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Introduction

Industry context

(a) Schema of a nuclear power plant. (b) Sketch of a steam generator.

Figure 1

Steam generators (SGs, see Figures 1a, 1b) are critical components in nuclear power plants.
Heat produced in a nuclear reactor core is transferred as pressurized water of high temperature
via the primary coolant loop into a SG, consisting of tubes in U-shape, and boils coolant water
in the secondary circuit on the shell side of the tubes into steam. This steam is then delivered
to the turbine generating electrical power. The SG tubes are hold by the broached quatrefoil
support plates with �ow paths between tubes and plates for the coolant circuit (see Figure 2a).
Due to the impurity of the coolant water in the secondary circuit, conductive magnetic deposits
are observed on the shell side of the U-tubes, usually at the level of the quatrefoil tube support
plates(see Figures 2b, 2c) after a long-term exploitation of the SGs. Theses deposits could, by
clogging the �ow paths of coolant circuit between the tubes and the support plates, reduce the
power productivity and even harm the structure safety. Without disassembling the SG, the
lower part of the tubes � which is very long � is inaccessible for normal inspections. Therefore, a
non-destructive examination procedure, called eddy current testing (ECT), is widely practiced
in industry to detect the presence of defects, such as cracks, �aws, inclusions and deposits
[9, 11, 15, 27, 54, 83, 86, 87].
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(a) SG tubes and a broached quatrefoil

support plate.

(b) Clean SG tube and support plate

with �ow paths.

(c) Clogged �ow paths by de-

posits.

Figure 2

A brief introduction of the eddy current e�ect on the site http://www.ndt-ed.org reads

Eddy currents are created through a process called electromagnetic induction.
When alternating current is applied to the conductor, such as copper wire, a magnetic
�eld develops in and around the conductor. This magnetic �eld expands as the
alternating current rises to maximum and collapses as the current is reduced to zero.
If another electrical conductor is brought into the close proximity to this changing
magnetic �eld, current will be induced in this second conductor. Eddy currents are
induced electrical currents that �ow in a circular path. They get their name from
�eddies� that are formed when a liquid or gas �ows in a circular path around obstacles
when conditions are right.

In the ECT of steam generator, one introduces a probe consisting of two copper wire coils
in the tube. Each of these coils is connected to a current generator producing an alternating
current and to a voltmeter measuring the voltage change across the coil. One of the coils is
excited by its current generator to create a primary electromagnetic �eld which in turn induces
a current �ow � the eddy current � in the conductive material nearby, such as the tube and the
conducting support plates. Given the deposit-free case as background information, the presence
of conducting deposits distorts the eddy current �ow and leads to a current change in the two
coils, which is measured by the linked voltmeters in terms of impedance. This measurement is

http://www.ndt-ed.org
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called ECT signal that we use to identify the deposits.

Eddy current model

The study of electromagnetic �elds induced by alternative electric currents using mathematical
language dates as early as the beginning of the nineteenth century, when Ampère and Faraday
carried out their famous experiments on electricity and magnetism. The electromagnetic �elds
are described by a set of partial di�erential equations � Maxwell's equations, named after James
Clerk Maxwell who published an early form of these equations describing Ampère's circuital law
and Faraday's law of induction [57, 58, 59]. In particular, he completed the Ampère's circuital
law by adding a term depicting the displacement currents to describe the capacitive e�ects .
Readers may refer to Jackson [49] for a complete presentation of the classical electromagnetism.

The eddy current approximation of Maxwell's equations neglects the displacement current.
This is based on several assumptions. First of all, the applied alternative electric current, and
thus also the electromagnetic �elds, are in low frequency regime. Then the conductors should
have su�ciently small permittivity with respect to its conductivity such that the displacement
current in the conductors are negligible with respect to the eddy currents described by the
Faraday's law. Finally, the conductors should be well separated (see [77]) such that there is
no need to use displacement current to describe the capacitive e�ect which could be caused by
small rips between conductors. There is a rich literature treating the eddy current models. From
the engineering point of view, we may refer to the books of Tegopoulos [80] and Mayergoyz [60,
Chapter 5] for the analysis and the resolution of the eddy current problem in simple geometrical
con�gurations. A mathematically complete study of the problem can be found in the recent
survey of Alonso Rodríguez and Valli [4] which in particular gives a rigorous justi�cation of the
eddy current approximation both as the low electric permittivity limit and as the low frequency
limit (the works of Costabel et al. [33] and Ammari et al. [6] also treat these cases respectively).

In our problem, we assume that the SG tube is in�nitely long and axisymmetric. Since the
eddy current probe that we introduced in the tube is axial, which means it cannot detect any
angular (or azimuthal) variation, we will consider at the �rst place an axisymmetric case such
that the 3-D eddy current model is reduced to a 2-D problem in cylindrical coordinates. We will
formulate the axisymmetric eddy current for a scalar �eld which is the azimuthal component of
the electric �eld. Then motived by the fact that the broached quatrefoil support plates (Figure
2a) and the deposits are not axisymmetric, we will extend the model to the 3-D case with a
formulation for a vector magnetic potential A and a scalar electric potential in the conducting
components V .

Reconstruction of deposit domain using shape optimization

Based on the eddy current models, we use shape optimization methods for deposit domain
reconstruction. A shape optimization problem is a minimization problem of the form

min
Ω∈A

J (Ω)
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where Ω is a domain representing the shape, A is the class of admissible domains and J is
a shape-dependent cost functional. This kind of problem is �rst formulated by Hadamard in
1907 [43] and largely developed from the second half of 20th century for optimal shape design in
mechanics [73, 38] and for applications in �uid mechanics [61]. Application of shape optimization
in electromagnetism is relatively recent. From the engineering approach, some investigations
were motivated by electromagnetic device designing [68, 74] or by defect identi�cation [47]. In
view of shape optimization for inverse problem, some results concerning the shape derivative
based on integral equation approach are discussed (for example, Potthast [72], Costabel and Le
Louër [34, 34]). Cagnol and Eller [25] and Hettlich [46] have studied the shape derivative of
time-harmonic Maxwell's equations in the (E,H) formulation (E is the electric �eld andH the
magnetic �eld). In this thesis, we will discuss shape optimization applied to the eddy current
model in the axisymmetric 2-D case for a weighted electric �eld as well as in the 3-D case for
the potentials (A, V ). We may refer to the books of Zolésio [85], Henrot and Pierre [45] and
the course Conception optimale de structures of Allaire at Ecole Polytechnique [2] for a general
introduction to shape optimization.

In general, the existence of an optimal domain is not ensured unless one assumes some
geometrical constraints on the admissible class or considers some special cost functionals. The
�rst results of existence of an optimal domain under geometrical constraints were contributed by
Chenais [29], Murat and Simon [63, 64] and followed by huge recent developments, for example
[5, 26] which treat problems with a homogeneous Neumann condition on the free boundary,
and [20, 21, 22, 23, 79] which study the shape optimization problems with a Dirichlet boundary
condition on the free boundary. Here we consider shape optimization for inverse problem, the
optimal domain is just the target shape to reconstruct, thus exists.

The shape optimization problems can be classi�ed into three main types:

• Parameterized shape optimization. One restricts the class of admissible domains to those
de�ned through a function. Thus the shape is characterized by a reduced number of
parameters (for example the thickness, the diameter, etc.), which narrows considerably
the range of shape variety.

• Geometrical optimization. Once an initial domain is given, variations of (a part of) its
boundary (free boundary) is possible but its topology cannot be changed.

• Topological optimization. Both variations of the boundary and modi�cations of the topol-
ogy of the domains are allowed.

Although the last type of shape optimization is the most general, it is also the most di�cult in
both theoretical and numerical aspects. We may refer to [2] or the book of Bendsoe and Sigmund
[12] for this subject. Without being exhaustive, we may cite the results of Guzina � Bonnet
[40, 16] and Masmoudi � Pommier � Samet [55, 56] among many others for inverse scattering
problems using topological derivative. We may also refer to the work of Dorn � Lesselier [37],
Santosa [75] and the references therein for level-set based approaches. In this thesis, we will
consider mainly the geometrical optimization from which one easily derive the parameterized
shape optimization as its simpli�ed version.

An inverse problem is a framework converting observed measurements into information about
an object or system that we are interested in, which is the inverse of the direct problem which
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provides measurements from a known object or system. Our problem � reconstruction of deposit
shape using eddy current signals � belongs to a big family of inverse problems which is the inverse
scattering. Among extensive research on inverse scattering, we may mention the book of Colton
and Kress [31] as a reference review on this topic. We may also refer to the book of Kirsch [51]
for a general introduction to inverse problems.

A inverse problem is generally ill-posed according to Hadamard's de�nition [42] due to its
instability. To overcome this di�culty, one should regularize the problem to obtain an ap-
proximate solution. The most prevalent regularization method is named after Tikhonov who
introduced an additional least-square penalization term to the objective functional [81]. We
may refer to Nicolas [65] and Chaulet [28] for examples of inverse scattering problems and for
di�erent regularization techniques such as total variation regularization.

In this thesis, the objective is to reconstruct the deposit domain or more precisely its free
boundary which is in fact an inner interface of the domain. We will study the transmission
conditions on this interface when a shape deformation is applied to the domain, and we will use
an H1 boundary regularization technique to smooth the gradient.

Asymptotic models for thin and highly conducting deposits

There is a another kind of deposits with high conductivity (such as copper) but in the form of
thin layers (thickness under 100µm) covering the exterior surface of the SG tubes. This type of
deposits does not a�ect neither the productivity of the electricity power plant nor the structural
safety of the steam generator since they do not block the �ow paths between the SG tubes and
the broached quatrefoil support plates. But by distorting the eddy current signals, their presence
can blind the eddy current probes in non-destructive inspections of other kind of problematic
defects, such as clogging deposits and cracks of the tube. Therefore, it is crucial to identify and
reconstruct them to evaluate their in�uence in the eddy current testing.

The eddy current model described above for the clogging deposits encounter here a high
numerical cost due to the tiny thickness of the thin layer which should be take into account
in the discretized computational domain (mesh). To overcome this di�culty, we replace the
thin layer with an interface on which appropriate transmission conditions should be set. To
determine the e�ective transmission conditions linking up the solutions at the two sides of the
interface, the behavior of in-layer solution is studied using rescaling and asymptotic expansions
with respect to a small parameter � the thickness. This is the asymptotic model.

There is a rich literature on approximate boundary (or transmission) conditions for highly
conducting materials and on asymptotic models for thin sheets. We may cite the work of
Leontovich [52] on the impedance boundary condition and the book of Senior and Volakis [78]
on the generalized impedance boundary condition, without using the asymptotic expansions.
With asymptotic expansions, Haddar, Joly and Nguyen [44] studied a high order generalized
impedance boundary condition for strongly absorbing obstacles with Maxwell's equations, and
Schimdt [76] obtained high order approximate transmission conditions for highly conductive thin
sheets. For other related asymptotic models we may cite Tordeux [82] for thin slots, Claeys [30]
for thin wires, Delourme [36] for periodic thin rings and Poignard [71] for weakly oscillating thin
layers.
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In this thesis, we will consider a family of approximate transmissions conditions for highly
conductive thin layer with di�erent parameters for the rescaling of the conductivity and with
di�erent orders in asymptotic expansions with respect to the small parameter characterizing the
thickness of layer. Without going into the error analysis, we validate a corresponding family of
asymptotic models using these approximate transmission conditions in a simpli�ed con�guration
and choose the most appropriate asymptotic model which not only ensures su�cient precision
but also eases the derivation of inversion in view of further reconstruction of layer thickness.

Outline of the thesis

In Chapter 1 we build the axisymmetric eddy current model in cylindrical coordinates for the
azimuthal part of the electric �eld, given that the meridian part of the electric �eld is trivial
for our problem settings. We proved the existence and uniqueness of the solution in a weight-
ed function space. For numerical tests, we cut o� the computational domain with arti�cial
boundaries on which we set some appropriate boundary conditions, in particular the Dirichlet-
to-Neumann conditions based on a semi-analytical study of the solution. Numerical simulation
of eddy current probe validate this forward model.

Chapter 2 concentrates on inversion algorithm based on the axisymmetric forward model
obtained in 1. We de�ne a least square shape-dependent cost functional based on eddy current
signals. To minimize this cost functional by descent gradient, we calculate the material and
shape derivatives of the solution and introduce an adjoint state to obtain an explicit expression
of the gradient on behave of the shape perturbation. This gradient is regularized by a boundary
penalizing Laplace-Beltrami operator. Finally we discuss some reconstruction results.

Always in axisymmetric con�guration, Chapter 3 studies several asymptotic models for highly
conducting thin layer deposits with di�erent approximate transmission conditions modeling the
thin layer. Numerical tests for 1-D models with constant layer thickness allow us to choose an
asymptotic model with good precision and easy to inverse.

Based on the choice of the pertinent approximate transmission conditions and asymptotic
models in Chapter 3, in Chapter 4 we build and numerically validate the asymptotic models for
layers with variable thickness. Then an inversion algorithm is proposed for thickness reconstruc-
tion and tested by some numerical examples.

We complement our work in Chapter 5 by an extension to the 3-D case. We build the eddy
current model for the vector potentials and formulate the corresponding inversion algorithm
with the same idea as in Chapter 2. To apply the geometrical shape optimization method, it
is crucial here to derive the material derivative of the solution with respect to a small shape
perturbation. A joint work with K. Riahi on numerical reconstruction is ongoing and already
provides some encouraging preliminary results.
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In order to simulate an eddy current testing experiment, one needs to solve the forward
problem for any probe position one wants to incorporate into the measurements. For an iterative
inversion method based on the exploitation of this forward problem, the number of required
simulation is also proportional to the number of iterations. Given the large number of tubes
to be probed, one easily understands the crucial importance of designing a fast (and reliable)
numerical simulation of the forward problem. We consider here the eddy current problem under
axisymmetric assumption (see for instance Bermúdez et al. [13]) and investigate strategies to
bound the computational domain. While for the radial direction, cut-o� with brute model
for the boundary condition such as Neumann boundary condition would be su�cient due to
the conductivity of the tube and the decay of the solution, in the axial direction this strategy
requires some �ctitious boundaries far from the sources. We rather propose to compute the exact
Dirichlet-to-Neumann (DtN) operator for the region outside the source term and apply it as an
exact boundary condition on the �ctitious boundaries. This would allow the latter to be as close
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as needed to the source term. The main di�culty here is in justifying the analytical expansion of
this DtN map. We shall rely on results from perturbation theory for the spectrum of compactly
perturbed selfadjoint operators. We also study the error due to truncation in the expression of
the DtN operator and relate this to the regularity of the problem parameters. Indeed the latter is
important from the computational point of view since this truncation is needed in practice. The
DtN expansion relies on some eigenvalues and eigenfunctions that are not known analytically
and should be numerically approximated. This may be expensive if a high degree of precision
is required. However these calculations can be done o�-line and therefore would not a�ect the
speed of solving the problem.

There is a large literature on eddy current problems and without being exhaustive we may
refer to the book of Alonso Rodríguez � Valli [4] for a recent survey on the problem, including an
introduction to the eddy current phenomenon, the mathematical justi�cation of the eddy current
approximation and di�erent formulations and numerical approaches for the three-dimensional
problems. For axisymmetric con�gurations we refer to the work of [7] for the study of the
theoretic tools for the Maxwell's equations in three dimensions, and to the works of Bermúdez
et al. [13], Chaboudez et al. [24] for the discussion of the eddy current problem with bounded
conductive components in the meridian half-plane, the numerical analysis and some numerical
experiments applied to the induction heating system.

This chapter is organized as follows. In Section 1.1, we brie�y recall the eddy current model
in the cylindrical coordinate system corresponding to the rotational symmetry with respect to
the axis of the tube (see Figure 1.1) and discuss existence and uniqueness of solution to this
problem in its equivalent variational formulation in properly de�ned weighted function spaces.

z

Deposit

r

Tube

Coil 1

Coil 2

Figure 1.1: Three- and two-dimensional geometric representations of a steam generator tube
covered with deposits and a probe consisting of two coils.

We then introduce cut-o�s of the domain in the radial-direction by introducing some local
boundary conditions (see Section 1.1.1) and then in the axial-direction by constructing the DtN
boundary operator (see Section 1.2). We validate our analytical theory by several numerical
tests that are motivated by ECT experiments as done in practice and present these numerical
results in Section 1.3.
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1.1 Axisymmetric model

Let us brie�y outline the origin of the considered model. We consider the time-harmonic
Maxwell's equations for the electric �eld E and the magnetic �eld H{

curlH + (iωϵ− σ)E = J in R3,

curlE − iωµH = 0 in R3,
(1.1)

where J is the applied electric current density such that divJ = 0, and ω, ϵ, µ, σ respectively
denote the frequency, the electrical permittivity, the magnetic permeability and the conductivity.
In an axisymmetric (i.e., rotationally invariant) setting, for a vector �eld a we denote by am =

arer + azez its meridian and by aθ = aθeθ its azimuthal component. A vector �eld a is
called axisymmetric if, in the sense of distributions, ∂θa vanishes. According to [7, Lemma 2.2],
the Maxwell equations (1.1) decouple into two systems, one for (Hθ,Em), and the other for
(Hm,Eθ). The solution to the �rst system vanishes if J is axisymmetric. Substituting Hm in
the second system yields the second-order equation for Eθ = Eθeθ,

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ ω2(ϵ+ iσ/ω)Eθ = −iωJθ in R2

+, (1.2)

with R2
+ := {(r, z) : r > 0, z ∈ R}. The eddy current approximation corresponds to low

frequency regimes and high conductivities: ωϵ ≪ σ. From (1.2) and the above assumption we
get the eddy current model

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ iωσEθ = −iωJθ in R2

+, (1.3)

with a Dirichlet boundary condition at r = 0 due to symmetry: Eθ|r=0 = 0, and a decay
condition Eθ → 0 as r2 + z2 → ∞ at in�nity. From now on, we denote u = Eθ. We introduce
operators ∇ := (∂r, ∂z)

t and div := ∇· on the half-plane R2
+ and the axis of symmetry Γ0 :=

{(r, z) : r = 0, z ∈ R}. Then the axisymmetric eddy current model reads
− div

(
1

µr
∇(ru)

)
− iωσu = iωJ in R2

+,

u = 0 on Γ0,

u→ 0 as r2 + z2 → ∞.

(1.4)

We shall assume that µ and σ are in L∞(R2
+) such that µ ≥ µ0 > 0 on R2

+ and that σ ≥ 0 and
σ = 0 for r ≥ r0 su�ciently large. For λ > 1 and Ω ⊂ R2

+, we de�ne the weighted function
spaces L2

1/2,λ(Ω), H
1
1/2,λ(Ω) and the norms

L2
1/2,λ(Ω) := {v : r

1/2(1 + r2)−
λ/2v ∈ L2(Ω)}, H1

1/2,λ(Ω) := {v ∈ L2
1/2,λ(Ω) : r

−1/2∇(rv) ∈ L2(Ω)},

∥v∥L2
1/2,λ

(Ω) =

∥∥∥∥√ r

(1 + r2)λ
v

∥∥∥∥
L2(Ω)

, ∥v∥2H1
1/2,λ

(Ω) = ∥v∥2L2
1/2,λ

(Ω) +
∥∥∥r−1/2∇(rv)

∥∥∥2
L2(Ω)

.

The following lemma gives a Poincaré-type inequality related to functions in H1
1/2,λ(R

2
+). The

proof uses classical arguments and is given in Appendix 1.4.1 for the convenience of the reader.
Note that the trace v|Γ0 is well-de�ned since functions in H1

1/2,λ(R
2
+) belong to H

1({0 < r < r0})
for all r0 > 0.
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Lemma 1.1.1. Let λ > 1. Any function v in H1
1/2,λ(R

2
+) satis�es v = 0 on Γ0. Moreover, there

exists a constant Cλ > 0 such that for all v in H1
1/2,λ(R

2
+),

∥v∥H1
1/2,λ

(R2
+) ≤ Cλ

∥∥∥r−1/2∇(rv)
∥∥∥
L2(R2

+)
. (1.5)

One observes that if u ∈ L2
1/2,λ(R

2
+) for all λ > 1 then u satis�es the decay condition at

in�nity in (1.4). Then with the help of the �rst part of Lemma 1.1.1, one easily veri�es by
integration by parts that u in H1

1/2,λ(R
2
+) is solution of the two �rst equations of problem (1.4)

if and only if u satis�es

α(u, v) :=

∫
R2
+

1

µr
∇(ru) · ∇(rv̄) dr dz −

∫
R2
+

iωσuv̄r dr dz =

∫
R2
+

iωJv̄r dr dz ∀v ∈ H1
1/2,λ(R

2
+).

(1.6)

Proposition 1.1.2. Assume that J ∈ L2
1/2,λ(R

2
+) has compact support. Then the variational

problem (1.6) admits a unique solution u in H1
1/2,λ(R

2
+) for all λ > 1.

Proof. The proof is a direct application of the Lax-Milgram Theorem thanks to (1.5) which
yields the coercivity of the sesquilinear form on the left of (1.6):

ℜα(v, v) =
∫
R2
+

1

µr
|∇(rv)|2 ≥ 1

∥µ∥∞C2
λ

∥v∥2H1
1/2,λ

(R2
+),

where Cλ is the constant given in (1.5).

Remark 1.1.3. The source J has compact support bounded away from Γ0 in R2
+ in the real

problem. We have in particular that J vanishes for r > r0 and |z| > z0, where r0 > 0 and z0 > 0

are large enough.

1.1.1 Asymptotic behavior for large r

We are interested here in a more precise evaluation of the decay the solution u for large argument
r. We shall assume in addition to the hypothesis from Proposition 1.1.2 that the source J and
the conductivity σ vanish and that the permeability µ is constant for r > r0 where r0 > 0 is
some constant. One then gets from (1.4) that

r2
∂2u

∂r2
+ r

∂u

∂r
− u+ r2

∂2u

∂z2
= 0 for r > r0.

We then apply the Fourier transform with respect to the variable z and get

r2
∂2û

∂r2
+ r

∂û

∂r
− (1 + 4π2ξ2r2)û = 0, where û(·, ξ) :=

∫ +∞

−∞
u(·, z)e−2πiξz dz, ξ ∈ R.

(1.7)

The fundamental solutions of (1.7) for �xed ξ are the two modi�ed Bessel functions I1(2π|ξ|r)
and K1(2π|ξ|r) when ξ ̸= 0, or the functions r and 1/r when ξ = 0. Since u ∈ L2

1/2,λ(R
2
+) for all
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λ > 1, the asymptotic behavior for large argument of the modi�ed Bessel functions implies that
u has the following expression for r > r0,

û(r, ξ) =


û(r0, ξ)

K1(2π|ξ|r)
K1(2π|ξ|r0)

ξ ̸= 0,

û(r0, 0)
r0
r

ξ = 0.

(1.8)

Let us also quote that z 7→ u(r, z) ∈ H1/2(R) for r > 0 since u ∈ H1
1/2,λ(R

2
+).

Proposition 1.1.4. The solution u ∈ H1
1/2,λ(R

2
+) to (1.6) satis�es

∥u(r, ·)∥L2(R) ≤
r0
r
∥u(r0, ·)∥L2(R), ∥u(r, ·)∥H1/2(R) ≤

r0
r
∥u(r0, ·)∥H1/2(R) ∀r > r0.

Proof. By the Plancherel theorem and the Cauchy-Schwarz inequality, we have

∥u(r, ·)∥2L2(R) = ∥û(r, ·)∥2L2(R) ≤ ∥û(r0, ·)∥2L2(R)

∥∥∥∥ K1(2π| · |r)
K1(2π| · |r0)

∥∥∥∥2
L∞(R)

.

We note that K1(x) ∼ 1/x as 0 < x→ 0. Therefore,

gd(ξ; r0, r) :=
K1(2πξr)

K1(2πξr0)
→ r0

r
as 0 < ξ → 0. (1.9)

On the other hand, the derivative of gd with respect to ξ is

g′d(ξ; r0, r) =
2πrK ′

1(2πξr)K1(2πξr0)− 2πr0K1(2πξr)K
′
1(2πξr0)

K2
1 (2πξr0)

=
2π [−rK0(2πξr)K1(2πξr0) + r0K1(2πξr)K0(2πξr0)]

K2
1 (2πξr0)

,

where the last equality follows from the recurrence formulas for Bessel functions. From the
integral representation (see [48, (2.1)] and its references)

xK0(x)

K1(x)
=

4

π2

∫ +∞

0

x2

x2 + t2
t−1 dt

J2
1 (t) + Y 2

1 (t)
, x > 0.

one concludes that the function xK0(x)/K1(x) is increasing in x > 0, which implies in our case
that

r0K0(2πξr0)

K1(2πξr0)
≤ rK0(2πξr)

K1(2πξr)
and therefore g′d(ξ; r0, r) ≤ 0, ξ > 0.

Consequently

gd(ξ; r0, r) ≤ gd(0+; r0, r) =
r0
r
, ∀ξ > 0,

which gives the �rst inequality of the Proposition using the Plancherel theorem. The second one
can be proved with the same arguments.
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Using more involved computations and estimates on Bessel functions one can also prove the
following result. The technical details of the proof are given in Appendix 1.5.

Proposition 1.1.5. The solution u ∈ H1
1/2,λ(R

2
+) to (1.6) satis�es∥∥∥∥ ∂∂r (ru)(r, ·)

∥∥∥∥
H−1/2(R)

≤ C
r0
r
∥u(r0, ·)∥H1/2(R) ∀r > r0

for some constant C > 0 independent of r and u.

1.1.2 Radial cut-o� for eddy current simulations

The decay in radial direction suggests that reasonable accuracy can be obtained by truncating the
computational domain at r = r∗ su�ciently large. In fact, for the application we are interested
in, this is also justi�ed by the high conductivity of the tube that would absorb most of the energy
delivered by the coil inside the tube. We shall analyze in the sequel the error resulting from radial
cut-o� independently from the absorption. It turns out in this case that the boundary conditions
that lead to reasonable error estimates are Neumann or Robin boundary conditions. The case
of Dirichlet boundary conditions lead to slower convergence rates that will be con�rmed by our
numerical examples. We present in this section only the case of Neumann boundary conditions.
The cases of Dirichlet and Robin boundary conditions are treated in Appendix 1.6.

For R ≥ 0 we denote

BR := {(r, z) : 0 < r < R, z ∈ R} and ΓR = {(r, z) : r = R, z ∈ R},

and shall use the short notation

L2
1/2(Ω) := L2

1/2,0(Ω) = {v : v
√
r ∈ L2(Ω)},

H1
1/2(Ω) := H1

1/2,0(Ω) = {v ∈ L2
1/2(Ω) : r

−1∇(rv) ∈ L2
1/2(Ω)}.

Moreover, withHs(R) denoting the usual Sobolev space on R and for su�ciently regular function
v de�ned in a neighborhood of ΓR we set

∥v∥Hs(ΓR) := ∥v(R, ·)∥Hs(R).

Let r∗ > 0 be su�ciently large such that the support of the source term J is included in Br∗ .
Then the problem on the cut-o� domain with Neumann boundary conditions on Γr∗ consists
into seeking un ∈ H1

1/2(Br∗) satisfying
− div

(
1

µr
∇(run)

)
− iωσun = iωJ in Br∗ ,

un = 0 on Γ0,

∂

∂r
(run) = 0 on Γr∗ .

(1.10)

The well-posedness of this problem is guaranteed thanks to the following lemma which will also
be useful in quantifying error estimates. The proof of this Lemma is given in Appendix 1.4.2.
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Lemma 1.1.6. Let r∗ > 0. Any function v ∈ H1
1/2(Br∗) satis�es v = 0 on Γ0. Moreover, we

have the Poincaré-type inequality

∥v∥L2
1/2

(Br∗ )
≤ r∗√

2

∥∥∥∥1r∇(rv)

∥∥∥∥
L2
1/2

(Br∗ )

∀v ∈ H1
1/2(Br∗), (1.11)

and a trace estimate

∥v∥H1/2(Γr∗ )
≤
√

3

r∗

∥∥∥∥1r∇(rv)

∥∥∥∥
L2
1/2

(Br∗ )

∀v ∈ H1
1/2(Br∗). (1.12)

One then can prove the following result.

Proposition 1.1.7. Assume that the source J ∈ L2(R2
+) has compact support and let r∗ > 0

be so large that the support of J is included in Br∗ . Then problem (1.10) has a unique solution
un ∈ H1

1/2(Br∗). Assume in addition that there exists 0 < r0 < r∗ such that J and the conductivity
σ vanish and the permeability µ is constant for r > r0. Then there exists a constant C that
depends only on J , r0, µ and σ such that∥∥∥∥1r∇(r(un − u))

∥∥∥∥
L2
1/2

(Br∗ )

≤ C/r
3/2
∗ and ∥un − u∥H1

1/2
(Br∗ )

≤ C/r
1/2
∗ ,

where u is the solution to (1.6).

Proof. The proof of the �rst part is similar to the proof of Proposition 1.1.2 thanks to Lem-
ma 1.1.6. Let us set wn := u− un ∈ H1

1/2(Br∗) such that∫
Br∗

1

µr
∇(rwn) · ∇(rv̄)− iωσwnv̄r =

∫
Γr∗

1

µ

∂

∂r
(ru)v̄ dz ∀v ∈ H1

1/2(Br∗),

where the integral on Γr∗ should be understood as aH
−1/2−H1/2 duality pairing. Taking v = w̄n,

we obtain∣∣∣∣∣
∫
Br∗

1

µr
|∇(rwn)|2 − iωσ|wn|2r

∣∣∣∣∣ =
∣∣∣∣∣
∫
Γr∗

1

µ

∂

∂r
(ru)w̄n dz

∣∣∣∣∣ ≤ 1

µ(r∗)

∥∥∥∥ ∂∂r (ru)
∥∥∥∥
H−1/2(Γr∗ )

∥wn∥H1/2(Γr∗ )
.

Using (1.12) we deduce

1

∥µ∥∞

∥∥∥∥1r∇(rwn)

∥∥∥∥2
L2
1/2

(Br∗ )

≤

∣∣∣∣∣
∫
Br∗

1

µr
|∇(rwn)|2 − iωσ|wn|2r

∣∣∣∣∣
≤ 1

µ(r∗)

∥∥∥∥ ∂∂r (ru)
∥∥∥∥
H−1/2(Γr∗ )

√
3

r∗

∥∥∥∥1r∇(rwn)

∥∥∥∥
L2
1/2

(Br∗ )

.

Therefore, ∥∥∥∥1r∇(rwn)

∥∥∥∥
L2
1/2

(Br∗ )

≤ ∥µ∥∞
µ(r∗)

√
3

r∗

∥∥∥∥ ∂∂r (ru)
∥∥∥∥
H−1/2(Γr∗ )

.

The �rst estimate then follows from Proposition 1.1.5 and the second one can be deduced
using (1.11).
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Remark 1.1.8. As indicated in the beginning of this section, the case of Robin boundary condi-
tions leads to error estimates similar to those of Proposition 1.1.7. However, if one uses Dirichlet
boundary conditions on Γr∗ then one loses half an order of magnitude for the convergence rate in
terms of 1/r∗ (see Appendix 1.6). This means for instance that convergence in H1/2(Γr∗) or in
L2

1/2(Γr∗) is not guaranteed in general in this case. This is in fact corroborated by our numerical
experiments in Section 1.3.1.

1.2 DtN operator and cut-o� in the longitudinal direction

We discuss in this section the domain cut-o� in the longitudinal direction, i.e., the z-direction,
whenever a cut-o� has been applied before in the radial direction. We therefore consider the
solution un of (1.10) and in order to shorten notation we abusively denote this solution by u.
Recall that the variational formulation of problem (1.10) is to �nd u ∈ H1

1/2(Br∗) such that∫
Br∗

1

µ

1

r
∇(ru) · 1

r
∇(rv̄) dr dz −

∫
Br∗

iωσuv̄r dr dz =

∫
Br∗

iωJv̄r dr dz ∀v ∈ H1
1/2(Br∗),

(1.13)

where r∗ > 0 is as in Proposition 1.1.7. The idea how to cut o� the domain in the z-direction is to
explicitly compute the DtN map for the regions above and below the source and inhomogeneities
in the coe�cients µ and σ using the method of separation of variables. The main di�culty to
cope with here is to prove that this is feasible even though the main operator is not selfadjoint.

We cut the domain by two horizontal boundaries

Γ± := {z = ±z∗}

for some z∗ > 0 large enough such that the source is compactly supported in

Br∗,z∗ := {(r, z) ∈ Br∗ : |z| < z∗}.

We then assume in addition that µ and σ only depends on the variable r in the complementary
region

B±
r∗,z∗ := {(r, z) ∈ Br∗ : z ≷ ±z∗}.

Since in B±
r∗,z∗ it holds that

−div

(
1

µr
∇(ru)

)
− iωσu = 0,

a solution of the form u(r, z) = ρ(r)ζ(z) has to satisfy

1

ζ

d2ζ

dz2
= −1

ρ

d

dr

(
1

µr

d

dr
(rρ)

)
− iωσ = ν,

where ν ∈ C is some eigenvalue that we will estimate. For the �rst equation, we obtain

d2ζ

dz2
− νζ = 0,
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which has as solutions ζ(z) = c exp(±
√
νz) if ν ̸= 0, while for the second equation we are led to

consider the eigenvalue problem

Sσ
µρ := − d

dr

(
1

µr

d

dr
(rρ)

)
− iωσρ = νρ in I := {r ∈ R : 0 < r < r∗},

ρ(0) = 0,
d

dr
(rρ)

∣∣∣∣
r=r∗

= 0.

(1.14)

We �rst formally observe from (1.14) (after multiplication by rρ̄ and integration by parts) that
ℑ(ν) ≤ 0 and ℜ(ν) > 0. Choosing

√
ν such that ℜ

√
ν > 0, we get that ζ(z) = c exp(±

√
νz)

on B∓
r∗,z∗ are the only admissible solutions due to their boundedness at in�nity. The only

missing point that would allow the construction of a solution on B∓
r∗,z∗ is to prove that the set

of eigenfunctions associated with (1.14) forms a complete set for the traces of the solutions to
problem (1.13).

1.2.1 Analysis of the non-selfadjoint eigenvalue problem

We consider the spaces

L2
1/2(I) := {ϕ : ϕ

√
r ∈ L2(I)}, H1

1/2(I) := {ϕ ∈ L2
1/2(I) :

1

r

∂

∂r
(rϕ) ∈ L2

1/2(I)}.

For convenience, we shall denote in the sequel by (·, ·) the L2
1/2(I) scalar product.

Lemma 1.2.1. The embedding H1
1/2(I) ↪→ L2

1/2(I) is dense and compact. Any ϕ ∈ H1
1/2(I) is

continuous in the closure of I and satis�es ϕ = 0 at r = 0. Moreover, the following Poincaré-type
inequalities hold,

∥ϕ∥L2(I) ≤
√
r∗

∥∥∥∥1r∇(rϕ)

∥∥∥∥
L2
1/2

(I)

and ∥ϕ∥L2
1/2

(I) ≤
r∗√
2

∥∥∥∥1r∇(rϕ)

∥∥∥∥
L2
1/2

(I)

∀ϕ ∈ H1
1/2(I). (1.15)

Proof. The proof of the compact embedding is a simple application of [18, Corollaire IV.26]. For
the detailed proof, see Appendix 1.4.3. The proof of the property ϕ(0) = 0 and the inequalities
is the same as for Lemma 1.1.6.

Since H1
1/2(I) is dense in L2

1/2(I) one can de�ne the unbounded operator Aµ : D(Aµ) ⊂
L2

1/2(I) → L2
1/2(I), where

D(Aµ) =

{
u ∈ H1

1/2(I) : Aµu =
d

dr

(
1

µr

d

dr
(ru)

)
∈ L2

1/2(I),
d

dr
(ru)

∣∣∣∣
r=r∗

= 0

}
.

Then we have D(Aµ) ⊂ H1
1/2(I). For ϕ ∈ H1

1/2(I), Aµϕ is de�ned by

(Aµϕ, ψ) =

∫ r∗

0

1

µr

d

dr
(rϕ)

d

dr
(rψ̄) dr ∀ψ ∈ H1

1/2(I). (1.16)
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It is clear from this de�nition that Aµ is closed and selfadjoint and according to Lemma 1.2.1,
it has a compact resolvent. Moreover, the second inequality in Lemma 1.2.1 shows that

(Aµϕ, ϕ) ≥ c∥ϕ∥2H1
1/2

(I) ∀ϕ ∈ H1
1/2(I)

for some positive constant c independent of ϕ.
We then deduce (see for instance [35, Chapter VIII, Theorem 7]) that Aµ has positive

eigenvalues {λk}k∈N∗ with corresponding L2
1/2-complete orthonormal eigenprojectors {Pk}k∈N∗

such that

0 < λ1 < λ2 < · · · < λk → ∞ (k → ∞),

and ∀ϕ ∈ Pk(H
1
1/2(I))

(Aµϕ, ψ) = λk (ϕ, ψ) ∀ψ ∈ H1
1/2(I). (1.17)

Since Sσ
µ is formally only a compact perturbation of Aµ by using the perturbation theory one

can relate the spectrum of Sσ
µ to the spectrum of Aµ. We �rst need to have estimates on the

eigenvalues {λk}h∈N∗ . For that purpose we shall consider �rst the case of constant µ. We observe
from (1.17) (after interpreting in the distributional sense), that if a couple (λ1, ϕ) is an eigenpair
of A1 then

− d

dr

(
1

r

d

dr
(rϕ)

)
= λ1ϕ 0 < r < r∗,

ϕ(0) = 0 and
d

dr
(rϕ)

∣∣∣∣
r∗

= 0.

(1.18)

Rewriting the �rst equation in the form of a Bessel's di�erential equation, after setting ζ =
√
λ1,

r2ϕ′′ + rϕ′ + (ζ2r2 − 1)ϕ = 0

and using the regularity of ϕ, we obtain that solutions are proportional to the Bessel functions
of the �rst kind {J1(

j0,k
r∗
r)}k∈N∗ where j0,k > 0 is the kth zero of Bessel function J0. It is easy to

verify that {J1(
j0,k
r∗
r)}k∈N∗ is a orthogonal family of L2

1/2(I). This corresponding eigenvalues are

λ1k =

(
j0,k
r∗

)2

for k ∈ N∗. (1.19)

Using McMahon's expansions for large zeros of Bessel functions (see [1, 9.5.12]):

jν,k ∼ β − 4ν2 − 1

8β
− 4(4ν2 − 1)(28ν2 − 31)

(8β)3
+O(β−5) (k → ∞),

where β = β(k) =

(
k +

1

4

)
π, ν = 0, 1, . . .

we observe that the eigenvalues λ1k grow like k2 as k → ∞. Now set

µinf := inf µ and µsup := supµ,
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which are positive �nite constants by assumptions. One obviously has

1

µsup

(A1ϕ, ϕ)

∥ϕ∥2
L2
1/2

(I)

≤ (Aµϕ, ϕ)

∥ϕ∥2
L2
1/2

(I)

≤ 1

µinf

(A1ϕ, ϕ)

∥ϕ∥2
L2
1/2

(I)

.

From the Courant-Fischer-Weyl min-max theorem, we deduce

1

µsup
λ1k ≤ λk ≤ 1

µinf
λ1k. (1.20)

We therefore obtain the following result.

Lemma 1.2.2. The di�erence λk − λk−1 → +∞ as k → ∞. Moreover, if

µsup
µinf

< min
k≥1

λk+1

λk
,

then all eigenvalues λk are simple.

Now let us consider the operator Sσ
µ = Aµ +Mσ de�ned in (1.14). Since the multiplication

operator

Mσ : ϕ 7→ −iωσϕ, ∀ϕ ∈ L2
1/2(I),

is bounded on L2
1/2(I), the theory for for perturbed selfadjoint operators [50, Theorem V-4.15a

and Remark V-4.16a] implies:

Proposition 1.2.3. Under the assumptions of Lemma 1.2.2, the unbounded operator Sσ
µ :

L2
1/2(I) → L2

1/2(I) is closed with compact resolvent and its eigenvalues and eigenprojectors can be
indexed as {ν0j , νk} and {Q0j , Qk} respectively, where j = 1, . . . ,m <∞ and k = n+1, n+2, . . .

with n ≥ 0 such that the following results hold:

1. the sequence |νk − λk| is bounded as k → ∞.

2. there exists a bounded operator W on L2
1/2(I) with bounded inverse W−1 such that

Q0 :=

m∑
j=1

Q0j =W−1

∑
k≤n

Pk

W and Qk =W−1PkW for k > n. (1.21)

Moreover, {Q0j , Qk} is a complete family in the sense that

m∑
j=1

Q0j +
∑
k>n

Qk = 1. (1.22)
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1.2.2 Spectral decomposition of the DtN operator

We are now in position to provide explicit expression for the DtN operator that will be used
to cut o� the domain in the z-direction. We �rst need to specify the space of traces on Γ± of
functions in H1

1/2(Br∗). From the de�nition of the spectral decomposition of A1 we immediately
deduce that for ϕ ∈ H1

1/2(I)

∥ϕ∥2L2
1/2

(I) =
∑
k≥1

∥P 1
kϕ∥2L2

1/2
(I) and ∥ϕ∥2H1

1/2
(I) =

∑
k≥1

(1 + λ1k)∥P 1
kϕ∥2L2

1/2
(I)

where {P 1
k }k∈N∗ denotes the complete orthonormal eigenprojectors family associated with A1.

For θ ∈ [0, 1], we de�ne Hθ
1/2(I) as the θ interpolation space [H1

1/2(I), L
2
1/2(I)]θ (see [53, Dé�nition

2.1] for interpolation spaces) with norms

∥ϕ∥2
Hθ

1/2
(I)

=
∑
k≥1

(1 + λ1k)
θ∥P 1

kϕ∥2L2
1/2

(I) (1.23)

and de�neH−θ
1/2 (I) as the dual space ofH

θ
1/2(I) with pivot space L

2
1/2(I). The norm inH−θ

1/2 (I) can

be de�ned as in (1.23) replacing θ by −θ. The de�nition of the spaces H±θ
1/2 (Γ+) and H±θ

1/2 (Γ−)

are obtained from H±θ
1/2 (I) by identifying Γ± with I using the obvious isometry. Let v be a

regular function of Br∗ . We denote the trace mapping by

γ± : v 7→ v|Γ± .

Theorem 1.2.4. The trace mapping γ± can be extended to a continuous and surjective mapping
from H1

1/2(Br∗,z∗) onto H
1/2
1/2 (Γ±) and from H1

1/2(B
±
r∗,z∗) onto H

1/2
1/2 (Γ±).

Proof. Obviously we have the equivalent de�nition

H1
1/2(Br∗,z∗) =

{
v : v ∈ L2((−z∗, z∗);H1

1/2(I)),
∂v

∂z
∈ L2((−z∗, z∗);L2

1/2(I))

}
,

with the same norm. Therefore the trace mapping properties for H1
1/2(Br∗,z∗) is a direct appli-

cation of classical theory for trace spaces: [53, Théorème 3.2]. Similar considerations apply for
H1

1/2(B
±
r∗,z∗).

Let us also mention the following result that will be useful later

Lemma 1.2.5. Let θ ∈ [0, 1]. The norm

∥ϕ∥
Hθ,µ

1/2

:=

∞∑
k=1

(1 + λk)
θ∥Pkϕ∥2L2

1/2
(I)

de�nes an equivalent norm on Hθ
1/2(I).

Proof. From interpolation theory, it is su�cient to prove the result for θ = 0 and θ = 1. The
case of θ = 0 is obvious. The case θ = 1 follows from the identity

∞∑
k=1

λk∥Pkϕ∥2L2
1/2

(I) = (Aµϕ, ϕ)

and noting that (ψ, ϕ) 7→ (Aµψ, ϕ) is continuous and coercive on H1
1/2(I)×H1

1/2(I).
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Let ϕ± in H
1/2
1/2 (Γ±) and denote by µ± and σ± the restrictions of µ and σ to B±

r∗,z∗ . Thanks
to Theorem 1.2.4 one can uniquely de�ne u± ∈ H1

1/2(B
±
r∗,z∗) solution of

− div

(
1

µ±r
∇(ru±)

)
− iωσ±u± = 0 in B±

r∗,z∗ ,

u±|r=0 = 0 and
1

µ±
∂

∂r
(ru±)|r=r∗ = 0,

u± = ϕ± on Γ±.

(1.24)

The construction of u± can be done for instance by using some continuous lifting linear operators
R± : H

1/2
1/2 (Γ±) → H1

1/2(B
±
r∗,z∗) such that γ±R±(ϕ) = ϕ (these operators exist according to

Theorem 1.2.4). The H1
1/2(B

±
r∗,z∗) norm of u± indeed continuously depends on the H

1/2
1/2 (Γ±)

norm of the boundary data ϕ± (respectively).

De�nition 1.2.6. We de�ne the DtN operators T ± : H
1/2
1/2 (Γ±) → H

−1/2
1/2 (Γ±) by

⟨
T ±ϕ±, ψ±⟩ = ∫

B±
r∗,z∗

1

µ±r
∇(ru±)∇(rR±ψ±) dr dz +

∫
B±

r∗,z∗

div

(
1

µr
∇(ru±)

)
R±ψ±r dr dz

for all ψ± ∈ H
1/2
1/2 (Γ±), where u± ∈ H1(B±

r∗,z∗) is the unique solution of problem (1.24) and

where ⟨·, ·⟩ denotes the H−1/2
1/2 −H

1/2
1/2 duality product that coincides with (·, ·) for L2

1/2 functions.

Indeed⟨
T ±ϕ±, ψ±⟩ = ∫

B±
r∗,z∗

1

µ±r
∇(ru±)∇(rR±ψ±) dr dz −

∫
B±

r∗,z∗

iωσ±uR±ψ±r dr dz (1.25)

and therefore, from the de�nition of R± and the continuity property for the solutions u±,⟨
T ±ϕ±, ψ±⟩ ≤ C∥ϕ±∥

H
1/2
1/2

(Γ±)
∥ψ±∥

H
1/2
1/2

(Γ±)

for some constant C independent from ϕ and ψ. This proves that T ± : H
1/2
1/2 (Γ±) → H

−1/2
1/2 (Γ±)

are well-de�ned and are continuous. We remark that for su�ciently regular u±, we have (using
Green's formula)

T ±ϕ± = ∓ 1

µ±
∂u±
∂z

|Γ± . (1.26)

Since γ±− γ±R±γ± = 0, we also observe, using Green's formula (and a density argument) that

⟨
T ±ϕ±, γ±v

⟩
=

∫
B±

r∗,z∗

1

µ±r
∇(ru±)∇(rv) dr dz +

∫
B±

r∗,z∗

div

(
1

µr
∇(ru±)

)
vr dr dz±

for all v ∈ H1
1/2(B

±
r∗,z∗). Therefore we also have

⟨
T ±ϕ±, γ±v

⟩
=

∫
B±

r∗,z∗

1

µ±r
∇(ru±)∇(rv) dr dz −

∫
B±

r∗,z∗

iωσ±u±vr dr dz
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∀v ∈ H1
1/2(B

±
r∗,z∗). Then it becomes clear from the variational formulation (1.13) that u|Br∗,z∗ ∈

H1
1/2(Br∗,z∗) and satis�es∫

Br∗,z∗

1

µ
∇(ru) · 1

r
∇(rv̄) dr dz −

∫
Br∗,z∗

iωσuv̄r dr dz

+
⟨
T +γ+u, γ+v

⟩
+
⟨
T −γ−u, γ−v

⟩
=

∫
Br∗,z∗

iωJv̄r dr dz ∀v ∈ H1
1/2(Br∗,z∗). (1.27)

We immediately get the following equivalence result.

Proposition 1.2.7. A function u ∈ H1
1/2(Br∗) is solution of (1.13) if and only if u|Br∗,z∗ ∈

H1
1/2(Br∗,z∗) and is solution of (1.27) and u = u± on B±

r∗,z∗ where u± ∈ H1
1/2(B

±
r∗,z∗) are solution

of (1.24) with ϕ± = γ±(u|Br∗,z∗).

Formulation (1.27) is the one that we would like to use in practice. Proposition 1.2.7 and
the well-posedness of (1.13) show that (1.27) is also well-posed. To be numerically e�ective
one needs explicit expressions for T ±. We shall use for that purpose Proposition 1.2.3. We are
then led to consider the spectral decompositions of Sσ+

µ+ and Sσ−

µ− that correspond to the one in
Proposition 1.2.3 for (µ, σ) = (µ+, σ+) and (µ, σ) = (µ−, σ−) respectively. Since the treatment
of both cases is the same and in order to simplify the notation we shall use the same notation
for the spectral decomposition of Sσ+

µ+ and Sσ−

µ− .

For ϕ± ∈ H
1/2
1/2 (Γ±) we have the spectral decomposition

ϕ± =

m∑
j=1

Q0j(ϕ
±) +

∑
k>n

Qk(ϕ
±).

By de�nition of Q0j and Qk the functions u± de�ned on B±
r∗,z∗ by

u±(r, z) =

m∑
j=1

Q0j(ϕ
±)(r) exp(∓√

ν0j(z ∓ z∗)) +
∑
k>n

Qk(ϕ
±)(r) exp(∓

√
νk(z ∓ z∗)) in B±

r∗,z∗ ,

(1.28)

(the square root is determined as the one with positive real part) formally satisfy (1.24). In order
to rigorously prove this, one only needs to verify that this function is in H1

1/2(B
±
r∗,z∗). Since the

eigenfunctions Q0j(ϕ
±) and Qk(ϕ

±) are in H1
1/2(I), one easily checks that

u±N (r, z) :=

m∑
j=1

Q0j(ϕ
±)(r) exp(∓√

ν0j(z ∓ z∗)) +

N∑
k=n+1

Qk(ϕ
±)(r) exp(∓

√
νk(z ∓ z∗)) in B±

r∗,z∗ ,

(1.29)

is in H1
1/2(B

±
r∗,z∗) and veri�es (1.24) with boundary data on Γ± equal

ϕ±N =
m∑
j=1

Q0j(ϕ
±) +

N∑
k=n+1

Qk(ϕ
±).

We then can conclude using the following lemma.
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Lemma 1.2.8. Let ϕ ∈ H
1/2
1/2 (I) and set for N > n,

ϕN =

m∑
j=1

Q0j(ϕ) +

N∑
k=n+1

Qk(ϕ).

Then, ∥ϕN − ϕ∥
H

1/2
1/2

(I)
→ 0 as N → ∞.

The proof of this Lemma is itself a straightforward consequence of the following result since,
using the notation of the Lemma below,

∥ϕN − ϕ∥2
H̃

1/2
1/2

(I)
=
∑
k>N

(1 + |νk|)
1/2∥PkWϕ∥2L2

1/2
(I).

Lemma 1.2.9. Let θ ∈ [0, 1] and let ν∗ ∈ R. The norm de�ned by

∥ϕ∥2
H̃θ

1/2
(I)

:=

∞∑
k=1

(1 + |νk|)θ∥PkWϕ∥2L2
1/2

(I)

where νk, k > n, are the eigenvalues of Sσ
µ as de�ned in Proposition 1.2.3 and νk = ν∗ for k ≤ n,

de�nes an equivalent norm on Hθ
1/2(I).

Proof. We �rst observe that thanks to Lemma 1.2.5, the result is obvious for θ = 0 since
∥ · ∥

H0,µ
1/2

(I)
is a equivalent norm of L2

1/2(I) and

∥ϕ∥2
L̃2
1/2

(I)
= ∥Wϕ∥2

H0,µ
1/2

(I)

and W : L2
1/2(I) → L2

1/2(I) is an isomorphism. Using interpolation theory one then only needs
to prove the result for θ = 1. The case of θ = 1 will also be proved using interpolation theory
since, using again Lemma 1.2.5 and the de�nition of Aµ, we have H1

1/2(I) = [D(Aµ), L
2
1/2(I)]1/2.

Therefore it is su�cient to prove that

∥ϕ∥2D(Aµ)
= ∥ϕ∥2L2

1/2
(I) + ∥Aµϕ∥2L2

1/2
(I) =

∞∑
k=1

(1 + λ2k)∥Pkϕ∥2L2
1/2

(I)

is equivalent to

∥ϕ∥2
H̃2

1/2
(I)

:=

∞∑
k=1

(1 + |νk|2)∥PkWϕ∥2L2
1/2

(I).

Using the identity Pk(WSσ
µϕ) = νkPkWϕ for k > n, we observe that

∥ϕ∥2
H̃2

1/2
(I)

= ∥ϕ∥2
L̃2
1/2

(I)
+ ∥Sσ

µ (ϕ−Q0ϕ)∥2
L̃2
1/2

(I)
+ |ν∗|2∥Q0ϕ∥2

L̃2
1/2

(I)
. (1.30)

Since

∥Sσ
µ (Q0ϕ)∥2L2

1/2
(I) ≤ C∥Q0ϕ∥2L2

1/2
(I)
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with C = sup{|ν0j |2, j = 1,m}, then Sσ
µ (I − Q0) = Aµ + M0, where M0 := Mσ − Sσ

µQ0 is
a bounded operator on L2

1/2(I). Therefore, with C denoting a constant independent of ϕ but
whose value may change from a line to another, and using the �rst part of the proof,

∥ϕ∥2D(Aµ)
≤ 2∥Sσ

µ (ϕ−Q0ϕ)∥2L2
1/2

(I) + 2∥M0ϕ∥2L2
1/2

(I) + ∥ϕ∥2L2
1/2

(I) ≤ C∥ϕ∥2
H̃2

1/2
(I)

and

∥ϕ∥2
H̃2

1/2
(I)

≤ 2∥Aµϕ∥2
L̃2
1/2

(I)
+ 2∥M0ϕ∥2

L̃2
1/2

(I)
+ (1 + |ν∗|2)∥ϕ∥2

L̃2
1/2

(I)
≤ C∥ϕ∥2D(Aµ)

,

which proves the desired equivalence of norms and concludes the proof.

The expression of u±N in B±
r∗,z∗ (1.29) yields,

∓
∂u±N
∂z

∣∣∣∣
Γ±

=

m∑
j=1

√
ν0jQ0j(ϕ

±) +
∑

n<k≤N

√
νkQk(ϕ

±).

Therefore, using (1.26) and letting N → ∞ we obtain (explicitly specifying in the notation the
dependence on Γ± on the spectral decomposition)

T ±(ϕ±) =
1

µ±

m±∑
j=1

√
ν±0jQ

±
0jϕ

± +
∑
k>n±

√
ν±k Q

±
k ϕ

±

 . (1.31)

1.2.3 On the analysis of spectral error truncation

For numerical simulations the spectral representation of operators T ± should be truncated. We
shall give here some estimates on the error due to this truncation. For N > n±, we de�ne the
projectors

Q±
N :=

m±∑
j=1

Q±
0j +

∑
n±<k≤N

Q±
k ,

and the truncated DtN operators

T ±
N := T ±Q±

N =
1

µ±

m±∑
j=1

√
ν±0jQ

±
0j +

∑
n±<k≤N

√
ν±k Q

±
k

 . (1.32)

According to Lemma 1.2.9, Q±
N : H1/2(Γ±) → H1/2(Γ±) are continuous and therefore T ±

N :

H1/2(Γ±) → H−1/2(Γ±) are also continuous. We are interested in considering uN ∈ H1
1/2(Br∗,z∗)

solving∫
Br∗,z∗

1

µ
∇(ruN ) · 1

r
∇(rv̄) dr dz −

∫
Br∗,z∗

iωσuN v̄r dr dz

+
⟨
T +
N γ

+uN ,Q+
Nγ

+v
⟩
+
⟨
T −
N γ

−uNQ−
Nγ

−v
⟩
=

∫
Br∗,z∗

iωJv̄r dr dz ∀v ∈ H1
1/2(Br∗,z∗). (1.33)
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This variational problem is well-posed for all N as indicated in the following. Using the Riesz
representation theorem, we introduce A0 : H1

1/2(Br∗,z∗) → H1
1/2(Br∗,z∗), A : H1

1/2(Br∗,z∗) →
H1

1/2(Br∗,z∗) and AN : H1
1/2(Br∗,z∗) → H1

1/2(Br∗,z∗) de�ned by

(A0w, v)H1
1/2

(Br∗,z∗ )
=

∫
Br∗,z∗

1

µ
∇(rw) · 1

r
∇(rv̄)− iωσwv̄r dr dz,

(Aw, v)H1
1/2

(Br∗,z∗ )
= (A0w, v)H1

1/2
(Br∗,z∗ )

+
⟨
T +γ+w, γ+v

⟩
+
⟨
T −γ−w, γ−v

⟩
, and

(ANw, v)H1
1/2

(Br∗,z∗ )
= (A0w, v)H1

1/2
(Br∗,z∗ )

+
⟨
T +Q+

Nγ
+w,Q+

Nγ
+v
⟩
+
⟨
T −Q−

Nγ
−w,Q−

Nγ
−v
⟩
,

for all v ∈ H1
1/2(Br∗,z∗), respectively. We recall that the operator A0 is coercive, and more

precisely

ℜ(A0w,w)H1
1/2

(Br∗,z∗ )
≥ a0∥w∥2H1

1/2
(Br∗,z∗ )

for some positive constant a0 independent of w. We observe from (1.25) that

ℜ
⟨
T ±ϕ±, ϕ±

⟩
≥ 0,

and therefore

ℜ(ANw,w)H1
1/2

(Br∗,z∗ )
≥ a0∥w∥2H1

1/2
(Br∗,z∗ )

.

This means in particular, thanks to the Lax-Milgram theorem that AN is bijective and also

∥A−1
N ∥ ≤ 1/a0.

Consequently problem (1.33) has a unique solution uN ∈ H1
1/2(Br∗,z∗) that continuously depends

on J with a modulus of continuity independent of N .
From the continuity of T ± we easily obtain

∥(A−AN )w∥H1
1/2

(Br∗,z∗ )
≤ C

(
∥γ+w −Q+

Nγ
+w∥

H
1/2
1/2

(Γ+)
+ ∥γ−w −Q−

Nγ
−w∥

H
1/2
1/2

(Γ−)

)
(1.34)

for some constant C independent of N and w ∈ H1
1/2(Br∗,z∗). Therefore, using Lemma 1.2.9,

lim
N→∞

∥(A−AN )w∥H1
1/2

(Br∗,z∗ )
= 0 ∀w ∈ H1

1/2(Br∗,z∗).

With u ∈ H1
1/2(Br∗,z∗) denoting the solution of (1.27), we observe that

Au = ANuN .

Therefore,
u− uN = A−1

N (ANu−Au).

This proves in particular that

∥u− uN∥H1
1/2

(Br∗,z∗ )
≤ 1/a0∥(A−AN )u∥H1

1/2
(Br∗,z∗ )

→ 0 as N → ∞. (1.35)

We can summarize these results in the following proposition
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Proposition 1.2.10. Under the same assumptions as in Proposition 1.1.7, the variational prob-
lem (1.33) has a unique solution uN ∈ H1

1/2(Br∗,z∗). Moreover, if u ∈ H1
1/2(Br∗,z∗) is the solution

of (1.27), then

∥u− uN∥H1
1/2

(Br∗,z∗ )
→ 0 as N → ∞.

We shall now give some indication on the rate of convergence under some additional regularity
assumptions on the source term J and the coe�cients µ and σ. Obviously, from (1.34) and (1.35)

∥u− uN∥H1
1/2

(Br∗,z∗ )
≤ C/a0

(
∥γ+u−Q+

Nγ
+u∥

H
1/2
1/2

(Γ+)
+ ∥γ−u−Q−

Nγ
−u∥

H
1/2
1/2

(Γ+)

)
. (1.36)

Therefore the speed of convergence will depend on the regularity of γ±u. Considering prob-
lem (1.10) satis�ed by u in the unbounded domain Br∗ and di�erentiating the equations with
respect to z (i.e. considering the equation satis�ed (u(r, z + ∆z) − u(r, z))/∆z, then letting
∆z → 0) one easily observes from the well-posedness of problem (1.10) that if in addition

∂mJ

∂zm
∈ L2(Br∗),

∂mσ

∂zm
∈ L∞(Br∗) and

∂mµ−1

∂zm
∈ L∞(Br∗),

for some integer m ≥ 0, then

∂mu

∂zm
∈ H1

1/2(Br∗).

Consequently, if this holds with m = 2, then the �rst equation in (1.10) yields

γ±Sσ±

µ±u = − 1

µ±
γ±

∂2u

∂z2
∈ L2

1/2(Γ±).

With the help of Lemma 1.2.9, we can then estimate,

∥γ±u−QN ± γ±u∥2
H

1/2
1/2

(Γ+)
≤ C1

∞∑
k=N+1

(1 + |ν±k |)
1/2∥P±

k W
±ϕ∥2L2

1/2
(I)

≤ C2

(1 + |ν±N |)3/2)

∞∑
k=N+1

(1 + |ν±k |)
2∥P±

k W
±ϕ∥2L2

1/2
(I)

≤ C3

(1 + |ν±N |)3/2)

(
∥ϕ∥2

L̃2
1/2

(Γ±)
+ ∥Sσ±

µ±u∥2
L̃2
1/2

(Γ±)

)
where the constants C1, C2 and C3 are independent of N and where we used in the second
inequality the fact that |νk| → ∞ as k → ∞. According to Proposition 1.2.3 and inequalities
(1.20),

|νN | ≥ CN2

for some constant C > 0 independent from N . From the discussion above we then can deduce
the following theorem.
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Theorem 1.2.11. Under the assumptions as in Proposition 1.1.7 and the additional assumptions
that

∂mJ

∂zm
∈ L2(Br∗),

∂mσ

∂zm
∈ L∞(Br∗) and

∂mµ−1

∂zm
∈ L∞(Br∗),

for m = 0, 1, 2, there exists a constant C that only depends on J , µ, σ, r∗ and z∗ such that

∥u− uN∥H1
1/2

(Br∗,z∗ )
≤ C

N3/2
,

where u ∈ H1
1/2(Br∗,z∗) and uN ∈ H1

1/2(Br∗,z∗) are the respective solutions of (1.27) and (1.33).

We end this section with a remark on the case of Dirichlet boundary conditions.

Remark 1.2.12. The results and proofs of this section apply also to the case where the Neumann
boundary conditions on r = r∗ are replaced with Dirichlet boundary conditions. The only mod-
i�cation would be the replacement of H1

1/2(B) by H1
1/2,0(B) := {u ∈ H1

1/2(B);u = 0 on r = r∗}
where B stands for Br∗ or Br∗,z∗. The eigenvalues λ1k are in this case

λ1k =

(
j1,k
r∗

)2

where j1,k > 0 is the kth positive zero of the Bessel function J1.

1.3 Numerical test

We recall the two-dimensional geometric representation of the eddy current testing procedure
in the Orz plan from Figure 1.1 or, more precisely, Figure 1.2a. In the following examples, the
two coils involved are represented by two rectangles with 0.67mm in length (radial direction)
and 2mm in height (longitudinal direction). They are located 7.83mm away from the z−axis
and have a distance of 0.5mm between them. The SG tube measures 9.84mm in radius for
the interior interface and 11.11mm for the exterior interface. We assume some deposit with a
rectangular shape on the shell side of the tube with 2mm in length and 6cm in height. The probe
coils and the deposit are placed symmetrically with regard to the r-axis. The permeabilities and
conductivities of the materials are given in Table 1.1. The background permeability µ0 is the
permeability of vacuum.

vacuum tube deposit
permeability µv = µ0 µt = 1.01µ0 µd = 10µ0
conductivity (in S ·m−1) σv = 0 σt = 1× 103 σd = 1× 104

Table 1.1: Values of the physical parameters for the numerical examples.

To approximate solutions to the original eddy current problem (1.6) on the unbounded
domain R2

+ by numerical simulations, we use a domain BR,Z with very large cut-o� parameters
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R = 300mm, Z = 100mm and we set Neumann conditions on these boundaries. These values
of R and Z are large enough to ensure that the corresponding reference solution is close enough
to the true solution to be able to study the (non-)convergence of the di�erent domain cut-o�s
presented above. All numerical examples are done using the open-source �nite element software
FreeFem++. The computation of the reference solution uses a mesh that is adaptively re�ned
with respect to this solution with a maximum edge size hmax = 2mm as well as P1 �nite elements
on the mesh. The degrees of freedom of the �nite element space are about 49900 for BR,Z with
R = 300mm and Z = 100mm.

r

z

(a) in�nite domain R2
+

z

rr∗

(b) in�nite band Br∗

z

rr∗

Γ−

Γ+

(c) bounded domain Br∗,z∗

Figure 1.2: Domain cut-o� in the radial and longitudinal directions.

1.3.1 Error of domain cut-o� in the radial direction

Next we cut o� the computational domain much closer to the tube at r = r∗, see Figure 1.2b by
setting Dirichlet or Neumann boundary conditions on Γr∗ = {r = r∗}. Using the same physical
parameters as above and setting again Z = 100mm to approximate solutions to the truncated
problem on Br∗ on the domain Br∗,Z ; again, the value for Z gave su�cient numerical accuracy
in our tests. In Figure 1.3 we show the numerical results corresponding to the convergence
results of Proposition 1.1.7 and Proposition 1.6.3. As r∗ increases, both the relative error of the
Dirichlet problem (1.43) and that of the Neumann problem (1.10) tend to zero in the semi-norm
|·|H1

1/2
(Br∗,Z), though with di�erent rates (Figure 1.3a). In the norm ∥·∥L2

1/2
(Br∗,Z), the error of

the Neumann problem tends to zero, while the error of the Dirichlet problem is bounded away
from zero (Figure 1.3b). The latter observation precisely corresponds to our theoretical results
above, see Remark 1.1.8. The advantage of truncating the computational domain in the radial
direction using a Neumann instead of a Dirichlet boundary condition is clearly con�rmed by
these examples.

In eddy current testing, one is interested in particular in measurements of impedances, which
only depend on the solution inside the deposit domain ΩD. To this end, we also compare the
relative error of solution only on ΩD due to the radial domain cut-o�. From Figures 1.3c and 1.3d,
at a cutting position r∗ = 50mm, the relative errors issued from the Neumann problem in the
semi-norm of H1

1/2(Ωd) and in the norm of L2
1/2(Ωd) are less than 0.5%. Therefore we conclude

that simulations computed in a domain cut at r = r∗ = 50mm using Neumann boundary
conditions are su�ciently precise for iterative reconstruction algorithms, since the noise level
in the measurements would most probably be higher that the numerical error. Concerning the
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�nite element space on Br∗,Z , this cut-o� reduced the degrees of freedom in our experiments to
about 16000.
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Figure 1.3: Relative errors with di�erent cut-o� position in the radial direction.

1.3.2 Error introduced by the DtN maps

In the following, we denote by uexact a reference solution for the eddy current problem computed
on the cut-o� in�nite band Br∗ with r = r∗ = 50mm using Neumann boundary conditions on
Γr∗ , compare Figure 1.2b. To compute uexact numerically, we resolve the problem in a domain
bounded Br∗,Z with Z = 100mm, as explained above. Then Br∗,Z is cut o� into the bounded
domain Br∗,z∗ with Γ± = {0 < r < r∗, z = ±z∗ = ±5mm}, compare Figure 1.2c. The degrees of
freedom of the P1 �nite element space reduced by this cut-o� to about 3500 elements. We set
di�erent boundary conditions � Dirichlet, Neumann or DtN boundary conditions � on the top
and bottom boundaries Γ± and solve the corresponding variational problems again using the
�nite element software package FreeFem++. The solutions are denoted by uDirichlet, uNeumann

and uDtN in the following.
To build the DtN maps, we �rst discretize the interval I = (0, r∗) (that has the same

length as Γ±) using 5000 boundary elements and use an eigenvalue solver (more precisely, the
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function eigs in Matlab) to compute the �rst eigenpairs (ν±0j , Q
±
0j) and (ν±k , Q

±
k ) corresponding

to the physical parameters µ± and σ±. We then interpolate the boundary elements on I in
the boundary element space on Γ± of the �nite element space on the computational domain
(141 elements on each boundary) to get numerical approximations to the truncated DtN maps
introduced in (1.32).

Choose of truncation order N for DtN operators
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Figure 1.4: Relative errors for eddy current simulations using DtN maps with di�erent truncation
orders N .

Figure 1.4 illustrates the relative errors of uDtN using di�erent truncation parameters N
for the DtN operator T ±

N , see (1.32), with respect to uexact in the ∥ · ∥L2
1/2

(Br∗,z∗ )
-norm and the

|·|H1
1/2

(Br∗,z∗ )
-semi-norms. The relative error decreases as the truncation order N increases before

saturating at about N = 16. For N = 20, the errors are su�ciently small.

Comparison with other boundary conditions

Figure 1.5 illustrates real and imaginary parts of for the three di�erent horizontal cutting-o�
techniques (Dirichlet, Neumann, and DtN) we investigated above. It shows in particular that the
domain cut-o� using DtN maps constructed with the �rst 20 eigenvalues and eigenprojections
approaches the most the exact model. Moreover, Table 1.2 indicates the relative errors of the
eddy current simulations on the cut-o� domain in the ∥·∥L2

1/2
(Br∗,z∗ )

-norm and the | · |H1
1/2

(Br∗,z∗ )
-

semi-norm compared to the reference solution . Again, one clearly observes that using the DtN
maps for the horizontal cut-o� introduces a reasonably small error compared to the reference
solution uexact while truncating using Dirichlet- or Neumann boundary conditions on horizontal
boundaries close to the coils and the deposit yields unacceptable errors. In particular, merely
pre-computed DtN maps can ensure fast simulations of non-destructive eddy current measure-
ments when many forward problems need to be solved. As mentioned in the introduction,
such fast simulations are crucial for, e.g., iterative solution methods for the inversion of these
measurements.
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(a) ℜ(uexact) (b) ℑ(uexact)

(c) ℜ(uDirichlet) (d) ℑ(uDirichlet)

(e) ℜ(uNeumann) (f) ℑ(uNeumann)

(g) ℜ(uDtN) (h) ℑ(uDtN)

Figure 1.5: Real and imaginary parts of u �elds on cut-o� domain using di�erent boundary
conditions. DtN maps of truncation order N = 20.

PPPPPPPPPnorm
b. c.

Dirichlet Neumann DtN

∥ · ∥L2
1/2

(Br∗,z∗ )
55.73% 181.57% 0.15%

| · |H1
1/2

(Br∗,z∗ )
28.79% 49.26% 1.86%

Table 1.2: Errors of longitudinal domain cut-o� with di�erent boundary conditions. DtN maps
of truncation order N = 20.

In�uence of the conductivity of tube on the DtN operators

We build the DtN operators with tubes of di�erent conductivities σt and �xed permeability
µt = 1.01µ0. Figure 1.6 shows the �rst 20 eigenvalues of the operator Sσ

µ (see Problem (1.14))
on the complex plane beginning from the one with the least absolute value which is closest to
the original. In Figure 1.6a one observes that all the eigenvalues are real if σt = 0, since the
pertubation operator Mσ = 0 and therefore operator Sσ

µ becomes selfadjoint and admits only
real eigenvalues. In Figure 1.6b, we compare the eigenvalues for the di�erent tube conductivities
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σt. As σt increases, the pertubation term Mσ becomes more and more important and the
corresponding eigenvalues move farther and farther away from the real axis.
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Figure 1.6: First 20 eigenvalues for di�erent tube conductivities.

Table 1.3 gives the cut-o� error with di�erent DtN maps built with the corresponding tube
conductivities. One remarks that the error due to the cut-o� grows as the tube conductivity
increases. This is due to the fact that when the pertubation term Mσ becomes non-negligible
in the operator Sσ

µ , the number of the non-orthogonal eigenprojections Q0j grows and then the
�rst terms in the spectral decomposition of the DtN operators (see (1.31)) are not exact.

XXXXXXXXXXXXnorm
σt (S/m)

0 103 104 105 106

∥ · ∥L2
1/2

(Br∗,z∗ )
0.12% 0.15% 0.93% 8.55% 14.86%

| · |H1
1/2

(Br∗,z∗ )
1.87% 1.86% 1.88% 3.86% 7.69%

Table 1.3: Errors of longitudinal domain cut-o� with di�erent DtN maps for di�erent tube
conductivities; DtN maps truncation order N = 20.

In�uence of the permeability of tube on the DtN operators

In Figure 1.7 we illustrate the �rst 20 eigenvalues of Sσ
µ with di�erent permeabilities of tube µt

but with the same conductivity σt = 103S/m. As µt grows, some eigenvalues move far away
from the real axis, which we have expected in Section 1.2.1 with the estimate (1.20).

Table 1.4 gives the error of domain cut-o�s with di�erent DtN maps built with the corre-
sponding tube permeabilities. The error due to domain cut-o� grows as the tube permeability
goes far away from µ0.
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Figure 1.7: First 20 eigenvalues for di�erent tube permeabilities.

PPPPPPPPPnorm
µt 1.01µ0 2µ0 4µ0 8µ0

∥ · ∥L2
1/2

(Br∗,z∗ )
0.15% 1.56% 2.67% 3.49%

| · |H1
1/2

(Br∗,z∗ )
1.86% 2.70% 4.55% 10.33%

Table 1.4: Errors of longitudinal domain cut-o� with di�erent DtN maps for di�erent tube
permeabilities; DtN maps truncation order N = 20.

In�uence of the deposit shape on the domain cut-o� error

In the reconstruction of deposits in the following chapter, we will evolve the deposit shape at
eash loop in an iterative algorithm. The DtN maps remain however unchanged in the iteration.
So the deposit shape should not have impact on the precision of domain cut-o� with the DtN
maps. We test four di�erent deposit shapes shown in Figure 1.8. Using the DtN operators with
truncation order N = 20, we give the truncation errors in Table 1.5. We conclude that the
deposit shape have no in�uence on the exactness of domain cut-o� with DtN maps.

(a) shape A: 2mm×6mm

rectangle

(b) shape B: 1mm×2mm

rectangle

(c) shape C: 4mm× 6mm

rectangle

(d) shape D: 3mm radius

semi-disc

Figure 1.8: Di�erent deposit shapes.
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XXXXXXXXXXXXnorm
deposit shape

A B C D

∥ · ∥L2
1/2

(Br∗,z∗ )
0.15% 0.16% 0.16% 0.15%

| · |H1
1/2

(Br∗,z∗ )
1.86% 2.33% 2.01% 2.11%

Table 1.5: Errors of longitudinal domain cut-o� with DtN maps for di�erent deposit shapes;
truncation order N = 20.

1.4 Appendix: Some properties of the weighted spaces

We recall the de�nition of the following spaces and corresponding norms. Let Ω ⊂ R2
+ := {(r, z) :

r > 0, z ∈ R} an open set. For λ > 1,

L2
1/2,λ(Ω) := {v : r

1/2(1 + r2)−
λ/2v ∈ L2(Ω)}, H1

1/2,λ(Ω) := {v ∈ L2
1/2,λ(Ω) : r

−1/2∇(rv) ∈ L2(Ω)},

∥v∥L2
1/2,λ

(Ω) =

∥∥∥∥√ r

(1 + r2)λ
v

∥∥∥∥
L2(Ω)

, ∥v∥2H1
1/2,λ

(Ω) = ∥v∥2L2
1/2,λ

(Ω) +
∥∥∥r−1/2∇(rv)

∥∥∥2
L2(Ω)

.

For λ = 0, we de�ne

L2
1/2(Ω) := L2

1/2,0(Ω) = {v : v
√
r ∈ L2(Ω)},

H1
1/2(Ω) := H1

1/2,0(Ω) = {v ∈ L2
1/2(Ω) : r

−1∇(rv) ∈ L2
1/2(Ω)}.

We shall also use the short notation

|v|2H1
1/2

(Ω) =
∥∥∥r−1/2∇(rv)

∥∥∥2
L2(Ω)

.

For r∗ > 0 and an interval I = {r ∈ R : 0 < r < r∗} we de�ne

L2
1/2(I) := {ϕ : ϕ

√
r ∈ L2(I)}, H1

1/2(I) := {ϕ ∈ L2
1/2(I) : r

−1∂r(rϕ) ∈ L2
1/2(I)}.

1.4.1 Proof of Lemma 1.1.1

Proof. Given 0 < ϵ < r∗, we set Bϵ
r∗ := {(r, z) ∈ Br∗ : r ≥ ϵ} and Iϵ := {r ∈ R : ϵ < r < r∗}.

One easily observes that L2
1/2,λ(B

ϵ
r∗) ⊂ L2(Bϵ

r∗) and H
1
1/2,λ(B

ϵ
r∗) ⊂ H1(Bϵ

r∗) ⊂ L2(R,H1((ϵ, r∗)).
Since H1((ϵ, r∗)) ⊂ C((ϵ, r∗)), for 0 < ϵ < r < r′ < r∗ and for almost all z ∈ R, we can write for
v ∈ H1

1/2,λ(B
ϵ
r∗),

|r′v(r′, z)− rv(r, z)| =

∣∣∣∣∣
∫ r′

r

∂

∂s
(sv(s, z)) ds

∣∣∣∣∣ ≤ |r′ − r|

(∫ r′

r
s
1

s

∣∣∣∣ ∂∂s(sv(s, z))
∣∣∣∣2 ds

)1/2

≤ |r′ − r|
√
r∗|v(·, z)|H1

1/2
(Iϵ)∫

R
|r′v(r′, z)− rv(r, z)|2 dz ≤ |r′ − r|2r∗

∫
R
|v(·, z)|2H1

1/2
(Iϵ) dz ≤ |r′ − r|2r∗|v|2H1

1/2
(Bϵ

r∗ )
.
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Thus, for rn → 0 (n → ∞), {rnv(rn, ·)}n∈N∗ is a Cauchy sequence in L2(R). Since L2(R) is
complete, the sequence converges and we denote the L2(R)-norm of its limit by l ≥ 0. Now we
will show that l = 0. If not, due to the continuity of rv on r for almost all z, one should have

∃δ > 0 ∀0 < r < δ

∫
R
|rv(r, z)|2 dz ≥ l2

2
.

For 0 < ϵ < δ < r∗, with Fubini's theorem,

∥v∥2L2
1/2,λ

(Bϵ
r∗ )

≥∥v∥2L2
1/2,λ

(Bϵ
δ)

=

∫
R

(∫ δ

ϵ

1

r(1 + r2)1/2,λ
|rv(r, z)|2 dr

)
dz =

∫ δ

ϵ

1

r(1 + r2)λ

(∫
R
|rv(r, z)|2 dz

)
dr

≥ l
2

2

1

(1 + δ2)λ

∫ δ

ϵ

1

r
dr

ϵ→0−−→ ∞,

which contradicts the fact that v ∈ L2
1/2,λ(B

ϵ
r∗) ⊂ L2

1/2,λ(R
2
+). So

lim
r→0

∥rv(r, ·))∥L2(R) = l = 0.

Therefore, for almost all z ∈ R and v ∈ H1
1/2,λ(B

ϵ
r∗) ⊂ L2(R,H1((ϵ, r∗)),

|v(r, z)|2 = 1

r2
|rv|2 = 1

r2

∣∣∣∣∫ r

0

∂

∂s
(sv(s, z)) ds

∣∣∣∣2 ≤ 1

r

∣∣∣∣∫ r

0

1√
s

∂

∂s
(sv(s, z)) ds

∣∣∣∣2
≤ 1

r
r

∫ r

0

∣∣∣∣ 1√
s

∂

∂s
(sv(s, z))

∣∣∣∣2 ds =

∫ r

0

∣∣∣∣ 1√
s

∂

∂s
(sv(s, z))

∣∣∣∣2 ds

≤
∫ ∞

0

∣∣∣∣ 1√
r

∂

∂r
(rv(r, z))

∣∣∣∣2 dr.

We have

∥v(r, ·)∥2L2(R) =

∫
R
|v(r, z)|2 dz ≤

∫
R

∫ r

0

∣∣∣∣ 1√
s

∂

∂s
(sv(s, z))

∣∣∣∣2 ds dz.

By the dominated convergence theorem, let r → 0 in the above inequality, we get ∥v(0, ·)∥L2(R) =

0, which means v|r=0 vanishes almost everywhere. Now we consider∫
R2
+

r

(1 + r2)λ
|v|2 dr dz =

∫ ∞

−∞

∫ ∞

0

r

(1 + r2)λ
|v(r, z)|2 dr dz

≤
∫ ∞

−∞

(∫ ∞

0

r

(1 + r2)λ
dr

∫ ∞

0

∣∣∣∣ 1√
r

∂

∂r
(rv(r, z))

∣∣∣∣2 dr

)
dz

=

∫ ∞

0

r

(1 + r2)λ
dr

∫
R2
+

∣∣∣∣ 1√
r

∂

∂r
(rv(r, z))

∣∣∣∣2 dr dz =

(∫ ∞

0

r

(1 + r2)λ
dr

)
|v|2H1

1/2
(R2

+).

Therefore, the inequality is proved by setting

C =

√
1 +

∫ ∞

0

r

(1 + r2)λ
dr.
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1.4.2 Proof of Lemma 1.1.6

Proof. The �rst part of the proof is similar to the proof of Lemma 1.1.1. Given 0 < ϵ < r∗,
we note Bϵ

r∗ = {(r, z) ∈ Br∗ : r ≥ ϵ}. It is easy to show that the space L2
1/2(B

ϵ
r∗) is equivalent

to L2(Bϵ
r∗) and H1

1/2(B
ϵ
r∗) to H1(Bϵ

r∗) ⊂ L2(R, H1((ϵ, r∗)). Since H1((ϵ, r∗)) ⊂ C((ϵ, r∗)), for
0 < ϵ < r < r′ < r∗ and for almost all z ∈ R, we can write for v ∈ H1

1/2(B
ϵ
r∗)

|r′v(r′, z)− rv(r, z)| =

∣∣∣∣∣
∫ r′

r

∂

∂s
(sv(s, z)) ds

∣∣∣∣∣ ≤ |r′ − r|

(∫ r′

r
s
1

s

∣∣∣∣ ∂∂s(sv(s, z))
∣∣∣∣2 ds

)1/2

≤ |r′ − r|
√
r∗|v(·, z)|H1

1/2
(I),∫

R
|r′v(r′, z)− rv(r, z)|2 dz ≤ |r′ − r|2r∗

∫
R
|v(·, z)|2H1

1/2
(I) dz ≤ |r′ − r|2r∗∥v∥2H1

1/2
(Br∗ )

.

Thus, for rn → 0 (n → ∞), {rnv(rn, ·)}n∈N∗ is a Cauchy sequence in L2(R). Since L2(R) is
complete, the sequence converges and we denote the L2(R)-norm of its limit by l ≥ 0. Now we
will show that l = 0. If not, due to the continuity of rv on r for almost all z, we should have

∃δ > 0 ∀0 < r < δ

∫
R
|rv(r, z)|2 dz ≥ l2

2
.

For 0 < ϵ < δ, with Fubini's theorem,

∥v(·, z)∥2L2
1/2

(Br∗ )
≥
∫
R

(∫ δ

ϵ

1

r
|rv(r, z)|2 dr

)
dz =

∫ δ

ϵ

1

r

(∫
R
|rv(r, z)|2 dz

)
dr ≥ l2

2

∫ δ

ϵ

1

r
dr

ϵ→0−−→ ∞,

which contradicts the fact that v ∈ L2
1/2(Br∗). So l = 0. For almost all z ∈ R and v ∈

L2(R,H1((ϵ, r∗)),

|v(r, z)|2 =
∣∣∣∣1r (rv(r, z))

∣∣∣∣2 = ∣∣∣∣1r
∫ r

0

∂

∂s
(sv(s, z)) ds

∣∣∣∣2 = 1

r

∣∣∣∣∫ r

0

1√
r

∂

∂s
(sv(s, z)) ds

∣∣∣∣2
≤ 1

r
· r
∫ r

0

1

r

∣∣∣∣ ∂∂s(sv(s, z))
∣∣∣∣2 ds ≤

∫ r

0

1

s

∣∣∣∣ ∂∂s(sv(s, z))
∣∣∣∣2 ds = |v(·, z)|2H1

1/2
((0,r))

≤ |v(·, z)|2H1
1/2

(I).

By the dominated convergence theorem, let r → 0 in the above inequality, we get ∥v(0, ·)∥L2(R) =

0, which means v(0, z) vanishes almost everywhere for z ∈ R. Otherwise,

∥v(·, z)∥2L2
1/2

(I) ≤
∫ r∗

0
r dr|v(·, z)|2H1

1/2
(I) =

r2∗
2
|v(·, z)|2H1

1/2
(I).

Therefore, we get

∥v∥2L2
1/2

(Br∗ )
=

∥∥∥∥∥v(·, z)∥L2
1/2

(I)

∥∥∥∥2
L2(R)

≤ r2∗
2

∥∥∥∥|v(·, z)|2H1
1/2

(I)

∥∥∥∥2
L2(R)

≤ r2∗
2
|v|2H1

1/2
(Br∗ )

.

By setting Cp = r∗/
√
2, the �rst Poincaré-type inequality (1.11) is proved.
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To evaluate the trace, we calculate

∥v∥2
H1/2(Γr∗ )

=
1

r∗
∥
√
r∗v(r∗, ·)∥2H1/2(R) =

1

r∗

(
r∗

∫
R
(1 + |ξ|2)1/2|v̂(r∗, ξ)|2 dξ

)
≤ 1

r∗

(
r∗

∫
R
|v̂(r∗, ξ)|2 dξ + r∗

∫
R
|ξ||v̂(r∗, ξ)|2 dξ

)
=

1

r∗

(
1

r∗

∫
R
|r∗v̂(r∗, ξ)|2 dξ +

∫
R
|ξ|
∫ r∗

0

∂

∂r
(r|v̂|2) dr dξ

)
=

1

r∗

(
1

r∗

∫
R

∣∣∣∣∫ r∗

0

∂

∂r
(rv̂) dr

∣∣∣∣2 dξ +

∫
R
|ξ|
∫ r∗

0
2ℜ
(
v̂
∂

∂r
(rv̂)

)
dr dξ

)

≤ 1

r∗

(∫
R

∣∣∣∣∫ r∗

0

1√
r

∂

∂r
(rv̂) dr

∣∣∣∣2 dξ + 2

∫
R

∫ r∗

0
|ξ||

√
rv̂|
∣∣∣∣ 1√
r

∂

∂r
(rv̂)

∣∣∣∣ dr dξ
)

≤ 1

r∗

(
|v|2H1

1/2
(Br∗ )

+ 2

(∫
R

∫ r∗

0
|ξ|2|

√
rv̂|2 dr dξ +

∫
R

∫ r∗

0

∣∣∣∣ 1√
r

∂

∂r
(rv̂)

∣∣∣∣2 dr dξ

))

=
1

r∗

(
|v|2H1

1/2
(Br∗ )

+ 2

(∫
R

∫ r∗

0

∣∣∣∣ 1√
r

∂

∂z
(rv)

∣∣∣∣2 dr dz +

∫
R

∫ r∗

0

∣∣∣∣ 1√
r

∂

∂r
(rv)

∣∣∣∣2 dr dz

))
= 3

1

r∗
|v|2H1

1/2
(Br∗ )

.

Therefore, we get (1.12).

1.4.3 Proof of Lemma 1.2.1

Proof. We suppose B is a unit ball in H1
1/2(I). To prove the compactness of B in L2

1/2(I), it is

su�cient to show that B̃ := {ϕ(·)
√
· : ϕ ∈ B} is compact in L2(I). We use [18, Corollaire IV.26].

We suppose for arbitrary η > 0 small enough, ω ⊂]η, r∗−η[ is strongly included in I, written
as ω ⊂⊂ I. We note τh the translation operator: (τhϕ)(r) = ϕ(r + h).

First of all, we shall show

∀h ∈ R with |h| < η and ∀ψ = ϕ(·)
√
· ∈ B̃, ∥τhψ − ψ∥L2(ω)

h→0−−−→ 0.



38 Chapter 1. Simulation of eddy current probe

For r ∈ ω, we have |h| < η < r. For h > 0,

|ψ(r + h)− ψ(r)|2 = |ϕ(r + h)
√
r + h− ϕ(r)

√
r|2

= |ϕ(r + h)(r + h)− ϕ(r)r + ϕ(r + h)
√
r + h(

√
r −

√
r + h)|2 1

r

≤ |ϕ(r + h)(r + h)− ϕ(r)r|2 1
r
+ |ϕ(r + h)|2(

√
r + h−

√
r)2

r + h

r

=

∣∣∣∣∫ r+h

r

d

ds
(sϕ(s)) ds

∣∣∣∣2 1r + |ϕ(r + h)|2
(

h√
r + h+

√
r

)2 r + h

r

≤ h

r

∫ r+h

r

∣∣∣∣ d

ds
(sϕ(s))

∣∣∣∣2 ds+ |ϕ(r + h)|2
(

h

2
√
r

)2 2r

r

≤ 2h

∫ r+h

r

1

r + h

∣∣∣∣ d

ds
(sϕ(s))

∣∣∣∣2 ds+
h

2
|ϕ(r + h)|2

≤ 2h

∫ r+h

r

1

s

∣∣∣∣ d

ds
(sϕ(s))

∣∣∣∣2 ds+
h

2
|ϕ(r + h)|2

≤ 2h|ϕ|2H1
1/2

(I) +
h

2
|ϕ(r + h)|2,

thus by Lemma 1.2.1 and the fact that ϕ ∈ B

∥τhψ − ψ∥2L2(ω) ≤ 2hr∗|ϕ|2H1
1/2

(I) +
h

2
∥ϕ∥2L2(I) ≤ 2hr∗|ϕ|2H1

1/2
(I) +

h

2
r∗|ϕ|2H1

1/2
(I) ≤

5h

2
r∗

h→0−−−→ 0.

For h < 0, we note always h > 0 but we calculate

|ψ(r − h)− ψ(r)|2 = |ϕ(r − h)
√
r − h− ϕ(r)

√
r|2

= |ϕ(r)r − ϕ(r − h)(r − h)− ϕ(r − h)
√
r − h(

√
r −

√
r − h)|2 1

r

≤ |ϕ(r)r − ϕ(r − h)(r − h)|2 1
r
+ |ϕ(r − h)|2(

√
r −

√
r − h)2

r − h

r

=

∣∣∣∣∫ r

r−h

d

ds
(sϕ(s)) ds

∣∣∣∣2 1r + |ϕ(r − h)|2
(

h
√
r +

√
r − h

)2 r − h

r

≤ h

r

∫ r

r−h

∣∣∣∣ d

ds
(sϕ(s))

∣∣∣∣2 ds+ |ϕ(r − h)|2
(

h

2
√
r − h

)2 r − h

r

≤ h

∫ r

r−h

1

s

∣∣∣∣ d

ds
(sϕ(s))

∣∣∣∣2 ds+
h

4
|ϕ(r − h)|2

≤ h|ϕ|2H1
1/2

(I) +
h

4
|ϕ(r − h)|2

again by Lemma 1.2.1 we have

∥τ−hψ − ψ∥2L2(ω) ≤ hr∗|ϕ|2H1
1/2

(I) +
h

4
r∗|ϕ|2H1

1/2
(I) ≤

5h

4
r∗

h→0−−−→ 0.

It remains to prove that

∀ϵ > 0 ∃ω ⊂⊂ I such that ∥ϕ(·)
√
·∥L2(I\ω) < ϵ ∀ϕ ∈ B.
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If we take ω = (η, r∗ − η), then by Lemma 1.2.1

∥ϕ(·)
√
·∥2L2(I\ω) = ∥ϕ∥2L2

1/2
((0,η)) + ∥ϕ∥2L2

1/2
((r∗−η,r∗))

≤ η2

2
|ϕ|2H1

1/2
((0,η)) +

η2

2
|ϕ|2H1

1/2
((r∗−η,r∗))

≤ η2

2
.

By setting η small enough we obtain the result.
So the conditions of [18, Corollaire IV.26] are satis�ed, and B is relatively compact in L2

1/2(I).
The embedding H1

1/2(I) ↪→ L2
1/2(I) is hence compact.

1.5 Appendix: Proof of Proposition 1.1.5

Before the proof, we introduce some preliminaries. With the Fourier-transformed representa-
tion (1.8), we have

∂

∂r
(rû)(r, ξ) =

 û(r0, ξ)(−2π|ξ|r) K0(2π|ξ|r)
K1(2π|ξ|r0)

ξ ̸= 0,

0 ξ = 0.

(1.37)

Before the estimate, we introduce some properties for the functions

h(x; a, b) =
1 + x2

2 + x2

[
ax
K1(ax)

K0(ax)
− bx

K0(bx)

K1(bx)

]
, (1.38)

with x > 0, a > b > 0.

Lemma 1.5.1. Let a > b > 0. The function h(x; a, b) de�ned by (1.38) is positive and increasing
in x ∈ R+. Moreover, for �xed b, the unique solution of h(·; a, b) = 1, denoted by x∗(a), has the
asymptotic behavior x∗(a) ∼ O(a−1) when a→ +∞.

Proof. As a > b > 0 and K1(·) > K0(·) for positive arguments, h(·; a, b) is positive on R+.
Since the function (1 + x2)/(2 + x2) is positive and increasing, it is su�cient to discuss the
monotonicity of

h̃(x; a, b) = ax
K1(ax)

K0(ax)
− bx

K0(bx)

K1(bx)
.

Its derivative writes

h̃′(x; a, b) = a2x

(
K2

1 (ax)

K2
0 (ax)

− 1

)
+ b2x

(
1− K2

0 (bx)

K2
1 (bx)

)
− 2b

K0(bx)

K1(bx)
.

We want to show that h̃′(x; a, b) > 0 for x > 0. It is equivalent to say xh̃′(x; a, b) > 0 for x > 0.
If we denote ax = A, bx = B, then we are going to show

A2

(
K2

1 (A)

K2
0 (A)

− 1

)
+B2

(
1− K2

0 (B)

K2
1 (B)

)
> 2B

K0(B)

K1(B)
, A > B > 0.

[10, Theorem 2] implies the following inequality

1

x
·K2

0 (x) < K2
1 (x)−K2

0 (x), x > 0.
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We have

K2
1 (x)

K2
0 (x)

− 1 >
1

x
,

and

K2
1 (x)

K2
0 (x)

>
1 + x

x
⇒ K2

0 (x)

K2
1 (x)

<
x

1 + x
⇒ 1− K2

0 (x)

K2
1 (x)

>
1

1 + x
.

With the above inequalities, we have

A2

(
K2

1 (A)

K2
0 (A)

− 1

)
+B2

(
1− K2

0 (B)

K2
1 (B)

)
> A+

B2

B + 1
> B +

B2

B + 1
≥ 2B

√
B

B + 1
> 2B

K0(B)

K1(B)
.

Thus, we have shown that h(x; a, b) is increasing. With the known limiting form of K0 and K1

for small and big arguments, we have

lim
x→0+

h(x; a, b) = lim
x→0+

1

2

[
ax

1
ax

− ln(ax)
− bx

− ln(bx)
1
bx

]
= 0,

lim
x→+∞

h(x; a, b) = lim
x→+∞

x
aK1(ax)K1(bx)− bK0(ax)K0(bx)

K0(ax)K1(bx)

= lim
x→+∞

x

√
π

2ax

√
π
2bxe

−(a+b)x
(
a− b+O( 1x)

)√
π

2ax

√
π
2bxe

−(a+b)x
(
1 +O( 1x)

) = +∞.

Therefore, the monotonicity and continuity of h(x; a, b) ensures that h(x; a, b) = 1 admits one
unique solution x∗.

Given b > 0, we shall study the asymptotic behavior of x∗(a) when a → +∞. First of all,
we will prove by contradiction that x∗(a) → 0 when a→ +∞. If

∃ϵ > 0, ∀M > 0, ∃a > M, such thatx∗(a) > ϵ,

then

1 = h(x∗(a); a, b) =
1 + x∗(a)2

2 + x∗(a)2
· x∗(a) ·

[
a
K1(ax

∗(a))

K0(ax∗(a))
− b

K0(bx
∗(a))

K1(bx∗(a))

]
≥ 1

2
· ϵ · [M − b]

M→+∞−−−−−→ +∞.

So lima→+∞ x∗(a) = 0. Now we will prove that x∗(a) ∼ O(a−1) (a→ +∞).
1. If there exists a sequence {an} tending to in�nity such that limn→∞ anx

∗(an) = 0, then

[1, 2] ∋ 2 + x∗(an)
2

1 + x∗(an)2
=anx

∗(an)
K1(anx

∗(an))

K0(anx∗(an))
− bx∗(an)

K0(bx
∗(an))

K1(bx∗(an))

∼anx∗(an)
1

anx∗(an)

− ln(anx∗(an))
− bx∗(an)

− ln(bx∗(an))
1

bx∗(an)

n→∞−−−→ ∞.

So there exists lmin > 0 such that ax∗(a) > lmin.
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2. If there exists a sequence {an} tending to in�nity such that limn→∞ anx
∗(an) = +∞,

then

[1, 2] ∋ 2 + x∗(an)
2

1 + x∗(an)2
=anx

∗(an)
K1(anx

∗(an))

K0(anx∗(an))
− bx∗(an)

K0(bx
∗(an))

K1(bx∗(an))

∼anx∗(an)− bx∗(an)
− ln(bx∗(an))

1
bx∗(an)

n→∞−−−→ ∞.

So there exists lmax > 0 such that ax∗(a) < lmax. The needed asymptotic behavior is proved.

Proof of Proposition 1.1.5. From (1.37), we have∥∥∥∥ ∂∂r (ru)(r, ·)
∥∥∥∥2
H−1/2(R)

=

∥∥∥∥(1 + | · |2)−1/4 ∂

∂r
(rû)(r, ·)

∥∥∥∥2
L2(R)

=

∫ ∞

−∞
(1 + |ξ|2)1/2|û(r0, ξ)|2(1 + |ξ|2)−1(2π|ξ|r)2 K

2
0 (2π|ξ|r)

K2
1 (2π|ξ|r0)

dξ

≤ ∥u(r0, ·)∥2H1/2(R)

∥∥∥∥ 2πr| · |
(1 + | · |2)1/2

K0(2πr| · |)
K1(2πr0| · |)

∥∥∥∥2
L∞(R)

= ∥u(r0, ·)∥2H1/2(R)∥gn(·; r0, r)∥
2
L∞(R+

ξ )
,

where

gn(ξ; r0, r) :=
2πrξ

(1 + ξ2)1/2
K0(2πrξ)

K1(2πr0ξ)
, ξ > 0. (1.39)

We would like to �nd the maximum of the function gn. We compute

g′n(ξ; r0, r) · (2πr)−1(1 + ξ2)
3
2K2

1 (2πr0ξ)

=

[
K0(2πrξ) + ξ2πrK ′

0(2πrξ)

]
(1 + ξ2)K1(2πr0ξ)− ξK0(2πrξ)

[
ξK1(2πr0ξ) + (1 + ξ2)2πr0K

′
1(2πr0ξ)

]
=

[
K0(2πrξ)− ξ2πrK1(2πrξ)

]
(1 + ξ2)K1(2πr0ξ)

− ξK0(2πrξ)

[
ξK1(2πr0ξ)− (1 + ξ2)

(
2πr0K0(2πr0ξ) +

1

ξ
K1(2πr0ξ)

)]
=2πξ(1 + ξ2)

[
r0K0(2πr0ξ)K0(2πrξ)− rK1(2πr0ξ)K1(2πrξ)

]
+ (2 + ξ2)K0(2πrξ)K1(2πr0ξ)

=−A(ξ) +B(ξ),

where

A(ξ) = 2πξ(1 + ξ2)

[
rK1(2πr0ξ)K1(2πrξ)− r0K0(2πr0ξ)K0(2πrξ)

]
,

B(ξ) = (2 + ξ2)K0(2πrξ)K1(2πr0ξ).

Obviously,

A(ξ)

B(ξ)
= h(ξ; 2πr, 2πr0).
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From Lemma 1.5.1, g′(ξ; r0, r) admits only one zero (when A(ξ)/B(ξ) = 1), which we denote by
ξ∗(r). Moreover, we have

ξ∗(r) ∼ O

(
1

r

)
r → ∞. (1.40)

Therefore,

gn(ξ
∗(r); r0, r) ∼ O

(
1

K1(r0/r)

)
∼ O

(r0
r

)
r → ∞,

which yields the claimed estimate.

1.6 Appendix: Comparison of di�erent local boundary condi-

tions for radial cut-o�

1.6.1 Dirichlet boundary condition

De�nition 1.6.1. We build a lifting operator Rr∗ : H1/2(R) → H1
1/2(Br0) such that its Fourier

transform satis�es

̂(Rr∗ϕ)(r, ξ) =
I1(2π|ξ|r)
I1(2π|ξ|r∗)

ϕ̂(ξ),

where I1 is the modi�ed Bessel function.

We verify easily that (Rr∗ϕ)|r=0 = 0, (Rr∗ϕ)|r=r∗ = ϕ and

−div

(
1

r
∇(rRr∗ϕ)

)
= 0 in Br∗ .

By multiplying the above equation with rRr∗ϕ and integrating by parts, we get

∥r−1∇(rRr∗ϕ)∥2L2
1/2

(Br∗ )
=

∫
Γr∗

∂

∂r
(rRr∗ϕ)Rr∗ϕ ds =

∫
R

(
∂

∂r
(rRr∗ϕ)

)
(r∗, z)ϕ̄(z) dz

=

∫
R

(
∂

∂r
(rR̂r∗ϕ)

)
(r∗, ξ)

¯̂
ϕ(ξ) dξ =

∫
R
2πr∗

I0(2π|ξ|r∗)
I1(2π|ξ|r∗)

|ξ||ϕ̂(ξ)|2 dξ

≤ 2πr∗
I0(2π|ξ|r∗)
I1(2π|ξ|r∗)

∫
R

(
1 + |ξ|2

)1/2 |ϕ̂(ξ)|2 dξ
= 2πr∗

I0(2π|ξ|r∗)
I1(2π|ξ|r∗)

∥ϕ∥2
H1/2(R).

So we veri�ed that Rr∗ϕ ∈ H1
1/2(Br∗), and

∥r−1∇(rRr∗ϕ)∥2L2
1/2

(Br∗ )
≤ C(r∗)∥ϕ∥H1/2(R) with C(r∗) =

√
2πr∗

I0(2π|ξ|r∗)
I1(2π|ξ|r∗)

. (1.41)

Considering the asymptotic behavior of I0, I1 with big argument, we have

C(r∗) ∼ O(
√
r∗) r∗ → ∞. (1.42)

So the lifting operator Rr∗ grows with a rate of (r∗)
1/2 when r∗ tends to in�nity. Now we

introduce a lemma.
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Remark 1.6.2. Lemma 1.1.6 and (1.42) show that the lifting Rr∗ is �minimal� in the sense
that its norm grows with the least rate, i.e. as (r∗)

1/2 when r∗ tends to in�nity.

The problem with Dirichlet boundary condition on Γr∗ = {r = r∗} writes:
− div

(
1

µr
∇(rud)

)
− iωσud = iωJ in Br∗ ,

ud = 0, on Γ0,

ud = 0, on Γr∗ .

(1.43)

Proposition 1.6.3. Let r∗ > 0 be su�ciently large so that the support of the source term
J ∈ L2(R2

+) is included in Br∗. Then problem (1.43) has a unique solution ud ∈ H1
1/2,0(Br∗).

Assume in addition that there exists positive r0 < r∗ such that the source J and the conductivity
σ vanish and the permeability µ is constant for r > r0. Then there exists a constant C that
depends only on J , r0, µ and σ such that∥∥∥∥1r∇(r(ud − u))

∥∥∥∥
L2
1/2

(Br∗ )

≤ C/r
1/2
∗ ,

where u is the solution of (1.6) (in Proposition 1.1.2).

Proof. The proof of the �rst part is similar to the proof of Proposition 1.1.2 thanks to Lem-
ma 1.1.6. Let us set wd = u− ud. Then wd ∈ H1

1/2(Br∗) and satis�es
− div

(
1

µr
∇(rwd)

)
− iωσwd = 0 in Br∗ ,

wd = 0, on Γ0,

wd = u, on Γr∗ ,

(1.44)

Using the lifting operator Rr∗ , then w̃d := wd −Rr∗(u|Γr∗ ) satis�es: ∀v ∈ H1
1/2,0(Br∗),∫

Br∗

1

µr
∇(rw̃d) · ∇(rv̄)− iωσw̃dv̄r dr dz

=

∫
Br∗

1

µr
∇(rRr∗(u|r∗)) · ∇(rv̄)− iωσRr∗(u|r∗)v̄r dr dz (1.45)

A similar argument to the proof of Proposition 1.1.2 thanks to Lemma 1.1.6 yields the the
existence and uniqueness of w̃d ∈ H1

1/2,0(Br∗), thus the existence and uniqueness of the solution
wd ∈ H1

1/2(Br∗). By taking v = w̃d in the variational formulation (1.45), we get the following
estimates

1

∥µ∥∞

∥∥∥∥1r∇(rw̃d)

∥∥∥∥2
L2
1/2

(Br∗ )

≤

∣∣∣∣∣
∫
Br∗

1

µr
|∇(rw̃d)|2 − iωσ|w̃d|2 dr dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
Br∗

1

µr
∇(rRr∗(u|r∗)) · ∇(rw̃d)− iωσRr∗(u|r∗)w̃dr dr dz

∣∣∣∣∣
≤ 1

inf |µ|

∥∥∥∥1r∇(rRr∗(u|r∗))
∥∥∥∥
L2
1/2

(Br∗ )

∥∥∥∥1r∇(rw̃d)

∥∥∥∥
L2
1/2

(Br∗ )

+ ω∥σ∥∞∥Rr∗(u|r∗)∥L2
1/2

(Br0 )
∥w̃d∥L2

1/2
(Br0 )

.
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The last inequality is due to the fact that σ vanishes for r > r0. Thanks to the Poincaré type
inequality (1.11), we have

∥w̃d∥L2
1/2

(Br0 )
≤ r0√

2

∥∥∥∥1r∇(rw̃d)

∥∥∥∥2
L2
1/2

(Br0)

≤ r0√
2

∥∥∥∥1r∇(rw̃d)

∥∥∥∥2
L2
1/2

(Br∗ )

.

Thus

∥r−1∇(rw̃d)∥L2
1/2

(Br∗ )
≤ C(r0, µ, σ)∥r−1∇(rRr∗(u|r∗))∥L2

1/2
(Br∗ )

.

Considering (1.41), (1.42) and Proposition 1.1.4, we have

∥r−1∇(rwd)∥L2
1/2

(Br∗ )
= ∥r−1∇(r(w̃d +Rr∗u|r∗))∥L2

1/2
(Br∗ )

≤(1 + C(r0, µ, σ))∥r−1∇(rRr∗u|r∗)∥L2
1/2

(Br∗ )
≤ (1 + C(r0, µ, σ))C(r∗)∥u|r∗∥H1/2(R)

≤C/r1/2∗ ,

where C depends only on r0, J, µ, σ.

Remark 1.6.4. Considering the Poincaré type inequality (1.11) with Cp = r∗/2, we do not have
the convergence of ud to u in L2

1/2(Br∗) as r∗ → ∞.

1.6.2 Robin boundary condition

We consider a problem with a Robin boundary condition on Γr∗ :
− div

(
1

µr
∇(rur)

)
− iωσur = iωJ in Br∗ ,

ur = 0, on Γ0,

∂

∂r
(rur) = αur, on Γr∗ ,

(1.46)

where α = α(r∗) is a constant which can be dependent on r∗. We want to discuss the possibility
of obtaining a better approximation model by setting appropriate Robin coe�cient α.

The error wr = u− ur satis�es
− div

(
1

µr
∇(rwr)

)
− iωσwr = 0 in Br∗ ,

wr = 0, on Γ0,

∂

∂r
(rwr) = αwr +

∂

∂r
(ru)− αu, on Γr∗ .

(1.47)

The equivalent variational form of problem (1.47) writes: ∀v ∈ H1
r (Br∗)∫

Br∗

1

µr
∇(rwr) · ∇(rv̄)− iωσwrv̄r −

∫
Γr∗

1

µ
αwrv̄ ds =

∫
Γr∗

1

µ

(
∂

∂r
(ru)− αu

)
v̄ ds
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Similar to the error estimate for Neumann problem above, we need to study the asymptotic
behavior of ∥(∂r(ru) − αu)(r∗), ·)∥H−1/2(R) while r∗ tends to in�nity. From Propositions 1.1.4
and 1.1.5 and the functions gd and gr de�ned in (1.9) and (1.39) respectively, we know that for
r∗ > r0, ∥∥∥∥( ∂

∂r
(ru)− αu

)
(r∗, ·)

∥∥∥∥
H−1/2(R)

≤ ∥u(r0, ·)∥H1/2(R)∥gr(·; r0, r∗)∥L∞(R+
ξ ),

where

gr(ξ; r0, r∗) = gn(ξ; r0, r∗) + α
1

(1 + ξ2)1/2
gd(ξ; r0, r∗), ξ > 0.

As gn(0+; r0, r∗) = 0,

∥gr(·; r0, r∗)∥L∞(R+
ξ ) ≥ |gr(0+; r0, r∗)| = |αgd(0+; r0, r∗)| = |α|r0

r∗
.

In order to have better approximation than the Neumann problem, we will need at least that

α = α(r∗) ∼ o(1) r∗ → ∞.

If we take ξ = ξ∗(r∗) the maximal point of gn(·; r0, r∗), we have

gr(ξ
∗(r∗); r0, r∗) ∼ O

(
1

r∗

)
r∗ → ∞,

0 ≤gd(ξ∗(r∗); r0, r∗) ≤ gd(0; r0, r∗) ∼ O

(
1

r∗

)
r∗ → ∞,

we have

gr(ξ
∗(r∗); r0, r∗) = gr(ξ

∗(r∗); r0, r∗) + α(r∗)gd(ξ
∗(r∗); r0, r∗),

∥gr(·; r0, r∗)∥L∞(R+
ξ ) ≥ |gr(ξ∗(r∗); r0, r∗)| ∼ O

(
1

r∗

)
r∗ → ∞.

Therefore, the approximation model with Robin boundary condition converges at most as fast
as the model with Neumann boundary condition.

1.7 Appendix: 1-D Calibration

1-D models, which result from the invariance in the z-direction and who have known analytical
solutions, can justify the eddy current approximation and calibrate the 2-D solution.

We take a line applied electric current at Γs = {r = rs}, i.e. a Dirac distribution Jθ = Jδrs
and suppose a deposit-free case. The two interfaces where ϵ, µ and/or σ change are the inner
and outer surfaces of the tube Γt1 = {r = rt1}, Γt2 = {r = rt2}. The z-invariance assumption,
the second order Maxwell equation (1.2) and the second order eddy current equation (1.3) yield

∂

∂r

(
1

µr

∂

∂r
(ru)

)
+ ω2(ϵ+ iσ/ω)u = −iωJδrs(r), (1.48)
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where ϵ = 0 for eddy current model. In each region of 0 < r < rs, rs < r < rt1 , rt1 < r < rt2
and r > rt2 , (1.48) writes

r2u′′ + ru′ + (r2k2 − 1)u = 0, (1.49)

with k2 = ω2µ(ϵ + iσ/ω) for the Maxwell model or k2 = iωµσ for the eddy current model. At
Γs, we have two interface conditions. The �rst one is the continuity of the electric �eld

[u]Γs = 0. (1.50)

The second one is given by applying (1.48) in the sense of distribution to any test functions
ϕ ∈ C∞

c (R+): [
1

r

∂

∂r
(ru)ϕ

]
Γs

=

⟨
∂

∂r

(
1

r

∂

∂r
(ru)

)
+ k2u, ϕ

⟩
= −iωµJϕ(rs),[

1

r

∂

∂r
(ru)

]
Γs

= −iωµJ. (1.51)

If k ̸= 0, (1.49) admits elementary solutions as Bessel functions J1(kr) and Y1(kr) orH
(i)
1 (kr),

i = 1, 2. When k = 0, its elementary solutions are r and 1/r. Considering the Dirichlet condition
at r = 0 due to axisymmetry and the radiation condition at in�nity, the solution to the Maxwell
equation (1.2) writes

uM (r) =


α1J1(k1r) 0 < r < rs,

α2J1(k1r) + α3Y1(k1r) rs < r < rt1 ,

α4J1(k2r) + α5Y1(k2r) rt1 < r < rt2 ,

α6H
(i)
1 (k1r) i = 1, 2 r > rt2 ,

with k21 = ω2ϵvµv k22 = ω2µt(ϵt + iσt/ω),

where we choose between i = 1, 2 corresponding to the choice of argument of k1 so that uM
satis�es the radiation condition. Similarly, the solution to the eddy current equation writes

uEC(r) =



β1r 0 < r < rs,

β2r + β3
1

r
rs < r <t1,

β4J1(k3r) + β5Y1(k3r) rt1 < r < rt2 ,

β6
1

r
r > rt2 ,

with k23 = iωµtσt.

We use the interface conditions at the applied electric current line Γs (1.50), (1.51) and the
jump conditions at interfaces Γt1, Γt2 ([u]Γ = 0, [ 1µ

∂
∂n(ru)]Γ = 0) to resolve the linear systems

for coe�cients α = (α1, . . . , α6)
T , β = (β1, . . . , β6)

T :

AMα = b, AECβ = b,

b = (0,−iωµJ, 0, . . . , 0)T ,
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with

AM =



J1(k1rs) −J1(k1rs) −Y1(k1rs) 0 0 0

k1J0(k1rs) −k1J0(k1rs) −k1Y0(k1rs) 0 0 0

0 J1(k1rt1) Y1(k1rt1) −J1(k2rt1) −Y1(k2rt1) 0

0
k1J0(k1rt1 )

µv

k1Y0(k1rt1 )
µv

−k2J0(k2rt1 )
µt

−k2Y0(k2rt1 )
µt

0

0 0 0 J1(k2rt2) Y1(k2rt2) −H(i)
1 (k1rt2)

0 0 0
k2J0(k2rt2 )

µt

k2Y0(k2rt2 )
µt

−k1H
(i)
0 (k1rt2 )
µv


,

and

AEC =



rs −rs − 1
rs

0 0 0

2 −2 0 0 0 0

0 rt1
1
rt1

−J1(k3rt1) −Y1(k3rt1) 0

0 2
µv

0 −k3J0(k3rt1 )
µt

−k3Y0(k3rt1 )
µt

0

0 0 0 J1(k3rt2) Y1(k3rt2) − 1
rt2

0 0 0
k3J0(k3rt2 )

µt

k3Y0(k3rt2 )
µt

0


.

Figure 1.9a compares uM and uEC in the above deposit-free case and in other 1-D con�g-
urations, which shows that the Eddy current model is a good approximation of the Maxwell
equation model.
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Figure 1.9: Comparison of azimuthal electric �elds.

Finally, Figure 1.9b shows the numerical calibration of the 2-D Eddy current model by the
1-D model.
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In this chapter, we �rst aim to estimate the deposit shape given ECT signals by supposing
that the physical nature of deposit is a priori known. We shall employ for that purpose a shape
optimization scheme based on evaluation of the shape derivative of the measured signal with
respect to the deposit shape. We may refer to Murat and Simon [63, 64], Zolésio [85] and Allaire
[2] for a general introduction to shape optimization. The work of Pantz [67] on shape derivatives
of heat equation with jumps of conductivity inspires our derivation of material derivative of
eddy current equation. We remind that there exist other inversion methods based on shape
optimization, such as inversion based on topological derivative (Guzina and Bonnet [16, 40]) or
the level-set approach (Santosa [75], Dorn and Lesselier [37]). From engineering point of view,
Trillon et al. [84] proposed a contrast source inverse method to retrieve �aws from eddy current
signals.

The proposed inversion scheme via shape optimization then employs a standard gradient
descent strategy to minimize a least square cost functional. In order to stabilize the gradient we
regularize the descent direction by solving a Laplace-Beltrami problem on the deposit boundary.
Similar regularization methods are discussed and applied in the works of Nicolas [65] and Chaulet
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[28]. We validate our procedure through some numerical experiments that clearly demonstrate
that the ECT signals are capable to provide good estimates on the deposit shapes.

We then discuss the case where the physical parameters are not known. While we show that
retrieving either the conductivity or the magnetic permeability would be possible if the geometry
is known, retrieving both parameters cannot in principle be accurately estimated without very
good initial guesses. Retrieving the shape and one of the parameters is also very sensitive to
the initial guess. However we show that the sensitivity with respect to geometry is much more
robust. For instance reasonably accurate estimates of the deposits shape can be obtained with
a small error on the physical parameters.

Overview: In Section 2.1 we recall the eddy current model for axisymmetric con�gurations and
explain di�erent impedance measurement modes and how to evaluate them from axisymmetric
eddy current model solutions. Section 2.2 is then dedicated to characterizing the shape derivative
of the solution and the impedance measurements with repect to the deposit shape. We also
give a representation of the impedance derivative using the adjoint state technique. The shape
inversion scheme and numerical validating experiments are given in Section 2.3. We then analyze
in Section 2.4 the reconstruction of physical parameters for known geometries of the deposit.
Finally, we discuss simultaneous shape and physical parameters reconstructions in Section 2.5.

2.1 Modeling of ECT signal for axisymmetric con�gurations

The ECT experiment settings and geometrical con�gurations are depicted in Figure 2.1.

z

Deposit

Tube

Coil 1

Coil 2

Γ−

Γ+

Γr∗

z∗

−z∗

r∗ r

Br∗,z∗

B+
r∗,z∗

B−
r∗,z∗

Figure 2.1: 3-D and 2-D geometrical representations of a SG tube covered with deposits and a
probe consisting of two coils.

Active coils generate an electric �eld E and a magnetic �eld H that satisfy the Maxwell
system {

curlH + (iωϵ− σ)E = J in R3,

curlE − iωµH = 0 in R3,
(2.1)
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where J is the applied electric current density (satisfying divJ = 0), and ω, ϵ, µ, σ respectively
denote the frequency, the electrical permittivity, the magnetic permeability and the conductivity.

In the ECT experiment we are interested in, the probe is done with two coils that move
along the axis of the SG tube from vertical position zmin to zmax. At each position ζ, we get
an impedance measurement (ECT signal) Zmeas(ζ). According to [8, (10a)], in the 3-D case the
impedance measured in the coil k when the electromagnetic �eld is induced by the coil l writes

△Zkl =
1

I2

∫
∂Ω3D

d

(E0
l ×Hk −Ek ×H0

l ) · n dS,

where Ω3D

d ⊂ R3 is the deposit domain, E0
l and H0

l are respectively the electric �eld and
the magnetic �eld in the deposit-free case with corresponding permeability and conductivity
distributions µ0, σ0, while Ek,Hk are those in the case with some deposits. Using the divergence
theorem, we also have

△Zkl =
1

I2

∫
Ω3D

d

div (E0
l ×Hk −Ek ×H0

l ) dx

=
1

I2

∫
Ω3D

d

(curlE0
l ·Hk −E0

l · curlHk − curlEk ·H0
l +Ek · curlH0

l ) dx

=
1

iωI2

∫
Ω3D

d

(
(
1

µ
− 1

µ0
) curlEk · curlE0

l −
(
iω(σ − σ0) + ω2(ϵ− ϵ0)

)
Ek ·E0

l

)
dx.

The eddy current approximation corresponds to low frequency regimes and high conductivities:
ωϵ≪ σ. In this case

△Zkl ≃
1

iωI2

∫
Ω3D

d

(
(
1

µ
− 1

µ0
) curlEk · curlE0

l − iω(σ − σ0)Ek ·E0
l

)
dx. (2.2)

In an axisymmetric (i.e., rotationally invariant) setting, for a vector �eld a we denote by
am = arer + azez its meridian and by aθ = aθeθ its azimuthal component. A vector �eld
a is called axisymmetric if ∂θa vanishes. Then the Maxwell equations (2.1) decouple into two
systems, a �rst one for (Hθ,Em), and a second one for (Hm,Eθ). The solution to the �rst system
vanishes if J is axisymmetric. Substituting Hm in the second system yields the second-order
equation for Eθ = Eθeθ,

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ ω2(ϵ+ iσ/ω)Eθ = −iωJθ in R2

+, (2.3)

with R2
+ := {(r, z) : r > 0, z ∈ R}. Under the eddy current approximation this equation

simpli�es to

∂

∂r

(
1

µr

∂

∂r
(rEθ)

)
+

∂

∂z

(
1

µ

∂Eθ

∂z

)
+ iωσEθ = −iωJθ in R2

+, (2.4)

with a Dirichlet boundary condition at r = 0 due to symmetry: Eθ|r=0 = 0, and a decay
condition Eθ → 0 as r2 + z2 → ∞ at in�nity. We then obtain

△Zkl =
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇(rEθ,k) · ∇(rE0

θ,l)− iω(σ − σ0)Eθ,kE
0
θ,lr

)
dr dz

=
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
∇wk · ∇w0

l

r
− iω(σ − σ0)

wkw
0
l

r

)
dr dz, (2.5)
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where we have set

wj := rEθ,j , w
0
j := rE0

θ,j , j = 1, 2.

We shall assume that µ and σ are in L∞(R2
+) such that µ ≥ µv > 0 on R2

+ and that σ ≥ 0 and
σ = 0 for r ≥ r0 su�ciently large. Then problem (2.4) has a unique solution Eθ ∈ H(R2

+) if one
assumes for instance that Jθ ∈ L2(R2

+) with compact support where we used the notation for
any Ω ⊂ R2

+

H(Ω) :=
{
v : r

1/2(1 + r2)−
λ/2v ∈ L2(Ω), r−

1/2∇(rv) ∈ L2(Ω)
}

where λ can be any real > 1 and where ∇ := (∂r, ∂z)
t. In the following it will be more

convenient to work with w := rEθ ∈ H̃(Ω) := {v : rv ∈ H(Ω)}. This �eld satis�es the
variational formulation

a(w,φ) :=

∫
Ω

(
1

µr
∇w · ∇φ̄− iωσ

r
wφ̄

)
dr dz =

∫
Ω
iωJφ̄ dr dz ∀φ ∈ H̃(Ω) (2.6)

with Ω = R2
+. The solution to (2.6) satis�es (in the weak sense)

− div

(
∇w
µr

)
− iωσ

w

r
= iωJ in Ω. (2.7)

Let us already indicate that for numerical purposes, the computational domain will be trun-
cated in radial direction at r = r∗ where r∗ is su�ciently large and impose a Neumann boundary
condition on r = r∗ (see Figure 2.1). Then the solution for the truncated problem would satisfy
(2.6) with Ω = Br∗ := {(r, z) ∈ R2 : 0 ≤ r ≤ r∗}. This is why we shall use in the sequel the
variational formulation (2.6) with the generic notation for the variational space H̃(Ω) with Ω

denoting R2
+ or Br∗ . We also recall that the variational formulation with Ω = Br∗ can be equiva-

lently reduced to a variational formulation posed on Br∗,z∗ = {(r, z) ∈ R2 : 0 ≤ r ≤ r∗, |z| < z∗}
by introducing appropriate Dirichlet-to-Neumann operators on z = ±z∗. This would be conve-
nient for accelerating numerical evaluation of the solution (see Chapter 1). As a corollary of the
well-posedness of the problem for Eθ we can state: We have

Corollary 2.1.1. Assume that the source J ∈ L2(Ω) with compact support. Then the variational
formulation (2.6) has a unique solution w in H̃(Ω).

Let us �nally note that in practice, the impedances are measured either in the absolute mode,
denoted by ZFA, or in the di�erential mode, denoted by ZF3. From [70], we have

ZFA =
i

2
(△Z11 +△Z21) absolute mode,

ZF3 =
i

2
(△Z11 −△Z22) di�erential mode.

(2.8)

To have an illustration of the impedance measurements without giving the experimental details,
Figure 2.2 shows the ECT signals deformed by an axisymmetric deposit covering 10mm of the
shell side of the tube in the axial direction. We denote by Z(Ωd; ζ) either ZF3 or ZFA the
impedance simulated with a deposit form Ωd at the probe position ζ.
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Figure 2.2: ECT signals of a rectangular deposit.

Notation: In the 2-D axisymmetric con�guration in the Orz plan, the tube is represented by
Ωt := {(r, z) ∈ Ω : rt1 < r < rt2} with 0 < rt1 < rt2 the inner and outer radius of the tube wall.
We denote by Ωs the domain inside the tube (r < rt1) which contains the support of the source:
suppJ ⊂ Ωs. The deposit is at the shell side of the tube, that is Ωd ⊂ {(r, z) ∈ Ω : r > rt2}. We
denote by Ωv the vacuum domain outside the tube Ωv := {(r, z) ∈ Ω : r > rt2} \ Ωd. Then we
have Ω = ∪i∈ΛΩi where Λ = {s, t, d, v} is a set of indices designating the above subdomains of Ω.
We will also use the notation Ωd for the complement set of Ωd in Ω (Ω{

d = Ω\Ωd = Ωs∪Ωt∪Ωv).

2.2 Shape derivative of the impedance measurements

The expression of △Zkl the impedance measurements (2.5) is an integral on the deposit domain
Ωd with integrand (or precisely wk the solution of the eddy current problem (2.6) also depending
on Ωd. To have an expression for the shape derivative of impedance measurements of Ωd, we shall
�rst study the derivatives of the shape-dependent function w which is the solution to problem
(2.6) (and satis�es (2.7)).

2.2.1 Shape and material derivatives of the solution

For Q a regular open subset of Ω, we can de�ne a domain deformation as a perturbation of the
identity

Id + θ : Q → Qθ = (Id + θ)Q,
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where θ ∈ W 1,∞(Q,Q)2 is a perturbation �eld. In our problem, an admissible deformation
should keep the domains Ωt and Ωs invariant, i.e.

suppθ ∩ Ωs = suppθ ∩ Ωt = ∅.

Indeed we are mainly interested in perturbation �elds θ with support located in vicinity of the
interface Γ := ∂Ωd ∩ ∂Ωv between the deposit and the vacuum region outside the tube. We
denote by [·] the jump operator across Γ, i.e. for any f(x) (x = (r, z)) de�ned in a vicinity of Γ
and any x0 = (r0, z0) ∈ Γ

[f ](x0) := f+(x0)− f−(x0),

with f+(x0) = lim
Ωv∋x→x0

f(x) and f−(x0) = lim
Ωd∋x→x0

f(x).

Following [2, Section 6.3.3] we give the following de�nitions for material (Lagrangian) and
shape (Eulerian) derivatives.

De�nition 2.2.1. Let v = v(Q) be a shape-dependent function that belongs to some Banach
space B (that may depend on Q). If ṽ(θ) := v(Qθ)◦(Id+θ) ∈ B, then the material (Lagrangian)
derivative V (θ) of v is de�ned as a linear functional with respect to θ with values in B such that

ṽ(θ) = ṽ(0) + V (θ) + o(θ) in Q,

where limθ→0
∥o(θ)∥B
∥θ∥1,∞ = 0. The shape (Eulerian) derivative v′(θ) of v is de�ned by

v′(θ) = V (θ)− θ · ∇v(Q). (2.9)

In the sequel we shall adopt the generic notation o(θ) to design a function such that
∥o(θ)∥/∥θ∥1,∞ → 0 as θ → 0 where the norm ∥ · ∥ for o(θ) should be clear from the context.

Remark 2.2.2. It is readily seen from De�nition 2.2.1, using the de�nition of ṽ and the chain
rule, that formally

v(Qθ) = v(Q) + v′(θ) + o(θ) in ω ⊂ Q ∩Qθ.

Proposition 2.2.3. Under the same assumptions as Corollary 2.1.1, for an admissible shape
perturbation θ ∈ W 1,∞(Ω,Ω)2, the solution w(Ω) ∈ H̃(Ω) (2.6) has material derivative W (θ)

that is de�ned by

a(W (θ), ϕ) = Lθ(ϕ) ∀ϕ ∈ H̃(Ω),

where Lθ(ϕ) :=

∫
Ω

{
1

µ

(
−div (θ/r)I +

∇θ +∇θt

r

)
∇w · ∇ϕ̄+ iωσdiv (θ/r)wϕ̄+ iωdiv (Jθ)ϕ̄

}
dr dz.

(2.10)

Proof. We consider the change of variables

(Id + θ)−1 : Ωθ → Ω, y 7→ x,
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and in particular the fact that

(∇v) ◦ (Id + θ) = (I +∇θ)−t∇(v ◦ (Id + θ)) = (I +∇θ)−t∇ṽ(θ) ∀v ∈ H̃(Ωθ),

where ∇θ is the Jacobian matrix of θ. Since w(Ωθ) satis�es the variational problem (2.6) in Ωθ,
one gets after the change of variable (2.11),∫

Ω

(
1

r
+∇1

r
· θ + o(θ)

)(
1

µ
A(θ)∇w̃(θ) · ϕ̄− iωσw̃(θ)ϕ̄| det(I +∇θ)|

)
dr dz

=

∫
Ω
iωJ ◦ (Id + θ)ϕ̄| det(I +∇θ)| dr dz, (2.11)

where we have set

A(θ) := | det(I +∇θ)|(I +∇θ)−1((I +∇θ)−1)t (2.12)

and ϕ := φ◦(Id+θ). Expanding the above formulation with respect to θ and using the identities

det(I + θ) = 1 + div θ + o(θ),

(I +∇θ)−1 = I −∇θ + o(θ),

the terms of order zero with respect to θ give exactly the variational formulation on Ω (2.6), while
the �rst order terms with respect to θ yield the formulation (2.10). Since the sesquilinear form
a(·, ·) is continuous and coercive, the variational formulation (2.10) has a unique solution.

To simplify the variational formulation (2.10), we shall prove some preliminary technical
results. For any Q ⊂ Ω, we de�ne a shape-dependent sesquilinear form

α(Q)(u(Q), v(Q)) :=

∫
Q

(
1

µr
∇u · ∇v̄ − iωσ

r
uv̄

)
dr dz ∀(u, v) ∈ H̃(Q)2. (2.13)

In the Orz plane with (r, z)-coordinates, we denote by n = (nr, nz)
t the unit out normal vector

on the boundary ∂Q and by τ = (−nz, nr)t the tangential vector on ∂Q. The tangential gradient
operator on ∂Q is de�ned by ∇τ := ∇ − n∂n = τ(τ · ∇). Then we have in particular on ∂Q
∇u · ∇v = ∂nu∂nv +∇τu · ∇τv.

Lemma 2.2.4. Assume that µ and σ are constant in Q. Let u(Q) ∈ H̃(Q) satisfying in the
weak sense

−div

(
1

µr
∇u
)
− iωσ

r
u = 0 in Q (2.14)

and v(Q) ∈ H̃(Q) and assume that their material derivatives (u′(θ), v′(θ)) and shape derivatives
(U(θ), V (θ)) exist. We assume in addition that D2u and D2v are in L2(Q ∩ {Ωv ∪ Ωd}). Then
the shape derivative of α(Q)(u(Q), v(Q)), denoted by β(θ) exists for all admissible perturbations
θ and is given by

β(θ) =α(Q)(u′(θ), v(Q)) + α(Q)(u(Q), V (θ))

+

∫
∂Q

{
(θ · n)

(
1

µr
∇τu · ∇τ v̄ −

iωσ

r
uv̄

)
−
(

1

µr
∂nu(θ · ∇τ v̄)

)}
ds. (2.15)
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Proof. We recall that β(θ) is formally de�ned as

β(θ) = α(Qθ)(u(Qθ), v(Qθ))− α(Q)(u(Q), v(Q)) + o(θ).

We consider the change of variables fromQθ toQ with (Id+θ)−1 and rewrite de shape-dependent
form α(Qθ)(u(Qθ), v(Qθ)) as an integral on Q. Using the same notations as in De�nition 2.2.1
for ũ(θ), ṽ(θ), we have

α(Qθ)(u(Qθ), v(Qθ))

=

∫
Q

(
1

r
+ θ · ∇(

1

r
) + o(θ)

)(
1

µ
A(θ)∇ũ(θ) · ∇ṽ(θ)− iωσũ(θ)ṽ(θ)| det(I +∇θ)|

)
dr dz,

where A(θ) is given in (2.12). By de�nition of the material derivative, we have the developments

ũ(θ) = ũ(0) + U(θ) + o(θ) = u(Q) + U(θ) + o(θ),

ṽ(θ) = ṽ(0) + V (θ) + o(θ) = v(Q) + V (θ) + o(θ).

Thus one obtains

α(Qθ)(u(Qθ), v(Qθ))

= α(Q)(u(Q), v(Q)) + α(Q)(U(θ), v(Q)) + α(Q)(u(Q), V (θ))

+

∫
Q

{
1

µ

(
θ · ∇1

r
+

1

r
(div θ −∇θ − (∇θ)t)

)
∇u∇v̄ − iωσ

(
θ · ∇1

r
+

div θ

r

)
uv̄

}
dr dz + o(θ)

= α(Q)(u(Q), v(Q)) + α(Q)(U(θ), v(Q)) + α(Q)(u(Q), V (θ))

+

∫
Q

{
1

µ

(
div (θ/r)− 1

r
(∇θ + (∇θ)t)

)
∇u∇v̄ − iωσdiv (θ/r)uv̄

}
dr dz + o(θ).

Therefore, from the de�nition of β(θ), one has

β(θ) = α(Q)(U(θ), v) + α(Q)(u, V (θ)) + I1 + I2 + I3 + I4, (2.16)

with

I1 =
∫
Q

1

µ
div (θ/r)∇u∇v̄ dr dz,

I2 =
∫
Q

1

µ

(
−∇θ

r

)
∇u∇v̄ dr dz,

I3 =
∫
Q

1

µ

(
−(∇θ)t

r

)
∇u∇v̄ dr dz,

I4 =
∫
Q
(−iωσ)div (θ/r)uv̄ dr dz.
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We compute using integration by parts

I1 = −
∫
Q

1

µr
θ · ∇(∇u · ∇v̄) dr dz +

∫
∂Q

(θ · n)
µr

∇u · ∇v̄ ds

= −
∫
Q

1

µr
θ ·
(
D2u∇v̄ +D2v̄∇u

)
dr dz +

∫
∂Q

(θ · n)
µr

∇u · ∇v̄ ds

= −
∫
Q

1

µr

(
∇(∇u · θ) · ∇v̄ − (∇θ)t∇u · ∇v̄ + θ ·D2v̄∇u

)
dr dz

+

∫
∂Q

(θ · n)
µr

(∂nu∂nv̄ +∇τu · ∇τ v̄) ds,

and

I2 = −
∫
Q

1

µr
((∇θr · ∇u)∂rv̄ + (∇θz · ∇w)∂z v̄) dr dz

=

∫
Q

1

µ

(
div

(
∇u
r
∂rv̄

)
θr + div

(
∇u
r
∂z v̄

)
θz

)
dr dz −

∫
∂Q

1

µr
∂nu(θ · ∇v̄) ds

=

∫
Q

{
1

µ
div

(
∇u
r

)
(θ · ∇v̄) + 1

µr
∇u · (∇(∂rv̄)θr +∇(∂z v̄)θz)

}
dr dz

−
∫
∂Q

1

µr
∂nu ((θ · n)∂nv̄ + (θ · ∇τ v̄)) ds

=

∫
Q

{
− iωσ

r
u(θ · ∇v̄) + 1

µr
∇u ·D2v̄θ

}
dr dz −

∫
∂Q

1

µr
∂nu ((θ · n)∂nv̄ + (θ · ∇τ v̄)) ds.

We observe that the last equality is due to (2.14). Finally,

I4 =
∫
Q

iωσ

r
((θ · ∇u)v̄ + u(θ · ∇v̄)) dr dz −

∫
∂Q

(θ · n) iωσ
r
uv̄ ds.

Thus, putting together all previous expressions, one gets

I1 + I2 + I3 + I4 = −
∫
Q

{
1

µr
∇(θ · ∇u) · ∇v̄ − iωσ

r
(θ · ∇u)v̄

}
dr dz

+

∫
∂Q

{
(θ · n)

(
1

µr
∇τu · ∇τ v̄ −

iωσ

r
uv̄

)
−
(

1

µr
∂nu(θ · ∇τ v̄)

)}
ds. (2.17)

Since U(θ) − θ · ∇u = u′(θ) (see (2.9)), by substituting (2.17) in (2.16), we get the result
(2.15).

Proposition 2.2.5. Under the same assumptions as in Proposition 2.2.3, if we assume in
addition that (µ, σ) are piecewise constant and equal to constants (µi, σi) on each subdomains
Ωi (i ∈ Λ) of Ω, and that θ ∈ W 1,∞(Ω,Ω)2 is an admissible perturbation, then the material
derivative W (θ) of w satis�es

a(W (θ), ϕ) =

∫
Γ
(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ ϕ̄− iω[σ]

r
wϕ̄

)
ds

+

∫
Ωd∪Ω{

d

(
1

µr
∇(θ · ∇w) · ∇ϕ̄− iωσ

r
(θ · ∇w)ϕ̄

)
dr dz ∀ϕ ∈ H̃(Ω). (2.18)
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Remark 2.2.6. For the right-hand-side of the variational formulation (2.18), the notation∫
Ωd∪Ωv

means the integrals on Ωd and on Ω{
d are evaluated separately. This is because (θ · ∇w)

is not in the function space H̃(Ω). In fact, the jump of µ through the interface Γ yields the
transmission condition [µ−1∂nw] = 0 on Γ. Thus (θ · ∇w) is discontinuous on Γ

[(θ · ∇w)] = [(θ · n)∂nw + (θ · ∇τw)] = (θ · n)[∂nw] = (θ · n)[µ](µ−1∂nw). (2.19)

However, we locally have (θ · ∇w)|Ωi ∈ H̃(Ωi) for i ∈ {s, t, d, v}. We may refer to [53] for a
detailed discussion on local regularities of PDE solution on subdomains with piecewise regular
coe�cients.

Proof. We write the sesquilinear form a(·, ·) in (2.6) as the sum of forms on subdomains where
µ and σ are constant

a(w,φ) =
∑
i∈Λ

αi(Ωi)(w,φ),

where αi(Q)(·, ·) is de�ned as α(Q)(·, ·) in (2.13) with µ = µi and σ = σi. We will also denote
by βi(θ) the shape derivative associated with αi. We choose the test function φ on Ωθ such that
ϕ = φ◦ (Id+θ) on Ω. Thus, the material derivative of φ vanishes. Considering that the support
of θ is contained in Ωd∪Ωv, that w′(θ) =W (θ)− θ ·∇w on Ωd and on Ω{

d, and that the solution
w satis�es the transmission conditions [w] = [µ−1∂nw] = 0 on Γ, from Lemma (2.2.4) one gets
shape derivative of a(w,φ) is given by∑

i∈Λ
βi(θ) =

∑
i∈Λ

αi(Ωi)(w
′(θ), ϕ)

−
∫
Γ

[
(θ · n)

(
1

µr
∇τw · ∇τ ϕ̄− iωσ

r
wϕ̄

)
−
(

1

µr
∂nw(θ · ∇τ ϕ̄)

)]
ds

=
∑
i∈Λ

αi(Ωi)(W (θ), ϕ)−
∑

i∈{d,v}

αi(Ωi)(θ · ∇w, ϕ)

−
∫
Γ

{
(θ · n)

([
1

µr
∇τw

]
· ∇τ ϕ̄− iω

r
[σw]ϕ̄

)
−
[
1

µr
∂nw

]
(θ · ∇τ ϕ̄)

}
ds

=a(W (θ), ϕ)−
∫
Ωd∪Ω{

d

(
1

µr
∇(θ · ∇w) · ∇ϕ̄− iωσ

r
(θ · ∇w)ϕ̄

)
dr dz

−
∫
Γ
(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ ϕ̄− iω[σ]

r
wϕ̄

)
ds.

On the other hand, since the support of the source J is contained in Ωs, the shape derivative
of the right-hand-side of the variational formulation (2.6) vanishes. Hence, we get the result
(2.18).

Remark 2.2.7. w′(θ) is not in H̃(Ω) due to its discontinuity on Γ as we have discussed in
Remark 2.2.6. From (2.19) we have

[w′(θ)] = −[θ · ∇w] = −(θ · n)[µ](µ−1∂nw). (2.20)
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Thus, one should consider a function space which is less regular than H̃(Ω)

H̃(Ωd ∪ Ω{
d) = {v : v|Ωd

∈ H̃(Ωd), v|Ω{
d
∈ H̃(Ω{

d)}

and a sesquilinear form similar to a(·, ·)

ǎ(u, v) :=

∫
Ωd∪Ω{

d

(
1

µr
∇u · ∇v̄ − iωσ

r
uv̄

)
dr dz ∀(u, v) ∈ H̃(Ωd ∪ Ω{

d)
2.

One obtains immediately from Proposition 2.2.5 that the shape derivative w′(θ) of w satis�es

ǎ(w′(θ), ϕ) =

∫
Γ
(θ · n)

([
1

µ

]
1

r
∇τw · ∇τ ϕ̄− iω[σ]

r
wϕ̄

)
ds ∀ϕ ∈ H̃(Ω). (2.21)

To complete (2.21), one should take into account the discontinuity of w′(θ) on Γ. One possibility
would be to consider a lifting in H̃(Ωd ∪ Ω{

d) of −∂nw and then write a variational formulation
for the di�erence which is an element of H̃(Ω). .

2.2.2 Shape derivative of the impedance

Now that we have the shape and material derivatives of the solution, we can compute the shape
derivative of the measured impedances. Let w be the solution of problem (2.6) with coe�cients
(µ, σ) and w0 the solution in a deposit free-case, i.e. with coe�cients (µ, σ) = (µ0, σ0). We shall
denote by α0(Q) the sesquilinear form α(Q) for (µ, σ) = (µ0, σ0). Following (2.5) we de�ne the
impedance measurement as

△Z(Ω) = 2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
∇w · ∇w0

r
− iω(σ − σ0)

ww0

r

)
dr dz. (2.22)

Proposition 2.2.8. Under the same assumptions as Proposition 2.2.5 for µ, σ and θ, the shape
derivative of the impedance △Z is well de�ned and is given by

△Z ′(θ) =
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w′(θ) · ∇w0 − iω(σ − σ0)

r
w′(θ)w0

)
dr dz

+
2π

iωI2

∫
Γ
(θ · n)

(
(
1

µ
− 1

µ0
)
1

r
∇w · ∇w0 − iω(σ − σ0)

r
ww0

)
ds

=
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇(W (θ)− θ · ∇w) · ∇w0 − iω(σ − σ0)

r
(W (θ)− θ · ∇w)w0

)
dr dz

+
2π

iωI2

∫
Γ
(θ · n)

(
(
1

µ
− 1

µ0
)
1

r
∇w · ∇w0 − iω(σ − σ0)

r
ww0

)
ds. (2.23)

where w′(θ) and W (θ) are respectively the shape and material derivative of w (the solution of
problem (2.6)).

Proof. Since in Ωd, µ, σ, µ0 and σ0 are constant, from (2.5) and the de�nition of the sesquilinear
form α in (2.13) we have

iωI2

2π
△Z = α(Ωd)(w,w0)− α(Ωd)(w

0, w).
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The �eld w0 for the deposit-free case is invariant under the shape deformation (Id + θ) (since
µ0 and σ0 are invariant under the shape deformation (Id+ θ)). Thus its shape derivative is zero
and consequently its material derivative

W 0(θ) = θ · ∇w0.

In Ωd the �eld w satis�es equation (2.14) with µ, σ. So does the �eld w0 in Ωd with µ0, σ0.
Hence, Lemma 2.2.4 implies

iωI2

2π
△Z ′(θ) = α(Ωd)(w

′, w0) + α(Ωd)(w,W 0)− α0(Ωd)(w
0,W )

+

∫
Γ

{
(θ · n)

(
1

µr
∇τw · ∇τw

0 − iωσ

r
ww0

)
−
(

1

µr
∂nw(θ · ∇τw

0)

)}
ds

−
∫
Γ

{
(θ · n)

(
1

µ0r
∇τw

0 · ∇τw − iωσ0

r
w0w

)
−
(

1

µ0r
∂nw

0(θ · ∇τw)

)}
ds.

We evaluate term by term the right-hand-side of above equality. By integration by parts,

α(Ωd)(w,W 0) = α(Ωd)(w, θ · ∇w0)

=

∫
Ωd

(
1

µr
∇w · ∇(θ · ∇w0)− iωσ

r
w(θ · ∇w0)

)
dr dz

=

∫
Ωd

(
−div

(
1

µr
∇w
)
− iωσ

r
w

)
(θ · ∇w0) dr dz +

∫
Γ

1

µr
∂nw(θ · ∇w0) ds

=

∫
Γ

1

µr
∂nw

(
(θ · n)∂nw0 + (θ · ∇τw

0)
)
ds.

From the de�nition of the sesquilinear form,

α0(Ωd)(w
0,W ) = α0(Ωd)(W,w0).

Using the partial di�erential equation satis�ed by w0 in Ωd we get∫
Γ

1

µ0r
∂nw

0(θ · ∇τw) ds

=

∫
Γ

1

µ0r
∂nw

0 (θ · ∇w − (θ · n)∂nw) ds

=

∫
Ωd

div

(
1

µ0r
∇w0(θ · ∇w)

)
dr dz −

∫
Γ
(θ · n) 1

µ0r
∂nw∂nw

0 ds

=

∫
Ωd

{
div

(
1

µ0r
∇w0

)
(θ · ∇w) + 1

µ0r
∇w0 · ∇(θ · ∇w)

}
dr dz −

∫
Γ
(θ · n) 1

µ0r
∂nw∂nw

0 ds

=

∫
Ωd

{(
− iωσ0

r
w0

)
(θ · ∇w) + 1

µ0r
∇w0 · ∇(θ · ∇w)

}
dr dz −

∫
Γ
(θ · n) 1

µ0r
∂nw∂nw

0 ds

= α0(Ωd)(θ · ∇w,w0)−
∫
Γ
(θ · n) 1

µ0r
∂nw∂nw

0 ds.
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Finally, with the above results, one obtains

iωI2

2π
△Z ′(θ) = α(Ωd)(w

′, w0)− α0(Ωd)(W,w0) + α0(Ωd)((θ · ∇w), w0)

+

∫
Γ
(θ · n)

{
(
1

µ
− 1

µ0
)
1

r
(∇τw · ∇τw

0 + ∂nw∂nw
0)− iω(σ − σ0)

r
ww0

}
ds

= α(Ωd)(w
′, w0)− α0(Ωd)(w

′, w0)

+

∫
Γ
(θ · n)

(
(
1

µ
− 1

µ0
)
1

r
∇w · ∇w0 − iω(σ − σ0)

r
ww0

)
ds.

This is exactly expression (2.23).

2.2.3 Expression of the impedance shape derivative using the adjoint state

The expression of the gradient △Z ′(θ) shown in (2.23) contains not only a boundary integral on
Γ whose integrand depends explicitly on the shape perturbation θ, but also a volume integral
on Ωd with the shape or material derivative of w in the integrand which depends implicitly on
θ via the variational problem (2.18). We shall consider here the Hadamard representation of
cost functional derivatives using an appropriately de�ned adjoint state which allows to have an
expression of △Z ′(θ) as a boundary integral on Γ with integrand explicitly dependent on θ. This
expression is much more appropriate for the numerical scheme that we shall use for the inverse
problem.

We de�ne the sesquilinear form

a∗(u, v) := a(v, u) ∀(u, v) ∈ H̃(Ω)2. (2.24)

and we introduce the adjoint problem associated with w0 as �nding p ∈ H̃(Ω) such that

a∗(p, q) =

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w0 · ∇q̄ + iω(σ − σ0)

r
w0q̄

)
dr dz ∀q ∈ H̃(Ω). (2.25)

In particular, p satis�es in the weak sense:

− div

(
1

µr
∇p
)
+

iωσ

r
p = −div

(
(
1

µ
− 1

µ0
)
1

r
∇w0

)
+

iω(σ − σ0)

r
w0 in Ωd,

− div

(
1

µr
∇p
)
+

iωσ

r
p = 0 in Ω{

d,

[p] = 0 on Γ,

[µ−1∂np] = −(
1

µ
− 1

µ0
)∂nw0 on Γ.

(2.26)

Problem (2.25) has the same structure as (2.6) and therefore one can conclude:

Proposition 2.2.9. Let w0 ∈ H̃(Ω) be the solution to the eddy current problem (2.6) in a
deposit-free case, i.e. with (µ0, σ0) instead of (µ, σ). Then, under the same assumptions as in
Corollary 2.1.1 for µ and σ, the variational formulation (2.25) has a unique solution p in H̃(Ω).



62 Chapter 2. Identi�cation of lowly-conductive deposits

Then we have the following result.

Proposition 2.2.10. Under the same assumptions as in Proposition 2.2.8, if p is the adjoint
state satisfying the adjoint problem (2.25), then the shape derivative of the impedance △Z given
by (2.5) has the following expression

△Z ′(θ) =
2π

iωI2

∫
Γ

(θ · n)
r

{[
1

µ

]
∇τw · ∇τ (p− w0)

− [µ](µ−1∂nw)

(
(µ0)−1(∂np)+ − (µ0)−1∂nw

0

)
− iω[σ]w(p− w0)

}
ds, (2.27)

where w (resp. w0) is the solution to the weighted eddy current problem (2.6) with (resp. without)
deposits.

Proof. We take q =W (θ) ∈ H̃(Ω) as test function in (2.25) and get

a(W (θ), p) = a∗(p,W (θ))

=

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w0 · ∇W (θ)− iω(σ − σ0)

r
w0W (θ)

)
dr dz. (2.28)

We consider the function space H̃(Ωd ∪ Ω{
d) and the sesquilinear form ǎ(·, ·) de�ned in Remark

2.2.7. We denote by ǎ∗(·, ·) a sesquilinear form similar to a∗(·, ·)

ǎ∗(u, v) := ǎ(v, u) ∀(u, v) ∈ H̃(Ωd ∪ Ω{
d)

2.

Using (2.26), we have for q ∈ H̃(Ωd ∪ Ω{
d)

ǎ∗(p, q) +

∫
Γ

[
1

r
(µ−1∂np)q̄

]
ds

=

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w0 · ∇q̄ + iω(σ − σ0)

r
w0q̄

)
dr dz −

∫
Γ
(
1

µ
− 1

µ0
)∂nw0q− ds,

and therefore

ǎ∗(p, q) =

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w0 · ∇q̄ + iω(σ − σ0)

r
w0q̄

)
dr dz −

∫
Γ

1

r
(µ−1∂np)+[q̄] ds.

From Remark 2.2.6, (θ · ∇w) is in H̃(Ωd ∪ Ω{
d). Taking q = (θ · ∇w) in the above formulation

and considering the jump condition (2.19), one gets

ǎ((θ · ∇w), p) = ǎ∗(p, (θ · ∇w))

=

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w0 · ∇(θ · ∇w)− iω(σ − σ0)

r
w0(θ · ∇w)

)
dr dz

−
∫
Γ
(θ · n) [µ]

r
(µ−1∂np)+(µ

−1∂nw) ds. (2.29)

Taking ϕ = p in (2.18) yields

a(W (θ), p) =

∫
Γ

(θ · n)
r

([
1

µ

]
∇τw · ∇τp− iω[σ]wp

)
ds+ ǎ((θ · ∇w), p). (2.30)
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From (2.28) � (2.30) one has∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇w′(θ) · ∇w0 − iω(σ − σ0)

r
w′(θ)w0

)
dr dz

=

∫
Γ

(θ · n)
r

{[
1

µ

]
∇τw · ∇τp− [µ](µ−1∂nw)

(
(µ0)−1(∂np)+

)
− iω[σ]wp

}
ds. (2.31)

Since µ0, σ0 are the background coe�cients for the deposit-free case, we have[
1

µ

]
=

1

µ0
− 1

µ
, [µ] = µ0 − µ, [σ] = σ0 − σ.

On Γ we have

(
1

µ
− 1

µ0
)∇w · ∇w0 = (

1

µ
− 1

µ0
)
(
∇τw · ∇τw

0 + ∂nw∂nw
0
)

= (
1

µ
− 1

µ0
)∇τw · ∇τw

0 + (µ0 − µ)(µ−1∂nw)((µ
0)−1∂nw

0)

= −
[
1

µ

]
∇τw · ∇τw

0 + [µ](µ−1∂nw)((µ
0)−1∂nw

0) (2.32)

Finally, from (2.23), (2.31) and (2.32), we conclude the result (2.27).

2.3 Shape reconstruction of deposits using a gradient method

2.3.1 Objective function

We denote by Z the impedance measurement either in absolute mode (ZFA) or in di�erential
mode (ZF3). Giving the ECT signals Zmeas(ζ) for ζ ∈ [zmin, zmax], the inverse problem aims to
approximate the real deposit domain by an estimate Ωd in simulation so that the ETC signals
Z(Ωd, ζ) reproduced with Ωd approach Zmeas(ζ). This naturally motivates us to de�ne a least
square cost functional

J (Ωd) =

∫ zmax

zmin

|Z(Ωd; ζ)− Zmeas(ζ)|2 dζ (2.33)

and apply the shape optimization method to minimize it. To obtain the gradient of the cost
functional J (Ωd), one should compute its shape derivative

J ′(θ) =

∫ zmax

zmin

2ℜ(Z ′(θ)(Z(Ωd; ζ)− Zmeas(ζ))) dζ,

Z ′(θ) (which is either Z ′
FA(θ) or Z

′
F3(θ) according to the measuring mode) is a linear combination

of △Z ′
kl where according to (2.27)

△Z ′
kl(θ) =

2π

iωI2

∫
Γ

(θ · n)
r

{[
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
(µ0)−1(∂npl)+ − (µ0)−1∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

}
ds,
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where wk and w0
l are as de�ned in Section 2.1 and where the adjoint state pl is the solution of

(2.25) with w0 = w0
l .

The shape derivative of the cost functional J can be written as

J ′(Ωd)(θ) =
2π

ωI2

∫
Γ
(n · θ)g ds,

where according to the measuring mode

g =

{
g11 + g21 absolute mode,

g11 − g22 di�erential mode,

with

gkl =

∫ zmax

zmin

ℜ
{
(Z(Ωd; ζ)− Zmeas(ζ))

1

r

([
1

µ

]
∇τwk · ∇τ (pl − w0

l )

− [µ](µ−1∂nwk)

(
1

µ0
(∂npl)+ − 1

µ0
∂nw

0
l

)
− iω[σ]wk(pl − w0

l )

)∣∣∣∣
ζ

}
dζ. (2.34)

We remark in particular that if one choose θ such that

θ = −γ g n on Γ, (2.35)

where γ is a positive constant, then

J ′(Ωd)(θ) = −γ 2π

ωI2

∫
Γ
|g|2 ds ≤ 0.

This means that J (Ωdθ) ≤ J (Ωd) for γ su�ciently small.

2.3.2 Regularization of the descent direction

For an arbitrary parametrization of Ωd, a regularization of the descent direction is in general
needed since the shape increment given by (2.35) may cause singularity on Γ (see the numerical
experiments below). We propose to use the H1(Γ) boundary regularization by solving the
following problem for λ ∈ H1(Γ)2:

λ− α△τλ = θ on Γ, (2.36)

where △τ is the boundary Laplace-Beltrami operator and α > 0 is a regularization parameter.
The equivalent variational formulation of (2.36) is,

∀ψ ∈ H1(Γ)2
∫
Γ
(λ · ψ + α∇τλ · ∇τψ) ds =

∫
Γ
θ · ψ ds. (2.37)

Therefore, λ is two order more regular than θ. It is also a descent direction since

J ′(Ωd)(λ) = − 2π

γωI2

∫
Γ

(
|λ|2 + α |∇τλ|2

)
ds ≤ 0. (2.38)
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2.3.3 Inversion algorithm

The inversion procedure is done as follows:

• Initialization with a deposit domain Ω0
d.

• Step k :

1. Solve the direct problems (2.6) for the di�erent positions ζ of the coils using the
deposit shape Ωk

d and test the stopping rule

J (Ωk
d) ≤ δ

∫ zmax

zmin

|Zmeas(ζ)|2 dζ

where δ is a chosen threshold.

2. Solve the adjoint problems (2.25) for the di�erent coil positions and for the deposit
shape Ωk

d then evaluate the corresponding g.

3. Get a regularized descent direction λk (see (2.36) or (2.37)). The parameter γ in
(2.35) is evaluated at the �rst step (k = 1) such that γmax g ≤ ϵ where ϵ is a chosen
threshold, then it is kept �xed for next iterations.

4. Go to step k + 1 with a deposit domain

Ωk+1
d = (Id + λk)Ωk

d.

2.3.4 Numerical tests

We shall consider here some numerical inversion tests for deposits for geometrical con�gurations
depicted in Figure 2.1. The physical parameters are close to real experiments and are as follows:

• The tube is de�ned by Ωt = {(r, z) : rt1 ≤ r ≤ rt2} with rt1 = 9.84mm, Its conductivity
is σt = 9.7 × 105S/m and its magnetic permeability is µt = 1.01µv, where µv is the
permeability of vacuum.

• The deposit has in general a relatively low conductivity: σd = 1 × 104S/m. It can be
magnetic: permeability µd = 10µv or non-magnetic: µd = µv.

• The operating frequency for the coils is ω = 100kHz, the dimensions of one coil are
0.67mm in length (radial direction) and 2mm in height (axial direction). Both the two
coils are located 7.83mm away from the z-axis and there is a distance of 0.5mm between
them.

The numerical forward problem is set on a bounded domain Br∗,z∗ with r∗ = 30mm and
z∗ = 41mm.It is solved using FreeFem++ with P1 �nite elements and an adapted mesh (using
the command adaptmesh). The number of degrees of freedom is around 1000 (see Figure 2.3a).
To avoid �crime inverse�, we use a re�ned mesh to generate the impedance measurements as
given observation data (see Figure 2.3b). The number of degrees of freedom of P1 �nite element
on this mesh is about 6000.
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(a) adapted mesh for forward problem in inverse al-

gorithm

(b) re�ned mesh for generating observation data

Figure 2.3: Examples of mesh.

For the inversion we use impedance measurements either in the pseudo-absolute mode (FA)
or in the di�erential mode (F3). The number of used vertical positions will be speci�ed for each
experiment. The algorithm parameters for the stopping rule and the increment magnitude are
set to δ = 10−4 and ϵ = 5× 10−4.

Finally let us note that in all subsequent �gures, the target deposit shape is shown in green
while the reconstructed shape using the inverse algorithm is in red.

Parameterized shape reconstruction

Non-magnetic deposits We �rst consider a non-magnetic deposit. We assume that the
deposit is rectangular in the semi-plan R2

+. Then its shape can be parameterized by its thickness
in the r-direction and the positions in the z-direction of its two horizontal sides. The target
shape has 5mm in thickness, and its horizontal sides are at ±5mm.

In Figure 2.4 the only unknown parameter is the thickness of the rectangular deposit. We
use the FA signal at only one probe position for the reconstructions. We initialize the inverse
algorithm with either a small guess (Figure 2.4a) or a large one (Figure 2.4c). The reconstruction
resulting from the small initialization after 108 iterations is shown in Figure 2.4b. We also observe
the decrease of the cost functional as well as those of the gradient (in absolute value) and of the
thickness relative error during the iteration in Figure 2.4e. Figure 2.4d gives the reconstruction
result from the large guess initialization after 14 iterations. Figure 2.4f show the similar decrease
behavior of the cost functional, the gradient and the thickness relative error during iterations.

To reconstruct both the thickness and the two vertical positions of the horizontal sides of the
rectangular deposit, we use either FA or F3 signals at 41 probe positions with a distance of 1mm
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(a) small guess (b) recon-

str., thickness

= 4.901mm

(c) large guess (d) recon-

str., thickness

= 5.065mm
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(f) large guess

Figure 2.4: Results of thickness reconstruction of a rectangular non-magnetic deposit.

between two neighboring positions. Figure 2.5 and Table 2.1 show the results. We initialize the
inverse algorithm with either a small guess (Figure 2.5a) or a large one (Figure 2.5d). The result
from the small guess using FA signal after 71 iterations is shown in Figure 2.5b, and that using F3
signal after 43 iterations is shown in Figure 2.5c. From a large guess, we get the reconstruction
result in Figure 2.5e using FA signal after 24 iterations, and that in Figure 2.5e using F3 signal
after 112 iterations. In Figures 2.5g, 2.5h, 2.5i and 2.5j we observe the decrease of the cost
functional and the gradient (in absolute value) during iterations. However, the decrease of the
shape relative error (the di�erence of the characteristic functions of the target deposit domain
and the reconstructed domain, taking in L2 norm) may stagnate around 10%, which means
that the information from the impedance measurements is no longer su�cient to distinguish the
reconstructed shape from the target shape.

thickness vertical position 1 vertical position 2
target shape 5mm 5mm −5mm

from small guess, FA 5.236mm 4.872mm −4.870mm

from small guess, F3 4.882mm 5.017mm −5.017mm

from large guess, FA 5.015mm 5.041mm −5.039mm

from large guess, F3 5.123mm 4.983mm −4.982mm

Table 2.1: Parameter reconstructions of a rectangular non-magnetic deposit.
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Figure 2.5: Parameter reconstructions of a rectangular non-magnetic deposit.

Magnetic deposits We consider here the reconstruction of the three parameters (thickness
and two vertical positions of the horizontal sides) of a rectangular magnetic deposit: see Fig-
ure 2.6 and Table 2.2. With a small rectangle as initial guess (Figure 2.6a) we get the result
in Figure 2.6b after 353 iterations with the FA signal and that in Figure 2.6c after 352 itera-
tions using the F3 signal. While the inversion algorithm beginning from a large initial guess
(Figure 2.6d) gives the result either shown in Figure 2.6e after 286 iterations using FA signal
or in Figure 2.6f after 462 iterations using F3 signal. The decreasing behavior of the cost func-
tional, the absolute value of the gradient and the relative error of the deposit shape is shown in
Figures 2.6g, 2.6h, 2.6i and 2.6j for the four reconstructions respectively.
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Figure 2.6: Parameter reconstructions of a rectangular magnetic deposit.

thickness vertical position 1 vertical position 2
target shape 2mm 5mm −5mm

from small guess, FA 1.875mm 5.068mm −5.062mm

from small guess, F3 1.887mm 4.992mm −4.992mm

from large guess, FA 2.138mm 4.934mm −4.941mm

from large guess, F3 2.124mm 5.009mm −5.007mm

Table 2.2: Parameter reconstructions of a rectangular magnetic deposit.

Reconstruction of deposits with arbitrary shapes

In this section we consider the reconstruction of the deposit without a priori knowledge on its
shape.
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Figure 2.7: Reconstruction of a rectangular non-magnetic deposit.

In Figure 2.7 the target non-magnetic deposit shape is a rectangle. Since we do not have
any information of the shape, we take a small semi-disc as the initial guess in the inversion
algorithm. We use either FA or F3 signals for inversion at 41 probe positions with a distance of
1mm between each two neighboring positions. The algorithm without boundary regularization
using FA signal is blocked due to singularities on the interface between the deposit and the
vacuum (Figure 2.7b).

To regularize the gradient using the method in Section 2.3.2, we take α = 1 × 10−5 as
the regularization parameter in the boundary regularization problem (2.36). The regularized
algorithm using FA signals ends after 201 iterations with a good estimate (Figure 2.7c) and that
using F3 signals gives the result shown in Figure 2.7d after 412 iterations. We also show in
Figures 2.7e and 2.7f the decrease of the cost functional, the absolute value of gradient and the
relative error on the shape during iterations.

In Figure 2.8 we show the reconstructions of a non-magnetic semi-disc issued from di�erent
initial shapes (Figures 2.8a or 2.8c) using FA signals. The corresponding reconstruction results
shown in Figure 2.8b (37 iterations) and in Figure 2.8d (52 iterations) for the non-magnetic
deposits are satisfying, as we can observe the decrease of the cost functional, the absolute value
of the gradient and the shape relative error in Figures 2.8e and 2.8f.

Finally Figure 2.9 shows the reconstruction of a non convex deposit shape using di�erential
mode (F3) impedance signals. For the non-magnetic deposit (Figures 2.9a � 2.9b), we choose the
stopping threshold δ = 4× 10−4 (which means a 2% relative error of impedance measurements)
and the algorithm ends after 145 iterations. For the magnetic deposit (Figures 2.9c � 2.9d),
with δ = 9 × 10−4 (a 3% relative error of impedance measurements), the algorithm ends after



2.3. Shape reconstruction of deposits using a gradient method 71

(a) initial: s-

mall rectangle

(b) reconstr.

from rectangle

(c) initial: s-

mall semi-disc

(d) reconstr.

from semi-disc

0 10 20 30 40
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration

lo
g1

0

initialization small rectangle

 

 

cost FA
gradient
shape relative error

(e) initial: small rectangle

0 10 20 30 40 50 60
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

iteration

lo
g1

0

initialization small semi−disc

 

 

cost FA
gradient
shape relative error

(f) initial: small semi-disc

Figure 2.8: Reconstruct some non-magnetic deposit in semi-disc shape.
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Figure 2.9: Reconstruction of a deposit with a non convex shape.
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810 iterations.

2.4 On the reconstruction of the deposit conductivity and per-

meability

The conductivity and the permeability are the two critical physical parameters which charac-
terize the material nature of the deposit. The exact values of these parameters, crucial for the
modeling, the simulation and the reconstruction of the deposit is usually not known with a
high precision in the industrial context. In this section we discuss the reconstruction of these
parameters for known shapes. The simultaneous reconstruction of the parameters and the shape
is discussed in the last section.

2.4.1 The cost functional derivative withe respect to the conductivity

We consider the variational formulation of the eddy current problem (2.6). We denote by δw
the variation of w due to a small increment of the conductivity σd → σd + δσd of the deposit
that is assumed to be constant. Therefore, we have ∀φ ∈ H̃(Ω):∫

Ω

(
1

µr
∇(w + δw) · ∇φ̄− iω(σ + δσdχΩd

)

r
(w + δw)φ̄

)
dr dz =

∫
Ω
iωJφ̄dr dz,

where χΩd
is the index function of the domain Ωd. After developing this formulation, the terms

of order zero of the variation give the original problem (2.6). We denote by (∂σw) the derivative
of w with respect to σd:

∂σw := lim
δσd→0

δw/δσd

where the limit holds in H̃(Ω). Then the terms of �rst order of the variation in the above
formulation as δσd goes to zero imply∫

Ω

(
1

µr
∇(∂σw) · ∇φ̄− iωσ

r
(∂σw)φ̄

)
dr dz =

∫
Ωd

iω

r
wφ̄dr dz. (2.39)

Now we consider the impedance measurement given by (2.5). We denote by ∂σ(△Zkl) its deriva-
tive with respect to σd. Then we have

∂σ(△Zkl) =
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
∇(∂σwk) · ∇w0

r
− iω(σ − σ0)

(∂σwk)w
0

r
− iω

wkw
0

r

)
dr dz.

(2.40)

Similarly, we denote by ∂σJ the derivative of the cost functional J given by (2.33) with respect
to the variation of σd. We get

∂σJ =

∫ zmax

zmin

2ℜ
{
∂σZ(Ωd; ζ)(Z(Ωd; ζ)− Zmeas(ζ))

}
dζ, (2.41)
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where according to the impedance measuring mode,

∂σZ(Ωd; ζ) =


∂σZFA =

i

2
(∂σ(△Z11) + ∂σ(△Z21)),

∂σZF3 =
i

2
(∂σ(△Z11)− ∂σ(△Z22)).

To minimize the cost functional with respect to σd we shall use a descent gradient method based
of a numerical evaluation of the derivative provided by (2.41).

2.4.2 Derivative with respect to the magnetic permeability

Similarly to the previous section, we consider here a small increment of the deposit magnetic
permeability µd → µd + δµd which leads to a small variation of the �eld w → δw. Then from
(2.6) we derive∫

Ω

(
1

(µ+ δµdχΩd
)r
∇(w + δw) · ∇φ̄− iωσ

r
(w + δw)φ̄

)
dr dz =

∫
Ω
iωJφ̄dr dz.

If we denote by

∂µw := lim
δµd→0

δw/δµd,

where the limit is understood with respect the H̃(Ω) norm, then one easily verify that ∂µw
satis�es ∀φ ∈ H̃(Ω)∫

Ω

(
1

µr
∇(∂µw) · ∇φ̄− iωσ

r
(∂µw)φ̄

)
dr dz =

∫
Ωd

1

µ2r
∇w · ∇φ̄dr dz. (2.42)

Then the derivative of the impedance measurement △Zkl with regard to the deposit magnetic
permeability, which we denote by ∂µ△Zkl, is given by the following expression:

∂µ(△Zkl) =
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
∇(∂µwk) · ∇w0

l

r
− iω(σ − σ0)

(∂µwk)w
0
l

r
− 1

µ2r
∇wk · ∇w0

l

)
dr dz.

(2.43)

If ∂µJ represents the derivative of the cost functional J with respect to the variation of µd,
then from (2.33),

∂µJ =

∫ zmax

zmin

2ℜ
{
∂µZ(Ωd; ζ)(Z(Ωd; ζ)− Zmeas(ζ))

}
dζ, (2.44)

where according to the impedance measurement mode,

∂µZ(Ωd; ζ) =


∂µZFA =

i

2
(∂µ(△Z11) + ∂µ(△Z21)),

∂µZF3 =
i

2
(∂µ(△Z11)− ∂µ(△Z22)).

To minimize the cost functional with respect to µd we shall also use a descent gradient method
based of a numerical evaluation of the derivative provided by (2.44).
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2.4.3 Numerical tests

Reconstruction of conductivity

We consider the reconstruction of the conductivity of a non-magnetic deposit (µd = µv) with
σd = 1×104S/m in a known shape (a 5mm×10mm rectangle) at the shell side of the tube. We
initialize the inversion algorithm with either a small guess of the conductivity (5× 103S/m) or
a large guess (3 × 104S/m). The reconstruction results using FA signals at one probe position
are given in Figure 2.10.
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Figure 2.10: Reconstruction of the conductivity.

Reconstruction of magnetic permeability

We want to �nd here the magnetic permeability of a magnetic deposit with σd = 1 × 104S/m,
µd = 10µv and in a known shape (a 2mm× 10mm rectangle) at the shell side of the tube. We
initialize the inversion algorithm with either a small guess of the magnetic permeability (2µv)
or a large guess (15µv). The reconstruction results using FA signals at one probe position are
given in Figure 2.11.
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Figure 2.11: Reconstruct of magnetic permeability.
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Simultaneous reconstruction of conductivity and the magnetic permeability

We try to reconstruct here both the conductivity and the magnetic permeability with FA signals
at one probe position. The conductivity and the magnetic permeability of the target rectangular
deposit (2mm×10mm) are respectively σt = 1×104S/m, µt = 10µv. The initialization of these
two parameters can be either small or large. The results are shown in Figure 2.12 and Table 2.3.
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Figure 2.12: Reconstruction of both the conductivity and the magnetic permeability using FA
signals.

initial guess reconstructed number of iterations
target deposit (10000, 10)

test 1 (5000, 5) (9309, 9.65) 44

test 2 (5000, 20) (10666, 10.37) 12

test 3 (20000, 5) (10649, 9.78) 42

test 4 (20000, 20) (10921, 10.24) 13

Table 2.3: Reconstruction of the conductivity and the relative magnetic permeability
(σd(S/m), µd) using FA signals.

We observe that the reconstruction results are not accurate even if the normalized cost func-
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tional is under 10−4. This is explained by the extremely low dependence of the cost functional
with repect to simultaneous variations of the two parameters. This is clearly indicated by Fig-
ure 2.13. We hence conclude that the these eddy-current measurements are not really suited to
determine physical parameters.
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2.5 On the reconstruction of the shape and physical parameters
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Figure 2.14: Interference between physical parameters and shape parameter.

We would like to discuss here the possibility of reconstructing simultaneously the conductivity
(or the magnetic permeability) and the shape of the deposit by coupling the inversion algorithm
for shape reconstruction in Section 2.3.3 and that for conductivity (magnetic permeability)
reconstruction. We consider the most simple cases in which the deposit shape is a rectangle
with unknown thickness but with �xed horizontal sides.

In the �rst case with unknown conductivity and thickness, the target deposit is a 5mm ×
10mm rectangle with the σd = 104S/m and µd = µv. For rectangular deposits with the range of
thickness from 4mm to 6mm and the range of conductivity from 8×103S/m to 1.2×104S/m, we
show in Figure 2.14a the value (in log10) of the cost functional of the absolute mode impedance
measurements (FA) normalized with regard to the FA impedance measurement of the target
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deposit.
In the second case where the magnetic permeability and the thickness are to reconstruct, the

target deposit is a 2mm× 10mm rectangle with σd = 104S/m and µd = 10µv. For rectangular
deposits with the range of thickness from 1mm to 3mm and the range of relative magnetic
permeability from 8 to 12, we show similarly the normalized cost functional for FA signals in
Figure 2.14b.

In both two cases the interferences between the physical parameters and the geometrical
parameter (the thickness) are too important to hope obtaining a precise reconstruction. For
instance, σ = 0.95 × 104S/m and a thickness = 5.6mm would lead to a relative magnitude of
the cost functional of order 10−4 which reaches the stopping threshold of the inversion algorithm.
Similarly, µ = 0.95µv and a thickness =2.2mm would lead to a relative magnitude of the cost
functional of order 10−4.

σ(S/m) µ/µv initial guess reconstruction
target deposit 1× 104 10 2mm

test 1 0.98× 104 10 0.5mm 1.91mm

test 2 0.98× 104 10 4mm 2.08mm

test 3 1× 104 9.8 0.5mm 1.96mm

test 4 1× 104 9.8 4mm 2.13mm

Table 2.4: Reconstruction of thickness of a rectangular deposit with wrong values of the con-
ductivity or the magnetic permeability using FA signals.

However, with a good initial guess of the conducitivity and the permeability, shape recon-
struction of deposits yields reasonable results. We observe in Table 2.4 that a small error in σ
or in µ (2%) would still lead to accurate reconstruction of deposit shape.
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Other than deposits such as the magnetite which have a relatively comparable electrical
conductivity to that of the SG tube, it is also possible that some thin layer of copper deposit
covers the shell side of the tube and therefore modify the eddy current signal. These deposits
are characterized by a very high conductivity (as compared to SG tubes) and a very small
thickness, see Table 3.1. This type of deposits does not directly e�ect the safety of SG. However
their presence may mask other type of problematic faults such as cracks. This is why it is
important to be able to detect them.

tube wall copper layer
conductivity (in S ·m−1) σt = 0.97× 106 σc = 58.0× 106

thickness (in mm) rt2 − rt1 = 1.27 0.005 ∼ 0.1

Table 3.1: Conductivity and scale di�erences between tube wall and copper layer.

A major numerical challenge to deal with this problem in the full model is the expensive
computing cost resulting from the fact that the domain discretization should use a very �ne
mesh with the size adapted to the thin layer. To reduce the numerical cost, we replace the thin
deposit layer by some transmission conditions using the asymptotic expansion of the solution
with respect to the thickness of the deposit. According to the choice of a rescaling parameter
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m and the asymptotic expansion order n, we build a family of transmission conditions Zm,n

linking up the solutions at the two sides of the deposit layer. There is a rich literature on
asymptotic models. We may refer to Tordeux [82], Claeys [30], Delourme [36], Poignard [71] and
the references therein for di�erent approaches and various applications.

The objective of this chapter is to choose the transmission conditions, or the parameters
(m,n), with which the direct asymptotic model not only gives a good approximation of the
full model, but also allows us to reduce the inversion cost. For this purpose, we shall consider
here a simpli�ed case where the deposit layer has constant thickness, and compute the explicit
expressions of Zm,n. We then compare the errors of the asymptotic models using di�erent Zm,n

with regard to the full model via several numerical tests and discuss the appropriate choice of
Zm,n.

Although mainly considering here the case of deposit with constant thickness, we shall in-
troduce the asymptotic method for a general shape of the deposit. This will be useful for the
next chapter where this case is considered with the appropriate scaling for the conductivities.

3.1 Settings for asymptotic models

3.1.1 Rescaled in-layer eddy current model

Tube Deposit

uδ− uδ+uδ

z

r

δd(z)

ΓcΓt1

rt1 rt2

Γt2

Figure 3.1: Representation of a thin layer deposit.

On the domain of problem Ω, we set

Ω± := {(r, z) ∈ Ω : r ≷ rt2}

We consider a thin layer of deposit with high conductivity (in our case, a layer of copper) covering
axisymmetrically (a part of) the shell side of the tube. The deposit thin layer is depicted by the
domain Ωδ

c ⊂ Ω+. We denote by uδ± the electric �elds outside the deposit layer, with uδ− in Ω−
and uδ+ in Ω+ \ Ωδ

c (at the shell side of the deposit layer), and by uδ the in-layer electric �eld,
i.e. in Ωδ

c (see Figure 3.1). We assume that the thickness fδ(z) at the vertical position z is of
the order δ

fδ(z) = δd(z),
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where δ is a small parameter and d(z) is independent of δ. Assuming that the deposit conduc-
tivity is of the form

σc =
σm
δm

m ∈ N, (3.1)

where σm is an appropriately rescaled conductivity and m is the rescaling parameter. We will
particularly interest in the cases where m = 0, 1, 2. Therefore, the eddy current equation in the
deposit layer writes

−div

(
1

µcr
∇(ru)

)
− iω

σm
δm

u = 0 on Ωδ
c (3.2)

We rescale also the distance dimension in the direction r to represent the thin layer

ρ =
r − rt2
δ

, ρ ∈ [0, d(z)],

and we denote by ũ = ũ(ρ, z) := uδ(rt2 + δρ, z) the rescaled in-layer solution.

3.1.2 Taylor developments for uδ
+

We would like to extend the solution outside the deposit layer uδ+ through the layer domain till
the interface Γt2, i.e. from Ω+ \Ωδ

c to Ω+, such that the transmission conditions on Γc between
u and uδ+ could be expressed by terms of uδ+ on Γt2. As uδ+ satis�es the eddy current equation
with coe�cients µ = µv and σ = σv = 0 in Ω+ \Ωδ

c, it is natural to assume that its extension to
Ωδ
c satis�es the same equation

−div

(
1

µvr
∇(ruδ+)

)
= 0 in Ω+.

Using the variable substitution ν = r − rt2 , one rewrites the above equation in the following
form

4∑
j=0

νjAj (ν∂ν , ∂z)u
δ
+ = 0, (3.3)

where

A0 (ν∂ν , ∂z) = (ν∂ν)
2 − ν∂ν ,

A1 (ν∂ν , ∂z) =
2

rt2
(ν∂ν)

2 − 1

rt2
ν∂ν ,

A2 (ν∂ν , ∂z) =
1

r2t2
(ν∂ν)

2 − 1

r2t2
+ ∂2z ,

A3 (ν∂ν , ∂z) =
2

rt2
∂2z ,

A4 (ν∂ν , ∂z) =
1

r2t2
∂2z .
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The asymptotic expansion of uδ+ with respect to δ is in the form

uδ+(r, z) =
∞∑
n=0

δnun+(r, z).

Obviously each term un+(r, z) veri�es the same equation (3.3). With Taylor series expansion,
one has

un+(rt2 + ν, z) =
∞∑
k=0

νkun,k+ (z) where un,k+ (z) =
1

k!

(
∂kνu

n
+

)
(rt2 , z).

Since

ν∂ν

(
νkun,k+ (z)

)
= k

(
νkun,k+ (z)

)
,

we can indeed write Ai (ν∂ν , ∂z) as Ai (k, ∂z) while it is applied to
(
νkun,k+ (z)

)
. Thus, from

(3.3)

4∑
j=0

∞∑
k=0

Aj(k, ∂z)(ν
k+jun,k+ ) = 0.

The equality at order O(νk) gives

A0 (k, ∂z)u
n,k
+ = −

4∑
j=1

Aj (k − j, ∂z)u
n,k−j
+ ,

with un,−1
+ = un,−2

+ = un,−3
+ = un,−4

+ = 0. Now we consider A0 (k, ∂z) = k2 − k. For k ≥ 2,
A0 (k, ∂z) ̸= 0, thus invertible with its inverse A−1

0 (k, ∂z) =
1

k2−k
. So we have

un,k+ = −A−1
0 (k, ∂z)

 4∑
j=1

Aj (k − j, ∂z)u
n,k−j
+

 , k ≥ 2. (3.4)

Now we de�ne recurrently two families of operators {S0
k (∂z) ,S1

k (∂z)}:

S0
0 := Id, S1

0 := 0, S0
1 := 0, S1

1 := Id,

k ≥ 2


S0
k := −A−1

0 (k, ∂z)

 4∑
j=1

Aj (k − j, ∂z)S0
k−j (∂z)

 ,

S1
k := −A−1

0 (k, ∂z)

 4∑
j=1

Aj (k − j, ∂z)S1
k−j (∂z)

 .

(3.5)

From the recurrent relation (3.4), one observes

un,k+ (z) = S0
k (∂z)u

n
+(rt2 , z) + S1

k (∂z) ∂ru
n
+(rt2 , z).
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Therefore we have the following developments
un+(rt2 + ν, z) =

∞∑
k=0

νk
(
S0
k (∂z)u

n
+ + S1

k (∂z) ∂ru
n
+

)
(rt2 , z),

∂ru
n
+(rt2 + ν, z) =

∞∑
k=0

νk(k + 1)

(
S0
k+1 (∂z)u

n
+ + S1

k+1 (∂z) ∂ru
n
+

)
(rt2 , z).

We also de�ne the operators 
S̃0
k = S0

k − 1

rt2
S1
k ,

S̃1
k =

1

rt2
S1
k .

(3.6)

Then the Taylor series expansions write
un+(rt2 + ν, z) =

∞∑
k=0

νk
(
S̃0
k (∂z)u

n
+ + S̃1

k∂r(ru
n
+)
)
(rt2 , z),

∂r(ru
n
+)(rt2 + ν, z) =

∞∑
k=0

νk(k + 1)
(
(rt2 S̃0

k+1 + S̃0
k)u

n
+ + (rt2 S̃1

k+1 + S̃1
k)∂r(ru

n
+)
)
(rt2 , z).

(3.7)

3.1.3 Transmission conditions between ũ (or w̃) and uδ
±

The transmission conditions between the �elds in domains representing di�erent materials link
them on the interfaces where the conductivity σ and/or the permeability µ change. The trans-
mission conditions between the �eld inside the tube uδ− and the in-layer �eld u on Γt2 are

uδ−|rt2 = u|rt2 , (3.8a)

1

µt
∂r(ru

δ
−)

∣∣∣∣
rt2

=
1

µc
∂r(ru)

∣∣∣∣
rt2

. (3.8b)

The transmission conditions between the �eld outside the deposit layer uδ+ and the in-layer �eld
u on Γc write 

uδ+|Γc = u|Γc , (3.9a)
1

µv
∂n(ru

δ
+)

∣∣∣∣
Γc

=
1

µc
∂n(ru)

∣∣∣∣
Γc

. (3.9b)

The unit normal and tangential vectors on Γc at the point (rt2 + δd(z), z) are

n =
(1,−δd′(z))√
1 + (δd′(z))2

, τ =
(δd′(z), 1)√
1 + (δd′(z))2

.

The �rst transmission condition (3.9a) implies a continuous condition of the tangential deriva-
tives of uδ+ and u

τ · ∇uδ+|rt2+δd = τ · ∇u|rt2+δd(
δd′∂r(ru

δ
+) + ∂z(ru

δ
+)

)∣∣∣∣
rt2+δd

=

(
δd′∂r(ru) + ∂z(ru)

)∣∣∣∣
rt2+δd

, (3.10)
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While the second transmission condition (3.9b) yields

1

µv
∂n(ru

δ
+)

∣∣∣∣
rt2+δd

=
1

µc
∂n(ru)

∣∣∣∣
rt2+δd

1

µv

(
∂r(ru

δ
+)− δd′∂z(ru

δ
+)

)∣∣∣∣
rt2+δd

=
1

µc

(
∂r(ru)− δd′∂z(ru)

)∣∣∣∣
rt2+δd

. (3.11)

(3.10) and (3.11) yield the transmission conditions on Γc
u|rt2+δd = uδ+|rt2+δd, (3.12a)

∂r(ru)|rt2+δd =

(
µc

µv
+ (δd′)2

1 + (δd′)2
∂r(ru

δ
+) + (1− µc

µv
)

δd′

1 + (δd′)2
∂z(ru

δ
+)

)∣∣∣∣∣
rt2+δd

. (3.12b)

3.1.4 Procedure for obtaining approximate transmission conditions Zm,n be-
tween uδ

±

Given a rescaling parameter m ∈ N in (3.1), we write the rescaled in-layer eddy current problem
(3.2) as a Cauchy problem for the rescaled in-layer solution ũ with intial values given by the
transmission conditions (3.8) between ũ and uδ− on Γt2. The boundary values of ũ on Γc should
match the transmission conditions (3.12) between ũ and uδ+ on Γc, which yields the transmission
conditions between uδ− and uδ+ on Γt2 by considering the Taylor series expansion (3.7) which
allows us to extend uδ+ to the interface Γt2 (3.12).

In asymptotic expansions, we develop uδ± and ũ with respect to δ:

uδ± =

∞∑
n=0

δnun±, ũ =

∞∑
n=0

δnun.

We denote by Zm,n the approximate transmission conditions between uδ± on Γt2 with rescaling
parameter m at order n in the asymptotic expansion (O(δn)). Therefore, we can obtain a family
of asymptotic models with di�erent approximate transmission conditions Zm,n according to the
choice of (m,n).

3.2 Asymptotic models for deposits with constant thickness

To determine (m,n) with which the asymptotic model using Zm,n is both a good approximation
and easy to deduce inverse methods, we study a simpli�ed case where the deposit layer on the
shell side of the tube has constant thickness δ.

3.2.1 Rescaling of the in-layer problem

Since the deposit layer has constant thickness, we set the layer thickness fδ(z) = δ, i.e. d(z) = 1.
Therefore, we have

ρ =
r − rt2
δ

ρ ∈ [0, 1] .
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We denote by km the complex quantity with positive imaginary part such that

k2m = iωµcσm

We rewrite the di�erential equation for the in-layer �eld after rescaling

ũ(ρ, z) := u(rt2 + δρ, z)

according to the di�erent rescaling parameter m.

1. m = 0.

From the eddy current equation in the deposit layer (3.2), we get

r2

δ2
∂2ρ ũ+

r

δ
∂ρũ− ũ+ r2

(
∂2z ũ+ k20ũ

)
= 0.

By substituting r with rt2 + ρδ, we obtain

∂2ρ ũ = −δB1
0ũ− δ2B2

0ũ− δ3B3
0ũ− δ4B4

0ũ, (3.13)

with

B1
0 =

2ρ

rt2
∂2ρ +

1

rt2
∂ρ,

B2
0 =

ρ2

r2t2
∂2ρ +

ρ

r2t2
∂ρ −

1

r2t2
+ ∂2z + k20,

B3
0 =

2ρ

rt2

(
∂2z + k20

)
,

B4
0 =

ρ2

r2t2

(
∂2z + k20

)
.

2. m = 1.

From (3.2), we obtain

r2

δ2
∂2ρ ũ+

r

δ
∂ρũ− ũ+ r2

(
∂2z ũ+

k21
δ
ũ

)
= 0.

By substituting r with rt2 + ρδ, we get

∂2ρ ũ = −δB1
1ũ− δ2B2

1ũ− δ3B3
1ũ− δ4B4

1ũ, (3.14)

with

B1
1 =

2ρ

rt2
∂2ρ +

1

rt2
∂ρ + k21,

B2
1 =

ρ2

r2t2
∂2ρ +

ρ

r2t2
∂ρ −

1

r2t2
+ ∂2z +

2ρ

rt2
k21,

B3
1 =

2ρ

rt2
∂2z +

ρ2

r2t2
k21,

B4
1 =

ρ2

r2t2
∂2z .
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3. m = 2.

To facilitate further computations, we set a weighted in-layer �eld

w(r, z) :=
√
ru(r, z),

and after rescaling one has

w̃(ρ, z) := w(rt2 + δρ, z)

So the eddy current equation for the in-layer �eld u (3.2) becomes here

1

δ2
∂2ρw̃ − 3

4r2
w̃ +

k22
δ2
w̃ + ∂2z w̃ = 0.

By substituting r with rt2 + ρδ, we obtain(
∂2ρ + k22

)
w̃ = −δB1

2w̃ − δ2B2
2w̃ − δ3B3

2w̃ − δ4B4
2w̃, (3.15)

with

B1
2 =

2ρ

rt2

(
∂2ρ + k22

)
,

B2
2 =

ρ2

r2t2

(
∂2ρ + k22

)
− 3

4r2t2
+ ∂2z ,

B3
2 =

2ρ

rt2
∂2z ,

B4
2 =

ρ2

r2t2
∂2z .

The formal asymptotic development of w with respect to the order of parameter δ writes:

w̃ =

∞∑
n=0

wn · δn.

3.2.2 Transmission conditions between ũ (or w̃) and uδ
±

1. m = 0, 1.

The transmission conditions at Γt2 (3.8) yield
uδ−|r=rt2

= ũ|ρ=0,

1

µT
∂r(ru

δ
−)
∣∣∣
r=rt2

=
1

µc

(
rt2 + δρ

δ
∂ρũ+ ũ

)∣∣∣∣
ρ=0

,

which imply 
un|ρ=0 = un−|r=rt2

, (3.16a)

∂ρu
n|ρ=0 = − 1

rt2
un−1
− |r=rt2

+
1

rt2

µc
µt

∂r(ru
n−1
− )

∣∣
r=rt2

. (3.16b)
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From the transmission conditions at Γc (3.12) we have
uδ+|r=rt2+δ = ũ|ρ=1,

1

µv
∂r(ru

δ
+)
∣∣∣
r=rt2+δ

=
1

µc

(
rt2 + δρ

δ
∂ρũ+ ũ

)∣∣∣∣
ρ=1

.

Combined with the Taylor expansions (3.7), the above conditions yield

un|ρ=1 =

n∑
k=0

(
S̃0
ku

n−k
+ + S̃1

k∂r(ru
n−k
+ )

)∣∣∣
r=rt2

, (3.17a)

∂ρu
n|ρ=1 =

n−1∑
l=0

n−l−1∑
k=0

(−1)l

rl+1
t2

{
−
(
S̃0
ku

n−l−k−1
+ + S̃1

k∂r(ru
n−l−k−1
+ )

)
+
µc
µv

(k + 1)
(
(rt2S̃0

k+1 + S̃0
k)u

n−l−k−1
+ + (rt2 S̃1

k+1 + S̃1
k)∂r(ru

n−l−k−1
+ )

)}∣∣∣∣
rt2

.(3.17b)

2. m = 2.

From the de�nition of w, we have
w̃ =

√
rt2 + ρδũ,

∂ρw̃ =
δ

2
√
rt2 + ρδ

ũ+
√
rt2 + ρδ∂ρũ.

Then after some calculates, the transmission conditions at Γt2 (3.8) is transformed as
w̃|ρ=0 =

√
rt2 ũ|ρ=0 =

√
rt2u

δ
−|r=rt2

,

∂ρw̃|ρ=0 =
δ

2
√
rt2
ũ|ρ=0 +

√
rt2 ∂ρũ|ρ=0 = − δ

2
√
rt2
uδ−|r=rt2

+
µc
µt

δ
√
rt2

∂r(ru
δ
−)
∣∣∣
r=rt2

,

which yields 
wn|ρ=0 =

√
rt2u

n
−|r=rt2

, (3.18a)

∂ρw
n|ρ=0 =

1
√
rt2

(
−1

2
un−1
− +

µc
µt
∂r(ru

n−1
− )

)∣∣∣∣
r=rt2

. (3.18b)

Similarly, the transmission conditions at Γc (3.12) become

w|ρ=1 =
√
rt2 + δuδ+|r=rt2+δ

=

(
√
rt2 +

∞∑
k=1

(−1)k−1

k!

(2k − 3)!!

2k
r
− 2k−1

2
t2

δk

)
uδ+|r=rt2+δ

∂ρw|ρ=1 =
δ

2
√
rt2 + δ

u|ρ=1 +
√
rt2 + δ ∂ρu|ρ=1

= δ

( ∞∑
k=0

(−1)k

k!

(2k − 1)!!

2k
r
− 2k+1

2
t2

δk

) (
−1

2
uδ+ +

µc
µv
∂r(ru

δ
+)

)∣∣∣∣
r=rt2+δ

.
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Together with the Taylor developments (3.7), the above transmission conditions yield

wn|ρ=1 =

n∑
k=0

ak

n−k∑
l=0

(
S̃0
l (∂z)u

n−k−l
+ + S̃1

l (∂z)∂r(ru
n−k−l
+ )

)∣∣∣
r=rt2

, (3.19a)

∂ρw
n|ρ=1 =

n−1∑
k=0

bk

n−k−1∑
l=0

{(
−1

2
S̃0
l +

µc
µv

(l + 1)(rt2 S̃0
l+1 + S̃0

l )

)
un−k−l−1
+

+

(
−1

2
S̃1
l +

µc
µv

(l + 1)(rt2 S̃1
l+1 + S̃1

l )

)
∂r(ru

n−k−l−1
+ )

}∣∣∣∣
r=rt2

. (3.19b)

where

a0 =
√
rt2 , ak|k≥1 =

(−1)k−1

k!

(2k − 3)!!

2k
r
− 2k−1

2
t2

,

bk =
(−1)k

k!

(2k − 1)!!

2k
r
− 2k+1

2
t2

.

3.2.3 Computing algorithm for the rescaled in-layer �eld ũ (or w̃)

In this section, we follow the procedure in 3.1.4 and give the detailed computing steps. Given
m = 0, 1 or 2, we resolve the corresponding problem (3.13), (3.14) or (3.15) in the thin deposit
layer to obtain the transmission conditions between un− and un+ (or between wn

− and wn
+) on

Γt2 from the transmission conditions (3.16) - (3.17) between un and un± (or the transmission
conditions (3.18) - (3.19) between wn and wn

±).

1. m = 0, 1.

We consider a general Cauchy problem with an arbitrary second member f for the same di�er-
ential equation as in (3.13) or in (3.14):

∂2ρ ǔ = f ρ ∈ [0, 1].

With the initial values at ρ = 0, the solution ǔ writes

ǔ(ρ) = ǔ|ρ=0 + ∂ρǔ|ρ=0 ρ+

∫ ρ

0

∫ s

0
f(t) dt ds.

And at ρ = 1, 
ǔ|ρ=1 = ǔ|ρ=0 + ∂ρǔ|ρ=0 +

∫ 1

0

∫ s

0
f(t) dt ds,

∂ρǔ|ρ=1 = ∂ρǔ|ρ=0 +

∫ 1

0
f(t) dt.

(3.20)

From the above resolvent and the rescaled eddy current equations (3.13) or (3.14), it follows
that the asymptotic expansions un of ũ can be obtained recurrently via the following Cauchy
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problems

∂2ρu
0 = 0,

∂2ρu
1 = −B1

mu
0,

∂2ρu
2 = −B1

mu
1 − B2

mu
0,

∂2ρu
3 = −B1

mu
2 − B2

mu
1 − B3

mu
0,

∂2ρu
4 = −B1

mu
3 − B2

mu
2 − B3

mu
1 − B4

mu
0,

· · ·

with initial values given by the transmission conditions (3.16) at ρ = 0. Then the boundary
values of un at ρ = 1 given by (3.20) should coincident with those given by the transmission
conditions (3.17) on Γc. These equalities give recurrently the transmission conditions linking up
un± on Γt2.

2. m = 2.

We consider the Cauchy problem with the same operator as in problem (3.15) and an arbitrary
second member f (

∂2ρ + k22
)
w̌ = f ρ ∈ [0, 1],

with initial values at ρ = 0. Its solution w̌ writes

w̌ = (w̌|ρ=0 − (v ⋆ f)|ρ=0) cos(k2ρ) +
1

k2

(
∂ρw̌|ρ=0 − ∂ρ(v ⋆ f)|ρ=0

)
sin(k2ρ) + v ⋆ f, (3.21)

where v = 1
2ik2

eik2|ρ| is the fundamental solution, i.e. the solution of the problem with a Dirac
distribution as second member: (

∂2ρ + k22
)
w̌ = δ0.

One computes

v ⋆ f(ρ) =

∫ ρ

0

1

2ik2
eik2(ρ−ξ)f(ξ) dξ +

∫ 1

ρ

1

2ik2
eik2(ξ−ρ)f(ξ) dξ,

∂ρ(v ⋆ f)(ρ) =

∫ ρ

0

1

2
eik2(ρ−ξ)f(ξ) dξ −

∫ 1

ρ

1

2
eik2(ξ−ρ)f(ξ) dξ.

v ⋆ f(0) =

∫ 1

0

1

2ik2
eik2ξf(ξ) dξ = − 1

ik2
∂ρ(v ⋆ f)(0),

v ⋆ f(1) =

∫ 1

0

1

2ik2
eik2(1−ξ)f(ξ) dξ =

1

ik2
∂ρ(v ⋆ f)(1).

By substituting the above terms in (3.21), we obtain w̌|ρ=1 = cos(k2) (w̌ − v ⋆ f) |ρ=0 +
sin(k2)

k2
(∂ρw̌ + ik2v ⋆ f)|ρ=0 + (v ⋆ f)|ρ=1,

∂ρw̌|ρ=1 = −k2 sin(k2) (w̌ − v ⋆ f) |ρ=0 + cos(k2) (∂ρw̌ + ik2v ⋆ f)|ρ=0 + ik2(v ⋆ f)|ρ=1.

(3.22)
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Therefore, from the above resolvent procedure and the problem (3.15), the asymptotic expansions
wn of w̃ verify recurrently the following Cauchy problems(

∂2ρ + k22
)
w0 = 0,(

∂2ρ + k22
)
w1 = −B1

2w
0,(

∂2ρ + k22
)
w2 = −B1

2w
1 − B2

2w
0,(

∂2ρ + k22
)
w3 = −B1

2w
2 − B2

2w
1 − B3

2w
0,(

∂2ρ + k22
)
w4 = −B1

2w
3 − B2

2w
2 − B3

2w
1 − B4

2w
0,

· · ·

with initial values given by the transmission conditions (3.18) at ρ = 0 (on Γt2). Their solutions
give the boundary values (3.22) that should coincide with the transmission conditions (3.19) at
ρ = 1 (on Γt2), which implies recurrently the transmission conditions connecting un± on Γt2.

3.2.4 Computation of some approximate transmission conditions Zm,n

In this section, we follow the computing algorithm described in the previous section 3.2.3 and
give the transmission conditions Zm,n on Γt2 for m = 0, 1, 2 and n = 0, 1, 2. We will use the �rst
S̃i
k(∂z) operators in the Taylor developments (3.7) with their explicit expressions

S̃0
0 = Id, S̃1

0 = 0,

S̃0
1 = − 1

rt2
, S̃1

1 =
1

rt2
,

S̃0
2 =

1

r2t2
− 1

2
∂2z , S̃1

2 = − 1

2r2t2
.

We denote by uδ± the approximated �elds of uδ± up to the asymptotic developments order, that
is

uδ± = u0± order 0,

uδ± = u0± + δu1± order 1,

uδ± = u0± + δu1± + δ2u2± order 2.

Readers may skip the fastidious computational details and refer to the following expressions for
the corresponding approximate transmission conditions.

Z0,0 (3.29) Z0,1 (3.36) Z0,2 (3.41)
Z1,0 (3.47) Z1,1 (3.52) Z1,2 (3.56)
Z2,0 (3.60) Z2,1 (3.64) Z2,2 (3.68)

Rescaling parameter m = 0

1. Order n = 0.
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From the asymptotic development (3.13) and the transmission conditions (3.16) on Γt2 for
u0, we have the di�erential equation for u0

∂2ρu
0 = 0 ρ ∈ [0, 1],

u0|ρ=0 = u0−|rt2 ,
∂ρu

0
∣∣
ρ=0

= 0,

which yields

u0(ρ) = u0−|rt2 ρ ∈ [0, 1].

Thus, with the �rst transmission condition (3.17a) on Γc for u0, which is

u0|ρ=1 = S̃0
0u

0
+|rt2 + S̃1

0∂r(ru
0
+)|rt2 = u0+|rt2 , (3.23)

we have

u0−|rt2 = u0+|rt2 . (3.24)

Similarly, considering (3.13) and the transmission conditions (3.16) on Γt2 for u1, we write
the di�erential problem for u1 as

∂2ρu
1 = −B1

0u
0 = 0 ρ ∈ [0, 1],

u1|ρ=0 = u1−|rt2 ,

∂ρu
1
∣∣
ρ=0

= − 1

rt2
u0−|rt2 +

1

rt2

µc
µt
∂r(ru

0
−)|rt2 ,

which implies

∂ρu
1 = − 1

rt2

(
u0−|rt2 − µc

µt
∂r(ru

0
−)|rt2

)
, (3.25)

u1 = u1−|rt2 − 1

rt2

(
u0−|rt2 − µc

µt
∂r(ru

0
−)|rt2

)
ρ. (3.26)

The second transmission condition (3.17b) on Γc for u1 writes

∂ρu
1|ρ=1 = − 1

rt2

(
u0+|rt2 − µc

µv
∂r(ru

0
+)|rt2

)
. (3.27)

Hence, the equalities (3.25) and (3.27) yield

1

rt2

µc
µt
∂r(ru

0
−)|rt2 =

1

rt2

µc
µv
∂r(ru

0
+)|rt2 . (3.28)

(3.24) and (3.28) imply the approximate transmission conditions at order 0 on Γt2

Z0,0


uδ− = uδ+, (3.29a)
1

rt2

µc
µt
∂r(ru

δ
−) =

1

rt2

µc
µv
∂r(ru

δ
+). (3.29b)

We remark that Z0,0 for uδ± = u0± on Γt2 given by (3.29) are simply the transmission conditions
between the tube wall and the vacuum, as if the deposit layer does not exist.
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2. Order n = 1.

The �rst transmission condition (3.17a) for u1 on Γc

u1|ρ=1 = S̃0
0u

1
+|rt2 + S̃1

0∂r(ru
1
+)|rt2 + S̃0

1u
0
+|rt2 + S̃1

1∂r(ru
0
+)|rt2

= u1+|rt2 − 1

rt2

(
u0+|rt2 − ∂r(ru

0
+)|rt2

)
(3.30)

together with the equality (3.26) imply

u1−|rt2 +
1

rt2

µc
µt
∂r(ru

0
−)|rt2 = u1+|rt2 +

1

rt2
∂r(ru

0
−)|rt2 . (3.31)

One get the di�erential problem for u2 from (3.13) using the previous expansions u0, u1 and
the transmission conditions (3.16) on Γt2 for u2

∂2ρu
2 = −B1

0u
1 − B2

0u
0

=

(
2

r2t2
− (∂2z + k20)

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2 ρ ∈ [0, 1],

u2|ρ=0 = u2−|rt2 ,

∂ρu
2
∣∣
ρ=0

= − 1

rt2
u1−|rt2 +

1

rt2

µc
µt
∂r(ru

1
−)|rt2 .

Thus

∂ρu
2 =− 1

rt2

(
u1−|rt2 − µc

µt
∂r(ru

1
−)|rt2

)
+

((
2

r2t2
− (∂2z + k20)

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

)
ρ, (3.32)

u2 =u2−|rt2 − 1

rt2

(
u1−|rt2 − µc

µt
∂r(ru

1
−)|rt2

)
ρ

+

((
2

r2t2
− (∂2z + k20)

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

)
ρ2

2
. (3.33)

The explicit expression of the second transmission condition (3.17b) on Γc for u2 is

∂ρu
2|ρ=1 = − 1

rt2

(
u1+|rt2 − µc

µv
∂r(ru

1
+)|rt2

)
+

(
2

r2t2
− µc
µv
∂2z

)
u0+|rt2 − 1

r2t2
∂r(ru

0
+)|rt2 . (3.34)

Thus, (3.32) and (3.34) imply

1

rt2

µc
µt
∂r(ru

1
−)−

(
k20 + ∂2z

)
u0− =

1

rt2

µc
µv
∂r(ru

1
+)−

µc
µv
∂2zu

0
+. (3.35)

(3.31) and (3.35) lead to the �rst order approximate transmission conditions

Z0,1


uδ− +

δ

rt2

µc
µt
∂r(ru

δ
−) = uδ+ +

δ

rt2
∂r(ru

δ
+), (3.36a)

1

rt2

µc
µt
∂r(ru

δ
−)− δ

(
k20 + ∂2z

)
uδ− =

1

rt2

µc
µv
∂r(ru

δ
+)− δ

µc
µv
∂2zu

δ
+. (3.36b)
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3. Order n = 2.

From (3.33) and the �rst transmission condition (3.17a) for u2 on Γc, which is

u2|ρ=1 = u2+|rt2 − 1

rt2

(
u1+|rt2 − ∂r(ru

1
+)|rt2

)
(3.37)

one gets

u2−|rt2 +
1

rt2

µc
µt
∂r(ru

1
−)|rt2 +

1

2r2t2

µc
µt
∂r(ru

0
−)|rt2 − 1

2
k20u

0
−|rt2

= u2+|rt2 +
1

rt2
∂r(ru

1
+)|rt2 +

1

2r2t2
∂r(ru

0
+)|rt2 . (3.38)

To get the second transmission conditions connecting u2± one has to consider the Cauchy
problem for u3 derived from (3.13) and the transmission conditions (3.16) on Γt2 for u3

∂2ρu
3 = −B1

0u
2 − B2

0u
1 − B3

0u
0

=

(
2

r2t2
− (∂2z + k20)

)
u1−|rt2 − 1

rt2

µc
µt
∂r(ru

1
−)|rt2

+ ρ

(
3

r3t2
− 1

rt2
(∂2z + k20)

)(
−2u0−|rt2 +

µc
µt
∂r(ru

0
−)|rt2

)
ρ ∈ [0, 1],

u3|ρ=0 = u3−|rt2 , ∂ρu
3
∣∣
ρ=0

= − 1

rt2
u2−|rt2 +

1

rt2

µc
µt
∂r(ru

2
−)|rt2 .

On one hand, we get easily from the above Cauchy problem

∂ρu
3|ρ=1 =− 1

rt2
u2−|rt2 +

1

rt2

µc
µt
∂r(ru

2
−)|rt2 +

(
2

r2t2
− µc
µv
∂2z

)
u1−|rt2 − 1

r2t2

µc
µt
∂r(ru

1
−)|rt2

+
1

2

(
3

r3t2
− 1

rt2
(∂2z + k20)

)(
−2u0−|rt2 +

µc
µt
∂r(ru

0
−)|rt2

)
.

One the other hand, the second transmission condition (3.17b) on Γc for u3 writes explicitly

∂ρu
3|ρ=1 =− 1

rt2

(
u2+|rt2 − µc

µv
∂r(ru

2
+)|rt2

)
+

(
2

r2t2
− ∂2z

)
u1+|rt2 − 1

r2t2
∂r(ru

1
+)|rt2

+

(
− 3

r3t2
+

1

2rt2
(1 +

µc
µt

)∂2z

)
u0+|rt2 +

(
3

2r3t2
− 1

2rt2

µc
µt
∂2z

)
∂r(ru

0
+)|rt2 . (3.39)

The above two equalities result in

1

rt2

µc
µt
∂r(ru

2
−)−

(
k20 + ∂2z

)
u1− +

1

2rt2

(
k20 + ∂2z

)
u0− − 1

2rt2

µc
µt
k20∂r(ru

0
−)

=
1

rt2

µc
µv
∂r(ru

2
+)−

µc
µv
∂2zu

1
+ +

1

2rt2

µc
µv
∂2zu

0
+. (3.40)
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We derive from (3.38) considering the previous expansions u0, u1, u2 and (3.40) the second
order approximate transmission conditions

Z0,2



(
1− δ2

2
k20

)
uδ− +

(
δ

rt2
+

δ2

2r2t2

)
µc
µt
∂r(ru

δ
−) = uδ+ +

(
δ

rt2
+

δ2

2r2t2

)
∂r(ru

δ
+),(3.41a)(

1

rt2
− δ2

2rt2
k20

)
µc
µt
∂r(ru

δ
−) +

(
−δ + δ2

2rt2

)(
k20 + ∂2z

)
uδ−

=
1

rt2

µc
µv
∂r(ru

δ
+) +

(
−δ + δ2

2rt2

)
µc
µv
∂2zu

δ
+. (3.41b)

Rescaling parameter m = 1

1. Order n = 0.

The asymptotic development (3.14) and the transmission conditions (3.16) on Γt2 for u0 lead to
the Cauchy problem for u0 with initial values at ρ = 0

∂2ρu
0 = 0 ρ ∈ [0, 1],

u0|ρ=0 = u0−|rt2 ,
∂ρu

0
∣∣
ρ=0

= 0,

which yields

u0(ρ) = u0−|rt2 ρ ∈ [0, 1]. (3.42)

Taking ρ = 1 in (3.42) and considering the transmission condition on Γc for u0 (3.23), one gets

u0−|rt2 = u0+|rt2 . (3.43)

Then we consider the Cauchy problem for u1 given by the asymptotic development (3.14)
and by the transmission conditions (3.16) on Γt2 for u1

∂2ρu
1 = −B1

1u
0 = −k21u0−|rt2 ρ ∈ [0, 1],

u1|ρ=0 = u1−|rt2 ,

∂ρu
1
∣∣
ρ=0

= − 1

rt2
u0−|rt2 +

1

rt2

µc
µt
∂r(ru

0
−)|rt2 ,

which implies

∂ρu
1 = − 1

rt2

(
u0−|rt2 − µc

µt
∂r(ru

0
−)|rt2

)
− ρk21u

0
−|rt2 , (3.44)

u1 = u1−|rt2 − ρ2

rt2

(
u0−|rt2 − µc

µt
∂r(ru

0
−)|rt2

)
ρ− 1

2
k21u

0
−|rt2 . (3.45)

(3.44) and the transmission condition on Γc for u1 (3.27) imply

1

rt2

µc
µt
∂r(ru

0
−)|rt2 − k21u

0
−|rt2 =

1

rt2

µc
µv
∂r(ru

0
+)|rt2 . (3.46)
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(3.43) and (3.46) give the approximate transmission conditions at order 0 on Γt2 for uδ±

Z1,0


uδ− = uδ+, (3.47a)

−k21uδ− +
1

rt2

µc
µt
∂r(ru

δ
−) =

1

rt2

µc
µv
∂r(ru

δ
+). (3.47b)

If we rewrite the second transmission condition (3.47b) as

1

µt
∂r(ru

δ
−) =

1

µv
∂r(ru

δ
+) + iωσcδrt2u

δ
−,

we remark that the transmission conditions Z1,0 given by (3.47) are indeed the classical boundary
impedance conditions which take into account the deposit layer.

2. Order n = 1.

From (3.45) and the transmission condition on Γc for u1 (3.30) we have

u1−|rt2 +
1

rt2

µc
µt
∂r(ru

0
−)|rt2 − 1

2
k21u

0
−|rt2 = u1+|rt2 +

1

rt2
∂r(ru

0
+)|rt2 . (3.48)

Using the asymptotic development (3.14) and the transmission conditions (3.16) on Γt2 for
u2, we get

∂2ρu
2 = −B1

1u
1 − B2

1u
0

= −k21u1−|rt2 +

(
2

r2t2
− ∂2z

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

+ ρk21

(
2

rt2
u0−|rt2 − 1

rt2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ2

k41
2
u0−|rt2 ρ ∈ [0, 1],

u2|ρ=0 = u2−|rt2 ,

∂ρu
2
∣∣
ρ=0

= − 1

rt2
u1−|rt2 +

1

rt2

µc
µt
∂r(ru

1
−)|rt2 .

So

∂ρu
2 = − 1

rt2

(
u1−|rt2 − µc

µt
∂r(ru

1
−)|rt2

)
+ ρ

(
−k21u1−|rt2 +

(
2

r2t2
− ∂2z

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ2

k21
2

(
2

rt2
u0−|rt2 − 1

rt2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ3

k41
6
u0−|rt2 , (3.49)

u2 = u2−|rt2 − ρ

rt2

(
u1−|rt2 − µc

µt
∂r(ru

1
−)|rt2

)
+ ρ2

1

2

(
−k21u1−|rt2 +

(
2

r2t2
− ∂2z

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ3

k21
6

(
2

rt2
u0−|rt2 − 1

rt2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ4

k41
24
u0−|rt2 . (3.50)
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Using (3.49) at ρ = 1 and the explicit expression of the transmission condition for u2 on Γt2

(3.34), one has on Γt2

−k21u1− +
1

rt2

µc
µt
∂r(ru

1
−)−

(
∂2z −

k21
2rt2

− k41
6

)
u0− − k21

2rt2

µc
µt
∂r(ru

0
−) =

1

rt2

µc
µv
∂r(ru

1
+)−

µc
µv
∂2zu

0
+.

(3.51)

Therefore, (3.48) and (3.51) yield the approximate transmission conditions at order 1 between
uδ± on Γt2

Z1,1



(
1− δ

2
k21

)
uδ− +

δ

rt2
+
µc
µt
∂r(ru

δ
−) = uδ+ +

δ

rt2
∂r(ru

δ
+), (3.52a)(

−k21 − δ

(
∂2z −

k21
2rt2

− k41
6

))
uδ− +

(
1

rt2
− δ

k21
2rt2

)
µc
µt
∂r(ru

δ
−)

= −δ µc
µv
∂2zu

δ
+ +

1

rt2

µc
µv
∂r(ru

δ
+). (3.52b)

3. Order n = 2.

We derive from (3.50) and the transmission condition on Γc for u1 (3.37)

u2− − 1

2
k21u

1
− +

1

rt2

µc
µt
∂r(ru

1
−)−

(
k21
6rt2

− k41
24

)
u0− +

(
1

2r2t2
− k21

6rt2

)
µc
µt
∂r(ru

0
−)

= u2+ +
1

rt2
∂r(ru

1
+) +

1

2r2t2
∂r(ru

0
+). (3.53)

Now we consider the Cauchy problem for u3 with initial values at ρ = 0. From the asymptotic
development (3.14) and the transmission conditions (3.16) on Γt2 for u3, the Cauchy problem
writes 

∂2ρu
3 = −B1

1u
2 − B2

1u
1 − B3

1u
0

= −k21u2|rt2 +

(
2

r2t2
− ∂2z

)
u1−|rt2 − 1

r2t2

µc
µt
∂r(ru

1
−)|rt2

+ ρ

(
k21
( 2

rt2
u1−|rt2 − 1

rt2

µc
µt
∂r(ru

1
−)|rt2

)
+
(
− 6

r3t2
+

2

rt2
∂2z
)
u0−|rt2 +

( 3

r3t2
− 1

rt2
∂2z
)µc
µt
∂r(ru

0
−)|rt2

)
+ ρ2

(
k41
2
u1−|rt2 + k21

(
− 9

2r2t2
+ ∂2z

)
u0−|rt2 +

2k21
r2t2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ3k41

(
− 1

2rt2
u0−|rt2 +

1

6rt2

µc
µt
∂r(ru

0
−)|rt2

)
− ρ4

k61
24
u0−|rt2 ρ ∈ [0, 1],

u3ρ=0 = u3−|rt2 ,

∂ρu
3
∣∣
ρ=0

= − 1

rt2
u2−|rt2 +

1

rt2

µc
µt
∂r(ru

2
−)|rt2 .
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Then we obtain

∂ρu
3 = − 1

rt2
u2−|rt2 +

1

rt2

µc
µt
∂r(ru

2
−)|rt2

+ ρ

(
−k21u2|rt2 +

(
2

r2t2
− ∂2z

)
u1−|rt2 − 1

r2t2

µc
µt
∂r(ru

1
−)|rt2

)
+
ρ2

2

(
k21
( 2

rt2
u1−|rt2 − 1

rt2

µc
µt
∂r(ru

1
−)|rt2

)
+
(
− 6

r3t2
+

2

rt2
∂2z
)
u0−|rt2 +

( 3

r3t2
− 1

rt2
∂2z
)µc
µt
∂r(ru

0
−)|rt2

)
+
ρ3

3

(
k41
2
u1−|rt2 + k21

(
− 9

2r2t2
+ ∂2z

)
u0−|rt2 +

2k21
r2t2

µc
µt
∂r(ru

0
−)|rt2

)
+
ρ4

4
k41

(
− 1

2rt2
u0−|rt2 +

1

6rt2

µc
µt
∂r(ru

0
−)|rt2

)
− ρ5

k61
120

u0−|rt2 (3.54)

Taking ρ = 1 in (3.54) and considering the transmission condition for u3 on Γt2 (3.39), we have

− k21u
2
− +

1

rt2

µc
µt
∂r(ru

2
−)−

(
∂2z −

k21
2rt2

− k41
6

)
u1− − k21

2rt2

µc
µt
∂r(ru

1
−)

+

(( 1

2rt2
+
k21
3

)
∂2z −

( 2k21
3r2t2

+
k41

12rt2
+

k61
120

))
u0− +

(
k21
2r2t2

+
k41

24rt2

)
µc
µt
∂r(ru

0
−)

=
1

rt2

µc
µv
∂r(ru

2
+)− ∂2zu

1
+ +

1

2rt2

µc
µv
∂2zu

0
+. (3.55)

From (3.53) and (3.55), we conclude the second order approximate transmission conditions
for uδ± on Γt2

Z1,2



(
1− δ

2
k21 − δ2

( k21
6rt2

− k41
24

))
uδ− +

(
δ

rt2
+ δ2

( 1

2r2t2
− k21

6rt2

)) µc
µt
∂r(ru

δ
−)

= uδ+ +

(
δ

rt2
+

δ2

2r2t2

)
∂r(ru

δ
+), (3.56a)(

−k21 − δ
(
∂2z −

k21
2rt2

− k41
6

)
+ δ2

(( 1

2rt2
+
k21
3

)
∂2z −

2k21
3r2t2

− k41
12rt2

− k61
120

))
uδ−

+

(
1

rt2
− δ

k21
2rt2

+ δ2
( k21
2r2t2

+
k41

24rt2

)) µc
µt
∂r(ru

δ
−)

=

(
−δ + δ2

2rt2

µc
µv

)
∂2zu

δ
+ +

1

rt2

µc
µv
∂r(ru

δ
+). (3.56b)

Rescaling parameter m = 2

1. Order n = 0.
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The asymptotic development (3.15) and the transmission conditions (3.18) on Γt2 for w0 lead
to the Cauchy problem for w0 with initial values at ρ = 0

(∂2ρ + k22)w
0 = 0 ρ ∈ [0, 1],

w0|ρ=0 =
√
rt2u

0
−|rt2 ,

∂ρ|ρ=0 = 0.

The solution and its derivative writes{
w0 =

√
rt2u

0
−|rt2 cos(k2ρ), (3.57a)

∂ρw
0 = −√

rt2u
0
−|rt2k2 sin(k2ρ). (3.57b)

We consider the transmission conditions (3.18) on Γc for w0, which writes explicitly{
w0|ρ=1 =

√
rt2u

0
+|rt2 , (3.58a)

∂ρw
0|ρ=1 = 0. (3.58b)

By taking ρ = 1 in (3.57) and by comparing them with (3.58), we get

u0−|rt2 = u0+|rt2 = 0. (3.59)

Therefore, at order 0, the approximate transmission conditions Z2,0 for uδ± on Γt2 becomes
Dirichlet boundary conditions

Z2,0 uδ− = uδ+ = 0. (3.60)

These conditions model the conductive deposit as a perfect conductor.

2. Order n = 1.

The Cauchy problem for w1 writes
(∂2ρ + k22)w

1 = −B1
2w

0 = 0 ρ ∈ [0, 1],

w1|ρ=0 =
√
rt2u

1
−|rt2 ,

∂ρw
1|ρ=0 =

1
√
rt2

(
−1

2
u0−|rt2 +

µc
µt
∂r(ru

0
−)|rt2

)
,

where the initial values are just the transmission conditions (3.18) on Γt2. Thus we have
w1 =

√
rt2u

1
−|rt2 cos(k2ρ) +

1
√
rt2

(
−1

2
u0− +

µc
µt
∂r(ru

0
−)

)∣∣∣∣
rt2

sin(k2ρ)

k2
, (3.61a)

∂ρw
1 = −√

rt2u
1
−|rt2k2 sin(k2ρ) +

1
√
rt2

(
−1

2
u0− +

µc
µt
∂r(ru

0
−)

)∣∣∣∣
rt2

cos(k2ρ). (3.61b)

Otherwise, the transmission conditions (3.18) on Γc for w1 write
w1|ρ=1 =

√
rt2u

1
+|rt2 − 1

2
√
rt2
u0+|rt2 +

1
√
rt2
∂r(ru

0
+)|rt2 (3.62a)

∂ρw
1|ρ=1 = − 1

2
√
rt2
u0+|rt2 +

1
√
rt2

µc
µv
∂r(ru

0
+)|rt2 (3.62b)
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Taking ρ = 1 in (3.61) and considering (3.62) imply


cos(k2)u

1
− +

1

rt2

sin(k2)

k2

µc
µt
∂r(ru

0
−) = u1+ +

1

rt2
∂r(ru

0
+), (3.63a)

− sin(k2)u
1
− +

1

rt2

cos(k2)

k2

µc
µt
∂r(ru

0
−) =

1

rt2

1

k2

µc
µv
∂r(ru

0
+). (3.63b)

So from (3.63) we obtain the �rst order approximate transmission conditions between uδ± on Γt2

Z2,1


cos(k2)u

δ
− +

δ

rt2

sin(k2)

k2

µc
µt
∂r(ru

δ
−) = uδ+ +

δ

rt2
∂r(ru

δ
+), (3.64a)

− sin(k2)u
δ
− +

δ

rt2

cos(k2)

k2

µc
µt
∂r(ru

δ
−) =

δ

rt2

1

k2

µc
µv
∂r(ru

δ
+). (3.64b)

3. Order n = 2.

With the transmission conditions (3.18) for w2 on Γt2 as initial values, the Cauchy problem
for w2 writes

(∂2ρ + k22)w
2 = −B1

2w
1 − B2

2w
0 =

√
rt2

(
3

4r2t2
− ∂2z

)
u0−|rt2 cos(k2ρ) ρ ∈ [0, 1],

w2|ρ=0 =
√
rt2u

2
−|rt2 ,

∂ρw
2|ρ=0 =

1
√
rt2

(
−1

2
u1−|rt2 +

µc
µt
∂r(ru

1
−)|rt2

)
,

Using the computing algorithm for m = 2 described in Section 3.2.3, in particular the formula
(3.22), one obtains



w2|ρ=1 =

(
√
rt2u

2
− +

1− ei2k2 − i2k2
8k22

√
rt2(∂

2
z −

3

4r22
)u0−

)∣∣∣∣
rt2

cos(k2)

+

{
1

√
rt2

(
−1

2
u1− +

µc
µt
∂r(ru

1
−)

)
− i(1− ei2k2 − i2k2)

8k2

√
rt2(∂

2
z −

3

4r22
)u0−

}∣∣∣∣
rt2

sin(k2)

k2

+

(
i sin k2
4k22

+
ieik2

4k2

)
√
rt2(∂

2
z −

3

4r22
)u0−|rt2 , (3.65a)

∂ρw
1 = −

(
√
rt2u

2
− +

1− ei2k2 − i2k2
8k22

√
rt2(∂

2
z −

3

4r22
)u0−

)∣∣∣∣
rt2

k2 sin(k2)

+

{
1

√
rt2

(
−1

2
u1− +

µc
µt
∂r(ru

1
−)

)
− i(1− ei2k2 − i2k2)

8k2

√
rt2(∂

2
z −

3

4r22
)u0−

}∣∣∣∣
rt2

cos(k2)

−
(
sin k2
4k2

+
eik2

4

)
√
rt2(∂

2
z −

3

4r22
)u0−|rt2 . (3.65b)
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Otherwise, the transmission conditions (3.19) for w2 on Γc write

w2|ρ=1 =
√
rt2u

2
+|rt2 − 1

2
√
rt2
u1+|rt2 +

1
√
rt2
∂r(ru

1
+)|rt2

−
√
rt2
2

(
∂2z −

3

4r2t2

)
u0+|rt2 , (3.66a)

∂ρw
2|ρ=1 = − 1

2
√
rt2
u1+|rt2 +

1
√
rt2

µc
µv
∂r(ru

1
+)|rt2

−√
rt2

(
µc
µv
∂2z −

3

4r2t2

)
u0+|rt2 +

1

2rt2
√
rt2

(
µc
µv

− 1

)
∂r(ru

0
+)|rt2 . (3.66b)

From (3.65) and (3.66) we have

cos(k2)u
2
− +

1

rt2

sin(k2)

k2

µc
µt
∂r(ru

1
−) +

1

2r2t2

(
csc(k2)

k2
− cos(k2)

k22

)
µc
µt
∂r(ru

0
−)

= u2+ +
1

rt2
∂r(ru

1
+)−

1

2r2t2

[(
1

k22
− cot(k2)

k2

)
µc
µv

− 1

]
∂r(ru

0
+), (3.67a)

− sin(k2)u
2
− +

1

rt2

cos(k2)

k2

µc
µt
∂r(ru

1
−) +

1

2r2t2

sin(k2)

k22

µc
µt
∂r(ru

0
−)

=
1

rt2

1

k2

µc
µv
∂r(ru

1
+) +

1

2r2t2

1

k2
∂r(ru

0
+). (3.67b)

Therefore, we conclude that the second order approximate transmission conditions Z2,2 be-
tween uδ± on Γt2 write

Z2,2



cos(k2)u
δ
− +

(
δ

rt2

sin(k2)

k2
+

δ2

2r2t2

(
csc(k2)

k2
− cos(k2)

k22

))
µc
µt
∂r(ru

δ
−)

= uδ+ +

[
δ

rt2
− δ2

2r2t2

((
1

k22
− cot(k2)

k2

)
µc
µv

− 1

)]
∂r(ru

δ
+), (3.68a)

− sin(k2)u
δ
− +

(
δ

rt2

cos(k2)

k2
+

δ2

2r2t2

sin(k2)

k22

)
µc
µt
∂r(ru

δ
−)

=

(
δ

rt2

1

k2

µc
µv

+
δ2

2r2t2

1

k2

)
∂r(ru

δ
+). (3.68b)

3.2.5 Numerical tests for 1-D models

To choose the (m,n) with which the asymptotic model has a best approximation, we test numer-
ically the asymptotic models by implementing the transmission conditions Zm,n for m = 0, 1, 2

and n = 0, 1, 2 in the 1-D case, i.e. ∂z = 0, since the 1-D eddy current models discussed in
Section 1.7 have analytic solutions, which allow us to estimate modeling errors. We write the
transmission conditions Zm,2 for m = 0, 1, 2 at order n = 2 in a general form{

αm
1 u

δ
− + βm1 ∂r(ru

δ
−) = γm1 u

δ
+ + ηm1 ∂r(ru

δ
+),

αm
2 u

δ
− + βm2 ∂r(ru

δ
−) = γm2 u

δ
+ + ηm2 ∂r(ru

δ
+).

(3.69)
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The transmission conditions Zm,n at order n = 0, 1 can be derived from Zm,2 by neglecting the
high order terms. We give the coe�cients αm

j , β
m
j , γmj and ηmj , m = 0, 1, 2, j = 1, 2 as below.

1. m = 0.

From Z0,2 given by (3.41), we have

α0
1 = 1− δ2

k20
2
, α0

2 = −δk20 + δ2
k20
2rt2

,

β01 = δ
1

rt2

µc
µt

+ δ2
1

2r2t2

µc
µt
, β02 =

1

rt2

µc
µt

− δ2
k20
2rt2

µc
µt
,

γ01 = 1, γ02 = 0,

η01 = δ
1

rt2
+ δ2

1

2r2t2
, η02 =

1

rt2

µc
µv
.

One gets easily the coe�cients corresponding to Z0,0 (see (3.29)) by considering only the terms
on order O(1) of δ, and those corresponding to Z0,1 (see (3.36)) by neglecting the terms on order
O(δ2).

2. m = 1.

The transmission conditions Z1,2 given by (3.56) yields

α1
1 = 1− δ

k21
2

− δ2
(
k21
6rt2

− k41
24

)
, α1

2 = −k21 + δ

(
k21
2rt2

+
k41
6

)
− δ2

(
2k21
3r2t2

+
k41

12rt2
+

k61
120

)
,

β11 =

(
δ

rt2
+ δ2

( 1

2r2t2
− k21

6rt2

)) µc
µt
, β12 =

(
1

rt2
− δ

k21
2rt2

+ δ2
( k21
2r2t2

+
k41

24rt2

)) µc
µt
,

γ11 = 1, γ12 = 0,

η11 = δ
1

rt2
+ δ2

1

2r2t2
, η12 =

1

rt2

µc
µv
.

For Z1,0 given by (3.47), one needs only to take the terms on order O(1) of δ in the above
coe�cients. For Z1,1 (see (3.52)), we neglect the terms on order O(δ2).

3. m = 2.

The transmission conditions Z2,2 (3.68) yield

α2
1 = cos(k2), α2

2 = − sin(k2),

β21 =

(
δ

rt2

sin k2
k2

+
δ2

2r2t2

(csc(k2)
k2

− cos(k2)

k22

)) µc
µt
, β22 =

(
δ

rt2

cos(k2)

k2
+

δ2

2r2t2

sin(k2)

k22

)
µc
µt
,

γ21 = 1, γ22 = 0,

η21 = δ
1

rt2
− δ2

1

2r2t2

(( 1
k22

− cot(k2)

k2

)µc
µv

− 1

)
, η22 = δ

1

rt2

1

k2

µc
µv

+ δ2
1

2r2t2

1

k2
.
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We observe that terms on order O(1) of δ in the above coe�cients gives the transmission con-
ditions Z2,0 (see (3.60)). If we consider additionally the terms on O(δ), then we obtains the
transmission conditions Z2,1 (see (3.64)).

With these approximate transmission conditions Zm,n, we build the 1-D asymptotic models
by supposing that there is no variation in the axial (z) direction. As shown in Section 1.7, we
may introduce a Dirac distribution like applied electric current Jδrs at r = rs, which yields the
transmission conditions (1.50) � (1.51) at rs. The analytic solution of the full 1-D model writes

u(r) =



c1r 0 < r < rs,

c2r + c3
1

r
rs < r <t1 ,

c4J1(ktr) + c5Y1(ktr) rt1 < r < rt2 ,

c6J1(kcr) + c7Y1(kcr) rt2 < r < rt2 + δ,

c8
1

r
r > rt2 + δ,

with k2t = iωµtσt and k2c = iωµcσc.

With the transmission conditions [u] = [µ−1∂r(ru)] = 0 at r = rt1 , rt2 and rt+δ, the coe�cients
c = (c1, . . . , c8)

T can be obtained by resolving a linear system

Ac = (0,−iωµJ, 0, . . . , 0)T

and

A =



rs −rs − 1
rs

0 0 0 0 0

2 −2 0 0 0 0 0 0

0 rt1
1
rt1

−J1(ktrt1) −Y1(ktrt1) 0 0 0

0 2
µv

0 −ktJ0(ktrt1 )
µt

−ktY0(ktrt1 )
µt

0 0 0

0 0 0 J1(ktrt2) Y1(ktrt2) −J1(kcrt2) −Y1(kcrt2) 0

0 0 0
k3J0(k3rt2 )

µt

k3Y0(k3rt2 )
µt

−kcJ0(kcrt2 )
µc

−kcY0(kcrt2 )
µc

0

0 0 0 0 0 J1(kc(rt2 + δ)) Y1(kc(rt2 + δ)) − 1
(rt2+δ)

0 0 0 0 0
kcJ0(kc(rt2+δ))

µc

kcY0(kc(rt2+δ))
µc

0


.

The analytic solution of the asymptotic models is in the form

uδ(r) =


uδ− =


cδ1r

cδ2r + cδ3
1

r

cδ4J1(ktr) + cδ5Y1(ktr)

0 < r < rs,

rs < r <t1 ,

rt1 < r < rt2 ,

uδ+ = cδ6
1

r
r > rt2 .

With the transmission conditions [u] = [µ−1∂r(ru)] = 0 at r = rt1 and the approximate
transmission conditions Zm,n (3.69) at r = rt2 we obtain a linear system for the coe�cients
cδ = (cδ1, . . . , c

δ
6)

Aδcδ = (0,−iωµJ, 0, . . . , 0)T ,
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where

Aδ =



rs −rs − 1
rs

0 0 0

2 −2 0 0 0 0

0 rt1
1
rt1

−J1(ktrt1) −Y1(ktrt1) 0

0 2
µv

0 −ktJ0(ktrt1 )
µt

−ktY0(ktrt1 )
µt

0

0 0 0 αm
1 J1(ktrt2) + βm1 ktJ0(ktrt2) αm

1 Y1(ktrt2) + βm1 ktY0(ktrt2) −γm1 1
rt2

0 0 0 αm
2 J1(ktrt2) + βm2 ktJ0(ktrt2) αm

2 Y1(ktrt2) + βm2 ktY0(ktrt2) −γm2 1
rt2


.

Tests with �xed rescaled conductivities

We �rst �x the rescaled conductivities of the thin layer deposits σm, m = 0, 1, 2. Ignoring the
physical unities, we take in our tests

σ0 = 5× 106,

σ1 = 1× 103,

σ2 = 5× 10−1.

Then we evaluate the relative errors of the asymptotic models using Zm,n (n = 0, 1, 2) approxi-
mate transmission conditions with respect to the full model. We remark that here the deposit
conductivity in the full model is variable according to the layer thickness δ:

σc =
σm
δm

.

We also recall that the permeability of the deposit is µc = µv, the conductivity of tube σt =
9.7× 105S/m and the permeability of tube µt = 1.01µv.

Figure 3.2 shows the relative errors in L2
1/2-norm of solutions of the asymptotic models

with respect to the full model for �xed rescaled conductivities σm, m = 0, 1, 2. One observes
that for a given rescaling parameter m, the asymptotic models approximate better the full
model as the asymptotic expansion order n increases. The slopes given in the �gure validate
numerically the above asymptotic models using approximate transmission conditions Zm,n with
the corresponding orders of approximation.

Tests with real deposit conductivity

We consider a thin layer of copper covering the tube with constant thickness. The conductivity
of copper is σc = 5.8 × 107S/m and its permeability is µc = µv. σt and µt are the same as in
the previous tests. We vary the thickness δ from 5µm to 200µm and evaluate the di�erences
between the solutions uδ of the asymptotic models with the solution u of the full model.

Figure 3.3 shows that with a given rescaling parameter m = 0, 1,or 2, the approximation
gets better as the asymptotic expansion order n increases. One observes in Figure 3.3c that for
a layer thickness under 200µm, the asymptotic model using the transmission conditions Z2,0 is
not a good approximation. This is because the Z2,0 conditions model the thin layer as perfect
conductor, which is not true for copper through which the electrical �eld can still penetrate.

From the comparisons shown in Figure 3.4, we can conclude that for the asymptotic de-
velopment order n = 2, the asymptotic model using the approximate transmission conditions
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Figure 3.2: L2
1/2-norm relative errors of asymptotic models with Zm,n transmission conditions

with �xed re-scaled conductivities.

Z2,2 is the best approximation of the full model among the three choices of the rescaling pa-
rameter m = 0, 1, 2. However, we remark that in the corresponding coe�cients α2

j , β
2
j , γ

2
j and
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η2j , j = 1, 2, the layer thickness δ, which we would like to reconstruct in the inverse problem,
appears not only as polynomial factors but also implicitly in the trigonometric terms sin(k2)

and cos(k2), now that k22 = iωµcσ2 = iωµcσcδ
2. Hence it will be di�cult to deduce the inverse

problems from direct asymptotic models using Z2,2.
Meanwhile, one observes that the asymptotic models using Z1,n are good approximations of

the full model. For instance, if we choose a threshold of 1% relative error to judge whether an
asymptotic model is accurate, then one observes in Figure 3.3b that even the asymptotic model
using Z1,0 gives a good approximation for thickness δ under 50µm, which covers already a large
range of interested thickness in industrial practice (see Table 3.1). The asymptotic model using
Z1,1 ameliorates the precision for the full range of interested thickness (say, δ < 150µm). With
m = 1, the layer thickness δ appears only as polynomial factors in the coe�cients α1

j , β
1
j , γ

1
j and

η1j , j = 1, 2, which facilitate the deduction of inverse method for the reconstruction of thickness.
Therefore, we will focus on the asymptotic models using Z1,n with n = 0, 1 in the following

discussion.
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Figure 3.3: L2
1/2-norm relative errors of asymptotic models with Zm,n transmission conditions.

Comparison between di�erent expansion order n, rescaling parameter m �xed.
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Figure 3.4: L2
1/2-norm relative errors of asymptotic models with Zm,n transmission conditions.

Comparison between di�erent rescaling parameters m, expansion order n �xed
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In the previous chapter, we studied several asymptotic models using interface transmission
conditions to replace highly conductive deposit thin layers. From the numerical results in a
simpli�ed case where deposit layers are of constant thickness, we concluded that the transmission
conditions Z1,n with n = 0, 1 give su�cient precision of modeling and facilitate the design of
inverse methods. In this chapter, we will at �rst build and numerically validate the asymptotic
models with these transmission conditions for general con�gurations where the layer thickness
is variable (Section 4.1). Then we formulate the inverse problems for thickness reconstruction
as the minimization of a least square cost functional on layer thickness (Sections 4.2 and 4.3).
Finally, some numerical examples of thickness reconstructions are given in Section (4.4). For
the use of asymptotic models in inverse problems we may cite the works of Guzina � Bonnet
[41], Ozdemir � Haddar � Yaka [66] and Park [69].
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4.1 Asymptotic models for deposits with variable layer thickness

In this section, by following the procedure described in Section 3.1.4, we compute the transmis-
sion conditions Z1,n for n = 0, 1 between u± on Γt2 to build the 2-D model in the variational
formulation with some deposit layer of variable thickness (see Figure 4.1).

Tube Deposit

uδ− uδ+uδ

z

r

δd(z)

ΓcΓt1

rt1 rt2

Γt2

Figure 4.1: Representation of a thin layer deposit.

One remarks that with a slight modi�cation, the formal derivation of asymptotic modles
described in Section 3.2.3 for deposits with constant thickness works also for cases with variable
thickness. Taking m = 1, we only have to change the domain ρ ∈ [0, 1] to ρ ∈ [0, d(z)] and
consider the transmission conditions (3.12) rather than (3.17) on Γc.

To simplify the computation, especially the complexities introduced by the transmission
conditions (3.12) on the curved boundary Γc, we assume that the magnetic permeability of the
deposits equals to that of vacuum, that is

µc = µv. (4.1)

This assumption matches the real case where the deposit is in copper.

4.1.1 Formal derivation of approximate transmission conditions Z1,0

For (m,n) = (1, 0), we apply the procedure of Section 3.2.3 with slight modi�cations due to the
change of deposit domain from a layer with constant thickness to a layer with variable thickness
and a curved boundary Γc. With the asymptotic development (3.14) and the transmission
conditions (3.8) for u0 on Γt2 , we have the Cauchy problem for u0

∂2ρu
0 = 0 ρ ∈ [0, 1],

u0|ρ=0 = u0−|rt2 ,
∂ρu

0
∣∣
ρ=0

= 0.

The solution has exactly the same expression (3.42) as in the case for layers with constant
thickness. Taking ρ = d(z) in (3.42) and considering the transmission condition (3.12a) for u0
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on Γc, we get

u0−|rt2 = u0+|rt2 . (4.2)

Then we consider the Cauchy problem for u1 with initial values given by (3.8) for u1
∂2ρu

1 = −B1
1u

0 = −k21u0|rt2 ρ ∈ [0, d(z)],

u1|ρ=0 = u1−|rt2 ,

∂ρu
1
∣∣
ρ=0

= − 1

rt2
u0−|rt2 +

1

rt2

µc
µt
∂r(ru

0
−)|rt2 ,

which implies (3.44) and (3.44) as in the case for layers with constant thickness. The transmission
conditions (3.12b) for u1 on Γc imply

∂ρu
1|ρ=d(z) = − 1

rt2

(
u0+|rt2 − µc

µv
∂r(ru

0
+)|rt2

)
. (4.3)

Equation (3.44) with ρ = d(z) and (4.3) give

1

rt2

µc
µt
∂r(ru

0
−)|rt2 − k21d(z)u

0
−|rt2 =

1

rt2

µc
µv
∂r(ru

0
+)|rt2 . (4.4)

Equations (4.2) and (4.4) and the fact that k21 = iωσ1µc imply that
u0+ = u0−, (4.5a)
1

µv
∂r(ru

0
+) =

1

µt
∂r(ru

0
−)− iωσ1d(z)rt2u

0
−. (4.5b)

4.1.2 The asymptotic model of order 0

We denote the solution of the asymptotic problem by

uδ :=

{
uδ− in Ω−,

uδ+ in Ω+.

From (4.5), the approximate transmission conditions at order 0 between uδ± = u0± on Γt2 write

Z1,0


uδ+ = uδ−, (4.6a)
1

µv
∂r(ru

δ
+) =

1

µt
∂r(ru

δ
−)− iωσ1d(z)rt2u

δ
−. (4.6b)

The �rst condition (4.6a) implies the continuity of uδ through Γt2 . The strong formulation
of the asymptotic model using Z1,0 for uδ writes

− div

(
1

µr
∇(ruδ)

)
− iωσuδ = iωJ in Ω−,

− div

(
1

µvr
∇(ruδ)

)
= 0 in Ω+,

transmission conditions Z1,0 on Γt2 .
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We use a generic notation for the variational space H(Ω) with Ω = Ω− ∪Ω+ denoting either R2
+

or its cut-o� Br∗ = {(r, z) ∈ R2
+ : r < r∗}. That is H(Ω) = H1

1/2,λ(R
2
+) or H(Ω) = H1

1/2(Br∗).
We also recall that the variational formulation with Ω = Br∗ can be reduced to a variational
formulation posed on Br∗,z∗ = {(r, z) ∈ R2 : 0 ≤ r ≤ r∗, |z| < z∗} by introducing appropriate
Dirichlet-to-Neumann operators on z = ±z∗ to accelerate the numerical evaluation (see Chapter
1). Then by integration by parts one gets the variational formulation

a1,0(u
δ, v) =

∫
Ω
iωJv̄r dr dz ∀v ∈ H(Ω), (4.7)

where a1,0(u
δ, v) :=

∫
Ω−

(
1

µr
∇(ruδ) · ∇(rv̄)− iωσuδ v̄r

)
dr dz

+

∫
Ω+

1

µvr
∇(ruδ) · ∇(rv̄) dr dz −

∫
Γt2

iωσ1d(s)u
δ v̄r ds.

Proposition 4.1.1. Assume that the source J ∈ L2
1/2(Ω) has compact support, that the perme-

ability µ > 0 and the conductivity σ ≥ 0 are piecewise constant and bounded in Ω. Assume in
addition that there exist 0 < µinf < µsup < +∞ such that µ sati�es µinf < µ < µsup. Then
variational asymptotic problem (4.7) has a unique solution uδ in H(Ω).

Proof. One veri�es that a1,0 is a continuous sesquilinear form. It is su�cient to show that a1,0
is coercive

ℜ(a1,0(uδ, uδ)) ≥
∫
Ω−

1

µr

∣∣∣∇(ruδ)
∣∣∣2 dr dz +

∫
Ω+

1

µvr

∣∣∣∇(ruδ)
∣∣∣2 dr dz

≥ 1

µsup
|uδ|2H1

1/2
(Ω) ≥

C

µsup
∥uδ∥2H(Ω). (4.8)

The last inequality is due to the Poincaré-type inequality (1.5). Therefore, we conclude from
the Lax-Milgram Theorem the existence and uniqueness of the solution uδ.

4.1.3 Formal derivation of approximate transmission conditions Z1,1

We pick up the formal derivation in Section 4.1.1 and continue it in higher order to get the
approximate transmission conditions Z1,1.

The transmission condition (3.12a) for u1 writes explicitly

u1|ρ=d(z) = u1+|rt2 +
d(z)

rt2

(
−u0+ + ∂r(ru

0
+)
)
|rt2 . (4.9)

From (3.45) with ρ = d(z) and (4.9) we get

u1+|rt2 = u1−|rt2 +
iωσ1µcd

2

2
u0−|rt2 . (4.10)

To get the second transmission condition for u1±, one should consider the Cauchy problem
for u2. From the asymptotic development (3.14) and the transmission conditions (3.8) for u2 on
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Γt2 as initial values, we have

∂2ρu
2 = −B1

1u
1 − B2

1u
0

= −k21u1|rt2 +

(
2

r2t2
− ∂2z

)
u0−|rt2 − 1

r2t2

µc
µt
∂r(ru

0
−)|rt2

+ ρk21

(
2

rt2
u0−|rt2 − 1

rt2

µc
µt
∂r(ru

0
−)|rt2

)
+ ρ2

k41
2
u0−|rt2 ρ ∈ [0, d(z)],

u2|ρ=0 = u2−|rt2 ,

∂ρu
2
∣∣
ρ=0

= − 1

rt2
u1−|rt2 +

1

rt2

µc
µt
∂r(ru

1
−)|rt2 .

The expressions of the solution and its derivative are given in (3.44) and (3.44) respectively.
Since µc = µv, the transmission condition (3.12b) for u2 on Γc writes

∂ρu
2|ρ=d(z) = − 1

rt2

(
u1+ − ∂r(ru

1
+)
)∣∣

rt2
+ d(z)

(
(
2

r2t2
− ∂2z )u

0
+ − 1

r2t2
∂r(ru

0
+)

)∣∣∣∣
rt2

(4.11)

Comparing (3.44) with ρ = d(z) and (4.11) yields

1

µv
∂r(ru

1
+)|rt2 =

1

µt
∂r(ru

1
−)|rt2 − iωσ1rt2d(z)u

1
−|rt2

+

(
1

2
iωσ1d(z)

2 − 1

6
ω2σ21µcd(z)

3

)
u0−|rt2 − 1

2
iωσ1µcd(z)

2 1

µt
∂r(ru

0
−)|rt2 . (4.12)

We introduce the notations of di�erence [·] and mean ⟨·⟩

[v] := v+|rt2 − v−|rt2 , [µ−1∂r(rv)] = µ−1
v ∂r(rv+)|rt2 − µ−1

t ∂r(rv−)|rt2 ,

⟨v⟩ := 1

2

(
v+|rt2 + v−|rt2

)
⟨µ−1∂r(rv)⟩ =

1

2

(
µ−1
v ∂r(rv+)|rt2 − µ−1

t ∂r(rv−)|rt2

)
.

In (4.10) and (4.12), we write the jumps [u1] and [µ−1∂r(ru
1)] on behave of uj− and its derivative

on Γt2 , j = 0, 1. A symmetric formulation would write the jumps on bahave of the mean values.
From (4.2), (4.4), (4.10) and (4.12), one gets

[u1] =
iωσ1µcd(z)

2

2
⟨u0⟩, (4.13a)[

µ−1∂r(ru
1)
]
= −iωσ1rt2d(z)⟨u1⟩

+

(
iωσ1d(z)

2

2
− ω2σ21µcrt2d(z)

3

6

)
⟨u0⟩ − iωσ1µcd(z)

2

2
⟨µ−1∂r(ru

0)⟩. (4.13b)

Thus, the approximate transmission conditions Z1,0 at r = rt2 writes

Z1,1



[uδ] =
iωσ1µcd(z)

2

2
δ⟨uδ⟩, (4.14a)[

µ−1∂r(ru
δ)
]
= −iωσ1rt2d(z)⟨uδ⟩

+

(
iωσ1d(z)

2

2
− ω2σ21µcrt2d(z)

3

6

)
δ⟨uδ⟩ − iωσ1µcd(z)

2

2
δ⟨µ−1∂r(ru

δ)⟩.(4.14b)
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One observes easily that the transmission conditions (4.14) contain terms on order O(1) �
which give Z1,0 � and on order O(δ). However, one cannot ensure that the asymptotic model
using Z1,1 given by (4.14) has coercive sesquilinear form in its variational formulation. To have
the coercivity, we add a stabilizer of order O(δ2) to the �rst transmission condition (4.14a)

αiωσ1µ
2
cd(z)

3δ2⟨µ−1∂r(ru
δ)⟩,

where α > 0 is a dimensionless parameter to be determined. We denote still by Z1,1 the modi�ed
approximate transmission conditions

Z1,1



[uδ] =
iωσ1µcd(z)

2

2
δ⟨uδ⟩+ αiωσ1µ

2
cd(z)

3δ2⟨µ−1∂r(ru
δ)⟩, (4.15a)[

µ−1∂r(ru
δ)
]
= −iωσ1rt2d(z)⟨uδ⟩

+

(
iωσ1d(z)

2

2
− ω2σ21µcrt2d(z)

3

6

)
δ⟨uδ⟩ − iωσ1µcd(z)

2

2
δ⟨µ−1∂r(ru

δ)⟩.(4.15b)

4.1.4 Mixed formulation for the asymptotic model using Z1,1

From the �rst transmission condition (4.15a), uδ is no longer continuous through Γt2 . Therefore,
we consider the function space

H(Ω− ∪ Ω+) := {v : v|Ω± = v± ∈ H(Ω±)}.

The strong formulation of the asymptotic model using Z1,1 for uδ writes
− div

(
1

µr
∇(ruδ)

)
− iωσuδ = iωJ in Ω−,

− div

(
1

µvr
∇(ruδ)

)
= 0 in Ω+,

transmission conditions Z1,1 on Γt2 ,

By integration by parts, the �rst two partial di�erential equations and the second transmission
condition (4.14b) of Z1,1 yields∫

Ω−

(
1

µr
∇(ruδ) · ∇(rv̄)− iωσuδ v̄r

)
dr dz +

∫
Ω+

1

µvr
∇(ruδ) · ∇(rv̄) dr dz + c1,1

=

∫
Ω
iωJv̄r dr dz ∀v ∈ H(Ω− ∪ Ω+), (4.16)

where the term c1,1 depicts the transmission condition (4.15b)

c1,1 :=

∫
Γt2

(
1

µv
∂r(ru

δ
+)v̄+ − 1

µt
∂r(ru

δ
−)v̄−

)
ds

=

∫
Γt2

{
−iωσ1rt2d(s)

(
1− d(s)

2rt2
δ − 1

6
iωσ1µcd(s)

2δ

)
⟨uδ⟩⟨v̄⟩

+⟨µ−1∂r(ru
δ)⟩[v̄]− iωσ1µcd(s)

2

2
δ⟨µ−1∂r(ru

δ)⟩⟨v̄⟩
}

ds. (4.17)
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We de�ne a Lagrange multiplier

λ := ⟨µ−1∂r(ru
δ)⟩ ∈ L2(Γt2) (4.18)

and we set

β(z) := 1− d(z)

2rt2
δ = 1− fδ(z)

2rt2
, (4.19)

where fδ(z) = d(z)δ is the deposit layer thickness. Since fδ(z) is very small compared to the
diameter of the tube 2rt2 , the dimensionless quantity β ∈ (0, 1) is close to 1. From (4.17), (4.18)
and (4.19) we re-de�ne

c1,1(u
δ, λ; v) :=

∫
Γt2

{
−iωσ1rt2d(s)

(
β − iωσ1µcd(s)

2

6
δ

)
⟨uδ⟩⟨v̄⟩+ λ[v̄]− iωσ1µcd(s)

2

2
δλ⟨v̄⟩

}
ds

=

∫
Γt2

{
−iωσcrt2fδ(s)

(
β − iωσcµcfδ(s)

2

6

)
⟨uδ⟩⟨v̄⟩+ λ[v̄]− iωσcµcfδ(s)

2

2
λ⟨v̄⟩

}
ds.

(4.20)

Using the Lagrange multiplier (4.18), the �rst transmission condition (4.15a) yields the weak
formulation

b1,1(u
δ, λ; ζ) :=

∫
Γt2

(
[uδ]ζ̄ − iωσ1µcd(s)

2

2
δ⟨uδ⟩ζ̄ − α

iωσ1µ
2
cd(s)

3

rt2
δ2λζ̄

)
ds

=

∫
Γt2

(
[uδ]ζ̄ − iωσcµcfδ(s)

2

2
⟨uδ⟩ζ̄ − α

iωσcµ
2
cfδ(s)

3

rt2
λζ̄

)
ds = 0 ∀ζ ∈ L2(Γt2). (4.21)

We de�ne the sesquilinear form

a1,1(u
δ, λ; v, ψ) :=

∫
Ω−

(
1

µr
∇(ruδ) · ∇(rv̄)− iωσuδ v̄r

)
dr dz

+

∫
Ω+

1

µvr
∇(ruδ) · ∇(rv̄) dr dz + IΓt2

(uδ, λ; v, ψ), (4.22)

where

IΓt2
(uδ, λ; v, ψ) := c1,1(u

δ, λ; v)− b1,1(v, ψ;λ)

=

∫
Γt2

{
−iωσcrt2fδ(s)

(
β − iωσcµcfδ(s)

2

6

)
⟨uδ⟩⟨v̄⟩ − iωσcµcfδ(s)

2λ⟨v̄⟩ − α
iωσcµ

2
cfδ(s)

3

rt2
λψ̄

}
ds.

(4.23)

Finally, if we denote the function space

X := H(Ω− ∪ Ω+)× L2(Γt2), (4.24)

then from (4.16), the mixed formulation of the asymptotic problem using transmission conditions
Z1,1 writes

a1,1(u
δ, λ; v, ψ) + b1,1(v, ψ;λ) =

∫
Ω
iωJv̄r dr dz ∀(v, ψ) ∈ X, (4.25a)

b1,1(u
δ, λ; ζ) = 0 ∀ζ ∈ L2(Γt2), (4.25b)
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with a1,1 given by (4.22) and b1,1 by (4.21).
We set a dimensionless quantity

ξ(z) := 1− ωσ1µcd(z)
2

6β(z)
δ = 1− ωσcµcfδ(z)

2

6β(z)
. (4.26)

For δ (or the layer thickness fδ(z) = d(z)δ) small enough, ξ ∈ (0, 1) is close to 1.

Proposition 4.1.2. Supposing fδ(z) = d(z)δ is small enough such that the quantities β(z), ξ(z)
given by (4.19) and (4.26) respectively are bounded in (0, 1). If the coe�cient α of the stabilizing
term in (4.15) satis�es

α− 1

4βξ
> 0,

then under the same assumptions for J , µ and σ as in Proposition 4.1.1, the mixed formulation
(4.25) has a unique solution (uδ, λ) ∈ X.

Proof. The proof is similar to the proof of [19, Chapter II, Proposition 1.1]. We de�ne a function
space

Xb := {(v, ψ) ∈ X : b1,1(v, ψ; ζ) = 0 ∀ζ ∈ L2(Γt2)}.

One remarks that if (uδ, λ) ∈ Xb, then it satis�es the second weak formulation (4.25b). We will
show the sesquilinear form a1,1 is coercive on Xb. For any (v, ψ) in Xb, one has

a1,1(v, ψ; v, ψ) =

∫
Ω−

(
1

µr
|∇(rv)|2 − iωσ|v|2r

)
dr dz +

∫
Ω+

1

µvr
|∇(rv)|2 dr dz

+ IΓt2
(v, ψ; v, ψ).

From (4.23)

IΓt2
(v, ψ; v, ψ) = −

∫
Γt2

{
iωσ1rt2d(s)

(
β − iωσ1µcd(s)

2

6
δ

)
|⟨v⟩|2

+iωσ1µcd(s)
2δψ⟨v⟩+ α

iωσ1µ
2
cd(s)

3

rt2
δ2|ψ|2

}
ds

= −
∫
Γt2

iωσ1rt2d(s)

{
β

∣∣∣∣⟨v⟩+ µcd(s)

2βrt2
δψ

∣∣∣∣2 + (α− 1

4β

)
µ2cd(s)

2

r2t2
δ2|ψ|2

− iωσ1µcd(s)
2

6
δ|⟨v⟩|2 + iµcd(s)

rt2
δℑ(ψ⟨v⟩)

}
ds.

One computes

ℜ
(
IΓt2

(v, ψ; v, ψ)
)
=

∫
Γt2

{
−ω

2σ21µcrt2d(s)
3

6
δ |⟨v⟩|2 + ωσ1µcd(s)

2δℑ(ψ⟨v⟩)
}

ds,

ℑ
(
IΓt2

(v, ψ; v, ψ)
)
= −

∫
Γt2

ωσ1rt2d(s)

{
β

∣∣∣∣⟨v⟩+ µcd(s)

2βrt2
δψ

∣∣∣∣2 + (α− 1

4β

)
µ2cd(s)

2

r2t2
δ2|ψ|2

}
ds.
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Then we have

ℜ(a1,1(v, ψ; v, ψ)) ≥
∫
Ω−

1

µr
|∇(rv)|2 dr dz +

∫
Ω+

1

µvr
|∇(rv)|2 dr dz

+

∫
Γt2

{
−ω

2σ21µcrt2d(s)
3

6
δ |⟨v⟩|2 + ωσ1µcd(s)

2δℑ(ψ⟨v⟩)
}

ds,

ℑ(a1,1(v, ψ; v, ψ)) ≤ −
∫
Ω−

ωσ|v|2r dr dz

−
∫
Γt2

ωσ1rt2d(s)

{
β

∣∣∣∣⟨v⟩+ µcd(s)

2βrt2
δψ

∣∣∣∣2 + (α− 1

4β

)
µ2cd(s)

2

r2t2
δ2|ψ|2

}
ds.

Therefore

|a1,1(v, ψ; v, ψ)| ≥ ℜ(a1,1(v, ψ; v, ψ)) + ℑ(a1,1(v, ψ; v, ψ))

≥
∫
Ω−

1

µr
|∇(rv)|2 dr dz +

∫
Ω+

1

µvr
|∇(rv)|2 dr dz +

∫
Ω−

ωσ|v|2r dr dz

+

∫
Γt2

{
ωσ1rt2d(s)β

∣∣∣∣⟨v⟩+ µcd(s)

2βrt2
δψ

∣∣∣∣2 + ωσ1rt2d(s)

(
α− 1

4β

)
µ2cd(s)

2

r2t2
δ2|ψ|2

+ωσ1µcd(s)
2δℑ(ψ⟨v⟩)− ω2σ21µcrt2d(s)

3

6
δ |⟨v⟩|2

}
ds.

As

ωσ1rt2d(s)β

∣∣∣∣⟨v⟩+ µcd(s)

2βrt2
δψ

∣∣∣∣2 + ωσ1µcd(s)
2δℑ(ψ⟨v⟩)− ω2σ21µcrt2d(s)

3

6
δ |⟨v⟩|2

=ωσ1rt2d(s)β

(
ξ |⟨v⟩|2 +

∣∣∣∣µcd(s)2βrt2
δψ

∣∣∣∣2 + µcd(s)

βrt2
(ℜ(ψ⟨v⟩) + ℑ(ψ⟨v⟩))

)

≥ωσ1rt2d(s)β

(
ξ |⟨v⟩|2 +

∣∣∣∣µcd(s)2βrt2
δψ

∣∣∣∣2 − µcd(s)

βrt2
|ψ| |⟨v⟩|

)

=ωσ1rt2d(s)βξ

(
|⟨v⟩| −

∣∣∣∣µcd(s)2βξrt2
δψ

∣∣∣∣)2

− ωσ1rt2d(s)

(
1

ξ
− 1

)
µ2cd(s)

2

4βr2t2
δ2|ψ|2,

together with σc = σ1
δ and fδ(z) = d(z)δ, we obtain

|a1,1(v, ψ; v, ψ)| ≥
∫
Ω−

1

µr
|∇(rv)|2 dr dz +

∫
Ω+

1

µvr
|∇(rv)|2 dr dz

+

∫
Γt2

(
α− 1

4βξ

)
ωσcµ

2
cfδ(s)

3

rt2
|ψ|2 ds

≥ C1

µsup
∥v∥2H(Ω−∪Ω+) + C2∥ψ∥2L2(Γt2 )

,

where C1 > 0 comes from the Poincaré-type inequality (1.5) and C2 is a positive constant
depending only on the physical coe�cients µc, σc as well as the geometrical parameters fδ(z)
and rt2 . Thus a1,1 is coercive on X

b. One observes easily that a1,1 is also continuous. Therefore,
the �rst weak formulation (4.25a) of the mixed formulation has a unique solution (uδ, λ) in Xb

by the Lax-Milgram theorem.
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4.1.5 Numerical validation of the 2-D asymptotic models

We test the asymptotic models in their variational formulations using Z1,n (n = 0, 1) transmis-
sion conditions given by the previous sections. We consider a thin layer of deposit (copper, with
permeability µc = µv and conductivity σc = 5.8 × 106S/m) which covers the shell side of the
tube axisymmetrically with 10mm in height. The permeability of tube is µt = 1.01µv, and the
conductivity of tube is σt = 9.7× 105S/m. The thickness of the thin layer fδ(z) is constant and
takes value in the range from 10µm to 200µm. Hence, in the 2-D representation of the model
in the Orz plan (see for example Figure 3.1), the thin layer is in fact a fδ × 10mm rectangle.
The other geometrical con�gurations (positions of the eddy current probe and the tube) are the
same as in Section 1.3.

First of all, we build a full model which will serve as reference. The computation of the
solution uses a mesh that is adaptively re�ned with respect to this solution with a maximum
edge size hmax = 1.25mm as well as P1 �nite elements on the mesh. To have a good simulation
of the thin deposit layer, at least 4 layers of mesh elements are used in the thickness direction.
The degrees of freedom of the �nite element space are about 11000 for the full model on Br∗,z∗

with r∗ = 30mm and z∗ = 41mm. To ensure that this full model is close enough to the reality
so that one can use it as the reference model, we re�ne again the mesh and observe that there
is no signi�cant di�erence compared to the previous full model.

Then we build the asymptotic models using either Z1,0 (see (4.6)) or Z1,1 (see (4.15)) trans-
mission conditions on Γt2 . The mesh is adaptively re�ned with respect to the solutions with a
maximum edge size hmax = 2.5mm � which is two times larger than the edge size used in the
full model � and P1 �nite elements. The degrees of freedom of the �nite element space are about
4000 on Br∗,z∗ .
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Figure 4.2: Relative error of the asymptotic models using Z1,n transmission conditions, n = 0, 1.

Since the thickness fδ(z) is at most 200µm in our examples, we compute the dimensionless
quantity 4βξ < 4 is at least 2.743. To ensure

α− 1

4βξ
> 0
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we take α = 0.4 as the coe�cient of the sabilizing term in (4.15a).

Finally, we compare in Figure 4.2 the relative errors of the asymptotic models with regard
to the full model in L2

1/2(Br∗,z∗)-norm. One observes that the asymptotic model using Z1,0

gives already a good approximation of the full model with a relative error less than 1% for
fδ(z) < 100µm. But if fδ(z) increases over 100µm, its precision deteriorates. The asymptotic
model using Z1,1 conditions is always a good approximation of the full model for the layer
thickness fδ(z) under 200µm.

4.1.6 Approximation of the impedance measurements

In the cylindrical coordinates for the axisymmetric case, we recall the formula (2.5) of the
impedance measurement in the coil k when the electromagnetic �eld is induced by the coil l

△Zkl =
2π

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
)
1

r
∇(ruk) · ∇(ru0l )− iω(σ − σ0)uku

0
l r

)
dr dz,

where Ωd = Ωc, µ|Ωc = µc, σ|Ωc = σc, µ0|Ωc = µv and σ0|Ωc = 0 in our case. For the thin layers
of deposit in copper, its permeability µc is the same as the background permeability for vacuum
µv (see Table 3.1). Thus the impdance measurement writes

△Zkl = −2π

I2

∫
Ωc

σcuku
0
l r dr dz. (4.27)

Approximation at order 0

From Section 4.1.1 and the expression of the transmission conditions Z1,0 (4.6), the electric �eld
in the thin layer Ωc writes

u(r, z) = uδ(rt2 , z) +O(δ) rt2 < r < rt2 + fδ(z).

Then one has

△Zkl = −2π

I2

∫
Γt2

∫ rt2+fδ(s)

rt2

σcuk(r, s)u
0
l (r, s)r dr ds

= −2π

I2

∫
Γt2

∫ rt2+fδ(s)

rt2

σcu
δ
k(rt2 , s)u

0
l (rt2 , s)r dr ds+O(δ)

= −2π

I2

∫
Γt2

σcfδ(s)u
δ
k(rt2 , s)u

0
l (rt2 , s)rt2 ds+O(δ). (4.28)
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Approximation at order 1

From Section 4.1.3 and the transmission conditions Z1,1 (4.14) without the stablizer at order
O(δ2), we have in the thin layer Ωc

u1(
r−rt2

δ , z) = u1−|rt2 +
1

rt2

(
µc
µt
∂r(ru

0
−)− u0−

)∣∣∣∣
rt2

r − rt2
δ

− iωσ1µc
2

u0−|rt2
(r − rt2)

2

δ2

= ⟨u1⟩ − 1

2

[
u1
]
+

1

rt2

(
µc
⟨
µ−1∂r(ru

0)
⟩
− µc

2

[
µ−1∂r(ru

0)
]
− ⟨u0⟩

) r − rt2
δ

− iωσ1µc
2

⟨u0⟩(r − rt2)
2

δ2

= ⟨u1⟩ − iωσ1µcd(z)
2

4
⟨u0⟩+

(
µc
rt2

⟨
µ−1∂r(ru

0)
⟩
+
( iωσ1µcd(z)

2
− 1

rt2

)
⟨u0⟩

)
r − rt2
δ

− iωσ1µc
2

⟨u0⟩(r − rt2)
2

δ2
.

Thus for rt2 < r < rt2 + fδ(z)

u(r, z) = u0(
r−rt2

δ , z) + δu1(
r−rt2

δ , z) +O(δ2)

=

(
1− iωσ1µcd(z)

2

4
δ

)
⟨uδ⟩+

(
µc
rt2
λ+

( iωσ1µcd(z)
2

− 1

rt2

)
⟨uδ⟩

)
(r − rt2)

− iωσ1µc
2δ

⟨uδ⟩(r − rt2)
2 +O(δ2)

=

(
1− iωσcµcfδ(z)

2

4

)
⟨uδ⟩+

(
µc
rt2
λ+

( iωσcµcfδ(z)
2

− 1

rt2

)
⟨uδ⟩

)
(r − rt2)

− iωσcµc
2

⟨uδ⟩(r − rt2)
2 +O(δ2).

Otherwise, the electric �eld u0l in the deposit-free con�guration satis�es the following transmis-
sion conditions on Γt2 {

[u0l ] = 0,

[µ−1∂r(ru
0
l )] = 0.

Thus one gets the Taylor development

u0l r = u0l rt2 + µvλ
0
l (r − rt2) +O((r − rt2)

2) rt2 < r < rt2 + fδ(z),

where

λ0l := ⟨µ−1∂r(ru
0
l )⟩ on Γt2 .
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Finally we obtain the approximation at order 1

△Zkl = −2π

I2

∫
Γt2

∫ rt2+fδ(s)

rt2

σc

{(
1− iωσcµcfδ(s)

2

4

)
⟨uδk⟩u0l rt2

+

(
µcλku

0
l +

( iωµcrt2fδ(s)
2

− 1
)
⟨uδk⟩u0l +

(
1− iωσcµcfδ(s)

2

4

)
⟨uδk⟩µvλ0l

)
(r − rt2)

− iωσcµc
2

⟨uδk⟩u0l rt2(r − rt2)
2

}
dr ds+O(δ2)

= −2π

I2

∫
Γt2

σc

{(
fδ(s)−

fδ(s)
2

2rt2
− iωσcµcfδ(s)

3

6

)
⟨uδk⟩u0l rt2

+
fδ(s)

2

2
µcλku

0
l +

(fδ(s)2
2

− iωσcµcfδ(s)
4

8

)
µv⟨uδk⟩λ0l

}
ds+O(δ2). (4.29)

4.1.7 Numerical tests on impedance measurements
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Figure 4.3: Approximation of impedance measurements using asymptotic models with Z1,n,
n = 0, 1.



124 Chapter 4. Reconstruction of deposit thin layers via asymptotic models

We consider the same examples as in Section 4.1.5 for the full model (reference) and for
the asymptotic models using Z1,0 and Z1,1 transmission conditions. The eddy current probe is
located at the center position in the vertical direction with regard to the thin layer of deposit in
copper. We compare the impedance measurement signals in FA mode (see (2.8)) at this position
between the full model and the asymptotic models.

Figure 4.3a shows the impedance measurements in their real and imaginary part. One
observes that the signals given by the aymptotic model using Z1,1 transmission conditions are
closer to those from the full model than the signals obtained from the asymptotic model using
Z1,0 conditions. We con�rme this observation by Figure 4.3b which illustrates the relative error
of the signals in FA mode. The asymptotic model using Z1,0 transmission conditions gives a
good approximation only for small layer thickness (under 40µm), while the asymptotic model
using Z1,1 yields an accurate simulation for a large range of layer thickness interested � for
instance, the relative error in impedance measurements is under 1% if the thickness is less than
150µm.

4.2 Thickness reconstruction via asymptotic model using Z1,0

4.2.1 Derivative of the solution with respect to a thickness increment

We assume that h ∈ L2(Γt2) is a small thickness increment of the thin layer, i.e.

fδ(z) → fδ(z) + h(z).

In a con�guration with a thin layer of thickness fδ(z), we denote the solution to the asymptotic
model using Z1,0 (4.7) by uδ(fδ). Then the derivative of uδ(fδ) due to the increment h, denoted
by u′(h), is de�ned by

uδ(fδ + h) = uδ(fδ) + u′(h) + o(h), lim
h→0

∥o(h)∥H
∥h∥L2(Γt2 )

= 0.

We develop the variational formulation of the asymptotic model using Z1,0 transmission condi-
tions (4.7) with the thin layer thickness fδ + h at h = 0 with respect to h. The terms of order
zero is exactly the variational formulation with the original layer thickness fδ. The terms of the
�rst order with respect to h yields

a1,0(u
′, v) =

∫
Γt2

iωσch(s)u
δ v̄r ds ∀v ∈ H(Ω). (4.30)

Using the same argument as in Proposition 4.1.1 one has

Corollary 4.2.1. Under the same assumption as in Proposition 4.1.1, the variational formula-
tion (4.30) has a unique solution u′ in H(Ω).

4.2.2 Adjoint state and derivative of the impedance measurements

We compute the derivative of the impedance measurement due to a small change in layer thick-
ness (fδ → fδ + h). We denote by △Zkl(fδ) the impedance measurement for a thin layer with
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fδ(z) in thickness, and by △Z ′
kl its derivative with regard to h

△Zkl(fδ + h) = △Zkl(fδ) +△Z ′
kl + o(h).

From (4.28), we have

△Z ′
kl = −2π

I2

∫
Γt2

σc

(
h(s)uδku

0
l rt2 + fδ(s)u

′
ku

0
l rt2

)
ds. (4.31)

To write △Z ′
kl explicitly on the thickness increment h (independent of u′k), we introduce the

adjoint state pl satisfying

a∗1,0(pl, v) = −
∫
Γt2

iωσcfδ(s)u
0
l v̄rt2 ds ∀v ∈ H(Ω), (4.32)

where

a∗1,0(p, v) := a1,0(v, p) ∀(p, v) ∈ H(Ω)2. (4.33)

One obtains with the same argument as in Proposition 4.1.1

Corollary 4.2.2. Under the same assumptions as in Proposition 4.1.1, the variational formu-
lation (4.32) has a unique solution pl in H(Ω).

Then we have

Proposition 4.2.3. Considering uδk the solution to the asymptotic model using Z1,0 (4.7) and
pl the adjoint state satisfying the variational formulation (4.32), the derivative of the impedance
measurement △Zkl due to a thickness increment h(z) writes

△Z ′
kl =− 2π

I2

∫
Γt2

σch(s)u
δ
k(u

0
l + pl)rt2 ds. (4.34)

Proof. From (4.32) and (4.30), we have∫
Γt2

iωσcfδ(s)u
′
ku

0
l rt2 ds = a∗1,1(pl, u

′
k) = a1,0(u

′
k, pl) =

∫
Γt2

iωσch(s)u
δ
kplrt2 ds,

which, together with (4.31), implies (4.34).

4.2.3 Thickness reconstruction by minimizing a least square cost functional

Similar to the least square cost functional 2.33, we de�ne here another least square cost functional
of the layer thickness fδ(z)

J (fδ) =

∫ zmax

zmin

|Z(fδ; ζ)− Zmeas(ζ)|2 dζ. (4.35)

Z is the impedance measurement either in FA mode or in F3 mode (see (2.8)). Hence, the
derivative of the cost functional due to a small increment h of the layer thickness fδ writes

J ′(h) =

∫ zmax

zmin

2ℜ(Z ′(h; ζ)(Z(fδ; ζ)− Zmeas(ζ))) dζ, (4.36)
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where

Z ′(h) =


Z ′
FA =

i

2
(△Z ′

11 +△Z ′
21) FA mode,

Z ′
F3 =

i

2
(△Z ′

11 −△Z ′
22) F3 mode.

From (4.34), one has

J ′(h) = − π

I2

∫
Γt2

g(s)h(s) ds, (4.37)

where

g =

{
g11 + g21 FA mode,

g11 − g22 F3 mode.

and

gkl =

∫ zmax

zmin

ℜ
(
iσcu

δ
k(u

0
l + pl)rt2(Z(fδ; ζ)− Zmeas(ζ))

)
dζ. (4.38)

One observes that h = g is a descent direction which minimize the cost functional

J ′(g) = − π

I2

∫
Γt2

|g(s)|2 ds ≤ 0.

4.3 Thickness reconstruction via asymptotic model using Z1,1

4.3.1 Derivative of solution with respect to a thickness increment

We recall that h(z) is a small increment of the layer thickness fδ(z). We denote by (uδ(fδ), λ(fδ))

the solution to the mixed formulation (4.25) with a layer thickness fδ(z). We denote by
(u′(h), λ′(h)) the derivatives of (uδ(fδ), λ(fδ)) due to the increment h

(uδ(fδ + h), λ(fδ + h)) = (uδ(fδ), λ(fδ)) + (u′(h), λ′(h)) + o(h), lim
h→0

∥o(h)∥X
∥h∥L2(Γt2)

= 0.

By developing the mixed formulation of the asymptotic model using Z1,1 transmission conditions
(4.25) with the thin layer thickness fδ + h at h = 0 with regard to the order of h, the terms of
the �rst order on h yields

a1,1(u
′, λ′; v, ψ) + b1,1(v, ψ;λ′) = La(v, ψ) ∀(v, ψ) ∈ X, (4.39a)

b1,1(u
′, λ′; ζ) = Lb(ζ) ∀ζ ∈ L2(Γt2), (4.39b)

where

La(v, ψ) :=

∫
Γt2

iωσch(s)

{
rt2
(
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδ⟩⟨v̄⟩+ µcfδ(s)λ⟨v̄⟩

}
ds, (4.40a)

Lb(ζ) :=

∫
Γt2

iωσch(s)

(
µcfδ(s)⟨uδ⟩ζ̄ + 3α

µ2cfδ(s)
2

rt2
λζ̄

)
ds. (4.40b)

With the same arguments as in the proof of Proposition 4.1.2, one gets

Corollary 4.3.1. Under the same assumptions as in Proposition 4.1.2, the mixed formulation
(4.39) has a unique solution (u′, λ′) ∈ X.
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4.3.2 Adjoint state and derivative of the impedance measurements

We recall that △Z ′
kl is the derivative of the impedance measurement △Zkl(fδ) due to a small

increment in layer thickness (f → fδ + h). From (4.29), one has

△Z ′
kl =− 2π

I2

∫
Γt2

σch(s)

{(
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδk⟩u0l rt2 + fδ(s)µcλku

0
l

+
(
fδ(s)−

iωσcµcfδ(s)
3

2

)
µv⟨uδk⟩λ0l

}
ds

− 2π

I2

∫
Γt2

σc

{(
fδ(s)−

fδ(s)
2

2rt2
− iωσcµcfδ(s)

3

6

)
⟨u′k⟩u0l rt2 +

fδ(s)
2

2
µcλ

′
ku

0
l

+
(fδ(s)2

2
− iωσcµcfδ(s)

4

8

)
µv⟨u′k⟩λ0l

}
ds. (4.41)

We build an adjoint state such that the derivative of the impedance measurement △Z ′
kl has

an explicit expression on the thickness increment h(z) independant of the derivatives (u′k, λ
′
k)

of the solution. The adjoint state (pl, ηl) in X is the unique solution of the following mixed
formulation

a∗1,1(pl, ηl; v, ψ) + c1,1(v, ψ; pl) =M(v, ψ) ∀(v, ψ) ∈ X, (4.42a)

c1,1(pl, ηl;w) = 0 ∀w ∈ H(Ω− ∪ Ω+), (4.42b)

where

a∗1,1(p, η; v, ψ) := a1,1(v, ψ; p, η) + b1,1(p, η;ψ)− c1,1(v, ψ; pl) ∀((p, η), (v, ψ)) ∈ X2 (4.43)

M(v, ψ) := −
∫
Γt2

iωσc

{(
fδ(s)−

fδ(s)
2

2rt2
+

iωσcµcfδ(s)
3

6

)
u0l ⟨v̄⟩rt2 +

fδ(s)
2

2
µcu0l ψ̄

+
(fδ(s)2

2
+

iωσcµcfδ(s)
4

8

)
µvλ0l ⟨v̄⟩

}
ds ∀(v, ψ) ∈ X, (4.44)

and c1,1 is de�ned in (4.20).

Corollary 4.3.2. Under the same assumptions as in Proposition 4.1.2, the mixed formulation
(4.42) has a unique solution (pl, ηl) ∈ X.

Proof. We set the function space

Xc := {(v, ψ) ∈ X : c1,1(v, ψ;w) = 0 ∀w ∈ H(Ω− ∪ Ω+)}.

Then one �nds easily that the coercivity of a∗1,1 on Xc is equivalent to the coercivity of a1,1
on Xb. Hence Proposition 4.1.2 implies the existence and uniqueness of solution to the mixed
formulation (4.42).



128 Chapter 4. Reconstruction of deposit thin layers via asymptotic models

Proposition 4.3.3. With uδk the solution to the asymptotic model using Z1,1 (4.25) and (pl, ηl)

the adjoint state satisfying the mixed formulation (4.42), the derivative of the impedance mea-
surement △Zkl due to a thickness increment h(z) writes

△Z ′
kl =− 2π

I2

∫
Γt2

σch(s)

{(
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδk⟩(u0l + ⟨pl⟩)rt2

+ fδ(s)µcλk(u
0
l + ⟨pl⟩) +

(
fδ(s)−

iωσcµcfδ(s)
3

2

)
µv⟨uδk⟩λ0l

}
ds. (4.45)

Proof. From the mixed formulation (4.42) for the adjoint state, we have

M(u′k, λ
′
k) = a∗1,1(pl, ηl;u

′
k, λ

′
k) + c1,1(u

′
k, λ

′
k; pl)

= a1,1(u
′
k, λ

′
k; pl, ηl) + b1,1(pl, ηl;λ

′
k) = La(pl, ηl)

=

∫
Γt2

iωσch(s)

{
rt2
(
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδk⟩⟨pl⟩+ µcfδ(s)λk⟨pl⟩

}
ds.

From (4.41) and the de�nition of M (4.44) we have

△Z ′
kl =− 2π

I2

∫
Γt2

σch(s)

{(
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδk⟩u0l rt2 + fδ(s)µcλku

0
l

+
(
fδ(s)−

iωσcµcfδ(s)
3

2

)
µv⟨uδk⟩λ0l

}
ds− 2π

I2
1

iω
M(u′k, λ

′
k).

Therefore, the above two equalities yield (4.45).

4.3.3 Thickness reconstruction by minimizing a least square functional

We use the same inversion method for thickness reconstructioni as in Section 4.2.3 by minimizing
the cost functional (4.35). Considering the derivative of the impedance measurements (4.45),
we get similarly the expression of the derivative of the cost functional as in (4.37)

J ′(h) = − π

I2

∫
Γt2

g(s)h(s) ds, (4.46)

where

g =

{
g11 + g21 FA mode,

g11 − g22 F3 mode.

but with

gkl =

∫ zmax

zmin

ℜ
{
iσc

((
1− fδ(s)

rt2
− iωσcµcfδ(s)

2

2

)
⟨uδk⟩(u0l + ⟨pl⟩)rt2

+ fδ(s)µcλk(u
0
l + ⟨pl⟩) +

(
fδ(s)−

iωσcµcfδ(s)
3

2

)
µv⟨uδk⟩λ0l

)
(Z(fδ; ζ)− Zmeas(ζ))

}
dζ.

(4.47)

We verify that h = g minimize the cost functional

J ′(g) = − π

I2

∫
Γt2

|g(s)|2 ds < 0.
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4.4 Numerical tests

In this section, we consider some numerical examples of thickness reconstruction for highly
conductive deposits (copper). Its conductivity is σc = 58× 106S/m and the its permeability is
µc = µv.

The signals of impedance measurements used for inversion are obtained from a full model.
Its numerical settings are the same for the reference full model in Section 4.1.5. On a bounded
computational domain Br∗,z∗ = {(r, z) : 0 ≤ r ≤ r∗,−z∗ ≤ z ≤ z∗} with r∗ = 30mm and
z∗ = 41mm, we consider a adaptively re�ned mesh with respect to the solution with a maximum
edge size hmax = 1.25mm and P1 �nite elements. The degrees of freedom are about 11000.

In the inversion algorithm, we use asymptotic models to resolve forward problems. The mesh
on Br∗,z∗ is also adaptively re�ned with respect to the solution to the asymptotic problem using
Z1,n (n = 0, 1) transmission conditions, with a maximum edge size hmax = 2.5mm. We remark
that this size is two times larger than the maximum edge size used in the full model. With P1

�nite elements, the degress of freedom are about 4000. We set the stopping rule as

J (fδ) ≤ ϵ

∫ zmax

zmin

|Zmeas(ζ)|2 dζ,

where ϵ is a chosen threshold. We take ϵ = 10−4 such that the relative error of the impedance
measurements obtained with the reconstructed thin layer is under 1% of the real measurements.

4.4.1 Parameterized thin layers

We consider an axisymmetric thin layer covering vertically 10mm of the tube's shell side. We
assume that the layer thickness fδ(z) is constant. Thus in the 2-D representation with (r, z)

coordinates, the thin layer is a rectangle with fδ in r-direction the and 10mm in z-direction.
Since there is only one parameters to reconstruct, we need only the impedance signal in FA
mode at one measuring position.

target thickness (µm) 10 20 30 50 75

reconstruction Z1,0 9.86 19.61 29.34 N.A. N.A.
reconstruction Z1,1 9.89 19.69 29.41 48.30 71.03

Table 4.1: Reconstruction layer thickness using FA signals.

Table 4.1 gives the reconstruction results with the asymptotic models using either Z1,0 or Z1,1

transmission conditions. We observes that for a small target thickness (say, less than 30µm), both
models yield satisfying reconstruction results. However, when the target thickness gets larger,
the inversion algorithm with the asymptotic model using Z1,0 conditions does not converge. In
fact, due to the modeling error, the minimum of the cost functional is bounded away from 0.
For instance, for a target thickness 50µm, Figure 4.4 shows the relative cost functional obtained
with the asymptotic model using Z1,0 transmission conditions. Its minimum is about 10−2.5,
still far away from 10−4 which is our chosen stopping threshold for the inversion algorithm.
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Figure 4.4: Cost functional for asymptotic model using Z1,0 around the target thickness.

4.4.2 Reconstruction of arbitary thin layers

We consider some arbitary thin layers of copper with variable thickness. In the inversion algo-
rithm, we use the asymptotic model with Z1,1 transmission conditions. Figures 4.5 show some
reconstruction results using either FA signals or F3 signals. In the �rst example (Figure 4.5a),
we take the signals from 41 probe positions with 0.5mm between each two neighboring positions.
In the second example (Figure 4.5b), signals from 61 probe positions are used for reconstruction.
Both examples show satisfying reconstruction of the thin layers.
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Figure 4.5: Reconstruction of some arbitary thin layers.
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In the previous chapters, we discussed the eddy current model and di�erent inversion methods
for axisymmetric con�gurations. However, the presence of broached quatrefoil support plates
(Figure 5.1) and non-axisymmetric deposits in real industry context motivate us to consider a
3-D eddy current model though the axial eddy current probe is not sensible to angular variations.

Figure 5.1: SG tubes maintained by a broached quatrefoil support plate.

The 3-D eddy current model is derived from Maxwell's equations under the assumptions of
low frequency and high conductivity. In Chapter 1, the formulation of the eddy current model
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is based on the electric �eld E by eliminating the magnetic �eld H. But due to complicate
geometrical con�gurations of di�erent components (tube, support plate, deposits), one should
assume some topological restrictions to ensure the existence and uniqueness for the same ap-
proach in the 3-D case. For instance, Bossavit [17, Chapter 5] discussed the con�guration where
the insulator domain ΩI is simply connected, which is not our case.

Alonso � Fernandes � Valli [3] built the eddy current model for the magnetic �eld H based
on the elimination of the electric �eld E, which leads to an existence and uniqueness result
without preliminary topological assumptions. This approach establishes the weak formulation
on a vectorial function space with conditions on the insulator domain

V := {v ∈ H0(curl; Ω) : curlvI = 0 in ΩI},

With this formulation, we encounter a numerical di�culty since classical �nite elements do not
ensure the above condition on ΩI .

To overcome this di�culty, we consider a formulation for a vector magnetic potential A and
a scalar electric potential V in the conducting domain ΩC . This formulation reported by Bíró
[14] furnishes a magnetic �eld H satisfying the formulation by Alonso � Fernandes � Valli and
does not provoke essential numerical di�culties.

This chapter is organized as follows. In Section 5.1 we build the 3-D eddy current model for
vector potentials with Coulomb gauge condition. Section 5.2 then derives the inversion scheme
by evaluating the material derivative of the solution to the forward model and by using a classical
least square minimization method.

5.1 Formulation via vector potentials

5.1.1 Problem for vector potential with Coulomb gauge condition

This part is largely inspired from Alonso � Valli [4, Chapter 6]. We set the problem in a
bounded domain Ω ⊂ R3. We assume that the conductor domain ΩC is strictly contained in Ω,
i.e. ΩC ⊂ Ω. In our con�guration, ΩC = Ωt ∪ Ωd ∪ Ωp, where t stands for the tube, d for the
deposit and p for the supporting plates. The insulator writes ΩI = Ω \ΩC = Ωs ∪Ωv, where Ωs

stands for the region inside the tube where the probe (thus the source J) is located, and Ωv for
the vacuum outside the tube. Γ∗ = ∂ΩC ∩ ∂ΩI is the interface between the conductor and the
insulator.

We recall the time-harmonic Maxwell equations:{
curlH + (iωϵ− σ)E = J in Ω, (5.1a)

curlE − iωµH = 0 in Ω, (5.1b)

with boundary conditions

H × n = 0 on ∂Ω. (5.2)

We assume that the current density JI = J |ΩI satis�es:

divJI = 0 in ΩI , JI · n = 0 on ∂Ω. (5.3)
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As ωϵ ≪ σ in the conductor, with the assumption (5.3), the Maxwell equations (5.1) yield the
eddy current equations: {

curlH − σE = J in Ω, (5.4a)

curlE − iωµH = 0 in Ω. (5.4b)

Since the permittivity ϵ is neglected in the eddy current model, we lose the information con-
tained in the �rst Maxwell's equation (5.1a). In fact, applying the divergence operator to (5.1a)
considering the assumption (5.3) yields{

div (ϵE) = 0 in ΩI ,

ϵE · n = 0 on ∂Ω.
(5.5)

Therefore, it is necessary to add the condition (5.5) to complete the eddy current model (5.4).
Inspired by the divergence-free property of the magnetic induction µH, we consider the

formulation via a vector magnetic potential A and a scalar electric potential V such that{
µH = curlA in Ω,

E = iωA+∇V in ΩC .
(5.6)

Therefore, in the distribution sense, (5.4) implies

curl(µ−1 curlA)− σ(iωA+∇V ) = J in Ω.

As a new unknown V is added to the system, some additional condition is necessary to obtain a
unique A. Considering the divergence of the equation (5.4a) and the complementary condition
(5.5), we introduce the Coulomb gauge condition to complete the system.{

divA = 0 in Ω,

A · n = 0 on ∂Ω.
(5.7)

Finally we get the complete eddy current problem
curl(µ−1 curlA)− σ(iωA+∇V ) = J in Ω, (5.8a)

divA = 0 in Ω, (5.8b)

A · n = 0 on ∂Ω, (5.8c)

(µ−1 curlA)× n = 0 on ∂Ω, (5.8d)

where the last boundary condition (5.8d) comes from (5.2).
It is di�cult to deal with the Coulombe gauge condition (5.8b), since classical �nite elements

do not keep the divergence-free property. [4, Chapter 6] proposes the addition of a penalization
term: by introducing a constant µ∗ > 0 representing a suitable average of µ in Ω, the Coulomb
gauge condition is incorporated in (5.8a):

curl(µ−1 curlA)− µ−1
∗ ∇divA− σ(iωA+∇V ) = J in Ω.
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To ensure {
div (σE) = −divJ = 0 in ΩC ,

σE · n = [J ]Γ∗ · n = 0 on Γ∗,

where [·]Γ∗ is the jump through the interface Γ∗: [a]Γ∗ = aI − aC , we also add the following
conditions {

div (σ(iωA+∇V )) = −divJ = 0 in ΩC ,

σ(iωA+∇V ) · n = [J ]Γ∗ · n = 0 on Γ∗.

Therefore, we get the problem

curl(µ−1 curlA)− µ−1
∗ ∇divA− σ(iωA+∇V ) = J in Ω, (5.9a)

div (σ(iωA+∇V )) = −divJ = 0 in ΩC , (5.9b)

σ(iωA+∇V ) · n = [J ]Γ∗ · n = 0 on Γ∗, (5.9c)

A · n = 0 on ∂Ω, (5.9d)

(µ−1 curlA)× n = 0 on ∂Ω. (5.9e)

[4, Lemma 6.1] show the equivalence between the problems (5.8) and (5.9).
It is worth noting that in numerical tests, the convergence of nodal �nite element approxi-

mation is generally not ensured due to the presence of re-entrant corners or edges (see Costabel
� Dauge [32]). Nevertheless, [4, Remark 6.6] states that the nodal �nite element approximation
is convergent for the Coulomb gauged vector potential formulation.

5.1.2 Variational formulation of the eddy current problem via vector poten-
tials

We de�ne the function space

X(Ω) = H(curl,Ω) ∩H0(div ,Ω). (5.10)

We multiply (5.9a) by Ψ and (5.9b) by Φ. By integration by parts, one gets the variational
formulation of (5.9)

a(A, V ;Ψ,Φ) =

∫
Ω
J ·Ψdx− 1

iω

∫
ΩC

J · ∇Φdx ∀(Ψ,Φ) ∈ X(Ω)×H1(ΩC)/C, (5.11)

where

a(a, v;ψ, ϕ) :=

∫
Ω

(
1

µ
curla · curlψ +

1

µ∗
divadivψ

)
dx

+
1

iω

∫
ΩC

σ(iωa+∇v) · (iωψ +∇ϕ) dx ∀(a, v), (ψ, ϕ) ∈ X(Ω)×H1(ΩC)/C.

(5.12)

We may refer to [4, Theorem 6.3] to see the equivalence between the variational formulation
(5.11) and the strong problem (5.9). We conclude from [4, Section 6.1.2] that

Proposition 5.1.1. Let µ > 0, σ ≥ 0 belong to L∞(Ω). J ∈ L2(Ω)3 has compact support
in Ωs ⊂ ΩI and satis�es divJ = 0 in Ωs. Then the variational problem (5.11) has a unique
solution (A, V ) in X(Ω)×H1(ΩC)/C.
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5.2 Deposit reconstruction via shape optimization

5.2.1 Shape and material derivatives of the solution

For any regular open set Q ⊂ R3, we consider a domain deformation as a perturbation of the
identity

Id + θ : Q → Qθ

x 7→ y, (5.13)

where θ ∈ W 1,∞(Q,Q)3 is a small perturbation. To make a di�erence between the di�erential
operators before and after the variable substitution, we denote by curlx, div x, ∇x the curl,
divergence and gradient operators on Q with x-coordinates and by curly, div y, ∇y those on Qθ

with y-coordinates. For any (a(Qθ), v(Qθ) de�ned on Qθ, we set

a∇(θ) = a(Qθ) ◦ (Id + θ), (5.14a)

acurl(θ) = (I +∇θ)ta∇, (5.14b)

adiv (θ) = det(I +∇θ)(I +∇θ)−1a∇, (5.14c)

v∇(θ) = v(Qθ) ◦ (Id + θ). (5.14d)

which conserve the corresponding di�erential operators (see for example [62, (3.75), Corollary
3.58, Lemma 3.59])

(I +∇θ)−t∇xa∇(θ) = (∇ya(Ωθ)) ◦ (Id + θ), (5.15a)
I +∇θ

det(I +∇θ)
curlx acurl(θ) = (curly a(Ωθ) ◦ (Id + θ), (5.15b)

1

det(I +∇θ)
div xadiv (θ) = (div ya(Ωθ)) ◦ (Id + θ), (5.15c)

(I +∇θ)−t∇xv∇(θ) = (∇yv(Ωθ)) ◦ (Id + θ), (5.15d)

where ∇θ := ( ∂θi∂xj
)i,j is the Jacobian matrix. In the sequel, we write curl, div and ∇ for curlx,

div x and ∇x respectively.

De�nition 5.2.1. Let (a(Q), v(Q)) some shape-dependent functions that belong to some Banach
space B(Q), and θ ∈ W 1,∞(Q,Q)3 a shape perturbation. The material derivatives (b(θ), u(θ))

of (a, v) are de�ned by

acurl(θ) = acurl(0) + b(θ) + o(θ) = a(Q) + b(θ) + o(θ), (5.16)

v∇(θ) = v∇(0) + u(θ) + o(θ) = v(Q) + u(θ) + o(θ), (5.17)

where limθ→0
∥o(θ)∥B(Q)

∥θ∥1,∞ = 0. We also de�ne the shape derivatives (a′(θ), v′(θ)) of (a, v) by

a′(θ) = b(θ)− (θ · ∇)a(Q)− (∇θ)ta(Q), (5.18)

v′(θ) = u(θ)− θ · ∇v(Q). (5.19)
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The derivatives bdiv (θ) and b∇(θ) of a which conserve the divergence operator and the gradient
operator respectively are given by

bdiv (θ) = b(θ) + (div θI −∇θ − (∇θ)t)a(Q), (5.20)

b∇(θ) = b(θ)− (∇θ)ta(Q). (5.21)

Remark 5.2.2. Using the chain rule, we have from De�nition 5.2.1 that formally, in ω ⊂ Q∩Qθ,

a(Qθ) = a(Q) + a′(θ) + o(θ), (5.22)

adiv (θ) = adiv (0) + bdiv (θ) + o(θ) = a(Q) + bdiv (θ) + o(θ), (5.23)

a∇(θ) = a∇(0) + b∇(θ) + o(θ) = a(Q) + b∇(θ) + o(θ), (5.24)

v(Qθ) = v(Q) + v′(θ) + o(θ). (5.25)

Remark 5.2.3. The de�nition of the material derivative b(θ) of a here is slightly di�erent from
that in the axisymmetric 2-D case, which is similar to the de�nition of the derivative b∇(θ)
which conserves the gradient operator. In fact, the material derivative is de�ned so as to keep
the boundary or transmission conditions. In the axisymmetric 2-D case, we apply the gradient
operator on the weighted azimuthal electric �eld w and its material derivative de�ned with respect
to the gradient operator keeps the same transmission conditions at the interface with jumps of
coe�cients. In the 3-D case, however, it is the curl operator that one applies on the vector
potential. Thus its material derivative is de�ned with respect to the curl operator to conserve the
transmission conditions.

Precisely speaking, if we denote by [·] the jump through the interface Γ, i.e. for any f(x)
de�ned in a vicinity of Γ and any x0 ∈ Γ

[f ](x0) := f+(x0)− f−(x0),

with f+(x0) = lim
Ωv∋x→x0

f(x) and f−(x0) = lim
Ωd∋x→x0

f(x).

then the transmission conditions satis�ed by A ∈ X(Ω)

[n · curlA] = [µ−1n× curlA] = 0 on Γ, (5.26)

are also satis�ed by its material derivative B(θ) ∈ X(Ω)

[n · curlB] = [µ−1n× curlB] = 0 on Γ. (5.27)

We rewrite the variational formulation (5.11) on Ωθ∫
Ωθ

(
1

µ
curlyA · curly Ψ+

1

µ∗
div yAdiv yΨ

)
dy +

1

iω

∫
ΩCθ

σ(iωA+∇V ) · (iωΨ+∇Φ) dy

=

∫
Ωθ

J ·Ψ dy − 1

iω

∫
ΩCθ

J · ∇Φdy ∀(Ψ,Φ) ∈ X(Ωθ)×H1(ΩCθ)/C. (5.28)

We set

A∇(θ) = A(Ωθ) ◦ (Id + θ),

Acurl(θ) = (I +∇θ)tA∇,

Adiv (θ) = det(I +∇θ)(I +∇θ)−1A∇,

V∇(θ) = V (Ωθ) ◦ (Id + θ),
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and we choose the test functions such that

Ψ = (I +∇θ)tΨ(Ωθ) ◦ (Id + θ), Φ = Φ(Ωθ) ◦ (Id + θ). (5.29)

We set also

Ψdiv (θ) = det(I +∇θ)(I +∇θ)−1(I +∇θ)−tΨ = det(I +∇θ)(I +∇θ)−1Ψ(Ωθ) ◦ (Id + θ)

which conserves the divergence operator

1

det(I +∇θ)
divΨdiv (θ) = (div yΨ(Ωθ)) ◦ (Id + θ).

By variable substitution y = (Id + θ)x, the left-hand-side of (5.28) writes∫
Ω

(
1

µ

(I +∇θ)t(I +∇θ)
| det(I +∇θ)|

curlAcurl · curlΨ +
1

µ∗

1

|det(I +∇θ)|
divAdiv divΨdiv

)
dx

+
1

iω

∫
ΩC

σ|det(I +∇θ)|(I +∇θ)−1(I +∇θ)−t
(
iωAcurl +∇V∇

)
·
(
iωΨ +∇Φ

)
dx. (5.30)

Since suppJ ∩ suppθ = ∅, the right-hand side of the weak formulation (5.28) writes simply:∫
Ω
J · Ψ dx− 1

iω

∫
ΩC

J · ∇Φdx. (5.31)

Like in De�nition 5.2.1, we denote by (B(θ), U(θ)) the material derivatives of (A, V ), and by
bdiv (θ) and b∇(θ) the derivatives of A which keep the divergence and the gradient operator
respectively. Considering the developments

| det(I +∇θ)| = 1 + div θ + o(θ),

(I +∇θ)−1 = I −∇θ + o(θ),

we develop the left-hand-side (5.30) and the right-hand-side (5.31) with respect to θ. The terms
of order zero with respect to θ give exactly the variational formulation (5.11) on Ω and therefore
vanish. Using the Coulombe gauge condition divA = 0, the �rst order terms with respect to θ
yield ∫

Ω

(
1

µ
curlB(θ) · curlΨ +

1

µ∗
divBdiv (θ)divΨ

)
dx

+
1

iω

∫
ΩC

σ(iωB(θ) +∇U(θ)) · (iωΨ +∇Φ) dx

=

∫
Ω

1

µ
(div θI −∇θ − (∇θ)t) curlA · curlΨ dx

+
1

iω

∫
ΩC

σ(−div θI +∇θ + (∇θ)t)(iωA+∇V ) · (iωΨ +∇Φ) dx. (5.32)

We substitute Bdiv by (5.20) in (5.32), and get the weak formulation for the material derivatives
(B(θ), U(θ))

a(B(θ), U(θ);Ψ , Φ) = L(Ψ , Φ) ∀(Ψ , Φ) ∈ X(Ω)×H1(ΩC)/C, (5.33)
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where

L(Ψ , Φ) :=

∫
Ω

1

µ
(div θI −∇θ − (∇θ)t) curlA · curlΨ dx

−
∫
Ωd+Ω{

d

1

µ∗
div

(
(div θI −∇θ − (∇θ)t)A

)
· divΨ dx

+
1

iω

∫
ΩC

σ(−div θI +∇θ + (∇θ)t)(iωA+∇V ) · (iωΨ +∇Φ) dy. (5.34)

Remark 5.2.4. In the above expression of L(Ψ , Φ) we used the notation
∫
Ωd+Ω{

d
which means

the integrals on Ωd and on Ω{
d seperately. That is because the term div ((div θI−∇θ− (∇θ)t)A)

is not de�ned on the whole domain Ω = Ωd ∪ Ω{
d for lack of regularity on Γ, but only on the

subdomains Ωd and Ω{
d.

Using the same argument as for Proposition 5.1.1, we obtain

Proposition 5.2.5. Let θ ∈W 1,∞(Ω,Ω)3 a domain perturbation. Under the same assumptions
as in Proposition 5.1.1, the variational formulation for the material derivatives (5.11) has a
unique solution (B(θ), U(θ)) in X(Ω)×H1(ΩC)/C.

To simplify the expression of the variational formulation (5.33), we introduce a computational
result. We assume that on Q ⊂ Ω, the coe�cients µ and σ are constant. We de�ne a shape-
dependent form

αµ,σ(Q)(a, v;ψ, ϕ) :=

∫
Q

1

µ
curla · curlψ dx+

1

iω

∫
Q
σ(iωa+∇v) · (iωψ +∇ϕ) dx. (5.35)

We denote the tangential component a vector and the tangential gradient operator on some
boundary or interface by

aτ := a− (a · n)n,
∇τv := ∇v − ∂nvn.

Lemma 5.2.6. Let Q a regular open set, µ > 0 and σ ≥ 0 constant on Q and Id + θ : Q → Qθ

a deformation. Let (a, v) = (a(Q), v(Q)) and (ψ, ϕ) = (ψ(Q), ϕ(Q)) some shape-dependent
functions with su�cient regularity. We assume that the material derivatives (b(θ), u(θ)) of
(a, v), the shape derivatives (a′(θ), v′(θ)) of (a, v) and the material derivatives (η(θ), χ(θ)) of
(ψ, ϕ) de�ned as in De�nition 5.2.1 exist. If (a(Q), v(Q)) satisfy in the weak sense

curl(µ−1 curla)− σ(iωa+∇v) = 0 in Q, (5.36a)

diva = 0 in Q, (5.36b)

σ(iωa+∇v) · n = 0 on ∂Q, (5.36c)

then the shape derivative of αµ,σ(Q)(a, v;ψ, ϕ) that we denote by α′
µ,σ(Q)(θ)(a, v;ψ, ϕ), i.e.

αµ,σ(Qθ)(a(Qθ), v(Qθ);ψ(Qθ), ϕ(Qθ))

= αµ,σ(Q)(a(Q), v(Q);ψ(Q), ϕ(Q)) + α′
µ,σ(Q)(θ)(a(Q), v(Q);ψ(Q), ϕ(Q)) + o(θ),
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satis�es

α′
µ,σ(Q)(θ)(a, v;ψ, ϕ)

= αµ,σ(Q)(a′(θ), v′(θ);ψ, ϕ) + αµ,σ(Q)(a, v;η(θ), χ(θ))

+

∫
∂Q

1

µ
(θ · curla)(n · curlψ) ds+ 1

iω

∫
∂Q
σ(n · θ)(iωaτ +∇τv) · (iωψτ +∇τϕ) ds. (5.37)

The proof, which involves some exhaustive computations, is given in Section 5.3.2.

Proposition 5.2.7. Under the same assumptions as in Proposition 5.2.5, we assume in addition
that µ, σ are piecewise constant and constant in each subdomain (Ωs, Ωt, Ωd, Ωv or Ωp). If
the domain perturbation θ has support only on a vicinity of the interface Γ between the deposit
domain Ωd and the vacuum Ωv (Γ = ∂Ωd∩∂Ωv) and vanishes in Ωs, then the material derivatives
(B(θ), U(θ)) of (A, V ) satis�es

a(B(θ), U(θ);Ψ , Φ) = L(Ψ , Φ) ∀(Ψ , Φ) ∈ X(Ω)×H1(ΩC)/C, (5.38)

where

L(Ψ , Φ)

:=

∫
Ωd+Ω{

d

(
1

µ
curl((θ · ∇)A+ (∇θ)tA) · curlΨ +

1

µ∗
div ((θ · ∇)A+ (∇θ)tA)divΨ

)
dx

+
1

iω

∫
ΩC

σ

(
iω
(
(θ · ∇)A+ (∇θ)tA

)
+∇(θ · ∇V )

)
· (iωΨ +∇Φ) dx

+

∫
Γ

[
1

µ

]
(θ · n)(n · curlA)(n · curlΨ) ds

+
1

iω

∫
Γ
(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds ∀(Ψ , Φ) ∈ X(Ω)×H1(ΩC)/C. (5.39)

Proof. Let Λ = {s, t, d, v, p} a set of indices with its elements designating the di�erent subdo-
mains as well as the corresponding permeabilities and conductivities. We rewrite left-hand-side
of the variational formulation (5.28) for (A(Ωθ), V (Ωθ)) as

∑
i∈Λ

αµi,σi(Ωiθ)(A(Ωθ), V (Ωθ);Ψ(Ωθ),Φ(Ωθ))︸ ︷︷ ︸
A(Ωθ)

+

∫
Ωθ

1

µ∗
div yA(Ωθ) · div yΨ(Ωθ) dy︸ ︷︷ ︸

P(Ωθ)

.

If we choose the test functions (Ψ,Φ) as in (5.29), their material derivatives vanish. Since
(A(Ωθ), V (Ωθ)) satisfy both (5.8) and (5.9), we can apply Lemma 5.2.6 to the terms αµi,σi(Ωiθ),
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which yields the shape derivative of A

A′(Ω)(θ) =
∑
i∈Λ

α′
µi,σi

(Ωi)(θ)(A, V ;Ψ , Φ)

=
∑
i∈Λ

αµi,σi(Ωi)(A
′(θ), V ′(θ);Ψ , Φ)

−
∫
Γ

[
1

µ
(θ · curlA)(n · curlΨ)

]
ds− 1

iω

∫
Γ
(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds

=
∑
i∈Λ

(
αµi,σi(Ωi)(B(θ), U(θ);Ψ , Φ) + αµi,σi(Ωi)(−(θ · ∇)A− (∇θ)tA,−(θ · ∇V );Ψ , Φ)

)
−
∫
Γ

[
1

µ

(
(θ · n)(n · curlA) + θ ·

(
n× (curlA× n)

))
(n · curlΨ)

]
ds

− 1

iω

∫
Γ
(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds

= a(B(θ), U(θ);Ψ , Φ)−
∫
Ω

1

µ∗
divB(θ)divΨ dx

−
∫
Ωd+Ω{

d

1

µ
curl((θ · ∇)A+ (∇θ)tA) · curlΨ dx

− 1

iω

∫
ΩC

σ

(
iω
(
(θ · ∇)A+ (∇θ)tA

)
+∇(θ · ∇V )

)
· (iωΨ +∇Φ) dx

−
∫
Γ

[
1

µ

]
(θ · n)(n · curlA)(n · curlΨ) ds

− 1

iω

∫
Γ
(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds. (5.40)

In the last equality we have used the transmission conditions

[n · curlA] = [n× (µ−1 curlA× n)] = 0 on Γ.

From the derivation of L(Ψ ,Φ) (5.34), one deduces easily that the shape derivative of the
penalization term P is

P ′(Ω)(θ) =

∫
Ω

1

µ∗
divB(θ)divΨ dx+

∫
Ωd+Ω{

d

1

µ∗
div

(
(div θI −∇θ − (∇θ)t)A

)
divΨ dx.

Using the identities (5.57) and the Coulombe gauge condition divA = 0, one veri�es that on
each subdomain Ωi (i ∈ Λ) of Ω

div ((div θI −∇θ − (∇θ)t)A) = div ((div θI −∇θ − (∇θ)t)A− curl(A× θ))
= div (div θA− (A · ∇)θ − (∇θ)tA−Adiv θ + θdivA− (θ · ∇)A+ (A · ∇)θ)

= −div ((θ · ∇)A+ (∇θ)tA).

Thus

P ′(Ω)(θ) =

∫
Ω

1

µ∗
divB(θ)divΨ dx−

∫
Ωd+Ω{

d

1

µ∗
div ((θ · ∇)A+ (∇θ)tA)divΨ dx. (5.41)
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We derive easily from (5.40) and (5.41) the variational formulation (5.38) with L(Ψ , Φ) given by
(5.39).

Remark 5.2.8. The shape derivatives (A′(θ), V ′(θ)) are less regular than the material deriva-
tives (B(θ), U(θ)). With local regularity of A in Ωd and in Ω{

d, we have from the de�nition
(5.18)

curlA′(θ) = curlB(θ)− curl
(
(θ · ∇)A+ (∇θ)tA

)
= curlB(θ) + curl(θ × curlA).

One observes that in a vicinity of Γ the term curlA is only in L2(Ω)3, thus one can only write
curl(curlA × θ) in the weak sense. In fact, in the distribution sense, a simple layer potential
should be added to describe the discontinuity (see for example [39, Chapter 3]). Thus A is in
the function space

X(Ωd ∪ Ω{
d) := {a : a|Ωd

∈ X(Ωd),a|Ω{
d
∈ X(Ω{

d)}.

We can de�ne a form similar to a(·, ·; ·, ·)

ǎ(a, v;ψ, ϕ) :=

∫
Ωd+Ω{

d

(
1

µ
curla · curlψ +

1

µ∗
divadivψ

)
dx

+
1

iω

∫
ΩC

σ(iωa+∇v) · (iωψ +∇ϕ) dx ∀(a, v), (ψ, ϕ) ∈ X(Ωd ∪ Ω{
d)×H1(ΩC)/C.

From (5.38) and the relations (5.18) � (5.19) we have

ǎ(A′(θ), V ′(θ);Ψ , Φ) =

∫
Γ

[
1

µ

]
(θ · n)(n · curlA)(n · curlΨ) ds

+
1

iω

∫
Γ
(θ · n)[σ](iωAτ +∇τV ) · (iωΨτ +∇τΦ) ds ∀(Ψ , Φ) ∈ X(Ωd ∪ Ω{

d)×H1(ΩC)/C.

(5.42)

To complete the system, we should consider a mixed formulation based on (5.42) and an addi-
tional formulation describing the discontinuity of (n · curlA′(θ)) and (µ−1 curlA′(θ) × n) on
the interface Γ

[n · curlA′(θ)] = [n · curl(θ × curlA)],

[µ−1 curlA′(θ)× n] = [µ−1 curl(θ × curlA)× n].

5.2.2 Shape derivative of the impedance measurements

We recall the expression of the impedance measurement in 3-D

△Zkl =
1

iωI2

∫
Ωd

(
(
1

µ
− 1

µ0
) curlEk · curlE0

l − iω(σ − σ0)Ek ·E0
l

)
dx

By substituting the electric �eld by the vector potentials (see (5.6)) one gets the impedance
measurement as a shape-dependent functional

△Zkl(Ωd) =
iω

I2

∫
Ωd

(
(
1

µ
− 1

µ0
) curlAk · curlA0

l

− 1

iω
(σ − σ0)(iωAk +∇Vk) · (iωA0

l +∇V 0
l )

)
dx. (5.43)
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Proposition 5.2.9. Let (Ak, Vk) the solution to the variational formulation (5.11) with coef-
�cients µ, σ, and (A0

l , V
0
l ) the solution to (5.11) with coe�cients µ0, σ0 which do not depend

on the deposit domain Ωd. Let (A′
k, V

′
k) the shape derivatives of (A, V ). Under the same as-

sumptions as in Proposition 5.2.7, the shape derivative of the impedance measurement △Zkl(Ωd)

writes

△Z ′
kl(Ωd)(θ)

=
iω

I2

∫
Ωd

(
(
1

µ
− 1

µ0
) curlA′

k · curlA0
l −

1

iω
(σ − σ0)(iωA′

k +∇V ′
k) · (iωA0

l +∇V 0
l )

)
dx

+
iω

I2

∫
Γ
(θ · n)

(
(
1

µ
− 1

µ0
) curlAk · curlA0

l

− 1

iω
(σ − σ0)(iωAkτ +∇τVk) · (iωA0

lτ +∇τV
0
l )

)
ds. (5.44)

Proof. From (5.43) one has

I2

iω
△Zkl(Ωd) = αµ,σ(Ωd)(Ak, Vk;A

0
l ,−V 0

l )− αµ0,σ0(Ωd)(A
0
l , V

0
l ;Ak,−Vk).

As (Ak, Vk) satisfy (5.36) with constant µ, σ in Ωd, and A0, V 0
k verify (5.36) with constant µ0,

σ0 in Ωd, Lemma 5.2.6 implies

I2

iω
△Z ′

kl(Ωd)(θ) = α′
µ,σ(Ωd)(θ)(Ak, Vk;A

0
l ,−V 0

l )− α′
µ0,σ0(Ωd)(θ)(A

0
l , V

0
l ;Ak,−Vk)

= αµ,σ(Ωd)(A
′
k(θ), V

′
k(θ);A

0
l ,−V 0

l ) + αµ,σ(Ωd)(Ak, Vk;B
0
l (θ),−U0

l (θ))

− αµ0,σ0(Ωd)(A
0
l
′
(θ), V 0

l
′
(θ);Ak,−Vk)− αµ0,σ0(Ωd)(A

0
l , V

0
l ;Bk(θ),−Vk(θ))

+

∫
∂Ωd

(
1

µ
(θ · curlAk)(n · curlA0

l )−
1

µ0
(θ · curlA0

l )(n · curlAk)

)
ds

− 1

iω

∫
∂Ωd

(σ − σ0)(θ · n)(iωAkτ +∇τVk) · (iωA0
lτ +∇τV

0
l ) ds, (5.45)

where (Bk(θ), Uk(θ)), (B0
l (θ), U

0
l (θ)) are the material derivatives of (Ak, Vk) and (A0

l , V
0
l )

respectively. Now we will compute term by term (5.45). Remark at �rst that

αµ0,σ0(Ωd)(A
0
l
′
(θ), V 0

l
′
(θ);Ak,−Vk) = 0

because the shape derivatives (A0
l
′
(θ), V 0

l
′
(θ)) vanish as the potentials (A0

l , V
0
l ) in the deposit-

free con�guration do not depend on Ωd. This, together with (5.18) and (5.19), also implies

B0
l (θ) = (θ · ∇)A0

l + (∇θ)tA0
l , U0

l (θ) = θ · ∇V 0
l .

Hence, by substituting (B0
l (θ), U

0
l (θ)) with the above expressions in the expression of
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αµ,σ(Ωd)(Ak, Vk;B
0
l (θ),−U0

l (θ)), one gets

αµ,σ(Ωd)(Ak, Vk;B
0
l (θ),−U0

l (θ)) = αµ,σ(Ωd)
(
Ak, Vk; (θ · ∇)A0

l + (∇θ)tA0
l ,−θ · ∇V 0

l

)
=

∫
Ωd

1

µ
curlAk · curl

(
(θ · ∇)A0

l + (∇θ)tA0
l

)
dx︸ ︷︷ ︸

S1

− 1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(
iω((θ · ∇) + (∇θ)t)A0

l +∇(θ · ∇V 0
l )
)
dx︸ ︷︷ ︸

S2

.

We compute S1 and S2

S1 =

∫
Ωd

1

µ
curlAk · curl(curlA0

l × θ) dx

=

∫
Ωd

curl(
1

µ
curlAk) · (curlA0

l × θ) dx+

∫
∂Ωd

1

µ
(curlAk × n) · (curlA0

l × θ) ds

=

∫
Ωd

σ(iωAk +∇Vk) · (curlA0
l × θ) dx+

∫
∂Ωd

1

µ
(curlAk × n) · (curlA0

l × θ) ds,

and

S2 =
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(
iω
(
∇(θ ·A0

l ) + curlA0
l × θ

)
+∇(θ · ∇V 0

l )

)
dx

=
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
·
(
(iω curlA0

l × θ) +∇
(
θ · (iωA0

l +∇Vk)
))

dx

=
1

iω

∫
Ωd

σ
(
iωAk +∇Vk

)
· (iω curlA0

l × θ) dx.

The last equality is obtained by integration by parts and by the fact that div (σ(iωAk+∇Vk)) = 0

in Ωd and that σ(iωAk +∇Vk) · n = 0 on ∂Ωd. Therefore

αµ,σ(Ωd)(Ak, Vk;B
0
l (θ),−U0

l (θ)) = S1 − S2

=

∫
∂Ωd

1

µ
(curlAk × n) · (curlA0

l × θ) ds

=

∫
∂Ωd

1

µ

(
(θ · n)(curlAk · curlA0

l )− (θ · curlAk)(n · curlA0
l )

)
ds. (5.46)

Similarly, we have

αµ0,σ0(Ωd)(A
0
l , V

0
l ;Bk(θ),−Uk(θ))

= αµ0,σ0(Ωd)(A
0
l , V

0
l ;A

′
k(θ),−V ′

k(θ))

+ αµ0,σ0(Ωd)
(
A0

l , V
0
l ; (θ · ∇)Ak + (∇θ)tAk,−θ · ∇Vk

)
= αµ0,σ0(Ωd)(A

′
k(θ), V

′
k(θ);A

0
l ,−V 0

l )

+

∫
∂Ωd

1

µ0

(
(θ · n)(curlAk · curlA0

l )− (n · curlAk)(θ · curlA0
l )

)
ds. (5.47)
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From (5.45), (5.46) and (5.47), and considering the fact that the support of θ is on a vicinity of
Γ, we get (5.44).

On Γ, we have

curlAk · curlA0
l =

(
(n · curlAk)n+ n× (curlAk × n)

)
·
(
(n · curlA0

l )n+ n× (curlA0
l × n)

)
= (n · curlAk)(n · curlA0

l ) + (curlAk × n) · (curlA0
l × n).

With the above equality and the relations (5.18) � (5.19), it follows that

△Z ′
kl(Ωd)(θ)

=
iω

I2

∫
Ωd

{
(
1

µ
− 1

µ0
) curlBk · curlA0

l −
1

iω
(σ − σ0)(iωBk +∇Uk) · (iωA0

l +∇V 0
l )

}
dx

− iω

I2

∫
Ωd

{
(
1

µ
− 1

µ0
) curl((θ · ∇)Ak + (∇θ)tAk) · curlA0

l

− 1

iω
(σ − σ0)

(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Uk)

)
· (iωA0

l +∇V 0
l )

}
dx

+
iω

I2

∫
Γ
(θ · n)

{
(
1

µ
− 1

µ0
)(n · curlAk)(n · curlA0

l )

− (µ− µ0)(
1

µ
curlAk × n) · (

1

µ0
curlA0

l × n)

− 1

iω
(σ − σ0)(iωAkτ +∇τVk) · (iωA0

lτ +∇τV
0
l )

}
ds. (5.48)

5.2.3 Expression of the impedance shape derivative using the adjoint state

We follow the method of Hadamard representation to give an expression of Z ′
kl(Ωd)(θ) indepen-

dent of the shape or material derivatives ((A′(θ), V ′(θ)) or (B(θ), U(θ))) of the solution (A, V )

by introducing the adjoint state (Pl,Wl) ∈ X(Ω)×H1(ΩC)/C related to the solution (A0
l , V

0
l )

in the deposit-free case. The adjoint problem writes

a∗(Pl,Wl;Ψ,Φ) = L∗(Ψ,Φ) ∀(Ψ,Φ) ∈ X(Ω)×H1(ΩC)/C (5.49)

where for any (a, v), (ψ, ϕ) in X(Ω)×H1(ΩC)/C

a∗(a, v;ψ, ϕ) := a(ψ, ϕ;a, v)

=

∫
Ω

(
1

µ
curla · curlψ +

1

µ∗
divadivψ

)
dx− 1

iω

∫
ΩC

σ(iωa+∇v) · (iωψ +∇ϕ) dx,

L∗(ψ, ϕ) :=

∫
Ωd

(
(
1

µ
− 1

µ0
) curlA0

l · curlψ +
1

iω
(σ − σ0)(iωA0

l +∇V 0
l ) · (iωψ +∇ϕ)

)
dx.

Proposition 5.2.10. Let (Pl,Wl) the solution to the adjoint problem (5.49). Under the same
assumptions as in Proposition 5.1.1 for µ and σ, one veri�es

divPl = 0 in Ω.
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Proof. By integration by parts, one veri�es that the variational formulation for the adjoint
problem (5.49) is equivalent to the following strong formulation of the problem with penalization



curl(µ−1 curlPl)− µ−1
∗ ∇divPl + σ(iωPl +∇Wl)

= (
1

µ
− 1

µ0
) curl(curlA0

l )− (σ − σ0)(iωA0
l +∇V 0

l ) in Ωd, (5.50a)

curl(µ−1 curlPl)− µ−1
∗ ∇divPl + σ(iωPl +∇Wl) = 0 in Ω{

d, (5.50b)

[n · curlPl] = 0 on Γ, (5.50c)[
µ−1 curlPl × n

]
= −(

1

µ
− 1

µ0
) curlA0

l × n on Γ, (5.50d)

div (σ(iωPl +∇Wl)) = 0 in ΩC , (5.50e)

σ(iωPl +∇Wl) · n = 0 on Γ∗, (5.50f)

Pl · n = 0 on ∂Ω, (5.50g)

(µ−1 curlPl)× n = 0 on ∂Ω. (5.50h)

Using the same arguments as in the proof of [4, Lemma 6.1], we verify that divPl = 0 on Ω.

Proposition 5.2.11. Let (Ak, Vk) the potentials induced by the coil k of the eddy current problem
with deposit domain Ωd, (A0

l , V
0
k ) the potentials induced by the coil l for the deposit free case,

and (Pl,Wl) the adjoint states related to (A0
l , V

0
k ) which satify the adjoint problem (5.49). Then

under the same assumptions as in Proposition 5.1.1 for µ and σ, the impedance shape derivative
(5.48) writes also

△Z ′
kl(Ωd)(θ) =

iω

I2

∫
Γ
(n · θ)

{[
1

µ

]
(n · curlAk)(n · Pl − n · curlA0

l )

− [µ]

(
1

µ
curlAk × n

)
·
(

1

µ0
(curlPl)+ × n− 1

µ0
curlA0

l × n
)

+
1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl + iωA0

lτ +∇τV
0
l )

}
ds. (5.51)

Proof. Taking (Ψ,Φ) = (Bk(θ), Uk(θ)) ∈ X(Ω)×H1(ΩC)/C in the adjoint problem (5.49) yields

a∗(Pl,Wl;Bk(θ), Uk(θ)) = L∗(Bk(θ), Uk(θ)).

On the other hand, taking (Ψ , Φ) = (Pl,Wl) in the variational formulation (5.38) for the material
derivatives (Bk(θ), Uk(θ)) implies

a(Bk(θ), Uk(θ);Pl,Wl) = L(Pl,Wl).

Since

a∗(Pl,Wl;Bk(θ), Uk(θ)) = a(Bk(θ), Uk(θ);Pl,Wl)
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and divPl = 0 (see Proposition 5.2.10), one obtains

L∗(Bk(θ), Uk(θ)) = L(Pl,Wl).

=

∫
Ωd+Ω{

d

1

µ
curl

(
(θ · ∇)Ak + (∇θ)tAk

)
· curlPl dx

+
1

iω

∫
ΩC

σ

(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
· (iωPl +∇Wl) dx

+

∫
Γ

[
1

µ

]
(θ · n)(n · curlAk)(n · curlPl) ds

+
1

iω

∫
Γ
(θ · n)[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl) ds.

In Ωd or in Ω{
d one veri�es

(θ · ∇)Ak + (∇θ)tAk = curlAk × θ +∇(θ ·Ak),

curl
(
(θ · ∇)Ak + (∇θ)tAk

)
= curl

(
curlAk × θ

)
.

Thus, considering (5.50e) and (5.50f), we compute

L∗(Bk(θ), Uk(θ)) = L(Pl,Wl)

=

∫
Ωd+Ω{

d

1

µ
curl

(
curlAk × θ

)
· curlPl dx+

1

iω

∫
ΩC

σiω
(
curlAk × θ

)
· (iωPl +∇Wl) dx︸ ︷︷ ︸

I

+

∫
Γ

[
1

µ

]
(θ · n)(n · curlAk)(n · curlPl) ds

+
1

iω

∫
Γ
(θ · n)[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl) ds. (5.52)

We remind that (curlAk × θ) belongs to X(Ωd ∪ Ω{
d,0). We multiply (5.50a), (5.50b) by(

curlAk × θ
)
, integrate by parts and then take the complex conjugate, which implies

I =

∫
Ωd

(
1

µ
− 1

µ0
) curlA0

l · curl(curlAk × θ) dx

− 1

iω

∫
Ωd

(σ − σ0)(iωA0
l +∇V 0

l ) ·
(
iω(curlAk × θ)

)
dx

+

∫
Γ

[
1

µ
curlPl ·

(
(curlAk × θ)× n

)]
ds+

∫
Γ
(
1

µ
− 1

µ0
) curlA0

l ·
(
(curlAk × θ)× n

)
ds

=

∫
Ωd

(
1

µ
− 1

µ0
) curlA0

l · curl
(
(θ · ∇)Ak + (∇θ)tAk

)
dx

− 1

iω

∫
Ωd

(σ − σ0)(iωA0
l +∇V 0

l ) ·
(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
dx

−
∫
Γ
(θ · n)[µ]

(
1

µ
curlAk × n

)
·
(

1

µ0
(curlPl)+ × n

)
ds (5.53)
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The last equality is due to the transmission conditions (5.50c) � (5.50d) for Pl and those for Ak

(5.26) on Γ. (5.52) and (5.53) imply

L∗(Bk(θ), Uk(θ))−
∫
Ωd

(
1

µ
− 1

µ0
) curlA0

l · curl
(
(θ · ∇)Ak + (∇θ)tAk

)
dx

+
1

iω

∫
Ωd

(σ − σ0)(iωA0
l +∇V 0

l ) ·
(
iω
(
(θ · ∇)Ak + (∇θ)tAk

)
+∇(θ · ∇Vk)

)
dx

=

∫
Γ
(θ · n)

{[
1

µ

]
(n · curlAk)(n · curlPl)− [µ]

(
1

µ
curlAk × n

)
·
(

1

µ0
(curlPl)+ × n

)
+

1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl)

}
ds. (5.54)

We remark that on Γ one has[
1

µ

]
=

1

µ0
− 1

µ
, [µ] = µ0 − µ, [σ] = σ0 − σ.

Considering the de�nition of L∗(·, ·), we substitute the above integral (5.54) in the expression of
shape derivative of △Zkl (5.48) and �nally obtain (5.51).

5.2.4 Shape derivative for a least square cost functional

We recall the least square cost functional

J (Ωd) =

∫ zmax

zmin

|Z(Ωd; ζ)− Zmeas(ζ)|2 dζ,

where Z is either ZFA or ZF3 according to the measurement mode. Since

ZFA(Ωd) =
i

2
(△Z11(Ωd) +△Z21(Ωd)), ZF3(Ωd) =

i

2
(△Z11(Ωd)−△Z22(Ωd)),

Z ′
FA(θ) =

i

2
(△Z ′

11(θ) +△Z ′
21(θ)), Z ′

F3(θ) =
i

2
(△Z ′

11(θ)−△Z ′
22(θ)),

the shape derivative of J (Ωd) is in the form

J ′(Ωd)(θ) = − ω

I2

∫
Γ0

(n · θ)g ds, (5.55)

where the shape-dependent functional g depends on the solutions to the forward problem
(Ak, Vk), (A0

l , V
0
l ) and the adjoint state (Pl,Wl). Precisely,

g =

{
g11 + g21 absolute mode,

g11 − g22 di�erential mode,

with

gkl =

∫ zmax

zmin

ℜ
(
(Z(Ωd; ζ)− Zmeas(ζ))

{[
1

µ

]
(n · curlAk)(n · curlPl − n · curlA0

l )

− [µ]

(
1

µ
curlAk × n

)
·
(

1

µ0
curlPl|Ω{

d
× n− 1

µ0
curlA0

l × n
)

+
1

iω
[σ](iωAkτ +∇τVk) · (iωPlτ +∇τWl + iωA0

lτ +∇τV
0
l )

})
dζ. (5.56)
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We choose the shape perturbation θ such that

θ = gn on Γ,

which is a minimizing direction since

J ′(Ωd)(θ) = − ω

I2

∫
Γ0

|g|2 ds ≤ 0.

5.2.5 Validation for axisymmetric con�gurations

We consider an axisymmetric case and reduce the above 3-D eddy current model to 2-D in
cylindric coordinates O − rz. From (5.6) we have{

curlE = iωµH = curl(iωA) in Ω,

E = iωA+∇V in ΩC .

We already know that in the axisymmetric case, only the azimuthal component Eθ of E is non-
trivial. We denote by w = rEθ the weighted electric �eld. Similarly, for the adjoint state we set
Q such that {

curlQ = curl(iωP ) in Ω,

Q = iωP +∇W in ΩC ,

and we denote by p = rQθ the weighted azimuthal component of Q. Then with the expressions
of operator curl in the cylindrical coordinates, one veri�es easily that the functional gkl given
by (5.56) has exactly the 2-D expression (2.34) for axisymmetric con�gurations.

5.3 Appendices

5.3.1 Di�erential identities

curl(∇f) = 0, (5.57a)

div (curlv) = 0, (5.57b)

(u · ∇)v = (∇v)u, (5.57c)

curlu× v = (∇u− (∇u)t)v, (5.57d)

∇(u · v) = u× curlv + v × curlu+ (u · ∇)v + (v · ∇)u, (5.57e)

curl(u× v) = udiv v − vdivu+ (v · ∇)u− (u · ∇)v. (5.57f)

5.3.2 Proof of Lemma 5.2.6

Proof. By de�nition, one has

αµ,σ(Qθ)(a(Qθ), v(Qθ);ψ(Qθ), ϕ(Qθ)) =

∫
Qθ

1

µ
curly a(Qθ) · curly ψ(Qθ) dy

+
1

iω

∫
Qθ

σ(iωa(Qθ) +∇yv(Qθ)) · (iωψ(Qθ) +∇yϕ(Qθ)) dy.
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Considering the variable substitution (Id+θ)−1 : y 7→ x with the notations introduced in (5.14)
and the di�erential identities (5.15), we rewrite the above form on Q = (Id + θ)−1Qθ

αµ,σ(Qθ)(a(Qθ), v(Qθ);ψ(Qθ), ϕ(Qθ)) =

∫
Q

1

µ

(I +∇θ)t(I +∇θ)
|det(I +∇θ)|

curlacurl · curlψcurl dx

+
1

iω

∫
Q
σ| det(I +∇θ)|(I +∇θ)−1(I +∇θ)−t

(
iωacurl +∇v∇

)
·
(
iωψcurl +∇ϕ∇

)
dx.

If (b(θ), u(θ)), (η(θ), χ(θ)) are respectively the material derivatives of (a, v) and (), then
one can develop the above form with respect to θ. Since (acurl(0), v∇(0)) = (a(Q), v(Q)),
(ψcurl(0), ϕ∇(0) = ϕ(Q)), the terms of order zero with respect to θ give exactly

αµ,σ(Q)(a(Q), v(Q);ψ(Q), ϕ(Q)),

and the �rst order terms with respect to θ are

αµ,σ(Q)(b(θ), u(θ);ψ(Q), ϕ(Q)) + αµ,σ(Q)(a(Q), v(Q);η(θ), χ(θ))

+

∫
Q

1

µ
(−div θ +∇θ + (∇θ)t) curla · curlψ dx︸ ︷︷ ︸

I1

+
1

iω

∫
Q
σ(div θI −∇θ − (∇θ)t)

(
iωa+∇v

)
·
(
iωψ +∇ϕ

)
dx︸ ︷︷ ︸

I2

. (5.58)

We compute term by term. Using the di�erential identities (5.57) and the fact that (a, v) satisfy
the conditions (5.36), one veri�es

(−div θI +∇θ + (∇θ)t) curla
= − curl(curla× θ +∇(θ · a)) +∇(θ · curla) + curl(curla)× θ
= − curl((θ · ∇)a+ (∇θ)ta) +∇(θ · curla) + curl(curla)× θ
= − curl((θ · ∇)a+ (∇θ)ta) +∇(θ · curla) + µσ(iωa+∇v)× θ.

Hence

I1 =−
∫
Q

1

µ
curl((θ · ∇)a+ (∇θ)ta) · curlψ dx

+

∫
Q

1

µ
∇(θ · curla) · curlψ dx︸ ︷︷ ︸

I11

+

∫
Q
σ
(
(iωa+∇v)× θ

)
· curlψ dx︸ ︷︷ ︸

I12

.

By Stoke's theorem, one has

I11 =
∫
Q

1

µ
div
(
(θ · curla) curlψ

)
dx =

∫
∂Q

1

µ
(θ · curla)(n · curlψ) ds.
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By integration by parts, we compute

I12 =
∫
Q
σ curl

(
(iωa+∇v)× θ

)
·ψ dx+

∫
∂Q
σ
{(

(iωa+∇v)× θ
)
× n

}
·ψ ds

=

∫
Q
σ
{
div θ(iωa+∇v)− div (iωa+∇v)θ + (θ · ∇)(iωa+∇v)−∇θ(iωa+∇v)

}
·ψ dx

+

∫
∂Q
σ
{(

(iωa+∇v) · n
)
· θ − (θ · n)(iωa+∇v)

}
·ψ ds

=− 1

iω

∫
Q
σ
{
(div θI −∇θ)(iωa+∇v) + (θ · ∇)(iωa+∇v)

}
· (iωψ) dx

+
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · (iωψ) ds.

Therefore

I1 =−
∫
Q

1

µ
curl((θ · ∇)a+ (∇θ)ta) · curlψ dx+ I11 + I12

=−
∫
Q

1

µ
curl((θ · ∇)a+ (∇θ)ta) · curlψ dx

− 1

iω

∫
Q
σ
{
(div θI −∇θ)(iωa+∇v) + (θ · ∇)(iωa+∇v)

}
· (iωψ) dx

+

∫
∂Q

1

µ
(θ · curla)(n · curlψ) ds+ 1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · (iωψ) ds. (5.59)

Now we compute the term I2

I2 =
1

iω

∫
Q
σ(div θI −∇θ − (∇θ)t)(iωa+∇v) · (iωψ) dx

+
1

iω

∫
Q
σdiv θ(iωa+∇v) · ∇ϕ dx︸ ︷︷ ︸

I21

+
1

iω

∫
Q
σ(−∇θ − (∇θ)t)(iωa+∇v) · ∇ϕdx︸ ︷︷ ︸

I22

.

One computes

I21 =
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · ∇ϕ ds− 1

iω

∫
Q
σθ · ∇

(
(iωa+∇v) · ∇ϕ

)
dx

=
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · ∇ϕ ds

− 1

iω

∫
Q
σθ ·

(
∇ϕ× curl(iωa) +D2ϕ(iωa+∇v) + (∇ϕ · ∇)(iωa+∇v)

)
dx

=
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · ∇ϕ ds− 1

iω

∫
Q
iωσ(curla× θ) · ∇ϕ dx

− 1

iω

∫
Q
σD2ϕ(iωa+∇v) · θ dx− 1

iω

∫
Q
σ

(
iω(∇a)tθ +D2vθ

)
· ∇ϕ dx

=
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · ∇ϕ ds− 1

iω

∫
Q
iωσ(θ · ∇)a · ∇ϕ dx

− 1

iω

∫
Q
σD2ϕ(iωa+∇v) · θ dx− 1

iω

∫
Q
σD2vθ · ∇ϕ dx,
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and

I22 =− 1

iω

∫
Q
σ(∇θ)t(iωa+∇v) · ∇ϕ dx− 1

iω

∫
Q
σ∇θ(iωa+∇v) · ∇ϕ dx

=− 1

iω

∫
Q
σ(∇θ)t(iωa+∇v) · ∇ϕ dx− 1

iω

∫
∂Q

(
σ(iωa+∇v) · n

)
(θ · ϕ) ds

+
1

iω

∫
Q
σ

{
div (iωa+∇v)(θ · ϕ) +D2ϕ(iωa+∇v) · θ

}
dx

=− 1

iω

∫
Q
σ(∇θ)t(iωa+∇v) · ∇ϕ dx+

1

iω

∫
Q
D2ϕ(iωa+∇v) · θ dx.

The last equality is due to the fact that div (σ(iωa + ∇v)) = 0 obtained by applying the
divergence operator to (5.36a). With the di�erential identities (5.57), one veri�es also that

D2vθ + (∇θ)t∇v = (θ · ∇)∇v + (∇θ)t∇v = ∇(θ · ∇v).

Hence

I2 =
1

iω

∫
Q
σ(div θI −∇θ − (∇θ)t)(iωa+∇v) · (iωψ) dx+ I21 + I22

=
1

iω

∫
Q
σ(div θI −∇θ − (∇θ)t)(iωa+∇v) · (iωψ) dx

+
1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · ∇ϕ ds− 1

iω

∫
Q
σiω
(
(θ · ∇)a+ (∇θ)ta

)
· ∇ϕ dx

− 1

iω

∫
Q
σ∇(θ · ∇v) · ∇ϕdx. (5.60)

(5.59), (5.60) and the fact that σ(iωa+∇v) · n = 0 on ∂Q imply

I1 + I2 = −
∫
Q

1

µ
curl((θ · ∇)a+ (∇θ)ta) · curlψ dx

− 1

iω

∫
Q
σ

(
iω
(
(θ · ∇)a+ (∇θ)ta

)
+∇(θ · ∇v)

)
· (iωψ +∇ϕ) dx

+

∫
∂Q

1

µ
(θ · curla)(n · curlψ) ds+ 1

iω

∫
∂Q
σ(θ · n)(iωa+∇v) · (iωψ +∇ϕ) ds

= αµ,σ(Q)(−(θ · ∇)a− (∇θ)ta,−(θ · ∇v);ψ, ϕ)

+

∫
∂Q

1

µ
(θ · curla)(n · curlψ) ds+ 1

iω

∫
∂Q
σ(θ · n)(iωaτ +∇τv) · (iωψτ +∇ϕτ ) ds. (5.61)

From (5.58), (5.61) and the de�nition of shape derivatives (5.18) � (5.19), one concludes the
result (5.37).





Conclusion and perspectives

The problems studied in the present thesis provide a rich spectrum of further research issues,
and we would like to mention a few among them with a brief recall of the mains results.

In Chapter 1 we built a 2-D forward model of eddy current testing under the assumption of
axial symmetry for a simpli�ed case (no supporting plates, no nearby tubes). We in particular
studied several domain cut-o� strategies using di�erent arti�cial boundary conditions in radial
and axial directions and gave the cut-o� error with semi-analytical calculates. A �rst perspective
is to investigate similar domain cut-o� methods in the 3-D case which is critical in reducing the
numerical cost of modeling.

Chapter 2 furnishes a framework of deposit shape reconstruction using shape optimization
applied to a least-square cost functional. We focused on the theoretical feasibility of the recon-
struction via a relationship between an arbitrary shape perturbation and the resulting derivative
of the cost functional, which allows to determinate a descent gradient in aid of a properly de-
�ned adjoint state. Then we illustrated the reconstruction performance with several numerical
examples. It would be interesting to discuss on the pertinence of these methods with regard to
di�erent con�gurations (length scale, physical parameters, etc.). Other improvements could be
made in numerical aspects to have a more e�cient inversion algorithm.

We then concentrated on the problem of reconstructing thin deposits of high conductivity
for which the previous methods become numerically ine�cient. To overcome this di�culty, we
�rst carried out a survey of several asymptotic models in Chapter 3 which substitute the thin
layer of deposits by the e�ective transmission conditions. According to the results of some 1-
D numerical examples, we chose the most pertinent asymptotic model which is both precise
and easy to inverse. Then in Chapter 4 we discussed the consequent modeling and inversion
techniques for arbitrary thin deposits, always under 2-D axisymmetry assumption. Further work
may deal with the general 3-D thin layer of highly conducting deposits.

In Chapter 5 we studied the 3-D eddy current testing problem via a formulation of vector
potentials and discussed the deposit shape reconstruction methods only on the theoretical level.
A joint work with Kamel Riahi on simulation is in progress and, as mentioned above, further
studies on e�cient numerical methods are indispensable to exploit the reconstruction framework
in real case.
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Some inversion methods applied to non-destructive testings of steam generator via eddy current probe

Abstract: The main objective of this thesis is to propose and test some shape optimization techniques to identify and
reconstruct deposits at the shell side of conductive tubes in steam generators using signals from eddy current coils. This
problem is motivated by non-destructive testing applications in the nuclear power industry where the deposit clogging
the cooling circuit may a�ect power productivity and structural safety. We consider in a �rst part an axisymmetric case
for which we set the model by establishing a 2-D di�erential equation describing the eddy current phenomenon, which
enable us to simulate the impedance measurements as the observed signals to be used in the inversion. To speed up
numerical simulations, we discuss the behavior of the solution of the eddy current problem and build arti�cial boundary
conditions, in particular by explicitly constructing DtN operators, to truncate the domain of the problem. In the deposit
reconstruction, we adapt two di�erent methods according to two distinct kinds of deposits. The �rst kind of deposit has
relatively low conductivity (about 1× 104S/m). We apply the shape optimization method which consists in expliciting
the signal derivative due to a shape perturbation of the deposit domain and to build the gradient by using the adjoint
state with respect to the derivative and the cost functional. While for the second kind of deposit with high conductivity
(5.8× 107S/m) but in the form of thin layer (in micrometers), the previous method encounter a high numerical cost due
to the tiny size of the mesh used to model the layer. To overcome this di�culty, we build an adapted asymptotic model
by appropriately selecting the family of e�ective transmissions conditions on the interface between the deposit and the
tube. The name of the asymptotic model is due to the fact that the e�ective transmissions conditions are derived from
the asymptotic expansion of the solution with respect to a small parameter δ characterizing the thickness of the thin
layer and the conductivity behavior. Then the inverse problem consists in reconstructing the parameters representing the
layer thickness of the deposit. For both of the two approaches, we validate numerically the direct and inverse problems.
In a second part we complement this work by extending the above methods to the 3-D case for a non-axisymmetric
con�guration. This is motivated by either non axisymmetric deposits or the existence of non axisymmetric components
like support plates of steam generator tubes.
Keywords: Inverse problems, electromagnetism, eddy current equations, DtN operators, shape optimization, asymptotic
models.

Contrôle non-destructif de générateurs de vapeur via des sondes courants de Foucault :

nouvelles approches

Résumé : L'objectif principal de cette thèse est de proposer et de tester quelques méthodes de l'optimisation de forme
a�n d'identi�er et de reconstruire des dépôts qui couvrent la paroi extérieure d'un tube conducteur dans un générateur
de vapeur en utilisant des signaux courant de Foucault. Ce problème est motivé par des applications industrielles
en contrôle non-destructif dans le secteur de l'énergie nucléaire. En fait, des dépôts peuvent obstruer le passage de
circuit de refroidissement entre les tubes et les plaques entretoises qui les soutiennent, ce qui entraînerait une baisse
de productivité et mettrait la structure en danger. On considère dans un premier temps un cas axisymétrique dans
le cadre duquel on construit un modèle 2-D par des équations aux dérivées partielles pour le courant de Foucault, ce
qui nous permet ensuite de reproduire des mesures d'impédances qui correspondent en réalité les signaux courants de
Foucault. Pour réduire le coût de calculs de la simulation numérique, on tronque le domaine du problème en posant
des conditions aux bords arti�cielles basées sur des études sur le comportement de la solution, notamment sur un
calcul semi-analytique de l'opérateur D-t-N dans la direction axiale. Pour la partie identi�cation et reconstruction, on
distingue deux sortes de dépôts et établit pour chacun une méthode d'inversion spéci�que. Le premier cas concernent
des dépôts dont la conductivité est relativement faible (d'environs 1.e4 S/m). On utilise la méthode d'optimisation de
forme qui consiste à exprimer explicitement la dérivée des mesures d'impédance par rapport au domaine du dépôt en
fonction d'une déformation et à représenter le gradient d'un fonctionnel de coût à minimiser par l'intermédiaire d'un
état adjoint proprement dé�ni. Motivé par la présence des dépôts et des plaques de maintient non-axisymétriques, on
fait aussi une extension en 3-D des méthodes précédentes. Pour le deuxième cas, des dépôts sont fortement conducteurs
et sous forme de couche mince d'une épaisseur de l'ordre de micron. La méthode adaptée à la première sorte de dépôts
devient ici trop coûteuse à cause du degré de liberté très élevé des éléments �nis sur un maillage extrêmement ra�né à
l'échelle de la couche mince. Pour relever cette di�culté, les études sont portées sur plusieurs modèles asymptotiques
qui remplacent la couche mince par des conditions d'interface sur la surface du tube portante du dépôt. Le nom
de modèle asymptotique vient du fait que les conditions d'interface e�ectives sont obtenues par le développement
asymptotique de la solution en fonction d'un paramètre caractérisant la conductivité et l'épaisseur de la couche mince.
La validation numérique a permis de retenir un modèle asymptotique qui est à la fois su�samment précis et simple à
inverser. L'inversion (recherche de l'épaisseur du dépôt) consiste alors à rechercher des paramètres dans les conditions
d'interface (non standard). Pour les deux cas, la validation et des exemples numériques sont proposés pour le modèle
direct et l'inversion.
Mots-clés : Problèmes inverses, électromagnétisme, équations de courant de Foucault, opérateur DtN, optimisation de
forme, modèles asymptotiques.
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