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Industry context
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(a) Schema of a nuclear power plant. (b) Sketch of a steam generator.
Figure 1

Steam generators (SGs, see Figures la, 1b) are critical components in nuclear power plants.
Heat produced in a nuclear reactor core is transferred as pressurized water of high temperature
via the primary coolant loop into a SG, consisting of tubes in U-shape, and boils coolant water
in the secondary circuit on the shell side of the tubes into steam. This steam is then delivered
to the turbine generating electrical power. The SG tubes are hold by the broached quatrefoil
support plates with flow paths between tubes and plates for the coolant circuit (see Figure 2a).
Due to the impurity of the coolant water in the secondary circuit, conductive magnetic deposits
are observed on the shell side of the U-tubes, usually at the level of the quatrefoil tube support
plates(see Figures 2b, 2c) after a long-term exploitation of the SGs. Theses deposits could, by
clogging the flow paths of coolant circuit between the tubes and the support plates, reduce the
power productivity and even harm the structure safety. Without disassembling the SG, the
lower part of the tubes — which is very long — is inaccessible for normal inspections. Therefore, a
non-destructive examination procedure, called eddy current testing (ECT), is widely practiced
in industry to detect the presence of defects, such as cracks, flaws, inclusions and deposits
[9, 11, 15, 27, 54, 83, 86, 87].
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(a) SG tubes and a broached quatrefoil
support plate.

53 B BT G

(b) Clean SG tube and support plate (c) Clogged flow paths by de-
with flow paths. posits.

Figure 2

A brief introduction of the eddy current effect on the site http://www.ndt-ed.org reads

Eddy currents are created through a process called electromagnetic induction.
When alternating current is applied to the conductor, such as copper wire, a magnetic
field develops in and around the conductor. This magnetic field expands as the
alternating current rises to maximum and collapses as the current is reduced to zero.
If another electrical conductor is brought into the close proximity to this changing
magnetic field, current will be induced in this second conductor. Eddy currents are
induced electrical currents that flow in a circular path. They get their name from
“eddies” that are formed when a liquid or gas flows in a circular path around obstacles
when conditions are right.

In the ECT of steam generator, one introduces a probe consisting of two copper wire coils
in the tube. Each of these coils is connected to a current generator producing an alternating
current and to a voltmeter measuring the voltage change across the coil. One of the coils is
excited by its current generator to create a primary electromagnetic field which in turn induces
a current flow — the eddy current — in the conductive material nearby, such as the tube and the
conducting support plates. Given the deposit-free case as background information, the presence
of conducting deposits distorts the eddy current flow and leads to a current change in the two
coils, which is measured by the linked voltmeters in terms of impedance. This measurement is
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called ECT signal that we use to identify the deposits.

Eddy current model

The study of electromagnetic fields induced by alternative electric currents using mathematical
language dates as early as the beginning of the nineteenth century, when Ampére and Faraday
carried out their famous experiments on electricity and magnetism. The electromagnetic fields
are described by a set of partial differential equations — Maxwell’s equations, named after James
Clerk Maxwell who published an early form of these equations describing Ampeére’s circuital law
and Faraday’s law of induction [57, 58, 59]. In particular, he completed the Ampére’s circuital
law by adding a term depicting the displacement currents to describe the capacitive effects .
Readers may refer to Jackson [49] for a complete presentation of the classical electromagnetism.

The eddy current approximation of Maxwell’s equations neglects the displacement current.
This is based on several assumptions. First of all, the applied alternative electric current, and
thus also the electromagnetic fields, are in low frequency regime. Then the conductors should
have sufficiently small permittivity with respect to its conductivity such that the displacement
current in the conductors are negligible with respect to the eddy currents described by the
Faraday’s law. Finally, the conductors should be well separated (see [77|) such that there is
no need to use displacement current to describe the capacitive effect which could be caused by
small rips between conductors. There is a rich literature treating the eddy current models. From
the engineering point of view, we may refer to the books of Tegopoulos |80] and Mayergoyz |60,
Chapter 5| for the analysis and the resolution of the eddy current problem in simple geometrical
configurations. A mathematically complete study of the problem can be found in the recent
survey of Alonso Rodriguez and Valli [4] which in particular gives a rigorous justification of the
eddy current approximation both as the low electric permittivity limit and as the low frequency
limit (the works of Costabel et al. [33] and Ammari et al. [6] also treat these cases respectively).

In our problem, we assume that the SG tube is infinitely long and axisymmetric. Since the
eddy current probe that we introduced in the tube is axial, which means it cannot detect any
angular (or azimuthal) variation, we will consider at the first place an axisymmetric case such
that the 3-D eddy current model is reduced to a 2-D problem in cylindrical coordinates. We will
formulate the axisymmetric eddy current for a scalar field which is the azimuthal component of
the electric field. Then motived by the fact that the broached quatrefoil support plates (Figure
2a) and the deposits are not axisymmetric, we will extend the model to the 3-D case with a
formulation for a vector magnetic potential A and a scalar electric potential in the conducting
components V.

Reconstruction of deposit domain using shape optimization

Based on the eddy current models, we use shape optimization methods for deposit domain
reconstruction. A shape optimization problem is a minimization problem of the form

min J (%)
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where () is a domain representing the shape, A is the class of admissible domains and J is
a shape-dependent cost functional. This kind of problem is first formulated by Hadamard in
1907 [43] and largely developed from the second half of 20th century for optimal shape design in
mechanics |73, 38] and for applications in fluid mechanics [61]. Application of shape optimization
in electromagnetism is relatively recent. From the engineering approach, some investigations
were motivated by electromagnetic device designing [68, 74| or by defect identification [47]. In
view of shape optimization for inverse problem, some results concerning the shape derivative
based on integral equation approach are discussed (for example, Potthast [72], Costabel and Le
Louér [34, 34]). Cagnol and Eller [25] and Hettlich [46] have studied the shape derivative of
time-harmonic Maxwell’s equations in the (E, H) formulation (E is the electric field and H the
magnetic field). In this thesis, we will discuss shape optimization applied to the eddy current
model in the axisymmetric 2-D case for a weighted electric field as well as in the 3-D case for
the potentials (A, V). We may refer to the books of Zolésio [85], Henrot and Pierre [45] and
the course Conception optimale de structures of Allaire at Ecole Polytechnique [2] for a general
introduction to shape optimization.

In general, the existence of an optimal domain is not ensured unless one assumes some
geometrical constraints on the admissible class or considers some special cost functionals. The
first results of existence of an optimal domain under geometrical constraints were contributed by
Chenais [29], Murat and Simon [63, 64] and followed by huge recent developments, for example
[5, 26] which treat problems with a homogeneous Neumann condition on the free boundary,
and |20, 21, 22, 23, 79] which study the shape optimization problems with a Dirichlet boundary
condition on the free boundary. Here we consider shape optimization for inverse problem, the
optimal domain is just the target shape to reconstruct, thus exists.

The shape optimization problems can be classified into three main types:

o Parameterized shape optimization. One restricts the class of admissible domains to those
defined through a function. Thus the shape is characterized by a reduced number of
parameters (for example the thickness, the diameter, etc.), which narrows considerably
the range of shape variety.

e Geometrical optimization. Once an initial domain is given, variations of (a part of) its
boundary (free boundary) is possible but its topology cannot be changed.

e Topological optimization. Both variations of the boundary and modifications of the topol-
ogy of the domains are allowed.

Although the last type of shape optimization is the most general, it is also the most difficult in
both theoretical and numerical aspects. We may refer to [2] or the book of Bendsoe and Sigmund
[12] for this subject. Without being exhaustive, we may cite the results of Guzina — Bonnet
[40, 16] and Masmoudi — Pommier — Samet |55, 56] among many others for inverse scattering
problems using topological derivative. We may also refer to the work of Dorn — Lesselier [37],
Santosa [75] and the references therein for level-set based approaches. In this thesis, we will
consider mainly the geometrical optimization from which one easily derive the parameterized
shape optimization as its simplified version.

An inverse problem is a framework converting observed measurements into information about
an object or system that we are interested in, which is the inverse of the direct problem which
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provides measurements from a known object or system. Our problem — reconstruction of deposit
shape using eddy current signals — belongs to a big family of inverse problems which is the inverse
scattering. Among extensive research on inverse scattering, we may mention the book of Colton
and Kress [31] as a reference review on this topic. We may also refer to the book of Kirsch [51]
for a general introduction to inverse problems.

A inverse problem is generally ill-posed according to Hadamard’s definition [42] due to its
instability. To overcome this difficulty, one should regularize the problem to obtain an ap-
proximate solution. The most prevalent regularization method is named after Tikhonov who
introduced an additional least-square penalization term to the objective functional [81]. We
may refer to Nicolas [65] and Chaulet |28| for examples of inverse scattering problems and for
different regularization techniques such as total variation regularization.

In this thesis, the objective is to reconstruct the deposit domain or more precisely its free
boundary which is in fact an inner interface of the domain. We will study the transmission
conditions on this interface when a shape deformation is applied to the domain, and we will use
an H' boundary regularization technique to smooth the gradient.

Asymptotic models for thin and highly conducting deposits

There is a another kind of deposits with high conductivity (such as copper) but in the form of
thin layers (thickness under 100um) covering the exterior surface of the SG tubes. This type of
deposits does not affect neither the productivity of the electricity power plant nor the structural
safety of the steam generator since they do not block the flow paths between the SG tubes and
the broached quatrefoil support plates. But by distorting the eddy current signals, their presence
can blind the eddy current probes in non-destructive inspections of other kind of problematic
defects, such as clogging deposits and cracks of the tube. Therefore, it is crucial to identify and
reconstruct them to evaluate their influence in the eddy current testing.

The eddy current model described above for the clogging deposits encounter here a high
numerical cost due to the tiny thickness of the thin layer which should be take into account
in the discretized computational domain (mesh). To overcome this difficulty, we replace the
thin layer with an interface on which appropriate transmission conditions should be set. To
determine the effective transmission conditions linking up the solutions at the two sides of the
interface, the behavior of in-layer solution is studied using rescaling and asymptotic expansions
with respect to a small parameter — the thickness. This is the asymptotic model.

There is a rich literature on approximate boundary (or transmission) conditions for highly
conducting materials and on asymptotic models for thin sheets. We may cite the work of
Leontovich [52] on the impedance boundary condition and the book of Senior and Volakis [78]
on the generalized impedance boundary condition, without using the asymptotic expansions.
With asymptotic expansions, Haddar, Joly and Nguyen [44] studied a high order generalized
impedance boundary condition for strongly absorbing obstacles with Maxwell’s equations, and
Schimdt [76] obtained high order approximate transmission conditions for highly conductive thin
sheets. For other related asymptotic models we may cite Tordeux [82] for thin slots, Claeys [30]
for thin wires, Delourme [36] for periodic thin rings and Poignard [71] for weakly oscillating thin
layers.



6 Contents

In this thesis, we will consider a family of approximate transmissions conditions for highly
conductive thin layer with different parameters for the rescaling of the conductivity and with
different orders in asymptotic expansions with respect to the small parameter characterizing the
thickness of layer. Without going into the error analysis, we validate a corresponding family of
asymptotic models using these approximate transmission conditions in a simplified configuration
and choose the most appropriate asymptotic model which not only ensures sufficient precision
but also eases the derivation of inversion in view of further reconstruction of layer thickness.

Outline of the thesis

In Chapter 1 we build the axisymmetric eddy current model in cylindrical coordinates for the
azimuthal part of the electric field, given that the meridian part of the electric field is trivial
for our problem settings. We proved the existence and uniqueness of the solution in a weight-
ed function space. For numerical tests, we cut off the computational domain with artificial
boundaries on which we set some appropriate boundary conditions, in particular the Dirichlet-
to-Neumann conditions based on a semi-analytical study of the solution. Numerical simulation
of eddy current probe validate this forward model.

Chapter 2 concentrates on inversion algorithm based on the axisymmetric forward model
obtained in 1. We define a least square shape-dependent cost functional based on eddy current
signals. To minimize this cost functional by descent gradient, we calculate the material and
shape derivatives of the solution and introduce an adjoint state to obtain an explicit expression
of the gradient on behave of the shape perturbation. This gradient is regularized by a boundary
penalizing Laplace-Beltrami operator. Finally we discuss some reconstruction results.

Always in axisymmetric configuration, Chapter 3 studies several asymptotic models for highly
conducting thin layer deposits with different approximate transmission conditions modeling the
thin layer. Numerical tests for 1-D models with constant layer thickness allow us to choose an
asymptotic model with good precision and easy to inverse.

Based on the choice of the pertinent approximate transmission conditions and asymptotic
models in Chapter 3, in Chapter 4 we build and numerically validate the asymptotic models for
layers with variable thickness. Then an inversion algorithm is proposed for thickness reconstruc-
tion and tested by some numerical examples.

We complement our work in Chapter 5 by an extension to the 3-D case. We build the eddy
current model for the vector potentials and formulate the corresponding inversion algorithm
with the same idea as in Chapter 2. To apply the geometrical shape optimization method, it
is crucial here to derive the material derivative of the solution with respect to a small shape
perturbation. A joint work with K. Riahi on numerical reconstruction is ongoing and already
provides some encouraging preliminary results.
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In order to simulate an eddy current testing experiment, one needs to solve the forward
problem for any probe position one wants to incorporate into the measurements. For an iterative
inversion method based on the exploitation of this forward problem, the number of required
simulation is also proportional to the number of iterations. Given the large number of tubes
to be probed, one easily understands the crucial importance of designing a fast (and reliable)
numerical simulation of the forward problem. We consider here the eddy current problem under
axisymmetric assumption (see for instance Bermudez et al. [13]|) and investigate strategies to
bound the computational domain. While for the radial direction, cut-off with brute model
for the boundary condition such as Neumann boundary condition would be sufficient due to
the conductivity of the tube and the decay of the solution, in the axial direction this strategy
requires some fictitious boundaries far from the sources. We rather propose to compute the exact
Dirichlet-to-Neumann (DtN) operator for the region outside the source term and apply it as an
exact boundary condition on the fictitious boundaries. This would allow the latter to be as close
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as needed to the source term. The main difficulty here is in justifying the analytical expansion of
this DtN map. We shall rely on results from perturbation theory for the spectrum of compactly
perturbed selfadjoint operators. We also study the error due to truncation in the expression of
the DtN operator and relate this to the regularity of the problem parameters. Indeed the latter is
important from the computational point of view since this truncation is needed in practice. The
DtN expansion relies on some eigenvalues and eigenfunctions that are not known analytically
and should be numerically approximated. This may be expensive if a high degree of precision
is required. However these calculations can be done off-line and therefore would not affect the
speed of solving the problem.

There is a large literature on eddy current problems and without being exhaustive we may
refer to the book of Alonso Rodriguez — Valli [4] for a recent survey on the problem, including an
introduction to the eddy current phenomenon, the mathematical justification of the eddy current
approximation and different formulations and numerical approaches for the three-dimensional
problems. For axisymmetric configurations we refer to the work of [7] for the study of the
theoretic tools for the Maxwell’s equations in three dimensions, and to the works of Bermudez
et al. [13], Chaboudez et al. [24] for the discussion of the eddy current problem with bounded
conductive components in the meridian half-plane, the numerical analysis and some numerical
experiments applied to the induction heating system.

This chapter is organized as follows. In Section 1.1, we briefly recall the eddy current model
in the cylindrical coordinate system corresponding to the rotational symmetry with respect to
the axis of the tube (see Figure 1.1) and discuss existence and uniqueness of solution to this
problem in its equivalent variational formulation in properly defined weighted function spaces.

Tube

Coil 1 ]
Coil 2 1

Deposit j

. i o
e r

Figure 1.1: Three- and two-dimensional geometric representations of a steam generator tube
covered with deposits and a probe consisting of two coils.

We then introduce cut-offs of the domain in the radial-direction by introducing some local
boundary conditions (see Section 1.1.1) and then in the axial-direction by constructing the DtN
boundary operator (see Section 1.2). We validate our analytical theory by several numerical
tests that are motivated by ECT experiments as done in practice and present these numerical
results in Section 1.3.
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1.1 Axisymmetric model

Let us briefly outline the origin of the considered model. We consider the time-harmonic
Maxwell’s equations for the electric field E and the magnetic field H
curl H + (iwe —0)E =J  in R3, (1)
curl B —iwpH =0 in R3, '
where J is the applied electric current density such that divJ = 0, and w, €, u, o respectively
denote the frequency, the electrical permittivity, the magnetic permeability and the conductivity.
In an axisymmetric (i.e., rotationally invariant) setting, for a vector field a we denote by a,, =
are, + aye, its meridian and by ay = agey its azimuthal component. A vector field a is
called axisymmetric if, in the sense of distributions, dga vanishes. According to |7, Lemma 2.2],
the Maxwell equations (1.1) decouple into two systems, one for (Hy, E,,), and the other for
(Hp,, Ey). The solution to the first system vanishes if J is axisymmetric. Substituting H,, in
the second system yields the second-order equation for Ey = Eyey,

o (10 0 (10Ey . .9

with R2 := {(r,2) : » > 0,z € R}. The eddy current approximation corresponds to low
frequency regimes and high conductivities: we < o. From (1.2) and the above assumption we
get the eddy current model

o (10 8 10Ey

with a Dirichlet boundary condition at r = 0 due to symmetry: Fy|,—o = 0, and a decay
condition By — 0 as r2 + 22 — oo at infinity. From now on, we denote u = Ey. We introduce
operators V := (9,,0,)! and div := V- on the half-plane Ri and the axis of symmetry I'g :=
{(r,z) : » =0,z € R}. Then the axisymmetric eddy current model reads

1
—div (V(ru)) —ilwou = iwJ in R,

pr
u=20 on I'y, (1.4)
u—0 as r? + 2% — oo.

We shall assume that p and o are in LOO(]R2 ) such that p > po > 0 on Ri and that o > 0 and
o = 0 for r > ry sufficiently large. For A > 1 and Q C R%, we define the weighted function

spaces LI/Q’)\(Q) Hll/2 ,(€2) and the norms

L3 (@) = {v: P14+ Vo e LX(Q)},  HYa(Q) = {v € L), () : 77V (rv) € L*(Q)},

S s

The following lemma gives a Poincaré-type inequality related to functions in H} I, )\(Ri). The
proof uses classical arguments and is given in Appendix 1.4.1 for the convenience of the reader.
Note that the trace v|r, is well-defined since functions in H11/27/\ (R2) belong to H' ({0 < r < ro})
for all rg > 0.

2

lolzz, (@

2 _ 2 —1/2
) HUHHll/m(Q) = HWHL‘{/M(Q) + Hr V(rv)‘ @
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Lemma 1.1.1. Let A > 1. Any function v in Hll/2 /\(Ri) satisfies v =0 on I'g. Moreover, there
exists a constant Cy > 0 such that for all v in H11/2 L(R2),

Il @2) < Cx |29 () (1.5)

172X

L2(R%)

One observes that if u € L%/%)\(Ri) for all A > 1 then wu satisfies the decay condition at
infinity in (1.4). Then with the help of the first part of Lemma 1.1.1, one easily verifies by
integration by parts that u in H}/Q’/\(Ri) is solution of the two first equations of problem (1.4)
if and only if u satisfies

" iwJordrdz Vv e H1/2 L (R2).

1
a(u,v) ::/ —V(ru) - V(ro) drdz—/ iwouordrdz :/
RZ HT RZ
(1.6)

Proposition 1.1.2. Assume that J € L1/2>\(Ri) has compact support. Then the variational
problem (1.6) admits a unique solution u in H1/2 \(R2) for all A > 1.

Proof. The proof is a direct application of the Lax-Milgram Theorem thanks to (1.5) which
yields the coercivity of the sesquilinear form on the left of (1.6):

1 1
Ra(v,v :/ V()| > ———— ,
where C) is the constant given in (1.5). O

Remark 1.1.3. The source J has compact support bounded away from I'g in Ri i the real
problem. We have in particular that J vanishes for r > ro and |z| > zo, where ro > 0 and zo > 0
are large enough.

1.1.1 Asymptotic behavior for large r

We are interested here in a more precise evaluation of the decay the solution u for large argument
r. We shall assume in addition to the hypothesis from Proposition 1.1.2 that the source J and
the conductivity o vanish and that the permeability p is constant for r > rg where rg > 0 is
some constant. One then gets from (1.4) that

5 0%u ou 5 0%u

rﬁ—l— o u+ra7—0 for r > rg.

We then apply the Fourier transform with respect to the variable z and get

- +oo .
22 7; +r gu (1 +4x**r?)a =0, where u(-,§) := / u(-,2)e M dz, £ eR.

— 00

(1.7)

The fundamental solutions of (1.7) for fixed £ are the two modified Bessel functions I (27[&|r)
and K1 (27|¢|r) when £ # 0, or the functions r and 1/r when £ = 0. Since u € L1/2 A (R2) for all
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A > 1, the asymptotic behavior for large argument of the modified Bessel functions implies that
u has the following expression for r > rq,

~ Ki(2m[€]r)
) §#0,
alr, &) = o )gl(%lf\ro) (1.8)
ﬁ(r0,0)7 £=0.

Let us also quote that z — u(r, z) € HY*(R) for r > 0 since u € H}/Q L (R2).

Proposition 1.1.4. The solution u € H}/Q \(R2) to (1.6) satisfies

o 7o
e, Vs < o, Masys 60 gyagey < “2lutro, sy ¥ > 7o

Proof. By the Plancherel theorem and the Cauchy-Schwarz inequality, we have

2

R _ Ky(2n] - |r)
2 2 2 1
u(r, - = ||a(r, - < ||a(ro, - — .
L o o e |
We note that Kj(x) ~ 1/x as 0 < x — 0. Therefore,
1(278r) 1o
ey B > 0. 1.

On the other hand, the derivative of gq with respect to & is

. 2mr Ky (2mEr) Ky (2méro) — 2o Ky (2mér) Ky (2m&ro)
gd(é-a To, T) - K%(QTF&TO)
727‘(’ [—TKO(27T§7’)K1 (27T§7”0) + T‘QK1 (27‘(’{7’)}(@(27&'67’0)]
N K%(Q’/Tfro) ’

where the last equality follows from the recurrence formulas for Bessel functions. From the
integral representation (see |48, (2.1)] and its references)

x> 0.

Kl(az) - 7'('2

rKo(z) 4 /+°° x? t=1dt
o w22 JEE) +YE()
one concludes that the function xKo(x)/K;(x) is increasing in « > 0, which implies in our case
that

r0Ko(27€ro) < rKo(2mér)

d theref e <0 0.
Ki2nérg) = Fa(omery nd therefore gg(&ro,r) <0, &>

Consequently
70
gd(£7 7"0,7“) < 9d(0+§7"0»7“) = 77 V€ > 0,

which gives the first inequality of the Proposition using the Plancherel theorem. The second one
can be proved with the same arguments. O
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Using more involved computations and estimates on Bessel functions one can also prove the
following result. The technical details of the proof are given in Appendix 1.5.

Proposition 1.1.5. The solution u € Hll/2 \(R%) to (1.6) satisfies

8 ’[”0
Har(ruxrv )H < C?HU(T’O, ')HHl/Q(R) Vr > 70

H-Y2(R)

for some constant C' > 0 independent of r and w.

1.1.2 Radial cut-off for eddy current simulations

The decay in radial direction suggests that reasonable accuracy can be obtained by truncating the
computational domain at r = r, sufficiently large. In fact, for the application we are interested
in, this is also justified by the high conductivity of the tube that would absorb most of the energy
delivered by the coil inside the tube. We shall analyze in the sequel the error resulting from radial
cut-off independently from the absorption. It turns out in this case that the boundary conditions
that lead to reasonable error estimates are Neumann or Robin boundary conditions. The case
of Dirichlet boundary conditions lead to slower convergence rates that will be confirmed by our
numerical examples. We present in this section only the case of Neumann boundary conditions.
The cases of Dirichlet and Robin boundary conditions are treated in Appendix 1.6.
For R > 0 we denote

Br:={(r,2):0<r<R,zeR} and Tgr={(rz2):r=R,zcR},
and shall use the short notation
L3,(Q) = L1, o(Q) = {v : vv/r € L2(Q)},
Hy(Q) == Hiy, o(Q) = {v € L3,(Q) : v 'V (rv) € L3, (D)}

Moreover, with H*(R) denoting the usual Sobolev space on R and for sufficiently regular function
v defined in a neighborhood of I'r we set

||UHHS(FR) = |lv(R, ')”HS(R)-

Let r, > 0 be sufficiently large such that the support of the source term J is included in B,,.
Then the problem on the cut-off domain with Neumann boundary conditions on I',, consists
into seeking u, € H }/Q(Br*) satisfying

1
—div (V(run)> —lwou, = iwJ in B,,,
ur

Uy, =0 on Iy, (1.10)

7(7’un) = 0 on F’I‘*‘

or

The well-posedness of this problem is guaranteed thanks to the following lemma which will also
be useful in quantifying error estimates. The proof of this Lemma is given in Appendix 1.4.2.
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Lemma 1.1.6. Let r. > 0. Any function v € Hll/Q(Br*) satisfies v =0 on I'g. Moreover, we
have the Poincaré-type inequality

r 1
<= |-V Yo e HY (B.), 1.11
||UHL§/2(B”) VAL (rv) ) v i/5(Br.) (1.11)
and a trace estimate
311
||vHH1/2(FT*) <4/ —||=V(rv) Yv € H}/Q(Br*). (1.12)
T« T L%/Q(BT*)

One then can prove the following result.

Proposition 1.1.7. Assume that the source J € L2(Ri) has compact support and let r, > 0
be so large that the support of J is included in B,,. Then problem (1.10) has a unique solution
Uy € Hll/Q(Bm). Assume in addition that there exists 0 < ro < ry such that J and the conductivity
o vanish and the permeability p is constant for r > rq. Then there exists a constant C that
depends only on J, ro, i and o such that

~V(r(un —u))

. < C/ri2 and un —ullg1 (g, ) < C’/ri/2,

172
L2 2 (Brs) /

where u is the solution to (1.6).

Proof. The proof of the first part is similar to the proof of Proposition 1.1.2 thanks to Lem-
ma 1.1.6. Let us set wy :=u —u, € Hll/Q(BT*) such that

1
/ —V(rwy) - V(rv) — iwow,or = / ——(ru)vdz Y e H11/2(BT*),
By, HT
where the integral on I',., should be understood as a H~"/2— H'/? duality pairing. Taking v = 1w,
we obtain

1
p(r)

<

o

1
/ — |V (rwn) > = iwe|wy|?r
B

b lwallzrr,, )

10
/ ——(ru)w, dz
r,, wor H=Y2(T,,)

Using (1.12) we deduce

11 2 1 5 )
—— ||=V(rwy) < — |V (rwy)|* — iwo|wy|*r
[elloo |7 13,(Br.) By, BT
1 1
< ‘aa(ru) 3 -V (rwy) .
p(rs) || Or H-72(1,,) V=T 13, (Br.)
Therefore,
1 o |30
r L%/z(BT*) M(T*) T " H=2(T'y,)

The first estimate then follows from Proposition 1.1.5 and the second one can be deduced
using (1.11). O
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Remark 1.1.8. As indicated in the beginning of this section, the case of Robin boundary condi-
tions leads to error estimates similar to those of Proposition 1.1.7. However, if one uses Dirichlet
boundary conditions on Iy, then one loses half an order of magnitude for the convergence rate in
terms of 1/r. (see Appendiz 1.6). This means for instance that convergence in H'/*(T'y.,) or in
L%/Q(FT*) s not guaranteed in general in this case. This is in fact corroborated by our numerical
experiments in Section 1.5.1.

1.2 DtN operator and cut-off in the longitudinal direction

We discuss in this section the domain cut-off in the longitudinal direction, i.e., the z-direction,
whenever a cut-off has been applied before in the radial direction. We therefore consider the
solution uy, of (1.10) and in order to shorten notation we abusively denote this solution by w.
Recall that the variational formulation of problem (1.10) is to find u € H II/Q(BT*) such that

11 1
/ —=V(ru) - =V(rv)drdz — / iwouvrdrdz = / iwJordrdz Vv e ]'—111/2(BT*)7
B, HT r Br, By,

(1.13)

where r, > 01is as in Proposition 1.1.7. The idea how to cut off the domain in the z-direction is to

explicitly compute the DtN map for the regions above and below the source and inhomogeneities

in the coefficients p and ¢ using the method of separation of variables. The main difficulty to

cope with here is to prove that this is feasible even though the main operator is not selfadjoint.
We cut the domain by two horizontal boundaries

Iy :={z=+z}
for some z, > 0 large enough such that the source is compactly supported in
BT*,»’«’* = {(Tv Z) € Br* : |Z| < Z*}-

We then assume in addition that p and o only depends on the variable r in the complementary
region

B, :={(r,2) € B, : 2 = +2.}.

Ty 2o

Since in BT

Ty 2o

it holds that
. 1 .
—div (V(ru)) —iwou =0,

a solution of the form u(r, z) = p(r)((z) has to satisfy

1d% 1d/1d
¢dz2  pdr

where v € C is some eigenvalue that we will estimate. For the first equation, we obtain

d%¢

a2 =0
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which has as solutions ((z) = cexp(d+/vz) if v # 0, while for the second equation we are led to
consider the eigenvalue problem

d /1 d
Spi=——|——(rp)| —iwop=vp Inl:={reR:0<r<r.},
# dr \ pr dr
d (1.14)

=0.

T="x%

p(0) =0, - (rp)

We first formally observe from (1.14) (after multiplication by rp and integration by parts) that
F(v) < 0 and R(v) > 0. Choosing /v such that R\/v > 0, we get that ((z) = cexp(£/vz)
on BT , are the only admissible solutions due to their boundedness at infinity. The only

Ty 2
missing point that would allow the construction of a solution on BT , is to prove that the set

3%k
of eigenfunctions associated with (1.14) forms a complete set for the traces of the solutions to

problem (1.13).

1.2.1 Analysis of the non-selfadjoint eigenvalue problem

We consider the spaces

LY, (I) = {¢: ¢vr € L*(I)},  Hiy(I) = {d € Li,(I) - 1o (1) € L, (1)}

For convenience, we shall denote in the sequel by (-,-) the L3 /2( ) scalar product.

Lemma 1.2.1. The embedding HII/Q(I) — L2/ (I) is dense and compact. Any ¢ € HI/Q( ) s
continuous in the closure of I and satisfies @ = 0 at r = 0. Moreover, the following Poincaré-type
inequalities hold,

T'x
< -V d < Vo e H . (115
161l 21y (ro) o and {9l ) i ¢ € Hyy(I). (1.15)

B

22,1

Proof. The proof of the compact embedding is a simple application of [18, Corollaire IV.26]. For
the detailed proof, see Appendix 1.4.3. The proof of the property ¢(0) = 0 and the inequalities

is the same as for Lemma 1.1.6. O
Since Hl/ (I) is dense in Lf/Q(I) one can define the unbounded operator A, : D(A,) C

1/2( ) — L1/2(I)7 where

:0}.

Aoi) = [ o)y Vi e 1Y) (1.16)

D(A,) = {ueH1/2<I>- A= (g () € D), 40

Then we have D(A,) C 1/2( ). For ¢ € HI/Q( ), Au¢ is defined by
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It is clear from this definition that A, is closed and selfadjoint and according to Lemma 1.2.1,
it has a compact resolvent. Moreover, the second inequality in Lemma 1.2.1 shows that

(A6, @) = elldly 1y V9 € Hi(D)

for some positive constant ¢ independent of ¢.

We then deduce (see for instance [35, Chapter VIII, Theorem 7|) that 4, has positive
eigenvalues {A;}ren+ with corresponding Lf/2—complete orthonormal eigenprojectors { Py }ren-
such that

O< A <A< <A —00 (k—o0),

and V¢ € Py(HL,(T))

(A, ) = M (68) Vo € HI (D). (1.17)

Since S, is formally only a compact perturbation of A, by using the perturbation theory one
can relate the spectrum of S to the spectrum of A,. We first need to have estimates on the
eigenvalues {\x }nen+. For that purpose we shall consider first the case of constant . We observe
from (1.17) (after interpreting in the distributional sense), that if a couple (A, ¢) is an eigenpair
of Ay then

d /1d .
_d’r'<7”d7"(r¢)>_)\¢ 0<7“<7”*,

1 (1.18)
»(0) =0 and E(MS)

=0.

Tx

Rewriting the first equation in the form of a Bessel’s differential equation, after setting ¢ = VAL,
P2+ gl + (¢ = 1)¢ = 0

and using the regularity of ¢, we obtain that solutions are proportional to the Bessel functions
of the first kind {Jl(%kr)}keN* where jo > 0 is the k' zero of Bessel function Jo. It is easy to

verify that {Jl(j Ok )} pen+ is a orthogonal family of L%/Q(I ). This corresponding eigenvalues are

Tx

. 2
Ai-(‘m) for ke N*. (1.19)

Tx
Using McMahon’s expansions for large zeros of Bessel functions (see [1, 9.5.12]):

, 4% -1 4(40% - 1)(28v2 - 31)
Jv,k ™~ /B - 85 - (8,8)3

where g = p(k) = (k—f—i)ﬂ', v=20,1,...

+0(87°) (k— o),

we observe that the eigenvalues )\k grow like k% as k — oo. Now set

pinf := inf g and pgyp := sup p,
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which are positive finite constants by assumptions. One obviously has

1 (A1¢7 ¢) < (Au¢7 (Z)) < 1 (A1¢7 ¢)

2 — 2 — . 2 :
Hsup HQSHL%/Q([) H¢HL§/2(1) Hinf ||¢||L%/2(I)

From the Courant-Fischer-Weyl min-max theorem, we deduce

1 1
M <A <

Ak 1.20
Hsup Hinf k ( )

We therefore obtain the following result.
Lemma 1.2.2. The difference A\ — A1 — +00 as k — co. Moreover, if

oA
LSUP < min kH,
Mint  k>1 A

then all eigenvalues A\, are simple.

Now let us consider the operator S = A, + M7 defined in (1.14). Since the multiplication
operator

M ¢ —iwoe, Yo e L%/Q(I),

is bounded on L?/Q(I ), the theory for for perturbed selfadjoint operators [50, Theorem V-4.15a
and Remark V-4.16a| implies:

Proposition 1.2.3. Under the assumptions of Lemma 1.2.2, the unbounded operator S :
L%/Q(I) — Lf/Q(I) is closed with compact resolvent and its eigenvalues and eigenprojectors can be
indezed as {voj, i} and {Qoj, Qr} respectively, where j =1,...,m < oo and k =n+1,n+2,...
with n > 0 such that the following results hold:

1. the sequence |vg — \g| is bounded as k — oo.

2. there exists a bounded operator W on L%/Q(I) with bounded inverse W1 such that

Qo= Q=W P|W and Q=W 'PW for k>n  (121)
j=1

k<n

Moreover, {Qo;, Qr} is a complete family in the sense that

> Qo+ > Qr=1. (1.22)
j=1

k>n
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1.2.2 Spectral decomposition of the DtN operator

We are now in position to provide explicit expression for the DtN operator that will be used
to cut off the domain in the z-direction. We first need to specify the space of traces on I'+ of
functions in H 11/2(B ). From the definition of the spectral decomposition of A; we immediately

deduce that for ¢ € H1/2( )

912 o = D IPRIEs oy and lolidy i = S+ ARSI

k>1 E>1

where {Pkl}keN* denotes the complete orthonormal eigenprojectors family associated with Aj;.
For 6 € [0, 1], we define Hf/Q(I) as the 6 interpolation space [H 1/2( ) 1/2( )]o (see [53, Définition
2.1] for interpolation spaces) with norms

6l 0y = 0+ MO, (1.23)

k>1

and define H/ (I) as the dual space of H/ (I) with pivot space L%/Q(I) The norm in H/ (I) can
be defined as in (1.23) replacing 6 by —6. The definition of the spaces Hlj/te(FJr) and Hf/tf( -)
are obtained from Hiﬁ (I) by identifying I'y with I using the obvious isometry. Let v be a
regular function of B,,. We denote the trace mapping by

'yi tv = vy

Theorem 1.2.4. The trace mapping v+ can be extended to a continuous and surjective mapping
from HI/Z(BT*J*) onto H// (T'y) and from HI/Q(Bi ..) onto Hl//Q( +).
Proof. Obviously we have the equivalent definition
ov
HY(Bre) = {030 € (=202 (D), 57 € L2020 L2 |

with the same norm. Therefore the trace mapping properties for H 11/2 (Br, 2.) is a direct appli-
cation of classical theory for trace spaces: |53, Théoréme 3.2]. Similar considerations apply for
Hll/Q(B;'E,Z*) D

Let us also mention the following result that will be useful later

Lemma 1.2.5. Let 6 € [0,1]. The norm

o)

@z =30+ M 1PlE;

k=1
defines an equivalent norm on Hf/g(f).

Proof. From interpolation theory, it is sufficient to prove the result for 6 = 0 and § = 1. The
case of @ = 0 is obvious. The case 6 = 1 follows from the identity

ZAk|’Pk¢||L2 (] ( #¢’¢)

k=1

and noting that (¢, ¢) — (A1, ¢) is continuous and coercive on Hll/Q(I) X Hll/2( ). O
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Let ¢ in Hl//j(Fi) and denote by p* and o the restrictions of y and o to Bi’z*. Thanks

to Theorem 1.2.4 one can uniquely define u* € Hl/Q(BjE ) solution of

Ty 2k

1
—div </FV(rui)> —iwotut =0  in BE

T, 2% )

(1.24)

ui\T 0o=0and — )|T:r* =0,

(7(
on Fi.

The construction of u* can be done for instance by using some continuous lifting linear operators
R*E H1//2( +) — H} (BFf ) such that 7*R*(¢) = ¢ (these operators exist according to

1/2 Ty 2%
Theorem 1.2.4). The H}/Q( ..) norm of u* indeed continuously depends on the Hll//j(f‘i)
norm of the boundary data d)i (respectively).

Definition 1.2.6. We define the DtN operators T+ : Hll//j(Fi) — Hl/zl/Q(Fi) by

1 — 1 -
+ 4+ kN + £ ; + T E
(TE¢E, 0 >_/Bi,2* ,uirv(ru )V (rR*y )drdz—l—/Bi’Z* div <MTV(T‘U )>’R YEr drdz

for all * € Hll//j( +), where u= € HY(BE ) is the unique solution of problem (1.24) and

where (-,-) denotes the HI/Q/ Hl//2 duality product that coincides with (-,-) for L%/Q functions.

Indeed

<Ti¢i,¢i>—/i iV(rui)V(rRiwi)drdz—/ iwotuREYEr drdz  (1.25)
r B:l:

Tk, Z% I’L Tk, 2%

and therefore, from the definition of R* and the continuity property for the solutions u®,

(THo*, ¢i><CH¢iH 1/2 WiH 1/2 ry)

for some constant C independent from ¢ and ¢. This proves that 7+ : / (Fi) — H, /2/ (Ty)

+

are well-defined and are continuous. We remark that for sufficiently regular u™, we have (using

Green’s formula)
1 out

E Oz ‘Fi

= 0, we also observe, using Green’s formula (and a density argument) that

TEp* = (1.26)

Since v+ — 4T REAE

<7-i¢i,,yiv> / —V(ru )V (rv)drdz +/

7‘* Zk BT*yz*

1
div (V(rui)> or drdzt
ur

for all v € H} (Brff”z*). Therefore we also have

1/2

<Ti¢i ”Yiv> / —V(ru )V (rv)drdz —/ iwotuTor drdz

BE
T* Zx Tk s 2k
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Yv € Hl/2(BjE ). Then it becomes clear from the variational formulation (1.13) that u|p,, ., €

Ty Zx

H),,(B. z.) and satisfies

1 1
/ —V(ru) - =V(rv)drdz — / iwouvr drdz
By, 2. M r By 2

+ <T+’Y+U7’7+U> + <T_’7_U,’Y_U> = iwJordrdz Yov € Hl/Q( r*,z*)' (127)
Br*,z*

We immediately get the following equivalence result.

Proposition 1.2.7. A function u € Hl/z( T*) is solution of (1. 13) if and only if u|py, ., €
1/2( B, ..) and is solution of (1.27) and u = u™ on BTi 2
of (1.24) with ¢* = v*(ulpy, ..).

Formulation (1.27) is the one that we would like to use in practice. Proposition 1.2.7 and
the well-posedness of (1.13) show that (1.27) is also well-posed. To be numerically effective

where ut € Hl/Q(Bri*yz*) are solution

one needs explicit expressions for 7+. We shall use for that purpose Proposition 1.2.3. We are
then led to consider the spectral decompositions of SZI and S?_ that correspond to the one in
Proposition 1.2.3 for (u,0) = (u*,0") and (u,0) = (=, 07) respectively. Since the treatment
of both cases is the same and in order to simplify the notation we shall use the same notation
for the spectral decomposition of SZI and SZ: .

For ¢ € Hll//QZ(Fi) we have the spectral decomposition

= Qo) + D Qr(¢%).

j=1 k>n

By definition of Qq; and Qj the functions u* defined on Bi,z* by

Z Qoj (6%) (1) exp(Fy/7oj (2 F 2:)) + 3 Qu(¢5)(r) exp(F/va(z F 2.)) in B,

k>n
(1.28)

(the square root is determined as the one with positive real part) formally satisfy (1.24). In order
to rigorously prove this, one only needs to verify that this function is in H}/Q(Biz*). Since the

eigenfunctions Qo;(¢*) and Qi (¢*) are in H 11/2(1 ), one easily checks that

ZQOJ r) exp(F/70; (2 F 2+)) Z Qr()(r) exp(FVvi (2 F 22)) in B .,

k=n+1
(1.29)
is in H}/Q(Bi ..) and verifies (1.24) with boundary data on I'+ equal
m N
o =D Qui(¢5)+ D Qu(¢ ).
j=1 k=n+1

We then can conclude using the following lemma.
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Lemma 1.2.8. Let ¢ € Hll//j(l) and set for N > n,

m N
on = Qui(®)+ > Qil(9)
j=1

k=n-+1

Then, ||lon — || 1/2(1) — 0 as N — oo.

The proof of this Lemma is itself a straightforward consequence of the following result since,
using the notation of the Lemma below,

lon =@l =2 A+ IRWel;

1/2 I k>N

Lemma 1.2.9. Let 6 € [0,1] and let v, € R. The norm defined by

||¢” I, Z (1+ [vl) HPkW¢HL2 (D)
U k=1

where vg, k > n, are the eigenvalues of Sj as defined in Proposition 1.2.5 and vy, = vy for k <n,
defines an equivalent norm on H?/2<I)'

Proof. We first observe that thanks to Lemma 1.2.5, the result is obvious for § = 0 since
. . 2
| - HH%(I) is a equivalent norm of Ll/Q(I) and

ll%- . = IWell?

13 ,(1) Hy ) (

and W : L%/Q(I ) — L%/Q(I ) is an isomorphism. Using interpolation theory one then only needs
to prove the result for § = 1. The case of § = 1 will also be proved using interpolation theory
since, using again Lemma 1.2.5 and the definition of A, we have H}/Q( ) =[D(A,), L%/2(I)]1/2.
Therefore it is sufficient to prove that

oo
1914,y = H¢H%§/2(1) + ||~Au¢H%§ => (142 \Pk¢HL2 ()
k=1
is equivalent to

912>

o
= (1 |l HPkW¢HL2
/2 k=1

Using the identity Pr(WS;¢) = v PW ¢ for k > n, we observe that

||¢Hi112 —H¢>|| T ISE@ Rl IV*IQIIQosﬁH%QU)- (1.30)

L2 o)
Since

1S ( Qo¢)HL2 ) < CHQ0¢HL2
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with C' = sup{|vo;|*,j = 1,m}, then Sp(I — Qo) = Ay + Mo, where Mg := M7 — S57Qo is
a bounded operator on L? s ,(I). Therefore, with C' denoting a constant independent of ¢ but
whose value may change from a line to another, and using the first part of the proof,

1917,y < 2IIS7 (& rob)lle (D) +2HM0¢IIL2 1)+H¢||L2 ) < Cligll%

HE, (1)
and
2 2 2 2 2
16l 1y < 2AuIEy o +2Mobly 0+ POl )< Clolb,
which proves the desired equivalence of norms and concludes the proof. ]

The expression of u]iv in B;E’z* (1.29) yields,

ZMQOJ + ) VQu(eh).

I+ n<k<N

Therefore, using (1.26) and letting N — 0o we obtain (explicitly specifying in the notation the
dependence on I'y on the spectral decomposition)

T Z\/@QoﬁiﬂL > \/ZQW* : (1.31)

k>n+

1.2.3 On the analysis of spectral error truncation

For numerical simulations the spectral representation of operators 7+ should be truncated. We
shall give here some estimates on the error due to this truncation. For N > n*, we define the
projectors

ZQOJ+ > Qs

nt<k<N

and the truncated DtN operators

TE =TGR = zﬁwm > wer ] (132

nT<k<N

According to Lemma 1.2.9, Q% : HY*(T'y) — HY?('y) are continuous and therefore T :
H'*(Ty) — H~"?(T+) are also continuous. We are interested in considering uy € H}/Z(BT*’Z*)
solving

1 1
/ —V(ruy) - =V(rv)drdz — / iwounvrdrdz
Bry 2y K r Bry 2

+<TJ7+UN,QNV v> <TN’y un QY v> / iwJordrdz Vv€H1/2( B, ..). (1.33)

’r* Zx
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This variational problem is well-posed for all N as indicated in the following. Using the Riesz

representation theorem, we introduce Ag : H}/Z(Br*,z*) — H}/Q(Br*,z*), A H}/2(BT*,Z*) —

H}/Q(Bmz*) and Ay : Hll/Q(Bm,z*) — HY, (B, .) defined by

1/2
(Aow,v) 1 (B,,..) = / 1V(rw) . 1V(m’)) — iwowovr drdz,
/20 Bryz M r
(Aw,’U)Hll/Q(BT*’Z*) = (A0w7U)H11/2(Br*,z*) + <T+7+w,7+v> + <T_7_w,’y_v> , and

(Aww, v)Hll/a(BT*’Z*) = (Aow, U)H%/Q(Bu,z*) + (T w, Qv o) + (T Qyy w, Qyy v)

for all v € H}/2(BT*7Z*), respectively. We recall that the operator Ag is coercive, and more
precisely

2

RAow, w)y, (5,. ..) 2 aollwliy (5, )
for some positive constant ap independent of w. We observe from (1.25) that

R(T*6%,6%) 20,
and therefore
2

3CE(ANU%7»0)1111/2(3%2*) > Cl0||wHH11/2(BT*7Z*)~

This means in particular, thanks to the Lax-Milgram theorem that A is bijective and also
~1
AN I < 1/ao.

Consequently problem (1.33) has a unique solution uy € H E/Q(BT*,Z*) that continuously depends
on J with a modulus of continuity independent of N.
From the continuity of 7F we easily obtain

+ + ot - —
14 = Al g,y < © (100 = @y wll e+ 170 = Q") (139
for some constant C' independent of N and w € H}/Q(Bmz*). Therefore, using Lemma 1.2.9,

(A= AN)wlpy (p,,..) =0 Y€ Hy,(Br,2.).

lim ||
N—oo
With u € H11/2(B,~*,Z*) denoting the solution of (1.27), we observe that
Au = ANUN.

Therefore,
u—uy = Ay (Anu — Au).

This proves in particular that
|lu — UNHH}/Q(BT*,z*) < 1/ap||(A - AN)UHH%/Q(BT*,Z*) — 0 as N — oc. (1.35)

We can summarize these results in the following proposition
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Proposition 1.2.10. Under the same assumptions as in Proposition 1.1.7, the variational prob-
lem (1.33) has a unique solution uy € HI/Q( v,z ). Moreover, if u € Hll/2( 1.z ) 1S the solution
of (1.27), then

|lu— UNHH%/Q(BT*,Z*) — 0 as N — oc.

We shall now give some indication on the rate of convergence under some additional regularity
assumptions on the source term J and the coefficients p and o. Obviously, from (1.34) and (1.35)

Ju = uxlry 5.y < Cao (I = @yl e 7= @l 1/2(“)) (1.36)

Therefore the speed of convergence will depend on the regularity of y*u. Considering prob-
lem (1.10) satisfied by u in the unbounded domain B,, and differentiating the equations with
respect to z (i.e. considering the equation satisfied (u(r,z + Az) — u(r, z))/Az, then letting
Az — 0) one easily observes from the well-posedness of problem (1.10) that if in addition

omJ
Ozm

oMo - 8mﬂ_1
2 € L*°(B,,) and 5

€ L*(B.), € L®(B,.),

for some integer m > 0, then

0"u
9 € HI/Q(B )-

Consequently, if this holds with m = 2, then the first equation in (1.10) yields

+ 1 0%u
’YiSZiu = _E,fta 5 S Ll/Q(Fi)

With the help of Lemma 1.2.9, we can then estimate,

H’Y u— QN7 UH2 1/2(1“+) <G Z (1+ |V1§;t‘)1/2HP;;tWi¢H%§ 05
Hipy k=N-+1 /2
Cy S +1\2 pE1iE 4112
< —— (I + [y D7NPW =072
L+ 1)) k_ZM DB WOl

CS + 2
< -0 S 2 _
RZER) (”¢”L2 " ui“”%@)

where the constants C7, Cy and C3 are independent of N and where we used in the second
inequality the fact that |vx| — 0o as k — oo. According to Proposition 1.2.3 and inequalities
(1.20),

|I/N’ > CN2

for some constant C' > 0 independent from N. From the discussion above we then can deduce
the following theorem.
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Theorem 1.2.11. Under the assumptions as in Proposition 1.1.7 and the additional assumptions
that

omJ
Ozm

Mo - 6mufl
5o € L>(By,) and 5

€L2(BT*)3 GLOO(BT*),

for m =0,1,2, there exists a constant C that only depends on J, u, o, vy and z. such that

< C
HU_UN”Hllm(Br*,z*) = N3/2’

where u € H11/2(BT*’Z*) and uy € H11/2(BT*’Z*) are the respective solutions of (1.27) and (1.33).
We end this section with a remark on the case of Dirichlet boundary conditions.

Remark 1.2.12. The results and proofs of this section apply also to the case where the Neumann
boundary conditions on r = ry are replaced with Dirichlet boundary conditions. The only mod-

ification would be the replacement of Hll/Q(B) by Hll/w(B) ={u € Hll/2(B);u =0onr=ry

where B stands for B,, or B,, ... The eigenvalues /\,1c are in this case

g’
AIZ i
= ()

where j1 > 0 is the k™ positive zero of the Bessel function Ji.

1.3 Numerical test

We recall the two-dimensional geometric representation of the eddy current testing procedure
in the Orz plan from Figure 1.1 or, more precisely, Figure 1.2a. In the following examples, the
two coils involved are represented by two rectangles with 0.67mm in length (radial direction)
and 2mm in height (longitudinal direction). They are located 7.83mm away from the z—axis
and have a distance of 0.5mm between them. The SG tube measures 9.84mm in radius for
the interior interface and 11.11mm for the exterior interface. We assume some deposit with a
rectangular shape on the shell side of the tube with 2mm in length and 6¢m in height. The probe
coils and the deposit are placed symmetrically with regard to the r-axis. The permeabilities and
conductivities of the materials are given in Table 1.1. The background permeability pg is the
permeability of vacuum.

vacuum tube deposit
permeability My = [0 we = 1.01p0 ta = 10p0
conductivity (in S -m™1) oy =0 o =1x 103 oq=1x10*

Table 1.1: Values of the physical parameters for the numerical examples.

To approximate solutions to the original eddy current problem (1.6) on the unbounded
domain Ri by numerical simulations, we use a domain Bg 7 with very large cut-off parameters
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R = 300mm, Z = 100mm and we set Neumann conditions on these boundaries. These values
of R and Z are large enough to ensure that the corresponding reference solution is close enough
to the true solution to be able to study the (non-)convergence of the different domain cut-offs
presented above. All numerical examples are done using the open-source finite element software
FreeFem~++. The computation of the reference solution uses a mesh that is adaptively refined
with respect to this solution with a maximum edge size hpmax = 2mm as well as P1 finite elements
on the mesh. The degrees of freedom of the finite element space are about 49900 for Br z with
R = 300mm and Z = 100mm.

,,,,,,,,,,,,,,, 1 U A 1 A AOSUU Smmmmnn 11 O SU A
D r D Te T D Tv T

(a) infinite domain R% (b) infinite band B, (¢) bounded domain B, .,

Figure 1.2: Domain cut-off in the radial and longitudinal directions.

1.3.1 Error of domain cut-off in the radial direction

Next we cut off the computational domain much closer to the tube at r = r,, see Figure 1.2b by
setting Dirichlet or Neumann boundary conditions on I',, = {r = r,}. Using the same physical
parameters as above and setting again Z = 100mm to approximate solutions to the truncated
problem on B, on the domain B,, z; again, the value for Z gave sufficient numerical accuracy
in our tests. In Figure 1.3 we show the numerical results corresponding to the convergence
results of Proposition 1.1.7 and Proposition 1.6.3. As r, increases, both the relative error of the
Dirichlet problem (1.43) and that of the Neumann problem (1.10) tend to zero in the semi-norm
"‘H}/Q(Br*,z)’ though with different rates (Figure 1.3a). In the norm H.HL%/2(BT'*,Z)’ the error of
the Neumann problem tends to zero, while the error of the Dirichlet problem is bounded away
from zero (Figure 1.3b). The latter observation precisely corresponds to our theoretical results
above, see Remark 1.1.8. The advantage of truncating the computational domain in the radial
direction using a Neumann instead of a Dirichlet boundary condition is clearly confirmed by
these examples.

In eddy current testing, one is interested in particular in measurements of impedances, which
only depend on the solution inside the deposit domain 2p. To this end, we also compare the
relative error of solution only on 2p due to the radial domain cut-off. From Figures 1.3c and 1.3d,
at a cutting position r, = 50mm, the relative errors issued from the Neumann problem in the
semi-norm of H}/Q(Qd) and in the norm of Lf/Q(Qd) are less than 0.5%. Therefore we conclude
that simulations computed in a domain cut at » = r. = 50mm using Neumann boundary
conditions are sufficiently precise for iterative reconstruction algorithms, since the noise level
in the measurements would most probably be higher that the numerical error. Concerning the
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finite element space on B, 7, this cut-off reduced the degrees of freedom in our experiments to
about 16000.
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Figure 1.3: Relative errors with different cut-off position in the radial direction.

1.3.2 Error introduced by the DtN maps

In the following, we denote by uexact @ reference solution for the eddy current problem computed
on the cut-off infinite band B,, with » = r, = 50mm using Neumann boundary conditions on
I'y., compare Figure 1.2b. To compute Uexact numerically, we resolve the problem in a domain
bounded B,, z with Z = 100mm, as explained above. Then B,, 7 is cut off into the bounded
domain B, ., with I'y = {0 <r <1y, 2z = £z, = £5mm}, compare Figure 1.2c. The degrees of
freedom of the P1 finite element space reduced by this cut-off to about 3500 elements. We set
different boundary conditions — Dirichlet, Neumann or DtN boundary conditions — on the top
and bottom boundaries 'y and solve the corresponding variational problems again using the
finite element software package FreeFem++. The solutions are denoted by upirichlet, UNeumann
and up¢N in the following.

To build the DtN maps, we first discretize the interval I = (0,r,) (that has the same
length as I'y) using 5000 boundary elements and use an eigenvalue solver (more precisely, the
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function eigs in Matlab) to compute the first eigenpairs (1/3;, Qoij) and (V,;t, Qf) corresponding
to the physical parameters pu* and . We then interpolate the boundary elements on I in
the boundary element space on 't of the finite element space on the computational domain
(141 elements on each boundary) to get numerical approximations to the truncated DtN maps
introduced in (1.32).

Choose of truncation order N for DtN operators

. .. L, nOrm
1 .
_0.57,: ..+ Hy), semi norm||
s .
3" %
3 -1 oy .
=2 . .
= . g
2 15t e
] Tty
o * B e e ek ar ae
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8 7 E
[
LI
-2.5¢ *
Y
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-3 . . . . .
0 5 10 15 20 25 30

truncation order N

Figure 1.4: Relative errors for eddy current simulations using DtN maps with different truncation
orders N.

Figure 1.4 illustrates the relative errors of up¢n using different truncation parameters N
for the DtN operator T, see (1.32), with respect to Uexacq in the || - lz2 (B, .,y norm and the
/2 Ty 2k

H H! (B, .,)-Semi-norms. The relative error decreases as the truncation order NV increases before
/2 * )<k

saturating at about N = 16. For N = 20, the errors are sufficiently small.

Comparison with other boundary conditions

Figure 1.5 illustrates real and imaginary parts of for the three different horizontal cutting-off
techniques (Dirichlet, Neumann, and DtN) we investigated above. It shows in particular that the
domain cut-off using DtN maps constructed with the first 20 eigenvalues and eigenprojections
approaches the most the exact model. Moreover, Table 1.2 indicates the relative errors of the
eddy current simulations on the cut-off domain in the ||-{| 2 (B, ..)"horm and the || JBroa)”

semi-norm compared to the reference solution . Again, one clearly observes that using the DtN
maps for the horizontal cut-off introduces a reasonably small error compared to the reference
solution weyxact While truncating using Dirichlet- or Neumann boundary conditions on horizontal
boundaries close to the coils and the deposit yields unacceptable errors. In particular, merely
pre-computed DtN maps can ensure fast simulations of non-destructive eddy current measure-
ments when many forward problems need to be solved. As mentioned in the introduction,
such fast simulations are crucial for, e.g., iterative solution methods for the inversion of these
measurements.
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(a) éR(uexact) (b) S(uexanct)

(¢) R(uDirichiet) (d) S(upirichiet)

(e) §R(’LLNeuma,un) (f) g(uNeumaun)

(8) R(upen) (h) S(unin)

Figure 1.5: Real and imaginary parts of w fields on cut-off domain using different boundary
conditions. DtN maps of truncation order N = 20.

b.c. Dirichlet Neumann DtN
norm
Il - ”L%/Q(Br*,z*) 55.73% 181.57% 0.15%
|- |H11/2(BT*,Z*) 28.79% 49.26% 1.86%

Table 1.2: Errors of longitudinal domain cut-off with different boundary conditions. DtN maps
of truncation order N = 20.

Influence of the conductivity of tube on the DtN operators

We build the DtN operators with tubes of different conductivities o; and fixed permeability
pt = 1.01p9. Figure 1.6 shows the first 20 eigenvalues of the operator S (see Problem (1.14))
on the complex plane beginning from the one with the least absolute value which is closest to
the original. In Figure 1.6a one observes that all the eigenvalues are real if oy = 0, since the
pertubation operator M? = 0 and therefore operator SZ becomes selfadjoint and admits only
real eigenvalues. In Figure 1.6b, we compare the eigenvalues for the different tube conductivities
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o¢. As o; increases, the pertubation term M becomes more and more important and the
corresponding eigenvalues move farther and farther away from the real axis.

First 20 eigenvalues

First 20 eigenvalues
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(a) comparison with insulator tube (b) comparison among different conductivities

Figure 1.6: First 20 eigenvalues for different tube conductivities.

Table 1.3 gives the cut-off error with different DtN maps built with the corresponding tube
conductivities. One remarks that the error due to the cut-off grows as the tube conductivity
increases. This is due to the fact that when the pertubation term M7 becomes non-negligible
in the operator S, the number of the non-orthogonal eigenprojections (o, grows and then the
first terms in the spectral decomposition of the DtN operators (see (1.31)) are not exact.

ot (8/m) 0 103 10 10° 106
norm
RN 012%  0.15%  0.93%  8.55%  14.86%
[ 3y (B 1.87%  1.86%  1.88%  3.86% 7.69%

Table 1.3: Errors of longitudinal domain cut-off with different DtN maps for different tube
conductivities; DtN maps truncation order N = 20.

Influence of the permeability of tube on the DtN operators

In Figure 1.7 we illustrate the first 20 eigenvalues of S with different permeabilities of tube p;
but with the same conductivity o; = 103S/m. As p; grows, some eigenvalues move far away
from the real axis, which we have expected in Section 1.2.1 with the estimate (1.20).

Table 1.4 gives the error of domain cut-offs with different DtN maps built with the corre-

sponding tube permeabilities. The error due to domain cut-off grows as the tube permeability
goes far away from pg.
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First 20 eigenvalues
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Figure 1.7: First 20 eigenvalues for different tube permeabilities.

Mt
norm 1.01p0 210 4410 8110
(RIS 0.15% 1.56% 2.67% 3.49%
i e 1.86% 2.70% 4.55% 10.33%

Table 1.4: Errors of longitudinal domain cut-off with different DtN maps for different tube
permeabilities; DtN maps truncation order N = 20.

Influence of the deposit shape on the domain cut-off error

In the reconstruction of deposits in the following chapter, we will evolve the deposit shape at
eash loop in an iterative algorithm. The DtN maps remain however unchanged in the iteration.
So the deposit shape should not have impact on the precision of domain cut-off with the DtN
maps. We test four different deposit shapes shown in Figure 1.8. Using the DtN operators with
truncation order N = 20, we give the truncation errors in Table 1.5. We conclude that the
deposit shape have no influence on the exactness of domain cut-off with DtN maps.

(a) shape A: 2mm x 6mm (b) shape B: 1mm x 2mm (c) shape C: 4mm x 6mm (d) shape D: 3mm radius
rectangle rectangle rectangle semi-disc

Figure 1.8: Different deposit shapes.
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deposit shape

A B C D
norm
(RN 0.15% 0.16% 0.16% 0.15%
83y (B ) 1.86% 2.33% 2.01% 2.11%

Table 1.5: Errors of longitudinal domain cut-off with DtN maps for different deposit shapes;
truncation order N = 20.

1.4 Appendix: Some properties of the weighted spaces

We recall the definition of the following spaces and corresponding norms. Let Q C R% := {(r, 2) :
r >0,z € R} an open set. For A > 1,

12,0(Q) = {v: P21+ 0 € LAQ)), HL, ()= {v € L2,,(Q) v~ V2V(ro) € L2(Q)},

Vi

For A = 0, we define

2
2 _ 2 —1/2
oty o = 013z, @+ [ "9 o)

[vllz (@) = L2(Q)

/2,2

2@)

L3,(Q) = LY, o(Q) = {v : vv/r € L2(Q)},
H,(Q) i= Hl), o(Q) = {v € L3,(Q) : 7'V (rv) € LT, (Q)}.

We shall also use the short notation

2

[Vl @ = Hr_1/2V(7”U)HL2(Q) '

For r, > 0 and an interval I = {r e R: 0 < r < r,} we define
LI :={¢:0vre L*(I)},  Hi,(I):={¢ € L,(I): r'0:(rd) € L7),(1)}.

1.4.1 Proof of Lemma 1.1.1

Proof. Given 0 < € < 7, we set Bf = {(r,2) € By, :r > e} and I :={r e R:e <r <}
One easily observes that L%/Z \(BE,) € L*(Bg,) and H}/2 \(Bg) € HY(BE) € LA(R, H (e, 14)).
Since H'((e,74)) C C((e,74)), for 0 < e <7 <7’ < r, and for almost all z € R, we can write for

ve iy, (B,
) r 2 /2
/ %(sv(s,z))ds <I|r'—r| (/ ds)

1/2,A
< I~ 7Vl Al oo
/ / 2 / 2 2 / 2 2
/R]r o(r',z) —ro(r,z)[dz < |r' — 7| T*/R]v(.,zﬂHll/Q(If)dz < |r' = T‘*|U|H11/2(B;*).

!

[rv(r’, 2) —ro(r, 2)| =

% ‘888(811(3, )
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Thus, for r, — 0(n — 00), {rnv(rp, ) Inen+ is a Cauchy sequence in L?(R). Since L?(R) is
complete, the sequence converges and we denote the L?(R)-norm of its limit by I > 0. Now we
will show that [ = 0. If not, due to the continuity of rv on 7 for almost all z, one should have

l2
36>0 VO<r<d /]rvrz)]zdz>2
R

For 0 < € < § < 1y, with Fubini’s theorem,

2 2 €
IolZs o) 20l (B5)

:/R</E§Myrv(r,z)12dr> dZZ/jM (/R ]rv(r,z)de> dr

12 1 51 o
>~ | Zar<=
e LA

which contradicts the fact that v € L1/2 \(Br,) C L1/2 L(R2). So
lim [ro(r, D z2@) =1 = 0.

Therefore, for almost all z € R and v € Hl/Q)\(B ) C L2(R, H((e,74)),

/OT i(sv(s, 2))ds

2 11/ 10 2
r|Jo /s0s

(sv(s,z))ds

v (r, Z)|2 = 72\”’\2 -2

2

1 ["]1 8 2 119
<= — = — — =
< Tr/o \/gas(sv(s,z)) ds /0 \/Eas(sv(s,z)) ds

0o 2
S/o %%(rv(r, z))| dr.
We have
2
l|lv(r, HLz ®) = / lv(r, 2)[2dz < (s,2))| dsdz.

By the dominated convergence theorem, let 7 — 0 in the above inequality, we get [|v(0, )| z2r) =
0, which means v|,— vanishes almost everywhere. Now we consider

/Ri(1_:;2),\|v|2drdz:/2/oooM‘U(r,z)lzdrdz
< [ ([ e [ o)

o r 0 2 o r
_/0 (14_7’2)Adr/ﬂ{2+ —(rv(r,2))| drdz= (/o Mdr) ‘U‘H%/Q(Ri)'

1
War

Therefore, the inequality is proved by setting

> r
= /1 ——_dr.
¢ \/+/0 T+
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1.4.2 Proof of Lemma 1.1.6

Proof. The first part of the proof is similar to the proof of Lemma 1.1.1. Given 0 < € < 7y,
we note Bf = {(r,z) € By, : v > €}. It is easy to show that the space Ll/Q(B,f*) is equivalent
to L*(BE.) and Hl/z( ) to HY(BE) € L*(R,H'((e,ry)). Since H((e,r)) C C((e,74)), for

0 <e<r<r <r,and for almost all z € R, we can write for v € H}/Q(Bﬁ*)
10

< |y — — | —

<’ =] ( | = \ 2 (s0(s,2)

< =rlvrdv(s Dla o),

1/2

/ / 2 / 2 / 2 2
/R]r v(r', z) —ru(r, 2)|*dz < |r' —r]| T*/R]v(-,zﬂHll/Z(I) dz < |r' —r| T*HU||H11/2(BT*)'

[r'v(r!, 2) — ro(r, 2)| = %(sv(s,z)) ds

2 Y2
ds)

Thus, for 7, — 0(n — 00), {rpv(rn, ) nen+ is a Cauchy sequence in L?(R). Since L?(R) is
complete, the sequence converges and we denote the L?(R)-norm of its limit by I > 0. Now we

will show that [ = 0. If not, due to the continuity of rv on r for almost all z, we should have

l2
>0 VO<r<d /|rvrz)|2dz>2
R

For 0 < € < §, with Fubini’s theorem,

1) 2
1 l N
2 2 _ )2 2 €0
HU("Z)HL%/Z(BT*) > /]R </€ ;|TU(T7 z)| dT) dz _/ </ |ro(r, z)]| dz> dr > A dr —

which contradicts the fact that v € LI/Q( .). Sol = 0. For almost all z € R and v €

L2(R, H' ((e,74)),

2 r 2
lv(r, 2)|? = ‘i(rv / 68 (sv(s,z))ds _1 ; \};ai(sv(s,z))ds
1 "1]0 "1|0 2 )
<L [P 2 uto 2| s [ vt )| s = 1o oy
§| (’Z)’H%/Q

By the dominated convergence theorem, let 7 — 0 in the above inequality, we get [|v(0, )| z2(r)

0, which means v(0, z) vanishes almost everywhere for z € R. Otherwise,

T ,rz
o2y oy < [ rdrioC, Dy = DBy o
Therefore, we get
2 2 2 2
2 T Ty 2
— < = =
Il 5.0 = I Mgy L <5 g < 5 0

By setting Cp, = r./v/2, the first Poincaré-type inequality (1.11) is proved.
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To evaluate the trace, we calculate

1 1 .
[0,y = 2o IV ) ey = = ( i <1+|5|2>1/21v<r*,5>r2d5)

< - ( /]v Ty & !2d§+'r*/|§Hv T, € \2d£>
—f(r*/m 8(ru, ) d&+/!§\/r*a drd§>
::< O (rf))dr d§+/|§\/ 2R <v )drd§>
g1< OT*\[aT<ﬁdr d£+2// |£r|f|\1[§( ) drdf)
grl(val/gB” (// €7 Ivalzdrdﬁ// }5 ro) drdi))
_ (,U,Hll/g ( ol arasr [ [ 2200 erdz))
=3 |v|H%/2(BT*)'

Therefore, we get (1.12). O

1.4.3 Proof of Lemma 1.2.1

Proof. We suppose B is a unit ball in H1/2( ). To prove the compactness of B in L1/2( ), it is
sufficient to show that B := {¢(-)/ : ¢ € B} is compact in L2(I). We use [18, Corollaire IV.26].

We suppose for arbitrary n > 0 small enough, w C]n, . —n|[ is strongly included in I, written
as w CC I. We note 75, the translation operator: (7,¢)(r) = ¢(r + h).

First of all, we shall show

VheR with |b| <y and Ve =o6()V €B, |mp -2 > 0.
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For r € w, we have |h| <n < r. For h > 0,
[+ h) = (r)]* = o(r + W)Vr +h — o(r)V/r|?

— |b(r 4 h)(r + ) — S(F)r + S(r + W)V R(VF — mwl
27“ +h

< 16(r+ )+ B) = SR+ [9(r + WPV T B~ V)

/rmhi(3¢(3))d32i+!¢(r+h)\2< h ) 7’+h

Vithtyr) oo
gf/fh o] st o+ mP (51 ) .
con [ \ (56/(5)

2

2

2yr) r
r+h

h
ds + 5](]5(7’ + h)\2

2

7‘+h h
§2h ‘ (so(s ds+§]q§(r+h)]2

h
< 2h‘¢|H11/2(]) + §|¢(7’ + h)’27

thus by Lemma 1.2.1 and the fact that ¢ € B

h h 5h  h—o
2 2 2 2 2
| Th) — d}HL?(w) < 2hr*]¢|H11/2(1) + §”¢HL2(1) < 2h7“*|¢|H11/2(1) + §T*|¢|H11/2(1) < 77“* — 0.

For h < 0, we note always h > 0 but we calculate
[(r — h) = (r)? = [é(r — R)Vr —h — ¢(r)V/r|?
= [6(r)r = 6(r = B)(r = ) = 6(r — WV = k(7 — Vi = )

< 16()r = 6(r = B)r — WT +1o(r — W(VF — Vi Ryt

2 h 2 —h
Lot ( )"

R

o s itV —h) 7
h " d 2 2 h 27"—]1
<[ eete| dslot P (5 )
" 1]d 2 h )
<h [ SlSseel)] ds+ o)
h
<Ml o)+ glor =)

again by Lemma 1.2.1 we have

h
2 2 2
chw - T/’H/;Z(w) < hr*‘¢|H11/2(1) + ZT*W’H%/Q(I
It remains to prove that

Ve >0 3wcC I suchthat [|o()v ]2 <€ Vo €B.



1.5. Appendix: Proof of Proposition 1.1.5 39

If we take w = (9,7« — 1), then by Lemma 1.2.1

2 2 2
2 — l6I12 2 1612 1412 n
”d)(-)\[H]ﬂ([\w) - H(Z)”L%/Z((UJI)) + H¢HL%/2((T*_777T*)) < 92 |¢’H11/2((0,77)) + 92 ‘¢|H11/2((T*—77,r*)) < 9 .

By setting n small enough we obtain the result.
So the conditions of [18, Corollaire IV.26] are satisfied, and B is relatively compact in L%/2 (I).

The embedding H}/Q(I) — Lf/Q(I) is hence compact.

1.5 Appendix: Proof of Proposition 1.1.5

Before the proof, we introduce some preliminaries. With the Fourier-transformed representa-
tion (1.8), we have

5 A0, €)(—2nelr) o 2TlElr).

- (ru)(r,§) = K1 (2m[€|ro) (1.37)
0 £=0.

Before the estimate, we introduce some properties for the functions

1+ 22 Ki(ax) Ko(bx)
h(z:a,b) = i 1.
(@30, = 57727 [ Ro(am) ~ (o) ] (1.38)

with x >0, a > b > 0.

Lemma 1.5.1. Let a > b > 0. The function h(x;a,b) defined by (1.38) is positive and increasing
in x € RT. Moreover, for fived b, the unique solution of h(-;a,b) = 1, denoted by x*(a), has the
asymptotic behavior x*(a) ~ O(a™t) when a — +oo.

Proof. As a > b > 0 and K1(-) > Ko(-) for positive arguments, h(-;a,b) is positive on RT.
Since the function (1 + 22)/(2 + 2?) is positive and increasing, it is sufficient to discuss the
monotonicity of

Its derivative writes

Wissab) — oo (K102) Ko(ba)) _ g Kolb)
B (z;a,b) = a’x (Ké(am) — 1> + vz <1 - K%(b$)> N QbKtl)(bx)'

We want to show that h/(x;a,b) > 0 for > 0. It is equivalent to say A/ (z;a,b) > 0 for = > 0.
If we denote ax = A, bx = B, then we are going to show

K{(4) K§(B) Ko(B)
A2 (Ké(A) —1) + B? <1— K%(B)> >23K(1)(B), A> B>0.

[10, Theorem 2] implies the following inequality

1
= Ki(z) < Ki(z) — K&(z), = >0.
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We have
Kli(x) s L
Kg(x) z
and
Ki(z) 1+ux K3(z) x K3(z) 1
> = < = 1- > .
KZ(x) x Ki(z) 14z Ki(z) ~ 14z

With the above inequalities, we have

K2(A) KZ(B) B? B? B Ko(B)
A2 1)+ B2 (1Y A B >2By/—=—— > 2B :
(Kg(A) >+ ( K%(B)>> TBF1T P T B 17V BEL TP KB

Thus, we have shown that h(z;a,b) is increasing. With the known limiting form of Ky and K,

for small and big arguments, we have

1 L —In(b
lim h(z;a,b) = lim - [am ww __ _py nl( ”5)] —0,

bz
) , aKy(ax)Kq(bx) — bKy(ax)Ko(bx)
1 h(z;a,b) = 1
Z‘—1>51-100 (ZE,G,, ) x—1>I-|I—loox Ko(aﬂf)Kl(bﬂf)
V. T —(a+b)x b—|—O 1
= lim z 2% 26z © (a+b( (m)) = +00.
x—)—i—oo 2a:p 2b:p€ ( )

Therefore, the monotonicity and continuity of h(z;a,b) ensures that h(x;a,b) = 1 admits one
unique solution x*.

Given b > 0, we shall study the asymptotic behavior of z*(a) when a — +oo. First of all,
we will prove by contradiction that z*(a) — 0 when a — 4o00. If

de > 0, VM > 0, Ja > M, such thatz*(a) > e,

then
o e L [ Ka(ert(e) | Ko(br(a))
b= h@@iab) = oo er 7@ 9% (@) Kb (a)
2%6[ _b]M)+

So lim, 100 #*(a) = 0. Now we will prove that z*(a) ~ O(a™!) (a — +00).
1. If there exists a sequence {a,} tending to infinity such that lim,_,o anz*(a,) = 0, then

2+ 2*(an)” —a. 2" (a Ky (anz*(an)) — bt (a Ko(bz*(an))
123 g =0 ) e ) K b (an)
1
Nanl'* an anz*(an) —bl’* an _hl(bx*(an)) n—00 00
( )—ln(anx*(an)) (an) m

So there exists lyin > 0 such that az*(a) > lyin-
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2. If there exists a sequence {a,} tending to infinity such that lim, . anz*(a,) = 400,
then

22 an)? = ) Ry (anaran) ~ O R (b (an)
N(Inx*((ln) - bl‘*(an) — ln(b'f*(a”)) —
bz* (an)

So there exists lyax > 0 such that az*(a) < lpax. The needed asymptotic behavior is proved. [

Proof of Proposition 1.1.5. From (1.37), we have

2 2

0 2y-1/4 9

—(ru)(r, - =|(1+]- - (ru)(r, -

)| = o mrgemes|

o ~ - K§(2m|¢]r)
= 1+ |€12)2[T(ro, )12(1 + [€]2) 1 (2r|¢|r)2 202250 g
[ o (1 I el i SR e
omr|-|  Ko(2mr|-|) ||?
< II?
< lfuro, Migrya ) L+ 12)72 Kr2mrol - D] o gy
= Hu(r(b')H?{lﬂ(R)Hgn(‘;rmr)”ioo(ﬂ{z)?
where

2rre Ko(27mrg)
1+ &2)Y2 K1(2770§)’

We would like to find the maximum of the function g,. We compute
_ 3
gl (& ro,m) - (2mr) TN (1 + €2)2 K2 (2mro€)

= [Ko(%”f) + SQW’K{)(ZWQ] (14 &) K1 (27r08) — EKo(277€) [le(QWTof) + (14 €%)2mro K7 (2m708)

In (&0, 1) 1= ( £>0. (1.39)

= {Ko(sz) - fQWKl(QWf)] (14 &%) K1 (2mro€)
~ ¢Ko(2mre) [§K1(27T7“05) it <27T7"0K0(27T7“05) n 2K1(27”’0§)>}

—271€(1 + £2) [TOK0(27W0§)K0(27TT§) - TK1(27TTO§)K1(27TT£)] + (2 + ) Ko (21r€) K1 (2770
=—A(§) + B(¢),
where

A(g) =2mE(1 + €% [TK1(27TT0§)K1(27T7“§) — TOKO(Qﬂrof)Ko(Qﬂrf)} ,

B(&) = (2 + %) Ko(2mré) K1(2710€).

Obviously,

Al©) = h(&; 2nr, 27ry).

B(¢)
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From Lemma 1.5.1, ¢’(&; ro,7) admits only one zero (when A(£)/B(§) = 1), which we denote by
&*(r). Moreover, we have

1
& (r)~0 (7’) r— 00. (1.40)
Therefore,
1 To
W€ ()i10,7) ~ O (x| ~ O (2 ,
i€ 00~ 0 (i)~ 0 () rovoo
which yields the claimed estimate. O

1.6 Appendix: Comparison of different local boundary condi-
tions for radial cut-off
1.6.1 Dirichlet boundary condition

Definition 1.6.1. We build a lifting operator R, : H/*(R) — H}/Q( ro) Such that its Fourier
transform satisfies

=7 _ L(2n[¢lr) -
(R ¢)(r, &) = Wéf)(ﬁ),

where I is the modified Bessel function.
We verify easily that (R, ¢)|r=0 =0, (Ry,®)|r=r. = ¢ and
1
—div <V(’I”R7~*¢))> =0 in B,,.
T
By multiplying the above equation with rR,, ¢ and integrating by parts, we get

-1 2 . 0 P . 0 -
|7 V(TRT*¢)|’L%/2(BT*) _/I;r* T(TRT*¢)RT*¢dS—/ (3 (TRr*qb)) (re,2)p(z)dz

ar
Iz - A
_ /R (armm)(r*,w ) dé — / GRS

: 1 (2relr.)
To(2m|€]rs) / /2 >
< 277y 1+ (¢ G(&)[* d¢
hianlelr) J U 1010
To(2m|€lrs) /o
= 271,
" Tlelr | i
So we verified that R, ¢ € 1/2(BT*), and
- : Io(2m€]r+)
1 2 — 0
r Y ORONE (5, < CO 12z with Clr) = \/m frerr s SR
Considering the asymptotic behavior of Iy, I; with big argument, we have
C(ry) ~ O(\Jrs) 14— 00. (1.42)

So the lifting operator R,, grows with a rate of (r)”? when 7, tends to infinity. Now we
introduce a lemma.



1.6. Appendix: Local boundary conditions for radial cut-off 43

Remark 1.6.2. Lemma 1.1.6 and (1.42) show that the lifting R, is “minimal” in the sense
that its norm grows with the least rate, i.e. as (ry)"* when 7. tends to infinity.

The problem with Dirichlet boundary condition on I',, = {r = r,} writes:

1
—div (WV(rud)> —ilwoug = iwJ in B,,,

Uq = 0, on F(], (1.43)

uqg = 0, onl,,.

Proposition 1.6.3. Let r. > 0 be sufficiently large so that the support of the source term
J € L*(R%) is included in B,,. Then problem (1.43) has a unique solution ug € H}/Q’O(Br*).
Assume in addition that there exists positive ro < ri such that the source J and the conductivity
o vanish and the permeability v is constant for r > rg. Then there exists a constant C that
depends only on J, ro, p and o such that

L (r (g — )

1/2
<
. <C/ri,

L%/2(BT‘*)
where u 1s the solution of (1.6) (in Proposition 1.1.2).

Proof. The proof of the first part is similar to the proof of Proposition 1.1.2 thanks to Lem-
ma 1.1.6. Let us set wg = u — ug. Then wy € H}/Q(Br*) and satisfies

1
—div (V(rwd)> —iwowg =0  in B,,,
ur

Wq = 0, on Fo, (1.44)
Wy = U, onl,,
Using the lifting operator R,,, then g := wqg — R, (u|r,, ) satisfies: Vv € H}/Z’O(Br*),
/ iV(mﬂd) -V (rv) — iwowgordrdz
By, MT
:/B ervmz” () - V(D) — iwoRy (uly. )or dr dz (1.45)

A similar argument to the proof of Proposition 1.1.2 thanks to Lemma 1.1.6 yields the the
existence and uniqueness of wy € H 11/2 o(Br.), thus the existence and uniqueness of the solution

wy € Hll/Q(Br*). By taking v = @y in the variational formulation (1.45), we get the following

estimates
1|1 2 1
AT *V(T‘UN}d) < / 7‘V(T’U~)d)’2 — iwa’ﬁ)d|2 dr dz
H/’LHOO r L% (Br*) B, ur
/2
1 — _

[ VR ) V) — R, (T drd

B,

1 1 1 ~
— 1nf| | ;V(TRT* (u|7'*)) 5 ;v(rwd) )

: L3, (Br) L3 ,(B.)

+ wllo o[ Ry (u’r*)HL%ﬂ(BT.O)de”L%m(BT.O)'
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The last inequality is due to the fact that o vanishes for » > rg. Thanks to the Poincaré type
inequality (1.11), we have

2

<
L%/z (Brg) V2

70

||17)dHL§/2(BTO) < 7

1
7v i
‘r (rwq)

1
7v 75
‘r (rig)

L%/Q (BT*)

Thus
||T_1V(T@d)HL§/2(BT*) < C(ro,u, 0)|lr 'V (rR,, (Wl )2z, 5..):
Considering (1.41), (1.42) and Proposition 1.1.4, we have

I Gwa)lgg 5,y = I V00 + Reule Dl s,
<(1+ C(TﬂaN)U))HT_IV(TRT*U‘T*)||L§/2(BT*) < (1+C(ro, p, 0))C(ra) [l || oo )
<c/rl,
where C' depends only on 1o, J, u, 0. O

Remark 1.6.4. Considering the Poincaré type inequality (1.11) with Cp, = /2, we do not have
the convergence of ug to u in L%/Q(Br*) as ry — 00.

1.6.2 Robin boundary condition

We consider a problem with a Robin boundary condition on I'y,:

1
—div (V(Tur)) —lwou, = iwJ in B,,,

ur
uT‘ - 07 on FO’ (146)
0
= (rur) = oy, onT,..

where a = «a(ry) is a constant which can be dependent on r,. We want to discuss the possibility
of obtaining a better approximation model by setting appropriate Robin coefficient a.
The error w, = u — u, satisfies

1
—div <V(Twr)> —ilwow, =0 in B,,,
ur

wy =0, on Iy, (1.47)
2(mu ) = aw, + —(ru) —au nl
ors " T or ’ on L,

The equivalent variational form of problem (1.47) writes: Yo € H}(B,.,)

/ iV(rwr) - V(rv) — iwow,or — / 104w,,17 ds = / 1 <a(ru) — au> vds
By, MT r,, M4 r,., M or
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Similar to the error estimate for Neumann problem above, we need to study the asymptotic
behavior of ||(0y(ru) — au)(ry), ')HHJ/?(]R) while r, tends to infinity. From Propositions 1.1.4
and 1.1.5 and the functions g4 and ¢, defined in (1.9) and (1.39) respectively, we know that for
T« > T0,

0
_ . S y" r3T0, Tk oo P
H<3r(m) au) b )HH—l/Q(R) et Mirvaqey lor (5o 7)oy
where

1
gr(fﬂ"Oyr*) = gn(& o, 74) + amgd(& TOar*)a §>0.

As g (0+;ro,7) =0,

7o
||9r(';7“0a7"*)||Loo(Rg) > 1gr (04570, 74)| = |ga(0+;70,74)| = |O‘|7T'

*

In order to have better approximation than the Neumann problem, we will need at least that
a=a(ry) ~o(l) re— 0.

If we take £ = £*(rx) the maximal point of g, (-;70,7«), we have

gr(§5(rv);m0,1m4) ~ O (1> Ty — 00,

T«

1
0 <ga(&*(r«); 7m0, 7x) < 9a(0570,74) ~ O () T — 00,
Ty

we have
Gr(&7(re);m0,m4) = 9r(§5(14); 70, 74) + (14) ga(§¥ (r4)5 70, 4,

1
90570, )Lty 2 lon(€°(r2)i0,m2)| ~ O (r) re = oo.
*
Therefore, the approximation model with Robin boundary condition converges at most as fast
as the model with Neumann boundary condition.

1.7 Appendix: 1-D Calibration

1-D models, which result from the invariance in the z-direction and who have known analytical
solutions, can justify the eddy current approximation and calibrate the 2-D solution.

We take a line applied electric current at I's = {r = rs}, i.e. a Dirac distribution Jy = Jo,,
and suppose a deposit-free case. The two interfaces where ¢, ;1 and/or ¢ change are the inner
and outer surfaces of the tube I'yy = {r = ry, }, I'io = {r = ry,}. The z-invariance assumption,
the second order Maxwell equation (1.2) and the second order eddy current equation (1.3) yield

E?r <1a(ru)> +w?(e +io/w)u = —iwJd,, (r), (1.48)
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where € = 0 for eddy current model. In each region of 0 < 7 < rg, rs <7 <1y, 1, < T < T4y
and 7 > ry,, (1.48) writes

r2u” +ru’ + (r?k? — Du =0, (1.49)
with k? = w?u(e + io/w) for the Maxwell model or k? = iwuo for the eddy current model. At
I's, we have two interface conditions. The first one is the continuity of the electric field

[u]r, = 0. (1.50)

The second one is given by applying (1.48) in the sense of distribution to any test functions
¢ € CZ(R™):

T e = (5 (Ganrm ) K 0) = onsotr)
12 ], - asn

If k£ # 0, (1.49) admits elementary solutions as Bessel functions J; (kr) and Y; (kr) or Hl(i) (kr),
i =1,2. When k = 0, its elementary solutions are r and 1/r. Considering the Dirichlet condition
at 7 = 0 due to axisymmetry and the radiation condition at infinity, the solution to the Maxwell
equation (1.2) writes

aqJ1 (k) 0<r <rs,
agJi (ki) + asYi(kir) rs <1< Ty,
um(r) = agJi(kor) + asY1 (kar) Ty <1< Ty,
aGHl(i)(klr) 1=1,2 > Ty,
with k% = w?eupty k3 = wlpy(e + ioy w),
where we choose between ¢ = 1,2 corresponding to the choice of argument of k; so that wuys
satisfies the radiation condition. Similarly, the solution to the eddy current equation writes

Brr 0<r<rs,
1
Bar + ﬁa; re <1 <t1,

upc(r) =
pelr) BaJi(ksr) + BsY1(ksr) Ty <1< Ty,

1
\56; T>Tt27

with kzg = lwpoy.

We use the interface conditions at the applied electric current line I's (1.50), (1.51) and the
jump conditions at interfaces I'ty, T'to ([ulr = 0, [%%
for coefficients a = (a1, ...,a6)", B = (B1,...,B8)":

(ru)]r = 0) to resolve the linear systems

Aya=b, ApgcB=0,
b= (0, —iwpJ,0,...,0)7T,
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Figure 1.9a compares uys and ugc in the above deposit-free case and in other 1-D config-
urations, which shows that the Eddy current model is a good approximation of the Maxwell

equation model.
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Figure 1.9: Comparison of azimuthal electric fields.

Finally, Figure 1.9b shows the numerical calibration of the 2-D Eddy current model by the

1-D model.
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In this chapter, we first aim to estimate the deposit shape given ECT signals by supposing
that the physical nature of deposit is a priori known. We shall employ for that purpose a shape
optimization scheme based on evaluation of the shape derivative of the measured signal with
respect to the deposit shape. We may refer to Murat and Simon |63, 64|, Zolésio [85] and Allaire
[2] for a general introduction to shape optimization. The work of Pantz [67] on shape derivatives
of heat equation with jumps of conductivity inspires our derivation of material derivative of
eddy current equation. We remind that there exist other inversion methods based on shape
optimization, such as inversion based on topological derivative (Guzina and Bonnet |16, 40]) or
the level-set approach (Santosa [75], Dorn and Lesselier [37]). From engineering point of view,
Trillon et al. [84] proposed a contrast source inverse method to retrieve flaws from eddy current
signals.

The proposed inversion scheme via shape optimization then employs a standard gradient
descent strategy to minimize a least square cost functional. In order to stabilize the gradient we
regularize the descent direction by solving a Laplace-Beltrami problem on the deposit boundary.
Similar regularization methods are discussed and applied in the works of Nicolas [65] and Chaulet
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[28]. We validate our procedure through some numerical experiments that clearly demonstrate
that the ECT signals are capable to provide good estimates on the deposit shapes.

We then discuss the case where the physical parameters are not known. While we show that
retrieving either the conductivity or the magnetic permeability would be possible if the geometry
is known, retrieving both parameters cannot in principle be accurately estimated without very
good initial guesses. Retrieving the shape and one of the parameters is also very sensitive to
the initial guess. However we show that the sensitivity with respect to geometry is much more
robust. For instance reasonably accurate estimates of the deposits shape can be obtained with
a small error on the physical parameters.

Overview: In Section 2.1 we recall the eddy current model for axisymmetric configurations and
explain different impedance measurement modes and how to evaluate them from axisymmetric
eddy current model solutions. Section 2.2 is then dedicated to characterizing the shape derivative
of the solution and the impedance measurements with repect to the deposit shape. We also
give a representation of the impedance derivative using the adjoint state technique. The shape
inversion scheme and numerical validating experiments are given in Section 2.3. We then analyze
in Section 2.4 the reconstruction of physical parameters for known geometries of the deposit.
Finally, we discuss simultaneous shape and physical parameters reconstructions in Section 2.5.

2.1 Modeling of ECT signal for axisymmetric configurations

The ECT experiment settings and geometrical configurations are depicted in Figure 2.1.

Z

Deposit j

B 1
| | |
! % M li ,,,,, g

I
I
Tube |
Coil 1 0 Bn.z* :
I
Coil 2 0 .
o r
I
I
I
I
I
I
I
I

Figure 2.1: 3-D and 2-D geometrical representations of a SG tube covered with deposits and a
probe consisting of two coils.

Active coils generate an electric field E and a magnetic field H that satisfy the Maxwell
System

(2.1)

curl H + (iwe —0)E=J  in R3
curl B —iwpH =0 in R,
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where J is the applied electric current density (satisfying divJ = 0), and w, €, u, o respectively
denote the frequency, the electrical permittivity, the magnetic permeability and the conductivity.
In the ECT experiment we are interested in, the probe is done with two coils that move
along the axis of the SG tube from vertical position zyin t0 Zmax. At each position ¢, we get
an impedance measurement (ECT signal) Z,eqs(¢). According to [8, (10a)], in the 3-D case the
impedance measured in the coil £ when the electromagnetic field is induced by the coil [ writes
1

Dlw =13

/ (EY x Hy — Ej, x HY) -ndS,
aQSD

where QE’ZD C R3 is the deposit domain, El0 and Hl0 are respectively the electric field and
the magnetic field in the deposit-free case with corresponding permeability and conductivity
distributions p°, 00, while Ej,, Hy, are those in the case with some deposits. Using the divergence
theorem, we also have

1
Q3P
1
=5 / (curl Y - Hy, — EY - cwrl Hy, — curl By - HY + By, - curl HY) da
3D

1 / ( 1 1 0 : 0 2 0 0)
= : - — curl By, - curl B} — (iw(c —0”) +w(e —€") ) Ey - E} | da.
iwl?2 93]3 (/-‘L MO) l ( ( ) ( )) 1

The eddy current approximation corresponds to low frequency regimes and high conductivities:
we < o. In this case

AVARES iw1[2 /QgD ((; — 'ulo) curl By, - curl EY — iw(o — 0*)E}, - El0> dz. (2.2)

In an axisymmetric (i.e., rotationally invariant) setting, for a vector field @ we denote by
a,, = are, + a,€e, its meridian and by ag = agey its azimuthal component. A vector field
a is called axisymmetric if Jga vanishes. Then the Maxwell equations (2.1) decouple into two
systems, a first one for (Hy, E,,), and a second one for (H,,, Eg). The solution to the first system
vanishes if J is axisymmetric. Substituting H,, in the second system yields the second-order
equation for Ey = FEyey,

d (10 0 (10E , . .

I <,u7"87“ (TE9)> + 2 <M 629) +w?(e +io/w)Ey = —iwy in R%, (2.3)
with R2 := {(r,z) : r > 0,z € R}. Under the eddy current approximation this equation
simplifies to

(10 0 (10FE

with a Dirichlet boundary condition at r = 0 due to symmetry: Fy|,—9 = 0, and a decay
condition Ey — 0 as 72 4+ 22 — oo at infinity. We then obtain

27 1 1.1 .
NZy = Yl /Qd <(,u — E);V(TEQ’]{;) : V(T‘Eg’l) —iw(o — O'O)EgykEgvlT> drdz

2 11 - Vuy D
= 1w7IT2/Q <( — —)M —iw(o — ao)wkwl ) drdz, (2.5)
d
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where we have set
wji=rEg;, w):=rEj. j=1,2
j = Thej, Wi i=Thy  J= 1,2

We shall assume that p and o are in L°°(R?%) such that g > p, > 0 on R? and that o > 0 and
o = 0 for r > ry sufficiently large. Then problem (2.4) has a unique solution Ey € H(R?2) if one
assumes for instance that Jy € Lz(Ri) with compact support where we used the notation for
any €2 C Ri

H(Q):= {v 21+ )0 e L2(Q), rPV () € LQ(Q)}

where A can be any real > 1 and where V := (9,,0,)!. In the following it will be more
convenient to work with w := rEg € H(Q) := {v : rv € H(Q)}. This field satisfies the
variational formulation
1 _ lwo N o
a(w, p) == / <Vw -V — wgp) drdz = / iwJpdrdz Vo € H(Q) (2.6)
Q \HUr r Q

with © = R2. The solution to (2.6) satisfies (in the weak sense)

— div (w> —wol =iwJ  in Q. (2.7)
wr r

Let us already indicate that for numerical purposes, the computational domain will be trun-
cated in radial direction at r = r, where r, is sufficiently large and impose a Neumann boundary
condition on r = r, (see Figure 2.1). Then the solution for the truncated problem would satisfy
(2.6) with Q = B,, := {(r,2z) € R? : 0 < r < r,}. This is why we shall use in the sequel the
variational formulation (2.6) with the generic notation for the variational space H(Q) with Q
denoting Ri or B,,. We also recall that the variational formulation with 2 = B, can be equiva-
lently reduced to a variational formulation posed on By, .. = {(r,2) € R2:0 <7 <7y, l2] < 2}
by introducing appropriate Dirichlet-to-Neumann operators on z = *z,. This would be conve-
nient for accelerating numerical evaluation of the solution (see Chapter 1). As a corollary of the
well-posedness of the problem for Ey we can state: We have

Corollary 2.1.1. Assume that the source J € L?() with compact support. Then the variational
formulation (2.6) has a unique solution w in H ().

Let us finally note that in practice, the impedances are measured either in the absolute mode,
denoted by Zpa, or in the differential mode, denoted by Zps. From [70], we have

Zpp = %(AZH + AZa) absolute mode,
; (2.8)
Zp3 = %(AZH — A7) differential mode.

To have an illustration of the impedance measurements without giving the experimental details,
Figure 2.2 shows the ECT signals deformed by an axisymmetric deposit covering 10mm of the
shell side of the tube in the axial direction. We denote by Z(£4;() either Zps or Zp4 the
impedance simulated with a deposit form 24 at the probe position (.
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Figure 2.2: ECT signals of a rectangular deposit.

Notation: In the 2-D axisymmetric configuration in the Orz plan, the tube is represented by
Q:={(r,z) € Q:ry <71 <rpe} with 0 < ry < 1 the inner and outer radius of the tube wall.
We denote by Qs the domain inside the tube (r < 1) which contains the support of the source:
suppJ C Q. The deposit is at the shell side of the tube, that is Qg C {(r,2) € Q: 7 > rn}. We
denote by €, the vacuum domain outside the tube Q, := {(r,2) € Q: r > ri} \ Q4. Then we
have Q = U;cpQ; where A = {s,t,d,v} is a set of indices designating the above subdomains of 2.
We will also use the notation €y for the complement set of 24 in 2 (Qg =Q\Qy = QU UQ,).

2.2 Shape derivative of the impedance measurements

The expression of AZy; the impedance measurements (2.5) is an integral on the deposit domain
Qg4 with integrand (or precisely wy, the solution of the eddy current problem (2.6) also depending
on 4. To have an expression for the shape derivative of impedance measurements of €4, we shall

first study the derivatives of the shape-dependent function w which is the solution to problem
(2.6) (and satisfies (2.7)).

2.2.1 Shape and material derivatives of the solution

For Q a regular open subset of (), we can define a domain deformation as a perturbation of the
identity

Id+60:Q— Qy=(Id+0)Q,
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where § € W1>°(Q, Q)? is a perturbation field. In our problem, an admissible deformation
should keep the domains €2; and €2, invariant, i.e.

suppd N Qs = suppfh N Q; = 0.

Indeed we are mainly interested in perturbation fields 6 with support located in vicinity of the
interface I' := 9Qy4 N 09, between the deposit and the vacuum region outside the tube. We
denote by [-] the jump operator across I, i.e. for any f(z) (z = (r,2)) defined in a vicinity of T'
and any xg = (rp,20) € I’

[f1(@o) == f+(z0) — f=(20),

with  fy(xo) = (x) and f_(zo)= lim f(x).

lim f
Qudz—x0 Qgdz—x0

Following [2, Section 6.3.3] we give the following definitions for material (Lagrangian) and
shape (Eulerian) derivatives.

Definition 2.2.1. Let v = v(Q) be a shape-dependent function that belongs to some Banach
space B (that may depend on Q). Ifv(0) := v(Qp)o(Id+0) € B, then the material (Lagrangian)
derivative V(0) of v is defined as a linear functional with respect to 0 with values in B such that

5(0) = 5(0) + V(0) + 0(8) in O,

where limg_,q W% = 0. The shape (Eulerian) derivative v'(0) of v is defined by

J(0) = V(8) —0-Vu(Q). (2.9)

In the sequel we shall adopt the generic notation o(f) to design a function such that
lo(8)]]/110]l1,00 = 0 as @ — 0 where the norm || - || for o(€) should be clear from the context.

Remark 2.2.2. [t is readily seen from Definition 2.2.1, using the definition of 0 and the chain
rule, that formally

v(Qp) = v(Q) +v'(0) +0(0) inwC QN Qy.

Proposition 2.2.3. Under the same assumptions as Corollary 2.1.1, for an admissible shape
perturbation 0 € W1 (Q,Q)2, the solution w(Q) € H(Q) (2.6) has material derivative W ()
that is defined by

a(W(9),¢) = Lo(¢) Vo € H(Q),

where Lg(¢) = /Q {1 (—div (0/r)I + w>

. Vw - V¢ + iwadiv (0/r)we + iwdiv (JH)QS} drdz.

(2.10)

Proof. We consider the change of variables

Id+6)1:Q—=Q, yez,
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and in particular the fact that
(Vo) o (Id+6) = (I + V) 'V(vo(dd+6)) = +Ve) Vo) VYoe H(Qy),

where V6 is the Jacobian matrix of . Since w(€)y) satisfies the variational problem (2.6) in Qg,
one gets after the change of variable (2.11),

1 1 1 - T . N T

/Q (r + V; -0+ 0(0)> <MA(9)VUJ(9) - ¢ — iwow(0)¢| det(I + V0)|> drdz

= / iwJ o (Id + 0)é| det(I + V8)|drdz, (2.11)
Q

where we have set
A(9) = |det(I + VO)|(I + V)~ (I + V)~ 1) (2.12)
and ¢ := po(Id+#6). Expanding the above formulation with respect to 6 and using the identities

det(I +6) = 1+ div 6 + o(6),
(I+V0)™t=T-V0+o0(9),

the terms of order zero with respect to 6 give exactly the variational formulation on  (2.6), while
the first order terms with respect to 6 yield the formulation (2.10). Since the sesquilinear form
a(-,-) is continuous and coercive, the variational formulation (2.10) has a unique solution.  [J

To simplify the variational formulation (2.10), we shall prove some preliminary technical
results. For any Q C €2, we define a shape-dependent sesquilinear form
1 _ dwo i 2
a(9Q)(u(Q),v(Q)) := mVu -V — — v drdz V(u,v) € H(Q)*. (2.13)
Q
In the Orz plane with (r, 2)-coordinates, we denote by n = (n,,n.)! the unit out normal vector
on the boundary 0Q and by 7 = (—n,,n,)! the tangential vector on Q. The tangential gradient
operator on 0Q is defined by V,; := V —nd, = 7(7 - V). Then we have in particular on 0Q
Vu - Vv =90,udpv + V,u-V,v.

Lemma 2.2.4. Assume that p and o are constant in Q. Let u(Q) € ﬁ(Q) satisfying in the
weak sense
1 .
—div (w) ~2%u=0 o (2.14)
ur r

and v(Q) € H(Q) and assume that their material derivatives (u'(0),v'(8)) and shape derivatives
(U(0),V(0)) exist. We assume in addition that D*u and D?*v are in L>(Q N {Q, UQy}). Then
the shape derivative of a(Q)(u(Q),v(Q)), denoted by 5(0) exists for all admissible perturbations
0 and is given by

B(0) =a(Q)(u'(8),v(Q)) + a(Q)(u(Q), V()
+ /{)Q {(0 -n) (:rvTu -V, 0 — Mrauv> — (:ranu(e . VTv)>} ds. (2.15)
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Proof. We recall that §(0) is formally defined as

B(8) = a(Qe)(u(Qe), v(Qe)) — 2(Q)(u(Q),v(Q)) + 0(8).

We consider the change of variables from Qg to Q with (ICH—H)*1 and rewrite de shape-dependent
form a(Qp)(u(Qp),v(Qy)) as an integral on Q. Using the same notations as in Definition 2.2.1
for w(0), v(6), we have

a(Qp)(u(Qo), v(Qo))
= / (i +0- V(%) + 0(9)> (A(a)va(e) - V3(0) — iwod(0)5(0)| det(I + VH)\) drdz,
Q

where A(0) is given in (2.12). By definition of the material derivative, we have the developments

Thus one obtains

( 0)(u(Qy),v(Qp))
(Q)(u(Q),v(Q)) + a(Q)(U(0),v(Q)) + (Q)(u(Q), V(0))
1 divé

1 1
+/ { 0 - V—I—(divH—VH—(VH)t)) VuVo — iwo <9-v+
o) 1% T T T

Juo} ardz +of0)

r

= (Q)(u(Q),v(Q)) + (Q)(U(0),v(Q)) + (Q)(u(Q), V(6))
+ /Q {; <div 0/r) — %(ve + (ve)t)) VuVv — iwodiv (9/r)m7} drdz + o(6).
Therefore, from the definition of 4(6), one has
B(0) =a(Q)(U(0),v) + a(Q)(u,V(0)) + L1 + Iy + I3 + 14, (2.16)

with

oy
I

div (8/r)VuVodrdz,

< V@) VuVodrdz,

r

t
<_(V9)> VuVudrdz,

S
I

r

Tl Tl ==

5
I

&
i
T~~~

(—iwo)div (0/r)uv drdz.
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We compute using integration by parts

Il:_/ 16-V(Vu-Vv)drdz+/ MVU'VT}dS
Q 0

pr Q HT

= _/ Ly, (D*uVo + D*3Vu) drdz—i—/ gy voas
Q Mr 200 HT

= —/ ,ulr (V(Vu-0)-Vo— (V0)'Vu-Vo+ 0 D*vVu) drdz
Q

+ / (6-n) (Onu0nv + Vou -V, 0) ds,
0

Ty = _/ 1 ((VO, - Vu)d,v + (VO - Vw)d,v) dr dz
Q

ur
—/ 1 (div (W&v) 0, + div <vu8zv> 93> drdz —/ i(‘9nu(6-V17)ds

QM r r aQ HT

1 .. Vu _ 1 _ _

= / {le <> (0-Vov)+ —Vu-(V(0,0)0, + V(@ZU)GZ)} drdz

o ln r wr

- / L o (6 n)05 + (8- V,)) ds
aQ MT

= / {—MU(Q -Vu) + iVu : szz_)H} drdz — / L hu ((0-n)0pv + (0 - V,0)) ds.

lo) r ur o9 MUT

We observe that the last equality is due to (2.14). Finally,

T r

I4=/ 7 ((6- Vu)o + u(6 - VD)) drdz—/ (0 n)="uv ds.
o 09

Thus, putting together all previous expressions, one gets

. .
LA T+ T+ Ty = —/ {va.vu)'vv— Mf(e-vu)u} drdz
Q

+ /f)Q {(e ‘) (:TVTU V.- “‘:f’uv> - <u1r8"“(9 - vTu))} ds. (2.17)

Since U(0) — 0 - Vu = u/(0) (see (2.9)), by substituting (2.17) in (2.16), we get the result
(2.15). 0

Proposition 2.2.5. Under the same assumptions as in Proposition 2.2.3, if we assume in
addition that (u,0) are piecewise constant and equal to constants (u;,0;) on each subdomains
Qi (i € N) of Q, and that 0 € WH>(Q,Q)? is an admissible perturbation, then the material
derivative W(0) of w satisfies

0 ([5] 2900 v.6 - 200g) as

1 - lwo - _
+ /QdUQEl (WV(G -Vw) -V — 7(0 . Vw)gb) drdz Vo € H(Q). (2.18)

oW ()0 = |

r
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Remark 2.2.6. For the right-hand-side of the variational formulation (2.18), the notation
deUQU means the integrals on g and on Qg are evaluated separately. This is because (6 - Vw)

1s not in the function space ﬁ(ﬂ) In fact, the jump of w through the interface U yields the
transmission condition [~ 0,w] =0 on T'. Thus (0 - Vw) is discontinuous on T

(6 Vw)] = [(6- 1) + (8- Vrw)] = (8- n)[Bw] = (8- m)[u] (™ D). (2.19)

However, we locally have (6 - Vw)|q, € H(y) fori € {s,t,d,v}. We may refer to [53] for a
detailed discussion on local reqularities of PDE solution on subdomains with piecewise reqular
coefficients.

Proof. We write the sesquilinear form a(-,-) in (2.6) as the sum of forms on subdomains where
4 and o are constant

CL(’LU, 90) - Z al<Q%)(w7 (P)y
1EA
where a;(Q)(+,-) is defined as a(Q)(-,-) in (2.13) with u = p; and 0 = o;. We will also denote
by B;(0) the shape derivative associated with a;. We choose the test function ¢ on €y such that
¢ = po(Id+6) on Q. Thus, the material derivative of ¢ vanishes. Considering that the support
of @ is contained in Q47U $,, that w'(0) = W(0) —0-Vw on Q4 and on QEZ, and that the solution
w satisfies the transmission conditions [w] = [¢~'0,w] = 0 on I, from Lemma (2.2.4) one gets
shape derivative of a(w, ) is given by

ST80) =3 () (w/(6), 6)

1EN €A

—/F [(G-n) (/;VTw-VTqE— iwfwé) - (;anw(e.m&)ﬂ ds
=Y ai(Q)(W(0),6) = > ()0 Vuw,¢)

€A ie{d,v}

o) -] o)

—a(W(6), 6) — /Qdugc (;TV(G V) Vé— “”7"(9 - w)&) dr dz

/F(G-n) <m %va-w?f iwﬁw&) ds.

On the other hand, since the support of the source J is contained in €2, the shape derivative
of the right-hand-side of the variational formulation (2.6) vanishes. Hence, we get the result
(2.18). O

Remark 2.2.7. w/'(0) is not in H(QY) due to its discontinuity on T' as we have discussed in
Remark 2.2.6. From (2.19) we have

W' (0)) = ~[0- Vo] = — (0 m)[u) (™" D). (2.20)
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Thus, one should consider a function space which is less reqular than fI(Q)
H(QqU ) = {v:v]o, € H(Q), vl € H(Q5)}

and a sesquilinear form similar to a(-,-)

1 i ~
a(u,v) == / (Vu -V — Muv) drdz V(u,v) € H(QqU 95)2
QU0 \HT T
One obtains immediately from Proposition 2.2.5 that the shape deriwative w'(0) of w satisfies
1]1 i - ~
a(w'(0),d) = / 0-n) (M ~Vw- V6 - 1‘*’7["] w¢> ds Vo e H(Q). (2.21)
r

To complete (2.21), one should take into account the discontinuity of w'(6) on T'. One possibility
would be to consider a lifting in H(Qq U Qg) of —Opw and then write a variational formulation
for the difference which is an element of H(Y). .

2.2.2 Shape derivative of the impedance

Now that we have the shape and material derivatives of the solution, we can compute the shape
derivative of the measured impedances. Let w be the solution of problem (2.6) with coefficients
(u,0) and w® the solution in a deposit free-case, i.e. with coefficients (u, o) = (u°, ). We shall
denote by ap(Q) the sesquilinear form a(Q) for (u, o) = (u°,0%). Following (2.5) we define the
impedance measurement as

2w 1 1 Vw-Vu ww®
NZ(Q) = — —— =) —i —a° . .
Q) : I2/ (( 5) " iw(o —0”) . )drdz (2.22)

Proposition 2.2.8. Under the same assumptions as Proposition 2.2.5 for u, o and 6, the shape
derivative of the impedance NZ is well defined and is given by

AZ(0) = j};/ﬁd ((

iw(ec—o%) ,

V' () - Vu® — ——Lw (0)w0> drdz

Sl
=
=)

iwl? o r
2 1 1.1 iw(o — o?
_ M;/ ((M ), VW (6) 6 V). Vud — M(UTU)(W(G) —9. Vw)w0> drdz
Qq
o2 1 1.1 iw(o — o
+ ol /F(H n) ((,u — E);Vw -V — (T)ww0> ds. (2.23)

where w'(0) and W (0) are respectively the shape and material derivative of w (the solution of
problem (2.6)).

Proof. Since in Qq, u, o, u° and ¢ are constant, from (2.5) and the definition of the sesquilinear
form a in (2.13) we have
iwI?

5 AZ = a(Qq)(w, wd) — a(Qq) (w°, ).
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The field w® for the deposit-free case is invariant under the shape deformation (Id + 6) (since
1 and ¢ are invariant under the shape deformation (Id +6)). Thus its shape derivative is zero
and consequently its material derivative

wo () =6 - vu'.

In Qg the field w satisfies equation (2.14) with u, 0. So does the field w® in Q4 with u°, o°.
Hence, Lemma 2.2.4 implies

iwl?

o AZ'(0) = a(Qq) (W', w0) + a(Qq) (w, WO) — ag(Qa) (w0, W)

+ / {(9 -n) <1V7w Vo — wﬂ)wo) - <1a”w(9 ' VTMO)>} @
r ur r ur

0
o (- ) - (Lo w) s
r uor T BT

We evaluate term by term the right-hand-side of above equality. By integration by parts,

1 .
= / <Vw V(0 - Vu®) — lc‘}Taw(H : Vw0)> drdz
Qq

1 i 1
:/ <—div (Vw) - 1w0w> 8- Vu®) drdz+/ —Ophw( - Vu)ds
Oy ur r rur

From the definition of the sesquilinear form,
aO(Qd)(wOaW) = aO(Qd)(W’ E)

Using the partial differential equation satisfied by w® in Qg we get

/ L °0 - v,w)d

0 W rw)ds
1
= [ —8,w’ (0 -Vw— (0-n)d,w) ds
[ o (0 n)dw)
1 1
= / div <0Vw0(9 : Vw)) drdz — /(9 . n)TOnwc')nwo ds
Qu pOr T pOr

1 1 1
= / {div (OVU)O) 0-Vw)+ vao -V(6- Vw)} drdz — /(9 : n)TanwanwO ds
0 pOr pOr r pOr

iws® 1 0 1 0
= - w | (8- Vw) + —-Vw” - V(0 -Vw) ¢ drdz — [ (0-n)—-0hwipw”ds
Qq wer r BT

r

= () (0 - Vw,w®) — /(9 : n)iﬁnw&lwo ds.

0
r wer
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Finally, with the above results, one obtains

. 1—2 o o
S—AZ'(9) = al(Qa) (W', u0) — ao(Q) (W, u0) + ao(2u) (6 - V), ')
_ 0
-%/Xe70{(1-ﬂﬂl(vfw-vfw0+z%waﬂw)—1”“' U)wwo}ds
r ooy r
= a(Qd)(w 7w0) - aO(Qd)(w ’w(])
e — 0
—1—/(0 n) <( — io)}Vw Vu? — wle — o )wwo) ds
r uo’r r
This is exactly expression (2.23). O

2.2.3 Expression of the impedance shape derivative using the adjoint state

The expression of the gradient AZ’(#) shown in (2.23) contains not only a boundary integral on
I' whose integrand depends explicitly on the shape perturbation €, but also a volume integral
on g with the shape or material derivative of w in the integrand which depends implicitly on
6 via the variational problem (2.18). We shall consider here the Hadamard representation of
cost functional derivatives using an appropriately defined adjoint state which allows to have an
expression of AZ'(0) as a boundary integral on I' with integrand explicitly dependent on 6. This
expression is much more appropriate for the numerical scheme that we shall use for the inverse
problem.
We define the sesquilinear form

a*(u,v) == a(v,u)  Y(u,v) € HQ) (2.24)
and we introduce the adjoint problem associated with w® as finding p € fI(Q) such that

1 1. 1_— iw(o — o) — ~
a*(p,q) = / <( - —)=-Vuw? - Vq+ WU)w%‘) drdz Vqe H(Q). (2.25)
N r

In particular, p satisfies in the weak sense:

. . : 0
1 1 1.1_— — —
—div <Vp> + mfap = —div <( - O)V’wo> + Mwo in Qq,
pur r woopOr r
. 1 iwo . C
—div [ =V —p= Q
v </u“ p> TP R (2.26)
[p] =0 on T,
_ 1 1 —
\ [M lanp] = —(p — E)anwo on I'.

Problem (2.25) has the same structure as (2.6) and therefore one can conclude:

Proposition 2.2.9. Let w® € H(Q) be the solution to the eddy current problem (2.6) in a
deposit-free case, i.e. with (u°,0%) instead of (u, ). Then, under the same assumptions as in
Corollary 2.1.1 for p and o, the variational formulation (2.25) has a unique solution p in H ().
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Then we have the following result.

Proposition 2.2.10. Under the same assumptions as in Proposition 2.2.8, if p is the adjoint
state satisfying the adjoint problem (2.25), then the shape deriative of the impedance ANZ given
by (2.5) has the following expression

s20) =2 [ (9'7”{ m Vow- Vo )

T iwl? r
(p B) (<u°>1<anp>+ - <u°>1anw°) ~ iwlofu( - w°>} ds, (2.27)

where w (resp. w°) is the solution to the weighted eddy current problem (2.6) with (resp. without)
deposits.

Proof. We take ¢ = W (6) € H() as test function in (2.25) and get

a(W(0),p) = a*(p, W(9))
1 1.1 iw(o — oY)

_ /Qd (( — )=V YW () — wOW(9)> drdz. (2.28)

pwoopOr r

We consider the function space H (Qq U QS) and the sesquilinear form af(-, ) defined in Remark
2.2.7. We denote by a*(+,-) a sesquilinear form similar to a*(-,-)

i*(u,v) = a(v,u)  V(u,v) € H QUG

Using (2.26), we have for ¢ € H (€4 U QEI)

* 1, —
a*(p, q) +/ [(u 10np)q] ds
T LT

_ i — g9 _

= / <(1 — %)EVwO -Vq+ 1w(gg)woq> drdz — /(1 - io)anwoqfds,
Q \ B po T r r

and therefore

. 1 1. 1_— _  iw(e—0%)—_ 1, 4 _
a*(p,q —/ <—Vw0-Vq+w0q> drdz—/u Onp)+1q) ds.
wo=[ (G-, . [~ 0u)1d
From Remark 2.2.6, (0 - Vw) is in H(€q U QS) Taking ¢ = (6 - Vw) in the above formulation
and considering the jump condition (2.19), one gets

a((0 - Vw),p) = a*(p, (0 - Vw))

— 1 131 w? - - Vuw) — Mwo -Vw rdz
_/Qd ((# )y Ve V) r 0y >> ard
— /F <9-n>[r]<u-1anp>+<u—1anw> ds. (2.29)

Taking ¢ = p in (2.18) yields

@) = [ (2] TV ielolup) ds vt vwrn. ea)
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From (2.28) — (2.30) one has

/Qd <(i - :O)ivw’(e) Y — Mw/(g)wo> drdz

= [ CD G V5 - ( 00w) () (0np)s) — iwlolupt ds. (2.31)
L5

T

Since p°, 0¥ are the background coefficients for the deposit-free case, we have

L=t =i b=

On I we have

1 1 1 1
— Vuw - - Vu® = (= — =) (V,w - Vo + 0,wdw’
=) G- )
1 1 _ —
= (= o) Vrw Vel + (0 = ) (™ 00w (1) ™ 0ne”)
1

=— [M] Vow - Vow® + [u] (0 0pw) (u°) 1 0pw?) (2.32)
Finally, from (2.23), (2.31) and (2.32), we conclude the result (2.27). O

2.3 Shape reconstruction of deposits using a gradient method

2.3.1 Objective function

We denote by Z the impedance measurement either in absolute mode (Zp4) or in differential
mode (Zp3). Giving the ECT signals Zeas(C) for ¢ € [2min, Zmax], the inverse problem aims to
approximate the real deposit domain by an estimate €4 in simulation so that the ETC signals
Z(Qq, ¢) reproduced with Q4 approach Z,,cqs(¢). This naturally motivates us to define a least
square cost functional
Zmax
760 = [ 12050 Znewl )P ¢ (239
Zmin

and apply the shape optimization method to minimize it. To obtain the gradient of the cost
functional J(€4), one should compute its shape derivative

70 = [ 2R OO~ Frneasl )

Zmin

Z'(0) (which is either Z}, 4(0) or Zp4(6) according to the measuring mode) is a linear combination
of AZ}, where according to (2.27)

NZy(0) = o /r 6 n){ [H Vewg - Ve (pr — w))

jwlI? r

(O <(M0)1(3npl)+ - <u°>1anw?> ~ iwoloun(pi - w?>} s,
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where w; and w? are as defined in Section 2.1 and where the adjoint state p; is the solution of
(2.25) with w® = w?.
The shape derivative of the cost functional J can be written as

7'60)(0) = —75 [ (n-0)gas,

where according to the measuring mode

g11 + g21 absolute mode,
a g11 — 922 differential mode,

with

Zmax 1 1
9kl = / 8?{(Z(QM C) - Zmeas(())r< |:'u:| Vrswy - V7'(1‘Tl - w?)
-1 Lo 1 0 . — 0
= [p] (™" Onwi) E(anpzh - Eaﬂwl — wlofwe (pr — wy) dg¢. (2.34)
¢
We remark in particular that if one choose 6 such that

0=—vygn on T, (2.35)

where 7 is a positive constant, then
7'9)0) = -5 [ lof ds <o,
This means that J(Qq49) < J(€Qq) for v sufficiently small.

2.3.2 Regularization of the descent direction

For an arbitrary parametrization of €y, a regularization of the descent direction is in general
needed since the shape increment given by (2.35) may cause singularity on I' (see the numerical
experiments below). We propose to use the H(I') boundary regularization by solving the
following problem for A € H(T")%:

A—alA=10 on I, (2.36)

where A is the boundary Laplace-Beltrami operator and o > 0 is a regularization parameter.
The equivalent variational formulation of (2.36) is,

vy € HY(T)? /()vw—l—aVT/\-VH/J) ds:/@-wds. (2.37)
r r

Therefore, A is two order more regular than 6. It is also a descent direction since

/ _ 27 2 2
T(Q) ) = W[Z/F(m +alVAP) ds <o, (2.38)



2.3. Shape reconstruction of deposits using a gradient method 65

2.3.3 Inversion algorithm

The inversion procedure is done as follows:
e Initialization with a deposit domain Qg.
e Step k :

1. Solve the direct problems (2.6) for the different positions ¢ of the coils using the
deposit shape QS and test the stopping rule

T <5 [ | Zmeas ()2 AC

Zmin
where 4 is a chosen threshold.

2. Solve the adjoint problems (2.25) for the different coil positions and for the deposit
shape Qs then evaluate the corresponding g.

3. Get a regularized descent direction A\* (see (2.36) or (2.37)). The parameter v in
(2.35) is evaluated at the first step (k = 1) such that ymax g < € where € is a chosen
threshold, then it is kept fixed for next iterations.

4. Go to step k + 1 with a deposit domain

QR = (Id + AF)Qb.

2.3.4 Numerical tests

We shall consider here some numerical inversion tests for deposits for geometrical configurations
depicted in Figure 2.1. The physical parameters are close to real experiments and are as follows:

e The tube is defined by Q; = {(r,2) : ry; <r <1, } with ry, = 9.84mm, Its conductivity
is 0y = 9.7 x 10°S/m and its magnetic permeability is p; = 1.01u,, where u, is the
permeability of vacuum.

e The deposit has in general a relatively low conductivity: o4 = 1 x 10*S/m. It can be
magnetic: permeability pg = 10, or non-magnetic: pg = fy.

e The operating frequency for the coils is w = 100kH z, the dimensions of one coil are
0.67mm in length (radial direction) and 2mm in height (axial direction). Both the two
coils are located 7.83mm away from the z-axis and there is a distance of 0.5mm between
them.

The numerical forward problem is set on a bounded domain B, ., with 7, = 30mm and
ze = 41mm.It is solved using FreeFem-++ with P1 finite elements and an adapted mesh (using
the command adaptmesh). The number of degrees of freedom is around 1000 (see Figure 2.3a).
To avoid “crime inverse”, we use a refined mesh to generate the impedance measurements as
given observation data (see Figure 2.3b). The number of degrees of freedom of P1 finite element
on this mesh is about 6000.
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(a) adapted mesh for forward problem in inverse al- (b) refined mesh for generating observation data
gorithm

Figure 2.3: Examples of mesh.

For the inversion we use impedance measurements either in the pseudo-absolute mode (FA)
or in the differential mode (F3). The number of used vertical positions will be specified for each
experiment. The algorithm parameters for the stopping rule and the increment magnitude are
set to 6 = 107 and e =5 x 1072,

Finally let us note that in all subsequent figures, the target deposit shape is shown in green
while the reconstructed shape using the inverse algorithm is in red.

Parameterized shape reconstruction

Non-magnetic deposits We first consider a non-magnetic deposit. We assume that the
deposit is rectangular in the semi-plan ]Ri. Then its shape can be parameterized by its thickness
in the r-direction and the positions in the z-direction of its two horizontal sides. The target
shape has 5mm in thickness, and its horizontal sides are at =5mm.

In Figure 2.4 the only unknown parameter is the thickness of the rectangular deposit. We
use the FA signal at only one probe position for the reconstructions. We initialize the inverse
algorithm with either a small guess (Figure 2.4a) or a large one (Figure 2.4¢). The reconstruction
resulting from the small initialization after 108 iterations is shown in Figure 2.4b. We also observe
the decrease of the cost functional as well as those of the gradient (in absolute value) and of the
thickness relative error during the iteration in Figure 2.4e. Figure 2.4d gives the reconstruction
result from the large guess initialization after 14 iterations. Figure 2.4f show the similar decrease
behavior of the cost functional, the gradient and the thickness relative error during iterations.

To reconstruct both the thickness and the two vertical positions of the horizontal sides of the
rectangular deposit, we use either FA or F3 signals at 41 probe positions with a distance of 1mm
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I 0 I 0
(a) small guess (b) recon- (c) large guess (d) recon-
str., thickness str., thickness
= 4.901mm = 5.065mm
1 parameter, initialization small 1 parameter, initialization big

——costFA RIS - —4r| ——cost FA
—4.5} - - - gradient S-.. - - - gradient
- == thickness relative error| - == thickness relative error|
5 : : : . . 5 T . T . . .
0 20 40 60 80 100 120 0 2 4 6 8 10 12 14
iteration iteration
(e) small guess (f) large guess

Figure 2.4: Results of thickness reconstruction of a rectangular non-magnetic deposit.

between two neighboring positions. Figure 2.5 and Table 2.1 show the results. We initialize the
inverse algorithm with either a small guess (Figure 2.5a) or a large one (Figure 2.5d). The result
from the small guess using FA signal after 71 iterations is shown in Figure 2.5b, and that using F3
signal after 43 iterations is shown in Figure 2.5c. From a large guess, we get the reconstruction
result in Figure 2.5e using FA signal after 24 iterations, and that in Figure 2.5e using F3 signal
after 112 iterations. In Figures 2.5g, 2.5h, 2.5i and 2.5] we observe the decrease of the cost
functional and the gradient (in absolute value) during iterations. However, the decrease of the
shape relative error (the difference of the characteristic functions of the target deposit domain
and the reconstructed domain, taking in L? norm) may stagnate around 10%, which means
that the information from the impedance measurements is no longer sufficient to distinguish the
reconstructed shape from the target shape.

thickness vertical position 1 vertical position 2
target shape dmm S5mm —5mm
from small guess, FA 5.236mm 4.872mm —4.870mm
from small guess, F3 4.882mm 5.017mm —5.017Tmm
from large guess, FA 5.015mm 5.041mm —5.039mm
from large guess, F3 5.123mm 4.983mm —4.982mm

Table 2.1: Parameter reconstructions of a rectangular non-magnetic deposit.
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Figure 2.5: Parameter reconstructions of a rectangular non-magnetic deposit.

Magnetic deposits We consider here the reconstruction of the three parameters (thickness
and two vertical positions of the horizontal sides) of a rectangular magnetic deposit: see Fig-
ure 2.6 and Table 2.2. With a small rectangle as initial guess (Figure 2.6a) we get the result
in Figure 2.6b after 353 iterations with the FA signal and that in Figure 2.6¢ after 352 itera-
tions using the F3 signal. While the inversion algorithm beginning from a large initial guess
(Figure 2.6d) gives the result either shown in Figure 2.6e after 286 iterations using FA signal
or in Figure 2.6f after 462 iterations using F3 signal. The decreasing behavior of the cost func-
tional, the absolute value of the gradient and the relative error of the deposit shape is shown in
Figures 2.6g, 2.6h, 2.6i and 2.6j for the four reconstructions respectively.
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Figure 2.6: Parameter reconstructions of a rectangular magnetic deposit.
thickness  vertical position 1  vertical position 2
target shape 2mm somm —bmm
from small guess, FA  1.875mm 5.068mm —5.062mm
from small guess, F3  1.887mm 4.992mm —4.992mm
from large guess, FA  2.138mm 4.934mm —4.941mm
from large guess, F3  2.124dmm 5.009mm —5.007Tmm

Table 2.2: Parameter reconstructions of a rectangular magnetic deposit.

Reconstruction of deposits with arbitrary shapes

In this section we consider the reconstruction of the deposit without a priori knowledge on its
shape.
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Figure 2.7: Reconstruction of a rectangular non-magnetic deposit.

In Figure 2.7 the target non-magnetic deposit shape is a rectangle. Since we do not have
any information of the shape, we take a small semi-disc as the initial guess in the inversion
algorithm. We use either FA or F3 signals for inversion at 41 probe positions with a distance of
1mm between each two neighboring positions. The algorithm without boundary regularization
using FA signal is blocked due to singularities on the interface between the deposit and the
vacuum (Figure 2.7b).

To regularize the gradient using the method in Section 2.3.2, we take a = 1 x 107 as
the regularization parameter in the boundary regularization problem (2.36). The regularized
algorithm using FA signals ends after 201 iterations with a good estimate (Figure 2.7c) and that
using F3 signals gives the result shown in Figure 2.7d after 412 iterations. We also show in
Figures 2.7e and 2.7f the decrease of the cost functional, the absolute value of gradient and the
relative error on the shape during iterations.

In Figure 2.8 we show the reconstructions of a non-magnetic semi-disc issued from different
initial shapes (Figures 2.8a or 2.8¢c) using FA signals. The corresponding reconstruction results
shown in Figure 2.8b (37 iterations) and in Figure 2.8d (52 iterations) for the non-magnetic
deposits are satisfying, as we can observe the decrease of the cost functional, the absolute value
of the gradient and the shape relative error in Figures 2.8e and 2.8f.

Finally Figure 2.9 shows the reconstruction of a non convex deposit shape using differential
mode (F3) impedance signals. For the non-magnetic deposit (Figures 2.9a — 2.9b), we choose the
stopping threshold § = 4 x 10~* (which means a 2% relative error of impedance measurements)
and the algorithm ends after 145 iterations. For the magnetic deposit (Figures 2.9c¢ — 2.9d),
with § = 9 x 107* (a 3% relative error of impedance measurements), the algorithm ends after
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810 iterations.

2.4 On the reconstruction of the deposit conductivity and per-
meability

The conductivity and the permeability are the two critical physical parameters which charac-
terize the material nature of the deposit. The exact values of these parameters, crucial for the
modeling, the simulation and the reconstruction of the deposit is usually not known with a
high precision in the industrial context. In this section we discuss the reconstruction of these
parameters for known shapes. The simultaneous reconstruction of the parameters and the shape
is discussed in the last section.

2.4.1 The cost functional derivative withe respect to the conductivity

We consider the variational formulation of the eddy current problem (2.6). We denote by dw
the variation of w due to a small increment of the conductivity oq — o4 + dogq of the deposit
that is assumed to be constant. Therefore, we have Vo € H(Q):

1 i 1)
/ <V(w + ow) - Vo — w(o + doaxa,) (w+ 5w)g0> drdz = / iwJpdrdz,
Q \MT r Q

where xq, is the index function of the domain €4. After developing this formulation, the terms
of order zero of the variation give the original problem (2.6). We denote by (9,w) the derivative
of w with respect to oy:
Oyw := lim dw/doy
50’d—)0

where the limit holds in H(€). Then the terms of first order of the variation in the above
formulation as dog goes to zero imply

/ <1V(3gw) Vo — M(&,w)@) drdz = / Ew@ drdz. (2.39)
Q r Qq

ur T

Now we consider the impedance measurement given by (2.5). We denote by 9,(AZy;) its deriva-
tive with respect to o4. Then we have

27 1 1 V(Owg) Vu’ | or (Opwp)w® . wpw
0o (DNZiy) = e /Qd <(M - E) . —iw(oc—0") . —iw—> drdz.

(2.40)

Similarly, we denote by 0,J the derivative of the cost functional [J given by (2.33) with respect
to the variation of o4. We get

Zmax

0, T = 2R {&,Z(Qd; O(Z(Qq;¢) — mes(C))} dc, (2.41)

Zmin
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where according to the impedance measuring mode,

Oy Zps = ;wg(AZn) + 0,(AZa1)),
GUZ(Qd; C) = i
Oy Zp3 = 5(a,(&zu) — 05 (AN Z22)).

To minimize the cost functional with respect to o4 we shall use a descent gradient method based
of a numerical evaluation of the derivative provided by (2.41).

2.4.2 Derivative with respect to the magnetic permeability

Similarly to the previous section, we consider here a small increment of the deposit magnetic
permeability pg — pg + Spg which leads to a small variation of the field w — dw. Then from
(2.6) we derive

iwo

1
— V(w4 dow) Vo — —(w + dw ) drdz:/indez.
/§z<(u+5udXQd)T ( ) Ve r ( )7 0 Y

If we denote by

Opw := limoéw/é,ud,

5ud—>

where the limit is understood with respect the H (€2) norm, then one easily verify that 0,w
satisfies Vo € H(Q)

1 iwo 1
—V (9, w ‘Vgo—f)wgo) drdz:/ ——Vw-Vepdrdz. 2.42
/Q(,MT (Ouw) , () o, 12T (2.42)

Then the derivative of the impedance measurement AZy; with regard to the deposit magnetic
permeability, which we denote by 9,AZy,, is given by the following expression:

27 1 1 V(0w Vu) . or (O wp)w 1 0

(2.43)

If 0, represents the derivative of the cost functional J with respect to the variation of jg,
then from (2.33),

0,7 = [ on {0429 (25 Q) = Zneas ()} A (2.44)

Zmin

where according to the impedance measurement mode,

0uZpa = %(8M(A211) + 0u(AZa1)),
OuZrs = 5(0u(DZ01) = Du(LZm)).

To minimize the cost functional with respect to pg we shall also use a descent gradient method
based of a numerical evaluation of the derivative provided by (2.44).
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2.4.3 Numerical tests
Reconstruction of conductivity

We consider the reconstruction of the conductivity of a non-magnetic deposit (ug = py) with
o4 = 1x10%S/m in a known shape (a 5mm x 10mm rectangle) at the shell side of the tube. We
initialize the inversion algorithm with either a small guess of the conductivity (5 x 103S/m) or
a large guess (3 x 104S/m). The reconstruction results using FA signals at one probe position
are given in Figure 2.10.

reconstruction of g, small initialization reconstruction of o, large initialization
1

+=+=o relative error
——cost FA

+=+=-g relative error|
——cost FA

0 5 . £0' 1‘5 20 0 5 . 1‘0_ 1‘5 20
iteration iteration
(a) small guess, FA, o4 final = 99015/m, (b) large guess, FA, o4 final = 10079S5/m,
18 iterations 17 iterations

Figure 2.10: Reconstruction of the conductivity.

Reconstruction of magnetic permeability

We want to find here the magnetic permeability of a magnetic deposit with oq = 1 x 10*S/m,
tqg = 10u, and in a known shape (a 2mm x 10mm rectangle) at the shell side of the tube. We
initialize the inversion algorithm with either a small guess of the magnetic permeability (2u,)
or a large guess (15u,). The reconstruction results using FA signals at one probe position are
given in Figure 2.11.

reconstruction of u, small initialization reconstruction of y, large initialization

log10

+==-p relative error| == relative error|

—— cost FA ——cost FA

-5 -5
[ 100 200 300 400 0 5 10 15 20 25

iteration iteration

(a) small guess, FA, pq final = 9.69u,, (b) large guess, FA, pq final = 10.2p,, 24
364 iterations iterations

Figure 2.11: Reconstruct of magnetic permeability.
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Simultaneous reconstruction of conductivity and the magnetic permeability

We try to reconstruct here both the conductivity and the magnetic permeability with FA signals
at one probe position. The conductivity and the magnetic permeability of the target rectangular
deposit (2mm x 10mm) are respectively oy = 1 x 10*S/m, p; = 10p,. The initialization of these
two parameters can be either small or large. The results are shown in Figure 2.12 and Table 2.3.

reconstruction of p and o, small-small initialization

== relative error|
- - - o relative error|
——cost FA

10 20 40 50
iteration

(a) test 1

reconstruction of g and g, small-large initialization
o= - - . .

-1

+=="p relative error|
- - - o relative error|
——cost FA

10 20 30 40 50
iteration

(c) test 3

recol

nstruction of p and o, large-small initialization

-1

log10

-4

-5

reconstru

0

== relative error
- - - o relative error
——cost FA

2 4 6 8 10
iteration

(b) test 2

12

ction of p and o, large-large initialization

== relative error
- - - o relative error
——cost FA

2 4 6 8 10 12
iteration

(d) test 4

14

Figure 2.12: Reconstruction of both the conductivity and the magnetic permeability using FA

signals.
initial guess reconstructed number of iterations
target deposit (10000, 10)
test 1 (5000, 5) (9309,9.65) 44
test 2 (5000, 20) (10666, 10.37) 12
test 3 (20000, 5) (10649,9.78) 42
test 4 (20000, 20) (10921, 10.24) 13
Table 2.3:

(04(S/m), ugq) using FA signals.

We observe that the reconstruction results are not accurate even if the normalized cost func-

Reconstruction of the conductivity and the relative magnetic permeability
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tional is under 10™*. This is explained by the extremely low dependence of the cost functional
with repect to simultaneous variations of the two parameters. This is clearly indicated by Fig-
ure 2.13. We hence conclude that the these eddy-current measurements are not really suited to
determine physical parameters.

«10" normalized cost FA (log10)

2

1.8 -2
~16 Bea
E 3
0 14
212
2 -4
o 1
>
Bos -5
o
© 06 HH

FEEE -6

o
IS

I
[N}
3
|
4

10
relative permeability

Figure 2.13: Interference between conductivity and magnetic permeability.

2.5 On the reconstruction of the shape and physical parameters

«10° normalized cost FA (log10) normalized cost FA (log10)
12 12
} -15
2 115 2
~ 2 n -25
@1, B S 105 35
2 £
2 21;:_ 10 -4
o -5 -4.5
3 2 os .
s 6 =
o o g9 -55
-6
-7 85 o5
. -8 8
) 45 5 55 1 15 2 25
thickness (mm) thickness (mm)
(a) conductivity and thickness (b) permeability and thickness

Figure 2.14: Interference between physical parameters and shape parameter.

We would like to discuss here the possibility of reconstructing simultaneously the conductivity
(or the magnetic permeability) and the shape of the deposit by coupling the inversion algorithm
for shape reconstruction in Section 2.3.3 and that for conductivity (magnetic permeability)
reconstruction. We consider the most simple cases in which the deposit shape is a rectangle
with unknown thickness but with fixed horizontal sides.

In the first case with unknown conductivity and thickness, the target deposit is a bmm x
10mm rectangle with the o4 = 10*S/m and g = p1,. For rectangular deposits with the range of
thickness from 4mm to 6mm and the range of conductivity from 8 x 103S/m to 1.2 x 104S/m, we
show in Figure 2.14a the value (in log;q) of the cost functional of the absolute mode impedance
measurements (FA) normalized with regard to the FA impedance measurement of the target
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deposit.

In the second case where the magnetic permeability and the thickness are to reconstruct, the
target deposit is a 2mm x 10mm rectangle with o4 = 10*S/m and g = 104,. For rectangular
deposits with the range of thickness from 1mm to 3mm and the range of relative magnetic
permeability from 8 to 12, we show similarly the normalized cost functional for FA signals in
Figure 2.14b.

In both two cases the interferences between the physical parameters and the geometrical
parameter (the thickness) are too important to hope obtaining a precise reconstruction. For
instance, ¢ = 0.95 x 10*S/m and a thickness = 5.6mm would lead to a relative magnitude of
the cost functional of order 10~* which reaches the stopping threshold of the inversion algorithm.
Similarly, p = 0.95u, and a thickness =2.2mm would lead to a relative magnitude of the cost
functional of order 10~%.

o(S/m) o/ initial guess reconstruction
target deposit 1 x 10 10 2mm
test 1 0.98 x 104 10 0.5mm 1.91mm
test 2 0.98 x 104 10 dmm 2.08mm
test 3 1 x10* 9.8 0.5mm 1.96mm
test 4 1 x 104 9.8 4mm 2.13mm

Table 2.4: Reconstruction of thickness of a rectangular deposit with wrong values of the con-
ductivity or the magnetic permeability using FA signals.

However, with a good initial guess of the conducitivity and the permeability, shape recon-
struction of deposits yields reasonable results. We observe in Table 2.4 that a small error in o
or in u (2%) would still lead to accurate reconstruction of deposit shape.
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Other than deposits such as the magnetite which have a relatively comparable electrical
conductivity to that of the SG tube, it is also possible that some thin layer of copper deposit
covers the shell side of the tube and therefore modify the eddy current signal. These deposits
are characterized by a very high conductivity (as compared to SG tubes) and a very small
thickness, see Table 3.1. This type of deposits does not directly effect the safety of SG. However
their presence may mask other type of problematic faults such as cracks. This is why it is
important to be able to detect them.

tube wall copper layer
conductivity (in S -m™1) oy = 0.97 x 10° 0. = 58.0 x 10°
thickness (in mm) re, — 1y, = 1.27 0.005 ~ 0.1

Table 3.1: Conductivity and scale differences between tube wall and copper layer.

A major numerical challenge to deal with this problem in the full model is the expensive
computing cost resulting from the fact that the domain discretization should use a very fine
mesh with the size adapted to the thin layer. To reduce the numerical cost, we replace the thin
deposit layer by some transmission conditions using the asymptotic expansion of the solution
with respect to the thickness of the deposit. According to the choice of a rescaling parameter
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m and the asymptotic expansion order n, we build a family of transmission conditions Z,, ,
linking up the solutions at the two sides of the deposit layer. There is a rich literature on
asymptotic models. We may refer to Tordeux [82], Claeys |30], Delourme [36], Poignard [71] and
the references therein for different approaches and various applications.

The objective of this chapter is to choose the transmission conditions, or the parameters
(m,n), with which the direct asymptotic model not only gives a good approximation of the
full model, but also allows us to reduce the inversion cost. For this purpose, we shall consider
here a simplified case where the deposit layer has constant thickness, and compute the explicit
expressions of Z,, ,. We then compare the errors of the asymptotic models using different Z,, ,,
with regard to the full model via several numerical tests and discuss the appropriate choice of
Zmon-

Although mainly considering here the case of deposit with constant thickness, we shall in-
troduce the asymptotic method for a general shape of the deposit. This will be useful for the
next chapter where this case is considered with the appropriate scaling for the conductivities.

3.1 Settings for asymptotic models

3.1.1 Rescaled in-layer eddy current model

u{ u /(L(j_

Tube Deposit

Figure 3.1: Representation of a thin layer deposit.

On the domain of problem €2, we set
Qy :={(r,2) €eQ:r=nry,}

We consider a thin layer of deposit with high conductivity (in our case, a layer of copper) covering
axisymmetrically (a part of) the shell side of the tube. The deposit thin layer is depicted by the
domain Q2 C Q. We denote by ud. the electric fields outside the deposit layer, with «’ in Q_
and g in Q4 \ Q9 (at the shell side of the deposit layer), and by u’ the in-layer electric field,
i.e. in QO (see Figure 3.1). We assume that the thickness fs(z) at the vertical position z is of
the order ¢

f5(z) = dd(z),
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where 6 is a small parameter and d(z) is independent of §. Assuming that the deposit conduc-
tivity is of the form

Oc=—-— meN, (3.1)

where o, is an appropriately rescaled conductivity and m is the rescaling parameter. We will
particularly interest in the cases where m = 0, 1,2. Therefore, the eddy current equation in the
deposit layer writes

1 m
—div <#CTV(’F’U,)) - iwg—mu =0 on Q° (3.2)

We rescale also the distance dimension in the direction r to represent the thin layer

T — Tty

p= P pe [O7d(z)]7

and we denote by @ = @(p, 2) := u’(ry, + dp, 2) the rescaled in-layer solution.

5
3.1.2 Taylor developments for u9

We would like to extend the solution outside the deposit layer ui through the layer domain till
the interface I'y9, i.e. from Q4 \ Qg to Q4 , such that the transmission conditions on I'. between
u and ui could be expressed by terms of ui on 'y, As ui satisfies the eddy current equation
with coefficients p = p, and o = o, = 0 in Q4 \ Q2, it is natural to assume that its extension to
Q9 satisfies the same equation

1
—di %)) =0 inQ4.
iv <MUTV(ru+)) in Q4

Using the variable substitution v = r — ry,, one rewrites the above equation in the following
form

4
D VA (vD,,0:) ul =0, (3.3)
j=0

where

Ay (v8,,0,) = (v0,)? — vd,,

A (v9,,0.) = 2 (v8,)? — iyay,
Tty Tty
1 1
Az (v8,,0,) = — (v8,)* — — + 02,
rt2 rt2
As (1/8,,, az) = 133,
Tty
1

Ay (v0,,0.) = —02.
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The asymptotic expansion of ui with respect to ¢ is in the form

Z5nu+ T, 2)

Obviously each term u'}(r,z) verifies the same equation (3.3). With Taylor series expansion,
one has

1
Ttg +v,2) Zyk "k where ui’k(z) = 7 (8]5Ui> (T3, 2)-

Since
v, (Vkurfrk( )) =k (Vkuik( )) ,

we can indeed write A; (v0,,0;) as A; (k,0,) while it is applied to (Vku?rk(z)> Thus, from
(3.3)

4 oo
SO Ak, 0.) (U = 0,

The equality at order O(v*) gives

with ui’_l = ui’_Q = ui’_g = ui’_4 = 0. Now we consider Ag (k,0,) = k* — k. For k > 2,
Ao (k,.) # 0, thus invertible with its inverse Ay " (k,d,) = ﬁ So we have

k= AT ZA W k> (3.4)

Now we define recurrently two families of operators {S} (8),S} (9.)}:

Sy=1d, S}:=0, S:=0, S :=Id,
(

SY = —Ayt (K, 0.)

NE

‘Aj (k - j, az) 818,]' (az) )
1

<.
Il

M) =

Spi=—Agt (k,0:) | YA (k—5,0.) Sk, (82)

1

<.
I

\

From the recurrent relation (3.4), one observes

uzk(z) = Sl[c) (az) ui(rtw Z) + Sli (82) 67"”1(”27 Z)
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Therefore we have the following developments

[e.9]

Wiy )= 3k (5,8 @)u” + S (2.) aruz) (ries2).
k=0

Opuly (re, +v,2) = Z vk +1) <82+1 (9:) ut + Sy (02) 8Tu7}r> (ry, 2).
k=0

We also define the operators

= 1
82 = Sl(c) - ;Slia
2

= 1
St =—S§;.
Tty
Then the Taylor series expansions write

W (rey +v,2) = > VF (8 (0:) ut + 8o, () ) (i 2),
k=0

Op(rull)(re, + v, 2) Z vk +1) ( rt2§2+1 + §£)u1 + (Tt2§,%+1 + g;i)ﬁr(ru’i)) (rey, 2).

(3.7)

3.1.3 Transmission conditions between @ (or @) and u’.

The transmission conditions between the fields in domains representing different materials link
them on the interfaces where the conductivity o and/or the permeability p change. The trans-
mission conditions between the field inside the tube u® and the in-layer field u on I'yo are

u Jryy = Ul (3.82)

Lowad) = Lou
Kt

C

(3.8b)

’f‘t2 ’f‘tQ

The transmission conditions between the field outside the deposit layer ui and the in-layer field
u on I'; write

ui\rc = ulr,, (3.92)
1
—Op(ru = —0Op(ru 3.9b
L) = o) .90
The unit normal and tangential vectors on I'. at the point (14, + dd(2), z) are
(1, —0d'(z)) (0d'(2),1)
= """ T
1+ (0d'(2))? 1+ (6d'(2))?

The first transmission condition (3.9a) implies a continuous condition of the tangential deriva-
tives of ui and u

1
T vu+‘rt2+5d =T- vu|7"t2+5d

<5d’8T(rui) + az(mi)> — <6d’8r(ru) + az(m)> , (3.10)

Tty +4d

Tty +dd
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While the second transmission condition (3.9b) yields

1 1
—6n(rui) = —0h(ru)
v re,40d M Ty +6d
1 1
— (&(rui) — 5d'az(mi)> = <8r(7“u) - 5d’8z(7“u)) (3.11)
o rep+od M Tty +0d
(3.10) and (3.11) yield the transmission conditions on T'.
Ulry, 460 = US|y +od; (3.12a)
he + (od')? sd'
_ Hov 1) e 1
O (ru)l,,, +sa = (mwar(mﬁ +(1- E)maz(mﬁ +5d~ (3.12b)
Tty

3.1.4 Procedure for obtaining approximate transmission conditions Z,, , be-

b
tween ul

Given a rescaling parameter m € N in (3.1), we write the rescaled in-layer eddy current problem
(3.2) as a Cauchy problem for the rescaled in-layer solution @ with intial values given by the
transmission conditions (3.8) between @ and u® on I'y2. The boundary values of @ on T'. should
match the transmission conditions (3.12) between @ and u‘i on I'., which yields the transmission

)

conditions between u? and ui on I'yy by considering the Taylor series expansion (3.7) which

allows us to extend u’ to the interface I'y (3.12).
In asymptotic expansions, we develop ui and 4 with respect to ¢:

o o0
ud, = g o"ull, U= E o"u".
n=0 n=0

We denote by Z,, , the approximate transmission conditions between uft on I't2 with rescaling
parameter m at order n in the asymptotic expansion (O(6™)). Therefore, we can obtain a family
of asymptotic models with different approximate transmission conditions Z,, , according to the
choice of (m,n).

3.2 Asymptotic models for deposits with constant thickness

To determine (m,n) with which the asymptotic model using Z,, ,, is both a good approximation
and easy to deduce inverse methods, we study a simplified case where the deposit layer on the
shell side of the tube has constant thickness §.

3.2.1 Rescaling of the in-layer problem

Since the deposit layer has constant thickness, we set the layer thickness f5(z) = 4, i.e. d(z) = 1.
Therefore, we have

pz% pelo,1].
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We denote by k,, the complex quantity with positive imaginary part such that
ki, = iWheom
We rewrite the differential equation for the in-layer field after rescaling
w(p, z) = u(ry, + 0p, 2)
according to the different rescaling parameter m.

1. m=0.

From the eddy current equation in the deposit layer (3.2), we get

I S . .
?(ﬁu + gﬁpu —a+r? ((fu + kgu) = 0.
By substituting r with 7, + pd, we obtain
02 = —6Byi — 6° Byt — §° By — 6* By, (3.13)
with
2p 1
B = 20>+ —0,,
0 T4, P Tt, P
s P P 1 2 12
80:78 +78 _7+a +k0,
2
B =L (2413,
Tt2
2
By = Oy (024 43).
[2)
2. m=1.

From (3.2), we obtain

2 2
S kYL
ﬁagu + gapu — i+ r? <8§u + (Slu) =0.
By substituting r with ¢, + pd, we get
02 = —6B1a — 6°Bii — §°Byu — 6B, (3.14)
with

2 1
Bl =Po24 —0,+k,
Tt2 rtz
2
P2 P 1 2 20,2
B =202+ 50, — — 4+ 0>+ k3,
Tt22 P ?522 g rt22 ? /r't2
2p P
2 to
2
P~ 2
B = 502
7"%2 #



88 Chapter 3. Some asymptotic models for thin and highly conducting deposits

3. m=2.
To facilitate further computations, we set a weighted in-layer field
w(r, z) = ru(r, z),
and after rescaling one has
w(p, z) = w(ry + 0p, 2)
So the eddy current equation for the in-layer field u (3.2) becomes here

1o 3 _ k3

By substituting r with r¢, + pd, we obtain

W+ 0% = 0.

(02 + k3) w = —6Byw — 6° By — 6° By — 6* By, (3.15)
with
1 20 0 2
BQ:T(aP—i_kQ)’
to
2
3
B=L_ (02 + k) - = +02
2 rt22 ( L 2) 47“?2
2
BS = iaga
Tty
2
Bi=" o2
to

The formal asymptotic development of w with respect to the order of parameter § writes:
[e.9]
w = Z w™ - 6",
n=0

3.2.2 Transmission conditions between @ (or @) and u’.

1. m=0,1.
The transmission conditions at I'yy (3.8) yield

ui ‘7":7’,52 = ﬁ‘p:(b

1 1 )
— Op(rul) = <Tt2 + p@,,ﬁ + 71) ,
KT r=ry,  Me 0 p=0
which imply
U p=0 = U |r=r,,, (3.16a)
L o L fie -1
8pu”’p,0 _@UE ‘T—TQ e E ar( 71 )‘T:T‘tQ (316b)



3.2. Asymptotic models for deposits with constant thickness 89
From the transmission conditions at I'. (3.12) we have
“i’r=rt2+6 = Tlp=1,
1 0
— Op(ruf) =— <rt2 - papu + “)
v r=ri,+6 e d p=1
Combined with the Taylor expansions (3.7), the above conditions yield
( n
=1 = Z (S,Sﬂ M4 SLo(runt” k)) o (3.17a)
k=0 R
n—1n—Il— 1
ql —l—k—-1 ql I—k—1
o,y =3 Z Tz+1 {_ (sm + 8o, (ru ))
=0 k=0 2
+%(k +1) ((%sk+1 + SR 4 (r, SEyy A+ SO (run T R .(3.17b)
\ Ttg
2. m=2.
From the definition of w, we have
W = /T, + pou,
0
Oyl = ——==1U+ /71, + pd0,i.
SRV
Then after some calculates, the transmission conditions at I'ta (3.8) is transformed as
1D|P=0 = vrt2ﬂ|p=0 = vrt2u5—|7“=n27
4] 0 fe O
O] o = =il pm0 + /Tt Opll] _o = — O lrmpy, + =5 Oy (ru?
Plom0 = 3 gy o0 Tt Oyl = =g et e, om0 )|
which yields
wn|p=0 =/ rtguT—L|T:’l“t25 (318&)
1 1 He -1
8w"_:< —u" "t 2o (ru™ ) 3.18b
P |p—0 Tty 2 Ht ( ) r=riy ( )
Similarly, the transmission conditions at I'; (3.12) become
w|p:1 = \/rtz + 5ui‘7,:rt2+5
TRk =3 et s
(\/ Tty + Z ok Tty 20 u+|7":rt2+6
k=1
pwl,_y = N/ ’p—l + V7t +0 Opul
oo
(=1)F 2k — DIt 21 ( 1 He s
\ <kZO k! 2k ’ 2 o r=r¢y+0
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Together with the Taylor developments (3.7), the above transmission conditions yield

n n—k
Wy =Y a3 (s?(az)uzr’f*’+$,1(az)ar(mr’f*l)) - (3.19a)
k=0  1=0 T=Tty
n—1 n—k—1 1~ y _ _
O™ ,my =Y bk Y {(—25,0 + (14 1) (r, Sy + slo)> R
k=0 =0 o
1~ . ~ = bl
+ <_2 l1 + %(Z + 1)(Tt28l1+1 + Sl1)> 87"("”“4,_ Rl l)} (319b)
\ v T=Ttqy
where
1)1 (2k —3)I _2ke1
a0 =Ty, ki1 = ( k)! ( ok ! Ty
(—1)F (2k — 1)1 _2kx1
b= ok Tt

3.2.3 Computing algorithm for the rescaled in-layer field @ (or w)

In this section, we follow the procedure in 3.1.4 and give the detailed computing steps. Given
m = 0,1 or 2, we resolve the corresponding problem (3.13), (3.14) or (3.15) in the thin deposit
layer to obtain the transmission conditions between u” and u} (or between w” and w?) on
I'y2 from the transmission conditions (3.16) - (3.17) between u™ and v} (or the transmission
conditions (3.18) - (3.19) between w™ and w1).

1. m=0,1.

We consider a general Cauchy problem with an arbitrary second member f for the same differ-
ential equation as in (3.13) or in (3.14):
8§ﬂ:f p€|0,1].

With the initial values at p = 0, the solution % writes

p s
U(p) = | p=o + a,,ayp:oer/O /0 f(t)dtds.

And at p =1,

1 s
Ul p=1 = U|p=0 + 8pa|p:0 + / / f(t)dtds,
0 70 (3.20)

1
Bpill,_y = Bpill,_o + /0 () dt.

From the above resolvent and the rescaled eddy current equations (3.13) or (3.14), it follows
that the asymptotic expansions u™ of @ can be obtained recurrently via the following Cauchy
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problems
Bzuo =0,
Biul = -BLu°,
02u2 = —B,lnul — Bfnuo,
3§ 5= _Blu? - Biul — B3O,
Pt = =Byu® — Bhu? — Bu' — By,

with initial values given by the transmission conditions (3.16) at p = 0. Then the boundary
values of u™ at p = 1 given by (3.20) should coincident with those given by the transmission
conditions (3.17) on I'.. These equalities give recurrently the transmission conditions linking up
ull on I'y.

2. m=2.

We consider the Cauchy problem with the same operator as in problem (3.15) and an arbitrary
second member f

(@2+k)w=f pelo1]

with initial values at p = 0. Its solution w writes

= (@l = (0 Plpmo) coslhap) + 1 (9] = o s 1)) sinllap) + v £, (320

where v = ﬁe”@"" is the fundamental solution, i.e. the solution of the problem with a Dirac

distribution as second member:
(02 + k3) w = .

One computes

Y P k()
vaf0) = [ g O e [ g ac
Pl . 11,
oo Do) = [ 5RO~ [ ) e
P
D 1
vef(0) = [ (€ e = 0,0 x 1)),

1
ve 1) = [ GBI dE = -0y ox ().

By substituting the above terms in (3.21), we obtain
sin(k2)
ko

8pu§\p:1 = —kg Sin(kg) (’JJ — V% f) ‘p:() + COS(kQ) (8,,113 + ik)g’l} * f)’pzo + ikz(v * f)|p:1'
(3.22)

w‘pzl = cos(k2) (0 —v* f) lp=0 + (apw + ikgv *f)‘p:o + (v * f)’p:h
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Therefore, from the above resolvent procedure and the problem (3.15), the asymptotic expansions
w™ of w verify recurrently the following Cauchy problems

(82 +k3)w’ =0,

(05 + k3) w' = —Byu®,

(0 + k3) w* = —Byw' — Biu?,

(02 + k3) w® = —Byw® — Bsw' — Biu?,

(82 + k%) wt = —Blw? — Biw? — Biw' — Baju®,

with initial values given by the transmission conditions (3.18) at p = 0 (on I'yz). Their solutions
give the boundary values (3.22) that should coincide with the transmission conditions (3.19) at
p =1 (on I';a), which implies recurrently the transmission conditions connecting ul on I'za.

3.2.4 Computation of some approximate transmission conditions Z,, ,

In this section, we follow the computing algorithm described in the previous section 3.2.3 and
give the transmission conditions Z,, ,, on I'to for m = 0,1,2 and n = 0,1, 2. We will use the first
Si(0,) operators in the Taylor developments (3.7) with their explicit expressions

SY =1d, St =o,
~ 1 ~ 1
Slo =~ 811 = —,
T’t2 th
~ 1 1 ~ 1
S = — 292, K S—
2 7‘,522 27 2 273%2

We denote by ui the approximated fields of u‘ft up to the asymptotic developments order, that
is

ud = ul order 0,
6 _ .0 1

ug = uy + oug order 1,

wd, = ul 4 dul 4 0%uk order 2.

Readers may skip the fastidious computational details and refer to the following expressions for
the corresponding approximate transmission conditions.

Zoo (329) [ Zo1 (3.36) | 202 (341)
Zio (347) | 211 (352) | 212 (3.56)
Zo0 (3.60) | 251 (364) | 255 (3.68)

Rescaling parameter m =0

1. Order n = 0.
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From the asymptotic development (3.13) and the transmission conditions (3.16) on I'ys for

u?, we have the differential equation for u°

2,0 _
oyu” =0 p € 10,1],
uo‘l):O = ug‘ﬁsy
0 _
Opu |p:0 =0,
which yields
uO(p) = u9|7"t2 pe [0’ 1]'
Thus, with the first transmission condition (3.17a) on I'. for u°, which is
Wlp1 = Soultlr,, + 830, (rul) ey, = ullr, (3.23)
we have
ullr, = ul |, (3.24)

Similarly, considering (3.13) and the transmission conditions (3.16) on Iy for u!, we write
the differential problem for u! as

ut = -Blu®=0  pelo,1],

u ’p:() = ulf’thv
1 1
1 =0 = He 0
dpu ‘p:o = ) u7|”2 + - 87"(”‘—)‘”27
which implies
1
1_ 0 He 0
8pu = *a <u—|7't2 — Mar(ru_)|7«t2> 5 (325)
1
1,1 0 He 0
u =y, — . (u|rt2 - Mt&(ru)%) p. (3.26)

The second transmission condition (3.17b) on T for u! writes

1
D et = —— (ug,% _ War(rui)y%) . (3.27)
Tty Moy
Hence, the equalities (3.25) and (3.27) yield
1 pe 0 1 pe 0
— =0 =—=—0 : 2
Ty Lt ()l Tty oy r(r e, (3.28)

(3.24) and (3.28) imply the approximate transmission conditions at order 0 on I'so

u = ui, (3.29a)
2 1 1
0,0 7&&“(7’1&) — 7&@(7«“1)‘ (3.29b)
Tty ft Tty Mo

We remark that Zg o for u®, = uY on Ty given by (3.29) are simply the transmission conditions
between the tube wall and the vacuum, as if the deposit layer does not exist.
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2. Order n = 1.
The first transmission condition (3.17a) for u' on T

ul‘pzl = Sgu-li-‘mz + Séar(ru-li-)’rtg + S?“g—"”tg + SllaT(rug—)‘Ttg

1
— u}k\% - (ug\% — (‘L(rui)]%) (3.30)
2

together with the equality (3.26) imply

1w 1
ul_|7~1t2 + au—j&n(rugﬂ% = ui_|,ﬂt2 + aar(ru(l)h@. (3.31)

One get the differential problem for u? from (3.13) using the previous expansions u°, u! and

the transmission conditions (3.16) on Iz for u?

(022 = Bl — B2
2 2 2 0 1 pe 0
= <7% - (az + kO)) u—|7"t2 - %EaT(Tu—)‘Tt2 p e [0, 1],
u2|/’:0 = u2—|"'t27
1 1w
2 1 1
dpu |p_0 = _EUJ% —M—jar(ru_)%
Thus
1 Iz
2 _ 1 c 1
Opu” = — - < s, E&«(ru )|m2>
2 2 2 0 L pe 0
+ (| = — (02 + ko) Jully, — =0 (rul)ls, | p, (3.32)
rtQ Ttg lut
1 1
u? _u—|”2 o Tz < 1—|7't2 pja?"(ru—”?’tg) p
2 1 p P
= (2 KD ) W |, — = 220, (ru® . 3.33
+ <<Tt22 ( z + 0)) U,’r,a T‘t22 1 r(ru7)|”2 5 ( )

The explicit expression of the second transmission condition (3.17b) on T, for u? is

1 Lhe 2 pe 1
Opu?| pe1 = - <u}i_|”2 — ar(ru},_)|”2> + <2 — af) ug_|”2 - —Qar(rug_)|”2. (3.34)
to My ’rtz v Tt2
Thus, (3.32) and (3.34) imply
L pie 1 o o2y,0 _ L He 1y _ Heaq2 0
— —0p(ru_) — (k§ + 07) u_ = ——0r(ruy) — —0Zu.. 3.35
Tty Mt ( ) ( 0 ) Tty Ko ( +) o * ( )

(3.31) and (3.35) lead to the first order approximate transmission conditions

5 pe 5
@+7%am®:@+7amm (3.36a)
Z to Mt to
M) Lteg )y s () = 2 Feg () — %20, (3.36D)
Tty [t Tty Koy Moy
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3. Order n = 2.

From (3.33) and the first transmission condition (3.17a) for u? on I, which is

1

u2‘p:1 = ui""tg T e (u}l"”"tg - ({%(Tui)]rb) (3.37)
2
one gets
1 1 1
2 He 1 He 2,0
uZly,, + Ezar(m—ﬂ% + %Ea - (ru’ Nrey, — ikou—|7't2
1 1
= ui]% + a&(rui)]% + ﬁaf(m&”%' (3.38)
2

To get the second transmission conditions connecting u3 one has to consider the Cauchy
problem for u? derived from (3.13) and the transmission conditions (3.16) on T3 for u?

8gu3 = —Bju? — Biu' — Biu°
2 1w
S 32 k 1 o 7768 1
(7 - @kl — -0, ),
to( = L@ m)) (~2u),, + Leo,(ru) p e [0,1]
T?g Tt z 0 —I7rig L1t T — )Tty s 1],
1 1w
us‘pzo = u3_‘”27 3| - _7“’2—’7"752 7687‘(7““2—)"”2
2 Mt

On one hand, we get easily from the above Cauchy problem

OB = — g2 7708 2 ——*82 ! - <0 !
pu”|p=1 Tty U=lry + Tty Mt (=l ¥ AT =l ri, b el
1 3 1 2 2 0 He 0
#3 (7 @) (-2, + e, ).

One the other hand, the second transmission condition (3.17b) on I for u® writes explicitly

1 0 2 1
ol == (20~ 200, ) (2 ) b, - b,
v

to tQ to

3 1 3 1
+ <—3 +o,—(1+ MC)ﬁ?) u lry, + < “Ca2> O (rul)lr,.  (3.39)
Tty Ht

T‘t2 27’t2 2Tt2 ot

The above two equalities result in

L (3 4 02) - g2, ()

L pe 2
Op(ru? ) — (K + 0%) ul TN

Tty [t "o, Tty

1 pte 2 He 2 1 He 42
=——0,(ruy) — —0;uy + —0
Tty [ H(re) fo T 2 py

9. (3.40)
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We derive from (3.38) considering the previous expansions u”, u!, u? and (3.40) the second

order approximate transmission conditions

2

1 2 c
Z02 ( _ 0 kﬁ) Be o, (rud ) + <—5+ i

27“t2

>(k§4—6§)ui
52

1 He é ( ) He qo 5
=——0(ruy )+ | =0+ — | —0;ul.
2 T< +) 2Tt2 Ho S

Rescaling parameter m =1

1. Order n = 0.

52 1) 52 I ) 52
1—k‘2)u5_+<—|-)c&«rui :u5+<+
< 2 0 Tty 27“t22 ot ( ) + Tty 27"1522

> Oy (ru. )(3.41a)

(3.41b)

The asymptotic development (3.14) and the transmission conditions (3.16) on I'ya for u® lead to

the Cauchy problem for v with initial values at p = 0

2,0
du'=0  pel0,1],
UO‘P=0 = u(i‘mgv

0 _
Opu |p:0 =0,
which yields

uO(p) = ug|7"t2 p € [0,1].

(3.42)

Taking p = 1 in (3.42) and considering the transmission condition on I'. for u" (3.23), one gets

u(i |7"t2 = ’LL(_),_ |7"t2 .

(3.43)

Then we consider the Cauchy problem for u! given by the asymptotic development (3.14)

and by the transmission conditions (3.16) on T'y2 for u!

8;2)11’1 = _B%uo = _k%ug|7“t2 pE [0’ 1]7
u1’ﬁ=0 = ul—’hszv

1 1 u
1 0 0
apu ‘p:O - _Eu_“tz + EicaT(ru—)"ftQa

which implies

1
ot == (101, ~ L0, ) — L,

2
1
ul = ulf"r‘tz _ % (u0|”2 — l/Zar(TUON%) P — 5]{7%’11107|Tt2.

(3.44)

(3.45)

(3.46)
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(3.43) and (3.46) give the approximate transmission conditions at order 0 on I'yp for uS.

uw’ = ui, (3.47a)

Z10 2§ 1 pe 5 L pe 5
' —kiul + ——0,(ru’) = ——0,(ru). 3.47b
ul -t () = g () (3.47h)

If we rewrite the second transmission condition (3.47b) as
1 5 1 5y 5
—Op(ru’) = —0,(rul) +iwocdry,u’,
ot My

we remark that the transmission conditions 2 o given by (3.47) are indeed the classical boundary
impedance conditions which take into account the deposit layer.

2. Order n = 1.

From (3.45) and the transmission condition on I'. for u! (3.30) we have

1 p 1 1
1 c 0 2,0 _ 1 0
U—’% + a;ar(ru—)‘mz - §klu—’7’t2 = U-s—’% + a&r(r“-&)‘%- (3.48)

Using the asymptotic development (3.14) and the transmission conditions (3.16) on I'yy for
u2, we get
( 8§u2 = —Bju' — B#O

= Rl + (= = 02, — 20 (),

2 Tzf22 z 2 rt22 Lt b

L ey

k4
0 2™ .0
g i), ) + i, € (0.1

2
B2 (200 —
+ p 1 (7}2 U_ |Tt2 2

u2|/):0 = u% |7't2 )

1 1
2 _ 1 c 1
8{;” ‘pZO - _EU7"”2 + a;ar(ruf)b‘tg‘
So
1 p
2 _ 1 c 1
o = (= 2, )
o (Rt + (2= 02) e, — 00, )
p ].u— Ttg t2 z — Ttg t2 " A ru_ Tt2
2 2
2k% 2 0 ]' /’Lca 0 3k% 0 349
07 iy ol = O e ) g e 349
P H
=l = 2 (uth, ~ 20l ),
1 2 1 p
2 2.1 2 0 c 0
+p 5 <—k1u|7~t2 + (T‘t22 - 8z> U,|rt2 - %mar(ru)‘r@)

k? [ 2 1 p kit
31 0 c 0 471 0
+p°— <r 2U7‘rt2 — 8r(ru)|n2> +p —24u7|”2. (3.50)
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Using (3.49) at p = 1 and the explicit expression of the transmission condition for u? on Ty
(3.34), one has on I'yy

1 pic k2 ki k2 e 1 pe c
—k2ut + fu—&n(rul,) — <82 . 1) w? — 1 'u—&n(rug) = 7“737"(7””1” - u—@?ug.

Tty [t o 2r, 6 21, it Tty fo Ho
(3.51)
Therefore, (3.48) and (3.51) yield the approximate transmission conditions at order 1 between
ui on I'ys
( 4] J 4]
1——k2)u’ +—+ &ar(rué_) = ui + —&(rui), (3.52a)
2 Tty ft Tty
1,1 —ki — ———— | Jul + | — - — O (ru.
! # 2Tt2 6 Tty 27’t2 Lt
He q2 5 L pie )
=—0—0 ——0 . 3.52b
\ Ho S Tty Mo r(rus) ( )
3. Order n = 2.

We derive from (3.50) and the transmission condition on I'. for u® (3.37)

1 1 pu k? k4> < 1 k? > m
2 2.1 c 1 1 1),0 1 c 0
uZ — skjul + ——0.(ru_) — ( - Jul+ |z — —Op(ru’
2 rt2 it ( ) 6Tt2 24 2T§2 6Tt2 Mt ( )
1 1
=ui + p— O (rul) + 57 Oy (rul). (3.53)

to to

Now we consider the Cauchy problem for u3 with initial values at p = 0. From the asymptotic
development (3.14) and the transmission conditions (3.16) on I'ys for u?, the Cauchy problem

writes
( 8[2, 3= —Blu? - Biu' — Biu°
2 1w
_ 2,2 2 1 c 1
= —kjulp, + (”22 — 82) U |, — %E&n(ru_ﬂ%
2 1w
to(R(Zabh, - 0 ul ),
to 2 Mt
6 2 3 1
+(—5+=), + (5 — ag)/‘car(ru(l)|n2>
to 2 rtQ Tty

A 9 2k? 1
2 (K11 2 2),0 L7 0
#0 (ol + R g+, + 20, )

+ p3k4 — 1 UO | + 71 708 (’I"UO )| — p47k? UO | p e [O 1]
1 Oy, Tty 61, 111 (g —)lrey o U=1rty »L]s
U?)fo = U3_ |7‘127

1 4 1 pe 9
_gu_lrtQ + E*&,«(TU_)‘TQ.

8pu3 |p:0 = ”
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Then we obtain

1 1
3 _ 2 c 2
Opu” = _EUJ% + E—tar(ru_)\%
+p | =k, + 2 92 ) ull,, — i&67,«(7‘1;1_)\,,
2 ,,,.t22 z 2 Tt22 ,Uzt to
2
p 202 4 1 pe 1
— ki (— ——=—0
(B, — 0 )
6 2 3 1 W
_ 0 2 52),0 2 L g2yFey
+ ( 7“?2 + Tty Z)u—|7"t2 + (T% Tt z)ut T(TU—)‘T‘tQ
3 /14 2
p° (kL 1 2 9 2,0 2k pe 0
+ ? (2u_|7”t2 + ]431( - 27_?2 + 3Z)u_|”2 + ’I“t22 EBT(T"LL_NHQ
4 6
P4 L 9 L pe 0 5 k1o
+ 7k (—2%“—%2 + %mar(m—ﬂnz) —p 1720u—|7't2 (3.54)

Taking p = 1 in (3.54) and considering the transmission condition for u® on T'y2 (3.39), we have

k2 ki k2 p
2 KT Ky 1 R1 He 1
(32 2 5 ) U O (ru’)
1 ki oo 2k ki at 0 Kt ki He 0
Do - (=F . N Ee gy (rul
+ <( +—=)o; (3r§2 + 120, + 120) ul + + 2r,, (ru)

1
— k22 + f&&n(ru%) -
Tty Mt

27'1?2 3
(3.55)

He q2 0
—07uy.

(%

1 1
7&870(7“1&) — OZul + o
2

From (3.53) and (3.55), we conclude the second order approximate transmission conditions

for ui on 'y

) k2 kt ) 1 k? 7
192 _sg2( L _ M1 5 O s~ _ M Heg 5
< 2™l (6Tt2 24) U=t T4, + (27}22 67}2) ,ut8 (ru-)
i (2 ) o) (3.56a)
ot Tty 27‘?2 " i ’

E? kd 1 E? 2k? kd kS
z —k2—582— 1M 52 Myg2 <M1 1 M é
1,2 < 1 ( z 6 ) + (2rt2 + 3) 4 3,,,_t22 ]_27"t2 120 u_

27"152
1 k2 k? ki i
5 1 52 1 1 Hc . é
+ ( +6%( ) 2 O (ru)

T‘t2 27‘,52 ot
§° #c) L p
= -0+ ) 92ud + — L2, (rud). 3.56b
| () e v o) (3560

Rescaling parameter m = 2

1. Order n = 0.
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The asymptotic development (3.15) and the transmission conditions (3.18) on I'ys for w® lead
to the Cauchy problem for w® with initial values at p = 0

02+ k3w’ =0 pelo,1],

wO’PZO -V thu(l |7't27

The solution and its derivative writes

w’ = 1/rtzug\% cos(kap), (3.57a)
dpw’ = —,/7}211,0_]”2 ko sin(kep). (3.57b)

We consider the transmission conditions (3.18) on T, for w®, which writes explicitly
{ w’lpmr = ViU, (3.58a)
9’| p=1 = 0. (3.58b)
By taking p =1 in (3.57) and by comparing them with (3.58), we get
u? |y, = ul|p, =0. (3.59)

Therefore, at order 0, the approximate transmission conditions Zo ¢ for u‘ft on I'yy becomes
Dirichlet boundary conditions

Zoo  u’ =ud =0. (3.60)

These conditions model the conductive deposit as a perfect conductor.

2. Order n = 1.

The Cauchy problem for w! writes
(82 + E)wt = —Baw® =0 p € 10,1],

w' =0 = v Tt2u£ ’TtQ )
1

1 Iz
2

where the initial values are just the transmission conditions (3.18) on I'j2. Thus we have

8/)“)1‘/2:0 =

sin(kap)

ke 7

1 1 c
w! = /rmul_]rt2 cos(kap) + (—uo + Z(‘?ATUQ)) (3.61a)
t

Vit \ 2

dpw' = —w/rtzul,\rtz ko sin(kop) +

’I"t2

Loy Hen (0
< 5 Y- + . 8T(ru)>

cos(kap). (3.61b)

1
A /T‘t2

T't2
Otherwise, the transmission conditions (3.18) on I, for w! write
1 1
1 _ 1 0 0
W |p=1 = \/Ttyuq |ry, — 2\/772u+]”2 + \/77287(7“11,+)‘7»t2 (3.62a)
1 1 w
dpw'| =1 = ———u —— 229, (ruf 3.62b
W |p 1 2\/mu+|7‘t2 + NG r(ru+)|n2 ( )
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Taking p =1 in (3.61) and considering (3.62) imply

1 sin(ka) pe 1
cos(ko)ul + L sin(ky) 'M—&(rug) =ul + —0,(ruf), (3.63a)
Tty ko Tty
. 1 cos(k2) e 0 11 pe 0
—sin(ko)ut + — 2228 (r? ) = — =229, (rul). 3.63b
(ko + - S ) = e () (3.630)

So from (3.63) we obtain the first order approximate transmission conditions between ud. on Ty

d sin(ka) pre )
cos(ko)u’ + —m'u—&n(rué_) = uj_ + —&(rui), (3.64a)
Tty ko g Tty
. —sin(kg)u’ + i%&@ (rul ) = ii&@ (rud) (3.64b)
Ty ke o rkap '
3. Order n = 2.

With the transmission conditions (3.18) for w? on I'ys as initial values, the Cauchy problem

for w? writes

(6% + k) w? = —Biw' — B3’ = \/r, <3 — 82) u(l|,«t2 cos(kap) p € 10,1],

47“?2
20 2
W p=0 = \/TtuZ |1y,

1 L1 e 1

apr lp=0 =

Using the computing algorithm for m = 2 described in Section 3.2.3, in particular the formula
(3.22), one obtains

1 — el?k2 —iok 3
w2’p:1 = ( /rt2u% + 2 2 /Tty (83 — 42)u0> COS(kQ)
2 T2 Tty
1 1y e 1 i(1 — ei2k2 —i2k,) U sin(kz)
——ul + 220, (rul) ) - Va2 = o
—I-{ o < 5 U= + ” (ru )> 8 Tty (0% 41"%)“ ) s
t2
isinky el 3
< 4]43% + 4]{32 ) vV Tto (83 - @)ugb‘zza (365&)
1 — el2k2 —jok 3 ,
(9pw1 - _ <, /rt2u2, + 2 2 /T, (83 — 42)u0> ko sin(k2)
2 T3 Tty
1 1 c i(1 — ei?k2 —i2k 3
+ ——ul 'uf&«(rul_) _K 2) V(02 — =)’ cos(ka)
/Tt 2 bt 8ko 4r
2 2 Tiy
sinkg el 3
_ ( 2 ) NG 475)&1\%. (3.65b)
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Otherwise, the transmission conditions (3.19) for w? on I'. write

Or (Tui) |7't2

1 1
w2’p:1 = /Tt2u3_|7't2 - %U}JTQ + \/TT
2 2
r 3
VT (az _ ) W2, (3.662)

2 Yy

1 1 u
2 1
Opw”lp=1 = = 2,/Tt titlr + T4 ug Or(ra )l
He 2 3 0 1 He 0
" <uv = 4r%2> e T < - 1> (i), (3.66b)

From (3.65) and (3.66) we have

cos(ko)u? + éﬁlléfﬂ;tar(rul_) + 27122 (Csckgm) _ cosl,{(%kz)> %&«(rug)

=ui + é@r(rui) 21 {(l:% — COtk(Qk )> % - 1} O (rul), (3.67a)
— sin(kz)u® + ; COSI’{;(:@) %ar(y«ui) + Q:;Sin;f?) %&,(rug)

= TL};ZZOT(WL) + %éﬁr(rug). (3.67b)

Therefore, we conclude that the second order approximate transmission conditions Zs o> be-
tween ul. on T'sy write

( < § sin( 1@ Lo <csc(l<:2) - cos(k,‘g))) e

cos(ks) o
2)u 37 Ty 2 ) u )

{ "7 <<klz 602(52)) e 1)] 0, (rud), (3.68a)

k 62 sin(k Lbe
—sin(ko)u? + < k(z 2) I 07 kfg 2)) " Ay (rud)
2

. 6 1 e 52 1 5

)

3.2.5 Numerical tests for 1-D models

To choose the (m,n) with which the asymptotic model has a best approximation, we test numer-
ically the asymptotic models by implementing the transmission conditions Z,, , for m = 0,1,2
and n = 0,1,2 in the 1-D case, i.e. 3, = 0, since the 1-D eddy current models discussed in
Section 1.7 have analytic solutions, which allow us to estimate modeling errors. We write the
transmission conditions Z,, 2 for m = 0,1,2 at order n = 2 in a general form

{ a{”u‘i + B{"ﬁr(ru‘i) = fy{”u‘i + n{”&«(rui),

m . m m (3.69)
ag'ud + 850, (rul) = 5"ul + 050, (rul).
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The transmission conditions Z,,, at order n = 0,1 can be derived from Z,, » by neglecting the
high order terms. We give the coefficients o, 5", 77" and 9", m =0,1,2, j = 1,2 as below.

1. m=0.

From Zj 2 given by (3.41), we have

0 2k3 0 2 2 k(%
=1-0" = -0k )
1 2’ @2 0 21y,
1 1 1 k2
B —s—te 52— He B — L He 52 pe
Tty Mt 2ry, I Tty [t 2ry,
’Y? = 17 ’}/8 = 07
1 1 1 p
0 2 0 c
=0 +0—, = —fe
Ui Tt 27'1522 Up) Tty fho

One gets easily the coefficients corresponding to Zy o (see (3.29)) by considering only the terms
on order O(1) of §, and those corresponding to Zp 1 (see (3.36)) by neglecting the terms on order

(’)(52).
2. m=1.

The transmission conditions Zj 2 given by (3.56) yields

E? E? kt k? Ed 2k? kd kS
1 1 2 1 1 1 2 1 1 2 1 1 1
“ 2 <6rt2 24) A <27~t2 % > (3@ ST 120) ’
) 1 k? I 1 k? k? ki I
1 2 1 c 1 1 2 1 1 c
— (2 (o - He Sy L 5 Fe
& (th " (27}22 6%)) i’ Pe (th 2, " (27}22 " 247”t2)> e’
7% =1, ’Y% =0,
1 1 1 p
1 2 1 c
Y S - N = = ke
& T'to 27}22 & Tty Ho

For Z given by (3.47), one needs only to take the terms on order O(1) of ¢ in the above
coefficients. For 21 (see (3.52)), we neglect the terms on order O(6?).

3. m=2.

The transmission conditions 235 (3.68) yield

o2 = cos(ks), aj = —sin(ky),
9 § sinky 62 ,csc(ke)  cos(k2)\\ fe 9 § cos(ks) 6% sin(ka)\ pe
= T2 ' e e T o )
ta K2 Tty 2 2 Mt Tty 2 Tty 2 ot
’7% =1, ’722 =0,
1 1 1 cot(ka), pe ) 11 pe 11
2 2 2 2
=0——-0—|(5—-——F77)——-1), =0———— — .
n Tty 27“?2 <(k% ko ) Loy 2 Tty k2 by 2r§2 ko
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We observe that terms on order O(1) of § in the above coefficients gives the transmission con-
ditions Z (see (3.60)). If we consider additionally the terms on O(J), then we obtains the
transmission conditions Z3 1 (see (3.64)).

With these approximate transmission conditions Z,, ,,, we build the 1-D asymptotic models
by supposing that there is no variation in the axial (z) direction. As shown in Section 1.7, we
may introduce a Dirac distribution like applied electric current Jd,, at r = rs, which yields the
transmission conditions (1.50) — (1.51) at ry. The analytic solution of the full 1-D model writes

cir 0<r<rs,
1
02r+03; Ts < T <y,
w(r) = < cqJi(ker) + c5Y1(kger) Ty < T < Ty,
Cﬁjl(kcr) + C7Y1(kcr) Ty, <1 < Ty + 57
1 5
{ Cg; r> Tty + ;

with k? = iwpor and k2 = iwpoe.

With the transmission conditions [u] = [u~10,.(ru)] = 0 at r = ry,, 7, and r; +6, the coefficients

c = (ci1,...,cg)" can be obtained by resolving a linear system

Ac = (0, —iwpJ,0,...,0)T

and
re —Ts —i- 0 0 0 0 0
2 -2 0 0 0 0 0 0
0 7y % —Ji(kere,)  —Yi(keryy) 0 0 0
0 2 0 _kedo(keryy) kYo (kery)) 0 0 0
A — Hov Mt Mt
0 0 0 Jl(ktTtQ) Yi(ktrb) —Jl(ch't2) —Yl(kc'I“tQ) 0
0 0 0 k3Jo(ksrisy) k3Yo(ksris) _ kedo(kerty) _ keYo(kerey) 0
Mt Mt e He 1
0 0 0 0 0 J1(ke(re, +9)) Yi(ke(re, +9)) ]
0 0 0 0 0 kcJo<kL(:t2+6>> chO(kZ(:tQ-HS)) 0
The analytic solution of the asymptotic models is in the form
C?T O0<r<rs,
1
u’ = cgr+cg— rs <1 <gq,
u'(r) = 5 s
C4J1(kft7") + C5Y1(k’t7") Tty <r< Tty
1
ui = cgf > T,
r
With the transmission conditions [u] = [p7'9,(ru)] = 0 at 7 = r;, and the approximate
transmission conditions Z,, , (3.69) at r = ry, we obtain a linear system for the coefficients
& ] &
c=(c,...,cq)

A% = (0, —iwpJ,0,...,0)7,
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where
rs —Ts —m 0 0 0
2 -2 0 0 0 0
5 0 Tty é —Jl(]{ft’l“tl) —Yl(]{?t’l“tl) 0
A’ = 0 2 0 _ keJo(kerey) kYo (kerey) 0
j223) 1227 Mt 1
0 0 0 Oé'injl(kt’f’m) + ﬁ{”ktJo(k;trtz) OégnY1 (ktrtz) + ﬂ{”thO(ktrm) —"}/{n@
0 0 0 ofthilkere,) + B keo(kere,)  ofYVi(Kere,) + B3 keYo(kere,) =51

Tests with fixed rescaled conductivities

We first fix the rescaled conductivities of the thin layer deposits o,,,, m = 0,1,2. Ignoring the
physical unities, we take in our tests

o0 =5 x 105,
o =1 x 10,
oy =5x107%

Then we evaluate the relative errors of the asymptotic models using Z,, , (n = 0,1,2) approxi-
mate transmission conditions with respect to the full model. We remark that here the deposit
conductivity in the full model is variable according to the layer thickness §:
Om
O = o
We also recall that the permeability of the deposit is g, = py, the conductivity of tube oy =
9.7 x 10°S/m and the permeability of tube p; = 1.01,.

Figure 3.2 shows the relative errors in L?/Q—norm of solutions of the asymptotic models
with respect to the full model for fixed rescaled conductivities ,,, m = 0,1,2. One observes
that for a given rescaling parameter m, the asymptotic models approximate better the full
model as the asymptotic expansion order n increases. The slopes given in the figure validate
numerically the above asymptotic models using approximate transmission conditions Z,, , with
the corresponding orders of approximation.

Tests with real deposit conductivity

We consider a thin layer of copper covering the tube with constant thickness. The conductivity
of copper is 0. = 5.8 x 107.S/m and its permeability is y. = p,. o; and py are the same as in
the previous tests. We vary the thickness § from 5um to 200um and evaluate the differences
between the solutions u’ of the asymptotic models with the solution u of the full model.
Figure 3.3 shows that with a given rescaling parameter m = 0,1,or 2, the approximation
gets better as the asymptotic expansion order n increases. One observes in Figure 3.3c that for
a layer thickness under 200pm, the asymptotic model using the transmission conditions 2 is
not a good approximation. This is because the Z3 o conditions model the thin layer as perfect
conductor, which is not true for copper through which the electrical field can still penetrate.
From the comparisons shown in Figure 3.4, we can conclude that for the asymptotic de-
velopment order n = 2, the asymptotic model using the approximate transmission conditions
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Figure 3.2: Lf/Q—norm relative errors of asymptotic models with Z,, , transmission conditions
with fixed re-scaled conductivities.

Z9 9 is the best approximation of the full model among the three choices of the rescaling pa-
rameter m = 0,1,2. However, we remark that in the corresponding coefficients a?, 5]2, 7]2- and
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77]2'; j = 1,2, the layer thickness d, which we would like to reconstruct in the inverse problem,
appears not only as polynomial factors but also implicitly in the trigonometric terms sin(ks)
and cos(k2), now that k3 = w02 = iwpeo.0%. Hence it will be difficult to deduce the inverse
problems from direct asymptotic models using Z2 5.

Meanwhile, one observes that the asymptotic models using Z; ,, are good approximations of
the full model. For instance, if we choose a threshold of 1% relative error to judge whether an
asymptotic model is accurate, then one observes in Figure 3.3b that even the asymptotic model
using 21 gives a good approximation for thickness 6 under 50um, which covers already a large
range of interested thickness in industrial practice (see Table 3.1). The asymptotic model using
211 ameliorates the precision for the full range of interested thickness (say, 6 < 150pm). With
m = 1, the layer thickness § appears only as polynomial factors in the coefficients a}, le», ’yjl and
77]1, 7 = 1,2, which facilitate the deduction of inverse method for the reconstruction of thickness.

Therefore, we will focus on the asymptotic models using Z1, with n = 0,1 in the following
discussion.
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Figure 3.3: L%/Q—norm relative errors of asymptotic models with Z,,,, transmission conditions.
Comparison between different expansion order n, rescaling parameter m fixed.
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Figure 3.4: L%/Q—norm relative errors of asymptotic models with Z,,,, transmission conditions.
Comparison between different rescaling parameters m, expansion order n fixed
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In the previous chapter, we studied several asymptotic models using interface transmission
conditions to replace highly conductive deposit thin layers. From the numerical results in a
simplified case where deposit layers are of constant thickness, we concluded that the transmission
conditions 21, with n = 0,1 give sufficient precision of modeling and facilitate the design of
inverse methods. In this chapter, we will at first build and numerically validate the asymptotic
models with these transmission conditions for general configurations where the layer thickness
is variable (Section 4.1). Then we formulate the inverse problems for thickness reconstruction
as the minimization of a least square cost functional on layer thickness (Sections 4.2 and 4.3).
Finally, some numerical examples of thickness reconstructions are given in Section (4.4). For
the use of asymptotic models in inverse problems we may cite the works of Guzina — Bonnet
[41], Ozdemir — Haddar — Yaka [66] and Park [69].



112 Chapter 4. Reconstruction of deposit thin layers via asymptotic models

4.1 Asymptotic models for deposits with variable layer thickness

In this section, by following the procedure described in Section 3.1.4, we compute the transmis-
sion conditions Z , for n = 0,1 between u4 on I'y, to build the 2-D model in the variational
formulation with some deposit layer of variable thickness (see Figure 4.1).

u‘i u U

Tube Deposit

Figure 4.1: Representation of a thin layer deposit.

One remarks that with a slight modification, the formal derivation of asymptotic modles
described in Section 3.2.3 for deposits with constant thickness works also for cases with variable
thickness. Taking m = 1, we only have to change the domain p € [0,1] to p € [0,d(z)] and
consider the transmission conditions (3.12) rather than (3.17) on I'..

To simplify the computation, especially the complexities introduced by the transmission
conditions (3.12) on the curved boundary I'., we assume that the magnetic permeability of the
deposits equals to that of vacuum, that is

He = Ho- (4.1)

This assumption matches the real case where the deposit is in copper.

4.1.1 Formal derivation of approximate transmission conditions Z

For (m,n) = (1,0), we apply the procedure of Section 3.2.3 with slight modifications due to the
change of deposit domain from a layer with constant thickness to a layer with variable thickness
and a curved boundary I'.. With the asymptotic development (3.14) and the transmission
conditions (3.8) for u° on I',, we have the Cauchy problem for u°

2,0 _
dyu” =0 p € 10,1],
UO‘PZO = ug‘rtzv
0 —
Opu |p:0 =0.

The solution has exactly the same expression (3.42) as in the case for layers with constant
thickness. Taking p = d(z) in (3.42) and considering the transmission condition (3.12a) for u°
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on I'c, we get
u(i|7”t2 = ug—|7”t2' (4-2)
Then we consider the Cauchy problem for u! with initial values given by (3.8) for u!

af,ul = B’ = —k%uo\% p € 10,d(2)],
u1|,0:0 = u£|Tt27

1 1

= |y, + — L0 (),
T’t2

8 u ‘ - —
14 —

which implies (3.44) and (3.44) as in the case for layers with constant thickness. The transmission
conditions (3.12b) for u! on I'. imply

1 e
8pu1|p:d(z) — _Tt <u3_|rt2 - 'u 8T(7”u(_)|_)|rt2> . (43)
2 v

Equation (3.44) with p = d(z) and (4.3) give
L pie 0 2 0 L pe 0
— —0p(rul)|y,, —kid “pp = ——0r oo - 4.4
Dy~ KA |, = 0 ), (4.4

Equations (4.2) and (4.4) and the fact that k% = iwoy 1. imply that

u) =’ (4.5a)
1 1

—0p(rul) = M—&(Tug) — iword(2)re,u . (4.5b)
v t

4.1.2 The asymptotic model of order 0

We denote the solution of the asymptotic problem by

5 u® in Q_,
u =9

From (4.5), the approximate transmission conditions at order 0 between ud. = u. on I'y, write
ui =, (4.6a)
zZ 1 1
1o ’u—@r(rui) = E&n(ru‘i) —iwod(z)r,ul . (4.6b)
v

The first condition (4.6a) implies the continuity of u° through I'y,. The strong formulation
of the asymptotic model using Z1 o for ud writes

1
—div (MV(ru6)> —iwou® = iwJ in Q_,

1
—div < V(ru6)> =0 in Q,
HoT

transmission conditions Zi o on I'y,.
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We use a generic notation for the variational space H(Q) with 2 = Q_UQ, denoting either R%
or its cut-off B,, = {(r,2) € R% : r < r,}. That is H(Q2) = H}/M(Ri) or H(Q) = Hy,(By,).
We also recall that the variational formulation with 2 = B,, can be reduced to a variational
formulation posed on B, .. = {(r,z) € R? : 0 < r < r,,|2| < z.} by introducing appropriate
Dirichlet-to-Neumann operators on z = £z, to accelerate the numerical evaluation (see Chapter

1). Then by integration by parts one gets the variational formulation

aro(u®,v) = / iwJordrdz Vv € H(S), (4.7)
Q
1
where alvo(u‘s,v) ::/ (WV(ru‘s) -V (rv) — iwau%r) drdz
Q_

1
+ / V(ru®) - V(ro)drdz — / iwod(s)ulor ds.
Q+ :u"UT Ft2

Proposition 4.1.1. Assume that the source J € Lf/z(Q) has compact support, that the perme-
ability p > 0 and the conductivity o > 0 are piecewise constant and bounded in ). Assume in
addition that there exist 0 < fling < fsup < +00 such that p satifies ping < p < psup. Then
variational asymptotic problem (4.7) has a unique solution u® in H ().

Proof. One verifies that a1 is a continuous sesquilinear form. It is sufficient to show that a1
s coercive

5.6 1 'NE 1 'NE
R(aro(u’,u’)) > V(ru®)| drdz+ V(ru®)| drdz
Q_ Hr Qp HoT
L 50 C o2
> —|u > U . 4.8
>y o 2 o ey (438)

The last inequality is due to the Poincaré-type inequality (1.5). Therefore, we conclude from

the Lax-Milgram Theorem the existence and uniqueness of the solution u?. O

4.1.3 Formal derivation of approximate transmission conditions Z; ;

We pick up the formal derivation in Section 4.1.1 and continue it in higher order to get the
approximate transmission conditions Z 1.
The transmission condition (3.12a) for u' writes explicitly

d(z)
ul’p:d(z) = “}k’% + v (—u?r + 8,,(7°u3r)) ‘er- (4.9)
2
From (3.45) with p = d(z) and (4.9) we get
iwo ped?
W lry = Ullry, + =t |- (4.10)

To get the second transmission condition for ul, one should consider the Cauchy problem
for u?. From the asymptotic development (3.14) and the transmission conditions (3.8) for u? on
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I't, as initial values, we have

8§u2 = —Biu' — B’
— Bl + (= 82 W], — E20, (),
2 ,,1t22 2 Tzf22 Lt 2

2( 2 o L pe 0 2]‘7‘11 0
+ pki EU—MQ - Eﬁ&'(ru—)’rw +p ?u—|m2 p € [0,d(2)],

u2‘P:0 = u%‘rt27

1 1w
02| =l + —F8 (b,
{ pu |p:0 ,,,_t2 u*’rtg + rtQ ,Uzt T(ru7)|7"t2

The expressions of the solution and its derivative are given in (3.44) and (3.44) respectively.
Since ji. = fy, the transmission condition (3.12b) for u? on I'. writes

1 2 1
apu2‘p=d(z) = (ui_ — 8T(ru}i_)) ’rtQ +d(z) ((2 — 03l — 28T(ru3_)> (4.11)
to Tt2 TtQ Tty
Comparing (3.44) with p = d(z) and (4.11) yields
1 .
—ar(ru}rﬂ% = E&«(T‘ul_ﬂ% — 1(,uo'1r,52al(z)ul_|m2
1 d 2 1 2 2 d 3 0 1 d 2 1 ) 0 4.12
+ (Glomdo - G atuedP ) i, - giompued POy (012
We introduce the notations of difference [-] and mean ()
[v] == U+|rt2 - U—|rt2> [N_lar(”])] = ugl&(rmr)]% - :u‘t_laT(r,U_)‘Tt27
1 _ 1/ _ _
0= 5 (el ob) 000 = 5 (100l = i 0o, ).

In (4.10) and (4.12), we write the jumps [u'] and [0, (ru')] on behave of ©’_ and its derivative
onI',, j =0,1. A symmetric formulation would write the jumps on bahave of the mean values.
From (4.2), (4.4), (4.10) and (4.12), one gets

[u'] = Ww%, (4.13a)

[u_laT(rul)] = —iwoyry,d(2)(ul)

N (iwald(z)z B OJQO'%MCT’tZd(Z)g') (W) — iwo ped(2)?

2 6 5 (W 1o.(ru®)).  (4.13b)

Thus, the approximate transmission conditions 21 at r = ry, writes

)= WM‘S), (4.14a)

Z11 {/flﬁr(ru‘s)} = —iwalrt2d(z)<u5)
N (iwald(z)2 B wZU%,ucrt?d(z)E}) 5ud) — iwor ped(2)?

[u

2 6 5 510, (ru’)).(4.14b)
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One observes easily that the transmission conditions (4.14) contain terms on order O(1) —
which give Z1 ¢ — and on order O(4). However, one cannot ensure that the asymptotic model
using 211 given by (4.14) has coercive sesquilinear form in its variational formulation. To have
the coercivity, we add a stabilizer of order O(82) to the first transmission condition (4.14a)

cdwey p2d(2)30% (10, (rul)),

where a > 0 is a dimensionless parameter to be determined. We denote still by Z 1 the modified
approximate transmission conditions

[ué] = Wd(u(S) + aiwalpgd(z)352<u_lar(ru6)>, (4.15a)

211 [u_l&(ru‘s)} = —iwor,d(z)(ud)

. 2 2,2 3 i 2
N <Wl;1(z) W alucgmd“) > §(ud) — W;Cl(z)5<ﬂ—1aT(ru5)>.(4.15b)

4.1.4 Mixed formulation for the asymptotic model using Z; ;

0

From the first transmission condition (4.15a), u° is no longer continuous through I';,. Therefore,

we consider the function space
H(Q_UQy) ={v:v|g, =ve € HQ4)}.

The strong formulation of the asymptotic model using Z 1 for u® writes

1
—div <V(ru§)) —iwoud = iwJ in Q_,

ur
. 1 5 .
—div V(iru®) ) =0 in Q4,
HyT
transmission conditions 21 1 on I'y,,

By integration by parts, the first two partial differential equations and the second transmission
condition (4.14b) of Z;; yields

/ <1V(ru5) -V (rov) — iwau%r) drdz + / ! V(ru®) - V(o) drdz + ¢4

Q_ /,LT Q+ 'UT'

= / iwJordrdz  Yv e H(Q-UQy), (4.16)
Q

where the term ¢, depicts the transmission condition (4.15b)

€11 :—/ <18T(rui)z7+ — 18T(ru‘5_)17_> ds
It et

v

- /F . {—iwolrt2d(s) (1 _ A5 1iWU1Mcd(S)25> () (o)

27“752 6

iwor ped(s)?

o (rud ] — T

5<M18T(ru6)><v>} ds. (4.17)
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We define a Lagrange multiplier
A= (p7 10, (ru)) € LA(Ty,) (4.18)

and we set

LOPIN G

=1- 4.1
B(Z) 27“752 2Tt2 ’ ( 9)
where f5(z) = d(z)¢ is the deposit layer thickness. Since fs5(z) is very small compared to the
diameter of the tube 2r,, the dimensionless quantity 8 € (0, 1) is close to 1. From (4.17), (4.18)

and (4.19) we re-define

11 (u®, A v) ::/F {—iwalrth(s) (6 — W&) (o)D) + A7) — W&\(@} ds
to
_ /F {—iwacrtQ f3(s) (5 - iwaa“gf5(8)2> (W3)(5) + Alt] - i““ﬁ“;fé(s)zxw} ds.
’ (4.20)
Using the Lagrange multiplier (4.18), the first transmission condition (4.15a) yields the weak
formulation
buatul 60 = [ (e - P 00 - (BT ) g
t 2

_ / <[u5]<— woepefs(s)* oz aww)() ds=0 VCeI*(Ty). (4.21)
Ty,

2 Tty

We define the sesquilinear form

a1 (u®, A v, 1h) == / <1V(Tu5) -V(rv) — iwau%r) drdz
Q_ \HT
1
+ / V(ru?) - V(ro) drdz + Ir,, (u?, X v,1), (4.22)
Q+ /’L’UT

where

IFtQ (u‘s, A0, 1)) 1= 0171(u5, A;v) = b (v, A)

= [ {iwmratsts) (5 - 2LEEY 050 sagpefo(o)ate) - P g g
I

to 6 Tty
Finally, if we denote the function space

(4.23)

X :=H(Q_uUQy)x L}Ty,), (4.24)

then from (4.16), the mixed formulation of the asymptotic problem using transmission conditions
Zl 1 writes

a1 (u®, X v,10) + by 1 (v, \) = / iwJor dr dz Y(v,1) € X, (4.25a)
Q

bra(u’, \;¢) =0 V¢ € L3(Ty,), (4.25b)



118 Chapter 4. Reconstruction of deposit thin layers via asymptotic models

with a1 given by (4.22) and by 1 by (4.21).
We set a dimensionless quantity

wo pred(z)? 1 Woepte f5(2)?
66(2) 65(2)

For ¢ (or the layer thickness fs(z) = d(z)d) small enough, £ € (0,1) is close to 1.

£(z) :=1- (4.26)

Proposition 4.1.2. Supposing fs(z) = d(z)0 is small enough such that the quantities 5(z), £(2)
given by (4.19) and (4.26) respectively are bounded in (0,1). If the coefficient o of the stabilizing
term in (4.15) satisfies

1
oa——>0,

4p¢

then under the same assumptions for J, p and o as in Proposition 4.1.1, the mized formulation
(4.25) has a unique solution (u®,\) € X.

Proof. The proof is similar to the proof of [19, Chapter II, Proposition 1.1|. We define a function
space

X = {(v,¥) € X :by1(v,9;¢) =0 V¢ € L3 (Ty,)}.

One remarks that if (u®, \) € X°, then it satisfies the second weak formulation (4.25b). We will
show the sesquilinear form a1 is coercive on X°. For any (v,?) in X°, one has

1 1
ai1(v,¢¥;v,v) :/ (|V(rv)|2iwo’|v|2r> drdz+/ |V (rv)|? drdz
Q_ ILLT Q+ /’L'UT‘
+Irt2(va¢§%¢)-

From (4.23)

{iwam2d(s) <5 - Wé) [(v)[?

T, (0,3, 6) = — /F

to

Hiwory ped(s)? 09 (T) + OAWTLC()52|¢|2}

- 2 Dgg| + (- 1) AL gy

iwo T, d(s) {ﬁ ‘ (v) +

to 26”2 46 f2
e loP e+ e s b a.
to

One computes

w20l pery,d(s)? _
R (2, (00 00) = [ =T 04 o (25300 | s,

6
A (o b))

26Tt2

woT,d(s) {B ‘(v) + XU

R) (Il"t2 (’an;’uad})) = _/F

]
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Then we have

Rar1 (v, 630, 1)) > /Q er V(o) drdz + /Q+ V)P drd:
+ / {_“WMW+walucd(s)25g(¢<u>)} ds,
I, 6

S(ar1(v,;0,9)) < —/ wo]v|2rdrdz
Q

-/ _

2d 2
walrt2d<s>{ﬁ\<v> 2]+ (a jﬂ)‘ﬁés)aﬂwﬁ}ds
Therefore

la1,1 (v, ¥;0,9)] > R(a,1(v, ¥;0,9)) + S(a1,1(v, Y5 0,9))
Z/ = |V(Tv)]2 drdz+/ L \V(rv)|2 drdz+/ w0|v|2rdrdz
Q_ /J/T Q+ /’L'U (9}

t2

ped(s .
+ /Ft2 {waﬂ“tgd(sw '<v> 25 (t2) + wor,d(s) <a — 415> l’LCT’]?(Q‘S)(SQ’wQ
+wo pied(s)* 63 (1h(D)) — W5 \<U>|2} ds.

wor,d(s)s

2 2 3
() + ek w‘ o d(s53(0(e)) — LI 5

oy d(s)B (5r<v>|2+ ’;g“w! +‘ﬁf(%<¢<v>>+%<¢<v>>>>
>wo1r1d(s)f (5 (W) + 25 - fw] |w| @ >r>

B L) )
R L (e walrt2d<s>(§ 1) e

together with 0. = % and fs5(2) = d(2)d, we obtain

la1,1(v,;v,9)| > / ,ulr \V(rv)]2 drdz —i—/ ]V(rv)|2 drdz

Q_ Q+ /"LUT
1\ woeplfs(s)® o
P (o ) B g,
Ft2 455 rt2 ‘ |
Cq
2 — HUHH a-uay) T CQH@Z’HL? (Tey)?
sup

where C7 > 0 comes from the Poincaré-type inequality (1.5) and Cs is a positive constant
depending only on the physical coefficients p., o. as well as the geometrical parameters fs(z)
and r¢,. Thus a1 is coercive on X b One observes easily that aq 1 is also continuous. Therefore,
the first weak formulation (4.25a) of the mixed formulation has a unique solution (u%, \) in X?
by the Lax-Milgram theorem. O
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4.1.5 Numerical validation of the 2-D asymptotic models

We test the asymptotic models in their variational formulations using 21, (n = 0, 1) transmis-
sion conditions given by the previous sections. We consider a thin layer of deposit (copper, with
permeability p. = jt, and conductivity o. = 5.8 x 10%S/m) which covers the shell side of the
tube axisymmetrically with 10mm in height. The permeability of tube is pus = 1.01p,, and the
conductivity of tube is oy = 9.7 x 105S/m. The thickness of the thin layer f5(z) is constant and
takes value in the range from 10um to 200um. Hence, in the 2-D representation of the model
in the Orz plan (see for example Figure 3.1), the thin layer is in fact a f5 x 10mm rectangle.
The other geometrical configurations (positions of the eddy current probe and the tube) are the
same as in Section 1.3.

First of all, we build a full model which will serve as reference. The computation of the
solution uses a mesh that is adaptively refined with respect to this solution with a maximum
edge size hmax = 1.25mm as well as P1 finite elements on the mesh. To have a good simulation
of the thin deposit layer, at least 4 layers of mesh elements are used in the thickness direction.
The degrees of freedom of the finite element space are about 11000 for the full model on B,, .,
with r, = 30mm and z, = 41mm. To ensure that this full model is close enough to the reality
so that one can use it as the reference model, we refine again the mesh and observe that there
is no significant difference compared to the previous full model.

Then we build the asymptotic models using either Z; o (see (4.6)) or 211 (see (4.15)) trans-
mission conditions on I'y,. The mesh is adaptively refined with respect to the solutions with a
maximum edge size hpmax = 2.5mm — which is two times larger than the edge size used in the
full model — and P1 finite elements. The degrees of freedom of the finite element space are about
4000 on By, .,.

Lilz —norm relative error
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Figure 4.2: Relative error of the asymptotic models using Z; , transmission conditions, n = 0, 1.

Since the thickness f5(z) is at most 200um in our examples, we compute the dimensionless
quantity 48¢ < 4 is at least 2.743. To ensure

1
oa———>0

45¢
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we take a = 0.4 as the coefficient of the sabilizing term in (4.15a).

Finally, we compare in Figure 4.2 the relative errors of the asymptotic models with regard
to the full model in Lf/Q(BT*,Z*)—norm. One observes that the asymptotic model using 2
gives already a good approximation of the full model with a relative error less than 1% for
f5(z) < 100pm. But if fs(z) increases over 100um, its precision deteriorates. The asymptotic
model using Z1; conditions is always a good approximation of the full model for the layer
thickness fs(z) under 200um.

4.1.6 Approximation of the impedance measurements

In the cylindrical coordinates for the axisymmetric case, we recall the formula (2.5) of the
impedance measurement in the coil £ when the electromagnetic field is induced by the coil {

27 1 1.1
ATy = —— — )= . 0y _ 59 0
W= /Qd <(M MO)TV(ruk) V(ruy)) —iw(o — o) ugy; 7“> drdz,

where Qg = Q¢, pla. = e, ola. = 0¢, 1la, = v and 0°|q, = 0 in our case. For the thin layers
of deposit in copper, its permeability . is the same as the background permeability for vacuum
fty (see Table 3.1). Thus the impdance measurement writes

2
Ny = —IZ/ oeupulr dr dz. (4.27)
Qe

Approximation at order 0

From Section 4.1.1 and the expression of the transmission conditions Zi o (4.6), the electric field
in the thin layer 2. writes

u(r,z) = u‘s(rtQ, 2)+00) ry, <71 <71y + f5(2).

Then one has

o Tty +f5(5)
AZy = ——5 / / oeur(r, s)ud(r, s)r drds
12 Tiy Iy

) Tty +5(s)
- / / S ] (rig )l (11, )1 dr ds + O(9)
th T 2

t

2
= —I—Z ch(;(s)ui(rtQ, s)u?(rtz, s)re, ds + O(9). (4.28)
T,
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Approximation at order 1

From Section 4.1.3 and the transmission conditions Z; 1 (4.14) without the stablizer at order
O(6?%), we have in the thin layer €.

— 1/ e r—Ty WOl e (r—14,)?
1 2 .1 T rec 0 _ 0 2 0 2
w5 2) = U, + Tt (utar(m) u) ry 0 2 e
1 1 _ cr _ r—r
= () = 3 T+ o (e 10um) = 5 T 10, = () ) =572
B iwal,uc< 0y (r—1e,)?
2 52
iwo ped(2)? ¢, _ iwo ed(z 1 r—r
_ <u1> o 1#4 ( ) <u0> + <:’ <,U 18T(7“u0)> +( 1/; ( ) _ )<u0>> 5 ta
to Tty
: 2
iwo e r—r
— 21 <u0>( 52152) )

Thus for 1, <7 <1y, + f5(2)

u(r, z) = uo(r_(;th ,2) + 5u1(%, z) + 0(52)
iwoq ped(z)? c iwoped(z
= (1 s oy 4 (e (HE L)) ) )

- =B ) (r = 11,)? + O(5?)

- (1 - WW) (ud) + (“CA - (M - 1)(u‘5>> (r =7,

4 Tty 2 Tty

lwoeic

5 (') —115)? + 0(8%).

Otherwise, the electric field u? in the deposit-free configuration satisfies the following transmis-
sion conditions on I'y,

[w] =0,
{ (18, (ruf)] = 0.
Thus one gets the Taylor development
ulr = ure, + N (r = 1) + O((r —11,)%) 1y <7 <7y + f5(2),
where

Moo= (710, (ru?))  on Ty,.
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Finally we obtain the approximation at order 1

92 Tty +f5(s) ; 2
AZy = 2T / / o (1_M)<ui>ug%
2 Jr,, Jn, 4

b (e + (2T gty 4 - e gy )

_ iWU;Me <ui>u?rt2 (r — rtQ)Q} drds + (9(52)
27 2 iwoepie 3
S T R UCES —ebr e R
i DO g (PUS ok 5(8)4)uv<ui>x?} ds+0().  (429)

4.1.7 Numerical tests on impedance measurements

FA measurements at one position
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Figure 4.3: Approximation of impedance measurements using asymptotic models with Zq,,
n=20,1.
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We consider the same examples as in Section 4.1.5 for the full model (reference) and for
the asymptotic models using 21 and Z;; transmission conditions. The eddy current probe is
located at the center position in the vertical direction with regard to the thin layer of deposit in
copper. We compare the impedance measurement signals in FA mode (see (2.8)) at this position
between the full model and the asymptotic models.

Figure 4.3a shows the impedance measurements in their real and imaginary part. One
observes that the signals given by the aymptotic model using Z;; transmission conditions are
closer to those from the full model than the signals obtained from the asymptotic model using
21,0 conditions. We confirme this observation by Figure 4.3b which illustrates the relative error
of the signals in FA mode. The asymptotic model using 2 transmission conditions gives a
good approximation only for small layer thickness (under 40um), while the asymptotic model
using Z11 yields an accurate simulation for a large range of layer thickness interested — for
instance, the relative error in impedance measurements is under 1% if the thickness is less than
150pum.

4.2 Thickness reconstruction via asymptotic model using Z

4.2.1 Derivative of the solution with respect to a thickness increment

We assume that h € L?(T'y,) is a small thickness increment of the thin layer, i.e.
f5(2) = f5(2) + h(z).

In a configuration with a thin layer of thickness f5(z), we denote the solution to the asymptotic
model using 21 o (4.7) by u’(fs). Then the derivative of u’(fs) due to the increment h, denoted
by u'(h), is defined by

) o(h

W5+ B) = (f5) /() + o), Jim A

h=0 [[h|[L2(r,,)
We develop the variational formulation of the asymptotic model using 21 ¢ transmission condi-
tions (4.7) with the thin layer thickness fs + h at h = 0 with respect to h. The terms of order
zero is exactly the variational formulation with the original layer thickness fs. The terms of the
first order with respect to h yields

a1o(u',v) :/ iwoch(s)u’ords Yo e H(Q). (4.30)
Iy,
Using the same argument as in Proposition 4.1.1 one has
Corollary 4.2.1. Under the same assumption as in Proposition 4.1.1, the variational formula-
tion (4.30) has a unique solution v’ in H().
4.2.2 Adjoint state and derivative of the impedance measurements

We compute the derivative of the impedance measurement due to a small change in layer thick-
ness (fs — fs + h). We denote by AZy(fs) the impedance measurement for a thin layer with
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f5(z) in thickness, and by AZ}, its derivative with regard to h
NZy(fs +h) = DZu(fs) + DZgy + o(h).

From (4.28), we have
' 21 5.0 1.0
NZy = . Oc (h(s)ukul Tty + f5(s)upu; rt2> ds. (4.31)
2
To write AZj, explicitly on the thickness increment h (independent of u} ), we introduce the
adjoint state p; satisfying

ajo(pr,v) = —/F iwocfg(s);?ﬁrtQ ds Yo € H(Q), (4.32)

to

where
aio(p,v) = arp(v,p)  V(p,v) € H(Q). (4.33)
One obtains with the same argument as in Proposition 4.1.1

Corollary 4.2.2. Under the same assumptions as in Proposition 4.1.1, the variational formu-
lation (4.32) has a unique solution p; in H(SY).

Then we have

Proposition 4.2.3. Considering ui the solution to the asymptotic model using Z1 (4.7) and
pi the adjoint state satisfying the variational formulation (4.32), the derivative of the impedance
measurement ANZy; due to a thickness increment h(z) writes

27
NZy, = — I2/F oeh(s)ud (u) 4 pr)re, ds. (4.34)

Proof. From (4.32) and (4.30), we have

/th

which, together with (4.31), implies (4.34). O

iwacfg(s)uﬁcu?rtz ds = a’{yl(pl, uy) = ar0(ug,pr) = / iwach(s)ugﬁlrt2 ds,
Ty,

4.2.3 Thickness reconstruction by minimizing a least square cost functional

Similar to the least square cost functional 2.33, we define here another least square cost functional
of the layer thickness fs(z)

j(f&) - /zm% \Z(fa;C) - ZmeaS(C)|2dC' (4-35)

Zmin
Z is the impedance measurement either in FA mode or in F3 mode (see (2.8)). Hence, the
derivative of the cost functional due to a small increment h of the layer thickness f5 writes

7w = [T 15 Z 50~ meas D)) (4.36)

Zmin
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where

Zhy = %(AZ{l +AZL)  FA mode,

Z'(h) = :
From (4.34), one has
70 =7 [ atsnts)as, (437)
I Tt
where
g tgan FA mode,
B gi1 — g22 F3 mode.
and
grl = / R (iacui(u? +17l)7"t2( (fd»C) - meaS(C))> dC' (4'38)
One observes that h = g is a descent direction which minimize the cost functional
s
J'9)=-7 | la@)ds<0.

4.3 Thickness reconstruction via asymptotic model using Z; ;

4.3.1 Derivative of solution with respect to a thickness increment

We recall that h(z) is a small increment of the layer thickness fs(z). We denote by (u®(f5), A(f5))
the solution to the mixed formulation (4.25) with a layer thickness fs(z). We denote by
(u'(h), N (h)) the derivatives of (u’(fs), A(fs)) due to the increment h

(W )M+ 0) = (09(05) AU + 00, X)), Jim e

By developing the mixed formulation of the asymptotic model using Z1 ; transmission conditions
(4.25) with the thin layer thickness f5 + h at h = 0 with regard to the order of h, the terms of
the first order on h yields

ar (W, N5v,) 4+ by 1(v, 03 V) = L (v, ) V(v,9) € X, (4.39a)
bra(u',N;¢) = LY() V¢ € LA(Ty,), (4.39b)
where
s iwopie f5(s)2 _ _
Lv, 1) ::/F iwo.h(s) {rt2 (1- fii) — ,u2f5( ) ) (u®) (D) + ucfg(s))\(v)} ds, (4.40a)
LY(¢) == /F iwoeh(s) (uc f5(8)(u®)C + 3a ““J; ‘i ()" AC) (4.40D)

With the same arguments as in the proof of Proposition 4.1.2, one gets

Corollary 4.3.1. Under the same assumptions as in Proposition 4.1.2, the mized formulation
(4.39) has a unique solution (u',\') € X.
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4.3.2 Adjoint state and derivative of the impedance measurements

We recall that AZj, is the derivative of the impedance measurement AZy(f5) due to a small
increment in layer thickness (f — fs + h). From (4.29), one has

2
/o
AZ’CZ __IQ/F
to

wo, s)3
+ (fals) — Mcﬁs())m(u@)\?} as

Tt2 2

ach(s){(l . fﬁ(s) iwgcﬂcf5<3)2)< )

uk>ugrt2 + fﬁ(s)ﬂc)\ku?

2
2 : 3 2
_ QITZF/F Uc{(fa(s) . f;ij) . 1wacﬂgf6(5) )<U;€>U?Tt2 + f&(;) /J/c)‘;cu?
+ (fé(;)2 _ i‘”"ﬂ“gf5(5)4) uv<u;€>A?} ds. (4.41)

We build an adjoint state such that the derivative of the impedance measurement AZ;; has
an explicit expression on the thickness increment h(z) independant of the derivatives (uj, A})
of the solution. The adjoint state (p;,7;) in X is the unique solution of the following mixed
formulation

ai 1 (prsm; v, 9) + cr1(v, s pr) = M (v, 1)) V(v,9) € X, (4.42a)
c11(prsmsw) =0 Vw e H(Q_UQy), (4.42b)

where

aT,l(p’n;v7w) = al,l(vad);pan) +b1,1(P,77;¢) 761,1(’071#;1)[) v((pvn)v(vaw)) € X2 (443)

2 iwo, 3. 2
M(v,v) = —/F iwac{(fé(S) — f;g::) + d M6f6(8) )u?(v)rb + fé(;) preud
- (f‘S(;)Z n iWJCN;f6(3)4)Mv)\§)(E>}dS V(v,7) € X, (4.44)

and c1,1 is defined in (4.20).

Corollary 4.3.2. Under the same assumptions as in Proposition 4.1.2, the mized formulation
(4.42) has a unique solution (p;,m) € X.

Proof. We set the function space
X={(v,0) e X :c11(v,¢;w) =0 Ywe HOQ_UQL)}.
Then one finds easily that the coercivity of aj; on X is equivalent to the coercivity of a1

on X% Hence Proposition 4.1.2 implies the existence and uniqueness of solution to the mixed
formulation (4.42). O
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Proposition 4.3.3. With ud, the solution to the asymptotic model using Z11 (4.25) and (py,m)
the adjoint state satisfying the mized formulation (4.42), the derivative of the impedance mea-
surement AZy due to a thickness increment h(z) writes

2
Ny =— Ig/r

iwo 5)3
F A )+ (o) - SRy b as )

S iwoepefs(s 2 _
ach<s>{(1— Jols) _ Awoettels(s)]y o0y 4 (@i,

to Tty 2

Proof. From the mixed formulation (4.42) for the adjoint state, we have

M (uj, Ny) = a1 (pr s wg, N,) + c11(ug, Nis pr)
= a1,1(ul, Ng; i) + b (o, s Ny) = L (prmi)

s iwo, s5)?
= [ (o) {1 = P2 BRI ) et s

Tty 2
From (4.41) and the definition of M (4.44) we have

2T
0zu=-7 |

s iwo s)?
O'Ch(S){(l . f5( ) i CMcf(S( ) )<ui>u?7,t2 +f6(5)ﬂc)\ku?

to Tty 2
iwo 5)3 21 1 ———~
+ (f(;(s) — M);@(ui))\? ds — —2—]\4(%€7 )
2 14 iw
Therefore, the above two equalities yield (4.45). O

4.3.3 Thickness reconstruction by minimizing a least square functional

We use the same inversion method for thickness reconstructioni as in Section 4.2.3 by minimizing
the cost functional (4.35). Considering the derivative of the impedance measurements (4.45),
we get similarly the expression of the derivative of the cost functional as in (4.37)

T
T =7 /F gleh(s)ds, (4.46)
where
~ Jgn+g21  FA mode,
B gi1 — 922 F3 mode.
but with
Fmax s iwoepief5(5)? -
o= [ i (1 0D R 4y 0 4 e,
Zmin rt? 2
iwo e f5(s)3
I + )+ (o) = LI (0000 ) (ZT5 )~ Zreaa )
(4.47)
We verify that A = g minimize the cost functional
T'(9) =75 [ lg(s)Pds <.

T2
I Iy,
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4.4 Numerical tests

In this section, we consider some numerical examples of thickness reconstruction for highly
conductive deposits (copper). Its conductivity is 0. = 58 x 10°S/m and the its permeability is
He = Ho-

The signals of impedance measurements used for inversion are obtained from a full model.
Its numerical settings are the same for the reference full model in Section 4.1.5. On a bounded
computational domain B,, . = {(r,2) : 0 < r < ry,—2, < z < 2} with 7, = 30mm and
zx = 41mm, we consider a adaptively refined mesh with respect to the solution with a maximum
edge size hApax = 1.25mm and P1 finite elements. The degrees of freedom are about 11000.

In the inversion algorithm, we use asymptotic models to resolve forward problems. The mesh
on B,, ., is also adaptively refined with respect to the solution to the asymptotic problem using
Z1n (n=0,1) transmission conditions, with a maximum edge size hyax = 2.5mm. We remark
that this size is two times larger than the maximum edge size used in the full model. With P1
finite elements, the degress of freedom are about 4000. We set the stopping rule as

Zmax

j(fE) < E/ ’Zmeas(C)Pde

Zmin

where € is a chosen threshold. We take e = 10™* such that the relative error of the impedance
measurements obtained with the reconstructed thin layer is under 1% of the real measurements.

4.4.1 Parameterized thin layers

We consider an axisymmetric thin layer covering vertically 10mm of the tube’s shell side. We
assume that the layer thickness f5(z) is constant. Thus in the 2-D representation with (r, 2)
coordinates, the thin layer is a rectangle with f5 in r-direction the and 10mm in z-direction.
Since there is only one parameters to reconstruct, we need only the impedance signal in FA
mode at one measuring position.

target thickness (um) 10 20 30 50 75
reconstruction Zp g 9.86 19.61 29.34 N.A. N.A.
reconstruction Zq 1 9.89 19.69 29.41 48.30 71.03

Table 4.1: Reconstruction layer thickness using FA signals.

Table 4.1 gives the reconstruction results with the asymptotic models using either Z1 g or Z1 1
transmission conditions. We observes that for a small target thickness (say, less than 30um), both
models yield satisfying reconstruction results. However, when the target thickness gets larger,
the inversion algorithm with the asymptotic model using Z1 ¢ conditions does not converge. In
fact, due to the modeling error, the minimum of the cost functional is bounded away from 0.
For instance, for a target thickness 50um, Figure 4.4 shows the relative cost functional obtained
with the asymptotic model using 2 transmission conditions. Its minimum is about 10725,
still far away from 10~% which is our chosen stopping threshold for the inversion algorithm.
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Target thickness = 50 um

Relative cost FA (log 10)

-2.6 :
48 49

50 51 52
Thickness (um)

Figure 4.4: Cost functional for asymptotic model using Z1 o around the target thickness.

4.4.2 Reconstruction of arbitary thin layers

We consider some arbitary thin layers of copper with variable thickness. In the inversion algo-
rithm, we use the asymptotic model with Z; 1 transmission conditions. Figures 4.5 show some
reconstruction results using either FA signals or F3 signals. In the first example (Figure 4.5a),
we take the signals from 41 probe positions with 0.5mm between each two neighboring positions.
In the second example (Figure 4.5b), signals from 61 probe positions are used for reconstruction.
Both examples show satisfying reconstruction of the thin layers.
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Figure 4.5: Reconstruction of some arbitary thin layers.
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In the previous chapters, we discussed the eddy current model and different inversion methods
for axisymmetric configurations. However, the presence of broached quatrefoil support plates
(Figure 5.1) and non-axisymmetric deposits in real industry context motivate us to consider a
3-D eddy current model though the axial eddy current probe is not sensible to angular variations.

Figure 5.1: SG tubes maintained by a broached quatrefoil support plate.

The 3-D eddy current model is derived from Maxwell’s equations under the assumptions of
low frequency and high conductivity. In Chapter 1, the formulation of the eddy current model
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is based on the electric field E by eliminating the magnetic field H. But due to complicate
geometrical configurations of different components (tube, support plate, deposits), one should
assume some topological restrictions to ensure the existence and uniqueness for the same ap-
proach in the 3-D case. For instance, Bossavit [17, Chapter 5] discussed the configuration where
the insulator domain 27 is simply connected, which is not our case.

Alonso — Fernandes — Valli [3] built the eddy current model for the magnetic field H based
on the elimination of the electric field E, which leads to an existence and uniqueness result
without preliminary topological assumptions. This approach establishes the weak formulation
on a vectorial function space with conditions on the insulator domain

V:={v € Hy(curl; Q) : curlvgr =0 in Qz},

With this formulation, we encounter a numerical difficulty since classical finite elements do not
ensure the above condition on Q7.

To overcome this difficulty, we consider a formulation for a vector magnetic potential A and
a scalar electric potential V' in the conducting domain ¢. This formulation reported by Biro
[14] furnishes a magnetic field H satisfying the formulation by Alonso — Fernandes — Valli and
does not provoke essential numerical difficulties.

This chapter is organized as follows. In Section 5.1 we build the 3-D eddy current model for
vector potentials with Coulomb gauge condition. Section 5.2 then derives the inversion scheme
by evaluating the material derivative of the solution to the forward model and by using a classical
least square minimization method.

5.1 Formulation via vector potentials

5.1.1 Problem for vector potential with Coulomb gauge condition

This part is largely inspired from Alonso — Valli [4, Chapter 6]. We set the problem in a
bounded domain © C R3. We assume that the conductor domain Q¢ is strictly contained in €,
ie. Q¢ C Q. In our configuration, Q¢ = Q; U Qg U €1, where t stands for the tube, d for the
deposit and p for the supporting plates. The insulator writes Q7 = Q\ Q¢ = Qs U, where Qg
stands for the region inside the tube where the probe (thus the source J) is located, and €, for
the vacuum outside the tube. I'y = 9Q¢ N 0827 is the interface between the conductor and the
insulator.
We recall the time-harmonic Maxwell equations:

{ curl H + (iwe —o)E = J in €, (5.1a)
curl E — iwpH =0 in Q, (5.1b)
with boundary conditions

H xn=0 on d. (5.2)

We assume that the current density Jr = J|q, satisfies:

div Jz =0 in QI, JZ -m =0 on 0f). (5.3)
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As we < o in the conductor, with the assumption (5.3), the Maxwell equations (5.1) yield the
eddy current equations:

{ cwlH —cE=J in Q, (5.4a)
curl E —iwpH =0 in Q. (5.4b)

Since the permittivity € is neglected in the eddy current model, we lose the information con-
tained in the first Maxwell’s equation (5.1a). In fact, applying the divergence operator to (5.1a)
considering the assumption (5.3) yields

{div (eE)=0 in Qq, (5.5)

eF-n=20 on 0.

Therefore, it is necessary to add the condition (5.5) to complete the eddy current model (5.4).
Inspired by the divergence-free property of the magnetic induction pH, we consider the
formulation via a vector magnetic potential A and a scalar electric potential V' such that

: ) (5.6)
E=iwA+VV in Qc.

{,uH =curl A in Q,
Therefore, in the distribution sense, (5.4) implies

curl(p™tcurl A) — o(lwA + VV) =J in Q.

As a new unknown V is added to the system, some additional condition is necessary to obtain a
unique A. Considering the divergence of the equation (5.4a) and the complementary condition
(5.5), we introduce the Coulomb gauge condition to complete the system.

(5.7)

divA=0 in Q,
A-n=0 on 0f2.

Finally we get the complete eddy current problem

curl(p™tcurl A) — o(lwA + VV) = J in (5.8a)
divA=0 in Q, (5.8b)
A-n=0 on 01}, (5.8¢)
(p tewrl A) x n =0 on 052, (5.8d)

where the last boundary condition (5.8d) comes from (5.2).

It is difficult to deal with the Coulombe gauge condition (5.8b), since classical finite elements
do not keep the divergence-free property. [4, Chapter 6] proposes the addition of a penalization
term: by introducing a constant u, > 0 representing a suitable average of p in 2, the Coulomb
gauge condition is incorporated in (5.8a):

curl(p teurl A) — p;'VdivA — o(iwA +VV) =J in Q.
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To ensure
div(cE) = —divd =0 in Q¢,
ocE-n=[Jpr, n=0 on I,

where [-|p, is the jump through the interface I': [a]p
conditions

= az — a¢, we also add the following

*

div (c(iwA +VV)) = =divd =0 in Qc,
o(iwA+VV)-n=[Jr, n=0 on I',.
Therefore, we get the problem

curl(pteurl A) — p;'Vdiv A — o(ilwA +VV) = J in Q, (5.9a)
div (oc(iwA +VV)) = =divd =0 in Qc, (5.9b)
o(iwA+VV) - n=[J|r, n=0 on I'y, (5.9¢)
A-n=0 on 09, (5.9d)
( (pteurl A) x n =0 on 0. (5.9¢)

[4, Lemma 6.1] show the equivalence between the problems (5.8) and (5.9).

It is worth noting that in numerical tests, the convergence of nodal finite element approxi-
mation is generally not ensured due to the presence of re-entrant corners or edges (see Costabel
— Dauge [32]). Nevertheless, [4, Remark 6.6 states that the nodal finite element approximation
is convergent for the Coulomb gauged vector potential formulation.

5.1.2 Variational formulation of the eddy current problem via vector poten-
tials

We define the function space

X(Q) = H(curl, Q) N Ho(div, Q). (5.10)

We multiply (5.9a) by ¥ and (5.9b) by ®. By integration by parts, one gets the variational
formulation of (5.9)

_ 1 —

a(A,V; ¥, ) = / JWdz—— | J-Vodz V(¥ )€ X(Q) x H'(Qc)/C,  (5.11)
Q W Jac

where

1 — 1 —
ala,v;, ) ::/ (M curla - curl ¢ + —div adiv 1#) dx
Q

*

1 S
+ o(iwa + V) - (iwp + Vo)dz V(a,v),(,¢) € X(Q) x H (Q¢)/C.
Qc
(5.12)
We may refer to [4, Theorem 6.3 to see the equivalence between the variational formulation
(5.11) and the strong problem (5.9). We conclude from [4, Section 6.1.2] that

Proposition 5.1.1. Let u > 0, o > 0 belong to L>®(Q). J € L*(Q)3 has compact support
in Qs C Q7 and satisfies divd = 0 in Qs. Then the variational problem (5.11) has a unique
solution (A, V) in X () x H(Q¢)/C.
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5.2 Deposit reconstruction via shape optimization

5.2.1 Shape and material derivatives of the solution

For any regular open set Q@ C R3, we consider a domain deformation as a perturbation of the
identity

d+6:Q— Oy
Ty, (5.13)

where 8 € W1>(Q, Q)3 is a small perturbation. To make a difference between the differential
operators before and after the variable substitution, we denote by curl,, div,, V., the curl,
divergence and gradient operators on Q with z-coordinates and by curly, div,, V, those on Qg
with y-coordinates. For any (a(Qp),v(Qy) defined on Qp, we set

ay(0) = a(Qy) o (Id + ), (5.14a)
acurl( ) = (I +V6)'ay, (5.14b)
agiv (8) = det(I + VO)(I + V) 'avy, (5.14c)
vy (0) = v(Qp) o (Id + 0). (5.14d)

which conserve the corresponding differential operators (see for example [62, (3.75), Corollary
3.58, Lemma 3.59])

(I+V0) 'Viav(0) = (Vya(Q)) o (Id +6), (5.152)
detj(}:_vgg) curly @y (0) = (curly a(Qg) o (Id + 6), (5.15b)
Wdi”adiv (8) = (divya($y)) o (Id + ), (5.15¢)
(I+V0) "V,ov(8) = (V,v()) o (Id + 6), (5.15d)

where VO := ( ) i,j 1s the Jacobian matrix. In the sequel, we write curl, div and V for curly,
div, and V, respectlvely

Definition 5.2.1. Let (a(Q),v(Q)) some shape-dependent functions that belong to some Banach
space B(Q), and 8 € WH°(Q, Q)3 a shape perturbation. The material derivatives (b(0),u(6))
of (a,v) are defined by

acurl(g) = acurl(o) b(e) + 0(0) = CL(Q) + b(@) + 0(0)7 (516)
vy (0) = vy (0) +u(8) + 0o(0) = v(Q) + u(8) + 0(8), (5.17)

where limg_, % = 0. We also define the shape derivatives (a'(0),v'(0)) of (a,v) by

a'(6) = b(6) — (8- V)a(Q) - (V) a(Q), (5.18)
v'(0) = u(0) — 0 - Vu(Q). (5.19)
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The derivatives bgiy (0) and by (0) of a which conserve the divergence operator and the gradient
operator respectively are given by

baiv (8) = b(0) + (divOI — VO — (VO))a(Q), (5.20)

by (0) = b(8) — (VO)'a(Q). (5.21)

Remark 5.2.2. Using the chain rule, we have from Definition 5.2.1 that formally, in w C QNQy,
a(Qp) = a(Q) + d'(0) + o(0), (5.22)

Qgiv (0) = agiv (0) + baiy (0) + 0(0) = a(Q) + baiy (0) + 0(0), (5.23)

av(0) =av(0) + by(0) +0(0) = a(Q) + by (0) + 0(0), (5.24)

v(Qy) = v(Q) +v'(0) + o(8). (5.25)

Remark 5.2.3. The definition of the material derivative b(0) of a here is slightly different from
that in the azisymmetric 2-D case, which is similar to the definition of the derivative by ()
which conserves the gradient operator. In fact, the material derivative is defined so as to keep
the boundary or transmission conditions. In the axisymmetric 2-D case, we apply the gradient
operator on the weighted azimuthal electric field w and its material derivative defined with respect
to the gradient operator keeps the same transmission conditions at the interface with jumps of
coefficients. In the 3-D case, however, it is the curl operator that one applies on the vector
potential. Thus its material derivative is defined with respect to the curl operator to conserve the
transmission conditions.

Precisely speaking, if we denote by [-] the jump through the interface T', i.e. for any f(x)
defined in a vicinity of I' and any xg € T

[f)(@o) := f+(z0) — f-(0),
with  fy(xg) = lim f(z) and f_(xg)= lim f(x).

Qydx—x0 Qgdx—x0
then the transmission conditions satisfied by A € X ()
[n-curl Al = [u'n x curl A] = 0 on T, (5.26)

are also satisfied by its material derivative B(0) € X ()
[n-curl B] = [~ 'n x curl B] = 0 on T (5.27)

We rewrite the variational formulation (5.11) on £y
1 — 1 — 1 S
/ < curl, A - curl, ¥ + —div yAdivy\IJ> dy + — o(iwA+VV) - (iw¥ + VP)dy
Qy 14 Lo lw Qco

_ 1 _
:/ J -¥dy — — J-Vody V(‘I’, <I>) € X(Qg) X HI(QCQ)/C. (5.28)
Qg W JQce

We set
Ay (6) = A(Q) o (Id + ),
Aon(0) = (I +V0)' Ay,
Agiv (0) = det(I +VO)(I +VO) Ay,
V5 (6) = V() o (Id + 6),
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and we choose the test functions such that
U= (I+V0) ¥(Q)o(ld+86), &=o(Q)o (Id+0). (5.29)
We set also
Wi, (0) = det(I +VO)(I +VO) LI+ VO) ' =det(I + VO)(I +VO) W (Qy) o (Id + )

which conserves the divergence operator

1

ot T o) Y Laiw (8) = (div, ¥(Q)) o (1d + 6).

By variable substitution y = (Id + 0)z, the left-hand-side of (5.28) writes

1(I+Ve)(I+Ve) — 1 1
- 1 Aqu -cutl @+ —
/Q ( 0 det(I+ve)| M A T Vo))

div Ag;y div \Il(hv> dz
- é o ol det(I +VO)|(I+VO) I+ VO) " (iwAcn + VVy) - (¥ + V) dz. (5.30)
Since suppJ N suppf = (), the right-hand side of the weak formulation (5.28) writes simply:
/ J - ¥dr — l J - Vodr. (5.31)
Q W Jae

Like in Definition 5.2.1, we denote by (B(0),U(0)) the material derivatives of (A, V'), and by
baiv (@) and by (0) the derivatives of A which keep the divergence and the gradient operator
respectively. Considering the developments

|det(I + VO)| =1+ divO + o(0),

(I+VO) ' =1-V60+0(0),
we develop the left-hand-side (5.30) and the right-hand-side (5.31) with respect to 6. The terms
of order zero with respect to € give exactly the variational formulation (5.11) on € and therefore

vanish. Using the Coulombe gauge condition div A = 0, the first order terms with respect to 6
yield

1 — 1 _
/ (/J curl B(0) - curl ¥ + M—div By (0)div !P) dx
Q *

+ i o(iwB(0) +VU(0)) - (iw¥ + VP)dx
iw Jo,

1 J—
= / ;(div 01 — VO — (VO))curl A - curl ¥ dz
Q

1 .
+— o(—divOI + V0 + (VO))(iwA + VV) - (iw¥ + VD) dz. (5.32)
Qc

We substitute Bgiy by (5.20) in (5.32), and get the weak formulation for the material derivatives
(B(9),U(8))

a(B(),U(0); ¥, ) = L(¥, )  Y(&,&) e X(Q) x H(Qe)/C, (5.33)
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where
1 _
L(w,P) ::/ —(div@I — VO — (VO)") curl A - curl ¥ dx
QM

—/ idiv ((div 0I — Vo — (Ve)t)A> -div¥ dx
Qq+Qf Hx

1 -
+— o(—divlI + VO + (VO)")(iwA + VV) - (iw? + V) dy. (5.34)

1w Q¢

Remark 5.2.4. In the above expression of L(¥,®) we used the notation de+Qc which means
d

the integrals on Qg and on Qg seperately. That is because the term div ((div@I — V0 —(VO)")A)
is not defined on the whole domain 2 = Qg U Qg for lack of regularity on ', but only on the
subdomains Qg and QS.

Using the same argument as for Proposition 5.1.1, we obtain

Proposition 5.2.5. Let € Wh*°(Q, Q)3 a domain perturbation. Under the same assumptions

as in Proposition 5.1.1, the wvariational formulation for the material derwatives (5.11) has a
unique solution (B(0),U(0)) in X(2) x H(Q¢)/C.

To simplify the expression of the variational formulation (5.33), we introduce a computational
result. We assume that on Q C 2, the coefficients p and o are constant. We define a shape-
dependent form

aue(Q)(a,v;p, @) == /Q ; curla - curl ¥ dz + iij/ga(iwa + Vo) - (iwyp + Vo) dz.  (5.35)

We denote the tangential component a vector and the tangential gradient operator on some
boundary or interface by

a,:=a—(a-n)n,
V.v:= Vv — d,un.

Lemma 5.2.6. Let Q a regular open set, > 0 and o > 0 constant on Q and Id+60 : Q — Qy
a deformation. Let (a,v) = (a(Q),v(Q)) and (¢, 0) = (Y(Q),»(Q)) some shape-dependent
functions with sufficient reqularity. We assume that the material derivatives (b(0),u(0)) of
(a,v), the shape derivatives (a'(0),v'(0)) of (a,v) and the material derivatives (n(0),x(0)) of
(¥, @) defined as in Definition 5.2.1 exist. If (a(Q),v(Q)) satisfy in the weak sense

curl(p~ ! curla) — o(iwa + Vo) =0  in Q, (5.36a)
diva=0 in Q, (5.36b)
o(iwa + Vv) -n =0 on 0Q, (5.36¢)

then the shape derivative of . (Q)(a,v; 1, ¢) that we denote by OZ;L7J(Q)(9)(G,U;¢>¢% i.e.

ap,0(Q0)(a(Q0),v(Q0); Y(Qn), #(Qo))
= a,,0(Q)(a(Q),v(Q); ¥(Q), #(Q)) + @, , () (0)(a(Q),v(Q): ¥(Q), 6(Q)) + o(8),
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satisfies

@0 (Q)(0)(a,v; %, 6)
= ay,o(g)(a/(a)v Ul(e)v ¢7 ¢) + aH,U(Q)(a7 v; n(a)v X(e))

+ / l((9 -curla)(n - curlvp) ds + i o(n-0)(iwar + V) - (wp; + V,¢)ds. (5.37)
oQ M W Joo

The proof, which involves some exhaustive computations, is given in Section 5.3.2.

Proposition 5.2.7. Under the same assumptions as in Proposition 5.2.5, we assume in addition
that p, o are piecewise constant and constant in each subdomain (Qg, U, Qq, Qy or Q). If
the domain perturbation 6 has support only on a vicinity of the interface I' between the deposit
domain Qg and the vacuum 0, (T = 0QqNIKY, ) and vanishes in s, then the material derivatives
(B(0),U(0)) of (A,V) satisfies

a(B(8),U(0):W,8) = LB, &) Y(,P) € X(Q) x H(Qc)/C, (5.38)
where
L(W, )
- /Q » (i curl((0- V)A + (VO)'A) - curl & + Ml*div (8- V)A + (VO) A)div !l'/) dz
+ i o o <iw((0 V)A+ (VO)'A) +V(6- VV)) - (w® 4+ VP) dz

+ /F m 6 -n)(n-curl A)(n - curl ) ds

+ 1 [0 n)ol(wA, + V., V) - (0B FV,8)ds W(F, ) € X(Q) x H(Qe)/C. (5.39)

1w Jr

Proof. Let A = {s,t,d,v,p} a set of indices with its elements designating the different subdo-
mains as well as the corresponding permeabilities and conductivities. We rewrite left-hand-side
of the variational formulation (5.28) for (A(€),V(Qg)) as

5 o () A(Q). V(20 (), 2(O0)) + [ v, A(Q0) - div T dy.
iEA o M*

A(Q) P()

If we choose the test functions (¥,®) as in (5.29), their material derivatives vanish. Since
(A(Q0), V(Q9)) satisfy both (5.8) and (5.9), we can apply Lemma 5.2.6 to the terms oy, »,(€2i6),
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which yields the shape derivative of A
A(Q)(0) =D 0., ()(O)(A,V; &, )

1€EA
=3 0, (2)(A'(6), V' (0): @, D)
LISHN
_ / [1(0 -curl A)(n - curl!P)} ds — i (0 -n)[o](iwA, + V.V) - (W&, + V,P)ds
LM iw Jr

=3 (a (2)(B(6), U(0);,8) + ay,.0,(%) (—(8 - V)A — (VO)' A, (8- VV); w,@)
€A

_/F E <(0~n)(n~curlA) 10 (nx (curl A x n)))(n-curlu'/)} ds

— L [(0-n)e](wA, + V. V) - (0 + V.8 ds
W Jr
1 .f
:a(B(O),U(O),SP,@)—/Q'u*dlvB(H)dlvsPda;

— / 1 curl((6 - V)A + (VO)'A) - curl ¥ dx
Q4+08 M
- i U<iw((0 V)A+ (VO)'A)+ V(6 VV)> (iw¥ + V) dx

iw Ja,
— /F LIJ (0 -n)(n-curl A)(n - curl @) ds
_ % [(0-mloliwd, +V,V) - (@ 5 VD) d. (5.40)
In the last equality we have used the transmission conditions
[n-curlA] =[n x (p 'ecurlAxn)]=0 onT.

From the derivation of L(¥,®) (5.34), one deduces easily that the shape derivative of the
penalization term P is

P'(Q)(0) = / idiv B(6)div¥ dz —|—/ idiv <(div 01 — Vo — (VG)t)A> div ¥ dz.
Q Hx Qq+Q8 Hx

Using the identities (5.57) and the Coulombe gauge condition div. A = 0, one verifies that on
each subdomain €2; (i € A) of Q

div ((diveI — VO — (V)" A) = div ((div @I — VO — (V)" ) A — curl(A x 0))
— div (divOA — (A- V)0 — (VO)'A — AdivO +6divA — (§-V)A + (A-V)9)
=—div((0-V)A+ (V) A).
Thus

PQ)(6) = / L div B(6)div @ do — / L div((6-V)A+ (VO A)divFde.  (5.41)
Q Hx Qa+08 H
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We derive easily from (5.40) and (5.41) the variational formulation (5.38) with £(¥,®) given by
(5.39). 0

Remark 5.2.8. The shape derivatives (A'(0),V'(0)) are less regular than the material deriva-
tives (B(0),U(0)). With local regularity of A in Qg4 and in QEi; we have from the definition
(5.18)

curl A’(6) = curl B(0) — curl (6 - V)A + (V6)'A) = curl B(0) + curl(6 x curl A).
One observes that in a vicinity of T' the term curl A is only in L*(Q)3, thus one can only write
curl(curl A x 0) in the weak sense. In fact, in the distribution sense, a simple layer potential

should be added to describe the discontinuity (see for example [39, Chapter 3]). Thus A is in
the function space

X(QqU %) = {a:alg, € X(Q), alg: € X5

We can define a form similar to a(-,-;-, )
1 — 1 _
ala,v; v, p) = / < curla - curl + —div adiv 1,ZJ> dz
Q+08 \ M Hox

+ i o(iwa + Vv) - (iwy + Vo) dz V(a,v), (¥, ¢) € X(QqU QEI) x HY(Qe)/C.
Qc

From (5.38) and the relations (5.18) - (5.19) we have
1 _
a(A'(6),V'(0);¥,®) = / [M] (@-n)(n-curl A)(n - curl¥)ds
r
1 S
+ (0-n)o](iwA, + V. V) (iw, + V,P)ds V(¥,P) € X(QqU Qg) x H'(Qc)/C.
r

(5.42)

To complete the system, we should consider a mized formulation based on (5.42) and an addi-
tional formulation describing the discontinuity of (n - curl A’(0)) and (u~'curl A’(0) x n) on
the interface T’

[n - curl A'(8)] = [n - curl(@ x curl A)],
[ teurl A(8) x n] = [t curl( x curl A) x n].

5.2.2 Shape derivative of the impedance measurements

We recall the expression of the impedance measurement in 3-D

iwl? w0
By substituting the electric field by the vector potentials (see (5.6)) one gets the impedance

1 1 1
Ay = / (( — —)curl Ey, - curl EY — iw(o — 0°)E}, - E?) dz
Qq

measurement as a shape-dependent functional

1

i 1
AZyp(Qq) = ?;/9 <(M — E) curl Ay, - curl AY
d

1
— — (0 — ") ((wAL + VVi) - (iwA) + VVIO)> dz. (5.43)

1w
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Proposition 5.2.9. Let (Ag, Vi) the solution to the variational formulation (5.11) with coef-
ficients u, o, and (A2, V%) the solution to (5.11) with coefficients u°, o® which do not depend
on the deposit domain Q4. Let (A}, V)) the shape derivatives of (A, V). Under the same as-
sumptions as in Proposition 5.2.7, the shape derivative of the impedance measurement A Zy(2q)

writes
AZ3y(Qa)(0)
— II%) /Qd ((; — Mlo) curl A}, - curl A? ——(0— 00)(1WA2; +VV;) - (iWA? + VVIO)> dz
i% F(a n) <(/1L — :0) curl Ay, - curl AZO
- %(0 — o) (wAyr + V. Vi) - (iwAf, + VerO)> ds. (5.44)

Proof. From (5.43) one has

I2 - -
5 DZ(Qa) = o (2a) (A, Vi AY,—V0) — a0 50 () (A], V)5 Ay, = Vi)

As (Ay, V) satisfy (5.36) with constant u, o in g4, and A%, V2 verify (5.36) with constant uP,
0% in Qg, Lemma 5.2.6 implies

12 - -
S 0%u(Qa)(0) = ), () (0)(Ax, Viis A}, =) — W0 00(2a)(0) (A}, V5 Ay, = Vi)

= 0 () (AL(6), Vi(0); A, —V0) + a0 (Q) (Ap, Vi; BY(0), —UP(8))

— a0 ,0(Q) (AY (8), V¥ (8); Ak, = Vi) — 0 00 () (AY, Vs Bi(6), — Vi (8))

1 1
+ / ((0 -curl Ag)(n - curl AY) — —5(0 - curl AD)(n - curl Ak)> ds
Qg \H H
1
-0 (0 — ") (0 - n)(iwAk, + V. Vi) - (WA + V. V") ds, (5.45)
0Qyq

where (B(0),Ux(0)), (BP(0),UP(0)) are the material derivatives of (A, Vi) and (AP, V)
respectively. Now we will compute term by term (5.45). Remark at first that

a0 50(Q)(AY (8),V" (8); Ay, ~V;) = 0

because the shape derivatives (A?/(B), VEO’(B)) vanish as the potentials (A, V,?) in the deposit-
free configuration do not depend on Q4. This, together with (5.18) and (5.19), also implies

BY(0) = (6-V)AY + (V) AY, Ub@)=6-vvP.

Hence, by substituting (BP(6),U?(0)) with the above expressions in the expression of
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Ao (Qd)(Ak7 Vk’; E?(0)> _Ulo (0))7 one gets

0o () (A, Vies BY(9), ~U9(0)) = 0.0(Q) (Ak, Vi; (6 - V)AD + (VO)' AV, 0 - VVIO)

1
= / m curl Ay, - curl ((6 - V) A} + (V6)'AD) dx
Qq

-/

51
1
- o(iwAy, + Vi) - (iw((0 - V) + (VO))A) + V(8- VV])) dz.
Qq

-~

So

We compute S1 and So

1
S1 :/ ~ curl Ay, - curl(curl AY x 6) dz
Qg M

[u—

1
:/ curl(= curl A) - (curl AY x 0) dz + / —(curl Ay, x n) - (curl AY x 0)ds
Qq K Qg

;_A‘Q

:/ o(iwAy + VV) - (curl A x 0) da —I—/ —(curl Ay x n) - (curl AY x ) ds,
Qq 0y

‘:

and

Sa :% / U(iwAk + VVk) . <iw(V(0 . A?) + curl A? X 0) + V(6 - VVP)) da
Qq

:_i O'(iLL)Ak + VVk) . <(iw curl A? x 0) + V(G . (iwA? + VVk))> dx
Qq

= o(iwAg + VVy) - (iwcurl A x ) da.
w Qq

The last equality is obtained by integration by parts and by the fact that div (o (iwAr+VV%)) =
in Q4 and that o(iwAy + VVg) - = 0 on 0Qy4. Therefore

O‘u,a(Qd)(Aka Vk§Bilo(9)v —UZO(O)) =85 -5

1
= —(curl Ay, x n) - (curl AY x 0)ds
o0y M :
d

= / 1 ((0 -n)(curl Ay, - curl AY) — (0 - curl A)(n - curl A?)) ds. (5.46)
o, M

Similarly, we have

00,00 (2)(A], V' Bi(6), ~Ux(0))
= 0,00 () (AP, VI%s A (0), ~V(0))

+ 0,00 () (AD V5 (0 V) Ay + (VO Ay, —8- VTV
= Q0 50 (Qd)(A;c<0)7 Vkl(o)v K?? _W)

+/ 10<(9 -m)(curl Ay, - curl AP) — (n - curl Ag)(0 - CuﬂA?)> ds. (5.47)
Qg M
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From (5.45), (5.46) and (5.47), and considering the fact that the support of € is on a vicinity of
I, we get (5.44). O

On I', we have

curl Ay, - curl A? = ((n-curl Ag)n +n x (curl Ag x n)) - ((n - curl AN n +n x (curl AY x n))
= (n-curl Ay)(n - curl AY) + (curl Ay x n) - (curl AY x n).

With the above equality and the relations (5.18) — (5.19), it follows that

= lw/ { ; — i) curl By, - curlA? - .i(a — o) (wBy + VUy) - (iwA] + VVlO)} dz
Qq

12 O iw
i 11 , .
7 o, {(M - E> curl((0 - V)Ag + (VO)' Ay) - curl A;
1
- —(0-d") <iw((0 V)Ai + (V0)'Ay) + V(0 - VUk)> (iwAj + VV}O)} dz
iw 1 1
+ 7 /F(H - n){(u - E)(n -curl Ag)(n - curl AY)
— (- ,uo)(lcurlAk xmn)- (io curl AY x n)
7 u
1
——(o- o) (iwAgr + V, Vi) - (wAf, + VTV}O)} ds. (5.48)

5.2.3 Expression of the impedance shape derivative using the adjoint state

We follow the method of Hadamard representation to give an expression of Z},;(€4)(0) indepen-
dent of the shape or material derivatives ((A’(0),V'(0)) or (B(0),U(8))) of the solution (A, V)
by introducing the adjoint state (P, W;) € X(Q) x H*(Q¢)/C related to the solution (AP, V%)
in the deposit-free case. The adjoint problem writes

(P, Wi ¥, @) = L*(¥,d) VY(¥,®) e X(Q)x H (Q)/C (5.49)
where for any (a,v), (¥, ¢) in X(Q) x H'(Q¢)/C

a*(a,v;, ¢) == a(p, ¢;a,v)

1 — 1 — 1 -
= / < curla - curly + —div adiv 1,b> de — — o(iwa + Vv) - (iwy + Vo) dz,
Q\M Hos W Jac

L) [

o, <( 1 L )curlZ? -curly + %(a - JO)(iwA? + VVlO) - (lwtp + ng)) dz.

poopo
Proposition 5.2.10. Let (P, W) the solution to the adjoint problem (5.49). Under the same
assumptions as in Proposition 5.1.1 for u and o, one verifies

divP, =0 in .
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Proof. By integration by parts, one verifies that the variational formulation for the adjoint
problem (5.49) is equivalent to the following strong formulation of the problem with penalization

curl(p~teurl P)) — p;'Vdiv P + o (iwP, + VIV))
1 1 -5 — =7

- (; - E) curl(curl A9) — (0 — 0%)(iwAY + V1)) in Qg, (5.50a)
curl(p ! curl P)) — p7'Vdiv P, + o (iwP, + VW) = 0 in QF, (5.50D)
[n-curl P =0 on T, (5.50c)

1 1 —

[ tewl P xn] = —(; - ﬁ)curlA? X on I, (5.50d)
div (o(iwP, + VW) =0 in Qc, (5.50e)
o(iwP, + VW) - n =0 on I'y, (5.50f)
P-n=0 on 052, (5.50g)
(pteurl P) xn =0 on 0f). (5.50h)

Using the same arguments as in the proof of [4, Lemma 6.1], we verify that div P, =0on Q. O

Proposition 5.2.11. Let (A, V}) the potentials induced by the coil k of the eddy current problem
with deposit domain g, (A?, Vko) the potentials induced by the coil I for the deposit free case,
and (P, W) the adjoint states related to (A?, V?) which satify the adjoint problem (5.49). Then
under the same assumptions as in Proposition 5.1.1 for p and o, the impedance shape derivative
(5.48) writes also

NZ1(94)(0) = %} /(n : 0){ [i] (n-curl Ay)(n- P, —n - curl A?)
r
1 1 1 .
— [y] ;curlAk Xmn| - E(curlPl)Jr X n — ECUI‘IAI X n

1 I
+ —lo)(w A, + V- Vi) - (WP + V- W + WA + VTWO)} ds. (5.51)

Proof. Taking (¥, ®) = (By(0),Ux(0)) € X (2)x H*(Q¢)/C in the adjoint problem (5.49) yields
a* (P, Wi; Bi(0),Ux(0)) = L*(By(0), Ur(0)).

On the other hand, taking (¥, ®) = (P, W;) in the variational formulation (5.38) for the material
derivatives (By(0),U(0)) implies

a(By(0),U(0); P, W) = L(P;,W)).

Since

a* (P, Wi; B(0),Uk(0)) = a(By(0), U(0); P, W)
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and div P, = 0 (see Proposition 5.2.10), one obtains

L*(By(8),U(0)) = L(P, W)).

1 —
= / —curl ((6 - V)Ay, + (V6)'Ay) - curl P, dx
Qa+08 H

+ i a(iw((e -V)A, + (VO)'Ay) + V(0 - VVk)) (iwP, + VW) dz

1w Qe

+ /r [i] (0 -n)(n-curl Ay)(n - curl P)ds

1 -
+ o (0 -n)[o](iwAkr + V, Vi) - (wP,; + VW) ds.
r

In Q4 or in Qg one verifies

(0-V)AL+ (VO)'A, =curl Ay, x 0 +V(0 - Ay),
curl ((0- V) Ay + (VO)' Ay) = curl (curl Ay, x ).

Thus, considering (5.50e) and (5.50f), we compute

L*(By(0),Ux(9)) = L(P, W)

1 — 1 -
= / —curl (curl Aj X 9) -curl Pydx + — in(curl Ay X 0) (iwP; + VW) dx
Q

dJng I 1w Q¢
T
1 _—
_|_/ LJ (0-n)(n-curl Ag)(n - curl P;)ds
r
1 e
+— | (0-m)[o)(wAks + Vo Vi) - (WP + VW) ds. (5.52)
r

We remind that (curl Ax x 0) belongs to X(Q4 U 95,0)- We multiply (5.50a), (5.50b) by
(curl Aj X 0), integrate by parts and then take the complex conjugate, which implies

1 1
I:/ = — eurl AY - curl(curl Ag x 0) dx
Qd(ﬂ MO) I ( )

=L (6 - 0% (wAY + VYY) - (iw(eurl Ay x 0)) de
1w Qq
1 — 1 1 —
+/ [ curl P, - ((curl Ay, x ) x n)] ds + /( — —)curl AY - ((curl A x 8) x n) ds
rLH r e M
= / (l — io) curl A - curl (8 - V) Ay, + (VO)' Ay) dz
00 B M
1
- (o0 — o) (iwAY + VV,0) - (iw((e V)A,+ (VO)'Ay) + V(0 vvk)> dz
Qq

- /F(e -n)[ul <; curl Ay, x n> : (ljo(curlpm x n> ds (5.53)
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The last equality is due to the transmission conditions (5.50c) — (5.50d) for P; and those for A
(5.26) on I'. (5.52) and (5.53) imply

L (Br(0),Un(0)) —/ = /jo)cuﬂA?.curl((e-V)AH (VO)'Ay) do

Qq M

+ é i (0 — %) (iwA? + VV})) - <iw((0 V)Ay + (VO)'Ay) + V(6 - vvk)> dz

_ /F(a . n){ m (- curl Ag)(n - curl B) — [1] (; curl Ay x n) - (:O(curlpm X n)
4<1wmwmw+vwm-mm@+VA%ﬁd& (550

iw
We remark that on I' one has
0

L=t =i b=

Considering the definition of L*(-,-), we substitute the above integral (5.54) in the expression of
shape derivative of AZy; (5.48) and finally obtain (5.51). O

5.2.4 Shape derivative for a least square cost functional

We recall the least square cost functional

J@@—/m“wmmo—zmaoﬁa,

Zmin

where Z is either Zp4 or Zps according to the measurement mode. Since
i i
Zra(Qa) = 5(8211(Qa) + AZn (L)), Zr3(Qa) = 5(DZ0(Qa) — £Z22(Qa)),

Zpa(0) = %(AZh(@) +0Z5(9)), Zi3(0) = 5 (AZ11(0) — AZ5(0)),

i
2
the shape derivative of J(£4) is in the form
w
7Q4)(0) = =2 [ (n-0)gds, (5.55)
I# Jp,
where the shape-dependent functional g depends on the solutions to the forward problem
(Ar, Vi), (AY, V) and the adjoint state (P, W). Precisely,
_ { g11 + 921 absolute mode,

g11 — g22 differential mode,

with

Zmax 1 .
Gl = / %((Z(Qd; () — Zmeas(g)){ [] (n - curl Ag)(n - curl P, — n - curl AY)
Zmin 'LL
Lo 1 1 ]
— [y ;cur X7 Ecurlﬂngn—ﬁcuﬂAl X n

1 -
+ —[o|(wAk; + V: Vi) - (WP, + VW, + iwA?T + VTVZO)}> dc. (5.56)

1w
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We choose the shape perturbation 8 such that
0=gn onl,

which is a minimizing direction since

7'0)0) = =35 [ lof s <o

5.2.5 Validation for axisymmetric configurations

We consider an axisymmetric case and reduce the above 3-D eddy current model to 2-D in
cylindric coordinates O — rz. From (5.6) we have
curl E = iwpH = curl(iwA) in Q,
{E:iwA—i-VV in Qc¢.
We already know that in the axisymmetric case, only the azimuthal component Ey of E is non-

trivial. We denote by w = rEjy the weighted electric field. Similarly, for the adjoint state we set
Q such that

curl Q@ = curl(iwP) in €,

Q=iwP+ VW inQc,
and we denote by p = rQy the weighted azimuthal component of Q. Then with the expressions
of operator curl in the cylindrical coordinates, one verifies easily that the functional gg; given
by (5.56) has exactly the 2-D expression (2.34) for axisymmetric configurations.

5.3 Appendices

5.3.1 Differential identities

curl(Vf) =0, (5.57a)
div (curlv) = 0, (5.57b)
(u-V)v = (Vo)u, (5.57c)
curlu x v = (Vu — (Vu))v, (5.57d)
V(u-v)=uxcurlv+v x curlu+ (u-V)v + (v-V)u, (5.57e)
curl(u x v) = udivo —vdivu + (v - V)u — (u - V)v. (5.57f)

5.3.2 Proof of Lemma 5.2.6

Proof. By definition, one has

0 (Q0)(a(Qp), v(Q0); Y(Qp), 9(Qp)) —/ 1CUﬂy a(Qy) - curly ¥ (Qy) dy
Qy M
1

+— | oliwa(Qp) + Vyv(Qy)) - (iwp(Qy) + Vyo(Qp)) dy.

W S,
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Considering the variable substitution (Id +8)~! : y — 2 with the notations introduced in (5.14)
and the differential identities (5.15), we rewrite the above form on @ = (Id + 8)~1Qy

curl @¢y,y - curlde

‘ [ 1(I+Ve)(I+V8)
u,0(Q0)(a(Qp), v(Qp); P(Qp), (Qp)) = /Q w |det(I+V8)|

1 S
+— | oldet(I+VO)|(I+VO) I+ VO) " (iwacm + Vvy) - (whewt + Vov) da.

ILLJQ

If (b(0),u(0)), (n(0),x(0)) are respectively the material derivatives of (a,v) and (), then
one can develop the above form with respect to 6. Since (@cui(0),vv(0)) = (a(Q),v(Q)),
(Yeur1(0), v (0) = ¢(Q)), the terms of order zero with respect to 0 give exactly

a,0(Q)(a(Q),v(Q); ¥(Q), ¢(Q)),

and the first order terms with respect to @ are

0 (Q)(5(8),u(0); %(Q), #(Q)) + 0 (Q)(a(Q), v(Q); 1(0), x(0))

1 _
+ / —(~div@ + VO + (V)" curla - curl 4 dz
QK

-/

~~

I

+ é o(diveI — Ve — (V)" (iwa + Vv) - (iwyp + Vo) dz . (5.58)
Q

I

We compute term by term. Using the differential identities (5.57) and the fact that (a,v) satisfy
the conditions (5.36), one verifies

(—divOI + VO + (V)" curla
= —curl(curla x 8 + V(0 -a)) + V(0 - curla) + curl(curla) x 6
= —curl((8-V)a + (VO)'a) + V(0 - curla) + curl(curla) x 6
= —curl((8 - V)a + (VO)'a) + V(0 - curl a) + po(iwa + Vo) x 6.

Hence

I, =— /Q ! curl((0 - V)a + (V6)'a) - curl dz

o
1 — _
+/ —V(6 - curla) - curl¢dx+/ o((iwa + Vv) x 0) - curlp dz .
QK Q
IYl Ti2

By Stoke’s theorem, one has

VATIES / ldiv ((6 - curla) curl ) do = / l(0 -curla)(n - curl ) ds.
oM oQ M
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By integration by parts, we compute

AP :/ ocurl ((iwa + Vo) x 0) - ¢ dz +/ o{((iwa + Vv) x 8) x n} -1 ds
Q 09
= /Q o{div0(iwa + Vv) — div (iwa + Vv)0 + (8 - V)(iwa + Vv) — VO(iwa + Vv)} - ¢ dx
+ / o{((iwa+ Vv)-n) -0 — (0-n)(iwa+ Vov)} - ¢pds
0Q

=— % o{(diveI — VO)(iwa + Vv) + (8 - V)(iwa + Vv)} - (iwep) dz
Q
+ i (0 - n)(iwa + Vv) - (iwp) ds.
1w 89
Therefore

T, = — / 1 curl((8 - V)a + (V6)'a) - curlp dz + T11 + 1o
oM

=— / ;curl((e -V)a + (Vh)'a) - curlvp dz
Q
— i o{(div@I — VO)(iwa + Vv) + (8 - V)(iwa + Vv)} - (lwp) dz
Q
1 — 1 N
+ / —(0 - curla)(n - curly)ds + — (6 -n)(iwa + Vv) - (iwp) ds. (5.59)
oQ M W Jjoo
Now we compute the term Zo

1 _
) = o(divel — VO — (VO)')(iwa + V) - (iwp) dz
Q

1 — 1 _
+ — | odivO(iwa + Vv) -Vodz+— | o(—=VO — (VO))(iwa + Vv) - Vodz.
1w o) 1w )
o1 a2

One computes

1 — 1 _
Ty =— (0 -n)(iwa+ Vv) - Vods — / 00 -V ((iwa + Vv) - V¢) dz
W Jog Ww Jjo

1 _
=— (0 -n)(iwa + Vv) - Vods
iw Jag

— i o0 - <V¢ x curl(iwa) + D*¢(iwa + Vv) + (Vé - V) (iwa + Vv)) dz

ICL)Q

1 — 1 —
=— (0 -n)(iwa+ Vv)-Vods — — [ iwo(curla x 0) - Vodz
W Jog Ww Jjo
1 - 1 _
— — [ oD*¢(iwa+Vv) -0dr— — [ o (iw(Va)tO + D2v0> -Vodzx
W Jjo W Jjo
1 — 1 —
=— (0 -n)(iwa+ Vv)-Vods — — [ iwo(0-V)a-Vode
W Jog W Jo

1 _ 1 _
— — | oD*¢(iwa +Vv)-0dr — — | oD*v0-Vodu,
1w lo) 1w o
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and

Ty = — i o(VO)'(iwa + Vv) - Vodr — 1/ oVO(iwa + Vv) - Vodz
w Jo w Jo

1 — 1 —
=— — [ o(VO)(iwa + Vv)-Vodr — — (o(iwa + Vv) -n) (8- ¢)ds
1w lo) 1w Je)
1 — _
+ o a{div (iwa + Vv)(8 - ¢) + D?*¢(iwa + Vv) - 9} dz
Q
1 _ 1 _
=— — [ o(VO)(iwa + Vv) - Vodr + / D?¢(iwa + Vo) - 0 dz.
1w lo) 1w o)

The last equality is due to the fact that div(o(iwa + Vv)) = 0 obtained by applying the
divergence operator to (5.36a). With the differential identities (5.57), one verifies also that

D*v8 + (VO)'Vv = (8- V)V + (VO)'Vv = V(0 - Vo).
Hence

Ty = [ o(divel — VO — (VO))(iwa + Vv) - (@) dz + Tot + oo

1w o)
:i o(div Ol — VO — (VO)!)(iwa + Vo) - (wp) de
Q
1 . — 1 _ -
+ o o (0 -n)(iwa+ Vv) - Vods — " /Qalw((e -V)a + (VG)ta) -Vodx
~ L [ ovie Vo) v (5.60)
1w 0

(5.59), (5.60) and the fact that o(iwa + Vv) -n =0 on 0Q imply

T +1, = — /Q i curl((0 - V)a + (V6)'a) - curl4p dz
— l a(iw((B -V)a+(V0)'a)+ V(0 - Vv)) (iwyp + Vo) do

IO.)Q

+ / l(0 -curla)(n - curlv) ds + i (0 -n)(iwa + Vo) - (iwyp + Vo) ds
99 M w Joo
= 0u,0(Q)(—(8 - V)a — (V0)'a, —(8 - Vv); 9, )
1 — 1 -
+ / —(0 - curla)(n - curly)ds + — (0 -n)(iwar + V,v) - (iwp, + Vor)ds. (5.61)
oQ M W Joo
From (5.58), (5.61) and the definition of shape derivatives (5.18) — (5.19), one concludes the
result (5.37). O






Conclusion and perspectives

The problems studied in the present thesis provide a rich spectrum of further research issues,
and we would like to mention a few among them with a brief recall of the mains results.

In Chapter 1 we built a 2-D forward model of eddy current testing under the assumption of
axial symmetry for a simplified case (no supporting plates, no nearby tubes). We in particular
studied several domain cut-off strategies using different artificial boundary conditions in radial
and axial directions and gave the cut-off error with semi-analytical calculates. A first perspective
is to investigate similar domain cut-off methods in the 3-D case which is critical in reducing the
numerical cost of modeling.

Chapter 2 furnishes a framework of deposit shape reconstruction using shape optimization
applied to a least-square cost functional. We focused on the theoretical feasibility of the recon-
struction via a relationship between an arbitrary shape perturbation and the resulting derivative
of the cost functional, which allows to determinate a descent gradient in aid of a properly de-
fined adjoint state. Then we illustrated the reconstruction performance with several numerical
examples. It would be interesting to discuss on the pertinence of these methods with regard to
different configurations (length scale, physical parameters, etc.). Other improvements could be
made in numerical aspects to have a more efficient inversion algorithm.

We then concentrated on the problem of reconstructing thin deposits of high conductivity
for which the previous methods become numerically inefficient. To overcome this difficulty, we
first carried out a survey of several asymptotic models in Chapter 3 which substitute the thin
layer of deposits by the effective transmission conditions. According to the results of some 1-
D numerical examples, we chose the most pertinent asymptotic model which is both precise
and easy to inverse. Then in Chapter 4 we discussed the consequent modeling and inversion
techniques for arbitrary thin deposits, always under 2-D axisymmetry assumption. Further work
may deal with the general 3-D thin layer of highly conducting deposits.

In Chapter 5 we studied the 3-D eddy current testing problem via a formulation of vector
potentials and discussed the deposit shape reconstruction methods only on the theoretical level.
A joint work with Kamel Riahi on simulation is in progress and, as mentioned above, further
studies on efficient numerical methods are indispensable to exploit the reconstruction framework
in real case.
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Some inversion methods applied to non-destructive testings of steam generator via eddy current probe

Abstract: The main objective of this thesis is to propose and test some shape optimization techniques to identify and
reconstruct deposits at the shell side of conductive tubes in steam generators using signals from eddy current coils. This
problem is motivated by non-destructive testing applications in the nuclear power industry where the deposit clogging
the cooling circuit may affect power productivity and structural safety. We consider in a first part an axisymmetric case
for which we set the model by establishing a 2-D differential equation describing the eddy current phenomenon, which
enable us to simulate the impedance measurements as the observed signals to be used in the inversion. To speed up
numerical simulations, we discuss the behavior of the solution of the eddy current problem and build artificial boundary
conditions, in particular by explicitly constructing DtN operators, to truncate the domain of the problem. In the deposit
reconstruction, we adapt two different methods according to two distinct kinds of deposits. The first kind of deposit has
relatively low conductivity (about 1 x 10%S/m). We apply the shape optimization method which consists in expliciting
the signal derivative due to a shape perturbation of the deposit domain and to build the gradient by using the adjoint
state with respect to the derivative and the cost functional. While for the second kind of deposit with high conductivity
(5.8 x 107.S/m) but in the form of thin layer (in micrometers), the previous method encounter a high numerical cost due
to the tiny size of the mesh used to model the layer. To overcome this difficulty, we build an adapted asymptotic model
by appropriately selecting the family of effective transmissions conditions on the interface between the deposit and the
tube. The name of the asymptotic model is due to the fact that the effective transmissions conditions are derived from
the asymptotic expansion of the solution with respect to a small parameter ¢ characterizing the thickness of the thin
layer and the conductivity behavior. Then the inverse problem consists in reconstructing the parameters representing the
layer thickness of the deposit. For both of the two approaches, we validate numerically the direct and inverse problems.
In a second part we complement this work by extending the above methods to the 3-D case for a non-axisymmetric
configuration. This is motivated by either non axisymmetric deposits or the existence of non axisymmetric components
like support plates of steam generator tubes.

Keywords: Inverse problems, electromagnetism, eddy current equations, DtN operators, shape optimization, asymptotic
models.

Contréle non-destructif de générateurs de vapeur via des sondes courants de Foucault :
nouvelles approches

Résumé : L’objectif principal de cette thése est de proposer et de tester quelques méthodes de 'optimisation de forme
afin d’identifier et de reconstruire des dépots qui couvrent la paroi extérieure d’un tube conducteur dans un générateur
de vapeur en utilisant des signaux courant de Foucault. Ce probléme est motivé par des applications industrielles
en controle non-destructif dans le secteur de l’énergie nucléaire. En fait, des dépots peuvent obstruer le passage de
circuit de refroidissement entre les tubes et les plaques entretoises qui les soutiennent, ce qui entrainerait une baisse
de productivité et mettrait la structure en danger. On considére dans un premier temps un cas axisymétrique dans
le cadre duquel on construit un modéle 2-D par des équations aux dérivées partielles pour le courant de Foucault, ce
qui nous permet ensuite de reproduire des mesures d'impédances qui correspondent en réalité les signaux courants de
Foucault. Pour réduire le coit de calculs de la simulation numérique, on tronque le domaine du probléme en posant
des conditions aux bords artificielles basées sur des études sur le comportement de la solution, notamment sur un
calcul semi-analytique de 'opérateur D-t-N dans la direction axiale. Pour la partie identification et reconstruction, on
distingue deux sortes de dépots et établit pour chacun une méthode d’inversion spécifique. Le premier cas concernent
des dépots dont la conductivité est relativement faible (d’environs 1.e4 S/m). On utilise la méthode d’optimisation de
forme qui consiste & exprimer explicitement la dérivée des mesures d’impédance par rapport au domaine du dépot en
fonction d’'une déformation et a représenter le gradient d’un fonctionnel de colit & minimiser par 'intermédiaire d’'un
état adjoint proprement défini. Motivé par la présence des dépots et des plaques de maintient non-axisymétriques, on
fait aussi une extension en 3-D des méthodes précédentes. Pour le deuxiéme cas, des dépots sont fortement conducteurs
et sous forme de couche mince d’une épaisseur de 'ordre de micron. La méthode adaptée & la premiére sorte de dépots
devient ici trop cotiteuse & cause du degré de liberté trés élevé des éléments finis sur un maillage extrémement raffiné a
I’échelle de la couche mince. Pour relever cette difficulté, les études sont portées sur plusieurs modéles asymptotiques
qui remplacent la couche mince par des conditions d’interface sur la surface du tube portante du dépot. Le nom
de modéle asymptotique vient du fait que les conditions d’interface effectives sont obtenues par le développement
asymptotique de la solution en fonction d’un paramétre caractérisant la conductivité et I'épaisseur de la couche mince.
La validation numérique a permis de retenir un modéle asymptotique qui est a la fois suffisamment précis et simple &
inverser. L’inversion (recherche de I’épaisseur du dépot) consiste alors a rechercher des paramétres dans les conditions
d’interface (non standard). Pour les deux cas, la validation et des exemples numériques sont proposés pour le modeéle
direct et 'inversion.

Mots-clés : Problémes inverses, électromagnétisme, équations de courant de Foucault, opérateur DtN, optimisation de
forme, modéles asymptotiques.
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