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Genomic selection has revolutionized breeding in dairy cattle, at least on the male pathway. 
This thesis focuses on the female side. First, the genotyping tool most adapted to females was 
defined. The first study conducted within the Eurogenomics consortium assessed the value of 
using the commercially available Illumina® 3K SNP chip. The allelic imputation error rate 
was 4% with the national reference population, and the loss in reliability of GEBV when 
using imputed genotypes instead of real genotypes was 0.05 (2% and 0.02 respectively with 
the combined Eurogenomics reference population). In a second study, alternative in silico low 
density chips were described. Their imputation accuracy was 1 to 2.5% higher than the initial 
commercial 3K. The imputation accuracy not only depends on the number of markers, but 
also on MAF and spacing. A novel imputation strategy, fast and accurate, based on existing 
software, was described. Then, the construction of the new Bovine LD panel, adapted to many 
breeds and specifically dedicated to imputation, was detailed. This tool is well adapted for the 
genotyping of females in dairy cattle at a reasonable cost.  

Abstract 

A second main aspect of this thesis was to study how performances of genotyped cows fit 
within the current genomic prediction model. An experimental design was set up to assess the 
effect of potential biases such as preferential treatment on genomic predictions. Two genomic 
evaluations were performed, one including only daughters performances of proven bulls, and 
another one including phenotypes for both males and females. Two traits were studied: milk 
yield, which is prone to preferential treatment and somatic cell count. Two groups were 
considered: elite females genotyped by breeding companies and randomly selected cows 
genotyped in a side project. For several measures potentially related to bias, the elite group 
presented for milk yield a different pattern than for the other trait/group combinations. The 
study demonstrated that including own milk performances of elite females induced over-
estimated genomic evaluations.  Such a bias has two major consequences: it may affect 
genomic predictions equations, and it may induce overestimated breeding values for the cow 
and her close relatives. Different possible solutions to properly include such performances in 
genomic predictions were described and their potential impacts were compared.  

Finally, the benefits of genotyping heifers either by breeding companies or by farmers were 
discussed. A review of several simulation studies was conducted. Selecting bulls dams based 
on their genotypes appears to be crucial within a breeding scheme. Indeed, it is as important 
as using young bulls for artificial insemination. Using genotyping tools to select heifers to 
replace culled cows is more controversial. The return on investment for the famers depends 
on the cost of genotyping, the replacement rate as well as the economic value of the expected 
genetic improvement. Several herd management decisions could be facilitated when using 
genomic breeding values. A positive interaction exists between genomic selection within herd 
and several reproduction practices such as embryo transfer or use of sexed semen. Their 
combination may help in solving the issue that dairy cattle faces today related to the decrease 
of performances for health traits such as fertility.  
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“I have hope 
 because I saved one seed 

 that I will plant and grow again.” 

Palestinian poem 
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Abbreviations and Definitions 

AI: Artificial Insemination 

BLUP: Best Linear Unbiased Predictor is the model used for conventional genetic 
evaluations.  

DAG: Directed Acyclic Graph 

DNA: DeoxyriboNucleic Acid 

DYD: stand for Daughter Yield Deviations (DYD) and were defined by VanRaden and 

Wiggans (1991). They correspond to the average daughters performances corrected for all 

fixed effects (such as the herd, year, season effects among others), the permanent environment 

effect, and also for the genetic contribution of the bull’s mate (i.e., half the additive genetic 

value of the cow’s dam).  

DGV refer to Direct Genomic Values. They are obtained after genomic evaluation (when 
model includes a polygenic effect, DGV refer to the non-polygenic genetic effect).  

EBV: refers to Estimated Breeding Values. They are obtained after conventional genetic 
evaluation.  

EDC: Equivalent Daughter Contribution 

EN: Elastic Net 

GBLUP: Genomic BLUP, for which the relationship matrix A is replaced by a genomic 
relationship matrix G, based on markers information. 

GEBV: refers to Genomic EBV (or genomically enhanced EBV). They are obtained after 
genomic evaluation, and also account for pedigree information. They are either derived from a 
genomic model which includes a polygenic effect, or from a blending of DGV and 
conventional EBV.  

GG: GoldenGate 

LD: Linkage Disequilibrium: non-random association of alleles between loci.  

LPI: Lifetime Profit Index 

MAF: Minor Allele Frequency 

MAS: Marker Assisted Selection 

MS: Mendelian Sampling term 

NM: Net Merit 

PTA: Predicted Transmitting Ability (equals EBV/2) 

QTL: Quantitative Trait Locus 

Reference population: this term refers to all the genotyped animals with phenotypic data 
(progeny tested bulls for instance). This reference population is usually split into 2 groups in 
most studies (training and validation). 
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SCC: Somatic Cell Count 

Single step: procedure for which both conventional and genomic evaluations are performed at 
once. 

SNP: means Single Nucleotide Polymorphism. It corresponds to a DNA sequence  for which 
one single nucleotide present two possible forms.  

TMI: Total Merit Index 

Training population: refers to individuals for which phenotypic data are used in the model. 

US/USA: United States (of America) 

Validation population: refers to individuals for which phenotypic data are removed from the 
model. The model is then used to predict these phenotypic data. Estimates can be compared to 
“true” phenotypic data.  

YD: Yield Deviation is the equivalent phenotypic measure for females and correspond to the 

performance of the cow herself (not her progeny), corrected as well for all the effect but the 

genetic effect. 
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• Background 

 General Introduction  

 

During the XXth

For selection, animals do not have phenotypes (e.g. dairy bulls) or have phenotypes relatively 

late (dairy cows for instance). To achieve efficient selection, it would be desirable to directly 

have access to the information hidden in the genetic material (DNA) early in the life of the 

animal. A first solution is to know the genotype at some known major genes. For example in 

beef cattle, the myostatin gene, a gene involved in muscular hypertrophia was discovered 

(Grobet et al. 1997). It is possible to use such information for selection (Lande and 

Thompson, 1990). Sometimes, a specific location on a chromosome is known to have an 

effect on a trait of interest but the genes involved remain unknown. This location is called 

QTL (Quantitative Trait Locus, Georges et al., 1995). It is possible to capture the information 

at a given QTL based on the information at adjacent markers given the fact that long 

chromosomes segments are inherited from parents to progeny. Shrimpton and Robertson 

(1998) demonstrated that only a few genes have large effects whereas many genes have small 

 century, genetic improvement in livestock relied on performance recording 

and pedigree registration without information on the genome. In dairy cattle, sophisticated 

progeny testing schemes were implemented. Male candidates were randomly mated in order 

to have a given number (often 100) of daughters. These daughters obtained performances on 

production, type, and functional traits, when bulls were about 5-year old. Daughters’ 

performances were used in specific statistical analyses in order to estimate breeding values of 

their sires. Such breeding schemes were efficient. For instance, in France the annual genetic 

gain for milk yield was around 100kg or 0.2 genetic standard deviation over the last two 

decades. However, the generation interval (time elapsed between two successive generations) 

was quite long, generating important drawbacks such as high costs of breeding programs and 

a long delay between selection decisions and the observation of their effect on performances.  

This approach was based on the polygenic model proposed by Fisher, assuming an infinite 

number of genes involved in the genetic determinism of the trait. This model is biologically 

wrong (limited amount of genetically inherited material) but very effective in practice. 

However, its efficiency to predict the Mendelian sampling effect (i.e. the part of the breeding 

value which is not predictable from the parental value) is low when the individuals has no 

own performance nor progeny, or when the heritability is low. 
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effects. Capturing all this information requires to know the genotype at markers all over the 

genome. This technique is called genomic selection. Its implementation became possible with 

the reduction of genotyping costs.  

 

Three main scientific questions were related to the implementation of genomic selection. 

First, which genotyping tool should be used? The Illumina company developed the Bovine 

SNP50® (Matukillami et al., 2009) and this tool was found to be well adapted to the need, 

with a good adequacy between its marker density and the effective population size of most 

breeds. Second, some methodological questions were addressed such as: which statistical 

prediction model should be used to estimate markers effects? Meuwissen et al. (2001) 

described the original Bayesian models (BayesA and BayesB) and other approaches were 

proposed subsequently, especially GBLUP (VanRaden, 2008). Last, how breeding schemes 

should evolve after inclusion of genomic selection? Schaeffer (2006) demonstrated that 

progeny-testing was no more economically efficient when genomic selection is implemented. 

Emphasis was set on the estimation of genomic breeding values of young male candidates and 

their early use through artificial insemination in breeding scheme.  

 

• Aim of the thesis 

 

This thesis aims at addressing the same questions as above but focusing on the female 

population. First, which genotyping tool is best adapted to females? Second, do individual 

performances of genotyped cows fit within the current prediction model? Last, what are the 

benefits of genotyping females, both for the farmer and at the breeding scheme level?  

 

• the AMASGEN research project  

 

In 2008, a genome-wide markers assisted selection was implemented in France and became 

official in 2009. Some improvements of the method were required. The research project called 

AMASGEN was launched for 3 years in 2009 in France by INRA (the French research 

institute for agriculture) with the collaboration of Institut de l’Elevage (French technical 

institute for livestock productions) and UNCEIA (Union Nationale des Coopératives 
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d’Elevage et d’Insémination animale, umbrella association of cooperatives for artificial 

insemination and breeding). AMASGEN stands in French for Methodological Approaches 

and Application for GENomic Selection in dairy cattle. The main aim of this project was to 

develop a method to combine genomic information from genotyped animals with the 

information from phenotypes and pedigree for a fast and large implementation of genomic 

selection in the French dairy cattle breeding schemes. The fourth work package of this project 

was dedicated to the aim of this study. 

  
• Outlines of the thesis 

 

In Chapter 1, after addressing the reasons for using low density panels, theoretical aspects of 

imputation are introduced and several dedicated software are compared. The various ways of 

measuring imputation accuracy are presented.  Considering the possible use of a commercial 

3K chip, a first study measured the impact of using imputed genotypes on reliability of 

GEBV. Results are presented in a first article: Dassonneville R., R.F. Brøndum, T. Druet, 

S. Fritz, F. Guillaume, B. Guldbrandtsen, M.S. Lund, V. Ducrocq, G. Su. 2011. Impact 

of imputing markers from a low density chip on the reliability of genomic breeding 

values in Holstein populations. J Dairy Sci 94 :3679–3686 (article I).  

Chapter 2 aims at defining the most adapted low density panel. Considering some deficiencies 

of the initial commercial product, two alternative in silico chips optimized for markers allelic 

frequencies and spacing, are proposed. Their imputation accuracy is compared to commercial 

chip. Results for several breeds are presented in a second article: Dassonneville R., S. Fritz, 

F., V. Ducrocq, D. Boichard. 2012. Short Communication: Imputation performances of 

three low density marker panels in beef and dairy cattle. J. Dairy Sci. 95:4136–4140 

(article II). Taking into account the room for improvement for the low density panel, a new 

chip was designed and later commercialized. Its design is described in the third article: The 

Bovine LD Consortium. Boichard D., H. Chung, R. Dassonneville, X. David, A. Eggen, 

S. Fritz, K. J. Gietzen, B. J. Hayes, C. T. Lawley, T. S. Sonstegard, C. P. Van Tassell, P. 

M. VanRaden, K. A. Viaud-Martinez, G. R. Wiggans. 2012. Design of a Bovine Low-

Density SNP Array Optimized for Imputation. PLoS ONE 7(3): e34130 (article III).  

In Chapter 3, after introducing historical aspects related to the bias induced by preferential 

treatment and its possible impact over genomic predictions, we describe an experimental 
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design which was set up in order to properly measure the bias induced by preferential 

treatment on performances of genotyped cows. Results are presented in a fourth article: 

Dassonneville R., A. Baur, S. Fritz, D. Boichard, V. Ducrocq. 2011. Inclusion of cows 

performances in genomic evaluations and its impact on bias due to preferential 

treatment. Submitted (article IV). After the existence of a bias was demonstrated, some 

possible solutions to this incoming problem were described and compared.  

A discussion on the expected benefits of genotyping females follows in Chapter 4. First the 

theoretical background of the measure of genetic gain is detailed, and then several simulations 

studies are reviewed. Major conclusions regarding the genotyping of bull dams are drawn. A 

survey considering the potential returns on investment for a farmer is outlined. Possible 

interactions with reproduction practices and herd management decisions are considered with 

special focus on the genetic improvement of health traits.  
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Imputation and low density chip 

 

CHAPTER 1 – Imputation and low density SNP chip 

1.1. Presentation of low density panels and imputation  

1-1.1. THE NEED OF A CHEAP LOW DENSITY SNP PANEL 

The use of Bovine SNP50 ® chip has been a huge success in dairy cattle and hundreds of 

thousands of genotypes were performed across the world with this tool. This success is not 

only explained by the possibility to double the genetic gain offered by genomic selection, but 

also the fact that the cost of the chip is considerably low compared with the cost of progeny-

tested bulls. In Europe, it is usually considered that one progeny-tested bulls costs around 

€40,000. Schaeffer (2006) reported a value of $50,000 per bull in Canada. The Bovine SNP50 

chip cost $208 in 2009 (official price) and this price has been divided by 2 since then. The 

complete total price for a genotyping (including chip price and lab costs) was around $500 

and keeps decreasing. Genotyping dozens of male candidates and selecting the best of them as 

new AI bull clearly appears as a nice opportunity for breeding companies to reduce costs, 

compared to progeny testing.  

However, this chip may not be the optimal tool to genotype females. Potential bull dams may 

be genotyped by AI centers, and their high genetic merit may justify a more expensive 

genotyping. But the large amount of females in commercial herds may not benefit from this 

chip because of its price. For this reason, and considering the potential market, the Illumina 

Company developed a cheaper genotyping tool. This chip contained fewer markers and was 

more affordable. The first low density chip (Golden Gate GG3K) was launched in 2009 and 

contained 2900 SNP. It was studied in article I. Another SNP panel arose in 2011 and 

replaced the GG3K. This new Bovine LD chip contains around 6900 SNP (see article III). 

Both low density chips were released at a much lower price ($33) compared to the standard 

Bovine SNP50 (see Figure 1).  
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Imputation and low density chip 

 

Figure 1:  Official 2012 prices of the 3 different Illumina SNP chips developed for cattle 

1-1.2. CRITERIA TO SELECT MARKERS TO INCLUDE IN THE LOW DENSITY PANEL 

 From the standard 50K SNP panel, there are 2 obvious ways to select a subset of 

markers to create a new low density chip. The first one consists in considering the best 

markers (SNP with the largest effect) for a given trait. The trait of interest could be the total 

merit index. The second approach makes use of linkage disequilibrium across chromosome 

segments and considers evenly spaced markers. 

The main drawback of the first approach is that it would lead to different SNP panels for 

different breeds. SNP effects for a trait are usually not consistent across breeds. It would also 

lead to different choices of markers subsets for different traits (different selection objectives). 

This would imply several SNP chips which is not compatible with the cost reduction initially 

sought: to decrease the cost of the SNP chip, it is required to produce and sell a large amount 

of the same product.  

Weigel et al. (2009) or Moser et al. (2010) compared these 2 approaches. Results from the 

best markers were (as expected) slightly better for the trait of interest, however differences 

were small and imputation of missing markers (between evenly spaced markers) was not 

performed. Indeed, the genomic evaluation carried out in their studies only considered a 

limited number of SNP, and did not take full advantage of linkage disequilibrium between 
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missing markers and genotyped markers of the low density panel. Indeed, some specific 

statistical methods can be used to fully benefit from low density panels by reconstructing 

genotypes at the standard density.  

1-1.3.  DEFINING IMPUTATION 

 Imputation consists in pred_cting mis_ing l_tt_rs w_thin wo_ds or se_t_nces. It 

us_al_y reli_s on s_mple r_les. In statistics, imputation is the substitution of missing data by 

the most likely value. In genetics terms, imputation can be defined as the estimation of 

unmeasured genotypes.  

Imputation requires 2 distinct data sets, including genotypes of different individuals and 

corresponding to 2 different marker panels (Figure 2). Some markers are usually included in 

both panels in order to create a link between the 2 data sets (actually, the more markers in 

common, the more accurate the imputation). Pedigree information (relationships between 

individuals) and the genetic marker map (position of markers on the genome) bring additional 

information.  

 

 

Figure 2 Diagram describing imputation. The rows correspond to sequences of bases 
(a,c,g,t) on the paternal and maternal haplotyes. Imputation consists in filling in the 
gaps (in orange here) of the low density using information extracted from high density 
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1-1.4. STATISTICAL BASIS OF IMPUTATION 

 Imputation usually relies on hidden Markov model. A Markov model is a stochastic 

process that assumes that the conditional probability distribution of future states depends only 

upon the present state.  

Let us consider a series of markers present on a given chromosome segment and distributed 

according to their position on the genetic map. The Markov property implies that only the 

information at a marker n is required to impute the genotype at marker n+1.  

 

Figure 3 A hidden Markov model. c0, c1, ... cT follow the Markow property : to 
determine c3, only the information at c2 is necessary. In the case of hidden Markov 
model, c0 to cT are not observable. y0, y1 ... yT represent the observation. Observation y 
3 only relies on the hidden state of c3.  

 

Instead of directly considering the measurable variable (here the genotype), we consider a 

hidden variable which could correspond to ancestors’ haplotypes following the Markov 

property. When we deal with SNP, the information at each single marker is binary, so it is 

very limited. Allowing a larger number of different states at every position gives more 

flexibility to the statistical tool to sum up the information corresponding to the previous 

positions. For a given position at a locus n, a hidden state is assigned based on the information 

gathered in the hidden state at the position n-1. This hidden state (the haplotype for instance) 

at position n corresponds to one state of the observed variable (here the genotype) at position 

n.  

During the process of imputation, hidden Markov model usually creates a mosaic structure 

(see Figure 4).  
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Figure 4 Mosaic structure obtained with an imputation software based on a hidden 
Markov model (from Scheet and Stephens, 2006). For each individual correspond 2 rows 
(diploid organisms). And every marker is represented by a column. The color of each 
spot refers to the hidden state. X correspond to one allele of the SNP when blank 
correspond to the other allele, defining the observed variable (i.e. the genotype). Colors 
can be seen as ancestors’ haplotypes. 

1.2. The different imputation software 

1-2.1. THE FIRST EXPERIENCE OF IMPUTATION IN HUMAN GENETICS WAS BASED ON 

POPULATION LINKAGE DISEQUILIBRIUM 

 As often in genetics, human genetics are a few steps ahead. As the first genome to be 

sequenced, the human genome was studied using different SNP chips. In order to aggregate 

data coming from different studies, the need for imputation arose. The main focus while using 

genomic data in human genetics is association studies. Most of the time, the aim is to find a 

causal mutation in a gene involved in a specific disease. The data includes individuals from 

small families (compared to large half-sibs families encountered in dairy cattle) and may 
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come from sub-populations usually not related to each other. For these reasons, imputation is 

based on the linkage disequilibrium observed at the population level.   

Two software specifically dedicated to imputation of human data are briefly presented here. 

There exist many more but these two became standards and are heavily used worldwide.  

The first one is fastPHASE, developed by Scheet and Stephens (2006), derived from PHASE 

(Stephens et al. 2001) allowing the analysis of larger data sets. It is based on a hidden Markov 

model. The idea is that over short regions, haplotypes tend to cluster into groups. The model 

specifies a given number K of unobserved states (cluster of haplotypes). The mosaic structure 

seen in Figure 4 is produced by fastPHASE. Colours can be seen as founders’ haplotypes 

segregating in the population. The software can be used for both haplotyping and imputation. 

For imputation, the best guess is sampled from the conditional distribution of the observed 

genotype given the hidden state. Haplotyping consists in allocating the paternal or maternal 

origin of a given chromosome segment.  

The second one is Beagle, developed by Browning and Browning (2007) and heavily used in 

the field. It is also based on an hidden Markov model. It has some similarities with 

fastPHASE, the main difference being that the haplotype-cluster model is localized. While the 

number K of unobserved states is required as an input in fastPHASE, and remains the same 

all along the chromosome, this value can differ for every marker position in Beagle. A 

Directed Acyclic Graph (DAG) is produced and summarizes the LD pattern. It gives the 

different emission probabilities from one hidden state at one marker position to the possible 

hidden state at the next position (see Figure 5). The DAG (which can be seen as a special kind 

of tree where branches can merge) is simplified using the Viterbi algorithm. In Beagle theory, 

recombination is modeled as merging edges.  



 

 

 25 

Imputation and low density chip 

  

Figure 5 Example of a DAG representing localized-cluster model for 4 markers. For 
each marker allele 1 is represented by a solid line and allele 2 by a dashed line. From 
Browning and Browning (2007) 

 

Note: The Viterbi algorithm, initially developed to remove noise in communication, is also 

used in bio-informatics nowadays. It allows to simplify a tree -such as a hidden Markov 

model, or here, the DAG- while constructing it, matching similar edges.   

There exist many other software, such as IMPUTE (Marchini et al. 2007), and several are 

well described in a review from Marchini and Howie (2010).  

1-2.2. IMPUTATION SOFTWARE SPECIFICALLY DEDICATED TO ANIMAL POPULATIONS, 
BASED ON LINKAGE AND MENDELIAN SEGREGATION RULES 

Human population and livestock populations are much different (in terms of LD for instance) 

but the data sets built for genetics studies are even more different. For both species they are 

based on SNP data. But human SNP chips include many more markers (usually around one 

million of SNP) while livestock population are studied with medium density SNP chip 

(dozens of thousands SNP). The main difference consists in the “depth” of the pedigree. 

Human genetic data sets are usually built on small families or even unrelated individuals. On 

the other hand, genetics data sets of livestock populations are usually formed of related 

individuals across several generations. For example, in dairy cattle, very large half-sibs 

families are studied across several generations.  

Considering these differences, some geneticists specialized in animal populations developed 

specifically dedicated software that take advantage of the very specific family structure of 

livestock populations. Indeed, when one or both parents are genotyped, some specific rules 

can be applied in order to partially determine with certainty the genotype of the offspring. 
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Those rules are based on Mendelian segregation. The simplest example is when the sire is 

homozygous at one locus. One knows for sure the paternal allele of the offspring.  

Druet et al. (2008) described such a strategy. The software, which was not publicly released at 

first (it is now included in a package) is called linkPHASE. It follows 4 different steps. First, 

homozygous alleles are assigned to both (paternal and maternal) phases. Then, markers that 

can be unambiguously determined (based on homozygous markers of parents for instance) 

also are assigned. Then anchoring markers (heterozygous markers for parents for which 

phases offspring phases are already determined) are defined. They are used as informative 

flanking markers. Emission probabilities are then computed based on genetic distances. 

Finally, the most probable haplotypes are assigned if they reach a given probability threshold 

(95%). This method is very fast, and takes full advantage of the family structure of livestock 

data sets.  

  

 

linkPHASE fastPHASE or Beagle 

developed for livestock populations human population 

data usually used large half-sibs families unrelated individuals 

account for linkage LD (linkage disequilibrium) 

based on 
Mendelian segregation rules 

 and informative flanking markers hidden Markov model 

markers it was initially  
developed for 

microsatellites  
(multi-allelic) SNP (bi-allelic) 

accuracy medium to high 
excellent 

at high  density 

speed very fast 

slow (especially when data 
includes 

 thousands of individuals) 

Table 1 Main differences between linkPHASE and fastPHASE/Beagle 
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1-2.3. COMBINING THE 2 SOURCES OF INFORMATION: POPULATION BASED LINKAGE 

DISEQUILIBRIUM AND LINKAGE USING FAMILY INFORMATION 

  Both approaches (hidden Markov model based on population LD in human 

genetics and mendelian segregation rules and linkage based on family structure in livestock 

populations) are not exclusive. Traditional human genetics approaches can be used to impute 

livestock SNP data. However they are slow. Moreover, it is a pity not to take into account 

simple Mendelian segregation rules to determine unambiguously an important fraction of the 

genotypes to be imputed. Accounting for family information can also avoid some errors when 

the parent carry rare haplotypes in the population. Druet and Georges (2010) proposed a 

method to combine these 2 sources of information. It is included in a package called 

PHASEBOOK. In the imputation process they proposed, Mendelian segregation rules first are 

applied. Depending on the value of the probability threshold, linkage information can be used 

to assign the most probable haplotype for some regions (given informative flanking markers). 

This is done with the linkPHASE software and partially reconstructed genotypes are obtained. 

Then either the fastPHASE probability model or the Beagle probability model are used (with 

some modifications) to exploit linkage disequilibrium. This is performed using programs 

called dualPHASE or DAGphase. For instance, DAGphase exploits the DAG created by 

Beagle on a base population. To sum up and simplify, this method is very similar to a regular 

hidden Markov model (as used in human genetics). The main difference is that the input file 

includes genotypes partially reconstructed using family information. It is a way to speed up 

the process with no loss in accuracy since only genotypes assigned with certainty are added.  

 

There exist other kinds of methods to perform imputation. One can think of long range 

phasing. Initially proposed by Kong et al. (2008), it considers that long identity by descent 

blocks may be inherited from a hypothetical common ancestor, even for unrelated individuals. 

In practice, “libraries” of long haplotype blocks are created based on genotypes of the training 

population. Hickey et al. (2011) proposed such an approach adapted to dairy cattle 

populations with a software called Alphaimpute. One possible drawback is that some of these 

software leave some missing markers uncalled. Depending on the genomic evaluation method 

used, this downside may unable the use of such an imputation method. Such software were 

not studied in this document. Johnston et al. (2011) compared several different software on 

dairy cattle data. Long range phasing methods are more recent and one may consider that they 



 

 

 28 

Imputation and low density chip 

are really promising. One could find a way to combine this approach with other sources of 

information in order to speed up the process and to increase even more accuracy.  

Findhap is a software developed by VanRaden et al. (2011) that combines pedigree 

reconstruction of genotypes and population haplotyping. It uses libraries where long block of 

haplotypes are sorted according to their frequency in the training population, and checks 

whether the most frequent haplotypes fit with the low density genotypes and nearby markers 

in order to impute missing SNP.  

Imputation clearly appears as a very interesting approach: it fully benefits from the links 

(either at the population or the family level) that exist between individuals genotyped at the 

various densities to predict complete genotypes from lower density genotypes at a reduced 

cost.  

1.3. Measures of imputation accuracy 

There are two kinds of methods to assess imputation accuracy. The first one is to double 

genotype the same individuals. The animals are genotyped on both the low density and high 

density chips and imputed SNP are compared with real ones. The main advantage of such a 

method is that it is the most realistic, and it accounts for both genotyping and imputation 

issues. However this technique has two main drawbacks: first it is more expensive (2 

genotypes per animal). Second, it requires that the studied chip already exist technically, 

whereas sometimes, one just want to test a given set of markers to determine what the 

imputation accuracy would be if such a chip were developed.  

For these reasons, another way to measure imputation accuracy is to simulate in silico low 

density genotypes. Only high density genotypes are used. Then, a low density genotype is 

created by erasing markers that are not present on the low density chip (but present on the 

initial high density chip). It is possible to test as many different chips as required. Differences 

observed between imputed and real genotypes only result from imputation mistakes and are 

not due to genotyping errors of common markers of the 2 chips.  

The second option was chosen in our studies. It is also the most used in the literature.  
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• Direct measures obtained only comparing true and imputed genotypes.  

The advantage of simulation study is to know the “true” genotype for a given marker, present 

on the high density chip, and missing on the low density chip. The genotypes obtained after 

imputation can be compared with this “true” genotype. 

1-3.1. ERROR RATE OR CONCORDANCE RATE 

The easiest measure of imputation accuracy is to count the number of markers for which true 

and imputed genotypes differ. This number, divided by the total number of missing markers, 

gives a ratio, usually expressed in %, called the imputation error rate. 

This measure was used by e.g. Zhang and Druet (2010), Dassonneville et al. (2011).  

Simply derived from the error rate, the concordance rate relates to the proportion of missing 

markers that were correctly imputed, meaning the number of missing markers for which true 

and imputed genotypes are the same divided by the total number of missing markers.  

The concordance rate appears to be a more optimistic way of presenting the same result: 95% 

of markers correctly imputed sounds better than 5% of markers incorrectly imputed.  

This measure was used by e.g. Weigel et al. (2010), Dassonneville et al. (2012).   

One can easily get the concordance rate from the error rate figures (or the other way around) 

as:  

concordance rate = 100 – error rate   (or 1 - error rate when not expressed in%).  

1-3.2.  COUNTING PER GENOTYPE OR PER ALLELE 

There are 2 ways of considering imputation results (or genotyping results) for a given marker:  

● Considering the genotype 

During the genotyping procedure, fluorescence is used to assign individuals’ genotypes for a 

given SNP to 3 clusters, corresponding to the 2 different homozygous possibilities, and one 

for the heterozygous. One possible way of measuring imputation is to check whether the 

genotype was properly assigned after imputation to the correct group. Easily, and as stated in 

Table 2, if the imputed and true genotypes are different, then the imputed genotype is 

considered as wrong.  
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● Considering the 2 alleles 

One may also consider that the genotype for one locus actually hides 2 separate sources of 

information corresponding to the 2 different alleles (inherited from the 2 parents). One 

imputed allele (of one haplotype, either the paternal or the maternal one) may be right while 

the other one may be wrong. Considering either the 2 right or the 2 wrong as one error may 

appear simplistic then.  

 

case true 
genotype 

imputed 
genotype 

# of 
genotype 

errors 

# of 
allele 
errors 

ratio of 
genotype 

errors 

ratio of 
allele 
errors 

1 homozygous (same) 
homozygous 

0 0 0/1 0/2 

2 homozygous heterozygous 1 1 1/1 1/2 

3 homozygous opposite 
homozygous 

1 2 1/1 2/2 

4 heterozygous heterozygous 0 0 0/1 0/2 

5 heterozygous homozygous 1 1 1/1 1/2 

Table 2 genotype and allele error rates for all the different cases which can be observed 
when comparing true and imputed genotype. 

 

Obviously, when imputation is correct, i.e. when true and imputed genotypes are identical 

(cases 1 and 4 in the table), the error rate is 0 and both genotype or allele measures are 

identical. We expect this situation to be the most frequent.  

When the true genotype is homozygous and the imputed genotype is heterozygous, or vice-

versa (cases 2 and 5), the error rate is 1 for the genotype measure, and ½ for the allele 

measure. It is the main difference between the 2 measures. This situation is expected to be the 

main source of errors.  
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When true and imputed genotypes are opposite homozygous (case 3), the error rate is 1 for 

both measures. However, if the error rate p is small, the probability of such an error is even 

smaller, as it is proportional to p².  

Considering the last situation as rare, one can approximate the genotype error rate as twice the 

allele error rate. This approximation can be used to “translate” results from one study to be 

compared with another one.  

Some authors (e.g. Weigel et al., 2010) prefer to use genotype error rate. They argue that 

allele error rate is a way to present better results, as the error rate appears lower (or 

concordance rate appears higher). As Druet et al. (2010), we chose to consider the allele error 

rate. Imputed genotypes will be used in genetic evaluations, which are based on an additive 

model. For this reason, if the imputed genotyped for one marker is half correct (cases 2 and 

5), we can expect the resulting genomic evaluation as half right, and not completely wrong. 

This is the reason why we prefer to use allele error rate.  

1-3.3. CORRELATION BETWEEN TRUE AND IMPUTED GENOTYPES 

Most of the authors report concordance or error rates, based on alleles or genotypes. These 

measures are simple to calculate, and easily derived from the other one. There exist some 

alternative measures that present some better properties. Hickey suggested to use correlation 

between true and imputed genotypes in order to account for MAF.  

As we stated in part 2.1. , “Using concordance rate as imputation efficiency criterion may be 

misleading as it depends on MAF. The lower the MAF, the higher the concordance rate, for 

the same efficiency and this should be accounted for in the interpretation. For example, with 

an average MAF of 0.2, 80% of the results would be correct after random sampling of the 

missing alleles. Getting a 95% concordance rate corresponds only to a 75% ( = (95-80)/(100-

80) ) imputation efficiency. Correlations are an alternative criterion less dependent on MAF.“ 

One hidden message is that, a marker with low MAF presents less variation across 

individuals, bringing less information to the genomic model, therefore good concordance rate 

for such marker is misleading when one wants to predict the information brought from 

imputed genotypes to the evaluation model. In the study of Hickey et al. (2012), performed on 

maize data, they plotted both concordance rate and correlation as a function of MAF (Figure 
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6). One may thereby observe differences between the 2 measures, low MAF markers present 

high concordance rate but low correlation.  

We chose to report the 2 kind of measures.  

 

 

Figure 6 (from Hickey et al. 2012) 2 measures of imputation accuracy depending on 
MAF of markers. On the graph on the left is represented the concordance rate whereas 
on the right is presented the correlation. 

1-3.4. COMPARING PHASES OR GENOTYPES ?   

The French genomic evaluation model relies on haplotypes (Boichard et al., 2012). These 

haplotypes are derived from the phased genotypes obtained after imputation. One may want to 

measure imputation accuracy looking at the phases produced. However it is very difficult to 

compare phases outputs. For the same genotypes, it is possible to count the number of 

switches (Druet, personal communication), i.e. the number of apparent recombinations on the 

imputed phase but not present on the “true” phase. An additional drawback is that this 

measure requires to “know” the “true” phases. But phases can only be obtained from 

genotype data after running a phasing software (and this software may also induce some 

errors).  
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1-3.5. MEASURING CONSEQUENCES OF IMPUTATION ERRORS ON GENOMIC EVALUATIONS 

• Graphical representation of G matrices 

- The G matrix 

Many countries (ref) have chosen the GBLUP approach to implement genomic evaluation. 

One possibility is to use a G matrix as in VanRaden (2009). Every line/column corresponds to 

an individual, and based on marker information, a “genomic relationship” is calculated 

between every 2 individuals. Then, this G matrix can be used within the mixed model 

equations as if it were the A matrix (which is based on pedigree relationships).  

- The G matrix as a measure of imputation accuracy 

When one wants to compare genomic evaluations based on true or imputed genotypes using 

the GBLUP method, the G matrix has first to be derived. Zukowski (personal comunication) 

propose to directly compare G matrices (either the “true” one or the one based on imputed 

genotypes). Figure 7 proposes a graphical representations of the G matrices obtained with 

several imputation methods. Graphical representations are not as easy to compare as 

numerical values. However, they give a nice and quick overview. It is also to measure 

distances between matrices.  
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Figure 7 graphical representations of the G matrices obtained with several imputation 
methods  (from Zukowski) The top matrix only represent relationships between 
individual of the training population (before imputation). The matrix in the middle is 
the “true” G matrix. The top left matrix has been computed after random imputation 
(RAN) of the missing markers for the validation population. The matrix down on the left 
is obtained after imputation based on family structure (FAM, Wimmer et al., 2012). The 
2 matrices on the right are obtained after imputation of missing markers using 
ChromoPhase.f90 (CHR1 and CHR2, Daetwyler et al., 2012). The matrix on the bottom 
(BEA) is based on imputed genotypes performed using Beagle software. 

 

With no surprises, random imputation gave poor results but can be considered as a “control”. 

Chromophase and Beagle gave the best imputation accuracy figures (results not shown). 

However, comparing graphical representations clearly shows that the matrix most “similar” to 

the “true” G matrix is the one obtained after Beagle imputation. 

While here we want to predict relationships between individuals, Beagle which is only based 

on population linkage disequilibrium (and does not take into account complex pedigree 

relationships) clearly better predicts “genomic relationships” between individuals. This 

illustrates how well Beagle works, and is consistent with the better imputation of genotypes of 

individuals closely related to the reference population.  
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1-3.6. COMPARING GENOMIC EVALUATIONS BASED ON IMPUTED GENOTYPES 

In animal breeding, the main use of imputed genotypes is to include them in genomic 

evaluation. Obviously, the best way to measure the consequences of using imputed genotypes 

on genomic selection is to run genomic evaluations on both imputed and true genotypes and 

compare the DGV or GEBV obtained. Phenotypes and complete genotypes of the training 

population are used, as well as imputed genotypes for the validation population. Genomic 

breeding values based on imputed and true genotypes can be compared. Moreover, they can 

be compared to phenotypes (DYD or deregressed proofs of validation animals). One can then 

estimate the loss in reliability when using imputed genotypes instead of true genotypes.  
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1.4. Article I  Impact of imputing markers from a low density 
chip on the reliability of genomic breeding values in Holstein 
populations 

1-4.1. BACKGROUND 

In 2010, Illumina developed a new genotyping tool : the Bovine 3K Beadchip ® based on the 

GoldenGate technology (GG 3K). The cost of this SNP chip was reduced by 68% compared 

to the standard Bovine SNP50®. This did not mean that the total genotyping cost was 

substantially reduced since lab costs remained more or less the same. The main target of this 

product was the large population of females. The use of a cheap tool was thought to be crucial 

to launch female genotyping as a new service.  

Also in 2010, a European consortium, Eurogenomics, was formed. It covered 4 large Holstein 

populations (Dutch-Flemish, French, German and Nordic - Denmark, Finland, Sweden -). Its 

members decided to join their reference population (15,966 progeny-tested genotyped bulls) 

in order to achieve more reliable genomic predictions. Their scientific partners also decided to 

cooperate in order to conduct common studies. This article is one of such studies.  

1-4.2. OBJECTIVES 

The purpose of the study is to measure imputation accuracy and to quantify the loss in 

reliability when using imputed genotypes instead of real genotypes. The aim is to determine 

whether such a low density tool can be used in practice.  

The novelty of the paper (among others studies on imputation) lies on the fact that genomic 

evaluations based on imputed genotypes were calculated and their quality was compared to 

the situation without imputed genotypes. That was done using 2 different methods for 

genomic prediction (GBLUP in Nordic countries, GMAS in France) considering 4 different 

traits. It was also desired to compare the loss in reliability due to the use of low density panels 

to the gain achieved when increasing the reference population size.  
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ABSTRACT 
The purpose of this study was to investigate the imputation error and loss of reliability of 

direct genomic values (DGV) or genomically enhanced breeding values (GEBV) when using 

genotypes imputed from a 3K single nucleotide polymorphism (SNP) panel to a 50K SNP 

panel. Data consisted of genotypes of 15,966 European Holstein bulls from the combined 

EuroGenomics reference population. Genotypes with the low density chip were created by 

erasing markers from 50K data. The studies were performed in the Nordic countries 

(Denmark, Finland, and Sweden) using a BLUP model for prediction of DGV and in France 

using a genomic marker assisted selection approach for prediction of GEBV. Imputation in 

both studies was done using a combination of the DAGPHASE 1.1 and Beagle 2.1.3 software. 

Traits considered were protein yield, fertility, somatic cell count and udder depth. Imputation 

of missing markers as well as prediction of breeding values were performed using two 

different reference populations in each country; either a national reference population or a 

combined EuroGenomics reference population. Validation for accuracy of imputation and 

genomic prediction was done based on national test data. Mean imputation error rates when 

using national reference animals was 5.5% and 3.9% in the Nordic countries and France, 

respectively, whereas imputation based on the EuroGenomics reference dataset gave mean 

error rates of 4.0% and 2.1%, respectively. Prediction of GEBV based on genotypes imputed 

with a national reference dataset gave an absolute loss of 0.05 in mean reliability of GEBV in 

the French study, whereas a loss of 0.03 was obtained for reliability of DGV in the Nordic 

study. When genotypes were imputed using the EuroGenomics reference a loss of 0.02 in 

mean reliability of GEBV was detected in the French study, and a loss of 0.06 was observed 

for the mean reliability of DGV in the Nordic study. Consequently, the reliability of DGV 

using the imputed SNP data was 0.38 based on national reference data, and 0.48 based on 

EuroGenomic reference data in the Nordic validation, and the reliability of GEBV using the 

imputed SNP data was 0.41 based on national reference data, and 0.44 based on 

EuroGenomic reference data in the French validation. 

 

Key words: Genomic selection, imputation, reliability, reference population. 
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INTRODUCTION 
 

Genomic selection (Meuwissen et al., 2001) is becoming a routine tool for genetic evaluation 

in dairy cattle breeding. Currently, an SNP panel with 54,000 markers is widely used. A new 

low density panel with only 3,000 markers at a lower price potentially reducing genotype 

costs is now also available (Illumina, San Diego). Using the low density panel instead of the 

current one may allow cattle breeders to genotype more bulls and cows.  

Several options for selecting a low density panel have been suggested. One option is to select 

a number of markers with large effects for a given trait, another is to use markers evenly 

spaced across the genome. Previous studies showed that the difference in reliability of the 

genomic breeding values, when using 3,000 markers with large effect or 3,000 markers 

evenly spread across the genome, is small (Moser et al., 2010). The option of evenly spaced 

markers removes the need for trait and breed specific low density SNP panels. The efficiency 

of a trait specific marker panel also depends on the linkage disequilibrium (LD) between the 

markers with large effect and the actual QTL. This LD might decline through generations. 

The other advantage of evenly spread markers is the possibility to use statistical methods to 

impute the missing markers, thus extending the 3,000 markers to 50,000 markers albeit with 

some uncertainty. This is also possible with unevenly spread markers, but then the accuracy 

of imputation is expected to be lower. 

It has been reported that a lower marker density leads to lower reliability of genomic 

prediction (Moser et al., 2010). A feasible strategy is to extend the low density markers to the 

current 50K markers by imputation. Several methods for imputation of SNP markers, relying 

on either linkage based on family information (Daetwyler et al., 2010) or LD based on 

population information (Browning and Browning, 2007; Scheet and Stephens, 2006), have 

been proposed. It is also possible to combine both types of information (Druet and Georges, 

2010). In a study using this combined approach to impute from 3,000 to 50,000 markers, 

where the 3,000 markers were specially selected for high minor allele frequency, Zhang and 

Druet (2010) found an allele error rate, i.e. the proportion of incorrectly predicted alleles, of 

approximately 3%. A study by Weigel et al. (2010) on American Jersey cattle has shown that 

using 3,000 SNPs for candidates imputed to a 50K SNP panel can provide approximately 

95% of the predictive ability achieved using the real 50K SNP panel. 

The accuracy of imputation can be increased by increasing the size of the reference 

population. EuroGenomics is a collaboration between four European AI companies and 
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scientific partners: DHV-VIT (Germany), UNCEIA-INRA (France), CRV (Netherlands, 

Flanders) and Viking Genetics-Aarhus University (Denmark-Finland-Sweden). The 

collaboration includes the sharing of reference populations for genomic selection, where each 

country initially contributed 4,000 genotyped Holstein bulls with progeny tested breeding 

values. A previous study showed a significant increase in reliability of genomic breeding 

values using this combined reference population (Lund et al., 2010). We expect that the 

accuracy of imputation based on EuroGenomics reference data will be higher than that based 

on national reference data. 

 

The objective of this study is to investigate the imputation error, when imputing from a 3K 

SNP panel to a 50K SNP panel using a group of reference animals with 50K information. The 

3,000 markers were the same as the Illumina 3K SNP panel. The imputed SNP markers were 

used for genomic prediction to assess how the imputation error rate affects the reliability of 

genomic breeding values and the ranking of the animals. This assessment was carried out in 

the Nordic countries and France. For both analyses, a validation population consisting of 

national test animals with 3K genotype was imputed to 50K genotype using a reference 

population made of either national or EuroGenomics data. 

  

MATERIAL AND METHODS 
DATA 

 

The combined EuroGenomics reference population contains 15,966 progeny tested bulls with 

genotypes from the Illumina Bovine 50K SNP panel (Matukumalli et al., 2009). 4,000 Dutch 

bulls were genotyped using a customized CRV 60K chip, but by double genotyping 972 

influential bulls with the Illumina 50K chip, it was possible to impute markers from the 

Illumina chip for all Dutch bulls with an imputation error of less than 1% (Druet et al., 2010).  

Measurement of imputation error rate and reliability of genomic predictions for Nordic and 

French bulls were carried out separately, using either national or EuroGenomics reference 

data. Deregressed proofs (DRP) on the scale of the target population calculated from Interbull 

2010-01 MACE proofs were used for predicting and validating DGV and GEBV, if the 

equivalent daughter contribution (EDC) was at least 20 (Lund et al., 2010). In the French 

study, daughter yield deviations (DYD) from the October 2009 national evaluation were used 

as phenotypes for the French bulls. The reference and validation populations were divided 
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according to the bulls’ birth date. The cut-off dates were October 1, 2001 and June 13, 2002 

in the Nordic and French case, respectively. Thus, about 25% of national genotyped bulls 

were taken as a validation set. 

 

The traits studied were protein yield, somatic cell count (SCC), fertility (defined as non return 

rate (NRR) in the Nordic countries and conception rate (CR) in France), and udder depth. 

Heritabilities and number of animals available for the specific traits are shown in Table 1. 

 

Table 1: Heritabilities (h²) and number of animals used for protein yield, somatic cell 

count (SCC), fertility and udder depth (UD) in the Nordic and French study. 

 Nordic  French 

Trait h² Nordic 

reference 

Euro 

reference 

Nordic 

validation 

 h² French 

reference 

Euro 

reference 

French 

validation 

Protein 0.39 3,038 10,701 899  0.3 3,071 12,078 966 

SCC 0.15 3,077 10,800 899  0.15 3,071 12,078 966 

Fertility 0.02 3,069 10,712 895  0.02 3,071 12,078 966 

UD 0.37 2,958 10,755 900  0.36 3,071 12,078 966 

 

 

Marker data were edited according to procedures used in Nordic countries and in France. 

 

Nordic marker editing: 

 

The genotypic data was edited both per animal and per locus. At the animal level, the 

requirements were a call rate above 95% except for some old animals which were accepted 

with call rates of at least 85%. Marker loci were accepted, if they had a call rate of at least 

95% in a large reference sample. Loci with a minor allele frequency less than 5% were 

excluded. Loci without a known map position in the Btau 4.0 assembly or mapped on the X 

chromosome were discarded. Animals with an average Gen Call score (Illumina, 2005) of less 
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than 0.65 were excluded. Individual marker typings with a Gen Call score of less than 0.6 

were also discarded.  

 

French marker editing: 

 

The French genotypic data was first edited per locus. Markers without a known map position 

in the Btau 4.0 assembly, or mapped to the X-chromosome were removed. Markers were then 

filtered for Hardy Weinberg equilibrium (q value < 0.01). Markers with call rates below 0.85 

were removed. Markers with MAF strictly equal to 0 were removed. Genotype data were 

finally checked for Mendelian inconsistencies between parents and offspring. Inconsistent 

genotypes were set to missing. Marker editing procedures differed slightly between France 

and the Nordic countries (including Gen Call score for example).  

While checking for inconsistencies between parents and offspring, Mendelian segregation 

rules were also applied in order to determine marker types of ungenotyped ancestors. Inferred 

marker data was not complete. However, it is important for ancestors with large numbers of 

progeny. Thus, the French national training population included 3,071 animals with real 

observed marker types (Table 2) and a total of 3,505 when ancestors with imputed genotypes 

are included. The corresponding figures for the EuroGenomics population are 12,078 and 

13,947 animals, respectively. This might help for further imputation, especially through 

linkage information.  

 

Table 2: Number of animals and number of markers used.  

  National  EuroGenomics  No. of Markers 

  Reference Validation  Reference Validation  Reference Validation 

Nordic 3,058 1086  10,880 1,086  38,545  2,285 

France 3,071/ 
3,505* 

966  12,078/ 
13,947 * 

966  43,582 2,635 

*Including bulls with partially reconstructed genotypes. 
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Simulating Illumina Bovine 3K Bead Chip Data 

 

The 2900 SNPs in the Illumina Bovine 3K Bead chip are all included in the Bovine 50K chip 

(except for 14 markers located on the Y-chromosome). To mimic the low density chip, 

marker types of test animals, i.e. animals born after the cut-off date, were obtained by erasing 

markers from the 50K marker type (i.e. in silico chip). As 3K genotypes are simulated from 

50K data, they do not account for a possibly higher genotyping error rate with the 3K chip. 

After marker editing as outlined above, 2,285 and 2,635 markers were kept for the Nordic and 

French data, see Table 2. 

 

Imputation of missing SNP markers 

 

Imputation of markers was done using the PHASEBOOK package (Druet and Georges, 2010) 

in combination with Beagle 2.1.3 (Browning and Browning, 2007). The method was applied 

as a stepwise procedure using both linkage and LD information. The same procedure as in 

Zhang and Druet (2010) was applied. First, all markers that can be determined unambiguously 

using Mendelian segregation rules were phased using the LinkPHASE software. In the first 

step, both training and test animals were included. An iterative procedure was then applied, 

where a directed acyclic graph (DAG) describing the haplotype structure of the genome was 

fitted to the partially phased data from the previous step. This was, however, only done for the 

reference animals. This was done for 10 iterations and then, the final DAG, the genotype file 

and the output from LinkPHASE (partially phased data) were used to reconstruct haplotypes 

and impute missing markers for both test and training animals using the Viterbi algorithm. 

With Beagle and PHASEBOOK, all markers are imputed, and the method does not leave any 

missing markers. More details on the imputation procedure can be found in Druet et al. (2010) 

and Zhang and Druet (2010).  

 

Allele imputation error rate calculation 

 

The number of errors was counted as 0 when the imputed and observed marker types were 

identical, 1 if the real marker type was homozygous and the imputed genotype was 

heterozygous (or vice versa), and 2 if real and imputed marker types were opposite 
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homozygous. Error counting only considered markers/animals where observed marker types 

were not missing in the original non-imputed dataset. The error rate was calculated as the total 

number of errors divided by twice the number of imputed loci. This gives the number of 

falsely predicted alleles, which is an appropriate measure when using an additive prediction 

model, as in this study. For other purposes, the genotype error rate could be easily found as 

approximately twice the allele error rate (Zhang and Druet, 2010). 

 

Prediction of direct genomic values in Nordic countries: 

 

Prediction of DGV was performed using a BLUP model at SNP level (VanRaden, 2008). 

Specifically, the model is given by 

y = 1µ + Zu+e 

  

Where y is the vector of phenotypic observations, µ is the mean, u is a vector of SNP effects, 

e is the random error vector and Z=M-P is a design matrix for the random effects. The marker 

matrix M is an m by n matrix, where m is the number of animals and n is the number of 

markers. Entries in the i’th row of M are the genotypes for the i’th animal and is given by -1 

if the animal is homozygous aa, 0 if the animal is heterozygous and 1 if the animal is 

homozygous AA. The matrix P has n columns where the elements in column j are Pj=2pj -1, 

where pj

 

 is the frequency of allele A at locus j. Subtraction of the allele frequencies 

standardizes  the allele effects to a population mean of zero. Thus a=Zu gives the direct 

genomic values. 

DRP were used as phenotypic values in the model. The weighting factor r2
DRP/(1-r2

DRP

 

) was 

used to scale the inversed residual variance of an observation, 

DGV Reliability was calculated as the weighted squared correlation between DRP and DGV, 

divided by the mean reliability of DRP. The weights were given by r2
DRP/(1-r2

DRP

 

) 

standardized to a mean weight of 1.  
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Prediction of genomic breeding values in France 

The French genomic prediction is an extension of the marker-assisted evaluation method by 

Fernando and Grossman (1989). The model is the following:  

  

1 2
1

1 ( )
nQTL

i i
i

y Zu h h eµ
=

= + + + +∑  

 

Where y is the vector of phenotypic observations, µ is the overall mean, u is a vector of 

random pedigree-based residual polygenic effects, hij

The selection of QTL included in the model was the result of a combination of 2 approaches 

(Boichard et al., 2010). First, dozens of QTL per trait were detected after QTL fine mapping 

as described below. Then, hundreds of haplotypes were chosen using the Elastic Net 

algorithm (EN).  

 is the random effect of haplotype j for 

QTL i, and e is a vector of residuals, with heterogeneous residual variances inversely 

proportional to EDC.  

For QTL mapping, a linkage disequilibrium linkage analysis (LDLA) combining both within-

family linkage information and population-based LD was used on the EuroGenomics training 

population (12,078 animals) following the approach described by Druet et al. (2008). Identity 

by descent probabilities were calculated as in Meuwissen and Goddard (2001). The likelihood 

ratio test threshold to retain a QTL was arbitrarily set to 6. This resulted in the selection of 80 

to 100 QTL depending on the trait. Fine-mapped QTL were traced by haplotypes of 5 

flanking markers.  

Then, an EN procedure was run on the French training population (3,071 animals) following 

the approach described by Croiseau et al. (2010). The selected SNPs were grouped into 

haplotypes of 3 to 5 SNPs. The two sets of haplotypes were included in the model. For 

computational reasons, the number of markers detected by the EN procedure included in the 

model was limited so that the total number of QTL was at maximum 700.  

The genetic variance attached to each QTL detected through LDLA mapping was 

proportional to the variance estimated in the single QTL analysis. The variance explained by 

each haplotype selected by EN was assumed to be constant and their sum over all EN 

haplotypes was set to 30% of genetic variance. 442 to 693 QTL were included in the model, 

explaining 51 to 57% of genetic variance (Table 3).  
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Table 3: Number (n) of quantitative trait loci (QTL) selected for the French prediction 

model using either linkage disequilibrium linkage analysis (LDLA) or an elastic net (EN) 

procedure and percentage of allocated genetic variance (%var) for protein yield, 

somatic cell count (SCC), fertility and udder depth (UD).  

 LDLA  EN  Total 

 n % var  n % var  n % var 

Protein 100 24  593 30  693 54 

SCC 80 27  362 30  442 57 

Fertility 80 21  392 30  472 51 

UD 80 27  482 30  562 57 

 

 

RESULTS AND DISCUSSION 
Accuracy of imputation 

Imputation in the Nordic population showed a mean error rate of 5.5% when using only 

Nordic animals as the reference set (Table 4). The extension of this reference set with the 

EuroGenomics animals gave an error rate of 4.0%. The same pattern was found in the French 

population where a French reference set gave a mean imputation error rate of 3.9 % whereas 

increasing the reference set with EuroGenomics animals reduced it to 2.1%. The lower error 

rate in the French study is likely due to the inclusion of more markers for the study on the 3K 

chip (2635 vs. 2285) due to different marker editing rules (such as selection on MAF), giving 

a denser genome coverage and a higher homozygosity. A previous study by Zhang and Druet 

(2010) showed that both, the number of reference animals and the number of markers in the 

low-density panel affect the imputation error rate. This error rate is also affected by the 

relationship between validation and reference animals.  
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Table 4: Imputation allele error rates (%) for Nordic and French test animals using a 

national reference population or the EuroGenomics reference population. 

 Test population National  Eurogenomics 

 Nordic N Error rate  N Error Rate 

All 1,086 5.5  1,086 4.0 

Sire in ref. 795 4.5  1,039 3.8 

Sire not in ref. 291 8.3  47 7.0 

Sire and Maternal 
grandsire in ref. 

650 4.3  953 3.8 

French      

Sire in ref. 966 3.9  966 2.1 

ref : reference population  

 

 

In the Nordic study, it was observed that the mean error rate depended on whether or not the 

animals had their sire in the reference data, confirming that a closer relationship to the 

reference population reduces the imputation error rate in the test population. All of the 

animals in the French validation population had their sire in the reference population, and an 

additional step based on Mendelian segregation rules was carried out to partially reconstruct 

genotypes of ungenotyped ancestors. The results indicate that if low-density genotyping and 

imputation are widely used in the future, the imputation accuracy might decrease unless all 

breeding bulls are genotyped with the 50K panel. 

The results in the present study are consistent with the error rates obtained by Zhang and 

Druet (2010) using the same method for imputation, i.e. between 2.1 and 4%. Their reference 

population was smaller (500 to 2000 animals) but their 3K panel was optimized according to 

MAF for their population, thus all markers on the 3K panel were available, whereas some 

were excluded during the quality control in the present study. Comparing imputation error 

rates based on different studies is however difficult because the relationship between training 

and validation populations differs, and because the number of reference individuals and the 

number of markers vary.  

 



 

 

 48 

Article I 

 

Reliability of genomic prediction 

 

Prediction of DGV based on either true or imputed genotypes in the Nordic data (Table 5) 

showed that using the Nordic reference population the observed marker types had a mean 

reliability of DGV over the four traits of 0.41, whereas the imputed marker types led to a 

mean reliability of 0.38. Using the EuroGenomics data as the reference population for 

prediction of DGV resulted in a mean reliability of 0.54 with the observed marker types 

while using imputed genotypes resulted in a mean reliability of 0.48.  

 

Table 5: Reliabilities of direct genomic values for Nordic candidates with full (50K) or 

imputed (3K imp) marker data for protein yield, somatic cell count (SCC), non return 

rate (NRR) and udder depth (UD) using either Nordic reference population (Nor-ref) 

or Eurogenomics reference population (EU-ref). 

Trait N Nor-ref 
50 K 

Nor-ref 
3K imp 

EU-ref 
50 K 

EU-ref 
3K imp 

Protein 899 0.41 0.32 0.56 0.51 

SCC 899 0.41 0.39 0.55 0.49 

NRR 895 0.44 0.42 0.49 0.45 

UD 900 0.40 0.36 0.55 0.49 

Average  0.41 0.38 0.54 0.48 

  

 

For the prediction of GEBV based on either observed or imputed marker types for the French 

validation data (Table 6), with a French national reference population and observed marker 

types, a mean reliability across four traits of 0.46 was obtained. The corresponding value for 

imputed marker types was 0.40. Using the EuroGenomics data as a training population, the 

mean reliability of GEBV of young animals was 0.48 and 0.46 for observed and imputed 

marker types. 
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Table 6: Reliabilities of genomically enhanced breeding values for French candidates 

with full or imputed marker data for protein yield, somatic cell count (SCC), 

conception rate (CR) and udder depth (UD) using either French reference population 

(FR-ref) or Eurogenomics reference population (EU-ref). 

. 

Trait N FR-ref 
50 K 

FR-ref 
3K imp 

EU-ref 
50K 

EU-ref 
3K imp 

Protein 966  0.40 0.32 0.37 0.36 

SCC 966   0.55 0.52 0.58 0.57 

CR 966   0.44 0.41 0.47 0.44 

UD 966   0.45 0.40 0.51 0.48 

Average  0.46 0.41 0.48 0.46 

 

 

Lund et al. (2010) reported that reliabilities of genomic prediction using the EuroGenomics 

reference data were considerably higher than those using national data, because of the 

increased size of the reference data. The French validation in this study however, showed a 

small difference between reliabilities of GEBV predicted from the national and the 

EuroGenomics reference data. The small difference can be explained by the way the QTL 

were chosen for the prediction model. For both, the prediction model based on national 

reference data and the prediction model based on  EuroGenomics reference data, the QTL 

selected using the LDLA procedure were based on EuroGenomics data, and the QTL 

selected using the EN procedure were based on national data. On one hand, the genomic 

prediction based on French data gained from LDLA based on the whole EuroGenomics 

population. On the other hand, genomic predictions based on EuroGenomics data were 

probably suboptimal since the EN procedure used only French data. The only way to 

properly measure the impact of increasing the reference population on genomic reliability 

based on real genotypes would have been to do 2 LDLA QTL mappings (as in Lund et al., 

2010), but the main focus of this study was on imputation. The haplotype effects were 
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however estimated either on EuroGenomics data or national data leading to a gain in 

reliability when increasing the reference population.   

The patterns of differences between reliabilities of genomic predictions using observed 50K 

marker types and the imputed marker types were not consistent between the Nordic and 

French validations. The difference was smaller when using national reference data than when 

using EuroGenomics reference data in the Nordic evaluation, while an opposite pattern was 

observed in the French validation. The reasons for the inconsistent pattern were not clear. A 

possible reason was that the markers with high imputation error rate might give different 

contribution to genomic prediction when using different reference datasets. For example, 

MAF for the loci with high imputation error rate might be smaller (less informative) in one 

set of reference data, while larger (more informative) in another set of reference data. 

 

Correlations between DGV/GEBV based on imputed or observed marker types were high 

(Table 7). The correlation ranged from 0.92 to 0.95 using national reference data and from 

0.93 to 0.96 using EuroGenomics data in Nordic validation. Similarly, the correlations 

ranged from 0.91 to 0.94 using national reference data and from 0.94 to 0.97 using 

EuroGenomics data in the French validation. These results indicate no serious re-ranking of 

animals when using imputed data. 

 

Table 7: Correlations between direct genomic values or genomically enhanced breeding 

values predicted using observed or imputed marker data for Nordic and French 

candidates for protein yield, somatic cell count (SCC), fertility and udder depth (UD) 

using either Nordic reference population (Nor-ref), French reference population (FR-

ref) or Eurogenomics reference population (EU-ref). 

 Nordic  France 

 Trait EU ref NOR ref  EU ref FR ref 

Protein 0.94 0.92  0.97 0.94 

SCC 0.93 0.92  0.95 0.94 

Fertility 0.96 0.95  0.96 0.94 

UD 0.93 0.93  0.94 0.91 
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CONCLUSION 
 

Imputation of the commercially available low-density bovine 3K chip to the bovine 50K chip 

gave allele error rates between 2.1 and 5.5 %. The accuracies of imputation were higher 

when using the EuroGenomics reference datasets than when using national reference 

datasets.  Imputation was more accurate when the sire of the candidate was genotyped on the 

50K panel. Using the imputed markers for candidates, the mean reliability of DGV was 0.38 

based on based on national reference data, and 0.48 based on EuroGenomics reference data 

in the Nordic validation, and the reliability of GEBV using the imputed SNP data was 0.41 

based on national reference data, and 0.44 based on EuroGenomics reference data in French 

validation.  Therefore, a 3K SNP chip imputed to 50K could be a feasible alternative for pre-

selection of young animals. One may also consider 3K genotyping as an attractive tool for a 

large pre-screening of the female population. 
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1-4.3. MAIN RESULTS 

Results show a moderate allelic imputation error rate (2-5%).This result is quite satisfactory, 

especially when the sire is genotyped with the 50k, but there is some room for improvement. 

The loss in reliability of genomic proofs was also moderate (0.02 to 0.05): GEBV based on 

imputed genotypes and on the Eurogenomics reference population presented higher reliability 

than GEBV based on real genotypes but with a national reference population size.  

 

Comparison between Nordic and French results revealed some potential factors affecting 

imputation accuracy such as the number of effective markers. The importance of having 

genotyped sires to properly impute their offspring was also shown.  

 

The accuracy observed after imputation of low density genotypes may not be high enough to 

select among candidates for artificial insemination, but it could be an efficient tool for 

screening the female population.   
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CHAPTER 2 – Defining the most adapted low 
density panel 

2.1. – Article II Short Communication: Imputation 
performances of three low density marker panels in beef and 
dairy cattle 

2-1.1. BACKGROUND 

In article 1, we have seen that a low density panel is a potential tool which could be used for 

pre-screening candidates or for genotyping females. However, one can wonder whether the 

commercial 3K chip proposed is the best one and how it can be enhanced. Article 1 presents a 

European joint study and only the Holstein breed is considered. After some preliminary work, 

the 3K SNP minor allele frequencies (MAF) for other important French dairy breeds, such as 

the Montbéliarde and Normande were calculated and they appeared to be rather low. One 

could expect that other SNP panels jointly adapted to several breeds would give better results.  

Initially, the Golden Gate technology was chosen for the low density chip because of its low 

price. However, it was observed that it induces lower call rates, and results in more difficult 

lab conditions for genotyping. Furthermore, out of the 2900 SNP included in the chip, only 

2635 are kept after quality edits. This loss in effective markers (about 10%) is a drawback in 

terms of imputation efficiency.  

2-1.2. OBJECTIVES 

The objectives of this study were to develop some alternative in silico SNP chips and to 

compare them to the commercially available product in terms of imputation efficiency. The 

markers included in these custom chips were chosen in order to optimize MAF and spacing 

across various breeds. Our hypothesis was that imputation accuracy depends on these 2 

characteristics of the panel.  
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ABSTRACT 
 

Low density chips are appealing alternative tools contributing to the reduction of genotyping 

costs. Imputation enables to predict missing genotypes in order to recreate the denser 

coverage of the standard 50K genotype.  Two alternative in silico chips were defined. They 

included markers selected to optimize Minor Allele Frequency and spacing. The objective of 

this study was to compare imputation accuracy of these custom low density chips with the 

commercially available 3K chip. Data consisted of genotypes of 4,037 Holstein bulls, 1,219 

Montbéliarde bulls and 991 Blonde d’Aquitaine bulls. Criteria to select markers to include in 

low density marker panels are described. In order to mimic a low density genotype, all 

markers except the markers present on the low density panel were masked in the validation 

population. Imputation was performed using the Beagle software. Combining the Directed 

Acyclic Graph obtained by Beagle with the PHASEBOOK package provides fast and accurate 

imputation which is suitable for routine genomic evaluations based on imputed genotypes. 

Ninety five to ninety nine percent of alleles were correctly imputed depending on the breed 

and the low density chip. The alternative low density chips gave better results than the 

commercially available Golden Gate 3K chip. A low density chip with 6,000 markers is a 

valuable genotyping tool suitable for both dairy and beef breeds. Such a tool can be used for 

pre-selection of young animals or large-scale screening of the female population. 

 

Key words: low density chip, imputation, genomic selection, SNP chip 

 

INTRODUCTION 
 

Genomic selection (Meuwissen et al., 2001) is now widely used in dairy cattle breeding to 

select bulls at an early stage; it requires estimation of effects for Single Nucleotide 

Polymorphisms (SNP) covering the whole genome at a sufficient density. Thousands of bulls 

have been genotyped on a SNP panel with 54,000 markers, commercially available from 

Illumina and developed by Matukumalli et al. (2009). One of the next challenges in order to 

take full advantage of genomic selection is to genotype a large fraction of the female 

population. This requires to substantially reduce genotyping costs. For this purpose, low 

density chips can be considered as an alternative tool. The Golden Gate Bovine ® 3K chip 

(GG 3K) was developed in 2009 by Illumina with a cheap technology (Golden Gate). The 
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drawback of having genotypes for a smaller number of markers can be overcome by applying 

imputation. Imputation is a statistical method which predicts unobserved genotypes offering 

the possibility to infer a dense (e.g. 50K) genotype based on low density chip data. 

Reconstructing denser coverage such as the standard BovineSNP50 panel from low density 

chips is now recognized as the best way of using these cheaper tools (Weigel et al, 2010). 

Therefore, low density chips should be developed in such a way that imputation accuracy is 

maximized. Genomic breeding values can then be computed from evaluations based on 

imputed genotypes (Weigel et al, 2010, Berry and Kearney, 2011, Dassonneville et al, 2011, 

VanRaden et al.2011). In addition to genomic evaluation, low density chips can be used for 

sexing and parentage assignation or verification. Minor Allele Frequency (MAF), quality 

edits and spacing between markers are assumed to influence imputation performance. To 

check this hypothesis, two custom in silico low density marker panels were developed 

optimizing both MAF and spacing. The objective of this study is to compare imputation 

accuracy of different chips: the commercially available chip and two custom low density 

chips of various marker density (3K and 6K). 

MATERIAL AND METHODS 
Data 

The reference population includes individuals that were genotyped on the Bovine 50K chip. 

The validation population is a subset of the reference population, including the youngest 

animals that were considered as selection candidates in this study. For this reason, low density 

genotypes were mimicked for these animals. The training population consisted of the 

remaining individuals from the reference population.  

Three breeds were chosen for this study and studied separately: the Holstein breed, the French 

Montbéliarde dairy breed, and the Blonde d’Aquitaine beef breed. The reference population 

of the Holstein and Montbéliarde dairy breeds included 4,037 and 1,219 progeny-tested bulls, 

respectively, distributed across several generations. The validation population for these two 

breeds was defined through a cut-off date such that approximately 25% of the bulls of the 

reference population forming the validation population were born after that date. All of the 

selection candidates had their sire in the training population and most of the male ancestors 

were genotyped and included in the training population, whereas no female was genotyped. 

The reference population of the Blonde d’Aquitaine beef breed included 961 young bulls and 

their 30 sires. 237 young bulls were randomly selected to form the validation population. 

Therefore, for the Blonde d’Aquitaine, the sire was the only densely genotyped ancestor of 
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the validation animals. Table 1 summarizes the number of animals included in training and 

validation population for the three different breeds.  

 

Table 1. Number of animals for the three different breeds 

 Reference Validation 

Montbéliarde 997 222 

Holstein 3,071 
 

966 
 

Blonde 

d’Aquitaine 

754 237 

 

Only 50k genotype data were used. The genotypic data was first edited per locus. The study 

focused on autosomes and markers mapped on the X chromosome were deleted. Markers with 

an unknown map position in the Btau 4.0 assembly, departing from Hardy Weinberg 

equilibrium, with a call rate below 0.85, or with a MAF strictly equal to 0 were removed. 

Genotype data were finally checked for Mendelian inconsistencies between parents and 

offspring. Inconsistent genotypes were set to missing values.  

Three different low density chips were defined. The GG 3K chip was similar to the 

commercially available Golden Gate Bovine 3k of Illumina. But no 3k genotyping was 

performed and 3k genotypes were simply obtained from the 50k by selecting the 

corresponding markers. This approach is somewhat optimistic because it does not account for 

a lower call rate due to the different chemistry used. The two other chips were created in 

silico. They can be considered as based on the Infinium technology since markers were 

chosen among those of the Bovine 50K SNP, and with the same call rates.  

To be included in the 2 custom in silico panels, the selection criteria were the following:   

• Markers had to be present on versions 1 and 2 of the Bovine SNP50 (Matukumalli et 

al., 2009) and on the Bovine HD chip from Illumina.  

• Markers had to have a known position on Btau 4.0 (Elsik et al, 2009) and UMD3 

(Zimin et al, 2009) assemblies, 

• The marker position had to be consistent between the 2 assemblies, i.e. less than 10 

Mb apart.  

• Call rates needed to be above 0.98 with no technical problem observed in the sample 

of genotyped animals at INRA.  



 

 

 61 

Article II 

• Markers were checked for Hardy-Weinberg equilibrium (q value > 0.01).  

 

From the set of markers meeting these criteria, SNP were chosen in order to maximize the 

Minor Allele Frequency (MAF) within chromosome segments. MAF were available for 8 

French dairy and beef breeds (Blonde d’Aquitaine, Brown Swiss, Charolaise, Holstein, 

Limousine, Normande, Montbéliarde and Maine-Anjou), with 110 to 16,055 samples per 

breed. For the custom 3K chip, the genome was divided into one megabase segments and 

within each segment, the SNP with the highest average MAF over the 3 main French dairy 

breeds (Holstein, Normande, and Montbéliarde) was kept. For the custom 6K chip, in a first 

step, the SNP set of the custom 3K was retained. In a second step, the SNP with the highest 

average MAF over the 8 breeds was added within each Mb. Finally, a few more SNP were 

added to cover every half Mb and to ensure a better coverage of chromosome extremities (4 

markers per Mb instead of 2). For these 2 custom low density chips, MAF was optimized and 

each Mb (custom 3k chip) or each half Mb (custom 6k chip) was covered. These rules were 

quite simple and did not account for linkage disequilibrium between markers. 

The GG 3K chip includes 2900 SNP (Table 2) among which 2635 were kept after edits and 

quality control, as described above. The custom chips included 2,929 and 6,052 SNP covering 

the 29 autosomes. Markers used for parentage testing were included. It must be mentioned 

that additional SNP from sexual chromosomes should be integrated for gender determination.  

 

Table 2. Number of markers included in the 3 low density chips 

 Low density chip Number of  
markers 

after quality  
control 

GoldenGate Bovine3K 2900 2635 

French custom 3K 2929 2929 

French custom 6K 6144 6052 

 

 

Imputation method 

The SNPs included in the low density chips are all included on the Bovine 50K chip. To 

mimic the low density chip, marker genotypes of validation animals were obtained by erasing 

markers from the 50K and not present in the low density chip.  
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 Imputation of markers was performed using Beagle 3.2 (Browning and Browning, 2007) with 

the –unphased option. Consequently, pedigree information was not used for imputation. It 

should be noticed that with Beagle, all markers are imputed, and the method does not leave 

any missing markers.  

Efficiency was first measured by the number of correctly imputed alleles (as in Zhang and 

Druet, 2010). Therefore the number of errors was counted as 0 when the imputed and 

observed marker genotypes were identical, 1 if the real genotype was homozygous and the 

imputed one was heterozygous (or vice versa), and 2 if real and imputed marker genotypes 

were opposite homozygous. The error rate was calculated as the total number of errors 

divided by twice the number of imputed (masked) loci. 

Several authors (Weigel et al. 2010, Druet et al. 2010, VanRaden et al. 2011) report the same 

kind of measures (error rate or concordance rate). Hickey et al. (2012) suggest to use 

correlation between true and imputed genotypes in order to account for MAF. Indeed, a high 

concordance rate is expected for low MAF and may overestimate imputation performances. In 

this study, both measures were reported.  

 

RESULTS AND DISCUSSION 
 

The percentage of alleles correctly imputed is presented in Figure 1 for the 3 different breeds 

and the 3 different low density chips. In the Montbéliarde breed, 97.4% of the masked alleles 

were correctly imputed from the GG 3K chip. This result seems to be high enough to 

implement genomic selection based on low density chips; indeed, Weigel et al. (2010) found 

lower imputation accuracy and were still able to run appropriate genomic evaluation for the 

Jersey breed. However, imputation accuracy can be improved with other marker panels. The 

custom 3K chip included more effective markers and was optimised for French dairy breeds 

including Montbéliarde. For this reason, this optimized 3k chip gave better imputation 

accuracy (98.0%) than the GG3K (97.4%). With the 6K chip, both marker density and MAF 

optimisation were improved, resulting in higher imputation accuracy (99%). 

Holstein was one of the 3 breeds involved in the choice of markers for the GG 3K (Illumina). 

For this reason, one could have expected similar imputation results between the two 3K 

chips. But the custom 3K chip gave better results (imputation accuracy of 98.1% instead of 

97.4%). One possible explanation is the lower number of effective markers on the GG 3K 
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chip. Another explanation is the Golden Gate chemistry constraints in the choice of markers, 

limiting the possible optimization on MAF and spacing. As expected, results were better 

with the 6K chip (more than 99% of alleles correctly imputed). 

In the French Blonde d’Aquitaine beef breed, imputation accuracy was lower compared to 

the two other breeds, probably because of a smaller and different reference population with 

few ancestors genotyped and also to a larger effective population size.  Imputation accuracy 

was slightly better with the custom 3K chip (95.8%) than with the GG 3K (95.2%) although 

MAF of that breed were not taken into account when constructing these 2 chips. This may be 

related to a better optimisation of MAF and spacing or an increased number of efficient 

markers as reported above. The biggest gain for the 6K chip compared to the 3K chips was 

obtained with the beef breed (97.5% vs. 95-96%). On the one hand, Blonde d’Aquitaine 

MAF was accounted for in the design of the 6k chip. On the other hand, the advantage of the 

6k chip was larger because the performances of the 3k chips were lower than in dairy breeds, 

leaving a larger margin for improvement. 

 

Figure 1. Dassonneville et al.  

 
Proportion of masked alleles that are correctly imputed in the validation population, for three 

different breeds, and three different low density chips.  
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Using concordance rate as imputation efficiency criterion may be misleading as it depends 

on MAF. The lower the MAF, the higher the concordance rate, for the same efficiency and 

this should be accounted for in the interpretation. For example, with an average MAF of 0.2, 

80% of the results would be correct after random sampling of the missing alleles. Getting a 

95% concordance rate corresponds only to a 75% ( = (95-80)/(100-80) ) imputation 

efficiency. Correlations are an alternative criterion less dependent on MAF. Table 3 presents 

the correlations between true and imputed genotypes. They ranged from 0.88 to 0.97. 

Comparison across breeds, and moreover, across marker panels leads to the same 

conclusions as studying the fraction of alleles correctly imputed. The ranking of the chips 

was the same and Blonde d’Aquitaine breed results were lower than in dairy breeds. 

 

Table 3. Correlation between true and imputed genotypes  

 Montbéliarde Holstein Blonde 
d’Aquitaine 

GoldenGate Bovine3K 0.94 0.93 0.88 

French custom 3K 0.95 0.94 0.89 

French custom 6K 0.97 0.96 0.92 

 

A previous study by Zhang and Druet (2010) showed that both the number of reference 

animals and the number of markers in the low-density panel affect the imputation error rate. 

This error rate is also affected by the relationship between validation and reference animals. 

Comparing imputation error rates based on different populations is therefore difficult 

because the relationship between training and validation populations differs, and because the 

number of reference individuals and the linkage disequilibrium between markers vary.  

One major concern regarding the use of Beagle software is the computational time. In a large 

population from the Eurogenomics reference population (Lund et al., 2011) with 12,068 

animals in the training population and 3987 animals in the validation population, computing 

time with Beagle alone was from 40 to 80 hours per chromosome. Alternative methods using 

long range phasing and pedigree information (VanRaden et al., 2011; Hickey et al., 2011) 

are known to be much faster and have been compared by Johnston et al. (2011). However, 

we can propose an alternative which benefits from the accuracy of Beagle and the fast 

algorithm of the PHASEBOOK package. This package was developed by Druet and Georges 
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(2010) and allows to take advantage of pedigree relationships and to use this family 

information in addition to population-based linkage disequilibrium through the DAGphase 

software. Indeed, it is possible to run properly Beagle from scratch, in order to obtain and 

store the directed acyclic graph (DAG). This demanding analysis needs to be run only once. 

Then the DAG obtained from Beagle could be used within DAGphase. This solution is as 

accurate as Beagle (in terms of error rate, results not shown), and much less time consuming 

(1 hour per chromosome to be compared with the 40 to 80 hours of Beagle on the same 

dataset including 16,055 individuals). This 2-step approach is quite efficient. The second 

step, corresponding to only one iteration of DAGphase, is fast and can be run as often as 

necessary (i.e., monthly or weekly for genomic evaluations). An additional advantage of this 

combined approach over other methods (Hickey et al., 2011, Sargolzaei et al., 2011) is that 

all masked markers are called.  

The DAGphase software was used by Zhang and Druet (2010) to impute from 3,000 to 

50,000 markers, where the 3,000 markers were especially selected for high minor allele 

frequency. They found an allele error rate, i.e. the proportion of incorrectly predicted alleles, 

around 3% with a reference population of 4,734 Holstein bulls.  

Our hypothesis was that a better optimization of MAF and spacing for the choice of markers 

to include in low density chips may lead to a gain in imputation accuracy. Comparison of 

imputation results of the GG3K and the 3K custom in silico chip (same marker density), for 

both Holstein and Montbéliarde breeds confirmed this hypothesis. The relative lower 

performances of the GG3K chip may be due to the constraints related to Golden Gate 

chemistry and the lower effective number of markers kept after quality control (2635 

markers instead of 2900 leading to a drop of 10% in marker density).  

 

CONCLUSIONS 
 

Imputation using Beagle software was efficient to reconstruct a dense - 50K - genotype from 

low density chip data. Accuracy, measured by the allelic concordance rate, ranged between 

95 and 99%. The highest values were obtained with the highest density 6k chip and the 

Holstein population characterized by a large reference population. Using the DAG obtained 

from Beagle into the PHASEBOOK algorithm allows to take advantage of family 

information and speed up the imputation process with no loss in imputation accuracy.  
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Low density chips are appealing alternative tools which reduce genotyping costs. This could 

allow to genotype more animals. They can be used for pre-selection of young animals. It is 

most interesting for large scale genomic selection of females. 

The existing Golden Gate Bovine 3K chip presents satisfactory results. However, other 

choices of markers are possible for low density chips in order to optimize MAF and spacing 

for various breeds so that imputation is more accurate. The 6K chip appears to be the method 

of choice and provides a high imputation efficiency, even for a beef breed with a small 

reference population such as the French Blonde d’Aquitaine breed.  Consequently, a low 

density chip with around 6,000 markers is an appealing genotyping tool that is suitable for 

dairy and beef breeds. This option was chosen by Illumina to produce the new LD chip in 

collaboration with an international consortium (Boichard et al., 2012). 
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2-1.3. MAIN RESULTS 

Several French beef and dairy cattle breeds were taken into account when selecting the 

markers to be included in the SNP panel. Criteria to choose among the possible SNP were 

described. Results in terms of imputation efficiency were shown for 4 different beef and dairy 

breeds. Two different measures of imputation accuracy were presented - including the 

correlation between true and imputed genotypes - in order to avoid bias due to the 

dependency between MAF and error rate. Imputation was performed with the Beagle software 

and accuracy ranged between 95% and 99% depending on the breed and the SNP panel 

considered. For all the breeds, the custom chips gave better results than the commercial 3K 

chip, reflecting a higher MAF and an even spacing along the genome. As expected, the 6K 

chip gave the best results, reflecting the effect of the number of markers and, therefore, their 

higher density.  

 

An innovative imputation procedure is also described in the article. It relies on existing 

software but aims at increasing speed and accuracy. While the method described in Druet and 

Georges (2010) using the PHASEBOOK package produces the required DAG through 

successive iterations of both Beagle and DAGphase on a reduced set of individuals, here the 

DAG is produced by Beagle alone and then stored. Then it can be re-used with a single 

iteration of DAGphase. This drastically reduces computation time with no loss in accuracy, 

and appears to be suitable for routine imputation of genotypes for genomic evaluations.  

 

Other research teams in different countries made the same assertion that other low density 

panels could improve imputation accuracy and enhance the interest for such a tool. The scope 

of these studies was purely scientific and just looked at simulation of in silico chips. The 

industry now has the opportunity to catch up the idea and develop a new low density chip. 
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2-1.4. BACKGROUND AND OBJECTIVES 

In 2010, a low density SNP chip was developed in dairy cattle : the Bovine 3K Beadchip ® 

from Illumina. Some studies (including the previous one) pointed out that such a tool can be 

enhanced in order to benefit to more breeds and to be more accurate in terms of imputation. 

For this reason, Illumina gathered a new consortium (the Bovine LD consortium) in order to 

develop a new low density tool for bovine population adapted to imputation. The following 

article describes how it was designed.  

 

Some of the drawbacks of the previous 3K chip were specifically considered. For instance, 

the Golden Gate 3K chip (GG3K) was adapted to three North American dairy cattle breeds: 

Holstein, Jersey and Brown Swiss. The consortium designing the new Bovine LD SNP chip 

intended to at adapt the new chip to as many various breeds as possible.  

 

 

Note: The commercial name given to the new tool, Bovine LD, may be misleading since here, 

LD means low density, whereas it usually refers to Linkage Disequilibrium in the genetics 

field.  
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ABSTRACT 
 

The Illumina BovineLD BeadChip was designed to support imputation to higher density 

genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that 

had a high minor allele frequency as well as uniform spacing across the genome except at the 

ends of the chromosome where densities were increased. The chip also includes SNPs on the 

Y chromosome and mitochondrial DNA loci that are useful for determining subspecies 

classification and certain paternal and maternal breed lineages. The total number of SNPs was 

6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip 

was over 97% for most dairy and beef populations.  The BovineLD imputations were about 3 

percentage points more accurate than those from the Illumina GoldenGate Bovine3K 

BeadChip across multiple populations. The improvement was greatest when neither parent 

was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds 

as was the proportion of SNPs that were polymorphic. The new BovineLD chip should 

facilitate low-cost genomic selection in taurine beef and dairy cattle.  

 

Funding: The National Research Agency (ANR) and Apisgene funded the French 

BovineSNP50 data.  The Dairy Futures Cooperative Research Centre and the Beef Genetic 
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INTRODUCTION 
 

Genetic improvement of several key agricultural species is accelerating with the adoption of 

genomic selection [1,2,3]. With this method, animals or plants can be selected for breeding on 

the basis of their genetic merit predicted by markers spanning the entire genome. Particularly 

in dairy cattle, this method has been shown to be more efficient than conventional progeny 

testing of bulls (up to double the rate of genetic gain) as well as substantially less expensive 

[4]. Moreover, genomic selection opens new opportunities for sustainable management of 

populations by more efficiently selecting for traits that have low heritability, e.g. fitness traits, 
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or traits that are difficult to measure. This method is also useful for managing the 

accumulation of inbreeding within breeds with a small effective population size. In dairy 

cattle, genomic selection has been deployed at a rapid pace, and most countries with major 

dairy breeding programs now rely heavily on this new technology [5].  

A major challenge in implementing genomic selection in most species is the cost of 

genotyping. The expected value of the information gained by genotyping must exceed the cost 

of obtaining the genotypes. During the early stages of genomic selection in the dairy industry, 

the cost of high-density genotyping could be justified. The primary application was to 

evaluate bulls that were potential candidates for production of commercial semen. Using SNP 

information for those evaluations resulted in more accurate selection of bulls to acquire and 

extensively market. Once increased accuracies of genome-enhanced breeding values had been 

demonstrated, breeders and buyers quickly adopted this technology to improve accuracy of 

selection [6]. This example of a genomic-selection application has extreme value compared 

with other animal food production paradigms. In contrast, profit from genomic selection is 

likely to be much lower for beef bulls and dairy females [5,7]. An appealing approach in 

situations with much lower returns from genotyping is to use a more economical, reduced-

density SNP chip with markers optimized for imputation.  

Imputation is the process of predicting unknown genotypes for animals from observed 

genotypes and often uses information from a reference population with dense genotypes to 

predict missing genotypes for animals with lower density genotypes. It is also applied to 

merge genotypes of similar densities but different SNPs. Most imputation algorithms use 

information from relatives and population linkage disequilibrium. A number of software 

programs for imputation have been developed based originally on human genetics [8,9] and 

more recently on animal genetics [10,11,12,13]. The limited effective population sizes and 

population structures in livestock allow the possibility of imputation of high-density 

genotypes from quite low-density genotypes [14,15,11,16]. 

In 2010, a low-density bovine SNP chip, the Illumina GoldenGate Bovine3K Genotyping 

Beadchip, was developed and made commercially available. That product offered a 

significant advance toward low-cost genomic selection in cattle; however, imputation 

accuracy was highly dependent on the relationship of the individual genotyped with the 

Bovine3K chip to the reference population genotyped at a higher density [17]. In addition, 

some samples failed to provide genotypes of adequate quality for use in genomic predictions. 

The SNP call rate performance of the Bovine3K chip was slightly reduced compared with the 
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BovineSNP50 chip because GoldenGate chemistry relies on two hybridization events for 

proper SNP detection as opposed to a single event for Infinium chemistry.  

In this study, the Illumina Infinium BovineLD Genotyping Beadchip was developed to 

provide high imputation accuracy for higher density SNP genotypes in taurine dairy and beef 

populations. The main objective was to provide a tool that would enable genomic estimated 

breeding values to be calculated from accurately imputed genotype data from an Infinium-

based SNP array with very low rates of failed samples. The main features of the new 

BovineLD chip are presented along with its imputation performance in a range of breeds and 

reference populations. 

 

MATERIAL AND METHODS 
 

SNP selection 

To provide highly accurate imputation to BovineSNP50 genotypes in global taurine breeds, 

SNPs were selected from validated assays from existing higher density chips and similar SNP 

detection technology, i.e. the Illumina BovineSNP50 and BovineHD SNP arrays, with priority 

given to BovineSNP50 content. From the known and validated SNPs, selection priority was 

1) high minor allele frequencies (MAFs) in targeted breeds, 2) uniform spacing at a minimum 

of 2 SNPs per Mbp, with increased SNP density within 500 kilobase pair (kbp) of 

chromosomal ends, 3) inclusion of SNPs for determination of sex, parentage, Y haplotypes, 

and subspecies and maternal lineages, 4) SNP quality and fidelity criteria for robust 

reproducibility (>98% call rate and <0.01% Mendelian inconsistency), and 5) a target overlap 

of 2,000 SNPs with the Bovine3K chip to ensure backward compatibility. The anticipated 

SNP spacing, with 2 SNP per Mb, obviated the need to check for highly correlated SNPs. 

The SNPs were selected to be highly informative with a high MAF over a large range of 

breeds from around the world (Table 1). The reference MAF estimates were from breeds in 10 

countries from North America, Europe, and Oceania. Content selection was optimized using 

taurine allele frequencies. To achieve regular spacing, the UMD3 bovine genome assembly 

was used to define 500-kbp segments over the 29 autosomes. A lack of flanking information 

at the end of each chromosome had resulted in lower imputation efficiency in preliminary 

tests. To correct that problem, the SNP density was doubled in the first and last segments of 

each chromosome. Reflecting the diverse membership of the Bovine LD Consortium, initial 

SNP selection was made by one member and updated by the others. The initial SNP selection 
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was based on two independent criteria. First, SNPs with the highest mean MAF in each 500-

kbp segment were selected over a broad range of European breeds including European 

Holstein, Montbéliarde, Normande, Jersey, Brown Swiss, Norwegian Red, Swedish Red and 

White, Finnish Ayrshire, Charolais, Limousine, Blonde d'Aquitaine, and Maine Anjou, with 

Holstein receiving double weight; the top two SNPs were selected in the segment at each end 

of the chromosome. Second, SNPs with the highest mean minimum MAF for six major 

European dairy breeds (European Holstein, Montbéliarde, Normande, Jersey, Brown Swiss, 

and Norwegian Red) were selected for each 500-kbp segment, with again 2 SNPs selected at 

each end of the chromosome. Selecting those SNPs with the highest mean of the two selection 

criteria within each 500-kbp segment (with doubling at the chromosome ends) resulted in 

8,000 SNPs. Those 8,000 SNPs were subjected to a similar selection process using MAFs 

from North America and Oceania along with the European populations. For Holstein and 

Jersey breeds, the MAF used was the mean across the 3 populations; for Brown Swiss, only 

North America and Europe were included. The mean MAF was computed from Holstein, 

Jersey, Brown Swiss, Angus, and Brahman. The minimum MAF was from Jersey, Brown 

Swiss, and Angus. Again, the SNPs with the highest mean of the two selection criteria were 

selected with doubling at the chromosome ends. 

Next, some of the selected SNPs were replaced by Bovine3K SNPs that were in nearby 

locations to ensure backward compatibility. In addition, SNPs used for breed determination 

and parentage testing that had not already been selected were included, and some SNPs were 

added to fill gaps generated by map inconsistencies. 

For the X chromosome, Bovine3K SNPs with high MAFs were selected and supplemented 

with BovineSNP50 SNPs, with consideration given to spacing, MAF, and fidelity. Because 

large gaps remained after that initial selection, additional X- chromosome SNPs were chosen 

from the BovineHD assay. 

For the Y chromosome and mitochondrial DNA (mtDNA), 9 Y-specific and 13 mtDNA SNP 

markers were identified from the BovineHD chip based on assay fidelity and performance 

across 27 breeds, MAF across those breeds, and ability of a SNP to discern subspecies and 

geographic locations of breed origins. 
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Table 1. Number of DNA samples, minor allele frequencies (MAFs), and estimated 
frequency of loci that were polymorphic by breed and region. 

 

Imputation 

Imputation efficiency was assessed in 10 populations (North American, French, and 

Australian Holsteins; North American and Australian Jerseys; North American Brown Swiss; 

Australian Angus; French Montbéliarde; French Normande; and French Blonde d’Aquitaine). 

Beagle software [9] was used for the Australian and French populations and findhap.f90 [13] 

for the North American populations. Using existing genotypes from the BovineSNP50 chip, 

imputation efficiency was determined by comparing imputed and true genotypes. Part of the 

population was retained as a “reference,” while target individuals for imputation had their 

genotypes reduced in silico to either BovineLD or Bovine3K genotypes. Results were 

assessed as the proportion of genotypes that were correct in the target population. For 

example, if the imputed genotype was a heterozygote and the BovineSNP50 genotype was a 

homozygote, that genotype was counted as incorrectly imputed. The count of correct 
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genotypes included both observed and imputed genotypes to measure the overall success of a 

lower density genotype in approximating a BovineSNP50 genotype.  

 

 

Table 2. Numbers of samples, call rates, and BovineSNP50 concordance for validation of 
BovineLD single-nucleotide polymorphisms (SNPs) by breed.  

 

Content validation 

The SNP assays for 6,914 loci were validated using data from 290 samples that represented 

26 global dairy and beef breeds (Table 2) and included Bovine Hapmap samples [18]. The 

290 samples (234 males, 56 females) included 286 unrelated samples, 2 trios, and 2 replicates. 

All markers were assessed for clustering of the genotypes using Illumina GenomeStudio 

genotyping software (version 2010.3). A total of 6,909 clearly identifiable and scorable 

clusters were retained for robust utility of the panel. The cluster positions were defined with 

priority given first to data from dairy breeds and second to beef breeds. The purpose of the 
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resulting cluster position file is to apply known robust cluster positions to future genotyping 

data for high throughput genotype calling. For phylogenetic analysis based on Y and mtDNA 

SNPs, individual sequences for each breed were clustered to construct consensus sequences 

using SNPs from 9 Y-chromosome loci and 13 mtDNA loci with the DNASTAR SeqMan 

program (version 6.1). 

RESULTS 
 

SNP call rates and accuracy  

The BovineLD chip, consisting of 6,909 final loci, was validated for 290 individuals from 26 

major dairy and beef breeds (Table 2). The mean call rate was 99.94% among dairy breeds, 

99.90% among beef breeds, and 99.93% among all samples. Mendelian consistency was 

examined using two Holstein trios, which showed a single error on BTB-01149046 out of 

13,797 total possible comparisons. Reproducibility was 100% across two Holstein replicated 

samples. Mendelian consistency and reproducibility were also examined for the overlapping 

6,844 SNPs of the BovineHD and BovineLD chips. Those data included 8 parent-progeny, 24 

parent-parent-progeny, and 10 replicate comparisons that represented 11 taurine, 2 indicine, 

and 1 hybrid breeds (Table 3). Mendelian consistency was 99.95%, and reproducibility was 

99.99%.    

Concordance between SNP calls from the BovineLD and other assays was evaluated by 

comparing BovineLD genotyping data used for validation against a subset of genotyping data 

collected for the BovineSNP50 assay. For taurine breeds, discordant calls represented <0.01% 

of all genotyping calls (Table 2). The concordance rate for 2,088 SNPs in common between 

BovineLD and Bovine3K assays was 98.78% for 281 females genotyped with both chips. The 

most likely cause of the differential performance between the BovineLD and Bovine3K chips 

is the chemistry difference between the Infinium and GoldenGate assays. 
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Table 3. Mendelian consistency and reproducibility comparisons for a set of 6,844 SNPs 
in common for the BovineHD and BovineLD BeadChips. 

 

Performance for MAF, mean spacing, and paternal and maternal lineages 

Data for calculating mean MAF (Table 1) were primarily BovineLD markers extracted from 

BovineSNP50 data. However, if BovineSNP50 data were not available, BovineLD markers 

from the validation data were used. That method allowed MAFs to be calculated more 

accurately. Mean MAF for the 6,909 SNPs was > 0.29 for all taurine breeds (Table 1). For 

Brahman (a Bos primigenius indicus breed), mean MAF was lower (0.18). Overall, >89% of 

the SNPs were polymorphic in Brahman, which suggested that the BovineLD chip may be 

useful for imputation in this breed. 

For the 6,909 SNPs selected for the BovineLD chip, median spacing was 0.348 Mbp, with 

only 82 (1.1%) of intervals greater than 1 Mbp (Fig. 1). The strategy of increasing SNP 

density at chromosome ends substantially improved imputation accuracy for those regions 

compared with the Bovine3K array (Fig. 2).  

 



 

 

 80 

Article III 

 
Figure 1. BovineLD single-nucleotide polymorphism (SNP) gap distribution.  

 

A  

B  

 

Figure 2. Imputation accuracy for Bovine3K and BovineLD genotypes. 
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Imputation was performed for A) Bovine3K and B) BovineLD genotypes using Beagle 
software; imputation accuracy is reported by single-nucleotide polymorphism (SNP). 

The sex-specific and lineage SNPs also performed well. The nine Y-chromosome SNPs had a 

100% call rate across 230 males of different breeds and no genotype calls for the 55 females. 

For the five animals of unknown sex, these markers indicated that four of the animals were 

male and one was female. Four unique Y-chromosome haplotypes were identified (Table 4): 

haplotype 1, (CGCCGCAAC), indicine paternal lineage; haplotype 2 (TCTCCTCAC), central 

European lineage; haplotype 3 (TCTCCTCAT), 1 base different from haplotype 2 and 

probably animals that came to the island of Jersey from France or Spain; and haplotype 4 

(TCTTGTCGC), northern European lineage, including islands. Only a few breeds had more 

than one haplotype, for example Santa Gertrudis and Beefmaster, both of which are taurine – 

indicine hybrids. Common haplotypes across breeds reflect common origin. Phylogenetic 

analysis separated the 26 breeds into four distinctive clades, which agrees with a previous 

report on the dual origins of dairy cattle breeds in Europe [19].  
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Table 4. Animal counts for Y-chromosome haplotypes a

For mtDNA SNPs (Table 5), 259 of the animals sampled had the same mitochondrial 

haplotype, and seven mitochondrial haplotypes were found. For the mtDNA haplotypes, only 

haplotype 7 (AAGAGCAAAAAAG) is associated with indicine cattle. Some indicine 

influence was evident for animals primarily from Australia, New Zealand, and Texas: 5 

Jerseys, 3 Brahmans, 2 Holsteins, 1 Friesian, and 1 Hereford. Most taurine indicine cattle 

were derived from taurine cows. Therefore, the lack of haplotype 7 for taurine breeds in most 

regions is not unexpected. The BovineLD markers should be useful in determining lineage 

origin between taurine and indicine breeds or identifying potential admixture within a 

population of locally adapted animals. 

 by breed.  
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Table 5. Animal counts for mtDNA-chromosome haplotypes a

 

 by breed.  

Accuracy of imputation 

Imputation accuracy was assessed in Australian, French, and North American cattle 

populations. In all cases, the accuracy of imputation to BovineSNP50 genotypes was 95% 

(Table 6). Most imputation results were > 97%, particularly for dairy breeds. The results were 

lower for some breeds, likely because of the limited reference population size used. For 

example, the considerably larger size of the North American reference set of Holsteins 

compared with the Australian set could explain why the North American imputation accuracy 

was 1.1 percentage points higher than for Australia. The effect of a smaller reference set of 

genotypes on imputation accuracy was further demonstrated by imputation from BovineLD 

genotypes for Australian Angus – this breed had the smallest reference size in the data set. 

For French populations, imputation efficiency also varied, with the highest accuracy for 
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Holsteins and the lowest for Blondes d’Aquitaine (Table 6); imputation accuracy for 

Normandes and Montbéliardes was slightly lower than for Holsteins. Again, much of the 

variation is likely explained by reference population size. 

 

 

Table 6. Accuracy of imputation from BovineLD genotypes to BovineSNP50 genotypes for 
Australian, French, and North American breeds. 

 

For Australian and North American Holsteins, accuracy of imputation to BovineSNP50 

genotypes was better for BovineLD genotypes than for Bovine3K genotypes. For Australian 

Holsteins, imputation accuracies were up to almost 6 percentage points higher with the 

BovineLD chip than with the Bovine3K chip using the same data (Table 7). Mean imputation 

accuracy was 92.8% for Australian Holstein Bovine3K genotypes compared with 97.6% for 

BovineLD genotypes. For North American Holsteins, accuracies of imputation to 

BovineSNP50 genotypes from Bovine3K genotypes ranged from 93.0 to 96.7% (depending 

on number of parents genotyped) for 2,456 animals genotyped with both Bovine3K and 

BovineSNP50 chips [17]. Corresponding values for BovineLD genotypes (Table 8) are 96.6 

to 99.3%.  

 



 

 

 85 

Article III 

 

Table 7. Accuracy of imputationa from BovineLD or Bovine3K genotypes to BovineSNP50 
genotypes for Australian Holsteins with and without a sire in the reference populationb

 

. 

The greatest improvement in imputation for BovineLD genotypes compared with Bovine3K 

genotypes was for individuals with no genotyped parents. For Australian Holsteins, difference 

in mean imputation accuracy with and without a sire in the reference population was 2.9 

percentage points for Bovine3K genotypes but only 1.3 percentage points for BovineLD 

genotypes. The improvement was smaller for North American Holsteins: a difference of 2.7 

percentage points between both parents genotyped and no genotyped parents for Bovine LD 

genotypes  (Table 6) compared with 3.7% for Bovine3K genotypes [17]. Compared with 

North American Holsteins, BovineLD imputation accuracy for animals without a parent in the 

reference population was slightly poorer for North American Jersey and Brown Swiss 

populations (Table 8). However, the more than doubling of markers and the different SNP 

selection criteria [20] compared with the Bovine3K chip allowed high imputation accuracies 

across a wider range of dairy breeds as well as some beef breeds. 
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Table 8. Accuracy of imputation a from BovineLD genotypes to BovineSNP50 genotypes for 
North American Brown Swiss, Holsteins, and Jerseys with and without parents in the reference 
populationb.

 

  

DISCUSSION 
 

The Illumina BovineLD BeadChip includes 6,909 SNPs selected to provide optimized 

imputation to BovineSNP50 genotypes in dairy breeds. The SNPs have MAFs of >0.3 in most 

breeds, and nearly uniform spacing across the genome except at the ends of the chromosome 

where densities were increased. The chip also includes SNPs on the Y chromosome and 

mtDNA loci that are useful for determining subspecies classification and certain paternal and 

maternal breed lineages. Accuracy of imputation to BovineSNP50 genotypes using the 

BovineLD chip was >99% when both parents were genotyped in the North American 

BovineSNP50 reference population. That high accuracy suggests that the design criteria for 

the BovineLD chip would be useful to consider in other species for which an “imputation 

chip” could dramatically lower the cost of implementing genomic selection. BovineLD 

imputation was about 3 percentage points more accurate across multiple populations 

compared with Bovine3K imputation. The improvement was greatest when neither parent had 

been genotyped. The gain in imputation accuracy is attributed primarily to the increased 

overall density of the BovineLD chip compared with the Bovine3K chip and also to the even 

further increased density at the ends of chromosomes. The high MAFs also contribute to the 

improved imputation accuracy. The MAFs were similar across taurine beef and dairy breed as 

was the proportion of SNPs that were polymorphic. The similar SNP characteristics suggest 
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that the BovineLD chip will perform well in imputation of taurine beef cattle, but that will be 

dependent on the size of the population genotyped with a higher density SNP assay. Overall, 

the new BovineLD BeadChip should facilitate low cost genomic selection in Bos primigenius 

taurus beef and dairy cattle. 
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2-1.5. MAIN RESULTS 

Designing a new Bovine LD SNP chip adapted to as many various breeds as possible was 

done setting up well described criteria to select markers. Imputation accuracy was measured 

and compared to existing chips using large data sets of Bovine 50K genotypes. The 

imputation accuracy results were also compared to those of the former Bovine 3K chip.  

The new SNP panel is not a new in silico chip just developed for the purpose of a scientific 

study, but it is a new tool to be adopted by the breeding industry. For this reason, a real 

validation procedure was run, testing the new SNP chip in lab conditions.  

 

After stating the need for a reduced-cost tool in order to embrace the huge market of 

genotyping both dairy cattle females and beef cattle animals, the paper precisely describes the 

different criteria used for SNP selection. Results of the validation study are shown. Call rates 

appear to be very high, due to the high technical quality of the selected markers. Concordance 

rate between 50k and LD genotypes is also very high, showing that these markers display 

very few genotyping errors, a critical point for further imputation. Concordance rates between 

true and imputed genotypes are presented for the different breeds. They are high, in fact 3 

points higher than with the former 3K chip. With such a high imputation accuracy, the gap 

between using this new Bovine LD chip rather than the standard Bovine SNP50® is divided 

by at least 2 in terms of reliability, compared with the former Bovine 3K panel. This study 

demonstrated that three criteria were essential, technical quality, spacing, and MAF in a 

variety of populations. Because of the quite large spacing between markers, LD was not a 

critical parameter. 

 

Many Bos taurus breeds have been considered in the design, and one may expect rather high 

MAF for all Bos taurus breeds (including those which were not explicitly covered). It would 

have been even better to also consider Bos indicus breeds. However, the 2 populations are so 

different that it was not possible to find markers that would fit both. Considering their 

economic weight, priority was given to Bos taurus.  
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2.2. – A brief description of the routine imputation procedure 
implemented in France 

First, genotypes and pedigree are checked for parent-offspring inconsistencies. Pedigree 

relationships or genotypes are erased from the data set when needed. This is important since 

in the next step, pedigree and genotypes are considered as certain and any mistake may induce 

wrong imputation or phasing. Simultaneously, Mendelian segregation rules are applied 

marker by marker taking into account pedigree relationships in order to impute missing 

markers. This is particularly useful for ungenotyped parents with many progeny. 

 

As a second step, Mendelian segregation rules and pedigree relationships are used in order to 

impute and phase the different alleles or haplotypes that can be filled in with certainty. This is 

done using the Linkphase software (described in Druet et al., 2008). The threshold parameter 

of this software is set to 1.00, meaning that only alleles that can be derived with absolute 

certainty are accepted. The outputs of this step are partially reconstructed genotypes (and 

phases).  

 

Note: Initially, this threshold parameter of Linkphase was set to 0.95. However, since 

imputation accuracy is often above this value, it was preferred to set it up to 1.00. A threshold 

of 1.00 means that the linkage is poorly used. Indeed, haplotypes segregate during meiosis. 

But double recombinations, although rare and unrealistic over short distances, do not have a 

probability strictly equal to 0.  Maybe other values for the threshold, such as 0.9999 would be 

better.  

 

The next step consists in running Beagle (Browning and Browning, 2007) on a sufficiently 

large data set, in order to build the DAG. It is performed once for good. The main output of 

such a run of Beagle is not the phases and imputed genotypes, but simply the DAG which 

summarizes the LD information along the chromosome. This step is very long: on large 

datasets, it takes days for a single chromosome. But it doesn’t need to be run again at each 

routine imputation. Indeed the DAG can be stored, and re-used for successive routine 

imputations. This step needs to be run again only when the genetic map changes, or if DAGs 
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need to be updated, e.g. when the initial reference population was not large enough and is 

heavily increased.  

 

Finally, one iteration of DAGphase (Druet and Georges, 2010), considering as input files the 

partially reconstructed genotypes and the DAG, is run in order to fill in the gaps. The software 

uses LD information from the DAG. The final output is fully imputed genotypes (and phases).  

 

The imputation accuracy is at least as high as with Beagle alone. The whole procedure is quite 

fast (few hours) because each step is quick (except the Beagle run, but again, it is run just 

once, and then stored for successive imputations).  

This procedure is now implemented in French routine evaluation, both for phasing and 

imputing low density genotypes.  
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CHAPTER 3 - Preferential treatment and bias in 
genomic evaluations 

In this chapter, we want to check if performances of genotyped cows can fit within the 
genomic prediction model. First, potential bias that may affect these phenotypes are 
described.  

3.1. The bias induced by preferential treatment 

3-1.1. AN OLD ISSUE IN GENETIC EVALUATIONS 

• Definition of preferential treatment 

 

Preferential treatment can be defined as management practices which modify production. 

These practices are selective, they are applied to some cows, but they are not applied to all 

their herd mates (Kuhn et al., 1994). They may be related to housing, feeding or reproduction 

practices. Some preferential treatment may occur inadvertently (e.g. feeding cows according 

to their production). Intentional preferential treatment also occurs and is usually used to 

enhance the likelihood that a cow will be chosen as bull-dam.  

 

• Consequences of preferential treatment on genetic evaluations 

 

The bias induced by preferential treatment was first observed through the inconsistencies 

between the parent average of a bull (mostly influenced by the breeding value of his dam) and 

performances of his daughters (included to calculate his breeding value after progeny testing). 

Van Vleck (1987) demonstrated that EBV of bull dam did not predict performances of 

daughters of her son as accurately as theory predicts. Colleau (1989) also showed that the use 

of bovine somatotropine applied to some cows may induce bias in genetic evaluations.  

 

Kuhn et al. (1994) used a simulation study to assess the magnitude of the bias induced by 

preferential treatment. Bias ranged between 15 and 450 kg (representing 6 to 39 % of the 
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overestimation of the production initially inserted). Bias highly depends on the extent of 

preferential treatment, the number of records involved, and mostly, whether relatives are also 

preferentially treated. Powel and Norman (1986) also demonstrated that bias becomes even 

more important when preferential treatment is also applied to relatives.  

 

• Progeny testing protects (somehow) from such consequences 

 

For the last decades, progeny testing has been the standard in terms of evaluation of young 

bulls before their extensive use for artificial insemination. As the bulls were mated to cows 

randomly selected among the commercial population, one can consider that their daughters 

were not subject to preferential treatment. Only their dam may have been affected by such a 

potential bias. However when dozens of daughters bring information to properly estimate the 

bull’s breeding value, the contribution of his dam’s performances to his EBV is reduced.  

Therefore the potentially overestimated performances of the dam have a very limited impact 

on the ranking of the bull. This is why one can consider that progeny testing “protects” from 

preferential treatment bias.  

When a farmer had to choose within a batch of progeny-tested bulls, his choice was not 

biased because of preferential treatment. This is different for breeding organizations. They 

needed to choose young males to enter progeny-testing and this choice was based on parent 

average which may be heavily biased because of overestimation of the breeding value of the 

bull dam.  

 

• Accounting for heterogeneity of variance 

 

Environmental factors as well as management practices induce differences among herds in 

terms of variability of performances. Thus, genetic and residual variances may differ among 

herds. If this difference is not accounted for, Vinson (1987) showed that it leads to 

overvaluation and selection of more individuals from the variable herds. This results in a 

reduced response to selection. Wiggans and Van Raden (1991) reported that, when the genetic 

evaluation model is adjusted for heterogeneous variances, a slight gain is observed for the 
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correlation between parent and offspring information, and, moreover, the genetic trend (for 

milk yield) is increased by about 5 kg/year. Van der Werf et al. (1994) showed that when such 

heterogeneity of variance is accounted for in genetic evaluation model, 20 % of the bias 

(between parent average and breeding value based on progeny records) can be removed.  

3-1.2. WHY THIS OLD ISSUE IS HIGHLIGHTED BY GENOMIC SELECTION  

Genomic selection allows the systematic use of young bulls for AI. In some countries, these 

young bulls are evaluated with direct genomic values (DGV) which do not include any 

polygenic effect, but most of the evaluation centers chose to evaluate young candidate with 

GEBV which include information from performances of relatives. For a young bull, the 

residual polygenic contribution is the parent average, and is not very reliable. The impact of 

the breeding value of the dam is very important, and contributes as much as the sire. For this 

reason, bias due to preferential treatment is likely to occur, since an increased (overestimated) 

index for the dam will induce an increased (overestimated) GEBV for the young candidate.  

Farmers using semen from young bulls are not as “protected” from preferential treatment bias 

as they used to with progeny-tested bulls. On the other hand, breeding organizations used to 

select young bulls candidates to progeny testing only based on parent average. They now have 

a much more efficient tool: indeed, GEBV are more reliable than parent average and less 

biased by preferential treatment. The same situation occurs with selection of bull dams.  

 

• Effect of biased performances on genomic prediction equations 

 

Wiggans et al. (2011) used an elegant approach to demonstrate what non-adjusted 

performances of the female reference population may induce on prediction equations. The 

method to adjust performances will be described hereafter.  

The female reference population consisted of cows, genotyped on the standard 50K chip, with 

own performances. They most likely are potential bull dams, and are the most concerned by 

preferential treatment.  

As reported below, United States have chosen to include genotyped cows in the reference 

population. Wiggans et al. (2011) proposed a method to adjust cows performances (see 

paragraph 3-5.3). A very convincing result is the “Manhattan plot” they compare. They 
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reported marker effects across the genome (usually called a “Manhattan plot”) in 2 situations, 

one where cows performances are adjusted, one where performances are not adjusted. There 

was no sex effect included in the model, and region of the X chromosome is also shown.  

What we can see from the Figure 8 is that with unadjusted performances, SNP effects are 

homogeneous across chromosomes 1 to 29, but a high peak is present on the X chromosome. 

This is no longer the case with adjusted performances.  

 

Figure 8 (from Wiggans et al. 2011) Manhattan plots with either adjusted or unadjusted 
cows performances for the reference population 

 

When looking at the Manhattan plot with unadjusted predictor population, one may conclude 

that there exists a big QTL on this region of the X chromosome. There is not such a big QTL 

known to be involved in milk production in that region, especially because it does not appear 

anymore when performances are adjusted (or when only males are in the reference 

population). Markers of the X chromosome are present in 2 copies in females’ genotypes, but 

only one copy in males genotypes. This region accounts for the difference between cows EBV 

and bulls EBV due to bias in cows EBV. So, we have a clear picture of the consequences of 
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biased performances over prediction equations. One can easily consider that using such 

prediction equations may be misleading in terms of proper estimation of breeding values.  

3-1.3. PRELIMINARY STUDY 

• Introduction 

 

Several national genomic evaluation centers wondered in early 2010 whether females should 

be included in the reference population, and, if yes, how to properly include their 

performances.  

As stated in section 3.3. , Canada, or the different countries of Eurogenomics chose not to 

include females in the reference population. On the other hand, the US have included cows in 

the reference since the beginning of the genomic era. In 2010, considering that performances 

of dams were also bringing bias in evaluations, the USDA center responsible for evaluations 

in the US decided to adjust cow performances (Wiggans et al., 2011).  

The French genomic evaluation model involves a polygenic effect. Until 2010, the whole 

pedigree information was used, including dams of genotyped individuals. Their performances 

were integrated in the QTL BLUP and were used to compute GEBV.  

The Eurogenomics consortium suggested to remove potentially biased cow performances 

from the reference population in order to get more reliable GEBV. Before removing such 

performances from the equations, it was decided to conduct a study to assess the impact of 

including direct individual cows performances in genomic evaluations.  

Required definitions

When using a reference population consisting of AI bulls, the phenotypic information of 

daughters performances is summarized in DYD. Daughter Yield Deviations (DYD) were 

defined by Van Raden and Wiggans (1991). They correspond to average daughter 

performances corrected for fixed effects such as herd or season, the permanent environment 

effect, as well as the additive genetic contribution of the dam). Afterwards, these DYD are 

used as if they were the performances of the bulls themselves.  

  

The equivalent phenotypic measure for females is the yield deviation, YD. It corresponds to 

the performance of the cow herself (not of her progeny), also corrected for the other effects 

than the genetic effect.  
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• Material and methods 

Data

In the validation procedure estimated breeding values of validation bulls were compared to 

their phenotypic value (i.e. their DYD).  

 

Data consisted of 3966 progeny-tested Holstein bulls. This reference population was split into 

2 populations, a training population including the older bulls for which both phenotypes and 

genotypes were included in the model and a validation population including bulls for which 

phenotypes (even when available) were removed from the equations. The genomic evaluation 

aimed at properly predicting their DYD.  

Two different datasets were considered : one only including the DYD of the 3,505 male 

animals present in the pedigree file, and one including both DYD of male and YD of female 

individuals. 3,830 cows with own performances were added in the second data set. When YD 

were included, the performances of genotyped cows were not used in the calculations of 

DYD. Among the individuals with phenotypic records (DYD or YD), some may have been 

genotyped, but not all of them. These phenotypic records included in the model were used to 

estimate jointly polygenic effects and QTL effects.  

phenotypic performances  

Two traits were specifically studied, as they are known to be opposite as far as preferential 

treatment is concerned. The first one was milk production, expressed in kg. It is the trait for 

which management practices have the largest influence, either unintentionally (amount of 

concentrate as feed intake according to production) or on purpose (distinct milking 

procedures, distinct feeding based on the status -bull dam/regular cow). It is the trait usually 

considered in preferential treatment studies.   

Traits studied  

The second trait is somatic cell count (SCC), expressed as a log transformed function of the 

number of somatic cells counted per ml of milk. It is considered as one of the traits the least 

prone to preferential treatment. Indeed, management practices (housing, hygiene during 

milking) are very likely to affect all of the contemporaries in a given herd and it is very 

difficult for a breeder to change on purpose the performances of some specific cows. Even if 
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separate housing may have some effect on performances, it is likely to have a very limited 

impact for somatic cell count.  

Not only the type of trait is different (production vs health trait) but also the heritability 

differs between milk production and somatic cell count. Heritability for milk production is 

around 0.3 whereas heritability of SCC is around 0.15. This difference in heritability has an 

impact on the amount of information that comes from one single own performance for a given 

cow. This performance will have a bigger impact on EBV (or GEBV) of the animal for milk 

just because of this higher heritability. Note that this difference in heritability may be 

misleading in the interpretation of the results: what we would consider as an effect of 

preferential treatment may be related to the genetic parameter of the traits.  

 

Our hypothesis is that the evolution of correlation between GEBV and DYD in the validation 

population when YD are removed from the model differ for these 2 traits: it is likely to 

increase for milk, since potentially biased performances are removed and this should increase 

accuracy. On the other hand, this correlation is likely to remain the same for SCC (no biased 

performances initially) or even decrease (some interesting information is being removed).  

Excepted results under the assumption of bias due to preferential treatment 

 

• Results 

  DYD GEBV (DYD) 

 

  DYD GEBV (DYD) 

GEBV (DYD) 0,609 

  

GEBV (DYD) 0,698 

 GEBV (DYD+YD) 0,608 0,967 

 

GEBV (DYD+YD) 0,707 0,991 

       

 

MILK 

   

SCC 

 Table 3 Correlation among males in the validation population between phenotypes 
(expressed as DYD) and GEBV, calculated with or without including female own 
performances (expressed as YD). 

 

From Table 3 Correlation among males in the validation population between phenotypes 

(expressed as DYD) and GEBV, calculated with or without including female own 
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performances (expressed as YD)., the correlations between DYD and GEBV appear to be 

more or less the same whether YD are included or not in the calculations (differences only 

appear at the third digit level). This is true for both (milk and SCC) traits. It does not fit with 

our initial hypothesis. One may argue that removing YD induced a slight decrease of the 

correlation between DYD and GEBV for SCC.  

Note : Correlations for SCC were higher than for milk. One may consider at first that genomic 

prediction better predict somatic cells count rather than milk production. This is not the true 

reason. Heritability of SCC is lower, so the performance of an individual brings less 

information to estimate the breeding value, and the DYD of candidates (validation 

population) are not as accurate (and close to the true genetic value) for SCC than for milk. In 

the same way, correlation between GEBV (with or without YD) is closer to 1 for SCC. One 

first explanation is that GEBV is less affected by biased performances and the ranking 

remains the same. Another possible explanation is the lower heritability of the trait.   

When analyzing these results, it is like looking at a glass as half full or half empty. Indeed, 

some information has been removed (YD) with no loss in accuracy (no decrease in 

correlation) which means that this additional information was (at least partly) biased, bringing 

as much noise as fruitful information. However we were  not able to clearly demonstrate the 

difference between the two traits whereas one is susceptible to preferential treatment and the 

other one should not.  

One possible explanation to such a low impact of removing YD from equations is that we 

were here looking at the impact on male individuals. One can expect a higher impact when 

looking at cows’ genomic predictions.  

Additionally, we were looking at one single population, with no clue on whether some 

individuals may or may not have been more affected by preferential treatment.  

 

In relation with this preliminary study, the decision was taken to remove own cows’ 

performances (YD : yield deviations) from the genomic evaluations in France for two reasons. 

The first is that other members of the Eurogenomics consortium chose not to include females’ 

performances in the genomic evaluations in order to get “a priori” more reliable genomic 

breeding values. Second, our study confirmed that YD brought as much noise as they brought 

additional useful information since the correlation remained the same whether YD were 
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included or not. However, additional studies are required in order to find a way to properly 

include YD in the model.  

From a scientific point of view, the difference between our initial hypothesis and the 

conclusions we drew from this preliminary study convinced us to look deeper in this issue. 

The objective would be to look at female GEBV and to distinguish 2 cow populations, one 

more prone to preferential treatment than the other.  

 

3.2. Article IV Inclusion of cows performances in genomic 
evaluations and its impact on bias due to preferential 
treatment 
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ABSTRACT 
BACKGROUND 

Genomic evaluations now are an essential feature of dairy cattle breeding. While young bulls 

were the initial target of genomic selection, a rapidly increasing number of females (both 

heifers and cows) are now being genotyped. A rising issue is whether and how own 

performances of genotyped cows should be included in genomic evaluations. The purpose of 

this study was to assess the impact of including yield deviations (YD) – i.e., the own 

performances of cows – in genomic evaluations.  

METHOD 

Two different genomic evaluations were performed, one including only reliable DYD 

(daughter yield deviations) of proven bulls, and another one including both YD for females 

and DYD for males based on their non genotyped daughters. Two traits were studied: milk 

yield (kg), which is the trait the most prone to preferential treatment and somatic cell count 

(SCC) for which such a bias is very unlikely. Data consisted of two different groups of 

animals from the three main dairy breeds in France: 11,884 elite females genotyped by 

breeding companies and 7,032 cows genotyped in a side research project (and considered as 

randomly selected among the commercial population).  

RESULTS 

For several measures potentially related to preferential treatment bias, the elite group 

presented a different pattern than the other trait/group combinations for milk yield: for 

instance, the average difference between breeding values including YD or not was 

significantly different from 0. The correlations between breeding values for milk yield from 

evaluations with or without YD were lower for elite females compared to randomly selected 

cows.  For SCC, they were very similar. 

CONCLUSIONS  

The study demonstrated that explicitly including own milk performances of elite females 

induced biased (over-estimated) genomic evaluations.  There is a need for a special treatment 

of milk production performances of elite cows in genomic evaluations. 

 

Key words: genomic selection, dairy cattle, reference population, preferential treatment, bias 
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BACKGROUND 
Preferential treatment and the bias it induces are an old issue in genetic evaluations. 

Preferential treatment can be defined as management practices which modify production. 

These practices are selective: they are applied to some cows, but they are not applied to most 

of their herd mates (Kuhn et al., 1994). They may be related to housing, feeding or 

reproduction practices. The bias induced by preferential treatment was observed through the 

inconsistencies between the parent average of a bull (influenced by the breeding value of his 

dam) and performances of his daughters (included to calculate his breeding value after 

progeny testing) (Van Vleck, 1987).  

 

The issue related to bias due to preferential treatment got highlighted again with the 

development of genomic selection. In genomic selection, the reference population consists of 

individuals with both genotypes and performances which are used to estimate marker effects. 

The larger the reference population size, the more reliable the genomic evaluations (Goddard 

and Hayes, 2009). At an early stage, the reference population was only composed of progeny-

tested bulls and genomic evaluations were only based on reliable averaged performances of 

the bulls’ daughters.  Considering the rapidly increasing number of genotyped cows with own 

performances, it is very appealing to include these genotyped cows in the reference 

population and it will be necessary in the future to upgrade the reference population if the 

number of bulls with a progeny evaluation is much lower than in the past. Within the female 

population, potential bull dams were the first target for genotyping. The use of potentially 

biased performances of these genotyped elite females in genomic evaluations may have two 

major impacts, the first one on GEBV of these cows and of their relatives, the second on 

prediction equations.  

Ways to deal with this issue vary across countries. For example, the U.S. chose very early to 

include genotyped cows in the reference population (Wiggans et al. 2011). Fearing potential 

bias, Canada but also the Eurogenomics consortium (Lund et al., 2011) decided not to include 

cows in the reference population. Later, Wiggans et al. (2011) proposed a method to adjust 

female performances before inclusion in genomic predictions. Genomic evaluations in the 

U.S. have been corrected since then. There is a need to more precisely assess the impact on 

the reliability of genomic predictions of the inclusion of genotyped cows in the reference 

populations on the reliability of genomic predictions.  
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When using a reference population consisting of AI bulls, the phenotypic information of 

daughters’ performances is summarized in DYD. Daughter Yield Deviations (DYD) were 

defined by VanRaden and Wiggans (1991). They correspond to the average daughters 

performances corrected for all fixed effects (such as the herd, year, season effects among 

others), the permanent environment effect, and also for the genetic contribution of the bull’s 

mate (i.e., half the additive genetic value of the cow’s dam). Subsequently, they are used as if 

they were the performance of the bulls themselves.  

The equivalent phenotypic measure for females is the yield deviation, YD. It correspond to 

the performance of the cow herself (not her progeny), corrected as well for all the effect but 

the genetic effect. 

 

In a preliminary study where female own performances were either included or excluded 

(results not shown), the correlations between phenotypic (DYD) values and GEBV for bulls 

of the validation population were measured for several production traits and for somatic cell 

count. T

 

his value can be regarded as the square root of realized reliability. These correlations 

did not decrease when the own performances of the genotyped cows which are ancestors of 

males candidates were removed from the training set. It can be seen from two opposite angles. 

On one hand, removing female information did not result in a loss in accuracy which means 

that this additional information was (at least partly) biased, bringing as much noise as fruitful 

information. However on the other hand, it should be noted that  one could have expected a 

gain in correlation if the removed information had been heavily biased.  

The objective of this study was to compare predictions obtained after two distinct genomic 

evaluations. For the first one, only bulls were included in the reference population while in 

the second one, genotyped cows were also added to the reference population. Two traits (milk 

yield and somatic cell count (SCC)) were considered. They differ by their particularities 

concerning preferential treatment. In contrast with other studies including our preliminary 

work, two distinct cow populations were considered, one including only elite dams and 

another one including cows (nearly) randomly selected among the commercial population. 

The latter is supposed to be less affected by preferential treatment. Under the assumption of 

the existence of a bias induced by preferential treatment, different characteristics of 

genomically enhanced breeding values (GEBV) would be expected for the elite group for 

milk yield compared to the other combinations of trait and group.  
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METHODS 
Data 

The study focused on genotyped dairy cows. Three French dairy breeds were investigated 

separately for this study: the Holstein, Montbéliarde, and Normande breeds. Two distinct 

populations were looked at: elite females and randomly selected cows. Females (both heifers 

and cows) genotyped by breeding companies were considered as elite females. It was 

assumed that if a breeding organization was interested in genotyping a particular female 

candidate seen as a potential bull dam, and ready to pay to obtain a genomic evaluation of this 

female, then such an animal could be defined as “elite”. As a reference, non preferentially 

treated group, a representative subset of the commercial population was needed. On a side 

research project studying genetic and environmental parameters of milk fatty acids 

composition, about 8,000 dairy cows were genotyped. They were specifically chosen to be 

representative of the commercial population. Cows to genotype were determined based on 

constraints on a set of sires (20 for Normande and Montbéliarde, 30 for Holstein) from which 

a limited number of daughters per sire were randomly selected within a given set of partner 

herds.  We considered these cows as “randomly selected”. Elite cows are more likely to be 

preferentially treated with over-estimated performances while the other group of cows is less 

prone to such a bias.  

Obviously, the reference populations also included progeny-tested bulls, distributed across 

several generations. Table 1 summarizes the number of animals included in the training 

population for the three breeds, the number of genotyped elite females and the number of 

genotyped “randomly selected” cows. In total, 1,798, 2,157 and 19,485 genotyped progeny-

tested bulls were included in the reference population for Normande, Montbéliarde and 

Holstein breeds respectively. The Normande and Montbéliarde bulls reference populations 

only included individuals genotyped in France whereas the Holstein reference population also 

comprised bulls genotyped by European partner breeding organizations which genotypes were 

exchanged within the Eurogenomics consortium (Lund et al., 2011). All the individuals were 

genotyped with the Bovine 50K chip (Illumina inc., San Diego). 
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Table 1. Number of genotyped individuals for the three different breeds for each group 

Breed AI bulls Elite cows Randomly 
selected cows 

Montbéliarde 1,798 2,190 1,826 

Normande  2,157  2,129 2,374 

Holstein 19,485 7,565 2,832 

 

 

Performances included for the reference population 

 

For each breed, two kinds of genomic evaluations were computed. In the first one, only males 

were included in the training population, and only performances related to males were used to 

estimate markers effects. A second genomic evaluation was performed on the similar datasets, 

in which genotyped cows with own performances were also added to the training population. 

For this second evaluation, performances from both males and some females were used to 

estimate markers effects. 

Both YD and DYD are by-products of the official polygenic evaluations. Data used for this 

study were obtained after the official evaluation of November 2011. They were used as inputs 

for  the genomic evaluations. Note that when YD were used for genotyped cows, their 

contribution was removed from their sires’ DYD in order to avoid double counting their 

performances.  

Both lactation milk yied and SCC were evaluated with an animal model (polygenic, pedigree-

based) evaluation. For milk yield, heterogeneity of variances were accounted for in the model 

as described by Robert et al. (1999). YD and DYD were then corrected for heterogeneity of 

variance and expressed as in a standardized (reference) environment.  
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Genomic evaluation model 

 

The French genomic prediction is an extension of the marker-assisted evaluation approach of 

Fernando and Grossman (1989), making use of haplotypes of 5 SNP. The QTL-BLUP model 

can be written as:  
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1
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nQTL
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=
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where y is the vector of phenotypic observations, µ is the overall mean, u is a vector of 

random (pedigree-based) residual polygenic effects, hij

The selection of QTL included in the model was the result of a combination of 2 approaches 

(Boichard et al., 2012a). First, dozens of QTL per trait were detected after QTL fine mapping 

using a linkage disequilibrium linkage analysis (LDLA) as defined by Druet et al. (2008). 

Then, hundreds of haplotypes were chosen using the Elastic Net algorithm (EN) (Croiseau et 

al., 2011).  

 is the random effect of haplotype j for 

QTL i, and e is a vector of residuals, with heterogeneous residual variances inversely 

proportional to EDC (equivalent daughter contributions).  

 

Individuals were included alltogether to estimate genomic breeding values. Elite and 

“randomly selected” subsets were analyzed separately later, but the GEBV of individuals 

present in these two populations came from the same evaluation.  

 

RESULTS  

Mean and standard deviations of the EBV for the 2 cow populations (elite and randomly 

selected) are reported in table 2. This table underlines the existing difference in the genetic 

merit of the two populations for the traits of interest. EBV come from the official polygenic 

evaluation of November 2011. The difference between the average genetic merit of the two 

populations ranged from 359 to 737 kg for milk yield (corresponding to 0.5 to 0.95 genetic 

standard deviation) and from 0.22 to 0.45 (expressed in genetic standard deviation units) for 

somatic cell count. For both traits, the elite population presented a genetic superiority over the 
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randomly selected population. The difference was more important for milk yield than for 

SCC.   

Table 2. Statistics (mean and standard deviation) of official national EBV for the two 

cow populations (elite and randomly selected) and for two traits (milk yield and Somatic 

Cell Count (SCC) expressed in kg of milk and genetic standard deviation (for SCC) for 

the three breeds 

 

   elite random 

   breed mean s.d mean s.d 

Milk yield 

Montbéliarde 663 348 304 320 

Normande 717 318 203 333 

Holstein 1055 462 318 386 

SCC 

Montbéliarde 0.26 0.69 0.04 0.59 

Normande 0.29 0.64 -0.16 0.73 

Holstein 0.4 0.63 -0.05 0.69 

 

Correlations between GEBV obtained with the two reference populations are shown in table 

3. GEBV were obtained when including either both bulls’ DYD and cows’ YD 

(GEBV(DYD+YD)), or only DYD (GEBV(DYD)

 

). Under the assumption of the existence of a bias 

induced by preferential treatment affecting only milk production of elite cows, these 

correlations should be similar when looking at elite or randomly selected group for SCC but 

lower for the elite group and milk yield.  
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Table 3. Correlation between GEBV calculated including both DYD and YD and GEBV 

calculated only including DYD for the two cow populations (elite and randomly selected) 

and for two traits (milk yield and Somatic Cell Count (SCC)  

breed trait elite random 

Montbéliarde 
Milk yield 0.740 0.770 

SCC 0.915 0.893 

Normande 
milk yield 0.768 0.820 

SCC 0.900 0.909 

Holstein 
Milk yield 0.931 0.938 

SCC 0.966 0.965 

 

For the Normande breed, the correlations for SCC were essentially the same whether elite or 

randomly selected cows populations were included (difference lower than 0.01). On the other 

hand, the correlation was substantial higher for the randomly selected population compared to 

the elite group for milk yield (0.82 instead of 0.77). For the Montbéliarde, the correlation was 

also higher for the randomly selected group for milk trait (0.77 instead of 0.74) but an 

opposite pattern was observed for SCC. Indeed, the correlation was lower for the randomly 

selected group (difference of 0.02). For the Holstein, all observed differences in correlation 

were small: there was almost no difference (0.001) for the two populations for SCC and only 

a slight difference (0.007) for milk yield.  

Boxplots of the differences between GEBV(DYD+YD) and GEBV(DYD)

 

 for the three breeds are 

presented in figures 1 to 3. For each breed, 4 boxplots are displayed, one per trait x population 

combination. Note that the values for milk yield is expressed in kg (one genetic standard 

deviation equals 591, 661 and 759 kg for Normande, Montbéliarde and Holstein breeds 

respectively) whereas they are expressed in genetic standard deviation for SCC. In absence of 

bias in the data, these boxplots should be centered around 0, and symmetrically distributed 

around 0. 
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Figure 1 Dassonneville et al.  

Boxplot representing the difference between GEBV calculated including both DYD and 
YD and GEBV calculated only including DYD for the two cow populations (elite and 
randomly selected) and for two traits (milk yield and Somatic Cell Count (SCC) 
expressed in kg of milk and genetic standard deviation (for SCC) for the Montbeliarde 
breed 
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Figure 2 Dassonneville et al.  

Boxplot representing the difference between GEBV calculated including both DYD and 
YD and GEBV calculated only including DYD for the two cow populations (elite and 
randomly selected) and for two traits (milk yield and Somatic Cell Count (SCC) 
expressed in kg of milk and genetic standard deviation (for SCC) for the Normande 
breed 
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Figure 3 Dassonneville et al.  

Boxplot representing the difference between GEBV calculated including both DYD and 
YD and GEBV calculated only including DYD for the two cow populations (elite and 
randomly selected) and for two traits (milk yield and Somatic Cell Count (SCC) 
expressed in kg of milk and genetic standard deviation (for SCC) for the Holstein breed 
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For each of the three breeds, the same pattern was observed; three boxplots out of 4 had a 

mean close to 0. The null value was included in the second quartile for SCC and the two 

female groups, and for milk yield only for the randomly selected group. Milk yield GEBV for 

the elite population clearly presented a different pattern; the box was entirely above the 0 line 

meaning than more than 75% of the cows had a GEBV(DYD+YD) higher than GEBV(DYD)

Table 4 focuses on the average difference between GEBV

. This 

was not observed for SCC. It can pointed out that the median is not strictly equal to 0 for any 

of the 4 boxplots, though it was very close for SCC in Holstein. The elite population also 

presented a higher variability of differences for milk yield, especially in the Montbéliarde and 

Holstein breeds.  

(DYD+YD) and GEBV(DYD)

Table 4. Average difference between GEBV calculated including both DYD and YD and 

GEBV calculated only including DYD for the two cow populations (elite and randomly 

selected) and for two traits (milk yield and Somatic Cell Count (SCC) expressed in 

genetic standard deviation for the three breeds 

. Under the 

suspicion of a bias induced by preferential treatment only affecting milk yield of elite cows, 

this difference should be 0 when looking at the randomly selected group or when considering 

SCC but significantly larger from 0 for the elite group for milk yield.  

breed trait elite random 

Montbéliarde 
Milk yield 0.286 0.135 

SCC 0.040 0.020 

Normande 
Milk yield 0.409 0.117 

SCC 0.110 0.060 

Holstein 
Milk yield 0.168 0.060 

SCC 0.013 0.024 

 

Across breeds, these average differences between GEBV(DYD+YD) and GEBV(DYD) were close 

to 0 and similar whenever randomly selected or elite groups were considered for SCC. The 

differences were 0.01 and 0.02 genetic standard deviation for Holstein and Montbéliarde , 

respectively. The elite group displayed a slightly higher value for SCC for the Normande 
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(0.11 instead of 0.06). Indeed, these values were again not strictly equal to 0. But for milk 

yield, this average difference was much larger for the elite group than for the randomly 

selected group. Indeed, this difference was roughly 2, 3 and 4 times greater for the 

Montbéliarde, Holstein, and Normande breeds, respectively. In absolute terms, the average 

difference observed in Normande for the elite population was 0.3 genetic standard deviation 

larger.  

DISCUSSION 
 

Key assumptions in our study were that females (heifers and cows) genotyped by breeding 

companies are elite cows and that the cows genotyped for the research project could be 

considered as representative of the commercial population. Indeed, each breeding company 

has its own strategy for bull dam selection: some genotype a wide proportion of the 

population and select from a broad basis while others are more selective and only genotype 

top cows based on their total merit index, the different breeding companies may put a 

different emphasis for the several traits, or the sire analysts from some cooperatives may 

focus on a limited number of maternal cow families (more likely to be affected by 

preferential treatment). For the cows genotyped in the side research project, even if the sires 

(constraint set on number of progeny genotyped) were the most used within each breed, our 

population may not be a perfect random sample of the commercial population. However, the 

two populations are easily identified when looking at the average cows EBV, since the elite 

group presented a superiority of 0.4 to 1 genetic standard deviation whatever the breed and 

trait. In fact, the Montbéliarde breed presented a substantially lower difference in EBV 

between the elite and randomly selected groups. This could be explained by the objective of 

the main breeding organization to genotype a large proportion of candidates in the whole 

population. This induced the inclusion in the “elite” population of some individuals that 

would not strictly fit with a selection criterion mainly based on milk yield EBV.  

Milk yield is obviously a more important trait in the breeding goal, which explains why the 

superiority of the elite group over the other one is larger for that trait. However, the genetic 

superiority of the elite population was also found for SCC. This means that if a different 

pattern is observed for the two traits when comparing the two female populations, this would 

not be explained only by the genetic superiority of the elite group.   
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The two traits not only differ in nature (a production trait vs a health trait) but also through 

their heritability which is in our case 0.3 for lactation milk yield and 0.15 for SCC. This 

difference in heritability has an impact on the amount of information in genetic evalution 

which comes from an own performance for a given cow. This performance will have a larger 

impact on the animal’s GEBV for milk yield just because of this higher heritability.  

 

A main feature of the genomic prediction model is that polygenic effect (based on pedigree) 

and haplotypes effects (based on markers information) are estimated jointly. This property is 

favorable to properly estimate both terms, compared with blending procedures for instance. 

However, both effects (polygenic effect and QTL effects) may be affected if phenotypic 

information used (performances) is biased. 

 

Correlations between GEBV(DYD+YD) and GEBV(DYD)

The correlations for SCC were higher compared to milk trait. However, as already 

mentioned, this can be mainly explained by the difference in heritability. Indeed, the added 

information related to cows’ performances (YD) is less informative for a low heritability trait 

yielding to reduced changes in GEBV.  

 presented a different pattern 

depending on whether milk yield or SCC was considered. Indeed, except for the 

Montbéliarde breed, the correlations were very similar for both the elite and randomly 

selected groups for SCC, whereas a decrease in correlation was observed for the elite group 

for milk yield compared to the randomly selected group (difference of  up to 0.04). This is a 

first evidence of the existence of a bias induced by the inclusion of the own performances of 

genotyped cows in genomic predictions.  

The Holstein reference population used was much larger than for the two other breeds. This 

results in markers effects which are better estimated and genomic evaluations which are 

more stable in Holstein. This may be the reason why, whatever the group and trait 

considered, the correlations  were higher for this breed. This also is one possible explanation 

why differences observed between groups for this breed were smaller.  

Differences between GEBV(DYD+YD) and GEBV(DYD) were computed for the 2 traits for each 

individual of the 2 groups. Graphical representations of these differences (figures 1 to 3) 

clearly showed a different pattern for milk yield for the elite group compared to the 

randomly selected group or the SCC situations. A large fraction of elite cows presented a 

positive difference for milk yield, meaning that the inclusion of their own performances in 
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genomic predictions led to an increase of GEBV. This phenomenon was not observed for 

somatic cell count or for the randomly selected group where differences were almost equally 

distributed between positive and negative values.  

The average differences observed and expressed in genetic standard deviation units 

confirmed that the elite group for milk yield presented different characteritics than the 

randomly selected group or for SCC. Admittedly, the mean values were not strictly equal to 

0 for the randomly selected group or for SCC (and it is difficult to explain why). Still, the 

difference was quite substantial for milk yield. The mean difference was up to 0.3 genetic 

standard deviation (in the Normande breed) higher for the elite group than for the randomly 

selected group.  

The elite group also presented a genetic superiority on SCC but no real difference between 

GEBV(DYD+YD) and GEBV(DYD)

 

 between female subpopulations. This means that the 

systematic overestimation of GEBV observed when milk yield YD are included is induced 

by some overestimated performances of the elite group. This is a clear evidence of a bias 

which affected GEBV for milk yield but not for SCC. Preferential treatment is the most 

immediate explanation for the source of such a bias.  

Bias (potentially due to preferential treatment) was shown for milk yield for the elite group. 

Our findings were obtained considering the group as a whole. However, this does not mean 

that every single individual present in this group presented over-estimated performances. In 

particular, a significant proportion of the elite cows had their GEBV decreased when their 

own YD was included. 

 

Wiggans et al. (2011) also demonstrated the existence of a bias in genomic evaluations when 

using unadjusted data for cows of the reference population. Indeed, for milk yield in 

Holstein, the regression coefficient (of daughters proven EBV over GEBV) was decreased, 

the bias was equal to 50 kg, and the realized reliability was lower. The realized reliability 

was calculated as the squared correlation between GEBV and deregressed proofs for bulls of 

the validation population. The regression coefficient is a measure of how inflated GEBV are 

compared to EBV. Furthermore they also observed a bias in genomic predictions equations 

as marker effects of the X chromosome presented a singular pattern, suggesting that females 

systematically behaved differently than males.   
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In conventional genetic evaluations some solutions were found to limit the bias due to 

preferential treatment (account for heterogeneous variances for instance). Now that such a 

bias has been demonstrated in genomic evaluations, it is needed to find methods to correct 

for this bias. The first solution to get rid of bias due to preferential treatment in genomic 

evaluations is to discard own performances, i.e. YD, of cows. It is possible to estimate direct 

genomic values obtained using a reference population consisting only of bulls, or to use 

GEBV (obtained after blending for instance) where the polygenic component only includes 

performances (DYD) of male relatives. However such a solution is not completely 

satisfactory. First, AI industry may pressure to include cows own performances even if it 

does not increase reliabilities of genomic evaluations. Secondly and more importantly, this 

solution is frustrating because it implies that a large amount of potentially valuable 

information is not used. Furthermore, a limited number of heifers and cows have been 

genotyped so far, and most of them were elite individuals. However, with the release of an 

efficient low density SNP chip (Boichard et al., 2012b) to genotype females at a reduced 

cost, one can expect that many heifers from commercial herds will be genotyped in the near 

future, providing a large number of genotyped cows. Obviously, for most of these 

commercial animals, performances are likely to be unbiased and they will build up the 

reference population of the future.  

Another solution is to adjust (i.e. pre-correct) cows performances before their inclusion in 

genomic evaluations. This is the option retained by Wiggans et al. (2011) who proposed to 

adjust the mean and variances of the estimated Mendelian sampling term of cows so that 

they are similar to those of bulls. They showed interesting improvement regarding several 

measures related to bias of genomic breeding values and prediction equations.  

However, whether they are adjusted or not, the cows’ performances are such that it is not 

really possible to distinguish a positive Mendelian sampling from a bias due to preferential 

treatment. The only situation where this could be envisioned is for cows with many recorded 

progeny but even then, it can be suspected that these progeny may have received a 

preferential treatment related to their maternal origin.  

Single step procedures (Misztal et al. 2009) are appealing so that non-genotyped individuals 

benefit from markers information of their genotyped relatives. It has also some interesting 

properties in terms of bias due to pre-selection of young bulls. But solutions to remove bias 

induced by preferential treatment (such as blending, or adjustment or mendelian sampling 

term) would not be possible anymore.   
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CONCLUSION 
 

We compared genomic predictions obtained after evaluations either including genotyped 

cows with own performances in the reference population or discarding them. Results showed 

that when such cows belonged to the group of elite cows, their GEBV for milk yield 

presented a different pattern than when these cows represent a random sample of the 

commercial population whereas they showed similar characteristics for somatic cell count. 

Correlations between GEBV computed with or without cows in the reference population were 

lower for the elite group when milk yield was considered. A systematic over-estimation of 

genomic predictions was found as well when the own milk yield performances of the elite 

population were included in the genomic predictions. The study demonstrated that explicitly 

including own performances of elite females induced biased (over-estimated) genomic 

evaluations.  
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3.3. Strategies applied by different countries regarding 
preferential treatment 

Suspecting a potential bias of performances of genotyped cows, several countries set up 

different strategies in order to properly integrate this female information when computing 

genomic predictions.  

3-3.1.  NORTH AMERICAN CONSORTIUM 

Canada and USA decided in 2008 to share their reference populations and to exchange 

genotypes of both progeny-tested bulls and cows with performances (Van Raden et al., 2009).  

Right from the beginning, Canadian scientists feared that a potential bias may have a negative 

impact on the accuracy of genomic predictions and decided to discard genotyped cows in their 

reference population: only progeny-tested bulls were included in the reference population. 

Only bulls deregressed proofs, calculated based on reliable their daughters’ average 

performances were used to estimate markers effects. 

 Initially, in the USA, it was considered that the cows were a significant and valuable fraction 

of the genotyped individuals with performances. So it was decided to include genotyped cows 

in the reference population. In other words, deregressed proofs from both progeny tested bulls 

and cows with own performances were used to estimate markers effects. Later, Wiggans et al. 

(2011) found that the difference between breeding values (PTA, predicted transmitted ability, 

equals to EBV/2) and direct genomic values (DGV, sum of markers effects) were centered on 

0 for genotyped progeny-tested bulls but were significantly higher for cows, which indicated 

that cows PTA were overestimated. They proposed a method to adjust females performances 

(see paragraph below) before their inclusion in genomic predictions. Genomic evaluations in 

U.S. have been corrected since then using this method. 

3-3.2. EUROGENOMICS CONSORTIUM 

In order to get more reliable genomic predictions, several European countries (gathering 4 

(groups of) breeding organizations in Denmark-Finland-Sweden, France, Germany and 

Netherlands-Flanders decided in 2009 to join their reference population and exchange 
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genotypes of progeny-tested bulls. More recently, they were joined by Spain (2011) and 

Poland (2012). 

In the Netherlands (Chris Schrooten, CRV, personal communication), DGV are currently 

estimated using male performances only. There are no females in the training population. In a 

second step, the GEBV is obtained by blending their DGV with the national EBV, which is 

either a parent average or a performance-based EBV depending on the age and origin of the 

animal. The equation below is used for blending: 

1 2GEBV b DGV b EBV= +  

b1 and b2

So, for females, dam performances are included through the blending step. For a male, GEBV 

are obtained by blending their DGV with a pedigree index based on males, or with the 

performance-based EBV for progeny tested bulls. The pedigree index is a weighted sum of 

males ancestors’ breeding values and equals ½ sire + ¼ maternal grandsire + … 

 are related to reliabilities of DGV and EBV respectively (either using the EDC 

method or a bivariate model).  

In the Nordic countries (Guosheng Su, Aarhus University, personal communication), a multi-

step approach is implemented. In this approach, as for the Netherlands, genotyped cows are 

not included in the training population, but their DGV are predicted. Then the DGV are used 

in the blending procedure using a bivariate model. The genomic evaluation center in Nordic 

countries is planning to apply  a single step approach (see below) soon.  

The treatment of cow performances in German genomic evaluations (Zengting Liu, VIT, 

personal communication) is almost identical to the Dutch and Nordic situations: Cows are not 

included in the current genomic reference population. Only bulls with daughters form the 

reference population. Calculation of the German pedigree index also uses phenotypic 

information on the male side only, i.e., only EBV of bulls are considered. Genotyped cows get 

a combined genomic EBV based on their DGV and their conventional EBV. Both for male or 

female candidates,their GEBV is based on DGV and (male) pedigree index. 

 Therefore, a common approach is applied in these three (groups of) European countries: 

DGV are first estimated using a reference population only composed of AI buls, and then 

combined through a blending procedure to a pedigree index in which only males ancestors - 
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sire, maternal grandsire, …- are included. This strategy appears somehow similar to the one 

applied in Canada.  

In France, as the in the U.S. performances of genotyped cows were first included. Then, since 

the integration of the Eurogenomic consortium, such genotyped cows were discarded from the 

reference population. GEBV produced in France are obtained using a male reference 

population, and the polygenic effect is only based on males’ DYD.  

3.4. Evidences of a bias in genomic predictions when 
performances of genotyped cows are explicitly included 

3-4.1. EVIDENCES OF BIAS IN AMERICAN GENOMIC EVALUATIONS 

We have seen (section 3-1.2.) that Wiggans et al. (2011) demonstrated that bias induced by 

inflated cow performances had a significant impact on genomic predictions equations. The 

impact of such a bias was also measured at the level of genomic predictions.  

EBV from progeny-tested bulls were regressed on GEBV of the same bulls (obtained at a  

time when no daughter information was available). The regression coefficient is a way to 

measure how inflated GEBV are when compared to daughter-proven breeding values (PTA or 

EBV). The closer this value is to 1, the less biased GEBV are. The lower the regression 

coefficient is, the more inflated GEBV are compared to daughters proven EBV.  

In Wiggans et al. (2011, Table 4) daughter proven EBV (from 2010) of 2,975 bulls were 

regressed over 2006 GEBV of the same bulls. A significant difference was observed 

depending on whether the reference population included progeny-tested bulls only or included 

both bulls and cows with unadjusted performances.  

For instance, for milk yield in Holstein, the regression coefficient was 0.91 with the bulls 

reference population and 0.86 when cows with unadjusted data were added reference 

population (regression coefficient were 0.94 and 0.85 respectively for fat yield, for which the 

difference was even more impressive).   
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 Reference population 

 Bulls only  Bulls + cows with 

unadjusted PTA 

Milk yield (kg) 0.91 0.86 

Fat yield (kg) 0.94 0.85 

Table 4 Regression coefficient of daughter proven EBV on GEBV for two reference 
population (included or not genotyped cows) 

3-4.2. TWO KINDS OF BIASES: SELECTED SUBPOPULATION AND PREFERENTIAL 

TREATMENT 

Two kinds of bias can be considered regarding performances of genotyped cows: the first bias 

is related to the fact that genotyped cows correspond to a specific subset of the whole 

population of dairy cows: they are selected. This bias was described by Mantysaari et al. 

(2010) when validating national genomic evaluations. When breeding companies genotype 

heifers and cows in order to select bull dams, the female candidates are often already 

preselected, usually based on their parent average or own performances. This means that the 

subset of cows that are genotyped does not properly represent the whole population of 

milking cows.  

A different situation, where genotyped cows are not a selected subpopulation is possible. Not 

only breeding companies genotype females candidates, farmers also have the opportunity to 

genotype heifers and cows. They could do so in order to sort heifers and select among them 

for herd replacement (see section 4-3.6.). If many commercial breeders genotype whole 

groups of heifers, then, once these individuals have performances, they properly represent the 

whole population of milking cows as they were not pre-selected before genotyping. In the 

near future, if females genotyped by dairy famers represent most of the genotyped cows, the 

impact of the bias due to the selection of genotyped individuals will be reduced.  

The other bias is related to preferential treatment of elite cows. It has been described in 

section 3.1. Preferential treatment is related to the first source of bias: indeed, it is likely to 
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occur in the group of genotyped cows since selected (top) cows are more prone to preferential 

treatment.  

3-4.3. EVIDENCES OF BIAS IN FRENCH GENOMIC EVALUATIONS 

In the American experiment (Wiggans et al., 2011), the two sources of bias were mixed. Only 

one population of cows (mostly represented by top individuals) was considered and the 

authors only looked at production traits. There was no way to differentiate the two sources of 

bias, and the authors showed that the biases had a strong effect on genomic predictions.  

In the experimental design of our study (Article IV), and considering the limited conclusions 

we were able to draw from our preliminary study (section 3-1.3.), we aimed at properly 

characterizing the different sources of bias related to performances of genotyped cows.   

Bias due to the fact that the genotyped population is selected would affect the elite group for 

both milk yield and SCC trait in our study. Bias due to preferential treatment is likely to only 

affect the elite group for milk yield.  

In our study a singular pattern was only observed for the elite group and for milk yield when 

comparing two sets of genomic breeding values: one based on a progeny-tested bulls 

reference population and one where genotyped cows were also added to the reference 

population.  

3.5. Possible solutions to deal with biases in the cow 
population 

In order to correct for the bias of performances of genotyped cows, several options have been 

described. Two goals are targeted: not affecting predicition equations (markers effects) and 

not bias GEBV of genotyped cows (and their close relatives). Some of the solutions achieve 

one goal but not the other. They are listed below. 

3-5.1. DISCARD GENOTYPED COWS FROM THE REFERENCE POPULATION 

This solution is the one currently applied in Canada and in different countries of the 

Eurogenomics consortium. It is probably the simplest one. Only progeny-tested bulls are 

included in the reference population and genomic prediction equations make no use of 
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performances of genotyped cows. While doing so, one is sure to get rid of bias due to 

preferential treatment. Average daughters performances (DYD or deregressed proofs) of bulls 

are reliable and they are not affected by performances of some cows that could be 

preferentially treated. Another disadvantage is the political and sociological issue which is 

developed later on. 

• Direct Genomic Values 

When only bulls are included in the reference population, still, there are different possibilities 

to compute genomic predictions for young candidates and genotyped cows. The first one 

consists in publishing direct genomic values only. DGV are calculated using markers 

information only. No polygenic effect is included and the pedigree information is not used. 

This solution ensures that potentially biased EBV do not impact genomic predictions. 

However, DGV have one main disadvantage: they are less reliable than GEBV.  

• Blending DGV and EBV to obtain GEBV 

When discarding genotyped cows from the reference population, the second possibility is to 

publish GEBV obtained after blending. First, DGV are calculated based on a bulls-only 

reference population; then, these DGV are combined with EBV obtained through classical 

polygenic genetic evaluations. Again, two possibilities exist. First, DGV are blended with the 

traditional EBV, but the EBV are calculated based on female performances (of the dam of the 

candidate, or of the genotyped cow herself) that may be biased. Here the potential gain 

regarding the bias due to preferential treatment when genotyped cows are not part of  the 

reference population may be lost when re-introducing dam performances. Another option 

consists in editing EBV to obtain pedigree index only based on male ancestors (sire, maternal 

grandsire, …). This solution aims at combining the higher reliability of GEBV (compared to 

DGV) obtained after blending, with no loss in realized accuracy due to potential biases of 

cows performances. This is the strategy applied in several Eurogenomics countries as 

described above. This solutions improves the DGV by adding a polygenic component but still 

does not account for own performances. 

 

In France, the genomic model includes a polygenic effect with is estimated jointly with 

haplotypes effects. This approach makes blending with male polygenic information useless.  
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• Concerns for new traits difficult to measure 

So far, we were considering  traits which have been measured for years or decades, such as 

milk yield or somatic cell count (or type traits or fertility). Classical evaluations based on 

pedigree and performances require phenotypes  for dozens (or hundreds) of daughters of 

dozens of bulls, which are performance recorded over several generations. Some 

economically important traits are very difficult (and/or very expensive) to measure. This is the 

case for example of feed intake, some specific diseases or more recently milk fatty acids 

composition and methane emission. Genotyping technology and its use to obtain genomic 

predictions are becoming very appealing to deal with such traits. Indeed, when phenotyping is 

expensive and/or difficult, it is possible to both genotype and precisely phenotype a “small” 

number (a few thousands) of individuals and those individuals are used as a reference 

population. This is done once for good, although it may be necessary to update prediction 

equations, but this is not necessarily required at every generation or every year.  

When phenotypes are difficult to measure, the reference population would only be composed 

of genotyped cows, no bull could be added. However, these cows should not be affected by 

the bias we have been dealing with so far. Indeed, they would be either sampled randomly 

from the commercial population, or even coming from a very few experimental herds where 

environmental factors are controlled.  

Veerkamp et al. (2012) calculated the accuracy of GEBV theoretically achieved when 

including cows in the reference population for a trait such as feed intake. Bulls from the 

reference population had performances only for a correlated prediction trait whereas cows 

had performances directly on feed intake. In this situation where the heritability of the trait 

was supposed to be high (about 0.50) and the correlation between direct and indirect traits 

was relatively low, adding cows to the reference population presented a major interest in 

terms of accuracy of GEBV for the trait considered.  

Setting up a cow reference population is also necessary in specific cases. For a breed, such as 

the French Tarine dairy breed with a small population and only a few AI bulls per year, 

genotyping cows with performances is required. Indeed, even genotyping all the bulls 

progeny-tested for years would not be enough to achieve a certain accuracy of genomic 

predictions. Another situation where genotyping cows with performances is necessary 

corresponds to developing countries where no breeding system has been set up yet (no 

performance recording, no identification, …). Fewer bulls will obtain phenotypic values (end 
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of progeny-testing) so that update of the reference population is compromised if it only relies 

on males. Genotyping cows with performances could be a solution in order to implement 

genomic selection.  

• Political issues 

Discarding genotyped cows may rise up some concerns that we will call abusively “political 

issues”. First of all, the AI industry, which has been financing most genotyping, may refuse 

not to take into account genotyped cows in the reference population which implies that their 

performances are not valuable for genomic evaluations, as stated by Wiggans et al. 2011: 

“Cow evaluations have been included in US genomic evaluations since their inception. Early 

studies (P. M. VanRaden, unpublished data) did not show much gain from doing so, but the 

industry was interested in including cow evaluations [and hoped that a way could be found to 

increase their value].”  

The solution consisting in removing all the genotyped cows from the reference population 

also may appear unfair. Indeed a few potential bull dams present overestimated performances. 

But for the very large majority of genotyped cows for which performances are not 

overestimated, why this additional unbiased information should be removed ? This can also 

sow confusion in people's mind regarding the bias affecting performances of all cows.  

Performance recording organizations consider that discarding these performances increases 

the risk of dairy cattle breeders giving up performances recording (Ducrocq and Santus, 

2011): when considering aspects related to breeding and selection decisions on farm (and not 

other herd management aspects), any farmer could wonder why he should bother with 

performances recording when GEBV allow to sort heifers and cows according to their genetic 

merit, especially if the additional information corresponding to performances is not even 

included in the cows’ genomic breeding values. For performances recording organizations, 

discarding genotyped cows from the reference population is synonymous to sending a wrong 

signal to the breeders because it could imply that the performances obtained are not reliable 

(since they cannot be introduced in genomic evaluations) and of limited interest, which is 

clearly not true.  

A regular update of prediction equations is required in order to maintain high level of 

reliability of genomic evaluations. Adding genotyped cows with performances to the 

reference population may be a way to update prediction equations.  
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A compromise can be found when a blending approach is used and when performances of 

females are used to compute conventional EBV. Even though such a compromise removes 

some political concerns, it may still not be the optimal solution. First, it re-introduces some of  

the bias induced by preferential treatment in GEBV. In other words, even though it does not 

impact anymore the prediction equations, comparison of blended GEBV within the group of 

genotyped females or with non-genotyped females is not entirely fair and may cause wrong 

selection decisions.  

• A disappointing solution 

Discarding genotyped cows from the reference population is historically the first option. 

Until recently, a limited number of heifers and cows have been genotyped, and most of them 

are elite individuals. Discarding genotyped cows from the reference population is a relatively 

well adapted conservative solution during the early adoption of genomic selection: they 

bring very little additional information compared to thousands of progeny-tested bulls with 

reliable performances. Moreover, this initial female population is heavily selected, mainly 

composed of potential bull dams prone to preferential treatment. Buch et al. (2012) 

performed a theoretical demonstration that a reference population including cows would 

bring higher accuracy of genomic predictions. Not including thousands of genotyped cows in 

the reference population clearly appears as a waste of fruitful and expensive information and 

is theoretically damaging in terms of accuracy of GEBV. 

With the release of a cheaper and efficient low density chip (article III) to reduce genotyping 

cost, and the worldwide adoption of genomic selection, one can expect that many heifers 

from commercial herds will soon be genotyped, later providing a large number of genotyped 

cows with supposedly unbiased performances. Such information should not be ignored. 

3-5.2. ANOTHER SOLUTION: TARGET SPECIFIC COWS FOR GENOTYPING 

• Random selection among the commercial population 

In Australia, with 2,749 genotyped bulls, the bull reference population size is rather limited - 

compared to the North American or Eurogenomics consortia (each with about 20,000 bulls or 

even more). Genotyping cows with performances appears natural in order to increase the 

reference population size and thus to improve the reliability of genomic breeding values. 
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However, we have seen that there is a clear risk of bias due to preferential treatment. Pryce et 

al. (2012) implemented a project (the “10,000 Holstein cows project”) of genotyping 

randomly selected cows (with “perfect” records for all interesting traits). When adding these 

10,000 cows to the reference population, they were able to increase reliability by 4 to 8 % ! 

Such a gain in reliability of genomic predictions could be achieved because the initial 

reference population was rather small, but also because the genotyped cows were properly 

(randomly) selected. In contrast, no gain was observed when adding cows to an already large 

reference population in France or in the U.S.  

• Contracted herds  

A new economical model for performance recording may be required if dairy farmers move 

away from traditional performance recording or for non conventional traits. If fewer and 

fewer dairy farmers accept to pay for performance recording of their own herd, the national 

breeding system will need to find a way to maintain a certain level of accuracy, in order to 

update prediction equations or to validate GEBV. One solution envisioned for example by 

Ireland  could be to contract some herds in order to get some (fine) phenotypes for both new 

and already-recorded traits. It is even possible to select and contract a few large herds 

specifically devoted to large experiments and performance recording. Environmental factors 

may be fully controlled in such herds allowing unbiased performances. Genotyped animals 

with such performances should of course be included in reference populations.  

3-5.3. YET ANOTHER SOLUTION: ADJUST COWS PERFORMANCES 

• Adjust Mendelian sampling terms 

Wiggans et al. (2011) proposed a method to adjust cows performances included in genomic 

predictions. The strategy they actually implemented on US national evaluations consisted in 

calculating Mendelian sampling (equal to PTA-PA) mean and variance for the cow population 

and to adjust these 2 terms so that they became comparable to those for the bull population. 

As a matter of fact, they used deregressed PTA as well as deregressed Mendelian sampling 

terms (see Wiggans et al. 2011 for more details). Corrected Mendelian sampling terms were 

then added to parent average to recreate PTA. For instance for the Holstein breed and milk 

yield, the variance of cow MS was reduced and the coefficient for the adjustment affecting the 

variance was equal 0.84. The mean was also decreased substantially (by 355 kg). 
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A clear effect of such an adjustment was observed on the regression of PTA on genomic 

predictions. We have seen above that the corresponding regression coefficient is lower when 

cows with unadjusted performances are included in the reference population than when the 

training population only included bulls. This was no longer the case with adjusted PTA for 

cows (see Table 5).  

 Reference population 

 Bulls only  Bulls + cows with 

unadjusted PTA 

Bulls + cows with 

adjusted PTA 

milk yield (kg) 0.91 0.86 0.90 

fat yield (kg) 0.94 0.85 0.95 

Table 5  Regression coefficient of daughter proven EBV on GEBV for three reference 
population (depending on the performances of cows included) 

 

Another aspect observed by Wiggans et al. (2011) was a change in realized reliability 

(calculated as the squared correlation between GEBV and deregressed proofs for bulls of the 

validation population). When cow performances were not adjusted, the loss in reliability was 

3%. The value was rather high as it was in the same range as the loss in reliability when 

imputed 3K genotypes rather than 50K genotypes are used. 

One important characteristics of this approach was that Mendelian sampling terms (and not 

directly deregressed proofs) were adjusted. Under the BLUP assumptions, the average 

Mendelian sampling terms is supposed to equal 0. With selected and potentially preferentially 

treated elite genotyped cows, this assumption is violated. The adjustment aims at correcting 

this aspect.  

When the Mendelian sampling mean is reduced for the group of genotyped cows, then, PTA 

of these cows become comparable with those of bulls. However, within the group of 

genotyped cows, comparison is still unfair, since contrasts between individuals are not 

affected. When the Mendelian sampling variance is reduced for the group of genotyped cows, 

then, less emphasis is given to performances while more weight is attributed to markers 
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effects in GEBV. This allows to partially remove the unfairness when females within the 

group of genotyped cows compared to each other.  

• Adjust variances directly in conventional genetic evaluations 

The approach of Wiggans et al. (2011) is based on a manipulation of PTA after the national 

genetic evaluation process took place. An alternative option consists in ensuring that the PTA 

or EBV are somewhat forced to have a more proper distribution during genetic evaluation: as 

stated in part 3-1.1., bias due to preferential treatment in genetic evaluations is an “old issue”. 

Indeed, strategies exist to account for such a bias in conventional genetic evaluations.  

Accounting for heterogeneity of variances is one of these strategies. It has been described in 

section 3-1.1. (method described in Robert et al. 1999). If heterogeneity of variances is taken 

into account in conventional genetic evaluations, then DYD, YD or deregressed proofs 

obtained afterwards can be corrected for heterogeneous variances and somehow partially 

corrected for bias induced by preferential treatment. As a result, they are more homogenous. 

Accounting for heterogeneity of variances is somewhat similar to pre-correct breeding values 

before their inclusion as deregressed proofs in genomic evaluations (solution proposed by 

Wiggans et al., 2011).  

3-5.4. A KEY ASPECT: IDENTIFY INDIVIDUALS SUBJECT TO PREFERENTIAL TREATMENT 

When performances of genotyped cows are corrected before their inclusion in genomic 

prediction, females are somewhat still unfairly compared to each other. Indeed, one is unable 

to distinguish a high performance due to a “true” positive Mendelian sampling contribution 

from a high performance biased by preferential treatment. 

One key issue is to identify groups of individuals that are (likely to be) subject to preferential 

treatment. Such a group could be heavily adjusted or even discarded from the reference 

population. We have seen for instance that randomly selected genotyped cows could be added 

to the reference population while females genotyped by breeding organizations would not. 

Finer rules (based on the number of bull dams in the herd, biased performances detected in 

the past, presence in show rings or auctions, ..) may offer an even better response to this issue. 

Indeed, some AI companies have some knowledge on which farms are more likely to apply 

preferential treatment and have the tendency to avoid them. The smaller the group of animals 
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discarded, the better the compromise about our different concerns (waste of information, 

political issues on performance recording, new traits).  

• Single step approaches of genetic/genomic evaluations and preferential 
treatment  
 

Another shortcoming related to genomic selection is that only a restricted sample of the breed 

population is genotyped. As a consequence, two distinct evaluations are usually performed: 

one conventional genetic evaluation based on pedigree and performances, and one genomic 

evaluation which uses by-products (DYD or deregressed proofs) from the conventional 

evaluation as input together with genotype information. This situation results in biased EBV 

when genomic selection is not accounted for in national genetic evaluations (see Patry and 

Ducrocq, 2011), as well as in tedious computation. Moreover, non-genotyped individuals do 

not benefit from marker information of their genotyped relatives.  

The single step approach (Misztal et al. 2009) is considered as one potential solution to this 

problem because both conventional and genomic evaluations are performed together and 

GEBV are computed for all the individuals of the breed.  

However, regarding bias due to preferential treatment, the single step approach does not 

permit to discard or manipulate potentially biased performances of genotyped cows. The 

reference population necessarily corresponds to all the genotyped individuals with 

performances, blending approaches are no longer possible (only one evaluation is run), and 

adjustments (as described by Wiggans et al. 2011) no longer can be implemented since they 

were performed between conventional and genomic evaluations.  

Nevertheless, a feature described by Legarra and Ducrocq (2012) may circumvent this issue. 

They proposed to solve iteratively two blocks of equations resulting from the single step 

mixed model equations. It is possible for instance to isolate genotyped individuals that form 

the reference population, or synonymously, discard genotyped animals so that they are not 

used to compute prediction equations. Again the key consisting in being able to identify group 

of individuals suspected of bias. Note that this approach has never been tested yet.  
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CHAPTER 4 – Discussion: Genotyping females and 
genetic gain 

In this part, we aimed at assessing the potential benefits either a breeding company or a 

farmer would get when genotyping females. Theoretical aspects of how to measure genetic 

gain are first detailed. Afterwards, several simulations studies are reviewed.  

4.1. Measures of genetic gain  

4-1.1. THE FOUR PATHWAYS OF GENETIC GAIN (RENDEL AND ROBERTSON, 1950) 

In order to predict genetic gain (ΔG), one needs to quantify what is transmitted from one 

generation to the next. Two factors are involved: the selection intensity i, i.e. the superiority 

of the selected candidates measured on the selection criterion (related to the proportion of 

individuals selected to breed the next generation) and the accuracy r, i.e. the correlation 

between the selection criterion and the true breeding value (which indicates how well one can 

determine which individuals are “the best” ones).  

1 *G i r∆ =  

This value is the genetic gain obtained after one generation. To obtain an annual value, one 

needs to divide it by the generation interval L (average time elapsed between 2 successive 

generations or age of the parents when their progeny get born). 

2
*

y
i rG

L
∆ =  

This value is expressed in genetic standard deviation units. One may prefer to express it in 

units that can be measured (kg of milk for instance). To do so, the previous ratio is multiplied 

by the genetic standard deviation σg of the trait of interest.  

3
* *y g

i rG
L

σ∆ =
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Note: The heritability of the trait does not explicitly appear in the equation. For conventional 

genetic evaluations, it is hidden in the accuracy term r. This may no longer be the case with 

genomic evaluations since DYD or deregressed proofs (used as inputs in genomic 

evaluations), and thus GEBV associated to low heritability traits present reliabilities similar to 

those of moderate to highly heritable traits.  

 

In most species, males and females are evaluated with the same genetic model, but they are 

not selected in the same way. All parameters i, r, and L could be different. For example, 

progeny test results in a longer generation interval for males than for females, a higher 

accuracy and a specific selection intensity. Therefore one needs to distinguish between the 2 

sexes in the equation above.  

In dairy cattle, it is possible to go one step further: given the sexes of both parents and the 

offspring, the selection intensity drastically changes. For example, on the female side, there is 

very limited selection of dams to breed cows, since almost all heifer calves born are required 

for the herd replacement. In contrast, bull dams are heavily selected, since only a few bulls are 

required for artificial insemination allowing a drastic selection intensity of bull dams and sires 

of bulls.  

Rendel and Robertson (1950) described the four pathways of selection that correspond to the 

four possibilities for genes to be transmitted to the next generation. These four pathways are 

represented in Figure 9.  

 

Figure 9 the 4 selection pathways as defined by Rendel and Roberston (1950) 

progeny 

bull 
(SB) Sire of bulls 

(DB) Dam of bulls 

cow 
(SC) Sire of cows 

(DC) Dam of cows 
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In dairy cattle, the “sire of bulls” path (SB) is a path where a very intense selection takes 

place. The “dam of bulls” path (DB) or “bull dams” path is sometimes overlooked  because it 

represents a very small fraction of the total population. However, it is essential and the 

selection of bull dams is conducted very carefully by breeding companies. The “sire of cows” 

path (SC) is the way to propagate genetic gain (mainly obtained in the male side) to the large 

commercial population of dairy cows. The propagation of the genetic merit is highly efficient 

in dairy cattle with the generalized use of artificial insemination. Finally, the “dam of cows” 

path (DC) corresponds to the replacement of the commercial population of dairy cows. The 

selection intensity applied on this path is quite low, because most of the heifer calves are 

needed in the herds to replace culled cows.  

 

Rendel and Robertson (1950) also adapted the equation of yearly genetic gain to these 4 

pathways and obtained the formula below:  

* * * *SB SB SC SC DB DB DC DC
y

SB SC DB DC

i r i r i r i rG
L L L L
+ + +

∆ =
+ + +  

ΔGy

4-1.2. APPLYING RENDEL AND ROBERTSON’S FORMULA TO COMPARE BREEDING 

SCHEMES 

 is the annual genetic gain in genetic standard deviation units, i the selection intensity, r 

the accuracy and L the generation interval. SB, SC, DB and DC stand for the 4 different 

pathways: sire of bulls, sire of cows, dam of bulls and dam of cows respectively. This formula 

will be used from now on in this document. 

Schaeffer (2006) described a traditional Canadian progeny-testing scheme which was typical 

for a breeding organization in dairy cattle in the early 2000’s. While generation intervals were 

more or less homogeneous across pathways, selection intensity and accuracy differ quite 

drastically from one pathway to another. For instance, selection was 7 times more intense and 

accuracy suppose to be doubled in the “sire of bulls” compared to the “dam of cows” 

pathways.  
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paths selection % i accuracy generation i x r ΔG

sire of bulls 

y 

5 2.06 0.99 6.50 2.04 

 sire of cows 20 1.40 0.75 6.00 1.05 

 dam of bulls 2 2.42 0.60 5.00 1.45 

 dam of cows 85 0.27 0.50 4.25 0.14 

 total       21.75 4.68 0.22 

Table 6 the 4 pathways of selection for a progeny-testing scheme (from Schaeffer, 2006) 

 

With such a breeding scheme, the annual genetic gain was 0.21 σg

•  Genomic selection  

 (genetic standard 

deviation).  

Meuwissen et al. (2001) proposed several methodologies to be used once genome-wide SNP 

chips become available. Their simulation study showed an expected accuracy of up to 0.85.  

Today, one can realize that such values were somewhat optimistic because of strong 

underlying hypotheses (few QTL with strong effects and high LD between markers and 

QTL). However, this article was visionary and one of the first pillars of the setting up of 

genomic selection in dairy cattle. 

In 2006, while SNP chip technology was still under development for livestock populations, 

Schaeffer carried out a study to assess potential benefits when applying genome-wide 

selection compared with his traditional progeny-testing scheme described above. He defined a 

strategy where young bulls (less than 2 year old) were heavily used for artificial insemination 

and culled before their progeny get performances. He used Rendel and Robertson (1950) 

formula to assess annual genetic gain. He also conducted a simplified study of the different 

additional costs and savings that such a new young bull scheme may induce. Figures were 

adapted to the Canadian Holstein population. Results are presented below 
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paths selection % i accuracy generation i x r ΔG

sire of bulls 

y 

5 2.06 0.75 1.75 1.55 

 sire of cows 20 1.40 0.75 1.75 1.05 

 dam of bulls 2 2.42 0.75 2.00 1.82 

 dam of cows 85 0.27 0.50 4.25 0.14 

 total       9.75 4.55 0.47 

Table 7 the 4 pathways of selection for a genomic selection scheme (Schaeffer, 2006). 
Values that are changed compared to table X (progeny-testing scheme) are in bold. 

 

When Table 7 is compared to Table 6, selection intensity was not modified for any of the 4 

different pathways. Genomic evaluations were assumed to yield an accuracy of 0.75. This is 

much lower than the accuracy observed on the sire of bulls path in a progeny-testing scheme, 

in which such sires usually have second crop daughters. On the other hand, value of 0.99 

accuracy achieved in the progeny-testing scheme appears very high (especially with such a 

generation interval). Schaeffer (2006) gave the same value for accuracy (0.75) for bulls 

evaluated only based on the genomic information than for progeny-tested bulls in the sire of 

cows path. 

A substantial increase in accuracy was assumed on the dam of bulls path, because markers 

bring more information on the genetic merit than own performances. Dams of cows were not 

genotyped; this path was not modified between the two schemes.  

The main change is observed on the generation interval. For the three most important 

pathways, sire of bulls, sire of cows, and dam of bulls, the generation interval is drastically 

reduced (2 to 3 times lower). This is the main reason of the strongly increased annual genetic 

gain when genome-wide selection is applied. The benefit of decreasing the generation interval 

at the sire of bulls level clearly overcomes the disadvantage of reducing the accuracy of 

selection. The annual genetic gain was 0.46 σg

 

.  
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As a result, according to Schaeffer, a breeding scheme using young bulls selected based on 

genome-wide EBV may double the annual genetic gain and divide by 10 the related cost 

compared to progeny testing in Canada (the factor 10 should be taken lightly but a drastic cost 

reduction  is possible) ! 

4-1.3. A STOCHASTIC SIMULATION TO ASSESS THE BENEFIT OF GENOMIC SELECTION 

OVER PROGENY-TESTING 

Colleau et al. (2009) performed a simulation study based on figures from the main French 

Montbéliarde breeding organization. Three different scenarios were compared. The first one 

was an improvement of the traditional progeny testing scheme, where an extra step of pre-

selection of young bulls based on GEBV was added before testing. The second one was a 

scheme where young bulls were selected and used as service sires and sires of sons (with no 

use of older sires). The third one was a sort of compromise, where young bulls were used for 

AI but some older bulls were kept and reused after their daughters obtained performances and 

new EBV were computed; 50% of the progeny were supposed to be born from each of the 

two categories. All these scenarios were simulated stochastically. In the reference scenario, 

485 bull dams were selected based on EBV. In the “genomic” scenarios (AXMAX, AXMIX) 

2,910 potential bull dams were genotyped and 1,455 were selected. The 2 scenarios using 

young bulls both allowed to almost double genetic gain, which is convincing and promising. 

The main difference was the evolution of inbreeding. While it slightly decreased when using 

only young bulls, it was almost doubled when reusing older bulls.   

scenario ΔGy (σ ΔFg) ry r1year 

REF 

6year 

0.25 0.13 0.69 0.94 

AXMAX 0.46 0.10 0.61 0.99 

AXMIX 0.47 0.22 0.67 0.99 

Table 8 Average outputs for 3 breeding schemes (from Colleau et al., 2009). REF is a 
traditional progeny testing scheme with additional pre-selection step based on GEBV. 
AXMAX is a genomic selection scheme where only young bulls are used. AXMIX is a 
compromise between the 2: young bulls are used, but some older bulls are also reused 
after their progeny get performances. ΔGy is the annual genetic gain (expressed in 



 

 

 141 

Genotyping females and genetic gain 

genetic standard deviation). ΔFy is the annual increase of inbreeding. r1year  and r6year

 

 
are the reliability of bulls obtained when they are 1 (respectively 6) year-old. 

The deterministic and stochastic simulations lead to a similar conclusion: the possibility to 

almost double genetic gain when applying a genomic selection scheme. A few differences 

must be underlined: for the deterministic simulation, in the reference (progeny-testing) 

scheme, young candidates were not pre-selected with genomic evaluation. For the stochastic 

simulation, selection intensities changed between the reference and genomic schemes (the 

number of bull dams differed for instance).  

 

In conclusion, maintaining the progeny-testing or using old sires for AI is useless when 

considering annual genetic gain.  

4.2. Genotyping bull dams 

4-2.1.  A CRUCIAL PATHWAY FOR GENETIC IMPROVEMENT 

When considering the benefits of applying genomic selection in a breeding scheme in dairy 

cattle, the use of young AI bulls evaluated only on their genetic markers information (i.e. with 

no recorded daughters yet) both as sire of bulls and sire of cows appears obvious and is often 

quoted as the main source of genetic gain.  

Another source of genetic gain, sometimes overlooked but extremely important is the “dam to 

breed bulls” pathway (bull dams path). In order to demonstrate the importance of this 

pathway, a deterministic simulation was conducted using Scaheffer (2006) breeding schemes 

figures.  

First of all, the bull dams pathway appears as very selective since only 2% are selected.  The 

selection intensity and accuracy associated to the “dam of bulls” path in the initial genomic 

selection scheme (Table 7, Schaeffer 2006) were a bit optimistic. Indeed he considered that 

2,000 females would be genotyped in order to select the best 1,000 (selection intensity would 

be lower than the value shown on the table). The initial 2,000 females were selected based on 

EBV on the whole population. This procedure is not strictly synonymous of one single step 

with an accuracy of 0.6 and 2% of females selected.  
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As stated in Table 6 and Table 7, the annual genetic gain observed in the progeny testing 

scheme and in the genomic selection scheme are 0.22 and 0.47 respectively. To assess the 

contribution of the bull dams pathway to the genetic gain in agenomic breeding scheme, we 

can change some parameters. 

 

paths selection % i accuracy generation i x r ΔG

sire of bulls 

y 

5 2.06 0.75 1.75 1.55 

 sire of cows 20 1.40 0.75 1.75 1.05 

 dam of bulls 2 2.42 0.60 5.00 1.45 

 dam of cows 85 0.27 0.50 4.25 0.14 

 total       12.75 4.18 0.33 

Table 9 the 4 pathways of selection for a genomic selection scheme without genotyping 
bull dams. Values that are different compared to Table 7 (genomic selection scheme) are 
in bold. 

 

As we can see on Table 9, the annual genetic gain observed in a genomic selection scheme 

that would not select bull dams based on their markers information but on their own 

performances as in the traditional scheme would present an annual genetic gain of 0.33 

(4.18/12.75). This means that only half the gain (0.33-0.21)/(0.46-0.21) achieved when a full 

genomic selection breeding scheme is applied is obtained when only males are selected based 

on their genetic markers information.  

4-2.2. ISSUES  RELATED TO THE USE OF YOUNG ANIMALS AS PARENTS 

Schaeffer (2006) demonstrated that the main source of genetic gain when a genomic selection 

breeding scheme is applied was to drastically reduce the generation interval on several 

pathways. But it would have been possible for many years to apply a breeding scheme using 

young animals as parents even though the reliability of their breeding values (parent average) 

was lower. Applying Rendel and Robertson’s formula, the expected genetic gain could have 
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been as large as the progeny-testing scheme but at cheaper costs (Table 10, an accuracy of 0.4 

corresponds to a reliability of 0.16 for parent average, which is a “conservative” assumption).  

 

paths selection % i accuracy generation i x r ΔG

sire of bulls 

y 

5 2.06 0.40 1.75 0.82 

 sire of cows 20 1.40 0.40 1.75 0.56 

 dam of bulls 2 2.42 0.40 2.00 0.97 

 dam of cows 85 0.27 0.50 4.25 0.14 

 total       9.75 2.49 0.26 

Table 10 the 4 pathways of selection for a breeding scheme using young parents for 
parents without genotyping. Values that are changed compared to Table 6 (progeny-
testing scheme) are in bold. 

 

Such a scheme did not really emerge in dairy cattle. The reason is that both farmers and 

breeding companies are reluctant to use parents with low reliability. Genomic selection 

appears as a revolution in the field because an “acceptance threshold” in terms of reliability 

was achieved. Reliabilities of GEBV are somewhat lower than those of daughter proven 

breeding values for production traits, but the genetic superiority of young bulls overcomes the 

lower accuracy. This is why young bulls with genomic information only are now widely used.  

A similar pattern can be observed for bull dams. A drastic selection currently occurs to 

determine which animals will be considered as bull dams. The owner of such a cow wants to 

be sure that the bull chosen to mate his cow is among the best of the breed. If a farmer just has 

one bull dam in his herd, he is often reluctant to take the risks to use a young bull with low 

reliability. Again, a sort of an “acceptance threshold” has been reached with genomic 

breeding values and many farmers who own top individuals now want to use young animals 

because of their genetic superiority.   
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4.3. Genotyping on farms: selecting cows to breed cows 

4-3.1. BENEFIT AT THE NATIONAL LEVEL AND RETURN ON INVESTMENT FOR THE FARMER 

Pryce (2012) distinguishes two kinds of benefits of genotyping females in a farm: national 

benefit and the benefit farmers can get out of genotyping. At the national level, it appears very 

interesting that a lot of cows, properly representing the commercial population, are 

genotyped. Indeed, it is a way to drastically increase the reference population size, which 

leads to a greater accuracy of GEBV. For breeding companies, it is also interesting because 

genotyping a large proportion of the commercial population may highlight some very 

interesting heifers (or cows) that could be contracted as bull dams despite their EBV was 

below a threshold.  

But genotyping a whole batch of heifers, even with a cheaper low density panel, is still costly. 

This leads to the question: “What is the return on investment from the farmer’s point of 

view?” 

When we get back to the formula of genetic gain, and we consider Schaeffer’s figures 

especially for the selection intensity of the “dam of cows” path (85% of cows from one 

generation are dams of cows for the next generation), we can expect a rather low gain in terms 

of genetic improvement for the whole population. Indeed, given the low selection intensity, 

increasing the accuracy by genotyping cows will have a limited impact on the “dam of cows” 

path (compared to bull dams path). Chesnais (2011) pointed out that this path relatively 

contributes to only 3 to 4% of the total genetic improvement of the breed. This value is only 

slightly increased (5-6%) when genotyping is used.  

4-3.2. BENEFITS OF GENOTYPING FOR THE DAIRY FARMER 

We will review three recent studies trying to assess the benefits of genotyping by economic 

simulation. In Canada, Chesnais (2011) conducted a study to assess the expected net income 

of genotyping heifers to select the best ones for herd replacement. The net benefit corresponds 

to the higher economical value of the selected heifers after subtracting genotyping costs. 

These costs were assumed to be $47 (including chip and lab costs). The economic value of 

one standard deviation of LPI (Canadian total merit index) was set at $159. Chesnais 

compared selection based on genotypes to a situation without any selection for heifers. The 
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net benefits were substantial (up to $7,000 for a herd of 100 milking cows), except for high 

replacement rates (40%) or few heifers available (related to high mortality before calving).  

 

Pryce and Hayes (2012, Animal Production Science) also assessed the potential value of 

genomic technology to dairy farmers. They took the economic value of one standard deviation 

of APR (Australian total merit index) to be AU$80. Replacement rates ranged from 15% to 

30%. Obviously, the net profit value depends on this replacement rate. Assuming genotyping 

costs of AU$50, the net profit of genotyping heifers to select the top 50% was AU$41. 

However this is in comparison to a situation without any selection. When genomic selection 

of replacement heifers is compared to selection based on parent average, the benefit becomes 

negative. They found that genotyping costs would need to be as low as AU$10 to be more 

profitable than selecting on parent average estimated breeding value. 

 

Weigel et al. (2012) conducted a similar simulation study based on parameters from large 

American herds. They assumed genotyping costs of $40 (somewhat similar to the previous 

study). The value attributed to the genetic standard deviation of the total merit index (NM), 

which was $198 for PTA and even doubled ($396) to account for the fact that EBV equal 

twice the PTA ! A different genotyping strategy was applied: based on parent average, either 

the top, the middle, the bottom or the entire part of the group was genotyped.  Whatever the 

replacement rate (from the top 20% to the top 80% of heifers are kept to replace culled cows), 

they found that the gains of selected heifer calves far exceeded prorated genotyping costs.  

4-3.3. INTERESTS OF GENOTYPING COWS OTHER THAN FOR SELECTION 

• Inbreeding management 

Genomic information can be used to determine the amount of similar haplotypes two 

individuals share. Pryce demonstrated that using the genomic relationship matrix to control 

inbreeding is twice more effective than just using the pedigree relationship matrix. Indeed, the 

analysis is finer when thousands of markers are used to measure relationship coefficients. For 

instance, half sibs do not always show the expected relationship coefficient of ¼ and full sibs 

a coefficient of ½ when relationship is measured based on genomic information. Pryce 

attributed a negative value of AU$5 per annum for 1% increase of inbreeding.  
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• Parentage assignment 

Genomic tools can be used to assign parents with 100% certainty as long as more than 300 

SNP are genotyped (S. Fritz, UNCEIA, personal communication). In very large herds, with a 

lot of calves born over short periods, it is logistically difficult to identify sire and dam of a 

calf. In Australia, parentage assignment using microsatellites test costs AU$ 36 (this is the 

value used in the table below). In France and in most European countries, calving season is 

not as short and proper identification and parentage assignation is often mandatory: dairy 

farmers would probably not pay €28 to perform such a test.  

 

 

Net benefit genotyping Net benefit pedigree 

Selecting best replacements top 50% €46.18 €76.94 

Controlling inbreeding €11.09 €5.54 

Parentage €28.11   

TOTAL €85.38 €82.48 

Table 11 Net benefits of genotyping compared to pedigree based on an Irish context 
(from Pryce, 2012) – genotyping costs are assumed to be €29. 

 

To calculate benefits of selecting the best replacement heifers, Pryce (2012) assumed a 

standard deviation of EBI (the Irish total merit index) of €62. According to Pryce, when 

genotyping costs are €29, pedigree and genomic tools lead to more or less the same benefit 

(Table 11). And, if parentage assignment is removed from the benefit (as it would be the case 

for France), then genotyping present a negative return on investment. At a genotyping cost of 

€15, the use of genomic tool for the only purpose of selecting best replacement heifers 

becomes positive.  
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4-3.4. DISCUSSION ON THE ECONOMIC STUDIES OF THE INTEREST OF GENOTYPING 

HEIFERS 

The 3 studies measure the potential gain through the expected higher genetic merit (using 

reliability of GEBV) and applying the economic value of one standard deviation of total merit 

index (TMI). The different studies assumed similar genotyping costs, and several values for 

replacement rate were tested.  

How to explain opposite results when considering the net benefits of genotyping heifers for 

the farmer?  

The study of Chesnais was a bit different from the other ones because it compared selection 

based on genotypes to a no selection situation, which is tantamount to assume a reliability of 

parent average of 0 (whereas it equals 0.3 in Canada, compared to 0.6 for GEBV). Compared 

to the study of Pryce (2012), this means cancelling the net benefit of selecting best 

replacement top 50% heifers for pedigree (whereas it was €77, see Table 11, even higher than 

with genotyping once chip and lab costs have been deduced). Chesnais argued (personal 

communication) that, in practice, polygenic EBV are poorly used on farm for replacement 

purposes. Moreover, a herd usually consists of half-sibs or full-sibs families for which parent 

average present a very limited interest. The reliability of the parent average may thus not be 

the optimal measure of selection efficiency.  

 

The main difference between the Australian and American studies lies on the value attributed 

to one standard deviation of TMI (they were AU$80 or 62€ on one hand, while it was $396 in 

the other one). The French economic value of TMI is between 80 to 100€. The American 

figure appears optimistic compared to the Australian or Irish values. Selection is more 

efficient when based on genotypes instead of parent average. Obviously, for a higher 

economic value of one standard deviation of total merit, the benefit of genotyping is 

increased.  

 

To conclude, genotyping replacement heifers does not appear very interesting at the current 

genotyping costs (about $50) if the only purpose is the selection of the best replacement 

heifers. The conclusion drastically changes as soon as genotyping costs drop ($15). However, 
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as we will see below, even at the current cost, positive interaction between genotyping and 

some reproduction practices may occur.  

 

In other non-scientific studies (not shown) costs of rearing heifers were subtracted as if 

genotyping allowed to reduce replacement rate, whereas this is usually related to herd 

management practices. It is tempting, when conducting such studies, to account for benefits 

that are permitted by techniques different than genotyping.  

4-3.5. ONE KEY ASPECT: THE REPLACEMENT RATE 

Replacement rate is defined by the proportion of milking cows that are culled each year. This 

ratio is strongly related to the proportion of available heifers required for replacement. 

Assuming a constant milk production and a constant number of milked cows, the higher the 

replacement rate, the more heifers required for replacement, and the less intense the selection 

occurring on this path, decreasing the expected benefits (Table 12). Increasing accuracy of 

breeding values through genotyping becomes valuable if an intense selection is possible. For 

example, with a replacement rate of 40 %, the return on investment is negative, almost all 

heifers are required to replace culled cows, and the gain achieved with a more accurate 

selection does not overcome the genotyping costs.  

 

Replacement rate Net income ($) 

25 6870 

30 4560 

35 2260 

40 -240 

Table 12 (from Chesnais, 2011) Net income ($) when genotyping heifers depending on 
the replacement rate, in a herd of 100 milking cows. 
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4-3.6. PRACTICAL DECISIONS IN HERD MANAGEMENT FAVORED BY GENOTYPING HEIFERS 

• Corrective mating 

First of all, genotyping can be used to improve mating plans. Mating of heifers is usually 

confined in avoiding closely related bulls (to avoid inbreeding) because the farmer has no clue 

of the possible defects of the cow-to-be. Once breeding value is known relatively accurately 

for many traits, thanks to genotyping, some defects are revealed and they can be corrected 

through compensatory mating so that defects will not be transmitted to the progeny.  

Several reproduction practices that are available in dairy cattle breeding are better used once 

the farmer knows more precisely the genetic level of both heifers to breed and cows. They are 

listed below. Some rely on the fact that genotyping can be first used to spot the top 

individuals: 

•  Sell premium heifers 

Market of elite heifers is competitive and involves only a few players, but during auction 

sales, the animals with the highest GEBV are usually sold at top prices. Genotyping becomes 

a marketing tool in order to convince the buyer of the superiority of the individual avoiding 

bias induced by preferential treatment.  

•  Embryo transfer 

Multiple Ovulation and Embryo Transfer consists in a hormonal treatment of the female so 

that several oocytes are produced during one cycle; after insemination, several embryos are 

expected to be produced. After a few days, these embryos are picked-up and re-implanted 

(sometimes after freezing) in “recipient” females. This technique allows the production of 

several progeny per year for one given female. This practice is heavily used by breeding 

companies but also by some farmers in order to multiply animals from one good family for 

instance.  

It is obvious that the interest for such a technique consists in picking up genetically superior 

females so that their multiple progeny benefit from the transmitted superiority while 

“recipient” females present a lower genetic merit and do not genetically contribute to the next 

generation. 



 

 

 150 

Genotyping females and genetic gain 

With genotyping, the farmers have access to a new tool in order to better sort heifers and 

cows depending on their genetic merit. The decision on which females to be picked-up and 

which to become “recipient” is easier thanks to the increased reliability of GEBV. 

•  X sexed semen 

X-specific sexed semen is now widely available in dairy cattle. Because X spermatozoids 

carry 2% more DNA than Y-spermatozoids, they can be sorted, and the AI industry can 

provide sperm straws that guarantee 90 to 95% of female progeny. Y-specific sexed semen is 

also available and breeding companies can be interesting in such a tool to enhance the number 

of male progeny of bull dams. This technique has one main drawback: it induces a lower 

conception rate (about 10%). Usually, only heifers are inseminated with sexed semen because 

they have better fertility. Many dairy farms already have such low reproductive performances 

that using sexed semen is not costly effective.   

Male progeny are much less valuable than heifer calves in dairy cattle. Farmers can be 

interested in using sexed semen in order to increase the proportion of female among the 

progeny. This technique is quite expensive, so it should be reserved to the best individuals. 

Genotyping can ensure that sexed semen is only used on the best heifers of the herd and 

allows to increase selection intensity.  

Genotyping can also be used to spot the worse individuals.  

• No rearing 

Depending on the farming system, rearing of heifers to breed, and especially housing, can be 

very costly. If the replacement rate is such that all the heifers are not required to become 

cows, a first solution consists in not rearing a given proportion of young heifers. A Canadian 

study calculated the average variable cost at $1,860 plus $1,250 fixed costs per heifer.  

Young heifer calves can be sold just as male young calves. The benefit does not really consist 

in the selling price, but in the rearing costs that are avoided.  

Obviously, it is very important to properly select the individuals that will not be included the 

herd. It would be a pity that a top female is sold for a low price because the farmer did not 

know yet her high breeding value. Genotyping provides higher reliability breeding values that 

help to determine which animals have lower genetic merit.  
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• Sell for export 

For some specific breeds, like the French Montbéliarde breed, heifers are very valuable. They 

can be sold in Eastern Europe for a good price. The decision process is the same as the “no 

rearing option” but with a much better profitability. Genotyping provides the opportunity to 

keep the best heifers on the farm, while others are sold abroad.  

• Crossbreeding with beef bulls 

After genotyping, the farmer gets an indication that the breeding value of one cow or one 

heifer is so low, that even her progeny may not be interesting for herd replacement. It is then 

possible to mate such a cow with a beef bull. Some beef breed such as INRA 95 have been 

specially selected for crossbreeding and present some interesting characteristics in terms of 

calving ease for example. The crossbred product (whether a male or a female) will have a 

valuable beef conformation. Even at an early age, the difference between a purebred dairy calf 

and a crossbred calf in terms of price is impressive. In France, in june 2012 (Tendances 

n°226, Institut de l’Elevage) the price of a 8-days dairy calf is 150 € while it is 313 € for a 

crossbred calf. The cow can still be milked and kept in the herd, but will not transmit her 

genes to the next generation while generating an interesting extra income through her 

crossbred progeny.  

• Special care of potentially diseased animals 

The information given by genomic tests is not confined to the TMI. GEBV are given for any 

trait of interest. Precise breeding values for disease-related traits such as clinical mastitis are 

available. These breeding values on functional traits have reliability no one could have 

expected for females, even with performances. Cows with very low GEBV for such traits 

should be specifically looked at, and preventive treatment could be used. In the near future, 

one can expect that traits related to other diseases become genomically evaluated so that herd 

management related to health trait may be based on genotypes information.  

 

• Combining these practices 

Many of these techniques present a positive interaction, meaning that the benefit of their 

combination is greater than the sum of their individual benefits. For example, sexed semen 

brings more potential heifers to breed so that selection can be more intense and more heifers 
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can be sold or mated to beef bulls. The future cows have a greater genetic level while the 

other progeny can be sold which results in an additional income.  

• Genotyping is not necessary but helps a lot 

Obviously, all of the practices presented above could be set up even without genotyping. 

Indeed, it is already possible to use sexed-semen or to mate some dairy females with beef 

bulls. However, these techniques, even if economically interesting, are poorly used so far for 

several reasons including psychological aspects. Indeed, a farmer would wonder why he 

should take the risk not to breed some of his heifers or to mate some cows with a beef bull 

whereas they may be top individuals of the herd. Again, genotyping is associated with a 

certain reliability of breeding values which reaches an “acceptance threshold”.  

4-3.7. FROM A VICIOUS CIRCLE TO A VIRTUOUS CIRCLE ON FUNCTIONAL TRAITS 

During the last decades, genetic level for milk yield heavily increased. However, this 

improvement was achieved at the expense of some health traits. Indeed, reproduction traits 

(fertility) are negatively correlated (correlation of about -0.3) to milk yield. Moreover, 

functional traits present low heritability (0.02 for conception rate for instance). In 

conventional BLUP evaluations, even when assigned a weight in TMI equal to production 

traits, such low heritability traits would present lower genetic gain than production traits. So 

far, even with an increasing relative weight of health traits in TMI, their degradation was 

stopped (at best) but no improvement was observed. In dairy cattle, reproductive 

performances reached a very low level (as low as 30% for conception rate, meaning that 2 

inseminations out of 3 failed). Such a low level does not allow any flexibility in terms of 

replacement rate and selection of heifers (Figure 10), which as in a vicious circle, induces 

even lower reproductive performances.  
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Figure 10 diagram representing the negative trend observed on functional traits. 

 

Genomic selection combined with some new reproductive technologies brings some new 

opportunities to challenge this issue. Indeed, GEBV present similar reliabilities across traits. 

Selecting young AI bulls with high GEBV for health trait becomes an effective way of 

improving reproductive performances. Use of sexed semen currently leads to low conception 

rate, however 90% of the progeny is female and many more heifers to breed are available for 

selection. As seen on the above section, low replacement rate and high selection intensity of 

heifers are associated with increased benefits when heifers to breed are genotyped. A sort of 

virtuous circle could be set up, where a lower replacement rate allows to select heifers to 

breed on health traits, so that they will present a better longevity as milking cows. 

Additionally, mating them with young bulls selected on the same traits duplicates the effect. It 

is necessary to “prime the pump”, and the combination of use of sexed semen, genomically 

proven young bulls and the selection of heifers based on genotypes could help.  
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Figure 11 diagram representing the potential positive trend that could observed on 
functional traits when using genomic selection (young bulls, heifers) and reproductive 
technologies (sexed semen). 
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General conclusion 

Genomic selection drastically changed the method of selection and breeding in dairy cattle 

where a large emphasis is put on the male pathways. This thesis addressed several questions 

related to the female side. First, which genotyping tool is adapted to females? Second, do 

performances of genotyped cows fit within the current prediction model? Last, what are the 

benefits of genotyping females, both for the farmer and at the breeding company level?   

Imputation is the prediction of unmeasured genotypes. This technique is used to take full 

benefit of low density panels. Several imputation software and various possible measures of 

imputation accuracy were compared. The first study assessed the value of using the 

commercially available GoldenGate 3K SNP chip (from Illumina) in terms of imputation 

accuracy but it also looked at its impact on the reliability of GEBV. This study was conducted 

in collaboration with Aarhus University, within the Eurogenomics consortium. The allelic 

imputation error rate and the loss in reliability of GEBV when using imputed genotypes 

instead of real genotypes were moderate. While the 3K panel is interesting, some 

shortcomings were evidenced such as a low number of markers kept after quality control. In a 

second study, alternative in silico low density chips were described. Their imputation 

accuracy was compared with the initial commercial 3K product for three French dairy and 

beef breeds, and their concordance rate was 1 to 2.5% higher. The imputation accuracy not 

only depends on the number of markers, but also on MAF and spacing. A novel , fast and 

accurate imputation strategy based on existing software was described, which benefits from 

linkage disequilibrium and family information. Then, the construction of a new low density 

panel, adapted to many breeds and specifically dedicated to imputation, was detailed. The 

product is now commercialized by the Illumina company. This tool is well adapted for the 

genotyping of females in dairy cattle, but is also suitable for beef breeds.  

A second main aspect of this thesis was to study how individual performances of genotyped 

cows fit within the current genomic prediction model. Two potential sources of bias exist: the 

genotyped cows are a selected sample of the entire population and moreover they are more 

likely to be affected by preferential treatment. An experimental design was set up to assess the 

effect of potential biases on genomic predictions based on two (elite and randomly selected) 

groups. Two evaluations were performed; the reference population consisted in either only 

progeny-tested bulls or both bulls and cows. The average difference between breeding values 
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was significantly different from 0 for the elite group for milk yield (trait  most prone to 

preferential treatment). Such a difference was not observed for somatic cell count (for the elite 

group) or for randomly selected cows (for any trait). The study demonstrated that explicitly 

including own milk yield performances of elite females induced biased  genomic evaluations.  

Such a bias has two major consequences: it may affect genomic predictions equations, and it 

may induce overestimated breeding values for the cow and her close relatives. Different 

alternative solutions to properly include such performances in genomic predictions exist. One 

consists in discarding genotyped cows from the reference population. However this solution is 

disappointing because it means wasting a large amount of fruitful information. Another 

solution consists in adjusting cow performances as inputs of genomic evaluations. 

Unfortunately, comparisons between females are still partly unfair.  

Finally, the benefits of genotyping heifers either by breeding companies to select bull dams or 

by farmers for herd management were discussed. A review of several simulations studies 

carried out on this topic was conducted. Selecting bulls dams based on their genotypes 

appears to be crucial within a breeding scheme applying genomic selection to take full 

advantage of the reduction of the generation interval. Indeed, it is as important as using young 

bulls for artificial insemination. Using genotyping tools to select heifers to replace culled 

cows is more controversial: different studies presented opposite results. While the benefits at 

the national level (increase of the reference population) are obvious, the return on investment 

for the famers depends on the cost of genotyping, the replacement rate as well as the 

economic value of the expected genetic improvement. Several herd management decisions 

could be facilitated when using genomic breeding values: which animals to sell, rearing only 

the required number of heifers, crossbreeding females with poor GEBV with beef bulls. A 

positive interaction exists between genomic selection within herd and several reproduction 

practices such as embryo transfer or use of sexed semen. Their combination may help in 

solving the issue that dairy cattle faces today related to the decrease of performances for 

health traits such as fertility.  
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