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Résumé

Ce chapitre résume les points importants de chaque chapitre de ce manuscrit.

Introduction

Pour commencer, une courte présentation de DLR ainsi que du récent sys-
tème bras-main (appelé Hand Arm System) est donnée.

Ce nouveau système a la particularité d’être mécaniquement flexible.
Cette flexibilité intrinsèque offre la possibilité de stocker de l’énergie à court
terme et remplit ainsi deux fonctions essentielles pour un robot humanoïde:
les impacts sont filtrés et les performances dynamiques sont augmentées.
Dans cette thèse, on se concentre plus particulièrement sur la main. Chacun
des 19 degrés de liberté est actionné par deux tendons flexibles antagonistes.
La rigidité des tendons étant non linéaire il est possible, tout comme peut
le faire l’être humain, de co-contracter les " muscles " et ainsi de modifier la
rigidité mécanique. Il est donc possible d’ajuster la rigidité des doigts afin
de s’adapter au mieux aux tâches à effectuer. Cependant, cette flexibilité
entraine de nouveau défis de modélisation et de contrôle.

De nombreuses mains robotiques ont été développées au centre de robo-
tique de DLR et dans d’autres laboratoires à l’international. Le système
est unique à la fois par sa complexité, utilisant 42 moteurs et plus de 200
capteurs, et par sa construction mécanique unique. Les travaux publiés
se concentrent majoritairement sur le problème de la répartition des forces
internes ou alors du contrôle d’articulation flexible mais peu de travaux con-
sidèrent les deux problèmes simultanément. Les travaux sont présentés en
deux parties. La première se concentre sur la modélisation tandis que la
seconde concerne le contrôle. Autant que possible, des simulations et des
mesures sont réalisées afin de vérifier la validité des hypothèses.

Modeling and identification

Cette première partie vise à établir des modèles mécaniques pour l’ensemble
des sous-systèmes. Puisque le système comporte plus de 50 moteurs et 200
capteurs, une démarche bottom-up est utilisée.

Modeling approach

Les méthodes utilisées pour la modélisation sont présentées. La cinéma-
tique est construite grâce à des transformations homogènes. Pour le modèle
dynamique deux approches principales sont présentées. Les avantages et
désavantages de plusieurs méthodes sont discutés. Finalement, il est vérifié
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que les termes représentant les forces de Coriolis et centrifuge peuvent être
négligés.

Motor model

Le système utilise un total de 38 moteurs pour tirer et relâcher les tendons. Il
est important de disposer d’un modèle précis du comportement des moteurs
afin de pouvoir contrôler les forces ou les positions des tendons. Un modèle
des frottements périodiques générés par l’engrenage harmonique est établi
et il est montré qu’un compensateur permet de réduire sensiblement les
vibrations.

Tendon model

Les articulations sont actionnées par des tendons flexibles. Le déplacement
et la force d’un tendon sont mesurés par un capteur magnétique placé sur le
ressort. Le ressort est linéaire mais est placé dans un mécanisme générant
une relation non linéaire. Le mécanisme est modélisé et des mesures sont
effectuées pour sélectionner les paramètres du modèle.

Finger model

La structure mécanique des doigts est similaire à l’exception du pouce et de
l’articulation distale de l’annulaire. Le chapitre propose un modèle cinéma-
tique pour chacun des doigts. Les équations qui permettent de transformer
les forces et les positions des tendons pour obtenir le couple et la rigidité de
l’articulation sont établies. Les articulations des doigts ne disposent pas de
capteur, cependant puisque huit tendons sont utilisés pour actionner quatre
articulations, un algorithme est nécessaire pour évaluer la position des doigts
à partir du déplacement des tendons. Le cas spécial du pouce est présenté
car l’insertion des tendons est différente afin de produire une force suffisante
pour s’opposer aux autres doigts. La relation géométrique non linéaire entre
le déplacement des tendons et le déplacement des articulations requière un
algorithme particulier. L’algorithme est présenté accompagné de simulations
visant à estimer sa vitesse de convergence.

Wrist model

L’ensemble des tendons est guidée au travers du poignet. Cependant, puisqu’il
est mécaniquement impossible de faire passer tous les tendons par un unique
centre de rotation, un déplacement du poignet implique un déplacement des
tendons. Si le déplacement n’est pas compensé, un mouvement des doigts
est perceptible. La modélisation de la cinématique du poignet est présentée
étape par étape. Finalement, des mesures sont effectuées et comparées aux
simulations.
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Control

La seconde partie utilise les modèles pour établir les lois de contrôle. Les
premiers chapitres présentent deux problèmes spécifiques aux systèmes ac-
tionnés par tendons. Ensuite, un régulateur pour la force des tendons est
développé et expérimenté. Dans un premier temps, un contrôleur pour la
force des tendons est construit. Ensuite, similaire aux approches proposées
dans la littérature, un contrôleur en cascade, basé sur le régulateur de force
des tendons, est présenté et analysé. Afin de s’affranchir de l’hypothèse de
cascade, une approche classique de placement de pôles est envisagée. Le
choix des gains étant une étape critique pour un système avec 38 moteurs,
une méthode de contrôle optimal basé sur les équations de Riccati est pro-
posée. Puisque que le système est non linéaire, la méthode SDRE (State
Dependant Riccati Equation) est utilisée. Les méthodes proposées jusqu’à
ce point sont linéaires ou du moins, motivées par une approche linéaire. Afin
d’explorer de nouvelles possibilités, une approche strictement non linéaire
est exposée. La méthode porte le nom de backstepping. Finalement, la ques-
tion du choix des gains pour le backstepping est détaillée et une méthode
est proposée pour automatiser ce choix.

Tendon force distribution

Comme pour la majorité des systèmes actionnés par tendons, il est primor-
dial de s’assurer que les forces des tendons restent bornées. Dépasser la
force maximale admissible augmente le risque de rupture. Inversement, une
force trop faible augmente le risque qu’un tendon quitte ses guides. Dans un
système actionné par des tendons antagonistes flexibles, il existe une infinité
de combinaison de forces qui produisent les mêmes couples. Il est possible
d’ajuster la rigidité mécanique du système en modifiant les forces internes.
Le chapitre présente plusieurs formulations du problème et discute plusieurs
méthodes permettant de distribuer les forces.

Stiffness correction

Les tendons étant flexibles, ils apportent une flexibilité mécanique aux doigts.
De plus, en pratique, un contrôleur d’impédance est utilisé pour augmenter
les possibilités d’ajustement. Cependant, puisque la flexibilité mécanique et
la flexibilité apportée par le contrôleur sont connectées en série, l’utilisateur
perçoit une combinaison des deux. Le chapitre modélise cette connexion
et propose un contrôleur adaptatif afin de produire la flexibilité désirée par
l’utilisateur.
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Joint torque observer

Aucun capteur n’est placé en dehors de l’avant bras ce qui confère aux doigts
une excellente robustesse. Ils sont à la fois résistants aux impacts et insensi-
bles à la poussière et à l’humidité. En contre partie, les frottements induits
par les articulations et qui ne sont pas mesurés, réduisent la sensibilité des
doigts. Il est possible d’estimer les frottements des articulations en ajoutant
des capteurs de contrainte sur la structure des doigts. Il est ainsi possible
d’analyser la contribution des frottements des articulations et d’estimer les
gains possibles par une amélioration des articulations.

Tendon control

Bien que de nombreuses approches soient disponibles, la plupart des con-
trôleurs sont basés sur un contrôle de la force des tendons. Ce chapitre établi
plusieurs lois de contrôle pour la régulation de la force des tendons. Puisque
la rigidité des tendons est non linéaire, la réponse d’un contrôleur linéaire
dépend du point de fonctionnement. Une modification du contrôleur, in-
spirée par la méthode de " Gain Scheduling " est proposée et les expériences
confirment que la méthode est effective.

Two time scale approach

La méthode la plus directe pour créer un contrôleur d’impédance pour les
articulations consiste à considérer deux problèmes indépendants. Le premier
consiste à calculer un couple de référence pour les articulations, tandis que
le second consiste à générer les forces correspondantes pour les tendons. La
stabilité du système est simple à prouver s’il est admis que les échelles de
temps sont suffisamment différentes. Les échelles de temps dépendent de
la rigidité mécanique du système et donc la validité de l’approche dépend
des contraintes internes. Une analyse plus complexe grâce à la théorie des
systèmes en cascade permet de garantir la stabilité en contrepartie d’un
choix plus difficile des matrices de gains.

Pole placement

Pour des systèmes d’ordre élevé, il est difficile de choisir les gains de re-
tour d’état. Dans le cas d’une approche linéaire il est possible de placer les
pôles du système afin de garantir sa stabilité. Il suffit pour cela de choisir
les gains pour obtenir des parties réelles négatives pour les pôles. Bien que
théoriquement correct, la méthode ne prend pas en compte les limites réelles
du système tel que les délais de calculs, le bruit de mesure ou encore la sat-
uration des actionneurs. En conséquence, la méthode est délicate à utiliser
car des pôles peu réalistes nécessitent une action de contrôle impossible à
réaliser.

22



Optimal control

Le chapitre étudie la question du choix des gains en utilisant des résultats
de contrôle optimal. Grâce aux équations de Riccati il est possible d’obtenir
les gains optimaux pour le contrôle du système linéaire.

State-Dependent Riccati Equation

Les équations de Riccatti ne s’appliquent qu’à des systèmes linéaires. Néan-
moins, une extension aux systèmes non linéaire a été proposé sous le nom
de State-Dependent Riccati Equation. Elle consiste à linéariser le système
en tout point et à appliquer la méthode de Riccati. Des simulations sont
présentées pour évaluer le gain de performance par rapport à la méthode de
Riccati utilisée pour le système nominal.

Backstepping

Le backstepping est une méthode de contrôle non linéaire pouvant s’appliquer
à une large gamme de systèmes. Elle présente l’avantage de ne pas nécessiter
de linéarisation et permet d’établir la stabilité du système en boucle fermée.
Un contrôleur d’impédance est souhaité pour les articulations et donc le
backstepping est modifié pour produire le comportement attendu. La méth-
ode est appliquée pas à pas à des systèmes de plus en plus complexes. La
stabilité est établie par construction au travers d’une fonction de Lyapunov.
Des expériences et les simulations correspondantes sont présentées et attes-
tent de l’applicabilité de la méthode. Finalement, la méthode est appliquée
à une articulation antagoniste et des mesures confirment qu’un contrôleur
d’impédance est obtenu et a une performance supérieure aux contrôleurs
précédant.

Optimal Backstepping

Le contrôleur de backstepping a une très bonne performance mais, tout
comme le placement de pôle, est difficile à paramétrer. Le chapitre propose
d’identifier les gains du contrôleur à ceux d’un contrôleur d’état optimal. Le
résultat est une méthode permettant de sélectionner automatiquement les
gains en fonction de matrices de coût.

Conclusion

Le Hand Arm System est un nouveau système qui permet d’explorer de nou-
velles méthodes de manipulation de par sa robustesse et son dynamisme. Le
travail présenté dans ce manuscrit s’est concentré sur la main et le poignet.
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Il couvre la modélisation et le contrôle. De nombreuses expériences et sim-
ulations sont présentées et il est montré que des méthodes non linéaires
peuvent être appliquées afin de maximiser les performances.
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1 Introduction

1.1 DLR

The work presented in this thesis is realized at the Institute of Robotics and
Mechatronics of the German Aerospace Center (Deutsche Luft and Raum-
fahrt DLR). The institute focuses on research in the field of robotics, ranging
from industrial robot control to innovative biped platform and targets ser-
vice robotic applications as well as space robotics. About 300 reseachers and
students are working on mechanical design, electronics, control, perception,
and planning. The institute is located near Munich (Oberpfaffenhofen) in
Germany (cf. Fig. 1.1).

Figure 1.1: Aerial View of the DLR site in Oberpfaffenhofen (courtesy of
DLR)

1.2 The Hand Arm System

The Hand Arm System (cf. Fig. 1.2) is composed of an arm, a wrist and a
hand [1]. The arm has five degrees of freedom1 (DoFs) for the arm motion
and five DoFs for the adjustement of the stiffness, thus actuated by a total
of 10 motors. The wrist is actuated by four motors, in a helping antagonism
configuration [2], and provides 2 DoFs of motion and 2 DoFs of stiffness.
Finally, the hand is composed of 5 fingers and 19 joints, with 4-4-4-3-4
DoFs of motion (and 4-4-4-3-4 DoFs for adjusting the stiffness), actuated
by 38 motors located in the forearm. The motor motion is transferred to
the finger joints by tendons. A tendon is routed through a pulley/spring
mechanism that provides a mean to adjust the joint stiffness by changing
the tendon pretension [3]. Similarily, all joints of the arm are equiped with
nonlinear spring mechanism, thus are able to modify the arm mechanical

1In robotics, the number of degree freedom is the mininal number of parameters needed
to describe the geometric configuration of a system.
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stiffness. The system is the basis for a new generation of humanoid robots.

Figure 1.2: General View of the System

Not only it is looking human in size and shape, but it can also compete
with the human in terms of force, accuracy and speed. The design and the
realization of a system of such a complexity was only possible because of the
very high integration of all components and a tight collaboration between
the team members. From the concepts to the final system, the entire robot
has been design and manufactured in DLR, ensuring the quality and the fit
of all components.

1.3 Motivation

1.3.1 Robustness

It seems that several major challenges in robotics such as grasping, manipu-
lation and mobility are still not tackled because the robustness of robots is
often too limited. Considering the fact that the failure rate increases with
the robot complexity, the number of parts and the diminution of part size,
it is not surprising that hands are often in need for maintenance, severely
restricting the operational time and the associated progress. One of the
major targets of the development of the Hand Arm System is to develop
a humanoid robotic system that is able to operate in a partially unknown
environment, which poses strong demands on the robustness of the design.
Hard collisions with other objects are unavoidable and the successful oper-
ation of such a system is strongly related to the ability to withstand those
collisions, and impacts, without severe damage or functional impairments.

Generally, the system complexity of robotic systems has been drastically
increasing, simultaneously rising the risk of system failure. A single colli-
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sion during operation may lead to a significant maintenance time and the
associated costs. Therefore, application developers have to be conservative
when testing new methods and strategies. This slows down progress and
hardly gives a chance to develop radically different control/motion plan-
ning strategies. In robotic hands, the impact tolerance plays an even more
dominant role than in robot arms since during grasp acquisition or tactile
exploration, the fingers are strongly exposed and a fragile hardware simply
prohibits many strategies.

The elasticity in the fingers increases the robustness. An experiment
showing how the fingers resisted to the impact of a hammer hit has been
realized. In a similar fashion, the arm has been hit by a baseball bat and the
joints accelerations were recorded. The measurements demonstrated that,
without the mechanical compliance, the system could not continue operating
(the impact exceeds the gear box peak load capability). Those experiments
have a good media impact, moreover, they demonstrate that the fragility of
non-industrial robots can be greatly improved without significant increase
in weight, size or cost (often at the expense of control complexity). Several
videos demonstrating the robustness of the system have been released on
public media platforms such as YouTube (e. g. YouTube: Robot Arm Using
a Hammer).

1.3.2 Dynamics

Interesting to notice, is the fact that the dynamic capabilities of current
state-of-the-art robots are not comparable to human capabilities in terms of
speed at the same inertial properties [4]. Particularly in cyclic tasks (e. g.
running) or highly dynamic tasks (throwing, kicking), the energy the actu-
ators can provide during peak loads without getting too bulky and heavy is
not sufficient. In contrast to the classical stiff robots, elastic actuation can
generate more output power, for a short time, than the maximum motor
power. It enables to consider an entirely new set of mechanical designs,
motion control schemes, and control strategies. For example, by explicitly
controlling the potential energy that can be stored in the joint and trans-
forming it to kinetic energy, i. e. link speed. This explicit use of the elasticity
for highly dynamic motions constitutes a major step for equipping service
robots with human like motion capabilities. Some initial work done in [5–7],
identified this property and used it on a rather conceptual level. More re-
cently, several control schemes were proposed to explicitly maximize the
dynamic range of variable stiffness robots [5, 8–10].

These recent works show very promising results that pose several new re-
search questions; How to optimize the control to maximize the power output
during explosive motions (e. g. throwing a ball), how to damp the oscillations
resulting from the low mechanical stiffness, and how to set the stiffness in
order to achieve energy efficient motions. The, short term, energy storage
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(a) Asimo (b) HRP II

Figure 1.3: Left: Humanoid Asimo from Honda. Right: Second version of
the HRP humanoid from Kawada Industries

capabilities may fundamentally change the motion generation paradigms.
Elasticity is a mean to control oscillatory behavior explicitly and not only a
desirable feature for high bandwidth compliant behavior.

1.4 State of the art

This section presents a state of the art of humanoid robotics. First hu-
manoid robots are presented along with their most important characteris-
tics. In a second point, the focus goes to the robotic hands that have been
designed. Ranging from designs close to the two jaw grippers up to the
more advanced anthropomorphic hand designs. Design methods and grasps
planning references are given. The third point concentrates on the design,
selection, and evaluation of serial elastic elements and adjustable stiffness
mechanisms. Finally, the fourth point presents control approaches. Several
of the approaches are implemented and evaluated in the control part of the
thesis.

1.4.1 Humanoids

Well-known humanoid robots like Honda’s Asimo (cf. Fig. 1.3a, [11]) or
the HRP 2 developed by Kawada Industries (cf. Fig. 1.3b, [12,13]) are two
examples of robots with rigid joints and links.

There is only a rather limited number of complete humanoids (that is
with legs and arms) because of the complexity of building a lightweight
structure that still moves fast enough to allow for proper control (e. g. bal-

28



(a) Nao (b) Romeo

Figure 1.4: Left: Nao, a small (50cm) humanoid robot from Aldebaran
Robotics. Right: Romeo, a large scale (1.43m) version of Nao presented in
2012.

ancing). Moreover, the robustness of these systems regarding collisions is
low, requiring very cautious operation and planning.

One the contrary, there exist numerous platform that have been devel-
oped to study two arms control such as the humanoid upper body Robonaut
and the manipulation platform Justin (cf. Fig. 1.6a, cf. Fig. 1.6b). Many
upper body humanoid projects are eventually mounted on a wheeled plat-
form. The main reason is that mobile platforms are able to carry large loads
and their control is well understood. Moreover, their limited capabities in
outdoor environment are not a severe drawback since indoor applications
are representing a large market (eg. household, worker assistance). Robots
with mobile platform are becoming increasingly important, e. g. in the con-
text of healthcare assistance (cf. Fig. 1.5). A very important community is
growing around the platform PR2 developed at Willow Garage.

Finally, there exists a catergory of robots dedicated to entertainment or
teaching (cf. Fig. 1.4a). Despite their limited payload that prevents them
from doing much more than moving themselves, they are commercially avail-
able system that are getting increasingly popular. They allow to develop
software such as artificial intelligence, navigation, or vision processing, with-
out the time consuming part of developing hardware.

In general, the systems are fragile and are not meant to withstand im-
pacts. Therefore, several systems increased their tolerance to impacts by
introducing serial elastic actuators. One good example is the Robonaut R2
that uses serial elastic actuators (SEA) to increase its robustness to impacts.
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Figure 1.5: Ri Man, a health care robot designed by Riken in Japon

(a) Robonaut (b) Justin

Figure 1.6: Two upper humanoids, left: Robonaut is developed by
NASA/JPL [14]. Right: Justin is developed by DLR
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(a) Wendy (b) TwendyOne

Figure 1.7: Wendy, one of the first humanoid robot with adjustable stiffness
in the joints. TwendyOne is the succesor of Wendy, its stiffness elements
have been removed to gain space.

It is interesting to notice that, by using a spring mechanism, the position
difference between the input and output of the mechanism provides a mea-
sure of the joint torque without any strain gauges. The use of flexible joints
poses the question of the choice of the appropriate stiffness. Intuitively, there
exist stiffness settings adapated to each task (e. g. precision picking vs. ball
throwing). One solution is to use a brake to bypass all, or part, of the spring.
An other solution is to introduce a second, smaller, actuator to adjust the
stiffness. The Waseda robot Wendy (cf. Fig. 1.7a, [15]) is considered to be
the first humanoid with slowly adjustable mechanical joint stiffness. In the
subsequent version, TwendyOne, the adjustability was removed in order to
save space in the arms (cf. Fig. 1.7b, [16]). The Hand Arm System includes
nonlinear elements, in the arm an adjuster motor is used. For the lower arm
rotation, a helping antagonism configuration is used. Finally, in the fingers,
an antagonistic configuration is used.

1.4.2 Hands

The design of a robotic hand is a great challenge since it requires a large
number of degrees of freedom integrated in a reduced space. Maybe mo-
tivated by the human hand amazing skills, many robot hands have been
developed in the last three decades. They are ranging from the most simple
two jaw grippers to the most advance hand equiped with five fingers and
precision sensing.

The first designs of robotic hands used tendons to remotely actuate the
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finger joints. The Utah-MIT hand is one of the first robot hand designed
with two tendons attached to each joint to tackle the issue of slack (cf.
Fig. 1.8a, [17]). The fingers of the JPL/Stanford hand are using a N + 1
configuration2 in order to reduce the number of tendons (cf. Fig. 1.8b, [19]).

(a) Utah-MIT hand (b) JPL/Standord, N+1 ten-
don driven hand

Figure 1.8: Two early tendon driven hands

Figure 1.9: Third version of the University of Bologna hand (UB3). Sheaths
are used to give the tendons.

Tendon driven robot hands, e. g. the UB Hand III, have been presented
that use sheath-guided tendons, however with the drawback of introducing
a large amount of friction into the system (cf. Fig. 1.9, [20, 21]).

2The minimum number of tendons to indenpendently move n joints is n + 1. It is
proved that using more than 2n tendons is necessarily redundant. A finger using n + 1
(resp. 2n) is commonly referred to as a n + 1 tendon configuration (resp. 2n tendon
configuration). However, between n + 1 and 2n the number of tendons can simplify the
design, or can create interesting couplings [18].

32



Figure 1.10: Dexhand a space qualifiable hand from DLR

The main reason for the use of tendon, at that time, was that it was
impossible to integrate the drives within the hand or in the joints. The
advances in mechatronics such as gear box size reduction, power density
increase, communication speed increase and, generally, increased availabilty
of computation power allowed to build modular hands that integrate the
whole drive system within the hand, e. g. the DLR Hand II [22] and the
TwendyOne hand [16]. More recently, the Dexhand, an outer space qualifi-
able dexterous hand was presented (cf. Fig. 1.10, [23,24]). The drives of the
Dexhand are in the palm and the power and control systems are housed in
the wrist. However, despite the progress of mechatronics, the size of those
robotic hands is still larger than their human counterpart. In order to reach
human like fingertip force and maintain a short wrist (that improves manip-
ulability), the 38 drives of the hand of the Hand Arm System are located in
the forearm.

The Robonaut R2 also contains serial elastic actuators. Furthermore, it
is equipped with dexterous hands that are remotely actuated in the forearm
[14]. The hands of the Obrero robot are using low mechanical impedance and
serial elastic actuators to detect contact and conform to the grasped objects.
The hands of the iCub are smaller than human hands and tendon driven.
It is a completely open source platform created at the Italian Institute of
Technology (IIT).

The humanoid Kenta with a tendon driven spine was developed to be
more human like than other humanoids [25] and more recently the robot
Kojiro was built that consists of 109 tendon drives (cf. Fig. 1.11, [26]). Un-
deractuation is primarily studied in the field of robotic protestics. Indeed,
the limited control input and the maximum allowed weight leads to a re-
duction of the number of actuators. Systems like the cyberhand [27] or the
Ottobock prosthesis [28] have been designed to be robust and used easily by
the amputee while providing appropriate cosmetic appearance.

Beside these humanoid systems, bio-inspired robotic hands replicating
the anatomy of the human hand have been proposed. The anatomically
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Figure 1.11: Kojiro

correct testbed (ACT) Hand [29] and the Shadowhand [30, 31] are both
tendon driven hands. The ACT Hand focuses on the one-to-one copy of the
human tendon kinematics. The Shadowhand is based on either pneumatic
muscles or DC motors. Both are driven by an external actuation unit,
not integrated in a hand-arm system. They both have a limited maximum
fingertip force and remain fragile w. r. t. impacts.

The kinematic structure is the most important design choice and one
of the key challenges in robot hand design. A large number of kinematics,
mainly based on empirical results, can be found. They are mostly designed
to fit the special needs of existing robot hands like data glove calibration or
animation purpose [20].

Alternatively, kinematics can be derived from the analysis of human
kinematics. In [32], Giurintano and Hollister developed a five link kinematics
for the thumb based on cadaver analysis to reproduce the motion of the
human thumb as close as possible. Stillfried measured the kinematics of
a human hand using MRI3 data and segmentation algorithms to extract
the bones motions and therefore the hand kinematics. The institute of
Ergonomics of the technical university of Munich synthesized a kinematic
model of the whole human body to realize the RAMSIS system4.

Optimization is another promising but complex mean to derive hand
kinematics. Santos and Valero-Cuevas [33] modeled the kinematics of Giur-

3Magnetic Resonance Imaging
4The RAMSIS model is used mainly to realise ergonomic interfaces, e. g. in automobile

industry.
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intano and Hollister using DH-parameters and optimised these using cadaver
test data from [32] and Monte Carlo Simulation. They optimised the found
kinematics using Markov Chain Monte Carlo Simulation within a space of
50 parameters [34].

Once the kinematics is obtained, or during its optimization, it can be
evaluated by using several approaches. Examples of such methods are:

• mathematical criteria

– manipulability ellipsoids [35,36]

– dexterous workspace [37]

– grasp stability [38]

• evaluation tools

– graps planners

– experiments

Miller and Allen developed a complete simulation environment : GraspIt! It
can, among other things, simulate hands in contact situations and determine
grasp quality indices [39]. A motion planning software developed by Rosen
Diankov [40] provides a number of metrics calculation that can be used to
rank the grasps. Thus, used on a large number of grasps, can be indirectly
used to evaluate the quality of the kinematics.

Figure 1.12: Workspace analysis for the thumb of the hand of the Hand Arm
System [41].

1.4.3 Soft robotics

The design of the Hand Arm System is mainly driven by the insight that
todays humanoid robot systems are not robust enough to be operated in
unstructured environments, where collisions cannot be avoided. This lack
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Figure 1.13: Simulation tool for grasp evaluation: GraspIt!

of robustness slows down the development of applications in particular us-
ing methods that require unsuccessful tasks such as reinforcement learning.
Therefore, it seems that

future robotic systems have to be able to store energy

to meet these requirements [42].
In the recent years a lively discussion about the motivation of variable

stiffness robots has been led debating their advantages and disadvantages
with respect to human interactions and especially safety (e. g. STIFF and
THE European projects).

In the design of serial elastic actuators the trade-off between robust-
ness/mechanical compliance and task performance/mechanical stiffness has
to be fixed. In order to postpone this decision, variable stiffness actuators
have been proposed [43–49]. More recently, a European project VIACTORS
was conducted to evaluate the state of the art concerning the variable stiff-
ness actuators. A valuable output of this project was the definition of a
specification datasheet for variable stiffness mechanisms (cf. Fig. 1.14).

Using the specification sheets of the mechanisms it is possible to compare,
at least globally, the mechanisms. A few of those mechanisms are depicted
in Fig. 1.15a, Fig. 1.15b, Fig. 1.15, Fig. 1.16a , and Fig. 1.16b.

Control This section gives an overview of the work done in the last decades
in terms of control for nonlinear flexible joints. The references are organized
in the same order as the control sections.

The use of tendons to actuate the fingers has a number of advantages.
However, because tendons can only pull, it is critical to maintain a mini-
mum pulling force on all tendons to avoid issues related to tendon slack.
Early work on tendon driven mechanism was introduced in the field of ma-
nipulation [50] and formalized by Kobayashi [18]. He proposed a number
of definitions for the properties of tendon driven systems, such as tendon
controllability and tendon redundancy. In [51], tendon driven mechanisms
are studied with the help of oriented graphs.

More recently, in the context of the development of the Hand Arm Sys-
tem, work on the stiffness and torque workspace of tendon driven mecha-
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FAS A flexible Antagonistic spring element 
Antagonistic finger joint

Operating Data

# (quantity) (unit) (value)

Mechanical

1 Continuous Output Power [W] 67,2

2 Nominal Torque [Nm] 2,2

3 Nominal Speed [rad/s] 16,74

4 Nominal Stiffness 
Variation Time

with no load [ms] 29

5 with nominal torque [ms] 29

6 Peak (Maximum) Torque [Nm] 4,9

7 Maximum Speed [rad/s] 152

8 Maximum Stiffness [Nm/rad] 36

9 Minimum Stiffness [Nm/rad] 1,8

10 Maximum Elastic Energy [J] 0,22

11 Maximum Torque Hysteresis [%] 20

12
Maximum deflection

with max. stiffness [°] 1,5

13 with min. stiffness [°] 30

14 Active Rotation Angle [°] 150

15 Angular Resolution [''] 3,1

16 Weight [Kg] 3,9

Electrical

17 Nominal Voltage [V] 24

18 Nominal Current [A] 3

19 Maximum Current [A] 7

Control

20 Voltage Supply [V] 24

21 Nominal Current [A] 0,1

22 I/O protocol [] Biss

Spacewire Coaxial Supply
24 V

Watercooling
 tubes

Figure 1.14: Datasheet format created in the VIACTOR project. Example
of the tendon mechanism used in the hand of the Hand Arm System (FAS).

nism with nonlinear flexible elements was presented in [41]. Similar work
on the achievable Cartesian stiffness of flexible joint robot is found in [52].
In [53, 54], it is shown that the tendon force distribution problem can be
simplified if the tendon stiffness is linear in the tendon force. In [55], ex-
perimental work on the implementation of the tendon force distribution
algorithm was reported.

In case of small size robots, the friction plays an important role. Un-
fortunaly, due to the system size and low serie production, the accurate
identification of friction is not a simple task. A complete parameter identi-
fication method developed for the LWR (Light-Weight Robot) is presented
in [56]. Offline identification methods are time consuming and, often, re-
quire assumptions on the friction model [57]. If link side torque sensing is
available, it is possible to build an online stiffness observer [58]. Moreover,
it is shown in [59] that the joint stiffness can be estimated online.
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(a) FSJ (b) FAS

Figure 1.15: VSA-HD.

(a) Macceppa (b) AWAS II
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When considering flexibility in robots, two main branches are consid-
ered. Flexible link control, where the links themselves are flexing under
external loads such as gravity, and flexible joint control, where the links
are rigid and the joints have a flexible behavior. Most of the publications
about flexible joint control deal with flexibility introduced by the drive train.
Consequently, most of the papers are stiffness/inertia ratios that are several
orders of magnitude higher than in the case of the Hand Arm System. When
the joint deflection of a robot due to its own weigth is large, the local ap-
proximation of the Jacobian are not valid and it becomes challenging to
derive global controllers [60]. The, usually simple, gravity compensation is
not neccessarily simple since the joint stiffness needs to fullfill new condi-
tions [61, 62] (intuitively, the stiffness should be stronger that the gravity
field). The design of traking controller for flexible joint robots has been
reported in [63, 64]. The application of flexible joint control to the active
damping of an light weight robot is reported by A. Albu Schäffer in [65,66].

Extensive work on the impedance control of redundant flexible joint
robot has been done by Ott in [67, 68]. Between 1990 and 2000, passiv-
ity based control of flexible joint system was considered in [69,70] as well as
for a more general class of systems [71–73]. Passivity based control is ap-
plied to hand control in [74], and to telemanipulation in [72,75,76]. Damping
control for highly flexible robots is considered in [77], where a feedback is
used to decouple the dynamics by double diagonalization, compute a proper
damping with a pole identification method and apply the controller in the
original coordinates.

Impedance control [78] and admittance control [79] have both been ap-
plied to tendon control systems. The goal is usually to provide compliance
to help in case of inaccuracies in the models or in the sensors. Controllers
are used to provide a tendon compliance or to provide a link compliance.
In both cases the sensing of the tendon force is required. The Robonaut
research group has published serveral papers on the control of the, not an-
tagonistically, tendon driven fingers [80, 81]. Control of a joint driven by
antagonistic tendon is presented in [82]. Work on the modeling and control
of the hand of the University of Bologna is reported in [83].

Several nonlinear control methods have been applied to the control of
flexible joint control. Examples of such methods are: feedback linearization,
Lyapunov redesign, backstepping or sliding mode control. This thesis uses
the backstepping method as described in [84, p.489]. In [68,85], the method
is applied to flexible joint control, however limited to the case of linear
stiffness and non-antagonistic actuator configurations.

Generally, optimal control method are challenging to implement in real-
time, unless closed form solution can be obtained (e. g. optimality of the
bang-bang control for some problems [86]). Direct methods to solve the
optimal control problem are reported as early as 1960 (cf. [87]). It has been
applied to a very large variety of offline optimization problem such as space
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shuttle trajectory, ship maneuver or throwing problem [88]. However, expect
for simple cases, the equations can not be solved analytically and do not give
any further insight on the required inputs. Numerical methods are required
to construct solutions. Unfortunatly, they require forward and backward
integrations and are generally extremely expensive to compute.

An intermediate way between the linear optimal control (Riccati equa-
tions) and the optimal nonlinear control (HBJ equations), has been proposed
around 1962 by Pearson [89] under the name of State Dependant Riccati
Equation (SDRE). It has been expanded by Wernly [90] and popularized
by Cloutier [91–95]. The method is an intuitive extension of the Algebraic
Riccati Equation, applied to a pointwize linearized system. Existance of a
SDRE stabilizing feedback is discussed in [96]. The method offers only lim-
ited theoretical results for global stability (an excellent survey is provided
in [97]) but proved to be effective in practice.

1.5 Organization of the work

The Hand Arm System is a major development achieved by a team of about
20 persons. Thus, parts of the system have been presented in different
conferences and journals [1, 3, 98]. The work of this thesis is divided into
two main parts: the modeling and the control. Figure 1.16 depicts the
organization of the works and the logical links between the different chapters.

1.5.1 Modeling

The modeling part intends to present the hand of the Hand Arm System
in details and constructs, step by step, a kinematic and a dynamic model of
the motors, the tendons, the springs, the fingers and the wrist. It follows a
bottom up approach and thus starts with the motors.

First, a motor model is proposed and verified with a set of identification
experiments. Due to their very small size and their high gear ratio, the
motors have significant friction. The identification and compensation of the
frictional effect is proposed and experimentally verified.

Next, the tendon actuation and the nonlinear spring elements are in-
troduced. The nonlinear spring mechanism is modeled and, similar to the
motor modeling, a set of simulations and experiments are carried out to
verify its validity. Because the tendon force measurements are performed
into the forearm, the friction introduced by the guidings from the fingers
to the spring mechanisms is critical. A deep understanding of the friction
behavior is paramount to the proper operation of the fingers. Therefore, a
set of measurements with different pulley materials, grove shapes, tendon
material and sliding surfaces is performed in order to establish a model. Al-
though the system is already built, the precise knowledge of the influence of
the different parameters allows to verify the calculated values. The results
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Part I: Modeling and identification

Chapter 2: Modeling methodology

Modeling

State of the art

Control

Chapter 3: Motor model

Dynamic model

Parameter identification

Chapter 4: Tendon model

Mechanical design

Guiding friction estimation

Chapter 5: Finger model

Tendon routing

Index, middle and ring fingers

Ring and fifth finger

Thumb

Hematometacarpal joint

Chapter 6: Wrist model

Kinematic model

Tendon coupling

Part II: Control

Chapter 11: Two time scale approach

Controller design

Stability analysis

Experimental results

Chapter 10: Tendon control

Model and Controller 

Gain scheduling

Experiments and simulations

Chapter 9: Joint torque observer

Structure

Experimental setup

Experiments and simulations

Chapter 12: Direct pole placement

Introduction

Fourth order model

Robustness

Chapter 13: Optimal control

Introduction

Fourth order model

Robustness

Chapter 14: State-dependant Ricatti Equation

Introduction

Fourth order model

Robustness

Chapter 15: Backstepping

Concept

Single flexible joint: position controller Single flexible joint: impedance

Single flexible joint: impedance nonlinear stiffness

Antagonistic joint

Chapter 16: Optimal backstepping

State-feeedback transformation

Optimal problem formulation

Solution

Experiments Simulation

Discussion

Chapter 7: Tendon force distribution

Problem formulation

Solutions

Discussion

Chapter 8: Stiffness correction

Model and Controller 

Gain scheduling

Experiments and simulations

Chapter 17: Conclusion

- The selected hierarchical approach results in a structured model that captures the system behavior
- Several linear and nonlinear control laws are adapted to the specificities of an antagonistic actuation with flexible tendons
- Experiements and simulations reveals that nonlinear control approaches are outperforming the linear approaches
- The backstepping controller demonstrated on a single joint is applied to the complete hand and is used daily

Chapter 1: Introduction

Motivation
- The Awiwi hand : the hand of the Hand Arm System has high dexterity and dynamics
- The modeling of the system is required to layout the control structure
- We shall investigate the performance of nonlinear control method w.r.t linear approaches

Figure 1.16: Overview of the structure of the thesis
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are a very important tool for the mechanical designers that are seeking a
continuous improvement of the system.

The kinematics and the dynamics of the fingers are similar to the case
of a serial robot. The kinematics of the finger actuation, from the motor
displacements to the fingertip frames are derived using homogeneous trans-
formations. The Lagrange and the Newton-Euler methods are presented.
A short discussion of their respective strength is given. Simulations are
performed to highlight the fact that the Coriolis and centrifugal effects are
negligible (at the considered speeds). It does confirm that the governing
factor is the mass matrix. The fingers are moved by moving the tendons.
Therefore, it is necessary to establish the relationship between the motor
motion and the joint motion. The specificities of each fingers are treated in
dedicated sections. The fingers have no electronics or cables, conferring them
an impressive robustness, it implies however that the link position must be
estimated. In the case of the finger, a possible solution is to use a pseudo
inverse of the coupling matrix. The thumb actuation is using a tensegrity
structure (uncommon for robotic hands) that provides good strength and
range of motion. However, because of its nonlinear geometry it implies that
the relationship between displacement of the motors and displacement of
the link is position dependent. A numerical algorithm is developed and
evaluated to estimate, in real-time, the link position. Finally, the ability to
adjust the stiffness is studied. The analysis reveals that the stiffness trans-
formation between the tendons and the links is obtained with the coupling
matrix. The position dependency of the thumb coupling matrix implies that
the derivative of the coupling matrix influences the joint stiffness.

All tendons must cross the wrist to go from the motors to the finger inser-
tion points. By doing so, a coupling between the wrist motion and the ten-
don displacement is introduced. Although negligible in the flexion/extension
direction, the effect is major during the abduction/adduction motions (side-
way motions). Consequently, the guidance through the wrist is modeled and
included in the kinematic chain of the tendons. The wrist mechanism itself
is a double inverted parallelogram and its kinematic modeling is explained
step by step. Experiments and simulations are compared and confirm the
validity of the model.

1.5.2 Control

The control of robots with a high number of degree of freedom and non-
linear components is a globally unsolved problem. Although linear control
methods have been successfully applied on slightly nonlinear system, highly
nonlinear plants remain difficult to control. In the control part, the chal-
lenges related to the tendon actuation and elastic joint control are treated.
Approaches from the linear control theory as well as the nonlinear control
theory are used. Since the Hand Arm System is an important research plat-
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form for DLR, the objective of the control part is to derive a controller that
is theoretically solid and practically performs well. Therefore, some meth-
ods such as Immersion and Invariance control are not applied since that are
unlikely to be implementable on a real-time system (considering the 38 actu-
ators). Simulation are systematically performed because they are cheaper,
faster, and less risky than real experiments. However, they might not be
as accurate in capturing the details as experiments are (there always exist
unmodeled effects). Therefore, simulated results are, as much as possible,
compared to the experimental results. It allows to gain confidence in the
modeling and the simulations as well as to detect unmodeled effects that
need to be included in the simulations.

A first section presents the problem of distributing the tendon internal
forces, while satisfying secondary constraints and boundary conditions.

The second section proposes to adjust the controller stiffness on line in
order to achieve the user desired fingertip stiffness. Indeed, the controller
and the mechanism are connected in series. Therefore, a change of the me-
chanical stiffness can be compensated by the controller in order to obtain a
given fingertip effective stiffness. Experimental results show that the method
is effective, however, the stability analysis is not provided in this thesis.

According to the modeling part, the friction in the guidings and the joints
is not negligible. The third section introduces a link side torque sensor, based
on strain gauges, and proposes a link side friction observer. The purpose
of the section is to appreciate the contribution of the friction. That is,
what would be the performance without friction and is it worth trying to
reduce it. The link side sensing is temporary since it significantly reduces
the robustness of the fingers. Experiments and simulations confirm that
tracking and regulation are improved.

The fourth section concentrates on the force control of the tendons. Ini-
tially, the equations of a state feedback controller are derived and imple-
mented. The nonlinearity of the plant leads to a limited performance of the
controller when the working point is far from the reference plant. Thus, an
adaptive gain design, using the gain scheduling method is proposed. It is
verified that, indeed, the scheduled controller is well adapted for all working
points.

Motivated by the effectiveness of the gain scheduled tendon controller,
a two time scale approach is presented in the fifth section. It consists in
treating the tendon control problem and the link control problem as two
separated plants. The assumption that the time scales are sufficiently dif-
ferent and that the solution have the required properties (e. g. boundedness)
allows to use the singular perturbation theory. The stability of the con-
trollers is proved (under the separation assumption). However, the experi-
mental results demonstrate that the assumption is not valid, especially when
the system is rigid. Consequently, a more global approach of the system is
done. A system consisting of a motor, a link, and a flexible joint is con-
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sidered. Based on its state description, a direct pole placement method is
applied. A numerical sensitivity analysis shows that the choice of the poles
is critical. Moreover, the previous approaches are not restricting the am-
plitude of the control input, thus leading to saturation effects that are not
included in the stability analysis. To account for the amplitude of the in-
put, the optimal control theory, such as the Riccati equations, is an adapted
tool. Simulations are performed and shows that input amplitude is indeed
reduced.

Section six applies a purely nonlinear control method, known as the
backstepping method, to a flexible joint. It has the advantage of explicitely
accounting for the nonlinear effects. It is pointed out in most of the con-
trol literature that the backstepping method is able to profit from the good
nonlinearities (whereas the feedback linearization cancels all nonlinearities).
The method is applied on systems of increasing complexity. The controller
equations are derived, implemented, simulated and experimented on a test
system with a single flexible joint driven by a single motor and with a linear
flexible joint. The method reveals to perform well. Therefore, the equations
are modified to be applied on the same test system with nonlinear flexibility.
It exhibits good perfomance too. Nonetheless, the fingers of the Hand Arm
System are driven by two motors in an antagonistic configuration. Thus,
the backstepping method must be adapted to be applied to the real sys-
tem. An adaptation is proposed that consists in sharing the desired torque
between the motors and neglecting the influence of the antagonist motor.
Simulations and experiments are carried and demonstrate the effectiveness
of the method.

Although the backstepping method is practically very successful, it re-
quires to select several gain matrices. The sensor noise, the unmodeled
effects, and the computation delays prohibit the use of arbitrarily large
gains. The theory, however, only requires positive definiteness of the gains.
Therefore, the seventh section considers the novel problem of computing
somehow optimal gains for the backstepping. The proposed method first
uses the State Dependent Riccati Equation (SDRE) theory in order to com-
pute the, locally, optimal state feedback gains. Then, a numerical solver is
used to find the backstepping gains that would result in a state feedback
control close (w. r. t. some arbitrary metric) to the optimal one.
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Part I

Modeling and identification
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Chapter 2: Modeling methodology

Modeling

State of the art

Control

Chapter 3: Motor model

Dynamic model

Parameter identification

Chapter 4: Tendon model

Mechanical design

Guiding friction estimation

Chapter 5: Finger model

Tendon routing

Index, middle and ring fingers

Ring and fifth finger

Thumb

Hematometacarpal joint

Chapter 6: Wrist model

Kinematic model

Tendon coupling

Figure 1.17: Overview of the structure of the modeling part

In this part, the mechanical modeling of the hand is conducted. The
modeling starts with the motors and is progressively extended to the fin-
gers. The nonlinear spring mechanisms and the tendons are modeled. Ex-
periments are performed step by step to verify the models. modeling. The
logical links between the different chapters of this part are depicted in Fig.
1.17.

In the first chapter, the general methodology is presented. Dynamics
modeling methods such as the Lagrangian and the Newton-Euler methods
are introduced and are later used to establish the dynamic model for the
fingers. The second chapter details the modeling of the motors. A precise
modeling of the friction and a set of friction compensation methods is pro-
posed. Experimental results are reported that confirm the benefits of the
compensations.

The third chapter concentrates on the modeling of the tendon behavior.
A complete characterization of several tendon types and materials is per-
formed. A tendon model is established such that the mechanical designer
has the tools to decide between the use of pullies guidings or sliding surfaces.

The fourth chapter presents the kinematic modeling of the fingers. How-
ever, because each finger has a slightly different design (e. g. the thumb
tensegrity structure or the underactuated joints), the specificities of each
finger are detailed in separate chapters. The couplings between the motor
motion and the finger motion are derived and the pseudo inverse matrix is
used to estimate the link side position from the tendon displacements. A
dynamic model of the index finger is presented and several simulations are
performed to derive a simplified dynamic model.
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Finally, the wrist kinematic modeling is reported in the fifth chapter.
The influence of the wrist motion on the tendon displacement is analyzed.
Simulations and experiments are performed to show that the kinematic
model can be successfully used to compensate the wrist coupling.
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2 Modeling approaches

This chapter reports the different methods used to create the kinematic
models and the dynamic models of the fingers. In the first section, the
generic symbols and units used in the thesis are reported. The second section
presents the kinematic modeling. The third section presents two well known
dynamic modeling methods. Finally, a short discussion summarizes the
chapter.

2.1 Symbols and units

The units used through the thesis comply with the international units and
are reported in table 2.1.

2.2 Kinematic modeling approaches

Robotic manipulators represent a subclass of mechanisms that have a specific
mechanical structure. Most often, they consist of a serial connection of
links connected by revolute or prismatic joints. Although other types of
joint exist, the use of electromotors for the actuation and ball bearings for
the guidings leads to those two principal types. The transformation of the
robot end-effector is obtained by cumulating the transformation of each link
in the chain, starting from the base. Homogeneous transformation matrices
are used to establish kinematic models. It circumvents the ambiguity of
the Denavit-Hartenberg [99] notation while having negligible impact on the
real-time system. Indeed, the implementation is performed through the use
of formal manipulation softwares (MapleT M ) and C language export.

2.3 Dynamic modeling approaches

Dynamic modeling approaches are used to established the dynamic equa-
tions of motion in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (2.1)

where n ∈ N is the number of links, M(q) ∈ R
n×n, C(q, q̇) ∈ R

n×n, g(q) ∈
R

n are respectively the inertia matrix, the Coriolis and centrifugal effects
and the gravity torque covector. q ∈ R

n and τ ∈ R
n are the joint position

and the motor torque vector.
A dynamic model of the system is paramount for any analysis and con-

troller design. Numerous techniques have been developed to establish the
system of second order differential equations, such as Lagrange-Euler, re-
cursive Lagrangian and Newton-Euler methods. Each approach leads to the
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Description Unit Symbol

Time seconds [s]
Length meters [m]
Mass kilograms [kg]
Angle radians [rad]
Torque Newton meter [Nm]
Force Newton [N]

Linear velocity meters per second [m/s]
Angular velocity radians per second [rad/s]

Linear acceleration meters per second squared [m/s2]
Angular acceleration radians per second squared [rad/s2]

Linear stiffness Newton per meter [N/m]
Angular stiffness Newton meter per radian [Nm/rad]

Table 2.1: Symbols and units

same behavior [100], but the computation burdens are different. One can
refer to [101] for a comparison of the different methods applied on different
types of robot.

2.3.1 Newton-Euler approach

The Newton-Euler method is a recursive method based on the equilibrium of
forces and torques. In numerous papers and text books, the method is used
to establish the dynamic equations. The equations reported here are based
on Craig [102]. Several software packages such as Symoro+ [103] have been
developed based on this algorithm, in order to simplify the modeling process.
More recently, in [104] De Luca proposed to modify the genuine method in
order to reduce the computational effort to obtain the Coriolis/centrifugal
and inertia matrices.

The Newton-Euler method proceeds in two phases: first the velocity and
acceleration are computed from base to end-effector. Then, the forces and
torques are computed from end-effector to base.

Base equations

A free body of mass m ∈ R
+ subject to a force F ∈ R acting on the center

of mass results in an acceleration a ∈ R according to Newton’s law

F = ma. (2.2)

Similarily for the torque, Euler’s equation gives

N = Iω̇ + ω × Iω, (2.3)

where N ∈ R is the body torque. I ∈ R and ω ∈ R are the link inertia
expressed at the center of mass and the angular velocity.
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zi, q̇i

Figure 2.1: Isolated link i

Forward equations

The position, velocity and acceleration of all links are propagated from bot-
tom to end-effector. Considering a chain of n ∈ N bodies connected with
n revolute joints. Starting from the base link < 0 > attached to frame {0}
(cf. Fig. 2.1) up to the end effector link < n > attached to frame {n}. The
velocities and accelerations of the link are obtained from the previous link
with

i+1vi+1 = Ri+1
i [ivi + (iωi × ipi+1,i)], (2.4)

and

i+1ai+1 = Ri+1
i [iω̇i × ipi+1,i + iωi × (iωi × ipi+1,i) + iai], (2.5)

where ∀i ∈ [0 . . . n − 1], ivi ∈ R
3 is the linear velocity of link i with

respect to the frame {0} expressed in {i}. iωi ∈ R
3 is the the angular

velocity of link i with respect to {0} expressed in {i}, ipi+1,i ∈ R
3 is the

vector between the rotation center of body < i > and body < i + 1 >
rotation points, expressed in {i}.

Similarily, iai ∈ R
3 is the linear acceleration of link i with respect to

{0} expressed in {i} and iω̇i ∈ R
3 is the angular acceleration of the link i

expressed in {i}.
The angular velocities in world coordinates are transformed with

0ωi+1 = 0ωi + q̇i+1
0zi+1 (2.6)

In the previous link coordinates,

i+1ωi+1 = Ri+1
i

iωi + q̇i+1
i+1zi+1, (2.7)

∀i ∈ [1 . . . n], 0ωi ∈ R
3(resp. iωi ∈ R

3), denotes the angular velocity of link
i with respect to {0} (resp. {i}), 0zi+1 ∈ R

3 (resp. i+1zi+1 ∈ R
3) is the

rotation axis expressed in {0} (resp. {i + 1}) and q̇i+1 ∈ R is the rotational
velocity of link i + 1 with respect to the link i (i. e. the joint velocity).
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The angular accelerations are:

i+1ω̇i+1 = Ri+1
i

iω̇i + Ri+1
i

iωi × q̇i+1
i+1zi+1 + q̈i+1

i+1zi+1, (2.8)

where q̈i ∈ R is the rotational acceleration of link i + 1 with respect to link
i (i. e. the joint acceleration).

In order to apply Newton’s law, all linear accelerations must be expressed
at the center of mass of each link. Recalling,

ivc,i = ivi + iωi × ipc,i, (2.9)

where ∀i ∈ [1 . . . n], 0pc,i ∈ R
3 is the vector from the origin to the center of

mass of the link, expressed in {0} and vc,i ∈ R
3 is the linear velocity of the

center of mass of the link i.

iac,i = iai + iω̇i × ipc,i + iωi × iωi × ipc,i, (2.10)

where ∀i ∈ [1 . . . n], ac,i ∈ R
3 is the linear acceleration of the center of mass

of the link i.
At the end of the forward procedure, all velocities and accelerations of

the center of mass of the links are expressed recursively with respect to the
previous link. The laws of Euler and Newton yield

i+1F i+1 = mi+1
i+1ac,i+1 (2.11)

i+1N i+1 = Ii+1
i+1ω̇i+1 + i+1ωi+1 × Ii+1

i+1ωi+1 (2.12)

where all inertia matrices Ii ∈ R
3×3,∀i ∈ [1 . . . n] are expressed at the center

of mass of the links.

Backward equations

In the backward phase, the forward equations are substituted in the Newton
law of equilibrium in order to express the link’s angular and linear acceler-
ations depending on the joint torques and the gravity field. Expressing the
force and torque balance yields

if i = Rii+1
i+1f i+1 + iF i, (2.13)

where f i ∈ R, i ∈ [1 . . . n] is the force exerted on link i by link i−1. Similarily
the torque balance gives

iηi = iN i + Rii+1
i+1ηi+1 + ipc,i × iF i + ipi+1 × Rii+1

i+1f i+1, (2.14)

where ηi ∈ R, i ∈ [1 . . . n] is the torque exerted on link i by link i− 1.
Finally, the joint torques are obtained as

τ i = iηT
i

izi. (2.15)
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2.3.2 Lagrange approach

The Lagrange method is based upon the fact that the change of energy of the
system is equal to the power exchange with the environment. More formally,
by introducing L = Ev−Ec the difference between the kinetic energy Ev and
the potential energy Ec(elastic or gravity), and in the absence of frictional
losses (also called the Rayleigh dissipation terms), the joint torques τi are
directly obtained as:

d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= τi, ∀i ∈ [1 . . . n] (2.16)

for a system with n degrees of freedom, where q is the state variable and
L is the Lagragian of the system. Collecting the terms allows to write the
dynamic equation as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ ext, (2.17)

where q ∈ R
n is the state vector, M(q) ∈ R

n×n is the inertia matrix and
C(q, q̇) ∈ R

n is the matrix of Coriolis and centrifugal terms. g(q) ∈ R
n is

the covector of the gravity torques and τ ext ∈ R
n is the covector of externally

applied torques.
Deriving the dynamics equations with the Lagragian method mainly con-

sists of expressing the Lagrangian L of the mechanical system and symboli-
cally deriving the expressions for the torques τi, i ∈ [1 . . . n]. The method can
be applied to any not non-holonomic mechanism structure. It is a systematic
method and can be applied programatically. However, applied without fur-
ther considerations, the method generates computationally more expensive
forms.

2.4 Discussion

The most important conclusion is, that, on the one hand the Lagrange-Euler
method (very structured) leads to computationally expensive formulations.
On the other hand the Newton-Euler methodology leads to more efficient
computation forms (but is not well structured). Indeed, it is reported in [102]
that the Lagrangian approach has a O(n3) complexity while the recursive
Euler-Newton method is of complexity O(n). Nonetheless, it should be noted
that once the closed form equations are obtained, simplifications (factoriza-
tion or code optimization) can lead to more efficient implementations. In
this thesis, the Lagragian approach is selected, since, by observing the closed
form structure, more insight into the possible control scheme is gained.
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3 Motor model

Motors are the foundation layer of robotic systems. Highly dynamic mo-
tors are allowing to have high fast and precise positioning. This section
models the motors used in the forearm to pull the tendons. The aim is to
obtain a reliable dynamic motor model, and if possible to improve the motor
behavior through the use of friction compensation or ripple (periodic dis-
turbances) compensation mechanisms. Friction modeling and compensation
techniques are presented in [57, 105–109]. The motors used have been de-
signed and manufactured by a spin-off company of the Institute of Robotics
and Mechatronics [110]. Figure 3.1 shows the motor, the power electronics,
and the communication module. The motors are classified as PMSM (per-
manent magnet synchronous motors). The current control loop is executed
in the communication electronics FPGA (Fast Programmable Gate Array:
Xilinx Spartan 3e XCS500EP132) at 100kHz. All motor modules are con-
nected to a data collector board via a BiSS (Bidirectional Synchronous Serial
interface [111]). The data collector board features two FPGAs (V5LX50)
and communicates with the real-time computer via an optical SpaceWire
connexion (space qualified ESA standard [112]).

3.1 Dynamic model

The motors are modeled as a second order system with a velocity and po-
sition dependent friction (cf. Fig. 3.2). The total inertia expressed in the
output shaft velocity is obtained from the fixed gear ratio αgear (neglect-
ing the harmonic drive elasticity) between input shaft and output shaft by
considering the energy mapping.

B = Bmotorα−2
gear + Bgearbox, (3.1)

where B ∈ R is the total motor inertia seen at the output shaft. Bmotor ∈ R

is the motor shaft inertia alone. Bgearbox ∈ R is the inertia of the output

(a) Render (b) Photograph

Figure 3.1: Rendered motor module and real motor module
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Bgearbox

τv,θinput
(θ̇input)

Bmotor τv,θ(θ̇), τr,θ(θ)
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αgear

θ

θinput
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τr,θinput
(θinput)

τv,θ(θ̇), τr,θ(θ)

Figure 3.2: Model of the Permanent Magnet Synchronous Motors (PMSM)
with a harmonic drive. The friction terms before and after the gear box are
separated.

Table 3.1: Different contributions to the total motor friction

Description Symbol

τv(θ̇input) ∈ R Velocity dependent friction due to the input shaft

τv(θ̇) ∈ R Velocity dependent friction due to the output shaft
τr,input(θinput) ∈ R Position dependent friction due to the input shaft

τr(θ) ∈ R Position dependent friction due to the output shaft

gear alone and αgear ∈ R is the gear ratio of the harmonic drive from input
to output velocity. Practically, the total inertia only depends on the input
shaft inertia since the gear ratio is 1/100. In the absence of external forces,
the equation of dynamics is

Bθ̈ = τfriction(θ, θ̇) + τm, (3.2)

where θ ∈ R is the rotor position with respect to the stator. τm ∈ R is
the electromagnetic torque. The frictional torque τfriction(θ, θ̇) ∈ R can be
separated into the motor shaft and output shaft term as well as the velocity
or position dependent terms leading to

τfriction(θ, θ̇) = τv(θ̇input) + τr,input(θinput) + τv(θ̇) + τr(θ) (3.3)

where the terms are defined in Table 3.1.
The motor velocity and the output velocity are related by the fixed gear

ratio θ̇ = αgearθ̇input. Hence, only one velocity dependent term is kept (that
accounts for both). The total frictional effects are consequently written:

τfriction(θ, θ̇) = τr,input(θinput) + τv(θ̇) + τr(θ). (3.4)

Using the velocity relation between θ̇ and θ̇input, the motor dynamics are

Bθ̈ = τv(θ̇) + τr,input(α
−1
gearθ) + τr(θ) + τm (3.5)
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Description Unit Symbol

Inertia kilogram meter square [kgm2]
Motor constant Newton meter per ampere [Nm/A]

Static friction torque Newton meter [Nm]
Viscous friction torque Newton meter per radian per second [Nm/(rad/s)]

Table 3.2: Parameters to be identified

where B ∈ R is the total motor inertia, θ ∈ R is the output shaft po-
sition w. r. t. some arbitrary origin. τv(θ̇) ∈ R is the velocity dependent
friction torque due to input and output viscous effects. τr(θ) ∈ R (resp.
τr,input(α

−1
gearθ) ∈ R) is the friction torque depending on the output (resp.

input) shaft position.

3.2 Parameter identification

The unknown parameters of equation (3.5) (listed in table 3.2) must be either
identified or neglected. In case of large uncertainties it is better to neglect
frictional terms rather than over compensating them. Indeed, the energy
introduced to compensate the friction may lead to the loss of mechanical
passivity [113].

To identify the motor parameters of Table 3.2, several experiments are
conducted:

• constant velocity square waves (for velocity dependent friction)

• constant torque impulse (for inertia modeling)

• constant velocity with Coulomb and viscous friction compensation (for
ripple identification)

Inertia and torque constant The inertia and the motor electromagnetic
constant (current to torque relationship) are linearly dependent in the dy-
namic equations. Therefore, either the inertia or the torque constant must
be measured externally. The torque constant was determined by a direct
torque measurement at the motor output shaft and is assumed to be con-
stant among all the motors. The inertia was obtained from a current step
response experiment, based on the model

Bθ̈ = τm, (3.6)

where B ∈ R is the inertia along the rotation axis, θ ∈ R is the position of the
motor shaft w. r. t. some arbitrary origin and τm ∈ R is the electromagnetic
torque. This identification neglects the viscous friction and the stick-slip
friction. The inertia value obtained by this method is comparable to the
value obtained from the CAD data.
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Table 3.3: Parameters of the friction model

Parameter Unit Value

γ1 [rad/s]−1 10
γ2 [Nm] 0.5586
γ3 [Nm][rad/s]−1 0.0356

Friction At constant velocity, one can write (under the assumption that
the friction is uniquely velocity dependent):

0 = τv(θ̇) + τr,input(α
−1
gearθ) + τr(θ) + τ m (3.7)

where θ ∈ R is the position of the motor shaft w. r. t. some arbitrary origin.
τv(θ̇) ∈ R is the velocity dependent friction torque due to input and output
viscous effects. τr(θ) ∈ R (resp. τr,input(α

−1
gearθ) ∈ R) is the friction torque

depending on the output (resp. input) shaft position and τm ∈ R is the
electromagnetic torque.

Therefore, the friction parameters can be estimated for a given velocity
θ̇ by driving at different constant speeds (as depicted in Fig. 3.3a). The
steady-state motor torque for each velocity is obtained by an average filter
applied to a few motor periods (the position dependent input and output
torques τr,input, τr are periodic) and repeating the measurements with differ-
ent speeds leads to the Figure 3.3b.

To maintain the central symmetry and provide smoothness, the friction
model is selected as

τ̂friction(θ̇) = atan(γ1θ̇)γ2 + γ3θ̇, (3.8)

where τ̂friction(θ̇) ∈ R is the estimated friction torque at a given velocity θ̇.
The position dependent terms are neglected. The parameters γ1, γ2 and γ3

for one specific motor are reported in Table 3.3.

Ripple The motor ripple (periodic disturbances) is generated by a mag-
netic or a mechanical effect and therefore is mainly position dependent. A
compensation for the magnetic ripple is proposed and implemented in [114].
Bearing friction models and compensation schemes are discussed in [57] and
harmonic drive specific friction is treated in [115]. Because two bearings
are used (the motor shaft bearings and the output shaft bearing), two peri-
odic disturbances appear on the motor torque. It is possible to cancel or at
least to reduce the disturbances by applying a correct feedforward signal. In
Figure 3.4a and 3.4b, 10 measurements with the same desired velocity are
depicted and confirm the repeatability of the disturbances. In each of them
the measurement was triggered on the same motor position. The measure-
ments demonstrate that the position dependent friction effects are strongly
repeatable.
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Figure 3.3: Experiment and results for the motor friction estimation
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Figure 3.4: Experiment: commanded torque for constant velocity motions

In Figure 3.5a, two measurements with the different desired velocities
θ̇ = 1 rad/s and θ̇ = 0.5 rad/s are depicted and confirm that the disturbance
is position dependent.

In order to assess the performance of the compensation is it necessary
to quantify the disturbance. Due to its periodicity, a frequency analysis
seems appropriate to analyze the motor recordings. Figure 3.5b shows the
initial frequency distribution of the perturbation for the two desired veloci-
ties θ̇ = 1[rad/s] and θ̇ = 0.5[rad/s]. As expected the main frequency of the
perturbation is equal to the motor rotation frequency, and the frequencies
are clearly identifiable.

From those experiments, it can be concluded that the repeatability of
the disturbance is excellent and its phase only depends on the motor po-
sition. Moreover, the reduction of the amplitude of the disturbance at the
motor rotation frequency is selected to quantify the results (first harmonic
removal/attenuation).

To compensate for disturbances, a feedforward term can be added to the
controller action. The frequency and phase are directly given by the motor
velocity but the amplitude is not known. As mentioned previously, the
amplitude estimation must be conservative to avoid introducing potentially
destabilizing energy.

3.3 Conclusion

Fig. 3.6b and Fig. 3.6a show the reduction of the torque disturbance ampli-
tude in the frequency and in the time domains. Although hard to perceive
in time domain, the attenuation is clearly visible in the frequency domain
(as well as simply hearing the motor noise).

The small size of the motor and gear boxes inevitably introduce large
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friction effects w. r. t. to their output torques (compared to a kW sized mo-
tor). However, different compensation mechanisms can benefit from the re-
peatability of the disturbances. A simple feedforward term can suppress, if
not attenuate, most of the disturbances. Based on a rich literature of indus-
trial applications, a compensation mechanism has been successfully designed
and applied to the motors. Several experiments and analyses confirmed the
benefit of the approach.

Despite the success of the method, some limitations must be stated;
thanks to the high control frequency of 3kHz as well as the high quality of
the motors and sensors, very high position controller gains can be used thus
the benefit of the compensation is limited when the motor is used in position
mode. Moreover, it must be noted that the compensation might lead to
some noise or instability if the compensation is excessive (and consequently
injecting more energy than the mechanism and the controller can dissipate).
Nonetheless, the gain is appreciable when the motor is used as a torque
source since the produced torque is closer to the desired one (reduced dead
zone). It allows to reduce the controller effort (in tendon force control mode)
since the forward model is more accurate and thus, indirectly, increases the
system accuracy.
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4 Tendon model

Several adjustable stiffness mechanisms are reported in [116]. In the hand
of the Hand Arm System, tendons are used to carry the motor torque to the
joint torque. But, because tendons can only pull and never push, they are
used in an antagonistic configuration as depicted in Figure 4.1.

Besides the benefit of looking strongly anthropomorphic, the antagonis-
tic tendon actuation allows to circumvent the issues of tendon slackening,
change of tendon path length and routing complexity. Moreover, the use of
nonlinear spring mechanism offers the possibility to adjust the joint stiffness
(cf. Fig. 4.2). Although several methods can be used to control the system,
they all require position or force control of the tendons (at least indirectly,
e. g. to limit the tendon forces).

The beginning of this section describes the variable stiffness mechanisms,
derives a mathematical model and verifies the model with a calibration ex-
periment. Once the variable mechanism is modeled, the tendon is mounted
in conditions similar to the final assembly (i. e. same number of pulleys)
to estimate the quality of control that could be achieved. The experiment
allows to measure the friction of the guidings and latter estimate the joint
friction. The friction behavior with different mounting conditions is stud-
ied because a proper tendon force control is paramount to the successful
operation of most of the controllers.

4.1 Mechanical design

This section is based on the sensor design by Werner Friedl that has been
presented in [3]. The selection process of a tendon material is explained, fol-
lowed by the geometrical description of the adjustable stiffness mechanism.

Tendon material selection The choice of the tendon material is critical
for the design, since it imposes pulley geometries and radii, as well as the
type of sliding surfaces that can be used. In the case of the Hand Arm
System, a polymer fiber known commercially as Dyneema R©1 is selected over
steel or vectran2. The main reason is its durability even for small pulley
radii(cf. Fig. 4.3). Moreover it offers a termination technique called splicing
(cf. Fig. 4.4) allowing to perform on site terminations. Although apparently
accessory, this is extremely relevant when considering the time needed to
assemble, maintain, and repair the system.

1Dyneema R©is the commercial name of a strand of Ultra-high-molecular-weight
polyethylene fibers.

2Vectran is a manufactured fiber of aromatic polyester.
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Figure 4.1: Antagonistic arrangement of the tendons allowing to move the
joint and adjust its stiffness
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Figure 4.2: (a) A balanced set of forces is creating no joint torque. (b)
Increasing the co-contraction of the tendons increases the link joint stiffness.
(c) An unbalanced set of forces creates a torque
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Figure 4.3: Durability test of different tendon material depending on the
pulley radius

(a) Mounting of a tendon (b) Splice of a
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Figure 4.4: Splicing technique used to terminate the tendons
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α

Figure 4.5: Original concept: tangent α mechanism

Figure 4.6: Geometry of the tendon force sensor: the stiffness is increasing
from left to right

Geometrical Design The variable stiffness spring mechanism is based
on the tangent α mechanism (cf. Fig. 4.5). The genuine design has been
modified to minimize the number of pulleys and to replace the linear guiding
by a rotational guiding. The resulting design is depicted in Fig. 4.6. The
variables used through the modeling are reported in Table 4.1.

The length of the tendon in the mechanism (referred to as dL) is given
with respect to the lever angle (referred to as θlever). The force characteristic
and the tendon stiffness of one tendon are reported in Figure 4.7 (other
tendons have different curves but the shape is imposed by the mechanism
geometry).

Sensor Design To obtain a compact design a commercial Hall effect sen-
sor is used off-axis (see Fig. 4.8a). The magnet attached to the lever sweeps
over the hall effect sensor [117] and creates a magnetic field variation that
is the measured quantity. The sensor provides a resolution of 12 bits at a
frequency of 3 kHz. The sensor has a filter algorithm included which can be
adjusted to reduce the noise level (at the cost of an increased hysteresis).

Calibration The tendon mechanisms must be calibrated because of the
mounting variability, the variations in the sensor’s sensitivity and the tol-
erances of the spring constant. The setup depicted in Fig. 4.8a is used to
calibrate the sensors in place, therefore including the stiffness of the tendon
material in the measurement.
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Description Symbol

θlever Angle of the lever
dL(θlever) Length of tendon from the motor pulley to the fixed pulley

[xmotor, ymotor] Coordinates of the motor pulley center
[xfixed,pulley, yfixed,pulley] Coordinates of the fixed pulley center

[xlever, ylever] Coordinates of the lever pulley center
[xspring, yspring] Coordinates of the spring fixed

K Spring constant
Rmotor Radius of the motor pulley
Rlever Radius of the lever pulley

Rfixed,pulley Radius of the fixed pulley
K Spring constant

Table 4.1: Parametrization of the spring mechanism
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Figure 4.7: Model based mechanism characteristics
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where the hysteresis is about 10 N

Figure 4.8: Tendon force/stiffness calibration

The raw measurement of Figure 4.8b exhibits a good similarity with the
model. The offset between the model and the measurement can be attributed
to the spring constant mismatch and the friction in the lever mechanism.
A more accurate fit can be obtained by adjusting the uncertain parameters
(e. g. spring constant). Each individual sensor is calibrated after mounting
to verify the magnetic sensor and the tendon mounting. Adjusted models are
then approximated by polynomials that are used to transform the magnetic
sensor output (increments) to the tendon force ft[N], the tendon stiffness
kt[N/m] and the tendon length in the mechanism dL[m]. The polynomials
are required to minimize the computation costs for the real-time implemen-
tation. One important element to note is the hysteresis cycle that reaches
10N − 20N at a force of about 70N (cf. Fig. 4.8b point (A)).

4.2 Guiding friction estimation

Through the measurement campaign, it appeared that the pulley guidings
in the wrist and the palm are introducing a large static friction when used
with the Dyneema R©tendons. In order to qualify, quantify, and propose
a model, a new set of experiments (depicted in Fig. 4.9) was conducted
with different pulley radii and tendon diameters and materials. Figure 4.10
show that bending the dyneema fibers around the pulley requires a larger
force than for the steel cables. Moreover, the friction is increasing when
the bending diameters are diminishing. The friction behavior shows an
independence with respect to the tendon speed (in the range of the expected
tendon velocities).
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Figure 4.9: Experiment for guiding friction estimation

It appears that the tendon friction force Ffriction ∈ R
+ can be approxi-

mated by equation,

Ffriction = C0(1− e−C1α), (4.1)

where α ∈ R
+ is the total bending angle and (C0, C1) ∈ R

2 are calibration
constants.

The measurements have been performed with a special tendon pulling
machine [118] that offers controlled displacements and accurate force mea-
surements. In all tests the friction force is estimated to be the steady-state
pulling force during a saw shaped motion. Other experiments have been
performed to compare the sliding friction to the pulley friction so as to give
all needed information to the mechanical designers. The tables are available
to the mechanical teams in order to decide when to use pulleys (that requires
space) or sliding surfaces (more compact but limited to small bending an-
gles). Figure 4.10 and 4.11 are the graphs of such tables.

4.3 Conclusion

This section has presented the tendon stiffness mechanism used for each of
the 38 tendons of the forearm. The mechanical construction is an improve-
ment over the original tangent α mechanism in terms of size and complexity.
The tendon material has been selected to provide a long lifetime as well as
to cope with the small bending radii. It has been experimentally verified
that the model based stiffness curve of the mechanism exhibits a good match
with the measures. The discrepancies between the theoretical model and the
measure are related to the imprecision of the spring constant (given by the
manufacturer). The stiffness of the tendon material contributes to the over-
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Figure 4.10: Friction force for a single tendon depending on the total bending
angle. Pulley diameters and several sliding materials are compared

surrounding angle: 20 deg

surrounding angle: 100 deg

Dyneema2

Vectran
Steel
Protec
Combat

Dyneema

µ

0.2

0.1

0.0

PVC P A steel ceramic

µ

0.2

0.1

0.0

PVC P A steel ceramic

Figure 4.11: Friction coefficient in a sliding experiment for a single tendon
depending on the material combinations. P (resp. A) stands for a low
friction polymer similar to the one used for the joints (resp. an aluminium
alloy).
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all stiffness of the mechanism. Therefore, the calibration is performed on
the mounted tendon. The real-time implementation uses calibration poly-
nomials to improve the measurement accuracy. A set of characterization
experiments has been conducted in order to provide a clear overview of the
friction properties of the tendon and the experimental results have been
used to establish a model of the tendon friction in the case of rolling and
sliding. The model is available to the mechanical engineers. So they have
the information needed to decide between the different guiding options.
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5 Finger model

In this chapter the mechanical modeling of the fingers is described. First, the
homogeneous transformation matrices are derived from the CAD (Computer
Aided Design) data. The dynamic model is easily obtained from a symbolic
calculation tool, either from the energy expression and the Lagrange method
or from the Newton-Euler method. The tendon coupling is presented in
detail and is one major novelty of the design. Each of the five fingers has a
specific design, but their types can be grouped as follows (cf. Fig. 5.1):

• Base of the thumb (MC: Metacarpal joint, also called TMC: trapezoid
metacarpal joint).

• Base of the index, middle, ring, and fifth fingers(MC: Metacarpal
joint).

• Medial and distal joints of the thumb, index, middle fingers (PIP:
proximal inter-phalangeal and DIP: distal inter-phalangeal joint).

• Medial and distal joints of the ring and fifth fingers (PIP: proximal
inter-phalangeal and DIP: distal inter-phalangeal joint).

• Hematometacarpal joint of the fifth finger (HMC: hematometacarpal
joint).

Several joint types are used for the fingers. The base joint is a hyperboloid
joint (cf. Fig. 5.2) and the PIP and DIP joints are hinges joints (cf. Fig.
5.3).

Those mechanisms have been carefully designed to ensure a maximal ro-
bustness while satisfying the functional requirements [98]. The base of the
thumb is special since it is using a tensegrity1 structure to provide an in-
creased torque. The Hematometacarpal joint (HMC) is also very particular
since it is realized by a four bar linkage to emulate the anatomical motion.
In order to reduce the number of actuators and fit in the forearm, the PIP
and DIP joints of the ring and fifth fingers are coupled. Despite the ten-
don routing differences, the kinematic structures of each finger are identical.
Only the bones are different in size and shape.

1Tensegrity, tensional integrity or floating compression, is a structural principle based
on the use of isolated components in compression inside a net of continuous tension, in
such a way that the compressed members (usually bars or struts) do not touch each other
and the prestressed tensioned members (usually cables or tendons) delineate the system
spatially.
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Figure 5.1: Joint names

Figure 5.2: Hyperboloid joint of the finger base
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Figure 5.3: Dislocatable hinge joint for the PIP and DIP joints

hmotor

hlever hforearm hwrist hpalm hfinger

Figure 5.4: Tendon routing of the index finger through the complete forearm

5.1 Tendon routing

The fingers of the hand of the Hand Arm System are actuated by tendons.
The tendons are pulled by electromotors that are placed in the forearm.
Therefore, the tendons are running in the forearm, crossing the wrist, guided
into the palm and finally routed in the finger. The tendons are transmitting
the forces of the motors to the joints, thus being one of the most critical
component. In order to control the joint torques the transmission chain
must be analyzed and modeled. The tendon paths can be divided into six
sections (cf. Fig. 5.4).

From figure 5.4 the length of tendon hi (i ∈ [1 . . . 38]) is

hi = hi
motor +hi

lever +hi
forearm +hi

wrist +hi
palm +hi

finger,∀i ∈ [1 . . . 38] (5.1)

where:
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• hi
motor represents the length of tendon i in the forearm (constant w. r. t.

the robot configuration)(cf. Fig. 5.4).

• hi
forearm represents the length of tendon i in the forearm (constant

w. r. t. the robot configuration)(cf. Fig. 5.4).

• hi
lever represents the length of tendon hi in the lever mechanism (de-

pending on the tendon force of the finger)(cf. Fig. 5.4).

• hi
wrist represents the length of tendon hi in the wrist (depending on

the joint angle of the wrist)(cf. Fig. 5.4).

• hi
palm represents the length of tendon hi in the palm (constant w. r. t.

the robot configuration)(cf. Fig. 5.4).

• hi
finger represents the length of tendon hi in the finger (depending on

the joint angle of the finger)(cf. Fig. 5.4, cf. Fig. 5.5).

The length of tendon in the forearm and the palm are independent of
the robot configuration and will consequently be neglected/hidden in the rest
of the thesis. It is interesting to note that, although those sections are of
constant length, they depend on the tendon considered. The default length
induces a serial stiffness that results in a softer tendon if it is longer. If
Edyneema[N/m] denotes the Young’s modulus of the Dyneema R©and li0,∀i ∈
[1 . . . 38] is the default length of tendon, the tendon stiffness is given by
ki

t = EdyneemaS/li0,∀i ∈ [1 . . . 38], where S is the cross-sectional area. It
should be noted that the stiffness of the tendon is naturally included in the
calibration process since it is performed once the tendon is mounted in the
forearm.

5.2 Index, middle, and ring fingers

In this section the modeling of the index, middle, and ring fingers is pre-
sented. Due to their specificity, the modeling of the thumb and the fifth
finger are deferred and are treated in separate sections.

5.2.1 Kinematic model

The index finger is modeled as a serial kinematic robot. The frames and the
joint angle labels relevant for the model are depicted in Fig. 5.6. Table 5.1
reports the numerical values obtained from the CAD. cxi ∈ R, i ∈ [0..3], x ∈
[1..5] (resp. sxi ∈ R) is the cosine (resp. the sine) of the joint angle i of
finger x. Using some linear algebra, the partial and complete homogeneous
transformations are obtained as:

T
j
i x =

k=j−1
∏

k=i

( Mk+1
k x),∀(i, j) ∈ N

2, (5.2)
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Figure 5.5: Index finger of the Hand Arm System

q20

q21 q22 q23

Figure 5.6: Frame definition of the index finger of the Hand Arm System
(side view)
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Table 5.1: Transformations from index base to index fingertip

where i, j are the indices of the frames between which the transformation
is calculated. T

j
i x ∈ R

4×4 is the homogeneous transformation between the
frames of index i ∈ N and j ∈ N of finger x. The matrices Mk+1

k x ∈ R
4×4 are

the partial transformations of the bones or of the joints (in homogeneous
coordinates) of the finger x at index k. For example, the transformation
from the index base (x = index and i = 1) to the index tip (x = index and
j = 9) is obtained as:

T9
0 index =

8
∏

k=0

( Mk+1
k index) (5.3)
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5.2.2 Dynamic model

The Lagrangian L is obtained as L = T − V, where T is the kinetic energy
and V the potential energy due to the gravity. Considering that the forearm
is fixed in space, the energy of the motor is reduced to the kinetic energy
due to the rotor inertia. The Lagrangian is

T =
1

2

n
∑

i=1

Mivi(q)2 +
1

2

n
∑

i=1

Biθ̇
2
i + Tg + Te, (5.4)

where n ∈ N is the number of links, Mi ∈ R (resp. Bi ∈ R) is the mass
of the link i ∈ N (resp. the inertia of link i ∈ N expressed at the center
of mass of the link). vi ∈ R (resp. θ̇i ∈ R) is the velocity of the center of
mass of link i ∈ N expressed in the world coordinates (resp. the rotational
velocity of the link i ∈ N expressed in the world coordinates). Tg and Te

are the potential energy due to gravity and the potential energy due to the

elastic storage. The elastic potential has the form Te(θ, q) =
1

2

∫

kt(h)hdh,

where kt(h) is the stiffness of the tendon and h(θ, q) is the elongation of the
tendon.

The Coriolis and centrifugal terms are commonly neglected in hand mod-
eling. This is mostly justified by the short length of the fingers and their
small mass. However, in order to verify the assumption, several trajecto-
ries with or without the Coriolis and centrifugal terms have been simulated.
The motor positions are fixed and the finger is initially deflected 0.1 rad in
the second joint (flexion) and it is released at time t=0 s. As expected the
finger oscillates and the inertial couplings are generating a motion of the
distal links. The first joint is not influenced by the motion and therefore,
is remaining at position q0 = 0 rad. A damping of 0.1% was included in
the joints. The curves reported in Fig. 5.7 are representing the differences
of position in radians for each joint with and without accounting for the
Coriolis and centrifugal terms. It can be seen that the simulation error is
small compared to the accuracy of the sensors. Therefore, in this thesis, the
Coriolis and centrifugal torque covectors are neglected. Similarily, the influ-
ence of gravity can be neglected w. r. t. the torques created by the tendons.
Indeed, the complete finger mass is about 0.02 kg, with a center at about
0.01 m, which gives a torque of approximatively τq =0.02 kg×9.81 N×0.01 m
= 0.002 Nm. It represents only 0.3 N to be shared on the base tendon forces.

5.2.3 Tendon coupling

Coupling matrices

The joints are driven by an antagonistic arrangment of tendons (cf. Fig.
5.9). Therefore, in absence of joint friction, the joint can be moved by
placing the motors at the proper position (within the joint limits). However,
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Figure 5.7: Simulation: influence of the Coriolis and centrifugal terms on
the link trajectory. The curves illustrate the error between the full model
and the simplified model. The base flexion (resp. PIP flexion, DIP flexion
and base abduction/adduction) is the light light blue (A) curve (resp. red
(B), green (C) and blue (D))
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Figure 5.8: Names of the tendons and radii of the pullies of the index finger
used to establish eq. (5.22).

without control, a motion of the PIP joint creates a motion of the DIP joint
because the DIP tendons are rolling around the PIP joint (cf. Fig. 5.10).
The tendon lengths in the finger hfinger are obtained from the joint pulley
radii:

hindex,1(q) = h0,index,0 + r20q20 + r21q21

hindex,2(q) = h0,index,1 + r20q20 − r21q21

hindex,3(q) = h0,index,2 − r20q20 + r21q21

hindex,4(q) = h0,index,3 − r20q20 − r21q21

hindex,5(q) = h0,index,4 + r22q22

hindex,6(q) = h0,index,5 − r22q22

hindex,7(q) = h0,index,6 + r22q22 − r23q23

hindex,8(q) = h0,index,7 − r22q22 + r23q23

(5.5)

where h0,x,i, with i ∈ [1 . . . 8] denotes the initial (arbitrary reference) tendon
length in the finger x. qi ∈ R, i ∈ [0 . . . 3] are the joint angles. rij ∈ R, (i, j) ∈
([1 . . . 5]× [0 . . . 3]) are the pulley radii of finger i at joint j (cf. Fig. 5.8).

From the expression of the tendon lengths given in Eq. (5.22), the cou-
pling matrix P (q) ∈ R

m×n (for a finger with n ∈ N joints driven by m ∈ N

tendons) is defined as

P (q) =
∂h(q)

∂q
. (5.6)

Equation (5.6) also expresses the relationship between the tendons ve-
locities and the joint velocities:

ḣ = P (q)q̇ (5.7)

The relation between the motor torques τ θ ∈ R
m and the joint torques

τ q ∈ R
n is simply obtained by expressing the work produced by the motors

and the work produced by the joints and substituting eq. (5.7).

τ q = P (q)T τ θ, (5.8)

where P (q) ∈ R
n×m is the coupling matrix, q ∈ R

n is the joint position.
τ q ∈ R

n (resp. τ θ ∈ R
m) is the joint torque covector (resp. the motor

torque covector).
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Figure 5.9: Antagonistic model of a joint. Two motors are pulling two
tendons guided through the stiffness elements and drive the joint (courtesy
of Jens Reinecke).
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Figure 5.10: Example of the tendon guiding in the PIP and DIP. The total
lengths of the tendons are simply obtained because the tendons are rolling
on the pulleys.
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Applied to the index finger, the coupling matrix is

P index =





























r20 −r21 0 0
−r20 −r21 0 0
r20 r21 0 0
−r20 r21 0 0

0 0 −r22 0
0 0 r22 0
0 0 r22 −r23

0 0 −r22 r23





























, (5.9)

where (r20, r21, r22, r23) ∈ (R+)4 are the radii of the joint pulleys.

Stiffness transformation

The modification of the tendon stiffness modifies the joint stiffness. The
joint stiffness matrix Kq(q) ∈ R

n×n is by definition:

Kq(q) =
∂τ q

∂q
. (5.10)

The joint torque is obtained from the tendon forces by τ q = P (q)f t, where

P T = ∂h(q)
∂q

leading to

Kq(q) =
∂P (q)T

∂q
f t + P (q)T ∂fT

t

∂q
Kq(q) =

∂P (q)T

∂q
f t + P (q)T ∂fT

t

∂h

∂hT

∂q
.

(5.11)
By definition of the coupling matrix and defining Kt ∈ R

m×m (Kt(i, i) =
kti

, 0 otherwise, where kti
∈ R

+,∀i ∈ [0 . . . m − 1] is the individual tendon
stiffness), the stiffness transformation from tendon to link is

Kq =
∂P (q)T

∂q
f t + P (q)T KtP (q). (5.12)

In a case of a position independent coupling matrix, i. e. constant pulley
radii, the equation simplifies to

Kq = P T KtP . (5.13)

Link side position

The joints of the fingers do not have a position sensor. On the one hand this
provides a high robustness but on the other hand it implies that the link
position must be estimated from the tendon displacements. As presented
in the spring mechanism section, the change of length of tendon due to the
spring mechanism is measured with the magnetic sensor. The displacement
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of the tendon due to the motor is easily obtained with the motor position
and the pulley radius. Therefore, the tendon displacement at the finger base
is measured. The problem is mathematically formulated as

min
qx

(

8
∑

i=1

(hmeas
xi − hxi(q))2

)

, (5.14)

where qx ∈ R
4 are the joint angles of finger x. hxi, with i ∈ [0 . . . 7], are

the model-based lengths of the tendons and hmeas
xi , with i ∈ [0 . . . 7], are the

measured tendon lengths.

The solution q∗
x ∈ R

n to the problem of eq.(5.14) is known to be obtained
from the pseudo inverse of P x ∈ R

n×m,

q∗
x = P +

x hmeas + q0x, (5.15)

where P +
x = P x(P xP T

x )−1 is the Moore-Penrose pseudo inverse of the cou-
pling matrix P x of finger x. hmeas

x ∈ R
m is the vector of the measured

tendon lengths and q0x ∈ R
n is some arbitrary reference position of the

joints. It is important to note that the pseudo inverse is always well defined
since P x is constant and matrix has full column rank.

5.3 Ring and fifth fingers

In this section, the specificity of the ring and fifth finger couplings are dis-
cussed. The kinematic and dynamic modeling only need minor modifica-
tions. Similarily, the tendon couplings need to be modified to account for
the reduced count of tendons.

5.3.1 Kinematic model

The kinematic models are derived using homogeneous transformation matri-
ces. The only required modification is to replace the joint angles q43 (resp.
q53) by its expression in terms of q42 (resp. q52). The needed relationships,
obtained from the pulley radii, are reported in Equation (5.17).

q43 =
r43

r42
q42 (5.16)

q53 =
r53

r52
q52 (5.17)

5.3.2 Dynamic model

In order to establish the dynamic equations, two methods are available.
A first method consists in replacing the relationship of (5.17), the bone
transformations, and the inertias in the dynamic model of the index finger.
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Figure 5.11: Mechanical realization of the PIP/DIP coupling of the ring and
fifth fingers (case of the ring finger)

The second method consists in modifying the expression of the kinetic energy
and the potential energy in the Lagrangian. Both methods are leading to
the same results. However, the second method leads to a more efficient
formulation of the dynamics.

5.3.3 Tendon coupling

As mentioned above, the ring and fifth fingers have a mechanical coupling
between the PIP and DIP joints. In other words, the two joints are actu-
ated by only 2 motors. Figure 5.11 depicts the mechanical realization of
the underactuated joint. The coupling matrix P 4 ∈ R

6×3 is obtained by
expressing the tendon lengths of the ring, h4i(q), with i ∈ [0 . . . 5], and de-
riving them with respect to the joint positions q4i (i ∈ [0 . . . 3]). According
to the notations of Figure 5.11, the coupled tendon lengths are

h44(q) = h044 + r42q42

h45(q) = h045 − r42q42

h46(q) = h046 + (r42 + r43)q42

h47(q) = h047 − (r42 + r43)q42,

(5.18)

where h04i, with i ∈ [0 . . . 7] denotes the initial (arbitrary reference) tendon
length in the ring finger. q4i ∈ R, i ∈ [0 . . . 3] are the joint angles. r4j ∈ R,
with j ∈ [1 . . . 5] are the pulley radii of the ring finger at joint j (the case of
the fifth finger is obtained by replacing 4 by 5 in the previous expressions).

5.4 Thumb

According to numerous biomechanical authors [119–121] the hand would not
be more than a spatula if it were not for the thumb. Anthropologists, like
Kuczynski, have assumed that the thumb is what makes the human brain so
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Figure 5.12: Thumb of the Hand Arm System

different from the monkeys. Intuitively, it is obvious that a poorly designed
(or poorly controlled) thumb jeopardizes most of the hand functionality.
Therefore, the modeling and control of the thumb of the Hand Arm System
is one of the focus of this section.

The thumb has been carefully designed and several guidelines have been
published in [122]. Very recent work also demonstrated the grasping capa-
bilities of the hand [123]. The thumb PIP and DIP joints are similar to
the other fingers but is using larger pulley radii to increase the maximum
torques. The base, however, has a different structure. As depicted in Figure
5.12, the joint is driven by four tendons that are emerging from the palm
and directly connected below the PIP joint. This structure, called a tenseg-
rity structure, provides an increased maximum joint torque (through the
increased moment arm).

The structure creates a nonlinear relationship between the base joint
positions (q11, q12) ∈ R

2 and the tendon lengths h1i ∈ R, i ∈ [0 . . . 3].

5.4.1 Kinematic model

The kinematics of the thumb is computed from the homogeneous transfor-
mations of the joints and the bones. The difference with the index finger
is that the partial transformation to the base of the PIP ( T0

4 thumb) will be
used to compute the tendon coupling.

5.4.2 Dynamics model

The dynamical equations of the thumb are obtained from the kinematic
equations and the inertia properties of each link. Since the inertia of the
tendon is neglectable, there is no difference with the case of the index finger.
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Figure 5.13: Joint axis and tendon names of the thumb of the Hand Arm
System

5.4.3 Tendon coupling

Contrarily to the other fingers, the coupling of the thumb is nonlinear and
position dependent.

The base joints (q10, q11) are driven by a set of four tendons that are
directly inserted below the PIP joint (cf. Fig. 5.14). In order to express
the lengths (or the change of lengths) of the base tendons, the coordinates
of the tendon insertions points must be expressed in the same coordinate
system. To this end the following steps are performed:

• the transformation from the thumb base coordinate system (cf. Fig.
5.13, frame {10}) to the coordinate system of the PIP base is extracted
from the forward kinematics.

• the tendon insertion coordinates [ p12
1i, 1] ∈ R

4, i ∈ [0 . . . 3] (ex-
pressed in {12}) are transformed to the base frame {10} with,

[ p10
1i, 1] = T12

10 [ p12
1i, 1], ∀i ∈ [0 . . . 3] (5.19)

where T12
10 ∈ R

4×4 is the homogeneous transformation from {12} to
{10}.

The coordinates of the distal (resp. palmar) insertion of the tendons are
more conveniently denoted A, B, C and D (resp. A0, B0, C0 and D0, cf.
Fig. 5.14). The coordinates are reported in Table 5.2. The tendon lengths
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Figure 5.14: Thumb of the Hand arm system

Table 5.2: Coordinates of the bone insertion points for the tendons

Point Coordinates [m]

A0 [0.002, 0.030,−0.025]
B0 [0.002, 0.030, 0.025]
C0 [0.002,−0.030,−0.025]
D0 [0.002,−0.030, 0.025]

A [0.002, 0.030,−0.025]
B [0.002, 0.030, 0.025]
C [0.002,−0.030,−0.025]
D [0.002,−0.030, 0.025]
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h1i(q) ∈ R, i ∈ [0 . . . 3] of the thumb base are obtained as

hthumb,0 = |A(q10, q11)−A0|
hthumb,1 = |B(q10, q11)−B0|
hthumb,2 = |C(q10, q11)− C0|
hthumb,3 = |D(q10, q11)−D0|.

(5.20)

The PIP and DIP tendons are going through the base and rolling on the
PIP and DIP joints. Therefore, their length is linearly dependent on the
finger position.

Applied to the thumb finger, the coupling matrix has a block diagonal
shape (cf. Fig. 5.15 ). The lower right part (i. e. the PIP and DIP couplings)
is

P thumb([3 : 4], [5 : 8]) =











−r12 0
r12 0
r12 −r13

−r12 r13











, (5.21)

The submatrix selection is following MATLAB R©convention2. The complete
tendon lengths are

hthumb,0 = h0thumb,0 + |A(q10, q11)−A0|
hthumb,1 = h0thumb,1 + |B(q10, q11)−B0|
hthumb,2 = h0thumb,2 + |C(q10, q11)− C0|
hthumb,3 = h0thumb,3 + |D(q10, q11)−D0|
hthumb,4 = h0thumb,4 + r12q12

hthumb,5 = h0thumb,5 − r12q12

hthumb,6 = h0thumb,6 − r12q12 + r13q13

hthumb,7 = h0thumb,7 + r12q12 − r13q13.

(5.22)

where h0thumb,i with i ∈ [0..7] is the initial tendon length when the finger
is at its reference position (i. e. q = q0), (r12, r13) are the radii of the joint
pulleys. The coupling matrix P thumb ∈ R

4×8 is obtained by taking the
partial derivative of the tendon length hthumb,i with i ∈ [0..7] w. r. t. the
joint position q1j with j ∈ [0..3].

Stiffness transformation

The equation for the stiffness transformation from tendon stiffness to joint
stiffness is identical to the ones of the index finger. However, since the

2Indexing is one based, in (5.21) the selection consists of the two last columns and the
four last lines
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Figure 5.15: Structure of the coupling matrix

coupling matrix is depending on the base position, the generic form must
be used,

Kq =
∂P (q)T

∂q
f + P (q)T KtP (q), (5.23)

where q ∈ R
n is the vector of joint position. Kq ∈ R

n×n (resp. Kt ∈
R

m×m) is the joint stiffness matrix (resp. the diagonal stiffness matrix of
the tendons). P (q) ∈ R

m×n is the position dependent coupling matrix.
f ∈ R

m is the vector of tendon forces.

Link position estimation

As in the case of the fingers, the thumb does not have a position sensor.
But the pseudo inversion that was used for the linear couplings can not be
used for the thumb. Indeed, the coupling matrix is position dependent and
the solution to the least square problem is not anymore a simple pseudo
inversion. The problem is mathematically formulated as

min
q

(

7
∑

i=1

(

ĥ1i − h1i(q)
)2
)

, (5.24)

where q1i ∈ R with i ∈ [0 . . . 3] are the base joint angles, h1i with i ∈ [0 . . . 7]
(resp. ĥ1i) are the analytic length of the tendon i of the thumb (resp. the
measured tendon lengths). However, the structure of the thumb implies that
only the four base tendons are involved in the nonlinear, position dependant
coupling. Therefore, the link side position estimation for the PIP and DIP
joints of the thumb are similar to the one of the index finger.

The position estimation for the base must be realized online and therefore
has been implemented as a fixed step gradient search. The algorithm is
reported in the pseudo code Algorithm 1.

In order to evaluate the algorithm, a grid of tendon position vectors is
generated from the kinematic model. The algorithm is evaluated on this
vector grid and the resulting joint positions are compared to the ground
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Algorithm 1 Pseudo Code of the gradient search algorithm use to estimate
the link side position

B ⇐ ker P
α⇐ α0

grad⇐ grad0

step⇐ step0

Cbest ⇐ + inf
for i = 1 to 50 do

C, grad⇐ costα(α− grad.step)
if C < Cbest then

α⇐ α− grad.step
else

step⇐ step

2
end if

end for

truth. Fig. 5.16 depicts the results obtained with 30 steps. The two axes
are representing the joint angles for the flexion/extension q10 and abduc-
tion/adduction q11 motions. The red circles are the original points and the
blue crosses are the estimated coordinates.

In order to check the robustness for the real implementation, a set of
vectors with a noise (the amplitude of the noise was 0 [mm], 0.5[mm] and
1[mm]) to simulate the measurement inaccuracy is evaluated. The number
of steps is also modified in order to select the optimal value for the real
time code. Unlike the implemented code, the search is always started from
(q10, q11) = [0, 0], which explains the incorrect results far from the origin.
The results are reported in Fig. 5.17. The required number of iterations is
easily achieved in real time. Moreover when using the previous solution as
a starting point the search always reaches the minimum step size after only
a few iterations.

5.5 Hematometacarpal joint

Because the design of a robotic hand is challenging, most of the designs are
not spending as much effort in designing the fifth finger as for the other
fingers. In the hand of the Hand Arm System the fifth finger base joint
received a particular attention. The hematometacarpal joint, i. e. the joint
between the fifth finger metacarpal and the palm, has been designed as a
four bars linkage mechanism. This allows to mimic the human metacarpal
motion and especially provides a locking motion towards the palm center
when the joint limits are reached.
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Figure 5.16: Link position estimation : gradient search results with 30 it-
erations. The red circles are the original points and the blue crosses are
the estimated coordinates. The search was always started from (0,0) which
explains the errors in the corners. In practice the last value is used as a
starting point.

5.6 Conclusion

This chapter presented the modeling of the fingers. The kinematics are
obtained from the bone transformations and homogenous transformations.
The dynamics are obtained from the systematic Newton-Euler method. The
tendon path through the forearm, the wrist, the palm and the fingers is used
to derived the coupling matrices. The coupling matrices are further used to
estimate the joint positions. However, the special actuation of the thumb
by a tensegrity structure creates a nonlinear problem that has been solved
with a realtime projected gradient algoritm.
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Figure 5.17: Results of the link position estimation with different step size
and step count. In each plot, the x and y axis are representing the base
joint angle q10 and q11. The red circles denote the coordinates used for
generation of the tendon length set. The blue crosses depict the result.
Ideally, the crosses and circles should match. 5.17a : 50 iterations, 0mm
noise. 5.17b : 50 iterations, 0.5mm noise. 5.17c : 50 iterations, 1mm noise.
5.17a : 30 iterations, 0mm noise. 5.17b : 30 iterations, 0.5mm noise. 5.17c
: 30 iterations, 1mm noise. 5.17a : 15 iterations, 0mm noise. 5.17b : 15
iterations, 0.5mm noise. 5.17c : 15 iterations, 1mm noise.
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6 Wrist Model

The arm and the hand are connected with a wrist, which is actuated with an
helping antagonistic concept [2]. Since the motors are located in the forearm
all the tendons are guided from the motors to the fingers through the wrist.
Therefore, the wrist must withstand the combined load of all the tendons
and has been designed to support up to 8000N (the weight of a small car).
Desirably, all the tendons would go through a unique point and no coupling
would be introduced by the wrist motion. However, it is mechanically not
possible to let 38 tendons cross at a unique point in space (the tendon
would be damaged by the contact to other tendons). Consequently, the
wrist is using two layers of 19 tendons that are spaced along the width of
the wrist (see Fig. 6.1). Since the wrist can bend along two directions,
each tendon should be guided by two pullies in each side of the wrist. The
required total of 76 pulleys as well as the space required for their mounting
did not allow for this optimal solution (in terms of friction and guiding).
The selected solution guides the tendons only along the flexion extension
axis of the wrist. The missing lateral guiding is ensured by the flanges of
the pulleys and some mechanical grid that ensures that the tendons are not
jumping to a different tendon path. Although the solution is suboptimal
in terms of tendon guiding, it provides a compact wrist. Moreover, when
limited to small abduction/adduction angles (which is the normal case), no
significant friction is added. The tendons are not going through the center
of rotation of the wrist (which is, as established below, moving over time),
thus a motion of the wrist, if not compensated by the controller, creates a
motion of the fingers. The change of length of tendon in the wrist must
be calculated to have the possibility to compensate this effect using, for
example, a feedforward term.

6.1 Kinematic model

This section concentrates on the kinematic modeling of the wrist. The
method is explained step by step to tackle the overall complexity of the
calculations. The wrist structure can be seen as a double inverted parallel-
ogram. The frames and the angle labels relevant for the model are depicted
in Fig. 6.2 and Fig. 6.3. The numerical values and symbols used for the
wrist modeling are reported in Table 6.1.

The method can be decomposed as follows:

• Solving a single parallelogram problem in a plane defined by the wrist
flexion/adduction axis (calculating tC).

• Creating a temporary frame.
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Figure 6.1: Wrist of the hand arm system. The two groups of 19 tendons
are going through the wrist

Table 6.1: Wrist symbol definitions, units and values

Symbol Description Unit Value

a wrist length [m] 0.050
b wrist width [m] 0.042
c wrist thickness [m] 0.036

q73

q71

Figure 6.2: Side view of the wrist (CAD)
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q72

A0

B0 C0

q73

Figure 6.3: Top view of the wrist (CAD)

C0
B0

B

C

q71

Figure 6.4: BC plane transformation (CAD)

• Expressing the distance constraint between two points in the coordi-
nate system of the temporary frame (The point A in the palm and A0

in the forearm).

• Solving the distance constraint and transforming the coordinates of
the solution into the forearm frame {0}.

• Building a frame {ABC} from the coordinates of the 3 points of the
palm (A, B, C).

6.1.1 Calculation of angle tC

The first step consists in solving the parallelogram problem defined in the
upper plane of the wrist (cf. Fig. 6.4). As depicted in Fig. 6.5, the
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Figure 6.5: Distance constraints between B and C in the plane

coordinates of B and C can be expressed as

B :

{

RBB0
cos(tB)

RBB0
sin(tB)

and C :

{

RCC0
cos(tC)

RCC0
sin(tC)

(6.1)

where tB = Π
2 − q73 is the measure of the internal wrist angle obtained with

a potentiometer. tC ∈ R (resp. tB ∈ R) is an arbitrary parametrization of
the circle of center C (resp. B), RBB0

∈ R (resp. RCC0
∈ R) is the radius of

the circle of center B (resp. of center C). But B and C are rigidly linked at
a constant distance DBC ∈ R. Mathematically, the constraint on the length
BC is:

‖BC‖2 = (RBB0
sin(q3)−RCC0

cos(tC))2+(RBB0
cos(q3)−RCC0

sin(tC))2 = D2
BC .

(6.2)
Solving eq. (6.2) for q3 gives two solutions,

tC = arctan(sin(tB), cos(tB)),

tC = arctan

(

(BC2 + BB2
0) sin(tB)− 2BB0BC

(BB2
0 −BC2) cos(tB)

)

.
(6.3)

The first solution is the symmetric from B and therefore should be discarded.
The second solution, once injected in the Equation of C (eq. (6.1)), yields

C :



















BB0(BB2
0 −BC2)cos(tB)

−2BB0BC sin(tB) + BC2 + BB2
0

(BB2
0 −BC2)(BB0sin(tB)−BC)

−2BB0BC sin(tB) + BC2 + BB2
0

. (6.4)
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Figure 6.6: BC plane transformation with α = 0 (CAD). A is located on a
circle defined by ‖AB‖ = ‖AC‖
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Figure 6.7: BC plane transformation with α = 30 deg (CAD)
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6.1.2 Calculation of angle tA

The coordinates of the points B and C are known in the world coordinate
system. Three distances constraints are left in order to determine the po-
sition of the last point of the palm A: ‖AA0‖, ‖AB‖, ‖AC‖. However, a
direct attempt to express and solve the constraints with a symbolic calcula-
tion tool failed. As depicted in Fig. 6.7 a coordinate system {BCM} can be
constructed. M is the middle of BC. x is aligned with MC, z is normal to
the plane rotated around x (the original wrist frame) by an amount of q71.
y = z × x simply completes the frame. It is interesting to remark that the
distance constraints ‖AB‖ and ‖AC‖ are geometrically equivalent to saying
that A is located on a circle (cf. Fig. 6.6, non degenerated intersection of
two spheres), centered in M and in the plane orthogonal to BC containing
M (because ‖AB‖ = ‖AC‖). Based on this interpretation, the coordinates
of A in {BCM} have the simple form:

ABCM :















x = 0

y = RAA0
cos(tA)

z = RAA0
sin(tA)

(6.5)

The coordinates of A0 (in the coordinate system {BCM} ), ABCM
0 are

obtained with the transformation:

[ ABCM
0, 1] = TBCM

0 [ A0
0, 1] (6.6)

where A0
0 (resp. ABCM

0) are the coordinates of A0 in the frame {0} (resp.
{BCM}) and TBCM

0 is the homogeneous transformation matrix from the
coordinate system {0} to the coordinate system {BCM}.

(A0x)2 + (A0y −RAA0
cos(tA))2 + (A0z −RAA0

sin(tA))2 = d2
AA0

(6.7)

It remains to solve a distance constraint equation given by Eq. (6.7))
between A0 and A, both expressed in < BCM >. The equation is solved for
tA and re-injected in the coordinates of A. The coordinates of A in {BCM}
are transformed back into {0} with Eq. (6.8).

[ A0 , 1] = T0
BCM [ ABCM , 1] (6.8)

where A0 (resp. ABCM ) are the coordinates of A in the frame {0} (resp.
{BCM}) and T0

BCM is the homogeneous transformation matrix from the
coordinate system {BCM} to the coordinate system {0}.

Finally, A, B and C are used to build the palm base frame {ABC}, as
depicted in Fig. 6.8. The lengths of the different tendons through the wrist
are easily expressed from the frames {ABC} and {A0B0C0}.
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{ABC}

B

C

A

Figure 6.8: Palm frame ABC

Each tendon i with i ∈ [1 . . . 38] is going through a fixed point in the
palm hABC

palm,offset,i ∈ R
3 and a fixed point in the forearm h0

forearm,offset,i

∈ R
3. Expressing the coordinates of the palm point hABC

palm,offset,i ∈ R
3

in the forearm coordinate system {0} allows to express the tendon lengths
in the wrist

hwrist,i =
∥

∥

∥[ h0
forearm,offset,i, 1]− T0

ABC [ hABC
palm,offset,i, 1]

∥

∥

∥ , (6.9)

where h0
forearm,offset,i, i ∈ [1 . . . 38] and hABC

palm,offset,i, i ∈ [1 . . . 38] are
defined in the Table 6.2. As usual, the form [x, y, z, 1] is used to perform
homogeneous operations.

6.2 Kinematic verification

A first simulation consists in a flexion/extension motion of 30 degrees fol-
lowed by an abduction/adduction of 20 degrees. It allows to verify that the
modeling of the wrist kinematics and the tendon coupling is globally correct.
Figure 6.9 shows that the errors in the constraints are limited to numerical
inaccuracies.

The tendon displacements resulting from the wrist motion are depicted in
Figure 6.10 and give an insight in the way the wrist interacts with the fingers.
According to the designer of the wrist, the coupling with the finger during
the flexion/extension should be minimal. This is confirmed by the first part
of the plot where the motion is only performed in the flexion/extension
direction. Moreover, the shape of the elongation confirms that the coupling
is nonlinearly related to the wrist flexion angle. The abduction/adduction
motion has a large influence on the tendon lengths. The perturbation is
directly proportional to the distance to the median axis of the wrist (i. e.
the tendons in the center of the wrist are barely moving while the side
ones are undergoing the largest motions). Similar to the flexion/extension
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Table 6.2: Tendon offset in the forearm frame and in the palm frame

Tendon Forearm Palm

1 [0.004, 0.007, 0.008] [-0.004, -0.011, 0.010]
2 [0.004, 0.008, 0.008] [-0.004, -0.010, 0.010]
3 [0.004, 0.010, 0.008] [-0.004, -0.008, 0.010]
4 [0.004, 0.011, 0.008] [-0.004, -0.006, 0.010]
5 [0.004, 0.013, 0.008] [-0.004, -0.005, 0.010]
6 [0.004, 0.015, 0.008] [-0.004, -0.003, 0.010]
7 [0.004, 0.016, 0.008] [-0.004, -0.002, 0.010]
8 [0.004, 0.018, 0.008] [-0.004, 0.000, 0.010]
9 [0.004, 0.019, 0.008] [-0.004, 0.002, 0.010]
10 [0.004, 0.021, 0.008] [-0.004, 0.003, 0.010]
11 [0.004, 0.023, 0.008] [-0.004, 0.005, 0.010]
12 [0.004, 0.024, 0.008] [-0.004, 0.006, 0.010]
13 [0.004, 0.026, 0.008] [-0.004, 0.008, 0.010]
14 [0.004, 0.027, 0.008] [-0.004, 0.010, 0.010]
15 [0.004, 0.029, 0.008] [-0.004, 0.011, 0.010]
16 [0.004, 0.031, 0.008] [-0.004, 0.013, 0.010]
17 [0.004, 0.032, 0.008] [-0.004, 0.014, 0.010]
18 [0.004, 0.034, 0.008] [-0.004, 0.016, 0.010]
19 [0.004, 0.035, 0.008] [-0.004, 0.018, 0.010]
20 [0.004, 0.006, 0.028] [-0.004, -0.013, -0.010]
21 [0.004, 0.007, 0.028] [-0.004, -0.011, -0.010]
22 [0.004, 0.009, 0.028] [-0.004, -0.010, -0.010]
23 [0.004, 0.011, 0.028] [-0.004, -0.008, -0.010]
24 [0.004, 0.012, 0.028] [-0.004, -0.006, -0.010]
25 [0.004, 0.014, 0.028] [-0.004, -0.005, -0.010]
26 [0.004, 0.015, 0.028] [-0.004, -0.003, -0.010]
27 [0.004, 0.017, 0.028] [-0.004, -0.002, -0.010]
28 [0.004, 0.019, 0.028] [-0.004, 0.000, -0.010]
29 [0.004, 0.020, 0.028] [-0.004, 0.002, -0.010]
30 [0.004, 0.022, 0.028] [-0.004, 0.003, -0.010]
31 [0.004, 0.023, 0.028] [-0.004, 0.005, -0.010]
32 [0.004, 0.025, 0.028] [-0.004, 0.006, -0.010]
33 [0.004, 0.027, 0.028] [-0.004, 0.008, -0.010]
34 [0.004, 0.028, 0.028] [-0.004, 0.010, -0.010]
35 [0.004, 0.030, 0.028] [-0.004, 0.011, -0.010]
36 [0.004, 0.031, 0.028] [-0.004, 0.013, -0.010]
37 [0.004, 0.033, 0.028] [-0.004, 0.014, -0.010]
38 [0.004, 0.035, 0.028] [-0.004, 0.016, -0.010]
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Figure 6.9: Simulation: maximum error on the distance constraints between
the points, that is max(‖AA0‖, ‖BB0‖, ‖CC0‖, ‖AB‖, ‖AC‖, ‖BC‖)

case, the relationship between the displacements and the input angle are
nonlinear.

During the experiments, the tendons are controlled by a force controller
such that the motors are simply following the tendon displacement imposed
by the wrist coupling. Figure 6.11 shows how the tendons are moving ac-
cording to the imposed wrist motion.

To verify more precisely the model, a simulation and the corresponding
experiment are compared in order to verify that the wrist frame calculation
and the tendon length calculations are correct. In the experiments, the wrist
is driven manually while the fingers are fixed to a reference plate. Figure
6.10 reports the calculated tendon displacement due to the wrist motion.
Figure 6.12 (resp. Figure 6.13) reports the measured tendon displacement
due to the wrist abduction/adduction (resp. flexion/extension) motion. The
identical patterns indicate that the modeled lengths are matching the real
tendon displacements.

The discrepancies between the plots can be explained by the steady-
state error of the tendon force controller added to the approximated contact
model between the tendon and the pulleys (they are considered fixed points
in the wrist although the contact points are changing slightly due to the
approach angle).
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Figure 6.10: Simulation: calculated tendon displacement resulting from a
wrist motion

6.3 Conclusion

The wrist has a double inverted parallelogram structure. This allows all
tendons to be guided through the wrist while providing a large range of mo-
tion. However, because the tendons cannot all go through a unique point, a
motion of the wrist modifies the tendon path which results in a motion in
the fingers. Forwarding the tendon length of the wrist prevents the finger
position deviations. Therefore, the homogeneous transformation between
the forearm frame and the palm frame has been derived. It should be noted
that the wrist position modifies the mechanical stiffness of the tendons since
the wrist is also actuated with a stiffness-adjustable mechanism. The exact
expression of the mechanical stiffness of the fingers, including the wrist con-
tribution, is however not treated in this thesis. Simulations and experiments
confirm the behavior announced by the designers. The good match between
the simulated and the measured the tendon displacements validate the wrist
kinematic model.
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Figure 6.11: Experiment: measured tendon displacement resulting from the
recorded wrist motion
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Figure 6.12: Experiment: simulated tendon displacement resulting from the
recorded wrist flexion/extension motion
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Figure 6.13: Experiment: measured tendon displacement resulting from the
recorded wrist abduction/adduction
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Part II

Control
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The first objective in the control of a highly complex hand system is the
robustness w. r. t. unmodeled dynamics and unexpected disturbances, as well
as the protection of the system. The secondary objective is to change the fin-
ger configurations within a reasonable time and precision since the execution
time is not critical, especially when compared to the case of pick and place
machines. The third objective is to be able to adjust the mechanical stiffness
and thereby adapt the finger to the environment. The use of a hand in an
unstructured environment implies a large number of expected contacts, e. g.
during grasping, or unexpected contacts (if not impacts), e. g. during explo-
ration. The flexible tendons provide a natural robustness against impact by
the mean of a mechanical low-pass filter. This mechanical protection, while
clearly outperforming any controller in terms of response time, is limited in
amplitude and a suitable controller action must take place to offer a larger
range of deflection. Indeed, for example, the mechanical filter does not pre-
vent tendon slackening. Therefore, the control architecture must actively
maintain the system into its operational space. Namely, the controller must
keep the tendon forces in a specified range, and if possible, prevent the sub-
luxation of the fingers. Meanwhile, the controller should allow the user to
modify the effective stiffness and the finger configuration.

In the case of flexible-tendon driven systems it is usually argued that
the stiffness and the position can be adjusted independently, however in
practice the tendon force range creates some coupling in the workspace [41].
Indeed, intuitively, once the tendon forces are close to the tendon force lim-
its the stiffness cannot anymore be adjusted. Similarily, holding a heavy
load requires a given amount of tendon force, thereby imposing a minimum
stiffness. The mechanical stiffness does not usually correspond to the user’s
needs. Therefore, a compliant behavior is introduced by an admittance
or impedance controller. As a result, the effective finger stiffness depends
on the controller loop stiffness as well as on the mechanical stiffness. The
serial/parallel connection of the impedances creates some dependencies be-
tween the values. For example, it is impossible to create a finger stiffer
than its mechanical stiffness (which is not totally exact; a negative feedback
can achieve the desired behavior, however the stability is very difficult to
obtain).

This second part of the thesis concentrates on the control of an antag-
onistically driven joint with nonlinear, flexible tendons. However, as the
complexity of systems is increasing it becomes an increasingly difficult task
to define control objectives. In many cases, a step response behavior is
the reference (analyzed as a second order linear system, i. e. pulsation and
damping). In the case of a multifingered hand where nonlinear couplings are
present, the individual joint behavior might not be a good/fair comparison.
The question is simplified when considering only one joint and comparing
the control approaches in simulation and experiments. It should be noted
that the standardized comparisons, i. e. step response, tracking accuracy,
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Figure 6.14: Overview of the structure of the control part

must be considered with respect to some non standard elements. Elements
such as noise, power consumption, behavior in case of sensor failure or ten-
don failure must be included in the choice of a controller. The first three
chapters present the problems specific to the tendon actuation but not di-
rectly related to the control of flexible joints. The followings chapters derive
controllers for a single joint with increasing complexity. All approaches are
evaluated and compared in simulations and experiments. Finally, because
of its success, the backstepping approach is selected and the novel question
of automatically selecting gains is analysed. The logical links between the
different chapters of this part are depicted in Fig. 6.14. The first chapter
describes the tendon force distribution and the internal force selection prob-
lems. It proposes some algorithms that have been successfully implemented.

The second chapter focuses on the correction of the controller stiffness.
Indeed, by structure, the effective stiffness at the fingertip is the combination
of the controller stiffness (active) and the mechanical stiffness (passive).
However, during interactions the mechanical stiffness is modified nonlinearly,
resulting in a modified effective tip stiffness. A control scheme that adapts
the controller stiffness online is described. Its effectiveness is demonstrated
by simulation and experiments. However, ensuring stability remains an open
question.

In the third chapter, strain gauges are integrated in the link side of the
finger to highlight the possible improvements in terms of accuracy. Despite
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the excellent results, the concept is not further used since it involves a re-
design of the electronic hardware and severely impairs the finger robustness
(e. g. reliability of cables).

The fourth chapter presents the results obtained with the tendon force
controller. A gain scheduling approach confirms that the performance can
be improved in the whole workspace.

In the fifth chapter, a simple controller is implemented under the hy-
pothesis of a complete decoupling of the motors and link dynamics.

The sixth chapter uses a direct pole placement approach.
Chapter seven continues the pole placement approach and proposes an

optimal control approach to select the gains.
Chapter eight applies a backstepping approach on the system. The

method is applied on problems of increasing complexity. The method will
prove to be very successful. However, its main limitation lies in the delicate
choice of the feedback gains.

Finally, Chapter nine considers the problem of locally selecting optimal
gains for the backstepping. It aims at combining the advantages of the
backstepping structure and the automatic choice of gains of the optimal
control.
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7 Tendon force distribution

A key characteristic of tendon-driven systems is the necessity of maintaining
positive tendon forces. Indeed, the model is invalid if the tendon tension
falls to zero. In such a case, the system does not any longer comply with
the equations of motion and may become uncontrollable1. Depending on
the mechanical design, it might even get damaged. In the Awiwi Hand , the
antagonistic configuration and the use of nonlinear springs2 allows to adjust
the joint stiffness by modifying the pretension of the tendons. Therefore,
the question arises: How should one select the tendon forces to generate the
desired joint torque in real time and realize the desired mechanical stiffness
while preventing slackening or overload of the tendons? In the modeling
part, it has been shown that the joint torque can be obtained from the
tendon forces and the coupling matrix. Therefore, an algorithm that inverses
the mapping is needed. However, neither a pseudo-inversion of the coupling
matrix nor a projection can guarantee that the desired tendon forces will
be restricted to a given range. In the following chapter, the objective is
to build an algorithm to set the pretension forces to approximate the user-
required mechanical stiffness. Because of the constraints, this is not possible
in general and only an approximative solution can be found. First, a formal
description of the problem is given. The second section presents several
solutions to the problem and discusses the advantages and drawbacks of each
method. A pseudo-code that corresponds to the current implementation is
reported.

7.1 Problem formulation

As presented in the modeling part, as well as in several works [18, 41], the
joint stiffness matrix is obtained by the following transformation

Kq(q, f t)|q=q0,f t=f t,0
=

∂τ (f t)

∂q
|q=q0,f t=f t,0

= P T (q)
∂f t

∂q
+

∂P (q)T

∂q
|q=q0

f t

= P T (q)
∂f t

∂h

∂h

∂q
+

∂P (q)T

∂q
|q=q0

f t

= P T (q)Kt(f t)P (q) +
∂P (q)T

∂q
|q=q0

f t

, (7.1)

where P (q) ∈ R
n×m is the coupling matrix defined as P (q) = ∂h(q)/∂q.

q ∈ R
n and f t ∈ R

m are the vector of joint angles and the vector of tendon

1e. g. due to the change of coupling
2The springs themselves are linear but they are used in a mechanism that exhibits a

nonlinear stiffness behavior [3].
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forces. Kt = ∂f t/∂h ∈ R
m×m is the tendon stiffness matrix. However, in

the Hand Arm System the tendon stiffnesses are independent, thus it is a
diagonal matrix. Kq ∈ R

n×n is the joint stiffness matrix (positive definite).
Classically, q = q0, f t = f t,0 denote the reference around which the stiffness
is calculated. The application that transforms the tendon forces into joint
torques and derives the joint stiffness matrix can be defined from (7.1) by

Ψ : [ft,min, ft,max]m 7→ R
n × R

n×n

f t →







P (q)T f t

∂P (q)T

∂q
f t + P T Kt(f t)P






=

[

τ

Kq

]

. (7.2)

Therefore, the problem consists in solving the equation

Ψ(f t) = [τ des, Kq,des]
T , with f t ∈ [ft,min, ft,max]m , (7.3)

where τ des ∈ R
4 is the user-desired torque. The question is to select the

tendon forces given a desired joint torque τ des and a desired joint stiffness
matrix Kq,des. The problem is overconstrained since the torque requires
four parameters and the symmetric stiffness matrix requires ten parameters,
while only eight tendon forces are available.

7.2 Solutions

The problem (7.3) might not accept any solution because of the force range
limits. A simple saturation of the solutions to the feasible tendon forces does
not ensure that the joint torque is achieved, thus possibly destabilizing the
system (the stability proofs are usually not including the nonlinear effects of
the force saturation). The desired joint torque must be achieved as closely as
possible, possibly even increasing the stiffness error. In order to circumvent
this issue the problem is transformed into a quadratic optimization problem
under linear constraints.

minf t
(‖Kq,des −Kq‖)

τ des = P T f t
with f t ∈ [ft,min, ft,max]m , (7.4)

where the desired (resp. achieved) joint stiffness matrix is denoted Kq,des ∈
R

n×n (resp. Kq ∈ R
n×n). The norm is the L2 norm. Because the problem is

nonlinear (loosely said: kt(αft) 6= αkt(ft)), it is not possible to separate the
selection of the internal tendon forces and the tendon forces that generate a
link torque. The non-superposability distinguishes the problem from most of
the cases discussed in the literature [53,124]. The transformation that maps
the tendon forces in the joint torques and derives the joint stiffness is not
bijective in general (but is certainly injective from [ft,min, ft,max]m to R

n ×
R

n×n). Thus, for a given choice of joint stiffness matrix and torque, no exact
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solution exists. Moreover, as presented in the tendon modeling chapter, the
tendon characteristics are approximated by polynomials or lookup tables.
Therefore, it is not possible to explicitly find the inverse function Ψ−1 that
maps the desired joint torques and stiffness to the tendon forces. It should
be noted that the inversion can be reduced to a simple matrix inversion
and allows an easier analysis if a suitable tendon stiffness model can be
used [54]. A first possible approach to this problem is to perform a nonlinear
optimization with constraints defined as,







min
f t

(β1 ‖Kq −Kq,des‖+ β2 ‖τ − τ des‖)
f t ∈ [ft,min . . . ft,max]m

, (7.5)

where (β1, β2) ∈ R
2 are weights to be selected depending on the desired

behavior. Unfortunately, this optimization does not ensure that the desired
torques are achieved. The stiffness can potentially lead to an incorrect torque
and destabilize the system. Due to this stability issue, the torque is more
important than the mechanical stiffness. A constraint can be added in the
problem to solve the issue,















min
f t

(β1 ‖Kq −Kq,des‖)
f t ∈ [ft,min . . . ft,max]m

P f t = τ des

, (7.6)

where β1 ∈ R
n×n is a weight matrix to be selected depending on the rela-

tive importance of the joints. This latter formulation revealed to be complex
to implement efficiently on the real-time machine, mainly due to the con-
straints. As a results the solver is not suitable for a real-time use. A reformu-
lation of the problem (inspired by [18]) ensures that the desired torques are
achieved if it is possible given the limits of the tendon forces. The problem
is given by

min
α

(

γ1‖Kq,des −Kq‖+ γ2Ψ(f t, f t,min) + γ3Ψ(f t, f t,max)
)

, (7.7)

where f t = (P T )+τ des+ker (P T )α. The desired joint stiffness matrix (resp.
the achieved joint stiffness matrix) is Kq,des ∈ R

n×n (resp. Kq ∈ R
n×n).

The tendon force limits are (f t,min, f t,max) ∈ R
2. The term ker (P T )α

operates in the null space of the coupling, and therefore, it does not generate
any joint torque. The weighting factors γ1, γ2, and γ3 are used to balance the
relative importance of the boundary potentials and the error. The boundary
function Ψ implements a repulsive potential to repel the solution from the
tendon force limits. It is important to note that, in contrast to (7.6) where
the search is performed on f t ∈ R

m, in (7.6) the search is performed only
on α ∈ R

n. This reduction of the search space provides a valuable run-time
speed-up. Using this formulation, the particular shape of the nullspace of
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the coupling matrix is used advantageously to improve the search speed.
The pseudo-code corresponding to the search is reported in Alg. 2. The
key feature of the algorithm is to ensure that the desired torque is exactly
achieved. Although it does not strictly enforce that the force constraints
are satisfied, they are in practice achieved since the boundary gains, i. e.
γ2 and γ3, can be large to prevent the search from exceeding the limits.
In particular, this algorithm is extremely efficient with constant coupling
matrices (i. e. all fingers but the thumb of the hand of Awiwi Hand ). Indeed,
if P is constant, a base W of the kernel of P T can be computed offline. In
case of a position-varying coupling matrix, this algorithm needs to compute
a singular value decomposition (or a pseudo-inverse) online thus severely
impairing its execution time. Nonetheless, in the case of the thumb, despite
its position dependance, the special shape of the coupling matrix (block
diagonal) allows efficient implementation techniques.

7.3 Discussion

In this chapter, the problem of selecting the internal tendon forces has been
described. Since the tendon forces modify the joint stiffness, it is not possible
to independently set the stiffness and the torque. Several formulations of
the problem are proposed and discussed. Unless assumptions are made on
the stiffness function of the tendons, numerical search algorithms are the
only available tool to optimally select the tendon forces. Although, initially,
the search problem is of dimension equal to the number of tendons, it is
possible to restrict the search to a base of the kernel of the coupling matrix.
It ensures that the search algorithm satisfies the desired torque and reduces
the dimension of the problem. Experimental results have been presented
in [41].

Norms In this chapter, the notion of norm is required to define the op-
timization goals/costs. For real vectors, the norm operation from R

n to R

defined by (7.8) will be used unless otherwise specified.

‖x‖ =

√

√

√

√

n
∑

i=0

x2
i (7.8)

where x ∈ R
n is a real vector of dimension n ∈ N. i ∈ [1 . . . n] is a generic

summation symbol. For real matrices, the definition is less natural and
multiple norms have been proposed (max norm, entrywise norm, Schatten
norm, Frobenius norm, [125]). In this chapter, either the norm defined by
(7.9) or by (7.10) will be used.

‖A‖ =

√

√

√

√

n
∑

i=0

a2
i (7.9)
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or
‖A‖ = max ai,j (7.10)

where A ∈ R
n×n is a real square matrix of dimension n ∈ N. (i, j) ∈ [1 . . . n]2

are a generic summation symbols. In most cases, the norms can easily be
changed since they are not needed to establish the properties.
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Algorithm 2 The projected gradient search algorithm.

% W : null space of P T

% s: step size
% g: gradient
% ∇: gradient operator
% C: cost at the current point
———————————————————

W ← ker(P T )
α← α0

s← s0

g ← 0
Cbest ← + inf
for i = 0 to N− 1 do

C, g ← costα(α− s · g)
if C < Cbest then

Cbest ← C
α← α− s · g

else

s← s/2
end if

end for

———————————————————

function costα(α)
f t ← (P T )+τ des + W α

C ← γ1‖Kq,des −Kq(f t)‖+ γ2Ψ(f t, f t,min)+
γ3Ψ(f t, f t,max)

g ← ∇C
return C, g

end function
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8 Stiffness correction

The fingers of the Awiwi Hand are driven by flexible tendons. As a result of
this design, the stiffness obtained at a joint is a combination of the mechan-
ical stiffness and the controller stiffness. In this chapter, two problems are
presented. The first problem is the computation of the effective stiffness,
that is the stiffness that the user feels. The second problem is the question
of generating the controller parameters in order to achieve a given effective
stiffness. In the first section, the serial interconnexion of the stiffnesses is
modeled. The second section presents a controller that adjusts the stiffness
online, in order to yield the user desired stiffness. Several challenges associ-
ated with the problem are highlighted. Finally, experiments and simulations
confirm the effectiveness of the approach.

8.1 Problem formulation

For a given joint torque, the deflection observed at the joint is generated
by three contributions. First, the springs of the tendons are elongated.
Then, the motor controller moves the motors according to the impedance
control law. In the Awiwi Hand , the motor control is similar to a simple
PD controller, therefore the motors do not exactly reach their final position
because of the external disturbance. The general case is discussed in [54],
however, in the case of the Awiwi Hand , the high position gains of the motors
allow to neglect the motor contribution. An alternative consists in adding
an integral term to supress the steady-state error. The effective stiffness
at the finger joints results from the controller stiffness and the mechanical
stiffness. This serial interconnection is expressed by

K−1
eff = K−1

imp + K−1
mech, (8.1)

where Keff ∈ R
n×n(resp. K−1

imp ∈ R
n×n and Kmech ∈ R

n×n) is the effective
joint stiffness matrix (resp. the stiffness matrix of the impedance joint con-
troller and the mechanical joint stiffness due to the tendons). This serial
interconnection is represented in Figure 8.1. From Equation (8.1) it becomes
obvious that by fixing two of the stiffness matrices, it is at least conceptually
possible to generate any third matrix.

8.2 Adaptive Controller

The user most likely wants to specify the effective stiffness and does not
want to interfere with the rest of the matrices. Therefore, the main concept
of this design is to let the user specify an effective link stiffness Keff . Then
compute automatically the optimal mechanical stiffness Kmech with respect
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Figure 8.1: Serial interconnexion of the controller stiffness and the mechan-
ical stiffness

to some criteria, such as the maximum robustness or minimum control effort.
Finally, the controller impedance gain K imp is selected to obtain, if possible,
the proper effective stiffness. Theoretically, if the adjustment of K imp is
quasi-static, the stability only depends on Keff being positive definite. It
implies that the mechanical stiffness can be arbitrarily selected (but positive
definite by nature) and the effective stiffness Keff can always be achieved.
However, it should be noted that non-positive definite gain matrices K imp

are practically often unstable. A non-positive definite matrix corresponds
to a negative feedback, that is the controller pushes against the disturbance
instead of releasing. For the implementation, it is needed to ensure that
the gains of the controller remain positive definite, possibly, at the cost
of not reaching the desired effective stiffness. The control scheme used to
implement this correction is depicted in Fig. 8.2.

8.3 Challenges

In this control scheme, several challenges appear. First, the overall stability
of the plant is not guaranteed due to the online adjustment of the impedance
gain matrix. Second, if the mechanical stiffness selection algorithm selects a
stiffness close to the user-desired effective stiffness, the impedance gains can
become infinite (K−1

eff = K−1
mech → K−1

imp = 0). Therefore, the implementa-
tion must prevent such a case and rules should be devised for the mechanical
stiffness selection to circumvent this issue.

The stability question is challenging, involving a nonlinear adaptive con-
troller for a nonlinear plant. A possible solution consists in building a con-
troller that ensures that the plant remains passive [126]. It is an approach
mostly used in telemanipulation scenarios. Despite its implementation sim-
plicity, the method requires to estimate the energy dissipation in the system
which is a delicate task.
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Figure 8.2: Control structure used for adjusting online the impedance gain
to obtain the desired effective impedance.

The second question, that is the selection of the controller parameters
to achieve the user-desired effective stiffness, can be answered in several
ways. A simple and practical solution consists in selecting a mechanical
stiffness always higher than the desired, therefore avoiding the asymptotic
cases. Such a selection can be,

Kmech,des = ǫKeff,des, (8.2)

where ǫ > 1 ∈ R is a positive constant used to avoid the singular cases
(practically 2 or 3 are good values). The desired mechanical stiffness matrix
(resp. the desired effective stiffness matrix) is denoted Kmech,des ∈ R

n×n

(resp. Keff,des ∈ R
n×n). A more involved answer consists in designing both

gains (K imp, Kmech) in an optimal manner with respect to a cost function
that integrates the asymptotic issue. For example, the gains could be se-
lected according to some weights on the robustness and the accuracy. An
open research problem is the question of the choice of the mechanical stiff-
ness that would minimize the controller action. Indeed, selecting the closest
mechanical stiffnesses for some joints, is not necessarily minimizing the ef-
fort needed to achieve the other directions. Moreover, recent work on the
arm control showed that it is possible to achieve limit cycles if the joint stiff-
ness is selected properly. The stability of a grasp can also be improved by
choosing suitable joint stiffnesses such that the internal forces are primarily
maintained by the springs thus easing the controller task.

8.4 Simulation and experiments

Selecting the target mechanical stiffness 1.5 times the value of the effective
stiffness shows acceptable results. The measurements reported in Figure
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Figure 8.3: Effective stiffness using the active correction. The red/solid
curve depicts the impedance controller stiffness. The blue/dotted curve
represents the mechanical stiffness. The green/dashed dotted curve depicts
the resulting, nearly constant, stiffness.

8.3a are obtained on a single joint using a simulation model that includes
the calibration curve and a structure identical to the control model (only the
hardware block is replaced by a plant model). Figure 8.3b reports the real
system measurements. In both cases the green/dashed-dotted line depicts
the effective stiffness Keff computed according to (8.1). The red/solid curve
shows the impedance gain K imp and the light blue/dotted curve represents
the mechanical stiffness Kmech (estimated from the desired tendon forces
to limit the noise). The perturbations in the simulation and the experi-
ment are generated by applying a disturbance to the link. It can be seen
that the effective stiffness is regulated around its desired value (1 Nm/rad
and 0.7Nm/rad) although the external disturbances modify the mechanical
stiffness.

8.5 Discussion

The method performs as expected but its effect is not noticeable during the
experiments. Indeed, it is very difficult for a human user to evaluate the
stiffness of a fingertip mainly due to other effects such as the joint friction.
Therefore, this stiffness compensation scheme is not used in the following
work since its advantages are limited and it lacks a stability proof. More
experimental results and details are presented in [55]. Nonetheless, the
method shows that it is possible to select the stiffness matrices in order to
generate a constant effective stiffness. There might exist a choice of stiffness
that optimizes the robustness (the spring storage is fully available) or the
precision since the sensitivity to disturbances decreases with the stiffness.
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However, the joint friction increases with the stiffness, therefore it seems
intuitive that there exists an optimal choice of the mechanical stiffness, e. g.
to maximize robustness. It is part of future works to study the trade-off
between robustness and accuracy. Eventually, the robot could modulate the
internal forces to adapt to its task, such as precision manipulation or tactile
exploration.
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9 Joint torque observer

As presented in the tendon modeling chapter, the tendon friction due to the
pulleys and the sliding surfaces creates a substantial error in the tendon force
estimation. Depending on the mounting condition and the routing path, the
tendon friction reaches 10 % to 50 %. That is for a measured force of 20 N
the effective pulling force is between 10 N and 30 N. Consequently, even an
ideal control scheme cannot produce the desired behavior (a deflection of
the link is not corrected even without any external disturbance because the
estimated joint torque is biased). For the mechanical designers it is impor-
tant to understand the influence of the tendon friction. According to the
desired performance, the materials or the routing might be revised possibly
at the expense of reduced maximum torque. To bring more sensitivity to
the finger, an external force sensor can be used to circumvent the tendon
friction error. Similar to other hands developed at the institute, some strain
gauges have been placed on the bone of the finger. This has been done
mostly for testing purposes since the introduction of sensors and cables in
the fingers jeopardizes the robustness of the complete system. Indeed, if
applied to the complete system, around 100 tiny cables would be required
between the strain gauges and the analog converters. Therefore, the work of
this chapter is carried out to obtain an idea of the system capabilities, if the
measurements of the tendon forces perfectly represented the joint torques.

The first section briefly describes the structure of the controller and
explains the main ideas. The details about the stability and the passivity
aspects of the controller are found in [58]. The second section presents
simulations, the implementation and experimental results.

9.1 Structure

The friction compensation mechanism is based on the idea of estimating the
external joint torque by comparing the model dynamics and the observed
dynamics. It is similar to the collision detection algorithm presented in [127].
The observer compares the applied torque and the measured acceleration
and identifies the missing part to the friction. The actuator dynamics is

u = Bθ̈ + τ + τfric , (9.1)

where u ∈ R is the applied motor torque, θ̈ ∈ R is the motor acceleration.
B ∈ R is the motor inertia around the rotation axis and τ ∈ R (resp.
τfric ∈ R) is the joint torque (resp. the friction torque). As depicted in Fig.
9.1, the observer equations are

u = B
¨̂
θ + τa + τ̂fric

τ̂fric = −LB(θ̇ − ˙̂
θ)

, (9.2)
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Figure 9.1: Structure of the link side friction observer

(a) Picture of the real strain gauges in the
finger base
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(b) Placement of the strain gauges (in
hatched black)

Figure 9.2: Placement of the stain gauges in the index finger

where L ∈ R
+ is an observer gain to be selected. The structure of (9.2) is the

one of a Luenberger observer [128]. Finally, the control input is modified as
u = uc+τ̂fric, which effectively compensates for the estimated friction torque.
As mentioned in [58], the friction observer results in a filtered version of the
real friction. Thus, the design is not always passive and might, at least for a
short period of time, input more energy than needed. The analysis provided
in [58] shows that the passivity mainly depends on the friction model.

9.2 Experimental setup

The experiments are conducted on the index finger of the right hand. In
order to implement the controller described above, a direct access to the joint
torque is required. To that end, eight strain gauges are applied directly to
the structure of the finger (namely the bones). A total of four degrees of
freedom are measured, two for the base (cf. Fig. 9.2a), one for the PIP
and one for the DIP (cf. Fig. 9.2b). The observer is implemented for the
complete finger but only the PIP results are presented for brevity.
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9.3 Simulation and experiments

A slow sinusoidal motion profile for the link side is used for the evaluation
of the observer. Four cases are studied:

1. Simulation without compensation (cf. Fig. 9.3a).

2. Simulation with compensation (cf. Fig. 9.3b).

3. Experiment without compensation (cf. Fig. 9.3c).

4. Experiment with compensation (cf. Fig. 9.3d).

The improvements, due to the use of the link side measurement, that are
visible in the simulations (cf. Fig. 9.3a and Fig. 9.3b) are clearly visible
in the experiments (cf. Fig. 9.3c and Fig. 9.3d). The simulations are per-
formed with low stiffness and link damping to highlight the improvements.

9.4 Discussion

The joint friction observer presented in this section proved that a reduc-
tion of the joint friction significantly improves the tracking performance.
However, it is important to mention that the compensation leads to a vi-
olent reaction of motors. Indeed, around a given position, the estimation
of the stick slip results in a bang bang style estimation. Moreover, around
the equilibrium the stiffness is minimal, emphasizing the required motion
of the motors (for the same change of torque the motion of the motors is
inversely proportional to the stiffness). More results on the fingers are re-
ported in [129] as well as tests with different tendon materials and different
finger configurations. To obtain long term results, the joint friction should
be reduced mechanically. Indeed, a reduction of the mechanical friction is
expected to lead to a positioning accuracy similar to the one obtained with
the joint torque observer but without the chattering effect.
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(d) Experiment: Joint position with com-
pensation

Figure 9.3: Joint tracking performance in simulation (top) and in experi-
ments (bottom). A sinusoidal trajectory, represented in light blue/dotted
is used as reference joint trajectory. The effective joint motion is repre-
sented in red/solid. The estimated joint friction torque is depicted by the
green/dashed-dotted curve.
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10 Tendon control

This chapter describes the control of the tendon forces. The control of the
tendon forces is needed to implement the cascaded control and its perfor-
mance gives a good insight in the best performance that could be achieved.
It also helps to understand the effect of the nonlinear springs and to ver-
ify the validity of the modeling. First, a tendon force dynamic model is
described that consists of a motor, a spring element, and a tendon. In
the second section a force controller is designed. The feedforward term is
added to significantly reduce the steady-state error. However, because the
controller gains are selected for a specific working point, the controller is
not adapted to the complete workspace. Therefore, in the third section,
a gain scheduling controller is derived in order to deal with the changing
stiffness. It is simulated on a plant similar to the real one in terms of noise
and quantization and exhibits the desired behavior. Finally, experiments
are performed to verify the applicability of the method on the real system.

10.1 Control model

According to the modeling part, the motor/tendon subsystem is modeled
as a second order system. The equation of dynamics, reported for ease of
reference, is

Bθ̈ = τfric(θ, θ̇) + τm + τft , (10.1)

where B ∈ R is the motor inertia, θ ∈ R (resp. θ̇ ∈ R, θ̈ ∈ R) is the motor
position (resp. velocity, acceleration). The torque resulting for the viscous
and static friction is denoted τfric(θ, θ̇) ∈ R. The motor torque is denoted
τm ∈ R. The torque generated by the tendon force is denoted by τft = rft(θ),
where r ∈ R and ft ∈ R are the motor pulley radius and the tendon force.
The dynamics are nonlinear because the function ft(θ) is not linear in its
arguments. This nonlinear behavior is the very reason why it is not possible
to directly use linear design methods.

10.2 Controller design

A PD controller is used for the tendon force control. The control law is

τ m = Kp(ft,des − ft) + Kd(ḟt,des − ḟt) + τ̂fric(θ, θ̇) + τ̂ft , (10.2)

where (Kp, Kd) ∈ R
2 are positive gains and (̂.) denotes an estimated quan-

tity. The desired tendon force and the velocity of the desired tendon force
are denoted ft,des ∈ R and ḟt,des ∈ R. A friction compensation and a torque
feedback term are used in order to shorten the rise time and reduce the
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Figure 10.1: Simulation: force step response of the plant with and with-
out feedforward terms. The dotted/green curve denotes the desired force.
The blue/dashed curve represents the force without feedforward term. The
solid/red curve represents the force with feedforward term.

steady-state error. Figure 10.1 depicts that the steady-state error is reduced
by the feedforward terms. It is important to note that the improvements
visible in the experiments are smaller than in simulations because of the
imprecision of the models and the impossibility to achieve perfect measure-
ments. The steady-state error is obtained by setting all time derivatives to
zero in Eq. (10.2). Without feedforward term, the error is

ft,des − ft = − 1

Kp

(

τfric(θ, θ̇) + τft

)

, (10.3)

whereas, with compensation, the error is

ft,des − ft =
1

Kp

(

τfric(θ, θ̇)− τ̂fric(θ, θ̇) + τft − τ̂ft

)

, (10.4)

which, if the observer is properly designed, is smaller since ‖τfric(θ, θ̇)+ τft−
τ̂fric(θ, θ̇)− τ̂ft‖ < ‖τfric(θ, θ̇)+τft‖. If the observer of the estimates is asymp-
totically stable (that is limt→inf(τ̂fric(θ, θ̇)) = τfric(θ, θ̇) and limt→inf(τ̂ft) =
τft), the regulation is perfectly achieved with respect to the modeling as-
sumptions. Under the assumption that the estimation errors are negligible
the closed-loop equation, obtained by combining Eq. (10.1) and Eq. (10.2),
is

Bθ̈ = Kp(ft,des − ft) + Kd(ḟt,des − ḟt) . (10.5)
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Figure 10.2: Force step response of the controller whose gains are tuned
for 30 N. The gains are tuned to obtain the fastest settling time without
overshoot. In each experiment, only the initial tendon force and the target
tendon force are modified. It can be observed that the response is ideal for
30 N but underdamped for 10 N and 20 N.

It is possible to adjust the controller gains manually to obtain a satisfying
behavior since there are only two parameters to tune. However, since θ and
ft are not linearly dependent, the closed loop equation is neither linear in
the motor position nor in the tendon force. Therefore, a fixed gain tuning
is limited to the vicinity of a force reference. In Figure 10.2, several step
responses for a controller tuned for critical damping at 30 N are reported. As
expected, it is not well adapted for the other working points. The controller
is underdamped if the tendon stiffness is lower than expected (e. g. 20 N). If
the stiffness is higher than expected, the controller is underdamped and its
rise time could be reduced (up to the saturation of the motor torque). The
steady state is obtained by setting all time derivatives to zero in (10.5). If
ft(θ) is bijective, the equilibrium is unique and given by θeq = f−1

t (ft,des).
Practically, the function f is continuous and strictly increasing on the in-
terval [ft,min, ft,max] and therefore is a bijection. Although the steady-state
force is the desired one, it is important to note that the gains of the system
cannot be directly selected by identification to a second order system since
the closed-loop equation is not linear in the controlled variable ft. The ob-
jective is to regulate the tendon force to a reference and specify the transient
behavior of the tendon force (or the motor position) and not to deal with
a combination of both variables. Therefore, in the following sections, this
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simple controller is improved to fit the different working points and to allow
to specify the transient behavior in terms of ft or θ.

10.3 Gains scheduling design

The basic concept of the gain scheduling method consists in selecting the
gains adapted to each working point, in order to improve the performance
of the controller described by (10.2). The first step of the method requires
to express the dynamics in terms of a scheduling variable. Then, the con-
troller gains are selected under the assumption that the scheduling variable
is frozen and a table of parameters is constructed (or an analytic expression
when possible). Finally, for the current scheduling variable, the controller
gains are extracted from the table (or evaluated from the analytic expres-
sion). Numerous methods to interpolate the gains have been proposed that
fit the specific meaning of the scheduling variable (e. g. piecewise continu-
ous, linear interpolation). In the tendon control case, the regularity of the
stiffness function leads to the choice of a simple linear interpolation. The
gain scheduling method is very powerful in the sense that it can be applied
to a very large variety of nonlinear problems by linearization. However, it
is not generally ensuring the global asymptotic stability.

10.3.1 Linearized form

The first step needed to apply the gain scheduling method consists in writing
the dynamics to make the scheduling variable appear. The scheduled form is
obtained by linearizing the dynamics around a working point but the choice
of the linearization variable is free. In the present case, the linearization
is done w. r. t. the tendon force or the motor position which are the most
natural coordinates of the problem. It should be noted that in general, a
partial feedback linearization does not enforce a particular choice of coordi-
nates. It allows to work with the coordinates that are the most explicit to
the designer, at the expense of a feedback to cancel the extra terms. The
case of linearization w. r. t. the motor position θ is reported here, the case
of the tendon force can be derived in a similar way. The tendon force func-
tion is assumed to be sufficiently smooth. Around a point θdes ∈ R selected
such that ft(θdes) = fdes, the force and the time derivate of the force are
expressed by

ft(θdes + δθ) = ft(θdes) +
∂ft

∂θ
|θdes

δθ, (10.6)

ḟt(θdes+δθ, θ̇des+δθ̇) = ḟt(θdes, θ̇des)+
∂ḟt

∂θ
|θdes,θ̇des

δθ+
∂ḟt

∂θ̇
|θdes,θ̇des

δθ̇ , (10.7)
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where δθ ∈ R represents an infinitesimal change of the motor position θ.
Defining α = ∂ft/∂θ|θdes

, β = ∂ḟt/∂θ|θdes,θ̇des
and γ = ∂ḟt/∂θ̇|θdes,θ̇des

yields

B(θ̈des + δ̈θ) = Kp(ft,des− (ft(θdes) + αδθ)) + Kd(ḟt,des− (ḟt(θdes) + βδ̇θ))) ,
(10.8)

which is a linear differential equation in δθ with the scheduling variables α
and β.

10.3.2 Fixed gain controller design

Using the linearized closed-loop defined by (10.8), the gains (Kp, Kd) ∈
R

2 can be selected to obtain the desired behavior. Since, by definition,
ft(θdes) = ft,des, (10.12) can be simplified to

δ̈θ +
Kd

B
βδ̇θ +

Kp

B
αδθ =

1

B
(θ̈des + Kd(ḟt,des − ḟt(θdes))) . (10.9)

The gains are selected by identification to obtain the target closed-loop
dynamics that is a damped second order system for the error dynamics δθ.
The right hand side of Eq. (10.9) is independent of time, thus it is possible
to identify the desired gains, which yields the system

ω2 =
Kp

B
β

2ξω =
Kd

B
α

, (10.10)

where ω ∈ R is the desired angular frequency and ξ ∈ R the desired damping
ratio. Solving the system of (10.10), leads to

Kp =
ω2B

β

Kd =
2ξωB

α

. (10.11)

As one might expect, the gains are properly defined only if α > 0 and β > 0.
This condition expresses that the system should not be degenerated in order
to place the poles. Indeed, it is not possible to place the poles of a system
where the stiffness vanishes since, in such a case, the tendon force and the
motor are not related anymore. The issue is well known by the mechanical
designers and the stiffness in the Awiwi Hand is never equal to zero. The
case of a vanishing stiffness involves, for example, the use of hysteresis or
dead-zone functions but is not treated in the work.
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10.3.3 Gain scheduled controller

As pointed out in [84, p.488], the model resulting from the linearization of
the system with the fixed gain controller and the model resulting from the
linearization of the system with scheduled gains are not equal. In both cases,
the desired steady state is the equilibrium, however, the transfer functions
are different. Depending on the control objective, the controller design can
be acceptable or can be modified to yield the desired transfer function. It is
considered acceptable for the Hand Arm System to have a different transfer
function since, experimentally, the transfer function is qualitatively close
enough to the desired one. The linearized closed-loop equation under the
action of the fixed gain controller is obtained by substituting the gains of
(10.11) into (10.5) and gives

δ̈θ + 2ξωδ̇θ + ω2δθ =
1

B
(θ̈0 + Kd(ḟt,des − ḟt(θ0))). (10.12)

Around any constant desired working point (i. e. in the regulation case), the
right hand side vanishes and the error dynamics is indeed the one of a linear
second order differential equation with the selected poles.

10.4 Experimental and simulation results

The gain scheduling method proposed in the previous section is simulated on
a single tendon. The model uses the friction and ripple models developed
in the Chapter 3. The stiffness characteristics of a calibrated tendon are
used to provide a realistic force/stiffness displacement curve. Noise of an
amplitude similar to the one observed on the real system is added through
a sensor model (quantization and white noise). The test pattern consists of
a force step from 10N (resp. 20N, 30N and 40N) to a force of 20N (resp.
30N, 40N and 50N) and is repeated several times. The test pattern is used
in four different cases:

1. Simulation with fixed gains (cf. 10.3a).

2. Simulation with scheduled gains (cf. 10.3b).

3. Experiment with fixed gains (cf. 10.4a).

4. Experiment with scheduled gains (cf. 10.4b).

The simulations and the experiments both confirm that the method is
successful. The transient behavior of the force, that was underdamped or
overdamped under the fixed gain controller, is always well damped under
the scheduled gain controller. Although only approximative (the partial
derivative of the gains modifies the pole locations), the method is intuitive
and relatively easy to implement. A more detailed experimental work which
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Figure 10.3: Simulations: Tendon force control with/without adaptive gains.
In both figures, the measured and desired tendon force is depicted. A step
of 5N is commanded from different initial states. The adaptive controller is
superior to the fixed gain controller except for the lowest force which is due
to the saturation of the control input. The fixed gain controller is tuned for
30N.
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Figure 10.4: Experiments: Tendon force control with/without adaptive
gains. In both figures, the measured and desired tendon force is depicted.
A step of 5N is commanded from different initial states. The adaptive con-
troller is superior to the fixed gain controller for all the cases. The fixed
gain controller is tuned for 30N.
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is not reported here, shows that the scheduling in β can be neglected and
only α has a noticeable influence. Unsurprisingly, α is nothing else but the
tendon stiffness (up to a multiplicative constant) at each working point.

10.5 Discussion

In this chapter, a tendon force controller is presented. A proportional deriva-
tive controller for the tendon force using fixed gains is implemented and
experiments have been conducted. However, since the system is nonlinear,
the controller gains can only be tuned for a specific working point and the
controller is underdamped or overdamped around the nominal point. The
experimental results and the simulations both confirm it. The linearization
of the state dynamics allows to use a gain scheduling method that adapts
the gains at each working point. The use of state dependent gains enables to
design the gains by identification and to set directly the poles of a linear dif-
ferential equation of the motor position error. The method only requires the
derivative of the stiffness curve. Experiments and simulations confirm that
the controller is indeed well damped for all the working points. It should be
noted, however, that vibrations appear at higher stiffness mostly due to the
noise introduced by the high derivatives. A limitation of the gain design is
the fact that it does not account for the control input magnitude (as with all
linearization or pole placement methods). Therefore, the controller should
be tested on the complete working range to ensure that nonlinear effects of
an input saturation are not destabilizing the plant. Indeed, at low stiffness,
the control effort is not very effective and a large motor displacement is
needed for a small force adjustment.
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11 Two time scale approach

In this chapter, a joint impedance controller is designed by building a joint
controller upon the tendon force controller. Two different designs are pre-
sented: the first one is using the singular perturbation approach and the
second one is using the cascaded approach.

The singular perturbation approach relies upon the time scale difference
between the tendon force controller and the link side dynamics. This as-
sumption is similar to the one made when considering the motors as torque
sources while commanding currents or voltages. In the Awiwi Hand the stiff-
ness is modified by the internal pretension, thus modifying the time scale
differences. Moreover, the assumption is only partially valid in the case of
fingers since the links have a low inertia and the motors, together with the
gear boxes, have larger inertias. It can be expected, and it is experimentally
verified that the validity of the singular perturbation assumption depends
on the mechanical stiffness. In the first case, the outer loop is considered as
constant for the inner loop. The inner loop error is neglected arguing that,
because of its speed, the inner loop is stabilized before the outer loop is
disturbed. Despites its limitations it remains a good technique to approach
the problem thanks to its intuitive structure.

In the second case, namely the cascaded approach, the system is brought
into a cascaded form, that is, a triangular system. The stability is obtained
by explicitly considering the inner loop tracking error as a forcing term for
the outer loop. However, the analysis is more complex than in the singular
perturbation case.

This chapter applies both methods to the case of a flexible joint, the
difference being essentially visible in the stability proofs. In the first section
the dynamic model is transformed into a cascaded form. Then, the tendon
force controller designed in the previous chapter is augmented with some
feedforward terms and their influence is experimentally verified. Next, the
equations of a joint impedance controller are established by considering that
a torque source is available at the joint. The next sections are establishing
stability in the case of the singular perturbation approach and the cascaded
approach. Finally, experimental results are presented. They highlight that
increasing the internal pretension reduces the validity the singular pertur-
bation approach.

11.1 Model

Under the assumption that the tendon force controller and the link impedance
controller are working in two independent frequency domains the dynamic
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equations of a finger can be written as

Bθ̈ = −ET f t(θ − q0) + τ m + b(θ, θ̇) , (11.1)

where the link position q0 is considered to be constant w. r. t. the scale of the
motor dynamics. When considering m tendons, B ∈ R

m×m is a diagonal
motor inertia matrix, θ ∈ R

m is the vector of the motor positions, E ∈
R

m×m is a diagonal matrix of the pulley radius, f t ∈ R
m is the vector of the

tendon forces. The electromagnetic torque is denoted τ m ∈ R
m. Following

the same approach, the link side equations are modified to integrate the fact
that the tendon forces are the input variables.

M(q)q̈ + C(q, q̇)q̇ + g(q) + b(q, q̇) = P T f t + τ ext . (11.2)

When considering n links, M(q) ∈ R
n×n is the link inertia matrix, q ∈ R

n is
the vector of the joint positions, C(q, q̇)q̇ ∈ R

n is the vector of the Coriolis
and centrifugal terms, P ∈ R

n×m is the coupling matrix, f t ∈ R
m is the

vector of the tendon forces. The external torques and the vector of joint
frictional torques are represented by τ ext ∈ R

n and b(q, q̇) ∈ R
n.

11.2 Tendon Controller Design

The control of the tendon force is realized by a PD controller with a feed-
forward term for the expected torque generated by the tendon force. A
friction compensation term, b̂(θ, θ̇), is added to further improve the tran-
sient response. It is structurally similar to the tendon controller with gain
scheduling but the gains are constant in order to facilitate the analysis.

τ m = ET
(

f t + Kp(θdes − θ)−Kdθ̇ + b̂(θ, θ̇)
)

, (11.3)

where θdes ∈ R
m is the motor position vector that would generate the de-

sired force vector. The friction model identified in the modeling chapter is
represented by b̂(θ, θ̇). The force tracking and motor damping gain matri-
ces are diagonal and positive definite. They are denoted Kp ∈ R

m×m and
Kd ∈ R

m×m. Figure 11.1a shows the simulation results obtained with and
without a feedforward force component. Fig. 11.1b shows the influence of
the friction compensation on the rise time of the force step response. The
improvements in settling time are limited by the saturation of the control
and the control delay (333µs).

11.3 Link Controller Design

The link side dynamics are designed as a regular impedance controller [78].
The link side torque input is,

τ des = M(q̂)q̈des+C(q̂, ˙̂q)q̇des+Kp,imp(qdes−q̂)+Kd,imp(q̇des− ˙̂q)+b̂(q̂, ˙̂q)+g(q̂) ,
(11.4)
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Figure 11.1: Tendon force controller experiments. The green/dashed line
depicts the desired tendon force. The measured tendon force is represented
in red/solid (resp. in light blue/dotted) for the case with feedforward term
(resp. without).

where .̂ denotes an estimated quantity, obtained by a linear observer or a
filtering process (e. g. using a low pass or a Kalman filter). The joint position
vector (resp. the desired joint position vector) is denoted q ∈ R

n (resp.
qdes ∈ R

n). The terms M(q) ∈ R
n×n, C(q, q̇) ∈ R

n×n and g(q) ∈ R
n are

the link inertia matrix, the vector of the Coriolis torques and the vector of
gravity torques. The vector of frictional torques identified in the modeling
section is represented by b(θ, θ̇). The impedance and damping matrices
(positive definite) are denoted Kp,imp ∈ R

m×m and Kd,imp ∈ R
m×m. The

term M(q̂)q̈des is traditionally used to improve the tracking performance
but has only little influence in the case of fingers. The desired tendon forces
that are required to generate the joint torque for the impedance controller
are obtained with the help of the coupling matrix pseudo-inverse.

11.4 Stability Conditions: The singular perturba-

tion case

In this section, the stability conditions are derived for the link controller
and the tendon controller. Finally the stability of the closed-loop system is
concluded, under the singular perturbation hypothesis.

Tendon force controller

In order to establish the stability conditions, the Lyapunov method is used.
All tendons are assumed to be independent and therefore all matrices are
simply diagonal. For the tendon force controller, the Lyapunov candidate
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function is defined as

V (θ) =
1

2
θ̇

T
Bθ̇+Vk(θ)−Vk(θdes)+

∂Vk

∂θ

∣

∣

∣

∣

θdes

(θdes−θ)T +
1

2
(θ−θdes)

T Kp(θ−θdes) ,

(11.5)
where θdes = φ−1(f t,des) is the motor position that would result in the
desired tendon force. The storage function of the spring is denoted Vk(θ) =
∫ θ

0 f(x)dx. The Lyapunov function is composed of the kinetic energy, the
spring elastic energy, and the expected energy at the equilibrium point. The
time derivative is

V̇ (θ) = θ̇
T

Bθ̈ + θ̇
T ∂Vk

∂θ
− ∂Vk

∂θ

∣

∣

∣

∣

θdes

θ̇
T − θ̇

T
Kp(θdes − θ) . (11.6)

Replacing the expression of Vk, as well as the controller equations yields

V̇ (θ) = θ̇
T

(f t,des−Kp(θdes−θ)−Kdθ̇+b̂−b+f t)+θ̇
T

f t−θ̇
T

φ(θdes)−θ̇
T

Kp(θdes−θ) .
(11.7)

Since fdes = φ(θdes):

V̇ (θ) = −θ̇
T

(Kdθ̇ + b̂− b) . (11.8)

As long as the viscous friction is not overestimated or at least less than
the damping injected by the controller, the term (Kdθ̇ + b̂− b) is positive,
thereby ensuring that the derivative of the Lyapunov function is negative
semi-definite. Finally, the global asymptotic stability is obtained by invoking
the LaSalle theorem.

Positive definiteness of V The terms θ̇
T

Bθ̇ and (θ − θdes)
T Kp(θ −

θdes) are positive definite due to the fact that B > 0 and Kp > 0. It
remains to prove that Γ(θ) = Vk(θ)−Vk(θdes)+ ∂Vk

∂θ
|θdes

(θdes−θ)T is positive

definite. Trivially, Γ(θdes) = 0. Γ has an extremum in θdes since ∂Γ
∂θ

(θdes) =
∂Vk

∂θ
(θdes)− ∂Vk

∂θ
|θdes

= 0. It is a minimum because ∂2Γ
∂θ2 = ∂φ(θ)

∂θ
> 0 because

f t = φ(θ) is strictly increasing, which completes the proof.

Link side controller

The equations for the link side dynamics and the link side controller are

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ ext + τ (11.9)

and

τ = −Kp,imp(q−qdes)−Kd,imp(q−qdes) + g(q) + C(q̇, q)q̇des + M(q)q̈des.
(11.10)

The regulation problem is used to prove stability, that is, qdes = q̇des =
q̈des = 0. The two following paragraphs present two alternative proofs.
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Lyapunov Approach Consider the Lyapunov function

V (q, q̇) =
1

2
q̇T M(q)q̇ +

1

2
qT Kp,impq . (11.11)

Its derivative along the solutions is

V̇ (q, q̇) = q̇T M(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + q̇T Kp,impq . (11.12)

Replacing the controller equation in free environment leads to

V̇ (q, q̇) = q̇T (τ −C(q̇, q) + g(q)) +
1

2
q̇T Ṁ(q)q̇ + q̇T Kp,impq , (11.13)

which is further simplified to

V̇ (q, q̇) = −q̇T Kd,impq̇ . (11.14)

Since Kd,imp is positive definite, the Lyapunov derivative is negative semi-
definite. The global asymptotic stability is concluded by invoking the LaSalle
theorem.

Alternative proof By design the closed-loop dynamics of the error e =
qdes − q is

M(q)ë + Kd,impė + Kp,impe = 0. (11.15)

The stability is ensured by the choice of the stiffness and the damping ma-
trices (which ought to be positive definite).

11.5 Stability Conditions : The cascaded case

The previous section neglected the influence of the force controller error
and established the closed-loop stability under the singular perturbation
hypothesis. It is possible to explicitly take into account the tendon force
error if the system is considered as a cascaded system. However, because
the systems must depend on the same set of variables, the linearizing tendon
force controller is used instead of the motor position controller. As a result,
a differential system of equations in the variable θ is considered. The initial
system, under the action of the controller is given by:

Bf ëf + Kpėf + Kpef = 0

Mq̈ + Kd,imp(q̇ − qdes) + Kp,imp(q − qdes) = P T ef .
(11.16)

where ef = f t,des − f t is the tendon force error. To establish stability, the
two decoupled system must be asymptotically stable. Moreover, the coupled
system must be proved to be stable. Then, the global system is asymptoti-
cally stable. The construction of the proof is inspired by Ott [130]. The first
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conditions are trivially obtained given that the gain matrices are positive
definite. Even exponential stability is possible. The second condition, how-
ever, is more subtle. The solution consists in building a quadratic Lyapunov
function for which it is possible to show that there always exists a choice of
gains that ensures stability. A candidate Lyapunov function is given by

V (q, q̇, e) =
1

2
q̇T Mq̇ +

1

2
qT Kp,impq + eT Ge , (11.17)

where all matrices are positive definite, thus being a quadratic Lyapunov
function. The derivative of the candidate along the solution of the system
is

V̇ (q, q̇, e) = q̇T (−Kd,imp(q̇ − qdes)−Kp,imp(q − qdes) + P T ef)
+qT Kp,impq̇ + 1

2 ėT Ge + 1
2eT Gė

. (11.18)

In the regulation case, it simplifies to

V̇ (q, q̇, e) = −q̇T Kd,impq̇ − q̇T P T ef + ėT Ge , (11.19)

which can be rewritten in the following matrix form by defining a state
vector w = [q̇, e, ė].

V̇ (w) = −wT W w. (11.20)

The matrix W is given by

W =

[

Kd,imp P T /2
P /2 −G

]

. (11.21)

According to Schur’s Lemma the matrix is positive definite if Kd,imp > 0 and
Kd,imp − 1

4P T G−1P > 0. The first condition is trivially fulfilled while the
second one can always be satisfied by a good choice of a positive definite G.
Since G can be selected freely as being one solution of the Riccati equation,
the system is globally stable. Together with the exponential stability of the
subsystems, the cascaded system is globally asymptotically stable.

11.6 Experimental Results

The performance of the singular perturbation and the cascaded approaches
would optimally be analyzed in three separated setups: a single tendon
motor unit with motor torque input, a finger with a direct joint torque
input and the combination of a tendon force controller and the joint torque
impedance controller. However, it is not possible to create a direct joint
torque controller, since the hardware can not be adapted for it. Nonetheless,
previous experiments with the DLR Hand II, where the motors are directly
located in the joints, confirmed the validity of the design. The experimental
results of the tendon controller have been reported in the previous chapter.

142



Time [s]

q
23

[r
ad

]

0 0.4 0.8 1.2 1.6 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Low impedance stiffness

Time [s]
q
23

[r
ad

]

0 0.4 0.8 1.2 1.6 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) High impedance stiffness

Figure 11.2: Experiment: step response for two impedance controller stiff-
ness

Therefore, this chapter reports only the controller results corresponding to
the complete system.

A simple experiment allows to verify the basic functionality of the link
side controller. A desired position change of the link is commanded with two
different impedance stiffness. Because the low damping of the impedance is
left unchanged, as well as the other controller parameters, the oscillations
should be increasing. In Figure 11.2, the desired link position is depicted in
dashed/red and the measured link position is represented in light blue/solid.
The plots are complying with the expected increase of the oscillations. A
second experiment is performed with different initial mechanical stiffness
while all other parameters are constant. The results reported in Fig. 11.3
show the trajectory of the link depending on the mechanical stiffness. Unlike
the first experiment, the oscillation are expected to be reduced when the
mechanical stiffness is increased. Indeed, a stiff mechanism minimizes the
error between the desired and the achieved torque since the system requires
less motion for the same change of torque. Moreover, increasing the initial
pretension increases the friction in the tendon guiding and leads to a higher
damping ratio. It should be noted that in the high mechanical stiffness case,
the initial tendon load is so high that the stick-slip effects in the joint are
preventing the link to reach the desired joint position

Remarks about the singular perturbation approach In the case of
the singular perturbation approach, the controller design is based on the
assumption that the two controllers are independent. Several experiments
confirmed that oscillations can appear when the desired joint stiffness is
modified. Fig. 11.4 shows that the resonance frequency is shifted if the me-
chanical stiffness is modified, thus confirming that the singular perturbation
approach may only be valid across a restricted frequency range.
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Figure 11.4: Experiments: gain diagram of the output link position across
a frequency range and for different stiffness. The responses are obtained by
a sinusoidal sweep input for the desired link. It can be observed that the
resonance frequency is shifted when the mechanical stiffness is modified.
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11.7 Discussion

This chapter presented two approaches for the control of a flexible joint:
the singular perturbation approach and the cascaded approach. In both
cases the stability can be established by the use of the Lyapunov stability
theorems. The singular perturbation case simply neglects the influence of
the force tracking error. However, it was experimentally verified that the
validity of the time scale separation assumption depends on the mechani-
cal stiffness settings. The cascaded stability analysis is more involved but
explicitly includes the tendon force error, thus is independent of the me-
chanical stiffness. It is important to note that the tendon controller used
for the proof must depend on f t and not on θ in order to obtain a cascaded
form. The controller was experimentally tested and demonstrated a basic
performance.
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12 Direct pole placement

The singular perturbation method is restricted to the domains where the
two subsystems, that is the link side impedance controller and the tendon
force controller, do not interact. The cascaded method does not require
such a restriction at the cost of a more complex choice of the gains. In
order to improve the controller, in the sense that the time scale hypothesis
is not required anymore, it is necessary to use a more global approach. The
concept of direct pole placement using a feedback controller is, historically,
one of the first methods applied to control multi-DOF systems. It is de-
scribed by a slightly different form in nearly all control books, for example
in [131, p. 176]. The method consists in computing the closed-loop poles of
the system and designing the feedback such that the poles are placed as de-
sired. The very notion of poles being restricted to linear system (there exist
some extensions work for nonlinear systems, e. g. [132] for an introduction
or [133] for an application to discrete systems). The proposed approaches in
the literature are mostly focusing on two aspects: whether the closed-loop
system reaches the targeted behavior (locally) and, since the controllers are
by construction locally stable, how large is the actual region of stability and
how to enlarge it.

This chapter focuses on the placement of the poles of the system and the
sensitivity of the poles around the nominal model. One important question
is how sensitive is the controller w. r. t. the plant modeling errors. A more
practical question is the choice of the poles. Indeed, whereas selecting a
negative real part for the poles is trivially ensuring stability, it is challenging
to imagine which poles should be used for a fourth order system that will
result in a good behavior.

The chapter is organized as follows. First, a simple example is proposed
to illustrate the method. It is shown that the identification of the closed-
loop poles to the poles of a well-known system is an intuitive method. Then,
the method is applied to a linear flexible joint model which is a fourth or-
der system. The closed-loop solutions are given and, by identification, the
poles are placed. Finally, a robustness analysis is proposed. The sensitivity
of the poles w. r. t. the modeling errors is studied. To this end, modeling
errors are introduced and the poles of the system under the nominal con-
troller are calculated. It is shown that the method is highly sensitive to the
system stiffness. Since the method is not robust to modeling errors, even in
the linear case, the method is not applied to the nonlinear case. However,
the nonlinear case is handled in a later chapter with the help of the state
dependent Riccati equations.
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Figure 12.1: Simple mass spring damper system. The viscous friction gen-
erated by the ground is denoted dẋ.

12.1 Introductory example

This section is an introduction example to the pole placement method. The
reader familiar with linear control theory can safely skip this section. The
equation of a simple spring-mass-damper system (cf. Fig. 12.1) is

mẍ = −dẋ− kx + u , (12.1)

where m ∈ R is the mass of the solid, (x, ẋ) ∈ R
2 are the position and

velocity of the mass, (k, d) ∈ R
2 are spring constant and damping coefficient.

The system input is denoted u ∈ R. Assuming that the complete state is
available (at least through some observer), the controller equation can take
the general form of a static (i. e. the coefficient are constant w. r. t. time)
state feedback

u = −βẋ− αx , (12.2)

where (α, β) ∈ R
2 are time invariant gains. Under the action of the controller

the normalized closed-loop equation is

ẍ +
(d + β)

m
ẋ +

(k + α)

m
x = 0 . (12.3)

Equation (12.3) is nothing else than a linear, second order differential equa-
tion in x with constant coefficients. Trivially, the solutions of this second
order equation are

γ1 =
−(d+β)−

√
(d+β)2−4m(k+α)

2m

γ2 =
−(d+β)+

√
(d+β)2−4m(k+α)

2m

. (12.4)

Transformed into the time domain, the solution is,

x(t) = Ae−γ1t + Be−γ2t, t > 0, (12.5)

where (A, B) ∈ R
2 are constants depending on the initial conditions. The

solution might oscillate or not and converge or not, depending on whether
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Figure 12.2: Double spring mass damper system in the case of a flexible
joint model

γ1, γ2 are complex or not and whether their real part is positive or negative.
Therefore, directly selecting the poles γ1, γ2 such that they have a negative
real part ensures stability. However, it does not allow an easy design of the
system behavior since the combination of the contributions of the poles is
not intuitive. It is easier to identify the system to a well-known system, such
as a harmonic oscillator, and select the parameters accordingly. Identifying
the coefficients of the normalized equation to the coefficients of a damped
harmonic oscillator gives the following equation to be solved:

ẍ +
(d + β)

m
ẋ +

(k + α)

m
x = ẍ + 2ξω0ẋ + ω2

0x , (12.6)

where ω0 ∈ R and ξ ∈ R are the undamped angular frequency and the
damping ratio of the harmonic oscillator. For a given choice of ω0 and
ξ, one obtains the controller gains (α, β) ∈ R

2 that result in the desired
behavior. The gains are given by

α = mω2
0 − k

β = 2mξω0 − d
. (12.7)

The method is simple and can be applied to many linear systems. It is
important to note that, although the method does not enforce it, select-
ing poles that are far from the natural behavior might practically lead to
instabilities.1

12.2 Fourth order model

The most simple model for a flexible joint system is a fourth order system.
Therefore, in this section, the pole placement method is applied on the joint
model depicted in Fig. 12.2. Referring to the modeling of Chapter 5, the
joint equations are given by

mq̈ = −dqq̇ + k(θ − q)

bθ̈ = −dθθ̇ − k(θ − q) + u
, (12.8)

1unmodeled dynamics or actuator saturation invalidate the stability proof.
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where (m, b) ∈ R
2 are the masses, (q, q̇, θ, θ̇) ∈ R

4 are the link position,
the link velocity, the motor position and the motor velocity. The damping
coefficients and the spring constant are represented by (dq, dθ, k) ∈ R

3. The
actuator torque is represented by u ∈ R. Defining the state vector x =
[q, q̇, θ, θ̇]T , the dynamics can be written in matrix form

ẋ = Ax + KBu, (12.9)

where A ∈ R
4×4, B ∈ R

4×1 are called the dynamic matrix and the input
matrix. K ∈ R

4 is the feedback gain vector. Following (12.8) the matrices
are given by

A =











0 1 0 0

− k
m
−dq

m
k
m

0
0 0 0 1
k
b

0 −k
b
−dθ

b











(12.10)

and

K =
[

α1 α2 α3 α4

]T
. (12.11)

With the help of a symbolic calculation software, the coefficients of the
characteristic polynomial of the closed-loop system are



















− k

mb
(α1 + α3)

−dqα3 − k(α2 + α4 − dq − dθ)

mb

dqdθ −mα3 + k(m + b)− dqα4

mb
mdθ −mα4 + dqb

mb
1



















.

(12.12)
To guarantee exponential stability it is necessary that the roots of the poly-
nomial have negative real parts. However, it is neither easy to select the
gains α nor intuitive to choose the amplitude of the real part. Indeed, it
is important to remember that although the theory guarantees exponential
stability, it is practically impossible to use arbitrarily large gains. Similar
to the case of the mass spring damper, if the coefficients of a well-known
fourth order system are available it is possible to proceed by identification.
Motivated by the mechanical structure of the system, one choice consists in
taking the dynamics of a double harmonic oscillators as a target.

(s2 + 2sξ1ω1 + ω2
1)(s2 + 2sξ2ω2 + ω2

2) = 0 , (12.13)

where s is the Laplace transform of x and (ξ1, ξ2, ω1, ω2) ∈ R
4 are the damp-

ing ratios and the undamped angular frequencies of the harmonic oscillators.
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By identification of the coefficients, one obtains a set of equations

− k

mb
(α1 + α3) = ω2

1ω2
2

−dqα3 − k(α2 + α4 − dq − dθ)

mb
= 2(ξ2ω2

1ω2 + ξ2ω1ω2
2)

dqdθ −mα3 + k(m + b)− dqα4

mb
= ω2

1 + 4ξ1ξ2ω1ω2 + ω2
2

mdθ −mα4 + dqb

mb
= 2(ξ1ω1 + ξ2ω2)

, (12.14)

where the unknowns are (α1, α2, α3, α4) ∈ R
4. The system of equations can

be written as

Jγ = µ, (12.15)

where γ = [α1, α2, α3, α4]T is the vector of unknowns, µ ∈ R
4 is the vector

of desired values and J is the Jacobian matrix given by,

J =
k

bm











−1 0 −1 0

0 −1 −dq

k
−1

0 0 −m
k
−dq

k

0 0 0 −m
k











. (12.16)

The system has solutions as long as J is invertible, that is if the determinant
is not 0. The determinant of J is det(()J) = k2

m2b4 > 0. Therefore, a unique
solution for the selection of the gains always exists.

12.3 Robustness analysis

The controller gains obtained in the last section are, by construction, leading
to a system whose characteristic equation is given by (12.13) Using the
numerical values reported in Table 12.1, the associated poles are

−100 + 0.66i
−100− 0.66i
−10 + 0.38i
−10− 0.38i

(12.17)

showing that the nominal system under the pole placement controller is
exponentially stable. The corresponding gains for the state feedback are
(numerical values from Table 12.1)

α1 = 4395
α2 = 6.177
α3 = −4395
α4 = 288.99

(12.18)
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Table 12.1: Numerical values used to evaluate the poles

Symbol Value Units

b 2e− 3 kg m2

m 4e− 7 kg m2

k 0.605 Nm/rad
dq 0.0012 Nm/(rad/s)
dθ 0.0012 Nm/(rad/s)
ω1 100 rad/s
ω2 30 rad/s
ξ1 0.7
ξ2 0.7

It is interesting to note that the damping coefficient for the link is positive.
It implies that the controller is trying to reduce the link friction by pushing
the link. Although the closed-loop system is stable, this type of feedback is
not recommended in practice. As with all model-based designs, the exact
plant parameters are not perfectly known and it is important to study the
influence of the plant model errors on the overall stability. Modifying the
real plant parameters from k = 0.605Nm/rad to k = 0.600Nm/rad and
recomputing the poles yields

−318.78
53.27 + 225.14i
53.27− 225.14i
−0.058

(12.19)

The modified plant under the nominal pole placement controller has a pos-
itive real part leading to an unstable system. It indicates that the pole
placement method is very sensitive to the plant modeling errors, at least
around the selected target dynamics. A more accurate sensitivity analysis is
obtained by a parametric analysis. All quantities are fixed (to the nominal
parameters of Table 12.1) but one that is varied across an uncertainty range.
The root locus plots are then used to evaluate the sensitivity to each param-
eter. Fig. 12.3 depicts the sensitivity of open loop the poles w. r. t. to the
spring stiffness and the link damping. Fig. 12.4 depict the sensitivity of the
closed-loop poles w. r. t. to the link stiffness. It can be seen that the poles
of the closed-loop plant are very sensitive to the link stiffness. The range of
stiffness that is tested is a realistic range of adjustability of the stiffness. The
simulation highlights the limited robustness of the controller, even though
this particular choice of feedback gains does not lead to an unstable system.
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Figure 12.3: Open loop poles depending on the stiffness and the link damp-
ing. The influence of the link stiffness K = [0.43, 1.15] is depicted in light
blue/solid. The influence of the link damping Dq = [0.43, 1.15] is depicted
in red/dashed. In both cases the square indicates the start values. The third
and fourth poles are depicted in black and do not change significantly.

Re(z)

Im
(z

)

-16 -12 -8 -4 0
-1000

-500

0

500

1000

×104

Figure 12.4: Closed-loop poles depending on the stiffness K = [0.43, 1.15].
The nominal poles are indicated by squares. It can be seen that the poles
are sensitive to the link stiffness.
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12.4 Discussion

As highlighted in the previous section, the robustness of the method is very
limited for the selected target dynamics. Because of the sensitivity, it is not
guaranteed that the overall system will be robust enough to cope with the
modeling errors unless a very conservative performance is selected. Indeed,
despite the extensive modeling, the stiffness of the Awiwi Hand is not pre-
cisely known. Moreover, the method is only local thus the stiffness change
around the nominal position is only treated as a disturbance. The modeling
errors, the calibration errors, the unmodeled dynamics, and the lineariza-
tion approximations would practically lead to a marginally stable system.
One major concern is that, if the target dynamics is far from the natural
behavior, the magnitude of the control input might be extremely large. If
the controller action is too large, the nonlinearities associated with the ac-
tuator saturation might introduce, as well, instabilities. Therefore, the idea
of using a full state feedback controller around each linearization point, as
reported in [77] is not applied. Their approach is successful mainly because
the range of stiffness they considered is higher and their link inertia much
larger. As a result their system is less sensitive to the modeling errors.
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13 Optimal control

The direct pole assignment method did not account for the magnitude of the
control input, resulting in an unpractical command law. Although theoret-
ically very capable, its robustness revealed to be practically limited for the
selected choice of target dynamics. In this chapter the focus lies on finding
a method that mitigates the costs of the error and the magnitude of the in-
put, thus implicitly selects good target dynamics. A possible way to express
the objective mathematically is to formulate an optimization problem in the
form

min
u(t)

∫ t

0
(x(t)T Qx(t) + u(t)T Ru(t))dt , (13.1)

where x(t) ∈ R
2 and u(t) ∈ R are the state vector and the input vector.

Q ∈ R
2×2 and R ∈ R are a positive definite matrix and a scalar that

represent sthe cost of the error and the cost of the input. In this chapter, a
linear quadratic regulator (LQR) is analyzed. It serves as an introduction to
the SDRE method presented in the next chapter. The chapter is organized
as follows. First, a simple example is proposed to illustrate the method. In
the second section, the method is applied to the linear flexible joint model,
which is a Linear Time Invariant system (LTI). Finally, simulations are
performed to evaluate the results.

13.1 Introduction example

Similar to the previous chapters, a single spring mass damper is used to
introduce the method. The equation of a simple single spring mass system
(Fig. 13.1) is

mẍ = −dẋ− kx + u , (13.2)

where m ∈ R is the mass of the solid, (x, ẋ) ∈ R
2 are the mass position

and velocity, and (k, d) ∈ R
2 are some positive spring constant and damping

coefficients. The system input, an external force, is denoted u ∈ R. The

m
k

u

dẋ

x

Figure 13.1: Single mass-spring-damper.
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regulator feedback has the form

u(t) = −K(t)T x(t) , (13.3)

where x(t) ∈ R
2 is the state vector and K(t) = R−1BT S(t) is the vector

of the state feedback gains. S(t) is the solution of the differential Riccati
equation

dS(t)

dt
= −S(t)A−AT S(t) + S(t)BR−1BT S(t)−Q , (13.4)

where A ∈ R
2×2 denotes the dynamic matrix. For an infinite time horizon,

the equation is the algebraic Riccati equation (ARE) given by

SA + AT S − SBR−1BT S + Q = 0 . (13.5)

In such a case, all matrices are constant and solving the ARE given by
(13.5) for S yields the optimal linear regulator gains. Solving the ARE is
not critical since it can be performed offline and several solvers are available.

13.2 Fourth order system

According to the previous chapter, a double mass spring damper system is
described by

Ẋ = AX + Bu , (13.6)

where the state matrix A ∈ R
4×4 and the input matrix B ∈ R

4×1 are given
by

A =











0 1 0 0

− k
m
−dq

m
k
m

0
0 0 0 1
k
b

0 −k
b
−dθ

b











(13.7)

and

B =











0
0
0

1/b











. (13.8)

The optimal feedback gains are obtained by solving the ARE equation.
Defining the state cost matrix Q ∈ R

4×4 and the input cost R ∈ R by

Q =











10 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 0.01











, (13.9)

and
R = 0.01 , (13.10)
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Table 13.1: Parameters used for the simulation of the optimal state feedback

Symbol Value Units

B 2e− 3 kg.m2

M 4e− 7 kg.m2

k 0.605 Nm/rad

Q











10 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 0.01











R ∈ [0.0001, 0.01, 1]

MATLAB R© gives the following solution

u = − [−126.21,−0.11, 159.37, 1.52]T x . (13.11)

.

13.3 Simulation

The simulations are performed using the numerical solver from MATLAB R©,
with the parameters of Table 13.1. The link and motor positions obtained
for different input costs are reported in Figure 13.2. The corresponding
inputs are reported in Figure 13.3. As desired, the amplitude of the input
command can be controlled by the cost matrices R and Q. It should be
noted that the simulations are performed with costs matrices that are not
directly suitable for the real implementation. In practice, the gain matrices
must be selected according to the expected performance, the noise of the
sensors and the computation delays.

13.4 Discussion

The optimal control method has been applied to a linear fourth order sys-
tem. In the case of such a system, the optimality problem can be reduced to
the problem of solving the ARE. The method allows to specify the relative
cost of the input amplitude w. r. t. the state errors. Therefore, it is possible
to moderate the controller action by setting a high cost on the input. How-
ever, a limited command also results in a degraded feedback effect in terms
of settling time. The plant under such a controller is guaranteed to be ex-
ponentially stable by construction. However, the method is not suitable for
nonlinear plants since the problems must be written in a linear form. More-
over, solving directly the corresponding nonlinear, optimal control problem
online is practically intractable.
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Figure 13.2: Simulation: link and motor trajectories of the plant under
an optimal state feedback controller. The simulations performed with
R = 0.0001 (resp. 0.01 and 1 are denoted by A/red (resp. B/light blue,
C/green). The solid line represents the motor position whereas the dot-
ted line represents the link position.
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Figure 13.3: Simulation: input command of the plant under an optimal
state feedback controller. The curves A/red (resp. B/light blue, C/green)
are corresponding to the simulations of Figure 13.2.
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14 State-Dependent Riccati Equation

The 19 joints of the hand are driven by 38 tendons that have a nonlinear
stiffness characteristic. It means that the motor displacement required to
adjust the tendon force depends on the current force. As demonstrated
previously, the gain scheduling method is effective to assign the poles (of
the pointwise linear system) but does not account for the input command
magnitude. The optimal control method, that leads to the ARE in the case
of a linear system, is able to account for the cost of the state error and the
input amplitude. However, its genuine form is limited to linear problems.
The optimization problem, that is solved relatively easily in the case of a
linear system, is not anymore trivial to solve in the presence of nonlinearities.
The exact solution of an optimal control problem is obtained by solving the
Hamilton-Jacobi-Bell (HJB) equation given by

V (u(t)) =

∫ T

0
C(x(t), u(t))dt + D(x(T )), (14.1)

where x ∈ R
n, n ∈ N is the state vector. The running state cost and the

terminal state cost are denoted C ∈ R (resp. D ∈ R). The functional to be
minimized by the choice of the input function u(t) ∈ R, t ∈ [0, T ], T > 0
is represented by V (u(t) ∈ R. Direct methods to solve the optimal control
problems are reported as early as in 1959, in [87]. It has been applied to solve
offline optimization problem such as space shuttle trajectory, ship maneuver
or, more recently, throwing problem [88]. A result of optimal control due to
Pontryagrin [86] is that in many cases bang-bang control is the solution (sat-
urated maximum/minimum control input). However only a limited number
of forms can be solved analytically. One must resort to numerical methods
for the other cases, nonetheless their form can give further insights on the
most efficient numerical techniques to be employed. Unfortunately, they
require forward and backward integrations and, in general, are extremely
expensive to compute. Especially, they are generally for real-time or online
application.

An intermediate way between the linear optimal control, with the ARE,
and the optimal nonlinear control, with the HBJ equation, has been pro-
posed around 1962 by Pearson under the name of State Dependent Riccati
Equation (SDRE) [89]. It has been expended by Wernly [90] and popular-
ized by Cloutier [91–95]. The method is an intuitive extension of the ARE,
applied to a pointwize linearized system. The existence of a SDRE stabiliz-
ing feedback is discussed in [96]. The method offers only limited theoretical
results for global stability but proved to be effective in practice. More details
can be found in the extensive survey [97].

In a first section the method is presented with a generic example based
on [91]. The second section applies the method to two problems: the control
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of the tendon force, similar to the gain scheduling example, and the control
of a single joint with one motor and a nonlinear spring. The third section
evaluates the controller with the help of simulations. Finally, section four
discusses the results.

14.1 State Dependant Riccati Equations

Considering a nonlinear multi-variable system,

ẋ = f(x) + u , (14.2)

where the state dimension is n ∈ N and x ∈ R
n is the state vector. A

nonlinear function of the state variables, that is assumed to be sufficiently
smooth, is denoted f(x) ∈ R

n. The control input is u ∈ R
n. It is possible to

write (14.2) in a pseudo-linear form, also referred to as the pointwise linear
form, as

ẋ = Akx + Bku , (14.3)

One pointwise linearized form and the associated input for a given factor-
ization Ξk, k ∈ N are denoted Ak ∈ R

n×n and Bk ∈ R
n×m. It should be

noted that, excepted the case n = 1, there exists an infinite number of fac-
torization Ξk and its associated matrices (Ak, Bk). Once a factorization has
been selected, the ARE can be used to select the optimal gains. According
to Chapter 13, the state feedback gains are selected as

K = R−1BT
k S , (14.4)

where R(t) ∈ R
m×m is a positive definite cost matrix for the input, Bk is

the input matrix and S(t) is one solution of the Riccati equation defined by

SAk + AT
k S + SBkR−1BT

k S −Q = 0 , (14.5)

where Q ∈ R
n×n (resp. R ∈ R

m×m) is the state error cost (resp. the control
input cost) both positive definite. The closed-loop system is

ẋ = Akx + BT
k R−1BT

k Sx . (14.6)

Under the assumption that all quantities are continuous and continuously
differentiable (C1), and by construction of S, the closed-loop system of
(14.6) is Hurwitz, therefore locally asymptotically stable.

14.2 Applications

In this section the state-dependent Riccati equation (SDRE) is derived for
two particular cases. First, the force regulation of the tendon forces when
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ft(θ)

θ

rm

Figure 14.1: Model for the tendon force controller. The link is assumed to
be fixed, thus the tendon force only depends on the motor position.

considering the joint fixed is studied. It is the problem that was motivating
the gain scheduling method of Chapter 10. Second, a single nonlinear flexible
joint model driven by a single motor is proposed. The second problem is a
simplification of the real case problem that allows to understand the effect
of the control.

14.2.1 Tendon force controller

The model comprises a motor, a spring element and a tendon (cf. Fig. 16.1).
The tendon is attached to a fixed reference (grounded). The control objective
is to regulate the tendon force (ft ∈ R), measured by the spring lever, by
adjusting the position θ ∈ R of the motor with the torque input u ∈ R. The
dynamic equation of the system is

Bθθ̈ = −ft(θ) + u , (14.7)

where Bθ ∈ R is the motor inertia (w. r. t. the motor acceleration), θ ∈ R

and u ∈ R are classically the motor position and the torque input. The
tendon force depending on the motor position is denoted ft(θ) = ϕ(θ). It
is important to note that for the following analysis, the function ϕ(θ) is
required to be at least C2 w. r. t. θ. To apply the SDRE method it is first
necessary to establish the pointwise linear form. One possible solution is
given by equation (14.8). The linearization w. r. t. to θ is

Bθθ̈ = −ft(θ0)− ∂ft(θ)

∂θ
|θ0

(θ − θ0) + u , (14.8)

where θ0 is the linearization point. Adding a feedforward term to the com-
mand u = ft(θ0) + v shifts the equilibrium to the origin. Introducing the
error ξ = θ − θ0 leads to the matrix form,

ẋ = A(x)x + Bv =

[

0 1
1

Bθ

∂ft

∂θ
|f0

0

]

x +

[

0
1

Bθ

]

v , (14.9)

where x = [ξ, ξ̇]. It is also possible to linearize w. r. t. to the tendon forces.
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14.2.2 Flexible joint model

A generic flexible joint model is depicted in Fig. 14.2. As mentioned previ-
ously, there exists an infinite number of factorizations but the method used
to establish the dynamic equations naturally leads to a factorization by the
stiffness of the tendons.

A(x) =











0 1 0 0

−k(x1−x3)
m

−dq

m
k(x1−x3)

m
0

0 0 0 1
k(x1−x3)

b
0 −k(x1−x3)

b
−dθ

b











, (14.10)

where n ∈ N is the state dimension, x ∈ R
n is the state vector defined as

x = [q, q̇, θ, θ̇]. The control input is denoted u ∈ R. The joint stiffness is
represented by k(x1 − x3) ∈ R. The viscous frictional torque of the joint
(resp. motor) are denoted dq (resp. dθ). Finally, the inertias of the link and
the motor are m ∈ R and b ∈ R. One pointwise linear form is given by

ẋ = A(x)x + Bu , (14.11)

with

A(x) =











0 1 0 0

−k(x1−x3)
m

−dq

m
k(x1−x3)

m
0

0 0 0 1
k(x1−x3)

b
0 −k(x1−x3)

b
−dθ

b











and

B(x) =











0
0
0
1
b











.

The control input is a state feedback defined by

u = −KT x , (14.12)

where the gain vector K ∈ R
m is given by the SDRE method, ie. K =

R−1BT P . The matrix P ∈ R
4×4 being the solution of the Riccati equation

(14.5).

θ

q

B M
u k(θ, q)

Figure 14.2: Mass spring damper system in the case of a flexible joint model
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14.3 Simulation and experiments

The two cases derived above are verified by simulations. First, the tendon
force controller (as depicted in Fig. 16.1) is evaluated. The flexible joint
model (cf. Fig. 14.2) is verified in a second step.

14.3.1 Application to a tendon force controller

The simulations are performed using the numerical solver ode23t from MATLAB R©,
with the parameters of Table 14.1.

Table 14.1: Simulation parameters for the tendon controller

Symbol Value Units

Bθ 2e− 3 kg.m2

Q

[

1 0
0 0.0001

]

R 0.000001

The simulation results are depicted in Fig. 14.3. First an initial desired
force step from 0 N to 40 N is commanded. Then, a smaller adjustment is
made to reach 45 N. The differences between the two controllers are hardly
visible. The main reason is that the plant equations are not changing as
much as one might expect. The change in stiffness of the real mechanism
during the experiment only results in a minimal change of the optimal gains.

14.3.2 Application to a joint controller

The parameters of Table 14.2 are used for the joint simulation. The resulting

Table 14.2: Simulation parameters for the joint controller

Symbol Value Units

Bθ 2e− 3 kg.m2

M 7.2e− 7 kg.m2

Q











10 0 0 0
0 0.01 0 0
0 0 0.1 0
0 0 0 0.01











N.A

R 0.0001 N.A

link trajectories are reported in Fig. 14.4. The improvement is not noticeable
in the case of a free motion. Indeed, the low link inertia does not create
a significant dynamic load, thus the stiffness change is extremely small.
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However, when a load is applied externally, the stiffness change is visible, as
depicted in Fig. 14.5. In such a case, the SDRE method is able to modify
the gains to account for the modified plant equations.

14.4 Discussion

This chapter has presented an extension of the optimal linear control method
of the previous chapter. The method, called the SDRE method, has been
appreciated in the optimal control research groups because of its good prac-
tical results. The first section described the general idea of the method on
an abstract example. Since the method is based on the pointwise linear
form of a system, the second section transformed the system dynamics into
the proper form. The third section applied the method to two different sys-
tems and proposed several simulations. It was shown that for the tendon
control problem, the method only marginally contributes to improve the
behavior mainly because the optimal gains do not change significantly. On
the contrary, the improvements were visible in the case of a flexible joint.
Nonetheless, the gain designed for the nominal load were also satisfying,
especially in case of free motion. Nonetheless, the method is relatively easy
to use and the optimal control community is very active in developing the
supporting theory. From the implementation point of view it is very sim-
ilar to the gain scheduling method. Some first analysis and simulations1

are showing that the ARE gains can be computed at a lower rate than the
control loop without significant effect on the resulting behavior. Practically,
a rate of about 200Hz is sufficient. The method is theoretically limited to
a local analysis. Thus, the following chapters are focusing on using global,
nonlinear controller designs. The ARE and SDRE method are reused in the
last chapters as a mean to select the best, optimal in a sense, gains for the
backstepping controller.

1not reported in this thesis
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Figure 14.3: Simulation: Comparison between the SDRE controller and the
fixed gains controller for a tendon force control problem. The green/dashed
line is the desired tendon force. The light blue/solid and red/dotted lines
represent the tendon forces.
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Figure 14.4: Simulation: Comparison between the SDRE controller and the
fixed gains controller for a link positioning task. The green/dashed line is
the desired link position. The light blue/solid and red/dotted lines depict
the link position with the SDRE controller and the fixed gains controller.
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15 Backstepping

The backstepping design procedure is a design method for nonlinear con-
trollers by Kokotovic in the 90’s. It is a recursive method for strict feedback
system. In each step, the derivative of the previous error is compensated
and well known stabilizing reference is applied to the system. Then, the
error introduced is propagated to the next level and the method is applied
again. The backstepping procedure has been described in [68, 85, 134] and
applied to a large variety of problems. Only little work deals with the prac-
tical implementation of the backstepping method and most of the papers
are only presenting simulation results. Its main limitations are the need
for high order derivatives and the fast growth of the expression, known as
the complexity due explosion of terms which is a direct consequence of the
recursivity of the method. Althought the procedure only requires positive
definiteness of the gain matrices, it should also be noted that they do not al-
ways have an intuitive interpretation and the manual tuning of the numerous
gains can be tedious for complex systems.

Nonetheless, it is a purely nonlinear method that does not require the
previous assumptions on the system (eg. cascaded system). Moreover, the
designed controller is stable by design as long as the gain matrices are pos-
itive definite. This allows a great freedom in the choice of the gains. The
main contribution of this chapter is to provide experimental validation of
the controllers, derive the backstepping equation in the case of a nonlin-
ear flexible joint and extend the single motor controller to an antagonistic
controller.

In the first section, an example of the backstepping method, inspired
by [84, p.489] is proposed. The reader familiar with the backstepping method
can safely skip the section. The second section applies the backstepping con-
trol method to two cases that have a structure similar to the one of the real
system. More precisely, a backstepping controller in the case of a constant
stiffness (resp. variable stiffness) single flexible joint is derived. Simulations
are performed to evaluate the results. The controllers are state controllers
and are not suitable for interaction with the grasped object. A soft con-
troller is needed to perform stable grasps in the presence of inaccuracies.
Therefore, in the third section, the control law for an impedance controller
is derived. Because of its importance, simulations and experimental re-
sults are presented on a single joint actuated by one motor with a linear
spring. It is verified numerically and experimentally that the controller is
behaving like an impedance controller. The fourth section extends the sin-
gle joint controller to the nonlinear case. Unsurprisingly, one of the main
condition for the existence of the control law is to have a strictly convex
force/displacement characteristic of the spring. The fifth section extends
the single joint/single motor controller to an antagonistic joint actuation.
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Finally, the backstepping method is applied to the equations of the real
system. Simulation and experimental results are reported.

15.1 Concept

This section presents the concept of the integrator backstepping method. In
the first section the equation of control are derived on a simple example. In
a second part, some simulation results are reported to help the reader to
understand the behavior of the controller. It is a very basic introduction to
the backstepping concept and can safely be skipped.

15.1.1 Controller design

Consider the dynamic system described by Eq. (15.1), where (x1, x2) ∈ R
2

are the state variables and u ∈ R is the control input. It is assumed that
all quantities are directly measurable and that all functions are sufficiently
smooth.

{

ẋ1 = −x1
3 + x1

2 + x2

ẋ2 = u
(15.1)

If x̄2 = x2 is considered as a virtual input for the (15.1), an exponentially
stabilizing control input is

x̄2 = −x1
2 − k1x1 , (15.2)

where k1 ∈ R
+ is a gain used to accelerate the convergence and x̄2 is the

reference input. It is proved using the Lyapunov function V1(x1) =
1

2
x2

1.

Taking the time derivative of V1 along the solutions of the first equation of
(15.1) one obtains

V̇1(x1) = x1(−x1
3 − k1x1) = −x1

4 − k1x2
1 . (15.3)

However, it is not possible to track exactly the reference input x̄2. Defining
z2 = x2 − x̄2, the system (15.1), is transformed in

ẋ1 = −x1
3 − k1x1 − x1 (15.4)

ż2 = u− ˙̄x2 (15.5)

The second equation is stabilized by u = ˙̄x2 − k2z2, where k2 ∈ R
+ is

a feedback gain used to accelerate the convergence of the system. The
global asymptotic stability is demonstrated using the Lyapunov function

V2(x1, z1) =
1

2
x2

1 +
1

2
z2

2 along the trajectories. From Equation (15.6), simply

replacing the expressions gives

V̇2(x1, z2) = x1ẋ1 + z2ż2 , (15.6)
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simplifying and grouping the terms leads to

V̇2(z1, z2) = x1(−x1
3 − k1x1 − x1) + z2(u− ˙̄x2) , (15.7)

and

V̇2(x1, z2) = (−x1
4 − k1x1

2 − x1
2) + z2(−k2z2) . (15.8)

Finally, one obtains

V̇2(x1, z2) = −x1
4 − k1x1

2 − x1
2 − k2z2

2 . (15.9)

The final expression of u is obtained by going back to the original coordinates
and is reported in (15.10).

u = ˙̄x2 − k2z2 = (−2x1ẋ1 − k1ẋ1)− k2(x2 + x1
2 + k1x1) , (15.10)

where (k1, k2) ∈ (R+ × R
+) are two feedback gains used to accelerate the

convergence of the system.
It should be noted that the presence of the derivative of the reference

control signal is the main caracteristic of the backstepping methodology. In
each step of the method, the derivative of the reference control is derived
once more. This leads to the phenomenon refered to as the complexity
due to the explosion of terms. Consequently, the backstepping method,
although very sound mathematically, can be delicate to apply to high order
systems (unless the derivatives of all quantities are available). An interesting
property of the backstepping method is that it is not necessary to cancel the
good nonlinearities (such as −x2

1 in the example). It allows to reduce the
control effort w. r. t. the feedback linearization method that systematically
cancels the nonlinearities.

15.1.2 Simulations

To analyze the behavior of the controller derived in the previous section
several simulations are performed. The system defined by (15.1) together
with the control law of (15.10) is simulated using MATLAB R©. The feedback
gains (k1, k2) are modified and the resulting trajectories are reported. In
Figure 15.1 the feedback gains are modified and the resulting trajectory for
x1(t), t ∈ [1 . . . 10] are plotted. As expected, the trajectory are converging
to the origin for any combination of (k1, k2) ∈ (R+)2. The higher the gains
are, the faster the system is converging. Figure 15.2, 15.3 and 15.4 report
the phase diagram of x1 for three different gain combinations and varying
initial conditions. All combinations are converging toward the origin, thus
confirming that the controller is effective. The convergence trajectory is
changing according to the choice of the feedback gains. However, increasing
the gains of the outmost layer does not ensure that the convergence will be
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Figure 15.1: Simulation results: x1 trajectories obtained for different values
of k1 and k2. Slice are for k1 ∈ [0.01, 2.0, 5.0, 7.5, 10.0]. Colors are for
k2 ∈ [0.5, 1.55, 2.61, 3.67, 4.72, 5.78, 6.83, 7.89, 8.94, 10.0]. Initial conditions
are x1 = 1, x2 = 1.

faster. Indeed, if x2 is not regulated to the desired value, no value of x1 can
improve the convergence rate. Moreover, the measurement noise of the low
layers x2, x3, . . . is likely to be increasingly large, thought limiting the gains
in the real implementation.

15.1.3 Conclusion

This section explained how the backstepping method works on a two degrees
of freedom example. The stability of the close loop system was numerically
demonstrated through a combination of numerical simulations (different ini-
tial conditions and different gains).

15.2 Single flexible joint: position controller

In this section, the backstepping methodology is applied to a single joint
driven by one motor with a linear spring (i. e. the spring elongation has no

influence on its stiffness). The spring stiffness is given by K = ∂f(x)
∂x

, where
f ∈ R and x ∈ R are the spring force and the spring elongation (w. r. t. its
default length). For a linear spring, the stiffness is constant i. e. ∂K

∂x
= 0.

15.2.1 Model

The mechanical model of the flexible joint is depicted in Figure 15.5 and the
corresponding differential equations are reported in (15.11) and (15.12).
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Figure 15.2: Simulation results: solution trajectories for different initial
conditions represented in a phase diagram of ẋ1(x1). Feedback gains are
k1 = 0.1, k2 = 5. Initial conditions are marked by a cross symbol.
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Figure 15.3: Simulation results: solution trajectories for different initial
conditions represented in a phase diagram of ẋ1(x1). Feedback gains are
k1 = 1, k2 = 1. Initial conditions are marked by a cross symbol.
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Figure 15.4: Simulation results: solution trajectories for different initial
conditions represented in a phase diagram of ẋ1(x1). Feedback gains are
k1 = 5, k2 = 0.1. Initial conditions are marked by a cross symbol.

θ
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b m
u k

bq q̇bθθ̇

Figure 15.5: Double spring mass damper system in the case of a flexible
joint model.

mq̈ + bq q̇ = −f(θ, q) (15.11)

bθ̈ + bθθ̇ = f(θ, q) + u (15.12)

θ ∈ R, q ∈ R are the motor position and link position. The link mass and
the motor mass are denoted m(q) ∈ R, b ∈ R. The force generated by the
elastic element is represented by f(θ, q) ∈ R. The input vector, that is, the
motor force, is denoted u ∈ R. Finally, bq (resp. bθ) is the friction force
vector associated to the link (resp. motor). Neglecting the frictional terms
to simplify the expression, the system described by (15.11) and (15.12) is
written in a vector form as

ẋ = f(x) + g(u) , (15.13)
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where the state vector x ∈ R
4 is defined as

x =











q
q̇
θ

θ̇











. (15.14)

The vector-valued functions f : R4 7→ R
4 and g : R 7→ R

4 are

f =

















x2

−f(x1 − x3)

m
x4

f(x1 − x3)

m

















and B =













0
0
0
1

b













. (15.15)

15.2.2 Strict Feedback Form

In order to apply the integrator backstepping methodology it is required to
transform the system into a strict feedback form. That is, the ith differential
equation (corresponding to the ith state variable) is only allowed to depend
on the variables up to i− 1. Indeed, one variable must disappear after each
backstepping step otherwise the method would not converge to an expression
for u. Graphically, the arguments of state function f must be located in a
triangle with a line above the diagonal, as depicted in Fig. 15.6. Similarily,
the arguments of the input function g should be non zero on the last line.

u+

0 0

0

6= 0

6= 0

6= 0

6= 0

Figure 15.6: Graphical representation of the state transition matrix of a
system in strict feedback form.

This section constructs a new coordinate system in which the equations
are in strict feedback form. In the case of a constant stiffness spring the
spring torque is simply

τ(θ, q) = k(θ − q), (15.16)

where K ∈ R
∗+ is the spring stiffness. Therefore, it is possible to remove

one variable (q or θ). Using θ from (15.12) and replacing it in (15.11) yields
a fourth order differential equation on q

bm

k
q(4)(t) + (b + m)q(2)(t) = u(t) , (15.17)
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where all quantities are defined as previously done. The system can even
be written in the linear form Ẋ = A(X)X + Bu where the state vector
X ∈ R

4 is defined as

X =











q
q̇
q̈

q(3)











. (15.18)

The state transition matrix A ∈ R
4×4 and the input vector are

A =













0 1 0 0
0 0 1 0
0 0 0 1

0 0 −(b + m)k

bm
0













and B =













0
0
0
k

bm













. (15.19)

The system is written in a strict feedback form and is ready for the appli-
cation of the backstepping method.

15.2.3 Controller design

According to (15.19), defining the state vector x ∈ R
4 as [x1, x2, x3, x4] =

[q, q̇, q̈,
...
q ] allows to write the system in the strict feedback form



















ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4

ẋ4 = f4(x1, x2, x3, x4) + g4(x1, x2, x3, x4)u

, (15.20)

with



































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






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

























f1(x1) = 0
g1(x1) = 1

f2(x1, x2) = 0
g2(x1, x2) = 1

f3(x1, x2, x3) = 0
g3(x1, x2, x3) = 1

f4(x1, x2, x3, x4) = −k(b + m)

bm
x3

g4(x1, x2, x3, x4) =
k

bm

. (15.21)

Remark : The choice of f4 and g4 could be changed to f4 = 0 and g4 = 1

by feedback linearization in a strict integrator form by u =
bm

k
(
k(b + m)

bm
q̈+

v). The new system could be ẊAvX+Bvv, with the state transition matrix
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Av ∈ R
4×4 and the input vector defined as

Av =











0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0











and Bv =











0
0
0
1











. (15.22)

However, the backstepping procedure naturally includes the feedback can-
cellation of f4 and the scaling g4 so it is not needed to perform the feedback
linearization before designing the controller. The system is of order four and
consequently four steps are needed to complete the integrator backstepping
procedure. The following sections report the steps along with the stability
proofs which helps understanding the procedure.

First equation The arguments of the functions are removed for clar-
ity. According to the state matrix defined (15.19), the system is given by

ẋ1 = x2 (15.23)

ẋ2 = x3 (15.24)

ẋ3 = x4 (15.25)

ẋ4 = f4 + g4u (15.26)

Considering only (15.23) and taking x̄2 = x2 as a virtual input, the scalar
system is stabilized by

x̄2 = −k1x1, (15.27)

where k1 ∈ R
∗+. The stability is proved using the Lyapunov function

V (x1) = 1
2x2

1. The time derivative of V1 along the solution is,

V̇ (x1) = x1ẋ1 = −k1x2
1 (15.28)

which, after invoking the LaSalle theorem, concludes the proof.

Second equation The ideal control input of the first equation cannot
be exactly tracked because the system has internal dynamics (the input
goes through several integrators). Therefore, a tracking error z2 is defined
as z2 = x2− x̄2 and propagated in the system. Eliminating x2 in the original
system leads to



















ẋ1 = (x̄2 + z2)
ż2 = x3 − ˙̄x2

ẋ3 = x4

ẋ4 = f4 + g4u

. (15.29)

Replacing x̄2 and ˙̄x2 by their expressions gives


















ẋ1 = −k1x1 + z2

ż2 = x3 − ˙̄x2

ẋ3 = x4

ẋ4 = f4 + g4u

. (15.30)
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Considering only the two first equations of Eq. (15.30) and taking x̄3 = x3

as a virtual input, it can be stabilized by,

x̄3 = −x1 + ˙̄x2 − k2z2 , (15.31)

where k2 ∈ R
∗+. The stability is proved using the Lyapunov function

V (x1, z2) = 1
2(x2

1 + z2
2). The time derivative of V1 along the solution is,

V̇ (x1, z2) = x1ẋ1 + z2ż2 = x1(−k1x1 + z2) + z2(x3 − ˙̄x2) . (15.32)

After simplification, it results in

V̇ (x1, z2) = −k1x2
1 + z2(x1 + x3 − ˙̄x2) . (15.33)

Replacing the expression of x3 gives

V̇ (x1, z2) = −k1x2
1 − k2z2

2 , (15.34)

which concludes the proof.

Third equation Similarly to the the second step, the control input of
the second equation cannot be exactly tracked and therefore z3 is defined as
z3 = x3 − x̄3 . The system is



















ẋ1 = −k1x1 + z2

ż2 = −k2z2 + z3 − x1

ẋ3 = x4

ẋ4 = f4 + g4u

. (15.35)

Eliminating x3 leads to


















ẋ1 = −k1x1 + z2

ż2 = −k2z2 + z3 − x1

ż3 = x4 − ˙̄x3

ẋ4 = f4 + g4u

. (15.36)

Using x4 as a virtual input, the system is be stabilized by

x̄4 = −z2 + ˙̄x3 − k3z3 , (15.37)

where k3 ∈ R
∗+. The stability is proved using the Lyapunov function

V (x1, z2, z3) = 1
2(x2

1 + z2
2 + z2

3). The time derivative of V1 along the so-
lution is,

V̇ (x1, z2, z3) = x1ẋ1 + z2ż2 + z3ż3

= x1(−k1x1 + z2) + z2(−k2z2 + z3 − x1) + z3(x4 − ˙̄x3)
.

(15.38)
After simplification

V̇ (x1, z2, z3) = −k1x2
1 − k2z2

2 + z3(x4 + z2 − ˙̄x3) . (15.39)

Replacing the expression of x4 gives

V̇ (x1, z2, z3) = −k1x2
1 − k2z2

2 − k3z2
3 , (15.40)

which concludes the proof.
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Fourth equation The control input of the third equation cannot be
exactly tracked and therefore z4 is defined as z4 = x4 − x̄4 The system is
now



















ẋ1 = −k1x1 + z2

ż2 = −k2z2 + z3 − x1

ż3 = −k3z3 + z4 − z2

ẋ4 = f4 + g4u

. (15.41)

Eliminating x4 leads to



















ẋ1 = −k1x1 + z2

ż2 = −k2z2 + z3 − x1

ż3 = −k3z3 + z4 − z2

ż4 = f4 + g4u− ˙̄x4

. (15.42)

The real, as opposed to virtual, control input u is selected as

u =
1

g4
(−f4 − z3 + ˙̄x4 − k4z4) , (15.43)

where k4 ∈ R
∗+. The stability is proved using the Lyapunov function

V4(x1, z2, z3, z4) = 1
2(x2

1 + z2
2 + z2

3 + z2
4). The time derivative of V4 along

the solution is,

V̇4(x1, z2, z3, z4) = x1ẋ1 + z2ż2 + z3ż3 + z4ż4

= x1(−k1x1 + z2) + z2(−k2z2 + z3 − x1)
+ z3(−k3z3 + z4 − z2) + z4(x4 − ˙̄x4).

. (15.44)

After simplification

V̇4(x1, z2, z3, z4) = −k1x2
1 − k2z2

2 − k3z2
3 + z4(z3 + f4 + g4u− ˙̄x4) . (15.45)

Replacing the expression of u gives

V̇4(x1, z2, z3, z4) = −k1x2
1 − k2z2

2 − k3z2
3 − k4z2

4 , (15.46)

which concludes the proof.

Input equation The input signal is obtained by recursively replacing
the expression in terms of x1, x2, x3 and x4.

g4u = (−f4 − z3 + ˙̄x4 − k4z4) (15.47)

Starting with z4, the input expression is

g4u = −f4 − z3 + ˙̄x4 − k4(x4 − x̄4) . (15.48)

Then the x̄4 virtual input is expanded.
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g4u = −f4 − z3 +
d

dt
(−z2 + ˙̄x3 − k3z3)− k4(x4 − (−z2 + ˙̄x3 − k3z3)))

= −f4 − z3 +
d

dt
(−z2 + ˙̄x3 − k3z3)− k4x4 + k4(−z2 + ˙̄x3 − k3z3))

= −f4 − z3 − k4x4 +
d

dt
(−z2 + ˙̄x3 − k3z3) + k4(−z2 + ˙̄x3 − k3z3)

(15.49)

The procedure is continued by removing z3 = x3 − x̄3 and results in the
input expression

g4u = −f4 − (x3 − x̄3)− k4x4 +
d

dt
(−z2 + ˙̄x3 − k3(x3 − x̄3)) + k4(−z2 + ˙̄x3 − k3(x3 − x̄3))

= −f4 − x3 + x̄3 − k4x4 +
d

dt
(−z2 + ˙̄x3 − k3x3 + k3x̄3) + k4(−z2 + ˙̄x3 − k3x3 + k3x̄3)

= −f4 − x3 − k4x4 − k3x4 − k4k3x3 + x̄3 +
d

dt
(−z2 + ˙̄x3 + k3x̄3) + k4(−z2 + ˙̄x3 + k3x̄3)

(15.50)

15.2.4 Simulations

Although the theory guarantees that the control law results in an asymp-
totically stable system, the analysis does not include errors such as noise,
unmodeled dynamics, unmodeled nonlinearities, saturations, or delays. This
section presents several numerical simulations that evaluate the backstep-
ping controller under the presence of such errors. The controller will eventu-
ally be implemented on a real-time system where sampling, communication
and computation delays are unavoidably introduced. Similarly, the maximal
motor torque is limited by nature and creates a saturation of the command.
The feedback gains are influencing the convergence rate and the simulations
can be used to get an order of magnitude of some practical values. The
following simulations are performed in order to qualitatively evaluate the
different effects.

• several controller gains K1 and K2.

• several saturation values for the motor input.

• several time delays in the control loop.

It is important to keep in mind that the simulations must be carefully de-
signed to avoid issues related to the numerical inaccuracies or numerical
solvers. For example, using a variable step solver with a continuous deriva-
tive block and a continuous integration block creates a convergence issue.
Solutions for this issue are:

• use a fixed step solver.
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symbol description value units

gearratio gear ratio 100 N.A
m link side inertia 7.2× 10−7 [kgm2]
b motor inertia 2× 10−4 [kgm2]
bθ motor damping 10−2 [Nm/(rad/s)]
bq link damping 10−3 [Nm/(rad/s)]
K joint stiffness 20 [Nm/rad]
K3 controller gain 3 100 N.A
K4 controller gain 4 100 N.A

Table 15.1: Simulation parameters for a single joint and single motor with
linear stiffness

• use a discrete integration or derivative.

• compute symbolically the derivatives (preferred solution).

It is a good practice to slightly modify the sampling time or the error tol-
erance and check that the results of the simulation are not changed signif-
icantly. It is advisable to verifiy the results in the case where the results
are very sensitive to the solver parameters. Either by performing some
experiments or running some reference simulation. Table 15.1 reports the
important simulation parameters and their values. The simulations are per-
formed using a variable step solver and use symbollic derivatives (ode23t of
Matlab).

In the Figures 15.7 and 15.8, the influence of the two first feedback gains
is investigated. In Fig. 15.7, the first gain is increased and consequently, the
stiffness of the link is increased. Oscillations are appearing if the value is
increased too much. Fig. 15.8 shows that the second feedback gain behaves
mainly as a damping coefficient. Increasing the value of K2 slows down the
response of the link.

An electrical motor has a limited torque capability. This limitation is
either due to the maximum torque the structure can support or the max-
imum current that can flow through the coils. In practice, to avoid any
damages, the motor maximum desired torque is limited by firmware or soft-
ware. In the case of the motors of the hand arm system, a first limitation
is implemented in the system driver and a hard limit is implemented in the
motor controller FPGA. The saturation introduces a nonlinearity that can
destabilize the system. Although some theories (such as the sliding mode
control [135]) are able to explicitly deal with saturation effects, this remains
an open field of research. In this work, the influence of the saturation is
evaluated by simulation. The diagram corresponding to the simulation is
reported in Fig. 15.9. In a first step the simulation is performed without
saturation (cf. Fig. 15.11 red/solid). A second simulation with the same
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Figure 15.7: Simulations, influence of K1: link position after a commanded
step of 0.8 rad. The red/solid, light blue/dashed, blue/dot dashed and
orange/dotted lines depict the responses obtained for a gain K1 of 0.2, 1, 5
and 50 (the K2 coefficient being set to K2 = 1). The coefficient K1 has a
strong influence on the stiffness of the link.
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Figure 15.8: Simulations, influence of K2: link position after a commanded
step of 0.8 rad. The red/solid, light blue/dashed, blue/dot dashed and
orange/dotted lines are representing the link position obtained for a K2

coefficient of 0.2, 1, 5 and 50 (the K1 coefficient being set to K1 = 5). The
coefficient K2 has a strong influence on the damping of the link.

ïĄą

controller plantsaturation

ux1,des, x2,des

x

usat

Figure 15.9: Diagram of the simulation used for the evaluation of the influ-
ence of input saturation. A saturation block is placed between the controller
output and the plant.
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Figure 15.10: Simulations, influence of a saturation of the control input u:
link position after a commanded step of 0.8 rad. The red/solid and light
blue/dashed curves are the responses obtained without and with a saturation
of |u| < 0.0005 (the coefficients are set to K1 = 1, K2 = 1, K3 = 100 and
K4 = 100).

parameters and the same initial conditions is conducted with the saturation
(cf. Fig.15.11 light blue/dashed). The plots are showing that the controller
remains stable in the two cases, despite the strong saturation visible in the
command (cf. Fig. 15.11).

A last simulation on the single joint driven by a single motor and with
a linear stiffness is performed to analyze the influence of delays. Based
on the experience of the previous robots developed in the institute, it is
known that delays can have very deleterious effects on the stability. The
analysis of such system delays, together with nonlinear dynamics, is still a
research topic and is out of the scope of the present work. The interested
reader can consult [136–138] for work, mainly oriented towards the issues
of time varying delays in telemanipulation scenario, on the modeling and
the control of system with delays. In this work, the influence of time delay
in the control loop is evaluated by adding a constant time delay between
the command and the plant as well as between the measurements and the
controller. The diagram corresponding to the simulation is reported in Fig.
15.12. Increasing the delay from 0ms to 1ms confirms that they have a
strong influence on the control performance. As described in the modeling
part, the delay for a complete round trip of the signals, i. e. from measure
to actuation, is 333µs. Therefore, according to the simulations, the system
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Figure 15.11: Simulations, influence of a saturation of the control input u:
input command after a commanded step of 0.8 rad. The light blue(solid) and
blue (dashed) lines are the responses obtained without and with a saturation
of |u| < 0.0005 (the coefficients are set to K1 = 1, K2 = 1, K3 = 100 and
K4 = 100).
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Figure 15.12: Diagram of the simulation used for the evaluation of the in-
fluence of time delays. A fixed delay is placed between the command and
the actuator as well as between the measurements and the controller.
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Figure 15.13: Simulations, influence of a delay in the control input u: link
position after a commanded step of 0.8 rad. The red/solid (resp. light
blue/dashed, blue/dotted, orange/dot dashed) line is the response obtained
with a 0ms delay (resp. 0.1, 0.2, 0.5 and 1ms) (the coefficients are set to
K1 = 5, K2 = 1, K3 = 100 and K4 = 100).

should be non oscillating even with the large gains that were selected for
this simulation.

15.2.5 Experiments

The controller derived and simulated in the previous sections is implemented
on a test setup described in Fig. 15.14. A motor, similar to the one of the
modeling section, is connected to a low inertia link with two elastic tendons.
The stiffness of the tendons is linear (i. e. the force is proportional to the
elongation). An internal pretension is required in order to avoid slack in the
tendons during motion. However, because of the linearity of the springs it
is not influencing the dynamic equations (as long as slackening or breaking
is not happening). Table 15.2 reports the values used for the controller
and the parameters corresponding to the physical setup. The stiffness of
the springs has been obtained by direct measurement and the inertia of
the link has been estimated from the CAD data. Figure 15.15 depicts the
measured link position obtained after a commanded step in the case of the
backstepping controller and a PD controller (for reference). It is clearly
visible that the backstepping controller manages to control the link without
generating oscillations. The motor trajectory denoted by A in Fig. 15.15 is
a characteristic of the flexible joint systems.
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Figure 15.14: Experimental setup used for the verification of the backstep-
ping controller

symbol description value units

gearratio gear ratio 100 N.A
M link side inertia 7.2× 10−7 [kgm2]
B motor inertia (output inertia) 2× 10−4 [kgm2]
bθ motor damping 10−2 [Nm/(rad/s)]
bq link damping 10−3 [Nm/(rad/s)]
K joint stiffness 20 [Nm/rad]
K3 controller gain 3 100 N.A
K4 controller gain 4 100 N.A

Table 15.2: Experimental parameters and controller parameters for a single
joint and single motor with linear stiffness
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Figure 15.15: Experiment: measured motor position red/solid and link po-
sition light blue/dotted after a commanded position step. The pulley ratio
between the motor and the link is about 3. Left: a PD controller on the
motor position is used. Right: the backstepping controller is used.
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15.2.6 Conclusion

A nonlinear control law for a a single flexible joint driven by a single mo-
tor and a linear stiffness has been derived. Despite the simplicity of the
plant, the controller has a rather complex expression. It highlights the main
drawback of the backstepping method. Although, by construction, the con-
troller ought to be stable, several simulations were performed to evaluate the
sensitivity to implementation conditions such as delays and saturations. Fi-
nally, the controller was implemented on a test setup and the measurements
confirmed the simulations.

15.3 Single flexible joint: impedance

During grasping tasks it is more advantageous to use a joint impedance
controller than a joint position controller. Indeed, because the models of
the objects are inaccurate, a position controller can lead to large interaction
forces. Large forces can damage the fingers or the objects. Consequently, a
force control loop is required to softly interact with the environment. Sev-
eral control schemes have been developed that allow to moderate the forces,
such as hybrid force control, admittance control or torque control. Based
on the practical experience in manipulation of the DLR, a joint impedance
controller is selected to provide the compliant behavior. Similar work is pro-
posed in [68], however with experimental results on a very different system
(an arm with comparatively large stiffness) as well as limited to the case of
a constant stiffness.1

In this section, the backstepping design method is applied to a single
joint driven by a single motor. Unlike the previous section, the behavior
of an impedance controller is targeted. First, the coordinates of the joint
model are transformed in order to apply the desired link side control law.
The internal dynamics of the motor results in a tracking error of the desired
link torque, therefore, the backstepping procedure is applied to ensure that
the system is regulated to the desired state while remaining globally stable.
In the third section, several simulations are presented in order to obtain a
first selection of gains for the experiments. The practical implementation is
presented in the last section. A test setup with a single flexible joint and
adjustable parameters, such as link mass and joint stiffness, is designed and
built for those specify tests.

1in [68] the joint stiffness results from the structure stiffness.
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15.3.1 Model

Similar to the previous sections, the equations of the simplified system are :
{

mq̈ = k(θ − q) + τext

bθ̈ = −k(θ − q) + τm
, (15.51)

where θ ∈ R, q ∈ R are the motor position and link position. The link inertia
and the motor inertia (along the rotation axis) are denoted m ∈ R, b ∈ R.
In the linear case, defining τ = k(θ − q), and using both equation leads to

τ̈ = −k(m + b)

mb
τ +

k

b
τm −

k

m
τext . (15.52)

Therefore, θ can be removed from (15.51). Defining the state vector x ∈
R

4 as x = [x1, x2, x3, x4]T = [q, q̇, τ, τ̇ ]T , results in a strict feedback form
description



























ẋ1 = x2

ẋ2 = m−1(x3 + τext)
ẋ3 = x4

ẋ4 = k
m

(

−(m + b)

m
x3 + τm − b

m
τext

)

. (15.53)

Similar to the example of the previous section, a feedback can be used to
cancel most of the terms of the last equation of (15.53).

15.3.2 Controller

The backstepping methodology can be applied in the similar way as in the
section 15.2. However, the method does not enforce that the steps are
performed one by one if, of course, stability can be established at the end
of the step. In the case of an impedance controller, the desired torque is a
function of the position and the velocity errors. Recalling that x̄3 = x3 =
τq,des and using it as a virtual input, the link side controller is designed by
selecting x̄3 as

τq,des = −Kp,impq −Kd,impq̇
m
x̄3 = −Kp,impx1 −Kd,impx2

, (15.54)

where (Kp,imp, Kd,imp) ∈ (R∗+)2 are the impedance stiffness and damping.
The case of a regulation controller to the origin is presented, but the reg-
ulation to any other point is obtained by a change of variable. Assuming
τq,des = x3 can be perfectly generated, the stability is proved using the Lya-
punov function, V1(q) = 1

2 q̇T mq̇ + 1
2qT Kp,impq = 1

2 ẋ1
T mẋ1 + 1

2xT
1 Kp,impx1.

The time derivative of V1 along the solutions is

V̇1(x1) = ẋT
1 mẍ1 + ẋT

1 Kp,impx1

= xT
2 (−Kp,impx1 −Kd,impx2 + τext) + xT

2 Kp,impx1 + xT
2 τext

= −Kd,impx2
2 + xT

2 τext

,

(15.55)
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which completes the proof since, in the absence of disturbances τext = 0,
thus V̇1(x1) ≤ 0 and V̇1(x1) = 0 =⇒ x1 = 0.

First backstep Since τext can not be exactly generated, the error z3 =
x3− x̄3 between the reference input and the realized input is introduced. It
is interesting to note that the error z3 is equivalent to the error P T ef that
was introduced in the cascaded case. The system is expressed in terms of
this error as

ẋ1 = x2

ẋ2 = m−1(−Kp,impx1 −Kd,impx2 + z3 + τext)
ż3 = x4 − ˙̄x3

ẋ4 = kb−1(−(m + b)

m
x3 + τm − b

m
τext)

. (15.56)

Using x̄4 = x4 as a virtual input, it is possible to design the link side
controller by selecting x̄4 as

x̄4 = −K3z3 + ˙̄x3 − x2 , (15.57)

where K3 ∈ R
∗+ is a design parameter. Let V2(x1, x2, z3) be the Lyapunov

function

V2(x1, x2, z3) =
1

2
ẋT

1 mẋ1 +
1

2
xT

1 Kp,impx1 +
1

2
zT

3 Ctz3 . (15.58)

Thanks to the symmetry of m and Kp,imp, the time derivative of V2 is given
by,

V̇2(x1, x2, z3) = ẋT
1 mẋ2 + x1Kp,impẋ1 + zT

3 ż3 . (15.59)

Injecting ẋ2 and ż3 from the dynamic equation gives

V̇2 = xT
2 (−Kp,impx1 −Kd,impx2 + z3 + τext) + x1Kp,impx2 + zT

3 (x4 − ˙̄x3)
= xT

2 (−Kp,impx1 −Kd,impx2 + z3 + τext) + x1Kp,impx2

+ zT
3 (−K3z3 + ˙̄x3 − x2 − ˙̄x3 − τext)

= −xT
2 Kd,impx2 − zT

3 K3z3 − zT
3 τext

,

(15.60)
which, after invocation of the LaSalle theorem, completes the proof.

Second backstep Since x4 can not be exactly generated, the error z4 =
x4− x̄4 between the reference input and the realized input is introduced and
the system is expressed in terms of this error. The system is

ẋ1 = x2

ẋ2 = m−1(−Kp,impx1 −Kd,impx2 + z3 + τext)
ż3 = −K3z3 − x2 + z4

ż4 = kb−1(−(m + b)

m
x3 + τm −

b

m
τext)− ˙̄x4

. (15.61)
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Finally, since the motor input τm is appearing in (15.61) the backstepping
ends. The control input τm is selected as

τm =
(m + b)

m
x3 + bk−1u +

b

m
τext , (15.62)

u = −K4z4 + ˙̄x4 − z3 , (15.63)

where K4 ∈ R
∗+ is a design parameter. Let V3(x1, x2, z3, z4) be the Lya-

punov function

V3(x1, x2, z3, z4) =
1

2
ẋT

1 mẋ1 +
1

2
xT

1 Kp,impx1 +
1

2
zT

3 z3 +
1

2
zT

4 z4 . (15.64)

The time derivative of V3 is given by (using the symmetry of m and Kp,imp)

V̇3(x1, x2, z3, z4) = ẋT
1 mẋ2 + x1Kp,impẋ1 + zT

3 ż3 + zT
4 ż4. (15.65)

Injecting ẋ2, ż3 and ż4 from the dynamic equation yields

V̇3 = xT
2 (−Kp,impx1 −Kd,impx2 + z3 + τext) + x1Kp,impx2 + zT

3 (−K3z3 − x2 + z4)

+zT
4 (−kb−1(

(m + b)

m
x3 + τm − b

m
τext)− ˙̄x4)

= xT
2 (−Kp,impx1 −Kd,impx2 + z3) + x1Kp,impx2 + zT

3 (−K3z3 − x2 − z4)
+zT

4 (−K4z4 − z3)
= −xT

2 Kd,impx2 − zT
3 K3z3 − zT

4 K4z4 + xT
2 τext

,

(15.66)
which completes the proof.

Input expression The input expression is obtained by replacing the ex-
pressions of x̄3 and x̄4. It is interesting to note that, using the relations
mq̈ = k(θ − q) + τext and mq(3) = k(θ̇ − q̇) + τ̇ext, the derivatives must only
be available for the link velocity. The original system was



































ẋ1 = x2

ẋ2 = m−1x3

ẋ3 = x4

ẋ4 = −kb−1
(

m−1(m + b)x3 + τm

)

τm = −m−1(m + b)x3 − bk−1u
u = −K4z4 + ˙̄x4 − z3

. (15.67)

The virtual inputs are defined as










x̄3 = −Kp,impx1 −Kd,impx2

x̄4 = −K3z3 + ˙̄x3 − x2

τm = bk−1(−k(mb)−1(m + b)x3 −K4z4 + ˙̄x4 − z3)
, (15.68)

and the error definitions are
{

z3 = x3 − x̄3

z4 = x4 − x̄4
. (15.69)
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Finally, the input expression is

u = − b
k
(K4K3Kp,imp + Kp,imp)x1

− b
k
(K3Kp,imp + K4(K3Kd,imp + Kp,imp + 1) + Kd,imp)x2

− b
k
((k (m+b)

mb
+ K4(K3 + Kd,impm−1) + m−1(K3Kd,imp + Kp,imp) + 1)x3

− b
k
(K4 + Kd,impm−1 + K3)x4

.

(15.70)

15.3.3 Simulations

In this section numerical simulations are performed to verify that the de-
signed controller is indeed providing the behavior of an joint impedance
controller and that it is stable (naturally limited to numerical experiments).
Fig. 15.16 and Fig. 15.17 depict the influence of the controller impedance
parameters Kp,imp and Kd,imp on the link position after a step command of
45 degrees (at time t = 0.5s) and an external disturbance of 1Nm (at time
t = 1.5s). In Figure 15.16, it can be seen that the selected joint stiffness of
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Figure 15.16: Simulation: influence of the stiffness coefficient Kp,imp ∈
[0.02, 0.1, 0.5], Kd,imp = 0.05 on the link side position after a desired po-
sition step of 45 degrees (at time t = 0.5s) and external disturbance of
0.2Nm (at time t = 1.5s).The desired joint position is denoted qdes and the
steady states are denoted qss|0.02, qss|0.1 and qss|0.2.

the impedance controller leads to the proper steady-state joint deflection.
It is interesting to notice that, although the stiffness is modified, the rising
times are identical since it is imposed by the motor controller dynamics.
In Figure 15.17 the influence of the link damping is noticeable through the
increase of the settling time. However, as for the case of the stiffness, the
motor dynamics is imposing most of the behavior. Unlike the singular per-
turbation approach, the system is stable because the motor dynamics are
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Figure 15.17: Simulation: influence of the damping coefficient Kp,imp =
1, Kd,imp ∈ [0.01, 0.05, 0.1] on link side position after a desired position step
of 45 degrees (at time t = 0.5s) and external disturbance of 0.2Nm (at time
t = 1.5s).

included in the design of the controller and not because of its robustness. In
other words, the motor dynamics are not disturbances in the backstepping
controller design.

15.3.4 Experiments

Using the same setup as in the previous section, several experiments are
performed to verify that the controller behaves as expected with the physical
plant. Figure 15.18 shows that the controller successfully moves the link to
the desired position and provides an impedance behavior w. r. t. the external
load applied (for practical reasons a displacement is imposed to the link and
the torque is measured). After applying the displacement to the link, the
expected torque should be τ = Kp,imp(q − q0) where q (resp. q0) is the link
position (resp. the desired link position). The measured torque is τ = 0.579
Nm for a measured deflection of 0.3 radians and a stiffness of 2 Nm/rad
(i. e. an expected torque of τ = 0.6Nm). Although the measured torque
is not exactly the expected torque, the behavior is perfectly suited for an
interaction between the fingers and the environment.

15.3.5 Conclusion

This section derived an impedance controller for a linear flexible joint driven
by a single motor. The controller is designed based on the state controller
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Figure 15.18: Experiment: measured and expected joint torque w. r. t. an
increasing joint position error from 0 to 0.5 rad.

of the previous section. It formally requires the measure of the external
torque and its derivative. However, it is practically sufficient to neglect
the derivative and to estimate the joint torque through the deflection of
the spring. Indeed, since the motor position θ and the link position q are
measured, the joint torque is obtained as τ = k(θ − q) and its derivative
τ̇ = k(θ̇− q̇). The usual drawback of the backstepping, that is, the need for
high order derivatives, is therefore not a practical issue. Several simulations
showed that the controller behaves as an impedance controller. Experiments
confirm that the controller performs satisfactorily and reveals to be very
robust to disturbances.

15.4 Single flexible joint: impedance non linear

stiffness

In the previous sections, the spring stiffness was considered constant. How-
ever, in the Hand Arm System, nonlinear springs are used in order to offer
the possibility to adjust the joint stiffness. Moreover, the explosion of the
spring stiffness when reaching its elongation limits creates a natural pro-
tection for the end stops of joints. Preliminary experiments on a system
with nonlinear springs with the backstepping controller designed for a linear
spring showed that the controller is robust to the unmodeled nonlineari-
ties. However, it is possible to include the nonlinear effects directly in the
controller to ensure that the stability is achieved without the robustness
properties. In this section the backstepping impedance controller for a sin-
gle flexible joint is modified to include the nonlinear spring characteristic.
First, the nonlinearity is introduced in the model. Then, the nonlinear effects
are propagated in the controller. The nonlinear effects are only modifying
the last backstepping stage. Unsurprisingly, one condition for the stability
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proof is that the spring stiffness is strictly positive. Finally, simulations and
experiments are performed in order to verify the validity of the controller.

15.4.1 Model

The dynamical model is similar to the previous sections. However, because
the spring stiffness is a function of its elongation the system takes the form

mq̈ = rqφ(rθθ − rqq) + τext

bθ̈ = −rθφ(rθθ − rqq) + τm
, (15.71)

where all quantities are defined as in the linear case. The force generated by
the spring is represented by φ(rθθ − rqq) ∈ R, which is the force depending
on the spring elongation. The motor pulley radius and the link pulley radius
are denoted rθ ∈ R

+ and rq ∈ R
+. In order to simplify the notation, the

radii of the motor pulley and the link pulley are considered equal to one.
Considering that the spring function is sufficiently smooth on the workspace,
defining τ = φ(θ − q) leads to

τ̇ =
∂φ

∂θ
(θ̇ − q̇)

τ̈ =
∂2φ

∂θ2
(θ̇ − q̇)2 +

∂φ

∂θ
(θ̈ − q̈)

. (15.72)

The partial derivative can be taken w. r. t. θ or q because of the symmetry
of the function. Using the dynamics to express τ̇ in terms of q, q̇, τ and τ̇
results in the relation between the spring elongation and the torque, as well
as the expression of the torque derivative in terms of the joint torque and
the external torque. The expressions are

(θ̇ − q̇) =

(

∂φ

∂θ

)−1

τ̇ , (15.73)

and

τ̈ =
∂2φ

∂θ2

(

(

∂φ

∂θ

)−1

τ̇

)2

+
∂φ

∂θ

(

1

b
(−τ + τm)− 1

m
τ − 1

m
τext

)

τ̈ =
∂2φ

∂θ2

(

(

∂φ

∂θ

)−1

τ̇

)2

+
∂φ

∂θ

1

b

(

τm −
(b + m)

m
τ − b

m
τext

)

. (15.74)

Just as it was done with the linear case, defining the state vector x ∈ R
4 as

x = [q, q̇, τ, τ̇ ]T , results in a strict feedback form description

ẋ1 = x2

ẋ2 = M−1(x3 + τext)
ẋ3 = x4

ẋ4 =
∂2φ

∂θ2

(

(

∂φ

∂θ

)−1

x4

)2

+
∂φ

∂θ

1

b

(

τm −
(b + m)

m
x3 −

b

m
τext

)

. (15.75)
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It is important to note that the nonlinear effects are only visible in the last
equation of (15.71). None of the partial derivatives is zero since the force
characteristic is convex. Therefore, it is possible to feedback linearize the last

equation by choosing τm =

(

∂φ

∂θ

)−1

b



u− ∂2φ

∂θ2

(

(

∂φ

∂θ

)−1

x4

)2

+
(b + m)

m
x3 +

b

m
τext



.

It yields

ẋ1 = x2

ẋ2 = m−1x3

ẋ3 = x4

ẋ4 = u

, (15.76)

which is similar to the linear case.

15.4.2 Controller

The controller derivation is identical to the case of the linear system until
the input expression replacement. The control input u is selected as

τm =

(

∂φ

∂θ

)−1

b



u− ∂2φ

∂θ2

(

(

∂φ

∂θ

)−1

x4

)2


+
(b + m)

bm
x3 , (15.77)

with

u = −K4z4 + ˙̄x4 − z3 , (15.78)

where K4 ∈ R
∗+ is a design parameter. The stability of the plant under

the controller is obtained by Lyapunov analysis. Let V3(x1, x2, z3, z4) be the
Lyapunov function,

V3(x1, x2, z3, z4) =
1

2
ẋT

1 mẋ1 +
1

2
xT

1 Kp,impx1 +
1

2
zT

3 z3 +
1

2
zT

4 z4 . (15.79)

The time derivative of V3 is given by

V̇3(x1, x2, z3, z4) = ẋT
1 mẋ2 + x1Kp,impẋ1 + zT

3 ż3 + zT
4 ż4 . (15.80)

Injecting ẋ2, ż3 and ż4 from the dynamic equation yields

V̇3 = xT
2 (−Kp,impx1 −Kd,impx2 + z3) + x1Kp,impx2 + zT

3 (−K3z3 − x2 + z4)

+zT
4 ((

∂φ

∂θ
)−1x2

4 +
∂2φ

∂θ2

1

b
(τm −

(b + m)

bm
x3)− ˙̄x4)

= xT
2 (−Kp,impx1 −Kd,impx2 + z3) + x1Kp,impx2 + zT

3 (−K3z3 − x2 − z4)
+zT

4 (−K4z4 − z3)
= −xT

2 Kd,impx2 − zT
3 K3z3 − zT

4 K4z4

,

(15.81)
which, after invoking LaSalle theorem, completes the proof.
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15.4.3 Simulations

In this section numerical simulation are performed to verify that the con-
troller provides an impedance behavior and that it is stable (naturally lim-
ited to numerical experiments). For the simulation, a realistic spring char-
acteristic is used and the derivatives are tabulated in a lookup table in order
to stay close to the implementation case. Throughout this section, the term
linear controller refers to the backstepping controller designed for the linear
plant, the term nonlinear controller refers to the backstepping controller
designed for the nonlinear plant. The difference between the linear and the
nonlinear controllers is depicted in Figure 15.19. The improvement of the
nonlinear controller is mainly noticeable in terms of settling time, although
a larger overshot is observed. The nonlinear components of the controller
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Figure 15.19: Simulation: comparison between the linear backstepping con-
troller and the nonlinear backstepping controller on a nonlinear plant. The
solid/red curve depicts the link position under the nonlinear controller. The
dashed/green curve depicts the link position under the linear controller.

have an effect only when the stiffness of the link is far from the nominal
stiffness, therefore the difference between the trajectories is not noticeable
during the free motion between t = 0.5s and t = 1.0s. Indeed, the iner-
tia of the link is low w. r. t. to the joint stiffness thus the link deflection is
minimal and the stiffness variation is negligible. A load applied to the link
modifies noticeably the stiffness, this effect in depicted in Fig. 15.19 where
the stiffness during both experiments is reported. Since a torque peak must
be generated to begin the motion, one would expect a change of stiffness at
the point denoted by A. However, this change of stiffness is negligible w. r. t.
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the change of stiffness imposed by the load. As with most nonlinear control

A

Time [s]

J
oi

n
t

st
iff

n
es

s
[N

m
/r

ad
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 15.20: Simulation: change of the joint stiffness during the experiment
depicted in Fig. 15.19. The solid/red curve depicts the link position under
the nonlinear controller. The dashed/green curve depicts the link position
under the linear controller. The stiffness change when accelerating the link
(cf. point A, at t = 0.5s) is negligible w. r. t. the change of stiffness imposed
by the external load (at time t = 1.5s).

approaches, the cancellation of the nonlinear terms tends to generate very
large control actions. Therefore, a comparison between the linear and the
nonlinear controller, together with an torque input saturation, is reported
in Fig. 15.21.

15.4.4 Experiments

Using the same setup as used in the previous section but replacing the
linear springs by nonlinear ones, experiments are performed to verify that
the controller behaves as expected with the physical plant. Similar to the
linear case, the controller successfully moves the link to the desired position
and provides an impedance behavior w. r. t. the externally applied load. The
link side position and the joint torques trajectories are depicted in Figure
15.22.

15.4.5 Conclusion

This section derived a nonlinear impedance controller for a nonlinear flexible
joint driven by a single motor. The equations reveal that the differences be-
tween the linear backtepping controller and the nonlinear backstepping are
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Figure 15.21: Simulation: effect of a motor torque saturation on the con-
trollers. The solid/red curve depicts the link position under the nonlinear
controller. The dashed/green curve depicts the link position under the linear
controller. In both cases, a saturation is applied on the motor torque. The
difference between the two controller is reduced. Nonetheless, the settling
time of the nonlinear controller remains shorter.

limited if the input saturation is taken into account. Although the stiffness
of the joint is nonlinear, the stiffness of the link only changes significantly
when an external load is applied. Simulations and experiments confirm that
the controller performs satisfactorily and reveals to be very robust to dis-
turbances. The implementation of this nonlinear backstepping controller
requires a stiffness model and its derivatives. It is interesting to note that
one condition for the use of the controller is that the stiffness and its first
derivative are non zero.

15.5 Antagonistic joint

The previous sections have demonstrated that the backstepping method is
able to provide a solid theoretical background as well as excellent practical
results. However, the previous cases where limited to the case of a single
joint driven by a single motor. As presented in the modeling part, the fingers
of the Awiwi Hand are driven by an antagonistic arrangement of tendons
thus, it is necessary to extend the backstepping controller to the case of an
antagonistic controller.

In this section, the backstepping design method is applied to a single joint
driven by a pair of motors. First, the dynamics equations of the system are
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Figure 15.22: Experiment: measured link side position and joint torque
after a desired position step of 1.3 rad and external obstacle placed at 0.8
rad. Between 0s and 2s the impedance gain is 0.5Nm/rad (in red). The
impedance gain is 5Nm/rad between 2s and 4s (in blue).

derived. The system must be transformed in a strict feedback form to be
suited for the backstepping procedure. However, transforming the complete
system in such a form would loose the symmetry of the problem. Because
it is preferred to keep the system symmetry, it is better to transform it in
the strict feedback form by considering that the motors are not aware of
one another. The desired link torque is shared between the motors and a
pretension torque is added in order to maintain the pulling constraints and
possibly achieve the desired stiffness. Finally, the backstepping method is
applied to the two separated systems with the notations used by [130].

The simulations and experiments are presented in the last part. The
main difficulty is to select the numerous gain matrices in order to obtain
a satisfactory behavior. The gains have been initially selected to lead to
feedback gains for the tendon force error that is close to the cascaded case.
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15.5.1 Model

The equations for a linear antagonistic setup are

mq̈ = k(θ1 − q)− k(θ2 + q) + τext

b1θ̈1 = −k1(θ1 − q) + τm,1

b2θ̈2 = −k2(θ2 + q) + τm,2

, (15.82)

where (θ1, θ2) ∈ R
2, q ∈ R are the motor positions and link position. The

link inertia and the motor inertia are denoted m ∈ R, b ∈ R. In the following,
it is assumed that b1 = b2 = b in order to simplify the notations. Defining
τ1 = k1(θ1 − q), τ2 = k2(θ2 + q), and using both equation leads to

τ̈1 =
k1

m

(

(m + b)

b
τ1 + τ2 +

m

b
τm,1 − τext

)

τ̈2 =
k2

m

(

(m + b)

b
τ2 + τ1 +

m

b
τm,2 + τext

)

. (15.83)

The system (15.83) can be decoupled with

τm,1 = b
m

(u− τ2)

τm,2 = b
m

(u− τ1)

, (15.84)

which yields

τ̈1 =
k1

m

(

(m + b)

b
τ1 + u1 − τext

)

τ̈2 =
k2

m

(

(m + b)

b
τ2 + u2 + τext

)

. (15.85)

Therefore, both motors can be treated independently. The following treats
the case of θ1. Defining the state vector x ∈ R

4 as x = [x1, x2, x3, x4]T =
[q, q̇, τ1, τ̇1]T , results in a strict feedback form description

ẋ1 = x2

ẋ2 = m−1(x3 + τext)
ẋ3 = x4

ẋ4 =
k1

m

(

(m + b)

b
x3 + u1 − τext

)

. (15.86)

Since an impedance behavior of the link side is wished, we have

τq,des = τ1 − τ2 = −Kp,impq −Kd,impq̇ (15.87)

However, because two motors are acting one the joint, they exists many
combinations of motor torques that generate the desired joint torque. The
choice

τ̄1 = τ1,offset + 1
2τq,des

τ̄2 = τ2,offset − 1
2τq,des

, (15.88)
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where τ̄1 and τ̄2 denote the desired torque to be produced by each motor, is
a choice that symmetrically shares the torque.

First backstep

Because the two motors have been decoupled it is possible to treat the prob-
lem as a set of independent differential systems. Therefore, all quantities
are scalars. Let V2(x), be the Lyapunov function

V2(x) =
1

2
mx2

2 +
1

2
Kp,impx2

1 +
1

2
eT

t Ctet , (15.89)

where Ct ∈ R and Kp,imp ∈ R are two positive scalars. The torque tracking
error et ∈ R is defined as

et = τ1 − τ̄1 = x3 − x̄3 . (15.90)

The time derivative of V2 is given by

V̇2(q) = q̇T Mq̈ + qKp,impq̇ + eT
t Ctėt . (15.91)

Injecting q̈ from the dynamic equation gives

V̇2(q) = q̇T (−Kp,impq −Kd,impq̇ + et) + qKp,impq̇ + eT
t Ctėt , (15.92)

further simplified in

V̇2(q) = −q̇T Kd,impq̇ + q̇et + eT
t Ctėt . (15.93)

It is possible to cancel the positive term q̇et by choosing a suitable ėt, however
the cancellation must account for an new tracking error es. Inserting the
error gives

ėt = ėt,des + es (15.94)

ėt,des = −C−1
t (q̇ −Ktet) , (15.95)

and leads to
V̇2(q) = −q̇T Kd,impq̇ − eT

t Ktet + eT
t Ctes . (15.96)

Second backstep

To eliminate eT
t Ctes from V̇2 one needs to perform a second time the proce-

dure. Let V3 be a Lyapunov function including the missing term

V3(q) =
1

2
q̇T Mq̇ +

1

2
qT Kp,impq +

1

2
eT

t Ctet +
1

2
eT

s Cses (15.97)

The time derivative is

V̇3(q) = q̇T Mq̈ + qT Kp,impq̇ + eT
t Ctėt + eT

s Csės (15.98)
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Replacing q̈ and ėt

V̇3(q) = q̇T (−Kp,impq−Kd,impq̇+et)+qT Kp,impq̇+eT
t Ct(−C−1

t (q̇−Ktet)+es)+eT
s Csės

(15.99)
Simplified in

V̇3(q) = −Kd,impq̇2 − eT
t Ktet + eT

t Ctes + eT
s Csės (15.100)

It is possible to cancel the positive term eT
t Ctes by choosing a suitable ės

ės = τ̈ − τ̈d − ët,des (15.101)

Once the torque dynamic equations are placed back in the Lyapunov V3

V̇3(q) = −Kd,impq̇2 − eT
t Ktet + eT

t Ctes + eT
s Cs(τ̈ − τ̈d − ët,des) (15.102)

Substituting τ̈

V̇3(q) = −Kd,impq̇2−eT
t Ktet+eT

t Ctes+eT
s Cs(KB−1(τm−Bq̈−τ)−τ̈d−ët,des)

(15.103)
The control law is selected as

τm = Bq̈ + τ + BK−1(τ̈d + ët,des − C−1
s Ctet − C−1

s Kses) , (15.104)

which gives the Lyapunov derivative V̇3

V̇3(q) = −q̇T Kd,impq̇ − eT
t Ktet − eT

s Cses . (15.105)

Input expression

The input expression is obtained by recursively replacing the expression of
the errors. The final expression is given by

τm = Bq̈+τ+BK−1(τ̈d−C−1
t (q(3)−Kt(τ̈−τ̈d))−C−1

s Ct(τ−τd)−C−1
s Ks(C−1

t q̈+(1−C−1
t Kt)(τ̇−τ̇d)))) .

(15.106)
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15.5.2 Simulations
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Figure 15.23: The plot depicts the simulated link position, in red/solid
and the desired link position, in green/dashed along with the external joint
torque, in light blue/dashed-dotted.

In figure 15.23, the results of the backstepping controller simulation are
reported. In a first time, a position step is commanded and the link success-
fully moves to the desired position. In a second time, the desired position
is maintained constant and an external torque is applied. As depicted the
link is deflected according to the impedance control law.

15.5.3 Experiments

The performance of the backsptepping controller has been tested on a single
finger and the results were compared with the ones of the cascaded controller.
The finger used is a finger with bearings and steel cables.

Step response and sinus tracking results The figure 15.24 shows the
step response for the PIP joint. The step response is an important indicator
of the speed and the accuracy of the system which is particularly useful for
rapid motions. Figure 15.25 reports the tracking of a sinus, which is a good
representation of the motion used in a grasp approach phase.
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Figure 15.24: Step response for the PIP joint. Pretension forces were set
to fint = 10N . The green/dashed curve depict the desired position. The
solid/red one represents the response with the backstepping controller. The
light blue/dotted one shows the response with the cascaded controller.
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Figure 15.25: Sinus tracking for the PIP joint. The pretension forces are set
to fpre = 15N . The green/dashed curve depicts the desired position. The
red/solid one depicts the response with the backstepping controller. The
light blue/dotted one represents the response with the cascaded controller.
The vibrations of the light blue/dotted signal are caused by the stick-slip
effect.

The backstepping controller shows accuracy and speed that are in the
required range for grasping and throwing objects. The cascaded controller
is inaccurate because the maximum impedance gain Kp,imp that can be
selected without amplifying the sensor noise is significantly lower than in
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the case of the backsteppping controller.

Gain diagram A comparison of the gain diagram of the singular pertur-
bation controller of the previous chapter and the antagonistic backstepping
is depicted in Fig. 15.26. For each experiment two sets of gains are de-
picted. One set corresponds to the gain obtained for the positive half sinus
and the other one is associated with the negative sinus wave. The backstep-
ping controller results in a unit gain over a longer range of frequency than
the singular perturbation controller. It is interesting to note that the sin-
gular perturbation controller systematically underestimates the actual link
displacement and yields an incorrect sinus amplitude. The singular pertur-
bation controller using the link side position was unable to produce a stiff-
ness comparable to the backstepping controller, therefore, the experiment
has been performed with the link position using only the motor positions.
It is the reason why the amplitude is incorrect.
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Figure 15.26: Gain diagram for the PIP join controlled by the backstep-
ping controller (indicated by light blue dots) and the singular perturbation
controller (red dots). The pretension was set to fpre = 20N for both exper-
iments.

Validation of the impedance behavior The influence of Kp,imp has
been tested for the backstepping controller. It is verified experimentally that
the antagonistic backstepping controller design is resulting in the expected
impedance behavior. More specifically, the stiffness component is verified.
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The experiment consists in imposing a joint deflection with a mechanical
fixture and compare the torque generated by the measured tendon forces
and the desired joint stiffness. The results are reported in Figure 15.27.
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Figure 15.27: The curve depicts the joint torque generated by the tendon
forces depending on the desired impedance stiffness. A position error of the
joint was imposed externally by a mechanical fixture.

15.5.4 Conclusion

In this section, the backstepping method has been extended to the case of an
antagonistic actuation. The extension, based on a very simple sharing of the
desired joint torque, allows to derived two symmetric controllers. Dealing
with both motor independently allows to avoid dealing with a system of
order six. Moreover, because the symmetry is conserved, the pretension
of the tendon is naturally introduced as a shifting of the desired working
point. The simulations and the experimental results both confirmed that
the method sucessfully provides an impedance behavior.

15.6 Conclusion

In this chapter the backstepping method has been applied. It is a nonlinear
control method adapted to problems that can be written in a strict feedback
form. The chapter first introduced the method on an academic example.
Then, the method was applied to a state controller. The state controller
was then modified to produce an impedance behavior. Simulations and
experiments confirmed the performance of the controller. The controller was
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modified to account for the nonlinear spring behavior and it has been shown
that only minor modifications are required. The saturation of the motor
torque limits the advantage of using a controller that accounts for the plant
nonlinearities. Finally, the backstepping controller was extended to the case
of the antagonistic actuation. Simulations and experiments confirm that
the method is successfully providing a link side impedance behavior. The
method is superior to the cascaded case in the sense that it allows to reach
higher impedance stiffness and thus better link side positioning accuracy.

It is important to note that the choice of the gains to obtain the desired
behavior is a challenge. In the presented experiments and simulations the
gains have initially been selected to be close to the gains of the cascaded
control. The gains were then tuned manually, which is a slow and imprecise
method, until the behavior was satisfactory. This tuning method is very
tedious for a full hand. Therefore, a systematic method to select and adjust
the gains is investigated in the next chapter.
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16 Optimal backstepping

In the previous chapters it has been demonstrated that the backstepping
method can be applied to the antagonistic joint of the Awiwi Hand . The
backstepping method has many advantages over the linear control methods.
It provides a solid theoretical framework that smoothly includes the motor
and link dynamics. The usual drawbacks of the method, that are the com-
plexity due to the explosion of terms and the need for high derivatives are
manageable in the case of a flexible joint. Nonetheless, the selection of the
gains is the next main challenge. Indeed, although the theory guarantees
stability for any positive definite gains, it is clear that some limits are im-
posed by the hardware. Choosing and tuning the gains by hand for the 38
tendons of is possible but tedious. Therefore, in this chapter, a method is
developed that allows to automatically select the gains for the two lower lev-
els of the backstepping controller. The two upper gains, namely the stiffness
and the damping of the impedance controller are directly specified by the
user. It is reasonable to imagine that if gains of the backstepping are leading
to a state feedback set of gains that are close to the ones of an optimal linear
controller, it will itself be close to optimal. It is important to note that the
purpose of the method is not to reach optimality but rather to propose an
automated method to select the gains. The method consists in performing
the following steps:

• derive the equation of a backstepping controller

• transform the control law into a state feedback form

• establish and solve a linear optimal problem, e. g. with an ARE
solver.

• compute the backstepping gains that minimize the distance between
the state feedback gains and the optimal gains (according to some
norm).

The chapter is organized as follows. First, the equations of the backstepping
controller are expanded into a state feedback by using the dynamic relation-
ship between link acceleration and joint torque. In the second section, the
idea of optimality is explained and the resulting nonlinear problem is stated.
The third section proposes a numerical method to find a possible solution
to the problem. Finally, the fourth section reports the results of several
simulations and the experimental results obtained on one finger.
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16.1 State-feedback transformation

The backtepping control law u, derived in the section 15.3, can be expressed
as a state feedback by

u = Kbsx , (16.1)

where x ∈ R
4 is a state vector defined by

x =
[

q, q̇, θ, θ̇
]

(16.2)

and Kbs ∈ R
4 is a gain vector defined by

Kbs =











0.0033K4K3Kp,imp + 0.0033Kp,imp

0.0033K3Kp,imp + 0.0033K4(K3Kd,imp + Kp,imp + 1) + 0.0033Kd,imp

7400 + 0.0033K4(K3 + 1400000Kd,imp) + 4600K3Kd,imp + 4600Kp,imp

0.0033K4 + 4600Kd,imp + 0.0033K3











.

(16.3)
The vector defined in (16.3) is made of a nonlinear combination of the back-
stepping controller gains. Therefore, there exists a selection of the back-
stepping gains that are resulting in a state-feedback vector close to the one
obtained with the optimal approach.

16.2 Optimal problem formulation

Formally, the problem consists in choosing a set of control gains, Ω =
[Kp,imp, Kd,imp, K3, K4] that results in state feedback gains close to the gains
obtained by an optimal linear approach. That is

min
Ω

(‖Kbs(Ω)−Kopt‖) with Ω > 0 , (16.4)

where Kopt ∈ R
4 are the feedback gains obtained by solving the ARE (cf.

chapter 13). The condition Ω > 0 is required by the backstepping controller
in order to guarantee stability.

16.3 Solution

Since the objective is to find initial gains offline, the speed of the method
is not an important requirement. Similarly, the convergence of the method,
that is whether the algorithm yields an answer or not, does not need to be
guaranteed. Consequently, a Monte-Carlo algorithm can be used to find a
solution. The code is reported in the pseudo-code 3. The code is not written
for efficiency and many refinements are possible such as simulated annealing
or particle filtering. Nonetheless, the solution stabilizes if a sufficiently large
number of iterations is allowed. For a use online, it is possible to tabulate
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Figure 16.1: Simulation model for a flexible joint with linear springs

the results and use a few iterations of a gradient search algorithm to tune
the gains. Alternatively, a closed-form solution may exist and could be used
together with an ARE solver to obtain a purely online implementation.

Algorithm 3 Gains selection algorithm

% N : number of samples
% Ωdes: desired gains obtained by the ARE
% C: cost at the current point
———————————————————

Cbest ← + inf
Ωbest ← + inf
for i = 0 to N− 1 do

Ω = rand(1, 4)
Kbs, C ← sfkfun(Ω)
if C < Cbest then

Cbest ← C
Ωbest ←Kbs

end if

end for

———————————————————

function sfkfun(Ω)
% returns the equivalent state fedback gains and the distance to the de-
sired gains

return Kbs, C
end function

16.4 Simulation

The simulation is performed on a single joint with linear stiffness. The
parameters are reported in Table 16.1.

The simulation consists in computing several sets of gains using the
algorithm and observing if the resulting behavior is correct. In Figure 16.2, 5
simulations are gathered. For each of the simulation, the same cost matrices
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Table 16.1: Numerical values for the simulations

Symbol Value

M 7.2 · 10−7

Bm 2 · 10−7 · ratio · ratio
K 0.605

Kdes [−7.7018,−3.8384,−3.8384,−0.0100]

A











0, 1, 0, 0
0, 0, M−1, 0

0, 0, 0, 1
0, 0, 0, 0











B [0; 0; 0; K/Bm]

Q











100 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01






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
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Figure 16.2: Simulations: joint behavior for different samples of gains. The
desired link position is depicted in red/solid and the measured joint position
in light blue/dashed. The external joint torque is traced in green/dotted and
the joint torque is represented in black/dashed-dotted.
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are given to the ARE solver. The ARE solver returns a vector of state
feedback gains and the Monte-Carlos optimizer computes the best set of
backstepping gains. Then, the simulation of the backstepping controller is
executed with the gains and the resulting trajectories are stored. Because of
its stochastic nature, the gain vectors are always different, nonetheless the
behavior of the link is very similar for all generated gain sets. The simulation
proves that it is possible to select the gains of the backstepping controller
based on the gains given by an optimal control approach.

16.5 Experiments

In order to evaluate the method experimentally two main challenges are to
be tackled. First, the ARE solver must be replaced by a SDRE solver, that
is the optimal gains must be computed online. Secondly, the Monte-Carlo
optimizer must be modified in order to yield the gains online and without
any convergence issues. The various approaches to solve the challenges and
their in-depth analysis are too long to be reported in this work and only the
most simple approach is reported. It is an approximative method that aims
at demonstrating the applicability of the method on a real setup.

It has been shown in the SDRE chapter, i. e. in Chapter 14, that the
joint stiffness only changes significantly if a load is applied, therefore, the
ARE equation can be solved offline if interaction with the finger are pro-
hibited. Moreover, because the backstepping structure does not depend on
the linearity of the problem, the optimizer can also be executed offline. The
link trajectories obtained for ten distinct experiments are reported in Fig-
ure 16.3. The experimental data is reported in Table 16.2. The experiments
reveal that the method yields acceptable gains. Small differences can be
seen between the trajectories but they are minimal. One of the trajectory is
clearly distinct which shows that the optimizer did not find a good solution.

16.6 Discussion

This chapter presented an algorithm used to select the gain matrices of
the backstepping controller. The main purpose of the method is not to
build an optimal controller but rather to allow for a systematic tuning of
the controller. It is shown that the method can be used to automatically
select the gains that are leading to a good performance. Further work could
consists in evaluating the performance of the resulting controller w. r. t. a
nonlinear optimal controller.
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Table 16.2: Numerical values for the experiments

Symbol Value

M 7.2 · 10−7

Bm 2 · 10−7 · ratio · ratio
K 0.605

Kdes [−7.7018,−3.8384,−3.8384,−0.0100]

A











0, 1, 0, 0
0, 0, M−1, 0

0, 0, 0, 1
0, 0, 0, 0











B [0; 0; 0; K/Bm]

Q











100 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01











R 0.1

Time [s]

J
o
in

t
p

o
si

ti
on

[r
ad

]

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 16.3: Experiments: joint behavior for different samples of gains. The
measured joint position are reported.
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Part III

Conclusion
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Conclusion

In this thesis, the modeling and the control of a complex and novel hand
has been presented. The system is unique in terms of complexity as well as
in structure. Indeed, the 19 joints of the hand are driven by 38 motors and
38 nonlinearly flexible tendons.

The modeling followed an incremental approach and, starting with the
motor modeling, provided a comprehensive and complete model of the sys-
tem. Each phase of the modeling was verified with simulations and exper-
iments since the models established are the basis for the future work on
the system. The specificities of antagonistically tendon driven systems have
been presented in details and the required mathematical formalism has been
introduced. An important step was the derivation of the coupling matrices,
that are a fundamental element of tendon driven system. Indeed, they allow
to transform the quantities, such as the stiffness, the torques and the posi-
tions, from joint space to tendon space. The knowledge of the link position
is paramount to implement most controller. However, in the Awiwi does
not provide a link side position sensor, which is one of the key elements for
its robustness, thus the finger configuration must be reconstructed from the
tendon displacements. The estimation of the link side position in case of
the thumb revealled to be particularily challenging and several optimization
approaches have been proposed and discussed. An implementation of the
link estimation for the thumb has been reported and experimental results
confirmed the applicability of the method. The final modeling step consisted
in computing a forward kinematic model for the wirst. Indeed, the paths of
the tendon are modified by the wrist motions and a compensation scheme is
required. The proposed method was verified by comparing simulations and
measurements.

The control part aimed at identifying a suitable control approach for the
finger. In a first step, a motor controller was designed that improves the
velocity tracking performance. Following a bottom-up approach, a tendon

Figure 16.4: Grasp taxonomy
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force controller was designed. However, since the plant is nonlinear, a lin-
earization of the system by feedback was proposed and implemented. The
improvement of the step response demonstrated the superiority of a nonlin-
ear controller w. r. t. a linear controller. The next logical step consisted in
combining two tendon controllers in order to achieve a joint controller. A
first analysis, based on the singular perturbation argument, demonstrated
that an joint impedance controller could be constructed. However, the time
scale argument depends on the joint stiffness and experiments confirmed
that the gain tuning was challenging. A cascaded system analysis removed
the need for a time scale separation assumption. The tuning of the controller
gains is really tedious for a system such as the Awiwi hand since each of the
fingers is different. Therefore, an optimal control approach was proposed in
order to simplify the choice of the gains. The approach simplifies the choice
of the gains and an extension to the case of a nonlinear plant, known as the
SDRE, was proposed. Unfortunately, the method did not guarantee global
stability. The second half of the control part focuses on nonlinear control
methods. There exist a large number of nonlinear control methods but only
a subset is applicable case of a flexible joint. This work focused on one spe-
cific method: the integrator backstepping approach. The control method
had to be modified twice. First, it had to be adapted to the case of an an-
tagonistic actuation. Second, it was adapted in order to yield an impedance
control of the joints. The superiority of the method was demonstrated in ex-
perimentally and in simulation. The method guarantees global asymptotic
stability and was implemented on the complete hand. The performance
of the controller is very satisfying and it is used daily on the platform to
support research on grasping. Similar to other method, the tuning of such
a controller is tedious. Therefore, the last chapter of the control part pro-
posed an automated gain selection method for the backstepping gain design.
The method was implemented and its effectiveness was demonstrated. The
control part demonstrated that nonlinear control theory can be successfully
applied to the Awiwi hand. It results in a high performance control of the
hand. The work reported in the thesis focused on a single joint such that
the controller could be compared but it has been systematically applied to
the 19 joints of the hand. The controllers have been used to verify the
capabilities of the hand in terms of grasping as depicted in Fig. 16.4.

The models and controllers developped in this thesis are a very first layer
upon which research in grasping and manipulation can be build. The high
performance of the control allows to implement new approaches that were
not available on other platforms. For example, the influence of the choice of
the mechanical stiffness on the grasp stability.

I am proud to say that the complete Hand Arm System, used as a leading
research platform for dexterous manipulation is currently using the models
and the controllers created in this work.
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Modélisation et contrôle d’une main anthropomorphe actionnée par des
tendons antagonistes

Résumé : Un des freins majeurs au développement de la manipulation d’objet avec une main robo-
tisée est sans aucun doute leur fragilité. C’est l’une des raisons pour laquelle un système bras-main
anthropomorphe, extrêmement robuste, est développé au centre de robotique et de mécatronique de
DLR. Le système est unique à la fois par sa complexité, utilisant 52 moteurs et plus de 200 capteurs,
ainsi que par ses capacités dynamiques. En effet, ce nouveau système a la particularité d’être mé-
caniquement flexible ce qui offre la possibilité de stocker de l’énergie à court terme et remplit ainsi
deux fonctions essentielles pour un robot humanoïde : les impacts sont filtrés et les performances
dynamiques sont augmentées.

Dans cette thèse, on se concentre plus particulièrement sur la main. Elle dispose de 19 degrés de
liberté dont chacun est actionné par deux tendons flexibles antagonistes. La rigidité des tendons étant
non linéaire il est possible, tout comme peut le faire l’être humain, de co-contracter les «muscles» et
donc d’ajuster la rigidité des doigts afin de s’adapter au mieux aux tâches à effectuer. Cependant,
cette flexibilité entraine de nouveau défis de modélisation et de contrôle. L’état de l’art se concentre
majoritairement sur le problème de la répartition des forces internes ou du contrôle d’articulation
flexible mais peu de travaux considèrent les deux problèmes simultanément.

Le travail présenté dans la première partie de la thèse se concentre sur la modélisation de la main
et du poignet. Les problématiques spécifiques aux systèmes actionnés par des tendons, tels que les
matrices de couplage et l’estimation du déplacement des articulations à partir du déplacement des
tendons, sont étudiées. La seconde partie se concentre sur le contrôle d’articulations actionnées par
des tendons flexibles antagonistes. Les problèmes de distribution des forces internes et de correction
de la rigidité perçue par l’utilisateur sont présentés. Des approches de contrôle linéaire et non linéaire
sont utilisées et des expériences sont réalisées pour comparer ces approches. En particulier, il est
montré que le «backstepping», une méthode de contrôle non linéaire peut être utilisée et permet d’ob-
tenir le comportement d’impédance souhaité tout en garantissant la stabilité en boucle fermée.
Mots clés : Modélisation robotique, main anthropomorphique, système actionné par tendons, contrôle
d’articulation flexible, contrôle non linéaire, contrôle appliqué.

Modeling and control of an antagonistically actuated tendon driven
anthropomorphic hand

Abstract: One of the major limitations of object manipulation with a robotic hand is the fragility of
the hardware. This is one of the motivations for developing the new anthropomorphic and extremely
robust Hand Arm System at the robotics and mecatronics center of DLR. The system is unique in
terms of complexity, with 52 motors and more than 200 sensors, and also in terms of dynamics.
Indeed, the system is mechanically compliant, thus offers the possibility to store and release energy,
thereby providing two essential functions: The impacts are filtered and the dynamics are enhanced.

This thesis focuses on the hand. It has 19 degrees of freedom, each being actuated by two flexible
antagonistic tendons. Because the stiffnes of the tendons is not linear, it is possible to adjust the
mechanical stiffness of the joints, similar to the co-contraction of human muscles, in order to adapt to
a task. However, the stiffness adjustability rises new challenges in modeling and control. The state of
the art usually focuses on the problems of tendon-driven systems or flexible joint robots but seldomly
both simultaneously.

In the first part, the modeling of the hand and the wrist is conducted. Several problems specific to
tendon-driven systems are presented, such as the coupling matrices and the joint position estimation
based on the tendon displacement. The second part focuses on the control of a single joint actuated by
two flexible tendons. The distribution of the tendon forces and the correction of the effective stiffness
are reported. Linear and nonlinear approaches are used and multiple experiments are realised to
compare them. The major result is that the backstepping, a nonlinear control method, can be used
and provides the desired impedance behavior while guaranting closed-loop stability.
Keywords: Robotic modeling, anthropomorphic hand, tendon-driven system, flexible joint control,
nonlinear control, applied control.


