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Ayca Ebru Giritligil, Assistant Professor, Istanbul Bilgi University (ex-

ternal member of the Jury for Bilgi).

Alan Kirman, Professor, l’Université d’Aix-Marseille III (external mem-
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ABSTRACT

This thesis investigates the foundations of preference and utility theory used in Social

Choice and Decision Theory.

The first chapter is the introduction.

The second chapter is composed of a survey of the existing results, motivations for a

new framework that can combine many different approaches to aggregation of individual

preferences and a proposal of a hybrid model, called preference-approval framework.

The third chapter asks the question of meaning of a consensus in such a framework.

As an attempt to answer the question, this work follows a distance based approach, by

a metric defined on the domain of preference-approvals and analyzes different ways of

measuring homogeneity among the individual opinions. As a new modeling of these

opinions, individuals are assumed to express themselves in terms of rankings over a set

of options (alternatives) and threshold levels interpreted as the distinction between “ap-

proved” and “disapproved” alternatives.

The fourth chapter includes a manipulation analysis of aggregation rules over a vot-

ing profile composed of rankings and binary evaluations. Proposing a new notion of

non-manipulability, this study provides a possibility result and some characterizations of

impossibilities. Finally, further research problems for the art of designing new election

systems and voting mechanisms are discussed with their potential implications for the

society.

Keywords: social welfare functionals, interpersonal comparability, preference-approval,

approval voting, Kemeny distance, consensus, nonmanipulability.
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RÉSUMÉ

Cette thèse porte sur les fondations de la théorie des préférences et de l’utilité utilisée

dans les domaines du choix social et de la théorie de la décision.

Le premier chapitre est l’introduction.

Le second chapitre composé d’une revue de la littérature et des résultats existants,

d’une discussion des motivations pour envisager un nouveau cadre théorique permettant

de combiner différentes approches de l’agrégation des préférences individuelles, et d’une

proposition d’un modèle hybride appelé modèle de préférence-approbation.

Le troisième chapitre pose la question du sens que l’on peut donner au consensus

dans un tel cadre théorique. Pour y répondre, ce travail fournit une approche basée sur

la notion de distance, c’est-à-dire d’une métrique définie sur le domaine des préférence-

approbations, et examine différentes faons de mesurer l’homogénéité au sein d’un en-

semble d’opinions individuelles. Dans cette nouvelle modélisation des opinions, les in-

dividus s’expriment à la fois à travers un classement défini sur l’ensemble des alternatives

et par un niveau de seuil, permettant de distinguer dans ce classement les alternatives “ap-

prouvées” de celles qui sont “désapprouvées”.

Le quatrième chapitre comporte une analyse de la manipulabilité des règles d’agrégation

définies sur un profil de votes composés de classements et d’évaluations binaires. En in-

troduisant une nouvelle notion de non-manipulabilité, cette étude offre un résultat de

possibilité, ainsi que certaines caractérisations d’impossibilités. La conclusion permet de

discuter plusieurs questions de recherche future sur la manière de définir de nouveaux

systèmes d’élections et mécanismes de votes, ainsi que leurs impacts potentiels sur la

société.
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Chapter 1

Introduction

Social Choice Theory investigates a wide range of collective decision making problems

and deals with a variety of procedures. It covers the theories of elections on one side, and

welfare economics on the other. In particular, designing voting rules, normative measure-

ment issues like the evaluation of social welfare, national incomes or the measurement of

inequality and poverty are among the concerns of this theory.

Although these problems are very different from each other, and require dissimilar

approaches, they share a common feature. All of them includes the assessment of a so-

cial outcome to the preferences, choices or some other representations of the individual

opinions under consideration, aggregation of which forms a profile of the society. On the

other hand, differences between these problems lie mainly on the informational assump-

tions they use while processing the input of personal expressions or preferences in terms

of measurability and comparability. For example, the well-known Arrovian framework
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prohibits any cardinal information and interpersonal comparability. On the contrary, util-

itarian approach demands for an interpersonally comparable cardinal framework.

In traditional voting theory, individuals in a group are represented solely by a ranking

of the alternatives facing a group. However, this restriction may exclude some relevant

information and many recent studies like Approval Voting, Majority Judgment and Range

Voting have distinguished attention by the scholars of the field for the methods to include

richer information.

In this dissertation, we analyze a new model on the foundations of the Social Choice

Theory itself: representation of the individual opinions as preference-approvals. As its

name suggests, in the preference-approval framework, agents facing an alternative set

express themselves by an ordinal ranking over this alternative set and also by a threshold

level interpreted as the distinction between their accepted and unaccepted alternatives.

More explicitly, individuals provide the following information:

• Acceptable (approved) alternatives for them and a ranking of these acceptable al-

ternatives.

• Unacceptable (disapproved) alternatives for them and a ranking of these alterna-

tives with a natural requirement that all acceptable alternatives are above the unac-

ceptable ones.

We use this framework for addressing three main issues of the Social Choice Theory:

1. What are the ways of representing individual opinions? In which methods those

13



opinions can be measured? What kind of interpersonal comparability assumptions

can be used in collective decision making problems?

2. What is the meaning of a “consensus”? How can we measure the homogeneity

among the individual opinions? In which ways measuring similarity of preferences

can be used in collective decision making?

3. What are the ways of strategic misrepresentation of individual opinions? Up to

which extent group choice procedures allow individuals to gain from expressing

their views differently from the way they truly do?

In chapter 2, we analyze the informational bases of collective decision making prob-

lems. We provide a survey of the measurability and interpersonal comparability axioms

used in the literature and give a taxonomy of the informational frameworks. We also

briefly discuss Utilitarianism and Rawlsian principles and investigate the main differ-

ence in these approaches through the informational requirements. Finally, we analyze a

new model of a hybrid platform, namely“preference-approval” structure. We show the

following in this chapter:

• Measurability axioms for individual preferences can be partially ordered through

“information sets”.

• Axiomatically very similar rules can lead to very distinct outcomes simply because

of the different informational frameworks they require.

14



• A unified framework of “preference-approval” can be used to analyze many re-

cent models of voting theory, as well as the standard Arrovian rules. Moreover,

this framework with its many simple extensions, calls for the design of new aggre-

gation rules by incorporating various degrees of comparability and measurability

assumptions.

In chapter 3, we consider the problem of measuring consensus level in a group of

individuals who express themselves through rankings over an alternative set and also

by a subset of approved (or disapproved) alternatives. This analysis requires the devel-

opment of a distance concept between any given two preference-approvals. Intuitively,

when all individuals have the same preference-approvals there is perfect consensus in

the considered profile and any dissimilarity among them decreases the homogeneity,

hence the consensus level. The difficulty is when distances between complex, so that

multi-characteristic objects are considered, there is no “natural” scale for measuring the

difference between these objects. For example, the difference between the wage pay-

ments from two job positions is easy to measure, as well as the difference between the

number of working hours these positions require. But, what is the difference between

these two job positions when their ”wage & working hours” combinations are taken into

account? Given any two preference-approvals, we propose measuring the dissimilar-

ity between them by considering the convex combination of normalized Kemeny and

Hamming metrics, for preference (ranking) and approval components respectively. By

that way, we consider a metric which assigns a non-negative number to each pair of

15



preference-approvals. We show the following results in this chapter:

• A weighted sum of two distance measures that are not metrics can be a metric.

• For the neutral metric we propose, a consensus measure can be defined on the

domain of preference-approvals which satisfies the standard properties of the lit-

erature like unanimity, anonymity, neutrality, as well as maximum dissension and

reciprocity. 1

• ”Cloning does not always help to increase the homogeneity.” More formally, given

any two preference-approvals, increasing the population size by cloning these two

preference-approvals will increase the consensus level only in a bounded way.

In Chapter 4, we focus on analyzing the strategic misrepresentation in the framework

of preference-approvals. In the preference-approval framework, individuals may not only

misrepresent their preferences but also what they approve of. Hence, we study a notion

of manipulability where misrepresentation not only results in a more preferred alternative

but also that the more preferred alternative is approved whereas the other one is not. We

also consider a special domain, namely, circular domain for our analysis of possibility

or impossibility for nonmanipulable rules. In a circular domain, the alternatives can be

arranged on a circle so that for every alternative on the circle, there are two preferences

in the domain in which top ranked and bottom ranked alternatives in of these preferences

are respectively bottom ranked and top ranked in the other preference.

1We invite the reader to check chapter 3 for the formal definitions.
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In this chapter we establish the following results:

• The notion of non-manipulability we propose, which is defined in a new frame-

work, coincides with the standard strategy-proofness when only approval-invariant

rules are considered.

• Under some weak domain condition, there exists an efficient and nonmanipulable

rule under which no agent is decisive.

• When the number of agents is even, we cannot have an anonymous, efficient and

nonmanipulable rule on a circular domain.

• For the case of only two agents, there exists an anonymous, unanimous and non-

manipulable rule.
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Chapter 2

Informational Frameworks in

Collective Decision Making
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ABSTRACT

In this chapter, we provide a survey on measurability and comparability axioms that

can be used in collective decision making problems and analyze a new informational ba-

sis, called preference-approval framework. At one extreme, pure ordinal framework can

be modeled by utility functions which are equivalent under monotonic transformations.

At the other extreme, the existence of an absolute scale for the individual utility leads to

singleton information sets. In this context, preference approval framework corresponds

to the case where utility functions are equivalent under monotonic transformations with

one fixed point.

Keywords: social welfare functional, invariance transformations, interpersonal com-

parability, preference-approval.
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2.1 Introduction

In collective decision making problems, the standard Arrovian framework rules out the

use of any kind of cardinal information and interpersonal comparisons of utility. This

restriction of information to ordinal preferences is one of the implicit assumptions that

leads to the negative result of Arrow’s impossibility theorem. In the literature, originally

Sen [1] investigates some possible enrichments for the information bases by using utility

functions instead of preferences. It is well-known that allowing for interpersonal compa-

rability and richer informational requirements (for example, see Roemer [2]) can lead to

positive results as Utilitarianism [3] and Rawlsian Principles [4].

Mainly two streams of studies exist for the analysis of informational frameworks.

The first stream (Stevens [5] , Krantz et al. [6] , Roberts [7]) investigates scales of

measurement which are identified by some admissible sets of transformations. For ex-

ample, ordinal scales are defined by the set of all monotonic transformations, interval

scales are defined by the set of increasing affine transformations and ratio scales are ana-

lyzed through the set of increasing linear transformations. Mandler [8] also investigates

a variety of intermediate cases between cardinality and ordinality such as continuity and

concavity by taking arbitrary sets of utility functions as the primitive of his analysis.

The second stream (Sen [1, 9], d’Aspremont and Gevers [10, 11], Bossert and Weymark

[12], Blackorby et al. [13]) formalizes interpersonal comparability assumptions in terms

of equivalence relations over the set of utility functions. In this approach, a social wel-

fare functional is required to be constant on informationally equivalent utility profiles.

20



As a result, richer informational assumptions imply fewer restrictions on social welfare

functionals and some escapes from the impossibility theorem can be achieved.

In voting theory, many procedures (for example, see Brams and Fishburn [14]) and

some recent models (e.g. Approval voting [15, 16, 17] , Majority judgment [18], Range

voting [19]) use their own implicit assumptions on the informational bases for individ-

uals. The analysis of voting rules with different informational requirements calls for a

unified framework. Brams and Sanver [20] propose a way of combining the information

of ranking and approval in a hybrid system which can be named as preference approval

model. This approach leads to an extended Arrovian framework by incorporating two

qualifications ”good” and ”bad” with a common meaning among individuals. 1

In this chapter, we provide a survey on measurability and comparability axioms that

can be used in collective decision making problems and analyze the preference-approval

framework. At one extreme, pure ordinal framework can be modeled by utility functions

which are equivalent under monotonic transformations. At the other extreme, the exis-

tence of an absolute scale for the individual utility leads to singleton information sets. In

this context, preference approval framework corresponds to the case where utility func-

tions are equivalent under monotonic transformations with one fixed point.

In Section 2, we introduce the basic notions. In section 3, we analyze information

sets and equivalence relations on the set of utility functions for a single individual case.

In Section 4, we extend our study to a finite set of individuals and analyze social welfare

1One can see Kirman and Tesch [21] and also Davis [22] for a discussion on the representation of the

identity of the economic agent from standard economic theory to the more recent mainstream approaches.
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functionals and invariance transformations. Section 5 provides a brief discussion and

comparison of Utilitarianism and Rawlsian Principles. Section 6 formalizes the informa-

tional requirement of the preference-approval framework. Finally, section 7 concludes

by some remarks.

2.2 Basic Notions

We consider an individual confronting a finite non-empty set A of alternatives. Letting

u : A → R be a ”utility function”, we write U = R
A for the set of all real valued utility

functions that can be defined on A. We examine the partitions of U .2

Given a partition, which we denote by Π(U), we write ∼π for the equivalence re-

lation on U induced by Π(U).3 As a minimum requirement, we impose a condition on

partitions that any two utility functions in the same cell of the partition imply the same

orderings on A. First, for any u we define Ru as xRuy ⇔ u(x) ≥ u(y) ∀x, y ∈ A. Then,

we write formally the following condition:

Condition O: u ∼π v ⇒ Ru = Rv.

2By a partition Π(U) of a non-empty set U , we mean a class of pairwise disjoint, nonempty subsets of

U whose union is U .That is, Π(U) is a partition of U iff (i) ∅ /∈ Π(U), (ii)
⋃

π∈Π(U)

π = U , (iii) For any

disjoint π, π′ ∈ Π(U), π ∩ π′ = ∅. The sets in Π(U) are called the cells of the partition.

3For any given partition Π(U), we can define an equivalence relation on U by setting u ∼ v precisely

when u, v are in the same cell in Π(U).
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We refer to the partitions of U that satisfy the above condition as admissible parti-

tions. We also say that Π(U) is admissible if any u and v in the same cell of the partition

are ordering equivalent.

In this context, a ”finer than” relation can be defined on the set of admissible parti-

tions. Let Π(U) and Π′(U) be any two admissible partitions. If every cell in Π(U) is a

subset of a cell in Π′(U), we say Π(U) is finer than Π′(U). Formally, Π(U) is finer than

Π′(U), denoted by Π(U) ⊑ Π′(U), if for any π ∈ Π(U) , there exists π′ ∈ Π′(U) such

that π ⊆ π′. For this relation, the coarsest partition satisfies u ∼π v ⇔ Ru = Rv. On

the other extreme, the finest partition is characterized by u ∼π v ⇔ u = v. Note that in

this case, every cell is a singleton. By definition, the coarsest and the finest partitions are

admissible. 4

2.3 Information Sets for an Individual

Let F be the set of all real valued functions. For any Φ ⊆ F , we define a binary relation

∼Φ on U as follows: For any u, v ∈ U , u ∼Φ v ⇔ u(a) = φ ◦ v(a), for some φ ∈ Φ, for

all a ∈ A. We refer φ as a transformation. Note that, Φ is generated by successively all

pairs of u, v ∈ U . The next lemma states the conditions for this binary relation to be an

equivalence relation.

4If Π(U) ⊑ Π′(U) and Π′(U) ⊑ Π(U) then we have Π(U) = Π′(U).
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Lemma 2.3.1

∼Φis an equivalence relation if Φ satisfies the following conditions:

(i) For any φ ∈ Φ, φ−1 ∈ Φ.

(ii) For any φ, ψ ∈ Φ, φ ◦ ψ ∈ Φ.

Proof. Pick any u, v ∈ U . let u(A), v(A) be the images of A under u and v. . Consider

φ : v(A) → u(A) such that u(a) = φ(v(a)), for all a ∈ A. Since φ−1 is ∈ Φ, we get

v(a) = φ−1(u(a)), for all a ∈ A. So, whenever u ∼Φ v, we also have v ∼Φ u. Hence,

∼Φ is symmetric.

Now, pick any u, v, w ∈ U . Consider φ : v(A) → u(A) such that u(a) = φ(v(a)) and

ψ : w(A) → v(A) such that v(a) = ψ(w(a)), for all a ∈ A. Since φ ◦ ψ ∈ Φ, we have

u(a) = φ ◦ ψ(w(a)), for all a ∈ A. So, whenever u ∼Φ v and v ∼Φ w we also get

u ∼Φ w. Hence, ∼Φ is transitive. Finally, reflexivity of ∼Φ follows from the above two

arguments. Therefore, ∼Φ is an equivalence relation.

From now on, we only consider Φ satisfying the above conditions in the lemma 2.3.1.

In this case, Φ induces a partition on U , which we denote by ΠΦ(U). The relevant ques-

tion in this context is when the partitions induced by transformations are admissible. Note

that the orderingsRu, Rv implied by u, v are preserved under monotonic transformations.

So, given any u and v which are ordering equivalent, φ ◦ u and φ′ ◦ v are also ordering

equivalent iff φ and φ′ are monotonic transformations. We say that Φ is admissible if any

φ ∈ Φ is a monotonic transformation. The next proposition characterizes the admissible
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partitions.

Proposition 2.3.2

ΠΦ(U) is admissible if and only if Φ is admissible.

Proof.

“Only if” part is clear. So, to show the“if” part note that for Φ is admissible, every

φ ∈ Φ is monotonic. By Lemma 2.3.1,we can derive that ∼Φ is an equivalence relation,

and hence ΠΦ(U) is a partition. Furthermore, for any u, v ∈ U , u ∼Φ v iff u and v are

ordering equivalent. So, ΠΦ(U) is admissible.

Next theorem shows the relationship between the “finer than relation” on admissible

partitions and the set of transformations that induce these partitions.

Theorem 2.3.3

For any admissible Φ and Φ′, Φ ⊆ Φ′ if and only if .ΠΦ(U) ⊑ ΠΦ′(U).

Proof.

For the “if” part, suppose ΠΦ(U) ⊑ ΠΦ′(U) . Consider Φ that induces ΠΦ(U) and

take any φ ∈ Φ. Now, pick any u, v with u = φ◦v. Let π ∈ ΠΦ(U) be such that u, v ∈ π.

For ΠΦ(U) is finer than ΠΦ′(U), there exists π′ ∈ ΠΦ′(U) such that π ⊆ π′. So we have

u, v ∈ π′ implying that φ ∈ Φ′. Thus, Φ ⊆ Φ′.

(“only if” part) Take any admissible Φ,Φ′ with Φ ⊆ Φ′. To see ΠΦ(U) ⊑ ΠΦ′(U)

pick any π ∈ ΠΦ(U). Take any u, v ∈ π. We have u = φ ◦ v for some φ ∈ Φ. For
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Φ ⊆ Φ′, we also have u ∼Φ′ v implying that u, v ∈ π′ for some π′ ∈ ΠΦ′(U). Thus,

ΠΦ(U) ⊑ ΠΦ′(U) .

Theorem 2.3.3 implies that a partial order can be defined on the information sets just

by the investigation of the subsets of monotonic transformations.

2.4 Social Welfare Functionals and Invariance Transfor-

mations

In this section, we will investigate various degrees of interpersonal comparability though

admissible set of transformations. In the Arrovian framework, there is no room for in-

terpersonal comparability among individuals, or in other words it is completely ordinal.

Given a utility profile, any monotonic transformation applied to this profile will be in-

formationally equivalent to the first one in this framework. We will see that by different

subsets of monotonic transformations, various degrees of comparability can be formal-

ized. It is worthwhile to note that there is an inverse relationship with the size of these

admissible subsets of transformations and the degree of comparable information.

For this purpose, first we will extend our analysis to a finite set N of individuals

confronting a finite non-empty set A of alternatives. For the rest of this section, we will

mainly use the analysis of D’Aspremont and Gevers [10].

For all i ∈ N and for all a ∈ A, we denote by u(a, i) the individual i’s utiliy level for
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the alternative a. By defining utility function on A×N , we can now compare the welfare

of an individual i at alternative a, to the welfare of an individual j at alternative b. We

denote a profile of size n utility functions by U = (u(·, 1), . . . , u(·, n)) and we write U

for the set of all possible utility profiles.

Next, we define a social welfare functional as a mapping F : D → O where

∅ 6= D ⊆ U is the set of admissible profiles and O is the set of all orderings on A. Rep-

resentation of the informational environment will be established through the partition of

the set of admissible profiles into information sets, similar to our analysis in section 3.

Finally, for every U1, U2 ∈ U, we write R1
U = F (U1) and R2

U = F (U2).

2.4.1 Measurability and Comparability Axioms

For each of the following cases, an information-invariance condition requires F to be

constant on each of the information sets. In other words, two profiles U1 and U2 are

informationally equivalent, if F (U1) and F (U2) are identical.

We define an invariance transformation as the following:

Definition 2.4.1

An invariance transformation is a vector φ = (φ1, ..., φn) of functions φi : R → R for

all i ∈ {1, ..., n} whose application to a profile U results in an informationally equivalent

profile.

Similar to the one individual case, let Φ denote the set of invariance transformations
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5 used to generate the equivalence relation ∼ . That is, for all U1, U2 ∈ D, U1 ∼ U2 if

and only if there exists φ ∈ Φ such that U2 = φ ◦ U1, where ◦ denotes component-by-

component function composition.

First, we formalize the Arrovian world of ordinally measurable , non-comparable

utilities.

Ordinally Measurable, Non-comparable utility levels (OMN)

For every U1, U2 ∈ D, R1
U = R2

U if for every i ∈ N, φi is a strictly increasing trans-

formation such that, for all a ∈ A, u2(a, i) = φi(u
1(a, i)) where u1(·, ·), u2(·, ·) are the

utility components of profiles U1, U2 respectively.

In the Arrovian framework, since the admissible monotonic transformations can be

different for every individual, there is no possibility of comparing neither utility levels,

nor utility gains and losses among them.

Next, we introduce interpersonal comparisons of utility levels while preserving ordi-

nal measurability. This requirement leads to smaller set of admissible transformations, as

follows:

5As an important remark, for the rest of the chapter, elements of Φ are vector of functions, differently

from the single individual case.
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Ordinally Measurable, Comparable utility levels(OMCL)

For every U1, U2 ∈ D, R1
U = R2

U if for every i ∈ N, φ◦ is a strictly increasing trans-

formation such that, for all a ∈ A, u2(a, i) = φ◦(u
1(a, i)) where u1(·, ·), u2(·, ·) are the

utility components of profiles U1, U2 respectively.

In this case, since individual utilities are transformed by only a common strictly in-

creasing function, it is possible to compare utility levels interpersonally, whereas com-

parison of utility gains are losses are still not possible, due to ordinality. This framework

is used by Rawlsian approach. for the comparison of individuals at minimum welfare

level in different states. In section 5, we will have a closer look to the Rawlsian model.

We now introduce cardinally measurable informational framework without any inter-

personal comparability, as the following:

Cardinally Measurable, Non-comparable utilities (CMN):

For every U1, U2 ∈ D, R1
U = R2

U if there exist 2n numbers α1, . . . , αn, β1 > 0, . . . , βn >

0 such that, for all i ∈ N and for all a ∈ A, u2(a, i) = αi + βi · u
1(a, i).

In this case, affine transformations are allowed for two utility profiles that are infor-

mationally equivalent. Although there is no restriction on the sign of origins (αi), the

scaling factors (βi) should be strictly positive for all i ∈ {1, . . . , n}, since otherwise
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the transformation would not be monotonically increasing. Different origins and utility

scales for individuals imply neither utility levels, nor utility gains and losses are interper-

sonally comparable in this cardinal framework. It is worthwhile to note that bargaining

solutions have this informational requirement.

Cardinal unit comparability (CMCU):

For every U1, U2 ∈ D, R1
U = R2

U if there exist n + 1 numbers α1, . . . , αn, β > 0 such

that, for all i ∈ N and for all a ∈ A, u2(a, i) = αi + β · u1(a, i).

In this cardinal framework, due to the common scaling factor (b), now it is possible to

compare utility gains and losses interpersonally. On the other hand, since the origins of

the utility indices (αi) can be different for all i ∈ {1, .., n}, utility levels are not compara-

ble across individuals. This informational context is used in utilitarian approach, which

we will be discussed in a more detailed way in Section 5.

Translation Scale Measurability

For every U1, U2 ∈ D, R1
U = R2

U if there exist n + 1 numbers α1, . . . , αn, such that for

all i ∈ N and for all a ∈ A, u2(a, i) = αi + u1(a, i).

As a special case of the Cardinal unit comparability, in this framework, utility dif-
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ferences are interpersonally comparable and in addition, numerical values of these dif-

ferences are also meaningful. Since the origins of the utility scales may be different for

each individual, utility levels are again, not interpersonally comparable.

Cardinal Full Comparability

For every U1, U2 ∈ D, R1
U = R2

U if there exist two numbers α◦ and β◦ > 0 such that, for

all i ∈ N and for all a ∈ A, u2(a, i) = α◦ + β◦ · u
1(a, i).

In this fully comparable cardinal framework, since the origin and the scale factors are

the same for everyone, both utility levels and differences can be compared across individ-

uals. Note that the admissible affine transformation is quite restrictive, which allows for

the richest amount of information that can be used for measurability and comparability,

among the models we have analyzed until now.

It is worthwhile to note that even in the case of cardinal full comparability, exact

numerical values of the utility levels are not important. By further restriction of the ad-

missible set of transformations, we would reach the case of numerical full comparability

in which every utility index is in absolute scale.
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Numerical Full Comparability

For every U1, U2 ∈ D, R1
U = R2

U , for all i ∈ N and for all a ∈ A, u2(a, i) = I ·u1(a, i).

In this final case, each utility level has a numerical meaning in addition to the all other

properties that are satisfied by the previous frameworks. Note that, each utility function

is equivalent to itself, in other words, the only admissible transformation is the identity

function.

In the context of information sets, numerical full comparability is the other polar

case of ordinal measurability. To be more explicit, numeral full comparability leads to

the singleton information sets, which are the finest partitions, whereas in the case of

ordinally measurable noncomparable utilities, partitions are the coarsest.

Until now, we have investigated measurability and comparability axioms that can

be used in collective decision making problems. One can note that the assumptions on

measurable information specifies the set of admissible transformations. On the other

hand, up to which degree this measured information can be compared is determined by

the common scale factors in these transformations.

2.5 Utilitarianism and Rawlsian Models

In this section we briefly discuss Utilitarianism and Rawlsian principles in the context of

informational frameworks. We will provide their characterizations at the end of the sec-
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tion to emphasize that the main difference between these two approaches arises from their

requirements for the measurability and interpersonal comparability assumptions they use.

Utilitarianism [23, 24] suggests that among two states under consideration, the state

with higher aggregate sum of utilities (or at least as high as the other), should be preferred

(weakly, respectively) to the other one. It is worthwhile to note that the main factor for

the social outcome is the sum of utilities, but the distribution of these utilities among the

individuals has no effect in the outcome.

Formally, Utilitarianism can be defined as the following:

Utilitarianism: 6 For allU ∈ U and for all a, b ∈ A, aRUb if and only if
∑n

i u(a, i) ≥

∑n

i u(b, i).

On the other hand, the Rawlsian rules [25, 4] focuses on the lowest levels of utility

values in a given profile.7The main approach can be modeled as the following: Given any

two alternatives a, b ∈ A, a should be strictly preferred to b. whenever miniU(a, i) >

miniU(b, i).

In the literature, two social welfare functionals are widely studied based on the above

idea, namely maximin and leximin rules (for example, see Sen [27], Richardson et al.

[28], Gaertner [29]).

6More precisely, this rule is named as pure utilitarianism in the literature. For various other versions,

d’Aspremont and Gevers [11]

7For a nice discussion on Rawlsian principle the veil of ignorance, one can see Baigent [26]
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For a closer look to these rules, we proceed as follows: Given a utility profile U ∈ U,

and a state a, let ra(U) be the person who is the rth best-off under state a and has rank

r. So, the best-off among all individuals at state a is 1a(U) and the worst-off is Na(U),

since there are N individuals. Maximin rule can be defined now as follows:

Maximin rule: For all U ∈ U and for all a, b ∈ A, aRUb if and only if u(a,Na(U)) ≥

u(b,Nb(U)) .

The maximin rule implies that the Nth rank is a positional dictator. Hence, this

rule can violate even the Pareto Principle 8. The following lexicographic version of the

maximin rule, on the other hand, satisfies the Pareto principle. For a detailed analysis of

these rules one can check Hammond [30], d’Aspremont and Gevers [10] and Strasnick

[31].

Leximin rule: For all U ∈ U and for all a, b ∈ A, aPUb if and only if there exists a

rank k ∈ {1, . . . , N} such that u(a, ka(U)) > u(b, kb(U)) and u(a, la(U)) > u(b, lb(U))

for all l > k where l ≤ N .

One can note that, leximin rule is very similar to the maximin rule. The main dif-

ference between these two rules lies on the treatment of the outcome when there is an

indifference for the worst-off individuals. To be more explicit, if at the lowest level the

8For the definition of Strict Pareto condition, please see below in this section.
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utility values are the same for the states a and b, the maximin rule leads to an outcome of

an indifference between a and b. On the other hand, if this is the case, leximin rule checks

for the second-worst-off individuals, if they are also the same then the third-worst-off in-

dividuals and so forth.

We proceed by providing some widely-used axioms of the literature in the context of

utility profiles, which will be used to characterize the above rules we discussed.

Anonymity (AN) Let σ be any permutation on the set of individuals N . For ev-

ery U1, U2 ∈ U, R1
U = R2

U if U1 and U2 are such that for all i ∈ N and for all

a ∈ A, u1(a, i) = u2(a, σ(i)).

Anonymity states that only the list of individual utility values should be important but

the name tags of the individuals should not matter.

Strict Pareto (SP) For all a, b ∈ A and for all U ∈ U, aRUb if for all i ∈ N ,

u(a, i) ≥ u(b, i). If, moreover, for some j ∈ N , i ∈ N , u(a, i) > u(b, i) then aPUb.

Strict Pareto briefly says that if every individual favors a social state to another one,

the social relation over these states should also reflect this accordingly.

Independence (I) For every U1, U2 ∈ U, for all a, b ∈ A, RU1 and RU2 should coin-
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cide on {a, b} if U1 = U2 on {a, b} ×N .

Independence axiom states that if a and b obtain the same n-tuple of utilities in U1

and U2; the social relation between a and b for U1 and U2 should be the same as well,

and should not be affected by any other third alternative.

Next, we discuss concerned and unconcerned voters axioms. Concerned voters are

defined as the ones who are not indifferent between every pair of alternatives. On the

other hand, unconcerned voters are defined as the ones who are indifferent between all

given options. The relevant question in this context is up to which degree unconcerned in-

dividuals should have an influence on the collective choice. In particular, we can discuss

this issue through utilitarianism: The voters who are unconcerned between two states a

and b do not play any decisive role in the utilitarian collective decision for a and b, since

these voters increase the sum of the utilities for these states in an equal way.

To formalize this property of “eliminating the influence of unconcerned voters on the

decision rule”, we have the following separability requirement:

Separability of unconcerned individuals (SE) For every U1, U2 ∈ U, RU1 = RU2

if there exists M ⊂ N such that for all i ∈M and for all a ∈ A, u1(a, i) = u2(a, i) while

for all h ∈ N \M and for all a, b ∈ A, u1(a, h) = u1(b, h) and u2(a, h) = u2(b, h).
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Separability axiom says that, if there are unconcerned voters (h ∈ N \M ) for the

states a and b, and if all the rest of individuals have the same utility levels under the

profiles U1 and U2 for all alternatives, then the social ranking should be the same for

U1 and U2. As an implication, in the case of indifference between two states a and b

for all individuals except two of them, the decision problem would be reduced to the

disagreement on a and b of these two individuals only.

Now, we provide the following Equity axiom which requires that if every individual

is indifferent between two states a and b except two agents, the one among these two

agents which is in worse condition than the other determines the social relation between

a and b. Formally we state the axiom of Equity as the following:

Equity For all U ∈ U for all a, b ∈ A and for all a, b ∈ N . aPUb whenever for all

h ∈ (lN \ {i, j}), u(a, h) = u(b, h) and u(b, i) < u(a, i) < u(a, j) < u(b, j).

Finally, just as the opposite of the Equity axiom, Inequity axiom requires that if ev-

ery individual is indifferent between two states a and b except two agents, the one among

these two agents which is in better condition than the other for these states, determines the

social relation between a and b. Formally we state the axiom of Inequity as the following.

Inequity (INEQ) For all U ∈ U and for all a, b ∈ A and for all i, j ∈ N , bPUawhen-

ever for all h ∈ (N \ {i, j}), u(a, h) = u(b, h) and u(b, i) < u(a, i) < u(a, j) < u(b, j).
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It is worthwhile to note that interpersonal comparisons of utility levels are required

for applying the axioms of Equity and Inequity.

For the rest of this section we will provide a characterization of the leximin rule and

utilitarianism through the above axioms we discussed. As a survey chapter, we omit the

proofs of the following theorems and we invite the reader to see D’Aspremont and Gev-

ers [10] and Sen [1, 9] for further discussion.

First, the next theorem shows a restriction on social welfare functionals by an infor-

mational basis.

Theorem 2.5.1

If F satisfies I, SP, AN, SE, and the informational requirement OMCL, it satisfies either

EQ or INEQ.

The above theorem states that informational basis of ordinally measurable and inter-

personally comparable utility levels with some axioms leads to a social welfare functional

whose outcome is determined by either the worse-off or the better-off individuals in some

specific states.

Next, we discuss the following characterization of the leximin rule.
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Theorem 2.5.2

The leximin principle is characterized by I, SP, AN and EQ. 9

Finally, the following theorem provides a characterization of the utilitarian rule.

Theorem 2.5.3

The utilitarian rule is characterized by conditions I, SP, AN and CMCU.

By the above characterizations, we note that the main difference between Utilitarian-

ism and Rawlsian leximin rule arises from different informational bases. In other words,

their axiomatic structures are almost the same, but the measurability requirements are

quite different between Utilitarianism and Rawlsian rules.

2.6 Preference-Approval framework

So far we have seen various informational frameworks used in collective decision making

problems and discussed their implications for some aggregation rules.

In recent literature of Social Choice Theory, there are many proposals of voting

rules which call for new informational frameworks. (see, for example, Hillinger [32],

Aleskerov et al. [33], Balinski and Laraki [18], Smith [19])

9Many variations of these characterizations exist in the literature. For a simpler version, one can note

that Independence and Strict Pareto implies the well-known Neutrality axiom, which briefly states that the

labels of alternatives should not matter and all the relevant information for social welfare functional should

be contained in the given utility values.

39



In particular Approval Voting, ( [15, 16, 17]) requires a qualification profile of “ap-

proved” or “disapproved” alternatives and the ones which are approved by the highest

number of individuals are the AV winners.10As a recent study (Sanver [35]) suggests,

common meaning assumption for these two qualifications can be interpreted as the ex-

istence of a real number, say 0, whose meaning as a utility measure is common to all

individuals. As an example, “being self-matched” in matching theory models (for ex-

ample, see Roth and Sotomayor [36]) can be interpreted as the common zero of that

framework.

In the context of this chapter, “existence of a zero for an individual” leads to the next

invariance condition by using the the terminology of section 3. We denote by Φ∗ the set

of monotonic transformations with a fixed point, which is generated by successively all

pairs of u, v ∈ U in the following condition:

Information sets of preference-approval framework for an individual:

For any u, v ∈ U , u ∼Φ∗ v if and only if v = φ ◦ u, for some φ ∈ Φ∗, which is

monotonically increasing and φ(0) = 0.

The next lemma shows that preference-approval framework leads to finer partitions

than the ones generated by the set of monotonic transformations, ΦM, which is generated

by successively all pairs of u, v ∈ U .

10One can see an application about choosing committees through approval ballots in Laffond, Gilbert and

Lainé [34]
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Lemma 2.6.1

ΠΦ∗(U) is admissible and ΠΦ∗(U) ⊑ ΠΦM(U) .

Proof. First, note that ∼Φ is an equivalence relation by Lemma 2.3.1. By definition, any

φ ∈ Φ∗ is a monotonic transformation, therefore ΠΦ∗(U) is an admissible partition by

Proposition 2.3.2. Finally, since Φ∗ ⊆ ΦM we get ΠΦ∗(U) ⊑ ΠΦM(U) by Theorem

2.3.3.

We can generalize the above invariance condition to N many individuals case as fol-

lows:

Invariance under monotonic transformations with one fixed point:

For every U1, U2 ∈ D, R1
U = R2

U if for every i ∈ N, φi is a strictly increasing

transformation and φi(0) = 0 such that, for all a ∈ A, u2(a, i) = φi(u
1(a, i)) where

u1(·, ·), u2(·, ·) are the utility components of profiles U1, U2 respectively.

As the above analysis suggests, preference-approval framework provides a unified

environment for studying standard and nonstandard aggregation rules, by incorporating

a comparability at one fixed point. It is worthwhile to note that any aggregation function

of the Arrovian model can be expressed in this framework, by simply introducing an

“approval independence” condition. (Sanver [35] or Chapter 4 of this thesis). Moreover,
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Preference-approval framework can be extended to analyze any kind of label voting, as

majority judgement and range voting suggest. In the case of l labels, an extension of the

model to the invariance under monotonic transformations with l − 1 fixed points would

allow to study of these rules in a unified framework with standard Arrovian aggregation

functions.

2.7 Concluding Remarks

Each rule that is used in a collective decision making problem has its own treatment for

filtering the informational content provided by a society. In Arrow’s world of ordinal

utility, there is no possibility to compare anything except rankings provided by individu-

als. Utilitarianism asks for a cardinal framework which demands that utility differences

are interpersonally comparable. Rawlsian rules require ordinal level of comparability to

focus on the worst-group in the society. Approval voting asks for a binary qualification of

the alternatives, whereas Majority Judgment Rule asks for a common language of seven

labels for the evaluation of them. As these examples suggest, modifying the informa-

tional requirements can be one of the paths to follow for the design of new aggregation

rules. However, as we try to illustrate in this chapter, some informational assumptions

can be too demanding. Comparison of measurability properties in a common framework

can avoid the confusion of axiomatic differences with the structural ones. Preference-

approval framework provides a unified environment not only for a better examination of

discrepancies and similarities between existing rules but also allows designing new rules
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for collective decision making problems.
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Chapter 3

Measuring Consensus in a

Preference-Approval Context
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ABSTRACT

We consider1 measuring the degree of homogeneity for preference-approval profiles which

include the approval information for the alternatives as well as the rankings of them.

A distance-based approach is followed to measure the disagreement for any given two

preference-approvals and we show that the proposed measure of consensus is robust to

the extensions of the ordinal framework under the condition that a proper metric is used.

This paper also shows that there exists a limit for increasing the homogeneity level in a

group of individuals by simply replicating their preferences.

Keywords: Consensus, Approval voting, Preference-approval, Kemeny metric, Ham-

ming metric.

1This chapter is based on a joint paper with the co-authors Garcı̀a Lapresta, Pérez-Román and

Sanver [37]
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3.1 Introduction

In collective decision making problems, notion of consensus has been analyzed and in-

terpreted in miscellaneous ways. Dictionary meaning of consensus is a general (unan-

imous) agreement within a group of people or agents. However, most of the decision

making procedures (eg. elections, voting by committees, competitions) deal with a more

realistic situation of partial agreement for the candidates or alternatives. Interpreting

a partial agreement of individuals as a consensus up to some degree, the immediate

question is how to measure that degree of agreement (Kacprzyk [38], Tastle and Wier-

man [39, 40]). Related questions include how to use this information to reach a final

decision (Kemeny [41], Beliakov, Calvo and James [42]) and which procedures can be

used to increase the level of consensus (Susskind and McKearnan [43], Strauss and Lay-

ton [44], Van Den Belt [45]). For an overview of different attributions of consensus, one

can also see Martı́nez-Panero [46]. In this contribution, consensus is interpreted as the

degree of homogeneity within a set of individuals and consensus measure is a scale for

the similarity of preferences.

It is important to note that degree of consensus is dependent on the context of the pref-

erences. Similarity of preferences when individuals submit linear orders over alternatives

can be very different than the homogeneity of a profile composed of weak orders. In re-

lated literature, Kendall and Gibbons [47] considered measuring concordance among two

linear orders. Then, Hays [48] and Alcalde-Unzu and Vorsatz [49] generalized the idea

to any number of linear orders. Similarly, Bosch [50] proposed a measure of consensus
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for any given profile of linear orders by a mapping which assigns a number between 0

and 1 according to the degree of homogeneity in that profile. Satisfying some desirable

axioms such as unanimity (for every subgroup of agents, the highest degree of consensus

is reached only if all agents have the same orderings), anonymity (permutation of agents

does not lead to a change in the degree of consensus) and neutrality (permutation of alter-

natives does not lead to a change in the degree of consensus) Bosch’s model has been in-

vestigated further for various domains. Garcı́a-Lapresta and Pérez-Román [51] extended

the consensus measure of Bosch [50] for weak orders and introduced new properties such

as maximum dissension (in each subset of two agents, the minimum consensus is reached

only if agents have linear orders which are inverses of each other) and reciprocity (re-

placing each order in the profile by their inverses does not lead to a change in the degree

of consensus). Moreover, Garcı́a-Lapresta and Pérez-Román [52] used the framework

of Bosch [50] for weighted Kemeny distances, thereby dealing with the possibility of

weighting discrepancies among weak orders.

Some recent models for collective decision making problems (eg. approval vot-

ing [16], majority judgment [18], range voting [19]) use nonstandard formulations of

inputs in aggregation of preferences. These models assume that individuals adopt a com-

mon language when they evaluate alternatives. Therefore, instead of aggregating ordinal

rankings these models deal with aggregating labels such as approved and disapproved.

Brams and Sanver [53] suggests a framework that can be considered as a compromise

between standard and nonstandard models by combining the information of ranking and
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approval in a hybrid system which they call preference-approval. Individuals are assumed

to submit a weak ordering on a given set of alternatives and a cut-off line to distinguish

acceptable and unacceptable alternatives for them. An alternative which is ranked above

(resp. below) the line is qualified as acceptable (resp. unacceptable). Preference-approval

model extends the ordinal framework in a minimal way by incorporating two qualifica-

tions good and bad with a common meaning among individuals. It is worthwhile to note

that the status-quo point in bargaining problems, the threshold level in public good prob-

lems and the alternative of being self-matched in matching problems can be interpreted

as the cut-off lines when these models are translated to the preference-approvals. 2 In

that sense, preference-approval model proposes a common framework in which nonstan-

dard aggregation procedures and the standard ones in the literature can be analyzed in a

natural way.

The problem of how to measure consensus for the extended ordinal frameworks is

an open question in the literature. In this contribution, by following a distance-based

approach we focus on measuring the degree of disagreement/agreement in preference-

approval profiles. Since distance functions widely used in the literature are defined on

various domains of ordinal rankings, the first difficulty is to derive a proper metric for

extensions of weak orders. We propose a way of measuring distance separately for two

types of informational content in preference-approvals and then we derive a metric de-

fined by a convex combination of these distances. Technically speaking, for any given

2For another interpretation of this idea, one can see Sertel and Yilmaz [54] and also Giritligil and Sertel

[55].
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pair of preference-approvals, first we use Kemeny metric [41] for weak orders to mea-

sure the distance regarding the ranking information. Secondly, we use Hamming metric

[56] to measure the concordance with respect to acceptable or unacceptable alternatives.

Proper aggregation of these two type of distances depends on the context of the particu-

lar problem. Noting that the choice of a particular convex combination of Kemeny and

Hamming distances reflect the emphasis on the disagreement regarding approval or rank-

ing, we briefly discuss various ways for aggregation. Then, we show that the proposed

measure of consensus (based on Garcı́a-Lapresta and Pérez-Román [51]) is robust to the

extensions of the ordinal framework under the condition that a proper metric is used.

By investigating the properties of the consensus measure for preference-approvals, we

also show an unexpected result that the degree of homogeneity in a group of individuals

cannot be increased by simply replicating their preferences.

This chapter is organized as follows. Section 2 introduces the basic notation and no-

tions. Section 3 is devoted to the definition and some properties of consensus measures in

general. Section 4 includes our proposal for measuring consensus in preference-approval

context and some results. Finally, Section 5 concludes.

3.2 Preliminaries

Consider a set of agents V = {v1, . . . , vm} with m ≥ 2 confronting a finite set of

alternatives X = {x1, . . . , xn} where n ≥ 2. We assume that each agent ranks the

alternatives in X by means of a weak order and additionally, evaluates each alternative as
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either acceptable or unacceptable by partitioning the alternative set into approved (good)

and disapproved (bad) alternatives. These two types of information exhibit the following

consistency: Given two alternatives x and y, if x is approved and y is disapproved, then

x is ranked above y.

Technically speaking, by a weak order (or complete preorder) on X we mean a com-

plete3 and transitive binary relation on X .

On the other hand a linear order on X is an antisymmetric weak order on X . We

write W (X) for the set of weak orders on X and L(X) for the set of linear orders on

X .

Given R ∈ W (X), we let ≻ and ∼ stand for the asymmetric and the symmetric

parts of R, respectively, i.e.,

xi ≻ xj ⇔ not (xj Rxi)

xi ∼ xj ⇔
(

xiRxj and xj Rxi
)

.

By P(V ) we denote the power set of V , i.e., I ∈ P(V ) ⇔ I ⊆ V ; and by

P2(V ) we mean the collection of subsets of V with at least two elements. That is,

P2(V ) = {I ∈ P(V ) | #I ≥ 2}, where #I is the cardinality of I . Analogously, we

write P(X) for the power set of X .

Finally, we denote a = (a1 . . . , an) for the vectors in R
n.

3By completeness, for any given xi and xj in X , either xi is at least as good as xj or xj is at least as

good as xi. Hence, any complete binary relation is also reflexive.
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3.2.1 Preference-approval structures

For any given set of X of alternatives we define preference-approvals by partitioning X

into A the set of acceptable (or good) alternatives and U = X \ A the set of unaccept-

able (or bad) alternatives, where A and U can be empty sets.

Definition 3.2.1

A preference-approval on X is a pair (R,A) ∈ W (X)×P(X) satisfying the following

condition

∀xi, xj ∈ X
(

(xiRxj and xj ∈ A) ⇒ xi ∈ A
)

.

Note that if xiRxj and xi ∈ U , then we have xj ∈ U .

We denote R(X) for the set of preference-approvals on X .

Given R ∈ W (X), we let R−1 be the inverse of R such that

xiR
−1 xj ⇔ xj Rxi,

for all xi, xj ∈ X . Similarly, given a preference-approval (R,A) ∈ R(X), we write

(R,A)−1 = (R−1, X \ A) for the preference-approval which is the inverse of (R,A).
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Example 3.2.2

In order to illustrate preference-approval structures, consider the following example:

x2 x3 x5

x1

x4 x7

x6

where alternatives in the same row are indifferent, alternatives in upper rows are preferred

to those located in lower rows, alternatives above the dash line are acceptable (good) and

those below the dash line are unacceptable (bad).

The inverse of the preference-approval above is the following:

x6

x4 x7

x1

x2 x3 x5

We now introduce a system for codifying each preference-approval structure (R,A) ∈

R(X) by means of two vectors: pR ∈ R
n that represents the position of the alternatives,

and iA ∈ {0, 1}n that represents acceptable alternatives.

It is worthwhile to note that there does not exist a unique system for codifying weak

orders, since a weak order can be linearized in many different ways. We propose a

codification based on a linearization of the weak order by assigning each alternative the
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average of the positions of the alternatives within the same equivalence class.

Following Garcı́a-Lapresta and Pérez-Román [51], for any given R ∈ W (X) we as-

sign the position of each alternative xj in R through the mapping

PR : X → R defined as

PR(xj) = n−# {xi ∈ X | xj ≻ xi} −
1

2
# {xi ∈ X \ {xj} | xi ∼ xj} ,

where n is the number of alternatives.

The following table illustrates the codification of the preference-approval in Exam-

ple 3.2.2.

PR(x1) = 7− 3− 1
2
· 0 = 4

PR(x2) = 7− 4− 1
2
· 2 = 2

PR(x3) = 7− 4− 1
2
· 2 = 2

PR(x4) = 7− 1− 1
2
· 1 = 5.5

PR(x5) = 7− 4− 1
2
· 2 = 2

PR(x6) = 7− 0− 1
2
· 0 = 7

PR(x7) = 7− 1− 1
2
· 1 = 5.5

We denote pR = (PR(x1), . . . , PR(xn)) for the position vector of R ∈ W (X). Note

that the codification vector in Example 3.2.2 is pR = (4, 2, 2, 5.5, 2, 7, 5.5).
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On the other hand, given A ⊆ X , we define IA : X −→ {0, 1} the indicator function

(or characteristic function) of A:

IA(xj) =















1, if xj ∈ A,

0, if xj ∈ X \ A.

By iA = (IA(x1), . . . , IA(xn)) we denote the indicator vector of A ⊆ X .

Note that the preference-approval in Example 3.2.2 will be codified as iA = (1, 1, 1, 0, 1, 0, 0)

since x1, x2, x3, x5 are the accepted alternatives and x4, x6 and x7 are the unaccepted

ones.

Given a preference-approval (R,A) , we can completely characterize it by the (pR

, iA ) tuple.

Remark 3.2.3

The condition appearing in Definition 4.2.1 can be written as:

(

PR(xi) ≥ PR(xj) and IA(xj) = 1
)

⇒ IA(xi) = 1.

3.2.2 Distances and metrics

Usually, distance and metric are considered as synonymous. However, we follow the ap-

proach given by Deza and Deza [57], where distances and metrics are different concepts.

Definition 3.2.4

A distance on a set D 6= ∅ is a mapping d : D × D → R satisfying the following

conditions for all a, b ∈ A:
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1. d(a, b) ≥ 0 (non-negativity),

2. d(a, b) = d(b, a) (symmetry),

3. d(a, a) = 0 (reflexivity).

If d satisfies the following additional conditions for all a, b, c ∈ A:

4. d(a, b) = 0 ⇔ a = b (identity of indiscernibles),

5. d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality),

then we say that d is a metric.

We now focus on Kemeny and Hamming metrics. Since any preference-approval

has two components, an ordering and a partition on the set of alternatives, calculating

the distance between any two preference-approvals requires to measure distances with

respect to these components. We propose using Kemeny metric for weak orders and

Hamming metric for the information regarding acceptable alternatives.

The Kemeny metric

The Kemeny metric was initially defined on linear orders by Kemeny [41], as the sum

of pairs where the orders’ preferences disagree. Subsequently, it has been generalized to

the framework of weak orders (see Cook, Kress and Seiford [58] and Eckert and Klam-

ler [59], among others).
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Typically, the Kemeny metric on weak orders dK : W (X)×W (X) → R is defined

as the cardinality of the symmetric difference between the weak orders, i.e.,

dK(R1, R2) = #
(

(R1 ∪R2) \ (R1 ∩R2)
)

.

In this chapter, having a codification based approach we adopt the definition of Ke-

meny metric proposed by Garcı́a-Lapresta and Pérez-Román [51] as the following:

dK
(

R1, R2

)

=
n
∑

i,j=1
i<j

| sgn
(

PR1(xi)− PR1(xj)
)

− sgn
(

PR2(xi)− PR2(xj)
)

| ,

where sgn is the sign function:

sgn (a) =



























1, if a > 0 ,

0, if a = 0 ,

−1, if a < 0 .

It is worthwhile to remark that the Kemeny metric is a bounded metric in W (X).

That is, there exists some M > 0 such that dK(R1, R2) ≤ M for all R1, R2 ∈ W (X).

One can immediately check that the maximum distance between orders with respect to

Kemeny metric is (#X)2 −#X .
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The Hamming metric

The Hamming metric (Hamming [56]) dH : Rn × R
n → R is defined as4

dH(a, b) = #{i ∈ {1, . . . , n} | ai 6= bi}.

We extend the Hamming metric from R
n to P(X) as the mapping

dH : P(X)× P(X) → R defined by

dH(A1, A2) = dH(iA1 , iA2).

Note that Hamming metric formulation above is equivalent to the following one.

dH(A1, A2) = #
(

(A1 ∪ A2) \ (A1 ∩ A2)
)

.

Clearly the Hamming metric on P(X) is a bounded metric as well and one can easily

check that the maximum distance between any two subsets of X is #X .

Mixing distances and metrics

In what follows, we state that dK and dH , although measuring distances regarding differ-

ent kinds of information separately, cannot be aggregated as a total distance since dK and

dH do not have the same codomains. Therefore, we first normalize these two metrics to

the same codomain [0, 1] via dividing by their maximum distances and we get dR and dA

4On binary vectors a, b ∈ {0, 1}n, the Hamming metric and the l1-metric (or Manhattan metric)

coincide:

dH(a, b) =

n
∑

i=1

|ai − bi|.

.
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as distances regarding orderings and acceptable alternatives respectively.

Definition 3.2.5

1. The mapping dR : R(X)×R(X) −→ [0, 1] is defined as

dR
(

(R1, A1), (R2, A2)
)

=
dK(R1, R2)

(#X)2 −#X
=

#
(

(R1 ∪R2) \ (R1 ∩R2)
)

(#X)2 −#X
.

2. The mapping dA : R(X)×R(X) −→ [0, 1] is defined as

dA
(

(R1, A1), (R2, A2)
)

=
dH(A1, A2)

#X
=

#
(

(A1 ∪ A2) \ (A1 ∩ A2)
)

#X
.

Proposition 3.2.6

1. dR is a distance on R(X) and for all (R1, A1), (R2, A2) ∈ R(X) it holds

(a) dR
(

(R1, A1), (R2, A2)
)

= 0 ⇔ R1 = R2.

(b) dR verifies triangle inequality.

(c) dR
(

(R1, A1), (R2, A2)
)

= 1 ⇔ (R1, R2 ∈ L(X) and R2 = R−1
1 ).

2. dA is a distance on R(X) and for all (R1, A1), (R2, A2) ∈ R(X) it holds

(a) dA
(

(R1, A1), (R2, A2)
)

= 0 ⇔ A1 = A2.

(b) dA verifies triangle inequality.

(c) dA
(

(R1, A1), (R2, A2)
)

= 1 ⇔ A2 = X \ A1.
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3. Neither dR nor dA are metrics on R(X).

Proof. Let (R1, A1), (R2, A2) ∈ R(X).

1. Since dR is the Kemeny metric normalized by a number, non-negativity, symmetry

and reflexivity are obvious.

(a) dR
(

(R1, A1), (R2, A2)
)

= 0 ⇔ dK(R1, R2) = 0 ⇔ R1 = R2.

(b) dR inherits from Kemeny metric the property of triangle inequality.

(c) In Garcı́a-Lapresta and Pérez-Román [51] is proven that, for the Kemeny

metric, the maximum distance between weak orders is not reached when one

of them is not linear and, additionally, the maximum distance between linear

orders is not reached when they are not inverses of each other.

2. Since dA is the Hamming metric normalized by a number, non-negativity, symme-

try and reflexivity are obvious.

(a) dA
(

(R1, A1), (R2, A2)
)

= 0 ⇔ dH(A1, A2) = 0 ⇔ A1 = A2.

(b) dA inherits from Hamming metric the property of triangle inequality.

(c) dA
(

(R1, A1), (R2, A2)
)

= 1 ⇔ (A1 ∪ A2 = X and A1 ∩ A2 = ∅), i.e.,

A2 = X \ A1.

3. Let (R1, A1), (R2, A2) ∈ R(X) such that R1 6= R2 and A1 6= A2. Then, we have

dR
(

(R1, A1), (R1, A2)
)

= dA
(

(R1, A1), (R2, A1)
)

= 0. Consequently, dR and dA

do not verify identity of indiscernibles, hence they are not metrics.
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The following example illustrates the calculation of distances for a given profile.

Example 3.2.7

Consider four agents confronting a set of four alternatives X = {x1, x2, x3, x4} and

having the following preference-approvals:

(R1, A1)

x1

x2

x3 x4

(R2, A2)

x2

x1

x3 x4

(R3, A3)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4

These preference-approvals are codified as follows:

pR1 = (1, 2, 3.5, 3.5) iA1 = (1, 1, 0, 0)

pR2 = (2, 1, 3.5, 3.5) iA2 = (1, 1, 0, 0)

pR3 = (1, 2, 3.5, 3.5) iA3 = (1, 0, 0, 0)

pR4 = (3.5, 2, 1, 3.5) iA4 = (0, 0, 0, 0)

The following table shows the distances dR and dA between preference-approvals:
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dR dA

(R1, A1), (R2, A2)
2
12

0

(R1, A1), (R3, A3) 0 3
12

(R1, A1), (R4, A4)
8
12

6
12

(R2, A2), (R3, A3)
2
12

3
12

(R2, A2), (R4, A4)
6
12

6
12

(R3, A3), (R4, A4)
8
12

3
12

Note that minimum distance regarding orderings is in between (R1, A1) and (R2, A2)

since there is a disagreement only on the ranking of the first two alternatives. On the other

hand, the maximum distance regarding orderings in this profile is attained by (R4, A4)

and (R1, A1), which is also the distance between (R4, A4) and (R3, A3). Note that for

these tuples, there is only one pair of alternatives (namely (x2, x4)) for which these

preference-approvals agree on.

Similarly, the minimum distance regarding acceptability is in between (R1, A1) and

(R2, A2) since there is a full agreement for the set of acceptable and unacceptable alter-

natives. On the other hand, the maximum distance regarding acceptability is attained by

(R4, A4) by (R1, A1) which is also the distance between (R4, A4) and (R2, A2). Note

that there is a disagreement on the acceptability of two alternatives (namely x1 and x2)

for these preference-approvals.

For the rest of the section, first we define the neutrality of metrics and then we es-

tablish that a neutral metric can be deduced from the convex combinations of dR and dA.
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Definition 3.2.8

A set D ⊆ R
n is stable under permutations if for every permutation σ on {1, . . . , n},

it holds (aσ1 , . . . , a
σ
n) ∈ D for every (a1, . . . , an) ∈ D.

Definition 3.2.9

Given a set D ⊆ R
n stable under permutations, a distance (or metric) d : D×D −→ R

is neutral if for every permutation σ on {1, . . . , n} it holds

d
(

(aσ1 , . . . , a
σ
n) , (b

σ
1 , . . . , b

σ
n)
)

= d
(

(a1, . . . , an), (b1, . . . , bn)
)

,

for all (a1, . . . , an), (b1, . . . , bn) ∈ D.

Remark 3.2.10

The Kemeny metric is neutral (see Garcı́a-Lapresta and Pérez-Román [51]). One can

easily check that the Hamming metric is neutral as well.

Remark 3.2.11

Given two distances d1, d2 : D×D −→ R, for every λ ∈ [0, 1] the convex combination

λ d1 + (1− λ) d2 is also a distance.

In the next result we show that although dR and dA are not metrics, their convex

combinations are always metrics except for the degenerate values of λ = 0 and λ = 1.
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Proposition 3.2.12

For every λ ∈ (0, 1) and all (R1, A1), (R2, A2) ∈ R(X), the following statements hold:

1. dλ = λ dR + (1− λ) dA is a neutral metric and dλ
(

(R1, A1), (R2, A2)
)

≤ 1.

2. dλ
(

(R1, A1), (R2, A2)
)

= 1 if and only if R1, R2 ∈ L(X), R2 = R−1
1 and A2 =

X \ A1.

Proof.

1. By Remark 3.2.11, dλ is a distance. By Proposition 3.2.6, dλ verifies identity

of indiscernibles property and triangle inequality. Then, dλ is a metric. By Re-

mark 3.2.10, the Kemeny and Hamming metrics are neutral and it is obvious that

the convex combination λ dR + (1− λ) dA satisfies neutrality too.

2. By Proposition 3.2.6.

It is worthwhile to note that the aggregation of two distances for different kinds of

information leads to two problems. The first one, which is technical, arises from the fact

that dK and dH have different codomains for aggregation and a solution to this problem

has been proposed by the proposition 3.2.12. The second one is deciding on the appro-

priate value of λ for the aggregation of these two distances. Since λ (resp. 1 − λ)

determines the weight of information regarding orderings (resp. acceptability), the value

of λ should be decided before the implementation of the consensus measuring.
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In practice, the selection of the lambda can be done in various ways. First, as in the

case of voting in the committees, a moderator or a decision maker can decide on λ ac-

cording to his principles. Although λ can take infinitely many values, the most important

decision would be choosing the component of the preference (orderings or approval) that

will have more weight than the other. Second, a separate aggregation rule can be applied

and the outcome of that rule can be used as an optimal value of the λ. In particular, the

mean or a trimmed mean of the submitted λ values can be used as the outcome. How-

ever, when an aggregation procedure is followed the issues regarding strategic behavior

should be taken into consideration.

Example 3.2.13

The following table illustrates the changes in the total distances between preference-

approvals in Example 3.2.7 with respect to the values of λ.

λ = 0.25 λ = 0.5 λ = 0.75

dλ
(

(R1, A1), (R2, A2)
)

0.04167 0.08333 0.125

dλ
(

(R1, A1), (R3, A3)
)

0.1875 0.125 0.0625

dλ
(

(R1, A1), (R4, A4)
)

0.54267 0.58333 0.625

dλ
(

(R2, A2), (R3, A3)
)

0.22917 0.20833 0.1875

dλ
(

(R2, A2), (R4, A4)
)

0.5 0.5 0.5

dλ
(

(R3, A3), (R4, A4)
)

0.35417 0.4583 0.5625

In these results, note that the preference-approval which has the minimum distance

to (R1, A1) is (R2, A2) when we have λ = 0.25. However, when λ = 0.75 the result
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changes to (R3, A3). To see why, note that when λ = 0.25 the distance dA is weighted

more than dR implying that the disagreements on the set of accepted alternatives are more

important than the disagreements on the orderings. This is reversed when λ = 0.75. For

another illustration of a similar change in the distances with respect to λ, check that

among the given preference-approvals (R3, A3) is the closest to (R4, A4) for λ = 0.25.

However, for λ = 0.75 the previous result changes to (R2, A2).

3.3 Consensus measures

Consensus measures have been introduced and analyzed by Bosch [50] in the context

of linear orders. Subsequently, Garcı́a-Lapresta and Pérez-Román [51, 60] extended this

notion to the context of weak orders by using distances. Although many nonstandard

preferences are also analyzed for aggregation problems, the problem of measuring ho-

mogeneity for a set of these nonstandard preferences are not fully investigated in the

literature. In this section, we focus on consensus measures for preference-approval struc-

tures and start with introducing basic notions for consensus measures in general.

3.3.1 Basic notions

First we include some pieces of notation.

Definition 3.3.1

A profile is a vector R =
(

(R1, A1), . . . , (Rm, Am)
)

∈ R(X)m of preference-approvals,
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where (Ri, Ai) contains the preference-approval of the agent vi, with i = 1, . . . ,m.

1. The inverse of R is R−1 =
(

(R−1
1 , X \ A1), . . . , (R

−1
m , X \ Am)

)

.

2. Given a permutation π on {1, . . . ,m} and ∅ 6= I ⊆ V , we denote Rπ =

(

(Rπ(1), Aπ(1)), . . . , (Rπ(m), Aπ(m))
)

and Iπ = {vπ−1(i) | vi ∈ I}, i.e., vj ∈ Iπ ⇔

vπ(j) ∈ I .

3. Given a permutation σ on {1, . . . , n}, we denote by

Rσ =
(

(Rσ
1 , A

σ
1 ), . . . , (R

σ
m, A

σ
m)
)

the profile obtained from R by relabeling the al-

ternatives according to σ, i.e., xiRk xj ⇔ xσ(i)R
σ
k xσ(j) and

xi ∈ Aσ
k ⇔ xσ(i) ∈ Ak, for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}.

Definition 3.3.2

A consensus measure on R(X)m is a mapping

M : R(X)m × P2(V ) −→ [0, 1]

that satisfies the following conditions:

1. Unanimity. For all R ∈ R(X)m and I ∈ P2(V ), it holds

M(R, I) = 1 ⇔ (Ri = Rj and Ai = Aj , for all vi, vj ∈ I).

2. Anonymity. For all permutation π on {1, . . . ,m}, R ∈ R(X)m and I ∈ P2(V ),

it holds

M(Rπ, Iπ) = M(R, I).
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3. Neutrality. For all permutation σ on {1, . . . , n}, R ∈ R(X)m and

I ∈ P2(V ), it holds

M(Rσ, I) = M(R, I).

Unanimity means that the maximum consensus in every subset of decision makers

is only achieved when all opinions are the same. Anonymity requires symmetry with

respect to decision makers, and neutrality means symmetry with respect to alternatives.

We now introduce additional properties that a consensus measure may satisfy.

Definition 3.3.3

Let M : R(X)m × P2(V ) −→ [0, 1] be a consensus measure.

1. M satisfies maximum dissension if for all R ∈ R(X)m and vi, vj ∈ V such that

i 6= j, it holds

M(R, {vi, vj}) = 0 ⇔ (Ri, Rj ∈ L(X), Rj = R−1
i and Aj = X \ Ai).

2. M is reciprocal if for all R ∈ R(X)m and I ∈ P2(V ), it holds

M(R−1, I) = M(R, I).

Maximum dissension means that in each subset of two agents5, the minimum consen-

sus level is only reached whenever preferences of agents are linear orders, each one the

5It is clear that a society reaches the maximum level of consensus when all the opinions are the same.

However, in a society with more than two members it is not an obvious issue to determine when there is

the minimum level consensus (the maximum level of disagreement).
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inverse of the other, and the good alternatives of each agent are the bad ones of the other.

Reciprocity means that if all individual opinions are reversed, then the consensus does

not change.

3.4 Measuring consensus for preference-approvals

We now introduce our proposal for measuring consensus in the context of preference-

approvals. As we have discussed previously, richer information content of the preference-

approval structures can be desirable to distinguish some threshold levels as well as the

rankings in collective decision problems. On the other hand, analyzing the homogene-

ity level in such profiles asks for an extension of the standard measures of consensus in

the literature. We show that the consensus measure introduced by Garcı́a-Lapresta and

Pérez-Román [51, 60] for weak orders is robust to the additional approval information

for ordinal preferences when the metric proposed by Proposition 3.2.6 is used as an input.

Definition 3.4.1

Given a metric d : R(X)×R(X) −→ R , the mapping

Md : R(X)m × P2(V ) −→ [0, 1]

is defined by

Md (R, I) = 1−

∑

vi,vj∈I
i<j

d
(

(Ri, Ai), (Rj, Aj)
)

(

#I

2

)

·∆n

,
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where

∆n = max
{

d
(

(Ri, Ai), (Rj, Aj)
)

| (Ri, Ai), (Rj, Aj) ∈ R(X)
}

.

Note that the numerator of the quotient appearing in the above expression is the sum

of all the distances between the preference-approvals of the profile, and the denominator

is the number of terms in the numerator’s sum multiplied by the maximum distance be-

tween preference-approvals. Consequently, that quotient belongs to the unit interval and

it measures the disagreement in the profile.

3.4.1 Some results

Proposition 3.4.2

For every metric d : R(X)×R(X) −→ R , Md satisfies unanimity and anonymity.

Proof. Let R ∈ R(X)m and I ∈ P2(V ).

1. Unanimity.

Md(R, I) = 1 ⇔
∑

vi,vj∈I
i<j

d
(

(Ri, Ai), (Rj, Aj)
)

= 0 ⇔

⇔ ∀ vi, vj ∈ I d
(

(Ri, Ai), (Rj, Aj)
)

= 0 ⇔

⇔ ∀ vi, vj ∈ I (Ri, Ai) = (Rj, Aj) ⇔

⇔ ∀ vi, vj ∈ I (Ri = Rj and Ai = Aj) .

2. Anonymity. Let π be a permutation on {1, . . . ,m}.
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∑

vi,vj∈Iπ
i<j

d
(

(Rπ(i), Aπ(i)), (Rπ(j), Aπ(j))
)

=

=
∑

vπ(i),vπ(j)∈I

π(i)<π(j)

d
(

(Rπ(i), Aπ(i)), (Rπ(j), Aπ(j))
)

=

=
∑

vi,vj∈I
i<j

d
(

(Ri, Ai), (Rj, Aj)
)

.

Thus, Md(Rπ, Iπ) = Md(R, I).

If Md verifies neutrality, then we say that Md is the consensus measure associated

with d.

Proposition 3.4.3

If d : R(X)×R(X) −→ R is a neutral metric, then Md is a consensus measure.

Proof. By Proposition 3.4.2, Md satisfies unanimity and anonymity. Obviously, if d is

neutral, then Md verifies neutrality and thus Md is a consensus measure.

Theorem 3.4.4

For every λ ∈ (0, 1), Mdλ is a consensus measure that satisfies maximum dissension

and reciprocity.

Proof. By Proposition 3.4.3, Mdλ is a consensus measure.

1. Maximum dissension. First of all, notice that Mdλ (R, {vi, vj}) = 0 if and only if

dλ
(

(Ri, Ai), (Rj, Aj)
)

is maximum. This is equivalent to dR
(

(Ri, Ai), (Rj, Aj)
)
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and dA
(

(Ri, Ai), (Rj, Aj)
)

are maximum. By Proposition 3.2.6, dλ
(

(Ri, Ai), (Rj, Aj)
)

is maximum if and only if (R1, R2) ∈ L(X), R2 = R−1
1 and A2 = X \ A1.

2. Reciprocity. Given (R1, A1), (R2, A2) ∈ R(X), we only need to prove:

(a) dR(R1, R2) = dR(R
−1
1 , R−1

2 ) (see Garcı́a-Lapresta and Pérez-Román [51]).

(b) dH(A1, A2) = dH(A
−1
1 , A−1

2 ):

dH(A1, A2) =

= #
(

(A1 ∪ A2) \ (A1 ∩ A2)
)

=

= #
(

(A1 ∪ A2) ∩ (A1 ∩ A2)
−1
)

=

= #
(

(A1 ∪ A2) ∩ (A−1
1 ∪ A−1

2 )
)

=

= #
(

(A−1
1 ∪ A−1

2 ) ∩ (A−1
1 ∩ A−1

2 )−1
)

=

= #
(

(A−1
1 ∪ A−1

2 ) \ (A−1
1 ∩ A−1

2 )
)

=

= dH(A
−1
1 , A−1

2 ).

Taking into account (a) and (b), we have

dλ
(

(R1, A1), (R2, A2)
)

= dλ
(

(R1, A1)
−1, (R2, A2)

−1
)

.

Thus, Mdλ(R
−1, I) = Mdλ(R, I).
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3.4.2 An Illustrative example

Example 3.4.5

Consider again the preference-approvals in Example 3.2.7:

(R1, A1)

x1

x2

x3 x4

(R2, A2)

x2

x1

x3 x4

(R3, A3)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4

In the following table we illustrate the level of consensus reached in some represen-

tative subsets of agents for three values of λ:

λ = 0.25 λ = 0.5 λ = 0.75

Mdλ(R, {v1, v2}) 0.95833 0.91666 0.875

Mdλ(R, {v1, v3}) 0.8125 0.875 0.9375

Mdλ(R, {v3, v4}) 0.64583 0.54167 0.4375

Mdλ(R, {v1, v2, v3, v4}) 0.69097 0.67361 0.65625

In the first row, the level of consensus is measured for the first two agents. Recall that

λ is the coefficient for dR . Since these agents only disagree on the orderings, an increase

in λ puts more emphasis for that disagreement and leads to a decrease in the level of

consensus. On the contrary, the first and the third agents totally agree on orderings but

they disagree on the set of acceptable alternatives. Hence, we see in the second row that
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the level of consensus increases when λ increases as the importance of that agreement

increases (simultaneously, disagreement on the set of acceptable alternatives becomes

less important since 1 − λ decreases). In the third row we focus on the third and fourth

agents. These agents have disagreement on orderings and on acceptable alternatives at

the same time, so they reach the minimum level of consensus for all considered cases

so far. Note that the level of consensus decreases for these two agents when the weight

of dR increases. Finally in the last row, consensus level is measured for the full profile.

We see that as λ increases, the level of consensus in the profile decreases. According to

these results we conclude that for this profile, individuals have more agreement on which

alternatives are socially acceptable than the ordering of those alternatives.

3.4.3 Replications

In some collective decision procedures, especially for the multi-rounded voting sys-

tems, analyzing the preference-updating schemes can be useful for the moderator to

see the changes in the level of consensus. In particular, coalition formations can lead

to the occurrence of the same preference as many as the number of the agents in a

coalition. Hence, analyzing homogeneity for a given set of preferences when there

are some replications of preferences has its own interest. Having this motivation, we

consider a metric d : R(X) × R(X) −→ R and the associated consensus measure

Md : R(X)m × P2(V ) −→ [0, 1]. For each t ∈ N, it is possible to extend Md to t
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replicas of profiles of R(X)m and subsets of V :

Mt
d : R(X)tm × P2(t V ) −→ [0, 1].

Thus, Mt
d (tR, t I) ∈ [0, 1] measures the consensus in the multiset of agents6

t I = I⊎
t
· · · ⊎ I generated by t replicas of I for the profile generated by t replicas

of R ∈ R(X)m, tR = (R, t. . .,R) ∈ R(X)tm.

Proposition 3.4.6

Let d : R(X)×R(X) −→ R be a metric. For each profile of two preference-approvals

R =
(

(R1, A1), (R2, A2)
)

∈ R(X)2 such that d
(

(R1, A1), (R2, A2)
)

= δ and every

t ∈ N, it holds:

Mt
d (tR, t I) = 1−

t · δ

(2t− 1) ·∆n

,

where ∆n = max
{

d
(

(Ri, Ai), (Rj, Aj)
)

| (Ri, Ai), (Rj, Aj) ∈ R(X)
}

.

Proof. Consider R =
(

(R1, A1), (R2, A2)
)

∈ R(X)2 with d
(

(R1, A1), (R2, A2)
)

= δ

and I = {v1, v2}. Given t ∈ N, tR =
(

(R1, A1), . . . , (R2t, A2t)
)

, where (R2k−1, A2k−1) =

(R1, A1) and (R2k, A2k) = (R2, A2), for every k ∈ {1, 2, . . . , t}.

Mt
d (tR, t I) = 1−

∑

vi,vj ∈ tI
i<j

d
(

(Ri, Ai), (Rj, Aj)
)

(

#(t I)

2

)

·∆n

.

6List of agents where each agent occurs as many times as the multiplicity. For instance, 2{v1, v2} =

{v1, v2} ⊎ {v1, v2} = {v1, v2, v1, v2}.
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Since

d
(

(Ri, Ai), (Rj, Aj)
)

=



































0, if i, j are both even,

0, if i, j are both odd,

δ, otherwise,

we obtain

∑

vi,vj ∈ tI
i<j

d
(

(Ri, Ai), (Rj, Aj)
)

=
2t−1
∑

i=1

2t
∑

j=i+1

d
(

(Ri, Ai), (Rj, Aj)
)

=

=

(

t
∑

i=1

i+
t−1
∑

j=1

j

)

δ = t2 · δ .

On the other hand, we have

(

#(t I)

2

)

=

(

2t

2

)

= 2t2 − t .

Consequently,

Mt
d (tR, t I) = 1−

t · δ

(2t− 1) ·∆n

.

Remark 3.4.7

Under the assumptions of Proposition 3.4.6, it holds:

lim
t→∞

Mt
d (tR, t I) = 1−

δ

2∆n

.

Particulary, if R1 ∈ L(X) and (R2, A2) = (R−1
1 , A−1

1 ), then:

lim
t→∞

Mt
d (tR, t I) =

1

2
.
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Note that Remark 3.4.7 illustrates a surprising result that the level of consensus (or

homogeneity) in a group of individuals cannot be increased by simply replicating their

preferences. In fact, as the particular case of a polarized profile suggests, increasing the

number of inverse preferences can only lead to a consensus level of 1
2
.

Example 3.4.8

Consider I = {v1, v4} in Example 3.2.7. Their preference-approvals over four alterna-

tives are:

(R1, A1)

x1

x2

x3 x4

(R4, A4)

x3

x2

x1x4

In the following table we illustrate the changes in the level of consensus when we

replicate the agents {v1, v4} for three values of λ:
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λ = 0.25 λ = 0.5 λ = 0.75

δ = dλ
(

(R1, A1), (R4, A4)
)

0.54167 0.58333 0.66250

Mdλ(R, I) 0.458333 0.41666 0.375

Mdλ(2R, 2 I) 0.63889 0.61111 0.58333

Mdλ(5R, 5 I) 0.69907 0.67593 0.65278

Mdλ(15R, 15 I) 0.71983 0.69828 0.67672

Mdλ(30R, 30 I) 0.72457 0.70339 0.68220

lim
t→∞

Mt
d (tR, t I) 0.72917 0.70833 0.68750

The first row shows the distances between these two preference-approvals with re-

spect to three different values of λ. Consensus levels are illustrated in the second row.

Note that when the size of the profile is doubled by cloning the preferences of each agent,

as it is shown in the third row, consensus levels are increased for each values of λ. Ac-

cording to the results in table, we see that as the number of replications are increased the

level of consensus also increases as it might be expected. However, our results also shows

that there exists a limit for increasing the homogeneity level in a group of individuals by

simply replicating their preferences.

3.5 Concluding remarks

Many collective decision making problems of voting, matching, bargaining and public

goods implicitly use some threshold levels which are naturally described in the preference-
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approval framework. We explore the problem of measuring consensus in this hybrid

informational system by following a distance-based approach. Measuring homogeneity

in terms of distances raises the question of how to evaluate the similarity between any

two preferences. Although this question has been answered for various types of ordinal

rankings like linear or weak orders over alternatives, we are not aware of a formal treat-

ment of this problem for nonstandard preferences. Enriching the informational content

by approval notion asks for a more sophisticated evaluation of similarity of preferences.

Given any two preference-approvals we propose measuring the concordance of them

by convex combinations of normalized Kemeny and Hamming metrics. At this stage, our

proposal depends on the ex-ante selection of the coefficients (λ and 1 − λ) for Kemeny

and Hamming metrics depending on the context of the relevant problem. Due to the

relative importance of the disagreements with respect to the orderings of the alternatives

or the approval of them, λ can be chosen by a moderator or by an aggregation rule.

Experimental studies related to the optimal selection of λ for different contexts would

give more insight for the implementation of this procedure, but would be the subject of a

separate paper.

By deriving a proper metric that takes into account of two pieces of information,

next we deal with measuring homogeneity according to these two components. We see

that the measure of consensus introduced by Garcı́a-Lapresta and Pérez-Román [51] can

be extended for preference-approvals when that measure is based on a metric that satis-

fies some desirable axioms. Among the interesting results, we show that the degree of
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homogeneity in a group of individuals cannot be increased by simply replicating their

preference-approvals.

For further research, analyzing metrics which can identify correlation between rank-

ings and accepted alternatives in preference-approvals invites interesting questions. Ad-

ditionally, using weighted distances to measure the discrepancies with respect to the po-

sition of the alternatives in the rankings would be a complement of this chapter. How to

apply our model for truncated preferences on the subsets of a given alternative set arises

another appealing question especially when there is large number of alternatives under

consideration.
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Chapter 4

On Manipulabilition from an

Unacceptable Social Choice to an

Acceptable one
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ABSTRACT

Non-manipulability in collective decision making problems has been analyzed mainly

through the axiom of strategy-proofness. In this chapter1, we propose a new concept of

non-manipulability. We postulate that each agent misreports his preferences if and only

if the misrepresentation leads to a change of the social outcome from an unacceptable

one for this agent to an acceptable one. For the formulation of this idea the preference-

approval framework is used. Possibility and impossibility results for the existence of a

non-manipulable rule are provided.

Keywords: non-manipulability, strategy-proofness, preference-approval

1This chapter is based on a joint working paper with the co-authors Sanver and Sato [61]
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4.1 Introduction

In collective decision making problems, non-manipulability of the aggregation rules has

been widely studied in the literature.2 Strategy-proofness, one of the central axioms in

the theory of social choice, leads to impossibility results in most environments.

For example, by the Gibbard–Satterthwaite theorem (Gibbard [63] and Satterthwaite [64])

we know that on the universal domain of preferences, each strategy-proof social choice

function whose range contains more than two alternatives is dictatorial.3Therefore, the

standard notion of strategy-proofness does not lead to any normatively appealing rule

which is robust to misrepresentation. In other words, strategy-proofness does not serve

as a practically useful criterion of the robustness to misrepresentation.

We propose a new non-manipulability condition by using approval notion rather than

rankings. We postulate that each agent manipulates the social outcome if and only if

the social outcome changes from an unacceptable one for himself to an acceptable one.

Since the standard model of social choice does not contain this type of binary evaluation,

we use a framework which has richer informational content than the standard Arrovian

framework.

In the recent literature of Voting Theory, there are some new models of aggregation

mechanisms which use different formulations of inputs as individuals’ messages in bal-

2For an eloquent survey for the related literature, one can check Barbera [62].

3This result extends to many other frameworks. For example, in the context of choice aggregations,

Baigent [65] shows that Unanimity, Neutrality and a condition called the Bilateral Dropping Property are

sufficient for a choice aggregation to be emphmanipulable.
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loting procedures. For example, Approval voting ([15], [16]) allows voters to express

themselves through two labels as approved or not approved. Majority judgement [18]

method extends this freedom of expression to seven labels as Excellent, Very Good, Good,

Good, Passable, Inadequate, Mediocre, Bad. Finally, Range Voting [19] asks voters to

provide a numerical score for the candidates within a fixed interval such as 0-100. Non-

manipulability of these rules are also investigated in the literature as in [66], [18]. How-

ever, the difference between the standard and nonstandard settings in the formulation of

inputs asks for further analysis of issue.

Brams and Sanver [53] suggest a model by combining the standard ordinal world of

rankings with evaluation through approval in a hybrid system called preference-approval.

Each agent is assumed to have an ordering on a given set of alternatives and a cut-off line

to distinguish acceptable and unacceptable alternatives for them. An alternative which is

ranked above (resp. below) the line is qualified as acceptable (resp. unacceptable).

We use the preference-approval model as a basis for our study and we investigate the

existence of of non-manipulable aggregation rules in this framework.

Our results contribute to two lines of research. One is about non-manipulability of

social choice rules and the other is about non-standard formulations of agents’ character-

istics. In the literature, various paths can be noticed for the non-manipulability analysis.

One of them, as in Sato [67, 68], analyses different notions of non-manipulability in

Arrovian framework and provides further examination of strategy-proofness.. Another

stream, investigates the manipulability under some domain conditions, such as dichoto-
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mous preferences and for specific rules as in Vorsatz.[69]. In this study, we attempt to

investigate a new notion of non-manipulability, with a domain condition in preference-

approval framework.

This chapter is organized as follows. Section 2 introduces the basic notion and defini-

tions. Section 3 is devoted to the analysis of non-manipulability of preference-approvals.

Finally, Section 4 includes concluding remarks.

4.2 Basic notions and definitions

We consider a set of agents N = {1, . . . , n} with n ≥ 2 confronting a finite set of

alternatives X where |X| = m ≥ 3. By 2X we denote the set of all subsets of X .

We write L for the set of linear orders 4 on X . For each R ∈ L, we denote the strict

part of R by P . Finally, for each R ∈ L and each k ∈ {1, . . . ,m}, we write rk(R) for

the kth ranked alternative in R.

Now, we introduce the primitive of our model, namely preference-approval which

incorporates hybrid information of ordinal rankings and the approval notion.

4.2.1 Preference-approval framework

We consider a framework in which each agent not only ranks the alternatives in X by

means of a linear order but also evaluates each alternative as either acceptable or unac-

4A linear order is a complete, transitive, and antisymmetric binary relation.
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ceptable. 5

We provide the formal definition of a preference-approval, as the following.

Definition 4.2.1

A preference-approval is a pair p = (R,A) ∈ L× 2X satisfying the following condition

∀x, y ∈ X
(

(x R y and y ∈ A) ⇒ x ∈ A
)

.

Let U = X \ A.

We interpret A as the set of acceptable alternatives and U as the set of unacceptable

alternatives. So, the above condition says that if an alternative is approved, all alternatives

preferred to this alternative should be approved as well. Similarly we have if xR y and

x ∈ U , then y ∈ U .

One can note that, with this definition, we embed the notion of approval to the prim-

itives of the individual preferences. Therefore, strategic behavior of “approving an al-

ternative in an approval ballot” (or in any other aggregation rule which uses this notion)

becomes a different issue from the evaluation of the alternatives during formation of the

“preference-approval”of an individual. An analogy would be the difference between the

strategic behavior of providing a ranking of alternatives in an election method and the

primitives as standard preferences (linear or weak orders over alternatives).

We denote a profile of preference-approvals by p = (p1, . . . , pn) where pi = (Ri, Ai)

is a preference-approval of agent i.A denotes the set of all preference-approvals.

5We interchangeably use the terms “approved”,”acceptable”, “eligible”, “appropriate”, and so on.
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Considering misrepresentation, when pi ∈ A in p ∈ AN is replaced by p′i ∈ A, we

write (p′i,p−i) for the new profile.

D ⊆ L denotes the set of admissible preferences and we write P(D) = {(Ri, Ai) ∈

A | Ri ∈ D} for the set of admissible preference-approvals. Interchangeably, we write

P for P(D) when the meaning is clear.

Providing the basic model, next we discuss aggregation rules defined for “preference-

approval” profiles and we propose our notion of non-manipulability in the following part.

4.2.2 Preference-approval aggregation

We consider single-valued functions defined over preference-approval profiles. For each

D ⊆ L, a rule is a mapping f from P(D)N into X . Let f be our generic notation for a

rule.

We say that a rule f is approval-invariant if for each p,p′ ∈ PN such that Ri = R′
i

for each i ∈ N , we have f(p) = f(p′). So, an approval-invariant rule depends only

on the linear orderings part of preference-approvals and ignore the positions of approval

thresholds.

We call an agent i as decisive for x ∈ X if for each p ∈ PN such that Ai = {x},

f(p) = x. Agent i is decisive if he is decisive for each alternative. So an agent who is

not approving any alternative cannot be decisive for the outcome of the rule, which will

be compatible with the notion of non-manipulability we work in this chapter.

Furthermore, we define the following standard axioms for our framework.
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• Efficiency. For each distinct pair x, y ∈ X and each p ∈ PN such that x Ri y for

each i ∈ N , we have f(p) 6= y.

So, efficiency simply means that when an alternative is dominated by another alter-

native for every agents, then the dominated one cannot be the social outcome.

• Unanimity. For each x ∈ X and each p ∈ PN such that r1(Ri) = x for each

i ∈ N , we have f(p) = x.

Unanimity, as a weaker condition than efficiency, means that when the top ranked

alternatives are the same for every agent, the rule respects this agreement.

• Anonymity. For each p ∈ P and each permutation π of N , we have f(p) = f(p′),

where p′i = pπ−1(i) for each i ∈ N .

Anonymity simply means that the agents are treated symmetrically and name-tags

of them should not matter.

Now, we introduce our notion of manipulability in the preference-approval frame-

work.

Definition 4.2.2

A rule is manipulable if there are p ∈ PN , i ∈ N , and p′i ∈ P , such that

f(p) 6∈ Ai & f(p′i,p−i) ∈ Ai.

We say thay a rule is non-manipulable if it is not manipulable.
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According to the above formulation, each agent i manipulates the social outcome if

and only if he can change the social outcome from an unacceptable one for himself to an

acceptable one.

In this sense, one can note that the above definition of nonmanipulability is quite

different than the standard notion of strategy-proofness which would be defined in this

framework as for each p ∈ PN , each i ∈ N , and each p′i ∈ P , f(p) Ri f(p
′
i,p−i). On

the other hand, we will show the relation between these two notions in Section 3, where

we provide our results.

4.2.3 Circular domains

In this section, we introduce a domain condition, which is first proposed by Sato [70].

A set of preferences is called a circular domain if the alternatives can be arranged on

a circle so that for every alternative on the circle, we have two preferences in the domain

in which this alternative is top ranked, and additionally, the second ranked alternative

in one of these preference is the bottom ranked in the other one and the bottom ranked

alternative in the considered preference is the second ranked in the other one.

Formally, we say the following:

Definition 4.2.3

D ⊆ L is circular if the alternatives can be indexed x1, x2, . . . , xm so that for each

k ∈ {1, . . . ,m}, there exist two preferences R and R′ in D such that
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1. r1(R) = xk, r2(R) = xk+1, rm(R) = xk−1,

2. r1(R
′) = xk, r2(R

′) = xk−1, and rm(R
′) = xk+1.

(Let xm+1 = x1 and x0 = xm.) P(D) is circular if D is circular.

It is important to note that this condition is a restriction for only the linear order part

of preference-approvals.

Example: For a set of three alternatives, {x1, x2, x3 }, the minimal circular domain

would be the following set of preferences where the most preferred alternative is written

as the leftmost one:

{x1x2x3, x1x3x2, x2x1x3, x2x3x1, x3x1x2, x3x2x1 }

By Sato [70], we know that on any circular domain, any strategy-proof and unanimous

social choice function should be dictatorial. So, a natural question is whether the above

result extends to the preference-approval framework with the non-manipulability notion

that we use in this chapter.

Before investigating this question in the next section, we note some properties of

circular domains.

• The universal domain is a circular domain.

• The minimal circular domains consist of 2n preferences since each alternative

should be top ranked in at least two distinct preferences.
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• One of the necessary conditions for a domain D to be circular is that for every

x ∈ X , there exists y ∈ X such that r1(R) = x, r2(R) = y, r1(R
′) = x, and

rm(R
′) = y for some R,R′ ∈ D. If we cannot find such y for some x, then the

domain cannot be circular.

4.3 Results

We present possibility and impossibility results on constructing nonmanipulable rules.

First, we show that for each approval-invariant rule on each domain, our nonmanipu-

lability definition is logically equivalent to strategy-proofness.

Theorem 4.3.1

Let D ⊆ L. Let f be an approval-invariant rule on P(D)N . Then, f is nonmanipulable

if and only if it is strategy-proof.

Proof. It is trivial to show that strategy-proofness implies non-manipulability. Thus,

we will show the only if part,

non-manipulability implies strategy-proofness. We prove the contrapositive. So, assume

that f violates strategy-proofness. Then, there exist p ∈ PN , i ∈ N , and p′i ∈ P such that

f(p′i,p−i) Pi f(p). Let p∗i = (R∗
i , A

∗
i ) ∈ P be such that R∗

i = Ri and f(p′i,p−i) ∈ A∗
i ,

and f(p) ∈ U∗
i . For f is approval-invariant, we have f(p) = f(p∗i ,p−i). Then, we get

f(p∗i ,p−i) ∈ U∗
i and f(p′i,p−i) ∈ A∗

i implying that f is manipulable. �

By Theorem 4.3.1, since approval-invariant rules are as the standard rules of Arrovian
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framework, the Gibbard–Satterthwaite theorem implies that only dictatorship is nonma-

nipulable on AN . Hence, for a nonmanipulable and nondictatorial rule on AN , one has

to investigate among rules that essentially depend on position of the cut-off lines between

acceptable and unacceptable alternatives.

To state differently, for a positive result of non-manipulable rules, approval informa-

tion should be taken into account for the rules under consideration.

Our next result shows an example of such a rule.

Theorem 4.3.2

Let n ≥ 3 andR,R′, R′′ ∈ D be such that the top ranked alternatives in these preferences

are distinct from each other. On P(D), there exists an efficient and nonmanipulable rule

under which no agent is decisive.

Proof. Let p ∈ PN . We consider the following steps for constructing the rule.

STEP 1: If
⋂n

i=1Ai 6= ∅, let f(p) be any efficient alternative6 in
⋂n

i=1Ai 6= ∅. If

⋂n

i=1Ai = ∅, proceed to the next step.

STEP k (1 < k < n − 1): If
⋂n

i=k Ai 6= ∅, let f(p) be any efficient alternative in

⋂n

i=k Ai 6= ∅. If
⋂n

i=k Ai = ∅, proceed to the next step.

6Given a profile p, an alternative x is efficient in Y ⊂ X if there is no y ∈ Y such that y Ri x for each

i ∈ N .
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STEP n− 1: If
⋂n

i=n−1Ai 6= ∅, let f(p) be any efficient alternative in
⋂n

i=n−1Ai 6= ∅.

If f(p) is not determined after Step n−1, f(p) is decided according to the following.

If Ai 6= ∅ for some i ∈ N , let i∗ be the agent with the least index such that Ai∗ 6= ∅, and

let f(p) = r1(Ri∗). If Ai = ∅ for each i ∈ N , let f(p) be any efficient alternative.

CLAIM 1: f is efficient.

Proof of Claim 1. By construction, f always chooses efficient alternatives. Hence, f is

efficient.

CLAIM 2: f is nonmanipulable.

Proof of Claim 2. Let p ∈ PN . Assume that the social choice is determined at Step

k ∈ {1, . . . , n− 1}. Then, for each i ∈ {k, . . . , n}, f(p) is acceptable for agent i. Thus,

agent i does not have an incentive to lie. Let i ∈ {1, . . . , k − 1}. Let p′i = (R′
i, A

′
i) ∈ P .

The social choice changes only if A′
i is such that A′

i ∩
⋂n

j=i+1Ai 6= ∅.

Let B = A′
i∩
⋂n

j=i+1Ai. Since Ai∩
⋂n

j=i+1Ai = ∅, B ⊂ X \Ai. Thus, f(p′i,p−i) ∈

X \ Ai.

In the remaining case where An−1 ∩ An = ∅, we can see that each agent does not

have an incentive to lie.

CLAIM 3: There is no decisive agent under f .

Proof of Claim 3. Let x, y, z ∈ X denote distinct alternatives which are top ranked at
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some preference relation in D. (Such x, y, z exist by the assumption.)

Let p ∈ P be such thatAi = {x} for each i ∈ {1, . . . , n−2}, andAn−1 = An = {y}.

Then, f(p) = y. Thus, each i ∈ {1, . . . , n− 2} is not decisive.

Let p′ ∈ P be such that A′
i = {x} for each i ∈ {1, . . . , n − 2}, A′

n−1 = {y}, and

A′
n = {z}. Then, f(p′) = x. Thus, neither agent n− 1 nor agent n is decisive. �

Under the rule f constructed in the proof of Theorem 4.3.2, an agent with a larger

index is treated better than those with smaller indices.

For example, let n = 10, and p1 = p2 = · · · = p8 be such that A1 = A2 = · · · =

A8 = {y}, and p9 = p10 be such that A9 = A10 = {x}. Then, f(p) = x. In this sense, f

doesn’t satisfy an equal treatment of the agents.

The next result shows that the agents cannot be treated equally under each efficient

and nonmanipulable rule when n is even and P(D) is circular.

Theorem 4.3.3

Assume that n is even and P is circular. Then, there is no anonymous, efficient, and

nonmanipulable rule on PN .

Proof. Let f be an anonymous, efficient, and nonmanipulable rule on PN . Let {N1, N2}

be a partition of N such that |N1| = |N2|. Assign a number from 1 to m to each alterna-

tive so that it makes P circular.

CLAIM 1: It is impossible that both N1 and N2 are decisive.

Proof of Claim 1. It is easy to derive a contradiction when N1 and N2 are both decisive.
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Table 4.1: Profiles of preference-approvals

p

N1 N2

Best xk [xk+1]

2nd [xk+1] xk+2

...
...

...

Worst xk−1 xk

p′

N1 N2

xk [xk+1]

[xk+1] xk

...
...

xk−1 xk+2

p′′

N1 N2

xk [xk+1]

xk−1 xk

...
...

[xk+1] xk+2

�

CLAIM 2: Neither N1 nor N2 is decisive.

Proof of Claim 2. Suppose that one of N1 and N2 is decisive. Without loss of generality,

assume that N1 is decisive. We claim that N2 is also decisive. Let x ∈ X and p ∈ P

be such that Ai = {x} for each i ∈ N2. Let π be a permutation of N such that for each

i ∈ N1, π(i) ∈ N2. By anonymity, f(p) = f(π(p)). Since N1 is decisive, f(π(p)) = x.

Thus, f(p) = x. This implies that N2 is decisive for x. Since x was arbitrary, N2 is

decisive. Therefore, both N1 and N2 are decisive, which is a contradiction to Claim 1. �

CLAIM 3: For each k ∈ {1, . . . ,m}, either N1 is decisive for xk or N2 is decisive for

xk+1.

Proof of Claim 3. The following arguments are modification of those by Sato (2010).

Let xk ∈ X . Assume that agent N1 is not decisive for xk. Then, at p in Table 4.1,7
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f(p) 6= xk. By efficiency, f(p) = xk+1. Next, consider p′ in Table 4.1. (For each

i ∈ N1, pi = p′i.) By nonmanipulability, f(p′) = xk+1. Finally, consider p′′. (For each

i ∈ N2, p
′
i = p′′i .) By efficiency, f(p′′) ∈ {xk, xk+1}. Since f(p′′) = xk is a contradic-

tion to nonmanipulability, we have f(p′′) = xk+1. By nonmanipulability, N2 is decisive

for xk+1. �

CLAIM 4: Either N1 is decisive or N2 is decisive.

Proof of Claim 4. For each xk ∈ X , either N1 is decisive for xk or N2 is decisive for xk.

(If not, then by Claim 3, N1 is decisive for xk−1 and N2 is decisive for xk+1. However,

this cannot be the case.) Let x ∈ X . Then, either N1 is decisive for x or N2 is decisive

for x. Consider the former case. Let y ∈ X \{x}. Then, eitherN1 orN2 is decisive for y.

Since N2 cannot be decisive for y, N1 is decisive for y. This implies that N1 is decisive.

By similar arguments, when N2 is decisive for x, N2 is decisive. �

Clearly, Claim 4 is a contradiction to Claim 2. �

When n = 2, the impossibility in Theorem 4.3.3 disappears if efficiency is replaced

by unanimity.

Proposition 4.3.4

Assume N = {1, 2}. There is an anonymous, unanimous, and nonmanipulable rule.

7In Table 4.1, the horizontal lines between alternatives represent a boundary between the acceptable

and the unacceptable range. The alternative between the brackets is a social outcome at each profile.
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Proof. Let x∗ ∈ X be fixed in the following. Let p ∈ PN .

CASE 1: There is x ∈ X such that r1(Ri) = x for each i ∈ N . Let f(p) = x.

CASE 2: A1 ∩ A2 6= ∅. Let f(p) be any efficient alternative in A1 ∩ A2.

CASE 3: One of A1 and A2 is empty and the other is nonempty. Let Ai 6= ∅. Then, let

f(p) = r1(Ri).

CASE 4: Cases 1 through 3 do not apply. Let f(p) = x∗.

For each p ∈ PN , check from Case 1 to Case 4, and determine f(p) according to

the first case to which p can be applied. Then, the rule f is anonymous, unanimous,

nonmanipulable.

Since anonymity and unanimity of f are clear, we prove nonmanipulability. Let p ∈

PN . If one of Cases 1, 2, and 3 determines f(p), then it is clear that each agent does

not have an incentive to lie. Thus, assume that f(p) is determined by Case 4. Since

the Cases 1 through 3 are not applicable, either A1 = A2 = ∅ or [A1 6= ∅ and A2 6= ∅

and A1 ∩ A2 = ∅]. In the former case, manipulation never occurs. Consider the latter

case. Consider agent 1. If x∗ ∈ A1, then he has no incentive to lie. Assume x∗ 6∈ A1.

To change the social choice, he has to report p′1 ∈ P such that one of Cases 1, 2, and

3 holds. However, in each case, f(p′1, p2) ∈ A2. Since A1 ∩ A2 = ∅, such p′1 is not a

profitable misrepresentation. By similar arguments, it can be seen that agent 2 does not

have an incentive to lie. Thus, f is nonmanipulable. �
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4.4 Concluding remarks

We analyze a type of manipulation in the preference-approval framework such that each

agent i manipulates the social outcome if and only if he can change the social outcome

from an unacceptable one to an acceptable one. We show that according to this defini-

tion, under some mild domain assumption, there exists an efficient and nonmanipulable

rule under which no agent is decisive. However, when the number of the agents is even,

we cannot have an anonymous, efficient, and nonmanipulable rule on each circular do-

main. For further research, it would be interesting to characterize the set of efficient and

nonmanipulable rules in preference-approval framework.
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