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“ Imagine, maintenant : un piano. Les touches ont un début. Et les

touches ont une �n. Toi, tu sais qu'il y en a quatre-vingt-huit, là-dessus

personne peut te rouler. Elles ne sont pas in�nies, elles. Mais toi, tu es in�ni,

et sur ces touches, la musique que tu peux jouer est in�nie. Elles, elles sont

quatre-vingt-huit. Toi, tu es in�ni. Voilà ce qui me plaît. C'est quelque chose

qu'on peut vivre. Mais si tu /

Mais si je monte sur cette passerelle, et que devant moi /

Mais si je monte sur cette passerelle, et que devant moi se déroule un

clavier de millions de touches, des millions et des milliards /

Des millions et des milliards de touches, qui ne �nissent jamais, c'est la

vérité vraie qu'elles ne �nissent jamais, et ce clavier-là,il est in�ni /

Et si ce clavier-là, il est in�ni, alors /

Sur ce clavier-là, il n'y a aucune musique que tu puisses jouer. Tu n'es

pas assis sur le bon tabouret : ce piano-là, c'est Dieu qui y joue /

Nom d'un chien, mais tu les as seulement vues, ces rues?

Rien qu'en rues, il y en avait des milliers, comment vous faites là-bas

pour en choisir une /

Pour choisir une femme /

Une maison, une terre qui soit la vôtre, un paysage à regarder, une

manière de mourir /

Tout ce monde, là /

Ce monde collé à toi, et tu ne sais même pas où il �nit /

Jusqu'où il y en a /

Vous n'avez pas peur, vous, d'exploser, rien que d'y penser,à toute cette

énormité, rien que d'y penser? D'y vivre... /

Moi, j'y suis né, sur ce bateau. Et le monde y passait, mais pardeux

mille personnes à la fois. Et des désirs, il y en avait aussi, mais pas plus que

ce qui pouvait tenir entre la proue et la poupe. Tu jouais ton bonheur, sur un

clavier qui n'était pas in�ni.

C'est ça que j'ai appris, moi. La terre, c'est un bateau trop grand pour

moi. C 'est un trop long voyage. Une femme trop belle. Un parfum trop fort.

Une musique que je ne sais pas jouer. Pardonnez-moi. Mais je ne descendrai

pas. ”Alessandro Baricco –Novecento : pianiste

À Daniel Yvon
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Résumé

Le mécanisme de la touche de piano à queue sert à propulser le marteau vers les cordes. Ce
mécanisme permet au pianiste de contrôler avec précision la vitesse et l'instant d'impact du
marteau sur la corde. Il est raisonnable de penser que c'est le comportement dynamique
de la touche qui permet cette contrôlabilité. Avec pour perspective l'amélioration du
rendu haptique des claviers numériques, cette thèse propose une méthode de simulation
d'un modèle complet du mécanisme. Le son généré par la vibration qui suit l'impact du
marteau sur les cordes n'entre pas dans le cadre de l'analyse. Des modèles du mécanisme
comportant plusieurs degrés de liberté, des frottements et des contacts intermittents, ont
été proposés depuis une quinzaine d'années. Notre approche se distingue de celles suivies
jusqu'ici par un changement du point de vue adopté pour valider et pour simuler le
modèle. En se fondant sur l'étude approfondie d'un modèle à un degré de liberté, il
est en effet montré que la simulation d'un modèle dynamique complet doit se faire à l'aide
d'un pilotage en déplacement, tandis que les travaux récentset anciens présentent des
simulations pilotées en force.

Une analyse des problèmes numériques liés aux discontinuités devitesses survenant au
sein du mécanisme durant l'enfoncement de la touche est présentée. Ils sont résolus
par des méthodes de dynamique non-régulière implémentées dans le logiciel XDE. Les
résultats sont présentés sous forme de comparaison avec les mesures expérimentales. La
plupart des irrégularités des forces mesurées se retrouvent dans les forces simulées, en
jeu piano comme en jeu forte. Les simulations rendent également bien compte de la ciné-
matique de chaque élément du mécanisme. Une analyse de sensibilité du comportement
dynamique aux paramètres du modèle est en�n exposée.

Mots-clefs : piano, dynamique multi-corps, dynamique non régulière, modélisation, simula-
tion, haptique.





Abstract

The grand piano action aims at propelling the hammer up to the strings. This mechanism
provides the pianist with a high-controllability of the time of impa ct of the hammer with
the strings and the hammer's velocity at the impact. This controllability is believed to be
due to the dynamic behaviour of the piano action. The present thesis proposes a simulation
method of a complete model of the mechanism, which opens doors to improvements of
the haptic rendering of digital keyboards. The sound following the im pact of the hammer
on the strings is not analysed. In the last �fteen years, various models of the piano
action including several degrees of freedom, friction and intermittent contacts, have been
proposed. Our approach differs from existing work in that it is based on a new viewpoint
for model validation and simulation. Indeed, using a in-depth stu dy of a model with a
single degree of freedom, it is shown that the simulation of a complete dynamic model
must be driven with a displacement whilst, until now, only force d riven simulations have
been presented.

Velocity discontinuities, occurring during the descent of the key, raise numerical issues
which are analysed. They are overcome by non-smooth numerical methodsthat have been
implemented in the computer program XDE. The results of the simulation are presented
and compared to experimental measurements. For bothpiano and forte keystrokes, most
of the irregularities in the measured force are re�ected in the simulated force. The
kinematics of the bodies is also correctly predicted. Eventually, a sensitivity analysis of
the dynamic behaviour to the model's parameters is proposed.

Keywords : piano, multibody dynamics, non-smooth dynamics, modelling, simulation, hap-
tic.
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General introduction

The grand piano allows a tremendous variety of musical expressions, which is a reason for
its success. This instrument is made of two uncoupled systems: the action, which transfers
the energy given by the pianist to the hammer, and the vibrating ensemble, which produces
the sound after the hammer has hit the strings.

The action of the pianist, during a keystroke, results in a precise instant and a precise
velocity of escapement of the hammer. The expressive potential ofthe piano results
from the fact that the action allows pianists to control these two physical quantities with
precision. This property is believed to originate in the tactile feedback of the key, hence in
its dynamical behaviour. The piano action is therefore a haptic system which differs from
many other ones by the highly accurate control that it offers. This concept is referred to
as human-controllability.

The grand action is a planar mechanism composed of several wooden pieces, joined by
hinges with felt bushings around their axes. The possible contacts between pieces are
ensured by felts. The mechanism also includes springs, screws and some metallic parts.
Its overall dynamics is complex and highly non-linear. Moreover, it is very sensitive to
small geometrical adjustments.

Because touch is so important, manufacturers of digital pianos try to design keyboards
that are haptically realistic. Old or cheap keyboards fail to reproduce the behaviour of the
grand piano action. Nowadays, the best keyboards tend to imitate the original action by
using some of its elements, if not all. However, these passive systems are still not fully
satisfactory.

This thesis is part of a research project led at LMS and CEA List,which aims at reproducing
the dynamic behaviour of the grand piano action by means of an active orsemi-active
system controlled in real time. This approach is expected to provide cheaper, lighter,
realistic and haptically-adjustable keyboards, and also an interface which allows to carry
out series of experiments in view of improving the understanding of human-controllability
in haptics. The reproduction of the dynamical behaviour of the grand piano action, by
means of an active or semi-active solution, requires a valid model ofthe action and its
real-time simulation.

The literature reports many models, more and more complex. Complete models, where
all the pieces of the grand piano action are considered, startedto appear around 2000.
All dynamical models, even the simple ones, were claimed to be good models in that their
simulation exhibited a high degree of similarity with recorded p ositions of the key or the
hammer, in response to an applied force. However, the fact remains that no satisfactory
haptic device has been proposed yet.
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This thesis has two main purposes. The �rst one is to examine whysimple models look
as good as complex ones. The second one is to propose a complete model and ef�cient
numerical methods to simulate it, with the requirement of real time applicability.

The dissertation is divided into six chapters.

In Chapter 1, the piano and its action are presented and described. The motivations of our
research project are detailed. Then, the literature on piano action models and simulations
is reviewed, with an insight on the haptic aspects.

A single degree-of-freedom model, similar to the models proposed until approximately
2000, is studied in Chapter 2 in view of understanding why its predictions look so realistic.
The conclusion is that a model of the dynamics of the piano action should be validated by
a comparison of measured and calculated forces, in response to a displacement instead of
a force.

The experimental set-up is described in Chapter 3. It includesdynamic measurements of
the key and kinematic measurements of the whole. Typical measurements are presented
for piano and forte keystrokes.

A complete model, widely inspired of [Lozada, 2007], is given in Chapter 4. It consists in
a multibody system made of six rigid bodies. All its parameters havea physical interpreta-
tion and are measurable. They are categorised in view of a sensitivity analysis. All their
values are given in this chapter.

Simulating this model raises dif�culties because of its non-smooth laws. In Chapter 5,
we discuss their different possible treatments. We chose to apply a non-smooth method,
implemented in the computer program XDE. A pendulum with dry fri ction is used to
illustrate a numerical method for non-smooth systems and quantify its ef�ciency compared
with a method based on a regularised model.

Eventually, results are presented as a comparison with measurements in Chapter 6 with a
displacement input, for both piano and forte dynamics. Results are also presented for the
same model, using a force as an input. A sensitivity analysis of the reaction force of the
key on the �nger to the model's parameters is carried out.
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CHAPTER 1. INTRODUCTION

1.1. Presentation of the grand piano
A grand piano is a musical instrument played by means of a keyboard, see Figure 1.1.
The modern keyboard is typically made of 88 keys. Each key is part of an action which
transfers the energy given by the pianist to its hammer. The hammer strikes the strings
which then vibrate. The strings transmit their vibrations to a br idge, and to a large wooden
plate called soundboard. Eventually, the vibrations of the soundboard produces acoustic
waves in the air: the sound of the piano.

strings

cast-iron frame

soundboard
pin block

action

bridge
case

Figure 1.1 – Modern grand piano [Blackham, 1965].

Once the hammer has escaped from the action, it moves freely until it strikes the strings:
the pianist has no more control on its motion. Therefore, the keyboard and the strings of
the grand piano are uncoupled. The instrument can therefore be described as two separate
mechanisms: one which propels the hammers, and one (strings, bridge, soundboard,
frame) which produces the sound. For this reason, it is possible to study these two
elements independently. Here, we focus on the study of the grandpiano action.

It is shown in [Repp, 1999] that once a piece of music has been learnt, the playing of the
musician is not coupled to the sound feedback of the piano. This justi�es why the piano
action can be studied from of mechanical point of view, independently of the sound it
produces.

1.2. Description of the grand piano's action
The location of the action is shown in Figure 1.2.

The purpose of the piano action is to propel the hammer up towards the string and to catch
it back after its escapement. The terminology of the mechanism isgiven in Figure 1.3 and
the way it works is explained in the following sequence of events, the main stages of which
are displayed in Figure 1.4.
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1.2. DESCRIPTION OF THE GRAND PIANO'S ACTION

bridge string sostenuto rail

pedal mechanism, rods

pedals

framecapo barsoundboardframe

cf. Figure 1.3

Figure 1.2 – Side view of the grand piano [after Olek Remesz / Wikimedia Commons].

Before the hammer hits the string

1. The key starts to rotate, lifting the whippen-lever-jack assembly.

2. Half-way through, the key also begins to lift the damper.

3. The jack stops at the let-off button and at the same time1 the repetition lever stops
at the drop screw (Figure 1.4(b)).

4. The key continues to lift the whippen-lever-jack assembly and the jack and the
repetition lever rotate relatively to the whippen. The hammer is now being pushed
only by the jack.

5. Propelled by the jack, the hammer escapes from the action at a given speed (Fig-
ure 1.4(c)).

6. The key compresses the front rail punching and stops.

7. If its velocity is high enough, the hammer hits the string.

This phase lasts between20 ms and 200 ms [Askenfelt and Jansson, 1990] depending on
the dynamics of the keystroke.

After the hammer has hit the string Depending on the position of the key and the
speed of the hammer, the latter is either checked, or blocked at the hammer knuckle.

When it is checked, it is blocked by the backcheck �xed on the key (Figure1.4(d)). The
hammer knuckle pushes the repetition lever downwards and compresses its spring. As
soon as the key begins to go up, the backcheck releases the hammer. The spring lifts the
hammer and the jack returns to its resting position, ready to send the hammer up to the
string even if the key has not been completely released. The pianoaction is then back
to the state 4. If the player presses the key again, the piano action continues with the
following stages. If he releases the key, all the mechanism returns to its resting position,
because of gravity.

The numerous felts play a major role in the touch but are humidity-sensitive. Moreover,
the whole mechanism moves with time so that the action, which is very sensitive, has to
be periodically regulated. A classical regulation procedure isgiven in Appendix A.

1If the action is properly adjusted.
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spoon capstan screw key

whippen

let-off button punching
let-off button

jack

drop screw

tuning pinstringdamper head

hammer

backcheck

damper lever

hammer shank
repetition lever

knuckle

front rail punching

back rail cloth

Figure 1.3 – Terminology of the grand piano action [after Olek Remesz / Wikimedia
Commons].

(a) rest (b) contact jack / let-off button

(c) let-off (d) check

Figure 1.4 – Piano action at successive stages [personal transformations of Figure 1.3].
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1.3. HISTORY

1.3. History
A hammered dulcimer (tympanon) is an instrument which dates back to Antiquity and
consists in striking strings with one mallet in each hand. Its improvement by Hebenstreit
(1669-1750) is likely to have recalled the wide expression possibilities offered by struck
string instruments. Each string required one whole hand to be struck which was not as
convenient as clavichord or harpsichord keyboards, where each �ngercan produce one
note.

The clavichord, forerunner of the piano, appeared at the end of the Middle Ages. It was
a struck string instrument with a keyboard and had a large expressive power. Its main
drawback was that it produced a very feeble sound.

key

string

metallic percussive device

Figure 1.5 – Action of the clavichord cThorin.

The harpsichord appeared in the 16th century. Its keys were usedto pluck the strings
which produced a loud sound, but did not allow for the control of its chara cteristics, as
opposed to the clavichord.

In the beginning of the 18th century, three mechanisms were proposed to strike strings.
Bartolomeo Cristofori, a piano tuner and repairer working for Ferdi nando III de' Medici in
Florence, proposed one in 1709. He replaced the harpsichord jacks which plucked strings
with small hammers that struck them, creating what he called "clavicembalo col piano e
forte" which means "soft and loud harpsichord". This name will becomepianoforteand will
later give its name to the piano. The main innovation is that it allowed the production of
audible notes with different loudnesses, while using the same keyboard. The mechanism
was improved by Cristofori himself and most of the elements of today's piano actions were
already invented, see Figure 1.6.

string

damper

spring
key

whippen

jack
hammer

Figure 1.6 – Cristofori's pianoforte, 1726 cThorin.

Meanwhile, a Parisian instrument maker called Marius and theGerman composer Christoph
Gottlieb Schröter proposed a similar action.

None of these three inventors ever gained anything from their inventions. In 1726, the
German keyboard instruments maker Gottfried Silberman built an action copied on Cristo-
fori's and Schröter [Closson and Ames, 1977], and built the �rst pi anoforte one year after

7
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Cristofori's death in 1731. he Frederick the Great of Prussia ordered seven pianofortes
at once. Silberman had also exchanges with Bach who �rst criticised the instrument, but
then gave his approval two years later of the improved pianoforte.

The real success of the fortepiano began in the second half of the 18th century, mainly
in Germany, France and England. Bach's son Johann Christian played the pianoforte
publicly and taught it to Queen Charlotte, while Mozart was composing speci�cally for
the pianoforte.

Meantime the square piano, smaller and cheaper, had an increasing success especially in
England.

In 1777, a skilled craftsman by the name of Sébastien Érard built his �rst pianoforte.
He managed to get along with Louis XVI, and had to �ee to London during the French
revolution, in 1789. He came back to Paris from 1796 to 1808, then to London again
until 1815. During this period he made many inventions, especially one for which he is
still famous: in 1823, he invented the double escapement, allowing to propel the hammer
up to the string several times in a row. Pleyel made some criticism about its fragility
and preferred to use the simple escapement, but eventually had to face the success of the
double escapement and lined up with the other piano makers.

Many small changes were added to the piano and its action in the19th century. The
upright piano is an example of an instrument which originates f rom the piano. Henri Pape
joined the Pleyel factory in Paris in 1811 and then continued on his own. He applied
for 137 patents, most of which were not used, but including some inventions which have
become today's standards such as the addition of felts on the hammers(1826) or the
crossing of the strings (1839). Pleyel also innovated, with for instance the addition of a
cast iron frame in 1826. His factory prospered and he became an important rival of Érard.

Many French factories were created in the 19th century but the small ones disappeared.
Germany and England also produced large quantities of pianos. At the end of the century,
Pleyel and Érard had both build their hundred-thousandth piano [Cl osson and Ames,
1977].

The pianos also spread to America in the 19th century, especially as many Germans
emigrated over there. A famous example is that of Steinweg and his sons who �ed from
Europe to avoid the revolutions of 1848 and settled in New York in 1850, where they
created Steinway & Sons in 1853. It became a major factory within a few years. Square
pianos had a large success although they had developed from reconditioned clavichords
and had been surpassed by grand and upright pianos from a technical point of view. In
1904, the American piano makers and dealers bought two hundredsof them, and burnt
them in a giant bon�re at Atlantic City [Times, 1904] in order to i nform the populace
about the obsolescence of square pianos, and revive grand and upright pianos.

1.4. Motivations and objectives
The present thesis is part of a larger double-faceted research project. The �rst facet
concerns the research on the mechanical properties of haptic devices which allow them to
perform highly accurate dynamical tasks. The other one is to develop digital keyboards
with realistic touch, using active or semi-active systems.

8



52
m

s

1.4. MOTIVATIONS AND OBJECTIVES

1.4.1. Haptical point of view

As in any haptic system, the touch of the piano gives necessary information for its control.
This information originates from the complex dynamics of the mechanism, actuated by
the �nger.

The notion of touch has been extensively studied and commented for the piano, and for
more than two centuries2. A very interesting analysis of the concept of touch, involving
interviews with professional pianists is reported in [Lutring er-Flecher, 2002]. It highlights
how crucial touch is for pianists. It also conveys the interesting idea that a pianist �nds
the touch corresponding to a given sound that he already has in mind.

It is a fact that pianists feel that touch is very important. Accuracy and reproducibility of
their touch have been studied in [Principeaud and Boutillon, 2008], considering the time
te and the velocity ve of the hammer at escapement. The conclusion is that the action
allows professional pianists to control te and ve with remarkable accuracy:

� te is controlled by the player within 2 ms;

� ve can be reproduced with a relative error around 2 %.

An active keyboard, reproducing the touch of the grand piano action, would be of great
interest for understanding what, in the piano action dynamics, allows the pianist to control
the hammer so accurately. In particular, it would open doors to many relevant experiments.
Building such a keyboard requires the simulation of a dynamic model of the piano action,
in real time.

1.4.2. Digital keyboards

Because touch does matter, today's manufacturers of digital pianos try to reproduce the
behaviour of grand piano actions. Not only are the results debatable,but the conception
tends to reproduce a real piano action, see Figure 1.7. This is even a key selling point,
according to the numerous examples found on manufacturers' websites.

For instance, Yamaha praises the similarities between the CLP-465's action and grand
pianos' by claiming:

"The secret behind this superior touch is the same hammering system and
spring-less mechanism as a grand piano."

"The keys provide a pleasing touch down to the base, because the distance
from the tip of the key to the fulcrum is extremely long."

The second sentence proves that to reproduce the inertia of the grand piano keys, the
manufacturer imitates them.

For the CVP-609, Yamaha designed each key differently. Their advertisement states:

"Moreover, Linear Graded Hammer provides an authentic action inwhich the
lower keys are heavy in touch and the higher keys are light, with all the natural
gradations in between."

In the Yamaha CLP-990 case:

2In 1803, Clementi published a book on how to play the pianoforte, focused on �ngers and hands [Clementi,
1803].
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"For even more realism, this new keyboard also uses a new hammer action that
lets you actually feel the hammers and cushions as you play. [. . . ] The result
is the same feel and response as a grand piano's keyboard when playingfast,
delicate passages."

This last quote underlines that low dynamics, such as forpiano keystrokes, are harder to
be haptically rendered.

The peak of this tendency is reached with the Yamaha AvantGrand, which includes a
complete grand action (except hammer felts).

Instead of reproducing the piano action's dynamic behaviour by copying its complexity, the
present research aims at doing so with cheap electronic activeor semi-active3 components.
They would be controlled in order to reproduce a faithful force feedback, computed by
real-time simulations. Such a solution is likely to be much cheaper, lighter, smaller, but
also to enable adjustable touch.

A haptic device was proposed in 2007 by Lozada, see Figure 1.8. When a controlled
magnetic �eld B is generated from the solenoid, the ferromagnetic particles inside the
magnetorheological �uid react by creating aggregates, so that the apparent viscosity of
the �uid is raised. Adjusting B results in adjusting the reaction force of the key, so
that it matches the dynamical behaviour of the key. For numerical reasons related to
the complexity of the piano action, Lozada did not succeed to simulate the model.

The realisation of a haptic device which reproduces the dynamical behaviour of the grand
piano action requires a valid model of mechanism, as well as ef�cient simulation tech-
niques. Both are presented in the present thesis.

3Such as magnetorheological �uids which have a short time response.
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1.4. MOTIVATIONS AND OBJECTIVES

(a) "Natural Keyboard", Yamaha c pianoworld

(b) PHA III, Roland (2009) c Roland

(c) RM3, Kawai (2010) c musicpromusic

Figure 1.7 – Today's state-of-art actions for digital keyboards.

solenoid for controllable B
magnetorheological �uid
rigid plate
connecting rod
key

Figure 1.8 – Lozada's haptic device (2007) aiming at reproducing the dynamical behaviour
of the key.
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1.5. Literature review

1.5.1. Description of the piano action

The piano action, from Cristofori's action (e.g. [Pollens, 2002]) to modern actions, has
been extensively described, from several point of views. Some are focused on its history,
some are intended to piano technicians, others are haptically-oriented.

In [Pfeiffer, 1962], most of the actions developed in history are presented. Pfeiffer made
elementary models of the hammer and basic experimental testingby means of calibration
weights. He mentioned the friction force occurring at escapement4.

The intermittent contacts occurring within the grand piano ac tion, often referred to as
changing kinematic constraints, have been studied in [Askenfelt and Jansson, 1990] where
their timing is experimentally quanti�ed. The touch, the moti on of the mechanism and
the hammer-string contact were characterised experimentally in [Askenfelt and Jansson,
1991]. The vibrations of the hammer shank were already discussed (�rst mode frequency:
50 Hz).

Many studies starting in the 90s aimed at contributing to the domain of haptics. [Gillespie,
1996] noted that contrary to pianos', synthesisers' actions are not subject to changing
kinematic constraints, even though keyboardists rely upon them to develop and exert
�ne control. [Hayashi et al., 1999] explained that producing a st able soft tone (piano
keystroke) is dif�cult, even for experienced pianists.

[Goebl et al., 2005] investigated the temporal behaviour of grand p iano actions from
different manufacturers under different touch conditions and dynamic levels.

1.5.2. Simple models

After World War I, the piano manufacturer Pfeiffer applied scienti�c methods to the piano
action [Pfeiffer, 1950, 1962; Pfeiffer et al., 1967] 5.

Several elementary models of the action were proposed. They becamemore and more
complex. A unidimensional model was given in [Rimski-Korsakov and Maveev, 1938]6. It
inspired some improvements [Oledzki, 1973] where two masses (one for the hammer and
one for all the other parts) were connected by a spring representing the internal �exibility
of the action. In order to improve the results, the mass of the hammer were then made
time-varying. A frictionless model was also proposed in [Dijksterhuis, 1965] where the
key, the whippen-jack assembly and the hammer were superimposedmasses. The last two
models used forces as inputs.

Later, [Gillespie and Cutkosky, 1992] presented a model made of fourbodies (key, whip-
pen, jack and hammer), for the motion from the beginning until the h ammer-string con-
tact. It included inertia and weight but neglected damping, c ompliance and friction.
Gillespie mentioned that friction did matter at let-off. In order to simplify the simulation
for real-time, a 2-DOF model, not good for escapement but allowing the solving, was

4He concluded that because the upright action has less friction, it is better than the grand piano action. This
is questionable from the haptical point of view, and does not correspond to the common preference of
pianists.

5Wolfgang Pfeiffer passed away in 1960; the posthumous datesactually corresponds to the translations.
6A. Rimski-Korsakov, relative to the composer Nikolaï Rimski-Korsakov, studied string instruments (for

example [Rimski-Korsakov, 1937] and [Rimski-Korsakov andSamoilenko, 1937]).
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proposed in [Gillespie and Cutkosky, 1993] and reused in [Gillespie, 1994]. One model
was considered for each set of kinematic constraints, which led, overall, to piecewise
continuous ODEs.

Mori used a unidimensional model, very similar to the one of Dijksterhuis [Mori, 1997]. In
the experiments, forces from1 N to 10 N were imposed to the key by means of calibrated
weights. The authors highlighted the in�uence of the regulati on of the mechanism, partic-
ularly on the escapement velocity of the hammer. It is noteworthy that adding weight to
the key deeply alters its dynamics, and that recovery of the original dynamics is dif�cult,
because of mechanism non-linearities.

Another model was proposed in [Hayashi et al., 1999]. It consisted in a 2-DOF model with
a free mass representing the hammer. The inputs of the simulations were either constant
velocities or constant accelerations of the key. The resulting motion of the hammer is
discussed.

In [Oboe, 2006], the author uses a model constituted by the key and the hammer. The
escapement is therefore not modelled. No friction nor damping is considered. The model
is validated �rst by comparing the simulated and the measured displacements of the
hammer for a given key position input. Then, the displacement of the hammer is observed
for a given force input on the key.

Together with the increase of computational possibilities, the piano action models became
more and more complex. The following section references models where each body of the
grand piano action is considered. Such models are quali�ed of complete models.

1.5.3. Complete models
A complete model is given in [Van den Berghe et al., 1995], where the jack and the repe-
tition lever are �xed to the whippen. This model cannot account for changing kinematic
constraints. The input is a force and the simulation results are the kinematics of the
hammer and the key. The complete model required4 h of simulation for 1 s in real life
on a 486DX processor,33 MHz. By today standards, real-time could not be possible. A
simpler linearised model is also considered.

Gillespie improved his model by adding the repetition lever [Gil lespie, 1996]. His study is
haptically-oriented. Several sets of kinematic constraints are considered but they do not
cover all the possible ones. The parameters used are not measured but manually �tted.
The comparison of the measured and simulated kinematics is correct.

Hirschkorn proposed a complete model with measured parameters [Hirschkorn et al.,
2006; Hirschkorn, 2004]. The felts are modelled with a law very c lose to that of [Hunt
and Crossley, 1975] and dry friction is regularised. Again, the input of the simulation is
a force, and the discussion is focused on the displacements of the key and the hammer.
Following Hirschkorn at the University of Waterloo, [Izadbakhsh, 200 6; Izadbakhsh et al.,
2008] adds the �exibility of the hammer shank in the model, as wel l as a translation
component to the articulation of the key. A standard PC required 75 min in order to
simulate kinematics of one keystroke, for a given input force. It was observed that the
�exibility did not affect the mechanism before the impact of the ha mmer and the string.
This model was then modi�ed by the addition of an elastic string [Vya sarayani, 2009;
Vyasarayani et al., 2009]. The simulations were focused on calculating the de�ections of
the hammer shank.
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A micromechanical model of piano felts based on interactions between �bres is proposed
in [Masoudi, 2012]. The model was implemented in an upright pia no action model, based
on Hirschkorn's [Masoudi and McPhee, 2012]. The simulations weredriven with a force
and the kinematics were observed. The reported running time for one simulation was
87 min.

Another a complete model with measured parameters is proposed in [Lozada, 2007].
Friction laws were regularised but still, numerical dif�cult ies were encountered when
simulating the multibody system with input positions, in order to c alculate the reaction
forces of the key on the pianist's �nger.

[Mamou-Mani and Maniguet, 2009] claimed to have characterised differences in the me-
chanical behaviour of Érard and Broadwood's pianos. No details on themodel were given.

In [Gillespie et al., 2011], the piano action is modi�ed using r ubber, in order to "linearise"
its behaviour. The authors call the model a hybrid dynamical model because it combines
continuous variables, and discrete variables to describe the state of the kinematic con-
straints. The input is still a force, and the discussion is focused on the position of the
key.

Another model where Coulomb friction is smoothed is proposed in [Links, 2011]. The
position of the key in correctly simulated, except at the beginning of the motion. The
correlations between the measured and simulated hammer positions is good.

A study, aimed at understanding the historical evolution of the piano action, is given
in [Bokiau et al., 2012]. The kinematics are simulated from an inp ut idealised smooth
force pro�le.

To sum up, many different complete models have been proposed. In all of them, friction
has been regularised to make the simulation easier. Also, none of them calculated the
reaction force of the key: nearly all of them used it as an input and made kinematic
observations.

1.5.4. Haptical devices

We give here a brief insight of a few haptically-oriented studies. Details on the muscu-
loskeletal system of the �nger are given in [Dennerlein et al., 199 8].

In 1990, Cadoz et al. created a keyboard with tactile feedback [Cadozet al., 1990]. It was
also a modular device: the feedback could be changed.

[Gillespie and Cutkosky, 1992] relate the importance of touch and the idea of replacing
the piano action by actuators or programmable passive devices coupled with a control
system. Voice-coil motors are employed in an electro-mechanical apparatus in [Gillespie
and Cutkosky, 1993] and [Gillespie, 1994]. In [Gillespie, 1996] , the author explains that
real-time feedback is possible during events which last longer than 200 ms. Otherwise, the
control requires learning and practise.

[Chu, 1996] exposes the project of building a force-feedback based MIDI controller. An-
other haptic device aimed at reproducing the piano action behaviour using voice-coil
motors is proposed in [Oboe and Poli, 2002] and [Oboe, 2006]. The model used for the
real time simulations is made of two bodies (key and hammer) without friction, damping
or escapement.
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Indications on the design of haptic keyboards are given in [Horváth and Tör�ocsik, 2013].

Goebl states that "[his �ndings] suggest that sensory information available at �nger-key
contact enhances the timing accuracy of �nger movements in piano performance" [Goebl
and Palmer, 2008].

[Links, 2011] reports some interesting orders of magnitude: the smallest observable change
in tactile sensing is around 0.25 N for a static force and 0.5 N for a dynamic force. The
spinal re�ex is at least 40 ms and a conscious re�ex is longer than150 ms.

1.6. Studied action
The experiments are performed on a single piano key mechanism manufactured by the
Renner factory for demonstration purposes but similar to the mechanisms in use in grand
pianos, particularly with respect to its regulation possibilit ies. The action has been care-
fully adjusted by a professional piano technician in line with t he standards observed in a
piano keyboard. We stabilized the provided sample action by screwingit to a thick metal
plate and �xing it solidly to a heavy support. The action is that of a white key, covered by
a white plastic coating. The coating may have some in�uence on the feeling, but not on
the kinestesic sense of haptics, which is studied here. The key is not weighted with key
leads.

This action is presumed to be representative enough of the grand piano action in general.
A general model is presented in the thesis. The validation of themodel is done a this
particular piano action.
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2
Chapter 2

Modelling the dynamics of the piano
action: is apparent success real?

The present chapter is an article under submission to Acta Acustica. The
original article includes its own references, which are here gathered with
the other references.
Note that this version of the article is not the latest.

Overview The goal of this chapter is to determine which input should be used for

the simulation of the model presented in Chapter 4. The main result of this chapter is

the demonstration that comparisons of simulated forces calculated from position-driven

simulations with measured forces are not suf�cient to valid ate a dynamical model of the

piano action.
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CHAPTER 2. MODELLING THE DYNAMICS OF THE PIANO ACTION: IS APPARENT SUCCESS
REAL?

Abstract The kinematics and the dynamics of the piano action mechanism have been
much studied in the last 50 years and fairly sophisticated models have been proposed in
the last decade. Surprisingly, simple as well as sophisticated models seem to yield very
valuable simulations, when compared to measurements. We proposehere a too simple
model, with only 1-degree of freedom, and compare its outcome with force and motion
measurements obtained by playing a real piano mechanism. The model appears either as
very good or as very bad, depending on which physical quantities areused as the input
and output. We discuss the sensitivity of the simulation results to the initial conditions
and to noise and the sensitivity of the experimental/simulati on comparisons to the chosen
dynamical model. It is shown that only motion-driven simulations shou ld be used for
validating a dynamical model of the piano action, contrary to what has been proposed in
the literature.

2.1. Introduction
The mechanical function of the piano action is to throw the hammer towards the strings.
As a human-machine interface, its role is to provide the pianistwith a means to perform
the following musical task: obtain a given impact velocity of the hammer on the strings at
a given instant, with as much as precision as possible. We focus here on the grand piano
action but all what is proposed here would apply to the upright pian o mechanism.

Piano actions are complex systems mostly resulting from engineering during the 18th and
19th centuries, mostly by trial-and-error. The assembly of dozens of pieces is the fruit
of a few major inventions (particularly by Cristofori and Érard, for the mechanisms that
remained in the 20th century) and many minor re�nements. In the resulting sophisticated
design, it is not any more obvious to distinguish what are the features due to engineering –
economy, ease of manufacturing in given historical conditions, necessity of a silent motion,
ease of repair and adjustment, etc.– and those imposed by piano playing requirements:
ease and precision of control, compliance with the playing tradition. Actions that are built
for digital pianos (sound synthesisers) can be seen as tentatively complying with the latter
group of requirements by means of markedly different engineering solutions. Although
constantly improving over years, it is interesting to notice that the results are not yet
judged as entirely convincing.

We focus here on the dynamics of the piano action – the force-motion relationship –
as seen from (or felt at) the �nger-end of the key. In this paper, the piano action is
considered either subject to a given force or to a given motion, which would be imposed
by an operator. As of today, the physical quantity controlled by the pianist during the
keystroke (or before) in order to perform the musical task has not been identi�ed. In
reality, the dynamics of the piano action is coupled to that of the � nger/hand/arm/. . .
musculoskeletal system which is coupled itself to a neurological system of efferent and
afferent nerves. A vast literature is available on various questions pertaining to the pianist
control, involving sensory-motor questions as well as the dynamics of the pianist limbs
and �ngers. This complex question is not analysed here.

Since the 60's, many dynamical or mechanical models of the piano action have been
proposed, each of their authors more or less claiming that it emulates successfully the
kinematics (usually the angular positions of the key and hammer) or the dynamics of
the mechanism as seen at the end of the key. These claims are usually supported by
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comparisons between experimental measurements and numericalresults issued by the
model. The experimental results are generally obtained by imposing a force (constant or
varying in time) on the key, by measuring this force, the resulting motion of the key, that
of the hammer and, sometimes, of other pieces. Since it is not known whether the control
by the pianist is more of a force- or a motion-nature, the choice of given force-pro�les or
motion-pro�les for controlling the dynamics in experiments and simu lations may appear
as more or less arbitrary, and irrelevant for validating a given model. This paper aims at
demonstrating that this is not so. To this end, we analyse the predictions of very simple
models of the mechanism, with only one degree-of-freedom.

A few elementary models of the piano action or of some of its parts havebeen proposed in
the �rst half of the 20th century. In 1965, a frictionless model w ith superimposed masses
is proposed by Dijksterhuis Dijksterhuis [1965]. Oledzki Oledzki [19 73] studied a model
where two masses (one for the hammer and one for all the other parts) were connected
by a spring, representing the internal �exibility of the action. Gillespie and Cutkosky
Gillespie and Cutkosky [1992] presented a model with four bodies (key, whippen, jack and
hammer) where damping, compliances and friction were neglected. In Gillespie [1994],
one model is considered for each set of kinematic constraints. A unidimensional model
was exposed by Mori Mori [1997], who applied forces to the key with ca librated weights.
Another model was proposed by Hayashiet al. Hayashi et al. [1999], consisting in a 2-DOF
model with a free mass representing the hammer. Contrary to all the other simulations in
the literature which are driven by forces, Hayashi's are driveneither by a constant velocity,
or by a constant acceleration. However, forces are not considered in this paper. A 2-DOF
model is also proposed by Oboe Oboe [2006]. The key and the hammer are modelled,
neglecting friction, but the escapement is not considered. In 1995, Van den Bergheet al.
Van den Berghe et al. [1995] considered a 3-DOF model where the whippen-lever-jack
assembly is rigid. The escapement is therefore not modelled either. The kinematics in
response to a force input is discussed.

More complex models appear in the late 90s. The repetition lever is taken into account
in Gillespie [1996]. A complete model (5-DOF, the damper is ignored), with measured
parameters, is proposed by Hirschkorn Hirschkorn [2004]. Links presents a similar model
Links [2011]. Lozada Lozada [2007] gives a different model with a ll the values of its
parameters. It also includes the �rst attempt of driving the s imulations with a position,
without success. Recently, Bokiauet al. Bokiau et al. [2012] have also proposed a rather
sophisticated model. Force-driven simulations yield the motion of various pieces.

Except those of Hayashi et al. [1999] and Lozada [2007], all the simulations were driven
with a force input (sometimes, the applied force is constant or idealised), and the resulting
kinematics was observed.

In this paper, the experiments consist in playing a real key mechanism almost like a pianist,
at three different dynamical levels, and in recording the motion of the key and the force
acting on it (Section 2.2). We then consider very simple models, so simple that they can
hardly be considered as valid (Section 2.3). Their parameters are derived from static
measurements on the real mechanism and from measurements on separate pieces that
have been taken apart. The models predict the resulting motion for agiven force exerted
at the end of the key. When driven by an imposed motion, they can predict the reacting
force as well. Comparisons are made between the measured and the predicted motions in
the �rst case, and between the measured force and the predictedforce in the other one
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(Section 2.4). The matching between the former appears to be muchbetter than between
the latter, motivating the discussion in Section 2.5.

2.2. Experiments

PSfrag

replacemen

ts

force sensor

accelerometer

laser sensor for v eri�cation

laser sensor

rigid supp ort

Figure 2.1 – Experimental set-up. The black-and-white patterns were used for experiments
which are not reported here.

The experiments are performed on a single piano key mechanism (Figure 2.1) manufac-
tured by the Renner factory for demonstration purposes but similar to the mechanisms in
use in grand pianos, particularly with respect to its regulation possibilities. The key action
has been carefully adjusted by a professional piano technician in line with the standards
observed in a piano keyboard.

Compared to normal playing, a few modi�cations have been introduced. The damper
has been removed (which may happen in "normal" playing). It appeared that some
experiment-simulation comparisons are sensitive to the precise initial position of the key.
Since investigating this question is not important for the object of this paper, the felt
supporting the key at rest (left end of the key in Figure 2.1) has been replaced by a rigid
support.

We consider four phases during a keystroke: the �rst phase of the motionends when the
hammer escapes, the second phase when it is checked, the third phase lasts until the key
is released and the last phase when the key comes back to rest. For adetailed description
of the timing of the piano action, see Askenfelt and Jansson [1990].

The position of the key is measured by laser-sensors (Keyence LB12, with LB72 condition-
ing ampli�er) at the end of the key and approximately mid-way betwe en the �nger-end
and its rotation centre. Two particular angular positions of the ke y ( � = � e and � = � p)
and the corresponding times at which they are measured are reported in the �gures of this
article by gray dashed-lines and gray continuous lines, respectively. The angular position
� = � e � 0.035 rad has been evaluated in a quasi-static test as the angular position of
the key when the jack meets the let-off button. When playing, this position corresponds
closely to escapement but not exactly since the felts are compressed, depending on how
the key has been played. In fact, escapement occurs slightly after (by a variable margin)
� ( t ) reaches� e. For the sake of brevity in formulation, this slight difference is i gnored
in the rest of the article. The angular position � = � p � 0.040 rad corresponds to the key
meeting the front rail punching and has also been evaluated in aquasi-static test.
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The minimum force initiating down-motion and the maximum force pre venting up-motion
have been estimated with the standard procedure (adding and removing small masses at
the end of the key). They are respectivelyFdown � 0.70N and Fup � 0.38 N, both exceeding
by about 0.15 N the values normally adjusted by technicians.

The key acceleration is measured by a light (0.4 g) accelerometer (Endevco 2250A-10,
with B&K Nexus measurement ampli�er) glued approximately mid -way between the end
and the rotation centre of the key. The force exerted on the end of the key is measured
with a light-weight ( 1.2 g) piezoelectric sensor (Kistler 9211, with charge ampli�er 5 015).
The data are sampled at50 kHz (ADC USB-6211 by National Instruments).

In what follows, the motion of the key is reported at the end of the key (wi th measured
signals multiplied by the appropriate factor) and shifted so that the zero-values correspond
to the rest position. The force signal is also shifted so that itsvalue is zero as long as the
user has not touched the key.

Since the models include viscosity, the key velocity must be estimated. The velocity is
obtained numerically by two independent algorithms: integrati on of the acceleration
signal (after removal of the average value of the signal at rest) and differentiation of
the position signal, using a total-variation regularisation Chartrand [2011] (here: 30
iterations, 200 subiterations, a regularisation parameter of 5.10� 5 and " = 10� 9). In
practice, choosing one or the other estimation of the velocity has very small in�uence on
the simulation results.
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Figure 2.2 – Measured positiony (top), measured acceleration̈y (middle), measured force
F (bottom) in a mezzo forte keystroke. An estimation of the inertial part(J=L2) ÿ of the
forceF is represented as a dashed line in the bottom frame. The gray dashed-lines and gray
continuous lines correspond tot = te (escapement of the hammer, see text for additional
precisions) and to� = � p (the key meets the front rail punching) respectively.
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Typical results for mezzo forteplaying are displayed in Figure 2.2. The position of the key
at the �nger's location is positive when the key is pushed down. The same convention
applies to the force F( t ) on the key.

2.3. Simple models

backcheck
hammer
repet . lever
whippen
jack
escapement butt on
key

felt material

ground

Figure 2.3 – Grand piano action (without damper).

G1

G2

G3

� 1

� 2

� 3

L
l12

l21

l23

l32

F (t)

y(t)
Key

Hammer

W-L-J

+

Figure 2.4 – Simpli�ed scheme of the grand piano action in three blocks: Key, Whippen-
Jack-Lever, Hammer. The damper has been excluded. The position � i of each block is de�ned
as positive when the key is pushed downwards, from0 at rest. With an counterclockwise
convention for angles (and torques),� 1 and � 3 are negative when they leave their rest position.
For the sake of clarity, the reaction forcesRi j at the contact points between solids are not
represented.

The mechanism (Figure 2.3) consists in several quasi-rigid bodies – key, whippen, jack,
lever, hammer (the damper has been excluded) – which are coupled together by felts and
pivots. A �rst simpli�cation consists in considering three blocks i n the mechanism: the
key, the whippen–lever–jack assembly, the hammer (Figure 2.4). The angular positions
of the three blocks shown in Figure 2.4 – {Key}, {Whippen-Jack-Lever}, {Hammer} – are
denoted by � 1, � 2, � 3 and their inertia with respect to their rotation axes by J1, J2, J3.
The sign convention is counterclockwise for angles and torques. However, for the sake of
simplicity in the representation of force and motion, the force F exerted at the end of the
key and the motion y of the end of the key are counted positively when the key is pushed
down: F = � C=L and y = � L� 1 = � L� .

This model does not take into account the compliance between the bodies(key, whippen,
etc.) and the contacts with the support (let-off button, drop screw) . In line with the
spirit of a simple model, it is considered that the variations of the � i are small (see
Figure 2.4): the geometrical non-linearities are ignored so that coupling between the parts
of the real mechanism does not alter signi�cantly the parameters of the model. Altogether,
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the mutual dependencies between the� i are approximated by geometrical relationships:
8
>>><

>>>:

� 2 = �
l12

l21
� 1 = � � 21� 1

� 3 = �
l23

l32
� 2 = � � 32� 2 = � 31� 1

(2.1)

with � 31 = � 32 � 21.

A more drastically simpli�ed model (Figure 2.5) consists in a si ngle-degree-of-freedom
rotating object with angular position � = � 1, referred to as "the simplistic key" (SK) in
what follows.

�

L

F (t)

y(t)

+

Figure 2.5 – Simple model of the piano action: the simplistic key.

Within the frame of the above approximations, the moment of inertia J of the simplistic
key is equivalent to the one of the whole mechanism if:

J = J1 + � 2
21 J2 + � 2

31 J3 (2.2)

with the parameters given in Table 2.1.

For very small key displacements from its rest position, dry friction in the hammer's and
the whippen's axes prevents their motion. Experimentally, we also observed that the
compression of the small felt below the centre of rotation of the key (in Figure 2.1 see
the small red felt between the middle of the key and the piece of wood supporting it)
cannot be neglected any more. This lasts at least as long as the force applied to the key
is less than Fdown . By various inspections of the motions of the different pieces (position
tracking, not reported here), it was found that the dynamics was distinctively different
whether � L was less or more than � 0.8 mm. Before the force reaches that threshold, a
different model must be used, which is proposed further.

The momentum of the hammer is several times that of the rest of the mechanism. It follows
that the inertia of the whole mechanism differs strongly from tha t of the simplistic key
model when the hammer is dissociated from the rest of the mechanism (a few milliseconds
between the escapement and the check of the hammer). Continuation of the model is
discussed further in Section 2.4.

The actions of the torques exerted on the real mechanism are transposed on the simplistic
key as follows. Non-permanent torques imposed by the stops limiting the motion of the key
are considered and denoted byCs. This torque includes the reaction of the rest support
which disappears as soon as� ( t ) > 0 and the reaction of the front rail punching LF
which appears when � ( t ) > � p. The compression law F( L� ) of the front rail punching
is that of a felt. Besides the various felt models which have been proposed, we use a
phenomenological model that has been experimentally validated onthat class of felt and
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geometry Brenon [2002]:
F(� ) = k� r + b� 2 �� (2.3)

where � is the compression of the felt.

After the hammer check, an additional source of dissipation is located in the back-check:
the key (with the whippen block resting on it) becomes also coupled to the support through
the hammer and the back-check felt. Hypothetically, the corresponding friction dissipates
signi�cantly more than the internal compression of the felt of the front rail punching.
Therefore, the value of b has been arbitrarily taken 100 times more than that measured
by Brenon. The values ofk, b and r are given in Table 2.2.

i Ji (kg.m2) Cwi (N.m) Cdi (N.m) cvi (N.m.s) Spring Geometry (m) �

1 3.36 � 10� 3 � 0.0155 0.012 0.022 l12 = 0.129

L = 0.245

2 3.97 � 10� 4 � 0.0103 4.93 � 10� 5 � 2 = 0.087 N.m, l21 = 0.060 � 21 = 2.15

� 0
2 = 0.42 rad l23 = 0.080

3 1.65 � 10� 4 0.0133 4.93 � 10� 5 l32 = 0.017 � 31 = 10.1

Table 2.1 – Parameter values of the grand piano action used in experiments according
to Lozada [2007] or measured by us.

Permanent torques independent of the key motion include the action of the pianist C( t )
(kept as is) and the torquesCw i due to the weights of the different parts of the mechanism.
Their effects amount to Cw given by Eq. (2.4). Permanent and motion-dependent torques
due to strains at pivots are modelled by viscous and dry friction: cvi

�� i and Cdi sign( �� i )
respectively. As before, their effect is written ascv

�� and Cd sign( �� ). In some mechanisms,
including ours, a pre-stressed spring is inserted between the support and the whippen. Its
effect is modelled by a torque � (� � � 0). Within the approximation of small angles, the
moments of the coupling forcesRi j are given byRi j l i j with the �xed lengths l i j represented
in Figure 2.4. It comes:

)

8
>>><

>>>:

Cw = Cw1 � � 21 Cw2 + � 31 Cw3

cv = cv1 + � 2
21 cv2 + � 2

31 cv3

� = � 2
21 � 2

(2.4)

At the very beginning of the key motion, when F < Fdown , the force exerted by the key on
the whippen is too low to completely overcome the dry friction in the axes of the whippen-
lever-jack and of the hammer blocks. In consequence, there is a phase where the key
moves while the hammer does not: L Cd1 < F( t ) < Fdown . The hammer behaves as if it was
�xed to the support and the motion of the key is limited by the compress ion of coupling
felts and springs (in the whippen cushion, etc.). For the sake of simplicity, we model them
as one linear equivalent spring. Its stiffnessK is estimated as the average ratio between
Fmeas and xmeas for the three different dynamics considered here. This model is denoted
below as "the blocked hammer" (BH) model.
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The dynamical equations of the two successive models �nally readas:

J1 �̈ + cv1
�� + Cd1 sign( �� ) + K� � Cw1 = C( t ) (2.5)

for Fdown L ¾ C( t ) ¾ 0

J�̈ + cv
�� + Cd sign( �� ) + � (� � � 0)

� Cw + Cs(� , �� ) = C( t ) (2.6)

for Fdown L ¶ C( t )

The parameters of the model can be estimated by means of a few experiments and mea-
surements. The parameters of the right-hand sides of Eq. (2.2) and Eq. (2.4) have been
estimated by measurements on the separate elements, as described in Lozada [2007].
Their values are given in Table 2.1. The other values of the parameters of Eqs. (2.5) and
(2.6) are given in Table 2.2. A second estimation of Cw and the estimation of Cd are given
by the static test described in Section 2.2:

Cw = L
Fdown + Fup

2
(2.7)

Cd = L
Fdown � Fup

2
(2.8)

Parameter Numerical value

J 0.0221 kg.m2

Cw 0.138 N.m

(Eq. (2.7) yields Cw = 0.132 N.m)

Cd 0.039 N.m

cv 0.0273 N.m.s-1

� 0.4 N.m

� 0 0.1947 rad

� e 0.0343 rad

� p 0.0397 rad

k 1.6 � 1010 SI unit

b 2 � 109 N.s.m-3

r 2.7

K 60 N.m

Table 2.2 – Parameters of the SK and BH models, according to Eqs. (2.1), (2.2) and (2.4).

2.4. Simulations
This part presents simulations of the position of the key in responseto given forces (force-
driven simulations) and conversely, the reaction of the key to a prescribed motion at its
end (motion-driven simulations).

As mentioned in Section 2.3, the inertial aspect of the model is invalid between the
escapement and the check of the hammer. However, we chose to continue the simulation
all along.
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For a given force pro�le (here: Fmeas( t )), the angular position of the key � simul( t ) (and the
displacement ysimul = L� of the end) has been obtained by solving numerically Eq. (2.5)
followed by Eq. (2.6) with C( t ) = F( t )meas=L. The link between the two models was
done by linear interpolation of the momentum of inertia J̃(� ) and the momentum of
weights C̃w(� ) from their values in the �rst phase to their values in the second phase. The
numerical integration has been done by the NDSolve function of Mathematica R , using an
Adams method with a maximum step limit of 30000. The results of these force-driven
simulations are presented in Figure 2.6 for three different strengths of the keystroke:
piano, mezzo forteand forte.

We also present the result of the simulation of Eq. (2.6) alone, with initial conditions given
by the observation of � and �� at t corresponding to F( t ) = Fdown . The drift that can be
observed in these simulations is discussed in Section 2.5.
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Figure 2.6 – Position y of the end of the key during various strokes. Dotted (blue) line:
measured position. Dashed (green) line: simulated position according to Eq. (2.5) (BH
model). Plain (red) line: simulated position according to Eq. (2.6) (SK model). Dash-dotted
(red) line: simulated position according to the SK model starting with initial conditions taken
in experimental data (see text). Gray vertical and horizontal lines: see caption of Figure 2.2.
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2.4. SIMULATIONS

Conversely, motion-driven simulations yield Fsimul( t ) = C( t )=L, the opposite of the reac-
tion force exerted by the key for a prescribed motion � ( t ) (here, � ( t ) = xmeas=L). Ac-
cording to Eq. (2.5) and Eq. (2.6), such simulations are straightforward, once the position
and the acceleration of the key have been measured and the velocityhas been estimated
(see Section 2.2). The results are presented in Figure 2.7 for the same keystrokes as in
Figure 2.6.
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Figure 2.7 – ForceF applied on the end of the key during various strokes. Dotted (blue) line:
measured force. Dashed (green) line: simulated force according to Eq. (2.5) (BH model).
Dash-dotted and plain (red) line: simulated position according to Eq. (2.6) (SK model).
Before the split between the dash-dotted and the plain lines, corresponding to y = � L �
0.8mm, it is clear that the BH model must be used instead of the SK model. Gray vertical
lines: see caption of Figure 2.2.
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2.5. Discussion
After the escapement, the key hits the front rail punching. This piece does not differ
between traditional keyboards and numerical keyboards. Since the latter are not judged
as of equivalent quality by pianists, one should infer from this observation as well as from
how pianists test and feel a keyboard, that the haptic feedback beforeescapement is of
prime interest for them. Therefore, the discussion is primarily focused on this phase of the
motion.

A �rst and basic �nding can be deduced from the experimental observations reported
in Figure 2.2. As can be seen in the bottom frame of this �gure, the dynamics of the
mechanism is dominated before escapement by the inertia of its pieces, taken as a whole.
The other-than-inertial dynamical effects due the internal degrees of freedom, the various
stops that are met or left by the pieces, etc. appear as time variations of the difference
F( t ) � ÿ( t )J=L2. The corresponding wiggles can easily be distinguished in the bottom
frame of Figure 2.2, even though the motion (top frame) is quite smooth. Although
not surprising, this elementary observation has important implications with regard to the
main point raised in the introduction: in order to validate a dynam ical model, should the
dynamics be examined as producing a force in response to an imposed displacement or
vice-versa?

From a purely experimental point of view, it is generally dif�cu lt to drive a mechanism with
a rapidly changing force or acceleration. In this particular case, it would not be advisable
either, since it would generate vibrations in the key that would ma sk the time-variation of
the key displacement that are expected to be characteristic of the dynamics mechanism,
considered as an assembly of rigid bodies. Altogether, realistic experimentations would
consist in pushing this mechanism with a smooth force-pro�le, or wit h a smooth motion-
pro�le similar to the ones reported here. Since the dynamics of this particular mechanism
is dominated by inertia until escapement, it follows that the acceleration is generally
smooth, possibly displaying some wiggles. When looking at the angularposition of the
key or displacementof the end of the key (imposed force), these potential wiggles in the
acceleration are heavily �ltered by the double time-integration: the differences between
inertia and the complete dynamics of the system becomes hard, if not impossible, to
distinguish. In other words, any model, provided that it is inertia-dominated, is likely
to appear as very good when checking its validity by means of comparisons of motion-
results obtained in force-driven simulations and tests, before escapement. This lack of
sensitivity of the results to the model is represented by a "0" inupper left cell in Table 2.3.

Input F ÿ and y y ÿ

Output y F F F

Model 0 + + +

Initial cond. + 0 0 +

Noise 0 0 + 0

Table 2.3 – Sensitivity of the results of the simulation, driven as indicated in the �rst line,
to the elements indicated in the �rst column. "+" means "sensitive". "0" means not or little
sensitive.
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2.5. DISCUSSION

Bearing that in mind, we analyse now the diagrams in Figure 2.6, where the "blocked
hammer" (BH) and "simplistic key" (SK) models are ruled by a given force and yield a
certain motion (plain red line). Our �rst remark pertains to th e sensitivity of the SK
model to initial conditions. Simulations based on the SK model alone are represented by
a dashed line. They are run with initial conditions that are take n from the experimen-
tal data: position and velocity for a force slightly exceeding Fdown . The corresponding
curves display a drift compared to those issued of the successionof BH-SK models. This
denotes a high-sensitivity of the SK-model to the initial conditions, more precisely, the
initial velocity, consistent with the fact that the dynamics is dominated by inertia. This
sensitivity is represented by a "+" in the second cell of the left-most column in Table 2.3.
The experiment/simulation comparisons that can be done in Figure 2.6 seem to fully
validate the succession of the "blocked key" and the "simplistic key" models, including
after escapement and the check of the hammer. Although this is obviously a very crude
model, this is consistent with the above remark that any model seems correct under the
circumstances and restrictions described above (upper left "0"in Table 2.3).

Simulations with the same experimental tests, using the samemodel but driven by the
motion data (instead of the force data) yield force results that look, by contrast, very
different from their experimental counterparts. The experim ental/simulation comparisons
presented in Figure 2.7 cannot be considered as a validation of the"simplistic key" model.
Only a more elaborate model could yield simulation results that would better match the
observations. This sensitivity to the model is summarised by the "+" in the second column
of the �rst line in Table 2.3. Although not of essential interest, i t is worth noticing that at
the very beginning of the motion, the BH model seems to predict kinematics (force-driven
simulations) as well as dynamics (motion-driven simulations).

The results reported here have been obtained by using both position andacceleration
experimental data. If one uses only position data, the velocity and the acceleration must
be calculated by successive time-derivations, before escapement. The result is known to be
very sensitive to noise in the initial data. Conversely, usingacceleration-data only requires
successive time-integrations, generating drifts and corresponding to a high-sensitivity to
the determination of initial conditions. For a synthesis of these remarks, see the corre-
sponding cells in Table 2.3.

In the literature, many authors chose to report their results in terms of the kinematics
of the hammer. We did not represent the motion of the hammer but it der ives directly
from that of the key. Since the SK model relies on geometrical relationships between
the angular positions of the pieces, the motion of the hammer is zero in the "blocked
hammer" phase and becomes proportional to the shifted angular position of the key, the
shift corresponding to the angular position of the key when the hammer begins to move.

The �rst set of comparisons presented by [Oboe, 2006] (Figure 18) is purely kinematical.
His second set (Figure 19) presents key and hammer motions in response to a force
applied to a 2-DOF model. Van den Berghe presents a 3-DOF model. Again, the resulting
key's and hammer's motions in response to a force look very similar to measurements.
Using different 2-DOF models for different kinematic constraints, Gillespie [Gillespie et al.,
2011] also compares the calculated and measured key's displacements (Figure 9). Rubber
has been added between the bodies in order to regularise the behaviour of the system.
Hirschkorn & al. use a 5-DOF model to compute the hammer's and key's positions for a
given force input, in piano (Figure 12 and 14) and in forte (Figure 13 and 15). The authors
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deduce from the similarities with measurements that the model predicts the behaviour
of the piano action with reasonable accuracy. Again, the kinematics of the bodies are
calculated by Links with a 5-DOF model for a force input (Figure 5.3 to 5.6) and match
well the measurements.

All these authors (a) compare simulated kinematics in response to a force-pro�le and (b)
�nd a good agreement with measurements. According to the previous remarks, (b) is quite
understandable. It would also be surprising that signi�cantly different models could be
valid to the same precision. Our �rst and main conclusion is that looking at the resulting
motion of force-driven simulations cannot discriminate between good and bad models
(provided they are inertia-dominated before escapement) and thus is not appropriate as a
validation method. Moreover, the sensitivity of the simulated position of the key (or of the
hammer) to initial conditions is an other reason for ruling out this choice of simulating the
dynamics of a piano action by means of a force input. We recall here that this sensitivity
is due to the dominance of inertia in the dynamics, not to the model i tself.

Some events are very important for the pianist such as the jack/let-off button contact
(dashed vertical gray lines in the diagrams) or the escapement of the hammer. The model
presented here and other models with 1 or 2 DOF do not take them into account, which
probably makes them haptically irrelevant. What matters is that this irrelevance does
not appear in the force-driven simulations. On the reverse, the measured force becomes
very different from the force calculated by motion-driven simulat ions with the SK model,
starting from the let-off.

Almost immediately after escapement, the key meets the front rail punching (plain ver-
tical gray lines in the diagrams), the dynamics of the mechanism is dominated by the
corresponding nonlinear and lossy spring (Eq. (2.3)). This can beseen in the right part of
the top and bottom frames of Figure 2.2: the position is almost constantand the force on
the key has a main constant component with, again, some wiggles. Following the same
analysis as above, any model which includes a stop with the appropriate stiffness is likely
to appear as very good if one looks at the motion, considered as the outputof a dynamical
system subject to a smooth force pro�le. As explained before, the rapidly changing forces
represented in the bottom frame of Figure 2.2, or the forces measured in Figure 2.7, are
not good candidates for a pro�le to be used either as a driving experimental force. For the
reasons explained previously, they are not good inputs for a dynamical model either.

After escapement, the SK model is evidently worse than before escapement: the change in
momentum of the hammer is ignored, as is the blocking due to the catch. However, driving
the SK model with the measured forces yields an excellent agreement with the measured
displacement at the end of the key (Figure 2.6). Conversely, tests where (smooth) po-
sition pro�les are used as inputs yield simulated forces which differ strongly from the
measurements (Figure 2.7). The previous reasoning on the apparent validity of inertia-
dominated models can be transposed to stiffness-dominated models,after escapement.
The conclusion is the same: matching measured motion and resultsof force-driven simu-
lations cannot prove that a model is valid.

2.6. Conclusion
Observations of the dynamics of the piano action show that it is dominated by inertia
before escapement and by stiffness after the key has met the front rail punching. By
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2.6. CONCLUSION

means of simulations of too simple models, we have shown that the comparison between
measured positions (of the key or the hammer) and positions given by force-driven simula-
tions cannot validate a dynamical model of the piano action. Although they may be subject
to noise, position-driven simulations must be used instead and theforces be compared. A
minor conclusion of this paper is that the blocked-hammer model seems to be valid during
the very �rst stage of the key motion. However, the main parameter ( stiffness) of this
model was adjusted here.

Driving the mechanism (whether experimentally or virtually) w ith a force pro�le yields
kinematic information. A 1-DOF model is suf�cient to account for the ki nematics of the
key all along. Only one parameter (damping after hammer check) of the 1-DOF model
had to be somewhat arbitrarily chosen. Although the bibliography of the late �fteen years
presents 2- or more DOF models, a 1-DOF model may also well be suf�cientfor rendering
the hammer kinematics before escapement.

Driving the mechanism with a motion pro�le and looking at the reaction force reveals the
dynamics. The complexity of the internal dynamics is re�ected in the rapid wiggles of
the measured forces. Only a sophisticated model may render the dynamics of the action,
possibly one of those which have been published, if it meets the force-comparison test.
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3
Chapter 3

Experimental set-up

Overview In this chapter, the experimental set-up of the piano action is described. It

includes kinematical measurements of all the bodies and dynamical measurements of the

key. These experimental results are compared to simulationresults in Chapter 6 and used to

validate the model presented in Chapter 4.
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Figure 3.1 – Complete experimental set-up.
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Figure 3.2 – Scheme of the measurements.

The motion of the piano action had to be measured in order to be comparedwith the
numerical results of the simulations. We essentially focused onthe measurements of
the key because that is where the pianist interacts with the action. Complementary
measurements on each rigid body were done for a better comparison.

Because it was not possible to use directly the displacement of the key as an input for the
simulation, a piston was inserted between the �nger and the key. The upper face of the
piston had to be measured. More details on the necessity of the piston are given in 5.4.1
page 91.

A photograph of the complete set-up is shown in Figure 3.1 and the various measurements
are presented in Figure 3.2. The kinematic ones included:

� the position of the key (3.1.1);

� the position of the upper face of the actuation device (3.1.1);
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3.1. KINEMATICS

� the acceleration of the key (3.1.2);

� an estimation of the velocity of the key (3.1.3);

� the position of each body using a high-speed camera and video tracking (3.1.4).

As we are interested in the dynamics of the piano action, the reaction force of the key on
the pianist's �nger was also measured (3.2).

The actuation of the key is described in 3.3. Data acquisition and synchronisation are
presented in 3.4. All the measurements errors and uncertainties are summarised in 3.5.

3.1. Kinematics

3.1.1. Laser sensors

To measure the position of the upper face of the piston and that of thekey, laser sensors
(Keyence LB12 with LB72 ampli�er units) were used, since they do not change the dy-
namics of the piano action. Their response was set to0.15 ms, which corresponds to a
resolution of 50 µm. Their sensitivities were measured using a graduated marking gauge
and were estimated at0.398 V/mm and 0.449 V/mm. The lasers were positioned as shown
in Figure 3.3.

laser for the key

laser for the silicone

force sensor

piston

Figure 3.3 – Set-up for actuating the key.
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3.1.2. Accelerometer

An EndevcoR 2250A piezoelectric sensor was used to measure the acceleration of the key
(sensitivity: 0.316 V/(m � s� 2)). The accelerometer was placed in the middle of the key,
between its the centre of rotation and the piston. This signal was ampli�ed with a Brüel
& Kjær Nexus conditioning ampli�er and �ltered by a band-pass �lter (lower and upper
cut-off frequencies: 0.1 Hz and 3 kHz, respectively). The mass of this accelerometer is
0.4 g.

3.1.3. Estimation of the velocity

Trials with a Polytec PDV-100 laser vibrometer failed to measure the velocity, as the motion
of the key was too slow. Two alternatives were studied. The �rst one uses the Matlab script
corresponding to [Chartrand, 2011] and proposed by its author. It c onsists in minimising
the functional

F (u) = �
Z

[ 0,T]
ju0j +

1

2

Z

[ 0,T]
jAu � yj2 (3.1)

where y is the position signal, T its temporal length and A is the operator of anti-differentiation
(Au( t ) =

R
[ 0,t ] u). The �rst integral controls the regularity of the solution withou t penalis-

ing jumps. The second integral ensures thatu is the differentiation of y. This solution
gave acceptable results, see Figure 3.4. The parameters1 were empirically chosen as
� = 5 � 10� 5, 20 iterations and " = 10� 9.
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Figure 3.4 – Comparison of the integration of the acceleration and the differentiation of the
position, piano keystroke.

1" is a numerical parameter to avoid division by zero and � is a weighting factor, see [Chartrand, 2011].
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The second estimation was done by integrating of the acceleration after making sure that
it actually corresponded to zero when the key was at rest. Integrated data showed good
agreement with the derivative of the position for piano keystrokes, see Figure 3.4. Forforte
keystrokes, the acceleration was either saturated (too large accelerations), or inaccurate
(large resolution to avoid saturating).

Total-variation differentiation was used because it worked straightforwardly for all keystrokes.
Also, no noticeable differences appeared in the results betweenthe two estimations of the
velocity, because the actuation device was only slightly dissipative.

3.1.4. Tracking of the position of each body
The kinematics of all the bodies provided information on the dynamics, and allowed
additional comparisons of simulation results. The purpose of measuring the position
of each body was to estimate the shape of their curves and especially the instant of
signi�cant variations, which indicates a change in the contacts. The qualitative behaviour
was compared to the simulated position (see Chapter 6). The positions were measured
using a high-speed camera, which does not disturb the dynamics of the piano action.

We used a Simi HCC-1000 high-speed high-resolution camera, composed of four CMOS
sensors. The highest available acquisition frequency with a resolution of 1024px � 512px
was 923 fps which corresponds to one image every1.083 ms.

The camera acquisition was triggered by a hardware trigger sending an + 5 V rising edge,
which allowed synchronisation with other measurement devices (see section 3.4).

The videos were treated using the KLT tracking algorithm.

KLT tracking

KLT stands for Kanade-Lucas-Tomasi who developed so-called KLT feature trackers. The
recorded video is decomposed inN images (frames) of size1024px � 512px and coded in
RGB colour space2. Let us call Fn the n-th frame. Fn assigns to any pixel its associated RGB
colour, therefore 8 i 2 [[ 1, N]] , Fi : [[ 1,1024]] � [[ 1,512]] �! [[ 1,256]] 3. Let us denote by
Z the zone which has to be tracked. The KLT algorithm consists in �nding h 2 R2 which
minimises a distance betweenFn( x) and Fn+ 1( x + h), 8 x 2 Z . Kanade and Lucas proposed
to measure the distance using theL2 norm which leads to a classical minimisation problem.
More details are given in [Lucas et al., 1981; Tomasi and Kanade, 1991].

An implementation of the KLT algorithm was proposed in the Matlab CRToolbox[Barbacci
et al., 2013].

To make the tracking easier, high-contrast patterns were stuck to every rigid body.

Pattern choice

Different patterns have been tested: single signs such as squares, triangles, stars and dots
gave acceptable results but were either too small to be spotted or toolarge to be accurate.
In order to reduce the measurements uncertainties, more complex patterns were tested:
grids, draughtboards, parallel lines, dot grids and irregular draughtboards, see Figure 3.5.
All the regular patterns failed to give acceptable results for the hammer: its velocity was

2In our case, the videos were made in 8 levels of grey, but this does not matter for the understanding of the
KLT algorithm.
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(a) Punctual patterns

(b) Grid patterns (Grid. Draughtboard. Parallel lines. Dot ted grid. Irregular
draughtboard.)

Figure 3.5 – Tested patterns for KLT tracking.

high so that its displacement observed in two consecutive frames could be equal to several
periods of the pattern. This made the determination of its correct position impossible: the
algorithm could detect minima of the cost function 3 in the neighbourhood of the tracked
points which were not the right one. This phenomenon could be seen as the tracked points
of the hammer shifted from their initial positions and all ended i n the same area. On the
contrary, this was not observed using irregular draughtboards which probably increase the
convexity of the cost function.

An overview of the tracking is shown in Figure 3.6 and typical results from the �nal
treatment are plotted in Figure 3.7. The comparison of the estimated position of the
key using the laser sensor and the high-speed camera shows that the latter gives a relative
error of 5 %, which was considered acceptable for the qualitative analysisof Chapter 6.

(a) At rest (b) In motion

Figure 3.6 – Illustration of KLT tracking with the selected patterns.

3The cost function is de�ned by

J (h) =
X

x2Z

jj Fn( x) � Fn+ 1( x + h)jj 2 (3.2)
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Figure 3.7 – Angles of the bodies tracked by KLT algorithm.

3.2. Force
We also measured the force exerted on the key to capture the dynamics of the action. The
force sensor was a Kistler Model 9211 of1.2 g. When compressed, this piezoelectric sensor
(quartz) generates a charge signal proportional to the load acting on the sensor (sensitivity:
4.403 pC/N). The signal was ampli�ed using a Kistler 5015 Charge Meter with a high-pass
�lter (cut-off frequency � 1 Hz) and a second order low-pass �lter (cut-off frequency:
3 kHz). Probably due to insuf�cient insulation, a very regular 50 Hz sinusoidal signal was
detected in the force signal. The oscillatory nuisance was subtracted by a �tting of the
form

� sin(100 � t + � ) (3.3)

with a least squares method, on a few periods just before the keystroke. It perfectly
corrected the disturbance, see Figure 3.8.

39



CHAPTER 3. EXPERIMENTAL SET-UP

0

0.05

0.10

0.15

� 0.05 0.02 0.04 0.06 0.08 0.10 0.12

Time (s)Fo
rc

e
(N

) measured force

corrected force

Figure 3.8 – Correction of the50 Hz signal captured in the force measurement.

Typical measurements are shown in Figures 3.9 and 3.10 forpiano and forte keystrokes,
respectively. The position curves are much smoother than the force curves, as observed in
Chapter 2.
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Figure 3.9 – Typical measurements of the force exerted on the key and its position, piano
keystroke.

40



36
m

s

3.3. ACTUATION OF THE KEY

0

0.002

0.004

0.006

0.008

0.010

0.012

0 0.05 0.10 0.15 0.20 0.25 0.30

Time (s)

P
os

iti
on

(m
)

measurements

0

2

4

6

8

0 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)

Fo
rc

e
(N

)

measurements

Figure 3.10 – Typical measurements of the force exterted on the key and itsposition, forte
keystroke.

3.3. Actuation of the key
As the piano action is a highly non-linear mechanism, it must be studied for keystrokes
that are representative of the players' ones. In particular, using a mass to apply a constant
load does not ensure that the proper dynamics is being studied. It has been observed that
the use of a pendulum does not lead to the same depressing of the key as that of a human
player [Askenfelt and Jansson, 1990].

For the same reasons, results of this thesis are usually presented for different keystrokes,
reaching respectively about 2 N and 10 N. For simplicity, they are referred to as piano
and forte keystrokes. A standard forte corresponds to a maximum of 30 N according
to [Hirschkorn et al., 2006].

Some attempts were done to actuate the key with a step-by-step motor, butthe latter
could not deal with the velocities and the accelerations needed. Satisfactory results
were obtained when actuating the key by applying the force directly on the force sensor.
Reproducibility of the motion, which depends on the skills of the player, was indeed not
required.

The main conclusion from Chapter 2 was that the simulations should be driven by a
position. The simulation methods we used did not offer such a possibility. This was
worked around by coupling the key, in the model, to a PD corrector, the free end of which
would be driven by a position – this solution had been implemented in the computer
program used for the simulation. In the experiments, we added a device which aimed at
corresponding to the PD corrector. The device included a piece of silicone, the behaviour
of which was correctly modelled with a viscoelastic law. More details of the PD corrector
are given in Chapter 5 (5.4.1).

41



CHAPTER 3. EXPERIMENTAL SET-UP

The viscoelastic material was chosen so that it had a behaviour close to that of a �nger, in
order to �lter the force in a similar way. The Eco�ex R Shore 00-30 hardness A silicone was
�nally selected. The identi�cation of its viscoelastic propert ies is set forth in paragraph 3.3.

Addition of a piston between the �nger and the force sensor The silicone was placed
inside a piston, the upper position of which was measured by a laser, see Figure 3.11. A
photograph of the piston has been shown in Figure 3.3. We denote byysilicone the upper
position of the piston, and by ykey the position of the key.

pro�le view

top view

metallic plate

outer tube
inner cylinder

silicone

force sensor

key

metallic plate

laser beam

Figure 3.11 – Scheme of the piston used to press on the silicone.

Chapter 6 shows that this solution led to good results. Yet, it has some drawbacks:

� the force exerted by the pianist had to be symmetrical enough so that the device
would not topple over, which in practise also limited the maximum applied force;

� a gap between the outer tube and the inner cylinder was required sothat they could
slide; this gap introduced a bias in the measurement of the upperface's position of
the silicon.
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Identi�cation of the viscoelastic properties of the silicone The silicone was assumed
to be viscoelastic. The parameters of the law (elastic coef�cient a and viscous coef�cient
b) were determined using the above-mentioned piston on the clamped key, in order to
remain as close as possible to the measurements of the piano action.

The position of the upper face of the piston ysilicone as well as the reaction forceF of the key
were measured. The values ofa and b were then identi�ed using a least square method.
Setting the initial position to 0 mm and as the initial velocity was 0 m � s� 1, the least square
optimisation problem consisted in �nding (a, b) which minimised the function

J(a, b) =
i= NX

i= 0

�
F( t i ) � (a y( t i ) + b �y( t i ))

� 2 (3.4)

where t i is the i -th measurement time and t N the �nal time. The velocity �y was calculated
as described in 3.1.3.
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Figure 3.12 – Typical �t of the linear viscoelastic behaviour of the piston.

A typical result of such an optimisation is given in Figure 3.12. In total, ten measure-
ments were completed for varying maximum forces. Identi�cations results are plotted in
Figure 3.13. The arithmetic mean and standard deviation of the values of a and b are set
forth in Table 3.1.

mean value standard deviation

elastic coef. a ā = 6.5 � 103 N � m� 1 � (a) = 702 N � m� 1

viscous coef.b b̄ = 134 N � s � m� 1 � ( b) = 92 N � s � m� 1

Table 3.1 – Summary of measurements.

Even if the correlation between the measured and identi�ed viscoelastic forces shows some
discrepancies, the linear viscoelastic law is deemed acceptable for the silicon as the error4

is about 15 %.

The value of the linear elastic stiffness of6.5 � 103 N � m� 1 is in a reasonable accordance
with the results of [Serina et al., 1998] for the behaviour of the �n ger tip. Therefore,
we considered that what is felt by the pianist is not signi�cantl y changed by the addition

4The error is de�ned by the ratio of the integral of the differe nce of the absolute value of the two forces, and
the integral of the measured forces
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of the silicon since the �nger and the silicone �lter the force in a similar way, which is
necessary for the simulations of the piano action to be relevant.

0

2000

4000

6000

8000

0 2.5 5.0 7.5 10.0 12.5

Force (N)

E
la

st
ic

co
ef

.a
(N

�m
�

1
)

b

b

b

b b

b

b

b

b

b

0

30

60

90

120

150

180

210

240

270

V
is

co
us

co
ef

.b
[N

�s
�m

�
1
]

b

b

b

b
b

b

b

b

b

b

average

average

values of a

values of b

Figure 3.13 – Ten identi�cations of the linear viscoelastic parameters of the piston.

Examples of measurements Figure 3.14 shows a comparison between the measured
force Fmeas and the estimated normal compression force of the silicone, which should be
equal. The discrepancies were mainly due to:

� the friction in the piston which invalidates the model;

� the bias of the measurement of ysilicone (see table 3.2);

� the differences between the position sensors and the force sensors(and their ampli-
�er).
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Figure 3.14 – Comparison of the force measurement and its estimation using the viscoelastic
piston. Top: piano keystroke. Bottom:forte keystroke.

44



34
m

s

3.4. TRIGGER AND ACQUISITION

3.4. Trigger and acquisition
The synchronisation between all the measurements was done using atrigger. A + 5 V
rising edge was sent to start the acquisition of both the camera and the local sensors. The
triggering signal for the camera was natively interpreted. For the local sensors, it was
transmitted by the National Instrument 6211 data acquisition d evice to a computer, which
interpreted it and triggered their acquisition.

A photograph of the complete set-up has been presented in Figure 3.1. The corresponding
scheme is described in Figure 3.15. A photograph of the piano key showing the tracking
patterns and the piston, as well as the local sensors is also given in Figure 3.16.

trigger

camera
video

acquisition
sensors interface

sensors
acquisition

Figure 3.15 – Scheme of the set-up.

Figure 3.16 – Photography of the piano action showing the tracking patterns, the
accelerometer, the two lasers, the force sensor and the piston.

3.5. Summary of measurement errors and
uncertainties

All the estimated measurements errors and uncertainties aregathered in Table 3.2.

It is noteworthy that these relatively small errors in position ca n lead to large errors in
force. For example, denoting as previously byykey and ysilicone the signal of position of the
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geometry laser key laser silicone velocity force kinematics

(m) (m) (m) (m/s) (N) (rad)

resolution 10� 4 5 � 10� 5 5 � 10� 5 – 5 � 10� 4 ¶ 0.02

systematic error 0 2 � 10� 4 1 � 10� 4 – 0 0

+ linearity 0 10� 4 10� 4 – ¶ 0.1 0

+ hysteresis – ¶ 0.1 0

uncertainties 10� 3 ¶ 10� 4 ¶ 5 � 10� 4 – 0.1 ¶ 0.05

Table 3.2 – Summary of all measurement's errors.

key and of the silicone respectively, andk the stiffness of the silicone,

a(1.2 ysilicone � ykey) � a ( ysilicone � ykey) = 0.2 a ysilicone (3.5)

which is of the order of magnitude of 1 N. Such an ampli�cation of the errors can be
seen in Figure 3.14, where the difference between the estimated and the measured forces
reaches up to 1 N for the piano keystroke and three times more for the forte keystroke.
This is believed to be responsible for a signi�cant part of the discrepancies between the
measured and simulated forces presented in Chapter 6.

Estimating the errors and uncertainties separately for each body allows to re�ne them, see
Table 3.3. This is because even if the accuracies are about the same for the tracking of
each pattern, the corresponding accuracies in angles differ,as the lever arms changes from
one body to another.

key whippen jack lever hammer damper

(rad) (rad) (rad) (rad) (rad) (rad)

resolution 10� 3 5 � 10� 3 10� 2 2 � 10� 2 2 � 10� 3 10� 2

uncertainty 5 � 10� 3 10� 2 3 � 10� 2 4 � 10� 2 10� 2 2 � 10� 2

Table 3.3 – Details of kinematic errors.
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4
Chapter 4

Model

Overview In this chapter, the dynamical model of the piano action used for the

simulations is described. This model is validated in Chapter 6 as it predicts the force between

the key and the �nger from a position-driven simulation (in a ccordance with conclusions of

Chapter 2).
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A model of the grand piano action is quali�ed as complete when each body of the mecha-
nism is modelled, except the ones for which the actions are neglected. Such models stem
from a non-phenomenological approach consisting in writing the dynamical equations for
every body and coupling them with the reaction forces.

Several complete models of the grand piano action have been proposed[Gillespie and
Cutkosky, 1992; Hirschkorn et al., 2006; Lozada, 2007]. In [Gillespie and Cutkosky,
1992], no viscous nor dry friction is taken into account. Nevertheless, it is mentioned
that friction contributes signi�cantly to what is felt by a player . The models proposed
in [Hirschkorn et al., 2006] and [Lozada, 2007] are quite simila r. They differ mostly
by slightly different felt laws, the damper which is considered by Lozada, and by the
regularisation of dry friction in [Hirschkorn et al., 2006].

The model described in the present chapter is based on Lozada's. Itis completed by a
description of the contact geometries, including that of the backcheck. After introducing
the model, all the physical elements involved in the model are presented and detailed
for each body. The corresponding values are also given. Most of them were taken
from [Lozada, 2007] as described in Chapter 3. All the equations are then written in
a synthetic matrix form.

4.1. Characteristics of the piano action
The parameters of the piano action model are classi�ed into:

� the geometry (positions and lengths);

� the inertial properties of the bodies (masses, moments of inertia,centres of inertia);

� the material properties of felts and hinges (dry and viscous friction coef�cients).

All the geometrical quantities (positions and angles) were estimated from two photographs
of the action: one of the entire mechanism and the second zoomed on the whippen-jack-
lever assembly and the hammer. The photographs were taken at3 m from the action to
reduce the parallax, and the lens distortion was corrected using DxO Optics Pro. Because
of the time-worn felts of the used action (see Figure 4.7(b) page 57) and as a double-check,
complementary measurements were completed with a dial calliper.

The values of the measurements are given in Section 4.5. Some geometrical measurements
differed signi�cantly from Lozada's. In [Lozada, 2007],

� the let-off button is 1 mm lower;

� the drop screw was also2.5 mm lower;

� the whippen spoon was2 mm closer to the whippen pivot;
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� the whippen cushion was 3 mm lower;

� the capstan screw was1 mm higher.

These discrepancies, which may seem small compared to the overall dimension of the
action, may change signi�cantly the dynamical behaviour and the escapement. They are
probably mostly due to the differences between the two studied actions and to a lesser
extent to the uncertainty of measurements.

The geometrical uncertainty was estimated as� 1mm, mainly because of the irregularities
of the felts surfaces, see Table 3.2.

The inertial and material properties were taken from [Lozada, 2007], except the mass of
the key which is very easy to disassemble. The latter was estimated as83 g, which is 20 %
lower than that measured in [Lozada, 2007] because of the studiedactions are different.

4.2. Generalities

4.2.1. Bidimensionality

As the axes of its hinge joints are all parallel, the piano actionhas an in-plane motion. The
studied model is therefore bidimensional.

4.2.2. Bodies

As previously explained, the complete model includes the description of every body, that
is the key, the whippen, the jack, the lever, the hammer and the damper.

4.2.3. Bodies' stiffnesses

To study whether the �exibility of the six bodies should be taken into account, the follow-
ing two criteria were considered:

� a static criterion related to the de�ection of each rigid body compa red to its charac-
teristic length;

� a dynamic criterion related on the longest period of the normal mode, compared to
the characteristic time of the interaction with the key.

The purpose is to estimate the order of magnitude of these criteria. The latter were applied
to simpli�ed geometries and with strong assumptions: the bodies are supposed to be
clamped straight beams with constant cross sections. Also, the constitutive material is
supposed to behave as a linear elastic, isotropic material, in Euler-Bernoulli kinematics.

Static criterion

Figure 4.1 represents the bodies with the assumption that they are clamped. The maxi-
mum de�ection � is given by

� =
F L3

3 EI
(4.1)

where E is the Young modulus and the second moment of areaI is supposed equal to
1
12

b h3 ( b and h are respectively the width and the height of the rigid body) as if t he
sections were rectangles.
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�

�

Figure 4.1 – Approximation of each rigid body as a clamped beam.

Dynamic criterion

The modal frequencies are again roughly estimated from a clamped position. The mode
of longest period is the �rst mode, of frequency

f1 =
1.8752

2�

1

L2

s
EI

� S
(4.2)

where S = b h is the area of the section.

Results

Table 4.1 gathers the results of Equations (4.1) and (4.2) for a typical force of 10 N on the
key. The characteristic force varies from one body to another becauseof the different lever
arms. � is the characteristic time during a stroke, estimated at � = 5 � 10� 2 s. The Young
modulus of the wood was taken asE = 1010 Pa, its density as� = 1000 kg/m 3.

body L (m) b (m) h (m) F (N)
�

L
(-)

1

f1 �
(-)

key 0.380 0.015 0.025 10 0.002 0.230

whippen 0.060 0.010 0.008 20 0.005 0.020

jack 0.025 0.005 0.005 30 0.012 0.004

lever 0.030 0.005 0.005 10 0.008 0.007

hammer 0.130 0.005 0.005 30 0.300 0.130

damper 0.070 0.010 0.02 10 0.0002 0.010

Table 4.1 – Order of magnitude of the in�uence of �exibility in statics and dynamics.

It appears that most of the bodies can be considered as rigid. The vibration of the key
might have an in�uence when in transitory motion. It is assumed t hat this in�uence is
suf�ciently low in our study. Also, the hammer shank has a low stif fness and its �rst
mode has a long period. This period is even greater when estimatedfrom a punctual mass
model, which is likely to model the hammer better, as it consists in reality of an elongated
shank and a mass made of felt. This �exibility has been studied in [Askenfelt and Jansson,
1991] and taken into account in [Izadbakhsh et al., 2008] where Iz adbakhsh concludes
from force-driven simulations that the only observed signi�cant in �uence of the �exibility
of the hammer shank occurs during the contact with the string. As the most interesting
phase for haptics ends at the escapement and because the hammerhas already escaped
from the mechanism when it hits the string, the �exibility of the hammer is not taken into
account here.
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The conclusion of this paragraph is that for the above reasons, all the bodies are modelled
by rigid bodies.

4.2.4. Contacts description

The complete model has to take into account the collisions between different bodies of the
action. This requires to estimate distances between rigid bodies, in the neighbourhood of
a possible contact zone1. The geometry of contact surfaces therefore has to be described.
For computational reasons (see Chapter 5), this description was kept as simple as possible,
ideally using one segment and one circle, possibly of very large radius relatively to the char-
acteristic length of the contact. The key-hammer contact (more precisely the backcheck-
hammer contact) differs because it involves Coulomb friction, so that the description in
the tangential direction of the contact surface matters. Also, the geometry of the top part
of the jack, which lifts the hammer knuckle, is slightly more complex. Table 4.2 lists the
different geometries for each contact. A similar description of the geometry was done
in [Hirschkorn et al., 2006].

contact contact geometry contact geometry

name
body A body B

of body A of body B

KS+ key ground at key front

KW key whippen

KS� key ground at key rest

KH key hammer

KD key damper

KJ whippen jack

KL whippen lever

JG jack ground at button

JL jack lever

JH jack hammer

LG lever ground at stop

LH lever hammer

HG hammer ground at string

DG damper ground at rest

Table 4.2 – Description of the contact geometries.

The parametrisation of the contact geometries is described in 4.5.1.

1The contact zone is larger than a point because of the multiple degrees of freedom.
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4.3. Physical elements

4.3.1. External forces

The external forces provide energy to the piano action. Two typesof such forces are
considered:

� the action of the player on the key, which is the opposite of the reaction force exerted
by the key on the player's �nger;

� gravity, which applies to all the bodies.

4.3.2. Inertia

From the Latin word iners (literally "without skill"), inertia describes the resistanc e to a
change of the motion. It characterises the dynamics, as opposed to static of quasi-static
mechanics where inertia can be neglected.

The inertias considered in the further-described model are the rotational inertias of the
rigid bodies.

4.3.3. Felt reaction forces

The reaction contact forces are smoothed by felts in the thirteen zones of the piano action
where contact can occur, as represented in Figure 4.2. These elements are essential for
the touch of the piano.

Figure 4.2 – Location of the felts of the grand piano action.

The mechanical behaviour of such felts has been extensively studied, especially that of the
hammer which collides with the string. It is highly non-linear a nd slightly dissipative. The
non-linearity is due to the increasing stiffness of felts as their �bres get closer from each
other. An elastic model for the hammer was proposed in [Hall and Askenfelt, 1988] as a
power law of exponent 2.8 � 0.6 SI. An additional viscous term was added in [Hunt and
Crossley, 1975], such that

F(� ) = k � r + b� r �� (4.3)

where � is the compression of the felt andF(� ) the normal component of the correspond-
ing reaction force. A similar modi�cation of the power law was propose d for the piano
in [Brenon, 2002] in the form

F(� ) = k � r + b� 2 �� (4.4)

The latter law (4.4) is the one used in the present model and is referred to as the felt law.
It is noteworthy that in Equation (4.3), the exponent r is chosen for the dissipative part so
that it enables an analytical integration of the equation of motion.
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4.3. PHYSICAL ELEMENTS

Figure 4.3 – Photograph of the felt bushing on the jack.

4.3.4. Viscous and dry friction in hinges

The hinges of the different piano action elements have felt bushings (see Figure 4.3) which
enable them to be smooth, silent and working properly for a long time. As it can be
easily observed on any dismounted hammer, the free oscillations of abody of the piano
action is highly damped, and the �nal equilibrium does not corresp ond to the minimum
of the potential energy. This phenomenon is even used by piano technicians who add
some lubricant to the hammer hinge if the hammer stops before three pseudo-periods
(see Appendix A). Denoting by � the angle made by the considered rigid body, this energy
dissipation is modelled by:

� a rotational linear viscous friction which creates a moment of the form cv
�� , where

cv is a positive constant term called viscous friction coef�cient;

� a rotational dry friction of the form cd sign( �� ), where cd is a positive constant term
called dry friction coef�cient.

In [Lozada, 2007], this model gave a relative error of the hammer displacement of 0.27 %
for the optimal values of cv and cd found by minimising the Euclidean distance on the
displacements. It is worth noting that this 1-DOF problem required a special treatment of
the sign function (page 59).

Quite similarly to the Coulomb friction described in the following paragraph, dry friction
in hinges presents singularities when the velocity convergesto 0. These singularities are
concealed in the sign function de�ned by:

sign( �� ) =

8
>>>>><

>>>>>:

1 if �� > 0

[ � 1,1] if �� = 0

� 1 if �� < 0

(4.5)

which is set-valued in 0. This is consistent with the in�nity of possible equilibriums (in the
mechanical sense) for �� = 0. Table 4.3 enumerates the three different cases of dry friction
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slip stick slip

external moment M M > cd M 2 [ � cd, cd] M < � cd

scheme

M

D

+

M
D

+

M

D

+

moment of dry friction
D

D = � cd D = � M D = cd

sign of �� �� > 0 �� = 0 �� < 0

Table 4.3 – The three cases of dry friction (M : external moment,D: dry friction).

in hinges summed up as:

D( �� ) = D( �� ) ez = � cd ez

8
>>>>><

>>>>>:

1 if �� > 0

[ � 1,1] if �� = 0

� 1 if �� < 0

(4.6)

The notation = is a misuse (2 is more appropriate), justi�ed further.

4.3.5. Coulomb friction

Coulomb friction is a contact model very similar to the above-described dry friction in
hinges. In the Coulomb model (1781), the stick-slip threshold of tangential contact force
varies linearly with the normal contact force, contrary to dry fr iction in hinges where
the threshold cd is constant. Coulomb friction is considered in the model of the piano
key in three zones corresponding to the jack - let-off button contact, the jack - hammer
knuckle contact and the hammer - backcheck contact. These three zones are represented
in Figure 4.4.

Figure 4.4 – Zones where Coulomb friction is considered.
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4.3. PHYSICAL ELEMENTS

slip stick slip

external force F > � mg F 2 [ � � mg, � mg] F < � � mg

scheme

mg

� mg

xm
T

F

mg

� mg

xm
T

F

mg

� mg

xm
T

F

tangential friction force T = � � mg T = � F T = � mg

sign of �x �x > 0 �x = 0 �x < 0

Table 4.4 – The three cases of Coulomb friction (F: external force,T: tangential friction
force).

The Coulomb friction law can be formulated similarly to (4.6):

T = � � N

8
>>>>><

>>>>>:

1 if �x > 0

[ � 1,1] if �x = 0

� 1 if �x < 0

(4.7)

where T and N are the tangential and normal contact force, respectively.

Table 4.4 gives the law for a solid subject to its weight � mg.

4.3.6. Coupling springs

Some grand piano actions have rotational springs between:

� the whippen and the ground,

� the jack and the whippen,

� the lever and the whippen,

see Figure 4.5. The mechanism studied here has such springs.

Figure 4.5 – Location of the coupling springs.

They are modelled as linear elastic rotational springs of moment ofreaction Cs:

Cs = � (� � � 0) (4.8)

were � 0 is the equilibrium angle of the unloaded spring and � is its rotational stiffness.
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4.4. Classi�cation of parameters
The different physical elements described in Section 4.3, as well as the geometry, introduce
numerous parameters. Their values are presented in Section 4.5 using a classi�cation
de�ned here and which will be of further use in the sensitivity a nalysis (see Chapter 6).
The de�nition of the categories and the classi�cation of the param eters was donea priori .

4.4.1. Categories
Four categories are de�ned:

I: adjustable parameters;

II: non-adjustable and measurable parameters to be studied;

III: non-adjustable and non-measurable parameters to be studied;

IV: non-adjustable parameters not be to studied.

Adjustable parameters: category I
The adjustable parameters are these which are modi�ed during a normal regulation of a
piano key, see Figure 4.6. A classical regulation procedure is described in Appendix A.

Figure 4.6 – Adjustable geometrical parameters, on a real grand piano action.

Non-adjustable measurable parameters to be studied: categor y II
The non-adjustable measurable parameters to be studied are the parameters for which it
is possible to get an estimation by means of measurements and whichare considered to
potentially in�uence the simulation results of the model. All th e measurable parameters
suspected to have a signi�cant in�uence are gathered in category II.

For instance, an error of a tenth of a millimetre in the estimation of the position of the
hammer knuckle could signi�cantly change the simulation result s, as it is a sensitive part
of the action. Therefore the position of the hammer roller is a parameter of category II.

Non-adjustable non-measurable parameters to be studied: categ ory III
The category of the non-adjustable and non-measurable parameters tobe studied includes
the few parameters which are not measurable, but may have a signi�cant effect on the
simulation results. These are essentially2 the parameters introduced by the description of
the contact geometry.

2Some more parameters of category III are introduced in Chapter 5: the masses of the felts which are in
motion.
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For instance, the geometry of the end of the jack which gets in contact with the escapement
button is approximated by a disk, but the diameter of this disk is not measurable as the
shape of the end of the actual jack is not a disk. Another example is induced by the ir-
regularities of felts surfaces, see Figure 4.7. These irregularities implies large inaccuracies
in the estimated positions of the simpli�ed contact descriptions . This was also observed
in [Hirschkorn et al., 2006].

(a) Jack end (b) Irregularity of felts (damper key cushion)

Figure 4.7 – Examples of non-measurable parameters.

Fixed parameters not to be studied: category IV

The category IV includes all the parameters which are assumed, for some reason, not to
have any signi�cant in�uence of the simulation results.

For example, the position of the centre of gravity of the key is supposed to have very
little in�uence on the overall behaviour of the key mechanism, because the moment of the
weight of the key is small compared to the moment exerted by the player's �nger.

4.5. Dynamics: description and values
All the values presented here have been identi�ed as describedin Chapter 3.

4.5.1. Conventions
The conventions chosen in this paper are presented below.

Conventions for the frames

A reference frame is attached to each rigid body, using the following conventions:

� the centre of each frame is the centre of rotation of the rigid body the frame is
attached to;

� the horizontal axis is de�ned along a main direction of the rigid body close to
horizontal.

The angles of the frame are denoted by� B, where B stands for the �rst name of the body.

Conventions for the name of the parameters

Bodies were named after their �rst letter. B is given below as an example: replace it
by the appropriate letter. All the conventions for the parameters of the piano action are
summarised in Table 4.5.
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generic term meaning

BG centre of gravity of body B

BO centre of rotation of body B

B� x x-coordinate of point B� in the frame of body B

B� y y-coordinate of point B� in the frame of body B

BC centre of the contact zone of body B and body C in the frame of body B

IB,B�
moment of inertia of the body B around the point B�

cdB, cvB dry and viscous coef�cient of the hinge joint of body B

mB mass of body B

BC� , BC� , BC� description of the geometry of body B which collides with body C

in the frame of body B, see Figure 4.8

� BC coef�cient of Coulomb friction between bodies B and C

� BC stiffness of coupling spring between bodies B and C

� BC
0 resting angle of coupling spring between bodies B and C

Table 4.5 – Conventions for the notations of the parameters.

For convenience, each contact geometry is de�ned with respect tothe centre of the contact
zone P, de�ned by its coordinates (Px , Py) in the body B frame. The associated parameters
are represented in Figure 4.8.

�

x

y

�
P

(a) circle

�

x

y

�

P

(b) segment

Figure 4.8 – Parameters for the description of the geometry for the contact zone centred in
P.

� If the geometry of the body in the neighbourhood of the contact point P is described
by a circle (case 4.8(a)), then the circle is de�ned by its radiu s � and its centre,
which is itself de�ned by the set of polar coordinates (� , � ).

� If it is described by a segment (case 4.8(b)), then the segment isde�ned by its angle
� in the body frame and its length � .
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The measured geometry and the values of the parameters which were used for the simu-
lations (Chapter 6) are presented for each body from Figure 4.5.2 to 4.5.8.
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4.5.2. Key

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes front rail yes hammer no

player whippen

back rail

hammer

damper

Table 4.6 – Elements involved in the key's dynamics.

geometry KD

�
�
� � 229.5

27.6 KH

�
�
� � 220.0

84.2 KS�

�
�
� � 183.0

0.0 KW

�
�
� � 128.7

44.6 KO

�
�
�0.0
0.0 KS+

�
�
�241.5

0.0

inertia KG

�
�
�19.0
14.0 mK = 0.083 kg IK,KO

= 3.36 � 10� 3 kg.m2

friction cdK = 0.006 N � m cvK = 0.22 N � m � s

KH

KD KW

KO

KG

KS�

KS+

I KHx , KH y KWx , KWy 4
II cdK cvK 2
III 0
IV KDx, KDy KS-x, KS-y KS+ x , KS+ y KGx, KGy mK I K,KO

10

Figure 4.9 – Key frame, measurements (lengths in(mm) ).

circle KH

�
�
� � = 2.9
� = 3.51 KS�

�
�
� � = 100
� = 0.0 KS+

�
�
� � = 100
� = 0.0

segment KD

�
�
� � = 20
� = 0.0 KW

�
�
� � = 80
� = 0.0

W

KH

KD

KOKS�

KS+

I 0
II 0
III KH� KW� 2
IV KD� , KD� KH� KS-� , KS-� KW� KS+ � , KS+ � 8

Figure 4.10 – Contacts description, key (lengths in(mm) , angles in(rad) ).
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4.5.3. Whippen

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes jack yes no ground

key

lever

Table 4.7 – Elements involved in the whippen's dynamics.

geometry WO

�
�
�0.0
0.0 WW

L

�
�
�16.1

2.0 LO

�
�
�47.5
29.8 WK

�
�
� 59.0
� 20.8 WJ

�
�
�75.8
20.8 JW

O

�
�
�99.1

0.0

inertia WG

�
�
�53.0

7.0 mW = 19.8 � 10� 3 kg IW,WO
= 3.97 � 10� 4 kg.m2

friction cdW = 0.0992 N � m cvW = 4.93 � 10� 5 N � m � s

WO

WL

LO

WG

WJ

WK

JO

I 0
II JW

O x , JW
O y cdW cvW 4

III 0
IV WLx , WLy LW

O x , LW
O y WKx , WKy WJx , WJy mW I W,WO

10

Figure 4.11 – Whippen frame, measurements (lengths in(mm) ).

circle WL

�
�
� � = 100
� = � 1.57 WK

�
�
� � = 60
� = 1.57 WJ

�
�
� � = 100
� = 3.44

WO

WL

WJ

WK

I 0
II 0
III W K� 1
IV WL� , WL� WK� WJ� , WJ� 5

Figure 4.12 – Contacts description, whippen (lengths in(mm) , angles in(rad) ).
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4.5.4. Jack

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes escapement button yes escapement button lever

lever hammer knuckle

hammer knuckle

whippen

Table 4.8 – Elements involved in the jack's dynamics.

geometry JW

�
�
� � 13.4

24 JW
H

�
�
� � 8.0

48.8 JL

�
�
� � 3.4

43.7 JO

�
�
�0.0
0.0 JS

�
�
�26.8

0.0

inertia JG

�
�
�0.0
0.0 mJ = 5.0 � 10� 3 kg IJ,JO

= 5.0 � 10� 6 kg.m2

friction cdJ = 9.9 � 10� 4 N � m cvJ = 4.93 � 10� 5 N � m � s

JS

JW

JH JL

JO = JG

I JWx 1
II JHx , JH y JSx , JSy 4
III 0
IV JWy JLx , JLy JGx ,JGy mJ IJ,JO

cdJ cvJ 9

Figure 4.13 – Jack frame, measurements (lengths in(mm) ).

circle JW

�
�
� � = 8
� = 1.63 JH

�
�
� � = 0.5
� = 0.92 JL

�
�
� � = 100
� = 3.27 JS

�
�
� � = 2.4
� = 2.07replacem

ents

JS

JS

JW

JH
JH

JL
JL

JO = JG

I 0
II JH� 1
III JH� JS� , JS� 3
IV JW� ,JW� JL� , JL� 4

Figure 4.14 – Contacts description, jack (lengths in(mm) , angles in(rad) ).
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4.5.5. Lever

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes ground yes no jack

jack

hammer knuckle

whippen

Table 4.9 – Elements involved in the lever's dynamics.

geometry LW

�
�
� � 41.0
� 13.3 LW

O

�
�
�0.0
0.0 LH

�
�
�35.6

2.0 LJ

�
�
� 47.3
� 3.0 LS

�
�
�54.5

0.0 LW

�
�
� � 41.0
� 13.0

inertia LG

�
�
�0.0
0.0 mL = 10 � 10� 3 kg IL,LO

= 5.0 � 10� 6 kg.m2

friction cdL = 9.9 � 10� 4 N � m cvL = 4.93 � 10� 5 N � m � s

LW

LS

LO = LG

LJ

LH

I LWy 1
II LH y LJx 2
III 0
IV LWx LHx LJy LSx , LSy LGx , LGy mL IL,LO

cdL cvL 9

Figure 4.15 – Lever frame, measurements (lengths in(mm) ).

segment LW

�
�
� � = 8
� = � 0.40 LH

�
�
� � = 8
� = 0.0 LJ

�
�
� � = 5
� = 1.5 LS

�
�
� � = 8
� = � 0.31

W

LO

L
L

LH LH

LJ

LJ

LS LS

I 0
II LS� 1
III LH� 1
IV LW� , LW� LH� LJ� , LJ� LS� 6

Figure 4.16 – Contacts description, lever (lengths in(mm) , angles in(rad) ).
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4.5.6. Hammer

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes lever yes key (backcheck) no

jack

string

key (backcheck)

Table 4.10 – Elements involved in the hammer's dynamics.

geometry HK

�
�
� � 127.9

� 21.3 HW
S

�
�
� � 126.4

54.9 HJ

�
�
� � 16.3
� 12.0 HO

�
�
�0.0
0.0

inertia HG

�
�
� � 95.7

23.7 mH = 14.24 � 10� 3 kg IH,HO
= 1.65 � 10� 4 kg.m2

friction cdH = 9.9 � 10� 4 N � m cvL = 4.93 � 10� 5 N � m � s

HS

HOHG
HJ

HK

I 0
II HJx , HJy HGx , HGy mH IH,HO

cdH cvH 8
III 0
IV HKx , HKy HSx , HSy 6

Figure 4.17 – Hammer frame, measurements (lengths in(mm) ).

circle HK

�
�
� � = 6.6
� = 0.0 HS

�
�
� � = 18.0
� = � 1.57 HJ

�
�
� � = � 3.7
� = 1.57

HO

HS

HJ

HK

I 0
II HJ� , HJ� 2
III HK� , HK� 2
IV HS� , HS� 2

Figure 4.18 – Contacts description, hammer (lengths in(mm) , angles in(rad) ).
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4.5.7. Damper

external forces inertia felt reactions hinge frictions Coulomb friction coupling springs

gravity yes key yes no

ground

Table 4.11 – Elements involved in the damper's dynamics.

geometry DO

�
�
�0.0
0.0 DW

S

�
�
� 43.0
� 22.0 DK

�
�
�78.1

0.0

inertia DG

�
�
�50.0

0.0 mD = 50.06 � 10� 3 kg ID,DO
= 2.04 � 10� 4 kg.m2

friction cdD = 0.0992 N � m cvD = 4.93 � 10� 5 N � m � s

S

DO

DG DK

I 0
II mD ID,DO

cdD cvD 4
III 0
IV DSx , DSy DKx , DKy 4

Figure 4.19 – Damper frame, measurements (lengths in(mm) ).

circle DS

�
�
� � = 100
� = 1.57 DK

�
�
� � = 5
� = 1.57

DO
DK

DS

I 0
II 0
III 0
IV DS� , DS� DK� , DK� 4

Figure 4.20 – Contacts description, damper (lengths in(mm) , angles in(rad) ).
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4.5.8. Ground

hinge centres SOD

�
�
� � 308.1

39.6 SOW

�
�
� � 188.5

62.06 SOH

�
�
� � 96.9

125.4 SOK

�
�
�0.0
0.0

end stops SD

�
�
� � 265.1

7.2 SS

�
�
� � 260.0

178.8 SK�

�
�
� � 183.3

6.16 SL

�
�
� � 93.5

117.1 SJ

�
�
� � 63.5

73.52 SK+

�
�
� 242.0
� 0.38

SL

SD

SJ

SOH

SOD
SOK

SOW

SK�
SK+

SS

I SLy SJy SK+ y 3
II SSy SOW x , SOW y SK� y SOH x , SOH y SJx 7
III 0
IV SODx , SOD y SSx SK� x SLx SOKx , SOK y SK+ x 8
D

Figure 4.21 – Ground frame, measurements (lengths in(mm) ).

circle SL

�
�
� � = 100
� = 1.57

segment SD

�
�
� � = 20
� = 0.0 SS

�
�
� � = 50
� = 0.0 SK�

�
�
� � = 30
� = 0.0 SJ

�
�
� � = 10
� = � 0.21 SK+

�
�
� � = 20
� = 0.0

SO

SL

SJ

SS

SD

SK�
SK+

I 0
II 0
III SJ� 1
IV SD� , SD� SS� , SS� SK� , SS� SK� � , SK� � SL� , SL� SJ� SK+ � , SK+ � 11

Figure 4.22 – Contacts description, ground (lengths in(mm) , angles in(rad) ).
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4.5.9. Initial positions of the frames

The positions of each frame is determined by:

� its origin, given in paragraphs 4.5.2 to 4.5.8;

� its angle at rest, given in Figure 4.23.

initial angles � D(0) = � 0.23 � W(0) = � 0.03 � L(0) = 0.40 � H(0) = 0.40 � J(0) = 0.22 � K(0) = 0.03

� D(0)

� W(0)

� L(0)

� H(0)

� J(0)

� K(0)

Figure 4.23 – Initial positions of the frames (in(rad) ).

4.5.10. Viscoelastic and elastic behaviours

Viscoelastic behaviour of felts

The parameters of the felt laws which were used are the ones measured by Lozada. Those
of the hammer knuckle and lever-ground are:

8
>>><

>>>:

kJH = 7 � 109 SI

rJH = 3

bJH = 5 � 107 SI

(4.9)

The parameters of the other felts laws are:
8
>>><

>>>:

k�� = 1.6 � 1010 SI

r �� = 2.7

b�� = 5 � 107 SI

(4.10)

The viscoelastic part is expected to be signi�cantly smaller than the elastic part. Typically,
for a compression of1 mm imposed at a displacement linear in time in 0.1 s, denoting by
Welastic the stored energy and byWviscous the dissipated energy,

Welastic

Wviscous
=

Z 10� 3

0
k x r dx

Z 0.1

0
b x2 �x2 dt

= 22 (4.11)

The viscous part was not neglected as the ratio was not judged suf�ciently greater than 1.
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Elastic behaviour of rotational springs
The parameters of the linear law of the coupling springs were measured in [Lozada, 2007]
and they are given in Table 4.12.

coupling spring � (N.m) � 0 (rad)

whippen-ground 0.0355 0.419

jack-whippen 0.0299 0.980

lever-whippen 0.1171 0.725

Table 4.12 – Parameters of the linear elastic law of the coupling springs.

4.6. Matrix formulation of the dynamics
The last part of this chapter consists in writing the dynamics of the piano action in a single
matrix equation. The multiple purposes are:

� to give the equations of the dynamics;

� to write them in a synthetic form which is easy to analyse and implement;

� to introduce the formalism and the notations used in Chapter 5.

4.6.1. Equation
The dynamical equations of the rigid bodies are written in a usual form in multibody
dynamics:

M(x) ẍ + N(x, �x) �x + cv �x + cd sign(�x) +

‚
@�

@x
(x)

ŒT

F(� ) + F?(x, t ) + T(� , �x) + � (x � x0) = 0

(4.12)
x is the vector of generalised coordinates, chosen such that:

x =
•

� K � W � J � L � H � D

˜ T

2 R6� 1 (4.13)

In Equation (4.12), each term is a generalised force, that is here a moment. Each of them
is made explicit in 4.6.2. To be compared to the ones in [Lozada, 2007], this equation
needs to be completed by the equations of the gaps� which depends on the contacts'
description (see 4.2.4) and are purely geometrical. The main differences with [Lozada,
2007] are the contacts' geometry and the writing of Coulomb fricti on.

This equation contains some non-smooth terms, that is functions which are not differen-
tiable with respect to velocity: sign and T (related to dry/Coulomb friction). This makes
its solving more complicated, as discussed in Chapter 5.

4.6.2. Details of the terms
All the physical elements listed in Section 4.3 are included in Equation (4.12). Their
mathematical transcription is made explicit in the same order.
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4.6. MATRIX FORMULATION OF THE DYNAMICS

External forces

The generalised external forces, i.e. the moment of the external forces is denoted by
F?(x, t ):

F?(x, t ) = �
�

F?
gravity(x, t ) + F?

player ! key(x, t )
�

(4.14)

where F?
gravity and F?

player ! key(x, t ) are the moments of the gravity and of the force exerted
by the pianist, respectively.

The generalised forces of gravity are:

F?
gravity (x, t ) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

KOKG(x) ^ mK g

WOWG(x) ^ mW g

JOJG(x) ^ mJ g

LOLG(x) ^ mL g

HOHG(x) ^ mH g

DODG(x) ^ mDg

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

� ez 2 R6� 1 (4.15)

where g is the acceleration of the gravity. The generalised forces exerted by the pianist
are:

F?
player ! key(x, t ) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

KOKS+ (x) ^ FP( t )

0

0

0

0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

� ez 2 R6� 1 (4.16)

where FP( t ) denotes the force exerted by the player on the key atKP.

Inertia

The linear terms of inertia M(x) ẍ in (4.12) are given by the generalised mass matrixM:

M(x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

IK,KO
0 0 0 0 0

0 IW,WO
+ WOWJ

2 IJ,JO
+ WOWL

2 IL,LO
MW J(x) MW L(x) 0 0

0 MW J(x) IJ,JO
0 0 0

0 MW L(x) 0 IL,LO
0 0

0 0 0 0 IH,HO
0

0 0 0 0 0 ID,DO

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.17)
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MW J and MW L can be calculated from the Lagrangian, similarly to what is demonstrated
on the example of the double pendulum detailed in Appendix B.

The other (nonlinear) terms of inertia are N(x, �x) �x where

N(x, �x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0

0 0 NW J(x, �x) NW L(x, �x) 0 0

0 NJW(x, �x) 0 0 0 0

0 NLW(x, �x) 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.18)

The only non-zero components in Equation (4.18) are those concerningbodies which are
not in an inertial frame, i.e. the jack and the lever (they are l inked to the whippen). NW J,
NW L, NJW and NLW are calculated using the following equation:

[ N(x, �x) �x] i =
1

2

X

j ,k

�xk

 
@Mi j

@xk
+

@Mik

@x j
�

@Mk j

@x i

!

�x j (4.19)

where M�� denotes the component of the � -th line and � -th column of M and �xk denotes
the k-th component of �x.

Felt reactions

In accordance with the notations of Table 4.2, denoting by �  the compression length of
the felt of the contact  , the vector � 2 R14� 1 gathers all the lengths of compression:

� T =
•

� KS+ � KW � KS� � KH � KD � WJ � WL � JG � JL � JH � LG � LH � HG � DG

˜

(4.20)
where the dependencies with respect tox have been omitted. These dependencies are
purely geometrical.

F(� ) 2 R14� 1 is the vector of the felts reaction forces such that itsi -th component is

[ F(� )] i = ki � r i
i + bi � 2

i
�� i (4.21)

The lever arms of the felt reactions forces are gathered in
‚

@�

@x
(x)

Œ

2 R14� 6 (4.22)

and the reaction forces are given by

‚
@�

@x
(x)

ŒT

F(� ) 2 R6� 1 (4.23)

The details of the calculations are given for the key in paragraph4.6.3.
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4.6. MATRIX FORMULATION OF THE DYNAMICS

Viscous and dry friction in hinges

The matrices of viscous and dry joint friction coef�cients cv 2 R6� 6 and cd 2 R6� 6 are
diagonal matrices given by:

cd =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

cdK 0 0 0 0 0

0 cdW 0 0 0 0

0 0 cdJ 0 0 0

0 0 0 cdL 0 0

0 0 0 0 cdH 0

0 0 0 0 0 cdD

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

, cv =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

cvK 0 0 0 0 0

0 cvW 0 0 0 0

0 0 cvJ 0 0 0

0 0 0 cvL 0 0

0 0 0 0 cvH 0

0 0 0 0 0 cvD

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.24)

sign is the component-wise sign function:

sign : y 2 R6� 1 7�!

2

6
6
6
6
6
6
6
6
6
4

sign( y1)

sign( y2)
...

sign( y6)

3

7
7
7
7
7
7
7
7
7
5

(4.25)

and sign is the set-valued function de�ned by:

sign : y 2 R 7�!

8
>>>>><

>>>>>:

� 1 if y < 0

[ � 1,1] if y = 0

1 if y > 0

(4.26)

It is not a function as it assigns more than one scalar to0. Its treatment is discussed in
Chapter 5.

Coulomb friction

Coulomb frictions are included in the generalised forcesT(� , �x) which can be written

T(� , �x) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

TKH

0

TJG + TJH

0

THK + THJ

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.27)
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Each moment can be made explicit, similarly to TKH, by changing the appropriate letters:

TKH(x, � ) =

8
>><

>>:

0 if jj FKH(� )jj = 0

� KH
@ �KH

@x
(x) FKH(� ) if jj FKH(� )jj > 0

(4.28)

Coupling springs

The actions of the two coupling springs are modelled by a generalised force of the form
� (x � x0). This moment can be detailed:

� (x � x0) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0

0 � WG 0 0 0 0

0 0 � JW 0 0 0

0 0 0 � LW 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� K

� W

� J

� L

� H

� D

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0

� WG � WG
0

� JW � JW
0

� LW � LW
0

0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.29)

4.6.3. Example for the key

In the present paragraph, the dynamics of the key is written explicitly, from Equation (4.12).

The �rst line of the matrix equation (4.12) is:

[ M(x) ẍ] 1 + [ N(x, �x) �x] 1 +
�
cv �x

�
1 +

�
cd sign(�x)

�
1 +

" ‚
@�

@x
(x)

ŒT

F(� )

#

1

+
�
F?(x, t )

�
1 + [ T(� , �x)] 1 +

�
� (x � x0)

�
1 = 0 (4.30)

Each term can be calculated as described above:

� [ M(x)ẍ] 1 = JK�̈ K;

� [ N(x, �x) �x] 1 = 0, as the key is directly linked to the ground with a hinge joint;

�
�
cv �x

�
1 = cvK

�� K;

�
�
cd sign(�x)

�
1 = cdK sign �� K;

�

" ‚
@�

@x
(x)

ŒT

F(� )

#

1

=

@ �KS+

@ �K
(x) F(� KS+ (x))+

@ �KW

@ �K
(x) F(� KW(x))+

@ �KS�

@ �K
(x) F(� KS� (x))+

@ �KH

@ �K
(x) F(� KH(x))

as explained and detailed in Appendix C ;

� (F?(x, t )) 1 = ( K0KG(x) ^ mK g) � ez + ( KOKS+ (x) ^ FP( t )) � ez

� (T(� , �x)) 1 = TKH made explicit in Equation (4.28);
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�
�
� (x � x0)

�
1 = 0.
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Chapter 5

Simulation methods

Overview This chapter presents the methods used to simulate the modelof the piano

action.
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CHAPTER 5. SIMULATION METHODS

The purpose of this chapter is to set forth the methods which were used for the sim-
ulation of the model described in Chapter 4. This simulation requires the solving of
Equation (4.12) page 68 which is recalled:

M(x) ẍ + N(x, �x) �x + cv �x + cd sign(�x) +

‚
@�

@x
(x)

ŒT

F(� ) + F?(x, t ) + T(� , �x) + � (x � x0) = 0

This equation describes the piano's dynamics but does not yield the contact description,
included in the function � .

Two terms require a special treatment as they are notfunctions:

� Coulomb frictions in hinges cd sign(�x) is a vector of set-valued functionsof �x (see
Eq. (5.1));

� generalised tangential forces associated to Signorini-Coulomb lawsT(� , �x) is a vector
of set-valued functionsof �x (see (4.7)).

It implies that Equation (4.12) is not mathematically correct: its sums (single-valued)
functions and set-valued functions. It can be appropriately written by:

� rede�ning the functions as singleton-valued functions instead of scalar-valued func-
tions;

� replacing = 0 with 3 0.

Nevertheless, the resulting equation is not an Ordinary Differential Equation and cannot
be solved using numerical methods for ODEs. The dynamical equation ofthe piano action
can be solved in two ways.

It can be approximated as an ODE by regularising it. Such an approach was performed in
all the piano action simulations until now. This approach has major numerical drawbacks,
see Section 5.1. An illustration of these drawbacks is given on the simple example of a
pendulum subject to dry friction.

An other way of solving the dynamical equation is to accept the non-smoothness of the
equation and use appropriate tools for non-smooth equations, see Section 5.2. This is
the solution we chose. An overview of the numerical methods which were used is given.
An illustration of such methods for non-smooth dynamical systems in presented for the
pendulum with dry friction problem in 5.2.3. The results are comp ared to that of the
regularisation approach. For the non-smooth simulation of the complete model, we used
the computer program XDE described in Section 5.3. A few adjustments of the model had
to be done (Section 5.4). Also, some additional features had to be implemented in XDE
(Section 5.5).

5.1. Limitations of the regularising approach
In this section, the solving complications induced by the regularisation of non-smooth
terms in the dynamics of the piano action are highlighted. The example of a pendulum
with dry friction in the hinge joint is given. The way these compl ications have been
overcome are presented in Section 5.2.
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5.1.1. Changing Equation (4.12) into a regular ODE

Regularising the non-smooth friction laws

A way of solving Equation (4.12) is to approximate the components of sign and T, which
are set-valued functions, with single-valued functions. One possibility of such an ap-
proximation is presented in Figure 5.1(b), where b is the slope of the piecewise-linear
regularised approximation of sign in the neighbourhood of 0 .

sign( �� ) =

8
>>>>><

>>>>>:

1 if �� > 0

[ � 1,1] if �� = 0

� 1 if �� < 0

(5.1)
Þsign( �� ) =

8
>>>>><

>>>>>:

1 if �� > 1=b

b �� if �� 2 [ � 1=b,1=b]

� 1 if �� < � 1=b

(5.2)

1

� 1

��

sign( �� )

(a) Multi-valued sign function (Eq.
(5.1))

1

� 1

��

Þsign( �� )

1=b� 1=b

(b) Example of regularisation of sign
(Eq. (5.2))

Figure 5.1 – Plots of multi-valuedsign and single-valuedÞsign functions.

Once (4.12) has been regularised, it is possible to solve it with numerical methods based
on continuous Ordinary Differential Equations (ODEs). Up to now, all the simulations of
piano actions in the literature used such approaches [Hirschkorn et al., 2006; Izadbakhsh
et al., 2008; Lozada, 2007; Vyasarayani et al., 2009] for the treatment of friction, when it
was taken into consideration.

Treatment of friction and observed dif�culties in published pia no action simulations

In [Lozada, 2007], neither the damper nor the repetition lever w ere implemented, in
order to simplify the simulation. Three contacts were also simpli�ed to make the solving
easier. Friction was regularised in Simulink. Increasing oscillations were observed in the
hammer acceleration and the calculated reaction force of the key on�nger diverged, for
time steps of1 ms as well as0.1 ms. These behaviours were believed to be due to numerical
instabilities.

In [Hirschkorn et al., 2006; Vyasarayani et al., 2009], the frict ion laws were approximated
with a Cull and Tucker model, which is a smooth regularisation of Coulomb friction [Cull
and Tucker, 1999]. The model was manually adjusted in [Vyasarayani et al., 2009]. There
is no mention of the time steps used. [Izadbakhsh et al., 2008] doesnot describe how
friction is modelled, but it is believed to be also treated with a Cull and Tucker friction
model, as in [Izadbakhsh, 2006]. In this master thesis, the time step is not indicated but
we believe it to be small, as 75 min were required on a 2.4 GHz PC computer, including
the calculation of the hammer shank deformation.
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Drawbacks of regularisation

The regularisation of non-smooth laws makes the solving easier, but induces several com-
plications.

Firstly, regularising friction does not ensure the convergenceto a physical solution: a body
subject to regularised friction has only one possible equilibrium position, which is the same
as in the frictionless case (see Figure 5.4 for the example of thependulum). For example,
the minimum weight needed to initiate the motion of the key is 70 g, because of gravity
and dry friction. Without dry friction or with the regularisation , it would be only of 15 g.

In 2000, Stewart af�rmed that equations for rigid-body dynamics su ch as (4.12) (i.e.
discontinuous ODEs) needed to be solved using the differential inclusion formalism, if
high accuracy was desired [Stewart, 2000]. It is also indicated that the regularisation of
non-smooth laws leads to stiff equations. This could explain the computational cost of
simulations in [Izadbakhsh, 2006].

Later, more details about regularisation drawbacks are given in [Acary and Brogliato,
2008]. It is reported that regularising singularities in ODEs may impair:

� the ef�ciency, since calculating accurate stick-slip transitions leads to stiff equations
which require a very small time step;

� the local order of consistency, which is the error in one time step;

� the global order of accuracy (the integer n such that the error varies with the time
step to the power n);

� stability results.

In 5.1.2, these observations and statements are veri�ed on an elementary example involv-
ing regularised dry friction. This enables the comparison of the regularisation approach
with the non-smooth methods presented in Section 5.2, where the same elementary exam-
ple is studied without regularising the contact law.

5.1.2. Example of a pendulum with regularised dry friction

The free oscillations of a pendulum with regularised dry fricti on are studied here.

The pendulum is studied for parameters' values of the same orderof magnitude as these
of the piano action model. To make the discussion easier, the equations are made dimen-
sionless.

The considered pendulum is a compound pendulum of massm. Its inertia around its
centre or rotation O is denoted by I and the distance between its centre of gravity and
O is l , see Figure 5.2 where these notations are applied in the case of the hammer. The
pendulum is subject to dry friction of coef�cient cd and gravity. Its coordinate � is chosen
equal to 0 at the (stable) equilibrium in the frictionless case. The equation of its dynamics
is

I �̈ + cd sign( �� ) + mgl sin(� ) = 0 (5.3)

and the values of the parameters are given in Chapter 4. For example, the case of the
hammer would lead to m = mH, I = IH,H0

, l = jj HOHGjj and cd = cdH.
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l

�
G

Figure 5.2 – Scheme of the hammer studied as a freely oscillating pendulum.

The derivatives in Equation (5.3) are derivatives with respect to the physical time t . Here,
a dimensionless time is introduced, de�ned as:

� =
t

T
(5.4)

where

T = 2�

s
I

mgl
(5.5)

is the period of the pendulum in the frictionless case, �̃ is the angle of the pendulum as
a function of the dimensionless time, and �̃� is the derivative of �̃ . Equation (5.3) can
therefore be written:

˜̈� + � 2 sign( �̃� ) + 4� 2 sin(�̃ ) = 0 (5.6)

introducing

� = 2�

Ê
cd

mgl
(5.7)

This second order differential equation is written as a matrix � rst order differential equa-
tion: 2

6
4

�̃�

˜̈�

3

7
5 =

2

6
4

0 1

0 0

3

7
5 �

2

6
4

�̃

�̃�

3

7
5 +

2

6
4

0

� � 2 sign( �̃� ) � 4� 2 sin(�̃ )

3

7
5 (5.8)

or equivalently
�U = A U + F(U) (5.9)

with

U =

2

6
4

�̃

�̃�

3

7
5 , A =

2

6
4

0 1

0 0

3

7
5 , F(U) =

2

6
4

0

� � 2 sign(U2) � 4� 2 sin(U1)

3

7
5 (5.10)
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Regularisation of dry friction

For the present study, Coulomb friction is approximated by the function Þsign (see Equa-
tion (5.11)) plotted in Figure 5.1(b):

Þsign( �̃� ) =

8
>>>>>><

>>>>>>:

1 if �̃� >
1

	

	 �̃� if �̃� 2 [
1

	
,

1

	
]

� 1 if �̃� < �
1

	

(5.11)

This function is the dimensionless approximation of sign corresponding to Equation (5.2),
where the parameter 	 has been introduced:

	 =
b

T
(5.12)

This parameter somehow measures the degree of the regularisation approximation.

The function Þsign converges pointwise to a discontinuous (single-valued) function equal
to 0 in 0 and j xj=x elsewhere. Numerically, this limit can be identi�ed to the sign function
because �� will never exactly equal 0. This means that the numerical simulation of the
regularised model converges to that of the original model, when 	 ! 1 . Obviously,
increasing 	 increases the stiffness of the numerical solving as it is going to be proved for
the present example.

Linearisation of F at U = T [ 0 0] for the study of stability and stiffness

To make the study of numerical stability and conditioning easier and analytical, the dy-
namics of the pendulum is studied for small angles and small velocities. The linearisation
of F yields an equation which can be discretised with an implicit scheme, and yet solved
without using any root-�nding algorithms such as Newton's. Indeed , applying an implicit
scheme after the linearisation of F is equivalent to applying a linearly-implicit one.

It is assumed that the results for the linearised case can be extrapolated to the non-linear
case.

F(U) =

2

6
4

0

� � 2 sign(U2) � 4� 2 sin(U1)

3

7
5 �2

6
4

0

0

3

7
5

2

6
4

0

� � 2 	 U2 � 4� 2 U1

3

7
5 (5.13)

becausesin(�̃ ) �
0

�̃ and sign( �̃� ) �
0

	 �̃� .

Equation (5.9) becomes:

�U( t ) = B � U( t ) with B =

2

6
4

0 1

� 4� 2 � � 2 	

3

7
5 (5.14)
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Time step of the time-discretisation

Two elementary one-level time-discretisations are studied: explicit and linearly-implicit
Euler methods. Such discretisations introduce a numerical parameter which is the time
step h. Here, a third dimensionless parameter is de�ned:

� =
T

h
(5.15)

This parameter � is tightly related to the computational cost, as it determines how many
calculations are needed to simulate one physical time unit.

Summary of the three dimensionless parameters

Three dimensionless parameters have been introduced in Equations (5.7), (5.12) and
(5.15). They are gathered in Table 5.1. The � -theorem states that �̃ can be written as
a function of � , 	 and � .

notation expression meaning

� 2�

Ê
cd

mgl
importance of friction with regard to gravity

	
b

T
measure of the approximation of sign

�
T

h
quanti�es the number of calculations to simulate one period

Table 5.1 – Summary of the three dimensionless parameters.

T is the period of the frictionless pendulum:

T = 2�

s
I

mgl
(5.16)

� is a physical parameter which quanti�es how important friction i s compared to the
effect of gravity. The value of � is shown for each body in Table 5.2 using the values given
in Chapter 4. The jack and the lever have in�nite � because their centres of gravity are
supposed equal to their centres of rotation.

	 was introduced for the regularisation of Coulomb friction. It gives a measure of the
approximation: the higher 	 , the better the approximation. � relates the physical time
to the numerical one. A larger � increases the accuracy but impairs the computational
ef�ciency.

body key whippen jack lever hammer damper

� 3.51 1.98 1 1 1.68 1.26

Table 5.2 – Value of� for each body.

81



CHAPTER 5. SIMULATION METHODS

Explicit scheme

In this paragraph, Euler's explicit scheme is implemented and studied. The vector �U is
discretised using with the non-dimensional time step 1=� :

�Un = � ( Un+ 1 � Un) (5.17)

This explicit scheme in Equation (5.14) yields:

Un+ 1 = ( 1 +
1

�
B) � Un (5.18)

The dynamics of the pendulum can then be solved with some initial conditions U0:

U0 =

2

6
4

� 0

�� 0

3

7
5 and 8 n 2 N, Un =

2

6
6
4

1
1

�

�
4� 2

�
1 �

� 2 	

�

3

7
7
5

n

� U0 (5.19)

The matrix relating Un+ 1 to Un is denoted by C. The eigenvalues ofC are the roots of

det (C� X 1) = det

† 2

6
6
4

1 � X
1

�

�
4� 2

�
1 �

� 2 	

�
� X

3

7
7
5

•

= ( 1 � X)

 

1 �
� 2 	

�
� X

!

+
4� 2

� 2 (5.20)

The solutions are:
8
>>>>>><

>>>>>>:

X = 1 �
� 2 	

2�
�

1

2�

p
� 4	 2 � 16� 2 if 	 � 2 ¾ 4�

X = 1 �
� 2 	

2�
�

i

2�

p
16 � 2 � � 4	 2 if 	 � 2 < 4�

(5.21)

Equations (5.21) show that A-stability1 requires that 	 � 2 << � . If not, the spectral radius
of C would be greater than 1 and the numerical scheme would be unstable, see Figure 5.3
(blue curve). Accurate stick-slip transitions require large 	 which can lead to very large
� , especially when dry friction is important (large � ). The computation can therefore be
very costly.

Linearly-implicit scheme

The following implicit discretisation of �U

�Un+ 1 = �( Un+ 1 � Un) (5.22)

1See [Dahlquist, 1963; Hairer, 2010].
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5.1. LIMITATIONS OF THE REGULARISING APPROACH

in (5.14) leads to the following linearly-implicit scheme 2 (5.26):

Un+ 1 = ( 1 �
1

�
B) � 1 � Un (5.26)

The dynamics of the pendulum can then be solved with some initial conditions U0:

U0 =

2

6
4

� 0

�� 0

3

7
5 and 8 n 2 N, Un =

2

6
6
4

1 �
1

�
4� 2

�
1 +

� 2 	

�

3

7
7
5

� n

� U0 (5.27)

for � big enough for (1 �
1

�
B) to be invertible.

The eigenvalues of the matrixD which relates Un+ 1 to Un are strictly smaller than 1, which
illustrates that the (linearly-)implicit scheme is unconditi onally A-stable. It also implies
that the only equilibrium position in the neighbourhood of UT = [ 0,0] is [ 0,0] , which is
the consequence of having regularised dry friction.

Also, the condition number of D, de�ned here with the in�nity norm and given by

cond(D) = jj Djj 1 jj D� 1jj 1 (5.28)

can be easily calculated. The calculation yields

cond(D) �
	 !1

	 � 2

�
(5.29)

so that for a good approximation of sign (large 	 ), the time step has to be small (large � ).
This is even more valid if the friction is signi�cant (large � ).

Results and discussion

The angle plots are presented for the explicit and the linearly-implicit Euler schemes,
calculated without the small angles assumption. In the followin g plots, the "exact" solution
(green) is calculated with the non-smooth numerical method described in Section 5.2.

2Denoting by f the approximation of the time-derivative, the implicit Eul er scheme consists in estimating
Un+ 1 from Un the following way:

Un+ 1 �
1

�
f (Un+ 1) � Un = 0 (5.23)

Equation (5.23) is a non-linear algebraic equation, which can be solved with a root-�nding algorithm such
as the Newton method. The linearly-implicit scheme is equivalent to applying the �rst step of the Newton
method, with an initial value chosen as Un.

The �rst step of a Newton method yields:

Un �
1

�
f (Un) � U +

•
1 �

1

�
@U f (Un)

‹
(Un+ 1 � Un) = 0 (5.24)

i.e. •
1 �

1

�
@U f (Un)

‹
(Un+ 1 � Un) =

1

�
f (Un) (5.25)

which is the de�nition of the linearly-implicit scheme and l eads to (5.26). A numerically-oriented
discussion on this scheme is proposed in [Deu�hard, 1987]. Here, F has been regularised so the implicit
and linearly-implicit schemes yield the same results.
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It has been veri�ed that for small angles3, this solution and the analytical one match
perfectly.

In Figure 5.3, we can see that:

� the explicit scheme may lead to an instability, even with � = 100;

� � = 100 leads to an excellent estimation of the solution when � = 1.
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� 0.5

� 1.0

� 1.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time

t

TA
ng

le

solution
lin. implicit
explicit

Figure 5.3 – Example of instability of the explicit scheme.(�̃ 0, �̃� 0) = ( 1,0) and (� , 	 , �) =
(100,10,1).

Figure 5.4 illustrates the convergence to the only possible equilibrium position for the
regularised scheme:�̃ = 0. Here, the regularisation factor 	 is low and, in spite of a huge
number of time steps (� = 10000), the calculated angles using the regularised approach
remains unsatisfactory.
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� 0.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time

t

T

A
ng

le

solution
lin. implicit
explicit

Figure 5.4 – Example of non-physical convergence due to regularisation.(�̃ 0, �̃� 0) = ( 1,0)
and (� , 	 , �) = ( 1000,0.1,5).
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0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time
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A
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le

solution
lin. implicit
explicit

Figure 5.5 – Example of non-convergence due to too small� . (�̃ 0, �̃� 0) = ( 1,0) and
(� , 	 , �) = ( 250,10000,5) .

3For small angles, the dynamics of the pendulum can be analytically calculated.
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5.2. FORMULATION OF THE PIANO ACTION AS A NON-SMOOTH DYNAMICAL MULTIBODY
SYSTEM

The larger 	 , the better the friction law is approximated. The compensation is that the
time step must be very small to get an acceptable result. Figure5.5 shows that even with
� = 250, the estimation of the angle after �ve periods is half of the soluti on.

In Figure 5.6, one can observe the well-know phenomenon calledchattering. Both the
explicit and linearly-implicit regularised schemes show high-frequency oscillations. Note
that this chattering would not be observed with a (non-linear) impli cit Euler scheme.

0

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time

t

T

A
ng

le

solution
lin. implicit
explicit

Figure 5.6 – Chattering of regularised schemes. (�̃ 0, �̃� 0) = ( 1,0) and (� , 	 , �) =
(50,10000,5) .

Eventually, an order of magnitude of the appropriate time step required for4 � = 5 can be
deduced from Figure 5.7. To simulate correctly the free oscillations of the pendulum for a
duration of 5 T, � has to be chosen as several thousands. In Section 5.2, it will be shown
that with non-smooth methods, � = 20 is suf�cient. The computational cost is about 100
times less for this problem.
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1.0

� 0.5

� 1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
time

t

TA
ng

le

solution
� = 100
� = 500
� = 1000
� = 5000

Figure 5.7 – Convergence of the implicit scheme.(�̃ 0, �̃� 0) = ( 1, � 10) and (� , 	 , �) =
(�, 10000,5) .

5.2. Formulation of the piano action as a
non-smooth dynamical multibody system

In Section 5.1, the drawbacks of regularising the non-smooth laws of the piano action's
dynamics have been described. They have then been illustrated on the simple example of

4To be compared to the values of� for each rigid body of the piano action, see Table 5.2.
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a pendulum subject to dry friction. The characteristic number of time steps required for
a good approximation of the motion of a pendulum, with properties simil ar to that of the
bodies of the piano action, was about a few thousands per period for �ve pseudo-periods.

Here, an overview of the non-smooth methods which were used for the simulation of
the piano action is �rst given. They were implemented in the com puter program XDE
presented in Section 5.3. Then, such methods are applied to theprevious example of
the simple pendulum subject to dry friction. The aim is to quant ify the ef�ciency of
such methods compared to the regularisation approach for the piano action, without
considering collisions.

5.2.1. Non-smooth formulation
Equation (4.12)5 is written as a Measure Differential Inclusion (MDI) (see [Acary and
Brogliato, 2008]):

8
>>>>><

>>>>>:

M(x) dv = F� (x, �x, t ) d t + H(x) di

v+ = ( �x)+

(g(x), HT (x).v+ , di ) 2 K

(5.30)

The �rst line formulates the dynamics of the piano action. F� gathers all the smooth terms
which are not related to contact nor unilateral constraints:

F� (x, �x, t ) = � N(x, �x) �x � cv �x � F?(x, �x, t ) � � (x � x0) (5.31)

where the felt reaction forces have been included inF?.

dt is the Lebesgue measure,dv and di are vector-valued measures corresponding to the
"accelerations" (smooth or not) and the impulses, respectively. Their components are of
the form:

dv =  dt + ( v+ � v� ) d� + dvs

di = f dt + pd� + dis
(5.32)

The measuredi includes the reactions associated with non-smooth laws. The prefactors of
dt are the smooth acceleration ( ) and the smooth forces (f ) which are not included in F� .
The measured� is a countable sum of Dirac deltas, weighted by the value of discontinuity
in velocity ( v+ � v� ) or in force ( p). The last parts (dvs and dis) are neglected singular
measures, assuming that all the physical quantities involvedare regular enough.

The geometric operator HT (x) yields the relative velocities in the contact frame.

The third line formulates the non-smooth laws and the unilateral constraints as an inclu-
sion in a set K. As previously, the vector of the compression of the felts is denotedby
� 2 R14� 1. Felts are treated as material compliances so that each felt is modelled as an
additional body, which is linked to the body it belongs to with a prisma tic joint. Such

5We recall Equation (4.12):

M(x) ẍ + N(x, �x) �x + cv �x + cd sign(�x) +

•
@�

@x
(x)

‹ T

F(� ) + F?(x, t ) + T(� , �x) + � (x � x0) = 0
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5.2. FORMULATION OF THE PIANO ACTION AS A NON-SMOOTH DYNAMICAL MULTIBODY
SYSTEM

a treatment of the felts adds fourteen degrees of freedom to the system. The vector of
generalised coordinatesx is therefore completed with the additional DOFs:

x =

2

6
4

xhinges 2 R6� 1

xfelts 2 R14� 1

3

7
5 2 R20� 1 (5.33)

Details and implications of this choice are given in 5.4.2.

Three of the contacts between felts and other bodies are modelled with a Signorini-
Coulomb law (see Figure 4.4 page 54). All the other ones are modelled with a Signorini
law. For reasons described later on and related to the modelling of the felts, the contact
between the bodies are inelastic.

In addition to the felts' compressions � , a gap function g is associated to each of the
fourteen contact zones (see 5.4). The vector of the fourteen gaps isdenoted by g. The
condition of non-interpenetration between the bodies and the felts is written as

g(x) 2 R+ 14
(5.34)

so that all the gaps remain positive. The normal reaction impulses rN, included in pd� ,
are written as an inclusion to the normal cone of R+ 14

:

� rN 2 N
R+ 14 (g(x)) (5.35)

so that for each contact zone:

� if g > 0, rN = 0: the normal reaction force is zero when there is no contact;

� if g = 0, rN ¾ 0: the normal reaction force is positive if there is contact.

The tangential forces rT, included in di and given by the Coulomb friction law (see Chap-
ter 4) are written for each contact as

€
HT (x) v

Š

� 1,� 2
2 N B (� (rN ) i )(( r T ) � 1,� 2

) (5.36)

where HT (x) v are the velocities in the contact frame, � is the Coulomb friction coef�cient
and B (� rN) is the disk of radius � rN . The generic indices depend on the numbering
and are such that � 1, � 2 yield the relative tangential velocities corresponding to the i -th
contact, and � 1 and � 2 give the tangential forces of the samei -th contact.

The dry friction in hinges is written as an inclusion in cd sign(x).

5.2.2. Numerical methods used to solve the non-smooth equat ions

In XDE, Equation (5.30) is solved as described in [Merlhiot, 2011]. The following de�ni-
tions are introduced:

87



CHAPTER 5. SIMULATION METHODS

8� 2 [ 0,1] ,

8
>>>>><

>>>>>:

t n+ � = t n + � � t

xn+ � (kx) = xn + � � t kx

vn+ � (kv) = vn + � � t kv

(5.37)

and

r j
Z t k+ 1

t k

H(xn+  (kx ) ) di � H(xn+  (kx)) r (5.38)

The smooth dynamics and the differential inclusions are time-discretised using a time-
stepping scheme as follows:

8
>>>>><

>>>>>:

M(xn+ � (kx)) kv = F� (xn+ � (kx ), vn+ � (kv), t n+ � ) + H(xn+  (kx)) r

vn+ � (kv) = kx

(g(xn+  (kx), HT (xn+  (kx )) vn+  (kv), r) 2 F

(5.39)

Each iteration is solved in a global Newton loop. First, the contact kinematics and the
smooth forces F� are linearised, which leads to an algebraic inclusion with unknowns
(kv, r), known as a One-Step Non-Smooth Problem [Acary and Brogliato, 2008]. This OS-
NSP is reformulated using an augmented Lagrangian approach [Studer, 2009] and solved
by an iterative projective Gauss-Seidel-like method. More detailsare given in [Merlhiot
et al., 2012].

5.2.3. Example of a pendulum with dry friction

The dynamics of the pendulum described in 5.1.2, where Coulomb friction had been
regularised, is now solved with a non-smooth approach.

The dynamics equation of the pendulum (5.6) is recalled:

˜̈� + � 2 sign( �̃� ) + 4� 2 sin(�̃ ) = 0

It can be written in a form similar to (5.30):
8
><

>:

˜̈� = � 4� 2 sin(�̃ ) � � 2 �

� 2 sign( �̃� )
(5.40)

5.2.4. Implicit scheme

Similarly to 5.1.2, the linearly-implicit Euler scheme is applied to �̃� :

�̃� k+ 1 = � ( �̃ k+ 1 � �̃ k) (5.41)
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so that 8
><

>:

˜̈� k+ 1 = �̃� k � 4� 2 sin(�̃ k) � � 2 � k+ 1

� k+ 1 2 sign( �̃� k+ 1)
(5.42)

Note that the effect of gravity was treated explicitly (writte n as a function of �̃ k). This
has no signi�cant in�uence on the results because the effect of gravity does not change
much from one step to another, but it simpli�es the resolution which does not require a
Newton-like root-�nder algorithm.

It can be proved6 that:

� k+ 1 2 sign( �̃� k+ 1) () � k+ 1 = proj [ � 1,1]

‚

�
qk

Wk

Œ

(5.43)

where qk and Wk are de�ned by

�̃� k+ 1 = qk + Wk � k+ 1 (5.44)

and proj [ � 1,1] is the projector on [ � 1,1] de�ned by

proj [ � 1,1] (� ) =

8
>>>>><

>>>>>:

� 1 if � < � 1

� if � 2 [ � 1,1]

1 if � > 1

(5.45)

Similarly to Equation (5.9), the overall equations can be writte n as a matrix equation:

2

6
4

�̃ k+ 1

�̃� k+ 1

3

7
5 = (� I� A) � 1

‡

�

2

6
4

�̃ k

�̃� k

3

7
5 +

2

6
6
6
4

0

� 4� 2 sin(�̃ k) � � 2proj [ � 1,1]

 
�

� 2 [ �̃� k �
4� 2

�
sin(�̃ k)]

!

3

7
7
7
5

‘

(5.46)
or generically:

Uk+ 1 = D� 1 �
� Uk + F(Uk)

�
(5.47)

5.2.5. Results
Some results are represented in Figure 5.8 for� = 5. One can see that dry friction actually
blocks the pendulum even for low � , whereas this was never observed in Figure 5.7.

A comparison of the results calculated with the regularised andthe non-smooth approach
is given in Figure 5.9 with the same time step. For the same computational cost, the
non-smooth scheme yields a very good solution. The regularised schemeleads to an
inappropriate and chattering solution.

The comparison of the convergence speeds is presented more precisely in Figure 5.10 with
values of � which are typical for the piano action. The measure of the difference between
each calculated solution and the exact solution was de�ned by the mean of the difference
for each time step. It appears that � is a good indicator of the relative bene�t offered
by the nonsmooth approach, relatively to the regularised one: the larger � , the larger

6Case by case, for example.
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Figure 5.8 – Convergence of the non-smooth scheme.(�̃ 0, �̃� 0) = ( 1,0) and (� , �) = ( �, 5).
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Figure 5.9 – Comparison of the regularised and non-smooth approaches.(�̃ 0, �̃� 0) = ( 1,0)
and (� , 	 , �) = ( 20,10000,5).

the relative advantage of the nonsmooth approach is. Also, the nonsmooth approach is
systematically more ef�cient.
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Figure 5.10 – Convergence of the regularised scheme (� ) and the non-smooth scheme (4 )
for several� . (�̃ 0, �̃� 0) = ( 1,0) and 	 = 10000.
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5.3. EXTENDED DYNAMIC ENGINE (XDE)

The conclusion of this brief study is that in order to calculate the effect of dry friction on
the bodies of the piano action, without considering contacts, the presented non-smooth
method is signi�cantly more ef�cient and robust than the regular ising approach. For
� = 2, an relative error of 1 % is reached with � = 40 with the non-smooth method, and
with � = 250 with the regularised one. For � = 5, the same relative error is reached
with � = 15 with the non-smooth method7, whereas � � 500 is required otherwise. This
matters even more as on the complete mechanism, the regularising approach may require
time steps which are largely below the characteristic time of the piano action, estimated
as approximately 1 ms (this corresponds to � � 1000). The time step would then have to
be reduced for numerical reasons instead of physical ones.

The impairment of numerical properties induced by a regularised approach, as observed
in this simple study, appeared clear enough to make us choose non-smooth numerical
methods. It is noteworthy that a simple regularised approach hasbeen used in the study
of the pendulum with dry friction, but more sophisticated regular ised models exist.

5.3. eXtended Dynamic Engine (XDE)
The numerical methods described in 5.2.2 were implemented in the computer program
XDE, which stands for eXtended Dynamic Engine. The part we used isXDE Physics, which
is a C++ development kit consisting in a kernel for interactive mec hanical simulation of
rigid multibody systems with kinematic constraints, intermitte nt contacts and dry friction.

XDE was developed at CEA LIST, mainly for industrial virtual prototyping and simulation
for robotics. Its main features which were useful for the simulation of the piano action
are:

� the simulation of rigid multibody systems with intermittent fric tion using ef�cient
numerical methods;

� the modelling and parametrisation of multibody systems with kinematic constraints;

� the parametrisation and the formulation of the dynamics of multibody systems based
on Lie groups;

� the implementation of numerical integration for such parametri sations;

� the modelling of frictional contact with nonsmooth contact laws: Sig norini and
Signorini-Coulomb laws;

� the nonsmooth formulation of the dynamics for multibody systems with nonsmooth
contact laws, by means of measure differential inclusions;

� the implementation of time integration using time-stepping met hods;

� the implementation of nonsmooth time-stepping-compatible methods for collision
detection, with ef�cient geometrical estimation of contacts.

More information is provided in [Merlhiot, 2012].

7Indeed, the error with the non-smooth method gets smaller when friction increases, in this case of free
oscillations.
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5.4. Adjustments of the model for its
implementation

In order to implement the complete model of the piano action described in Chapter 4,
some modi�cations of the model were required.

5.4.1. Actuation of the key

As it was not possible to use the key position as an input of the simulation in XDE, a Kelvin-
Voigt viscoelastic model was inserted between the (virtual) key and the (virtual) �nger, as
shown in Figure 5.11. It was then possible to control the position of the free end of the
Kelvin-Voigt model.

key

imposed position

link to the key

Figure 5.11 – Scheme of the Kelvin-Voigt model added for the simulation.

An in�nite stiffness in the Kelvin-Voigt model would lead to a pos ition-driven simulation
but the numerical stiffness would be too high to be solved properly. In the experiments, a
viscoelastic material was added to correspond to a Kelvin-Voigtmodel. Its choice and the
values of its parameters are discussed in 3.3, page 41.

The simulated system is composed of the piano action and this PD corrector.

5.4.2. Felt laws

There are (at least) two possible ways of implementing the felt laws:

1. as a compliant contact in the normal direction, with a Hertz-like penalisation;

2. as a material compliance, by introducing new bodies corresponding to the felts, new
degrees of freedom, and by assigning a Signorini law to each of the contacts.

This �rst option was ruled out for several reasons. The �rst one is th at unilateral con-
straints are not ensured when a linearly implicit scheme is used together with penalised
contacts, because the linearisation can lead to negative reaction forces. Similarly, it is hard
to ensure compressive dissipation only. This would be improved using non-linear implicit
schemes, but the computational cost is likely to increase signi�cantly. Moreover, for the
piano action, several contacts can occur within the relaxation time of a felt (consider
for instance, the quick use of the double escapement). The correctestimation of the
corresponding dissipation would require to keep the history of the compression of each
felt. Such a feature would have to be implemented.

We chose to add one body per felt, introducing fourteen new degrees-of-freedom in total.
This solution introduces collisions between felts and other bodies. In XDE, collisions are
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modelled with an inelastic contact. Since the mass of each felt is very low compared to
that of the rotating bodies, the corresponding dissipation is negligible.

A rigid body (disk or segment) was associated to each felt in accordance with the contact
description (see Table 4.2). This additional rigid body was given a massmfelt correspond-
ing to the characteristic mass of the felt material involved during collision 8. It was linked
to the body it belonged to with a prismatic joint. The felt law was ap plied between the �x
part of the prismatic joint and its sliding part.

This model is illustrated in Figure 5.12 on the example of the hammer colliding with the
string.

hammer

string

contact geometry of the hammergHS

� HS mfelt

(a) Before contact

(b) After contact

Figure 5.12 – Description of the contact with prismatic joint and felt law, illustrated with
the hammer-string contact.

It is noteworthy that introducing an additional degree of freedom f or each felt (14 DOFs
in total) does not perceptibly change the computation times.

5.5. Adjustments of XDE for the simulation

5.5.1. Implementation of the felt laws
The model used for the felt is such that its reaction forceF obeys:

8� ¾ 0,8 �� , F(� , �� ) = k � r � b �� � 2

where � is the compression of the felt (see 4.5.10).

8This parameter was included in the parameters category III (see 4.4.1).
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In XDE, the only implemented law is linear viscoelastic (Kelvin-Voigt model). To imple-
ment the felt laws, we change the stiffnessklin and the viscosity blin of the linear model at
each time step. This also required the addition of a external force flin (joint actuator) at
each iteration.

The value of klin , blin and flin were determined from the differentiation of F, which is
C 1(R,R) as r > 1. The calculation yields:

F(� n+ 1, �� n+ 1) = F(� n, �� n) + ( � n+ 1 � � n)
@F

@ �
(� n, �� n) + ( �� n+ 1 � �� n)

@F

@��
(� n, �� n)

= ( k � r
n + b �� n � 2

n) + ( kr � r � 1
n + 2b� n

�� n) ( � n+ 1 � � n) + ( b� 2
n) ( �� n+ 1 � �� n)

= k � r
n � kr � r

n � 2b� 2
n

�� n| {z }
actuator joint effort

+ ( kr � r � 1
n + 2b� n)

| {z }
proportional gain

� n+ 1 + ( b� 2
n)

| {z }
derivative gain

�� n+ 1

(5.48)

so that 8
>>>>><

>>>>>:

klin = ( kr � r � 1
n + 2b� n)

blin = ( b� 2
n)

flin = k(1 � r ) � r
n � 2b� 2

n
�� n

(5.49)

An illustration is given in Figure 5.13, where the dissipative part has been omitted.

0

5

10

15

� 5

� 10

0.1 0.2 0.3 0.4 0.5

Felt reaction force F [N]

Displacement � [mm]

k � r

� n

F(� n)

� n+ 1

flin

klin

� F(� n+ 1)

b

b

Figure 5.13 – Illustration of the implementation of the felt law as a linear modelwith
adjustable parameters (the dissipative part has been omitted).

5.5.2. Ensuring the repeatability of the simulation
The simulating program is divided in several elements, which are Orocos Agents (Open
RObot COntrol Software, [Orocos, 2013]), see Figure 5.14. Each element is a block with
a speci�c function:

physic engine � Contains the mechanical and the solving parts.

clock � Initiates the simulation. It also allows to regulate the speed of the simulation.
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position input � Imports the position command to be applied at the following step.

joint positions export Exports the generalized coordinates at each time step.

felt law Sets the parameters of the linear viscoelastic laws so that it models the felts,
see 5.5.1.

To ensure the repeatability of the simulations, a synchronisation is implemented so that
each block can only run when its input ports receive a signal from the previous one,
meaning that the previous block has �nished its task. The initial start is given by a
clock. In Figure 5.14, the connexions between the blocks is shown. The red dots indicates
evenemential ports, i.e. ports which activates the block to which they are connected every
time a new data is written in them. On the contrary, green dots symbolises periodical
ports, i.e. ports where the data is read periodically, whether it is a new one or not.

Doing so slowed down the simulation time signi�cantly (factor � 20), but ensured an abso-
lute repeatability. This loss of time could be completely compensated with an appropriate
low-level implementation (in the physics kernel).

 

clock tic

&

&
position

input
ypianist ( t i )

physic engine x( t i )
�x( t i )

joint position
exportation

boolean

boolean

felt law

actuator effort f lin ( t i+ 1)

� i+ 1 �� i+ 1

klin ( t i+ 1)
blin ( t i+ 1)

Figure 5.14 – Synchronized connexions of Orocos agents.

5.6. Simulating in practice
In practice, XDE was run in a Python framework. After the implementation of the mod-
i�cations described in 5.5, some additional Python scripts were written so that all the
simulations would be controlled from MATLAB. It communicated with P ython by means
of text �les, see Figure 5.15. In total, the Python scripts used to control XDE for the
simulation of the piano action are made of more than 2000 lines.

The results of the simulation were written by Python in other text �l es, which were
interpreted by MATLAB.

95



CHAPTER 5. SIMULATION METHODS

time step,
input choice

input data

parameters' values

MATLAB scripts

txt �le

csv �le

intelligible txt �le

text �les

sent to XDE

sent to XDE

sent to XDE

Python scripts

shell scripts

writes

writes

writes

reads

reads

reads

callscalls

Ê

Ë

Ì

Figure 5.15 – Simulations principle.
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6
Chapter 6

Results and discussions

Overview In this chapter, the model of Chapter 4 is simulated using the methods

described in Chapter 5. The simulations consist in predicting the reaction force of the key

on the �nger in response to a position, as explained in Chapter 2. The simulation results are

compared to the experimental results of Chapter 3.
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The model of the piano action presented in Chapter 4 is simulatedusing the methods
described in Chapter 5. The �rst results were promising but kinematic observations of
the simulations highlighted a few misadjustments of some parameters' values. Section 6.1
expounds how the virtual piano action has been numerically regulated. Results forpiano
and forte keystrokes are given in 6.2 and 6.3 for position-driven1 and force-driven simu-
lations, respectively. Testing the effect of signi�cant changes led to the same conclusion
of Chapter 2. The discussion is focused on the upward phase becausethe sustain and the
release of the key matter less, from the haptical point of view.

Finally, a sensitivity analysis of the (simulated) reaction forces, to the parameters of
categories I, II and III, is carried out for the piano and forte dynamics.

6.1. Regulation of the virtual piano action
First, simulations were run with the values of the parameters given in Chapter 4, for
several keystroke dynamics. The comparison between kinematic measurements and the
calculated kinematics showed that the virtual escapement occurred a bit too late. As done
in real life by piano technicians, this was corrected by regulating the virtual piano action,
here by lowering the let-off button.

Applying the full procedure (see Appendix A), the regulation of t he virtual action yielded
the following modi�cations:

� the jack regulating screw (jack-whippen contact) was moved horizontally2 by 0.4 mm;

� the backcheck (key-hammer contact) was moved horizontally by� 7 � 10� 4 m;

� the capstan screw (key-whippen contact) was lowered by0.2 mm;

� the let-off button (support-jack contact) was screwed to leave an additional gap of
1.9 mm.

Except for the let-off button, these modi�cations lie within the mar gin of uncertainties of
the lengths measurements (see Chapter 3). They can be perceived asvirtual lutherie : the
virtual action is treated as a real action.

The results presented in Sections 6.2 and 6.3 were calculatedusing these adjustments.

6.2. Position-driven simulations
The damper is not considered, as it is not a key element in the global dynamics.

6.2.1. Key
We remind that, because it was technically not possible to use thekey position as an input
of the simulation in XDE, a Kevin-Voigt viscoelastic model has been inserted between the
(virtual) key and the (virtual) �nger. It was then possible to con trol the position of the
free end of the Kelvin-Voigt model in the simulation (see 3.3 and 5.4.1). A piston has been
inserted between the (real) key and the (real) �nger, modelled by the Kelvin-Voigt model.

For the key, two different positions were therefore considered in the experiments:
1Contrary to the simulations of Chapter 2, the acceleration measurements are not used in the present chapter.
2As in Chapter 4, the x-axis is positive in the direction of the pianist.
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� the measured position of the upper face of the pistonYmeas;

� the measured position of the key ymeas;

The measured signalsYmeas and ymeas were downsampled at 2 kHz. The signal Ymeas

was used as an input for the simulation. The summary of the relationships between the
different physical quantities is given in Figure 6.1.

measurements simulation

ymeas

Ymeas

Fmeas

ysimu

Fsimu

Figure 6.1 – Scheme of the measured and simulated physical quantities (position-driven).

The input Ymeas is plotted in Figures 6.2(a) and 6.3(a) for piano and forte dynamics,
respectively.

The main result is the comparison between the simulated reactionforce of the key on the
pianist ( Fsimu). It is represented together with Fmeas for both piano and forte keystrokes in
Figures 6.2(b) and 6.3(b), respectively.

The comparison between ymeas and ysimu aims at making sure that measured and simu-
lated displacements of the key are similar, see Figure 6.2(c) for piano and 6.3(c) for forte.

The comparisons between measured and simulated quantities arediscussed in Section 6.4.
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(b) Measured and simulated reaction forces of the key on the pianist's �nger.
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(c) Simulated and measured position of the key.

Figure 6.2 – Simulation results for apiano keystroke (input: displacement).
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(b) Measured and simulated reaction force of the key on the pianist's �nger.
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(c) Measured and simulated position of the key.

Figure 6.3 – Simulation results for aforte keystroke (input: displacement).
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6.2.2. All bodies
Here, we compare the angular positions of each rigid body measured with the video
tracking and calculated from the simulation, for the piano blow. The tracking is not very
accurate (see Chapter 3) but gives valuable indications.

The results are shown in Figure 6.4. For each body, notable events have been marked by a
vertical segment:

(a): Initial position, at rest.

(b): Beginning of the rotation of the jack, which corresponds to the contact between the
jack and the let-off button.

(c): Contact of the key and the front rail punching.

(d): Impact of the hammer and the string.

(e): Catch of the hammer by the backcheck.

(f): Repositioning of the jack, so that the mechanism is ready to propel the hammer again.

These events are used in the discussion 6.4.1.

For technical reasons, the impact of the hammer on the string was �rst considered as
inelastic. This irrealistic model did not affect much the study of the haptics, because we
focused on the phase before the impact of the hammer on string. Nevertheless, at the very
end of the thesis, an elastic contact law has been implemented. The angles calculated with
this hammer-string contact model are marqued with a tilde (for in stance �̃ K is the angle
of the key calculated with this law). The elastic law resulted i n a higher velocity of the
hammer during its check so that the hammer stopped at a slightly different angle than
with the inelastic law. We corrected this by adjusting the backcheck, as done in real life.
The kinematic computations, plotted in dashed green in Figure 6.4, show improvements:
the hammer trajectory is much closer to the measured one. The implementation of the
elastic law resulted in an overestimated computed reaction force of the key on the �nger
during the check. This is believed to be due to the position of the backcheck, adjusted to
correspond to the measured kinematics, but not to the measured dynamics. Additional
investigation would be required to better modelled the catch of the hammer.
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Figure 6.4 – Comparison of the position of the bodies (tracking vs simulation) for a
piano keystroke. Blue: measurements. Red: simulation. Green: simulation with elastic
hammer/string contact law.
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6.2.3. Visualisation of the simulations
The visualisation of the simulations offers a good insight on the qualitative behaviour of
the mechanism. We compare the real state of the piano action captured by a high-speed
�lm and the corresponding simulation, for a piano keystroke. Figure 6.5 presents the
states corresponding to events (a), (b), (d), (e) and (f). These events are reported on the
position and force results in Figure 6.9.

104



4
m

s

6.2. POSITION-DRIVEN SIMULATIONS

(a) at rest

(b) beginning of escapement

(d) hammer-string impact

(e) check catch

(f) jack repositioning

Figure 6.5 – Film and simulation screenshots comparison for notable events(see Figure 6.9).

105



CHAPTER 6. RESULTS AND DISCUSSIONS

6.3. Force-driven simulations
For force-driven simulations, the relationship between the different physical quantities is
given in Figure 6.6.

measurements simulation
ymeas

Fmeas
ysimu

Figure 6.6 – Scheme of the measured and simulated physical quantities (force-driven).

The measured forceFmeas is used as an input for the simulations which yield a calculated
displacement of the key end ysimu. The comparison between ysimu and the measured
displacement of the key ymeas are presented for apiano keystroke (Figure 6.7) and for a
forte keystroke (Figure 6.8).
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Figure 6.7 – Simulation results for apiano keystroke (input: force).
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Figure 6.8 – Simulation results for aforte keystroke (input: force).
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6.4. Discussion

6.4.1. Position-driven
Using the above-described measurements, it was possible to capture the following events,
which are the main elements of the motion of the grand piano action:

(a): start from the resting position;

(b): jack - let-off button punching (support) contact;

(c): key - front rail punching contact;

(d): impact on the string;

(e): catch of the hammer;

(f): return of the jack to its initial position.

The instants of these events are reported in Figure 6.9 (key positions – top – and reaction
forces of the key on the pianist – bottom). There are no obvious correlations between
these events in the position diagrams. On the reverse, (b), (c) and (e) can be correlated
with some patterns of the force diagrams.
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Figure 6.9 – Notable events during apiano keystroke.

The instant when the jack meets the let-off button (b) is followed by a small hump and a
rather sharp decrease of the force. This pattern was systematically observed, whatever
the keystroke dynamics. This is one of the major elements of the regulation of the
action, extensively commented (see e.g. [Porter, 2009]) and known as aftertouch. The
simulations render this pattern in both piano and forte. One can note that the hump is of
low amplitude compared to the other irregularities. A representation of dF

dt
would better

emphasise this pattern. This suggests thatdF
dt

could represent, in some way, the haptical
point of view, better than F( t ).

The instant when the contact between the key and the front rail punching (c) occurs, was
deduced from the geometrical measurements of the key (see Chapter 4) and corresponds
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to a displacement of the key of y = 9.8 mm. It appears on the measured forceFmeas as
a local minimum in time: since the hammer has just escaped, thereaction of the key
decreases until it meets the front rail. Then, because of the large stiffness of the felt, the
reaction increases. The amplitude of this force increase is accurately calculated in piano
and forte dynamics. For the piano keystroke, the position of the local minimum is shifted
by a about �ve milliseconds.

After hitting the string, the hammer is caught back by the backcheck. It transfers some
of its kinetic energy to the key, pushing the �nger end upwards. Again, the experimental
diagram does not exhibit a strong time-variation in F but a strong variation in dF

dt
. Since

the return of the hammer is not simulated realistically (because of the hammer-string
impact law, see bottom of Figure 6.4), it is not surprising that thi s pattern is not visible in
the diagram of the simulated reaction forces. As a matter of fact, the simulated force
increases during the check, but simulations without the backcheck showed the same
increase. It can be deduced from the sensitivity analysis to come(Section 6.5) that the
heightening of the force is related to the lever meeting the drop screw.

Most of the other irregularities observed in the measurements arealso observed in the
simulations. In particular, both piano and forte measurements exhibit two peaks and a
smaller third one after the contact of the key and front rail punchi ng: from t = 0.14s to
t = 0.20s and from t = 0.8s to t = 0.12s, in the piano and forte keystrokes, respectively.
This is believed to be due to oscillations of the key, under the reaction of the front rail
punching. For the piano keystroke, the frequency of these oscillations is about70 Hz. The
corresponding force is about Fmeas � 3.5 N. The position of the key is nearly constant
during the oscillations. The stiffness of the non-linear felt law of the front rail punching
can therefore be linearised in an apparent linear stiffnessklin around the compression � .
From the felt law (4.4) comes:

klin �
@F

@ �
(� ) = 1.6 � 1010 � 2.7 � � 1.7 (6.1)

For F = 3.5 N, the felt law (the dissipative part is neglected) yields � = 0.26mm. The
oscillating mass is composed of two elements:

� the key (with the force sensor and the piston);

� a part of the musculoskeletal system of the pianist (�nger, hand, arm).

The oscillations' frequency flin of the linear spring, which approximates the front rail
punching non-linear behaviour, is given by:

flin =
1

2�

s
klin

meq
(6.2)

The contribution in mass of the pianist is very hard to evaluate. If we ignore it, then meq =
62g and Equation (6.2) gives flin = 121Hz in piano dynamics, which is the same order
of magnitude of the frequency of the observed oscillations (70 Hz). Moreover, ignoring
the contribution in mass of the pianist results in an underestimated meq, and therefore in
overestimating flin .

The similar reasoning can be done for the forte keystroke. The observed frequency is
roughly 90Hz, the force oscillates around9 N which corresponds to a compression of the
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