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Grégoire ALLAIRE

defended publicly on 27 January 2014 in front of the jury composed of

Marc ALBERTELLI Technocentre Renault Industrial advisor
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Manufacturing Constraints and Multi-Phase

Shape and Topology Optimization via a Level-Set Method

Abstract

The main contribution of this thesis is the implementation of manufacturing constraints in shape
and topology optimization. Fabrication limitations related to the casting process are formulated as
mathematical constraints and introduced in the optimization algorithm. In addition, based on the same
theoretical and modelization tools, we propose a novel formulation for multi-phase optimization problems,
which can be extended to the optimization of structures with functionally-graded properties. A key
ingredient for the mathematical formulation of most problems throughout our work is the notion of the
signed distance function to a domain.

This work is divided into three parts. The first part is bibliographical and contains the necessary
background material for the understanding of the thesis’ main core. It includes the first two chapters.
Chapter 1 provides a synopsis of shape and topology optimization methods and emphasizes the combi-
nation of shape sensitivity analysis and the level-set method for tracking a shape’s boundary. In Chapter
2 we give a short description of the casting process, from which all our manufacturing constraints derive.
We explain how industrial designers account for these limitations and propose a strategy to incorporate
them in shape and topology optimization algorithms.

The second part is about the mathematical formulation of manufacturing constraints. It starts with
Chapter 3, where the control of thickness is discussed. Based on the signed distance function, we formulate
three constraints to ensure a maximum and minimm feature size, as well as a minimal distance between
structural members. Then, in Chapter 4, we propose ways to handle molding direction constraints and
combine them with thickness constraints. Finally, a thermal constraint coming from the solidification of
cast parts is treated in Chapter 5 using several thermal models.

Multi-phase optimization is discussed in the third part. The general problem of shape and topology
optimization using multiple phases is presented in detail in Chapter 6. A ”smoothed-interface” approach,
based again on the signed distance function, is proposed to avoid numerical difficulties related to classical
”sharp-interface” problems and a shape derivative is calculated. An extension of this novel formulation
to general types of material properties’ gradation is shown in the Appendix A.

Keywords

Shape and topology optimization, level-set method, manufacturing constraints, casting constraints,
thickness control, signed distance function, molding constraint, thermal constraints, multi-phase opti-
mization.
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Contraintes de Fabrication et Optimisation Multiphasiques de

Forme et de Topologie avec la Méthode des Lignes de Niveaux

Résumé

La principale contribution de cette thèse est la mise en oeuvre des contraintes de fabrication dans
l’optimisation géométrique et topologique de formes. Les limitations de fabrication relatives au procédé
de fonderie sont formulées comme des contraintes mathématiques et sont introduites dans l’algorithme
d’optimisation. En outre, en utilisant les mêmes outils théoriques et de modélisation, nous proposons
une nouvelle formulation pour des problèmes d’optimisation à plusieurs phases, qui peut être étendue
à l’optimisation des structures avec des propriétés fonctionnellement graduées. Un ingrédient clé pour
la formulation mathématique de la plupart des problèmes tout au long de notre travail est la notion de
fonction de distance signée d’un domaine.

Ce travail est divisé en trois parties. La première partie est bibliographique et contient le matériel
de base nécessaire à la compréhension du noyau principal de la thèse. Il comprend les deux premiers
chapitres. Le Chapitre 1 présente une synthèse des méthodes pour l’optimisation de formes et de la
topologie et souligne la combinaison de l’analyse de sensibilité de la forme et la méthode des lignes
de niveaux pour la description de la frontiére de la forme. Dans le Chapitre 2 nous donnons une brève
description du procédé de moulage, à partir de laquelle toutes nos contraintes de fabrication sont déduites.
Nous expliquons comment les designers industriels tiennent compte de ces limitations et proposons une
stratégie visant à les incorporer dans les algorithmes de l’optimisation de formes.

La deuxiéme partie est consacrée la formulation mathématique des contraintes de fabrication. Il
commence par le Chapitre 3, où le contrôle de l’épaisseur est discuté. Basé sur la fonction distance
signée, on formule trois contraintes afin d’assurer une taille d’épaisseur maximale et minimale, ainsi
qu’une distance minimale entre les membres de la structure. Puis, au Chapitre 4 nous proposons des
façons de gérer les contraintes de la direction de démoulage et de les combiner ensuite avec des contraintes
d’épaisseur. Finalement, une contrainte thermique provenant de la solidification des pièces coulées est
traitée dans le Chapitre 5 utilisant plusieurs modèles thermiques.

L’optimisation multiphasique est discutée dans la troisième partie. Le problème général de l’optimisation
de formes utilisant plusieurs phases est présentée en détail dans le Chapitre 6. Une approche des interfaces
”lissées”, encore une fois basée sur la fonction de distance signée, est proposée pour éviter les difficultés
numériques liées au problèmes classiques d’une interface ”nette” et une dérivée de forme est calculée.
Une extension de cette nouvelle formulation à l’optimisation de matériaux aux propriétés graduées est
montrée dans l’Annexe A.

Mots-clés

Optimisation géométrique et topologique de formes, méthode des lignes de niveaux, contraintes de
fabrication, contraintes de coulée, contrôle de l’épaisseur, fonction de distance signée, contrainte de de-
moulage, contraintes thermiques, optimisation à plusieurs phases.
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Introduction

This Thesis has been launched in the framework of the RODIN (Robust structural Optimization for
Design in INdustry) project. RODIN has been motivated by the observation of many engineers and
industrial designers that, although shape and topology optimization techniques can be a valuable tool for
accelerating the design cycle and improving the final structure, existing shape and topology optimization
software present several limitations and do not provide them with satisfying enough solutions.

The majority of commercial topology optimization softwares use density-based methods. A density
field θ(x) ∈ [0, 1] is defined in the design domain and the original topology optimization problem is traded
for a problem of optimal distribution of the material density. Despite the conceptual and mathematical
convenience of such an approach, some new problems may appear. A first inconvenience is that, although
the notion of a varying density makes sense for a composite structure, it has no meaning for a classical
continuous medium, for which the value of the density is either 0 or 1 (we shall refer to such structures
as 0− 1 shapes). The majority of density-based methods use some penalization scheme for the material
properties, which favors the formation of 0 − 1 shapes, at least for rigidity maximization in linearized
elasticity. For example, the well-known SIMP (Solid Isotropic Material with Penalization) method, uses
the scheme Aijkl(ρ) = θpAijkl, where Aijkl is the elasticity tensor of the full material (θ = 1) and p is
a penalization power (usually p = 3). This scheme makes material with intermediate density values too
expensive, since its volume depends linearly in θ. However, in more complex mechanical frameworks, the
impact of such penalization schemes is not always evident and it is possible that the optimal solution
contains large areas with intermediate values of the density field (see Figure 1). Then, the engineers need
to interfere and extract a 0− 1 shape using their mechanical intuition. This ”interpretation” step can be
non-trivial and results in non-optimal structures, especially in case of a complex mechanical framework,
where intuition is limited.

Another limitation is related to the restricted range of applications that the existing softwares can
treat efficiently. A first cause is that the use of a density field changes the formulation of the mechanical
problem at play. The mechanical properties depend on the values of the density field in a more or
less heuristic way. Although this dependence seems to work well for simple problems, e.g. compliance
minimization in linearized elasticity, modifications need to be done for more complex problems, such as
dynamics or stess-based citeria. Moreover, the density description makes impossible to treat efficiently
problems where the precise position of the boundary plays an important role, e.g. thermal problems with
heat exchange along an optimizable boundary.

In addition to the above mentioned confinements, it seems that existing softwares have not managed to

Figure 1: Optimized density distribution of a minivan’s structural part, obtained with the commercial
software OptiStruct of Altair Engineering (figure extracted from http://www.vm.co.nz/examples.html).

15
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(a) (b) (c)

Figure 2: Optimization of an engine bracket; (a): design domain; (b) topology optimization result; (c)
final design.

incorporate or combine efficiently manufacturing constraints in topology optimization. Although several
ideas have appeared in the literature concerning the handling of some specific manufacturing constraints
of geometric nature in a density framework, the results provided by commercial softwares are most of the
times not manufacturable. In Figure 2, we see the basic steps for the design of an engine bracket, based on
topology optimization. In the optimized result, we can observe the existence of some thin features in the
lower part and some thick parts in the upper part. The final result requires then a postprocessing step,
which can change significantly the shape and also cause a complete loss of its optimal characteristics.

We believe that there are two main reasons for this limitation. First, some of the proposed methods
are very sensitive to the optimization parameters and thus are not suitable for a black box optimization
software. Second, most of the methods are based on the notion of filters which relate the densities of
different points using some scheme. Thus, when several constraints need to be combined, it is not clear
how different filters interact and if a general filter that accounts for all constraints can be formulated.

Several industrial (Renault, EADS-IW, ESI-Group, SNECMA, etc...) and academic (Ecole Polytech-
nique, University Pierre et Marie Curie (Paris 6), University Denis Diderot (Paris 7), INRIA Bordeaux)
partners participate in the RODIN project for the creation of a novel shape and topology optimization
software, the goals of which are

• to eliminate the ”interpretation” step, which is inherent in density-based methods, i.e. provide
optimization results that are directly exploitable or need minimal manipulations,

• to expand the range of applications and improve the efficiency of shape and topology optimization
in existing domains (stress-based criteria, etc...),

• to treat efficiently manufacturing constraints.

Based on the first two specifications, the combination of shape sensitivity analysis and a level-set
description of the shape has been chosen as optimization method. Without entering into many details,
the level-set method is a way of implicitly describing the boundary of a shape Ω, enclosed in a large
computational domain D, via an auxiliary function ψ, such that (see Figure 3)





ψ(x) = 0 ↔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ↔ x ∈ Ω,
ψ(x) > 0 ↔ x ∈

(
D \ Ω

)
.

The level-set description of the shape is well-known to be very efficient for topology optimization due to
the ease at which topological changes occur, while keeping at the same time a ”clear” 0 − 1 description
of the shape. It is possible to mesh the level-set function on a fixed grid once during the optimization, or
to adjust the mesh on the zero level-set at each iteration of the algorithm, after the work of C. Dapogny
during his Phd thesis, also in the framework of the RODIN project (see Figure 4). In the first case,
minimal changes are required in the formulation of the mechanical problem. The ”void” part D \ Ω
is represented by a weak ”ersatz” material, whose material properties can be adjusted such that it has
negligible mechanical contribution. In the second case, the mechanical problem is treated as such.
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(a) (b)

Figure 3: (a): Optimized shape Ω (in black), enclosed in a square working domain D; (b): level-set
representation of the shape.

(a) (b)

Figure 4: (a): Optimized structure using a fixed mesh for the level-set function; (b): optimized structure
using an adapted mesh (figure extracted from [44]).

The main topic of this work is the implementation of manufacturing constraints in shape and topology
optimization, using a level-set description of the shape. The reason why we highlight the ”level-set
description” is that the majority of the formulations herein are based on the assumption that a geometric
description of the shape exists and that all geometric information for the shape are derived from the
level-set description. However, some of them may also be used with slight modifications in the framework
of other shape and topology optimization methods.

On top of manufacturing constraints, we also worked on multi-phase optimization. For this topic,
our motivation came from discussions with researchers from the SIMAP laboratory at Joseph Fourier
University in Grenoble who are interested in the impact of diffused interfaces on the optimal shapes.
The formulations of multi-phase problems that previously existed in the literature were making a smooth
approximation of sharp-interface problems but were plagued with an erroneous formula for the shape
gradient, used in numerical algorithms. We worked in collaboration with C. Dapogny and G. Delgado
and presented a thorough analysis of multi-phase problems in shape and topology optimization. An
application of our work was a collaboration with the SIMAP laboratory about the effects of interface
properties on the optimal shape.

The thesis is divided into three parts, which contain six chapters and one appendix. We present now a
brief outline of each part separately. Technical details and bibliographical references on the corresponding
topics are included in each chapter separately and are omitted in this introduction.

Part I: Background material

The first part contains Chapter 1 and 2 and provides the necessary background material for the analysis
in the sequel. In Chapter 1, we recall the basic ingredients of shape and topology optimization and we
insist more on the shape sensitivity analysis and the level-set method. In Chapter 2, we give a short
description of the casting process, categorize the manufacturing constraints of interest and explain the
strategy to follow in order to include them in shape and topology optimization.
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Chapter 1: Introduction to shape and topology optimization

The first chapter starts with the basic elements about shape and topology optimization. The theoretical
problem of non-existence, without additional constraints, of an optimal domain Ω that minimizes a
shape-dependent cost functional J(Ω) is explained and techniques to circumvent it are discussed. The
differences between the main categories of shape optimization, i.e. parametric, geometric and topology
optimization, are explained. Then, we focus more on topology optimization, which adresses the problem
of shape optimization in all generality. Among well-known methods for topology optimization, such as
the homogenization method, the topological sensitivity method and the Soft Kill Option, we focus more
on the SIMP method, since it is the method of choice for the majority of commercial softwares and there
exists a great amount of literature on the topics of our interest, compared to other topology optimization
methods.

In the sequel, we present the basic ingredients of our method of choice for shape and topology opti-
mization, which combines a shape sensitivity analysis to obtain a descent direction and a level-set method
for the shape desription in order for topological changes to occur naturally during shape advection. We
use Hadamard’s method for shape variation, in which an initial domain Ω is perturbed by a smooth
enough vector field θ to get a new domain Ωθ = ( Id + θ)Ω. This description allows to obtain a notion
of shape derivative J ′(Ω)(θ) and to extract a notion of shape gradient for the iterative minimization of
a functional J . The differences and the connection between Eulerian and Lagrangian shape derivatives
of shape-dependent functions are explained and formulas for the shape derivative of volume and surface
integrals are recalled. The background material on the shape sensitivity method closes with an example
about how to find the shape derivative expression of a general type functional

J(Ω, u(Ω)) =

∫

Ω

j(x, u(Ω, x))dx+

∫

∂Ω

l(s, u(Ω, s))ds,

where u is the solution to a linearized elasticity system, using the method of Céa.
The second basic element of our topology optimization method, i.e. the level-set method for the

description of the shape, is then described. All shapes are assumed to be included in a big computational
domain D and are represented implicitly via the zero level-set of a scalar function ψ, defined as:





ψ(x) = 0 ↔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ↔ x ∈ Ω,
ψ(x) > 0 ↔ x ∈

(
D \ Ω

)
.

The advection of the shape Ω under a velocity field θ is then described via the advection of the level-set
function through the transport equation:

∂ψ

∂t
(t, x) + θ(t, x(t)) · ∇ψ(t, x) = 0, ∀t, ∀x(t) ∈ ∂Ω(t),

which, for the case θ(t, x) = V (t, x)
∇ψ(t, x)

|∇ψ(t, x)|
, which is of interest for shape optimization, writes again

as:
∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ D.

Finally, the coupling of shape sensitivity with a level-set description is explained. The shape gradient
is interpreted as an advection velocity for the level-set function and an iterative algorithm is built for
the numerical minimization of the cost function. Two basic steps for this coupling are explained, the
”ersatz material” approach for representing the void part D \ Ω and the extension and regularization of
the velocity field in order to accelerate the convergence speed.

Chapter 2: Casting constraints: physical description and classi-
fication

In the second chapter, we provide a physical description of casting constraints, which are the manufac-
turing constraints of our interest, explain how industrial designers usually account for them and propose
a general framework under which they can be introduced in shape and topology optimization.

The molding system, i.e. the number, the position and the direction of removal of the molds, plays a
crucial role on the final design of a cast part. Furthermore, among the variety of possible casting defects,
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the design engineer needs to take into consideration the shrinkage porosity and the pouring metal defects,
which are closely linked to the shape of the structure. We propose to test castability through ensuring
the following three properties of the cast part:

• moldability, i.e. the ability to construct and remove the molds after solidification of the cast part,

• feedability, i.e. the ability to construct a feeding system in order to drive the shrinkage porosity
due to solidification into the risers, at an acceptable cost,

• fillability, i.e. the ability to fill the molds with liquid metal, avoiding premature solidification and
the use of high additional pressure.

Some of the above properties are of purely geometric nature, while others derive from the physics of
casting. In this last case, the complete casting system is needed for the analysis, which we believe is not
practical for topology optimization, since the shape changes during the optimization. For this reason,
equivalent geometric criteria are usually set by the designers in place of the mechanical ones, or the actual
mechanical problems are simplified by omitting the complete casting system and setting approximative
boundary conditions.

The three above requirements impose several specifications that the design needs to comply with.
More specifically, moldability induces constraints on the:

• molding direction

• minimum members’ distance

• maximum curvature.

Feedability can be treated either geometrically, by imposing a:

• maximum thickness feature,

or mechanically, by setting a:

• maximum solidification time,

working with a simplified casting model.
Finally, fillability is very difficult to be treated mechanically and thus, we follow a geometric approach
by imposing a:

• minimum thickness feature.

Part II: Manufacturing constraints

The second part is devoted to manufacturing constraints and covers Chapter 3, 4 and 5. Thickness control
is discussed in Chapter 3. Chapter 4 is more linked to cast parts and we propose therein methods to treat
constraints on the molding direction. Chapter 5 refers in general to thermal problems, but we concentrate
more on a thermal constraint derived from the cooling process during casting. We have coded almost all
developments of this part (with a slight exception in Chapter 5), in the commercial software SYSTUS of
ESI-Group.

Chapter 3: Thickness control in structural optimization

In the third chapter we deal with thickness control. A priori, the level-set description provides no
geometric information about the thickness of the structure. In addition to this, it is not clear how a
notion of thickness can be defined for continuous structures.

We tackle both problems using the signed distance function to the domain Ω, defined as

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ cΩ,
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where d(·, ∂Ω) is the usual Euclidean distance. We highlight the difference between dΩ and ψ, the level-set
function used for the advection of the shape.

First, we formulate three pointwise constraints for the maximum and minimum thickness feature
and for the minimum distance between the shape’s members. We have based the maximum thickness
constraint on the idea that no point should be the center of a ball of radius dmax/2, fully covered with
material. For the minimum thickness and the minimum members’ distance constraints, we have adopted
a different concept, based on the idea of offset sets. For the minimum thickness, starting from a point
on the boundary of the domain, we move in the opposite direction of the normal vector and check if we
get out of the shape up to a distance dmin. We do the same for the members’ distance, in the opposite
direction. Their mathematical formulation, using the signed distance function, read:

Maximum Thickness : dΩ (x) ≥ −dmax/2 ∀x ∈ Ω,
Minimum Thickness : dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin] ,
Minimum Members’ Distance : dΩ (x+ doffn (x)) ≥ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin] .

Then, in order to avoid the complexity of treating a large number of constraints, we propose to
formulate global averaged constraints using simple quadratic penalty functionals:

Maximum Thickness : PMaxT (Ω) =

∫

Ω

[
(dΩ (x) + dmax/2)

−
]2
dx = 0,

Minimum Thickness : PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s− ξn (s)))

+
]2
dξds = 0,

Minimum Members’ Distance : PMMD (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s+ ξn (s)))

−
]2
dξds = 0,

where: (f)
+
= max (f, 0) and (f)

−
= min (f, 0).

The shape derivatives of the above functionals are computed, using information about the shape differ-
entiation of the signed distance function and a co-area formula.

We propose an alternative formulation for the maximum thickness functional, as well as some mod-
ifications on the computation of its shape derivative, in order to avoid distortions at the crossing of
features and close to the boundary of the working domain, which are inherent in the formulation of the
constraint. We test the above formulations with several 2d and 3d examples on volume minimization
under a compliance constraint, using a simple augmented Lagrangian algorithm (see Figure 5).

Finally, we discuss on some well-known formulations of thickness control in the framework of the
SIMP method, explain the differences with our formulations and propose constraints following a similar
concept in the framework of classical shape optimization, wherever possible.

(a)

(b) (c)

Figure 5: (a): boundary conditions for a 2d MBB beam; (b): optimized shape without thickness con-
straints; (c) optimized shape with maximum and minimum thickness constraints.
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Chapter 4: Molding direction constraints in structural optimiza-
tion

The fourth chapter refers to the molding direction constraint, which is particular of cast parts. The
molding system is supposed to be fixed and the optimized shape must not contradict with the removal
of the molds.

We present first the idea of Xia et al. on this topic, which consists of starting with a feasible shape
and allow each part to move only parallel to its corresponding parting direction. This strategy ensures
that the shape will remain always feasible and is very efficient when it is not combined with thickness
constraints. We explain that the limitation of the shape to increase in size orthogonally to its parting
direction excludes the possibility of combining this strategy with a constraint on the minimum thickness
feature.

Therefore, we formulate some generalized molding direction constraints, using information from the
unit normal vector or the signed distance function. A first formulation reads:

di · n(x) ≥ 0, ∀x ∈ Γi,

where di is the parting direction of the boundary part Γi ⊂ ∂Ω. The shape derivation of the normal
vector is quite complicated, as we show later in this chapter and thus, we propose also the following
formulation using the signed distance function:

dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi, ∀ξ ∈ [0, diam(D)] ,

where we denote diam(D) = supx,y {dist(x, y), x, y ∈ D} the diameter of the fixed domain D. In case the
area of possible contact between two molds is not a priori defined, the constraint is slightly modified and
reads

dΩ (x+ ξsign(n · d)d) ≥ 0 ∀x ∈ ∂Ω, ∀ξ ∈ [0, diam(D)] ,

where d is the parting direction of the molds. The above pointwise constraints are formulated again as
global averaged constraints and their shape derivative is computed.

Finally, we propose ways to impose a uniform cross-section constraint. One of them consists simply
in starting with a shape with a uniform cross-section and consider vector fields that are constant along
its normal direction. Another idea is to start again with a shape that respects the constraint and impose
the constraint numerically via an anisotropic regularization.

(a) (b)

Figure 6: Optimized shape (a): without molding direction constraint; (b): with molding direction con-
straint (d = (1, 0, 0)).
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(a) (b)

Figure 7: Optimized shape (a): without uniform cross-section; (b): with uniform cross-section.

Chapter 5: Thermal constraints in structural optimization

The fifth chapter is devoted to the only manufacturing constraint of mechanical nature in this work, i.e.
the constraint on the maximum solidification time. For a cast part that starts solidifying ideally from a
uniform initial temperature, we need to ensure that it solidifies at most at time tf , i.e. the temperature
T must be everywhere under the corresponding solidus temperature of the metal Ts. The mathematical
formulation of the constraint reads:

T (x, tf ) ≤ Ts, ∀x ∈ Ω.

The thermal model that describes the solidification process is a non-linear transient heat equation with
phase change. We believe that the application of the constraint since the beginning of the optimization
algorithm using this model is too costly in memory and time. Moreover, the calculation of the shape
derivative is not straightforward, since there is a discontinuity of the temperature field on the interface
between the cast part and the mold. For the above reasons, we have proposed to use much simpler models
as a first step. However, we expect that even these models will give satisfying results, since in all of them
the large volumes of material tend to reduce.

We propose to test the following thermal models of increasing difficulty and computational cost:

• Poisson equation with Dirichlet boundary conditions.

• Linear transient heat equation with Dirichlet boundary conditions.

• Approximation of the previous model via the first term of its Fourier series (eigenvalue approxima-
tion).

• Linear transient heat equation with piecewise constant conductivity.

• Linear transient heat equation with heat flux across the moving boundary.

• Non-linear transient heat equation with heat flux across the moving boundary and phase-change.

For all of them, we present the formulation of the problem and we compute the shape derivative of a global
averaged constraint. We present 2d numerical results using the first three models. The temperature limit
needs to be adjusted for each case in order for the results to be comparable in a certain sense. For this
reason, we consider an one-dimensional model of the casting system for a cast part of size dmax and we
set the temperature limit equal to the maximum value of the temperature after time tf .

Part III: Multi-phase optimization

Finally, Part III is about multi-phase optimization and includes Chapter 6 and the Appendix. In Chap-
ter 6, we discuss the general problem of multi-phase optimization. ”Sharp-interface” and ”smoothed-
interface” models are presented in detail and the difference with the previous literature on the topic is
explained. The Appendix contains an article that we submitted in the journal SMO (Structural and
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Multi-disciplinary Optimization) about the interface-effects on the optimized shape, which is a result of
our collaboration with the SIMAP laboratory of Joseph Fourier University in Grenoble. All numerical
results for multi-phase optimization with a ”diffuse” interface have been done using a 2d code written in
Scilab, while for the case of a ”sharp-interface” a 2d code in FreeFem++ was used.

Chapter 6: Multi-phase structural optimization

The final chapter of this work is about multi-phase optimization. It starts with the problem of optimal
distrubution of two materials with Hooke’s tensor A0 and A1, occupying two subdomains Ω0 and Ω1 of
the working domain D.

First, we study the classical ”sharp-interface” model, in which the global Hooke’s tensor is assumed
to be discontinuous on the interface between the materials and is given as

A = χΩ0A0 + (1− χΩ0)A1,

χΩ0 being the characteristic function of the domain Ω0. We compute the shape derivative for the compli-
ance of the structure and explain the difficulties in the numerical approximation of its terms when a fixed
mesh is used. We propose instead to differentiate the discretized problem, which provides a consistent
approximation.

Then, we consider a ”smoothed-interface” model, where the material properties are interpolated
between the two phases in an area of width 2ε around their intermediate interface, defined as the zero
level-set of a level-set function ψ. A smooth interpolation function hε(dΩ0) is used, which depends
on the signed distance function to the domain Ω0. In this chapter, hε(dΩ0) is chosen to be a smooth
approximation of the Heaviside function and we prove that this problem converges to the ”sharp-interface”
problem when the interpolation width tends to zero.

Our main contribution in this ”smothed-interface” formulation is the correct computation of the shape
derivative. For the case of the compliance:

J(Ω0) =

∫

D

Ae(u) : e(u)dx

it reads

J ′(Ω0)(θ) = −

∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx,

where Γ is the optimizable boundary, n is the outer unit normal to Ω0 and f0, f1 are scalar functions
defined by

f0(x) =

∫

ray
Γ
(x)∩Ω0

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)
N−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =

∫

ray
Γ
(x)∩Ω1

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

N−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

where z denotes a point in the ray emerging from x ∈ Γ, i.e. the line connecting x ∈ Γ with its
corresponding point on the skeleton of the shape.

We emphasize the differences with previous publications on the topic and propose simplified formulas.
We show how the method is extended for more than two phases and test this formulation in compliance
minimization, multi-functional optimization for the design of rigid and thermally isolating structures and
materials design using inverse homogenization.
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(a) (b)

(c)

Figure 8: Optimized shape of (a): L-shaped structure for compliance minimization; (b): unit-cell of
periodic medium with target thermoelastic coefficients; (c): multi-functional structure for structural
rigidity and thermal isolation.

Appendix A: Material interface effects on the topology optimiza-
tion of multi-phase structures

The Appendix is the exact reproduction of a submitted article, which is a result of our collaboration with
a team from the SIMAP laboratory of Joseph Fourier University in Grenoble.

This work can be regarded as an extension of the applications of the ”smoothed-interface” formulation
in Chapter 6, in the sense that it accounts for general types of the interpolation function hε(dΩ0). Moti-
vated by physical observations, we study the effect in the optimal shape of non-monotonic interpolation
of the material properties around the interface of the two phases. Previous formulas in the literature
cannot be used even for the approximative study of such cases, since it is the integration along the ”rays”
that allow to take into consideration the specific gradation profile.

We view this study as a first step towards the shape and topology optimization of functionally-graded
structures of general type.

Part of our work on multi-phase optimization, presented mainly in Chapter 6 and partly in Chapter
3, has been accepted for publication under the title:

G. Allaire, C. Dapogny, G. Delgado, and G. Michailidis. Mutli-phase structural optimization via a
level-set method. (to appear in ESAIM: Control, Optimisation and Calculus of Variations), 2013.

We have also submitted for publication our work on material interface effects, in collaboration with
the SIMAP laboratory, which is presented as such in the Appendix, with the title:

N. Vermaak, G. Michailidis, G. Parry, R. Estevez, Y. Brechet, and G. Allaire. Material interface effects
on the topology optimization of multi-phase thermoelastic structures using a level set method.
(submitted in SMO: Structural and Multi-disciplinary Optimization), 2013.

Based on the material of chapters 3 and 4, we prepare to submit the following two preprints:

G. Allaire, F. Jouve, and G. Michailidis. Thickness constraints in structural optimization via a level-set
method. (In preparation), 2013.
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G. Allaire, F. Jouve, and G. Michailidis. Molding direction constraints in structural optimization via a
level-set method. (In preparation), 2013.

Finally, two conference proceedings, based on this work, can be found on the web:

G. Allaire, F. Jouve, and G. Michailidis. Casting constraints in structural optimization via a level-set
method. 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida,
USA, 2013.

G. Allaire, F. Jouve, and G. Michailidis. Structural and multi-functional optimization using multiple
phases and a level-set method. SEECCM III, 3rd South-East European Conference on Computational
Mechanics, Kos Island, Greece, 2013.
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Chapter 1

Introduction to shape and topology

optimization
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1.1 Structural optimization

The word ”structure”, from a mechanical point of view, is defined by J.E. Gordon [60] as ”any assemblage
of materials which is intended to sustain loads”. Hence, the function of a structure is to transfer a load
from the place where it is applied to another one, with safety. Its ”optimization” is concerned with
improving as much as possible some characteristics related to its mechanical behaviour.

The design cycle of a structure has changed significantly in the last decades. At a first step, an initial
concept is proposed and evaluated with respect to criteria of different nature (mechanical, aesthetical,
economical, etc...). Then, either the design is accepted, or changed to be improved. In the past, this
improvement task was mostly based on the experience and knowledge of engineers. Moreover, in compli-
cated problems where mechanical intuition is very limited (dynamics, non-linear problems, etc...), it is
still common practice to use guidelines of design, which are extracted after a long period of trial and error
efforts. This design loop could end after a significant number of iterations, resulting in a high design cost
and, in all probability, in a structure that could be further improved.

The extreme progress in the computational field during the last decades, endowed engineers with the
capability of introducing mathematical optimization methods and algorithms, that existed long before,
into the design process. It made possible to use automatic optimization methods for criteria that could
be mathematically formulated. This is exactly the kind of optimization of interest in this work. By
”Structural Optimization” here, we should understand the application of methods of mathematical design
optimization on mechanical structures. Furthermore, among the several fields of structural mechanics,
we will deal here only with solid mechanics. This is the reason why the words ”structure” and ”shape”
will be interchanged in this text.

Various types of structural optimization problems have appeared in the literature. Optimization of
the material properties [25], [26], [117], [125], minimization of the stress concentration [11], [52], [53],
[78], optimal choice among a set of cross-sections of members composing a structure [80], [110], etc... A
first categorization of the above mentioned problems can be done according to what the optimization
parameters represent. In this work we focus on problems of Shape Optimization, i.e. problems where the
optimization variables define the shape of the structure.

29
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1.2 Shape optimization

Shape Optimization examples have appeared very long time ago (see [44] for a short historical review).
The extreme progress in computing capabilities during the last decades made possible to apply such
techniques in real-life problems of structural mechanics. Since then, there has been an increasing number
of publications on the topic [3], [4], [28], [71], [113], [96], [102], [132].
A general mathematical formulation of a Shape Optimization problem reads

inf
Ω∈Uad

J(Ω), (1.1)

where Ω is the domain occupied by the structure, J is the objective function to be minimized and Uad is
a set of admissible shapes to which Ω shall belong.

1.2.1 Ill-posedness of shape optimization problems and remedies

Non existence of optimal solutions

It is well-known that problem (1.1) lacks an optimal solution for a great variety of problems when the
topology of the shape is not further constrained [4], [39], [71], [130]. Let us explain this artifact using an
example from [4].

Suppose that we are given a membrane occupying the domain D = (0, 1)2 and with a unitary uniform
loading applied at its left and right boundary (see Figure 1.1). The membrane is filled with two isotropic
elastic materials, with elastic coefficients α >> β. The coefficient β is set to a very small value (β << 1)
such that it represents void. Assuming that the strong phase α occupies the domain Ω ⊂ D and using
its characteristic function χΩ, such that

χΩ(x) =

{
1 ifx ∈ Ω,
0 ifx /∈ Ω,

(1.2)

the elastic coefficient αχ for the whole domain D is written

αχ = αχ+ β(1− χ)

and the displacement uχ solves the state equation

{
−div(αχ∇uχ) = 0 in D,

αχ∇uχ · n = e1 · n on ∂D.
(1.3)

Problem (1.1) can be written again as
inf

χ∈Uad

J(χ). (1.4)

We look for the shape of the membrane that maximizes its rigidity, using a specific volume Vα of the

Figure 1.1: Membrane having the same volume, but different number of holes. The shape on the right is
more rigid than that on the left (figure extracted from [4]).

rigid material. Mathematically the optimization problem reads

inf
χ∈Uad

J(χ) =

∫

∂D

(e1 · n)uχds, (1.5)
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where the admissible set Uad is defined as

Uad =

{
χ ∈ L∞(D; {0, 1}) such that

1

|D|

∫

D

χdx = Vα

}
.

Proposition 1.2.1. There is no minimum point or optimal solution for problem (1.5) in the set Uad.

The proof of Proposition 1.2.1 is omitted here and we adress the interested reader to [4] for a detailed
presentation. An intuitive explanation of the above result is that the rigidity of the structure could
be always further improved by creating smaller and smaller inclusions of weak phase aligned with the
direction of the force. Since the admissible set Uad imposes no constraint on the size or smoothness of
the holes, this process could be continued without any limit.

In fact, the sequence of such shapes does not converge to a classical shape, described by a characteristic
function, but instead to a composite material, a mixture of materials 1 and 2 with densities θ = Vα

|D|

and 1 − θ. This case, i.e. the optimality of composite materials, is common in topology optimization
problems. Moreover, this result is of enormous numerical importance, since it explains and justifies the
mesh-dependency of the optimized shapes, i.e. the appearance of more and more holes in the optimized
shape as the mesh is refined.

Techniques to avoid non-existence

A quite natural idea in order to avoid this problem of non-existence is to enlarge the set of admissible
shapes by including ”homogenized” structures in Uad [3], [142], [100]. In this way the characteristic
function χ is replaced by a density field θ which varies continuously in the interval [0, 1]. The elastic
properties of each phase are replaced by the homogenized properties of the composite material created by
their mixture. Once the properties of the homogenized elasticity tensor A∗ have been optimized, problem
(1.4) is replaced by the relaxed or homogenized problem

inf
θ∈U∗

ad

J(θ), (1.6)

where

U∗
ad =

{
θ ∈ L∞(D; [0, 1]) such that

∫

D

θdx = Vα

}
.

This problem admits a solution that can be proved to correspond to the limit of a sequence of shapes of
problem (1.4).

Another category of methods is based on the concept of further constraining the set of admissible
shapes Uad in order to avoid extreme oscillations of its boundary or to impose limitations on its topology.
In [21], Ambrosio et el. proposed to modify problem (1.1) and consider instead the optimization problem

inf
Ω∈Uad

J(Ω) + ℓPP (Ω), (1.7)

where ℓP > 0 is a fixed scalar parameter and P (Ω) is the perimeter of the domain Ω. In [99], [130], Murat
et al. proved the existence of local optima for problem (1.1), for a large variety of objective functions,
assuming that the admissible shapes are uniformly Lipschitz (see also [39]). Several other approaches
have been proposed and we adress the interested reader to [4] and [71] for a more detailed presentation.

1.2.2 Main categories of shape optimization

A further subdivision of Shape Optimization problems can be done depending on the choice of geometric
representation. Traditionally, three main categories are recognized: parametric, geometric (or shape) and
topology optimization.

Parametric optimization

In parametric optimization the shape is described a priori using a limited number of parameters. Such
control variables can be for example the thickness distribution of the structure [24], [4], [42], the size
of structural members [122] or the size of bars in a truss [28], [42]. Many approaches have also been
presented, in which the boundary of the structure is parametrized using polynomials, such as Bézier
curves, splines or NURBS (see [42] and the references therein). This type of optimization is widely used
in industrial applications, but offers a limited possibility of shape variations.
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Geometric (or Shape) optimization

In geometric (or shape) optimization the optimization parameter is the boundary of the structure itself. It
is not a priori limited by decomposing it into a set of curves (splines, NURBS, etc...), but it is considered
as such. It can be numerically represented using, for example, a finite element mesh [18], [4], [91].The
domain here has much more freedom to vary, but not to change topology.

Topology optimization

Topology optimization is a remedy to Shape Optimization’s limitation concerning the preservation of the
initial topology. Here the problem is posed a priori with minimum restrictions, as a problem of finding
the best possible shape that solves problem (1.1). Unless it exists some reason to use a parametrization
of the shape or to keep a specific topology, this category of shape optimization is the most interesting
and allows to explore a larger set of shapes, increasing the possibility to obtain better optimal solutions.
Several methods of topology optimization exist in literature, which differ in the way topological changes
occur.

The first efforts to create optimal topologies in structural optimization used the homogenization
method (see section 1.2.1) [3], [17], [27]. A typical solution of an homogenized problem results in an
optimal shape like the one on the left of Figure(1.2). As expected, the notion of a ”shape” is lost, i.e.
there is no clear boundary of the domain. This is a significant drawback of the homogenization method
for topology optimization in case one wants to design and fabricate a classical shape. Of course, one can
always try to interprete the final density distribution, assuming that low densities correspond to holes
and densities close to 1 correspond to the real structure and design a shape that serves as an initialization
for a problem of Geometric Optimization. However, this is not always a trivial task.

Another idea, in order to get back into a classical shape, consists in penalizing intermediate densities
by using a fictitious interpolation scheme for the material properties, which has the tendency to produce
0− 1 shapes (see Figure(1.2)). The most well-known between these methods, the SIMP (Solid Isotropic
Material with Penalization) method [28], [164], uses the scheme Aijkl(θ) = θpAijkl, where Aijkl is the
elasticity tensor of the full material (θ = 1) and p is the penalization power, used to create classical shapes
(usually p = 3 is used). Other schemes, like the RAMP [134] or combinations of penalization techniques
with Heaviside projection functions [63] have also appeared. All these methods can be seen at last as a
trial to combine Geometric and Topology Optimization in order to change the topology and get a clear
enough geometric representation of the shape at the same time.

Figure 1.2: Left: density distribution of a composite optimal shape; right: penalized optimal shape (figure
extracted from [3]).

Evolutionary algorithms have also been among the first methods to be applied for topology opti-
mization. One of the most well-known method in this category is the Soft Kill Option (SKO) [91], [23].
Heuristic criteria, inspired by natural processes, like the addition of material in areas where a stress
criterion is violated and the removal of bulk in areas that are under-stressed are applied. Such methods
are very easy to be implemented, since they avoid the use of mathematical information about changing
the shape. However, they carry all drawbacks of heuristic methods, like slow convergence, tendency to
fall in local minima, very far from global ones and, of course, no guarantee that the heuristic criterion in
use can minimize the objective function at play.

Instead of using heuristic criteria for removing material, one can use some notion of topological
sensitivity [102], [131], [58], which tests the sensibility of the objective function with respect to the
creation of infinitisemal holes in the design domain.
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Another way to achieve this mixing of Geometric and Topology Optimization is to use tools of Geo-
metric Optimization for the calculation of an advection velocity to change the shape and combine it with
a method of geometric representation of the shape that allows topological changes to occur in a natural
way. Such a method is the combination of shape sensitivity analysis with the level-set method [14], [155],
[9], which is presented in detail in section 1.3. Similar ideas have appeared in [43] using an explicit mesh
represetation of the domain instead of a level-set method and in [162], [141], [167] using the phase-field
method.

1.3 Shape and topology optimization via a level-set method

Since the first publications on ”Shape and Topology Optimization via a Level-Set Method” [13], [14], [107],
[121], [155], there has been a burst of publications on the topic. The method has proved it effectiveness and
robustness in structural optimization for a great variety of problems. Its great advantages compared to
the homogenization method and its variant, like the SIMP method, is the ”clear” and smooth description
of the shape’s boundary and its independence of the mechanical framework at play. In this Section we
describe the basic elements of the method, namely the shape sensitivity analysis and the level-set method,
as well as their coupling in order to create a shape and topology optimization method.

1.3.1 Shape sensitivity analysis

Introduction

In Shape Optimization we are interested in changing iteratively the shape of the structure so as to reduce
as much as possible the value of the objective function. The size of a typical shape optimization problem
is usually prohibitive for discrete or zero-order methods [128], thus we shall prefer to use gradient-based
continuous optimization algorithms. In order to calculate a notion of gradient, some kind of ”calculus of
variations” shall be applied. The first step towards this direction is the mathematical representation of the
shape. We have seen in section 1.2 that a first choice is to use the characteristic function of the domain.
However, this choice does not allow us to perform variations since the space of characteristic functions
is not a linear space (a linear combination of characteristic functions is not necessarily a characteristic
function). Thus, we have to resort to other techniques.

Definitions and results

For the calculation of a notion of ”shape derivative” we shall use the analysis of Murat and Simon [130],
which is based on Hadamard’s variation method. Similar approaches have also been presented in [132]
and [71].
Starting from a smooth reference domain Ω0, we will suppose that all admissible shapes Ω are obtained
by applying a smooth vector field θ such that

Ω = {x+ θ(x) such that x ∈ Ω0} .

In other words, every admissible shape Ω will now be represented by a vector field θ : R
N → R

N

(N = 2 or 3) and we will write Ω = ( Id + θ)(Ω0)(see Figure(1.3)). The space of admissible shapes
obtained by such a deformation of the domain Ω0 will be denoted C(Ω0), i.e.

C(Ω0) =
{
Ω s.t. ∃ θ ∈W 1,∞(RN ;RN ),Ω = ( Id + θ)(Ω0)

}
.

Since θ belongs to some functional space (e.g. W 1,∞(RN ;RN ) or C1,∞(RN ;RN )), we are able henceforth
to define a notion of derivation with respect to θ.

Remark 1.3.1. The above way of shape representation implies that for θ small enough, all admissible
shapes will have the same topology with the reference domain Ω0, since a change of topology is not possible
via continuous transformations of the domain Ω0.

We are now ready to define a notion of differentiability with respect to the domain.

Definition 1.3.2. The functional J : Ω → R is said to be shape differentiable at Ω0 if the application

θ → J (( Id + θ) (Ω0))
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Figure 1.3: Variations of a shape using Hadamard’s method.

is Fréchet differentiable at 0 in the Banach space W 1,∞(RN ;RN ). Then, the following asymptotic expan-
sion holds in the vicinity of 0:

J
(
(Id+ θ)(Ω)

)
= J(Ω) + J ′(Ω)(θ) + o(θ) with lim

θ→0

|o(θ)|

‖θ‖
= 0 , (1.8)

where J ′(Ω) is a continuous linear form on W 1,∞(RN ;RN ).

Remark 1.3.3. A weaker notion of differentiability, that is also convenient for our purposes, is that of
the directional derivative of a functional J : Ω → R at Ω in the direction θ ∈ W 1,∞(Rd;Rd) which is
defined as the limit in R (if it exists)

J ′(Ω)(θ) = lim
δ→0

J((Id+ δθ)(Ω))− J(Ω)

δ
.

Remark 1.3.4. Although we have defined the shape derivative using the spaceW 1,∞(Rd;Rd), some of our
problems will require higher regularity. This fact poses no theoretical problem and for reasons of simplicity,
we shall use the term ”shape derivative” independently of the type of derivation or the functional space
considered.

A classical result is derived from Hadamard’s structure theorem and states that the shape deriva-
tive depends only on the normal component of θ on the boundary ∂Ω (the tangential component can be
omitted).

Proposition 1.3.5. Let Ω0 be a smooth bounded open set of RN and J a differentiable function at Ω0.
If θ1, θ2 ∈ W 1,∞(RN ;RN ) are such that θ2 − θ1 ∈ C1(RN ;RN ) and θ1 · n = θ2 · n on ∂Ω0, then the
derivative J ′(Ω0) verifies

J ′(Ω0)(θ1) = J ′(Ω0)(θ2).

Proof. See [4].

We will give now some classical examples of shape derivatives of integrals, whose integrand does not
depend on the domain Ω.

Proposition 1.3.6. Let Ω0 be a smooth bounded open set of RN . If f ∈ W 1,1(RN ) and J : C(Ω0) → R

is defined by

J(Ω) =

∫

Ω

f(x) dx,

then J is differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

Ω0

div (θ(x)f(x)) dx =

∫

∂Ω0

θ(s) · n(s)f(s)ds,

for all θ ∈W 1,∞(RN ;RN ).
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Proof. The principal idea to prove the shape differentiability of an integral is to use some theorem of
change of variables in order to pass to a calculation on the reference domain Ω0. In our case we get

J (Ω) = J (( Id + θ) (Ω0)) =

∫

( Id+θ)(Ω0)

f(x)dx =

∫

Ω0

f ◦ ( Id + θ) |det (I +∇θ)| dx,

where I = ∇ Id is the identity matrix. Substituting to the above expression the identities

det (I +∇θ) = 1 + divθ + o(θ) with lim
θ→0

‖o(θ)‖L∞(RN )

‖θ‖W 1,∞(RN ;RN )

= 0

and

f ◦ ( Id + θ) (x) = f(x) +∇f(x) · θ(x) + o(θ) with lim
θ→0

‖o(θ)‖L∞(RN )

‖θ‖W 1,∞(RN ;RN )

= 0,

yields the desired result.

Proposition 1.3.7. Let Ω0 be a smooth bounded open set of RN . If f ∈ W 2,1(RN ) and J : C(Ω0) → R

is defined by

J(Ω) =

∫

∂Ω

f(s) ds,

then J is differentiable at Ω0 and ∀θ ∈ C1(RN ;RN ) we have

J ′(Ω0)(θ) =

∫

∂Ω0

(∇f · θ + f (divθ −∇θn · n)) ds =

∫

∂Ω0

θ · n

(
∂f

∂n
+Hf

)
ds,

where H = divn is the mean curvature of ∂Ω0.

Proof. Using a change of variables theorem as previously, we get

J (Ω) = J (( Id + θ) (Ω0)) =

∫

∂( Id+θ)(Ω0)

f(s)ds

=

∫

∂Ω0

f ◦ ( Id + θ) |det (I +∇θ)|

∣∣∣∣
(
(I +∇θ)

−1
)T

n

∣∣∣∣
RN

ds.

Substituting the identities

(
(I +∇θ)

−1
)T

n = n− (∇θ)
T
n+ o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0R
N )

‖θ‖C1(RN ;RN )

= 0

and ∥∥∥∥
(
(I +∇θ)

−1
)T

n

∥∥∥∥
RN

= 1− (∇θ)
T
n · n+ o(θ) with lim

θ→0

‖o(θ)‖L∞(∂Ω0R
N )

‖θ‖C1(RN ;RN )

= 0

we get that

J ′(Ω0)(θ) =

∫

∂Ω0

(∇f · θ + f (divθ −∇θn · n)) ds.

After an integration by parts at the boundary ∂Ω (see Lemma 6.25 in [4]), we result in

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n

(
∂f

∂n
+Hf

)
ds.
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Shape derivative of a function that depends on the domain

In the previous section we have defined the notion of ”shape derivative” of functionals and have presented
some classical results of shape derivatives of integrals, when the integrands are independent of the domain
Ω. In this section we will discuss the shape derivation of functions that depend on Ω and will extend the
results about shape derivation of integrals to the general case of shape dependent integrands.

Suppose u(Ω, x) is a function defined ∀x ∈ Ω and which depends also on Ω. Such a case appears,
for example, when u(Ω, x) is the solution of a PDE defined in Ω. Like in mechanics, we shall define two
types of shape derivatives, an Eulerian and a Lagrangian one.

TheEulerian derivative has a local sense and shows the rate of change of u at a fixed point x. Thus, for
a point x that belongs both to the reference domain Ω0 and to the transported domain Ω = ( Id+θ)(Ω0),
we can write the asympotic expansion with respect to θ at the point x

u (( Id + θ) (Ω0) , x) = u (Ω0, x) + U(θ, x) + o(θ), with lim
θ→0

|o(θ)|

‖θ‖
= 0 , (1.9)

where U(θ, x) is the Eulerian shape derivative of the function u(Ω, x).
Although the above expansion has a sense for points x ∈ Ω0, it is not obvious that the same occurs

for a point x ∈ ∂Ω0, since it is not sure that such a point will belong to the boundary or to the interior
of the new domain ∂Ω = ∂( Id + θ)(Ω0).

This problem does not appear when the Lagrangian derivative is used, which is a measure of the
rate of change of u at a point x that moves with the domain. Since θ(x) has been defined so that
( Id + θ) is a bijection, the point x ∈ Ω0 corresponds to the point xθ = x+ θ(x) ∈ Ω. Since the functions
u(Ωθ, xθ) = u(( Id + θ)(Ω0)) ◦ ( Id + θ) = u(( Id + θ)(Ω0), x+ θ(x)) and u(Ω0, x) are both defined on the
same domain Ω0, we can write down the asymptotic expansion

u(( Id + θ)(Ω0), x+ θ(x)) = u(Ω0, x) + Y (θ, x) + o(θ), with lim
θ→0

|o(θ)|

‖θ‖
= 0 , (1.10)

where Y (θ, x) is the Lagrangian shape derivative of the function u(Ω, x).
Then, once the Lagrangian derivative has been calculated, the Eulerian derivative is found by a simple

chain rule as

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

We can extend now the results of Propositions 1.3.6 and 1.3.7 to the general case of integrands that are
shape dependent.

Proposition 1.3.8. Let Ω0 be a smooth bounded open set of RN and u(Ω) be a function from C(Ω0) to
L1(RN ). We define its transported function from C1(RN ;RN ) to L1(RN )

u(Ωθ, xθ) = u(( Id + θ)(Ω0)) ◦ ( Id + θ),

which we suppose to be derivable at 0 with Lagrangian derivative Y . Then, the functional J1 : C(Ω0) → R

defined as

J1 =

∫

Ω

u(Ω)dx

is differentiable at Ω0 and ∀θ ∈ C1(RN ;RN ) we have

J ′
1(Ω0)(θ) =

∫

Ω0

(u(Ω0)divθ + Y (θ)) dx =

∫

Ω0

(div(u(Ω0)θ) + U(θ)) dx.

Moreover, if u(Ωθ, xθ) is derivable at 0 as a function from C1(RN ;RN ) to L1(∂Ω0), then the functional
J2 : C(Ω0) → R defined as

J2 =

∫

∂Ω

u(Ω)ds

is differentiable at Ω0 and ∀θ ∈ C1(RN ;RN ) we take

J ′
2(Ω0)(θ) =

∫

∂Ω0

(u(Ω0)(divθ −∇θn · n) + Y (θ)) ds =

∫

Ω0

(
θ · n(

∂u(Ω0)

∂n
+Hu(Ω0)) + U(θ)

)
ds.



1.3. SHAPE AND TOPOLOGY OPTIMIZATION VIA A LEVEL-SET METHOD 37

In all of the results of this section about shape derivatives we have supposed that the function u(Ω, x)
at play is shape differentiable. Proving rigorously this assumption is not always an easy task, although
much work has been done in this direction for well-known PDEs. The general picture of such a proof is
the following:

• The PDE is written once for the transported function u(Ωθ, xθ) and for the original function u(Ω, x).

• Substracting the two equations, a new PDE appears with the Lagrangian derivative Y (θ, x) as
unknown function.

• Proof of the existence and uniqueness of the solution of this PDE and that the error estimate for
the remainder is o(θ).

Instead of this rigorous proof, another much simpler method is usually used, introduced by Céa [35].
This method is formal, in the sense that we assume enough smoothness of the shape for all neccessary
operations and also we assume the shape differentiability of all the functions at play. In this work, we
use Céa’s method for shape derivation.

Shape derivation using Céa’s method

The method of Céa is a very useful tool for finding the expression of the shape derivative of a functional
J(Ω, u(Ω)) that depends on the shape Ω, but also on the solution u(Ω) of a PDE, since it avoids the
direct calculation of the shape derivative of u(Ω). It amounts to regard the PDE as a constraint of the
optimization problem that the variable u needs to satisfy. Let us explain the method in detail using an
example.
Suppose that we want to calculate the shape gradient for a functional of the type

J(Ω, u(Ω)) =

∫

Ω

j(x, u(Ω, x))dx+

∫

∂Ω

l(s, u(Ω, s))ds, (1.11)

where u ∈ H1(Ω)N is the displacement of the structure, the unique solution of the linearized elasticity
system 




−div (Ae(u)) = f in Ω,
u = 0 on ΓD,(

Ae(u)
)
n = g on ΓN ,(

Ae(u)
)
n = 0 on Γ.

(1.12)

The shape’s boundary is decomposed into three parts such that ∂Ω = ΓD ∪ ΓN ∪ Γ. The structure is
fixed on ΓD and is subjected to volume forces f ∈ L2(Ω)N and to surface loads g ∈ H1(Ω)N on ΓN . The
strain tensor is denoted e(u) and is equal to the symmetrized gradient of u.

Proposition 1.3.9. The shape derivative of (1.11) reads

J ′(Ω, u(Ω))(θ) = +

∫

∂Ω

θ · n (j(u) +Ae(u) · e(p)− f · p) ds+

∫

∂Ω

θ · n

(
∂l(u)

∂n
+Hl(u)

)
ds

−

∫

ΓN

θ · n

(
∂(g · p)

∂n
+H(g · p)

)

−

∫

ΓD

θ · n

(
∂(u ·Ae(p)n+ p ·Ae(u)n)

∂n
+H(u ·Ae(p)n+ p ·Ae(u)n)

)
ds,

where u is the unique solution of (1.12) and p is the unique solution of the adjoint state




−div (Ae(p)) = −j′(u) in Ω,
p = 0 on ΓD,(

Ae(p)
)
n = −l′(u) on ΓN ∪ Γ.

(1.13)

Proof. Instead of deriving directly the functional J(Ω, u(Ω)) and trying to calculate the Eulerian or
Lagrangian derivative of u(Ω), we formulate the Lagrangian function

L(Ω, v, q, µ) = +

∫

Ω

j(v)dx+

∫

∂Ω

l(v)ds+

∫

Ω

(−div (Ae(v))− f) · qdx

+

∫

ΓN

(Ae(v)n− g) · qds+

∫

Γ

Ae(v)n · qds+

∫

ΓD

v · µds,
(1.14)
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where v, q, µ ∈ H1(RN )N do not depend on the domain Ω. As we will see in the sequel, the shape
derivative of the objective functional J at Ω will be derived by fixing the domain Ω and taking the
optimality conditions for the Lagrangian function L.

Setting the partial derivative of L with respect to q in the direction of a test function φ ∈ H1(RN ;RN )
at the optimal point (Ω, u, p, µ∗) equal to zero, we get

∂L

∂q
(Ω, u, p, µ∗)(φ) = +

∫

Ω

(−div (Ae(u))− f) · φdx+

∫

ΓN

(Ae(u)n− g) · φds

+

∫

Γ

Ae(u)n · φds = 0.

Taking φ with compact support in Ω gives

− div (Ae(u)) = f in Ω. (1.15)

Varying the trace of φ on ΓN and on Γ gives

Ae(u)n = g on ΓN (1.16)

and
Ae(u)n = 0 on Γ. (1.17)

In the same way, setting the partial derivative of L with respect to µ in the direction φ equal to zero

∂L

∂q
(Ω, u, p, µ∗)(φ) = +

∫

ΓD

u · φds = 0

results in
u = 0 on ΓD. (1.18)

Equations (1.15),(1.16),(1.17) and (1.18) show that the function u is in fact the unique solution of the
state equation (1.12).
We write again the function L, after an integration by parts, in the form

L(Ω, v, q, µ) = +

∫

Ω

j(v)dx+

∫

∂Ω

l(v)ds+

∫

Ω

(Ae(v) · e(q)− f · q) dx

−

∫

ΓN

g · qds−

∫

ΓD

Ae(v)n · qds+

∫

ΓD

v · µds.

The partial derivative of L with respect to v, at the optimal point, in the direction φ ∈ H1(RN ;RN )
gives

∂L

∂v
(Ω, u, p, µ∗)(φ) = +

∫

Ω

j′(u) · φdx+

∫

∂Ω

l′(u) · φds+

∫

Ω

Ae(p) · e(φ)dx

−

∫

ΓD

Ae(φ)n · pds+

∫

ΓD

φ · µ∗ds.

Setting this derivative equal to zero and taking φ with compact support in Ω yields

− div (Ae(p)) = −j′(u) in Ω. (1.19)

Varying the trace of φ on ΓN , Γ yields

Ae(p)n = −l′(u) on ΓN ∪ Γ. (1.20)

Varying the trace of φ on ΓD with Ae(φ)n = 0 yields

µ∗ = −Ae(p)n− l′(u) on ΓD. (1.21)

Varying the normal stress Ae(φ)n on ΓD with φ = 0 on ΓD yields

p = 0 on ΓD. (1.22)

Therefore, p is the unique solution in Ω of the adjoint equation (1.13).
Finally, the shape derivative of the functional J at Ω will be equal to the shape derivative of the Lagrangian
function L at the optimal point (Ω, u, p, µ∗), i.e.

∂L

∂Ω
(Ω, u, p, µ∗)(θ) = J ′(Ω)(θ). (1.23)



1.3. SHAPE AND TOPOLOGY OPTIMIZATION VIA A LEVEL-SET METHOD 39

To prove this, take first any q ∈ H1(RN ) and see that

L(Ω, u(Ω), q) = J(Ω),

where u is the solution of the state equation. Then, taking the shape derivative of both members and
using the rule of composite derivatives yields

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u(Ω), q, µ)(θ) +

〈
∂L

∂v
(Ω, u(Ω), q, µ), u′(Ω)(θ)

〉
.

If q = p(Ω), the solution of the adjoint state, and µ = µ∗, the last term disappears and relation (1.23) is
revealed.

The shape derivative of L is much easier to calculate, since it has been constructed such that the
functions v, q and µ are independent of Ω. Thus, only the results of propositions 1.3.6 and 1.3.7 need to
be applied. A simple calculation yields

∂L

∂Ω
(Ω, u, p, µ∗)(θ) = +

∫

∂Ω

θ · n (j(u) +Ae(u) · e(p)− f · p) ds+

∫

∂Ω

θ · n

(
∂l(u)

∂n
+Hl(u)

)
ds

−

∫

ΓN

θ · n

(
∂(g · p)

∂n
+H(g · p)

)

−

∫

ΓD

θ · n

(
∂(u ·Ae(p)n+ p ·Ae(u)n)

∂n
+H(u ·Ae(p)n+ p ·Ae(u)n)

)
ds.

For example, in the case of compliance minimization j(u) = f · u in Ω and l(u) = g · u on ΓN , we
easily see that p = −u, i.e. the problem is self-adjoint. If we further assume that θ = 0 on ΓD ∪ΓN , then
the shape derivative of J reads

J ′(Ω)(θ) =

∫

Γ

θ · n(2f · u−Ae(u) : e(u))ds.

Steepest descent

Once we have found the shape derivative of the functional J(Ω) in the general form

J ′(Ω)(θ) =

∫

∂Ω

θ(s) · n(s) j(s)ds,

a descent direction, corresponding to a notion of gradient descent, is revealed under the choice

θ(s) = −tj(s)n(s), (1.24)

for a small positive step t > 0. Although formula 1.24 makes sense only on the boundary ∂Ω, it can be
extended to the entire domain Ω (see section 1.3.4).

Substituting θ(s) in the shape derivative expression and back to the asymptotic expansion formula
(1.8), we can formally write for J(Ωt) = J (( Id + tθ)(Ω))

J(Ωt) = J(Ω)− t

∫

∂Ω

j(s)2ds+ o(t2) ≤ J(Ω),

which guarantees a descent direction.

1.3.2 Level-set method

General description

The level-set method, developed by S. Osher and J. Sethian [106], is a technique for tracking interfaces
which are implicitly defined via the zero level-set of an auxiliary function. Since its appearance, it has
been applied in a great variety of fields (fluid mechanics, image processing, computer graphics, meshing,
etc...). Beyond the simplicity of the geometric description of an interface, its great benefit lies in the ease
under which topological changes occur. Let us give an example to explain this point.
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Suppose we are given two circles that evolve in time and finally merge at some part. If we choose
to describe this movement by parametrizing their boundaries, then we need to construct two initial
parametrizations, update them at each time step, identify the exact time at which the topological change
occurs, construct a new parametrization for the newly created domain and so on. Of course, it is easy to
understand that such a process is both theoretically and numerically very difficult.

Instead of this, we can choose to use an one-dimension higher function, a so-called level-set function,
and reveal the boundaries of the shapes as its zero level-set. At the upper part of Figure 1.4, we see a
three-dimensional function, and several level-sets depicted in black colour. Its zero level-set corresponds
to the lines separating the blue from the red region and represents two circles. At the lower part of the
figure, we see that the function has changed and its zero level-set has evolved so that it now represents
a domain with different topology, i.e. the circles have merged. This topological change has occured in a
very natural way, by performing simple operations on the level-set function.

Figure 1.4: Level-set representation of two circles that finally merge.

More specifically, we choose all admissible shapes Ω to be subsets of a bounded working domain
D ⊂ R

N (see Figure 1.5). Then, the boundary of Ω is defined by means of a level set function ψ such
that 




ψ(x) = 0 ↔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ↔ x ∈ Ω,
ψ(x) > 0 ↔ x ∈

(
D \ Ω

)
.

For a domain Ω(t) that evolves in the time interval t = [0, T ] under a velocity field θ (t, x), we define a

Figure 1.5: Level-set representation of a structure (in grey).

time-dependend level-set function ψ (t, x(t)), such that the boundary of the domain, ∂Ω(t), is given by
the set of points x(t) satisfying

ψ (t, x(t)) = 0, ∀t ∈ [0, T ] .
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A simple derivation in time yields

∂ψ

∂t
(t, x) + ẋ(t) · ∇ψ(t, x) = 0, ∀t, ∀x ∈ ∂Ω(t), (1.25)

which is a PDE that describes the advection of the boundary under a velocity field ẋ(t). Each point
x(t) ∈ ∂Ω(t) satifies a Lagrangian type ODE

ẋ(t) = θ(t, x(t)). (1.26)

Substituting (1.26) in (1.25), we get

∂ψ

∂t
(t, x) + θ(t, x(t)) · ∇ψ(t, x) = 0, ∀t, ∀x(t) ∈ ∂Ω(t), (1.27)

which can be extended in the whole computational domain D, since the same reasoning is valid for any
value c of the level-set ψ(t, x(t)) = c. If only the normal component of the velocity field is of interest, like
in shape optimization, the advection velocity can be written as θ(t, x) = V (t, x)n(t, x), V (t, x) being a
scalar field. The unit normal vector can be defined and extended at the same time in the whole domain
D by means of the level-set function ψ (which is assumed to be smooth enough) as

n(x) =
∇ψ(x)

|∇ψ(x)|
a.e. in D. (1.28)

Then, equation (1.27) takes the form of the Hamilton-Jacobi equation

∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ D. (1.29)

The method used to solve equation (1.29) depends on the discretization of the level-set function. The
most common choice is to mesh the domain D once and for all using a structured grid and utilize finite
difference schemes to approximate the differential operators. This is the method we have followed in this
work. A robust, explicit, second-order scheme developed by S. Osher and J. Sethian [106] and presented
in detail in section 5.1 of [120] has been used to solve (1.29) under a CFL condition for the time step.

Another choice is to use an unstructured mesh and possibly also adjust it so that the zero level-set
is explicitly discretized [45]. This method is much more complex from a point of view of numerical
implementation, however it presents at the same time many benefits compared to the classical one,
especially in problems where the knowledge of the exact position of the boundary plays an important role.
For such a method, other schemes have been developed, based mainly on the method of characteristics
(see [135]). We adress the interested reader to [45, 46] and to the references therein for more information
about the level-set method using unstructured meshes.

Signed-distance function

Until now we have refered in general to a level-set function, without giving any specific information about
it. In fact, there is an infinity of level-set functions that can be used for the description of the shape.
A priori, the only criterion that it should fulfill is to have sufficient regularity at a region around the
boundary. The reason is that several geometric features that are neccessary to be calculated during the
advection or the optimization algorithm, such as unit normal vector to the exterior of the boundary (1.28)
or the mean curvature (H), which is defined as

H(x) = divn = ∇ ·

(
∇ψ(x)

|∇ψ(x)|

)
,

are computed directly via the level-set function using differential operators. These operators are approx-
imated using e.g. finite difference schemes on a fixed mesh. The accuracy of the approximations depends
on the smoothness of the function ψ at the stencil of the schemes.

It is well-known [105, 120] that, during evolution, the level-set function can become too steep or flat,
even if it starts from a smooth initialization. A way to guarantee its smoothness is to reinitialize it
periodically as the signed distance function to the domain Ω. The signed distance function to Ω is
the function R

N ∋ x 7→ dΩ(x) defined by :

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ cΩ,
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where d(·, ∂Ω) is the usual Euclidean distance.
Several methods have been proposed for the numerical construction of the signed distance function

(Fast-Marching method, Fast-Sweeping method, Hamilton-Jacobi equations, etc...). We adress the inter-
ested reader to [105], [120] for a detailed presentation on structured grids and to [46] and to the references
therein for unstructured meshes. In this work, we mainly compute it by solving a PDE, as proposed in
[105]. Since dΩ satisfies the Eikonal equation

|∇dΩ| = 1 a.e. in Ω, (1.30)

starting from an initial level-set function ψ0(x), dΩ can be obtained as the stationary solution of the
following PDE {

∂ψ

∂t
+ sgn(ψ0)(|∇ψ| − 1) = 0 ∀t > 0, x ∈ R

N ,

ψ(t = 0, x) = ψ0(x) ∀x ∈ R
N ,

(1.31)

using the same numerical scheme as for the advection equation (1.29).

1.3.3 Coupling shape sensitivity with a level-set description

In Section 1.3.1 we have calculated a shape derivative and extracted a vector field that indicates how to
change the shape in a way that reduces some cost functional and in Section 1.3.2 we have presented the
basic elements of the level-set method for the description of an interface that evolves in time under a
velocity field

θ(x) = V (x)n(x). (1.32)

What remains is to combine these two notions by taking an advection field proportional to the shape
gradient and construct a method that is able to optimize at the same time the shape and the topology of
the structure. It amounts simply to interprete the shape gradient calculated via shape sensitivity analysis
as an advection velocity for a level-set function that describes the shape.

Ersatz material

Using the so-called ”ersatz material” approach, we extend the state equations to the whole domain D.
To do this, we fill the holes D \Ω by a weak phase that mimicks the void, but at the same time avoids the
singularity of the rigidity matrix. More precisely, we define an elasticity tensor A∗(x) which is a mixture
of A in Ω and of the weak material mimicking holes in D \ Ω

A∗(x) = ρ(x)A with ρ =

{
1 in Ω,
ε << 1 in D \ Ω,

(1.33)

where ε ≈ 10−3. Decomposing the boundary ∂D of the working domain in three parts

∂D = ∂DD ∪ ∂DN ∪ ∂D0,

such that ΓD ⊂ ∂DD and ΓN ⊂ ∂DN , the displacement u is finally computed as the solution of





−div (A∗ e(u)) = f in D,
u = 0 on ∂DD,(

A∗ e(u)
)
n = g on ∂DN ,(

A∗ e(u)
)
n = 0 on ∂D0.

(1.34)

Optimization algorithm

The information given from the shape gradient is local, i.e. it refers to a neighbourhood around the current
shape Ω. Therefore, an iterative algorithm needs to be constructed so as to minimize progressively the
cost functional. Using a simple steepest descent algorithm, which guarantees the decrease of the objective
function at each time step, the optimization algorithm has the following structure:

• Start with an initial guess shape Ω0, described by a level-set function ψ0.

• Iterate until convergence, for k ≥ 0:

1. Solve the state and adjoint equations for the domain Ωk to obtain uk and pk.
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2. Compute the shape gradient for the current domain Ωk, which has the form

J ′(Ωk)(θk) =

∫

∂Ωk

(θk · n)jk ds.

3. Choose θk = −jkn as an advection velocity and solve the Hamilton-Jacobi equation

∂ψk
∂t

(t, x) + jk(x)|∇ψk(t, x)| = 0, ∀t ∈ [0, Tk] , ∀x ∈ D,

in order to get a new level-set function ψk+1, representing the domain Ωk+1. The total advec-
tion time Tk is chosen so that J(Ωk+1) < J(Ωk).

Several convergence criteria can be adopted, which usually test the decrease in the objective function
and the total advection time, i.e. the algorithm terminates when |J(Ωk+1)− J(Ωk)| < εk and Tk < Tlim,
where εk and Tlim are user defined scalar parameters. Since their choice is not a priori obvious, it is
common practise to set a computational cost criterion in terms of total number of iterations.

1.3.4 Extension and regularization of the velocity field

Although equation (1.29) for the advection of the level-set function is solved in the whole domain D,
shape sensitivity analysis provides us with a shape gradient defined only on the boundary of the domain
∂Ω. Since the boundary is not explicitly discretized in our case, we can assume that the normal velocity
V is defined for the nodes of the elements that are crossed by the zero level-set. Then, one possibility is
to consider V = 0, ∀x ∈ D \ ∂Ω. Such a choice would slow down the algorithm. The reason is that for
each finite element calculation, which is the most costly part of the algorithm, we want to perform several
transport steps for the advection equation (1.29). If the velocity is extended by 0 at a small distance
away from the boundary, the shape will stop there and the total movement will be too small, probably
resulting in a great number of iterations until convergence.

A remedy to this inconvenience is to extend the velocity field in all the domain. At the same time,
it would be numerically beneficial to smooth a bit the shape gradient, but in a way that guarantees the
descent nature of the new advection velocity. One way to combine these two requirements is the following:
Initially, the shape derivative has the form

J ′(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)j(s)ds, (1.35)

or, for an advection velocity of the type θ(s) = w(s)n(s),

J ′(Ω)(wn) =

∫

∂Ω

w(s)j(s)ds. (1.36)

Instead of choosing w(s) = −j(s), we can solve the variational formulation for Q ∈ H1(D)

∫

D

(
α2∇Q · ∇W +QW

)
dx = J ′(Ω)(Wn) for anyW ∈ H1(D), (1.37)

where α > 0 is a positive scalar (of the order of the mesh size) to control the regularization width and
take w = −Q. Doing so, we see that

J ′(Ω)(wn) = −

∫

D

(
α2|∇Q|2 +Q2

)
dx,

which guarantees again a descent direction for J .

Discussion on topological changes

The carefull reader shall have identified a conflict in the aforementioned about the coupling of the shape
sensitivity analysis and the level-set method. Hadamard’s method for shape variations supposes that the
topology of the shape remains the same, while the level-set method lets such changes occur in a natural
way.

In fact, this theoretical conflict does not pose a problem in our method. We can always choose to move
at a step so small that the topology does not change, but we are not interested to do so! If a feature of
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the structure tends to disappear, there is no need to hinder it, else we shall not use the level-set method
for the description of the shape. When a topological change occurs, the shape derivative is not valid
any more and it is possible that our algorithm cannot further decrease the objective function. One can
choose to use at this point the notion of topological derivative (see section 1.2.2). However, this kind of
derivation is more complicated and more limited compared to the shape derivative and we have prefered
not to use it in this work.

We shall try to avoid this problem by allowing some small increase of the objective function for some
number of iterations, in which we expect topological changes to occur. In addition, when a topological
change occurs, e.g. when a bar breaks, it is possible that the objective function will increase, since the
features do not disappear at ones but it takes some iterations for the algorithm to adjust the shape to
the new topology. However, we can hope that after this small increase, the algorithm will arrive at a
better optimum and thus it is a good strategy to allow for it. In this sense, an iteration will be accepted
if J(Ωn+1) < (1 + ηtol)J(Ωn), where ηtol > 0 is set to a small value (≈ 0.05) for some iterations and to 0
afterwards.

Examples

Let us finish this introductory part with two benchmark examples on compliance minimization in lin-
earized elasticity, coded in the finite element software SYSTUS of ESI-Group.
We search to minimize a weighted sum of the work of the external forces and the volume of the structure,
i.e.

J(Ω) =

∫

ΓN

g · uds+ ℓV

∫

Ω

dx,

where u is the solution of (1.34) and ℓV > 0 is a fixed Lagrange multiplier for the weight.
The shape derivative of J(Ω) reads

J ′(Ω)(θ) =

∫

∂Ω

θ(s) · n(s) (ℓV −Ae(u)e(u)) ds.

The first example is a two-dimensional 2×1 cantilever, clamped on its left side and with a unitary vertical
force applied on the middle of its right side (see Figure 1.6). The results for ℓV = 100 are shown in Figure
1.7 and 1.8. The second example is a three-dimensional 2× 1× 1 cantilever, clamped on its left side and

Figure 1.6: Boundary conditions for a two-dimensional cantilever.

with a unitary force applied on the middle of its right side (see Figure(1.9)). The results for ℓV = 200
are shown in Figure 1.10 and 1.11.
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(a) (b)

(c) (d)

(e)

Figure 1.7: (a): Initialization; (b)-(d): iterations 3, 6, 15; (e): optimized shape; (f): convergence diagram.

Figure 1.8: Convergence diagram for the results of Figure 1.7.
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Figure 1.9: Boundary conditions for a three-dimensional cantilever.

(a) (b)

(c) (d)

(e)

Figure 1.10: (a): Initialization; (b)-(d): iterations 5, 10, 30; (e): optimized shape.
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Figure 1.11: Convergence diagram for the results of Figure 1.10.
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Casting constraints: physical
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2.1 Introduction

Every design that is intended to be realized is subjected to manufacturing constraints. They can refer to
limitations of completely different nature, such as the total production cost, the available precision of the
tooling machinery, or constraints that are related to some specific fabrication method. The restrictions
that they impose on the shape can be significant, sometimes playing the major role in the concept of the
design.

Shape and topology optimization methods are well-known to produce complex optimized shapes.
The great advances that have occured during the last decades in techniques of additive manufacturing
such as 3D printing, laser stereo-lithography, electron beam melting, etc... [65], [73], [87], [111], have
made possible to realize such designs. Although these methods pose, in general, very few limitations
on the structural design, they are not yet suitable for parts of mass production, mainly due to the high
production cost and time. For structures produced with traditional manufacturing methods, engineers
usually try at a second step to interprete optimization results and change the shape in a way that turns it
into manufacturable. However, the necessary modifications are, in full generality, not done in an optimal
way, resulting in a shape that is not in fact optimal. In addition, the changes can be so dramatic that
the structure loses completely its optimal characteristics and turns the result of shape and topology
optimization practically useless.

Another choice instead of manually and heuristically interfering in the shape, is to incorporate man-
ufacturing constraints in the optimization algorithm. Although the complexity of the problem and algo-
rithm can increase significantly, as well as the probability to fall in an early local minimum, an optimized
shape that respects at least the main manufacturing constraints will be much more helpfull for the indus-
trial designers. Moreover, as we will see later in this work, introducing manufacturing constraints in the
optimization algorithm can totally change the loading path in the structure. Therefore, this choice is not
just about automatizing in some way the heuristic steps followed by engineers to ensure manufacturability.

In this work, we are mainly interested in treating constraints imposed on cast parts, i.e. structures
that are intended to be constructed via the casting process. However, we shall see that the major casting

49
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Figure 2.1: Simplified representation of a casting system.

constraints are very general and also appear in a great variety of other manufacturing methods. In the
rest of this Chapter, we give a short description of the casting process and the major casting defects.
Then, we describe how castability is checked in industry and how engineers usually proceed when it is
not ensured. Finally, we explain our strategy on how shape and topology optimization should account
for castability. The mathematical treatment of these constraints will be considered later in chapters 3, 4
and 5.

2.2 Casting process

2.2.1 General description

A great number of structures in industry are constructed via casting. A simplified casting system is
shown in Figure 2.1. Molds are used to create a cavity with the shape of the structure to be constructed.
A path is also created to lead the molten liquid to the cavity and a riser, a reservoir of molten liquid,
provides the structure with the additional liquid needed due to contraction during solidification. After
solidification, the molds are removed and the riser is cut to obtain the cast part. A complete presentation
of the casting process can be found in [33], [116] and [133].

Several types of casting exist, depending on the type of the mold (sand, metal, wax, etc...), the
application of additional pressure or the sole action of gravity during the flow of the liquid metal, etc...
In this work, we are mostly interested for parts that are massively procused and whose molds need to
remain functional for a large number of castings. Despite the fact that each type of casting can introduce
its particular type of defects in the cast part, the major casting defects seem to be common for all
categories and we shall not focus on a specific casting type.

2.2.2 Casting defects

We call casting defects the imperfections of the finally constructed structure compared to the intended
design, that are due to the casting process. They can originate from anything that participates in the
casting: the metal, the mold, the shape of the cast part, the caster, etc... The main categories of casting
defects are the following:

• shrinkage defects,

• pouring metal defects,

• gas porosity,

• metallurgical defects,

• mold material defects.
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Among the above categories, shrinkage defects and pouring metal defects are closely linked to the
shape of the structure and thus they are of interest in our work.

Shrinkage defects

Shrinkage porosity can appear due to contraction of the liquid metal during the solidification. As the
structure solidifies from the exterior to the interior, it contracts due to the lower density of the liquid
compared to the solid state. Material is draught from neighboring points and thus no material remains for
the last points to solidify (hot spots) [144]. The porosity that appears at these regions is called shrinkage
porosity and it is the main category of defaults due to solidification of cast parts. Shrinkage porosity
should be avoided, since it can have a great negative impact on the mechanical behavior of the cast part.

Pouring metal defects

This category includes defects that appear when some part of the mold is not filled properly. Possible
reasons can be the lack of sufficient fluidity of the liquid or the existence of too thin features in the
mold, where the metal solidifies before the mold has been filled and the filling process is thus interrupted,
resulting in a complete failure of the casting.

2.3 Testing castability

Castability of a structure is usually verified by checking three properties of the cast part:

• moldability,

• feedability and

• fillability.

In this section, we give a short description of the above properties and explain the specifications that
they impose on the design.

2.3.1 Moldability

Moldability refers to the ability to construct a mold with certain geometric requirements and to remove
it after the cooling process has ended. It mainly imposes the following three specifications on the design
of the structure:

• Molding direction.

• Minimum members’ distance.

• Maximum curvature.

The above requirements are presented in more detail in the sequel.

Molding direction

As we have mentioned earlier, we focus on casting methods where the molds are used for a large number
of pieces and thus need to be removed and reutilized. For mass production parts, the assembly and
removal of the molds is done automatically using suitable machinery.
The molding direction specification simply states that the shape of the cast part must not contradict with
the design of the molding system. Let us give an example of the above mentioned. Suppose that for an
optimization problem like the one described in Section 1.3.4 we result in the optimized shape Ω, shown
in Figure 2.2. In Figure 2.3 we see that depending on the molding system considered, this shape can be
moldable or not. In the right image of Figure 2.3, some parts of the shape oppose to the removal of the
molds in their corresponding parting direction, i.e. the direction along which the mold is removed.
The construction of the molding system is usually based on the intuition of the caster. Changes on
the number and on the position of the molds can turn a non-moldable shape into a moldable one. The
design of the whole molding system is very difficult (if possible) to be formulated mathematically and be
subjected to continuous optimization. To our knowledge, the only work in this direction in the framework
of shape and topology optimization has been presented in [160], where the simultaneous optimization of
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Figure 2.2: Optimized shape of a cast part (Ω).

Figure 2.3: Left: moldable shape; right: non-moldable shape.

the cast part and the parting direction is considered. In our work, the molding system is considered to
be set a priori.
The only thing that we may allow to vary is the so-called parting surface, the surface on which different
molds come in contact [159]. The parting surface between two molds can be predefined or it can be
constructed after the optimization using suitable methods [1, 56]. In most of the industrial applications,
planar parting surfaces are prefered because of reasons of cost and simplicity [159].

Minimum members’ distance

This constraint imposes a minimum size between the features of the cast part, which is equivalent with
setting a minimum size on the features of the mold. One reason for this specification comes from the
tooling machinery which limits the shapes of realizable molds. Also, thin members of the molds could
result in low precision of the final cast part, due to the deformation of these flexible parts under a high
temperature field. Finally, this is an implicit way of accounting for the fatigue desirement of the molds,
which need to remain functional for a large number of castings, in order to reduce the overall financial
cost.

Maximum curvature

This specification is purely geometric and expresses the inability of constructing too curvy molds.
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2.3.2 Feedability

In order to avoid shrinkage porosity formed during the solidification process, the caster needs to design a
feeding system that drives ”hot spots” outside of the structure. The risers (also called feeders) are reser-
voirs of metal and provide the cast part with the neccessary amount of liquid metal so that solidification
ends inside the riser. They are usually placed in the most massive parts of the shape. The classical ap-
proach is to design them through calculations of volume and surface area of various areas of the casting
(modulus method). Volume represents the capacity to store heat and the surface area represents the
capacity to transfer the heat to the surrounding by convection. A high modulus (M=modulus) value
means high capacity to store heat (volume) compared to the heat loss by convection (surface area). For
this reason, the modulus of the riser should be higher compared to the casting. In [33] it is suggested
that Mf = 1.2Mc, where Mf is the modulus of the feeder and Mc is the modulus of the cast part.

This process is described in Figure 2.4, where the solidification and the solid fraction in a bar with
different feeding systems is depicted. In the upper row, no feeders are placed. Solidification starts from
the exterior to the interior and, at the end, shrinkage porosity is observed at the region to solidify last.
Placing feeders in appropriate positions of the shape changes the direction of solidification and drives
shrinkage porosity towards the risers. The size of the feeders is then increased until the shrinkage defect
is completely moved to the feeders. Increasing the total volume of feeders leads to a corresponding
augmentation of the casting cost. Feedability is concerned with the design of a feeding system, able to
drive the shrinkage porosity due to solidification to the risers, at an acceptable cost.

However, where the casting is thin and plate-like the above strategy may not work. This is because
the feeder does not only have to stay live while the casting is solidifying, but it must supply enough
liquid metal to satisfy the shrinkage contraction within the casting. In the conventional method of gating
design, the casting is split into number of hot zone areas depending on the hot spots identified from 2D
sectional drawings of the casting. To these areas individual risers having higher modulus are attached.
Other solutions include the use of feeder insulation or the use of exothermic materials. Insulating feeders
extend the solidification time, promote directional solidification and reduce the total mass of feeders. In
exothermic materials, an exothermic reaction is initiated when molten metal meets the feader, heating
the metal and extending solidification time still further. Such a choice is very much dependent on the
experience and skill of the casting engineer. It can be that some regions are inaccessible for providing
adequate risers because of process limitations (e.g. regions of high curvature). Then, the caster can
decide to apply other tricks, like introducing copper chills to speed up solidification in these areas.

In contrast to the molding system, the feeding system is rarely set a priori, since it heavily depends
on the shape of the cast part. Therefore, a natural question that arises is: ”What should one change
if the shape is not feedable with respect to a specific feeding system? Change the shape or the feeding
system?”. In fact, there is no global answer to this question. The decision is case dependent. It is possible
that by conceiving another feeding system, or by applying slight changes to the existing one, the shape
turns into feedable. It is also possible that one is interested to keep a standard and cheap feeding system
and is willing to adjust the shape to it [51].

A common practice to decide if a shape shall be considered acceptable or not is to use an indication
factor for the maximum riser to be used. This is done by simulating the solidification process of the cast
part without including the feeding system and finding the final solidification time tf . This higher the
value of tf , the greater the volume of the riser to be used. Therefore, the solidification time tf provides
a good indication of the riser’s volume and shall be constrained.

Another way is to use a geometric reasoning, instead of a mechanical one. The higher the distance of
a point to the boundary of the shape, the longer it takes to solidify. As a result, using their experience,
casters are able to approximate the maximum allowed thickness of a feedable cast part. A structure that
respects this thickness constraint is considered feedable in a first step and a feeding system is tried to be
designed.

Concluding, feedability imposes one of the following two specifications:

• a maximum solidification time, or

• a maximum thickness feature.

Remark 2.3.1. In [144], [145] Tavakoli et al. have presented some approaches for the optimal design of
risers for a fixed cast part, using the SIMP method for shape and topology optimization. One may wonder
if the idea of optimal design of the casting system could be applied in our case. For example, a criterion
of feedability could be the feasibility of an optimized casting system. First of all, although the formulation
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Figure 2.4: Solidification process and solid fraction for different feeding systems (figure extracted from
www.esi-group.com).

of the problem in [144], [145] is interesting, it is much simplified compared to the real problem of casting
in modern industries. An optimized casting system for the problem posed in [144, 145] could be very far
from what a caster would consider as optimal and a cast part could be unreasonably rejected. Moreover,
this would give no indication about how the shape should change, since a change in the shape could result
in a totally different optimized feeding system. For these reasons, we have chosen criteria that are related
to the shape and totally independent of any feeding system.

2.3.3 Fillability

Fillability ensures that the flow of liquid metal is efficiently performed and the mold is properly filled.
Many problems can arise during the filling process of the mold. One of the most important is the
appearance of precocious solidification, i.e. the interruption of the liquid flow due to the fast solidification
of a thin part. This case appears in Figure 2.5, where the casting of a cast part under different feeding
systems is depicted. For the second system, the flow is interrupted. Other problems can appear due to
turbulence during the flow, the entrapement of air due to the bad design of the gating system (see Figure
2.6), etc...

Once again, solutions to the above mentioned can be given by changing the casting system, the cast
part, or even using other techniques like augmentation of the fluidity of the metal, or additional pressure
(”high pressure die casting”). The most important problems during the filling process are created due to
narrow features of the shape. Trying to tackle the problem from a mechanical point of view is not easy
at all, since the equations that govern the filling process are too complicated and a mechanical criterion
of fillability is not at all clear. Instead, as in the case of feedability, it seems more reasonable to use
an indicator factor of geometric nature in order to characterize (at least in a first step) the shape as
acceptable or not with respect to the filling process.

Therefore, we consider that fillability imposes a specification of

• a minimum thickness feature.

2.4 Conclusions

In this Section, we resume our logic about how Shape and Topology Optimization should account for
castability of a shape. We believe that the optimization of the general casting system (molding and
feeding system) is not a purely continuous problem but involves discrete variables and in case it is
formulated as such, it is usually very far from real applications. For this reason, the molding system is
considered to be set a priori and the criteria for feedability and fillability are related just to the shape, i.e.
no feeding system is considered. Especially for the feedability criterion, two different, although closely



2.4. CONCLUSIONS 55

Figure 2.5: Testing a riser operation at different system constructions. An arrow indicates interruption
in the possibility of feeding by a riser (figure extracted from [74]).

Figure 2.6: Problem in the gating system (figure extracted from [123]).
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related, approaches are tested. A mechanical one and a geometric one. The first derives more from the
real mechanical problem of casting, while the second tries to interprete the problem in terms of geometry
specifications. For the fillability criterion only a geometric approach is tested, since there the mechanical
problem is too difficult and the definition of a criterion is not clear.

More specifically, the maximum and minimum thickness feature specifications and the minimum
members’ distance are regarded in general as thickness constraints and are discussed in Chapter 3.
Constraints on the molding direction are presented in Chapter 4. Finally, in Chapter 5 we present our
approach for the maximum solidification time specification. The maximum curvature constraint has
not been adressed in this work and is suggested for future work, although we shall see that imposing
constraints on the minimum thickness and members’ distance, implicitly sets limitations on the value of
the curvature.
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Chapter 3

Thickness control in structural
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The purpose of this chapter is to propose a novel method for handling geometric constraints related
to a notion of local thickness, in the context of structural optimization via a level-set method. The local
thickness is calculated using the signed distance function to the shape. We implement this method in
two and three space dimensions for a model of linear elasticity. We consider various formulations of the
constrained optimization problem and compute a shape derivative to advect the shape from one iteration
of the process to the next one. We discuss different ways to handle the constraints. In good agreements
with well-known observations linked to gradient based shape optimization, the resulting optimized shape
is strongly dependent on the initial guess and on the way the constraints are enforced.

3.1 Introduction

Numerical experience shows that shape and topology optimization very frequently results in shapes
containing thin or thick members, or features that are too closely spaced. For different application-
dependent reasons, such situations may be undesireable. For example, in Chapter 2 we have explained
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that for structures made by casting, thick members should be avoided because of cooling constraints,
while thin members are difficult to fill with liquid metal. Thin members or too closeby members may
also violate the precision limitations in the tooling machinery.

Beyond manufacturing reasons, imposing a mimimum member size can play a significant role in
robust design or mesh independency of the optimal result. It can also be seen as an implicit way to avoid
buckling, without treating explicitly the mechanical constraint. In the same way, limiting the maximum
allowed thickness of the structure can be seen as an implicit way to increase the structural redundancy,
since the loading path can change and the energy can be redistributed in more members, increasing its
robustness, especially in case of loads under uncertainties [61]. There are many other mechanical reasons
for introducing thickness constraints (e.g. limitations by physics in optimal fluid filter design [61]), not
to mention those motivations outside of mechanics, such as aesthetics.

In the framework of the homogenization or SIMP method [28] for topology optimization, there is a
relatively small body of literature devoted to this issue although many works discussed the notions of
filtering or mesh independence [30]. Petersson and Sigmund [112] used a slope constraint for the elements’
densities in order to impose a minimum length scale. In [115], Poulsen introduced the so-called ”MOLE
method”, in which he examined the monotonicity of the density function along different diagonals of a
circle centered at each grid point. Despite its limitations, mentioned in the paper, the MOLE method can
also be applied in the void part, to avoid small holes in the structure. In [63], Guest et al. proposed to
control the minimum length scale by combining projection functions with nodal design variables, defining
the density of each node as a weighted sum of the densities of nodes lying at a distance up to the minimum
length scale. In [61], Guest formulated a constraint of maximum length scale using the volume of balls
of diameter equal to this length, centered at each element. The idea of projection functions was also
used by Sigmund in [127], where a formulation for robust design was proposed to treat manufacturing
constraints.

There are even fewer papers studying thickness control in the framework of the level-set method [106]
for shape and topology optimization [13, 14, 107, 121, 157]. In [40], Cheng et al. favored the formation
of specific geometric features in the structure and in [38, 89] they added an energy functional in the
objective function, which priviliges a family of shapes with strip-like features. The results obtained in
these papers show significant differences compared to the ones obtained without adding any geometric
constraint. The addition of an energy functional seems to give satisfying results for the alleviation of
hinges in compliant mechanisms [89]. One of the difficulties in these works is to define the thickness (or
other geometric quantities) of a structure in a precise and efficient way, especially since its geometry or
shape is implicitly defined by the zero level-set of an auxiliary function.

In this work we propose a novel method for handling three major manufacturing constraints of ge-
ometric nature using the level-set method for structural optimization. Each one of them relies on a
definition of the structure’s thickness based on the signed distance function to the shape’s boundary.
First, we control the maximum local thickness of the shape. To define and compute a notion of maxi-
mum local thickness, we use the signed distance function to the shape. We make extensive use of the
notion of the ”skeleton” of the shape [77, 97]. Then, we control the minimum thickness as well as the
distance between the members of the shape, using again the signed distance function and offset sets of
the boundary [2, 76]. For the numerical optimization, we implement a simple augmented Lagrangian
method to handle the constraints. We show several numerical results in two and three space dimensions
and discuss different ways to impose the constraints.

3.2 Formulation of thickness constraints

The notion of thickness in structural mechanics can be understood in different ways. For example, in
a truss composed of beams with circular cross-section, it can be claimed that the thickness of a beam
is equal to the diameter of the cross-section. Same intuitive definitions can be given for a variety of
structures in which the specific type of members used, give a satisfying enough description of the shape’s
thickness. However, for general continuous structures, things become more complicated and one usually
uses a definition that corresponds to the specific problem caused by the thickness violation. The reader
should also note that when we desire to treat simultaneously more than one constraint, e.g. minimum
and maximum thickness, then we can work with two different definitions for the thickness at the same
time.
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(a) (b)

Figure 3.1: (a): bars violating the thickness constraint (3.2), (b): bars respecting the thickness constraint
(3.2).

3.2.1 Maximum thickness

A maximum thickness constraint of size dmax could be interpreted such that there is no point in the shape,
which is a center of a disk of diameter dmax fully covered by material. The above definition motivates
the use of the signed distance function to the shape. Recalling that the signed distance function to the
domain Ω is the function R

N ∋ x 7→ dΩ(x) defined by :

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ cΩ,

(3.1)

where d(·, ∂Ω) is the usual Euclidean distance, the formulation of the constraint reads

dΩ (x) ≥ −dmax/2 ∀x ∈ Ω. (3.2)

A possible drawback of the above definition is the appearance of distortions at the regions of crossing
between bars. In Figure 3.1(a), we see two bars of uniform thickness dmax crossing. Although intuitively
one would say that a maximum thickness constraint of value dmax is respected, we can see that there is a
region around the center of the joint, where constraint (3.2) is violated. One possible solution, satisfying
constraint (3.2) is given in Figure 3.1(b). However, such distortions of the shape close to the position of
joints are not usually preferable for engineers, both for mechanical and manufacturing reasons. In section
3.7, we propose some modifications to avoid such distortions.

3.2.2 Minimum thickness

We now want to enforce a minimum thickness constraint of value dmin > 0. The formulation of this
constraint is not so straightforward as the previous one, since it is not evident how the values of the
signed distance function are related to a notion of minimum thickness. However, another definition based
on offset sets [2, 76] gives an intuitive view of a minimum thickness constraint. Denoting with doff a
positive number, the set ∂Ωdoff

= {x− doffn (x) : x ∈ ∂Ω} is the offset set of ∂Ω in the direction −n (x)
at a distance doff (see Figure 3.2).

A formulation of the constraint which guarantees that any offset set in the direction −n (x) up to a
distance dmin stays in the shape Ω is the following:

dΩ (x− doffn (x)) ≤ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin] . (3.3)
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Figure 3.2: Offset set of the lower part of the boundary (shape in grey).

Figure 3.3: Inability to detect very thin members with a single offset set (shape in grey).

Remark 3.2.1. In order for the constraint (3.3) to be well-defined, it is neccessary that it exists ε0 > 0
such that ∀doff < ε0, ∂Ωdoff

⊂ Ω. This is true if the boundary is C1,1 (or more) (see [49], Lemma3.3.2),
since it guarantees the existence of a tubular neighborhood of thickness ε > 0 of the boundary, in which
dΩ is smooth.

We say that a shape satisfying constraint (3.3) has everywhere thickness greater or equal to dmin. We
emphasize that the inequality (3.3) must be valid for the whole interval [0, dmin] of offset parameters. A
single offset set at the desired distance dmin cannot possibly detect the case of members that are very
thin and that are also very close to each other. This case can be obviously recognized in Figure 3.3. This
figure shows two members of the structure Ω in grey color. The offset set just for one value doff can fall
entirely in the structure without detecting the void between the two parts. In this case the algorithm
does not understand the violation of the constraint.

3.2.3 Minimum members’ distance

This constraint looks exactly the same as the minimum thickness one, however it is now imposed on the
complementary of the shape. We just need to invert the direction of offsetting and the constraint reads

dΩ (x+ doffn (x)) ≥ 0 ∀x ∈ ∂Ω, ∀doff ∈ [0, dmin] . (3.4)

If a shape satisfies this constraint, we say that its members have everywhere a distance greater or equal
to dmin.

Remark 3.2.2. We have formulated three constraints of geometric nature, related with a notion of local
thickness of the shape. Although we have been motivated from the mechanics of casting and its limitations,
the formulations remain purely geometric and the reader could easily find other interpretations of these
constraints, away from cast parts. This means that these constraints can be introduced in any framework,
even for structures that are intended to be constructed in a completely different way.
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3.2.4 Penalty functionals

Constraints (3.2), (3.3) and (3.4) are pointwise, i.e. they are defined at each point of the domain Ω or of
its boundary ∂Ω. They are infinite in number and thus they cannot be treated numerically as such.

Discretizing the level-set function in the computational domain D, we obtain directly some kind of
parametrization of the domain Ω by means of the values of the level-set function ψ. Furthermore, in
case that the mesh is adapted to the zero level-set (see [9],[158]), the finite set of mesh nodes satisfying
ψ = 0 can be assumed to compose its boundary ∂Ω. If a fixed, structured grid is used, then a simple
idea is to assume that the boundary ∂Ω is given by all grid nodes which belong to elements crossed by
the zero level-set. In any case, we can then assume that constraints (3.2), (3.3) and (3.4) are posed at
the corresponding discretization nodes. However, this can result in a significant number of constraints,
which is very difficult to be tackled by optimization algorithms.

For this reason, it seems more natural to formulate global averaged constraints. A simple choice of a
smooth global constraint is to use the quadratic penalty function. This function takes the following form
for the three previous constraints:

Maximum Thickness : PMaxT (Ω) =

∫

Ω

[
(dΩ (x) + dmax/2)

−
]2
dx,

Minimum Thickness : PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s− ξn (s)))

+
]2
dξds,

Minimum Members’ Distance : PMMD (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s+ ξn (s)))

−
]2
dξds,

where we have denoted: (f)
+
= max (f, 0) and (f)

−
= min (f, 0).

Then, a pointwise constraint is satisfied once its corresponding penalty functional equals to zero. For
example, for the maximum thickness functional PMaxT :

PMaxT (Ω) = 0 ⇒ (dΩ (x) + dmax/2)
−
= 0 in Ω ⇒ dΩ(x) ≥ −dmax/2 in Ω.

3.3 Shape differentiability of the signed distance function

This section has been extracted from [8], where the signed distance function was used for the formulation
of multi-phase problems. Its purpose is to recall some results on the signed distance function and to
explore its shape differentiability which holds in a non-classical and subtle sense (see below for details).
For a Lipschitz bounded domain Ω ⊂ D we consider shape variations in the sense of Hadamard as in
section 1.3.1. Let us start by collecting some definitions (see Figure 3.4 for a geometric illustration).

Definition 3.3.1. Let Ω ⊂ R
N be a Lipschitz bounded open set.

• For any x ∈ R
N , Π∂Ω(x) := {y0 ∈ ∂Ω such that |x− y0| = infy∈∂Ω |x− y|} is the set of projections

of x on ∂Ω. It is a closed subset of ∂Ω. When Π∂Ω(x) reduces to a single point, it is called the
projection p∂Ω(x) of x onto ∂Ω.

• Σ :=
{
x ∈ R

N such that (dΩ)
2 is not differentiable at x

}
is the skeleton of ∂Ω (or Ω by a small

abuse in terminology).

• For any x ∈ ∂Ω, ray∂Ω(x) := {y ∈ R
N such that dΩ is differentiable at y and p∂Ω(y) = x} is the

ray emerging from x. Equivalently, ray∂Ω(x) = p−1
∂Ω(x).

We now recall some classical results (see [49], Chapter 7, theorems 3.1, 3.3 and [20]).

Lemma 3.3.2. Let Ω ⊂ R
N be a Lipschitz bounded open set.

• A point x /∈ ∂Ω has a unique projection p∂Ω(x) on ∂Ω if and only if x /∈ Σ. In such a case, it
satisfies d (x, ∂Ω) = |x− p∂Ω(x)| and the gradient of dΩ at x reads

∇dΩ (x) =
x− p∂Ω(x)

dΩ (x)
.

• As a consequence of Rademacher’s theorem ([55], section 3.1.2), Σ has zero Lebesgue measure in
R
N . Furthermore, when Ω is C2, Σ has zero Lebesgue measure too [90].



64 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

• For any x ∈ R
N , p ∈ Π∂Ω(x), α ∈ [0, 1], denoting xα := p+α(x−p) the points of the ray of x lying

between p and x, we have dΩ(xα) = αdΩ(x) and Π∂Ω(xα) ⊂ Π∂Ω(x).

• If Ω is of class Ck, for k ≥ 2, then dΩ is Ck too in a tubular neighborhood of ∂Ω. In that case, dΩ
is differentiable at every point x ∈ ∂Ω, and ∇dΩ(x) = n(x), the unit normal vector to Ω.

Unfortunately, the signed distance function is not, strictly speaking, shape differentiable in the sense
of Definition 1.3.2. One reason is the lack of smoothness of the gradient of dΩ at the skeleton Σ. However,
its pointwise values dΩ(x) are shape differentiable for x ∈ D \ Σ. This is the purpose of the next result
which can be found in [48] (without much details however ; see [44] for detailed and complete proofs).

Proposition 3.3.3. Assume Ω ⊂ D is an open set of class C1, and fix a point x /∈ Σ. Then θ 7→
d(Id+θ)Ω(x) is Gâteaux-differentiable at θ = 0, as an application from W 1,∞(D,RN ) into R, and its
derivative is

d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Remark 3.3.4. Actually, a more general result than that of Proposition 3.3.3 holds. Indeed, retaining
the hypothesis that Ω is of class C1, for any point x ∈ R

N , and denoting, for a real parameter t > 0,

Ωtθ = (I + tθ)Ω,

the application t 7→ dΩtθ
(x) is right-differentiable at t = 0+, and

• if x ∈ Ω, d
dt

(dΩtθ
(x)) |t=0+ = − inf

y∈Π∂Ω(x)
θ(y) · n(y).

• if x ∈ cΩ, d
dt

(dΩtθ
(x)) |t=0+ = − sup

y∈Π∂Ω(x)

θ(y) · n(y).

Of course, these formulae agree with the previous result since Π∂Ω(x) = {p∂Ω(x)} if x /∈ Σ.
Note also that a similar analysis could be performed when Ω is only assumed to be Lipschitz. However,

the results are then more tedious to write, since the normal vector field n is not defined everywhere on
∂Ω (which is an indicator of specific geometric phenomena, see [44]).

Remark 3.3.5. The signed distance function can also be seen as a solution of the following Hamilton-
Jacobi equation {

|∇dΩ (x) | = 1 in D,
dΩ (x) = 0 on ∂Ω.

The behavior of the variations of dΩ with respect to the domain can be retrieved by a formal computation.
Indeed, assuming that dΩ is shape differentiable, a formal computation yields that the directional shape
derivative d′Ω(θ) satisfies {

∇dΩ(x) · ∇d
′
Ω(θ)(x) = 0 in D,

d′Ω(θ)(x) = −θ(x) · n(x) on ∂Ω.
(3.5)

Equation (3.5) provides us with some important information for the analysis in the sequel. Its first
part means that d′Ω(θ)(x) is constant along ray∂Ω(x), while the second part gives an explicit value of the
derivative for the points on ∂Ω.

Corollary 3.3.6. Let Ω be a bounded domain of class C1 and m(x, s) : RNx ×Rs → R a function of class
C1. Define the functional J(Ω) as

J(Ω) =

∫

D

m(x, dΩ(x)) dx. (3.6)

The application θ 7→ J((Id+ θ)Ω), from W 1,∞(D,RN ) into R, is Gâteaux-differentiable at θ = 0 and its
derivative reads

J ′(Ω)(θ) = −

∫

D

∂m

∂s
(x, dΩ(x)) θ(p∂Ω(x)) · n(p∂Ω(x)) dx. (3.7)

The shape derivative (3.7) satisfies Hadamard’s structure theorem (see section 1.3.1) since it depends
only on the values of θ ·n on the boundary of ∂Ω. However (3.7) is not a surface integral on ∂Ω as usual.
Therefore the task of the next subsection is to transform (3.7) into a surface integral by using the notion
of rays (see Definition 3.3.1), along which dΩ and p∂Ω take very simple forms, altogether with the coarea
formula.



3.3. SHAPE DIFFERENTIABILITY OF THE SIGNED DISTANCE FUNCTION 65

Ω

Σ

x
•

• p∂Ω(x)

n(p∂Ω(x))

ray∂Ω(x) |dΩ(x)|

•
•• y
z1 ∈ Π∂Ω(y)Π∂Ω(y) � z2

Figure 3.4: For a point x lying outside the skeleton Σ of Ω, unique projection point p∂Ω(x) and line
segment ray∂Ω(x). For a point y ∈ Σ, at least two points z1, z2 belong to the set of projections Π∂Ω(y).

3.3.1 An application of the coarea formula to integral functions of the signed

distance function

The purpose of this section is to derive a Fubini-like formula for integrals of the form (3.7) and transform
them in surface integrals. To this end, we use the following coarea formula [36].

Proposition 3.3.7. Let X,Y be two smooth Riemannian manifolds of respective dimension m ≥ n, and
f : X → Y a surjective map of class C1, whose differential ∇f(x) : TxX → Tf(x)Y is surjective for almost
every x ∈ X. Let ϕ an integrable function over X. Then:

∫

X

ϕ(x)dx =

∫

Y

(∫

z∈f−1(y)

ϕ(z)
1

Jac(f)(z)
dz

)
dy

where Jac(f)(z) is the the Jacobian of the function f .

Remark 3.3.8. If m ≥ n, and f : Rm → R
n is a differentiable function at a point x ∈ R

m, the Jacobian
Jac(f)(x) of f at x is defined as

Jac(f)(x) :=
√
det(∇f(x)∇f(x)T ).

The definition of the Jacobian is similar when f is a map between two Riemannian manifolds X and Y ,
once the tangent planes TxX,Tf(x)Y have been identified to R

m and R
n respectively (see [36], exercise

III.11). In any case, the Jacobian is positive Jac(f)(x) > 0 if and only if ∇f(x) is of maximum rank,
or equivalently ∇f(x) is surjective from R

m to R
n.

We apply this formula in our context to X = Ω, Y = ∂Ω and f = p∂Ω. To apply Proposition
3.3.7 we need the differentiability of p∂Ω which will be deduced from the following classical result on the
second-order differentiability of the signed distance function [34].

Lemma 3.3.9. Assume Ω is of class C2. For i = 1, ..., d− 1, denote by κi the principal curvatures of ∂Ω
and ei its associated directions (see Figure 3.5). For every x ∈ D, and every y ∈ Π∂Ω(x), we have

− κi(y)dΩ(x) ≤ 1, 1 ≤ i ≤ d− 1. (3.8)
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Figure 3.5: Principal directions, normal vector at the projection point of x ∈ R
N .

Define Γ the singular set of Ω, namely the set of points x /∈ Σ such that, for some i, one of the inequality
(3.8) is actually an equality. Then, Σ = Σ ∪ Γ and Σ has zero Lebesgue measure. If x /∈ Σ, then all
inequalities (3.8) are strict and dΩ is twice differentiable at x. Its Hessian reads

HdΩ(x) =

N−1∑

i=1

κi(p∂Ω(x))

1 + κi(p∂Ω(x))dΩ(x)
ei(p∂Ω(x)) ⊗ ei(p∂Ω(x)).

Lemma 3.3.10. Let x ∈ D \ Σ. The projection map p∂Ω is differentiable at x and, in the orthonormal
basis {e1, ..., eN−1, n} (p∂Ω(x)) of RN (see Figure 3.5), its gradient is a d× d diagonal matrix

∇p∂Ω(x) =




1 − dΩ(x)κ1

1+dΩ(x)κ1
0 ... 0

0
. . .

. . .
...

...
. . . 1 − dΩ(x)κd−1

1+dΩ(x)κd−1
0

0 ... 0 0



, (3.9)

where the the principal curvatures κi are evaluated at p∂Ω(x).

Proof. The proof starts from the characterization of the projection map when x ∈ D \ Σ (see Lemma
3.3.2)

p∂Ω(x) = x− dΩ(x)∇dΩ(x).

This last equality can then be differentiated once more for x ∈ D \ Σ

∇p∂Ω(x) = Id−∇dΩ(x) ∇dΩ(x)T − dΩ(x)HdΩ(x). (3.10)

Since ∇dΩ(x) = n(p∂Ω(x)), a simple calculation ends the proof.

We now come to the main result of this section.

Corollary 3.3.11. Let Ω ⊂ D be a C2 bounded domain, and let ϕ an integrable function over D. Then,

∫

D

ϕ(x)dx =

∫

∂Ω

(∫

ray
∂Ω

(y)∩D

ϕ(z)

N−1∏

i=1

(1 + dΩ(z)κi(y))dz

)
dy, (3.11)

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line integration along that ray.

Proof. Since Σ is of zero Lebesgue measure, we have
∫

D

ϕ(x)dx =

∫

D\Σ

ϕ(x)dx.

Applying Lemmas 3.3.9 and 3.3.10, p∂Ω is a surjective and differentiable map from D \ Σ into ∂Ω, with
a positive finite Jacobian for any x ∈ D \ Σ

Jac (p∂Ω) (x) =
1

N−1∏

i=1

(
1 + dΩ(x)κi(p∂Ω(x))

) .
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Proposition 3.3.7 then yields the desired result.

3.4 Shape derivative of penalty functionals

In this section we compute the shape derivative of the penalty functional defined in section 3.2.4.

Maximum Thickness

Consider the quadratic penalty function

PMaxT (Ω) =

∫

Ω

[
(dΩ (x) + dmax/2)

−
]2
dx. (3.12)

Lemma 3.4.1. The shape derivative of (3.12) reads

P ′
MaxT (Ω)(θ) =

∫

∂Ω

−θ (x) · n (x)

∫

ray
∂Ω

(x)∩Ω

2 (dΩ (z) + dmax/2)
−
N−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dzdx, (3.13)

where κi(x) are the principal curvatures at the point x ∈ ∂Ω.

Proof. Applying Corollary 3.3.6 in (3.12), its shape derivative reads

P ′
MaxT (Ω)(θ) =

∫

Ω

2d′Ω(θ)(x) (dΩ (x) + dmax/2)
−
dx. (3.14)

Using the co-area formula (3.11), the shape derivative (3.14) takes the following form

P ′
MaxT (Ω)(θ) =

∫

∂Ω

∫

ray
∂Ω

(x)∩Ω

2d′Ω(θ)(z) (dΩ (z) + dmax/2)
−
N−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dzdx.

Since d′Ω(θ) is constant along the ray emerging from x, it can be moved out of the second integral:

P ′
MaxT (Ω)(θ) =

∫

∂Ω

d′Ω(θ)(x)

∫

ray
∂Ω

(x)∩Ω

2 (dΩ (z) + dmax/2)
−
N−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dzdx,

and since its expression on the boundary is known (see equation (3.5)), we finally end up with

P ′
MaxT (Ω)(θ) =

∫

∂Ω

−θ (x) · n (x)

∫

ray
∂Ω

(x)∩Ω

2 (dΩ (z) + dmax/2)
−
N−1∏

i=1

(
1 + dΩ(z)κi(x)

)
dzdx,

which completes the proof.

Other functionals based on different formulations are computed in a similar way.

Minimum Thickness and Minimum Members’ Distance

Consider now the quadratic penalty function

PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (x− ξn (x)))

+
]2
dξdx.

To make the text more compact, we change the notation according to Figure 3.6. We denote xm =
x− ξn (x) the offset point, from a point x ∈ ∂Ω, at a distance ξ in the direction opposite to the normal
vector, and xm|Ω the projection of xm onto the boundary. We can now rewrite the quadratic penalty
function in more compact notation as

PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (xm))

+
]2
dξdx. (3.15)
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Figure 3.6: Offset point and projection onto the boundary.

Lemma 3.4.2. The shape derivative of (3.15) reads

P ′
MinT (Ω)(θ) =∫

∂Ω

∫ dmin

0

θ (x) · n (x)

[
H(x)

(
(dΩ (xm))

+
)2

+ 2
(
dΩ (xm)

+
)
∇dΩ (xm) · ∇dΩ (x)

]
dξdx

−
∫

∂Ω

∫ dmin

0

θ
(
xm|Ω

)
· n
(
xm|Ω

)
2
(
dΩ (xm)

+
)
dξdx,

(3.16)

where H(x) denotes the mean curvature at the point x ∈ ∂Ω.

Proof. Using Proposition 1.3.8 for the shape derivative of surface integrals with shape-dependent inte-
grands, the shape derivative of (3.15) reads

P ′
MinT (Ω)(θ) =∫

∂Ω

∫ dmin

0

θ (x) · n (x))

[
H(x)

(
(dΩ (xm))

+
)2

+
∂

∂n

((
(dΩ (xm))

+
)2)]

dξdx

−
∫

∂Ω

∫ dmin

0

∂

∂Ω

((
(dΩ (xm))

+
)2)

(θ)dξdx =
∫

∂Ω

∫ dmin

0

θ (x) · n (x))

[
H(x)

(
(dΩ (xm))

+
)2

+ 2
(

(dΩ (xm))
+
)
∇dΩ (xm) · n(x)

]
dξdx

−
∫

∂Ω

∫ dmin

0

2 (dΩ (xm))
+
d′Ω (xm) (θ)dξdx.

(3.17)

From equation (3.5), we know that the shape derivative of the signed distance function at the offset point
xm will be equal to that of its projection point on the boundary xm|Ω, for which we can use an explicit
formula

d′Ω(xm)(θ) = d′Ω(xm|Ω)(θ) = −θ(xm|Ω) · n(xm|Ω). (3.18)

Using the fact that

n(x) =
∇dΩ(x)

|∇dΩ(x)| = ∇dΩ(x), ∀x ∈ ∂Ω

and substituting equation (3.18) in (3.17) yields the desired result.

The same exactly analysis holds for the quadratic penalty function used in the Minimum Members’
Distance.

Remark 3.4.3. In Figure 3.6 we see for a point x ∈ ∂Ω its offset point in the direction −n(x) at a
distance doff (xm) and the projection point of xm on the boundary (xm|Ω ). We shall observe that if
xm ∈ ray∂Ω ∩ Ω, i.e. if xm lies on the ray connecting the point x with its corresponding point on the
skeleton of the shape, then x ≡ xm|Ω.
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3.5 Augmented Lagrangian method and descent direction

Several efficient optimization algorithms have been applied in topology optimization, e.g. MMA [138],
MFD [169], etc... For most of them, one needs to set the optimization parameters of the problem. As we
have mentioned in section 3.2.4, several choices exist when a level-set description of the shape is used.
In this work, we have prefered to avoid the use of optimization parameters and consider instead the
whole shape as the optimization variable. We apply a simple augmented Lagrangian method to impose
the geometric constraints. According to the approach described in [101], for a problem with m equality
constraints of the form

Pi(Ω) = 0 (i = 1, ...,m),

an augmented Lagrangian function is constructed as

L(Ω, ℓ, µ) = J(Ω) −
m∑

i=1

ℓiPi(Ω) +
m∑

i=1

µi
2
P 2
i (Ω), (3.19)

where J(Ω) is the cost function, ℓ = (ℓi)i=1,...,m and µ = (µi)i=1,...,m are Lagrange multipliers and penalty
parameters used to enforce the constraints at convergence. The Lagrange multipliers are updated at each
iteration n according to the relation ℓn+1

i = ℓni − µiPi(Ωn) (see [101] for more details). We also increase
the penalty parameters every 5 iterations. A similar approach is followed for the case of inequality
constraints (see [101]).

The shape derivative of the augmented Lagrangian function (3.19) reads:

L′(Ω, ℓ, µ)(θ) = J ′(Ω)(θ) −
m∑

i=1

ℓiP
′
i (Ω)(θ) +

m∑

i=1

µiPi(Ω)P ′
i (Ω)(θ).

For example, for the optimization problem

min
Ω∈Uad

J(Ω) =

∫

Ω

f · u dx+

∫

ΓN

g · uds,

s.t. P1(Ω) =

∫

Ω

dx− αV |D| = 0, (0 < αV < 1),

P2 (Ω) = PMaxT (Ω) =

∫

Ω

[
(dΩ (x) + dmax/2)

−
]2
dx = 0,

(3.20)

where u is the solution of (1.12), we construct the augmented Lagrangian function

L (Ω, ℓ, µ) =

∫

Ω

f · u dx+

∫

ΓN

g · uds−
2∑

i=1

ℓiPi(Ω)(θ) +

2∑

i=1

µi
2
P 2
i (Ω), (3.21)

which can now be regarded as the new objective function to minimize.
The method of Céa can be used for the calculation of its shape derivative, which finally reads

L′(Ω, ℓ, µ)(θ) =

∫

Γ

θ (x) · n (x) (−Ae (u) e (u)) dx−
2∑

i=1

ℓiP
′
i (Ω)(θ) +

2∑

i=1

µiPi(Ω)P ′
i (Ω)(θ),

where Γ is the optimizable part of the boundary,

P ′
1(Ω)(θ) =

∫

Γ

θ (x) · n (x) dx

and

P ′
2(Ω)(θ) = −

∫

Γ

θ (x) · n (x)

(∫

ray
∂Ω

(x)∩Ω

2 (dΩ (z) + dmax/2)
−
N−1∏

i=1

(1 − zκi(x))dz

)
dx.

Denoting

g(x) =

∫

ray
∂Ω

(x)∩Ω

2 (dΩ (z) + dmax/2)
−
N−1∏

i=1

(1 − zκi(x))dz,

a descent direction is revealed as

θ(x) = −n (x) (−Ae (u) : e (u) − ℓ1 + µ1P1(Ω) + ℓ2g(x) − µ2P2(Ω)g(x)) .
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In the cases of Minimum Thickness and Minimum Members’ Distance, things are a bit more complicated.
The reason lies in the second integral of the shape derivative in (3.16):

∫

∂Ω

∫ dmin

0

θ
(
xm|Ω

)
· n
(
xm|Ω

)
2
(
dΩ (xm)

+
)
dξdx.

The vector field θ may be evaluated at a point xm|Ω 6= x (see Figure 3.6)and a descent direction is
not anymore obvious. However, the formula for J ′(Ω)(θ) still remains a linear form in θ. Using Riesz’s
representation theorem we can identify this linear form under another scalar product, e.g. H1, as we
explain below. In this way, we manage to obtain a descent direction, while at the same time we regularize
our velocity field [14, 47].

We now explain on an example how to use formula (3.16) for deducing a descent direction. To simplify
a bit things, we use the fact that only the normal component of the velocity field θ is of interest, in good
agreement with Hadamard’s structure theorem (see section 1.3.1). Thus, we can write θ(x) = w(x)n(x),
where w(x) is a smooth enough scalar field and n(x) is the unit normal vector field, suitably extended to
the whole computational domain D. Then, for the optimization problem

min
Ω∈Uad

J(Ω) =

∫

Ω

f · u dx+

∫

ΓN

g · uds,

s.t. P1(Ω) =

∫

Ω

dx− αV |D| = 0, (0 < αV < 1),

P2 (Ω) = PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (xm))

+
]2
dξdx,

(3.22)

the shape derivative of the augmented Lagrangian function (3.21) reads

L′(Ω, ℓ, µ)(wn) =

∫

Γ

w(x) (−Ae (u) : e (u) − ℓ1 + µ1P1(Ω)) dx− ℓ2P
′
2(Ω)(wn) + µ2P2(Ω)P ′

2(Ω)(wn),

where

P ′
2(Ω)(wn) =

∫

Γ

∫ dmin

0

w(x)

[
H
(

(dΩ (xm))
+
)2

+ 2 (dΩ (xm))
+ ∇dΩ (xm) · ∇dΩ (x)

]
dξdx

−
∫

Γ

∫ dmin

0

w(xm|Ω)2 (dΩ (xm))
+
dξdx.

Solving instead the equation
∫

D

(
α2
reg∇Q · ∇v +Qv

)
dx = L′(Ω, ℓ, µ)(vn) ∀v ∈ H1(D), (3.23)

where αreg > 0 is a positive scalar (of the order of the mesh size) to control the regularization width and
choosing w = −Q, we find

L′(Ω, ℓ, µ)(wn) = −
∫

D

(
α2
reg|∇Q|2 +Q2

)
dx ≤ 0,

which guarantees again a descent direction for L.

3.6 Numerical implementation

In this section, we highlight some of the difficulties one may face when trying to implement the above
methods and the solutions we have chosen for our numerical examples.

3.6.1 Construction of dΩ

We shall highlight the fact that the level-set function ψ, used for the description and advection of the
shape, even if it is reinitialized to be a signed distance function, does not necessarily contain the correct
information for the thickness of the structure. The signed distance function dΩ, that we use for the
formulation of the constraints, refers to the actual shape. In order to construct this function, we take the
initial one, set ψ = 0 at the points of the shape intersecting with the boundary of the working domain D
(see Figure 3.7) and reinitialize this new level-set function. In Figure 3.8 we show the difference between
the signed distance function constructed from the level-set function used for the advection of the shape
and the one used for the penalty functional. The values of the level-set function not being zero at Ω∩∂D
in the first one, we get completely wrong results for the thickness at these areas.



3.6. NUMERICAL IMPLEMENTATION 71

(a) (b)

Figure 3.7: (a): level-set function ψ used for the advection of the shape; (b): signed distance function
dΩ.

(a)

(b) (c)

Figure 3.8: (a): shape in black (Ω); (b): iso-contours of the level-set function ψ for the advection of the
shape; (c): iso-contours of dΩ.
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(a)

Figure 3.9: Graph of the regularization function f(dΩ(x)).

3.6.2 Maximum thickness

1. A first difficulty in the calculation of the shape derivative for the maximum thickness functional
PMaxT (Ω) comes from the identification of the skeleton. As we can see in equation (3.13), for every
point on the boundary of the shape we need to travel along its emerging ray up to the skeleton.
First, we consider as points of the boundary the nodes of the elements of the mesh that are cut
by the zero level-set. Then, we start moving from each of these points in the direction opposite to
the normal and we check the monotonicity of the signed distance function. Once the monotonicity
changes, we say that we have detected its corresponding point on the skeleton.

2. In section 3.2.1, the pointwise constraint (3.2) has been replaced by the global penalty functional
(3.12), so that the pointwise constraint is satisfied everywhere when P (Ω) = 0. Although this
formulation is very convenient in order to explain all theoretical aspects regarding the shape differ-
entiation, it is not that effective from a numerical point of view. It would be preferable, if possible,
to maintain the constraint in an inequality form, while keeping a global formulation at the same
time. Moreover, the penalty functional (3.12) is ”strict”, in the sense that it is prone to create
artifacts like the one depicted in Figure 3.1 for joints at bars crossing. Thus we would like to loosen
somehow the constraint in order to get more regular shapes. The formulation that we have used
for our numerical examples is

PMaxT (dΩ) =




∫

Ω

f(dΩ(x))dΩ(x)2dx
∫

Ω

f(dΩ(x))dx




1
2

≤ dmax/2, (3.24)

where

f(dΩ(x)) = 0.5

(
1 + tanh

( |dΩ(x)| − (dmax/2)

αf (dmax/2)

))
,

αf > 0 being a parameter that controls the regularization of the constraint. When αf → 0 then
f(dΩ) → H(|dΩ| − (dmax/2)), the Heaviside function at point (dmax/2) (see Figure 3.9).

3. From Lemma 3.3.9 we see that the term
∏N−1
i=1 (1 + dΩ(z)κi(x)) in the shape derivative is always

positive. Since the calculation of the curvature is not so accurate, especially when a fixed mesh is
used, this term can be omitted without changing the descent nature of the shape derivative, since
the term

(dΩ(·) + dmax/2)−

in the integrand is also of constant sign. Moreover, neglecting this term will have no influence for
”straight” boundaries, where ki(x) ≡ 0, while the shape derivative will be overestimated if ki(x) ≥ 0
and underestimated if ki(x) ≤ 0, helping to avoid distortions at these regions.

3.6.3 Minimum thickness and minimum members’ distance

1. At this point let us emphasize that, by using the penalty functionals PMinT (Ω) and PMMD(Ω),
it is the values of the signed distance function that we penalize and not the actual thickness of a
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Figure 3.10: Crossing of the skeleton formed in the void part.

member, the latter being defined as the distance from a point x ∈ ∂Ω up to the next point on ∂Ω
along the ray starting from x and in the direction of −n(x). Since the constraint is by essence non
local, this means that the derivative at a point will depend on the values of dΩ(x) along the offset
set. As a consequence, one can observe a significant difference in the velocity between points of
equal thickness.
Another strange effect is the movement of points that do not violate the constraint! For instance,
Figure 3.10 displays an offset set crossing the skeleton formed between two bars. In this case, one
part of the shape derivative is set on the projection of the offset set on the boundary and thus the
second bar is also affected due to the thickness violation of the first bar.
One possible choice to reduce the importance of the above observations is to apply a continuation
method and increase progressively the offset distance up to the value dmin (we have not implemented
this strategy in this work).

2. Another difficulty appears when some part of the offset set lies outside the working domain D, i.e.
when we need to impose boundary conditions for dΩ(x). Suppose that we start from a point x ∈ ∂Ω
and start moving in the direction −n(x) up to the offset set (see Figure 3.11). Once we cross the
boundary of the working domain ∂D, we need to account for the boundary conditions of dΩ. In case
we have symmetry conditions, we just have to change the sign of some component of the normal
vector and to continue moving in the new direction, i.e. the boundary acts like a mirror. Else, if the
whole shape is included in the workind domain D, one possibility is to consider that it is surrounded
by void. If we wanted to use the actual values of dΩ(x), then we would need to have a zone of
non-optimizable weak material of thickness at least dmin around the domain D. A simplification,
in order to avoid technical difficulties, is to use instead the Euclidean distance between the offset
point xm and the point where the line crosses ∂D, denoted xD. Then, we approximate the value of
dΩ(xm) by

dΩ(xm) = dΩ(xD) + dist(xm, xD),

where dist(·, ·) stands for the usual euclidean distance between two points, which is also our method
of choice hereafter.

3.7 Numerical examples

All the examples of this chapter have been coded in the finite element software SYSTUS of ESI-Group
[140]. A cartesian mesh has been used both for solving the elasticity system and as a support for the
level-set function describing the shape. For the elasticity analysis, we have used Q1 finite elements. The
Young modulus of the elastic material E is normalized to 1 and the Poisson ratio ν is set to 0.3. The
”ersatz material” is considered to have the same Poisson ratio, while its Young modulus is set to 10−3.

3.7.1 Maximum thickness

2d arch

The first example is a two-dimensional arch-like structure, clamped at its lower left and right corners and
with a unitary force applied at the middle of its lower part (see Figure 3.12). Due to symmetry, only half
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Figure 3.11: Offset set crossing the boundary of the working domain ∂D.

(a) (b) (c)

Figure 3.12: (a): Boundary conditions; (b): initialization; (c): optimized shape for the optimization
problem (3.25), for the 2d arch.

of the domain is used and it is discretized by 80× 160 elements. As a first step we solve the optimization
problem

min
Ω∈Uad

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,
(3.25)

where u is the solution of (1.34) and g1max = 5. The initialization and the optimized shape are shown in
Figure 3.12.

We suppose now that this optimized shape violates a constraint of maximum thickness. A first idea
to treat this problem is to impose the constraint in a second step, i.e. after that the shape has been
optimized without imposing any thickness restriction. Then, the optimized structure of Figure 3.12 serves
as an initial guess for the optimization problem

min
Ω∈Uad

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,

PMaxT (Ω) ≤ g2max,

(3.26)

where g1max = 5, g2max = dmax/2 and PMaxT (Ω) is given by (3.24). In Figure 3.13 we can see the thickness
violation ((|dΩ(x)− dmax/2|)−) in the initial shape, the function f(dΩ(x)) and the shape gradient due to
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(a) (b) (c)

Figure 3.13: 2d arch; (a): |(dΩ(x) − dmax/2)−|; (b): f(dΩ(x)); (c): shape gradient of PMaxT (Ω), for the
initial shape of problem (3.26) and dmax = 0.2.

(a) (b)

Figure 3.14: 2d arch; (a): optimized shape; (b): |(dΩ(x) − dmax/2)−|, for the problem (3.26) and
dmax = 0.2.

the maximum thickness constraint for dmax = 0.2. The optimized shape and the final thickness violation
are depicted in Figure 3.14. We shall be satisfied with a thickness violation of the order of the mesh size,
since this is the order of accuracy for the computation of the signed distance function. One can observe
that the optimized shape contains some significantly curved regions, which serve to tackle the thickness
constraint, while the size of regions that are far from violating the constraint has been augmented in order
to satisfy the compliance constraint. The volume of the optimized shape has augmented from 0.1354 to
0.1384.

The idea of imposing the maximum thickness constraint in a second step is quite natural, however it
presents several drawbacks. First of all, especially in 2d, the initially optimized shape usually has a much
simpler topology compared to its initialization. Therefore, the algorithm will try to satisfy the constraint
under much less freedom, as far as the formation of the topology is concerned, compared to the case when
the constraint is applied since the beginning of the optimization process. Besides, it is highly possible
that starting from a shape with reduced topology, a solution to the problem (3.26) does not exist, or at
least the optimization algorithm does not find a feasible solution. This is the case, for example, when
problem (3.26) is solved for dmax = 0.16 and the previous strategy is followed.

Therefore, it seems natural to apply the maximum thickness constraint since the beginning and hope
that starting with a complicated enough topology, the algorithm will arrive at finding a feasible shape.
Starting with the initialization of Figure 3.12, we show in Figure 3.15 the results for such a case. We
can see in fact that the final topology is more complicated. The existence of many holes at the time the
thickness constraint is applied, endows the algorithm with more flexibility in finding a feasible shape.

Although the optimized shape of Figure 3.15 is feasible, one could argue that distortions still appear
close to joints. We emphasize that such distortions are natural when shape optimization is applied for
reducing the thickness of continuous structures (see section 3.2). However, it could be interesting to test
if they can be avoided (up to some extent) by using some easy heuristics. In order to test two such
proposals, we have considered two bars of size 0.2, which cross each other at their middle. Contrary to
the situation depicted in Figure 3.1, the intersection of the bars with the design domain is considered
to belong to the boundary of the shape ∂Ω. The reason for this choice, is that we expect distortions to
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(a) (b) (c)

Figure 3.15: 2d arch; (a): optimized shape; (b): |(dΩ(x) − dmax/2)−|; (c): zoom close to the thickness
violation area, for the problem (3.26) and dmax = 0.16.

(a) (b)

Figure 3.16: (a): initialization; (b): |(dΩ(x) − dmax/2)−|, for dmax = 0.10.

appear close to regions of joints and close to parts that lie near to the boundary of the design domain.
The initial thickness violation for dmax = 0.10 is shown in Figure 3.16. The penalty functional (3.12) is
considered as objective function. The optimized shape and the initial shape gradient are shown in Figure
3.17. Another important observation is that, even when we neglect the Jacobian term in the expression
(3.13), the shape gradient at the corners is much higher than in the nearby regions, since its ray travels
up to the center of the joint. In case we had included the Jacobian term, the shape gradient in the flat
regions would have been unchanged, since the curvature there is almost zero, but its value close to the
curved corners would have been even higher.

A first idea would be to truncate the shape gradient deriving from the maximum thickness constraint
for regions of high curvature. If VPMaxT

denotes this shape gradient, then we need to consider instead

V ∗
PMaxT

=

{
VPMaxT

, if |k(x)| ≤ kmax,
0, if |k(x)| > kmax,

(a) (b) (c)

Figure 3.17: (a): optimized shape; (b): shape gradient; (c): zoom around the joint, for dmax = 0.10.
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(a) (b)

(c) (d)

Figure 3.18: (a): optimized shape; (b): |(dΩ(x) − dmax/2)−|, for kmax = 100; (c): optimized shape; (d):
|(dΩ(x) − dmax/2)−|, for kmax = 20.

where k stands for the mean curvature in 2d and the maximum principal curvature in 3d. In Figure 3.18
we show the results obtained with this method, using two different values for kmax. As kmax reduces,
larger areas are constrained to move and the optimized shape is expected to be smoother. However,
it is highly probable that the area where the constraint is not satisfied will increase. Our numerical
experience has shown that it is very unlikely to control efficiently these areas and one can result with
shapes containing thick parts.

Volumetric approach

We now present another heuristic method that gives very promising numerical results. Starting from
the shape derivative (3.14), we would like to substitute d′Ω(θ)(x) with an explicit expression defined in
the whole domain Ω. However, such an expression exists only for the points on the boundary ∂Ω (see
equation (3.5)). At a first step, we extend the expression of d′Ω(θ)(x) on ∂Ω to the whole domain Ω,
i.e. we consider the approximation d′Ω(θ)(x) ≈ −θ(x) · n(x) = −w(x), ∀x ∈ Ω, where an extension of the
vector field θ and the exterior normal n to the whole domain has been assumed. Then, the approximation
of the shape derivative of PMaxT (Ω) reads

P ′
MaxT (Ω)(θ) ≈ −

∫

Ω

2w(x) (dΩ (x) + dmax/2)
−
dx. (3.27)

Formula (3.27) deos not verify the Hadamard structure theorem (see section 1.3.1), since the choice

w(x) = +2 (dΩ (x) + dmax/2)
−
, ∀x ∈ Ω,

gives a zero velocity for the points x ∈ ∂Ω. However, this approximation of the shape derivative could be
put as a right-hand side in the regularization equation (1.37), which would define another velocity with
non-zero values on ∂Ω. The regularization parameter αreg should be adjusted accordingly, so that the
values of the new velocity field are not too small on ∂Ω. For our numerical examples, we have set

αreg =

(
2

max
Ω

|dΩ(x)|
∆x

)
(∆x)2,

for this type of regularization, where ∆x is the uniform mesh size.
Let us try to explain intuitively this heuristic choice. The term 2 (dΩ (x) + dmax/2)

−
is non-zero only
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(a) (b)

(c) (d)

Figure 3.19: (a): optimized shape; (b): 2 (dΩ (x) + dmax/2)
−

before regularization; (c): values on ∂Ω
after regularization; (d): zoom close to the joint, for dmax = 0.10.

at regions violating the thickness constraint. Using the mathematically correct coarea transformation,
this term influences significantly the highly curved parts. When the above approximation is used, the
curvature information is not used. Instead what matters is the distance of the boundary to the area of
thickness violation.
What is also important is that the direction of the velocity field will not change at any point, i.e. the
final velocity field will always tend to reduce the thickness everywhere and thus it is a descent direction.
In Figure 3.19 we plot the results obtained with this method. Our numerical experience shows that this
last method performs better than the rest presented in this chapter. We will call it the ”volumetric”
formula to distinguish it from the rigorous ”coarea” formula. The ”volumetric” formula has been used
for most of the results below, unless otherwise specified.

In figures 3.20 and 3.21 we show the results of problem (3.26) for g1max = 5 and for different values
of g2max = dmax/2. Although we expect in general that the volume of the optimal shape increases when
the maximum thickness threshold decreases, this is not always true since plenty of local minima may
exist. We also observe that when dmax is set to 0.12, the optimized shape contains curved members. As
we have mentioned before, this situation could possibly be avoided by starting with a more complicated
topology. In Figure 3.22 we see the optimized shapes for dmax = 0.12, starting from initializations with
more holes. Of course, one could expect that starting from more complicated topologies, it could be
possible to obtain optimal shapes that respect the thickness constraint without actually imposing that
constraint. This can occasionally happen, but there is no guarantee in general. In Figure 3.23 we plot
the results for the examples of Figure 3.22 without imposing a thickness constraint.
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: 2d arch; (a): initialization; optimized shapes (b): without thickness restriction; (c): for
dmax = 0.20; (d): for dmax = 0.16; (e): for dmax = 0.14; (f): for dmax = 0.12, for the optimization
problem (3.26).

Discussion on topological changes

The optimized shape of Figure 3.22(b) urges to discuss a very important topic, with severe numerical
implications for our method. We can see in this shape the existence of very small holes, the absence of
which would result in a severe violation of the thickness constraint. The question that comes naturally in
mind, is whether a solution of problem (3.26) could be obtained by perforating the optimized shape with-
out the thickness constraint with infinitesimally small holes. This perforation would have an infinitesimal
impact on the compliance and it would satisfy the maximum thickness constraint, in the way it has been
mathematically formulated. However, from an engineering point of view, this would not be a satisfying
solution both because the size of the holes would violate some tooling limitations and also because the
”modulo” ratio used in casting (see Chapter 2) would remain unchanged. If one wants to avoid such tiny
holes, one should impose at the same time a constraint on their size. Else, it is inevitable that such holes
can appear in the optimized shape, since they are preferable for solving the problem (3.26).

There are two mechanisms for the appearance of such holes. The first one, which is the most usual,
is the reduction in size of an existing hole. The second one is more tricky and consists in splitting an
existing hole into two holes. This is the case for the shape in Figure 3.22(b). In Figure 3.24 we show
how these holes were progressively created. At iteration 208 the top left and right holes have already got
elongated in order to tackle the thickness constraint. Since this elongation is not sufficient, the edge needs
to progress more towards the thick part of the structure, while a bit farer the boundary of the hole is
more affected by the compliance and tends to close. At iteration 209 hole has started splitting in two and
at iteration 210 we can clearly distinguish the appearance of the second hole. The great problem caused
by the formation of such tiny holes is the impact of their disparition on the values of dΩ and consequently
those of PMaxT (Ω). An infinitesimal change in the topology of the shape, e.g. the creation or disparition
of a small hole, can change dramatically their values. This is because the signed distance function is
topologically not derivable. Let us give an example in order to better understand this problem.

Consider two bars that cross each other, like in Figure 3.1, with a small hole in the middle of the joint.
The bars have a uniform thickness of 0.2. Setting a constraint of maximum thickness with dmax = 0.2, we
can see the great difference caused by the existence of a small hole in figures 3.25 and 3.26. The existence
of the hole reduces significantly the values of dΩ and as a result no violation of the thickness appears.
On the contrary, the elimination of the hole changes dramatically the values of dΩ and a region around
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(a)

(b)

(c)

Figure 3.21: Convergence diagrams for (a): the volume; (b): the compliance; (c): tha maximum thickness
functional, for the results of Figure 3.20.
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(a) (b) (c)

(d) (e) (f)

Figure 3.22: 2d arch; (a),(d): initialization; (b),(e): optimized shape for the optimization problem (3.26)
and dmax = 0.12; (c),(f): |(dΩ(x) − dmax/2)−|.

(a) (b) (c)

(d) (e) (f)

Figure 3.23: 2d arch; (a),(d): initialization; (b),(e): optimized shape for the optimization problem (3.25);
(c),(f): |(dΩ(x) − dmax/2)−|.
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(a) (b) (c)

(d) (e) (f)

Figure 3.24: Iteration (a): 208; (b): 209; (c): 210, zoom close to the hole at iteration (d): 208; (e): 209;
(f): 210.

the center of the joint appears, where the thickness constraint is violated. Finally, we discuss how this
fact influences the optimization algorithm. Using an augmented Lagrangian algorithm and accepting
every iteration, hoping to converge at last, seems to give satisfying results for the majority of cases. The
reason is that even if some small holes disappear, the shape will continue changing until the thickness
violation is hopefully treated. However, if dmax is set to a very low value compared to the size of the
working domain, it is possible that the formation and disparition of holes under the mechanism described
in Figure 3.24 does not terminate and thus the algorithm does not converge.
Another idea is to use an MFD (Method of Feasible Directions) algorithm (see [169]). The benefit is
that the shape will remain always feasible. Thus, there is not really a problem of existence of a feasible
solution for a certain topology, since we are sure that there is at least one such topology. However, using
such a method makes it difficult to escape from the previously described situation of disparition of tiny
holes. Consider once more the case of figures 3.25 and 3.26. Once the hole disappears, the shape is no
more feasible and thus not accepted. But, on the other hand, calculating another descent direction that
focuses more on the thickness constraint is unlikely to change the situation, since it is not evident from
the shape derivative which part creates this problem.
One heuristic remedy could be the following. If a shape Ω is feasible for the maximum thickness constraint
at iteration k (Ωk) and unfeasible at iteration k + 1 (Ωk+1), then:

1. Find the region of Ωk+1 where the violation appears.

2. Test if the values of dΩ have rapidly changed at this region from iteration k to k + 1.

3. If so, check if there was some part of ∂Ω at this region which has disappeared from iteration k to
k + 1.

4. Reject iteration k + 1, set the additional constraints w(x) = θ(x) · n(x) > 0 for all nodes belonging
to this region and go back computing a descent direction with this additional requirement.

2d cantilever

The next example is a 3.2 × 2 cantilever, clamped at its left boundary and with a unitary force applied
at its lower-right corner (see Figure 3.27) and discretized using 160 × 100 elements. In Figure 3.28 we
plot the initial and the optimized shapes for problem (3.25) and g1max = 40. In Figure 3.29 we plot the
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(a) (b)

(c) (d)

Figure 3.25: Joint with a hole in the middle (a): shape in black (Ω); (b): thickness violation; (c): 2d plot
of dΩ; (d): 3d plot of dΩ.

Table 3.1: Optimized 2d cantilever.

Volume Compliance PMaxT (Ω)
Without thickness restriction 3.794 39.99 -

dmax = 0.50 3.783 39.97 0.250
dmax = 0.40 3.931 39.84 0.200
dmax = 0.35 4.204 39.95 0.176

optimized shapes and the violation of the thickness constraint for problem (3.26) and for different values
of dmax. The same initialization as in Figure 3.28(a) has been used for all of the cases. The convergence
diagrams and the final results are shown in Figure 3.30 and Table 3.1.

2d MBB beam

The last two-dimensional example for this type of constraint is the benchmark MBB beam. The dimen-
sions of the enclosing box D are 6 × 1 and a unitary vertical load is applied at the middle of its top
edge (see Figure 3.31). Due to symmetry, half of the domain is considered and is discretized by 240× 80
elements. The initial and the optimized shapes for problem (3.25) and g1max = 40 are shown at Figure
3.32. Using the same initialization, the optimized shapes and the violation of the thickness constraint for
problem (3.26) and for different values of dmax are plotted in Figure 3.33. The convergence diagrams are
shown in Figure 3.34 and the final results in Table 3.2.

3d cantilever

Our first 3d example is a 3.2×2×2 cantilever, clamped at its left boundary and with a unit force applied
at the middle of its lower-right side (see Figure 3.35). Due to symmetry, half of the domain is considered
and is discretized using 20 × 64 × 40 elements. The initial and optimized shapes for problem (3.25) and
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(a) (b)

(c) (d)

Figure 3.26: Joint without a hole in the middle (a): shape in black (Ω); (b): thickness violation; (c): 2d
plot of dΩ; (d): 3d plot of dΩ.

Figure 3.27: Boundary conditions for a 2d cantilever.

Table 3.2: Optimized 2d MBB beam.

Volume Compliance PMaxT (Ω)
Without thickness restriction 1.881 39.99 -

dmax = 0.30 1.845 40.05 0.149
dmax = 0.25 1.900 39.89 0.125
dmax = 0.20 2.155 39.73 0.102
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(a) (b)

Figure 3.28: (a): Initialization; (b): optimized shape, for problem (3.25) and g1max = 40, for the 2d
cantilever.

(a)

(b)

(c)

Figure 3.29: Optimized shapes for problem (3.26) and thickness violation (|(dΩ(x) − dmax/2)−|) for (a):
dmax = 0.50; (b): dmax = 0.40; (c): dmax = 0.35, , for the 2d cantilever.



86 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

(a)

(b)

(c)

Figure 3.30: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of figures 3.28 and 3.29.
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(a) (b)

Figure 3.31: Boundary conditions for a 2d MBB beam; (a): full-domain; (b): half-domain.

(a) (b)

Figure 3.32: (a): Initialization; (b): optimized shape, for problem (3.25) and g1max = 40, for the 2d MBB
beam.

(a)

(b)

(c)

Figure 3.33: Optimized shapes for problem (3.26) and thickness violation (|(dΩ(x) − dmax/2)−|) for (a):
dmax = 0.30; (b): dmax = 0.25; (c): dmax = 0.20, for the 2d MBB beam.
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(a)

(b)

(c)

Figure 3.34: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of figures 3.32 and 3.33.
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Figure 3.35: Boundary conditions for a 3d cantilever.

(a) (b)

(c) (d)

Figure 3.36: (a): Initialization; optimized shape’s (b): front view; (c): back view; (d) half-domain, for
problem (3.25) and g1max = 53 , for the 3d cantilever.

g1max = 53 are shown in Figure 3.36. Adding the maximum thickness constraint with dmax = 0.40 and
dmax = 0.35 to the previous problem, results in the optimized shapes of figures 3.37 and 3.38. The
convergence diagrams are shown in Figure 3.39 and the final results in Table 3.3.

3d MBB beam

The second 3d example is a 6 × 1 × 1 MBB beam, shown in Figure 3.40. Since the structure is doubly
symmetric, only one quarter of the bounding box is considered for the analysis and is discretized by
60 × 20 × 40 elements. The initialization and the optimized shape for problem (3.25) and g1max = 12 are
shown in Figure 3.41. The optimized shapes for g1max = 12 and dmax = 0.60 and dmax = 0.50 are plotted
in figures 3.42 and 3.43 correspondingly. The convergence diagrams are shown in Figure 3.44 and the
final results in Table 3.4.

3d box

The last example for the maximum thickness constraint is a three dimensional 2×2×1 box-like structure,
clamped at its four lower corners and with a unit load applied at the middle of its lower edge (see Figure
3.45). Here again, one quarter of the structure is used for the analysis and is discretized by 30 × 30 × 30
elements. The initialization and the optimized shape for problem (3.25) and g1max = 32 are shown in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.37: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
53 and dmax = 0.40, for the 3d cantilever.

Table 3.3: Optimized 3d cantilever.

Volume Compliance PMaxT (Ω)
Without thickness restriction 2.676 53.00 -

dmax = 0.40 3.062 53.02 0.200
dmax = 0.35 3.055 53.08 0.175
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.38: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
53 and dmax = 0.35, for the 3d cantilever.

Table 3.4: Optimized 3d MBB beam.

Volume Compliance PMaxT (Ω)
Without thickness restriction 2.997 12.50 -

dmax = 0.60 3.119 12.51 0.300
dmax = 0.50 3.429 12.44 0.250
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(a)

(b)

(c)

Figure 3.39: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of figures 3.36, 3.37 and 3.38.
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Figure 3.40: Boundary conditions for a 3d MBB beam.

Table 3.5: Optimized 3d box.

Volume Compliance PMaxT (Ω)
Without thickness restriction 0.303 31.97 -

dmax = 0.60 0.281 32.00 0.234
dmax = 0.40 0.326 32.00 0.200

Figure 3.46. The optimized shapes for g1max = 32 and dmax = 0.60 and dmax = 0.40 are plotted in figures
3.47 and 3.48 correspondingly. The final results are shown in Table 3.5. We see that the optimized shape
for dmax = 0.60 is more rigid than the one obtained without a thickness constraint and thus it is clear
that the shape of Figure 3.46 corresponds to a local minimum.

3.7.2 Minimum Thickness

2d cantilever

Similar to what we did with the maximum thickness constraint, we will test several formulations and
strategies for the minimum thickness constraint. Our model test case is chosen to be the two-dimensional
cantilever of Figure 3.27. Starting with the initialization of Figure 3.28(a) and solving problem (3.25)
for g1max = 60, we get the optimized shape of Figure 3.49. We suppose now that we want to avoid thin
features that appear in this shape. We define a minimum thickness size dmin and solve the optimization
problem

min
Ω∈Uad

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,

PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s− ξn (s)))

+
]2
dξds = 0.

(3.28)

Once more, we need to choose whether the thickness constraint will be applied since the beginning, or in
a second step, after an optimized shape for problem (3.25) has been obtained. Contrary to the maximum
thickness case, it seems more natural to choose the second strategy for this constraint. The reason is that
the penalty functional PMinT (Ω) in (3.28) will cause, in general, a trend to increase the thickness of thin
features. Thus, the disappearance of less useful parts of the structure will be hindered and we shall expect
the existence of parts in the optimized shape with negligible mechanical importance. This is the case
in the optimized shape of Figure 3.50, where the minimum thickness constraint has been applied since
the beginning of the optimization algorithm. Evidently, the upper-right bar of the shape has negligible
mechanical contribution, but it cannot be removed because of the minimum thickness constraint.

Using the shape of Figure 3.49(a) as an initial guess for problem (3.28), the optimized shapes for
different values of dmin are shown in Figure 3.51. As we could have expected, for relatively small values
of dmin, the algorithm augments the size of thin members and, usually, reduces a bit the size of features
whose thickness exceeds this value. In such cases, the shape does not change significantly and the final
topology is the same with the initialization. However, when the value of dmin is such that several parts
of the structure are penalized, then we can expect topological changes to occur. Initially, the size of the
bars increases and then, since the compliance constraint is no more active, it is easier for the shape to
change. Members can merge, which is usually beneficial for the minimum thickness constraint. We can
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.41: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.25) and
g1max = 12, for a 3d MBB beam.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.42: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
12 and dmax = 0.60, for a 3d MBB beam.



96 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.43: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
12 and dmax = 0.50, for a 3d MBB beam.
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(a)

(b)

(c)

Figure 3.44: Convergence diagrams for the (a): volume; (b): compliance; (c): maximum thickness
functional, for the results of figures 3.41, 3.42 and 3.43.
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Figure 3.45: Boundary conditions for a 3d box.

see this process in Figure 3.52, where several intermediate iterations are depicted before arriving to the
optimized shape of Figure 3.51(d).

Remark 3.7.1. One may wonder why the upper-right bar of the shape in Figure 3.50 does not disappear.
This happens because we have chosen not to set ψ = 0 for the nodes of the shape that belong also to the
boundary of the working domain (see Figure 3.7). There are several reasons for this choice. First, we
have observed numerically that it can lead to the appearance of spurious holes in the structure. Then,
it is possible that the algorithm converges much slower, because the new optimizable boundary contains
areas with high velocity and thus the CFL condition for the advection of the level-set function becomes
too strict. Practically, it is possible that we observe very slight changes of the shape, which is totally due
to the stability condition for the Hamilton-Jacobi equation.
Many ideas can be proposed about how to avoid such artifacts, but the good strategy to follow remains
always case-dependent. Now, we would like to show the above described with an example. Suppose that
we start with the optimized shape of Figure 3.50 and we decide to set

ψ(x) = 0 ∀x ∈ ∂Ω ∩ ∂D,

i.e. we consider as optimizable all the boundary of the shape Ω. Then, with a small abuse in theory since
we have neglected some terms in the shape derivative that should have been included (see Proposition
1.3.9), the algorithm ”stucks” in the shape of Figure 3.53(a). However, the upper-right bar has changed
and the previous problem for the minimum thickness constraint shall no more appear. Starting from this
shape and coming back to the initial choice for ψ (see Figure 3.7(a)), we can solve again problem (3.28).
In Figure 3.53 we can see that the shape can now change radically and converge to an optimized shape
that is intuitively acceptable. However, since we expect to start from a shape very far from an optimum,
the optimization may need a lot of iterations to converge.

Energy functionals for the minimum thickness

Although the minimum thickness constraint (3.3) and its corresponding penalty functional PMinT (Ω)
are mathematically well-defined, the numerical calculation of the shape derivative (3.16) is not trivial.
Among other things, in order for the calculation to be sufficiently accurate, the mesh shall not be too
coarse.
Instead of formulating a constraint, it is interesting to see if we can manage to control the thickness of the
structure in such a way that thin features are avoided by adding to the objective function some energy
functional. As we have foresaid, this approach has also been followed in [38], [40], [89]. However, instead
of favoring specific patterns and shapes, we shall better base the formulation of this energy functional on
the values of the signed distance function. In addition, it would be preferable that the functional has no
impact on features where the thickness exceeds the desired limit.

A first proposal of such a functional is the following:

E1(Ω) = −
∫

Ω

dΩ(x)2
[
(dΩ(x) + dmin/2)+

]2
dx. (3.29)

Let us study the behaviour of functional E1(Ω) with an example. Consider the semi-infinite bar of Figure
3.54, which has a uniform thickness of value 0.2. We want to solve the optimization problem

min
Ω
E1(Ω), (3.30)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.46: (a): Initialization; (b)-(e): different views of the optimized shape for problem (3.25) and
g1max = 32, for a 3d box.



100 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.47: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
32 and dmax = 0.60, for a 3d box.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.48: (a): Initialization; (b)-(h): different views of the optimized shape for problem (3.26), g1max =
32 and dmax = 0.40, for a 3d box.
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(a)

(b) (c)

Figure 3.49: (a): Optimized shape for problem (3.25) and g1max = 60; convergence diagrams for (b): the
compliance and (c): the volume, for the 2d cantilever.

(a) (b)

Figure 3.50: (a): Optimized shape for problem (3.28), g1max = 60 and dmin = 30 and (b): minimum
thickness functional (in logarithmic scale), for the 2d cantilever.
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(a) (b)

(c) (d)

Figure 3.51: Optimized shapes (a): without thickness constraint; (b): for dmin = 0.15; (c): for dmin =
0.20 and (d): for dmin = 0.30, for the 2d cantilever.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.52: (a): Initialization; iteration; (b): 30; (c): 100; (d): 130; (e): 150; (f): 250; (g): 300; (h):
optimized shape, for dmin = 0.30, for the 2d cantilever.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.53: (a)-(h): Iterations 1,100,200,300,400,500,600,700 for the problem (3.28), for the 2d cantilever.
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(a) (b) (c)

Figure 3.54: (a): Initialization; (b) shape gradient; (c): energy density.

with dmin = 0.4. The shape derivative of the energy functional reads

E′
1(θ) = −

∫

∂Ω

θ(s) · n(s)

[
dΩ(s)2

(
(dΩ(s) + dmin/2)

+
)2]

ds

−
∫

Ω

d′Ω(θ)

[
2dΩ(x)

(
(dΩ(x) + dmin/2)

+
)2

+ 2dΩ(x)2 (dΩ(x) + dmin/2)
+

]
dx

=

∫

∂Ω

θ(x) · n(x)

∫

ray
∂Ω

(x)∩Ω

C(dΩ(z))

N−1∏

i=1

(1 + dΩ(z)κi(x))dzdx,

(3.31)

where

C(dΩ(z)) =

[
2dΩ(z)

(
(dΩ(z) + dmin/2)

+
)2

+ 2dΩ(z)2 (dΩ(z) + dmin/2)
+

]
, (3.32)

from which a descent direction is readily revealed as

θ(x) = −n(x)

∫

ray
∂Ω

(x)∩Ω

C(dΩ)(z)

N−1∏

i=1

(1 + dΩ(z)κi(x))dz, ∀x ∈ ∂Ω.

It is easy to see that θ(x) · n(x) ≥ 0. In Figure 3.55 we show the optimized shape for problem (3.30),
which is nothing but a bar of thickness dmin. As soon as the bar takes the desired value of thickness, the
shape derivative of the energy functional is zero, since a further increase of its size would have no impact
on the value of E1(Ω).

Let us examine now how this functional behaves when topological changes occur. Consider the two
semi-infinite bars of Figure 3.56(a), which are of uniform thickness 0.1. The distance between them is
also 0.1 and the optimization problem (3.30) is solved for dmin = 0.5 and dmin = 0.25. In both cases,
we should expect the bars to increase in size and merge, which should be beneficial for a minimum
thickness constraint. However, merging the two bars can cause an increase in the value of functional
(3.29), when the shape before merging is close to optimal. In this case, which is shown in Figure 3.56(b)
for dmin = 0.25, its value almost increases by two, same as the decrease of its perimeter. For dmin = 0.50,
the functional is far from obtaining its minimum value before merging. After the two bars have joined
into one, the values of the signed distance function change discontinuously and the functional E1(Ω) gets
further reduced.

Bars are very likely to try to merge during shape and topology optimization under a minimum
thickness constraint, as it is shown in Figure 3.52, and thus a proposed energy functional needs to
account effectively for such changes. Inspired from the equivalence of the increase in E1(Ω) with the
decrease in the total perimeter for the simple example of Figure 3.56, we propose the energy functional

E2(Ω) =

−
∫

Ω

dΩ(x)2
[
(dΩ(x) + dmin/2)+

]2
dx

(

∫

∂Ω

ds)2
(3.33)

and we perform the same test as previously. The results are shown in Figure 3.57.
The previous functionals tend, in general, to augment the size of thin bars. Using them since the

beginning of the optimization algorithm is likely to result in problems such as those of Figure 3.50, where
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(a) (b)

(c)

Figure 3.55: (a): Optimized shape for problem (3.30) and dmin = 0.4; (b) energy density; (c): convergence
diagram.

members cannot progressively disappear due to the thickness constraint. However, it seems tempting to
try formulate a functional that treats features differently according to their thickness. We can define, for
example, a critical value dcr for the thickness, such that when the thickness of a bar is less than dcr, it
will tend to reduce in size and in case it lies between dcr and dmin, it will increase up to the value of
dmin (see Figure 3.58). One such functional reads

E3(Ω) =

∫

Ω

[
dΩ(x)2((dΩ(x) + dcr/2)+)2 − ((dΩ(x) + dcr/2)−)2((dΩ(x) + dmin/2)+)2

]
dx. (3.34)

In Figure 3.59 we show a numerical test using once more two semi-infinite bars of thickness 0.1 and 0.3.
Functional (3.34) is set as objective function and is minimized for dmin = 0.4 and dcr = 0.2. As expected,
the thin bar in the upper part disappears, while the lower bar increases in thickness up to the size dmin.

We return now to the general setting of structural optimization and examine the behaviour of the
proposed energy functionals when applied to the optimized shape of Figure 3.49. Instead of problem
(3.28), where a minimum thickness constraint is formulated, a weighted sum of the volume and the
thickness functional is considered and the new problem reads

min
Ω∈Uad

∫

Ω

dx+ ℓEEi(Ω)

s.t.

∫

∂Ω

g · uds ≤ g1max,
(3.35)

where i = 1, 2, or 3, depending on the energy functional at play and ℓE is the weight coefficient for the
thickness functional. A satisfying scaling between the volume and the thickness constraint is achieved
by choosing ℓE = V (Ω0)/Ei(Ω

0). Initializing the shape as in Figure 3.60(a) and solving problem (3.35)
for E1(Ω) and dmin = 0.15, we result in the shape of Figure 3.60(b). We can see that the addition
of the energy functional has caused distortions close to the boundary of the working domain. Such
distortions have not appeared in the semi-infinite bars previously, since the intersection of the shape with
the working domain is not considered to be part of the structure’s boundary and thus dΩ is equivalent
with reinitializing the level-set function ψ used for the advection of the shape. In fact, using ψ instead
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(a)

(b)

(c)

Figure 3.56: (a): Initialization; optimized shape for problem (3.30) and energy density for (b): dmin =
0.50; (c): dmin = 0.25.
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(a)

(b)

Figure 3.57: Optimized shape and energy density for (a) dmin = 0.50; (b): dmin = 0.25, using the energy
functional (3.33).

Figure 3.58: The bar on the left will increase in size, while the bar on the right will disappear when the
energy functional (3.34) is minimized.
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(a) (b)

Figure 3.59: (a): Initialization; (b): initial shape gradient; (c): iteration 10; (d): optimized shape, using
the energy functional (3.34), dmin = 0.4 and dcr = 0.2.

of dΩ, we can see in Figure 3.60(c) that the previous distortions dissapear. However, one can observe
that the lower-right bar has not increased in size. The reason is that using ψ instead of dΩ, the ”rays”
emerging from the boundary that touch the boundary of the working domain do not detect a point on
the skeleton of the shape. An intuitive modification that works well in numerical practise, is to consider
that in case a ”ray” passes to the exterior of the working domain, the skeleton lies at half the distance
from the point on ∂Ω to ∂D. Applying this modification, we get the optimized shape of Figure 3.60(d).
In all of the examples concerning the use of the energy functionals E1, E2, E3, these two choices, i.e.
the use of the reinitialized function ψ and the modification in the detection of the skeleton have been
used. The results for problem (3.35) for different values of dmin using functionals (3.29) and (3.33) are
respectively shown in figures 3.61 and 3.62. Using an augmented Lagrangian algorithm without checking
the decrease of the objective function at each step avoids the previously described problem of topological
changes for E1(Ω). The optimized shapes look quite similar, but for the case dmin = 0.30, the addition
of the perimeter term in E2 seems to affect the curvature of the bars. Also, we mention that for the same
thickness limit, both the final topologies using E1 and E2 differ from the one in Figure 3.51(d), which
was obtained by the explicit thickness constraint. Adding functionals E1 or E2 since the beginning of
the optimization algorithm requires some more attention. The choice of the weight coefficient ℓE plays a
major role in the efficiency of the algorithm. If we adopt the same scaling as before, it is highly possible
that very slight changes in the initial topology will occur. This is shown in Figure 3.63. Instead we can
choose to start with a smaller value of ℓE and increase it during the optimization. For the results of
Figure 3.64 the weight multiplier is initialized as ℓE = 0.3V (Ω0)/E1(Ω0) and is multiplied by 1.5 every
20 iterations. This update process is stopped after 100 steps. In figures 3.64(e),(f) we can see that the
algorithm has not been able to remove completely a strange feature that exists in the shape. This is
clearly an artifact of the premature dominance of the thickness functional. However, as we see in the
same figure, this feature augments in size under the effect of the thickness functional, since it has not yet
obtain the minimum thickness size, turns and merges with another bar under the effect of the compliance
and finally disappears. Using a multiplier of 1.2 instead of 1.5 and keeping updating ℓE to the end of
the optimization algorithm leads to a smoother penalization, as we can see in Figure 3.65. Contrary to
the use of E1 and E2, the use of E3 in a second step does not seem to be a robust choice. The reason is
that the optimized shape without the thickness penalization is very likely to contain thin features, which
however can play a significant role for its mechanical behaviour. If these members have a thickness lower
than the value of dcr, the algorithm will probably eliminate them, which can cause significant instabilities
during the optimization. Of course, the case when dcr has a very low value is not of great interest, since
then the functional has a samelike behaviour like E1 (as dcr → 0, E3 → E1).
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(a) (b)

(c) (d)

Figure 3.60: Optimized shape for problem (3.35) using the energy functional (3.29) and dmin = 0.15 (a):
without thickness constraint; using (b): dΩ; (c): ψ; (d): ψ and modifying the skeleton detection , for the
2d cantilever.

(a) (b)

(c) (d)

Figure 3.61: (a): Initialization; optimized shapes for (b): dmin = 0.15; (c): dmin = 0.20; (d): dmin = 0.30,
for problem (3.35) using E1(Ω), for the 2d cantilever.
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(a) (b)

(c) (d)

Figure 3.62: (a): Initialization; optimized shapes for (b): dmin = 0.15; (c): dmin = 0.20; (d): dmin = 0.30,
for problem (3.35) using E2(Ω), for the 2d cantilever.

Figure 3.63: Optimized shape for problem (3.35) and dmin = 0.30, using E1 and ℓE = V (Ω0)/E1(Ω0),
for the 2d cantilever.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.64: (a): Initialization; (b)-(i): iterations 15, 25, 50, 100, 150, 200, 250, 350; (j): optimized shape
after 400 iterations for problem (3.35), using E1(Ω) and dmin = 0.30, for the 2d cantilever.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.65: (a)-(e): Iterations 15, 25, 50, 100, 150; (f): optimized shape after 200 iterations for problem
(3.35), using E1(Ω) and dmin = 0.30, for the 2d cantilever.



3.7. NUMERICAL EXAMPLES 115

(a) (b)

(c) (d)

(e) (f)

Figure 3.66: (a)-(e): Iterations 15, 25, 50, 100, 150; (f): optimized shape after 200 iterations for problem
(3.35), using E3(Ω) and dmin = 0.30, for the 2d cantilever.

Therefore, we prefer to add E3 since the very beginning. As previously, the choice of ℓE plays also
an important role in the optimization process. For the results of Figure 3.66 we have set dmin = 0.30,
dcr = 0.15, ℓE is initialized as ℓE = 0.3V (Ω0)/E3(Ω0) and is multiplied by 1.5 every 20 iterations until
the end of the optimization algorithm.

2d MBB beam

We consider again the MBB beam of Figure 3.31. Problem (3.25) is solved for g1max = 50 and Figure
3.67 displays the initialization and the optimized shape for the half-domain. Initializing problem (3.28)
with the shape of Figure 3.67(b), the optimized shapes for different values of dmin are plotted in Figure
3.68. Solving problem (3.35) for dmin = 0.2, g1max = 50 for the energy functional E1 and starting from
the initial non-optimized shape, we take a different optimal solution, shown in Figure 3.69.

2d displacement inverter

The last example of this section concerns the design of a two-dimensional displacement inverter mecha-
nism. The displacement of the upper-left and lower-left corner are fixed and we apply a unitary horizontal
force at the middle (see Figure 3.70). We search to minimize the horizontal displacement uh at the middle



116 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

(a) (b)

Figure 3.67: (a): Initialization; (b): optimized shape, for problem (3.25) and g1max = 50, for the 2d MBB
beam.

(a) (b)

(c) (d)

Figure 3.68: Optimized shapes for problem (3.28), g1max = 50 and (a): dmin = 0.10; (b): dmin = 0.15;
(c): dmin = 0.20; (d): dmin = 0.25 , for the 2d MBB beam.

(a) (b)

Figure 3.69: (a): Initialization and (b): optimized shape for problem (3.35), dmin = 0.20 and g1max = 50,
using E1 , for the 2d MBB beam.
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Figure 3.70: Boundary conditions for the displacement inverter mechanism.

(a) (b)

Figure 3.71: (a): Initialization and (b): optimized shape, without thickness limitations, for the displace-
ment inverter mechanism.

point of its right side, denoted xtar. The optimization problem reads

min
Ω∈Uad

uh(xtar)

s.t.

∫

Ω

dx ≤ Vmax.
(3.36)

Due to symmetry, only the upper half-domain is used for the analysis. In all results here, Vmax is set to
0.30|D|. An initialization and its corresponding optimized shape are shown in Figure 3.71. As expected,
we observe some very thin parts that act like hinges.
Usually the scale of interest for such structures is so small, that the geometric uncertainty on the actually
manufactured shape may have a significant impact. Consequently, designs containing thin features shall
be avoided for such structures. One way to achieve this goal is to impose a minimum thickness constraint
and solve the problem

min
Ω∈Uad

uh(xtar)

s.t.

∫

Ω

dx ≤ Vmax,

PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (x− ξn (x)))

+
]2
dξdx = 0.

(3.37)

The optimized shapes and their deformed configurations for different values of dmin are shown in Figure
3.72. In Table 3.6, we display the final displacement for each case. As expected, increasing the minimum
thickness limit dmin leads to a less compliant structure and consequently to a greater displacement value.
For dmin = 0.08, we see that the displacment of the optimized shape has become positive, i.e. the
structure no longer acts as a displacement inverter.

One may wonder if it is possible to formulate a minimum thickness constraint in the form of (3.2)
instead of using the notion of offset sets. In order to formulate such a constraint, we need to decide
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(a)

(b)

(c)

(d)

Figure 3.72: Optimized shapes and deformed configurations for (a): dmin = 0.05; (b): dmin = 0.06; (c):
dmin = 0.07; (d): dmin = 0.08, for the displacement inverter mechanism.

Table 3.6: 2d displacement inverter.

Without thickness restriction dmin = 0.05 dmin = 0.06 dmin = 0.07 dmin = 0.08
uh(xtar) -47.56 -12.34 -5.53 -0.45 3.89
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(a)

(b) (c)

(d) (e)

Figure 3.73: Full optimized shapes (a): without thickness constraint; for (b): dmin = 0.05; (c): dmin =
0.06; (d): dmin = 0.07; (e): dmin = 0.08, for the displacement inverter mechanism.
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Figure 3.74: Skeleton of a rectangle (in blue) and maximal disks (in red).

which points to check. A first answer would be to test the signed distance function at the points that
belong to the skeleton. Although it is true that if a minimum thickness limit is violated then there
will be points on the skeleton whose value of dΩ will be under this limit, the inverse is not always true.
Consider, for example, the shape of a rectangle in Figure 3.74. Its skeleton is depicted in blue colour.
The signed distance function at the parts of the skeleton which are oriented in a direction ±45 degrees
takes small values, although the thickness of the rectangle defined using offset sets is not that small.
On the contrary, the values of dΩ on the horizontal part of the skeleton correspond to what one would
expect as half-thickness of the bar. Without being precise, we shall name ”inconvenient” those parts of
the skeleton, where the value of the signed distance function does not provide us with correct information
about the minimum thickness at this area. We shall also call ”interesting” the skeleton’s parts where |dΩ|
takes values close to the half of the thickness, when the last is defined using the notion of offset sets.

We remind that every point on the skeleton is equidistant to two or more points on the boundary
∂Ω, which means that the rays emerging from these boundary points cross at the same point on the
skeleton. One can observe that these ”inconvenient” parts of the skeleton seem to be formed by rays
crossing almost perpendicularly, while at the ”interesting” part rays are almost parallel. This observation
drives us to the following numerical method to eliminate some ”inconvenient” parts. First, we introduce
the numerical function

k(dΩ) = 0.5 − 0.5
∇bdΩ · ∇fdΩ
|∇bdΩ||∇fdΩ|

, (3.38)

where ∇b and ∇f mean that the gradient is evaluated using respectively backward and forward finite
differences. The function k(dΩ) takes values from 0 to 1, depending on the angle at which the isocontours
of dΩ cross at the skeleton. At the ”inconvenient” parts we expect k(dΩ) to take values close to 0.5.
Using a threshold value kmin we can construct a cut-off function as

kΣ(dΩ) = max(sign(k(dΩ) − kmin), 0). (3.39)

An example is shown in Figure 3.75. In the upper part we can see a shape in black color and a plot of
the function kΣ(dΩ) for kmin = 0.6. Below we plot in 3d its signed distance function dΩ. In turns out
that, using a threshold greater than 0.5 helps to avoid the ”inconvenient” parts of the skeleton, which
can be identified in the plot of dΩ as the ridges formed by isocontours crossing almost perpendicularly.
Finally, we can formulate a minimum thickness penalty functional as

PMinT (Ω) =

∫

Ω

kΣ(dΩ)
[
(dΩ(x) + dmin/2, 0)

+
]2
dx. (3.40)

The shape derivation of (3.40) is not evident at all. In fact, (3.40) penalizes values of dΩ at some part
of the skeleton. As we have seen at Remark 3.3.4, the expression of d′Ω(θ) is not straightforward for
these points, but depends on the choice of θ. Furthermore, it is even less evident how and if one could
differentiate the function kΣ(dΩ). Ignoring the dependence of kΣ(dΩ) on the shape Ω, we have tried some
numerical tests using formulation (3.40). Our numerical experience shows that, in all generality, such a
formulation is not efficient, since the skeleton -both its ”interesting” and ”inconvenient” parts- and thus
kΣ(dΩ) are discontinuous with respect to perturbations of the shape.

3.7.3 Combination of thickness constraints

There is no theoretical difficulty in combining the previously presented thickness constraints. Of course,
adding more constraints in the optimization algorithm increases its complexity, as well as the possibility
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(a) (b)

(c)

Figure 3.75: (a): Shape (in black); (b): kΣ(dΩ) for kmin = 0.6; (c): dΩ.

that it does not manage to find a feasible shape, either because of reasons of non existence, or because
the neccessary topological changes are not likely to take place.

Maximum thickness and minimum distance between members

In Figure 3.29 we have shown the optimized shapes for the two dimensional cantilever of Figure 3.27,
when a maximum thickness constraint is applied. For dmax = 0.40, we can observe the existence of small
holes and closely spaced parts in the shape that we would like now to avoid. Starting from the shape of
Figure 3.29(b), we add a constraint on the minimum distance between members to problem (3.26). The
new optimization problem reads

min
Ω

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,

P1(Ω) = PMaxT (Ω) =




∫

Ω

f(dΩ(x))dΩ(x)2dx
∫

Ω

f(dΩ(x))dx




1
2

≤ g2max,

P2(Ω) = PMMD(Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s+ ξn (s)))

+
]2
dξds = 0,

(3.41)

where g1max = 40, dmax = 0.40 and dmin accounts for the minimum feature size. The results for dmin =
0.05 and dmin = 0.10 are presented in Figure 3.76.

Maximum and minimum thickness

We consider once more the MBB beam example of Figure 3.31. In Figure 3.33 we have shown the
optimized shapes when a maximum thickness constraint is added to the original problem. We can see,
for example for dmax = 0.30, the apparition of thin features in the shape that we would like now to avoid.
Starting from the shape of Figure 3.33(a), we also add a minimum thickness constraint to problem (3.26).
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(a) (b)

(c) (d)

Figure 3.76: Optimized shapes for (a): g1max = 40; (b): g1max = 40 and dmax = 0.40; (c): g1max = 40,
dmax = 0.40 and dmin = 0.05; (d): g1max = 40, dmax = 0.40 and dmin = 0.10, for the 2d cantilever.
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The new optimization problem reads

min
Ω

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,

P1(Ω) = PMaxT (Ω) =




∫

Ω

f(dΩ(x))dΩ(x)2dx
∫

Ω

f(dΩ(x))dx




1
2

≤ g2max,

P2(Ω) = PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (x− ξn (x)))

+
]2
dξdx = 0,

(3.42)

where g1max = 40, dmax = 0.30 and dmin accounts for the minimum feature size. The results for dmin =
0.10 and dmin = 0.15 are presented in Figure 3.77.

3.8 Other formulations of the thickness constraints

Inspired from the formulations used to control a notion of thickness in [61],[63] by J. Guest et al., in
the framework of the SIMP method (see section 1.3), we try in this section to study if considerations
using the same logic can be applied in the framework of the level-set method for shape and topology
optimization.

3.8.1 Maximum Thickness

Formulation of the constraint

The initial concept of the maximum thickness constraint formulated in [61] is the following: defining at
each point x ∈ Ω its closed ball of radius r = dmax/2 as

B(x, r) = {y ∈ Ω, s.t. |x− y| ≤ r} ,

the pointwise constraint reads ∫

B(x,r)∩D

ρ(y)dy < VB(x,r)∩D, (3.43)

where ρ(y) is the density at the point y ∈ Ω and VB(x,r)∩D is the volume of the intersection of the ball
B(x, r) with the working domain D. The interpretation of the above constraint in the framework of a
”classical” shape description would be

∫

B(x,r)∩D

χΩ(y)dy < VB(x,r)∩D, (3.44)

where χΩ is the characteristic function of the domain Ω.
Then, J. Guest proposes to use another formulation instead of (3.43), that takes under consideration

the volume of the void part in B(x, r). The final constraint, again in a ”classical” description, reads

∫

B(x,r)∩D

(1 − χΩ(y))dy ≥ Vmin, (3.45)

where Vmin > 0 is the minimum required volume of void part in B(x, r). One proposal is to use
Vmin = αvoidVB(x,r)∩D, where αvoid ≈ 5% is a small scalar parameter that defines the minimum demanded
percentage of void in the ball of a point.

Comparison with the formulation based on dΩ

We begin with the general formulation (3.44) and compare it with our formulation (3.2) based on the
signed distance function. When inequality (3.2) is satisfied, there exists no point whose distance to the
boundary is greater than dmax/2 and thus there is no point which is the center of a ball of radius greater
than dmax/2, fully contained in the shape. Inequality (3.44) is strict, i.e. the allowed inscribed circle must
be of radius less than dmax/2. Satisfying inequality (3.44) means that no inscribed circle of radius greater
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(a)

(b)

(c)

(d)

Figure 3.77: Optimized shapes for (a): g1max = 40; (b): g1max = 40 and dmax = 0.30; (c): g1max = 40,
dmax = 0.30 and dmin = 0.10; (d): g1max = 40, dmax = 0.30 and dmin = 0.15, for the 2d MBB beam.
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or equal to dmax/2 exists and thus no point is at a distance greater than dmax/2 from the boundary, so
inequality (3.2) is also satisfied. Thus, the two formulations are very similar.

Let us pass now to the final constraint (3.45). From our point of view, this formulation is just a
relaxation of (3.44), which is numerically easier to implement. The reason is that inequality (3.44) is in
fact equivalent to ∫

B(x,r)∩D

χ(y)dy 6= VB(x,r)∩D, (3.46)

since the right-hand side is an upper bound of the left-hand side. Numerically, such a strict inequality
constraint is not easy to handle.

A drawback of formulation (3.45) is that the maximum allowed thickness is reduced from its initial
value dmax, depending on the choice of the parameter αvoid in Vmin. However, implementing constraint
(3.45) in a shape optimization framework could help alleviating the problem of small balls surrounded by
a large bulk of material, but for small values of αvoid we shall expect it to be still somehow unstable, since
small balls could easily disappear and would need to be regenerated either using a topological derivative
or via the inherent mechanism described in Figure 3.24.

The cost of calculation increases with mesh refinement for all the three methods we have presented for
the maximum thickness. The ”coarea” formula requires to travel slower up to the skeleton, for reasons of
precision, the size of the linear system in the ”volumetric” formula increases, while for this last method
the number of nodes in the ball of each point augments, which makes the calculations more costly. In
general, we shall expect that the ”coarea” formula is the least influenced by a mesh refinement. Increasing
the maximum allowed thickness (dmax) can also increase significantly the cost of the method presented in
this section and slightly the one of the ”coarea” method, while the ”volumetric” method is not affected
at all.

Shape differentiation

In order to ease the presentation, let us rewrite the pointwise constraint (3.45) in the general form

g(Ω, x) ≤ gmax(x), ∀x ∈ Ω, (3.47)

where g(Ω, x) =

∫

Beff (x,r)

χΩ(y)dy, gmax(x) =

∫

Beff (x,r)

dy − Vmin, Beff (x, r) = B(x, r) ∩D.

As previously, we shall use a global constraint of the same type as (3.24). However, the formulation will
be slightly different since the right-hand side of inequality (3.47) depends on the space variable x. This
dependence is due to the change of the ”effective ball” Beff (x, r) as we approach the boundary of the
working domain D. Finally, the global constraint reads

PMaxT (Ω) =




∫

Ω

f(g)g(Ω, x)2 dx
∫

Ω

f(g)gmax(x)2 dx


 ≤ 1. (3.48)

Lemma 3.8.1. The shape derivative of PMaxT (Ω) in (3.48) reads

P ′
MaxT (Ω)(θ) =

∫

∂Ω

θ(s) · n(s)V (s) ds,

where

V (s) = +
1

(C2(Ω, x))2

[
C2(Ω, x)

(
f(g)g(Ω, s)2 +

∫

Ω

C3(Ω, x)χBeff (x,r)(s)dx

)]

− 1

(C2(Ω, x))2

[
C1(Ω, x)

(
f(g)gmax(s)2 +

∫

Ω

∂f(g)

∂g
gmax(x)2χBeff (x,r)(s)dx

)]
,

C1(Ω, x) =

∫

Ω

f(g)g(Ω, x)2 dx,

C2(Ω, x) =

∫

Ω

f(g)gmax(x)2 dx

and

C3(Ω, x) =

(
∂f(g)

∂g
g(Ω, x)2 + f(g)pg(Ω, x)

)
.
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Proof. PMaxT (Ω) is written again as

PMaxT (Ω) =
C1(Ω, x)

C2(Ω, x)
. (3.49)

Differentiating 3.49 and using Proposition 1.3.8, we get

P ′
MaxT (Ω)(θ) =

1

(C2(Ω, x))2
(C2(Ω, x)C ′

1(Ω, x)(θ) − C1(Ω, x)C ′
2(Ω, x)(θ))

=
1

(C2(Ω, x))2

(
C2(Ω, x)

(∫

∂Ω

θ(s) · n(s)f(g)g(Ω, s)2 ds

))

+
1

(C2(Ω, x))2

(∫

Ω

C3(Ω, x)g′(Ω, x)(θ)dx

)

− 1

(C2(Ω, x))2

(
C1(Ω, x)

(∫

∂Ω

θ(s) · n(s)f(g)gmax(s)2 ds

))

− 1

(C2(Ω, x))2

(
C1(Ω, x)

(∫

Ω

∂f(g)

∂g
g′(Ω, x)(θ)gmax(x)2 dx

))
.

(3.50)

The function g(Ω, x) can be written again as

g(Ω, x) =

∫

Ω

χBeff (x,r)(y) dy,

where χBeff (x,r) is the characteristic function of the ball of radius r centered at point x, defined as

χBeff (x,r)(y) =

{
1, if y ∈ Beff (x, r),
0, else.

The shape derivative of g(Ω, x) is formally calculated as

g′(Ω, x)(θ) =

∫

∂Ω

θ(s) · n(s)χBeff (x,r)(s) ds.

In order to write P ′
MaxT (Ω)(θ) in the form given by Hadamard’s structure theorem, we use that

∫

Ω

j(x)g′(Ω, x)(θ)dx

=

∫

Ω

j(x)

∫

∂Ω

θ(s) · n(s)χBeff (x,r)(s) ds dx

=

∫

∂Ω

θ(s) · n(s)

∫

Ω

j(x)χBeff (x,r)(s) dx ds,

(3.51)

for a general function j(x). Using (3.51) in (3.50) we arrive at the desired result.

Numerical results

2d cantilever

In order to test this method and compare with the previously obtained results, we consider here again
the 2d cantilever of the previous section. The same initialization is used and problem (3.26) is solved
for g1max = 40, dmax = 0.40 and for different values of the void percentage ”αvoid”. In Figure 3.78, we
see how the constraint limit gmax(x) is modified close to the boundary according to the volume of the
effective ball Beff (x, r). The optimized shapes and the thickness violation for different values of the
void percentage are shown in Figure 3.79. As expected, the optimization algorithm is very sensitive for
αvoid = 0.01 and we witness again the repetitious formation and disparition of tiny holes, as described
in Figure 3.24. For αvoid = 0.10 and αvoid = 0.05 there is no violation of the thickness limit at the
optimized shape. However, this is somehow expected, since an increase in the void percentage causes a
decrease in the maximum thickness limit. For αvoid = 0.01, the thickness constraint is not satisfied at
convergence, the shape has become oscillatory and thickness violation appears. The final volume for the
three cases is shown in Table 3.7. We can see that the shape previously obtained via the ”volumetric”
formula is the lightest of all.
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(a) (b)

Figure 3.78: (a): gmax(x); (b): g(Ω0, x) for dmax = 0.40 and αvoid = 0.1.

(a)

(b)

(c)

Figure 3.79: Optimized shapes and thickness violation (|(dΩ(x) − dmax/2)−|) for (a): αvoid = 0.10; (b):
αvoid = 0.05; (c): αvoid = 0.01, for the 2d cantilever.

Table 3.7: Volume comparison for the results of figures 3.79 and 3.29)(b).

Volume
”volumetric” formula 3.931

αvoid = 0.10 4.030
αvoid = 0.05 4.067
αvoid = 0.01 4.135



128 CHAPTER 3. THICKNESS CONTROL IN STRUCTURAL OPTIMIZATION

Figure 3.80: Influence area of an element ”e”.

3.8.2 Minimum Thickness

Design and physical variables

In [63], Guest et al. proposed a new idea to tackle the minimum thickness specification. Instead of
formulating a constraint they integrated the constraint in the optimization variables. As a first step,
the distinction between ”design” and ”physical” variables is done. Design variables are in fact the
optimization variables and they determine the physical variables, on which the material properties depend.
The physical variables are chosen as usual to be the densities of the elements of the mesh. For the
interpolation scheme, the SIMP method can be chosen.

We describe now the connection of the physical with the design variables. For every element ”e” of
the mesh we define a domain of influence denoted Ωew, which is simply its ball of radius rmin = dmin/2
centered at the center of the element (see Figure 3.80). At each node ”j” of the mesh, design variables
ρj are defined. The values of ρj in the influence area of each element determine the value of its physical
density ρe. This is done in two steps. First, a weighted average of the design variables, also called ”nodal
volume fraction”, is calculated in Ωew as

µe =

∑
j∈Se

ρjw(|xj − xe|)
∑
j∈Se

w(|xj − xe|) , (3.52)

where Se is the set of nodes belonging to Ωew (the nodes in green color for the element ”e” in Figure 3.80)
and w is a weighting function that depends on the distance between the position of node j (xj) and the
center of the element e (xe). Then, the element density is calculated as a Heaviside function such that

ρe =

{
1 if µe(ρn) > ρminn ,

ρemin if µe(ρn) = ρminn ,
(3.53)

where ρminn and ρemin are the minimum allowed densities for the nodal and the elemental variables, in
order to avoid singularity of the stiffness matrix. In numerical practice, a regularized version of (3.53) is
used.

Comments on the concept of the method

It is easy to see that the formation of features respecting some notion of minimum thickness is inherent in
the above formulation. A great benefit of the method is its simplicity and that the above scheme can be
applied at any step of the optimization algorithm without creating significant problems to the evolution
of the shape. For example, small ”islands” that are created during the optimization are easily eliminated.

Of course, we should expect that the algorithm would be very sensitive to the regularization parameters
and to local minima. In [62] Guest et al. proposed some modifications in the method of moving asympotes
(MMA) in order to circumvent some of the above inconveniencies.

One more significant comment about this method has to do with the notion of minimum thickness
itself. It is not clear at all that an optimized structure using the above strategy for the minimum thickness
specification would be accepted by a designer. Most of the examples for compliance minimization in [63]
and [62] provide the designer with a clear idea of how the optimized shape should look like. In Figure
3.81 we show some optimized shapes for inverter mechanisms obtained in [62] for different values of the
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Figure 3.81: Inverter mechanisms obtained in [62].

minimum allowed feature size. A red line below each figure represents the size of this feature. Although
the feature size seems to be well respected for bars, the same thing is not true for the regions around
the joints that endow the mechanism with high flexibility, or at least the optimization result is not very
satisfying from an intuition point of view. If we observe carefully these areas, we can see that intermediate
material has been placed, which of course is beneficial for the displacement criterion. We shall emphasize
that this is not just a question of post-processing, since respecting a strict criterion, like the one described
in section 3.2.2, could result in a much more rigid structure and the optimization algorithm would possibly
try to change the way flexibility is created.

Finally, we would like to discuss around the core idea of the method, that is, the distinction between
design and physical variables and the way they are related. At first glance, the fact that no additional
constraint is imposed on the optimization problem is a significant benefit of the method. However, things
remain relatively simple when no other geometric constraint is set on the shape. If several geometric
specifications are simultaneously set, especially of conflicting nature, it is not very clear how the relation
between the design and the physical variables shall be defined and if such a definition would be efficient for
an optimization algorithm. Instead, formulating one constraint for each geometric problem simply adds
an extra difficulty to the optimization algorithm, but at least has no impact on the general optimization
method.

Interpretation of the method using a ”classical” shape description

In this Section we try to adapt the main concept of the method, the distinction between design and
physical variables, in the framework of classical shape optimization. Since our optimization variable is
the shape itself, we speak about a ”design shape” and a ”physical shape”. We will try to optimize the
design shape in order to minimize functionals that dependent on the physical shape, which is the real
shape.

Denoting the design shape as Ωdes, one way to define the physical shape Ωphys is to consider

Ωphys = Ωdes ∪ Ωdmin

offset, (3.54)

where
Ωdmin

offset = {x such that dΩdes
(x) ≤ dmin/2} , (3.55)

is the set of points lying up to a distance dmin/2 from the boundary ∂Ωdes (see Figure 3.82). A level-set
function ψphys(x) corresponding to the physical shape can be easily constructed in two ways. Either by
creating dΩdes

, the signed distance function to the design shape, and setting

ψphys(x) = dΩdes
(x) − dmin/2, (3.56)

of by advecting the level-set function ψdes that describes the design domain up to a distance dmin/2.
The general type of a shape optimization problem under a minimum thickness constraint now reads

min
Ωdes

J(Ωphys), (3.57)

where the constraint does not appear explicitly, but has been incorporated into the relation (3.54) con-
necting the physical and the design shape.

Computation of a descent direction

What remains is the calculation of a descent direction for the functional J(Ωphys). This is not straight-
forward, since the advection velocity is now defined on the boundary of the design domain Ωdes. In other
words, we need to find how the domain Ωdes shall change so as to decrease a functional defined on Ωphys.
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(a) (b)

Figure 3.82: (a): Design (Ωdes) and offset shape (Ωdmin

offset); (b): physical shape (Ωphys).

Chen et al. have tried to answer to the above question in [37], where the optimization of the shape
under some uncertainty of the boundary’s position is studied. The functional to be minimized depends
on the values of J(Ω) on the perturbed domains. Supposing that the pertrubed domain Ωper is taken by
applying a diffeomorhism F = Id + θ∗ to the current shape Ω, such that every point x ∈ Ω is mapped to
the point X = F (x), X ∈ Ωper, the authors claimed that a descent direction can be obtained by

v(x) = V (X), (3.58)

where v is the velocity on the unperturbed domain Ω and V (X) is the velocity on the perturbed domain
Ωper. Unfortunately, the analysis in [37] is not correct, as we will show in the sequel, and thus relation
(3.58) does not necessarily guarantee a descent direction.

Let us explain where the mistake in [37] lies and calculate a shape derivative for J(Ωphys). Using
a standard change of variables, for a smooth enough function f , we can pass from an integral on the
physical domain Ωphys to an integral on the design domain Ωdes

J (Ωphys) = J (( Id + θ∗) (Ωdes)) =

∫

( Id+θ∗)(Ωdes)

f(x)dx =

∫

Ωdes

f ◦ ( Id + θ∗) (x) |det (I + ∇θ∗)| dx.

At this point we shall not forget that the diffeomorphism θ∗ is shape dependent, that is

θ∗ = (dmin/2)n(x),

where n(x) is the exterior normal vector to ∂Ωdes. For the shape derivative of the functional J , Proposition
1.3.8 needs to be used, i.e. the Eulerian derivative of the integrand will also appear. This part is omitted
in [37] in the equation (26). The shape derivative reads

J ′(Ωphys)(θdes) = J ′(Ωdes, θ
∗)(θdes) =∫

∂Ωdes

(θdes(s) · n(s))f ◦ ( Id + θ∗) (s) |det (I + ∇θ∗)| ds

+

∫

Ωdes

∂ (f ◦ ( Id + θ∗) (x) |det (I + ∇θ∗)|)
∂Ωdes

(θdes)dx,

(3.59)

where θdes is a vector field defined on the boundary of Ωdes. In [37] the second term of the right-hand
side did not appear in the calculation and the authors claimed that the choice

θdes(s) = −f ◦ ( Id + θ∗) (s)n(s) = −f ◦ (s+ (dmin/2)n(s))n(s),
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which is equivalent to the relation (3.58), guarantees a descent direction for J . Let us now continue the
calculation of the shape derivative (3.59). Using Lemma 3.3.9 we can write

det(I + ∇θ∗) = det(I + (dmin/2)∇n) = det(I + (dmin/2)HdΩdes
) =

∏N−1
i=1

(
1 + (dmin/2)

κi
1 + dΩdes

κi

)

⇒ det(I + ∇θ∗) =
∏N−1
i=1

(
1 + (dΩdes

+ dmin/2)κi
1 + dΩdes

κi

)
.

This term is always positive, since

κi ≥ 0 ⇒ 1 + (dΩdes
+ dmin/2)κi ≥ 1 + dΩdes

κi > 0,

because of Lemma 3.3.9 and

κi < 0 ⇒ 1 + (dΩdes
+ dmin/2)κi ≥ 1 + dmin/2κi > 0,

because dmin/2 < reach(Ωdes) (see [44] for the definition of the ”reach” of a set), in order for ( Id + θ∗)
to be a diffeomorphism. Thus (3.59) becomes

J ′(Ωdes, θ
∗)(θdes) =

∫

∂Ωdes

(θdes(s) · n(s))f ◦ ( Id + (dmin/2)n) (s)
N−1∏

i=1

(1 + (dmin/2)κi)ds

+

∫

Ωdes

∂
(
f ◦ ( Id + (dmin/2)n) (x)

∏N−1
i=1

(
1 + (dmin/2) κi

1+dΩdes
κi

))

∂Ωdes
(θdes)dx =

∫

∂Ωdes

(θdes(s) · n(s))f ◦ ( Id + (dmin/2)n) (s)

N−1∏

i=1

(1 + (dmin/2)κi)ds

+

∫

Ωdes

(dmin/2)
∂f

∂X
(X)

∂n

∂Ωdes
(θdes)

N−1∏

i=1

(
1 + (dmin/2)

κi
1 + dΩdes

κi

)

+f ◦ ( Id + (dmin/2)n) (x)
∂
∏N−1
i=1

(
1 + (dmin/2) κi

1+dΩdes
κi

)

∂Ωdes
(θdes)

(3.60)

The computation of the shape derivative of the exterior normal is numerically quite difficult, as we will
see in the next Chapter, while the one of the principal curvatures shall be even more difficult to be found.
Of course, the hypothesis that the design and the physical shapes are related by a diffeomorphism is not
always true, unless dmin is small enough and Ωdes is smooth enough. In case it is not, the above analysis
is not mathematically valid.
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Chapter 4

Molding direction constraints in

structural optimization
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In this Chapter we propose some methods and strategies for imposing molding direction constraints in
shape and topology optimization using a level-set description of the shape. We combine existing proposals
in the literature with novel formulations that generalize the previous ones and can be effectively combined
with thickness constraints. We show several examples of compliance minimization in linearized elasticity
with such constraints.

4.1 Introduction

As we have mentioned in Chapter 2, one of the essential specifications for the design of cast parts is the
molding direction. The shape of the structure should not hinder the molds’ removal in their corresponding
parting direction. For reasons of simplicity and economy, the casting system is usually predefined, while
the possible parting surface, i.e. the surface where two molds come in touch, can be either fixed a priori
or can be easily reconstructed in a second step. Same as for the thickness constraints, we shall not hope
that shape and topology optimization results naturally in a feasible shape for a specific casting system,
unless some molding direction constraint is introduced in the optimization algorithm.
Depending on the shape and topology optimization method in use, different proposals have appeared to
handle molding direction constraints. In the framework of the SIMP method (see Chapter 1), Zhou et al.
[165] implemented a penalization scheme that favors higher densities at specific parts of the structure,
according to the casting design, which reduces the possibility of obtaining complicated topologies. Leiva
et al. [82, 83] have chosen to incorporate directly the growth direction in the parametrization of the
problem, while methods of topology control, such as connectivity and growth direction control, have
been applied for the Soft Kill Option [66]. A complete review of these methods and a comparison of
results using topology optimization with and without manufacturing constraints can be found in [67, 68].
In the framework of the level-set method, the first works on the topic -to our knowledge- are those of Xia
et al. [159, 160]. In [159], Xia et al. proposed a molding direction condition on the design velocity, i.e. a
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modification of the descent direction that ensures the feasibility of the shape at each iteration, provided
that the initial shape is also feasible. In this work, the casting system is also a priori defined. In [160],
Xia et al. have added the optimization of the parting direction in the optimization problem. The same
choice for the design velocity is done. Although the method allows those topological changes that do not
come in conflict with the removal of the molds, it is mentioned in [159] that the shape cannot expand
orthogonally to the parting direction. This is a great disadvantage in case one wants to impose thickness
contraints. Finally, in the framework of the phase-field method, Yamada et al. have presented in [162] a
special type of molding direction constraint, called ”uniform cross-section surface constraint”, according
to which the structure has a constant cross-section along some direction. This is a sufficient but not
neccessary condition for satisfying the molding direction specification.
In this chapter, we present a general method to handle the molding direction constraint in the framework
of the level-set method for shape and topology optimization. A pointwise constraint is formulated using
the signed distance function and a penalty functional is then constructed to turn the constraint into
a global one. This method is independent of the initialization and can be combined with thickness
constraints, since there is no limitation in the advection of the shape’s boundary. In order to reduce the
computational cost and simplify the optimization process, a strategy that combines the previous idea of
Xia et al. with this new formulation is proposed. Finally, the ”uniform cross-section surface constraint” is
discussed and a simple method is proposed to enforce it. We show several numerical results for compliance
minimization in linearized elasticity with such constraints.

4.2 Formulation of the molding direction constraint

4.2.1 Molding direction condition on design velocity

A molding direction condition on the design velocity was proposed by Xia et al. in [159], which is inspired
by Fu et al. [56]. According to the authors, if a shape is feasible with respect to the molding direction
specification for its corresponding casting system, then the boundary of the structure ∂Ω can be divided
into m disjoint parts Γi, i = {1, ...,m}, such that Γi ∩ Γj = ∅, j = {1, ...,m} ,∪mi=1Γi = ∂Ω and Γi can be
parted in the direction di. Thus, a molding direction condition for this shape is

di · n(x) ≥ 0, ∀x ∈ Γi. (4.1)

The shape on the left in Figure 4.2.1 satisfies the condition (4.1), while the shape on the right does not.
In fact, as it is mentioned in [159], undercuts (slots that hint the removal on the mold in its parting
direction) and interior voids are not allowed.
Based on the the molding condition (4.1), Xia et al. proposed the following method : starting from a

Figure 4.1: Left: moldable shape; right: non-moldable shape.

shape that satisfies the constraint (4.1), consider an advection velocity of the form

θi(x) = λ(x)di, ∀x ∈ Γi. (4.2)

In this way, the shape remains always moldable, since no undercut can be created during the advection
of the shape with this type of velocity and no interior void can be nucleated. The topological changes
that can occur using this advection velocity cannot turn the shape from moldable to non-moldable [159].
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This method, despite its simplicity and effectiveness, presents two major drawbacks. First, that the shape
should always satisfy the molding constraint, which limits enormously the choices of initial guess shapes.
We think that this limitation is not really crucial, since the method is flexible enough, especially in 3d,
and complicated topologies can be created from very trivial initializations. Second, and more important
from our point of view, is the limitation introduced by the type of advection velocity in the movement of
the shape. As it is stated in [159], there is no component of the advection velocity normal to the parting
direction. Therefore, the shape can shrink by extinction of some part, but it cannot expand normal to its
corresponding parting direction. Thus, in case that a minimum thickness constraint is applied in a second
step [12], the structure will be able to move only paralel to its parting directions and in all probability the
constraint will not be respected. Therefore, it is neccessary to formulate a general molding constraint,
free of the above limitations.

4.2.2 Generalised molding constraint

A first idea for a generalised way to treat the molding direction constraint consists simply in regarding
(4.1) as a constraint in our optimization problem. The main difficulty under this choice is related to the
computation of its shape derivative, as we will see in the sequel.
A second idea is to use the signed distance function to the boundary of the domain to derive all neccessary
information, as we have done in Chapter 3. Denoting Ω the actual shape and D the design domain, a
generalized molding direction constraint can be formulated as:

dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi, ∀ξ ∈ [0, dist(x, ∂D)] , (4.3)

or equivalently
dΩ (x+ ξdi) ≥ 0 ∀x ∈ Γi, ∀ξ ∈ [0, diam(D)] , (4.4)

where we denote diam(D) = supx,y {dist(x, y), x, y ∈ D} the diameter of the fixed domain D. We prefer
to use formulation (4.4) instead of (4.3), in order to avoid the dependence of the term dist(x, ∂D) on the
shape Ω.
Intuitively, this formulation says that, starting from a point on the boundary, which will be casted in the
direction di and travelling along this direction, we should not meet again some part of the structure (see
Figure 4.2). In case that the parting surface is not defined a priori, but is revealed at a second step after
the design has been completed and for a system of two molds (see Figure 2.3, right image), the constraint
(4.4) becomes:

dΩ (x+ ξsign(n · d)d) ≥ 0 ∀x ∈ ∂Ω, ∀ξ ∈ [0, diam(D)] . (4.5)

Figure 4.2: Checking castability along the parting direction d at the point x ∈ ∂Ω.

4.2.3 Uniform cross-section surface constraint

Another useful constraint for cast parts is the so-called ”uniform cross-section surface constraint” [162],
since it simplifies a lot the shape of the desired molds. To our knowledge, Yamada et al. [162] were



136 CHAPTER 4. MOLDING DIRECTION CONSTRAINTS IN STRUCTURAL OPTIMIZATION

the first to study this type of constraint in shape and topology optimization using a combination of
a phase-field and a level-set method. The constraint states that the cast part should have a uniform
constant thickness along some direction d. An example of a uniform thickness cantilever of thickness h
is given in Figure 4.3. The boundary conditions may not be uniform along this direction and therefore
the problem cannot be reduced to a 2d problem. We can formulate this type of constraint at least in two

(a) (b)

Figure 4.3: (a): uniform cross-section cantilever of thickness h; (b): cross-section S.

ways. The first formulation states that there should be no non-zero component of the exterior normal to
the boundary along this direction d:

d · n(x) = 0, ∀x ∈ ∂Ω \ ∂D. (4.6)

A second way to enforce the constraint is to limit the admissible advection fields θ. Starting from an initial
guess shape that has a uniform thickness along the desired direction d and constraining the advection
fields to be constant along this direction, the thickness along d will not change. In fact, this is the easiest
way to follow, since we don’t need to impose a mathematical constraint and the calculation of the velocity
field is reduced to a 2d problem, as we will see in the next section.
Satisfying this type of constraint, we also assure the feasibility of the shape for casting along the direction
d, i.e. this constraint is a sufficient but not a necessary condition.

4.3 Shape derivative

4.3.1 Molding direction condition on design velocity

Xia et al. proposed in [159] a modification of the advection velocity according to (4.2), that guarantees
a descent direction. Starting from the general form of the shape derivative for a functional J(Ω)

J ′(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)V (s)ds =

m∑

i=1

∫

Γi

θi(s) · n(s)Vi(s)ds

and considering admissible advection fields of the type (4.2), we get

J ′(Ω)(θ) =

m∑

i=1

∫

Γi

λi(s)di · n(s)Vi(s)ds,

and choosing
λi(s) = −Vi(s)di · n(s), ∀i = 1, ...,m

for each part Γi of the boundary ∂Ω, the shape derivative becomes

J ′(Ω)(θ) = −
m∑

i=1

∫

Γi

(di · n(s))2(Vi(s))
2ds ≤ 0,

which shows that the chosen advection velocity

θi(s) = −Vi(s)(di · n(s))di(s), ∀i = 1, ...,m

is indeed a descent direction.
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4.3.2 Generalised molding constraint

We start with the derivation of constraint (4.1). One advantage of this constraint is that it is of local
nature, i.e. it contains information only for points on the boundary without searching along rays emerg-
ing from them. On the other hand, it contains the exterior normal vector, whose derivation is more
complicated than the one of the signed distance function. In a first step, a global penalty functional can
be formulated as

PGMC(Ω) =

∫

∂Ω

[(d · n(s))−]2ds. (4.7)

Proposition 4.3.1. The shape derivative of (4.7) reads

P ′
GMC(Ω)(θ) =

∫

∂Ω

w(s)
[

+ 2d · ∇s(d · n(s))− −H(s)[(d · n(s))−]2
]
ds, (4.8)

where H is the mean curvature and w = θ · n.

Proof. Using Proposition 1.3.8 of Chapter 1, the shape derivative of (4.7) reads

P ′
GMC(Ω)(θ) =∫

∂Ω

θ(s) · n(s)
[
H(s)[(d · n(s))−]2 +

∂([(d · n(s))−]2)

∂n

]
ds+

∫

∂Ω

∂([(d · n(s))−]2)

∂Ω
(θ)ds =

∫

∂Ω

θ(s) · n(s)
[
H(s)[(d · n(s))−]2 + 2(d · n(s))−

∂(d · n(s))

∂n

]
ds

+

∫

∂Ω

2(d · n(s))−d · n′(s)(θ)ds =
∫

∂Ω

θ(s) · n(s)
[
H(s)[(d · n(s))−]2 + 2(d · n(s))−d · ((∇n)n)

]
ds

+

∫

∂Ω

2(d · n(s))−d · n′(s)(θ)ds

(4.9)

Making the assumption that the boundary of the shape is of C1 regularity, we can make an extension of
the unit normal in a tubular area around the boundary by n(x) = ∇dΩ(x). Now, the unit normal satisfies
the equation |n(x)|2 = 1 from which differentiating both sides, we obtain (∇n)n = 0. Thus, equation
(4.9) reduces to

P ′
GMC(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)H(s)[(d · n(s))−]2ds+

∫

∂Ω

2(d · n(s))−d · n′(s)(θ)ds. (4.10)

What remains is the calculation of the shape derivative of the unit normal to the boundary. From Lemma
4.8 in [99], we have that the transported of the unit normal n(Ω, x) is

n((Id+ θ)(Ω), x+ θ(x)) =
((I + ∇θ)−1)Tn

|((I + ∇θ)−1)Tn| =

n− (∇θ)Tn+ o(θ)

1 − (∇θ)Tn · n+ o(θ)
= (n− (∇θ)Tn+ o(θ))(1 + (∇θ)Tn · n+ o(θ))

n(Ω, x) − (∇θ)Tn+ ((∇θ)Tn · n)n+ o(θ),

(4.11)

and so the Lagrangian shape derivative of the unit normal is

Y (θ, x) = −(∇θ)Tn+ ((∇θ)Tn · n)n. (4.12)

Choosing a vector field θ(x) of the form θ(x) = w(x)n(x), we have that (∇n)T θ = w(x)(∇n)Tn = 0 and
thus

Y (θ, x) = −(∇θ)Tn− (∇n)T θ + ((∇θ)Tn · n)n+ ((∇n)T θ · n)n
= −∇(θ · n) +

[
n · ∇(θ · n)

]
n

= −∇s(θ · n)
= −∇s(w(x)).

(4.13)

The Eulerian shape derivative of the unit normal reads

n′(x)(θ) = U(θ, x) = Y (θ, x) −∇nθ(x) = Y (θ, x) = −∇s(w(x)). (4.14)
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The same result was found in [79], using similar variational principles. Using the above results, equation
(4.10) becomes

P ′
GMC(Ω)(θ) =

∫

∂Ω

w(s)H(s)[(d · n(s))−]2ds−
∫

∂Ω

2(d · n(s))−d · ∇sw(s)ds (4.15)

and using the identity (see [79])

∫

∂Ω

a · ∇s(b)ds+

∫

∂Ω

∇s · (a)b ds =

∫

∂Ω

a · nH(s)bds,

where a is a vector field and b is a scalar field, we result in

P ′
GMC(Ω)(θ) =

∫

∂Ω

w(s)
[

+ ∇s · (2(d · n(s))−d) −H(s)[(d · n(s))−]2
]
ds

=

∫

∂Ω

w(s)
[

+ 2d · ∇s(d · n(s))− −H(s)[(d · n(s))−]2
]
ds,

(4.16)

which completes the proof.

Lemma 4.3.2. The shape derivative (4.16) can be also writen in the form

P ′
GMC(Ω)(θ) =

∫

∂Ω

w(s)
[N−1∑

i=1

κi(s)(d · ei(s))2(−sign((d · n(s))−)) −H(s)[(d · n(s))−]2
]
ds, (4.17)

where κi are the principal curvatures of ∂Ω at point s ∈ ∂Ω and ei the associated principal curvature
directions (i = 1, ..., N − 1).

Proof. For a point s ∈ ∂Ω we can write ∇sn(s) in the form (see [8]):

∇sn(s) =

N−1∑

i=1

κi(s)ei(s) ⊗ ei(s). (4.18)

Substituting (4.18) in (4.16) yields the desired result.

Constraints (4.4) and (4.5) are pointwise constraints of the same type as the minimum thickness
constraint in Chapter 3 and the same steps, described in detail in sections 3.4 and 3.5, need to be followed
for their shape derivation and the final extraction of a descent direction. For the sake of completeness,
let us mention once more the basic steps of this procedure.

For constraint (4.4) we formulate a penalty functional of the form

PGMC (Ω) =

m∑

i=1

∫

Γi

∫ diam(D)

0

[
(dΩ (s+ ξdi))

−
]2
dξds,

while for constraint (4.5), it reads

PGMC (Ω) =

∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ ξsign(n(s) · d)d))

−
]2
dξds,

where we have denoted (f)
−

= min (f, 0).
The two functionals are of the same type and can be writen in compact notation (see Figure 3.6)

PGMC (Ω) =

∫

∂Ω

∫ diam(D)

0

[
(d (xm))

−
]2
dξdx,

where xm denotes an offset point of the boundary.
The derivation of the above integral has been explained in section 3.4 and it reads

P ′
GMC(Ω)(θ) =

∫

∂Ω

∫ dmin

0

θ (x) · n (x))

[
H
(

(dΩ (xm))
−
)2

+ 2
(

(dΩ (xm))
−
)
∇dΩ (xm) · ∇dΩ (x)

]
dξdx

−
∫

∂Ω

∫ dmin

0

θ
(
xm|Ω

)
· n
(
xm|Ω

)
2 (dΩ (xm))

−
dξdx.
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Remark 4.3.3. As we have mentioned in Section 3.5, a descent direction can be found in a second step,
after identifying the linear form (shape derivative) with another scalar product. Solving the equation

∫

D

(
α2
reg∇Q · ∇v +Qv

)
dx = P ′(Ω)(v) ∀v ∈ H1(D), (4.19)

where αreg > 0 is a positive scalar (of the order of the mesh size) to control the regularization width and
choosing w = θ · n = −Q, we find

P ′
GMC(Ω)(wn) = −

∫

D

(
α2|∇Q|2 +Q2

)
dx,

which guarantees a descent direction for PGMC .

4.3.3 Uniform cross-section surface constraint

For the constraint (4.6), a quadratic penalty functional reads

PUCS(Ω) =

∫

∂Ω

(d · n(s))2ds, (4.20)

which highly ressembles to (4.7) and thus its shape derivation is omitted here.
Defining the advection velocity to be constant along some direction d of uniform thickness, gives us

the idea of applying Fubini theorem for the shape derivative. Thus, starting from the general type of the
shape derivative

J ′(Ω)(θ) =

∫

∂Ω

V (s)θ(s) · n(s)ds,

where ∂Ω is the optimizable surface along the direction d, we can write (see Figure 4.3)

J ′(Ω)(θ) =

∫

∂S

∫ h

0

V (ξ)θ(s) · n(s)dξds =

∫

∂S

θ(s) · n(s)

∫ h

0

V (ξ)dξds,

where we denote ∂S the uniform cross-section optimizable boundary. Therefore, a descent direction is
revealed under the choice





θ(s) = −n(s)

∫ h

0

V (ξ)dξ ∀ s on ∂S,
∇θ(s) · d = 0, i.e. θ is constant along the direction d.

Another, even simpler way to treat this constraint is through the regularization of the velocity field via
equation (4.19). Choosing α to be a tensor, instead of a positive scalar, we can smooth the advection
field in an anisotropic way. Then, equation (4.19) is writen again as

∫

D

(
N∑

i=1

a2i
∂Q

∂ei

∂v

∂ei
+Qivi

)
dx = J ′(Ω)(v) ∀v ∈ H1(D), (4.21)

where ei, i = 1, ..., N is the canonical basis of RN and α =
∑N
i=1 aiei ⊗ ei is the regularization tensor.

For example, if we want θ to be constant along the 2-axis, we can set a2 >> ai, i 6= 2. Starting from a
guess shape that respects the constraint and regularizing the advection field in the way just described,
we can get a final optimized shape with a uniform cross-section.

4.4 Numerical examples

Same as in Chapter 3, we have coded all numerical examples herein in the finite element software SYSTUS
of ESI-Group [140]. A quadrangular mesh has been used both for the solution of the elasticity system
and for the level set function. For the elasticity analysis, Q1 finite elements have been used, the Young
modulus E is normalized to 1 and the Poisson ratio ν is set to 0.3. The ”ersatz material” is considered
to have the same Poisson ratio, while its Young modulus is set to 10−3.
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4.4.1 Molding direction

3d box

The three-dimensional box-like structure of Figure 3.45 is used here to apply several molding direction
constraints and compare the corresponding optimized shapes. The entire domain is used for the analysis
and is discretized using 40×40×20 Q1 elements. We change slightly the optimization problem compared
to Chapter 3 and minimize the compliance under an equality constraint for the volume. The optimization
problem reads

min
Ω∈Uad

∫

∂Ω

g · uds

s.t.

∫

Ω

dx = aV |D|,
(4.22)

where u is the solution of (1.34) and aV ∈ [0, 1] determines the final volume of the structure as percentage
of the volume of the working domain D. An augmented Lagrangian method is also used here to enforce
the constraints, as in section 3.7.
At a first step, we impose no molding constraint and solve the optimization problem (4.22) for aV = 0.2
using the arbitrary initialization of Figure 4.4(a). The optimized shape after 250 iterations is shown in
Figure 4.4(b).

(a) (b)

Figure 4.4: Initialization and optimized shape for the problem of Eq.(4.22) without a molding constraint.

Let us now solve the same optimization problem for a cast part that must comply with a predefined
casting system. For example, if we want to use one mold in the design domain D, remove it in the
direction d = (0, 0, 1) and impose the plane z = 0 to be a possible parting surface, then obviously the
shape in Figure 4.4(b) is no more feasible. Of course, we shall not hope that starting with a different,
even much simpler initialization, we would result in a castable optimized shape.
As we have mentioned before, in the absence of thickness constraints, we believe that imposing a molding
direction condition on the design velocity, as described in section 4.2.1 gives quite satisfying results.
Starting with a full-domain initialization (see Figure 4.5(a)) and taking the initial level-set function equal
to the signed distance function to the upper part of the domain, we choose an advection velocity of the
type (4.2), where d = (0, 0, 1), and result in the optimized shape of Figure 4.5(b).

More flexibility in shape variations is given if the casting direction is set as d = (0, 0, 1) and no
parting surface is imposed. In this case, the design domain D can contain two molds, one removed in the
direction d and the second in the opposite direction (−d). The same initialization as in Figure 4.5(a) can
be chosen, but this would neccesarily result in a system of one mold. Instead, it seems more efficient to
take the initial level-set function equal to the signed distance function both to the upper and lower part
of the domain. The optimized shape is shown in Figure 4.7(b).

As expected, a completely different optimized shape is obtained if we change the casting direction.
Separating the molds horizontaly, in the direction d = (1, 0, 0) and imposing no specific parting surface,
results in the optimized shape of Figure 4.9. In both figures 4.7 and 4.9 we see that topological changes
can take place by ”pinching a thin wall” [14].

A constraint on the maximum local thickness can be combined with the molding condition on the
design velocity without any difficulty a priori. The reason is that the maximum thickness constraint
gradient will be of uniform sign, tending always to reduce the thickness (and the volume) of the shape.
As we have mentioned in section 4.2.1, when an advection velocity of the type 4.2 is chosen, the shape
can shrink, but not expand normal to the casting direction. Adding a maximum thickness constraint to
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(a) (b)

Figure 4.5: Initialization and optimized shape for the optimization problem (4.22), setting d = (0, 0, 1)
as casting direction, z = 0 as a possible parting surface and using the molding direction condition (4.2).

(a) (b)

Figure 4.6: (a): compliance and (b): volume convergence diagrams for the results in figures 4.4(b) and
4.5(b).

(a) (b)

Figure 4.7: Plots of the optimized shape for the optimization problem (4.22), setting d = (0, 0, 1) as
casting direction, no a priori defined parting surface and using the molding direction condition (4.2).

the test case of Figure 4.5, where the shape is casted along the direction d = (0, 0, 1) and the plane z = 0



142 CHAPTER 4. MOLDING DIRECTION CONSTRAINTS IN STRUCTURAL OPTIMIZATION

(a) (b)

Figure 4.8: (a): compliance and (b): volume convergence diagrams for the results in figures 4.4(b) and
4.7.

(a) (b)

Figure 4.9: Plots of the optimized shape for the optimization problem (4.22), setting d = (1, 0, 0) as
casting direction, no a priori defined parting surface and using the molding direction condition (4.2).

(a) (b)

Figure 4.10: (a): compliance and (b): volume convergence diagrams for the results in figures 4.4(b) and
4.9.

is chosen as a possible parting surface, we solve the optimization problem

min
Ω∈Uad

∫

∂Ω

g · uds

s.t.

∫

Ω

dx = aV |D|,

PMaxT (Ω) =




∫

Ω

f(dΩ(x))dΩ(x)2dx
∫

Ω

f(dΩ(x))dx




1
2

≤ dmax/2,

(4.23)
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using the same initialization as in Figure 4.5(a). The optimized shape after 250 iterations and the
convergence diagrams are shown in figures 4.11 and 4.12.

(a) (b)

Figure 4.11: Optimized shape for the optimization problem (4.23), setting d = (0, 0, 1) as casting direction,
z = 0 as a possible parting surface and using the molding direction condition (4.2).

(a) (b)

(c)

Figure 4.12: (a): compliance and (b): volume convergence diagrams for the results in figures 4.5(b) and
4.11; (c) convergence diagram for the maximum thickness functional PMaxT (Ω) for the optimized shape
in Figure 4.11.

Suppose now that we want to add a minimum thickness constraint with dmin = 0.4 in the shape of
Figure 4.5(b). The molding condition (4.2) is no more a suitable method to follow (see section 4.2.1) and
we shall instead combine a minimum thickness constraint with the generalised molding constraint (4.3).
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The previously optimized shape is taken as an initial guess to solve the problem

min
Ω∈Uad

∫

∂Ω

g · uds

s.t.

∫

Ω

dx = aV |D|,

P1(Ω) = PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s− ξn (s)))

+
]2
dξds = 0,

P2(Ω) = PGMC(Ω) =

∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ ξd))

−
]2
dξds = 0,

(4.24)

without any condition on the advection velocity. An optimized shape for the problem of Eq.(4.24) is
shown in Figure 4.13(b). The convergence diagrams for the penalty functionals P1 and P2 are shown in
Fig.4.14.

(a) (b)

Figure 4.13: Optimized shapes under (a): a molding constraint and (b): a molding and minimum
thickness constraint, with a predefined parting surface at z = 0.

(a) (b)

Figure 4.14: Convergence diagrams for the penalty functionals (a): P1 and (b): P2.

When a minimum thickness constraint of dmin = 0.3 is applied to the shape of Figure 4.7(b), the
optimization problem reads

min
Ω∈Uad

∫

∂Ω

g · uds

s.t.

∫

Ω

dx = aV |D|,

P1(Ω) = PMinT (Ω) =

∫

∂Ω

∫ dmin

0

[
(dΩ (s− ξn (s)))

+
]2
dξds = 0,

P2(Ω) = PGMC(Ω) =

∫

∂Ω

∫ diam(D)

0

[
(dΩ (s+ ξsign(n · d)d))

−
]2
dξds = 0

(4.25)
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and we get the optimized shape of Figure 4.15. The convergence diagrams for the penalty functionals P1

and P2 are shown in Figure 4.16.

(a) (b)

Figure 4.15: Optimized shapes under (a): a molding constraint and (b): a molding and minimum
thickness constraint, without a predefined parting surface.

(a) (b)

Figure 4.16: Convergence diagrams for the penalty functionals (a): P1 and (b): P2.

Table 4.1: Compliance of the optimized structures.

Compliance
Without molding constraint. 90.14

With casting direction d = (0, 0, 1) 102.07
and no parting surface.

With casting direction d = (0, 0, 1),
no parting surface

and minimum thickness constraint. 105.87
With casting direction d = (1, 0, 0) 114.13

and no parting surface.
With casting direction d = (0, 0, 1) 123.68

and parting surface at z = 0.
With casting direction d = (0, 0, 1), parting surface at z = 0 134.68

and minimum thickness constraint.
With casting direction d = (0, 0, 1), parting surface at z = 0 143.65

and maximum thickness constraint.
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4.4.2 Uniform cross-section

3d cantilever

The 2 × 0.5 × 1 three dimensional cantilever of Figure 4.17, discretized by 40 × 10 × 20 Q1 elements, is
chosen as test case to apply the uniform cross-section surface constraint. It is clamped on one side and,
at the middle of its opposite side, a unitary vertical load is applied. At a first step, problem (4.22) is

Figure 4.17: Boundary conditions for the ”uniform cross-section” test case.

solved for aV = 0.25 without imposing any further geometric constraint on the shape. Starting from the
arbitrarily perforated shape of Figure 4.18(a), we obtain after 200 iterations the optimized shape of Figure
4.18(b). We ask now for an optimized shape with a uniform cross-section along the y-axis. Starting from

(a) (b)

Figure 4.18: (a): Initialization and (b): optimized shape, without the ”uniform cross-section” constraint.

the initial shape of Figure 4.19(a), which has five uniform holes along this direction, we regularize at each
iteration the velocity field for the advection of the shape in an anisotropic way, setting a much higher
regularization coefficient in the y-direction (ay >> ax, az). In our example, ax = az = 2∆x, ∆x being
the uniform mesh size, has been used to regularize the advection velocity in a small region around the
shape boundary in the direction of the x- and z-axis, while ay =

√
10 has been set to create a uniform

velocity along this direction. The optimized shape is shown in Figure 4.19(b). The convergence diagrams
for the compliance and the volume are shown in Figure 4.20.
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(a) (b)

Figure 4.19: (a): Initialization and (b): optimized shape, with a ”uniform cross-section” constraint.

(a) (b)

Figure 4.20: (a): Compliance and (b): volume convergence diagrams for the results of figures 4.18 and
4.19.
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In this chapter we enforce the feedability of a cast part (see Chapter 2) via a specification of a
maximum solidification time tf . The cooling process in casting is simulated by solving a non-linear heat
equation with phase change and an upper bound is set on the final temperature inside the cast part at
time tf . Since the optimization process using this equation is too costly, we study the possibility of using
simpler thermal models, at least as a first step.

5.1 Introduction

In Chapter 2 we explained that feedability, i.e. the ability of designing a feeding system that drives the
shrinkage porosity due to solidification to the risers at an acceptable cost, can be treated via either a
geometrical or a mechanical approach. The geometrical approach has been presented in Chapter 3 and
consists in imposing a maximum thickness limit. The mechanical approach, as a concept, lies closer to
the actual problem. A simplified model of the cooling process is considered, in which the feeding system is
omitted and replaced by appropriate boundary conditions. A thermal equation that simulates the cooling
process is used and the structure is required to solidify up to a time limit tf , which gives an indication
for an acceptable total feeding cost.

Summarizing, the mechanical approach for feedability boils down to a thermal constraint. Beyond
cast parts, thermal constraints can appear in very different frameworks, for example in structures that
work under high temperatures for reasons of functionality and increased product durability [161] (diesel
engines, steam turbines, etc...).

Several works on shape and topology optimization for thermal problems have appeared in literature. In
the framework of purely shape optimization, several works have been presented for the optimization of the
casting system [84], [98], [54], [148], [149]. In the framework of the SIMP method, Tavakoli et al. [144] have
optimised the shape of a riser for a problem of heat conduction. Haslinger et al. [70] have implemented
the homogenization method in order to minimize the deviation from a prescribed temperature field,
again for problems of heat conduction. Li et al. [86] have used evolutionary optimization techniques to

149
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minimize the mean flux for a Poisson-type problem. In the framework of the level-set method, Ha et al.
[64] and Yamada [161] worked on the minimization of the thermal compliance, while Zhuang et al. [168]
treated the case of multiple thermal loads. The case of discontinuous thermal coefficients was discussed
by Allaire et al. [19] and Pantz [108] in the framework of inverse problems.

In this chapter, we study the problem of solidification of a cast part into a prescribed time interval.
The optimization of the cast part is done with respect to its mechanical behaviour and the solidification
problem is inserted as a thermal constraint that the structure needs to respect to insure manufacturability.
In industrial practice, the temperature field is the solution to a non-linear transient heat equation with
phase change. The use of this equation in the optimization algorithm is very costly in time and memory.
Thus, we propose to use several simplified models as a first step. We show results in 2d for structural
compliance minimization.

5.2 Formulation of the thermal constraint

The mathematical formulation of the thermal constraint, described above, is:

T (x, tf ) ≤ Ts, ∀x ∈ Ω, (5.1)

where Ts denotes the solidus temperature and T (x, t) is the solution to a heat equation model that
describes the solidification process. In other words, inequality (5.1) assures that the structure has solidified
in the time interval [0, tf ].

The same global constraint formulation as in (3.24) will be used here. It reads

Pth(T (x, tf )) =




∫

Ω

f(T (x, tf ))T (x, tf )2dx
∫

Ω

f(T (x, tf ))dx




1
2

≤ Ts, (5.2)

where the regularization function f(T (x, tf )) is given by

f(T (x, tf )) = 0.5

(
1 + tanh

(
T (x, tf ) − Ts

αfTs

))
,

αf > 0 being a parameter that controls the regularization of the constraint (see section 3.6).

5.3 Heat equation models and shape derivatives

As we have mentioned earlier, the partial differential equation that simulates the solidification process
is a non-linear transient heat equation with phase change. The solution of such an equation, as well as
the calculation of its shape derivative, is too costly (see section 5.3.6). Therefore, it seems reasonable to
use some simplified model instead and, if neccessary, let the actual equation for the last iterations of the
optimization algorithm. In this section, we will present several candidate thermal models and compute
their shape derivative.

Of course, for each thermal model in play, the value of Ts or tf shall be adjusted accordingly in order
for the results to be somehow comparable. When the non-linear transient heat equation model with
phase change is used, Ts corresponds to the actual solidus temperature of the metal and tf is set by
the industrial engineers, usually based on experimental observations, so that thick members are avoided.
Therefore, the choice of tf is essentially linked to a notion of maximum thickness of the structure. Based
on the same logic, we have chosen here to fix the maximum solidification time tf and adjust the upper
bound on the temperature Ts using the one-dimensional casting model of Figure 5.1. A bar of size dmax is
considered, surrounded in both sides by molds of thickness dmax/2. Each thermal model is solved for this
casting system and Ts is set to the maximum temperature in the cast part. In this way, we shall hope that
if the temperature constraint is satisfied, the structure will not contain features of maximum thickness
greater than dmax. A similar idea, for a fast solution of the solidification equation and identification of
the location of hot spots, is described in [109], where an 1d-model of the equation is constructed, from a
point x ∈ ∂Ω and along its ”ray”, up to the corresponding point on the seleton xsk (see Figure 5.2).

Finally, in order to simplify the presentation, we will use the quadratic penalty functional

Pth(Ω) =

∫

Ω

[(
T (x, tf ) − Ts

)+]2
dx, (5.3)

instead of (5.2) for the shape derivation part.
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Figure 5.1: One-dimensional model of the casting system.

Figure 5.2: ”Ray” connecting a point x ∈ ∂Ω to its corresponding point on the skeleton xsk.

5.3.1 Poisson equation

In [144], Tavakoli et al. proposed to use a simple Poisson equation with Dirichlet boundary conditions
in order to accelerate the optimization process. The authors have used the SIMP method and they
minimized a macroscopic quality indicator function (the half of the thermal compliance). They have
claimed that, since the location of the hot spots is independent of the heat equation under consideration,
even a much simplified model should give correct information for the change of the shape.

In this case, the state equation has the following simple form

{
−a∆T (x) = f(x) in Ω,

T (x) = 0 on ∂Ω,
(5.4)

where a denotes the thermal diffusivity of the material, and f is a volumetric term to account for the
latent heat release due to phase change.

Proposition 5.3.1. Let T (x) be the unique solution of (5.4). Then, the shape derivative of (5.3) reads

P ′
th(Ω)(θ) = −

∫

∂Ω

θ(s) · n(s)

[
a
∂T

∂n
(s)

∂ζ

∂n
(s)

]
ds, (5.5)

where ζ is the unique solution of the adjoint problem

{
−a∆ζ(x) = −2(T (x) − Ts)

+ in Ω,
ζ(x) = 0 on ∂Ω.

(5.6)

Proof. Following the method of Céa (see section 1.3.1), we formulate the Lagrangian function

L(Ω, T̂ , ζ̂, µ̂) =

∫

Ω

[
(T̂ (x) − Ts)

+
]2
dx+

∫

Ω

(−a∆T̂ (x) − f(x))ζ̂(x)dx+

∫

∂Ω

T̂ (x)µ̂(x)dx, (5.7)

where T̂ , ζ̂, µ̂ ∈ H1(RN ) are scalar functions, independent of the domain Ω.

Setting the partial derivative of L with respect to ζ̂ in the direction of a test function φ ∈ H1(RN ) at the
optimal point (Ω, T ∗, ζ∗, µ∗) equal to zero, we get

∂L
∂ζ̂

(Ω, T ∗, ζ∗, µ∗)(φ) =

∫

Ω

(−a∆T ∗(x) − f(x))φ(x)dx = 0,

which implies

− a∆T ∗(x) = f(x) in Ω. (5.8)
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The partial derivative of L with respect to µ̂ in the direction of φ, at (Ω, T ∗, ζ∗, µ∗), reads

∂L
∂µ̂

(Ω, T ∗, ζ∗, µ∗)(φ) =

∫

∂Ω

T ∗(s)φ(s)ds = 0,

from which we derive

T ∗(x) = 0 on ∂Ω. (5.9)

Equations (5.8) and (5.9) imply that T ∗(x) is the unique solution of (5.4).

The partial derivative of L with respect to T̂ in the direction of φ reads

∂L
∂T̂

(Ω, T ∗, ζ∗, µ∗)(φ)

=

∫

Ω

2(T ∗(x) − Ts)
+φ(x)dx+

∫

Ω

−a∆φ(x)ζ∗(x)dx+

∫

∂Ω

φ(s)µ∗(s)ds

=

∫

Ω

2(T ∗(x) − Ts)
+φ(x)dx+

∫

Ω

a∇ζ∗(x) · ∇φ(x)dx−
∫

∂Ω

a
∂φ

∂n
(s)ζ∗(s)ds

+

∫

∂Ω

φ(s)µ∗(s)ds

=

∫

Ω

2(T ∗(x) − Ts)
+φ(x)dx−

∫

Ω

a∆ζ∗(x)φ(x)dx+

∫

∂Ω

a
∂ζ∗

∂n
(s)φ(s)ds

−
∫

∂Ω

a
∂φ

∂n
(s)ζ∗(s)ds+

∫

∂Ω

φ(s)µ∗(s)ds

=

∫

Ω

[
−a∆ζ∗(x) + 2(T ∗(x) − Ts)

+
]
φ(x)dx+

∫

∂Ω

(µ∗(s) + a
∂ζ∗

∂n
(s))φ(s)ds

−
∫

∂Ω

a
∂φ

∂n
(s)ζ∗(s)ds.

Taking φ with compact support in Ω yields

− a∆ζ∗(x) = −2(T ∗(x) − Ts)
+, in Ω. (5.10)

Varying the normal flux a
∂φ

∂n
(x) on the boundary ∂Ω, with φ(x) = 0 inΩ reveals the boundary conditions

for ζ∗:

ζ∗(x) = 0, on ∂Ω. (5.11)

Equations (5.10) and (5.10) show that ζ∗ is the unique solution of (5.6).

Varying tha trace of φ on ∂Ω with a
∂φ

∂n
(x) = 0 on ∂Ω gives

µ∗(x) = −a∂ζ
∗

∂n
(x), on ∂Ω. (5.12)

Finally, the shape derivative of 5.3 in the direction θ coincides with the shape derivative of L at the
optimal point (Ω, T ∗, ζ∗, µ∗):

P ′
th(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)
[
(T ∗(s) − Ts)

+
]2
ds+

∫

∂Ω

θ(s) · n(s)(a∆T ∗(s) − f(s))ζ∗(s)ds

+

∫

∂Ω

θ(s) · n(s)(H(s)T ∗(s)µ∗(s) +
∂

∂n
(T ∗(s)µ∗(s)))ds

= +

∫

∂Ω

θ(s) · n(s)

[
∂

∂n
(T ∗(s))µ∗(s)

]
ds

= −
∫

∂Ω

θ(s) · n(s)

[
a
∂T ∗

∂n
(s)

∂ζ∗

∂n
(s)

]
ds,

(5.13)

which completes the proof.

5.3.2 Linear transient heat equation

A significant increase in the total computational cost takes place by taking under consideration the
transient nature of the equation. Adding the time dependence of the temperature field to the previous
equation and neglecting the latent heat release, the temperature field T (x, t) is the solution in the space
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C0
(
[0, T ] ;L2 (Ω)

)
∩ L2 ((0, T ) ;V ) with V :=

{
v ∈ H1(Ω); v = 0 on ∂Ω

}
, of the transient linear heat

equation model 



∂tT (x, t) − a∆T (x, t) = 0 in Ω × (0, tf ),
T (x, t) = 0 on ∂Ω × (0, tf ),
T (x, 0) = Tin(x) in Ω × {0},

(5.14)

where Tin(x) = Tl is the liquidus temperature, i.e. the change of temperature during the filling of the
cavity is ignored and the cast part is considered to start solidifying from a uniform temperature equal to
the temperature of the molten liquid. The analysis for the shape derivative of this problem can be found
in [19], but we present it also here for reasons of completeness.

Proposition 5.3.2. Let T (x, t) be the unique solution of (5.14). Then, the shape derivative of (5.3)
reads

P ′
th(Ω)(θ) = −

∫

∂Ω

∫ tf

0

θ(s) · n(s)

[
a
∂

∂n
(T (s, t))

∂

∂n
(ζ(s, t))

]
dtds, (5.15)

where ζ(x, t) is the solution of the adjoint problem




−∂tζ((x, t) − a∆ζ((x, t) = 0 in Ω × (0, tf ),
ζ((x, t) = 0 on ∂Ω × (0, tf ),
ζ((x, tf ) = −2(T (x, tf ) − Ts)

+ in Ω × {tf}.
(5.16)

Proof. We formulate the Lagrangian function

L(Ω, T̂ , ζ̂, µ̂, ξ̂) =

∫

Ω

[
(T̂ (x, tf ) − Ts)

+
]2
dx

+

∫ tf

0

∫

Ω

(∂tT̂ (x, t) − a∆T̂ (x, t) − f(x, t))ζ̂(x, t)dxdt

+

∫

Ω

(T̂ (x, 0) − Tin(x))µ̂(x)dx+

∫ tf

0

∫

∂Ω

T̂ (s, t)ξ̂(s, t)dsdt,

(5.17)

where T̂ , ζ̂, ξ̂ ∈ C0
(
[0, T ] ;L2

(
R
N
))

∩ L2
(
(0, T ) ;H1(RN )

)
and µ̂ ∈ L2(RN ).

The partial derivative of L with respect to ζ̂ in the direction of a test function φ(x, t) at the optimal
point (T ∗, ζ∗, µ∗, ξ∗) reads

∂L
∂ζ̂

(Ω, T ∗, ζ∗, µ∗, ξ∗)(φ) =

∫ tf

0

∫

Ω

(∂tT
∗(x, t) − a∆T ∗(x, t) − f(x, t))φ(x, t)dxdt. (5.18)

Setting (5.18) equal to zero, we get

∂tT
∗(x, t) − a∆T ∗(x, t) − f(x, t) = 0 in Ω × (0, tf ). (5.19)

Its derivative with respect to µ̂ in the direction φ reads
∫

Ω

(T ∗(x, 0) − Tin(x))φ(x)dx = 0,

which implies
T ∗(x, 0) = Tin(x) in Ω × {0}, (5.20)

while the derivative of L with respect to ξ̂ in the direction of φ
∫ tf

0

∫

∂Ω

T ∗(s, t)φ(s, t)dsdt = 0,

gives the boundary consitions for T ∗

T ∗(x, t) = 0 in ∂Ω × (0, tf ). (5.21)

Equations (5.19), (5.20) and (5.21) imply that T ∗ is the unique solution of (5.14).

The partial derivative of L with respect to T̂ in the direction of a test function φ reads

∂L
∂T̂

(Ω, T ∗, ζ∗, µ∗, ξ∗) =

∫

Ω

2(T ∗(x, tf ) − Ts)
+φ(x, tf )dx

+

∫ tf

0

∫

Ω

(∂tφ(x, t) − a∆φ(x, t))ζ∗(x, t)dxdt

+

∫

Ω

φ(x, 0)µ∗(x)dx+

∫ tf

0

∫

∂Ω

φ(s, t)ξ∗(s, t)dsdt.

(5.22)
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The second integral of equation (5.22) can be further developed as
∫ tf

0

∫

Ω

(∂tφ(x, t) − a∆φ(x, t))ζ∗(x, t)dxdt

=

[∫

Ω

φ(x, t)ζ∗(x, t)dx

]tf

0

−
∫ tf

0

∫

Ω

φ(x, t)∂tζ
∗(x, t)dxdt

−
∫ tf

0

∫

∂Ω

a
∂φ

∂n
(s, t)ζ∗(s, t)dsdt+

∫ tf

0

∫

Ω

a∇φ(x, t) · ∇ζ∗(x, t)dxdt

=

[∫

Ω

φ(x, t)ζ∗(x, t)dx

]tf

0

−
∫ tf

0

∫

Ω

φ(x, t)∂tζ
∗(x, t)dxdt−

∫ tf

0

∫

∂Ω

a
∂φ

∂n
(s, t)ζ∗(s, t)dsdt

+

∫ tf

0

∫

∂Ω

a
∂ζ∗

∂n
(s, t)φ(s, t)dsdt−

∫ tf

0

∫

Ω

a∆ζ∗(x, t)φ(x, t)dxdt.

(5.23)

Substituting (5.23) in (5.22) and setting the last one equal to zero, we get

∂L
∂T̂

(Ω, T ∗, ζ∗, µ∗, ξ∗) =

∫

Ω

2(T ∗(x, tf ) − Ts)
+φ(x, tf )dx+

∫

Ω

φ(x, 0)µ∗(x)dx

+

∫ tf

0

∫

∂Ω

φ(s, t)ξ∗(s, t)dsdt+

[∫

Ω

φ(x, t)ζ∗(x, t)dx

]tf

0

−
∫ tf

0

∫

Ω

φ(x, t)∂tζ
∗(x, t)dxdt−

∫ tf

0

∫

∂Ω

a
∂φ

∂n
(s, t)ζ∗(s, t)dsdt

+

∫ tf

0

∫

∂Ω

a
∂ζ∗

∂n
(s, t)φ(s, t)dsdt

−
∫ tf

0

∫

Ω

a∆ζ∗(x, t)φ(x, t)dxdt = 0.

(5.24)

Taking φ with compact support in Ω × (0, tf ), we derive

− ∂ζ∗(x, t) − a∆ζ∗(x, t) = 0 in Ω × (0, tf ). (5.25)

The, varying the normal flux of φ on the boundary and setting φ(x, t) = 0 in ∂Ω × [0, tf ], we derive

ζ∗(x, t) = 0 on ∂Ω × (0, tf ). (5.26)

Varying φ on the boundary and setting its normal flux equal to zero (a
∂φ

∂n
(x, t) = 0 on ∂Ω × (0, tf )), the

Lagrange multiplier ξ∗ is revealed

ξ∗(x, t) = −a∂ζ
∗

∂n
(x, t) on ∂Ω × (0, tf ). (5.27)

Varying φ(x, 0) and φ(x, tf ) in Ω, we derive

µ∗(x) = ζ∗(x, 0) in Ω, (5.28)

and
ζ∗(x, tf ) = −2(T ∗(x, tf ) − Ts)

+ in Ω. (5.29)

From equations (5.25), (5.26), (5.29), we deduce that ζ∗ is the unique solution of the adjoint equation
(5.16).
Finally, the shape derivative of the penalty functional (5.3) equals the shape derivative of the Lagrangian
function L at the optimal point. Thus:

P ′
th(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)
[
(T ∗(s, tf ) − Ts)

+
]2
ds

+

∫ tf

0

∫

∂Ω

θ(s) · n(s)(∂tT
∗(s, t) − a∆T ∗(s, t) − f(s, t))ζ∗(s, t)dsdt

+

∫

∂Ω

θ(s) · n(s)(T ∗(s, 0) − Tin(s))µ∗(s)ds

+

∫ tf

0

∫

∂Ω

θ(s) · n(s)

[
H(s)T ∗(s, t)ξ∗(s, t) +

∂

∂n
(T ∗(s, t)ξ∗(s, t))

]
dsdt

= +

∫ tf

0

∫

∂Ω

θ(s) · n(s)

[
∂

∂n
(T ∗(s, t))ξ∗(s, t)

]
dsdt

= −
∫ tf

0

∫

∂Ω

θ(s) · n(s)

[
a
∂

∂n
(T ∗(s, t))

∂

∂n
(ζ∗(s, t))

]
dsdt,

(5.30)

which completes the proof.
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The adjoint equation (5.16) is backward in time and thus, for the calculation of the shape derivative
(5.15), we need to save all solutions of the state and adjoint equation, which increases significantly the
amount of memory needed compared to the previous Poisson model.

5.3.3 Eigenvalue approximation

Since the previous transient linear model is already a simplification of the solidification equation, a further
simplification that reduces the computational cost, while keeping the time dependency of the temperature,
is to consider the Fourier series of equation (5.14). From the spectral theorem (see [5]) we can write

T (x, tf ) =

∞∑

i=1

eλitfβiTi(x), (5.31)

where βi =

∫

Ω

Tin(x)Ti(x)dx
∫

Ω

(Ti(x))2dx

and (λi, Ti(x)) ∈ R
−×H1

0 (Ω) (the eigenvalues λi are chosen to be negative)

solves the following eigenvalue problem:
{
a∆Ti(x) = λiTi(x) in Ω,

Ti(x) = 0 on ∂Ω.
(5.32)

Normalizing Ti(x) to satisfy

∫

Ω

(Ti(x))2dx = 1 and assuming that tf → ∞, i.e. that tf is large enough so

that the first eigenvalue dominates in (5.31), we deduce

T (x, tf ) ≈ T f (x) ≡ eλ1tfβ1T1(x) = eλ1tf (

∫

Ω

Tin(x)T1(x)dx)T1(x). (5.33)

Therefore, the state equation is now a simple eigenvalue problem
{
a∆T1(x) = λ1T1(x) in Ω,

T1(x) = 0 on ∂Ω.
(5.34)

Proposition 5.3.3. Let T f (x) be given by (5.33), where (λ1, T1) solve the eigenvalue problem (5.34).
Then, the shape derivative of (5.3) reads

P ′
th(Ω)(θ) = −

∫

∂Ω

θ(s) · n(s)[a
∂T1
∂n

(s)
∂ζ

∂n
(s)]ds, (5.35)

where ζ is the solution of the adjoint system




a∆ζ(x) − λ1ζ(x) = −Tin(x)

∫

Ω

2(T f (x) − Ts)
+eλ1tfT1(x)dx

+2T1(x)

∫

Ω

2(T f (x) − Ts)
+eλ1tfT1(x)dx

∫

Ω

Tin(x)T1(x)dx

−2(T f (x) − Ts)
+eλ1tf

∫

Ω

Tin(x)T1(x)dx, in Ω,

ζ(x) = 0, on ∂Ω.

(5.36)

Proof. We construct the Lagrangian function

L(Ω, T̂ , ζ̂, µ̂) =

∫

Ω

[
(eλ̂tf β̂T̂ − Ts)

+
]2
dx+

∫

Ω

(a∆T̂ − λ̂T̂ )ζ̂dx+

∫

∂Ω

T̂ µ̂ds, (5.37)

, where T̂ , ζ̂, µ̂ ∈ H1(RN ), λ̂ =

∫

Ω

a∇T̂ · ∇T̂ dx
∫

Ω

T̂ 2dx
and β̂ =

∫

Ω

Tin(x)T̂ dx
∫

Ω

T̂ 2dx
.

Setting the partial derivative of L with respect to ζ̂ in the direction of a test function φ, at the optimal
point (Ω, T ∗, ζ∗, µ∗), equal to zero, yields

∂L

∂ζ̂
(Ω, T ∗, ζ∗, µ∗)(φ) = 0 ⇒ a∆T ∗ = λ∗T ∗ in Ω. (5.38)
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The derivative with respect to µ̂ gives the boundary consitions for µ∗

∂L
∂µ̂

(Ω, T ∗, ζ∗, µ∗)(φ) = 0 ⇒ T ∗ = 0 on ∂Ω. (5.39)

Equations (5.38) and (5.39) show that (λ∗, T ∗) solves the eigenvalues problem (5.32). To simplify the
exposition, we assume henceforth that T ∗ is normalized, such that

∫

Ω

(T ∗(x))2dx = 1. (5.40)

The partial derivative of L with respect to T̂ in the direction φ reads

∂L
∂T̂

(Ω, T ∗, ζ∗, µ∗)(φ) =

∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+ ∂(eλ̂tf β̂T̂ )

∂T̂
(φ)dx

+

∫

Ω

(a∆φ− λ∗φ− ∂λ̂

∂T̂
(φ))ζ∗dx+

∫

∂Ω

φµ∗ds.

(5.41)

After a simple calculation, we see that

∂λ̂

∂T̂
(Ω, T ∗, ζ∗, µ∗)(φ) = 0

and

∂β̂

∂T̂
(Ω, T ∗, ζ∗, µ∗)(φ) =

∫

Ω

Tin(x)φ(x)dx− 2

∫

Ω

T ∗(x)φ(x)dx

∫

Ω

Tin(x)T ∗(x)dx.

Replacing the above relations in (5.41) and using integration by parts, we get

∂L
∂T̂

(Ω, T ∗, ζ∗, µ∗)(φ) =
∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tfT ∗dx

∫

Ω

Tin(x)φ(x)dx

−2

∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tfT ∗dx

∫

Ω

Tin(x)T ∗(x)dx

∫

Ω

T ∗(x)φ(x)dx

+

∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tfβ∗φ(x)dx

−
∫

Ω

a∆ζ∗φ(x)dx+

∫

∂Ω

a
∂ζ∗

∂n
(s)φ(s)ds+

∫

∂Ω

a
∂φ

∂n
(s)ζ∗(s)ds

−
∫

Ω

λ∗ζ∗(x)φ(x)dx+

∫

∂Ω

µ∗(s)φ(s)ds

(5.42)

Taking φ with compact support in Ω, we take





a∆ζ∗(x) − λ∗ζ∗(x) = −Tin(x)

∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tfT ∗(x)dx

+2T ∗(x)

∫

Ω

2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tfT ∗(x)dx

∫

Ω

Tin(x)T ∗(x)dx

−2(eλ
∗tfβ∗T ∗ − Ts)

+eλ
∗tf

∫

Ω

Tin(x)T ∗(x)dx, in Ω.

(5.43)

Varying the normal flux of φ on the boundary ∂Ω, while setting φ = 0 on ∂Ω, we reveal the boundary
conditions for ζ∗:

ζ∗(x) = 0 on ∂Ω. (5.44)

From equations (5.43) and (5.44) we deduce that ζ∗ is in fact the solution of the adjoint system (5.36).
Finally, varying φ on the boundary, while setting its normal flux equal to zero, the optimal Lagrange
multiplier µ∗ is

µ∗(s) = −a∂ζ
∗

∂n
(s) ∀s ∈ ∂Ω. (5.45)
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The shape derivative of (5.3) at Ω is revealed as the shape derivative of L at the optimal point (Ω, T ∗, ζ∗, µ∗):

P ′
th(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)
[
(eλ

∗tfβ∗T ∗(s) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s) [(a∆T ∗(s) − λ∗T ∗(s))ζ∗(s)] ds

+

∫

∂Ω

θ(s) · n(s)

[
H(s)T ∗(s)µ∗(s) +

∂(T ∗µ∗)

∂n
(s)

]
ds

=

∫

∂Ω

θ(s) · n(s)

[
∂(T ∗)

∂n
(s)µ∗(s)

]
ds

= −
∫

∂Ω

θ(s) · n(s)

[
a
∂(T ∗)

∂n
(s)

∂(ζ∗)

∂n
(s)

]
ds,

(5.46)

which completes the proof.

Remark 5.3.4. In order to compute the shape derivative (5.35), we have assumed that the functional
(5.3) is shape differentiable. This is a classical result under the assumption that the first eigenvalue
is simple [10, 118, 47, 122, 132]. The Theorem of Krein-Rutman [5] proves this assumption for the
Laplacian equation (5.34) under the assumptions that Ω is an open, bounded, connected domain of C1

regularity in R
N .

Remark 5.3.5. The adjoint equation (5.36) admits a solution because of the following reason. First,
note that the operator A = a∆(·) − λ1(·) on the left-hand side of (5.36) has a kernel of dimension 1,
generated by T1. Therefore, the solution is unique, only up to the addition of a multiple of T1. Second,
since A is a self-adjoint operator, the existence of a solution is guaranteed if the right-hand side belongs
to the range of A. A formal computation (working as if A was a finite dimensional operator and ignoring
any issue of closedness of unbounded operators) shows that

Im(A) = (KerAT )⊥ = (KerA)⊥. (5.47)

Denoting b(x) the right-hand side of equation (5.36) and

C(T f (x)) = 2(T f (x) − Ts)
+,

we have that
∫

Ω

T1(x)b(x)dx = −
∫

Ω

C(T f (x))eλ1tfT1(x)dx

∫

Ω

T1(x)Tin(x)dx

+2

∫

Ω

C(T f (x))eλ1tfT1(x)dx

∫

Ω

Tin(x)T1(x)dx

∫

Ω

(T1(x))2dx

−
∫

Ω

Tin(x)T1(x)dx

∫

Ω

C(T f (x))eλ1tfT1(x)dx = 0

, which means that T1⊥b and, because of (5.47), b ∈ Im(A). In numerical practice, instead of equation
(5.36), we solve the equation





a∆ζ̃(x) − λ1ζ̃(x) + εT1 ⊗ T1ζ̃ = −Tin(x)

∫

Ω

C(T f (x))eλ1tfT1(x)dx

+2T1(x)

∫

Ω

C(T f (x))eλ1tfT1(x)dx

∫

Ω

Tin(x)T1(x)dx

−C(T f (x))eλ1tf

∫

Ω

Tin(x)T1(x)dx, in Ω,

ζ̃(x) = 0, on ∂Ω,

(5.48)

where we denote

T1 ⊗ T1ζ̃ =

(∫

Ω

T1ζ̃dx

)
T1

and ε > 0 is a small positive parameter (ε << 1). Equation (5.48) has a unique solution. Then, the
adjoint state is taken by

ζ(x) = ζ̃(x) − T1 ⊗ T1ζ̃ ,

in order to satisfy that ζ⊥T1.
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Figure 5.3: Simplified casting system.

5.3.4 Linear transient heat equation with piecewise discontinuous conductiv-

ity

Until now, the material properties of the mold have been neglected and homogeneous Dirichlet boundary
conditions have been set, for reasons of simplicity. However, the material properties of the mold play a
significant role in the cooling process and we need to test its effect on the optimal shape. At a first step,
we consider the material properties to be piecewise constant in the working domain D and ignore their
dependence on the temperature. The state equation becomes





ρ(x)Cp(x)∂tT (x, t) −∇ · (k(x)∇T (x, t)) = 0 in D × (0, tf ),

k(x)
∂T (x, t)

∂n
− h(x)(T (x, t) − Tair) = 0 on ∂D × (0, tf ),

T (x, 0) = Tin(x) in D × {0},
(5.49)

where

(ρ(x), Cp(x), k(x)) =

{
(ρ1, Cp1, k1) in Ω,
(ρ0, Cp0, k0) in D \ Ω,

ρ being the density of the material, Cp its thermal capacity, k its conductivity and

h(x) =

{
hc−a in ∂Ω ∩ ∂D,
hm−a in ∂D \ ∂Ω,

a heat transfer coefficient that simulates the heat flux across the boundary of the domain D (see Figure
5.3).

Remark 5.3.6. As we have explained in Chapter 2, it is common practice in industrial applications
to use an idealized and simplified casting system in order to check if the shape satisfies some design
specifications. In such a model, the structure is usually surrounded by the mold and a heat transfer
coefficient is used to account for the heat exchange between the mold and the environment. This is not
the case in Figure 5.3 and equation (5.49), where a heat transfer coefficient has been used for the ideal
interface between the metal and the air for reasons of simplicity in the numerical implementation. The
choice of the value for this coefficient can have a great impact on the numerical results.

The discontinuity in the conductivity adds an extra difficulty in the calculation of the shape derivative,
when equation (5.49) is used. The reason is the discontinuity of the normal derivative of T (x, t) across
the boundary ∂Ω (see [19, 108]). In order to calculate properly the shape derivative of the problem, we
prefer to view the above equation as a transmission problem, where the temperature and the normal flux
across the boundary ∂Ω are continuous (see Chapter 6 for a complete analysis and proposals in order to
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avoid numerical difficulties). Then, equation (5.49) is equivalent to the coupled system





ρ1Cp1∂tT1(x, t) − k1∆T1(x, t) = 0 in Ω × (0, tf )

k1
∂T1(x, t)

∂n
− hc−a(T1(x, t) − Tair) = 0 on (∂Ω ∩ ∂D) × (0, tf )

T1(x, 0) = Tin(x) in Ω × {0}
T1(x, t) = T0(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

k1
∂T1(x, t)

∂n
− k0

∂T0(x, t)

∂n
= 0 on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

(5.50)

and





ρ0Cp0∂tT0(x, t) − k0∆T0(x, t) = 0 in (D\Ω) × (0, tf )

k0
∂T0(x, t)

∂n
− hm−a(T0(x, t) − Tair) = 0 on (∂D \ ∂Ω) × (0, tf )

T0(x, 0) = Tin(x) in (D\Ω) × {0}
T0(x, t) = T1(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

−k0
∂T0(x, t)

∂n
+ k1

∂T1(x, t)

∂n
= 0 on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

(5.51)

and the global temperature field is given as

T (x, t) = T1(x, t)χΩ(x) + T0(x, t)(1 − χΩ(x)), (5.52)

where χΩ is the characteristic function of the domain Ω, defined in equation (1.2).

Proposition 5.3.7. Let T1(x, t) and T0(x, t) be solutions of equations (5.50) and (5.51) respectively and
T (x, t) defined as in (5.52). Then, the shape derivative of (5.3) reads

P ′
th(Ω)(θ) =

∫

∂Ω

θ(s) · n(s)
( [

(T1(x, tf ) − Ts)
+
]2 )

ds

+

∫ tf

0

∫

∂Ω

θ(s) · n(s)(ρ1Cp1∂tT1(s, t)ζ1(s, t) − ρ0Cp0∂tT0(s, t)ζ0(s, t))dsdt

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)
[
(k1 − k0)

∂T1
∂τ

∂ζ1
∂τ

−
( 1

k1
− 1

k0

)(
k1
∂T1
∂n

)(
k1
∂ζ1
∂n

)]
dtds,

(5.53)

where

ζ(x, t) = ζ1(x, t)χΩ + ζ0(x, t)(1 − χΩ) (5.54)

is the global adjoint state and ζ1, ζ0 are solutions to the following coupled pdes:





−ρ1Cp1∂tζ1(x, t) − k1∆ζ1(x, t) = 0 in Ω × (0, tf )

k1
∂ζ1(x, t)

∂n
− hc−a(ζ1(x, t)) = 0 on (∂Ω ∩ ∂D) × (0, tf )

ζ1(x, tf ) =
−2(T1(x, tf ) − Ts)

+

ρ1Cp1
in Ω × {0}

ζ1(x, t) = ζ0(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

k1
∂ζ1(x, t)

∂n
− k0

∂ζ0(x, t)

∂n
= 0 on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

(5.55)

and 



−ρ0Cp0∂tζ0(x, t) − k0∆ζ0(x, t) = 0 in (D\Ω) × (0, tf )

k0
∂ζ0(x, t)

∂n
− hm−a(ζ0(x, t)) = 0 on (∂D \ ∂Ω) × (0, tf )

ζ0(x, tf ) = 0 in (D\Ω) × {0}
ζ0(x, t) = ζ1(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf )

−k0
∂ζ0(x, t)

∂n
+ k1

∂ζ1(x, t)

∂n
= 0 on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ).

(5.56)
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Proof. We formulate the Lagrangian function

L(Ω, T̂1, T̂0, ζ̂1, ζ̂0, µ̂1, µ̂0, ν̂, ξ̂, q̂1, q̂0) =∫

Ω

[
(T̂1(x, tf ) − Ts)

+
]2
dx

+

∫ tf

0

∫

Ω

(ρ1Cp1∂tT̂1(x, t) − k1∆T̂1(x, t))ζ̂1(x, t)dxdt+

∫

Ω

(T̂1(x, 0) − Tin(x))µ̂1(x)dx

+

∫ tf

0

∫

Ω

(ρ0Cp0∂tT̂0(x, t) − k0∆T̂0(x, t))ζ̂0(x, t)dxdt+

∫

Ω

(T̂0(x, 0) − Tin(x))µ̂0(x)dx

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(T̂1(s, t) − T̂0(s, t))ν̂(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂T̂1
∂n

− k0
∂T̂0
∂n

)ξ̂(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂T̂1
∂n

− hc−a(T̂1 − Tair))q̂1(s, t)dsdt

+

∫ tf

0

∫

(∂D\∂Ω)

(k0
∂T̂0
∂n

− hm−a(T̂0 − Tair))q̂0(s, t)dsdt.

(5.57)

Fixing the domain Ω, the first order optimality conditions for L at the optimal point

w∗ ≡ (Ω, T ∗
1 , T

∗
0 , ζ

∗
1 , ζ

∗
0 , µ

∗
1, µ

∗
0, ν

∗, ξ∗, q∗1 , q
∗
0)

read
∂L
∂ζ̂1

(w∗)(φ) = 0 ⇒ ρ1Cp1∂tT
∗
1 (x, t) − k1∆T ∗

1 (x, t) = 0 in Ω × (0, tf ), (5.58)

∂L
∂µ̂1

(w∗)(φ) = 0 ⇒ T ∗
1 (x, 0) = Tin(x) in Ω × {0}, (5.59)

∂L
∂ν̂

(w∗)(φ) = 0 ⇒ T ∗
1 (x, t) = T ∗

0 (x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.60)

∂L
∂ξ̂

(w∗)(φ) = 0 ⇒ k1
∂T ∗

1

∂n
(x, t) = k0

∂T ∗
0

∂n
(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.61)

∂L
∂q̂1

(w∗)(φ) = 0 ⇒ k1
∂T ∗

1

∂n
(x, t) = hc−a(T ∗

1 (x, t) − Tair) on (∂Ω ∩ ∂D) × (0, tf ), (5.62)

∂L
∂ζ̂0

(w∗)(φ) = 0 ⇒ ρ0Cp0∂tT
∗
0 (x, t) − k0∆T ∗

0 (x, t) = 0 in (D \ Ω) × (0, tf ) (5.63)

∂L
∂µ̂0

(w∗)(φ) = 0 ⇒ T ∗
0 (x, 0) = Tin(x) in D \ Ω × {0}, (5.64)

∂L
∂q̂0

(w∗)(φ) = 0 ⇒ k0
∂T ∗

0

∂n
(x, t) = hm−a(T ∗

0 (x, t) − Tair) on (∂D \ ∂Ω) × (0, tf ). (5.65)

From equations (5.58),(5.59),(5.60), (5.61),(5.62), we deduce that T ∗
1 solves equation (5.50), while equa-

tions (5.60),(5.61),(5.63), (5.64),(5.65) show that T ∗
0 solves equation (5.51).

The partial derivative of L with respect to T̂1 in the direction of a test function φ reads

∂L
∂T̂1

(w∗)(φ) =

∫

Ω

2(T ∗
1 (x, tf ) − Ts)

+φ(x, tf )dx

+

∫ tf

0

∫

Ω

(ρ1Cp1∂tφ(x, t) − k1∆φ(x, t))ζ∗1 (x, t)dxdt+

∫

Ω

φ(x, 0)µ∗
1(x)dx

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

φ(s, t)ν∗(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

k1
∂φ

∂n
ξ∗(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂φ

∂n
− hc−aφ)q∗1(s, t)dsdt.

(5.66)



5.3. HEAT EQUATION MODELS AND SHAPE DERIVATIVES 161

Replacing in (5.66) the following equality

∫ tf

0

∫

Ω

(ρ1Cp1∂tφ(x, t) − k1∆φ(x, t))ζ∗1 (x, t)dxdt =
[∫

Ω

ρ1Cp1φ(x, t)ζ∗1 (x, t)dx

]tf

0

−
∫ tf

0

∫

Ω

ρ1Cp1∂tζ
∗
1 (x, t)φ(x, t)dxdt

−
∫ tf

0

∫

∂Ω

k1
∂φ

∂n
(s, t)ζ∗1 (s, t)dsdt+

∫ tf

0

∫

Ω

k1∇φ(x, t) · ∇ζ∗1 (x, t)dxdt

=

[∫

Ω

ρ1Cp1ζ
∗
1 (x, t)φ(x, t)dx

]tf

0

−
∫ tf

0

∫

Ω

ρ1Cp1∂tζ
∗(x, t)φ(x, t)dxdt

−
∫ tf

0

∫

∂Ω

k1
∂φ

∂n
(s, t)ζ∗1 (s, t)dsdt+

∫ tf

0

∫

∂Ω

k1
∂ζ∗1
∂n

(s, t)φ(s, t)dsdt

−
∫ tf

0

∫

Ω

k1∆ζ∗1 (x, t)φ(x, t)dxdt,

(5.67)

we get

∂L
∂T̂1

(w∗)(φ) =

∫

Ω

2(T ∗
1 (x, tf ) − Ts)

+φ(x, tf )dx+

∫

Ω

ρ1Cp1ζ
∗
1 (x, tf )φ(x, tf )dx

−
∫

Ω

ρ1Cp1ζ
∗
1 (x, 0)φ(x, 0)dx−

∫ tf

0

∫

Ω

ρ1Cp1∂tζ
∗(x, t)φ(x, t)dxdt

−
∫ tf

0

∫

Ω

k1∆ζ∗1 (x, t)φ(x, t)dxdt+

∫

Ω

φ(x, 0)µ∗
1(x)dx

−
∫ tf

0

∫

∂Ω

k1
∂φ

∂n
(s, t)ζ∗1 (s, t)dsdt+

∫ tf

0

∫

∂Ω

k1
∂ζ∗1
∂n

(s, t)φ(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

φ(s, t)ν∗(s, t)dsdt+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

k1
∂φ

∂n
ξ∗(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂φ

∂n
− hc−aφ)q∗1(s, t)dsdt.

(5.68)

Taking φ with compact support in Ω × (0, tf ), we get

− ρ1Cp1∂tζ
∗
1 (x, t) − k1∆ζ∗1 (x, t) = 0 in Ω × (0, tf ). (5.69)

Varying φ in Ω × {tf} and Ω × {0}, we get

ζ∗1 (x, tf ) =
−2(T ∗

1 (x, tf ) − Ts)
+

ρ1Cp1
in Ω × {tf} (5.70)

and
µ∗
1(x) = ρ1Cp1ζ

∗
1 (x, 0) in Ω (5.71)

respectively. Varying φ on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) and (∂Ω ∩ ∂D) × (0, tf ), with zero normal flux

(k1
∂φ

∂n
= 0), we get

ν∗(x, t) = −k1
∂ζ∗1
∂n

(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) (5.72)

and

k1
∂ζ∗1
∂n

(x, t) = hc−aq
∗
1(x, t) on (∂Ω ∩ ∂D) × (0, tf ). (5.73)

Varying the normal flux of φ on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) and (∂Ω ∩ ∂D) × (0, tf ), with φ = 0, we get

ζ∗1 (x, t) = ξ∗(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) (5.74)

and
ζ∗1 (x, t) = q∗1(x, t) on (∂Ω ∩ ∂D) × (0, tf ). (5.75)

The same analysis as previously holds for the partial derivative of L with respect to T̂0 and results in the
following equalities:

− ρ0Cp0∂tζ
∗
0 (x, t) − k0∆ζ∗0 (x, t) = 0 in (D \ Ω) × (0, tf ), (5.76)
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ζ∗0 (x, tf ) = 0 in (D \ Ω) × {tf}, (5.77)

µ∗
0(x) = ρ0Cp0ζ

∗
0 (x, 0) in D \ Ω, (5.78)

ν∗(x, t) = −k0
∂ζ∗0
∂n

(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.79)

k0
∂ζ∗0
∂n

(x, t) = −hm−aq
∗
0(x, t) on (∂D \ ∂Ω) × (0, tf ), (5.80)

ζ∗0 (x, t) = ξ∗(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.81)

and

ζ∗0 (x, t) = −q∗0(x, t) on (∂D \ ∂Ω) × (0, tf ). (5.82)

Equations (5.69)-(5.82) show that ζ∗1 and ζ∗0 solve the adjoint states (5.55) and (5.56) respectively.
Before computing the shape derivative of Pth(Ω), we write again the Lagrangian function (5.57), after an
intergation by parts, as

L(Ω, T̂1, T̂0, ζ̂1, ζ̂0, µ̂1, µ̂0, ν̂, ξ̂, q̂1, q̂0) =∫

Ω

[
(T̂1(x, tf ) − Ts)

+
]2
dx+

∫ tf

0

∫

Ω

(ρ1Cp1∂tT̂1(x, t)ζ̂1(x, t) + k1∇T̂1(x, t) · ∇ζ̂1(x, t))dxdt

+

∫ tf

0

∫

Ω

(ρ0Cp0∂tT̂0(x, t)ζ̂0(x, t) + k0∇T̂0(x, t) · ∇ζ̂0(x, t))dxdt

−
∫ tf

0

∫

∂Ω

k1
∂T̂1
∂n

(s, t)ζ̂1(s, t)dsdt+

∫ tf

0

∫

∂Ω

k0
∂T̂0
∂n

(s, t)ζ̂0(s, t)dsdt

+

∫

Ω

(T̂1(x, 0) − Tin(x))µ̂1(x)dx+

∫

Ω

(T̂0(x, 0) − Tin(x))µ̂0(x)dx

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(T̂1(s, t) − T̂0(s, t))ν̂(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂T̂1
∂n

− k0
∂T̂0
∂n

)ξ̂(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂T̂1
∂n

− hc−a(T̂1 − Tair))q̂1(s, t)dsdt

+

∫ tf

0

∫

(∂D\∂Ω)

(k0
∂T̂0
∂n

− hm−a(T̂0 − Tair))q̂0(s, t)dsdt.

(5.83)
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The shape derivative of Pth(Ω) equals the shape derivative of L at the optimal point:

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) + k1∇T ∗

1 (s, t) · ∇ζ∗1 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ0Cp0∂tT
∗
0 (s, t)ζ∗0 (s, t) + k0∇T ∗

0 (s, t) · ∇ζ∗0 (s, t))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t) +

∂

∂n
(k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t) +

∂

∂n
(k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s) [(T ∗
1 (s, 0) − Tin(s))µ∗

1(s)] ds

−
∫

∂Ω

θ(s) · n(s) [(T ∗
0 (s, 0) − Tin(s))µ∗

0(s)] ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)(T ∗

1 (s, t) − T ∗
0 (s, t))ν∗(s, t) +

∂

∂n
((T ∗

1 (s, t) − T ∗
0 (s, t))ν∗(s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)(k1
∂T ∗

1

∂n
(s, t) − k0

∂T ∗
0

∂n
(s, t))ξ∗(s, t))

+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t) − k0

∂T ∗
0

∂n
(s, t))ξ∗(s, t))]dtds

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(k1
∂T ∗

1

∂n
(s, t)

∂ζ∗1
∂n

(s, t) + k1
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t)

−k0
∂T ∗

0

∂n
(s, t)

∂ζ∗0
∂n

(s, t) − k0
∂T ∗

0

∂τ
(s, t)

∂ζ∗0
∂τ

(s, t))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
((T ∗

1 (s, t) − T ∗
0 (s, t))ν∗(s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t) − k0

∂T ∗
0

∂n
(s, t))ξ∗(s, t))

]
dtds

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

((k1 − k0)
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t) + (
1

k1
− 1

k0
)k1

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t))ζ∗1 (s, t) +

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t)

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k0

∂T ∗
0

∂n
(s, t))ζ∗0 (s, t) +

∂T ∗
0

∂n
(s, t)k0

∂ζ∗0
∂n

(s, t)

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
(+
∂T ∗

1

∂n
(s, t) − ∂T ∗

0

∂n
(s, t))(−k1

∂ζ∗1
∂n

(s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t) − k0

∂T ∗
0

∂n
(s, t))ξ∗(s, t))

]
dtds

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

((k1 − k0)
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t) + (
1

k1
− 1

k0
)k1

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t))dtds

−2

∫

∂Ω

θ(s) · n(s)

∫ tf

0

k1
∂ζ∗1
∂n

(s, t)(+
∂T ∗

1

∂n
(s, t) − ∂T ∗

0

∂n
(s, t))dtds,
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and we deduce

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dsdt

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

((k1 − k0)
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t) + (
1

k1
− 1

k0
)k1

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t))dsdt

−2

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(
1

k1
− 1

k0
)k1

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t)))

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dsdt

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

((k1 − k0)
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t) − (
1

k1
− 1

k0
)k1

∂T ∗
1

∂n
(s, t)k1

∂ζ∗1
∂n

(s, t))dsdt,

(5.84)

which completes the proof.

5.3.5 Linear transient heat equation with piecewise discontinuous conductiv-

ity and heat flux across the moving boundary

Until now we have assumed that the temperature is continuous across the interface of the mold and the
cast part. The two parts are assumed to be in contact and natural transmission conditions (continuity of
the temperature and of the normal flux) are automatically imposed by the solution of the heat equation.
However, this is not always the case for the simulation of the solidification process. According to Lewis
et al. [85], the contraction of the metal during solidification can result in the creation of gaps along the
interface of the mold and the metal. The gas occupying these holes has a different thermal conductivity
(usually much lower) than the metal or the mold and therefore there is a discontinuity in the temperature
field across the interface. To simulate this discontinuity, Fourier conditions are set on the interface using
a heat transfer coefficient, that depends on the materials that take part in the casting process.
The coupled pdes that describe the above process read





ρ1Cp1∂tT1(x, t) − k1∆T1(x, t) = 0 in Ω × (0, tf )
T1(x, 0) = Tin(x) in Ω × {0}

k1
∂T1
∂n

(x, t) − hc−m(T0(x, t) − T1(x, t)) = 0 on ∂Ω \ (∂D ∩ ∂Ω) × (0, tf )

k1
∂T1
∂n

(x, t) − hc−a(T1(x, t) − Tair) = 0 on (∂D ∩ ∂Ω) × (0, tf )

(5.85)

and




ρ0Cp0∂tT0(x, t) − k0∆T0(x, t) = 0 in (D\Ω) × (0, tf )
T0(x, 0) = Tin(x) in (D\Ω) × {0}

k0
∂T0
∂n

(x, t) − hc−m(T0(x, t) − T1(x, t)) = 0 on ∂Ω \ (∂D ∩ ∂Ω) × (0, tf )

k0
∂T0
∂n

(x, t) − hm−a(T0(x, t) − Tair) = 0 on (∂D \ ∂Ω) × (0, tf ).

(5.86)

Proposition 5.3.8. Let T1(x, t) and T0(x, t) be solutions of equations (5.85) and (5.86) respectively and
T (x, t) defined as in (5.52). Then, the shape derivative of (5.3) reads

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)[(T1(s, tf ) − Ts)
+]2ds

−
∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
H(s)hc−m(T0(s, t) − T1(s, t))(ζ1(s, t) − ζ0(s, t))

)
dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)(ρ1Cp1∂tT1(s, t)ζ1(s, t) − ρ0Cp0∂tT0(s, t)ζ0(s, t))dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
k1
∂T1
∂τ

∂ζ1
∂τ

− k0
∂T0
∂τ

∂ζ0
∂τ

− hc−m(ζ1 − ζ0)(
∂T0
∂n

− ∂T1
∂n

)
)
dtds,

(5.87)
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where H is the mean curvature, τ is the field of vectors orthogonal to n and ζ1 and ζ0 are solutions of
the adjoint equations





−ρ1Cp1∂tζ1(x, t) − k1∆ζ1(x, t) = 0 in Ω × (0, tf )

ζ1(x, tf ) +
2[T1(x, tf ) − Ts]

+

ρ1Cp1
= 0 in Ω × {tf}

k1
∂ζ1(x, t)

∂n
− hc−m(ζ0(x, t) − ζ1(x, t)) = 0 on ∂Ω \ (∂D ∩ ∂Ω) × (0, tf )

k1
∂ζ1(x, t)

∂n
− hc−a(ζ1(x, t)) = 0 on (∂D ∩ ∂Ω) × (0, tf )

(5.88)

and 



−ρ0Cp0∂tζ0(x, t) − k0∆ζ0(x, t) = 0 in (D\Ω) × (0, tf )
ζ0(x, tf ) = 0 in (D\Ω) × {tf}

k0
∂ζ0(x, t)

∂n
− hc−m(ζ0(x, t) − ζ1(x, t)) = 0 on ∂Ω \ (∂D ∩ ∂Ω) × (0, tf )

k0
∂ζ0(x, t)

∂n
− hm−a(ζ0(x, t)) = 0 on (∂D \ ∂Ω) × (0, tf ).

(5.89)

Proof. We formulate the Lagrangian function

L(Ω, T̂1, T̂0, ζ̂1, ζ̂0, µ̂1, µ̂0, ν̂1, ν̂0, q̂1, q̂0) =∫

Ω

[
(T̂1(x, tf ) − Ts)

+
]2
dx+

∫ tf

0

∫

Ω

(ρ1Cp1∂tT̂1(x, t) − k1∆T̂1(x, t))ζ̂1(x, t)dxdt

+

∫ tf

0

∫

Ω

(ρ0Cp0∂tT̂0(x, t) − k0∆T̂0(x, t))ζ̂0(x, t)dxdt+

∫

Ω

(T̂1(x, 0) − Tin(x))µ̂1(x)dx

+

∫

Ω

(T̂0(x, 0) − Tin(x))µ̂0(x)dx

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂T̂1
∂n

(s, t) − hc−m(T̂0(s, t) − T̂1(s, t)))ν̂1(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k0
∂T̂0
∂n

(s, t) − hc−m(T̂0(s, t) − T̂1(s, t)))ν̂0(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂T̂1
∂n

− hc−a(T̂1 − Tair))q̂1(s, t)dsdt

+

∫ tf

0

∫

(∂D\∂Ω)

(k0
∂T̂0
∂n

− hm−a(T̂0 − Tair))q̂0(s, t)dsdt.

(5.90)

Fixing the domain Ω, the first order optimality conditions for L at the optimal point

w∗ ≡ (Ω, T ∗
1 , T

∗
0 , ζ

∗
1 , ζ

∗
0 , µ

∗
1, µ

∗
0, ν

∗
1 , ν

∗
0 , q

∗
1 , q

∗
0)

read
∂L
∂ζ̂1

(w∗)(φ) = 0 ⇒ ρ1Cp1∂tT
∗
1 (x, t) − k1∆T ∗

1 (x, t) = 0 in Ω × (0, tf ), (5.91)

∂L
∂µ̂1

(w∗)(φ) = 0 ⇒ T ∗
1 (x, 0) = Tin(x) in Ω × {0}, (5.92)

∂L
∂ν̂1

(w∗)(φ) = 0 ⇒ k1
∂T ∗

1

∂n
(x, t) = hc−m(T ∗

0 (x, t) − T ∗
1 (x, t)) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.93)

∂L
∂ν̂0

(w∗)(φ) = 0 ⇒ k0
∂T ∗

0

∂n
(x, t) = hc−m(T ∗

0 (x, t) − T ∗
1 (x, t)) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.94)

∂L
∂q̂1

(w∗)(φ) = 0 ⇒ k1
∂T ∗

1

∂n
(x, t) = hc−a(T ∗

1 (x, t) − Tair) on (∂Ω ∩ ∂D) × (0, tf ), (5.95)

∂L
∂ζ̂0

(w∗)(φ) = 0 ⇒ ρ0Cp0∂tT
∗
0 (x, t) − k0∆T ∗

0 (x, t) = 0 in (D \ Ω) × (0, tf ) (5.96)

∂L
∂µ̂0

(w∗)(φ) = 0 ⇒ T ∗
0 (x, 0) = Tin(x) in D \ Ω × {0}, (5.97)

∂L
∂q̂0

(w∗)(φ) = 0 ⇒ k0
∂T ∗

0

∂n
(x, t) = hm−a(T ∗

0 (x, t) − Tair) on (∂D \ ∂Ω) × (0, tf ). (5.98)
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From equations (5.91),(5.92),(5.93), (5.95), we deduce that T ∗
1 solves equation (5.85), while equations

(5.94),(5.96), (5.97),(5.98) show that T ∗
0 solves equation (5.86).

The partial derivative of L with respect to T̂1 in the direction of a test function φ reads

∂L
∂T̂1

(w∗)(φ) =

∫

Ω

2(T ∗
1 (x, tf ) − Ts)

+φ(x, tf )dx+

∫

Ω

φ(x, 0)µ∗
1(x)dx

+

∫ tf

0

∫

Ω

(ρ1Cp1∂tφ(x, t) − k1∆φ(x, t))ζ∗1 (x, t)dxdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂φ

∂n
(s, t)ν∗1 (s, t) + hc−mφ(s, t)ν∗1 (s, t))dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

hc−mφ(s, t)ν∗0 (s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂φ

∂n
− hc−aφ)q∗1(s, t)dsdt.

(5.99)

Replacing in (5.99) the equality (5.67) we get

∂L
∂T̂1

(w∗)(φ) =

∫

Ω

2(T ∗
1 (x, tf ) − Ts)

+φ(x, tf )dx

∫

Ω

ρ1Cp1ζ
∗
1 (x, tf )φ(x, tf )dx

−
∫

Ω

ρ1Cp1ζ
∗
1 (x, 0)φ(x, 0)dx−

∫ tf

0

∫

Ω

ρ1Cp1∂tζ
∗(x, t)φ(x, t)dxdt

−
∫ tf

0

∫

Ω

k1∆ζ∗1 (x, t)φ(x, t)dxdt+

∫

Ω

φ(x, 0)µ∗
1(x)dx

−
∫ tf

0

∫

∂Ω

k1
∂φ

∂n
(s, t)ζ∗1 (s, t)dsdt+

∫ tf

0

∫

∂Ω

k1
∂ζ∗1
∂n

(s, t)φ(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂φ

∂n
(s, t)ν∗1 (s, t) + hc−mφ(s, t)ν∗1 (s, t))dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

hc−mφ(s, t)ν∗0 (s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂φ

∂n
− hc−aφ)q∗1(s, t)dsdt.

(5.100)

Taking φ with compact support in Ω × (0, tf ), we get

− ρ1Cp1∂tζ
∗
1 (x, t) − k1∆ζ∗1 (x, t) = 0 in Ω × (0, tf ). (5.101)

Varying φ in Ω × {tf} and Ω × {0}, we get

ζ∗1 (x, tf ) =
−2(T ∗

1 (x, tf ) − Ts)
+

ρ1Cp1
in Ω × {tf} (5.102)

and
µ∗
1(x) = ρ1Cp1ζ

∗
1 (x, 0) in Ω (5.103)

respectively. Varying φ on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) and (∂Ω ∩ ∂D) × (0, tf ), with zero normal flux

(k1
∂φ

∂n
= 0), we get

(ν∗1 (x, t) + ν∗0 (x, t)) = −k1
∂ζ∗1
∂n

(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) (5.104)

and

k1
∂ζ∗1
∂n

(x, t) = hc−aq
∗
1(x, t) on (∂Ω ∩ ∂D) × (0, tf ). (5.105)

Varying the normal flux of φ on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) and (∂Ω ∩ ∂D) × (0, tf ), with φ = 0, we get

ζ∗1 (x, t) = ν∗1 (x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ) (5.106)

and
ζ∗1 (x, t) = q∗1(x, t) on (∂Ω ∩ ∂D) × (0, tf ). (5.107)
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The same analysis as previously holds for the partial derivative of L with respect to T̂0 and results in the
following equalities:

− ρ0Cp0∂tζ
∗
0 (x, t) − k0∆ζ∗0 (x, t) = 0 in (D \ Ω) × (0, tf ), (5.108)

ζ∗0 (x, tf ) = 0 in (D \ Ω) × {tf}, (5.109)

µ∗
0(x) = ρ0Cp0ζ

∗
0 (x, 0) in D \ Ω, (5.110)

(ν∗1 (x, t) + ν∗0 (x, t)) = −k0
∂ζ∗0
∂n

(x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.111)

k0
∂ζ∗0
∂n

(x, t) = −hm−aq
∗
0(x, t) on (∂D \ ∂Ω) × (0, tf ), (5.112)

ζ∗0 (x, t) = −ν∗0 (x, t) on ∂Ω \ (∂Ω ∩ ∂D) × (0, tf ), (5.113)

and

ζ∗0 (x, t) = −q∗0(x, t) on (∂D \ ∂Ω) × (0, tf ). (5.114)

Equations (5.101)-(5.114) show that ζ∗1 and ζ∗0 solve the adjoint states (5.88) and (5.89) respectively.
Before computing the shape derivative of Pth(Ω), we write again the Lagrangian function (5.90), after an
intergation by parts, as

L(Ω, T̂1, T̂0, ζ̂1, ζ̂0, µ̂1, µ̂0, ν̂1, ν̂0, q̂1, q̂0) =∫

Ω

[
(T̂1(x, tf ) − Ts)

+
]2
dx+

∫ tf

0

∫

Ω

(ρ1Cp1∂tT̂1(x, t)ζ̂1(x, t) + k1∇T̂1(x, t) · ∇ζ̂1(x, t))dxdt

+

∫ tf

0

∫

Ω

(ρ0Cp0∂tT̂0(x, t)ζ̂0(x, t) + k0∇T̂0(x, t) · ∇ζ̂0(x, t))dxdt

−
∫ tf

0

∫

∂Ω

k1
∂T̂1
∂n

(s, t)ζ̂1(s, t)dsdt+

∫ tf

0

∫

∂Ω

k0
∂T̂0
∂n

(s, t)ζ̂0(s, t)dsdt

+

∫

Ω

(T̂1(x, 0) − Tin(x))µ̂1(x)dx+

∫

Ω

(T̂0(x, 0) − Tin(x))µ̂0(x)dx

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k1
∂T̂1
∂n

(s, t) − hc−m(T̂0(s, t) − T̂1(s, t)))ν̂1(s, t)dsdt

+

∫ tf

0

∫

(∂Ω\(∂Ω∩∂D))

(k0
∂T̂0
∂n

(s, t) − hc−m(T̂0(s, t) − T̂1(s, t)))ν̂0(s, t)dsdt

+

∫ tf

0

∫

(∂Ω∩∂D)

(k1
∂T̂1
∂n

− hc−a(T̂1 − Tair))q̂1(s, t)dsdt

+

∫ tf

0

∫

(∂D\∂Ω)

(k0
∂T̂0
∂n

− hm−a(T̂0 − Tair))q̂0(s, t)dsdt.

(5.115)
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The shape derivative of Pth(Ω) equals the shape derivative of L at the optimal point:

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) + k1∇T ∗

1 (s, t) · ∇ζ∗1 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ0Cp0∂tT
∗
0 (s, t)ζ∗0 (s, t) + k0∇T ∗

0 (s, t) · ∇ζ∗0 (s, t))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t) +

∂

∂n
(k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t) +

∂

∂n
(k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s) [(T ∗
1 (s, 0) − Tin(s))µ∗

1(s)] ds

−
∫

∂Ω

θ(s) · n(s) [(T ∗
0 (s, 0) − Tin(s))µ∗

0(s)] ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)(k1
∂T ∗

1

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ν∗1 (s, t)

+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ν∗1 (s, t)]dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)(k0
∂T ∗

0

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ν∗0 (s, t)

+
∂

∂n
(k0

∂T ∗
0

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ν∗0 (s, t)]dtds

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(k1
∂T ∗

1

∂n
(s, t)

∂ζ∗1
∂n

(s, t) + k1
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t)

−k0
∂T ∗

0

∂n
(s, t)

∂ζ∗0
∂n

(s, t) − k0
∂T ∗

0

∂τ
(s, t)

∂ζ∗0
∂τ

(s, t))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t) +

∂

∂n
(k1

∂T ∗
1

∂n
(s, t)ζ∗1 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[
H(s)k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t) +

∂

∂n
(k0

∂T ∗
0

∂n
(s, t)ζ∗0 (s, t))

]
dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)(k1
∂T ∗

1

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ζ∗1 (s, t)

+
∂

∂n
(k1

∂T ∗
1

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))ζ∗1 (s, t)]dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)(k0
∂T ∗

0

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))(−ζ∗0 (s, t))

+
∂

∂n
(k0

∂T ∗
0

∂n
(s, t) − hc−m(T ∗

0 (s, t) − T ∗
1 (s, t)))(−ζ∗0 (s, t))]dtds

=

∫

∂Ω

θ(s) · n(s)
[
(T ∗

1 (s, tf ) − Ts)
+
]2
ds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

θ(s) · n(s)

∫ tf

0

(k1
∂T ∗

1

∂τ
(s, t)

∂ζ∗1
∂τ

(s, t) − k0
∂T ∗

0

∂τ
(s, t)

∂ζ∗0
∂τ

(s, t)

+
∂T ∗

1

∂n
(s, t)hc−m(ζ∗0 (s, t) − ζ∗1 (s, t)) − ∂T ∗

0

∂n
(s, t)hc−m(ζ∗0 (s, t) − ζ∗1 (s, t)))dtds

−
∫

∂Ω

θ(s) · n(s)

∫ tf

0

[H(s)hc−m(T ∗
0 (s, t) − T ∗

1 (s, t))(ζ∗1 (s, t) − ζ∗0 (s, t))

−hc−m(k1 − k0)(
∂T ∗

0

∂n
(s, t) − ∂T ∗

1

∂n
(s, t))]dtds
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Figure 5.4: Solid fraction.

and we finally deduce

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)[(T ∗
1 (s, tf ) − Ts)

+]2ds

−
∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
H(s)hc−m(T ∗

0 (s, t) − T ∗
1 (s, t))(ζ∗1 (s, t) − ζ∗0 (s, t))

)
dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)(ρ1Cp1∂tT
∗
1 (s, t)ζ∗1 (s, t) − ρ0Cp0∂tT

∗
0 (s, t)ζ∗0 (s, t))dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
k1
∂T ∗

1

∂τ

∂ζ∗1
∂τ

− k0
∂T ∗

0

∂τ

∂ζ∗0
∂τ

− hc−m(ζ∗1 − ζ∗0 )(
∂T ∗

0

∂n
− ∂T ∗

1

∂n
)
)
dtds,

(5.116)

which completes the proof.

The above state and adjoint equations are easy to solve when the mesh used for the finite element
analysis is adapted to the interface between the mold and the cast part, i.e. to the zero level-set of
the level-set function [9, 158]. However, this process is very delicate, especially in 3d and one may find
preferable to use a fixed mesh. In this case, the discontinuity of the temperature cannot be captured
using standard finite elements on a single mesh. However, a solution to the problem can be achieved by
extending both problems (5.85) and (5.86) in the whole working domain D, using a classical ”ersatz”
material expansion

k1(x) =

{
k1 in Ω,
εk1 in D, \Ω

and k0(x) =

{
k0 in D\Ω,
εk0 in DΩ,

where ε << 1. Then, the variational equations of the two problems can be added and solved at the same
time, i.e. we solve a problem of 2n unknowns, n being the size of the mesh and the total temperature
field T (x, t) is given by (5.52).

5.3.6 Non-linear transient heat equation with phase-change

At this point, we have all the ingredients in order to study the fully non-linear transient heat equation
with phase-change that describes the solidification process. We are interested for the solidification of
alloys, for which there is no clear solidification interface, as it is the case with pure metals and eutectics
[85]. Between the liquid T (x) ≥ Tl and the solid zone T (x) ≤ Ts, there is a region of mixture, called the
mushy zone. The local solid fraction (fs) is assumed to be a linear function of the temperature in this
zone, i.e.

fs(T ) =





0, T > Tl,
Tl − T

Tl − Ts
, Ts ≤ T ≤ Tl,

1, T < Ts.

(5.117)

The latent heat term is modelled as a source term in the non-linear heat equation with temperature
dependent coefficients. The equation reads

ρ(x, T )Cp(x, T )∂tT (x, t) −∇ · (k(x, T )∇T (x, t)) = ρ(x, T )L∂tfs, ∀(x, t) ∈ Ω × (0, tf ), (5.118)
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where L denotes the latent heat fusion. Substituting

∂fs
∂t

=
∂fs
∂T

∂T

∂t
,

equation (5.118) is written

(ρ(x, T )Cp(x, T ) − ρ(x, T )L
∂fs
∂T

)∂tT (x, t) −∇ · (k(x, T )∇T (x, t)) = 0, ∀(x, t) ∈ Ω × (0, tf ). (5.119)

Defining the equivalent heat capacity as

C̃p(x, T ) = Cp(x, T ) − L
∂fs
∂T

(x, T ), (5.120)

equation (5.119) is also writen in the form

ρ(x, T )C̃p(x, T )∂tT (x, t) −∇ · (k(x, T )∇T (x, t)) = 0, ∀(x, t) ∈ Ω × (0, tf ). (5.121)

In order to calculate the shape derivative of this new problem in an easy way, we shall transform it again
into a transmission problem. The state equation of the solidification problem reads





ρ1(x, T1)C̃p1(x, T1)∂tT1(x, t) −∇ · (k1(x, T1)∇T1(x, t)) = 0 in Ω × (0, tf )
T1(x, 0) = Tin(x) in Ω × {0}

k1(x, T1)
∂T1(x, t)

∂n
− hc−m(T0(x, t) − T1(x, t)) = 0 on (∂Ω \ (∂D ∩ ∂Ω)) × (0, tf )

k1(x, T1)
∂T1(x, t)

∂n
− hc−a(T1(x, t) − Tair) = 0 on (∂D ∩ ∂Ω) × (0, tf )

(5.122)
and




ρ0(x, T0)C̃p0(x, T0)∂tT0(x, t) −∇ · (k0(x, T0)∇T0(x, t)) = 0 in (D\Ω) × (0, tf )
T0(x, 0) = Tin(x) in (D\Ω) × {0}

k0(x, T0)
∂T0(x, t)

∂n
− hc−m(T0(x, t) − T1(x, t)) = 0 on (∂Ω \ (∂D ∩ ∂Ω)) × (0, tf )

k0(x, T0)
∂T0(x, t)

∂n
− hm−a(T0(x, t) − Tair) = 0 on (∂D \ ∂Ω) × (0, tf ).

(5.123)

Proposition 5.3.9. Let T1(x, t) and T0(x, t) be solutions of equations (5.122) and (5.123) respectively
and T (x, t) defined as in (5.52). Then, the shape derivative of (5.3) reads

P ′
th(Ω)(θ) =∫

∂Ω

θ(s) · n(s)[(T1(s, tf ) − Ts)
+]2ds

−
∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
H(s)hc−m(T0(s, t) − T1(s, t))(ζ1(s, t) − ζ0(s, t))

)
dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)(ρ1(s, T1)C̃p1(s, T1)∂tT1(s, t)ζ1(s, t) − ρ0(s, T0)C̃p0(s, T0)∂tT0(s, t)ζ0(s, t))dtds

+

∫

∂Ω

∫ tf

0

θ(s) · n(s)
(
k1(s, T1)

∂T1
∂τ

∂ζ1
∂τ

− k0(s, T0)
∂T0
∂τ

∂ζ0
∂τ

− hc−m(ζ1(s, t) − ζ0(s, t))(
∂T0
∂n

− ∂T1
∂n

)
)
dtds,

(5.124)
where H is the mean curvature, τ is the field of vectors orthogonal to n and ζ1 and ζ0 are solutions of
the linear adjoint equations





−ρ1(x, T1)C̃p1(x, T1)∂tζ1(x, t) − k1(x, T1)∆ζ1(x, t) = 0 in Ω × (0, tf )

ζ1(x, tf ) +
2[T1(x, tf ) − Ts]

+

ρ1(x, T1(x, tf ))Cp1(x, T1(x, tf ))
= 0 in Ω × {tf}

k1(x, T1)
∂ζ1(x, t)

∂n
− hc−m(ζ0(x, t) − ζ1(x, t)) = 0 on (∂Ω \ (∂D ∩ ∂Ω)) × (0, tf )

k1(x, T1)
∂ζ1(x, t)

∂n
− hc−a(ζ1(x, t)) = 0 on (∂D ∩ ∂Ω) × (0, tf )

(5.125)
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and




−ρ0(x, T0)C̃p0(x, T0)∂tζ0(x, t) − k0(x, T0)∆ζ0(x, t) = 0 in (D\Ω) × (0, tf )
ζ0(x, tf ) = 0 in (D\Ω) × {tf}

k0(x, T0)
∂ζ0(x, t)

∂n
− hc−m(ζ0(x, t) − ζ1(x, t)) = 0 on (∂Ω \ (∂D ∩ ∂Ω)) × (0, tf )

k0(x, T0)
∂ζ0(x, t)

∂n
− hm−a(ζ0(x, t)) = 0 on (∂D \ ∂Ω) × (0, tf ).

(5.126)

Proof. The proof is almost identical to the one of Proposition 5.3.8 and is omitted here.

Remark 5.3.10. For the derivation of the adjoint state equation, the derivability of the thermal coef-
ficients with respect to the temperature is needed. However, the equivalent heat capacity, as it has been
defined in (5.120), is a step function, due to the term

∂fs(T )

∂T
=





0, T > Tl,
1

Ts − Tl
, Ts ≤ T ≤ Tl,

0, T < Ts.

For reasons of simplicity, we follow the approach proposed in [143] and we consider instead

∂fs(T )

∂T
=

1

Ts − Tl
(Hε(T − Ts) −Hε(T − Tl)), (5.127)

where Hε(x) is a regularized Heaviside function, given by

Hε(x) =





0, x < −ε,
1
2 + x

2ε + 1
2π sin(πx

ε
), −ε ≤ x ≤ ε,

1, x > ε.

The regularization interval ε was chosen to be ε = 0.1(Tl − Ts), as in [143].

5.3.7 Numerical results

In this section, we test the first three thermal models of section 5.3, i.e. the Poisson equation, the linear
transient heat equation and the eigenvalue approximation. Our goal here is not to compare quantitatively
the results obtained with each model. The reason is that the reference example, with respect to which
any comparison should be made, is the one using the non-linear heat equation with phase change, which
unfortunately we have not yet implemented. Therefore, we stay on some qualitative observations and
remarks, as far as the use of simplified thermal models in casting is concerned.

Of course, we have explained earlier how the temperature constraint can be connected with the
thickness of the structure. Therefore, independent of casting, one can view the above thermal constraints
as an implicit way to impose a maximum thickness specification. Then, some sort of comparison can be
made, but the reader shall always take care that the results may depend strongly on the assumed model
for the connection between the temperature field and the local thickness.

The 2d cantilever of Figure 3.27 is chosen as test-case for all models. Same as in Chapter 3, the
working domain D is meshed using 160 × 80 Q1 finite elements for the elasticity analysis, the Young
modulus E is set to 1 for the ”strong” and to 10−3 for the ”weak” material, while the Poisson ratio for
both materials is set to 0.3. The same initialization as in Figure 3.28(a) is used for all examples in this
section.

The Poisson equation and the linear transient heat equation model have been coded in SYSTUS [140],
while for the eigenvalue approximation model a 2d Scilab [119] code has been used.

The optimization problem reads

min
Ω

∫

Ω

dx

s.t.

∫

∂Ω

g · uds ≤ g1max,

Pth(Ω) =




∫

Ω

f(T (x, tf ))T (x, tf )2dx
∫

Ω

f(T (x, tf ))dx




1
2

≤ Ts,

(5.128)
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Figure 5.5: Casting system for the adjustment of Ts.

Figure 5.6: Temperature field in the one-dimensional casting system of Figure 5.5, for dmax = 0.50, using
the Poisson equation (5.4).

where g1max = 40 is an upper bound for the compliance. The maximum solidification time, for time-
dependent models, is set to tf = 20. For each model, we adjust the upper bound on the temperature,
Ts, so that it corresponds to the maximum temperature in the cast part for the one-dimensional casting
system of Figure 5.1, for dmax = 0.50. Due to symmetry, only the half-domain is used (see Figure 5.5).

Poisson equation

We start with the Poisson equation as thermal model. Solving equation (5.4) for the casting system of
Figure 5.5 and taking the thermal diffusivity equal to one (α = 1), we obtain the temperature field of
Figure 5.6. Its maximum value at x = 0 is 0.03156, thus we set Ts = 0.03156.

Remark 5.3.11. The Poisson equation (5.4) can be solved analytically for the one-dimensional problem
of Figure 5.6. The equation reads





−adT
2(x)

dx2
= 1 in (0, dmax/2),

T (x) = 0 in [dmax/2, dmax),
dT (x)

dx
= 0 on {0},

(5.129)

where the source term f has been set to unity all over the domain. At x = 0 the value of the temperature

is T (0) =
(dmax/2)2

2a
= 0.03125. However, for the sake of consistency we prefer to work with the value

obtained by the numerical approximation of the equation.

Solving problem (5.128), we obtain the optimized shape of Figure 5.7(a). In Figure 5.7(b), we plot
the thickness violation (|(dΩ(x) − dmax/2)−|).

Linear transient heat equation

We now pass to the linear transient heat equation model. We set the thermal diffusivity α equal to 10−3

and start from a uniform temperature field:

Tin(x) =

{
700, if x ∈ Ω,
0, if x ∈ D \ Ω.

(5.130)
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(a) (b)

Figure 5.7: (a): optimized shape and (b): thickness violation (|(dΩ(x) − dmax/2)−|), using the Poisson
thermal model.

Figure 5.8: Temperature field in the one-dimensional casting system of Figure 5.5, for dmax = 0.50, using
the linear transient heat equation (5.14).

In Figure 5.8, we show the solution of equation (5.14) at time tf , for the casting system of Figure 5.5.
The equation is solved using an implicit finite differences scheme and the time interval is discretized
using 100 steps. The maximum value of the temperature field, at x = 0, is 408.75, thus we set Ts =
408.75. Solving problem (5.128), we obtain the optimized shape of Figure 5.9(a). The thickness violation
(|(dΩ(x) − dmax/2)−|) is shown in Figure 5.9(b).

Eigenvalue approximation

Finally, the eigenvalue approximation is tested. The same parameters as for the linear transient heat
equation model are used. The approximation of the actual temperature field at the final time, T f (x),
defined in (5.33), is plotted In Figure 5.10 for the casting system of Figure 5.5. The maximum value of
the temperature field, at x = 0, is 404.36, thus we set Ts = 404.36. Solving problem (5.128), we obtain
the optimized shape of Figure 5.11(a). In 5.11(b), we plot the thickness violation (|(dΩ(x)− dmax/2)−|).

Preliminary conclusions

Let us start with a remark about the qualitative behaviour of all the three above models. We have ob-
served, as expected, that the same type of instability due to small holes can appear, as with the maximum
thickness constraint in Chapter 3. More specifically, the thermal functional (5.2) is not continuous with
respect to topological changes, therefore the disappearance of small holes can increase significantly the
value of the functional.

We shall expect, as usual, the existence of plenty of local minima and, thus, there is no reason to
expect the optimized shaped to ressemble. As far as the final results are concerned, we can see in Table
5.1 that the linear transient heat equation model resulted for this example in a lighter structure, which is
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(a) (b)

Figure 5.9: (a): optimized shape and (b): thickness violation (|(dΩ(x)−dmax/2)−|), using the linear heat
equation thermal model.

Figure 5.10: Temperature field in the one-dimensional casting system of Figure 5.5, for dmax = 0.50,
using the first eigenvalue approximation (5.33).

(a) (b)

Figure 5.11: (a): optimized shape and (b): thickness violation (|(dΩ(x)−dmax/2)−|), using the eigenvalue
approximation model.
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Table 5.1: Results using different thermal models.

Volume Compliance Pth(Ω) PMaxT (Ω)
Poisson equation 3.850 39.95 0.3161 0.262

Linear transient heat equation 3.775 39.98 408.93 0.256
Eigenvalue approximation 3.812 39.98 385.99 0.262

also closer to satisfy the maximum thickness functional PMaxT (Ω). On the other hand, this model is far
more costly than the other two. In case one wants to use such a model as an alternative for a geometric
constraint on the maximum thickness, it seems that the Poisson equation model is the easiest to use and
computationaly the less expensive.
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Chapter 6

Multi-phase structural optimization
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G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural optimization via a level-set
method.
Compared to this article, the section concerning the derivation of the signed distance function has been
already presented in Chapter 3 and is therefore omitted here, while the section containing the numerical
results has been enriched with more examples on structural optimization and subsection 6.6.5 about
multi-functional optimization. Finally, we consider additional tests for this method in the design of
materials’ microstructure using inverse homogenization, which is presented in section 6.7.
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6.1 Introduction

In the previous sections we have supposed that the optimizable shape is composed by a single material with
constant material properties. However, many industrial applications and problems in material science are
concerned with finding the optimal distribution of several materials in a fixed working domain, in order
to minimize a criterion related to the overall mechanical behavior or cost of the phases mixture. Intuition
is usually very limited in such problems and shape and topology optimization can provide valuable help
to the designers and researchers.

A crucial issue in the modeling of this problem is the parametrization of the phases mixture. While
the exact formulation requires the material properties, or the global Hooke’s tensor, to be discontinuous
at the interfaces between two materials, it is often convenient, for numerical purposes, to devise an
appropriate interpolation scheme to smoothen the coefficients or equivalently to replace sharp interfaces
by diffuse ones using some monotonic interpolation scheme. This diffuse or smeared interface approach
has its own interest when one is interested in the optimization of functionally graded materials, where
more general interpolation functions can be used [31], [88], [137], [146], [150] (see also the Appendix).

There is already a vast literature about multiphase optimization with constant material properties and
various methods have been proposed to address this problem. The Hadamard method of geometric shape
optimization, as described in [49], [71], [130], [132] was used, for example, in [69] for optimal composite
design. The homogenization method [3], [41], [142] was the main tool in the multiphase problem studied in
[7] for the optimal reloading of nuclear reactors (sequential laminates were shown to be optimal composite
materials). In the framework of the SIMP (Solid Isotropic Material with Penalization) method, several
interpolation schemes have been proposed for the mathematical formulation of the Hooke’s tensor of the
mixture [28], [139], [163]. In general, material interpolation schemes can be quite involved [163] and one
may design such a model in order to favor certain phases [139]. Applications range from the design of
materials with extreme or unusual thermal expansion behavior [129] to multi-material actuators [126],
through conductivity optimization for multi-phase microstructural materials [167]. In the framework of
the phase-field method, a generalized Cahn-Hilliard model of multiphase transition was implemented in
[166] to perform multimaterial structural optimization.

The first publications on multiphase optimization, using the level set method, are these of Mei et
al. [94] and Wang et al. [153] (see also [93], [152], [154]). Following an idea of Vese and Chan [151],
the authors in [94], [153] used m level set functions to represent up to n = 2m materials: we shall
adhere to this setting (see section 6.5). The level set functions are advected through eikonal Hamilton-
Jacobi equations in which the normal velocity is given by the shape derivative of the objective function.
Unfortunately, the shape derivatives, derived in [94] and [153], are not correct in full mathematical rigor as
we explain in section 6.4. Fortunately, these shape derivatives are approximations of the correct formula
upon various assumptions. A first goal of the present paper is to clarify the issue of shape differentiability
of a multiphase optimization problem. In section 6.2 we give the correct shape derivative in the setting
of a sharp interface between phases (see Proposition 6.2.1). It was first obtained in [15] for a problem of
damage and fracture propagation but, in a scalar setting, previous contributions can be found in [72], [29],
[108]. Because the phase properties are discontinuous through the interfaces, the transmission conditions
imply that only the elastic displacement and the normal stress are continuous at the interfaces, leaving
the tangential stress and the normal strain discontinuous. These discontinuities yield obvious difficulties
which must be handled carefully. The exact or continuous shape derivative turns out to be somehow
inadequate for numerical purposes since it involves jumps of strains and stresses through the interfaces,
quantities which are notably hard to evaluate with continuous finite elements. Therefore, Proposition
6.2.4 gives a discrete variant of this shape derivative which does not involve any jumps and is similar to
the result of [94] and [153]. The idea is to consider a finite element approximation of the elasticity system,
the solution of which has no derivative jumps through the interface, implying that the shape derivative
is much easier to compute.

Another delicate issue in multiphase optimization using the level set method is that the interface is
inevitably diffuse and its thickness may increase, thus deterioring the peformance of the analysis and
eventually of the optimization. Note that, for most objective functions, it is always advantageous to
introduce intermediate values of the material properties, so that the interface spreading is produced by
the optimization process itself and not merely by the numerical diffusion. In [94] the authors introduced
a penalization term to control the width of the interpolation zone between the materials. In [153] the
level set functions are re-initialized to become signed distance functions, which permits a more explicit
control of the interpolation width. A second goal of the present paper is to propose a smoothed interface
setting which guarantees a fixed thickness of the interface without any increase in its width (as it is
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already the case in the standard single material level set method for shape and topology optimization).
In section 6.3 we describe a regularization of the interface which relies on the signed distance function to
the interface. Note that the signed distance function has nothing to do with the level set function which
is used in numerical simulations. Indeed, the solution of the advection Hamilton-Jacobi equation (with
a velocity given by the shape derivative) is usually not the signed distance function (which explains why
reinitialization is often used in practice). In such a smoothed interface setting our main result is Theorem
6.3.2 which gives the shape derivative of the objective function. It requires several intermediate technical
results, notably finding the shape derivative of the distance function (first obtained in [48]) and using a
coarea formula to reduce a volume integral to a product integral on the interface and along normal rays,
which have been presented in Chapter 3. Once again, we show in section 6.3.3 that, when a regularised
Heaviside function is used as interpolation function for the material properties and the regularization
parameter (or the thickness of the diffuse interface) is vanishingly small, the exact shape derivative can
be approximated by the formula already obtained in Proposition 6.2.4 which corresponds to the result of
[94] and [153] too.

Section 6.3.4 explains how the smoothed interface model converges to the sharp interface problem as
the regularization parameter goes to zero. Next, Section 6.4 is devoted to a comparison with [94] and
[153]. Since, for simplicity, all the previous theoretical results were stated in the case of a single interface
between two phases, we explain how to generalize our smoothed interface setting to more materials in
section 6.5. In section 6.6 we show several 2-d results and make comparisons between the different settings
and formulas for the shape derivatives. Some optimal designs obtained by our approach are compared to
those previously computed in [153] and [154]: ours are more symmetric and sometimes slightly different.
We believe it is due to our use of a correct shape derivative instead of an approximate one. Finally, in
Section 6.7 we apply this method in the design of materials’ microstructure using inverse homogenization.

6.2 Sharp-interface formulation in a fixed mesh framework

To simplify the exposition in the first sections we limit ourselves to the case of two materials. Of course,
the proposed approach extends to more phases and the corresponding details are given in section 6.5.

6.2.1 Description of the problem

The general purpose of this paper is to optimize the position of the interface Γ between two linear
elastic materials, hereafter labeled as 0 and 1, with respective Hooke’s laws A0, A1. These materials
fill two respective subdomains Ω0,Ω1 of a (bounded) working domain D of R

N , (N = 2 or 3) which
accounts for the resulting structure of the optimal distribution of materials, i.e. D = Ω0 ∪ Γ ∪ Ω1. To
avoid mathematical technicalities, we assume that Γ is a smooth surface without boundary and strictly
included in D, that is, Γ ∩ ∂D = ∅. We refer to Ω1 as the exterior subdomain, so that ∂Ω0 = Γ (see
Figure 6.1). Thus, the shape of the interface Γ is altogether conditionned by that of Ω0, and conversely.
In the sequel, the variable of shape optimization is denoted either by Γ or Ω0, without distinction.

D

Ω
0

Ω
1

Γ

Figure 6.1: Fixed working domain D occupied by two distinct materials Ω0 and Ω1 separated by a smooth
interface Γ.

The structure D is clamped on a part ΓD ⊂ ∂D of its boundary, and is submitted to body forces and
surface loads, to be applied on a part ΓN ⊂ ∂D, which are given as two vector-valued functions defined



182 CHAPTER 6. MULTI-PHASE STRUCTURAL OPTIMIZATION

on D, respectively f ∈ L2(D)N , and g ∈ H1(D)N .

Perhaps the most natural and physical way to model such a distribution of two materials among a
fixed working domain is the so-called sharp-interface formulation. More specifically, the total Hooke’s
law on D is defined as Aχ := A0χ0 + A1χ1, where χi stands for the characteristic function of the phase
Ωi. In this context, the displacement field u is the unique solution in H1(D)N to the linearized elasticity
system 




−div (Aχ e(u)) = f in D
u = 0 on ΓD

(A1 e(u)) · n = g on ΓN ,
(6.1)

where e(u) = ∇uT+∇u
2 is the strain tensor, and n stands for the outer unit normal vector to ∂D.

Our purpose is to minimize an objective function of the interface Γ, which is rather expressed as a
function J(Ω0) of the interior subdomain,

J(Ω0) =

∫

D

j(x, u) dx+

∫

ΓN

k(x, u) ds, (6.2)

where j(x, u) and k(x, u) are smooth functions satisfying adequate growth conditions. A typical example
is the compliance of the structure D, which reads

J(Ω0) =

∫

D

f · u dx+

∫

ΓN

g · u ds =

∫

D

Aχ(x)e(u) : e(u)dx. (6.3)

6.2.2 Shape-sensitivity analysis of the sharp-interface problem

There exists a vast literature on the Hadamard method for computing derivatives with respect to the
exterior boundary (see e.g. [4], [48], [71], [130] and references therein) but relatively few works on the
derivation with respect to an interface between two regions. In the conductivity context (i.e. replacing
(6.1) by a scalar equation), derivatives with respect to an interface have been obtained in [72], [29], [108].
These results were extended to the elasticity setting in [15]. Let us also mention the works [75], [103]
where similar results are obtained for a stratified media (where the interfaces are flat and parametrized
by a single scalar parameter).

As noticed in [15] and [108], the essential ingredients that must be considered in the calculation of
the shape derivative of a problem such as (6.1) are the transmission conditions and the differentiability
of the solution u with respect to the interface Γ. Furthermore, when a numerical implementation is
sought, an additional element must be taken into account: the way in which the transmission conditions
(continuity of the displacement and continuity of the normal stress across the interface) are interpreted
by finite element methods in a fixed mesh framework. In general these methods either partially preserve
the transmission conditions (e.g. classical Lagrange finite elements method) or exactly preserve the trans-
mission conditions (e.g. extended finite elements XFEM [136], adapted interface meshing [44], etc.).

It is known [15], [108] that the solution u ∈ H1(D) of (6.1) is not shape differentiable with respect
to the interface Γ. The reason is that some spatial derivatives of u are discontinuous across the interface
because of the jump of the material elastic properties. Note however that the transported (or pull-back)
function uθ := u ◦ (Id + θ) is indeed differentiable with respect to θ (this is the difference between the
material derivative in the latter case and the shape derivative in the former case, see [4], [71]). It is not
necessary to use the concept of material derivative for computing the shape derivative of the objective
function. One can stay in a Eulerian framework and use Céa’s formal Lagrangian method [35] to find the
correct formula for the shape derivative J ′(Ω0)(θ). In order to circumvent the non-differentiability of u,
the idea is to introduce the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 .

We recall the result of [15] for the shape derivation of the objective function (6.2). We need to introduce
some notations about jumps through the interface Γ. For any quantity s which is discontinuous across
Γ, taking values s0 (resp. s1) on Ω0 (resp. Ω1), denote as [s] = s1 − s0 the jump of s. We also introduce
at each point of Γ the local basis obtained by gathering the unit normal vector n (pointing outward Ω0)
and a collection of of unit tangential vectors, denoted by τ , such that (τ, n) is an orthonormal frame. For
a symmetric N ×N matrix M, written in this basis, we introduce the notation

M =

(
Mττ Mτn

Mnτ Mnn

)
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where Mττ stands for the (N−1)×(N−1) minor of M, Mτn is the vector of the (n−1) first components
of the n-th column of M, Mnτ is the row vector of the (n − 1) first components of the n-th row of M,
and Mnn the (n, n) entry of M. Finally, we define the adjoint problem





−div (Aχ e(p)) = −j′(x, u) in D,
p = 0 on ΓD,

(A1 e(p)) · n = −k′(x, u) on ΓN ,
(6.4)

where the symbol ′ denotes differentation with respect to u.

Proposition 6.2.1. The shape derivative of the cost function J , defined in (6.2), reads

J ′(Ω0)(θ) = −
∫

Γ

D(u, p) θ · nds,

D(u, p) = −σ(p)nn : [e(u)nn] − 2σ(u)nτ : [e(p)nτ ] + [σ(u)ττ ] : e(p)ττ . (6.5)

where [·] = ·1 − ·0 denotes the jump through Γ, n = n0 = −n1 and σ(v) = Aχ e(v).

Remark 6.2.2. To better appreciate the expression (6.5) where some terms have jumps and others not,
we recall that the tangential strain tensors e(u)ττ and e(p)ττ are continuous through the interface Γ while
the normal components e(u)nn, e(u)nτ , e(p)nn and e(p)nτ are discontinuous. On the contrary, the normal
components of the stress tensors σ(u)nn, σ(u)nτ , σ(p)nn and σ(p)nτ are continuous through Γ while their
tangential parts σ(u)ττ and σ(p)ττ are discontinuous.

Proof. We merely sketch the proof that can be found in [15]. In order to apply Céa’s Lagrangian method
[35], we first introduce the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 , which
satisfy the transmission problem:





−div
(
A1 e(u

1)
)

= f in Ω1

u1 = 0 on ΓD ∩ ∂Ω1
(
A1 e(u

1)
)
· n = g on ΓN ∩ ∂Ω1

u1 = u0 on Γ
(A0e(u

0)) · n0 + (A1e(u
1)) · n1 = 0 on Γ,

(6.6)

and 



−div
(
A0 e(u

0)
)

= f in Ω0

u1 = u0 on Γ
(A0e(u

0)) · n0 + (A1e(u
1)) · n1 = 0 on Γ.

(6.7)

Of course, (6.1) and (6.6)-(6.7) are equivalent. Note that, by standard regularity theory [92], u is smooth
on each subdomain, namely u0 ∈ H2(Ω0) and u1 ∈ H2(Ω1). Then, we define the Lagrangian

L(θ, v1, v0, q1, q0) =
∑

i=0,1

(∫

(Id+θ)Ωi

j(x, vi)dx+

∫

ΓN

k(x, vi)ds

)
(6.8)

+
∑

i=0,1

(∫

(Id+θ)Ωi

Aie(v
i) : e(qi)dx−

∫

(Id+θ)Ωi

f · qidx−
∫

ΓN

g · qids
)

+
1

2

∫

(Id+θ)Γ

(σ1(v1) + σ0(v0))n · (q1 − q0)ds

+
1

2

∫

(Id+θ)Γ

(σ1(q1) + σ0(q0))n · (v1 − v0)ds,

where the last two surface integrals account for the transmission conditions. Differentiating L with
respect to q1, q0 yields the state equations (6.6)-(6.7), while differentiating with respect to v1, v0 leads to
the adjoint equation (6.4). Then a standard, albeit nasty, computation (see [15] for full details) shows
that

J ′(Ω0)(θ) =
∂L
∂θ

(0, u1, u0, p1, p0)(θ),

which yields the result.
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Remark 6.2.3. Proposition 6.2.1 can be extended in several ways. For example, if the integrand j
depends on χ, namely if the objective function is

J(Ω0) =

∫

D

jχ(x, u)dx+

∫

ΓN

k(x, u)ds :=
∑

i=0,1

∫

Ωi

ji(x, u)dx+

∫

ΓN

k(x, u)dx,

we obtain a shape derivative which is

J ′(Ω0)(θ) = −
∫

Γ

(
[jχ(x, u)] + D(u, p)

)
θ · nds,

with the same expression (6.5) for D(u, p).

Although formula (6.5) for the shape derivative makes perfect sense in a continuous setting, its
numerical discretization is not obvious. Indeed, (6.5) involves jumps through the interface which are
difficult to evaluate from a numerical point of view if the interface is not exactly meshed. Let us explain
the difficulty by making some specific discretization choices, keeping in mind that any other numerical
method will feature similar drawbacks. Suppose D is equipped with a conformal simplicial mesh Dh =⋃N
i=1Ki with N elements Ki of maximal size h. Let Π1(Dh) and Π0(Dh) be the finite-dimensional

spaces of Lagrange P
1, respectively P

0, finite element functions. Define uh, ph ∈ Π1(Dh) the internal
approximations of u and p respectively, i.e.,

∫

D

Aχe(uh) : e(vh) dx =

∫

D

f · vh dx+

∫

ΓN

g · vh ds, ∀vh ∈ Π1(Dh), (6.9)

and
∫

D

Aχe(ph) : e(vh) dx = −
∫

D

j′(x, uh) · vh dx−
∫

ΓN

k′(x, uh) · vh ds, ∀vh ∈ Π1(Dh). (6.10)

Since the discrete strain tensors e(vh) are constant in each cell Ki, we can replace Aχ in the above internal
approximate variational formulation by its P

0 interpolate A∗ defined by

A∗|K = ρA0 + (1 − ρ)A1, with ρ =

∫

K

χdx.

Within this discretized framework the naive evaluation of the jumps in (6.5) has no meaning. Indeed,
consider the generic case of an element K cut in its interior by the interface Γ (see Figure 6.2). For P

1

Lagrange finite elements the strain tensors e(vh), for vh = uh, ph, are constant in K, thus yielding a zero
jump. Similarly, if the stress tensors are evaluated as σh = A∗e(vh), they are constant in K and their
jump is again zero, leading to a vanishing shape derivative ! There is an alternative formula for the stress
tensor which is σh = Aχe(vh): it yields a non-vanishing jump [A]e(vh) and the discretization of (6.5)
would be

(D(u, p))h = ([A]e(u))ττ : e(p)ττ , (6.11)

which is different from the discrete formula (6.13) by lack of any normal components. On the same token,
note that the ”exact” continuity of the normal stress through Γ does not hold for σh = Aχe(vh) with
vh = uh, ph since

[σh · n] = ([A]e(vh)) · n 6= 0.

Γ

A∗ = ρA0 + (1− ρ)A1

u0
h
= u1

h

(σ0(u0
h
))n 6= (σ1(u1

h
))n

(σ∗(u0
h
))n = (σ∗(u1

h
))n

A1

A0

Figure 6.2: Transmission condition in a fixed mesh framework.
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Therefore some special care is required for the numerical approximation of (6.5). A complicated
process was proposed in [15] for computing the jump of a discontinuous quantity sh, based on the diffuse
interface approximation

[sh] ≈
(

(1 − χ)sh − χsh

)
. (6.12)

Notwithstanding this approximation seems to work well when the contrast between the two elastic phases
is very large (as is the case in damage or fracture models, see [15]), more general numerical experiences
for comparable elastic moduli indicate a much worse behavior of this approximation, up to the point that
(6.5) does not any longer provide a proper descent direction to minimize (6.2) (see section 6.6.2).

This difficulty in the numerical evaluation of the shape derivative (6.5) is just another example of the
well-known paradigm ”should we differentiate first and then discretize or vice versa ?” as already studied
in [104]. In order to get around this issue it is tempting, and we do so now, to investigate the case when
we first discretize and then differentiate. In other words we consider the objective function

Jh(Ω0) =

∫

D

j(x, uh) dx+

∫

ΓN

k(x, uh) ds,

where uh ∈ Π1(Dh) is the discrete solution of (6.9).

Proposition 6.2.4. Assume that the interface Γ generically cuts the mesh Dh, namely that it is never
aligned with part of a face of any cell Ki. Then, the solution uh of (6.9) is shape differentiable and the
shape derivative of the cost function Jh is given by

J ′
h(Ω0)(θ) = −

∫

Γ

[Aχ]e(uh) : e(ph) θ · nds, (6.13)

where [·] denotes the jump through Γ and ph is the solution of (6.10).

Remark 6.2.5. Note that Proposition 6.2.4 holds true for most finite elements discretization and not
merely P

1 Lagrange finite elements. The assumption on the interface Γ is necessary in the sense that,
if a face of an element K of the mesh is embedded in Γ, then neither uh nor Jh are shape differentiable
(in the most favorable case, there would be two directional derivatives corresponding to Γ moving on one
side or on the other of this face of K). However, if instead of Lagrange finite elements, we use Hermite
finite elements which ensure that e(uh) is continuous on D, then the results of Proposition 6.2.4 hold true
without any assumption on Γ.

Proof. Let us denote by φi(x) the basis functions of the finite element space Π1(Dh). The solution
uh ∈ Π1(Dh) is decomposed as

uh(x) =
∑

i

Uhi φi(x),

and the vector Uh of components Uhi is the solution of the linear system

KhUh = Fh,

where the stiffness matrix Kh and the right hand side Fh are defined as

Kh
i,j =

∫

D

Aχe(φi) : e(φj) dx, and Fhi =

∫

D

f · φi dx+

∫

ΓN

g · φi ds.

The basis functions φi are independent of Γ so the shape differentiability of the function uh reduces to
that of the vector Uh and thus of the rigidity matrix Kh. Since the quantity e(φi) : e(φj) is piecewise
constant on each element K, we need our assumption on Γ which does not overlap any face of K. In such
a case we obtain

(
Kh
ij

)′
(Γ)(θ) =

∫

Γ

[Aχ]e(φi) : e(φj) θ · nds

and thus

u′h(Γ)(θ) =
∑

i

(
Uhi
)′

(Γ)(θ)φi, where
(
Uh
)′

(Γ)(θ) = −(Kh)−1
(
Kh
)′

(Γ)(θ)Uh.
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Once uh is shape differentiable, it is not necessary anymore to consider a complicated Lagrangian like
(6.8), taking into account the transmission conditions through Γ (which, by the way, do not hold true for
uh). Therefore we define a discrete Lagrangian as

Lh(θ, vh, qh) =

∫

D

j(x, vh) dx+

∫

ΓN

k(x, vh) ds+

∫

D

A(Id+θ)χe(vh) : e(qh) dx−
∫

D

f · qh dx−
∫

ΓN

g · qh ds,

to which it is easy to apply Céa’s method. Note that the adjoint problem obtained by differentiating Lh
with respect to vh is exactly (6.10) which was a discretization of the continuous adjoint. Therefore we
deduce

J ′
h(Ω0)(θ) =

∂Lh
∂θ

(0, uh, ph)(θ),

which yields the desired result.

There is a clear difference between the discrete derivative (6.13) and the continuous one (6.5). Even
if the continuous derivative is further discretized as suggested in (6.11), there is still a difference between
(6.13) and (6.11) which is that the latter one is restricted to the tangential components of the stress and
strain tensors.

There is however one case where both formulas coincide which is when one of the phases is void.
Indeed, assume that A0 = 0 (and similarly that f = 0 and j = 0 in Ω0 so that no loads are applied to
the void region). Then, in the domain Ω0 we have

σ(p)nn = 0, σ(p)nτ = 0, σ(u)nn = 0 and σ(u)nτ = 0.

Thus, we deduce that the continuous derivative (6.5) becomes

J ′(Ω0)(θ) = −
∫

Γ

σ(u1)ττ : e(p1)ττ θ · nds,

which, upon discretization, coincides with the discrete derivative (6.13)

J ′
h(Ω0)(θ) = −

∫

Γ

A1e(uh) : e(ph) θ · nds,

since σ(u1)nn = σ(u1)nτ = 0 on Γ.
The above study shows that the numerical discretization of the sharp-interface problem should be

handled carefully when a standard finite element method is used for solving the state and adjoint systems
(6.1) and (6.4) in a fixed mesh setting. The main reason of this difficulty lies in the difference of
regularity of the exact and approximated solutions through the interface. The discrete derivative (6.13)
is very efficient in numerical practice. Many examples are given in [50] in the context of optimal design
of laminated composite panels.

6.3 Shape derivative in the smoothed-interface context

6.3.1 Description of the problem

We now present an alternative approach to that of section 6.2 which can be coined as smoothed or diffuse
interface approach. It can be seen as a mathematically convenient approximation of the sharp-interface
problem but, as explained in the introduction, it has its own merits for some problems in material
science which feature physically thick transition zones [31], [137], [146], [150]. More precisely, either for a
mathematical approximation or for physical reasons, it may be desirable to model the interface Γ between
Ω0 and Ω1 as a thin layer of (small) width 2ε > 0 rather than as a sharp interface. In this context, we
rely on the notion of signed distance function (1.3.2).

The material properties in D are defined as a smooth interpolation between A0 and A1 in the layer
of width 2ε around Γ, so that the resulting Hooke’s tensor AΩ0,ε reads

AΩ0,ε(x) = A0 + hε(dΩ0(x))(A1 −A0), ∀x ∈ D, (6.14)

where hε : R → R is a smooth approximation of the Heaviside function, that is, a smooth monotone
function enjoying the properties : hε(t) = 0 for t < −ε, hε(t) = 1 for t > ε. In the sequel, we chose the
C2 function

∀ t ∈ R, hε(t) =





0 if t < −ε
1
2

(
1 + t

ε
+ 1

π
sin(πt

ε
)
)

if − ε ≤ t ≤ ε
1 if t > ε.

(6.15)
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Remark 6.3.1. Formula (6.15) expresses a simple choice for the interpolation of the material properties
between the two materials, and of course, one could think of different interpolation rules. Moreover, the
interpolation function could also contain parameters that are themselves subject to optimization (e.g. the
layer width ε) and both a geometric and parametric optimization could be combined using a method of
alternating directions. Therefore, this method could be generalized to the shape and topology optimiza-
tion of functionally graded materials in a straightforward way (see [150] for the use of non-monotone
interpolation functions).

We modify (6.1) so that the elastic displacement now solves





−div
(
AΩ0,ε e(u)

)
= f in D

u = 0 on ΓD
(A1 e(u)) · n = g on ΓN .

(6.16)

The objective function does not change and we still minimize (6.2) which depends on dΩ0 through (6.14).

6.3.2 Shape derivative of the compliance in the multi-materials setting

We now differentiate the cost function (6.2) with respect to the domain, using the results of Section 3.3.
We keep the geometrical assumptions of section 6.2, namely for a given bounded open set D ⊂ R

N which
is partitioned in two subdomains Ω0,Ω1 ⊂ D, Ω0 is a strict subset of D in the sense that its boundary
Γ, as well as its thick approximation, does not touch ∂D (see Figure 6.1) and Γ is smooth.

We define the adjoint problem





−div
(
AΩ0,ε e(p)

)
= −j′(x, u) in D,

p = 0 on ΓD,
(A1 e(p)) · n = −k′(x, u) on ΓN ,

(6.17)

where the symbol ′ denotes differentation with respect to u.
Our main result is the following.

Theorem 6.3.2. The objective function (6.2) is shape differentiable in the sense of Gâteaux, namely
θ 7→ J((Id+ θ)Ω0) admits a Gâteaux derivative at θ = 0, which is

J ′(Ω0)(θ) = −

∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx, ∀ θ ∈W 1,∞(D,RN ), (6.18)

where n is the outer unit normal to Ω0 and f0, f1 are scalar functions defined by

f0(x) =

∫

ray
Γ
(x)∩Ω0

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)
N−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =

∫

ray
Γ
(x)∩Ω1

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

N−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

where z denotes a point in the ray emerging from x ∈ Γ.

Proof. The rigorous proof of existence of the shape derivative stems from classical arguments (typically
the implicit function theorem) similar to those invoked in [130] or chapter 5 in [71]. We rather focus
on the actual computation of the shape derivative and use once again the formal Lagrangian method of
Céa [35]. As the computation unfolds very similarly to that in the proof of Theorem 3.6 in [16], we limit
ourselves to the main arguments.

Define first the functional space V := {v ∈ H1(D)N such that v = 0 on ΓD}, in which are sought the
solution of the state equation (6.16) and of the adjoint equation (6.17). We introduce the Lagrangian
L : W 1,∞

(
D,RN

)
× V × V → R, defined by

L(θ, v, q) =

∫

D

j(x, v) dx+

∫

ΓN

k(x, v) ds+

∫

D

A(Id+θ)Ω0,εe(v) : e(q) dx−

∫

D

f · q dx−

∫

ΓN

g · q ds. (6.19)

Here, q is intended as the Lagrange multiplier associated to the enforcement of the state equation. As
usual, stationarity of the Lagrangian provides the optimality conditions for the minimization problem.
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At θ = 0, cancelling the partial derivative of L with respect to q yields the variational formulation of
the state u. In the same way, the nullity of the partial derivative of L with respect to v leads to the
variational formulation of the adjoint p.

Eventually, the shape derivative of the objective function is the partial derivative of L with respect
to θ, evaluated at u and p

J ′(Ω0)(θ) =
∂L
∂θ

(0, u, p)(θ).

Some elementary algebra, using the shape differentiability of dΩ0(x) for almost every x ∈ D, yields

J ′(Ω0)(θ) =

∫

D

(
A(Id+θ)Ω0,ε

)′
(θ) e(u) : e(p) dx

= −
∫

D

h′ε(dΩ0(x)) (θ(pΓ(x)) · n(pΓ(x))) (A1 −A0)e(u) : e(p) dx,
(6.20)

where
(
A(Id+θ)Ω0,ε

)′
(θ) is the directional shape derivative of A(Id+θ)Ω0,ε while h′ε is the standard deriva-

tive of the real function hε. It remains to transform this expression by the coarea formula in order to
deduce a boundary integral. Using formula (3.11) for (6.20), we get

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)

(∫

ray
Γ
(x)∩D

h′ε(dΩ0(z))(A1 −A0)e(u)(z) : e(p)(z)

N−1∏

i=1

(1 + dΩ0(z)κi(x))dz

)
dx.

Now decomposing the above integral over Ω0 and Ω1 readily yields the desired result.

Remark 6.3.3. Theorem 6.3.2 provides a simple way of choosing a descent direction for a shape gradient
based algorithm. Indeed it is enough to perturb the interface Γ by choosing the vector field

θ(x) =
(
f0(x) + f1(x)

)
n(x),

which ensures that the directional derivative (6.18) is negative and thus yields a decrease of the objective
function (6.3). This is in sharp contrast with Corollary 3.3.6 which provided formula (3.7) for the shape
derivative. However it was impossible to extract directly from (3.7) an explicit value of θ which was a
guaranteed descent direction.

Remark 6.3.4. In the case of compliance minimization, namely for the objective function (6.3), we have
j′ = f , k′ = g and thus p = −u. If we assume that material 1 is stronger than material 0, in the sense
that A1 ≥ A0 as positive definite tensors, we deduce from the formulas of Theorem 6.3.2 that both f0 and
f1 are non-positive because 1 + κi(x)dΩ0(z) ≥ 0 by virtue of Lemma 3.3.9. Thus, a descent direction is
obtained by choosing θ such that θ(x) · n(x) < 0 on Γ, namely we expand Ω1. This is in accordance with
the mechanical intuition that a more robust mixture of the two materials is achieved when A1 prevails
over A0. Of course, for the problem to be reasonable, a volume constraint is imposed on the phases.

6.3.3 Approximate formulas for the shape derivative

Although formula (6.18) is satisfying from a mathematical point of view, its numerical evaluation is
not completely straightforward. There are two delicate issues. First, one has to compute the principal
curvatures κi(x) for any point x ∈ Γ on the interface. Second, one has to perform a 1-d integration along
the rays of the energy-like quantity [A]e(u) : e(p). This is a classical task in the level-set framework [120]
but, still, it is of interest to devise a simpler approximate formula for the shape derivative.

A first approximate formula is to assume that the interface is roughly plane, namely to assume that the
principal curvatures κi vanish. In such a case we obtain a ”Jacobian-free” approximate shape derivative

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx

fi(x) =

∫

ray
Γ
(x)∩Ωi

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)dz.
(6.21)

A second approximate formula is obtained when the smoothing parameter ε is small. Note that, since the
support of the function h′ε is of size 2ε, the integral in formula (6.18) is confined to a tubular neighborhood
of Γ of width 2ε. Therefore, if ε is small, one may assume that the functions depending on z are constant
along each ray, equal to their value at x ∈ Γ. In other words, for small ε we assume

e(u)(z) ≈ e(u)(x), e(p)(z) ≈ e(p)(x) and dΩ0(z) ≈ dΩ0(x) = 0,
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which yields the approximate formulas, for x ∈ Γ,

f0(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫

rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz,

f1(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫

rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz.

Furthermore, most rays have a length larger than 2ε so that
∫

rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz +

∫

rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz = hε(ε) − hε(−ε) = 1.

In turn we obtain the following approximate formula for (6.18)

J ′(Ω0)(θ) ≈ −
∫

Γ

(A1 −A0)e(u) : e(p) θ · ndx, (6.22)

which is nothing but the discrete shape derivative (6.13) that we obtained in the sharp-interface case.
This computation seems a bit miraculous but makes sense as a kind of commutation property between
interface regularization and optimization.

Our numerical results show that the latter simplification (6.22), which we shall refer to as the approx-
imate shape derivative, works very well in practice for problems of compliance minimization. Formula
(6.22) is also used by other authors in their numerical simulations [153].

6.3.4 Convergence of the smoothed-interface shape optimization problem to

the sharp-interface problem

When the smoothed-interface setting is used as an approximation of the sharp-interface case, it is a
natural task to prove that this approximation is mathematically consistent. In this section, we present a
result in this direction. More specifically, for a given regular interface Γ, we prove that the shape gradient
obtained in Theorem 6.3.2 for a smoothed transition layer of width 2ε converges, as ε goes to 0, to the
corresponding shape gradient in the sharp-interface context, recalled in Proposition 6.2.1.

To set ideas, let us limit ourselves to the case of compliance minimization, the case of a general
objective function such as (6.2) being no different in principle. In order to make explicit the dependence
on the half-thickness ε of the smoothed transmission area, the solution of the state system (6.16) is
denoted uε in this section. Similarly the stress tensor is σ(uε) = AΩ0,ε e(uε) and the compliance is

Jε(Ω
0) =

∫

D

σ(uε) : e(uε) dx.

The solution of the state system (6.1) in the sharp-interface case is still denoted as u, and the associated
compliance as J(Ω0).

To find the limit of J ′
ε(Ω0), as ε → 0, requires some knowledge of the asymptotic behavior of e(uε)

and σ(uε) in the vicinity of the interface Γ. Unfortunately, one cannot expect all the components of
e(uε) and σ(uε) to converge toward their counterpart in e(u) and σ(u) in any space of smooth enough
functions. Indeed, for fixed ε, e(uε) is smooth over D (because so is the associated Hooke’s tensor),
whereas we recalled in Remark 6.2.2 that e(u)τn and e(u)nn are discontinuous across Γ, as imposed by
the transmission conditions. However, some of the components of e(uε) and σ(uε) do behave well as
ε → 0. This is the purpose of the following lemma, which is a consequence of rather classical results in
elliptic regularity theory (see [44] for a proof).

Lemma 6.3.5. Assuming Γ is a C2 interface, there exists a tubular neighborhood V ⊂⊂ D of Γ such
that one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal
vectors τ . Then, the following strong convergences hold true

e(uε)ττ
ε→0
−→ e(u)ττ in H1(V )(N−1)2 strong,

σ(uε)τn
ε→0
−→ σ(u)τn in H1(V )N strong,

σ(uε)nn
ε→0
−→ σ(u)nn in H1(V ) strong.

.

Remark 6.3.6. The components of the strain and stress tensors which converge in Lemma 6.3.5 corre-
spond exactly to those which are continuous through the interface Γ as explained in Remark 6.2.2.
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We are now in a position to state the main result of the present section which implies that the shape
derivative of the smoothed-interface objective function is a consistent approximation of the corresponding
shape derivative in the sharp-interface case.

Theorem 6.3.7. Under the above assumptions, we have

lim
ε→0

J ′
ε(Ω

0)(θ) = J ′(Ω0)(θ) ∀ θ ∈W 1,∞(D,RN ).

Sketch of the proof. As the proof involves rather classical arguments, but tedious computations, we limit
ourselves with an outline of the main steps, referring to [44] for details. The goal is to pass to the limit
ε → 0 in formula (6.18), for a fixed θ ∈ W 1,∞(D,RN ). To achieve this, the rays rayΓ(x) ∩ Ω0 and
rayΓ(x) ∩ Ω1 are expressed as integrals over the segment (0, 1). Therefore, (6.18) becomes

J ′
ε(Ω

0)(θ) = −

∫

Γ

θ(x) · n(x)
(
fε0 (x) + fε1 (x)

)
dx,

where fε0 , f
ε
1 ∈ L1(Γ) are defined as

fε0 (x) =

∫ 0

−1

h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (6.23)

fε1 (x) =

∫ 1

0

h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (6.24)

with

kε(x, s) =

N−1∏

i=1

(1 + sεκi(x)) .

Since h′ε(sε) does not depend on ε, to pass to the limit in (6.23) and (6.24) requires merely the following
simple technical convergence result (see [44] for a proof)

∫ 1

0

v(s) fε(x+ sεn(x))gε(x+ sεn(x)) ds
ε→0
−→

(∫ 1

0

v(s) ds

)
f(x)g(x) in L1(Γ) (6.25)

for a smooth function v(s) and any sequences fε, gε ∈ H1(D), which converge strongly in H1(D) to f, g
respectively. In order to apply (6.25) we rewrite expressions (6.23) and (6.24) in terms of the components
e(uε)ττ and σ(uε)τn, σ(uε)nn of the strain and stress tensors, which have a fine behavior at the limit
ε→ 0 as guaranteed by Lemma 6.3.5. After some algebra, we obtain the following rearrangement for the
integrand in fε0 and fε1 :

(A1 −A0)e(uε) : e(uε)(x+ sεn(x)) = µ′(s) (e(uε)ττ : e(uε)ττ ) (x+ sεn(x))

+
µ′(s)

µ(s)2
(σε(uε)τn · σε(uε)τn) (x+ sεn(x))

+
4µ2(s)λ′(s) + 2µ′(s)λ2(s)

(2µ(s) + λ(s))2
tr(e(uε)ττ )2(x+ sεn(x))

+
2µ′(s) + λ′(s)

(2µ(s) + λ(s))2
σε(uε)

2
nn(x+ sεn(x))

+
4µ(s)λ′(s) − 4µ′(s)λ(s)

(2µ(s) + λ(s))2
(σε(uε)nn tr(e(uε)ττ )) (x+ sεn(x))

,

with
λ(s) = λ0 + hε(sε)(λ1 − λ0), µ(s) = µ0 + hε(sε)(µ1 − µ0),

where λ0, µ0 and λ1, µ1 are the Lamé coefficients of materials 0, 1 respectively. Note that all the functions
of s involving λ(s) and µ(s) appearing in the above expression arise as exact derivatives of functions of
λ(s) and µ(s). Passing to the limit in the above expression using (6.25) leads to

(fε0 + fε1 ) → D(u, u) in L1(Γ),

where D(u, u) is defined as

D(u, u)(x) = 2 [µ] e(u)ττ (x) : e(u)ττ (x) −
[
1
µ

]
σ(u)τn(x) · σ(u)τn(x)

+
[

2λµ
(2µ+λ)

]
tr(e(u)ττ (x))2 −

[
1

2µ+λ

]
σ(u)(x)2nn

+
[

2λ
2µ+λ

]
σ(u)nn(x) tr(e(u)ττ (x))

,

which after some algebra rewrites as (6.5). This completes the proof.
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6.4 Discussion and comparison with previous formulae in the

literature

To our knowledge, the first works on multi-phase optimization using a level-set method are [94] and [153].
Further references include [93], [152], [154]. In all these works the computation of the shape derivative
is not mathematically rigorous and the obtained formulas are not strictly correct. Indeed, either the
shape differentiation is performed in the sharp-interface case and then the non-differentiable character
of the solution of (6.1) is ignored (as explained in section 6.2.2), or the shape derivative is evaluated
in the smoothed-interface case and then the derivative of the signed distance function is not taken into
account. Fortunately, the shape derivative formulas in [94] and [153] coincide with what we called our
approximate shape derivatives obtained in Proposition 6.2.4 for a discretization of the sharp-interface
case and in (6.22) for a very thin smoothed interface. A third possibility for interpreting these works is
to consider that the regularization of the interface is made with the help of the level set function ψ (used
in numerical practice for representing and advecting the shape, see section 6.6 below) rather than with
the signed distance function dΩ. Then the differentiation is performed with respect to ψ rather than with
respect to the shape Ω. It alleviates all the technical details of section 6.3 but it has one major flaw that
we now describe.

Figure 6.3: Intermediate zone for regularization with the signed distance function (left) or with a level
set function (right).

Indeed, in the context of section 6.3 on the smoothed interface approach, one may replace the regu-
larization formula (6.14) by a similar one

AΩ0,ε(x) = A0 + hε(ψ(x))(A1 −A0), ∀x ∈ D, (6.26)

where the signed distance function dΩ has simply been replaced by the level set function ψ. Then, as is
done in [94] and [93], one may differentiate the objective function with respect to ψ. A serious problem
that rises directly from this choice, is that the interpolation zone, where AΩ0,ε takes intermediate values
between A0 and A1, can thicken during the optimization process, especially if the level set function ψ
is not frequently reinitialized towards the signed distance function to the boundary (see Figure 6.3).
The reason is that the interpolation zone corresponds to some kind of homogenized material made of
A0 and A1, which is known to be more advantageous than pure phases in most problems [4]. The
optimization process therefore does not only move the interface location but also flaten the level set
function ψ so that the interpolation zone gets thicker. Even when the level set function is reinitialized,
there remains a difficulty in the sense that the value of the objective function may change before and after
reinitialization. A partial remedy to this inconvenient, as suggested in [94], is to add to the objective
function a penalization term to control the enlargement.

The computation of the shape derivative is slightly different in [153]: the authors carry out the
derivation with the level set function ψ but in the resulting formula they assume that ψ coincides with
the signed distance function to the interface dΩ. More precisely, following the notations of Corollary
3.3.6, they consider a functional

J(Ω) =

∫

D

m(x, ψ(x)) dx, (6.27)
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Figure 6.4: Two subdomains of D (top) and the four phase domains derived by combining them together
(down).

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ θ · n |∇ψ| = 0.

Then, the authors claim that the shape derivative is

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, ψ(x)) θ(x) · n(x) dx. (6.28)

Note the difference with our formula (3.7), which involves the projection pΓ(x) of x on the boundary
Γ = ∂Ω, and that we recall as

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, dΩ(x)) θ(pΓ(x)) · n(pΓ(x)) dx.

Unfortunately, there is no a priori guarantee that the transported signed distance function to the boundary
∂Ω remains the signed distance function to the transported boundary (Id+ θ)∂Ω. Therefore, the shape
derivative d′Ω(θ)(x) cannot be replaced by the expression ∂ψ

∂t
= −θ · n |∇ψ| coming from the Hamilton-

Jacobi equation, as it is done in [94] and [153], without making any further assumptions. For example, in
[59] it is shown that the transported level set function remains the signed distance function (at least for a
small time) if the advection velocity remains constant along the normal, namely (θ ·n)(x) = (θ ·n)(pΓ(x)).

A difficulty with (6.28) is that it does not satisfy the Hadamard structure theorem (see e.g. [4],
[49], [71], [130] and references therein) since it does not depend solely on the normal trace θ · n on the
interface Γ = ∂Ω. In fact, assuming that the support of ∂m

∂ψ
is concentrated around Γ, formula (6.28)

would be similar to what we called earlier approximate shape derivative, obtained in Proposition 6.2.4
for a discretization of the sharp-interface case and in (6.22) for the smoothed-interface case when the
regularization parameter ε is small. In any case, (6.28) does not guarantee a descent direction in general,
unless ∂m

∂ψ
keeps a constant sign along the normal, at least for the width of the intermediate zone.

6.5 Extension to more than 2 materials

The methods presented in sections 6.2 and 6.3 for two phases can be extended to the case of several
materials to be optimally placed in the domain D, following a classical idea in the level-set framework
[151], [153].
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Hitherto, we considered a single subdomain Ω0 ⊂ D, which allows to account for two separate phases
within D, occupying respectively the domains Ω0 and Ω1 := cΩ0 (where c denotes the complementary
part in D). To consider more phases, we introduce m subdomains O0, ...,Om−1 ⊂ D which are not
subject to any geometrical constraints (they can intesect, or not, and they don’t need to cover D).
These m subdomains allows us to treat up to 2m distinct phases, filling respectively the phase domains
Ω0, ...,Ω2m−1 ⊂ D, defined as (see Figure 6.5)





Ω0 = O0 ∩ O1 ∩ ... ∩ Om−1,

Ω1 = cO0 ∩ O1 ∩ ... ∩ Om−1,
...

Ω2m−1 = cO0 ∩ cO1 ∩ ... ∩ cOm−1.

(6.29)

Note that Ω0, ...,Ω2m−1 is a partition of D. To simplify the exposition, from now on we take m = 2,
meaning that we consider four different materials, with respective Hooke’s law A0, A1, A2, A3. Two
subdomains O0,O1 of D are then introduced, and each material Ai fills an area Ωi ⊂ D, defined through
formula (6.29).

For the sharp-interface problem, the definition of the mixture Hooke’s tensor Aχ is standard. Intro-
ducing χ0 and χ1 the characteristic functions of O0 and O1, respectively, we define

Aχ(x) := χ0(x)χ1(x)A0+(1 − χ0(x))χ1(x)A1+χ0(x) (1 − χ1(x))A2+(1 − χ0(x)) (1 − χ1(x))A3. (6.30)

For the smoothed-interface problem, we propose a formula inspired from (6.30)

AO0,O1,ε(x) = (1 − hε(dO0(x)))(1 − hε(dO1(x)))A0 + hε(dO0(x))(1 − hε(dO1(x)))A1

+ (1 − hε(dO0(x)))hε(dO1(x))A2 + hε(dO0(x))hε(dO1(x))A3,
(6.31)

where hε is the smooth approximation (6.15) of the Heaviside function and dO0 , dO1 are the signed
distance functions to O0 and O1 respectively. Of course, there are other interpolation formulas and any
alternative choice which, as (6.31), satisfies the following consistency

AO0,O1,ε(x) =





A0 if dO0(x) < −ε and dO1(x) < −ε,
A1 if dO0(x) > +ε and dO1(x) < −ε,
A2 if dO0(x) < −ε and dO1(x) > +ε,
A3 if dO0(x) > +ε and dO1(x) > +ε,
a smooth interpolation between A0, A1, A2, A3 otherwise,

(6.32)

will do. In particular, for applications in material science where the thick interface has a clear physical
interpretation, one could choose a physically relevant choice of the interpolant Hooke’s law for the mixture
of A0, A1, A2, A3 in the intermediate areas, like a sequential laminate or another microstructure achieving
Hashin and Shtrikman bounds [95]. On the other hand, if the smoothed-interface problem is merely a
mathematical approximation of the sharp-interface case, then it is a consistent approximation since, as
the regularizing parameter ε goes to 0, the smooth tensor AO0,O1,ε converges to the discontinuous one
Aχ.

In the multiphase case, the definition of the objective function (6.2) does not change

J(O0,O1) =

∫

D

j(x, u) dx+

∫

ΓN

k(x, u) ds, (6.33)

and the state or adjoint equations are the same, up to changing the previous Hooke’s tensor by AO0,O1,ε.
There are now two variable subdomains, O0,O1, as design variables for the optimization problem. Ac-
cordingly, we introduce two separate vector fields θ0, θ1 ∈W 1,∞

(
D,RN

)
in order to vary the subdomains

O0,O1.
According to Corollary 3.3.6, the partial shape derivative of the objective function (6.33) with re-

spect to O0 and O1, which we shall denote as ∂J
∂O0 and ∂J

∂O1 respectively, in the direction of θ0 and θ1,
respectively, are

∂J

∂O0
(O0,O1)(θ0) =

∫

D

θ0(p∂O0(x)) · n0(p∂O0(x))
∂A

∂dO0

(dO0 , dO1)e(u) : e(p) dx, (6.34)

∂J

∂O1
(O0,O1)(θ1) =

∫

D

θ1(p∂O1(x)) · n1(p∂O1(x))
∂A

∂dO1

(dO0 , dO1)e(u) : e(p) dx, (6.35)

where A(dO0 , dO1) = AO0,O1,ε, defined in (6.32). Of course, one can apply Theorem 6.3.2 to simplify
(6.34) and (6.35) and transform them in surface integrals on ∂O0 and ∂O1.



194 CHAPTER 6. MULTI-PHASE STRUCTURAL OPTIMIZATION

Remark 6.5.1. In the sharp interface context one could compute shape derivatives of the objective
function J with respect to O0 and O1 too, thus recovering formulas similar to (6.34) and (6.35). However,
it is possible only if we assume that the boundary of O0 and O1 do not superpose. Indeed if, for example,
∂O0 = ∂O1, then moving O0 inside O1, or vice versa, implies that one phase or another one appears.
This means that a topology change is occuring which cannot be handled by Hadamard’s method. At most,
one can expect to compute two different directional derivatives (inward and outward) which clearly shows
that there is no differentiability in this case. Note that there is no such difficulty in the smoothed interface
setting: formulas (6.34) and (6.35) hold true for any geometrical situation of O0 and O1 since AO0,O1,ε

is a smooth function of x in D.

6.6 Numerical results

6.6.1 Level-set representation

Following the lead of [14], [16], we represent the moving and optimizable interfaces by level set functions
[106] defined on a fixed mesh in an Eulerian framework. According to Section 6.5, using m level-set
functions we can represent up to 2m separate phases.

When there are only two phases to optimize, it suffices to use one level-set function to represent the
interface Γ between two complementary sub-domains Ω0 and Ω1 of the working domain D. The level set
function ψ (see Figure 6.5) is defined by





ψ(x) = 0 for x ∈ Γ = ∂Ω0,
ψ(x) < 0 for x ∈ Ω0,
ψ(x) > 0 for x ∈ Ω1.

D

Ω
0

Ω
1

Γ
ψ < 0

ψ > 0

ψ = 0

Figure 6.5: Level-set representation of the domains Ω0 and Ω1.

In order to describe up to four distinct phases, two level-set functions ψ0 and ψ1 are defined such that





ψ0(x) = 0 for x ∈ ∂O0,
ψ0(x) < 0 for x ∈ O0,

ψ0(x) > 0 for x ∈ cO0,
and





ψ1(x) = 0 for x ∈ ∂O1,
ψ1(x) < 0 for x ∈ O1,

ψ1(x) > 0 for x ∈ cO1,

following the notations of Figure 6.5. Then, each level-set function ψi, i = 0, 1, is transported indepen-
dently solving (1.29), where Vi, i = 0, 1 results from the formulas (6.34) and (6.35).

6.6.2 Two materials in the sharp interface context

We work in the context of Section 6.2, namely in a sharp interface framework. We compare the two
shape derivatives: the continuous formula furnished by Proposition 6.2.1 and the discrete formula given
in Proposition 6.2.4. The numerical implementation of the continuous formula of the shape derivative in
Proposition 6.2.1 is achieved according to the scheme proposed in [16] for computing the jump approx-
imation (6.12). We consider a long cantilever of dimensions 2 × 1, discretized by 100 × 50 P1 elements,
clamped at its left side and submitted to a unit vertical load at the middle of its right side (see Figure
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6.8). The domain is filled by two isotropic materials 0 and 1, with different Young’s moduli, respectively
E0 = 0.5 and E1 = 1 (material 1 is stiffer than material 0) but with the same Poisson ratio ν = 0.3. We
minimize the compliance (6.3) with a constraint of fixed volume for the two phases. The computations
are done with the FreeFem++ package [114].

For all the numerical examples in this paper, an augmented Lagrangian method is applied to handle the
constraints. Following the approach in [101], supposing that our problem contains m equality constraints
of the type ci(Ω

0) = 0 (i = 1, ...,m), an augmented Lagrangian function is constructed as

L(Ω0, ℓ, µ) = J(Ω0) −
m∑

i=1

ℓici(Ω
0) +

m∑

i=1

µi
2
c2i (Ω

0),

where ℓ = (ℓi)i=1,...,m and µ = (µi)i=1,...,m are Lagrange multipliers and penalty parameters for the
constraints. The Lagrange multipliers are updated at each iteration n according to the optimality con-
dition ℓn+1

i = ℓNi − µici(Ω
0
n). The penalty parameters are augmented every 5 iterations. With such an

algorithm the constraints are enforced only at convergence (see for example Figure 6.7). Of course, other
(and possibly more efficient) optimization algorithms could be used instead.

The results are displayed on Figure 6.6. As usual the strong phase 1 is black and the weak phase 0 is
white. The design obtained with the discrete formula is quite similar to the one exposed in Figure 6.9 (c).
However the continuous formula gives a different optimal shape which is worse in terms of the objective
function than the one obtained with the discrete formula (see Figure 6.7). This is completely natural,
since the discrete shape gradient is exactly the gradient of the (discrete) indeed computed objective
function.

Figure 6.6: Optimal shapes for the long cantilever using the discrete shape gradient (left) and the
continuous formula (right).

Figure 6.7: Convergence history of the compliance (left) and the volume (right) for the sharp interface
results displayed on Figure 6.6.

6.6.3 Two materials in the smoothed-interface context

We now switch to the smoothed-interface setting as described in Section 6.3. All examples using a
smoothed-interface are coded in Scilab [119]. We perform the same test case, with the same parameter
values, as in Section 6.6.2. A mesh composed of 160 × 80 elements is used. A first goal is to compare
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the smoothed-interface approach to the sharp-interface one. A second goal is to compare the various
formulas for the shape derivative obtained in Section 6.3.

We minimize again the compliance (6.3) with a constraint of fixed volume for the two phases which
is written

∫

D

hε(dΩ0(x))dx = VT ,

where VT is the target volume of the strong phase occupying Ω1.

We test three different formulas for the shape gradient. The first one is the ”true” formula given by
(6.18) (see also (6.34) and (6.35) in the case of more than two phases). The second one, called ”Jacobian-
free”, is (6.21) which is obtained from (6.18) by neglecting the part of the integrand corresponding to
the Jacobian of the projection application p∂Ω (see Remark 3.3.8). The reason for this choice is that
the curvature is not precisely calculated using a fixed mesh and therefore we may introduce a significant
approximation error. In any case, it amounts to neglecting a positive factor (because of Lemma 3.3.9).
The third one is the ”approximate” formula (6.22) obtained for a very thin smoothing zone around the
interface.

First, we consider the case of a ”thin” interface. The interpolation width is chosen as ε = 2∆x, where
∆x is the uniform mesh size. The results for VT = 0.7|D| and VT = 0.2|D| are shown in Figure 6.9 and
6.10. We plot the Young modulus distribution (black being the strong material A1 and white the weak
material A0). The convergence histories are almost identical for the ”true” and ”Jacobian-free” formulas
of the shape derivative. It is slightly more oscillating for the ”approximate” formula although it converges
to almost the same value of the objective function. The resulting optimal designs are very similar.

For a larger interpolation width ε = 8∆x (”thick” interface), the results are shown in Figure 6.11. We
clearly see a difference for the optimal shape obtained using the ”true” formula of the shape derivative:
in this case, the algorithm produces a very long and oscillating interface in such a way that the overall
structure is almost like a composite structure. This is due to the fact that the intermediate zone inside the
interface is very favorable compared to the pure phases. Nevertheless, despite the differences in the final
shapes, the values of the compliance are almost the same for the ”true” and ”Jacobian-free” formulas,
slightly worse for the ”approximate” formula of the shape gradient.

•1

2

Figure 6.8: Boundary conditions for the 2 × 1 cantilever.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: ”Long cantilever” using two phases with VT = 0.7|D| and a small smoothing parameter
ε = 2∆x; (a): initialization; (b): optimized shape using the ”true” formula; (c): optimized shape using
the ”Jacobian-free” formula; (d): optimized shape using the ”approximate” formula; (e): convergence of
the compliance; (f): convergence of the volume.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: ”Long cantilever” using two phases with VT = 0.2|D| and a small smoothing parameter
ε = 2∆x; (a): initialization; (b): optimized shape using the ”true” formula; (c): optimized shape using
the ”Jacobian-free” formula; (d): optimized shape using the ”approximate” formula; (e): convergence of
the compliance; (f): convergence of the volume.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: ”Long cantilever” using two phases with VT = 0.7|D| and a large smoothing parameter
ε = 8∆x; (a): initialization; (b): optimized shape using the ”true” formula; (c): optimized shape using
the ”Jacobian-free” formula; (d): optimized shape using the ”approximate” formula; (e): convergence of
the compliance; (f): convergence of the volume.

Mesh-dependency study

In order to examine the mesh-dependency of the smoothed-interface method, the same example as in
Section 6.6.3 is considered and two different tests are performed. First, the grid size ”∆x” varies and the
interface half-width ”ε” is chosen as ε = 2∆x. In the second case, ε has the constant value 0.025 (the
same as in Figure 6.9) independently of the grid size variation. For all tests, the ”Jacobian-free” formula
and the initialization of Figure 6.9 (a) has been used. The results are shown in Figure 6.12 and 6.13.
Comparing qualitatively the results, we can say that they look quite similar, as soon as the grid resolution
allows for a satisfying enough description of the geometry and an accurate enough approximation of the
geometric quantities in play.
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(a) (b)

(c) (d)

Figure 6.12: Long cantilever using two phases with VT = 0.7|D|, ε = 2∆x and a grid of; (a): 80 × 40;
(b): 120 × 60; (c): 160 × 80; (d): 240 × 120 elements.

(a) (b)

(c) (d)

Figure 6.13: Long cantilever using two phases with VT = 0.7|D|, ε = 0.025 and a grid of; (a): 80 × 40;
(b): 120 × 60; (c): 160 × 80; (d): 240 × 120 elements.

6.6.4 Four materials in the smoothed interface context

We consider now the case of using up to four phases and consequently two level-set functions. A smoothed
approximation of the characteristic function of each phase can be constructed using combinations of the
functions hε, defined in equation (6.15), as follows





χ0 = (1 − hε(dO0))(1 − hε(dO1)),
χ1 = hε(dO0)(1 − hε(dO1)),
χ2 = (1 − hε(dO0))hε(dO1),
χ3 = hε(dO0)hε(dO1),

(6.36)
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and the global Hooke’s tensor in given by (6.31). The optimization problem now reads

min
O0,O1∈Uad

J(O0,O1) =

∫

D

AO0,O1,ε(x)e(u) : e(u) dx

s.t.

∫

D

χidx = V iT , i = 0, ..., 3 ,
(6.37)

where V iT is the target volume for the phase i (they sum up to the volume of D). As previously, an
augmented Lagrangian algorithm is applied to enforce the constraints. In this section we work with a
”thin” interface, namely ε = 2∆x.

We test our method with several benchmark examples presented in [153] and [154]. Since the initial
designs are different, as well as the numerical methods, it is hard to make a quantitative comparison and
we satisfy ourselves with a qualitative comparison.

Short-cantilever using two materials and void

In this paragraph we consider only three phases, made of two materials and void. The first structure
to be optimized is a two-dimensional short cantilever, of dimensions 1 × 2, discretized using 80 × 160
Q1 elements. The left part of the structure is clamped and a unitary vertical force is applied at the
mid point of its right part (see Figure 6.14). The Young moduli of the four phases are defined as
E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3, where both phases 1 and 3 represent void. The target
volumes for phases 0 and 2 are set to V 0

T = 0.2|D| and V 2
T = 0.1|D|. The results are shown in Figure

6.15. We plot the Young modulus with a grey scale: dark stands for the stronger phase, white for void
and grey for the intermediate phase.

This test case was previously studied in [153] (see figures 7 and 8 therein for two different initial-
izations). Our results are roughly similar to those in [153] and even slightly better since the designs of
Figure 6.15 are symmetric (as expected), contrary to the results in [153].

•

1

2

Figure 6.14: Boundary conditions and initialization for the 2d short-cantilever.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.15: ”Short cantilever” using two phases and void; (a): initialization; (b): convergence diagram
for the compliance; (c): optimized shape using the ”true” formula; (d): convergence of the volume for the
”true” formula; (e): optimized shape using the ”Jacobian-free” formula; (f): convergence of the volume
for the ”Jacobian-free” formula; (g): optimized shape using the ”approximate” formula; (h): convergence
of the volume for the ”approximate” formula.

Short-cantilever using three materials and void

The same example as previously is considered here, but half of the volume of phase 0 is replaced by a
weaker phase. The Young moduli of the four phases are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and
E3 = 10−3 and the target volumes for phases 0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The results
are shown in Figure 6.16.
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This test case was also studied in [153] (see figures 11 and 12 therein for two different initializations).
Our result differs notably from these previous ones. Indeed, in [153] the strong material 2 always forms
a two-bar truss which is further reinforced by the other materials. On the contrary, in Figure 6.16 the
strong phase is disconnected and the intermediate material 0 plays a more active role in the transfer of
the load to the fixed wall.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.16: ”Short cantilever” using three phases and void; (a): initialization; (b): convergence diagram
for the compliance; (c): optimized shape using the ”true” formula; (d): convergence of the volume for
the shape gradient formula; (e): optimized shape using the ”Jacobian-free” formula; (f): convergence of
the volume for the ”Jacobian-free” formula; (g): optimized shape using the ”approximate” formula; (h):
convergence of the volume for the ”approximate” formula.
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3-force bridge using two materials and void

A bridge-type structure of dimensions 2 × 1 is studied, discretized by 160 × 80 Q1 elements. Both the
horizontal and vertical displacement are fixed at the lower left part as well as the vertical displacement
of the lower right part. Three equally distributed forces are applied at the lower part (see Figure 6.17).
The value of F is set to 1. The Young moduli of the four phases are set to E0 = 0.5, E1 = 10−3, E2 = 1
and E3 = 10−3 and the target volumes for phases 0 and 2 are set to V 0

T = 0.2|D| and V 2
T = 0.1|D|. The

results are shown in Figure 6.18.

Once again this test case was performed in [153] (see Figure 13 therein). Our results are quite different.
First, our designs in Figure 6.18 are symmetric, as they should be, except of a slight non-symmetry when
the ”approximate” formula is used. Second, a major difference occurs in the use of the strong phase. In
our design, the strong material is used in the lower part of the ”radial” bars whereas it was absent in
figure 13 of [153] (and rather used in the upper ”arch”).

•

1

2

• •

F F2F

Figure 6.17: Boundary conditions and initialization for the 3-force bridge.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.18: ”3-force bridge” using two phases and void; (a): initialization; (b): convergence diagram for
the compliance; (c): optimized shape using the ”true” formula; (d): convergence of the volume for the
”true” formula; (e): optimized shape using the ”Jacobian-free” formula; (f): convergence of the volume
for the ”Jacobian-free” formula; (g): optimized shape using the ”approximate” formula; (h): convergence
of the volume for the ”approximate” formula.

3-force bridge using three materials and void

The same example as previously is considered here, but half of the volume of phase 0 is replaced by a
weaker phase. The Young moduli of the four phases are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and
E3 = 10−3 and the target volumes for phases 0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The results
are shown in Figure 6.19.
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This test case can be found in [153] (Figure 14) too, and again our results are quite different.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.19: ”3-force bridge” using three phases and void; (a): initialization; (b): convergence diagram
for the compliance; (c): optimized shape using the ”true” formula; (d): convergence of the volume for the
”true” formula; (e): optimized shape using the ”Jacobian-free” formula; (f): convergence of the volume
for the ”Jacobian-free” formula; (g): optimized shape using the ”approximate” formula; (h): convergence
of the volume for the ”approximate” formula.

Medium cantilever using three materials and void

The next structure is a medium cantilever, of dimensions 3.2× 2, discretized using 120× 75 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the bottom of its
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right part (see Figure 6.20). The Young moduli of the four phases are defined again as E0 = 0.5, E1 =
0.25, E2 = 1 and E3 = 10−3 and the target volumes for phases 0, 1 and 2 are set to V 0

T = V 1
T = V 2

T =
0.1|D|. The results are shown in Figure 6.21.

This test case was also performed in [154] (see Figure 7 therein). Our optimal designs have a more
complex topology and a different layout of the three materials. However, the final volumes of the three
materials in [154] are not the same as ours and thus a comparison is not easy to establish.

•

2

3.2

Figure 6.20: Boundary conditions and initialization for the 2D medium-cantilever.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.21: ”Medium cantilever” using three phases and void; (a): initialization; (b): convergence
diagram for the compliance; (c): optimized shape using the ”true” formula; (d): convergence of the
volume for the ”true” formula; (e): optimized shape using the ”Jacobian-free” formula; (f): convergence
of the volume for the ”Jacobian-free” formula; (g): optimized shape using the ”approximate” formula;
(h): convergence of the volume for the ”approximate” formula.

L-shaped structure

The example of an L-shaped structure of dimensions 1 × 1 is borrowed from Chapter 2.9 in [28]. The
domain is discretized using 120 × 120 Q1 elements and a non-optimizable area of dimensions 0.6 × 0.6 is
imposed on its upper-right part. The structure is clamped on its upper side and a unitary vertical force
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is applied on the middle of its right side (see Figure 6.22).
Figures 6.23 (a), (b), (c) present the results of using two phases with ratio of Young moduli equal to

0.2, 0.5 and 0.8. The two materials are represented by phases 0 and 2. The Young modulus of phase 0 is
set to E0 = 1.0. Phases 1 and 3 represent void and their Young moduli are set to E1 = E3 = 10−4. The
target volumes for phases 0 and 2 are V 0

T = V 2
T = 0.25|D|. The results are slightly different than those

in [28], but they follow the same logic in the placement of materials.

1

1

•
0.6

0.6

(a) (b)

Figure 6.22: (a): Boundary conditions and (b): initialization for the L-shaped structure.

(a) (b) (c)

Figure 6.23: Results for the L-shaped structure.

Instead of considering an equality constraint for the volume of each phase, we can adequately constrain
it by fixing the Lagrange multipliers. In this case an unconstrained multi-objective optimization problem
is built for the minimization of the objective function J(O0,O1), which reads

J(O0,O1) =

∫

D

A(dO0 , dO1)e(u) : e(u)dx+

3∑

i=0

ℓi
∫

D

χi(x)dx. (6.38)

We then carry out a standard constraint-free steepest descent algorithm in order to minimize J . For the
rest of the numerical examples we have used only the ”Jacobian-free” formula.

In most of the examples below, a small tolerance parameter tol > 0 (in our examples, we have used
tol = 0.02) over acceptance of the produced shapes is introduced so as to ease the occurrence of topological
changes and is then turned off after some iterations. More accurately, in the course of the optimization
process, a step O0

n → O0
n+1 and O1

n → O1
n+1 is accepted provided:

J(O0
n+1,O

1
n+1) < (1 + tol)J(O0

n,O
1
n).

Long-cantilever

The structure of Figure 6.8 is considered once more here. The Young moduli are set to E0 = 0.5, E1 =
10−3, E2 = 1 and E3 = 10−3. For the results shown in Figure 6.24, we have set the fixed Lagrange mul-
tipliers in (6.38) to ℓ0 = 100, ℓ1 = 0, ℓ2 = 200, ℓ3 = 0. We see that the strongest material is distributed at
the areas of high stress, while the weak material completes the shape of an optimized cantilever. Figure
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6.25 shows the final domains O0 and O1, whose combinations give the final shape of Figure 6.24.
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Figure 6.24: Initialization with 4 materials (top), optimized shape and convergence diagram (bottom)
for ℓ0 = 100, ℓ1 = 0, ℓ2 = 200, ℓ3 = 0.

Figure 6.25: Final shapes for ψ0 (left) and ψ1 (right).

Then, we distribute again four materials, with only one of them representing void. The parameters of
the computation are: E0 = 0.7, E1 = 0.5, E2 = 1 and E3 = 10−3, while the different Lagrange multipliers
are set to ℓ0 = 100, ℓ1 = 50, ℓ2 = 200. Doing so, the volume of the strongest material is more severely
penalized than that of the others. In the results of Figure 6.26, one can see that material 2 has completely
disappeared, while material 0, which is strongest than materials 1 and 3, has been placed at regions of
high stress values.
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Figure 6.26: Initialization with four materials (top), optimized shape and convergence diagram (bottom)
for ℓ0 = 100, ℓ1 = 50, ℓ2 = 200.

Changing the value of ℓ2 to 100, we witness the apparition of all materials (see Figure 6.27).
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Figure 6.27: Initialization with four materials (top), optimized shape and convergence diagram (bottom)
for ℓ0 = 100, ℓ1 = 50, ℓ2 = 100.

2d bridge

The second structure to be optimized is a two-dimensional bridge of dimensions 2 × 1.2, discretized
by means of 160 × 96 Q1 elements. The boundary conditions are displayed in Figure 6.28. The same
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materials as in the previous example are used and the Lagrange multipliers for the volumes are set to
ℓ0 = 11, ℓ1 = 9, ℓ2 = 17.

•

1.2

2

Figure 6.28: Boundary conditions and initialization for the 2D bridge.
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Figure 6.29: Initialization, optimized shape and convergence diagram for ℓ1 = 11, ℓ2 = 9, ℓ3 = 17.

The optimized shape and the convergence diagram are shown on Figure 6.29. Once again the strong
material is placed at the regions of high stress, while the rest of the structure is dominated by material
2.

L-beam

The next structure to be optimized is an L-shape structure. Its dimensions are 1 × 1, discretized by
120 × 120 Q1 elements. The boundary conditions are shown in Figure 6.30. The upper-left quarter
of the domain is considered non-optimizable, filled with the material 3, representing void. The same
materials as in the previous example are used and the Lagrange multipliers for the volumes are set to
ℓ0 = 170, ℓ1 = 130, ℓ2 = 240. The optimized shape and the corresponding convergence diagram are shown
in Figure 6.31.
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•
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1

Figure 6.30: Boundary conditions and initialization for the L-shape structure.
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Figure 6.31: Initialization, optimized shape and convergence diagram for the L-shape test case.

Multi-load case

The final example to be presented is a multi-load case. A cantilever of dimensions 1 × 1, discretized by
means is 120 × 120 Q1 elements, is subjected to two independent load cases, shown in Figure 6.32 (i.e.
the loads are not applied simultaneously). The objective function to be minimized is an aggregated sum
of the total compliance in each case and the volumes of the materials. The same materials as previously
are used and the Lagrange multipliers for the volumes are set to ℓ0 = 90, ℓ1 = 70, ℓ2 = 120.
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Figure 6.32: Boundary conditions and initialization for the multi-load case.
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Figure 6.33: Initialization, optimized shape and convergence diagram for the multi-load case.

6.6.5 Multi-functional optimization example

This example couples a stuctural and a thermal problem. A 6 × 1 structure is considered (see Figure
6.34), having two non-optimizable areas (in blue) at the upper and lower part, occupied by material 1.
The structure is subjected to two uncoupled mechanical problems. For the structural load case, the shape
is considered clamped at its right and left boundary and a load is applied at the middle of the lower part.
For the thermal load case, homogeneous Dirichlet conditions are considered for the lower part and the
structure is subjected to a thermal flux. We distinguish between the ”out-of-plane” case, where the flux
Φ1 comes from the upper side of the structure and the ”in-plane” case, in which the flux Φ2 is set to its
left and right side. The PDE describing the thermal problem reads





−div
(
k(dΩ(x))∇T

)
= 0 in D,

T = 0 on ΓD,

k(dΩ(x))
∂T

∂n
= Φi on ΓN ,

∂T

∂n
= 0 on Γ0,

(6.39)

where i = 1 or 2. Our goal is to distribute in an optimal way two materials with different properties, so
as to create a structure that is stiff and thermally isolating at the same time. Material 1 has normalized
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Figure 6.34: Boundary conditions.”Out-of-plane” flux corresponds to Φ1 6= 0,Φ2 = 0, while ”in-plane”
flux corresponds to Φ2 6= 0,Φ1 = 0.

Figure 6.35: Initialization.

Young modulus and thermal conductivity E1 = k1 = 1, while material 2 has E2 = k2 = 0.1, i.e. material
1 is stiffer but thermally more conductive than material 2. The sharp interface between the two materials
is approximated using a smooth interpolation of half-width ε = 2∆x.

As objective function to minimize, we have adopted the following choice presented in [81]:

J(Ω) =

(

∫

D

A(dΩ(x))e(u) : e(u)dx)1−a

(

∫

D

k(dΩ(x))∇T · ∇Tdx)a
, a ∈ [0, 1]. (6.40)

The term in the numerator is the mechanical compliance, while the term in the denominator is the
thermal compliance. The parameter ”a” is chosen so as to highlight the importance of one or the other
load case. For a = 0 the problems turns to the minimization of the mechanical compliance and thus all
the optimisable area will be covered with the stiff material 1, while for a = 1 the problem is to maximize
the thermal compliance, i.e. maximize the thermal isolation, and therefore the material 2 will be chosen.
For intermediate values of ”a”, the algorithm will search for an optimal mixture of the two materials. We
have chosen not to impose a volume constraint. The derivation of functional (6.40) is done according to
Theorem 6.3.2.

We consider both the case of ”out-of-plane” and ”in-plane” flux. The initialization for both cases
is shown in Figure 6.35. The optimized shape and the convergence diagram for ”out-of-plane” flux and
a = 0.3 is depicted in figures 6.36 and 6.37. In this figure we can see clearly that material 1 (in blue) is
placed so as to bear the structural load, whereas material 2 (in red) tries to prevent the thermal flux.

The case of ”in-plane” flux is shown in figures 6.38 and 6.39 for a = 0.5. In this case, material 2 tries
to isolate thermally the structure by being concentrated around the place that the flux is applied.
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Figure 6.36: Optimized shape for ”out-of-plane” flux and a = 0.3.

Figure 6.37: Convergence diagram for the result of Figure 6.36.

Figure 6.38: Optimized shape for ”in-plane” flux and a = 0.5.

Figure 6.39: Convergence diagram for the result of Figure 6.38.
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6.7 Material design using inverse homogenization

The topic of materials design with extreme or prescribed properties using shape and topology optimization
is well known in the literature [166, 129, 69, 22, 124, 125, 57, 156, 147, 32]. In this Section, we would like
to apply the method presented in this Chapter for a problem of microstructure optimization in periodic
media. The same study has been conducted in [156], but the shape derivative therein was not calculated
correctly as will be explained in the sequel.

6.7.1 Setting of the problem

Let D ⊂ R
N be a bounded domain, occupied by a linear elastic periodic medium with period ε. The

period is assumed to be very small compared to the size of the domain D. We will call Y = (0, 1)N

the rescaled unit periodicity cell. The material properties in D are described by a periodic fourth order
Hooke’s tensor A(y) and a periodic second order thermal stress tensor Ath(y), with y = x/ε ∈ Y and
x ∈ D. The thermal stress tensor is given as Ath(y) = A(y)αth(y), where αth(y) is the thermal strain
tensor.

Denoting f(x) the external force and imposing Dirichlet boundary conditions (for simplicity), the
linearized elasticity model reads

{
−div

(
A(x

ε
) e(uε) −Ath(x

ε
)δT (x)

)
= f in D,

uε = 0 on ∂D,
(6.41)

where uε is the displacement vector field, e(uε) = 1
2 (∇uε + ∇uTε ) is the strain tensor, equal to the

symmetrized gradient of uε and δT (x) is a temperature field.
The homogenized or averaged properties of the heterogeneous domain D are found using an asymptotic

analysis [4, 6]. We are searching to distribute one or multiple phases in the unit cell Y , such that the
coefficients of the homogenized tensors attain some prescribed values.

For the sake of simplicity, we will describe the case of two phases, called phase 0 and 1. Phase 0
occupies the domain Ω and phase 1 occupies the domain Y \ Ω. The optimizable interface between the
two phases, denoted Γ is defined implicitly using a periodic level-set function ψ such that (see Figure
6.7.1) 




ψ(x) = 0 for x ∈ Γ = ∂Ω,
ψ(x) < 0 for x ∈ Ω,
ψ(x) > 0 for x ∈ Y \ Ω.

Figure 6.40: Level-set description of two materials occupying the periodic unit cell Y .

Moreover, both the elasticity and the thermal stress tensors are assumed to be smooth in the unit
cell Y . The smooth interpolation between the material properties of the distinct phases is done using
the signed-distance function to the boundary of the domain Ω, as described in Section 6.3. We define an
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objective function that is a weighted sum of the square deviation of the homogenized coefficients to the
target ones

J(Ω) =
1

2

∑

i,j,k,l

ηijkl(A
∗
ijkl(dΩ) −ATijkl)

2 +
1

2

∑

i,j

µij(A
th∗
ij (dΩ) −AthTij )2, (6.42)

where (·)∗ and (·)T denote an homogenized and a target quantity respectively and ηijkl and µij are weight
coefficients with the same symmetries as the elasticity and the thermal stress tensors respectively.

6.7.2 Calculation of the homogenized properties

In order to find the homogenized properties of the heterogeneous domain D, an assymptotic analysis of
equation (6.41) is performed as the period ε goes to zero. The displacement uε is written as a series of
powers in ε

uε(x) =

+∞∑

i=0

εiui(x,
x

ε
), (6.43)

where each term ui(x, y) is a Y-periodic function of y.
The first term u0 of this series will be identified as the solution of the equation, said homogenized, whose

elasticity tensor A∗
ijkl will describe the macroscopic properties of an equivalent homogenized medium.

The following derivation rule is applied

∇
(
ui(x,

x

ε
)
)

=
(
ε−1∇yui + ∇xui

)
(x,

x

ε
),

thus,

∇uε(x) = ε−1∇yu0(x,
x

ε
) +

+∞∑

i=0

εi (∇yui+1 + ∇xui) (x,
x

ε
).

The above series is inserted in equation (6.41), which becomes a series of ε:

−ε−2
(
divy

(
A(x

ε
)ey(u0)

))
(x, x

ε
)

−ε−1
(
divy

(
A(x

ε
) (ex(u0) + ey(u1))

)
+ divx

(
A(x

ε
)ey(u0)

)
− divy

(
Ath(x

ε
)∆T

))
(x, x

ε
)

−∑+∞
i=0 ε

i
(
divx

(
A(x

ε
) (ex(ui) + ey(ui+1))

)
+ divy

(
A(x

ε
) (ex(ui+1) + ey(ui+2))

))
(x, x

ε
)

+divx
(
Ath(x

ε
)∆T

)
= f(x),

(6.44)

where we have denoted ex(·) = 1
2 (∇x(·) + ∇x(·)T ) and ey(·) = 1

2 (∇y(·) + ∇y(·)T ).
The equation in ε−2 gives:

− divy (A(y)ey(u0)) = 0, (6.45)

which is interpreted as an equation in the unit cell Y with periodic boundary conditions. Therefore

u0(x, y) ≡ u(x). (6.46)

Since ey(u0) = 0, the equation in ε−1 becomes:

− divy (A(y)ey(u1)) = divy (A(y)ex(u0)) − divy
(
Ath(y)∆T

)
, (6.47)

which has as unknown u1 in the periodic cell Y .
By superposition, we can split the problem into a mechanical and a thermal problem:

u1(x, y) = um1 (x, y) + uθ1(x, y), (6.48)

where um1 is the solution of equation

− divy (A(y)ey(um1 )) = divy (A(y)ex(u0)) (6.49)

and
uθ1(x, y) = wθ(y)δT (x),

wθ(y) being the solution of equation

− divy
(
A(y)ey(wθ)

)
= −divy

(
Ath(y)

)
. (6.50)
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We denote eij = (ei ⊗ ej + ej ⊗ ei)/2, 1 ≤ i, j ≤ N . Then, ∀eij , we call the cell problem the equation

{
−divy (A(y) (eij + ey (wij(y)))) = 0 inY

y → wij(y) Y − periodic.
(6.51)

By linearity, we obtain

um1 (x, y) =
1

2

N∑

i=1

N∑

j=1

(
∂(u0)i
∂xj

(x) +
∂(u0)j
∂xi

(x)

)
wij(y).

Finally, the equation in ε0 is:

−divx (A(y) (ex(u0) + ey(u1))) − divy (A(y) (ex(u1) + ey(u2)))
+divx

(
Ath(y)δT (x)

)
= f(x) ⇒

−divy (A(y)ey(u2)) = divy (A(y)ex(u1))
+divx (A(y) (ex(u0) + ey(u1))) − divx

(
Ath(y)δT (x)

)
+ f(x)

(6.52)

Equation (6.52) admits a unique solution (up to a constant) if the average of the right-hand side in
equation (6.52) vanishes, i.e. if

∫

Y

[
divy (A(y)ex(u1)) + divx (A(y) (ex(u0) + ey(u1))) − divx

(
Ath(y)δT (x)

)
+ f(x)

]
dy = 0. (6.53)

After integration by parts, the first term disappears and equation (6.53) finally results in

− divx

(∫

Y

[
A(y) (ex(u0) + ey(u1)) −Ath(y)δT (x)

]
dy

)
= f(x). (6.54)

Because of equation (6.48), (6.54) becomes

−divx

(∫

Y

[
A(y) (ex(u0) + ey(um1 )) +A(y)ey(wθ)δT (x) −Ath(y)δT (x)

]
dy

)
= f(x) ⇒

−divx

(∫

Y

[A(y) (ex(u0) + ey(um1 ))] dy +

∫

Y

[
A(y)ey(wθ)δT (x) −Ath(y)δT (x)

]
dy

)
= f(x) ⇒

−divx
(
A∗ex(u0) −Ath∗δT (x)

)
= f(x),

(6.55)

where

A∗ex(u0) =
1

2

N∑

i=1

N∑

j=1

(
∂(u0)i
∂xj

(x) +
∂(u0)j
∂xi

(x)

)∫

Y

A(y)(eij + ey(wij))dy

and

Ath∗ =

∫

Y

(
Ath(y) −A(y)ey(wθ)

)
dy =

∫

Y

A(y)
(
αth(y) − ey(wθ)

)
dy.

Therefore

A∗
ijkl =

∫

Y

A(y)(eij + ey(wij))ekl dy,

or, in symmetric form,

A∗
ijkl =

∫

Y

A(y)(eij + ey(wij))(ekl + ey(wkl)) dy (6.56)

and

Ath∗ij =

∫

Y

A(y)(α(y) − ey(wθ))eij dy,

or

Ath∗ij =

∫

Y

A(y)(eij − ey(wij))(α(y) − ey(wθ)) dy. (6.57)
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6.7.3 Shape derivative

The method of Céa is used for the calculation of the shape derivative of the objective function (6.42).
We define the Lagrangian function

L
(

Ω, ŵpq, ξ̂pq, ŵ
θ, ζ̂
)

= 1
2

∑
i,j,k,l ηijkl(A

∗
ijkl(ŵpq) −ATijkl)

2

+ 1
2

∑
i,j µij(A

th∗
ij (ŵpq, ξ̂pq) −AthTij )2

+
∑N
p=1

∑N
q=1

∫

Y

[
A(y) (epq + ey (ŵpq(y))) : ey

(
ξ̂pq(y)

)]
dy

+

∫

Y

(
A(y)ey(ŵθ) −Ath(y)

)
: ey(ζ̂(y)) dy,

(6.58)

where the functions ŵpq, ξ̂pq, ŵ
θ and ζ̂ are assumed to be vector-valued functions defined in Y and

independent of Ω.
Taking the partial derivative of L with respect to ξ̂pq ∀p = 1, ..., N, ∀q = 1, ..., N , in the direction of

a given vector φ and setting it to be zero at the optimal point w∗
pq, ξ

∗
pq, w

θ∗, ζ∗ we get

∂L
∂ξ̂pq

(φ) =

∫

Y

[
A(y)

(
epq + ey

(
w∗
pq(y)

))
: ey (φ(y))

]
dy = 0 ∀p = 1, ..., N, ∀q = 1, ..., N. (6.59)

Therefore, w∗
pq is the solution of the cell problem ∀p = 1, ..., N, ∀q = 1, ..., N .

The partial derivative of L with respect to ζ̂ in the direction of φ results in

∂L
∂ζ̂

(φ) =

∫

Y

(
A(y)ey(wθ∗) −Ath(y)

)
ey(φ(y)) dy = 0, (6.60)

thus wθ∗ is the solution of the thermal cell problem described by equation (6.50).
The partial derivative of L with respect to ŵpq, in the direction of φ, ∀p = 1, ..., N, ∀q = 1, ..., N gives

∂L
∂ŵpq

(φ) =
∑
k,l 2ηpqkl(A

∗
pqkl −ATpqkl)

(∫

Y

[A(y) (ekl + ey(w∗
kl)) ey(φ)] dy

)

−µpq(Ath∗pq −AthTpq )

(∫

Y

[
A(y)(α(y) − ey(wθ∗))ey(φ)

]
dy

)

+

∫

Y

[
A(y)(ey(ξ∗pq))ey(φ)

]
dy

=
∑
k,l 2ηpqkl(A

∗
pqkl −ATpqkl)

(∫

Y

[A(y) (ekl + ey(w∗
kl)) ey(φ)] dy

)

+

∫

Y

[
A(y)(ey(ξ∗pq))ey(φ)

]
dy = 0 ∀p = 1, ..., N, ∀q = 1, ..., N.

(6.61)

Finally, the partial derivative of L with respect to ŵθ, in the direction of φ results in

∂L
∂uθ1

(φ) = 0 ⇒
∫

Y

[A(y) (ey(ζ∗)) ey(φ)] dy −
∑

p,q

µpq(A
th∗
pq −AthTpq )

∫

Y

[
A(y)

(
epq − ey(w∗

pq)
)
ey(φ)

]
dy = 0.

(6.62)

Deforming the interface Γ in the direction of a smooth vector field θ (see section 1.3.1 for details), the
shape derivative of the objective function is found to be the shape derivative of the Lagrangian at the
optimal point

J ′(Ω)(θ) = L′
(
Ω, w∗

pq, ξ
∗
pq, u

θ∗
1 , ζ

∗
)

(θ),

thus

J ′(Ω)(θ) =
∑
i,j,k,l ηijkl(A

∗
ijkl −ATijkl)

∫

Y

[
d′Ω(θ)A′(dΩ)(eij + ey(w∗

ij)) : (ekl + ey(w∗
kl))
]
dy

+
∑
i,j µij(A

th∗
ij −AthTij )

∫

Y

[
d′Ω(θ)A′(dΩ)(eij − ey(w∗

ij)) : (α(dΩ) − ey(uθ∗1 ))
]
dy

+
∑
i,j µij(A

th∗
ij −AthTij )

∫

Y

[
A(dΩ)(eij − ey(w∗

ij)) : (d′Ω(θ)α′(dΩ))
]
dy

+
∑N
p=1

∑N
q=1

∫

Y

[
d′Ω(θ)A′(dΩ)(epq + ey(w∗

pq)) : (ey(ξ∗pq))
]
dy

+

∫

Y

[
d′Ω(θ)A′(dΩ)(ey(uθ∗1 ) − α(y)) : (ey(ζ∗))

]
dy

−
∫

Y

[A(y)(d′Ω(θ)α′(dΩ)) : (ey(ζ∗))] dy,

(6.63)
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Table 6.1: Homogenized coefficients for the optimized microstructure of Figure 6.41.

ijkl A∗
ijkl ATijkl

1111 0.1465 0.200
1122 -0.0716 -0.100
2222 0.1461 0.200

where A′(dΩ) and α′(dΩ) denote derivation with respect to dΩ. The coarea formula (see 3.3.7) is then
used in order to obtain an expression of the shape derivative in the form of equation (6.18).

Remark 6.7.1. As we have foresaid, the same problem has been studied in [156]. The authors have
claimed that the problem is self-adjoint, which is not true as we have shown in this section. Thus, the
shape derivative in [156] is not correctly calculated.

6.7.4 Numerical results

In all examples of this section, (6.42) has been chosen as objective function. In contrast with [156],
inequality constraints have been imposed for the volume of each phase. A smooth interpolation of the
material properties of half-width ε = 2∆x has been used between the different phases. The values of the
material properties, the target coefficients and most of the weight factors are tha same as in [156].

In the first three examples, one strong phase with Young modulus E = 0.91 is used and only structural
coefficients are included in the formulation of the problem (namely, Ath ≡ 0). Void is represented by a
weak phase with Young modulus equal to 10−3 and thermal strain coefficients equal to 0. The rest of
the examples contain two strong phases, with different structural and thermal properties, and void. An
optimal mixture that minimizes the deviation from some prescribed structural and thermal homogenized
coefficients is sought. For all examples, a mesh of 100 × 100 Q1 elements has been used.

Example 1
For the first example, the optimization problem reads

min
Ω

J(Ω) = 1
2η1111(A∗

1111 −AT1111)2 + 1
2η1122(A∗

1122 −AT1122)2 + 1
2η2222(A∗

2222 −AT2222)2,

s.t. VT ≤ 0.5|D|,

where η1111 = η2222 = 1, η1122 = 10, AT1111 = AT2222 = 0.2 and AT1122 = −0.1, i.e. we are searching for a
material that contracts in one direction when expands in the other. In case the material is isotropic, the
above target coefficients would correspond to a material with Poisson ration equal to −0.5. The results
are shown in figures 6.41 and 6.42. The value of the homogenized coefficients for the optimized shape are
shown in Table 6.1. The volume constraint is active at convergence, i.e. VT = 0.5|D|.

Example 2
The second optimization problem reads

min
Ω

J(Ω) = 1
2η1111(A∗

1111 −AT1111)2 + 1
2η1122(A∗

1122 −AT1122)2

+ 1
2η2222(A∗

2222 −AT2222)2 + 1
2η1212(A∗

1212 −AT1212)2,
s.t. VT ≤ 0.4|D|,

where η1111 = η1122 = η2222 = η1212 = 1, AT1111 = AT2222 = AT1122 = 0.1 and AT1212 = 0. The values of
the coefficients are chosen so that the algorithm tries to create an isotropic material with Poisson ratio
equal to 1. The optimization results are shown in figures 6.43 and 6.44 and the value of the homogenized
coefficients in Table 6.2. The final volume is VT = 0.4|D|.

Example 3
In the final one-phase example, a microstructure is searched as solution of the problem

min
Ω

J(Ω) = 1
2η1111(A∗

1111 −AT1111)2 + 1
2η1122(A∗

1122 −AT1122)2 + 1
2η2222(A∗

2222 −AT2222)2,

s.t. VT ≤ 0.47|D|,

where η1111 = η1122 = η2222 = 1, AT1111 = AT2222 = 0.2 and AT1122 = 0, we want that the material does
not deform in one direction when it expands or contracts in the other. The optimization results and the
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(a) (b)

(c)

Figure 6.41: Optimized microstructure for Example 1; (a): initialization and (b): optimized unit cell;
(c): optimized microstructure (16 unit cells).

Figure 6.42: Convergence diagram for the results of Figure 6.41.
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(a) (b)

(c)

Figure 6.43: Optimized microstructure for Example 2; (a): initialization and (b): optimized unit cell;
(c): optimized microstructure (16 unit cells).

Figure 6.44: Convergence diagram for the results of Figure 6.43.
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Table 6.2: Homogenized coefficients for the optimized microstructure of Figure 6.43.

ijkl A∗
ijkl ATijkl

1111 0.1029 0.100
1122 0.0865 0.100
2222 0.1029 0.100
1212 0.0102 0

Table 6.3: Homogenized coefficients for the optimized microstructure of Figure 6.45.

ijkl A∗
ijkl ATijkl

1111 0.2045 0.200
1122 0.0145 0
2222 0.2045 0.200

value of the homogenized coefficients are shown in figures 6.45, 6.46 and Table 6.3. The final volume is
VT = 0.42|D|.

Example 4
In this example, two isotropic materials are used (materials 0 and 1). The Young moduli are set

to E0 = 0.91 and E1 = 0.455, while the thermal strain coefficients take the values αth011 = αth022 = 1.0,
αth111 = αth122 = 5.0 and αth112 = αth212 = 0. The optimization problem reads

min
Ω

J(Ω) = 1
2η1111(A∗

1111 −AT1111)2 + 1
2η2222(A∗

2222 −AT2222)2

+ 1
2µ11(Ath∗11 −AthT11 )2 + 1

2µ22(Ath∗22 −AthT22 )2,
s.t. V 0

T ≤ 0.20|D|,
V 1
T ≤ 0.24|D|,
A∗

1212 ≥ 0.05,

where η1111 = η2222 = 10, µ11 = µ22 = 1, AT1111 = AT2222 = 0.05 and AthT11 = AthT22 = 0.1. In this Example,
the principal goal is to create a material with equal thermal expansion coefficients, while the structural
coefficients are imposed to ensure sufficient rigidity of the microstructure. The optimization results and
the value of the homogenized coefficients are shown in figures 6.47, 6.48 and Table 6.4. The final volume
of each phase is V 0

T = 0.20|D| and V 1
T = 0.06|D|.

Example 5
Here, again two isotropic materials are used with Young moduli E0 = 0.91 and E1 = 0.455 and

thermal strain coefficients αth011 = αth022 = 1.0, αth111 = αth122 = 10.0 and αth112 = αth212 = 0. The optimization
problem reads

min
Ω

J(Ω) = 1
2η1212(A∗

1212 −AT1212)2 + 1
2µ11(Ath∗11 −AthT11 )2 + 1

2µ22(Ath∗22 −AthT22 )2,

s.t. V 0
T ≤ 0.25|D|,
V 1
T ≤ 0.34|D|,

where µ11 = µ22 = 1, AT1212 = 0.04, AthT11 = 0.4 and AthT11 = −0.4. Here we search for a material with
opposite thermal expansion coefficients, while the coefficient A∗

1212 is added in order to ensure sufficient
stiffness of the material. Starting from the initial shape of Figure(6.41(a)) and setting the value of the

Table 6.4: Homogenized coefficients for the optimized microstructure of Figure 6.47.

ijkl A∗
ijkl ATijkl

1111 0.0525 0.050
2222 0.0525 0.050
1212 0.0536 ≥ 0.050

ij Ath∗ij AthTij
11 0.1208 0.100
22 0.1208 0.100
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(a) (b)

(c)

Figure 6.45: Optimized microstructure for Example 3; (a): initialization and (b): optimized unit cell;
(c): optimized microstructure (16 unit cells).

Figure 6.46: Convergence diagram for the results of Figure 6.45.
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(a) (b)

(c)

Figure 6.47: Optimized microstructure for Example 4; (a): initialization and (b): optimized unit cell;
(c): optimized microstructure (16 unit cells).

Figure 6.48: Convergence diagram for the results of Figure 6.47.
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(a) (b)

Figure 6.49: (a): Optimized unit cell and (b): optimized microstructure (16 unit cells), for Example 5
and η1212 = 10.

Table 6.5: Homogenized coefficients for the optimized microstructure of Figure 6.49.

ijkl A∗
ijkl ATijkl

1212 0.0061 0.040

ij Ath∗ij AthTij
11 0.4429 0.400
22 -0.3370 -0.400

weight coefficient η1212 equal to 10, we obtain the shapes of Figure 6.49 , while for η1212 = 50 we get a
stiffer structure, shown in Figure 6.50. For both cases the volume constraints are active at convergence.

Table 6.6: Homogenized coefficients for the optimized microstructure of Figure 6.50.

ijkl A∗
ijkl ATijkl

1212 0.0337 0.040

ij Ath∗ij AthTij
11 0.4413 0.400
22 -0.2713 -0.400
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(a) (b)

Figure 6.50: (a): Optimized unit cell and (b): optimized microstructure (16 unit cells), for Example 5
and η1212 = 50.



Conclusions and future work

Manufacturing constraints
The main conclusions from our work on manufacturing constraints, i.e. Chapter 3, 4 and 5 are

presented in the sequel:

• We have proposed some novel formulations for the control of the thickness in the design domain,
using the signed distance function to the shape. A simple augmented Lagrangian method has
been implemented to enforce the constraints, which proved to be sufficient in most cases when few
constraints are handled, albeit very slow to convergence in the majority of the examples tested.

• For the Maximum Thickness constraint, we have explained the inherent problem of distortions
close to joints and to the design domain boundary and proposed a ”volumetric” formula to reduce
their effect. We have also discussed the discontinuity of the constraint with respect to topological
changes and explained its possible impact on the optimization algorithm. Finally, we have proposed
to apply this constraint since the beginning of the shape optimization problem.

• On the contrary, the Minimum Thickness constraint and the Minimum Members’ Distance con-
straint are suggested to be applied at a second step, after the optimization problem has been solved
without them. The computation of these constraints and of their shape derivative is quite difficult
and we propose alternatively the use of several energy functionals.

• The results obtained for the thickness control are quite encouraging, especially when compared to
those from existing commercial software.

• We have proposed a strategy to take into consideration constraints on the molding direction of cast
parts. When no thickness constraints (or just the Maximum Thickness constraint) are applied, we
believe that the method proposed by Xia et al. [159] is sufficient and very simple to implement.
In case we also need to impose limitations on the minimum thickness or the minimal distance
between members of the structure, we have proposed a two-step strategy. First, the optimization
problem is solved without these two constraints and the method of Xia et al. is applied. Then, we
add the constraints in the optimization problem and use some of the proposed generalized casting
constraint.

• Alternatively to the Maximum Thickness constraint, we have proposed to treat the feedability spec-
ification via a thermal constraint. The complete casting system is neglected during the optimization
part and much simpler thermal models, than the actual one simulating the solidification process, are
tested at a first step. Despite the possible interest of this work in different mechanical frameworks,
we believe that the results follow the same logic and present similar difficulties as the Maximum
Thickness constraint, while they add on an extra difficulty due to the computation of the thermal
problem. However, some of the simplified models we have presented, like the Poisson model, could
possible be interesting for other topology optimization methods.

Some future work on the above topics is proposed here:

• Since the number of constraints involved in industrial applications is quite large and the problems
are computationally much more expensive compared to those presented in this work, more efficient
optimization methods shall be tested and the global formulation of the constraints shall be ad-
justed accordingly. In the framework of the RODIN project, different methods of sequential linear
programming are already being tested and the results are quite encouraging.

• The constraints shall be coded and tested for the case of an adapted mesh, which is expected to
alleviate several numerical problems regarding the calculation of surface integrals, but also be more
sensitive during the shape variations.
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• Although several formulations have been proposed for the generalized casting constraint, only those
based on the signed distance function have been tested, mainly due to their ressemblance with
the thickness constraints. However, they are very costly. We propose to test in the future the
formulation using the normal vector, which is expected to be computationally more efficient and
easier to be adjusted to other optimization methods.

Multi-phase optimization
Our analysis of multi-phase shape and topology optimization problems has led to the following re-

marks:

• The exact formula of the shape derivative for sharp-interface, multi-phase shape optimization prob-
lems is usually not properly approximated on a fixed mesh using continuous finite elements, since
the jump in some components of the stress and strain tensor is not detected. In this case, derivating
the discretized problem seems to give more accurate results.

• The sharp-interface problem can be approximated using a smooth-interface formulation, where the
material properties are interpolated in a finite zone using smoothed Heaviside functions. The correct
shape derivative for this formulation, based on the signed distance function, has been computed
and it has been shown to converge to the original sharp-interface formula when the interpolation
width tends to zero.

• The use of the exact shape derivative formula seems to have an impact on the optimized shapes
when the width of the transmission zone augments, compared to the results obtained with the
”approximate” formula, which is met in the previous literature. A good compromise between the
two seems to be achieved by the ”Jacobian-free” formula.

• The validity of the proposed method is proved by a variety of optimization problems on rigidity
maximization, multi-functional design and material design using inverse homogenization.

As future work on the topic, we would suggest the following:

• It would be interesting to use the adapted-mesh technique, described in [44], for more than two
phases and to compare the results using the exact shape derivative formula with those presented in
Chapter 6.

• The topic of material design using inverse homogenization shall be further explored, since the
accurate position of the phases in play using the level-set description seems to be very tempting for
people from material science and industry.

• The correct shape derivative formula allows to work on the optimization of general functionally
graded structures. In this case, some further ideas about optimizing the gradation type between
different phases shall be developed.
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Appendix A

Material interface effects on the

topology optimization of multi-phase

structures

This appendix contains an article that we submitted for publication in the SMO (Structural and Multi-
disciplinary Optimization) journal. It is a joint work with a team from the SIMaP laboratory (the
Materials and Processes Science and Engineering Laboratory) of Joseph Fourier University in Grenoble,
who were interested to apply the techniques described in Chapter 6 in order to study the effect of material
interface properties on the optimal shape of structures composed by multiple phases.
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composed of two and three materials. The results highlight

the design performance changes attributed to the presence

of the continuously graded material interface properties.

Keywords shape optimization · graded interface · ther-

moelastic · elasticity · level set method · multi-material ·
multi-phase · topology

1 Introduction

Recent advances in the development of the level set method

for topology optimization (Allaire et al 2013a) have enhanced

the treatment of material interfaces, a key feature introduced

in multi-phase models that is nevertheless typically ignored.

The interfaces of interest are those of dissimilar materials

(bi-material) or heterophase boundaries within the classifi-

cation of solid or bulk interfaces. For this class of interfaces,

lattice-parameter changes in the interfacial region, induced

by interfacial stresses, may have a pronounced effect on the

physical properties and chemical composition at or near the

interface (Wolf 1992). The present work seeks to capitalize

on these potential property differences. In a variety of fields

material interfaces play a pivotal role in the performance of

structures, often dictating tolerances and processing choices,

lifetime and failure characteristics. Explicitly accounting for

interfacial properties beyond a simple interpolation between

bulk properties is necessary if one is to take full advantage

of incorporating materials science input into optimal shape

design methodologies.

The benefits of integrated engineering paradigms that al-

low simultaneous and cooperative feedback among advanced

manufacturing methods and computational modeling – in-

cluding optimization – have been recently recognized and

broadly advised (Committee on Integrated Computational

Materials Engineering 2008). Advances in precision and con-

trol of additive manufacturing now allow for consideration
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of interface characteristics in structure and material design

optimization. These advances include techniques such as:

3D printing, laser stereo-lithography and electron beam melt-

ing (Pasko et al 2011; Lipson and Pollack 2000; Ikuta and

Hirowatari 1993; Harrysson et al 2008), along with charac-

terization techniques at the interfacial level such as blister,

wedge, and essential work of fracture tests (Braccini and

Dupeux 2012). In the present work, only elastic and ther-

moelastic structural optimization will be considered but the

application to material design is forthcoming.

Multi-phase topology optimization for problems of elas-

tic and thermoelastic structures and materials design has been

widely studied within the framework of the homogenization

method (Allaire et al 1997; Bendsoe and Kikuchi 1988) and

its variants, such as the Solid Isotropic Material Penaliza-

tion (SIMP) method (Bendsoe and Sigmund 1999, 2004).

This topic has also been explored (Wang et al 2004) using

the level set method for shape and topology optimization

(Allaire et al 2004; Wang et al 2003). The level set method

was originally developed by Osher and Sethian (1988) for

numerically tracking fronts and free boundaries. The level

set method is extremely versatile, used in many fields in-

cluding fluid mechanics and image processing, and is com-

putationally very efficient. Previously, multi-phase or multi-

material topology optimization of structures using the level

set method has been performed for problems of compliance

only (Allaire et al 2013a; Wang and Wang 2004) and ther-

moelastic structural problems have utilized only one mate-

rial (and voids) (Xia and Wang 2008b; Laszczyk 2011).

The level set method has also been applied for optimiza-

tion problems that incorporate concepts of functionally-graded

materials and heterogeneous structures (Wang and Wang 2005;

Xia and Wang 2008a). In Wang and Wang (2005), the inter-

face between the different phases in a heterogeneous struc-

ture was considered to be a geometrically sharp boundary,

but each of the phases was allowed to have graded proper-

ties. In contrast, the present work focuses on graded inter-

faces between isotropic bulk materials. In Wang and Wang

(2005), polynomials were used to describe the gradation in

properties within a material region and a sensitivity analysis

was performed that considered the polynomial coefficients

as parameters of the optimization problem. However, nu-

merical results were presented only for piecewise constant

materials. In Xia and Wang (2008a), the authors presented a

method for the simultaneous optimization of the shape and

of the material properties of a structure. They used the level

set method for shape and topology optimization. Addition-

ally, a density field was defined in the domain, to account

for variation in the material properties, and its distribution

was optimized solving the classic “variable thickness sheet”

problem.

The enabling theory for the account of material inter-

face effects in the level set methodology of topology opti-

mization has already been presented in a rigorous mathe-

matical framework in Allaire et al (2013a) and will be sum-

marized below. This theory allows the designer to replace

the ideal and mathematically sharp material interface with a

finite and physically meaningful interface transition zone.

Previously, including Allaire et al (2013a), this transition

zone has employed smoothly-monotonic Heaviside-type in-

terpolation within the transition function. The present work,

inspired by a similar choice in thermodynamic modeling

presented by the ideal Gibbs interface and the Guggenheim

model (Guggenheim 1959) (see Figure 1), seeks to take ad-

vantage of new design possibilities enabled by the interfa-

cial transition zone. In particular, we investigate thermoe-

lastic models and non-monotonic interpolations of the ma-

terial properties within the transition zone, which were not

considered in Allaire et al (2013a).

Interfaces between materials are not neutral: they result

often from interdiffusion and reactions between two parent

phases. For instance, the interface between two polymers

may be the locus for chain reptation and entanglement. The

interface between two different steels may lead to carbon

diffusion and the creation, after quenching, of a martensitic

layer or, conversely, a decarburized layer. The interface be-

tween copper and nickel (two elements with full miscibility)

will lead to a solid solution. These examples show the vari-

ety of situations encompassed by the term “interface.” They

also indicate that the properties of interest may not be an av-

erage of the bulk properties: in general, a martensitic layer

has a yield stress higher than the yield stress of the bulk ma-

terials, and a decarburized layer has a lower yield stress. Ad-

ditionally, the electrical and thermal conductivity of a solid

solution is lower than that of the pure metals (such as copper

and nickel). Therefore, using the interfacial properties as an

input in the design of optimal structures requires the con-

sideration of non-monotonic transition functions within the

interface that exhibit maxima or minima with respect to the

bulk material values.

Depending on processing and manufacturing conditions,

finite interface zones with smooth monotonic and non-monotonic

interface property transitions can be promoted. The engi-

neering of these transition zones profits from the mature

studies of functionally graded materials (Miyamoto et al 1999;

Xia and Wang 2008a; Mello and Silva 2013) and advances

in polymer science (Creton et al 2002) among many oth-

ers. Non-smooth (not C-1 continuous) non-monotonic in-

terface properties are also possible (Simar et al 2012), but

the non-smoothness of such transitions poses an additional

difficulty for the numerical fixed-mesh approximation and

are thus not addressed herein. Nevertheless, the introduction

of smooth non-monotonic transition functions over a finite

interface zone allows for properties that differ, sometimes

markedly, from that of the bulk materials alone.
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The article is organized in the following way. First, the

background and use of the level set approach for topological

optimization is described. The description and influence of

additional parameters related to interface properties are also

introduced. In the second section, the optimization proto-

col is used on some benchmark problems in 2D under plane

stress conditions. These problems involve the compliance

minimization of multi-material elastic structures and also

displacement minimization in thermoelastic structures. The

restriction to 2D is without loss of generality as the ease of

extension to 3D is one of the benefits of the level set method

(Allaire et al 2004).

2 Topological optimization

There are many topology optimization methods that address

the optimal distribution of materials in a fixed working do-

main in order to minimize an objective related to overall

mechanical behavior or cost (Eschenauer and Olhoff 2001;

Bendsoe and Sigmund 2004). For example, density approaches

are based on a fixed mesh of the design domain, D (Figure

2), wherein a density field is defined. The objective function

is evaluated by solving the physical equations with material

properties that depend on the density field by following an

interpolation scheme that specifies how, for example, the

elastic modulus tensor varies from that of the constitutive

material when the density value is 1, to zero when the den-

sity is 0. This material interpolation scheme may be ficti-

tious, such as a power law used in SIMP method (Bendsoe

and Sigmund 1999, 2004), or based on Hashin-Strickman

bounds derived by the homogenization method (Bendsoe

and Sigmund 1999). The optimization is then reduced to

a functional optimization with respect to the density func-

tion, based on an analytical derivative. At the end of the op-

timization procedure, a composite solution is obtained with

a density between 0 and 1. When composites are not desired,

a penalization step is added in order to progressively elim-

inate the non-physical intermediate values of density. The

main disadvantage of these density approaches is that the

obtained optimized shape is strongly sensitive to the density

interpolation scheme as well as the penalization method.

The level set method is a way to implicitly define the do-

main, Ω, on a fixed mesh of the design domain, D (Figure

2). The iterative optimization of the shape is done by advect-

ing the level set function with a velocity field that is found

through shape derivation (Allaire et al 2004; Wang et al

2003). The transport equation is usually a Hamilton-Jacobi

equation (Sethian 1999). Physical equations are solved on

the full design domain and voids or pores are mimicked with

extremely weak material properties. Sometimes, a smoothed

fictitious interface is introduced such as is done in phase

field simulations (Wang and Zhou 2004; Zhou and Wang

2007). In 2D, when Hamilton-Jacobi equations are solved

using a Courant-Friedrichs-Lewy (CFL) time step restric-

tion, only partial topological changes are allowed. The CFL

condition or maximum principle asserts that the numerical

waves should propagate at least as fast as the physical waves

which ensures that the propogating front crosses no more

than one element in one time step (Sethian 1999; Osher and

Fedkiw 2002). Indeed, the maximum principle satisfied by

this transport equation makes the nucleation of new mate-

rial during advection impossible. Nevertheless, coarsening

of existing inclusions and features can occur, enabling at

least partial topological changes. Consequently, initializa-

tion of the domain is usually done so that there are a large

number of material inclusions or voids. A remedy to this

problem is the use of a topological derivative (Sokolowski

and Zochowski 1999; Allaire et al 2005), but it is not in-

cluded in this work. In the following, the level set method

using a Hamilton-Jacobi transport equation is used for the

optimization.

The feature common to these methods in their treatment

of multiple materials is in their numerical approach to inter-

face modeling. While an exact formulation of the optimiza-

tion problem would require that disparate material proper-

ties be discontinuous at the interface between two materi-

als, it is numerically challenging to incorporate this discon-

tinuity. As an alternative to including this interface discon-

tinuity, it is general practice to devise an appropriate nu-

merical interpolation scheme to “smooth out” the problem.

These material density interpolation schemes can be quite

involved (Yin and Ananthasuresh 2002) and much work has

been done in exploring their effects from a numerical stand-

point (see (Allaire et al 2013a) for further discussion). Pre-

viously, to the best of the authors’ knowledge, only smooth

and monotonic interpolation schemes have been employed

at the interface. Furthermore, these schemes have been used

with an emphasis on numerical application and the ability

to penalize (when composites were not desired) fictitious

“intermediate” properties or densities that had no physical

meaning. The focus of the present work is the reinterpreta-

tion of the numerical short-cut of the “smoothed out” inter-

face from a materials perspective that allows new function-

ality to be derived and exploited in topological optimization

and design.

The new generalized level set topology optimization for-

mulation developed in Allaire et al (2013a) extends the ap-

plicability of the method to account for the influence of finite

interfaces. The focus of Allaire et al (2013a) is to explain

why the shape derivatives used in the literature so far for

multi-material problems are not correct in full mathematical

rigor. They also provide the appropriate theorems for exact

shape derivatives with finite interface zones between materi-

als. Futhermore, they demonstrate how these converge to the

shape derivatives for mathematically sharp interfaces when a

regularized Heaviside function is used for the interpolation
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scheme and when the interface zone thickness approaches

zero. In the following, the application of the generalized fi-

nite material interface formulation will be presented in or-

der to study the effects of including physically-motivated

interface characteristics under both elastic and thermoelastic

conditions.

2.1 Shape optimization of multi-phase structures in

thermoelasticity

2.1.1 Setting of the problem

Without loss of generality, the case of two isotropic materi-

als will be described with and without void. A typical case

study is defined in which the objective is to optimize the

distribution of two materials in a fixed working domain, D,

in order to minimize a cost function related to the displace-

ment field. In this work, we consider the maximization of

the structure’s stiffness by minimizing its total compliance

(work done by the loads), as well as the minimization of a

target displacement. The structure deforms under a load g

applied to a part of its boundary and also due to thermal

strain mismatch. The boundary of D is typically comprised

of three disjoint parts such that ∂D = ∂D0∪ΓD∪ΓN , where

Dirichlet boundary conditions are applied at ΓD, homoge-

neous Neumann conditions at ∂D0 and non-homogeneous

Neumann conditions at ΓN . Instead of a sharp interface be-

tween the two materials, an intermediate zone in which the

material properties are interpolated is considered (Figure 3).

The width of this zone and the interpolation functions for the

material properties are described using the signed-distance

function to the intermediate surface ∂ Ω of the two materi-

als. This surface is implicitly defined as the zero level set

of a one dimension higher level set function φ and seperates

the domain into two subdomains Ω and D\Ω; where D\Ω is

the remaining subdomain defined by the absence of Ω from

the full domain (Figure 2). The displacement u is the unique

solution of the thermo-elasticity system




−div (A(dΩ) (e(u)−α (dΩ)∆T )) = 0 in D,

u = 0 on ∂ ΓD,(
A(dΩ) (e(u)−α (dΩ)∆T )

)
n = 0 on ∂D0,(

A(dΩ) (e(u)−α (dΩ)∆T )
)
n = g on ΓN ,

(1)

where ∆T is the fixed and constant change in temperature,

A is the Hooke’s tensor, α is the coefficient of thermal ex-

pansion (CTE) tensor and dΩ is the signed-distance function

to ∂ Ω. The explicit dependence of the coefficients A and α

on the distance function dΩ will be specified in sections 3.1

and 3.2.

The optimization problem reads

min
Ω∈Uad

J(u(Ω))

s.t.

∫

Ω

dx = Vtar,
(2)

where u(Ω) is the unique solution of eq. (1), Uad is a set of

admissible shapes (requiring some smoothness), J(u(Ω)) is

the objective function and Vtar is the target volume for one

of the materials occupying the domain Ω.

2.1.2 Shape derivative

In order to implement the above equality constraint, an aug-

mented Lagrangian method, suitable for inequality constraints

as well, was applied. Inequality constraints were also ex-

plored but are not presented herein; see (Rao 2009) for de-

tails regarding the augmented Lagrangian formulation for

inequality constraints. The method of Céa (1986) is used

for the formal calculation of the shape derivative. The La-

grangian reads

L(v,q, µ) = J(v)

+
∫

D
−div (A(dΩ) (e(v)−α (dΩ)∆T )) ·qdx

+
∫

ΓD

µ · vds

+
∫

∂D0

A(dΩ) (e(v)−α (dΩ)∆T )n ·qds

+
∫

ΓN

(A(dΩ) (e(v)−α (dΩ)∆T )n−g) ·qds

+λa(Ω) + r
2
a(Ω)2,

(3)

where λ ,r are scalars to be updated at each iteration so that

the volume constraint is satisfied at convergence; v,q, µ are

vector-valued functions defined in D (independent of Ω) and

a(Ω) =
∫

Ω

dx−Vtar. (4)

Taking the partial derivative of L with respect to q, in the

direction φ , a given vector-valued function defined in D and

equating it with zero at the optimal point u, p, µ∗, results in

∫

D
−div (A(dΩ) (e(u)−α (dΩ)∆T )) ·φ dx = 0, (5)

∫

∂D0

A(dΩ) (e(u)−α (dΩ)∆T )n ·φ ds = 0, (6)

and
∫

ΓN

(A(dΩ) (e(u)−α (dΩ)∆T )n−g) ·φ ds = 0, (7)

and thus

−div (A(dΩ) (e(u)−α (dΩ)∆T )) = 0 in D, (8)

A(dΩ) (e(u)−α (dΩ)∆T )n = 0 on ∂D0, (9)
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and

A(dΩ) (e(u)−α (dΩ)∆T )n = g on ΓN . (10)

In the same way, the partial derivative of L with respect to µ

results in

u = 0 on ΓD. (11)

Eq. (8) - (11) show that u is indeed the unique solution of

eq.(1). In order to calculate the adjoint state, the Lagrangian

is written in the following form

L(v,q, µ) = J(v)

+
∫

D
A(dΩ)e(v)e(q)dx

−
∫

D
A(dΩ)α (dΩ)∆Te(q)dx

−
∫

ΓD

A(dΩ)e(v)nqds

+
∫

ΓD

A(dΩ)α (dΩ)n∆T qds

−
∫

ΓN

g ·qds

+
∫

ΓD

µ · vds + λa(Ω)

+ r
2
a(Ω)2.

(12)

Setting the partial derivative of L with respect to v in the

direction φ equal to zero, at the optimal point

J′(u(Ω))(φ )

+
∫

D
A(dΩ)e(φ )e(p)dx−

∫

ΓD

A(dΩ)e(φ )n · pds

+
∫

ΓD

µ∗ ·φ ds = 0

⇒ J′(u(Ω))(φ )

+
∫

D
−div (A(dΩ)e(p)) ·φdx +

∫

∂D0

A(dΩ)e(p)n ·φds

+
∫

ΓN

A(dΩ)e(p)n ·φds

+
∫

ΓD

A(dΩ)e(p)n ·φds−
∫

ΓD

A(dΩ)e(φ )n · pds +
∫

ΓD

µ∗ ·φ ds = 0.

(13)

In the case of the compliance, J(v) has the form

J(v) =
∫

ΓN

g · vds +
∫

D
A(dΩ)α (dΩ)∆T e(v)dx. (14)

Therefore,

J′(v)(φ ) =
∫

ΓN

g ·φ ds +
∫

D
A(dΩ)α (dΩ)∆T e(φ )dx, (15)

and the following equations are derived

µ∗ = −A(dΩ)e(p)n, (16)

p = 0 on ΓD, (17)

A(dΩ) (e(p)−α (dΩ)∆T )n = −g on ∂ ΓN , (18)

A(dΩ) (e(p)−α (dΩ)∆T )n = 0 on ∂D0, (19)

−div (A(dΩ) (e(p) + α (dΩ)∆T )) = 0 in D. (20)

Thus p = −u and the problem is said to be self-adjoint.

In the case of minimizing the displacement at a target point

xtar, we can consider an objective function of the type

J(v) =
∫

D
δ (xtar)v2dx, (21)

where δ (xtar) is a Dirac mass function concentrated at point

xtar. In this case,

J′(v)(φ ) =
∫

D
δ (xtar)2vφ dx (22)

and the eq. (17 - 20) defining the adjoint state, now take the

form

p = 0 on ΓD, (23)

A(dΩ) (e(p)−α (dΩ)∆T )n = 0 on ΓN ∪∂D0, (24)

−div (A(dΩ) (e(p) + α (dΩ)∆T )) = −δ (xtar)2u in D.

(25)

Finally, deforming the structure in the direction of a smooth

vector field θ (see Allaire et al 2004 for details), the shape

derivative of the objective function is found to be the shape

derivative of the Lagrangian at the optimal point

J′(u(Ω))(θ ) = L′(u, p, µ∗)(θ ), (26)

which, after some algebra, for the compliance case results in

J′(u(Ω))(θ ) =





∫

D

∂dΩ

∂ Ω
(θ )
[
2A′(dΩ)α (dΩ)∆Te(u)

+2A(dΩ)α ′(dΩ)∆Te(u)
−A′(dΩ)e(u)e(u)

]
dx

+λ

∫

∂ Ω

θ ·nds

+r(
∫

Ω

dx−Vtar)
∫

∂ Ω

θ ·nds,

(27)
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while for the displacement case, it takes the form

J′(u(Ω))(θ ) =





∫

D

∂dΩ

∂ Ω
(θ )
[
A′(dΩ) (e(u)−α (dΩ)∆T )e(p)

−A(dΩ)α ′(dΩ)∆Te(p)
]
dx

+λ

∫

∂ Ω

θ ·nds

+r(
∫

Ω

dx−Vtar)
∫

∂ Ω

θ ·nds.

(28)

The shape derivative of the signed-distance function has been

discused in detail in Allaire et al (2013a). The Eulerian deriva-

tive of dΩ was found to be

∂dΩ

∂ Ω
(θ )(x) =−θ (p∂ Ω(x)) ·n(p∂ Ω(x)) for any point x∈ D,

(29)

where p∂ Ω(x) denotes the orthogonal projection of x on the

boundary of Ω.

Substituting (29) in (27) and (28) does not directly pro-

vide an explicit descent direction, i.e., a vector field, θ , along

which the interface ∂ Ω should be moved. Instead, a coarea

formula is used to obtain the standard form of the shape

derivative (Allaire et al 2013a):

J′(u(Ω))(θ ) =
∫

∂ Ω

θ (s) ·n(s) j′(Ω)(s)ds, (30)

which gives a descent direction using θ (s) =− j′(Ω)(s)n(s).

This form of the shape derivative provides a descent di-

rection only on the interface ∂ Ω, which is limiting from

a numerical point of view. Therefore, an additional step is

added to extend and regularize the shape derivative to the

whole working domain D (see (Allaire et al 2004, 2013a)).

The shape transformation occurs through the transport of a

level set function via a Hamilton-Jacobi equation (Allaire

et al 2004).

A corresponding optimization algorithm has been imple-

mented in Scilab (Version 5.3.3) (Scilab Enterprises 2012),

a software for numerical computation, and is as follows:

Algorithm for 2D shape optimization under an area equal-

ity constraint.

1. Initialize the level set function to obtain a starting geom-

etry and area fraction.

2. While the maximum number of iterations is not reached:

(a) Evaluate the objective function and shape derivative.

(b) Deform the shape by transporting the level set func-

tion with the Hamilton-Jacobi equation. The equa-

tion is solved on a time step dt and for a normal ve-

locity V = − j′(Ω).

(c) Update the Lagrange coefficient based on its previ-

ous value and the previous constraint errors.

(d) Reinitialize the level set function to the signed dis-

tance function. This improves the conditioning for

the Hamilton-Jacobi equation while keeping the same

zero contour or level line.

3 Results of Numerical Examples

In this section, several examples of topology optimization

with two isotropic materials A, B (Figure 3) or two mate-

rials and void are presented. They illustrate the benefits of

optimization schemes that account for features at the inter-

facial level that are either by design or unavoidable and are

derived from the fabrication and manufacturing processes

when multiple materials are involved. The objective or cost

functional is, in the first examples, the minimization of the

compliance or work done by the loads. Elastic structures

comprised of two materials are presented, followed by elas-

tic structures with two materials and void. Finally, a two-

material thermoelastic case is also discussed.

In order to better visualize trends for the bi-material cases,

equality constraints on the lower modulus or higher CT E

bulk material are imposed (50% of the domain). Note that

this constraint is not necessarily arbitrary. It can, for exam-

ple, be beneficial when use of a less expensive material with

inferior properties is desired. Additional constraints that are

specific to individual manufacturing processes are not in-

cluded in this initial 2D study. Further work in 3D could

include for example, constraints based on thermal stress in-

duced warping that occurs in some types of 3D printing pro-

cesses.

In all of the strictly two material cases, unless other-

wise noted, the following parameters were used in obtain-

ing the results. Poisson’s ratio was kept constant at 0.3. The

applied point-load force was normalized to unity (g = 1)

and a normalized Young’s modulus EA = 1 was used. These

normalized parameters were used without loss of general-

ity because the problem is within the domain of linear elas-

ticity. Moreover, these non-dimensional properties remain

representative for a variety of engineering applications. The

inelastic strain (α∆T ), resulted from a distributed load pro-

vided by a uniform thermal excursion (∆T ). Although the

inelastic strain is presented as originating from thermal ex-

pansion, it is also analogous to swelling in problems of soft

materials like some polymers or biological materials. Thus

interpretation of the thermoelastic results below is not re-

stricted to thermal effects.

Two loading conditions were considered. The first kind

of problem was purely mechanical with a point-load force

(no thermal excursion) (Figures 5 and 10). The second kind

of problem involved only distributed or bulk force loading

via a uniform thermal excursion (Figure 14, ∆T = 1). These

numerical tests with point loads or uniform bulk force load-

ing were chosen in order to comply with the usual bench-
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mark problems. However considering more realistic distributed

loads is no more difficult than point loads, but will be the

topic of future work for more specialized applications.

Typically, at least 400 optimization iterations were per-

formed to ensure convergence in the optimization process.

For the cases shown in Figures 5 and 14, symmetry was

employed such that only one-half of the numerical domain

was needed. A variety of mesh densities were investigated

for the finite element analysis and results are presented with

a fine mesh (150 elements in the x1-direction and 150 el-

ements in the x2-direction, Figure 5). This mesh choice is

also informed by mesh sensitivity studies performed else-

where (Allaire et al 2013a). The magnitude of the interface

zone thickness has been kept constant by setting ε = 4dx,

where ε is half of the total interface zone thickness and dx

is the element size (Figure 3).

Most cases in the following sections were initialized with

inclusions of material B distributed within a matrix of ma-

terial A. This choice of initialization is typical for topology

optimization by the level set method because there is usually

no independent material nucleation mechanism included in

the algorithm (section 2.1.2). Nevertheless, the present al-

gorithm is still capable of topology optimization: inclusions

may still pinch off, merge, or morph, to create topological

changes in 2D (Allaire et al 2004).

3.1 Using monotonically graded interfaces

The Young’s modulus, E, and CT E, α , were smoothly inter-

polated (C-1 continuous) between bulk values: EA and EB;

αA and αB. For example, in the case of the Young’s Mod-

ulus, the variation of E across an interface was prescribed

by:

E = EA + hmono
int (EB −EA). (31)

The monotonic interpolation scheme, hmono
int , used was

that proposed by Osher and Fedkiw (2002):

hmono
int =





0, if dΩ <−ε

1
2

+ dΩ

2ε + 1
2π sin

πdΩ

ε
, if | dΩ | < ε

1, if dΩ > ε ,

(32)

where the signed-distance function, dΩ, instead of the level

set function, φ , was used for the advection of the shape.

3.2 Using non-monotonically graded interfaces

For non-monotonic interface interpolation, a 6th-order poly-

nomial was employed whose coefficients were determined

by imposed constraints. At the borders of the interface zone

(dΩ = ±ε), the bulk material properties must be recovered,

i.e. EA or EB, αA or αB. Moreover, the material property dis-

tributions must be C-1 continuous, so that the first deriva-

tives at the interface zone boundaries (dΩ = ±ε , Figure 3),

were also required to be zero. Two coefficients and two bound-

ary conditions remain. As the interpolation is non-monotonic,

the presence of an intermediate maximum or minimum in

the interpolation function is assumed. Presently, the location

of this maximum or minimum is fixed to be at dΩ = 0, Fig-

ure 3. It is worth noting that this non-monotonically graded

interface interpolation scheme would not be tractable using

previous formulations of the shape derivative because those

previous formulations depend only on the value of the inter-

polation derivative at dΩ = 0, which is zero in this case.

For an intermediate maximum at dΩ = 0, the property

value, P, is PdΩ=0 = mval ∗ (max(PA,PB)) and similarly for

an intermediate minimum at dΩ = 0, the property value, P,

is PdΩ=0 = mval ∗ (min(PA,PB)). Where mval is the mul-

tiplying factor that determines the nature of the interface

zone transition between the bulk properties PA and PB (Fig-

ure 3). The final coefficient is solved for by requiring that

the first derivative at the location of the intermediate max-

imum or minimum is also zero. For example, in the case

of the Young’s Modulus (P = E), the variation of E across

the interfacial interpolation zone, between the bulk values of

EA,EB, was:

E = h0 + EAh1 + EBh2, (33)

where

h0 =





0, if dΩ <−ε

mval −d2
Ω

(
2mval

ε2 − mval d2
Ω

ε4

)
, if | dΩ | < ε

0, if dΩ > ε .

(34)

and

h1 =





1, if dΩ <−ε

−d2
Ω

(
dΩ( 5

4ε3 −dΩ( 3dΩ

4ε5 − 1
2ε4 ))− 1

ε2

)
, if | dΩ | < ε

0, if dΩ > ε .

(35)

and

h2 =





0, if dΩ <−ε

d2
Ω

(
dΩ( 5

4ε3 −dΩ( 3dΩ

4ε5 + 1
2ε4 )) + 1

ε2

)
, if | dΩ | < ε

1, if dΩ > ε .

(36)

By taking account of material interface characteristics,

the number of potential design parameters has significantly
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increased to include the thickness of the interfacial zone

and six possible profiles for each of the properties E and

CT E. These include: monotonically decreasing or increas-

ing cases, and non-monotonically decreasing or increasing

with an intermediate global maximum or minimum in the

property values. In purely mechanical analyses, some of these

aforementioned cases are redundant, but for thermoelastic

analyses they remain relevant. Intermediate maximums or

minimums that fall within the bounding values of the bulk

properties are not of interest in this study.

However, not all of the possible combinations of mono-

tonic and non-monotonic transition functions are physical,

nor are they strictly independent. For example, typically,

natural and man-made materials follow an anti-correlated

relationship between Young’s modulus and CT E due to in-

teratomic energy considerations. Consequently, a material

with high Young’s modulus usually has lower values of CT E

(Figure 4 and see also for example, CES EduPack (Limited

2010)). Positively correlated relationships do exist, but are

much more restrictive and are not considered herein. The

thickness of the interfacial zone is also not strictly indepen-

dent of the material choices, but it is treated as such for the

purposes of this study due to the highly tunable nature of this

parameter using heat treatments and innovative processing

techniques.

3.2.1 Two-material elastic structure

The first example is a structure with a domain ratio of 2:1

that is fully clamped at both the right and left edges while

being loaded vertically (g = −1) at the mid-point of the bot-

tom edge (Figure 5). The normalized domain size parame-

ters are thus h = 1 and w = 2. This structure remains uni-

formly at its reference temperature, such that the thermoe-

lastic formulation simplifies to the classic mechanical-only

compliance problem. Two materials (A-blue, B-yellow) are

assumed with a ratio of 10:1 for the Young’s modulus (ma-

terial A has a higher E). The problem includes an equal-

ity volume constraint (Vtar = 0.5|D|) on the lower modu-

lus material-B using an augmented Lagrangian formulation.

The half-domain is discretized on a fixed Eulerian grid with

150 × 150 quadrilateral elements (employing symmetry).

Analyses with two different property profiles were con-

ducted. In the first case Figures 6, 6(a), a monotonic transi-

tion across the graded material interface is used. This case

was initialized with inclusions of material B distributed within

a matrix of material A as shown in Figure 6(c), “Iteration 1.”

Figure 6(c) also displays some intermediate results during

the optimization interations and the final design on the full

domain is shown in Figure 6(b).

In the second case, a non-monotonic transition was used

that included an intermediate maximum such that the in-

terface Young’s modulus at dΩ = 0 (Figures 3, 7(a)) was

two times greater than the larger bulk material modulus).

This case was initialized (see Figure 7(c), “Iteration 1”) us-

ing the solution from the previous monotonic result (Figure

6(b)). Initializing from the previous final design, the prop-

erties within the interface width are reinterpreted using the

non-monotonic scheme and the level set based optimization

is able to improve upon the design, lowering the objective

function (Table 1, see equation 14).

Initializing the optimization with the previous solution

allows direct comparison of the results, but can also be a

restriction on the optimization as currently, the topological

derivative is not included in the analysis. Without the topo-

logical derivative, nucleation of material A or B, is not pos-

sible. Nevertheless, significant topological changes can be

made through the possibility of merging. As such, a third

example (Figure 8) with the same non-monotonic transition

scheme is presented (Figure 8(a)). The third example returns

to the initialization scheme used in Figure 6(c) and follows

the same approach. The final design (Figure 8(b)) is signifi-

cantly different from the previous result in Figure 7(b).

To illustrate the design’s further dependence on the in-

terface property profile choice, a non-monotonic transition

with a larger magnitude in its variation is introduced in Fig-

ure 9. In this case, the non-monotonic transition includes an

intermediate maximum such that the interface Young’s mod-

ulus at dΩ = 0 is five times greater than the larger bulk ma-

terial modulus, Figure 9(a). All four results are compared

in Table 1. Table 1 also shows the objective and volume

constraint convergence histories for each case. These histo-

ries illustrate the reductions in compliance attributed to the

changing shape and toplogy while showing how closely the

volume constraint is respected. All of the non-monotonic

schemes improve on the objective function defined as the

minimization of the compliance of the structure. The more

non-monotone the interface is, the more complex is the op-

timal topology since the interface zone has a higher Young’s

modulus than either of the bulk materials. Initializing from

the monotonic solution yields a 29% reduction and initializ-

ing with same inclusion scheme as the monotonic-transition

case yields a 35% reduction in the structural compliance.

Enhancing the interface property disparity even further (5×max (EA,EB))
yields a 69% reduction in the objective compliance.

3.2.2 Elastic structure with two materials and void

Next, the classic short-cantilever problem (Wang and Wang

2004) of compliance minimization that yields a two-bar frame

is considered (Figure 10). The design domain consists of a

rectangular area with the normalized size parameters h = 1

and w = 2. A normalized vertical load of value g = −1 is

applied at the middle of the right edge and the boundary is

fixed (u1 = u2 = 0) on the left edge. There is no thermal load

applied to this structure so that comparison with the classic
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analytical optimum-topology solution of two beams at an

angle of 45◦ that supports the applied load can be made. The

two materials assumed have a ratio of 2:1 for the Young’s

modulus and the same Poisson’s ratio (ν =0.3). The prob-

lem includes equality constraints on the volume of each of

the materials using an augmented Lagrangian formulation.

The volume constraints are 10% and 20% of the domain for

the higher and lower modulus materials, respectively, as was

done in Wang and Wang (2004). The full design domain is

discretized on a fixed Eulerian grid with 80 × 160 quadri-

lateral elements.

Two level set functions are employed. Their combination

can describe up to four distinct phases. In this case, the level

sets represent two material phases: material A (higher EA)

and material B (lower EB), and two phases of void. The ex-

ternal interfaces between material and void are treated with

a fixed width; the same width is enforced between the in-

ternal material interfaces (ε = 2dx). This width is consid-

ered “thin” or “sharp” in comparison with the thicker ma-

terial interface results presented in section 3.2.1, in order to

correspond more closely with the work presented in Wang

and Wang (2004). The phases representing void are modeled

using the traditional ersatz material approach with an ex-

tremely weak normalized Young’s modulus (Evoid = 0.001).

Analyses with two different property profiles were con-

ducted (Figures 11 - 13). In all cases contours of the Young’s

modulus are shown in greyscale in the results. In the first

case, a monotonic transition across the “sharp” material in-

terface is employed, Figure 11(a). This case was initialized

with distributed voids or pores in the initial design as shown

in Figure 11(c) “Iteration 1”, with the rest of the domain con-

sisting of the first and second materials. Figure 11(c) also

displays some intermediate results during the optimization

and the final design is shown in Figure 11(b).

In the second case (Figure 12), a non-monotonic transi-

tion was used that included an intermediate maximum such

that the interface Young’s modulus at dΩ = 0 was two times

greater than the larger bulk material modulus, Figure 12(a).

This case was initialized (Figure 12(c), “Iteration 1”) us-

ing the solution from the previous monotonic result (Fig-

ure 11(b)). Using this initialization, the properties within the

interface width are reinterpreted using the non-monotonic

scheme and the level set based optimization is able to im-

prove upon the design, lowering the objective compliance

function (Table 2, see equation 14).

As before, initializing the optimization with the previ-

ous solution can be a restriction on the optimization and a

third example (Figure 13) is presented. This example has

the same non-monotonic transition scheme, Figure 13(a), as

Figure 12(a). The example in Figure 13, returns to the ini-

tialization scheme used in Figure 11(c) and follows the same

approach. All three results are compared in Table 2 where it

is seen that both of the non-monotonic schemes improve on

the objective function: initializing from the monotonic so-

lution yields a 24% reduction and intializing with the same

shape as the monotonic design yields a 28% reduction in

the objective compliance function. Table 2 also presents the

objective function and volume constraint on material-A con-

vergence histories for each case. The volume constraint on

material-B has similar convergence and is not shown.

3.2.3 Two materials in a thermoelastic structure

As previously in section 3.2.1, the built-in beam with two

materials and without void is chosen as the configuration

for study. This problem is related to that studied in Xia and

Wang (2008b). A normalized and uniform Young’s modulus

EA = EB = 1 is used. The contrast in CTE is αA/αB = 2/3,

where αA and αB are proportional to the identity tensor. A

uniform thermal excursion of ∆T = 1 is imposed (Figure 14)

and the objective function is altered to minimize the vertical

(x2-direction) displacement at the point of interest in Figure

14 (see eq.21). The normalized domain size parameters are

again h = 1 and w = 2. The volume constraint on the larger

CTE material-B is 50% of the domain. The other parame-

ters are unchanged and the optimization results are shown in

Figures 15 - 18.

In the first case (Figure 15), a monotonic interface tran-

sition is considered. The final design in Figure 15(c) resem-

bles a checkerboard pattern which may be intuitive as an ar-

rangement of the materials that minimizes vertical displace-

ment in Figure 14. To check this intuition, a second case

with monotonic property transition was also conducted and

is shown in Figure 16. This case was initialized with an ide-

alized checkerboard pattern and it is seen that both the ini-

tialization from the regular array of inclusions and this case

evolve towards a biased checkerboard final design (Figures

15(c), 16(c)).

In Figure 17, the non-monotonic transition included an

intermediate maximum in the CTE such that the interface

CTE at dΩ = 0 was two times greater than the smaller bulk

CTE and the Young’s modulus remained uniform across the

bi-material interface (Figures 17(a), 17(b)). This case was

initialized (see “Iteration 1” in Figure 16(d)) using the solu-

tion from the previous monotonic result (Figure 15(c)).

In the last case, Figure 18, the non-monotonic transition

scheme from Figures 17(a), 17(b) is utilized. Figure 18 re-

turns to the initialization scheme used in Figure 15(d) and

follows the same approach. All four results are compared in

Table 3 where it is seen that only one of the non-monotonic

results (rows 3 and 4) is able to improve on the final objec-

tive function values compared to the monotonic transition

results (rows 1 and 2). When initializing from the monotonic

solution, the monotonic final design is reinterpreted with the

non-monotonic material properties and the resulting initial

objective function value: the value at “Iteration 1”, in row 3
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of Table 3 is higher than the final objective value in row 1

of Table 3. As a result, although further iterations allow the

objective function value to slightly decrease, the converged

final design objective function value (last column in row 3

of Table 3 remains larger than the monotonic case’s final

objective function value (last column in row 1 of Table 3)

by 6 %. When the non-monotonic initialization scheme uses

the array of inclusions (“Iteration 1” in Figure 18(d)), more

topological changes are allowed and the non-monotonic so-

lution is able to provide a 17% decrease in the final objective

function value, comparing rows 1 and 4.

4 Discussion

The interface between bulk materials is explicitly accounted

for in the shape optimization problem outlined above via the

level set method. In these first examples, isotropic bulk ma-

terials are considered, but extension to anisotropic properties

or graded material regions as was done in Wang and Wang

(2005) is also of interest. Several features related to the in-

fluence of the graded properties across the interface zone

alone (Figure 3) are highlighted below.

4.1 Sensitivity to interface interpolation scheme

As evidenced in the results above (Tables 1 - 3), the material

interface zone interpolation scheme can significantly impact

the efficacy of the design. Certainly for the elastic compli-

ance and thermoelastic displacement problems investigated

herein, the results are highly sensitive to initialization – as

is commonly the case in optimization methods (Allaire et al

2004). Sometimes, as in the case of one material and void

problems of elastic compliance, a global optimum seems to

be more easily established. Nevertheless, significant gains

can be attained by taking more detailed account of interface

characteristics in the optimization protocol. Alternatively,

more conservative or realistic designs could also be found

if the interface properties were considered deleterious in the

design.

In the purely elastic compliance problems of Figures 6,

11, the monotonic treatment strongly resembles the classic

one material and void result (Allaire et al 2004; Wang and

Wang 2004). This is to be expected because the lower mod-

ulus material simply replaces the void in the design. When

non-monotonic transitions are employed that favor the in-

terface (as the Young’s modulus within the interfacial zone

is twice that of the higher modulus material A), the optimal

designs feature curved and sometimes tortuous interface tra-

jectories that increase the interface perimeter while respect-

ing the volume constraint. It should be noted that, in cases

where the interface is clearly preferred (higher modulus in

this problem), optimizing without the volume constraint pro-

duces designs in which the interface practically replaces the

formerly strongest “bulk” material. As the interface thick-

ness is fixed, designs in which one element of material A and

material B are present only by definition, produce a worm-

wood type structure that is neither physical nor illuminating,

and are not presented herein.

In Figure 7, the final design differs very little from the

initialization. Recall this is the restrictive case as nucleation

of material is not accounted for in the formulation of the

problem. When initializing from the monotonic solution, small

changes in the design (note the scale of the volume conver-

gence diagrams in Table 1) cause significant reductions in

the objective function and slightly curving the features com-

pared to the monotonic design suffices to allow the optimiza-

tion to converge to a local optimum and a 29% compliance

reduction (Table 1).

Initializing from the less restrictive array of inclusions

in Figure 8 allows a greater reduction in compliance with

a significantly different final design. Cuboidal features with

curved edges predominate. A slight resemblance to the mono-

tonic final design (Figure 6(b)) can still be found in that

the higher modulus material is present along the 45◦ line

of force with a secondary support emanating from the bot-

tom left corner at an angle of 45◦. The smallest features are

present at the point of loading which means that the interface

is favored at this location.

By enhancing the favorable interfacial properties (Fig-

ure 9), the propensity to promote curving trajectories that

maximize the presence of the interface is revealed. Recall

that the volume of the lower modulus material-B is always

constrained to be 50 % of the design domain. In this case, a

dog-bone-like structure is present, reminiscent of the theory

of the equilibrium shape of crystals detailed by Wulff (Wulff

1901). Wulff’s theory showed that the distance form a com-

mon center of a small crystallite to any given surface facet

is proportional to the surface free energy of the facet. Here,

surface free energy is not explicity included, but the inter-

face stiffness properties are significantly higher than either

of the bulk material modulus in a compliance minimization

problem; a situation analogous to a theoretical crystallite

transforming with low surface free energy. The optimal de-

sign follows a single orientation along the 45◦ line of force

and the features comprised of material B (the lower modulus

bulk material) remain of relatively uniform size, increasing

the perimeter of the interface. Again the smallest features

are found at the point of application of the load.

Similar trends are found in the case of the short-cantilever

(Figures 10 –13). For ease of presentation, all results in these

figures utilizing two materials and void show the distribution

of Young’s modulus in greyscale instead of the distribution

of materials in color. The monotonic case, Figure 11, re-

sults in the classic two-bar Michell-like structure (Michell
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1904). The higher modulus material is more prevalent in

the area where the load is applied (medium grey in Figure

11(b)). When initializing from the monotonic solution, Fig-

ure 12(c) “Iteration 1”, minor changes in the design result

in substantial decreases in the objective function value (Ta-

ble 2), promoting little difference in the shape of the final

design (Figures 12(b), 12(c)). The orientation of the beams

is preserved and the interface with its favorable properties is

promoted towards the outer edges of the beams. In this final

design (Figure 12(b)), regions of the higher modulus mate-

rial align such that sections of the interface line up along the

45◦ line of force and the interface perimeter is in general

increased within the beams. The non-uniform beam thick-

ness is promoted by the unequal volume constriants applied

on the higher and lower modulus materials. By initializing

from the array of voids (Figure 13(c)) and enabling greater

flexibility in favoring the interface, a more distributed design

results that lowers the objective by 28% (Table 2).

Finally, introducing the volumetric thermal loads in Fig-

ures 14 – 18, introduces the opportunity for more complex

conditions that are less intuitive. In order to start simply, the

Young’s modulus was assumed to be uniform for both mate-

rials and across the bi-material interface. A uniform thermal

excursion ∆T = 1 was imposed and the vertical (x2) dis-

placement at the point of interest, displayed in Figure 14,

was minimized.

For the monotonic case, material A (blue) with the low-

est CT E is clearly preferred at the point of interest where

vertical displacement (in the x2-direction in Figure 14) is not

desired. The final design, Figure 15(c), resembles a checker-

board arrangement of the two materials. The checkerboard

pattern is an intuitive measure against vertical global dis-

placement. However, the idealized checkerboard (“Iteration

1” in Figure 16(d)), results in horizontal isocontours of dis-

placement in the x2-direction (Figure 14). When the checker-

board pattern is slightly biased, as is seen in the final designs

in Figures 15(c) and 16(c), the displacement at the point of

interest is decreased.

The most effective design is found using the non-monotonic

interface transition profile. When initializing from the mono-

tonic solution (Figure 17(d) “Iteration 1”, see also Figure

15(c)), no topological changes are made and very little ben-

efit in decreasing the objective function value is derived (Ta-

ble 3). However, when initializing from the array of inclu-

sions (Figure 18(d) “Iteration 1”), many topological changes

occur that enable a 17% reduction in the objective function

value (comparing the last columns in rows 1 and 4 of Table

3). This is not intuitive as the interface has the largest CT E

in the design domain. Instead of limited use of interfaces in

the domain, the design features many oriented “fibers” of

the interface at the corners and opposite the point of interest

in Figure 18(c). While these interface “fibers” seemingly vi-

olate the assumption of the disparity of scales between the

interface and the bulk materials, the results demonstrate the

trend and more discussion on this point follows.

4.2 On the interface parameters

In contrast to previous level set topology optimization for-

mulations, the interface zone width, ε (Figure 3), is physi-

cally motivated and is not restricted to a convenient numeri-

cal approximation. Thus, the interface zone width introduces

a length scale into the optimization problem. Nevertheless,

final designs may be considered size-independent, provided

everything, including the interface, is scaled uniformly.

However, changing only the interface zone width in the

optimization formulation can affect the final optimized de-

signs. Its influence is generally negligible when the dimen-

sions of the optimized structure are much larger than epsilon

(see Figures 6(b), 15(c), 16(c), 17(c)). Its influence becomes

more important when the interface zone width approaches

the same magnitude as the “bulk” material features in the

design (see Figures 7(b), 8(b), 9(b), 12(b), and 13(b) near

the application of the point load or see the corners in Fig-

ure 18(c)). The magnitude of the interface zone thickness

(Figure 3) has been kept constant: the length of 8 elements

(ε = 4dx) for Figures 6 – 9 and 15 - 18, and the length of 4

elements (ε = 2dx) for Figures 11 – 13.

The fact that the interface zone thickness is fixed is a

numerical restriction. It is not yet possible to continuously

vary the width of the interface zone within the same design

for the level set optimization framework. This restriction can

be partially circumvented by parametrically varying the the

thickness value to explore its effects.

Nevertheless, the interface thickness must also be suffi-

ciently large compared to element size in order to adequately

capture the non-monotonic nature of the property variations.

Recall that a polynomial dictates the values at the elemen-

tal nodes within the interface region; this provides an es-

timate on the lower bound. At the other extreme, the in-

terface region is typically energetically limited to approxi-

mately 10% of the smallest feature of a design. As such, the

interface does not saturate the design or become sandwiched

between material features of comparable thickness to, or

smaller thickness than, the interface zone. This final point,

that all design features must remain at least 10 times greater

in dimension than the fixed interface thickness, is a geomet-

ric constraint that is numerically difficult to directly imple-

ment. Indirectly, the requirement can be approximated by in-

cluding interface perimeter penalization within the objective

function. For the present work, neither approach is utilized

and the unencumbered designs are presented to better illus-

trate the trends in interface effects. These trends may also be

used to inspire more manufacturable manual interpretations

of the final design as was done in Sigmund (2000).



12 N. Vermaak et al.

Accounting for epsilon as a length scale determines how

refined the discretization needs to be and is likely to pre-

vent mesh-dependencies in the optimization results. More-

over, we propose that future work decouples the definition

of the interface interpolation zone width, ε , from the defini-

tion of the uniform grid mesh size. Instead, adaptive (non-

uniform) mesh methods such as those found in Allaire et al

(2013b) could be employed that would also allow a more

detailed study of the influence of the interface zone thick-

ness. Regardless of the meshing techniques, the fixed inter-

face thickness distinguishes the effects of including inter-

face characteristics from simply adding another bulk ma-

terial. The interface is, by definition, sandwiched between

materials A and B, whereas an additional bulk material, C,

could be isolated within material A or B without contact to

the remaining bulk material.

5 Conclusions

The influence of the interface between disparate bulk mate-

rials on the optimal design of elastic and thermoelastic struc-

tures has been investigated. The methodology employs a re-

cent formulation that accounts for a finite interface zone in a

shape optimization framework (Allaire et al 2004). The de-

scription is extended to include a physically-motivated inter-

face thickness with graded properties that can be monotoni-

cally varying between bulk materials but also non-monotonically

varying with local properties that are larger or smaller than

either of the bulk properties alone. Examples of these types

of interface transitions, commonly found in materials sci-

ence and biological materials, are given. The motivation of

the present study is to highlight the importance of interface

properties in optimal design and to direct the development

of design tools that capitalize on advanced manufacturing

capabilities. Two cases are presented: an elastic problem in

which the compliance is minimized for a given point load

and a thermoelastic case in which the displacement at a point

of interest is minimized. An additional reference case, con-

sisting in the minimization of the compliance of a short-

cantilever beam, is also reported for comparison with similar

shape optimization formulations found in Wang and Wang

(2004). The main results are:

– Interface properties can be explicitly accounted for in

shape optimization formulations. The interface thickness

incorporates a physically motivated length scale into the

problem formulation.

– The effect of interface properties depends both on the

type of loading and boundary conditions of the problem

considered, and on the transition profile relative to the

bulk properties. The interface transition profiles identi-

fied are not restricted to an interval bounded by the sur-

rounding bulk values but can be larger or smaller in mag-

nitude.

– Accounting for interface properties can significantly im-

prove the optimization results.

– The present formulation can be used to probe the in-

fluence of the interface characteristics in structures, but

also to direct the development and processing of new

materials, and in particular, bio-inspired materials. This

is the aim of forthcoming studies.
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Fig. 1: Classic models for material interfaces: Gibbs ideal

sharp interface (left) and Guggenheim smooth or graded in-

terface zone (right).
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Fig. 6: Case for monotonic interface interpolation applied in the built-in-beam subjected to a point load (Figure 5). Results

shown on the half-domain unless otherwise noted. The design images show the distribution of materials A (blue) and B

(yellow) in the domain, with the interface zone highlighted in red.
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Fig. 7: Case for non-monotonic interface interpolation applied in the built-in-beam problem (Figure 5). Results were initial-

ized (“Iteration 1” in (c)) with the final design from the monotonic interface interpolation scheme (see Figure 6(b)).
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Fig. 8: Case for non-monotonic interface interpolation applied in the built-in-beam problem (Figure 5). Results were initial-

ized from a regular array of inclusions (“Iteration 1” in (c)) and are shown on the half-domain unless otherwise noted.
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initialized from a regular array of inclusions (“Iteration 1” in (c)) and are shown on the half-domain unless otherwise noted.
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Table 1: A table of final objective function values for the minimization of the compliance of the built-in beam problem

(Figure 5) for different property transition profiles. All results used ε = 4dx (Figure 3) and a 150×150 element mesh on the

half-domain.
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cantilever with loading and boundary conditions.
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Fig. 11: Short-cantilever problem with two materials and void using monotonic interface interpolation. Results were initial-

ized from a regular array of voids in the bulk materials. The design images show the distribution of Young’s modulus in

the domain: the higher modulus material (medium grey), lower modulus material (light grey) and void (white). With this

scheme, the monotonic interface is not highlighted between the higher and lower modulus materials.
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Fig. 12: Short-cantilever problem with two materials and void using non-monotonic interface interpolation. Results were

initialized with the final design from the monotonic interface interpolation scheme (Figure 11(b)). The design images show

the distribution of Young’s modulus in the domain: the higher modulus material (medium grey), lower modulus material

(light grey) and void (white). With this scheme, the non-monotonic interface is highlighted in dark grey as it has the largest

Young’s modulus.



26 N. Vermaak et al.

-ε ε0

2.0

0.5

1.0

Non-monotonic

mval = 2PA

PA= 1

PB= 0.5

Interface Zone, dΩ

P
ro

p
er

ty
 v

al
u

e,
 P

(a) Young’s Modulus. (b) Final design.

(c) Iterations 1, 25, 35, 45, 50.

Fig. 13: Short-cantilever problem with two materials and void using non-monotonic interface interpolation. Results were

initialized from a regular array of voids in the bulk materials. The design images show the distribution of Young’s modulus

in the domain: the higher modulus material (medium grey), lower modulus material (light grey) and void (white). With this

scheme, the non-monotonic interface is highlighted in dark grey as it has the largest Young’s modulus.
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Table 2: A table of final objective function values for the minimization of the compliance of the short-cantilever problem

(Figure 10) for different property transitionprofiles. All results used ε = 2dx (Figure 3) and a 80×160 element mesh.
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Fig. 14: The design problem for the built-in-beam with load-

ing and boundary conditions. The analysis is thermoelastic

with ∆T=1.
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Fig. 15: Case for monotonic interface interpolation applied in the built-in-beam problem under a thermal excursion (∆T=1),

Figure 14. Results shown on the half-domain unless otherwise noted. The design images show the distribution of materials

A (blue) and B (yellow) in the domain, with the interface zone highlighted in red.
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Fig. 16: Case for monotonic interface interpolation applied in the built-in-beam problem under a thermal excursion (∆T=1),

Figure 14. Results shown on the half-domain unless otherwise noted. Results were initialized with the a checkerboard pattern

(“Iteration 1” in (d)) inspired by the final design of the monotonic interface interpolation scheme (see Figure 15(c)).
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Fig. 17: Case for non-monotonic interface interpolation applied in the built-in-beam problem under a thermal excursion

(∆T=1), Figure 14. Results shown on the half-domain unless otherwise noted. Results were initialized (“Iteration 1” in (d))

with the final design of the monotonic interface interpolation scheme (see Figure 15(c)).
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Fig. 18: Case for non-monotonic interface interpolation applied in the built-in-beam problem under a thermal excursion

(∆T=1), Figure 14. Results were initialized from a regular array of inclusions (“Iteration 1” in (d)) and are shown on the

half-domain unless otherwise noted.
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Table 3: A table of final objective function values for the minimization of the vertical (u2) displacement at the point of

interest indicated in the built-in beam problem (Figure 14) for different property transition profiles. All results used a uniform

normalized Young’s modulus distribution (EA = EB = Einter f ace = 1.0), ε = 4dx, and a 150×150 element mesh on the half-

domain.
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[70] J. Haslinger, A. Hillebrand, T. Kärkkäinen, and M. Miettinen. Optimization of conducting
structures by using the homogenization method. Structural and multidisciplinary optimization,
24(2):125–140, 2002.

[71] A. Henrot and M. Pierre. Variation et optimisation de formes: une analyse géométrique, volume 48.
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[99] F. Murat and J. Simon. Etude de problèmes d’optimal design. Optimization Techniques Modeling
and Optimization in the Service of Man Part 2, pages 54–62, 1976.

[100] F. Murat and L. Tartar. Calcul des variations et homogénéisation. Les méthodes de lho-
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l’optimisation de structures. Applied Mathematics and Optimization, 22(1):27–59, 1990.

[119] Scilab. A scientific software developed by inria and enpc, freely downloadable at
http://www.scilab.org.

[120] J.A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university
press, 1999.

[121] J.A. Sethian and A. Wiegmann. Structural boundary design via level set and immersed interface
methods. Journal of computational physics, 163(2):489–528, 2000.

[122] A.P. Seyranian, E. Lund, and N. Olhoff. Multiple eigenvalues in structural optimization problems.
Structural Optimization, 8(4):207–227, 1994.

[123] S. Shamasundar and T.M. Manjunatha. Computer simulation and analysis of investmentcasting
process, 2004.

[124] O. Sigmund. Materials with prescribed constitutive parameters: an inverse homogenization prob-
lem. International Journal of Solids and Structures, 31(17):2313–2329, 1994.

[125] O. Sigmund. Tailoring materials with prescribed elastic properties. Mechanics of Materials,
20(4):351–368, 1995.

[126] O. Sigmund. Design of multiphysics actuators using topology optimization–part ii: Two-material
structures. Computer methods in applied mechanics and engineering, 190(49):6605–6627, 2001.



BIBLIOGRAPHY 275

[127] O. Sigmund. Manufacturing tolerant topology optimization. Acta Mechanica Sinica, 25(2):227–239,
2009.

[128] O. Sigmund. On the usefulness of non-gradient approaches in topology optimization. Structural
and Multidisciplinary Optimization, 43(5):589–596, 2011.

[129] O. Sigmund and S. Torquato. Design of materials with extreme thermal expansion using a three-
phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6):1037–
1067, 1997.

[130] J. Simon and F. Murat. Sur le contrôle par un domaine géométrique. Preprint, (76015):725–734,
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