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Abstract

The ever-expanding volume of available audio and multimedia data has el-

evated technologies related to content indexing and structuring to the fore-

front of research. Speaker diarization, commonly referred to as the ‘who

spoke when?’ task, is one such an example and has emerged as a prominent,

core enabling technology in the wider speech processing research community.

Speaker diarization involves the detection of speaker turns within an audio

document (segmentation) and the grouping together of all same-speaker seg-

ments (clustering). Much progress has been made in the field over recent

years partly spearheaded by the NIST Rich Transcription (RT) evaluations

focus on meeting domain, in the proceedings of which are found two general

approaches: top-down and bottom-up. The bottom-up approach is by far the

most common, while very few systems are based on top-down approaches.

Even though the best performing systems over recent years have all been

bottom-up approaches we show in this thesis that the top-down approach is

not without significant merit. Indeed we first introduce a new purification

component, improving the robustness of the top-down system and bringing

an average relative Diarization Error Rate (DER) improvement of 15% on

independent datasets, leading to competitive performance to the bottom-up

approach. Moreover, while investigating the two diarization approaches more

thoroughly we show that they behave differently in discriminating between

individual speakers and in normalizing unwanted acoustic variation, i.e. that

which does not pertain to different speakers. This difference of behaviours

leads to a new top-down/bottom-up system combination outperforming the

respective baseline systems. Finally, we introduce a new technology able to

limit the influence of linguistic effects, responsible for biasing the convergence

of the diarization system. Our novel approach is referred to as Phone Adap-

tive Training (PAT) by comparison to Speaker Adaptive Training (SAT) and

shows an improvement of 11% relative improvement in diarization perfor-

mance.



Résumé

Face au volume croissant de données audio et multimédia, les technologies

liées à l’indexation de données et à l’analyse de contenu ont suscité beaucoup

d’intérêt dans la communauté scientifique. Parmi celles-ci, la segmentation

et le regroupement en locuteurs, répondant ainsi à la question ‘Qui parle

quand ?’ a émergé comme une technique de pointe dans la communauté de

traitement de la parole. D’importants progrès ont été réalisés dans le domaine

ces dernières années principalement menés par les évaluations internationales

du NIST (National Institute of Standards and Technology). Tout au long de

ces évaluations, deux approches se sont démarquées : l’une est bottom-up et

l’autre top-down. L’approche bottom-up est de loin la plus courante alors que

seulement quelques systèmes sont basés sur l’approche dite top-down.

L’ensemble des systèmes les plus performants ces dernières années furent es-

sentiellement des systèmes types bottom-up, cependant nous expliquons dans

cette thèse que l’approche top-down comporte elle aussi certains avantages.

En effet, dans un premier temps, nous montrons qu’après avoir introduit

une nouvelle composante de purification des clusters dans l’approche top-

down, nous obtenons une amélioration des performances de 15% relatifs sur

différents jeux de données indépendants, menant à des performances compa-

rables à celles de l’approche bottom-up.

De plus, en étudiant en détails les deux types d’approches nous montrons que

celles-ci se comportent différemment face à la discrimination des locuteurs

et la robustesse face à la composante lexicale. Ces différences sont alors

exploitées au travers d’un nouveau système combinant les deux approches.

Enfin, nous présentons une nouvelle technologie capable de limiter l’influence

de la composante lexicale, source potentielle d’artefacts dans le regroupement

et la segmentation en locuteurs. Notre nouvelle approche se nomme Phone

Adaptive Training par analogie au Speaker Adaptive Training utilisé pour la

reconnaissance de la parole et montre une amélioration de 11% relatifs par

rapport au performances de référence.



“ The most exciting phrase to hear in science,

the one that heralds new discoveries, is not ’Eureka!’ (I found it!)

but ’That’s funny ...’ ”

(Isaac Asimov 1920 - 1992)
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B.1.2 Objectifs de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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B.3 Les différents domaines d’application de la segmentation et du regroupe-

ment en locuteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.4 Analyse des pourcentages de parole multi-locuteurs et de la durée moyenne

des changements de locuteurs pour chacun des 5 jeux de données NIST

RT. Les pourcentages de parole multi-locuteurs sont donnés en fonction

de le temps total de parole. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.5 Système ascendant de segmentation et regroupement en locuteur: cas de

2 locuteurs, image publiée avec l’aimable autorisation de Sylvain Meignier

(LIUM) et Corinne Fredouille (LIA) . . . . . . . . . . . . . . . . . . . . . 151



List of Tables
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Chapter 1

Introduction

1.1 Motivations

Since the late 20th century, the mass of multimedia information has increased exponen-

tially. In 2011-2012, statistics1 show that an average of 60 hours of video is uploaded

to YouTube every minute or the equivalent of 1 hour every second. 4 billion videos are

watched every day. According to the evolution shown in Figure 1.1, this is twice more

than in 2010 and we can still expect these numbers to grow year-after-year as the profiles

of the curves infer.

To face the problem of processing huge amounts of multimedia information, auto-

matic data indexing and content structuring are the only strategy. Different approaches

exist already, mainly based on the video content analysis [Truong & Venkatesh, 2007].

However video uploaded on video-sharing websites come from devices of different natures

including webcams, mobile phones, HD cameras, or homemade video clips involving the

merging of audio and video streams which may not be originally recorded together, e.g.

the video content can be a slideshow and cannot be considered as a real video.

A way to analyze the structure and annotate the different types of video for their

indexation is to extract information from the audio stream, in order to, eventually, feed a

fully video system in a second step. A collection of techniques aim to achieve the extrac-

tion of the audio information, they include emotion recognition, acoustic event detec-

tion, speaker recognition, language detection, speech recognition or speaker diarization.

Whereas speaker and speech recognition correspond to, respectively, the recognition of

1source: http://www.youtube.com/t/press_timeline

1
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Figure 1.1: Evolution of the number of hours of video uploaded on YouTube from 2005

to 2012 (plain curve), and the millions of video watched per day (dashed line). Statistics

issued from: http://www.youtube.com/t/press_timeline. Note that no data is available

from 2005 to 2007 concerning the quantity of video uploaded every minute.

a person’s identity or the transcription of their speech, speaker diarization relates to the

problem of determining ‘who spoke when’. More formally this requires the unsupervised

identification of each speaker within an audio stream and the intervals during which each

speaker is active.

Compared to music or other acoustic events, speech, due to its semantic content,

is one of if not he most informative components in the audio stream. Indeed, speech

transcription brings key information about the topic, while speaker recognition and/or

speaker diarization reveal the speaker identities1 through voice features. Due to it unsu-

pervised nature, speaker diarization has utility in any application where multiple speak-

ers may be expected and has emerged as an increasingly important and dedicated domain

of speech research.

Indeed, speaker diarization first permits to index and extract the speakers in an

audio stream in order to retrieve relevant information. Moreover, when some speaker

a priori information is known, speaker diarization can be used as a preprocessing for

1or relative identities in the case of the unsupervised task of speaker diarization
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Figure 1.2: Number of citations per year in the field of Speaker Diarization. Source: Google

Scholar

the task of speaker recognition to then determine the absolute identity of the speaker.

Additionally, speaker diarization is considered as an important preprocessing step for

Automatic Speech Retranscription (ASR) insofar as information about the speaker fa-

cilitates speaker adaptation e.g. Vocal Track Length Normalization (VTLN), Speaker

Adaptative Training (SAT). Then, speaker specific speech models help to provide more

accurate retranscription outputs.

The task of speaker diarization is thus a prerequisite, enabling technology relevant

to audio indexation, content structuring, automatic annotation or more generally, Rich

Transcription (RT), either providing direct information about the structure and speaker

content indexing or helping in a pre-processing step for speech retranscription or speaker

recognition.

1.2 Objective of This Thesis

Speaker diarization is not a new topic and research in the field started mainly around

2002. As we observe in Figure 1.2, the number of publications in speaker diarization has

increased year-after-year, showing the raising interest of the community and importance

of the field. Among the different challenges tackled by the community, four main domains
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Figure 1.3: Different domains of application for the task of Speaker Diarization.

were addressed. In early 2000, the community first focused on telephone discussions (see

Figure 1.3), which corresponds to a specific diarization challenge insofar as the number

of speakers is known. Then the community turned to Broadcast News, including one

dominant speaker and a few minor speakers. Around 2002 and 2004, the focus moved

to lecture recordings and then meeting recordings. Meeting recordings, due to higher

number of speakers and spontaneous speech (in comparison to the Broadcast News

domain where the dialog is often scripted) becomes the most challenging diarization

task and became the main focus of the community since 2004. Some other domains still

deserve to be addressed, namely TV-shows, or more generally data issued from websites

like YouTube.

This thesis relates to speaker diarization for meeting recordings since research in this

domain is still very active, and meeting recordings are the focus of the recent interna-

tional evaluations, this enables the comparison of performance with other state-of-the-art

systems. Moreover, we have to highlight that meeting recordings, due to their specific

characteristics, can be considered as general enough in terms of number of speakers and

spontaneity of speech, and can be representative enough of an extensive part of the data



available on the Web.

Much progress has been made in the field over recent years partly spearheaded by

the international NIST evaluations where two general approaches stand out: they are

top-down and bottom-up. The bottom-up approach is by far the most common, while

very few systems are based on top-down approaches.

Even though the best performing systems over recent years have all been bottom-up

approaches, we want to show in this thesis that the top-down approach is not without

significant merit and that each approach have its own benefits. The objective of this

thesis can be formulated as follows:

• Is the bottom-up or top-down approach superior to the other?

• How do their behaviors differ?

• What are their specific weaknesses?

• How can we take the benefit of their behavioral differences?

1.3 Contributions

The main contributions of this thesis are four-fold. They are:

(i) a new post-purification process which, applied to the top-down approach, brings

significant improvements in speaker diarization performance and makes the top-down

approach comparable to the bottom-up scenario in terms of DER performance;

(ii) a comparative study which aims to show the differences in behaviors between

the top-down and the bottom-up systems in a common framework and a set of Oracle

experiments;

(iii) an integrated and a fused top-down/bottom-up system which confirm that, due

to their different natures, the combination of the top-down/bottom-up systems brings

improved performance which outperforms the original baselines;

(iv) a new phoneme normalization method which brings significant improvements on

speaker diarization system.

The four contributions are described in more detail in the following.



(i) Novel Approach to cluster purification for Top-Down speaker diariza-

tion

Cluster purification is not a new topic in the field of speaker diarization, how-

ever previous works focus on the cluster purification of bottom-up systems. The

first contribution of this thesis proposes a new purification component which is

embedded in the top-down system baseline. It delivers improved stability across

different datasets composed of conference meeting from five standard NIST eval-

uations and brings an average relative DER improvement of 15% on independent

meeting datasets.

This work was presented at the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2010 [Bozonnet et al., 2011].

(ii) Comparative study of Bottom-Up and Top-Down systems

The second contribution of this thesis is an analysis of the two different bottom-up

and top-down clustering approaches otherwise known as agglomerative and divisive

hierarchical clustering. Indeed, experimental results show that the purification

work presented in the first contribution brings inconsistent improvements when

applied to the bottom-up approach leading us to believe that each system has

a specific behavior due to its particular nature. In order to set a complete and

consistent analysis, two types of study are reported: an Oracle survey which aims to

highlight the weaknesses of each system and a second survey which focuses more

on the differences in convergence due to the different clustering scenarios. This

study helps to understand the negative effect caused by the purification algorithm

while applied on the bottom-up system.

• Oracle Experiments

With the help of a set of Oracle experiments, sensitivity and robustness of the

different components of the top-down baseline are analyzed in order to identify

their possible weaknesses. The same framework is used for the bottom-up

system. Experimental results show that, despite some common weaknesses

mainly related to SAD performance and overlapping speech, both clustering

algorithms present some specific shortcomings. Indeed, while the bottom-up

scenario is almost independent to initialization, it is mainly sensitive to the

merging and stopping criteria, particularly in case of cluster impurity. In



contrast, the top-down scenario is mainly sensitive to initialization and to the

quality of the initial model which influences its discriminative capacity.

• Behavior analysis and differences in terms of convergence

The second part of this analysis aims to focus on the effects in terms of conver-

gence due to the bottom-up or top-down clustering direction. A theoretical

framework including a formal definition of the task of speaker diarization and

an analysis of the challenges that must be addressed by practical speaker di-

arization system are first derived leading us to believe that, theoretically, the

final output should not depend on the clustering direction.

However, we showed that, while ideally the models of a diarization system

should be mainly speaker discriminative and independent of unwanted acous-

tic variations e.g. phonemes, the merging and splitting operations in the clus-

tering process are likely to impact upon the discriminative power and phone-

normalization of the intermediate and final speaker models, leading in prac-

tice to different behaviors and relative strengths and shortcomings. Indeed,

our study shows that top-down systems are often better normalized toward

phonemes and then more stable but suffer from lower speaker discrimination.

This explains why they are likely to benefit from purification. In contrast,

bottom-up clusterings are more speaker discriminative but, as a consequence

of progressive merging, they can be sensitive to phoneme variations possibly

leading to a non-optimal local maxima of the objective function.

This work was presented at the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP) in 2011 [Bozonnet et al., 2011]. An extended

version of the work including a more complete analysis is published in the IEEE

Transactions on Audio Speech and Language Processing (TALSP), special issue

on New Frontiers in Rich Transcription in 2012 [Evans et al., 2012].

(iii) Top-Down / Bottom-up combination system

The previous contribution highlights the distinct properties in terms of model

reliability and discrimination of the bottom-up and top-down approaches. These

specific behaviors suggest that there is some potential for system combination.



The third contribution of this thesis presents some novel ways to combine the

top-down and bottom-up approaches harnessing the strengths of each system and

thus to improve performance and stability. Two system combinations have been

investigated:

• Fused system

The fused system aims to run simultaneously and independently the top-down

and bottom-up systems in order to then combine their outputs. We proposed

a new approach which first maps the different clusters extracted from each

of the system outputs based on some constraints on their confusion matrix

and on their acoustic contents. Thanks to this mapping, a first selection of

clusters is made. Then, some iterative unmatched clusters are introduced

according to their acoustic distances to the mapped clusters where only the

most confident frames are kept. A final realignment is made to associate the

unclassified frames. Thanks to this scenario we achieved up to 13% relative

improvement in diarization performance.

This work was presented at the Annual Conference of the International Speech

Communication Association (Interspeech) in 2010 [Bozonnet et al., 2010], and

a deeper analysis of the effect of the system fusion was published in the IEEE

Transactions on Audio Speech and Language Processing (TALSP) , special

issue on New Frontiers in Rich Transcription in 2012 [Evans et al., 2012].

• Integrated system

An alternative approach to combine the top-down and bottom-up systems is

an integrated approach which aims to fuse the two systems at their heart. The

systems are run simultaneously, the top-down system calling the bottom-up

system as a subroutine during its execution, in order to improve the quality

of newly introduced speaker models. Experimental results show a relative

improvement on three different datasets including meetings and TV-shows

and gives up to 32% relative improvement in diarization performance.

This work was presented at the Annual Conference of the International Speech

Communication Association (Interspeech) in 2010 [Bozonnet et al., 2010].



(iv) Phoneme normalization for speaker diarization

The last contribution of this thesis relates to a new technology able to limit the in-

fluence of linguistic effects, analyzed in our comparative study as a drawback which

may bias the convergence of the diarization system. By comparison to Speaker

Adaptive Training (SAT), we propose an analogous way to reduce the linguistic

components in the acoustic features. Our approach is referred to as Phone Adap-

tive Training (PAT). This technique is based on Constraint Maximum Likelihood

Linear Regression (CMLLR) which aims to suppress the unwanted components

through a linear feature transformation. Experimental results show an improve-

ment of 11% relative improvement in diarization performance.

1.4 Organization

This thesis is organized in 8 chapters as follows:

In Chapter 2 a full survey is given to assess the state-of-the-art and progress in the

field including the main approaches, their specificities and the ongoing problems.

Chapter 3 introduces the official metric, datasets and protocols as defined by NIST

in order to then describe two state-of-the-art baseline systems: a bottom-up and a top-

down approach and their respective performance.

Chapter 4 presents an Oracle study, which, thanks to ‘blame game’ experiments,

aims to evaluate the sensitivity and the robustness of the different components of the

top-down and bottom-up baseline systems and compare their weaknesses.

In Chapter 5 a new purification component is proposed for the baseline systems.

After a description of the algorithm, purification is integrated into the top-down system

and then the bottom-up system and an analysis of the performance is reported.

A comparative study of the top-down and bottom approach is detailed in Chapter 6,

including first a formal definition of the task and the challenge of speaker diarization.

Then a qualitative and experimental comparison is carried out, showing the differences

of behavior of the two systems toward unwanted variation like the lexical content.

Chapter 7 introduces a system combination which takes the benefit of the difference

of behaviors highlighted in Chapter 6 in order to design a more efficient system. Two

scenarios are considered and their respective performances are examined.



Finally Chapter 8 introduces a new way to normalize the feature space, called Phone

Adaptive Training (PAT), in order to attenuate the lexical effect considered as the main

unwanted phone variation in Chapter 6. A description of the technique is first given,

followed by some experimental results.

Conclusions are given in Chapter 9 summarizing the major contributions and results

obtained in this thesis and points to some potential avenues for improvement and future

work.



Chapter 2

State of The Art

Speaker diarization, commonly referred to as the ‘who spoke when?’ task, involves the

detection of speaker turns within an audio document (segmentation) and the grouping

together of all same-speaker segments (clustering) via unsupervised identification as

illustrated in Figure 2.1.

Speaker diarization has been mainly applied on four domains namely telephone con-

versation, broadcast news and recorded lectures or meetings. In this chapter we review

the main techniques used for the task of speaker diarization focusing on research over the

recent years that relates predominantly to speaker diarization for conference meeting.

Section 2.1 presents the main approaches used by the community. Section 2.2 details

the possible different components used by these approaches and Section 2.3 introduces

the hot topics and the current research directions in the field. Note that main part of

this work was published in our article [Anguera et al., 2011].

Speaker 1  

Speaker 2  

Speaker 3 

Overlap speech 

between 

Speakers 1 & 3  

Figure 2.1: Example of audio diarization on recorded meeting including laughs, silence

and 3 speakers.
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Figure 2.2: An overview of a typical speaker diarization system with one or multiple input

channels.

2.1 Main Approaches

Current state-of-the-art systems to speaker diarization can be mainly categorized into

two classes: they are bottom-up and top-down approaches. As illustrated in Fig-

ure 2.3(a), the top-down approach is first initialized with one (or very few) cluster and

aims to iteratively split the clusters in order to reach an optimal number of clusters,

ideally equal to the number of speakers. In contrast, the bottom-up approach is ini-

tialized with many clusters, in excess of the expected number of speakers, and then the

clusters are merged iteratively until reaching the optimal amount of clusters. If the sys-

tem provides more clusters than the real number of speakers, it is said to under-cluster,

on the contrary, if the number of clusters is lower than the number of speakers, the

system is said to over-cluster. Generally bottom-up and top-down systems are based on

Hidden Markov Models (HMMs) where each state is associated with a Gaussian Mixture

Model (GMM) and aims to characterize a single speaker. State transitions represent the

speaker turns.

In this section, the standard bottom-up and top-down approaches are briefly out-

lined as well as two recent alternatives: one based on information theory and a second

one based on a non-parametric Bayesian approach. Although these new approaches

have not been reported previously in the context of official evaluations i.e. NIST RT

evaluations, they have shown strong potential on official datasets and are thus included

here. Some other works propose sequential single-pass segmentation and clustering ap-

proaches as well [Jothilakshmi et al., 2009; Kotti et al., 2008; Zhu et al., 2008], however

their performance tends to fall short of the state-of-the-art, so they are not reported

here.
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2.1.1 Bottom-Up Approach - Agglomerative Hierarchical Clustering

Bottom-up approach, so called agglomerative hierarchical clustering (AHC or AGHC) is

the most popular in the literature. Its strategy aims to initialize the system in under-

clustering the speech data in a number of clusters which exceeds the number of speakers.

Then, successively, clusters are merged until only one cluster remains for each speaker.

Different initializations have been proposed, including for example k-means clustering,

however many systems finally kept a uniform initialization, where the speech stream is

split into equal length abutted segments. Nonetheless this simpler approach leads to

comparable performance[Anguera et al., 2006c]. In a second step, the bottom-up ap-

proach iteratively selects the two closest clusters and merges them. Generally a GMM

model is trained on each cluster. Upon merging, a new GMM model is trained on the

new merged cluster. To identify the closest clusters, standard distance metrics, as those

described in Section 2.2.3 are used. After each cluster merging, the frames are reas-

signed to the clusters thanks to a Viterbi decoding for example. The whole scenario

is repeated iteratively until some stopping criterion is reached, upon which it should

ideally remain one cluster per speaker. Common stopping criterion include thresholded

approaches such as the Bayesian Information Criterion (BIC) [Wooters & Huijbregts,

2008], Kullback-Leibler (KL)-based metrics [Rougui et al., 2006], the Generalized Like-

lihood Ratio (GLR) [Tsai et al., 2004] or the recently proposed Ts metric [Nguyen et al.,

2008]. Bottom-up systems involved in the NIST RT evaluations [Nguyen et al., 2009;

Wooters & Huijbregts, 2008] have performed consistently well.

2.1.2 Top-Down Approach - Divisive Hierarchical Clustering

In contrast with the previous approach, the top-down approach first models the entire

audio stream with a single speaker model and successively adds new models to it un-

til the full number of speakers are deemed to be accounted for. A single GMM model

is trained on all the speech segments available, all of which are marked as unlabeled.

Using some selection procedure to identify suitable training data from the non-labeled

segments, new speaker models are iteratively added to the model one-by-one, with inter-

leaved Viterbi realignment and adaptation. Segments attributed to any one of these new

models are marked as labeled. Stopping criteria similar to those employed in bottom-up



systems may be used to terminate the process or it can continue until no more rele-

vant unlabeled segments with which to train new speaker models remain. Top-down ap-

proaches are far less popular than their bottom-up counterparts. Some examples include

[Fredouille et al., 2009; Fredouille & Evans, 2008; Meignier et al., 2001]. Whilst they are

generally out-performed by the best bottom-up systems, top-down approaches have per-

formed consistently and respectably well against the broader field of other bottom-up

entries. Top-down approaches are also extremely computationally efficient and can be

improved through cluster purification [Bozonnet et al., 2010].

2.1.3 Other Approaches

A recent alternative approach, though also bottom-up in nature, is inspired from rate-

distortion theory and is based on an information-theoretic framework [Vijayasenan et al.,

2007]. It is completely non parametric and its results have been shown to be comparable

to those of state-of-the-art parametric systems, with significant savings in computation.

Clustering is based on mutual information, which measures the mutual dependence of

two variables [Vijayasenan et al., 2009]. Only a single global GMM is tuned for the

full audio stream, and mutual information is computed in a new space of relevance

variables defined by the GMM components. The approach aims at minimizing the loss of

mutual information between successive clusterings while preserving as much information

as possible from the original dataset. Two suitable methods have been reported: the

agglomerative information bottleneck (aIB) [Vijayasenan et al., 2007] and the sequential

information bottleneck (sIB) [Vijayasenan et al., 2009]. Even if this new system does not

lead to better performance than parametric approaches, results comparable to state-of-

the-art GMM systems are reported and are achieved with great savings in computation.

Alternatively, Bayesian machine learning became popular by the end of the 1990s

and has recently been used for speaker diarization. The key component of Bayesian in-

ference is that it does not aim at estimating the parameters of a system (i.e. to perform

point estimates), but rather the parameters of their related distribution (hyperparame-

ters). This allows for avoiding any premature hard decision in the diarization problem

and for automatically regulating the system with the observations (e.g the complexity

of the model is data dependent). However, the computation of posterior distributions

often requires intractable integrals and, as a result, the statistics community has de-

veloped approximate inference methods. Monte Carlo Markov Chains (MCMC) were



first used [McEachern, 1994] to provide a systematic approach to the computation of

distributions via sampling, enabling the deployment of Bayesian methods. However,

sampling methods are generally slow and prohibitive when the amount of data is large,

and they require to be run several times as the chains may get stuck and not converge

in a practical number of iterations.

Another alternative approach, known as Variational Bayes, has been popular since

1993 [Hinton & van Camp, 1993; Wainwright & Jordan, 2003] and aims at providing a

deterministic approximation of the distributions. It enables an inference problem to

be converted to an optimization problem by approximating the intractable distribution

with a tractable approximation obtained by minimizing the Kullback-Leibler divergence

between them. In [Valente, 2005] a Variational Bayes-EM algorithm is used to learn a

GMM speaker model and optimize a change detection process and the merging crite-

rion. In [Reynolds et al., 2009] Variational Bayes is combined successfully with eigenvoice

modeling, described in [Kenny, 2008], for the speaker diarization of telephone conversa-

tions. However these systems still consider classical Viterbi decoding for the classification

and differ from the nonparametric Bayesian systems introduced in Section 2.3.6.

Finally, the recently proposed speaker binary keys [Anguera & Bonastre, 2010] have

been successfully applied to speaker diarization in meetings [Anguera & Bonastre, 2011]

with similar performance to state-of-the-art systems but also with considerable compu-

tational savings (running in around 0.1 times real-time). Speaker binary keys are small

binary vectors computed from the acoustic data using a UBM-like model. Once they

are computed all processing tasks take place in the binary domain. Other works in

speaker diarization concerned with speed include [Friedland et al., 2010; Huang et al.,

2007] which achieve faster than real-time processing through the use of several pro-

cessing tricks applied to a standard bottom-up approach ( [Huang et al., 2007]) or by

parallelizing most of the processing in a GPU unit ( [Friedland et al., 2010]). The need

for efficient diarization systems is emphasized when processing very large databases or

when using diarization as a preprocessing step to other speech algorithms.

2.2 Main Algorithms

Figure 2.3(b) shows a block diagram of the generic modules which make up most speaker

diarization systems. The data preprocessing step (Figure 2.3(b)-i) tends to be somewhat



domain specific. For meeting data, preprocessing usually involves noise reduction (such

as Wiener filtering for example), multi-channel acoustic beamforming (see Section 2.2.1),

the parameterization of speech data into acoustic features (such as MFCC, PLP, etc.)

and the detection of speech segments with a speech activity detection algorithm (see Sec-

tion 2.2.2). Cluster initialization (Figure 2.3(b)-ii) depends on the approach to diariza-

tion, i.e. the choice of an initial set of clusters in bottom-up clustering [Anguera et al.,

2006a,c; Nguyen et al., 2009] (see Section 2.2.3) or a single segment in top-down clus-

tering [Fredouille et al., 2009; Fredouille & Evans, 2008]. Next, in Figure 2.3(b)-iii/iv, a

distance between clusters and a split/merging mechanism (see Section 2.2.4) is used to

iteratively merge clusters [Ajmera, 2003; Nguyen et al., 2009] or to introduce new ones

[Fredouille et al., 2009]. Optionally, data purification algorithms can be used to make

clusters more discriminant [Anguera et al., 2006b; Bozonnet et al., 2010; Nguyen et al.,

2009]. Finally, as illustrated in Figure 2.3(b)-v, stopping criteria are used to determine

when the optimum number of clusters has been reached [Chen & Gopalakrishnan, 1998;

Gish & Schmidt, 1994].

2.2.1 Acoustic beamforming

A specific characteristic of meeting recordings is the way they are recorded. Indeed

meetings take place mainly in a room where often multiple microphones are located at

different positions[Janin et al., 2004; McCowan et al., 2005; Mostefa et al., 2007]. Differ-

ent types of microphone can be used including lapel microphones, desktop microphones

positioned on the meeting room table, microphone arrays or wall-mounted microphones

(intended for speaker localization). The availability of multiple channels captured by

microphones of different natures and located at different location gives some potential

for new speaker diarization approaches.

NIST introduced in the RT‘04 (Spring) evaluation the multiple distant microphone

(MDM) condition. Since 2004, different systems handling multiple channels have been

proposed. We can cite[Fredouille et al., 2004] who propose to perform speaker diarization

on each channel independently and then to merge the individual outputs. To achieve

the fusion of the outputs, the longest speaker intervention in each channel is selected to

train a new speaker in the final segmentation output.

In the same year, [Jin et al., 2004] introduced a late-stage fusion approach where

speaker segmentation is performed separately in all channels and diarization is applied



only taking into account the channel whose speech segments have the best signal-to-noise

ratio (SNR).

Another approach aims to combine the acoustic signals from the different channels

in order to make a single pseudo channel and perform a regular mono-channel diariza-

tion system. In [Istrate et al., 2005] for example, multiple channels are combined with a

simple weighted sum according to their signal-to-noise (SNR) ratio. Though straightfor-

ward to implement, it does not take into account the time difference of arrival between

each microphone channel and might easily lead to a decrease in performance.

Since the NIST RT‘05 evaluation, the most common approach to multi-

channel speaker diarization involves acoustic beamforming as initially proposed in

[Anguera et al., 2005] and detailed in [Anguera et al., 2007]. Main of the RT partic-

ipants use the free and open-source acoustic beamforming toolkit known as Beamfor-

mIt [Anguera, 2006] which consists of an enhanced delay-and-sum algorithm to correct

misalignments due to the time-delay-of-arrival (TDOA) of speech to each microphone.

Speech data can be optionally preprocessed using Wiener filtering [Wiener, 1949] to

attenuate noise, for example, using [Adami et al., 2002a]. To perform the beamform-

ing process, a reference channel is first selected and the other channels are appropriately

aligned and combined with a standard delay-and-sum algorithm. The contribution made

by each signal channel to the output is then dynamically weighted according to its SNR

or by using a cross-correlation-based metric. Various additional algorithms are avail-

able in the BeamformIt toolkit to select the optimum reference channel and to stabilize

the TDOA values between channels before the signals are summed. Finally, the TDOA

estimates themselves are made available as outputs and have been used successfully to

improve diarization, as explained in Section 2.3.1.

Note that other algorithms can provide better beamforming results for some cases,

however, delay-and-sum beamforming is the most reliable one when no a priori informa-

tion on the location or nature of each microphone is known. Alternative beamforming

algorithms include maximum likelihood (ML) [Seltzer et al., 2004] or generalized sidelobe

canceler (GSC) [Griffiths & Jim, 1982] which adaptively find the optimum parameters,

and minimum variance distortionless response (MVDR) [Woelfel & McDonough, 2009]

when prior information on ambient noise is available. All of these have higher compu-

tational requirements and, in the case of the adaptive algorithms, there is the risk to



converge to inaccurate parameters, especially when processing microphones of different

nature.

2.2.2 Speech Activity Detection

Speech Activity Detection (SAD) involves the labeling of speech and non-speech seg-

ments. SAD can have a significant impact on speaker diarization performance for two

reasons. The first stems directly from the standard speaker diarization performance

metric, namely the diarization error rate (DER), which takes into account both the false

alarm and missed speaker error rates (see Section 3.2 for more details on evaluation

metrics); poor SAD performance will therefore lead to an increased DER. The second

follows from the fact that non-speech segments can disturb the speaker diarization pro-

cess, and more specifically the acoustic models involved in the process [Wooters et al.,

2004]. Indeed, the inclusion of non-speech segments in speaker modeling leads to less

discriminant models and thus increased difficulties in segmentation. Consequently, a

good compromise between missed and false alarm speech error rates has to be found to

enhance the quality of the following speaker diarization process.

SAD is a fundamental task in almost all fields of speech processing (coding, enhance-

ment, and recognition) and many different approaches and studies have been reported

in the literature [Ramirez et al., 2007]. Initial approaches for diarization tried to solve

speech activity detection on the fly, i.e. by having a non-speech cluster be a by-product

of the diarization. However, it became evident that better results are obtained using a

dedicated speech/non-speech detector as pre-processing step. In the context of meetings

non-speech segments may include silence, but also ambient noise such as paper shuf-

fling, door knocks or non-lexical noise such as breathing, coughing and laughing, among

other background noises. Therefore, highly variable energy levels can be observed in the

non-speech parts of the signal. Moreover, differences in microphones or room configura-

tions may result in variable signal-to-noise ratios (SNRs) from one meeting to another.

Thus SAD is far from being trivial in this context and typical techniques based on fea-

ture extraction (energy, spectrum divergence between speech and background noise, and

pitch estimation) combined with a threshold-based decision have proved to be relatively

ineffective.

Model-based approaches tend to have better performances and rely on a

two-class detector, with models pre-trained with external speech and non-speech



data [Anguera et al., 2005; Fredouille & Senay, 2006; Van Leeuwen & Konečný, 2008;

Wooters et al., 2004; Zhu et al., 2008]. Speech and non-speech models may option-

ally be adapted to specific meeting conditions [Fredouille & Evans, 2008]. Discriminant

classifiers such as Linear Discriminant Analysis (LDA) coupled with Mel Frequency

Cepstrum Coefficients (MFCC) [Rentzeperis et al., 2006] or Support Vector Machines

(SVM) [Temko et al., 2007] have also been proposed in the literature. The main draw-

back of model-based approaches is their reliance on external data for the training of

speech and non-speech models which makes them less robust to changes in acoustic

conditions. Hybrid approaches have been proposed as a potential solution. In most

cases, an energy-based detection is first applied in order to label a limited amount

of speech and non-speech data for which there is high confidence in the classification.

In a second step, the labeled data are used to train meeting-specific speech and non-

speech models, which are subsequently used in a model-based detector to obtain the

final speech/non-speech segmentation [Anguera et al., 2006; Nwe et al., 2009; Sun et al.,

2009; Wooters & Huijbregts, 2008]. Finally, [El-Khoury et al., 2009] combines a model-

based with a 4Hz modulation energy-based detector. Interestingly, instead of being

applied as a preprocessing stage, in this system SAD is incorporated into the speaker

diarization process.

2.2.3 Segmentation

In the literature, the term ‘speaker segmentation’ is sometimes used to refer to both

segmentation and clustering. Whilst some systems treat each task separately many of

present state-of-the-art systems tackle them simultaneously, as described in Section 2.2.5.

In these cases the notion of strictly independent segmentation and clustering modules is

less relevant. However, both modules are fundamental to the task of speaker diarization

and some systems, such as that reported in [Zhu et al., 2008], apply distinctly indepen-

dent segmentation and clustering stages. Thus the segmentation and clustering models

are described separately here.

Speaker segmentation is core to the diarization process and aims at splitting the

audio stream into speaker homogeneous segments or, alternatively, to detect changes in

speakers, also known as speaker turns. The classical approach to segmentation performs

a hypothesis testing using the acoustic segments in two sliding and possibly overlapping,



consecutive windows. For each considered change point there are two possible hypothe-

ses: first that both segments come from the same speaker (H0), and thus that they can

be well represented by a single model; and second that there are two different speakers

(H1), and thus that two different models are more appropriate. In practice, models

are estimated from each of the speech windows and some criteria are used to determine

whether they are best accounted for by two separate models (and hence two separate

speakers), or by a single model (and hence the same speaker) by using an empirically

determined or dynamically adapted threshold [Lu et al., 2002; Rougui et al., 2006]. This

is performed across the whole audio stream and a sequence of speaker turns is extracted.

Many different distance metrics have appeared in the literature. Next we review

the dominant approaches which have been used for the NIST RT speaker diarization

evaluations during the last 4 years. The most common approach is that of the Bayesian

Information Criterion (BIC) and its associated ∆BIC metric [Chen & Gopalakrishnan,

1998] which has proved to be extremely popular e.g. [Ben et al., 2004; Li & Schultz,

2009; van Leeuwen & Huijbregts, 2007]. The approach requires the setting of an ex-

plicit penalty term which controls the trade-off between missed turns and those falsely

detected. It is generally difficult to estimate the penalty term such that it gives sta-

ble performance across different meetings and thus new, more robust approaches have

been devised. They either adapt the penalty term automatically, i.e. the modified BIC

criterion [Chen & Gopalakrishnan, 1998; Mori & Nakagawa, 2001; Vandecatseye et al.,

2004], or avoid the use of a penalty term altogether by controlling model complexity

[Ajmera et al., 2004]. BIC-based approaches are computationally demanding and some

systems have been developed in order to use the BIC only in a second pass, while

a statistical-based distance is used in a first pass [Lu & Zhang, 2002]. Another BIC-

variant metric, referred to as cross-BIC and introduced in [Anguera & Hernando, 2004;

Anguera et al., 2005], involves the computation of cross-likelihood: the likelihood of a

first segment according to a model tuned from the second segment and vice versa. In

[Malegaonkar et al., 2006], different techniques for likelihood normalization are presented

and are referred to as bilateral scoring.

A popular and alternative approach to BIC-based measures is the Generalized Like-

lihood Ratio (GLR), e.g. [Delacourt & Wellekens, 2000; Siu et al., 1991]. In contrast to

the BIC, the GLR is a likelihood-based metric and corresponds to the ratio between the

two aforementioned hypotheses, as described in [Gangadharaiah et al., 2004; Jin et al.,



2004; Shrikanth & Narayanan, 2008]. To adapt the criterion in order to take into ac-

count the amount of training data available in the two segments, a penalized GLR was

proposed in [Liu & Kubala, 1999].

The last of the dominant approaches is the Kullback-Leibler (KL) divergence which

estimates the distance between two distributions [Siegler et al., 1997]. However, the KL

divergence is asymmetric, and thus the KL2 metric, a symmetric alternative, has proved

to be more popular in speaker diarization when used to characterize the similarity of

two audio segments [Siegler et al., 1997; Zhu et al., 2006; Zochová & Radová, 2005].

Finally, in this section we include a newly introduced distance metric that has shown

promise in a speaker diarization task. The Information Change Rate (ICR), or entropy

can be used to characterize the similarity of two neighbouring speech segments. The

ICR determines the change in information that would be obtained by merging any two

speech segments under consideration and can thus be used for speaker segmentation.

Unlike the measures outlined above, the ICR similarity is not based on a model of

each segment but, instead, on the distance between segments in a space of relevance

variables, with maximum mutual information or minimum entropy. One suitable space

comes from GMM component parameters [Vijayasenan et al., 2007]. The ICR approach

is computationally efficient and, in [Han & Narayanan, 2008], ICR is shown to be more

robust to data source variation than a BIC-based distance.

2.2.4 Clustering

Whereas the segmentation step operates on adjacent windows in order to determine

whether or not they correspond to the same speaker, clustering aims at identifying and

grouping together same-speaker segments which can be localized anywhere in the audio

stream. Ideally, there will be one cluster for each speaker. The problem of measuring seg-

ment similarity remains the same and all the distance metrics described in Section 2.2.3

may also be used for clustering, i.e. the KL distance as in [Rougui et al., 2006], a mod-

ified KL2 metric as in [Ben et al., 2004], a BIC measure as in [Moraru et al., 2005] or

the cross likelihood ratio (CLR) as in [Aronowitz, 2007; Barras et al., 2004].

However, with such an approach to diarization, there is no provision for splitting

segments which contain more than a single speaker, and thus diarization algorithms

can only work well if the initial segmentation is of sufficiently high quality. Since this is

rarely the case, alternative approaches combine clustering with iterative resegmentation,



hence facilitating the introduction of missing speaker turns. Most present diarization

systems thus perform segmentation and clustering simultaneously or clustering on a

frame-to-cluster basis, as described in Section 2.2.5. The general approach involves

Viterbi realignment where the audio stream is resegmented based on the current clus-

tering hypothesis before the models are retrained on the new segmentation. Several

iterations are usually performed. In order to make the Viterbi decoding more stable, it

is common to use a Viterbi buffer to smooth the state, cluster or speaker sequence to

remove erroneously detected, brief speaker turns, as in [Fredouille et al., 2009]. Most

state-of-the-art systems employ some variations on this particular issue.

An alternative approach to clustering involves majority voting [Friedland & Vinyals,

2008; Hung & Friedland, 2008] whereby short windows of frames are entirely assigned

to the closest cluster, i.e. that which attracts the most frames during decoding. This

technique leads to savings in computation but is more suited to online or live speaker

diarization systems.

2.2.5 One-Step Segmentation and Clustering

Most state-of-the-art speaker diarization engines unify the segmentation and clustering

tasks into one step. In these systems, segmentation and clustering are performed hand-in-

hand in one loop. Such a method was initially proposed in [Ajmera, 2003] for a bottom-

up system and has subsequently been adopted by many others [Anguera et al., 2005;

Friedland et al., 2009; Luque et al., 2008; Pardo et al., 2006a; Van Leeuwen & Konečný,

2008; Wooters & Huijbregts, 2008]. For top-down algorithms it was initially proposed

in [Meignier et al., 2001] as used in their latest system [Fredouille et al., 2009].

In all cases the different acoustic classes are represented using HMM/GMM models.

EM training or MAP adaptation is used to obtain the closest possible models given the

current frame-to-model assignments, and a Viterbi algorithm is used to reassign all the

data into the closest newly-created models. Such processing is sometimes performed

several times for the frame assignments to stabilize. This step is useful when a class

is created/eliminated so that the resulting class distribution is allowed to adapt to the

data.

The one-step segmentation and clustering approach, although much slower, consti-

tutes a clear advantage versus sequential single-pass segmentation and clustering ap-

proaches [Jothilakshmi et al., 2009; Kotti et al., 2008; Zhu et al., 2008]. On the one



hand, early errors (mostly missed speaker turns from the segmentation step) can be

later corrected by the re-segmentation steps. On the other hand, most speaker segmen-

tation algorithms use only local information to decide on a speaker change while when

using speaker models and Viterbi realignment all data is taken into consideration.

When performing frame assignment using Viterbi algorithm a minimum assignment

duration is usually enforced to avoid an unrealistic assignment of very small consecutive

segments to different speaker models. Such minimum duration is usually made according

to the estimated minimum length of any given speaker turn.

2.2.6 Purification of Output Clusters

The segmentation and clustering steps follow a greedy strategy i.e. they take decisions

on the basis of information at hand without worrying about the effect these decisions

may have in the future. Final outputs may result in a speaker segmentation that is

not optimal and correspond to a local minimum. It is then possible to apply a post

processing step in order to refine the clustering outputs. Cluster purification aims to

first select the best frames for each cluster and retake a decision for all the other speech

data considered as less confident.

In [Anguera et al., 2006b] a purification component for a bottom-up diarization sys-

tem is proposed. It involves in selecting first the best speech segment in each cluster

according to its likelihood. Then a ∆BIC score is computed between the best segment

and all other segments in the same cluster. According to a threshold, either the cluster

is declared to be pure else it is split into two clusters, then all models are retrained and

the data are realigned.

In[Ning et al., 2006] proposed a post processing for a agglomerative Hierarchical

clustering called ‘cross EM refinement’. This algorithm based on the idea of cross val-

idation and EM algorithm aims to avoid some possible over-fitting and split randomly

and equally each cluster into two parts. Then the first part is used to retrain the cluster

model and labels are update on the second part. Then the role of each part is reversed.

2.3 Current Research Directions

In this section we review those areas of work which are still not mature and which have

the potential to improve diarization performance. We first discuss the trend in recent



NIST RT evaluations to use spatial information obtained from multiple microphones,

which are used by many in combination with MFCCs to improve performance. Then, we

discuss the use of prosodic information which has led to promising speaker diarization

results. Also addressed in this section is the ‘Achilles heel’ of speaker diarization for

meetings, which involves overlapping speech; many researchers have started to tackle the

detection of overlapping speech and its correct labeling for improved diarization outputs.

We then consider a recent trend towards multimodal speaker diarization including studies

of multimodal, audiovisual techniques which have been successfully used for speaker

diarization, at least for laboratory conditions. Finally we consider general combination

strategies that can be used to combine the output of different diarization systems. The

following summarizes recent work in all of these areas.

2.3.1 Time-Delay Features

Estimates of inter-channel delay may be used not only for delay-and-sum beamforming

of multiple microphone channels, as described in Section 2.2.1, but also for speaker

localization. If we assume that speakers do not move, or that appropriate tracking

algorithms are used, then estimates of speaker location may thus be used as additional

features, which have nowadays become extremely popular. Much of the early work,

e.g. [Lathoud & Cowan, 2003], requires explicit knowledge of microphone placement.

However, as is the case with NIST evaluations, such a priori information is not always

available. The first work [Ellis & Liu, 2004] that does not rely on microphone locations

led to promising results, even if error rates were considerably higher than that achieved

with acoustic features. Early efforts to combine acoustic features and estimates of inter-

channel delay clearly demonstrated their potential, e.g. [Ajmera et al., 2004], though

this work again relied upon known microphone locations.

More recent work, and specifically in the context of NIST evaluations, reports

the successful combination of acoustic and inter-channel delay features [Pardo et al.,

2006a, 2007, 2006b] when they are combined at the weighted log-likelihood level, though

optimum weights were found to vary across meetings. Better results are reported

in [Anguera et al., 2007] where automatic weighting based on an entropy-based metric is

used for cluster comparison in a bottom-up speaker diarization system. A complete front-

end for speaker diarization with multiple microphones was proposed in [Anguera et al.,

2007]. Here a two-step TDOA Viterbi post-processing algorithm together with a dynamic



output signal weighting algorithm were shown to greatly improve speaker diarization

accuracy and the robustness of inter-channel delay estimates to noise and reverbera-

tion, which commonly afflict source localization algorithms. More recently an approach

to the unsupervised discriminant analysis of inter-channel delay features was proposed

in [Evans et al., 2009] and results of approximately 20% DER were reported using delay

features alone.

In the most recent NIST RT evaluation, in 2009, all but one entry used estimates

of inter-channel delay both for beamforming and as features. Since comparative exper-

iments are rarely reported it is not possible to assess the contribution of delay features

to diarization performance. However, those who do use delay features report significant

improvements in diarization performance and the success of these systems in NIST RT

evaluations would seem to support their use.

2.3.2 Use of Prosodic Features in Diarization

The use of prosodic features for both speaker detection and diarization is emerging as

a reaction to the theoretical inconsistency derived from using MFCC features both for

speaker recognition (which requires invariance against words) and speech recognition

(which requires invariance against speakers) [Wölfel et al., 2009]. In [Friedland et al.,

2009] the authors present a systematic investigation of the speaker discriminability of

70 long-term features, most of them prosodic features. They provide evidence that de-

spite the dominance of short-term cepstral features in speaker recognition, a number of

long-term features can provide significant information for speaker discrimination. As

already suggested in [Shriberg, 2007], the consideration of patterns derived from larger

segments of speech can reveal individual characteristics of the speakers’ voices as well

as their speaking behavior, information which cannot be captured using a short-term,

frame-based cepstral analysis. The authors use Fisher LDA as a ranking methodology

and sort the 70 prosodic and long-term features by speaker discriminability. The com-

bination of the top-ten ranked prosodic and long-term features combined with regular

MFCCs leads to a 30% relative improvement in terms of DER compared to the top-

performing system of the NIST RT evaluation in 2007. An extension of the work is

provided in [Imseng & Friedland, 2010]. The article presents a novel, adaptive initial-

ization scheme that can be applied to standard bottom-up diarization algorithms. The

initialization method is a combination of the recently proposed ‘adaptive seconds per



Gaussian’ (ASPG) method [Imseng & Friedland, 2009] and a new pre-clustering method

in addition to a new strategy which automatically estimates an appropriate number of

initial clusters based on prosodic features. It outperforms previous cluster initialization

algorithms by up to 67% (relative).

2.3.3 Overlap Detection

The process of overlapping speech in speaker diarization is a problem which remains

largely unsolved. Indeed, the main part of the current speaker diarization systems permit

only to assign one speaker to each segment, while overlapping speech is very common in

domains like multi-party meetings. Consequences on the overall DER are high missed

speech errors when overlapped speech is omitted and can be a substantial fraction of the

DER. Moreover without some means of detection, segments of overlapping speech lead

to impurities in speaker specific models and hence reduce segmentation performance.

Approaches to overlap detection were thoroughly assessed in [Çetin & Shriberg, 2006;

Shriberg et al., 2001] and, even whilst applied to ASR as opposed to speaker diarization,

only a small number of systems actually detects overlapping speech well enough to

improve error rates [Boakye, 2008; Boakye et al., 2008; Trueba-Hornero, 2008].

In [Otterson & Ostendorf, 2007] the authors demonstrated a theoretical improvement

in diarization performance by adding a second speaker during overlap regions using a

simple strategy of assigning speaker labels according to the labels of the neighboring seg-

ments, as well as by excluding overlap regions from the input to the diarization system.

However, this initial study assumed ground-truth overlap detection. In [Trueba-Hornero,

2008] a real overlap detection system was developed, as well as a better heuristic that

computed posterior probabilities from diarization to post process the output and include

a second speaker on overlap regions. The main bottleneck of the achieved performance

gain is mainly due to errors in overlap detection, and more work on enhancing its pre-

cision and recall is reported in [Boakye, 2008; Boakye et al., 2008]. The main approach

consists of a three state HMM-GMM system (non-speech, non-overlapped speech, and

overlapped speech), and the best feature combination is MFCC and modulation spectro-

gram features [Kingsbury et al., 1998], although comparable results were achieved with

other features such as root mean squared energy, spectral flatness, or harmonic energy

ratio. The reported performance of the overlap detection is 82% precision and 21%

recall, and yielded a relative improvement of 11% DER. However, assuming reference



overlap detection, the relative DER improvement goes up to 37%. This way, this area

has potential for future research efforts.

2.3.4 Audiovisual Diarization

An empirical study to review definitions of audiovisual synchrony and examine their

empirical behavior is presented in [Nock et al., 2003]. The results provide justifications

for the application of audiovisual synchrony techniques to the problem of active speaker

localization in broadcast video. Zhang et al. [2006] present a multi-modal speaker local-

ization method using a specialized satellite microphone and an omni-directional camera.

Though the results seem comparable to the state-of-the-art, the solution requires spe-

cialized hardware. The work presented in [Noulas & Krose, 2007] integrates audiovisual

features for on-line audiovisual speaker diarization using a dynamic Bayesian network

(DBN) but tests were limited to discussions with two to three people on two short test

scenarios. Another use of DBN, also called factorial HMMs [Ghahramani & Jordan,

1997], is proposed in [Noulas et al., 2009] as an audiovisual framework. The factorial

HMM arises by forming a dynamic Bayesian belief network composed of several layers.

Each of the layers has independent dynamics but the final observation vector depends

upon the state in each of the layers. In [Tamura et al., 2004] the authors demonstrate

that the different shapes the mouth can take when speaking facilitate word recognition

under tightly constrained test conditions (e.g. frontal position of the subject with respect

to the camera while reading digits).

Common approaches to audiovisual speaker identification involve identifying lip mo-

tion from frontal faces, e.g. [Chen & Rao, 1996; Fisher & Darrell, 2004; Fisher et al.,

2000; Rao & Chen, 1996; Siracusa & Fisher, 2007]. Therefore, the underlying assump-

tion is that motion from a person comes predominantly from the motion of the lower half

of their face. In addition, gestural or other non-verbal behaviors associated with nat-

ural body motion during conversations are artificially suppressed, e.g. for the CUAVE

database [Patterson et al., 2002]. Most of the techniques involve the identification of one

or two people in a single video camera only where short term synchrony of lip motion and

speech are the basis for audiovisual localization. In a real scenario the subject behavior

is not controlled and, consequently, the correct detection of the mouth is not always

feasible. Therefore, other forms of body behavior, e.g. head gestures, which are also

visible manifestations of speech [McNeill, 2000] are used. While there has been relatively



little work on using global body movements for inferring speaking status, some studies

have been carried out [Campbell & Suzuki, 2006; Hung & Friedland, 2008; Hung et al.,

2008; Vajaria et al., 2006] that show promising initial results.

However, until the work presented in [Friedland et al., 2009], approaches have never

considered audiovisual diarization as a single, unsupervised joint optimization problem.

The work in [Friedland et al., 2009], though, relies on multiple cameras. The first article

that discusses joint audiovisual diarization using only a single, low-resolution overview

camera and also tests on meeting scenarios where the participants are able to move

around freely in the room is [Friedland et al., 2009]. The algorithm relies on very few

assumptions and is able to cope with an arbitrary amount of cameras and subframes.

Most importantly, as a result of training a combined audiovisual model, the authors

found that speaker diarization algorithms can result in speaker localization as side in-

formation. This way joint audiovisual speaker diarization can answer the question “who

spoken when and from where”. This solution to the localization problem has properties

that may not be observed either by audio-only diarization nor by video-only localization,

such as increased robustness against various issues present in the channel. In addition, in

contrast to audio-only speaker diarization, this solution provides a means for identifying

speakers beyond clustering numbers by associating video regions with the clusters.

2.3.5 System Combination

System or component combination is often reported in the literature as an effective means

for improving performance in many speech processing applications. However, very few

studies related to speaker diarization have been reported in recent years. This could be

due to the inherent difficulty of merging multiple output segmentations. Combination

strategies, due to the unsupervised nature of the diarization task, have to accommo-

date differences in temporal synchronization, outputs with different number of speakers,

and the matching of speaker labels. Moreover, systems involved in the combination

have to exhibit segmentation outputs that are sufficiently orthogonal in order to ensure

significant gains in performance when combined. Some of the combination strategies

proposed consist of applying different algorithms/components sequentially, based on the

segmentation outputs of the previous steps in order to refine boundaries (referred to

as ‘hybridization’ or ‘piped’ systems in [Meignier et al., 2006]). In [Vijayasenan et al.,



2008] for instance, the authors combine two different algorithms based on the Infor-

mation Bottleneck framework. In [El-Khoury et al., 2008], the best components of two

different speaker diarization systems implemented by two different French laboratories

(LIUM and IRIT) are merged and/or used sequentially, which leads to a performance

gain compared to results from individual systems. An original approach is proposed in

[Gupta et al., 2007], based on a ‘real’ system combination. Here, a couple of systems

uniquely differentiated by their input features (parametrizations based on Gaussianized

against non-Gaussianized MFCCs) are combined for the speaker diarization of phone

calls conversations. The combination approach relies on both systems identifying some

common clusters which are then considered as the most relevant. All the segments not

belonging to these common clusters are labeled as misclassified and are involved in a new

re-classification step based on a GMM modeling of the common clusters and a maximum

likelihood-based decision.

2.3.6 Alternative Models

Among the clustering structures recently developed some differ from the standard HMM

insofar as they are fully nonparametric (that is, the number of parameters of the sys-

tem depends on the observations). The Dirichlet process (DP) [Ferguson, 1973] allows

for converting the systems into Bayesian and nonparametric systems. The DP mixture

model produces infinite Gaussian mixtures and defines the number of components by

a measure over distributions. The authors of [Valente, 2006] illustrate the use of the

Dirichlet process mixtures, showing an improvement compared to other classical meth-

ods. [Teh et al., 2006] propose another nonparametric Bayesian approach, in which a

stochastic hierarchical Dirichlet process (HDP) defines a prior distribution on transition

matrices over countably infinite state spaces, that is, no fixed number of speakers is

assumed, nor found through either split or merging approaches using classical model se-

lection approaches (such as the BIC criterion). Instead, this prior measure is placed over

distributions (called a random measure), which is integrated out using likelihood-prior

conjugacy. The resulting HDP-HMM leads to a data-driven learning algorithm which

infers posterior distributions over the number of states. This posterior uncertainty can

be integrated out when making predictions effectively averaging over models of varying

complexity. The HDP-HMM has shown promise in diarization [Fox et al., 2008], yielding

similar performance to the standard agglomerative HMM with GMM emissions, while



requiring very little hyper-parameter tuning and providing a statistically sound model.

Globally, these non parametric Bayesian approaches did not bring a major improvement

compared to classical systems as presented in Section 2.2. However, they may be promis-

ing insofar as they do not necessarily need to be optimized for certain data compared to

methods cited in Section 2.1. Furthermore, they provide a probabilistic interpretation

on posterior distributions (e.g. number of speakers).





Chapter 3

Protocols & Baseline Systems

Much progress has been made in speaker diarization over recent years partly spearheaded

by the National Institute of Standards and Technology (NIST) Rich Transcription (RT)

evaluations [NIST, 2002, 2003, 2004, 2006, 2007, 2009] in the proceedings of which are

found two general approaches: top-down or divise hierarchical clustering (DHC) and

bottom-up or agglomerative hierarchical clustering (AHC). Even though the best per-

forming systems over recent years have all been bottom-up approaches we believe that

the top-down approach is not without significant merit. Results on the NIST RT‘09

dataset show that the top-down approach gives extremely competitive results1 and is

significantly less computationally demanding than bottom-up approaches.

In this chapter we first describe the official protocols and metric proposed by NIST

and then introduce the different datasets used in the Rich Transcription evaluations. A

TV talk-shows dataset used later to assess the robustness of the baselines is also intro-

duced. Then details of the bottom-up and top-down hierarchical clustering considered

as our baselines are presented. Finally experimental results for the different baseline

systems are given.

3.1 Protocols

Since 2004, NIST has organized a series of benchmark evaluations within the Rich Tran-

scription (RT) campaigns2. These evaluations which include the task of speaker di-

1on the multiple distant microphone (MDM) condition (even though we did not use estimates of

inter-channel delay as features) and on the single distant microphone (SDM) condition
2See http://nist.gov/speech/tests/rt.
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arization, aim to facilitate transcription and annotation technology for human-to-human

speech. Due to its international scope, the RT evaluations have had an instrumental role

in assessing the state-of-the-art and in providing standard evaluation protocols, perfor-

mance metrics and common datasets. An important characteristic of these evaluations

is that there is no a priori information available to the participants (e.g. number of

speakers, speaker identities, etc.) with the exception of the nature of the recording (e.g.

conference meetings, broadcast news, etc.) and the language (English). Standard for-

mats for data input and output are defined and evaluation participants may use external

data for building world models and/or for normalization purposes.

Having considered broadcast news, lectures or coffee breaks domain, the most recent

RT evaluation focused on conference meetings, a particularly challenging domain for

speaker diarization due to its spontaneous speaking style. For this reason the work

presented in this thesis also targets the meeting domain. The meetings provided in the

RT evaluations were recorded using multiple microphones of different types and qualities

which are positioned on the participants (e.g. lapel microphone) or in different locations

around the meeting room. By grouping these microphones into different classes, NIST

proposed several contrastive evaluation conditions. These include: individual headphone

microphones (IHM), single distant microphones (SDM), multiple distant microphones

(MDM), multiple mark III arrays (MM3A1) and all distant microphones (ADM).

The MDM condition is defined as the core, required condition, where participants

have the possibility to use data recorded simultaneously from a number of distributed

table-top microphones. Standard practice in this case involves acoustic beamform-

ing [Anguera, 2006] in order to obtain a single pseudo channel and may utilize local-

ization or inter-channel delay (ICD) features [Anguera et al., 2005; Ellis & Liu, 2004;

Evans et al., 2009] which, if integrated with traditional acoustic features, can lead to

better diarization performance [Anguera et al., 2005].

In contrast, the SDM condition allows only the use of data recorded from one micro-

phone (usually the most centrally located) and cannot therefore exploit speech enhance-

ment with beamforming of multiple channels or the use of ICD. In this thesis we mainly

show results for SDM condition since we consider them to be the most representative of

standard meeting room recording equipment.

1 MM3A microphones are those exclusively found within the arrays built and provided by NIST.

These are usually not included within the MDM condition, they are included within the ADM condition.



3.2 Metrics

NIST defines a standard diarization output which contains a hypothesized speaker ac-

tivity including starting and stopping times of speech segments. Speaker labels are used

solely to identify the multiple interventions of a given speaker, but do not reflect their

real identity. In order to estimate the quality of the hypothesis, the outputs are com-

pared to the ground-truth reference in order to obtain the overall Diarization Error Rate

(DER) also defined by NIST. The DER metric can be defined as the time-weighted sum

of three sources of error:

• Missed Speech (MS): percentage of speech in the ground-truth which is not in

the hypothesis;

• False Alarm speech (FA): percentage of speech in the hypothesis which is not

in the ground-truth;

• Speaker Error (SpkErr): percentage of speech assigned to the wrong speaker

(while ignoring the overlapped speech)

The DER can be determined with and without the inclusion of overlapping speech

segments. When scoring the segments of overlapping speech, the DER reflects errors

in the estimated number of simultaneous speakers (in the NIST RT evaluations up to

4 overlapping speakers are considered in the scoring) and errors in the speaker label.

Errors on the estimated number of speakers lead to an increase of the MS when fewer

speakers than the real number are hypothesized or the FA when too many speakers are

hypothesized. In case of errors on the speaker label, the respective speaker error of each

of the overlap speaker is included in the SpkErr.

The DER is determined according to Equation 3.1

DER = SADerror + SpkErr = MS + FA
︸ ︷︷ ︸

SAD Error

+SpkErr (3.1)

More precisely, the DER is computed as the fraction of speaker time that is not

correctly attributed, based on an optimal mapping. The mapping is performed according

to a standard dynamic programming algorithm defined by NIST, between speakers in



the ground-truth and those in the speaker diarization hypothesis. The DER can be

formally defined as:

DER =

∑

∀i{D
R
i · (max(NR

i , NS
i )−NC

i )}
∑

∀i{D
R
i ·N

R
i }

(3.2)

where DR
i denotes the duration of the i-th reference segment, and where NR

i and NS
i

are respectively the number of speakers according to the reference and the number of

speakers in the diarization hypothesis. NC
i is the number of speakers that are correctly

matched by the diarization system. Note that with overlapping speech, NR
i ,NS

i and NC
i

can be larger than one.

As can be seen from Equation 3.2 the DER is time-weighted, i.e. it attributes less

importance to speakers whose overall speaking time is small. Additionally, a non-scoring

collar of 250ms is generally applied either side of the ground-truth segment boundaries

to account for inevitable inconsistencies in precise start and end point labeling. For the

TV shows with one dominant speaker and multiple relatively inactive speakers (typical

examples can be found in the ’Grand Échiquier’ corpus, see 3.3.2), the DER is not always

a relevant metric, since it can be very small even if only a single speaker is detected.

Note that, since 2006, the primary metric of the RT evaluations includes the over-

lapping speech error. However since the systems reported in this thesis assume only a

single speaker at a time and do not detect or handle overlapped speech, we refer often

to the metric without scoring overlapped speech. In this case NR
i ,NS

i and NC
i are either

zero or one. Where possible we nonetheless report both scores: with and without the

scoring of overlap.

3.3 Datasets

In the work outlined in this manuscript, the majority of the experiments are performed

on meeting domain, i.e. involving the NIST RT meeting corpus. However, in order to

assess the robustness of the systems to different data, some additional work involving

a corpus of TV-talk shows, known as the Grand Échiquier dataset, is also described in

Section 3.3.2.
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Figure 3.1: Analysis of the percentage of overlap speech and the average duration of the

turns for each of the 5 NIST RT evaluation datasets. Percentages of overlap speech are

given over the total speech time

3.3.1 RT Meeting Corpus

For each NIST RT evaluation since 2004 a new database of annotated audio meetings

was collected1. A total of five conference meeting evaluation datasets is available.

Figure 3.1 shows the difference between RT evaluation datasets in terms of percentage

of overlap speech and turn duration. For RT‘04, RT‘05 and RT‘09 we see a percentage of

overlap speech in the order of 15%, while the datasets from 2006 and 2007 involve around

8% of overlap speech. While looking at the average turn duration, which can be defined

as the average time during which there is no change in speaker activity (same speaker,

same condition: overlap/no overlap), we observe that the last three evaluations: RT‘06,

‘07 and ‘09 have shorter average turn durations, although we do not consider overlap

speech. This brings strikingly to the fore the fact that the speech present in the three

last evaluations may be considered as more spontaneous and more interactive, leading

to smaller turn durations. According to these first observations we therefore expect the

1 The ground-truth keys are released later so that they may be used by the community for their own

research and development independently of official NIST evaluations



RT‘06,‘07 and ‘09 datasets to be more challenging.

For the work reported in this thesis, and for consistency with previous work

[Fredouille & Evans, 2008; Fredouille et al., 2004], all the experimental systems were

optimized on a development dataset of 23 meetings from the NIST RT‘04, ‘05 and

‘06 evaluations. Performance was then assessed on the independent RT‘07 and RT‘09

datasets. Note that there is no overlap between development and evaluation datasets

although they may contain shows recorded from the same site and possibly identical

speakers.

3.3.2 GE TV-Talk Shows Corpus

Through some other work [Bozonnet et al., 2010] we also conducted speaker diariza-

tion assessments on a database of TV talk-shows known as the Grand Échiquier’ (GE)

database. Since these results allow us to evaluate the robustness of speaker diarization

system (i.e. to variations in dominant speaker floor time), it is described here. Baseline

results for the GE database are reported in Section 3.5.

This corpus is comprised of over 50 French-language TV talk-show programs from the

1970-80s and was made popular among both national and European multimedia research

projects, e.g. the European K-Space network of excellence [K-Space, K-Space]. Each

show focuses on a main guest and other supporting guests, who are both interviewed by

a host presenter. The interviews are punctuated with film excerpts, live music, audience

applause and laughter. Aside from this, silences during speaker turns can be very short

or almost negligible; compared to meetings, where speakers often pause to collect their

thoughts or to reflect before responding to a question, TV show speech tends to be more

fluent and sometimes almost scripted. This is perhaps due to the fact that the main

themes and discussions are prepared in advance and known by the speakers.

Table 3.1 highlights more quantitative differences between NIST RT conference meet-

ings from the RT‘09 dataset and 7 TV shows from the GE database, which have thus

far been annotated manually according to standard NIST RT protocols [NIST, 2009].

Upon comparison of the first 3 lines of Table 3.1 we observe that TV-talk shows are on

average much longer than conference meeting (147 minutes vs. 25 minutes) and, with

noise (e.g. applause) and music removed, the quantity of speech is twice that for RT

data (50 minutes vs. 21 minutes). Note, however, that the average segment duration

is slightly smaller for RT‘09 than for GE (2 sec. vs 3 sec.). These preliminary findings



Attribute GE NIST RT‘09

No. of shows 7 7

Avg. Evaluation time 147 min. 25 min.

Total speech 50 min. 21 min.

Avg. No. of segments 1033 882

Avg. segment length 3 sec. 2 sec.

Avg. Overlap 5 min. 3 min.

Avg. % Overlap / Total speech 10 % 14 %

Avg. No. speakers 13 5

most active 1476 sec. 535 sec.

least active 7 sec. 146 sec.

Table 3.1: A comparison of Grand Échiquier (GE) and NIST RT‘09 database characteris-

tics.

may suggest that TV-shows will present more of a challenge due to the greater levels of

intra-speaker variability within a same show.

Moreover, differences in terms of speaker statistics have to be considered as well.

Indeed the average number of speakers, and the average floor time for the most and

least active speakers in each show are not comparable for both domains. On average

there are 13 speakers per TV show but only 5 speakers per conference meeting. This

might be expected given the longer average length of TV shows. Given a larger number

of speakers we can expect a smaller average inter-speaker difference than for meetings

and hence increased difficulties in speaker diarization.

Furthermore, we see that the spread in floor time is much greater for the GE dataset

than it is for the RT‘09 dataset. The average speaking time for the most active speaker

is 1476 seconds for the GE dataset (cf. 535 sec. for RT‘09) and corresponds to the host

presenter in each case. The average speaking time for the least active speaker is only 7

seconds (cf. 146 sec. for RT‘09) and corresponds to one of the minor supporting guests.

Speakers with such little data are extremely difficult to detect and thus this aspect of

the TV show dataset is likely to pose significant difficulties for speaker diarization. Note

however that the overall DER is not very sensitive to such speakers insofar as each

speaker’s contribution to the diarization performance metric is time weighted. Addi-

tionally, the presence of one or two dominant speakers means that lesser active speakers

will be comparatively harder to detect, even if they too have a significant floor time.

Finally, the amount of overlapping speech (averages of 5 minutes cf. 3 minutes per



show), or 10% (GE) vs. 14% (RT‘09) while considering the fraction of the total amount of

speech, shows that there is proportionally slightly less overlap speech in the GE dataset

than there is in the RT‘09 dataset, but compared to other RT datasets, the overlap

speech rate can still be considered as quite high.

Even if there is a shade less overlap speech, the nature of TV shows thus presents

unique challenges not seen in meeting data, mainly: the presence of music and other

background non-speech sounds, a greater spread in speaker floor time, a greater number

of speakers and shorter pauses.

3.4 Baseline System Description

The top-down system is based on the work of LIA [Fredouille & Evans, 2008], while the

bottom-up system is based on the work of ICSI [Wooters & Huijbregts, 2008] and more

recently I2R [Nguyen et al., 2009] .

3.4.1 Top-Down System

The top-down system described hereafter corresponds to the official system

used for LIA-EURECOM’s joint submission to the most recent RT‘09 evalua-

tion [Fredouille et al., 2009] and was developed using the freely available open source

ALIZE toolkit [Bonastre et al., 2005]. The system can be decomposed into 5 steps

including Pre-Processing, Speech Activity Detection (SAD), Speaker Segmentation and

Clustering, Resegmentation and Normalization. Among a number of modifications made

to the system used for the RT‘07 evaluation [Fredouille & Evans, 2008] are the use of

delay and sum beamforming for the multiple distant microphone (MDM) condition and

significant changes to the speaker segmentation algorithm, notably in terms of initial-

ization and speaker modeling which will be highlighted in the following.

1. Pre-Processing

All audio files are treated with Wiener filter noise reduction [Adami et al., 2002b].

Then, if multiple microphones are available (MDM condition) a single virtual chan-

nel for each show is created using the BeamformIt v2 toolkit [Anguera, 2006;

Anguera et al., 2007] with a 500ms analysis window and a 250ms frame rate. This

latter stage is not necessary for the SDM condition. Note that this is the only



difference between the diarization systems used for the MDM and SDM conditions

and no delay features are used in any other steps.

2. Speech Activity Detection (SAD)

After preprocessing, speech activity detection (SAD) system is performed in order

to isolate useful speech data. SAD is composed of a two-state hidden Markov

model (HMM), where each state is associated with 32-component Gaussian mix-

ture model (GMM) trained with an EM/ML algorithm on a large amount of ex-

ternal speech and non-speech data from the RT‘04 and RT‘05 evaluations1. The

system utilizes 12 LFCCs and energy augmented by their first and second order

derivatives, extracted every 10ms using a 20ms window. First, a single iteration of

speech/non-speech Viterbi alignment is performed using equiprobable state tran-

sition probabilities in the 2-state HMM and a Viterbi buffer2 equal to 30 frames.

Then the models are adapted by Maximum A Posteriori (MAP) adaptation to

ensure that the models adjust to the prevailing ambient conditions, before Viterbi

realignment is applied. These two steps are repeated a maximum of 10 times un-

til no more changes occur between two consecutive segmentations. Finally some

heuristic duration rules are applied to remove rapid transitions between speech

and non-speech states and thus to smooth the output.

3. Speaker Segmentation and Clustering

Working directly on the SAD output, (the previous pre-segmentation stage used

in the RT‘07 system [Fredouille & Evans, 2008] was removed), the second-stage

speaker segmentation and clustering can be considered as the core of the system.

It relies on an Evolutive Hidden Markov Model (E-HMM) [Meignier et al., 2000,

2006] where each E-HMM state aims to characterize a single speaker and the

transitions represent the speaker turns. All possible changes between speakers

are authorized and a Viterbi buffer2 of 30 frames is used. Here the signal is

characterized by 20 unnormalized LFCCs plus energy coefficients computed every

10ms using a 20ms window.

1Note that this training set is totally independent of any development set or evaluation set used for

later work
2The Viterbi buffer allows a fixed state persistence and makes the system more stable



The segmentation and clustering process for each audio show can be defined as

follows:

(a) Initialization: The E-HMM has only one state, S0 as shown in the Stage 1

of Figure 3.2. A world model of 16 Gaussian components is trained by EM on

all of the speech data (cf. 128 Gaussian components for the system described

in [Fredouille & Evans, 2008]). An iterative process is then started where a

new speaker is added at each iteration.

(b) Speaker Addition: At the nth iteration a new speaker model Sn is added to

the E-HMM: the longest segment with a minimum duration of 6 seconds (cf.

maximum likelihood criterion with 3 sec. minimum in [Fredouille & Evans,

2008]) is selected among all of the segments currently assigned to S0. The

selected segment is attributed to Sn and is used to estimate a new GMM with

EM training (cf. MAP adaption for the LIA RT‘07 system.)

(c) Adaptation/Decoding loop: The objective is to detect all segments be-

longing to the new speaker Sn. All speaker models are re-estimated through

a Viterbi realignment and EM learning, according to the current segmenta-

tion (EM Algorithm) and a new segmentation is obtained via Viterbi decod-

ing. This realignment/learning loop is repeated while a significant number

of changes are observed in the speaker segmentation between two successive

iterations.

(d) Speaker model validation and stop criterion: The current segmentation

is analyzed in order to decide if the newly added speaker model Sn is relevant,

according to some heuristic rules on the total duration assigned to speaker

Sn. The minimum speaker time allowed is 10 seconds. The stop criterion

is reached if there are no more segments greater than 6 seconds in duration

available in S0 with which to add a new speaker, otherwise the process goes

back to step (b).

Figure 3.2 illustrates the 4 steps described above, during the addition of speaker

models S1 and S2 (Stages 2 and 3).

4. Resegmentation

The segmentation and clustering stage followed by a resegmentation step which
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Figure 3.2: Top-down Speaker Segmentation and Clustering: case of 2 Speakers, picture

published with the kind permission of Sylvain Meignier (LIUM) and Corinne Fredouille

(LIA)



aims to refine the segmentation outputs and to remove irrelevant speakers (e.g.

speakers with too few segments). A new HMM is generated from the segmen-

tation output and an iterative speaker model training/Viterbi decoding loop is

launched. In contrast to the segmentation stage, here speaker models are adapted

by MAP adaptation from an universal background model (UBM) trained on a

Speaker Recognition corpus1. Note that during the resegmentation process, all

the boundaries (except speech/non-speech boundaries) and segment labels are re-

examined.

5. Normalization and Resegmentation

Finally a normalization and resegmentation stage is applied using feature vectors

composed of 16 LFCCs, energy, and their first derivatives are extracted every 10 ms

using a 20ms window. Vectors are normalized, speech segment by speech segment,

to fit a zero-mean and unity-variance distribution and a last resegmentation is then

applied as described above.

3.4.2 Bottom-Up System

Compared to the top-down strategy, bottom-up systems are much more popular and

have consistently obtained the best performance in NIST RT evaluations [NIST, 2007,

2009]. For this reason we chose to put the focus on two systems well representative of

the bottom-up clustering state-of-the-art according to. The first bottom-up system is

that proposed by ICSI in [Wooters & Huijbregts, 2008]. The second system is our im-

plementation of that proposed by I2R as published in [Nguyen et al., 2009]. On account

of a collaboration with ICSI, we were able to work with ICSI’s official outputs, thus all

results related to this system shown in the following correspond to the official outputs

unless otherwise stated. The I2R system was implemented using the open source AL-

IZE toolkit [Bonastre et al., 2005] and so all related experimental results correspond to

our own experimental outputs and cannot be considered as I2R’s official outputs. Some

details of our implementation are given below.

Moreover it is important to note that the original ICSI and I2R systems are both

capable of using time-delay features for MDM conditions in order to help discriminate the

1Compared to a speaker diarization corpus this database contains data from many more speakers

(in the order of 400)



speakers. In our work however, we are principally interested in the SDM conditions and

thus, all details related to time-delay features for speaker discrimination are deliberately

omitted. Their only possible use reported here aims to improve the audio quality through

a beamforming.

3.4.2.1 ICSI Bottom-up System

ICSI’s bottom-up system is an example of Agglomerative Hierarchical Clustering (AHC).

Mainly the SAD process and the AHC algorithm are described in the following. Note that

a similar front-end acoustic processing, as presented in Subsection 3.4.1, is performed

and includes noise reduction and beamforming.

1. Speech Activity Detection (SAD)

As for SAD used in the top-down system, a first model-based speech/non-speech

segmentation is performed with a 2-state HMM that contains two GMM models

trained previously on speech and non-speech data respectively issued from broad-

cast news. Only the labels with a high confidence score are kept. Then, among the

data classified as non-speech, two sub-clusters are made: regions with low energy

(labeled as ‘silence’) and regions with high energy and high zero-crossing rate la-

beled as ‘non-speech sounds’. Three models corresponding to each of these classes:

silence/non-speech sounds/speech are trained and all the data are then reassigned.

A final check is made to decide whether the non-speech sounds and the speech are

similar enough (BIC similarity) in which case they are merged.

2. Agglomerative Hierarchical Clustering

AHC is applied on the concatenated speech data (with non-speech removed). The

system initially over-segments the data into K clusters (where K exceeds the an-

ticipated number of speakers). Then an ergodic hidden Markov model (HMM) is

built where the initial number of states is equal to the number of clusters (K).

Each of the states is associated with a single probability density function (PDF),

and then a probabilistic model is trained for each of the K states. A minimum

duration for each state is set to 2.5 seconds1. Several iterations of model training

and Viterbi alignments are then performed in order to refine the initial models.

1Note that this parameter can be compared to the Viterbi buffer in the top-down system introduced

in Section 3.4.1



Finally the most closely matching clusters are iteratively merged according to the

following procedure:

(a) Run a Viterbi decoding to realign the data;

(b) Retrain the models with an EM algorithm using the new segmentation ob-

tained in step (a);

(c) Select the pair of the closest clusters according to the largest ∆BIC score

that is higher than 0.0;

(d) If no pair is detected then the algorithm stops, else the pair detected in step (c)

is merged and a new model for the fused cluster is trained;

(e) Go back to step (a)

The stopping criterion as the merging criterion are based on an inter-cluster dis-

tance measure which corresponds to a variation of the commonly used Bayesian

Information Criterion (BIC) [Chen & Gopalakrishnan, 1998]. It is explained in the

following.

Assume we have 2 clusters (Cx, Cy), then ∆BIC aims to compare two hypotheses:

• (H1) a situation where (Cx, Cy) correspond to two different speakers:

⇐⇒ Cx ∈ Speakerx;Cy ∈ Speakery;Speakerx 6= Speakery

• (H2) a situation where (Cx, Cy) correspond to one same speaker:

⇐⇒ Cx ∪ Cy = Cz;Cz ∈ Speakerx;Speakerx = Speakery

According to [Chen & Gopalakrishnan, 1998], ∆BIC can be expressed as follows:

∆BIC(Cx, Cy) = BIC(H1)−BIC(H2)

= nz log |Σz| − nx log |Σx| − ny log |Σy| (3.3)

−λ
1

2
(d+

1

2
d(d+ 1)) log nz

(3.4)

Where: nz = nx + ny

nx,nj are the number of frames assigned to each cluster



Σx,Σy are the covariance matrices for each cluster

Σz is the covariance matrix shared by both clusters

λ is a tunable parameter

The ICSI system uses a variation of ∆BIC, as reported in [Ajmera et al., 2004],

and does not require the tunable parameter λ present in the original algo-

rithm [Chen & Gopalakrishnan, 1998]. This is achieved by ensuring that, for any

given ∆BIC comparison, the difference between the number of free parameters in

the two hypotheses is zero.

3.4.2.2 I2R Bottom-up System

I2R’s system [Nguyen et al., 2009] differs from ICSI’s system mainly in its initialization,

and its merging and stopping criteria. We detail hereafter these two particular steps and

the configuration we chose for our implementation.

1. Pre-processing & SAD

In exactly the same fashion as the top-down system in 3.4.1, Wiener filtering noise

reduction and beamforming are first performed on each of the MDM channels to

obtain a single pseudo channel for subsequent processing. For practical reasons, the

SAD process from the top-down approach is then applied, instead of the I2R’s SAD

published in [Nguyen et al., 2009]. Note that the top-down SAD performances are

comparable to I2R’s SAD outputs.

2. Initialization: Sequential EM

The diarization system is initialized with 30 homogeneous clusters of uniform

length and a 4-component GMM is trained by EM/ML on the data in each clus-

ter. Each cluster is then split into segments of 500ms in length and the top 25% of

segments which best fit the GMM are identified and marked as classified. The re-

maining 75% of worst-fitting segments are then gradually reassigned to their closest

GMMs, K segments at a time (the value of K is not published in [Nguyen et al.,

2009], however our implementation shows that the system is not overly sensitive

to this parameter), with iterative Viterbi realignment and adaptation until all

segments are classified.



3. Agglomerative Hierarchical Clustering

After the Segmental EM initialization, conventional AHC is performed. Models

are retrained with 16 Gaussian components. Cluster merging is controlled with

the Information Change Rate (ICR) criterion [Han et al., 2008]. ICR is a BIC-

like criterion and is defined for two clusters Cx, Cy as a normalized version of the

Generalized Likelihood Ratio (GLR):

ICR(Cx, Cy) ,
1

nx + ny
logGLR(Cx, Cy) (3.5)

where

GLR(Cx, Cy) =
P (x ∪ y|H1)

P (x ∪ y|H2)
(3.6)

and where H1 and H2 are the same hypotheses that the ones set in 3.4.2.1. Pa-

rameters x and y are the feature vectors related to each of the clusters Cx, Cy, and

nx, ny are the respective size of each cluster (number of assigned features).

If each cluster Cx, Cy and Cz = Cx∪Cy is modeled by a probability density function

(PDF) fX , fY and fZ with the following parameters θfX , θfY and θfZ then the GLR

can be rewritten as:

GLR(Cx, Cy) =
p(x|fX ; θfX ) · p(y|fY ; θfY )

p(z|fZ ; θfZ )
(3.7)

In this way, clusters are sequentially merged with embedded Viterbi realignment

until only a single cluster remains. Each intermediate segmentation hypothesis is

retained for subsequent processing.

4. Choice of the Best Segmentation

After the set of hypothesized segmentations is determined, the best is selected

according to metric which estimates the segmentation quality. The original

work [Nguyen et al., 2009] used the Rho clustering quality metric [Nguyen et al.,

2008], however we use the Ts metric [Nguyen et al., 2008] since we find that it leads

to better performance. The Ts clustering quality metric is based on the inter and

intra-feature vector distribution and works as follows:



Let C(i) be a segmentation of speech data X into Ki clusters

C(i) = {C
(i)
1 , C

(i)
2 , ..., C

(i)
Ki
}. We denote by d(xm, xn) the distance between

two feature vectors xm, xn and define the population of intra-cluster distances by

Dintra and the population of inter-cluster distances by Dinter as defined below:

Dintra =

K⋃

i=1

D(Ci, Ci) (3.8)

Dinter =
⋃

1≤i<j≤K

D(Ci, Cj) (3.9)

where D(Ci, Cj) = {d(xm, xn)|xm ∈ Ci, xn ∈ Cj , ∀m∀n} (3.10)

If we assume that the distributions of the two populations Dintra and Dinter

to be Gaussian, we can measure their separation with the Ts metric according

to:

Ts =
minter −mintra
√

σ2
inter

ninter
+

σ2
intra

nintra

(3.11)

where minter, σinter, ninter(mintra, σintra, nintra) are respectively the mean, stan-

dard deviation and size of Dinter ( Dintra).

5. Post-Processing

This final post-processing step described in the following is not included in I2R’s

system, but was found to bring some improvements. Similar to the resegmentation

and normalization steps described for the top-down system, speaker models are

retrained by MAP adaptation with 128 components and several repetitions of

Viterbi realignment and adaptation are performed to improve the segmentation.

Speakers with less than 8 seconds of data are removed and the process is repeated

until a stable diarization hypothesis is reached. Then a final resegmentation is

performed, but this time using features which are normalized segment-by-segment

to fit a zero-mean and unity-variance distribution. This step also uses the MAP

adaptation of a background model with 128 components.



System Dev. Set RT07 RT09 GE

Top-down 22.7/20.0 18.3/15.0 26.0/21.5 40.4/36.0

Bottom-Up (I2R) 21.7/18.9 23.8/20.8 19.1/13.5 33.7/29.0

Bottom-up (ICSI) -/-* 21.3/17.9 31.2/26.5 -/-*

Table 3.2: % Speaker diarization performance for Single Distant Microphone (SDM) con-

ditions in terms of DER with/without scoring the overlapped speech, for the Dev. Set and

the RT‘07, RT‘09 and GE datasets. *Note that results for ICSI’s system corresponds to the

original outputs and have not been forthcoming for the Dev. Set and GE.

3.5 Experimental Results

Performance of the different baseline systems presented in the Section 3.4 are illustrated

in Table 3.2 for the development dataset, for two RT datasets and the GE TV-show

dataset. More details for RT‘07, RT‘09 evaluation datasets are given in Tables 3.3

and 3.4.

All results in Table 3.2 are reported with/without scoring the overlap speech. For

all of the 3 systems we can observe a large difference in performance with and without

the scoring of overlap speech on the RT‘09 and GE datasets. The degree of overlapping

speech is known for being particularly high on the RT‘09 and GE datasets (14% and

10% cf. 8% for RT‘07) and thus this is only to be expected.

When comparing top-down performance to the best bottom-up baseline system we

can observe that the top-down baseline delivers the best results for RT‘07 dataset, it

shows some competitive scores for the development set, but it is outperformed by I2R

bottom-up system for RT‘09 and GE datasets. Among the two bottom-up systems,

results on RT‘07 and RT‘09 show that none is definitely better and while ICSI’s system

performs better on RT‘07 dataset, I2R’s system provides the best baseline on RT‘09.

Tables 3.3 and 3.4 give the SAD error, the speaker error and the overall DER for

each of the meetings of RT‘07 and RT‘09 datasets. As we described in Section 3.4, the

top-down system and I2R‘s systems have the same SAD process which outperforms SAD

performance for ICSI’s system (3.4% vs 6.1% for RT‘07, and 3.2% vs 9.9% for RT‘09).

While looking at the speaker error, it is interesting to highlight that the tendency in

terms of variation of the speaker error is not always the same according to the system:

e.g. while I2Rs system performs very well for the meeting NIST 20080307-0955, the two



other systems perform more than 3 times worse; conversely when the top-down system

outputs a speaker error of 0.5% for the meeting VT 20050408-1500, I2R’s bottom-up

system performs with 22.9% speaker error. We can hypothesize from these results, a

difference of behavior between these two types of clustering which may then suffer from

different weaknesses and leading to different performance.

In the results related to RT‘09 dataset we can notice a meeting (NIST 20080201-

1405 ) for which all of the three systems perform poorly. The difficulty of this meeting

was already reported by the community [Anguera et al., 2011], and can be attribute

to the high degree of overlap speech and the very small speaker turns caused by the

spontaneity of the speech.

3.6 Discussion

This chapter introduces the official protocols used for the diarization challenge in the

NIST RT evaluations and the Diarization Error Rate, the official metric to estimate the

quality of the hypothesized diarization output. The different datasets used throughout

the remainder of this thesis as described with an emphasis on their main characteris-

tics. We present 3 official baseline systems representative of the state-of-the-art, and

experimental results for each on independent development and evaluation datasets.

Experimental results show that top-down strategy leads to competitive results and

outperforms the bottom-up strategy on one dataset. Each of the systems seem to have

their own strengths and weaknesses while none is consistently better than the others.

In this context we detail in the next chapter a comparative study for these 2 clustering

strategies in order to understand their difference in behavior.



Table 3.3: Results for RT‘07 dataset with SDM conditions without scoring the overlap

speech. Given in the following order: the Speech Activity Detector error (SAD), the Speaker

Error (SError), and the DER

Meetings ID RT‘07
Top-Down Bottom-up (I2R) Bottom-Up (ICSI)

SAD SError DER SAD SError DER SAD SError DER

CMU 20061115-1030 5.0 10.3 15.3 5.0 31.1 36.1 11.5 20.1 31.6

CMU 20061115-1530 5.5 12.0 17.5 5.5 12.5 18.0 5.9 11.0 16.9

EDI 20061113-1500 3.0 30.0 33.0 3.0 19.3 22.3 6.2 20.0 26.2

EDI 20061114-1500 3.1 25.2 28.3 3.1 29.5 32.6 6.0 14.3 20.3

NIST 20051104-1515 1.8 6.7 8.5 1.8 6.2 8.0 2.7 1.8 4.5

NIST 20060216-1347 3.1 5.1 8.2 3.1 6.0 9.1 4.6 3.0 7.6

VT 20050408-1500 3.7 0.5 4.2 3.7 22.9 26.6 8.6 7.8 16.4

VT 20050425-1000 1.6 7.3 8.9 1.6 12.6 14.2 3.5 20.0 23.5

Overall Error 3.4 11.6 15.0 3.4 17.4 20.8 6.1 11.8 17.9

Table 3.4: Same as in 3.3 but for RT‘09 dataset

Meetings ID RT‘09
Top-Down Bottom-up (I2R) Bottom-Up (ICSI)

SAD SError DER SAD SError DER SAD SError DER

EDI 20071128-1000 5.9 2.2 8.1 5.9 5.9 11.8 16.2 2.0 18.2

EDI 20071128-1500 5.1 35.2 40.3 5.1 19.8 24.9 5.9 5.2 11.1

IDI 20090128-1600 0.9 11.3 12.2 0.9 3.5 4.4 11.2 4.0 15.2

IDI 20090129-1000 3.8 10.1 13.9 3.8 8.3 12.1 6.5 13.9 20.4

NIST 20080201-1405 3.6 55.6 59.2 3.6 40.0 43.6 17.9 43.5 61.4

NIST 20080227-1501 1.4 11.2 12.6 1.4 6.2 7.7 6.6 33.6 40.2

NIST 20080307-0955 1.9 27.0 28.9 1.9 6.1 8.0 5.9 38.9 44.8

Overall Error 3.2 18.3 21.5 3.2 10.2 13.5 9.9 16.7 26.5



Chapter 4

Oracle Analysis

In Chapter B.2 we introduced two main techniques for the task of speaker diarization

involving bottom-up and top-down hierarchical clustering. Although these technologies

represent the state-of-the-art in the field, one could still wonder what their real strength

and weakness are and how they can be improved.

In this chapter we analyze the performance of each step of the two approaches. To

achieve this goal, a global ‘blame game’ as defined in [Huijbregts & Wooters, 2007] is

carried out in order to detect the sensitive steps of each system through a series of oracle

experiments. Section 4.1 first introduces the protocol and dataset used for this oracle

study, then the oracle setup used for the top-down system is described in Section 4.2

and experimental results are given. The same approach is followed in Section 4.3 for

the bottom-up scenario. Finally a comparison of the oracle observations is presented in

Section 4.4.

4.1 Oracle Protocol

The term Oracle comes from Latin and means ‘to speak’. It refers in the classical

antiquity to a person considered to be a source of prophetic predictions of the future

inspired by the gods. With the same analogy, an oracle experiment is a setup where the

system can make use of all available knowledge, even the ground-truth transcripts. In

that sense the system is an Oracle which knows everything.

Oracle experiments were already used in the field of speaker diarization.

In [Huijbregts & Wooters, 2007] oracle experiments were performed in order to high-
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light the impact of overlapped speech in a bottom-up system. In [Han et al., 2008]

oracle experiments were used to analyze the performance of different stopping criteria.

Finally in [Huijbregts et al., 2012] a complete analysis, a so-called ‘blame game’ of the

bottom-up system introduced by ICSI and reported in Section 3.4.2.1 was performed.

Thanks to a full set of oracle experiments the impact in terms of DER of each of the

system component was quantified and some improvements in the system were proposed.

In this chapter we follow the same oracle framework as in [Huijbregts et al., 2012;

Huijbregts & Wooters, 2007] but for our top-down baseline system. We hypothesize

that components perform independently and the overall error corresponds to the sum

of the error of each component. Assuming this, we can then replace all experimental

components by their corresponding oracle setup and then iteratively place back in the

system the experimental setup to measure the contribution of each component. In order

to make a fair comparison and run some consistent experiments, we keep exactly the

same dataset and acoustic conditions than in [Huijbregts et al., 2012]. The dataset

used for all the oracle experiments is composed of 27 meetings and shown in Table 4.1.

The reference transcripts were obtained by forced alignment of the reference speech

transcriptions in order to avoid inconsistencies in the placement of segment boundaries1.

The same recording conditions are considered i.e. a single pseudo channel is extracted

from the MDM conditions where noise reduction is first applied followed by beamforming.

No delay features are exploited.

4.2 Oracle Experiments on Top-Down Baseline

The ‘blame game’, as defined in [Huijbregts et al., 2012], aims to compute the contribu-

tion in terms of DER of each system component thanks to the use of all the available

knowledge, including the official ground-truth. During this analysis we assumed that

the performance of each component is mostly independent of the performance of the

others. We accept that this hypothesis is approximate and that changing one compo-

nent may impact on subsequent steps. However oracle experiments permit to give a first

diagnosis of the weaknesses of a system with a limited amount of experiments. We first

1The realignment was made by Marijn Huijbregts and kindly shared with us, allowing a strict

comparison between our top-down oracle experiments and those of the bottom-up system published

in [Huijbregts et al., 2012]



Meetings ID

AMI 20041210-1052 EDI 20050218-0900 NIST 20051104-1515

AMI 20050204-1206 EDI 20061113-1500 NIST 20060216-1347

CMU 20050228-1615 EDI 20061114-1500 TNO 20041103-1130

CMU 20050301-1415 ICSI 20000807-1000 VT 20050304-1300

CMU 20050912-0900 ICSI 20010208-1430 VT 20050318-1430

CMU 20050914-0900 NIST 20030623-1409 VT 20050408-1500

CMU 20061115-1030 NIST 20030925-1517 VT 20050425-1000

CMU 20061115-1530 NIST 20051024-0930 VT 20050623-1400

EDI 20050216-1051 NIST 20051102-1323 VT 20051027-1400

Table 4.1: List of meetings used for these oracle experiments. All of these 27 meetings are

extracted from our development set issued from RT‘04 ‘05 ‘06 ‘07 datasets and are the same

data used for the Blame Game in [Huijbregts et al., 2012].

describe five different oracle experiments with our top-down baseline system described

in 3.4.1. Note that some of these experiments are specific to the system and are different

from the oracle analysis of the bottom-up system presented in 4.3.

4.2.1 Experiments

In order to assess the performance of separate system components we first replace all

components by an oracle setup and measure the DER. Then, in a top-down fashion, the

actual components are successively placed back into the system such that subsequent

steps are still oracle. We have to emphasize that, due to its iterative nature, i.e. the

loop between each speaker addition and realignment, it is not possible to perform the

experiments perfectly top-down, but the list of experiments we propose aims to minimize

this effect. Note moreover that the pre-processing step is not evaluated.

Experiment 1: Perfect Topology:

In this first experiment, all steps are substituted by an oracle setup. The perfect SAD

ground-truth is used. However, since our top-down system is not able to score overlap-

ping speech, some missed speech will be included in the SAD error. Each of the speaker

models is iteratively introduced into the E-HMM and trained on the totality of the data

of each speaker. The generic model S0 is optimally trained at each iteration with the

rest of the speakers not yet included in the E-HMM.



Despite these optimal conditions, we cannot expect to get perfect performances for

different reasons. First the system is not able to handle overlapping speech, second the

speaker modeling cannot be perfect due to the limited complexity of the GMMs.

Experiment 2: Speech Activity Detection:

In the second experiment the actual SAD component is put back into the system in order

to evaluate its contribution in DER. All other steps are still oracle. The speaker models

are trained on the ground-truth as previously, according to the SAD reference, but the

Viterbi realignment are performed on the experimental SAD outputs. Note that while

changing the SAD we may expect a difference of speaker error since first, the Viterbi

decoding is applied speech segment by speech segment and second, the state alignment

to a non-speech frame (case of false alarm) may deteriorate the Viterbi decoding in the

neighborhood of this frame. The difference of error between experiments 1 & 2 can be

attributed to the SAD component.

Experiment 3: Speaker Initialization:

The third experiment differs from Experiment 2 since the new added speakers are now

trained on data chosen automatically by the speaker diarization algorithm. At each

speaker addition, the system uses the longest speech segment left in the cluster S0 and

trains a new speaker model. Note, however, that the model related to S0 is still trained

artificially on the data belonging to the speakers out of the current speaker inventory.

The stopping criterion is still controlled by an oracle setup, i.e. the hypothesis which

minimizes the DER is kept.

Experiment 4: S0 training:

This experiment aims to show the importance of S0 being independent from the other

models i.e. S0 must theoretically be composed of only non-introduced speakers. The

setup is the same as for Experiment 3, except that the model related to S0 is now

trained according to the segmentation hypothesis. Here again the stopping criterion is

optimized artificially.

Experiment 5: Stop Criterion:

In this last experiment all components are placed back in the system except the parame-

ter deciding the minimum speaker time which is still artificially computed (Orcale). This

last experiment aims to estimate the sensitivity and strength of the system toward the

stop criterion. Note that the difference in performance between this experiment and the



experimental baseline enables an estimation of the contribution of the minimum speaker

time for speaker validation.

4.2.2 Experimental Results

Results are illustrated in Table 4.2 and show both SAD and DER scores for each of the

five experiments both with and without the scoring of the overlapping speech. Since

at each following experiment, one step of the original approach is placed back into

the system, and assuming that the components perform independently of each other,

the increase in DER can be considered as the contribution to the total error of the

component in the system. For the following analysis we will focus on the results whit

scoring the overlap speech for consistency with the work in [Huijbregts et al., 2012].

In the first experiment, referred to as Perfect Topology all steps are oracle. Even if

the SAD reference was used we still get a SAD error of 3.50% while scoring the overlap

speech since our system is not able to handle the overlap speech. This error rate is

reported in Table 4.3 as the contribution in DER due to the overlap speech. The global

DER for this experiment shows a speaker error of 3.36% despite the perfect oracle setup.

This error can be explained since the speaker modeling and the Viterbi alignment, due

to their probabilistic nature and their limited complexity cannot perform perfectly.

While adding the actual SAD step into the system, we note an increase in DER

of 4.83%. The new DER includes the increase of SAD error (+3.70%) and of speaker

error (+1.13% compared to the Perfect Topology). This is explained by the segmental

Viterbi decoding and the speaker modeling which cannot be as accurate as before while

introducing non-speech frames as highlighted in [Fredouille & Evans, 2007].

In experiments 3, 4 and 5, the speaker addition is made experimentally as proposed

in the original system. In experiment 3, we first constrain artificially the general model

attributed to S0 in order that it is independent from speaker models already added.

Despite this constraint, we observe an increase of DER of 0.76% due to the new model

initialization. While removing the constraint for the training of S0 in experiment 4, the

overall DER deteriorates by 4.20%. Note however that the effect of the speaker model

initialization and the quality of the general model S0 are closely tied together and can

hardly be dissociated. Indeed, in the case of a perfect training of S0 totally independent

of the already introduced speakers, the choice and the initialization of a new speaker



oracle Experiment
With Scoring Ovlp Without Scoring Ovlp

SAD(%) DER(%) SAD(%) DER(%)

1. Perfect Topology 3.50 6.86 0.00 3.43

2. Speech Activity Detection 7.20 11.69 4.00 8.52

3. Speaker Initialization 7.20 12.45 4.00 9.36

4. S0 training 7.20 16.65 4.00 13.59

5. Stop criterion 7.20 17.83 4.00 14.77

Top-Down Baseline System 7.20 18.74 4.00 15.74

Table 4.2: The SAD and DER error rates for six oracle experiments on the top-down

system with and without scoring the overlap speech. Details of each of the experiments are

given in Section 4.2.2

Error Name
With Scoring Ovlp Without Scoring Ovlp

DER(%) Relative DER(%) Relative

Overlapping speech 3.50 18.68% 0.00 0.00%

Speech Activity Detection 4.83 25.77% 5.09 32.34%

Modeling/Alignment 3.36 17.93% 3.43 21.79%

Models initialization 0.76 4.06% 0.84 5.34%

Robustness of S0 model 4.2 22.41% 4.23 26.87%

Stop clustering too early/late 1.18 6.30% 1.18 7.50%

Minimum Time Speaker accepted 0.91 4.86% 0.97 6.16%

System (Sum of the DERs) 18.74 100.00% 15.74 100.00%

Table 4.3: Contribution of each of the top-down system component to the overall DER

model among the data associated to the cluster S0 will obviously be less noisy and less

likely to lead to a redundant speaker.

Finally we compare results for experiments 4 and 5 which aim to evaluate the sensi-

tivity of the system to the stopping criterion. We note that the use of the experimental

stopping criterion leads to an increase in DER of 1.18%. Examining the final baseline

and experiment 6 permits us to attribute an increase in DER of 0.91% to the minimum

speaker time allowed.

Table 4.3 summarizes all the DER contributions with and without the scoring of

overlap speech. For both situations the same trend can be observed: the SAD error and

the quality of the general model S0 are the main weaknesses of the system and can be held



accountable for almost 50% of the DER. The effect of S0 not being totally independent

from the already added speakers leads to a system not discriminative enough. As a

result, after Viterbi decoding, a lot of speech is assigned to S0 instead of the correct

corresponding speaker, leading to some possible artifacts for new speaker initialization.

Another weakness highlighted by this set of experiments, except that of overlapped

speech which is not processed by our system, is the inaccuracy in terms of modeling and

alignment. A comparison of these contributions with those obtained with a bottom-up

system are discussed in Section 4.4.

4.3 Oracle Experiments on Bottom-up Baseline

Huijbregts et al. report comparable experiments in [Huijbregts et al., 2012] for a bottom-

up approach comparable to ICSI’s system. Since we used exactly the same corpus

and the same acoustic conditions we report in this section the results published in

[Huijbregts et al., 2012] to facilitate a comparison of the two approaches1.

4.3.1 Experiments

Huijbregts et al. proposed a set of six oracle experiments in order to highlight the con-

tribution of each component to the DER, assuming each component to be mostly in-

dependent of the performance of others. All components are first replace by their

corresponding oracle setup, then the actual components are successively placed back

into the system in a top-down fashion. Their results are reproduced in Table 4.4. A

short description of the oracle experiments is reported here, but more details can be

found in [Huijbregts et al., 2012].

Experiments to test the quality of the merging algorithm, the cluster initialization,

the model combination and the stop criterion are specific to the bottom-up nature of the

clustering and are described hereafter, while other experiments have comparable proto-

cols to those presented in Section 4.2.1. In all experiments, downstream components are

always replaced by their oracle setup.

Merging Algorithm:

The experiment aims to test the influence of the actual merging algorithm on the final

result. The system first creates 16 initial clusters with the help of the ground-truth to

1Results reproduced with the kind permission of Marijn Huijbregts



insure that each model is trained with the speech of one speaker. The decision about

which models to merge and when to stop is performed according to the Oracle.

Cluster Initialization:

The initial 16 clusters are created by splitting the speech data randomly

Merge Candidate Selection:

The clusters to merge are selected according to the original selection based on the BIC

criterion.

Stop Criterion:

The component deciding when to stop the merging process is replaced by its original

implementation.

4.3.2 Experimental Results

Error Name
With Scoring Ovlp

DER(%) Relative

Overlapping speech 3.50 21.21%

Speech Activity Detection 3.20 19.39%

Modeling/Alignment 2.20 13.33%

Merging algorithm 1.19 7.21%

Non-perfect initial clusters 0.80 4.85%

Combining wrong models 3.35 20.30%

Stop Speaker Addition too early/lat 2.26 13.70%

System (Sum of the DERs) 16.50 100.00%

Table 4.4: Contribution of each of the bottom-up system component to the overall DER

as published in [Huijbregts & Wooters, 2007] for the dataset shown in Table 4.1. Results

reproduced with the kind permission of Marijn Huijbregts.

By comparing the consecutive oracle experiments, a part of the overall diarization

error rate is assigned to each of the components of the bottom-up system. Table 4.4 lists

the contribution of each component to the total DER. Results show that overlapping

speech, SAD and the merging criterion are together responsible for more than 60% of

the overall error.



4.4 Discussion

Tables 4.3 and 4.4 present a fair performance comparison over the same dataset of each

component in the top-down and bottom-up clustering algorithms. The overall DER

shows that the bottom-up approach slightly outperforms the top-down system with an

overall DER of 16.50% vs. 18.74%. However, it must be emphasized that the overall

SAD error is a bit lower for the bottom-up system i.e. an estimate of the SAD error

can be found if we consider the speaker error to be independent of the SAD quality. In

fact, we observe an increase of DER of 4.83% for the top-down system while using the

experimental SAD, vs 3.20% for the bottom-up, which leads approximately to a higher

SAD error of 1.60% absolute for the top-down system.

The contribution of the modeling / alignment seems to be higher in terms of absolute

DER for the top-down approach (3.36% vs. 2.20% for the bottom-up approach). This is

due to the iterative nature of the top-down approach. Indeed, compared to a bottom-

up system, modeling and realignment have to be performed for each speaker addition,

accumulating thereby consecutive errors due to modeling/realignment imperfections.

The stopping criterion is a common component to both of the systems although

precise approaches differ. It is important to notice that the stopping criterion for the

bottom-up scenario has an important role and contributes to almost 14% of the DER,

while it represents only 6% of the DER for the top-down approach. Moreover the

contribution of the merging criterion represents 20.30% of the overall DER in the bottom-

up system. The contribution of these two criteria together corresponds to more than

one third of the overall DER and confirms as explained in [Han et al., 2008] the low

robustness of BIC and ∆BIC criteria mainly in case of cluster impurity.

In contrast, while the bottom-up system is almost independent to its initialization

(an increase of 0.80% DER is observed while doing a random initialization instead of a

supervised initial splitting), the top-down system is very sensitive to the quality of the

S0 model which should, in a perfect world, be trained on speakers out of the current

speaker inventory1 which affect directly the model initialization2.

1The speaker inventory corresponds to the speakers already introduced in the E-HMM
2We pick up the longest segment in the cluster S0 to introduce a new speaker



As a conclusion it is worth noting that, except for the SAD error and the presence

of overlap speech which are some common problems to both systems, bottom-up and

top-down clustering have some specific weaknesses. Indeed, while the bottom-up system

is almost independent of its initialization, it is mainly sensitive to performance of the

components located at the bottom of the system: e.g. merging and stopping criteria

can perform poorly, particularly in case of cluster impurity. In contrast, the top-down

scenario is mainly sensitive to the steps situated at the top of the system, namely the

initialization and the training of the general model S0 which influences its discriminative

capacity.



Chapter 5

System Purification

Chapter 4 shows through a set of oracle experiments that top-down clustering compared

to the bottom-up approach suffers from low speaker discrimination mainly due to the

quality of the general model S0. In this chapter we investigate the possibility to cor-

rect some artifacts caused by the low speaker discrimination, with the help of a new

purification component we published in [Bozonnet et al., 2010]. The new purification

process is applied after the segmentation and clustering process as a post-processing.

This approach to purification is first added to the top-down system, then, its effect on

the bottom-up system is investigated also.

The remainder of this chapter is organized as follows. Section 5.1 describes the

new purification algorithm. Experiments with the top-down approach are presented in

Section 5.2, while Section 5.3 details experiments conducted with the bottom-up system.

5.1 Algorithm Description

Purification is not a new idea and several different purification approaches have been

reported, e.g. [Anguera et al., 2006b]. In contrast to this previous work using bottom-up

systems we here seek to demonstrate the potential for cluster purification specifically in

top-down approaches. Our approach is based on sequential initialization which was first

proposed in [Nguyen et al., 2009] by I2R-NTU researchers at the NIST RT‘09 evalua-

tions [NIST, 2009]. This system is described in 3.4.2.2.

Sequential initialization algorithm used in [Nguyen et al., 2009] initializes 30 homo-

geneous clusters split randomly. We have found it necessary to modify this approach in
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Figure 5.1: Scenario of the diarization system including the new added cluster purification

component.

order to bring its potential to the E-HMM system. Indeed, in our system and as shown

in Figure 5.1, purification is applied after segmentation and clustering, which produces a

number of clusters (generally only a few more than the true number of speakers) each of

which, ideally, corresponds to a single speaker. Of course there remains the distinct po-

tential for impurities and our experiments on development data have shown that speaker

clusters are typically between 50% and 95% pure.

Thus, in contrast to the bottom-up approach, where the initial clustering is generally

random and uniform, our cluster purification algorithm operates on clusters which should

already contain a dominant speaker. The original algorithm was intended for clusters

of relatively lower initial purity and we have found that, the same algorithm with little

modifications, can, in some cases, reduce cluster impurity.

The modified algorithm first trains, by EM/ML, a 16-component GMM on the data of

each cluster identified by the segmentation and clustering component (vs 4-component

GMM in [Nguyen et al., 2009]). Each cluster is then split into segments of 500ms in

length and the top 55% of segments which best fit the GMM are identified and marked

as classified (vs. 25% of segments in [Nguyen et al., 2009]). The remaining 45% of

worst-fitting segments are then gradually reassigned to their closest GMMs, with it-

erative Viterbi decoding and adaptation until all segments are classified. As for the

segmentation and clustering component, the system utilizes 20 unnormalized LFCCs

plus energy coefficients computed every 10ms using a 20ms window.

5.2 Experimental Work with the Top-Down System

Experiments presented in this section aim to demonstrate the improvements in diariza-

tion performance obtained on the top-down system while adding the new cluster purifi-

cation algorithm described in Section 5.1.



We report experiments on a development dataset comprising meeting shows from the

NIST RT‘04, ‘05 and ‘06 datasets (23 shows in total). This set alone was used to optimize

the purification algorithm and is the same used for baseline optimization reported in

Section 3.4. In addition we present results on a separate evaluation set, namely the NIST

RT‘07 dataset (8 shows) and also validate improvements in performance on unseen data

in the NIST RT‘09 evaluation dataset (7 shows). Additionally to assess the stability of

the system, performances are tested on the TV-show corpus Grand Échiquier (GE)(7

shows).

In order to give a more meaningful assessment of our core diarization system, inde-

pendently of beamforming performance and fused delay features, we only report results

on the SDM condition. Diarization performance is assessed according to the standard

setup introduced in 3.2. All analyses in terms of DER are made without scoring the

overlapping speech.

5.2.1 Diarization Performance

Table 5.1 illustrates a comparison of speaker diarization performance for the SDM condi-

tion using the two different top-down system variations (with and without purification)

and the four different datasets (columns 2 to 9). All results are given with (OV) and

without (NOV) the scoring of overlap speech.

The purification algorithm has a small effect on the Development Set and leads to a

relative improvement of 9% (18.3% cf. 20.0%) over the top-down baseline. Results are

almost identical on the RT‘07 dataset (4% relative improvement) but are markedly im-

proved on the RT‘09 dataset. Here results of 21.5% without purification and 16.0% with

purification correspond to a relative improvement of 26% (18% with scoring overlapping

speech). Finally, results on the GE corpus show a small improvement (6% relative).

Thus the purification algorithm gives as good or better results and helps to stabilize the

results across the three datasets.

Table 5.2 details the SAD error, the speaker error (SError) and the DER for each show

of the RT‘07 and RT‘09 datasets without scoring the overlapping speech. For the RT‘07

dataset, the 8 first lines of Table 5.2 indicates that globally the speaker error decreases

after purification. However while it is the case for main of the meetings, we observe

that performance over one show is significantly deteriorated. Indeed, for the meeting

CMU 20061115-1530 we notice a deterioration of the speaker error of 16% absolute.



Dev. Set RT‘07 RT‘09 GE

System OV NOV OV NOV OV NOV OV NOV

Top-down Baseline 22.7 20.0 18.3 15.0 26.0 21.5 40.4 36.0

Top-down Baseline+Pur. 21.1 18.3 17.8 14.4 21.1 16.0 38.5 33.9

Table 5.1: A comparison of diarization performance on the Single Distant Microphone

(SDM) condition and four different datasets: a development set ( 23 meetings from RT‘04,

RT‘05, RT‘06), an evaluation (RT‘07), a validation (RT‘09) and a TV-show dataset: Grand

Échiquier(GE). Results reported for two different systems: the top-down baseline as de-

scribed in Section 3.4.1 and the same system using cluster purification (Top-down Base-

line+Pur.). Results illustrated with(OV)/without(NOV) scoring overlapping speech.

In contrast, some shows are improved more or less significantly when purification is

applied e.g. the speaker error of the meeting EDI 20061113-1500 decreases by more

than 18% absolute. The last 7 lines of Table 5.2, details the performance of the system

for the RT‘09 dataset. Compared to performance over the RT‘07 dataset, we observe a

consistent improvement for the speaker error of each show including improvement until

19% absolute speaker error (EDI 20071128-1500 ).

It is of interest to understand why the algorithm performs significantly better on the

RT‘09 dataset than on the development dataset on which it was optimized and in the

following we analyze the effect of purification on the cluster quality thanks to a measure

of the purity.

5.2.2 Cluster Purity

To help explain this behavior we measured the cluster purity statistics before and after

purification. For this we introduce an additional metric (%Pur) which is specifically

designed to assess the performance of the purification algorithm. Among all of the data

assigned to any one cluster we simply determine the percentage of data that corresponds

to the most dominant speaker, as determined according to reference transcriptions. The

%Pur metric is the average purity for all speaker models after segmentation and cluster-

ing and performance is gauged by comparing %Pur before and after purification. Note

that the DER is not appropriate for assessing purity as it penalizes the case where there

are more models than speakers - this is generally the case with our algorithm (the later

resegmentation stage aims to reduce their number). Thereafter the final DER metric is



Top-down Baseline Top-down Baseline

+ Purification

Meeting ID SAD SError DER SError DER

R
T
0
7
S
D
M

CMU 20061115-1030 5.0 10.3 15.3 9.9 14.9

CMU 20061115-1530 5.5 12.0 17.5 27.5 33.0

EDI 20061113-1500 3.0 30.0 33.0 11.8 14.8

EDI 20061114-1500 3.1 25.2 28.3 24.5 27.6

NIST 20051104-1515 1.8 6.7 8.5 6.3 8.1

NIST 20060216-1347 3.1 5.1 8.2 5.2 8.4

VT 20050408-1500 3.7 0.5 4.2 0.5 4.2

VT 20050425-1000 1.6 7.3 8.9 4.8 6.4

R
T
09

S
D
M

EDI 20071128-1000 5.9 2.2 8.1 1.2 7.1

EDI 20071128-1500 5.1 35.2 40.3 15.9 21.0

IDI 20090128-1600 0.9 11.3 12.2 7.4 8.3

IDI 20090129-1000 3.8 10.1 13.9 7.2 11.0

NIST 20080201-1405 3.6 55.6 59.2 41.2 44.9

NIST 20080227-1501 1.4 11.2 12.6 7.8 9.2

NIST 20080307-0955 1.9 27.0 28.9 27.0 28.9

Table 5.2: Details of the DER with and without adding the purification step presented

in Section 5.1 for the Evaluation Set: RT‘07, and the Validation Set: RT‘09 for the SDM

conditions. All results are given without scoring the overlapping speech

System Dev. Set RT‘07 RT‘09

Top-down Baseline 70.4/42.6/91.2 74.6/60.4/91.5 68.2/47.2/83.9

Top-down Baseline + Pur. 70.5/43.7/91.4 75.6/65.6/91.5 69.7/54.2/84.7

Table 5.3: Cluster purities (%Pur) without (Top-down Baseline) and with (Top-down

Baseline + Pur.) purification for the Development Set, the Evaluation Set: RT‘07, and the

Validation Set: RT‘09. Results for SDM condition. Note that compared to the similar Table

published in [Bozonnet et al., 2010], results here are given for SDM conditions (vs. Multiple

Distant Microphones (MDM) in [Bozonnet et al., 2010])



the most suitable and is that used everywhere else in this thesis.

Table 5.3 illustrates the purity for all three datasets both with and without purifica-

tion. Average/minimum/maximum cluster purities are shown in each case for the three

different datasets. Results show that, in all cases, the average cluster purity increases

after purification. Of particular note, is the general increase in the minimum cluster

purity (with the exception of the Development set), whereas the maximum purity only

changes for the RT‘09 dataset. Note that the lowest purities before purification (average,

minimum and maximum) all correspond to the RT‘09 dataset and also that the biggest

improvement in minimum purity (54% cf. 47%) is also achieved on the RT‘09 dataset.

This goes someway to explain the behavior noted above but it is nonetheless of interest

to see the improvement in purity across the individual shows.

Figures 5.4a and 5.4b illustrate the %Pur metrics before and after purification (solid

and dashed profiles respectively) for each of the 8 files of RT‘07 and 7 files in the RT‘09

dataset (horizontal axis). For both datasets, we observe that purity is improved or

unchanged after the purification component, but never deteriorates. Moreover results

show that, where initial models are already of high purity (e.g. the first and third shows

in Figure 5.4b), then purification has little effect. However, when initial clusters are of

relatively poor purity (e.g. the second or fifth shows in Figure 5.4b) then purification

leads to a marked improvement. For these particular shows the cluster purity increases

from 55% to 63% with purification (second show) and from 47% to 54% (fifth show).

With few exceptions this behavior is typical of that across the other datasets. Since

initial cluster purities are particularly bad for the RT‘09 dataset (illustrated in Table

5.3), it is thus of no surprise that the effect of purification is greatest here. Even so, we

note that other researchers have found that this dataset was more ‘difficult’ compared

to previous datasets and the performance of our new system is also slightly inferior to

that on the Development Set and RT‘07 set even if the purification system reduces the

difference.
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(a) NIST RT‘07 dataset (SDM condition)
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(b) NIST RT‘09 dataset (SDM condition)

Table 5.4: (a): %Pur metrics for the NIST RT‘07 dataset (SDM condition) before and after purification (solid and dashed profiles

respectively); (b): same for NIST RT‘09 dataset



The addition of the purification component in the top-down system leads to DER im-

provements, but are at the expense of a small increase in computational cost. Compared

to the top-down system, as described in Section 3.4.1 which achieved a speed factor1 of

1.5, the purification algorithm introduces a negligible overhead in processing time which

increases the speed factor of our new system to 1.6. Compared to the speed factors of

other systems published in the proceedings of the NIST RT evaluations our new system

is still among the most efficient2.

5.3 Experimental Work with the Bottom-Up System

Purification of output clusters with the algorithm described in Section 5.1 shows a con-

sistent improvement on the top-down system baseline. In this section we apply the same

algorithm as a post processing to the bottom-up system described in Section 3.4.2.2.

5.3.1 Diarization Performance

Similar to Table 5.1, Table 5.5 illustrates a comparison of speaker diarization perfor-

mance for the SDM condition using the bottom-up system with and without post purifi-

cation. Results for the same four different datasets (columns 2 to 9) are given with(OV)

and without(NOV) the scoring of the overlap speech.

The purification algorithm has almost no effect on the Development Set (0.1 abso-

lute % difference) and leads to a relative improvement of 6% (19.6% cf. 20.8%) over the

bottom-up baseline on the RT‘07 dataset. However for RT‘09 dataset a large deteriora-

tion of 61% relative is observed (41% relative deterioration without scoring the overlap

speech). Moreover, results on the GE corpus also show a deterioration in performance.

Thus, compared to results for the top-down system, the purification algorithm leads to

inconsistent improvements on the bottom-up system and can even deteriorate average

performance. In order to understand why the algorithm performs significantly worse on

the RT‘09 dataset than on the RT‘07 dataset, we focus in the following on the evolution

of the cluster purity.

1The submission criteria of the NIST RT evaluations [NIST, 2009] require the reporting of system

efficiency in terms of a speed factor which gauges the efficiency of the system in relation to real time.
2For the NIST RT‘09 evaluation the speed factor for bottom-up approach was at least 4.0



Dev. Set RT‘07 RT‘09 GE

System OV NOV OV NOV OV NOV OV NOV

Bottom-up (I2R) 21.7 18.9 23.8 20.8 19.1 13.5 33.7 29.0

Bottom-up+Pur.(I2R) 21.6 18.8 22.7 19.6 27.0 21.8 33.9 29.1

Table 5.5: A comparison of diarization performance on the SDM condition and four dif-

ferent datasets: a development set ( 23 meetings from RT‘04, RT‘05, RT‘06), an evalu-

ation (RT‘07), a validation (RT‘09) and a TV show dataset: Grand Échiquier(GE). Re-

sults reported for two different systems: the bottom-up baseline (I2R) as described in Sec-

tion 3.4.2.2 and the same system using cluster purification (Bottom-up+Pur.). Results

illustrated with(OV)/without(NOV) scoring overlapping speech.

System Dev. Set RT‘07 RT‘09

Bottom-up(I2R) 72.0/37.5/91.2 70.3/57.5/91.0 68.1/52.8/78.1

Bottom-up(I2R) + Pur. 71.7/37.5/91.3 71.4/58.2/91.9 66.4/36.9/77.3

Table 5.6: cluster purities (%Pur) without (Bottom-up Baseline) and with (Bottom-up

Baseline + Pur.) purification for the Development Set, the Evaluation Set: RT‘07, and the

Validation Set: RT‘09. Results for SDM condition.

5.3.2 Cluster Purity

Cluster purity statistics before and after purification are shown in Table 5.6. Aver-

age/minimum/maximum cluster purities are given for the same four datasets as in Sec-

tion 5.2.2. While for the top-down system a consistent purification improvement was

observed on each dataset, on the bottom-up system, improvements in terms of cluster

purity are only seen on the RT‘07 dataset. Indeed, purification deteriorates on the De-

velopment set and the RT‘09 dataset. When we look at the minimum and maximum

cluster purity, we note a small improvement for the development and RT‘07 set, but a

large deterioration for the minimum cluster purity for the RT‘09 set (a decrease from

52.8% to 36.9%). This is consistent with the poor performance in terms of DER observed

for the RT‘09 dataset in 5.3.1.



5.4 Conclusion

In this chapter we introduced a new purification component which brings some consistent

improvements in the top-down system. Purification leads to a new top-down baseline

which produces comparable results to the bottom-up approach and delivers improved

stability across different datasets composed of conference meetings from five standard

NIST evaluations and a TV-show corpus. An average relative DER improvement of 15%

can be observed on independent meeting datasets.

However, in contrast to the top-down system, results show that performance can

sometimes deteriorate when purification is applied to bottom-up clustering. From these

observations we hypothesize that, in practice, the nature of the system outputs is sig-

nificantly different depending on the type of clustering. This leads us to investigate the

two diarization approaches more thoroughly and to study their relative merits. This it

the subject of the next chapter.



Chapter 6

Comparative Study

Chapter 5 shows that purification brings some consistent improvements to the top-

down system, leading to comparable results to the bottom-up approach with neither

system being consistently superior to the other. Results show, however, that performance

can sometimes deteriorate when purification is applied to bottom-up strategies. These

observations lead us to investigate the two diarization approaches more thoroughly and

to study their relative merits.

In this chapter we propose to first present in Section 6.1 an original theoretical

framework which we published in [Evans et al., 2012] including a formal definition of

the task of speaker diarization and an analysis of the challenges that must be addressed

by practical speaker diarization systems. We then report in Section 6.2 a qualitative

comparison highlighting the relative merits of top-down and bottom-up clustering ap-

proaches in terms of discrimination between individual speakers and normalization of

unwanted acoustic variation, i.e. that which does not not pertain to different speakers.

Finally Section 6.3 presents an experimental validation of the hypothesized behaviors.

6.1 Theoretical Framework

In this section we propose a theoretical framework for the speaker diarization task.

Although it is not the only possible approach, the formulation presented is representative

of state-of-the-art technologies based on probabilistic modeling. All the assumptions

made in theory development are consistent with modern speaker diarization systems
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that have been entered into the official NIST RT evaluations [NIST, 2009], including the

two top-down and bottom-up baseline scenarios presented in Chapter B.2.

Based on the probabilistic framework, we analyze the main challenges that must be

addressed in related practical systems. This analysis leads naturally to the two princi-

pal approaches to speaker diarization, namely the bottom-up and top-down clustering

approaches that are studied and compared later in this chapter.

6.1.1 Task Definition

Speaker diarization can be defined as an optimization task on the space of speakers given

the audio stream that is under evaluation. We first assume that non-speech segments

have been removed from the acoustic stream and that features are extracted such that

the remaining speech information is represented by a stream of acoustic features O.

Letting S represent a speaker sequence and G a segmentation of the audio stream by S,

then the task of speaker diarization can be formally defined as follows:

(S̃, G̃) = argmax
S,G

P (S,G|O) (6.1)

where S̃ and G̃ represent respectively the optimized speaker sequence and segmentation,

i.e. who (S) spoke when (G). We can factorize the posterior probability in (6.1) by

applying the Bayesian rule:

(S̃, G̃) = argmax
S,G

P (S,G)P (O|S,G)

P (O)

= argmax
S,G

P (S,G)P (O|S,G) (6.2)

where P (O) is suppressed since it is independent of S and G. Equation (6.2) shows that

two models are required in order to solve the optimization task:

• an acoustic model which describes the acoustic attributes of each speaker, con-

stituting the likelihood P (O|S,G),

• a speaker turn model which describes the probability of a turn between speakers

with a given segmentation, constituting the prior P (S,G)



Usually the acoustic models are implemented as Gaussian mixture models (GMMs).

Letting Si denote the i-th speaker in S, and Oi its corresponding speech segment ac-

cording to G, we have the following likelihood:

P (O|S,G) =
∏

∀ speaker i

P (Oi|λSi
, G), (6.3)

where λSi
denotes the GMM speaker model for speaker Si.

By applying various different assumptions one can obtain different forms of the

speaker turn model. For example, if we assume that the speaker labels either side

of the turn are irrelevant and take only the utterance duration into account then we

have the following duration model:

P (S,G) = P (G), (6.4)

where P (G) can be modeled with a normal or Poisson distribution for example. Alter-

natively, and as is common in practice, one may assume a uniform distribution and thus

omit the turn model entirely. Substituting (6.3) and (6.4) into (6.2) we obtain:

(S̃, G̃) = argmax
S,G

P (G)
∏

i

P (Oi|λSi
, G), (6.5)

which provides a full solution to the speaker diarization problem.

6.1.2 Challenges

In practice, the implementation of a practical speaker diarization system is rather more

complex than may first appear from the basic framework presented above. The first

challenge involves the optimization of the speaker sequence S in (6.5). This is not

straightforward since the inventory of S is unknown, i.e. we do not know how many

speakers N are present within the acoustic stream. This means that it is not possible

to optimize the speaker sequence S without a jointly-optimized speaker inventory.

Second, although we suppose that a set of acoustic models can reliably represent the

acoustical characteristics of the speakers, the speech signal O is rather complex. Whilst

the acoustic models depend fundamentally on the speaker, they also depend on a number

of other nuisance factors such as the linguistic content, for example the words or phones

pronounced, which are not related specifically to the speaker.



In the following we assume for simplicity that the major nuisance variation relates

only to the phone class of uttered speech, which we denote as Q, though other acoustic

classes are also valid. Due to its significant effect on the speech signal, Q should appear

in the solutions and must be addressed appropriately.

To formulate a solution which addresses these two challenges, we first introduce the

speaker inventory ∆, and let Γ(∆) represent all possible speaker sequences. Returning

to equations (6.1) and (6.2) we can derive the solution as follows:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

P (S,G|O)

= argmax
S,G,∆:S∈Γ(∆)

P (S,G)P (O|S,G) (6.6)

While marginalizing the likelihood P (O|S,G) over all the possible phone classes Q,

we can derive:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

P (S,G)
∑

∀Q

P (O,Q|S,G)

= argmax
S,G,∆:S∈Γ(∆)

P (S,G)
∑

∀Q

P (O|S,G,Q)P (Q|S,G)

= argmax
S,G,∆:S∈Γ(∆)

P (S,G)
∑

∀Q

P (O|S,G,Q)P (Q) (6.7)

where Q is naturally independent of G and we have further assumed it to be independent

of the speaker S.

The solution reveals two important issues that any practical speaker diarization sys-

tem must address. First, the speaker inventory ∆ must be optimized together, not

only with the speaker sequence S, but also the segmentation G. There is no analyti-

cal solution for ∆ and so a trial-and-error search is typically conducted. This search

can be either from a smaller inventory to a larger inventory, or from a larger inventory

to a smaller inventory. These strategies correspond respectively to the top-down and

bottom-up approaches to speaker diarization.

Secondly, when comparing (6.6) and (6.7), we see that:

P (O|S,G) =
∑

∀Q

P (O|S,G,Q)P (Q). (6.8)



This means that in the optimization task one should either use a phone-independent

model P (O|S,G) and apply (6.6), or a phone-dependent model P (O|S,G,Q) with prior

knowledge of P (Q) and apply (6.7). Due to its simplicity and effectiveness, most speaker

diarization systems nowadays adopt the former approach. For such a system P (O|S,G)

must be trained with speech material containing all possible phones, otherwise Q will

be not marginalized. In other words, for a phone-independent system, acoustic speaker

models must be normalized across phones Q to ensure that the resulting model is phone-

independent, otherwise optimization according to (6.6) will be suboptimal.

In summary, a practical diarization system should incorporate an effective search

strategy to optimize the speaker inventory ∆, and a set of well-trained speaker models

to infer the speaker sequence S and segmentation G. Ideally, the models should be most

discriminative for speakers and fully normalized across phones. From this perspective,

the direction in which the optimal speaker inventory is searched for (bottom-up or top-

down) is inconsequential. Searching from either direction will in any case arrive at the

optimal inventory1.

However, the merging (bottom-up) or splitting (top-down) operations in the

search process are likely to impact upon the discriminative power and phone-

normalization of the intermediate and final speaker models. Therefore, the two ap-

proaches will exhibit different behaviors and relative strengths and shortcomings in prac-

tice.

6.2 Qualitative Comparison

The bottom-up and top-down approaches to speaker diarization are fundamentally op-

posing strategies. The bottom-up approach is a specific-to-general strategy whereas the

top-down approach is general-to-specific. The latter will produce more reliably trained

models as relatively more data are available for training. However, the models are likely

to be less discriminative until sufficient speakers and their data are liberated to form dis-

tinct speaker models. The bottom-up approach, in contrast, is initialized with a larger

number of models and is there more likely to discover specific speakers earlier in the

process, however the models may be weakly trained until sufficient clusters are merged.

1We assume that the number of speakers is known approximately so that the bottom-up approach

is initialized with more clusters than true speakers in order to avoid the risk of over-clustering.



The two approaches thus have their own strengths and weaknesses and are there-

fore likely to exhibit different behavior and results. In the following we discuss some

particular characteristics in further detail with the aim of better illuminating their .

6.2.1 Discrimination and Purification

A particular advantage of the bottom-up approach rests in the fact that it is likely to

capture comparatively purer models. Whilst they may correspond to a single speaker,

they may also correspond to some other acoustic unit, for example a particular phone

class. This is particularly true when short-term cepstral-based features are used, though

recent work with prosodic features has potential to encourage convergence specifically

toward speakers [Friedland et al., 2009]. In contrast, since it initially trains only a small

number of models using relatively larger quantities of data, the top-down approach

effectively normalizes phone classes, but it also normalizes speakers at the same time.

To achieve the best discriminative power across speakers, a purification step becomes

essential for both approaches: for the bottom-up approach, it is necessary to purify

the resulting models of interference from phone variation, whereas for the top-down

approach it is necessary to purify the resulting models of data from other speakers.

Purifying phones involves phone recognition which is usually rather costly; purifying

speakers, however, is much easier with some straightforward assumptions. We have

achieved significant improvements in diarization performance using purification in our

top-down approach as presented in Section 5.2.

6.2.2 Normalization and Initialization

Theoretically, the EM algorithm ensures that both the bottom-up and top-down ap-

proaches will converge to a local maximum of the objective function for a fixed size

∆. If the differences between speakers is the dominant influence in the acoustic space

then we can safely assume that the local maximum represents an optimal diarization

on speakers, as opposed to any other acoustic class. In this case, initial models are not

predominantly important, and thus both bottom-up and top-down approaches will tend

to provide similar diarization results. However, in addition to the speaker the acoustic

signal bears a significant influence from the linguistic contents, and more specifically

the phones. Therefore, the local maximums of the objective function may correspond to



phones Q instead of speakers S if the speaker models are not well normalized, i.e. Q is not

fully marginalized. This analysis highlights a major advantage of the top-down approach

to speaker diarization: by drawing new speakers from a potentially well-normalized back-

ground model, newly introduced speaker models are potentially more reliable than those

generated by linear initialization and model merging in the bottom-up approach.

An interesting point derived from the above analysis is that the bottom-up and top-

down approaches, which possess distinct properties in terms of model reliability and

discrimination, are likely to result in different local maximums of the objective function,

suggesting that their combination may thus provide for more reliable diarization. Previ-

ous work would seem to support this observation [Meignier et al., 2006]. We report our

work on system combination in Chapter 7.

6.3 System Output Analysis

In this Section we present some experimental works which aim to validate the behaviors

highlighted in Section 6.2 in terms of speaker discrimination and phone normalization.

In that regard, an analysis of the phone distribution and the cluster purity of the sys-

tem outputs is carried out and accounts for the inconsistencies in system performance

outlined above.

6.3.1 Phone Normalization

According to the arguments presented in Section 6.2 bottom-up approaches are relatively

more likely than top-down approaches to convergence to sub-optimal local maxima of

Equation (6.2). These are likely to correspond to nuisance variation and, whilst other

acoustic classes are also relevant, we hypothesize here that the phones uttered are among

the most significant competing influences in the acoustic space.

To help confirm this, or otherwise, we measured the difference in the phone distribu-

tion between each pair of clusters in the diarization hypothesis. The phone distribution

is computed as the fraction of speech time attributed to each phone and thus requires a

phone-level reference to determine the phone class of each frame. This was accomplished

by a forced alignment of the phone transcription of each word in the reference annotation



Table 6.1: Inter-cluster phone distribution distances.

Mean Variance

System RT‘07 RT‘09 RT‘07 RT‘09

Top-down 0.11 0.10 0.006 0.004

Bottom-up (I2R) 0.17 0.14 0.014 0.013

Bottom-up (ICSI) 0.16 0.23 0.005 0.017

to the corresponding speech. The phone distribution of each cluster is used to calculate

the average inter-cluster distance D as follows:

D =

(
N

2

)−1 N∑

n=1

N∑

m=n+1

DKL2(Cn||Cm), (6.9)

where N is the size of the speaker inventory ∆, i.e. the number of clusters, and where

the binomial coefficient
(
N
2

)
is the number of unique cluster pairs. DKL2(Cn||Cm) is the

symmetrical Kullback-Leibler (KL) distance between the phone distributions for clusters

Cn and Cm, defined as:

DKL2(Cn||Cm) =
1

2

(

DKL(Cn||Cm) +DKL(Cm||Cn)
)

(6.10)

where DKL(Cn||Cm) is the KL divergence of Cn from Cm. We note that the sym-

metrical KL metric has been used for the segmentation and clustering of broadcast

news [Siegler et al., 1997].

In the case where clusters are well normalized against phone variation then the aver-

age inter-cluster distance is expected to be small, since the clusters should have similar

phone distributions. Significant differences between distributions, however, indicate poor

phone normalization and possibly a sub-optimal local maximum of (6.2). This latter case

might reflect a higher degree of convergence toward phones, or other acoustic classes,

rather than toward speakers.

The mean and the variance of the inter-cluster distances are presented in columns

2 and 3 of Table 6.1 for the RT‘07 and RT‘09 datasets respectively. For the baseline

bottom-up system average inter-cluster distances of 0.17 and 0.14 are obtained. These

fall to 0.13 and 0.12 with purification indicating improved normalization against phones.

For the top-down system the average distances are 0.11 and 0.10. These fall to 0.07



Table 6.2: Average cluster purity and number of clusters.

Cluster Purity (%) No. Clusters

System RT‘07 RT‘09 RT‘07 RT‘09

Top-down 74.6 68.2 5.1 6.1

Top-down + Pur. 75.6 69.7 4.8 5.3

Bottom-up(I2R) 70.3 68.1 6.8 6.9

Bottom-up(I2R) + Pur. 71.4 66.4 5.8 6.9

Ground-truth 100.0 100.0 4.4 5.4

and 0.08 with purification and are significantly better than for the bottom-up system.

Reassuringly, with combination the values remain stable at 0.07 and 0.07. Columns 4

and 5 of Table 6.1 show the corresponding variances in all cases and show a consistent

decrease moving down the table: reductions in the mean are accompanied by reductions

in the variation. These observations suggests that on average, and as predicted, the

clusters identified with the bottom-up system are indeed less well normalized against

phone variation than those identified with the top-down system and that combination

preserves the normalization of the top-down system.

6.3.2 Cluster Purity

The observations reported above do not explain why, for the RT‘09 dataset, the bottom-

up system performance deteriorates with purification even though the phone normaliza-

tion improves. To help explain this behavior we analyzed the average speaker purity in

each system output. The cluster purity is the percentage of data in each cluster which

are attributed to the most dominant speaker, as determined from the ground-truth ref-

erence. Average cluster purities are presented in columns 2 and 3 of Table 6.2. For the

RT‘07 dataset purification leads to marginal improvements: from 70.3% purity to 71.4%

for the bottom-up system and from 74.6% to 75.6% for the top-down system. Different

behavior is observed for the RT‘09 dataset. Whereas purification gives an improvement

from 68.2% to 69.7% for the top-down system it leads to a degradation from 68.1% to

66.4% for the bottom-up system.

Whilst a reduction in cluster purity may account for the decrease in diarization

performance it is necessary to consider the number of clusters in the system output to

properly interpret cluster purity and its impact on diarization performance. As explained



in Section 6.3.1 purification influences the number of identified clusters. A larger number

of clusters may be associated with inherently higher purity (i.e. with a single cluster for

each sample the purity is 100%) and so purity statistics alone do not fully reflect the

effect of purification on diarization performance. The number of clusters detected in

each system output is illustrated in columns 4 and 5 of Table 6.2 in which the last

row shows the statistics for the ground-truth reference. All systems over-estimate the

number of speakers and purification always reduces the number toward the number of

true speakers. When coupled with increases in average purity, then improved diarization

performance should be expected. For the bottom-up system and the RT‘09 dataset there

is no decrease in the number of clusters when purification is applied, whereas the purity

also decreases. This can only result in poorer diarization performance.

6.4 Conclusion

Through a new theoretical framework, this chapter shows that top-down and bottom-up

clusterings should theoretically be inconsequential on the speaker inventory and then

should lead to the same optimal inventory. However, while ideally the models should be

most discriminative for speakers and fully normalized across phones, the merging and

splitting operations in the search process are likely to impact upon the discriminative

power and phone-normalization of the intermediate and final speaker models, leading

in practice to different behaviors and relative strengths and shortcomings. Indeed, our

study shows that top-down systems are often better normalized toward phonemes and

then more stable, but that they suffer from low speaker discrimination which explains

that they are likely to benefit from purification. In contrast, bottom-up clusterings are

more speaker discriminative, but as a consequence of their progressive merging scenario,

they may be sensitive to phoneme variations which might lead the system to non-optimal,

local maxima.

The distinct properties in terms of model reliability and discrimination of these

two approaches suggest that there is some potential for system combination. The next

chapter investigates this hypothesis and reports two possible approaches to combine

top-down/bottom-up systems.



Chapter 7

System Combination

System combination is a popular and sometimes straightforward means of improving

performance in many fields of statistical pattern classification, including speech and

speaker recognition where combination or fusion strategies have led to significant leaps

in performance e.g.[Burget et al., 2009]. However, due to its unsupervised nature, the

combination or fusion of diarization systems is somehow troublesome. In fact, the vari-

ability of the number of detected speakers and the fact that systems are not standardized

in terms of labeling, i.e. there is no natural correspondence between system output la-

bels, make the task very challenging.

However, as outlined in Chapter 6, bottom-up and top-down clustering strategies

have different weaknesses and are likely to behave differently toward phoneme effects,

leading to some complementary diarization outputs. For these reasons we can ex-

pect to get some improvements in performance while combining or merging these two

systems. The following work was published in [Bozonnet et al., 2010; Evans et al.,

2012],[Bozonnet et al., 2010] and is organized as follows.

In Section 7.1 we present the possible strategies to combine or fuse two diariza-

tion systems. In Section 7.2 we introduce an integrated Top-Down Bottom-Up system,

while in Section 7.3 a combination of the Top-Down and Bottom-Up system outputs is

proposed.
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Figure 7.1: Three different scenarios for system combination: Piped System (a), Fused

System (b) and Integrated System (c)

7.1 General Techniques for Diarization System Combina-

tion

System combination1 is a popular way to harness the strengths of each system and thus to

improve performance and stability. According to the work published in [Meignier et al.,

2006] we propose to differentiate three ways to combine the system: they are the piped

system, so-called hybridization strategy, the fused system (or merging strategy) and the

integrated system as illustrated on Figure 7.1

7.1.1 Piped System - Hybridization Strategy

The piped system, or so-called hybridization strategy, as shown in Figure 7.1(a), involves

the output of one system being used to initialize a second system. This scenario is

certainly the easiest to implement but it may be sensitive to weaknesses of the first

system applied since errors introduced first cannot be corrected by the second system.

This strategy was used in [Meignier et al., 2006] where the output of a bottom-up system

is applied to the input of a top-down system.

1Note that for clarity and consistency we keep the terminology ‘System Fusion’ for the ‘Fused System’

only while we designate by ‘System Combination’ the three techniques: ‘Piped’, ‘Fused’ and ‘Integrated’

Systems



7.1.2 Merging Strategy - Fused System

While the piped system aims to run iteratively one system in order to feed the second, the

fused system first runs simultaneously and independently the two systems (Figure 7.1(b))

and then combines the outputs. The method may be more robust than the hybridization

strategy in the case that one of the two systems gives poor performance.

This scenario is quite popular and can be used at the frame level, e.g.

in [Meignier et al., 2006] labels are first merged and a resegmentation is made, but

the process can also operate at the cluster level. In [Gupta et al., 2007], for example,

the most relevant, common clusters of two system outputs are first identified. Then all

segments which are not identified as belonging to the common clusters are labeled as

misclassified. They are next reassigned through a new realignment based on the GMM

models issued from the common clusters and a maximum likelihood based decision. Still

operating at the cluster level [Tranter, 2005] proposed a cluster voting approach to com-

bine the outputs of two different speaker diarization systems while [Huijbregts et al.,

2009] perform a fusion at the show level and propose a segmentation voting approach in

order to elect the best segmentation of each show.

7.1.3 Integrated System

Finally the integrated approach1 aims to fuse the two systems at their heart (Fig-

ure 7.1(c)). The systems are not run sequentially as for the piped system, neither

independently like for the merging strategy but simultaneously, one system calling

the other as a subroutine during its execution. Due to difficulties in implement-

ing such a system, only few works involve truly integrated approaches. They

include [Vijayasenan et al., 2008] where one system based on an agglomerative Informa-

tion Bottleneck (aIB) approach is combined with a sequential Information Bottleneck

(sIB) approach or [El-Khoury et al., 2008] where two different hierarchical clustering

systems are coupled.

1Note that in [Meignier et al., 2006] the Top-Down approach is described as Integrated due to the

fact that it is based on an Evolutive Hidden Markov Modeling (E-HMM) where the number of speakers,

their models and the segmentation are re-evaluated together at each step even if this system is not really

comparable to the real integration of two different systems.



Among all the works reported in the literature, none of them involved an integrated

system based on bottom-up and top-down cutting edge diarization systems. Moreover,

the existing approaches for system fusion at the cluster level involve diarization systems

of the same nature. In the following we investigate these two different approaches to

combine the baseline systems presented in Section 3.4.

7.2 Integrated Bottom-up/Top-down System to Speaker

Diarization

A way to take the benefit of each of the different system is to combine them at the heart

of the segmentation and clustering stage, in an integrated approach. We propose a new

system whose skeleton is based upon the LIA-EURECOM top-down system, described in

Section 3.4.1, but where each speaker model is trained by following an integrated bottom-

up approach with sequential EM training, as used in the I2R system [Nguyen et al., 2009]

presented in Section 3.4.2.2.

7.2.1 System Description

As detailed in Section 3.4.1, and as illustrated in Figure 7.2, the first step involves

the learning of a general model S0 which is tuned by EM using all the available speech

segments. Then initialization with sequential EM as described in [Nguyen et al., 2009] is

applied using all of the speech data assigned to model S0. However instead of splitting

the data uniformly into 30 clusters as presented in [Nguyen et al., 2009], the speech

segments assigned to model S0 are divided linearly into 30-second sub-clusters (3 in

Figure 7.2 labeled A, B, and C). Our experiments show that this approach gives better

results. Then the steps described in [Nguyen et al., 2009] are performed 10 times on

the resulting sub-clusters: 25% of the data which best fits the corresponding model

are considered as classified whereas other data are unlabeled. The models are updated

using only the classified data and a decoding is performed where only a fraction of

the newly classified data are reassigned to their nearest sub-clusters. Several steps of

Viterbi realignment and adaptation are performed until all the data are classified. As

illustrated in Figure 7.2 the sub-cluster which is assigned the greatest amount of speech

data is used to introduce a new speaker S1 into the E-HMM system. The data in all
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Figure 7.2: The integrated approach

other sub-clusters are assigned back to S0. Several iterations of Viterbi decoding and

adaptation are performed with the E-HMM until the system is stable.

This process is repeated in exactly the same way to add additional speakers to the

E-HMM until there is no longer sufficient data assigned to S0 with which to create a new

speaker model. Thus in this approach we harness the better initialization provided by

the bottom-up approach to initialize each new speaker model in the top-down approach.

7.2.2 Performance

Figure 7.3 shows the cluster purity of a collection of candidate clusters obtained by

sequential EM training according to their size for RT‘07 and RT‘09 datasets. This chart

clearly illustrates that the higher the amount of frames in the resulting cluster, the more

chance we have to select a cluster with high purity. This behavior justifies the choice

of the candidate cluster with the greatest amount of speech data to be introduced as a

new speaker into the E-HMM as described above.
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Figure 7.3: Purity rate of the clusters according to their size (seconds)

System Dev. Set RT07 RT09 GE

Top-down+Pur. 21.1/18.3 17.8/14.4 21.1/16.0 38.5/33.9

Bottom-Up (I2R) 21.7/18.9 23.8/20.8 19.1/13.5 33.7/29.0

Integrated System 17.3/14.3 16.5/13.0 23.8/18.6 30.9/26.3

Integrated System+Pur. 16.2/13.2 16.4/12.9 23.5/18.2 28.4/23.2

Table 7.1: % Speaker diarization performance in terms of DER with/without scoring the

overlapped speech. Results illustrated without and with (+Pur.) purification for the Dev.

Set and the RT‘07, RT‘09 and GE datasets.



Results for 4 different datasets including the TV-talk show dataset Grand Échiquier

as introduced in Subsection 3.3.2, are presented in Table 7.1 where the DER is given

with/without the scoring of overlapping speech. Since none of the systems assessed

provide a means of detecting or labeling overlapping speech, we refer in the text to

scores where overlapping speech is ignored. The first line of Table 7.1 presents the result

with our top-down baseline system as described in Section 3.4.1 and the purification

component of Section 5.1.

Upon comparison of results for the baseline system (row 2) and I2R bottom-up system

(row 3), we see that the top-down system gives similar results to the bottom-up system

for the development set (18.3% vs. 18.9%). For the RT‘07 dataset the top-down system

gives the best performance (14.4% vs. 20.8%) while for the RT‘09 and GE datasets, the

bottom-up system gives the best performance (13.5% vs. 16.0% and 29.0% vs. 33.9%).

Finally rows 4 and 5 of Table 7.1 show results for the new integrated system described

in Subsection 7.2.1, with and without purification respectively. Referring first to results

without purification and their comparison to results for the baseline system (2nd row), we

observe largely consistent improvements in performance. Relative improvements of 22%,

10% and 22% are obtained for the development, RT‘07 and GE datasets respectively.

For the RT‘09 dataset, however, performance is worse with the integrated approach

(18.6% vs. 16.0%). Whilst this is disappointing we note that the RT‘09 dataset has a

particularly high degree of overlapping speech and very short speech segments. Other

researchers have also reported difficulties with this particular dataset1.We also note that

the decrease in performance is concentrated on only two shows whereas for other shows

performance improves.

Note that with added purification, small improvements in performance are obtained

for the development and GE datasets (8% and 12% relative improvements respectively).

7.2.3 Stability

The box plots in Figure 7.4 depict performance and stability for each of the 3 systems:

the baseline top-down system with purification, I2R’s bottom-up system and the new

integrated system. All plots illustrate the spread in performance across an entire dataset,

first for meeting data and second for the TV-show data. The rectangular boxes show

1As related during NIST RT‘09 workshop in Melbourne and illustrated in

http://www.itl.nist.gov/iad/mig/tests/rt/2009/workshop/RT09-SPKR-v3.pdf
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Figure 7.4: Box plot of the variation in DER for the three systems on 2 domains: meeting

(averaged across the Dev. Set, RT‘07 and RT‘09 datasets) and TV-show (GE dataset).

Systems are (left-to-right): the top-down baseline system with purification, I2R’s bottom-

up system and the integrated system with purification.

the inter-quartile range (IQR) and illustrate the intra-domain stability, while the middle

line indicates the median performance. The comparison of any corresponding pair of box

plots (one for meeting data, one for TV-show data) serves to illustrate the inter-domain

stability.

The first two box plots illustrate performance for the baseline top-down system with

purification, first for meetings and then for TV-show data. We observe that performance

differs greatly between the two datasets. The third and fourth box plots illustrate

comparative performance for the bottom-up system for meeting data and then TV-show

data. In general there is a greater spread in performance for the bottom-up system

than there is for the top-down system. This variation is partially accounted for by poor

merging/stopping performance. For meetings the median performance of the bottom-up

system is the same as for the baseline whereas for the TV-show data the bottom-up

system achieves significantly better performance.

The last two box plots show performance for the new integrated system. Compared

to the baseline the spread in performance with meeting data is unchanged whereas the

median decreases noticeably. There is thus an overall improvement in performance,



however, whilst the best score also decreases, the worst score remains unchanged. The

largest improvement is achieved for the TV-show data for which significant decreases in

both the IQR and median performance are observed. We also notice that the difference

between the box plots for meeting and TV-show data is less for the integrated system

than it is for any other system. Thus the inter-domain stability is greatly improved with

the new integrated approach.

7.3 Fused System to Speaker Diarization

In this section we combine into a fused system LIA-EURECOM’s top-down ap-

proach with purification as described in Chapter B.2 and published in [Bozonnet et al.,

2010] with a state-of-the-art bottom-up speaker diarization system. According to the

last NIST evaluations [NIST, 2007, 2009], we can consider ICSI’s bottom-up sys-

tem [Wooters & Huijbregts, 2008] and I2R’s system [Nguyen et al., 2009] as two state-

of-the-art bottom-up approaches. It is important to remember that to achieve the fusion

each system needs first to be run independently, then the outputs can be combined as

illustrated in Figure 7.1(b).

All the following related to the fusion of LIA-EURECOM and ICSI systems is the re-

sult of collaborative work involving LIA, ICSI, Telefonica and EURECOM as published

in [Bozonnet et al., 2010]. This collaboration allows us to work with ICSI’s official sys-

tem outputs1. In contrast, for the fusion of LIA-EURECOM and I2R systems, I2R’s

system outputs are issued from our own implementation of their system published in

[Nguyen et al., 2009], using LIA-EURECOM’s SAD technology and so cannot be com-

pared directly to I2R’s official outputs.

According to the results published in the most recent evaluation [NIST, 2009] we may

expect the LIA-EURECOM/I2R combination to lead to better performance than the

LIA-EURECOM/ICSI combination. However, if ICSI’s outputs can be characterized as

‘entirely independent’ to LIA-EURECOM’s outputs, our implementation of I2R’s system

can be characterized as ‘less independent’ due to the uses of similar technologies and/or

configurations to the top-down system e.g. initialization of the EM algorithm, length of

1It should be noted that, in order to combine the systems, some of ICSI’s standard optimizations

had to be turned off for different technical reasons, i.e. here ICSI’s system did not include a prosodic

feature stream [Friedland et al., 2009] and no adaptive initialization [Imseng & Friedland, 2009].



the Viterbi buffer, model for MAP adaptation. In the following we hypothesize that our

implementation of I2R’s system, due to its different clustering nature is ‘independent

enough’ in order to bring some complementary information to the top-down system.

Despite the use of some cutting edge systems, their outputs can still contain some

errors or impurities such as some inaccurate segmentations or some duplicate clusters,

for example due to a high intra-speaker variation. For this reason, we hypothesize that

some speaker models may reliably represent specific, individual speakers, whereas others

may be relatively unreliable. Key to the scenario is the identification of reliable models so

that better diarization performance may be achieved by re-clustering the data assigned

to the unreliable models.

Since the systems considered are run independently in a totally unsupervised way and

since they are based on different technologies, we can expect them to give some significant

variations in diarization performance. Indeed, differences in Speech Activity Detection

(SAD) outputs and further down-stream dependent processes, such as speaker modeling

and more general differences in the particular approach to speaker diarization, will all

contribute to differences in the number of speaker boundaries, or turns, and different

turn locations. However, while the independence of the systems can be considered as an

advantage in terms of complementary information, several issues have to be solved to

permit system fusion.

On the one hand, different segmentation outputs are generally not time-synchronized.

This is particularly true if different SAD algorithms are used1. In this case, whilst

one system might produce a speaker label, another may classify it as non-speech. On

the other hand, no mapping is possible in terms of labeling and moreover the number

of speakers detected may differ from one system to another. A preliminary matching

algorithm is therefore necessary to identify speaker label pairs between two segmentation

hypotheses.

In order to first highlight the potential for improved speaker diarization performance

through system combination, we present in Section 7.3.1 a comparison of each system

output on the RT‘07 and RT‘09 datasets. Then, to demonstrate the capacities while

unifying and combining two systems we introduce in Section 7.3.2 an artificial experiment

which aims to show the optimal reachable performance. More technical details about the

1Note that this is not true for our implementation of I2R’s system which shares the same SAD

algorithm than LIA-EURECOM’s system



Av. no. spkrs Av. Err

Source RT‘07 RT‘09 RT‘07s RT‘09s

Ground Truth 4.37 5.42 - -

ICSI 6.62 5.28 2.25 1.86/1.33

I2R 6.75 7.29 2.88 3.29/3.33

LIA-EURECOM 4.75 5.28 0.87 1.28/0.66

Combined LIA-EUR/ICSI 4.62 5.28 0.65 1.28/0.66

Combined LIA-EUR/I2R 4.38 4.57 0.75 1.14/0.50

Table 7.2: Average number of speakers and average error for the ground-truth reference,

the three individual systems and their combination, for RT‘07 and RT‘09 datasets. Results

in column 5 illustrated with/without the inclusion of the NIST 20080307-0955 show which

is an outlier.

practical combination are introduced in Section 7.3.3 in order to obtain the performance

of the different systems in Section 7.3.4.

7.3.1 System Output Comparison

In order to characterize the differences in the outputs generated by the three systems

we propose to focus on two main features: the number of speakers which can vary a lot

according to the system, the process being totally unsupervised and the segment sizes

which may reveal the sensitivity of the system to detect short speaker turns.

7.3.1.1 Number of Speakers

Reliably estimating the number of speakers is both extremely challenging and crucial to

the overall performance of any diarization system. In order to successfully combine the

outputs of the different systems we first compared their clustering characteristics with

respect to the number of detected speakers. Table 7.2 shows the number of speakers per

show, averaged across the full RT‘07 and RT‘09 datasets in columns 2 and 3 respectively,

for the ground-truth reference (row 1) and the segmentation hypotheses obtained from

the ICSI, I2R and LIA-EURECOM systems (rows 2, 3 and 4 respectively).

In addition, shown in columns 4 and 5 of Table 7.2, is the error in the number

of speakers detected by each system, also averaged across the full datasets. This is

computed by averaging the absolute value of the difference between the real number of



No. segments Av. seg. length (s)

Source RT‘07 RT‘09 RT‘07 RT‘09

Ground Truth 676 882 2.0 1.8

ICSI 617 694 2.2 2.2

I2R 315 310 4.4 5.0

LIA-EURECOM 307 313 4.5 6.3

Combined LIA-EUR/ICSI 353 315 3.9 6.2

Combined LIA-EUR/I2R 355 314 3.9 4.9

Table 7.3: Average number of segments and average segment length in seconds for the

ground-truth reference, each individual system and their combination for the RT‘07 and

RT‘09 datasets.

speakers (i.e. that in the reference) and the number hypothesized by each system for

each meeting.

For the RT‘07 dataset all systems are shown to under-cluster, i.e. they produce

more than a single cluster per speaker (results of 6.62, 6.75 and 4.75 speakers cf. 4.37).

For the RT‘09 dataset, however, LIA-EURECOM’s and ICSI’s systems over-cluster, i.e.

some clusters correspond to more than a single speaker (results of 5.28 for both systems

cf. 5.42), while I2R’s system under-clusters (result of 7.29 vs 5.42). In both cases, the

average error is lower for the LIA-EURECOM system than for any of the two bottom-up

systems.

While combining two systems which under-cluster (e.g. LIA-EURECOM/I2R for

RT‘07) the robust matching of clusters identified by the two systems may give improved

performance when their outputs are combined. Where both combined systems over-

cluster (e.g. LIA-EURECOM/ICSI for RT‘09) improvements may only be obtained if

the clusters in each system which correspond to more than a single speaker do not

overlap, i.e. we can find clusters in one system output that do not correspond to clusters

in the other system output and hence introduce ’new’ clusters into the combined output.

This is likely to be more difficult.

7.3.1.2 Segment Sizes

Table 7.3 shows the average number of segments and segment length in seconds, for the

ground-truth data (row 1) and for each system output (rows 2, 3 and 4). The number of
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Figure 7.5: Artificial Experiment for Output Combination: System A with 3 clusters is

fused artificially with System B containing 4 clusters to create 7 virtual clusters.

segments and their average length are comparable for LIA system and I2R system. This

can be explained by the use of the same Viterbi decoding technology (both systems are

implemented with ALIZE-MISTRAL library [Bonastre et al., 2005] and share the same

Viterbi decoding. The ICSI system estimates the number of segments more reliably than

LIA and I2R systems (617 and 307, 315 cf. 676). Similar results are obtained for the

RT‘09 dataset. The ICSI system also better reflects the average segment length (2.2s

and 4.5s, 4.4s cf. 2.0s) and once again similar results are obtained for the RT‘09 dataset.

When we focus on the differences between LIA-EURECOM and I2R system out-

puts , we observe that, despite their comparable average segment lengths, I2R system

always under-clusters and provides a number of speakers higher in average than the

LIA-EURECOM system. For this reason we may expect there is some potential for a

robust cluster matching issued from the two systems.

While comparing LIA-EURECOM and ICSI system outputs, we note that, whilst

one system better estimates the true number of speakers with a smaller average error,

the other system better reflects the true number of segments and their average length.

Should it be possible to exploit the beneficial characteristics of each system then this

observation supports the hypothesis that a combined system has the potential to deliver

better results.

7.3.2 Artificial Experiment

In order to estimate the optimal capacities of the possible combinations we propose to

design the following oracle experiment. This particular work was made by ICSI in the



context of the collaborative work [Bozonnet et al., 2010]. The principle is to combine

the outputs in an optimal manner using the ground-truth reference. With this end in

view, segment boundaries (i.e. speaker turns) from both systems are merged and virtual

clusters are defined by taking the product space of the clusters for each of the two

systems. For example, if, for a given segment, system1 outputs label c1i and system2

outputs label c2j , then we attribute the virtual cluster assignment cV(i,j) . Thus, the

resulting cardinality for our virtual cluster space becomes N1 N2 where Ni refers to

the total number of clusters output by system i. Figure 7.5 shows the creation of 7

virtual clusters resulting from a System A made of 3 clusters and a System B with 4

clusters. Note that in this case, all the cluster pairs are not possible leading to a number

of virtual clusters (7) smaller than the resulting cardinality of the virtual cluster space

(21). The virtual clusters are then merged in an optimal manner in order to minimize the

DER, without violating cluster groupings nor changing the segment boundaries. This is

achieved with a dynamic programming search making use of the ground-truth data to

find optimal many to one mappings.

Results are shown in Table 7.4 for the RT‘07 corpus and respectively in Table 7.5 for

the RT‘09 corpus. For the optimal LIA-EURECOM/ICSI fused system, the overall DER

reveals an improvement of 42% relative compared to the best system for RT‘07, respec-

tively 25% for RT‘09. For the LIA-EURECOM/I2R system we note an improvement on

the overall DER of 35% relative for RT‘07, respectively 29% relative for RT‘09. Thus

there appears to be less scope for improvement on the RT‘09 corpus, but it still shows

a significant potential for fusion. In fact, according to the different shows in the corpus,

the possible optimal improvement can reach up to 50% relative improvement for the

RT‘07 corpus, e.g.CMU 20061115-1530, using the LIA-EURECOM/ICSI combination,

or 48% relative improvement for RT‘09 using the LIA-EURECOM/I2R combination,

e.g. IDI 20090128-1600.



RT07 ICSI I2R LIA-EU Optimal Optimal Combined Combined

LIA-EU/ICSI LIA-EU/I2R LIA-EU/ICSI LIA-EU/I2R

CMU 20061115-1030 36.08 40.26 21.88 16.82 17.05 21.62 21.62

CMU 20061115-1530 19.65 20.83 35.15 9.65 10.20 19.87 19.42

EDI 20061113-1500 32.39 29.06 20.30 16.51 15.57 19.14 21.31

EDI 20061114-1500 22.73 34.08 29.96 12.72 19.78 28.85 24.33

NIST 20051104-1515 7.56 10.82 10.88 6.76 5.41 11.09 11.09

NIST 20060216-1347 9.34 11.03 9.72 6.81 9.64 10.31 9.96

VT 20050408-1500 16.92 26.79 4.60 4.26 4.49 4.53 5.01

VT 20050425-1000 27.31 18.04 11.34 9.14 10.56 9.84 17.96

Average 21.30 23.82 17.72 10.23 11.47 15.48 16.11

Table 7.4: Speaker diarization performance in DER for the RT‘07 dataset. Results illustrated for the three individual systems, and

optimally (with reference) and practically combined (without reference) systems. All scores are given while scoring the overlapped

speech

RT09 ICSI I2R LIA-EU Optimal Optimal Combined Combined

LIA-EU/ICSI LIA-EU/I2R LIA-EU/ICSI LIA-EU/I2R

EDI 20071128-1000 20.34 14.65 10.00 9.38 9.85 10.01 9.86

EDI 20071128-1500 18.12 30.53 25.24 15.56 16.62 16.63 19.34

IDI 20090128-1600 18.94 8.84 11.64 6.03 6.49 10.40 6.75

IDI 20090129-1000 23.69 16.29 15.29 13.15 11.16 17.49 15.48

NIST 20080227-1501 45.09 16.24 17.69 13.46 13.03 18.31 18.66

NIST 20080307-0955 47.11 11.72 31.85 21.58 10.35 31.59 17.38

NIST 20080201-1405 65.79 51.12 51.66 45.06 38.47 46.89 55.32

Average 31.15 19.13 21.06 15.70 13.47 19.61 17.83

Table 7.5: As for Table 7.4 except for the RT‘09 dataset



7.3.3 Practical System Combination

For practical system combination without the ground-truth we performed cluster align-

ment using a cluster confusion matrix obtained from the output of both systems. The

elements of the matrix contain the total speech time assigned to speaker Ci in the top-

down system and speaker Cn in the bottom-up system.

Then, for each cluster in the top-down system Ci a candidate cluster contained in

the bottom-up system Cn is chosen as a matching cluster if:

• they share a sufficient proportion of frames and the candidate cluster is that with

the highest value in that column of the confusion matrix.

• among all other clusters contained in the bottom-up system Cn is the closest to Ci,

where the inter-cluster distance is measured in terms of the Information Change

Rate (ICR) [Han et al., 2008].

Each matched cluster pair is accepted as a reliable speaker and is retrained with only

those frames that are common to both Ci and Cn. All frames which have mismatching

labels are rejected during this stage. This set of reliable, matching clusters is denoted Ξ.

Note that in some cases the cluster pairing with the highest ICR is not the same as

the pairing with the highest value in the confusion matrix and thus some clusters in the

outputs of each system are not aligned through this process.

Having obtained an initial set of reliable clusters Ξ the following step uses one of

two different alternatives depending on which bottom-up system we combine with the

top-down in order to introduce the forgotten speakers.

• LIA-EURECOM/ICSI combination: As published in [Bozonnet et al., 2010]

for each cluster Ci in the top-down system which does not have a paired cluster in

the bottom-up system we retrain only a percentage α = 20% of frames which best

match the cluster Ci, according to those which have the highest likelihood. α is

the only parameter which requires optimization.

• LIA-EURECOM/I2R combination: In contrast to the previous variant, as

published in [Evans et al., 2012], the outputs of both the bottom-up and top-down

systems are utilized in order to select frames for re-estimating new speaker models



in the case of unmatched clusters. This can be explained since the I2R system al-

ways under-clusters the data and is the system which outputs the biggest averaged

amount of clusters (see Table 7.2).

All unreliable, or unmatched clusters are then compared to Ξ in order to identify

additional reliable clusters, as follows:

Ξ← Cm (7.1)

if

ℓ(Cm,Ξ) = max
k

ℓ(Ck,Ξ) Ck /∈ Ξ (7.2)

and

ℓ(Cm,Ξ) > θ (7.3)

where θ is a tunable threshold determined empirically, and where ℓ is the minimum

ICR distance defined by:

ℓ(Ck,Ξ) = min
t

ICR(Ck, Ct) Ck /∈ Ξ, Ct ∈ Ξ. (7.4)

Additionally there is no significant overlap between Cm and any of the clusters

in set Ξ. This procedure is conducted iteratively until no further reliable clusters

remain. For each new added cluster, the α = 50% best-fitting frames (according

to likelihood) are used to re-estimate a new speaker model.

Further purification is achieved by training models using only the best fitting data

and thus better speaker diarization performance is expected.

Note that for each variant, the value of α is first optimized on the RT‘07 dataset and

then evaluated using the RT‘09 dataset. Then the roles of the development and testing

sets are inverted and α is optimized again. Experiments show that the optimized value

of α% can differ significantly from one dataset to the other but the resulting DER was

in any case observed to be quite stable with α in the range of 20 to 60%. (variations in

term of DER are lower than 0.5% absolute)

Finally, in all cases, the new hypothesis is then used to perform a finale resegmenta-

tion and Normalization as detailed in Section 3.4.1.



7.3.4 Experimental Work

RT‘07 RT‘09

System OV NOV OV NOV

Bottom-up (ICSI) 21.3 17.9 31.2 26.5

Bottom-up (I2R) 23.8 20.8 19.1 13.5

Top-down+Pur. 17.8 14.4 21.1 16.0

Combined LIA-EUR/ICSI 15.5 12.1 19.6 14.6

Combined LIA-EUR/I2R 16.1 12.8 17.8 12.3

Table 7.6: DERs with (OV) and without (NOV) the scoring of overlapping speech for

bottom-up, top-down and combined systems with and without purification (Pur.).

The combination algorithm described above was each time optimized on the RT‘07

dataset and then applied to the RT‘09 dataset without modification. Results are il-

lustrated in columns 7-8 of Tables 7.4 and 7.5 for each dataset and each combination:

LIA-EURECOM/ICSI, LIA-EURECOM/I2R. In all but two cases for both the RT‘07

development set and RT‘09 evaluation set and for each of the two possible combinations,

illustrated in bold in Tables 7.4 and 7.5 respectively, results for the combined systems

are as good as, or better than the best results for either of the single systems. In the

case of the LIA-EURECOM/ICSI combination, for the RT‘07 dataset, single system

results of 21% and 18% fall to 15% when combined, a relative improvement of 13% over

the best single system. For the RT‘09 evaluation set single system results of 31% and

21% fall to 20% which corresponds to a relative improvement of 7% over the best single

system. While considering the LIA-EURECOM/I2R combination, we notice a relative

improvement of 9% compared to the best standalone system for RT‘07 respectively 7%

for RT‘09.

Comparative speaker statistics for the combined system are also illustrated in Ta-

ble 7.2. We note that for the two different combinations, even though each time both

systems over-estimate the number of speakers for the RT‘07 dataset, the combined sys-

tem gives a more accurate estimate. Similar improvements are observed with the er-

ror in the number of detected speakers. For the RT‘09 dataset, in the case of the

LIA-EURECOM/ICSI combination, both single systems estimate the same number of



speakers and no improvement is obtained with the combined system. For the LIA-

EURECOM/I2R combination, the top-down system originally under-estimated the num-

ber of speakers for RT‘09, while the I2R system showed a reversed trend, the fused system

gives a better estimate of the number of speakers according to the averaged error.

When we compare the number of segments and their average length, as illustrated

in Table 7.3, we notice consistent improvements over the LIA-EURECOM system and

I2R system only. This behavior is to be expected for 2 reasons:

• During the last resegmentation in the fused system, a succession of adaptations

and realignments are made with the same algorithms used in the LIA-EURECOM

system.

• The ICSI system provides some outputs whose segment durations are closer to

the ground-truth. However, in contrast to the LIA-EURECOM/I2R combination,

only the outputs of the top-down system are utilized in order to select frames for

re-estimating new speaker models in the case of unmatched clusters.

The comparison of columns 4 and 5 in Tables 7.4 and 7.5 shows how well the combi-

nation performs with respect to the optimum combination. We see that in many cases

the combined system achieves performance very close to the optimum but also that there

are plenty of examples where the combined system gives results which are far from the

optimum and thus more work is required to improve practical combination performance.

This is particularly true for the RT‘09 dataset and can be explained since the degree of

overlapping speech is particularly high on this dataset (13.6% cf. 7.6% for RT‘07).

Speaker diarization performance of Table 7.6 in which results are presented with (OV)

and without (NOV) the scoring of overlapping speech confirm this hypothesis. Of note

is the large difference in performance with and without the scoring of overlapping speech

on the RT‘09 dataset: we can estimate a difference of 3.3% absolute DER with/without

overlapped speech on the RT‘07 dataset versus 5.2% on RT‘09.

7.4 Discussion

This chapter introduces two different ways to combine a top-down and a bottom-up

system. One aims to first run the systems individually in order to then combine their

outputs while the second integrates bottom-up clustering in the heart of the top-down



Table 7.7: Average and variance of the inter-cluster phone distribution distance for each

show in the RT‘07 and RT‘09 datasets. As in Table 6.1 but considering the combined systems

Mean Variance

System RT‘07 RT‘09 RT‘07 RT‘09

Top-down + Pur. 0.07 0.08 0.001 0.002

Bottom-up (I2R) 0.17 0.14 0.014 0.013

Bottom-up (ICSI) 0.16 0.23 0.005 0.017

Combination LIA-EURECOM/ICSI 0.09 0.10 0.001 0.001

Combination LIA-EURECOM/I2R 0.07 0.07 0.001 0.002

Integrated System 0.13 0.09 0.003 0.001

system. Chapter 6 highlights the difference of behaviors toward linguistic content of

each standalone clustering approach and from this point of view it is interesting to make

a similar comparison for the new fused and integrated resulting systems.

Similar to Table 6.1, Table 7.7 gives the average and the variance of the inter-cluster

phone distribution KL2 distance, as defined in equations (6.9) and (6.10) for the in-

tegrated, the combined systems and the different standalone top-down and bottom-up

systems. As mentioned in Section 6.3.1, when the clusters are well normalized toward

lexical content, we can expect the KL2 distance between the distributions of two different

clusters to be small. In contrast, in the case of a possible convergence to another acous-

tic class (i.e. phoneme) rather than toward speaker, we expect the phone distribution

between clusters to be high.

In Table 7.7, the two first lines are given for reference only and are the same than in

Table 6.1. Line 3 gives an estimate of the phone normalization for the output obtained

with ICSI’s bottom-up system. The mean is comparable to I2R’s system for the RT‘07

dataset, while it is worst for RT‘09. In all cases the top-down system with purification

provides better normalized outputs compared to the bottom-up system, i.e. average of

0.07 for RT‘07 (resp. 0.08 for RT‘09) for the top-down system, vs. 0.17/0.16 for RT‘07

(resp. 0.14/0.23 for RT‘09).

Lines 4 and 5 give an estimate of the phone normalization for the two fused systems.

For the LIA-EURECOM/I2R combination the average inter-cluster phone distribution



distance is still low and comparable to the top-down system. However for the LIA-

EURECOM/ICSI combined system, the average distance is slightly higher than for the

top-down system but lower than the bottom-up. In both cases we note a positive im-

provement in terms of phone normalization while combining the output of two systems.

Finally, looking at the integrated system which embeds I2R’s technology at the heart

of the top-down system, we observe slightly improved performances in terms of phone

normalization for RT‘09 and RT‘07 datasets, compared to I2R’s system. The system

integration seems efficient to improve the phone normalization, but the output combi-

nation shows even more efficiency.

In order to assess the real strength of each of the system combinations we compared

the performance in terms of DER1 shown in Table 7.6 and Table 7.1. While looking

at the absolute final DER of RT‘07 and RT‘09 datasets for the integrated system and

the fused system we observe that the best performance is always obtained with the

fused system. This strengthens the trend in terms of phone normalization highlighted

previously.

1DER including the scoring of the overlapped speech





Chapter 8

Linguistic Normalization

Chapter 7 presents different ways to combine top-down and bottom-up speaker diariza-

tion systems thereby exploiting the benefits of each approach and particular behaviour

toward linguistic variability. In this chapter we propose an alternative approach to

reduce the linguistic variation direction from within the feature space, with a phone nor-

malization strategy. To apply such a technique, the transcription from an ASR system

is required. Since there is little collaboration between the speaker diarization and speech

recognition communities there is only little prior work in the literature in this direction.

For example, [Chen et al., 2010] proposes to model speakers with some phonetic subspace

mixture in a bottom-up diarization system, in order to introduce phonetic information

to the ∆BIC distance measure, or [Žibert et al., 2006] presents a SAD component using

the output of an ASR system. However each of these approaches uses lexical information

only with a single system component (e.g. for cluster fusion, or SAD).

In this chapter we present our latest work involving a novel technique referred to

as Phone Adaptive Training (PAT) by analogy to Speaker Adaptive Training (SAT)

used in speech recognition. PAT aims to attenuate linguistic variation and leads to

a more speaker discriminative feature space, and hence better diarization performance.

Section 8.1 presents the SAT technique and introduces the PAT algorithm. In Section 8.2

we present some experimental work which aims to explain the behavior of the approach.

Finally Section 8.3 gives some speaker diarization experimental results when PAT is

combined with the speaker diarization systems described previously.
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8.1 From Speaker Adaptive Training to Phone Adaptive

Training

Speaker adaptive training (SAT), a technique developed by the automatic speech recogni-

tion (ASR) community, aims to adapt an acoustic space to suppress speaker variability,

considered as noise in an ASR problem. At the same time it is essential to keep the

wanted variability, in the case of ASR, the phonetic variation which contains the in-

formation sought in speech recognition. With the same analogy, we introduce Phone

Adaptive Training (PAT) which aims to decouple speaker and phonetic variability in or-

der that the latter is suppressed to provide a more speaker discriminative feature space

for speaker diarization.

In Section 8.1.1 and Section 8.1.2, the MLLR and constrained MLLR algorithms are

first introduced. Section 8.1.3 details the application of SAT. Finally, in Section 8.1.4,

we present the PAT approach.

8.1.1 Maximum Likelihood Linear Regression - MLLR

Maximum Likelihood Linear Regression (MLLR) is a technique for model adaptation

using a linear transformation. The algorithm computes transforms which reduce the

mismatch between an initial model and an adaptation dataset. When the model is a

GMM, the effect of this transformation results in shifting the mean and altering the vari-

ance so that the GMM is more likely to generate the adaptation data. In [Leggetter & P.,

1995], the adaptation of the component mean is defined as:

µ̂ = Aµ+ b (8.1)

where the transform is characterized by an n × n regression matrix A and the n-

dimensional vector b (n being the dimension of the feature space). Both are op-

timized according to a standard expectation maximisation algorithm as presented

in [Dempster et al., 1977] to maximize the likelihood of the model with respect to the

adaptation data.

Let ξ be an (n+1)-dimensional, extended mean vector defined as follows:

ξ = [ ω µ1 µ2 µ3 ... µn ]T (8.2)



where ω is a bias offset whose value is usually set to 1. Equation (8.1) then becomes:

µ̂ = Wξ (8.3)

where W is the n× (n+ 1) transformation matrix including the bias:

W = [ b A ] (8.4)

A global W transform is sufficient to adapt the whole GMM, however, for more accu-

racy, when a sufficient amount of data is available, several transforms can be computed

for different groups of similar components, allowing the use of a more specific transform.

A way to cluster the components in classes according to their similarity involves the use

of a regression tree [Leggetter & Woodland, 1995] in order to group together Gaussian

components that are close together in acoustic space. MLLR is widely used in ASR when

the size of adaptation data is often restrained and the whole speaker specific linguistic

model has to be adapted, i.e. a model for each phoneme.

MLLR can also be applied to adapt the Gaussian covariance matrix Σ as explained

in [Gales, 1998; Gales & Woodland, 1996]. In [Gales & Woodland, 1996] the transform

to update the variance is defined as follows:

Σ̂ = BHBT (8.5)

where Σ̂ is the new updated variance, H is the n×n linear transformation matrix to be

estimated and B is the Choleski factor of the inverse covariance matrix Σ−1:

Σ−1 = CCT (8.6)

and

B = C−1 (8.7)

8.1.2 Constrained Maximum Likelihood Linear Regression - CMLLR

In contrast to the mean and covariance MLLR where two transforms are independently

optimized, Digalakis et al. [1995] propose to update all the parameters i.e. mean and



covariance, with one joint transform. This technique is called Constrained Maximum

Likelihood Linear Regression (CMLLR). Equations (8.1) and (8.5) then become :

µ̂ = Acµ+ bc (8.8)

Σ̂ = AcHAT
c (8.9)

where Ac and bc are the constrained transform matrix and bias vector respectively esti-

mated in the maximum likelihood sense from the training data.

The constrained nature of CMLLR reduces the number of variables to be optimized

during the estimation process and thus requires a smaller amount of training data as

compared to separate mean and covariance MLLR matrices. Moreover, since the vari-

ance and the mean transforms are tied together, CMLLR can also be used in order

to transform the input feature instead of transforming the model. In this case, the

observation vectors ot are transformed as follows:

ôt = A−1
c ot +A−1

c bc (8.10)

However, there is no tractable solution for the computation of the CMLLR transform

and thus it is estimated through an iterative update process.

8.1.3 Speaker Adaptive Training - SAT

First introduced by Anastasakos et al. [1996], SAT aims to decouple speaker and pho-

netic variation, in order to reduce the speaker variation which is desirable for the ASR

task. In order to decouple these variations, SAT jointly estimates a set of speaker trans-

forms to capture speaker variations and a canonical speaker independent language model

λ.

We consider a training set of R speakers (r = 1, 2..., R) which contribute to a tran-

scribed observation sequence O(r) = (o
(r)
1 , o

(r)
2 ...o

(r)
Tr

) of length Tr. If we hypothesize that

all observations are produced by the same source, i.e. speaker characteristics, and chan-

nel conditions and noise levels are constant through the training set, then the optimal



acoustic model λ̄ can be computed according to:

λ̄ = argmax
λ

P (O|λ) = argmax
λ

R∏

r=1

P (O(r)|λ) (8.11)

where P (O(r)|λ) is the likelihood of the model λ with respect to the observations O(r) .

However, speaker variation generally has a considerable impact and it is thus desir-

able to suppress it. The SAT paradigm involves the estimation of a speaker transform

G(r) for each speaker r which captures the speaker component, while computing simul-

taneously a speaker independent model λSAT normalized across speakers which captures

the phonetic characteristics. The SAT optimization task can be defined as follows.

(λ̄SAT , Ḡ) = argmax
λSAT ,G(r)

R∏

r=1

P (O(r)|λSAT , G
(r)) (8.12)

where Ḡ = (Ḡ(1), Ḡ(2), ...Ḡ(R)) is the estimate of each speaker transform.

Practically, SAT parameters are estimated in an iterative process as detailed below:

1. Train a speaker independent model with all the available speech data from all the

speakers.

2. From the speaker independent model obtained in (1), estimate a CMLLR transform

for each of the speakers in the training set.

3. Normalize the feature vectors of each speaker according to their specific transform

computed in (2).

4. Retrain the speaker independent model with the normalized feature vectors

from (3).

5. Repeat steps (1) to (4) until likelihood scores converge. The final set of models

correspond to the speaker normalized model set λSAT .



8.1.4 Phone Adaptive Training - PAT

By analogy to SAT, we present a novel approach which we refer to as Phone Adaptive

Training (PAT) which aims to decouple speaker and phonetic variations in order to then

remove the phonetic variations considered as noise while discriminating speakers.

With this end in view, PAT estimates a phoneme transformation W (p) for

each phoneme (or acoustic class) p capturing the linguistic component. Simul-

taneously the algorithm trains iteratively a phoneme independent speaker model

ΛPAT = (λ
(1)
PAT , λ

(2)
PAT , ...λ

(S)
PAT ) normalized across phonemes. The PAT problem can

be defined as follows.

(Λ̄PAT , W̄ ) = argmax
ΛPAT ,W

R∏

r=1

P∏

p=1

P (O(r,p)|W (p)λ
(r)
PAT ) (8.13)

where W̄ = (W̄ (1), W̄ (2), ...W̄ (P )) is the estimate of each phoneme transform and P is

the total number of phonemes (or acoustic classes).

Practically, PAT parameters can be estimated in an iterative process as detailed below:

1. Train a phoneme independent speech model for each speaker.

2. From the phoneme independent speech model obtained in (1), estimate a CMLLR

transform for each of the phonemes in the training set.

3. Normalize the feature vectors corresponding to each phoneme according to their

specific transform computed in (2)

4. Retrain each phoneme independent speech model for each speaker with the nor-

malized feature vectors from (3)

5. Repeat steps (1) to (4) until likelihood scores converge. The final model corre-

sponds to the phoneme normalized speech model λPAT .

Note that the CMLLR transform computed in step (2) for each phoneme is shared

across all speakers. However due to data limitations, more general acoustic classes are

sometimes preferred to phoneme classes.

In order to build the acoustic classes, a binary regression tree based on linguistic

analysis can be used. It defines different groups of phonemes proposed by phoneticians



and reported in Appendix A. The regression tree is first initialized with one single acous-

tic class. Then iteratively each class is split into two sets in a top-down approach. The

use of two sets rather than one, allows the likelihood of the training data to be increased

and the split which maximizes this increase is selected for the first branch of the tree.

The process is then repeated until the increase in likelihood achievable by any split at

any node is less than a threshold.

8.2 Phone Adaptive Training: Preliminary Experiments

As discussed above, the use of the PAT requires a speech transcription and the speaker

segmentation ground-truth. These requirements do not fit with the unsupervised nature

of the diarization task, however, in this section we use an oracle setup which hypothesizes

that this information is known in order to show experimentally the potential of PAT to

improve speaker discrimination. We first compare in Section 8.2.1 different methods to

evaluate speaker discrimination, while in Section 8.2.2 we describe the oracle experiment

and results in terms of speaker discrimination and diarization performance.

8.2.1 Measure of the Speaker Discrimination

Speaker diarization is a task involving two joint challenges: speaker segmentation and

speaker clustering. While improving the speaker discrimination of the feature space,

we expect the system to better differentiate between speakers and so to provide better

speaker segmentation. Higher quality speaker segmentation is then expected to improve

speaker clustering and therefore provide a better overall DER.

However, since the DER depends on the performance of both speaker segmentation

and speaker clustering, it cannot be used as a direct measure of speaker discrimination

which leads us to use an alternative, better-suited metric. [Duda et al., 2000] proposes

different measures for the distances between clusters, however we have to consider some

additional constraints. First, we are working with 21 dimensions and, second, speaker

clusters cannot be considered as a single Gaussian distribution but as a mixture of

Gaussians. For these reasons, the Kullback Leibler (KL) divergence cannot be used

since it relates to Gaussian distributions. While the KL divergence for GMMs can be

estimated [Hershey & Olsen, 2007], it requires first the training of a GMM for each

cluster, involving another source of potential error. Finally there is the Fisher metric



which measures the ratio of inter-class variability and intra-class variability. The Fisher

metric was used in [Friedland et al., 2009] to measure the discrimination of prosodic and

long term features. The Fisher metric can be defined as follows:

scoreFisher =

∑

i=1

∑

j=1(µi − µj)(µi − µj)
T

∑

i=1

∑

j:yj=i(xj − µi)2
(8.14)

where x represents a sample feature value, µ is the mean value for the feature for a

given speaker i, or j, and where yj is the speaker index for the jth sample.

Additionally, instead of using a measure based on the inter-cluster distances, we can

measure speaker discrimination as follows:

1. A 16-component GMM is trained with an EM algorithm for each speaker using

only 50% of the total speaker time in the ground-truth segmentation.

2. A speaker is attributed by maximum likelihood to each frame of the speech avail-

able in the recording. (50% of these speech frames were not used for the training)

3. The overall speaker error is then computed by summing up the False Alarm and

Missed Speaker decisions.

8.2.2 Oracle Experiment

In order to assess the potential of the PAT algorithm we introduce an oracle experiment

and then analyze the effects on speaker discrimination and diarization performance. Note

that these experiments assume knowledge of the ground-truth speech transcription. For

this reason the development dataset presented in Section 3.3.1 is truncated, keeping only

the 9 files shown in Table 8.1 for which the transcription is available.

Meetings ID

AMI 20041210-1052 ci01 NONE ICSI 20011113-1100 d02 NONE

AMI 20050204-1206 ci01 NONE NIST 20050427-0939 d02 NONE

CMU 20050228-1615 d02 NONE VT 20050304-1300 d01 NONE

CMU 20050301-1415 d02 NONE VT 20050318-1430 d01 NONE

ICSI 20010531-1030 d05 NONE

Table 8.1: Development set used for the PAT process



8.2.2.1 PAT Oracle Experiment

While using an oracle setup, all available information about the speakers and the text

transcription can be used. Using this setup, the PAT scenario introduced in Section 8.1.4

can be applied directly to each recording. The signal is characterized by 20 unnormal-

ized LFCCs plus energy coefficients computed every 10ms using a 20ms window. The

independent speech models (16-component GMMs) of step (1) in Section 8.1.4 are MAP

adapted for each speaker according to the ground-truth. The global process (steps 1 to

5) are repeated 20 times.

Due to the limited quantity of data present in one recording for each speaker and

each phoneme, a regression tree is applied as described in Section 8.1.4. The number of

acoustic classes which is dynamically controlled by the regression tree plays an important

role for the performance. A trade-off has to be found in order to ensure sufficient data per

class for training accurate CMLLR transforms, while ensuring enough acoustic classes

so that phonetic variations are well modeled.

8.2.2.2 Effect on Speaker Discrimination

In order to assess the capacity of the PAT process, speaker discrimination is evaluated

as explained in Section 8.2.1. The impact of two main parameters needs to be analyzed,

namely the number of iterations required to reach convergence and the optimal number

of acoustic classes.

Effects on speaker and phoneme discrimination using the Fisher metric are shown in

Figure 8.1. First, algorithm convergence needs to be estimated in order to know when

to stop the iterative process presented in Section 8.1.4. The red curve in Figure 8.1

illustrates phoneme discrimination which drops rapidly over the first 5 iterations. The

big decrease of phoneme discrimination observed at the first iteration is due to the use

of acoustic classes, tying together different phonemes i.e. a common CMLLR transform

is computed for the set of phonemes of a same acoustic class. The phoneme discrim-

ination stabilizes after 15 iterations. The blue curve in Figure 8.1 illustrates speaker

discrimination. A significant increase is observed over the first 10 iterations. However,

as mentioned in Section 8.2.1, the Fisher metric is not always robust in the case of com-

plex data of high dimensionality. For this reason, results have to be corroborated with

another criterion.
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Figure 8.1: Evolution Fisher criterion
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Figure 8.2: Convergence of the Speaker Error across iterations



Figure 8.2 shows speaker discrimination as a percentage of speaker error according

to the process described in Section 8.2.1. The first 20 iterations of the PAT algorithm

are illustrated for an averaged number of 25 acoustic classes1. The profile confirms

the tendency observed with the Fisher metric. We observe in Figure 8.2 a significant

decrease in speaker error of 9% relative within the first five iterations.

An improvement of 9% relative is quite significant insofar as we did not use any time

and duration models to assess a speaker label for each frame i.e. the decision for the

frame at time t is taken independently of previous and subsequent frames.

The number of acoustic classes generated by the regression tree has to be optimized

in order to get a compromise between the accuracy of the CMLLR transforms (ideally

one per phoneme) and the quantity of data available for their training. Figure 8.3 shows

speaker discrimination for different numbers of acoustic classes. According to Figure 8.2

the biggest change in speaker discrimination is observed for the first iteration of PAT

and so all points in Figure 8.3 relate to a single iteration.

When the number of acoustic classes is too small to reliably capture phonetic varia-

tion (around 10 classes), the improvement in speaker error is low (5% relative improve-

ment). With a greater number of acoustic classes we can expect phonetic variation to

be better modeled thereby leading to an increase of 7% relative improvement with 24

classes. However, increasing the number of acoustic classes further leads to a decrease

in performance due to the limited amount of data which does not permit the reliable

estimation of CMMLR transforms for each class. In all the following we choose an aver-

age of 25 acoustic classes, which gives an acceptable trade-off between CMLLR training

reliability given the quantity of data available.

8.2.2.3 Effect on Diarization Performance

Through the oracle experiment, we show that speaker discrimination is improved with

PAT. We now investigate the effect of phone normalization on diarization performance.

The Top-down system described in Section 3.4.1 is fed with the normalized features

and the segmentation and resegmentation steps are performed in exactly the same way

as before (without further optimization). Note that the resegmentation step requires

the use of a UBM. Originally the UBM was trained on a speaker recognition corpus as

1Due to the dynamic aspect of the regression tree defining the acoustic classes, the number of classes

may be different for each of the recordings.
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Figure 8.3: Influence of the number of acoustic classes on speaker discrimination

mentioned in Section 8.2.2.1. However, in this case, the UBM like has to be trained

on a normalized feature space. Due to the unavailability of the text transcription on

the speaker recognition corpus1, the choice of another training set is necessary. The

NIST RT‘04 dataset composed of 14 files shown in Table 8.2 is chosen to train the new

UBM. Note that this dataset is totally independent of the development set and any of

the evaluation sets used in Section 8.3.

Meetings ID

CMU 20020319-1400 d01 NONE LDC 20011116-1400 d06 NONE

CMU 20020320-1500 d01 NONE LDC 20011116-1500 d07 NONE

CMU 20030109-1530 d01 NONE LDC 20011121-1700 d02 NONE

CMU 20030109-1600 d01 NONE LDC 20011207-1800 d04 NONE

ICSI 20000807-1000 d05 NONE NIST 20020214-1148 d01 NONE

ICSI 20010208-1430 d05 NONE NIST 20020305-1007 d01 NONE

ICSI 20010322-1450 d05 NONE NIST 20030623-1409 d03 NONE

ICSI 20011030-1030 d02 NONE NIST 20030925-1517 d03 NONE

Table 8.2: Dataset used for the training of a phoneme normalized UBM (NIST RT04

dataset, SDM conditions)

1SRE04 in this case



Table 8.3 presents diarization performance in terms of DER for 3 datasets: the de-

velopment datasets, composed of the files shown in Table 8.1, and the NIST RT‘07 and

RT‘09 datasets. The second column presents the respective baseline performance ob-

tained with the top-down system and the standard feature space detailed in Section 3.4.1.

For consistency, the UBM used for the resegmentation is trained on the standard feature

space and the dataset of Table 8.2.

The third column of Table 8.3 shows performance in DER for the top-down system

applied in the new feature space obtained by the oracle setup. On the development set,

the oracle setup shows a relative improvement of 33 %. While a similar improvement is

observed on the RT‘07 dataset (25% relative improvement), only 10% relative improve-

ment is shown on the RT‘09 dataset. The lower performance on the RT‘09 dataset can

be explained by the high degree of overlapping speech which brings some artifacts in the

captured phonetic component and on another hand, the increased number of speakers

which leads to less training data for each speaker.

The average improvement obtained with the oracle experiment over the three datasets

is 23% relative, showing there is some potential for diarization performance improvement.

BASELINE ORACLE EXPERIMENTAL

dev Set 23.90 16.07 18.95

RT07 17.13 12.88 15.88

RT09 22.56 20.21 21.45

Table 8.3: Baseline results, oracle experiments and experimental results for the develop-

ment set detailed in Table 8.1, NIST RT‘07 and RT‘09 datasets. Results for SDM conditions,

without scoring the overlapping speech

8.3 Experimental Results

The oracle experiment presented above confirms the potential of PAT to improve speaker

discrimination and to help speaker diarization. However, we previously considered the

speaker ground-truth to be known while this is the final objective of the diarization task.

In this section we propose an experimental system based on the output of the baseline

speaker segmentation which is used in place of the speaker ground-truth in the PAT

process.



The initial speaker segmentation is based on the sequential EM algorithm introduced

in Section 3.4.2.2 and uses the standard feature space (20 unnormalized LFCCs plus

energy coefficients). The agglomerative hierarchical clustering which originally follows

this step is not performed since while the PAT process is almost insensitive to under-

clustering, it would be strongly affected in the case of over-clustering. Indeed, in the

case where several clusters represent the same speaker, CMLLR training is not directly

affected, except, eventually, by a smaller quantity of data being available for each cluster1

Finally, the segmentation and resegmentation of the top-down system of Section 3.4.1

is performed on the phone normalized feature space. The last column in Table 8.3 shows

performance for this experimental system. For the development set, experimental results

shows a significant improvement of 14% relative DER over the baseline leading to a DER

close to the optimal oracle performance. Performance improvements on the NIST RT‘07

and RT‘09 datasets are less significant (7% and 5% relative improvement respectively)

but show consistent behavior. While comparing the experimental performance with

the optimal oracle DER, we hypothesize that there is still some potential to further

improve the experimental setup for the NIST RT‘07 and RT‘09 datasets. The average

improvement over the three datasets is 11% relative.

8.4 Conclusion

This chapter introduces a new phone adaptive training approach to attenuate phonetic

variation. An oracle experiment shows that the use of such a process can lead to a new

phone normalized feature space which is more speaker discriminative. When performing

speaker diarization on the new features obtained through an oracle setup, experiments

show some potential for significant improvement.

A more practical experimental setup is also reported where the speaker ground-truth

is replaced with an automatically derived segmentation. The feature space produced by

the PAT process is then used to feed the top-down baseline system which is not further

modified. Results shows an average improvement of 11% relative over 3 datasets.

We have to admit however that the use of the meeting transcript is paradoxical to

the unsupervised nature of the speaker diarization task and to come across this problem

1in the case of an experimental speaker segmentation, we consider each cluster of the diarization

outputs, however they do not always map to a real speaker, and may suffer from under/over- clustering.

For this reason we prefer to speak about ’clusters’ than ’speakers’.



an automatic speech transcription system would be required. We note however, that

the detection of precise phonemes is not fundamental to the proposed approach and

imprecise transcriptions may not necessarily lead to inferior performance. There is clear

potential in the PAT approach which requires further work to fully optimize in the

context of a fully practical diarization system.





Chapter 9

Summary & Conclusions

Speaker diarization is an important step for data analysis, indexation and content struc-

turing. This thesis presents an original framework for the speaker diarization problem

and the first thorough comparison of two state-of-the-art approaches, namely bottom-up

and top-down, and presents new contributions in purification, system combination and

linguistic normalization. While the literature highlights the dominance of bottom-up ap-

proaches, we show through different insights that the top-down approach is not without

merit and has some specific advantages. A summary of results is given in Section 9.1,

while future work is introduced in Section 9.2.

9.1 Summary of Results

Experimental results based on original, state-of-the-art top-down and bottom-up sys-

tems show that bottom-up approaches often lead to better performance. However, in

this thesis we report a novel purification algorithm which brings an improvement of

15% relative DER over the top-down baseline system. This new baseline system leads

to competitive performance and illustrates that none of the approaches is consistently

superior.

While, theoretically, the clustering direction should be inconsequential on the speaker

inventory which should lead to the same optimal segmentation, we show that the two

different approaches exhibit different behaviors toward linguistic variation. Indeed, while

ideally the models should be most discriminative for speakers and fully normalized across

phones, we show that the merging and splitting operations in the search process are likely
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to impact upon the discriminative power and phone-normalization of the intermediate

and final speaker models, leading in practice to different behaviors and relative strengths

and shortcomings. Our study shows that top-down systems are often better normalized

toward phonemes and then more stable, but that they suffer from low speaker discrim-

ination. In contrast, bottom-up clusterings are more speaker discriminative, but as a

consequence of their progressive merging scenario, they may be sensitive to phoneme

variations which might lead the system to non-optimal, local maxima.

The behavioral differences of the two approaches suggest that there is some potential

for system combination. This thesis reports new integrated and combined systems.

Experimental results show that system combination is effective in addressing linguistic

variation and gives up to 32% relative improvement in diarization performance.

Finally, we show that system performance can be increased by reducing linguistic

variation in the feature space. We introduce the first such approach in the context of

speaker diarization which we refer to as Phone Adaptive Training (PAT). While the

approach is equally relevant to bottom-up and top-down approaches, it is shown to

deliver a 10% relative improvement in DER for our own top-down system.

9.2 Future Works

This thesis shows the impact of linguistic variation on top-down and bottom-up ap-

proaches to speaker diarization. It highlights specific differences in behavior and demon-

strates solutions through purification, system fusion and phoneme normalization through

PAT. Future research should extend this work to fully address linguistic variation and

thus to further improve performance. In particular, further work is required to address

the following:

• System combination: The combined system reported in this thesis is based on

a ‘hard decision’ model, i.e. a decision taken during any given iteration cannot be

changed in subsequent iterations. This leads to the risk of taking some decision

too early while decisions regarding cluster mapping, for example, may be more

accurate at the end of the process, if it improves cluster quality. To avoid such

drawbacks, the use of a fully Bayesian combination system should be investigated.

This solution should have the potential to consider every hypothetical decision



(cluster mapping, cluster fusion) in a probabilistic manner, without ‘hard decision’

restrictions, and should reconsider each decision up until the final fusion step.

• Use of speech transcription in PAT: The PAT approach proposed in this

thesis is based on the use of the speech transcription. Although the ground-truth

speaker segmentation is not used, we acknowledge that the use of an automatic

speech transcription system would be more inline with the unsupervised nature

of the diarization task. Future work should thus investigate automatically derived

transcriptions. We note that, since the speech transcription only plays a role in the

training of CMLLR transforms, the PAT approach should not be overly sensitive

to inaccuracies in speech transcription.

• Data limitation in PAT: A weakness of the PAT approach proposed in thesis is

the amount of data available for the training of the CMLLR transforms which may

be impractical in some scenarios. Indeed, CMLLR transforms are trained for each

recording and each phoneme, however, with an average duration of only 20 minutes

for each NIST show, there is sometimes only little training data for some phonemes

which occur rarely. One way to tackle this drawback would involve joint CMLLR

transforms across a set of files. However, in this case there is a risk of capturing

inter-channel effects. Depending on the recording conditions, the channel effect

can differ from show to show and thus transforms learned in this way may lead to

be less effective. Furthermore, for the speaker diarization task, the channel effect

can be considered as relevant information to distinguish the speakers and should

not be removed, e.g. for telephone conversations, since we can expect each speaker

to use different telephones, channel information can actually help to track different

speakers and thus further work is required to develop the potential of PAT in this

context.

• Overlapping Speech: Finally, another challenge in the context of speaker di-

arization (though not addressed in this thesis) involves the handling of overlapping

speech. Overlapping speech is known to degrade speaker diarization performance

with impacts on both speech activity detection, speaker clustering and segmen-

tation (speaker error) and Anguera et al. [2011]; Huijbregts & Wooters [2007] has

shown that overlapping speech can be a dominant source of error. These problems



have attracted increasing attention in recent years and various approaches to detect

and attribute intervals of overlap have been proposed. While important advances

have been made Boakye et al. [2008]; Huijbregts et al. [2009], the problem remains

largely unsolved. We have recently started new work in overlap handling based

on convolutive, non-negative matrix factorization with sparse coding constraints.

This work is relatively new but there is a large potential to further improve per-

formance and the robustness of speaker diarization to overlapping speech. This is

likely to be an area of active research in coming years.
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Appendix A

Acoustic Group of Phonemes

Name of the Group Phonemes

Stop p,pd,b,t,td,d,dd,k,kd,g
Nasal m,n,en,ng
Fricative s,sh,z,f,v,ch,jh,th,dh
Liquid l,el,r,w,y,hh
Vowel eh,ih,ao,aa,uw,ah,ax,er,ay,oy,ey,iy,ow
C-Front p,pd,b,m,f,v,w
C-Central t,td,d,dd,en,n,s,z,sh,th,dh,l,el,r
C-Back sh,ch,jh,y,k,kd,g,ng,hh
V-Front iy,ih,eh
V-Central eh,aa,er,ao
V-Back uw,aa,ax,uh
Front p,pd,b,m,f,v,w,iy,ih,eh
Central t,td,d,dd,en,n,s,z,sh,th,dh,l,el,r,eh,aa,er,ao
Back sh,ch,jh,y,k,kd,g,ng,hh,aa,uw,ax,uh
Fortis p,pd,t,td,k,kd,f,th,s,sh,ch
Lenis b,d,dd,g,v,dh,z,sh,jh
UnFortLenis m,n,en,ng,hh,l,el,r,y,w
Coronal t,td,d,dd,n,en,th,dh,s,z,sh,ch,jh,l,el,r
NonCoronal p,pd,b,m,k,kd,g,ng,f,v,hh,y,w
Anterior p,pd,b,m,t,td,d,dd,n,en,f,v,th,dh,s,z,l,el,w
NonAnterior k,kd,g,ng,sh,hh,ch,jh,r,y
Continuent m,n,en,ng,f,v,th,dh,s,z,sh,hh,l,el,r,y,w
NonContinuent p,pd,b,t,td,d,dd,k,kd,g,ch,jh
Strident s,z,sh,ch,jh
NonStrident f,v,th,dh,hh
UnStrident p,pd,b,m,t,td,d,dd,n,en,k,kd,g,ng,l,el,r,y,w
Glide hh,l,el,r,y,w
Syllabic en,m,l,el,er

127



Unvoiced-Cons p,pd,t,td,k,kd,s,sh,f,th,hh,ch
Voiced-Cons jh,b,d,dd,dh,g,y,l,el,m,n,en,ng,r,v,w,z
Unvoiced-All p,pd,t,td,k,kd,s,sh,f,th,hh,ch,sil
Long iy,aa,ow,ao,uw,en,m,l,el
Short eh,ey,aa,ih,ay,oy,ah,ax,uh
Dipthong ey,ay,oy,aa,er,en,m,l,el
Front-Start ey,aa,er
Fronting ay,ey,oy
High ih,uw,aa,ax,iy
Medium ey,er,aa,ax,eh,en,m,l,el
Low eh,ay,aa,aw,ao,oy
Rounded ao,uw,aa,ax,oy,w
Unrounded eh,ih,aa,er,ay,ey,iy,aw,ah,ax,en,m,hh,l,el,r,y
NonAffricate s,sh,z,f,v,th,dh
Affricate ch,jh
IVowel ih,iy
EVowel eh,ey
AVowel eh,aa,er,ay,aw
OVowel ao,oy,aa
UVowel aa,ax,en,m,l,el,uw
Voiced-Stop b,d,dd,g
Unvoiced-Stop p,pd,t,td,k,kd
Front-Stop p,pd,b
Central-Stop t,td,d,dd
Back-Stop k,kd,g
Voiced-Fric z,sh,dh,ch,v
Unvoiced-Fric s,sh,th,f,ch
Front-Fric f,v
Central-Fric s,z,th,dh
Back-Fric sh,ch,jh

Table A.1: Group of phonemes for the construction of a regression tree.



Appendix B

French Summary

B.1 Introduction

B.1.1 Motivations

Depuis le 20ème siècle, la quantité de données multimédia s’est accrue exponentiellement.

Courant 2011-2012, les statistiques1 montre qu’une moyenne de 60 heures de vidéo est

uploadée sur le site YouTube chaque minute ou l’équivalent d’une heure de vidéo chaque

seconde. 4 milliards de vidéos sont regardées chaque jour. Comme illustré sur la Fi-

gure 1.1, ceci représente deux fois plus de données qu’en 2010 et l’on peut s’attendre à

ce que ces chiffres augmentent encore dans les années à venir comme le suggère le profile

de la courbe.

Face à un nombre de données multimédia toujours croissant, l’indexation et l’analyse

automatique des données se sont révélées être la seule stratégie. Différentes approches

existent déjà, principalement basées sur l’analyse de contenu vidéo [Truong & Venkatesh,

2007]. Cependant, les vidéos présentes sur les sites de partage proviennent généralement

de différents supports notamment webcams, téléphone mobiles, caméras haute résolution,

ou encore clips vidéo amateurs utilisant une piste audio et vidéo originalement non

enregistrées simultanément : par exemple, la vidéo peut correspondre à un diaporama

et ne peut alors pas être considérée comme une ’vraie’ vidéo.

Une façon d’analyser la structure des données et de pouvoir annoter différents types

de vidéo est d’en extraire l’information disponible dans la piste audio dans le but,

éventuellement, de permettre d’associer par la suite cette information à un système de

1source : http://www.youtube.com/t/press_timeline
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Figure B.1: Evolution du nombre d’heures de vidéo chargées sur YouTube de 2005 à 2012

(trait plein), et de la quantit de vidéo regardées par jour en millions (pointillés). Statistiques

provenant de : http://www.youtube.com/t/press_timeline. Notons qu’ aucune donnée

n’est disponible de 2005 à 2007 concernant la quantité de vidéo uploadées chaque minute.

reconnaissance vidéo. Tout un ensemble de technologies a pour but d’extraire les infor-

mations audio, parmi celles-ci on peut citer la reconnaissance des émotions, la détection

d’événements acoustiques, la reconnaissance du locuteur, la détection du langage, la re-

connaissance de la parole ou encore la segmentation et le regroupement en locuteur.

Alors que la reconnaissance de la parole et du locuteur se rapportent à la reconnaissance

de l’identité d’une personne spécifique ou la transcription de ses propos, la segmentation

et le regroupement en locuteurs se rapporte au problème “Qui parle quand”. Plus formel-

lement, cela requiert l’identification non supervisée de chaque locuteur dans les données

audio ainsi que les différents intervalles de temps pendant lesquels chaque locuteur est

actif.

Contrairement à la musique ou les événement acoustiques, la parole, de part sa

nature sémantique et l’une des composantes les plus informatives du contenu audio. En

effet, la transcription de la parole nous renseigne sur des informations clées sur le thème

de la discussion, alors que la reconnaissance du locuteur et/ou la segmentation et le



regroupement en locuteurs nous révèle l’identité du locuteur1 grâce aux caractéristiques

issues de la voix. De par sa nature non supervisée, la segmentation et le regroupement en

locuteurs a trouvé son utilité dans un bon nombre d’applications ou plusieurs locuteurs

peuvent être attendus et qui ont émergé comme un important domaine de recherche en

traitement de la parole.

En effet, la segmentation et le regroupement en locuteurs permettent tout d’abord

d’indexer et d’extraire les locuteurs de la bande audio dans le but de récupérer l’in-

formation essentielle. De plus, lorsque des informations a priori sont connues sur les

différents locuteurs, la segmentation et le regroupement en locuteurs peuvent être uti-

lisés comme un pré-traitement pour la reconnaissance du locuteur afin de déterminer

l’identité absolue des locuteurs.

De plus, la tache de segmentation et regroupement en locuteurs est considérée comme

une étape de pré-traitement importante pour la reconnaissance automatique de la parole

dans la mesure ou l’information relative au locuteur facilite l’adaptation du modèle

acoustique au locuteur spécifique, comme par exemple la normalisation selon la longueur

du conduit vocal ou encore le “Speaker Adaptative Training” (SAT). Dans ce cas, les

modèles spécifiques de locuteurs fournissent des retranscriptions plus précises.

La tache de segmentation et de regroupement en locuteurs est donc un pré-requis

pour l’indexation audio, l’analyse de contenu, l’annotation automatique, ou encore plus

généralement la “Rich Transcription (RT)”. Elle fournit ainsi une information directe

concernant la structure et l’indexation des locuteurs et peut être utilisée comme une

étape de pré-traitement pour la reconnaissance de la parole et du locuteur.

B.1.2 Objectifs de la thèse

La segmentation et le regroupement en locuteurs n’est pas une thématique nouvelle et les

recherches dans le domaines ont débuté courant 2002. Comme nous pouvons l’observer

sur la Figure B.2, le nombre de publications dans le domaine de la segmentation et le

regroupement en locuteurs n’a cessé d’augmenter d’années en années montrant l’intérêt

croissant de la communauté et l’importance du domaine. Parmi les différents challenges

étudiés par la communauté, quatre principaux domaines ont été abordés. Début 2000, la

communauté s’est d’abord concentrée sur les discussions téléphoniques (voir Figure B.3),

1ou tout du moins son identité relative dans le cas du problème non supervisé de la segmentation et

du regroupement en locuteur
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Figure B.2: Nombre de citations par année dans le domaine de la segmentation et du

regroupement en locuteurs. Source : Google Scholar
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Figure B.3: Les différents domaines d’application de la segmentation et du regroupement

en locuteurs



lesquelles correspondent à un problème bien spécifique dans la mesure ou le nombre de

locuteurs est connu d’avance. Puis la communauté s’est orientée vers les émissions de

type journal télévisé, incluant généralement un locuteur dominant et quelques locuteurs

minoritaires. Courant 2002–2004, l’intérêt de la communauté se tourne vers les enre-

gistrements de conférences puis les enregistrements de réunions. L’enregistrement de

réunions, de par son nombre généralement important de locuteurs et ses prises de pa-

roles très spontanées (par comparaison aux émissions TV où le scénario repose souvent

sur un script préparé) s’est démarqué comme l’une des taches les plus délicates deve-

nant le principal centre d’intérêt de la communauté depuis 2004. Il existe cependant

d’autres domaines méritant d’être étudiés, parmi ceux-ci on peut citer : les shows tlviss

ou d’une manière plus générale les données présentes sur les sites d’échange de vidéo tels

que YouTube.

Cette thèse se rapporte à la segmentation et au regroupement en locuteurs pour

l’enregistrement de réunions, domaine d’application où la recherche est très active, objet

des dernières compétitions internationales NIST. Ces dernières permettent notamment

une comparaison rigoureuse des performances avec d’autres systèmes de l’état de l’art.

De plus, il est important de mentionner que les enregistrements de réunions comportent

certaines caractéristiques en termes de nombre de locuteurs and de spontanéité de prise

de parole comparable au données disponibles sur le web.

D’importants progrès ont été réalisés dans le domaine ces dernières années principa-

lement menés par les différentes compétitions organisées par le NIST où deux principales

approches se sont démarquées : l’approche ascendante (bottom-up) ainsi que l’approche

descendante (top-down). L’approche ascendante est de loin la plus utilisée alors que

seulement quelques systèmes sont basés sur l’approche descendante.

Bien que les systèmes les plus performants ces dernières années ont toujours été de

type ascendant, nous voulons montrer dans cette thèse que l’approche descendante n’est

pas sans mérite et que chaque approche a ses propres avantages. L’objectif de cette thèse

peut être formulé comme il suit :

• Peut on considérer que l’une des deux approches ascendante ou descendante soit

supérieure à l’autre ?

• Comment leurs comportements diffèrent ?



• Quelles sont leurs principales faiblesses ?

• Comment peut on tirer bénéfice de leurs différents comportements ?

B.1.3 Contributions

Les principales contributions de cette thèse se divisent en quatre points et peuvent être

résumées comme il suit :

(i) une nouvelle composante de purification laquelle, appliquée au système descen-

dant, apporte des améliorations notables au système de segmentation et regroupement

en locuteurs et rend ainsi l’approche descendante comparable à l’approche ascendante

en termes de performance (DER).

(ii) une étude comparative ayant pour but de montrer les différences en termes de

comportement entre l’approche ascendante et descendante sur la base d’un cadre de

référence commun et une série d’expériences oracle.

(iii) un système de fusion et un système d’intégration descendant/ascendant lesquels

confirment que, compte tenu de leurs natures différentes, la combinaison des systèmes

descendant/ascendant apporte des améliorations et se traduit par des performances

supérieures aux systèmes d’origine.

(iv) Une nouvelle méthode de normalisation à l’échelle des phonèmes permettant

d’améliorer les performances du système de segmentation et regroupement en locuteurs.

De plus amples détails sur ces contributions sont donnés ci-après :

(i) Nouvelle composante de purification pour l’approche descendante de

segmentation et regroupement en locuteurs

La purification de clusters n’est pas un sujet nouveau dans le domaine de la seg-

mentation et du regroupement en locuteurs, cependant, les travaux antérieurs se

rapportent à la purification des clusters pour les systèmes ascendants. Aussi, la

première contribution de cette thèse propose une nouvelle composante de purifica-

tion ajoutée au système descendant. Grâce à celle-ci, la stabilité des performances

sur cinq jeux de données du NIST en ressort renforcée et on peut constater une

amélioration de 15% relatifs sur l’erreur DER.

Ce travail a été présenté à la conférence : International Conference on Acoustics,

Speech, and Signal Processing (ICASSP) en 2010 [Bozonnet et al., 2011].



(ii) Étude comparative des systèmes descendant et ascendant

La deuxième contribution de cette thèse est une analyse détaillée des deux systèmes

ascendant et descendant. En effet, les résultats expérimentaux montrent que la nou-

velle composante de purification présentée dans la première contribution entrâıne

des performances incohérentes lorsqu’elle est appliquée au système ascendant. Ceci

nous laisse supposer que chaque système a un comportement qui lui est propre im-

posé par sa nature spécifique. Dans le but de réaliser une analyse complète et

rigoureuse, deux type d’étude sont menés : une étude de type Oracle, laquelle

souligne les faiblesses de chaque système ainsi qu’une seconde étude détaillant

d’avantage les différences en termes de convergence dues aux différents scénarii de

clustering. Cette étude aide ainsi à comprendre l’effet négatif causé par l’algorithme

de purification lorsqu’il est appliqué sur le système ascendant.

• Expériences de type Oracle

Avec l’aide d’une série d’expériences de type oracle, la sensibilité et la ro-

bustesse des différentes composantes de l’approche descendante de référence

est analysée dans le but d’identifier leurs possibles faiblesses. Une méthode

similaire est réalisée pour le système ascendant. Les résultats expérimentaux

montrent que, malgré des faiblesses communes aux deux système dues no-

tamment à la détection de la parole (SAD) et aux traitement des passages

multilocuteurs (overlapping speech), les deux algorithmes présentent des la-

cunes spécifiques. En effet, alors que la méthode ascendantes est quasiment

indépendante de son initialisation, elle s’avère très sensible lors de sa phase

de fusion des clusters ainsi que pour son critère contrôlant l’arrêt du proces-

sus de fusion (stopping criterion), notamment lors de la présence d’impureté

dans les clusters (mélange de plusieurs locuteurs par exemple). Au contraire,

le scénario du système descendant est principalement sensible à son initiali-

sation et à la qualité de ses modèles initiaux lesquels influencent directement

les capacités du système à discriminer les locuteurs.

• Analyse comportementale et différences en termes de convergence

La seconde partie de cette analyse se rapporte aux effets de la direction

du clustering (ascendante/descendante). Un cadre théorique incluant une

définition formelle de la tache de segmentation et regroupement en locuteurs



ainsi qu’une analyse des challenges qui doivent être résolues sont tout d’abord

développés, nous menant à croire que, théoriquement, le résultat final devrait

être indépendant de la direction du clustering.

Cependant, nous avons montré qu’alors idéalement les modèles d’un système

de regroupement et segmentation en locuteurs devraient être principalement

discriminant pour les locuteurs et indépendant des variations acoustiques

non désirées telles les phonèmes, il est vraisemblable que les étapes de fu-

sion ou de division des clusters tout au long du processus aient un impacte

sur les facultés du système à discriminer les locuteurs et normaliser le contenu

phonétique, menant alors en pratique à différents comportements des systèmes

avec différents atouts et défauts. En effet, notre étude montre que les systèmes

descendants sont souvent mieux normalisés vis à vis des phonèmes and ainsi

plus stables, toutefois, ils souffrent souvent d’une faible discrimination inter-

locuteurs. Ceci permet d’expliquer pourquoi les systèmes descendants sont

améliorés grâce à la composante de purification. Au contraire, les systèmes de

type ascendants sont d’avantage discriminants à l’égard des locuteurs cepen-

dant, la fusion progressive des clusters les rend plus sensibles aux variations

des phonèmes, menant alors à un maximum local non optimal de la fonction

de coût.

Ce travail a été présenté à la conférence : International Conference on Acoustics,

Speech, and Signal Processing (ICASSP) en 2011 [Bozonnet et al., 2011]. Une ver-

sion approfondie de ce travail, incluant notamment une analyse plus complète a

été publiée dans le journal : the IEEE Transactions on Audio Speech and Lan-

guage Processing (TALSP), special issue on New Frontiers in Rich Transcription

en 2012 [Evans et al., 2012].

(iii) Combinaison de système ascendant/descendant

La contribution précédente souligne les propriétés distinctes en termes de fiabilité

des modèles et de discrimination des méthodes ascendantes et descendantes. Ces

comportements spécifiques suggèrent ainsi un potentiel pour la combinaison de ces

deux systèmes. La troisième contribution de cette thèse présente ainsi de nouvelles



méthodes afin de combiner la méthode ascendante et descendante, bénéficiant ainsi

des atouts de chacune d’entre elles, améliorant ainsi les performances et la stabilité.

Deux types de combinaison des systèmes sont ainsi étudiées :

• Système de fusion

Le système de fusion a pour but de lancer simultanément et indépendamment

les systèmes ascendants et descendants dans le but de combiner leurs sorties.

Nous proposons une nouvelle approche qui dans un premier temps couple les

clusters de chacun des deux systèmes selon des contraintes imposées sur la

matrice de confusion et le contenu acoustique. Grâce à cette association de

clusters, une première sélection de clusters est réalisée. Les clusters restants

sont alors introduits par la suite selon leur distance acoustique aux clusters

déjà sélectionnés. Seules les frames les plus vraisemblables sont conservées. Un

ré-alignement final est ensuite réalisé afin d’associer les frames non classées.

Grâce à ce scénario une amélioration de 13% relatifs (DER) est obtenue sur

les performance du regroupement et de la segmentation en locuteurs.

Ce travail a été présenté à la conférence : Annual Conference of

the International Speech Communication Association (Interspeech) en

2010 [Bozonnet et al., 2010], une version plus approfondie de ce travail sur

les effets du système de fusion a été publié dans le journal : the IEEE Tran-

sactions on Audio Speech and Language Processing (TALSP) , special issue

on New Frontiers in Rich Transcription en 2012 [Evans et al., 2012].

• Système d’intégration

Une approche alternative consiste á fusionner les deux systèmes en leur coeur,

on la nomme : approche intégrée. Les systèmes sont lancés simultanément, le

système descendant appelant le système ascendant telle une fonction durant

son exécution. dans le but d’améliorer la qualité des nouveaux modèles in-

troduits. Les résultats expérimentaux montrent une amélioration sur trois

différents jeux de données incluant des enregistrements de réunions et des

shows télévisés avec des améliorations atteignant jusqu’à 32% relatifs (DER).

Ce travail a été présenté à la conférence : Annual Conference of

the International Speech Communication Association (Interspeech) en

2010 [Bozonnet et al., 2010].



(iv) Normalisation à l’échelle des phonèmes pour la segmentation et le re-

groupement en locuteurs

La dernière contribution de cette thèse se rapporte à une nouvelle technologie

ayant la capacité de limiter l’influence du contenu linguistique, considéré comme

une importante source de nuisance dans notre étude comparative pouvant biaiser la

convergence du système de segmentation et regroupement en locuteurs. Par compa-

raison au Speaker Adaptive Training (SAT), nous proposons d’une manière tout à

fait analogue de réduire la composante linguistique dans les caractéristiques acous-

tiques. Notre approche est appelée Phone Adaptive Training (PAT). Cette tech-

nique se base sur une régression linéaire contrainte par maximum de vraisemblance

(Constraint Maximum Likelihood Linear Regression CMLLR) laquelle a pour but

de supprimer les composantes non désirées grâce à une transformation linéaire des

caractéristiques. Les résultats expérimentaux montrent une amélioration de 11%

relatifs pour le système de regroupement en locuteurs.

B.1.4 Organisation

Cette thèse se décompose en 8 chapitres comme il suit :

Une étude de l’état de l’art est présentée dans le chapitre 2 incluant les progrès dans

le domaine, les principales approches, leurs spécificités ainsi que les principaux domaines

étudiés par la communauté.

Le chapitre 3 introduit les métriques, les jeux de données et les procotoles officiels

définis par le NIST dans le but de décrire les deux systèmes de référence de l’état de

l’art : les méthodes ascendantes (bottom-up) et descendantes (top-down) ainsi que leur

performances respectives.

Dans le chapitre 4, une étude Oracle est présentée ayant pour but d’évaluer la sen-

sibilité et la robustesse des différentes composantes du système ascendant et descendant

afin d’en comparer leurs points faibles.

Le chapitre 5 introduit une nouvelle composante ayant pour but d’améliorer la qua-

lité des clusters des systèmes en les purifiant. Après une première description de l’algo-

rithme, la nouvelle composante de purification est intégrée dans le système ascendant et

descendant et une analyse des performances est menée.

Une étude comparative des méthodes ascendantes et descendantes est détaillée dans

le Chapitre 6 incluant tout d’abord une formalisation de la tache de segmentation et



regroupement en locuteurs. Une comparaison qualitative et expérimentale est menée

ensuite, montrant les différences de comportement des deux systèmes à l’égard des va-

riations nuisibles telles que le contenu lexical.

Enfin, le chapitre 7 introduit une combinaison des deux systèmes permettant d’ex-

ploiter le bénéfice de chacun d’eux afin d’obtenir un système résultant plus performant.

Deux scénarii sont considérés et leurs performances respectives sont examinées.

Pour finir, le chapitre 8 introduit une nouvelle technique afin de normaliser les ca-

ractéristiques extraites du signal audio, appelée Phone Adaptive Training (PAT). Cette

dernière a pour but d’atténuer les effets dus au contenu lexical considérés comme la

principale nuisance face à la discrimination des locuteurs. Une description du processus

est d’abord introduite, elle est suivie par un jeu d’expériences.

Les conclusions de ce travail sont données dans le chapitre 9 résumant les contribu-

tions majeures ainsi que les résultats obtenus dans cette thèse et évoquant différentes

perspectives pour des travaux futurs.

B.2 Protocoles & Système de Référence

D’importants progrès ont été réalisés dans le domaine de la segmentation et du regroupe-

ment en locuteurs principalement conduits par le NIST (National Institute of Standards

and Technology) notamment au travers différentes évaluations (Rich Transcription (RT)

evaluations) [NIST, 2002, 2003, 2004, 2006, 2007, 2009]. Tout au long de ces différentes

compétitions, deux principales approches ont émergé, elles sont l’approche ascendante

(ou encore bottom-up) et l’approche descendante (top-down). Bien que les meilleures

performances ont toujours été atteintes par l’approche ascendante ces dernières années,

nous pensons que l’approche descendante n’est pas pour autant sans mérite. En effet,

les résultats de la dernière évaluation NIST RT‘09 montre que l’approche descendante

produit des résultats compétitifs1 et d’une complexité moindre en termes de calculs.

Dans ce chapitre nous décrivons tout d’abord le protocole officiel et les métriques

proposés par l’institut NIST et nous introduisons ensuite les différents jeux de données

1pour les conditions SDM et MDM (même si dans ce cas, contrairement aux autres systèmes, le

retard entre les canaux n’est utilisé que pour effectuer un beamforming et donc non considéré comme

une caractéristiques supplémentaires pour distinguer les locuteurs)



utilisés lors des différentes évaluations. Un corpus de shows télévisés est également in-

troduit afin de tester la robustesse des différents systèmes. Enfin, des détails sur les

systèmes de référence de chacune des deux approches sont présentés.

B.2.1 Protocoles

Depuis 2004, l’institut NIST a organisé une série de compétitions internationales au tra-

vers de la campagne de Rich Transcription (RT)1. Ces évaluations, lesquelles incluent

la tache de segmentation et regroupement en locuteurs, ont pour but de faciliter la

tache des technologies de transcription et d’annotation des données. Grâce à son ca-

ractère international, les évaluations RT ont eu un rôle important dans l’évaluation de

l’état de l’art en proposant des protocoles d’évaluation standardisés, incluant différentes

métriques pour comparer les performances et des jeux de données communs. Une impor-

tante caractéristique de ces évaluations est qu’aucune information a priori n’est fournie

aux participants (par exemple, le nombre de locuteurs, leurs identités, etc.) à l’exception

de la nature des enregistrements (par exemple, les réunions, les journaux télévisés, etc.)

et le langage (Anglais). Des formats standards pour les données d’entrées et de sortie des

systèmes sont également définis et les participants peuvent utiliser des données externes

pour créer un modèle de monde et/ou dans le but de normaliser les données.

Tout d’abord centrées sur les journaux télévisés, les conférences ou encore les pauses

café, les évaluations NIST les plus récentes ont porté sur les enregistrements de réunions,

un domaine particulièrement délicat pour la segmentation et au regroupement en locu-

teurs notamment du à la spontanéité de la parole. Pour cette raison, le travail présenté

au sein de cette thèse se concentre également sur les enregistrements de réunions. Les

enregistrements fournis par le NIST lors des évaluations étaient enregistrés à l’aide de

plusieurs microphones de différents types et de différentes qualités lesquels sont posi-

tionnés sur les participants (par exemple les micro-cravate) ou dans différents endroits

de la salle de réunion. En groupant ces microphones en différentes classes, l’institut NIST

propose différents types de conditions pour les évaluations. Parmi celles-ci on peut no-

ter : l’usage d’un unique micro-casque (IHM), un unique microphone distant (SDM),

une multitude de microphones distants (MDM), ou encore un ensemble microphones de

1Voir http ://nist.gov/speech/tests/rt.



type mark III (MM3A1), ou enfin l’ensemble des microphones distants (ADM).

Les conditions MDM sont définies comme le coeur du challenge et sont requises pour

tous-les participants. Les participants ont alors la possibilité d’utiliser les données enre-

gistrées simultanément sur les différents canaux issues des différents microphones situés

le plus souvent sur la table de la réunion. Pour la plupart des systèmes, un beamfor-

ming [Anguera, 2006] est alors réalisé dans le but de créer un pseudo canal, et les retards

inter-canaux (ICD) [Anguera et al., 2005; Ellis & Liu, 2004; Evans et al., 2009] peuvent

être ajouté aux caractéristiques audio classiques et peuvent ainsi mener à de meilleures

performances pour la segmentation et le regroupement en locuteurs [Anguera et al.,

2005].

Au contraire, les conditions SDM n’autorisent que l’usage de l’enregistrement issu

d’un seul et unique microphone (le plus souvent celui situé le plus au centre) et ainsi

ne peuvent pas utiliser de beamforming pour l’amélioration de la qualité du signal ni

les ICD comme caractéristiques du locuteur. Dans cette thèse nous nous intéresserons

principalement aux résultats pour les conditions SDM car nous les considérons comme

étant plus représentatives des équipements les plus courants dans les salles de réunion.

B.2.2 Métriques

L’institut NIST définit un standard pour les sorties des systèmes de segmentation et

regroupement en locuteurs, celles-ci doivent contenir une hypothèse sur l’activité de

chaque locuteur incluant le temps de début et de fin de chaque segments de parole.

Les étiquettes des locuteurs sont utilisées uniquement afin d’identifier les interventions

multiples de chaque locuteur mais ne donnent pas d’information quant à leurs réelles

identités. Afin d’estimer la qualité de l’hypothèse, les sorties sont comparées à la vérité

terrain dans le but d’obtenir un score global : Diarization Error Rate (DER) également

défini par le NIST. Cette métrique peut être définie comme la somme temporellement

pondérée de trois sources d’erreurs :

• Parole Manquée - Missed Speech (MS) : pourcentage de parole mentionnée

dans la vérité terrain mais non présente dans l’hypothèse de segmentation et re-

groupement en locuteurs ;

1 Les microphones MM3A sont des types de microphones exclusivement produits et fournis par

l’institut NIST. Ils ne sont habituellement pas inclus dans les conditions MDM, mais dans les conditions

ADM.



• Fausse Alerte - False Alarm (FA) : pourcentage de parole mentionnée dans

l’hypothèse de segmentation et regroupement en locuteurs mais non présente dans

la vérité terrain ;

• Erreur de Locuteur - Speaker Error (SpkErr) : pourcentage de parole as-

signée au mauvais locuteur (en ignorant les passages avec plusieurs locuteurs si-

multanés)

L’erreur DER peut être déterminée avec ou sans l’inclusion des segments comportant

plusieurs locuteurs (overlapping speech). Quand les segments comportant plusieurs lo-

cuteurs sont évalués, l’erreur DER reflète alors l’erreur dans l’estimation du nombre de

locuteurs parlant simultanément (dans l’évaluation NIST RT on peut compter jusqu’à

4 locuteurs simultanés) ainsi que les erreurs dues à l’attribution de la parole à chacun

des locuteurs. Les erreurs sur l’estimation du nombre de locuteurs mènent à une aug-

mentation du taux de parole manquée (MS) lorsque moins de locuteurs sont détectés

par rapport à leur vrai nombre, ou à une augmentation du taux de fausse alerte (FA)

lorsque trop de locuteurs sont détectés. Dans le cas de l’erreur de locuteur (Speaker

Error - SpkErr), l’erreur respective de chacun des locuteurs prise individuellement est

considérée.

L’erreur DER est déterminée à l’aide de l’Equation B.1

DER = SADerror + SpkErr = MS + FA
︸ ︷︷ ︸

SAD Error

+SpkErr (B.1)

Plus précisément, l’erreur DER est calculée comme la fraction du temps de chaque

locuteur qui n’est pas correctement attribuée, basé sur l’association optimale des locu-

teurs de l’ hypothèse/vérité terrains. Cette dernière est établie grâce a un algorithme

dynamique défini par l’institut NIST. L’erreur DER peut être définie plus formellement

comme il suit :

DER =

∑

∀i{D
R
i · (max(NR

i , NS
i )−NC

i )}
∑

∀i{D
R
i ·N

R
i }

(B.2)

où DR
i représente la durée du i-ème segment de référence, et où NR

i et NS
i correspondent

respectivement au nombre de locuteurs dans la vérité terrain et le nombre de locuteurs

dans l’hypothèse de segmentation et regroupement en locuteurs. NC
i est le nombre de



locuteurs qui est correctement identifié par le système de segmentation et regroupement

en locuteurs. Il est toutefois important d’observer qu’en incluant les passages multi-

locuteurs, NR
i ,NS

i et NC
i peuvent être supérieurs à 1.

Comme nous pouvons le voir dans l’Equation B.2, l’erreur DER est pondérée avec

le temps, c’est à dire que moins d’importance est accordée aux locuteurs dont le temps

de parole est court. De plus, un paramètre appelé ’collier’ définit une zone de 250ms de

part et d’autre de chaque segment mentionné dans la vérité terrain qui n’est alors pas

évaluée lors du calcul de l’erreur DER. Ceci permet de s’affranchir d’éventuelles erreurs

de temps de début/fin de segment lors de l’annotation manuelle de la base de donnée.

Pour les shows télévisés pour lesquels un locuteur dominant et de multiple locuteurs

relativement inactifs, l’erreur DER n’est pas toujours une bonne métrique de référence

dans la mesure ou elle peut être très faible même si un unique et même locuteur est

détecté.

On peut observer que depuis 2006, la métrique primaire pour les évaluations RT

inclue l’évaluation des passages multi-locuteurs. Cependant, comme les systèmes re-

portés dans cette thèse ne permettent pas de détecter et de prendre en compte l’annota-

tion multi-locuteurs, nous nous référons ci-après à la métrique sans évaluer les passages

multi-locuteurs. Dans ce cas, NR
i ,NS

i et NC
i prennent alors les valeurs 0 ou 1. Selon les

possibilités, nous indiquerons cependant les scores avec et sans l’évaluation des passages

multi-locuteurs.

B.2.3 Jeux de Données

Dans la majeure partie de ce manuscrit, un corpus d’enregistrements de réunions est

utilisé à titre expérimental, notamment utilisant le corpus RT de NIST. Cependant, dans

le but d’estimer la robustesse des différents systèmes, un jeu de données supplémentaire,

regroupant des shows télévisés Français et nommé : Grand Échiquier est présenté dans

la Section B.2.3.2.

B.2.3.1 Corpus de Réunions RT

Pour chacune des évaluations NIST RT depuis 2004, un nouveau set d’enregistrement

annotés de réunions a été collecté1 Un total de cinq jeux de données est ainsi disponible.

1La vérité terrain est disponible après chaque évaluation afin d’être utilisée par la suite par la

communauté pour la recherche et le développement indépendamment des évaluations officielles NIST.
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Figure B.4: Analyse des pourcentages de parole multi-locuteurs et de la durée moyenne des

changements de locuteurs pour chacun des 5 jeux de données NIST RT. Les pourcentages

de parole multi-locuteurs sont donnés en fonction de le temps total de parole.

La Figure B.4 montre les différences entre les différents jeux de données NIST RT

en termes de pourcentage de parole multi-locuteurs et de durée de changement de lo-

cuteurs. Pour les jeux de données RT‘04, RT‘05 et RT‘09 on peut voir un pourcentage

de parole multi-locuteurs d’environs 15%, alors que les jeux de données de 2006 et 2007

contiennent 8% de parole multi-locuteurs. Lorsque l’on s’intéresse à la durée moyenne

des changements de locuteurs, laquelle peut être définie comme la durée moyenne durant

laquelle aucun changement concernant le(s) locuteur(s) n’a lieu (même locuteurs, mêmes

conditions : avec/sans parole multi-locuteurs), on peut observer que les trois dernières

évaluations : RT‘06, ‘07 et ‘09 comportent en moyenne des changements de locuteurs

plus fréquents, même si l’on ne considère par la parole multi-locuteurs. Ceci permet de

souligner que la parole présente dans les trois dernières évaluations peut être considérée

comme plus spontanée et plus interactive, menant ainsi à des changements de locuteurs

plus fréquents. En accord avec ces remarques on peut s’attendre à une difficulté accrue

pour les jeux de données RT‘06,‘07 et RT ‘09.

Par souci de cohérence avec les travaux antérieurs[Fredouille & Evans, 2008;



Fredouille et al., 2004], tous les systèmes expérimentaux présentés dans cette thèse

ont été optimisés sur un set de développement de 23 enregistrements de réunions is-

sus des évaluations NIST RT‘04, ‘05 et ‘06. Les performances ont été alors confortées

grâce à deux jeux de données indépendant : RT‘07 et RT‘09 évaluations. Il est impor-

tant de préciser qu’aucun recouvrement n’est présent entre le set de développement et

d’évaluation même si ces derniers peuvent contenir des enregistrements provenant de

sites similaires et éventuellement de locuteurs identiques.

B.2.3.2 Corpus de shows télévisés GE

Par l’intermédiaire d’autres travaux [Bozonnet et al., 2010] nous avons également

expérimentés nos systèmes sur une base de données de shows télévisés tel que ’Grand

Échiquier’ (GE). Dans la mesure où ces résultats nous ont permis d’évaluer la robustesse

des systèmes de segmentation et regroupement en locuteurs (par exemple, dû notamment

aux variations des temps de paroles des locuteurs, à la présence d’un locuteur dominant,

etc...), ce jeu de données est décrit ci-après. Les résultats de référence concernant cette

base de données figurent en Section 3.5.

Ce corpus comprend plus de 50 shows télévisés Français issus des années 1970 – 1980

et a été rendu populaire grâce à différents projets nationaux et Européens comme par

exemple : the European K-Space network of excellence [K-Space, K-Space]. Chaque

show est centré sur un invité principal et quelques autres invités minoritaires, tous sont

interviewés par un présentateur. Les interviews sont ponctués par des intermèdes musi-

caux, des extraits de films, les applaudissements du publique ou encore des rires. Hormis

ceci, les silences entre les changements de locuteurs peuvent être très brefs ou quasiment

négligeable. Comparés aux enregistrement de réunions ou les locuteurs souvent s’arrête

un instant pour réfléchir avant de répondre à une question, ou pour réorganiser leurs

idées, les shows télévisés sont beaucoup plus fluide et parfois quasiment écrits. Ceci est

probablement dû au fait que les principaux thèmes et discussions abordés sont souvent

préparés à l’avance et connus des locuteurs.

Le Tableau 3.1 souligne d’une manière plus quantitative les différences entre les

réunions issues de la base de données NIST RT‘09 et 07 shows télévisés issus de la base

de données GE, laquelle a été annotée manuellement avec le strict respect du protocole

NIST [NIST, 2009]. En comparant les trois premières lignes du Tableau 3.1 on observe

que les shows télévisés sont en moyenne plus longs que les réunions(147 minutes contre



Attribute GE NIST RT‘09

No. of shows 7 7

Avg. Evaluation time 147 min. 25 min.

Total speech 50 min. 21 min.

Avg. No. of segments 1033 882

Avg. segment length 3 sec. 2 sec.

Avg. Overlap 5 min. 3 min.

Avg. % Overlap / Total speech 10 % 14 %

Avg. No. speakers 13 5

most active 1476 sec. 535 sec.

least active 7 sec. 146 sec.

Table B.1: Comparaison des caractéristiques issues des bases de données Échiquier (GE)

et NIST RT‘09

25 minutes) et en supprimant le bruit (par exemple les applaudissements) et la mu-

sique, la quantité de parole est deux fois celle que l’on peut trouver dans la base de

données RT (50 minutes contre 21 minutes). Notons cependant que la durée moyenne

des segments est légèrement plus petite pour RT‘09 que pour GE (2 sec. contre 3 sec.).

Ces premières investigations peuvent suggérer que les shows télévisés présentent d’avan-

tage qu’un simple challenge dû à leur plus variabilité au sein d’un même locuteur plus

important tout au long d’un même show.

De plus, les différences en termes de statistiques des locuteurs doivent être considérées

également. En effet, le nombre moyen de locuteurs et la durée du locuteur le plus et

le moins actif dans chaque show ne sont pas comparables dans chacun des deux do-

maines. On note ainsi une moyenne de 13 locuteurs pour les show télévisé contre 5 pour

les réunions. Ceci pouvait être attendu donné la durée moyenne importante des shows

télévisés. En considérant un nombre important de locuteurs, on peut s’attendre à des

différences inter-locuteurs plus réduites que pour les réunions et ainsi augmentant les

difficultés pour la tache de segmentation et regroupement ne locuteurs.

De plus, on peut remarquer que la durée minimale des locuteurs est beaucoup plus

disparate pour le corpus GE que pour la base de données RT‘09. La durée moyenne de

parole pour le locuteur le plus actif est de 1476 secondes pour GE (contre 535 secondes

pour RT‘09) et correspond au présentateur dans chacun des cas. La durée moyenne de

parole pour le locuteur le moins actif est 7 secondes (cf. 146 secondes pour RT‘09) et

correspond à l’un des invités minoritaires. Les locuteurs avec si peu de données sont



extrêmement difficiles à détecter, ainsi il est probable que cet aspect du show télévisé

amène des difficultés majeures pour la segmentation et le regroupement en locuteurs.

Notons cependant que l’erreur DER globale n’est que peu sensible à ce types de

locuteurs dans la mesure où la contribution de chaque locuteur est pondérée en fonction

de son temps de parole. De plus, la présence d’un ou deux locuteurs dominants entrâıne

que d’avantage de locuteurs seront comparativement plus difficiles à détecter, même s’

ils ont également un temps de parole significatif.

Finalement, la quantité de parole multi-locuteurs (moyenne de 5 minutes cf. 3 minutes

par show), ou 10% (GE) cf. 14% (RT‘09) lorsque l’on considère le pourcentage relatif à

la quantité totale de parole, montre qu’il y a proportionnellement plutôt moins de parole

multi-locuteurs dans la base de données GE que dans le jeu de données RT‘09. Comparés

à d’autres jeux de données RT, le pourcentage de parole multi-locuteurs peut toujours

être considéré comme assez élevé.

Même s’ils comportent moins de parole multi-locuteurs, la nature des shows télévisés

présente un challenge unique jusqu’alors jamais vu dans les corpus de réunions. Celui-ci

repose principalement sur la présence de musique et d’autres bruits de fond autre que la

parole, mais aussi sur une importante disparité dans le temps de parole de chacun des

locuteurs, un nombre de locuteurs plus importants avec des silences plus brefs.

B.2.4 Description des Systèmes de Référence

Le système descendant est basé sur le travail du LIA [Fredouille & Evans, 2008], alors

que le système ascendant se rapporte au travail d’ICSI [Wooters & Huijbregts, 2008] et

plus récemment I2R [Nguyen et al., 2009].

B.2.4.1 Système Ascendant (Top-Down Système)

Le système ascendant décrit ci-après correspond au système officiel utilisé

pour la participation LIA-EURECOM lors de la dernière évaluation NIST

RT‘09 [Fredouille et al., 2009] et a été entièrement développé grâce à la librairie open-

source ALIZE [Bonastre et al., 2005]. Le système peut être décomposé en 5 étapes in-

cluant une étape de pré-traitement, puis un processus de détection de présence de parole

(Speech Activity Detection - SAD), une étape de segmentation et regroupement en

clusters, puis une resegmentation et normalisation des données. Parmi les modifications



réalisées comparées au système utilisé pour l’évaluation NIST RT‘07 [Fredouille & Evans,

2008], on peut noter l’utilisation d’un beamforming pour les sets de données MDM (mul-

tiple distant microphone) mais aussi des changements significatifs dans l’algorithme de

segmentation notamment en termes d’initialisation et de modélisation des locuteurs les-

quels sont détaillés dans ce qui suit.

1. Pré-Traitement

Tous-les fichiers audio sont tout d’abord traités avec un filtre de Wiener afin d’en

réduire le bruit [Adami et al., 2002b]. Puis, quand plusieurs canaux sont présents

(MDM condition), un canal virtuel est créé pour chaque show en utilisant le toolkit

BeamformIt v2 [Anguera, 2006; Anguera et al., 2007] avec une fenêtre d’analyse

de 500ms capturée toutes les 250ms. Cette étape n’est pas nécessaire pour les

conditions SDM. Notons cependant que ceci représente la seule différence pour le

système utilisé dans les conditions SDM et MDM et qu’aucun délais inter-canal

n’est utilisé pour les autres étapes du processus.

2. Détection de la Parole - Speech Activity Detection (SAD)

Après l’étape de pré-traitement, une étape de détection de la parole (SAD) est

accomplie dans le but d’isoler la parole utile dans les données. Ce processus re-

pose sur une chaine de Markov caché (HMM) ou chaque état est associé avec une

GMM de 32 composantes entrainée avec un algorithm EM/ML sur une quantité

de données importante de speech et non speech provenant des évaluations RT‘04

et RT‘051.

Le système utilise 12 LFCCs et l’énergie auxquelles sont ajoutées leurs dérivées

premières et secondes extraites toutes les 10ms en utilisant une fenêtre de 20ms.

Tout d’abord, une première segmentation parole/non-parole est menée grâce à

un décodage Viterbi utilisant des probabilités équiprobables entre les états de la

châıne de Markov cachée ainsi qu’un buffer2 de 30 frames. Ensuite les modèles sont

adaptés par Maximum A Posteriori (MAP) puis un décodage Viterbi est réalisé à

nouveau. Ces deux étapes sont réalisés jusqu’à 10 fois prenant fin en cas d’absence

1Notons que ces deux jeux de données utilisés pour l’entrainement des modèles sont totalement

indépendants des données de développement ou d’évaluation utilisées par la suite.
2Le buffer Viterbi permet de fixer un temps minimum pendant lequel un état est assigné et rend

ainsi le système plus stable.



de changement entre deux segmentations consécutives. Finalement, une étape de

lissage est exécutée basée sur des règles heuristiques afin de supprimer les rapides

transitions speech/non-speech.

3. Segmentation et Regroupement en Clusters

Exécutée directement sur les sorties du détecteur de parole (SAD), l’étape de

segmentation et regroupement en clusters peut être considérée comme le cur du

programme. Cette dernière se base sur une châıne de Markov cachée évolutive (E-

HMM) [Meignier et al., 2000, 2006] où chaque état a pour but de représenter un

locuteur et où les transitions correspondent aux changements de locuteurs. Tous

les changements de locuteurs sont envisageables et un buffer Viterbi2 de 30 frames

est utilisé. Ici le signal est caractérisé par 20 LFCCs non normalisées et son énergie

calculés toutes les 10ms en utilisant une fenêtre de 20ms.

Le processus de segmentation et regroupement en locuteur pour chaque show peut

être défini comme il suit :

(a) Initialisation : La châıne de Markov cachée évolutive (E-HMM) a seulement

un seul et unique état S0 comme le montre l’Etape 1 de la Figure B.5. Un

modèle de monde de 16 Gaussiennes est alors entrâıné par EM sur l’ensemble

de données de parole. Un processus itératif débute alors, introduisant à chaque

itération un nouveau locuteur.

(b) Ajout de locuteur : A la neme itération un nouveau locuteur Sn est ajouté

dans la E-HMM : le segment de parole le plus long d’une durée minimale de

6 secondes est sélectionné parmi l’ensemble des segments associés à S0. Le

segment sélectionné est attribué à Sn et est utilisé afin d’estimer une nouvelle

GMM par EM.

(c) Adaptation/Boucle de Décodage : L’objectif est de détecter tous les

segments appartenant au nouveau locuteur Sn. Tous les modèles de locuteur

sont ré-estimés à l’aide d’un ré-alignement Viterbi et d’une ré-estimation des

modèles par EM selon la segmentation donnée. Une nouvelle segmentation

est alors obtenue. Cette boucle de ré-alignement/apprentissage de modèles

est répétée tant qu’un nombre significatifs de changement sont observés dans

la segmentation entre deux itérations successives.



(d) Validation des Modèles de locuteurs et Critère d’Arrêt : La segmen-

tation actuelle est analysée dans le but de déterminer si le dernier locuteur

introduit Sn est pertinent, basé sur des règles heuristiques sur la durée de

temps totale assignée au locuteur Sn. Le temps minimum autorisé pour un

locuteur est de 10 secondes. Le critère d’arrêt est atteint s’il n’y a plus de seg-

ment de parole d’un minimum de 6 secondes associé à S0, sinon le processus

retourne à l’étape (b).

La Figure B.5 illustre les 4 étapes décrites précédemment lors de l’addition du

modèle de locuteur S1 et S2 (étapes 2 and 3).

4. Resegmentation

L’étape de segmentation et regroupement en locuteur est suivi d’une étape de

resegmentation laquelle a pour but d’affiner la segmentation et de supprimer les

locuteurs non pertinents (par exemple les locuteurs avec quelques segments seule-

ment). Une nouvelle HMM est générée à partir de la dernière segmentation et

une boucle apprentissage des modèles/Décodage Viterbi est lancée. Par rapport à

l’étape précédente, ici les modèles de locuteurs sont appris par adaptation MAP

à partir d’un modèle de monde universel (UBM) entrâıné sur un corpus de re-

connaissance du locuteur ( Speaker Recognition)1. Notons que durant la phase

de resegmentation, toutes les frontières (sauf celles correspondantes au parole/non

parole) et les étiquettes de chaque segments sont réévaluées.

5. Normalisation et Resegmentation

Finalement une étape de normalisation et reségmentation est réalisée utilisant des

vecteur de caractéristiques intégrant 16 LFCCs, l’énergie ainsi que les dérivées

premières. Celles-ci sont extraites toutes les 10ms utilisant une fenêtre de 20ms. Les

vecteurs sont normalisés, segment de parole par segment de parole afin d’obtenir

une moyenne égale à zéro est un écart type d’une unité puis une reségmentation

finale est effectuée.

1Comparé au données utilisées pour la segmentation et le regroupement en locuteurs, ce corpus utilisé

pour la reconnaissance du locuteur contient beaucoup plus de locuteurs (environs 400)
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Figure B.5: Système ascendant de segmentation et regroupement en locuteur : cas de 2

locuteurs, image publiée avec l’aimable autorisation de Sylvain Meignier (LIUM) et Corinne

Fredouille (LIA)
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7916. 11, 51, 123

Anguera, X. & Hernando, J. (2004). Evolutive speaker seg-

mentation using a repository system. In Proc. Interspeech.

21

Anguera, X., Wooters, C., Anguilo, M., & Nadeu, C. (2006).

Hybrid speech/non-speech detector applied to speaker di-

arization of meetings. In Speaker Odyssey workshop, Puerto

Rico, USA. 20

Anguera, X., Wooters, C., & Hernando, J. (2005). Speaker

diarization for multi-party meetings using acoustic fusion.

In Proc. ASRU, (pp. 426–431). 21, 34, 141

Anguera, X., Wooters, C., & Hernando, J. (2006a). Friends

and enemies: A novel initialization for speaker diarization.

In Proc. ICSLP, Pittsburgh, USA. 17

Anguera, X., Wooters, C., & Hernando, J. (2006b). Purity al-

gorithms for speaker diarization of meetings data. In Proc.

ICASSP. 17, 24, 63

Anguera, X., Wooters, C., & Hernando, J. (2006c). Robust

speaker diarization for meetings: ICSI RT06s evaluation

system. In Proc. ICSLP, Pittsburgh, USA. 14, 17

Anguera, X., Wooters, C., & Hernando, J. (2007). Acous-

tic beamforming for speaker diarization of meetings. IEEE

TASLP, 15(7), 2011–2023. 18, 25, 40, 148

Anguera, X., Wooters, C., Peskin, B., & Aguilo, M. (2005).

Robust speaker segmentation for meetings: The ICSI-SRI

spring 2005 diarization system. In Proc. NIST MLMI Meet-

ing Recognition Workshop, Edinburgh. Springer. 18, 20, 23

Aronowitz, H. (2007). Trainable speaker diarization. In Proc.

Interspeech, (pp. 1861–4). 22

Barras, C., Zhu, X., Meignier, S., & Gauvain, J. (2004). Im-

proving speaker diarisation. In Proc. DARPA RT04. 22

Ben, M., Betser, M., Bimbot, F., & Gravier, G. (2004).

Speaker diarization using bottom-up clustering based on

a parameter-derived distance between adapted GMMs. In

Proc. ICSLP, Jeju Island, Korea. 21, 22

Boakye, K. (2008). Audio Segmentation for Meetings Speech

Processing. PhD thesis, University of California at Berke-

ley. 27

Boakye, K., Trueba-Hornero, B., Vinyals, O., & Friedland, G.

(2008). Overlapped speech detection for improved speaker

diarization in multiparty meetings. Proc. ICASSP, 4353–

4356. 27, 124

Bonastre, J.-F., Wils, F., & Meignier, S. (2005). ALIZE, a

free toolkit for speaker recognition. In Proc. ICASSP’05,

volume 1, (pp. 737–740)., Philadelphia, USA. 40, 44, 95,

147

Bozonnet, S., Evans, N., Anguera, X., Vinyals, O., Friedland,

G., & Fredouille, C. (2010). System output combination

for improved speaker diarization. In Proc. Interspeech. 8,

83, 91, 96, 98, 137

Bozonnet, S., Evans, N., Fredouille, C., Wang, D., & Troncy,

R. (2010). An integrated top-down/bottom-up approach to

speaker diarization. In Proc. Interspeech. 8, 83, 137

Bozonnet, S., Evans, N. W. D., & Fredouille, C. (2010). The

LIA-EURECOM RT‘09 Speaker Diarization System: en-

hancements in speaker modelling and cluster purification.

In Proc. ICASSP, Dallas, Texas, USA. xiv, 15, 17, 63, 67,

91

Bozonnet, S., Vallet, F., Evans, N. W. D., Essid, S., Richard,

G., & Carrive, J. (2010). A Multimodal approach to initial-

isation for top-down speaker diarization of television shows.

In EUPSICO 2010, 18th European Signal Processing Confer-

ence, August 23-27, 2010, Aalborg, Denmark. 38, 145

153



Bozonnet, S., Wang, D., Evans, N. W. D., & Troncy, R. (2011).

Linguistic influences on bottom-up and top-down clustering

for speaker diarization. In ICASSP 2011, 36th International

Conference on Acoustics, Speech and Signal Processing, May

22-27, 2011, Prague, Czech Republic, Prague, CZECH RE-

PUBLIC. 6, 7, 134, 136

Burget, L., Fapso, M., Hubeika, V., Glembek, O., Karafit, M.,

Kockmann, M., Matejka, P., Schwarz, P., & Cernock, J.

(2009). But system for nist 2008 speaker recognition evalu-

ation. In Proc. Interspeech 2009, number 9, (pp. 2335–2338).

International Speech Communication Association. 83

Campbell, N. & Suzuki, N. (2006). Working with Very Sparse

Data to Detect Speaker and Listener Participation in a

Meetings Corpus. In Workshop Programme, volume 10. 29
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