
gather the information required to perform scheduling under resource con-
straints, namely a static execution and communication cost model, a data
dependence graph to provide scheduling constraints and static information
regarding the volume of data exchanged between program tasks.

In this chapter, we detail how BDSC can be used, in practice, to schedule
applications. We show (1) how to build from an existing program source
code what we call a Sequence Dependence DAG (SDG), which plays the role
of DAG G used in Chapter 5, (2) how to generate the numerical costs of
vertices and edges in SDGs, and (3) how to perform what we call Hierar-
chical Scheduling (HBDSC) for SDGs to generate parallel code encoded in
SPIRE(PIPS IR). We use PIPS to illustrate how these new techniques can
be implemented in an optimizing compilation platform.

PIPS represents user code as abstract syntax trees (see Section 2.6.5).
We define a subset of its grammar in Figure 6.1, limited to the statements
S at stake in this chapter. Econd, Elower and Eupper are expressions, while I

is an identifier. The semantics of these constructs is straightforward. Note
that, in PIPS, assignments are seen as function calls, where left hand sides
are parameters passed by reference. We use the notion of unstructured

with an execution attribute equal to parallel (defined in Chapter 4) to
represent parallel code.

The remainder of this chapter is structured as follows. Section 6.2 in-
troduces the partitioning of source codes into Sequence Dependence DAGs
(SDG). Section 6.3 presents our cost models for the labeling of vertices and
edges of SDGs. We introduce in Section 6.4 an important analysis, the
path transformer, that we use within our cost models. A new BDSC-based
hierarchical scheduling algorithm (HBDSC) is introduced in Section 6.5.
Section 6.6 compares the main existing parallelization platforms with our
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S ∈ Statement ::= sequence(S1;....;Sn) |

test(Econd,St,Sf ) |

forloop(I, Elower, Eupper, Sbody) |

call |

unstructured(Centry, Cexit, parallel)

C ∈ Control ::= control(S, Lsucc, Lpred)

L ∈ Control*

Figure 6.1: Abstract syntax trees Statement syntax

BDSC-based hierarchical parallelization approach. Finally Section 6.7 con-
cludes the chapter. Figure 6.2 summarizes the processes of parallelization
applied in this chapter.

6.2 Hierarchical Sequence Dependence DAGMap-
ping

In order to partition into tasks real applications, which include loops, tests
and other structured constructs1, into dependence DAGs, our approach is
to first build a Sequence Dependence DAG (SDG) which will be the input
for the BDSC algorithm. Then, we use the code presented in form of an
AST to define a hierarchical mapping function, that we call H, to map each
sequence statement of the code to its SDG. H is used for the input of the
HBDSC algorithm. We present in this section what SDGs are and how an
H is built upon them.

6.2.1 Sequence Dependence DAG (SDG)

A Sequence Dependence DAG G is a data dependence DAG where task
vertices τ are labeled with statements, while control dependences are en-
coded in the abstract syntax trees of statements. Any statement S can
label a DAG vertex, i.e. each vertex τ contains a statement S, which corre-
sponds to the code it runs when scheduled. We assume that there exist two
functions vertex statement and statement vertex such that, on their re-
spective domains of definition, they satisfy S = vertex statement(τ) and
statement vertex(S,G) = τ . In contrast to the usual program depen-
dence graph defined in [45], an SDG is thus not built only on simple in-
structions, represented here as call statements; compound statements such

1In this thesis, we only handle structured parts of a code, i.e., the ones that do not
contain goto statements. Therefore, within this context, PIPS implements control depen-
dences in its IR since it is equivalent to an AST (for structured programs, CDG and AST
are equivalent).
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Figure 6.2: Parallelization process: blue indicates thesis contributions; an
ellipse, a process; and a rectangle, results
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as test statements (both true and false branches) and loop nests may con-
stitute indivisible vertices of the SDG.

Design Analysis

For a statement S, one computes its sequence dependence DAG G using a
recursive descent (depth-first traversal) along the structure of S, creating a
vertex for each statement in a sequence and building loop body, true branch
and false branch statements as recursively nested graphs. Definition 1 spec-
ifies this relation of hierarchical nesting between statements, which we call
“enclosed”.

Definition 1. A statement S2 is enclosed into the statement S1, noted
S2 ⊂ S1, if and only if either:

1. S2 = S1, i.e. S1 and S2 have the same lexicographical order position
within the whole AST to which they belong; this ordering of state-
ments based on their statement number render statements textually
comparable;

2. or S1 is a loop, S�
2 its body statement and S2 ⊂ S�

2;

3. or S1 is a test, S�
2 its true or false branch and S2 ⊂ S�

2;

4. or S1 is a sequence and there exists S�
2, one of the statements in this

sequence, such that S2 ⊂ S�
2.

This relation can also be applied to the vertices τi of these statements
Si in a graph such that vertex statement(τi) = Si; we note S2 ⊂ S1

⇐⇒ τ2 ⊂ τ1

In Definition 2, we provide a functional specification of the construction
of a Sequence Dependence DAG G where the vertices are compound state-
ments and thus under the enclosed relation. To create connections within
this set of vertices, we keep an edge between two vertices if the possibly
compound statements in the vertices are data dependent using the recursive
function prune; we rely on static analyses such as the one provided in PIPS
to get this data dependence information in the form of a data dependence
graph that we call D in the definition.

Definition 2. Given a data dependence graph D = (T,E)2 and a sequence
of statements S = sequence(S1;S2; ...;Sm), its SDG isG = (N, prune(A), 0m2),
where:

2T = vertices(D) is a set of n tasks (vertices) τ and E is a set of m edges (τi, τj)
between two tasks.
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• N = {n1, n2, ..., nm}, where nj = statement vertex(Sj , G), ∀j ∈
{1, ...,m}

• A = {(ni, nj)/∃(τ, τ
�) ∈ E, τ ⊂ ni and τ � ⊂ nj}

• prune(A�∪{(n, n�)}) =







prune(A�) if ∃(n0, n
�
0) ∈ A�,

(n0 ⊂ n and n�
0 ⊂ n�)

prune(A�) ∪ {(n, n�)} otherwise

• prune(∅) = ∅

• 0m2 is a m×m communication edge cost matrix, initially equal to the
zero matrix.

Note that G is a quotient graph of D; moreover, we assume that D does
not contain inter iteration dependencies.

Construction Algorithm

Algorithm 13 specifies the construction of the sequence dependence DAG
G of a statement that is a sequence of S1,S2,... and Sn substatements. G
initially is an empty graph, i.e., its sets of vertices and edges are empty, and
its communication matrix is the zero matrix.

ALGORITHM 13: Construction of the sequence dependence DAG G from a

statement S = sequence(S1;S2;.....;Sm)

function SDG(sequence(S1;S2;.....;Sm))

G = (∅,∅,0m2 );

D = DDG(sequence(S1;S2;.....;Sm));

foreach Si ∈ {S1,S2 ,.....,Sm}

τi = statement_vertex(Si,D);

add_vertex(τi, G);

foreach Se / Se ⊂ Si

τe = statement_vertex(Se,D);

foreach τj ∈ successors(τe, D)

Sj = vertex_statement(τj );
if (∃ k ∈ [1,m] / Sj ⊂ Sk) then

τk = statement_vertex(Sk,D);

edge_regions(τi,τk) ∪= edge_regions(τe,τj );
if(¬∃ (τi,τk) ∈ edges(G))

add_edge ((τi,τk), G);

return G;

end

From the data dependence graph D, provided via the function DDG that
we suppose given, Function SDG(S) adds vertices and edges to G, according
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to Definition 2, using the functions add vertex and add edge. First, we
group dependences between compound statements Si, to form cumulated
dependences, using dependences between their enclosed statements Se; this
yields the successors τj . Then, we search for another compound statement
Sk to form the second side of the dependence τk, the first being τi. We keep
then the dependences that label the edges of D using edge regions of the
new edge. Finally, we add dependence edge (τi,τk) to G.

Figure 6.4 illustrates the construction, from the DDG given in Figure 6.3
(right, meaning of colors given in Section 2.4.2), the SDG of the C code
(left). The figure contains two SDGs corresponding to the two sequences in
the code; the body S0 of the first loop (in blue) has also an SDG G0. Note
how the dependences between the two loops have been deduced from the
dependences of their enclosed statements (their loop bodies). These SDGs
and their printouts have been generated automatically with PIPS3.

void main()

{

int a[10], b[10];

int i,d,c;

//S

{

c=42;

for(i=1;i <=10;i++){

a[i] = 0;

}

for(i=1;i <=10;i++){

//S0

a[i] = bar(a[i]);

d = foo(c);

b[i] = a[i]+d;

}

}

return;

}

Figure 6.3: Example of a C code (left) and the DDG D of its internal S
sequence (right)

3We assume that declarations and codes are not mixed.
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Figure 6.4: SDGs of S (top) and S0 (bottom) computed from the DDG (see
the right of Figure 6.3); S and S0 are specified in the left of Figure 6.3

6.2.2 Hierarchical SDG Mapping

A hierarchical SDG mapping function H maps each statement S to an SDG
G = H(S) if S is a sequence statement; otherwise G is equal to ⊥.

Proposition 1. ∀τ ∈ vertices(H(S�)), vertex statement(τ) ⊂ S�

Our introduction of SDG and its hierarchical mapping to different state-
ments via H is motivated by the following observations, which also support
our design decisions:

1. The true and false statements of a test are control dependent upon
the condition of the test statement, while every statement within a
loop (i.e., statements of its body) is control dependent upon the loop
statement header. If we define a control area as a set of statements
transitively linked by the control dependence relation, our SDG con-
struction process insures that the control area of the statement of a
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given vertex is in the vertex. This way, we keep all the control depen-
dences of a task in our SDG within itself.

2. We decided to consider test statements as single vertices in the SDG to
ensure that they are scheduled on one cluster4, which guarantees the
execution of the enclosed code (true or false statements), whichever
branch is taken, on this cluster.

3. We do not group successive simple call instructions into a single “basic
block” vertex in the SDG in order to let BDSC fuse the corresponding
statements so as to maximize parallelism and minimize communica-
tions. Note that PIPS performs interprocedural analyses, which will
allow call sequences to be efficiently scheduled whether these calls rep-
resent trivial assignments or complex function calls.

In Algorithm 13, Function SDG yields the sequence dependence DAG of
a sequence statement S. We use it in Function SDG mapping presented in
Algorithm 14 to update the mapping function H for statements S that can
be a sequence or a non-sequence; the goal is to build a hierarchy between
these SDGs via the recursive call H = SDG mapping(S,⊥).

ALGORITHM 14: Recursive mapping of an SDG G to each sequence statement

S via the function H

function SDG_mapping(S, H)

switch (S)

case call:

return H[S → ⊥];

case sequence(S1;...;Sn):

foreach Si ∈ {S1 ,...,Sn}

H = SDG_mapping(Si, H);

return H[S → SDG(S)];

case forloop(I, Elower, Eupper, Sbody):

H = SDG_mapping(Sbody, H);

return H[S → ⊥];

case test(Econd, St, Sf ):

H = SDG_mapping(St, H);

H = SDG_mapping(Sf , H);

return H[S → ⊥];

end

Figure 6.5 shows the construction of H where S is the last part of the
equake code excerpt given in Figure 6.7: note how the body Sbody of the
last loop is also an SDG Gbody. Note that H(Sbody) = Gbody and H(S) =
G. These SDGs have been generated automatically with PIPS; we use the
Graphviz tool for pretty printing [51].

4A cluster is a logical entity which will correspond to one process or thread.
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Figure 6.5: SDG G, for a part of equake S given in Figure 6.7; Gbody is the
SDG of the body Sbody (logically included into G via H)

6.3 Sequential Cost Models Generation

Since the volume of data used or exchanged by SDG tasks and their exe-
cution times are key factors in the BDSC scheduling process, we need to
assess this information as precisely as possible. PIPS provides an intra-
and inter-procedural analysis of array data flow called array regions anal-
ysis (see Section 2.6.3) that computes dependences for each array element
access. For each statement S, two types of set of regions are considered:
read regions(S) and write regions(S)5 contain the array elements re-
spectively read and written by S. Moreover, in PIPS, array region analysis
is not limited to array variables but is extended to scalar variables which
can be considered as arrays with no dimensions [35].

6.3.1 From Convex Polyhedra to Ehrhart Polynomials

Our analysis uses the following set of operations on sets of regions Ri

of Statement Si presented in Section 2.6.3: regions intersection and
regions union. Note that regions must be defined with respect to a com-
mon memory store for these operations to be properly defined. Two sets of

5in regions(S) and out regions(S) are not suitable to be used for our context unless,
after each statement schedule, in regions and out regions are recomputed. That is why,
we use read regions and write regions that are independent of the schedule.
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regions R1 and R2 should be defined in the same memory store to make it
possible to compare them; we should bring a set of regions R1 to the store of
R2 by combining R2 with the possible store changes introduced in between,
what we call “path transformer” that connects the two memory stores. We
introduce the path transformer analysis in Section 6.4.

Since we are interested in the size of array regions to precisely assess
communication costs and memory requirements, we compute Ehrhart poly-
nomials [42], which represent the number of integer points contained in a
given parameterized polyhedron, from this region. To manipulate these
polynomials, we use various operations using the Ehrhart API provided by
the polylib library [92].

Communication: Edge Cost

To assess the communication cost between two SDG vertices, τ1 as source
and τ2 as sink vertices, we rely on the number of bytes involved in depen-
dences of type “read after write” (RAW) data, using the read and write
regions as follows:

Rw1 = write regions(vertex statement(τ1))
Rr2 = read regions(vertex statement(τ2))
edge cost bytes(τ1, τ2) =

�

r∈regions intersection(Rw1,Rr2)
ehrhart(r)

For example, the array dependences between the two statements S1 =
MultiplY(Ixx,Gx,Gx) and S2 = Gauss(Sxx, Ixx), in the code of Harris
presented in Figure 1.1, is Ixx of size N ×M , where the N and M variables
represent the input image size. Therefore, S1 should communicate the array
Ixx to S2 when completed. We look for the array elements that are accessed
in both statements (written in S1 and read in S2); we obtain the following
two sets of regions Rw1 and Rr2 information:

Rw1 = {< Ixx(φ1)−W − EXACT−{1 ≤ φ1, φ1 ≤ N ×M} >}
Rr2 = {< Ixx(φ1)−R− EXACT− {1 ≤ φ1, φ1 ≤ N ×M} >}

The result of the intersection between these two sets of regions is as follows:

Rw1 ∩Rr2 =
{< Ixx(φ1)−WR− EXACT− {1 ≤ φ1, φ1 ≤ N ×M} >}

The sum of the Ehrhart polynomials resulting from the set Rw1 ∩ Rr2 of
regions that yields the volume of this set of regions, representing the number
of its elements in bytes, is as follows, where 4 is the number of bytes in a
float:

edge cost bytes(τ1, τ2) = ehrhart(< Ixx(φ1)−WR− EXACT−
{1 ≤ φ1, φ1 ≤ N ×M} >)

= 4×N ×M
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In practice, in our experiments, in order to compute the communication
time, this polynomial that represents the message size to communicate, in
number of bytes, is multiplied by a transfer time of one byte (β); it is then
added to the latency time (α). These two coefficients are dependent on the
specific target machine; we note:

edge cost(τ1, τ2)= α+ β × edge cost bytes(τ1, τ2)

The default cost model in PIPS considers that α = 0 and β = 1.
Moreover, in some cases the array region analysis cannot provide the re-
quired information. Therefore, in the case of shared memory codes, BDSC
can proceed and generate an efficient schedule without the information of
edge cost; otherwise, in the case of distributed memory codes, edge cost(τ1,
τ2) = ∞ is generated as a result for such cases. We will decide thus to sched-
ule τ1 and τ2 in the same cluster.

Local Storage: Task Data

To provide an estimation of the volume of data used by each task τ , we use
the number of bytes of data read and written by the task statement, via the
following definitions assuming that the task statement contains no internal
allocation of data:

S = vertex statement(τ)
task data(τ) = regions union(read regions(S),

write regions(S))

As above, we define data size as follows, for any set of regions R:

data size(R) =
�

r∈R ehrhart(r)

For instance, in Harris main function, task data(τ), where τ is the vertex
labeled with the call statement S1 = MultiplY(Ixx,Gx,Gx), is equal to:

R = {< Gx(φ1)−R− EXACT− {1 ≤ φ1, φ1 ≤ N ×M} >,
< Ixx(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ N ×M} >}

The size of this region is:

data size(R)= 2×N ×M

When the array region analysis cannot provide the required information,
the size of the array contained in its declaration is returned as an upper
bound of the accessed array elements for such cases.
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Execution: Task Time

In order to determine an average execution time for each vertex in the SDG,
we use a static execution time approach based on a program complexity
analysis provided by PIPS. There, each statement S is automatically labeled
with an expression, represented by a polynomial over program variables via
the complexity estimation(S) function, that denotes an estimation of the
execution time of this statement, assuming that each basic operation (addi-
tion, multiplication...) has a fixed, architecture-dependent execution time.
In practice, to perform our experiments on a specific target machine, we use
a table COMPLEXITY COST TABLE that, for each basic operation, pro-
vides a coefficient of its time execution on this machine. This sophisticated
static complexity analysis is based on inter-procedural information such as
preconditions. Using this approach, one can define task time as:

task time(τ)= complexity estimation(vertex statement(τ))

For instance, for the call statement S1 = MultiplY(Ixx,Gx,Gx) in Harris
main function, task time(τ), where τ is the vertex labeled with S1, is equal
to N ×M × 17+ 2 as detailed in Figure 6.6. Thanks to the interprocedural
analysis of PIPS, this information can be reported to the call for the function
MultiplY in the main function of Harris. Note that we use here a default
cost model where the coefficient of each basic operation is equal to 1.

void MultiplY(float M[N*M], float X[N*M], float Y[N*M])

{

//N*M*17+2

for(i = 0; i < N; i += 1)

//M*17+2

for(j = 0; j < M; j += 1)

//17

M[z(i,j)] = X[z(i,j)]*Y[z(i,j)];

}

Figure 6.6: Example of the execution time estimation for the function
MultiplY of the code Harris; each comment provides the complexity estima-
tion of the statement below (N and M are assumed to be global variables)

When this analysis cannot provide the required information: currently,
the complexity estimation of a while loop is not computed. However, our
algorithm computes a naive schedule in such cases, where we assume that
task time(τ) = ∞, but the quality (in term of efficiency) of this schedule
is not guaranteed.
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6.3.2 From Polynomials to Values

We have just seen how to represent cost, data and time information in terms
of polynomials; yet, running BDSC requires actual values. This is particu-
larly a problem when computing tlevels and blevels, since cost and time are
cumulated there. We convert cost information into time by assuming that
communication times are proportional to costs, which amounts in particular
to setting the communication latency α to zero. This assumption is vali-
dated by our experimental results, and the fact that data arrays are usually
large in the application domain we target.

Static Approach: Polynomials Approximation

When program variables used in the above-defined polynomials are numeri-
cal values, each polynomial is a constant; this happens to be the case for one
of our applications, ABF. However, when input data are unknown at compile
time (as for the Harris application), we suggest to use a very simple heuristic
to replace the polynomials by numerical constants. When all polynomials
at stake are monomials on the same base, we simply keep the coefficient
of these monomials as costs. Even though this heuristic appears naive at
first, it actually is quite useful in the Harris application: Table 6.1 shows
the complexities for time estimation and communication (the last line) costs
generated for each function of Harris using PIPS default operation and com-
munication cost model, where the N and M variables represent the input
image size.

Function Complexity and Numerical
Transfer (polynomial) estimation

InitHarris 9×N ×M 9
SobelX 60×N ×M 60
SobelY 60×N ×M 60
MultiplY 17×N ×M 17
Gauss 85×N ×M 85

CoarsitY 34×N ×M 34

One image transfer 4×N ×M 4

Table 6.1: Execution and communication time estimations for Harris using
PIPS default cost model (N and M variables represent the input image size)

In our implementation (see Section 8.3.3), we use a more precise oper-
ation and communication cost model that depends on the target machine.
It relies on a number of parameters of a given CPU such as the cost of an
addition, a multiplication, or of the communication cost of one byte for an
Intel CPU, all these in numbers of cycle units (CPI). In Section 8.3.3, we
detail these parameters for the used CPUs.
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Dynamic Approach: Instrumentation

The general case deals with polynomials that are functions of many variables,
such as the ones that occur in the SPEC2001 benchmark equake and that
depend on the variables ARCHelems or ARCHnodes and timessteps (see the
non-bold code in Figure 6.7 that shows a part of the equake code).

FILE ∗ finstrumented = fopen("instrumented equake.in", "w");
...

fprintf(finstrumented, "task time 62 = %ld\n",179 ∗ARCHelems+ 3);
for (i = 0; i < ARCHelems; i++){

for (j = 0; j < 4; j++)

cor[j] = ARCHvertex[i][j];

...

}

...

fprintf(finstrumented, "task time 163 = %ld\n",20 ∗ARCHnodes+ 3);
for(i = 0; i <= ARCHnodes -1; i += 1)

for(j = 0; j <= 2; j += 1)

disp[disptplus ][i][j] = 0.0;

fprintf(finstrumented, "edge cost 163 → 166 = %ld\n",ARCHnodes ∗ 9);
fprintf(finstrumented, "task time 166 = %ld\n",110 ∗ARCHnodes+ 106);
smvp_opt(ARCHnodes , K, ARCHmatrixcol , ARCHmatrixindex ,

disp[dispt], disp[disptplus ]);

fprintf(finstrumented, "task time 167 = %d\n",6);
time = iter*Exc.dt;

fprintf(instrumented, "task time 168 = %ld\n",510 ∗ARCHnodes+ 3);
// S

for (i = 0; i < ARCHnodes; i++)

for (j = 0; j < 3; j++){

// Sbody

disp[disptplus ][i][j] *= -Exc.dt*Exc.dt;

disp[disptplus ][i][j] +=

2.0*M[i][j]*disp[dispt ][i][j]-M[i][j] -

Exc.dt /2.0*C[i][j])* disp[disptminus ][i][j] -

Exc.dt * Exc.dt * (M23[i][j] * phi2(time) / 2.0 +

C23[i][j] * phi1(time) / 2.0 +

V23[i][j] * phi0(time) / 2.0);

disp[disptplus ][i][j] =

disp[disptplus ][i][j] / (M[i][j] + Exc.dt / 2.0 * C[i][j]);

vel[i][j] = 0.5 / Exc.dt * (disp[disptplus ][i][j] -

disp[disptminus ][i][j]);

}

fprintf(finstrumented, "task time 175 = %d\n",2);
disptminus = dispt;

fprintf(finstrumented, "task time 176 = %d\n",2);
dispt = disptplus;

fprintf(finstrumented, "task time 177 = %d\n",2);
disptplus = i;

Figure 6.7: Instrumented part of equake (Sbody is the inner loop sequence)
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In such cases, we first instrument automatically the input sequential code
and run it once in order to obtain the numerical values of the polynomials.
The instrumented code contains the initial user code plus instructions that
compute the numerical values of the cost polynomials for each statement.
BDSC is then applied, using this cost information, to yield the final parallel
program. Note that this approach is sound since BDSC ensures that the
value of a variable (and thus a polynomial) is the same, whichever schedul-
ing is used. Of course, this approach works well, as our experiments show
(see Chapter 8), when a program’s complexity and communication polyno-
mials do not change when some of its input parameters are modified (partial
evaluation). This is the case for many signal processing benchmarks, where
performance is mostly a function of structure parameters such as image
size, and is independent of the actual signal (pixel) values upon which the
program acts.

We show an example of this final case using a part of the instrumented
equake code6 in Figure 6.7. The added instrumentation instructions are
fprintf statements, the second parameter of which represents the state-
ment number of the following statement, and the third, the value of its
execution time for task time instrumentation. For edge cost instrumenta-
tion, the second parameter is the number of the incident statements of the
edge, and the third, the edge cost polynomial value. After execution of the
instrumented code, the numerical results of the polynomials are printed in
the file instrumented equake.in presented in Figure 6.8. This file is an
input for the PIPS implementation of BDSC. We parse this file in order to
extract execution and communication estimation times (in number of cy-
cles) to be used as parameters for the computation of top levels and bottom
levels necessary for the BDSC algorithm (see Chapter 5).

...

task_time 62 = 35192835

...

task_time 163 = 718743

edge_cost 163 -> 166 = 323433

task_time 166 = 3953176

task_time 167 = 6

task_time 168 = 18327873

...

task_time 175 = 2

task_time 176 = 2

task_time 177 = 2

Figure 6.8: Numerical results of the instrumented part of equake
(instrumented equake.in)

6We do not show the instrumentation on the statements inside the loops for readability
purposes.
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This section supplies BDSC scheduling algorithm that relies upon weights
on vertices (time execution and storage data) and edges (communication
cost) of its entry graph. Indeed, we exploit complexity and array region
analyses provided by PIPS to harvest all this information statically. How-
ever, since each two sets of regions should be defined in the same memory
store to make it possible comparing them, the second set of regions must be
combined with the path transformer, that we define in the next section, and
that connects the two memory stores of these two sets of regions.

6.4 Reachability Analysis: The Path Transformer

Our cost model defined in Section 6.3 uses affine relations such as convex
array regions to estimate the communications and data volumes induced by
the execution of statements. We used a set of operations on array regions
such as the function regions intersection (see Section 6.3.1). However,
this is not sufficient because regions should be combined with what we call
path transformers in order to propagate the memory stores used in them.
Indeed, regions must be defined with respect to a common memory store for
region operations to be properly performed.

A path transformer permits to compare array regions of statements orig-
inally defined in different memory stores. The path transformer between two
statements computes the possible changes performed by a piece of code de-
limited by two statements Sbegin and Send enclosed within a statement S.
A path transformer is represented by a convex polyhedron over program
variables and its computation is based on transformers (see Section 2.6.1);
thus, it is a system of linear inequalities.

Our path transformer analysis can be seen as a special case of reachabil-
ity analysis, a particular kind of graph analysis where one checks whether a
given final state can be reached from an initial one. In the domain of pro-
gramming languages, one can find practical application of this technique in
the computation, for general control-flow graphs, of the transitive closure of
the relation corresponding to statement transitions (see for instance [108]).
Since the scientific applications we target in this thesis use mostly for loops,
we propose in this section a dedicated analysis, called path transformer, that
provides, in the restricted case of for loops and tests, analytical expressions
for such transitive closures.

6.4.1 Path Definition

A “path” specifies a statement execution instance, including the mapping
of loop indices to values and specific syntactic statement of interest. A
path is defined by a pair P = (M,S) where M is a mapping function from
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Ide to Exp7 and S is a statement, specified by its syntactic path from the
top program syntax tree to the particular statement. Indeed, a particular
statement Si may correspond to a particular iteration M(i) within a set of
iterations (created by a loop of index i). Paths are used to store the values
of indices of the loops enclosing statements. Every loop on the path has its
entry in M ; indices of loops not related to it are not present.

We provide a simple program example in Figure 6.9 that shows the AST
of a code that contains a loop. We search for the path transformer between
Sb and Se; we suppose that S, the smallest subtree that encloses the two
statements, is forloop0. As the two statements are enclosed into a loop, we
have to specify the indices of these statements inside the loop e.g. M(i) = 2
for Sb and M(i) = 5 for Se. The path execution trace between Sb and Se is
illustrated in Figure 6.10. The chosen path runs through Sb for the second
iteration of the loop until Se for the fifth iteration.

forloop0

i 1 10 sequence0

[S0, S1, Sb, S2, Se, S3]

Figure 6.9: An example of a subtree of root forloop0

In this section, we assume that Send is reachable [44] from Sbegin. This
means that, for each enclosing loop S (Sbegin ⊂ S and Send ⊂ S), where
S = forloop(I, Elower, Eupper, Sbody), Elower ≤ Eupper - loops are always
executed - and, for each mapping of an index of these loops, Elower ≤ ibegin ≤
iend ≤ Eupper. Moreover, since there is no execution trace from the true St

branch to the false branch Sf of a test statement Stest, Send is not reachable
from Sbegin if for each mapping of an index of a loop that encloses Stest:
ibegin = iend, or there is no loop enclosing the test.

6.4.2 Path Transformer Algorithm

In this section, we present an algorithm that computes affine relations be-
tween program variables at any two points, or “paths”, in the program, from
the memory store of Sbegin to the memory store of Send, along any sequential

7Ide and Exp are the set of identifiers I and expressions E respectively.
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Sb(2),S2(2),Se(2),S3(2),
S0(3),S1(3),Sb(3),S2(3),Se(3),S3(3),
S0(4),S1(4),Sb(4),S2(4),Se(4),S3(4),
S0(5),S1(5),Sb(5),S2(5),Se(5).

Figure 6.10: An example of a path execution trace from Sb to Se in the
subtree forloop0

execution that links the two memory states. path transformer(S, Pbegin,

Pend) is the path transformer of the subtree of S with all vertices not on the
Pbegin path to Pend path execution trace pruned. It is the path transformer
between statements Sbegin and Send, if Pbegin = (Mbegin,Sbegin) and Pend =
(Mend,Send).

path transformer uses a variable mode to indicate the current con-
text on the compile-time version of the execution trace. Modes are propa-
gated along the depth-first left-to-right traversal of statements: (1) mode =
sequence when there is no loop on the trace at the current statement level;
(2) mode = prologue on the prologue part of an enclosing loop; (3) mode =
permanent on the full part of an enclosing loop; and (4) mode = epilogue

on the epilogue part of an enclosing loop. The algorithm is described in
Algorithm 15.

A first call to the recursive function pt on(S, Pbegin, Pend, mode) with
mode = sequence is made. In this function, many path transformer oper-
ations are performed. A path transformer T is recursively defined by:

T = id | ⊥ | T1 � T2 | T1 � T2 | T k | T (S)

These operations on path transformers are specified as follows.

• id is the transformer identity, used when no variables are modified,
i.e., they are all constrained by an equality.
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ALGORITHM 15: AST-based Path Transformer algorithm

function path_transformer(S,(Mbegin,Sbegin),(Mend,Send))

return pt_on(S,(Mbegin,Sbegin),(Mend,Send),sequence );

end

function pt_on(S, (Mbegin,Sbegin),(Mend,Send), mode)

if (Send = S) then return id ;

elseif (Sbegin = S) then return T(S) ;

switch (S)

case call:

(mode = permanent

∨ mode = sequence ∧ Sbegin ≤ S ∧ S < Send

∨ mode = prologue ∧ Sbegin ≤ S

∨ mode = epilogue ∧ S < Send)

? return T(S) : return id;

case sequence(S1;S2;...;Sn):

if (|S1,S2 ,...,Sn|=0) then return id;

else

rest = sequence(S2;......;Sn);

return pt_on(S1, (Mbegin,Sbegin),(Mend,Send), mode) �
pt_on(rest , (Mbegin,Sbegin),(Mend,Send), mode);

case test(Econd,St,Sf ):

Tt = pt_on(St, (Mbegin,Sbegin),(Mend,Send), mode);

Tf = pt_on(Sf , (Mbegin,Sbegin),(Mend,Send), mode);

if((Sbegin ⊂ St ∧ Send ⊂ Sf ) ∨
(Send ⊂ St ∧ Sbegin ⊂ Sf ) then

if(mode = permanent) then

return Tt � Tf ;

else

return ⊥;

else if (Sbegin ⊂ St ∨ Send ⊂ St) then

return T(Econd) � Tt;

else if (Sbegin ⊂ Sf ∨ Send ⊂ Sf ) then

return T(¬Econd) � Tf ;

else

return T(S);

case forloop(I, Elower, Eupper, Sbody):

return

pt_on_loop(S,(Mbegin,Sbegin),(Mend,Send), mode);

end

• ⊥ denotes the undefined (empty) transformer, i.e., in which the set of
affine constraints of the system is not feasible.

• ’�’ denotes the operation of composition of transformers T1 and T2. T1

� T2 is overapproximated by the union of constraints in T1 (on variables
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x1, ..., xn, x
��
1, ..., x

��
p) with constraints in T2 (on variables x��1, ..., x

��
p, x

�
1, ...,

x�n�), then projected on x1, ..., xn, x
�
1, ..., x

�
n� to eliminate the “interme-

diate” variables x��1, ..., x
��
p (this definition is extracted from [78]). Note

that T � id = T , for all T .

• ’�’ denotes the convex hull of each transformer argument. The usual
union of two transformers is a union between two convex polyhedra,
and is not necessarily a convex polyhedron. A convex hull polyhedron
approximation is required in order to obtain a convex result; a convex
hull operation provides the smallest polyhedron enclosing the union.

• ’k’ denotes the effect of a k iterations of a transformer T . In practice,
heuristics are used to compute a transitive closure approximation T ∗;
thus, this operation generally provides an approximation of the trans-
former T k. Note that PIPS uses here the Affine Derivative Closure
algorithm [18].

• T (S) is the transformer of a statement S, defined in Section 2.6.1;
we suppose these transformers already exist. T is defined by a list of
arguments and a predicate system labeled by T .

We distinguish several cases in the pt on(S, (Mbegin, Sbegin), (Mend,
Send), mode) function. The computation of the path transformer begins
when S is Sbegin, i.e. the path is beginning; we return the transformer of
Sbegin. It ends when S is Send; there, we close the path and we return
the identity transformer, id. The other cases depend on the type of the
statement as follows.

Call

When S is a function call, we return the transformer of S, if S belongs to
the paths from Sbegin to Send, and id otherwise; we use the lexicographic
ordering < to compare statement paths.

Sequence

When S is a sequence of n statements, we return the composition of the
transformers of each statement in this sequence. An example of the result
provided by the path transformer algorithm for a sequence is illustrated in
Figure 6.11. The left side presents a code fragment that contains a sequence
of four instructions. The right side shows the resulting path transformer
between the two statements Sb and Se. It shows the result of the composition
of the transformers of the three first statements; note that the transformer
of Se is not included.
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// S

{

Sb: i = 42;

i = i+5;

i = i*3;

Se: i = i+4;

}

path_transformer(S,(⊥,Sb),(⊥,Se)) =

T(i) {

i = 141

}

Figure 6.11: An example of a C code and the path transformer of the se-
quence between Sb and Se; M is ⊥, since there are no loops in the code

Test

When S is a test, the path transformer is computed according to the location
of Sbegin and Send in the branches of the test. If one is in the true statement
and the other in the false statement of the test, the path transformer is the
union of the true and false transformers iff the mode is permanent, i.e, there
is at least one loop enclosing S. If only one of the two statements is enclosed
in the true or in the false branch of the test, the transformer of the condition
(true or false) is composed with the transformer of the corresponding enclos-
ing branch (true or false) and is returned. An example of the result provided
by the path transformer algorithm for a test is illustrated in Figure 6.12.
The left side presents a code fragment that contains a test. The right side
shows the resulting path transformer between the two statements Sb and
Se. It shows the result of the composition of the transformers of statements
from Sb to the statement just before the test and the transformer of the
condition true (i>0) and the statements in the true branch just before Se;
note that the transformer of Se is not included.

Loop

When S is a loop, we call the function pt on loop (see Algorithm 16). Note
that if loop indices are not specified for a statement in the map function,
the algorithm posits ibegin equal to the lower bound of the loop and iend
to the upper one. In this function, a composition of two transformers are
computed, depending on the value of mode: (1) the prologue transformer
from the iteration ibegin until the upper bound of the loop, or the iteration
iend, if Send belongs to this loop, and (2) the epilogue transformer from
the iteration lower bound of the loop until the upper bound of the loop, or
the iteration iend, if Send belongs to this loop. These two transformers are
computed using the function iter that we show in Algorithm 17.

iter computes the transformer of a number of iterations of a loop S
when loop bounds are constant or symbolic functions, via the predicate
function is constant p on an expression that returns true if this expres-
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// S

{

Sb: i=4;

i = i*3;

if(i>0){

k1++;

Se: i = i+4;

}

else{

k2++;

i--;

}

}

path_transformer(S,(⊥,Sb),(⊥,Se)) =

T(i, k1) {

i = 12,

k1 = k1#init + 1,

}

Figure 6.12: An example of a C code and the path transformer of the se-
quence of calls and test between Sb and Se; M is ⊥, since there are no loops
in the code

sion is constant. It computes a loop transformer that is the transformer
of the proper number of iterations of this loop. It is equal to the trans-
former of the looping condition Tenter, composed with the transformer of
the loop body, composed with the transformer of the incrementation state-
ment Tinc. In practice, when h − l is not a constant, a transitive closure
approximation T ∗ is computed using the function already implemented in
PIPS, affine derivative closure, and generally provides an approxima-
tion of the transformer T h−l+1.

The case where ibegin = iend means that we execute only one itera-
tion of the loop from Sbegin to Send. Therefore, we compute Ts, i.e, is
a transformer on the loop body with the sequence mode using Function
pt on loop one iteration presented in Algorithm 17. This eliminates the
statements outside the path from Sbegin to Send. Moreover, since with sym-
bolic parameters, we cannot have this precision, we execute one iteration or
more; a union of T and Ts is returned. The result should be composed with
the transformer of the index initialization Tinit and/or the exit condition of
the loop Texit, depending on the position of Sbegin and Send in the loop.

An example of the result provided by the path transformer algorithm
is illustrated in Figure 6.13. The left side presents a code that contains a
sequence of two loops and an incrementation instruction that makes the com-
putation of the path transformer required when performing parallelization.
Indeed, comparing array accesses in the two loops must take into account
the fact that n, used in the first loop, is not the same as n in the second one,
because it is incremented between the two loops. The right side shows the
resulting path transformer between the two statements Sb and Se. It shows
the result of the call to path transformer(S, (Mb,Sb),(Me,Se)). We
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ALGORITHM 16: Case for loops of the path transformer algorithm

function pt_on_loop(S, (Mbegin,Sbegin),(Mend,Send), mode)

forloop(I, Elower, Eupper, Sbody) = S;

low = ibegin = (undefined(Mbegin(I))) ? Elower : Mbegin(I);

high = iend = (undefined(Mend(I))) ? Eupper : Mend(I);

Tinit = T(I = Elower);

Tenter = T(I <= Eupper);

Tinc = T(I=I+1);

Texit = T(I > Eupper);

if (mode = permanent) then

T = iter(S,(Mbegin,Sbegin),(Mend,Send),Elower,Eupper);

return Tinit � T � Texit;

Ts = pt_on_loop_one_iteration(S,(Mbegin,Sbegin),(Mend,Send));

Tp = Te = p = e = id;

if (mode = prologue ∨ mode = sequence) then

if(Sbegin ⊂ S)

p = pt_on(Sbody ,(Mbegin,Sbegin),(Mend,Send), prologue) � Tinc;

low = ibegin+1;

high = (mode = sequence) ? iend-1 : Eupper;

Tp = p � iter(S,(Mbegin,Sbegin),(Mend,Send),low ,high);

if (mode = epilogue ∨ mode = sequence) then

if(Send ⊂ S)

e = Tenter � pt_on(Sbody ,(Mbegin,Sbegin),(Mend,Send),epilogue );

high = (mode = sequence) ? -1 : iend -1;

low = Elower;

Te = iter(S, (Mbegin,Sbegin),(Mend,Send),low ,high) � e;

T = Tp � Te;

T = ((Sbegin �⊂ S) ? Tinit : id) � T � ((Send �⊂ S) ? Texit : id);

if(is_constant_p(Eupper) ∧ is_constant_p(Elower)) then

if (mode = sequence ∧ ibegin = iend) then

return Ts;

else

return T;

else

return T � Ts;

end

suppose here that Mb(i)=0 and Me(j)= n− 1. Notice that the constraint
{n = n# init+1} is important to detect that n is changed between the two
loops via the n++; instruction.

An optimization for the cases of a statement S of type sequence or loop
would be to return the transformer of S, T (S), if S does not contain neither
Sbegin nor Send.
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ALGORITHM 17: Transformers for one iteration and a constant/symbolic num-

ber of iterations h− l + 1 of a loop S

function pt_on_loop_one_iteration(S,(Mbegin,Sbegin),(Mend,Send))

forloop(I, Elower, Eupper, Sbody) = S;

Tinit = T(I = Elower);

Tenter = T(I <= Eupper);

Tinc = T(I=I+1);

Texit = T(I > Eupper);

Ts = pt_on(Sbody ,(Mbegin,Sbegin),(Mend,Send),sequence );

Ts = (Sbegin ⊂ S ∧ Send �⊂ S) ? Ts � Tinc � Texit: Ts;

Ts = (Send ⊂ S ∧ Sbegin �⊂ S) ? Tinit � Tenter � Ts : Ts;

return Ts;

end

function iter(S, (Mbegin,Sbegin) , (Mend, Send), l, h)

forloop(I, Elower, Eupper, Sbody) = S;

Tenter = T(I <= h);

Tinc = T(I=I+1);

Tbody = pt_on(Sbody ,(Mbegin,Sbegin),(Mend,Send), permanent );

Tcomplete body = Tenter � Tbody � Tinc;

if(is_constant_p(Eupper) ∧ is_constant_p(Elower))

return T(I=l) � (Tcomplete body)
h−l+1;

else

Tstar = affine_derivative_closure(Tcomplete body);

return Tstar;

end

6.4.3 Operations on Regions using Path Transformers

In order to make possible operations combining sets of regions of two state-
ments S1 and S2, the set of regions R1 of S1 must be brought to the store
of the second set of regions R2 of S2. Therefore, we first compute the path
transformer that links the two statements of the two sets of regions as fol-
lows:

T12 = path transformer(S, (M1, S1), (M2, S2))

where S is a statement that verifies S1 ⊂ S and S2 ⊂ S. M1 and M2 contain
information about the indices of these statements in the potentially existing
loops in S. Then, we compose the second set of regions R2 with T12 to
bring R2 to a common memory store with R1. We use thus the operation
region transformer compose already implemented in PIPS [35], as follows:

R�
2 = region transformer compose(R2, T12)

We thus update the operations defined in Section 2.6.3: (1) the intersection
of the two sets of regions R1 and R2 is obtained via this call:
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//S

{

//l1

for(i=0;i<n;i++){

Sb:

a[i] = a[i]+1;

k1++;

}

n++;

//l2

for(j=0;j<n;j++){

k2++;

Se:

b[j] = a[j]+a[j+1];

}

}

path_transformer(S,(Mb,Sb),(Me,Se)) =

T(i,j,k1,k2,n) {

i+k1#init = i#init+k1,

j+k2#init = k2 -1,

n = n#init+1,

i#init+1 ≤ i,

n#init ≤ i,

k2#init+1 ≤ k2 ,

k2 ≤ k2#init+n

}

Figure 6.13: An example of a C code and the path transformer between Sb

and Se

regions intersection(R1, R�
2)

and (2) the difference between R1 and R2 is obtained via this call:

regions difference(R1, R�
2)

and (3) the union of R1 and R2 is obtained via this call:

regions union(R1, R�
2)

For example, if we want to compute RAW dependences between the
Write regions Rw1 of Loop l1 and Read regions Rr2 of Loop l2 in the code
in Figure 6.13, we must first find T12, the path transformer between the two
loops. The result is then:

RAW (l1, l2) = regions intersection(Rw1,

regions transformer compose(Rr2, T12))

If we assume the size of Arrays a and b is n = 20, for example, we obtain
the following results:

Rw1 = {< a(φ1)−W − EXACT− {0 ≤ φ1, φ1 ≤ 19, φ1 + 1 ≤ n} >}

Rr2 = {< a(φ1)−R− EXACT− {0 ≤ φ1, φ1 ≤ 19, φ1 ≤ n} >}

T12 = T (i, k1, n){k1 = k#init+ i, n = n#init+ 1, i ≥ 0, i ≥ n# init}

R�
r2 = {< a(φ1)−R− EXACT− {0 ≤ φ1, φ1 ≤ 19, φ1 ≤ n+ 1} >}

Rw1 ∩R�
r2 = {< a(φ1)−WR− EXACT− {0 ≤ φ1, φ1 ≤ 19, φ1 + 1 ≤ n} >}
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Notice how φ1 accesses to Array a differ in Rr2 and R�
r2 (after composi-

tion with T12), because of the equality n = n# init + 1 in T12, due to the
modification of n between the two loops via the n++; instruction.

In our context of combining path transformers with regions to compute
communication costs, dependences and data volumes between the vertices
of a DAG, for each loop of index i, M(i) must be set to the lower bound
of the loop and iend to the upper one (the default values). We are not
interested here in computing the path transformer between statements of
specific iterations. However, our algorithm is general enough to handle loop
parallelism, for example, or transformations on loops where one wants access
to statements of a particular iteration.

6.5 BDSC-Based Hierarchical Scheduling (HBDSC)

Now that all the information needed by the basic version of BDSC presented
in the previous chapter has been gathered, we detail in this section how we
suggest to adapt it to different SDGs linked hierarchically via the mapping
function H introduced in Section 6.2.2 on page 115 in order to eventually
generate nested parallel code when possible. We adopt in this section the
unstructured parallel programming model of Section 4.2.2 since it offers the
freedom to implement arbitrary parallel patterns and since SDGs implement
this model. Therefore, we use the parallel unstructured construct of
SPIRE to encode the generated parallel code.

6.5.1 Closure of SDGs

An SDG G of a nested sequence S may depend upon statements outside S.
We introduce the function closure defined in Algorithm 18 to provide a self-
contained version of G. There, G is completed with a set of entry vertices
and edges in order to recover dependences coming from outside S. We use
the predecessors τp in the DDG D to find these dependences Rs; for each
dependence we create an entry vertex and we schedule it in the same cluster
as τp; Function reference is used here to find the reference expression of
the dependence. Note that these import vertices will be used to schedule S
using BDSC in order to compute the updated values of tlevel and blevel

impacted by the communication cost of each vertex in G relatively to all
SDGs in H. We set their task time to 0.

For instance, in the C code given in the left of Figure 6.3, parallelizing S0
may decrease its execution time but it may also increase the execution time
of the loop indexed by i; this could be due to communications from outside
S0, if we presume, to simplify, that every statement is scheduled on a dif-
ferent cluster. The corresponding SDG of S0 presented in Figure 6.4 is not
complete because of dependences not explicit in this DAG coming from out-
side S0. In order to make G0 self-contained, we add these dependences via
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ALGORITHM 18: Computation of the closure of the SDG G of a statement

S = sequence(S1; ...;Sn)

function closure(sequence(S1;...;Sn), G)

D = DDG(sequence(S1;...;Sn));

foreach Si ∈ {S1,S2 ,.....,Sm}

τd = statement_vertex(Si, D);

τk = statement_vertex(Si, G);

foreach τp / (τp ∈ predecessors(τd, D) ∧ τp �∈ vertices(G))

Rs = regions_intersection(read_regions(Si),

write_regions(vertex_statement(τp)));
foreach R ∈ Rs

sentry = import(reference(R));

τentry = new_vertex(sentry);

cluster(τentry) = cluster(τp);
add_vertex(τentry, G);

add_edge ((τentry, τk), G);

return G;

end

a set of additional import entry vertices τentry scheduled in the same cluster
as the corresponding statements outside S0. We extract these dependences
from the DDG presented in the right of Figure 6.3 as illustrated in Function
closure; the closure of G0 is given in Figure 6.14. The scheduling of S0
needs to take into account all the dependences coming from outside S0; we
add thus three vertices to encode the communication cost of {i, a[i], c} at
the entry of S0.

6.5.2 Recursive Top-Down Scheduling

Hierarchically scheduling a given statement S of SDG H(S) in a cluster κ
is seen here as the definition of a hierarchical schedule σ which maps each
substatement s of S to σ(s) = (s�, κ, n). If there are enough processor and
memory resources to schedule S using BDSC, (s�, κ, n) is a triplet made
of a parallel statement s� = parallel(σ(s)), the cluster κ = cluster(σ(s))
where s is being allocated and the number n = nbclusters(σ(s)) of clusters
the inner scheduling of s� requires. Otherwise, scheduling is impossible, and
the program stops. In a scheduled statement, all sequences are replaced by
parallel unstructured statements.

A successful call to the HBDSC(S,H, κ, P,M, σ) function defined in Al-
gorithm 19, which assumes that P is strictly positive, yields a new version
of σ that schedules S into κ and takes into account all substatements of S;
only P clusters, with a data size at most M each, can be used for scheduling.
σ[S → (S�, κ, n)] is the function equal to σ except for S, where its value is
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Figure 6.14: Closure of the SDG G0 of the C code S0 in Figure 6.3, with
additional import entry vertices

(S�, κ, n). H is the function that yields an SDG for each S to be scheduled
using BDSC.

Our approach is top-down in order to yield tasks that are as coarse
grained as possible when dealing with sequences. In the HBDSC function, we
distinguish four cases of statements. First, the constructs of loops8 and tests
are simply traversed, scheduling information being recursively gathered in
different SDGs. Then, for a call statement, there is no descent in the call
graph, the call statement is returned. In order to handle the corresponding
call function, one has to treat separately the different functions. Finally,
for a sequence S, one first accesses its SDG and computes a closure of this
DAGGseq using the function closure defined above. Next, Gseq is scheduled
using BDSC to generate a scheduled SDG G�.

The hierarchical scheduling process is then recursively performed, to take
into account substatements of S, within Function HBDSC step defined in Al-
gorithm 20 on each statement s of each task of G�. There, G� is traversed
along a topological sort-ordered descent using the function topsort(G�)
yields a list of stages of computation, each cluster stage being a list of
independent lists L of tasks τ , one L for each cluster κ generated by BDSC

8Regarding parallel loops, since we adopt the task parallelism paradigm, note that,
initially, it may be useful to apply the tiling transformation and then perform full unrolling
of the outer loop (we give more details in the protocol of our experiments in Section 8.4).
This way, the input code contains more potentially parallel tasks resulting from the initial
(parallel) loop.
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ALGORITHM 19: BDSC-based update of Schedule σ for Statement S of SDG

H(S), with P and M constraints

function HBDSC(S, H, κ, P, M, σ)
switch (S)

case call:

return σ[S → (S, κ, 0)];

case sequence(S1;...;Sn):

Gseq = closure(S, H(S))

G� = BDSC(Gseq, P, M, σ);
iter = 0;

do

σ� = HBDSC_step(G�, H, κ, P, M, σ);
G = G�;

G� = BDSC(Gseq, P, M, σ�);

if (clusters(G�) = ∅) then

abort(�Unable to schedule �);

iter ++;

σ = σ�;

while (completion_time(G�) < completion_time(G) ∧
|clusters(G�)| ≤ |clusters(G)| ∧
iter ≤ MAX_ITER)

return σ[S →(dag_to_unstructured(G),

κ, |clusters(G)|)];

case forloop(I, Elower, Eupper, Sbody):

σ� = HBDSC(Sbody, H, κ, P, M, σ);
(S�

body, κbody, nbclustersbody) = σ�(Sbody);

return σ�[S → (forloop(I, Elower, Eupper, S�

body),

κ, nbclustersbody)];

case test(Econd, St, Sf ):

σ = HBDSC(St, H, κ, P, M, σ�);

σ�� = HBDSC(Sf , H, κ, P, M, σ�);

(S�

t, κt, nbclusters t) = σ��(St);

(S�

f , κf , nbclustersf ) = σ��(Sf );

return σ��[S → (test(Econd, S�

t, S�

f ),

κ, max(nbclusters t, nbclustersf ))];

end

for this particular stage in the topological order.

The recursive hierarchical scheduling via HBDSC, within the function
HBDSC step, of each statement s = vertex statement(τ) may take advan-
tage of at most P � available clusters, since |cluster stage| clusters are already
reserved to schedule the current stage cluster stage of tasks for Statement
S. It yields a new scheduling function σs. Otherwise, if no clusters are avail-
able, all statements enclosed into s are scheduled on the same cluster as their
parent, κ. We use the straightforward function same cluster mapping (not
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provided here) to affect recursively (se, κ, 0) to σ(se) for each se enclosed
into s.

ALGORITHM 20: Iterative hierarchical scheduling step for DAG fixpoint com-

putation

function HBDSC_step(G�, H, κ, P, M, σ)
foreach cluster_stage ∈ topsort(G�)

P� = P - |cluster_stage |;

foreach L ∈ cluster_stage

nbclustersL = 0;

foreach τ ∈ L

s = vertex_statement(τ );
if (P� ≤ 0) then

σ = σ[s → same_cluster_mapping(s, κ, σ)];
else

nbclusterss = (s ∈ domain(σ)) ?

nbclusters(σ(s)) : 0;

σs = HBDSC(s, H, cluster(τ ), P�, M, σ);
nbclusters �

s = nbclusters(σs(s));
if (nbclusters �

s ≥ nbclusterss ∧
task_time(τ , σ) ≥ task_time(τ , σs) then

nbclusterss = nbclusters �

s;

σ = σs;
nbclustersL = max(nbclustersL, nbclusterss);

P� -= nbclustersL;

return σ;
end

Figure 6.15 illustrates the various entities involved in the computation of
such a scheduling function. Note that one needs to be careful in HBDSC step

to ensure that each rescheduled substatement s is allocated a number of
clusters consistent with the one used when computing its parallel execution
time; we check the condition nbclusters�s ≥ nbclusterss, which ensures that
the parallelism assumed when computing time complexities within s remains
available.

Cluster allocation information for each substatement s whose vertex in
G� is τ is maintained in σ via the recursive call to HBDSC, this time with
the current cluster κ = cluster(τ). For the non-sequence constructs in
Function HBDSC, cluster information is set to κ, the current cluster.

The scheduling of a sequence yields a parallel unstructured statement;
we use the function dag to unstructured(G) that returns a SPIRE un-
structured statement Su from the SDG G, where the vertices of G are the
statement control vertices su of Su, and the edges of G constitute the list
of successors Lsucc of su while the list of predecessors Lpred of su is deduced
from Lsucc. Note that vertices and edges of G are not changed before and
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Figure 6.15: topsort(G) for the hierarchical scheduling of sequences

after scheduling; however, information of scheduling is saved in σ.

As an application of our scheduling algorithm on a real application,
Figure 6.16 shows the scheduled SDG for Harris obtained using P = 3,
generated automatically with PIPS using the Graphviz tool.

Figure 6.16: Scheduled SDG for Harris, using P=3 cores; the scheduling
information via cluster(τ) is also printed inside each vertex of the SDG

6.5.3 Iterative Scheduling for Resource Optimization

BDSC is called in HBDSC before substatements are hierarchically scheduled.
However, a unique pass over substatements could be suboptimal, since par-
allelism may exist within substatements. It may be discovered by later
recursive calls to HBDSC. Yet, if this parallelism had been known ahead of
time, previous values of task time used by BDSC would have been possibly
smaller, which could have had an impact on the higher-level scheduling. In
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order to address this issue, our hierarchical scheduling algorithm iterates
the top down pass HBDSC step on the new DAG G� in which BDSC takes
into account these modified task complexities; iteration continues while G�

provides a smaller DAG scheduling length than G and the iteration limit
MAX ITER has not been reached. We compute the completion time of the
DAG G, as follows:

completion time(G) = maxκ∈clusters(G) cluster time(κ)

One constraint due to the iterative nature of the hierarchical scheduling
is that, in BDSC, zeroing cannot be made between the import entry ver-
tices and their successors. This keeps an independence in terms of allocated
clusters between the different levels of the hierarchy. Indeed, at a higher
level, for S, if we assume that we have scheduled the parts Se inside (hier-
archically) S; attempting to reschedule S iteratively cancels the precedent
schedule of S but maintains the schedule of Se and vice versa. Therefore, for
each sequence, we have to deal with a new set of clusters; and thus, zeroing
cannot be made between these entry vertices and their successors.

Note that our top-down, iterative, hierarchical scheduling approach also
helps dealing with limited memory resources. If BDSC fails at first because
not enough memory is available for a given task, the HBDSC step function
is nonetheless called to schedule nested statements, possibly loosening up
the memory constraints by distributing some of the work on less memory-
challenged additional clusters. This might enable the subsequent call to
BDSC to succeed.

For instance, in Figure 6.17, we assume that P = 3 and the memory M
of each available cluster κ0, κ1 or κ2 is less that the size of Array a. There-
fore, the first application of BDSC on S = sequence(S0;S1) will fail (Not
enough memory). Thanks to the while loop introduced in the hierarchical
schedule algorithm, the scheduling of the hierarchical parts inside S0 and
S1 hopefully minimizes the task data of each statement. Thus, a second
schedule succeeds, as is illustrated in Figure 6.18. Note that the edge cost

between tasks S0 and S1 is equal to 0 (the region on the edge in the figure
is equal to the empty set). Indeed, the communication is made at an in-
ner level, between κ1 and κ3, due to the entry vertex added to H(S1body).
This cost is obtained after the hierarchical scheduling of S; it is thus a par-
allel edge cost; we define parallel task data and edge cost of a parallel
statement task in Section 6.5.5.

6.5.4 Complexity of HBDSC Algorithm

Theorem 2. The time complexity of Algorithm 19 (HBDSC) over Statement
S is O(kn), where n is the number of call statements in S and k a constant
greater than 1.
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Figure 6.17: After the first application of BDSC on S = sequence(S0;S1),
failing with “Not enough memory”

Proof. Let t(l) be the worst-case time complexity for our hierarchical
scheduling algorithm on the structured statement S of hierarchical level9

l. Time complexity increases significantly only in sequences, loops and tests
being simply managed by straightforward recursive calls of HBDSC on sub-
statements. For a sequence S, t(l) is proportional to the time complexity
of BDSC followed by a call to HBDSC step; the proportionality constant is
k =MAX ITER (supposed to be greater than 1).

The time complexity of BDSC for a sequence of m statements is at most
O(m3) (see Theorem 1). Assuming that all subsequences have a maximum
number m of (possibly compound) statements, the time complexity for the
hierarchical scheduling step function is the time complexity of the topological
sort algorithm followed by a recursive call to HBDSC, and is thus O(m2 +
mt(l − 1)). Thus t(l) is at most proportional to k(m3 +m2 +mt(l − 1)) ∼
km3+kmt(l−1). Since t(l) is an arithmetico-geometric series, its analytical

value t(l) is (km)l(km3+km−1)−km3

km−1 ∼ (km)lm2. Let lS be the level for the
whole Statement S. The worst performance occurs when the structure of S
is flat, i.e., when lS ∼ n and m is O(1); hence t(n) = t(lS) ∼ kn.

Even though the worst case time complexity of HBDSC is exponential,
we expect and our experiments suggest that it behaves more tamely on
actual, properly structured code. Indeed, note that lS ∼ logm(n) if S is
balanced for some large constant m; in this case, t(n) ∼ (km)log(n), showing

9Levels represent the hierarchy structure between statements of the AST and are
counted up from leaves to the root.
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Figure 6.18: Hierarchically (via H) Scheduled SDGs with memory resource
minimization after the second application of BDSC (which succeeds) on
sequence(S0;S1) (κi = cluster(σ(Si))). To keep the picture readable, only
communication edges are figured in these SDGs

a subexponential time complexity.

6.5.5 Parallel Cost Models

In Section 6.3, we present the sequential cost models usable in the case of
sequential codes, i.e, for each first call to BDSC. When a substatement Se

of S (Se ⊂ S) is parallelized, the parameters task time, task data and
edge cost are modified for Se and thus for S. Thus, hierarchical schedul-
ing must use extended definitions of task time, task data and edge cost

for tasks τ using statements S = vertex statement(τ) that are parallel
unstructured statements, extending the definitions provided in Section 6.3,
which still applies to non-unstructured statements. For such a case, we as-
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sume that BDSC and other relevant functions take σ as an additional argu-
ment to access the scheduling result associated to statement sequences and
handle the modified definitions of task time, edge cost and task data.
These functions are defined as follows.

Parallel Task Time

When statements S = vertex statement(τ) correspond to parallel unstruc-
tured statements, lets Su = parallel(σ(S)) be the parallel unstructured
(i.e., such that S ∈ domain(σ)). We define task time as follows, where
Function clusters returns the set of clusters used to schedule Su and Func-
tion control statements is used to return the statements from Su:

task time(τ, σ) = max
κ∈clusters(Su,σ)

cluster time(κ)

clusters(Su, σ) = {cluster(σ(s))/s ∈ control statements(Su)}

Otherwise, the previous definitions of task time on S provided in Sec-
tion 6.3 is used. The recursive computation of complexities accesses this
new definition in case of parallel unstructured statements.

Parallel Task Data and Edge Cost

To define task data and edge cost parameters that depend on the com-
putation of array regions10, we need extended versions of the read regions

and write regions functions that take into account the allocation informa-
tion to clusters. These functions take σ as an additional argument to access
the allocation information cluster(σ):

S = vertex statement(τ);

task data(τ, σ) = regions union(read regions(S, σ),

write regions(S, σ))

Rw1 = write regions(vertex statement(τ1), σ);

Rr2 = read regions(vertex statement(τ2), σ);

edge cost bytes(τ1, τ2, σ) =
�

r∈regions intersection(Rw1,Rr2)

ehrhart(r);

edge cost(τ1, τ2, σ) = α+ β × edge cost bytes(τ1, τ2, σ)

When statements are parallel unstructured statements Su, we propose to add
a condition on the accumulation of regions in the sequential recursive compu-
tation functions of these regions as follows, where Function stmts in cluster

10Note that every operation combining regions of two statements, used in this chapter,
assumes the use of the path transformer via the function region transformer compose

as illustrated in Section 6.4.3 in order to bring the regions of the two statements in a
common memory store.
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returns the set of statements scheduled in the same cluster as Su:

read regions(Su, σ) =

regions unions∈stmts in cluster(Su,σ)read regions(s, σ)

write regions(Su, σ) =

regions unions∈stmts in cluster(Su,σ)write regions(s, σ)

stmts in cluster(Su, σ) =

{s ∈ control statements(Su)/cluster(σ(s)) = cluster(σ(Su))}

Otherwise, the sequential definitions of read regions and write regions

on S provided in Section 6.3 is used. The recursive computation of array
regions accesses this new definition in case of parallel unstructured state-
ments.

6.6 Related Work: Task Parallelization Tools

In this section, we review several other approaches that intend to automate
the parallelization of programs using different granularities and scheduling
policies. Given the breadth of literature on this subject, we limit this pre-
sentation to approaches that focus on static list-scheduling methods and
compare them with BDSC.

Sarkar’s work on the partitioning and scheduling of parallel programs [98]
for multiprocessors introduced a compile-time method where a GR (Graph-
ical Representation) program is partitioned into parallel tasks at compile
time. A GR graph has four kinds of vertices: “simple”, to represent an indi-
visible sequential computation, “function call”, “parallel”, to represent par-
allel loops, and “compound”, for conditional instructions. Sarkar presents an
approximation parallelization algorithm. Starting with an initial fine gran-
ularity partition, P0, tasks (chosen by heuristics) are iteratively merged till
the coarsest partition Pn (with one task containing all vertices), after n it-
erations, is reached. The partition Pmin with the smallest parallel execution
time in the presence of overhead (scheduling and communication overhead)
is chosen. For scheduling, Sarkar introduces the EZ (Edge-Zeroing) algo-
rithm that uses bottom levels for ordering: it is based on edge weights for
clustering; all edges are examined from the largest edge weight to the small-
est; it then proceeds by zeroing the highest edge weight if the completion
time decreases. While this algorithm is based only on the bottom level for
an unbounded number of processors and does not recompute the priorities
after zeroings, BDSC adds resource constraints and is based on both bottom
levels and dynamic top levels.

The OSCAR Fortran Compiler [63] is used as a multigrain parallelizer
from Fortran to parallelized OpenMP Fortran. OSCAR partitions a pro-
gram into a macro-task graph, where vertices represent macro-tasks of three
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kinds, namely basic, repetition and subroutine blocks. The coarse grain
task parallelization proceeds as follows. First, the macro-tasks are gener-
ated by decomposition of the source program. Then, a macro-flow graph is
generated to represent data and control dependences on macro-tasks. The
macro-task graph is subsequently generated via the analysis of parallelism
among macro-tasks using an earliest executable condition analysis that rep-
resents the conditions on which a given macro-task may begin its execution
at the earliest time, assuming precedence constraints. If a macro-task graph
has only data dependence edges, macro-tasks are assigned to processors by
static scheduling. If a macro-task graph has both data and control depen-
dence edges, macro-tasks are assigned to processors at run time by a dynamic
scheduling routine. In addition to dealing with a richer set of resource con-
straints, BDSC targets both shared and distributed memory systems with
a cost model based on communication, used data and time estimations.

Pedigree [85] is a compilation tool based on the program dependence
graph (PDG). The PDG is extended by adding a new type of vertex, a “Par”
vertex, which groups children vertices reachable via the same branch condi-
tions. Pedigree proceeds by estimating a latency for each vertex and data
dependences edge weights in the PDG. The scheduling process orders the
children and assigns them to a subset of the processors. For scheduling,
vertices with minimum early and late times are given highest priority; the
highest priority ready vertex is selected for scheduling based on the synchro-
nization overhead and latency. While Pedigree operates on assembly code,
PIPS and our extension for task-parallelism using BDSC offer a higher-level,
source-to-source parallelization framework. Moreover, Pedigree generated
code is specialized for only symmetric multiprocessors, while BDSC targets
many architecture types, thanks to its resource constraints and cost models.

The SPIR (Signal Processing Intermediate Representation) compiler [31]
takes a sequential dataflow program as input and generates a multithreaded
parallel program for an embedded multicore system. First, SPIR builds a
stream graph where a vertex corresponds to a kernel function call or to the
condition of an “if” statement; an edge denotes a transfer of data between
two kernel function calls or a control transfer by an “if” statement (true
or false). Then, for task scheduling purposes, given a stream graph and a
target platform, the task scheduler assigns each vertex to a processor in the
target platform. It allocates stream buffers, and generates DMA operations
under given memory and timing constraints. The degree of automation
of BDSC is larger than SPIR’s, because this latter system needs several
keywords extensions plus the C code denoting the streaming scope within
applications. Also, the granularity in SPIR is a function, whereas BDSC
uses several granularity levels.

We collect in Table 6.2 the main characteristics of each parallelization
tool addressed in this section.
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Resource Dependence Execution Communica- Memory
blevel tlevel constraints control data time tion time model

estimation estimation

HBDSC
√ √ √

X
√ √ √

Shared,
distributed

Sarkar’s
√

X X X
√ √ √

Shared,
work distributed

OSCAR X
√

X
√ √ √

X Shared

Pedigree
√ √

X
√ √ √

X Shared

SPIR X
√ √ √ √ √ √

Shared

Table 6.2: Comparison summary between different parallelization tools

6.7 Conclusion

This chapter presents our BDSC-based hierarchical task parallelization ap-
proach, which uses a new data structure called SDG and a symbolic exe-
cution and communication cost model, based on either static code analysis
or a dynamic-based instrumentation assessment tool. The HBDSC schedul-
ing algorithm maps hierarchically, via a mapping function H, each task of
the SDG to one cluster. The result is the generation of a parallel code
represented in SPIRE(PIPS IR) using the parallel unstructured construct.
We have integrated this approach within the PIPS automatic parallelization
compiler infrastructure (See Section 8.2 for the implementation details).

The next chapter illustrates two parallel transformations of SPIRE(PIPS
IR) parallel code and the generation of OpenMP and MPI codes from
SPIRE(PIPS IR).

An earlier version of the work presented in the previous chapter (Chap-
ter 5) and a part of the work presented in this chapter are submitted to
Parallel Computing [66].





Chapter 7

SPIRE-Based Parallel Code
Transformations and

Generation
Satisfaction lies in the effort, not in the attainment; full effort is full victory.

Gandhi

In the previous chapter, we describe how sequential programs are analyzed,
scheduled and represented in a parallel intermediate representation. Their
parallel versions are expressed as graphs using the parallel unstructured

attribute of SPIRE; but such graphs are not directly expressible in parallel
languages. To test the flexibility of this parallelization approach, this chap-
ter covers three aspects of parallel code transformations and generation: (1)
the transformation of SPIRE(PIPS IR)1 code from the unstructured par-
allel programing model to a structured (high level) model using the spawn

and barrier constructs, (2) the transformation from the shared to the dis-
tributed memory programming model, and (3) the code generation target-
ing of parallel languages from SPIRE(PIPS IR). We have implemented our
SPIRE-derived parallel IR in the PIPS middle-end, and HBDSC-based task
parallelization algorithm. We generate both OpenMP and MPI code from
the same parallel IR using the PIPS backend and its prettyprinters.

Dans le chapitre précédent, nous décrivons comment des programmes
séquentiels sont analysés, ordonnancés et représentés dans une représentation
intermédiaire parallèle. Leurs versions parallèles sont exprimées sous forme
de graphes à l’aide de la construction parallel unstructured de SPIRE.
Toutefois, ces graphes ne sont pas encore directement exprimés en langages
parallèles. Pour tester la souplesse de cette approche de parallélisation, ce
chapitre porte sur trois aspects de transformation et de génération de codes
parallèles : (1) la transformation de codes représentés dans SPIRE(PIPS
IR)2 du modèle de programmation parallèle non-structurée à un modèle
structuré (de haut niveau) en utilisant les constructions spawn et barrier,
(2) la transformation du modèle de programmation à mémoire partagée au

1Recall SPIRE(PIPS IR) means that the function of transformation SPIRE is applied
on the sequential IR of PIPS; it yields a parallel IR of PIPS.

2Rappelons que SPIRE(PIPS IR) signifie que la fonction de transformation SPIRE est
appliquée sur la RI séquentielle de PIPS ; cela donne une RI parallèle de PIPS.
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modèle à mémoire distribuée et (3) la génération de code ciblant des lan-
gages parallèles à partir de SPIRE(PIPS IR). Nous avons implanté notre
RI parallèle dérivée de SPIRE dans le coeur de PIPS, ainsi que l’algorithme
de parallélisation de tâches fondé sur HBDSC. Nous générons des codes
OpenMP et MPI à partir de la même RI parallèle en utilisant le générateur
de code de PIPS et ses afficheurs.

7.1 Introduction

Generally, the process of source-to-source code generation is a difficult task.
In fact, compilers use at least two intermediate representations when trans-
forming a source code written in a programming language abstracted in a
first IR to a source code written in an other programming language ab-
stracted in a second IR. Moreover, this difficulty is compounded whenever
the resulting input source code is to be executed on a machine not targeted
by its language. The portability issue was a key factor when we designed
SPIRE as a generic approach (Chapter 4). Indeed, representing different
parallel constructs from different parallel programming languages makes the
code generation process generic. In the context of this thesis, we need to
generate the equivalent parallel version of a sequential code; representing
the parallel code in SPIRE facilitates parallel code generation in different
parallel programming languages.

The parallel code encoded in SPIRE(PIPS IR), that we generate in Chap-
ter 6, uses an unstructured parallel programming model based on static task
graphs. However, structured programming constructs increase the level of
abstraction when writing parallel codes, and structured parallel programs
are easier to analyze. Moreover, parallel unstructured does not exist in par-
allel languages. In this chapter, we use SPIRE both for the input, unstruc-
tured parallel code, and the output, structured parallel code, by translating
the SPIRE unstructured construct to spawn and barrier constructs. An-
other parallel transformation we address is to transform a SPIRE shared
memory code to a SPIRE distributed memory one in order to adapt the
SPIRE code to message-passing libraries/languages such as MPI and thus
distributed memory system architectures.

A parallel program transformation takes the parallel intermediate repre-
sentation of a code fragment and yields a new equivalent parallel represen-
tation for it. Such transformations are useful for optimization purposes or
to enable other optimizations that intend to improve execution time, data
locality, energy, memory use, etc. While parallel code generation outputs a
final code written into a parallel programming language that can be com-
piled by its compiler and run on a target machine, a parallel transformation
generates an intermediate code written into a parallel intermediate repre-
sentation.
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In this chapter, a parallel transformation takes a hierarchical schedule
σ, defined in Section 6.5.2 on page 135, and yields another schedule σ�,
which maps each statement S in domain(σ) to σ�(S) = (S�, κ, n) such that
S� belongs to the resulting parallel IR, κ = cluster(σ(S)) is the cluster
where S is allocated, and n = nbclusters(σ(S)) is the number of clusters
the inner scheduling of S� requires. A cluster stands for a processor.

Today’s typical architectures have multiple hierarchical levels. A mul-
tiprocessor has many nodes, each node has multiple clusters, each cluster
has multiple cores, and each core has multiple physical threads. Therefore,
in addition to distinguishing the parallelism in terms of abstraction of par-
allel constructs such as structured and unstructured, we can also classify
parallelism in two types in terms of code structure: equilevel, when it is
generated within a sequence, i.e, zero hierarchy level, and hierarchical or
multilevel, when one manages the code hierarchy, i.e. multiple levels. In
this chapter, we handle these two types of parallelism in order to enhance
the performance of the generated parallel code.

The remainder of this chapter is structured into three sections. Firstly,
Section 7.2 presents the first of the two parallel transformations we de-
signed: the unstructured to structured parallel code transformation. Sec-
ondly, the transformation from shared memory to distributed memory codes
is presented in Section 7.3. Moving to code generation issues, Section 7.4
details the generation of parallel programs from SPIRE(PIPS IR); first,
Section 7.4.1 shows the mapping approach between SPIRE and different
parallel languages, and then, as illustrating cases, Section 7.4.2 introduces
the generation of OpenMP and Section 7.4.3 the generation of MPI, from
SPIRE(PIPS IR). Finally, we conclude in Section 7.5. Figure 7.1 summarizes
the parallel code transformations and generation applied in this chapter.

7.2 Parallel Unstructured to Structured Transfor-
mation

We present in Chapter 4 the application of the SPIRE methodology to the
PIPS IR case. Chapter 6 shows how to construct unstructured parallel code
presented in SPIRE(PIPS IR). In this section, we detail the algorithm trans-
forming unstructured (mid, graph-based, level) parallel code to structured
(high, syntactic, level) code expressed in SPIRE(PIPS IR) and the imple-
mentation of the structured model in PIPS. The goal behind structuring
parallelism is to increase the level of abstraction of parallel programs and
simplify analysis and optimization passes. Another reason is the fact that
parallel unstructured does not exist in parallel languages. However, this
has a cost in terms of performance if the code contains arbitrary parallel
patterns. For instance, the example already presented in Figure 4.3, which
uses unstructured constructs to form a graph, and copied again for con-
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Unstructured
SPIRE(PIPS IR) Schedule SDG

Structuring

Structured
SPIRE(PIPS IR)

Data
Transfer

Generation

send/recv
-Based IR

OpenMP Task
Generation

spawn → omp task

OpenMP Pragma-
Based IR

Prettyprinter
OpenMP

SPMDization
spawn → guards

MPI-Based IR

Prettyprinter
MPI

OpenMP Code

MPI Code

Figure 7.1: Parallel code transformations and generation: blue indicates this
chapter contributions; an ellipse, a process; and a rectangle, results

venience in Figure 7.2, can be represented in a low-level unstructured way
using events ((b) of Figure 7.2) and in a structured way using spawn3 and
barrier constructs ((c) of Figure 7.2). The structured representation (c)

3Note that, in this chapter, we assume for simplification purposes that constants, in-
stead of temporary identifiers having the corresponding value, are used as the first param-
eter of spawn statements.
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minimizes control overhead. Moreover, it is a trade-off between structur-
ing and performance. Indeed, if the tasks have the same execution time,
the structured way is better than the unstructured one since no synchro-
nizations using events are necessary. Therefore, depending on the run-time
properties of the tasks, it may be better to run one form or the other.

nop;
entry

x=3; y=5;

z=x+y;u=x+1;

nop;
exit

(a)

barrier(

ex=newEvent (0);

spawn(0,

x = 3;

signal(ex);

u = x + 1

);

spawn(1,

y = 5;

wait(ex);

z = x + y

);

freeEvent(ex)

)

(b)

barrier(

spawn(0, x = 3);

spawn(1, y = 5)

);

barrier(

spawn(0, u = x + 1);

spawn(1, z = x + y)

)

(c)

Figure 7.2: Unstructured parallel control flow graph (a) and event (b) and
structured representations (c)

7.2.1 Structuring Parallelism

Function unstructured to structured presented in Algorithm 21 uses a
hierarchical schedule σ, that maps each substatement s of S to σ(s) =
(s�, κ, n) (see Section 6.5), to handle new statements. It specifies how
the unstructured scheduled statement parallel(σ(S)) presented in Sec-
tion 6.5 is used to generate a structured parallel statement encoded also in
SPIRE(PIPS IR) using spawn and barrier constructs. Note that another
transformation would be to generate events and spawn constructs from the
unstructured constructs (as in (b) of Figure 7.2).
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ALGORITHM 21: Bottom-up hierarchical unstructured to structured SPIRE

transformation updating a parallel schedule σ for Statement S

function unstructured_to_structured(S, p, σ)
κ = cluster(σ(S));
n = nbclusters(σ(S));
switch (S)

case call:

return σ;
case unstructured(Centry, Cexit, parallel ):

Sstructured = [];

foreach cluster_stage ∈ topsort_unstructured(S)

(Sbarrier,σ) = spawns_barrier(cluster_stage , κ, p, σ);
nbarrier = |structured_clusters(statements(Sbarrier), σ)|;
σ = σ[Sbarrier → (Sbarrier, κ, nbarrier)];

Sstructured ||= [Sbarrier];

S� = sequence(Sstructured);

return σ[S →(S�, κ, n)];

case forloop(I, Elower, Eupper, Sbody):

σ = unstructured_to_structured(Sbody, p, σ);
S� = forloop(I, Elower, Eupper, parallel(σ(Sbody )));

return σ[S → (S�, κ, n)];

case test(Econd, St, Sf ):

σ = unstructured_to_structured(St, p, σ);
σ = unstructured_to_structured(Sf , p, σ);
S� = test(Econd, parallel(σ(St)), parallel(σ(Sf )));

return σ[S → (S�, κ, n)];

end

function structured_clusters ({S1,S2 ,...,Sn}, σ)
clusters = ∅;
foreach Si ∈ {S1,S2 ,...,Sn}

if(cluster(σ(Si)) �∈ clusters)

clusters ∪= {cluster(σ(Si))};

return clusters;

end

For an unstructured statement S (other constructs are simply traversed;
parallel statements are reconstructed using the original statements), its con-
trol vertices are traversed along a topological sort-ordered descent. As an
unstructured statement, by definition, is also a graph (control statements
are the vertices, while predecessors (resp. successors) control statements Sn

of a control statement S are edges from Sn to S (resp. from S to Sn)),
we use the same idea as in Section 6.5 topsort, but this time, from an
unstructured statement. We use thus Function topsort unstructured(S)
that yields a list of stages of computation, each cluster stage being a list of
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independent lists L of statements s.
Cluster stages are seen as a set of fork-join structures; a fork-join struc-

ture can be seen as a set of spawn statements (to be launched in parallel)
enclosed in a barrier statement. It can be seen also as a parallel sequence.
In our implementation of structured code generation, we choose to generate
spawn and barrier constructs instead of parallel sequence constructs be-
cause, in contrast to the parallel sequence construct, the spawn construct
allows the implementation of recursive parallel tasks. Besides, we can rep-
resent a parallel loop via the spawn construct but it cannot be implemented
using parallel sequence.

New statements have to be added to domain(σ). Therefore, in order to
set the third argument of σ (nbclusters(σ)) of these new statements, we use
the function structured clusters that harvests the clusters used to sched-
ule the list of statements in a sequence. Recall that Function statements

of a sequence returns its list of statements.
We use Function spawns barrier detailed in Algorithm 22 to form

spawn and barrier statements. In a cluster stage, each list L for each cluster
κs corresponds to a spawn statement Sspawn. In order to affect a cluster
number as an entity to the spawn statement as required by SPIRE, we as-
sociate a cluster number to the cluster κs returned by cluster(σ(s)) via
the cluster number function; we posit thus that two clusters are equal
if they have the same cluster number. However, since BDSC maps tasks
to logical clusters in Algorithm 19, with numbers in [0, p − 1], we con-
vert this logical number to a physical one using the formula nphysical =
P − p+cluster number(κs). P is the total number of clusters available in
the target machine.

Spawn statements SL of one cluster stage are collected in a barrier state-
ment Sbarrier as follows. First, the list of statements SL is constructed using
the || symbol for the concatenation of two lists of arguments. Then, State-
ment Sbarrier is created using Function sequence from the list of statements
SL. Synchronization attributes should be set for the new statements Sspawn

and Sbarrier. We use thus the functions spawn(I) and barrier() to set the
synchronization attribute spawn or barrier of different statements.

Figure 7.3 depicts an example of a SPIRE structured representation (in
the right hand side) of a part of the C implementation of the main func-
tion of Harris presented in the left hand side. Note that the scheduling is
resulting from our BDSC-based task parallelization process using P = 3
(we use three clusters because the maximum parallelism in Harris is three).
Here, up to three parallel tasks are enclosed in a barrier for each chain of
functions: Sobel, Multiplication, and Gauss. The synchronization anno-
tations spawn and barrier are printed within the SPIRE generated code;
remember that the synchronization attribute is added to each statement (see
Section 4.2.3 on page 69).

Multiple parallel code configuration schemes can be generated. In a first
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ALGORITHM 22: Spawns-barrier generation for a cluster stage

function spawns_barrier(cluster_stage , κ, p, σ)
p� = p - |cluster_stage |;

SL = [];

foreach L ∈ cluster_stage

L� = [];

nbclustersL = 0;

foreach s ∈ L

κs = cluster(σ(s)); //all s have the same schedule κs

if(p� > 0)

σ = unstructured_to_structured(s, p�, σ);
L� ||= [parallel(σ(s))];
nbclustersL = max(nbclustersL, nbclusters(σ(s)));

Sspawn = sequence(L�);

nphysical = P - p + cluster_number(κs);

cluster_number(κs) = nphysical;

synchronization(Sspawn) = spawn(nphysical);

σ = σ[Sspawn →(Sspawn, κs, |structured_clusters(L�, σ)|)];
SL ||= [Sspawn];

p� -= nbclustersL;

Sbarrier = sequence(SL);

synchronization(Sbarrier) = barrier ();

return (Sbarrier,σ);
end

scheme, illustrated in Function spawns barrier, we activate other clusters
from an enclosing one, i.e, the enclosing cluster executes the spawn instruc-
tions (launch the tasks). A second scheme would be to use the enclosing
cluster to execute one of the enclosed tasks; there is no need to generate the
last task as a spawn statement, since it is executed by the current cluster.
We show an example in Figure 7.4.

Although barrier synchronization of statements with only one spawn
statement can be omitted as another optimization: barrier(spawn(i, S)) =
S, we choose to keep these synchronizations for pedagogical purposes and
plan to apply this optimization in a separate phase as a parallel transfor-
mation or handle it at the code generation level.

7.2.2 Hierarchical Parallelism

Function unstructured to structured is recursive in order to handle hier-
archy in code. An example is provided in Figure 7.5, where we assume that
P = 4. We use two clusters κ0 and κ1 to schedule the cluster stage {S1, S2};
the remaining clusters are then used to schedule statements enclosed in S1

and S2. Note that Statement S12, where p = 2, is mapped to the physical
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in = InitHarris ();

//Sobel

SobelX(Gx , in);

SobelY(Gy , in);

// Multiply

MultiplY(Ixx , Gx, Gx);

MultiplY(Iyy , Gy, Gy);

MultiplY(Ixy , Gx, Gy);

//Gauss

Gauss(Sxx , Ixx);

Gauss(Syy , Iyy);

Gauss(Sxy , Ixy);

// Coarsity

CoarsitY(out ,

Sxx , Syy , Sxy);

barrier(

spawn(0, InitHarris(in))

);

barrier(

spawn(0, SobelX(Gx, in));

spawn(1, SobelY(Gy, in))

);

barrier(

spawn(0, MultiplY(Ixx , Gx, Gx));

spawn(1, MultiplY(Iyy , Gy, Gy));

spawn(2, MultiplY(Ixy , Gx, Gy))

);

barrier(

spawn(0, Gauss(Sxx , Ixx));

spawn(1, Gauss(Syy , Iyy));

spawn(2, Gauss(Sxy , Ixy))

);

barrier(

spawn(0, CoarsitY(out ,

Sxx , Syy , Sxy))

)

Figure 7.3: A part of Harris, and one possible SPIRE core language repre-
sentation

...

spawn(0, Gauss(Sxx , Ixx));

spawn(1, Gauss(Syy , Iyy));

spawn(2, Gauss(Sxy , Ixy))

...

...

spawn(1, Gauss(Sxx , Ixx));

spawn(2, Gauss(Syy , Iyy));

Gauss(Sxy , Ixy)

...

Figure 7.4: SPIRE representation of a part of Harris, non optimized (left)
and optimized (right)

cluster number 3 for its logical number 3 (3 = 4− 2 + 1).

Barrier statements Sstructured formed from all cluster stages Sbarrier in
the sequence S constitute the new sequence S� that we build in Function
unstructured to structured; by default, the execution attribute of this
sequence is sequential.

The code in the right hand side of Figure 7.5 contains barrier state-
ments with only one spawn statement that can be omitted (as an opti-
mization). Moreover, in the same figure, note how S01 and S02 are appar-
ently reversed; this is a consequence, in our algorithm 21, of the function
topsort unstructured, where statements are generated in the order of the
graph traversal.
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//S

{

//S0

for(i = 1; i <= N; i++){

A[i] = 5; //S01

B[i] = 3; //S02

}

//S1

for(i = 1; i <= N; i++){

A[i] = foo(A[i]); //S11

C[i] = bar(); //S12

}

//S2

for(i = 1; i <= N; i++)

B[i] = baz(B[i]); //S21

//S3

for(i = 1; i <= N; i++)

C[i] += A[i]+ B[i];//S31

}

barrier(

spawn(0, forloop(i, 1, N, 1,

barrier(

spawn(1, B[i] = 3);

spawn(2, A[i] = 5)

),

sequential ))

);

barrier(

spawn(0, forloop(i, 1, N, 1,

barrier(

spawn(2, A[i] = foo(A[i]));

spawn(3, C[i] = bar())

),

sequential ));

spawn(1,

forloop(i, 1, N, 1,

B[i] = baz(B[i]),

sequential ))

);

barrier(

spawn(0, forloop(i, 1, N, 1,

C[i] += A[i]+B[i],

sequential ))

)

Figure 7.5: A simple C code (hierarchical), and its SPIRE representation

The execution attribute of the loops in Figure 7.5 is sequential, but
they are actually parallel. Note that, regarding these loops, since we adopt
the task parallelism paradigm, it may be useful to apply the tiling trans-
formation and then perform full unrolling of the outer loop. We give more
details of this transformation in the protocol of our experiments in Sec-
tion 8.4. This way, the input code contains more parallel tasks, spawn loops
with sequential execution attribute, resulting from the parallel loops.

7.3 From Shared Memory to Distributed Memory
Transformation

This section provides a second illustration of the type of parallel transfor-
mations that can be performed thanks to SPIRE: from shared memory to
distributed memory transformation. Given the complexity of this issue, as
illustrated by the vast existing related work (see Section 7.3.1), the work
reported in this section is preliminary and exploratory.

The send and recv primitives of SPIRE provide a simple communication
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API adaptable for message-passing libraries/languages such as MPI and
thus distributed memory system architectures. In these architectures, the
data domain of whole programs should be partitioned into disjoint parts
and mapped to different processes that have separate memory spaces. If a
process accesses a non-local variable, communications must be performed.
In our case, send and recv SPIRE functions have to be added to the parallel
intermediate representation of distributed memory code.

7.3.1 Related Work: Communications Generation

Many researchers have been generating communication routines between
several processors (general purpose, graphical, accelerator,...) and have been
trying to optimize the generated code. A large amount of literature already
exists and large amount of work has been done to address this problem
since the early 1990s. However, no practical and efficient general solution
currently exists [27].

Amarasinghe and Lam [15] generate send and receive instructions nec-
essary for communication between multiple processors. Goumas et al. [50]
generate automatically message-passing code for tiled iteration spaces. How-
ever, these two works handle only perfectly nested loops with uniform de-
pendences. Moreover, the data parallelism code generation proposed in [15]
and [50] produces an SPMD (single program multiple data) program to be
run on each processor; this is different from our context of task parallelism
with its hierarchical approach.

Bondhugula [27], in their automatic distributed memory code generation
technique, use the polyhedral framework to compute communication sets
between computations under a given iteration of the parallel dimension of
a loop. Once more, the parallel model is nested loops. Indeed, he “only”
needs to transfer written data from one iteration to another of read mode of
the same loop, or final writes for all data, to be aggregated once the entire
loop is finished. In our case, we need to transfer data from one or many
iterations or many of a loop to different loop(s), knowing that data spaces
of these loops may be interlaced.

Cetus contains a source-to-source OpenMP to MPI transformation [23],
where at the end of a parallel construct, each participating process com-
municates the shared data it has produced and that other processes may
use.

STEP [80] is a tool that transforms a parallel program containing high-
level directives of OpenMP into a message-passing program. To generate
MPI communications, STEP constructs (1) send updated array regions
needed at the end of a parallel section, and (2) receive array regions needed
at the beginning of a parallel section. Habel et al.[53] present a directive-
based programming model for hybrid distributed and shared memory sys-
tems. Using pragmas distribute and gridify, they distribute nested loop
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dimensions and array data among processors.

The OpenMP to GPGPU compiler framework [76] transforms OpenMP
to GPU code. In order to generate communications, it inserts memory
transfer calls for all shared data accessed by the kernel functions and defined
by the host, and data written in the kernels and used by the host.

Amini et al [17] generate memory transfers between a computer host
and its hardware GPU (CPU-GPU) using data flow analysis; this latter is
also based on array regions.

The main difference with our context of task parallelism with hierarchy
is that these works generate communications between different iterations of
nested loops or between one host and GPUs. Indeed, we have to transfer
data between two different entire loops or two iterations of different loops.

In this section, we describe how to figure out which pieces of data have
to be transferred. We construct array region transfers in the context of a
distributed-memory homogeneous architecture.

7.3.2 Difficulties

Distributed-memory code generation becomes a problem much harder than
the ones addressed in the above related works (see Section 7.3.1) because
of the hierarchical aspect of our methodology. In this section, we illustrate
how communication generation impose a set of challenges in terms of ef-
ficiency and correctness of the generated code and the coherence of data
communications.

Inter-Level Communications

In the example in Figure 7.6, we suppose given this schedule which, although
not efficient, is useful to illustrate the difficulty of sending an array, element
by element, from the source to the sink dependence extracted from the DDG.
The difficulty occurs when these source and sink belong to different levels
of hierarchy in the code i.e, the loop tree or test branches.

Communicating element by element is simple in the case of array B in S12

since no loop-carried dependence exists. But, when a dependence distance
is greater than zero, such as is the case of Array A in S11, sending only
A[0] to S11 is required, although generating exact communications in such
cases requires more sophisticated static analyses that we do not have. Note
that asend is a macro instruction for an asynchronous send; it is detailed in
Section 7.3.3.

Non-Uniform Dependence Distance

In previous works (see Section 7.3.1), only uniform (constant) loop-carried
dependences were considered. When a dependence is non-uniform, i.e, the
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//S

{

//S0

for(i = 0; i < N; i++){

A[i] = 5; //S01

B[i] = 3; //S02

}

//S1

for(i = 1; i < N; i++){

A[i] = foo(A[i-1]); //S11

B[i] = bar(B[i]); //S12

}

}

forloop(i, 0, N-1, 1,

barrier(

spawn(0, A[i] = 5;

if(i==0,

asend(1, A[i]),

nop));

spawn(1, B[i] = 3,

asend(0, B[i])

), sequential );

forloop(i, 1, N-1, 1,

barrier(

spawn(1, if(i==1,

recv(0, A[i-1]),

nop);

A[i] = foo(A[i -1]));

spawn(0, recv(1, B[i])),

B[i] = bar(B[i]))

)

), sequential)

Figure 7.6: An example of a shared memory C code and its SPIRE code
efficient communication primitive-based distributed memory equivalent

dependence distance is not constant as in the two codes in Figure 7.7, know-
ing how long dependences are for Array A and generating exact communica-
tions in such cases is complex. The problem is even more complicated when
nested loops are used and arrays are multidimensional. Generating exact
communications in such cases requires more sophisticated static analyses
that we do not have.

//S

{

//S0

for(i = 0; i < N; i++){

A[i] = 5; //S01

B[i] = 3; //S02

}

//S1

for(i = 0; i < N; i++){

A[i] = A[i-p] + a; //S11

B[i] = A[i] * B[i];//S12

p = B[i];

}

}

//S

{

//S0

for(i = 0; i < N; i++){

A[i] = 5; //S01

B[i] = 3; //S02

}

//S1

for(i = 0; i < N; i++){

A[i] = A[p*i-q] + a;//S11

B[i] = A[i] * B[i]; //S12

}

}

Figure 7.7: Two examples of C code with non-uniform dependences
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Exact Analyses

We presented in Section 6.3 our cost models: we rely on array region anal-
ysis to overapproximate communications. This analysis is not always exact.
PIPS generates approximations (see Section 2.6.3 on page 34), noted by the
MAY attribute, if an over- or under-approximation has been used because
the region cannot be exactly represented by a convex polyhedron. While
BDSC scheduling is still robust in spite of these approximations (see Sec-
tion 8.6), they can affect the correctness of the generated communications.
For instance, in the code presented in Figure 7.8, the quality of array regions
analysis may pass from EXACT to MAY if a region contains holes, as is the
case of S0. Also, while the region of A in the case of S1 remains EXACT
because the exact region is rectangular, the region of A in the case of S2 is
MAY since it contains holes.

//S0

// < A(φ1)−R− MAY− {1 ≤ φ1, φ1 ≤ N} >
// < A(φ1)−W − MAY− {1 ≤ φ1, φ1 ≤ N} >

for(i = 1 ; i <= N ; i++)

if(i != N/2)

A[i] = foo(A[i]);

//S1

// < A(φ1)−R− EXACT− {2 ≤ φ1, φ1 ≤ 2×N} >
// < B(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ N} >

for(i = 1 ; i <= N ; i++)

// < A(φ1)−R− EXACT− {i+ 1 ≤ φ1, φ1 ≤ i+N} >
// < B(φ1)−W − EXACT− {φ1 = i} >

for(j = 1 ; j <= N ; j++)

B[i] = bar(A[i+j]);

//S2

// < A(φ1)−R− MAY− {2 ≤ φ1, φ1 ≤ 2×N} >
// < B(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ N} >

for(j = 1 ; j <= N ; j++)

B[j] = baz(A[2*j]);

Figure 7.8: An example of a C code and its read and write array regions
analysis for two communications from S0 to S1 and to S2

Approximations are also propagated when computing in and out regions
for Array A (see Figure 7.9). In this chapter, communications are computed
using in and out regions such as communicating A from S0 to S1 and to S2

in Figure 7.9.

7.3.3 Equilevel and Hierarchical Communications

As transferring data from one task to another when they are not at the same
level of hierarchy is unstructured and too complex, designing a compilation
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//S0

// < A[φ1]− IN − MAY− {1 ≤ φ1, φ1 ≤ N} >
// < A[φ1]−OUT − MAY− {2 ≤ φ1, φ1 ≤ 2N,φ1 ≤ N} >

for(i = 1; i <= N; i++)

if (i!=n/2)

A[i] = foo(A[i]);

//S1

// < A[φ1]− IN − EXACT− {2 ≤ φ1, φ1 ≤ 2N} >
for(i = 1; i <= n; i += 1)

// < A[φ1]− IN − EXACT− {i+ 1 ≤ φ1, φ1 ≤ i+N} >
for(j = 1; j <= n; j += 1)

B[i] = bar(A[i+j]);

//S2

// < A[φ1]− IN − MAY− {2 ≤ φ1, φ1 ≤ 2N} >
for(j = 1; j <= n; j += 1)

B[j] = baz(A[j*2]);

Figure 7.9: An example of a C code and its in and out array regions analysis
for two communications from S0 to S1 and to S2

scheme for such cases might be overly complex and even possibly jeopardize
the correctness of the distributed memory code. In this thesis, we propose a
compositional static solution that is structured and correct but which may
communicate more data than necessary but their coherence is guaranteed.

Communication Scheme

We adopt a hierarchical scheme of communication between multiple levels
of nesting of tasks and inside one level of hierarchy. An example of this
scheme is illustrated in Figure 7.10, where each box represents a task τ .
Each box is seen as a host of its enclosing boxes, and an edge represents a
data dependence. This scheme illustrates an example of configuration with
two nested levels of hierarchy. The level is specified with the superscript on
τ in the figure.

Once structured parallelism is generated (sequential sequences of barrier
and spawn statements)4, the second step is to add send and recv SPIRE call
statements when assuming a message-passing language model. We detail in
this section our specification of communications insertion in SPIRE.

We divide parallelism into hierarchical and equilevel parallelisms and dis-
tinguish between two types of communications, namely, inside a sequence,
zero hierarchy level (equilevel), and between hierarchy levels (hierarchical).

In Figure 7.11, where edges represent possible communications, τ
(1)
0 , τ

(1)
1

4Note that communications can also be constructed from an unstructured code; one
has to manipulate unstructured statements rather than sequence ones.



7.3. FROM SHARED MEMORY TO DISTRIBUTED MEMORY... 163

�
�

���

�
�

���

�
�

���

�
�

���

�
	

���

�



���

�
�

���

��
�

���

��
�

���

��
�

���

��
�

���

��
	

���

��



���

��
�

���

���
�

���

���
�

���

���
�

���

���
�

���

���
	

���

���



���

���
�

���

Figure 7.10: Scheme of communications between multiple possible levels of
hierarchy in a parallel code; the levels are specified with the superscripts on
τ ’s

and τ
(1)
2 are enclosed in the vertex τ

(0)
1 that is in the same sequence as

τ
(0)
0 . The dependence (τ

(0)
0 , τ

(0)
1 ) for instance denotes an equilevel commu-

nication of A; also, the dependence (τ
(1)
0 , τ

(1)
2 ) denotes an equilevel commu-

nication of B, while (τ
(0)
1 , τ

(1)
0 ) is a hierarchical communication of A. We

use two main steps to construct communications via equilevel com and
hierarchical com functions that are presented below.

The key limitation of our method is that it cannot enforce memory con-
straints when applying the BDSC-based hierarchical scheduling, which uses
an iterative approach on the number of applications of BDSC (see Sec-
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Figure 7.11: Equilevel and hierarchical communications

tion 6.5). Therefore, our proposed solution for the generation of communi-
cations cannot be applied when strict limitations on memory are imposed at
scheduling time. However, our code generator can easily verify if the data
used and written at each level can be maintained in the specific clusters.

As a summary, compared to the works presented in Section 7.3.1, we
do not improve upon them (regarding non-affine dependences or efficiency).
However, we extend their ideas to our problem of generating communica-
tion in task parallelism within a hierarchical code structure, which is more
complex than theirs.

Assumptions

For our communication scheme to be valid, the following assumptions must
be met for proper communications generation:

• all write regions are exact in order to guarantee the coherence of data
communications;

• non-uniform dependences are not handled;

• more data than necessary are communicated but their coherence is
guaranteed thanks to the topological sorting of tasks involved by com-
munications. This ordering is also necessary to avoid deadlocks;

• the order in which the send and receive operations are performed is
matched in order to avoid deadlock situations;

• HBDSC algorithm is applied without the memory constraint (M = ∞);

• the input shared-memory code is a structured parallel code with spawn

and barrier constructs;
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• all send operations are non-blocking in order to avoid deadlocks. We
presented in SPIRE (see Section 4.2.4 on page 74 how non-blocking
communications can be implemented in SPIRE using the blocking
primitives within spawned statements). Therefore, we assume that we
use an additional process Ps for performing non-blocking send com-
munications and a macro instruction asend for asynchronous send as
follows:

asend(dest , data) = spawn(Ps, send(dest , data))

7.3.4 Equilevel Communications Insertion Algorithm

Function equilevel com presented in Algorithm 23 computes first the equi-
level data (array regions) to communicate from (when neighbors = prede-
cessors) or to (when neighbors = successors) Si inside an SDG G (a code
sequence) using the function equilevel regions presented in Algorithm 24.
After the call to the equilevel regions function, equilevel com creates
a new sequence statement S�

i via the sequence function. S�
i contains the

receive communication calls, Si and the asend communication calls. After
that, it updates σ with S�

i and returns it. Recall that the || symbol is used
for the concatenation of two lists.

ALGORITHM 23: Equilevel communications for Task τi inside SDG G, updating

a schedule σ

function equilevel_com(τi, G, σ, neighbors)

Si = vertex_statement(τi);
coms = equilevel_regions(Si, G, σ, neighbors );

L = (neighbors = successors) ? coms : ∅;
L ||= [Si];

L ||= (neighbors = predecessors) ? coms : ∅;
S�

i = sequence(L);

return σ[Si → (S�

i, cluster(σ(Si)), nbclusters(σ(Si)))];

end

Function equilevel regions traverses all neighbors τn (successors or
predecessors) of τi (task of Si) in order to generate asend or recv statements
calls for τi if they are not in the same cluster. Neighbors are traversed
throughout a topological sort-ordered descent in order to impose an order
between multiple send or receive communication calls between each pair of
clusters.

We thus guarantee the coherence of communicated data and avoid commu-
nication deadlocks. We use the function topsort ordered that computes
first the topological sort of the transitive closure of G and then accesses the
neighbors of τi in such an order. For instance, the graph in the right of
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ALGORITHM 24: Array regions for Statement Si to be transferred inside SDG

G (equilevel)

function equilevel_regions(Si, G, σ, neighbors)

κi = cluster(σ(Si));

τi = statement_vertex(Si, G);

coms = ∅;
foreach τn ∈ topsort_ordered(G, neighbors(τi, G))

Sn = vertex_statement(τn);
κn = cluster(σ(Sn));

if(κi �= κn)

R = (neighbors = successors) ? transfer_data(τi, τn) :

transfer_data(τn, τi);
coms ||= com_calls(neighbors , R, κn);

return coms;

end

Figure 7.12 shows the result of the topological sort of the predecessors of
τ4 of the graph in the left. Function equilevel regions returns the list of
communications performed inside G by Si.

�
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Figure 7.12: A part of an SDG and the topological sort order of predecessors
of τ4

Communication calls are generated in two steps (the two functions pre-
sented in Algorithm 25):

First, the transfer data function is used to compute which data ele-
ments have to be communicated in form of array regions. It returns the
elements that are involved in RAW dependence between two tasks τ and
τsucc. It filters the out and in regions of the two tasks in order to get
these dependences; it uses edge regions for this filtering. edge regions

are computed during the construction of the SDG in order to maintain the
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ALGORITHM 25: Two functions to construct a communication call: data to

transfer and call generation

function transfer_data(τ , τsucc)
R�

o = R�

i = ∅;
Ro = out_regions(vertex_statement(τ ));
foreach ro ∈ Ro

if(∃ r ∈ edge_regions(τ , τsucc) / entity(r) = entity(ro))

R�

o ∪= ro;

Ri = in_regions(vertex_statement(τsucc));
foreach ri ∈ Ri

if(∃ r ∈ edge_regions(τ , τsucc) / entity(r) = entity(ri))

R�

i ∪= ri;

return regions_intersection(R�

o, R�

i);

end

function com_calls(neighbors , R, κ)
coms = ∅
i = cluster_number(κ);
com = (neighbors = successors) ? “asend” : “recv”;
foreach r ∈ R

coms ||= region_to_coms(r, com , i);

return coms;

end

dependences that label the edges of the DDG (see Section 6.2.1 on page 113).
The intersection between the two results is returned5. For instance, in the
graph on the right of Figure 7.12, if N is written also in τ1, filtering out
regions of τ1 avoids to receive N twice (N comes from τ1 and τ3).

Second, communication calls are constructed via the function com calls

that, from the cluster κ of the statement source (asend) or sink (recv) of
the communication and the set of data in term of regions R, generates a list
of communication calls coms. These communication calls are the result of
the function region to coms already implemented in PIPS [20]. This func-
tion converts a region to a code of send/receive instructions that represent
the communications of the integer points contained in a given parameterized
polyhedron, from this region. An example is illustrated in Figure 7.13 where
the write regions are exact and the other required assumptions are verified.
In (b) of the figure, the intersection between in regions of S2 and out regions
of S1 is converted to a loop of communication calls using region to coms

function. Note that the current version of our implementation prototype
of region to coms is in fact unable to manage this somewhat complicated
case. Indeed, the task running on Cluster 0 needs to know the value of the

5We assume that Rr is combined with the path transformer between the statements of
τ and τsucc.
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structure variable M to generate a proper communication with the task on
Cluster 1 (see Figure 7.13 (b)). M would need to be sent by Cluster 1, where
it is known, before the sending loop is run. Thus, our current implemen-
tation assumes that all variables in the code generated by region to coms

are known in each communicating cluster. For instance, in Figure 7.13 with
M replaced by N , region to coms will perform correctly. This constraint
was not a limitation in the experimental benchmarks tested in Chapter 8.

//S1

// < A(φ1)−W − EXACT− {1 ≤ φ1, φ1 ≤ N} >
// < A[φ1]−OUT − MAY− {2 ≤ φ1, φ1 ≤ 2×M} >

for(i = 1; i <= N; i++)

A[i] = foo();

//S2

// < A[φ1]−R− MAY− {2 ≤ φ1, φ1 ≤ 2×M} >
// < A[φ1]− IN − MAY− {2 ≤ φ1, φ1 ≤ 2×M} >

for(i = 1; i <= M; i++)

B[i] = bar(A[i*2]);

(a) •

spawn(0,

for(i = 1; i <= N; i++)

A[i] = foo();

for(i = 2; i <= 2*M; i++)

asend(1, A[i]);

)

spawn(1,

for(i = 2; i <= 2*M; i++)

recv(0, A[i]);

for(i = 1; i <= M; i++)

B[i] = bar(A[i*2]);

)

(b) •

Figure 7.13: Communications generation from a region using
region to coms function

Also, in the part of the main function presented in the left of Figure 7.3,
the statement MultiplY(Ixy, Gx, Gy); scheduled on Cluster number 2
needs to receive both Gx and Gy from Clusters number 1 and 0 (see Fig-
ure 6.16). The receive calls list thus generated for this statement using our
algorithm is6:

recv(1, Gy);

6Since the whole array is received, the region is converted to a simple instruction, no
loop is needed.
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recv(0, Gx);

7.3.5 Hierarchical Communications Insertion Algorithm

Data transfers are also needed between different levels of the code hierar-
chy because each enclosed task requires data from its enclosing one and
vice versa. To construct these hierarchical communications, we introduce
Function hierarchical com, presented in Algorithm 26.

ALGORITHM 26: Hierarchical communications for Statement S to its hierar-

chical parent clustered in κp

function hierarchical_com(S, neighbors , σ, κp)

Rh = (neighbors = successors) ? out_regions(S) :

in_regions(S);

coms = com_calls(neighbors , Rh, κp);

seq = (neighbors = predecessors) ? coms : ∅
|| [S]

|| (neighbors = successors) ? coms : ∅;
S� = sequence(seq);

σ = σ[S → (S�, cluster(σ(S)), nbclusters(σ(S)))];
return (σ, Rh);

end

This function generates asend or recv statements in calls for each task
S and its hierarchical parent (enclosing vertex) scheduled in Cluster κp.
First, it constructs the list of transfers Rh that gathers the data to be
communicated to the enclosed vertex; Rh can be defined as in regions

or out regions of a task S. Then, from this set of transfers Rh, com-
munication calls coms (recv from the enclosing vertex or asend to it) are
generated. Finally, σ, updated with the new statement S, and the set of
regions Rh that represents the data to be communicated this time from the
side of the enclosing vertex, are returned.

For instance, in Figure 7.11, for the task τ
(1)
0 , the data elements Rh to

send from τ
(1)
0 to τ

(0)
1 are the out regions of the statement labeled τ

(1)
0 .

Thus, the hierarchical asend calls from τ
(1)
0 to its hierarchical parent τ

(1)
1 is

constructed using, as argument, Rh.

7.3.6 Communications Insertion Main Algorithm

Function communications insertion presented in Algorithm 27 constructs
a new code (asend and recv primitives are generated). It uses a hierarchical
schedule σ, that maps each substatement s of S to σ(s) = (s�, κ, n) (see
Section 6.5), to handle new statements. It uses also the function hierarchical
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SDG mapping H that we use to recover the SDG of each statement (see
Section 6.2).

ALGORITHM 27: Communication primitives asend and recv insertion in

SPIRE

function communications_insertion(S, H, σ, κp)

κ = cluster(σ(S));
n = nbclusters(σ(S));
switch (S)

case call:

return σ;
case sequence(S1;...;Sn):

G = H(S);

h_recvs = h_sends = ∅;
foreach τi ∈ topsort(G)

Si = vertex_statement(τi);
κi = cluster(σ(Si));

σ = equilevel_com(τi, G, σ, predecessors );

σ = equilevel_com(τi, G, σ, successors );

if(κp �= NULL ∧ κp �= κi)

(σ, h_Rrecv) =

hierarchical_com(Si, predecessors , σ, κp);

h_sends ||= com_calls(successors , h_Rrecv, κi);

(σ, h_Rsend) =

hierarchical_com(Si, successors , σ, κp);

h_recvs ||= com_calls(predecessors , h_Rsend, κi);

σ = communications_insertion(Si, H, σ, κi);

S� = parallel(σ(S));
S�� = sequence(h_sends || [S�] || h_recvs );

return σ[S� → (S��, κ, n)];

case forloop(I, Elower, Eupper, Sbody):

σ = communications_insertion(Sbody, H, σ, κp);

(S�

body, κbody, nbclustersbody) = σ(Sbody);

return σ[S → (forloop(I, Elower, Eupper, S�

body), κ, n)];

case test(Econd, St, Sf ):

σ = communications_insertion(St, H, σ, κp);

σ = communications_insertion(Sf , H, σ, κp);

(S�

t, κt, nbclusters t) = σ(St);

(S�

f , κf , nbclustersf ) = σ(Sf );

return σ[S → (test(Econd, S�

t, S�

f ), κ, n)];

end

Equilevel

To construct equilevel communications, all substatements Si in a sequence
S are traversed. For each Si, communications are generated inside each
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sequence via two calls to the function equilevel com presented above, one
with the function neighbors equal to successors to compute asend calls,
the other with the function predecessors to compute recv calls. This
ensures that each send operation is matched to an appropriately-ordered
receive operation, avoiding deadlock situations. We use the function H
that returns an SDG G for S, while G is essential to access dependences
and thus communications between the vertices τ of G, whose statements
s = vertex statement(τ) are in S.

Hierarchical

We construct also hierarchical communications that represent data transfers
between different levels of hierarchy, because each enclosed task requires data
from its enclosing one. We use the function hierarchical com, presented
above, that generates asend or recv statements in calls for each task S
and its hierarchical parent (enclosing vertex) scheduled in Cluster κp. Thus,
the argument κp is propagated in communications insertion in order to
keep correct the information of the cluster of the enclosing vertex. The
returned set of regions, h Rsend or h Rrecv, that represents the data to be
communicated at the start and end of the enclosed vertex τi, is used to
construct, respectively, send and recv communication calls on the side of
the enclosing vertex of S. Note that hierarchical send communications need
to be performed before running S�, to ensure that subtasks can run. More-
over, no deadlocks can occur, in this scheme, because the enclosing task
executes send/receive statements sequentially before spawning its enclosed
tasks, which run concurrently.

The top level of a program presents no hierarchy. In order not to generate
hierarchical communications that are not necessary, as an optimization, we
use the test (κp �= NULL). Knowing that for the first call to the function
communications insertion, κp is set to NULL. This is necessary to prevent
the generation of hierarchical communication for Level 0.

Example

As an example, we apply the phase of communication generation to the
code presented in Figure 7.5 to generate SPIRE code with communications;
both equilevel (noted with comments equilevel) and hierarchical (noted with
comments hierarchical) communications are illustrated in the right of Fig-
ure 7.14. Moreover, a graphical illustration of these communications is given
in Figure 7.15.

7.3.7 Conclusion and Future Work

As said before, the work presented in this section is a preliminary and ex-
ploratory solution that we believe is useful for suggesting the potentials of
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for(i = 0;i < N;i++){

A[i] = 5;

B[i] = 3;

}

for(i = 0;i < N;i++){

A[i] = foo(A[i]);

C[i] = bar();

}

for(i = 0;i < N;i++)

B[i] = baz(B[i]);

for(i = 0;i < N;i++)

C[i] += A[i]+ B[i];

barrier(

spawn(0, forloop(i, 1, N, 1,

asend(1, i); // hierarchical

asend(2, i)); // hierarchical

barrier(

spawn(1,

recv(0, i); // hierarchical

B[i] = 3;

asend(0, B[i]));// hierarchical

spawn(2,

recv(0, i); // hierarchical

A[i] = 5;

asend(0, A[i])); // hierarchical

); recv(1, B[i]); // hierarchical

recv(2, A[i]) // hierarchical

, sequential );

asend(1, B))); // equilevel

barrier(

spawn(0, forloop(i, 1, N, 1,

asend(2, i); // hierarchical

asend(2, A[i]); // hierarchical

asend(3, i); // hierarchical

barrier(

spawn(2,

recv(0, i); // hierarchical

recv(0, A[i]); // hierarchical

A[i] = foo(A[i]);

asend(0, A[i])); // hierarchical

spawn(3,

recv(0, i); // hierarchical

C[i] = bar();

asend(0, C[i])); // hierarchical

); recv(2, A[i]); // hierarchical

recv(3, C[i]) // hierarchical

, sequential ));

spawn(1, recv(0, B); // equilevel

forloop(i, 1, N, 1,

B[i] = baz(B[i]), sequential );

asend(0, B)); // equilevel

barrier(

spawn(0, recv(1, B); // equilevel

forloop(i, 1, N, 1,

C[i] += A[i]+B[i], sequential )))

Figure 7.14: Equilevel and hierarchical communications generation and
SPIRE distributed memory representation of a C code
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Figure 7.15: Graph illustration of communications made in the C code of
Figure 7.14; equilevel in green arcs, hierarchical in black

our task parallelization in the distributed memory domain. It may also serve
as a base for future work to generate more efficient code than ours.

In fact, the solution proposed in this section may communicate more data
than necessary but their coherence is guaranteed thanks to the topological
sorting of tasks involved by communications at each level of generation:
equilevel (ordering of neighbors of every task in an SDG) and hierarchical
(ordering of tasks of an SDG). Moreover, as a future work, we intend to
optimize the generated code by eliminating redundant communications and
aggregating small messages to larger ones.

For instance, hierarchical communications transfer all out regions from
the enclosed task to its enclosing task. A more efficient scheme than this one
would be to not send all out regions of the enclosed task but only regions
that will not be modified afterward. This is another track of optimization
to eliminate redundant communications that we leave for future work.

Moreover, we optimize the generated code by imposing that the current
cluster executes the last nested spawn. The result of application of this
optimization on the code presented in the right of Figure 7.14 is illustrated in
the left of Figure 7.16. We also eliminate barriers with one spawn statement;
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the result is illustrated in the right of Figure 7.16.

barrier(

forloop(i, 1, N, 1,

asend(1, i);

barrier(

spawn(1,

recv(0, i);

B[i] = 3;

asend(0, B[i]));

A[i] = 5

);

recv(1, B[i]);

, sequential)

);

barrier(

spawn(1, forloop(i,1,N,1,

asend(2, i);

asend(2, A[i]);

barrier(

spawn(2,

recv(0, i);

recv(0, A[i]);

A[i] = foo(A[i]);

asend(0, A[i]));

C[i] = bar()

);

recv(2, A[i]);

, sequential ));

forloop(i, 1, N, 1,

B[i] = baz(B[i]),

sequential)

);

barrier(

forloop(i, 1, N, 1,

C[i] += A[i]+B[i],

sequential)

)

forloop(i, 1, N, 1,

asend(1, i);

barrier(

spawn(1,

recv(0, i);

B[i] = 3;

asend(0, B[i]));

A[i] = 5

);

recv(1, B[i]);

, sequential );

barrier(

spawn(1, forloop(i,1,N,1,

asend(2, i);

asend(2, A[i]);

barrier(

spawn(2,

recv(0, i);

recv(0, A[i]);

A[i] = foo(A[i]);

asend(0, A[i]));

C[i] = bar()

);

recv(2, A[i]);

, sequential ));

forloop(i, 1, N, 1,

B[i] = baz(B[i]),

sequential)

);

forloop(i, 1, N, 1,

C[i] += A[i]+B[i],

sequential)

Figure 7.16: Equilevel and hierarchical communications generation after
optimizations: the current cluster executes the last nested spawn (left) and
barriers with one spawn statement are removed (right)
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7.4 Parallel Code Generation

SPIRE is designed to fit different programming languages, thus facilitating
the transformation of codes for different types of parallel systems. Exist-
ing parallel language constructs can be mapped into SPIRE. We show in
this section how this intermediate representation simplifies the targeting of
various languages via a simple mapping approach and use the prettyprinted
generations of OpenMP and MPI as an illustration.

7.4.1 Mapping Approach

Our mapping technique to a parallel language is made of three steps, namely:
(1) the generation of parallel tasks by translating spawn attributes and syn-
chronization statements by translating barrier attributes to this language,
(2) the insertion of communications by translating asend and recv primi-
tives to this target language, if this latter uses a distributed memory model,
and (3) the generation of hierarchical (nested) parallelism by exploiting the
code hierarchy. For efficiency reasons, we assume that the creation of tasks
is done once at the beginning of programs; after that, we just synchronize
the tasks, which are thus persistent.

Task Parallelism

The parallel code is generated in a fork/join manner; a barrier statement
encloses spawned parallel tasks. Mapping SPIRE to an actual parallel lan-
guage consists in transforming the barrier and spawn annotations of SPIRE
into the equivalent calls or pragmas available in the target language.

Data Distribution

If the target language uses a shared-memory paradigm, no additional changes
are needed to handle this language. Otherwise, if it is a message-passing li-
brary/language, a pass of insertion of appropriate asend and recv primitives
of SPIRE is necessary (see section 7.3). After that, we generate the equiv-
alent communication calls of the corresponding language from SPIRE by
transforming asend and recv primitives into these equivalent communica-
tion calls.

Hierarchical Parallelism

Along this thesis, we take into account the hierarchy structure of code to
achieve maximum efficiency. Indeed, exploiting the hierarchy of code when
scheduling the code via the HBDSC algorithm, within the pass of transforma-
tion of SPIRE via the unstructured to structured algorithm, and also
when generating both equilevel and hierarchical communications, made it
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possible to handle hierarchical parallelism in order to generate more par-
allelism. Moreover, we take into account the ability of parallel languages
to implement hierarchical parallelism, and thus improve the performance of
the generated parallel code. Figure 7.5 on page 157 illustrates zero and one
level of hierarchy in the generated SPIRE code (right): we have generated
equilevel and hierarchical SPIRE(PIPS IR).

7.4.2 OpenMP Generation

OpenMP 3.0 has been extended with tasks and thus supports both task
and hierarchical task parallelism for shared memory systems. For efficiency,
since the creation of threads is done once at the beginning of the program,
omp parallel pragma is used once in the program. This section details the
generation of OpenMP task parallelism features using SPIRE.

Task Parallelism

OpenMP supports two types of task parallelism: the dynamic, via omp task

directive, and static, via omp section directive, scheduling models (see Sec-
tion 3.4.4 on page 50). In our implementation of the OpenMP back-end
generation, we choose to generate omp task instead of omp section tasks
for four reasons, namely:

1. the HBDSC scheduling algorithm uses a static approach, and thus
we want to combine the static results of HBDSC with the run-time
dynamic scheduling of OpenMP provided when using omp task, in
order to improve scheduling;

2. unlike the omp section directive, the omp task directive allows the
implementation of recursive parallel tasks;

3. omp section may only be used in omp sections construct, and thus,
we cannot implement a parallel loop using omp sections;

4. the actual implementations of OpenMP do not provide the possibility
of nesting many omp sections, and thus, cannot take advantage of the
BDSC-based hierarchical parallelization (HBDSC) feature to exploit
more parallelism.

As regards the use of the OpenMP task construct, we apply a simple
process: a SPIRE statement annotated with the synchronization attribute
spawn is decorated by the pragma omp task. An example is illustrated in
Figure 7.17, where the SPIRE code in the left hand side is rewritten in
OpenMP on the right hand side.
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Synchronization

In OpenMP, the user can specify explicitly synchronization to handle control
and data dependences, using the omp single pragma for example. There,
only one thread (omp single pragma) will encounter a task construct (omp
task), to be scheduled and executed by any thread in the team (the set of
threads created inside an omp parallel pragma). Therefore, a statement
annotated with the SPIRE synchronization attribute barrier is decorated
by the pragma omp single. An example is illustrated in Figure 7.17.

barrier(

spawn(0, Gauss(Sxx , Ixx));

spawn(1, Gauss(Syy , Iyy));

spawn(2, Gauss(Sxy , Ixy))

)

#pragma omp single

{

#pragma omp task

Gauss(Sxx , Ixx);

#pragma omp task

Gauss(Syy , Iyy);

#pragma omp task

Gauss(Sxy , Ixy);

}

Figure 7.17: SPIRE representation of a part of Harris, and its OpenMP task
generated code

Hierarchical Parallelism

SPIRE handles multiple levels of parallelism providing a trade-off between
parallelism and synchronization overhead. This is taken into account at
scheduling time, using our BDSC-based hierarchical scheduling algorithm.
In order to generate hierarchical parallelism in OpenMP, the same process as
above of translating spawn and barrier SPIRE annotations should be ap-
plied. However, synchronizing nested tasks (with synchronization attribute
barrier) using omp single pragma cannot be used because of a restric-
tion of OpenMP-compliant implementations: single regions may not be
closely nested inside explicit task regions. Therefore, we use the pragma
omp taskwait for synchronization when encountering a statement anno-
tated with a barrier synchronization. The second barrier in the left of
Figure 7.18 implements nested parallel tasks; omp taskwait is then used
(right of the figure) to synchronize the two tasks spawned inside the loop.
Note also that the barrier statement with zero spawn statement (left of the
figure) is omitted in the translation (right of the figure) for optimization
purposes.
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barrier(

spawn(0,

forloop(i, 1, N, 1,

barrier(

spawn(1, B[i] = 3);

spawn(2, A[i] = 5)

),

sequential ))

);

...

barrier(

spawn(0,

forloop(i, 1, N, 1,

C[i] = A[i]+B[i],

sequential ))

)

#pragma omp single

{

for(i = 1; i <= N; i += 1) {

#pragma omp task

B[i] = 3;

#pragma omp task

A[i] = 5;

#pragma omp taskwait

}

...

for(i = 1; i <= N; i += 1)

C[i] = A[i]+B[i];

}

Figure 7.18: SPIRE representation of a C code, and its OpenMP hierarchical
task generated code

7.4.3 SPMDization: MPI Generation

MPI is a message-passing library; it is widely used to program distributed-
memory systems. We show here the generation of communications between
processes. In our technique, we adopt a model, often called “SPMDization”,
of parallelism where processes are created once at the beginning of the pro-
gram (static creation), each process executes the same code and the number
of processes remains unchanged during execution. This allows to reduce the
process creation and synchronization overheads. We state in Section 3.4.5 on
page 52 that MPI processes are created when the MPI Init function is called;
it defines also the universal intracommunicatorMPI COMM WORLD for all
processes to drive various communications. We use rank of process parame-
ter rank0 to manage the relation between process and task; this rank is ob-
tained by calling the function MPI Comm rank(MPI COMM WORLD, &rank0 ).
This section details the generation of MPI using SPIRE.

Task Parallelism

A simple SPMDization technique is applied, where a statement with the syn-
chronization attribute spawn of parameter entity0 that specifies the cluster
number (process in the case of MPI) is filtered by an if statement on the
condition rank0 == entity0 . An example is illustrated in Figure 7.19.
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Communication and Synchronization

MPI supports distributed memory systems, we have to generate commu-
nications between different processes. MPI Isend and MPI Recv functions
are called to replace communication primitives asend and recv of SPIRE.
MPI Isend [3] starts a nonblocking send. These communication functions
are sufficient to ensure the synchronization between different processes. An
example is illustrated in Figure 7.19.

...

barrier(

spawn(0,

Gauss(Sxx , Ixx)

);

spawn(1,

Gauss(Syy , Iyy);

asend(0, Syy)

);

spawn(2,

Gauss(Sxy , Ixy);

asend(0, Sxy)

)

);

...

MPI_Init (&argc , &argv);

MPI_Comm_rank (MPI_COMM_WORLD , &rank0 );

...

if (rank0 ==0)

Gauss(Sxx , Ixx);

if (rank0 ==1) {

Gauss(Syy , Iyy);

MPI_Isend(Syy , N*M, MPI_FLOAT , 0, MPI_ANY_TAG ,

MPI_COMM_WORLD , &request );

}

if (rank0 ==2) {

Gauss(Sxy , Ixy);

MPI_Isend(Sxy , N*M, MPI_FLOAT , 0, MPI_ANY_TAG ,

MPI_COMM_WORLD , &request );

}

...

MPI_Finalize ();

Figure 7.19: SPIRE representation of a part of Harris, and its MPI generated
code
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Hierarchical Parallelism

Most people use only MPI COMM WORLD as a communicator between
MPI processes. This universe intracommunicator is not enough for handling
hierarchical parallelism. MPI implementation offers the possibility of creat-
ing subset communicators via the function MPI Comm split [82] that creates
new communicators from an initially defined communicator. Each new com-
municator can be used in a level of hierarchy in the parallel code. Another
scheme consists in gathering the code of each process and then assigning the
code to the corresponding process.

In our implementation of the generation of MPI code from SPIRE code,
we leave the implementation of hierarchical MPI as future work: we imple-
ment only flat MPI code. Another type of hierarchical MPI is obtained by
merging MPI and OpenMP together (hybrid programming) [12]; this is also
called multi-core-aware message-passing (MPI). We also discuss this in the
future work section (see Section 9.2).

7.5 Conclusion

The goal of this chapter is to put the first brick of a framework of parallel
code transformations and generation using our BDSC- and SPIRE-based
hierarchical task parallelization techniques. We present two parallel trans-
formations: first, from unstructured to structured parallelism for high-level
abstraction of parallel constructs and, second, the conversion of shared mem-
ory programs to distributed ones. For these two transformations, we juggle
with SPIRE constructs for performing them. Moreover, we show the gener-
ation of task parallelism and communications at both levels: equilevel and
hierarchical. Finally, we generate both OpenMP and MPI from the same
parallel IR derived from SPIRE, except for the hierarchical MPI that we
leave as future work.

The next chapter provides experimental results using OpenMP and MPI
generated programs via the methodology presented in this thesis, based on
HBDSC scheduling algorithm and SPIRE-derived parallel languages.





Chapter 8

Experimental Evaluation
with PIPS

Experience is a lantern tied behind our backs, which illuminates the path.

Confucius

In this chapter, we describe the integration of SPIRE and HBDSC within
the PIPS compiler infrastructure and their application to the parallelization
of five significant programs, targeting both shared and distributed mem-
ory architectures: the image and signal processing benchmarks Harris and
ABF, the SPEC2001 benchmark equake, the NAS parallel benchmark IS
and an FFT code. We present the experimental results we obtained for
these benchmarks; our experiments suggest that HBDSC’s focus on efficient
resource management leads to significant parallelization speedups on both
shared and distributed memory systems, improving upon DSC results, as
shown by the comparison of the sequential and parallelized versions of these
five benchmarks running on both OpenMP and MPI frameworks.

We provide also a comparative study between our task parallelization
implementation in PIPS and that of the audio signal processing language
Faust, using two Faust programs: Karplus32 and Freeverb.

Dans ce chapitre, nous décrivons l’intégration de SPIRE et HBDSC au
sein de l’infrastructure de compilation PIPS et leur application à la par-
allélisation de cinq “programmes test” (benchmarks) importants, ciblant à la
fois les architectures à mémoires partagée et distribuée : les programmes de
traitement d’image et de traitement du signal Harris et ABF, le programme
equake de SPEC2001, le programme NAS IS et un code de transformée de
Fourier rapide, FFT. Nous présentons les résultats expérimentaux que nous
avons obtenus pour ces programmes. Nos expériences suggèrent que l’accent
mis par HBDSC sur la gestion efficace des contraintes de ressources con-
duit à des accélérations de parallélisation importantes sur les systèmes à
mémoire aussi bien partagée que distribuée. Cela surpasse nettement les
résultats obtenus en utilisant simplement DSC, comme le montre la com-
paraison des versions séquentielles et parallélisées de ces cinq programmes,
écrites en OpenMP et MPI.

Nous fournissons également une étude comparative entre notre impléme-
ntation de parallélisation de tâches dans PIPS et celle utilisée dans le langage
audio de traitement du signal Faust, en nous fondant sur deux programmes
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écrits au départ en Faust : Karplus32 et Freeverb.

8.1 Introduction

The HBDSC algorithm presented in Chapter 6 has been designed to offer
better task parallelism extraction performance for parallelizing compilers
than traditional list-scheduling techniques such as DSC. To verify its ef-
fectiveness, BDSC has been implemented in the PIPS compiler infrastruc-
ture and tested on programs written in C. Both the HBDSC algorithm and
SPIRE are implemented in PIPS. Recall that HBDSC is the hierarchical
layer that adapts a scheduling algorithm (DSC, BDSC...) which handles
a DAG (sequence) for a hierarchical code. The analyses of estimation of
time execution of tasks, dependences and communications between tasks
for computing tlevel and blevel are also implemented in PIPS.

In this chapter, we provide experimental BDSC-vs-DSC comparison re-
sults based on the parallelization of five benchmarks, namely ABF [52],
Harris [96], equake [22], IS [87] and FFT [?]. We chose these particular
benchmarks since they are well-known benchmarks and exhibit task paral-
lelism that we hope our approach will be able to take advantage of. Note
that, since our focus in this chapter is to compare BDSC with prior work,
namely DSC, our experiments in this chapter do not address the hierarchical
component of HBDSC.

BDSC uses numerical constants to label its input graph; we show in
Section 6.3 how we lift this restriction using static and dynamic approaches
based on array region and complexity analyses. In this chapter, we study
experimentally the input sensitivity issues on the task and communication
time estimations in order to assess the scheduling robustness of BDSC since
it relies on approximations provided by these analyses.

Several existing systems already automate the parallelization of pro-
grams targeting different languages (see Section 6.6) such as the non-open-
source compiler OSCAR [63]. In the goal of comparing our approach with
others, we choose the audio signal processing language Faust [88] because it
is an open-source compiler and also generates automatically parallel tasks
in OpenMP.

The remainder of this chapter is structured as follows. We detail the
implementation of HBDSC in Section 8.2. Section 8.3 presents the scientific
benchmarks under study: Harris, ABF, equake, IS and FFT, the two target
machines that we use for our measurements, and also the effective cost
model parameters that depend on each target machine. Section 8.4 explains
the process we follow to parallelize these benchmarks. Section 8.5 provides
performance results when these benchmarks are parallelized on the PIPS
platform targeting a shared memory architecture and a distributed memory
architecture. We also assess the sensitivity of our parallelization technique
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on the accuracy of the static approximations of the code execution time used
in task scheduling, in Section 8.6. Section 8.7 provides a comparative study
between our task parallelization implementation in PIPS and that of Faust
when dealing with audio signal processing benchmarks.

8.2 Implementation of HBDSC- and SPIRE-Based
Parallelization Processes in PIPS

We have implemented the HBDSC parallelization (Chapter 6) and some
SPIRE-based parallel code transformations and generation (Chapter 7) al-
gorithms in PIPS. PIPS is structured as a collection of independent code
analysis and transformation phases that we call passes. This section de-
scribes the order and the composition of passes that we have implemented
in PIPS to enable the parallelization of sequential C77 language programs.
Figure 8.1 summarizes the parallelization processes.

These passes are managed by the Pipsmake library1. Pipsmake manages
objects that are resources stored in memory or/and on disk. The passes are
described by generic rules that indicate used and produced resources. Ex-
amples of these rules are illustrated in the following subsections. Pipsmake
maintains the global data consistency intra- and inter-procedurally.

The goal of the following passes is to generate the parallel code expressed
in SPIRE(PIPS IR) using HBDSC scheduling algorithm, then communica-
tions primitives and, finally, OpenMP and MPI codes, in order to automate
the task parallelization of sequential programs.

Tpips2 is the line interface and scripting language of the PIPS system.
The execution of the necessary passes is obtained by typing their name in
the command line interpreter of PIPS, tpips. Figure 8.2 depicts harris.tpips,
the script used to execute our shared and distributed memory parallelization
processes on the benchmark Harris. It chains the passes described in the
following subsections.

8.2.1 Preliminary Passes

Sequence Dependence Graph Pass

Pass sequence dependence graph generates the Sequence Dependence Graph
(SDG), as explained in Section 6.2. It uses in particular the dg resource (data
dependence graph) of PIPS and outputs the resulting SDG in the resource
sdg.

sequence_dependence_graph > MODULE.sdg

1http://cri.ensmp.fr/PIPS/pipsmake.html
2http://www.cri.ensmp.fr/pips/tpips-user-manual.htdoc/tpips-user-

manual.pdf

http://cri.ensmp.fr/PIPS/pipsmake.html
http://www.cri.ensmp.fr/pips/tpips-user-manual.htdoc/tpips-user-manual.pdf
http://www.cri.ensmp.fr/pips/tpips-user-manual.htdoc/tpips-user-manual.pdf
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Figure 8.1: Parallelization process: blue indicates thesis contributions; an
ellipse, a pass or a set of passes; and a rectangle, results

< PROGRAM.entities

< MODULE.code



186 Chapter 8: Experimental Evaluation with PIPS

#Create a workspace for the program harris.c

create harris harris.c

apply SEQUENCE_DEPENDENCE_GRAPH[main]

shell dot -Tpng harris.database/main/main_sdg.dot > main_sdg.png

shell gqview main_sdg.png

setproperty HBDSC_NB_CLUSTERS 3

apply HBDSC_PARALLELIZATION[main]

apply SPIRE_UNSTRUCTURED_TO_STRUCTURED[main]

#Print the result on stdout

display PRINTED_FILE[main]

echo // OMP style

activate OPENMP_TASK_GENERATION

activate PRINT_PARALLELIZEDOMPTASK_CODE

display PARALLELPRINTED_FILE[main]

echo // MPI style

apply HBDSC_GEN_COMMUNICATIONS[main]

activate MPI_TASK_GENERATION

activate PRINT_PARALLELIZEDMPI_CODE

display PARALLELPRINTED_FILE[main]

#Print the scheduled SDG of harris

shell dot -Tpng harris.database/main/main_ssdg.dot > main_ssdg.png

shell gqview main_scheduled_ssdg.png

close

quit

Figure 8.2: Executable (harris.tpips) for harris.c

< MODULE.proper_effects

< MODULE.dg

< MODULE.regions

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

Code Instrumentation Pass

We model the communication costs, data sizes and execution times of differ-
ent tasks with polynomials. These polynomials have to be converted to nu-
merical values in order to be used by BDSC algorithm. We instrument thus,
using the pass hbdsc code instrumentation, the input sequential code and
run it once in order to obtain the numerical values of the polynomials. The
instrumented code contains the initial user code plus statements that com-
pute the values of the cost polynomials for each statement (as detailed in
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Section 6.3.2).

hbdsc_code_instrumentation > MODULE.code

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.dg

< MODULE.regions

< MODULE.summary_complexity

Path Transformer Pass

The path transformer (see Section 6.4) between two statements computes the
possible changes performed by a piece of code delimited by two statements
Sbegin and Send enclosed within a statement S. The goal of the following
pass is to compute the path transformer between two statements labeled by
the labels sbegin and ssend in the code resource. It outputs a resource file
that contains the resulting transformer.

path_transformer > MODULE.path_transformer_file

< PROGRAM.entities

< MODULE.code

< MODULE.proper_effects

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

8.2.2 Task Parallelization Passes

HBDSC Task Parallelization Pass

Pass hbdsc parallelization applies HBDSC on the resulting SDG (the
input resource dg) and generates a parallel code in an unstructured form
using the resource dg implementing the scheduled SDG. Resource schedule
implements our function of hierarchical schedule σ (see Section 6.5); it maps
each statement to a given cluster. This pass implements the HBDSC algorithm
presented in Section 6.5, Algorithm 19. Note that Algorithm 19 uses the
unstructured construct instead of scheduled SDG to represent unstructured
parallelism. Our prototype uses SDG instead for historical reasons. This
pass uses the analyses of regions, preconditions, transformers, complexities
and effects and outputs scheduled SDG, in the resource dg, and a function
σ in the resource schedule.

hbdsc_parallelization > MODULE.sdg

< PROGRAM.entities > MODULE.schedule
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< MODULE.code

< MODULE.proper_effects

< MODULE.sdg

< MODULE.regions

< MODULE.summary_complexity

< MODULE.transformers

< MODULE.preconditions

< MODULE.cumulated_effects

Parallelism Structuring Pass

Pass hbdsc parallelization generates unstructured parallelism. The goal
of the following pass is to structure this parallelism. Pass spire uns-

tructured to structured transforms the parallelism generated in form of
graphs (SDG) into spawn and barrier constructs. It uses the scheduled
SDG and the schedule function σ (the resource schedule) and generates a
new code (structured), and updates the schedule resource, since it adds to
the schedule the newly created statements of the new code. This pass im-
plements Algorithm unstructured to structured presented in Section 7.2,
Algorithm 21.

spire_unstructured_to_structured > MODULE.code

< PROGRAM.entities > MODULE.schedule

< MODULE.code

< MODULE.sdg

< MODULE.schedule

HBDSC Tuning

In PIPS, one can use different properties to parameterize passes and select
the precision required or the algorithm to use. Default properties are de-
fined by PIPS but they can be redefined by the user using the command
setproperty when the tpips interface is used.

The following properties are used by Pass hbdsc parallelization to
allow the user to define the number of clusters and memory size, based on
the properties of the target architecture.

The number of clusters is set by default to 4, the memory size to −1
which means that we have infinite memory.

HBDSC_NB_CLUSTERS 4

HBDSC_MEMORY_SIZE -1

In order to control the granularity of parallel tasks, we introduce the
following property. By default, we generate the maximum parallelism in
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codes. Otherwise, i.e. when COSTLY TASKS ONLY is TRUE, only loops
and function calls are used as parallel tasks. This is important in order to
make a trade-off between task creation overhead and task execution time.

COSTLY_TASKS_ONLY FALSE

The next property specifies if communication, data and time information
is to be extracted from the result of the instrumentation and stored into
HBDSC INSTRUMENTED FILE file, which is a dynamic analysis, or if the static
cost models have to be used. The default option is an empty string. It
means that static results have to be used.

HBDSC_INSTRUMENTED_FILE ""

8.2.3 OpenMP Related Passes

SPIRE is designed to help generate code for different types of parallel lan-
guages, just like different parallel languages can be mapped into SPIRE.
The four following passes show how this intermediate representation simpli-
fies the task of producing code for various languages such as OpenMP and
MPI (see Section 8.2.4).

OpenMP Task Generation Pass

Pass openmp task generation generates OpenMP task parallel code from
SPIRE(PIPS IR) as detailed in Section 7.4.2. It replaces spawn constructs
by the OpenMP directives omp task, barrier constructs by omp single

or omp taskwait. It outputs a new resource, parallelized code, for the
OpenMP code.

openmp_task_generation > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code

OpenMP Prettyprint Pass

The next pass print parallelizedOMPTASK code is a pretty printing func-
tion. It outputs the code decorated with OpenMP (omp task) directives
using parallelized code resource.

print_parallelizedOMPTASK_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code
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8.2.4 MPI Related Passes: SPMDization

Automatic Data Distribution Pass

Pass hbdsc gen communications generates send and recv primitives. It
implements the algorithm communications construction presented in Sec-
tion 7.3, Algorithm 27. It takes as input the parallel code (< symbol) and
the precedent resources of the sequential code (= symbol). It generates a
new parallel code that contains communications calls.

hbdsc_gen_communications > MODULE.code

< PROGRAM.entities

< MODULE.code

= MODULE.dg

= MODULE.schedule

= MODULE.proper_effects

= MODULE.preconditions

= MODULE.regions

MPI Task Generation Pass

The same process applies for MPI. The pass mpi task generation generates
MPI parallel code from SPIRE(PIPS IR) as detailed in Section 7.4.3. It
replaces spawn constructs by guards (if statements), barrier constructs by
MPI barrier, send functions by MPI Isend and recv functions by MPI Recv.
Note that we leave the issue of generation of hierarchical MPI as future work.
Our implementation generates only flat MPI code (a sequence of non-nested
tasks).

mpi_task_generation > MODULE.parallelized_code

< PROGRAM.entities

< MODULE.code

MPI Prettyprint Pass

Pass print parallelizedMPI code outputs the code decorated with MPI
instructions.

print_parallelizedMPI_code > MODULE.parallelprinted_file

< PROGRAM.entities

< MODULE.parallelized_code

We generate an MPI code in the format described in Figure 8.3.
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{

/* declare variables */

MPI_Init (&argc , &argv);

/* parse arguments */

/* main program */

MPI_Finalize ();

}

Figure 8.3: A model of an MPI generated code

8.3 Experimental Setting

We carried out experiments to compare DSC and BDSC algorithms. BDSC
provides significant parallelization speedups on both shared and distributed
memory systems on the set of benchmarks that we present in this section.
We also present the cost model parameters that depend on the target ma-
chine.

8.3.1 Benchmarks: ABF, Harris, Equake, IS and FFT

For comparing DSC and BDSC, on both shared and distributed memory
systems, we use five benchmarks, ABF, Harris, Equake, IS and FFT, briefly
presented below.

ABF

The signal processing benchmark ABF (Adaptive Beam Forming) [52] is a
1,065-line program that performs adaptive spatial radar signal processing
for an array of smart radar antennas in order to transmit or receive signals
in different directions and enhance these signals by minimizing interference
and noise. It has been developed by Thales [106] and is publicly available.
Figure 8.4 shows the scheduled SDG of the function main of this benchmark
on three clusters (κ0, κ1 and κ2). This function contains 7 parallel loops
while the degree of task parallelism is only three (there are three parallel
tasks at most). In Section 8.4 we show how we use these loops to create
more parallel tasks.

Harris

The image processing algorithm Harris [54] is a 105-line image processing
corner detector used to identify points of interest. It uses several functions
(operators such as auto-correlation) applied to each pixel of an input image.
It is used for feature extraction for motion detection and image matching. In
Harris [96], at most three tasks can be executed in parallel. Figure 6.16 on
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Figure 8.4: Scheduled SDG of the main function of ABF

page 139 shows the scheduled SDG for Harris obtained using three processors
(aka clusters).

Equake (SPEC Benchmarks)

The 1,432-line SPEC benchmark equake [22] is used in the simulation of seis-
mic wave propagation in large valleys, based on computations performed on
an unstructured mesh that locally resolves wavelengths, using the Archimedes
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finite element method. Equake contains four hot loops: three in the function
main and one in the function smvp opt. A part of the function main is illus-
trated in Figure 6.5 on page 117. We use these four loops for parallelization.

IS (NAS Parallel Benchmarks)

Integer Sort (IS) is one of the eleven benchmarks in the NAS Parallel Bench-
marks suite [87]. The serial version contains 1,076 lines. We exploit the hot
function rank of IS that contains a degree of task parallelism of two and two
parallel loops.

FFT

Fast Fourier Transform (FFT) is widely used in many areas of science, math-
ematics and engineering. We use the implementation of FFT3 of [8]. In FFT,
for N complex points, both time domain decomposition and frequency do-
main synthesis require three loops. The outer loop runs through the log2N
stages. The middle loop (chunks) moves through each of the individual fre-
quency spectra (chunk) in the stage being worked on. The innermost loop
uses the Butterfly pattern to compute the points for each frequency of the
spectrum. We use the middle loop for parallelization since it is parallel (each
chunk can be launched in parallel).

8.3.2 Experimental Platforms: Austin and Cmmcluster

We use the two following experimental platforms for our performance eval-
uation tests.

Austin

The first target machine is a host Linux (Ubuntu) shared memory machine
with a 2-socket AMD quadcore Opteron with 8 cores, with M = 16 GB
of RAM, running at 2.4 GHz. We call this machine Austin in the remain-
der of this chapter. The version of gcc 4.6.3 is installed where the version
of OpenMP 3.0 is supported (we use gcc to compile, using -fopenmp for
OpenMP programs and -O3 as optimization flags).

Cmmcluster

The second machine that we target for our performance measurements is a
host Linux (RedHat) distributed memory machine with 6 dual-core proces-
sors Intel(R) Xeon(R), with M = 32 GB of RAM per processor, running
at 2.5 GHz. We call this machine Cmmcluster in the remainder of this
chapter. The versions of gcc 4.4.6 and Open MPI 1.6.2 are installed and
used for compilation (we use mpicc to compile MPI programs and -O3 as
optimization flags).
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8.3.3 Effective Cost Model Parameters

In the default cost model of PIPS, the number of clock cycles per instruction
(CPI) is equal to 1 and the number of clock cycles for the transfer of one byte
is β = 1. Instead of using this default cost model, we use an effective model
for each target machine, Austin and Cmmcluster. Table 8.1 summarizes the
cost model for the integer and floating-point operations of addition, subtrac-
tion, multiplication, division and transfer cost of one byte. The parameters
of the arithmetic operations of this table are extracted from agner.org3 that
gives the measurements of CPU clock cycles for AMD (Austin) and Intel
(Cmmcluster) CPUs. The transfer cost of one byte in number of cycles β
has been measured by using a simple MPI program that sends a number
of bytes over the Cmmcluster memory network. Since Austin is a shared
memory machine that we use to execute OpenMP codes, we do not need to
measure β for this machine (NA).

















Operation
Machine Austin Cmmcluster

int float int float

Addition (+) 2.5 2 3 3
Subtraction (-) 2.5 2 3 3

Multiplication (×) 3 2 11 3
Division (/) 40 30 46 39

One byte transfer (β) NA NA 2.5 2.5

Table 8.1: CPI for the Austin and Cmmcluster machines, plus the transfer
cost of one byte β on the Cmmcluster machine (in #cycles)

8.4 Protocol

We have extended PIPS with our implementation in C of BDSC-based hi-
erarchical scheduling (HBDSC). To compute the static execution time and
communication cost estimates needed by HBDSC, we relied upon the PIPS
run time complexity analysis and a more realistic, architecture-dependent
communication cost matrix (see Table 8.1). For each code S of our test
benchmarks, PIPS performed automatic task parallelization, applied our
hierarchical scheduling process HBDSC(S, P , M , ⊥) (using either BDSC or
DSC) on these sequential programs to yield a schedule σunstructured (un-
structured code). Then, PIPS transforms the schedule σunstructured via
unstructured to structured(S, P , σunstructured) to yield a new schedule
σstructured. PIPS automatically generated an OpenMP [4] version from the
parallel statements encoded in SPIRE(PIPS IR) in σstructured(S), using omp

task directives; another version, in MPI [3], was also generated. We also

3http://www.agner.org/optimize/instruction_tables.pdf

http://www.agner.org/optimize/instruction_tables.pdf
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applied the DSC scheduling process on these benchmarks and generated the
corresponding OpenMP and MPI codes. The execution times have been
measured using gettimeofday time function.

Compilation times for these benchmarks were quite reasonable, the longest
(equake) being 84 seconds. In this last instance, most of the time (79 sec-
onds) was spent by PIPS to gather semantic information such as regions,
complexities and dependences; our prototype implementation of HBDSC is
only responsible for the remaining 5 seconds.

We ran all these parallelized codes on the two shared and distributed
memory computing systems presented in Section 8.3.2. To increase available
coarse-grain task parallelism in our test suite, we have used both unmodified
and modified versions of our benchmarks. We tiled and fully unrolled by
hand the most costly loops in ABF (7 loops), FFT (2 loops) and equake
(4 loops); the tiling factor for the BDSC version depends on the number
of available processors P (tile size = number of loop iterations / P ), while
we had to find the proper one for DSC, since DSC puts no constraints
on the number of needed processors but returns the number of processors
its scheduling requires. For Harris and IS, our experiments have looked
at both tiled and untiled versions of the benchmarks. The full unrolling
that we apply for our experiments creates a sequence of statements from
a nested loop. An example of loop tiling and full unrolling of a loop of
the ABF benchmark is illustrated in Figure 8.5. The function COR estimates
covariance based on a part of the received signal sel out, averaged on Nb rg

range gates and nb pul pulses. Note that the applied loop tiling is equivalent
to loop chunking [84].

For our experiments, we use M = 16 GB for Austin and M = 32 GB
for Cmmcluster. Thus, the schedules used for our experiments satisfy these
memory sizes.

8.5 BDSC vs. DSC

We apply our parallelization process on the benchmarks ABF, Harris, Equake
and IS. We execute the parallel versions on both the Austin and Cmmclus-
ter machines. As for FFT, we get an OpenMP version and study how more
performance can be extracted using streaming languages.

8.5.1 Experiments on Shared Memory Systems

We measured the execution time of the parallel OpenMP codes on the P =
1, 2, 4, 6 and 8 cores of Austin.

Figure 8.6 shows the performance results of the generated OpenMP code
on the two versions scheduled using DSC and BDSC on ABF and equake.
The speedup data show that the DSC algorithm is not scalable on these
examples, when the number of cores is increased; this is due to the generation
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// Parallel loop

for (i=0;i<19;i++)

COR(Nb_rg ,nb_pul ,sel_out[i],

CORR_out[i]);

(a) Loop on Function COR

for (i=0;i<19;i+=5)

for (j=i;j < min(i+5 ,19);j++)

COR(Nb_rg ,nb_pul ,sel_out[j],

CORR_out[j]);

(b) Loop block tiling on Function COR

(tile size = 5 for P = 4)

for (j=0;j<5;j++)

COR(Nb_rg , nb_pul , sel_out[j], CORR_out[j]);

for (j=5;j<10;j++)

COR(Nb_rg , nb_pul , sel_out[j], CORR_out[j]);

for (j=10;j<15;j++)

COR(Nb_rg , nb_pul , sel_out[j], CORR_out[j]);

for (j=15;j<19;j++)

COR(Nb_rg , nb_pul , sel_out[j], CORR_out[j]);

(c) Full loop unrolling on Function COR

Figure 8.5: Steps for the rewriting of data parallelism to task parallelism
using the tiling and unrolling transformations

of more clusters (task creation overhead) with empty slots (poor potential
parallelism and bad load balancing) than with BDSC, a costly decision given
that, when the number of clusters exceeds P , they have to share the same
core as multiple threads.

� � � � �
�

�

�

�

�

�

� 	
����

	
��
��

���������

�������
��

���������������

�
�
�
�
�
�
�

 	
�!��"����
������!������#

Figure 8.6: ABF and equake speedups with OpenMP

Figure 8.7 presents the speedup obtained using P = 3, since the maxi-
mum parallelism in Harris is three, assuming no exploitation of data paral-
lelism, for two parallel versions: BDSC with and BDSC without tiling of the
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kernel CoarsitY (we tiled by 3). The performance is given using three dif-
ferent input image sizes: 1024×1024, 2048×1024 and 2048×2048. The best
speedup corresponds to the tiled version with BDSC because, in this case,
the three cores are fully loaded. The DSC version (not shown in the figure)
yields the same results as our versions because the code can be scheduled
using three cores.
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Figure 8.7: Speedups with OpenMP: impact of tiling (P=3)

Figure 8.8 shows the performance results of the generated OpenMP code
on the NAS benchmark IS after applying BDSC. The maximum task paral-
lelism without tiling in IS is two, which is shown in the first subchart; the
other subcharts are obtained after tiling. The program has been run with
three IS input classes (A, B and C [87]). The bad performance of our imple-
mentation for Class A programs is due to the large task creation overhead,
which dwarfs the potential parallelism gains, even more limited here because
of the small size of Class A data.

As for FFT, after tiling and fully unrolling the middle loop of FFT and
parallelizing it, an OpenMP version is generated using PIPS. Since we only
exploit the parallelism of the middle loop, this is not sufficient to obtain
good performance. Indeed, a maximum speed up of 1.5 is obtained for an
FFT of size n = 220 on Austin (8 cores). The sequential outer loop of log2n
iterations makes the performance that bad. However, our technique can be
seen as a first step of parallelization for languages such as OpenStream.

OpenStream [94] is a data-flow extension of OpenMP in which dynamic
dependent tasks can be defined. In [93], an efficient version of the FFT
is provided, where in addition to parallelizing the middle loop (data par-
allelism), it exploits possible streaming parallelism between the outer loop
stages. Indeed, once a chunk is executed, the chunks that get their depen-
dences satisfied in the next stage start execution (pipeline parallelism). This
way, a maximum speedup of 6.6 on a 4-socket AMD quadcore Opteron with
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Figure 8.8: Speedups with OpenMP for different class sizes (IS)

16 cores for size of FFT n = 220 [93] is obtained.
Our parallelization of FFT does not generate automatically pipeline par-

allelism but generates automatically parallel tasks that may also be coupled
as streams. In fact, to use OpenStream, the user has to write manually
the input streaming code. We can say that, thanks to the code generated
using our approach, where the parallel tasks are automatically generated,
the user just has to connect these tasks by providing (manually) the data
flow necessary to exploit additional potential pipeline parallelism.

8.5.2 Experiments on Distributed Memory Systems

We measured the execution time of the parallel codes on P = 1, 2, 4 and 6
processors of Cmmcluster.

Figure 8.9 presents the speedups of the parallel MPI vs. sequential ver-
sions of ABF and equake using P = 2, 4 and 6 processors. As before, the
DSC algorithm is not scalable, when the number of processors is increased,
since the generation of more clusters with empty slots leads to higher process
scheduling cost on processors and communication volume between them.

Figure 8.10 presents the speedups of the parallel MPI vs. sequential
versions of Harris using three processors. The tiled version with BDSC gives
the same result as the non-tiled version since the communication overhead
is so important when the three tiled loops are scheduled on three different
processors that BDSC scheduled them on the same processor; this led thus
to a schedule equivalent to the one of the non-tiled version. Compared to
OpenMP, the speedups decrease when the image size is increased because the
amount of communication between processors increases. The DSC version
(not shown on the figure) gives the same results as the BDSC version because
the code can be scheduled using three processors.

Figure 8.11 shows the performance results of the generated MPI code
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Figure 8.9: ABF and equake speedups with MPI
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Figure 8.10: Speedups with MPI: impact of tiling (P=3)

on the NAS benchmark IS after application of BDSC. The same analysis as
the one for OpenMP applies here, in addition to communication overhead
issues.

8.6 Scheduling Robustness

Since our BDSC scheduling heuristic relies on the numerical approximations
of the execution and communication times of tasks, one needs to assess
its sensitivity to the accuracy of these estimations. Since a mathematical
analysis of this issue is made difficult by the heuristic nature of BDSC and,
in fact, of scheduling processes in general, we provide below experimental
data that show that our approach is rather robust.
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Figure 8.11: Speedups with MPI for different class sizes (IS)

In practice, we ran multiple versions of each benchmark using various
static execution and communication cost models:

• the naive variant, in which all execution times and communications
costs are supposed constant (only data dependences are enforced dur-
ing the scheduling process);

• the default BDSC cost model described above;

• a biased BDSC cost model, where we modulated each execution time
and communication cost value randomly by at most ∆% (the default
BDSC cost model would thus correspond to ∆ = 0).

Our intent, with introduction of different cost models, is to assess how small
to large differences to our estimation of task times and communication costs
impact the performance of BDSC-scheduled parallel code. We would expect
that parallelization based on the naive variant cost model would yield the
worst schedules, thus motivating our use of complexity analysis for paral-
lelization purposes if the schedules that use our default cost model are indeed
better. Adding small random biases to task times and communication costs
should not modify too much the schedules (to demonstrate stability), while
adding larger ones might, showing the quality of the default cost model used
for parallelization.

Table 8.2 provides, for four benchmarks (Harris, ABF, equake and IS)
and execution environment (OpenMP and MPI), the worst execution time
obtained within batches of about 20 runs of programs scheduled using the
naive, default and biased cost models. For this last case, we only kept in
the table the entries corresponding to significant values of ∆, namely those
at which, for at least one benchmark, the running time changed. So, for
instance, when running ABF on OpenMP, the naive approach run time is
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321 ms, while BDSC clocks at 214; adding random increments to the task
communication and execution estimations provided by our cost model (Sec-
tion 6.3) of up to, but not including, 80% does not change the scheduling,
and thus running time. At 80%, running time increases to 230, and reaches
297 when ∆ = 3, 000. As expected, the naive variant always provides sched-

Benchmark Language BDSC Naive ∆ = 50(%) 80 100 200 1000 3000

Harris
OpenMP 153 277 153 153 153 153 153 277

MPI 303 378 303 303 303 303 303 378

ABF
OpenMP 214 321 214 230 230 246 246 297

MPI 240 310 240 260 260 287 287 310

equake
OpenMP 58 134 58 58 80 80 80 102

MPI 106 206 106 106 162 162 162 188

IS
OpenMP 16 35 20 20 20 25 25 29

MPI 25 50 32 32 32 39 39 46

Table 8.2: Run-time sensitivity of BDSC with respect to static cost estima-
tion (in ms for Harris and ABF; in s for equake and IS).

ules that have the worst execution times, thus motivating the introduction
of performance estimation in the scheduling process. Even more interest-
ingly, our experiments show that one needs to introduce rather large task
time and communication cost estimation errors, i.e., values of ∆, to make
the BDSC-based scheduling process switch to less efficient schedules. This
set of experimental data thus suggests that BDSC is a rather useful and
robust heuristic, well adapted to the efficient parallelization of scientific
benchmarks.

8.7 Faust Parallel Scheduling vs. BDSC

In music the passions enjoy themselves. Friedrich Nietzsche

Faust (Functional AUdio STream) [88] is a programming language for
real-time signal processing and synthesis. FAUST programs (DSP code) are
translated into equivalent imperative programs (C, C++, Java, etc.). In this
section, we compare our approach in generating omp task directives with
Faust approach in generating omp section directives.

8.7.1 OpenMP Version in Faust

The Faust compiler produces a single sample computation loop using the
scalar code generator. Then, the vectorial code generator splits the sample
processing loop into several simpler loops that communicate by vectors and
produces a DAG. Next, this DAG is topologically sorted in order to de-
tect loops that can be executed in parallel. After that, the parallel scheme
generates OpenMP parallel sections directives using this DAG in which
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each node is a computation loop; the granularity of tasks is only at the loop
level. Finally, the compiler generates OpenMP sections directives in which
a pragma section is generated for each loop.

8.7.2 Faust Programs: Karplus32 and Freeverb

In order to compare our approach with Faust’s in generating task parallelism,
we use Karplus32 and Freeverb as running examples [7].

Karplus32

The 200-line Karplus32 program is used to simulate the sound produced by
a string excitation passed through a resonator to modify the final sound. It
is an advanced version of a typical Karplus algorithm with 32 resonators in
parallel, instead of one resonator only.

Freeverb

The 800-line Freeverb program is free-software that implements artificial
reverberation. It filters echoes to generate a signal with reverberation. It
uses four Schroeder allpass filters in series and eight parallel Schroeder-
Moorer filtered-feedback comb-filters for each audio channel.

8.7.3 Experimental Comparison

Figure 8.12 shows the performance results of the generated OpenMP code on
Karplus32 after application of BDSC and Faust, for two sample buffer sizes:
count equals 1024 and 2048. Note that BDSC is performed on the generated
C codes of these two programs using Faust. The hot function in Karplus32
(compute, of 90 lines) contains only 2 sections in parallel; sequential code
represents about 60% of the whole code of Function compute. Since we
have only two threads that execute only two tasks, Faust execution is a
little better than BDSC. The dynamic scheduling of omp task cannot be
shown in this case due to the small amount of parallelism in this program.

Figure 8.13 shows the performance results of the generated OpenMP
code on Freeverb after application of BDSC and Faust, for two sizes: count
equals 1024 and 2048. The hot function in Freeverb (compute, of 500 lines)
contains up to 16 sections in parallel (the degree of task parallelism is equal
to 16); sequential code represents about 3% of the whole code of Function
compute. BDSC generates better schedules since it is based on sophisticated
cost models, uses top level and bottom level values for ordering, while Faust
proceeds by a topological ordering (only top level) and is based only on de-
pendence analysis. In this case, results show that BDSC generates better
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Figure 8.12: Run-time comparison (BDSC vs. Faust for Karplus32)

schedules and the generation of omp task instead of omp section is ben-
eficial. Furthermore, the dynamic scheduler of OpenMP can make better
decisions at run time.
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Figure 8.13: Run-time comparison (BDSC vs. Faust for Freeverb)

8.8 Conclusion

This chapter describes the integration of SPIRE and HBDSC within the
PIPS compiler infrastructure and their application for the automatic task
parallelization of seven sequential programs. We illustrate the impact of this
integration using the signal processing benchmark ABF (Adaptive Beam
Forming), the image processing benchmark Harris, the SPEC benchmark
equake and the NAS parallel benchmark IS on both shared and distributed
memory systems. We also provide a comparative study between our task
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parallelization implementation in PIPS and that of the audio signal pro-
cessing language Faust, using two Faust programs: Karplus32 and Freeverb.
Experimental results show that BDSC provides more efficient schedules than
DSC and Faust scheduler in these cases.

The application of BDSC for the parallelization of the FFT (OpenMP)
shows the limits of our task parallelization approach, but we suggest that
an interface with streaming languages such as OpenStream could be derived
from our work.





Chapter 9

Conclusion
Celui qui passe à côté de la plus belle histoire de sa vie n’aura que l’âge de ses

regrets et tous les soupirs du monde ne sauraient bercer son âme... Yasmina

Khadra

The interest in compiler design for parallel architectures has exploded in
the last decade, with the widespread availability of manycores and multi-
processors and the need for efficient parallelism management to profit from
these powerful computing resources. There are two main approaches to par-
allelism management: manual and automatic. For many reasons, practical
as well as more fundamental ones, an automatic approach has always been
quite appealing. Yet, designing an automatic parallelizing compiler is a big
challenge: this is a tricky task, which is still for the most part unsatisfied.

In this thesis, we have proposed a new method to automatically exploit
the parallelism present in applications and thus take advantage, with no cost
to the programmer, of the performance benefits multiprocessors can provide.
At an abstract level, we have thus delegated the “think parallel” mindset to
the compiler, which detects parallelism in sequential codes and, automati-
cally, writes equivalent efficient parallel code. To reach that goal, we have
developed an automatic task parallelization methodology for compilers: the
key characteristics we focus on are resource constraints and static scheduling.
It contains all the techniques required to decompose applications into tasks
and generate equivalent parallel code, using a generic approach that targets
different parallel languages and different architectures. We have applied
this extension methodology in an existing software tool, the comprehensive
source-to-source compilation platform PIPS.

To conclude this dissertation, we review its main contributions and re-
sults, and present future work opportunities.

9.1 Contributions

This thesis contains five main contributions.

HBDSC (Chapter 6)

We have extended the DSC scheduling algorithm to handle simultaneously
two resource constraints, namely a bounded amount of memory per proces-
sor and a bounded number of processors, which are key parameters when
scheduling tasks on actual multiprocessors. We have called this extension
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Bounded DSC (BDSC). The practical use of BDSC in a hierarchical manner
led to the development of a BDSC-based hierarchical scheduling algorithm
(HBDSC).

A standard scheduling algorithm works on a DAG (a sequence of state-
ments). To apply HBDSC on real applications, our approach was to first
build a Sequence Dependence DAG (SDG) for each sequence in an applica-
tion, to build the input of the BDSC algorithm. Then, we used the whole
code, presented in form of an AST, to define a hierarchical mapping func-
tion, that we call H, to map each sequence statement of the code to its
SDG. H is used as input of the HBDSC algorithm.

Since the volume of data used or exchanged by SDG tasks and their ex-
ecution times are key factors in the BDSC scheduling process, we estimate
this information as precisely as possible. We provide new cost models based
on execution time complexity estimation and convex polyhedral approxima-
tions of array sizes for the labeling of SDG vertices and edges. We look first
at the size of array regions to estimate precisely the communication costs
and data sizes used by tasks. Then, we compute Ehrhart polynomials that
represent the size of the message to communicate and volume of data, in
number of bytes. They are then converted into numbers of transfer instruc-
tion cycles. Besides, the execution time for each task is computed using a
static execution time approach based on a program complexity analysis pro-
vided by PIPS. Complexities, in number of cycles, are also represented via
polynomials. Finally, we use a static, when possible, or a code instrumenta-
tion method to convert these polynomials to the numerical values required
by BDSC.

Path Transformer Analysis (Chapter 6)

The cost models that we define in this thesis use affine expressions on pro-
gram variables. They are used in array regions to estimate the communica-
tions and data volumes induced by the execution of statements. We used a
set of operations on array regions such as the regions intersection func-
tion (see Section 6.3.1). However, one must be careful there, since region
operations should be defined with respect to a common memory store. In
this thesis, we introduced a new analysis that we call “path transformer”
analysis. A path transformer permits to compare array regions of state-
ments originally defined in different memory stores. We present a recursive
algorithm for the computation of path transformers between two statements
of specific iterations of their enclosing loops (if they exist). This algorithm
computes affine relations between program variables at any two points in
the program, from the memory store of the first statement to the memory
store of the second one, along any sequential execution that links the two
memory stores.
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SPIRE (Chapter 4)

An automatic parallelization platform should be adapted to different parallel
languages. In this thesis, we introduced SPIRE, which is a new and general
3-step extension methodology for mapping any intermediate representation
(IR) used in compilation platforms for representing sequential programming
constructs to a parallel IR. This extension of an existing IR introduces (1)
a parallel execution attribute for each group of statements, (2) a high-level
synchronization attribute on each statement and an API for low-level syn-
chronization events and (3) two built-ins for implementing communications
in message-passing memory systems.

A formal semantics of SPIRE transformational definitions is specified
using a two-tiered approach: a small-step operational semantics for its base
parallel concepts and a rewriting mechanism for high-level constructs. The
SPIRE methodology is presented via a use case, the intermediate represen-
tation of PIPS, a powerful source-to-source compilation infrastructure for
Fortran and C. In addition, we apply SPIRE on another IR, namely the one
of the widely-used LLVM compilation infrastructure.

Parallel Code Transformations and Generation (Chapter 7)

In order to test the flexibility of the parallelization approach presented in
this thesis, we put the first brick of a framework of parallel code trans-
formations and generation using our BDSC- and SPIRE-based hierarchical
task parallelization techniques. We provide two parallel transformations of
SPIRE-based constructs: first, from unstructured to structured parallelism,
for high-level abstraction of parallel constructs, and, second, the conversion
of shared memory programs to distributed ones. Moreover, we show the
generation of task parallelism and communications at different AST levels:
equilevel and hierarchical. Finally, we generate both OpenMP (hierarchical)
and MPI (only flat) from the same parallel IR derived from SPIRE.

Implementation and Experimental Results (Chapter 8)

A prototype of the algorithms presented in this thesis has been implemented
in the PIPS source-to-source compilation framework. It includes (1) an au-
tomatic parallelization technique for programs encoded in SPIRE(PIPS IR)
and based on BDSC, HBDSC, SDG, the cost models and the path trans-
former, plus DSC for comparison purposes; (2) a SPIRE-based parallel code
generation algorithm targeting two parallel languages, namely OpenMP and
MPI; and (3) two SPIRE-based parallel code transformations, from unstruc-
tured to structured code and from shared to distributed memory code.

We apply our parallelization technique on scientific applications. We
provide performance measurements for our parallelization approach, based
on five significant programs: the image and signal processing benchmarks
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Harris and ABF, the SPEC2001 benchmark equake, the NAS parallel bench-
mark IS, and the FFT, targeting both shared and distributed memory archi-
tectures. We use their automatic translations into two parallel languages:
OpenMP and MPI. Finally, we provide a comparative study between our
task parallelization implementation in PIPS and that of the audio signal
processing language Faust, using two Faust applications: Karplus32 and
Freeverb. Our results illustrate the ability of SPIRE(PIPS IR) to efficiently
express parallelism present in scientific applications. Moreover, our experi-
mental data suggests that our parallelization methodology is able to provide
parallel codes that encode a significant amount of the already-present intrin-
sic parallelism.

9.2 Future Work

The automatic parallelization problem is a set of many tricky subproblems,
as illustrated along this thesis or in the summary of contributions presented
above. Many new ideas and opportunities for further research have popped
up all along this thesis.

SPIRE

SPIRE is a “work in progress” for the extension of sequential IRs to com-
pletely fit multiple languages and different models. Future work could ad-
dress the representation via SPIRE of the PGAS memory model, of other
parallel execution paradigms such as speculation and of more programming
features such as exceptions. Another interesting question could be to see
how many of the existing program transformations performed by compilers
using sequential IRs can be preserved when these are extended via SPIRE.
Finally, the formal semantics introduced here could possibly be used in the
future for proving the legality of transformations of parallel codes.

HBDSC Scheduling

HBDSC assumes that all processors are homogeneous. It does not handle
heterogeneous devices efficiently. However, one can probably fit in easily
these architectures by adding another dimension to our cost models. We
suggest to add the parameter “processor type” to all the functions part of
the cost models such as task time (we have to define its time if mapped on
such an such processor) or edge cost (we have to define its cost when the
two tasks of the edge are mapped on such and such processor). Moreover,
each processor κi has its own memory Mi. Thus, our parallelization process
could target subsequently an adapted language that targets heterogeneous
architectures such as StarSs [21]. StarSs introduces an extension to the task
mechanism in OpenMP 3.0. It adds many features to the #pragma omp
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task construct, namely (1) dependences between tasks using the input,
output and inout clauses and (2) targeting of a task to hardware accel-
erators using #pragma omp target device(device-name-list), knowing
that an accelerator can be an SPE, a GPU...

Moreover, it might be interesting to try to find a more efficient hier-
archical processor allocation strategy, which would address load balancing
and task granularity issues, in order to yield an even better HBDSC-based
parallelization process.

Cost Models

Currently, there are some cases where our cost models cannot provide pre-
cise or even approximate information. When the array is a pointer (for
example with the declaration float *A while A is used as an array), the
compiler has no information about the size of the array. Currently, for such
cases, we have to change manually the programmer’s code to help the com-
piler. Moreover, currently, the complexity estimation of a while loop is not
computed, but there is already on-going work on this issue (in particular at
MINES ParisTech ), based on transformer analysis.

Parallel Code Transformations and Generation

Future work could address more transformations for parallel languages (à la
[84]) encoded in SPIRE. Moreover, the optimization of communications in
the generated code, by eliminating redundant communications and aggre-
gating small messages to larger ones, is an important issue since our current
implementation communicates more data than necessary.

In our implementation of MPI code generation from SPIRE code, we left
the implementation of hierarchical MPI as future work. Besides, another
type of hierarchical MPI can be obtained by merging MPI and OpenMP
(hybrid programming). However, since we use in this thesis a hierarchical
approach in both HBDSC and SPIRE generation, OpenMP can be seen, in
this case, as a sub-hierarchical model of MPI, i.e., OpenMP tasks could be
enclosed within MPI ones.

1 ������� ����� �� ���
�� ���� ��� ���� �� �
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1 In the eye of the small, small things are huge, but, for the great souls, huge things
appear small. Al-Mutanabbi
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L’intérêt pour la compilation visant les architectures parallèles a explosé lors
de la dernière décennie, du fait de la disponibilité maintenant commune de
multiprocesseurs à plusieurs coeurs et de la nécessité d’une prise en compte
efficace du parallélisme des tâches afin de profiter de ces ressources de calcul.
Cette gestion du parallélisme des programmes peut être envisagée essentielle-
ment de deux façons : manuelle ou automatique. Pour diverses raisons, aussi
bien pratiques que plus fondamentales, l’approche automatique a toujours
paru particulièrement attrayante. Toutefois, la conception d’un système
logiciel permettant une parallélisation automatique de programmes est un
défi immense ; cette automatisation est une opération délicate, et reste en-
core largement insatisfaisante.

Dans cette thèse, nous avons proposé une méthode nouvelle pour permet-
tre d’exploiter automatiquement le parallélisme présent dans les applications
et de profiter, en conséquence, de manière transparente pour le program-
meur, des capacités offertes par les multiprocesseurs. D’un point de vue
abstrait, nous proposons de déléguer le � penser parallèle � que requiert
la gestion du parallélisme au seul compilateur, chargé de détecter le par-
allélisme dans des codes séquentiels et d’écrire, automatiquement, un code
parallèle équivalent. Pour ce faire, avons développé une méthodologie de
parallélisation automatique des tâches pour les compilateurs. Les princi-
pales caractéristiques sur lesquelles nous avons concentré nos efforts sont
les contraintes de ressources et l’ordonnancement statique. Cette méthode
contient toutes les techniques nécessaires pour décomposer les applications
en tâches et générer un code parallèle équivalent, et ce en utilisant une ap-
proche générique qui vise différents langages et architectures parallèles. Afin
de valider en pratique ces propositions, nous avons incorporé cette méthode
comme extension dans un outil logiciel existant, à savoir la plate-forme de
compilation source à source complète PIPS.

Pour conclure cette thèse, nous en passons en revue les principales contri-
butions et résultats, et présentons certaines futures opportunités de travail.

Contributions

Cette thèse comprend cinq contributions principales.
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HBDSC (Chapitre 6)

Nous avons étendu l’algorithme d’ordonnancement DSC pour gérer simul-
tanément deux contraintes de ressources, à savoir un montant bornée de
mémoire par processeur et un nombre borné de processeurs ; ce sont des
paramètres clés lors de la planification de tâches sur les multiprocesseurs
réels. Nous avons appelé cette extension bornée de DSC (BDSC). L’utilisation
pratique de BDSC de manière hiérarchique a conduit à l’élaboration d’un
algorithme d’ordonnancement hiérarchique fondé sur BDSC (HBDSC).

Un algorithme standard d’ordonnancement opère traditionnellement sur
un DAG, représentant une séquence d’instructions. Pour appliquer HBDSC
sur une application donnée, notre approche a été d’utiliser les dépendances
de donnée pour construire d’abord un DAG spécifique pour chaque séquence
(SDG), qui servira d’entrée pour l’algorithme BDSC. Ensuite, nous avons
utilisé le code complet de l’application, présenté sous la forme d’un AST,
pour définir une fonction d’association hiérarchique ou mapping, que nous
appelons H, pour lié chaque séquence du code à son SDG. H est utilisé
comme entrée de l’algorithme de HBDSC .

Comme le volume de données utilisées ou échangées par les tâches d’un
SDG et leurs temps d’exécution sont des facteurs clés dans le processus de
planification BDSC, il convient d’estimer ces informations de manière aussi
précise que possible. Nous élaborons de nouveaux modèles de coûts fondés
sur l’estimation de la complexité algorithmique en temps du code et des ap-
proximations convexes polyédriques de la taille des tableaux ; ces données
sont utilisées pour réaliser l’étiquetage des sommets et des arêtes des SDG.
Nous tirons tout d’abord partie de la taille des régions de tableau et des
formats des données utilisées par les tâches pour estimer précisément les
coûts de communication. Puis, on détermine les polynômes de Ehrhart qui
représentent la taille du message à transmettre et le volume de données,
en nombre d’octets. Ceux-ci sont ensuite convertis en nombres de cycles
d’instructions de transfert. Par ailleurs, le temps d’exécution de chaque
tâche est calculé en utilisant une approche statique fondée sur une anal-
yse de la complexité du programme fourni par PIPS. Ces complexités, en
nombre de cycles, sont également représentées par des polynômes . En-
fin, nous utilisons une méthode statique, lorsque cela est possible, ou une
méthode d’instrumentation de code pour convertir ces polynômes en les
valeurs numériques nécessaires pour faire tourner BDSC.

Analyse de Path Transformer (Chapitre 6)

Les modèles de coûts que nous définissons dans cette thèse utilisent des ex-
pressions affines sur les variables du programme. Ces relations sont utilisées
pour définir les régions de tableau ainsi que pour estimer les communica-
tions et les volumes de données induits par l’exécution des instructions.



214 Conclusion (en français)

Nous avons utilisé un ensemble d’opérations sur les régions de tableau telles
que la fonction d’intersection des régions (voir la section 6.3.1). Cependant,
il faut être prudent lors de ces utilisations, car les opérations sur régions
doivent être définies par rapport à un espace mémoire commun. Dans cette
thèse, nous avons introduit une nouvelle analyse, que nous appelons “trans-
formeur de chemin”. Un transformeur de chemin permet de comparer les
régions de tableau définies à l’origine dans des espaces mémoire différents.
Nous présentons un algorithme récursif pour le calcul des transformeurs
de chemin entre deux instructions, prenant en paramètre des informations
supplémentaires concernant les itérations des boucles imbriquantes (si elles
existent). Cet algorithme calcule une relation affine sur les variables d’un
programme entre deux points d’instructions, dans l’état mémoire du premier
vers l’état mémoire du second, et ce le long de toute exécution séquentielle
qui relie les deux états mémoire.

SPIRE (Chapitre 4)

Une plate-forme de parallélisation automatique doit être adaptée aux différents
langages parallèles. Dans cette thèse, nous avons introduit SPIRE, une
nouvelle méthodologie générique permettant d’étendre, en trois étapes, une
représentation intermédiaire (RI) de programmation séquentiels utilisée dans
une plate-forme de compilation en une RI parallèle. Cette extension d’une RI
existante introduit (1) un attribut d’exécution parallèle pour chaque groupe
d’instructions, (2) un attribut de synchronisation de haut niveau sur chaque
instruction et une API pour les événements de synchronisation bas niveau
et (3) deux fonctions prédéfinies pour spécifier les communications dans les
systèmes à mémoire distribuée avec envoi de messages.

Une sémantique formelle de SPIRE est fournie, en utilisant une approche
à deux niveaux : une sémantique opérationnelle em small-step pour les
concepts de base parallèles et un mécanisme de réécriture pour les con-
structions de plus haut niveau. L’application de la méthodologie SPIRE est
illustrée par un cas d’utilisation, la représentation intermédiaire de PIPS,
une infrastructure puissante source-à-source de compilation pour Fortran et
C. En outre, nous appliquons SPIRE sur une autre RI, à savoir celle de
l’infrastructure de compilation LLVM, largement utilisée.

Transformations et génération de code parallèle (Chapitre 7)

Afin de tester la souplesse de l’approche de parallélisation présentée dans
cette thèse, nous avons mis la première brique vers la construction d’un
cadre général de transformations et génération de codes parallèles en util-
isant notre technique de parallélisation de tâchs hiérarchiques fondée sur
SPIRE et BDSC. Nous proposons deux transformations parallèles des con-
structions de base de SPIRE : d’abord, une structuration du parallélisme



215

sous forme de constructions de haut niveau et, ensuite, une conversion de
programmes pour mémoire partagée vers une mémoire distribuée. En outre,
nous indiquons comment effectuer une génération avec parallélisme de tâches
et communications à différents niveaux d’AST: plat et hiérarchique. En-
fin, nous générons du code parallèle en utilisant deux langages, OpenMP
(hiérarchique) et MPI (seulement plat), à partir de la même RI parallèle
dérivée de SPIRE.

Implémentation et résultats d’expérimentation (Chapitre 8)

Un prototype des algorithmes présentés dans cette thèse a été implanté
dans le compilateur source-à-source PIPS. Il contient (1) une méthode de
parallélisation automatique pour des programmes encodés en SPIRE(PIPS
IR) et fondée sur BDSC, HBDSC, SDG, les modèles de coûts et le trans-
formeur de chemin, plus DSC à des fins de comparaison ; (2) des algorithmes
de génération de code parallèle à partir de SPIRE et ciblant deux langages
parallèles, OpenMP et MPI ; et (3) deux transformations de code parallèle
fondées sur SPIRE, pour transformer un code non structuré en un code
structuré et passer de mémoire partagée à mémoire distribuée.

Nous appliquons notre technique de parallélisation sur des applications
scientifiques. Nous donnons les mesures de performance de notre approche
de parallélisation, ciblant à la fois des architectures à mémoire partagée et
distribuée, sur la base de cinq programmes importants : deux benchmarks
de traitement d’image et de traitement du signal, Harris et ABF ; SPEC2001
equake ; NAS benchmark IS ; et la FFT. Nous utilisons leur traduction es-
sentiellement automatique en deux langages parallèles : OpenMP et MPI.
Enfin, nous proposons une étude comparative entre notre implémentation
de parallélisation de tâches dans PIPS et celle du langage de traitement
du signal audio Faust, en utilisant deux programmes Faust : Karplus32 et
Freeverb. Nos résultats illustrent la capacité de SPIRE(PIPS IR) à exprimer
efficacement le parallélisme présent dans les applications scientifiques. En
outre, nos données expérimentales suggèrent que notre méthodologie de par-
allélisation est en mesure de fournir des codes parallèles qui contiennent une
part importante du parallélisme intrinsèque déjà présent.

Perspectives

Le problème de la parallélisation automatique est un ensemble de plusieurs
sous-problèmes, comme on l’a vu tout au long de cette thèse ou dans le
résumé des contributions présenté ci-dessus. De nombreuses idées et de
nouvelles opportunités pour de nouvelles recherches ont surgi tout au long
de ce travail.
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SPIRE

SPIRE est un “travail en cours” pour étendre des RI séquentielles afin de les
adapter aussi complètement que possible aux différents langages et modèles.
Les travaux à venir pourraient s’intéresser à la représentation, via SPIRE,
du modèle de mémoire PGAS ou d’autres paradigmes d’exécution parallèle
comme par exemple la spéculation, tout en prenant en compte plus de fonc-
tionnalités de programmation comme les exceptions. Une autre question
intéressante serait de déterminer dans quelle mesure les transformations
de programmes existantes réalisées par les compilateurs en utilisant une
RI séquentielle peuvent être préservées lorsque celles-ci sont étendues par
SPIRE. Enfin, la sémantique formelle introduite dans ce travail pourrait
être utilisée dans le futur pour tenter de prouver la légalité des transforma-
tions effectuées sur des codes parallèles.

Ordonnancement via HBDSC

HBDSC suppose que tous les processeurs sont homogènes. Il ne gère pas
efficacement les processeurs hétérogènes. Cependant, il est probablement
facilement adaptable à ces architectures en ajoutant une autre dimension
à nos modèles de coûts. Nous suggérons d’ajouter le paramètre “type de
processeur” à toutes les fonctions essentielles dans la modélisation des coûts
tels que task time (il faudrait définir le coût d’une tâche si elle est af-
fectée à tel ou tel processeur) ou edge cost (il faudrait définir le coût de
communication lorsque les deux tâches adjacentes sont affectées à tel ou
tel processeur). De plus, chaque processeur κi a sa propre mémoire Mi.
Ainsi , notre processus de parallélisation pourrait cibler par la suite un
langage adapté aux architectures hétérogènes tel que StarSs [21]. StarSs in-
troduit une extension du mécanisme de tâche de OpenMP 3.0. Il ajoute de
nombreuses fonctionnalités à la construction #pragme omp task, à savoir :
(1) les dépendances entre tâches, en utilisant les clauses input, output et
inout, (2) l’affectation d’une tâche à des accélérateurs, en utilisant #pragma
omp target device(device-name-list), sachant qu’un accélérateur peut
être un SPE, un GPU ...

En outre, il pourrait être intéressant d’essayer de trouver une stratégie
d’allocation hiérarchique plus efficace des processeurs que celle présentée ici
; elle pourrait aborder l’équilibrage de charge et les questions de granularité
de tâche, afin de conduire à un meilleur processus de parallélisation fondé
sur HBDSC.

Modèles de coût

Actuellement, il existe certains cas pour lesquels nos modèles de coûts ne
peuvent pas fournir des informations précises ou même suffisamment ap-
proximatives. Lorsqu’un tableau est accédé via un pointeur (par exemple
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avec la déclaration float *A, alors que A est utilisé comme un tableau),
le compilateur n’a aucune information pertinente concernant la taille du
tableau. Actuellement, dans de tels cas, nous devons modifier manuelle-
ment le code du programme pour aider le compilateur. En outre, actuelle-
ment, l’estimation de la complexité d’une boucle while n’est pas effectuée
de manière fine, mais des travaux en cours (notamment à MINES ParisTech)
fondés sur l’analyse des transformers laissent espérer des avancées dans ce
domaine.

Transformations et génération de code parallèle

Les travaux futurs pourraient aborder plusieurs transformations spécifiques
aux langages parallèles(à la [84]) encodées en SPIRE. De plus, l’optimisation
des communications dans le code généré, en éliminant les communications
redondantes et l’agrégation des petits messages en de plus grands, est une
question importante, puisque notre prototype actuel communique plus de
données que nécessaire.

Dans notre implémentation de génération de MPI à partir du code
SPIRE, nous avons laissé l’implémentation de MPI hiérarchique pour les
travaux futurs. Par ailleurs, un autre type de MPI hiérarchique peut être
obtenu par la fusion de MPI et OpenMP (programmation hybride). Toute-
fois, étant donné que nous utilisons dans cette thèse une approche hiérarchique
dans à la fois HBDSC et la génération de SPIRE, OpenMP peut être vu,
dans ce cas, comme un modèle sous-hiérarchique de MPI, c’est à dire que
les tâches OpenMP pourraient être incluses dans celles de MPI.

2 ������� ����� �� ���
�� ���� ��� ���� �� �

�� �� ������ ���� ���� ����� ����� ��� ���� �� �
�� �� ������

2 Aux yeux des petits, les petites choses sont immenses ; pour les grandes âmes, les
grandes choses sont si petites. Al-Mutanabbi
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Parallélisation automatique et statique de tâches
sous contraintes de ressources

– une approche générique –

Résumé : Le but de cette thèse est d’exploiter efficacement le parallélisme présent dans les ap-

plications informatiques séquentielles afin de bénéficier des performances fournies par les multipro-

cesseurs, en utilisant une nouvelle méthodologie pour la parallélisation automatique des tâches au

sein des compilateurs. Les caractéristiques clés de notre approche sont la prise en compte des con-

traintes de ressources et le caractère statique de l’ordonnancement des tâches. Notre méthodologie

contient les techniques nécessaires pour la décomposition des applications en tâches et la généra-

tion de code parallèle équivalent, en utilisant une approche générique qui vise différents langages et

architectures parallèles. Nous implémentons cette méthodologie dans le compilateur source-à-source

PIPS. Cette thèse répond principalement à trois questions. Primo, comme l’extraction du parallélisme

de tâches des codes séquentiels est un problème d’ordonnancement, nous concevons et implémen-

tons un algorithme d’ordonnancement efficace, que nous nommons BDSC, pour la détection du par-

allélisme ; le résultat est un SDG ordonnancé, qui est une nouvelle structure de données de graphe

de tâches. Secondo, nous proposons une nouvelle extension générique des représentations inter-

médiaires séquentielles en des représentations intermédiaires parallèles que nous nommons SPIRE,

pour la représentation des codes parallèles. Enfin, nous développons, en utilisant BDSC et SPIRE,

un générateur de code que nous intégrons dans PIPS. Ce générateur de code cible les systèmes à

mémoire partagée et à mémoire distribuée via des codes OpenMP et MPI générés automatiquement.

Mots clés : Parallélisation automatique, représentation intermédiaire parallèle, ordonnancement,

PIPS

Automatic Resource-Constrained Static Task Parallelization
– A Generic Approach –

Abstract: This thesis intends to show how to efficiently exploit the parallelism present in applications

in order to enjoy the performance benefits that multiprocessors can provide, using a new automatic

task parallelization methodology for compilers. The key characteristics we focus on are resource con-

straints and static scheduling. This methodology includes the techniques required to decompose ap-

plications into tasks and generate equivalent parallel code, using a generic approach that targets both

different parallel languages and architectures. We apply this methodology in the existing tool PIPS, a

comprehensive source-to-source compilation platform.

This thesis mainly focuses on three issues. First, since extracting task parallelism from sequential

codes is a scheduling problem, we design and implement an efficient, automatic scheduling algorithm

called BDSC for parallelism detection; the result is a scheduled SDG, a new task graph data struc-

ture. In a second step, we design a new generic parallel intermediate representation extension called

SPIRE, in which parallelized code may be expressed. Finally, we wrap up our goal of automatic par-

allelization in a new BDSC- and SPIRE-based parallel code generator, which is integrated within the

PIPS compiler framework. It targets both shared and distributed memory systems using automatically

generated OpenMP and MPI code.

Keywords: Automatic parallelization, parallel intermediate representation, scheduling, PIPS
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