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The present work results from a CIFRE agreement between the mechanical depart-
ment (UME) of École Nationale Supérieure de Techniques Avancées (ENSTA ParisTech) at
Palaiseau and the research and innovation department of fluid mechanics of PSA Peugeot
Citroën at Vélizy-Villacoublay.

These experimental studies aim at improving the comprehension of the flow over road
vehicles. The objective is to identify the dominant drag sources; based on this diagnos-
tic, flow control strategies are suggested and implemented to improve the aerodynamic
performances.





Chapter 1

Introduction

This chapter introduces the industrial context. Then, it gives some bibliographical ele-
ments on bluff body wakes in order to present the academical motivations and the originality
of the study.

In parallel, the notations and some general notions of fluid mechanics are presented in
appendix A.

Abstract

Car manufacturers are intensively working on the reduction of the pollutant emissions
of their new vehicle fleets. As the resisting force induced by the air flow over a car is
the dominant contributor to power consumption at high speeds, an important effort is
devoted to drag reduction. The development of efficient flow control strategies relies on
the comprehension of the drag sources which must first be studied past basic bluff bodies.
While the flow control strategies for drag reduction are relatively clear over bidimensional
geometries due to the presence of the von Kármán dynamics, it appears that the drag sources
are not trivial even for simple three-dimensional geometries such as spheres or disks. When
it comes to real vehicle shape, it is admitted that the wake induces low pressure levels on the
afterbody but the corresponding physics remain open issues. In this context, this work aims
at improving the comprehension of three-dimensional wakes by increasing the complexity
of the geometry and by exploring the sensitivity of the flow to local disturbances.
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4 Chapter 1. Introduction

Figure 1.1. History of the drag of road vehicles from Hucho (1998).

1.1 Industrial context

Growing economical and environmental considerations on fuel consumption are motivat-
ing car manufacturers to improve the energetic efficiency of their vehicles. In particular, the
European Union is introducing thresholds of CO2 emissions with significant financial penal-
ties for over-pollution. The manufacturers have to ensure that their new car fleets do not
emit more than an average of 130 grams of CO2 per kilometer by 2015 and 95 g(CO2)/km
by 2020.

To reach these objectives of CO2 emissions, different levers are identified such as engine
optimization, mass diminution and drag reduction. Indeed, the resisting force applied by the
air stream on the vehicle, i.e. the drag, is responsible for the dominant power consumption
for high speeds, typically over 70 km/h. To give some figures, for a median vehicle emitting
130 g(CO2)/km, roughly 30 g(CO2)/km are ascribed to aerodynamic effects.

The drag force relies on the shape of vehicles; it is quantified using a normalized
coefficient, denoted Cx, allowing the comparison of the vehicles shapes. The history of the
drag of road vehicles is presented in figure 1.1. One can first see the decreasing trend:
the drag coefficient has been reduced from 1.0 in the begining of the 20th century to an
average of 0.3 in 2010. The interesting period is the sharp decrease of Cx that begins from
the end of the 70’s as a response to the energy crises and goes on in the 80’s with the
benefits of the increasing use of wind tunnels during the vehicle conception. However, the
drag coefficient seems to have reached a limit as no significant drag reduction has been
observed over the last decade.

Currently, the car manufacturers face different concerns on automotive drag reduction.
First, the shape of the vehicle is strongly affected by some functional aspects such as space of
the passenger compartment, crash safety, engine cooling and style design. These constraints
limit the use of more streamlined shapes that could easily provide better drag performances.

Furthermore, the drag reduction strategies gradually lead to a standardization of the
vehicles shapes because all the manufacturers have similar constraints and consequently
similar optima. This leaves less and less liberties to the design department: the inclination
of the roof, the presence of a spoiler and its orientation, the use of sharp edges on the
afterbody... All these parameters are set to reach the best aerodynamic performances.

Finally, any drag reduction obtained using an additional device has a significant cost,



1.1. Industrial context 5

both in terms of development and integration on the vehicle. Nevertheless, for commercial
reasons, it may not be added to the selling price. The penalties for over-pollution introduced
by the European Union should alter this balance and encourage innovation.

Therefore, the role of the research departments in car aerodynamics is to provide new
levers of drag reduction as well as alternative technologies allowing more design liberties.

In this industrial context, the present work aims at improving the comprehension of
drag sources in the wakes past road vehicles. It addresses different open issues such as the
presence of global mode activity and its impact on drag. Based on this drag diagnostic, the
objective is to provide a drag reduction strategy that can be achieved through flow control.

Now that the industrial motivations are defined, some bibliographical notes on bluff
body wakes and their control are given in section 1.2 increasing the complexity of the
geometries progressively.
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1.2 Bluff body wakes and strategies of flow control

This section presents the general characteristics of bluff body wakes with some strategies
of flow control for drag reduction that are reported in the literature. First, section 1.2.1
is devoted to the behavior of a plane mixing layer. Then, bidimensional geometries are
studied in section 1.2.2. Finally, section 1.2.3 depicts the flow over basic three-dimensional
bodies and some elements on road vehicle wakes are provided in section 1.2.4.

1.2.1 Planar mixing layers

The common characteristic of bluff body wakes is the presence of flow separations on the
geometry. The boundary layer detachments introduce concentrated vorticity in the wake
and forms mixing layers between the flows of different velocities: U ∼ U0 in potential flow
while U ≪ U0 in the separated region. Thus, the dynamics of the mixing between two
fluids of different velocities are the starting ingredients of bluff body wakes.

Features of the natural flow

The behavior of a planar mixing layer between a high velocity flow (U⃗ = U0e⃗x) and a
fluid at rest is depicted from studies present in the literature (Champagne et al., 1976; Bell
& Mehta, 1990; Pope, 2000). This configuration is a general organization of a shear flow
considered in the reference frame of the low velocity flow; a sketch is given in figure 1.2(a).
The coordinate system is chosen so that the mean vorticity in the shear layer is oriented in
the z direction. For a given streamwise position x, the position yα is defined as

U(yα) = αU0, (1.1)

with α ∈ [0, 1]. The characteristic thickness δm of the mixing layer is evaluated by

δm(x) = |y0.9(x)− y0.1(x)|. (1.2)

The characteristic lengths δ1 and δ2, displacement and momentum thicknesses respectively,
defined for wall boundary layers in equations (A.12) and (A.13) can be extended to mixing
layers: they are denoted by δm1 and δm2 respectively.

Moving downstream, the momentum of the high velocity flow is transfered to the fluid
at rest by viscous or turbulent diffusion depending on the flow regime. This phenomenon
results in a mixing layer growth at a rate of dδm/dx ∼ Reδm

−0.5 in the laminar regime and
dδm/dx ∈ [0.1, 0.2] in the turbulent regime1. Hence, the growth rate is generally much
smaller in the laminar regime than in the turbulent one. Furthermore, for a turbulent
mixing layer, it is observed that the contours yα are straight lines and the growth is
measured toward the domain of the fluid at rest. One can interpret such a spatial growth
as fluid entrainment by the mixing layer.

Now, the time-averaged momentum conservation expressed in equation (A.8), considered
in the y direction at large Reynold numbers (Reδm = U0δm/ν ≫ 1) and under mixing layer
assumptions (Ux ≫ Uy ∼ Uz and ∂/∂y ≫ ∂/∂x ∼ ∂/∂z), gives the equilibrium between the
dominant terms

∂Cp

∂y∗
+ 2

∂⟨u′y
∗2⟩

∂y
= 0. (1.3)

1Experiments show that the exact value of the growth rate relies on the initial conditions of the shear
layer.
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Figure 1.2. Sketch of a mixing layer configuration (a) and characteristic dynamics at
Reδm = 8.5 105 (b); the time sequence is from Roshko (1976).

Thus, after integration in the y direction, equation (1.3) shows that Cp + 2⟨u′y
∗2⟩ is

constant across the mixing layer: at first order, the pressure of the fluid at rest is equal to
the static pressure of the high momentum flow.

The fluctuations of velocity in the mixing layer are ascribed to turbulent behaviors
but also to proper vorticity dynamics. Indeed, a planar shear layer is unstable (Kelvin-
Helmholtz instability) which results in the development of rollings of the shear surface at
Stδm2

≈ 0.02 (Michalke, 1965; Ho & Huerre, 1984). In particular, the time sequence in
figure 1.2(b) shows pairings of vortices which is one of the basic ingredients of the mixing
layer growth. The size of the vortices clearly relies on the streamwise position in the flow; so
in the spectral domain, the frequency fLS/I , separating the large-scale structures (related
to the rollings) and the inertial range of turbulence, decreases with the streamwise position
(Hussain & Zaman, 1985).

Flow control strategies

In terms of flow control, an interesting approach is the modification of the growth rate
dδm/dx, i.e. the quantity of fluid incorporated by the mixing layer. This growth rate may
easily be increased by enhancing the turbulent activity or exciting the natural rollings as
evidenced in figures 1.3(a)–(c). On the contrary, the reduction of dδm/dx is a real challenge
for shear flows at high Reynolds numbers. The main technique consists in postponing the
transition to turbulence and the development of the instabilities.

First, one can refer to the work of Greenblatt & Wygnanski (2000) as well as the ex-
periments of Parezanović et al. (2013) using active control methods in transitional mixing
layers. In particular, Parezanović et al. (2013) show that a high frequency actuation pre-
vents the formation of the large-scale structures which results in a reduction of the Reynolds
stresses and a diminution of the growth rate (compare figures 1.3b and 1.3d).

Moreover, perturbations forming optimal streaks are proved to delay the transition to
turbulence in boundary layers (Fransson et al., 2006). Consequently, they may provide an
interesting approach in a mixing layer configuration given similitudes between these two
shear flows.

The mixing layer dynamics are part of the basic ingredients of separated flows but
many wake properties result from the interactions between several shear layers, especially
for bidimensional geometries.
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Figure 1.3. Smoke visualizations of the effect of micro-jet actuators on a mixing layer
at Reδm2

= 500 from Parezanović et al. (2013): experimental setup (a); natural flow (b)
with a characteristic frequency around 30 Hz, i.e. Stδm2

= 0.02, and controlled flows with
actuations at 10 Hz (c) and 400 Hz (d).

1.2.2 Bidimensional geometries

The presence of boundary layer separations on cylinders2 leads to configurations of two
shear layers of opposite sign in the flow. Now, this vorticity distribution has a strong impact
on the wake behavior.

Features of the natural flow

Over a certain Reynolds number (ReD = 47 for a circular cylinder), the interaction of
the two shear layers of opposite vorticity results in an antisymmetric instability. A global
mode consisting in a periodic shedding of vortices, known as the von Kármán vortex street,
is observed in the wake (see figures 1.4a–b). The shedding frequency is StDr

≈ 0.2 with
Dr the thickness of mean wake as defined in figure 1.5(a) (Roshko, 1954). A flourishing
literature can be found on the different regimes of this vortex shedding (see Roshko, 1993;
Williamson, 1996; Zdravkovich, 1997, and references therein).

These intense von Kármán vortices are sources of low pressure in the wake. As a
consequence, their formation and dynamics significantly affect both the drag and the
instantaneous lift. For example, the periodic motion of the vortex shedding is responsible
for a dominant part of the velocity fluctuations: in the turbulent wake of a circular cylinder
at ReD ∼ 105, Cantwell & Coles (1983) reports that 35% to 55% of the Reynolds stresses
are ascribed to the coherent activity. So it is clear that the von Kármán street plays a first
order role in the mean wake properties, even at large Reynolds numbers.

Two general trends between the mean flow and the base pressure can be stated from
experimental results.

◦ First, the thicker the wake in comparison to the geometry, the lower the base pressure,
the larger the drag.

This rule may be ascribed to the bluffness effect where the bluffness is defined as
the ratio between the wake width and the cross-flow size of the cylinder, i.e. Dr/D

in figure 1.5(a) (Roshko, 1954; Apelt & West, 1975; Roshko, 1993). Note that the

2The term cylinder refers to bodies of constant geometry in the spanwise direction. The circular cylinder
is the particular case with a circular profile.
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Figure 1.4. Von Kármán street past a circular cylinder in laminar regime at ReD = 103 (a),
in turbulent regime at ReD = 3 103 (b) and its control at ReD = 3 103 (c) using a small
disturbing cylinder displayed in red (from Dalton et al., 2001).

Figure 1.5. Mean flow (a) and instantaneous flow dynamics (b) around a circular cylinder:
(i) and (ii), entrainment flows; (iii), reverse flow. The sketch (b) is from Gerrard (1966).

orientation of the flow at separation has a fundamental impact on this ratio; for ex-
ample, the drag coefficient of a flat plate is larger than the drag of a circular cylinder
(Tropea et al., 2007). Another example of this dependence between bluffness and
drag is the transition that occurs at ReD ∼ 2 105 over a circular cylinder. The point
of massive separation moves downstream due to an early transition to turbulence
which results in a thinner wake; meanwhile, the drag coefficient approximatively
decreases from 1.2 to 0.4 (Zdravkovich, 1997).

Besides, the experiments of Apelt & West (1975) prove that this bluffness rule re-
mains valid after the suppression of the von Kármán street using a splitter plate.

◦ Second, for a given bluffness, the larger the recirculation length, the higher the base
pressure, the lower the drag (Roshko, 1993; Zdravkovich, 1997; Parezanović & Cadot,
2012).

It is worth mentioning that this rule is equally obtained from potential flow theory
combined with cavity models (Riabouchinsky, 1921; Wu, 1972).

The model presented by Gerrard (1966) introduces an interesting interpretation of the
mean recirculation length: the recirculation region results from an equilibrium between
the reverse flow and the flow entrained by the mixing layers (see figure 1.5b). Note that
the entrainment of a laminar mixing layer is negligible in front of a turbulent one, this
equilibrium strongly depends on the streamwise position of the transition to turbulence.
Now, an increase in entrainment flows (i) and (ii) cannot be compensated by an increase
in reverse flow (iii) which results in a vortex formation closer to the base and a shorter
recirculation bubble in average. This interpretation introduces a strong correlation between
the mixing layer activity, the position of the formation of the von Kármán vortices, the
recirculation length and the drag.
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The identification of the mechanisms responsible for the selection of the base pressure
paves the way to the implementation of efficient flow control strategies for drag reduction
that are now presented.

Flow control strategies

Different strategies naturally come out from the two dominant drag trends. The first
one consists in decreasing the bluffness of the cylinders. The experiments of Munshi et al.

(1997) show that the use of rotating elements at the edges of a rectangular cylinder injects
momentum in the fluid which results in a thinner wake and drag reduction. Another
technique consists in implementing plasma actuators in proximity of a circular cylinder. It
delays the massive separation on the geometry which limits the wake width (Artana et al.,
2003; Hyun & Chun, 2003).

A second drag reduction strategy lies in the increase of the recirculation length by
altering the formation of the von Kármán street. The simplest method is the suppression
of the antisymmetric instability using the mirror effect of a splitter plate3 in the plane of
symmetry (Apelt et al., 1973; Unal & Rockwell, 1988; Nakamura, 1996).

The base bleed equally provides interesting drag reduction even for low momentum in-
jection as presented by Arcas & Redekopp (2004); the mechanism may be directly connected
to the model of Gerrard (1966) as the flow injection in the recirculation region is a direct
compensation of the flow entrained by the shear layers. The vortex formation is moved
further downstream which delays the closure of the recirculation region.

Furthermore, one can mention techniques which break the synchronization of the
opposed shear layers in order to prevent the development of the von Kármán street. This
effect may be achieved through three-dimensional modulations in the shear layers (Park
et al., 2006) or active actuation (Pastoor et al., 2008); both methods postpone the vortex
formation region and attenuate the global mode activity.

Now, one more interesting strategy is related to the use of the natural sensitivity of the
global mode: a slight perturbation of the flow can result in significant modifications of the
near wake dynamics. The precursory experiments of Strykowski & Sreenivasan (1985, 1990)
prove that the vortex shedding past a circular cylinder at ReD = 80 can be suppressed by
placing a small control cylinder in one of the mixing layers. This work has been followed by
various experiments in the turbulent regime past different shapes of cylinders (Sakamoto
et al., 1991; Sakamoto & Haniu, 1994; Dalton et al., 2001; Cadot et al., 2009; Parezanović &
Cadot, 2009; Parezanović & Cadot, 2012). All these experiments confirm the high sensitivity
of the global mode dynamics to local disturbances: the control cylinder delays the vortex
formation and attenuates the shedding activity (see figure 1.4c). The modifications induced
by the perturbation are related to the introduction of a stagnation point in the main wake.
Due to viscosity, this generates vorticity in the flow, whose interaction with the main flow
vorticity is at the origin of the sensitivity (Parezanović & Cadot, 2009).

A systematic study varying the position of the small control cylinder leads to the con-
struction of sensitivity maps of global properties of the wake such as the shedding frequency
or the base pressure. In parallel, theoretical work gives access the structural sensitivity of
global mode wakes (Hill, 1992; Marquet et al., 2008; Luchini et al., 2009). Although the
theory usually remains limited to the laminar regime, the latest developments of Meliga

3In the inviscid theory, a splitter plate or a flat wall is equivalent to a steady straight streamline with a
symmetric flow on the other side.
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et al. (2012) extend the approach to the turbulent flow around a D-shaped cylinder at
ReD = 1.3 104. The presented sensitivity map of the global mode frequency is in good
agreement with the experimental results of Parezanović & Cadot (2012), both in terms of
spatial distribution and amplitude.

This approach provides a useful tool in the framework of control strategy since it
predicts where a disturbance efficiently affects global properties of the flow.

Now that the dominant features and control strategies of the flow around bidimensional
bluff bodies are presented, the wakes past basic three-dimensional geometries are considered
in section 1.2.3.

1.2.3 Basic three-dimensional bodies

This section depicts some academical studies to introduce general wake properties and
perspectives on drag reduction for basic three-dimensional geometries.

Features of the natural flow

In the simplest case of a sphere of diameter D in a uniform flow, non-trivial bifurcations
are reported in the wake as the Reynolds number increases (Sakamoto & Haniu, 1990).

First evidenced by Magarvey & Bishop (1961), the laminar wake loses its axisymmetry
at ReD ≈ 210: the steady axisymmetric wake selects one cross-flow direction which leads
to a steady solution with only one azimuthal plane of symmetry (see figures 1.6a–b); the
wake orientation is denoted by θW .

A second bifurcation is reported at ReD ≈ 280: the wake becomes unsteady but pre-
serves the reflectional symmetry and the azimuthal orientation of the first bifurcation.
A periodic shedding of parallel vortex loops is reported (Achenbach, 1974; Ormières &
Provansal, 1999) as presented in figures 1.6(c). Then, the flow presents an increase in
complexity as the Reynolds number is raised. The azimuthal orientation θW of the wake
starts oscillating (Mittal, 1999; Chrust et al., 2013), typically for Reynolds numbers larger
than 400. Turbulent scales appear in the wake for ReD > 800 in addition to the periodic
dynamics. The wake gradually loses its preference towards the reflectional plane of symme-
try defined at the first steady bifurcation (Mittal et al., 2002) and the axisymmetry of the
mean flow is finally restored from ReD ∼ 103. At moderate Reynolds numbers, the high
frequency instabilities of the mixing layers in the near wake degenerate into large-scale vor-
tex loops developing from the end of the recirculation bubble; the wake oscillates randomly
(Taneda, 1978; Sakamoto & Haniu, 1990) and may get a helical organization highly coher-
ent in space (Pao & Kao, 1977; Berger et al., 1990; Yun et al., 2006); the Strouhal number
of this oscillating global mode ranges in StD ∈ [0.12, 0.19]. One can have a global view
of the instantaneous turbulent flow from the sketch and visualizations given in figure 1.7;
in the cavitation experiments in figures 1.7(b)–(c), the interface between liquid and vapor
locate the low pressure regions in the instantaneous flow (see Beaudoin et al., 2004, and
references therein for details on the visualization technique).

Eventually, as for the circular cylinder, an early transition to turbulence can delay
the massive separation on the afterbody which leads to significant drag decreases at
ReD ∼ 4 105 (Hoerner, 1965; Taneda, 1978). The Reynolds number for which the drag
crisis is reported strongly depends on the roughness of the surface. This point is evidenced
by the well-known example of the gulf ball: in spite of the insufficient Reynolds number
reached after a swing, the wake of the ball is in a low drag configuration due to the
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Figure 1.6. Regimes of the laminar wake past a sphere (from Nakamura, 1976; Thomp-
son et al., 2001): steady axisymmetric for ReD < 210, (a); steady planar symmetric for
210 < ReD < 280, (b); unsteady planar symmetric for 280 < ReD . 400, (c).

Figure 1.7. Sketch of the large-scale structures in the turbulent wake of a sphere (a) from
Vilaplana et al. (2013). Side view (b) and top view (c) of the instantaneous wake past an
axisymmetric blunt body at ReD ≈ 105 using cavitation techniques.

turbulent activity introduced by the asperities.

The axisymmetry breaking at ReD ≈ 210 is associated with the development of two
vortex threads in the streamwise direction as visible in figure 1.8 (Thompson et al., 2001;
Schouveiler & Provansal, 2002; Fabre et al., 2008). A steady side force also appears on the
sphere in the direction of the reflectional plane of symmetry as shown by Pier (2008) in
figure 1.9. After the unsteady transition at ReD ≈ 280, the vortex shedding generates oscil-
lations of this side force but its intensity remains significant. The statistical axisymmetry
of the mean flow in the turbulent regime results in a nil cross-flow force in average (Yun
et al., 2006); nonetheless, an instantaneous side force is always present on the geometry. A
fundamental interest is ascribed to the dynamics of this unsteady cross-flow force as it is
responsible for part of the drag: approximately 10% of the total drag at ReD = 350 (Pier,
2008).

The additional drag related to such a cross-flow force is reminiscent of the notions of
induced drag commonly used in aeronautics (Batchelor, 2002): for a lifting airfoil, the
induced drag coefficient is proportional to the square of the lift coefficient, the proportional
factor being a geometrical parameter dependent on the distribution of the lift along the
span of the wing. This induced drag is strongly connected to the formation of a pair of
counter-rotating streamwise vortices downstream of the wingtips.

The sphere wake is massively studied because it is a prototypical axisymmetric wake:
similar behaviors are found in the flow around other axisymmetric geometries. For example,
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Figure 1.8. Pair of streamwise counter-rotating vorticies of the steady planar symmetric
regime past a sphere at ReD = 250 for θW = 3π/2 (from Fabre et al., 2008; Thompson
et al., 2001): iso-surfaces of streamwise vorticity (a) and contours of streamwise vorticity in
the cross-flow plane x∗ = 1 (b). The continuous and dashed lines are positive and negatives
values respectively; the contour interval is 0.05; the contour 0 is not plotted; the dashed
circle locates the sphere.

Figure 1.9. Drag (a) and lift (b) of a sphere at low Reynolds numbers from Pier (2008)
depending on the wake regime (θW = 3π/2 for ReD > 210): steady axisymmetric (continu-
ous black line), steady planar symmetric (dashed blue line) and unsteady planar symmetric
(dotted red lines delimiting maxima and minima).
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Figure 1.10. Wake topologies past axisymmetric blunt geometries from Délery (2013):
optimal case, (a); cell organization, (b); organization with two pairs of counter-rotating
vortices, (c); imperfect case, (d).

the wake past a disk presents a comparable behavior. Literature depicts a steady bifurcation
at ReD ≈ 115 and an unsteady one at ReD ≈ 121 even if Fabre et al. (2008) report
slight differences: the unsteady bifurcation first leads to a regime that slightly breaks the
reflectional symmetry. Besides, as in bidimensional wakes, the Strouhal number of the
periodic oscillations relies rather on the distance between the opposed shears than on the
size of the geometry. The vortex shedding past a disk is reported at StD = 0.135 ± 0.005

for ReD ∈ [103, 105] (Miau et al., 1997; Ruiz et al., 2009), i.e. StDr
≈ 0.20 as Dr ≈ 1.5D

(see appendix C), whereas past the sphere, a value of StDr
≈ StD = 0.19 is measured at

equivalent Reynolds numbers (Sakamoto & Haniu, 1990).

The dependence between the Strouhal number and the gap separating the shear layers
is confirmed by the experiments of Kiya & Abe (1999) depicting the impact of the aspect
ratio on the vortex shedding in the wake of elliptical and rectangular cross-flow plates.
Two peaks of energy are observed in the power spectra of velocity signals, at Strouhal
numbers between 0.05 and 0.15 depending on the aspect ratio. They correspond to periodic
oscillations of the wake in the two cross-flow directions; the phenomenon at the higher
frequency is usually more energetic and is associated with the interactions of the closer
shear layers.

Independently of these bifurcation scenarii and periodic dynamics, a classification of
the flow topologies past axisymmetric afterbodies at high Reynolds numbers is provided by
Délery (2013) from topology analyses and singular point theory. The simplest admissible
flows are the ideal case of an axisymmetric organization of the recirculation bubble (see
figure 1.10a) or an organization comprised of a finite number of cells (see figure 1.10b).
However, these two topologies are unlikely to be observed experimentally due to slight
imperfections of the axisymmetry. The topology with two pairs of counter-rotating vortices
presented in figure 1.10(c) is mentioned as the most probable organization preserving a nil
cross-flow force but a slight amplification of the imperfection of the axisymmetry is very
likely to result in a single pair of counter-rotating vortices shown in figure 1.10(d). One
can see that this latter topology, associated with a non-nil mean side force, is similar to the
wake after the first steady bifurcation past a sphere at ReD ≈ 210 (see figures 1.6b and 1.8).
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In the experimental framework, the study of the turbulent wake past axisymmetric
geometries is a challenge because of the fixing system. Indeed, apart from the unusual
magnetically supported body presented by Higuchi et al. (2006), the fixation method is
necessarily intrusive. The problem is that, as soon as the axisymmetry of the setup is
lost, the axisymmetry of the turbulent wake is altered. For example, the experiments of
Vilaplana et al. (2013) show that the introduction of an asymmetry in the setup fixes the
orientation θW of the vortex shedding. In the theoretical framework, such an azimuthal
lock is equally proven by Meliga et al. (2009a) using global stability analysis in the case
of a disk: the azimuth of the global mode is necessarily equal or opposed to that of the
disturbance. Furthermore, the common method consisting in holding a sphere with four
thin wires leads to a m = 4 azimuthal periodicity of the mean flow (Vilaplana et al., 2013).
On the other hand, in the widespread system of a sphere mounted on a streamwise axis
held from downstream, the support disturbs the center of the recirculation region; so, such
a setup is very likely to generate a controlled wake as a reference flow.

Flow control strategies

The drag reduction strategies in the wake of basic three-dimensional geometries are
similar to the bidimensional cases: decrease of the wake width, i.e. of the bluffness, and
increase of the recirculation region for a fixed flow separation.

The wake width can be controlled by orienting the flow at the trailing edge (see Abram-
son et al., 2011, and references therein).

On the contrary, the global mode activity being far less coherent than past cylinders,
the control techniques that shall be implemented to delay the closure of the recirculation
region are still open issues. Most of the work on passive and active control of axisymmetric
turbulent wakes focuses on the unsteady global mode dynamics (Mair, 1965; Berger et al.,
1990; Weickgenannt & Monkewitz, 2000; Sevilla & Martinez-Bazan, 2004; Higuchi, 2005;
Morrison & Qubain, 2009; Weiss & Deck, 2011). It shows connections between the param-
eters of the control setup, the drag and the intensity of the oscillating global mode. In
particular, Berger et al. (1990) prove that a disk forced to oscillate near the helical mode
frequency stabilizes the structure of this global mode in space and time at a coherence level
close to 1. On the other hand, Weickgenannt & Monkewitz (2000) performed experiments
displacing a control disk in the recirculation bubble pointing out different flow regimes de-
pending on the disk position associated with important evolutions of drag and Strouhal
number.

In parallel, the recent work of Meliga et al. (2009b, 2010) extends the theoretical sen-
sitivity analyses to the wake past axisymmetric blunt bodies in the laminar regime. The
results show zones of high sensitivity in the recirculating bubble. The receptivity of the os-
cillating global mode is located around the separatrix at the end of the recirculation region
while the receptivity of the steady antisymmetric mode is close the center of the recircula-
tion region. Nevertheless, the comparison to experimental work is difficult as the control
techniques previously mentioned are too intrusive to be considered as perturbations. One
can still refer to the experiments of Vilaplana et al. (2013) disturbing a sphere wake with a
small control sphere; the results evidence modifications of the oscillating global mode both
in terms of frequency and structure. For example, when the control sphere is off-centered,
a subharmonic at half the natural frequency appears and the azimuthal phase becomes im-
posed by the control sphere. Then, when the control sphere reaches the separated shear, a
pure subharmonic mode is observed suggesting a shedding of alternative vortex loops from
both sides of the wake.

As a consequence, contrary to the bidimensional cases, the mechanisms responsible for
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the closure of the recirculation region are not well-defined in three-dimensional wakes and
hence, the control strategies aiming at increasing the recirculation length are still to be
clarified.

Now, in addition to the three-dimensional aspect of the flow, road vehicle wakes are
related to complex geometries in ground proximity. These configurations are presented in
section 1.2.4.

1.2.4 Road vehicles

General properties of the turbulent flow past road vehicle and their control are presented
in this section with a particular focus on blunt geometries.

Features of the natural flow

First, as a transition from the academical studies described in the previous section,
it is worth noting that the high sensitivity of the flow to residual asymmetries is equally
observed over more complex geometries. In the study of the separated flow past a
three-dimensional backward facing step, Herry et al. (2011) depict a strong sensitivity of
the wake to the symmetry of the setup. A residual yaw angle is proved to fix the wake out
of the reflectional plane of symmetry and for a perfectly symmetric configuration, the flow
is bistable with two preferred reflectional symmetry breaking positions; the equiprobability
of the two states restores a statistical symmetry at long time-scales. Similar bistable
properties may be responsible for the asymmetric results obtained by Lawson et al.

(2007) in the recirculation bulb on the rear window of a car. In parallel, high degrees of
asymmetry are measured in both experiments and numerical simulations (Lee et al., 2009;
Wassen et al., 2010). These phenomena are reminiscent of the symmetry breaking regimes
found in closed-cell flows (Ravelet et al., 2004) and may be a general property of turbulent
flows.

In the framework of car aerodynamics, the work of Ahmed et al. (1984) significantly
improved the comprehension of the flow around different shapes of road vehicles: it char-
acterizes the critical influence of the afterbody configuration (see figure 1.11).

For slant angles below 10◦ or larger than 30◦, the topology is characterized by a massive
recirculation bubble on the afterbody. This region is associated with low levels of base
pressure and is the major contributor to the aerodynamic drag (see figure 1.11a). The
autopower spectra of the base pressure signals, mixing layer velocities or force measurements
show characteristic frequencies in the natural wake. The following analyses are reported
in the literature but the spatial organization of these structures and their interactions still
need to be clarified.

◦ A low frequency behavior at StH ≈ 0.07 is measured experimentally (Duell & George,
1999; Khalighi et al., 2001, 2012) and interpreted as a periodic interaction between
the upper and lower part of the trapped toric vortex in the near wake; a shedding
of pairs of vortices from the trailing edge with a lateral oscillation is also hypothe-
sized (Khalighi et al., 2001).

◦ The numerical simulations of Bayraktar et al. (2001) report two frequencies at
Strouhal numbers 0.106 and 0.086 in the unsteady measurements of the lift and
side forces respectively but the organization of the corresponding global modes is
not discussed.
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Figure 1.11. (a) Drag contribution of the Ahmed geometry depending on the angle of the
rear window ϕ. (b) Wake topology in the ϕ = 25◦ configuration. The results are from
Ahmed et al. (1984).

◦ The work of Khalighi et al. (2012) presents a coherent motion at StH = 0.17 down-
stream of the recirculation region with a peak of energy particularly clear when the
probe is in the plane of symmetry.

◦ High frequency dynamics are observed by Duell & George (1999) at StH = 1.157 and
interpreted as a shedding of vortices from the mixing layers with a pseudo-helical
structure.

In addition, such coherent wake motions are likely to be affected by wall proximity. For
example, the work of Ruiz et al. (2009), studying the unsteady near wake of a disk normal
to a wall, shows an increase in the complexity of the flow as the gap ratio decreases. The
vertical wake oscillation is progressively attenuated and combined with a slight increase in
the shedding frequency. Eventually, a critical gap ratio is found under which the vertical
oscillation of the disk wake is suppressed and a separation occurs on the ground, this latter
phenomenon being associated with low frequency evolutions at StD ∼ 0.03. In parallel,
past a simplified squareback vehicle, a change in the wake topology is also observed
through the base pressure distribution when the gap ratio becomes small in presence of a
fixed ground (Duell & George, 1993).

On the other hand, for moderate slant angles, i.e. 10◦ < ϕ < 30◦, a pair of intense
counter-rotating vortices develops in the wake of the model reducing the pressure on the
afterbody (see figures 1.11b and 1.12). In the worst drag configuration of a slant angle close
to 30◦, these structures induce up to 50% increase in drag in comparison to the 0◦ case.
These intense flow structures and their control are source of much interest in the literature
as similar streamwise vortices persist over real vehicles, especially in the wakes of sedan and
fastback shapes (see figure 1.13) or even pick-up trucks (Al-Garni & Bernal, 2010).

In the case of real vehicles having a blunt shape, the topology is associated with a
massive recirculation region on the afterbody without intense streamwise vortices (see
figure 1.13a). However, the absence of top – bottom symmetry of the geometry alters the
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Figure 1.12. Cavitation visualization of the pair of counter-rotating vortices past the 25◦

Ahmed geometry from Beaudoin et al. (2004).

Figure 1.13. Wake topologies past road vehicles depending on the afterbody: square-
back (a), fastback (b) and sedan (c). The sketches are from Hucho (1998).

organization of the recirculation region: a residual pair of counter-rotating vortices is very
likely to be present as a signature of the non-nil lift force. A common flow topology from
Depardon (2006) is presented in figure 1.14.

The topologies shown in figures 1.13 correspond to very different force intensities and
the presence or absence of a pair of intense counter-rotating vortices often lies in geometry
details. There is a high sensitivity of the wake to the shape of the edges, especially at the
end of the roof. There, the use of a sharp edge forcing the flow separation allows to switch
from a high lift – high drag configuration of a fastback flow to a low lift – low drag case of
the squareback topology. This point is evidenced in figure 1.15 with the implementation of
a spoiler on a Citroën C4 model. Figures 1.15(a)–(b) present the case without spoiler, the
potential flow follows the shape of the afterbody in the plane of symmetry which results
in the formation of an intense pair of counter-rotating vortices. On the contrary, the use
of a spoiler leads to a massive recirculation region and the strong attenuation streamwise
vortices as visible in figures 1.15(c)–(d); the obtained topology is similar to the one given

Figure 1.14. Wake topology past a blunt vehicle model from Depardon (2006).
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Figure 1.15. Wake topologies past a Citroën C4 model without spoiler (a)–(b) and with a
spoiler at the end of the roof (c)–(d): qualitative modulus of the velocity in the plane of
symmetry and streamwise vorticity in a cross-flow plane.

in figure 1.14. Such a crucial influence of the spoiler explains its systematic use in the
conception of recent vehicles even if it alters the style design. Note that the orientation of
the spoiler is accurately set to reach a drag minimum.

Finally, the presence of wheels on the geometries may induce significant differences in
the afterbody flow. Some intense vortices are locally generated by the wheel, especially by
the front ones (Wäschle, 2007). The proper wake structures present important differences
depending on the setup: rotating or fixed wheel, tire width, permeability of the rim...

Flow control strategies

As previously mentioned, an important work is devoted to the control of fastback flows
through various passive and active strategies such as splitter plates (Gilliéron & Kourta,
2010), flaps (Beaudoin & Aider, 2008; Fourrié et al., 2011), vortex generators (Aider et al.,
2010), boundary layer streaks (Pujals et al., 2010) or even pulsed jets (Bruneau et al.,
2011). The efficiency of a control device relies on its ability to alter the formation of the
pair of streamwise vortices or its capacity to reduce the wake width by limiting the bulb
of separated flow on the slanted face without amplifying the streamwise vortices.

On the other hand, the control strategies for drag reduction for squareback vehicles
rely on similar mechanisms than the wakes past basic three-dimensional bodies (see sec-
tion 1.2.3). Thus, by modifying the bluffness or by increasing the recirculation length,
diverse strategies provide interesting base pressure recovery. One can refer to the use of af-
terbody flaps with and without cavity (Cooper, 1985), splitter plates (Duell & George, 1993;
Khalighi et al., 2001) and active control (Rouméas et al., 2009; Littlewood & Passmore,
2012).

The experiments of Littlewood & Passmore (2010) depict the effect of a small chamfer
at the upper trailing edge of a squareback geometry similar to the ϕ = 0◦ Ahmed
configuration. Despite the small size of the chamfer in the streamwise direction of 15% of
the body height4, an optimal drag reduction of 4.4% is obtained for a chamfer angle of
12◦. The parabolic-like dependence between the chamfer angle and the drag is reminiscent
of the results of Ahmed et al. (1984) for moderate slant angles where an optimal 8% drag
reduction is obtained for ϕ = 12.5◦. Thus, the significant drag gain obtained by Littlewood
& Passmore (2010) with a small chamfer confirms the high impact of the orientation of the
trailing edge on aerodynamic forces. This approach using chamfered shapes is particularly
interesting since it corresponds to the method applied by the car manufacturers on real
vehicles to limit the drag. Indeed, the angles of the spoiler and of the diffuser (when one
is present) are set empirically in order to reach the optimal drag point given the vehicle

4For comparison, the length of the slanted face in the Ahmed geometry is 77% of the body height.
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parameters (global shape, ground clearance...), while the characteristic length of these
devices remains small in front of the vehicle size.

Eventually, literature reports some experiments of flow control for drag reduction on
real vehicles. For example, Irving Brown et al. (2010) proves that the use of passive base
bleed and the implementation of cavity on the base achieve drag reduction. In parallel, the
numerical simulations of Inchul et al. (2008) presents innovating spoiler shapes to optimize
the fluid forces.

In this academical context, the originality of the approach of the present work is now
detailed in section 1.3.
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1.3 Approach of the present work

The bibliographical elements presented in section 1.2 highlight three main levers of drag
reduction:

◦ the reduction of the bluffness;

◦ for a given bluffness, the increase of the recirculation length;

◦ the attenuation of the streamwise vortices related to three-dimensional effects.

As mentioned in section 1.1, the vehicle shapes are already highly constrained so
the reduction of the bluffness may appear unappropriated. Consequently, the interest of
orienting the flow at the trailing edge of the vehicle is quantified in this work but most of
the following experiments focus on the analysis and control of the separated flow with fixed
separation. Because of the strong differences between bidimensional and three-dimensional
flows, these studies consider three-dimensional configurations only. The objective is to
clarify the physical mechanism responsible for the closure of the recirculation bubble
(mixing layer growth, global modes...). In addition, the exploration of the flow sensitivity
of global properties of the wake to perturbations helps identify efficient control strategies
for drag reduction.

The work is structured as a function of the geometries by increasing their complexity
step by step. Part I is devoted to axisymmetric bodies with the cases of a sphere in chapter 2
and an axisymmetric bullet-shaped body in chapter 3.

Then, part II details the wake past parallelepiped geometries based on the square-
back Ahmed configuration: bifurcations of the laminar wake in chapter 4, natural flow at
ReH = 9.2 104 in chapter 5 with a focus on the influence on the aspect ratio of the base in
chapter 6. Chapters 7 and 8 present experiments of flow control based on a sensitivity anal-
ysis and on the orientation of the flow at the base separation respectively. Finally, chapter 9
explores the relevance of the previous results at industrial scales, i.e. at ReH = 2.5 106.

The wakes of real vehicle are considered in part III with a characterization of the wake
dynamics through full-scale studies in chapter 10. Then, chapter 11 extends the phenomena
studied in parts I and II to real vehicles.

Finally, a comprehensive synthesis is provided in chapter 12.

In parallel, the fluid notations and some general notions of fluid mechanics are depicted
in appendix A. Besides, visualisations of the flow structures aroud different vehicle shapes
are given in appendix B using cavitation techniques. Some details on the turbulent wake
of a disk are given in appendix C as a complement to chapter 2. Finally, analytical results
of a bistable turbulent signals are provided in appendix D.

Given the large number of geometries and of wind or water tunnels used in the following,
no detailed presentation of the facilities is provided. For each chapter, the main features of
the setup are depicted with the measurement systems; when available, references providing
additional information are also given.
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Axisymmetric geometries





Chapter 2

Axisymmetry of the turbulent

sphere wake

This chapter is devoted to the turbulent sphere wake. The objectives are to clarify
the statistics that lead to the axisymmetry of the wake and to detail the instantaneous
topology of the flow. In particular, these experiments quantify the wake asymmetry related
to imperfections of the setup.

In parallel, a similar study in a disk configuration is provided in appendix C.

Abstract

As a starting point of the study past three-dimensional bodies; the prototypical case of
the turbulent sphere wake is considered at ReD = 1.9 104. It is found axisymmetric in aver-
age with an unsteady global mode at StD = 0.19. PIV snapshots in a cross-flow plane show
that the axisymmetry of the mean flow is due to the equal exploration of all the azimuths
by the instantaneous wake. Conditional averaging enables to extract the flow topology
associated with one azimuthal direction; the obtained wake shows strong similarities with
the unsteady planar symmetric flow observed in the laminar regime. In addition, the use
of perturbations of the axisymmetry leads to modifications of the azimuthal statistics: the
periodicity of the perturbation is recovered in the wake since one or several preferred ori-
entations are identified. Hence, such statistics pave the way to multi-stable behaviors in
three-dimensional wakes.
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Figure 2.1. Side view (a) and top view (b) of the experimental setup with the stereoscopic
PIV system; back view of the sphere with the disturbance apparatus (c).

2.1 Experimental setup

This section present successively the main characteristics of the setup and of the velocity
measurements.

Geometry

As mentioned in section 1.2.3, one of the main challenges of experimental studies of
the wake past axisymmetric bluff bodies lies in the system fixing the geometry in the
flow. The present experiments use an Eiffel-type wind tunnel; the sphere is held using an
axis fixed upstream of the test section on a rigid honeycomb support so that the setup
is as axisymmetric as possible (see figures 2.1a–b); the residual asymmetries come from
the alveoli of the honeycomb. In turn for providing a sphere support, the presence of the
honeycomb alters the quality of the flow: when the sphere is removed from the test section,
the homogeneity of the flow at 200 mm downstream of the honeycomb is raised to 2.2%
and the turbulent intensity reaches 3.4%.

The free-flow velocity is set at U0 = 4.3 m s−1 and the sphere diameter is D = 70 mm

so the Reynolds number of the wake is ReD = U0D/ν = 1.9 104. The origin O of the
coordinate system is at the maximal downstream location of the sphere (see figure 2.1).
For practical interest, a polar coordinate (x, r, θ) is also used, the plane θ = 0 being defined
to match the plane (xOy) in the domain y∗ > 0.
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In addition, the setup is designed to study the influence of perturbations of the axisym-
metry. Four independent cylinders can be fixed on the sphere in the cross-flow directions
as shown in figure 2.1(c). The length of a disturbance is 100 mm, i.e. 1.4D; its diameter is
denoted by d. The effects on the wake are considered for one, two (diametrically opposed)
or four cylinders of diameter d∗ = d/D = 0.029 on the sphere; the corresponding results are
referred by m = 1, m = 2 or m = 4 disturbed wakes, m being the azimuthal periodicity.

For m = 1, additional configurations detail the effects of the size of the disturbance for
d∗ ∈ {0.017, 0.029, 0.057, 0.086}.

Velocity measurements

In this chapter, the wake analyses are made from particle image velocimetry (PIV) and
hot-wire anemometry exclusively.

The PIV system is a dual pulse laser (Nd:YAG, 2 × 135 mJ, 4 ns) combined with two
Dantec CCD cameras (FlowSense EO, 4 Mpx). The setup acquires image pairs at a rate
of 10 Hz; each acquisition records 2000 image pairs. The measurement system gives access
to ux and uz in the plane y∗ = 0. In addition, the three components of the velocity are
obtained in the plane x∗ = 0.93 through stereoscopic PIV. The interrogation window of
32 px × 32 px corresponds to physical sizes of 1.3 mm × 1.3 mm in the plane y∗ = 0 and
1.9 mm× 1.9 mm in the plane x∗ = 0.93.

The mean velocities and the Reynolds stresses are measured from the valid vectors of
the instantaneous velocity fields; these statistics are taken into account only when more
than 1500 valid vectors are obtained from the 2000 measurements.

To get time-resolved velocities in the flow, a hot-wire probe is used; it is oriented to
measure uxz. The probe is from Dantec (hot-wire type 55P15, support type 55H22) and uses
an overheat ratio of 1.5; it is connected to a DISA55 hot-wire anemometry measurement
unit. Mounted on a displacement system, this probe records the velocity in the wake at a
sampling frequency of 1 kHz.
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Figure 2.2. Intensity of Uxz
∗ in the plane y∗ = 0; the white cross locates the saddle point.

RS max (RS) x∗ (max (RS)) r∗ (max (RS))

⟨u′x
∗2⟩ 0.105± 0.005 0.45± 0.01 0.47± 0.01

⟨u′r
∗2⟩ 0.090± 0.005 0.80± 0.01 0.01± 0.01

−⟨u′x
∗
u′r

∗⟩ 0.045± 0.005 0.59± 0.01 0.41± 0.01

Table 2.1. Maxima of the Reynolds stresses (RS) in the wake and their corresponding
locations; the data are reported from PIV in the plane y∗ = 0 where u′r = ±u′z.

2.2 Mean natural flow

The objective of this section is to validate the experimental setup as a relevant method
to produce the axisymmetric turbulent wake past a sphere. The mean velocities and the
Reynolds stresses are analyzed in the plane y∗ = 0 and in the cross-flow plane x∗ = 0.93

in section 2.2.1 and 2.2.2 respectively. Section 2.2.3 is devoted to the periodic dynamics of
the wake.

2.2.1 Velocities in the plane y∗
= 0

The mean velocity field in the plane y∗ = 0 is presented in figure 2.2. The PIV mea-
surements evidence a recirculation region in the wake that extends up to x∗ = 0.80. Even
if it cannot be directly measured from the velocity field, it seems that the boundary layer
separation occurs on the sphere close to the apex as expected for such Reynolds numbers
(Yun et al., 2006). Besides, the flow presents a relatively good symmetry referring to the
plane z∗ = 0 without any trace of flow inhomogeneity in the sphere proximity.

The measurements of the Reynolds stresses are plotted in figure 2.3. As for the mean
velocity map, the symmetry of the normal stresses and the antisymmetry of the shear stress
referring to the plane z∗ = 0 are satisfactory. The stress intensities are measured maximal
on the separatrix; the extrema and their corresponding locations are listed in table 2.1. The
spatial distribution of the Reynolds stresses and their intensities are in agreement with the
results in the literature (see Jang & Lee, 2008, and references therein).
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Figure 2.3. Reynolds stresses in the plane y∗ = 0: ⟨u′x
∗2⟩ (a), ⟨u′z

∗2⟩ = ⟨u′r
∗2⟩ (b) and

⟨u′x
∗
u′z

∗⟩ (c). The continuous and dashed lines are positive and negative values respectively;
the contour intervals are 0.010 in (a)–(b) and 0.005 in (c), the contour 0 is not plotted. The
thick black line is the separatrix of the mean recirculation bubble.
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Figure 2.4. Intensities of Ux
∗ (a) and Ur

∗ (b) in the plane x∗ = 0.93; the dashed circle
locates the sphere.

Figure 2.5. Intensities of Std(ux∗) (a) and Std(ur∗) (b) and ⟨u′x
∗
u′r

∗⟩ (c) in the plane
x∗ = 0.93; the dashed circle locates the sphere.

2.2.2 Velocities in the plane x∗
= 0.93

The stereoscopic PIV system gives access to the three components of the velocity in
the plane x∗ = 0.93. The results of the mean velocities are presented in figure 2.4. The
axisymmetry of the flow is confirmed by both the streamwise and radial velocities. As
expected from the measurements presented in figure 2.2, the cross-flow plane at x∗ = 0.93

is located just downstream of the end of the recirculation bubble: Ux
∗ ranges from 0.10

to 1.01.
The maps of the fluctuating velocities in the plane x∗ = 0.93 are given in figure 2.5.

The results validate the axisymmetry in the distribution of the Reynolds stresses and their
spatial organizations are consistent with the maps in the plane y∗ = 0 plotted in figure 2.3.

Using equations (A.27) and (A.28), the momentum conservation of the fluid in a volume
containing the geometry gives the force coefficients on the sphere from the cross-flow
measurements. Here, there is no pressure information but the pressure terms may be
neglected at this streamwise position1. The drag force is estimated at Cx = 0.49 and
the cross-flow force at 0.01. The low value of the cross-flow force is consistent with the

1This point is evidenced in chapter 5 in figures 5.6(a)–(b): the mean pressure just downstream of the
end of the recirculation bubble is close to the free-flow pressure for three-dimensional wakes.
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Figure 2.6. Autopower spectrum of a hot-wire signal at x∗ = 1.00, y∗ = 0 and z∗ = 0.40.

axisymmetry of the flow and the drag coefficient is in agreement with the data reported in
the literature.

As a consequence, the experimental setup enables to generate a turbulent sphere wake
which is axisymmetric in average; the obtained statistics of the velocities are consistent
with previous studies. This indicates that the presence of the honeycomb support does not
significantly affect the mean properties of the flow. To complete the validation of the setup,
the dynamics of the flow is analyzed in section 2.2.3.

2.2.3 Periodic dynamics of the wake

The presence of the honeycomb support does not change the mean flow features but
the previous experiments of Tyagi et al. (2006) show that the raise of inhomogeneity and
of turbulence intensity of the flow may alter the global mode dynamics of the wake.

In order to verify the presence of a coherent wake motion, a hot-wire probe signal is
analyzed. Figure 2.6 presents the autopower spectrum of the velocity signal recorded at
x∗ = 1.00, y∗ = 0 and z∗ = 0.40. The power spectral density (PSD) characterizes the
energy of the different scales in the wake at this probe location. The low values of Strouhal
number (StD . 0.2) correspond to the large-scale structures of turbulence in the wake.
The peak at StD = 0.19 indicates a significant contribution of the periodic oscillations at
this Strouhal number which is consistent with the frequencies of vortex shedding reported
in literature at this Reynolds number (Sakamoto & Haniu, 1990; Yun et al., 2006).
Furthermore, the smaller scales, i.e. the larger frequencies (for StD & 0.3), are related to
the inertial range of turbulence. It is worth mentioning that, for the inertial range, the
Kolmogorov theory predicts a power-law distribution of energy of coefficient −5/3 in the
case of an homogeneous and isotropic turbulence.

In order to describe the envelops of the global mode, the PSD of the hot-wire signals
are considered for different probe positions. The probe is moved in the plane y∗ = 0 from
z∗ = −0.71 to z∗ = 0.71 by steps of 0.07 for x∗ = 0.5, 1.0, 1.5 and 2.0. The obtained
spectra are presented in figure 2.7. One can see that the characteristic frequency at
StD = 0.19 is a global property of the flow but it is only measured downstream of the
mixing layers, at z∗ ≈ ±0.4. As x increases, the energy of the coherent process gradually
emerges from the one of the large-scale structures of turbulence. Hence, the hot-wire probe
clearly evidences the unsteady global mode in the wake but principally downstream of the
end of the recirculation bubble. Such results are reminiscent of the observations of Berger
et al. (1990): a large-scale antisymmetric structure dominates the near wake while the
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Figure 2.7. Autopower spectra from hot-wire measurements in the plane y∗ = 0 depending
on z∗ at x∗ = 0.5 (a), x∗ = 1.0 (b), x∗ = 1.5 (c) and x∗ = 2.0 (d). The contour interval
is 0.01. The dashed line in (b) corresponds to the spectrum plotted in figure 2.6.
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Figure 2.8. Autopower spectrum of a hot-wire signal at x∗ = 1.00, y∗ = 0 and z∗ = 0.40

for different Reynolds numbers. The spectra are offset after successive divisions by 100.5 as
ReD increases. The dashed line locates StD = 0.19.

velocity fluctuations in the immediate wake region are rather related to high frequency
shear layer instabilities.

This spectral analysis is completed by the exploration of the effects of the Reynolds
number on the energy of the oscillating global mode. The autopower spectra obtained
by the hot-wire probe at x∗ = 1.00, y∗ = 0 and z∗ = 0.40 are presented in figure 2.8 for
various free-flow velocities. There is a clear attenuation of the global mode activity in front
of the one of the large-scale structures of turbulence as the Reynolds number increases:
the peak of energy at StD = 0.19 is well defined for ReD < 4 104 but over this value, there
is no more peak in the PSD of the velocity signal. This observation tends to indicate that
the higher the Reynolds number, the less energetic the coherent structures in front of the
incoherent ones.

As a consequence, the experimental setup allows the study of the axisymmetric wake
past a sphere at ReD = 1.9 104. Even if the presence of a rigid honeycomb support upstream
of the geometry increases the inhomogeneity and the turbulence intensity of the free-stream
flow, the main features of the sphere wake at this Reynolds number are close to other studies
presented in the literature.

The statistics of the wake symmetries are now detailed in section 2.3.
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2.3 Statistics of the axisymmetry

First, the results associated with the natural flow are considered in section 2.3.1 studying
the azimuthal orientation of the instantaneous flow; then, the effects of disturbances of the
axisymmetry of the setup are presented in section 2.3.2.

2.3.1 Instantaneous topology of the natural flow

The instantaneous topology of the natural flow is successively studied in the cross-flow
plane x∗ = 0.93 and in the plane y∗ = 0.

Topology in the plane x
∗ = 0.93

In order to obtain details on the flow dynamics, the instantaneous snapshots of the wake
in the plane x∗ = 0.93 are used. The barycenter of the momentum deficiency is an indicator
of the position of the instantaneous wake in the cross-flow direction. From the stereoscopic
PIV snapshots, the corresponding positions yW and zW are calculated as

yW
∗ =

∫∫
y∗ · (1− ux

∗) ds
∫∫

(1− ux∗) ds
, (2.1)

and

zW
∗ =

∫∫
z∗ · (1− ux

∗) ds
∫∫

(1− ux∗) ds
, (2.2)

with a domain of integration limited2 to ux∗ < 0.5 in the plane x∗ = 0.93. The associated
positions in the cylindrical coordinate system are denoted by rW and θW .

A sample snapshot is shown in figure 2.9(a); its barycenter of momentum deficiency is
measured at rW ∗ = 0.21 and θW = 197◦. By analyzing the 2000 instantaneous measure-
ments, the probability distributions of rW and of θW can be evaluated. The corresponding
probability density functions (PDF) are presented in figures 2.9(b)–(c); the results show
that rW ∗ ranges in the interval [0,0.35] with a most probable value of 0.12±0.01; this latter
quantity is an indicator of the instantaneous wake asymmetry. In parallel, the constant
value of PDF(θW ) indicates that all the azimuths are identically explored by the wake as
expected from the axisymmetry of the mean flow.

Consequently, the statistics prove that the axisymmetry of the mean flow is due to the
exploration of all the azimuths.

The topology of the instantaneous flow for a given azimuth can now be detailed from
conditional averaging: the 2000 snapshots are treated as follows. First, the instantaneous
orientation of the wake θW is obtained. Then, a rotation of −θW is applied to the velocity
fields so that the barycenter of momentum deficiency becomes centered on θ = 0. Finally
the 2000 rotated velocity fields are averaged to obtain the mean flow associated with the
orientation θW = 0. Given the axisymmetry of the setup, this approach is strictly equiv-
alent to a conditional averaging performed after selection of the wakes for which θW = 0.
The main interest of this method in comparison to a direct conditional averaging is the
consideration of all of the 2000 snapshots instead of the few snapshots verifying θW ≈ 0.
In particular, it allows the calculation of both the mean velocities and their fluctuations.

The corresponding maps of the streamwise velocity Ωx
∗ and of the fluctuations of stream-

wise velocity Std(ux∗) are presented in figure 2.10. Obviously, such a conditional averaging

2The domain of integration is limited to get rid of the proper wake of the disturbances that are added
in section 2.3.2.
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Figure 2.9. Barycenter of momentum deficiency of a sample snapshot in the plane
x∗ = 0.93 (a) and probability distributions of rW ∗ (b) and of θW (c).

Figure 2.10. Mean streamwise vorticity Ωx
∗ (a) and fluctuations of streamwise veloc-

ity Std(ux∗) (b) in the plane x∗ = 0.93 for the natural flow when θW = 0.
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leads to an off-centered wake, oriented in the direction θ = 0. However, the results evi-
dence a non-trivial pair of counter-rotating vortices developing downstream of the sphere.
This flow structure is reminiscent of the two thread vortices observed in the laminar regime
(compare with figure 1.8b). It is a signature of the instantaneous cross-flow force that is
present on the sphere at this Reynolds number but that cancels out in average due to its
random orientation. The force estimation using equation (A.28) gives Cy = −0.08. On the
other hand, it is observed in figure 2.10(b) that the fluctuations of streamwise velocity are
concentrated on the side of the wake, i.e. at θ ≈ 0 and r∗ ≈ 0.5.

As a result, figure 2.10 depicts the mean structure of the flow for θW = 0; one can
recognize the signature of the unsteady planar symmetric regime that appears after the
second bifurcation of the laminar wake at ReD ≈ 280 (see section 1.2.3). The distributions
of Ωx

∗ and of Std(ux∗) are consistent with the shedding of parallel vortex loops oriented in
the direction θ = 0 (imagine figure 1.7 with θW = 0).

Since all the azimuthal directions explored by the wake are equiprobable, the axisym-
metric mean flow visible in figures 2.4 and 2.5 corresponds to an azimuthal averaging of
the flow presented in figure 2.10. It is worth mentioning that the intensities of Std(ux∗)
are of similar amplitude in figures 2.5(a) and 2.10(b). This results from the construction
of the fluctuations of velocity of the axisymmetric mean flow visible in figure 2.5(a). It is
a superposition of two terms: ⟨Std (ux(θW = 0))⟩θ and Std(Ux(θW = 0))θ, where ⟨...⟩θ and
Std(...)θ refer to the mean and the standard deviation of the azimuthal statistic respectively.

Now that the flow topology in a cross-flow plane is detailed for a given value of θW ,
the confrontation with the instantaneous PIV measurements in the plane y∗ = 0 enables to
have a three-dimensional view of this asymmetric topology.

Topology in the plane y
∗ = 0

The construction of the asymmetric flow for a given wake orientation is based on con-
ditional averaging of the snapshots. Hence, an indicator of the wake direction, similar to
the barycenter of momentum deficiency, is needed in the plane y∗ = 0. A characteristic
parameter of the instantaneous flow asymmetry is the orientation of the recirculating flow;
for each snapshot, the space-averaged value of uz∗ in the recirculation bubble, denoted uzr∗

and defined in equation (2.3), is considered as a discriminating parameter.

uzr
∗ =

1

0.36

∫ 0.7

x∗=0.1

∫ 0.3

z∗=−0.3

uz
∗(x∗, y∗ = 0, z∗) dx∗dz∗. (2.3)

Conditional averaging is performed to obtain the states of the flow when the wake is ori-
ented in one azimuthal direction. All the difficulty lies in the determination of the thresholds
used in the conditional averaging, the objective being to extract the instantaneous snap-
shots associated with the orientations θW = 0 (or π) and ±π/2. Here, the thresholds are
optimized to present the best correspondence with the distribution of mean streamwise
velocity measured by stereoscopic PIV for θW = 0 in the plane x∗ = 0.93.

The probability distribution of uzr∗ is given in figure 2.11 with the thresholds used
for the conditional averaging. One can see a residual asymmetry in the PDF which
corresponds to the slightly negative value of Uz

∗ in the recirculation bubble of the flow
presented in figure 2.2.

The comparison of the velocity profiles between the stereoscopic PIV data in the plane
x∗ = 0.93 (see figure 2.10) and the measurements in the plane y∗ = 0 is given in figure 2.12
for θW = ±π/2 and in figure 2.13 for θW ∈ {0,±π}.
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Figure 2.11. Probability density functions of uzr∗ and thresholds used to obtain the flow
topologies for θW ∈ {0,±π} and θW = ±π/2 from conditional averaging.

Figure 2.12. Profiles of Ux
∗ (a), Uz

∗ (b) and Std(ux∗) (c) at x∗ = 0.93 and y∗ = 0 for
θW = π/2: —, stereoscopic PIV (see section 2.3.1); - - -, PIV in the plane y∗ = 0 for
θW = π/2; · · ·, PIV in the plane y∗ = 0 for θW = −π/2. The data for θW = −π/2 are
plotted against −z∗ to facilitate comparison.

In figure 2.12(a), the correspondence between the streamwise momentum deficiencies is
clear which is expected since it defines the thresholds presented in figure 2.11. The interest-
ing point is the concordance between the levels of Uz

∗ and Std(ux∗) in figures 2.12(b)–(c)
even if the levels of Std(ux∗) suffers from the limited number of snapshots verifying the
thresholds on uzr∗.

In parallel, the comparison between the conditional averaging for the wake orientation
θW ∈ {0,±π} is presented in figure 2.13. The similarity between the streamwise velocity
profiles is clear but expected by construction. Besides, the trends on Uz

∗ and on Std(ux∗)
show a reasonable correspondence even if the fluctuations of streamwise velocity are slightly
overestimated using the data in the plane y∗ = 0.

As a result, the conditional averaging using the thresholds on the quantity uzr
∗

may allow to recover quantitatively the flow field in the plane y∗ = 0 for the
cases θW ∈ {0,±π/2,±π}.

The velocity fields in the plane y∗ = 0 for the wake orientations θW = π/2, θW = −π/2
and θW ∈ {0,±π} are presented in figure 2.14. First of all, it is clear that the flows for
θW = ±π/2 present a symmetrical dependence on each other referring to the plane z∗ = 0.
Second, a circulation around the sphere related to the cross-flow force on the sphere for the
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Figure 2.13. Profiles of Ux
∗ (a), Uz

∗ (b) and Std(ux∗) (c) at x∗ = 0.93 and y∗ = 0 for
θW ∈ {0,±π}: —, stereoscopic PIV in the plane x∗ = 0.93 (see section 2.3.1); - - -, PIV in
the plane y∗ = 0.

Figure 2.14. Intensity of Uxz
∗ in the plane y∗ = 0 for θW = π/2 (a), θW = −π/2 (b) and

θW ∈ {0,±π} (c) obtained from conditional averaging.
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cases θW = ±π/2 (see figures 2.14a–b) seems visible; it is also associated with the pair of
counter-rotating vortices evidenced in figure 2.10(a).

The principal interest of these velocity maps is to build a complete three-dimensional
view of the asymmetric flow topology for a given wake orientation. Furthermore, it is
observed that the flows are strongly different not only in the recirculation region but also in
the potential flow. Hence, there is a concordance between the topology of the recirculation
region and of the potential flow. In other words, the information of the circulation around
the geometry related to the cross-flow force is equally present in the organization of the
recirculating flow.

When slight asymmetries are introduced in the setup such as crossing wires to fix the
sphere, the main features of the flow may remain identical (global mode dynamics, mixing
layer activity...) but the axisymmetry of the mean flow is altered. The effects of disturbances
of the axisymmetry are considered in section 2.3.2.

2.3.2 Azimuthally disturbed flows

The effects of azimuthal disturbances are presented varying the periodicity and the size
successively.

Effect of the periodicity of the disturbance

Three different configurations are tested using perturbations of diameter d∗ = 0.029

(see figure 2.1c) with the azimuthal periodicities m = 1, 2 and 4. The corresponding
intensities of fluctuating streamwise velocity in the plane x∗ = 0.93 are presented in
figure 2.15. In spite of the small size of the rods, the azimuthal periodicity of the setup is
visible in the velocity statistics, especially for the cases m = 2 and m = 4.

Autopower spectra in the wake of the disturbed flows can be confronted to the natural
case in order to study the influence of the disturbances on the global mode dynamics.
The spectra obtained with a hot-wire probe at x∗ = 1.00 and r∗ = 0.40 are presented
in figure 2.16; for each configuration, the azimuthal position of the probe is adapted
to avoid the proper wakes of the disturbances. The hot-wire allows to measure the
PSD of the velocity fluctuations near their maximum intensity visible in figure 2.15.
The spectra show that the global mode is measured in the wake for all the azimuthal
disturbances at StD = 0.19. Nevertheless, the energy of the periodic motion tends to
decrease in comparison to the activity of the other large-scale structures as the period-
icity is increased: the peak of energy in the spectrum becomes less clear when m is increased.

Now, as for the natural flow, the statistics of the wake orientation θW can be studied from
the instantaneous velocity measurements. The plane of stereoscopic PIV is at x∗ = 0.93

which corresponds to x = 32d; hence, the proper wake of the disturbing cylinder so far
downstream is in the domain ux∗ > 0.5. Since the domain of integration used to define yW
and zW in equations (2.1) and (2.2) is limited to ux∗ < 0.5, the rods do not directly alter
the calculation of the barycenter of momentum deficiency.

First, the probability distributions of rW ∗ for m = 1, 2 and 4 are confronted to the
reference case in figure 2.17. It is observed that all the PDF presents a similar shape; the
main difference lies in the slight variations of the mean value of rW ∗. It gradually increases
from 0.130 for the reference case to 0.154 for m = 4 as m is incremented.
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Figure 2.15. Intensities of Std(ux∗) in the plane x∗ = 0.93 for azimuthally disturbed flows
with perturbations of diameter d∗ = 0.029: m = 1 (a), m = 2 (b) and m = 4 (c).

Figure 2.16. Autopower spectrum of a hot-wire signal at x∗ = 1.00, r∗ = 0.40 for the
reference flow and the azimuthally disturbed flows (m = 1, 2 and 4). The azimuth of the
hot-wire probe is set to avoid the proper wake of the disturbing cylinders. The data for
m = 1, 2 and 4 are offset after successive divisions by 100.5.

Figure 2.17. Probability density functions of rW ∗ for the reference flow and the azimuthally
disturbed flows (m = 1, 2 and 4).
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Figure 2.18. Probability density functions of θW for the m = 1 (⃝) and m = 2 (+)
disturbances. The dashed and dotted lines are the best m = 1 and m = 2 periodic fits of
the experimental data respectively. The continuous line is the uniform distribution.

On the contrary, the probability distributions of θW given in figure 2.18 show strong
differences depending on the azimuthal periodicity of the disturbance. The experimental
results for one cylinder clearly evidence a m = 1 azimuthal periodicity in the PDF: the wake
has one preferred position at the opposite of the disturbing cylinder. However, there is no
clear selection of the wake orientation since the position θW = ±π is only two times more
probable than the position θW = 0. So the disturbance introduces a slight modulation
in the PDF of θW ; this observation is consistent with the axisymmetry that persists in
figure 2.15(a).

Similarly, the configuration with two disturbances leads to a m = 2 periodicity of
PDF(θW ) with two maxima at approximately ±π/2. Such a probability distribution in-
dicates that the flow presents two preferred orientations. It is worth noting that the ex-
perimental PDF presents an asymmetry between −π/2 and π/2 which is equally visible in
the map of Std(ux∗). Indeed, in figure 2.15(b), the energy of the velocity fluctuations is
stronger for θ = −π/2 than for θ = π/2. Hence, a residual asymmetry is measured as the
wake explores more the azimuth −π/2 than π/2.

Finally the data obtained for the configuration m = 4 (not presented here) are lacking
precision to evidence any m = 4 periodicity of PDF(θW ); this shows the limits of a method
based on the barycenter of momentum deficiency in the azimuthal description of the wake
dynamics.

As a conclusion, a slight azimuthal perturbation is proved to select one or several pre-
ferred wake orientation depending on its periodicity. To terminate this study, one can
consider the effect of the diameter of the azimuthal perturbation on the flow statistics.

Effect of the size of the disturbance

Some experimental setups in the literature have a physical connection between the
geometry and a recording device located outside of the test section. Such a wire connection,
usually through the supports, leads to significant intrusion of the system holding the body,
typically with a characteristic size of 0.1 to 0.2D. The following experiments give some
quantitative information on the modifications of the wake statistics depending on the size
and location of a m = 1 azimuthal perturbation.

The probability density functions of θW associated with m = 1 disturbances of different
diameters are presented in figure 2.19. For clarity, the experimental data are not plotted,
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Figure 2.19. Probability density functions of θW for the reference case and for the m = 1

configurations. The experimental data are not plotted; the curves are their best m = 1 fits.

only the best m = 1 periodic fits of expression

K cos(θW ) +
1

2π
(2.4)

are presented. The first intuitive conclusion that can be made is that the larger the distur-
bance, the less uniform the PDF; in other words, |K| increases with d∗.

The second observation is that the sign of K in equation (2.4) depends on the size
of the disturbance. Indeed, the statistics show that the wake is mostly oriented toward
the opposite of the disturbance for d∗ = 0.017 and 0.029 (most probable orientation at
θW = ±π) while the preferred orientation of the wake is θW = 0 for d∗ = 0.057 and 0.086.
However, when the largest disturbance (d∗ = 0.086) is moved3 from x∗ = −0.5 to x∗ = 0, a
change of wake orientation is observed. These results are an indicator of the high sensitivity
of the azimuthal phase shift between the wake and the disturbance.

As a consequence, the preference toward one azimuthal direction increases with the
disturbance size but the wake can be either oriented toward the perturbation or toward
its opposite direction depending on the disturbance size and position. These results are
reminiscent of the selection of the phase shift at 0 or π proved theoretically by Meliga et al.

(2009a) using global stability analysis.

3For this configuration only, the disturbance is held from the side of the test section.
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2.4 Concluding remarks

The alternative system consisting in fixing the sphere on an axis positioned upstream
of the body is relevant to produce a turbulent wake with a statistical axisymmetry. The
instantaneous wake tends to be off the axis of symmetry and the axisymmetry is restored
due to the exploration of all the azimuthal directions.

The flow topology for a given wake orientation can be extracted by conditional averaging
in both planes x∗ = 0.93 and y∗ = 0. The obtained flow field is reminiscent of the unsteady
planar symmetric flow in the laminar regime.

In parallel, it is observed that at large Reynolds numbers, the unsteady global mode may
disappear because it becomes less energetic than the large-scale structures of turbulence.
On the other hand, traces of the axisymmetry breaking that occurs at ReD ≈ 210 are
still reported in the turbulent regime; the associated asymmetric flow is responsible for a
permanent lift force and certainly for part of the drag.

Finally, the use of azimuthal perturbations evidences the high sensitivity of the ax-
isymmetry of the wake. Depending on the periodicity of the disturbance, the wake selects
one or several preferred orientations; the azimuthal phase shift between the wake and the
perturbation is 0 or π and relies on the amplitude and position of the perturbation.

The selection of different preferred orientations may result in multi-stable behaviors.
This is the case of the geometry considered in chapter 3.





Chapter 3

Sensitivity analyses of a bistable

configuration

Most of the following results are published in Grandemange et al. (2012b).
This chapter aims at exploring the sensitivity of the wake past a three-dimensional blunt

body with a fixed axisymmetric flow separation at ReD = 2.1 104. Experiments of passive
control using reasonably small devices are performed to disturb the flow. The impact of
the control device is reported through sensitivity maps of global mode frequency, pressure
on the body and estimation of the drag.

Abstract

The turbulent wake over a three-dimensional blunt body with an axisymmetric trailing
edge is investigated at ReD = 2.1 104. The flow presents a favored m = 2 azimuthal
periodicity due to the mounting of the body. It is proved that the wake is bistable with the
cohabitation of two asymmetric states. Topology shifts restore the symmetry of the mean
flow; the succession of the states is random but, in average, the shifts are reported after a
large number of global mode periods. The statistical symmetry is highly sensitive to any
antisymmetric disturbance. As a consequence, depending on its position, a small control
cylinder in the near wake fixes the flow to one asymmetric topology and it may affect both
shedding activity and drag. In particular, the bistable behavior of the flow is altered when
the center of the recirculation region is disturbed, these configurations resulting in drag
reduction. On the other hand, preserving the mean flow symmetry, a thin control ring has
a greater impact on the global mode frequency and the drag. These experiments point out
the high sensitivity of three-dimensional wake to perturbations which motivates the studies
depicted in part II past parallelepiped bodies.
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Figure 3.1. Experimental setup of the body controlled by a 3 mm cylinder (a) and a ring (b);
O sets the origin of the coordinate system. The blue dots locate the pressure taps on the
base.

3.1 Experimental setup

The Eiffel-type wind tunnel is an open-loop air flow facility. The turbulent intensity is
less than 0.3% and the homogeneity of the velocity over the 400 mm × 400 mm blowing
section is 0.4%. The wake is generated by a three-dimensional symmetric blunt body made
up of a streamwise circular cylinder of diameter D = 50 mm and a half sphere forebody
(see figure 3.1). The total length is L = 125 mm. The axisymmetric body is supported by
two NACA 0021 profiles1 fixing the azimuthal planes of symmetry (xOy) and (xOz). Most
of the experiments are performed with the body aligned to the incoming flow however,
when specified, a small pitching angle ϵ is set to induce an antisymmetric disturbance. The
main flow velocity is U0 = 6.5 m s−1 and the Reynolds number is ReD = U0D/ν = 2.1 104.

The separated flow is first controlled by a cylinder of 3 mm diameter; it is oriented in the
y direction and moved in the wake using a motion controller. xC and zC refer to the cylinder
position (see figure 3.1a). This control geometry may appear surprising as it is bidimensional
while it disturbs a fully three-dimensional flow. Indeed, in bidimensional configurations,
the experimental work of Parezanović & Cadot (2009) shows that the sensitivity of the
flow to the perturbation results from the interactions between the shear layers of the main
wake and the vorticity introduced by the disturbance. However, as mentioned in chapters 1
and 2, the flow over three-dimensional geometries may be highly sensitive to any symmetry
breaking. Hence, as a first step in the present study, the control cylinder is used to introduce
an asymmetry: except when the cylinder is located on the streamwise axis, it is considered
as a steady m = 1 disturbance of the flow. On the other hand, when zC

∗ = 0, the control
cylinder imposes a stagnation point in the wake; therefore, it consists in a local symmetric
forcing of the flow.

The other control devices are flat rings with a length of 6 mm and a thickness of 1 mm

mounted on a 3 mm diameter rod (see figure 3.1b). xR is the gap between the base of the
body and the center of the ring (point R) as visible in figure 3.1(b). The point R remains
on the streamwise axis so that the symmetry of the body is preserved and the rings are
associated with m = 0 perturbations. Nine ring diameters dR between 0.7D and 1.1D
are used to disturb the near wake and, more particularly, the mixing layers. Here, the
strategy is to disturb the separated shear layers by introducing vorticity with the rings, it
is a direct extension of the control experiments presented in Parezanović & Cadot (2012)
over a D-shaped cylinder.

1The NACA supports can seem very intrusive at first sight as their thickness is 0.21D but the forcing
they introduce in the flow is relatively small. For example, circular cylinders with a diameter of 0.02D
would lead to a similar forcing.
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The flow analyses are made from bidimensional PIV and stereoscopic PIV in the planes
y∗ = 0 and x∗ = 1.2 respectively. Statistics from 2000 instantaneous velocity fields estimate
the fluctuating velocities. To get the unsteady characteristics of the flow, a hot-wire probe
mounted on a three-dimensional traversing mechanism records the velocity in the wake at
a sampling frequency of 2 kHz. So, autopower spectra are calculated up to 1 kHz with a
resolution of 0.5 Hz.

In addition, the pressure on the body is measured in the plane y∗ = 0 using two
Scanivalve DSA 3217/16 px devices. Thirteen taps are located on the spheric forebody
every 15◦; seven others give the pressure distribution on the base, the gap between taps
on the base is 6 mm. These taps are connected to the acquisition device using 1 m
long vinyl tubes going through the NACA supports. The pressure measurements are
performed at 1 Hz over a minimum of 120 s. The sampling frequency is limited to 1 Hz
to preserve precision. The measurement at 1 Hz is abusively called instantaneous pressure

measurement ; after normalization, it is denoted by cp in opposition to the mean pressure
coefficient Cp = ⟨cp⟩.

In equation (3.1), the pressure drag is estimated by integration of the interpolated pres-
sure on the surface after projection in the streamwise direction. The pressure distributions
in each region z∗ > 0 and z∗ < 0 are assumed axisymmetric.

Cxp =
1

1
2ρπ
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For the uncontrolled flow, the so-evaluated drag is Cxpn = 0.261 ± 0.002. Using the ex-
perimental method based on momentum deficiency in the far wake as presented in equa-
tion (A.27), a larger value of 0.29 is measured, partially due to friction effects. When the
control device is in the wake, its contribution to the total drag is not taken into account.
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Figure 3.2. (a) Mean and fluctuating velocity profiles (empty and filled symbols respec-
tively) of the boundary layer at the trailing edge: ⃝, uxz in the plane y∗ = 0; �, uxy in
the plane z∗ = 0. (b) Pressure distribution on the body in the plane y∗ = 0.

at y∗ = 0 and z∗ = 0.5 at y∗ = 0.5 and z∗ = 0

δ0.99 1.57 mm± 0.05 mm 1.82 mm± 0.05 mm
δ1 0.36 mm± 0.02 mm 0.40 mm± 0.02 mm
δ2 0.18 mm± 0.02 mm 0.19 mm± 0.02 mm
H12 2.0± 0.3 2.1± 0.3

Table 3.1. Boundary layer characteristics at the trailing edge.

3.2 Natural flow

In this section, the mean properties of the flow and its periodic dynamics are first
presented. Then, section 3.2.2 focuses on the bistable behavior of the wake.

3.2.1 Mean flow and periodic dynamics

Different flow separations are observed over this body. First, an adverse pressure gra-
dient on the forebody leads to a boundary layer detachment at s∗ ≈ ±2.5. The flow then
reattaches on the cylindrical part before the massive separation at the trailing edge. The
flow characteristics at the trailing edge also depend on the azimuth due to the presence of
the NACA supports in the plane z∗ = 0.

The velocity profiles at the trailing edge in planes y∗ = 0 and z∗ = 0 are presented in
figure 3.2(a). In the plane y∗ = 0, the successive detachment and reattachment lead to the
mean and fluctuating velocity profiles plotted in figure 3.2(a) by the empty and filled circles
respectively. The energy of the fluctuations of velocity diminishes when z∗ increases and
should slowly tend to the free-flow level of turbulence. This particularly high fluctuation
level in the whole boundary layer certainly results from the forebody separations. In the
plane z∗ = 0, the NACA supports introduce additional momentum deficiency and the
velocity fluctuations remain large even outside the boundary layer (see empty and filled
squares in figure 3.2a). The characteristic lengths obtained from these velocity profiles are
listed in table 3.1. The high shape factors point out that the boundary layers at the trailing
edge may still be in a transitional stage to turbulence. This interpretation tends to be
confirmed by the absence of peak in the velocity fluctuations close to the wall in figure 3.2(a).
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Figure 3.3. (a) Streamwise velocity profiles in the upper mixing layer for different stream-
wise positions: —, x∗ = 0.2; - - -, x∗ = 0.4; · · ·, x∗ = 0.6 ;-·-, x∗ = 0.8. (b) Contours of
streamwise velocity: · · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9. The data are measured from PIV in
the plane y∗ = 0.

Figure 3.4. Autopower spectrum of a hot-wire probe signal at x∗ = 4.0, y∗ = 0 and z∗ = 0.5.

Downstream of the separation, the mixing layers grow from the trailing edge. Fig-
ure 3.3(a) displays the streamwise velocity profiles in plane y∗ = 0 at different x positions.
The size of the mixing layer is defined by δm(x) = z0.9(x) − z0.1(x) with zα(x) verifying
Ux

∗(x, zα(x)) = α as in section 1.2.1. The contours of Ux
∗ = 0.1, 0.5 and 0.9 (positions of

zα for α = 0.1, 0.5 and 0.9) are plotted in figure 3.3(b). The growth of δm is approximatively
linear between x∗ = 0.1 and x∗ = 0.7; dδm

∗/dx∗ is measured respectively at 0.17 and 0.18
for the upper and lower mixing layer. The expansion occurs toward the recirculation bubble
where Ux

∗ ∼ 0, the contours Ux
∗ = 0.9 being roughly parallel to the streamwise axis. This

growth rate is due the proper dynamics of the turbulent shear layers (see section 1.2.1) but
also to the oscillations induced by the presence of an unsteady global mode. Indeed, the
power spectrum of a hot-wire probe signal at x∗ = 4.0, y∗ = 0 and z∗ = 0.5 reports a wake
oscillation at a frequency of 25.8 Hz, i.e. StD = 0.199 (see figure 3.4); the frequency of the
global mode is denoted by StDm. Here, the two peaks at StD ≈ 0.05 and 0.07 correspond
to some wind tunnel signatures.

Figure 3.5(a) displays the streamlines and the vorticity field of the mean flow in the
plane y∗ = 0. The natural wake is symmetric referring to the plane z∗ = 0 with two
recirculation structures and two saddle points at x∗ = 0.95 and z∗ ≈ ±0.2 (see figure 3.5b).
This topology is consistent with the two pairs of counter-rotating vortices suggested by
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Figure 3.5. Vorticity Ωy (a) and fluctuating velocities (b) in the plane y∗ = 0; the white
crosses locate the saddle points.

Délery (2013) (see figure 1.10c). The converging streamlines at z∗ ≈ ±0.2 for x∗ > 1 are
the signatures of these streamwise vortices in the plane y∗ = 0: one pair at z∗ ≈ 0.2 and
the other at z∗ ≈ −0.2. The vorticity concentrated in the boundary layer vanishes from the
detachment to the end of the recirculating bubble. The vorticity is mainly found near the
separatrix of the recirculation region and it is clear that the mean recirculation structures do
not contain significant vorticity. The maximum fluctuating energy is measured at z∗ ≈ ±0.4

and x∗ ≈ 0.8 as visible in figure 3.5(b). These fluctuations are associated with both the
turbulent activity of the mixing layers and the development of the unsteady global mode.
As expected, the velocity fluctuations are of similar amplitude in the top and bottom of
the near wake.

3.2.2 Bistable behavior

In agreement with remarks present in the literature (Délery, 2013; Weickgenannt &
Monkewitz, 2000), the symmetry of the wake is highly sensitive to the setup accuracy.
A slight incidence ϵ moves the whole wake up or down. Figures 3.6(a)–(b) present the
asymmetric wake topology for a slightly nose-up configuration. Measurements in the plane
x∗ = 1.2 show only one pair of counter-rotating vortices at y∗ ≈ ±0.2 and z∗ ≈ −0.3 just
above a single zone of intense fluctuations; this topology is very similar to the one presented
in figure 1.10(d) from Délery (2013). There is also a clear similarity with the topology of the
instantaneous wake past the sphere for θW = −π/2 (see figures 2.10 and 2.14). Therefore,
as soon as the symmetry is lost, the unsteady mode develops mostly from the lower part of
the wake. It is very likely to correspond to the formation of parallel vortex loops at the end
of the recirculation bubble (Achenbach, 1974; Sakamoto & Haniu, 1990; Vilaplana et al.,
2013) as visible in figure 1.7. When the symmetry is preserved, these vortex loops must
develop statistically from both sides of the wake.

The balanced wake for ϵ = 0 (see figure 3.5) is consistent with an average of two
asymmetric topologies, named #1 and #2, each of them being respectively close to the
flow presented in figures 3.6(a)–(b) and its symmetric referring to the plane z∗ = 0. Indeed,
averaging the velocity field U⃗ϵ for state #1 shown in figure 3.6(a) with the expected flow
for state #2, an artificial velocity field can be computed as

Ux(x
∗, z∗) =

1

2
[Uϵx(x

∗, z∗) + Uϵx(x
∗,−z∗)], (3.2)

and

Uz(x
∗, z∗) =

1

2
[Uϵz(x

∗, z∗)− Uϵz(x
∗,−z∗)]. (3.3)
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Figure 3.6. Fluctuating velocities in the plane y∗ = 0 (a) and in the plane x∗ = 1.2 (b) for
slightly nose-up configuration (state #1); the white cross locates the saddle point.

Figure 3.7. Fluctuating velocities in plane y∗ = 0 for the flow computed from the state #1
(see figure 3.6a) and the expected velocity field for state #2 as defined in equations (3.2)
and (3.3). The white crosses locate the saddle points.

This artificial wake presented in figure 3.7 has exactly the same properties as the one
measured for a lined-up body in figure 3.5(b): two saddle points are visible, with two zones
of intense fluctuations of velocity at z∗ ≈ ±0.4.

Hence, two different wake positions are expected for the flow over a perfectly lined-
up configuration. When the wake follows the configuration #1, the upper recirculation
structure is larger and closer to the base than the lower one. Such an asymmetry of the
recirculating flow leads to a non-uniform pressure distribution on the base; the base pressure
gradient ∂Cp/∂z

∗ is negative in state #1 (see figure 3.8a). The slope of the linear fit of
the base pressure distribution gives the pressure gradient and indicates whether the flow
mostly follows the state #1 or #2. Thus, the instantaneous measurement of base pressure
distribution gives the dominant topology over the second.

The time evolution of the base pressure signal during 5 103 s is now considered. A sample
evolution of the pressure gradient, i.e. the dominant topology, is shown in figure 3.8(b) over
1000 s. Two preferred positions are visible at ∂cp/∂z∗ ≈ ±0.1 in the probability distribution
proving the existence of the two topologies #1 and #2; they are associated with negative
and positive gradients respectively. The presence of the minimum between these peaks
suggests that the automatic 1 s averaging remains below the mean time of shift estimated
at 4.6 s, i.e. more than 100 global mode periods. The standard deviation of the base
pressure gradient is 0.084. This value is of the order of the absolute values of pressure
gradients associated with the asymmetric states (see figure 3.8b); such a high value is then
an indicator of the coexistence of the two wake topologies.

Eventually, the spectral analysis of the signal over the 5 103 s does not present any
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Figure 3.8. (a) Base pressure distribution of the topology #1 characterized by the negative
slope of the linear fit (continuous line) with the corresponding velocity field in the near wake
from figure 3.6(a). (b) Sample time evolution of the instantaneous base pressure gradient
over 1000 s and corresponding probability distribution.

P(St = #1) = 0.53 P(St = #2) = 0.47

P(St = #1|St−1 = #1) = 0.79 P(St = #2|St−1 = #2) = 0.77

Table 3.2. Probabilities of states #1 and #2 depending on the previous state for the lined-
up uncontrolled flow based on pressure measurements with a sampling frequency at 1 Hz.
P(A|B) is the conditional probability of A, given B. The precision is better than 0.02.

characteristic frequency: the shifting process seems random. The two asymmetric topolo-
gies are discriminated against the sign of the base pressure gradient. The probability to
report the state #1 or #2 at a moment t, denoted P(St = #1) or P(St = #2) respectively,
depends not only on geometrical parameters like incidence but also on the past event (see
table 3.2). For ϵ = 0, one expect P(St = #1) = P(St = #2) = 0.5 but a slight incidence
strongly affects this equilibrium. Besides, P(St = #1) < P(St = #1|St−1 = #1), which
is equally true for the topology #2, P(A|B) referring to the conditional probability of A,
given B. Hence, a configuration is more likely to appear at t if it was already there the
previous second: this is consistent with the mean time of shift measured at 4.6 s.

As a result, it appears that the m = 2 periodicity of the geometry is responsible for a
bistable behavior, the topology shifts being long time dynamics. This is in agreement with
the PDF of the wake orientation observed for the sphere when the m = 2 azimuthal pertur-
bation disturbs the flow (see figure 2.18). One can interpret the slight incidence inducing
the asymmetric flow (see figure 3.6) as an superposition of a dominant m = 1 perturbation
so that the wake has only one preferred position left. The study of an additional m = 1

perturbation is now thoroughly studied in section 3.3.1 introducing a control cylinder in
the near wake.
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Figure 3.9. Effect of the position of the 3 mm control cylinder on ∂Cp/∂z
∗ (a) and on

Std(∂cp/∂z∗) (b). The lines locate the mixing layer of the natural flow in the plane y∗ = 0:
· · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.

3.3 Disturbed wakes

The sensitivity of this flow to m = 1 and m = 0 azimuthal disturbances, cylinder and
rings respectively, is investigated through their effect on global mode activity, velocity field
and base pressure.

3.3.1 Control cylinder in the wake

The asymmetric wake presented in figure 3.6 for a slight pitching angle highlights that
the wake orientation is sensitive to any tiny asymmetry of the setup. Consequently, the
control cylinder, which can be seen as a m = 1 steady disturbance for zC∗ ̸= 0, should also
have significant impacts on the flow. The base pressure gradient, i.e. the dominant topology,
as a function of the cylinder position is presented in figure 3.9(a). As expected, this m = 1

perturbation is highly efficient in selecting the state #1 or #2. For example, when the
cylinder is at xC∗ = 0.2 and zC∗ = −0.3, it forces the topology #1 (see figure 3.10a); if it is
moved further downstream at constant zC∗ = −0.3, then the configuration #2 dominates.
When zC

∗ = 0, the disturbance is no longer antisymmetric thus the mean wake retrieves
the symmetry referring to the plane z∗ = 0 (see figure 3.10b).

For xC∗ < 0.5 and zC∗ ̸= 0, there are also positions of control cylinder where no pressure
gradient is induced in spite of the asymmetry of the configuration. At these locations, the
fluctuation levels of the base pressure gradient are close to the natural value as visible in
figure 3.9(b). This points out that both topologies #1 and #2 are still present in the wake.

Further downstream, for xC∗ > 1, the flow is less influenced by the control cylinder:
the effect of the disturbance is not important enough to set a significant base pressure
gradient and the fluctuation levels get back to the values of the uncontrolled case. Thus,
the receptivity of the flow seems limited to the recirculation bubble.

On the contrary, wherever the cylinder induces high positive or negative base pressure
gradient, i.e. topology #1 or #2, fluctuation levels of base pressure gradient are much lower
than the natural value. Thus, the control cylinder stabilizes the wake in one of the two
asymmetric states. As for m = 1 disturbed flow over a sphere, the wake can be oriented
either toward the disturbance or toward the opposite direction depending on xC .

Eventually, the fluctuations of base pressure remain quite low when the cylinder is
placed in the middle of the recirculation bubble so the wake tends to be stabilized in a
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Figure 3.10. Fluctuating velocities in the plane y∗ = 0 for two controlled cases: xC∗ = 0.2

and zC
∗ = −0.3, (a); xC∗ = 0.5 and zC

∗ = 0, (b); the configurations are associated with
drag evolutions of +1% and −9% respectively. The crosses locate the saddle points.

Figure 3.11. (a) Autopower spectra at x∗ = 4.0, y∗ = 0 and z∗ = 0.5 as a function of
the position of the control cylinder zC∗ for xC∗ = 0.5. (b) Strouhal of the global mode as
a function of the cylinder position. The gray areas correspond to absences of peak in the
autopower spectra. The lines locate the mixing layer of the natural flow in the plane y∗ = 0:
· · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.

topology with a symmetric distribution of base pressure, i.e. in a centered state.

The m = 1 disturbance equally affects the dynamics of the global mode. The autopower
spectrum of the hot-wire probe signal at x∗ = 4.0, y∗ = 0 and z∗ = 0.5 is presented in
figure 3.11(a) as a function of the cylinder position zC

∗ for xC∗ = 0.5. As the probe is
at z∗ = 0.5, i.e. off the streamwise axis, the map of the power spectrum is not symmetric
referring to zC

∗ = 0. A higher level energy is measured in the power spectra when the
wake is in the state #2, i.e. zC

∗ < 0 when xC
∗ = 0.5. Indeed, the fluctuations of velocity

are mostly concentrated at the upper part of the recirculation bubble and the turbulent
structures are then convected downstream, to the hot-wire probe. On the contrary, when
the wake follows the state #1, the fluctuations of velocities are located at the opposite of
the probe.

Figure 3.11(b) reports the global mode frequency at positions where a peak of energy
is present in the power spectrum. This map is correlated to the map of absolute values
of base pressure gradient (see figure 3.9a). The more asymmetric the topology, the higher
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Figure 3.12. Effect of the position of the control cylinder on the drag. The lines locate the
position of the mixing layer of the natural flow in the plane y∗ = 0: · · ·, Ux

∗ = 0.1; —, 0.5;
- - -, 0.9.

Figure 3.13. Base pressure distribution: — (×), natural flow; - - - (⃝), xC∗ = 0.2 and
zC

∗ = −0.3 (see figure 3.10a); · · · (�), xC∗ = 0.5 and zC∗ = 0 (see figure 3.10b).

the frequency. On the contrary, the shedding frequency tends to be reduced where the
control cylinder sets ∂Cp/∂z

∗ ≈ 0. An exception is observed when zC∗ ≈ 0 but the energy
associated with the global mode activity is spreading over a large band of frequency so
StDm is poorly defined (see figure 3.11a). For theses positions, the total energy of the fluc-
tuations of velocity is slightly lower than the one of the natural flow (compare figures 3.10b
and 3.5b). This observation confirms that the wake tends to be stabilized in a centered state.

In parallel to these different flow modifications, the pressure drag is estimated through
the pressure distribution on the body. The largest drag reductions are measured for
xC

∗ ≈ 0.5 and zC
∗ ≈ 0 (see figure 3.12). The optimal position leads to a drag reduction

of 9%, exclusively associated with a base pressure recovery (see figure 3.13); the pressure
distribution on the forebody is found independent of the cylinder position. When the cylin-
der induces ∂Cp/∂z

∗ ≈ 0 for 0.2 < xC
∗ < 0.5 and zC

∗ ̸= 0, there is almost no effect on
the drag. At these locations, the flow does not seem disturbed by the cylinder, the only
difference is that the global mode frequency is slightly reduced.
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Figure 3.14. Effect of the position of the control rings on Std(∂cp/∂z∗). The lines locate
the mixing layer of the natural flow in the plane y∗ = 0: · · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.

3.3.2 Control rings in the mixing layers

The sensitivity of the flow to m = 0 disturbances is now studied placing the rings
in the mixing layers (see figure 3.1b). The contribution of the 3 mm support can be
estimated through the effect of the control cylinder presented in the previous section
for zC

∗ = 0. As the perturbation introduced by the rings is symmetric, the base
pressure gradient remains nil but its fluctuation levels are still an indicator of bi-stability.
These fluctuations depending on the diameter and position of the rings are presented
in figure 3.14. For xR∗ < 0.8 the fluctuations of the base pressure gradient tend to be
attenuated in comparison to the natural flow. In particular, the impact of the control
ring on Std(∂cp/∂z∗) follows the inner frontier of the mixing layer. As for the control
cylinder, these low values tend to indicate that the wake is stabilized in a centered state.
Then, for xR∗ > 0.8, the fluctuations of base pressure gradient are close to its natural values.

The modification of the global mode activity due to the presence of the control rings is
now considered. Figure 3.15 presents the power spectrum of the hot-wire probe signal at
x∗ = 4.0, y∗ = 0 and z∗ = 0.5. For small ring diameters in the near wake, i.e. dR

∗ < 0.85

and xR∗ < 0.2, the disturbance is not in the mixing layers, the global mode frequency and
amplitude are close to the natural case (see figure 3.15c). As the disturbance reaches the
inner part of the mixing layers for xR∗ < 0.4, the shedding frequency is approximately
decreased by 15%. When the ring diameter increases, the perturbation affects the middle
of the mixing layers and the global mode is reported far less energetic so it is poorly defined
(gray zones in figure 3.15c). Reaching the outer part of the mixing layers, the global mode
is measured again but at a higher frequency in comparison to the natural value.

Further downstream for 0.4 < xR
∗ < 0.6, a different scheme is observed (see fig-

ure 3.15c). The global mode frequency is reduced for small ring diameters but the peak of
energy in the spectra rapidly disappears as dR

∗ is increased. In the middle of the mixing
layer, a new global mode regime is measured with a frequency of StDm ≈ 0.1. Then, for
dR

∗ > 1, the disturbance of the outer part of the mixing layer leads to an increase in global
mode frequency.

Finally, whatever the value of dR
∗, for xR∗ > 0.6 there is no more peak reported in

the power spectra. The attenuation of the global mode may be due to the presence of
the 3 mm support. Indeed, figure 3.11(b) points out that the control cylinder prevents the
global mode development when placed on the streamwise axis for xR∗ > 0.7. So, at these
locations, the effect of the support may no longer be negligible.

In parallel, figure 3.16 presents the estimation of the drag depending on the diameter
and position of the rings. Like the global mode activity, the effect of the rings approx-
imately follows the position of the mixing layer in the natural flow. The optimal drag
reductions are reported when the control device acts on the inner part of the mixing layers.
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Figure 3.15. Autopower spectra at x∗ = 4.0, y∗ = 0 and z∗ = 0.5 as a function of the ring
diameter dR

∗ for xR∗ = 0.5 (a) and as a function of the position xR
∗ for dR

∗ = 0.85 (b).
(c) Strouhal number of the global mode depending on the ring position; the gray areas
correspond to absences of peak in the autopower spectra. The lines locate the mixing layer
of the natural flow in the plane y∗ = 0: · · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.

Figure 3.16. Effect of the position of the control ring on the drag. The lines locate the
mixing layer of the natural flow in the plane y∗ = 0: · · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.
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On the contrary, the drag tends to increase when the outer part of the mixing layer is
disturbed. An exception is observed for xR∗ ≈ 0.2 where drag is also decreased for the
largest ring diameters. Thus, the drag evolutions do not directly correspond to the global
mode frequency map presented in figure 3.15(c). Eventually, when xR

∗ > 0.9, the effect is
limited on the drag which indicates that the receptivity of the flow is concentrated in the
near wake mixing layers.

Different flow topologies correspond to these variations of drag and shedding frequency;
three of them are presented in figures 3.17(a)–(c) corresponding to xR∗ = 0.3, 0.6 and 0.8
for dR

∗ = 0.85. The associated spectra are visible in figure 3.15(b). At xR∗ = 0.3, a 13%

decrease in Cxp is measured; the corresponding velocity field is displayed in figure 3.17(a).
The mean recirculation structures are moved further downstream in comparison to the
uncontrolled flow (compare with figure 3.4) and the length Lr of the recirculation bubble
is increased by 7.5%. The pressure recovery induced by the control device is distributed on
the whole area of the base (see figure 3.18). This ring position also corresponds to a slight
reduction in global mode frequency: StDm is measured at 0.17 (see figure 3.15b).

Another topology is obtained with xR
∗ = 0.6 and dR

∗ = 0.85. PIV measurements in
figure 3.17(b) point out that the mixing layers reattach on the flat ring. The streamlines
around x∗ ≈ 0.8 indicate the presence of two stagnation points downstream of the ring but
after the recirculation region2; they may be associated with the proper wake of the ring.
The region where Ux

∗ < 0 is strongly shortened, limited to the area between the base and
the ring. The mean recirculation structures are close to the body and the curvature of the
separatrix increases reducing the base pressure on the periphery. As shown in figure 3.18,
a relative high pressure is measured at the center of the body probably due to an inten-
sification of the backward flow in average. However, this high pressure at the center of
the base is not sufficient to counterbalance the loss of pressure on the periphery. Indeed,
the assumed axisymmetry of the base pressure implies that the area associated with the
pressure considered to calculate drag is proportional to |z∗| as presented in equation (3.1).
So, the base pressure at z∗ ≈ 0 has a smaller impact on the drag than at the periphery and
the drag is measured equal to the uncontrolled case.

A third topology associated with high drag case is presented in figure 3.17(c). The flow
reattaches on the rings and the mean recirculation structures are close to the base which
implies a shorter recirculation length. The drag is increased due to the loss of pressure
reported on the whole base. Finally, it is interesting to note that this high drag configuration
is associated with an absence of activity of the unsteady global mode. Hence, contrary to
what is usually observed in bidimensional wakes, the suppression of the shedding activity
does not necessarily lead to base pressure recovery.

2The ring masks the point where Ux
∗ = 0 on the streamwise axis.
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Figure 3.17. Fluctuating velocities in the plane y∗ = 0 for the controlled flow with the
ring of diameter dR

∗ = 0.85 at xR∗ = 0.3 (a), xR∗ = 0.6 (b) and xR
∗ = 0.6 (c); the

configurations are associated with drag evolutions of −13%, 0% and +9% respectively. The
white crosses locate the saddle points.

Figure 3.18. Base pressure distributions: — (×), natural flow; - - - (⃝), xR∗ = 0.3 and
dR

∗ = 0.85 (see figure 3.17a); · · · (�), xR∗ = 0.6 and dR
∗ = 0.85 (see figure 3.17b); -·- (△),

xR
∗ = 0.8 and dR

∗ = 0.85 (see figure 3.17c).
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3.4 Concluding remarks

The natural flow over this body with an axisymmetric blunt trailing edge is proved to
be a mean of two asymmetric topologies. Due to the presence of the support introducing a
m = 2 azimuthal periodicity, the wake is not axisymmetric but presents a statistical m = 2

symmetry. Instantaneous wake follows a m = 1 azimuthal topology and is oriented either
above or below the streamwise axis, i.e. θW = ±π/2, shifting randomly. The unsteady
global mode develops from one side of the bubble, depending on the orientation of the
instantaneous wake.

A m = 1 disturbance, ascribed to a small pitching angle or a control cylinder, sets one
of the two asymmetric topologies. This study highlights that the sensitivity of the flow
over a body of revolution to an antisymmetric local disturbance may only be observable in
the azimuthal plane of the perturbation (Meliga et al., 2009a). Any shift in the azimuthal
position of the disturbance is very likely to be followed by an equal shift of the azimuthal
orientation of the wake. In other words, as for the sphere wake in chapter 2, if θP refers to
the azimuth of the m = 1 perturbation, then θW is mostly measured at θP or θP + π, the
phase shift depending on the nature and position of the disturbance.

In addition, the use of control rings considered as m = 0 disturbances has a strong
influence on both the drag and the wake dynamics; the effects follow the position of the
mixing layers of the natural flow. In particular, when placed in the inner part of the
mixing layer, the rings may delay the development of the shear layer instability. It reduces
the global mode frequency and stretches the wake structures in the streamwise direction
resulting in drag reductions.

The mean flow symmetry as well as the global mode development are highly sensitive
to local perturbations in the recirculation region. These results may be associated with
the disturbance of the reminiscent global modes observed in the laminar regime. The
development of the steady asymmetric mode after the first bifurcation could contain
the wake sensitivity to m ≥ 1 disturbances. On the other hand, the oscillating mode
reported after the second bifurcation (unsteady transition) seems more sensitive to m = 0

perturbations due to the modification of the vorticity distribution in the mixing layers.

As a conclusion, chapters 2 and 3 evidence that the instantaneous flow past axisymmetric
bodies tends to be off the axis of symmetry. The symmetry of the setup is statistically
recovered in the wake but only after long time scales, far larger than D/U0. In addition,
an unsteady coherent motion is reported at StD ≈ 0.2 but the associated energy remains
limited. The development of the unsteady global modes may not be responsible for a
dominant part of the drag. For example, in section 3.3.2, some control ring positions lead
to a total suppression of the shedding process whereas they induce significant drag increases.
The mechanisms responsible for the closure of the recirculation region may rather rely on
the turbulent activity of the mixing layers and the general trend that seems to dominate
from the control experiments presented in section 3.3 is the more energetic the mixing layers
and the more asymmetric the wake, the larger the drag.

Finally, such multi-stable behaviors of three-dimensional flows are of critical interest for
the understanding of the wake dynamics and they are certainly not limited to axisymmetric
bodies. Hence, part II extends similar approaches to the wakes past parallelepiped bodies
in ground proximity.
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Chapter 4

Reflectional symmetry breaking in

the laminar regime

Most of this chapter is published in Grandemange et al. (2012a).
The experiments depicted in part I evidence strong correlations between the dynamics

of the turbulent wake and the bifurcations of the laminar flow. Therefore, it is suitable
to start the analyses of the wakes past parallelepiped bodies with an investigation of the
bifurcations of the laminar wake.

Abstract

In part I, reminiscences of the bifurcations of the laminar wake past axisymmetric bodies
are observed in the turbulent regime. As a consequence, it is pertinent to start the study of
the flow past parallelepiped bodies with experiments in the laminar regime. Based on flow
visualizations, a permanent reflectional symmetry breaking (RSB) is reported in the wake
of the squareback Ahmed geometry (Ahmed et al., 1984). When the ground clearance is
large enough to allow a significant underbody flow, a first bifurcation from a trivial steady
symmetric state to a steady RSB state is evidenced at ReH = 340. The RSB state becomes
unsteady after a second bifurcation at ReH = 410. This RSB persists at large Reynolds
numbers and it is responsible for the bi-stability of the turbulent wake presented in the
next chapter.
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Figure 4.1. Geometry of the model: side view (a), top view (b) and back view (c). Fluo-
rescent dye is injected through two pipes behind the rear supports.

4.1 Experimental setup

The three-dimensional body is described in figure 4.1. The length L = 94 mm, the
width W = 35 mm and the height H = 26 mm respect the proportions of the Ahmed
geometry (Ahmed et al., 1984). The four supports are cylindrical of diameter 3 mm. The
Reynolds number is based on the height of the base ReH = U0H/ν. The geometry is placed
in a low speed water tunnel at different ground clearance C∗ = C/H ∈ {0.2, 0.4, 0.6}, the
reference value in the experiments of Ahmed et al. (1984) being C∗ = 0.17.

Two dye injectors, located behind the rear supports, are used to visualize the wake (see
figure 4.1). The Reynolds number varies between 260 and 1300; it is adjusted by the main
flow velocity U0 in the range 1 cm s−1 < U0 < 5 cm s−1; the precision due to the accuracy
of the rotameter is ∆ReH = ±10. The dye is continuously injected with a syringe in such
a way that the velocity at the exit of the injector never exceeds 10% of the main velocity.
The tunnel has transparent walls; in particular, it is designed to visualize the wake in the
streamwise direction (see Thiria et al., 2006, for a description of the tunnel). When the
geometry is out of the test section, the boundary layer thickness on the ground at the
streamwise position of the base of the geometry is of the order of 1 cm, i.e. δ ∼ 0.4H.
Pictures are taken once the dye has filled the recirculating bubble. In the following, yW
denotes the position of the wake in the y direction and YW = ⟨yW ⟩. It is measured as the
mean position of the dye trail downstream of the recirculation bubble by image analysis of
the top view picture; its precision is 0.02W .
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4.2 Topologies of the laminar wake

First, the flow topologies with a moderate ground effect, i.e. for a ground clearance of
C∗ = 0.6, are presented. Then, section 4.2.2 depicts the wake configurations for C∗ = 0.2

and C∗ = 0.4.

4.2.1 The case C∗
= 0.06

At the lowest Reynolds numbers, a steady symmetric regime (SS) is observed as shown in
figure 4.2(a) for ReH = 310. The flow preserves the reflectional symmetry of the geometry.
The presence of the ground induces a top – bottom asymmetry of the wake but it is clear
that there is significant momentum in the underbody flow for this ground clearance. This
SS state remains stable up to ReH = 340.

Past this critical Reynolds number, the wake starts to oscillate periodically in the
plane of symmetry as presented in figure 4.2(b). The structure of this unsteady sym-
metric regime (US) perfectly preserves the reflectional symmetry of the body as it can be
stated from the corresponding top and back views. This regime is associated with alterna-
tive vortex loops shed from the top and bottom shear layers. In the side view picture, a
streamwise evolution of the phase shift between the upper and lower vortices is observed.
It is very likely to result from a difference in the convection velocities between the overbody
and underbody flows.

The US regime is not observed permanently. Indeed, keeping the Reynolds number
constant, this periodic shedding progressively moves off the reflectional plane of symmetry:
yW varies slowly around 0 with a characteristic time evolution of one minute, i.e. roughly
10 shedding periods. Then, the wake selects randomly one orientation and stabilizes in an
asymmetric position, typically after a duration of ten minutes. There, the oscillations get
attenuated and the flow reaches a steady asymmetric regime (SA) denoted SA+ or SA−

depending on the sign of YW . Figure 4.2(c) shows the steady state SA− that breaks the
reflectional symmetry for ReH = 365. Naturally, both SA+ and SA− can be observed
repeating the Reynolds number increase from the SS regime without any intervention on
the setup. This regime was observed stable over two hours of observation; it is considered
steady in the limit of the visualization means and water tunnel stability.

Eventually, increasing the Reynolds number over 410, the SA wake starts to oscillate
again (see figure 4.2d) which leads to an unsteady asymmetric regime (UA). The flow pre-
serves its orientation so that SA+ turns into UA+ and similarly SA− becomes UA−. Hence,
figures 4.2(c) and 4.2(d) result from two different experiments of Reynolds number increase.
The top view in figure 4.2(d) shows that the oscillations are concentrated on one side of the
body but the unsteadiness is associated with oscillations in both the y and z directions.
It is then probable that two different frequencies coexist: one may be associated with the
interaction of the top – bottom shear layers and the other with the interaction of the
lateral ones1. However, the setup does not allow a precise measurement of the oscillation
amplitudes or frequencies in the cross-flow plane. Eventually, it is worth mentioning that
the spontaneous migration between the regimes UA+ and UA− was not observed but
this shift can be forced by energetic perturbations such as short time suppression of the flow.

After a decrease of Reynolds number, the flow goes from the UA state to the SA one
at ReH = 410 and then directly to the SS state as soon as the Reynolds number becomes
smaller than 340: the US regime is not observed. This behavior is summarized through the
typical evolution of the wake shift yW in figure 4.3.

1This point is proved in the turbulent regime in chapter 5.
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Figure 4.2. Flow visualizations at the Reynolds numbers ReH = 310 (a), ReH = 365 (b)–(c)
and ReH = 415 (d). For each Reynolds number: top picture, top view; bottom picture, side
view; right picture, back view. The flow comes from the left for both top and side views.
The regimes observed in (a), (c) and (d) are permanent states while (b) is a transient state.
Observations in (c) and (d) are obtained from different experiments of ReH increase in order
to show both wake orientations (YW

∗ < 0 and YW
∗ > 0).
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Figure 4.3. Typical evolution of the wake position yW and corresponding back view visu-
alizations during a Reynolds number increase from 320 to 370 followed by a decrease back
to 320: continuous lines, permanent states; dashed lines, transient states.

Figure 4.4. Flow visualizations for C∗ = 0.2 of the SS regime at ReH = 310 (a) and the
US regime at ReH = 600 (b).

Note that during the transition from SS to SA, the US regime is always reported. This
observation indicates that the imperfections of the shedding of the US regime may be
needed to initiate slight asymmetries. Then, these asymmetries gradually amplify, moving
the wake off the reflectional plane of symmetry, while the periodic oscillations slowly
attenuate to eventually reach the SA regime.

As a consequence, the stable regimes for C∗ = 0.6 are asymmetric for ReH > 340.
The stability of these RSB states is now studied in section 4.2.2 for the two other ground
clearances.

4.2.2 The cases C∗
= 0.02 and C∗

= 0.04

The viscous effects of the fluid combined with the thick boundary layer on the ground
limit the development of the underbody flow. In the case C∗ = 0.2, there is no momentum
in the underbody flow and the recirculation region extends to the ground as visible in
figure 4.4. For low Reynolds numbers, the flow is steady and symmetric; an unsteady
transition occurs at ReH = 450 (see figure 4.4b) but the wake preserves the reflectional
symmetry in the considered range of Reynolds numbers.

In the configuration C∗ = 0.4, the ground clearance is of the order of the incoming
boundary layer. So, C∗ is large enough to allow some underbody flow. A first transition
from a SS regime to a US regime is measured at ReH = 380 (see figures 4.5a–b). Contrary
to the case C∗ = 0.6 presented in section 4.2.1, this US topology is stable at least up to
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Figure 4.5. Flow visualizations for C∗ = 0.4 at ReH = 370 (a), ReH = 420 (b) and
ReH = 470 (c): left picture, top view; right picture, back view.

ReH = 440 when a transition to an unsteady asymmetric flow is reported, the asymmetric
organization being visible in figure 4.5(c). It is worth noting that, for this value of ground
clearance, no steady asymmetric state is observed.

A synthesis of these flow topologies is provided in the next section through the bifurca-
tion scenarii for the different ground clearances.



4.3. Bifurcation scenarii 69

Figure 4.6. Bifurcation scenarii of the wake for C∗ = 0.06 (a), C∗ = 0.04 (b) and
C∗ = 0.02 (c): +, experimental data; the black and gray lines are steady and unsteady
regimes respectively; the continuous and dashed lines are stable and unstable regimes re-
spectively.

4.3 Bifurcation scenarii

The bifurcation scenario of the configuration C∗ = 0.6 in figure 4.6(a) is suggested
to classify the stable regimes: SS for ReH < 340, SA for 340 < ReH < 410 and UA for
ReH > 410. The US regime is marked as an unstable state as it is transient and only
visible during the transition from SS to SA. The quadratic evolution of YW with ReH
confirms the presence of a pitchfork bifurcation at ReH = 340. Then, the amplitude of the
asymmetry, quantified here by YW , is very likely to saturate for larger Reynolds numbers.

The bifurcation scenario for C∗ = 0.4 is given in figure 4.6(b). It reproduces the
successive unsteady transition at ReH = 380 and the reflectional symmetry breaking at
ReH = 440. There are to few measurements in the UA regime to detail the nature of the
second bifurcation.

Finally, the basic bifurcation scenario of the case C∗ = 0.2 is displayed in figure 4.6(c).
There is only one unsteady transition at ReH = 450 between the planar symmetric states.

From the synthesis given in figure 4.6, one can observe the stabilizing effect of the
ground: the wall suppresses the y instability or at least delays its development. This is also
true for the unsteady bifurcations as all the thresholds of Reynolds numbers increase when
the ground clearance is reduced.
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4.4 Concluding remarks

As a conclusion, these experiments evidence a reflectional symmetry breaking (RSB) of
a three-dimensional wake in the laminar regime: the bifurcation scenarii of the wake for
large ground clearances present asymmetric permanent regimes. The SA and UA regimes
have equal probability of being shifted toward the y∗ > 0 or y∗ < 0 domain. The transient
US regime seems to initiate some slight asymmetries in the flow that are needed to reach the
permanent asymmetric regimes. Improving the measurement technique, further work could
clarify the amplitude and frequencies of the oscillations in the y and z direction. It could
also confirm whether both oscillations emerge simultaneously and whether the transition
from SA to UA is a Hopf bifurcation.

Besides, it is found that the bifurcation scenario strongly depends on the ground
clearance: the steady RSB regime is not reported for C < 0.4H and none of the RSB
regimes is observed for C∗ = 0.2 in the range of Reynolds numbers considered in these
experiments.

These results are reminiscent of the loss of axisymmetry observed in the laminar wake
past a sphere and the presence of asymmetric stable regimes may be a general characteristic
of three-dimensional wakes.

In the turbulent regime, like in the sphere wake, the reminiscences of this asymmetric
bifurcation are very likely to lead to a bistable behavior after exploration of the two asym-
metric states. As a logical progression, the dynamics of the turbulent wake are now studied
in chapter 5.



Chapter 5

Global modes and bi-stability of

the turbulent wake

Most of the following results are published in Grandemange et al. (2013b).
This chapter aims at clarifying the flow past the squareback Ahmed geometry. This

body is massively used to develop flow control strategies but the coherent dynamics of the
wake are still open issues. In addition, the following results introduce the bases of the
sensitivity analyses detailed in chapter 7.

Abstract

After the evidence of a reflectional symmetry breaking state in the laminar regime,
experiments at ReH = U0H/ν = 9.2 104 investigate the flow around the Ahmed geometry.
The massive recirculation on the base, responsible for a dominant part of the drag, is
characterized. The analyses of the coherent dynamics of the wake reveal the presence of
two very distinctive timescales. At long timescales Tl ∼ 103H/U0, the recirculation region
shifts between two preferred reflectional symmetry breaking positions. The succession of
these asymmetric states is random and the equiprobability of the two states leads to a
symmetric mean flow. However, this bistable behavior is reported only over a critical
value of ground clearance. At short timescales Ts ∼ 5H/U0, the wake presents weak
coherent oscillations in the vertical and lateral directions. They are respectively associated
with the interaction of the upper – lower and lateral shear layers. When normalized by
the height and width of the body respectively, the Strouhal numbers are close to 0.17.
In terms of spatial organization, the results suggest an alternate shedding in the vertical
oscillation and a parallel vortex shedding in the lateral direction with an orientation linked
to the current asymmetric position. More generally, these experiments indicate that flow
dynamics, especially the bi-stability, depends on geometrical parameters; these dependences
are thoroughly studied in the next chapter.
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5.1 Experimental setup

Geometry

A scheme of the setup is presented in figure 5.1. A ground plate is placed in an Eiffel-
type wind tunnel to form a 3/4 open jet facility. The turbulent intensity is less than 0.3%

and the homogeneity of the velocity over the 390 mm× 400 mm test section is 0.4%. The
wake is generated by a squareback geometry used in the experiments of Ahmed et al. (1984).
The total length of the body is L = 261.0 mm, the height H and width W of the base are
72.0 mm and 97.2 mm respectively. The four supports are cylindrical with a diameter of
7.5 mm and the ground clearance is C = 12.5 mm to match the reference experiments. The
blockage ratio is less than 5%. The coordinate system is defined as x in the streamwise
direction, z normal to the ground and y forming a direct trihedral.

In order to have constant flow conditions, the ground plate is placed at 10 mm over
the lower face of the inlet and triggers the turbulent boundary layer 140 mm upstream of
the forebody without separation at the leading edge. When the body is not in the test
section, the thickness of the ground boundary layer based on 99% of the free-flow velocity
at x = −L, i.e. 140 mm downstream of the leading edge, is δ0.99 = 6.3 mm with a precision
of 0.1 mm; the displacement and momentum thicknesses are δ1 = 0.89 ± 0.05 mm and
δ2 = 0.60 ± 0.02 mm respectively. The main flow velocity is U0 = 20 m s−1 and the
Reynolds number is ReH = U0H/ν = 9.2 104.

Pressure measurements

The pressure on the body is measured at 62 locations. 21 taps are located on the base
of the body; 41 others give the pressure distribution on the forebody and on the sides
in the planes y∗ = 0 and z∗ = 0.67, this latter plane corresponding to the mid-height
of the base. The pressure is obtained using a 64 port HD miniature pressure scanner
and a SCANdaq 8000 interface controlled by Labview. The pressure scanner takes 50
pressure samples per second and the measurement is automatically averaged over 1 s.
The accuracy of the measurement at 1 Hz is then ±3 Pa; the measurements at 1 Hz are
called instantaneous pressure measurements in opposition to the mean pressure coefficient
Cp = ⟨cp⟩. The pressure scanner is located inside the model so that it is linked to each
tap with less than 250 mm of vinyl tube to limit the filtering effect of the tubing. It is
connected to the measurement chain by a wire going through a front support of the model
so that, apart from the four supports, nothing disturbs the underbody flow.

In addition, the pressure in the wake is measured through the six static ports of a Prandtl
tube mounted on a displacement robot and connected to a Scanivalve DSA 3217/16 px
device. The pressure is considered without any correction so the result is accurate only when
the flow is aligned with the probe. Therefore, it is simply used as a qualitative indicator
of pressure in the wake. A three-dimensional mapping of the static pressure is obtained
moving the probe in the domain (x∗, y∗, z∗) ∈ [0.14; 3.00] × [−0.83; 0.83] × [0.07; 1.67] by
steps of 0.14 in the streamwise direction and of 0.07 in the cross-flow directions.

Force measurements

Drag and lift, respectively Fx and Fz, are obtained using a bidimensional strain balance.
The dimensionless coefficient Ci of the aerodynamic force in the i direction is defined
according to equation (5.1) using S = 7.19 10−3 m2 the projected area of the geometry in
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Figure 5.1. Experimental setup: side view (a), top view (b) and perspective view (c); the
point O sets the origin of the coordinate system. The blue dots locate the visible pressure
taps, they are distributed symmetrically referring to the planes y∗ = 0 and z∗ = 0.67

(mid-height of the body); P scan refers to the pressure scanner.
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a cross-flow plane.

Ci =
Fi

1
2ρSU0

2 , (5.1)

with i ∈ {x, y, z}.
The pressure measurements clarify the origins of the aerodynamic forces. The pres-

sure contribution to the aerodynamic force in the i direction, denoted Cip, is estimated by
integration of the pressure after projection in the considered direction as defined in equa-
tion (5.2). The precision is limited especially for the measurement of the lift and lateral
forces since the pressure distribution is assumed independent of y on the upper and lower
faces and independent of z on the lateral faces.

Cip =
1

S

∫∫

Body

−Cp e⃗n · e⃗ids, (5.2)

with i ∈ {x, y, z}.

Particle image velocimetry

Wake analyses are made from particle image velocimetry (PIV). The system is comprised
of a dual pulse laser (Nd:YAG, 2×135 mJ, 4 ns) and two Dantec CCD cameras (FlowSense
EO, 4 Mpx). The setup acquires image pairs at a rate of 10 Hz; each acquisition records
2000 image pairs. The bidimensional velocity measurements are performed in the planes
y∗ = 0 and z∗ = 0.6 while stereoscopic PIV measures the three components of the velocity
in the planes x∗ = 1.0 and x∗ = 2.0. The size of the interrogation window (32 px× 32 px)
corresponds to physical sizes of 2.5 mm× 2.5 mm in the plane y∗ = 0, 1.6 mm× 1.6 mm in
the plane z∗ = 0.6 and 2.4 mm× 2.4 mm in the planes x∗ = 1.0 and x∗ = 2.0.

The mean velocities and the Reynolds stresses are measured from the valid vectors of
the instantaneous velocity fields; these statistics are taken into account only when more
than 1500 valid vectors are obtained from the 2000 measurements.

Hot-wire probes

To get the unsteady characteristics of the flow, flying hot-wire probes are mounted on
three-dimensional displacement systems made up of three Newport (M-)MTM long travel
consoles controlled by a Newport Motion Controller ESP301. The precision of the robots is
better than 0.1 mm. The probes are from Dantec (hot-wire type 55P15, support type 55H22)
and use an overheat ratio of 1.5; they are connected to two DISA55 hot-wire anemometry
measurement units. These probes mounted on the displacement systems record the velocity
in the wake at a sampling frequency of 1 kHz.
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5.2 Mean properties of the flow

The mean flow over this geometry is displayed in figure 5.2; it presents different
separations. First, a boundary layer detachment occurs on the four faces at the end of
the forebody; visualizations of the separation are visible in figures 5.3(a)–(b). The pressure
measurements in the planes y∗ = 0 and z∗ = 0.67 (see figures 5.4a–b) evidence the adverse
pressure gradient imposed by the geometry in this region; they also locate the separated re-
gions through characteristic plateaus on the body roughly for −3.5 < x∗ < −3.0 on the four
faces. The reattachments, associated with the pressure recovery on the surface, are reported
at x∗ ≈ −3.0 on the sides and on the upper faces and slightly sooner on the lower face.
This difference between the upper and lower faces is certainly due to the ground: it does
not prevent the boundary layer detachment on the lower face of the body but it provokes
an early reattachment. These flow separations are also reported in various experiments or
numerical simulations (Spohn & Gilliéron, 2002; Krajnović & Davidson, 2005; Franck et al.,
2009) and persist at ReH = 2.5 106 as they are still observed in the experiments presented
chapter 9.

Velocity profiles at the trailing edge are measured to know whether the boundary
layers are turbulent or not at the base separation and also to provide their characteristic
thickness. The results are presented in figure 5.5; the separations at the end of the forebody
induce important losses of momentum beyond the boundary layer at the trailing edge. For
the same reason, the levels of fluctuating velocities also remain important far from the
geometry except in the case of the lower face (see figure 5.5c) where the ground proximity
limits the forebody separation. The peaks of fluctuating velocities near the surface indicate
that the boundary layers are turbulent at the trailing edge but the absence of constant
velocity far from the surface prevents the use of the usual definitions of characteristic
thicknesses. However, considering the size of the region of intense vorticity near the body,
the normalized initial thicknesses of the shear layers at separation are 0.026, 0.025 and
0.017, with a precision of 0.003, for the top, side and lower faces respectively.

The blunt trailing edge imposes a massive flow separation at the base. The recirculation
region visible in figures 5.2(a)–(c) extends up to x∗ = 1.47. The cross-flow measurements
at x∗ = 1.0 (see figure 5.2c) show that the recirculation region preserves roughly the rect-
angular shape of the trailing edge: the geometry of the contour Ux

∗ = 0 seems to result
from the equal growth of the mixing layers from the separation at x∗ = 0, at least for the
upper and lateral shear layers. The recirculation bubble then closes in the plane z∗ = 0.59

with two saddle points at x∗ = 1.46 and y∗ ≈ ±0.17. Despite the ground proximity, the
mean velocities at the center of the recirculation region remain oriented along the x direc-
tion. These PIV measurements emphasize the time-averaged vision of the toric recirculation
organization which is also observed through pressure measurements in the wake.

Figures 5.6(a)–(b) show the contours of pressure in the planes y∗ = 0 and z∗ = 0.67.
The minima of pressure in the wake are reported inside the recirculation region, near
the separatrix in the plane y∗ = 0. These locations correspond to the center of the
time-averaged recirculation structures visible in figure 5.2(a)–(b). The three-dimensional
mapping of the static pressure reveals the region of the recirculation bubble where the
pressure is the lowest, at x∗ ≈ 0.6 (see figure 5.6c). The pressure coefficient is close
to 0 at the end of the recirculation bubble and, further downstream, it reaches positive
values which can be associated with the change of streamline curvature. The adverse
pressure gradient is particularly intense on the ground between x∗ = 1 and x∗ = 2. It
induces significant losses of momentum close to the ground downstream of the body (see
figures 5.2a and 5.2d). Boundary layer separation on the ground in this region is not
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Figure 5.2. Mean velocities in the plane y∗ = 0 (a), z∗ = 0.6 (b), x∗ = 1.0 (c) and
x∗ = 2.0 (d). The crosses locate the saddle points.

Figure 5.3. Characterization of the forebody detachment on the upper face: visualizations
of the turbulent transition at different instants (a)–(b) and autopower spectrum of a hot-
wire probe signal in the mixing layer at x∗ = −3.12, y∗ = 0 and z∗ = 1.28 (c). The crosses
locate the hot-wire probe; the dashed line locates StH = 0.174.
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Figure 5.4. Distribution of pressure on the body in the planes y∗ = 0 (a), z∗ = 0.67 (b), on
the base (c) and on the forebody (d). The arrows locate the pressure taps.

Figure 5.5. Mean (continuous blue line, bottom axis) and fluctuating (dashed red line, top
axis) velocity profiles of the boundary layers at x∗ = 0 from the upper face at y∗ = 0 (a),
the side face at z∗ = 0.67 (b) and the lower face at y∗ = 0 (c). ∆y∗ and ∆z∗ are the
normalized gaps between the hot-wire probe and the surface.
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Figure 5.6. Contours of static pressure in the plane y∗ = 0 (a) and z∗ = 0.67 (b); the
continuous and dashed lines are respectively positive and negative values; the contour 0
is the dotted-dashed line; the contour interval is 0.02. The thick black line locates the
separatrix of the mean flow. (c) Iso-surface of pressure Cp = −0.2 in the recirculation
region.

observed but may occur for smaller ground clearances as suggested by the experiments
of Ruiz et al. (2009). This point is considered in the next chapter.

The low pressure region in the recirculating flow affects the pressure on the base. It
is measured approximately constant around Cpb ≈ −0.185 as visible in figure 5.4(c), the
slight variations reflect the impact of the low pressure region in the recirculation bubble (see
figure 5.6). The drag measured by the balance is Cx = 0.274± 0.003; it is slightly larger than
the drag coefficient of 0.250 presented in Ahmed et al. (1984) but this value is consistent
with the other results reported in literature, usually between 0.26 and 0.32. Considering
the distributions of pressure shown in figures 5.4(c)–(d), the pressure contribution to the
aerodynamic forces can be estimated using equation (5.2); the different contributions are
listed in table 5.1. The dominant part of pressure drag (Cxp ≈ 0.75Cx) mostly associated
with the low base pressure is also in good agreement with the results of Ahmed et al. (1984).
In particular, figure 5.4(d) helps understand the limited contribution of the forebody: there
is as much over-pressure in the center as under-pressure in the periphery.

The negative sign of Cz is related to the pair of counter-rotating vortices observed
through the streamlines in the cross-flow plane at x∗ = 2.0 (see figure 5.2d). Similarly, the
value of Cyp ≈ 0 is coherent with the symmetry of both the geometry and the flow.

The PIV results allow the measurements of the Reynolds stresses in the different planes.
Figure 5.7 presents the components ⟨u′x

2⟩, ⟨u′z
2⟩ and ⟨u′xu′z⟩. They are particularly intense

at the forebody separation; the energy of the fluctuations being due to usual shear layer
dynamics but also to evolutions of the shear position at StH = 0.174 (see pictures and
autopower spectrum in figure 5.3). The ground induces a slight asymmetry in the z di-
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Cx = 0.274 ± 0.003

Cz = −0.038 ± 0.008

Cxp = 0.206 ± 0.005

Cyp = 0.006 ± 0.015

Czp = −0.080 ± 0.015

Cpb = −0.185 ± 0.003

Table 5.1. Aerodynamic forces on the body and their pressure components.

RS max
x∗>0

(RS) x∗
(

max
x∗>0

(RS)

)

z∗
(

max
x∗>0

(RS)

)

⟨u′x
∗2⟩ 0.069 1.18 0.22

⟨u′z
∗2⟩ 0.038 1.67 0.61

|⟨u′x
∗
u′z

∗⟩| 0.027 1.24 1.00

Table 5.2. Maxima of the Reynolds stresses (RS) in the wake and their corresponding
locations in the plane y∗ = 0.

rection. After the massive separation at x∗ = 0, the mixing layers develop mostly toward
the recirculation region and the highest values of normal and shear stresses are measured
near the separatrix. The maximal values measured in the wake are detailed in table 5.2;
however, it is worth mentioning that the maximum of the streamwise Reynolds stresses is
measured in the mixing layer from the forebody detachment: ⟨u′x

∗2⟩ = 0.23 at x∗ = −3.06

and z∗ = 1.24.
Similar distributions are obtained in the plane z∗ = 0.6 for the streamwise normal

stresses and the shear stresses (see figures 5.8a and 5.8c). Nevertheless, contrary to the
results presented in figure 5.7(b), the highest values of ⟨u′y

2⟩ are measured at y∗ = 0

upstream of the end of the recirculation region (see figure 5.8b).
Finally, the values of the Reynolds stresses in the plane x∗ = 1.0 in figure 5.9 confirm

that the dominant component is ⟨u′x
2⟩ and that the shear stresses from the upper and lower

faces are more intense than from the lateral ones. The Reynolds stresses from stereoscopic
PIV in the plane x∗ = 1.0 (see figure 5.9) are slightly under-evaluated in comparison to the
ones from bidimensional PIV in the planes y∗ = 0 and z∗ = 0.6 (see figures 5.7 and 5.8) but
their spatial distributions remain consistent1. The energy of these velocity fluctuations relies
on the turbulent evolution of the flow but also on some coherent fluid motions presented in
the next section.

1The stereoscopic PIV data are obtained from the correlation between two simultaneous bidimensional
PIV measurements so there is an additional step in the calculation; this may slightly improve the estimation
of the instantaneous velocities and reduce the average levels of fluctuations.
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Figure 5.7. Contours of Reynolds stresses in the plane y∗ = 0: ⟨u′x
∗2⟩, (a); ⟨u′z

∗2⟩, (b);
⟨u′x

∗
u′z

∗⟩, (c). The continuous and dashed lines are respectively positive and negative
values; the contour interval is 0.005; the contour 0 is not plotted. The thick black line
locates the separatrix of the mean flow.

Figure 5.8. Contours of Reynolds stresses in the plane z∗ = 0.6: ⟨u′x
∗2⟩, (a); ⟨u′y

∗2⟩, (b);
⟨u′x

∗
u′y

∗⟩, (c). The continuous and dashed lines are respectively positive and negative values;
the contour interval is 0.005; the contour 0 is not plotted. The thick black line locates the
separatrix of the mean flow.
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Figure 5.9. Contours of Reynolds stresses in the plane x∗ = 1.0: ⟨u′x
∗2⟩, (a); ⟨u′x

∗
u′y

∗⟩,
(b); ⟨u′x

∗
u′z

∗⟩, (c). The continuous and dashed lines are respectively positive and negative
values; the contour interval is 0.005; the contour 0 is not plotted.
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Figure 5.10. Autopower spectra (a) and sample time evolution (b) of the velocity signals
recorded at A(2.5, 0, 0.9) (continuous black line) and B(2.5, 0.5, 0.6) (dashed gray line) from
hot-wire measurements.

5.3 Wake dynamics

The autopower spectra of hot-wire probe signals in the wake reveal different charac-
teristic frequencies. Figure 5.10(a) shows the autopower spectra at the points A and B

respectively located at x∗ = 2.5, y∗ = 0, z∗ = 0.9 and x∗ = 2.5, y∗ = 0.5, z∗ = 0.6,
i.e. downstream of the upper and lateral mixing layers. Peaks of energy are reported
at 35.4 Hz and 48.4 Hz with a precision of 0.2 Hz, the corresponding Strouhal numbers
(StH = fH/U0) are 0.127 and 0.174 with a precision better than 10−3. In addition, the
probe located at B measures an important energy in the low frequency domain. This phe-
nomenon is clear in figure 5.10(b): long time evolutions, over several seconds, are observed
on the velocity measurement at B. These two kinds of coherent dynamics, one associated
with long time scales, the other at higher frequencies, are analyzed in sections 5.3.1 and 5.3.2
respectively.

5.3.1 Bi-stability of the wake

This section first characterizes the two preferred asymmetric states responsible for the
bistable behavior. Then, the corresponding dynamics are studied. Finally, the effects of
the free-flow velocity and of the ground clearance are presented successively.

Characterization of the two preferred states

From the local measurements of velocity at B presented in figure 5.10(b), a bistable
behavior seems to be detected in the wake, this phenomenon is confirmed using global
quantities of the wake. Since it has long time evolutions, it can be analyzed using the PIV
measurements at 10 Hz. As for the sphere wake in chapter 2, the barycenter of momentum
deficiency in the cross-flow plane x∗ = 1.0 is considered as an indicator of the wake position.
The quantities yW ∗ and zW ∗ are defined by

yW
∗ =

∫∫
y∗ · (1− ux

∗) ds
∫∫

(1− ux∗) ds
, (5.3)

and

zW
∗ =

∫∫
z∗ · (1− ux

∗) ds
∫∫

(1− ux∗) ds
, (5.4)
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with a domain of integration limited to ux∗ < 1.
Figure 5.11(a) presents a PIV snapshot of the streamwise velocity in the plane x∗ = 1.0

and the associated position of the barycenter of the momentum deficiency at yW ∗ = 0.043

and zW
∗ = 0.575. The time evolution of the positions yW ∗ and zW

∗ over the 200 s of the
PIV measurements2 are plotted in figure 5.11(b) and 5.11(c) respectively. The associated
probability distributions clearly evidence one preferred position in the z direction but two
different positions in the y direction centered on yW

∗ = ±0.06. The states are denoted
by #P for the one associated with a positive value of yW ∗ and #N for the one with a
negative value of yW ∗. Similar probability distributions with two preferred positions are
also obtained from the analyses of the snapshots in the plane x∗ = 2.0 and z∗ = 0.6.
Therefore, the two preferred states of the wake can be discriminated by the distributions
of velocity in the wake. Conditional averaging on the sign of yW ∗ allows the extraction of
the asymmetric topologies from the PIV measurements presented in figure 5.2. The results
corresponding to the state #P are displayed in figure 5.12. Figure 5.12(a) presents the
asymmetric flow in the plane z∗ = 0.6. As in chapter 3, there is only one saddle point left,
off the streamwise axis, and the mean recirculating flow is diagonal. Figures 5.12(b)–(c)
present the flow in the cross-flow planes x∗ = 1.0 and x∗ = 2.0 with a clear asymmetry.

Furthermore, this topology #P induces asymmetric distributions of Reynolds stresses
in the planes z∗ = 0.6 and x∗ = 1.0 (see figures 5.13 and 5.14 respectively). The reflectional
symmetry is lost and the activity of the mixing layer is mostly concentrated on the same
side as the wake. On the other hand, figure 5.14 shows that the characteristics of the
upper and lower mixing layers are almost independent of the state of the wake.

As the two states are associated with a diagonal recirculating flow, they may also be
characterized by asymmetric distributions of base pressure (see chapter 3). The states #P
and #N can be studied through pressure measurements since the sampling frequency of
1 Hz does not limit the analyses of this behavior. Figure 5.15 presents sample evolutions of
the pressure gradients in the y and z directions on the base at y∗ = 0 with their probability
distributions obtained over 104 s. Figure 5.15(b) shows that the most probable value of the
pressure gradient in the z direction is close to its mean value which is slightly negative as
expected from figure 5.4(c). On the contrary, the histogram in figure 5.15(a) is balanced
but the two states are clearly visible. The states are associated with ∂cp/∂y∗ = ±0.17; the
state #P corresponds to the one with a positive gradient and the state #N to the one with
a negative gradient. Approximately 5% of the measurements correspond to |∂cp/∂y∗| < 0.1

but they are likely to be cases of shift from one asymmetric state to another within the
second of a pressure measurement; this interpretation is consistent with the equiprobability
of the cases ∂cp/∂y∗ ∈ [−0.1, 0.1]. Conditional averaging of the pressure is then performed
using the sign of ∂cp/∂y∗ as a topology indicator.

Figure 5.16(a) shows the asymmetric distributions of pressure on the body in the plane
z∗ = 0.67. The two preferred values of ∂cp/∂y∗ at y∗ = 0 are visible on the base. The
coexistence of these two states leads to the mean symmetric distribution of pressure plotted
in figure 5.4. These asymmetric distributions are independent of the asymmetric states in
the domain x∗ < −1; for example, the stagnation point on the forebody is measured at the
same location. Thus, this bistable behavior results neither from low frequency oscillations
of the free-flow direction nor from some wind tunnel modes.

After conditional averaging on the sign of the base pressure gradient in the y direc-
tion, the pressure distribution on the base is obtained for the state #P. Figure 5.16(b)
show that the asymmetry is a global characteristic of the pressure on the base: it ranges

2There are 2000 snapshots recorded at 10 Hz.
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Figure 5.11. (a) Sample snapshot of streamwise velocity in the plane x∗ = 1.0; ⃝, barycen-
ter of momentum deficiency located at yW ∗ = 0.043 and zW

∗ = 0.575. (b) Time evolution
of the barycenter of momentum deficiency in the y direction and associated probability
distribution. (c) Same as (b) in the z direction.
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Figure 5.12. Velocities corresponding to state #P in the planes z∗ = 0.6 (a), x∗ = 1.0 (b)
and x∗ = 2.0 (c). The cross locates the saddle point.

Figure 5.13. Contours of Reynolds stresses in the plane z∗ = 0.6 of the wake in the
state #P: ⟨u′x

∗2⟩, (a); ⟨u′y
∗2⟩, (b); ⟨u′x

∗
u′y

∗⟩, (c). The continuous and dashed lines are
respectively positive and negative values; the contour interval is 0.005; the contour 0 is not
plotted. The thick black line locates the separatrix of the mean flow of the state #P.

Figure 5.14. Contours of Reynolds stresses in the plane x∗ = 1.0 of the wake in the state #P:
⟨u′x

∗2⟩, (a); ⟨u′x
∗
u′y

∗⟩, (b); ⟨u′x
∗
u′z

∗⟩, (c). The continuous and dashed lines are respectively
positive and negative values; the contour interval is 0.005; the contour 0 is not plotted.
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Figure 5.15. Sample time evolution and probability distribution of the base pressure gra-
dient in the y direction (a) and in the z direction (b); the dashed lines locate the mean
values.

in Cp ∈ [−0.24,−0.12] and presents much larger variations than the results displayed in
figure 5.4(c). It is then important to note that the view of a toric recirculation organization
is not pertinent since it does not reflect the topology of the asymmetric flow.

Besides, the asymmetric distributions of pressure presented in figure 5.16(a) are as-
sociated with lateral forces that counterbalance in average. The pressure forces of the
asymmetric states in the y direction are evaluated at Cyp = ±0.021 with a poor precision
of 0.015. This force corresponds to the difference of the pressure on the side of the body
for −1 < x∗ < 0; it is associated with the wake asymmetry visible in figure 5.12(c). This
difference in the streamwise pressure gradients for −1 < x∗ < 0 induces distinct boundary
layer characteristics on the sides of the geometry.

The boundary layer velocities presented in figure 5.5(b) can equally be analyzed regard-
ing the bi-stability. An example of velocity signal in the boundary layer is displayed in
figure 5.17(a). As in figure 5.10(b), a bistable behavior seems present but is not directly
visible in the probability distribution. When the same velocity signal is filtered using an
average filter over windows of 0.5 s (see figure 5.17b), the probability distribution shows two
peaks corresponding to the two topologies #P and #N3. For each point in the boundary
layer profile, this method allows the separation of the two states. Therefore, conditional
averaging gives access to the boundary layer profiles of each state (see figure 5.18). The
characteristic thicknesses of the boundary layers are similar for the two states; they are
measured at 0.024 for the faster profile and 0.026 for the slower one with a precision of
0.003. The profiles of velocity fluctuations indicate that, whatever the current state, the

3The conditions of existence of one or two peaks in the PDF are studied in appendix D.



5.3. Wake dynamics 87

Figure 5.16. (a) Pressure distribution of the states #N (blue line) and #P (red line) on the
body in the plane z∗ = 0.67. The arrows locate the pressure taps. (b) Pressure distribution
of the state #P on the base.

Figure 5.17. Sample time evolution of the velocity in the lateral boundary layer at the
trailing edge and associated probability distribution: raw measurement (a) and filtered
signal using an averaging filter over a window of 0.5 s (b).
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Figure 5.18. Mean (a) and fluctuating (b) velocity profiles of the boundary layers from the
middle of the side face (y∗ > 0) at x∗ = 0: continuous black line, symmetric mean flow;
dashed blue line, state #N; dotted red line, state #P. ∆y is the gap between the probe and
the surface.

P(St = #P) = 0.514 P(St = #N) = 0.486

P(St = #P|St−1 = #P) = 0.816 P(St = #N|St−1 = #N) = 0.806

Table 5.3. Probabilities of states #P and #N depending on the previous states. P(A|B) is
the conditional probability of A, given B; the events are considered at 1 Hz; the precision
is better than 0.01.

two boundary layers are turbulent. This confirms that the bi-stability is neither associated
with an intermittent boundary separation on the forebody nor dependent on its laminar or
turbulent regime at the trailing edge. The difference in the levels of velocity fluctuations
between the mean symmetric flow and the asymmetric states in figure 5.18(b) is due to the
contribution of the bi-stability: part of the fluctuations are ascribed to the difference in
average velocities between the two states (see figure 5.18a).

Now that the bistable behavior is evidenced and the asymmetric states are characterized,
the associated dynamics are considered.

Random topology shifts

The topology shifts between the state #P and #N are analyzed from the evaluation
of the base pressure gradient in the y direction at 1 Hz over 104 s (see figure 5.15a).
The state of the flow at the instant t, obtained from the sign of ∂cp/∂y∗, is denoted by
St ∈ {#P,#N}. The states #P and #N are equiprobable (see table 5.3), the shifts seem
random and appear in average after TS = 5.3 s. Note that TSU0/H ∼ 1500 so that the
bistable dynamics have a time scale that is three orders of magnitude larger than the
typical time scale of the wake (H/U0). Thus, the normalization using U0 and H seems
inappropriate and the following analyses are left in their respective units.

To detail these statistics, the time between two successive shifts is studied. The dis-
tribution follows an exponential law consistent with independent evolutions of the states.
Indeed, let Pshift = P(St ̸= St−1) be the probability to shift between two successive mea-
surements, i.e. the rate of shift per second, independent of the instant t. The results listed
in table 5.3 give Pshift = 0.189 with

Pshift = P(St = #N)P(St = #P|St−1 = #N)

+ P(St = #P)P(St = #N|St−1 = #P). (5.5)

In case of independent topology shifts, the probability of remaining exactly k seconds
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Figure 5.19. Probability distribution of remaining exactly k seconds in the same state:
⃝, experimental data; —, theoretical law given in equation (5.7).

in the same state is then given by

P(Sk+1 ̸= Si, ∀i ∈ {1..k}) = Pshift (1− Pshift)
k. (5.6)

So the probability distribution of remaining exactly k seconds in the same state follows

P(Sk+1 ̸= Si, ∀i ∈ {1..k}) = 0.189× 0.811k. (5.7)

In figure 5.19, the experimental data are in good agreement with the model given in
equation (5.7). It confirms that the shifts between the topologies #P and #N are random
and independent, i.e. the succession of states #P and #N behaves like a stationary Markov
chain. This point is also consistent with the autopower spectra at B plotted in figure 5.10(a):
the repartition of energy for frequencies under 1 Hz follows a power law with an exponent
close to −2 expected for such random evolutions (see section D.2.2).

To improve the understanding of this bistable behavior, the impact of the free-stream
velocity on the dynamics is now detailed.

Effect of the free-flow velocity

By changing the flow velocity, the bi-stability is observed in this facility at Reynolds
numbers from 4.6 104 to 1.2 105. For each Reynolds number, the probability distribution
of the base pressure gradient in the y direction presents two preferred positions as in fig-
ure 5.15(a). The states #P and #N always correspond to similar values of ∂cp/∂y∗ ≈ ±0.17.
This indicates that the two topologies #P and #N are identical in this range of Reynolds
numbers. Besides, it is observed that Pshift, which is the rate of shift at 1 Hz, increases with
the velocity, i.e. the mean time between shifts diminishes while the velocity increases (see
figure 5.20). The precision also increases with the velocity since the ratio signal by noise
is proportional to U0

2 in the measurements of pressure gradients. It remains limited at
moderate velocities and the experimental setup is not appropriate for further quantitative
investigation of the dependence on U0.

The randomness of the shifts and the absence of spontaneous topology shift in the
laminar experiments in chapter 4 tend to identify the activity of the large-scale structures
of turbulence as one of the main ingredients of the switch from one asymmetric state to
the other.
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Figure 5.20. Probability to shift Pshift obtained from pressure measurements at 1 Hz as a
function of free-stream velocity.

The observed asymmetric wake seems independent of the Reynolds number but in chap-
ter 4, the presence of RSB regimes strongly relies on the ground proximity. So it appears
important to investigate the effect of the ground clearance on the bi-stability.

Effect of the ground clearance

To explore the conditions of existence of the bi-stability, experiments are performed
at different ground clearances C∗ ∈ [0; 0.50]. For each ground clearance, the pressure on
the base is recorded during 3 103 s; this allows the measurement of the base pressure
gradients in the y direction which is an indicator of the wake asymmetry. For a given value
of C, the probability distribution of ∂cp/∂y∗ indicates whether the wake has a bistable
behavior or not: the bi-stability is characterized by two preferred asymmetric positions
as in figure 5.15(a) whereas a stable wake is associated with a probability distribution
concentrated around 0. The results are shown in figure 5.21; they must be interpreted for a
constant value of C∗, the gray levels corresponding to PDF(∂cp/∂y∗) for this value of C∗.
For example, the dashed line locates the reference case C∗ = 0.17 for which the probability
distribution of ∂cp/∂y∗ is given in figure 5.15(a).

◦ For C∗ < 0.07, the PDF is centered on 0 and the most probable event is clearly
∂cp/∂y

∗ = 0. Hence, the wake is stable in the symmetric state.

◦ For 0.07 < C∗ < 0.10, the PDF remains centered on 0 but the peak gradually
spreads: for C∗ = 0.10, the probability density function is almost constant in the
range ∂cp/∂y∗ ∈ [−0.10; 0.10]. Thus, the wake is stable but it gradually loses its
preference toward the centered state.

◦ For C∗ > 0.10, the PDF presents two clear peaks centered around ∂cp/∂y∗ = ±0.17

and these preferred values are independent of the ground clearance at first order.
So the wake is bistable and the ground clearance has no effect on its degree of
asymmetry.

As a result, the bistable behavior is strongly linked to the ground clearance: a critical
value C∗ = 0.10 is measured under which the bi-stability is suppressed. It may be
associated with a change of topology related to a separation on the ground. Besides, the
preference of the flow toward asymmetric states is obvious even far from the ground which
indicates that the ground effect is not necessary to have preferred asymmetric positions4.

4These points are thoroughly addressed in chapter 6.
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Figure 5.21. Probability density function of the base pressure gradient in the y direction
as a function of the ground clearance C; the measurements are performed for C∗ = 0, 0.03,
0.07, 0.08, 0.10, 0.11, 0.14, 0.21, 0.28, 0.35 and 0.50 with a precision of 0.005; the reference
ground clearance is C∗ = 0.17 (dashed line) and the corresponding histogram is given in
figure 5.15(a); the contour interval is 2.

In addition to these long time evolutions ascribed to the bi-stability, figure 5.10 reports
some unsteady global modes in the wake which are now considered.

5.3.2 Oscillating global modes

The autopower spectra at A(2.5, 0, 0.9) and B(2.5, 0.5, 0.6) reveal two peaks of energy
at Strouhal numbers 0.127 and 0.174 (see figure 5.22a). These characteristic frequen-
cies are denoted by fm1 and fm2 respectively and the Strouhal numbers are StHm1

and StHm2. As in the experiments of Kiya & Abe (1999), depending on the hot-wire
position, one or both frequencies can be measured. Figure 5.22(b) presents the probe po-
sitions A, A′, B, B′, C and C ′ in the plane x∗ = 2.5 that are regularly used in the following.

To examine the envelops of these two modes, autopower spectra are first studied depend-
ing on the position of the hot-wire probe in the wake. The spectra in the plane z∗ = 0.6 are
shown in figure 5.23 for different streamwise positions. Only the StHm1 mode is reported.
Its activity is not significant in the mixing layers upstream of the end of the recirculation
bubble, i.e. for x∗ < 1.5. Downstream of x∗ = 1.5, it is more energetic than the large-scale
structures of turbulence and it is particularly clear at x∗ = 2.0 and 2.5. The lack of sym-
metry in figures 5.23(a)–(b) is due to the asymmetric intrusion of the hot-wire probe (see
figure 5.1) in a region where the flow is likely to be highly sensitive. The probe induces a
predominance of the state #P presented in section 5.3.1 so the energy of the fluctuations
of velocity is greater in the y∗ > 0 region. The symmetry is recovered as soon as the probe
is located downstream of x∗ = 2.0. These results are in agreement with the experiments
detailed in chapter 3 which indicate that the sensitivity of the wake orientation is concen-
trated upstream of the end of the recirculation bubble. Similarly, the results plotted in
figure 5.24 show that only the StHm2 mode is present in the plane of symmetry y∗ = 0.

As a consequence, the two unsteady modes are reported in the autopower spectra
downstream of the end of the recirculation bubble only. Nevertheless, it is important
to note that these modes are global properties of the flow and they seem to affect the
boundary layer detachment on the forebody. Indeed, the peak of energy at StHm2 = 0.174



92 Chapter 5. Global modes and bi-stability of the turbulent wake

Figure 5.22. (a) Autopower spectra in the wake at A(2.5, 0, 0.9) (continuous black line),
B(2.5, 0.5, 0.6) (dashed blue line) and C(2.5, 0.5, 0.3) (dotted red line). (b) Locations of the
hot-wire probe position A, A′, B, B′, C and C ′ in the cross-flow plane x∗ = 2.5.

is also visible in the autopower spectrum of a hot-wire probe signal in the shear layer of the
forebody separation, at least on the upper face (see figure 5.3c). This point is confirmed
by the visualizations presented in figures 5.3(a)–(b); the shear presents low frequency
dynamics in front of the rolling frequency of the shear layer: evolutions of the angle of
separation, streamwise position of appearance of the rollings...

The three-dimensional repartition of these modes can also be characterized by the flying
hot-wire probe. A criterion is used to detect the locations where these two frequencies are
reported in the cross-flow planes x∗ = 1.5, 2.5 and 4.0: it determines whether the mode
at StHmi, with i ∈ {1, 2}, is present or not. This detection is based on the comparison
between the average energy in the range StH ∈ [StHmi − 0.015; StHmi + 0.015] and the
average energy in StH ∈ [0.040; 0.300]. If the energy ratio is larger than 1.2 then the mode
is marked. In figures 5.25, circles (crosses respectively) locate the positions of the hot-wire
probe where the mode at StHm1 (StHm2 respectively) is detected. Nevertheless, it is worth
noting a limitation of this criterion: as the energy of the mode at StHm1 is generally larger
than the other one, the criterion is less selective for the mode at StHm1.

The results in the plane x∗ = 1.5 are displayed in figure 5.25(a); the mode at StHm1

is mostly found in the lateral mixing layers whereas the one at StHm2 is associated with
the upper and lower mixing layers; both frequencies are obtained at the frontiers of these
regions. Moving downstream at x∗ = 2.5 (see figure 5.25b), the locations are similar,
the main difference is the extension of the bottom region associated with StHm2 in the
y direction. Finally, in the plane x∗ = 4.0, figure 5.25(c) indicates that the mode at
StHm1 stays downstream of the lateral mixing layers whereas the one at StHm2 separates
into three regions: one located downstream of the upper mixing layer, the two others
are downstream of the bottom corners of the base. As previously mentioned, there is an
adverse pressure gradient on the ground in the plane y∗ = 0 so that the velocity is reduced
in the plane of symmetry. Hence, the coherent structures emitted from the lower mixing
layer are probably convected with the flow to the sides at y∗ ≈ ±0.5.

The structure of these modes is now considered through cross-correlations between two
hot-wire probes at the different positions shown in figure 5.22(b). The coherence and phase,
rF and φF respectively, are defined in equation (A.4).
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Figure 5.23. Autopower spectra in the plane z∗ = 0.6 at x∗ = 1.0 (a), x∗ = 1.5 (b),
x∗ = 2.0 (c), x∗ = 2.5 (d), x∗ = 3.0 (e) for y∗ ∈ [−0.83, 0.83]. The dashed line locates
StH = 0.127.

Figure 5.24. Autopower spectra in the plane y∗ = 0 at x∗ = 1.0 (a), x∗ = 1.5 (b),
x∗ = 2.0 (c), x∗ = 2.5 (d), x∗ = 3.0 (e) for z∗ ∈ [0.03, 1.39]. The dashed line locates
StH = 0.174.
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Figure 5.25. Locations where the modes are reported in the planes x∗ = 1.5 (a), x∗ = 2.5 (b)
and x∗ = 4.0 (c): ×, mode at StHm1 = 0.127; ⃝, mode at StHm2 = 0.174.

First, the velocity signals at A(2.5, 0, 0.9) and A′(2.5, 0, 0.3) are studied; the results can
be seen in figure 5.26(a). The coherence is measured close to 0.5 at StHm2 = 0.174 with
a phase shift of 0.75π. So, the periodic motion at StHm2 results from an interaction of
the upper and lower mixing layers. To understand the value of 0.75π, the phase shift at
StHm2 is analyzed varying the streamwise position of the lower hot-wire probe, denoted
xprobe, while the upper probe stays at A. The results displayed in figure 5.27 show that the
phase shift linearly depends on the distance xprobe − xA, the perfect phase opposition being
found at A′′(2.1, 0, 0.3). As a consequence, the mode at StHm2 consists in an oscillation of
the wake in the z direction but the presence of the ground affects the phase so that the
oscillation is not exactly in phase opposition.

Similar analysis can be made from the velocity signals at B(2.5, 0.5, 0.6) and
B′(2.5,−0.5, 0.6). rF (StHm1) reaches 0.65 and the corresponding phase is measured at π.
Thus, the coherent motion associated with the lateral mixing layers consists in an oscillation
of the wake in the y direction.

Finally, analyzing rF and φF from the velocity measurements at C(2.5, 0.5, 0.3) and
C ′(2.5,−0.5, 0.3), the signals are found to have a coherence of 0.3 at the two mode
frequencies. The signals are in phase opposition at StHm1 and in phase at StHm2.
Consequently, these values confirm the superposition of oscillations of the wake in the
y direction at StHm1 = 0.127 and in the z direction at StHm2 = 0.174.

When these frequencies are normalized respectively by the height and width of the body,
the corresponding Strouhal numbers are StWm1 = 0.167 and StHm2 = 0.174. These results
must be compared to the analyses of Kiya & Abe (1999) concerning the global modes in the
wake of elliptical and rectangular cross-flow plates. They prove that two modes associated
with the interactions of opposite mixing layers coexist. The frequencies roughly rely on the



5.3. Wake dynamics 95

Figure 5.26. Modulus rF (continuous blue line, left scale) and phase φF (dashed
red line, right scale) of the coherence of velocity signals measured at A(2.5, 0, 0.9)

and A′(2.5, 0, 0.3) (a), B(2.5, 0.5, 0.6) and B′(2.5,−0.5, 0.6) (b), C(2.5, 0.5, 0.3) and
C ′(2.5,−0.5, 0.3) (c). For clarity, the probe positions are displayed in figure 5.22(b).

Figure 5.27. Phase φF (StHm2 = 0.174) of the coherence of velocity signals measured at
A(2.5, 0, 0.9) and (xprobe, 0, 0.3).

distance between the shear layers even if no universal Strouhal number can be found. Kiya
& Abe (1999) also indicate that a larger energy is measured in the high frequency mode,
i.e. the one corresponding to the interaction of the closer shear layers. The main difference
with their experiments is the presence of the ground that limits the periodic oscillations
in the z direction as mentioned in the literature (Ruiz et al., 2009; Khalighi et al., 2012).
So the ground proximity explains the phase shift between the upper and lower part of the
wake at StHm2 and also its reduced energy even if the height of the body is smaller than
its width.
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5.4 Synthesis

From the observations of the natural flow in sections 5.2 and 5.3, a probable structure
of the instantaneous flow is given in section 5.4.1. Then, the different drag sources in the
wake are discussed in section 5.4.2.

5.4.1 Structure of the instantaneous wake

The coherent wake dynamics detailed in sections 5.3 are the superposition of three
different phenomena:

◦ the bi-stability in the y direction associated with a random wake orientation;

◦ the interaction of the lateral shear layers inducing periodic oscillations of the wake
in the y direction;

◦ the interaction of the upper and lower shear layers inducing periodic oscillations of
the wake in the z direction.

The bistable behavior has a long time evolution in front of the oscillating global modes:
an asymmetric state (#P or #N) persists in average for hundreds of global mode periods.
To be pertinent, the organization of the coherent structures at StHm1 and StHm2 must
be analyzed for a fixed asymmetric state. In the following, the case of the wake in the
state #P is considered; a spatial organization of the coherent oscillations of the wake is
suggested from the asymmetric conditional statistics of the flow (see section 5.3.1) and also
from the visualizations of the laminar wake in chapter 4.

The oscillating global mode in the z direction is in phase opposition at the end of the
recirculation region but the phase shift measured between two velocity signals downstream
of the upper and lower mixing layers gradually evolves. Indeed, φF (StHm2) is measured
at 0.95π, 0.75π and 0.65π for x∗ = 2.0, 2.5 and 3.0 respectively. Such an evolution of the
phase shift is certainly associated with the difference in the convecting velocities between
the upper and lower parts of the wake due to the ground proximity. This point is clearly
visible in figure 4.2(b) when the wake is in the transient unsteady symmetric regime. A
structure of alternative vortex loops from the upper and lower parts of the recirculation
region is probable but there is no reason for them to have similar intensities.

Besides, the confrontation of the Reynolds shear stresses in the upper and lower mixing
layers for the mean flow and for the state #P (see figures 5.9c and 5.14c respectively)
indicates that this unsteady global mode is only slightly affected by the bi-stability: at first
sight, its structure is independent of the asymmetric state #P or #N. An interpretation
of the spatial structure of this periodic oscillation in the z direction is given in figure 5.28(a).

On the other hand, the wake oscillation in the y direction remains in phase opposition
in the wake but it is strongly affected by the selection of the asymmetric state. Fig-
ures 5.14(a)–(b) show that the fluctuations of velocity are concentrated on one side of the
recirculation region. So a structure of parallel loops is expected, oriented toward the y∗ > 0

regions (y∗ < 0 respectively) when the wake is fixed in the asymmetric state #P (#N
respectively). Nevertheless, this point could not be clearly evidenced because of the high
difficulty to separate these structures from the z oscillations in the spatial domain. A sketch
of this mode is suggested in figure 5.28(b).

The organization of the wake is a combination of these two oscillating global modes.
It is impossible to present a global sketch as the associated frequencies are different. A
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Figure 5.28. Sketch of the structure of the oscillating global modes in the z direction (a)
and in the y direction (b) while the wake is in the state #P.

certain continuity between the vortices is presumed but such dynamics would necessarily
be source of vortex dislocations.

Finally, these results can be confronted to the wake descriptions reported in the litera-
ture. First, the vertical wake oscillation is likely to be the one reported by Khalighi et al.

(2012) at StH = 0.17 downstream of the recirculation region with a peak of energy particu-
larly clear when the probe is in the plane of symmetry. Second, in the numerical simulations
of Bayraktar et al. (2001), the peaks of energy observed in the autopower spectra of the
cross-flow forces might be associated with similar dynamics even if the Strouhal numbers
do not correspond to the present results. On the contrary, the low frequency pumping
mode was not observed here and these results prove that an interpretation of interactions
between the upper and the lower part of the toric recirculation structure is not sustainable:
a toric topology of the wake is not consistent with the time-scale of a coherent motion at
StH ∼ 0.07.

Now that the structure of the flow is detailed, the different drag sources are considered
in section 5.4.2.

5.4.2 Identification of the drag sources

From these experiments, some issues on the drag sources can be addressed: the contri-
butions of the oscillating modes and of the bi-stability are discussed successively.

Impact of the oscillating global modes

The results presented in section 5.3.2 reveal coherent oscillations of the wake in both the
y and z directions. However, contrary to the bidimensional configurations, the autopower
spectra show that the energy associated with these modes is small in front of the turbulent
activity of the mixing layers. For example, in the autopower spectra at A and B presented
in figure 5.22(a), the increase of energy associated with the peaks at StHm1 and StHm2 are
measured respectively at 7% and 3% of the total energy. For comparison, in the turbulent
wake past a circular cylinder at similar Reynolds numbers, the contributions of the coherent
and incoherent velocity fluctuations to the Reynolds stresses are equivalent (Cantwell &
Coles, 1983; Balachandar et al., 1997). Furthermore, the energy of the coherent oscillations
is particularly small around the separatrix of the recirculation bubble (see figures 5.23a
and 5.24a). As a consequence, the contribution of these oscillating modes to the physics of
the recirculation bubble is certainly not sufficient to affect the drag significantly.
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Figure 5.29. Contours of streamwise vorticity in the plane x∗ = 2.0 for the state #P.
The continuous and dashed lines are respectively positive and negative values; the contour
interval is 0.5; the contour 0 is not plotted.

Impact of the bi-stability

Because of the bi-stability, the instantaneous wake is off the reflectional plane of sym-
metry. An aerodynamic force is present in the y direction while the flow is in the state
#P or #N but it counterbalances in average due to the equipresence of the two states.
Nevertheless, the mean drag corresponds to the drag of the asymmetric states which is
likely to be enhanced by this side force. Indeed, part of the drag is induced by the cross-
flow forces and is linked to the pair of vortices visible in the streamwise vorticity map
presented in figure 5.29. These phenomena of induced drag are well known in aeronautics
but also in the car industry (see section 1.2.4). For comparison, the normalized circulation
of one vortex in the plane x∗ = 2.0 is estimated around ±0.2 in the present asymmetric
case while the data from Lienhart & Becker (2003) give ±0.8 in the plane x∗ = 1.7 for the
25◦ Ahmed configuration. The intensity of the pair of streamwise vortices is smaller but it
remains non-negligible.

For the asymmetric states, the forces Fy and Fz may be intuited from the orientation of
the pair of streamwise vortices in figure 5.12(c) but the streamlines in the mean symmetric
flow in figure 5.2(d) marks the influence of the lift force exclusively. So, the effect of
the unsteady side force is only measured in the mean symmetric flow through the wake
width and the Reynolds stresses5. This point is particularly clear comparing the global
and conditional statistics in figures 5.8(b) and 5.13(b): the maximum of ⟨u′y

2⟩ is measured
respectively inside and outside the recirculation region in the plane z∗ = 0.6. As a result, it
seems that the mean force but also its fluctuations must be taken into account to analyze
induced drag phenomena in three-dimensional flows; additional remarks on this point are
given in chapter 7.

5Part of the fluctuations of velocity are related to the differences in the mean velocities of the states #P
and #N.
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5.5 Concluding remarks

The flow around the squareback Ahmed geometry is characterized at ReH = 9.2 104.
First, a boundary layer detachment occurs on the four faces of the forebody due to a high
adverse pressure gradient; then, a massive recirculation responsible for a dominant part of
the drag is reported on the base. The equilibrium of the wake in the z direction is slightly
affected by the presence of the ground so the low pressure region in the wake, superimposed
on the time-averaged recirculation structures, preserves a toric shape. However, it is impor-
tant to be clear in the interpretation of the toric organization of the recirculation region: it
is a long time-averaged vision and it does not reflect the topology of the flow because the
wake presents a bistable behavior. The recirculation region has two preferred reflectional
symmetry breaking positions leading to the statistical symmetric wake, the succession of
these asymmetric states being random. This behavior results in an unsteady side forcing
which must be responsible for part of the drag.

In addition, the interactions of the opposed shear layers induce oscillations of the wake
at Strouhal numbers close to 0.17 when normalized by their respective gap. Nonetheless,
these modes are not particularly energetic and only represent a negligible part of the
Reynolds stresses around the recirculation region. So, their impact on the base pressure is
certainly small.

These results evidence different traps in the study of such bistable flows. First, a par-
ticular attention must be paid to the instrumentation of the experiment. The common
technique consisting in reducing the number of sensors given the symmetries of a geome-
try may induce significant errors. A residual asymmetry in the setup or a limited time of
measurement necessarily results in asymmetric data. Indeed, the equipresence of the asym-
metric states #P and #N is highly dependent on the quality of the reflectional symmetry
of the setup and the statistical symmetry is obtained only after a duration far larger than
the characteristic time between the shifts. Now, if the data are recorded on only half of
the geometry, it is impossible to get accurate measurements of base pressure. On the other
hand, in the framework of numerical simulations, a limited physical time of calculation may
prevent the flow from reaching an asymmetric state which can lead to unstable or transient
wake solutions.

More generally, such bistable behaviors may be an important characteristic of turbu-
lent wakes. It is observed in the wake past different three-dimensional geometries but the
circumstances of existence still need to be clarified. This is the objective of chapter 6. In
addition, the sensitivity of the flow to local disturbances is studied in chapter 7 providing
quantitative information on the contribution of such asymmetries to the drag.





Chapter 6

Domains of appearance of the

cross-flow instabilities

Most of these results are published in Grandemange et al. (2013a).
This chapter aims at clarifying the conditions of existence of the bistable behavior

observed in chapter 5 in the wake of a parallelepiped body. A parametric study explores
the influences of the aspect ratio of the base (height/width) and of the ground clearance.

Abstract

In the previous chapter, the Ahmed geometry is bistable in the y direction but only
for large ground clearances. Hence, it is useful to define the domains of existence of such
behaviors in the turbulent wakes past parallelepiped bodies in wall proximity. Various
aspect ratios H/W ∈ [0.51, 1.63] and ground clearances C/W ∈ [0, 1.00] are explored at
ReW = 4.5 104. It is found that the near wake often presents antisymmetric instabilities
that can be either in the lateral direction (parallel to the wall) or in the vertical direction
(normal to the wall). The instantaneous wake has preferred states with high degrees of
asymmetry; in some configurations, bistable behaviors are found as topology shifts occur
after long time scales Tl ∼ 103W/U0. These instabilities vanish for sufficiently small values
of ground clearance (C∗ < 0.08) when a detachment on the ground appears. However, the
wall proximity does not necessarily stabilize the wake in the plane of symmetry since the flow
still presents an instability in the lateral direction for C∗ < 0.03 and H∗ < 0.65. A general
criterion for the existence of the instabilities is deduced from the parametric study in the
domain (H∗, C∗) together with symmetry considerations. When these instabilities develop
in the wake, the flow becomes highly sensitive to slight perturbations of the setup; such
observations motivate the sensitivity analyses that are detailed in the following chapter.
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Figure 6.1. (a) Experimental setup of the model in the wind tunnel. (b) Scheme of the
body. O sets the origin of the coordinate system; the blue dots on the base locate the
pressure taps; for clarity, only the pressure tubings from the taps A1 and A4 are displayed.
The dimensions are given in mm.

6.1 Experimental setup

Geometry

The wind tunnel is a closed-loop facility blowing at U0 = 20 m s−1. The homogeneity
of the velocity over the test section is 0.2% and the turbulence intensity is 0.5%. The
bluff bodies are designed from the squareback model used in the experiments of Ahmed
et al. (1984). The geometry is placed in wall proximity with a plate up-raised from the
floor of the tunnel as presented in figure 6.1(a). The coordinate system is defined as x in
the streamwise direction, z normal to the ground and y forming a direct trihedral. The
origin O of the coordinate system is in the reflectional plane of symmetry on the ground
at the position of the base in the x direction. The boundary layer develops on the ground
plate from the streamlined leading edge 55 mm upstream of the forebody; its thickness
based on 99% of the free-flow velocity at x = −94.0 mm when the geometry is removed
from the tunnel are δ0.99 = 3.80 ± 0.05 mm; the displacement and momentum thicknesses
are δ1 = 0.64± 0.03 mm and δ2 = 0.45± 0.01 mm respectively.

The geometry is detailed in figure 6.1(b); the length L and width W of the geometry
are 94.0 mm and 35.0 mm respectively, the supports are cylindrical with a diameter of
3.0 mm. The radius of the rounding of the forebody is 9.0 mm. The body is made of
several blocs: one lower part and one upper part of 9.0 mm height each plus intermediate
blocs of variable height so that the total height H of the body can be adjusted between
18.0 mm and 57.0 mm by steps of 1.0 mm. The ground clearance C of the geometry is
accurately set between 0 mm and 35.0 mm with a precision better than 0.1 mm using a
Micro-controle motion controller.

The Reynolds number based on the width W of the base is ReW = U0W/ν = 4.5 104.
Note that, for this chapter only, the width W is used to build the non-dimensional values.

Pressure measurements

The pressure on the body is measured at four locations on the base using a Scanivalve
DSA 3217/16 px device. The taps are denoted by Ai with i ∈ {1, 2, 3, 4} (see figure 6.1b);
their positions on the base are defined by yAi

and zAi
with i ∈ {1, 2, 3, 4}. The taps are holes

of 0.8 mm in diameters pierced at yA2
= yA3

= −yA1
= −yA4

= ∆y/2 with ∆y = 16.0 mm,
zA3

= zA4
= C + ∆z/2 and zA1

= zA2
= C + H − ∆z/2 with ∆z = 17.0 mm. They are
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connected to the measurement device by four tubes of 0.8 mm diameter and 0.5 m long
going through the geometry and then through the ground just behind the rear supports to
minimize their effects on the flow.

The pressure is recorded at 5 Hz with a precision better than 2 Pa which corresponds
to 8 10−3 in terms of pressure coefficient.

The base pressure denoted Cpb is obtained using the mean value of the four pressure taps.
In additions, the degree of asymmetry of the recirculation region in the y and z directions is
quantified by the pressure gradients. Using the formalism introduced in appendix A, cp is
the measurement of the pressure coefficient averaged over a window of 0.2 s; it is abusively
called instantaneous pressure coefficient in the following in opposition to Cp = ⟨cp⟩ which
is the long time averaged value. The sampling frequency at 5 Hz allows to measure the
instantaneous gradients of base pressure in the y and z directions, denoted ∂cp/∂y

∗ and
∂cp/∂z

∗ respectively. These gradients are evaluated as

∂cp
∂y∗

=
[cp(A2) + cp(A3)]/2− [cp(A1) + cp(A4)]/2

∆y/W
, (6.1)

and
∂cp
∂z∗

=
[cp(A1) + cp(A2)]/2− [(cp(A3) + cp(A4)]/2

(H −∆z)/W
. (6.2)

In chapters 3 and 5, this method is proved to be a relevant topology indicator as soon as
the averaging time (here 0.2 s) is small in comparison to the characteristic time of the bi-
stability. The precision of the instantaneous measurement of the pressure gradient relies on
the pressure but also on the gap between the sensors. The accuracy is constant and better
than 2 10−2 in the y direction. On the contrary, in the z direction, it is 8 10−3W/(H−∆z);
the results are no longer considered for H∗ < 0.67 when the precision becomes worse
than 4 10−2.

Velocity measurements

Particle image velocimetry (PIV) is used to obtain the velocity field in the plane y∗ = 0

for different configurations. The system is comprised of a New Wave Solo PIV laser and
a Lavision CCD camera (1600 px × 1400 px). The laser is located on the top of the test
section and the CCD camera is outside of the flow. Each acquisition records 200 image
pairs at a rate of 8 Hz. The software Davis 7.2 is used to calculate the velocity fields.
The vector calculations use interrogation windows of 16 px × 16 px which correspond to
0.9 mm× 0.9 mm in the plane y∗ = 0.
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6.2 Evidence of the y and z instabilities

The experimental setup presents two geometrical parameters: the normalized ground
clearance denoted C∗ = C/W and the aspect ratio of the base H∗ = H/W . First, in
section 6.2.1, the results concerning the fixed aspect ratio of the reference Ahmed geometry
for H∗ = 0.74 are presented varying C∗. Then, section 6.2.2 is devoted to the analysis
of the case H∗ = 1/0.74 = 1.34. Finally, the data are considered in the whole domain
(C∗, H∗) in section 6.2.3.

6.2.1 Ahmed reference case: H/W = 0.74

This section studies the aspect ratio H/W = 0.74 corresponding to the reference Ahmed
geometry. The impact of the ground proximity on the flow topology and on the base pressure
are first presented. Then, the bistable behavior in the y direction evidenced in chapter 5 is
considered.

Ground effect

To depict the influence of the ground proximity, several PIV measurements in the near
wake of the geometry are presented in the left column of figures 6.2 and 6.3 for different
values of ground clearance C. For C∗ < 0.04, viscous effects are dominant under the
geometry and limit the underbody flow. As a result, the topology corresponds to the flow
past a three-dimensional backward facing step (see figures 6.2a–c). A separation at the top
edge and a reattachment on the wall are observed in the plane y∗ = 0, they are denoted by
Sb and Rg respectively. In average, the recirculation organization certainly forms an arch
parallel to the base like downstream of a wall-mounted cube (Martinuzzi & Tropea, 1993;
Depardon, 2006), the signature of this structure being denoted by #1 in the plane y∗ = 0.

For moderate ground clearances C∗ ∈ [0.04, 0.09], the momentum of the underbody
flow gradually increases as it becomes less influenced by viscous effects (see figures 6.2c–e
and 6.3a–b). A second recirculation structure, denoted #2, appears due to a separation
at the bottom edge of the base. After this separation Sb, the underbody flow is curved
toward the top of the base and reattaches on it at Rb. In association with this bottom
edge separation, there is stagnation point, denoted Sg, corresponding to the detachment
of the ground boundary layer. When the ground clearance increases in the range C∗ ∈
[0.6, 0.9], the recirculation structure #2 progressively extends, pushing the structure #1
downstream and toward the ground, while it reveals the separation point Sg on the ground.
The underbody flow is now concentrated into a jet with a strong curvature and enough
energy to reach the mixing layer developing from the upper edge of the base. This forms a
third structure denoted #3 (see figure 6.2e). Progressively, the recirculation structure #1
vanishes on the ground and disappears at x∗ = 1.2 for C∗ = 0.09.

Eventually, for C∗ ≥ 0.09, the underbody flow has enough momentum to prevent the
boundary layer from separating on the ground (see figures 6.3c–e) at least from a time
averaged point of view; it is very likely that intermittent separation occurs up to C∗ ≈ 0.10.
The recirculation bubble gradually reaches an organization with a recirculating flow strictly
oriented in the x direction as in chapter 5.

The experimental setup also allows the simultaneous analysis of the PIV measurements
and the levels of base pressure; the sample measurements given in figures 6.2 and 6.3
show strong evolutions of both Cpb and the length of the recirculation region, denoted Lr,
depending on the value of C∗. These dependences on C∗ are discussed in section 6.3.2.

In parallel, the flow dynamics for large ground clearances, typically for C∗ > 0.1, report
bistable behaviors of the recirculation region; they are analyzed in the following section.
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Figure 6.2. Velocity fields from PIV measurements in the plane y∗ = 0 (left) and asso-
ciated probability density functions of base pressure gradients (right) for H∗ = 0.74 and
various ground clearances: C∗ = 0, (a); C∗ = 0.02, (b); C∗ = 0.04, (c); C∗ = 0.05, (d);
C∗ = 0.06, (e). The positions of the separation and reattachment points, denoted Sb, Sg,
Rb and Rg, are precisely determined from the velocity fields. The contour interval of the
PDF is 10.
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Figure 6.3. Same as figure 6.2 for larger ground clearances: C∗ = 0.07, (a); C∗ = 0.08, (b);
C∗ = 0.09, (c); C∗ = 0.10, (d); C∗ = 0.12, (e).
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Figure 6.4. Probability density functions of the base pressure gradient in the y direction (a)

and in the z direction (b) as a function of the ground clearance C∗ forH∗ = 0.74; the contour
interval is 2.

Bi-stability as a function of the ground clearance

To study the bistable properties of the flow, the statistics of the instantaneous values

of base pressure1 are considered. The joint probability density functions of the two base
pressure gradients corresponding to the PIV measurements are presented in the right column
of figures 6.2 and 6.3.

For C∗ ≤ 0.08, there is only one maximum in the joint PDF; it is centered on
∂cp/∂y

∗ = 0 and the value of ∂cp/∂z∗ is linked to the intensity and proximity to the base of
the structures #1, #2 and #3. For example, the case C∗ = 0.07 (see figure 6.3a) presents
a stable state at ∂Cp/∂y

∗ = 0 and ∂Cp/∂z
∗ = 0.14 which corresponds to the asymmetry

of the recirculation region in the z direction. The difference of intensity between the struc-
tures #2 and #3 can be estimated by the diagonal orientation of the recirculating flow:
Uz ∼ −Ux > 0 in the middle of the recirculation region.

For C∗ > 0.08, the joint PDF of the base pressure gradients present two maxima which
are the signature of the bistable behavior (see figures 6.3c–e): the wake presents two
preferred states with opposite values of ∂cp/∂y∗ for identical values of ∂cp/∂z∗. The states
associated with positive and negative values of ∂cp/∂y∗ are denoted by #Py and #Ny
respectively. The mean flow preserves the symmetry of the setup due to the equiprobability
of the states #Py and #Ny. For C∗ = 0.12, the mean recirculating flow oriented along
the x direction is consistent with the value of ∂Cp/∂z

∗ = 0.02 ≈ 0. As the two states
#Py and #Ny are symmetrical to each other referring to the plane y∗ = 0, they are
expected to present the same drag. This point is verified experimentally since the levels of
base pressure are measured at Cpb(#Py) = −0.190 and Cpb(#Ny) = −0.189 for the case
C∗ = 0.12 after conditional averaging.

The probability density functions of the base pressure gradient in the y and z direction,
PDF(∂cp/∂y∗) and PDF(∂cp/∂z∗), are plotted against the ground clearance in figures 6.4(a)
and 6.4(b) respectively. The statistics in the y direction are identical to the one presented in
chapter 5 (see figure 5.21): a bistable behavior is reported as soon as the ground clearance
is large enough, the critical value being C∗ = 0.08 in this setup. For comparison, a similar
critical value of 0.07 is reported in chapter 5 while the experiments are conducted in a
different facility. In parallel, the base pressure gradient in the z direction only presents
one preferred value of ∂cp/∂z∗ for all the ground clearances. It shows sharp variations
depending on C∗, especially for C∗ ∈ [0.03, 0.08]. As previously depicted in the comments

1 The pressure is recorded at 5 Hz and averaged over 0.2 s windows.
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on the left columns of figures 6.2 and 6.3, these evolutions are related to the organization
of the recirculation region and to the underbody flow momentum: they are associated with
the transition from a backward facing step topology to a usual wake topology of vehicles,
without ground detachment.

Once the bistable behavior is reported in the y direction, ∂Cp/∂z
∗ is measured less

dependent on the ground clearance: ∂Cp/∂z
∗ ∈ [0, 0.1]. This indicates that the ground

proximity has only a limited impact on the near wake. One might expect ∂Cp/∂z
∗ = 0

for large values of C∗ but the presence of the supports under the geometry may still
introduce an asymmetry in the z direction. When the geometry is out of the wall influence
(typically C∗ > 0.3), the stable state of the wake is associated with ∂Cp/∂z

∗ ≈ 0.1; thus
it is expected to present slight asymmetries between the structures #2 and #3 as it is
the case for C∗ = 0.09 in figure 6.3(c). So, the rather symmetric organization of the
recirculation bubble in the vertical direction observed for C∗ ≈ 0.12 with ∂Cp/∂z

∗ ≈ 0 is
likely to be ascribed to a ground effect that counterbalances the asymmetry introduced by
the supports of the geometry.

The full description of the two states #Py and #Ny observed for C∗ > 0.08 is provided
in chapter 5 using conditional averaging.

6.2.2 Case H/W = 1.34

The aspect ratio H/W = 1.34 is now studied for different ground clearances. This
particular value of H∗ corresponds to W/H = 0.74 so that it is the inverse of the aspect
ratio of the Ahmed geometry. The effect of the ground clearance on the PDF of the base
pressure gradients in the cross-flow directions is shown in figure 6.5. Figure 6.5(a) indicates
that, for all the ground clearances, the base pressure gradient in the y direction is stable
for ∂cp/∂y∗ = 0. Thus, the symmetric wake is always stable in a centered state.

On the contrary, PDF(∂cp/∂z∗) in figure 6.5(b) presents strong differences compared
to the case H∗ = 0.74 for C∗ > 0.05 (see figure 6.4b). Indeed, for small values of C,
the evolutions are identical: a plateau is measured at ∂Cp/∂z

∗ ≈ −0.08 when C∗ < 0.03

followed by a sharp increase in the range C∗ ∈ [0.03, 0.05]. But, while ∂Cp/∂z
∗ keeps

increasing to 0.33 for C∗ = 0.06 in the case H∗ = 0.74, it saturates at 0.13 for the aspect
ratio H∗ = 1.34. Then, for C∗ ≥ 0.06, figure 6.4(b) shows that ∂Cp/∂z

∗ decreases to
stabilize between 0 and 0.1 for H∗ = 0.74 whereas for H∗ = 1.34, figure 6.5(b) points out
that only two preferred values of ∂Cp/∂z

∗ are reported (0.13 and −0.09) with bistable
behaviors in the z direction for some values of C∗.

The particular case C∗ = 0.10 presents two peaks in the joint PDF of the base pressure
gradients centered on ∂cp/∂y

∗ ≈ 0 and ∂cp/∂z
∗ ≈ −0.09 and 0.13 (see figure 6.6). As a

result, two states are evidenced; the one centered on ∂cp/∂y
∗ ≈ 0 and ∂cp/∂z

∗ ≈ −0.09

is denoted by #Nz while the other one, centered on ∂cp/∂y
∗ ≈ 0 and ∂cp/∂z

∗ ≈ 0.13, is
denoted by #Pz. The mean velocity field of this z bistable case is displayed in figure 6.6(a);
note that there is only saddle point at the end of the recirculation bubble. Hence, the
presence of two saddle points is not a necessary condition of such bistable behaviors.

Using conditional averaging as in chapter 5, it is possible to separate these two states
in the 200 instantaneous velocity fields. Since the base pressure gradient is related to a
diagonal recirculating flow (see chapters 3 and 5), the two states are expected to present
differences in the orientation of the recirculating flow. As in chapter 2, the integral value
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Figure 6.5. Probability density functions of the base pressure gradient in the y direction (a)

and in the z direction (b) as a function of the ground clearance C∗ forH∗ = 1.34; the contour
interval is 2.

Figure 6.6. Mean velocity field from PIV in the plane y∗ = 0 (a) and associated probability
density function of base pressure gradients (b) for H∗ = 1.34 and C∗ = 0.10; the contour
interval is 10. The cross locates the saddle point. Sb and Rb are the positions of the
separation and reattachment points on the base.
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Figure 6.7. Time evolutions of ∂cp/∂z∗ (black line, left scale) and of uzr∗ (blue line, right
scale) for H∗ = 1.34 and C∗ = 0.10.

uzr is used; it is defined by

uzr
∗ =

∫ 1.2

x∗=0.2

∫ 1.2

z∗=0.2

uz
∗(x∗, z∗) dx∗dz∗. (6.3)

It estimates the average velocity in the z direction in the recirculation bubble. Simulta-
neous time evolutions of uzr and of ∂cp/∂z∗ are presented in figure 6.7. Over the 20 s
of the measurement, the correlation between these two quantities reaches 0.86: uzr∗ > 0

when ∂cp/∂z
∗ > 0 and reciprocally, uzr∗ < 0 when ∂cp/∂z

∗ < 0. Thus, each state can
be obtained from conditional averaging, one with uzr

∗ > 0 which correspond to the state
#Pz and the other with Uzr

∗ < 0 associated with the state #Nz.

The mean velocity fields obtained after conditional averaging are presented in figure 6.8.
By construction of the conditional averaging, the orientation of the recirculating flow is
different for the two states. The organization of the recirculation region is consistent with
the base pressure gradients observed in the z direction: uzr∗ > 0 and the lower recirculation
structure is closer to the base than the upper one for the state #Pz. This results in the
positive value of ∂Cp/∂z

∗ and reciprocally for the state #Nz.
In contrast to the states #Py and #Ny observed in section 6.2.1, there is no symmetry

between the states #Pz and #Nz (see figure 6.8). So the two states may present distinct
fluid forces. Indeed, the velocity fields suggest very different lift whether the wake is in
the state #Nz or in the state #Pz. The drag may also be different2 as the base pressure
are measured at Cpb(#Pz) = −0.212 and Cpb(#Nz) = −0.200. The state #Pz is therefore
expected to have a larger drag than the state #Nz.

For C∗ > 0.06, figure 6.5(b) evidences that ∂cp/∂z∗ is measured either around 0.13 or
around −0.09 with bistable configurations for C∗ = 0.1 and C∗ ∈ [0.5, 1.0]; for the other
values of C∗, only one of the two states is observed in the wake. The topology associated
with each value of ∂cp/∂z∗ (at 0.13 or −0.09) must correspond to two different orientations
of the recirculating flow; so the corresponding topologies are expected to present a near
wake organization similar to the one presented in figures 6.8(a)–(b).

Now that the base pressure statistics are detailed for the two aspect ratios H∗ = 0.74

and H∗ = 1.34, section 6.2.3 considers the data in the whole domain (C∗, H∗).

2The drag is directly connected to the base pressure but in these experiments, the pressure is measured
only at four locations and there are strong gradients. Hence, the estimation of the base pressure suffers
from the lack of spatial resolution.
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Figure 6.8. Velocity fields in the plane y∗ = 0 for H∗ = 1.34 and C∗ = 0.10 after conditional
averaging to extract the state #Pz for uzr∗ > 0 (a) and the state #Nz for uzr∗ < 0 (b).
The crosses locate the saddle points.

6.2.3 Base pressure statistics in the domain (C∗,H∗)

In sections. 6.2.1 and 6.2.2, the development of antisymmetric instabilities are observed
in the y and z directions respectively. In some configurations, the coexistence of two
preferred asymmetric topologies of the wake leads to bistable wakes. Both the ground
clearance and the aspect ratio of the base have a critical impact on these phenomena; so
further experiments are performed to explore the range H∗ ∈ [0.51, 1.63] by steps of 0.06
while the effect of the ground clearance are considered for C∗ ∈ [0, 1.00].

First, the average value of the base pressure is considered. In figure 6.9, Cpb is plotted
in the domain (C∗, H∗). As observed in section 6.2.1, there are important evolutions of
the mean base pressure: it ranges from −0.14 to −0.24. The best drag configurations
correspond to the low values of H∗ with C∗ < 0.05. The high drag cases correspond
to the values C∗ ≈ 0.06 when the wake is in transition from a backward facing step
topology to a wake topology without ground detachment. This characteristic value of
C∗ ≈ 0.06 is independent of H∗ at first order. For C∗ > 0.10, the base pressure is measured
approximately constant around −0.20 with a slight decrease as H∗ increases.

To evaluate the domains of existence of the instabilities in the y and z directions, global
quantities are needed. In the y direction, the natural indicator is the absolute value of the
instantaneous pressure gradient in the y direction: ⟨|∂cp/∂y∗|⟩. This quantity is plotted in
the domain (C∗, H∗) in figure 6.10(a). Bistable wakes are characterized by large values of
⟨|∂cp/∂y∗|⟩, typically greater than 0.10, while stable centered wakes are associated with low
values of ⟨|∂cp/∂y∗|⟩, less than 0.05. The case H∗ = 0.74 presented in section 6.2.1 is stable
up to C∗ = 0.10 and bistable for C∗ > 0.10. The case H∗ = 1.34 presented in section 6.2.2
remains stable in the y direction for all the values of C∗. Two zones of y bi-stability
are identified; they are associated with 0.60 ± 0.02 < H∗ < 0.90 ± 0.05 for C∗ > 0.08

and H∗ < 0.65 ± 0.02 for C∗ < 0.03. This latter range corresponds to three-dimensional
backward facing step configurations. It is consistent with the results of Herry et al. (2011)
reporting a similar bi-stability downstream of a double three-dimensional backward facing
step.

Similarly, the instability in the z direction is evaluated using ⟨|∂cp/∂z∗|⟩. However, its
interpretation is more ambiguous since both the ground proximity and the z instability
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Figure 6.9. Base pressure in the domain (C∗, H∗). The dotted lines locate H∗ = 0.74 and
H∗ = 1.34.

Figure 6.10. Quantitative asymmetry of the base pressure distribution in the y direction (a)

and in the z direction (b) in the domain (C∗, H∗). The dashed lines limit the domains of
the instability in the y direction (a) and in the z direction (b). The dotted lines locate
H∗ = 0.74 and H∗ = 1.34.
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of the recirculation bubble are responsible for a pressure gradient in the z direction. A
second difficulty is that, once the instability appears, the wake is very likely to be trapped
in one of the two states as depicted in section 6.2.2. The map of ⟨|∂cp/∂z∗|⟩ in the domain
(C∗, H∗) is presented in figure 6.10(b); the values for H∗ < 0.67 are not considered as the
gap separating the taps of the upper and lower part of the base is not sufficient to preserve
the precision in the evaluation of ∂cp/∂z∗ (see section 6.1). Most of the configurations,
even far from the wall, induce significant asymmetries in the z direction: in most of the
domain, ⟨|∂cp/∂z∗|⟩ > 0.10. A systematic analysis of PDF(∂cp/∂z∗) enables to delimit
the domain of appearance of the instability in the z direction (similar to the one presented
in section 6.2.2). This region is marked by the dashed line in figure 6.10(b), roughly for
H∗ > 0.85± 0.05 and C∗ > 0.07± 0.01.
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Figure 6.11. Domains of development of the instabilities measured from the experiments (a)
and predicted by the model (b). The limits H1

∗ and H2
∗ of the model are reported from

the experiments, the other limits are deduced from symmetry considerations only.

6.3 Synthesis

The domains of existence of the instabilities in the y and z directions are now discussed
in section 6.3.1 while section 6.3.2 is devoted to the mean base pressure evolutions in the
field (C∗, H∗).

6.3.1 Domains of existence of the y and z instabilities

The goal of this section is to deduce a general criterion defining the domains of existence
of the instabilities in the y and z directions presented in section 6.2. A synthesis of the
domains obtained from the experiments is provided in figure 6.11(a); the following depicts
the construction of the limits presented in figure 6.11(b).

One can start by analyzing these domains as a function of the ground clearance. Fig-
ure 6.11(a) indicates that the instabilities can occur either for C∗ < 0.03 or for C∗ > 0.08.
Referring to figure 6.2, the underbody flow is nil for the low ground clearances (C∗ < 0.03)
due to dominant viscous effects. For the large ground clearances, the flow around the body
retrieves a certain symmetry (see figure 6.3e) with respect to the plane z∗ = C∗ + H∗/2

located at the mid-height of the body. Now, in these ranges C∗ < 0.03 and C∗ > 0.08, the
domains of appearance of the instabilities do not depend much on C∗ (see figure 6.11a); this
tends to indicate that the low values of C∗ are equivalent to the extreme case C∗ = 0 while
the large values of C∗ are similar to the case without ground. As a consequence, the general
criterion presented in figure 6.11(b) separates the range of C∗ into three regions: C∗ < 0.03

assumed equivalent to C∗ = 0, 0.03 < C∗ < 0.08 with a ground detachment preventing the
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development of both instabilities and C∗ > 0.08 equivalent to a configuration without wall
influence.

Therefore, the ground clearance has a stabilizing effect on the instabilities for
0.03 < C∗ < 0.08 when a detachment is present on the ground. For practical reasons
and further comparisons with other studies, it is worth mentioning the corresponding
critical range of Reynolds numbers of the underbody flow, i.e. based on C and U0: this
gives ReC < 1350 when the underbody flow is almost nil, ReC > 3600 when there is no
detachment on the ground3.

Now, addressing the effect of base aspect ratio H∗, the instability in the lateral direc-
tion leading to the y bi-stability is first discussed. This behavior is characterized by the
coexistence of two states of the wake, switching randomly between the right hand side and
the left hand side of the body (see chapter 5).

For the large values of C∗, one can see in figure 6.11(a) that the domain of y bi-stability,
denoted Dy1, corresponds to the range of aspect ratios 0.60± 0.02 < H∗ < 0.90± 0.05.
The inferior limit at 0.60±0.02, denoted H1

∗, is ascribed to a pure transition from a stable
symmetric flow to a bistable flow whereas the superior limit seems less clear since both the
y and z instabilities interfere.

For the low values of C∗, assumed equivalent to C∗ = 0, the experiments report bistable
behaviors in the y direction when H∗ < 0.65± 0.02; the corresponding domain is denoted
Dy2 in figure 6.11(a). The superior limit at 0.65 ± 0.02 equally corresponds to a pure
transition from a stable symmetric flow to a bistable wake; it is denoted H2

∗. Now, for
these low ground clearances, the flow can be regarded as a symmetric flow with respect
to the plane z∗ = 0 that is produced by a virtual body of double height out of wall
influence. Indeed, using the inviscid theory for large Reynolds number flows, the wall
boundary condition is equivalent to a mirror condition; a sketch of such equivalent flows
is given in figure 6.12. This interpretation introduces a clear interdependence between the
domains Dy1 and Dy2. The reasoning is the following: if a body of aspect ratio 2H∗ is
bistable out of wall influence, i.e. within domain Dy1, then the bi-stability is very likely to
be also found for a body of aspect ratio H∗ at C∗ = 0, i.e. within the domain Dy2; and
the reverse is true. Consequently, the superior limit to the domain Dy1 can be defined at
2H2

∗ = 1.30± 0.04 and the inferior limit to the domain Dy2 at H1
∗/2 = 0.30± 0.01.

Furthermore, the mirror condition of the inviscid flow theory is applied on the
instantaneous flow. So, this only allows symmetric flow perturbations referring to the
plane z∗ = 0. Since the mirror condition still permits the bi-stability in the domain
Dy2, the perturbations related to the y instability must be of symmetric nature in the
z direction while they are obviously antisymmetric in the y direction. Assuming that the
y and z instability results from the same physics, the instability in one direction cannot
coexists with the instability in the other direction due to incompatible characteristics of
the associated perturbations. Thus, it is very likely that the instability in one direction
takes the advantage on the other which extinguishes. Such interferences between the y and
z instabilities may explain why the superior limit of the domain Dy1 at 2H2

∗ = 1.30± 0.04

is far larger than the frontier observed experimentally at 0.90± 0.05.

Finally, the instability in the vertical direction is considered. Two states of the flow can
be observed; they correspond to wakes oriented either toward the top or the bottom of the
body base. For some configurations, the wake is bistable switching randomly between the
two states. Contrary to the bi-stability in the y direction which is related to a reflectional

3These thresholds are larger than the ones observed experimentally in the laminar regime in chapter 4
but the experiments are performed in two very different facilities.
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Figure 6.12. Equivalent configurations using the inviscid flow theory: three-dimensional
backward facing step (a) and three-dimensional symmetric body out of wall influence (b).

symmetry breaking (RSB) of the flow around the body, for the z instability there is not,
in a strict sense, any associated reflectional symmetry (RS) of the geometry because of the
ground. The RS around the bluff body may be restored in two cases.

◦ For the low values of C∗, the flow around the virtual body is symmetric but RSB is
impossible due to the mirror symmetry introduced by the proximity of the ground.
This is consistent with the experiments.

◦ For the large values of C∗, the wall effect is limited and, neglecting the support
influence, the configuration is almost equivalent to the flow without ground. This
restores the RS of the geometry and in that case, the RSB of the flow becomes
possible.

The range of aspect ratios associated with the z instability can be deduced from the one
obtained for the y instability by symmetry considerations. Making use of the symmetry
of rotation by π/2 around the longitudinal axis of the body out of the wall influence,
H∗ = H/W becomes 1/H∗ and y to −z. Hence, the range of the y instability of the
domain Dy1 for H1

∗ < H∗ < 2H2
∗ is equivalent to the range of the z instability in the

domain Dz that is defined as (2H2
∗)−1 < H∗ < H1

∗−1, i.e. 0.77±0.03 < H∗ < 1.67±0.05.
This prediction is in agreement with the experimental findings presented in figure 6.11(a).

As a result, an interfering region Dy1
∩
Dz, i.e. 0.77 ± 0.03 < H∗ < 1.30 ± 0.04 is

evidenced where the instability in one direction takes the advantage on the other. Out
of wall influence, one may expect the dominant instability to be the one associated with
the larger dimension of the base, i.e. the y direction for H∗ < 1 and the z direction for
H∗ > 1. Nevertheless, residual asymmetries in the z direction may modify this balance
of power; the presence of the four cylindrical supports could explain why the z instability
predominates as soon as H∗ > 0.90± 0.05.

Now that a general criterion defining the domains of instability in the cross-flow direc-
tions is provided, the mean levels of base pressure are considered in section 6.3.2.

6.3.2 Mean base pressure vs. H∗ and C∗

The detailed study of the aspect ratio H∗ = 0.74 presented in figures 6.2 and 6.3 shows
that both the mean base pressure Cpb and the recirculation length Lr strongly depend on the
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Figure 6.13. (a) Base pressure (+, left scale) and recirculation length (⃝, right scale) as
a function of the ground clearance C∗ for the case H∗ = 0.74. (b) Base pressure level as
a function of the recirculation length for the case H∗ = 0.74 for different values of C∗:
⃝, experimental data; - - -, best power fit: Cpb = −0.19(Lr

∗)−0.41.

ground clearance C∗; these evolutions are presented in figure 6.13(a). First, for C∗ < 0.04

when the topology corresponds to the flow past a three-dimensional backward facing step,
the recirculation bubble extents up to x∗ ≈ 1.5 and the base pressure is measured close to
Cpb ≈ −0.16. Then, when the underbody flow becomes more energetic, for C∗ ∈ [0.06, 0.09],
two different recirculation bubbles can be distinguished: one on the base (comprised of
structures #2 and #3) and one on the ground (structure #1). Only the recirculation
structure close to the base is considered in the calculation of Lr as shown in figure 6.2(e).
For these values of C∗, the recirculation length is smaller (Lr

∗ < 1.0) and it strongly depends
on the ground clearance. In parallel, the base pressure decreases to values Cpb < −0.22 (see
figure 6.13a) with a clear correlation to the recirculation length. Eventually, for C∗ ≥ 0.09,
both the recirculation length and the base pressure stabilize at Lr

∗ ≈ 1.0 and Cpb ≈ −0.19

respectively.

For massive separation at the rear-end of a body, base pressure is proved to be a reliable
indicator of the drag of bidimensional bodies (Roshko, 1993). For large Reynolds number
flows, the curvature of the high velocity flow is source of pressure evolutions because of the
associated centripetal acceleration. For a given geometry varying the ground clearance, one
can use the length of the recirculation bubble Lr as an estimator of the global curvature of
the flow in the near wake. This analysis is confirmed by the excellent correlation between
Lr and Cpb presented in figure 6.13(a) and their power-law relationships displayed in
figure 6.13(b).

The map of the base pressure presented in figure 6.9 reflects the consequences of the
modification of both the aspect ratio H∗ and ground clearance C∗ on the drag. The domain
can be separated into three regions: roughly C∗ < 0.05, C∗ ≈ 0.06 and C∗ > 0.1.
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The first zone corresponds to the cases C∗ < 0.05 when there is almost no underbody
flow which leads to topologies of three-dimensional backward facing steps. These config-
urations are low drag cases, especially for the low values of H∗, with large recirculation
lengths. In the limit case of the bidimensional backward facing step, i.e. H∗ ≪ 1, at large
Reynolds numbers, the ratio H/Lr quantifying the global curvature of the flow is constant
(Armaly et al., 1983). This points out that the base pressure does not depend on H. In
the present experiments, this might be the case for sufficiently small H∗. However, as H∗

is increased, three-dimensional effects related to the sides of the geometry must gradually
limit the recirculation length to a saturated size proportional to W . This saturation effect
of Lr when H is increased should lead to a decrease of base pressure which is actually the
observed tendency in figure 6.9.

The second region is related to low levels of base pressure, i.e. high drag, in a vertical
stripe centered around C∗ ≈ 0.06. It corresponds to the situation displayed in figure 6.2(e)
where the underbody flow is concentrated into an energetic jet4 detaching from the ground
at Rg and returning back to the top of the base with strong curvature. Interestingly, the
drag increase for C∗ ≈ 0.06 does not depend on H∗. So, for these ground clearances, the
curvature of the jet is constant at first order so that Lr should scale as H at least within
the observed range 0.51 < H∗ < 1.63.

Finally, the third zone is associated with large values of ground clearances (C∗ > 0.1).
The top and bottom shear layers become similar (see figure 6.3e) and the influence of
the ground clearance on the flow seems negligible. Hence, the variations in base pressure
should be ascribed to the transitions from bidimensional flows when H∗ ≫ 1 and H∗ ≪ 1

to a three-dimensional flow for H∗ ∼ 1. Experimentally, a slight base pressure reduction
is observed for extreme values of H∗ in agreement with this transition trend. The drag
increases when the flow gradually becomes bidimensional as reported by Wang et al. (2012)
and references therein.

4The velocity of the jet is close to 0.5U0.
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6.4 Concluding remarks

The experimental investigation of the wake past parallelepiped bodies with various as-
pect ratios H∗ and ground clearances C∗ identifies three different regimes depending on the
ground clearance.

◦ For C∗ < 0.05, viscous effects prevent the development of the underbody flow and
the geometry behaves like a three-dimensional backward facing step.

◦ For 0.05 < C∗ < 0.10, the underbody flow gradually becomes more energetic but
separates on the ground; it forms a curved jet that reattaches on the top of the base.
These configurations are associated with low levels of base pressure, i.e. high drag.

◦ Finally, for C∗ > 0.10, the underbody flow has enough momentum to prevent the
separation on the ground. The effect of the wall is less visible on the near wake
organization since the top and bottom shear layer developing from the base are
similar.

Besides, when there is only a limited wall influence, typically for C∗ > 0.1, an instability
develops in the y direction for the aspect ratios in the range 0.60± 0.02 < H∗ < 1.30± 0.04.
Symmetrically, by rotation of the body, an instability in the z direction is observed for
0.77 ± 0.03 < H∗ < 1.67 ± 0.05. These instabilities result in antisymmetric perturbations
of the opposed shears in the considered direction and can lead to a wake bi-stability. The
orientation of the antisymmetry, left or right for the y instability and top or bottom for the
z instability, is highly sensitive to the symmetries of the setup: a residual yaw angle or wall
effect is very likely to trap the wake in one of the two states.

Out of the interfering range 0.77±0.03 < H∗ < 1.30±0.04, the antisymmetry is reported
in the opposed shears detaching from the smallest sides so that the y and z instability are
dominant for H∗ < 1 and H∗ > 1 respectively. Within the interfering range, instabilities
from both the smallest and the largest sides can occur. The frontier at H∗ = 1 is not
observed: the z instability predominates the y one as soon as H∗ > 0.90 ± 0.05, possibly
because of residual asymmetries in the setup.

The suppression of these instabilities is possible by forcing symmetric perturbations.
For example, when the body is placed on a wall (or equivalently using a splitter plate),
the flow asymmetries in the direction normal to the wall are not possible and only the
instability parallel to the wall can subsist. These symmetry considerations justify that the
bi-stability in the y direction is equally reported for C∗ < 0.03, i.e. for three-dimensional
backward facing step configurations, in the range 0.30± 0.01 < H∗ < 0.65± 0.02.

The definition of the domains of appearance of such cross-flow instabilities are of fun-
damental importance for the understanding of three-dimensional wakes. One may observe
some slight evolutions of the frontiers depending on the Reynolds number or the length of
the body due to modifications of the boundary layers at the trailing edge. Nevertheless,
at first order, these domains are very likely to be independent of these parameters as the
reflectional symmetry breaking states in the case of the squareback Ahmed geometry is
already observed at ReH = 340 (see chapter 4).

More generally, these experiments show that the cases of reflectional symmetry breaking
found in the literature are not isolated configurations and are likely to result from the
development of similar instabilities. Besides, such a high sensitivity of the organization of
the near wake should be considered to design ground vehicles from cars to buses. Such
phenomena affect the force intensities: the side or lift force depending on the geometry, but
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also the drag. A quantification of the drag ascribed to such bistable behavior is provided
through the control studies that are presented in chapter 7.



Chapter 7

Sensitivity analyses of the bistable

wake

Most of these results are submitted to Journal of Fluid Mechanics.
This chapter explores the sensitivity of the wake past the squareback Ahmed geometry1.

The objective is to clarify how a local disturbance affects the global properties of the flow
with a particular focus on the natural bi-stability.

Abstract

The sensitivity of the flow around the reference Ahmed geometry is now investigated
experimentally at Reynolds number 9.2 104. Vertical and horizontal control cylinders are
used to disturb the natural flow which is the superposition of two reflectional symmetry
breaking states (see chapter 5). When the perturbation breaks the symmetry of the setup,
it can select one of the two asymmetric topologies so that a mean side force is reported. On
the other hand, when the reflectional symmetry is preserved, some positions of horizontal
and vertical control cylinders alter the natural bi-stability of the flow which may result
in drag reduction. In addition, it is found that the horizontal perturbation affects the
lift especially when the top and bottom mixing layers are disturbed. The ability of the
disturbances to suppress the bistable behavior is discussed and, introducing a formalism of
induced drag, a quantification of the impact of the cross-flow forces on the drag is suggested.
In particular, the results point out a quadratic dependence between the drag and the lift
that is thoroughly studied in chapter 8.
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7.1 Experimental setup

The experimental facility and the model are identical to the ones used in chapter 5.
This section only details the differences with the setup presented in section 5.1.

A scheme of the setup is visible in figure 7.1. As in chapter 3, the sensitivity analysis
is based on the experimental work of Parezanović & Cadot (2012) in a bi-dimensional
configuration. In this previous study, the flow is found sensitive when the control cylinder
disturbs the shear layers. Given the parallelepiped shape of the present geometry and the
shear layer interactions reported in the natural wake (see chapter 5), the direct extension
of the work of Parezanović & Cadot (2012) consists in disturbing the lateral mixing layers
or the top and bottom ones. Hence, it appears suitable to use small vertical and horizontal
control cylinders placed around the afterbody as displayed in figure 7.1. Their lengths are
logically equal to the height or to the width of the body (see figures 7.1c–d).

Besides, in Parezanović & Cadot (2012), two different rod sizes are used; they correspond
to 0.04D and 0.12D which should be compared to the initial thickness of the shear layer of
0.05D, D being the main cylinder diameter. It is found that the smaller control cylinder
can be considered as a disturbance while the larger one induces important modifications of
the main flow features. Thus, the perturbation assumption remains relevant as soon as the
control rod is smaller than the disturbed shears. In the present configuration, the diameter
of the cylinders is d = 4 mm, i.e. d/D = 5.6%. This cylinder diameter correspond to a
compromise between the perturbation assumption and the amplitude of the measurable
effect on the flow. As the initial thickness of the shear is of order of 0.03H (see chapter 5),
the cylinders may be too big to be considered as local disturbance in the very near wake.
Nevertheless, as soon as x > 0.2H, the shear layers of the natural flow are larger than
0.05H and the perturbation assumption becomes sustainable.

The vertical rod is moved in the x and y directions whereas the horizontal one is moved
in the x and z directions; their positions are denoted by (xC , yC) and (xC , zC) respec-
tively. The disturbance location is controlled by a three-dimensional displacement system
made up of three Newport (M-)MTM long travel consoles and controlled by the Newport
Motion Controller ESP301; the precision of the robots is better than 0.1 mm. The distur-
bances are automatically displaced over a matrix by steps of ∆x = 3 mm in the streamwise
direction and of ∆y = ∆z = 1 mm in the cross-flow directions, i.e. ∆x

∗ = 0.042 and
∆y

∗ = ∆z
∗ = 0.014. The explored domains are (xC

∗, yC
∗) ∈ [0.04, 1.67]× [−0.97, 0.97] and

(xC
∗, zC

∗) ∈ [−1.00, 1.67]× [0.04, 1.69]. As a result, the full exploration of the wake by one
disturbance typically needs more than 120 positions in the cross-flow direction and 50 in
the x direction.

The cylinders are held by 0.5 mm steel wires oriented along y (one wire for the horizontal
cylinder and two wires for the vertical one) in such a way that they are aligned with the base
of the body. The supporting wires are sufficiently stretched to have vibration amplitudes
that are small in front of d. Besides, tests with only the 0.5 mm wires have been performed
to verify that their influence is at least one order of magnitude smaller that the one of the
main control cylinders.

The construction of sensitivity maps are based on global quantities of the flow but it is
crucial to distinguish two different approaches in this work.

• First, the construction of the sensitivity maps corresponds to a statistical approach.
They are obtained after the systematic displacement of the disturbance in the wake
and, for each position, the data is recorded for 60 s. This is too short to obtain
converged values of mean and standard deviation, especially considering the long
time dynamics of the bi-stability. These 60 s are limited by the total duration of an
experiment which already lasts for two days. As a result, these sensitivity maps are
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only relevant as a whole and the accuracy of the associated data is visible through
the dispersion of points in the scatter plots presented in the following.

• In addition, some precise control cylinder positions are studied with a particular at-
tention in sections 7.2.1 and 7.2.2. They are associated with converged measurements,
performed over 500 s. The accuracy of the data is identical to the natural case detailed
in chapter 5.

Contrary to the experiments of chapter 5, the balance measurements are not used. As
the sensitivity analyses need a continuous blowing of the wind tunnel for two days, there
is an important daily drift of the balance signal, essentially due to temperature variations.
Moreover, preliminary tests have shown that the balance-based and pressure-based
sensitivity maps present identical trends: they contain the same information. As a result,
the forces are estimated from the pressure measurements only.

The wake analyses are based on pressure and PIV measurements (see section 5.1). The
only difference lies in the number of snapshots of the PIV: it is limited to 500 image pairs in
this chapter. From these velocity fields, the length of the recirculation region Lr is obtained
as the maximal streamwise position of the dividing streamlines of the recirculation bubble.
Note that the plane at z∗ = 0.6 correspond to the z coordinate of the closure of the natural
recirculation bubble (see chapter 5). Hence, both planes at y∗ = 0 and z∗ = 0.6 allow the
measurement of Lr.
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Figure 7.1. Experimental setup: side view (a), top view (b) and perspective view (c,d)
disturbed by a vertical control cylinder (c) and an horizontal control cylinder (a), (b) and
(d); gray dots are pressure taps, they are distributed symmetrically referring to the planes
y∗ = 0 and z∗ = 0.67 (mid-height of the body); O sets the origin of the coordinate system.
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7.2 Experimental sensitivity to local disturbances

The natural flow is presented in chapter 5. The wake presents two preferred reflectional
symmetry breaking positions; each asymmetric state is associated with a diagonal recircu-
lating flow and a base pressure gradient in the y direction: ∂Cp/∂y

∗ = ±0.17. The states
are denoted #P and #N for the positive and negative gradients respectively. The succession
of the states is random and the equiprobability of the two asymmetric topologies leads to
a symmetric mean flow; the bi-stability is characterized by the presence of two maxima in
the probability distribution of ∂cp/∂y∗, centered on ±0.17.

The sensitivity of the aerodynamic forces and of the bi-stability to a steady disturbance
is studied in sections 7.2.1 and 7.2.2 through the displacement of the vertical and horizontal
control cylinders in the wake.

7.2.1 Vertical control cylinder

The analyses of the effect of the vertical control cylinder are separated into three sections.
First, four characteristic positions are studied through the impact on the flow and on the
converged pressure statistics. Then, the sensitivity maps for all the disturbance positions
are presented and the third paragraph addresses the dependences between global quantities
of the wake.

Sample positions of vertical cylinder

The analysis of four cylinder positions is performed through PIV and pressure measure-
ments. The corresponding velocity fields and statistics of ∂cp/∂y∗ are given in figure 7.2
while the relevant quantities are listed in table 7.1.

The equiprobability of the states #P and #N relies on the symmetry of the setup.
As soon as the vertical control cylinder is out of the plane of symmetry, i.e. yC

∗ ̸= 0,
there is no reason for the flow to be symmetric. Figures 7.2(a)–(b) present the mean
velocities in the plane z∗ = 0.6 and the base pressure statistics for the cylinder positions
Va (xC∗ = 0.29, yC

∗ = −0.60) and Vb (xC∗ = 0.79, yC
∗ = −0.40).

For the position Va, the state #N of the flow is selected (see figure 7.2a): the wake is
clearly oriented toward the domain y∗ < 0; the mean diagonal recirculating flow corresponds
to the presence of a single peak in the probability distribution of the base pressure gradient
∂cp/∂y

∗ centered on −0.16±0.01. On the contrary, figure 7.2(b) shows that the state #P is
dominant for the position Vb: the wake is oriented toward the domain y∗ > 0, the diagonal
recirculating flow is associated with the maximum in the probability distribution of ∂cp/∂y∗

centered on 0.16± 0.01.
As a result, when yC

∗ ̸= 0, the vertical disturbance can select one asymmetric state;
the selected state depends not only on the sign of yC∗ but also on the streamwise position
xC

∗ of the disturbance. Besides, the base pressure and the pressure drag measured for
these cylinder positions are very similar to the natural case indicating that there is no drag
evolution: the main effect of the disturbance is the selection of one asymmetric state (see
table 7.1).

Two other positions of vertical control cylinder are presented in figures 7.2(c)–(d):
Vc (xC∗ = 0.71, yC

∗ = 0) and Vd (xC∗ = 1.37, yC
∗ = 0). These positions preserve the

reflectional symmetry of the setup so the flow is symmetric.
For Vc, there is no clear asymmetric peak in the probability distribution of ∂cp/∂y∗ (see

figure 7.2c) so the bistable behavior of the flow is altered. This configuration is associated
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Figure 7.2. Velocity fields in the plane z∗ = 0.6 (left) and probability distributions of the
base pressure gradient in the y direction (right) for different positions of the vertical control
cylinder: Va for xC∗ = 0.29 and yC∗ = −0.60, (a); Vb for xC∗ = 0.79 and yC∗ = −0.40, (b);
Vc for xC∗ = 0.71 and yC

∗ = 0, (c); Vd for xC∗ = 1.37 and yC
∗ = 0, (d). The crosses

locate the saddle points.
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xC
∗ yC

∗ ∂Cp/∂y
∗ Std(∂cp/∂y

∗) Cxp Cyp Czp Cpb Lr
∗

Natural 0.01 0.15 0.206 0.00 −0.08 −0.185 1.47
0.29 −0.60 −0.15 0.03 0.206 0.02 −0.08 −0.188 1.52
0.79 −0.40 0.16 0.02 0.205 −0.02 −0.09 −0.186 1.53
0.71 0 −0.02 0.08 0.194 0.00 −0.08 −0.175 1.57
1.37 0 −0.01 0.15 0.205 0.00 −0.09 −0.186 1.46

Accuracy ±0.01 ±0.01 ±0.005 ±0.01 ±0.01 ±0.003 ±0.01

Table 7.1. Global properties of the natural and disturbed wakes for four different positions
of the vertical control cylinder.

with base pressure recovery and a drag reduction of 5.8% while an increase in the recircu-
lation length is observed. On the other hand, for Vd, the perturbation has no significant
effect on the flow. The base pressure is equal to the natural value and the two peaks
in the probability distribution of ∂cp/∂y∗ are recovered: the two states #P and #N coexist.

Eventually, the lift measured for the four configurations is very close to the natural value
(see table 7.1). Thus, the vertical control cylinder does not seem to affect the pressure
distributions on the upper and lower faces of the body.

Now, the control cylinder is systematically displaced in the wake. At each position, the
global parameters listed in table 7.1 can be measured to the build sensitivity maps that are
presented in the next paragraph.

Sensitivity maps

It is now proved that the asymmetric disturbance introduced by the vertical control
cylinder affects the cohabitation of the two asymmetric states. To evaluate the degree
of asymmetry generated by the vertical disturbance, the mean base pressure gradient at
y∗ = 0 is measured for all the cylinder positions explored (see section 7.1 for definition of
the displacement matrix). Figure 7.3(a) presents the sensitivity map of ∂Cp/∂y

∗ which is
a symmetry indicator of the recirculation bubble. For yC∗ ̸= 0, the control cylinder almost
always selects a wake orientation depending on its position in both the x and y directions.
On the contrary, as soon as the symmetry of the geometry is preserved, i.e. yC

∗ = 0, the
flow retrieves its reflectional symmetry in average with ∂Cp/∂y

∗ ≈ 0.
A second indicator of the flow symmetry is the mean side force which can be estimated

from the pressure taps on the lateral faces of the geometry. From these measurements, it
is observed that the asymmetric pressure distributions on the base are associated with a
force in the y direction (see figure 7.3b). In most of the control cylinder positions where
|∂Cp/∂y

∗| > 0.1, a value of Cyp ≈ ±0.02 is measured which corresponds to the side
force of the asymmetric states #P and #N of the natural wake. Eventually, wherever
∂Cp/∂y

∗ ≈ 0, Cyp is equally measured close to 0 which confirms the symmetry of the
pressure distribution around the whole geometry.

In order to study the impact of the disturbance on the bi-stability, an indicator indepen-
dent of the repartition of the two asymmetric states is needed. When the flow is symmetric
in average but spontaneously asymmetric because of the bi-stability, the superposition of the
two asymmetric states induces important variations of ∂cp/∂y∗: typically for equiprobable
states, Std(∂cp/∂y∗) ≈ 0.16 while ∂Cp/∂y

∗ ≈ 0. On the contrary, when the flow is locked
in one of the asymmetric states: Std(∂cp/∂y∗) ≈ 0 while ∂Cp/∂y

∗ ≈ ±0.16. Hence, the
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Figure 7.3. Effect of the vertical control cylinder on the pressure on the body: ∂Cp/∂y
∗ at

y∗ = 0, (a); Cyp, (b); χ, (c); Cpb, (d). The thick lines are velocity contours of the natural
flow: · · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.
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root mean square of the gradient, denoted χ, is used to quantify the degree of asymmetry.

χ =

√

⟨
(
∂cp
∂y∗

)2

⟩ =

√

∂Cp

∂y∗

2

+ Std

(
∂cp
∂y∗

)2

. (7.1)

The measurement of χ for all the vertical control cylinder positions leads to the sensitivity
map shown in figure 7.3(c). For most of the locations, χ is close to 0.16. This indicates
that either the flow is bistable (for ∂Cp/∂y

∗ ≈ 0) or the asymmetry in the y direction is
at least equal to that of states #P and #N. The exceptions are measured in the center of
the recirculation bubble, for xC∗ ≈ 0.6 and yC

∗ ≈ 0. For such positions, the diminution
of χ indicates that the bistable behavior is suppressed like for the configuration Vc (see
figure 7.2c) and, as previously mentioned, these cylinder positions achieve base pressure
recovery.

The sensitivity map of Cpb is given in figure 7.3(d). Increases in Cpb are concentrated
around the center of the recirculation region where the symmetry of the flow is preserved
and the bi-stability is suppressed. The detailed results associated with the optimal position
Vc are provided in the previous paragraph. On the other hand, when the lateral mixing
layers are disturbed, the base pressure tends to decrease. For the other control cylinder
positions, Cpb is measured close to the natural value of Cpbn = −0.185.

The sensitivity maps presented in figure 7.3 show that the different quantities are cor-
related; these dependences are now studied.

Correlations between the global quantities of the wake

Before going further, it is important to remind that the disturbance approximation is not
sustainable when the cylinder is larger than the local shear or when it is close to a surface.
Hence, the data for xC∗ < 0.2 are ignored in the next section, i.e. the correlations between
the global quantities are limited to the domain (xC

∗, yC
∗) ∈ [0.21, 1.67]× [−0.97, 0.97].

In figures 7.3(a,b), an obvious correlation is found between the base pressure gradient
∂Cp/∂y

∗ and the mean side force Cyp. The relationship between these two parameters is
presented in the scatter plot in figure 7.4(a): each point corresponds to one position of ver-
tical cylinder and the data globally follow a linear dependence. It is worth mentioning that,
by definition, the evaluation of Cyp is performed using exclusively the pressure taps on the
sides and on the forebody whereas ∂Cp/∂y

∗ is defined only from the pressure measurements
on the base. As a result, the two quantities rely on independent pressure data. One can
conclude that the base pressure gradient in the y direction contains the information of the
circulation associated with the side force on the geometry.

In equation (7.1), the degree of asymmetry χ is the sum of two terms containing the mean
asymmetry of the base pressure ∂Cp/∂y

∗ and its fluctuations Std(∂cp/∂y∗). In figure 7.4(b)
are presented correlations between these mean and fluctuating contributions. Most of the
data are observed on the circle centered on 0 of radius 0.16 ± 0.01, i.e. for χ ≈ 0.16. All
the configurations on that circle are wakes with different proportions of each state. This
scatter plot confirms that χ is a relevant parameter to quantify the asymmetry of the near
wake.

Now, some data are not located on that circle but at a reduced level of χ. These points
correspond to the cylinder positions close to Vc, in the center of the recirculation region
(see figures 7.2c and 7.3c). As mentioned previously, these points are associated with base
pressure recovery and then drag reduction (see figure 7.3d).

The scatter plot of χ vs. Cpb is visible in figure 7.5(a). There is a high density of points
close to the natural levels at χ ≈ 0.16 and Cpb ≈ −0.185. Some data report significant
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Figure 7.4. Scatter plots of Cyp vs. ∂Cp/∂y
∗ (a) and of Std(∂cp/∂y∗) vs. ∂Cp/∂y

∗ (b) for the
vertical cylinder positions xC∗ > 0.2. The dashed line is the linear fit Cyp = −0.16 ∂Cp/∂y

∗.
The crosses are the natural values.

Figure 7.5. Scatter plots of χ vs. Cpb (a) and of Cxp vs. Cpb (b) for the vertical cylinder
positions xC∗ > 0.2. The dashed line is the linear law Cxp = −Cpb + 0.018 (not a fit). The
crosses are the natural values.
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base pressure decrease (Cpb < −0.19) for χ = 0.15 ± 0.03: they are associated with the
disturbance of the lateral mixing layers. Nevertheless, for Cpb > −0.19, it is clear that there
is a correlation between the two quantities: the optimal base pressure recovery corresponds
to the minimum level of asymmetry of the recirculation region.

Eventually, in the present experiments, the average level of base pressure is considered
as a drag indicator. Indeed, there is a strong dependence between the level of base pressure
and the pressure drag as visible in the scatter plot in figure 7.5(b). It is important to say
that the evaluation of the pressure drag uses all the taps on the base so that there is, by
construction, a certain correlation between these two quantities. Having said that, the
affine dependence between Cxp and Cpb with a slope −1 proves that the disturbance does
not affect the pressure distribution on the forebody: the total pressure drag is the sum
of the contribution of the forebody which is constant at first order and of the base which
depends on the control cylinder position.

As a result, the flow presents an important sensitivity to the vertical disturbance prin-
cipally due to its natural bi-stability. Now, the sensitivity towards the horizontal control
cylinder, which preserves the symmetry of the setup, is presented in section 7.2.2.

7.2.2 Horizontal control cylinder

As in section 7.2.1, the analyses of the effect of the horizontal control cylinder are
separated into three sections. Four characteristic disturbance positions are first considered.
Then, the sensitivity maps are presented; they are followed by the analyses of the correlation
between the global quantities of the flow.

Sample positions of horizontal cylinder

The converged velocity and pressure measurements are given in figure 7.6 and in table 7.2
for four characteristic positions of the horizontal cylinder.

For Ha (xC∗ = 0.37, zC
∗ = 1.17) and Hb (xC∗ = 0.58, zC

∗ = 0.25), the cylinder is
located in the inner shear layers developing from the upper and lower faces of the geometry
respectively. The associated velocity fields are presented in figures 7.6(a,b). First, for
Ha, the top – bottom organization of the recirculation region is significantly modified in
comparison to the natural case which is consistent with the negative value of ∂Cp/∂z

∗

(see table 7.2). On the other hand, the flow modifications for Hb are almost undetectable
and ∂Cp/∂z

∗ is close to the natural value. However, in both case, there is an increase in
the recirculation lengths and a suppression of the bi-stability. There is only one preferred
position centered on 0 visible in the probability distribution of ∂cp/∂y∗ with χ ≈ 0.07. In
parallel, it is measured that these positions achieve base pressure recovery and up to 6.3%
reduction of pressure drag.

The data for the control cylinder at Hc (xC∗ = 0.71, zC
∗ = 0.21) are presented in

figure 7.6(c). At this location, the cylinder is in the outer shear layer coming from the
bottom face of the geometry. It generates a vertical jet by deviating flow from the mixing
layer to the center of the recirculation region. The organization of the near wake is strongly
modified. A curved jet develops from the control cylinder and reaches the top of the
base. It is associated with the large pressure gradient in the z direction: ∂Cp/∂z

∗ = 0.16.
This cylinder position is a high drag case (Cpb = −0.212) which is ascribed to the strong
curvature of the jet and the reduced recirculation length. Note that only the recirculating
structure close to the base is considered to define the recirculation length Lr (see chapter 6).
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Figure 7.6. Velocity fields in the plane y∗ = 0 (left) and probability distributions of the base
pressure gradient in the y direction (right) for different positions of the horizontal control
cylinder: Ha for xC∗ = 0.37 and zC

∗ = 1.17, (a); Hb for xC∗ = 0.58 and zC
∗ = 0.25, (b);

Hc for xC∗ = 0.71 and zC∗ = 0.21, (c); Hd for xC∗ = 1.00 and zC∗ = 0.60, (d). The crosses
locate the saddle points.

xC
∗ zC

∗ ∂Cp/∂z
∗ χ Cxp Czp Cpb Lr

∗

Natural −0.02 0.15 0.206 −0.08 −0.185 1.47
0.37 1.17 −0.08 0.06 0.193 −0.06 −0.172 1.54
0.58 0.25 −0.01 0.07 0.196 −0.09 −0.175 1.54
0.71 0.21 0.16 0.01 0.234 −0.14 −0.212 0.86
1.00 0.60 0.01 0.14 0.206 −0.08 −0.188 1.45
Accuracy ±0.01 ±0.01 ±0.005 ±0.01 ±0.003 ±0.01

Table 7.2. Global properties of the natural and disturbed wakes for four different positions
of the horizontal control cylinder.
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For this cylinder position, the probability distribution of ∂cp/∂y∗ shows that the wake is
clearly stable in the centered state.

Finally, the position Hd (xC∗ = 1.00, zC
∗ = 0.60) is presented in figure 7.6(d) when the

control cylinder is out of the shear layers in the middle of the recirculation region. One can
observe that the corresponding data are highly similar to the one of the natural wake. The
bi-stability of the wake is clearly observable and all the global properties listed in table 7.2
are similar to the natural ones.

The systematic study of the effects of the control cylinder on these global quantities are
now presented when the disturbance is displaced in the wake.

Sensitivity maps

For each position of horizontal control cylinder, the pressure distribution on the base
and the forces on the geometry are considered through the measurement of ∂Cp/∂z

∗, χ,
Czp and Cpb. As the perturbation preserves the reflectional symmetry of the setup, the
mean side force and ∂Cp/∂y

∗ remain nil for all the disturbance positions.
The sensitivity map of ∂Cp/∂z

∗ is presented in figure 7.7(a). The results confirm the
trends observed in the previous paragraph. There are significant modifications of the pres-
sure gradient when the control cylinder is in the shear layers: ∂Cp/∂z

∗ > 0 in the lower
one while ∂Cp/∂z

∗ < 0 in the upper one. Elsewhere, the gradient is close to 0 like in the
natural case. It is worth noting that this map strongly differs from the one presented in
figure 7.3(a) due to the absence of bi-stability in the z direction.

Figure 7.7(b) presents the lift modifications Czp − Czpn for all the cylinder positions,
Czpn being the natural lift coefficient. The perturbation of the top and bottom mixing
layers induces significant variations: the lift is increased for cylinder in the upper shear
while it is reduced in the lower one.

The sensitivity map of χ is presented in figure 7.7(c). When the cylinder is located in
the shear layers, χ < 0.1 so the bi-stability is suppressed as in figures 7.6(a,b,c). Everywhere
else, the measurement of χ ≈ 0.16 is associated with the cohabitation of the asymmetric
states: as for Hd (see figure 7.6d), the wake is bistable.

Eventually, the sensitivity map of Cpb is presented in figure 7.7(d). For xC∗ > 0, the
base pressure is increased up to 6% when the control cylinder acts on the inner part of the
mixing layers in the near wake. However, the lower mixing layer is particularly sensitive
as the optimal position is Hb but if the disturbance is moved to Hc, which is only slightly
below, then the base pressure is strongly reduced. The other region of base pressure recovery
is measured on the top face especially for xC∗ < −0.5. Nevertheless, Cpb does not take
into account the proper drag of the disturbance. When the cylinder is in a high momentum
stream, an additional drag is expected so the base pressure recovery related to the positions
xC

∗ < −0.5 are certainly not cases of global drag reduction.
As in the case of the vertical cylinder in section 7.2.1, the sensitivity maps visible in

figure 7.7 are correlated; these dependences are now presented.

Correlations between the global quantities of the wake

Scatter plots of the data associated with (xC
∗, zC

∗) ∈ [0.21, 1.67] × [0.15, 1.30] are
now presented in figure 7.8 to study the correlations between the global quantities visible
in figure 7.7. Note that, as in section 7.2.1, the considered domain is cleared of the
uncertainty regions ascribed to local effects of the cylinder and unsustainable disturbance
assumption.
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Figure 7.7. Effect of the horizontal control cylinder on the pressure on the body:
∂Cp/∂z

∗, (a); Czp, (b); χ, (c); Cpb, (d). Thick lines are Ux contours of the natural flow:
· · ·, Ux

∗ = 0.1; —, 0.5; - - -, 0.9.
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Figure 7.8. Scatter plots of Czp vs. ∂Cp/∂z
∗ (a) and of Czp vs. Cpb (b) for the horizontal

cylinder positions (xC
∗, zC

∗) ∈ [0.21, 1.67] × [0.15, 1.3]: black, χ < 0.1; red, χ > 0.1. The
dashed line is the linear fit Czp = −0.083− 0.26 ∂Cp/∂y

∗. The cross is the natural value.

First, an affine dependence between ∂Cp/∂z
∗ and Czp is found (see figure 7.8a). The

data superimpose on the fit

Czp = −0.083− 0.26
∂Cp

∂z∗
. (7.2)

Contrary to the dependence between the side force and the pressure gradient in the y direc-
tion presented in figure 7.4(a), a negative lift coefficient is obtained for ∂Cp/∂z

∗ = 0; this
point may be ascribed to the ground proximity. As a consequence, the pressure gradient
in the z direction reproduces the modifications of the lift but the presence of the ground
introduces an offset.

The relationship between Cxp and Czp is studied depending on the value of χ. In fig-
ure 7.8, degrees of asymmetry χ larger than 0.1 in red are associated with bistable flows
while the data with χ < 0.1 in black correspond to flows without bi-stability. Figure 7.8(b)
shows that the bistable data are concentrated around the natural point. On the contrary,
the stable data are measured in a wide range of base pressure (Cpb ∈ [−0.22,−0.17]) pre-
senting a parabolic-like dependence towards the lift coefficient. The positions of base pres-
sure recovery are associated with Czp close to the natural value whereas the base pressure
decreases are reported for significant lift modifications and then important recirculation
asymmetries in the z direction (large values of |∂Cp/∂z

∗|). These latter cases often corre-
spond to the creation of a curved jet into the recirculation region as visible in figure 7.6(c).
More generally, the scatter plot in figure 7.8(b) confirms that the domain of drag reduction
associated with the horizontal control cylinder is limited and only correspond to few precise
configurations. Hence, this drag reduction domain is less robust than the one observed in
section 7.2.1 with a vertical disturbance.
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7.3 Synthesis

After presenting the probable mechanisms leading to the suppression of the bi-stability
in section 7.3.1, the dependencies between the drag and the cross-flow forces are analyzed
in section 7.3.2. Then, section 7.3.3 quantifies the drag ascribed to the bi-stability and
discusses more generally about the suppression of the symmetry breaking modes as a control
strategy for drag reduction of three-dimensional bluff body.

7.3.1 Suppression of the bi-stability

In section 7.2, it is found that the natural bistable behavior of the wake is suppressed
by the control cylinders in two different cases:

• for the vertical cylinder in the center of the recirculation, i.e. near the case Vc;

• for the horizontal cylinder in the top and bottom mixing layers like the configurations
Ha, Hb and Hc.

The mechanisms responsible for the suppression of the bi-stability for these configurations
may be detailed from the results of chapter 6. Indeed, this experimental work evidences
that the y instability (responsible for the bi-stability) corresponds to antisymmetric per-
turbations in the y directions and to symmetric ones in the z directions.

From this statement, one can interpret the vertical cylinder in the plane y∗ = 0 as a
symmetric forcing of the flow, maybe due to the boundary condition imposing uy

∗ = 0

on its surface. However, from figure 7.3(c), it is clear that the receptivity of the flow is
not uniform in the plane y∗ = 0: for example, forcing the symmetry at the end of the
recirculation bubble is useless (see configuration Vd).

On the other hand, the horizontal cylinder in the top and bottom shear layers is likely to
introduce an asymmetry in the z direction, preventing the development of the y instability.
This interpretation is confirmed by the comparison of figures 7.6(a, c) to figure 7.6(d). As
a result, in these cases, the suppression of the bi-stability seems associated with a breaking
of the relative top – bottom symmetry of the recirculation bubble observed in the natural
wake.

7.3.2 Drag of the disturbed wakes

The dependences between the drag and the cross-flow forces are now considered through
the effects of the vertical and horizontal disturbances. Finally, a synthesis is provided in a
third step.

Drag due to forces in the y direction

In section 7.2.1, it is shown that the vertical disturbance generates modifications of drag
and side force while the modifications of lift are negligible. Thus, the data obtained using
the vertical disturbance are relevant to study the dependences between the side force and
the drag. To do so, two different domains of disturbance positions are considered:

• the domain D1 for (xC
∗, yC

∗) ∈ [1.08, 1.46]× [−0.21, 0.21];

• the domain D2 for (xC
∗, yC

∗) ∈ [0.70, 0.87]× [−0.49, 0.49].

These two domains are presented in figures 7.9(a,b) which are parts of the sensitivity maps
of Cyp and χ (extracted from figures 7.3b,c). In both domains, when the disturbance goes
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Figure 7.9. (a,b) Domains of vertical control cylinder positioned in the sensitivity maps of
Cyp and χ: —, D1; - - -, D2. (c) Cyp vs. Cxp for vertical control cylinder positions in the
domains D1 (red) and D2 (black); ×, natural values of the asymmetric states; - - -, 2nd order
polynomial fit.

from the negative to the positive values of yC∗, the wake goes from a mean side force of
about −0.025 to +0.025 which are imputed to state #P and #N respectively. The difference
between both domains lies in the degree of asymmetry χ for yC∗ ≈ 0. In the domain D1,
χ is constant at first order; the position yC

∗ of the cylinder selects the proportion of the
states #P and #N. The equiprobability is obtained for yC∗ = 0 so that the wake is clearly
bistable for yC∗ ≈ 0 (like Vd in figure 7.2d). On the contrary, in the domain D2, the degree
of asymmetry χ diminishes continuously as the mean lateral force tends to 0 and the wake
bi-stability is suppressed for yC∗ ≈ 0 (like Vc in figure 7.2c).

The correlation between Cyp and Cxp is revealed in the scatter plot in figure 7.9(c). De-
pending on the domain (D1 or D2), two different drag vs. side force behaviors are observed.
First, in the domain D1 (red dots), the drag is measured constant at Cxp = Cxpn±0.002 and
independent of the side force in the whole range of Cyp. On the other hand, the drag from
the domain D2 (black dots) depends on the side force; the minimum of drag is measured
for Cyp ≈ 0 and progressively increases with |Cyp| leading to a parabolic dependence. As a
result, an additional drag proportional to Cyp

2 seems ascribed to the side force for control
cylinders in the domain D2; this drag contribution is denoted by Cy

xp.

The fact that such a quadratic dependence is not observed in the domain D1 can be
explained as follows. When located in the domain D1, the disturbance gradually modifies
the repartition between the states #P and #N so that all the values of the lateral force
between −0.025 and 0.025 are explored. However, the side force is always close to the level
of the current asymmetric states, i.e. |cyp| ≈ 0.025. Thus, if the presence of a side force
generates an additional drag, an alternating side force even nil in average must equally
produce additional drag.

The mean square of the lateral force ⟨cyp2⟩ measures both the steady and unsteady
contribution in the y direction. The scatter plot in figure 7.10 shows a linear correlation
between Cxp and ⟨cyp2⟩, confirming the previous analysis. Indeed, the data associated with
both the domain D1 and D2 now follow the same trend that can be fitted by the affine law:

Cxp = 20 ⟨cyp⟩2 + 0.18. (7.3)
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Figure 7.10. Scatter plot of Cxp vs. ⟨cyp2⟩ for vertical control cylinder positions in the
domains D1 (red) and D2 (black); - - -, affine fit.

Consequently, the quantification of the total pressure drag Cxp contains an additional con-
tribution of the side force denoted Cy

xp which must take into account both the mean side
force and its fluctuations:

Cxp − Cxp1 = Cy
xp = ay⟨cyp2⟩ = ay

[
C2

yp + Std(cyp)
2
]
, (7.4)

with ay ≈ 20. Cxp1 is the pressure drag that can be achieved for a steady nil side force.
At this stage, it is important to mention that the measurement of ⟨cyp2⟩ suffers from

a lack of accuracy partially because the statistics are not fully converged. This is visible
through the dispersion of the data along the vertical axis in figure 7.10. Hence, the value
of ⟨cyp2⟩ tends to be overestimated, independently of Cxp. So, a non-negligible part of
⟨cyp2⟩ is not responsible for induced drag; in other words, Cxp1 in equation (7.4) can not be
evaluated at 0.18 as it would be expected from the fit (7.3). However, this does not affect
the following analyses since only the slope of the affine fit (7.3) is used.

Drag due to forces in the z direction

The drag vs. lift dependence is now considered using the data presented in
section 7.2.2, when the wake is disturbed by the horizontal control cylinder at
(xC

∗, zC
∗) ∈ [0.21, 1.67]× [0.15, 1.30] (data plotted in figure 7.8). In this domain, the data

present evolutions of lift but also of side force since there are stable and bistable cases.
To get rid of the additional drag introduced by the fluctuations of side force (see previous
paragraph) and obtain the drag evolutions ascribed to the lift only, one may subtract the
term Cy

xp = 20⟨cyp2⟩. Even if this term certainly overestimates the drag ascribed to the
side force, it should not alter the drag vs. lift dependence: the important point is that the
overestimation is independent of Czp.

In figure 7.11 are plotted the dependence between (Cxp−Cy
xp) and Czp. Contrary to the

scatter plot in figure 7.8(b), the data now present a global coherence: both the stable and
bistable data superimpose on the same master curve. The dependence can be approximated
by the 2nd order polynomial fit

Cxp − Cy
xp = Cxp0 + Cz

xp, (7.5)

with
Cz

xp = az(Czp − Czp0)
2 (7.6)

and az = 9.9, Czp0 = −0.079. As a result, Cxp0 corresponds to the minimal value of
drag that can be achieved for a stable wake with optimal cross-flow forces but its accurate
evaluation is impossible using the fit (7.5) due to the overestimation of Cy

xp. In parallel, it
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Figure 7.11. Dependence between Cxp − Cy
xp and czp

2 for horizontal control cylinder po-
sitions (xC

∗, zC
∗) ∈ [0.21, 1.67] × [0.15, 1.30] sorted on the value of χ: red, χ > 0.10;

black, χ < 0.10; - - -, 2nd order polynomial fit.

is observed that Czp0 ̸= 0: the optimal drag point does not correspond to the minimum of
Czp

2 contrary to what is found for the force in the y direction. It seems rather to be related
to the best homogeneity of the base pressure distribution: ∂Cp/∂z

∗ ≈ 0 for Czp0 ≈ −0.08.
Now that the influence of each of the cross-flow forces on pressure drag are characterized,

a synthesis is presented with a confrontation to notions of induced drag for lifting airfoils.

Interpretation of the drag contributions

The quadratic dependencies between drag and side forces presented in the two previous
paragraphs are reminiscent of the notions of induced drag commonly used in aeronau-
tics (Batchelor, 2002). For an airfoil of lift coefficient CL, the total drag coefficient CD is
usually separated into a parasitic drag and an induced drag (which is part of the pressure
drag) that relies on three-dimensional effects. This term of induced drag is associated with
the lift which can also be ascribed to the pair of counter-rotating vortices downstream of
the wingtips. Denoting CD0 and CDi the coefficients associated with the parasitic and the
induced drag respectively, the total drag coefficient verifies:

CD = CD0 + CDi, (7.7)

with
CDi = αLCL

2 (7.8)

and αL depending on the geometry of the wing and more precisely, on the force distribution
along the span.

In the framework of car aerodynamics, the results of Ahmed et al. (1984) demonstrates
the critical impact of the three-dimensional flow structures on the drag. For afterbody slant
angles ϕ ∈ [13◦, 25◦], an increase of drag associated with the development of an intense pair
of counter-rotating vortices is reported (Beaudoin et al., 2004). Exploring the effect of
flaps mounted on the afterbody in the 25◦ case, Beaudoin & Aider (2008) prove the strong
correlation between the drag, the lift and the pair of counter-rotating vortices.

The theory of induced drag in relation (7.8) can be extended to the analysis of the
aerodynamic forces in a road vehicle configuration considering the lift force but also the side
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force. Moreover, both the steady and unsteady side force must be taken into account due to
the bistable behavior. Now, there is no apparent reason for considering the fluctuations of
forces from bi-stability only. Even if it could not be evidenced in this work, the fluctuations
of cross-flow forces related to oscillating global modes and to turbulent activity (at least at
large scales) may logically be added, in both the y and z directions. As a consequence, the
following expression for the pressure drag is suggested:

Cxp = Cxp0 + Cxpi, (7.9)

with
Cxpi = αy⟨cyp2⟩+ αz⟨(czp − Czp0)

2⟩. (7.10)

This expression (7.10) relies on three parameters: αy, αz and Czp0. As previously
mentioned, Czp0 is certainly an offset due to the presence of the ground and hence it
is likely to rely on the precise configuration of the vehicle such as the ground clearance.
However, this optimal lift correspond to the best homogeneity of the base pressure in the
z direction (see figure 7.8a) which could be a general rule. On the other hand, extending the
interpretation of αL in aeronautics, the coefficients αy and αz are expected to depend on
the force distribution in the y and z directions. In the present experiment, αy is thought to
be close to ay because ay = 20 is obtained in equation (7.3) from the sensitivity analysis in
the domains D1 and D2 only. There, the cylinder is out of the lateral shear layers and it only
controls the natural circulation around the geometry. So Cy

xp = 20⟨cyp2⟩ is the drag induced
by the natural lateral fluctuations of the wake (including bi-stability), independently of the
control cylinder. On the contrary, it is clear that the horizontal cylinder produces a lift on
the body, especially when it is located in the mixing layers. Consequently, the measurement
of az in equation (7.6) is associated with the system comprised of the main geometry and
the disturbance while αz is related to the main geometry only. In other words, one expects
αz ̸= az.

7.3.3 Stabilization of the symmetric state as a control strategy

An estimation of the additional drag due to the bi-stability of the natural wake can
be provided by the sensitivity analysis. ⟨cyp2⟩ is measured at 9.0 10−4, 8.8 10−4 and
8.9 10−4 for the states #P, #N and the mean symmetric flow respectively; these values
give an average of Cy

xp = 0.018. However, the direct application of equation (7.3) with
Cy

xp = 20⟨cyp2⟩ may over-estimate the contribution of the bi-stability so Cy
xp < 0.018. Now,

an inferior limit can be obtained from the results on the natural flow (see chapter 5). Using
a conditional averaging technique, the side force is measured at |Cyp| = 0.021 for both
mirror states. Hence, it is obtained that Cy

xp > 20Cyp
2 ≈ 0.008 and this inferior bound is

free from the over-estimation of ⟨cyp2⟩. As a conclusion, the drag related to the bi-stability
is estimated between 0.008 and 0.018, i.e. between 4% and 9% of the total pressure drag.

In chapter 4, it is found that the origin of the bi-stability is ascribed to a pitchfork
bifurcation of the laminar wake. For Re > 340, the steady symmetric flow disappears and
the wake solutions are two mirror steady asymmetric states. At large Reynolds numbers,
turbulent fluctuations allow the exploration of the two solutions but the symmetric flow
is never observable in a strict sense. The effect of the vertical cylinder placed at the
center of the recirculating bubble (see figure 7.2c) might be interpreted as a control of
the reminiscences of the steady reflectional symmetry breaking mode, which renders the
symmetry of the wake.

Now, steady pitchfork bifurcations are common feature of three-dimensional flows; for
instance Pier (2008) evidences that for a sphere, the loss of axisymmetry is a source of
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additional drag. Hence, the stabilization of this steady symmetric regime offers a relevant
control strategy for drag reduction of three-dimensional bluff bodies, even at large Reynolds
numbers.
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7.4 Concluding remarks

Using horizontal and vertical perturbations, the sensitivity analyses of the separated
flow past the squareback Ahmed geometry reveal the receptive zones of the wake. First, a
disturbance that breaks the reflectional symmetry of the setup selects one of the two asym-
metric states depending on both the streamwise and lateral positions of the perturbation.
Besides, the receptive region of the bi-stability to a steady symmetric forcing is found in
the center of the recirculation region. These positions of vertical cylinder lead to a stable
centered wake with an increased recirculation length and a base pressure recovery. More-
over, the sensitivity maps obtained with a vertical control cylinder show strong similitude
with the ones presented in chapter 3. Thus, the bi-stability of these two geometries is very
likely to result from the same physics. Given the generality of these bistable phenomena
(see chapter 6), the high receptivity of the center of the recirculation to a symmetric forcing
may be a widespread characteristic of three-dimensional separated flows.

On the other hand, the sensitivity maps obtained with the horizontal control cylinder
indicate that the receptivity is concentrated in the upper and lower shear layers. Significant
lift modification are reported, especially when the control cylinder generates a jet from the
high momentum flow to the recirculation region. Such a wake asymmetry in the z direction
is likely to prevent the development of the y instability responsible for the bi-stability
which results, in some cases, in drag reduction.

From these sensitivity analyses, correlations between the drag and the cross-flow forces
are identified. Extending the formalism induced drag in aeronautics, a quantification of the
impact of the cross-flow forces on the pressure drag is suggested. It is found that both the
steady and unsteady cross-flow forces must be taken into account. The optimal point in
terms of induced drag is obtained for a steady force at Cyp = 0 and Czp = −0.08. The fact
that the optimal lift is negative should be ascribed to the ground proximity and may differ
from an experiment to another; however, these forces correspond to the best uniformity in
the base pressure distribution which is very likely to be a general result.

As a consequence, it is confirmed that the bi-stability of the natural flow is responsible
for part of the drag, estimated between 4% to 9% of the total pressure drag. This evaluation
quantifies the potential of drag reduction on the Ahmed geometry by using control devices
able to force a centered wake that is steady at long time-scales.

More generally, one can wonder if the drag dependence on the fluctuations of cross-flow
forces stands for non-bistable wakes at high Reynolds number. This question may motivate
future studies which could lead to the definition of new strategies of drag reduction.

These dependences between the drag and the cross-flow forces are now studied by ad-
ditional experiments of flow orientation at the base separation in chapter 8.



Chapter 8

Flow deviation at the top and

bottom of the base

Most of these results are published in Grandemange et al. (2013c).
This chapter clarifies the link between the angles of the flow separations at the trailing

edge, the wake topologies and the aerodynamic forces. In particular, it gives an inter-
pretation of the quadratic dependence between the drag and the lift that is reported in
chapter 7.

Abstract

The dependences between the drag and the cross-flow forces evidenced previously is
highly used in the developments of vehicles. By orientating of the flow at the trailing edge,
the manufacturers set empirically the angles of the flow separations on the rear of the vehicle
to reach the drag optimum. Using flaps at the end of the top and bottom faces of the Ahmed
geometry at ReH = 7.4 105, a parametric study regarding their orientations is performed
from pressure and force measurements as well as particle image velocimetry. When the
orientation of the bottom flap is fixed, the variations of the top slant angle indicate a
quadratic dependence of drag vs. lift. This relationship presents self-similarities for all the
angles of bottom flap. It is furthermore observed that the lift is an affine function of both
angles and the drag is a second order polynomial containing a coupling term between the
two flap orientations. The evolution of the drag, depending on both angles is discussed.
The contributions of the wake size, of the lift induced drag and of the local drag induced
by the inclination of the flaps are identified. As a logical progression of this work, these
drag sources are considered at industrial scales in the next chapter.
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8.1 Experimental setup

The studied bluff body is the squareback model used in Ahmed et al. (1984). The total
length of the body is L = 1044 mm, the height H and width W of the base are 288 mm

and 389 mm respectively. The four supports are cylindrical with a diameter of 30 mm and
the ground clearance is set at 50 mm in order to match the reference experiments. The
body is placed in the PSA in-house wind tunnel (see Gohlke et al., 2007, for a description
of the facility). This open-loop wind tunnel has a 6 m long test section and a rectangular
cross-section 2.1 m high and 5.2 m wide. The turbulence intensity is 1.3%. The body is
placed on an up-raised plate as depicted in figure 8.1(a). The boundary layer that develops
on this plate (without the body) is turbulent and its thickness is δ99 = 24± 1 mm at 1.0 m

downstream of the NACA leading edge. The free-flow velocity is U0 = 40 m s−1 and the
Reynolds number based on the height of the geometry is ReH = U0H/ν = 7.4 105.

The flow around the Ahmed body is controlled by two flaps mounted downstream of the
top and bottom faces of the model as depicted in figure 8.1(b). The streamwise length of the
flaps is 50 mm, their cross-flow length matches the width of the geometry and their thickness
is 2 mm. The slant angles can be controlled in the range (ϕT , ϕB) ∈ [−12◦, 17◦]×[−17◦, 12◦];
these ranges remain reasonably small to keep the flow attached on the flaps in all the
configurations. The inclinations of the flaps are set with a precision better than 1◦. The
different combinations of angles are presented in figure 8.1(c).

The drag and the lift are obtained using an aerodynamic balance placed under the
elevated floor and attached to the four body supports. The body supports go through the
elevated floor without any contact so that only the fluid force exerted on the Ahmed body
is measured. Reference force measurements are performed before and after each blowing
to check the reliability. Each measurement consists in five samples of 60 s at the frequency
of 50 Hz. The accuracy of Cx and Cz in the conditions of the experiments is 0.001 and
0.002 respectively.

The static pressure on the body is measured at 47 locations through 0.8 mm diameter
holes pierced around the geometry in the reflectional plane of symmetry. The pressure is
obtained using a 64 port HD miniature pressure scanner and a SCANdaq 8000 interface;
the measurement is based on the time-averaged value obtained with one sample of 60 s;
the precision is better than 4 Pa. To locate the taps in the plane y∗ = 0, the curvilinear
abscissa s is used; its origin is taken in the middle of the base and goes positive on the top
face.

In addition, wake analyses are made from PIV measurements. The system is able to
perform stereoscopic PIV to obtain the three components of the velocity in a plane. It
is comprised of a Quantal Big Sky Laser (dual pulse Nd:YAG) placed above the model
as depicted in figure 8.1 and two Dantec CCD cameras (FlowSense MkII, 4 Mpx). The
setup acquires image pairs at a rate of 10 Hz; each acquisition records 400 image pairs
per camera. The flow is seeded by droplets of olive oil. The interrogation window size
for the cross-correlation processing of the image pairs is 32 px × 32 px; the corresponding
spatial resolution is 2% of the body height. The mean velocities are taken into account
only when more than 80% of the 400 measurements are valid vectors. Note that the flaps
are transparent; this allows velocity measurements close to the base.
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Figure 8.1. (a)–(b) Experimental setup of the model; the dimensions are in mm; O sets the
origin of the coordinate system; the dihedral angles ϕT and ϕB are displayed positive and
negative respectively. (c) Couples of slant angles (ϕT , ϕB) studied.
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Figure 8.2. (a) Drag (+) and lift (⃝) as a function of the top slant angle ϕT for ϕB = 0◦;
- - -, 1st and 2nd order polynomial fits of drag and lift respectively. (b) Drag vs. lift as a para-
metric function of the top slant angle ϕT for ϕB = 0◦: +, experimental data; - - -, 2nd order
polynomial fit.

8.2 Evidence of a drag optimum

In this section, the force measurements, the pressure levels on the body and the flow
topologies are depicted varying the top and bottom slant angles. First, the effect of the
orientation of the top flap ϕT in the case ϕB = 0◦ is considered in section 8.2.1. Then, the
analyses are extended to the different bottom angles in section 8.2.2. Finally, the drag and
the lift are presented in the bidimensional domain (ϕT , ϕB) in section 8.2.3.

8.2.1 Study of the cases φ
B
= 0

◦

The inclination of the bottom flap is fixed at ϕB = 0◦. The results of the drag and lift
coefficients associated with the different top flap angles are presented in figure 8.2(a). As
reported by Littlewood & Passmore (2010), the lift is an affine function of the inclination
of the top flap. It can be fitted by

Cz = 0.600ϕT − 0.143, (8.1)

with ϕT in radians.
On the other hand, the drag presents a minimum for ϕT = 6◦ with a 1.8% reduction

in comparison to the case (ϕT , ϕB) = (0◦, 0◦). The experimental data follows a 2nd order
polynomial fit given by

Cx = 0.243 + 0.457 (ϕT − 0.110)2, (8.2)

with ϕT in radians.
Similar parabolic-like dependences toward ϕT for the drag are presented in the exper-

iments of Ahmed et al. (1984) and Littlewood & Passmore (2010). From these results,
a clear quadratic dependence between the drag and the lift is reported. The relationship
plotted in figure 8.2(b) is given by

Cx = 0.244 + 1.242 (Cz + 0.083)2. (8.3)
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Figure 8.3. Pressure distribution in the plane y∗ = 0 around the whole geometry (a) and
focused on the afterbody (b) for ϕB = 0◦ and different ϕT : —, ϕT = 6◦; - - -, ϕT = 0◦;
· · ·, ϕT = −6◦.

These force evolutions correspond to modifications of the pressure distribution on the
model which are presented in figure 8.3. As visble in the global pressure distribution in
figure 8.3(a), the effect of the flaps on the pressure is limited to the afterbody, these local
effects being displayed in figure 8.3(b). The angle ϕT significantly affects the pressure on the
top face before separation as well as the base pressure distribution. Slight variations in the
pressure levels on the bottom face are also observed. These pressure levels are consistent
with the measurements of drag and lift presented in figure 8.2.

The velocity measurements in the plane y∗ = 0 are presented in figure 8.4 for the
three configurations studied in figure 8.3: ϕT = 6◦, 0◦ and −6◦ with ϕB = 0◦. The
direct consequence of manipulating the separation angle of the top dividing streamline is
to modify the vertical size of the recirculation region (vertical distance between the two
dividing streamlines). The case in figure 8.4(a) has the lower drag and the wake is narrower
while the case in figure 8.4(c) the wake is thicker and the drag higher. This effect can be
quantified by measuring the height of the recirculation bubble at x∗ = 0.5, it is reduced
by 3% in the configuration of figure 8.4(a) and increased by 4% in the case of figure 8.4(c)
compared to that of the aligned flaps configuration in figure 8.4(b).

The orientation of the backward flow in the middle of the recirculation region, i.e. at
x∗ ≈ 0.8 and z∗ ≈ 0.6, is equally changed which may be confronted to the base pressure
gradient in the z direction visible in figure 8.3(b). The lowest pressure on the base is
measured at the opposite side of the mean backward flow: for example, the flow presented
in figure 8.4(a) presents a backward flow oriented toward the ground and the base pressure
gradient in the z direction is negative (see figure 8.3b). Such a correlation between the
asymmetry of the recirculating flow and the base pressure gradient is equally observed in
the previous chapters. The direction of the backward flow is also related to the relative
position of the saddle point at the end of the recirculation bubble: it is centered for ϕT = 0◦

whereas it goes close to the upper recirculation structure for ϕT = −6◦ and to the lower
one for ϕT = 6◦. The optimal drag configuration for ϕB = 0◦ is measured at ϕT = 6◦,
the velocities and pressure measurements show that this case does not correspond to the
best top – bottom symmetry of the recirculation region: the saddle point at the end of
the recirculation closure is obviously off-centered (see figure 8.4a) and the base pressure
gradient in the z direction is negative (see figure 8.3b) in comparison to the case ϕT = 0◦.

The influence of the bottom flap angle on the previous results is now considered in
section 8.2.2.
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Figure 8.4. Velocity measurements in the plane y∗ = 0 for ϕT = 6◦ (a), ϕT = 0◦ (b) and
ϕT = −6◦ (c) with ϕB = 0◦; the crosses locate the saddle points. Due to the laser sheet
diffusion and the reflections on the transparent flaps, the measurements are missing in their
vicinity.

8.2.2 Study varying φ
T

for different φ
B

By varying the top flap angle ϕT , the dependences between the lift and the drag for
different angles ϕB are plotted in figure 8.5. For each value of ϕB , a quadratic relationship
is found between Cx and Cz; the results are similar to the case ϕB = 0◦ presented in
section 8.2.1. Thus, as expressed in equation (8.3), the data varying ϕB at constant ϕT
follows

Cx = Cx0 + α (Cz − Cz0)
2, (8.4)

Cx0, Cz0 and α being the three parameters defining each 2nd order polynomial fit.
Figure 8.6 presents the data centered on their respective value of Cx0 and Cz0. For all

the values of ϕB , the data superimpose well on the master curve

Cx − Cx0 = α (Cz − Cz0)
2, (8.5)

with α = 1.25. Therefore, the curves visible in figure 8.5 are self-similar and α is independent
of the angle of the bottom flap ϕB . So, the relationship between the lift and the drag are
perfectly defined from the two parameters Cx0 and Cz0. Besides, it is observed that the
optimal angle of the top flap ϕT is a function of the bottom angle ϕB . This indicates that
the optimal drag configuration results from a coupling between the two angles and not from
independent optimization regarding ϕT and ϕB .

The drag and the lift of each optimum (Cx0 and Cz0) are now studied for the different
values of ϕB . Figure 8.7(a) displays the dependence between ϕB and Cz0. The optimal lift
linearly depends on the bottom slant angle according to

Cz0 = 0.580ϕB − 0.079, (8.6)
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Figure 8.5. Drag vs. lift as a function of the top angle ϕT for different ϕB : +, ϕB = 6◦;
⃝, ϕB = 0◦; ⋄, ϕB = −6◦; △, ϕB = −12◦; ▽, ϕB = −17◦ ; - - -, 2nd order polynomial fits.

Figure 8.6. Drag vs. lift for different values of ϕB centered on their respective value of
Cx0 and Cz0: +, ϕB = 6◦; ⃝, ϕB = 0◦; ⋄, ϕB = −6◦; △, ϕB = −12◦; ▽, ϕB = −17◦ ;
- - -, 2nd order polynomial fit of all the centered data.
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Figure 8.7. (a) Cz0 as a function of the bottom slant angle ϕB : +, experimental data;
- - -, 1st order polynomial fit. (b) Cx0 vs. Cz0 as a function of the bottom angle ϕB :
+, experimental data; - - -, 2nd order polynomial fit.

Figure 8.8. Velocity measurements in the plane y∗ = 0 for ϕT = 12◦ and ϕB = −6◦ (a, lower
drag configuration) and for ϕT = 12◦ and ϕB = −17◦ (b); the crosses locate the saddle
points.

with ϕB in radians.
On the other hand, the optimal drag Cx0 presents a quadratic evolution referring to Cz0

given by

Cx0 − Cx opt = αopt (Cz0 − Cz opt)
2, (8.7)

with αopt = 1.14, Cx opt = 0.238 and Cz opt = −0.155. This latter relationship can be seen
in figure 8.7(b). So, Cx opt is the optimal drag point considering both parameters ϕT and
ϕB while Cz opt is the corresponding lift. This optimal configuration is expected for the flap
angles ϕT opt = 9.2◦ and ϕB opt = −7.4◦.

Experimentally, the best configuration in terms of drag is obtained for the case
(ϕT = 12◦, ϕB = −6◦) with Cx = 0.240 and Cz = −0.133. The associated drag and
the corresponding flap angles are fairly close to Cx opt and to (ϕT opt, ϕB opt) given the pre-
cision of the force measurement and the limited resolution of the parameters ϕT and ϕB
(see figure 8.1c). The corresponding velocity field is presented in figure 8.8(a). The mean
backward flow is mostly oriented along x and the saddle point is centered in the z direction
at the end of the recirculation. The wake height at x∗ = 0.5 is reduced by 9% in comparison
to the one associated with the case ϕT = ϕB = 0◦ presented in figure 8.4(b).

However, it is worth noting that the mean wake topology in the plane y∗ = 0 is not
sufficient to understand the drag evolutions. Indeed, the case ϕT = 12◦ and ϕB = −17◦
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Figure 8.9. Contours of streamwise vorticity Ωx
∗ in the plane x∗ = 0.6: ϕT = 0◦ and

ϕB = 0◦, (a); ϕT = 12◦ and ϕB = 6◦, (b); ϕT = 12◦ and ϕB = −12◦, (c). The continuous
and dashed lines are respectively positive and negative values; the contour interval is 2; the
contour 0 is not plotted.

has an even thinner wake1 (see figure 8.8b) but it still presents a larger drag coefficient
(Cx = 0.248) than the case (ϕT = 12◦, ϕB = −6◦).

The inclination of the top (bottom respectively) flap certainly lead to pressure differences
between the top (bottom respectively) face and the side faces upstream of the base (see
figure 8.3b). As a result, streamwise vortices are likely to develop from the lateral edges
of the flaps. Such structures, already suggested by Littlewood & Passmore (2010) must be
responsible for a part of the drag and might play a significant role in the drag optimization
using such flaps.

To evidence this point, the contours of streamwise vorticity in the plane x∗ = 0.6 are
presented in figure 8.9 for different configurations: (ϕT = 0◦, ϕB = 0◦), (ϕT = 12◦, ϕB = 6◦)

and (ϕT = 12◦, ϕB = −12◦). In the case ϕT = ϕB = 0◦ presented in figure 8.9(a), there
are no observable vortices; however, as soon as the flaps are inclined, intense vortices are
measured in the near wake downstream of the side edges of the flaps (see figures 8.9b–c);
the sign of the vorticity depends on the flap orientation. When the signs of ϕT and ϕB
are identical, the vortices from each side of the model (y∗ > 0 or y∗ < 0) are co-rotating
(see figure 8.9b) whereas, when the signs of the flap angles are different, the vortices are
counter-rotating (see figure 8.9c).

8.2.3 Study in the domain (φ
T
,φ

B
)

To go further in the analyses, the measurements of lift and drag are considered in the
bidimensional domain (ϕT , ϕB). The experimental lift as a function of the angles ϕT and

1This is the optimal top angle for φB = −17◦.
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Figure 8.10. Lift depending on ϕT and ϕB : experimental data (a) and affine fit given in
equation (8.8) (b). The contour interval is 0.02.

ϕB is displayed in figure 8.10(a). The affine dependence on the top slant angle, depicted in
figure 8.2 for the case ϕB = 0◦, is confirmed for all the values of ϕB . Besides, figure 8.10(a)
proves that the lift is equally an affine function of ϕB for all the values of ϕT . Thus, it can
be fitted by

Cz = −0.135 + 0.566ϕT + 0.858ϕB , (8.8)

with ϕT and ϕB in radians. This affine fit is plotted in figure 8.10(b).
Similarly, the drag measurements in the domain (ϕT , ϕB) are plotted in figure 8.11(a).

The data confirm the presence of the minimal drag configuration for ϕT ≈ 10◦ and
ϕB ≈ −10◦ presented in section 8.2.2. In addition, the quadratic evolution of the drag
regarding ϕT (see section 8.2.1) is recovered and a similar dependence toward ϕB is ob-
served. Now, the results detailed in section 8.2.2, in particular equations (8.4) and (8.7),
lead to the drag expression

Cx = Cx opt + α (Cz − Cz0)
2 + αopt (Cz0 − Cz opt)

2. (8.9)

Since the dependences of Cz and Cz0 toward ϕB and ϕT are given in equations (8.6)
and (8.8), the drag coefficient is obtained as a function of the top and bottom angles only.
The result is displayed in figure 8.11(b); it gives

Cx = 0.248

− 0.079ϕT + 0.062ϕB

+ 0.400ϕT
2 + 0.480ϕB

2 (8.10)

+ 0.393ϕT ϕB .

with ϕB and ϕT in radians. All of the drag trends observed in the experiments are found
in equation (8.10). Besides, it is worth noting that the minimum of drag is not particularly
sensitive to the angles ϕT and ϕB : a low value of drag, close to Cx opt, can be obtained in a
reasonably wide range of parameters around (ϕT opt, ϕB opt). Finally, the term proportional
to ϕT ϕB in equation (8.10) corresponds to the coupling effect of the top and bottom slant
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Figure 8.11. Drag depending on ϕT and ϕB : experimental data (a) and law given in
equation (8.10) (b). The contour interval is 0.002.

angles. This might be related to the fact that the inclination of the top flap leads to slight
variations of pressure on the bottom face as evidenced in figure 8.3(b). So it may alter the
effect of the bottom flap; reciprocally, the orientation of the bottom flap is likely to affect
the influence of the top one.

Now that the dependences of the drag and the lift on the two flap orientations are
presented, the mechanisms responsible for the selection of these forces are discussed in
section 8.3.
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8.3 Identification of the drag contributions

As mentioned in section 8.2.2, the height of the separated region is modified by the
inclination of the flaps. For a given two dimensional bluff body, one would expect the drag
to diminish as the height of the separation is reduced. This is equivalent to the bluffness
effect presented in section 1.2.2 where the bluffness is defined as the ratio of the separation
width to the body size. Hence, the rule the more bluff the body, the larger the drag is not
relevant anymore due to three-dimensional effects.

The quadratic relationship between the drag and the lift observed in figure 8.5 is remi-
niscent of the trends obtained through sensitivity analyses in chapter 7. In the present case,
the additional drag contribution due to the flaps can be explicitly introduced by rewriting
equation (8.10) as

Cx = Cxn

− 0.079ϕT + 0.062ϕB C1
+ 0.405 (Cz − Czn)

2 C2 (8.11)

+ 0.270ϕT
2 + 0.182ϕB

2. C3

where Cxn = 0.248 and Czn = −0.135 are respectively the drag and the lift of the case
ϕT = ϕB = 0◦ and Cz follows the affine function defined in equation (8.8). So, the three
terms C1, C2 and C3 account for the total drag contribution of the flaps. This expression
suggests the following decomposition: a linear contribution C1, an additional induced drag
C2 due to the lift introduced by the flaps2 and a quadratic contribution C3. These three
terms are plotted in figure 8.12 for the case of a fixed bottom flap at the optimal angle
ϕB opt = −7.4◦ and a variable top flap angle ϕT . When the top angle increases from −20◦,
the height of the separated region decreases gradually as illustrated in figure 8.4. In a
pure bidimensional context, this would have led to a monotonous drag decrease since the
bluffness is continuously reduced. The term C1 captures this trend; it should be interpreted
as a bidimensional contribution of the separated region to the drag introduced by the flaps.

The additional drag having three-dimensional origin are described by C2 and C3. Basi-
cally, they are associated to three-dimensional separations producing pairs of longitudinal
vortices in the wake. Their properties mainly result from the lift distribution on the ge-
ometry. In the case ϕT = ϕB = 0◦, a negative lift is observed but the vorticity field in
figure 8.9(a) does not reveal the corresponding longitudinal vortices. The reason may be
that they are hardly detectable because the lift is produced by a small pressure difference
between the bottom surface and top surface of the body separated by the body height.
So the corresponding pressure gradient is weak which induces large vortices, typically of
the size of the base, with low intensities. On the contrary, when a flap is inclined, the lift
is due to a variation of pressure concentrated on a region of the scale of the flap. This
intense pressure gradient on the sharp edges produces concentrated vortices as observed in
figure 8.9(b)–(c). In terms of drag quantification, the difference between equation (8.11)
and the expression of induced drag used in aeronautics is the contribution C3. This third
term corresponds to an induced drag introduced in the vicinity of the flap edges. Due to
the lifting property of the inclined flap, local three-dimensional separations occur on both
edges of the top and bottom flaps. The two longitudinal vortices released on the same side
of the Ahmed body (from the top and bottom flaps) can cancel out after merging in the
far wake. Thus, they are not necessarily associated with lift and they cannot be taken into

2This contribution contains the coupling term 0.393φTφB of equation (8.10).
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Figure 8.12. Drag decomposition Cx − Cxn = C1 + C2 + C3 as defined in equation (8.11)
(continuous lines, left scale) and lift (dashed line, right scale) for the configurations with
fixed ϕB = ϕB opt = −7.4◦ and varying ϕT .

account in C2. In other word, one may have four intense vortices, sources of part of the
drag (C3 > 0), without any lift-induced drag at all (C2 = 0) equivalently to a system of two
airfoils with opposite angles of attack.

The existence of a drag optimum by adjusting ϕB and ϕT might be understood as
follows. In figure 8.12, the drag optimum is obtained for ϕT = 9.2◦. From that optimal
configuration, the decrease of the bluffness (in order reduce C1) by increasing ϕT intensifies
the longitudinal vortices produced by the top flap while the term C2 is constant at first
order3; this results in a drag increase. On the other hand, decreasing ϕT , in order to reduce
the induced drag due to the top flap from the optimal configuration, produces a thickening
of the separated region so that the drag increases.

Eventually, to give a global view of these different drag sources, sketches interpreting
the flow topology of two configurations are presented in figure 8.13. The configuration for
ϕT = ϕB = 0◦ in figure 8.13(a) has a thick separated region at the rear of the body. The
optimal configuration (figure 8.13b) has a much thinner recirculation region. This thinning is
responsible of the substantial drag reduction compared to that of the natural configuration.
Nevertheless, the inclination of both flaps creates two pairs of intense longitudinal vortices
which are sources of additional drag.

3The evolutions C2 are negligible for φT ≈ 9.2◦ in front of the ones of C1 and C3 (see figure 8.12).
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Figure 8.13. Sketch of the flow topologies for the configuration ϕT = ϕB = 0◦ (a) and for
the optimal drag configuration (b).
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8.4 Concluding remarks

The inclination of two small flaps downstream of the top and bottom faces of the square-
back Ahmed geometry is proved to affect the drag, the lift as well as the flow topology.
When the bottom flap is fixed, the lift and the drag are respectively 1st and 2nd order
polynomial functions of the top flap angle. This leads to a quadratic dependence between
the drag and the lift. Such a drag vs. lift relationship is self similar for five different angles
of bottom flap. In the bidimensional domain (ϕT , ϕB), the lift is in good agreement with an
affine function of ϕT and ϕB . On the other hand, the drag can be expressed by a second or-
der polynomial of ϕT and ϕB plus a term proportional to ϕT ϕB . This coupling term shows
that the optimal top slant angle relies on the bottom flap orientation and the minimum of
drag cannot be achieved from independent optimization on the two slant angles.

From these results, a classification of three drag sources is suggested. First, the linear
term quantifies the interest of having a thin wake to limit the pressure drag from the base.
A second term corresponds to a notion of induced drag directly linked to the lift force
introduced by the flaps. However, these two drag contributors are not sufficient to explain
the whole drag and a contribution associated with the local development of streamwise
vortices from the side edges of the flaps is identified.

The presence of terms of induced drag points out the interest of having a certain ax-
isymmetry in the recirculation region, at both global and local scales. As in chapter 7,
the benefits of having a global top – bottom symmetry is evidenced by the quadratic de-
pendence between the drag and the lift. In parallel, these experiments prove that part of
the drag may also be related to local phenomena such as the formation of concentrated
streamwise vortices.

Before studying the flow past real vehicles in part III, similar experiments are now
considered at industrial scales in chapter 9.
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Road vehicle geometries





Chapter 10

Characterization of the flow over

real vehicles

Most of these results are published in Grandemange et al. (2014). The experiments are
performed in the context of the CNRT R2A1.

This chapter aims at clarifying the flow around two different vehicles with a blunt rear-
end: a commercial van and a compact crossover. It describes the flow separations and
the global mode dynamics in the wake of these cars. In parallel, general characteristics of
vehicle wakes are presented in appendix B using cavitation techniques.

Abstract

Using the same industrial wind tunnel as in chapter 9, two different cars with blunt
afterbodies are now studied at a Reynolds number of 4 106. The boundary layers and
the pressure distribution around the body are first characterized. Then, the wake is inves-
tigated through pressure and velocity measurements. Similar properties are obtained for
both vehicles; in particular the lowest pressure on the afterbody is reported on the lower
part of the base. In parallel, hot-wire anemometry is used to depict the dynamics of the
flow. The detached shear layer from the roof behaves as a free shear flow whereas the
flow from the underbody rather corresponds to an homogeneous shear flow. Additionally,
periodic dynamics are reported in the wake of one vehicle; they are associated with an an-
tisymmetric coupling of the lateral mixing layers. Hence, these results improve the general
comprehension of vehicle wakes before the approach of flow control presented in chapter 11.
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Figure 10.1. Pictures of the vehicles: Renault Trafic (a) and Peugeot 3008 (b).

10.1 Experimental setup

The flows past two different vehicles with blunt afterbodies are investigated: a Re-
nault Trafic and a Peugeot 3008 (see figure 10.1). The first geometry is a commercial
vehicle so its cubic afterbody is related to its function. The originality of its shape is the
small hump at the junction between the windshield and the roof, just above the heads of
the front passengers. The second vehicle has also a blunt afterbody but its general shape
is more streamlined, in particular regarding the inclination of the roof.

As in chapter 9, the experiments are performed in the full-scale aeroacoustic wind tunnel
of the GIE S2A2 at Montigny-Le-Bretonneux (see Waudby-Smith et al., 2004, for description
of the tunnel). The test section is a 3/4 open jet with a cross-section of 24 m2. Four wheel
spinners and a central rotating belt enable to operate under road conditions. The inlet and
moving belt velocities are set at 33.3 m s−1. The Reynolds number based on the height of
the vehicles is close to 4 106.

The coordinate system is defined as e⃗x oriented along the free-flow direction, e⃗z in the
vertical direction and e⃗y forming a direct coordinate system. The origin is set on the floor
in the middle of the vehicles in the y direction and at the maximum x coordinate of the
vehicle. ∆i is the algebraic distance in the i direction to a given reference point as the
separation from the roof or a surface.

The pressure distributions on the vehicles are obtained using parietal pressure taps. In
the flow, a 18 hole probe mounted on a three-axis robot gives the mean velocities Ux, Uy

and Uz as well as the static pressure. Automatic displacements record these data in iso-x,
iso-y or iso-z planes.

The displacement system can also support a hot-wire probe system. The velocity uxz is
measured with a time resolution better than 1 kHz wherever wanted around the vehicles.
Velocity signals are recorded during several minutes and power spectra are time averaged
over windows of 1 s or 10 s depending on the signal duration.

2http://www.soufflerie2a.com/en

http://www.soufflerie2a.com/en
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Figure 10.2. Mean (continuous lines) and fluctuating (dashed lines) velocity profiles of the
boundary layer on the roof of the Renault Trafic in the plane y = 0 m: ∆x = −1.5 m, black
lines; ∆x = −1.0 m, blue lines; ∆x = −0.5 m, red lines; ∆x = −0.15 m, green lines. ∆x

and ∆z are the algebraic distances to the roof end and to the roof surface respectively.

Renault Trafic Peugeot 3008
∆x (mm) δ0.99 (mm) δ1 (mm) δ2 (mm) δ0.99 (mm) δ1 (mm) δ2 (mm)
−1500 46± 0.5 9.5± 0.2 5.3± 0.2 – – –
−1000 58± 0.5 11.0± 0.2 6.4± 0.2 32± 0.5 7.3± 0.2 3.4± 0.2

−500 69± 0.5 12.2± 0.2 7.4± 0.2 47± 0.5 8.7± 0.2 4.6± 0.2

−150 74± 0.5 12.6± 0.2 7.7± 0.2 – – –
−50 – – – 73± 0.5 13.6± 0.2 7.8± 0.2

Table 10.1. Boundary layer thicknesses on the roof of the Renault Trafic and on the Peu-
geot 3008 in the plane y = 0 m and y = 0.12 m respectively: δ0.99, thickness based on 99%
of free-stream velocity; δ1, displacement thickness; δ2, momentum thickness.

10.2 Wall boundary layers

The boundary layers are characterized using the hot-wire probe mounted on the
displacement system. Four profiles on the roof in the plane y = 0 m are presented
in figure 10.2 at 0.15, 0.5, 1.0 and 1.5 m upstream of the end of the roof of the Re-
nault Trafic. The corresponding results on the Peugeot 3008 are plotted in figure 10.3.
The characteristic thicknesses are listed in table 10.1; the data close to the wall, that are
missing to calculate δ1 and δ2, are estimated from cubic interpolation adding the point
Uxz

∗ = 0 at ∆z = 0 m. To avoid the proper wake of the antenna on the Peugeot 3008, the
measurements are systematically performed in the plane y = 0.12 m rather than at y = 0 m.

The boundary layers just upstream of the roof separation have very similar characteristic
thicknesses (δ0.99 ≈ 70 mm) but the associated evolutions are distinct. The boundary
layer has a linear growth on the Renault Trafic while it grows much faster on roof of
the Peugeot 3008. This is certainly due to the difference in the roof inclinations: the
Renault Trafic has an horizontal roof whereas the Peugeot 3008 presents a streamlined
shape inducing an adverse pressure gradient along the roof. There may also be a role of
the roof roughness of the Renault Trafic since it is made of corrugated metal.
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Figure 10.3. Mean (continuous lines) and fluctuating (dashed lines) velocity profiles of the
boundary layer on the roof of the Peugeot 3008 in the plane y = 0.12 m: ∆x = −1.0 m,
black lines; ∆x = −0.5 m, blue lines; ∆x = −0.05 m, red lines. ∆x and ∆z are the algebraic
distances to the roof end and to the roof surface respectively.

Figure 10.4. Static pressure on the roof of the Renault Trafic (continuous line) and of the
Peugeot 3008 (dashed line). ∆x is the algebraic distance to the roof end.
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The distributions of static pressure on the roof are shown in figure 10.4 for both vehicles.
On the Renault Trafic, the static pressure is constant in the range −2 m < ∆x < −1 m.
Then, there is a decrease followed by an increase of pressure just before the massive sep-
aration at the roof end. This evolution is probably related to the chamfered shape of the
roof end as discussed in chapters 8 and 9. A similar evolution is observed on the sides
of this commercial vehicle3. On the contrary, there is a regular increase of pressure from
the windshield to the roof end on the Peugeot 3008. The inclination of the roof leads to a
decrease of velocity in the potential flow which results in pressure recovery.

Now that the flow characteristics upstream of the afterbody separation are presented,
section 10.3.1 is devoted to the study of the near wake.

3The associated measurements are not presented here.
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Figure 10.5. Static pressure on the base of the Renault Trafic (a) and of the Peu-
geot 3008 (b).

10.3 Mean properties of the near wake

10.3.1 Base pressure

Parietal pressure sensors are placed on the rear part of the vehicles to get the pres-
sure distribution displayed in figure 10.5. The pressure levels on the two vehicles have a
similar repartition. The average levels are slightly larger on the base of the Peugeot 3008
than on the one of the Renault Trafic. This is consistent with the fact that the flow sep-
arates with a higher pressure in the Peugeot 3008 due to the roof shape (see figure 10.4).
Measurement are almost independent of y whereas there are important gradients in the
z direction (∂cp/∂z∗ ≈ 0.15). The pressure in the upper region of the base is close to −0.05,
there is a continuous decrease of pressure up to almost −0.20 at the lower part of the base.

These low values may result from the underbody roughness and from the ground pres-
ence. They also remind the development of the z instability in the wake of parallelepiped
bodies in chapter 6. To argue on this point, distributions of pressure and velocities in the
recirculating flow are now considered in section 10.3.2.

10.3.2 Recirculation region

The wake topologies are obtained in the planes y = 0 m and x = 1.0 m for the Re-
nault Trafic and in the planes y = 0.12 m and x = 0.5 m for the Peugeot 3008.

The distributions of pressure in the iso-y planes are shown in figure 10.6. The low
pressure regions close to the base are clearly visible. As expected from the pressure
measurements on the base of the vehicles, the pressure levels in the recirculation region
strongly depend on z. Further downstream, the pressure coefficient increases to reach
positive values after the recirculation closure as past simplified geometries.

The associated flow velocities in the iso-y planes are presented in figure 10.7. On both
vehicles, the pressure gradient in the z direction is associated with a diagonal recirculating
flow. In average, the recirculation bubble is fed by the flow coming from the underbody.
This point is confirmed by the streamlines in the cross-flow planes in figure 10.8: inside the
recirculating flow marked by the iso-contour Ux

∗ = 0, the streamlines in the planes iso-x
are vertical, i.e. Uy ≪ Uz. In addition, the contours of Ux preserves roughly the shape of
the base. The main difference lies in the reduced height of the wake of the Peugeot 3008



10.3. Mean properties of the near wake 169

Figure 10.6. Static pressure and streamlines in the wake of the Renault Trafic in the
plane y = 0 m (a) and of the Peugeot 3008 in the plane y = 0.12 m (b).
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Figure 10.7. Velocity in the wake of the Renault Trafic in the plane y = 0 m (a) and of the
Peugeot 3008 in the plane y = 0.12 m (b). The crosses locate the stagnation points.

Figure 10.8. Velocity in the wake of the Renault Trafic in the plane x = 1 m (a) and of the
Peugeot 3008 in the plane x = 0.5 m (b).
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as the flow separates with an approximate angle of 8◦ referring to the streamwise direction
due to the inclination of the roof (compare figures 10.8a and 10.8b). On the contrary, the
separations occur rather aligned to the streamwise direction on the side and bottom faces
of the Peugeot 3008 and on the four faces of the Renault Trafic.

Only half cross-flow planes are presented but the result is not expected to be perfectly
symmetric since the vehicles do not strictly respect the reflectional symmetry of plane
y = 0 m: air cooling of the engine, underbody roughness... In addition, even if not ob-
served during these experiments, cases of reflectional symmetry breaking may appear as
presented in parts I and II. Moreover, it is interesting to note the three stagnation points
at x ≈ 1.8 m downstream of the Renault Trafic in figure 10.7(a). There are two saddle
points at z = 0.65 m and 1.55 m and one source point at z = 1.1 m, whereas the Peu-
geot 3008 has classically one saddle point at x = 1.1 m and z = 1 m (see figure 10.7b).
The former wake organization might correspond to a bistable behavior in the z direction
as presented in chapter 6. However, such a phenomenon is not identified here and the
presence of the two saddle points may rather rely on the intrusion of the probe mounted
on the displacement system.

10.3.3 Mixing layer developments

In order to characterize the differences in the flow coming from the roof and the under-
body, hot-wire measurements are performed in the top and bottom mixing layers. Velocity
profiles at different streamwise positions are measured and the location of the mixing layer
is marked in the z direction by the contours zα defined as

Uxz(x, zα) = αU0. (10.1)

As in section 1.2.1, the size of the mixing layer δm is deduced as

δm = |z0.9 − z0.1|. (10.2)

At a given x, the position of the maximum of the velocity fluctuations is denoted by zrms

and verifies

Std (Uxz(x, zrms)) = max
z

(Std [Uxz(x, z)]) . (10.3)

First, the mixing layer downstream of the roof is considered. In figure 10.9, its growth is
almost linear at least up to 1 m downstream of the separation. The growth rate dδm/dx

is respectively measured at 0.14 and 0.12 for the upper mixing layer of the Renault Trafic
and of the Peugeot 3008. This linear growth is a characteristic of free shear turbulent flows
(Champagne et al., 1976; Dimotakis, 1991) where the growth rate depends on the state of
the flow at the separation and usually ranges between 0.1 and 0.2. The second common
characteristic with turbulent free shear flows is that the mixing layer spreads preferentially
into the low velocity region (Pope, 2000). In figure 10.9 the contour of z0.9 is roughly
parallel to the potential flow, i.e. along the x direction on the Renault Trafic and slightly
oriented due to the inclination of the roof on the Peugeot 3008. Past approximately 0.2 m
downstream of the separation from the roof, the contour z0.5 is located right between z0.1
and z0.9 so that the vorticity, initially concentrated near the wall, spreads rapidly to reach
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Figure 10.9. Positions of the contours z0.1 and z0.9 (back lines), z0.5 (blue lines) and
zrms (dashed red lines) in the mixing layers of the Renault Trafic (a) and of the Peu-
geot 3008 (b).

Figure 10.10. Velocity fluctuations in the mixing layers of the Renault Trafic (a) and of the
Peugeot 3008 (b).

a symmetric distribution along the mixing layer. It is observed that the curves of zrms and
z0.5 are superimposed so that the activity of the mixing layer is maximal in the middle of
the shear layer. This point is clarified by the spatial distribution of the velocity fluctuations
plotted in figure 10.10.

Similar measurements are performed in the mixing layer from the underbody of the
Peugeot 3008. The size of the mixing layer is close to the ground clearance partially due to
the underbody roughness and to the evacuation of the flow from the engine cooling. The
growth is not linear but the expansion remains oriented toward the recirculation region.
The mixing layer activity is equally centered on z0.5 and the intensity of the velocity
fluctuations is slightly lower than the one measured in the upper mixing layer. In the
wake of the Renault Trafic, figure 10.7(a) points out that the velocity is reduced right
downstream of the underbody and that vorticity is homogeneous over the ground clearance.

The autopower spectra of the velocity signals in the upper mixing layers at zrms are
presented in figure 10.11 for different streamwise positions. They all show an almost con-
stant distribution of energy corresponding to the large-scale structures of turbulence below
a characteristic frequency fLS/I (10 Hz to 50 Hz depending on x). Then, the distribution
of energy decreases with a −5/3 power law as expected by the Kolmogorov theory for the
inertial range of an homogeneous and isotropic turbulence.
Studying the evolution in the streamwise direction, the results in figure 10.11 show that
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Figure 10.11. Autopower spectra in the mixing layer from the roof of the Renault Trafic (a)
and of the Peugeot 3008 (b) at the maximum of fluctuating velocities at ∆x = 0.02 m (black
line), ∆x = 0.25 m (blue line), ∆x = 0.5 m (red line), ∆x = 1.0 m (green line) and
∆x = 1.5 m (purple line). ∆x is the algebraic distances to the roof end.

Figure 10.12. Autopower spectra in the mixing layer from the underbody of the Peu-
geot 3008 at the maximum of fluctuating velocities at x = 0.1 m (black line), x = 0.5 m (blue
line) and x = 1.0 m (red line).



174 Chapter 10. Characterization of the flow over real vehicles

the characteristic frequency of the spectra fLS/I , separating the large scales and the inertial
ranges, decreases as x increases. This indicates that this frequency is based on the local
thickness of the mixing layer: fLS/I ∼ U0/δm which is also a characteristics of free shear
turbulent flows (Hussain & Zaman, 1985).

The autopower spectra from the bottom mixing layer visible in figure 10.12 present the
exact same repartition of energy but the characteristic frequency fLS/I ≈ 10 Hz is now
independent of x. Then, the size and activity of the mixing layer right downstream of the
underbody is similar to the one from the roof but at 1 m downstream of the separation. In
parallel, these two regions where the mixing layers become unstructured correspond to the
locations where the pressure is minimal in the wake (see figure 10.6).
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Figure 10.13. Autopower spectra in the wake of the Peugeot 3008 at x = 2.5 m, y = 0 m

and z = 1.3 m (black line) and at x = 4.0 m, y = 0 m and z = 1.3 m (blue line).

10.4 Periodic dynamics of the wake

The presence of a synchronized dynamics, i.e. oscillating global modes, is now studied
in the wake of these two vehicles.
In the flow over the Peugeot 3008, no peak of energy is reported in the spectral repartition
of energy. Wherever the probe is located, the results are similar to the ones presented
in figure 10.13. As for spectra in the mixing layer detailed in section 10.3.3, there is a
characteristic frequency fLS/I ≈ 10 Hz at the inception of the inertial range of turbulence.
Note that fLS/I is always measured around 10 Hz except in the near wake mixing layers
as presented in figure 10.11(b). Hence, this value of 10 Hz appears to be the frequency
associated with the large-scale structures of turbulence of the whole wake.

On the contrary, in the flow past the Renault Trafic, some periodic motions of the
wake are reported. Indeed, the autopower spectra of the velocity signals at x = 4.0 m,
y = ±0.3 m and z = 1.0 m present peaks of energy at fm = 4 Hz (see figure 10.14a).
To detail the structure of this mode, cross-correlations between these two simultaneous
signals are performed. They show that the coherence reaches 0.7 at 4 Hz and corresponds
to an antisymmetric mode in the y direction since the signals are in phase opposition at
this frequency. Only 0.6 m separate the probes, which could seem small compared to the
vehicle width, but this corresponds to the wake width at this streamwise location. Once
normalized by W , fm corresponds to a Strouhal number of StWm = fW/U0 ≈ 0.2.

Autopower spectra even much closer to the base at (x= 0.4 m, y = 0.7 m, z = 1.8 m) and
(x = 0.4 m, y = −0.7 m, z = 1.8 m) report the same periodic structure at fm = 4 Hz with
a coherence close to 0.5 in phase opposition (see figure 10.15). Thus, fm being constant in
space, this peak of energy corresponds to a global phenomenon. However, it is not reported
everywhere in the wake. For example, the autopower spectra and the cross-correlation
analyzes performed at x = 2 m could easily measure a lateral or a vertical oscillation of
the wake at the end of the recirculation; nevertheless, they do not report any significant
coherent motion (see figures 10.16 and 10.17). In figure 10.16(a), a slight increase of energy
is measured around fm at x = 2.0 m, y = 0 m and z = 1.8 m but it is not as clear as
in figures 10.14 and 10.15. As a result, this mode seems to develop from the interaction
of the lateral mixing layers mostly from the upper part of the vehicle. Then, it persists
downstream and is particularly visible at x = 4 m which corresponds to two times the
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Figure 10.14. (a) Autopower spectra in the lateral mixing layers from the Renault Trafic
at (x = 4.0 m, y = 0.3 m, z = 1.0 m) (black line) and at (x = 4.0 m, y = −0.3 m,
z = 1.0 m) (blue line). (b) Correlation (left scale, continuous line) and phase (right scale,
dashed line) between the two velocity signals.

Figure 10.15. (a) Autopower spectra in the lateral mixing layers from the Renault Trafic
at (x = 0.4 m, y = 0.7 m, z = 1.8 m) (black line) and at (x = 0.4 m, y = −0.7 m,
z = 1.8 m) (blue line). (b) Correlation (left scale, continuous line) and phase (right scale,
dashed line) between the two velocity signals.

characteristic width or height of the vehicle. The exploration of the envelop of this mode
in the wake is very difficult to achieve since the resolution of the activity at 4 Hz requires
spectral analyses over windows of 10 s. In addition, to get converged distribution of energy,
the averaging denoted ⟨...⟩W needs to be performed over a sufficient number of windows so
that each velocity signal is recorded over at least 500 s which is an important cost regarding
the use of this industrial wind tunnel.
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Figure 10.16. (a) Autopower spectra in the top and bottom mixing layers from the Re-
nault Trafic at (x = 2.0 m, y = 0 m, z = 1.8 m) (black line) and at (x = 2.0 m, y = 0 m,
z = 0.2 m) (blue line). (b) Correlation (left scale, continuous line) and phase (right scale,
dashed line) between the two velocity signals.

Figure 10.17. (a) Autopower spectra in the lateral mixing layers from the Renault Trafic
at (x = 2.0 m, y = 0.5 m, z = 1.0 m) (black line) and at (x = 2.0 m, y = −0.5 m,
z = 1.0 m) (blue line). (b) Correlation (left scale, continuous line) and phase (right scale,
dashed line) between the two velocity signals.
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10.5 Concluding remarks

The flow around two different blunt vehicles is characterized at Reynolds number 4 106.
First, the development of the boundary layers on the roof is depicted; it depends on the
inclination of the roof that drives the pressure gradient along the vehicle. Then, a massive
recirculation responsible for a large part of the drag is reported on the base. The mean
recirculating flow is highly dependent on the z direction, in particular the low pressure
region is located close to the bottom part of the base whereas it has a reduced impact on
the pressure on the top part. This may be explained by the differences between the upper
and lower mixing layers: the upper one presents the characteristics of free shear flows in
opposition to the mixing layer from the underbody. The spectral analyses also indicate the
presence of a lateral oscillation of the wake but only past the Renault Trafic. However, this
mode is not particularly energetic so its impact on the base pressure is certainly limited.

These experiments confirm some trends observed past simplified geometries. First,
they provide examples of the benefits of the the control of the flow orientation at the
afterbody separations. Then, they evidence that the correlation between the direction of
the mean recirculating flow and the base pressure gradients still persists in real vehicle
wakes. Finally, the hot-wire measurements prove that the large-scale periodic oscillations
of the wake are negligible phenomena of the recirculation dynamics; so, their control does
not seem to be a relevant lever of drag reduction.

As a consequence, these results may be used as a reference to orient the work on auto-
motive drag reduction toward the control of the underbody flow in order to move the low
pressure structure further downstream. A second control strategy could consist in reducing
the growth rate of the mixing layer that should lead to base pressure recovery and increased
recirculation length.

Now, leaving these drag reductions strategies for future work, some of the experiments
of flow control presented past simplified geometries in parts I and II are extended to real
vehicles in the next chapter.
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Chapter 12

General synthesis and perspectives

This chapter concludes this thesis with a general synthesis. The main results exposed
in parts I, II and III are discussed with a broader view. Then, some perspectives for future
work are exposed with a particular focus on drag reduction strategies.

Abstract

The previous experiments analyze the wakes past different geometries, by increasing the
complexity from axisymmetric bodies to real road vehicles. In addition, the dynamics of
the flow over the squareback Ahmed geometry is considered over a large range of Reynolds
numbers: from ReH = 3.0 102 to 2.5 106. Whatever the complexity of the geometry, cross-
flow instabilities are likely to develop in its turbulent wake; they appear to be reminiscences
of the bifurcations that occur in the laminar regime. They are found for a wide range of
geometrical parameters which extends the scope of this work beyond the study of road
vehicle wakes. In addition, some periodic wake oscillations are reported. Nevertheless,
they are far less energetic than past bidimensional bodies, so they are expected to have a
negligible impact on drag. These unsteady global modes seem to weaken when either the
Reynolds number or the complexity of the geometry increases. The study of these phenom-
ena, combined with sensitivity analyses to small perturbations, places the minimization of
the instantaneous wake asymmetries as a relevant strategy for drag reduction.
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12.1 Development of stationary modes

One of the fundamental results of the present work is the description of stationary cross-
flow instabilities in three-dimensional wakes. In laminar configurations, the amplification
of the non-linearities with the Reynolds number leads to the appearance of stationary
symmetry breaking regimes. Then, as the Reynolds number increases and the turbulence
develops in the flow, the average topology is expected to restore the symmetries of the
geometries in a statistical sense (Frisch, 1996).

All the presented results are consistent with this property of fully developed turbulence
since the long time-averaged wakes in the turbulent regime always present the symmetries
of the setup: axisymmetry in the cases of the sphere and the disk, y∗ = 0 reflectional
symmetry in the case of parallelepiped bodies1. However, traces of the symmetry breaking
that occurs in the laminar regime persist at very high Reynolds numbers; the symmetries
of the geometry are restored in the turbulent regime after the exploration of the different
symmetry breaking positions. The sensitivity experiments show that a slight perturbation
of the symmetry can lead to a clear preference towards one of the states. Consequently,
even for a fully developed turbulence, the mean flow can be disproportionately asymmetric
because of some residual asymmetries of the geometry.

A surprising property of this behavior lies in the time scale during which the flow
remains in the same symmetry breaking state. Typically, the mean time of shift is two or
three orders of magnitude larger than H/U0 which is the characteristic time of the flow.
The mechanisms responsible for such a long time evolution of the topology are still unclear
and would benefit of additional experiments. Nevertheless, the randomness of the dynamics
may be interpreted by a role of the rare but energetic large-scale structures of turbulence.

A general bifurcation scheme of the y instability is suggested in figure 12.1 through
energy considerations: figures 12.1(a)–(b) show typical evolutions of yW ∗, the wake position
in the y direction, and of the energy of the flow fluctuations as the Reynolds number
increases. Figure 12.1(c) presents a three-dimensional representation. At very low Reynolds
numbers, the wake is steady and symmetric; then, for Re > Re1, a steady bifurcation leads
to a permanent asymmetric state. In terms of energy, the disappearance of the centered
state corresponds to a maximum of energy at yW ∗ = 0; this forms a potential barrier of
energy of amplitude EPB . In other words, Re1 marks a transition: for Re < Re1, the
energy E against yW ∗ follows a U-shaped distribution with a stable state at yW ∗ = 0

whereas for Re > Re1, E(yW ∗) presents W-shaped distribution with two off-centered stable
states (see figure 12.1c). The flow being stationary, only the position yW

∗ located by the
thick black lines are admissible. Then, for Re > Re2, unsteady global modes are reported;
they induce oscillations of yW ∗ around the asymmetric stables states (green admissible
zones in figures 12.1a and 12.1c). However their energy, denoted EUGM , remains limited
and may not be large enough to overcome the potential barrier at the center2. As soon as
the transition to turbulence occurs at ReT , a turbulent energy denoted ET adds to EUGM .
So, there may be a threshold of Reynolds number, denoted ReB , over which

ET + EUGM > EPB .

Therefore, yW ∗ = 0 becomes an admissible position of the instantaneous wake and now, the
total energy is sufficient to allow topology shifts, at certain moments depending on available

1In the case of real vehicle wakes, the air cooling system and the underbody details introduce asymmetries
in the y direction that may affect the reflectional symmetry of the mean flow.

2This is consistent with the absence of topology shift reported during the laminar experiments in chap-
ter 4.
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Figure 12.1. Bifurcation scheme of the y instability: bifurcation scenario in the do-
main (Re, yW

∗) (a), energy of the fluctuations as a function of Re (b) and three-dimensional
representation (c). The black and gray lines are steady and unsteady regimes respec-
tively, the continuous and dashed lines are stable and unstable regimes respectively. The
green zones are admissible positions of the instantaneous wake given the available energy
ET + EUGM at the considered Reynolds number.

instantaneous energy. Consequently, for Re > ReB , the bistable dynamics may be observed
in the wake, the dynamics of the topology shifts being dependent on the turbulent activity.

At this stage, it is important to note that this interpretation of the y bi-stability is
based on energy considerations and the important point is the comparison between EPB

and ET + EUGM . The trends plotted in figure 12.1(c) are certainly not realistic but the
physical analyses are still sustainable. For example, ET + EUGM is related to the energy of
the flow so it is strongly linked to the transfers of momentum from the geometry to the
fluid and necessarily to the drag of the body; thus, there is probably no change of slope at
ReT in the curve ET + EUGM .

The existence of these symmetry breaking states and the associated long time evolutions
are of crucial interest in the study of three-dimensional turbulent wakes. As mentioned in
the conclusions of chapter 5, it has strong consequences for both experimental and numerical
work. A particular attention must be paid to the duration of the acquisition and the spatial
distribution of the sensors in experiments. On the other hand, a limited time simulation
or basic turbulence modeling could lead to significant errors in the evaluation of the mean
flow.

Finally, these experiments show that the bistable phenomena are not isolated cases in
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three-dimensional turbulent wakes; they are reported past basic bodies up to industrial
geometries. It could be interesting to extend the domains of appearance of these cross-flow
instabilities to other geometries such as elliptical shapes. Furthermore, it is found that
cross-flow instabilities appear in the wake of a wall mounted three-dimensional geometry
(see region Dy2 in figure 6.11a) so it may equally develop in free-surface flows. Hence, it
could be of critical interest in the naval industry for the hull wakes. Additional studies
may provide useful data exploring the impact of the geometry of the submerged part of the
ship and the dependence on the Froude number. In these experiments the development of
the instabilities are independent of the free-stream velocity but it might not be the case
once the gravity effects are no more negligible. As a consequence, it could be interesting to
evaluate how much these instabilities are sensitive to the deformation of the free surface.

Now, before addressing the drag related to the development of these cross-flow instabil-
ities in section 12.3, section 12.2 gives a synthesis of the periodic wake motions.
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12.2 Dynamics of the oscillating modes

The second widespread phenomenon observed in these experiments is the development
of unsteady global modes. In particular, the dependences on both the Reynolds number
past a given geometry and the complexity of the geometry can be considered from these
different studies. Note that these discussions are ascribed to fixed flow separations: the
possible drag-crisis transitions are not taken into account.

On the Reynolds number

The results obtained in the sphere wake give a first insight of the impact of an increase
in Reynolds number on the periodic dynamics of the wake. Autopower spectra presented
in figure 2.8 for different Reynolds numbers point out a gradual attenuation of the mode
activity from ReD = 1.4 104 to 5.3 104.

Then, in part II, the wake past the Ahmed reference geometry is considered over a very
wide range of Reynolds numbers: from ReH = 3.0 102 to 2.5 106, i.e. over four orders of
magnitude. At very low Reynolds numbers, the viscous effects prevent the development of
unsteady modes but over ReH = 340 the wake starts oscillating in the vertical direction3

as visible in figure 4.2(b). In such a wake, the periodic motion is clear and the energy
of the flow fluctuations in the spectral domain is expected to concentrate at the shedding
frequency. This implies that the oscillating global mode is highly coherent at low Reynolds
numbers. When the wake becomes turbulent, the wake oscillation in the vertical direction
is still reported but with a reduced level of coherence (see chapter 5).

As a consequence, for a given geometry, it seems that the larger the Reynolds number,
the less the oscillating global modes contribute to the energy of the fluctuations in the
flow.

This experimental fact might be interpreted as follows. The development of the insta-
bilities associated with the oscillating global modes is closely related to the distribution of
vorticity in the flow. Now, the turbulent structures of the scale of the shear layer may alter
the orientation of the vorticity. As there is no production of vorticity after detachment, the
turbulent activity redistributes the instantaneous vorticity from its initial direction to the
two others. Indeed, it is well-known that turbulence produces vortices aligned to the local
stretching direction in the fluid. These dynamics certainly lead to a gradual decrease of the
mean vorticity in the shear layers during its convection. Thus, an increase in the turbulent
activity in the early shear layers is likely to lead to a diminution of the spatial coherence
of the vorticity and so to less energetic unsteady modes.

In parallel, this observation helps understand why the unsteady modes past three-
dimensional geometries are generally less energetic than the ones past bidimensional bodies.
Indeed, the vorticity emitted at the base separation of a three-dimensional afterbody nat-
urally presents a lower spatial coherence. In the case of the Ahmed geometry for example,
the characteristic length of the spatial coherence (H for the lateral shear layers, W for the
upper and lower ones) is only of the order of the distance between the facing mixing layers.

Such an analysis naturally leads to the study of the effect of an increase in complexity
of the geometries that is now detailed.

3The corresponding topology is not the stable solution but this does not affect the following analyses.
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On the complexity of the geometries

The global mode dynamics are studied in three-dimensional wakes from basic axi-
symmetric configurations to real vehicle shapes. Before considering the spatial structure
of the modes, it is worth noting that the increase in complexity of the geometry neces-
sarily alters the spatial coherence of the vorticity at separation. Therefore, as discussed
in the previous section, it is very likely to reduce the intensity of the unsteady global modes.

The experiments presented in part I and II depict the evolution of the structures of the
unsteady global modes from the well-known case of the shedding past axisymmetric bodies
to the shedding past bodies of various aspect ratios and wall effects.

The aspect ratio of the base appears essential in the spatial organization of the unsteady
global modes. For axisymmetric geometries, the periodic motions are associated with the
shedding of hairpin-shaped vortex loops. However, as soon as the aspect ratio of the base is
not equal to 1, two different frequencies are reported in the wake and the spatial organization
of the corresponding structures becomes more complex. In the case of the Ahmed reference
geometry, each frequency corresponds to a coherent motion in one cross-flow direction (see
figure 5.28). The combination of the two modes is very likely to form a wake dynamics
that could appear chaotic in the time domain (see figure 4.2d). In addition, the localization
of the global mode activity may depend on the development of the stationary cross-flow
instabilities discussed in section 12.1. So, quantitative studies in the laminar regime could
be of valuable interest for the comprehension of the flow dynamics. In particular, it might
be useful to study the interactions between two modes of different frequencies f1 and f2.
For example, if f1 ∼ f2, then nonlinear interactions between the modes may lead to the
appearance of a very low frequency dynamics at |f1−f2|/2. This could be an explanation of
the pumping mode that is sometimes reported in the literature at the end of the recirculation
bubble.

In parallel, the presence of the ground seems to have a stabilizing effect on the de-
velopment of the unsteady global modes as shown in figure 4.6: as the ground clearance
diminishes, the threshold of appearance of the unsteady regimes is increased. As in the ex-
periments of Ruiz et al. (2009), the wall proximity seems to reduce the intensity of the mode
in the direction normal to the wall (compare the amplitude of the peaks at StH = 0.127

and 0.174 in figure 5.22a). A gradual evolution of the phase shift between the structures
shed from the upper and lower parts of the wake is equally reported because the vortex
loops are convected at different speeds. Furthermore, in presence of a z instability in the
wake, the flow orientation is highly dependent on the ground clearance (see figure 6.5b).
Consequently, the spatial organization of the unsteady global mode in the z direction, when
one is present, is expected to present a strong dependence on the ground clearance.

As a conclusion, it appears that future work studying the structures of the unsteady
global modes, even in the laminar regime, could provide valuable information for the un-
derstanding of the periodic wake dynamics.
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12.3 Flow control for drag reduction

The general description of both steady and unsteady global modes given in sections 12.1
and 12.2 allows to address issues on the pressure drag ascribed to the wake. For a fixed
orientation of the flow at separation, i.e. for a given bluffness, the base pressure is linked to
the recirculation length: the longer the recirculation bubble, the higher the base pressure
and the lower the drag. Therefore, the development of efficient strategies for drag reduction
relies on the preliminary identification of the mechanisms responsible for the closure of the
recirculation bubble.

Contrary to bidimensional flows (Parezanović & Cadot, 2012), the presence of unsteady
global modes is not identified as an essential parameter for the recirculation length, es-
pecially for complex three-dimensional geometries at high Reynolds numbers. An argu-
mentation is presented in section 5.4.2, it is based on the fact that the unsteady modes
in three-dimensional wakes are weak and their energy is reported only downstream of the
recirculation region.

On the other hand, the experimental results evidence quadratic dependences between
the drag and the cross-flow forces, i.e. large-scale pressure gradients on the sides of the
geometry; such phenomena are reminiscent of the notions of induced drag which are widely
used in aeronautics. In addition, the drag is proved to be increased by the formation of
small-scale streamwise vortices related to local pressure gradients (see chapters 8 and 9).
Consequently, the uniformity of the pressure distribution on the afterbody, in proximity of
the flow separations and on the base, is thought to play a significant role in the selection
of the mean base pressure.

Thus, these observations place the development of cross-flow instabilities as relevant
contributors to the pressure drag. In particular, the sensitivity analyses performed past
simplified geometries in chapters 3 and 7 show that the suppression of these instabilities
limits the intensity of the cross-flow forces, which systematically leads to base pressure
recovery.

Now, the connections between the geometry, the lift force, the base pressure gradients
and the drag are still to be clarified. For example, the turbulent wakes of the sphere and
the disk (in chapter 2 and appendix C respectively) show similar degrees of asymmetry in
the instantaneous wake whereas there is, theoretically, no pressure lift in the disk case4.
Hence, the analysis of the instantaneous cross-flow forces might not be a universal criterion
for the development of future strategies for drag reduction. Furthermore, in ground
proximity, the comparison of the drag evolutions ascribed to a base pressure gradient and
to a cross-flow force remains to be detailed. For example, in the control experiments past
the Ahmed geometry, the optimal drag configuration is found for a nil pressure gradient
in the vertical direction but for a non-nil lift (see chapter 7). Hence, there might be some
influence of the forebody shape on the optimal lift; it could be interesting to analyze
these phenomena for other ground clearances and also for a simplified vehicle with a A-pillar.

In terms of flow control strategies, the long time dynamics pave the way to the imple-
mentation of both open-loop and closed-loop active techniques. The use of movable flaps,
synthetic jets or any control device improving the uniformity of the instantaneous pressure
distribution on the afterbody, is very likely to achieve drag reduction.

Such drag reduction strategies are likely to be complementary to the work devoted the

4In the limit case of an infinitely thin disk, the pressure distribution on the surface can only produce
drag.
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control of the mixing layer growth. Even if not considered in these experiments, the fluid
entrainment by the mixing layer is also believed to be a dominant ingredient of the closure
of the recirculation region. For example, high frequency excitations of the turbulent mixing
layers past vehicles is likely to provide drag reductions (Greenblatt & Wygnanski, 2000;
Parezanović et al., 2013).
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Appendix A

General concepts of fluid

mechanics

This appendix introduces the formalism and the general notions of fluid mechanics that
are used in this work. In particular, it depicts the dependence between the fluid force and
the fields of pressure and velocity.

Abstract

For any quantity a(x, y, z, t), A(x, y, z) = ⟨a(x, y, z, t)⟩ is the time-averaged value of
a and a∗ is the non-dimensional value of a. Considering the flow around a bluff body,
one can identify three different regions: the potential flow (irrotational and inviscid), the
wall boundary layer (rotational and viscid) and the wake (rotational and inviscid). The
characteristics of these different regions are responsible for the fields of velocity and pressure
in the proximity of the geometry. So, they are closely related to the fluid force that applies
on the body, this force being separated into friction and pressure contributions. In the
case of a bluff body at high Reynolds numbers, most of the force results from the pressure
effects. In particular, the low pressure on the afterbody is responsible for dominant part of
the drag. This fluid force is directly connected to the pressure and velocity gradients on the
surface but it can also be estimated from pressure and velocity measurements downstream
of the geometry.
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A.1 Notations

The uniform displacement of a body in a fluid at rest is studied in the reference frame
of the geometry; so the body is considered facing an incompressible Newtonian fluid flow of
density ρ and free-stream velocity U0. The static pressure of the free-flow is denoted by P0.

The coordinate system is defined as e⃗x in the streamwise direction, e⃗z in the vertical
direction (normal to the ground when one is present) and e⃗y forming a direct trihedral. The
velocity at the instant t and at the position (x, y, z) is defined as u⃗ = uxe⃗x + uy e⃗y + uz e⃗z;
uij =

√
ui2 + uj2 is the amplitude of velocity at the considered point in the plane (e⃗i, e⃗j).

When specified, the notation of implicit sum is used; for example u⃗ = uie⃗i with i ∈ {x, y, z}.
The vorticity is ω⃗ = r⃗ot(u⃗) and the pressure in the fluid is denoted by p. For any quantity
a, A (or ⟨a⟩) and Std(a) refer to the average value and the standard deviation respectively;
a′ = a−A is the fluctuating part of a. When a⃗ is a vector, a denotes its modulus: a = ∥a⃗∥.

A characteristic dimension of the geometry (D in this appendix), the density ρ and the
velocity U0 are used to obtain non-dimensional values marked by an asterisk. For example,
the normalized mean streamwise vorticity is

Ωx
∗ = r⃗ot(u⃗) · e⃗xD/U0 = ΩxD/U0.

Exceptions are made for the pressure, the forces and the frequencies. The normalized
pressure coefficient is denoted by cp and defined as

cp =
p− P0

1
2ρU0

2 . (A.1)

Note that the mean pressure coefficient is Cp = ⟨cp⟩. The notations of the fluid forces are
presented in section A.3; the normalized frequency is the Strouhal number defined as

StD =
fD

U0
. (A.2)

When spectral analyses are performed on a fluid measurement, the time evolution of
the signal is recorded at a fixed position during several minutes and spectra are averaged
over windows, the window duration being 1 s, 2 s or 10 s. This averaging is denoted by
⟨...⟩W . ξF (f) standing for the Fourier transform of a function ξ evaluated at the frequency
f and ξ(f) for its complex conjugate, the power spectral density (PSD) is calculated
from the signal a(t) as defined in equation (A.3); autopower spectra are obtained with a
resolution of 0.1, 0.5 or 1 Hz.

PSD(f) = ⟨aF (f) aF (f)⟩W . (A.3)

Cross-correlations between two signals at different locations can also be performed: the
coherence rF and phase φF between two signals a(t) and b(t) are the modulus and the
argument of γ defined in equation (A.4).

γ(f) =
⟨aF (f) bF (f)⟩W

√

⟨|aF (f)|2⟩W⟨|bF (f)|2⟩W
= rF (f)e

iφF (f). (A.4)

In terms of statistics, P(E) refers to the probability of an event E. The probability
density function of a random variable X is denoted by PDF and the expected value of X is
E(X).
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A.2 Flow regions around the geometry

After normalization by D and U0, the Navier-Stokes equations for an incompressible
Newtonian fluid in absence of external forces1 are the mass conservation

div∗
(
u⃗∗
)
= 0 (A.5)

and the momentum conservation

du⃗∗

dt∗
= −1

2
⃗grad∗ cp +

1

ReD
⃗div∗
(

grad∗ u⃗∗ +t grad∗ u⃗∗
)

, (A.6)

the Reynolds number being defined by

ReD =
ρU0D

µ
=
U0D

ν
, (A.7)

where µ and ν = µ/ρ are the dynamic and kinematic viscosity of the fluid respectively. The
Reynolds number compares the inertial effects to the viscous ones in the fluid.

When averaged in time, equation (A.6) gives in the i direction

Uj
∗ ∂Ui

∗

∂j∗
= −1

2

∂cp
∂i∗

+
1

ReD

∂2Ui
∗

∂j∗∂j∗
+
∂⟨−u′i

∗
u′j

∗⟩
∂j∗

, (A.8)

using the notation of implicit sum on j∗ ∈ {x∗, y∗, z∗}. The terms ⟨−u′i
∗
u′j

∗⟩ related to
the fluctuations of velocity are the Reynolds stresses.

Two different flow regimes are distinguished. In the laminar regime, usually for low
Reynolds numbers, the fluid behavior depends mostly on the viscous effects and the particles
move along regular trajectories. On the contrary, in the turbulent regime, for large Reynolds
numbers typically, the inertial effects are dominant and the path of the fluid particles is
characterized by irregular and incoherent motions. For moderate Reynolds number flows,
transitions may occur from the laminar regime to the turbulent one.

Most of the following studies address high Reynolds number flows around bluff bodies,
typically ReD > 104. Then, equation (A.6) simplifies as

2
du⃗∗

dt∗
≈ − ⃗grad∗ cp, (A.9)

which means that the local acceleration of the fluid is defined by the pressure gradients. A
streamwise pressure gradient is linked to increases or decreases of fluid momentum while a
cross-flow pressure gradient is associated with curvature of the fluid trajectories.

For such high Reynolds number flows, one can define different regions around the ge-
ometry as presented in figure A.1: the potential flow region, the wall boundary layer and
the wake.

Potential flow

In figure A.1, the potential flow is comprised of the whole fluid domain apart from
the boundary layer and the wake. In this region, the flow can be assumed inviscid and
irrotational: ω⃗∗ = 0. The velocities can be deduced from a potential ψ; in other words, it
exists a scalar quantity verifying u⃗∗ = ⃗grad∗ ψ.

1The gravity effects are neglected.
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Figure A.1. Scheme of the instantaneous flow around a bluff body and definition of the
notations. For simplification, the scheme is bidimensional.

The potential flow theory allows the calculation of analytical flow solutions around
basic bidimensional bodies such as wing profiles (Kirchhoff, 1869; Riabouchinsky, 1921)
but this method is poorly adapted to the study of bluff body flows.

The pressure and velocity fields verify Bernoulli’s law: cp + u∗2 is constant along a
streamline; in the following configurations, the uniform inlet flow condition (U⃗0, P0) lead to

cp + u∗2 = 1 (A.10)

in the whole potential flow region.
Another interesting characteristic of the inviscid theory is that a stream surface is

equivalent to a solid interface. As a consequence, when the fluid is assumed inviscid, a wall
can be seen as a mirror condition on the instantaneous flow.

The inviscid hypothesis of the potential flow domain is no more sustainable close to the
geometry, in the wall boundary layer.

Wall boundary layer and flow separation

The boundary condition on the geometry imposes u⃗ = 0⃗ on the surface of the geometry
which is denoted by Sbody. This condition affects the velocities in the proximity of the body
surface; the corresponding region is the boundary layer, its characteristic length is denoted
by δ (see figure A.1). A detailed analysis of boundary layers can be found in Schlichting &
Gersten (2000). The following remarks only remind the principal notions that are used in
this work.

A small element ds of the surface Sbody is considered. Its normal e⃗n is oriented inside
the fluid domain. The directions parallel to the elementary surface are denoted by e⃗s1 and
e⃗s2 ; s1, s2 and n denote the positions in the local coordinate system (e⃗s1 , e⃗s2 , e⃗n). us1 ,
us2 and un are the velocity components in this local reference frame. For simplification,
the characteristics of boundary layers are given using a bidimensional view of a stationary
flow; so the notations merge the axes e⃗s1 and e⃗s2 in e⃗s.

From the velocity Us0 of the fluid outside the boundary layer, i.e. Us0 = Us(n = δ),
different thicknesses are used to characterize the velocity profile in the boundary layer:

◦ the boundary layer thickness based on 99% of Us0 , denoted δ0.99, verifying

Us(δ0.99) = 0.99Us0 , (A.11)
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◦ the displacement thickness

δ1 =

∫ δ

n=0

(

1− Us

Us0

)

dn, (A.12)

◦ the momentum thickness

δ2 =

∫ δ

n=0

Us

Us0

(

1− Us

Us0

)

dn. (A.13)

The shape factor of the boundary layer H12 is defined as

H12 = δ1/δ2. (A.14)

This parameter gives information on the distribution of the kinetic energy in the boundary
layer: the smaller the value of H12, the more energetic the flow close to the wall. It can
be used as an indicator of the laminar or turbulent state of the boundary layer under no
streamwise pressure gradient (∂Cp/∂s

∗ = 0): H12 ≈ 2.6 for a laminar boundary layer
(Blasius profile) while H12 ≈ 1.4 for a turbulent one.

The boundary layer evolves along the surface by viscous or turbulent diffusion depend-
ing on its regime; in absence of streamwise pressure gradient, the growth rate verifies
dδ/ds ∼ Res

−0.5 for a laminar boundary layer whereas dδ/ds is roughly constant for a
turbulent one. Hence, a turbulent boundary layer has usually a larger growth rate than a
laminar one.

When equation (A.8) is considered at large Reynold number (Reδ = Us0δ/ν ≫ 1) and
under boundary layer assumptions (Un ≪ Us and ∂/∂n ≫ ∂/∂s), the dominant terms in
the n direction gives

∂Cp

∂n∗
+ 2

∂⟨u′n
∗2⟩

∂n∗
= 0. (A.15)

As a consequence, by integration in the n direction, equation (A.15) points out that
Cp + 2⟨u′n

∗2⟩ is constant across the boundary layer. As ⟨u′n
∗2⟩ = 0 on Sbody, the pressure

on the geometry is equal to the pressure in the potential flow, so it is directly connected
to the velocity of the potential flow.

Now, if equation (A.8) is studied in the s direction on the wall (n∗ = 0) then at first
order, the equilibrium is

− 1

2

∂Cp

∂s∗
+

1

Reδ

∂2Us
∗

∂n∗2
− ∂⟨−u′s

∗
u′n

∗⟩
∂n∗

= 0. (A.16)

In particular, equation (A.16) shows that the pressure gradient in the s direction ∂Cp/∂s,
which relies on the velocity of the potential flow, affects both the curvature velocity profile
and the Reynolds stresses in the close proximity of the wall. The following trends can be
stated.

◦ The larger the pressure gradient, the larger the shape factor H12.

◦ An adverse pressure gradient in the s direction makes the boundary layer thicker and
more turbulent; on the contrary, a favorable pressure gradient makes the boundary
layer thinner and reduces its turbulent activity.
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◦ A strong pressure gradient in the s direction can induce a change of sign of Us. This
introduces the notions of flow separation and reattachment. The points of separation
and reattachment are defined as the position s for which

∂Us
∗

∂n∗

∣
∣
∣
∣
n∗=0

= 0. (A.17)

Note that these definitions of separation and reattachment can be extended to the
instantaneous flow.

Examples of flow separations are presented in the scheme in figure A.1 at the frontier
between the wall boundary layer and the wake. At the separation from the bottom part
of the geometry, a strong and localized pressure gradient is introduced by a sharp edge on
the body. This results in a fixed point of separation. On the contrary, the detachment on
the top part of the geometry is related to a progressive slow down of the potential flow,
i.e. a progressive adverse pressure gradient. These configurations often result in fluctuating
points of separation.

Now, the shape factor H12 can be used to estimate whether the flow is close to separation
or not: for a boundary layer facing an adverse pressure gradient, separation usually occurs
for H12 ≈ 3 (Simpson, 1989). Hence, a turbulent boundary layer is more resistant to an
adverse pressure gradient than a laminar one. Further details on boundary layer separations
can also be found in Simpson (1989) and references therein.

Wake past the geometry

When the flow detaches from the geometry, the vorticity initially concentrated in the
boundary layer is convected downstream of the separation, in the wake. In this region,
the flow is out of the viscous influence of the wall so the inviscid hypothesis is sustainable
at high Reynolds numbers. However, contrary to the potential flow, the wake is not
irrotational and the dynamics of the vorticity plays a significant role on the flow (Saffman,
1992).

First, it is worths noting the analogy between rotational inviscid flows and electromag-
netism after substitution of the magnetic field by the velocity field and the current density
by the vorticity. For example, one can deduce the velocity field from the distribution of
vorticity using the Biot-Savart law.

Furthermore, by taking the divergence of equation (A.6), the pressure is linked to the
vorticity as

∆∗cp = ω∗2 − ς∗2, (A.18)

with ∆∗cp = ∂2cp/(∂i
∗∂i∗) and ς∗2 = 1

2

(
∂ui

∗

∂j∗ +
∂uj

∗

∂i∗

)2

, using implicit sums on

(i∗, j∗) ∈ {x∗, y∗, z∗}2.
Consequently, in the instantaneous wake, the mimina of pressure are located in regions

dominated by vorticity.

Bibliographical details on the wakes past different geometries are given in section 1.2.
Now, an overview of the fluid forces that apply on the geometry is presented in section A.3.
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A.3 Fluid forces on the geometry

The fluid force that applies on a body at an instant t is denoted by
f⃗ = fxe⃗x + fy e⃗y + fz e⃗z; it results from integration on the geometry:

f⃗ =

∫∫

Body

d⃗f ds, (A.19)

with d⃗f the local fluid force on the elementary surface ds.
The local fluid force d⃗f can be decomposed as a sum of a pressure term d⃗fp, in the n

direction, and a viscous term d⃗fµ, parallel to the elementary surface (see figure A.1). These
force contributions are linked to the fluid properties by

d⃗fp = −pds e⃗n, (A.20)

and

d⃗fµ = µ

(
∂us1
∂n

e⃗s1 +
∂us2
∂n

e⃗s2

)

, (A.21)

with µ the dynamic viscosity of the fluid, all the quantities being evaluated at n = 0. As
a result, the total force is the sum of a pressure force f⃗p and a friction force f⃗µ, integrated
on the body surface.

From these definitions, it is clear that the distribution of velocity in the boundary layers
has a significant influence on the fluid forces. First, the velocity profile in the boundary
layer has a strong effect on the friction drag through the gradient ∂Us/∂n. Furthermore,
as previously stated, the momentum close to the wall is a first order parameter of the
presence and position of flow separations. This can result in important modifications of
pressure around the body.

The normalization of the fluid force is done by

ci =
fi

1
2ρSU0

2 , (A.22)

with i ∈ {x, y, z}, S being the projected area of the geometry on a cross-flow plane. Ci = ⟨ci⟩
is the mean force coefficient in the i direction; the normalized pressure and friction contri-
butions are denoted by cip and ciµ respectively.

To set the context of these experiments, it is useful to give some orders of magnitude
of drag sources. The total drag is the sum of the pressure force on the forebody, the
friction force on the sides and the pressure force on the afterbody. For bluff body flows at
high Reynolds numbers, the dominant term is the pressure force on the afterbody as the
flow separation on the base2 is usually associated with low levels of pressure. The friction
effects and the pressure distribution on the forebody have a limited contribution to the
total drag, roughly 30% once cumulated.

Experimentally, the fluid force can be directly measured on the geometry using a strain
balance; however, for some configurations, an alternative evaluation is done from the equi-
librium of a volume of fluid V around the geometry.

The volume V is defined by a stream surface of the mean flow (see figure A.2). The
closed contour of the volume denoted ∂V is made up of the interface Sbody between the
geometry and the fluid, a lateral stream surface Slat and two cross-flow surfaces (normal to

2The base refers to the part of the afterbody where the flow is detached.
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Figure A.2. Scheme of the fluid volume V around the geometry and its contour
∂V = Sin ∪ Slat ∪ Sout ∪ Sbody.

e⃗x): the inlet Sin and the outlet Sout. The cross-flow section Sout is chosen large enough to
contain the wake of the geometry so that Slat is in the potential flow. Finally, the inlet Sin

is upstream enough to have constant flow conditions (U⃗0, P0).
The area of the surface Sin is denoted by Sin, idem for Slat and Sout.

The equilibrium of the fluid in the domain V can be written
∫∫∫

Ω

ρ
du⃗

dt
dΩ = −

∫∫

∂Ω

p e⃗n ds+

∫∫

∂Ω

τv e⃗n ds, (A.23)

with τv = µ
(

grad u⃗+t grad u⃗
)

. Once averaged in time, equation (A.23) gives

∫∫

∂Ω

ρ ⟨u⃗(u⃗ · e⃗n)⟩ ds = −
∫∫

∂Ω

P e⃗n ds+

∫∫

∂Ω

⟨τv⟩ e⃗n ds. (A.24)

If Sout is large enough, the Reynolds stresses on Slat can be neglected and additional
simplifications are obtained. First, Slat being a stream surface, U⃗ · e⃗n is nil on this part
of ∂Ω. As the following studies are devoted to high Reynolds number flows, the viscous
effects on the external contour Sin∪Slat∪Sout of V can be neglected. Under these conditions,
equation (A.24) enables to express the fluid force on the body3 as

F⃗ = ρU0
2 Sine⃗x −

∫∫

Slat

(P − P0) e⃗n ds−
∫∫

Sout

[ρ⟨ux u⃗⟩+ (P − P0) e⃗x] ds. (A.25)

Now, the conservation of mass in the volume V gives

U0 Sin =

∫∫

Sout

Ux ds. (A.26)

So, when projected along e⃗x and normalized, equation (A.25) estimates the drag force on
the geometry as

Cx =

∫∫

Sout

[

2Ux
∗ (1− Ux

∗)− 2⟨u′x
∗2⟩ − Cp

] ds

S
. (A.27)

In equation (A.27), the pressure term on Slat is neglected as, when Sout is large enough,
the pressure is close to the inlet level and the surface verifies e⃗n · e⃗x ≈ 0.

3The viscous effect are still considered on Sbody so the friction force on the body is taken into account.
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When projected along e⃗y, after normalization, equation (A.25) gives

Cy = −
∫∫

Sout

2
[
Ux

∗Uy
∗ + ⟨u′x

∗
u′y

∗⟩
] ds

S
+

∫∫

Slat

Cp e⃗n · e⃗y
ds

S
. (A.28)

The result for Cz is identical after substitution of y by z.
As a result, using equations (A.27) and (A.28), the force coefficients are obtained from

the measurements of pressure and velocities in the wake.
Additional details on the relationship between the measurements and fluid forces have

been provided by Onorato et al. (1984) and by Ardonceau & Amani (1992) for road
vehicle applications. Note that in the framework of car aerodynamics, it may be useful
to decompose the cross-flow forces Ci, with i ∈ {y, z} into front and rear contributions,
denoted Cif and Cir respectively: Ci = Cif + Cir. These coefficients give the repartition
of the cross-flow force on the front and rear axles of the vehicle.
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Appendix C

Axisymmetry of the turbulent

disk wake

This appendix studies the turbulent wake past a disk. The approach is identical to the
one presented in chapter 2 for the sphere. The objectives are to clarify the statistics that
lead to the axisymmetric wake and to detail the instantaneous topology of the natural flow.
These experiments also quantify the wake asymmetry induced by an imperfection of the
setup.

Abstract

The disk wake at ReD = 1.8 104 is axisymmetric in average with a periodic motion at
StD = 0.14. As for the sphere, the analysis of the PIV snapshots in a cross-flow plane shows
that the instantaneous wake explores all the azimuthal directions. Conditional averaging
enables to extract the mean flow topology associated with one orientation; the obtained
wake shows strong similarities with the unsteady planar symmetric flow reported in the
laminar regime. Besides, the use of m = 1 azimuthal perturbations leads to modifications
of the statistics: the wake presents one preferred orientation, toward the disturbance, and
the larger the disturbance, the more the wake selects this orientation.

Contents
C.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.2 Natural mean flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.2.1 Velocities in the plane y∗ = 0 . . . . . . . . . . . . . . . . . . . . . . 205

C.2.2 Velocities in the plane x∗ = 2.0 . . . . . . . . . . . . . . . . . . . . . 205

C.2.3 Periodic dynamics of the wake . . . . . . . . . . . . . . . . . . . . . 208

C.3 Statistics of the axisymmetry . . . . . . . . . . . . . . . . . . . . . 210

C.3.1 Instantaneous topology of the natural flow . . . . . . . . . . . . . . . 210

C.3.2 Azimuthally disturbed flows . . . . . . . . . . . . . . . . . . . . . . . 211

C.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



204 Appendix C. Axisymmetry of the turbulent disk wake

Figure C.1. Side view (a) and top view (b) of the experimental setup with the stereoscopic
PIV system.

C.1 Experimental setup

The experimental setup is identical to the one used for the sphere in chapter 2; it is
presented in figure C.1. Instead of the sphere, a disk of 4 mm thickness with a diameter
D = 40 mm is placed in the middle of the test section. The free-flow velocity is increased
to U0 = 6.9 m s−1 in order to preserve a similar Reynolds number: ReD = 1.8 104.

The disk is designed with slots to accept azimuthal disturbances. The 100 mm
length of the rods corresponds to 2.5D and the normalized diameters are
d∗ = d/D ∈ {0.03, 0.05, 0.10, 0.15}. Only the m = 1 azimuthal periodicity is con-
sidered in the following.

The measurements are based on PIV in the plane y∗ = 0, stereoscopic PIV in the plane
x∗ = 2.0 and hot-wire probe signals. They are strictly identical to the ones presented in
section 2.1.
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Figure C.2. Intensity of Uxz
∗ in the plane y∗ = 0; the white cross locates the saddle point.

RS max (RS) x∗ (max (RS)) r∗ (max (RS))

⟨u′x
∗2⟩ 0.085± 0.005 1.10± 0.02 0.69± 0.02

⟨u′r
∗2⟩ 0.075± 0.005 1.88± 0.02 0.08± 0.02

−⟨u′x
∗
u′r

∗⟩ 0.040± 0.005 1.42± 0.02 0.58± 0.02

Table C.1. Maxima of the Reynolds stresses (RS) in the wake and their corresponding
locations; the data are reported from PIV in the plane y∗ = 0 where u′r = ±u′z.

C.2 Natural mean flow

The mean properties of the natural flow are considered in the planes y∗ = 0 and x∗ = 2.0

respectively.

C.2.1 Velocities in the plane y∗
= 0

The velocity field in the plane y∗ = 0 is presented in figure C.2. The flow is symmetric
referring to the plane z∗ = 0. The recirculation region extends up to x∗ = 1.86 with one
saddle point at the end of the bubble. The maximum width of the wake is Dr = 1.47 at
x∗ = 0.77.

The statistics of the 2000 snapshots give the Reynolds stresses in the plane y∗ = 0;
they are visible in figure C.3. The distributions of the Reynolds stresses respect the sym-
metry of the setup; the maximal intensities are measured on the separatrix except for the
normal cross-flow stress ⟨u′z

2⟩ = ⟨u′r
2⟩ for which the maximum is slightly downstream of

the recirculation bubble. The intensity and the position of the maxima are reported in
table C.1.

C.2.2 Velocities in the plane x∗
= 2.0

The mean streamwise and radial velocities in the plane x∗ = 2.0 are given in figure C.4.
As for the sphere in chapter 2, the axisymmetry of the mean flow is satisfactory. Besides, the
distributions of velocities are very similar to the ones observed downstream of the sphere at
equivalent streamwise positions, i.e. just downstream of the recirculation bubble (compare
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Figure C.3. Reynolds stresses in the plane y∗ = 0: ⟨u′x
∗2⟩ (a), ⟨u′z

∗2⟩ = ⟨u′r
∗2⟩ (b) and

⟨u′x
∗
u′z

∗⟩ (c). The continuous and dashed lines are positive and negative values respectively;
the contour intervals are 0.010 in (a)–(b) and 0.005 in (c), the contour 0 is not plotted. The
thick black line is the separatrix of the mean recirculation bubble.
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Figure C.4. Intensities of Ux
∗ (a) and Ur

∗ (b) in the plane x∗ = 2.0; the dashed circle
locates the disk.

Figure C.5. Intensities of Std(ux∗) (a) and Std(ur∗) (b) and ⟨u′x
∗
u′r

∗⟩ (c) in the plane
x∗ = 2.0; the dashed circle locates the disk.

to figure 2.4). The main difference lies in the cross-flow size of the wake due to the bluffness
of the disk.

The fluctuations of velocities in the cross-flow plane x∗ = 2.0 are presented in figure C.5.
The axisymmetry is convincing and the distributions are very similar to the case of the
sphere visible in figure 2.5. The maxima of the normal streamwise and shear stresses are
located in the shear layers at r∗ ≈ 0.6 while the normal cross-flow stresses are concentrated
around the axis of symmetry.

These maps of velocity allow the evaluation of the drag force using equation (A.27). As
in the case of the sphere, the pressure contribution is neglected as a value of Cp ≈ 0 is
expected close to the end of the recirculation region1. The so-evaluated drag is Cx = 1.21

which remains consistent with the values reported in the literature between 1.1 and 1.2
(Hoerner, 1965; Tropea et al., 2007).

The fluctuations of velocity in the wake are associated with the turbulent activity of the
flow but also with the presence of oscillating global modes that are depicted in the next
section.

1This point is evidenced in chapter 5 in figures 5.6(a)–(b): the mean pressure just downstream of the
end of the recirculation bubble is close to the free-flow pressure for three-dimensional wakes.
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Figure C.6. Autopower spectrum of a hot-wire probe signal at x∗ = 2.00, y∗ = 0 and
z∗ = 0.75.

C.2.3 Periodic dynamics of the wake

The autopower spectrum of a hot-wire probe signal located downstream of the disk
at x∗ = 2.00, y∗ = 0 and z∗ = 0.75 is plotted in figure C.6. The distribution of energy
presents a peak at StD = 0.142 which corresponds to the vortex shedding described in the
literature. This antisymmetric global mode is usually reported at StD = 0.135 ± 0.05 for
equivalent Reynolds numbers (Berger et al., 1990; Miau et al., 1997; Ruiz et al., 2009).

As for the sphere wake, the use of a flying probe enables to explore the spatial distri-
bution of energy of this mode as well as the spectral repartition of the Reynolds stresses
presented in figure C.3. The autopower spectra at x∗ = 0.5, 1.0, 1.5, 2.0 and 2.5 are shown
in figure C.7 for different z positions. The shedding process is reported downstream of
the mixing layers. The corresponding peak of energy becomes particularly clear in front
of the energy of the large-scale structures of turbulence when the probe is moved further
downstream, typically for x∗ ≥ 1.5.

Besides, for x∗ = 2.5, a significant energy of the velocity fluctuations is reported in
figure C.7(e) around z∗ = 0 at low frequencies, i.e. for StD . 0.02. At this location, the
distributions of the Reynolds stresses in the plane y∗ = 0 point out that the dominant term
is ⟨u′r

2⟩ (see figure C.3). Hence, these low frequency dynamics are very likely to be related
to fluctuations of the radial velocity. These effects might be the signature of long time
evolutions of the azimuthal orientation of the instantaneous wake.

Finally, one can note slight asymmetries in figures C.7(a)–(b); they are due to the
intrusiveness of the probe in the recirculation region where the wake is expected to be a
highly sensitive (see chapters 3 and 7).

As a conclusion, the structure of the mean wake past the disk with this setup is consistent
with the results reported in the literature. The topology of the instantaneous flow is now
depicted in section C.3.
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Figure C.7. Autopower spectra from hot-wire measurements in the plane y∗ = 0 depending
on z∗ at x∗ = 0.5 (a), x∗ = 1.0 (b), x∗ = 1.5 (c), x∗ = 2.0 (d) and x∗ = 2.5 (e). The contour
interval is 0.01. The dashed line in (d) corresponds to the spectrum plotted in figure C.6.
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Figure C.8. Streamwise vorticity Ωx
∗ (a) and fluctuations of streamwise velocity

Std(ux∗) (b) in the plane x∗ = 2.0 for the natural flow when θW = 0. The dashed cir-
cle locates the disk.

C.3 Statistics of the axisymmetry

The instantaneous topology of the natural wake is considered in section C.3.1 while
section C.3.2 is devoted to the effects of m = 1 azimuthal disturbances.

C.3.1 Instantaneous topology of the natural flow

The PIV snapshots are processed in the exact same way as in chapter 2. The barycenter
of momentum deficiency defined in equations (2.1) and (2.2) is used to study the statistics
leading to the axisymmetric mean flow presented in the previous section. As for the sphere,
the probability density functions of rW and θW report that the instantaneous flow tend to
be slightly off the axis of symmetry and all the azimuthal directions are explored with the
same probability2.

Conditional averaging allows the evaluation of the flow topology for a given azimuthal
direction of the wake. By construction, the momentum deficiency is off-centered but the
interesting points are the corresponding distributions of the mean streamwise vorticity Ωx

∗

and of the fluctuations of streamwise velocity Std(ux
∗). They are presented in figure C.8

for the wake orientation θW = 0. A topology similar to the case of the sphere is obtained:
two counter-rotating vortices in the streamwise direction combined with a concentration
of the fluctuations of velocity in the direction of the wake. One can remark that the
shape of the vortices slightly differs between the disk in figure C.8(a) and the sphere in
figure 2.10(a): the vortices have a bean shape past the disk whereas they are more elliptical
in the sphere case. As for the sphere, this asymmetric flow topology for a given wake
orientation is reminiscent of the shedding of parallel vortex loops observed in the laminar
regime after the unsteady bifurcation (Szaltys et al., 2012).

The asymmetric velocity field obtained for the wake orientation θW = 0 is associated
with a lift force estimated at Cy = −0.26. This lift force seems large and is certainly over-
estimated but it is difficult to find corresponding values in literature; to give a comparative

2The PDF are not presented here but the best m = 1 fit for PDF(θW ) is visible in figure C.9.
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d∗ 0 0.03 0.05 0.10 0.15
K 0.008 0.020 0.028 0.071 0.120

Table C.2. Amplitude of the m = 1 modulation in PDF(θW ) for the different disturbance
diameters d∗.

order of magnitude, the lift force is reported around 0.06 in laminar regime for a thick disk
(Auguste et al., 2010).

At this stage, it is interesting to note that the disk geometry implies that there is no
pressure lift on the geometry and no friction drag. So, the lift force is measured from an
asymmetric inertial flow but it is exclusively associated with viscous effects on the disk
surface. In addition, the method used in the case of the sphere to obtain the flow topology
in the plane y∗ = 0 (see figure 2.14) does not work in the case of the disk. Indeed, the
conditional averaging based on uzr

∗ does not allow to recover the asymmetries measured
by stereo PIV in the plane x∗ = 2.0.

Consequently, it appears difficult to interpret the instantaneous asymmetry of the flow
in terms of force; in particular, the connections established in part II between the base
pressure gradients, the wake asymmetries and the cross-flow forces do not seem to be valid
in the disk case.

Having said that, these results show that the instantaneous wake still tends to be off the
axis of symmetry; the axisymmetry of the mean flow results from the fact that the wake
explores all the azimuths.

Now that the instantaneous topology is depicted, the effects of m = 1 azimuthal distur-
bances on the statistics of the axisymmetry are considered in section C.3.2.

C.3.2 Azimuthally disturbed flows

Cylinders of different diameters are placed on the disk in the direction θ = 0. For each
disturbance, stereoscopic PIV in the plane x∗ = 2.0 leads to the probability density function
of the wake orientation θW . All the results follow a m = 1 general trend that can be fitted
by

K cos(θW ) +
1

2π
. (C.1)

The corresponding fits are presented in figure C.9. The first observation is that the wake
is sensitive to the disturbance and the flow orientation is equal to that of the disturbance
whatever the disturbance size. Contrary to the case of the sphere, there is no phase change
when d∗ is increased. It is also found that the larger the disturbance, the more the wake
has a preferred orientation. In other words, the amplitude K defined in equation (C.1)
increases with d∗: the results listed in table C.2 suggest a linear dependence between K

and d∗.
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Figure C.9. Probability density functions of θW for the reference case and for the m = 1

configurations. The experimental data are not plotted, the presented curves are their best
m = 1 periodic fits.
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C.4 Concluding remarks

As for the sphere, the holding system consisting in fixing the disk downstream of an
axis is relevant to generate a turbulent axisymmetric wake. The axisymmetry is statistical
as the instantaneous wake tends to be off the axis of symmetry while it explores all the
azimuths.

Conditional averaging gives the wake topology for a given orientation in the cross-flow
plane x∗ = 2.0. The resulting topology is reminiscent of unsteady planar symmetric flow
in the laminar regime. However, the interpretations of the wake asymmetries in terms of
force are not as clear as in parts I and part II because there is no possible cross-flow force
in the disk case at large Reynolds numbers.

Finally, the use of m = 1 azimuthal perturbations evidences the high sensitivity of the
statistical axisymmetry of the wake. The flow presents one most probable orientation toward
the disturbance; its preference to this azimuthal direction is function of the amplitude of
the disturbance.





Appendix D

Statistics of a bistable turbulent

signal

This appendix provides some analytical characteristics of a bistable turbulent signal. It
addresses necessary conditions for the presence of two peaks in the probability distribution
and considers the expected autopower spectrum of such a signal.

Abstract

By modeling a bistable turbulent signal of pressure or velocity at a fixed location, an
analytical study proves that the two peaks in the probability distribution are visible only
if the fluctuations related to the turbulent activity are smaller than the ones related to the
bistable behavior. If not, part of the turbulent fluctuations may be filtered as soon as the
time scales are different. In the spectral domain, the signature of the bistable behavior in
the autopower spectrum is a power-law distribution of energy of coefficient −2 at very low
frequencies.
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Figure D.1. (a) Example of modeled bistable signal a(t) for TS = 5 and σT = 0.5. (b) Ex-
pected autopower spectrum of the turbulent contribution aT . The notation E(...) refers to
the expected value defined in equation (D.5).

D.1 Definition of the signal

This section defines the signal a(t), for t ∈ R
+, modeling the pressure or velocity at a

given position in a bistable turbulent flow. It can be written

a(t) = aB(t) + aT (t) (D.1)

with independent functions aB and aT standing for the bistable and turbulent contributions
respectively. In agreement with the physics measured in these experiments, the two terms
are defined as follows.

The bistable part of the signal is assumed to be a piecewise constant function equal to 0

or 1 (see figure D.1a). (τk)k∈N is the sequence of the time of shifts initialized by τ0 = 0;
(δτk)k∈N∗ is the sequence of the time intervals between two successive shifts:

δτk = τk − τk−1 with k ∈ N
∗. (D.2)

The elements of the sequence (δτk)k∈N∗ are independent. They are defined from an ex-
ponential probability distribution of parameter TS , the mean time between two successive
shifts. In other words, if δτ refers to the random variable of the elements of this sequence,
then

PDF(δτ = t) =
1

TS
e−t/TS . (D.3)

The definition implies a shift at t = 0 and by convention, uB(0+) = 1. This is not
restrictive as the probability to shift at an instant t is independent of the history.

In addition to this bistable term, a(t) contains a random dynamics aT (t) that represents
the turbulent activity. aT (t) is produced by a random variable following a normal law
centered on 0 with a standard deviation σT :

PDF(aT = y) =
1

σT
√
2π

e−
1

2 (y/σ
T )

2

. (D.4)

The time evolution of the signal aT (t) is defined from the statistics of its Fourier transform,
denoted aTF (f). The expected autopower spectrum of the signal is presented in figure D.1(b).
It presents a classic distribution of energy: at fLS/I , there is the frontier between the large-
scale structures of turbulence and the inertial range; then, a cutoff frequency marks the
inception of the diffusion range. Hence, the PSD is constant at a level ELS in the domain
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f < fLS/I while it presents a power decay in the inertial range1. The following analyses do
not depend on the possible peaks of energy related to unsteady global mode activity.

It is important to understand that such a definition of the autopower spectrum of aT is
statistical. It may be seen as the average value after successive independent experiments.

If aiT (t) refers to the turbulent signal of the ith experiment, then E

([
aTF (f)

]2
)

is defined
as

E

([
aTF (f)

]2
)

= lim
n→∞

(

1

n

n∑

i=1

[
ai

T
F (f)

]2

)

. (D.5)

Finally, in agreement with the experimental results, it is assumed that TS ≫ 1/fLS/I :
the characteristic time of the bistable behavior is large in front of the characteristic time of
turbulence.

1The Kolmogorov theory predicts a coefficient of the power decay −5/3 for an homogeneous and isotropic
turbulence.
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Figure D.2. PDF of the signal a(t) for different fluctuations levels of the turbulent contri-
bution: σT = 0.1, (a); σT = 0.2, (b); σT = 0.5, (c); σT = 1.0, (d).

D.2 Analytical results

The analytical study of the bistable turbulent signal defined in section D.1 is first per-
formed to detail the conditions of existence of two peaks in the PDF of a. Then, the char-
acteristics of the bi-stability in the power spectral analysis are considered in section D.2.2.

D.2.1 Peaks in the histograms

As aB and aT are independent, the probability distribution of a = aB + aT can be
deduced analytically by convolution of the two probability distributions. It can be expressed
as

PDF(a = y) =
1

2σT
√
2π

(

e−
1

2
(y/σT )2 + e−

1

2
[(y−1)/σT ]2

)

. (D.6)

Examples of this PDF are presented in figure D.2 for different fluctuation levels σT of
the turbulent contribution. Analytically, the presence of the two maxima in the PDF at
a = 0 and a = 1 relies on the sign of

∂2PDF

∂a2

∣
∣
∣
∣
a=0.5

, (D.7)

defining whether a = 0.5 is a local maximum or minimum of the PDF. The term (D.7) is
positive for σT ≤ 0.5 and negative for σT ≥ 0.5. As a result, the two peaks in the PDF
are only visible if σT ≤ 0.5. In the definition of the signal, the fluctuations related to the
bistable behavior are Std(aB) = 0.5. Thus, the two peaks in the histogram of a bistable
signal cannot be observed as soon as the fluctuations in the velocity signal are larger
than fluctuations related to the bi-stability. Besides, it is worth noting that the result is
similar when the fluctuations of aT are ascribed to measurement uncertainty rather than
to turbulent activity.

An experimental evidence of the influence of σT is visible in figure 5.17: the two peaks in
the PDF of the velocity signal in the boundary layer are reported only after applying a low-
pass filter to suppress part of the fluctuations related to the turbulent activity. Nevertheless,
this method works because the bistable and the turbulent behaviors can be separated in
the spectral domain.
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D.2.2 Autopower spectrum

This section aims at characterizing the autopower spectrum of a bistable turbulent
signal. The objective is to prove that the expected autopower spectrum follows a power
law of coefficient −2 for TSf ≪ 1.

The expected Fourier transform of a is aF = aBF + aTF so,

E

(

[aF (f)]
2
)

= E

([
aTF (f) + aBF (f)

]2
)

= E

([
aTF (f)

]2
)

︸ ︷︷ ︸

P (f)

+E

([
aBF (f)

]2
)

︸ ︷︷ ︸

Q(f)

+2E
(
aTF (f)a

B
F (f)

)

︸ ︷︷ ︸

R(f)

). (D.8)

The term P (f) is plotted in figure D.1(b); it is equal to ELS as soon as f < fLS/I , which
is the case for TSf ≪ 1.

The terms Q(f) and R(f) can be studied through the analytical expression of aB . It is
a succession of positive and negative unit step functions that are offset in the time domain
by the sequence (τk)k∈N∗ . Its Fourier transform can be expressed as

aBF (f) =
1

f

∑

k∈N

(−1)ke−τkf , (D.9)

with (τk)k∈N the positive growing sequence of the times of shift.
It is easily obtained that the sequence

(
∑

k<2l

(−1)ke−τkf

)

l∈N

is a decreasing sequence bounded from below while the sequence
(
∑

k<2l+1

(−1)ke−τkf

)

l∈N

is a growing sequence bounded from above. One can conclude that these two sequences
converge, necessarily to the same value v(f); note that v(f) depends on the sequence of the
shifts.

From the particular statistics of the sequence (τk)k∈N defined in section D.1, one can
prove2 that

E
(
e−τkf

)
=

(
1

1 + TS

)k

, (D.10)

with E(...) denoting the expected value. Thus, applying theorems of limit – sum and
sum – sum inversions, it is found that

V (f) = E (v(f)) =
1 + TSf

2 + TSf
. (D.11)

As a result, the analytical expression of the expected Fourier transform is obtained as

E
(
aBF (f)

)
=

1

f

1 + TSf

2 + TSf
. (D.12)

2The mathematical induction is not detailed here.
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Using a similar reasoning, one can study the term Q(f) = E

([
aBF (f)

]2
)

. It can be

expressed as

E

([
aBF (f)

]2
)

=
1

f2
V2(f), (D.13)

with

V2(f) = E





[
∑

k∈N

(−1)ke−τkf

]2


 . (D.14)

Contrary to the calculus of V (f) in equation (D.12), there is no simple expression for V2(f).
The important characteristic is that it verifies

V (f)2 < V2(f) < 1, (D.15)

which implies that
1

4
< V2(f) < 1. (D.16)

So,

Q(f) = E

([
aBF (f)

]2
)

∼
TSf≪0

1

f2
. (D.17)

The last term that must be evaluated in equation (D.8) is the coupling term

R(f) = 2E
(
aTF (f)a

B
F (f)

)
= lim

n→∞
Rn(f), (D.18)

with Rn(f) defined as

Rn(f) =
2

n

n∑

i=1

ai
B
F (f)ai

T
F (f). (D.19)

Now, |Rn(f)| can be bounded by above as

|Rn(f)| ≤ 2

n

n∑

i=1

∣
∣ai

T
F (f)ai

B
F (f)

∣
∣

≤ 2

n

√
√
√
√

n∑

i=1

∣
∣aiTF (f)

∣
∣
2

√
√
√
√

n∑

i=1

∣
∣aiBF (f)

∣
∣
2
, (D.20)

making use of Hölder’s inequality. Hence, using equation (D.12) and the definition of the
turbulent power spectrum, a bounding from above of the term R(f) is obtained as

|R(f)| ≤ 2

f

√

ELS , (D.21)

which means that R(f) ≪
TSf≪1

Q(f) in equation (D.8).

Consequently, as P (f) ≪
TSf≪1

Q(f), it is proved that

E

(

[aF (f)]
2
)

∼
TSf≪1

Q(f) ∼
TSf≪1

1

f2
. (D.22)

The power dependence of coefficient −2 in equation (D.22) explains the important energy
measured in figure 5.10(a) for f < 1 Hz in the signal at B. Such a distribution of energy
in the spectral domain may be an indicator of a bistable behavior at low frequency.
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Analysis and Control of Three-dimensional Turbulent Wakes:
from Axisymmetric Bodies to Road Vehicles

Abstract: An experimental study of the turbulent wakes past different geometries is per-
formed by increasing the complexity from axisymmetric bodies to road vehicles. Whatever
the geometry is, two kinds of coherent wake motions are likely to be observed. First, at
timescales of the order of 5H/U0, H and U0 being the characteristic size and velocity of the
flow respectively, the wake may generate periodic oscillations. These coherent motions are
usually associated with the interaction of two facing shear layers of opposite vorticity. As
the corresponding frequencies rely at first order on the distance between the shear layers,
two distinct frequencies are reported when the afterbody has a cross-flow aspect ratio differ-
ent than 1. These unsteady global modes seem to weaken when the Reynolds number and
the complexity of the geometry increase. The second type of coherent motions corresponds
to the development of stationary cross-flow instabilities. They are linked to the symmetry
breaking modes observed in the laminar regime and their domains of appearance are defined
from geometry considerations for parallelepiped bodies in ground proximity. These insta-
bilities are responsible for strong asymmetries in the instantaneous flow and may generate
bistable dynamics with a characteristic time scale of the order of 103D/U0.

The study of these phenomena, combined with sensitivity analyses to steady per-
turbations, places the diminution of the cross-flow asymmetries of the instantaneous
wake as a relevant strategy for drag reduction. In particular, it is found that both
local and global pressure gradients on the sides of the body are source of streamwise
vortices increasing the drag. Parabolic dependences between the drag and the cross-
flow forces are reported, suggesting similarities with the mechanisms of induced drag
that are well-known in aeronautics. Consequently, as they often generate significant
wake asymmetries, the development of the cross-flow instabilities is identified as a
drag contributor. On the contrary, the part of the drag ascribed to the periodic wake
motions seems to be negligible, especially for complex geometries at high Reynolds number.

Keywords: Wakes · Instabilities · Flow control · Sensitivity analysis · Drag reduction
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