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Abstract

It is intuitive that with new tools to analyze nature, new domains can be explored. Ultrafast elec-

tromagnetic fields are one of those tools, as they allow the probing of matter on new time scales,

both for new applications and for basic research. However they are on their own right an important

phenomenon that deserves to be analyzed, studied and probed.

This work is divided in two parts one that deals with the generation and amplification of ultrashort

pulses the second with the diagnostics of these lasers. We present a home-built tunable, narrow

spectrum CPA amplification chain. We study the features of optical parametric amplification in

several configurations. We made simulations regarding the amplification of a seed pulse that is

angularly chirped, we also make some analytical calculations based on the same principle. Two

mode-locked oscillators are presented one is a sub-12 fs laser oscillator used to produce the seed of

the amplification chain, the second is a sub-6 fs laser oscillator. We describe the first laser oscillator

in great detail. We devise and discuss models that can explain the parameters of the sub-cavity and

the ability of these lasers to enter into mode-locking (ML), we compare the simulation results precise

experimental measures made on the sub-6 fs oscillator.

The measurement of ultrafast phenomena is also very challenging because their time scale is too

short for common electronic devices. We have examined known measurements, such as third order

cross correlations (TOCC) and interferometric second order autocorrelations (IAC) and obtained

new analysis methods and new facts that broaden their usefulness. In particular, we have fully

reconstructed the spectral phase of a pulse using an IAC trace and its power spectrum. We also prove

that the existence of a TOCC plus an intensity autocorrelation is sufficient to retrieve the intensity

profile of a pulse we present initial results on reconstruction algorithms, that might be able to do this

with a high temporal contrast. We end this thesis with a study on simulation and implementation of

a new configuration for single shot correlation measurements.

Keywords – Ultrafast nonlinear optics; Ultrashort lasers; Three-wave mixing; Interferometric au-

tocorrelators; Optimization algorithm; Genetic algorithm; Variational calculus; Third order cross

correlation; Single shot measurements; Optical Amplification.
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Resumo

O aparecimento de novas ferramentas de análise da natureza faz com que novos domínios desta

possam ser explorados. Os campos eletromagnéticos ultra-rápidos são uma dessas ferramentas, e

têm provado a sua utilidade. No entanto, estes campos são fenómenos que por si próprios merecem

ser estudados.

Apresentamos uma cadeia de amplificação ótica com uma banda espectral curta e sincronizável.

Assim como um estudo aprofundado sobre a amplificação ótica paramétrica em diversas config-

urações, sobretudo quando o impulso a ser amplificado apresenta um espectro chirpado angular-

mente. Analisamos também dois osciladores laser que permitem a geração de impulsos ultracurtos,

comparamos e expomos os detalhes experimentais destes osciladores e um novo modelo de cálculo

para determinar a habilidade destes osciladores entrarem em blocagem de modos em função dos

parâmetros geométricos da sub-cavidade existente no interior do laser.

Lasers ultra-curtos têm durações cuja escala de tempo é mais rápida que a da eletrónica tradicional,

e a segunda parte desta tese trata destas medidas. Aqui analisamos correlações cruzadas de ter-

ceira ordem e autocorrelações interferométricas de segunda ordem. A partir das autocorrelações

interferométricas e da densidade espectral foi possível obter a reconstrução completa do campo

elétrico. Provamos também que o facto de termos em simultâneo as correlações cruzadas de terceira

ordem e a autocorrelação intensiométrica é suficiente para a reconstrução do perfil de intensidade do

impulso, e apresentamos alguns algoritmos que conseguiriam realizar esta tarefa. Posteriormente

apresentamos um estudo, que inclui simulações e experiências, de uma nova configuração para

medição de autocorrelações utilizando um só impulso.

Palavras-chave – Ótica não linear ultra-rápida; Lasers ultra-curtos; Processos de mistura a três

ondas; Autocorrelador interferométrico de segunda ordem; Algoritmos de otimização; Algoritmos

genéticos; Cálculo variacional; Correlação cruzada de terceira ordem; Medições em evento único;

Amplificação ótica.
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Resumé

Il est intuitif qu’avec de nouveaux outils, il devient possible d’explorer de nouveaux domaines de

la physique. Les champs électromagnétiques ultra-rapides sont l’un de ces outils, ils permettent de

sonder la matière à de nouvelles échelles de temps, à la fois pour développer de nouvelles applications

et pour la recherche fondamentale. Néanmoins, ces champs constituent en eux-mêmes un phénomène

méritant d’être analysé et étudié.

Le travail présenté ici est divisé en deux parties, dont la première s’occupe de la génération et

amplification de lasers ultracourtes. L’amplification paramétrique optique est discutée dans les

différentes configurations, notamment dans le cas où le signal a une dérivé angulaire spectrale. On

discute aussi deux oscillateurs à blocage de mode en phase. Ont présente aussi une nouvelle manière

d’étudier son comportement en fonction des dimensions de la sous-cavité.

La mesure de ces phénomènes représente également un défi en raison de l’échelle temporelle ex-

trêmement réduite à laquelle ces phénomènes se produisent, échelle bien trop petite pour des méth-

odes de mesure traditionnelles. Dans ce manuscrit, nous avons abordé deux techniques de mesure

bien connues: l’autocorrélation interférométrique (IAC) du second ordre et la corrélation croisée du

3ème ordre (TOCC). Avec l’IAC et une mesure de la puissance spectrale du champ, il est possible

de reconstruire intégralement le champ électrique tandis que le TOCC associé à l’autocorrélation en

intensité détermine le profil en intensité de manière unique, et ont présente des algorithmes que font

la reconstruction avec un haut contraste. Nous avons par ailleurs étudié la réalisation d’une nouvelle

configuration de corrélateur croisé monocoup.

Mots-clés – Optique ultra-rapide non-linéaire; Laser ultra-bref; Mélange à trois ondes; Algorithme

d’optimisation; Calcul variationnel; Corrélateur croisée de troisième ordre; Autocorrélation inter-

férométrique; Mesures monocoup; Amplification optique.
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Nomenclature

ASE Amplified Spontaneous Emission

BBO crystal β -Barium Borate crystal

BS Beam Splitter

CCD Charge Coupled Device

CPA Chirped Pulse Amplification

CW Continuous Wave

DCM Double-Chirped Mirror

DFG Difference Frequency Generation

FFT Fast Fourier Transform

FISH Full Information from a Single Hologram: spa-

tially and temporally resolved intensity and phase

evaluation device:

FROG Frequency Resolved Optical Gating

FWHM Full Width at Half Maximum

GRENOUILLE Grating-Eliminated No-nonsense Observation of

Ultrafast Incident Laser Light E-fields

GRIN Graded-Index

HV High Voltage

IA Intensity Autocorrelation
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IAC Interferometric Autocorrelation

IFFT Inverse Fast Fourier Transform

KLM Kerr Lens Modelocking

ML Modelocking

MOSAIC Modified Spectrum Auto-Interferometric Corre-

lation

OC Output coupler

OPA Optical Parametric Amplification

OPCPA Optic Parametric Chirped Pulse Amplification

OPF Optical Parametric Fluorescence

OR Optical Rectification

PCF Photonic Crystal Fiber

PD Photodiode

PM Photomultiplier

PSO Particle Swarm Optimization

RPSO Repulsive Particle Swarm Optimization

SFG Sum Frequency Generation

SHAC Second Harmonic Autocorrelation

SHG Second Harmonic Generation

SPIDER Spectral Phase Interferometry for Direct Electric-

field Reconstruction

SPM Self Phase Modulation

SSCC Single Shot Third Order Cross Correlator
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SSIA Single Shot Intensity Autocorrelator

SVE Slowly Varying Envelope

THG Third Harmonic Generation

TOCC Third Order CrossCorrelations

TOIAC Third Order Interferometric Autocorrelation

TWM Three Wave Mixing
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Thesis overview and context

The developments in laser technology over the last 50 years have allowed for ultrafast and ultra-

intense lasers. Lasers, with peak power on the PW level and durations as short as 67 attoseconds

have been reported [1–4]. These facts bring new tools to the physicist table that can be used to probe

reality with an unprecedented accuracy and in unprecedented regimes [5, 6].

This thesis exposes the result of my PhD work throughout its duration. My doctoral studies were

based on the ultrafast nonlinear optics and the development of tools to work with lasers which pulse

durations are in the femtosecond (fs) regime. This thesis is divided into two parts: in the first part

we concern ourselves with the production of ultrafast pulses in a passive ML oscillator and with

the amplification of those pulses, particularly OPCPA amplification. The second part of these thesis

deals with diagnostics of ultrashort laser pulses.

Before describing the systems that we have studied we make a quick introduction (Chap. (1)) to

three wave mixing (TWM) which we use through out the thesis. We treat the coupled propagation

equations of TWM (Sec.1.4) and solve them in the case of optical parametric amplification (OPA).

Also with TWM in mind we discuss noncollinear phase-matching (Sec. (1.5)) and the characteristics

lengths of this process (Sec. (1.2)). We also discuss some features of optical amplification in this

introduction (Sec. (1.3) and Sec. (1.4)).

Chirped pulse amplification (CPA) and optical parametric chirped pulse amplification (OPCPA) are

well developed techniques that have allowed an unprecedented increase in laser power [7–10]. There

are two pump sources normally considered for OPCPA amplification of Ti:Sapphire laser sources, the

doubled glass solid state lasers and a doubled Ti:Sapphire lasers, which gives rise to a non-degenerate

and to a degenerate OPCPA, we discuss these two approaches.

Very recently, there has been several attempts to increase the spectral bandwidth of OPCPA lasers

using an angularly chirped seed [11–15]. This configuration gives one more degree of freedom to

the system which might allow the system to be more flexible and to increase the bandwidth of the

amplified signal it might also allow for a greater tolerance of the pump wavelength which might

might be interesting when the pump is obtained by doubling a Ti:Sapphire laser system.

We use non-collinearity and spatial chirp to enhance the gain, simulation and analytical calculations

are presented (Sec. (2.2)). We use the characteristics of a Ti:Sapphire laser as a seed pulse and the

BBO crystal as an amplification medium. This kind of approach, gives the configuration an additional
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degree of freedom which has the potential either to increase the amplified bandwidth of the system, to

improve the energy extraction from the pump and to improve the tolerance of the system to the pump

bandwidth. However it also has some inherent problems such as the subsequent angular and temporal

compression that is needed in order to make this a useful laser system. We also present a tunable,

small bandwidth CPA laser system, based on Ti:Sapphire that was built in Laboratoire d’Optique

Appliquée (LOA), this is a millijoule amplification system, in which the spectrally selective optics

placed inside the regenerative amplifier narrow and select the output spectrum (Sec. (2.5)).

The Ti:Sapphire lasers have been the dominant ultrafast laser technology [16–18]. Particularly

Ti:Sapphire oscillators have been the most common form of technology to obtain laser pulses with

sub-100fs to few cycle laser pulses, in the near infrared. Passive mode-locked (ML) Ti:Sapphire

have been explored at length (simulations, experiments, models) in articles [19–31] and PhD thesis

[32, 33]. There are several critical factors to consider when designing a mode lock oscillator, among

them the most paramount are the spectral phase accumulated in a round trip around the cavity and

the configuration of the sub-cavity. This last parameter determines the mode inside the Ti:Sapphire

crystal which works at the same time as a nonlinear medium and as gain medium. The configuration

of the sub-cavity is going to determine the stability of the laser and the competition between the free

running (CW) and the ML configuration of the laser.

In this thesis we present in detail a sub-15 fs ML oscillator that was built in LOA. We also discuss

several models that pinpoint the optimal configuration of the sub-cavity for ML operation. We

compare the obtained results with the results obtained with another Ti:Sapphire oscillator (sub-6 fs)

that was built in Universidad Complutense de Madrid. We discuss the thermal lens in great detail as

well as the transition between the CW and ML operation, this are the two unknowns that the model

has. We confirmed the model that we use with the second laser that we have presented. The model

that we have developed is a purely spatial model we do not consider the temporal/spectral dynamic

of the oscillator.

The second part of this thesis concerns itself with temporal diagnostics of ultrashort laser pulses.

There are a number of diagnostics to evaluate the temporal profile of ultrashort pulses, some of these

diagnostics require that we take 2D temporal and spectral information on the same measurement

like frequency resolved optical gating (FROG) [34–36], spectral phase interferometry for direct

electric-field reconstruction (SPIDER) [37, 38], and second-harmonic dispersion scans (D-scan) [39]

these diagnostics are used to retrieve the pulse temporal profile. Other diagnostics are based on

1D measurements such as third order cross-correlations (TOCC) [40–44], intensity autocorrelations

(IA) [45], interferometric autocorrelations (IAC) [46] and spectral intensity measurements, these last

diagnostics are easy to implement, and many times used for preliminary measurements of the pulse

characteristics. In the second part of this thesis I try to use this last measurements to retrieve the

as much information as possible. We actually reconstruct the pulse profile using a combination of

measurements, our objective is to enhance the usefulness of these last diagnostics and make them

viable tools to measure the temporal profile of ultrafast pulses.
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Interferometric autocorrelations have been used since 1985 [46] to characterize the temporal profile

of laser pulses. Naganuma et al. proved that together with the spectral intensity profile they com-

pletely define the pulse temporal profile [47]. However, as remarked by Trebino in [36], the method

of retrieving the intensity profile of the pulse presented by Naganuma et al. was not applicable

to the reconstruction of ultrashort pulses (as we confirmed in Sec.(4.4)). Not only there was no

reconstruction method available, but also the IAC traces seamed not very sensitive to variations in

the spectral shape has proved by Chung and Wiener [48] in 2001 (see the beginning of Chap. (4) for

further details). Because of these reasons the IAC diagnostics was merely used as preliminary diag-

nostics of ultrashort pulses and not to reconstruct the pulse shape. In 2002 by Hyraiama et al. [49],

applied a frequency filter to the IAC trace and created the new spectrally modified interferometric

autocorrelation (MOSAIC), this proved to be a highly sensitive diagnostic to changes in the spectral

phase.

In this work we discuss at length the sensitivity of the IAC and MOSAIC traces to changes in the

spectral phase (Secs.(4.1) and (4.2)) in order systematically verify the sensitivity of these diagnostics

to changes in the spectral phase and draw qualitative and quantitative conclusions. Following this

study we present several methods to reconstruct the spectral phase using these measurements. We

reconstruct the spectral the intensity profile of several experimental measurements of sub-8 fs and

sub-5 fs pulses. We estimate the uncertainty that can be due to the reconstruction method that

we use, which is clearly smaller than the uncertainty due to the experimental measurement. We

also discuss several algorithms that failed to reconstruct the pulse using these measurements, we

think this is useful because it will narrow the kind of algorithms to be used in the future. Using

experimental measurements we also used two methods to define the spectral phase and compare the

results obtained by both approaches. One of the methods is to define the phase as a Taylor series

(which as classically been the description of the spectral phase for ultrashort pulses [50]) another

approach uses a point per point approach, we concluded that this second approach as been more

successful in reproducing the experimental measurements that were made.

We envision that it is possible to apply this method to the reconstruction of the pulse profile for longer

pulses, as long as the second harmonic autocorrelation can be retrieved from these measurements (see

Sec. (4.3)). Furthermore we also conceive the possibility that this method may be used for single

shot measurements if three measurements are made simultaneously, the measurements of the field

spectrum, the SH spectrum and the intensity autocorrelation (there are several commercial devices

used to make this last measurement [51, 52]).

TOCC is used in a different context of IAC. IAC is conceived to measure the pulse intensity profile

and the spectral phase of the pulse, it is used for low contrast measurements (up to one order of

magnitude), it is used for almost every kind of femtosecond laser to know the pulse shape duration

and peak power. TOCC is conceived to analyze the pulse temporal profile with a high dynamic range

(12 orders of magnitude) [40–44], this is only important in high power laser systems. Due to this fact

the time window that needs to be measured is also different, for a fs pulse the time window of the
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IAC measurement has to be within the fs time scale, beyond this window the intensity of the pulse is

smaller than the noise. When considering a TOCC measurement however the FWHM duration of the

pulse is not important because the pulse is measured in a logarithmic scale, the information retrieved

from a TOCC trace is the existence and magnitude of pre and post pulses and the dynamic contrast

of the pulse within a time windows of hundreds of ps, up to 1 ns. Beyond this time scale other

measurement techniques can be used [53]. In this work we discuss the features that are normally

retrieved from a TOCC trace, as well as some features on the measurement device itself.

We prove that the combination of IA plus TOCC univocally defines the intensity profile of the laser.

This is interesting because with this we can completely define the intensity using two diagnostics that

can be taken with a high dynamic contrast [40, 54]. To the best of our knowledge this is the first time

this proof has been published, however, as in the IAC case, there is an intermediary step between the

analytical proof and the application to experimental measurements, which is to find a method that

takes both measurements and retrieves the intensity profile from them. We take one of the retrieval

methods that we used when retrieving spectral phase from the IAC trace (slightly modified) trace and

apply it to this problem, obtaining some preliminary results the reconstruct the pulse with a dynamic

range of 104−105. This new property might not be interesting evaluate the pre post pulses or even

the background amplified spontaneous emission (ASE), however it might be applicable to retrieve

the pedestal of the pulse, where more complicated features may exist.

When dealing with high power, single shot laser pulses or even low repetition rate laser systems

it becomes imperative to have a diagnostic that analysis the temporal profile of the pulse in one

shot. Sweeping diagnostics are not appropriate, not only due to practical reasons of getting a data

point per shot, but also because these systems present more thermal noise1 which in turn make the

intensity profile of the pulse vary from shot to shot. Single shot intensity autocorrelators have been

used for some time [55–58], we propose a different single shot intensity autocorrelator based on the

superposition of two sagittal focal lines of astigmatic mirrors, these allows the system to integrate the

pulse profile over one of the directions of the spatial profile giving a more accurate measurement of

the temporal profile of the pulse. We built and tested this configuration for an intensity autocorrelator.

We compare the features of this correlator with the classical intensity autocorrelator which uses two

tilted beams converging in a SH crystal.

However when dealing with high power ultrafast lasers one of the most important measures is the

TOCC that gives us a high dynamic contrast of the pulse profile. Recently there have been several

devices proposed to serve as a single-shot TOCC [57–63]. We make our own proposal for a single-

shot TOCC based on the same delay process, we also propose a system to control the SH profile

by controlling the phase-matching conditions in the SH generation. We present simulations on this

device.

This PhD was done in a mix regime, in the context of the group ELF (Études des Laser Femtosec-

1Many of these systems have an higher peak power than laser systems with a high repetition rate.
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onde), later group LHP (Laser Haute Puissance) at LOA (Laboratoire d’Optique Appliquée) which is

situated in the École Polytechnique, in Paris, France, and also in the group CLOQ (Centro de Lasers e

Óptica Quântica), later Ultrafast Lasers and Magnetodynamics Spectroscopies group which belongs

to IFIMUP (Instituto de Física dos Materiais da Universidade do Porto), we worked at a laboratory

situated in FCUP (Faculdade de Ciências da Universidade do Porto), in Portugal.
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Part I.

Generation and amplification of
ultrashort pulses
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1. Introduction to three wave mixing and
optical amplification

In this chapter we study three wave mixing at length, and introduce optical amplification, particularly

optical parametric amplification (OPA), which is a three wave mixing process.

Second harmonic generation (SHG), difference frequency generation (DFG) and sum frequency

generation (SFG) are all forms of three wave mixing (TWM). OPA is based in DFG and some of

the diagnostics presented here are based on SHG or SFG and so we must study these processes in

order to know the validity of their nonlinearities.

TWM happens in a non-centrosymmetric medium with a nonzero second order nonlinearity [64].

Normally two initial waves (ω1, ω2) mix inside a crystal originating a third wave which may have a

frequency that is the the sum or difference of the previous frequencies: ω0 = ω2±ω1. This relation

between frequencies is compulsory in order to conserve the energy of the ensemble. The virtual

energy levels can be seen in Fig. (1.1).

We have SHG if {ω1, ω1} ⇒ ω0 = 2ω1 , optical rectification (OR) if {ω1,−ω1} ⇒ ω0 = ω1−ω1,

SFG if {ω1, ω2}⇒ ω0 = ω1 +ω2 and DFG if {ω1,−ω2}⇒ ω0 = ω1−ω2.

This chapter is divided in several sub-chapters where each corresponds to a specific subject.

ä In Sec. (1.1) we introduce the TWM coupled equations.

ä Sec. (1.2) discusses standard normalizations of the parametric equations that lead us to the

characteristic values in TWM.

ä Sec. (1.3) very briefly describes chirped pulse amplification (CPA).

ä Sec. (1.4) treats the optical parametric amplification (OPA) and the classical approaches to it,

namely plane wave approximation.

ä Sec. (1.5) treats phase matching in 3-wave interaction.
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1. Introduction to three wave mixing and optical amplification

!1

!0

!2

Figure 1.1.: Representation of the virtual energy levels on a TWM configuration where ω0 = ω1 +ω2.

1.1. TWM propagation equations

Let’s consider a loss-less medium with second order nonlinear effects. Three waves propagate in

this medium in which walk-off, group velocity mismatch and dispersion are negligible, we use a

plane wave approximation, which entails a SVE approximation in which we must consider that our

amplitude obeys the following condition (referential of propagation moving with the group velocity

of the pulse):

(
∂

∂ z
− 2

vr

∂

∂τ

)
A j(r,τ)�

1
k j

A j(r,τ). (1.1)

In this case the amplitude of the waves propagating in the medium can be described by the following

equations [64, 65]:

∂A0(r,τ)
∂ z = i ω2

0
2k0c2 χ

(2)
e f f A1(r,τ)A2(r,τ) e−i∆kz

∂A1(r,τ)
∂ z = i ω2

1
2k1c2 χ

(2)
e f f A0(r,τ)A2(r,τ) ei∆kz

∂A2(r,τ)
∂ z = i ω2

2
2k2c2 χ

(2)
e f f A0(r,τ)A1(r,τ) ei∆kz

(1.2)

in which χ
(2)
e f f is the second order nonlinearity coefficient, ∆k = k0− k1− k2 is the phase-mismatch,

Ai ,ωi, ki, i = {1,2,3} are the amplitude, frequency and wave-vector of the three waves in the non-

linear medium; z is the propagation direction.

It is possible to decompose any wave in an ensemble of plane waves; we can do this using a Fourier

transform, in which case we will get:

Ai(r,τ) = Fx,y,t {Ai(kT,Ω,z)} . (1.3)

Please remember that kT is the transverse coordinate of the Fourier pair of (x,y), and Ω is not the

angular frequency of the electric field but the Fourier transform of the amplitude, the two are related

by: Ω = ω−ωi, in which ωi is the carrier frequency of the ith wave.
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1.2. Normalization of the coupled equations

Imputing this into the coupled equations will give us:

∂A0(k0
T,Ω,z)

∂ z =
iω2

0 χ
(2)
e f f

2k0cos(α)c2

t
A1(k1

T,Ω−∆,z)A2(k2
T,∆,z)e

−i∆k(Ω,∆)zδ (k0
T−k1

T−k2
T)d∆dk1

Tk2
T

∂A1(k1
T,Ω,z)

∂ z =
iω2

0 χ
(2)
e f f

2k0cos(α)c2

t
A0(k0

T,Ω−∆,z)A2(k2
T,∆,z)e

−i∆k(Ω,∆)zδ (k0
T−k1

T−k2
T)d∆dk0

Tk2
T

∂A2(k2
T,Ω,z)

∂ z =
iω2

0 χ
(2)
e f f

2k0cos(α)c2

t
A0(k0

T,Ω−∆,z)A1(k1
T,∆,z)e

−i∆k(Ω,∆)zδ (k0
T−k1

T−k2
T)d∆dk0

Tk1
T

(1.4)

In which the phase mismatch is given by: ∆k(Ω,∆) = k3(Ω)−k1(Ω−∆)−k2(Ω), where ki(Ω) is the

z component of the wave vector, for the correspondent component. For more details on the function

δ (k0
T−k1

T−k2
T) see Sec. (1.5). Remember that here we are still in the paraxial approximation, but

the equation above could easily be adapted to any non-paraxial case as we do this in Chap. (5).

1.2. Normalization of the coupled equations

Before exploring TWM any further we normalize the equations, this will facilitate the calculations

further on and give the characteristic values of the system, normalizations are useful when simulating

any physical system. There are several possible normalizations. We can normalize the quantities

involved using the initial values of the pulse, such as duration or amplitude. However a more common

and more useful normalization is to use the characteristics of the medium and the nonlinearity

coefficients. We can normalize all the equations leaving no coefficients, by using (see appendix

for more details):

A0 =
2c2√k1k2

ω1ω2χ
(2)
e f f

B0e−i∆k(2)z (1.5)

A1 =
2c2√k0k2

ω0ω2χ
(2)
e f f

B1 (1.6)

A2 =
2c2√k0k1

ω0ω1χ
(2)
e f f

B2 (1.7)

Using this normalization all the coefficients in the coupled propagation (Eq. (1.2)) vanish.

The coefficients Bi are not adimensional, they have the units of distance, but now it is easier to
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1. Introduction to three wave mixing and optical amplification

normalize. We normalize the length and the amplitude using a referential Br which may be the most

intense beam, in the case of OPA, optical rectification or Optical Parametric Fluorescence (OPF)

Br = B0. In SHG Br = B1 = B2. In SFG the referential Br can be a combination of the Bi related to

both original beams like for instance Br =
√

B1B2.

In any case we may find a normalized amplitude by the the factor Ai→Bi/Br and the length z→ z/Br.

Bi→ BiBr

z→ z/Br
(1.8)

The nonlinear length (LNL = B-1
r ) for OPA or parametric fluorescence is given by:

LNL =
2c2√k1k2

ω1ω2χ
(2)
e f f A0(0)

, (1.9)

or by the more useful expression:

LOPA
NL =

1

2πχ
(2)
e f f

√
2ε0cn0n1n2λ1λ2

I0(0)
. (1.10)

In SHG we only have two coupled equations which simplifies the problem, in this case beam 1 is

equal to beam 2 (ω0 = 2ω1 = 2ω2, χ
(2)
0 = χ

(2)
1 = χ

(2)
2 ):

LSH
NL =

λ1n1

2πχ
(2)
e f f

√
ε0n0c
I1(0)

cos(α0)cos(α1). (1.11)

For SFG we have (using the same assumption concerning the nonlinear susceptibility):

LSFG
NL =

1

πχ
(2)
e f f

√
ε0cn0n1n2λ0 cos(α0)

4

√
λ1λ2 cos(α1)cos(α2)

I1(0)I2(0)
. (1.12)

In general, for any case where we normalize using one beam the normalization becomes

LNL =
1

2πχ
(2)
e f f

√
2ε0cn0n1n2λ0λ1λ2

Ir(0)λr
. (1.13)

By normalizing the z coordinate found in Eq. (1.2) we obtain a new quantity S related to the phase-

mismatch defined as:
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1.3. CPA, chirped pulse amplification

S = ∆kLNL. (1.14)

We conclude that in TWM, the energy transfer between pulses is going to be determined by the value

of LNL, S, and the propagating distance (z). Using Eq. (1.8), the coupled equations become:

∂B0
∂ z = i

(
B1B2 +SB0

)

∂B1
∂ z = i B0B2

∂B2
∂ z = i B0B1

(1.15)

We could also normalize the z coordinate using the phase-mismatch value in which case only a

constant term would be present in the equations.

An unconventional normalization would be to take the length of the crystal (Lcr) and obtain a

characteristic amplitude which could normalize the amplitude of the fields, and this would give us an

indication of the critical amplitude of the nonlinear process. If one of the beams is dominant (OPA,

OPF) we can obtain this critical intensity by inverting Eq. (1.13),

Ic =
1

4π2
(

χ
(2)
e f f

)2
2ε0cn0n1n2λ0λ1λ2

L2
crλr

. (1.16)

1.3. CPA, chirped pulse amplification

We will restrain from describing CPA in great detail. CPA is the dominant form of short pulse

laser amplification since its invention in 1985 [7]. CPA works by first stretching the pulse in time

before amplification, (hopefully keeping the pulse spectral shape and width) and after amplification

the pulse is re-compressed. This scheme avoids damage and nonlinear effects in the amplification

medium. From the wide range of studies done on CPA we highlight the following [7, 66, 67]. For a

contextualization of laser amplification techniques, please see [68].

1.4. Optical parametric amplification and optical chirped pulse
amplification

OPA and optic parametric chirped pulse amplification (OPCPA) is the single subject of several PhD

theses [69–72]. We found it appropriate to expose the classical features of OPA in this introductory

chapter. We have seen the DFG phase matching conditions Sec. (1.5). In fact OPA is the same thing

as DFG. In OPA the main objective is to amplify a weak signal, a seed. For this effect we use the
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1. Introduction to three wave mixing and optical amplification

high energy beam to transfer energy to the signal. This creates a byproduct that is the idler, basically

a beam whose frequency is the difference between the frequencies of the other two beams.

Using the notation above, the pump beam is represented by the subscript zero, the signal beam is

represented by one and the idler beam by two.

OPA was the subject of one of the first articles in nonlinear optics [73], where the coupled equations

are solved, this is the basis of DFG or SFG.

We have seen the characteristic nonlinear length Eq. (1.13) and the normalized coupled equations,

Eq. (A.6), lets now solve these equations and discuss their solutions. In the following sub-sections

we solve the parametric equations in a low pump depletion approximation and in the case where no

idler exists but we have pump depletion. In the appendix for this chapter, we present two other cases,

”no phase-mismatch” and ”no idler input”, and the general solution for the parametric equations in

any case, but please note that this last case is applicable to any TWM not only OPA.

1.4.1. Low pump depletion

In a low pump depletion, we consider a configuration where the pump amplitude stays the same.

Consequentially the derivative of the pump amplitude is zero and so we just work with two coupled

equations, the first two expressions in Eq. (1.2). The resolution is given in the appendix:

A1(z) = A1(0)
[
cosh(γz)+ i ∆k

2γ
sinh(γz)

]
ei ∆kz

2

A2(z) = i
√

n1λ1 cos(α1)
n2λ2 cos(α2)

A1(0)∆k
2γ

sinh(γz)ei ∆kz
2

γ2 = L−2
NL− (∆k

2 )2

(1.17)

where γ−1 is the characteristic length for this propagation.

The complete equations that include the case when the propagation starts with 3 beams are given in

several classical textbooks (see [64]). We do not use this expression because in most cases the idler

is not inputted at the beginning of the nonlinear medium. Notice that when LNL > 2
|∆k| , there is no

amplification. The hyperbolic functions transform themselves into sinusoidal functions and we have

an oscillatory behavior of the amplitude. In this regime the amplification increases exponentially as

seen in Fig. (1.2). We obtain an amplification that can be quickly characterized using Table (1.1).

Amplification is only possible when the intensity surpasses the threshold intensity that is given by:

I0 >
2∆kn0n1n2c

χe f f ω0ω1ω2ε0
. (1.18)
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1.4. Optical parametric amplification and optical chirped pulse amplification

The classic signal amplification gain is given by:

G1 = 1+
(

1
LNLγ

)2

sinh2(γz). (1.19)

The idler amplification normalized to the initial value of the signal is

G2 =

(
1

LNLγ

)2

sinh2(γz). (1.20)

Figure 1.2.: Gain in a low pump depletion approximation for the idler and signal beams as a function of the
propagation distance normalized by γ−1.

Distance (in nonlinear length units) Gain

1.83 10
5.5 104

6.4 105

7.25 106

8.2 107

9.8 108

Table 1.1.: Amplification of the signal pulse intensity as a function of the nonlinear length in a perfect phase
matching condition.

The phase of the pulse, which is important for the compression of the amplified pulses in OPA and

OPCPA [74], is given by:

tan(φ1−φ1(0)−
∆k
2

z) =
tan
(

∆k
2 z
)
+ ∆k

2γ
tanh(γz)

1− ∆k
2γ

tanh
(

∆k
2 z
)

tanh(γz)
. (1.21)
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1. Introduction to three wave mixing and optical amplification

The idler phase is given by

φ2 = π/2−φ1 +
∆kz
2

. (1.22)

However, it is easy to understand that with an exponential amplification, we are in a situation where

the pump depletion becomes important, in which case the approximations that was done initially are

no longer valid.

There are some differences between the solutions for DFG and SFG, in low pump depletion approx-

imation; the solution for SFG is presented later on.

1.4.2. Exact solutions of the coupled equations with pump depletion, no idler
input

We have now to consider all the terms in Eq. (A.6), normalized as follows:

∂B0
∂ z = i B1B2 exp(−i∆kz)
∂B1
∂ z = i B0B2 exp(i∆kz)

∂B2
∂ z = i B0B1 exp(i∆kz)

. (1.23)

Before solving the equations themselves we should find some constants that are possible to gather

from the coupled wave equations. We explain how to obtain this constants in the appendix. We

obtain:

m0 = |B1|2−|B2|2
m1 = |B0|2 + |B2|2,
m2 = |B0|2 + |B1|2

(1.24)

and

Γ0 = |B0||B1||B2|cosΘ+ ∆k
2 |B0|2

Γ1 = |B0||B1||B2|cosΘ− ∆k
2 |B1|2

Γ2 = |B0||B1||B2|cosΘ− ∆k
2 |B2|2

, (1.25)

where Θ = φ0−φ1−φ2 +∆kz.

This constants are not independent among themselves (there are 3 independent constants, chosen

among these two groups, for instance m0 = m2−m1, ∆k
2 m0 = Γ1−Γ2). This constants are related to

the energy of the TWM system [69].
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1.4. Optical parametric amplification and optical chirped pulse amplification

With this constants we can obtain each one of the coupled equations as one variable differential

equation, as follows:

(
∂ |B0|

∂ z

)2
= (m2−|B0|2)(m1−|B0|2)− (Γ0− ∆k

2 |B0|2)2

|B0|2 ,
(

∂ |B1|
∂ z

)2
= (m2−|B1|2)(|B1|2−m0)− (Γ1+

∆k
2 |B1|2)2

|B1|2 ,
(

∂ |B2|
∂ z

)2
= (m1−|B2|2)(m0 + |B2|2)− (Γ2+

∆k
2 |B2|2)2

|B2|2 .

(1.26)

We may solve one of the equations and resolve the other variable propagation equations using the

constants given in Eq. (1.24).

If we have no idler before propagation, B2(0) = 0. In this case Γ2 = 0, Γ0 = ∆k
2 |B0(0)|2 and

Γ1 = −∆k
2 |B1(0)|2, resolving the amplitude evolution equations (Eq.(1.26)) we obtain two support

variables
(

δ =
∣∣∣B1(0)

B0(0)

∣∣∣
2
)

:

γ1 =

[
1−δ−S

2 +

√(
1−δ−S

2

)2
+δ

]

γ2 =

[
δ+S−1

2 +

√(
1−δ−S

2

)2
+δ

]

S =
(

∆k
2|B0(0))|

)2

(1.27)

Distance (zB0/γ2
1/2) 

|B
2|2

 /|
B

0(
0)

|2  

δ=0.2 

δ=0.1 

δ=0.01 

δ=1e-3 

δ=0.2 

δ=0.1 

δ=0.01 

δ=1e-3 

Figure 1.3.: Beam 2, square amplitude for several values of δ for the same value of δ = 1e−3.

In the limit where δ → 0 and S→ 0, we have γ1→ 1,γ2→ 0. The amplitude evolution becomes:

|B0|= |B0(0)|
√
|1− γ2

1 + γ2
1 sn2(|B0(0)|αz+K( γ1

γ2+γ1
)| γ1

γ2+γ1
)

|B1|= |B0(0)|
√

δ + γ2
1 cn2(|B0(0)|αz+K( γ1

γ2+γ1
)| γ1

γ2+γ1
)

|B2|= |B0(0)||γ1|cn(|B0(0)|αz+K( γ1
γ2+γ1

)| γ1
γ2+γ1

)|
, (1.28)
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1. Introduction to three wave mixing and optical amplification

where K is the complete elliptic integral of the first kind, sn the Jacobi sinus and cn the Jacobi

cosines. All the information on the properties of this functions can be viewed in [75]. Here α is a

support variable given by:

α =
√
(γ2 + γ1). (1.29)

These equations are applicable to any case where one of the constants Γi equals zero. We can use

these equations in order to evaluate OPA systems because in general OPA occurs with no initial idler

but with phase mismatch.

γ1 

S δ"δ"
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Figure 1.4.: Maximum conversion of the idler square amplitude given by the parameter γ1 as a function of
the phase mismatch parameter S and the intensity ratio parameter δ .

In Fig. (1.4) we see that for the maximum conversion the dependence is bigger in S than δ .
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Figure 1.5.: The period of the nonlinear process as a function of the parameter γ1, as a function of the phase
mismatch parameter S and the intensity ratio parameter δ . We have a bigger dependence on δ

than on S.
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1.4. Optical parametric amplification and optical chirped pulse amplification

The characteristic length in this particular situation can be given by:

γ
−1
NL =

1
|B0(0)|α

=
1

|B1(0)|
√
(1−δ −S)2 +4δ

(1.30)

The signal intensity gain is given by:

|B1|= 1+
γ2

1
δ

cn2(|B0(0)|αz+K(
γ1

γ2 + γ1
)| γ1

γ2 + γ1
) (1.31)

In the case where Γ2 = 0 the evolution of the phase of each pulse is given by the solution to the

following equations (see appendix for more detail):

∂φ0
∂ z = ∆k

2
|B2|2
|B0|2 , ∂φ1

∂ z = ∆k
2
|B2|2
|B1|2 , ∂φ2

∂ z = ∆k
2 (1.32)

The resolution of this is quite strait forward, it results in incomplete Jacobi elliptic integrals of the

third kind [75],

φ0 =−∆k
2 z+ 1

1−γ2
1

∆k
2|B0|α Π

(
γ2

1
1−γ2

1
;am

(
|B0(0)|αz+K( γ1

γ2+γ1
)| γ1

γ2+γ1

)
| γ1

γ2+γ1

)

φ1 =
∆k
2 z− δ

δ+γ2
1

∆k
2|B0|α Π

(
γ2

1
δ+γ2

1
;am

(
|B0(0)|αz+K( γ1

γ2+γ1
)| γ1

γ2+γ1

)
| γ1

γ2+γ1

)

φ2 =
∆k
2 z

(1.33)

where am function is the Jacobi amplitude function [75, 76].

1.4.3. Optical chirped pulse amplification OPCPA

Optical chirped pulse amplification, OPCPA, is a mix between OPA and CPA. We use OPA with

a chirped pulse as a seed, after amplification the pulse is re-compressed thus avoiding the damage

threshold and third order nonlinearities during amplification and obtaining short pulses.

The idea of amplification using OPA and chirped pulses avoiding damage in the materials, nonlinear

effects and enabling better efficiencies in terms of the net efficiency over all the wavelengths, has

been proposed by Dubietis et al. [77] and then re-developed by I. N. Ross [8, 78], and as we claimed

above there are several PhD thesis which sole subject is OPCPA.

Using OPCPA instead of CPA has several advantages but also drawbacks, we normally compare it

with CPA laser chains which are the fully developed technological competitor, there are few other

amplification techniques with comparable properties.
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1. Introduction to three wave mixing and optical amplification

The main difference between CPA and OPCPA is that CPA is based on pumping a material to an

excited state which results in an energy storage. OPCPA is based upon the mixing of two waves

(that create a third wave, the idler) and the energy transfer between the beams. The first process has

inherent thermal effects and this will not be the case in OPCPA.

CPA depends on the electronic structure of the amplification medium to obtain the spectral fre-

quencies which may be amplified, the spectral amplification shape. In OPCPA this depends on the

phase-matching conditions inside the nonlinear crystal. Due to this fact, in OPCPA the allowed

amplification bandwidth, (and tunability) is much larger then in CPA. In OPCPA we normally have

a higher gain per pass (100000× has been observed), which might at first sight, indicate a better

contrast. The main inconvenient in OPCPA is that due to the fact that OPA is a nonlinear process,

OPCPA tends to be more unstable than CPA, and actually more unstable than the pump and the

seed beams. In order to decrease these instabilities several vibration control and active stabilization

methods have to be designed [79].

1.4.4. Spectral bandwidth and shape

In the section above, we have given the resolution of the propagation equations for OPA in a quasi

plane wave approximation, however in reality this is just an approximation to a real OPCPA process.

In order to have short pulses after amplification we need to be aware of the limitations in the spectral

bandwidth which can be measured using the equations of the previous section for each spectral

component. Doing this we will know which wavelengths can be amplified.

There are several classical studies [8] that approach the phase matching condition in linear and

nonlinear configurations of the signal and pump beam. Normally the phase-mismatch can be com-

pensated for by adjusting the non-collinear angle between signal and pump, several schemes profit

from this property to obtain nJ level, 3.8 f s pulses and sub-7 f s amplified pulses.

The spectral bandwidth is not solely dependent on the geometry of the trio, pump, signal and idler. In

a situation where we have a small signal amplification, with an increase in amplification the amplified

bandwidth is going to decrease. Saturation tends to increase the spectral bandwidth [71].

In order to have an idea of the amplification bandwidth and magnitude in a collinear and non-collinear

case, using a small gain amplification or considering the depletion of the pump, we present the gain

profile in these four cases in Fig. (1.6) and Fig. (1.7). The analysis is made for a pump pulse at 532 nm

and a seed pulse at 800 nm, which is a classical example. The pump beam before amplification is a

5 ns pulse with 70 mJ energy and a peak intensity of approximately 0.2GW/cm2, and the seed pulse

is a ps pulse with 0.7 mJ and a peak intensity of approximately of 1.9MW/cm2, both beams with a

size of 3 mm. We are dealing with a classic Type I phase-matching in a BBO crystal. In this case the

nonlinear length LNL will be 3.6mm and we consider a path length of 15mm.
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1.4. Optical parametric amplification and optical chirped pulse amplification

For a small gain amplification, this results on average amplifications, on the order of ∼ 336 times for

the collinear case and ∼ 470 times for the non-collinear case, as well as a bandwidth of 3.9 nm in the

collinear case and 154 nm in the non-collinear case.
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Figure 1.6.: Frequency dependence of the signal gain as a function of the wavelength for the collinear and
non-collinear case.

It is important to notice that the small gain amplification is a parametric amplification independent

on the seed intensity, and so the data related to the energy and intensity of the seed pulse given above

do not play any role in this calculation, and we may consider that this would be the amplification in

a case where the signal pulse intensity would be much less then the pump intensity.
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Figure 1.7.: Signal gain in the case where we consider amplification with pump depletion, in the collinear and
the non-collinear cases. When calculating this graph we considered a single spectral linewidth
for the pump with a top hat temporal profile for both pulses and a top hat spectral profile for the
seed.

The pump depletion amplification is highly dependent on the pump intensity, on the seed intensity

and on the beam path, and the results are not so reliable because we considered an uniform seed

spectrum at the entry of the nonlinear medium. For the values given above, we obtain approximately

5 nm FWHM bandwidth in the collinear case and 163 nm in the non-collinear case. The amplification

values obtained are on the order of 35 times.
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1. Introduction to three wave mixing and optical amplification

In conclusion we may say that non-collinear phase matching gives us an additional degree of free-

dom that enables amplification of pulses of large spectral bandwidth, for low gain and high gain

configurations.

1.4.5. Walk-off

An important factor in OPCPA is the walk-off effect, which is due to the fact that in an anisotropic

crystal, the intensity and the phase do not propagate in the same direction. For more information on

this effect please consult [70].

1.4.6. Contrast in OPA/OPCPA

The contrast is a very important aspect of amplified laser systems, specially in high power laser

systems. Peak powers of hundreds of terawatts can mean that pre-pulses, at the order of 10−6, are

already sufficient to damage the material, ionize a gas or any other effect in the sample which could

randomize the result of an experiment of laser matter interaction.

In CPA laser chains the contrast is limited by the spontaneous emission that is amplified on the

subsequent amplification media (ASE - amplified spontaneous emission). When several amplifiers

are used the noise is also amplified – in fact it works similarly to noise amplification in electronic

circuits and so it obeys its general rules of using the less noisier amplifiers first and the noisier

amplifiers at the end.

In a single amplifier considering that the noise inputted by unit of length is given by n and that the

gain is given by G, the noise in the amplification is given by:

N(z) =
n
G

(
eGz−1

)
. (1.34)

However the contrast is not only dependent on the ASE. We also have to consider coherent effects

which might be due to imperfections in the compression, spectral modulations or simply partial

reflections in the optics. This may create pre- and post-pulses which may damage the contrast.

The contrast in OPCPA has been the subject of many studies [43, 69, 70, 80]. In principle, OPA

is a technique where the material does not absorb the light and so spontaneous emission (and so

ASE) does not exist, but we have parametric fluorescence that might in some cases have the same

effect, when the pump and the seed interact the parametric fluorescence diminishes considerably

(pump depletion). However in a standard situation the pump duration is longer than the seed pulse,

which means that when only the pump is present the parametric fluorescence is going to increase

considerably.
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1.5. Phase matching and Manley-Rowe relations in the three wave mixing

1.4.7. B integral

The B integral is the measure of the third order nonlinear effect, and both CPA and OPCPA have prob-

lems with this. Keeping the effect of the third order nonlinearity low means keeping the higher order

nonlinear effects low and the peak intensities below the damage threshold. Third order nonlinearities

can be a nuisance when compressing a pulse, but they also allow for pulse compression in some

special cases [81], however normally they introduce a spectral phase that is difficult to compensate

[70, 82]. Another effect of third order nonlinearities is the self-focusing of the laser, where the beam

profile in a nonlinear medium can create a parabolic refraction index which may simulate the effect

of a lens at the center of the beam and focus it into a spot. This may create hot spots, which may

damage the optics in the system.

Even if fiber amplifiers with B integrals as high as 16 have been reported (without nuisances to

pulse re-compression) [83] it is known that B integral above 1 modifies the spatial profile due to

self-focusing, and so high power laser systems are designed to have a B integral below 2 [84].

The B integral is the total phase shift due to the third order nonlinear coefficient and is given by

B =
2π

λ

∫
n2I(z)dz. (1.35)

It is intuitive that a low B means that the spectrum will only be slightly modified and also that the

spectral phase will be easier to compensate. OPA has normally a low value of the B integral, (one

order of magnitude lower than CPA, [70]) because the nonlinear medium is short. For low pump

depletion, it can be approximated by

B =
2π

λS

n2IS(0)
[

L
2
+ sinh

(
γL
2

)]
. (1.36)

1.5. Phase matching and Manley-Rowe relations in the three
wave mixing

Phase matching is the wave equivalent to momentum conservation in particle/mechanical physics.

In linear optics, when two photons collide, nothing happens due to the linearity of the Maxwell

equations, i.e., photons do not interact with each other. In nonlinear optics, a collision of two or

more photons may entail an interaction and the creation of new photons. The overall momentum and

energy of the photons has to be conserved during propagation.

In any collision the conservation of two quantities (energy and momentum) must be preserved. When

we have a mechanical collision we consider that mass has also to be conserved, however mass
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1. Introduction to three wave mixing and optical amplification

conservation does not make much sense in linear/nonlinear optics. If we consider that mass can

be related with the quantity of photons (as quantity of matter) it is clear that, in nonlinear optics, the

Manley-Rowe relations exhibit the properties of mass conservation.1

These properties can be deduced properly by integrating the coupled propagation equations (Eq. (1.2)).

Other way to get the Manley-Rowe relations is to analyze the energy diagrams associated with these

collisions. For instance, considering Fig. (1.1) we see that the gain in ω3 is the loss in ω2 and ω1, and

that the gain in ω1 is also the gain in ω2. This can be translated by:

∆N3 =−∆N2 =−∆N1, (1.37)

where ∆Ni is the variation of the number of photons at ωi. If we consider the mass to be the energy

of a photon then we get the energy conservation as an equivalent condition. If we consider the

mechanical equivalent of the TWM the SFG, where two classical bodies form another all together,

we would have to assume we would have to obey the conservation relations, in other words, we

would have at the same time a perfect elastic collision and a perfectly inelastic one:

~p3 = ~p1 +~p2

m3 = m1 +m2 ⇐⇒ p2
3

m3
=

p2
1

m1
+

p2
2

m2

E3 = E1 +E2

(1.38)

Using a direct mathematical calculation we obtain:

(
p3

m3

)2

=

(
p1

m1

)2

+

(
p2

m2

)2

−2 p1 p2cos(α), (1.39)

where α is the angle between ~p1 and ~p2. Treating it analytically, we get:

p2

m2
=

p1

m1
exp(iα) (1.40)

which does not make a lot of sense for classical body mechanics.

Considering ~p = h~k, the wave mechanics equivalent of momentum and energy conservation can be

viewed as:

(
~k3, ω3

)
=
(
~k1, ω1

)
+
(
~k2, ω2

)
, (1.41)

1If we consider the inertial mass there is another way to establish a parallel with mass in photons, which is to use the
Einstein energy equation, making the mass conservation equivalent to energy conservation.
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1.5. Phase matching and Manley-Rowe relations in the three wave mixing

which is the phase matching condition and the energy transfer between pulses. However, Eq. (1.28)

tells us that part of the energy transfer may be reversed after a distance that is equal to the inverse

of the phase mismatch, meaning that we have energy transfer even if we do not have perfect phase

matching. This distance is

zPM = π

4k (1.42)

in which,4~k = ~k3−~k2 ~−k1. This phase mismatch is discussed in detail. It is important to notice that,

at first, we do not know the direction of all the three vectors. In a difference frequency generation

(DFG) we do not know~k2 or~k1 and in a sum frequency generation (SFG) the~k3 is unknown. However

we know the length of the unknown vector even if we do not know its direction. When the existing

beams are collinear this problem seems to be algebraic. However in a non-collinear scheme, doubts

may arise on how to define the third vector’s direction.

In the case of a particle collision with a wall, or with the interface between two media (frictionless

collision) the momentum parallel to the interface between the media remains constant. However

the momentum perpendicular to the wall or the interface can change. Similarly, when three waves

interact in a nonlinear medium, the momentum does not change parallel to the interface of the

linear/nonlinear medium. In other words the phase-mismatch vector is perpendicular to the linear

medium/nonlinear medium interface. A scheme of phase-matching for a DFG between fields 3 and

1 is given in Fig. (1.8).

~k1

~k2

~k3 ~k3 � ~k1

�~k

~k3

~k1

LM NLM

Figure 1.8.: Representation of the momentum vectors,~k1,~k2,~k3 where ω3 = ω1 +ω2. Beam 2 is created as a
DFG of beams 3 and 1.

Alternatively we can look at this differentially and say that we must find the the vector that minimizes

the Hamiltonian factor (the Hamiltonian of a three wave mixing is proportional to
∫

E3E2E1):

∫ ∫

V

∫
exp
{

i∆~k ·~r
}

dV (1.43)
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1. Introduction to three wave mixing and optical amplification

From this equation we can see that the integration in the direction of the interface is an integration

over the width of the interface (winter f ace, in a plane wave approximation this would be an infinite

crystal) or the size of the beam. It is clear that the integration over this length would make the

phase-mismatch zero on this direction, with an allowed phase-mismatch that would be proportional

to (2π/winter f ace). For information on practical ways of ensuring phase matching we advise the

consultation of [69].

1.5.1. Type I phase matching in a uniaxial crystal, an example

This has been discussed by a wide range of authors, and thus we will be overlooking the basics. In

an uniaxial crystal we have one preferential axis and a plane perpendicular to this axis where the

index is the same over the entire plane. We have then two normal refraction indexes, one in a plane

which is called ordinary plane, and the other in a perpendicular axis called extraordinary axis where

the propagation is normal as well. The refraction index is given by:

1
n2(ω)

=
cos2(θ)

n2
o(ω)

+
sin2(θ)

n2
e(ω)

(1.44)

Type I phase matching in an uniaxial crystal means that we have two mixing waves (the low fre-

quency waves, ω1,ω2) whose electric fields are within the ordinary plane and the high frequency

wave ω3 which electric field is within the extraordinary plane (or with a a certain angle θ ), in this

case o+o→ e. For a Type II phase matching the waves are organized in a configuration o+ e→ o.

Normally we are working in a situation where, at the entry of the nonlinear medium (in this case

a crystal), there are only two beams meaning that there is a third beam being created either by

SFG or by DFG. Using this fact and the phase matching conditions (phase matching perpendicular

to the interaction surface null) we can calculate the direction from where the beam originates (the

propagation axis is considered to be z). In the DFG case the azimuthal angle of the third beam is

given by:

φ2 = arctan
(

ky
3− ky

1
kx

3− kx
1

)
. (1.45)

In the case of SFG we get:

φ3 = arctan
(

ky
2 + ky

1
kx

2 + kx
1

)
(1.46)

The axial angle for DFG is given by:
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θ2 = arcsin



√(

ky
3− ky

1

)2
+
(
kx

3− kx
1

)2

|k2|2


 (1.47)

and for SFG we have:

θ3 = arcsin



√(

ky
1 + ky

2

)2
+(kx

1 + kx
2)

2

|k3|2


 (1.48)

In the case where we have three beams mixing from the start we have to remember that we have to

integrate in x and y and for a plane wave this integral is a delta function of ∆kx,y. Using the equations

above, we determined the third beam direction using the two input beams within a χ(2) medium. The

magnitude of this third beam is determined by its refraction index by way of the expression 2πn
λ

. The

refraction index is determined using the electric field polarization.

We can now try to find the conditions over which we have null phase matching. For a collinear beam

we have:

k3 = k1 + k2 (1.49)

Using Eq. (1.49) and Eq. (1.44) we obtain (using 1
λ3

= 1
λ1
+ 1

λ2
):

θ = arccos




√√√√√λ
−2
3

(
n2

o(λ1)

λ 2
1

+ n2
o(λ2)

λ 2
2

+2 no(λ1)no(λ2)
λ1λ2

)−1
+n−2

e (λ3)

n−2
o (λ3)−n−2

e (λ3)


 . (1.50)

For a non-collinear case we get:

θ = arccos




√√√√√√√√√√

λ
−2
3




n2
o(λ1)

λ 2
1

+ n2
o(λ2)

λ 2
2
− no(λ1)

no(λ2)
λ2
λ1

sin2
α+

+2 no(λ1)no(λ2)
λ1λ2

(
cosα

√
1−
(

no(λ1)
no(λ2)

λ2
λ1

sinα

)2
)



−1

+n−2
e (λ3)

n−2
o (λ3)−n−2

e (λ3)




, (1.51)

where α is the angle betweenk1and k3.
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1.6. Final remarks

We use this chapter as an introduction to three wave mixing. We use the characteristic nonlinear

length and the solution of the propagation equations in Chap. (3) and in Chap. (4).

We discuss the phase-matching conditions in an uniaxial crystal which we will use in Chap. (2) and

in Chap. (5).

We also discuss some features of amplification, we calculate the difference in spectral gain in a low

pump depletion approximation and with pump depletion observing in Figs. (1.6) and (1.7), that in

the case where pump depletion is important the spectrum broadens.
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2. Study of optical amplification -
angularly chirped pulses for spectral
gain bandwidth enlargement in OPCPA
and presentation of a CPA chain with a
detailed discussion and modelization of
a laser oscillator

In this chapter we expose two techniques of optical amplification. There is an high interest on

optical amplification for practical applications and for basic scientific research. In recent studies,

Mourou et al. [85, 86] have envisioned that the Schwinger value could be approached using laser

amplification. This would give rise to an entire new field of study. Here we present two basic

studies of laser amplification. We present OPCPA simple schemes in a purely theoretical study and

afterwards a detailed description of a CPA chain. We also expose a detailed study of a Ti:Sapphire

laser oscillator with theoretical and experimental details. In fact, we present simulations of a laser

oscillator that do not consider the temporal/spectral issues but actually discuss the evolution of the

spatial characteristics of a pulse inside the oscillator.

This study was done with a Ti:Sapphire laser in mind. In this chapter, the OPCPA is obtained with

a seed pulse centered at 800 nm, the nonlinear medium is a BBO crystal, in a type I phase matching

configuration.

OPA was presented in the introductory Chap. 1, we worked with a SVE/quasi plane wave approxima-

tion OPA where the evolution of the beam may be resolved by the coupled equations (Eq. (1.2)). We

will use this approximation in every simulation, using the methods given in Sec. (1.4) of the intro-

duction. A Fourier decomposition of the field is used as well as a low pump depletion approximation.

OPCPA/OPA implies three pulses, the signal pulse seeded by an existing beam centered at ωs, which

is normally the pulse to be amplified, the pump pulse that has the highest frequency ωp and a third

pulse, the idler, with a frequency that is the difference of the frequencies between the two previous

pulses, ωI = ωp−ωs. It is basically DFG in which the pulse with the smallest wavelength transfers

energy to the low frequency pulses.
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In OPA, the energy is not stored in the medium and so the thermal effects on the crystal are much

smaller than in a classical CPA configuration. The gain per crystal length can be larger than in CPA

techniques. However, OPCPA’s most interesting feature is a gain profile controlled by the geometry

and temporal/spectral profile of the pulses.

The phase matching considerations are very important in order to have short pulse amplification.

Indeed, the phase match determines the spectral gain bandwidth which has to be as large as possible

for fs amplification. In this chapter, we are going to research some alternative phase-matching

configurations to enlarge the spectral bandwidth of the gain profile. In fact, the OPCPA enables

amplification of sub-6 f s without spectral filters [8]. The pulses amplified bandwidth is normally

bigger in a OPCPA scheme than in a classical CPA because, in the latter, the gain bandwidth is

constrained by the emission spectrum of the amplification medium.

The spectral gain bandwidth is going to depend on the gain itself, not only on the geometrical

configuration of the pulses. It is well known that the spectral gain bandwidth decreases with an

increase in gain. In a high gain configuration (without phase-matching considerations LNL ≫ ∆k−1),

the spectral gain bandwidth (∆λ s
1/2) is given by Eq. (2.1), where G is the maximum gain and λS, λI, λP

are the wavelengths of the signal, idler and pump respectively. This equation is written considering

that pump is far from depletion. If this is not the case, an enlarged gain bandwidth can be expected

as it can be seen the introductory chapter:

∆λ
s
1/2 ≈ 2

√
λSλI

1
1− ln2

lnG

√
λSλI

λ 2
P

1
1− ln2

lnG

−1. (2.1)

The gain bandwidth in frequency (∆ f1/2) is also limited by the velocity mismatch that may exist

between pulses [87]. It is possible to represent this in a Gaussian approximation to the pulses, as a

function of the velocity of the signal vs and the velocity of the pump vp by:

∆ f1/2 =
4ln2∣∣v−1

s − v−1
p
∣∣

√
g
L
, (2.2)

where g is the gain per unit of length, and L is the length of the medium.

Since the first proposals for a OPCPA amplification, the spectral bandwidth that could be amplified

has been studied. Ian Ross et al. [8] have proved that a non-collinear amplification would enable a

larger bandwidth than a collinear configuration. The optimal non-collinear angle (angle between the

signal and pump beams) has been calculated. This ”magic” angle tends to give the biggest spectral

gain profile bandwidth, because at this angle the phase-mismatch first derivative is null.

In this chapter we explore the spectral gain in different situations, not only in a non-collinear phase-

matching but also in a configuration where the pulses are spatially chirped. This increases the degrees
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of freedom of the problem and allows the phase-matching to be done over a wider spectral bandwidth.

Apart from the spectral bandwidth, the geometrical configuration can also favor others factors such as

the beam pointing stability and tolerance to the pump wavelength, in other words, the non-collinear

angle/phase-matching angle configuration may allow for an insensibility to these factors. However

the non-collinear angle with which insensitivity to the pump wavelength is maximal is not the same

angle where we have the maximum signal gain bandwidth. However, seen that an extra degree of

freedom (the spatial chirp) exists, it is possible to widen the gain bandwidth with one factor and beam

pointing stability with the other. This is quite important because it is known that stability is one of

the most critical aspects of OPCPA, instability in the system can also be due to several other factors

like temporal jitter [80].

Two pump wavelength configurations will be presented, for a non degenerated problem and for a

degenerated/quasi-degenerated problem in Sec. (2.1), we will discuss the influence that these two

configurations have on the amplified bandwidth.

Afterwards, in Sec. (2.2), we will give a simple analytical approach of spatially chirped pulses,

followed by some simulations using chirped pulses, in Sub-Sec. (2.2.2).

In Sec. (2.3), we present in detail a Ti:Sapphire oscillator. We discuss the dispersion management

that is necessary for mode-locking (ML), the astigmatism inside the laser and its spectral profile. We

then present simulations of the ML cavity, a detailed discussion of the thermal lens in play and of the

spot size, as well as the the consequences of the sub-cavity configuration, the thermal lens and the

Kerr lens on the ML operation. In this section, we try to identify the best sub-cavity configuration

to have a ML operation and discuss the methods we can use to determine the propensity to ML. We

end this section with an experimental scheme of one of the cavity stability zones and where the ML

operation was preformed.

The ML oscillator described in Sec. (2.3) was used to seed a CPA chain, we describe this CPA

chain in Sec. (2.5). This amplified laser included a regenerative amplifier and a 4-pass amplifier, the

regenerative amplifier has a set of two prisms inside the cavity that will help to select the bandwidth

of the output. This system will not only help to select the central wavelength but also to reduce the

FWHM of the spectrum, which was our objective here.

2.1. OPCPA gain bandwidth in a non-degenerative
configuration versus a degenerative situation

As we already have referred in the beginning of this section, we consider a seed laser with wave-

lengths around 800nm, which is approximately the central wavelength of a Ti:Sapphire laser. We

consider two options in what concerns the pump laser, our options are dependent on the available
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solid state lasers with wavelengths smaller than 800 nm. There are available pump lasers near 500

nm, either doubled solid state lasers like Nd:glass (phosphate glasses 527nm and silicate glasses

531nm), Nd:YAG (532nm), Nd:VO4 (532nm), Nd:YLF (523/526nm) and Nd:YCOB (530nm), or

rare earth doped fiber lasers at doubled communications wavelength. Another approach is to use

a doubled Ti:Sapphire laser near 400nm. The second approach results in a degenerated or quasi

degenerated DFG.

In a degenerative configuration, the angle between pump and seed that maximizes the amplified

bandwidth is zero (Eq. (2.7)) and the phase-matching angle θ is 29º. For a 500nm, this means an

internal non-collinear angle of 2.7º and a phase-matching angle θ of 25º. By coincidence this angle

is similar to the walk-off angle.

It is intuitive that a degenerative OPA situation will result in a quadratic phase matching curve,

because the idler and the signal are not distinguishable (type I phase-matching) and so going to the

left or right of the central wavelength is the same. In a non-degenerated case, the phase mismatch

curve will not be parabolic, the FWHM gain bandwidth will be bigger but the spectral gain profile

will be more irregular.

Signal 
wavelength (nm) 

G 

Pump wavelength 
(nm) 

Figure 2.1.: Gain profile in small pump depletion approximation as a function of signal and pump wavelength,
in a degenerated case.

In Fig. (2.1) we represent the gain as a function of the pump and signal wavelengths. The parabolic

profile that is due to a parabolic phase-mismatch seen in Fig. (2.1) is an obstacle to a large gain

spectral bandwidth. In the profile of Fig. (2.1), we see that the top of the gain is clearly defined

by the phase-matching condition, and that there is no sensitivity to the wavelengths apart from the

phase-matching itself. If we obey the phase matching condition for the central wavelengths, changing

the non-collinear angle is the equivalent to turn the gain profile around the central wavelength.

From this, we see that the worst possible condition for the pump wavelength insensibility will
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2.2. OPA phase matching adjustments using an angular chirped signal

be when the spectral gain bandwidth is the smallest. Fig. (2.1) clearly shows a parabolic profile

and an insensitivity of the gain to the pulses wavelength. This picture was obtained using a PM

configuration for a degenerative configuration, α = 0 and θ = 29,18º, a crystal length of 2mm and

a pump intensity of 5×1010W/cm2. In a non-degenerative configuration (532 nm/800 nm) however,

the phase-matching conditions are not symmetric for the idler and signal pulses, the idler is going

to be centered at 1.59µm. The gain is given by Fig. (2.2). In this situation the phase-mismatch

has a cubic shape in the signal-pump wavelength diagram. This picture was obtained using a PM

configuration for a non-degenerative configuration, α = 2.38 and θ = 23.8º and a crystal length of

15mm and a pump intensity of 2×1012W/cm2.

G 

Signal wavelength 
(nm) 

Pump wavelength (nm) 

Figure 2.2.: Gain in a small pump depletion approximation as a function of signal and pump wavelength, in
a non-degenerated configuration.

2.2. OPA phase matching adjustments using an angular
chirped signal

In this section, we study OPA phase matching conditions when the signal has an angular chirp.

Having an angular or spatial chirp in the signal, gives us one more degree of freedom, which may be

used to have a bigger bandwidth, a bigger beam pointing stability or an insensibility the the pump

bandwidth. We can have mixed situations where we adjust the two degrees of freedom, the non-

collinear angle and the spatial chirp, to obey two different conditions, for instance the insensibility

to the pump bandwidth and spectral bandwidth maximization.

From Fig. (2.3) (where we represent the angles α, β , γ) we deduce the following equations that will

be used further on:
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k2
P = k2

S + k2
I +2kSkI cos(β ) (2.3)

k2
S = k2

P + k2
I −2kPkI cos(γ) (2.4)

k2
I = k2

P + k2
S−2kPkS cos(α) (2.5)
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Figure 2.3.: Phase matching configuration inside the crystal with the three vectors important for phase
matching and the important angles for phase-matching.

2.2.1. Spectral Bandwidth maximization

We have seen above that the spectral bandwidth depends on several factors. Here we consider

solely the phase matching condition in the crystal, which is the most crucial factor. The maximum

bandwidth conditions for a non spatially chirped pulses may be given by adjusting the phase matching

and the non-collinear angle. We start with a known phase matching condition, stated above in

Eq. (2.5).

In order to increase the spectral bandwidth, we have to have tolerance to the frequency of the signal

ωS, changing the frequency of the signal will also imply changing the frequency of the idler ωI , since

the pump frequency is considered to be constant and since we have a fixed relation between the three

frequencies that is given by: ωP = ωS +ωI . The relation between the two varying frequencies will

be given by dωI
dωS

= −1 or dkI
dkS

= − ngI
ngS

. We use Eq. (2.5) in order to study the tolerance to the seed

frequency. We chose this equation because, when altering the wave vector of the seed, the angle α is

the only one that stays constant. The result is given by:

kP cos(α)v−1
gS = ksv−1

gS + kIv−1
gI (2.6)
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Where vgS and vgI are the group velocities of the signal and the idler. From this simple equation it is

easy to deduce the following non-collinear angle:

cos(β ) =
ngI

ngS
(2.7)

or

αEXT = arcsin
(

ki

kp
sin
(

arccos
(

ngI

ngS

)))
(2.8)

Where ngS and ngI are the group refractive index for the signal and the idler, this calculation had

already been done in [8]. In here we can try a different approach by considering a spatial chirp. We

will define our linear chirp as follows:

LC =
d(−cos(α))

dωS
' α

dα

dωS
(2.9)

Using this relation we re-deduce the equations above deriving Eq. (2.5) but considering that α is no

longer constant with ωS, but instead, that cos(α) derivative is constant.

kPv−1
gS cos(α)− kPkSLC = ksv−1

gS + kIv−1
gI (2.10)

As we have two degrees of freedom, we can differentiate the equation once more and obtain a second

derivative condition:

kPk
′′
S cos(α)−2kPv−1

gS LC = v−2
gS − v−2

gI + kSk
′′
S− kIk

′′
I (2.11)

Combining the two equations, we arrive at the following formula for the spatial chirp:

LC =
v−2

gS − v−2
gI − kI

[
k
′′
I + k

′′
S

vgI
vgS

]

kP

(
2v−1

gS + kSk′′SvgS

) (2.12)

The ideal non-collinear angle also changes, and is given by the following formula:

cos(α) =
kS + kI

vgS
vgI

kP
+ vgSkSLC (2.13)

It might be more practical to put these expressions on the following form, where the spatial chirp is
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given by:

LC =
ngS

ckP

(
kIb+(

ngI
ngS

)2−1
)

2+ λ 2
S

n2
gS

n′′S
(2.14)

where n
′′
S =

d2n
dλ 2

∣∣∣
λS

and the angle between ~kI and ~kS may be given as cos(β ) = ngI
ngS

+ kPkS
kI

vgSLC, where

b is given by b = d2kI
dk2

S
= 1

2πngS

[
ngI
ngS

n
′′
Sλ 3

S −n
′′
I λ 3

I

]
and n

′′
I =

d2n
dλ 2

∣∣∣
λI

.

These are the conditions that allow spatial chirp and the angle between the pump and the seed to

enlarge the spectral gain bandwidth. Please beware that these results do not work in a degenerated

configuration (sin that situation LC = 0). We may see this by equaling idler to signal, the parameter

b will be zero and
(

ngI
ngS

)2
= 1, the spatial chirp would be zero. However this may mean that, if we

define the spatial chirp differently, the results might be different, in reality because the optimal angle

for a degenerated situation is zero the definition of LC in Eq. (2.9) will automatically mean LC = 0

even if dα

dω
is not.

We could use the relations in [8] to obtain combined effects, for instance the condition to have tol-

erance in the pump wavelength that is expressed by Eq. (2.15) and Eq. (2.16) may be combined with

the first order derivative condition in Eq. (2.10), in order to obtain at the same time an insensibility

to the pump wavelength and a wider spectral bandwidth.

cos(γ) =
ngI

ngP
(2.15)

kP = kS cos(α)+ kI
ngI

ngP
(2.16)

where ngP is the group refraction index of the pump. The combination of the Eqs. (2.16) and (2.10)

gives:

LC =
ngS

c

[
1
k2

S

[
kP− kI

ngI

ngP

]
− 1

kP
− kI

k2
pk2

s

ngI

ngS

]
(2.17)

2.2.2. OPCPA simulations using spatially chirped pulses

We did several calculations in order to determine the ability of spatial chirp to increase the gain

spectral bandwidth. We did this using the non-degenerated configuration using a pump with a

wavelength of 532nm and the degenerated case with a pump wavelength of 400nm. The biggest
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2.2. OPA phase matching adjustments using an angular chirped signal

spectral bandwidth was obtained in the second case.

In our simulations, we used a low pump depletion approximation and summed the electric field of a

virtual seed at different wavelengths; the considered intensities as well as the crystal length are the

ones that were used in Sec. (2.1). The seed signal non-collinear angle depended on the wavelength

according to the formula: α(λ ) = α0 +(λ − λ0)× L, the central wavelength λ0 is 800nm. For a

pump with a wavelength of 400nm a sweep the central non-collinear angle α0 (please note that α0

is the angle between the pump and the seed signal at λ0) and of the angular chirp L was done, the

FWHM of the spectral gain is given in Fig. (2.4).
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Figure 2.4.: FWHM of the spectral gain as a function of the non-collinear angle and the angular chirp, with
the color scale given in nanometers.

We may see that parameters which maximize the FWHM of the spectral gain are L= 2.2×10−4rad/nm

and α0 = 0º. We use this parameters to calculate the spectral gain and phase. The result can be found

in Fig. (2.5). The spectral gain is going to have a FWHM of 450nm centered at 850nm.

G
ai
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Wavelength (nm)

Figure 2.5.: (blue) Gain in function of the wavelength for a pump at 400nm and a seed centered at 800nm,
(green) spectral phase accumulated due to OPA for each wavelength.

37



2. Study of optical amplification

A similar simulation was presented by Cardoso et al. [12, 13]. They used a different relation between

the non-collinear angle and the wavelength, a different pump and seed wavelengths as well as a sweep

over different parameters, but the idea was also to use spatial chirp in order to increase the bandwidth

of the gain spectral. They also concluded that the degenerated case presented a bigger spectral gain

bandwidth than the non-degenerate case.

2.3. Ti:Sapphire oscillator

We built and simulated a Ti:Sapphire mode-locked oscillator. The laser is designed to have a spectral

bandwidth of 150nm. The dispersion compensation is constituted by a set of chirped mirrors plus

two fused silica prisms. By combining these two compensation schemes, the objective was to have

at the same time a spectral emission between 750 and 900 nm, a high stability due to the reduced

dimensions of the cavity and the flexibility to adjust the spectral profile at will.

The passive mode-lock (ML) involved here is called Kerr lens mode-locking (KLM), due to the Kerr

effect introduced in the Ti:Sapphire crystal that is also the gain medium. In broad terms what we

have is a positive gain feedback of the most intense pulses, that will lock the modes of the oscillator

cavity.

If we have a Kerr medium inside a cavity, the radiation will be affected by the Kerr effect which is a

third order nonlinear effect. Because of this non-linearity, peaks in the intensity propagating inside

the cavity will be more affected by the Kerr nonlinearity than the CW component. These peaks

will suffer a two part effect, a combination of self phase modulation (SPM), that enlarges the pulses

spectrum and modifies its spectral phase, plus a lens effect that is due to the spatial profile of the beam

inside the cavity. In a properly aligned cavity, the resulting Gaussian profile will either increase or

decrease the beam size, depending on the observed position, and on the overall configuration of the

cavity. If we have a way of selecting a beam of a certain size, then we can create an enhancing

mechanism for that beam, which has a specific size.

In practice, we either put an aperture at edge of the cavity and select the smallest beam in the back

mirror, by increasing the loss of the other modes, or we decrease the pump size inside the gain

medium and increase the gain for the mode with the smallest size in the crystal. In the first case,

we are dealing with an ”hard aperture mode-lock”, in the second with ”soft aperture mode-lock”. In

order to have pulses with a duration of a few femtoseconds, dispersive effects have to be taken into

consideration. In fact, if a pulse passes through a set of dispersive optics, its duration will enlarge.

The shorter the Fourier transform of the pulse (bigger spectral bandwidth) the more the duration will

increase. This will decrease the Kerr effect suffered by the beam which, in turn, will decrease the

spectral bandwidth and the KLM stability.

In order to avoid this, we have to control the dispersion and, more specifically, we have to decrease
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2.3. Ti:Sapphire oscillator

the pulse duration by compensating the spectral phase introduced by the dispersive optics (it will

increase the pulse intensity, which in turn focus the beam due to the Kerr lens, and will increase the

Kerr effect).

The issue of sub-two-cycle radiation directly from a Ti:Sapphire oscillator have been reported [88,

89]. Please note that sub-cycle laser pulse propagation would be theoretically impossible1, however

this does not mean that sub-cycle pulses are not possible in a certain time-space point [90]. It simply

means that their propagation as a sub-cycle pulse is not possible [91], which means that the issue of

KLM lasers is on the edge of what is physically possible. The locking mechanism in KLM is not

spontaneous. Initially, the laser is in a CW mode, it only enters into a mode-lock configuration if

a perturbation in the optical set starts the feedback mechanism. This perturbation may be a slight

”bump” in one optical component of the cavity or in the optical table where it is assembled. In the

first versions of KLM oscillators, one mirror was attached to a shaker that perturbed the cavity into

mode-locking [30, 92]. Some of the more recent oscillators are stable enough not to need this artifice.

The laser we describe in this section is one of those devices, where a single ”bump” in the cavity is

enough to mode-lock it.

Because there are some very good academic presentations on the basic theory inherent to these

oscillators [93, 94], we do not debate it any further. Suffice to say that the stability of this oscillators

is assured by the locking mechanism, that is due to the phase introduced by the linear dispersion

and nonlinear dispersion. This mechanism is stable and it allows frequency measurements with a

precision of 1019 over 100 THz [95], or frequency combs with sub-mHz spectral linewidth [96].

This type of oscillators have been widely reported by several authors. The first proposals and

analyzes of Kerr medium on mode-lock/Q-switch lasers were done in the 1970’s [97–99]. The

spectroscopic and laser characteristics of Ti:Sapphire were studied in the 1980’s [100, 101] and

the firsts Kerr lens mode-locking lasers appeared in the early 1990’s [19, 23, 29, 102–104]. Since

then they have been explored by numerous authors, both in experimental studies and simulations.

Several commercial Ti:Sapphire femtosecond lasers are available (see list in [105]) and fundamental

research on the Ti:Sapphire mode-lock oscillator continues [21, 27, 106].

The most stable and first described Ti:Sapphire are hard aperture lasers. When compared to a soft

aperture, the conditions that enable mode-lock operation are not so strict, and so it is presumably

easier to achieve self starting mode-lock in the first case [29]. However self starting mode-locking

as been achieved in both cases for asymmetric cavities[31, 107]. Self-starting mode-locking [20] de-

pends on the nonlinearity of the cavity itself and can be achieved by introducing additional nonlinear

elements into the cavity [108].

Early authors, reported oscillators where dispersion compensation was exclusively made by a set

of two prisms inside the cavity, these prisms compensate the dispersion caused by the intracavity

1By definition the DC component of a sub-cycle pulse is different from zero. A DC component of a electric field cannot
be propagated.
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medium [19]. However the advent of chirped mirrors [109] has enable the design of oscillators in

which spectral phase compensation is done on the basis of these mirrors and wedge plates [110].

Using chirped mirrors has several advantages: larger spectral bandwidth, more compact oscillators

[32, 111] and, in a prismless oscillator, the coupling between amplitude/beam pointing and the carrier

envelope phase is also eliminated [28]. However, having prisms inside the cavity allows the spectral

intensity profile to be more flexible.

The exact model that we develop to calculate the oscillator beam size had not been presented previ-

ously. In this model, we do not include the temporal and spectral features of the resonating pulse.

We find a coherent model, that determines beam propagation inside the cavity considering the pump

size, the thermal lens and the Kerr lens. The sub-cavity is constituted by two curved mirrors plus the

doped Ti:Sapphire crystal. It is well known that the exact dimensions of this sub-cavity are essential

to the cavity dynamics, and so we use our model to make a 2D sweep of the sub-cavity dimensions

that can be controlled experimentally.

The ability of a laser to enter into a mode-lock configuration and the stability of this configuration

may be evaluated using the Kerr lens mode-locking parameter [93, 107, 112]. There are several

formulas for this parameter that are discussed here. Another interesting feature is to see which

configuration leads to a smaller mode-lock beam size; this beam size will translate into a bigger

SPM and to a larger spectral bandwidth. With this model, we accurately predicted the results of a

similar laser that is presented in [106]. For a reference on a Ti:Sapphire laser model that considers

only the temporal propagation inside the cavity please consult [32].

2.3.1. Oscillator laser description

A general scheme of the laser oscillator is given in Fig. (2.6).

The dimensions of the cavity are presented in Tab. (2.1). The lens that focus the pump laser in the

gain medium has a +70mm focal length. The pump laser is a Millennia 532 nm CW, DPSS Lasers-

5W, and the pump power used was 3.28W . The Ti:Sapphire crystal has a 0.15% concentration of

Ti2O3 and a thickness of 4.5mm.

OC-M2 20.70 cm MC1-M3 38.50 cm
M2-M1 17.20 cm M3-M4’ 56.00 cm

M1-MC2 23.70 cm M3-P1 14.55 cm
MC1-MC2 10.75 cm P1-P2 24.80 cm
CR-MC2 5.30 cm P2-M4 17.25 cm
CR-MC1 5.10 cm CR length 4.5 mm

Table 2.1.: Dimensions of the oscillator.

E is a descendent crossed polarization elevator with two 45° degrees mirrors with a distance between
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them of around 9.5cm; it brings the beam from a height of 16.2cm to a height of 7.5cm, that is the

height in which the laser is built. The MG1 and MG2 are two dielectric mirrors (@532nm), MG1

has a fine adjustment that can be quantified.

MC1 and MC2 have both a 50mm focal distance and both reflect in the 800nm region and transmit

approximately 99.7% @532nm. MC1 has the reference Z0805033, and MC2 has Z0805031 (Lay-

ertech mirrors). These mirrors have a reflectivity of at least 99.8% from 630nm to 1010nm. We

present the transmission and GDD of these mirrors in the appendix Figs. (B.1) and (B.2), the typical

combined GDD introduced by this mirrors is -160 f s2@800nm. The mirrors transmission at 532nm

is approximately 99.7%, this is important because they must transmit the green pumping light, that

is collinear to the laser beam, in the sub-cavity. The output coupler (OC) transmittance is 10% with

a bandwidth from 700nm to 900nm, the transmittance profile can be found in the annex, Fig. (B.3).

The GDD introduced on the reflected beam by the output coupled is negligible, Fig. (B.4).
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Figure 2.6.: (top) Laser oscillator cavity scheme, with plane mirrors M1, M2, M3, M4, and the plane silver
mirror M4’, output coupler OC, prisms P1,and P2, sub-cavity mirrors MC1 and MC2, transport
mirrors MG1 and MG2, elevator E and focal lens L. (bottom) Photo of the cavity.
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The mirrors on the arm of the output coupler M1 (reference Z0102037), and M2 (reference Z0102041),

(Layertec mirrors) are configured for high transmission 600− 900nm at zero degrees. The sum of

both mirrors GDD is approximately -100 f s2@800 nm, the GDD of each mirror oscillates, however

the oscillations cancel each other, and so the combined GDD is near flat.

Mirrors M3 (G0304008) and M4 (G1003015) have GDD profiles similar to M1 and M2 (with

smoother oscillations) and a combined GDD of −100 f s2@800nm. M4 has a reflectivity higher

than 99.8% for 630− 1010nm and M3 from 650− 1040nm. The transmission and GDD data of

these mirrors can be found in the annex, Figs. (B.5), (B.6), (B.7), (B.8), and (B.9).

The prisms are made with fused silica, and with roughly 15mm length, they are designed in such a

way that the minimal deviation angle is also the Brewster angle, which gives an apex angle of ∼ 58º.

The total cavity length is approximately 1.669 m for the prismless cavity configuration and 1.675 m

for the cavity with prisms.

The mirror M4’ is a support mirror only used in alignment. When first assembling the oscillator,

the cavity is first aligned using the pump light reflected by MC1, the prism P1 is pushed back in

order for the light to go through to M4’ that reflects the light back to the crystal. This reflected

laser passes trough the crystal and a small part is reflected to the other arm of the cavity (by MC2)

we use this light to align the mirrors in the other side of the cavity until the OC, which reflects the

light back into the crystal. We can also align the cavity using the fluorescence of the Ti:Sapphire,

mainly on the arm of the OC (which sometimes is convenient if we do not see the pump light due

to the < 0.3% of reflectivity of the subcavity concave mirrors). At this point the laser can enter a

continuous wave regime (CW) and by shear coincidence this laser configuration can also mode-lock

without the prisms inserted, with a small spectrum. It is easier to have the laser in CW because the

sub-cavity configuration is not so demanding, only some sub-cavity configurations are favorable for

a ML regime (see the cavity stability models below). After having laser light the prisms are inserted

in a minimum deviation angle (with the prisms inserted the pump light is no longer reflected back to

the crystal), and the back mirror M4 is placed so that it reflects the light to the crystal, until we have

laser light in the cavity

2.3.2. Astigmatism compensation

The Ti:Sapphire crystal is placed at Brewster angle, this means that the beam will be different in

the tangential and sagittal planes. In fact, the crystal is not only acting as the gain/propagation

medium but it has an intrinsic astigmatic lens (because of gain guiding and thermal lens) that is the

combination of the Kerr lens, created by the laser pulse itself, and a thermal lens, due to the pump

pulse intensity profile. The Kerr lens only exists when the pulse is mode-locked.

We use the folding of the cavity in order to compensate for the astigmatism in the nonlinear medium.

More specifically, we use the extra distance traveled by the beam in the sagittal plane to compensate
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the difference in the focal length of the astigmatic curved mirror of the sub-cavity (if both mirrors

are equal ds−2 fs = dt −2 ft). This will give the expression2:

cos2
θ +

Nt
R

cosθ = 1 (2.18)

where θ is the incidence angle on the curved mirror, R is the curvature radius of the mirrors, t the

thickness of the crystal and N is a parameter dependent on the refraction index (n): N =
√

n2 +1 n2−1
n4 .

Applying Eq. (2.18) gives us an angle of 8.07º.

In practice, we first aligned the cavity without any prisms, even without prisms the cavity was able

to ML, and so it is possible to have a cavity with two important characteristics: no prisms and a Kerr

lens. It is with this cavity that we adjust the folding angle by minimizing the astigmatism of this

output beam. The fact that we do not have to readjust the prisms makes it easier to align, because

there are less degrees of freedom and the fact that there is a Kerr lens allows us to try to compensate

the astigmatism introduced by the Kerr lens as well. We start with a folding angle of 15°, and we

corrected (decreased) it observing the astigmatism at the output mirror, the final angle was near 7.5º.

This ML configuration as 50 nm bandwidth.

Using a simple model, explained below, and the commercial program WinLase, we find the stability

for the tangential and sagittal plane in function of one of the sub-cavity dimensions. We adjust the

folding angle in order to obtain the same stability values in both planes, for the point where passive

Kerr lens mode locking should occur, this angle is 7.2º.

2.3.3. Dispersion control

As we said above, we included prisms and chirped mirrors in the cavity in order to have: a better

dispersion control, to allow the size of the cavity to be smaller, which results in a cavity that is more

stable, and also in the flexibility that allows active dispersion control and so an adjustable spectral

intensity profile. It is hard to modulate the dispersion inside the cavity, the mirror and prism introduce

a spectral phase which is easy to calculate however the nonlinear Kerr medium, the Ti:Sapphire

crystal, introduces a temporal dispersion which is hard to modulate and it is dependent on the pulse

inside the crystal. A theoretical detailed study on the intracavity dispersion in this oscillator is given

by Giambruno in his PhD thesis [113].

The first prism (P1) insertion controls the amount of material (amount of fused silica) the beam

passes through. If we take into consideration the Fermat principle, it is easy to see that the second

prism is a wavelength selector. In minimal insertion, the dispersion induced by the prisms is given

by [92]:

2This expression was taken from [93].
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d2φ

dω2

∣∣∣∣
prisms

' 527.4−21.1Lp [ f s2] (2.19)

Where Lp is the distance between the prisms, in cm. This results in a null dispersion for Lp ' 25cm,

negative for bigger distances and positive for smaller distances. It must be clear that this is the

value for minimum beam insertion in the first prism. The insertion has a positive chirp and for each

millimeter of fused silica inserted into the beam path the round trip accumulates more 126 f s2 of

dispersion.

From this we see that the dispersion introduced by the prisms in the scheme given above is slightly

positive, +4 f s2. It would be impossible to ML this laser without chirped mirrors. In fact, in order

to compensate the linear dispersion of 2× 4.5mm of sapphire plus air without chirped mirrors the

distance between prisms would have to be above 49.7cm [92].

In our case the sum of the negative GDD due to the chirped mirrors in a cavity round trip is

approximately -700 f s2@800nm, the output coupler has a positive dispersion of ~ +5 f s2@800nm.

At 700nm the output coupler has ~ +10 f s2 and the chirped mirrors have ~ -580 f s2.

The positive GDD due to a round trip in air and in the Ti:Sapphire is ~ +673 f s2@800 nm, which

combined with the mirror values gives ∼ −22 f s2@800nm of GDD in an entire round trip of the

cavity. The same value for 700 nm is ~ +103 f s2. Please be aware that the insertion of the fused

silica that is +126 f s2

mmo f insertion @800 nm, is not counted as well as the nonlinear phase due to the Kerr

effect.

Let us now start to describe what we did in practice. The mirrors here exchanged in the search for

a larger spectrum, although the dispersion seemed to change and the insertion of P1 to get the same

spectrum would have to be different, we did not find any qualitative difference in terms of FWHM in

large spectrums. The spectrum modulations that appear at some circumstances were observed in all

the cases, no matter how the mirrors were distributed in the oscillator. We also tried several distances

between prisms. We explored the region between 33cm and 21.6cm of prism to prism distance. At

the extremes of these distances, the oscillator became unstable and it was quite difficult to ML. The

actual distance between prisms of 24.8cm is not critical because we obtain similar spectrums with

distances between 23.5cm and 26cm.

The final stable configuration had an output power of 0.35W (ML configuration), which signifies

3.93nJ per pulse and 0.3W in a free running configuration. The spectral bandwidth FWHM was

150nm in a logarithmic scale and 100nm in a linear scale. The insertion between prisms is such that

the distance between reflections in P1 is 9mm and in P2 is 3mm. The spectrum is shown in Fig. (2.7).

For a cavity with prisms, the spectrum depends on the position of the prisms. The spectrum was

easily found from 650nm to 950nm, most of these spectrums were either unstable or there FWHM

was smaller than 100nm. We remind the reader that the output coupler worked between 700nm and
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900nm and so the part of the spectrum that is below 700nm passes only once in the oscillator and it

is simply due to the SPM in the gain medium, in other words, it is not resonant.
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Figure 2.7.: Laser oscillator spectrum.

Some stable configurations presented spectral shapes which, in a logarithmic scale, had a FWHM

that exceeded the FWHM of Fig. (2.7). However these FWHM in linear scale did not exceed 50nm,

a scheme of this spectrum is presented in the appendix (see Fig. (B.10)). This spectrum may be

obtained just by moving the prisms, namely by inserting a higher quantity of glass with P2, this will

increase the round trip cavity gain at lower wavelengths.

2.3.4. Cavity stability model in cw and in mode-lock

Calculating the stability of the laser using ABCD matrices is a well known method that is detailed in

several academic courses [114, 115]. We use this tool in order to evaluate the spatial characteristics

(curvature radius and mode size) in the laser, both in the CW mode and in ML. We consider only the

spatial effects in a Gaussian and paraxial approximation. This is a strait forward calculation if we

consider a CW mode, the laser stability and size do not depend on the pulse intensity, only on the

other intracavity elements.

If we assume this, we have to estimate the thermal lens to completely reconstruct the ABCD matrix of

the cavity and in doing so, to reconstruct the laser beam characteristics. However even in CW mode, it

is difficult to make a precise estimate of the pump size. In order to have a good estimate for the pump

size, we may compare it to the beam size. In other words, in order to assure a properly distributed

gain profile the pump size cannot be smaller than the infrared mode size, otherwise the actual beam

size is smaller and the beam cannot be resonant in the same cavity. On the other hand, if the pump

size is too big, the gain decreases because the population inversion decreases. In conclusion, if the

thermal lens is important, the beam size associated has to be comparable to the pump size. We could

then devise an algorithm to estimate which pump size adapts to the beam size. Experimentally, we
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move the pump beam size by adjusting the lens that focus the pump on the gain medium.

In a mode-lock regime, we will have at least 3 positive feedback regimes: the intensity of the laser

in the gain medium will impact the Kerr and thermal lens and in consequence this will affect the size

of the beam that will impact its intensity. Also, the intensity will affect the spectral profile due to

the SPM of the Kerr effect, that extra spectral component, if compressed by the dispersion control

mechanism, will increase the intensity itself. Moreover the average gain in a mode-lock configuration

will be bigger, because the spatial profile of the laser will be smaller than the spatial profile of the

pump.

If we would want to completely simulate what happens in a mode-lock laser we would have to

simulate the temporal part of the mechanism and the small increase in average gain that takes place

due to a better mode matching. However we will only simulate the spatial part of the mechanism

assuming that the power of the beam is the one observed experimentally, the way the beam reaches

this power is not our concern. The calculation will be self consistent, we will not guess the size of

the beam profile inside the crystal, but the obtained profile will be consistent with the beam power

and with the effects this power creates in the crystal.

2.3.4.1. Thermal and Kerr lens in a GRIN medium

Before calculating the stability profile of the cavity, let us study the effects presented in the nonlinear

medium. We will not study the temporal effects, only the spatial effects in a steady state. The thermal

lens introduced by the pump exists no matter the mode that the cavity finds itself in, however the Kerr

effect is only important if the laser is in a mode-locked state. Please note that the Kerr lens is due

to a nonlinear effect and in a CW mode neither the pump nor the resonant laser have enough peak

power to induce a Kerr lens.

The pump laser is going to be absorbed by the Ti:Sapphire crystal, assuring population inversion, but

also heating the crystal. This heat is going to create a gradient in the temperature distribution of the

crystal, it is this effect that is going to produce a lens effect. It is important to clarify that it is the

temperature gradient that creates the thermal lens and not the pump laser itself. Indeed, in order to

have a thermal lens, the beam size can be bigger than the pump size and this is only possible because

it is the thermal gradient that creates the lens.

Within the framework of a very simple model, the thermal lens power is going to be given by

Eq. (2.20).

f−1
th =

1
n

[
dn
dT

+(n−1)(1+ v)αT +
1
2

n3
αT pe f f

]
ηthIabs

K
1

1+2
(

wL
wP

)2 , (2.20)

where:
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ä n is the refraction index, corrected for the nonlinear Kerr effect, n = n0(λ )+n2IL,

ä dn
dT the variation of the index with temperature,

ä Iabs the intensity of the beam absorbed by the crystal, Iabs =
Pabs
πw2

p
, wp the pump diameter in the

crystal, Pabs average pump power that is absorbed by the crystal,

ä nth the part of the absorbed pump that is converted into heat,

ä K the thermal capacity of the crystal,

ä v the Poison coefficient,

ä αT the thermal expansion coefficient,

ä pe f f the strain-optic effective constant,

ä wP the the size of the pump beam,

ä wL the size of the laser beam.

In order to obtain this formula, we first make a parabolic approximation to the temperature profile

[116–118], and then take the value of this approximation and calculate the optical path deformation

due to this effect [119, 120].

Most studies do not account for the correction term that adjusts the laser beam to the pump beam,
1

1+2
(

wL
wP

)2 , which is the same to consider that the temperature gradient is calculated using a linewidth

heat source and a cooling at the hedges of the crystal. However the heat source is not a line, the

pump that heats the crystal has a Gaussian shape, with a size is similar to the size of the laser beam.

In order to consider the mode adaptation of both beams, the difference between the ideal lens and

the real optical path difference has to be considered as an aberration. This is masterly done by Fan

et al. in [121], where we see that Eq. (2.20) is valid as long as 2 > wL/wP > 0. The expression would

be different for a top hat spatial profile pump beam.

This formula takes into account that the optical path is deformed not only by the temperature gradient

effect on the refraction index dn
dT [116] but also the crystal deformation due to the temperature

gradient, αT (1+ v)(n−1) [120], this includes the window deformation.

The refraction index dependence on the strain applied to the crystal is given by 1
2 n3αT pe f f [122, 123].

The photoelastic component is not due to the temperature profile but to the intensity profile, and it is a

fast contribution to the thermal lens. For the Ti:Sapphire, the photoelastic effect is still understudied.

In a recent study, Zheng et al. [124] have measured one of the strain-optic tensor components of

Ti:Sapphire and concluded that the transitory photoelastic lens could account for 27% of the total

thermal lens.

The study of this phenomena is obviously important but the lack of data on the subject simply does
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not allow for a concrete evaluation of the thermal lens in our case. Zheng et al. [124] have evaluated

the coefficient p31 = −0.03±0.01. With this coefficient, the contribution of the photoelastic effect

to the thermal lens would be ∼ 3.5%, however this photoelastic coefficient is not pertinent to our

case because the polarization is not within the c-axis of the crystal3. In [125], Reintjes et al. have

measured the strain-optic coefficients of sapphire. We note that the coefficient p31 = 0.032 that was

obtained in [125] has an absolute value that is similar to the value obtained by Zheng et al. [124].

If we take the other components of Ti:Sapphire to be the same as the sapphire, with pe f f = p11, we

have a contribution by the photoelastic effect that is 29% of the total thermal lens, if we take the

coefficients of Cr:Sapphire [123] the correspondent value will be 27%. However the fact that dn
dT is

not calculated considering an explicit photoelastic component, we may say that this component is

included in dn
dT .

In some studies [116, 118], the window medium deformation is estimated in other manner: 2αT r0(n−1)
L

where L is the beam path in the crystal and ro is the radius of the deformed part due to the temperature

gradient.

We have to be aware that this considers the strain of the heat/cold source and not the strain of the

crystal mount, or the response of the mount to the deformations due to heat. In order to have a

more exact model to the thermal effect deformation of the beam path, we would have to take into

consideration the astigmatic pump profile, the absorption and the propagation of the pump due to its

own thermal lens [126].

The real effects of thermal deformation of the optical path do not form a perfect lens or a quadratic

index GRIN medium, several computational models and experimental work [126–130] were done

in order to have more precise figure of the thermal load in the optical path. However this would

exponentially increase the complexity of the problem and, as we have refereed above, with this

model we completely explained the experimental results for another laser that can be found in [106].

In order to determine the absorbed pump power, we use the absorption coefficient α (measured for a

crystal with the same doping percentage 4) and the formula,

Pabs = Ppump (1− exp [−αL]) . (2.21)

In order to know the part of the absorbed power that is converted into heat, we have to consider the

ways in which this power can be discharged: spontaneous emission and stimulated emission by the

3In fact, we blindly considered the expression given in [121] for the optical path difference, but it is our opinion that the
photoelastic effect should be treated apart from the thermal effect, when the model includes the mismatch between the
beams. In other words, the optical path difference of the first two effects is simply given by the temperature distribution,
the last effect however is dependent on the light intensity distribution in the crystal and should be accounted as such.
In a Ti:Sapphire the photoelastic effect is still not well known so we will not dwell on this.

4Absorption depends on the doping of the crystal.
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infrared laser. Classically this fraction is given by Eq. (2.22).

ηth = 1−ηp

[
(1−ηl)ηr

λp

λ f
+ηl

λp

λ

]
, (2.22)

where ηp is the pump quantum efficiency, ηr is the radiative efficiency of the florescence, ηl is the

fraction of photons that decays due to stimulated emission, and λp, λ f are the pump and fluorescence

wavelengths.

The Kerr lens is originated by the ML beam on itself. It is the effect of the spatial Gaussian intensity

profile, combined with the Kerr effect [50]. The focal distance is going to be dependent on the beam

size, wL, the laser intensity, IL and is given by:

fKerr =
w2

L

4n2ILL
, (2.23)

where n2 is the nonlinear refraction index and L is the beam path inside the crystal, which for a

crystal of thickness Lc and corrected refraction index of n = n0(λ )+n2IL is L = Lc

cos(arcsin( sin(arctan(n))
n )

.

We could consider these lenses on the center of the laser medium, however we have to be aware

that these lenses come from considering a quadratic dependence on the temperature and intensity

profile of the laser beam. We can simulate the lens effect and the propagation in a single matrix if we

consider a GRIN medium. The GRIN medium is going to have a refraction index given by:

ni = n
(

1− 1
2

γ
2r2
)

(2.24)

The parameter γ is given by γ2 = γ2
T + γ2

K . The thermal γT and Kerr γK GRIN coefficients are related

to the focal distances given above by γ2
i = 2

fiL
.

Estimations for the thermal and Kerr lens

We use the values given in the literature. Please note that depending on the chosen literature the

values change, for instance depending on the author [105, 130–134] we find different values of dn
dT in

the ordinary axis: 12.6×10−6K−1, 13.6×10−6K−1, 8.5×10−6K−1, 18×10−6K−1. A more critical

situation is the determination of thermal conductivity of the crystal where we find in the ordinary

plane K = 52W/m.K in [132] but most authors present a value around K = 34W/m.K. As we have not

measured the entire set of characteristics, we do not know the precise values.

We use: pump quantum efficiency is 1, the radiative florescence quantum efficiency is 0.81, the

central wavelength of the florescence is 750nm [135], dn
dT = 12.6× 10−6 K−1 [123], αT = 4.6×
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10−6 K−1, ν = 0.25, K = 35W/m.K, n2 = 3.45× 10−20 m2/W [105]. We measured an absorption

coefficient of α = 3.22±0.05cm−1 which is within the values presented in the literature for 0.15%

Titanium doping.

The pump quantum efficiency is nearly perfect (ηp = 1), in order to obtain the ratio of photons that

are emitted by stimulated emissionηl , we consider the rate at which they are emitted by stimulated

emission (Sabs
ILλL
hc ) and the rate for spontaneous emission ( 1

ηrτd
) this gives:

ηl =
Sabs

ILλL
hc

Sabs
ILλL
hc + 1

ηrτd

. (2.25)

The values found in literature for the decay time is 3.2 µs and for the absorption section is 4.1×
10−23 m2.

Our ML laser emission is centered at 824nm with a average power of 0.35W which with a repetition

rate of 89MHz means a pulse energy of 3.93nJ. The Fourier limited duration is∼ 12 f s, considering

some simple calculations (we used the Eq. (D.6) given in the introduction). We estimate an average

duration inside the crystal of 24 f s. Which gives an approximate peak power of 1.6MW inside the

crystal.

In our simulations, we will not have to estimate the transversal dimensions of the laser inside the

crystal however in order to estimate the Kerr lens we might consider it to be around 40 µm (sagittal

plane), we will check later the validity of this estimation.

These values will give a Kerr lens of∼+22mm (we consider an effective section between the sagittal

and tangential planes), this should not be taken in the strict sense it is rather an indicative value. We

note, that although most values are reliable the laser spot size in the crystal is only estimated, the

Kerr lens has a fourth power dependence on this parameter, it is easy to be mistaken by one order of

magnitude.

In order to estimate the thermal lens we calculate the fraction of absorbed pump that is converted to

thermal energy, which is 0.35, please be aware that the fraction of photons that is not converted by

stimulated emission is on the order of 10−2 which means that a very good approximation is simply

the energy difference between the pump and the signal ( λ−λp
λ

).

The absorbed pump power is estimated at 2.52W (we consider 5% losses between the reflection and

diffusion). Furthermore the pump size is estimated to be 40 µm, in the sagittal plane (we consider

an aperture given by the pump focal length). Considering this, the value for the thermal lens is

∼+10cm (considering the difference between the sagittal and tangential planes).

The dependence on the laser size is not as pronounced as in the case of the Kerr lens (for wL in the

same order of magnitude of wP), however there is a square dependence on the pump size, so the

values given here are simply rough estimates of the real values.
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2.3.4.2. Cavity stability profile ABCD equations and mode-lock parameters
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Figure 2.8.: WinLase calculation of the ML cavity (traced line) and the CW cavity (continuous line). (top)
Stability results, with the normal ML position marked with a double line; (Middle) simple scheme
of the simplified cavity; (Bottom) Beam size as a function of the position in the cavity.

We ignore the existence of prisms in the cavity and consider that there are simply two big arms one

with 61.6cm that goes from MC2 until the output coupler (L3 = MC2OC = 61.6cm) and the other

with 95.1cm (the biggest arm can also be considered to exist without prisms in which case it will

have 94.5cm in length) that goes from MC1 until the back mirror (L4 = MC1BM = 95.1cm).
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The two arms in the sub-cavity are more difficult to determine, they are measured over the table and

have uncertainty of some millimeters and a length of approximately 50mm (the focal distance of the

curved mirrors).

We designate L1 = MC2CR and L2 = MC1CR (very approximate experimental values of 51mm and

53mm). We will sweep these two arms of the sub-cavity. It is known that the cavity stability is very

sensitive to the sub-cavity dimensions but the sensibility to the other values is not as great. In other

words, the big arms measurements have a precision that allows us to determine the stability profile

of the laser but not the sub-cavity measurements.

With the values given above, we may construct a simple cavity. In a first approximation, we use the

program Winlase that will give us the stability profile that may be found in Fig. (2.8). However we

may develop our own calculations and retrieve more information from it. Most of the propagation

ABCD matrices may be found in [93] and are reproduced in the appendix to this chapter. However

the propagation through a Kerr medium in a Brewster angle has to be deduced. In the sagittal plane

this is a simple propagation in a Kerr medium:

[
cos(γsL)

sin(γsL)
nγs

−nγs sin(γsL) cos(γsL)

]
, (2.26)

where γS is the GRIN medium total coefficient in the sagittal plane.

In the tangential plane, the entry into a medium placed at the Brewster angle is described by the

matrix

[
n 0

0 1/n

]
, the inverted matrix describes the exit of the same medium. In the tangential

plane the propagation through the crystal may be described by the following matrix:

[
cos(γtL)

sin(γt L)
n3γt

−n3γt sin(γtL) cos(γtL)

]
, (2.27)

where γt is the GRIN medium total coefficient in the tangential plane.

Please note that we prefer to maintain the propagation in the medium divided in tangential and sagittal

plane, the GRIN medium indexes are also divided because the effect is different for both axes. Please

remember that the size in the sagittal plane (ws) and the size in the tangential plane (wt) are related

by the following formula:

wt ' nws (2.28)

In order to calculate the laser intensity inside the crystal, we have to consider both axis: IL = PL/πwswt

which for a well compensated astigmatism would be: IL ∼ PL/πnw2
s . Please note that in a CW mode,

there is no coupling between the sagittal and tangential modes.
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The thermal lens that affects the tangential and the sagittal plane is also different, we approximate

this using the GRIN coefficient of Eq. (2.29).

γ
2
th,s−t =

2
nL

[
dn
dT

+(n−1)(1+ v)αT

]
ηthPabs

πKw2
P,s−t

1

1+2
(

ws−t
wP,s−t

)2 . (2.29)

Please be aware that nP/nL = 1.0066 and so the astigmatism is introduced by the pump beam itself

and not by the correction introduced by the aberration. In order to correctly find the GRIN thermal

coefficient, we would have to solve a 2D head equation.

The Kerr GRIN coefficients in the sagittal and tangential plane are given by:

γ2
kerr,s =

8n2PLL
πLw3

s wt

γ2
kerr,t =

8n2PLL
πLwsw3

t

(2.30)

Considering this, we obtain the ABCD matrix of the laser oscillator round trip which is going to be

the multiplication of the ABCD matrices of all elements. From half a crystal to half, a crystal we

have:

ABCDround trip,i = [CRi] [P(L1)] [CMi] [P(2L4)] [CMi]×
× [P(L1)] [CRi]

2 [P(L2)] [CMi] [P(2L3)] [CMi] [P(L2)] [CRi]
(2.31)

As we said in the appendix, [CRi] designates the propagation matrix through half a crystal in the

plane i, the sagittal or tangential plane. [P(L j)] is the propagation matrix over a length of air L j and

the matrix [CMi] represents the bouncing in one curved mirror.

As seen above, the thermal and Kerr lens are going to be dependent on the size and power of the laser

beam. The thermal lens depends on the pump power and is only going to be slightly affected by the

beam size, however the Kerr lens is dependent on the laser power and its beam size. In consequence,

the GRIN medium is going to affect the propagation ABCD matrix that is going to affect the beam

size, which affects the GRIN medium so there is a loop effect between the beam size and the Kerr

effect.

For a CW laser, this effect is small because there is no Kerr lens but in ML, this is not the case.

This process, that constitutes a part of the Kerr lens mode-locking mechanism, is going to end up

with a certain laser power. We do not have to simulate this laser power because we have measured

the energy output and we can estimate the pulse duration inside the crystal, from the pulse spectrum

outside the cavity [136], as we have done above. Using these facts, we design a feedback cycle

(Fig. (2.9)) that will result in a beam profile consistent with the beam power in a ML configuration.

All lasers start in a CW configuration and so we do not expect a reproducible and stable ML cavity if
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that cavity does not allow a stable CW. In practice this is not so, because once in ML the cavity can

go to a configuration where no CW operation is possible but where it is possible to have a ML pulse.

However if we want a reliable laser, this is not practical.

Si = 1 � (Ai + Di)
2

2

wi =

s
� |Bi|
⇡
p

Si

�kerr (PL, wL)
�th (PP , wL)

ABCD

Figure 2.9.: Feedback cycle used to find a laser spatial profile that is consistent with the mode-locked power
laser; it is repeated until a convergency of 5% is achieved, the laser proves to be unstable, or the
cycle is repeated 100 times.

In this system we have several approximations:

ä In order to consider the same GRIN medium parameter throughout the medium, we consider

the pump and infrared beam sizes to be constant inside the crystal. The beam size used to

calculate the GRIN propagation parameter γi is the beam size in the geometric center of the

crystal. This is a good approximation because in the zone where passive mode-locking is

expected, the beam waist is not inside the crystal.

ä We consider that the power of both lasers is constant, which is not true for either the resonant

or the pump laser. The pump is absorbed in the propagation, we used Eq. (2.21). The laser

power increases with the increase in the nonlinear Kerr effect, because the duration deceases,

we do not know exactly how, some measurements are presented in [136]. We will make some

calculations where the intensity increases from a CW to a ML configuration.

ä The pulse duration inside the crystal is constant.

ä The pulse duration is an average estimation from the linear dispersion values and the measured

pulse duration.

ä The pump beam size is simply going to be estimated and not measured, this is probably the

roughest estimation.

Despite this limitations, the simulation will give us an idea of the beam size inside the crystal, the

stability of the oscillating cavity as well as the best zone for ML the laser. It will allow us to determine

the sensibility that our system has to changes in its configuration.
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The ML parameter

It is difficult to evaluate the ability of a laser to enter a ML configuration. It is difficult to obtain

a parameter that distinguishes a configuration where ML is easily achieved and another where it is

difficult to obtain ML. In [107], Cerullo et al. have defined a parameter that was proportional to

the loss inside the cavity when a Kerr lens was introduced. This parameter was defined for a hard

aperture configuration and it reflects the difference in mode size due to the Kerr lens:

ML0
P =

(
1
w

dw
dP

)

P=0
(2.32)

This simple parameter reflects the change in size due to the increase in power, then for a hard aperture

the size of the mode should be taken in the place where the aperture exists, in the back mirror. This is

the mostly used ML parameter [137]. In our case however, the ML is in a soft aperture mode. What

we should evaluate is the mode inside the crystal. The mode size in the crystal is astigmatic, which

was not the case in the back mirror of the cavity, and so we have to redefine the ML parameter as:

ML0
P =

(
1√

wswt

d
√

wswt

dP

)

P=0
(2.33)

It is obvious however that an approximation of what happens at low power may fully not represent

the climb up in power that exists in the ML process (please remember that in a CW configuration the

peak power of the laser is 6 orders of magnitude smaller than in the ML).

Let us remember that, in order to have ML, the laser cavity has to be near an unstable point and

that the Kerr lens is introduced in the cavity and assures a bigger stability. However the introduction

of this Kerr effect may in fact destroy the stability of the cavity in some sub-cavity configurations,

and so there are zones where the parameter of Eq. (2.33) is maximized, but where it is not possible

to obtain ML at all because the cavity is unstable. In [93], we find another definition for the ML

parameter. We adapt this definition and redefine a new ML parameter in Eq. (2.34):

MLP =
1√

ws
∣∣(P=0)

wt
∣∣(P=0)

w∣∣(P=PML)
w

t
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, (2.34)

where PML is the peak power of the laser in a ML configuration and Pc = λ 2/2πn2n2
0 is the critical

power for self focusing. Please notice that this ML parameter is adimensional. The concept behind

this parameter is simple, we compare the mode size in a ML configuration and in a CW configuration.

This parameter however also poses some problems. Mainly it is difficult to find the ML configuration

beam size that satisfies a cavity with the correspondent Kerr effect.
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Above in this section, we have exposed an algorithm that enabled us to find the ML size, however, as

we are going to discuss in this section, this is not the only way to find the beam size in a mode-locking

configuration.

Other definitions of ML parameters are discussed by Grace et al. in [112], this several proposals are

based on a gain/loss comparison of both modes. Grace et al. do not consider any thermal lenses but

considers instead a gain guiding due to the pump Gaussian profile.

Results without a thermal lens

Let us consider that there is no thermal lens inside the crystal. For a CW mode this means that there

is no difference on the position of the crystal.We make a sweep over the dimensions of the sub-cavity,

we sweep over L1 and over z = L1 +L2. The beam size5 for such a CW laser is given in Fig. (2.10).

L1 (mm) 

z 
(m

m
) 

Figure 2.10.: CW beam size (in µm) as a function of the cavity configuration (in mm).

We may notice that the beam size is almost independent of L1; this is obvious because without any

lens, moving the crystal inside the cavity does not have any effect on the propagation matrix between

the two curved mirrors. The slight slope in Fig. (2.10) is due to a change in L3 and L4 when we move

the curved mirrors.

In order to do this calculation, we consider that the cavity is centered in the configuration expressed

above and that every move in L1 and L2 will have a consequent effect in L3 and L4. However this

effect changes the beam size by less than 3% and we could chose to maintain L3 and L4 constant, no

qualitative results would change.

5All the beam sizes presented here are effective spot sizes in the tangential and sagittal planes w =
√

wswt taken at the
geometrical center of the crystal.
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In order to evaluate the ability to ML, we implement a infinitesimal power increase (10−8 of the

actual laser peak power) of the laser that is going to give a differential Kerr contribution in the gain

medium. Due to the fact that this perturbation is small, the algorithm exposed in Fig. (2.9) converges

after the first or second loop.

The size of the beam with this small perturbation is used to calculate the derivative in Eq. (2.33). The

resulting ML parameter is found in Fig. (2.11).
Z 

(m
m

)

L1 (mm)

Hard ML ideal points
Soft ML ideal point

Figure 2.11.: ML parameter for zero power as a function of the sub-cavity dimensions (in mm). The color
scale indicated on the right of the contour plot is expressed in W−1. The soft aperture and hard
aperture ML positions are indicated.

Please notice that in order to have soft aperture ML, the beam size with the Kerr lens has to be smaller

than the beam size without the Kerr lens, and so the ML parameter has to be negative. In Fig. (2.11)

we can clearly see the zone where ML should occur, it is not only on the interior of the second zone

but it is also on a very specific location of the crystal.

The ideal point for ML obtained in Fig. (2.11). may be a point where ML is not possible because the

Kerr lens, characteristic of ML, may destroy the stability in this specific point. In order to determine

the ML size, to evaluate the stability of the ML laser and then to calculate the ML parameter as given

by Eq. (2.11) we apply the algorithm given in Fig. (2.9).

Our initial guess for the beam size is the beam size in CW mode, the logic is to have a CW

configuration in which a Kerr lens is introduced, and try to adapt the Kerr lens to the beam size

and vice versa. The results are given in Fig. (2.12).
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Figure 2.12.: (Top) ML beam size (in µm) as a function of the cavity dimensions (in mm). (bottom) the
ML parameter as given by Eq. (2.34). The soft aperture ML ideal sub-cavity configuration is
indicated.

The structure near to the ideal ML point is a hint, it might be possible to have stability in regions that

do not present stability in Fig. (2.12), because they might have been awry calculated by the algorithm

of Fig. (2.9).

We try another method to find the beam size in a ML configuration. We start from the CW configura-

tion and gradually increase the power inside the cavity. We did this in 20 linear steps, and at each step

we apply the algorithm of Fig. (2.9) until convergency is achieved. The idea behind this algorithm is

to simulate the gradual power buildup inside the cavity. The results are given in Fig. (2.13). We may

see that the complicated structure disappears, however as we do not simulate the buildup of power

inside the cavity we do not know if this is the correct assumption.

In order to test the possible beam sizes that would make a stable ML cavity, we re-adapt the algorithm

of Fig. (2.9). We use a second algorithm that is exposed in Fig. (2.14). For every (z, L1) point this
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2.3. Ti:Sapphire oscillator

algorithm consists in:

1. We start with the CW values for the beam size in the tangential and sagittal planes.

2. We calculate the GRIN coefficients with these beam sizes.

3. We calculate the ABCD matrix.

4. We recalculate the spot size.

5. If the cavity is stable we memorize the beam size for both planes (wM = wi).

6. With the spot size we recalculate the GRIN lens and continue to the next cycle.

7. If the cavity is unstable we try wL = f bwM.

8. We recalculate the GRIN coefficients and if the cavity is stable we memorize the spot sizes.

9. At each failed attempt b = b+1.
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Figure 2.13.: (Top) ML beam size (in µm) as a function of the cavity dimensions (in mm); (Bottom) the ML
parameter as given by Eq. (2.34). The soft aperture ML position is indicated.
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We impose a limit for the trial spot size and if no trial spot size makes the cavity stable the cavity is

considered to be unstable in that point. If we want to test the stability of spot sizes which are larger

than the memorized spot, then f > 1, if we want to test the stability of smaller spot sizes, then f < 1.

Si = 1 � (Ai + Di)
2

2

wi =

s
� |Bi|
⇡
p

Si

�kerr (PL, wL)
�th (PP , wL)

ABCD

if w /2 R

if w 2 R

wL = f bwM

wM = wi

wL = wi

Figure 2.14.: Alternative algorithm to find the ML beam size.

We tried this second algorithm with f = 0.99 (lower limit for the beam size is 3µm), the results are

presented in Fig. (2.15).
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Figure 2.15.: (Top) ML beam size (in m) as a function of the cavity dimensions (in mm); (Bottom) the ML
parameter as given by Eq. (2.34).
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We may clearly see that this algorithm finds new stable points that had not been found before. The

algorithm finds a strait line of optimal isolated points near the optimal ML point, this straight line

appears for a constant value of L2. At this point, we have to warn the reader that it is not compulsory

that the values obtained by this method are possible, the path to get this values might not exist.

However it is possible that this point might exist, the effect of bistability in Kerr lens ML lasers is

well known, which means that the path to ML is not unique. Observing the line on the bottom of the

second stability zone in Fig. (2.15), we can distinctly see that our spot size search algorithm is not

perfect.

We have also tried the same algorithm but with f = 1.01 (upper beam size limit of 300µm). With

these parameters, the results did not improve what we had obtained with the first search algorithm

(Fig. (2.9)) and so we conclude that in order to find stability in points that are not stable with the first

algorithm we must search smaller beam sizes.

Constant thermal lens in the cavity

Here we consider that there is a thermal lens. We consider a pump with a spot size of 40 µm in the

sagittal plane, which gives an effective spot size of 53 µm. With this pump size we use Eq. (2.20),

however for the effects of the thermal lens we consider that the beam size is equal to the pump size.

This will give us a thermal focal length of 52.5cm and 16.6cm for the tangential and sagittal planes

respectively.

Figure 2.16.: (Top) CW beam size (in µm) as a function of the cavity dimensions (in mm); (Bottom) the ML
parameter (in W−1) as given by Eq. (2.34).

We compute the CW beam size as we did in the previous section and calculate the ML parameter as

given by Eq. (2.33), the results are presented in Fig. (2.16).

The stability profile bends due to the thermal lens. Comparing Figs. (2.10) and (2.16), it is clear that

the bending is done around the configuration that leads to the smallest beam size. The zone we had

pointed out in Fig. (2.16), as ideal for soft aperture ML operation and where the CW beam has the
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smallest size, seams to be remain ideal for ML operation independently of the thermal lens.

Using the algorithm of Fig. (2.9), we calculate the ML parameter as given by Eq. (2.34). The results

are given in Fig. (2.17). With this configuration, we can clearly see that the ideal ML sub-cavity

dimensions are given at the point we signal with an ”X”.

L1 (mm) 

Z 
(m

m
) 

X 

L1 (mm) 

Z 
(m

m
) 

Figure 2.17.: (Bottom) ML beam size (in µm) as a function of the cavity dimensions (in mm); (Top) the ML
parameter as given by Eq. (2.34).

Applying the second algorithm, we find the results presented in Fig. (2.18). In Fig. (2.18) the ”X”

position does not change. However the region where L2 is constant that we had observed in Fig. (2.15)

when no thermal lens existed appears when we use this algorithm and it also seams to be a position

favorable for ML operation. In this region, the ML seams to be stable.

The results do not fundamentally change between this two search algorithms but in this second

algorithm there are more stable points around ”X”.
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2.3. Ti:Sapphire oscillator

The results obtained are primarily due to the thermal lens that we considered and to the astigmatism

of this lens. The astigmatism of the thermal lens compensates the cavity in the sagittal and tangential

planes and allows the cavity to be stable in points that would not be stable otherwise. Because we

have not solved the heat equation for the astigmatic pump beam, our thermal GRIN coefficient might

not be the best approximation possible, however some laser designers include a small tilt in the lens

that focus the pump in order to compensate the astigmatism of the output beam [92].
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Figure 2.18.: (Top) ML beam size (in µm) as a function of the sub-cavity dimensions (in mm); (Bottom) the
ML parameter as given by Eq. (2.34).

Constant pump size in the cavity

Here we consider that there is a thermal lens. However it is not the thermal lens that is constant,

but the pump spot size. A pump spot size of 53 µm is considered. The model for the thermal lens

is given in the previous sub-subsection, in this model the thermal GRIN coefficient varies with the
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2. Study of optical amplification

spot size of the intracavity laser, please note that this dependence exists only because, the aberration

minimizing focal length depends on the spot size of the laser itself. According to this, the changes

in the thermal focal length are not dependent on a thermal adaptation but only on the spot size. For

this reason, we can include this thermal lens in the cavity and in the search algorithm without any

loss in generality. In the previous paragraphs, only the Kerr component of the GRIN coefficient was

adapted, here the thermal lens is also going to be adapted to the change in spot size.
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Figure 2.19.: (Bottom) CW beam size (in µm) as a function of the sub-cavity dimensions (in mm); (Top) the
ML parameter at zero power (MW−1).

We compute the results for a CW laser, and then calculate the ML parameter at zero power. With

this we obtain Fig. (2.19). Here, we see that the introduction of a variable thermal lens creates some

differences in the cavity stability profile. We find however the same specific point that is ideal for

ML and that we had already seen in Fig. (2.16).

In further simulations, we concluded that if the pump spot size would have been smaller, thermal lens
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2.3. Ti:Sapphire oscillator

model would influence the ideal ML sub-cavity configuration. In fact, we see that the contribution for

the mode locking process may be due not only to the Kerr lens, but there might be some contribution

of the thermal lens variation with the spot size of the beam, but only if the pump size would be

smaller than 10 µm.
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Figure 2.20.: (Bottom) ML beam size (in µm) as a function of the sub-cavity dimensions (in mm); (Top) the
ML parameter.

We calculated the spot size in a ML configuration according the algorithms of Fig. (2.9) and Fig. (2.14)

and obtained the results presented in Fig. (2.20) and in Fig. (2.21) correspondingly. From Figs. (2.20)

and (2.21) it is evident that the search algorithm, or the path between CW and ML regimes, is

important. As we had seen before, there are distinct differences between the ML parameter obtained

by the two search algorithms.
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If we compare Fig. (2.20) with Fig. (2.17), we may see that ML ideal point of operation is similar in

both cases and that a thermal lens with such a big focal length does not affect the ideal point for ML.

In other words, we find that, in this case, the ML ideal region does not depend on the aberration of

the thermal lens (or a size miss match between the pump and the resonant beam).
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Figure 2.21.: (Top) ML beam size (in µm) as a function of the sub-cavity dimensions (in mm); (Bottom) the
ML parameter.

One of the approximations of these calculations is to consider that the ML beam power is constant

for all sub-cavity configurations, which means that both the output energy and the duration of the

pulse are considered to be constant (this is intrinsic on our algorithms because we do not calculate

neither the temporal pulse evolution nor the gain in the resonator). In order to evaluate the effect of

this approximation, we redid the calculations using a longer pulse with 100 f s. The calculation were
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2.3. Ti:Sapphire oscillator

done with the algorithm of Fig. (2.9) and with the algorithm of Fig. (2.14). The results are presented

in Fig. (2.22). Here we see that for a configuration where the pulse intensity is smaller the conditions

for ML are easier to achieve because the focal length of the Kerr lens is bigger. Such a configuration

could be achieved by managing the dispersion over a small spectral bandwidth. We may say that, for

a small spectral bandwidth the conditions for a ML operation are not so strict. In fact we see that,

with the second algorithm, the gap between the left and right side of the second stability zone almost

closes.
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Figure 2.22.: (Bottom) ML beam size (in µm) as a function of the sub-cavity dimensions (in mm); (Top)
the ML parameter of Eq. (2.34). On the left, the results are obtained using the algorithm of
Fig. (2.9), and on the right the algorithm of Fig. (2.14). We maintained the color-scale of the
ML parameter to facilitate the comparison with Figs. (2.20) and (2.21).

Adaptable pump size in the cavity

We have refereed above that the ML intrinsic mechanism does not affect the pump mode directly.

However when we are aligning the laser, we tend to optimize the power output of the laser by

changing the position of the lens that focus the pump in the gain medium. In reality part of what

we are doing is a match between the pump and beam sizes, which will assure a homogeneous gain

throughout the crystal. We try to simulate this effect by adapting the pump size to the beam size. As

we did in the previous approaches, we treat the CW mode first, adapting the spot size of the pump

and the CW mode, only afterwards we considered a ML configuration. We do not adapt the pump
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mode to the ML mode, the reason for this will be explained later on.

In an initial attempt to match the CW beam and the pump, we inspired ourselves in the algorithm

of Fig. (2.9). We used the recursive algorithm that is exposed in Fig. (2.23). For each (L1, z) point,

we start with a certain pump spot size (200 µm) and calculate the GRIN thermal coefficient and the

ABCD matrix. From this we calculate the beam size and equal the pump size to the beam spot size.

We recalculate the GRIN thermal coefficient and again equal the spot size inside the crystal to the

pump spot size, and so on.

In our case the algorithm fails to converge to a certain spot size at every (L1, z) point, at every point

the cycle resulted in a cavity with a non-stable configuration. This means that, if we attempt to do the

same with a ML lens inside the cavity we would have a convergency to a non-stable configuration,

and that is why we do not adapt the size of the pump in a ML configuration.

ABCD

�th (PP , wP ) wP =
p

wswt

ws, wt

Figure 2.23.: First algorithm tried to obtain a match of spot sizes between the laser and the pump beam.

After this attempt, we decided to follow another approach, based on the fact that it is reasonable to

assume that the pump spot size in the crystal is less than 132 µm (effective spot size, sagittal spot

size 100µm), because bigger spot sizes (with a 3W pump) do not allow population inversion. So, for

every sub-cavity configuration (L1, z), we did a sweep of the pump beam size (100 points), and for

every pump spot size we calculated the beam spot size. We then calculated the difference between

the two using Eq. (2.35). In here we consider a thermal GRIN coefficient of Eq. (2.29), considering

however that the spot sizes were matched.

δw = 2
wP−

√
wswt

wP +
√

wswt
(2.35)

We memorized the pump size and the correspondent beam spot size that minimized δw. We take

this spot size to be the spot size in a CW configuration. As we did previously, the ML parameter

of Eq. (2.33) is calculated using an infinitesimal Kerr lens (we use Eq. (2.30) but with a laser peak

power 10−10 of the actual laser peak power). The results are presented in Fig. (2.24).

Please note that there seams to exist four stability zones connected to each other. From Fig. (2.24)

(c) we can also see that the agreement between pump sizes is obtained only in a limited zone (the
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green zone), the zones that are not purple are defined by |δw|< 50%. In fact this means that the CW

operation in this laser is only possible while the pump/beam size remains bigger than the ”guessed”

53 µm (considering the pump power and absorption coefficients that we establish here). The two

zones where the size agreement seams possible are coincident with the two zones studied in the

previous sections.

In the other zones we obtain stability because the thermal lens bends the stability zones but the

resulting beam spot sizes are not coincident with the pump spot size, this is a characteristic of this

specific laser, in the laser presented in [106] this is not so.

In Fig. (2.24) (d) the ML parameter, that seams to enable ML operation is placed in regions where the

pump size is substantially smaller than the beam size, and on the edge of the stability zone. Notice

that this is in a zone implies a strong thermal lens, so we may see a favorable effect if an oscillator

allows a strong thermal lens, which implies a smaller beam size in the cavity.
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Figure 2.24.: Results of the algorithm that adapts the pump size to the spot size. (a) pump spot size, in µm;
(b) the CW mode spot size, in µm; (c) the difference between the two using δw, in percentage
(zero means there is no difference); (d) the ML parameter as given by Eq. (2.33) in W−1.

We use both algorithms (Figs. (2.9) and (2.14)) to calculate the mode in a ML configuration, from

this we calculated the ML parameter in both cases. The results can be seen in Fig. (2.25).
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In Fig. (2.25) the zones where the pump size does not fit the beam mode size are not stable. The

results are similar to the results we had when the pump size was not adapted. In Fig. (2.25) (a) and (b)

we see once again, that the algorithm presented in Fig. (2.9) does not find a stable ML configuration

in the sub-cavity configuration where the spot size is smaller, and also as we have seen before this

algorithm that seems to mimic the ML process does not find a stable configuration where the second

algorithm we present does.
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Figure 2.25.: ML using an adaptable pump size. (a) ML spot size (µm) and (b) ML parameter as calculated
by the algorithm in Fig. (2.9); (c) ML spot size (µm) and (d) ML parameter as calculated by
the algorithm in Fig. (2.14).

It is important to point out the difference between the actual ML mechanism and the first presented

algorithm, in an actual laser the laser peak power increases with the decrease in duration and mode

adaptation, in our algorithm the Kerr lens is introduced with a constant laser power. In Fig. (2.25) (c)

and (d) we present the results of the ML operation using the second algorithm of Fig. (2.14).

It is clear that this algorithm finds stability where the other algorithm does not, a negative ML

parameter is found in a region with a reduced spot, however it is clear that in this region there

are only isolated points of stability. We then tried different algorithms to retrieve the ML laser

configuration, we evolved the laser power step by step (200 steps linear scale), and memorized the

last stable configuration as we increase the laser power, for this calculation we started the laser beam

size as the CW beam size. The results from this calculation are presented in Fig. (2.26).
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Figure 2.26.: ML using an adaptable pump size and an ever increasing cavity intensity. (Top) ML spot size
(µm) and (Bottom) ML parameter.

From Fig. (2.26), we see that considering a slow evolution of the laser power until the cavity is no

longer stable gives us the region that is best suited for ML (marked with a ”Y”). This region is near

the ”X” region that we saw in other models. In fact, the ”Y” region can already be perceived in the

previous models, but not so marked as in this one. This result is important because in the previous

models we considered the laser power to be the same for every region and this is simply not the case

in an actual laser oscillator.

We developed another model in which, the intracavity power was increased exponentially. We used

10 points one order of magnitude apart from each other up until the actual intracavity power, however
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at each increase in power, we applied the algorithm of Fig. (2.14), searching at each point a stable

ML configuration. The results are presented in Fig. (2.27).
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Figure 2.27.: ML using an adaptable pump size, evolving the intracavity power and at the same time using a
beam size search algorithm. (Top) ML spot size (µm) and (Bottom) ML parameter.

From Fig. (2.27) we see the regions that favor ML can be presented where the size of the beam is

small but that this is not done in a continuum of points but it is highly sensitive to the position itself.

We tried one last algorithm that reproduced the experimental results of [106], and that gives similar

results to the ones presented in Fig. (2.27).

We considered the algorithm of Fig. (2.14) but only one loop for every point. The results from

this algorithm are very similar to the results obtained in Fig. (2.27) even if we have no physical
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explanation that exposes the close relation between them.
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Figure 2.28.: ML using an adaptable pump size, and one loop of the algorithm in Fig. (2.14). (Top) ML spot
size (µm) and (Bottom) ML parameter.

2.3.5. Mode-locking beyond the expected parameters

In the experimental setup we obtained mode-locking on the lower edge of the second stability region.

This is to be expected, however we also obtained ML not only for the smallest length of the stability

region (position R1) but also after the maximum of stability, more specifically in the position R2 that

may be seen in Fig. (2.29).
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Figure 2.29.: Laser oscillator output power as a function of the sub-cavity position. The positions R1 and R2
are two positions where the ML occurred.

2.4. Sub-6 fs ultrafast mode-locked laser

Here we make a brief description of a Sub-6 fs ultrafast mode-locked laser (4.8 fs Fourier limited).

We used this oscillator to calibrate the model we obtained. Our objective is to compare both oscilla-

tors and clearly state what changes from one case to the next.
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Figure 2.30.: Cavity of sub-6 fs oscillator, DCM1, DCM2, DCM3, DCM4 are chirped mirrors, θ is the
folding angle, L1 and L2 are the distances of the sub-cavity.
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This oscillator is designed to have a smaller pulse duration. The dispersion compensation is made

over a larger spectrum and we use a smaller crystal (Lc = 1.9mm) in order to decrease the dispersion

on the round trip of the cavity.

In order to compensate for a smaller crystal the Titanium doping is increased so that the absorption

coefficient goes to α = 5±0.4cm−1 the pump power is also increased to Ppump = 5.5W . The average

pulse duration inside the crystal is 18 fs (calculations are done using the same principles as before),

the OC transmission is only 2%. The design of the cavity is given in Fig. (2.30).

The two concave mirrors in the sub-cavity have a focal length of 37.5mm, the length of the bigger

harm (between the E2 and the back mirror) is of 1315mm, the length of the smallest arm (between

E1 and the output coupler) is of 503mm. The folding angle is set to 5.8º, we tried to match the beam

on the sagittal and on the tangential plane, we use the same reasoning as in the last laser to obtain the

ideal folding angle.

Apart from the Crystal and the doubled chirped mirrors (DCM) we also have two BaF2 plates and

two CaF2 wedges, the wedges are assembled in a translation stage that allows us to finely tune the

dispersion inside the cavity. The SPM effect in this case is such that the output spectrum can go from

650 nm to 1125 nm while the output coupler has a flat transmission from 605 nm to 925 nm.

In other words there is a part of the spectrum which half-life time in the cavity is smaller than the

half-life time of the central part of the spectrum, which is only made possible due to the strong SPM

inside the crystal that creates frequency components at each round-trip (see Fig. 2.31).

Figure 2.31.: Spectral intensity (black) at the output of the oscillator and reflectivity (red) of the output
coupler.
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Let us first observe the ML parameter and the beam size without any thermal lens, as we referred

before, without the thermal lens, there is no optical component that depends on the pump size. Using

this we can observe the size of the beam without interference of the pump. We present the size of the

CW beam, of the ML beam and of the ML parameter given by Eq. (2.34).

We recall that all the beam sizes presented here are beam sizes taken at the center of the crystal.

The ML results are obtained using Fig. (2.9). The differences between this model and the model

represented by Fig. (2.14), are qualitatively the same in the two lasers (if no thermal lens is used).

Figure 2.32.: a) CW beam size (µm), b) ML beam size (µm), c) ML parameter as given by Eq. (2.34). ML
results obtained using the algorithm of Fig. (2.9).

Comparing Fig. (2.32) with Fig. (2.12) (consider the scale) we can clearly see that the size of the

beam is smaller in this second oscillator, this means that the size of the pump will have to be smaller

to match the size of the beam. This is obviously not a linear system, we have to apply the feedback

mechanism of Fig. (2.23) in order to obtain the pump size that adapts itself to the CW mode, from

there we determine the ML parameter as defined by Eq. (2.33). We present the results in Fig. (2.33).

We can clearly see that the zone where we have an agreement between both beams is now flexed
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2.4. Sub-6 fs ultrafast mode-locked laser

due to the bigger thermal lens created by the smaller pump size. We can clearly see that due to the

thermal lens the stability zones are bent in such away that the second stability zone drops into the

first stability zone, it is in the meeting between these two zones that we find the X point, which is

also in a zone where we find agreement between both beam sizes.

Figure 2.33.: Results of the algorithm that adapts the pump size to the spot size. (a) pump spot size, in
µm; (b) the CW mode spot size, in µm; (c) the difference between the two using δw, in
percentage (zero means there is no difference); (d) the ML parameter as given by Eq. (2.33)
in W−1. Experimental points are shown in black; the ”X” refers to the point where the largest
spectrum was found.

We apply the last algorithm we used with the first laser using the cycle of Fig. (2.14) only once to the

CW laser (which stability profile was already obtained using an adaptive pump size that is given by

the algorithm of Fig. 2.23) and obtain the results given by Fig. (2.34).
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X

Figure 2.34.: ML using an adaptable pump size and a search mechanism that consisted of one loop of the
algorithm presented in Fig. (2.14) for each point. (above) ML spot size (µm) and (below) ML
parameter. Experimental points are shown in black; the ”X” refers to the point where the largest
spectrum was found.

The experimental points in the last two sets of figures are data points on a line in which ML operation

was easy to find, the X point marks the position where the shortest pulse could be obtained. It is easy

to see that at this point corresponds to the smallest beam size inside the zones where ML is possible,

both beams sizes are in agreement and the second stability zone finds the first stability zone, the first

stability zone is not stable in this zone probably because the thermal lens is too big for the cavity to

be stable.

This last oscillator is scheduled for publication [106].
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2.5. CPA laser chain for OPCPA pump and seed

2.5. CPA laser chain for OPCPA pump and seed

We have designed and implemented a CPA laser chain intended at serving a OPCPA system with a

pump and a seed synchronized in time. After having some trials done on a similar system [70], we

wanted to improve the concept. The general scheme and the main components are represented in

Fig. (2.35).

Dazzler Pulse selector Delay line

Ti:sapphire 
oscillator

BBO crystal 
Second 

harmonic

OPA 
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OPA 
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chain

Öffner’s triplet
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amplifier

Multipass 
amplifier

Gratings 
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Figure 2.35.: General scheme of the OPA system. The output of a Ti:Sapphire oscillator is divided in two:
the transmitted part is going to be selected and stretched to serve as a OPA seed, the reflected
part is going to be amplified in a CPA chain and frequency doubled to serve as the OPA pump.

In theory, the advantage of having the pump and the seed originated from the same oscillator would

be a perfect time synchronization. However the beam path through the CPA laser chain (and probably

thermal fluctuations) has resulted in too many fluctuations so the wave mixing was unstable and no

viable characterization of the OPA could be done. Giving this, we will only expose the characteristics

of the CPA laser chain. Due to the CPA chain characteristics, a Fastlite acousto-optic programmable

dispersive filter was used to stretch the pulse, afterwards a pulse selection by two polarizers and a

Pockels cell and a delay line were added in order to allow temporal synchronization and to avoid

the secondary pulses. These secondary pulses leaked from the regenerative amplifier, they passed

through the optics of the stretcher and are back reflected into the seed of the OPA by the oscillator

mirrors. Due to the 107 gain of the regenerative amplifier, the leaked pulses that pass through all this
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optics are more intense than the seed pulse itself. In order to avoid this, we introduce the delay line,

the length of this delay line is roughly equivalent to 5 round trips in the cavity.

This OPA will be a quasi degenerate OPA because the central wavelength is not maintained in the

CPA chain. The characteristic SH efficiency is approximately 37%. We used a 5 mm thick BBO

crystal in a type I phase-matching configuration. We did not improve the results obtained by Renault

et al. [70] and so we do not present any OPA results.

Due to the results obtained by Renault et al. [70], the CPA chain was designed to have a small spectral

bandwidth at the output. Two things are important, that we have a flexible central wavelength in order

to avoid a degenerate wave mixing and a small spectral width. It is well known that the chirp of both

waves will influence the OPA process, and that there is a perfect chirp relation which maintains a

small phase mismatch throughout the wave-mixing. Here we try to have a narrow spectral profile,

not to improve the efficiency of the wave mixing but to improve the stability of the process. In order

to achieve this goal, we use a spectral selective regenerative amplifier. In reality we used a set of

prisms inside the cavity that allow us to select the part of the spectrum to be analyzed. Other authors

also used a spectral filter inside a regenerative amplifier [138]. This was also used in the pump of a

OPCPA scheme, the objective in this case was to improve the contrast of the pulse, by filtering the

pump pulse [139], this group used a volume Bragg grating to filter the pump inside its regenerative

cavity.

2.5.1. Öffner triplet stretcher and holographic diffraction grating compressor

The dispersion of the CPA chain is going to be controlled by a Öffner triplet [140] at the beginning

of the chain and by a holographic diffraction grating compressor [50] at the end of the chain.

Because this is a CPA chain and because we are trying to amplify a pulse with a 1nm spectrum, it

is difficult to stretch the pulse. Then it is difficult to avoid a high B integral or damage threshold

intensities. Please remember that CPA is based on highly chirped pulses and so if we expand

Eq. (D.6) for pulses with high values of chirp, we will get a linear proportionality between the pulse

duration and spectral width6. In order to address this problem, we use holographic gratings. These

gratings allow a high groove density of 2200 lines/mm.

The stretcher as two curved mirrors and a holographic grating, a detailed description of the device

can be found in [141]. The concave mirror as a curvature ray of 1000 mm and the convex mirror half

that value. This results in an introduced chirp of 2.3×107 f s2. For a spectrum of 15 nm this means

that the pulse will be on the ns scale, however for a 1 nm pulse this means that the pulse has less than

6For a highly chirped pulse with a quadratic spectral phase and with a spectral bandwidth of ∆ω , the pulse duration ∆τ

is given by:
∆τ ∼ chirp×∆ω. (2.36)
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2.5. CPA laser chain for OPCPA pump and seed

100 ps. A thorough discussion on the impact of this spectral narrowing in the damage threshold of

the Pockets cell of the regenerative amplifier can be found in [70].

Due to the high groove density, the optics in the stretcher system cannot encompass the entire spectral

bandwidth of the oscillator. In fact, by changing the angle of incidence in the holographic grating,

we can select the spectrum at the output of the stretcher.

The compressor has two parallel holographic diffraction gratings [142] with the same number of

grooves as the stretcher compressor. The gratings are placed roughly 90 cm away from each other. An

intensity autocorrelator was used at the output of the compressor, in order to minimize the duration

of the pulse by adjusting the compressor. The compressor has a overall efficiency of 50%.

2.5.2. Millijoule regenerative amplifier with spectral filter

The trials done by Renault et al. [70] demonstrated that it was important to decrease the spectral

width of the pump pulse used in the OPCPA. There are several ways to do this. Renault used

a slit in the pulse stretcher after the oscillator. We tried a different approach and used prisms in

the regenerative amplifier cavity in order to obtain a shorter spectrum. This angularly dispersive

component will allow us to select which spectral component is resonant in the cavity.

MC#

MC#

F#

WP#

PBS#

PBS#

CR#

PC#

input#

output#

Pump#

Figure 2.36.: Regenerative amplifier photo with two prisms inside (left) and a scheme of the cavity without
prisms (right). PC - Pockels cell, PBS - polarization beam splitter, F - Faraday rotator, WP -
half-wave plate, CR - crystal placed at the Brewster angle, MC - curved mirrors.

In a regenerative amplifier, the seed pulse is inputted into the cavity using a polarization based system.

The seed pulse turns inside the cavity passing through the amplification medium that is a 20mm

Ti:Sapphire crystal. At the output, we obtain a pulse amplified at the millijoule level. The crystal is

placed at the Brewster angle in order to avoid losses. The pump laser is a Nd:YLF laser emitting at

527nm with a output energy of 8W at 1KHz (8mJ/pulse).

The polarization system that controls the input/output in the cavity is described here. It is helpful to
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follow the description below using Fig. (2.36):

ä Before the cavity itself, we have an optical isolator, that is composed by the following ele-

ments:

• a Polarization beam splitter, that reflects light with a vertical polarization and transmits

light with a horizontal polarization;

• a Faraday rotator that rotates the incoming light 45º and the outgoing light by -45º;

• a half-wave plate that changes the polarization of light by 45º;

These elements will turn the polarization of a horizontally polarized beam at the way into the

cavity making the polarization vertical. On the way out of the cavity the vertical polarization

remains unchanged through the Faraday rotator plus the half-wave plate and is reflected by the

polarization beam splitter.

ä A polarization beam splitter makes the coupling between the input and the output beam. It

will reflect the vertically polarized light and transmit the horizontally polarized light inside the

amplification cavity.

ä In order to trap the light inside the cavity the Pockels cell has two modes. In the open mode the

Pockels cell will work as a quarter wave plate, it will turn the polarization to a circular state in

one passage and to a horizontal state in the second passage. This horizontally polarized beam

will be amplified within the cavity. In this configuration, the cavity is open because, if the cell

does not change mode, the beam will be amplified by two passages in the Ti:Sapphire crystal

before exiting.

ä In order to close the cavity, the Pockels cell changes its mode and starts working as a half

wave plate, this will allow the beam to be trapped inside the cavity. In one passage through

the Pockels cell, the beam polarization shifts to vertical, in the second passage the beam

polarization turns horizontal. The horizontally polarized beam stays in the cavity.

ä In order to open the cavity again and let the pulse exit the cavity, the Pockels cell mode changes:

it starts working as a quarter-wave plate.With a double passage thought the beam polarization

becomes vertical.

ä This vertically polarized beam will exit the cavity through the polarization beam splitter. It

will pass through the half wave and the Faraday rotator, the polarization remains vertical and

it will exit the optical isolator through the first polarization beam splitter.

Please notice that this opening and closing mechanism also selects the pulses to be amplified. The

Pockels cell works at a kHz repetition rate and is coupled with the oscillator repetition rate. It

works as a pulse selector decreasing the repetition rate from 89 MHz to approximately 1 kHz. In
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2.5. CPA laser chain for OPCPA pump and seed

other words, at each millisecond, the cavity will close, trapping the pulse inside during amplification

and releasing it after 144 ns approximately (the round trip inside the regenerative amplifier cavity is

approximately 12 ns).

The collimation of the beam in this oscillator is very important. In a standard regenerative amplifier

the rear mirror is curved and the cavity is constituted only by three mirrors, two curved ones with the

same focal length and a third plane mirror. It is near this third mirror that the Pockels cell and the

polarization beam splitter are placed. In this zone of the cavity, the beam will be slightly collimated.

This will help the coupling of the beam into the cavity. The fact that the beam is collimated will

also assure that there is no damage to the Pockels cell. In our case we want to use prisms inside the

cavity. In order to do this we need a collimated arm to implement the set of prisms, that’s the reason

why we have to have two collimated arms in the cavity, one for the Pockels cell and the other for the

prisms set.

In order to do an ABCD analysis of the cavity, the biggest difficulty is to evaluate the thermal lens

because of the pump radius. In order to do this, we proceeded similarly to what we did in the

previous section. In order to obtain an adequate pump radius, we used the beam size inside the cavity

and considered that the pump size was the beam size. First we considered no thermal lens. From

this, we obtained the beam size inside the cavity. Using the formulas for the thermal lens that are

given above, we calculated the thermal lens and inputted it into the cavity. We repeated the procedure

several times, until the size of the beam inside the cavity converged. We were able to do this because

the thermal lens effect in this cavity is small. The beam size converged around 207 µm (sagittal

plane) and the thermal lens around 33cm. Experimentally the pump focal lens was moved in order

to optimize the output energy.

In reality, the thermal lens will have a small effect on the stability of the cavity, on the beam size

and on the collimation of the beams inside the cavity. Indeed, any thermal lens larger than 250 mm

will have a very small effect on the cavity dynamics. We used 8W pump power, however as seen

in Fig. (2.36), the pump is recycled using a folding mirror and a curved mirror, this allows the total

pump intensity to be approximately 8.5W .

PC 50 mm
PC cavity arm 510 mm

MC-CR (PC side) 338 mm
CR-MC (prism side) 332 mm

prism cavity arm 345 mm

Table 2.2.: Approximate dimensions of regenerative amplifier cavity.

We calculated the incidence angle in the curved mirrors using Eq. (2.18). The angle given was 7.6º,

we used this angle in the experimental setting. The rest of the cavity approximate dimensions are

given in Tab. (2.2). Please note that this setup was changed while we here optimizing the output
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beam, and so the values are not exact values. The focal lens of the curved mirror is 250 mm.

Using the data above we calculate the beam size inside the cavity, the results are presented in

Fig. (2.37), we use the commercial program WinLase in order to obtain results.

Tangential

Sagittal

Figure 2.37.: Scheme of the size of the beam inside the regenerative amplifier cavity, with values given in
µm.

Of course when compared to the oscillator cavity, the stability of this cavity is not crucial. In reality

the seed pulse only turns in the cavity 10-14 times. The back mirror intensity and the output beam

are represented in Fig. (2.38). This results were gathered with the smallest spectral width.
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Figure 2.38.: Amplification inside the cavity. The amplifier’s end mirror measurement and the output pulse
measured by a Thorlabs photodiode.

We now analyze the spectral features of this amplifier. It is well known that CPA can originate

spectral narrowing, this is actually true for wide spectral shapes because of the gain spectral pro-

file, however for very thin spectral shapes, saturation might enlarge the spectral bandwidth of the
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2.5. CPA laser chain for OPCPA pump and seed

amplified pulse. As we have seen in the previous subsection, the Öffner triplet stretcher can be

used to select a part of the spectrum, the exit of the stretcher has approximately 15nm FWHM.

The regenerative amplifier cavity is by itself an oscillator with a characteristic spectral shape. In

Fig. (2.39) we can clearly see the 3 spectral curves. We can clearly see the effect of saturation in

the spectral shape and an increase in the width of the pulse spectrum, the output spectrum FWHM is

19 nm.

Figure 2.39.: Regenerative amplifier’s characteristic spectra without any prisms.

Remember that even without the seed injection the laser is still pulsed because the Pockels cell opens

and closes at a 1 kHz rate. As it is to be expected the ideal open/close time of the Pockels cell is

not the same for a free running laser and for an injected laser. In a prismless configuration, if we

optimize the round trip time in order to obtain the maximum amplification (9 round trips), we obtain

1.35mJ/pulse. The injection coming from the stretcher has 5mW@89MHz, or 56 pJ/pulse.
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Figure 2.40.: Output spectrum of the regenerative amplifier using one prism inside the cavity.

We used one prism in the cavity and obtained the characteristic result seen in Fig. (2.40). The
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amplified pulses had a spectrum with a FWHM of 1.7nm and is centered at 803nm, with an en-

ergy of 950 µJ/pulse. In this configuration, the spectrum can be adjusted. We report that the

central wavelength can be shifted, approximately 5nm, with an output energy that does not go below

780 µJ/pulse.

Due to the characteristics of this system, it would be expectable to obtain an important ASE at the

edges of the spectral profile. In order to avoid this, and in order to narrow the spectral profile, we

use two razor blades (curved edges) near the back mirror. With these razor blades, we were able to

obtain a minimum of 1.2 nm spectral width, with 700 µJ, but the configuration is clearly unstable.

We then used two prisms inside the cavity, the characteristics result can be viewed in Fig. (2.41).

In Fig. (2.41) a) we see that the output spectrum is the superposition of the input spectrum and the free

running cavity spectrum. Controlling these two spectrum we obtain the spectrum to be amplified.

We can clearly see that the longer wavelengths will tend to emit even if there is no seed at those

wavelengths. In order to avoid this, a razor blade is placed in position. This razor blade avoids the

free running laser emission at those wavelengths deceasing the ASE.
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Figure 2.41.: Output spectrum of the regenerative amplifier using two prisms inside the cavity. (a) the input,
free run and output spectrum, (b) the output spectrum cut by razor blades.

The results in this configuration are as follows. The output energy is 1mJ and the characteristic

spectrum FWHM varies between 0.8 and 1.1 nm. We report that during thermalisation the spec-

trum FWHM may vary by a few tenths of nanometers. The energy of the pulse remains constant.

Characteristically the total gain of the regenerative amplifier is 107.

2.5.3. Multipass amplifier

The following amplifier is a multipass amplifier, the polarization in this amplifier will always be

vertical, the Ti:Sapphire crystal is 10 mm thick and is coated to decrease the reflections in its surface.
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2.5. CPA laser chain for OPCPA pump and seed

The multipass amplifier has no curved mirrors or lenses, it only uses the thermal lens inside the

crystal in order to maintain the beam size controlled. In theory it works like a cavity, the beam

bounces of a first mirror with a slight divergence, it arrives at the crystal that will work as a lens

and it bounces into a second mirror. In this mirror, we find the waist of the beam which is then

reflected back into the crystal and so on. In truth, this worked well for the first 4 passages through

the crystal. We tried a fifth passage for which we used a divergent lens (f= -1000 mm) that helped us

with another amplifier passage, however no amplification was achieved during this passage. We only

used 4 amplification stages.

Figure 2.42.: Multipass amplifier, a scheme (right) and a photo (left).

The general scheme of the amplifier is presented in Fig. (2.42). From the scheme and the explanation

above, it is intuitive that the distance between the mirrors and the crystal (half the round trip from

one amplification step to the next) should be equal to twice the focal of the thermal lens. If it was an

oscillator, this would represent a stability near to zero. In reality, the ideal situation is given when the

distance between mirrors is ∼ 1.7 times the focal length. This will allow the beam to be bigger near

the mirrors and avoid the damage due to high fluency in the amplifier mirrors. Also the ideal beam

in this situation is going to be nearly collimated with a small divergence. Please note that the rest of

the pump is not reused in the amplification crystal.

For this amplifier, the pump laser is a Nd:YLF laser@527nm with an energy of 15mJ at 1 kHz

repetition rate. In the crystal, the pump has a diameter of approximately 1 mm. The calculated

thermal lens in this case is 0.9 m. We assembled the device using this values and obtained the
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characteristic amplification values listed in Tab. (2.3). The energy per pulse at the output of the

amplifier is 3.5 mJ.

Amplification stage Energy per pulse (mJ) Amplification
Entry of the amplifier 0.95 1

First stage 1.5 1.58
Second stage 2.2 1.47
Third stage 2.85 1.30
Fourth stage 3.5 1.23

Table 2.3.: Amplification and output energy at every amplification stage.

We can clearly see the effect that saturation has on the amplification coefficient, the fifth passage

resulted in no gain. However the saturation can also be seen in the spectrum of the output laser. In

reality, we registered that the multipass amplifier increases the spectral bandwidth between 10% and

20%, the output spectrum is between 1.3 nm and 1.7 nm, our best result was 1.1 nm, with 3.5mJ/pulse.

CPA laser output

After the multipass amplifier, we have a holographic grating compressor that has been described

above. Due to the compressor overall efficiency, the output of the amplification chain is 1.7mJ/pulse,

the spectrum is not cut by the compressor and remains the same spectrum that we have at the output of

the multipass amplifier. The spectrum is characteristically centered at 803 nm however it is possible

to change the spectral profile by 5 nm without significant change in the output energy or spectral

width. The spectral bandwidth of the output pulse is between 1.1 and 1.7 nm.

2.6. Conclusion

We have first discussed OPCPA in a degenerated and in a non-degenerated configuration, we con-

cluded that in a standard non-collinear wave mixing the spectral gain that could be obtained using a

non-degenerated configuration was spectrally wider than in a degenerated configuration.

We discussed a seed pulse with an angular chirp and obtained the conditions that enable an enlarge-

ment of the spectral gain bandwidth by introducing an angularly chirped seed. In our configuration,

we had two degrees of freedom, the angular chirp and the non-collinear angle. We used a derivation

of the phase-matching condition in order to obtain two equations that, if combined, gave the condi-

tions to obtain a large spectral gain bandwidth. We combined this with previous work to deduce a

configuration that would enable at the same time, a wide spectral pump and a large spectral bandwidth

of the amplified signal. We then confirmed numerically that angularly chirping the seed pulse can

enlarge the gain bandwidth. We did a sweep of the angular chirp and of the non-collinear angle.
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We found that in this case the degenerated configuration gives the widest spectral bandwidth. We

calculated that the spectral gain is going to have a FWHM of 405 nm, between 645 and 1050 nm

(centered at 850 nm) for a angular chirp of ∼ 2E−4rad/nm in a collinear configuration.

We presented two mode-lock Ti:Sapphire laser oscillators. The first oscillator we describe in detail,

has a spectral bandwidth FWHM of 96 nm, it emits between 750 and 900 nm, the pulse Fourier

limited by 12 fs The ML laser in which we base our simulations is presented in detail. It has 150 nm

spectral bandwidth, in which the dispersion control is assured not only by a traditional set of prisms

but also by a ensemble of chirped mirrors, we present the details on the dispersion and spectral phase

accumulated on a round-trip of the cavity (the dispersion of the prism set is positive). This enables

the oscillator to be smaller and therefore more stable. We discussed the astigatism in the cavity, there

are three components that create astigmatism in the cavity, one is the crystal and the other two are

the concave mirrors of the sub-cavity. The crystal not only contributes to the astigmatism due to

the simple transmission (the effective path in the tangential and sagittal planes is different) but also

due to the astigmatic lenses that exist in the crystal (thermal and kerr lens). Both elements have to

balance each other, in other words the folding of the mirrors of the sub-cavity has to compensate

effects in the crystal. There is a formula to find the folding angle that compensates the path that

is made inside the crystal, which gives an angle of 8.07º, we also used a simple simulation to find

which angle would allow us to compensate the astigmatism of the output beam, and found that 7.2º

would be the best value, experimentally we make a sweep of the folding angle to find the best angle

to obtain an anastigmatic beam at the output of the cavity, we find that this angle is ∼ 7.5◦.

The second oscillator that we have presented is a sub-6 fs oscillator (4.8 fs Fourier limited), with a

larger spectral bandwidth. We describe this oscillator summarily, it has a smaller crystal, 1.9 mm

instead of the 4.5 mm that we had in the first oscillator and we use doubled chirped mirrors to

compensate the dispersion accumulated by the pulse, in a cavity round trip, the Ti:Sapphire crystal,

the two BaF2 plates, the two CaF2 wedges and the dispersion introduced by the air, the wedges are

assembled in a translation stage with a motor that allows us to finely tune the dispersion inside the

cavity. The SPM effect in this case is such that the output spectrum can go from 650 nm to 1125 nm

while the output coupler has a flat transmission from 605 nm to 925 nm, in other words there is a part

of the spectrum which half-life time in the cavity is smaller than the half-life time of the central part

of the spectrum, which is only made possible due to the strong SPM inside the crystal that creates

frequency components at each round-trip (Fig. 2.31).

We have presented several models to simulate the first femtosecond Ti:Sapphire laser oscillator. It

has been known that the sub-cavity configuration is critical to the ML operation, what we tried to do

is to find which are the distances within the sub-cavity that allow a good ML operation. In reality

the thermal lens is hard to estimate if it is not measured experimentally and the models in which it

is based are not perfect. We used two models to simulate this effect, as well as analyzing the cavity

without any thermal lens. Finally, in one last model, we adapted the pump size at every point in the

cavity in a CW configuration. We did this by scanning the effect that the pump size would have on
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the spot size of the laser inside the Ti:Sapphire crystal (via the thermal lens). We memorized the

spot size and the pump size that were closest to each other (in a CW configuration) and took this

sizes to be the actual spot sizes of the CW and pump laser. The results may be seen in Fig. (2.24),

we conclude that for this specific cavity the beam size can only be compatible with the pump size

(within 50% difference) if the thermal lens is small, which means a pump size smaller than ∼ 53µm

(effective radius, ∼ 40µm). We used this value to make the calculations with a simple thermal lens

and with a thermal lens in which the difference between the size of the pump and of the resonant

beam. The way in which we analyzed the ML operation consisted not only in a study of the spot

sizes in the middle of the gain medium, but also in an analyzes of parameters that evaluate the ability

of the cavity to ML. The traditional way to analyze the ML operation has to do with calculating the

mode size in a CW configuration and then introducing a small Kerr lens that enables us to evaluate

what is the tendency to ML that a certain cavity configuration possesses. If the beam size inside the

crystal decreases, it is an indication that the cavity is in a good configuration to enable ML. This is

simply due to the fact that the ML process depends on the beam size, because we have an increase

in gain when the beam is smaller. This is what is evaluated by Eq. (2.33). In order to go further,

we have to evaluate the beam size in a ML configuration. It is important to notice that the switch to

a ML configuration is a nonlinear process and so it is possible that the evaluation of a infinitesimal

Kerr lens does not represent the entire process in which the beam intensity increases six orders of

magnitude.

We explored several models in order to obtain the spot sizes of the beam in a ML configuration.

The actual increase in laser power from a CW to a ML configuration is not known to us, the authors

in [25] concluded that in their model the beam size is stable after 200 round trips for a 50 fs pulse,

however for a 5 fs pulse the authors concluded that not even 100 round trips would make the beam

size completely stable. We have 12 fs pulses, and so we do not know how the intensity increases.

In the first model we devised, we started by inputting into the cavity configuration a Kerr lens that

had the actual power of the resonant beam inside the cavity (we estimated the duration of the beam

inside the cavity considering the chirp introduced by the crystal and the spectral bandwidth). This

is not to say that the Kerr lens was estimated, it only means that the power inside the crystal was

estimated, but the Kerr lens also depends on the spot size which is what we want to know. However

the actual power inside the cavity is only attained after the stabilization of the ML process. This

model actually produces a spot size that is coherent with itself, and with the observed characteristics

of the cavity (not with the sub-cavity dimensions because these were not measured with sufficient

accuracy). However this model seems to find zones where the ML is not possible and where the

differential ML parameter that we had discussed above does find appropriate ML parameters. And

so even if the model is self-consistent, it might eliminate points where ML is possible but it was not

obtained because of the calculation method. However for all thermal lens considered, we can clearly

see the point where ML is optimal. With this model, the two stability zones that are found in a CW

configuration divide themselves in into four zones.
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The third quadrant stability zone (low L1 bigger Z) gives the most interesting results concerning the

ML parameter. In reality we obtain that it is in the edge of this zone that ML operation is more

favorable7, however comparing this zone with the zones obtained by the differential ML parameter

we see that they do not coincide. This is simply due to the fact that the soft aperture ideal sub-cavity

configuration that can be seen in Figs. (2.11), (2.16) and 2.19 is not stable when we introduced a Kerr

lens. These results give us the perception that, with an increase in the intracavity power the crystal,

the position that gives the operational ideal point changes. The distance between the sub-cavity

mirrors also changes less depending on the thermal lens in play.

The second model we proposed was based on the first one, however whenever the ML operation

seamed to be unobtainable the algorithm decrease the mode size to see if it would find a stable

mode (we tried to use trials with bigger modes but no new operational sub-cavity configurations

were obtained). This model obtained stability where the first model failed, we see configurations

where the CW is possible and the ML operation is possible using this second model but not the first

one. These operational points are situated in zones where the spot size is smaller, more specifically

between the two stability zones that were created in the previous model by including the Kerr lens.

The importance of having a ML operation on a point where the spot size is small is given by the

increase in SPM that is obtained with this smaller spot size. This increase in SPM will mean a wider

spectral bandwidth.

For a cavity where no thermal lens existed, we also tried to linearly increase the power inside the

cavity in 20 steps, up to the power that is actually measured, we obtained a result similar to the first

model. However in this model we found that introducing a gradual Kerr lens eliminates many points

where ML could otherwise be obtained. This does not mean that the model is false, it simply means

that this calculation method does not allow some sub-cavity configurations to be stable. Adjusting

the pump and beam sizes, we calculated the spot sizes. From these spot sizes, we calculated the

differential ML parameter. This gave us the impression that having a bigger thermal lens would be a

favorable for a ML operation.

So far, we had considered that the intracavity power was the same for every distance between sub-

cavity mirrors and crystal positions. We changed this, in our fourth model by increasing the pump

power in 200 steps, evaluating at every step if the cavity was still stable. If this was not the case, we

would memorize the last stable spot size. In this calculation the four zones that had been created by

the introduction ad hoc of the thermal lens were recompressed into the previous two stability zones.

We remark, that in this calculation, we obtained two zones where the sub-cavity configuration is

good for ML; we can see these regions that are signaled by a ”X” and a ”Y” in Fig. 2.26. The region

that is best suited for ML is the ”Y” region, we could perceived this region ability for ML in the

models that had an infinitesimal Kerr lens, but not so marked as in this one. This result is important

because, in the previous models, we considered the laser power to be the same for every region and

7This was not the case in [106] simply because the thermal lens was considerably bigger and the folding of the stability
zones was considerably higher.
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this is simply not the case in an actual laser oscillator, and it also proves definitely that the use of the

ML parameter as defined by Eq. (2.33) does not represent the totality of the ML process.

Afterwards, we studied a fifth model where the intracavity power increased exponentially. We used

10 points one order of magnitude apart from each other, up until the actual intracavity power, however

at each increase in power we applied the second algorithm, searching at each energy increase a stable

ML configuration. The results from this calculation are very similar to the sixth and final successful

algorithm that was presented next, that consisted not in using the algorithm of Fig. (2.14) until it

converges but only one time, we tested this algorithm. In reality these results confirm that the division

of the two stability zones into four actually happens, the edge of the stability zone with the biggest

distance between the mirrors and the smallest L1 position is the preferential point for ML operation.

Also these last algorithms seem to indicate that the stability zone where it is possible to have ML is

larger than what had been previously calculated. They also seem to indicate that the existence of a

strong thermal lens (if the beam mode allows) benefits ML operation or at least decreases the beam

size at this point.

The second oscillator we presented has a smaller subcavity (concave mirrors with a smaller focal

length) which creates a smaller spot size at the center of the crystal. The stability zones in this case

are bended in such a way that the two stability zones are superimposed. In the meeting between the

two stability zones, on the edge of the second stability zone we find the ideal point to have the laser

in ML. At the ideal ML position the focal for the first oscillator is approximately 50mm (35 µm spot

size), for the second oscillator, the beam size is smaller than 10µm, in consequence the thermal lens

is one order of magnitude smaller on the order of the mm. This enabled us to work in a region that

is stable and at the same time with a spectral bandwidth bigger than an octave. We also verify that

the point in which the cavity operates in ML the pump and beam size are similar at the central of the

crystal, no other configuration of the sub-cavity as the same two characteristics. In the first cavity

that was presented, the final model gives presents two points that where ML operation is feasible, one

of them is coincident with the literature (see for instance [87, 112, 137]) on the other the pump and

beam sizes do not match (compare Fig. (2.24) c) and the bottom graph of Fig. (2.28)), we envision

that in future works an engineering parameter to define the ideal ML position would not only have

into account the decrease in mode size due to the increase in power (which the ML parameter already

does) but also the match between the pump and beam size inside the crystal.

In the end of this chapter, we have presented in great detail a Ti:Sapphire CPA laser chain that issues

1.7mJ per pulse, with a spectral bandwidth that can be as short as 1.1 nm@802 nm. The design

of this amplification chain includes two prisms inside the regenerative amplifier cavity that select

the spectral bandwidth to be amplified. Saturation is important in this CPA chain and increases

the amplified spectral bandwidth. In reality, the amplified spectral bandwidth of the regenerative

amplifier is the superposition between the inputted spectrum and the spectrum of the regenerative

amplifier when this is working in a free running mode. After this regenerative amplifier, the CPA

chain had a 4-pass amplifier, the dispersion control was done using holographic gratings.
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Ultrashort pulses diagnostics
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3. Introduction to autocorrelations and
third order cross-correlations

Correlations and autocorrelations have been among the easiest diagnostics to implement in ultrafast

sciences. This chapter, despite being done with ultrafast laser pulses in mind, may have applications

in other areas of science. We present here a quick review on what is known about autocorrelations.

We will use some of the features exposed here in Chap. (4) to reconstruct the intensity profile of

ultrafast pulses.

In the second part of this chapter (Sec. (3.2)) we deal with third order cross-correlations (TOCC). We

discuss the features of third order cross-correlators and third order cross-correlations. We present

the mathematical proof that the TOCC plus IA completely defines the intensity profile, a result that,

to the best of our knowledge, has never been published. We also give some results on a retrieval

method that uses the TOCC and IA to obtain the pulse profile, where the results obtained sustain the

mathematical proof referred above.

3.1. Autocorrelations

We treat the following autocorrelations:

1. Electric-field autocorrelation;

2. Intensity autocorrelation (IA);

3. Second order interferometric autocorrelation (IAC);

4. Second harmonic autocorrelation (SHAC)

5. Third order interferometric autocorrelation (TOIAC)

We present the main characteristics of these correlations, how to obtain them experimentally and the

main problems of the experimental implementation will be discussed. Many of these problems have

been approached by several authors, for a comprehensive presentation see [50].

The first characteristic of autocorrelations is that they are always symmetric and real, and so the

Fourier transforms of these quantities are also symmetric and real. The Wiener–Khinchin theorem
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3. Introduction to autocorrelations and third order cross-correlations

(Eq. (3.1)) states that the autocorrelation and the squared modulus of the Fourier transform are

Fourier pairs. And so knowing the Fourier modulus and knowing the autocorrelation are equivalent

statements.

∫
f (t) f ∗(t− τ) = |F(ω)|2 (3.1)

Retrieving the electric field from the electric-field-autocorrelation or the intensity from intensity

autocorrelation is a phase retrieval problem that is unsolvable on its own. In other words, there

are more than one electric field that will have the same intensity autocorrelation and electric field

autocorrelation. This topic has been treated successfully by J. H. Seldin and J. R. Fienup [143, 144]

and it was has been proved that in a uni-dimensional case, the phase retrieval problem does not

present a single solution. And so in principle assuming nothing else we cannot know a function

using only its uni-dimensional autocorrelation.

When assuming a complex electric field there aren’t any restrictions on the value of the electric field

itself. But we can say that the intensity is a real and positive function limited in time and integrable.

In order to be clear, when a function is defined by its Fourier modulus it means that there is only one

solution for the phase of the Fourier transform that satisfies the existence of that Fourier modulus

and other constraints that might exist in the frequency or time space. The probability for having a

non unique solution for an autocorrelation of a given two dimensional function is dependent on the

function itself, specially if the function dependence on one dimension is dependent or independent

of the other dimension.

Correlations and autocorrelations are done in a correlator, which is a Michelson [145] or a Mach-

Zehnder interferometer [146]. An autocorrelator uses a wavefront divider interferometer. This

allows us to have two virtual identical sources, shifted in time by a certain delay, one arm of the

interferometer sweeps the delay, while the other stays still. This allow us to obtain the time difference

between the pulses.

Despite lacking the consistency of a 2D measurements like FROG (Frequency Resolved Optical Gat-

ing) [35], triple autocorrelations [147], SPIDER (Spectral Phase Interferometry for Direct Electric-

field Reconstruction) [37, 38] or D-scan [39], autocorrelations provide information about the pulse

profile, and we will see in this thesis that some of these measurements provide full pulse reconstruc-

tion or high contrast measurements. This measurements are easy to make, at the very least are initial

measurements that the scientific community employs daily in every ultrafast laboratory.

Femtosecond autocorrelators are devices that must be designed according to a specific spectral

bandwidth, they are normally designed for pulses with a small spatial beam divergency, and in an

autocorrelator the intensity in both arms of the interferometer is balanced. A single path autocor-

relator as we see in Fig. (3.1) is not a good autocorrelator. The multiple reflections in the beam

splitter will create several parallel beams with different delays and so it is possible to observe several
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3.1. Autocorrelations

autocorrelations. However it will be impossible to have the same quantity of material crossed by

both beams. One solution for this problem is to have a second beam splitter on one of the paths (at

45º), but this will unbalance the intensity due to reflections in a second beam splitter.

Figure 3.1.: Single-pass interferometer: SM-silver mirrors; PZT-piezoelectric; BS-Beamsplitter; PDS-photo-
detecting system.

The solution would be to put it in a Brewster angle but then the paths wouldn’t be the same, this

details have unmitigated importance when the pulses are shorter than 15fs@800nm. The solution for

this is to have a double pass interferometer where the coating on the BS is putted symmetrically on

each incidence point (see Fig. (3.2)).

Figure 3.2.: Double path interferometer: the multiple reflections in the beam splitter are of no concern. Both
beams pass through the same path and the coatings are reversed.

3.1.1. Electric field autocorrelation

The electric field autocorrelation is a well known entity which is equivalent to spectral power, the

two quantities being related by a Fourier transform:
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3. Introduction to autocorrelations and third order cross-correlations

ACE(τ) =
∫

E(t)E(t− τ)dt

S(ω) = F {ACE(τ)}= |Ẽ(ω)|2
(3.2)

The power spectrum can also be measured directly with a spectrometer. The autocorrelation can be

taken using a correlator with a linear absorber. The quantity that arrives in the detector is:

DACE(τ)=
x
|E(t,x)+E∗(t− τ,x)|2dtdx = 2

x
|E(t,x)|2 +R

{x
E(t,x)E(t− τ,x)|2dtdx

}

(3.3)

Both arms have to be balanced. Spatial defects and wavefront defects will jeopardize the contrast.

For ultrafast pulses it is sometimes more practical to measure the spectral intensity profile than the

electric field autocorrelation.

3.1.2. Intensity autocorrelation

This autocorrelation is obtained using a nonlinear effect at the end of a wavefront divider interferom-

eter (see Fig. (3.3)).

Figure 3.3.: Intensity autocorrelator: these beams are combined in a nonlinear crystal (SHC) and the contrast
can be good due to the fact that we eliminate the original beams and their second harmonics.
Because the wave-mixing is non-collinear, the originated second harmonic electric field will be
proportional to SH(t,τ) = E(t)E(t − τ). The photodiode reads its intensity, a convex mirror
focus both beams in the crystal.

However to obtain a background free intensity autocorrelation the beams have to be non-collinear. In

this case there is no interference between beams (in reality the beam interference figure is averaged

over many fringes). Intensity autocorrelation is defined as follows in Eq. (3.4):
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3.1. Autocorrelations

IA(τ) =
∫

I(t)I(t− τ)dt. (3.4)

This autocorrelation is not sufficient to retrieve the intensity, however it is sufficient to retrieve the

variance, because both variances are related by

σ(IAC(τ)) =
√

2σ(I(t)). (3.5)

Using the Hilbert transforms there were attempts to define the intensity from the autocorrelation

[148], but these attempts fail for most pulses. Intensity is an integrable, real and positive, the intensity

of a pulse is constrained in time, and therefore the intensity is not completely unrestrained.

Let us analyze some of this restrains using a certain Fourier intensity phase. The Fourier transform

of the IA is |Ĩ(ω)|2, the intensity is given by:

I(t) =
∫
|I(ω)|exp(iφ(ω))e−iωtdω (3.6)

Considering that the intensity spectral phase (do not mix this intensity spectral phase with the field

spectral phase, that are independent) is odd in order to give an intensity that is real (see Eq. (3.6))

however, the odd Fourier intensity phase does not assure that the intensity is always positive. Even

phases are only possible in particular cases where:

∞∫

0

|Ĩ(ω)|cos(ωt)sin(φeven(ω))dω = 0 (3.7)

For an arbitrary |Ĩ(ω)| this is true when φeven(ω) = 0. Therefore the constant component of the

phase is zero. A linear phase in the Fourier domain will mean a delay in time and so a linear phase

is always possible because the time origin is arbitrary, but it can also be disregarded if we chose the

time origin.

If the phase is zero, the intensity will always be positive, real and symmetric. J. Peatross and A.

Rundquist [149] have developed an algorithm in order to retrieve the intensity from its autocorrela-

tion. They use the fact that the intensity has to be real and positive in addition with the condition

I(t0)< 0 then I(t0) = 0.

The algorithm is explained in Fig. (3.4): the intensity is retrieved from an intensity autocorrelation

using a Gerchberg-Saxton algorithm, which is equivalent to the retrieval of the spectral phase of the

intensity. The initial phase guess starts with a odd phase, and a modulus of the intensity Fourier

transform, the initial guess can be randomly generated. Then, for any point where the intensity is
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3. Introduction to autocorrelations and third order cross-correlations

negative, we impose the condition I(t0) = 0. A new Fourier transform of the intensity is performed.

We memorize the phase in the Fourier domain and replace the absolute value for the absolute intensity

Fourier transform obtained by the intensity autocorrelation. The convergency of the error is presented

in Fig. (3.6).

Intensity spectrum 
(obtained from the 
intensity autocorrelation)

Initial guess for 
the intensity 
phase '0 (!)

Ĩ (!) =
���Ĩ (!)

��� exp (i' (!))

Ĩ (!) =
p

SI (!) exp (i' (!))

SI (!) =
���Ĩ (!)

���
2

I (t) < 0
I (t) = 0

or
I (t) = |I (t)|

F�1

F

I (t)

Ĩ (!)

If

Figure 3.4.: Gerchberg–Saxton algorithm applied to the intensity autocorrelation.

We could have used any phase as an initial phase, however this is going to result in a complex

intensity in the time domain, and then the condition will have to be changed to I(t0) = |I(t0)|. In this

case the convergency will be slower.

INPUT          spectral intensity 
from a spectrometer 
Initial phase estimate
(just first cycle)

Ẽ (!) =
p

S (!) exp (i' (!))

E (t) =
p

I (t) exp (i� (t))
F {}

F�1 {}

S (!)

'0 (!)

INPUT          
obtained in the 
previous cycle 

I (t)

' (!) = ang
⇣
Ẽ (!)

⌘

� (t) = ang (E (t))

Figure 3.5.: Second cycle for the deconvolution of the pulse.
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After using this algorithm, we observe that the obtained phase is not unique. We realize this by

using different initial guesses for the phase, that result in different end result for the phase even if

convergency is reached. In resume, it is not possible to define the phase from its modulus with such a

week condition. A second Gerchberg-Saxton cycle was designed (Fig. (3.5)) to obtain the complete

definition of the electric field in spectrum and time, this cycle inputs are the intensity profile and the

spectral intensity; in other words, the two amplitude modulus of the Fourier pair in the direct and

Fourier space.
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Figure 3.6.: Convergency of the cycles given above in Figs. (3.4) and (3.5). The small graph in the left
bottom is the Fourier transform of IAC (interferometric second order autocorrelation) trace in this
measurement, an excess in linear absorption made the S/N ratio of the second harmonic module
approach 1. The pulse had a FWHM of about 26 fs in time and 80 nm of spectral FWHM.

101



3. Introduction to autocorrelations and third order cross-correlations

The algorithm goes forward and backwards between the Fourier and direct space until it finds a stable

solution where the phase of the electric field is consistent with both modulus. This second algorithm

is explained in Fig. (3.5) and the convergency graphics in Fig. (3.6).

We use the intensity retrieved in the previous cycle (Fig. (3.4)) and from the experimentally measured

spectrum. This has given approximated results in some cases, and it is used as a first algorithm before

FROG [34].

3.1.3. Interferometric second order autocorrelation

This autocorrelation is a correlation obtained by a second order nonlinear effect. The correlator is

similar to the one in Fig. (3.3) but the beams are perfectly aligned when they arrive to the detector

(Fig. (3.7)).

Figure 3.7.: An interferometric autocorrelator: the fields will be aligned so the second harmonic field will be
given by the sum of both electric fields that add up coherently (at least when the delay between
them is zero). It is important to observe that slight misalignments (or a beam splitter that is not
perfectly plane) will give us a distorted wavefront, and this will result in a contrast that is smaller
than 1 to 8.

In this case the electric field that arrives in the crystal is the algebraic sum of the electric fields as in

a field autocorrelation. However the field sum is squared twice, one because of the second harmonic

and the other one because we measure the intensity of the second harmonic.

IAC(τ) =
∫
|E(t)+E(t− τ)|4dt (3.8)

This equation is divided in four terms
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3.1. Autocorrelations

IAC(τ) = 2DC+4IAC(τ)+8X(τ)+2SHAC(τ), (3.9)

where:

DC =
∫

I2(t)dt (3.10)

IAC(τ) =
∫

I(t)I(t− τ)dt (3.11)

X(τ) =
∫ I(t)+ I(t− τ)

2
ℜ
{

E(t)E(t− τ)
}

dt (3.12)

X(τ) =
X1(τ)+X1(−τ)

2
(3.13)

X1(τ) =
∫

I(t)ℜ
{

E(t)E(t− τ)
}

dt (3.14)

X(τ) =
ℜ{X11(τ)+X11(−τ)}

2
(3.15)

X11(τ) =
∫

I(t)E(t)E(t− τ)dt (3.16)

SHAC(τ) =
∫

ℜ

{
E2(t)E2

(t− τ)
}

dt (3.17)

Please note that: DC = IAC(0) = X(0) = SHAC(0) =
∫

I2(t)dt.

Observing this, we may evaluate the importance that every part of the equation is going to have. Note

that the origin value in time is the average value in the Fourier domain and vice-versa. The SHAC

has a smaller S/N ratio than the other parts of IAC, because it has the smallest amplitude. This

several parts will then be distinguishable in the Fourier domain. The contrast will be 1 over 8. A

characteristic IAC and its Fourier transform can be viewed in Fig. (4.1). The Fourier characteristics

of IAC and SHAC will be discussed in Chap. 4. The Fourier transform of X(τ), the crossed term,

may be given by:

X̃(ω) =
1
4

[[
Ĩ(ω)⊗ Ẽ(ω)

]
Ẽ(−ω)+SS+CC

]
(3.18)
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3. Introduction to autocorrelations and third order cross-correlations

SS is the centric-symmetric term. This term is actually very similar to the field autocorrelation and

is centered at the same frequency. Note that X(τ) = X(−τ).

This autocorrelation, together with the spectrum, is sufficient to reconstruct the pulse’s electric field

in both magnitude and phase. The proof is given by Naganuma et al. [150]. In Chapter 4 we analyze

the attempts done in order to deconvolve the electric field from this measurement.

3.1.4. Second harmonic autocorrelation

SH autocorrelation is the field autocorrelation of the second harmonic and can be measured by doing

the linear autocorrelation of the second harmonic so we may simply put a second harmonic crystal

before the autocorrelator. The autocorrelation is given by:

SHAC(τ) =
∫

E2(t)E2
(t− τ) (3.19)

This autocorrelation carrier frequency is approximately twice the carrier frequency of the main pulse,

its Fourier transform can be given by:

F {SHAC(τ)}= |Ẽ(ω)⊗ Ẽ(ω)|2 (3.20)

A second harmonic autocorrelator is presented in Fig. (3.8):

Figure 3.8.: A second harmonic autocorrelator: SHC - second harmonic crystal; F - spectral filter; BS - beam
splitter; PZT - piezoelectric; SM - silver mirrors; LPDSH - linear photo-detector at the second
harmonic wavelength.

Despite never being actually measured independently, we could measure the second harmonic spec-

trum using such a system, or we could simply measure the second harmonic spectrum using a proper

spectrometer, this later proposal has a bigger S/N ratio.
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3.1. Autocorrelations

3.1.5. Third order interferometric autocorrelation

This correlation is rarely used, however it is rather interesting. A third order nonlinear effect is

necessary in order to obtain this autocorrelation, that can be given by a three photon absorption

or a third harmonic generation. If we use three photon absorption in a photodiode for a 800 nm

Ti:Sapphire laser with 100 nm bandwidth the required absorption of the photodiode should be

centered at 266 nm, with a minimum flat gain spectral bandwidth of 33 nm. We tried to do this

with a AlGaN photodiode - the Genicom GUVB-T11GD, that had an announced spectral bandwidth

between 200 and 300 nm, however we did not observe a third order autocorrelation but rather

something similar to a field autocorrelation, this is probably due to the fact that the linear absorption

vastly surpasses the nonlinear absorption in the photodiode. This has been used to confirm IAC

diagnostics where no other diagnostic had been implemented. The expression is given by:

TOIAC(τ) =
∫
|E(t)+E(t− τ)|6dt (3.21)

This correlation contrast is 1 to 32. Let us decompose this in its Fourier components:

TOIAC(τ) = 2DC+18XIAC(τ)+30X1(τ)+12X2(τ)+2T HAC(τ), (3.22)

where:

DC =
∫

I3(t)dt (3.23)

XIAC(τ) =
∫ I(t)+ I(t− τ)

2
I(t)I(t− τ)dt (3.24)

X1(τ) =
∫ I2(t)+ I2(t− τ)+3I(t)I(t− τ)

5
R
{

E(t)E(t− τ)
}

dt (3.25)

X2(τ) =
∫ I(t)+ I(t− τ)

2
R
{

E2(t)E2
(t− τ)

}
dt (3.26)

T HAC(τ) =
∫

R
{

E3(t)E3
(t− τ)

}
dt (3.27)

This autocorrelation in addition to the spectrum completely define the electric field. It is intuitive

that XIAC(τ)+X2(τ) are the equivalent of IA(τ)+SHAC(τ).
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3.2. Design of a third-order cross-correlator and analysis of
third-order crosscorrelations

Traditionally, third-order cross correlators have been used to obtain high contrast measurements

of the laser pulse temporal profile, [40–44]. We should not confuse third-order cross correlations

(TOCC), also called third-order correlations, with triple autocorrelations [151–154]. The later are

seldom used because of the practical issues regarding the implementation of two delay lines in a

single device [152–154]. Probably due to these limitations, they have never been implemented for

high contrast measurements. However they provide measurements that completely define the pulse

shape [147], unlike third-order correlators. On both devices the signal is read at the third harmonic

wavelength. For example, for a Ti:Sapphire laser with a fundamental wavelength at 800 nm, the

signal is read at 266 nm.

The advent of high intensity laser pulses brought up the need to analyze the pulse with a dynamic

range of several orders of magnitude. The importance of this measurements is made clear by Marc

Nantel et al. [53]. In short, if pre-pulses and/or amplified spontaneous emission (ASE) are present

in the background of laser emission, their previous interaction with targets can modify them and the

interaction of the main pulse might not be with the intended target.

The most common, but not only case where this is illustrated is in solid target interaction. In

aluminum thin film targets, plasmas can be created for pulse intensities of 1012Wcm−2. Intensities of

1019Wcm−2 can be achieved with 100 TW lasers and so background cleaning of more than 7 orders

of magnitude is necessary if we want the main pulse to interact with the thin film itself an not with a

plasma created by the background of the pulse. This presents two problems: the measurement of the

radiation in the background and the increase of the pulse contrast. In this work we will mostly deal

with the first problem.

The measurement presented here is not conceived to simply analyze the pulse shape in a linear scale

or within a few fs of the pulse maximum. It is conceived in order to analyze the pulse within a

±500 ps time scale in a logarithmic scale. For longer time scales we may use a streak camera [53] or

an oscilloscope.

The competing device to make high contrast measurements is the OPA correlator [155–159]. How-

ever OPA correlators have only been seldom used and third-order cross correlators at the third

harmonic wavelength have been dominant in the scientific and technical communities until now.

The principle of these two measurements are similar: two chained second order nonlinear processes,

where the first nonlinear process is the same for both devices (the SH of part of the pulse). In the

case of the OPA correlator the second nonlinear process is DFG between the SH and the fundamental

pulse.

In a TOCC the second nonlinear process is the SFG of the second harmonic and the fundamental
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signal and not the third-harmonic of the fundamental pulse. The SH field is normally shorter and

sharper than the fundamental pulse. It is assumed that the SH is given by the square of the field.

This means that the contrast will be improved by a factor of two on a logarithmic scale. For simple

Gaussian shaped pulses the duration of the SH will be
√

2 shorter than the fundamental pulse itself.

This SH field is used to scan the fundamental pulse.

It is important to notice that we assume that all these processes occur in a low depletion regime,

which is equivalent to state that:

ä the second harmonic intensity is proportional to the square of the intensity of the fundamental

pulses (the proportionality constant is not relevant here):

ISH ∝ I2
ω (3.28)

ä The intensity of the signal before averaging over the time response of the detector is given by:

Isig ∝ ISH(t)I(t− τ) (3.29)

It is imperative to make sure that there is no saturation in the detectors or in the nonlinear processes,

otherwise the two previous equations would not apply.

Both devices (TOCC and OPA correlator) allow a temporal analysis of the laser pulse intensity with

at least 12 orders of magnitude. But in order to have this dynamic range the detectors on the device

should have a dynamic range ratio of three orders of magnitude before saturation.

The SFG in a TOCC device is sometimes inefficient (for low pulse intensities). Also it is considered

harder to measure a signal in the UV range then an IR one [159]. The OPA correlator was designed

to solve this problem. DFG can achieve a high gain of the seed (106), which makes the signal easier

to read. Another fact that helps the reading of the signal is that this beam is found in the near infrared

part of the spectrum. However for most lasers where the high contrast measurement is needed the

low efficiency of the process is not a problem because of the high energy in the laser pulses. In fact,

we don’t want the process to be too efficient in order to avoid saturation.

Also, in order to have a dynamic range in the detectors of 103, the background noise has to be clean.

This is much easier with a measurement in the UV because there is no other beam in the device at

that wavelength, (the signal is spectrally isolated). In a OPA correlator the signal is read at 800 nm

as is the fluorescence ring and the fundamental pulse. In order to compensate for this effect the

noncollinear OPA wave mixing is greatly increased [157], which creates a group velocity mismatch

that has to be compensated for.

A second-order intensity autocorrelator with an high contrast of 8 orders of magnitude has been

reported [54] (note that time direction is ambiguous in an IA and so post- and pre-pulses are in-
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3. Introduction to autocorrelations and third order cross-correlations

distinguishable). Not only the second order autocorrelator does not benefit from the normalization

factor that we will discuss below, but also the background noise is larger than in a third-order cross-

correlator. Like in the case of the OPA, we will not be able to spectrally isolate the signal. The signal

is created at 400 nm and the second harmonic of each beam is also created at 400 nm.

Supercontinuum based correlations have also been reported [60]. With this design it was possible to

obtain contrast ratios of 108 in a sweeping system and 106 in a single shot system.

Delay 
line

MP

BS

PD

BB

PM
SF

SFG-crystal

P

SH-crystal

τ!

τ!
D-BS

Figure 3.9.: Third-order cross correlator. MP - Adjustable polarizer; P - fixed polarizer; PD - photodiode
inputted behind a mirror; BS - beam-splitter; D-BS - Dichroic beam-splitter; BB - Elevator
system that rotate the polarization; SF - spectral filter with a set of prisms and a slit; PM -
photomultiplier.

Let’s discuss the possibility of having noise radiation at 266 nm (λ/3) in the device. The most

intuitive way to get radiation at the third-harmonic wavelength, would be the appearance of THG

in the materials where the beam is passing through. However this is highly unlikely due to the

absence of phase-matching conditions. In reality THG is only possible if the interaction medium is

nonuniform in the focal volume [160–162]. In other words only in materials where the interface plays

an important role is it possible to have direct THG [163]. Direct creation of THG is only possible in

cases where the dispersion obeys non normal conditions, like in photonic crystal fibers [164, 165].

The impossibility of having THG in bulk materials is well exposed by Rajesh Sreedharanpillai in

[166]. In conclusion, we may say that in general it is not possible to have radiation at 266 nm that is

not derived from the cascaded process of SHG+SFG.

A simple scheme of a TOCC is given in Fig. (3.9). The seed (fundamental wavelength) pulse used
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3.2. Design of a third-order cross-correlator and analysis of third-order crosscorrelations

in the SFG is delayed in relation to the second harmonic, the resulting signal is proportional to the

amplitude overlap of the delayed fields and averaged over the time response of the photomultiplier.

The signal seen at the UV detector (photomultiplier) is given by:

SPM ∝

∫
I2(t)I(t− τ)dt (3.30)

However, we note that this signal dynamic range is only the dynamic range given by the photo-

multiplier (usually 3 or 4 orders of magnitude). We will have to use the fact that the signal in the

photomultiplier varies with the cube of the intensity of the input pulse. This creates an additional

degree of freedom with which to control the signal. We measure the quantity of IR that gets into the

device with a photodiode, and we will normalize the photomultiplied signal using the photodiode

signal. The correlation signal is then given by the following formula:

S3ω =
SPM

S3
PD

, (3.31)

or in other terms:

S3ω(τ) ∝

∫
I2(t)I(t− τ)dt

[
∫

I(t)dt]3
. (3.32)

From Eq. (3.32) we see that the possible contrast dynamics of the signal is no longer given by the

contrast of the photomultiplier (PM) but by the sum of the PM contrast plus three times the contrast

of the photodiode. In order to achieve this we have to use the adjustable polarizer shown in Fig. (3.9).

For zero delay between the pulses (maximum signal), the polarizer is rotated so that the signal in the

PM is maximized and the intensity read by the photodiode (PD) is minimized. The PM signal near,

but not, in saturation and the PD signal should be near the noise level. This is normally achieved by

placing a neutral density filter before the PD.

When we obstruct the beam path after the photodiode the intensity read in the photomultiplier should

be near its threshold of detection, at this point the polarizer is rotated until the PD is near saturation.

If this does not happen, the density filter in front of the PD is adjusted and we uncover the beam

path readjusting the high voltage (HV) applied to the PM. Then the correlation is done by sweeping

the delay between the pulses. As this delay increases the adjustable polarizer rotates increasing the

intensity, that gets into the device, not allowing the PM to reach saturation.

Like any other Michelson interferometer type device, the TOCC has the possibility of creating post

pulses (”ghost pulses”) that in reality do not exist in the input pulse. It is obviously important to

avoid this measurement error. In order to do this several artifacts are implemented. In some devices

where the polarizer creates pre/post pulses, the polarizer can be replaced by a periscope polarization

rotator (for the adjustable polarizer) and by a Brewster polarizer for the fixed polarizer.
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3. Introduction to autocorrelations and third order cross-correlations

The wave mixing crystals are BBO type I, 100 µm thick (1 ps round trip time) wedged at 1º, in such

a way that a pre-pulse created by multiple reflections in the crystal will be deviated from the main

pulse. For other configurations see [42], pp. 10.

3.2.1. Beam splitter

In some designs it is not possible to choose the fraction of radiation that the beam splitter (BS)

reflects [158]. However if we can choose the BS transmission we can optimize the two three wave

mixing (TWM) processes.

Let’s assume an intensity I(t) entering the device the reflected part is RI(t) and the transmitted part is

(1−R)I(t−τ). The second harmonic intensity will depend on the square of the reflected part, R2I2(t)

consequently the SFG signal will be proportional to R2(1−R)I(t− τ)I2(t), which is proportional to

R2(1−R). We can maximize R2(1−R) as a function of R, which gives R = 2/3. In other words the

beam used for SHG should have 2/3 of the energy of the entry pulse and the fundamental pulse should

have 1/3 of the energy. Despite this value some authors prefer to have more intensity going into the

SH arm of the device, such as 9:1 [42], rather than the 2:1 that the above calculation gives us.

3.2.2. Evaluation of the parametric approximation

We evaluate the domain where Eqs. (3.28) and (3.29) are valid. Mainly we are interested in the

dependence of the output signal on the input seed intensity. The SHG and SFG processes are studied

in Chap. 1 where we describe TWM processes in detail.

Here we ignore the complex propagation effects inside the crystal. We can do this because the

objective of the diagnostic is not to give the temporal shape of the pulse. In other words the spectral

phase introduced by the propagation inside the crystal will (for a fs pulse) have no effect on the

temporal profile beyond the first few picoseconds. Phase modulation will create background radiation

[167] unlike the smooth phase introduced by the BBO crystals. As seen above, the creation of

radiation at 266 nm by other sources other than SHG+SFG can be discarded.

When we consider the analysis of OPA made in Sec. (1.4) we find that a factor that can compromise

the validity of Eqs. (3.28) and (3.29) is saturation. Intuitively we may say that saturation is more

easily achieved in SHG than in the SFG process. There is a larger amount of energy in the SHG

process (due to the beam splitter that we have seen above) and so the nonlinear conversion efficiency

should be greater. However, in some cases the two beams are focused on the SFG crystal and not on

the SH crystal.

Independently of phase-matching conditions, an important quantity to retain is the nonlinear length

(see Sec. (1.2)). As seen in Sec. (1.4), when the pulse propagates a distance of several nonlinear
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lengths, the input beams can be depleted. In a first approach, we should make sure that the length of

the crystal is smaller then the nonlinear length. If the crystal length equals the nonlinear length, the

pulse intensity will be given by (see Sec. (1.2) of Chapter 1):

IF(0) = n3
ε0c
(

λ

4πde f f LSH
CR

)2

' 6E22Wcm−2 (3.33)

Not only is this 11 orders of magnitude above damage threshold [70], but it would also requires

focusing of a 100 TW in a µm size spot. From the above calculation and from the fact that both

crystals are BBO type I we safely say that the SFG crystal length is smaller then the nonlinear

length. We resume this up by saying that:

LCR� LNL (3.34)

In a plane wave approximation the SH intensity after propagation through the crystal is given by1:

ISH = IF(0)η−sn2


 Lcr4πde f f

λ

√
η+IF(0)

ε0n3c

∣∣∣∣∣∣
η−
η+


 (3.35)

Eq. (3.35) is obtained by the same calculations presented in Sec. 1.4 in the OPA case. The two

auxiliary values η+,η− are given by the following expressions:

η− = 1+ S2

8 −
√(S

2

)2
+
(

S2

8

)2

η+ = 1+ S2

8 +

√(S
2

)2
+
(

S2

8

)2
(3.36)

where S is a measurement of the phase mismatch given by:

S = ∆kLNL (3.37)

The dependence of the two auxiliary parameters on the phase mismatch is depicted in Fig. (3.10).

The Jacobi sin elliptical function that we see in Eq. (3.35) can be expanded in a Taylor series. The

second Taylor term is given by:

− I4
F(0)

[
η++η−

6

]2
[

1
ε0n3c

(
Lcr4πde f f

λ

)2
]3

(3.38)

1sn is the Jacobi sinus elliptical function, see Sec.(1.4) of Chap.(1) for more details.
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Please note that this second term has a dependence in I4
F(0), so its relative magnitude will determine

the validity of Eq. (3.28). We can put this in the form:

IF(0)�
3ε0n3c

2(8+S2)2

(
λ

Lcrπde f f

)2

(3.39)
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Figure 3.10.: Variation of the auxiliary parameters η− and η+ with phase-mismatch.

Comparing Eq. (3.39) with Eq. (3.33), we see that Eq. (3.39) is obeyed for every value of phase

mismatch. The phase mismatch will only matter in the cases where the ∆k� L−1
NL. A similar analysis

with a similar result can be made for the SFG. In both cases cases we can say that for BBO crystal

thickness of less then 100 µm Eqs. (3.28) and (3.29) are fully valid.

In the rest of this section we analyze the dependence of the signal magnitude with the initial electric

field intensity. There are three main features that the TOCC diagnoses:

ä the pedestal around the main pulse, which is coherent with the pulse itself and is temporally

extended due to imperfect compression, phase modulation and spectral modulations;

ä spontaneous emission in the amplifier stages and its subsequent amplification. This ASE

(amplified spontaneous emission) is going to constitute the background of the pulse intensity

profile and can have several nanoseconds in duration;

ä pre- and post-pulses that are due to imperfect extinction in regenerative amplifiers or multi-

ple reflection in optical components will give rise to peaks in the intensity profile, that are

essentially replicas of the main pulse but with smaller amplitudes.

It is more appropriate to use additional devices (other than the TOCC) in order to evaluate the first

feature. The last two features are discussed in the following sections.
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3.2.3. Pre- and post-pulses in a third-order correlation trace

One of the most important features that can be retrieved from a TOCC trace is the existence of

pre/post pulses. In order to analyze of these features we will approximate them to delta Dirac

functions. In fact if we look at the TOCC trace, the pre- and post-pulses seem like Dirac functions

above a flat background that is normally due to ASE.

In the next two sections we will not consider the expression in Eq. (3.32). We re-normalize this

measurement to its value at zero delay (this is how measurements appear and there is no loss of

generality in doing so). Our signal is defined by Eq. (3.40).

S(τ) =
∫

I2(t)I(t− τ)dt∫
I3(t)dt

(3.40)

The TOCC signal of a single Dirac function is a Dirac function centered at zero delay (Eq. (3.41),

Fig. (3.11)).

I(t) = Aδ (t)⇒ S(τ) = δ (τ) (3.41)

I (t) S (⌧)

t ⌧

Figure 3.11.: TOCC of a Dirac function.

With two Dirac functions we obtain Eq. (3.42) and Fig. (3.12):

I(t) = Aδ (t)+Bδ (t− τ1)⇒ S(τ) = δ (τ)+A2Bδ (τ− τ1)+AB2
δ (t + τ1) (3.42)

I (t) S (⌧)

t ⌧⌧1 �⌧1 ⌧10 0

A
B

B

B2

1

Figure 3.12.: TOCC of two Dirac functions.
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We clearly see the creation of two new Dirac functions, one at τ1 with the largest amplitude. For

example a post-pulse with an intensity 10−3 times the intensity of the main pulse will create two

features in the TOCC trace, one at 10−3 (centered at τ1) and the other at 10−6 (centered at −τ1) of

the maximum.

We have to take into consideration that the second feature might be under the background noise even

if the first feature is not. In other words one might be able to see the feature with a magnitude of

10−3 (at τ1) but not the other feature.

We assume that the measurement is normalized by A3 +B3 = 1. In most cases the signal at the zero

delay is given by the main pulse itself, A3 = 1. This is true for beams with a very high contrast, but

not for beams with a low contrast.

For example, if a feature in a TOCC trace appears to represent a pulse with a magnitude of 1/2 the

magnitude of the main pulse, this will not actually represent a secondary pulse with half the intensity

of the main pulse. For low contrast measurements we have to solve two coupled equations and

consider the contrast given at +τ1 and at −τ1:

(B/A)3 +1 = B/AS−1(τ1) (3.43)

(A/B)3 +1 = A/BS−1(−τ1) (3.44)

For instance, if the amplitude of both features (at −τ1 and at τ1) is half the maximum magnitude

of the feature at zero delay (S(τ1) = 1/2 and S(−τ1) = 1/2), then the intensity profile will simply

consist of two pulses with the same intensity. However if one feature has magnitude of 0.5 and the

other 0.3, then the secondary pulse will have an intensity of 61.8% of the main pulse. If the contrast

is high enough the reading of TOCC traces is straightforward.

For an intensity profile composed of three delta functions we obtain Eq. (3.45) and Fig. (3.13).

I(t) = Aδ (t)+Bδ (t− τ1)+Cδ (t− τ2)⇒
S(τ) = δ (τ)+A2Bδ (τ− τ1)+A2Cδ (τ− τ2)

+AB2δ (τ + τ1)+AC2δ (τ + τ2)+

+B2Cδ (τ− τ2 + τ1)+BC2δ (τ− τ1 + τ2)

(3.45)

In practice the interactions between the secondary pulses are weak and sometimes are covered by the

background noise. This simplifies the noise detection greatly.
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Figure 3.13.: TOCC traces of three pulses. (a) Both pulses are pre- or post pulses. (b) One pulse is a
pre-pulse and the other is a post pulse.

Let us now apply the theory developed above in a concrete experimental measurement by taking into

consideration the measurement taken at LOA (Fig. (3.14)):

In
te

ns
ity

 (a
. u

.)

Figure 3.14.: TOCC trace done at LOA, salle verte.

Please observe that the features γ and β have a mirror image that is labeled γ ′ and β ′. Both features

occur at the same distance from the zero delay. Also, in a logarithmic scale we can perfectly see that

features on the left side have half the magnitude of those on the right side.
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The post-pulse β is situated at 80 ps and its magnitude is 102 smaller then that of the main pulse.

This post pulse also presents a secondary feature (β ′) at −80 ps at the 10−4 level. The post pulse γ

is situated 120 ps from the main pulse at 10−3 of the main pulse. As expected, the corresponding

secondary feature to appear at 10−6 of the main pulse and appears at −120 ps.

The peak designated by U ′ is actually a cross term between the secondary pulses β and γ . In other

words, it’s the measurement of γ made by β , A2
β

Aγ . The other cross term, Aβ A2
γ , is smaller than the

background noise. We calculate that this feature has a magnitude of 108.

The θ features appear to be two pre pulses situated at 110 ps and 130 ps with a magnitude of 10−5

and 10−5.2; their secondary features are below the background radiation: we expect them at 10−10

and 10−11.

To resume Fig. (3.14), there are four secondary peaks visible, two pre-pulses and two post-pulses at

levels 10−5.2, 10−5, 10−3 and 10−2.

Lets now analyze the equations for the general case of a train of N delta pulses. In this regard let’s

consider the pulse with the intensity A0 to be the biggest one, in a high contrast field.

I(t) =
N

∑
i=0

Aiδ (t− τi)⇒ S(τ) =

N
∑

i, j=0
A2

i A jδ (t− (τi− τ j))

N
∑

i, j=0
A2

i A j

(3.46)

This signal is constituted by the following features (weak secondary pulses approximation) that

should be analyzed from the most intense to the least intense:

ä S(0) = 1, due to normalization;

ä A2
0Ai terms centered at −τi that determines the main feature of the secondary pulse i. If the

amplitude of the TOCC feature is 1/C of the zero delay value then the secondary pulse is 1/C of

the main pulse;

ä A0A2
i terms centered at τi that determines the secondary feature of the secondary pulse i, if the

TOCC feature is 1/C2 of the zero delay value then the secondary pulse is 1/C of the main pulse;

ä If the contrast allows, the two last features have to appear and if they do not the trace has to be

reinterpreted;

ä A2
jAi terms centered at τ j−τi. As long as the background noise allows, the pulses will correlate

with each other. We need to account all these features, and verify that the features that appear

are real pre-pulses and not correlations between secondary pulses.
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3.2.4. ASE type background radiation

The ASE radiation appears as background noise in the TOCC trace. We assume several intensity

profiles with different background radiation and try to find out their effect on the TOCC trace. We

then give some specific examples.

The TOCC trace of a Gaussian pulse is a Gaussian profile2 with a duration
√

3/2∼ 1.22 bigger than

the initial pulse.

I(t) = Aexp− [t/τ0]
2⇒ S(τ) = exp−2

3
[τ/τ0]

2 (3.47)

I /
 A
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Figure 3.15.: Gaussian intensity profile and its TOCC profile.

We consider the same Gaussian profile but with a white noise background with amplitude n in relation

to the maximum intensity amplitude, given in Eq. (3.48). Let us also consider that the PM averages

over a certain window T . This time window is related to the response time of the detection, that is

related to the PM response time (of the order of some hundreds of ps), and to the electronic amplifiers

response time. In this case the TOCC signal is given by Eq. (3.49) below.

I(t) = A
[
exp− [t/τ0]

2 +n
]

(3.48)

S(τ) =
exp−2

3 [
τ/τ0]

2 +
√

6n.exp−1
2 [

τ/τ0]
2 +n

√
3
2 +3

√
3n2 +

√
3n3( T

τ0
)

1+n
[√

6+
√

3
2

]
+3
√

3n2 +
√

3n3( T
τ0
)

(3.49)

The term exp−2
3 [

τ/τ0]
2 represents the TOCC of the Gaussian pulse itself. The term

√
6n.exp−1

2 [
τ/τ0]

2

is the crossed Gaussian term that can also be represented as an intensity autocorrelation times the

noise level; n
√

3
2 is the background line that gives us the ASE level.

2Please note that a Gaussian profile on a logarithmic scale seems like a quadratic function.

117



3. Introduction to autocorrelations and third order cross-correlations

In this case of a Gaussian pulse we see that a direct reading of the base flat line would be 1.22 times

the actual ASE.

In Eq. (3.49) the noise term that varies as a n2 function can be discarded. The importance of the term

in n3 however will be determined by the ratio between the integration time and the pulse duration,
T
τ0

. If the order of magnitude of the integration time is 10−10s and the pulse duration 10−14s this term

would only be important if the ASE would be of the order of 10−4 of the pulse peak power. If this

happens, the direct reading of a TOCC trace overestimates the ASE level.

Following the measurements done by A. Jullien [167] for several systems without temporal filtering,

the ASE background noise is measured at a maximum of 10−5 of the peak pulse. In this case this

term would only be important if the integration time is of the order of 10−4s, which is not realistic.

In a realistic scenario we could have n ∼ 10−5 and T ∼ 10−5s. If this is the case the background

measurement from the TOCC trace would be overestimated by approximately ∼ 14% due to the√
3n3( T

τ0
) term; the order of magnitude of the ASE level would remain the same though.

In Figs. (3.16), (3.17) and (3.18) we present the TOCC traces described by Eq. (3.49), calculated for

several background noises and integration times. The red line represents the main pulse TOCC3, the

green line represents the cross Gaussian component, the blue line the flat noise line, and the pink line

represents the n3 T
τ0

terms.
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Figure 3.16.: TOCC profile in logarithmic scale for a noise level of n = 1e−4, (right) T
τ0

= 107, considering

τ0 = 10 fs, T = 0.1 µs and (left) T
τ0

= 105 considering τ0 = 10 fs, T = 1 ns.

From Fig. (3.16) we see that for long values of the integration time (right plot) the ASE can be

overestimated by the TOCC trace; the value of the contrast is of the order of 10−3. We also see that

the cross term (green line) is not important.

3All traces have been normalized as represented in Eq. (3.49).
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3.2. Design of a third-order cross-correlator and analysis of third-order crosscorrelations

Fig. (3.17) demonstrates that for contrast values of 10−4 the term in n3 is not important. We also see

that the crossed term (green line) is not important.
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Figure 3.17.: TOCC profile in logarithmic scale for a noise level of n = 1e−4, (right) T
τ0

= 107, considering

τ0 = 10 fs, T = 0.1 µs and (left) T
τ0

= 105 considering τ0 = 10 fs, T = 1 ns.

In Fig. (3.18) we see that the important terms are simply the main pulse correlation (red line) and

the term
√

3
2 n. The other terms are too small to be taken in consideration. The factor

√
3
2 is going

to change with the intensity profile’s ansatz in general. For a flat base line noise and a normalized

intensity profile4 Ip(t) this factor is
∫

I2
p(t)dt∫

I3
p(t)dt .
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Figure 3.18.: TOCC profile in logarithmic scale for a noise level of n = 1e−6, T
τ0

= 107, considering that

τ0 = 10 fs, T = 0.1 µs.

We now study an intensity profile composed of two Gaussian functions, one representing the main
4I(t) = I(0)

[
Ip(t)+n

]
, Ip(0) = 1.
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3. Introduction to autocorrelations and third order cross-correlations

pulse and the other representing a large feature with a low amplitude b and a characteristic duration

τ1. The intensity profile is given by:

I(t) = A
[
exp− [t/τ0]

2 +bexp− [t/τ1]
2
]

(3.50)

The TOCC is given by:

S(τ)=


 exp−2

3 [
τ/τ0]

2 + τ2
τ0

b
√

3
(
exp−

[
(τ/τ1)

2
(

1− (τ2/τ1)
2
)]
+2exp−

[
(τ/τ0)

2
(

1− (τ2/τ0)
2
)])

+

+ τ3
τ0

b2
√

3
(

2exp−
[
(τ/τ1)

2
(

1− (τ3/τ1)
2
)]
+ exp−

[
(τ/τ0)

2
(

1− (τ3/τ0)
2
)])

+ τ1
τ0

b3 exp−2
3 [

τ/τ1]
2




1+3
√

3b τ2
τ0
+3
√

3b3 τ3
τ0
+b3 τ1

τ0
(3.51)

We can simplify this equation because τ1� τ0, for which we obtain Eq. (3.54)

τ
−2
2 = 2τ

−2
0 + τ

−2
1 i f τ1� τ0⇒ τ2 =

τ0√
2

(3.52)

τ
−2
3 = τ

−2
0 +2τ

−2
1 i f τ1� τ0⇒ τ3 = τ0 (3.53)

S(τ) =


 exp−2

3 [
τ/τ0]

2 + τ1
τ0

b3 exp−2
3 [

τ/τ1]
2+

+b
√

3
2

(
exp−

[
(τ/τ1)

2
]
+2exp−

[
1
2 (

τ/τ0)
2
])



1+3
√

3
2 b+3

√
3b3 +b3 τ1

τ0

(3.54)

S
 (τ

) 

τ/τ0 

Figure 3.19.: Logarithmic TOCC trace and its components. (black line) TOCC trace as given by Eq. (3.51);
blue, red, green, violet, yellow, are the first, second, third, fourth, and fifth terms of the sum in
the numerator in Eq. (3.51).
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Using Eq. (3.51) with τ1 = 10τ0 and b= 10−2, we obtain the result shown in Fig. (3.19). As expected,

only the first two terms in Eq. (3.51) are dominant in the TOCC trace.

3.2.5. Defining the pulse with a third-order cross correlation plus an intensity
autocorrelation

We tried to retrieve as much information as possible from the TOCC trace. It is not possible to retrieve

phase information from this trace alone and the device is not made to analyze the pulse in detail.

However, we discovered that the TOCC trace and the intensity autocorrelation together completely

define the intensity profile. The proof presented here is inspired in an article by Naganuma et al.

[47]. In this work Naganuma et al. prove that the ensemble of power spectrum, SH power spectrum

and intensity autocorrelation completely define the pulse shape. We mimic Naganuma et al. to prove

that the TOCC and the intensity autocorrelation completely define the pulse shape.

Before presenting this demonstration, we will first try to correlate the IA trace with the TOCC trace.

What we obtain experimentally are measurements proportional to IA(τ) =
∫

I(t)I(t − τ)dt and to

TOCC(τ) =
∫

I2(t)I(t− τ)dt and not the electric field intensity correlations themselves. We need to

normalize one at the other’s cost. This is best done by recalling the Fourier transform of each trace.

F {IA(τ)}=
∣∣∣Ĩ(ω)

∣∣∣
2

F {TOCC(τ)}= Ĩ(ω)
∫

Ĩ(Ω)Ĩ(Ω−ω)dΩ

(3.55)

Let us also remember that the intensity is real and so the zero value of its Fourier transform also has

to be real, even if in general the Fourier transform of the intensity is not. From this knowledge and

from Eq. (3.55) we deduce Eq. (3.56) which relates both measurements. The retrieval of the intensity

profile has to obey:

F {TOCC(τ)}(0) =
√

F {IA(τ)}(0)∫ F {IA(τ)}dΩ (3.56)

Consider that the intensity is confined to a certain temporal window. In other words let us consider

that the pulse is constrained in time between −T and +T . Let us also consider that the intensity

profile can be decomposed in its Taylor components, which can be done as precisely as we want 5.

The intensity can then be described as a Taylor series around −T :

I(t) = ∑
j=1

I−j
j!
(T + t) j (3.57)

5Note that the Taylor’s theorem allows us to do this.

121



3. Introduction to autocorrelations and third order cross-correlations

and +T :

I(t) = ∑
j=1

I+j
j!
(T − t) j (3.58)

It is easy to intuit that it is possible to choose a time window where I+0 = I−0 = 0. In other words can

assume that the intensity in the extremes of the domain are zero.

The coefficients I−j are jth order derivative of the functions at t = −T , ∂ I(t)
∂ t

∣∣∣
t=−T

and I+j are

(−1) j ∂ I(t)
∂ t

∣∣∣
t=T

. There is surely a mathematical relation between I+j and I−j but we will not consider

it.

The IA can be expressed as a function of the Taylor expanded intensity given above 6:

IA(τ) =
∫

I(t)I(t− τ)dt

IA(τ) = ∑
j,k

I+j I−k
j!k!

T∫
−T+τ

(T − t) j(T + t− τ)kdt

IA(τ) = ∑
j,k

I+j I−k
j!k! (2T − τ) j+k+1

1∫
0
(1− y) jykdy

(3.59)

The integral
1∫
0
(1− y) jykdy 7 is a beta function B( j+1,k+1):

1∫

0

(1− y) jykdy =
j!k!

( j+ k+1)!
(3.60)

So the intensity autocorrelation becomes:

IA(τ) = ∑
j,k

I+j I−k
( j+ k+1)!

(2T − τ) j+k+1 (3.61)

We can compare this expression with an expansion of the intensiometric autocorrelation.

IA(τ) = ∑
m

A+
m+1

(m+1)!
(2T − τ)m+1 (3.62)

Recall that if the first nonzero pair of Taylor coefficients is j,k then the intensity autocorrelation will

have its first nonzero term at j+ k+ 1. From Eqs. (3.61) and (3.65) we obtain the relation between

the intensity Taylor coefficients and the IA Taylor coefficients:

6 y = t+T−τ

2T−τ
.

7y = t+T−τ

2T−τ
.
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3.2. Design of a third-order cross-correlator and analysis of third-order crosscorrelations

A+
m+1 = ∑

j<m
I+j I−m− j (3.63)

We find similar relations between the Taylor expansion of the intensity profile and the TOCC signal

in the PM:

TOCC(τ) =
∫

I2(t)I(t− τ)dt

TOCC(τ) = ∑
j,k,l

I+j I+k I−l
j!k!l!

T∫
−T+τ

(T − t) j+k(T + t− τ)ldt

TOCC(τ) = ∑
j,k,l

I+j I+k I−l
j!k! (2T − τ) j+k+l+1

1∫
0
(1− y) j+kyldy

TOCC(τ) = ∑
j,k,l

I+j I+k I−l
( j+k)!

j!k!
(2T−τ) j+k+l+1

( j+k+l+1)!

(3.64)

Similarly we can rewrite the TOCC signal as a Taylor expansion:

TOCC(τ) = ∑
m

B+
m+1

(m+1)!
(2T − τ)m+1 (3.65)

Where we have identified the coefficients B+
m+1 with the Taylor expansion coefficients:

B+
m+1 = ∑

j,k ( j+k<m)

(
j+ k

j

)
I+j I+k I−m−k− j (3.66)

Eqs. (3.66) and (3.63) define the relations between the Taylor expanded intensity profile, and the

Taylor expanded intensity autocorrelation and third-order cross correlation. If the intensity profile is

univocally defined by IA and TOCC then the Taylor coefficients B+
m+1 and A+

m+1 have to univocally

define I+j or I−j . Here we prove they define both, not by inverting the sum operations in Eqs. (3.66)

and (3.63) but by proving they can be inverted.

The first four orders of the Eq. (3.63) are:

A+
1 = I+0 I−0

A+
2 = I+1 I−0 + I+0 I−1

A+
3 = I+2 I−0 + I+1 I−1 + I+0 I−2

A+
4 = I+3 I−0 + I+2 I−1 + I+1 I−2 + I+0 I−3

(3.67)

In general the A+
n term can be decomposed in terms up to the n− 1 order, that we designate as a+n ,
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3. Introduction to autocorrelations and third order cross-correlations

and two terms subsequent terms:

A+
n+1 = I+n I−0 + I+0 I−n +a+n (3.68)

The first four orders of Eq. (3.66) are:

B+
1 = I+0 I+0 I−0

B+
2 = 2I+1 I+0 I−0 + I+0 I+0 I−1

B+
3 = 2I+2 I+0 I−0 + I+0 I+0 I−2 + I+1 I+1 I−0 +2I+0 I+1 I−1

B+
4 = 2I+3 I+0 I−0 + I+0 I+0 I−3 +4I+2 I+1 I−0 +2I+0 I+2 I−1 +2I+1 I+0 I−2

(3.69)

We can also say that the A+
n coefficients can be decomposed in terms up to the n−1 order, b+m :

B+
m+1 = 2I+m I+0 I−0 + I+0 I+0 I−m +b+m (3.70)

We define the first Taylor coefficient of the intensity profile as:

I+0 =
B+

1

A+
1

(3.71)

And:

I+0 =

(
A+

1

)2

B+
1

(3.72)

This can be used as initial condition in a mathematical induction proof. Now we have to prove that

if all the coefficients up to the (m−1,n−1)th order are known, then the (m,n)th order term can also

be known. For this purpose we use Eqs. (3.68) and (3.70) and reorganize them:

[
B+

m+1

A+
n+1

]
=

[
2I+0 I−0 I+0 I+0

I−0 I+0

][
I+m
I−n

]
+

[
b+m
a+n

]
(3.73)

From Eq. (3.78) we see that if the determinant of the multiplying matrix is different from zero then

the system is always solvable:

det

[
2I+0 I−0 I+0 I+0

I−0 I+0

]
= I+0 I+0 I−0 = B+

1 (3.74)

If the coefficient of the third-order cross-correlation B+
1 is nonzero then the demonstration is done,

since we proved by mathematical induction that if the coefficients B+
n and A+

n are known then the

coefficients I−n and I+n can be deduced. This demonstrates that if B+
1 is nonzero then the intensity
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autocorrelation plus the TOCC completely define the pulse intensity profile. However we saw above

that we can choose a temporal window where the intensity at the extremes is zero. In this case,

I+0 = I−0 = B+
1 = 0.

We have then to revisit the proof considering that the first nonzero coefficients are I+p and I−q . In this

case the first nonzero measured coefficients are A+
M+1 and B+

N+1, where M = p+q and N = 2p+q.

B+
N+1 =

(
2p

p

)
(
I+p
)2 I−q

A+
M+1 = I+p I−q

(3.75)

Inverting the relations, if the first nonzero Taylor coefficients of the measured IA and TOCC are

A+
M+1 and B+

N+1, then the first nonzero intensity Taylor coefficients have p = N−M and q = 2M−N.

From Eqs. (3.66) and (3.63) we can deduce the intensity Taylor coefficients as:

I+p=N−M = [(N−M)!]2

[2(N−M)]!
BN+1
AM+1

I+q=2M−N = [2(N−M)]!
[(N−M)!]2

(AM+1)
2

BN+1

(3.76)

With Eq. (3.76) we prove that the firsts nonzero coefficients I+p and I−q are defined. Now we have

to prove that if I+r−1 and I−s−1 are known then I+r and I−s are also known. For this effect we rewrite

Eqs. (3.66) and (3.63) as follows:

Am+1 = I+r I−q + I+p I−s +αm

Bn+1 = 2

(
r+ p

p

)
I+r I+p I−q +

(
2p

p

)
(
I+p
)2 I−s +βn

(3.77)

As done in Eq. (3.78) we can rewrite this as:

[
B+

m

A+
n

]
=




2

(
r+ p

p

)
I+p I−q

(
2p

p

)
(
I+p
)2

I−q I+p



[

I+r
I−s

]
+

[
b+m
a+n

]
(3.78)

Similarly the determinant of the matrix in Eq. (3.78) is nonzero:

det




2

(
r+ p

p

)
I+p I−q

(
2p

p

)
(
I+p
)2

I−q I+p


=

[
2
(r+ p)!p!
(2p)!r!

−1
]

B+
N+1 > 0, r > p (3.79)

If r = p the determinant is B+
N+1. However per definition r > p, and so the value of the determinant
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is always larger. Given that B+
N+1 is by definition larger than zero Eq. (3.78) is always reversible.

We have therefore proven that a particular pair of intensity autocorrelation and third-order correlation

corresponds one and only one intensity profile.

The retrieval of the intensity profile using this method is not practical due to numerical errors

(Naganuma et al. said the same thing about their demonstration [150]), but the validity of the

demonstration is not jeopardized by this fact.

Note that the TOCC signal given by TOCC(τ) =
∫

I2(t)I(t−τ)dt is analogous to the signal obtained

with nonlinear Kerr effect in a third-order autocorrelation function as described by Major et al. [168]

and also to the polarization gating and self-diffraction correlations studied by Kabelka et al. [169],

and so this proof also extends to these cases.

3.2.6. Preliminary study on retrieval algorithms and intensity reconstruction
using TOCC and IA

If we find the adequate algorithm we could find the intensity profile from the two quantities, like

we can obtain from other measurements like FROG, SPIDER or D-scan. However there are specific

contexts in which the combination of TOCC and IA might be unique. First the measurements are

independent of the spectral shape and so in order to obtain the intensity profile in cases where the

spectral shape is not well defined or cannot be measured with sufficient accuracy. Second and

most importantly, both measurements can be taken with a dynamic contrast of several orders of

magnitude (8 and 12 orders of magnitude respectively for IA and TOCC) [40, 54] . Because of

this it is reasonable to assume that both measurements combined also contain enough information

to reconstruct the intensity with a similar accuracy. This might be particularly interesting to retrieve

the pedestal of the pulse that is many times due to imperfections in the pulse compression and that

without nonlinear filtering can be 10−3 within a window of hundreds of femtoseconds [170, 171].

We present a preliminary retrieval of the intensity profile using TOCC and IA that uses the elitist

genetic algorithm presented in Chap. (4). We remark that due to the first expression in Eq. (3.55) we

can define a trial intensity temporal profile (IT (t)) from the intensity autocorrelation (IA(τ)) and a

certain phase (ΦT (Ω)), that is the phase of the Fourier transform of the intensity profile:

IT (t) = F−1
{√

F {IA(τ)}exp i{ΦT (Ω)}
}

(3.80)

As in Chap. (4) we know the magnitude of the Fourier transform but not the phase, we can transform

this in a minimization problem in which ΦT (Ω) is the minimization argument. We need to minimize

the difference between a target TOCC (TOCC(τ)) and a trial TOCC (TOCCT (τ)) obtained using the

trial intensity profile given by Eq. (3.80) (N is the number of points used to describe the TOCC):
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δ =
1
N

√
N

∑
i=1

(TOCCT (τi)−TOCC(τi))
2 (3.81)

In order to solve this minimization problem we used the algorithm presented in Fig. (4.29), with a

mutation adaptation that is given in Fig. (4.40). In our algorithm we use a random number generator

and describe the phase point by point. Please note that due to the fact that the intensity is real the

phase is an odd function, and if the intensity profile is even than the phase is zero.

However, note that we are trying to obtain the intensity profile with a dynamic contrast of several

orders of magnitude (preferably 8 orders of magnitude) because of this we also need to define the

intensity spectral phase with the same precision (1− 108 preferably). In the algorithm above we

start with a random number generator and a point-by-point description of the phase, this creates

imprecisions in the phase that might be hard to overcome. Due to this fact we design a second

algorithm that applies a smooth function (3 point smooth function) to the spectral phase when the

error given by the genetic algorithm seams to have converged. It is not guaranteed that this function

creates a spectral profile with a smaller error.

A third algorithm was tested in these preliminary reconstructions attempts. We noticed that the

phase of the Fourier transform of the TOCC and the phase of the Fourier transform of the intensity

are similar. Because of this we searched for a phase that proportional to the phase of F {TOCC(τ)}
and that minimized the error given in Eq. (3.81). This gave an approximate result which served as an

initial guess for the genetic algorithm.

Let’s summarize this three algorithms:

1. Elitist genetic algorithm, using a point-by-point phase description and an adaptable magnitude

mutation;

2. Consecutive smooth functions applied to an initial guess until we find a solution that minimizes

the error with a smooth function;

3. Phase proportional to the phase of F {TOCC(τ)}.

In the cases that we have studied not all the algorithms gave satisfiable results, we claim to have

preliminary results and not an algorithm that can retrieve the pulse intensity with several order of

dynamics. However as we will present bellow these algorithms reproduce the pulse intensity with a

dynamic of at least 104 in all tested cases.

In order to test the algorithm we generated several trial cases. We designed these cases, having in

mind possible cases that we might find in an experiment. The first case was constituted by a main

pulse (Gaussian pulse with 25 fs FWHM) and a background pedestal with a Gaussian profile that had

a 10−3 magnitude near the main pulse and reached 10−6 magnitude in a time window of 2 ps.
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We applied the first algorithm until it converged and then the second algorithm obtaining the result

presented in Fig. (3.20) as retrieval A, we observe using this algorithm we could reconstruct the pulse

with a until a contrast level of 10−6, however the transition between the two Gaussian curves is not

completely reproduced.

Figure 3.20.: Reconstruction of the first trial function (Gaussian pulse with a Gaussian background), the
targeted intensity (black), the retrieved using the first and second methods (A, thick grey) and
the retrieved using the third method (B, thin traced).

We then used the the third retrieval method which gave us a perfect reconstruction up to a level of

10−10. In this case the phase of F {TOCC(τ)} is also the phase that we want to retrieve, which

means that 10−10 is the best possible result in this case, due to numerical errors (it is due to the noise

induced by the FFT and IFFT through leakage [172], it varies from function to function).

Figure 3.21.: Reconstruction of the second trial function (Gaussian pulse with an unsymmetrical Gaussian
background), the targeted intensity (black), and the retrived one (grey). The results were
obtained using the third and then the second algorithm.
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The last case we used is an ideal situation because the pulse is symmetric, which means that the phase

we are looking for is simply zero. We have to beware that in reality the pedestal and the main pulse

will not be symmetrical and the TOCC will not give us a symmetrical shape. Due to this we choose an

asymmetrical function for our second trial. We use same Gaussian main pulse and pedestal, but this

time the pedestal will be deplaced from the main pulse by 100 fs. We reconstruct an unsymmetrical

background which we can try to retrieve. For this case the best retrieval algorithm was to fist apply

the third algorithm and then to apply the first algorithm, the result is given in Fig. (3.21). We can

clearly see that apart from a small difference between -500 fs and -800 fs the pulse is reconstructed

with a contrast of 9 orders of magnitude.

For our third trial case we use an experimental spectrum (5.9 Fourier limited) taken from a Femto-

lasers Rainbow oscillator. We first used the spectral shape without introducing any spectral phase, we

obtain the pulse intensity as well as correspondents IA and TOCC. From these we try to reconstruct

the pulse. The results are given in Fig. (3.22). As in the first case we used the first and second

algorithm obtaining the result A and we used the third algorithm obtaining B.

Figure 3.22.: Reconstruction of the third trial function, obtained using an experimental spectrum, the targeted
intensity (black), the retrieved using the first and second methods (A, thick grey) and the
retrieved using the third method (B, thin traced).

As in the first case this is a symmetrical intensity profile, which correct phase is a flat zero and so

the second algorithm reproduces the profile perfectly. We can see in Fig. (3.22) that the first retrieval

attempt can reconstruct the pulse with a contrast of 10−6.

One of the things the algorithm should be able to reconstruct is the residual phase after compression

(which normally causes the pedestal). In order to test the proposed algorithms we inputted a spectral

phase with ∂ 5φ

∂ω5 = 5000 f s5, from the IA and TOCC we reconstruct the intensity. The results are given

in Fig. (3.23), the retrieval A line is obtained using the first and second algorithm and the retrieval

B line is obtained using the third and then second algorithm. In the first case we can reproduce the
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pulse with a contrast of 10−5, in the second case we can reproduce the intensity, but not the high

frequency variations of the intensity.

Figure 3.23.: Reconstruction of the fourth trial function, obtained using an experimental spectrum spectral

phase with ∂ 5φ

∂ω5 = 5000 f s5, the targeted intensity (black), the retrieved using the first and
second methods (A, thick grey) and the retrieved using the third method (B, thin traced).

As it can be observed, with the trial functions above, the algorithms we proposed were able to

reconstruct the intensity profile with a contrast of 105.

Figure 3.24.: Reconstruction of the fifth trial function, obtained using a Gaussian main pulse and a replica,
the targeted intensity (black), the retrieved using the first method a smooth function and then
the first method again (A, thick grey) and the retrieved using the third method (B, thin traced).

The last test case we used, is used to simulate what would happen with a post pulse. We used a main

pulse with a 25 fs FWHM (Gaussian pulse) with a replica situated 100 fs from the first pulse, the

results are given in Fig. (3.24). The best result in this case is given by using the first algorithm until

it converges, and then a smooth function, afterwards we use the first algorithm again, we present this

130
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in Fig. (3.24) as ”Retrieved B”. We also present the result obtained using the third retrieval method,

we then tried to apply the first retrieval method to this result without obtaining a better result.

With this method we obtain a retrieved pulse that fits the targeted pulse with a dynamic range of four

orders of magnitude. Please note that in the other cases a combination of the third retrieval method

plus the first retrieval method achieved a smaller error, however in this last case the first and second

retrieval methods worked better. We were nevertheless able to retrieve the pulse shape with a contrast

of at least 104 in every case.

Even if there is work to do on what kind of algorithm we can use to retrieve the pulse, we can

say that these simulations support the analytical proof given previously. The pulse intensity can be

determined using a TOCC and a IA.

3.3. Conclusions

We make a quick summary of the properties of autocorrelations and autocorrelators. We discuss

the application of a Gerchberg-Saxton algorithm to the intensity autocorrelation, and studied its

convergency which is obtained after 103 cycles, this algorithm is sometimes used as a prelude to

FROG reconstruction.

Afterwards we describe TOCC and the instruments that allow us to make a high contrast measure-

ment of a laser temporal profile. In this measurement we measure a SFG signal with a PM and

the intensity at the entrance of the correlator with a PD. We show that the high contrast of this

measurement comes from using the full dynamics of the PM plus three times the dynamics of the

PD. The ideal BS to be used is also discussed and it should have an intensity division of 2/3; 1/3.

We then discuss the validity of the TOCC measurement to make high contrast measurements. We

find that there are no optical reasons why the measures would be valid.

A series of trial functions is then used in order to better evaluate the TOCC trace. A series of pulse

replicas is studied using a series of Dirac deltas and we conclude that each replica (with a high enough

contrast) creates at least two features at symmetrical positions from the zero delay position, one with

the intensity of the replica and the second one with the square of that intensity. It is possible to have

crossed terms between several replicas if the contrast of the measurement and the ASE background

allow it.

We then analyze several measurements where background noise was also input in order to study its

effect on the TOCC trace. We conclude that for a high contrast pulse the background noise seen in

the measurement is approximately
∫

I2
p(t)dt∫

I3
p(t)dt higher than the actual background noise of the pulse, for

a Gaussian this is approximately 1.22 (note that the order of magnitude is the same).

Afterward we presented a mathematical proof that the IA and the TOCC traces completely define the
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3. Introduction to autocorrelations and third order cross-correlations

intensity profile. Due to the fact that these measurements can be obtained with a higher contrast then

most measurements. We then presented preliminary retrieval algorithms with which we retrieved the

pulse intensity profile, the retrieved intensity profile was limited to a contrast of 10−4, due to the

reconstruction algorithm further work is needed to obtain the ideal retrieval algorithm and then apply

it any experimental data. We conjecture that in the future this concept might be used to deconvolve

complex background noise or the pedestal of a pulse intensity profile. This is supported by the fact

that IA [54] and TOCC [40–44] have been obtained been obtained with a dynamic range of 8 and 12

orders of magnitude.
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4. Spectral phase reconstruction via
spectral intensity and interferometric
autocorrelations using optimization
algorithms

In this chapter we explore the potential of simple ultrafast measurements that have been available for

some decades [46, 173], namely, interferometric autocorrelations (IAC), and direct spectral intensity

measurements, (interferometric autocorrelations are also called second order interferometric auto-

correlations, fringe resolved second-order autocorrelations, and fringe resolved second-harmonic

autocorrelations). These diagnostics are not only easy to obtain but they also have known properties

[47, 174] that we will explore in detail.

Ultrafast pulses are spectrally wide, and so the typical resolution of modern compact spectrometers

is enough to measure the spectrum of these pulses. In other words, the Nyquist-Shannon sampling

theorem [175] is easily obeyed in the spectral domain. In the time domain, interferometric auto-

correlations imply a well balanced and aligned Michelson (or Mach-Zehnder) interferometer, with a

sweeping arm, a nonlinear detector, and sufficient energy in order to make use of this detector.

In 1989, Naganuma et al. [47, 150] proved that interferometric second-order autocorrelations and

field autocorrelations (which give us the spectrum alone) completely define the electric field. How-

ever, the retrieval method presented in [47], had convergence problems. The algorithm would only

converge for a small number of cases and could not actually be used for pulse retrieval in a general

case (a summary of this method is given in Sec. (4.4)).

In 2001, Chung and Wiener [48] used pairs of pulses, both symmetric and asymmetric, with a

difference in FWHM duration of about 10% between pulses and pulse durations varying from 20 to

40 fs FWHM. They used pairs of pulses with the same spectral profiles and intensity autocorrelations,

and observed the differences obtained in the IAC trace. Note that the variance of the intensity

autocorrelations, ∆(IA), is inherently connected with the intensity variance, ∆(I), by ∆(IA)=
√

2∆(I)

(see Section (3.1.2) of Chapter 3) and so it should be possible to determine the temporal variance of

these pulses from the IAC trace.

Apart from confirming numerically that the IA and spectrum are not sufficient for pulse retrieval
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

(which was already known from other previous studies – see Chap. 3 and [148, 149]), Chung and

Wiener, also compared the interferometric autocorrelations of the pulse pairs, detecting just slight

differences between them. In conclusion, it seemed that despite the fact that interferometric au-

tocorrelations combined with spectral intensity measurements completely defined the pulse, the

sensitivity of these measurements to different spectral phases was insufficient to make it a viable

pulse diagnostic. This issue was solved in 2002 by Hirayama et al. [49], who showed that by using

a simple frequency filter it is possible to do measurements that are sensitive to slight changes in

the pulse spectral phase (or intensity profile). This method is called MOSAIC (spectrally modified

interferometric autocorrelation) and is presented in section (4.2) below.

In Chapter 3 we already exposed some features of IACs. In the first section of this chapter we will

approach some more features of IAC traces in an attempt to identify all the information that can be

extracted from this diagnostic alone.

4.1. Interferometric autocorrelations and correlators

In Chap. 3, we saw that interferometric autocorrelations are obtained with a nonlinear detector after

a wavefront division interferometer. Right before the nonlinear detector the total field consists of

two electric fields superimposed, given by E(t)+E(t − τ), where E(t) is the electric field of one

arm after passing through the beam splitter, a nonlinear vector is going to measure the square of the

intensity that arrives at the detector.

Typically there are two kinds of second order nonlinear detectors:

ä A SH nonlinear crystal, phase-matched for SH generation, plus a filter to block the fundamen-

tal frequency of the pulse, with a linear detector (photodiode, or a photomultiplier), to measure

the SH signal. This involves a χ(2) process within the nonlinear medium. This is the most

classic detector and is used by several authors [146, 149, 150, 176]. A good discussion on the

limits of this detector is given in [174]1.

ä A two photon absorption photodiode (TPA), which must have a bandgap wider than the higher

frequency in the fundamental beam, a high purity and high crystal quality, in order not to

compromise the band structure (if the photodiode has too many impurities, defects in the

band structure appear, which could result in linear absorption). This is effectively a third

order nonlinear process. This detector works well for few cycle laser pulses [177] and is now

commonly used [178].

1In this article, K. Yamane et al. used sub-10-fs FHWM pulses with a Gaussian spectral shape. Gaussian shapes have the
smallest time-bandwidth product ∆ω∆t. However this is not indicative of the necessary spectral window to measure
the pulse because the wings of the spectrum cannot be discarded (the intensity decreases with exp

(
−
[

ω−ω0
∆ω

]2)). Our
pulses may have a larger ∆ω but the spectral window that needs to be covered by the detector is not larger.
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4.1. Interferometric autocorrelations and correlators

In the second case, it is necessary to remove the glass window and resin that typically cover the

sensitive surface of the photodiode in order for the beam not to be modified by these materials (which

are dispersive). Also, to a smaller extent, the photodiode window/glass may have a partial reflection

that can affect the S/N signal in the TPA process.

In both cases the resulting electric signal is usually submitted to some kind of amplification. Also,

the detection system and the amplifier have to be such that an average is done over the pulses

(for which the repetition rate is characteristically tens of MHz for oscillators and kHz for single-

stage amplification lasers). This means that a low-pass filter is needed, and the cutoff frequency

must be lower than the pulse repetition rate. However this filter must also be able to resolve the

interferometric fringes of the second-harmonic electric field. Apart from these considerations, the

detection time should be fast enough to detect possible slow thermal variations in the pulse profile.

Therefore the cutoff frequency fc is determined by:

4vp

λ0
< fc < frep (4.1)

Where vp is the velocity of the translation stage, λ0 is the central wavelength fundamental beam,

and frep is the repetition rate of the laser. In both types of detection, the IAC trace is given by the

following expression:

IAC(τ) =
∫
|E(t)+E(t− τ)|4dt. (4.2)

Note that the integration time is given by the inverse of the cutoff frequency, 1/ fc.

In Chap. 3 we showed that IAC traces have a 1 to 8 contrast and can be decomposed in several Fourier

terms (Eq. (4.6)). Before discussing those terms we should first discuss the nature of the nonlinearity,

in particular the spectral acceptance of the detector which has to suit to the large spectral bandwidth

of the ultrafast pulse.

For a second-harmonic detector the phase matching conditions are of utmost importance. In an ideal

situation the conversion efficiency should be the same for the entire spectrum. However this is not the

case and we need to address it. When calculating the phase matching, the phase-mismatch vector ∆k

is always multiplied by the path in the crystal, ∆k.zcrystal , and so it is possible to decrease importance

of the phase matching by decreasing the crystal width. Not only, can we choose an appropriate

crystal in order to have the smallest possible ∆k, but we may also reduce the beam path using the

thinnest possible crystal. For a sub 30 fs pulse a BBO crystal would have to be thinner than 20 µm,

a sub 10 fs pulse would have to be measured with a 10 µm crystal and a sub 7 fs pulse would have to

be measured with a 5 µm crystal in order to have a sufficiently flat conversion efficiency.

Saturation must be avoided both in the TWM process (z� LNL) and in the signal amplifier. For the
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

second-harmonic, in order to know if saturation has been reached, it is useful to use the nonlinear

length equation that is given in the introduction and repeated here:

LSH
NL =

λ1n1

2πχ

√
ε0n0c
I1(0)

. (4.3)

Using this we see that saturation of the SH process is not a problem. For instance, attaining saturation,

in a 5 µm thin crystal would mean breaking the BBO damage threshold.

In two photon absorption it is necessary to avoid linear absorption, in order to measure the IAC

trace and improve the signal-to-noise ratio of the MOSAIC trace. In some cases this can be done

by using optical high-pass wavelength filters, (this will unavoidably change the pulse temporal

shape due to dispersion and the spectral cutoff). Nevertheless, linear absorption does not affect the

MOSAIC measurement described in the next section, and so it does not affect pulse reconstruction.

However, the presence of linear absorption will diminish the signal intensity and the S/N ratio of our

measurement. Linear absorption can be avoided using a photodiode adequate to the laser spectral

shape, that must obey the following equations:

λ B
max

2
< λ

PD
max < λ

B
min (4.4)

λ
PD
min <

λ B
min

2
(4.5)

where λ PD
min and λ PD

max are minimum and the maximum wavelengths that the photodiode absorbs and

λ B
min and λ B

max are the minimum and maximum wavelengths of the laser.

The Fourier terms of the interferometric autocorrelation are given by:

IAC(τ) = 2DC+4IA(τ)+8X(τ)+2SHAC(τ) (4.6)

This expression is also obtained in Chap. (3). Each one of the terms on the right-hand side has the

same weight (the same integral). Given this: the DC component has half the weight of the intensity

autocorrelation IA(τ) (in Fourier space the DC component is a single point at zero frequency). The

cross component, X(τ), at the pulse central frequency has twice the weight, and the second-harmonic

autocorrelation (SHAC(τ)) has the same weight as the DC component.

In the following figures we will try to show the main characteristics of the IAC in time and frequency.

Figs. (4.1) (a), (b) and (d) correspond to a Gaussian pulse2, the IAC is represented in Fig. (4.1) (a),

2The spectral Gaussian shape of the ”Gaussian pulse” presented in Fig. (4.1) is centered at 950 nm with a Fourier limited
pulse duration of 7.58 fs FWHM.
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4.1. Interferometric autocorrelations and correlators

Fig. (4.1) (b) is the Fourier transform of the IAC. In Fig. (4.1) b), five distinct zones are visible. DC

is the Fourier transform of the DC component, which is only a Dirac term at zero frequency. The IA

term is the Fourier transform of the intensity autocorrelation which is centered at zero frequency. The

X term is the Fourier transform of the crossed terms (centered at the central frequency) and the SH

term is the Fourier transform of the second harmonic autocorrelation (centered at twice the central

frequency).
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Figure 4.1.: (a) Autocorrelation of a Fourier limited Gaussian pulse. (b) The Fourier transform of (a) showing
the DC component, the IA term, the crossed term X, and the SH term. (c) Fourier limited IAC
using a experimental spectral shape. (d) Intensity of a chirped Gaussian pulse with post-pulses
and its IAC.

In this chapter whenever we refer to a second, third or forth order chirp we are referring to the

components of the second
(

∂ 2φ(ω)
∂ω2

∣∣∣
ω=ω0

)
, third

(
∂ 3φ(ω)

∂ω3

∣∣∣
ω=ω0

)
and fourth

(
∂ 4φ(ω)

∂ω4

∣∣∣
ω=ω0

)
order

derivatives of the spectral phase at the central frequency.

The spectral phase is defined by:

φ(ω) =
N

∑
n

1
n!

∂ nφ(ω)

∂ωn

∣∣∣∣
ω=ω0

(ω−ω0)
n (4.7)

Figs. (4.1) (c) and (d) correspond to beams with pre- and post-pulses. In (a) we use a Gaussian

spectral shape and an unchirped beam to calculate the IAC. However it is possible to have pre-pulses

and post-pulses by two means: an unchirped pulse with a non smooth spectral shape or by introducing

a spectral phase. Fig. (4.1) (c) shows the intensity profile and the IAC of a Fourier transformed pulse

with a pre-pulse and a post-pulse, (the spectral shape used is an experimental spectral profile, from
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

the output of a Femtolasers Rainbow laser oscillator [145]). Fig. (4.1) (d) corresponds to a chirped

Gaussian pulse with a series of post pulses. By comparing (c) and (d) it’s easy to deduce that the

wings on the side of the central autocorrelation profile are due to pre and/or post pulses. However,

from the IAC alone we cannot know if the reason behind this is a non smooth spectral shape or a

chirped pulse.

In the following pages we will analyze the influence of the spectral phase on a pulse and on its

IAC trace. A quadratic phase or a pure linear chirp increases the pulse FWHM, as shown in the

introduction Sec. (D.1). For highly chirped pulses (quadratic phase) the pulse profile in time mimics

the spectral profile, as shown in Fig. (4.2). Almost all the experimental spectral profiles referred in

this chapter are given by Fig. (4.2).
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Figure 4.2.: Highly quadratically chirped pulse in time (black continuous line) and spectrum (traced gray
line).

In the case of highly chirped pulses the frequencies are widely distributed and the profile of the IAC

is going to be dominated by the intensity autocorrelation as shown in Fig. (4.3). In the wings of the

IAC trace there is no dominant interference between the pulses because the frequency that makes up

the signal in these wings is too different. Third-order chirp will create several pre and/or post pulses;

the FWHM duration of the pulses will also increase. The effect that the pre- and post-pulses have on

the IAC traces is seen in Fig. (4.1) (d).

More examples are given in Fig. (4.4) with several pulses with cubic chirp and its correspondent IAC

traces. Fig. (4.4) also shows fields with a cubic spectral phase (more precisely with the pre and post

pulses) that present wings on their corresponding IAC traces. Nevertheless in practice the differences

observed between the traces in Fig. (4.4) mean that the diagnostic is almost insensitive to this phase.

The traces in blue are presented with a duration of 20.0/10.0 fs because the the pre-pulse maximum

value is more than half of the pulses maximum value which means that counting only the main pulse

we would have 10 fs FWHM but counting with the pre-pulse we would have 20 fs FWHM.
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Figure 4.3.: IAC traces of pulses with a quadratic spectral phase. (a)-(b) correspond to pulses with an
experimental spectrum and a Fourier limit duration of 5.98 fs. (a) 13.8 fs FWHM pulse duration
and 27 f s2 of second order chirp. (b) 30.4 fs FWHM pulse duration with a chirp of 50 f s2. (c)
pulse with a Gaussian spectral shape, 31 fs FWHM with a chirp of 90 f s2, the pulses Fourier
limited duration is 7.8 fs.

With a fourth order chirp the pulse duration increases and a pedestal is created. This dispersion

creates a pulse background containing frequencies in the extremes of the spectrum.
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Figure 4.4.: (a) Temporal intensity of pulses with an experimental spectrum and increasing cubic phases. The
FWHM pulse durations are: 5.98 (gray), 6.2 (black), 8.6 (red), and 20.0/10.0 fs (blue) (see text
for further details). with corresponding (b) corresponding IAC traces. The corresponding third
order chirp values are: 0, 75, 300, and 450 f s3

In Fig. (4.5) we see the effect of the fourth order spectral phase on the wings of the IAC trace. It

is possible to see that as this spectral phase increases the pulse interference at the wings of the IAC
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trace also increases.
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Figure 4.5.: Pulses with fourth order chirp. aa to dd represent pulses with 5.98 fs, 9.46 fs, 11.28 fs 13.40 fs,
fourth order chirp values of 0 f s4, 1800 f s4, 3600 f s4, 5400 f s4. Intensity profile on (a) a linear
and (b) a logarithmic scale. (c) The corresponding IAC traces.

4.2. Spectrally modified autocorrelations, MOSAIC

IAC traces have been used for pulse measurement since Diels et al. introduced them in 1978 [173]. In

1989, K. Naganuma et al. [47] proved that IAC together with the spectral intensity completely defines

the pulse shape. Naganuma et al. also proved that it is possible to determine the pulse direction, and

the signal of the spectral phase [150]. More specifically we need the intensity autocorrelation and the

second harmonic autocorrelation both of which can be retrieved from the IAC trace, see Fig. (4.1) b).

In 2001 Chen et al. [48] showed that IAC has little sensitivity to changes in the pulse profile. In 2002

Toshiyuki Hirayama and Mansoor Sheik-Bahae [49] created a diagnostic that has a much bigger

sensitivity to the spectral phase but it is built with an IAC trace, the MOSAIC.

MOSAIC is a measurement that uses an interferometric autocorrelation, and puts it through a digital,

or analogue frequency filter. In fact this filter is designed to obtain maximum sensitivity to the chirp

or to the spectral phase.

In Fig. (4.6), we see that the crossed IAC term is similar to the spectral intensity shape itself. So it’s

quite obvious that this term will be affected just slightly by the spectral phase. This term can simply

be ignored, since it is not required to completely define the pulse.
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Figure 4.6.: IAC Fourier transform with the superimposed spectral intensity, S. The crossed term, X, is similar
to the spectral intensity itself.

The use of frequency filters in autocorrelations was first proposed by Sheik-Bahae in 1997 [179], and

it was first applied to IAC traces by the same team in 2002 [49]. An auxiliary quantity, independent

of the crossed term, was defined by:

MOSAICn(τ) = 4IA(τ)+2nSHAC(τ) (4.8)

We have to define n (Eq. (4.8)) in order for the measurement to be highly sensitive to changes in the

spectral phase. It is obvious that this occurs is given when both terms (IA and SH) have the same

weight, i.e., for n = 2.

In practice this will mean applying a spectral filter to the IAC trace: between
[
−3

2 fc,
3
2 fc
]

with weight

1, to
[3

2 fc,
5
2 fc
]

and
[
−5

2 fc,−3
2 fc
]

with weight 0, and to
[5

2 fc,
7
2 fc
]

and
[
−7

2 fc,−5
2 fc
]

with weight 2,

where fc is the carrier frequency of the electric field. The MOSAIC trace in time is then given by:

MOSAIC(τ) = 2 [IA(τ)+SHAC(τ)] (4.9)

Compared to IAC the MOSAIC trace is more sensitive to spectral phase changes. As shown in

the following examples, Fig. (4.7), shows the IAC and MOSAIC traces of several pulses with an

increasing linear chirp. Clearly the IAC traces present a much smaller sensitivity to the pulse shape

than the MOSAIC trace.

Let us now study systematically the effect that several terms of a Taylor expanded spectral phase

have on the MOSAIC trace.

Fig. (4.8) below shows a comparison between IAC and MOSAIC traces of linearly chirped pulses.

We see that the base line of the MOSAIC traces clearly moves upward as the chirp increases.
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Figure 4.7.: Comparison of IAC (a), (c) and (e) and MOSAIC (b), (d) and (f) traces. The pulses’ FWHM are:
5.98 fs (Fourier limit), 6.16 fs, and 8.05 fs (chirp values of 0 f s2, 7.2 f s2, and 20 f s2).

In Fig. (4.8) the base line of the MOSAIC traces, changes with an increase in quadratic chirp.

Considering an electric field given by E(t) = A(t)exp(iφ(ω)) the MOSAIC baseline is given by

the difference [49]:

MOSbase(τ) = IA(τ)−
√

(IAcos(τ))
2 +(IAsin(τ))

2 (4.10)

Where,
IAcos(τ) =

∫
I(t)I(t− τ)cos(2∆φ(t,τ))dt

IAsin(τ) =
∫

I(t)I(t− τ)sin(2∆φ(t,τ))dt
(4.11)

In practice this difference is hard to calculate (due to sampling demands), but in order to evaluate

the sensibility of this feature of the MOSAIC trace we design an equivalent feature in the Fourier

domain. Applying a Fourier transform to both terms in Eq. (4.10) we get:

FMOSbase(ω) = |Ĩ(ω)|2−|S̃H(ω)||S̃H(−ω)| (4.12)

Where the following identities were used:
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F {IAcos(τ)}= |S̃H(ω−2ω0)|2+|S̃H(2ω0−ω)|2
2

F {IAsin(τ)}= |
S̃H(ω−2ω0)|2−|S̃H(2ω0−ω)|2

2i

(4.13)

FMOSbase(ω) can be integrated in the frequency domain. Here we calculate
∫

FMOS(ω)dω using

ω in THz and normalizing |Ĩ(ω)|2 to 1. This quantity is not exactly representative of the peak of

the baseline but is representative of the baseline integral variation (in order to see the peak of the

baseline dependence on the temporal chirp see [49], here we concern ourselves with spectral chirp).
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Figure 4.8.: (a) intensity profile, (b) IAC traces and (c) MOSAIC traces of linearly chirped pulses. The curves
aa to ee relate to pulses with increasing FWHM: 5.98 fs, 5.99 fs, 6.34 fs, 8.05 fs, 16.04 fs, with
quadratic dispersions of 0 f s2, 2 f s2, 10 f s2, 20 f s2, and 30 f s2, respectively .

Pulse Duration (fs) Chirp (fs2) 

Figure 4.9.: Variation of
∫

FMOS(ω)dω as a function of pulse duration (right) and of second-order dispersion
(left).

For a quadratically chirped pulse, the dependence of
∫

FMOS(ω)dω on the chirp and pulse duration
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is shown in Fig. (4.9). We see a sharp variation when the chirp is small so the MOSAIC trace has

a high precision for slightly chirped pulses but the precision decreases for pulses that have a large

time-bandwidth product.
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Figure 4.10.: (a) intensity profiles, (b) MOSAIC traces and (c) IAC traces of cubically chirped pulses.
FWHM pulse duration from aa to dd: 6.0, 6.2, 8.6 and 20.0/10.0 fs (cubic chirp values of
0, 75, 300, and 450 f s3).
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Figure 4.11.: (a) intensity profile, (c) MOSAIC traces and (b) IAC traces of pulses with a slight cubic phase.
FWHM pulse duration from aa to dd: 5.98 fs, 6.01 fs, 6.30 fs, and 6.82 fs (cubic chirp values of
0, 30, 90, and 150 f s3).
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We now proceed to studying variations in the MOSAIC profile in the presence of a cubic phase.

It was already shown that in IAC the third order chirp results in temporal wings in the trace. The

result of a cubic phase in the MOSAIC trace is shown in Fig. (4.10) and Fig. (4.11). They show the

sensitivity of MOSAIC to a cubic spectral phase.

From these figures we see that the MOSAIC trace suffers a widening due to third order dispersion,

however, the baseline is not affected by it. Also, the trace widens more on the base than on the

center of the MOSAIC trace. The maximum value of
∫

FMOS(ω)dω for a cubically chirped pulse

is 0.6 which is small when compared to the value of 20 as in the case of second order dispersion (see

Fig. (4.9)).

We now analyze the influence of fourth order dispersion on the MOSAIC trace. We already saw that

fourth order dispersion creates a background on the pulses temporal profile. Also, the fourth order

term of a Taylor expansion is not orthogonal with the second order term so a similarity between the

features of MOSAIC traces of pulses with second and fourth order dispersion might be expected.

As in the case of second order dispersion, fourth order dispersion creates a characteristic baseline in

the MOSAIC trace as shown in Fig. (4.12).
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Figure 4.12.: (left) MOSAIC traces for pulses given in Fig. (4.5). (right) base line integral of the MOSAIC
trace in the Fourier domain as a function of fourth order dispersion.

The MOSAIC trace is not affected by an intensity unbalance in the autocorrelator despite being

affected by an unbalance in the beam path. Also, the trace is not affected by the linear absorption

that can take place in the detector, but it is affected by the S/N ratio at the SH frequency.

Below we give a list of equivalent expressions for the MOSAIC trace:

MOSAIC(τ) = IA(τ)+SHAC(τ) (4.14)

MOSAIC(τ) =
∫

I(t)I(t− τ) [1+ cos(2ω0τ +2∆φ(t,τ))])dt (4.15)
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

MOSAIC(τ) =
∫

I(t)I(t− τ)cos2(ω0τ +∆φ(t,τ))dt (4.16)

MOSAIC(τ) = IA(τ)+ |SHIA(τ)|cos(2ω0τ +∆Φ(τ))dt (4.17)

where

SHIA(τ) =
∫

I(t)I(t− τ)exp(2i∆φ(t,τ))dt (4.18)

∆Φ(τ) = arctan(ℑ{SHIA(τ)}/ℜ{SHIA(τ)}) (4.19)

The baseline is given by Eq. (4.10) or by the equivalent expression:

MOSbase(τ) = IA(τ)−|SHIA(τ)| (4.20)

which is zero for an unchirped pulse since ∆φ(t,τ) = 0 and SHIA(τ) = IA(τ). The baseline increases

for even order dispersion, while for odd terms it is almost unaffected. The odd dispersions terms af-

fect the envelope of the MOSAIC diagnostic, by increasing its wings. The envelope of the MOSAIC

trace is given by:

MOSenv = IA(τ)+
√
(IAcos(τ))

2 +(IAsin(τ))
2

MOSenv(τ) = IA(τ)+ |SHIA(τ)|
. (4.21)

In the case of an unchirped pulse this is simply the IA trace. As in the IA trace, the MOSAIC

envelope is mostly affect by the variance of the pulse. There have been attempts based on using these

two features of the MOSAIC (the envelope and the baseline) to reconstruct the pulse [180], but these

gives only an approximation to the pulse shape.

In [181] Daniel A. Bender et al. give a slight different version of the MOSAIC envelope traces that

allows to distinguish between of temporal and spectral dispersion. In this diagnostic the crossed term

is not used; however in [182] Avnish Kumar Sharma et al. used the crossed terms in a diagnostic that

is sensitive to the asymmetry/symmetry of the pulse.

To summarize, we have presented a diagnostic derived from IAC and a frequency filter called

MOSAIC. This measurement’s features are highly sensitive to spectral phase variations. The spec-

tral dispersion’s even order terms affect the baseline and odd order terms widen the wings of the

diagnostic.
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4.3. Retrieving the IA and the SHAC from the IAC: practical approach

4.3. Retrieving the IA and the SHAC from the IAC: practical
approach

In order to obtain the second harmonic autocorrelation and the intensity autocorrelation from the

IAC, we need to process this measurement. It is necessary to determine the DC component, the wave

central frequency and the autocorrelation time scale. Knowing the DC component will guarantee

that the IA Fourier transform is well measured. The central frequency and the IAC’s time/frequency

scale allow us to identify and isolate the SHAC and the IA components.

The DC component can be determined directly from the IAC trace in time simply by subtracting

an average of IAC values for large delays. Alternatively, the DC correction can be calculated by

interpolating the IA Fourier transform without the IA value for zero frequency which is the method

that we used.

The 1 to 8 contrast in the IAC trace is a measurement of the diagnostic quality. This contrast is

sometimes hindered by defects in the pulse wave front due to the autocorrelator optics (beam splitter

mainly). Phase distortions do not allow for perfect constructive/destructive interference, which will

affect the IAC’s contrast. In order to measure the contrast the DC component should be discarded.

The central frequency of oscillation is important, not only to help us determine the zones where a

frequency filter is required but also to determine the time and frequency scale. We note that in the

IAC Fourier transform (see Fig. (4.1) (b)) there are two distinct zones that can help us determine the

central frequency, one centered at the central frequency, X(τ), and the other centered at twice that

frequency, SHAC(τ).

Initial guess

Central 
frequency average

X fcen SH fcen
Crossed 

term zone
[fc/2:3fc/2]

Second 
harmonic zone

[3fc/2:5fc/2]

X 1/2

Figure 4.13.: Schematic of the cycle used to obtain the central frequency.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

The central frequency can be determined by finding the average central frequency within these two

zones. This procedure is described in Fig. (4.13).

Convergence usually occurs within 10 iterations. Once we know the central frequency given by IAC

we calibrate it using the spectrum’s central frequency. The initial guess for the central frequency,

may be based on upon the observation of the Fourier transform of the IAC trace and inputing a value

manually or by designing an algorithm that detects the maximum of the Fourier transform of the IAC

trace that is far from zero frequency, which is normally within the cross term Fourier transform.

We used an algorithm that detects the three zones where the IAC Fourier transform is higher than 1/5

of the maximum (the DC component has already been eliminated) and then we calculate the center

of the second zone.

An important question is whether the central frequency given by the autocorrelation and obtained by

Fig. (4.13) is the same central frequency given by the spectral shape of the field. After some failed

attempts to prove this analytically we opted to do simulations using an experimental spectral shape.

From this we calculated IAC traces using different spectral phases, and then used the algorithm in

Fig. (4.13) to obtain the central frequency.
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Figure 4.14.: Central frequency obtained with Fig. (4.13). (black line-fc) spectrum central frequency. (green
line-bb) central frequency of the crossed term, (red line-cc) second harmonic autocorrelation
central frequency over two, (blue line-aa) average of the two. Variations of: (a) number of
points used in the spectral shape, (b) second order dispersion, (c) third order dispersion, (d)
fourth order dispersion. The values of chirp given in this picture are the an values as found in
Eq. 4.29.
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4.3. Retrieving the IA and the SHAC

The results are given in Fig. (4.14) and even in the worst case the maximum deviation to the spectral

central frequency does not exceed 1.5%.

Knowing the central frequency fc, a super-Gaussian frequency filter (8th order or more) is then

used to isolate the IA Fourier transform, Eq. (4.22), and the second harmonic autocorrelation Fourier

transform, Eq. (4.23). We opted for a super Gaussian filter to avoid apodization issues.

F {IA(τ)}= F {IAC(τ)}exp−
[

2 f
fc

]8

(4.22)

F {IA(τ)}= F {IAC(τ)}exp−
[

2( f −2 fc)

fc

]8

(4.23)

4.3.1. Other ways to retrieve the intensity autocorrelation and the second
harmonic autocorrelation

The methods presented above to determine the IA and the SHAC require a IAC trace. If no IAC

measurements are possible, another method can be used to obtain MOSAIC traces and completely

define the pulse shape. However, this method requires two independent measurements, one of the IA

and another of the SHAC.

There are autocorrelators that directly give the intensity autocorrelation. These autocorrelators are

considered easier to operate than second order interferometric autocorrelators.

The second harmonic autocorrelation is the Fourier transform of the second harmonic spectrum. It is

possible to measure this spectrum using an appropriate spectrometer and a SH obtained with a thin

crystal (in order to have sufficient spectral bandwidth). This measurement would allow for a better

S/N ratio.

In order to obtain the MOSAIC trace, the normalization in Eq. (4.24), is needed:

IA(0) = SHAC(0) (4.24)

This normalization has been suggested for the case when both measurements are retrieved in the

same IAC trace [180], but in the presented experimental cases this was not necessary.

From an IA trace and the SH spectrum, it is possible to generate a MOSAIC trace by combining

them in a single function in the Fourier space and doing an inverse Fourier transform.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

4.4. Iterative reconstruction of pulse phase, using a
Gerchberg-Saxton like algorithm (IRIS)

In this section we describe an algorithm that was first presented by K. Naganuma et al. [47] that was

the first proposed algorithm for pulse reconstruction from the three one-dimensional quantities given

above, namely the spectral intensity, IA and SHAC. It is based on the Gerchberg-Saxton algorithms

[183] described in Chapter 3 and used for pulse reconstruction attempts using simply the IA.

The general scheme is given in Fig. (4.15). The algorithm starts with a certain guess phase (random

or flat) and the measured spectral shape. It has been reported by some authors that this algorithm

does not converge properly [34]. Nevertheless we tried it ourselves.

We used an experimental IAC trace and fed it into the algorithm. This trace was of an experimentally

measured slightly chirped pulse, (Fourier transform limit of 5.98 fs, actual duration around 7.5 fs).

We found that even after 1000 interaction the results did not converge.

INPUT 3          
Fourier transform of 
the SHAC from the 
IAC measure

INPUT 1          spectral 
intensity from a 
spectrometer
Initial phase estimate 
(just first cycle)
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Fourier transform of 
the IA measure
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Figure 4.15.: IRIS retrieval method.

The error3 seems to have a random evolution, and it does not decrease. In fact it actually increases,

with the number of cycles. The FWHM duration of the pulse is random. In order to understand

3The error measurement is obtained by summing the magnitude errors before replacement. We sum the differences of all
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4.4. Iterative reconstruction of pulse phase, using a Gerchberg-Saxton like algorithm (IRIS)

why the algorithm does not converge we look at the results after 1000 loops presented in Fig. (4.17).

These results show a very peculiar problem. We see the appearance of a peak in the spectrum at

the pulses’ central frequency. Note that the pulse is sampled around the central frequency in order

to reduce the number of points needed, and so the peak at the central frequency is actually a DC

component that the algorithm artificially produces.
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Figure 4.16.: Convergence of the IRIS algorithm, (left) error measurement as a function of the number of
cycles. (right) pulse duration in each cycle, (black points) FWHM of the pulse at stage ”2” in
Fig. (4.15); (hollow stars) pulse duration at stage ”1” in Fig. (4.15).

(a) (b) 

(c) (d) 

Figure 4.17.: IRIS results after 1000 loops, (a) (gray) IA Fourier transform as fed into the algorithm
(black) intensity Fourier transform magnitude obtained. (b) (gray) SH spectrum as fed into
the algorithm; (black) SH spectrum obtained. In (c) (gray) electric field spectrum as fed into
the algorithm; (black) the spectrum obtained. (d) (gray) the phase of the electric field in time;
(black) intensity profile.

the points and normalize them with the input norm.

error =
∑

(
|Ĩ(ω)|−F {IA(τ)}

)2

∑(F {IA(τ)})2 +
∑

(
|S̃H(ω)|−F {SHAC(τ)}

)2

∑(F {SHAC(τ)})2 +
∑

(
|Ẽ(ω)|−S(ω)

)2

∑(S(ω))2 . (4.25)
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

We speculated that this peak could be due to imperfection in the measurements, namely a possible

background noise in time which would correspond to a peak in frequency space. More specifically

the contrast of the measurement used was not 1 to 8 but 1 to 7.4.

We can also speculate that the DC component appears because the IRIS procedures obligates the

intensity to be real and positive, I(t) = |E(t)|2 and so any noise in time will add up to a DC

component.

(a) (b) 

(c) (d) 

Figure 4.18.: Effect of eliminating the background noise (these plots correspond to those given in
Fig. (4.17)).

In order to solve this problem we eliminated the background of the measurement, in the hope that

the background was actually noise rather than signal, and ran the algorithm again. We also cleaned

the background at each turn of the algorithm. The result is given in Fig. (4.18), where we see no

significant improvements by this background cleaning. The corresponding convergence cycle is

given in Fig. (4.19).
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Figure 4.19.: Convergence of the IRIS algorithm, when one eliminates the background noise (these plots
correspond to those given in Fig. (4.16)).
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4.4. Iterative reconstruction of pulse phase, using a Gerchberg-Saxton like algorithm (IRIS)

The error increases in the first 120 loops (see Fig. (4.19)) after this point it stabilizes between 2 levels,

this behavior does not change in the first 1000 loops. We can clearly see that the results obtained with

this algorithm do not minimize the error, instead the error demonstrates a quasi oscillatory behavior.

However, the pulse duration behaves randomly.

We then tried to use two theoretical results, just to test the feasibility of the algorithm in ideal

conditions:

1. A pulse chirped with a 40 f s2 linear chirp to a FWHM duration of 24.2 fs (the spectrum has a

Fourier limit of 5.98 fs and can be seen in Fig. (4.2));

2. A Fourier limited pulse with the same spectrum. The IRIS initial phase guess is flat; in other

words we used the initial condition the algorithm was suppose to provide.

The evolution of error/pulse duration for the first case is given in Figs. (4.20) and (4.21). For the

second case the error is shown in Fig. (4.22) and the results after 1000 loops are given in Fig. (4.23).
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Figure 4.20.: Convergence of the IRIS algorithm for case (1) (these plots correspond to those given in
Fig. (4.16)).

(a) (b) 

(c) (d) 

Figure 4.21.: Results after 1000 loops for case (1) (these plots correspond to those given in Fig. (4.17)).
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

In case (1) (see Fig. (4.20)) the behavior observed between the 80th loop and the 200th does not

change in the first 1000 loops. We see an erratic behavior until the 80th loop. In some of the initial

loops the agreement is better than in the initial guess or in the stable region.

Fig. (4.20) also shows that the pulse duration stabilizes after 80 loops. The pulse duration measured

after the spectrum correction (point 1 of Fig. (4.15)) is the Fourier limited duration of the pulse. The

pulse duration measured after correcting the intensity Fourier magnitude (point 2 of Fig. (4.15)) is

the one related to the intensity autocorrelation FWHM. We did not obtain a stable region where the

pulse duration in points 1 and 2 of Fig. (4.15) is the same.

Fig. (4.21) presents the results after 1000 loops, in (c) we can observe a persistence of the DC

component despite its magnitude decrease. We can conclude that this feature is not related to

experimental errors but rather to the algorithm itself.
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Figure 4.22.: Convergence of the IRIS algorithm for case (2) (these plots correspond to those given in
Fig. (4.16)).

In case (2) (see Fig. (4.22)) the results are similar. The error increases in the first 500 loops and then

a stable zone is found. Even in this case where the initial values are the correct ones the algorithm

is not able to maintain it. In Fig. (4.23) (c) we still observe a DC peak even if it is a slight one.

Fig. (4.23) (a) and (b) show a good agreement between the power spectrum of the intensity and of

the SH. However Fig. (4.23) (c) shows that an agreement with the power spectrum of the field itself

is not achieved.

To conclude this section about the IRIS algorithm, we point out that in this algorithm the error does

not always converge, and even in the cases where it does, it is not to one single value. Rather the error

converged to an oscillation within certain limits. Regardless of the convergence the IRIS algorithm

does not find a minimum value for the error (for the tested cases).

To the best of our knowledge, IRIS fails to give the correct solution and it should not be envisioned

to retrieve the pulse profile in any case. The FWHM obtained using IRIS follows the FWHM of the

measurements, the Fourier transform of the spectral shape and the intensity autocorrelation. This

happens regardless of the pulse shape, as shown in Fig. (4.20). Also, all the results have a DC peak

in frequency space, probably due to noise. Case (2) results were tested until 106 loops without any
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4.4. Iterative reconstruction of pulse phase, using a Gerchberg-Saxton like algorithm (IRIS)

observed change in behavior. We conclude that, to the best of our knowledge, no convergence can be

obtained with the IRIS algorithm for the relevant cases in our work.

(a) (b) 

(c) (d) 

Figure 4.23.: Results after 1000 loops for case (2) (these plots correspond to those given in Fig. (4.17)).

4.4.1. Phase retrieval algorithms based in the Gerchberg-Saxton algorithm

We tested another Gerchberg-Saxton like approach in order to search for a field that obeys the three

constraints: spectrum, intensity autocorrelation and second harmonic spectrum.
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Figure 4.24.: Alternative Gerchberg-Saxton algorithm for spectral phase retrieval. Subroutines are given by
the blue/red arrows. The green arrows explicit the behavior of the main routine.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

We can simply use a scheme like the one given in Fig. (4.24) in order to obtain the better possible

approximation. This algorithm, to the best of our knowledge, has never been tried, and is based in the

fact that the final solution has to fit the three quantities referred above. Like any Gerchberg-Saxton

approach we cannot be sure that the results will converge or that the best solution will be obtained.

We simply tried these algorithms because they are fast when compared with the error minimization

algorithms presented in the following sections.

The algorithm starts with the measured spectral shape and a random phase (any other initial phase

is possible). Afterwards the algorithm uses three sub-routines and in each one the electric field is

given. From this electric field we calculate one of the following three quantities: the Fourier shape

of the electric field, the second harmonic Fourier transform or the intensity Fourier transform. The

modulus of these quantities is replaced by the measurements and the phase is kept. The cycle is then

repeated.

The algorithm in Fig. (4.24) is cyclical and there is no objective reason why it should converge to an

electric field that obeys all three constraints. The results are given in Figs. (4.25) and (4.26). We used

the spectral shape given in Fig. (4.2) (Fourier limited duration of 5.98 fs FWHM) and obtained two

chirped pulses, one with 7.0 fs and the other with 10.0 fs. The output fields shown in Figs. (4.25) and

(4.26) are obtained after each cycle, before replacing the SH power spectrum. In this output point

the obtained electric field has the correct temporal variance, because the last replacement was the

magnitude of the intensity Fourier transform.
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Figure 4.25.: (left) Error (error for an initial random phase is 219%, and for a flat phase is 16%) (red) flat
initial phase, (blue) random initial phase. (right) Intensity results after 1500 cycles, (black line)
pulse intensity profile, (blue and red) solutions obtained by this method, the blue and red lines
are almost superimposed.

In Fig. (4.25) the solutions converge to the same point but the pulse is not reconstructed. The

reconstructed pulses have the correct variance, but the FWHM duration is 6.7 fs for the reconstructed

pulse while the actual pulse is 7.0 fs long.

In Fig. (4.26) the solutions converge to a zone, however the pulse is not reconstructed. The recon-

structed pulses have the correct variance, however the reconstructed FWHM duration is 8.9 fs and
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4.5. Phase retrieval as a minimization problem

the actual duration is 10 fs.

The algorithm converges after 50-100 loops (fast convergence) as we see in Figs. (4.25) and (4.26).

We observe that the results obtained by this algorithm for chirped pulses present a smaller error than

for the Fourier limited pulse (this was not the case in IRIS). Note that we used two different initial

conditions but obtained very similar results. This means that the initial guess for the spectral phase,

does not interfere with the intensity profile obtained by this algorithm.
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Figure 4.26.: (left) Error (the error for a random phase is 216%, for flat phase is 55%) (red) flat initial phase,
(blue) random initial condition. (right) Intensity profile results after 1500 cycles, (black) actual
pulse, (blue and red) the solutions obtained by this method, the blue and red lines are almost
superimposed.

Despite this, it simply does not give us the correct pulse reconstruction. However, because the

algorithm is very fast, it could be used to obtain an initial guess for other algorithms.

4.5. Phase retrieval as a minimization problem

Based on the work by K. Naganuma [47], we know it is only necessary to obtain the right spectral

phase that obeys and connects the three conditions that define the pulse shape: spectral intensity

S(ω), the modulus of the Fourier transform of the intensity Ĩ(ω), and the modulus of the Fourier

transform of the second harmonic, S̃H(ω).

It is possible that the spectral phase that exactly matches the three quantities is not found, this could

be due to a number of factors, including experimental imprecision or discretization issues. However

this should not be discouraging. After all this is an attempt to match three quantities taken by at least

two independent measurements.

The pulse and the IAC trace discretization have to obey the sampling theorem in the frequency and

time domain. The number of points needed to obey these conditions increase quadratically with

pulse chirp, more specifically with the time-bandwidth product. In other words we need to obey the

sampling theorem for the spectral intensity of the pulse and for its phase. If isolated points and/or
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

fluctuations in the spectral phase are obtained, this probably means that the data does not obey the

sampling theorem.

We can assume that the spectral intensity is measured precisely. This is justified by practical reasons:

the spectral intensity measurement is much easier to perform than the interferometric autocorrelation

measurement, and the spectrum its not subject to so many experimental errors, provided that the

spectrometer is properly calibrated.

For a given spectral intensity, a trial intensity Fourier modulus can be calculated from:

FItrial(ω) =

∣∣∣∣F
{∣∣∣F−1

{√
S(ω)exp(iφtrial(ω))

}∣∣∣
2
}∣∣∣∣ . (4.26)

A trial power spectrum of the second harmonic can be given by:

FSHtrial(ω) =

∣∣∣∣F
{

F−1
{√

S(ω)exp(iφtrial(ω))
}2
}∣∣∣∣ . (4.27)

Using Eqs. (4.26) and (4.27) we can define an error to be minimized between these two trial functions

or their squares:

ε =
∫ [(

FItrial(ω)−
√

F {IA(τ)}
)2

+
(

FSHtrial(ω)−
√

F {SHAC(τi)}
)2
]

dω. (4.28)

4.5.1. Basis function for the spectral phase

We consider several ways to describe the trial phase. In the study of ultrafast pulses it is usual to

describe the spectral phase of the pulses using a Taylor series expansion around the central frequency

ω0:

φ(ω) = φ0 +a1(ω−ω0)+a2(ω−ω0)
2 +a3(ω−ω0)

3 + ... (4.29)

Where, φ0 = φ(ω0) = constant and the an coefficients are related to the derivatives of φ(ω) at ω0 by:

an =
1
n!

dnφ(ω)

dωn

∣∣∣∣
ω=ω0

. (4.30)

If the trial phase is defined in this base, the constant term usually has no importance (except in the

case of few cycle laser pulses where it can play a major role), and the linear term simply means a

bulk temporal shift in the pulse. An expansion up to the term, an+1(ω −ω0)
n+1 means we have a

minimization problem with n dimensions.

158



4.5. Phase retrieval as a minimization problem

However we can expand the phase in several other bases. Chebyshev polynomials have been a quite

useful base for spectral methods [184, 185] . These are given by:

δ = ω−ω0,

bn =
π

2

{(
δ −
√

δ 2−1
)n

+
(

δ +
√

δ 2−1
)n}

.
(4.31)

Legendre polynomials are orthogonal and also constitute another possible base. The same can be said

about a Fourier series base4. A base expanded in sin and cos functions is important for a step-down

approach because the expansion coefficients are not so interdependent, which simplifies the problem

of phase retrieval5.

We also include in this study a configuration where each point in the array used to represent the

phase is variable. We simply consider the spectral phase point by point. This point per point is a

discretization based base and gives the minimum error but is the one that is more slowly convergent.

4.5.2. Two function minimization

In every minimization problem where two quantities have to be adjusted, there is a question about

the weight of the two quantities, namely which one is more important and how their combination can

be optimized.

In our minimization problem we consider that the spectral intensity is given and that the adjustments

are preformed on the modulus of the Fourier transform of the intensity profile and on the the Fourier

transform of the second harmonic profile.

Given this it is possible to define an error measurement with a weighted error (w is the weight):

ε = (1−w)∑
i

(
|Ĩ(ωi)|−F {IA(τi)}

)2
+w∑

i

(
|S̃H(ωi)|−F {SHAC(τi)}

)2
. (4.33)

We should choose the weight in such a way that the algorithm adjusts to the function that is the least

adjusted. More exactly, w tends to 1 if the SH error is much larger than the IA error and tends to 0 if

the error related to the intensity profile is dominant. A function that obeys these two conditions is:

4For every polynomial base P(ω) we may use the spectral log10 FWHM, ∆log10 ω as a reference to normalize the
frequency, this gives us a physically significant result:

φ(ω) =
N

∑
j

a jP
(

ω−ω0

∆log10 ω

)
(4.32)

in the case of a point per point approach or when using a Taylor expansion this is not important.
5It is important to say that even if a base is orthogonal, this does not mean that it is orthogonal in this problem.
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w =
∑
i

(
|S̃H(ωi)|−F {SHAC(τi)}

)2

∑
i

(
|Ĩ(ωi)|−F {IA(τi)}

)2
+∑

i

(
|S̃H(ωi)|−F {SHAC(τi)}

)2 , (4.34)

which results in the solution:

ε =

(
∑
i

(
|Ĩ(ωi)|−F {IA(τi)}

)2
)2

+

(
∑
i

(
|S̃H(ωi)|−F {SHAC(τi)}

)2
)2

∑
i

(
|Ĩ(ωi)|−F {IA(τi)}

)2
+∑

i

(
|S̃H(ωi)|−F {SHAC(τi)}

)2 . (4.35)

This equation can be used to balance the fit between both measurements. This is quite important in

cases where a local minimum appears and one of the functions has been completely reproduced but

not the other.

4.6. Using fminsearch

After unsuccessfully trying out Gerchberg-Saxon type algorithms, we have tried to obtain the spectral

phase using a different minimization approach.In this section we present a study based on a very

simple algorithm that is included in the Matlab base code, fminsearch. It is based on a very simple

minimum search algorithm that uses a simplex mirror method. We hoped that this algorithm could

facilitate the use of more complex algorithms that would be inherently more difficult to implement.

In fact we may look at the spectral phase retrieval as a minimization/optimization problem.

Once the spectral intensity S(ω) is known, as well as the two other functions (the modulus of the

Fourier transform of the intensity, FI(ω) = |F [I(t)]|, and the second harmonic Fourier modulus,

FSH(ω) = |F [SH(t)]|), we can always determine trial functions obtained using the spectral inten-

sity S(ω) and the trial spectral phases φ(ω). In this case, the algorithm will minimize the following

functional:

δ
2 {φ(ω)}=




∫
(∣∣∣∣F

{∣∣∣F−1
{√

S(ω)exp(iφ(ω))
}∣∣∣

2
}∣∣∣∣

2

−FI(ω)2

)2

dω+

+
∫
(∣∣∣∣F

{
F−1

{√
S(ω)exp(iφ(ω))

}2
}∣∣∣∣

2

−FSH(ω)2

)2

dω




(4.36)

In numerical calculations, the integral is replaced with a sum.

We simply input this functional into the Matlab code (fminsearch) and the above mentioned minimum
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4.6. Using fminsearch

search algorithm tries to find its minimum.

The algorithm uses a Nelder-Mead simplex method [186, 187] that is a non-gradient non-stochastic

search method with a series of simplex reflections (a simplex is the equivalent of an equilateral

triangle in N dimensions). It is known to be an adaptable and strictly convergent algorithm [188] that

does not distinguish between local and global minima.

Since the algorithm is already part of Matlab base code, we have to use it directly and cannot make

any changes to its code. However an artifice can be made: an amplified version of the phase is used

as the search parameter so that the algorithm is able to explore a wider range of trial phases. This

lets the algorithm converge faster to some minimizing phase.

The Matlab function has some optimization parameters by default, namely the termination tolerance,

the maximum number of functions evaluated and the maximum number of iterations allowed. Using

a point per point base approach, we chose a 0.01% precision as the target to halt the algorithm. The

maximum number of functions to be evaluated is 3×109 and the maximum number of iterations is

3×104. This last parameter is the limiting parameter for almost all trial cases.

In order to test the algorithm we used a test pulse with a spectral phase affected by second, third and

fourth order dispersion terms that chirp the pulse from a 5.98 fs (Fourier limited) to 9.0 fs FWHM,

and also creates pre-pulses.

We used two decompositions for the spectral phase: a point-by-point approach in which all points

can vary, and a type I Chebyshev polynomial in which the coefficients of the polynomial varied. We

used to initial guesses, zero and a random number approach in each case (the Chebyshev series are

considered up to the 20th order).

The amplification referred above consists simply on not feeding our search space directly into the

spectral phase but multiplying the search space (either the discrete points or the sum of the Chebyshev

polynomials) by an amplification factor, ”amp”. In a point-by-point approach we obtain:

φ = [1, ...,N]×amp (4.37)

in which the algorithm object space is a N dimensional space where each phase point represents a

variable on the simplex method. The amplification factor allows the algorithm to search a wider

range of spectral phases.

We tried this point-by-point approach, with a flat phase initial condition and with a random initial

phase. For each initial condition two trials are presented. For the flat phase initial condition the results

are completely reproducible, which means that this is not a random algorithm. For these, point-by-

point trials no convergence was obtained before the maximum number of evaluated functions was

reached, which indicates that by increasing the number of functions that can be evaluated we might
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

get better results. The results are shown in Fig. (4.27).

Actually, for a point-by-point approach, the algorithm converged to a precision of 0.01%. This is

not to say that it did not converge to a error of 0.01%, it means that the changes in the error did not

converge within a tolerance of 0.01% of itself, or within 4 significant digits.

The measurement error is simply the sum of the error for each measurement (without a weight

function). The error reduction function presented in Fig. (4.27) is given by:

Errorred =
Max{∆}−∆

T
, (4.38)

where ∆ is the measured error for several amplification factors and T is the algorithm running time.

It is basically a measurement of the efficacy of the algorithm per unit of time.
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Figure 4.27.: fminsearch results. (a), (b) and (c) are the results for a flat phase initial condition; (d), (e) and
(f) are the results for a random initial phase condition, the two lines in each figure represent two
different trials with different random initial spectral phases.
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From Fig. (4.27) it is clear that the amplification factor has a considerable influence on the results. We

see that starting from the same initial conditions the search is reproducible. Also the error reduction

function is maximized for an amplification factor amp = 1019. The inclusion of the amp factor into

the algorithm makes no significant difference from amp = 1 to amp = 1E3. For higher amp values

the error decreases. The algorithm ran with an amplification factor of 1019 for several days but did

not converge.

For a random initial phase we obtained different results. For large values of amplification factor the

execution time needed to get similar results can double. From a random initial phase the results are

not entirely reproduced but it decreases; however these results suggest that the maximum reduction

can be obtained with amplification levels between 1015 and 1017.

Er
ro

r r
ed

uc
tio

n
Al

go
rit

hm
 d

ur
at

io
n 

(s
)

Er
ro

r m
ea

su
re

m
en

t (a)

amp

amp

amp

amp

amp

amp

Er
ro

r r
ed

uc
tio

n
Al

go
rit

hm
 d

ur
at

io
n 

(s
)

Er
ro

r m
ea

su
re

m
en

t

(b)

(c) (d)

(e) (f)

Figure 4.28.: fminsearch convergency results using a Chebyshev polynomial base. (left) Flat phase initial
condition; (right) Random initial conditions.

We also tried to use a spectral phase described by Chebyshev polynomials, where we considered the

polynomial expansion up to the 20th order. In this case the coefficients of each polynomial term

are the minimizing argument. As in the previous case we also used two initial conditions: a first

one where all the polynomial coefficients were zero and a second one where the coefficients were
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

random. We used type I Chebyshev polynomials (that are orthonormal with the weight function
1√

1− f 2
).

The error reduction factor is not important in this case because the maximum error is obtained for

large values of amp. From the error values given in Figs. (4.28) and (4.27) we can deduce that the

error is smaller using a point-by-point base instead of Chebyshev polynomials. We also see that the

amplification factors that were useful in a point-by-point approach do not present a clear advantage

when using a Chebyshev polynomial base. Actually, in Fig. (4.28), with a flat initial condition and an

amplification factor of 1019, the algorithm finds a minimum, we repeated this calculation several

times to confirm this fact. This means that using Eq. (4.36) as a quantity to be minimized and

Chebyshev polynomials we can obtain local minima. However using a discretization base approach

we do not see any local minima.

4.7. Genetic algorithms

Genetic algorithms are a group of optimization algorithms, whose original design is normally at-

tributed to Nils Aall Barricelli. Barricelli, a biogeneticist, worked on the early computers in Princeton

in the early 1950’s [189, 190], in numerically testing the theory of evolution. Other works by the same

group on evolutionary algorithms simulated natural systems, from genetic systems to intelligence

[191].

In 1957, George Box[192] used a simple genetic algorithm to optimize industrial productivity.

Throughout the later decades these algorithms have been used to optimize a variety of complex

problems, from economics to nuclear physics, car production and mirror design for solar energy

harvesting. They have been known for their high versatility in solving complex problems [193].

Genetic algorithms are known to avoid local minima, and for finding several optimal solutions

when the underlining problem is prone to have several optimal solutions [194]. Genetic algorithms

always converge, but the convergence time can be quite high (genetic algorithms normally present

an asymptotic convergence [195] and are stochastic in nature). No definite result is guaranteed to

be obtained. As in most optimization algorithms used for complex problem solving, in genetic

algorithms a compromise between the time it takes to achieve a convergent set of solutions and the

precision obtained with the algorithm must be reached. This is a quite intuitive idea and highly

dependent on the problem at hand.

Genetic algorithms, as their name alludes to, are based on the breeding and selection of solutions

according to their fitness to survival. In a genetic algorithm we start with a certain set of breeding

specimens. We then evaluate the fitness of these solutions to obey the problem’s constraints. Using

this information, a certain population is selected to breed new solutions. When a mutation genetic

algorithm is used, the new solutions are simply slightly modified versions of the initial solutions.
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4.7. Genetic algorithms

In the case where sexual reproduction is simulated, a combination between different solutions can

be performed by a linear combination of the parents’ genetic code, or more commonly in discrete

problems combining different parts of genetic code of two or more parents.

Most genetic algorithm optimization is employed in discrete problems. In this case the object space

is constituted not of real numbers but of sequences of discrete numbers, letters, nucleotides (A G

C T), etc..., normally with a limited number of options. In this case, the mutation rate reflects the

probability that each base has of being changed. The combination of sequences is done by combining

parts of two parent sequences in a final sequence. In a discrete case there is no sense in doing a linear

combination of the bases.

Initial population

Mutation and/or sex

Selection of the breeding 
population

Evaluation of the population,
Calculation of error or Fitness function

criteria

Wanted 
specimen

�1,...,N (!)

�1,...,m (!)

�1,...,N (!) = lin (Ci, j (!)�1,...,m (!)) + randnumbers

Figure 4.29.: Simple view of a genetic algorithm.

In our case we are solving a continuous problem and so a mutation is not replacing one base pair

by another, and we do not determine the percentage of base pairs that should be mutated but rather

we obtain neighbor solutions using a small random discrepancy from the parent solution. Also in a

continuous problem it is not so clear what sex, or combination of genes really means. Combination

can be a linear sum of parent genes or a combination of parts of two parent solutions in a single gene

sequence. For instance we could take the quadratic phase coefficient from one parent and the cubic

phase of another parent.

For some set of problems the ideal population size can be determined. For linear problems the

population size as determined in [196] can be used. Our problem is not linear, but it is generally

accepted that the cardinal of the population is a function of the number of degrees of freedom in the
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system [197]. More accurately it is proportional to the square root of the number of variables that

are used as optimization arguments.

In a genetic algorithm the parent population of the following generation is determined using the best

set of solutions. This is done not by simply choosing the best parents but by enhancing the possibility

that the solutions with the least error may be chosen for parents. The solution is chosen when the

algorithm finds a specimen with an error lower than a given criterion.

The mutation rate within a continuous problem is not related to the number of bases that are changed.

Rather, it is the amplitude of the random number that can be used in the algorithm or a mutation

amplitude. If the random number generator is given by rand, and takes values from -1 to 1, the

mutation is going to be:

new_solution=old_solution+mutation_mag*rand.

4.7.1. Simplified genetic algorithms applied to phase reconstruction

We used a simplified highly elitist version of a genetic algorithm. In fact we used the algorithm in

such a way that the square root of the number of individuals in a generation were chosen to be the

parents of the next generation, and we chose only the best solutions.

Other approaches to this problem using a genetic algorithm have been made. Chen et al. [198]

used a population split genetic algorithm with combination and mutation for phase retrieval of an

experimental 25 fs pulse and theoretically generated 50 fs pulses. Kyung-Han Hong et al used a

direct comparison with the IAC trace [199] with sub-10-fs pulses.

Genetic algorithms and gradient optimization were used by Yang et al. [200] to improve the com-

putation time. These studies used a Taylor base phase description. Here we have also studied this

possibility.

In a point-by-point base we used a mutation where we added to the previous phase a random set

of numbers. However we discovered that the best set of random numbers is not one for which the

density is a flat profile but rather a Gaussian one. In order to do this we used a flat density random

number generator from Matlab, multiplied it by a certain mutation amplitude and sums it up 20 times.

This has shown to work better than a simple flat density random mutation. In fact this mutation works

better than a polynomial base mutation.

We are not sure of the reasons why a random number generator with a Gaussian distribution works

better than a generator with a flat number distribution. It might simply be because it decreases the

mutation rate of the algorithm, concentrating solutions around the known parents but at the same

time allowing for a a wide range of solutions.
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Fig. (4.30) shows that this algorithm completely reproduces the spectral shape for low-chirped pulses.

In order to prove this we used a Gaussian pulse stretched to 9 fs using a quadratic spectral phase and

Gaussian spectrum with a Fourier limited duration of 7 fs FWHM. In Fig. (4.30) we show that the

Fourier transform of the intensity and the second harmonic spectrum are completely reconstructed.

We opted for this pictures because it directly compares what is input into the algorithm and comes

out.

t (fs)!

Figure 4.30.: Deconvolution of a Gaussian pulse quadratically stretched from 7 fs to 9 fs. On top (left)
magnitude of the Fourier transform of the pulse intensity, (right) Fourier transform of the second
harmonic (grey as obtained by the algorithm and back as inputed initially in the algorithm),
(below) retrieved pulse intensity in black and its temporal phase in grey.
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Figure 4.31.: Reconstruction of a structured pulse. On top (left) F {IA(τ)} and (right) F {SHA(τ)} retrieved
traces in blue; input data in orange. Bottom: retrieved and input intensity profiles.
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However, as we have seen in Sec. (4.2) these measurements are not so sensitive for highly chirped

pulses. In this case, it would be admissible that the algorithm would have some difficulty retrieving

the spectral phase. In order to test this we used a highly chirped pulse with an experimental spectral

shape (Fourier limited by 5.98 fs) and a fourth order Taylor phase which results in a FWHM duration

of 42 fs in two major pulses, the largest of them with 24 fs.

The results are shown in Fig. (4.31). Having proved that the algorithm retrieves complex pulses in

theory, the next step is to use this algorithm with known experimental data.

We used a pulse emitted by a Femtolasers Rainbow oscillator that is slightly stretched in time. The

results obtained are shown in Fig. (4.32). The retrieved measurement of IAC and MOSAIC is shown

in Figs. (4.33) and (4.34) respectively.

Figure 4.32.: (Top left) Fourier transform of the IAC and (above right) Fourier transform of the second
harmonic, experimental data (green) and reconstructed (blue). (Bottom) reconstructed pulse, in
the spectral (left) and time (right) domains, in phase (green) and intensity (blue).

In Fig. (4.32) we see that the background white noise affects the SH spectrum more than it affects

the Fourier transform of the intensity autocorrelation. This is rather intuitive simply because the

second harmonic spectrum has a magnitude of 1/4 of the intensity autocorrelation, as we can see in

Fig. (4.6).

From Fig. (4.32) it is also possible to see that the background noise is not retrieved but that the main

features of the measurements are well fitted by the algorithm.
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Figure 4.33.: Experimental (blue curve) and retrieved (green curve) IAC traces.
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Figure 4.34.: Experimental (blue curve) and retrieved (green) MOSAIC traces.

In order to test the robustness of this algorithm to fluctuations/errors in the retrieval we repeated the

algorithm obtaining the several results given in Table (4.1).

Trial Duration

1 7,613 fs
2 7,625 fs
3 7,622 fs
4 7,618 fs
5 7,617 fs
6 7,616 fs

Table 4.1.: Pulse duration obtained after several reconstruction trials with different initial phases, the average
duration is 7.619±0.004 fs.
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It is easy to see that the algorithm is resilient to the initial phase conditions, and that the errors

associated with the measurement are not due to the reconstruction method itself but to errors that

might be presented in the measurement or the data processing. In fact the time scale error can be

larger than the subsequent fluctuations due to the algorithm. We can compare Table (4.1) with the

results given in Fig. (4.14). The noise in Fig. (4.32) shows that the experimental error is also larger

than the precision due to imperfections of the algorithm. We have to remember that the signal-

to.noise ratio of the the initial traces is not the signal-to-noise ratio of the measurement but its square

root, divided by one in the case of the IA, and by four for the SH spectral shape.

We also tried to retrieve the pulse shape using a Taylor polynomial as a base to describe the spectral

phase. A Taylor expansion up to the 250th order was used. The results are shown in Fig. (4.35) and

Table (4.2). It is quite clear that the Taylor expansion only reconstructs part of the pulse shape, but

not the entire pulse shape that is reconstructed with a point-by-point approach.

Figure 4.35.: Deconvolution using a Taylor-decomposed spectral phase. (above, left) Fourier transform of
the IAC, (above, right) Fourier transform of the second harmonic, with the experimental data
in grey and the reconstructed pulse in black. (Below) the reconstructed pulse phase (grey) and
intensity (black) in spectrum (left) and in time (right).

Please note that we used the same experimental data than for the results in Fig. (4.32); this fact allows

us to test the algorithm in a real situation, and we see that this base does not allow for error reduction

below a certain point. Had the Taylor base algorithm been tested using a spectral phase initially

built upon a polynomial base, it would be expected that the algorithm would be able to completely

reconstruct the pulse, as it was done by Kyung Han Hong et al. in 2007 [199].

In Table (4.2) we see that an increase in the order of the Taylor polynomial does not change the

results significantly, it is clear that the values overlap for 3 and 30 coefficients. We may also see

that the algorithm is reproducible, and at least has a precision larger than the experimental error seen

in Sec. (4.3). We did trials with initial random Taylor coefficients and with a flat phase. We also
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tried a Taylor polynomial with an expansion that went up to the 250th order (flat phase as an initial

guess for the spectral phase). The calculation was very slow for this case and the algorithm did not

fully converge. We obtained a pulse duration of 6.936 fs, a duration slightly larger than the duration

obtained for Taylor polynomials with 3 and 30 coefficients.

Duration (fs)
(3rd order polynomial)
6.940 6.934
6.930 6.931
6.933 6.932
6.917

6.931 ±0.008

Duration (fs)
(30th order polynonial)
6.934 6.926
6.932 6.930
6.931 6.929
6.924 6.923
6.929

6.929 ±0.004

Table 4.2.: Pulse duration results obtained after several trials of the algorithm using a Taylor expansion as the
basis for the phase, with (left) a third order polynomial and (right) a 30 order Taylor expansion.

The time it takes for the third order Taylor expansion to run is on the order of some seconds. The

Taylor expansion up to the 30th order takes around one hour to run. We see that using the Taylor base

a small order expansion should be chosen, as the running time does not provide any further precision.

In fact, if a low order Taylor expansion is not sufficient, it is better to use a point-by-point base.

f (THz)!

f (THz)!

Figure 4.36.: Retrieval results with a bad calibration on the spectral shape. (top) Fourier transform of the
IAC and (below) Fourier transform of the second harmonic, with the experimental data in black
and the reconstructed pulse in grey.

One question that remains is the sensitivity of the algorithm to experimental errors made when

measuring the spectral shape. These errors normally arise if the calibration of the spectral shape
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is not made. We tried to retrieve the pulse shape with a faulty spectral shape, and the reconstruction

failed. This shows that the algorithm is sensitive to errors and it also indicates that even if the three

quantities used for pulse reconstruction can define a pulse, not all combinations of three curves taken

as the referred quantities define a pulse profile. A further trial was made in which the background

noise on the temporal measurements was cleaned using a super Gaussian filter. However a good

agreement was not obtained. The results are shown in Fig. (4.36).

More complex pulses can also be retrieved using this method. We used it to obtain the phase of

pulses after soliton compression in a nonlinear photonic crystal fiber (PCF ). PCF’s are known to

have outputs that can have at the same time a complex phase and a spectral bandwidth that extends

over one octave. The results are shown in Figs. (4.37), (4.38) and (4.39).
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Figure 4.37.: (right) Intensity spectrum and (left) SH spectrum, obtained experimentally (in black) and
retrieved by the genetic algorithm (orange).
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Figure 4.38.: Results obtained for the spectral shape (right) and temporal profile (left).

Figs. (4.37), (4.38), (4.39) show that the algorithm can reconstruct the spectral phase and conse-

quently the pulse shape even for results obtained in complex experimental conditions, in which pulses

have sub-two cycle durations and a complicated spectral phase [176, 201].
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Figure 4.39.: Retrieved MOSAIC trace (orange), and experimental measurement (black).

4.7.2. Using an adaptive mutation magnitude

A difficult parameter to optimize is the magnitude of the mutation6. Using an intelligent mutation

magnitude has already been studied, however, after the equations presented by Thomas Back and

Martin Schutz in [202] failed to give better results than a non adaptive mutation, we used a very

simple approach which significantly decreased the calculation time and improved the agreement

between the obtained and the retrieved Fourier transforms of IA and SHAC. In reality in the approach

presented in [202] the mutation rate dropped too fast.

The algorithm behaves as follows: first it adjusts the test pulse to the main features of the measure-

ments and then starts to produce finer adjustments to the details of the IA and SHAC. This behavior

is observed regardless of the initial phase or the base used to represent the pulse. Given this, the

procedure that we will subsequently describe is intuitive.

At first we adapted the mutation magnitude manually. Initial a high value for the magnitude of the

mutation is used (higher than 2π rad for a point-by-point approach). When the algorithm does not

find better solutions, it stops, and the magnitude of the mutation is manually decreased to smaller

values until a good agreement is reached, normally ending up with a mutation magnitude of 10−4 rad.

This procedure however requires manual intervention to an algorithm that may run for a few hours,

and so it’s unpractical.

6The phase is altered by using the following algorithm:
for (1:20): ∆φ = ∆φ +mutationmag∗ rand and φnew = φold +∆φ .
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Figure 4.40.: Scheme showing the adaptive mutation.

In order to improve the algorithm’s performance, an adaptive subroutine was devised in which the

mutation magnitude changed with the error variation. This is exemplified in Fig. (4.40), and works

the following way:

ä consider the algorithm is at its nth generation;

ä The error difference achieved between n-20 and the n-10 generation is calculated, as well as

the decrease in error in the last 10 steps.

• If in the last 10 steps the algorithm worked worst than in the previous 10, the mutation

magnitude decreases.

• If on the contrary the algorithm has achieved a better error reduction in the last 10 steps

than in the previous 10, the mutation magnitude increases.

• If no better solution is found, the mutation magnitude decreases, because the algorithm

is near a minimum.

Despite being simple, this subroutine allows a larger search space and faster convergence at the same

time. In practice, the adaptation algorithm tends to decrease the value of the mutation magnitude,

and so initially a large mutation magnitude should be used (more than 2π for a point-by-point base).

In reality, the adaptation could be improved if the mutation rate would be a function of the error

evolution. The results presented in Subsection (4.7.1) were all obtained using this adaptive recon-

struction.
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4.7.3. Mutation and combination in algorithms applied to phase
reconstruction

Chen et al. have reported that by introducing combination/sex into the algorithm the calculation time

increases, allowing for a better phase reconstruction [198]. We note that they used a Taylor expansion

in order to describe the phase.

We tried the same approach with a point-by-point model and discovered that despite converging with

minimal error this method had to be computed for several days (in a laptop computer Intel Core i7-

3630QM CPU @ 2.4 GHz) before it actually gave a satisfactory result. We used the spectral shape

given in Fig. (4.2) and stretched it from 5.98 to 14.40 fs, using a second order chirp of 27.9 f s2, a

cubic chirp of 1.05 f s3 and fourth order chirp of 0.134 f s4.

The algorithm with linear combination of parent solutions was run for several days. In Fig. (4.41) the

results obtained after 1 and 2 days are presented. The algorithm hits its lowest error after computing

for several days, and we see that this is a valid algorithm for spectral phase reconstruction, even

though of little practical use due to its the extensively long computation time.

Figure 4.41.: Results for genetic algorithm with combination. (above) Intensity spectrum, (below) SH
spectral shape. The aim of the algorithm in black, grey line after 24 hours of calculation and
red line after 48 hours.

4.8. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a method based on the harmonic movement of coupled oscilla-

tors and on the behavior of animal swarms. It is a stochastic method, just like the genetic algorithm,

and it was invented in 1995 by James Kennedy and Russell Eberhart [203]. It has been extensively

compared with genetic algorithms [204].
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

In this problem we consider an ensemble of particles in RM space and give each particle a certain

velocity. This velocity is going to be coupled to the others particles’ best positions, like an oscillator

would be coupled to its equilibrium position. In this algorithm each particle knows its best previous

position and we also keep track of the best position of the entire population, so it basically works

as a discrete damped harmonic movement of coupled oscillators in the object phase space with the

already found minimizing points acting as attractors.

In practice we start with a certain random number of positions and velocities for the phase, in phase

space:
φ r

1,...,N

φ v
1,...,N

(4.39)

The first step consists in evaluating δ 2{φ r
1,...,N} (the error function of each particle) and obtain which

of the particles φ r
1,...,N minimizes the error function. This will serve as an attractor. We also memorize

for each particle the historical particle position that minimized the error. In other words, in the first

loop we store the error of each particle and consider that each particle is an attractor represented as

φL1,...,LN . In the second loop we compare the memorized errors of each particle and the error in the

second loop. If the particle error is smaller than the memorized one, the particle attractor is replaced

by the new position. In the subsequent loops the mechanism is repeated. We then use these attractors

to change the velocity of the particles with a random number. The velocity is damped by a factor α ,

and the velocity changes are proportional to the distance between the particles and the attractors, like

in a harmonic oscillation, as given by:

φ v
i = αφ v

i − c1r1(φ
r
i −φ r

G)− c2r2(φ
r
i −φ r

Li)

φ r
i = φ r

i +φ v
i

, with i = 1, ..., N (4.40)

In this expression φ r
G is the phase that minimizes the error in the general set. The other attractor

φ r
Li, as discussed above, is the position that minimizes the error function. The coefficients r1,r2 are

random sets of M positive numbers and c1,c2 are coupling constants, with ideal value 2 [205].

(�r
i � �r

G) c1 (�r
i � �r

G)

| {z } | {z }

Figure 4.42.: 1D PSO. A particle position represented by the black cross and an attractor represented by
the reticule. The red line represents the possible positions the particle can take in the next
interaction due to the attractor.

In order to realize what the constants mean, we consider the existence of a particle φ r
i represented

in Fig. (4.42) by a black cross, and an attractor φ r
G (shown as a circular shape with a cross). If the

velocity, and other attractors are discarded, the positions that the particle can assume are represented
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4.8. Particle swarm optimization (PSO)

by the red line in the picture, or analytically by c1(φ
r
i −φ r

G). If c1 = 2, this reduces to an harmonic

oscillator: the oscillation occurs between this point and a symmetric point on the other side of the

attractor, which can be considered the equilibrium point. The random numbers r1 and r2 can be

considered as an integration over a random time. Then we evaluate φ r again. If any minimum is

obtained, it replaces either the local or the global minimum, and it will serve as the attractor for the

next iteration. We reapply Eq. (4.40) and the evaluation of the subsequent positions until convergence

is achieved.

4.8.1. Particle swarm optimization applied to phase reconstruction

There are several versions of the particle swarm optimization method [206, 207], and an international

journal is actually dedicated to them [52].

In PSO, it is usual to use subgroups of particles using the best position in the subgroup as another

attractor. This third coupling delays the algorithm convergence, for the case of population split

genetic algorithms. This would force us to use a third term −c3r3(φ
r
i −φ r

SG) in Eq. (4.40). We tried

this approach, where the fact of having 3 references (attractors) should delay convergence and enable

the algorithm to find a real global minimum. However we find this 3 attractor algorithm incapable to

find better solutions than the 2 attractor algorithm.

With 3 attractors, the algorithm is slower for the same set of parameters (coupling and damping

constant), and there is a narrower set of parameters for which the algorithm converges. However, the

results do not improve. We found the 2 attractor algorithm better suited for this problem.

Having adequate α,c1,c2 coefficients is crucial for a good performance [205]. Ultimately the dis-

tance between the particles is what makes this algorithm viable. If there is no distance between

the particles the algorithm cannot evolve, no matter the solution found. Also, if the particles are

not coupled (c1,c2 ∼ 0) there is no guarantee that the algorithm is going to converge to the optimal

solutions found in previous iterations. If the α coefficient is larger than one, convergence will never

occur; if it is too small, the algorithm will not explore sufficient phase space. For some problems it

is known that the ideal value for the dampening constant is 0.77 [205]. However we cannot be sure

that this is the case for our system.

We explored the coupling coefficients from 0 to 2 in steps of 0.1 and the undamping coefficient, α

from 0 to 1. The results are rather confusing and are shown in Tables (4.3) and (4.4). It is important

to realize that the algorithm is stochastic, and so different runs do not give the same results. In order

to test this algorithm we used a test pulse that had been stretched from 5.98 f s Fourier limited (the

spectral shape given in Fig. (4.2)), to 14.40 f s, using a quadratic chirp of 27.9 f s2, a cubic chirp of

1.05 f s3, and quartic chirp of 0.134 f s4. From these data we constructed a pulse and obtained a IAC

trace. We then used the PSO algorithm instead of the genetic algorithm to reconstruct the pulse’s

spectral phase.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

α\c1 = c2 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0 245,92 234,96 219,34 219,76 205,66 191,94 219,33 167,81 209,20 180,33 235,30

0,05 252,42 219,75 211,32 212,79 199,47 194,09 178,99 173,14 182,07 162,38 169,86

0,1 248,84 214,50 212,35 220,67 181,69 178,67 167,15 183,97 170,68 127,95 159,34

0,15 255,99 210,14 217,23 199,20 210,32 179,79 202,03 133,63 175,68 164,14 213,34

0,2 250,74 220,79 215,18 201,62 203,49 183,16 150,83 170,56 164,50 160,17 156,49

0,25 247,54 214,33 206,69 191,78 182,57 184,82 170,51 164,32 155,14 130,84 106,15

0,3 266,07 215,86 199,95 214,37 187,30 189,51 179,30 185,30 168,02 136,20 114,65

0,35 260,98 208,86 203,99 184,24 201,42 173,20 153,88 138,85 142,28 101,31 166,93

0,4 266,11 208,99 189,85 183,54 181,65 163,43 156,12 151,58 127,93 107,58 192,69

0,45 300,27 211,61 190,47 178,98 173,01 145,12 153,23 164,08 140,40 101,24 124,37

0,5 255,94 201,20 187,05 200,47 157,65 138,49 165,89 136,69 128,36 77,42 192,69

0,5 282,42 214,78 211,76 183,56 200,11 186,42 156,22 165,16 150,75 171,26 148,77

0,55 256,44 226,85 196,34 195,48 172,98 147,17 164,89 152,27 144,90 135,10 181,97

0,6 255,10 212,96 186,44 169,00 164,89 157,21 167,32 140,71 134,31 121,11 136,23

0,65 270,27 218,90 182,76 196,01 126,67 160,72 165,36 123,47 176,14 127,14 112,08

0,7 242,17 209,29 185,37 162,75 143,29 139,05 139,31 149,29 120,20 117,38 92,85

0,75 270,39 194,79 151,40 148,29 125,17 125,55 106,09 87,85 94,45 120,73 110,81

0,8 243,88 160,99 155,44 135,03 131,14 117,22 129,25 107,29 89,25 84,87 89,22

0,85 250,62 161,28 117,73 114,53 118,15 90,88 115,28 140,22 45,71 37,64 88,66

0,9 229,16 128,19 106,15 100,70 58,23 42,24 87,21 70,25 105,56 96,30 142,24

0.95 224,29 123,83 58,00 43,07 65,30 45,09 109,65 154,45 180,00 184,05 205,36

1 220,41 193,41 195,60 173,13 183,63 193,06 183,92 211,44 221,24 218,56 196,80

α\c1 = c2 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

0 200,88 192,90 193,57 174,20 188,31 198,36 234,58 189,06 227,41 225,71

0,05 193,07 176,52 191,70 197,05 193,29 178,01 164,66 153,16 139,55 186,85

0,1 197,95 182,58 162,22 180,49 177,60 171,06 163,38 160,64 156,79 204,78

0,15 194,05 178,33 159,50 187,64 176,23 179,76 125,50 151,81 115,26 189,12

0,2 194,33 194,67 183,86 180,00 182,01 177,31 125,80 159,25 125,90 164,54

0,25 171,52 193,56 189,37 168,32 135,95 127,05 125,71 127,32 95,06 178,22

0,3 168,42 170,49 168,81 156,77 170,14 162,71 131,78 136,34 121,26 113,57

0,35 155,90 154,04 163,99 165,49 135,53 139,51 116,79 111,65 76,52 159,17

0,4 150,86 142,17 134,55 121,82 157,58 131,65 115,77 102,44 96,76 144,09

0,45 178,05 166,42 162,71 140,15 156,50 128,24 99,64 43,54 116,75 150,74

0,5 129,78 154,81 159,00 113,17 122,89 96,49 111,99 98,31 77,02 179,40

0,5 147,26 143,38 139,71 114,67 116,50 127,24 61,99 25,34 205,68 172,92

0,55 160,78 129,28 131,25 132,47 119,27 105,10 72,33 63,57 176,20 193,37

0,6 123,82 108,33 118,15 126,19 100,20 76,03 24,62 171,29 163,62 194,67

0,65 115,06 114,25 123,33 103,08 91,63 30,72 79,91 125,43 139,36 190,73

0,7 120,46 90,26 127,57 74,10 75,62 93,14 97,54 190,57 195,09 203,65

0,75 101,32 112,56 50,50 29,23 34,23 207,22 190,45 183,32 195,09 209,80

0,8 53,77 96,20 79,00

0,85

0,9

0.95

1

Table 4.3.: Error results obtained by performing a sweep over the parameters associated to the PSO. The
coupling parameters c1 and c2 varied from 0 to 2 and the undamping factor α varied from 0 to 1.
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4.8. Particle swarm optimization (PSO)

α\c1 = c2 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0 3 3 5 5 5 24 4 67 7 21 4

0,05 7 28 24 22 30 31 34 75 61 265 55

0,1 8 15 11 35 31 33 34 80 61 207 88

0,15 8 28 32 39 38 35 35 96 72 152 40

0,2 8 39 38 32 34 43 41 74 105 149 111

0,25 11 24 35 34 36 39 56 144 125 177 586

0,3 13 40 43 40 42 45 52 283 109 231 246

0,35 14 51 37 44 44 76 170 251 108 208 151

0,4 14 36 39 52 64 83 429 102 176 457 119

0,45 16 49 48 53 79 64 148 140 181 284 268

0,5 21 42 54 54 99 248 102 169 267 819 151

0,5 19 46 57 49 50 53 56 97 67 166 76

0,55 24 52 67 56 60 69 68 70 223 146 102

0,6 22 70 68 87 71 75 80 86 318 146 162

0,65 24 84 71 75 82 93 185 113 120 138 154

0,7 34 89 114 94 131 160 119 166 174 229 295

0,75 39 95 113 116 131 459 190 207 300 293 354

0,8 51 124 145 152 197 222 249 321 430 466 599

0,85 79 177 198 426 261 414 419 566 850 1037 873

0,9 93 282 350 446 734 865 387 342 1260 376 1008

0.95 212 646 999 963 184 1025 1025 560 1025 1025 1025

1 1025 1025 1025 1025 44 1025 1025 1025 1025 1025 1025

α\c1 = c2 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

0 24 32 40 91 57 9 3 11 3 3

0,05 37 37 39 42 64 61 138 278 312 57

0,1 31 36 45 41 48 116 93 143 254 42

0,15 37 45 52 43 120 59 82 135 313 35

0,2 43 56 49 61 215 71 138 119 329 260

0,25 55 58 72 158 107 119 164 356 303 103

0,3 67 102 95 127 93 79 127 216 385 329

0,35 100 58 62 229 130 121 159 235 615 166

0,4 61 614 164 127 113 193 249 438 467 211

0,45 111 74 137 189 249 170 290 903 369 382

0,5 86 230 145 140 338 341 501 349 711 233

0,5 131 156 105 161 232 284 399 1810 78 264

0,55 112 179 137 167 309 272 645 1161 147 196

0,6 132 156 170 200 417 522 1536 147 255 322

0,65 184 211 350 168 450 1036 1465 550 501 150

0,7 241 353 466 251 1607 1134 1456 343 364 326

0,75 465 501 767 1762 5263 283 165 399 410 633

0,8 715 907 3167

0,85

0,9

0.95

1

Table 4.4.: Number of iterations until convergence is obtained as a function of the PSO parameters. The
coupling parameters c1 and c2varied from 0 to 2 and the undamping factor α varied from 0 to 1.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

In Tables (4.3) and (4.4) there are some absent values. These are seen in situations where the value

of α falls between 0.85 and 1 and the values of the coupling constants lie between 1.6 and 2. In these

cases the algorithm does not converge within a 24 hour calculation. The values in red correspond to

cases where convergence was achieved within a reasonable time frame.

Convergence is achieved if either the coupling constant or the undamping factor is low. The best

results however are given for low values of the coupling constant and an undamping factor close

to one (but not one) or for small undamping factor and a high coupling coefficient. This is either
{α = 0.9−0.95}∧{c1 = c2 = 0.3−0.5} or {α = 0.5−0.6}∧{c1 = c2 = 1.7−1.8}.

Note that we also repeated the results of the simulations for α = 0.5. We see that these results are

different in the two runs, which confirms the stochastic nature of the algorithm.

The PSO results given in Tables (4.3) and (4.4) present a large error between the expected results and

what is actually obtained via this method. The results obtained with c1=c2=1.7, α = 0.6 are given in

Fig. (4.43).

t(s)!

I(t) retrieved 

objective 

Figure 4.43.: Results obtained using c1=c2=1.7, α = 0.6. On top (left) intensity spectrum, (right) SH
spectrum, on the bottom the intensity profile, the actual results (black) and the desired curve
(gray).

We see that despite sweeping through the algorithm parameters, the PSO algorithm does not recon-

struct the spectral phase in one run.

To summarize, this algorithm can give some results using the appropriate working parameters but

we must point out that it gets stuck because the velocity and distance between the particles goes to

zero and it stops evolving. In order to have a good solution for our problem we need a better, more

reliable version of the PSO algorithm, namely the repulsive particle swarm algorithm discussed in

the next subsection.
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4.8.2. Repulsive particle swarm optimization (RPSO)

This method is used in cases where PSO provides fast convergence but gets stuck at some point that

might not even be a minimum or an optimal solution. Repulsive particle swarm optimization (RPSO)

was invented by Jacques Riget and Jakob S. Vesterstrøm in 2002 [206].

The RPSO algorithm makes use of a repulsive force to make the particles move away from each

other in RM space. The procedure is actually the same as in PSO, but a small random repulsive force

is applied to the particles and in consequence the convergence rate decreases. In this case Eq. (4.40)

changes to

φ v
i = β r3 +αφ v

i − c1r1(φ
r
i −φ r

G)− c2r2(φ
r
i −φ r

Li)

φ r
i = φ r

i +φ v
i

, i = 1, ...,N , (4.41)

where we simply add a random array, β r3, to each particle velocity, this perturbs the ensemble of the

particles which slip away from one another and allows the algorithm to search in other zones of the

phase space. The factor β is controlled in order to allow convergence, and so β must be a function

of the cycle number or the error.

We can also maintain the PSO algorithm until convergence and then apply the repulsive force

repeating the PSO algorithm subsequently.

4.8.3. RPSO applied to phase reconstruction

In our attempts to apply this algorithm to the phase reconstruction problem we used two approaches.

In the first approach the velocity is determined by Eq. (4.41). Here we did not find a β that achieved

convergence and a small error at the same time; either the convergence time was too long and the

results too disperse, or the convergency time was too small and the results gave a large error.

Instead of the traditional RPSO algorithm, we used a modified version, namely a simple PSO

algorithm, as in Subsection (4.8.1), with a undamping constant of 0.6 and a coupling value of 1.7.

When the algorithm converged we reseted the initial velocity randomly, effectively giving a kick to

the swarm. We repeated the PSO until it converged, and then nudged it again. The perturbation was

reduced at every interaction, until convergence was achieved. Technically, the velocity was being

reinitialized to φv =
2πrand

N , where N is the number of times we ran the simple PSO algorithm.

With this algorithm we tried to retrieve the spectral phase. As in the previous subsection we used a

pulse that had been stretched from 5.98 f s Fourier limited (the spectral shape given in Fig. (4.2)), to

14.40 f s, using a quadratic chirp of 27.9 f s2, a cubic chirp of 1.05 f s3, and quartic chirp of 0.134 f s4.

From these data we constructed a pulse and obtained a IAC trace. We then used the RPSO algorithm

instead of the genetic algorithm used in the previous section.
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4. Spectral phase reconstruction via spectral intensity and interferometric autocorrelations

The results can be seen in Fig. (4.44). These were obtained using the parameters given above of

c1=c2=1.7 and α = 0.6 . It was not possible to reproduce the results using c1=c2=0.2 and α = 0.8

within the same time frame, which means that the parameters (coupling and undamping) are critical

in a RPSO approach. Moreover it means that even if in the PSO simulations we had two parameter

zones where the results were similar {α = 0.9−0.95}∧{c1 = c2 = 0.3−0.5} or {α = 0.5−0.6}∧
{c1 = c2 = 1.7−1.8}.

In a RPSO simulation we obtained better results using this second zone, probably because in a PSO

algorithm this zone tends to converge a faster than the first one.

I(t) retrieved 

objective 

t(s)!

Figure 4.44.: Results with c1=c2=1.7, α = 0.6. On top (left) intensity spectrum, (right) SH spectrum, on the
bottom the intensity profile, the actual results (black) and the desired curve (gray).

To conclude this section, we have studied a method for spectral phase reconstruction, using an

advanced version of a particle swarm optimization, and proved that obtaining the spectral phase

using an intensity autocorrelation, the spectral profile and the second harmonic spectrum is possible

if an appropriate minimization method is found, either a repulsive particle swarm optimization or a

genetic algorithm.

4.9. Conclusion

In this chapter we proved that spectral phase reconstruction based on the well known measurements

of interferometric autocorrelation and power spectrum is possible. We analyzed several theoretical

and experimental measurements and in all of them we were able to reconstruct the spectral phase

using minimization algorithms, the power spectrum, and the Fourier transforms of IA and SHAC.

From this study, we believe, that it is possible to reconstruct the phase of any ultrafast pulse using
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a MOSAIC trace and the spectral intensity profile as long as the Nyquist theorem in frequency and

time is obeyed.

In detail, this chapter has reviewed the known facts about the interferometric autocorrelation traces,

IAC. We describe the Fourier transform of the IAC in three parts: one centered at 0 frequency (the

intensity autocorrelation) other centered at the EM central frequency and a third centered at twice

that frequency (the SH spectrum). This ensemble completely defines the EM field temporal profile,

as long as the EM field is contained within a finite time frame, and has finite energy. However, the

carrier envelope phase cannot be measured by this method, and there is an ambiguity in the signal of

the spectral phase, that translates in an ambiguity in the time direction, this ambiguity however can

be easily surpassed by taking two measurements of pulses with a known spectral phase difference

between them [150].

MOSAIC traces that are highly sensible to the pulse chirp were presented, which means that using

this measurement (or its Fourier transform) precise measurements of the pulse profile can be made.

We then tried several approaches to reconstruct the spectral phase. First we used a Gerchberg-Saxton

type algorithm, invented by K. Naganuma et al., and at least in the cases we studied no spectral phase

reconstruction was possible: the algorithm did not converge the results are completely random, and

we were not able to improve these results even with background cleaning.

Then we devised another method based on a Gerchberg-Saxton algorithm. This algorithm behaved

better than the algorithm presented previously. It either converged or presented a loose convergence.

However, full phase reconstruction was not possible: the final error was still too large, the variance

of the pulse was correct but not its intensity profile.

We then used a minimization approach, where the spectral phase was the minimization argument

and the factor to be minimized was the error between the experimental and the retrieved traces, as

given by Eq. (4.28). We used the spectral shape to calculate the electric field because it is easier

and also because it is also easier to measure the pulse spectrum of the field than its IAC trace. After

calculating the electric field using the spectrum and a trial spectral phase Ẽ(ω)=
√

S(ω)exp [iφ(ω)],

we calculated the intensity spectrum
∣∣∣Ĩ(ω)

∣∣∣
2
=

∣∣∣∣F
{∣∣∣F−1

{
Ẽ(ω)

}∣∣∣
2
}∣∣∣∣

2

and the SH spectrum

∣∣∣S̃H(ω)
∣∣∣
2
=

∣∣∣∣F
{(

F−1
{

Ẽ(ω)
})2

}∣∣∣∣
2

. In summary, the method assumes that the spectral shape is

correct, the algorithm’s argument is the spectral phase and the factor to be minimized is the error in

the other two measurements, given by Eq. (4.28).

In theory it would be possible to assume a correct SH spectrum SSH(ω) =
∣∣∣S̃H(ω)

∣∣∣
2

instead of

assuming a correct field spectrum. The minimizing argument would be the second harmonic spectral

phase and the electric field would be redefined by a complex expression7. The error would be

7Ẽ(ω) = F

{√
F−1

{√
SSH(ω)exp [iφSH(ω)]

}}
.
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redefined using the two other quantities. This would not be convenient because calculations would

be harder, and because the SH spectrum obtained from IAC has the smallest S/N ratio of the two

measurements (field spectrum and SH spectrum). If the SH spectrum was measured directly the S/N

ratio might improve. Also a direct measurement enables us to correct deviations of the SH from

E2(t) shape due to imperfect phase matching.

Having redefined our problem as an error minimization problem we tried several algorithms to solve

it. First we tried a minimization algorithm included in Matlab base code (fminsearch) this algorithm

proved able to decrease the error, even if it did not provide full spectral phase reconstruction. In

this algorithm we used an amplification factor in order to increase the searched space. For a point-

by-point base, the amplification factor enables the algorithm to achieve a better agreement (smaller

error), however in the cases studied this algorithm did not converge to a minimum. In fact the

algorithm ran for several days without finding a minimum, which means that the algorithm is too slow

to solve our problem this way. We tried the same minimization algorithm but instead of describing

the phase point-by-point we used a base built upon type I Chebyshev polynomials. In this case

the algorithm was able to find a minimum, however this was a local minimum where the spectral

phase had not been reconstructed. In summary, fminsearch is not able to reconstruct the spectral

phase. Local minima may exist when we use Chebyshev polynomials to describe the spectral phase.

We cannot say that local minima do not exist when we describe the spectral phase point per point.

However, we can say we have not found any.

We finally presented an algorithm that successfully finds a spectral phase that adjusts the three

independent measurements. This algorithm is based in a simple elitist genetic algorithm with an

adaptive mutation. At first the spectral phase is constructed with a Taylor polynomial and afterwards

with a point-by-point base.

We successfully reconstructed electric fields using theoretically generated and experimental data.

Note that the S/N of the measurement is not actually the S/N ratio of the resulting electric field

because we use the square root of the data in order to implement the algorithm, so the minimizing

factor of our S/N is
√

δ

2 , with δ is the data S/N ratio.

The experimental data used for spectral phase reconstruction were:

ä Pulses issued from a few cycle femtosecond oscillator;

ä 4.9 fs pulses generated by soliton effect compression in a photonic crystal fiber [176, 201].

We also researched the possibility of using sex in the genetic algorithm to obtain a bigger degree of

precision in the reconstruction. We were able to reproduce the spectral phase as we had done with the

simple genetic algorithm. However the time demands of this upgrade did not result in any (observed)

increase in precision.

Having found an algorithm that completely reconstructed the spectral phase, we tried to find another

184



4.9. Conclusion

algorithm that would do the same. We found that a repulsive particle swarm optimization algorithm

with a high undamping factor and a low coupling constant was also able to reconstruct the pulse’s

spectral phase.

The measurements discussed here (IAC and power spectrum, IA, SH power spectrum) are routinely

taken as preliminary measurements in ultrafast laboratories around the world, as they are easy to

obtain and are applied where other measurements are hard to perform. It is our hope that this work

may enhance the usefulness of these measurements by providing an accurate way to obtain the pulse

temporal profile.
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5. Single shot correlations based in a
sagittal focal line configuration for use
in Ti:Sapphire based lasers

5.1. Overview

We have seen in Chap. 3 that in pulsed laser systems it is possible to use correlations in order to

obtain some information on the shape and duration of the laser intensity.

When using quasi-continuous lasers the stability preformed by this lasers assures repetitive pulse

shapes. In this case a sweeping correlator is reliable and there is no need to analyze pulse to pulse

variations. However at low repetition rates and/or high energy lasers, thermal effects can make the

pulses non-reproducible. In this case a sweeping correlator is not a viable option. Even if there

are no changes pulse to pulse at a low repetition rate, the time it takes to measure the pulse makes

it unpractical to use a sweeping diagnostic. In a sweep correlator, each point is measured using a

different pulse. So if there are significant changes from pulse to pulse, it is no longer useful to use

this method. It is important to design a system where a correlation can be done in single shot, with a

unique pulse.

This chapter proposes a Single Shot Intensity Autocorrelator (SSIA) and a Single Shot third order

intensity Cross-Correlator (SSCC). The wave mixing is done in a BBO crystal with a type I phase

matching. As exposed in Sec. (3.2), a third order cross correlator implies two wave mixing process

second harmonic generation and SFG between the second harmonic and the fundamental beam

creating radiation centered at 266 nm, the third harmonic wavelength. We design the device for

use with a Ti:Sapphire laser with a central wavelength at 800 nm, and a bandwidth that can go up to

200 nm.

This chapter main objectives are to present a delay line based on the superposition of two sagittal

focal lines, to discuss ways to enhance the contrast of single shot cross-correlators using phase-

matching conditions and to present the main experimental results of a intensity autocorrelator based

on this approach.
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5. Single shot correlations based in a sagittal focal line configuration

5.2. Overview of past work

Single shot measurements have been used for some decades. Tilted front diagnostics were proposed

and used by J. Janszky et al. [55] and are the most widely used systems. These diagnostics are

useful not only to analyze temporal characteristics with intensity autocorrelations [56] but also to

study spectral characteristics [169]. Other tilted front diagnostics were done to analyzed UV pulses,

like multi-photon correlators [208] and transient grating correlators [209] (equivalent to a third order

correlator).

Finally tilted front diagnostics which contain a Fresnel biprism to obtain mirrorless systems have

been developed: first and second order interferometric autocorrelations with spatial resolution [210],

pulse spatial chirp diagnostics [211] and third order cross correlations [57]. Summing up, tilted

front systems have been the dominant method used for single shot pulsed laser diagnostics since

1977. Some diagnostics are commercially available like the intensity autocorrelators by Coherent,

Inc. [51] and Minioptic Technology, Inc. [52].

Some other single shot configurations have been designed. For example GRENOUILLE [212] is a

single shot FROG [34] design and SPIDER [37, 38], has also been design for use in a single shot

configuration [213]. F. Théberge et al. [214] developed a system to obtain information in a single

shot 3D profile of the pulse shape two photon absorption signal in a dye dispersive medium. A

system to fully characterize the electric field of a ultrashort pulse called STRIPED FISH has been

studied by Pablo Gabolde in his PhD thesis [215].

For single shot or quasi single shot high contrast diagnostics, several configurations have been

considered because we are interested in analyzing the intensity profile in a logarithmic scale over

a long time window, not the pulse shape in a linear scale near to the peak. This implies a different

configuration. Single shot third order cross correlations were first tried by Collier et al. [57]. The

contrast in these experiments was limited to 1 to 7.1 (estimation done using the graphics presented

in the paper). A high contrast single shot supercontinuum correlator was reported by Filip et al. [60]

with a contrast given by the CCD camera of 106 over a 7 ps window.

High contrast third order cross correlators have been developed in several works: Dorrer et al. [61,

62] used a pulse replicator and obtained 106 contrast for a 1053 nm (Nd:Glass) pulse with 8-ps pulse

duration, this configuration overcomes the normal detector contrast efficiency by replicating the SH

pulse with smaller intensities for smaller delays, and thus obtaining a delay dependent intensity.

This enables the signal at zero delay to have a small gain and the signal at big delays to have a big

gain. In other words, the contrast that can be obtained with the device is bigger than the contrast

of the CCD cameras used in the measurement. The system had a time window of 250 ps. It is a

discrete delay system and so it is perfect for systems where the pulse duration is bigger than the time

difference between replicated pulses.
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I. Jovanovic et al. [59] presented another single shot cross correlator with a delay line based in a

grating and a step variable filter, the device had a 200 ps window and a dynamic range in excess of

105. A mix single shot - sweeping third order correlator has been developed by V.N. Ginzburg et

al. [63], the single shot window had a 1 ps range and a 104 contrast, the entire system had 100 ps

time window and a 108 contrast. Finally Gerrity [58] has developed a concept for a single shot cross

correlation, with a 105 contrast ratio and a time window in excess of 50 ps.

Daniel Sütterlin et al [216] have published a coherent transition radiation diagnostic that also uses

an off axis focal line, but for a different diagnostic (similar to a Martin-Puplett Interferometers), his

work was done with toroidal mirrors, not with the spherical mirrors that we are considering.

5.3. Delay line

We will compare the two delay line configurations, the standard tilted front configuration and our

own proposal based on the sagittal focal line of a spherical mirror. We will compare the values

obtained with each system.

5.3.1. Tilted front configuration

Single shot intensity correlators normally use two tilted fronts that are overlap and mix in a nonlinear

crystal. This two wave-fronts have an angle between them, this will result in a path difference

between the beams for each point of the crystal, the time window is proportional to the spatial size

of the beam in the crystal.

βext"
αext" Θ"z

y
(a) (b)

Figure 5.1.: Tilted correlator scheme, the black rectangle represents the crystal; (a) single-shot-TOCC (b)
single-shot IA.

Tilted front intensity autocorrelator basic scheme is presented in Fig. (5.1) (b) and the TOCC tilted

front version in Fig. (5.1) (a). For the intensity autocorrelator, in order for the output beam to be

perpendicularly to the crystal, the input beams have to be in a perfect symmetrical configuration.

In a third order cross correlator this is not the case and the beam configuration is quite different. The
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5. Single shot correlations based in a sagittal focal line configuration

beam at the fundamental wavelength and the one at the second harmonic have to obey the condition

kω sin(αint) = k2ω sin(βint) in order to guarantee that the third beam exits the crystal perpendicularly

to the crystal itself. The fact that the beam exits perpendicularly to the crystal is important to

guarantee that the image of the wave-mixing in the crystal is not affected by spatial/beam pointing

distortions.

Notice that because the phase-matching angles are the same for every delay (for every y position) the

shape of the signal obtained in this configuration is dependent on the spatial and temporal shape of the

pulse, not on phase-matching conditions. However the magnitude of the SH/SFG signal generated in

the mixing crystal is going to be affected by the phase-matching between beams.

In fact, the angle between the beams in a tilted front configuration does not change more than the

divergence of the beams. This is does not happen in our proposal, we use a sagittal focal line and

where there is a considerable angular variation of the~k vector between the two beams that arrive at

the SH/SFG crystal.

Notice that, in this traditional configuration, the spatial profile of the pulse is critical to the reliability

of the measurement. In fact, the single shot TOCC signal is given by Eq. (5.1) and the IA single

shot is given by Eq. (5.2). This equation is such that the spatial and temporal details of the pulse

are intertwined in the resulting signal, αext ,βext and Θext are the angles outside the crystal, that are

represented in Fig. (5.1) , αint , βint and Θint are the angles inside the crystal that can be found from

the first ones using Snell-Descartes’ law.

SSCC(x,y) =
∫ ∫

Iω (x,y, t− τω(y,z′)) I2ω (y, t + τ2ω(y,z))dtdz′

τω(y) =
ysin(αext)+z′ cos(αint)

c

τ2ω(y) =
ysin(βext)+z′ cos(βint)

c

(5.1)

SSIA(x,y) =
∫ ∫

Iω (x,y, t− τω(y,z)) Iω (y, t)dtdz′

τω(y,z) = 2
ysin(Θext

2 )+z′ cos
(

Θint
2

)

c

(5.2)

Please note that the intensity dependency on the y− axis is not the intensity profile as given at the

entrance of the correlator1. Considering the axis that is perpendicular to the propagation before the

crystal is the y′−axis, the relation between the the intensity in the two axis is given by the expression

I(y′)dy′ = I(y)dy. This applied to the intensity autocorrelation and the third order cross correlation

becomes2:
I(y) = I(y′)cos

(
Θext

2

)

Iω(y) = Iω(y′)cos(αext)

I2ω(y) = I2ω(y′)cos(βext)

(5.3)

1We use {x,y,z} as the original propagation axis before the device, and {x′,y′,z′} are used as the propagation axis on the
wave-mixing crystal.

2For the IA: y = y′

cos( Θ

2 )
.
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5.3. Delay line

In the case of the intensity autocorrelator, no further questions arise. However in third order cross-

correlator, for I2ω(y, t) to be proportional to I2
ω(y, t), the beam has to be dilated (because the angles

are different, the projection is also different), the SH beam has to be dilated by cos(αext)
cos(βext)

.

The temporal window for the intensity autocorrelator in this design is
2YMAX sin(Θ

2 )
c . For the temporal

window of the SSCC, we have the expression: YMAX
sin(αext)+sin(βext)

c .

The temporal resolution might be limited by the wave mixing process. Let us consider that we image

the crystal on a camera, it is reasonable to consider every point we see in the camera is an integration

over the thickness of the crystal; we have expressed this in Eqs. (5.1) and (5.2) as an integration over

z. If the delay between the beams does change in the z−axis, it is obvious that this change is going to

limit to the temporal resolution of the measurement. Given this in the SSCC, the temporal resolution

will be limited by the crystal thickness Lcr, more precisely by: Lcr
cos(βint)−cos(αint)

c . In the SSIA there

is no given temporal resolution limit because in the z− axis direction the path difference is always

the same.

Let us treat the SH mixing in the SSIA scheme (see Fig. (5.1)). In order to find values for the temporal

window allowed in this configuration some considerations have to be made. It is possible to envision

that the angle Θ could be as close to 180º as possible, however this would not be practical, because

there would be no phase-matching and the SH generated by each beam with itself would overshadow

the SH generated by the mixing of the two beams.

We have to envision the maximum aperture angle Θ, where the phase-matching condition exits.

In a type I phase-matching (o+ o→ e) the crystal e-axis is in vertical plane as well as with the

electric field of the second harmonic. In this configuration, the fundamental field inside the crystal is

horizontal and within the o-axis. We could rotate the system and have the o-axis and the fundamental

wave electric field on the vertical plane, in consequence the e-axis and the SH electric field is placed

horizontally parallel to the front window of the crystal In the first option there is a certain liberty for

micro adjustments by changing the crystal orientation, in the second case no micro-adjustments are

possible. For a BBO crystal the maximum aperture angle ΘMAX is given by:

ΘMAX = 2arcsin
(

no(ω)sin
(

arccos
(

ne(2ω)

no(ω)

)))
(5.4)

Eq. (5.4) is obtained considering a type I phase-matching. The electric field oscillation at the funda-

mental wavelength is done in the plane formed by the two inputted beams, it is perpendicular to the

crystal interface. The ordinary plane of the crystal, is exactly in this same plane. The polarization of

the SH generated by the two beams is perpendicular to the other polarizations and is parallel to the

extraordinary axis of the uniaxial crystal (see Fig. (5.2)).

Considering Eq. (5.4) and a central wavelength of 800 nm, we obtain maximum aperture angle of

ΘMAX ≈ 66,3º (for 700 nm ΘMAX ≈ 63º). For a crystal with a length of 50 mm, the time window is
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5. Single shot correlations based in a sagittal focal line configuration

176 ps, for a 25 mm crystal it would be 88 ps. In resume we obtain a delay per unit of length in the

crystal of 3.5 ps/mm.

Figure 5.2.: Top view of the crystal The electric fields are represented in blue and the~k vectors in black. The
represented plane is the ordinary plane of the crystal and the e-axis is perpendicular to it. The
polarization of the beams at the fundamental wavelength are within the plane. The polarization
of the SH beam is perpendicular to it.

If we had considered that the phase-matching was not important, we could have opted for a quasi-

parallel incidence (Θ = 180º), in this case delay per unit of length in the crystal would be 6.7 ps/mm.

Let us now make the same considerations in order to obtain the maximal possible time window in

the SSCC of Fig. (5.1). In this case the phase-matching conditions are given by:

3ne(3ω) = 2no(2ω)cos(βint)+no(ω)cos(αint)

no(ω)sin(αint) = 2no(2ω)sin(βint)
(5.5)

Solving Eq. (5.5) we obtain αint = 23.9º and βint = 11.5º or αext = 42.3º and βext = 19.7º. Considering

these angles, we obtain a maximum delay of 3.3ps/mm, which is the equivalent of 86 ps for a

25 mm crystal and 167 ps for a 50 mm crystal. The resolution limit given by the nonlinear mixing is

approximately 18 fs. Please compare this with a common high contrast third order cross correlator

where the time window can reach up to 990 ps with a 70 fs resolution [42].

5.3.2. Sagittal astigmatic focal line as a delay line

Using this configuration, we achieve at the same time a delay line and an integration of the spatial

profile in one direction (x− axis). This will originate a semi focused beam that will increase the

efficiency of the nonlinear process.

The sagittal line of a curved mirror is parallel to the beam that enters this mirror (under the paraxial
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5.3. Delay line

approximation), the scheme is given in Fig. (5.3). We see that there is a time delay between A and B,

this time delay is the basis of our configuration. In order to create an autocorrelator or a correlator,

we superimpose two sagittal lines in a nonlinear crystal, the general scheme comprising the curved

mirrors and the nonlinear crystal is given in Fig. (5.4).

A B C

P

V ϕ"
2ϕ"

y’

z’ x’

z

y x

Figure 5.3.: Sagittal focus line (in magenta) from a spherical mirror with a curvature ray centered in C. The
incidence angle ϕ and the A B points are the extremes of the sagittal line.

MC2 MC1

(a) (b)

z

y

γ"γ"
γω#

γ2ω#

Figure 5.4.: Sagittal line correlator scheme, the black rectangle represents the crystal; (a) SSCC (b) SSIA.

This scheme allows for an integration in the x−axis allowing the measurement to be taken indepen-

dently of the beam profile in this direction, which reduces the influence of hot points in the nonlinear

process. However the geometrical optics bijectivity between the two incident beams, the beams at

the entry of the mirror and at the focal plane is not strait forward.

In an intensity autocorrelator we overlap two beams that arrive symmetrically to the nonlinear crystal

Using geometrical optics considerations, we find the relations between the different beam profiles in

the sagittal plane and at the entry of the lens. We do not make considerations about the propagation

effects of these beams (this could be done using Fresnel propagation integral [217]). Given this,

we associate the intensity in the original y′− axis with the one in the y− axis with the first three

expressions in Eq. (5.6). We choose the origin of the y′− axis in order for it to coincide with the

central point (geometric center) of the beam profile, the incident angle of this point is γ0. The last

expression in Eq. (5.6) is the time delay at each point of the focal line in relation to the central point
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that of the beam profile.

γ = arcsin
(

sin(γ0)+
y′
R

)

y = R
2

(
1

cos(γ) − 1
cos(γ0)

)

I(y) = I(y′)
tan(γ)

τ(γ) = R
[

1
2

(
1

cos(γ) − 1
cos(γ0)

)
+ cos(γ)− cos(γ0)

]
(5.6)

Using Eq. (5.6) we obtain the delay in the focal plane for one mirror. We used a curvature radius of

2 m (1 m focal length) for the spherical mirror and obtained the graphics shown in Fig. (5.5).
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Figure 5.5.: Sagittal line delay as a function of the incidence angle. We consider a Super-Gaussian (order
10) beam profile at the entry of the mirror. The values represented are the FWHM of the delay
considering a 1mm beam at the entry of the mirror (a), or the delay per unit of length on the focal
plane (b). The traced line is the minimal angle where phase matching is achieved for a SH non
collinear configuration (γω = 28.4º).

Where we represent the delay in the focal plane, we used a square function at the entry of the

astigmatic spherical mirror. In Fig. (5.5) (a) we use a 1 mm beam width at the entry of the mirror and

obtain the delay in ps. In Fig. (5.5) (b) we obtain the delay per distance in the focal plane (mm).

The maximum delay (τmax) per unit of width on the incoming beam ( ∂τ

∂y′ ) is achieved at 30º with

0.6 ps/mm on the mirror plane or ∂τ

∂y = 5
3

ps/mm on the focal plane. However if we see this in the

perspective of the crystal, the maximum delay per unit of distance ( ∂τ

∂y ) in the focal plane is obtained

with an angle close to zero with a maximum delay per unit of length of ∂τ

∂y = 10
3

ps/mm (twice the one

obtained with 30º incidence angle). For a 50 mm beam the maximum delay is 30 ps (incidence angle

of 30º) and the width of the beam in the crystal is 18 mm. In consequence for a 25 mm beam the

delay is 15 ps for a crystal of 9 mm. The values are scalable as long as the width of the beam remains

small compared with the focal length. Trying to equal the values of 30 or 15 ps for very small angles

is not possible because the size of the beam profile at the entry of the curved mirror exceeds the focal

length of the mirror.

For an intensity autocorrelator, the reasoning is strait forward. Both angles of incidence into the
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mirror are the same. The maximum aperture angle (angle to the normal of the crystal at the incidence

point) where null phase mismatching is possible is 33º, in other words if γ0 > 28.4º phase-matching is

possible (for more details see previous section) so 30 degrees incidence angle is good for our device.

This is true if we are restrained by the size of the beam in the curved mirror, in this case we will have

a delay window of 60 ps for a 18 mm crystal and 50 mm diameter for both beams at the entry of the

astigmatic mirrors.

However if we are restrained by the size of the crystal, we can use γ0 = 28.4º. For a beam size of

a 50 mm at the entry of the astigmatic mirror, the delay window is 59.4 ps and the crystal length is

16.3 mm. Because the angles are so similar, the distinction between both situations is not important.

In resume for a SSIA we have ∂τ

∂y = 3.64ps/mm or ∂τ

∂y′ = 1.2ps/mm for γ0 = 30º and for γ0 = 28.4º we

have ∂τ

∂y = 10/3ps/mm or ∂τ

∂y′ = 1.2ps/mm

For a third order cross correlator, the beams arrive at the nonlinear crystal with different incident

angles. We take this into consideration and obtain Eq. (5.7), γω , γ2ωare explained in Fig. (5.4) (a).

2sin
(

π

2
−2γ2ω

)
= sin

(
π

2
−2γω

)
(5.7)

This means that γω varies between 0º and 45º while γ2ω varies between 30º and 45º, this relation is

expressed in Fig. (5.6). This angle difference means that we might have a significant change in beam

size between the two beams. In order to adjust this, the SH beam size is refitted in such a way that

both beams have the same size on the focal plane.

For every calculation, we considered a constant beam size of 1mm for the fundamental beam and

2m of curvature radius for the curved mirror. In order to refit the SH beam size, first we calculate

the beam size of both beams at the focal point (considering that both have 1mm size); second the

ratio of the beam sizes in the focal line is used to change the SH beam size at the entry of the mirror

(sizeSH = ratio×1mm), the beam ratio is given in Fig. (5.6). If we repeat this process, the SH beam

size does not change more than 0.1%.

γω!(°)!

Size ratio

γω!(°)!

γ 2ω!(°)!

Figure 5.6.: (right) variation of the second harmonic beam angle as a function of the fundamental beam angle
and (left) size ratio between the beams as a function of the fundamental beam angle.
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The results are given in Figs. (5.6) and (5.7). The maximum delay is obtained for the values of

γω = 30º, γ2ω = 37.76º with a delay window of 0.9 ps where ∂τ

∂y = 2.5 ps/mm. The maximum ∂τ

∂y

is given for γω = 0º with 5 ps/mm. The minimum γ angle where it possible to obtain a null phase-

matching condition (γω = 23.85º) is smaller than the maximum delay angle (γω = 30º). This means

that we may use γω = 30º, γ2ω = 37.76º to design our cross correlator if we are restricted by the size

of the beam at the entry of the astigmatic mirror. However if we are limited by the size of the beam

at the crystal then the ideal angle is γω = 23.85º, γ2ω = 35.17º.
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Figure 5.7.: Sagittal line delay as a function of the incidence angle γω . FWHM of the delay for both
beams (fundamental plus SH) considering the deformation of the profile due to astigmatism.
(a) considering a 1mm beam at the entry of the mirror for the fundamental beam (b) delay per
unit of length on the focal plane. The vertical lines are the minimal aperture angle where phase-
matching is achieved.

For a mirror input beam with 50mm in diameter (fundamental wave) and γω = 30º, γ2ω = 37.76º, we

obtain 44.9 ps in a 18 mm crystal Please note that due to a ratio of 0.62 between the two beams, the

SH beam has to be 31mm in length. If the mirror incidence angles are γω = 23.85º, γ2ω = 35.17º,

the 50 mm beam size (fundamental wave) will originate a maximum delay of 41.4 ps, the size of the

beam in the crystal will be 12.3mm. Please note that due to a ratio of 0.5, the SH beam size is 25mm.

5.3.3. Delay configuration comparison

We compare the two configurations reported in the previous section with Tab. (5.1).

We consider two astigmatic configurations and compare them with the tilted configuration. Astig-

matic configuration 1 is calculated maximizing the delay per unit of length in the beam at the

entry of the curved mirror
(

max
(

∂τ

∂y′

))
, which means we use the values γ0 = 30º for SSIA and

γω = 30º, γ2ω = 37.76º for SSCC. Astigmatic configuration 2 is calculated maximizing the delay per

unit of length in the crystal, which means using γ0 = 28.4º for SSIA and γω = 23.85º, γ2ω = 35.17º

for SSCC.

In Tab. (5.1), we see that the tilted configuration is significantly better when we are restricted by the

size of the mirror but not when we consider the crystal length as the limiting factor. When the size
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of the crystal determines the maximum possible delay, the delay line using an astigmatic mirror can

be better than a tilted configuration.

For a single shot IA this is self evident for both astigmatic configurations that the delay obtained using

an astigmatic line is similar to the delay obtained using a tilted front. For a single shot TOCC, the

astigmatic configuration can be better than the tilted configuration if we use the maximum possible

aperture.

Delay Tilted configuration Astigmatic configuration 1 Astigmatic configuration 2

IA-CR=1 mm 3.5 ps 3.3 ps 3.65 ps
IA-CR=25 mm 88 ps 83.2 ps 90.9 ps
IA-M=1 mm 3.0 ps 1.2 ps 1.2 ps

IA-M=50 mm 147.5 ps 59.7 ps 59.4 ps
TOCC-CR=1 mm 3.3 ps 2.5 ps 3.4 ps

TOCC-CR=25 mm 82.5 ps 62.4 ps 85 ps
TOCC-M=1 mm 2.5 ps 0.90 ps 0.83 ps
TOCC-M=50 mm 127 ps 44.8 ps 41.4 ps

Table 5.1.: Delay obtained using the configurations presented above. Astigmatic configuration 1 is calculated
for maximum ∂τ

∂y′ and astigmatic configuration 2 is calculated for maximum ∂τ

∂y . The value in front

of CR is the width of the crystal, and the one in front of M is the length of the mirror.

5.4. Single shot intensity second order autocorrelator

In this section, a design of an intensity autocorrelator, a discussion on what to expect as signal and

device parameters and some experimental results will be presented.

This intensity autocorrelator uses two astigmatic lines of a spherical mirror and overlaps them in a SH

crystal as exposed in the previous chapter. As a result of the astigmatic configuration, we integrate

the profile in the x− axis. The effect of the phase-matching conditions is discussed. The fact that

both beams are astigmatic will result in a deformation of the intensity in the focal plane.

In this study we assume that the spatial and temporal aspects of the pulse are independent of each

other. This assumption will allow us to independently evaluate:

ä the effects of the astigmatism in the spatial profile.

ä the phase-matching conditions between the beams.

These effects will be specific for every position in the SH crystal and constitute a gain coefficient

that is superimposed to the temporal intensity autocorrelation. These effects deform the intensity

autocorrelation profile and might increase or decrease the contrast of the measurement.

In the previous section, Eq. (5.1) represents the signal obtained using a tilted front configuration. In
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5. Single shot correlations based in a sagittal focal line configuration

that case, it is quite obvious how to dissociate the temporal and spatial features of a pulse. In our

case, it is more complicated. First the x−axis pulse shape is integrated, second the spatial profile in

the y−axis is not the same as the spatial profile in the y′−axis. We have to use I(y′)dy′ = I(y)dy and

the bijection between y′ and y that is presented in Eq. (5.6). Doing this, we obtain I(y) =
I(y′)

tan(γ(y′))
.

For each y coordinate, the delay is given in the last expression of Eq. (5.6).

As we said above, we dissociate the spatial and temporal dependencies of the signal obtaining a gain

factor G(y) that will change from point to point. This feature is represented by Eq. (5.8).

SSIA(x,y) = G(y)
∫

I (t− τSH(y)) I (t)dt

G(y) = I(y1)I(y2)ℜ
2 {∫ exp(i∆kz)dz}∫ I2(x)dx

(5.8)

It is very important to obtain characteristic curves for the gain factor. The phase mismatch depen-

dence
(
ℜ2 {∫ exp(i∆kz)dz}

)
is treated in the next subsection, here we will treat the impact of the

product of the profile intensities on the focal line. The delay time τSH(y) is equal to twice the delay

given in Eq. (5.6). Let us consider that the pulse to be analyzed has a tenth order Super-Gaussian

spatial profile.
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Figure 5.8.: Intensity of the profiles on the sagittal focal plane (red and blue lines), and multiplication of
both profiles (black line). The entry beam has 75 mm width.

Fig. (5.8) shows the deformation suffered by the astigmatism of both superimposed beams and the

correspondent multiplication of both intensities. This may be viewed as a gain factor for the intensity

autocorrelation profile. We can clearly see that, despite the fact that astigmatism brings a deformation

to the spatial profile of both beams, the multiplied effect is canceled out and the astigmatism effect

on the intensity autocorrelation is null, in fact the gain line is nearly flat.

If the laser to be analyzed had another spatial profile, the result would be different, this is due to

the coupling between the spatial and temporal profile of the pulses that is also found in tilted front

correlators, however the effect is similar to the effect that is obtained in tilted front correlators and

is not really the influence of the astigmatism. In Fig. (5.8), we use γ0 = 28.4º, however if we use
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5.4. Single shot intensity second order autocorrelator

γ0 = 30º the qualitative effect in the result does not change, in fact the result is so similar that we

opted not to show it.
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Figure 5.9.: Single shot intensity autocorrelator. We use two curved mirrors (MC1 and MC2) in order to
have a delay line, a beam splitter (BS) is used to divide the beams and we measure the same path
between the BS and the curved mirrors. A delay line is added in order to give a fine adjustment to
the system, a BBO crystal to obtain the second harmonic signal, M’ is high reflective for 400 nm,
lens L to image formation and a camera to capture the signal

We design an autocorrelator based on this principle, that is presented in Fig. (5.9). In order to test

this diagnostic tool we used a 10 Hz, 110 fs/0.5 TW laser also called vert laser at LOA. The beam

spatial profile is a quasi top hat profile which makes it ideal to test the device. The infrared laser is

spectrally centered at 810 nm.

In this device we used curved mirrors (MC1 and MC2) with a curvature radius of 2 m. The angles

were adjusted with a fine tuning ((1/6) degrees precision). The transport mirrors were dielectric high

power mirrors. The BBO crystal is described in the following section, we used a 45º mirror M’

that has high reflectivity at 400 nm, a +50 mm lens and a CCD Spiricon 12 bits camera. During

the assembling two 1 mm BG39 blue filters were introduced in front of the camera. Characteristic

results are shown below.
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5. Single shot correlations based in a sagittal focal line configuration

5.4.1. Phase matching conditions

It is conceivable that, due to the beams astigmatic distortions, the phase-matching conditions in the

SH BBO crystal are not uniform. As referred above, we use geometrical optics considerations in

order to propagate the pulse and guess the pulse intensity distribution and path duration. In here,

we do the same to obtain the direction of the~k momentum vectors and the incidence angles of each

beam at each point in the crystal.

We consider a plane pulse wavefront at the entry of the curved mirrors and use Fig. (5.3) to find the

non-collinear internal angle (inside the SH crystal) that is arcsin(ncos(2γ)). The angle γ(y) changes

from point to point in the focal plane, as exposed in Eq. (5.6). Considering this, we establish for each

point a geometrical configuration of two beams at the fundamental wavelength: with two defined

angles, with a refraction index characteristic of the ordinary plane and a null phase-matching parallel

to the entry plane. With these conditions, we obtain the direction of the output beam, that never

diverges more than 2.5º from the perpendicular to the crystal Finally with all these elements, we

obtain the phase mismatch at every point of the crystal This phase mismatch effect was included in

Eq. (5.8) in order to obtain the gain profiles that we present below.

25#mm#

5#mm#

0.5#mm#

1#mm#

e)axis#5#mm#e)axis#

Figure 5.10.: Crystal used for TWM in the single shot autocorrelator.

In the previous section, we saw that the configuration with the biggest delay per length (length at the

entry of the mirror) is given for an angle γ0 = 30º which is close to the minimum angle where phase-

matching is possible (γ0 = 28.4º). Because these angles are so close, the gain profile will be almost

identical In order to profit from the maximum possible aperture, we use the crystal represented in

Fig. (5.10) to have the SH beam. As we said above, in this configuration the two fundamental beams

enter perpendicularly to the crystal, with an horizontal polarization that is within the ordinary plane

of the crystal. The SH beam polarization is in the e-axis with the correspondent refraction index.

Notice that the crystal is wedged in order to have a fine adjustment of the crystal insertion. This can

influence on the gain profile and the gain magnitude that is coupled to the intensity autocorrelation. If

this gain factor was smaller on the center than on the edges of the profile, then it would be conceivable

that the contrast enabled by the device would be bigger than the contrast range of the detectors.

However, from Fig. (5.11), it is quite obvious that the gain profile modulations are small and that

the device should not be envisioned to obtain high contrast measurements. In the single spectral
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5.4. Single shot intensity second order autocorrelator

linewidth calculation, for a very thick crystal (1mm), we might obtain a contrast gain by a factor of

two. However for a 50 nm bandwidth laser, it is clear that it is not possible to obtain a contrast gain

with this system.
In

te
ns

ity
 

y (mm) 

In
te

ns
ity

 

y (mm) 

Figure 5.11.: Gain profile considering both the astigmatic deformation and phase-matching. (left) calcula-
tions done for a single linewidth spectral profile at 800 nm and (right) using a 50 nm bandwidth
centered at 800 nm for different crystal thicknesses - 100µm (black), 200µm (blue), 300µm
(red) and 1mm (gray). The considered incidence angle in the astigmatic mirror is 28.4º, the
minimum incidence angle where phase-matching occurs.

The reasoning for the phase-matching effect on the gain profile presented above only applies to a

single spectral linewidth pulse. In order to estimate the effect on a pulse with a certain spectral

bandwidth, we sum the amplitude of the effect of each spectral component. However considering

that the beam at one wavelength is going to interact with all other wavelengths we have to integrate

it twice.

G(y) =
∣∣∣
∫ ∫√

I(y1,λ1)I(y2,λ2) [
∫

exp(i∆k(λ1,λ2)z)dz]dλ1dλ2

∣∣∣
2

(5.9)

With this estimation we obtain the gain profiles given in Fig. (5.11) (right).

5.4.2. Experimental results

We assembled the correlator described in the beginning of this section, the results captured by a CCD

camera are reported here. We must be clear that between the BBO crystal and the camera we had a

blue BG39 filter and an imaging lens. The lens is putted in a 2f-2f configuration, in order to image

the crystal with a magnification of 1. However it is not guaranteed that the scale on the camera is

exactly the same scale as in the crystal, in other words there may be some amplification between the

crystal and the camera, that is not accounted here.

The characteristic results in the CDD camera may be viewed in Fig. (5.12). We can clearly see the

structure of a main pulse that extends itself on the horizontal direction. It is also evident that the
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5. Single shot correlations based in a sagittal focal line configuration

intensity autocorrelation at zero delay is not centered at middle of the picture, this is intentionally

done in order to show the main and secondary pulses in the same frame.

Secondary pulse Main pulse 

Figure 5.12.: The intensity autocorrelation evidencing the existence of a main and a secondary pulse.

Figure 5.13.: The camera captures obtained using different delays, with variation of delays between pictures
of 10 mm. The gray scale is not the same in every picture.
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5.4. Single shot intensity second order autocorrelator

The first test to our autocorrelator is to change the delay between the fields arriving at the crystal,

this will help us calibrate the delay in the crystal, and explore the pulse shape beyond the maximum

delay allowed by the crystal. In Fig. (5.13), we see consecutive pictures of the autocorrelation when

varying the delay. From these pictures, we observe that the secondary pulse is 21.2 ps away from the

main pulse, and the movement of the zero delay zone in the sagittal line.

We use the position of the maximum of the intensity autocorrelation, to obtain the relation between

the delay and the position in the camera. The values obtained are represented in Fig. (5.14), we took

several measurements for every delay and represented the averaged value plus the experimental error

due to these measurements.

In Fig. (5.14) we observe the linear dependence between the position in the crystal and the delay line

position. We convert the slope of this curve in order to obtain the variation of delay as a function of

y, or ∂τ

∂y . In order to do this, we have to remember the relation between the delay screw reading (∆)

and the pulse time delay (∆τ) that is approximately ∆τ = 6.6(ps/mm)×∆.
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Figure 5.14.: Maximum of the intensity position on the CCD camera versus the delay in the micrometer
screw thread, both expressed in mm.

The linear approximation given by Fig. (5.14) can be expressed by the relation ∆ = 0.517y+0.8836,

which means ∂τ

∂y ' 3.45ps/mm. It is clear that this value is within the values of 3.6ps/mm and 3.3ps/mm

given above. However we cannot compare both values directly, because we must account for a

possible deviation due to a magnification factor between the crystal and the CCD scale.

We can determine the uncertainty from this calibration, the slope coefficient of Fig. (5.14) as an

uncertainty of 10−3, which gives an uncertainty of δ

(
∂τ

∂y

)
= 7×10−3 ps/mm, which by it self gives an

uncertainty of 0.2% for slope coefficient, the uncertainty of the duration measurements however will

be given by: δτ

τ
=

√√√√
[

δ

(
∂τ

∂y

)

∂τ

∂y

]2

+
[

δy
y

]2
=
√

(0.2%)2 + 1µm
y(µm) , where y is the length of the autocorre-

lation as measured on the camera (the camera can measure dimensions with 1 µm uncertainty). The

length of the autocorrelations is of the order of the millimeter, which means that the uncertainty will
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5. Single shot correlations based in a sagittal focal line configuration

be of approximately 0.3 %. However for smaller durations we need to take into account the spatial

mode (and propagation) of the pulse profile, which will be the determining factor of the shortest

pulse that can be measured with this system.

Figure 5.15.: The camera captures obtained using pulses with different durations. Between each frame we
changed the position of the compressor grating by 1 cm.

Once we have established a time scale on our device, it is possible to estimate the pulse duration3.

We used the grating compressor at the output of the CPA system in order to obtain a variable pulse

duration. The results are given in Fig. (5.15) and Fig. (5.16). For every position of the compressor,

we took several measurements, we present for each compressor position a sample of the obtained

correlations and in Fig. (5.15) we present the average duration value in Fig. (5.16).

3In order to estimate the pulse FWHM duration (∆t) from the intensity autocorrelation we used the relation between the
pulse variance and the IA variance proved in Chap. 3. In reality we used the FWHM intensity autocorrelation (∆τ) and
the relation ∆t = ∆τ√

2
.
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5.4. Single shot intensity second order autocorrelator

The minimal pulse duration estimated by the quadratic fit is 331 fs, the measured value for the

compressor position that minimizes the pulse duration is 273±74 f s, value that is taken with several

measurements of the pulse duration without moving the compressor. In a single measurement, the

minimum duration obtained was 180 f s. This means that the pulse to pulse fluctuations are bigger

than the precision of this of the single shot intensity autocorrelator that is presented here.
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Figure 5.16.: Pulse duration guessed from the intensity autocorrelation versus the grating position in the
compressor.

In Fig. (5.16), it is clear that the zero delay position is not the same for all pulses, this might

mean that the system presented a high sensibility to angular deviations in the beam direction, that

were not perfectly compensated. This slight changes appeared when the compressor granting is

moved. Experimentally it is obvious that the biggest barrier to achieve a high contrast in a similar

configuration might be defects in the crystal itself. We have to obtain a clean crystal, otherwise the

fundamental beam or the residual SH of the beam itself can pass across the spectral and spatial filters

and constitute a background noise captured by the camera.

Figure 5.17.: Sagittal line profile photographed without the BG39 filter.

Fig. (5.17) is a photograph taken of the sagittal line without the BG39 filter. Comparing this with the

pulse profile, we clearly saw that the hot points are due to imperfections in the crystal.
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5. Single shot correlations based in a sagittal focal line configuration

5.5. Single shot third order cross-correlator

In Sec. (3.2), the third order cross correlation is presented. Here we concentrate on the design of a

single shot third order cross-correlator, we discuss the simulation results of the delay line and the

effect of the phase-matching conditions, as we did in the previous section. In this device, the SH

spatial profile can be controlled, as well as the phase-matching conditions on the SFG.

Similarly to what we obtained in the previous section, it is possible to obtain a gain profile that

changes from point to point in the crystal line. This might lead to a cross-correlation contrast gain.

SSCC(y) = G(y)
∫

I2ω (t− τ2ω(y)) Iω (t + τω(y))dt

G(y) = I2ω(y)Iω(y)
∫

exp(i∆kz)dz
(5.10)

We assume that the pulse at the entry of the correlator has a Super-Gaussian profile. The~k vectors

for each wave vary from point to point according to Eq. (5.6), and the values of the delay for each

beam τω(y) and τ2ω(y) may also be found in the last expression of Eq. (5.6).

Figure 5.18.: Spatial profile in the SFG crystal with a 90 ps time window, the red curve representing the
fundamental beam and the blue curve the second harmonic beam. The results are consistent
with a 24 mm crystal γω = 23.85º, γ2ω = 35.17º. The thick lines represent the time delay and
the thin lines the spatial intensity profile.

In this measurement, the SH is normally considered as a probe for the fundamental pulse. This is

reasonable to assume because the SH has a bigger contrast than the fundamental pulse. In the next

section, we analyze the effect of controlling the SH spatial profile, however here we analyze the

astigmatic profile influence on the resulting gain profile.
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5.5. Single shot third order cross-correlator

We remember that the central incidence angles on the crystal are not equal, which is different from

what we had seen in SSIA. This creates a non-flat gain profile, it creates a slight slope in the gain

profile throughout the crystal.

Considering the delay line presented above and the phase-matching considerations presented below,

we design a SSCC as given in Fig. (5.19). The system L1-L2 and SH crystal uses a high numerical

aperture system in order to modulate the SH spatial profile. MC1 and MC2 are curved mirrors

(R=2 m), used in an astigmatic configuration. M4 to M7 are folding mirrors. E1 and E2 are elevators,

E1 is a crossed elevator with a beam splitter that rotates the polarization of the beam in order to have

a type I phase-matching configuration on all wave mixing, E1 is an elevator with a delay line. The

lenses L3 and L4 (NA=0.35) form a telescope that increases the size of the fundamental beam twice

(see sub-Sec. (5.3.2) were the ratio between beam sizes is discussed).
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Figure 5.19.: Single shot cross-correlator based on a sagittal astigmatic line. M1-7 are plane mirrors, L1 and
L2 are two cylindrical 0.35 NA lenses. L5-L10 are pairs of imaging 2f1-2f2 systems, L3-L4
is a telescope; E1 is a crossed elevator (descendent); E2 is an elevator (ascendent); MC1 and
MC2 are curved mirrors. CR1 is the second harmonic crystal and CR2 the SFG crystal wedge
crystal.
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5. Single shot correlations based in a sagittal focal line configuration

In this manner, the size of the astigmatic lines of both beams will coincide and therefore will be

superimposed. We start with a beam that has 25 mm in diameter, that is used directly in the SH

beam, the size of the fundamental beam will be 50 mm. CAM1 and CAM3 image the SH and the

fundamental beam spatial profile. CAM2 records the SFG signal originated by the two beams. L5 to

L10 are imaging lenses.

5.5.1. Second harmonic simulation in high aperture situation

The SH beam is obtained by focusing the fundamental beam with a high numerical aperture lens.

This high aperture lens creates a wide angular~k spectrum, each angular component is going to obey

the phase-matching condition differently. Fig. (5.20) describes our problem where the wide angular

beam is decomposed in its angular components with the electric field E included in the o-axis, and

with the e-axis parallel to the crystal surface. The intensity spatial profile considered at the entry

of the device is top hat (this approximation is valid for high energy lasers). The crystal used here

is bigger than the crystal used in the TWM of the intensity correlator, described in the previous

section. This is simply because we want to use a bigger ∆k.z and will enhance the importance of the

phase-matching conditions. In consequence it will give us a spatial modulation on the SH after the

crystal The wedge crystal will be used to adjust the beam path and, accordingly, to adjust the spatial

modulation, and the gain magnitude.
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Figure 5.20.: (a) SH crystal with the e-axis scheme, the polarization of the electric field and
−→
ki vectors that

are used in the calculation, with the focal lens in blue and the crystal in orange; (b) schematics
of the real crystal.

Please note that, in order to simulate the SH production in this scheme, we cannot simply make

the SH of each angular component, without considering the influence of the other components.

Normally,we have to make the convolution for each electric field component as we have seen in

the introduction.
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5.5. Single shot third order cross-correlator

Let us first explain the procedure without using a wavelength decomposition. We only consider an

electric field with a wavelength λ . Aside from the angular decomposition used in the simulations, we

used an angle θ between the e-axis and the y-axis, this allows an exploration of several configurations

which resulted in different intensity profile modulations.

In this case, we use an amplitude electric field decomposition, Ai (this amplitude is calculated using

the square root of the intensity on the focus multiplied by the step used for the decomposition) with

correspondent ∆ki, where i = 1, ...,N. In theory the resulting electric field that is obtained by the

wave mixing of these waves is given by the sum seen in Eq. (5.14) (to see the used normalizations

see Sec. (1.2)).

∂Bh

∂ zh
=

N,N

∑
i, j

AiA jei∆ki, jzh (5.11)

However this would result in N2 SH fields which would be complicated to integrate with each other.

Each h field will be given in a different θ2ω direction and results in a number of superimposed

electric fields with each other that can neither be summed strait forward nor can they be treated

independently.

Before exposing the way to integrate all the Bh, let us find the Bh electric field that results from the

interaction between two angular components of the electric field. Consider the electric fields Ai and

A j. In order to calculate the resulting h direction, using the null phase-matching condition parallel

to the entry surface of the crystal k
‖
h = k

‖
i + k

‖
j, we use Eq. (5.12)4, please note that θi, θ j are the

angles between ki, k j and the normal of the crystal, and θ h
2ω

is the angle of the second harmonic to

the normal of the crystal, a, b, c, p,and yy are auxiliary variables.

p = 1
2 (no(λ )sin(θi)+no(λ )sin(θ j))

a = 1− p2
[
n−2

o (λ/2)+ cos2 (θ)
[
n−2

e (λ/2)−n−2
o (λ/2)

]]

b = sin(2θ)
2

[
n−2

e (λ/2)−n−2
o (λ/2)

]

c = p2
[
n−2

o (λ/2)+ sin2 (θ)
[
n−2

e (λ/2)−n−2
o (λ/2)

]]

yy = −b+
√

b2+c
a

θ h
2ω

= p
|p| arctan(yy)

(5.12)

This will allow us to calculate the angle from which the h component of the electric field will appear.

4Please note that all the angles used in the formulas are internal angles, inside the crystal - they can be converted into
external angles using Snell-Descartes’ law.
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5. Single shot correlations based in a sagittal focal line configuration

With this, we can easily calculate the refraction index and the phase mismatch:

n2ω =
[
n−2

o (λ/2)+ sin2 (θ −θ2ω)
[
n−2

e (λ/2)−n−2
o (λ/2)

]]− 1
2

∆ki, j =
2π

λ
[2n2ω cos(θ2ω)−no(λ )cos(θi)−no(λ )cos(θ j)]

(5.13)

The solution of Eq. (5.14) results in a series of sinc functions. Please note that the distance propagated

by the field h is not the thickness of the crystal Lcr but rather Lcr
cos(θh)

.

Let us now consider that we apply this procedure to the electric fields i = 1 and to all j = 1, ..,N.

This creates a mesh of the SH electric field with a spectral distribution of θ h
2ω

, h = {(1,1), ...,(1,N)}.
We interpolate this mesh with a reference mesh θr, and memorize the result (phase and amplitude).

We repeat the procedure with h = {(2,1), ...,(2,N)}, and again we interpolate the values obtained,

we then sum the values obtained with i = 1 with the ones obtained with i = 2, we do this for all

values of i until we obtain the SH electric field, summing the final electric fields.

The procedure above is valid to obtain the electric field of a single spectral component. In order for

the above calculations to be valid for ultrashort pulsed lasers, we have to consider wide spectrum

lasers and an integration for all spectral components. This will result in a sum over the different

spectral components Eq. (5.14).

∂Bh

∂ zh
=

Nω ,Nω

∑
iω , jω

Ny,Ny

∑
iy, jy

Aiy,iω A jy, jω ei∆kiy, jy,iω , jω zh (5.14)

We have to apply the same procedure to all wavelengths and all the angular components. Let us first

consider the interaction between the electric field at wavelength λi with the angle θi to the normal of

the crystal, with the electric field at wavelength λ j and with the angle θ j to the normal of the crystal.

As before a, b, c, p,and yy are auxiliary variables.

λSH =
λiλ j

λi+λ j

p =

(
no(λi)sin(θi)

λi
+

no(λ j)sin(θ j)
λ j

)
λSH

a = 1− p2
[
n−2

o (λSH)+ cos2 (θ)
[
n−2

e (λSH)−n−2
o (λSH)

]]

b = sin(2θ)
2

[
n−2

e (λSH)−n−2
o (λSH)

]

c = p2
[
n−2

o (λSH)+ sin2 (θ)
[
n−2

e (λSH)−n−2
o (λSH)

]]

yy = −b+
√

b2+c
a

θ h
2ω

= p
|p| arctan(yy)

(5.15)
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5.5. Single shot third order cross-correlator

In this case, in order to be precise, we should apply the same sum procedure but instead of using a

reference mesh only for the angular dispersion θr, we should use a reference mesh for both quantities

(θr,λr). However we are interested in the angular (spatial) profile, not in the SH spectral profile, in

this device the SH is used as a probe to the fundamental pulse, and so in the calculations presented

here we simply sum the results for all spectral components.

Despite being as complete as possible, this simulations consider a low depletion calculation seen

that we do not consider the feedback result from the fundamental field propagation. We estimate

that the results are valid while the fundamental beam depletion is not important zh � LNL (see the

introduction). The dispersion suffered by the SH electric field is only partially simulated (as a part

of the phase mismatch in Eq. (5.14)).
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Figure 5.21.: SH angular profile on the sensitive phase matching direction, the entrance spatial profile is top
hat. The blue line is the second harmonic efficiency if the beam is monochromatic and the green
line is the sum over 50 nm flat spectrum centered at 800 nm.

The results of the simulations explained above are given in Fig. (5.21), we can see that it is possible to

obtain spatial profile modulation with several orders of magnitude, however for an ultrashort pulse,

this is limited to less than 2 orders of magnitude. They were obtained using a Super-Gaussian spatial

profile and a lens with a numerical aperture of 0.35 and a crystal as described in Fig. (5.20).

5.5.2. Sum frequency generation and phase matching conditions

We used the SH obtained in the previous subsection and a fundamental pulse with a Super-Gaussian

profile in order to evaluate a possible gain function of this device. We use the same reasoning

applied in the intensity autocorrelation in order to evaluate the gain profile; the results are shown in

Fig. (5.22).

The crystal used for the calculation is equal to the crystal presented in Fig. (5.10). For this calculation,
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5. Single shot correlations based in a sagittal focal line configuration

a 24 mm crystal was used with 90 ps time window and the largest possible aperture angle. This

corresponds to γω = 23.85º, γ2ω = 35.17º.

The calculated gain profile is irregular. In the best possible scenario, we could get 3 orders of

magnitude contrast increase in the configuration we have presented. Within the simulated crystal

thicknesses, we found no significant differences.

Figure 5.22.: Logarithmic gain profile as a function of the position in the crystal The red blue and green lines
are different distributions considering different crystal thicknesses for a 50 nm pulse bandwidth
centered at 800 nm. The purple line is obtained using a single linewidth spectrum at 800 nm.

5.6. Conclusions

We have presented a single shot correlator configuration that uses an astigmatic line in order to

obtain a delay configuration. We used this principle to design and simulate a single shot intensity

autocorrelator and a single shot cross correlator where the spatial profile of the beam is integrated in

one direction.

We compared the astigmatic configuration with the standard tilted front configuration. Concerning

the same crystal lengths, we concluded that the two configurations present a similar time window

(the astigmatic configuration time window is 4% bigger for an intensity autocorrelator and is 3%

bigger for a cross correlator). If our biggest restrain is the size of the beam at the entry of the device

then the astigmatic configuration is not recommendable, the time window obtained will only be 36%

(cross correlator) and 40% (intensity autocorrelator) of the time window obtained in a tilted front

correlator.

We analyzed the influence of the astigmatism on intensity profile in the focal plane and on the phase-

matching conditions. For an intensity autocorrelation, we concluded that this influence may be
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discarded. For a cross correlator, we can have a modulation of the gain along the position in the

crystal, this modulation may reach 3 orders of magnitude, this means that the contrast of the device

can be bigger than the contrast granted by the detectors by 3 orders of magnitude. In order to achieve

this contrast, the SH spatial profile is modulated. This is achieved because the SH is obtained with a

1mm crystal thick and a lens with a numerical aperture of 0.35.

We employed this new design on a new single shot intensity autocorrelator obtaining results that

are coherent with the theory presented, we concluded that the main contrast limitations for this

intensity autocorrelator were possible defects in the crystal surface. We calibrated the time frame,

which resulted in 3.45 ps/mm, and obtained the IA of pulses with hundreds of fs pulse duration. The

sensibility to the beam direction was also tested, and it is self-evident that the zero delay position

changes with the beam direction at the entry of the device. The uncertainty that is due to calibration

is approximately 0.2 %. We can also conclude that the shot to shot duration changes are bigger than

the precision given by the device.

Please note that the solutions proposed here to increase the contrast of the measurements only

regulate the phase-matching conditions. In order to achieve a high contrast solution, it would be

possible to use gradient shading in order to increase the contrast [59].
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We have tried to make each chapter as independent as possible and so, at the end of each chapter, we

have drawn all the conclusions appropriate to that chapter. Here we will simply try to summarize the

main features of this thesis and its main conclusions.

We start by studying the equations that rule TWM, in a quasi plane wave approximation. We

solve the coupled TWM equations in the case of DFG and applied it to OPA. We make a quick

introduction regarding some of the features involved in optical amplification, particularly optical

parametric amplification.

In Chapter 2 we presented a study on optical amplification, describing the design and construction of

an optical oscillator, a CPA chain with particular properties and a theoretical study of OPA. In this

chapter presented two mode-lock Ti:Sapphire laser oscillators. The first oscillator, which we describe

in detail was used at the beginning of the presented CPA laser chain, has a spectral bandwidth FWHM

of 96 nm, it emits between 750 and 900 nm, the pulse Fourier limited by 12 fs The ML laser in

which we base our simulations is presented in detail. It has 150 nm spectral bandwidth, in which

the dispersion control is assured not only by a traditional set of prisms, which in this case are only

24.8 cm apart from each other and so have a net dispersion that is slightly positive, but also by a

ensemble of chirped mirrors, we present the details on the dispersion and spectral phase accumulated

on a round-trip of the cavity. This enables the oscillator to be smaller and therefore more stable. We

discussed the astigmatism in the cavity, there are three components that create astigmatism in the

cavity, one is the crystal and the other two are the concave mirrors of the sub-cavity. The crystal not

only contributes to the astigmatism due to the simple transmission (the effective path in the tangential

and sagittal planes is different) but also due to the astigmatic lenses that exist in the crystal (thermal

and Kerr lens). Both elements have to balance each other, in other words the folding of the mirrors

of the sub-cavity has to compensate effects in the crystal. There is a formula to find the folding angle

that compensates the path that is made inside the crystal, this formula gives an angle of 8.07º, we

also used a simple simulation to find which angle would allow us to compensate the astigmatism of

the output beam, and found that 7.2º would be the best value, experimentally we make a sweep of

the folding angle to find the best angle to obtain an anastigmatic beam at the output of the cavity, we

find that this angle is of approximately 7.5º.

A regenerative amplifier was also design and built, this amplifier had a set of prism inside it’s cavity.

These prisms were tilted in the same direction (unlike a standard prism compressor) and had the
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objective of serving as spectral filters. The rest of the CPA chain was constituted by a Öffner triplet

stretcher, a multipass amplifier and a holographic-grating compressor. The CPA laser chain delivers

1.7mJ per pulse, with a spectral bandwidth that can be as short as 1.1nm@802nm. Due to this design

where two prisms were inserted inside the regenerative amplifier cavity we may select the spectral

bandwidth to be amplified. The objective in this work was to be able to amplify a spectrum as short

as possible in order to optimize and stabilize a subsequent OPA scheme, this OPA however was never

stable.

We also developed several models to analyze the ML operation of the laser oscillator and to retrieve

its spatial characteristics.

Our analysis of the ML operation consisted not only in analyzing the spot sizes in the middle of

the gain medium, but also in introducing parameters to evaluate the ML configuration in this cavity.

The traditional way to analyze the ML operation relies upon calculating the mode size in a CW

configuration and then introducing a small Kerr lens that enables us to evaluate the tendency to ML

that a certain cavity configuration possesses: if the beam size inside the crystal decreases, this is an

indication that the cavity configuration should enable ML; however, when the laser goes from a CW

configuration to a ML configuration the beam intensity increases by six orders of magnitude. This

is a nonlinear process and so it is possible that the evaluation of an infinitesimal Kerr lens does not

represent the entire process. The hard thing about calculating the ML parameter using the size of the

beam in ML, as stated by Eq. (2.34), is to calculate the actual spot size in a ML configuration. In

reality the beam size is going to depend on the Kerr lens and the Kerr lens will depend on the beam

size. In order to evaluate this we first devised a recursive algorithm between the two quantities. For

a laser with a small thermal lens, the consequence was a break up of the two stability zones that are

observed in ML into four distinct zones. Of these four zones, the one where the crystal was closer

to the back mirror and the sub-cavity mirrors were further apart is the most favorable zone to ML.

More precisely, the ideal region for ML is on the edge of the zone where the crystal is farther apart

from the back mirror and the sub-cavity mirrors are the closest to one another. We designed several

more models to explain the ML operation, this were a mix of search models and of power increase

models. We were able to deduce that for this configuration the four stability zones are maintained

even when the size of the pump beam is swept from zero to 130 µm. However we found that there

are several configurations where ML existed and was not predicted in the first two models. We have

also found that pulses that are temporally larger are easier to ML because the region favorable to ML

is larger.

We used several models for our thermal lens concluding that the thermal lens inside the cavity should

not be smaller than 10 cm. We found that for our laser the CW mode was not compatible with a pump

beam smaller than 40 µm. At first we used no thermal lens whatsoever. Secondly, we considered a

thermal lens with a constant dioptric power. In our case the dioptric power of the thermal lens is not

too large: the stability zones bend but the ideal operational point does not move because of it. We

then used a thermal lens that considered the mismatch between the pump and cavity beam sizes. We
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concluded still that for our values of thermal lens, inclusion of this thermal lens did not change the

ideal sub-cavity configuration for ML. Nevertheless, both thermal lenses change the ideal distance

between prisms slightly, because they change the stability zones.

The second oscillator that we have presented is a sub-6 fs oscillator (4.8 fs Fourier limited), with a

larger spectral bandwidth. We describe this oscillator summarily, it has a smaller crystal, 1.9 mm

instead of the 4.5 mm that we had in the first oscillator and we use doubled chirped mirrors to

compensate the dispersion accumulated by the pulse, in a cavity round trip, the Ti:Sapphire crystal,

the two BaF2 plates, the two CaF2 wedges and the dispersion introduced by the air, the wedges are

assembled in a translation stage with a motor that allows us to finely tune the dispersion inside the

cavity. The SPM effect in this case is such that the output spectrum can go from 650 nm to 1125 nm

while the output coupler has a flat transmission from 605 nm to 925 nm, in other words there is a

part of the spectrum which half-life time in the cavity is smaller than the half-life time of the central

part of the spectrum, which is only made possible due to the strong SPM inside the crystal that

creates frequency components at each round-trip (Fig. 2.31). This oscillator has a smaller sub-cavity

(concave mirrors with a smaller focal length) which creates a smaller spot size at the center of the

crystal. The stability zones in this case are bended in such a way that the two stability zones are

superimposed. In the meeting between the two stability zones, on the edge of the second stability

zone we find the ideal point to have the laser in ML. At the ideal ML position the focal for the

first oscillator is approximately 50mm (35 µm spot size), for the second oscillator, the beam size is

smaller than 10µm, in consequence the thermal lens is one order of magnitude smaller on the order

of the mm. This enabled us to work in a region that is stable and at the same time with a spectral

bandwidth bigger than an octave. We also verify that the point in which the cavity operates in ML the

pump and beam size are similar at the central of the crystal, no other configuration of the sub-cavity

as the same two characteristics. In the first cavity that was presented, the final model gives presents

two points that where ML operation is feasible, one of them is coincident with the literature (see for

instance [87, 112, 137]) on the other the pump and beam sizes do not match (compare Fig. (2.24) c)

and the bottom graph of Fig. (2.28)), we envision that in future works an engineering parameter to

define the ideal ML position would not only have into account the decrease in mode size due to the

increase in power (which the ML parameter already does) but also the match between the pump and

beam size inside the crystal.

It is obvious to us that further work on these models must include a simulation of the gain, and the

pulse temporal evolution inside the cavity.

In Chap. 2 presented several OPA configurations. We studied the difference between degenerate and

non degenerate configurations, as well as the introduction of an angular chirp in the seed pulse.

We obtained the conditions that enable an enlargement of the spectral gain bandwidth. In our

configuration we had two degrees of freedom, the angular chirp and the non-collinear angle. We

used a derivation of the phase-matching condition in order to obtain two conditions that gave the

configuration that enlarges the spectral gain bandwidth. We combined this with our previous work to
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deduce a configuration that would enable at the same time a wide spectral pump and a large spectral

bandwidth of the amplified signal. We then numerically confirmed that chirping the seed pulse

angularly can enlarge the gain bandwidth. We found that in this case the degenerate configuration

gives the widest spectral bandwidths. We calculated that the gain will have a FWHM of 405 nm,

between 645 and 1050 nm centered at 850 nm for a chirp of∼ 2E−4 rad/nm, without the spatial chirp

such a configuration would result in a gain with 150 nm bandwidth.

In Chapter 3 we discuss several properties of autocorrelations, introducing their main characteristics,

also in this chapter we deal with third order cross correlations. We start by exposing the main

characteristics of the measurement; afterwards we use trial functions to analyze the TOCC trace. For

Dirac delta functions we conclude that each replica (with a high enough contrast) creates at least two

features at symmetrical positions from the zero delay position, one with the intensity of the replica

and a second one with the square of that intensity. With a series of background noises we conclude

that the background noise in the measurement (when larger than the experimental limit) has the same

order of magnitude as the pulse contrast, with its actual value slightly higher than the pulse contrast.

For a Gaussian pulse the apparent contrast on the TOCC trace is ∼ 22% higher than the true pulse

contrast.

We end this chapter by proving that TOCC and IA completely define the pulse intensity profile. This

property might be useful for measuring the pedestal of ultrafast pulses. We presented preliminary

retrieval algorithms with which we retrieved the pulse intensity profile, in a worst case scenario,

the retrieved intensity profile was limited to a contrast of 10−4 due to the reconstruction algorithm,

further work is needed to obtain the ideal retrieval algorithm and then apply it any experimental data.

In Chapter 4 we research the potential of IAC traces to a very high extent. We start by clarifying

known properties of IAC and MOSAIC traces. From here we conclude that even order spectral

phase terms created a distinct feature on the baseline of MOSAIC traces and that odd terms enlarge

the envelope of the MOSAIC traces. As it had already been reported [49], when compared to IAC

traces, MOSAIC traces are more sensitive to the spectral phase.

We then used several algorithms in order to retrieve the pulse shape from the intensity autocorre-

lation, the SH autocorrelation and the field autocorrelation traces. It is well known that it is not

possible to retrieve a pulse from a single autocorrelation, but in our case we retrieve it from three

autocorrelations, not a single one (the proof that these three quantities completely determine the pulse

profile is given by Naganuma et al. in [47]).

First we used two Gerchberg-Saxton type algorithms to attempt a pulse retrieval. These attempts

failed: in the first attempt, no convergence was obtained, and in the second convergence was achieved

but spectral phase retrieval was not achieved.

We then tried minimization algorithms. Since our retrieval problem is equivalent to a spectral phase

retrieval, we assumed that the spectrum intensity is known exactly and try to guess the spectral phase
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so that it fits the other two measurements, thereby reconstructing the pulse profile. Note that the

minimization factor of our S/N is
√

δ

2 where δ is the data S/N ratio.

A simplex minimization algorithm (namely the f minsearch algorithm in Matlab) failed to reconstruct

the spectral phase. However, from this experience we learned that the base chosen to represent

the pulse spectral phase is of the utmost importance. More specifically we learned that using

a polynomial base (Chebyshev polynomials) could enable the existence of local minima in our

problem. This is very important because if our problem has local minima we may encounter a

minimum and wrongly take this minimum to be the best possible solution. With the same algorithm

we also tried a spectral phase not described by any polynomial, where all points of the spectral phase

were minimization arguments. With this approach no local minima were found. It is quite normal

that no local minima exist in this base if we are obeying the sampling theorem in all spaces, for all

measurements and fields.

We then devised a simple elitist genetic algorithm with an adaptive mutation and used it to reconstruct

the spectral phase. This approach was successful and despite the stochastic nature of the algorithm,

it gave consistent reproducible results independent of the initial guess used for the spectral phase.

At first we used this algorithm to reconstruct IAC traces that we had computed. After successfully

retrieving the pulse shape of these virtual measurements we applied this method to actual measure-

ments. The results indicated that in these cases the reconstructions continued to be reproducible and

successful. Using this method, we have reconstructed the spectral phase of actual few-cycle laser

pulses with a FWHM duration of 5.9 fs and 4.9 fs. With these experimental measurements we used

two bases for the spectral phase: a Taylor polynomial and a point-by-point base. The second base was

able to reproduce the pulse with a larger precision than the first one. Using a Taylor polynomial we

concluded that a low order polynomial should be used (third order). The gain in precision obtained

by using a high order Taylor polynomial does not compensate the computer capacity required. We

concluded that a third order Taylor polynomial can be used in a first approach but then, in order to

have more precision, a point-by-point discretization should be used.

Finally we evaluated the PSO and RPSO algorithms as potential tools for spectral phase reconstruc-

tion. We found that a RPSO algorithm with a high undamping factor and a low coupling constant

was able to reconstruct the pulse spectral phase as efficiently as the genetic algorithm.

As a final remark on this subject we must say that with these algorithms the measurement limitation

is not on the retrieving algorithm itself but on the experimental measurement noise, specially on

the measurement of the SH autocorrelation. In order to overcome this shortfall, another method

to measure the SH autocorrelation should be envisioned. We propose that instead of retrieving

the SH spectrum from the IAC trace, this measure should be done appropriately with an adequate

spectrometer.

In Chapter 5 we presented a pulse delay configuration based upon the sagittal line of a spherical

mirror. We used this principle to design and simulate a single shot intensity autocorrelator and a
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single shot cross correlator. In this configuration the spatial profile of the beam is integrated in one

direction.

We compared the astigmatic configuration with the standard, tilted front configuration. If we consider

the same crystal for both cases we conclude that the astigmatic configuration presents a slightly

bigger time window.

We analyzed the influence of astigmatism on the intensity profile in the focal plane and on the

phase-matching conditions. For an intensity autocorrelation we concluded that this influence can

be neglected. For a cross-correlator, the measured signal along the position in the crystal is not

the cross correlation itself because it can be modulated by the astigmatism and the phase-matching

conditions, and this modulation can affect the signal by up to 30 dB.

We employed this new design on a new single shot intensity autocorrelator testing this device with a

180 fs laser pulse. We concluded that the main contrast limitation for this intensity autocorrelator is

given by the imperfections in the crystal surface. From the measurements it is clear that the shot to

shot fluctuations in pulse duration are larger than the device’s precision.

In sum we have studied analysis techniques that allow temporal measurements of ultrafast pulses

using correlations. Optical amplification has been studied we assembled a CPA chain and stud-

ied the influence of angular chirp on OPCPA. We studied ultrafast pulse generation, by studying

KLM Ti:Sapphire laser cavities, another part of ultrashort pulse generation consisted on a study

of ultrashort pulses on PCF, this study was presented in detail elsewhere [81, 176], however the

reconstruction results can be viewed in Chap. (4).
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A. Appendix for chapter 1

Fourier transform definition

As usual we define the Fourier transform of f (~r, t) as:

F { f (~r, t)}
(
~k,ω

)
=
∫ ∫

f (~r, t)ei[ωt−~k.~r]d~rdt (A.1)

If we are only treating the temporal aspects of a function we get:

F { f (t)}(ω) =
∫ ∫

f (t)eiωtdt (A.2)

On the SVE approximation

The SVE approximation used here is sometimes not enough to characterize the pulse evolution

thoroughly, in this case we need to use the backward propagation and the second order derivative

that we neglected in the when analyzing the propagation equation in linear media. In this case we

have to had the term that is propagating backwards which we can incorporate into the equation using

the following term:

However we note that the SVE approximation was used to simulate several ultrashort pulse oscil-

lators that had a duration of 8 f s inside the cavity (800nm central wavelength) [33], or to simulate

generation of sub-two-cycle laser pulses from PCF solitonic compression [218], work that has been

confirmed experimentally [176].

It is rather obvious that we can have other approaches which are more correct to sub-two-cycles pulse

propagation, in [219] T. Schäfer and C.E. Wayne create a short pulse equation appropriated to such

pulses, in this case instead of dividing the electric (optical) field in an amplitude and a carrier wave,

the field is decomposed in a different fields with several scales of pulse duration, the first order of

this approximation is taken to constitute the short pulse equation, also in this model the refraction

index is taken to be given by the formula n = n0−aλ 2. However the applicability of this equation for

fields with more than 3 or 4 optical cycles is not known (or media which refraction index cannot be
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reproduced by the formula above). In reality even for pulses which spectral shape and bandwidth that

would allow a sub-two-cycle pulses, during propagation through a dispersive medium only locally

the field would be short enough to require the use of the second order derivative to explain the pulse

behavior, in other words only locally the pulse would be sub-two-cycle.

Normalizations

We use the auxiliary constants like:

β0 =
ω1ω2χ

(2)
e f f

2c2
√

k1k2

β1 =
ω0ω2χ

(2)
e f f

2c2
√

k0k2

β2 =
ω1ω0χ

(2)
e f f

2c2
√

k1k0

Π2 = β0β1β2

(A.3)

Using these variables we may input them onto the coupled equations:

∂A0
∂ z = i

[
Π

β0

]2
A1A2 e−i∆kz

∂A1
∂ z = i

[
Π

β1

]2
A0A2 ei∆kz

∂A2
∂ z = i

[
Π

β2

]2
A0A1 ei∆kz

(A.4)

From here we get directly:

B0 = β0A0

B1 = β1A1

B2 = β2A2

(A.5)

It is possible to transform B0 to be B0 = β0A0 exp(i∆kz) to eliminate the phase-matching exponential.

Parametric equations resolutions

Low pump depletion:

Consider |B0| constant and the coupled equations in the following form:

∂B1
∂ z = i B0B2 exp(−i∆kz)

∂B2
∂ z =−i B0B1 exp(i∆kz)

(A.6)
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We expose the dependence in exp(−i∆kz) just to let B0 independent on z, B0 = L−1
NL, however B0 a

free constant phase is indifferent for our problem. We make a variable shift to b1,2 = B1,2 exp
(
−i ∆kz

2

)

and obtain a linear system that can be treated classically [64], with the initial conditions that B2(0) =

0,B1(0) 6= 0, ∂B1(0)
∂ z = 0, ∂B2(0)

∂ z = i B0B1(0) we get:

∂

∂ z

[
b1

b2

]
= i

[
−∆k

2 L−1
NL

L−1
NL

∆k
2

][
b1

b2

]
(A.7)

With this we get a propagation factor γ =
√

L−2
NL−

(
∆k
2

)
and a solution like:

B1(z) = B1(0)
[
cosh(γz)+ i ∆k

2γ
sinh(γz)

]
ei ∆kz

2

B2(z) = iB1(0)∆k
2γ

sinh(γz)ei ∆kz
2

(A.8)

Resolution of the coupled equations

∂B0
∂ z = i B1B2 exp(−i∆kz)
∂B1
∂ z = i B0B2 exp(i∆kz)

∂B2
∂ z = i B0B1 exp(i∆kz)

(A.9)

This resolution by several authors since it’s first resolution by Armstrong et al. [73]. The Manley-

Rowe relations can be done by writing the derivative equations ∂ |Bi|2
∂ z , and we obtain:

∂ |B0|2
∂ z = 2|B0||B1||B2|sin(Θ)

∂ |B1|2
∂ z =−2|B0||B1||B2|sin(Θ)

∂ |B2|2
∂ z =−2|B0||B1||B2|sin(Θ)

(A.10)

where Θ = φ0−φ1−φ2 +∆kz. From this we get three propagation constants:

m0 = |B1|2−|B2|2
m1 = |B0|2 + |B2|2
m2 = |B0|2 + |B1|2

(A.11)

The last constant will be deduced from the propagation equation of the field phases:

∂φ0
∂ z = |B1||B2|

|B0| cos(Θ)
∂φ1
∂ z = |B0||B2|

|B1| cos(Θ)
∂φ2
∂ z = |B0||B1|

|B2| cos(Θ)

(A.12)
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The derivative of Θ is going to be given by:

∂Θ

∂ z
=

[ |B1||B2|
|B0|

− |B0||B2|
|B1|

− |B0||B1|
|B2|

]
cos(Θ)+∆k (A.13)

which using the absolute field propagation equations:

∂Θ

∂ z =
[

1
|B0|

∂ |B0|
∂ z + 1

|B1|
∂ |B1|

∂ z + 1
|B2|

∂ |B2|
∂ z

]
cot(Θ)+∆k

− ∂ ln(cosΘ)
∂ z =

[
∂ ln(|B0||B1||B2|)

∂ z

]
+∆k tan(Θ)[

∂ ln(|B0||B1||B2|cosΘ)
∂ z

]
+∆k ∂ |B0|2

∂ z
1

2|B0||B1||B2|cosΘ
= 0

∂

∂ z

[
|B0||B1||B2|cosΘ+ ∆k

2 |B0|2
]
= 0

(A.14)

And so the constants arise:

Γ0 = |B0||B1||B2|cosΘ+ ∆k
2 |B0|2

Γ1 = |B0||B1||B2|cosΘ− ∆k
2 |B1|2

Γ2 = |B0||B1||B2|cosΘ− ∆k
2 |B2|2

(A.15)

No idler input and no phase mismatch

Let us imagine that the longest wavelength is not inputted in the nonlinear medium, in this case

the phase matching is calculated as seen in Sub-Sec. (1.5.1). If the amplitude B2 is zero, Γ2 = 0,

Γ0 =−∆k
2 |B0(0)|2, if the phase matching is perfect we obtain Γi = 0 i= 0, 1, 2 the resulting equations

become:

(
∂ |B0|

∂ z

)2
= (m2−|B0|2)(m1−|B0|2)(

∂ |B1|
∂ z

)2
= (m2−|B1|2)(|B1|2−m0)(

∂ |B2|
∂ z

)2
= (m1−|B2|2)(m0 + |B2|2)

(A.16)

The resolution of the amplitude evolution equations using the constants above Γ2 = Γ1 = Γ0 = 0,

which results in cosΘ = 0 for any |B2| 6= 0 , this is the same to say that the B2 beam is created in

such a way that Θ = π/2. The equations above transform themselves in:

(
∂ |B0|

∂ z

)2
= (m2−|B0|2)(m1−|B0|2)(

∂ |B1|
∂ z

)2
= (m2−|B1|2)(|B1|2−m0)(

∂ |B2|
∂ z

)2
= (m1−|B2|2)(m0 + |B2|2)

(A.17)
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The first equation we may use it to obtain (y2 = |B0|2
m1

):

(
∂ |B0|

∂ z

)2
= (m2−|B0|2)(m1−|B0|2)(

∂y
∂
√

m2z

)2
= (1− y2)(1− m1

m2
y2)

y = sn(
√

m2(z− z0)|m1
m2
)

(A.18)

by the definition of Jacobi sine sn. We obtain the other amplitudes simply using the definition of the

Manley Morley constants.

|B1|2 = m2−|B0|2 and |B2|2 = m1−|B0|2. The amplitude can also be solved using the B2 evolution

equation.

(
∂ |B2|

∂ z

)2
= (m1−|B2|2)(m2−m1 + |B2|2)(

∂ |B2|
∂ z

)2
= m1m2(1− |B2|2

m1
)(1− m1

m2
+ 1

m2
|B2|2)(

∂y
∂
√

m2z

)2
= (1− y2)(1− m1

m2
+ m1

m2
y2)

y = cn(
√

m2(z− z0)| m1
m2)

(A.19)

by definition of Jacobi cosine, cn.

|B0|= |B0(0)||sn( |B0(0)|√
γ

z−K(γ)|γ)|
|B1|= |B0(0)|

√
δ + cn2( |B0(0)|√

γ
z−K(γ)|γ)

|B2|= |B0(0)||cn( |B0(0)|√
γ

z−K(γ)|γ)|
δ =

∣∣∣B1(0)
B0(0)

∣∣∣
2

γ = 1
1+δ

(A.20)

Where sn and cn are sinus and co-sinus Jacobi elliptical functions. We notice that for |B1| � |B0| ,
m2
m1
' 1, the elliptic functions transform themselves in tanh and sech for sn and cn correspondingly.

However if we apply this approximations blindly we get a problem concerning the initial value

because K(1)→ ∞.

In fact, using m2
m1

= 1, we obtain B1(0) = 0, only one beam exists, we are in a situation where the

production of photons at λ1,λ2 can only be done by parametric fluorescence [220]. We may give

approximate values for the amplitudes when we are working with small δ values, however beware

that K(γ) (or its inverse) cannot be approximated by a Taylor series around one. We will calculate

it’s values and obtain:
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|B0|= |B0(0)|| tanh( |B0(0)|√
γ

z−K(γ))+α|
|B1|= |B0(0)|

√
δ + sech2( |B0(0)|√

γ
z−K(γ))+β

|B2|= |B0(0)||sech( |B0(0)|√
γ

z−K(γ))+η |
α = tanh(K(γ))+1

β =−sech2(K(γ))

η =−sech(K(γ))

(A.21)

Notice that [α−1,β ,η ]→ [0,0,0] for γ → 1 and so this terms can be negligible. If we have γ → 0

the Jacobi sinus and co-sinus would be transformed in simple sin and cos functions, for big values of

δ the amplitudes will evolve as sin and cos functions. From the expressions above we obtain a new

nonlinear length that is given by:

L(b)
NL =

√
γ

|B0|
=

1√
|B0(0)|2 + |B1(0)|2

(A.22)

This nonlinear length is a small correction to the expressions given in Sec. (1.2) .

The fields phases can also be evaluated using:

∂φ0
∂ z = |B1||B2|

|B0| cos(Θ)
∂φ1
∂ z = |B0||B2|

|B1| cos(Θ)
∂φ2
∂ z = |B0||B1|

|B2| cos(Θ)

(A.23)

From Eq. (1.25) we see that, if in the initial conditions we have no idler (the idler is only created due

to the TWM) and no phase mismatch every Γi is null. Moreover, from Eq. (A.20) makes clear that in

general |B0|, |B1|, |B2| are different from zero, which means that cos(Θ) = 0.

The three phases will be constant and its difference will also be constant φ0−φ1−φ2 = π/2, this is

considering that the idler wave is created by the propagation. However, if we have three waves at the

input, no phase mismatch and the phase difference between beams is π/2, Γi will also be equal to

zero and φ0−φ1−φ2 = π/2.

In Fig. (A.1) we notice that when δ increases the evolution looks like a sinus function. We need to

realize that amplitude square is not the same as the intensity. In order to evaluate the intensity and

therefore the energy of the beams, we have to calculate quantum efficiency for each beam (λ1/λ0 or

λ2/λ0 ), which is not accounted for in these pictures.
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Figure A.1.: Evolution of the idler amplitude square (a) when δ = 0.1 (black line) and δ = 1e−3 (gray line).
(b) Evolution of the pump amplitude square for the same conditions.
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Figure A.2.: Evolution of the idler amplitude square (gray line starting at zero) and for the pump amplitude
square (black line starting at 1) compared with the approximations to the hyperbolic functions
given by the points, magenta for the pump and turquoise for the idler.

No idler input When we have some phase-mismatch however, only Γ2 = 0. We use the amplitude

evolution equation for B2

(
∂ |B2|

∂ z

)2
= (m1−|B2|2)(m0 + |B2|2)−

(
∆k
2

)2 |B2|2(
∂ |B2|

∂ z

)2
= (γγ1−|B2|2)(γγ2 + |B2|2)

(A.24)

To make this step we may solve the equation in x (m1− x)(m0 + x)−
(

∆k
2

)2
x = 0
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γγ1 =
m1−m0−( ∆k

2 )
2

2 +

√(
m1−m0−( ∆k

2 )
2

2

)2

+m1m0

γγ2 =−
m1−m0−( ∆k

2 )
2

2 +

√(
m1−m0−( ∆k

2 )
2

2

)2

+m1m0

(A.25)

We have the same resolution has above, with: y2 = |B2|2
γγ1

:

(
∂ |B2|

∂ z

)2
= γγ1(γγ2 + γγ1)(1− y2)(1− γγ1

γγ2+γγ1
+ γγ1

γγ2+γγ1
y2)

y = cn(α(z− z0)| γγ1
γγ2+γγ1

)

α =
√
(γγ2 + γγ1)

(A.26)

We may use Eq. (A.11) to obtain the B1and B0 equations.

General case

In a general case we have to be aware that the coefficients used can originate complex values that are

not easy to quantify. However we will give the general solution of the propagation equations. The

solution to this problem are given without any considerations on the features of the pulses’ evolution,

because this will be highly dependent on the TWM initial values. The Jacobi elliptical function can

be similar to sinusoidal functions or hyperbolic functions, and in general Jacobi function can have

quite different behaviors.

Using a phase mismatch and a nonzero Γi constant the evolution equation of |B0|2 becomes (the

derivative of |B1|2 and |B2|2 is symmetric) :

(
∂ |B0|2

∂ z

)2
= 2|B0|2(m2−|B0|2)(m1−|B0|2)−2(Γ0− ∆k

2 |B0|2)2 (A.27)

This can be rewritten as:

1
2

(
∂Z
∂ z

)2
= (Z−Z0)(Z−Z1)(Z−Z2) (A.28)

Where Z = |B0|2. In order to go from Eq. (A.27) to Eq. (A.35), we have to obtain the roots of the

expression in Eq. (A.27).

With the polynomial equation given by:

Z3−bZ2 + cZ−Γ
2
0 = 0 (A.29)
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The second and third coefficients of the third order equation can be given by:

b =
(

m1 +m2− ∆k2

4

)

c = m1m2 +∆kΓ0

(A.30)

We can obtain three real roots only if ∆ > 0. Where ∆is given by:

∆ = 18bcΓ
2
0−4b3

Γ
2
0 +b2c2 (A.31)

If ∆ = 0, the polynomial has multiple roots, in which case it is very easy to obtain the evolution

equations. Considering that we have multiple real roots1 in Eq. (A.35) are given by:

Z0 =
b
3 − 1

3

[
3
√

1
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3
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6
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(A.32)

Where:

q = 9bc−2b3−27Γ2
0

p =
√

q2−4(b2−3c)3
(A.33)

After this we transform Eq. (A.35) with the following variable transform:

y2 = Z−Z0
Z1−Z0

m = Z1−Z0
Z2−Z0

(A.34)

Obtaining:

1
2

(
∂y

∂
√

Z2−Z0z

)2

= (1− y2)(1−my2) (A.35)

Which give automatically that:

y = sn
(√

Z2−Z0(z− z0)|m
)

(A.36)

Or for the fields square amplitude:

1In reality if the roots are not real the calculations stay the same but the Jacobi sinusoidal function will have complex
arguments.

251



A. Appendix for chapter 1

|B0|2 = Z0+(Z1−Z0)sn2
(√

Z2−Z0(z− z0)|m
)

|B1|2 = m2−Z0-(Z1−Z0)sn2
(√

Z2−Z0(z− z0)|m
)

|B2|2 = m1−Z0-(Z1−Z0)sn2
(√

Z2−Z0(z− z0)|m
) (A.37)

The initial value can be determined by:

z0 =−
1√

Z2−Z0
F



√
|B0|2−Z0

Z1−Z0

∣∣∣∣∣m


 (A.38)

Where F(u|m) is the first order incomplete integral. The phase of the pulses is governed by the

equations:

∂φ0
∂ z = Γ0

|B0|2 −
∆k
2

∂φ1
∂ z = Γ1

|B1|2 −
∆k
2

∂φ2
∂ z = Γ2

|B2|2 −
∆k
2

(A.39)

Which results in:

φ0 =−∆k
2 z+ Γ0

Z0
√

Z2−Z0
Π

(
1− Z1

Z0
;am(
√

Z2−Z0(z− z0|m)|m
)
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(m2−Z0)
√

Z2−Z0
Π

(
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m2−Z0

;am(
√
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√
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Π

(
Z1−Z0
m1−Z0

;am(
√

Z2−Z0(z− z0|m)|m
) (A.40)
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B. Appendix for chapter 2

First oscillator data

The curved mirrors of the sub-cavity values of reflectance and GDD:

Figure B.1.: Reflectivity curves for the curved mirrors inside the cavity as a function of the wavelength, MC1
(Z0805033) and MC2 (Z0805031).

Figure B.2.: Second derivative of the spectral phase variation with the wavelength in nanometers, MC1
(Z0805033) and MC2 (Z0805031).
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The transmission and GDD curve of the output coupler:

Figure B.3.: Output coupler transmission coefficients.

Figure B.4.: GDD values introduced by the output coupler, for the transmitted beam GVD(T) and for the
reflected one GVD(R).
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The data for the Z mirrors on the side of the output coupler:

Figure B.5.: Zero degree incidence reflective coefficients, for M1 (Z0102037) and M2 (Z0102041).

Figure B.6.: GDD values introduced by the output coupler, for the transmitted beam GVD(T) and for the
reflected one GVD(R). M1 (Z0102037) and M2 (Z0102041).
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For the mirrors on big arm that has the prisms, we have the reflectance for 0º incidence and 10º

incidence:

Figure B.7.: Reflective coefficient for the back-end mirror M4 (G0304008). The continuous line is at 0º
incidence and the traced line for 10º incident angle.

Figure B.8.: Reflectance values for M3 (G1003015) mirror for 0 and 10 degrees.
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Figure B.9.: GDD values for M3 (G1003015) and M4 (G0304008).

The possible spectrum that had a linear FWHM smaller profile but a bigger logarithmic one.

Figure B.10.: Spectral intensity, actual intensity profile in blue and a possible spectral shape with a larger
spectral bandwidth in a log scale but not on a linear scale in red.

257



B. Appendix for chapter 2

ABCD matrix propagation

Half a crystal will be represented in the sagittal plane by the matrix:

[CRS] =


 cos

(
γsL
2

)
sin( γsL

2 )
nγs

−nγs sin
(

γsL
2

)
cos
(

γsL
2

)

 (B.1)

In the tangential plane by:

[CRt ] =


 cos

(
γt L
2

)
sin( γt L

2 )

n3γt

−n3γt sin
(

γt L
2

)
cos
(

γt L
2

)

 (B.2)

No matter the axis the simple propagation through a distance d is represented by:

[P(d)] =

[
1 d

0 1

]
(B.3)

For the sagittal plane the bounce in a θ incidence in a curved mirror (focal distance f ) is given by:

[CMs] =

[
1 0

− cos(θ)
f 1

]
(B.4)

For the tangential place:

[CMt ] =

[
1 0

− 1
f cos(θ) 1

]
(B.5)

The stability is calculated from the ABCD matrix by:

Si = 1− (Ai +Di)
2

2
(B.6)

and the beam curvature radius and the beam size is calculated by:

R =
2B

D−A
(B.7)

wi =

√
λ |Bi|
π
√

Si
(B.8)
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C. Appendix for chapter 3

Gerchberg-Saxton algorithm

A schematic representation of the Gerchberg-Saxton algorithm may be seen in Fig. (C.1).

INPUT

Constrains 
for

Constrains 
for

Initial phase 
estimate
(just first cycle)
INPUT

Ã (!) = F {A (t)}

' (!) = ang
⇣
Ã (!)

⌘

A (t) = F�1
n

Ã (!)
o

� (t) = ang (A (t))

A (t) = |A (t)| exp (i� (t))

Ã (!) =
���Ã (!)

��� exp (i' (!))
Ã (!)

|A (!)|

|A (t)|

A (t)

�0 (t)

F {}

F�1 {}

Figure C.1.: GS like algorithm. It’s a fast convergency algorithm.
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D. Appendix for chapter 4

D.1. Dispersion of ultrafast waves, Fourier approach

Let us consider a medium that responds linearly to an applied EM field and an optical field that can

be decomposed in its Fourier transform:

Ẽ(~k,ω) = F{E(~r, t)}. (D.1)

This is actually a good description of the phase and amplitude of an ultrashort pulse, due to the fact

that the linear response of a material has eigenfunctions that are plane waves, makes the decom-

position in Fourier components the ideal way to predict the behavior of ultrafast pulses in a linear

material. A known Fourier transform property is the limitation of the product of the variances,4, of

conjugated functions (also known as the Heisenberg uncertainty principle) [221, 222].

4Ẽ4E >
1
2

(D.2)

Let us assume for simplicity that the field is normalized, i.e., we can write
∫ |Ẽ(~k,ω)|2d~kdω = 1

and
∫ |E(~r, t)|2d~rdt = 1. From Eq. (D.2) we see that in order for the pulse to be short in time, which

means a small4E , the spectrum has to be wide and so4Ẽ has to be large1.

The actual value of the variance product is going to depend on the pulse phase and shape [36, 223].

For Gaussian pulses the FWHM product is given by:

4ω 1
2
4τ 1

2
= 4ln(2)

√
1+a2 (D.3)

In which the parameter a is a chirp in time: A(τ) =C exp
[
−(1− ia) τ2

2ln(2)τ2
1/2

]
.

This means that for a Gaussian pulse to be 5 fs FWHM in duration we have to have at least 88 THz,

or 188 nm@800 nm.

1The exact minimum time bandwidth product might depend on the exact definition of Fourier transform, in some
definitions this value can be 1

16π2 instead of 1
2 .

261



D. Appendix for chapter 4

The linear propagation can be represented by Fig. (D.1). The output field in time can be determined

by:

E(~r, t)|B = F−1 {exp(ik.~r)F {E(~r, t)|A}} (D.4)

or if the propagation direction is z with a defined refraction index n(ω) it results in:

E(~r, t)|B = F−1
{

exp(i
2πn(ω)

λ
z)F {E(~r, t)|A}

}
, (D.5)

where λ is the wavelength. The phase (and delay) of each of these Fourier components is going to

be different but easily calculated by 2πn(ω)
λ

. This makes the Fourier space the ideal space to treat the

linear propagation not the direct space.

E (~r, t)��
B

E (~r, t)��
A

Ẽ
⇣
~k, !
⌘
��
B

Ẽ
⇣
~k, !
⌘
��
A

F {} F�1 {}

Linear Medium

A Bz

Figure D.1.: Propagation throughout a linear medium with length z from a plane A to a plane B.

Let us consider only a second order expansion of the wave vector in such a way that we can consider

it to be k(ω) = 1
2

d2k0
dω2

∣∣∣
ω0
(ω−ω0)

2, k”
0 =

d2k0
dω2

∣∣∣
ω0

.

The Gaussian pulse will change its time bandwidth product. With some simple arithmetic we obtain

the following expression:

4ω 1
2
4τ 1

2
= 4ln(2)

√√√√√1+


a+

k”
0z∆ω2

1
2

4ln(2)




2

(D.6)

This will shorten or increase pulse duration depending on whether we have positive or negative chirp

to begin with. The second order dispersion for several materials is given in Tab. (D.1). From Eq. (D.6)

we see that for large values of dispersion the pulse duration will be proportional to it.
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D.2. Defining a time window in a time frequency method

Material d2k0
dω2

∣∣∣
ω0

( f s2/mm)

Dry air 2.13E-2

Fused silica 36.1

BK7 44.6
Ti:Sapphire (e-axis) 56.6
Ti:Sapphire (o-axis) 58.0

SF1 148
SF57 223

LaK14 72.1

Table D.1.: Wave vector second derivative d2k0
dω2

∣∣∣
ω0

for several materials. The values are given in f s2/mm

with a central wavelength of 800 nm.

D.2. Defining a time window in a time frequency method

There are several processes that work both in direct and indirect space. To do this it is important

to find an optimal time/frequency window. Furthermore the method of transporting from one space

to the other the Fourier transform is done using Fast Fourier transform (FFT), which is faster then

discrete Fourier transform by a factor of N/ ln(N), where N is the number of points used in the

discretization.

If we want to operate in both the direct space and the reciprocal space or frequency space, it is

imperative to have a good representation of the pulse in both spaces. In order to do that we have to

be pretty conscious on how to distribute the points of the function on both spaces, so that one of the

spaces is not overly defined (oversampled) at the expense of the other space being under-sampled.

In Fig. (D.2) we give an example of a bad increase in the number of sampled points, if we just

increase the number of points leaving the time window as it is, the step will be smaller in the time

domain but not in the frequency domain, we will be mapping unnecessary territory in the frequency

domain without any advantage in the time domain. The inverse can also happen, a sampling problem

in the frequency domain won’t be solved just by increasing the number of points in the time domain.

In order to solve this we may use a semi-analytical method to have the same number of points in

the zone of interest for the time and frequency domain. We recall Eq. (D.3) for Gaussian pulses and

Eq. (D.2) for general pulses to understand that, the zone of interest product is constant, it will depend

on the shape of the pulse and the phase it has, the more spectral phase (chirp) it has the bigger is the

time frequency product, and so we can consider that

∆iω∆it =C (D.7)
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where ∆iω,∆it is the electric field zone of interest, in frequency and in time. Its definition does not

concern us. Knowing this, the number of points in the zone of interest in time is given by:

Nt =
∆it
∆t

N (D.8)

Similarly in the frequency domain we get:

Nω =
∆iω

∆ω
N (D.9)

Where N is the total number of points. ∆ω,∆t are the frequency and time windows in general.

Considering that ideally, the number of points in the interest zone has to be the same in both domains.

We obtain the following definition for the time window and for the frequency window:

∆ω = ∆iω√
C

√
N ∆t =

√
C

∆iω

√
N

∆t = ∆it√
C

√
N ∆ω =

√
C

∆it

√
N

(D.10)

The discretization intervals are given by 1/N of the values above.

FOURIER
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t

t

ω

ω

Figure D.2.: (top) Relation between the points in time and in the Fourier domain. Increasing the definition in
the time domain (middle) will not give us a better definition in the Fourier domain (bottom) but
only an increase of the Fourier window; the frequency definition will remain unchanged.

Despite the considerations above for highly chirped pulses interpolation at each step might be needed
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to allow for a reasonable computing time.

For a Gaussian beam we obtain a constant C that is given by (see Eq. (D.3)):

Cg = 4ln(2)
√

1+a2 (D.11)

where a is a chirp parameter.

For Fourier limited for sech2 pulse the constant we obtain:

Csech2 ' 2 (D.12)
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