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Chapter 1

Introduction

Biotechnologies came to an era where the amount of information one has access to

allows to think about biological objects as complex systems. In this context, the

phenomena emerging from these systems are tightly linked to their organizational

properties. This raises methodological challenges which are precisely the focus of

study of the machine learning community. This thesis is about applications of machine

learning methods to study biological phenomena from a complex systems viewpoint.

This introduction specifies what is meant by system based and machine learning

approaches. The biological applications treated in this manuscript are presented in a

second phase.

1.1 System theoretic approaches in biology

The general idea that a system being made of different parts is, as a whole, something

different from the sum of its parts dates back to antiquity and is rather well accepted

today, specially in the scientific community. This idea is to be linked with the notion

of scale. At any scale, natural objects are parts of larger systems and are themselves

made of different parts. For example, a population of living organisms gathers differ-

ent individuals which could be pluricellular, each cell consisting of an accumulation

of big molecules themselves made of atoms etc . . . This naturally leads to a hierarchy

of objects, which behaviour is related to the scale at which they are observed.
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2 CHAPTER 1. INTRODUCTION

The first aspect in the understanding of natural objects at a given scale, is the

characterization of the object of study as an isolated entity. For example, in cell

biology, a living cell is made of different compartments, evolves in time following

cell cycle, and could potentially undergo a division. At a different scale, in molec-

ular biology, a protein is a polymer of amino acids that is characterized by a three

dimensional structure and has a specific function such as catalysis of a reaction (en-

zymes), transcription of DNA, or transportation of smaller molecules. The study of

these individual characteristics at one scale helps understanding behaviours at higher

levels in the hierarchy. In relation with the two previous examples, understanding a

phenomenon occurring at the cell level, such as switching from one cell cycle state to

another, requires to decipher the chemical reactions that underlie this process.

However, cell biology can not be reduced to the application of molecular principles.

The reactions affecting cell cycle do not occur at random but rather in a well organized

manner. Taking this global organization into account is crucial in order to understand

molecular basis of cell cycle. It requires tools and methods that go beyond the field of

molecular biology. More generally, the study of interactions between different levels

in the hierarchy of scales requires to consider organization between scales, how small

entities organize themselves to constitute bigger entities. This is referred to as a

system approach. Observing and explaining several phenomena imposes to consider

a set of entities as a whole complex system with specific organizational properties.

What could be the benefits of such an approach? In some cases, one cannot get

by without these considerations. For example, if one is interested in characterization

of the effect of a given chemical compound at the cell level, it is pointless to draw

conclusions based on a single cell experiment. Different types of cells could eventually

respond in different ways. Additionally, cells of the same type coming from the same

population may exhibit variability in behaviour. The structure of inter cell variability

within this population holds information about the underlying biological process.

For instance, cells might not react in the same way whether they are surrounded by

many other cells or not. Taking into account this variability by considering different

cell types and several populations of each cell type is necessary in order to draw

reproducible conclusions from such experiments. This is illustrated in one chapter of
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this thesis.

In other cases the need to consider a system based approach arises from the highly

non linear behaviours of interactions between parts constituting a bigger entity. Many

observable phenomena are non linear in nature. For instance, mass action law, mod-

elling chemical kinetics, can lead to highly non linear dynamics. Accumulating these

non linearities leads to complex behaviours at the system level which investigation is

impossible without such a system approach. Striking examples of this non linearity

are bistable systems which can rest in either of two distinct states. Such systems are

at the heart of triggering mechanisms that occur at the cellular level, such as cell

division, cell differentiation or apoptosis. Chapter 5 of the thesis is dedicated to the

optimization of experimental design for the characterization of non linear dynamical

system.

System based approaches are not necessary in all circumstances. If not required,

they could, however, be beneficial. For example, studying the spatial conformation

at the site where a ligand binds to a protein does not require to take into account the

whole surrounding molecular environment. However considering this specific interac-

tion occurrence as a member of a set of interactions can shed light on the underlying

molecular recognition mechanisms it involves. While all interactions are different,

there might exist general trends in what characterizes an interaction. A system based

approach can take advantage of this property and use it in a prediction context. These

ideas are illustrated in the context of protein ligand interaction prediction and drug

side effect prediction in chapters 3 and 4.

While considering the structural organization of groups of objects can be essen-

tial or beneficial to comprehend complex systems, it is not possible to apply such

ideas in any context. The two main bottlenecks are knowledge and computational

methods. It is required to grasp the characteristics of individual small entities in

order to understand how they are organized at a larger scale. Advances in biological

knowledge and technological abilities to carry out large scale experiments make it

possible today to apply system based reasoning to the study of molecular, cellular

and macroscopic phenomena. For example, large amount of data is now available

about molecular interactions. Moreover, high throughput technologies, such as next
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generation sequencing or high content screening, have substantially accelerated the

data acquisition process and broadened the spread of experiments that could be car-

ried out in a row. This considerably increases the size and complexity of encountered

statistical and computational problems. The so-called machine learning field is ex-

actly at the interface between these two concepts and provides solutions to tackle

problems one faces in applying complex systems reasoning in a biological context.

1.2 Machine learning

While the field of machine learning is very broad, the problems of interest go from

theoretical and empirical performances to statistical and computational trade off,

this paragraph focuses on the specific aspects needed to introduce the work presented

further in this thesis. Broadly speaking, there exists mainly two different ways of

formulating problems addressed in this manuscript. They are referred to as supervised

and unsupervised problems, as informally described here.

Supervised problems consist in the estimation of a functional relation between

two categories of objects based on noisy observations of this relation. Informally, it is

assumed that there exists spaces X and Y and a function f : X → Y . One has access

to noisy realizations of this functional relationship, meaning that several data points

are available which are assumed to be of the form:

yi = f(xi) + ǫi

where xi is in X , yi is in Y and ǫi is random noise. The quantity of interest is

the function f which is unknown. The objective is to estimate this function or to

accurately reproduce it. Many prediction problems can be formalized this way. The

typical example in biology is the response of a system to an external stimulus. In this

case X is a set of possible stimuli, for example chemical compounds, Y is the set of

possible responses of an organism to these stimuli. The nature of the function f and

of the estimation procedure will depend on the structure of the input space X and
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the structure of the output space Y . Classification methods are dedicated to discrete

and known possible values of Y . For example, in the context of predicting protein

targets for ligands, the input space X is the space of chemical compounds, and the

output space Y reflecting the presence or absence of interaction with a given protein.

Regression methods correspond to continuous real output, predicting affinity of a

given compound for a certain protein would fall into this class. These methods are

used in the context of drug target interaction and side effect prediction in chapters

3 and 4. In chapter 5 we specify the function f as reflecting the dynamics of an

underlying dynamical system which we try to characterize based on observation of

the system under different experimental conditions.

As discussed in the previous paragraph, taking into account hierarchical structures

observed at different scales is potentially beneficial in a biological context. Interest-

ingly, it is possible to relate the structure of the biological problem to the structure

of the input space X and the output space Y in a supervised setting. To be concrete,

define the input space X as the space of chemical compounds and the output space

as a binary digit vectors of size p each entry of the vector reflecting the fact that a

given molecule x binds or not to each protein in a set of p proteins. One possibility to

solve this problem is to build one classifier for each protein in the considered set. It

is also possible to adopt a system approach and share information between different

proteins and adapt to the underlying structure of the set of proteins as illustrated in

chapter 3.

Unsupervised problems consist in searching for hidden structures in a set of

unlabelled data. The experimenter is provided with elements xi taken from an input

space X but no label yi is given. Broadly speaking, the problem consists in finding

meaningful trends that characterize well the typical elements taken from the input

space X . These characteristics can be further taken as input to solve supervised

problems. A wide variety of methods are available to address unsupervised problems,

among which three are informaly presented in this paragraph.

“Principal component-type methods” seek direction of large dispersion in a given

dataset. These directions are those that explain observed variability in this dataset.
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While typical datasets encountered in biology can be of very dimension, it happens

that a few factors can explain most of the variations between data points. This

results in a compact representation of the underlying dataset which can be used for

prediction purpose or to understand typical trends in the data. This is illustrated in

the context of drug target interactions and side effects in chapters 3 and 4.

“Clustering-type” methods seek to partition the input dataset into a few cate-

gories. The objective is to output meaningful clusters, data points from the same

cluster being very similar and data points from different clusters sharing much less

similarity. A specific model based clustering method is presented in the context of

cell population phenotyping in chapter 4.

“Density estimation” is the task of defining to which extent typical data points

look like, and to differentiate them from data points which are far from them. Methods

for solving these problems can be used in the context of outlier detection. In this case

one is interested in finding data points that are different from most of the other points,

without a predefined criterion to describe these differences. In chapter 4, the model

developed for cell population phenotyping is used for such purpose in the context of

the study of cell populations.

By nature, unsupervised methods seek to shed light on underlying structure in a

dataset. Thus, they are well suited to tackle biological problems at complex systems

scale. Furthermore, one can put more emphasis on specific structural assumptions

by choosing one type of methods or by adapting a specific method to the context at

hand, as specific examples shown in this thesis will illustrate.

1.3 Contribution and organization of the thesis

The previous paragraph gave a brief overview of the methods that are used in this

work. Chapter 2 provides more technical details and pointers to the literature re-

lated to the specific methods used in the projects that are presented. The remaining

chapters illustrate these methods on specific biological applications. The biological

problems addressed in these chapters constitute relevant questions in drug design

(chapter 3 and 4), interpretation of high throughput imaging technologies (chapter 4)
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and systems biology (chapter 5). Each chapter introduces the biological questions it

addresses as well as related background. The specific focus of interest is put in context

and the contributions of the presented work are described. Specific methodological

details as well as experimental results are then presented.

Chapter 3 focuses on the molecular scale and more specifically on the study of

protein-ligand interactions. Protein-ligand interactions constitute the key molecular

mechanism that drives most important biological processes such as signal transduction

or catalysis of metabolic reactions. They are also of interest in the context of drug

design, the objective being to disrupt a biological process by modifying the behaviour

of one of a protein related to this process, through a molecular interaction with a

drug ligand. Sparse matrix factorization techniques are applied to reveal associations

between chemical substructures and protein domains underlying these interactions.

Examples show that this method extracts relevant information in this context. This

information is further used in a prediction context and show performances comparable

to state-of-the-art methods. An extension of these ideas using very high dimensional

linear classifiers is briefly mentioned.

Chapter 4 presents results related to phenotyping. In a first part, drug side-

effects are investigated using matrix factorization techniques similar to those used

in chapter 3. Drug-side effects are the result of the interactions of a small drug

molecule with all its potential protein targets. The resulting effect can be viewed as a

phenotype for the considered molecules. This chapter focusses on the relation between

drug chemical structure and its side-effects. Examples of modulation of side-effects

through chemical structure and links with protein interaction profiles are proposed.

Performance of the method in the context of supervised side-effect prediction are

compared to those of state-of-the-art classification methods. An extension of this work

involving the integration of both chemical and protein target interactions information

is qualitatively described.

A second part tackles the question of defining cellular phenotypes at the scale of
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cell populations based on fluorescent images. Single cell phenotyping based on flu-

orescent images is a well understood problem. The question of comparing different

populations of cells with variable cellular characteristics is less understood. A genera-

tive model is proposed to tackle this problem. Numerical experiments are carried out

based on high-content screening data recorded to study the Ewing sarcoma disease.

Properties of the proposed model are illustrated through various examples.

Chapter 5 is dedicated to the presentation of a sequential experimental design tool

for dynamical systems characterization. The related biological scale lies in between

the molecular scale considered in chapter 3 and the phenotypic scale considered in

chapter 4. Common models of molecular interactions in systems biology involve non

linear dynamical systems with unknown parameters. Estimating these parameters

from data is crucial to validate and use these models in practice. The non linearities

and the lack of data available lead to parameter non identifiabilities, many different

combinations of parameters agree with available data. The objective is to propose a

strategy that identifies these non identifiabilities and proposes experiments to miti-

gate them. The need for design strategies based on numerical criteria is motivated.

Bayesian and active learning ideas are used to define such a strategy. Numerical

approximations to implement this strategy are provided and simulation results are

presented. All the results presented in this chapter are based on numerical simulations

of the experimental design process. The motivation and materials for designing and

testing this method were provided in the context of DREAM7 Network Parameter

Inference Challenge.



Chapter 2

Methods

Résumé

Ce chapitre présente les détails algorithmiques et méthodologiques liés aux travaux

présentés dans ce manuscrit. Son contenu est disponible dans la littérature. Ces

résultats sont rappelés ici pour mémoire et afin de donner des liens vers la littérature

correspondante, sans chercher à être exhaustifs. La première section est dédiée à la

présentation de l’algorithme de factorisation parcimonieuse de matrice présenté par

[129] et qui est utilisé dans les chapitres 3 et 4. Nous donnons ensuite un aperçu des

méthodes d’apprentissage supervisé utilisées dans les mêmes chapitres, ainsi que leurs

fondements statistiques. La troisième section présente les algorithmes d’inférence ap-

prochée utilisés dans les chapitres 4 et 5 dans le contexte de la modélisation proba-

biliste et de la modélisation Bayésienne. La dernière section décrit la procédure de

validation croisée utilisée pour l’évaluation de modèles dans les chapitres 3 et 4.

Abstract

This chapter gathers methodological and algorithmic details related to the work pre-

sented in this manuscript. All the results presented here are available in the literature.

They are recalled here to give pointers to the related articles. The focus is not on

being technically exhaustive. The first section is dedicated to the presentation of the

9
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sparse matrix factorization of [129] which is used in chapters 3 et 4. A brief overview

of supervised learning methods used in the same chapters is then given, with a rapid

overview of the statistical foundations of these methods. The third section presents

approximation algorithms used for inference in chapters 4 and 5 in the context of

probabilistic and Bayesian modelling. The last section describes the cross validation

scheme used for model assessment in chapters 3 and 4.

2.1 Sparse matrix factorization

The sparse matrix factorization problem is an area of very intense research. From

an algorithmic point of view, the purpose is to approximate an input matrix by the

product of two sparse factor matrices or to find a low rank approximation of the input

matrix which factors are sparse. From a statistical point of view, this is related to the

sparse PCA problem, which is the unsupervised task of separating signal with sparse

structure from the environment noise. Various algorithms have been proposed to

tackle this problem with different statistical and algorithmic properties. This section

describes the algorithm presented in [129] which has low theoretical guaranties but is

applicable to large scale problems. This algorithmic choice is briefly compared to other

possible choices, and applications in unsupervised data analysis are described. They

correspond to the methods used in further chapters. Finally, a validation procedure

based on reconstruction ability of the unsupervised factorization is described.

2.1.1 Singular value decomposition

The method presented in [129] consists in incorporating sparsity-inducing constraints

in a known algorithmic frameworks to solve regular low rank matrix approximation.

First, the singular value decomposition is briefly described. Let Z ∈ Mn×p(R) be a

real matrix with n rows and p columns of rank K ≤ min(n, p). The singular value

decomposition of Z is the unique triplet of matrix (U,D, V ) satisfying

Z = UDV T , UTU = In, V
TV = Ip, d1 ≥ d2 ≥ . . . ≥ dK > 0
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where U is an unitary matrix of size n × n, V an unitary matrix of size p × p a

rectangular matrix of size n × p which entries are null except for the K diagonal

elements given by d1, d2, . . . , dK . Columns of U are eigenvectors of ZZT , columns of

V are eigenvectors of ZTZ. Let uk be the columns of U , vk the columns V and dk

the k-th element of the diagonal of D. It is a well known result [30] that

r∑

k=1

dkukv
T
k = argminẐ∈M(r)||Z − Ẑ||F

where M(r) is the set of matrices of dimension n × p with rank r and || · ||F is the

Froebenius norm. The singular value decomposition allows to find the matrix of

rank r which is the best approximation to Z in the sense of the Froebenius norm.

Interestingly, this is a non convex problem which solution is analytically expressible

as an eigenvalue problem. Moreover, it is easy to see that:

(u1, v1) = argmaxu,vu
TZv ||u||2 = ||v||2 = 1. (2.1)

A widely used iterative scheme to compute solutions of the previous problem is to

initialize v(0), such that ||v(0)||2 = 1 and to repeat until convergence :

• u← argmaxu u
TZv ||u||2 ≤ 1

• v ← argmaxv u
TZv ||v||2 ≤ 1

which reduces to the well known power method,

• v(i+1) = (ZTZ)v(i)

||(ZTZ)v(i)||2

• u(i+1) = (ZZT )v(i)

||(ZZT )u(i)||2

which converges to the largest singular value of Z under the condition that it is higher

than all the others and that v(0) is not orthogonal to the singular vector associated

to this singular value. This scheme allows to compute the leading singular vector,

which, together with a deflation procedure, allows to compute the full decomposition.

1. Z(1) ← Z .
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2. for k ∈ {1, . . . , K}

• find uk, vk et dk using the power method with Z(k)

• Z(k+1) ← Z(k) − dkukv
T
k

2.1.2 Sparse matrix decomposition

The penalized matrix decomposition algorithm of [129] consists in adding a sparsity

constraint to problem (2.1) and uses the same alternate minimization scheme to solve

the problem. The formulation is as follows:

(u1, v1) = argmaxu,vu
TZv ||u||2 = ||v||2 = 1, ||u||1 ≤ c1, ||v||2 ≤ c2 (2.2)

where c1 and c2 are tuning parameters. The iterative scheme becomes:

• u← argmaxu u
TZv ||u||2 ≤ 1, ||u||1 ≤ c1

• v ← argmaxv u
TZv ||v||2 ≤ 1, ||v||1 ≤ c2.

The minimization steps in the sub problems is easily solvable. For example, it can be

shown that the first step has a solution of the form:

u← S(Zv, δ1)

||S(Zv, δ1)||2
(2.3)

where S is the soft thresholding operator applied to each entry of the vector. It

has the form S : (x, δ) → sign(x)(|x| − δ)+, where (.)+ denotes the positive part.

However, the amount of thresholding δ is unknown. In 2.3, it should be chosen to be

null, δ1 = 0, if the application of 2.3 results in ||u||1 ≤ c1, otherwise, δ1 is a positive

constant such that ||u||1 = c1, where the precise value of the constant is found using

line search.

As described in [129], the method does not come with any algorithmic or statistical

property. It was recently shown in [83] that the proposed alternate minimization

scheme converges to a critical point of problem (2.2). Broadly speaking, methods
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proposed to solve the sparse matrix factorization problem can be divided into two

classes.

1. Convex relaxation methods leading to a semi-definite programming formulation

of the problem, whose global minimizer can be computed, for example [26].

State-of-the-art semi-definite programming algorithms are still computationally

expensive which limit their application on large datasets.

2. On the other hand, local search iterative methods can only produce local optima

for some non convex objective. They are however much less expensive than

convex relaxation methods. They can be applied to larger datasets but cannot

guaranty that the best solution is found due to multiple critical points.

The algorithm presented here is one of the second kind. It does not guaranty global

optimality, but it is much cheaper in term of computation. The algorithm described

in [129] was empirically shown to perform well on high dimensional biological ap-

plications. This algorithmic choice allowed to perform extensive experiments and

parameter tuning on the datasets considered in chapters 3 and 4.

2.1.3 Application in data analysis

Many unsupervised data analysis methods amount to solve problem (2.1) for a given

input matrix. Canonical correlation analysis [55] and canonical correspondence analy-

sis [45] are described in this paragraph. Sparse version of these methods involving the

algorithmic scheme described in the previous paragraph are evaluated on biological

examples in chapters 3 and 4.

Canonical correlation anaylsis. This method allows to study links between two

different representations of the same objects. Let X ∈ Mn×p(R) and Y ∈ Mn×q(R)

be two representations of a set of n objects according to two vector variables of

dimension p and q respectively. Columns of X and Y are centered and scaled. The

matrix XTY is an empirical estimate of the correlation structure based on these n

individuals. The goal is to study underlying correlations between these two variables.
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To do so, we look for linear combinations of variables that are strongly correlated.

This amounts to solve

max
u,v

cor(u, v) =
uTXTY v√

uTXTXu
√
vTY TY v

which is equivalent to

max
u,v

uTXTY v uTXTXu = 1 vTY TY v = 1.

Canonical correspondence analysis. This method allows to study links between

two different sets of objects represented by different variables based on a contingency

table representing co-occurrences of the considered objects. Let X ∈ Mn×p(R) and

Y ∈ Mm×q(R) represent a first set of n objects in dimension p and a second set of

m objects in dimension q. A contingency table A ∈ Mn×m(R) represents the co-

occurrences of the two sets of objects. As for canonical correlation analysis, the goal

is to find linear combinations of variables which are strongly correlated by solving

max
u,v

cor(u, v) =
uTXTAY v√

uTXTDXXu
√
vTY TDY Y v

where DX (resp DY ) is a diagonal matrix which entries are the degree of the categor-

ical variables X (resp Y ). This is equivalent to

max
u,v

uTXTY v uTXTDXXu = 1 vTY TDY Y v = 1.

Simplification and addition of sparsity-inducing constraints. The methods

described in this paragraph amount to solve numerical problems which structures

are similar to that of (2.1). Empirical evidences suggest that in a high dimensional

context, covariance matrices can be approximated by diagonal matrices [120, 29]. This

simplification leads to the replacement of constraints of the form uTXTXu = 1 by

a simpler constraint ||u||2 = 1. Adding sparsity-inducing constraints leads to sparse

variants of canonical correlation analysis and canonical correspondence analysis which

have the exact same form as that of (2.2) and can be solved using the numerical scheme
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of [129].

The motivation behind the use of sparsity is twofold. Depending on the problem

at hand, it could be expected that principal factors should be sparse. For example, in

the case of protein ligand interactions, as illustrated in chapter 3, physics underlying

the molecular recognition mechanisms suggests that the presence or absence of a

limited number of chemical substructures is a key to explain why a given molecule

binds to a given protein. One can expect gains in performance by accounting for this

hypothesis. Moreover, the factor extracted by the penalised decomposition procedure

should be interpretable for practitioners. In high dimensional settings, this analysis

is much more challenging when the factors are dense, i.e. when they contain many

non zero elements. Enforcing sparsity allows eases the interpretation of the extracted

factors.

2.1.4 Validation in the context of supervised prediction con-

text

Both methods lead to the penalised decomposition of a matrix Z ∈ Mp×q(R) of

the form Z ≃
∑K

i=1 ρiuiv
T
i for a given number of extracted factors K. Each factor

represents directions of strong correlation in the dataset. Suppose that one is given

two new objects x ∈ Rp and y ∈ Rq. Projecting these objects on the subspace spanned

by the principal factors leads to the following score

s(x, y) =
K∑

i=1

ρix
Tuiv

T
i y

which represents the strength of the association between these new objects based on

the extracted principal factors. This score can be used to make predictions. For

example if x represents an unseen molecule and y represents a known protein, the

score s can be used as a confidence level for the association between x and y. It is

natural to validate unsupervised methods on supervised reconstruction tasks. This

point is illustrated in chapters 3 and 4.



16 CHAPTER 2. METHODS

2.2 Supervised learning

Many state-of-the-art methods for supervised problems are related to the statistical

learning theory. This section proposes an overview of the learning methods used in

this manuscript as baselines to evaluate the performance of the methods proposed

in this thesis. The principle of empirical risk minimization is described first. Kernel

function classes are then briefly described, as well as nearest neighbour methods that

are used for comparison purposed in chapters 3 and 4. The purpose is to motivate

the choice of these methods as comparison points, and to give a very fast overview of

the underlying theory. The book [51] provides detailed materials as well as pointers

to the bibliography.

2.2.1 Empirical risk minimization

Inductive supervised learning is the task of learning a functional relationship based

on examples. Informally, we suppose that there exists an input space X and an

output space Y (usually R for regression tasks or {−1, 1} for classification tasks)

and an hypothetical function f ∗ : X → Y which represents the best that anybody

could do when predicting the output from the input. This expression is understood

in the following sense. In order to model uncertainty, the relation between X and Y
is random. f ∗ is the prediction function that works the best on average.

In practice, one is given a training set of examples of size n, (xi, yi) ∈ X × Y ,
i = 1 . . . n, a function class F of functions X → Y and a loss function L : Y ×Y → R.

Many learning algorithms consist in solving

f̂ = argminf∈F

1

n

n∑

i=1

L(f(xi), yi) (2.4)

which is minimizing the risk evaluated on a finite sample. The theoretical properties

of this procedure is the object of study of statistical learning theory. For example,

using tools from empirical process theory, under restrictions on the function class

F , the empirical risk minimization procedure is shown to be consistent. This means

that when the problem is embedded in a probabilistic structure, as more and more
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data comes in, the empirical risk minimization procedure for certain function classes

provides an estimate f̂ which is close to the best estimate one could expect f ∗. [123]

provides detailed arguments as well as pointers to the literature. Practically, the

implication of these results are the following. If there exists a hypothetical true

function, the estimated function f̂ should be close to it, provided that enough data is

available. It can then be used in a prediction context to interpolate the information

contained in a training set to unseen examples.

2.2.2 Choice of the loss function

Different function classes and different loss functions define different estimators. The

loss function depends on the problem at hand. It should reflect how a given function

fits to the training set, and allow to solve the problem (2.4) efficiently. For example,

in the case of regression, the output space Y is a continuous subset of R. In this

case, the most popular loss function is the square loss Ls : (y1, y2) → (y1 − y2)
2.

In binary classification tasks, the output space is binary, identified with {−1, 1}.
Popular loss functions in this context are the logistic loss Ll(y1, y2) = log(1 + e−y1y2)

which defines logistic regression and the hinge loss of the support vector machine,

Lh(y1, y2) = (1 − y1y2)+ where (.)+ denotes the positive part. These losses are used

in chapters 3 and 4.

2.2.3 Kernels and kernel methods

The second aspect of the definition of an estimator in the framework of supervised

learning is to choose a function class. One of the simplest example is the class of

linear functions which are widely used in regression and classification. Kernels are

mathematical objects that have the same properties as an inner product. Positive

definite kernels have the appealing property that they allow to define classes of non

linear functions that are tractable in the sense that problem of the form of (2.4) can

be solved efficiently. They allow to perform learning with objects that cannot be

embedded in vector spaces, such as graphs or trees, and to generalize linear methods

to non linear settings. Moreover, they exhibit state-of-the-art performances on many
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real world problems. Support vector machines involving kernel for molecules and

kernel regression are used in chapters 3 and 4. Many more details about positive

definite kernels and practical examples are found in [104]. The reproducing Hilbert

space theory describes how positive definite kernels define function classes. A detailed

exposition is found in [8].

2.2.4 Nearest neighbours

Given the training set (xi, yi) ∈ X × Y , when a distance is available on X , the

k-nearest neighbours methods consists in choosing as an estimate the function

f̂ : x ∈ X → 1

k

∑

xi∈Nk(x)

yi

where xi ∈ Nk(x) when xi is one of the k nearest neighbours of x, and k is a tuning

parameter. This constitutes a baseline method that is used in chapters 3 and 4 for

performance assessment.

2.3 Inference and learning in probabilistic models

This section presents algorithmic details related to the methods that are proposed in

chapters 4 and 5. Broadly speaking, inference is the task of computing expectations

and learning is the task of computing local optima under some probabilistic distribu-

tion. Despite the simplicity of the formulation, this turns out to be often intractable

on real world problems. Numerical approximations are required in many practical

cases. A first paragraph briefly presents the Expectation Maximization algorithm

which is used in chapter 4 and the second paragraph present Monte Carlo Sampling

Methods used in chapter 5. The presentations is brief and informal. The book [77]

provides details about probabilistic graphical models and inference methods and the

article [5] is a good introduction to sampling algorithm for probabilistic modelling.
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2.3.1 EM algorithm

This is a maximum likelihood procedure that allows to perform learning in generative

probabilistic models with partially observed data [27]. A generative model is the

definition of a generative stochastic process from which a dataset D is supposed to be

an independent identically distributed sample. In this paragraph, models with hidden

random variables are considered, denoted by Z. If θ ∈ Θ is a parameter belonging to

some space, a generative process defines a density function:

P (D, Z|θ).

This density function assigns a likelihood to the complete data (observed and non ob-

served) given the parameter. This is referred to as complete likelihood. Model fitting

consists in finding the parameter value θ∗ that maximizes the marginal likelihood:

P (D|θ) =
∑

Z

P (D, Z|θ).

The fact that some variables are not observed leads to intractable likelihood functions

in the sense that their evaluation are computationally very expensive. Indeed, the

size of the space in which the variable Z is embedded often grows exponentially with

the size of the dataset D. This is the case in clustering applications for example. The

EM algorithm is a local search method that is based on the following two steps

• Expectation step: Compute a tractable lower bound on the likelihood func-

tion. This is done by computing the expectation of the complete log likelihood

given the current parameters, integrating out the hidden variable Z.

• Maximization step: Find the parameters that maximize the expression com-

puted in the previous step.

Alternating these two steps allows to find a local maximum of the log likelihood func-

tion. This algorithm is used in chapter 4 for fitting the probabilistic model designed

for cell population phenotyping. This algorithm is one of the most simple instances of

variational inference methods which are widely used in probabilistic modelling [66].
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2.3.2 Markov Chain Monte Carlo and importance sampling

The Bayesian approach considers that the parameters of a model are random quanti-

ties. If one is given a likelihood function P (D|θ) where D is a dataset and θ is a vector

of parameters. In the Bayesian framework, one defines a prior distribution over the

parameter space π0(θ) and explores the posterior density which takes the form:

π1(θ|D) ∝ P (D|θ)π0(θ).

Inference under this density is often intractable analytically or even numerically. Sam-

pling methods are designed to sample from a probability distribution which can only

be evaluated up to a constant multiplicative factor, which is precisely the case here.

The main application is to approximate expectations of given functions based on this

sample. Suppose that we are exploring a space X endowed with a probability measure

P. Let {xi}ni=1 ∈ X n be an independent identically distributed sample from P. Given

a function f : X → R, one can approximate the expectation of f under P by:

∫

X

f(x)dP(x) ≃ 1

n

n∑

i=1

f(xi).

The convergence of the approximation to the true numerical value is guaranteed by

the strong law of large numbers. Now, suppose that one wishes to compute the

expectation of f under another probability distribution Q, one can use the same

sample to approximate this value numerically.

∫

X

f(x)dQ(x) ≃ 1∑n

i=1 wi(x)

n∑

i=1

f(xi)wi(x).

Where wi(x) =
dP(x)
dQ(x)

. This estimate is biased but also converges to the true value as

the sample size grows. It is referred to as the importance sampling method. These

two methods are used in chapter 5 in the context of Bayesian inference and risk

estimation.
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In order for those methods to work, one needs to be able to sample from a prob-

ability distribution P. In chapter 5, we use a Markov Chain which elements can be

proven to be asymptotically distributed according to the distribution of interest. The

main sampling algorithm used is Metropolis Hasting which is the most famous Markov

Chain Monte Carlo sampling algorithm [11]. It consists in exploring the parameter

space based on a random walk guided by the distribution of interest, rejecting or

accepting random moves depending on this distribution. [5] is a good introduction

to sampling numerical approximation methods.

2.4 Empirical model evaluation and cross valida-

tion

Many aspects of this thesis relate to the evaluation of machine learning methods in

a biological context. By evaluation, we mean how well a method produces correct

predictions on an unseen dataset after being trained on a training set of known ex-

amples. The first method to empirically assess performance of a statistical procedure

is to test it on a synthetic dataset. This approach is used in chapter 5. Empirical

evaluation on real data would require to train a method on a training set, to acquire

a new dataset of the same kind and evaluate how well the method generalizes on this

new dataset. Cross validation mimics this process. V -fold cross validation consists

in partitioning a dataset in V parts of roughly equal size, train a method on V − 1

subsets and test it on the held out set. Repeating this procedure multiple times gives

an idea of the generalization performance of the method and provides clues about the

robustness of these performances. Chapter 7 in [51] provides more details about this

procedure. A historical and technical survey is available in [7].



Chapter 3

Protein-ligand interactions

Résumé

L’identification de règles sous-jacentes à la reconnaissance entre les sous structures

chimiques d’un ligand et le site fonctionnel d’une protéine constitue un problème im-

portant pour la compréhension des mécanismes conduisant à des effets phénotypiques

à plus grande échelle. Ce chapitre se concentre sur l’identification de telles règles.

Nous décrivons une méthode nouvelle pour extraire des ensembles de sous structures

chimiques et de domaines protéiques qui sous tendent les interactions protéine ligand

à l’échelle du génome. La méthode est basée sur l’analyse canonique des correspon-

dances parcimonieuse (SCCA) pour l’analyse conjointe de profils de sous structures

moléculaires et de domaines protéiques. Une approche par classification L1 pénalisée

pour extraire des associations prédictives entre sous-structures et domaines protéiques

est également décrite, et comparée à l’approche SCCA.

Les résultats expérimentaux sont basés sur un jeu de données d’interactions protéine-

ligand contenant des enzymes, des canaux ioniques, des récepteurs couplés aux protéines

G et des récepteurs nucléaires. La méthode SCCA extrait des ensembles de sous

structures partagées par des ligands qui peuvent se fixer à un ensemble de do-

maines protéiques. Ces deux ensembles de sous-structures chimiques et de domaines

protéiques forment des composantes qui peuvent être exploitées dans un cadre de

découverte de médicaments. Cette approche regroupe des domaines protéiques qui

22
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ne sont pas nécessairement liés d’un point de vue évolutif, mais qui partagent des lig-

ands présentant des structures chimiques similaires. Plusieurs exemples montrent que

cette information peut être utile dans un cadre de prédiction d’interaction protéine-

ligand ainsi que pour aborder le problème de la spécificité d’un ligand. Nous décrivons

une comparaison numérique entre les deux méthodes proposées, SCCA et classifica-

tion L1 pénalisée, ainsi que des méthodes à l’état de l’art, sur la base du problème

de prédiction d’interactions protéine-ligand. Ce chapitre se base principalement sur

l’article [137] et une partie des résultats présentés dans [118].

Abstract

The identification of rules governing molecular recognition between ligand chemical

substructures and protein functional sites is a challenging issue for the understanding

of molecular mechanisms driving larger scale phenotypic effects. This chapter focuses

on the identification of such rules. We describe novel methods to extract sets of

chemical substructures and protein domains that govern molecule-target interactions

on a genome-wide scale. The method is based on sparse canonical correspondence

analysis (SCCA) for analyzing molecular substructure profiles and protein domain

profiles simultaneously. An L1 penalized classification approach that extracts pre-

dictive associations between substructure and protein domains is also described, and

compared to the SCCA approach.

Experimental results are based on a dataset of known protein-ligand interactions

including enzymes, ion channels, G protein-coupled receptors and nuclear receptors.

SCCA extracts a set of chemical substructures shared by ligands able to bind to a set

of protein domains. These two sets of extracted chemical substructures and protein

domains form components that can be further exploited in a drug discovery process.

This approach successfully clusters protein domains that may be evolutionary unre-

lated, but that bind a common set of chemical substructures. As shown on several

examples, it can also be very helpful for predicting new protein-ligand interactions

and addressing the problem of ligand specificity. We describe a numerical comparison

between the two proposed methods, SCCA and L1 penalized supervised classification,
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and state-of-the-art approaches based on supervised protein ligand interaction pre-

diction task. The chapter is mostly based on [137] and results from [118].

3.1 Introduction

3.1.1 Protein-ligand interactions

A ligand is a small chemical compounds which interferes with the biological behaviour

of its target proteins by direct physical interaction with it. These processes lead

to phenotypic effects observed at larger scale (cellular or even macroscopic scale).

For example, when a xenobiotic molecule binds to a protein, it perturbs the whole

interaction network of this protein, affecting many underlying biological processes.

In other words, the effect of a small molecule inside a living organism is the result of

the disturbance of all the biological processes which involve a protein to which the

molecule binds. It is therefore required to adopt a global point of view and consider

all potential targets at the same time when studying these phenomena .

Conventional approaches, such as QSAR and docking can handle only a single

protein at a time, and therefore, do not allow to adopt such a global point of view

and treat a large set of potential target proteins at a genomic scale. The results dis-

cussed in this chapter constitute a methodological contribution toward the adoption

of system approaches in the context of protein-ligand interaction predictions. A wide

scale of proteins and chemical compounds are considered and jointly analysed. The

main application of the approach is the design and optimization of drugs.

3.1.2 Existing approaches and motivations

A commonly used computational approach to analyze and predict ligand-protein in-

teractions is docking. Docking approaches consist in finding the preferred orientation

of a molecule binding to a protein by modelling the underlying physical energies (see

[76] for recent review). Therefore, docking cannot be applied to proteins with un-

known 3D structures. Moreover, docking protocols need to be tuned for each protein

target, which prevents its use on a large number of proteins at the same time. This
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limitation is critical in the case of membrane proteins such as G protein-coupled re-

ceptors (GPCRs) which are signal transduction pathway activators, or ion channels

which shape electrical signals. Indeed, these membrane proteins are difficult to ex-

press, purify and crystallise. Although being both major therapeutic targets, their

3D structure is known to be particularly difficult to determine.

In this context, the importance of chemogenomic approach has grown fast in

recent years [67, 117, 28], and a variety of statistical methods based on chemical and

genomic information have been proposed to predict drug-target or more generally,

ligand-protein interactions. These methods assume that similar proteins bind similar

ligands. This assumption is often verified in practical cases and allows to predict

protein-ligand interactions for new chemical compounds and new proteins. These

methods differ by the underlying description used for proteins and ligands, and by

how similarities between these objects are measured. Examples are statistic-based

methods that compare target proteins by the similarity of the ligands that bind to

them, which can then be used to predict new protein-ligand interactions [46, 70].

Other approaches are the binary classification approaches such as support vector

machine with pairwise kernels for compound-protein pairs [86, 33, 59] which we use

as a state-of-the-art comparison point in this chapter, and the supervised bipartite

graph inference with distance learning based on chemical and genomic similarities

[134, 133].

Ligand-protein interactions are often due to the presence of common chemical

structures (the pharmacophore) that are usually shared by the ligands of a given

protein, whereas this is not expected for random compounds that do not bind to the

same protein. Recently, a variety of analyses have been conducted, such as analysis

of chemical substructures and biological activity [75], data mining of chemical struc-

tural fingerprints and high-throughput screening data in PubChem [50], or extraction

of chemical modification patterns in drug development [108]. Ligand-protein inter-

actions are also due to functional sites of proteins (e.g., binding pockets, domains,

motifs). Recently, the comparison of binding pockets has been done to investigate

the relationship with their ligands [85, 87, 53]. However, these methods require the

availability of the 3D structure of proteins. To date, most of the research has been
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performed separately from the viewpoints of either ligands or proteins. Yet, the rel-

evant question is how to relate ligand chemical substructures with protein functional

sites in terms of ligand-protein interactions. There is therefore a strong incentive to

conduct an integrative analysis of both ligand substructures and protein functional

sites toward understanding of ligand-protein interactions. In this domain, a challeng-

ing issue is to develop methods that identify rules for molecular recognition between

ligand chemical substructures and protein functional sites. The proposed methods

tackle this problem based on co-occurrences of protein domains and molecular sub-

structures in interacting and non-interacting protein-molecule pairs.

3.1.3 Content of the chapter

In this chapter, we describe two novel methods to extract sets of drug chemical sub-

structures and protein domains that govern drug-target interactions. The first one

is based on canonical correspondence analysis (CCA) for analyzing drug substruc-

ture profiles and protein domain profiles simultaneously. We develop an extension of

the CCA algorithm by incorporating sparsity for easier interpretation, which we call

sparse canonical correspondence analysis (SCCA). Figure 3.1 shows an illustration of

the proposed method. The main interest and originality of the proposed method is

that it correlates protein domains to chemical substructures expected to be present in

their ligands, based on a learning dataset. From a system point of view, one strength

of the method is that it allows to analyse jointly the interactions of many proteins

and many molecules. This allows to point out interaction patterns that would not

have been foreseen by looking at each interaction separately. Examples illustrate

the fact that the method identifies pharmacophores automatically, thus providing

structural insights about the mechanisms that govern molecular recognition. These

pharcophores are shared by common ligands of a protein. Beyond the protein-ligand

interaction problem, the examples we provide illustrate the benefits of system based

approach when mining large interaction networks involving many chemical species.

This work is based on the article [137].

An extension of this work leads to another method to tackle the same problem. It
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uses an explicit representation of the tensor product space of possible pairs of molec-

ular substructure and protein domain together with L1-regularized linear support

vector machine. This method is referred to as L1-PLSVM and also extracts pairs of

protein domains and chemical substructures that explain protein target interactions.

This constitutes a sub-part of the results presented in [118]. Most of the content of

the chapter is dedicated to SCCA method, but a comparison between L1-PLSVM

and SCCA is made based on their prediction performances.

We first describe the dataset that has been used to conduct those experiments.

Then the different methods are presented as well as a description of the numerical

experiments that allow to compare different methods from a supervised learning point

of view. We compare to the reconstruction performances of a baseline and a state-of-

the-art method designed for similar tasks. Biological examples illustrate the ability of

the SCCA method to point out meaningful insights when treated as an unsupervised

method. Numerical results highlight the different scenarios for which SCCA or L1-

PLSVM provide the best of their performances.

3.2 Materials

Drug-target interactions were obtained from the DrugBank database which combines

detailed data about drugs and drug candidates with comprehensive drug-target in-

formation [128]. The version of DrugBank is 2.5. Proteins belong to many different

classes, among others, pharmaceutically useful ones such as enzymes, ion channels, G

protein-coupled receptors (GPCRs) or nuclear receptors. In this study, we focused on

human proteins, which drove us to select all interactions involving human proteins.

This led to build a protein-drug dataset containing 4809 interactions involving 1554

proteins and 1862 drugs. The set of interactions is used as gold standard data.

To encode the chemical structures of drugs involved in these interactions, we used

a fingerprint corresponding to the 881 chemical substructures defined in the PubChem

database [22]. Each drug was represented by an 881 dimensional binary vector whose

elements encode for the presence or absence of each PubChem substructure by 1 or 0,

respectively. Most of the drugs documented in DrugBank have a link to PubChem,
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Figure 3.1: An illustration of the proposed method.

but some do not, mainly biotech drugs and mixtures. Interactions involving drugs

that have a record in PubChem were kept. Among the 881 substructures used to

represent the chemical structures, 663 are actually used, because 218 do not appear

in our drug set.

For all proteins, genomic information and annotation were obtained from the

UniProt database [6], and associated protein domains were obtained from the PFAM

database [35]. PFAM database gathers a large number of protein functional domains.

They are regions of the amino acid sequence that are associated with a specific molec-

ular function (e.g. recognising site of an enzyme that catalyses a chemical reaction).

A protein might have several domains related to several functions which allow to

recognize several molecules. These domains implicitly represent proteins by their
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functions. In the set of proteins we took into account, 876 PFAM domains are found.

Therefore, each protein was represented by a 876 dimensional binary vector whose

elements encode for the presence or absence of each of the retained PFAM domain

by 1 or 0, respectively.

3.3 Methods

We want to extract drug chemical substructures and protein domains which tend to

jointly appear in the interacting pairs of drugs and target proteins, and to disappear

in the other pairs. This section recalls methods mentioned in chapter 2 and describe

how they are adapted in the context of drug target interaction prediction.

3.3.1 Sparse canonical correspondence analysis (SCCA)

Suppose that we have a set of nx drugs with p substructure features, a set of ny target

proteins with q domain features, and information about interactions between the drug

set and the target protein set. Note that nx 6= ny. Each drug is represented by a

p-dimensional feature vector x = (x1, · · · , xp)
T , and each target protein is represented

by a q-dimensional feature vector y = (y1, · · · , yq)T .
Consider two linear combinations for drugs substructure and proteins domains as

ui = αTxi (i = 1, 2, · · · , nx) and vj = βTyj (j = 1, 2, · · · , ny), respectively, where

α = (α1, · · · , αp)
T and β = (β1, · · · , βq)

T are weight vectors. Define the nx × ny

adjacency matrix A, where element (A)ij is equal to 1 (resp. 0) if drug xi and

protein yj are interact (resp. do not interact). Let X be the nx× p matrix defined as

X = [x1, · · · ,xnx
]T , and let Y denote the ny×q matrix defined as Y =

[
y1, · · · ,yny

]T
,

where the columns ofX and Y are assumed to be centered and scaled. As described in

chapter 2, SCCA consists in finding weight vectors α and β which solve the following

L1 constrained optimization problem:

max{αTXTAY β} subject to

||α||22 ≤ 1, ||β||22 ≤ 1, ||α||1 ≤ c1
√
p, ||β||1 ≤ c2

√
q, (3.1)
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where || · ||1 is L1 norm (the sum of absolute values of vector entries), c1 and c2 are

parameters to control the sparsity and restricted to ranges 0 < c1 ≤ 1 and 0 < c2 ≤ 1,

where c1 = c2 = 1 defines the original CCA (OCCA) without sparsity constraint and

amounts to compute an SVD (see chapter 2).

Problem (3.1) can be regarded as the problem of penalized matrix decomposition

of the matrix Z = XTAY . As mentioned in chapter 2, we can use the penalized

matrix decomposition (PMD) proposed by [129]. After m iterations of the algorithm,

we obtain m pairs of weight vectors α1, · · · ,αm and β1, · · · ,βm which are referred

to as components. Components of lower k are called “lower order components”,

while components of higher k are called “higher order components”. High scoring

substructures and domains in the weight vectors are considered important in terms

of drug-target interactions.

The originality of the SCCA method lies in the development of a sparse version

of canonical correspondence analysis to handle the heterogeneous objects and their

co-occurence information. It is therefore impossible to directly apply the canonical

correlation analysis or its sparse version [93, 124, 129] in the question addressed here.

3.3.2 Evaluation of extracted components by reconstruction

of drug-target interactions

If the extracted components are biologically meaningful, their use to reconstruct

known drug-target interactions should lead to good prediction accuracies. Given

a pair of compound x and protein y, their potential interaction can be estimated

based on the chemical substructures present in x, the protein domains present in y,

their presence in common extracted components, and their distribution over all the

canonical components. We use the following prediction score described in chapter 2.

For any given pair of compound x and protein y:

s(x,y) =
m∑

k=1

ukρkvk =
m∑

k=1

xTαkρkβ
T
k y, (3.2)
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where m is the number of canonical components and ρk is the k-th singular value. If

s(x,y) is higher than a threshold, compound x and protein y are predicted to interact

with each other.

We perform the following 5-fold cross-validation to evaluate the reconstruction

ability. 1) We split drugs and target proteins in the gold standard set into five

subsets of roughly equal sizes, and take each subset in turn as a test set. 2) We

perform the training of CCA model on the remaining four sets (i.e. we extracted

canonical components based on the remaining four sets). 3) We compute the above

prediction score for the test set, based on the components extracted from the training

set. 4) Finally, we evaluate the prediction accuracy over the five folds.

3.3.3 Supervised methods to reconstruct drug-target inter-

actions

Pairewise Support Vector Machine has shown state-of-the-art performances on such

supervised tasks. The L1-penalized linear SVM is an instance of this specific approach

which associates pairs of features that have a highly predictive power. Nearest neigh-

bour is used as a baseline. For all methods, we used the same representations for

proteins and ligands, i.e. the feature vectors described in the Materials section 3.2.

Pairwise support vector machine (P-SVM and L1-PLSVM)

The SVM is a well-known binary classifier, and it is becoming a popular classifica-

tion method in bioinformatics and chemoinformatics because of its high-performance

prediction ability [105]. The use of SVM with pairwise kernels have been proposed

to predict new compound-protein interactions [86, 33, 59], which is referred to as

pairwise SVM (P-SVM). The pairwise SVM approach reduces the task of predicting

interactions to a binary classification task. We consider a training set of drug target

pairs (xi,yi, ii)i=1...n where xi is a drug, yi is a protein represented by their p and

q dimensional feature vectors respectively and ii is a class variable corresponding to

the interaction of drug xi and protein yi. Given Kd and Kp, positive definite kernels
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for drugs and proteins respectively, the function:

K((x1,y1), (x2,y2)) = Kd(x1,x2)Kp(y1,y2)

is a positive definite kernel on pairs of drug protein pairs. Standard supervise learning

methods can be applied to discriminate between interacting and non interacting pairs.

Applying an SVM to this problem using such a pairwise kernel defines the pairwise

SVM. We tested several kernel functions such as linear kernel, Gaussian RBF kernel

with various width parameters, polynomial kernel with various degree parameters

for drug substructure profiles and protein domain profiles, and the regularization

parameter. Those parameters are chosen by cross validation and the corresponding

best choices are reported in the result section.

When considering linear kernels, i.e. standard scalar product, the proposed kernel

between pairs implicitly corresponds to the scalar product between tensor product

representations of the protein target pairs. Indeed, in this case:

K((x1,y1), (x2,y2)) = xT
1 x2y

T
2 y1 = Tr((x1y

T
1 )

Tx2y
T
2 )

where Tr denotes the trace operator for matrices. In this case K is the scalar product

between the matrices x1y
T
1 and x2y

T
2 which represent both pairs of protein targets.

They are binary matrices which represent the presence or absence of all possible

(substructure, domain) pairs. This representation is very high dimensional (663×876)
but also very sparse. Solving a linear SVM with such a representation amounts to

find a weight matrix w of the same size that minimizes the empirical loss LSVM (see

chapter 2 for details). By adding an L1 sparsity inducing term, we enforce sparsity

of the corresponding weights. This is referred to as the L1-PLSVM which explicitly

compute the tensor product representation behind the pairwise SVM and solves an

L1 penalized empirical risk minimization problem. As mentioned, the problem is

very high dimensional and very sparse. Specific libraries have been designed to take

advantage of such a structure [57] which allows to estimate a sparse matrix w using

this method in a reasonable time. The resulting estimate represents all possible all

possible (substructure, domain) pairs. Because we enforce sparsity, only a few of
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these entries are non zero. Thus this extension of the pairwise SVM allows to extract

association between chemical substructures and protein domains. However, these

pairs are not structured in canonical components as in the SCCA case.

Nearest neighbour (NN)

The classical nearest neighbour (NN) method is often used in molecular screening.

The proteins potentially interacting with a newly given compound x are determined

as those that interact with the most similar compound in the training set. Given a

new compound x, we find x′, its nearest neighbour in the training data according

to the fingerprint profile similarity and predict the proteins interacting with x′ to

interact with x with a score reflecting the similarity between x and x′. Likewise,

potential ligands for a newly given protein y are determined as those that bind to

the most similar protein in the training set. Given a new protein y, we find y′, its

nearest neighbour in the training data according to the domain profile similarity and

predict the molecules interacting with y′ to interact with y with a score reflecting the

similarity between y and y′. The cosine correlation coefficient is used as a similarity

measure for both compounds and proteins.

3.4 Results

3.4.1 Performance evaluation for the SCCA method

In general, it is difficult to evaluate the performance of an unsupervised feature ex-

traction method in a direct manner. However, if the extracted sets of chemical sub-

structures and proteins domains (the components) are biologically meaningful and

capture relevant information with respect to protein-ligand interactions, one would

expect that they present good generalization properties. This can be evaluated by

testing the ability of the method to reconstruct known drug-target interactions, using

the prediction score and the five fold cross-validation scheme described in section 3.3.

We evaluated the performance of the method by the ROC (receiver operating

characteristic) curve [48], which is the plot of true positives as a function of false
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Table 3.1: Performance evaluation on drug-target interactions reconstruction by 5-
fold cross-validation.

NN P-SVM L1-PLSVM OCCA SCCA

AUC 0.5892 0.7504 0.7061 0.7377 0.7497
S.D. 0.0042 0.0064 0.0015 0.0046 0.0057

positives based on various thresholds, where true positives are correctly predicted

interactions and false positives are predicted interactions that are not present in the

gold standard interactions. We summarized the performance by an AUC (area under

the ROC curve) score, which is 1 for a perfect inference and 0.5 for a random inference.

We repeated the cross-validation experiment five times, and computed the average of

the AUC scores over the five cross-validation folds, varying the three parameters of

the method. The best results were obtained with c1 = 0.1, c2 = 0.2 for the sparsity

parameters, and with m = 50 for the number of components in the case of SCCA.

The same experiments were repeated for OCCA which has only one parameter, and

the best results were obtained for m = 50.

The AUC scores for SCCA and OCCA are 0.7497 and 0.7377, respectively. These

statistics are summarized in table 3.1. This result shows that both methods perform

much better than a random inference, whose AUC score is equal to 0.5. Consequently,

this indicates that the proposed prediction score allows to enlighten the good gen-

eralization properties of extracted SCCA or OCCA components. Their performance

comparison with other methods will be discussed in a later subsection.

Next, we applied SCCA and OCCA on the complete gold standard dataset de-

scribed in the Materials section, and analyzed the extracted components of drug

chemical substructures and protein domains. We used the parameters leading to the

best results in the cross-validation experiment.

We examined the resulting weight vectors for drug chemical substructures and

protein domains in applying OCCA and SCCA. Figure 3.2 shows the index-plot of

weight vectors in applying OCCA, while figure 4.3 shows the index-plot of weight

vectors in applying SCCA, where the first six canonical components are shown in
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Figure 3.2: Index-plot of weight vectors for drug substructures and protein domains
for OCCA. Horizontal axes indicate the index of chemical substructures (upper) or
protein domains (bottom), and vertical axes indicate the weight values on the chemical
substructures (upper) or protein domains (bottom).

both cases. It seems that almost all elements in the weight vectors in OCCA are non-

zero and highly variable, while most of the elements in the weight vectors in SCCA

are zero in each component, implying that SCCA can select a very small number of

features as informative drug substructures and protein domains.

These results suggest that, although the performance in reconstruction of drug-

target interactions of SCCA and OCCA were close, the proposed SCCA provides us

with more selective drug substructures and protein domains, without missing impor-

tant information encoding protein-ligand interaction. In practice, we found that it is

very difficult to analyze the extracted components when there are too many high or

low scoring weight elements like in OCCA. On the contrary, the advantage of SCCA

over OCCA is that it is possible to derive biological interpretations, as shown on a

few examples in the next subsection.
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Figure 3.3: Index-plot of weight vectors for drug substructures and protein domains
for SCCA. Horizontal axes indicate the index of chemical substructures (upper) or
protein domains (bottom), and vertical axes indicate the weight values on the chemical
substructures (upper) or protein domains (bottom).

3.4.2 Comparison with other supervised methods

If the proposed method captures important features that govern protein-ligand inter-

actions, and if the proposed prediction score is relevant, the performance should be

at least as good as those of other methods for predicting protein-ligand interactions,

using the same vector descriptions for proteins and ligands.

We performed the same five-fold cross validation experiments for the three other

considered prediction methods NN, P-SVM and L1-PLSVM on the same protein-

ligand dataset, as we did for SCCA and OCCA. The best performance was obtained

using the polynomial kernel with degree parameter d = 3 and the regularization

parameter C = 1 in the case of P-SVM .

Table 3.1 shows that SCCA, OCCA and L1-PLSVM outperform the baseline,

i.e. the NN. Furthermore, the performance of SCCA is similar to that of P-SVM



3.4. RESULTS 37

NN P−SVM OCCA SCCA

Execution time

S
e

c
o

n
d

 (
lo

g
1

0
 s

c
a

le
)

0
1

2
3

4
5

Figure 3.4: Execution time for different methods on a log scale. The pairwise SVM
is the most computationally intensive method by at least one order of magnitude.

used as the state-of-the-art prediction method. Performances of L1-PLSVM are a bit

lower but still much better than NN. These results show that the extracted canonical

components contain valuable biological information and underline the interest of the

proposed method as a tool for analyzing protein-ligand interactions. In addition, it

should be pointed out that P-SVM and NN do not provide any biological interpre-

tation since they only predict interactions, and they do not extract any information

about important molecular features for these interactions.

We also investigated the computational cost for each method. Figure 3.4 shows

the total execution time of the cross-validation experiment between the four different

methods. NN is the fastest, followed by OCCA, SCCA, and P-SVM. As expected, P-

SVM is much slower than the other methods, because the complexity of the “learning”

phase scales with the square of the “number of training compounds times the number

of training proteins”, leading to prohibitive computational difficulties for large-scale

problems. These results suggest that SCCA constitutes a good trade-off between

prediction accuracy, biological interpretation, and computational efficiency.
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3.4.3 Biological interpretation of extracted drug substruc-

tures and protein domains using SCCA

The SCCA method provides 50 canonical components. The output of the method

is a list of canonical components (CCs), each of which contains correlated chemical

substructures and protein domains, and a list of proteins and drugs that contributed

to extract the chemical substructures and protein domains. All components present a

limited number of high scoring chemical substructures and protein domains, which is

a consequence of the sparsity of the method. It extracts domains and substructures

that summarize the most relevant and consistent information. This allows meaningful

analysis of the data for biological interpretation. Table 3.2 shows some examples

of extracted chemical substructures (SMILE-like format in PubChem) and protein

domains (PFAM IDs) in the first four CCs (CC1, CC2, CC3 and CC4).

We examined the extracted drug substructures and protein domains from bio-

logical viewpoints. The results for a few canonical components will be discussed.

Analysis of the results shows that the components contain a limited number high

scoring protein domains that usually belong to one, or a small number of protein

families. For example, most high scoring protein domains of component CC1 be-

long to nuclear receptors (PF02159: Oestrogen receptor, PF02155: Glucocorticoid

receptor, PF00104: Ligand-binding domain of nuclear hormone receptor, PF02161:

Progesterone receptor, PF02166: Androgen receptor, PF00105 zinc finger c4 type).

Consistent with this observation, the high scoring substructures are typical fragments

found in steroids, and the high scoring drugs are steroid-like molecules. The domains

from nuclear receptors also appear with high scores in a few other components such

as CC4 or CC12. However, these components do not share any of their high scoring

chemical substructures, which shows that they are not redundant. We observed that

the absence of redundancy between components is a general feature of the method.

Unexpectedly, the annexin domain PF00191 is also present in the top ranked do-

mains of CC1. Annexins are membrane associated proteins that bind phospholipids,

inhibit the activity of phospholipase A2, and play a role in the inflammatory response.

Annexins and nuclear receptors are evolutionary unrelated proteins with no sequence
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Table 3.2: Examples of results for canonical components 1, 2, 3 and 4: high scoring
domains, substructures, proteins and drugs

Domain PF02159 (Oestrogen receptor); PF02155 (Glucocorticoid receptor);
PF00191 (Annexin); . . .

Structure CC1CC(O)CC1; CC1C(O)CCC1; saturated or aromatic carbon-only ring size 9;
CC1C(C)CCC1; . . .

Protein ESR1 HUMAN (Estrogen receptor);
GCR HUMAN (Glucocorticoid receptor); . . .

Drug DB00443 (Betamethasone); DB00823 (Ethynodiol Diacetate);
DB00663 (Flumethasone Pivalate)); . . .

Domain PF00194 (Carbonic anhydrase); PF08403;
PF02254; PF03493 (potassium channel);. . .

Structure SC1CC(S)CCC1; Sc1cc(S)ccc1; Sc1c(Cl)cccc1;
SC1C(Cl)CCCC1; N-S-C:C; N-S; . . .

Protein KCMA1 HUMAN (Calcium-activated potassium channel);
CAH12 HUMAN (Carbonic anhydrase 12); . . .

Drug DB00562 (benzthiazide); DB00232 (Methyclothiazide);
DB01324 (Polythiazide); . . .

Domain PPF00001 (transmembrane receptor);
PF03491 (Serotonin neurotransmitter transporter); . . .

Structure C( H)(:C)(:C); C:C-C-C; C-C-C-C:C; C:C-C-C-C;
C-C:C-C-C; C-C-C:C-C; . . .

Protein TOP2A HUMAN (DNA topoisomerase);
SC6A4 HUMAN (Sodium-dependent serotonin transporter); . . .

Drug DB01654 (Thiorphan); DB00743 (gadobenic acid);
DB03788 (GC-24); . . .

Domain PF00105 (Zinc finger); PF00104; PF02159 (Oestrogen receptor);
PF00191 (Annexin); . . .

Structure C( C)( C)( C)( C); C-C(C)(C)-C-C;
unsaturated non-aromatic carbon-only ring size 6; . . .

Protein ESR1 HUMAN (Estrogen receptor);
GCR HUMAN (Glucocorticoid receptor); . . .

Drug DB00596 (halobetasol); DB01234 (Dexamethasone);
DB00620 (Triamcinolone); . . .

or function similarities. However, annexins and nuclear receptors probably present

similar ligand binding pockets in the 3D space, which could not be foreseen from com-

parison of their primary sequences, and both types of proteins can bind steroid-like

ligands. Therefore, the method associated these protein domains in CC1. Some of

these steroids ligands are common to both types of proteins. For example DB00443

and DB00663 (respectively PubChem IDs 9782 and 443980) bind to glucocorticoid
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receptor and to annexin A1. On the contrary, some steroids only bind to a nuclear

receptor and not to annexin. This observation suggests that the method might offer

a tool to tackle the important question of specificity

DBDB
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Figure 3.5: (A) Examples of high scoring substructures from components CC1 and
CC4 belonging to group A. (B) In blue, part of the molecular structure of DB00823
that can be built using high scoring substructures of components of group A. In red,
part of DB00823 that can be built using high scoring substructures of components of
group B (specific of estrogen receptor). (C) In blue, part of the molecular structure of
DB01013 that can be built using high scoring substructures of components of group
A. In red, part of DB01013 that can be built using high scoring substructures of
components of group C (specific of annexin). In the case of SUB706, only chemical
groups that cannot be built using substructures of group A are colored in red.

To illustrate this point, we will consider the example of the estrogen receptor

ESR1 HUMAN (UniProt ID: P03372, Pfam IDs PF00104, PF00105, PF02159) and of

annexin A1 ANXA1 HUMAN (UniProt ID: P04083, Pfam ID PF00191). Domains of
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these two proteins have high weights in a few common components (CC1, CC4, CC13,

CC46, called group A), while only domains of estrogen receptors have high scores in

components CC12, CC15, CC29, CC34, CC38 (called group B), and only those of

annexin have high scores in components CC19, CC20, CC21, CC26, CC40 (called

group C). We will show in the case of drug DB00823 (or PubChem ID 9270) that binds

the estrogen receptor but not annexin, and of DB01013 (or PubCHem ID 32798) that

binds to annexin but not to the estrogen receptor, how analysis of the substructures

belonging to groups A, B and C can be used to explain the specificity of these two

drugs. The parts of the chemical structure of DB00823 and DB01013 that can be

built using high scoring substructures belonging to group A (components common to

estrogen receptor and annexin) is colored in blue in figure 3.5. They correspond to the

main steroid scaffolds of these two molecules, as expected for proteins sharing similar

types of ligands. However, additional chemical structures of the DB00823 molecule,

colored in red in figure 3.5, can only be built by using high scoring substructures

found in components of group B, where only estrogen receptor domains have high

scores. Similarly, additional chemical structures of DB01013, colored in red in figure

3.5, can only be built using high scoring substructures found in components of group

C, where only annexin domains have high scrores. Note that none of the high scoring

substructures of components specific of estrogen receptor (group B) are present in

DB01013 that only bind annexin, and that reciprocally, none of the high scoring

substructures of components specific of annexin (group C) are present in DB00823

that only bind estrogen receptor. In other words, the method allows to highlight

the parts of the molecules that encode for their specificity to bind only to estrogen

receptor, or only to annexin.

One additional comment should be made: all known annexin ligands are steroids,

while estrogen receptor domains also bind other types of molecules such as Tamoxifen

(DB00675, PubChem ID 2733526) or other similar molecules such as Raloxifen. As

shown in figure 3.6, these molecules are very different from steroids. They lead to the

CC34 and CC38 above mentioned components, that have a high score for estrogen

receptor domains and not for annexin domains because the latter do not bind these

molecules. In figure 3.6, the part of the Tamoxifen molecule that can be built using
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Figure 3.6: Chemical structure of Tamoxifen (DB00675). Parts of the molecule that
can be built from chemical substructures of components CC34 and CC38 are colored
in blue.

high scoring substructures from CC34 and CC38 is colored in blue.

We will comment more briefly on component CC2, in order to show that the

above observations also apply to other components and families of proteins. Compo-

nent CC2 contains the carbonic anhydrase domain PF00194 , which belongs to zinc

metalloenzymes catalyzing reversible hydration of carbon dioxide to bicarbonate. It

also contains calcium-dependent potassium channel domains (PF03493, PF02254).

Carbonic anhydrase inhibitors are used as anti-glaucoma agents, diuretics and anti-

epileptics. Interestingly, the human potassium channel KCMA1 HUMAN (UnitProt

ID: Q12791), one of the high scoring proteins in CC2, is also known to be involved

in epilepsy. Domains of the carbonic anhydrase and of the calcium-dependent potas-

sium channel also appear together with high scores in a few other components (namely

CC7, CC16, CC22, CC27 and CC43), whereas components CC3 and CC25 are spe-

cific of carbonic anhydrase, and component CC20 is specific of calcium-dependent

potassium channel.

Although different types of drugs are known to bind human calcium-dependent

potassium channel and carbonic anhydrase proteins, these two proteins share drugs

from the thiazide family. Figure 3.7 shows the general scaffold of thiazide molecules.
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Figure 3.7: (A) In blue, examples of high scoring substructures of components com-
mon to calcium-dependent potassium channel and carbonic anhydrase proteins. In
red, example of a high scoring substructure from component CC20 specific to calcium-
dependent potassium channel. (B) On the left, in black, the basic thiazide scaffold.
On the right, in blue, part of the molecular structure of DB00232 that can be built
using high scoring substructures from components common to calcium-dependent
potassium channel and carbonic anhydrase proteins. In red, part of DB00232 that
can be built using high scoring substructures of components CC20, specific of calcium-
dependent potassium channel.

All known thiazide ligands of carbonic anhydrase also bind calcium-dependent potas-

sium channel (for example DB00436 or DB00562, among others). However, the thi-

azide molecule DB00232 (PubChem ID 4121) only binds to KCMA1 HUMAN, the

human calcium-dependent potassium channel and not to human carbonic anhydrase.

As in the case of annexins and nuclear receptors, although carbonic anhydrase and

potassium channel present no sequence similarity, they share similar ligand binding

pockets, and are able to bind similar molecules. Therefore, the method associates

them in CC2 and in a few other common components, namely CC7, CC16, CC22,

CC27, CC43. In figure 3.7, the part of the DB00232 molecule that can be built using

substructures of these components is colored in blue. However, the calcium-dependent



44 CHAPTER 3. PROTEIN-LIGAND INTERACTIONS

potassium channel domains have high scores in component CC20, but this is not the

case of carbonic anhydrase. In figure 3.7, the part of DB00232 that can only be built

using substructures of CC20 is colored in red. As in the case of estrogen receptor and

annexin, the method allows to highlight the parts of the DB00232 that encode for

its specificity to bind to calcium-dependent potassium channel and not to carbonic

anhydrase.

Finally, we would like mention that component CC20 appears in the two cases

discussed above, because the presence of SUB344 in steroid or thiazide molecules

happens to modulate their specificity, respectively for annexin or calcium-dependent

channel. The fact that a molecule contains substructure SUB344 does not necessarily

mean that it will bind to all high scoring proteins of CC20. Indeed, more generally,

the protein binding profile of a molecule depends on its complete substructure profile

which is not limited to an individual substructure.

3.4.4 Comments on L1-PLSVM method

Performances

The cross validation results presented in the previous paragraphs correspond to a

block wise split of the training and test set (see figure 3.8 for a graphical illustration).

This choice of validation is closer to reality than choosing the training pairs uniformly.

Indeed, in field applications, one is interested by finding candidate drugs for a given

protein or by finding targets for a given drug. However, this corresponds to a split

that is not uniform over all possible pairs but follows the structure of the matrix and

supervised learning method suffer from this bias. Indeed, the underlying assumption

behind the supervised learning framework is that the training examples are taken

uniformly at random from the space of possible examples (see chapter 2 for a brief

overview). Table 3.3 shows the cross validation results in a pairwise setting. In this

setting, the performance of the L1-PLSVM method are close to those of the P-SVM

method and significantly higher than those of SCCA. In such a setting, if the interest

is in reconstruction performances, such binary classification approaches should be

preferred.
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Table 3.3: Performance evaluation on drug-target interaction reconstruction by 5-fold
cross-validation in a pairwise setting.

L1-P-LSVM P-SVM SCCA

AUC 0.8301 0.8339 0.7975

S.D. 0.0006 0.0005 0.0018

1: Pair−wise 2: Block−wise

Molecules

P
ro

te
in

s Set

Test

Train

Figure 3.8: Illustration of pair-wise and block-wise cross validation. In the former
case, randomly selected pairs are used as a training set while in the latter, the training
and test sets reflect the row and column structure of the interaction matrix.

Extracted substructure domain pairs

Extracted pairs of substructure and domains using the L1-PLSVM method are con-

sistent with the underlying biology. This means that they are found in molecules

and proteins that indeed interact. However, these associations are not organized in

components as for the SCCA method. It is therefore more difficult to discuss deeper

examples of associations between chemical substructures and protein domains using

this method. It should be noted that the L1-PLSVM method extracts a smaller num-

ber of associated substructures and domains compared to SCCA (around two order
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of magnitude smaller).

It appears that the interest of the two methods depend on the focus point (su-

pervised reconstruction or unsupervised feature extraction) and the learning setting

(pair wise or block wise). Unsupervised feature extraction abilities of SCCA are of

greater interest. However it does not perform as well on reconstruction task in the

pair wise supervised setting. The results presented here shed light on which method

should be preferred depending on those parameters.

3.5 Discussion and Conclusion

In this chapter we described methods to extract drug chemical substructures and pro-

tein domains that govern drug-target interactions. The methods use known protein-

ligand interactions as a learning dataset to extract ligand substructures and their

associated protein domains, and importantly, they do not require information about

proteins 3D structures. From a system point of view, they provide integrative analysis

tools to study interactions between chemical and genomic spaces in a unified frame-

work. Since the methods can handle learning datasets containing many proteins

and molecules they constitute a contribution to the development of system based

approaches for protein-ligand interaction.

Quantitative structure-activity relationship (QSAR) methods are similar in spirit,

but they are designed handle a single protein at a time. The approach consists in using

molecular similarities to predict activity of new molecule against a given target based

on classification or regression methods. Such an approach cannot take advantage

of emerging information from large protein target interaction datasets at a genome-

wide level. Similar comments can be made regarding docking strategies which rely on

known 3D structure of proteins. Moreover, even for proteins of known 3D structures,

it is extremely difficult to automate the set-up of these methods for many different

binding sites, leading to docking and scoring inaccuracies when they are used on large

scale [71].

Prediction of all protein targets for a molecule is the goal of chemogenomics. Var-

ious studies report algorithms that implement such methods, and up to now, they
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have restrained the search of off-targets within a given family of proteins such as

GPCRs [126, 58, 135]. Nonetheless, they demonstrate the advantage of the approach

over QSAR like methods. The proposed method is a new contribution to the field of

chemogenomics which relies on learning databases of known protein-ligand interac-

tions and which can take into account evolutionary unrelated proteins.

3.5.1 Applications of SCCA in drug development

The method could be of interest in various ways in the drug development process.

First, given protein target of therapeutic interest, one can identify the components

into which this protein domains are found with high scores. Then, one can build a

ligand for this target protein using high scoring substructures of these components,

potentially with the help of other recent developments in the domain of fragment-

based drug discovery [31]. For example, in the Results section, we showed for several

drugs (DB00823, DB01013, DB00675, DB00232), that one could build their molecu-

lar structure using high scoring substructures of components in which their protein

targets have a high score.

Second, for a given drug that binds to a protein target of interest, the method

can help to identify off-target proteins: protein domains that are found with high

scores in the same components as these of the protein of interest are potential off-

targets. Trivial off-targets are proteins that share high sequence similarity with the

target protein, and are otherwise easy to identify using classical algorithms such as

BLAST [3]. However, two unrelated proteins that underwent convergent evolution

may present similar pockets in the 3D space, allowing binding of similar ligands,

although they may share no significant sequence similarity. The proposed method

can handle such cases by learning ligand similarities from a database. Examples

are shown in the Result section for estrogen receptor and annexin, or for calcium-

dependent potassium channel and carbonic anhydrase. Various methods have been

developed to predict protein-ligand interactions, but predicting off-targets for a drug

has been much less studied. The use of drug side-effect similarity has been proposed to

identify potential off-targets, but the method can therefore only be used for molecules
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of known side-effect profile, i.e. mainly for marketed drugs [20].

Finally, the method can also help to tackle the problem of drug specificity, which

is in fact related to the topic of off-target identification. Here, we are interested in a

given drug developed against a given target. The drug happens to also bind some off-

target proteins. The method could help to optimize the structure of this drug. The

principle would be to add chemical substructures that have high scores in components

where only the target protein has a high score, and not the off-target proteins. As

shown in section 3.4 for estrogen receptor and annexin, drugs that bind only one of

these proteins contain substructures present in components where only one of these

two proteins has a high score. The same situation was shown for DB00232 that only

bind calcium-dependent potassium channel, and not carbonic anhydrase. As shown

in section 3.4, the proposed method allows to identify such cases: non trivial off-

targets are expected to appear in the same components as the main target. Among

several drug candidates, the method could help to eliminate molecules with too many

potential off-target interactions, or with potential off-target expected to lead to severe

side-effects. On the contrary, the drug candidates whose chemical substructures are

not found in canonical components that do not contain its targeted protein domain

are expected to be of greater interest.

From technical viewpoints, there are several limitations on the proposed SCCA

method. One main difficulty of using SCCA is to choose appropriate sparsity param-

eters and appropriate number of components. High sparsity promoting parameters

would lead to an over-sparse model in all the cases, which might be misleading in

the interpretation if the degree of sparsity was not tuned carefully. According to a

cross-validation, we used top 50 components, but other components may contain bio-

logically meaningful information. The definition of an appropriate objective function

to be maximized or minimized in the cross-validation is an important issue. There

remains much room to develop a more appropriate way to choose the parameters.

Another pitfall of SCCA is that it might not work well when sparsity is not a relevant

characteristic arising from the data. For example, it cannot deal with hierarchically

correlated features in the descriptors of drugs or proteins. An extension of the method

would be to additionally use other constraints which can deal with such a hierarchical
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effect such as the ones presented in [61].



Chapter 4

Phenotypic response to molecular

perturbations

Résumé

Caractériser la réponse phénotypique à un stimulus est primordial pour la compréhension

du comportement d’organismes pluri-cellulaires. Parmis les applications majeures,

on peut citer la mise au point de thérapies moléculaires efficaces. Cependant, les

phénotypes sont bien plus complexes que les interactions moléculaires, comme celles

considérées dans le chapitre 3. En effet, il existe de multiples possibilités pour définir

un phénotype qui implique souvent un grand nombre de cellules. Par ailleurs, la

réponse à un stimulus peut varier de manière importante d’un individu à l’autre. Ce

chapitre est donc dédié à l’étude de phénotypes à l’échelle d’organismes et à l’échelle

de populations de cellules.

Dans une première partie, les effets secondaires de médicaments sont considérés

comme des phénotypes macroscopiques causés par les interactions avec un ensem-

ble de protéines. Les liens entre la structure chimique et les effets secondaires sont

analysés avec une méthode d’analyse canonique des corrélations parcimonieuse. Cette

approche permet d’analyser conjointement les relations entre structure chimique et

effets secondaires. Des exemples de modulations d’effets secondaires par la struc-

ture chimique et des relations avec les profils de cibles protéiques sont donnés pour

50
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illustrer les résultats produits par cette méthode. La performance prédictive de ces

associations entre structure chimique et effets secondaires sont comparées à celles de

méthodes à l’état de l’art.

Dans une seconde partie, la question de la comparaison de l’effet de siRNA sur

des phénotypes de populations de cellules est explorée. Cette étude se base sur

un jeu de données provenant d’une expérience de microscopie fluorescente à haut

débit dans le contexte de l’étude de la maladie du sarcome d’Ewing. Des indices

provenant de ces données sont proposés pour motiver le besoin de prendre en compte

la variabilité intra-population de la réponse cellulaire et la structure de corrélation

entre les descripteurs utilisés pour décrire chaque cellule individuellement. Un modèle

probabiliste est proposé afin de prendre en compte ces considérations. Des expériences

numériques montrent que le modèle proposé possède de meilleures propriétés que celles

d’approches plus näıves pour décrire la réponse à un siRNA à l’échelle de populations

de cellules.

Abstract

Characterization of the phenotypic effect in response to a stimulus is a key problem in

the understanding of multi-cellular organisms behaviour. This has great implications,

for example in the development of efficient molecular therapies. However phenotypes

are much more complex to describe and study than the molecular mechanisms consid-

ered in chapter 3. Indeed, there are multiple ways to define phenotypes. They usually

involve more than a single cell and there might exist a great variability in phenotypic

responses to stimuli between different individuals. This chapter is dedicated to the

study of phenotypes at the organism level and at the cell population level.

In a first part, drug side effects are considered as macroscopic phenotypes induced

by drugs through interaction with a set of proteins. The relationship between chemical

structure and side effects is investigated using a sparse canonical correlation analysis

method. This approach allows to jointly analyse relations between chemical structure

and side effect profiles for drugs at a large scale. Examples of side effect modulation

through chemical structure variations and relation with protein target profiles are
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provided to illustrate the results provided by the method. Predictive performances

of the extracted associations between structures side-effects are compared to these of

state-of-the-art methods.

In a second part, the question of phenotypic comparison of siRNA effect on cell

populations is investigated. This study is based on data arising from a high through-

put fluorescent microscopy experiment in the context of studying Ewing sarcoma

disease. Evidences arising from data are presented to support the need for taking

into account both variability of the cell response within a population and the cor-

relation structure of individual cell descriptors. A probabilistic model that takes

these questions into consideration is proposed. Numerical experiments demonstrate

that the model has better properties than those of more naive approaches to study

phenotypic response to siRNA at the level of cell populations.

4.1 Introduction

This chapter is dedicated to the study of biological response to a stimulus in terms

of phenotype. By stimulus, it is meant the exposition to perturbing compounds

(marketed drug and siRNA in this chapter). A phenotype results from the effect of

these stimuli on a living system (animal or population of cells). Therefore, the scale of

interest here is at a higher hierarchical level compared to those considered in chapter

3. By nature, phenotypes are more complex to study, some reasons being that

• Phenotypes are result from a whole system of molecules interacting together.

• There is no universal definition of a phenotype and the boundary between two

phenotypes might be fuzzy.

• Phenotypes are variable in the sense that two similar organisms exposed to the

same stimulus might respond in different ways.

The consequences of these remarks are, first that it is necessary to consider a

large number of interacting physical objects (molecules, proteins, cells . . .) in order

to understand how phenotypic effects emerge when a living organism is confronted
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to a stimulus. Second, a phenotype definition should take into account response

variability. The results presented in this chapter illustrate these ideas based on real

world data.

As we mentioned, the concept of phenotype is broad. In this chapter, we consider

two different scales. At the macroscopic level, a phenotype can be understood as a

characteristic of a multi-cellular organism. The example treated in the first section

of this chapter is related to marketed drug side-effects. These are compounds which

have been available on the drug market (which may not be available any more) and

for which side effect data have been collected. A side-effect of a drug can be thought

of as a phenotype. Side-effects are due to interactions of a drug with off targets, i.e.

proteins that do not constitute the main therapeutic target of the drug. They are

observable at the macroscopic scale of a human being.

At the level of a cell, cell cycle phases can be understood as phenotypes. Those

are particularly interesting in cancer therapies, the objective being to disrupt cell

division processes which went out of control. When considering population of cells,

even though cells have been exposed to the same stimulus, there is variability in

cell responses. This variability is also part of the phenotypic response at the cell

population level. These phenomena make it difficult to characterize and compare

stimuli effects at the level of cell populations.

4.1.1 Content of the chapter

The first section of this chapter is dedicated to the analysis of correlations between

drug chemical sub structures and their side-effects. A penalised matrix decompo-

sition is used to investigate these correlations which are further used in side-effect

prediction contexts. This is compared to state-of-the-art supervised methods. The

results presented in this part are based on the work presented in [94] together with

results from [136].

In a second section, we consider cell population phenotypes. Numerical exper-

iments are based on control data from siRNA knock down high content screening

experiments in the context of Ewing sarcoma. This study is part of a wider research
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project that aims at identifying genes that play a role in Ewing sarcoma. A probabilis-

tic model is proposed to tackle the issue of comparing images of cell populations with

heterogeneous individual phenotypes. This section is based on the results presented

in [95].
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4.2 Sparse canonical correlation based drug side-

effect analysis

This section is mostly based on the results presented in [94]. The focus is on the

relation between adverse drug reactions and drug chemical structure. A matrix de-

composition method is applied to extract associations between chemical substructures

and drug side-effects which are further used in a supervised prediction context. [136]

extended this work by integrating both chemical and protein target profiles in a

side-effect prediction context. These results are qualitatively described in the last

paragraph.

4.2.1 Background

Drug side-effects

Drug side-effects, or adverse drug reactions, have become a major public health con-

cern. It is one of the main causes of failure in the process of drug development, and of

drug withdrawal once they have reached the market. As an illustration of the extent

of this problem, serious drug side-effects are estimated to be the fourth largest cause

of death in the United States, resulting in 100,000 deaths per year [42]. In order to

reduce these risks, many efforts have been devoted to relate severe side-effects to some

specific genetic biomarkers. This so-called pharmacogenomics strategy is a rapidly

developing field, especially in oncology [56]. The aim is to prescribe a drug to patients

who will benefit from it, while avoiding life threatening side-effects [84].

From a system viewpoint, drugs can be regarded as molecules that induce per-

turbations to biological systems consisting of various molecular interactions such as

protein-protein interactions, metabolic pathways and signal transduction pathways,

leading to the observed side-effects [119]. The most common perturbation mechanism

is to bind to a protein, thereby modifying its function. These mechanisms have been

investigated in chapter 3. Actually, the body’s response to a drug reflects not only the

expected favorable effects due to the interaction with its target, but also integrates the

overall impact of off-target interactions. Indeed, even if a drug has a strong affinity for
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its target, it also often binds to other protein pockets with varying affinities, leading

to potential side-effects. This concept has been illustrated by comparing pathways

affected by toxic compounds and those affected by non-toxic compounds, establishing

links between drug side-effects and biological pathways [103].

In silico prediction

Although preclinical in vitro safety profiling can be used to predict side-effects by test-

ing compounds with biochemical and cellular assays, experimental detection of drug

side-effects remains very challenging in terms of cost and efficiency [127]. There-

fore, in silico prediction of potential side-effects early in the drug discovery process,

before reaching the clinical stages, is of great interest to improve this long and expen-

sive process and to provide new efficient and safe therapies for patients. This task

intrisically requires to consider the whole system of proteins in order to determine

macroscopic consequences of disturbing biological processes at the molecular scale.

Expert systems based on the knowledge of human experts have been developed to

predict the toxicity of molecules based on the presence or absence of toxic moieties

in their chemical structure. For example, they predict potential toxicity such as mu-

tagenicity, but they do not provide prediction for numerous potential side-effects in

human [12]. Recently, several computational methods for predicting side-effects have

been proposed, which can be categorized into pathway-based approaches and chemical

structure-based approaches.

The principle of pathway-based approaches is to relate drug side-effects to per-

turbed biological pathways or sub-pathways because these pathways involve proteins

targeted by the drug. In a pioneer work to illustrate this concept, it has been shown

that drugs with similar side-effects tend to share similar profiles of protein targets

[19]. The authors further exploited this characteristic to predict missing drug tar-

gets for known drugs using side-effect similarity. [38] proposed a method for relating

side-effects to cooperative pathways defined as sub-pathways sharing correlated mod-

ifications of gene expression profiles in presence of the drug of interest. However,

this method requires gene expression data observed under chemical perturbation of

the drug. [131] developed a method to identify off-targets for a drug by docking this
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drug into proteins binding pocket similar to that of its primary target. The drug-

protein interactions with the best docking scores are incorporated to known biologi-

cal pathways, which allows to identify potential off-target binding networks for this

drug. However, the performance of this method depends heavily on the availability

of protein 3D structures and known biological pathways, which limits its large-scale

applicability.

The principle of chemical structure-based approaches is to relate drug side-effects

to their chemical structures. [102] developed a method that identifies chemical sub-

structures associated to side-effects. However, this method does not provide an in-

tegrated framework to predict side-effects for any drug molecule. [135] proposed a

method to predict pharmacological and side-effect information using chemical struc-

tures, which is then used to infer drug-target interactions. However, the method

cannot be applied to predict high-dimensional side-effect profiles.

Content of this section

This section describes a canonical correlation based approach (CCA) to predict poten-

tial side-effect profiles of drug candidate molecules based on their chemical structures,

which is applicable on large molecular databanks. In addition, the proposed method

is able to extract correlated sets of chemical substructures (or chemical fragments)

and side-effects. Sparsity inducing constraints allows to ease the interpretation of the

extracted correlated sets. The corresponding method is described in chapter 2 and is

referred to as sparse canonical correlation analysis (SCCA).

Numerical experiments show the usefulness of the proposed method on the pre-

diction of 1385 side-effects in the SIDER database from the chemical structures of

888 approved drugs. These predictions are performed with simultaneous extraction of

correlated ensembles formed by a set of chemical substructures shared by drugs that

are likely to have a set of side-effects. The relevance of the information extracted by

the method is demonstrated on specific examples. We also conduct a comprehensive

side-effect prediction for many uncharacterized drug molecules stored in DrugBank

database, and were able to confirm interesting predictions using independent source

of information.



58 CHAPTER 4. PHENOTYPIC RESPONSE

The natural step forward is the integration of both chemical structure and protein

interaction profiles to predict uncharacterized drug side-effects. This has been done

in a further study [136], which results are qualitatively described at the end of the

section.

4.2.2 Materials

Side-effect keywords were obtained from the SIDER database which contains informa-

tion about marketed medicines and their recorded adverse drug reactions [82]. This

led to build a dataset containing 888 drugs and 1385 side-effect keywords. Each drug

was represented by a 1385 dimensional binary profile y whose elements encode for the

presence or absence of each of the side-effect keywords by 1 or 0, respectively. There

are 61,102 associations between drugs and side-effect terms in the dataset, and each

drug has 68.8 side-effects on average. This dataset is used to evaluate the performance

of the proposed methods in this study.

To encode the drug chemical structure, we used a fingerprint corresponding to

the 881 chemical substructures defined in the PubChem database [22]. Each drug

was represented by an 881 dimensional binary profile x whose elements encode for

the presence or absence of each PubChem substructure by 1 or 0, respectively. A

description of the 881 chemical substructures can be found at the PubChem website

[22]. There are 107,292 associations between drugs and chemical substructures in the

dataset, and each drug has 120.8 substructures on average.

The other drug information (e.g., ATC code, drug category, protein target) was

obtained from DrugBank [128]. This information is used to ease biological interpre-

tation in the side-effect prediction for uncharacterized drugs.

4.2.3 Methods

We propose five possible methods to predict drug side-effect profiles from the chemical

structures. We have a training set of n drugs with p substructure features and q side-

effect features. Each drug is represented by a chemical substructure feature vector

x = (x1, · · · , xp)
T , and by a side-effect feature vector y = (y1, · · · , yq)T . We consider
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X the n× p matrix defined as X = [x1, · · · ,xn]
T , and Y the n× q matrix defined as

Y = [y1, · · · ,yn]
T , where the columns of X and Y are assumed to be centered and

scaled.

Sparse canonical correlation analysis (SCCA) and side-effect prediction

Consider two linear combinations for chemical substructures and side-effects as ui =

αTxi and vi = βTyi (i = 1, 2, · · · , n), where α = (α1, · · · , αp)
T and β = (β1, · · · , βq)

T

are weight vectors. As presented in chapter 2, the SCCA method we consider here

consists in finding the weight vectors α and β which solve the following L1 constrained

optimization problem:

max{αTXTY β} subject to

||α||22 ≤ 1, ||β||22 ≤ 1, ||α||1 ≤ c1
√
p, ||β||1 ≤ c2

√
q, (4.1)

where || · ||1 is L1 norm (the sum of absolute values of vector entries), c1 and c2 are

parameters to control the sparsity and restricted to range 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1.

For simplicity, we use the same value for c1 and c2 in this study. The sparse version

of CCA is referred to as sparse canonical correlation analysis (SCCA). Setting c1 =

c2 = 1 defines the original CCA (OCCA) without sparsity constraint and amounts to

compute an SVD (see chapter 2). Problem (4.1) can be regarded as the problem of

penalized matrix decomposition of the matrix Z = XTY . As mentioned in chapter

2, we can use the penalized matrix decomposition (PMD) proposed by [129]. After

m iterations of the algorithm, we obtain m pairs of weight vectors α1, · · · ,αm and

β1, · · · ,βm which are referred to as components with associated weights ρ1, · · · , ρm.
Components of lower k are called “lower order components”, while components of

higher k are called “higher order components”.

If the extracted sets of chemical substructures and side-effects are biologically

meaningful, potential side-effects for a new drug candidate molecule should be pre-

dicted comparing the extracted chemical substructures to its chemical structure.

Given the chemical structure profile x of a new drug candidate molecule, its po-

tential side-effect profile y can be predicted based on the extracted sets of chemical
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substructures and side-effects encoded in {αk}mk=1 and {βk}mk=1. We use the prediction

score described in chapter 2.

ŷ =
m∑

k=1

βkρkα
T
k x, (4.2)

Note that ŷ is the q-dimensional vector whose j-th element represents a prediction

score for the j-th side-effect. If the j-th element in ŷ has a high score, the new

molecule x is predicted to lead to the j-th side-effect (j = 1, 2, · · · , q).

Support vector machine (SVM)

The side-effect prediction problem can be viewed as a supervised binary classification

problem consisting in predicting whether a given drug x has a side-effect or not. This

should be repeated for all q side-effects. The support vector machine (SVM) is a

well-known binary classifier, and it has become a popular classification method in

bioinformatics [39] and chemoinformatics [79] because of its high-performance pre-

diction ability [105]. We test several kernel functions such as linear kernel, Gaussian

RBF kernel with various width parameters, and polynomial kernel with various degree

parameters. Note that this strategy needs to construct q individual SVM classifiers

for q side-effects, so it will require considerable computational burden, because q is

quite huge in practical applications (q ∼ 1000 in this study). Choice of kernel and its

parameter were made using cross validation.

Nearest neighbor (NN)

The most straightforward approach is to apply the nearest neighbor (NN), which

predicts a given drug x to have the same side-effects as those of the drug (in a

training set) whose chemical substructure profile is the most similar. For each query

drug, we look for k nearest neighbors, and if k′ of k have a side-effect, we assign the

prediction score of k′/k to the query drug. We repeat this procedure for q side-effects.

The number of neighbours k was obtained by cross validation.
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Figure 4.1: ROC curves comparing the performances of nearest neighbor (NN), sup-
port vector machine (SVM), ordinary canonical correlation analysis (OCCA) and
sparse canonical correlation analysis (SCCA) for side-effect prediction.

Random assignment (Random)

To evaluate how difficult the problem considered is, we apply a random assignment

procedure, that is, we use the 0/1 ratio to assign a binary label to each test drug

randomly. For example, if the ratio in given training data is 90%, we can assign zero

for 90% of examples in test; otherwise 1. This method is used as a baseline method

in this study.

4.2.4 Results

Performance evaluation

We applied nearest neighbor (NN), support vector machine (SVM), ordinary canon-

ical correlation analysis (OCCA), and sparse canonical correlation analysis (SCCA)

to predict drug side-effect profiles. We also applied random assignment procedure

(Random) as a baseline method. First we tested the five methods: Random, NN,

SVM, OCCA and SCCA for their abilities to predict known side-effects profiles by

the following 5-fold cross-validation. Drugs in the side-effect data were split into 5
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subsets of roughly equal size, each subset was then taken in turn as a test set, and

we performed the training on the remaining 4 sets. For accurate comparison, we kept

the same experimental conditions, where the same training drugs and test drugs are

used across the different methods in each cross-validation fold. We evaluated the per-

formance of each method by the ROC (receiver operating characteristic) curve [47],

which is a graphical plot of the sensitivity, or true positive rate, against false positive

rate (1-specificity or 1-true negative rate). The ROC curve can be represented by

plotting the fraction of true positives out of the positives (true positive rate) vs. the

fraction of false positives out of the negatives (false positive rate), where true posi-

tives are correctly predicted side-effects and false positives are incorrectly predicted

side-effects based on the prediction score for various threshold values above which the

output is predicted as positive and negative otherwise.

Figure 4.1 shows the ROC curves for the five different methods based on the cross-

validation experiment, where the prediction scores for all side-effects were merged

and a global ROC curve was drawn for each method. Parameters in each method

were chosen by using the AUC (area under the ROC curve) score as an objective

function. The best result for NN was obtained by the number of neighbors k = 50.

The best result for SVM was obtained by Gaussian RBF kernel with width parameter

σ = 0.2 and regularization parameter C = 1. The best result for OCCA was obtained

by m = 20. The best result for SCCA was obtained by the following parameters:

c1 = c2 = 0.05 and m = 20. The resulting AUC scores for Random, NN, SVM,

OCCA and SCCA are 0.6088, 0.8917, 0.8930, 0.8651 and 0.8932, respectively. From

this figure 4.1 we see that the proposed SCCA method outperforms OCCA and its

performance is at a competitive level with NN and SVM.

We are also interested in biological interpretability of the outputs of the pro-

posed method to understand the relationship between chemical substructures and

side-effects. We focused on OCCA and SCCA, because they are the only methods

which can correlate two heterogeneous high-dimentional data sets. We examined the

weight vectors for drug chemical substructures and drug side-effects in OCCA and

SCCA. Figure 4.2 shows the index-plot of weight vectors in OCCA, and figure 4.3
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Figure 4.2: Index-plot of weight vectors for drug substructures (upper) and side-
effects (lower) extracted by ordinary canonical correlation analysis (OCCA).

shows the index-plot of weight vectors in SCCA, where the first eight canonical com-

ponents are shown. Almost all elements in the weight vectors extracted using OCCA

are non-zero and highly variable, while most of the elements in the weight vectors ex-

tracted using SCCA are zero in each component. This underlines the fact that SCCA

can select a small number of features as informative drug substructures and side-

effects. This result suggests that the proposed SCCA method provides more selective

and informative correlation between drug substructures and side-effects without loos-

ing performance. In addition, it should be pointed out that the other methods NN

and SVM do not provide any clue for biological interpretation.

Finally, we investigated the computational cost for each method. Figure 4.4 shows
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Figure 4.3: Index-plot of weight vectors for drug substructures (upper) and side-effects
(lower) extracted by sparse canonical correlation analysis (SCCA).

the total execution times of the cross-validation experiment between the four different

methods. NN is the fastest, followed by OCCA, SCCA, and SVM. As expected, SVM

is much slower than the other methods, because it requires individual classifiers for

all side-effect keywords (∼ 1000 SVM classifiers are required).

Extracted sets of drug substructures and side-effects

From biological viewpoints, we examined the extracted sets of drug substructures and

drug side-effects in each canonical component extracted using SCCA. Note that the

other methods (NN, SVM, and OCCA) do not enable us to interpret the biological

features. Each component consists of only a small number of substructures and a
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Figure 4.4: Total execution time of the cross-validation experiment for the four meth-
ods (log10 scale).

small number of side-effects that are correlated with each other according to SCCA.

For each component, two lists of drugs are provided: one containing drugs with a

high score for the associated substructures, and one containing drugs with a high

score for the associated side-effects. We examined the results when we used the best

parameters which provided the highest AUC for all side-effect terms. The content of

a few canonical components are discussed to illustrate the ability of the method to

extract meaningful biological information.

A canonical correlation coefficient is computed to evaluate the importance of

each component. This value corresponds to the value of the objective of (4.1) for

each component. The components with high canonical correlation tend to con-

tain rare substructures present only in very few drugs, which are associated to rare

side-effects mainly observed for these drugs. These components contain quite spe-

cific substructure/side-effect canonical correlations whose interpretation is straight-

forward. For example, component 6 associates the presence of a boron atom, only

found in the bortezomid molecule in the SIDER database, to a short list of neuro-

logical side-effects observed only for this drug. Similarly, component 20 essentially

clusters a substructure defined by a carbon atom bearing both a bromide atom and a

nitrogen atom. This substructure is found only in the bromocriptine molecule of the

SIDER database, with two side-effects observed only for this drug (namely, pregnancy

induced hypertension and toxemia of pregnancy).
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Table 4.1: Nitrogen-containing rings of size 5: (A) Porphyrin group, (B) Proline
residue, (C) Histidine residue, (D) Tryptophane residue.

A B C D

In the general case of components containing more frequent substructures, drugs

that contain these substructures tend to present side-effects associated to this compo-

nent, but this correspondence is not strict. Reciprocally, most drugs that have high

scores for the side-effects contain the chemical substructures of this component, but

not all. Analysis of component 18 can illustrate these points.

This component contains two substructures, the major one being the presence of

“four or more saturated or aromatic nitrogen-containing rings of size 5”, associated

to four side-effects. This substructure is present in five drugs of the SIDER database:

verteporfin, porfimer, goserelin, buserelin, and leuprolide. Verteporfin and porfimer

contain a porphyrin group displaying four nitrogen-containing rings of size 5, as shown

in figure 4.1 (A). Goserelin, buserelin, and leuprolide are synthetic 9-residue peptide

analogues of the gonadotropin releasing hormone. Their sequences contain amino-

acids whose chemical structures present nitrogen-containing rings of size 5, found in

side chains of proline, histidine or tryptophane residues, as shown in figure 4.1 (B),

(C) and (D). Overall, four or more nitrogen-containing rings of size 5 are indeed

present in their structures.

Note however that these rings are different from those of the porphyrin group.

Although goserelin, buserelin and leuprolide on the one hand, and verteporfin and

porfimer on the other hand, belong to totally unrelated families of molecules, they

share common substructures, at least according to their definition in the present

study. All drugs from these two families, but verteporfirin, have high scores for
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Figure 4.5: Two dimensional graph structure of risperidone.

side-effects of this component. This result illustrates the fact that side-effects of a

drug is usually associated to the presence of given substructures, although it may be

modulated by the overall molecular structure, as in the case of verteporfirin. This

property is also well known in the context of drug structure-activity relationship,

which usually depends on given molecular scaffolds, but which is modulated by the

presence of additional chemical groups.

Reciprocally, all drugs that have high scores for side-effects of component 18 con-

tain the chemical substructures of this component, but risperidone, as shown in figure

4.5. Its structure is very different from those of porphyrins or gonadotropin analogues.

It is an antagonist of the dopamine and of the serotonine receptors. It belongs to

the class of antipsychotic agents (see DrugBank), and its high score for side-effects of

component 18 cannot be explained in a straightforward manner.

However, in some cases, we were able to relate such unexpected results to the

targets of these drugs, as illustrated by component 13. This component contains
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substructures that are essentially present in proton pump inhibitors used as anti-

ulcer agents like omeprazole. It is also present in a small number of drugs from

other families like pramipexole (an antiparkinson agent) or riluzone (a neuroprotective

agent). As expected, these anti-ulcer agents are found in the high scoring drugs for

side-effects in component 13, together with pramipexole and riluzone, although with

lower scores. As for component 18, other drugs that do not contain the high scoring

substructures of component 13 are however found among high scoring drugs for side-

effects in this component. This is the case of ropinirole. Interestingly, ropinirole is an

antiparkinson agent that targets the same protein as pramipexole, namely dopamine

receptor.

This result suggests that drugs sharing some protein targets may also share some

side-effects. It is also consistent with the idea that the global biological effect of

a molecule (both beneficial effects and adverse side-effects) is related to its overall

profile of protein targets. Taken together, our results provide examples for which

the side-effects of a drug are modulated both by its substructures and by its targets.

Note that these two factors are connected since similar molecules tend to share similar

protein targets, but this property was not exploited in the present study.

Comprehensive side-effect prediction for uncharacterized drugs

We then evaluated the interest of the proposed method for prediction of side-effects for

uncharacterized drugs. We predicted potential side-effects for drugs in DrugBank for

which side-effect information was not available in the SIDER database. We focused

on 2883 drugs which are labeled as “small molecules” in DrugBank. We first make

general comments on the results and then present more details for a few well-known

specific examples.

Very frequent side-effects, such as “headache” or “nausea” are found in SIDER,

and they occur with many drugs. These side-effects are not specific, and they do

not appear for a well defined drug category. They are the most frequently predicted

side-effects, but they hardly appear with the highest prediction scores for a given

drug, which is consistent with the fact that they are common reactions. However,

we also find more specific side-effects which are related to special types of drugs.
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For example, steroids may lead to “striae”, or “linear atrophy”, which results in

local dermal structure atrophy and skin depigmentation [80]. Indeed, this keyword

is mainly found for steroid molecules in SIDER. The top 30 drugs predicted to have

this side-effect are also steroids, which is consistent with literature and training data.

Moreover, “global amnesia”, a very specific keyword in SIDER, is one of the most

striking syndromes in clinical neurology whose underlying causes are not well known

[101]. 14 drugs catch a high prediction score for this keyword. Among them, one is

anticholesteremic, three are antipsychotics, and the others are experimental molecules

whose categories are not known. Therefore, three out of four drugs with known

indications are related to cognitive functions, which is consistent with the predicted

side-effect nature. Although the accuracy of all the predictions was not discussed

here, the results are consistent with the available biological and medical information.

We also checked famous examples of withdrawn drugs. Rimonabant (DB06155 in

DrugBank) is an anti-obesity agent. It was rejected for approval in the United States,

but it was accepted in Europe in 2006. In october 2008, the European Medicines

Agency recommended suspension of its marketing authorization because of serious

psychic side-effects, mainly severe depression. Indeed, this drug is active in the cen-

tral nervous system, which may trigger very broad and complex psychic mechanisms.

Consistent with this, in our prediction profile, the “borderline personality disorder”

and “posttraumatic stress disorder” keywords are found in the ten top ranking key-

words for this drug. In other words, our method would have foreseen potential psy-

choactivity for rimonabant. Furthermore, the method provides a potential rationale

for appearance of these psychotic effets. Rimonabant contains the substructure shown

in figure 4.6. This substructure is also found in the alprazolam molecule used in the

treatment of psychic disorders (a molecule in SIDER). Interestingly, among the 165

molecules of PubChem that also share this substructure and for which pharmacolog-

ical annotation is available, 40 are classified as ”anti-anxiety agents”. A reasonable

hypothesis to explain rimonabant’s severe side-effects may be the presence of this

substructure, together with the nature of its protein target (namely, the cannabinoid

receptor).

Terfenadine (DB00342 in DrugBank) is an anti-allergic agent which was withdrawn
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Figure 4.6: The substructure of Rimonabant selected to be a clue of psychoacticity.

by the U.S. Food and Drug Administration in 1997 because of toxic effects on heart

rhythm. The “Aortic stenosis” and “aortic valve incompetence” keywords rank 9-th

and 11-th among the predicted side-effects for this drug. These related side-effects

are known to often lead to arrhythmias [98], as observed for this drug. In this case

again, our method would have foreseen potential severe cardiac side-effects.

4.2.5 Discussion and conclusion

In this section we investigate the question of predicting potential side-effect profiles

of drug candidate molecules based on their chemical structures using sparse canonical

correlation analysis (SCCA). The method is computationally efficient and is appli-

cable on large datasets. From a system perspective, the originality of the proposed

method lies in the integration of chemical space and pharmacological space in a uni-

fied framework, in the extraction of correlated sets of chemical substructures and

side-effects, and in the prediction of a large number of potential side-effects in a row.

Numerical experiments suggest that the method is competitive with state-of-the-

art approaches in the task of predicting drug side-effects based on chemical structure.

After training the method using publicly available data, we could predict side-effect

for out of sample molecules which we could confirm using independent information

sources.

One main difficulty of using SCCA is to choose appropriate sparsity parameters

and appropriate number of components. High sparsity promoting parameters would
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lead to an over-sparse model in all the cases, which might be misleading in the inter-

pretation if the degree of sparsity was not tuned carefully. The optimal parameters

value depends highly on the definition of the objective function to be investigated in

the cross validation. We evaluated global prediction accuracy, involving all possible

drug-side-effect associations. The definition of an appropriate objective function in

the cross-validation is an important issue. There remains much room to develop a

more appropriate way to choose the parameters, depending on the goal of the analysis.

The proposed method can be applied at various stages of the drug development

process. At early stages, among several active drug candidates, the method could

help to choose the molecules that should further continue the process and those that

should be dropped. It could also help to find new indications for known drugs,

a process named drug repurposing. Indeed, side-effects of drugs used in a given

pathology can be viewed as a beneficial effect in another pathology. Sildenafil is

a famous example of such drug repositioning. The method could help to identify

chemical substructures of known drugs that might participate in the appearance of a

given side-effect. These substructures could be used as building blocks in fragment-

based drug discovery approaches [44] for pathologies in which this side-effect could

be positively exploited.

Experimental results suggest that the SCCA approach is competitive with state-of-

the-art methods in term of prediction accuracy. It associates chemical substructures

and protein domains in components. From a biological point of view, we provide

examples that illustrate the modulation of drug side-effects by chemical structure.

These examples were provided by the analysis of extracted components. The under-

lying mechanical mechanism is the protein ligand interaction that we investigated in

chapter 3. Drugs perturb biological process by interacting with the corresponding

proteins. Therefore a logical continuation of this work is to integrate both chemi-

cal and protein target information in order to predict side-effects. The next section

describes an extension of this work based on this idea.
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4.2.6 Integrating different sources of information

An extension of this work was proposed in [136] which we briefly outline in this

paragraph. In this section, we considered predicting drug side-effects from chemical

structure. As mentioned in the introduction and in chapter 3, drug side-effects are the

result of the interactions between the drug and all its targets. This point was further

illustrated by giving examples of chemical substructure and side-effect association

which were coherent in terms of protein target interaction profiles. These examples

were extracted using SCCA method without incorporating this target profile infor-

mation in the analysis. The next step is to include protein target information for

side-effect prediction. Moreover, both chemical information and protein target infor-

mation can be combined to achieve potentially greater accuracy on this prediction

task.

[136] proposes to use kernel regression to integrate chemical and protein target

information to predict side-effects. The protein and ligand information used is similar

to those used in chapter 3, and the chemical and side-effect information are the same

as in the present section (see section 4.2.2). Kernels offer a flexible framework to

combine different sources of information to make predictions. Using properties such

as additivity, it is possible to build kernel reflecting both chemical similarity and

target protein profile similarity for drugs. Kernel regression consists in combining

the square loss with a class of functions defined by a positive definite kernel in a

supervised learning framework. Solving the kernel regression problem can be done in

closed form and requires a matrix inversion.

Based on an extension of the dataset presented in this section (including protein

target information from DrugBank database [128] and Matador database [49]), the

work of [136] compares the CCA based methods and kernel regression based methods

when considering chemical information or protein target information separately or

considering the integration of both sources of information. The results presented in

[136] suggest that using both sources of information significantly improve the per-

formances in predicting side-effects for drugs when using kernel regression methods.

Although the problem tackled in the present section is very similar to that of this

extension, it is not possible to compare them quantitatively. Indeed, [136] is based on
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a slightly different dataset and filters very frequent side-effects. Moreover, the perfor-

mance metrics used are different (precision recall curve instead of Receiver Operating

Characteristic).

Finally, the methods proposed in [136] only consider performance on side-effect

prediction tasks and do not provide any interpretable biological feature. Therefore,

they do not provide any clue to associate chemical fragments with specific side-effect

as we presented in the previous section. However, the study presented in [136] demon-

strates on the drug side-effect prediction task that the integration of different sources

of informations improves the prediction accuracy. This is a natural extension of

the study presented in this section and a contribution to the development of system

based approaches in the context of phenotypic characterization of un-marketed small

molecules.
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4.3 Cell population phenotyping

This section is dedicated to the study of the phenotypic effect of siRNA gene knock

down experiments based on high content screening data. A siRNA is a small RNA

molecule which is able to bind a specific messenger RNA in order to prevent the

translation of the underlying gene. This process results in the silencing of further

molecular mechanisms and may finally cause a phenotypic change at a higher level

in the hierarchy of biological scales. The biological scale considered here is that of

populations of cells. At such a scale, a group of cells can be viewed as a system

which organization holds information about the behaviour of the group as a whole.

The introduction describes the technology and motivates the necessity to take into

account variability within a population of cells and descriptors dependence structure.

These specific considerations arise from the fact that we consider groups of cell as

complex entities. Indeed, they do not apply when considering cells as separate entities.

Preliminary numerical analyses reinforce these remarks based on experimental data.

A probabilistic model is described and its properties are investigated in terms of

phenotypes at the level of cell populations. The results presented are based on the

work published in [95].

4.3.1 Introduction

High content screening data processing

Fluorescent markers allow to label virtually any cellular structure in living cells [43].

Recent advances in sample preparation and microscopy automation allow cell popula-

tion imaging on a large scale [96]. Both technologies lead to the development of High

Content Screening (HCS) platforms which allow screening living cells under a wide

range of experimental conditions. Classically, the aim is to identify a therapeutic

target, or a drug candidate. One screen consists in taking several pictures of a large

number of cell populations, for example, transfected with RNAi tools or exposed to

small molecules. Each experiment is performed in a well in which several pictures are

taken, called fields. It gives access to a whole panel of cellular responses to a specific
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manipulation. The outcome is a series of cell population images which holds much

more information than the single averaged value of the cellular response, classically

recorded in HTS screens. The available information accounts for cell variability ac-

cording to various features, which is precious to characterize a population of cells.

However, the heterogeneity of cellular responses makes it difficult to compare and

interpret experiments. In the framework we consider in this work, processing the

outputs of such experiments requires three steps as illustrated in Figure 4.7.

• Step 1, segmentation: This step consists in identifying cells in images and

extract features that characterize the shape and texture for each individual cell.

• Step 2, cellular phenotyping: This step usually involves machine learning

algorithms that classify cells according to different predefined cellular pheno-

types based on cellular features and on a training set of annotated cells for

which this phenotype is known.

• Step 3, population phenotyping: This step aims at defining phenotypes (or

classes) at a population level, using population descriptors derived from cellular

phenotypes, in order to describe and compare different experiments.

Segmentation and cellular phenotyping steps have been well studied (steps 1 and 2).

There has been a huge amount of work to apply image processing tools to cell seg-

mentation and cell features extraction from cell population images. Typical cellular

features used in this context are nucleus and cytoplasm size, texture and shape. The

cellular phenotyping step aims at converting, for each single cell, the numerical val-

ues corresponding to its cellular features into predefined biological phenotypes that

are relevant at the cellular scale and characterize the cell status. Typical examples

are cell morphology classes, such as shape and appearance or cell cycle state (G1, S,

G2 or M phases). Coupling the image segmentation step with supervised machine

learning algorithms, many authors proposed methods to classify cells according to

various predefined cellular phenotypes using HCS data and a training set of anno-

tated cells [24, 125, 65]. These applications developed in the last decade demonstrate

empirically the effectiveness of machine learning algorithms in this setting. Example
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Figure 4.7: HCS data acquisition and processing. After experimental acquisition, we
have four images, or fields, per well. Step 1 consists of isolating each cell in each image
and computing cell features by means of image processing tools. These features are
used to classify cells in each image according to different predefined cell phenotypes
in a second step (for example M, G2 phases or apoptosis). This classification provides
population descriptors that can be used to define population phenotypic classes.

of algorithms used in this context are state-of-the-art classification algorithms such

as support vector machines [112] or boosting [36].

Analysis methods

A common practice in HCS analysis is to inspect univariate cell features averaged

over wells [99, 13, 17]. This is suited for analysis of a single channel (for example

corresponding to a single cellular phenotype such as “apoptosis state”). However,

analysis of multiple cellular phenotypes may require to take into account their joint

distributions. In our setting, cells from images are phenotyped in steps 1 and 2. As

there are many potential cell phenotypes of interest, the multivariate setting must

be considered, which constitutes a characteristic of the proposed method. Moreover,

our model accounts for the field variability in each well, not only averaged values

over wells. This constitutes a step toward cell variability characterization within each
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well, since within a population of cells in a well, one may observe a range of cellular

responses to a given experimental condition. Indeed [113] observe a significant impact

of the cell population context on the cellular phenotypes in siRNA screens. They

found that local cell density, position of a cell in the local cell population or cell size

significantly influence phenotypes such as viral infection or endocytosis.

In an HCS experiment, once, all cells of a population (namely all cells of a well)

have been assigned cellular phenotypes, the aim is to characterize this cell population

(step 3). In other words, we would like to define a population phenotype based on the

cellular phenotypes of all the individual cells it contains, since different cells taken

from the same well can display different cellular phenotypes, even when exposed to

the same experimental conditions. Therefore, cellular phenotypes cannot be used

as population phenotypes in a straightforward manner, and it remains a challenging

issue to fill the gap between phenotypical characterization of a population of cells

and single cell phenotypes. In particular, definition of population phenotypes is an

important issue that one must solve in order to compare cell populations subject

to different treatments. For example [37] carry out the segmentation and cellular

phenotyping steps and propose a distance learning method to compare different cell

populations, and generalize known relations between experiments in a third step.

In a different experimental setting, [89] use trajectories defined by time varying cell

population responses to compare treatments.

Content of this section

In this section, we present a method to describe and compare populations of cells

in HCS experiments by defining population phenotypes. The input of the proposed

method is a table in which each row is a field (an image) and each column is a

population descriptor for these fields. For each well several fields are recorded, and

well assignment information is available for each field. However, the behaviour of

fields within the same well might be different. We refer to this aspect as “within-

population variability”. Moreover, population phenotyping should not only take into

account each single population descriptor individually, but also the joint distribution

of these descriptors. We refer to this as “dependence structure of cell population
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descriptors”. Taking this dependence structure into account improves the description

power of the model. Illustration of these aspects of our HCS dataset and further

biological motivations will be presented in the method section.

Going back to the HCS data analysis framework presented in Figure 4.7, the

proposed method tackles step 3: population phenotyping. A natural approach to

characterize a population of cells is to consider the output of the first two steps as

descriptors for the population of cells. The total number of cells and the proportion

of cells assigned to each predefined cellular phenotype describe the joint behaviour of

all cells in a given population. The problem is now to assign a population phenotype

based on the descriptors of this cell population. For example, in the present study, we

aim at defining population phenotypes based on the following population descriptors

: cell count, and cellular phenotypes which are represented by proportions of cells in

the different stages of the cell cycle. A population phenotype is meant to characterize

the biological state of the cell population in a given experiment. Each population

phenotype (or class) should gather cells which behaviours are similar, and population

of cells showing dissimilar behaviours should be assigned to different classes. The

conceptual difference with the cellular phenotyping step (step 2) is that we do not

have predefined population phenotypes, nor do we have annotated cell populations

according to population phenotypes. Indeed, the question of how to define such

population phenotypes is still open. Therefore, while a supervised framework is suited

for solving step 2, because there exists predefined cellular phenotypes, we propose

an unsupervised method to tackle the population phenotyping step (stpe 3) where

predefined cell population phenotypes are unknown.

We model a cell population using a hierarchical mixture model which is a specific

kind of bayesian network, a widely-used class of probabilistic models [78]. “Within-

population variability” is modelled using a hierarchical structure and “dependence

structure of cell population descriptors” is modelled using multivariate probability

distributions. The output of the method characterizes the density of the input fields

in the population descriptors space and assigns a phenotypic class to each well. A

copula-based parametrization is compared to a gaussian parametrization of the pro-

posed mixture model (details are found in the methods section). To validate our
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hypotheses regarding “within-population variability” and “dependence structure of

cell population descriptors”, we compare performances of the two preceding models

to a baseline gaussian mixture model with diagonal covariance matrix, which would

correspond to ignoring these two aspects of the data.

In summary, the proposed method is a tool for analysing cell population data. It

relies on prior image segmentation and cellular phenotype assignment which corre-

sponds to steps 1 and 2 of this analysis framework. The main purpose of the method

is to extract cell population phenotypes and to assess phenotypic variability at the

level of cell populations. The model allows to take advantage of HCS specific in-

formation: “dependence structure of population descriptors” and “within-population

variability”, which our experiments suggest to consider in our context. This can be

used to tackle the problem of novelty detection (for example, outlier genes in a siRNA

experiment), which is one of the main goals of HCS experiments. We validate a HCS

data analysis method based on control experiments. It accounts for HCS specificities

that were not taken into account by previous methods but have a sound biological

meaning. Biological validation of previously unknown outputs of the method consti-

tutes a future line of work.

4.3.2 Materials and Methods

Experimental acquisition

siRNA screening was performed on shA673-1C Ewing sarcoma derived cell line [121]

by the Biophenics platform at Institute Curie. Two experimental conditions were

considered: cells were either transfected with a negative siRNA controls (Luciferase

GL2 siRNA, Qiagen) or a positive siRNA control (KIF11). Cell numeration and

mitotic figures were determined using DAPI staining, cycle phases distinction were

determined using EdU (for S Phase) and Cyclin B1 (for G2-M transition) immunoflu-

orescence staining. Apoptosis was detected by cleaved caspase 3 immunofluorescence

staining. Images were acquired on IN Cell1000 Analyzer (GE Healthcare Life Sci-

ences) and segmented using IN Cell Investigator software.
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Dataset

Our dataset is comprised of 2688 fields belonging to 672 wells for which we have total

cell count and proportions in S, G2, M and Apoptotic phases. Each well is either

related to a GL2 or a KIF11 experiment. In addition , we have well assignment

information for each field (336 wells x 4 fields per well x 2 manipulations = 2688

fields). Note that cellular phenotypes are not exclusive here. This dataset is one

example of output of the two first steps we mentioned in the introduction and the

purpose of this study is to validate our method based on it. The proportion of cells

in the G0/G1 phases is deduced from the total of those in the S, G2, M.

Preliminary data analysis

To motivate the need for accounting for “dependence structure of population descrip-

tors” and “within-population variability”, we present two simple observations arising

from the dataset described in the previous paragraph.

First, we studied the association between cell population descriptors. More pre-

cisely, we searched for potential positive or negative correlation between the cell count

and the other population descriptors. As shown in Table 4.3.2, there is no association

between number of cells and S-phase proportion, as expected: DNA replication is a

process of quite constant duration because it mainly depends on the species and the

size of the genome. Therefore, the length of the S phase should not depend on the

proliferation status or the size of the cell population, as observed. There is a slight

positive association between cells number and G1/G0-phase proportion. A plausible

biological interpretation is that, at a higher number of cells in a well, the population

tends to reach confluence, a situation in which the cell cycle is arrested and cells are

known to accumulate in phases G0/G1. In addition, we observed stronger depen-

dences between population descriptors. A positive association is observed between

cells number and G2-phase proportion, as well as a negative association between cell

number and M-phase proportion. This is a biological observation which has not been

generally reported, at least to our knowledge. It may be specific to our experimental

design, in which the fields with the highest numbers of cells are reaching the limit
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Table 4.2: Association between population descriptors. Association between cell
count and proportion of cells in different states based on negative controls. The mea-
sure of association is Spearman’s rho and the p-value is computed via the asymptotic
t approximation [54].

S G2 M Apoptosis G0/G1
rho 0.04 0.51 -0.44 -0.09 0.07

p-value 0.144 2e-16> 2e-16> 0.0006 0.01

of confluence, potentially leading to slow the G2 phase and consequently displaying

a reduced number of cells underlying mitosis. Whatever the interpretation of the

above observations might be, these results indicate that the cell descriptors used in

this study present a dependence structure, and this justifies the choice of a model

that can account for this dependency.

Second, we compared the dispersion of fields belonging to the same well to that

of fields randomly selected in the dataset. By dispersion, we mean how close a set

of fields are one to the other. The distance used is the euclidean distance and the

population descriptors used are cell count and proportion of cells in S, G2, M and

apoptotic phases. We scaled the data beforehand and used the measure of dispersion

of multivariate analysis of variance proposed in [4]. This is the sum of squared pairwise

distances. If we consider the set of fields {x1, . . . ,x4}, then the dispersion measure

is:
4∑

i,j=1

||xi − xj||2.

This is equal to the sum of squared distances of each point from the mean, up to a

constant multiplicative factor, and therefore measures how dispersed the fields are.

Figure 4.8 indicates that : (i) fields belonging to the same wells do display some

variability, which should be taken into account by the model, (ii) this variability is

smaller from that of randomly selected fields. Indeed, fields belonging to the same well

are part of the same experiment and therefore, are expected to display less phenotypic

variability than randomly selected fields. Taken together, these two observations are

respectively in good agreement with the ideas of modelling the experimental data
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Figure 4.8: Within population variability. Comparison of the dispersion of fields
belonging to the same wells (boxplot A) and randomly selected fields (boxplot B).
The measure of dispersion is the sum of squared pairwise distances. The population
descriptors (cell count and proportions of cells in S, G2, M and apoptotic states) have
been scaled beforehand.

taking into account (i) “within-population variability” (ii) within a hierarchical model.

Model

The proposed model aims at describing HCS data, i.e. a set of wells, each of them

containing four fields. The input of the method is a representation based on cell

descriptors at the field level (cell count, proportion of cells in S, G2, M and apop-

totic phases in our case), coupled to well assignment information. The output is

an ensemble of population phenotypes (classes) represented by multivariate distri-

butions. To each image (field), the method assigns a distribution over population

phenotypes. We added the quite natural constraint that fields belonging to the same

well should correspond to the same class. This hypothesis allows to take into account

the “within-population variability” in a given well, which should be part of the pop-

ulation phenotype characterization. This is made possible thanks to the hierarchical
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structure of the proposed model.

We tested two different parametrizations for this model : copula-based and gaussian-

based. In the former case, the dependence structure of the multi variate class condi-

tional densities are modelled using a copula independently from univariate marginals

which shape can be chosen separately. Copulas have been studied since the middle of

the 20-th century [40] and have been successfully applied to finance [115], hydrology

[41], meteorology [106], neurosciences [91] or gene expression data [73]. We introduce

copula-based distributions, to build probabilistic densities that represent cell pop-

ulation phenotypic classes. The use of copula for model-based clustering has been

suggested by [60], and proposed by [21] in a semi-parametric framework.

Formulation of the model: We observeXo which is composed ofN wells {X1, . . . ,XN}.
We assume that we have M fields in each well Xn. Each field is a vector in Rd. There-

fore we represent each well Xn by a M -tuple of vectors Xn = {xn1, . . . ,xnM} where
xni ∈ Rd for n = 1 . . .N and i = 1, . . . ,M . In our application, we have d = 5 and

M = 4. The components of this representation are cell counts and proportions of

cells in different phases of the cell cycle. In order to model different classes of wells,

we introduce the latent variable Z ∈ {1, . . . , K} associated to each well where K is

fixed in advance. We also assume that given the value of Z, the fields belonging to

one well are independent and that wells are independent and identically distributed.

These are typical assumptions made in graphical models literature. If Θ represents

the parameters of this model, the density associated to Xn = {xn1, . . . ,xnM} is then

P (Xn|Θ) =
K∑

Z=1

P (Z|Θ)
M∏

j=1

P (xnj|Z,Θ) (4.3)

With this definition, the likelihood of the total dataset Xo becomes

P (Xo|Θ) =
N∏

n=1

P (Xn|Θ) =
N∏

n=1

K∑

Z=1

P (Z|Θ)
M∏

j=1

P (xnj|Z,Θ) (4.4)
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Given Θ, this model can be viewed as a generative process which explains how to

generate the data from a probabilistic point of view. To generate a cell population (a

well Xn), this process takes the following form:

• Choose a population phenotype (a class) from a fixed list. This amounts to

sample Z ∼ P (Z|Θ).

• Given the population phenotype, generate several sub-populations (fields) ac-

cording to the multivariate distribution related to this population phenotype.

This amounts to sample for 1 ≤ j ≤M , xnj ∼ P (xnj|Z,Θ)

Given P (Z|Θ) (a multinomial) and the class conditional density P (xnj|Z,Θ), the

main issue is to perform inference and learning, which is reversing the generative pro-

cess defined above to estimate the class distribution related to each well, P (Z|Xn,Θ)

, and estimate the parameters of the distributions representing phenotypic classes.

We propose gaussian class conditional distributions and copula-based distributions

which we now describe.

Copula-based class conditional distributions: Copulas became popular in sta-

tistical literature at the end of the twentieth century. However, the study of these

probabilistic objects goes back to the middle of the century, see [88] for a general

review about copulas. The usefulness of copulas comes from Sklar’s theorem which

states that multivariate distributions can be formalized in term of copula and uni-

variate marginal [110] (see also appendix A).

We use the gaussian copula family which has been introduced in 2000 by [132].

We use the density function formulation of these copulas which let us work with

probabilistic densities. A gaussian copula density function is parametrized by a cor-

relation matrix R. We refer to the gaussian copula density function as cgR. Let

{Fθ1 , . . . , Fθd} be a set of univariate marginal distributions, {fθ1 , . . . , fθd} the corre-

sponding univariate densities, such that θi ∈ R+∗ × R+∗ for all i. We parametrize

fθ1 as a gamma distribution with parameters {θ11, θ12}. This is a distribution over

strictly positive numbers which represents cell counts here. Moreover, we parametrize

fθi , i > 1 as a beta distribution with parameters {θi1, θi2}. This is a distribution



4.3. CELL POPULATION PHENOTYPING 85

over (0, 1) which represents proportions of cells showing different cellular phenotypes.

Plugging these marginals in the gaussian copula cgR, whose correlation matrix is R,

allows to parametrize a distribution whose support is exactly the one our variables

are limited to, and to model the dependence structure between univariate marginals.

If x = (x1, . . . , xn) ∈ R+∗ × (0, 1)d−1, it takes the form:

P (x|R, θ1, . . . , θd) = cgR(Fθ1(x1), . . . , Fθd(xd)|R)
d∏

j=1

fθi(xi)

Moreover, we notice that such a parametrization of the class conditional distribution

involves exactly the same number of parameters as a standard gaussian model: one

correlation matrix and two parameters per univariate marginal. For copula-based

densities, standard parameter estimation by maximum likelihood [25] requires com-

putationally intensive numerical optimization. Approximations of this procedure have

been proposed to avoid this. Among them, inference function for margin [109, 63]

consists in estimating univariate marginal parameters first and to estimate copula

parameters given the marginal parameters in a second step. A semi-parametric pro-

cedure [40] has been proposed. This is similar in spirit, except that a non parametric

estimate of the univariate marginal distribution function is used (normalized ranks)

before estimating the copula parameters based on these non parametric estimates.

We used the latter method to estimate copulas parameters together with standard

univariate maximum likelihood estimates for marginals. [72] observed empirically

that this procedure is more robust to marginals misspecification than the standard

maximum likelihood and inference functions for margin. Moreover, this method is

less computationally intensive than the two former ones. Details about parameter

estimation procedures are provided in appendix A.

Inference and learning: Assume that we have a parametrized class probability

distribution P (Z|Θ) (a multinomial) and a class parametrized conditional distribution

P (x|Z,Θ), gaussian or copula-based in our case. Finding the best parameters for our

mixture model amounts to maximize (4.4) or the logarithm of (4.4). Optimizing this

objective with respect to Θ is made difficult by the presence of a sum over latent
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classes. Approximate inference has shown to be efficient in this kind of setting. [66]

provides a general framework for EM type inference among others (see also chapter

2), which we used to learn the parameters of the model and to infer phenotypic classes

of wells in our dataset. Sufficient statistics can be used in the gaussian case. In the

copula based model case, we implemented the semi-parametric estimation procedure

of [40]. The maximization step is very similar to standard maximization step for

Gaussian mixture models. First, univariate marginals parameters are estimated using

sufficient statistics and second, correlation matrix of copulas are estimated using

scaled ranks instead of absolute values of marginal variables. After optimizing the

model parameter Θ, we obtain K classes represented by class proportions P (Z|Θ)

and class distribution P (x|Z,Θ). Each well X can be represented as a mixture of cell

population phenotypes given by P (Z|X,Θ), which is inferred during the optimization

process.

Baseline comparison: The proposed model accounts for “within population vari-

ability” through its hierarchical structure and “dependence structure of cell popula-

tion descriptors” through multivariate probability distributions that model depen-

dence between variables. Those two aspects of the model are motivated by obser-

vations arising from the data. In order to validate those hypotheses, we compare

the performances of those two models to a standard gaussian mixture model with

diagonal correlation matrices. This model does not take into account the fact that

different fields come from the same well. It also assumes an absence of dependency

between population descriptors, because the gaussian class conditional distribution

covariances matrices are constrained to be diagonal.

4.3.3 Results

Data was generated from a siRNA based HCS on a Ewing sarcoma derived cell line.

The considered population descriptors were cell count and proportion of cells show-

ing different cellular phenotypes (S, G2, M phase or apoptotic state). From these

data, positive and negative siRNA controls were used in this work to illustrate our

approach. GL2 siRNA is a negative control that does not affect proliferation and
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cellular phenotypes. KIF11 siRNA is a positive control that induces cell death and

therefore leads to massive alteration of cellular phenotypes.

As presented in the “Preliminary data analysis” of Materials and Methods section,

we observed that the population descriptors displayed a dependent structure, and

that fields belonging to the same well presented less dispersion than fields randomly

selected from the dataset (see Figure 2). These preliminary results justify the use of

the proposed gaussian or copula based hierarchical models.

We first compare the gaussian and copula based parametrizations of the model

in terms of model fitting and generalization properties (See model fitting section).

Once parameters of the model are fitted to the data, we build an object representing

the density of the data we considered. This is useful in term of novelty discovery. In

our case, it would correspond to finding cell populations that are different from the

negative control population (GL2 silencing siRNA transfected cells), which behaviour

is supposed to be hardly affected by this transfection. Confronting a test dataset to

the model, evaluating the likelihood of this new data with respect to this model,

allows to measure how different from the training set the test set is. We observe that

the proposed method allows to separate positive and negative controls (see section

“Novelty detection and positive controls”).

Moreover, given the training set, the model classes define the population phe-

notypes and account for the joint distribution of cell population descriptors. We

investigate the properties of these phenotypic classes and underline that the cop-

ula based parametrization extracts more meaningful phenotypic classes (see section

“Model classes as population phenotypes”). Moreover, we show how those population

phenotypes account for different cell behaviours by relating the population phenotypes

to cellular phenotypes (see section “Relation between population phenotypes (classes)

and cellular phenotypes”).

We discuss the advantage of the proposed model compared to previous approaches

focusing on one specificity of the approach, “within-population variability” consider-

ation (see section accounting for “within population variability”). We first describe

the cross validation experiment that was carried out to evaluate properties of the

model.
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Cross validation

We performed 5-fold cross validation experiments on the negative controls dataset

composed of 336 wells which represents 1344 fields. This set is split into five subsets

of roughly equal sizes. Each subset is taken in turn as a test set, the model is trained

on the remaining four sets, and the likelihood of the test set is then evaluated with

respect to the model built with the training set. Because the optimization result

relies on the initial parameter value, we performed five random restarts for each fold.

This allows to evaluate the generalization performances of the model for the whole

dataset. We performed this experiment for the gaussian and copula-based models,

as well as the baseline model, for a number of population phenotypes ranging from 2

to 20. The number of classes is a parameter of the proposed method. We repeated

this experiment ten times over different splits of the dataset. The model giving the

best generalization property, i.e. the model with the highest test likelihood, was

then trained on the whole negative controls set and the corresponding classes were

analysed.

Model fitting

The cross validation experiment allows to compare different model performances on

this dataset. Because all the proposed model are probabilistic in nature, the first

criterion we choose to compare different models is the likelihood computed for a test

dataset . We proposed two parametrization of the mixture models, a gaussian and a

copula-based parametrization which we review in the method section. We compare

those two parametrization to the baseline model using this criterion .

Figure 4.9-a shows the training log likelihood of the two models and the baseline

model for different numbers of classes. This training likelihood was evaluated using

the whole training set. It appears that the copula-based model results in a higher

value of the training likelihood. This observation is valid for the whole range of

number of classes we considered. It also appears that the baseline fits much less to

training data .

Figure 4.9-b represents the test log likelihood, evaluated by cross validation, for
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the two models with different numbers of classes. Again, it appears that the copula-

based model has better generalization properties independently from the number of

classes. Here again the baseline model provides worse fit on test data .

This experiment shows that the proposed model outperforms the baseline model on

both training and test datasets for both gaussian and copula based parametrization.

This observation validates assumptions encoded in the model which we referred to as

“dependence structure of population descriptors” and “within-population variability”.

We consider now comparing in more details the two parametrizations of the proposed

model.

The copula-based model outperforms the gaussian model providing better fit on

training data and higher generalization properties on the negative control dataset,

while involving exactly the same number of parameters. The copula-based density

support matches the domain where our dataset is spread, while the gaussian support

is the whole space. Similar results have been reported in other comparative studies

of copula models based on different datasets: [32] is an example.

Based on these results, we pick up the model providing the best generalization

performances and fit it to the whole negative control set, restarting randomly the

algorithm 10 times to avoid local optimum for the parameters values. The results are

presented in the two following sections.

Novelty detection and positive controls

One of the objectives of modelling the negative controls density is to show that we

can detect cell populations that are different from these controls, because they could

correspond to experiments that are relevant for the studied biological question. To

illustrate this point, we used, as controls, cell populations that were transfected with

a KIF11 silencing siRNA. We refer to these cell populations as positive controls. It is

known that these controls should have a very different behaviour compared to negative

controls. Panels (a) to (e) in Figure 4.10 represent the densities of positive and

negative controls univariate cell population descriptors averaged over wells. Panel (f)

in Figure 4.10 represents the densities of positive and negative control log likelihood.

Here the model is trained on negative controls.
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Figure 4.9: Model fitting. Train (a) and test (b) log likelihood of the negative
control data for the two proposed models, and the baseline, varying the number of
phenotypic classes. Green corresponds to the copula based model, red corresponds
to the gaussian model, and black corresponds to the baseline model. For training
log likelihood, we picked the best model among 10 random restarts of the algorithm.
For the test log likelihood, the boxes account for the variability among ten different
splits of the data in a cross validation setting. Given a data split, for each fold and
each number of classes, we picked the best model among 5 random restarts of the
algorithm.

Positive controls are found to be very different from negative controls. It is easy

to distinguish them from negative controls only looking at cell count, for example.

The panel (f) in Figure 4.10 represents the distribution of log likelihood over wells.

The log likelihood given by the model separates the two types of controls. Training

our multivariate model on negative controls and testing it on experiments is not less

powerful than using univariate methods.

Model classes as population phenotypes

We propose to use several densities in a mixture model to define population pheno-

types by the classes of the model, which corresponds to a mathematical definition.

The number of classes was chosen by cross validation.

We inspected the univariate marginal densities. Figure 4.11 compares the em-

pirical density and the density fitted by the model for one population descriptor,

proportions of apoptotic cells, for two phenotypic classes. We notice that the model
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Figure 4.10: Novelty detection and positive controls. Density plot of cell population
descriptors averaged over wells (panel (a) to (e)) and log likelihood (panel (f)) given
by the model trained on negative controls. Positive controls are very different from
negative controls. It is easy to distinguish them from negative controls only looking at
cell count. The log likelihood given by the model separates the two type of controls.
We observe that the discriminative power of the univariate descriptors is not lost
when considering the model likelihood.

densities fitted by the copula model are closer to the empirical density compared to

those fitted by the gaussian model. In addition, the parameters of the copula distri-

butions represent physically valid distributions. For example, proportions of cells in

apoptosis is higher than 0. As shown in Figure 4.11, the copula-based model accounts

for this, while the gaussian model does not.

One example of use of the classes proposed by our model is the detection of

atypical behaviours in the training set. Indeed, we inspected visually the cell images

of negative control wells that were found in classes containing very few wells (3 classes

with 5, 6 and 9 wells respectively over a total of 336). We found that 17 among

these 20 wells were not relevant for the negative control modelling because they were



92 CHAPTER 4. PHENOTYPIC RESPONSE

Figure 4.11: Model and empirical distributions. Examples of classes found by the
model (Copula model on the left, gaussian model on the right). The proportion
of cells in apoptotic state is represented for the cell populations belonging to these
classes. We compare for two classes the univariate marginal densities. For each class,
the empirical density is represented with a solid line and the density fitted by the
model is represented with a broken line.

experimental outliers. These wells presented a recurrent atypical behaviour, and

therefore, a few small classes were inferred to account for this during the learning

procedure. Figure 4.12 shows bivariate scatter plots of the negative control fields and

with these outliers. The proposed method provides clues for detection of such cases.

Moreover, we observed that the other classes containing a higher number of wells

could account for experimental variability over cell populations. For example some

particular classes contained mainly fields in which cell populations had reached con-

fluence, while others did not, as we could observe in the corresponding images. All the

classes do not necessarily account for biologically interpretable differences, because

the diversity of cell population showing the same behaviours may require several

classes to model it accurately. The number of classes was inferred based on cross

validation generalization accuracy which is a much more objective criterion.
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Figure 4.12: Negative control outliers. Bivariate scatter plots of negative controls.
The red points correspond to fields belonging to small classes. They were indeed
considered as outliers after checking the images (they were found to be irrelevant).
Enough of these wells were present in the dataset so that separate classes were inferred
by the model to account for this atypical behaviour.

Relation between population phenotypes (classes) and cellular phenotypes

We considered negative controls and removed the outlier classes since, as mentioned

above, they corresponded to irrelevant fields. We inspected differences between re-

maining classes based on the population descriptors (which were defined from cellular
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phenotypes), because this could provide some clues about the biological interpretation

of population phenotypes. Figure 4.13 represents the field distribution of population

descriptors for each class. It shows that each population descriptor can separates

some of the classes, but that none of the descriptors separates all of the classes on its

own. This suggests that there is no redundancy between the population descriptors

and that the classes reflect possible combinatorial association between population de-

scriptors. The multivariate character of the proposed model allows to account for this

fact, while it would not be possible using each population descriptor individually.

Accounting for “within population variability”

HCS experiments do not provide an average behaviour characterization, but a whole

panel of cell responses within different sub populations (fields) taken from the same

well. This information is much richer than a simple average response. The data ac-

count for the variability of the responses within a given population. As observed in

section 4.3.2, this variability is not the same as the global field variability. The hier-

archical structure of the model allows to take this into account which cross validation

suggested to be a correct modeling assumption. Indeed, since all fields of a given

well correspond to the same experiment, we therefore impose that they belong to

the same phenotypic class. The corresponding density must account for the observed

variability between those fields.

We illustrate this point in Figure 4.14 which compares one particular negative

control well with the whole set of negative controls. Vertical red bars represented in

Figure 4.14 show that population descriptors averaged over wells do not account for

field variability (see Figure legend). Looking at panel (a) to (e) and blue vertical

lines, the well looks similar to the majority of the negative controls. This would

correspond to the single descriptor averaged over wells approach. However the red

bars in those panels show that there is a lot of variation between the fields taken from

this well, and some fields actually fall in tails of the distribution. This is reflected in

the (f) panel where the vertical blue line is close to the tail of the distribution. Thus

the methods could help to eliminate a potential experimental bias while a simpler

approach would not.
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Figure 4.13: Relation between classes and population descriptors. The classes are
represented on the x axis. For each class, the boxplot shows the distribution of
population descriptors among the fields of this class. Outlier classes were removed.
The cell count descriptor has a similar distribution for classes 2 and 3, but other
descriptors also allow to differentiate them. Similarly, classes 3 and 5 have a similar
proportion of apoptotic cells, but other descriptors also allow to differentiate them.
More generally, each descriptor separates different classes. This suggests that there
is no redundancy between population descriptors, and that the classes reflect the
combinatorial association between population descriptors.

4.3.4 Conclusion and discussion

In this section, we tackled the cell population phenotyping step in the HCS data

analysis framework. This step is performed after image segmentation and cellular

phenotyping (steps 1 and 2). It aims at comparing experiments, and gathering cells

with similar behaviours in the same class (i.e. assigning them to the population

phenotype). The main difficulties in achieving this task are linked to “dependence
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Figure 4.14: Example of a well. Panels (a) to (e), the density plots represent
the distribution of cell population descriptors averaged over wells for the negative
control dataset. Red lines are the values of the 4 fields of the considered well and
the blue lines are the population descriptors averaged over the 4 fields. Panel (f)
represents the density of the log likelihood for all negative controls. The blue vertical
line represents the log-likelihood of the considered well.

structure of population descriptors” and “within-population variability” which should

be taken into account. Simple observations showed that these are naturally occurring

facts observed in our HCS data. The necessity to take them into account precisely

come from the fact that we are considering populations of cells as systems which are

groups of smaller species (cells) and which organization is part of the characterization

of the behaviour at the population level.

We implemented and compared the performances of two different parametriza-

tion of a mixture model, and baseline model that does not account for the specific

aspects of the data underlined above. This was performed based on a dataset com-

prised of two types of cell populations. A comparison of model fitting on test data,

using cross validation, suggest that the two specific aspect of the data we focused

on when building the model should be considered when studying this kind of data.
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Moreover, the copula-based parametrization of the proposed model outperforms the

gaussian parametrization. However this copula-based model has some disadvantages

from the computational point of view, model fitting being much slower and requiring

approximations compared to the gaussian formulation.

The main features of cell populations that the model is able to describe are:

• Univariate variables (cell count or cellular phenotype proportions in our case),

described by parametric densities

• Multivariate dependence structure, described by a copula

• Variability within a cell population, described by the hierarchical structure of

the mixture model

These features constitute the specificity of HCS data. The proposed model takes

them into account to build a phenotypic characterization at the population level.

Cross validation experiments suggest that taking into account these aspects of the

data provides better models. The literature is very scarce regarding population phe-

notypes definition. To our knowledge, none of the proposed methods take into account

the “within-population variability”, which underlines the originality of the proposed

model. Pushing this idea further, a future line of work includes modelling at the cell

level. [111] propose to infer cell classes from HCS data using single cell measurement.

A future work direction is to add a level in the model to infer cell phenotypic classes

and population phenotypic classes at the same time in a global model. However the

inference computational cost increases a lot and online inference should be used such

as in [52].

One application of this model is novelty detection, which is measuring how a

cell population related to a given experimental condition is different from a control

population. Once a control density is estimated, one can attribute a likelihood to

each test experiment which allows to rank them according to how different they are

from the controls. For example, the model can detect which siRNA phenotypes are

different from a set of controls, and provide orientations toward the most relevant wells

in a set of test experiments. The present work constitutes a preliminary validation of

this procedure based on two limit cases.
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Moreover, the method can help gathering cell populations that show similar be-

haviours into phenotypic classes. We observed that it can be useful for detection of

irrelevant pictures gathered in separate phenotypic classes. The most important fu-

ture work is to assess to which extend the inferred phenotypic classes are biologically

meaningful. For example, wells in which siRNAs target genes with similar biological

functions or incubated with drugs with the same target should belong to the same

phenotypic class. Future work also include application of the model to target identifi-

cation. This would require further experimental study for the validation of potential

target genes.



Chapter 5

Dynamical system parameter

identification under budget

constraints

Résumé

Le point de vue adopté dans ce chapitre se situe à l’interface entre l’échelle moléculaire

considérée au chapitre 3 et l’échelle phénotypique présentée au chapitre 4. Nous

nous intéressons ici aux comportements dynamiques émergeant d’intéractions non

linéaires entre des espèces moléculaires. Ces propriétés dynamiques sont cepen-

dant trop abstraites pour être traitées comme des phénotypes. Le problème con-

sidéré est l’identification de paramètres d’un système dynamique et la construc-

tion d’un plan d’expérience afin de faciliter cette identification. Tous les résultats

présentés se basent sur des simulations numériques, la stratégie d’identification ainsi

que la dynamique moléculaire d’un réseau d’interactions sont simulés afin de com-

parer différents choix stratégiques. Nous discutons l’importance de définir des critères

numériques bien fondés dans le contexte de la recherche du meilleur plan d’expérience.

Une stratégie générale pour attaquer ce problème est présentée et une implémentation

numérique de cette stratégie est proposée. La comparaison de différentes approxima-

tions numériques est donnée ainsi que les résultats du challenge DREAM 7 “Network

99
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Topology and Parameter Inference” pour lequel la méthode a été conçue initialement.

Le contenu de ce chapitre n’a pas encore été publié.

Abstract

The point of view adopted in this chapter lies between the molecular scale treated

in chapter 3 and the phenotypic scale presented in chapter 4. We are concerned

with dynamical behaviours emerging from non linear interactions between molecular

species. These dynamical properties are too abstract to be considered as phenotypes.

The problem is to identify unknown dynamical parameters and to design experiments

that make this identification more efficient. All the results presented are based on

numerical simulations, both the identification strategies and the molecular dynamics

of a relatively small interaction network are simulated to compare different strategical

choices. We discuss the necessity to provide well defined numerical criteria in order to

optimize experimental design. A general strategy to tackle this problem is presented

and a numerical implementation of this strategy is proposed. Comparison of different

numerical approximation is provided as well as results from the DREAM 7 Network

Topology and Parameter Inference Challenge results for which this method was ini-

tially designed. The material presented in this chapter has not yet been published.

5.1 Introduction

Systems biology emerged a decade ago as the study of biological systems in which

interactions between relatively simple biological species (genes, proteins, metabolites

. . .) lead to overall complex behaviours [74]. Such studies require to specify network

structure and dynamical models. Typical descriptions of the dynamics of the system

can be stochastic or deterministic [130]. Both descriptions involve unknown param-

eters. This motivates the design of methods that optimize the choice of experiments

to be conducted in order to estimate unknown parameters from data [81]. Sequential

methods constitute a promising line of research for these questions [62], a problem

which is very close in its formulation to the active learning problem [107].
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Various methods have been proposed for sequential experimental design in systems

biology [62, 122, 9, 10, 116]. Most of them only take into account local uncertainty

about parameters true values, i.e. strong multi-modality of the objective function is

not considered. As pointed out in the literature, this is a very challenging inverse

problem and it might even be pointless from a dynamical point of view [97], or from

a biological point of view [34] when applied to real data. Indeed, it is shown in [97]

based on numerical simulations on molecular biology dynamical systems that widely

different parameter values produce very similar dynamical behaviours. Moreover [34]

show based on real time course data that using inverse problem methods to estimate

a unique parameter vector produces values which are biologically meaningless.

5.1.1 Evaluation of experimental design strategies

The experimental design problem considered in this chapter is broader than the pa-

rameter estimation problem. It relies on the ability to estimate parameters accurately.

In addition, the design of experiments requires to figure out how further experiments

could mitigate uncertainty and under-determinedness of the system. The perfor-

mances of a strategy regarding this problem are difficult to evaluate. Moreover,

different strategies might perform differently on different dynamical systems. It is

therefore crucial to be able to evaluate, simulate the experimental design process in

order to choose a relevant strategy when faced with a problem of this type.

As a consequence, proposing a strategy that could be reproducibly evaluated based

on simulations requires the design choices to rely on well defined numerical criteria.

The design strategy proposed in this chapter relies on numerical approximation of a

unique numerical criterion. Therefore, it is possible to carry out simulation of the

design process and compare different numerical approximation schemes based on this

criterion.

5.1.2 Proposed strategy

This work is motivated by DREAM7 Network Topology and Parameter Inference

Challenge [1, 2] which focuses on ordinary differential equation parameters estimation
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from in silico experiments with budget constraints (i.e. limit of the quantity of data

one has access to). This challenge is a simulation of an experimentation process in the

context of systems biology. One has to estimate dynamical parameters of a system

and can require to perform experiments on this system with different costs. The

objective is to estimate the parameters as well as possible given a fixed budget by

choosing sequentially experiments to be performed on the system to get new data.

We propose a strategy adapted from active learning paradigm [100] which can be cast

in the Bayesian framework of [81] for experimental design. This formulation has two

appealing conceptual advantages:

• We provide a unique numerical criterion to discriminate between several exper-

iments

• Bayesian paradigm relies on distributions over parameter space instead of a

single value

The motivation behind the first idea is to construct a method that can be com-

pletely automatized without any human intervention. The focus is not on being

optimal for a specific problem instance, rather on the generality of the method to

make it easier to transpose to other problems and to make it potentially usable on

large scale problems which sizes do not allow to deal with systematic human interven-

tion. The second idea is motivated by the remarks of [97, 34] which were presented

in the beginning of this introduction.

5.1.3 Content of the chapter

DREAM7 challenge was the occasion to implement this formulation and compare

it to other methods. In addition, we implement a fully automatized simulation of

the experimental design process. This allows to make extensive comparisons be-

tween different space search procedures and to compare with a blind random design

strategy. We underline that this is a necessary condition to provide reproducible com-

parison between different strategies. As our results suggest, the proposed strategy

reproducibly outperforms random design. Moreover, exploring several modes of the
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Figure 5.1: Gene network for DREAM7 Network Topology and Parameter Inference
Challenge. Promoting reactions are represented by green arrows and inhibitory reac-
tions are depicted by red arrows.

objective function has a large impact on the performance leading to results that are

more reproducible.

To summarize, we describe an implementation of a general scheme that could in

theory be applied to other dynamical system parameter estimation problems under

budget constraints. The procedure can be completely automatized which allows to

compare different strategies and verify the reproducibility of the results. Finally, we

question the approach of parameter inference and present a slightly different perspec-

tive on the problem of dynamics characterization.
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5.2 Methods

5.2.1 In silico network

We took part in the first challenge of DREAM7 Network Topology and Parameter

Inference Challenge and used the system provided to carry out our experiments. The

network is composed of 9 genes. We were provided with the complete network struc-

ture, including expression of the kinetic laws governing the dynamics of this network

for which parameters had to be estimated. For each of the 9 genes, both protein

and messenger RNA were explicitly modelled and therefore the model contained 18

continuous variables. Promoter strength controls the transcription reaction and ribo-

somal strength controls the protein synthesis reaction. Decay of messenger RNA and

protein concentrations is controlled through degradation rates. A complete descrip-

tion of the underlying differential equations is found in appendix B. The complete

network description and implementations of integrators to simulate its dynamics are

available from [2]. A picture of the network is provided in figure 5.1. Promoting

reactions are represented by green arrows and inhibitory reactions are depicted by

red arrows.

Various experiments can be performed on the network producing new time course

trajectories in unseen experimental conditions. An experiment consists in choosing

an action to perform on the system. The possible actions are

• Nothing (Wild type)

• Delete a gene (remove the corresponding species).

• Knock down a gene (increase the messenger RNA degradation rate by ten folds).

• Decrease gene ribosomal activity (decrease the parameter value by 10 folds).

These actions were coupled with observable quantities

• Messenger RNA concentration for all genes at two possible time resolutions.

• Protein concentration for a pair of proteins at a single resolution.
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Purchasing data consists in selecting an action and an observable quantities. In ad-

dition, it was possible to estimate the constants (binding affinity and hill coefficient)

of one of the 13 reactions in the system. Different experiments and observable quan-

tities have different costs, the objective being to estimate unknown parameters as

accurately as possible, given a fixed initial credit budget.

Notations

Model parameters are denoted by θ ∈ Rp. e denotes an experiment to be performed,

i.e. choice of a specific perturbation. The choice of one parameter value θ and exper-

iment e leads to time trajectories which we denote by Y (θ, e). In our case, they are

positive quantities since we consider concentrations of chemical species. In practice,

we can obtain them using differential equation solvers. The underlying dynamical

system does not play a significant role here and we consider that the only access

we have to it is through Y (θ, e). In addition to perturbation, we need to choose an

observable obs from a set of observables O. The point here is that we cannot observe

the whole system in one experiment, and in particular, we cannot observe the whole

set of time trajectories Y (θ, e). We only have access to a subset of these trajectories

discretized with respect to time at a given resolution. The choice of an observable

obs leads to an observations o which is a noisy realization of a sub-part of the true

underlying dynamical system Y (θ∗, e) where θ∗ is an unknown parameter. The prob-

lem is to choose a series of experiments and observables in order to infer θ∗ as well as

possible, given the cost constraints.

Model

P denotes a likelihood model related to a single experiment. Roughly speaking, for a

given parameter value θ, experiment e and observable obs, P (o|θ, e, obs) reflects how
well data o fits to Y (θ, e). In our setting, the noise model was specified by challenge

organisers and we took the corresponding likelihood to model data (heteroscedastic

Gaussian noise which variance is an affine transform of the mean value, see the chal-

lenge web page for details). If we have K experiments e1, . . . , eK and observables
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obs1 , . . . , o
bs
K with corresponding observations o1, . . . , oK , the joint likelihood function

has the form:

P (o1, . . . , oK |θ, e1, . . . , eK , obs1 , . . . , obsK) = P (o1|θ, e1, obs1 )× . . .× P (oK |θ, eK , obsK)

(we assume independence of noise realizations). We denote by π0 a prior distribution

over parameter space Θ. We define sequentially πK to be the posterior distribution

over model parameters when we get data from experiments 1 to K,

πK(θ) = P (θ|o1, . . . , oK , e1, . . . , eK , obs1 , . . . , obsK) (5.1)

∝ π0(θ)× P (o1, . . . , oK |θ, e1, . . . , eK , obs1 , . . . , obsK)
∝ πK−1(θ)× P (oK |θ, eK , obsK).

Risk function

We focus on parameter inference. Let θ∗ ∈ Θ ⊆ Rp denote the true model parameters

and θ another parameter value. We implemented the risk used by challenge organizers

to evaluate parameter estimates, namely r(θ∗, θ) =
∑p

i=1 log(
θi
θ∗i
)2. We do not have

any access to the true model parameters, but we can estimate posterior distributions

related to it. Given such a distribution π, we define the expected risk at θ0 by

R(θ0, π) = Eθ∼πr(θ, θ0).

Sequential experimental design

The purpose of the proposed framework is to choose experiment e and observable obs

in an optimal way, and iterate. The proposed methodology is very close in spirit to

that proposed in [81]. However, the design is made sequentially in a greedy fashion,

and not globally, because of high computational cost. Although the setting is slightly

different, the proposed methodology can be viewed as an application of the strategy of

[100] using a loss that is adapted to our setting. Formally, at each step k, we have the

knowledge of e1, . . . , ek, o
bs
1 , . . . , o

bs
k , o1, . . . , ok which defines a posterior distribution πk

on the parameter space Θ as given in (5.1). Given θT parameter values, an experiment

e and an observable obs, we note o ∼ PθT ,e,obs to define that o follows the distribution
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which density is P (o|θT , e, obs) as given by our likelihood model. We denote by πo the

posterior probability over parameter space given the observation o. Next perturbation

ek+1 and observable obsk+1 are chosen such that:

(ek+1, o
bs
k+1) = argmin

e,obs
EθT∼πk

Eo∼P
θT ,e,obs

R(πo, θT ) . (5.2)

where πo(θ) ∝ πk(θ)×Pθ,e,obs(o). This formulation follows the principle of integrating

out what is unknown, namely the true parameter value and the noise. If different

experiments and observables have different cost Ce,obs , then we can choose the com-

bination with the largest marginal expected risk reduction. In this case, we have:

(ek+1, o
bs
k+1) = argmax

e,obs

EθT∼πk
Eθ∼πk

r(θT , θ)− EθT∼πk
Eo∼P

θT ,e,obs
R(πo, θT )

Ce,obs

. (5.3)

In both cases, the most important task is to estimate the expected risk for unseen

experiments and observable combinations. Given an experiment e and observable obs,

in order to estimate the expected risk of this combination, we consider all θT ∈ Θ

and estimate the risk related to each of them if it was the true parameter value,

integrating out noise. We then integrate out θT and choose the best combination.

Choosing the next experiment according to this procedure would require to compute

a triple expectation which is of course not tractable analytically. This formulation is

general and provides an objective criterion that could be applied to many different

problems. However, implementing this method requires very strong approximations

where algorithmic details play an important role.

5.2.2 Implementation

We denote by E1, . . . , EN , the set of possible future actions. In general, Ei describes

a perturbation e of the system and an observable obs. At each iteration K, we have

the knowledge of the past, o1, . . . , oK , e1, . . . , eK , o
bs
1 , . . . , o

bs
K . This defines posterior

distribution over parameter space πK . This distribution cannot be directly manip-

ulated and needs to be approximated in some way. For this, we rely on sampling.

The two building blocks of the method are sampling from πK given the past (a brief
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introduction to sampling is given in chapter 2), and evaluating the risk of each sample

point. Algorithm 1 summarizes the procedure to choose the next action. We note

that the structure of the algorithm is very similar to what is proposed in literature

(e.g. [62, 122, 9, 10, 116]), we first evaluate parameter uncertainty given the data at

hand and then optimize the choice of the next experiment given this uncertainty. The

specificity of the proposed scheme is that it takes advantage of the theoretical and

practical tools available for Bayesian inference. Moreover, a unique numerical crite-

rion is used to discriminate between experiments. This criterion is based on expected

risk and, by construction, takes interactions between all components of the problem

into account. An illustration of this fact is given in section 5.3.1.

Algorithm 1: NextExperiment

input : o1, . . . , oK , e1, . . . , eK , o
bs
1 , . . . , o

bs
K , {E1, . . . , EN}

output: eK+1

begin
Θ ← sample(πK)

for e ∈ {E1, . . . , EN} do
for θT ∈ Θ do

RθT ← evalRisk(θT)

Re ← mean(RθT |θT ∈Θ)
eK+1 ← choose({Re})

Practical details

We implemented the proposed strategy using the same noise model and risk function

that were used to evaluate candidates in the DREAM7 Network Topology and Pa-

rameter Inference Challenge [1, 2]. This section describes approximations that were

made in our implementation of the proposed strategy. As we mentioned in previous

sections, the problem cannot be solved exactly and these approximations are needed

to apply our strategy. They could be replaced by other approximations. The appeal-

ing specificity of what is proposed here is that one uses the same sample to estimate

the current posterior and the expected risks of all possible actions at each step of
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algorithm 1. We refer the reader to [5] for an introduction to sampling schemes and

to [90] for a description of finite difference approximation and BFGS algorithm. A

brief introduction to sampling approximations is given in chapter 2.

Enforcing regularity through the prior distribution

Evaluation of parameter likelihood requires to solve several initial value problems.

We used the implementation of the method proposed in [15] provided in the package

[114]. The prior distribution π0 plays a crucial role at early stages of the design

when no data is available about many aspects of the system’s behaviour. It penalizes

parameters leading to dynamical behaviours that we consider unlikely. In addition

to a large variance log normal prior, we considered penalizing parameters leading to

non smooth time trajectories. This is done by adding to the prior log density a factor

that depends on the total variation of time course trajectories. The advantage of this

is twofold. First, it is reasonable to assume that variables we do not observe in a

specific design vary smoothly with time. Second, this penalization allows to avoid

regions of the parameter space corresponding to very stiff systems, which are poor

numerical models of reality, and which simulation are computationally demanding or

simply make the solver fail. This is very beneficial to guide the search in the sampling

phase.

Sampling from posterior distribution

The likelihood surface shows multi-modality, plateaus and abrupt jumps as illustrated

in figure 5.2. Traditional sampling techniques tend to get stuck in local optima, not

accounting for the diversity of high likelihood areas of the parameter space. Finite

difference calculation allows to compute an approximation of the gradient of the log-

likelihood function which is used together with BFGS algorithm to find local maxima

of the posterior distribution. Finite difference approximation is known not to be the

most stable numerical method for gradient computation. However, this is the method

that provided us with the best trade off between computation, sample size, sample

diversity and data fitting. In order to ease sampling, we use a local search method
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Figure 5.2: Log likelihood surface for parameters living on a restricted area of a two
dimensional plane. For clarity, scale is not shown. Areas with low log-likelihood
correspond to dynamics that do not fit the data at all, while areas with high log-
likelihood fit the data very well. The surface shows multi-modality, plateaus and
abrupt jumps which makes it difficult to sample from this density. When parameters
do not live on a plane, these curses have even higher effect.

to provide an initial value for a Metropolis Hastings sampler (see also chapter 2).

We combine isotropic Gaussian proposal and single parameter modifications. This

strategy can be repeated several times to get samples from different modes.

Estimating the expected risk

Experiments that provide a time course output: suppose that e is a pertur-

bation of the system and obs is an observable. The risk related to this experiment is

expressed as:

R = EθT∼πK
Eo∼P

θT ,e,obs
Eθ∼πo

r(θ, θT )
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where πo(θ) ∝ πK(θ)×Pθ,e,obs(o). Suppose that we have a sample Θ, of size N , drawn

from πK . Choosing the next experiment requires to compute Eo∼P
θT ,e,obs

Eθ∼πo
r(θ, θT )

for each θT ∈ Θ. For a fixed θT , the output variable o is random. The inner expecta-

tion can be approximated by importance weighting:

Eθ∼πo
r(θ, θT ) ≃

∑

θ∈Θ

wo(θ)r(θ, θT )

where wo(θ) ∝ P (o|θ, e, obs) (prior terms cancel out, see also chapter 2). It is impor-

tant to normalize these weights correctly since dimensionality of different experiments

will be different. Consider the term Eo∼P
θT ,e,obs

[wo(θ)]. If we could compute this term,

the risk would be approximated as:

R ≃ 1

N

∑

θT∈Θ

∑

θ∈Θ

Eo∼P
θT ,e,obs

[wo(θ)] r(θ, θT ).

The inner expectation is difficult to compute due to normalization of the weight. We

evaluated it by drawing several outputs o for each θT , and tacking the average of the

corresponding normalized weights.

Estimation of model parameters: we have the possibility to determine some pa-

rameters of the dynamical model. Suppose that the experiment consists in evaluating

parameter i, the “posterior” probability distribution (the distribution which repre-

sents our uncertainty after seeing the result) becomes πθT (θ−i) = πt(θ−i, θi = θT i)

(where the “minus” subscript indicates that we remove the i-th parameter). As in

the previous section, suppose that we have a sample Θ, of size N , drawn from πt.

The expected risk of this experiment becomes:

R = EθT∼πt
Eθ−i∼πθT

r(θ, θT )

where πθT (θ) = πt(θ−i, θi = θT i). Using importance sampling we now can approximate

this risk as:

R ≃ 1

N

∑

θT∈Θ

∑

θ∈Θ

wθT (θ)r(θ, θT )
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where wθT (θ) ∝ πt(θ−i,θi=θT i)
πt(θ)

(see also chapter 2). Weights should also be normalized

properly in order to compare different experiments.

5.3 Results and discussion

5.3.1 Experimental results

Sub network

We considered testing the proposed method with a small sub-network. We took

the same architecture as in figure 5.1 only considering proteins 6, 7 and 8. There

are 6 variables which behaviour is governed by 13 parameters in this network. Since

the method is based on random-walk type exploration of probability distributions, we

simulated the design process 10 times with different pseudo-random number generator

seeds and same initial credit budget. We compared sampling from a single mode

and sampling from several modes as well as random and active experimental design.

Sampling from several modes means that we combine samples from several Markov

chains initialized using BFGS local search starting from different initialization points.

The results are presented in figure 5.3 and figure 5.4. It appears that given the same

sampling method (exploring several modes), our strategy leads to a better use of

available credits to estimate parameters. Indeed, the risk of the estimated parameter

value is significantly higher in the case of random design (see figure 5.4). Additionally,

exploring only a single mode at each step leads to much more variables estimates,

making it difficult to reproduce potential good results. The boxplot width is much

larger in this case.

Dream challenge

DREAM7 challenge was the occasion to compare this formulation to other methods

proposed by different teams. Table 5.1 presents the result of all participants. The

evaluation was based on both parameter evaluation and prediction of protein time

course in an unseen experimental setting. First, our method did not perform as well

as other methods. As mentioned in the previouse paragraph, the sampling strategy
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Figure 5.3: Comparison of risk evolution between different strategies on a subnetwork.
The figure shows the true risk at each step of the procedure, i.e. the approximate
posterior distribution is compared to the true underlying parameter which is unknown
during the process. The risk is computed at the center of the posterior sample. The
boxplots represent 10 repeats of the design procedure given the same initial credit
budget. Active design is our strategy while random design consists in choosing ex-
periments randomly. Multimodal means that we explore several modes, i.e. combine
several Markov chain samples with different starting points. Unimodal means that
we only consider one chain. The latest strategy leads to highly variable results. Our
active strategy outperforms the random design, we choose experiments that leads to
a better use of available credits, making it possible to perform more experiments at
the end.

greatly affects the performances of the method. One of the reasons for this result is

that we did not carefully tune the sampling and prior parameters when purchasing

data during the challenge. Second, the ability to predict well dynamical behaviour

does not seem to be strongly linked to the ability to infer parameters accurately.

Additional comments on this are given in section 5.3.2. Figure 5.5 compares predicted

and true trajectories in the unseen experimental setting used for the evaluation at
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Figure 5.4: Comparison of final risks after all credit has been spent for different strate-
gies on a subnetwork. The figure shows the true risk at the end of the procedure, i.e.
the approximate posterior distribution is compared to the true underlying parameter
which is unknown during the process. The risk is computed at the center of the pos-
terior sample. The boxplots represent 10 repeats of the design procedure given the
same initial credit budget. Active design is our strategy while random design consists
in choosing experiments randomly. Multimodal means that we explore several modes,
i.e. combine several Markov chain samples with different starting points. Unimodal
means that we only consider one chain. It is clear from this plot that combining
multimodal search and active design is beneficial.

the end of the challenge.

An illustration of method behaviour

The first data we had at hand were low resolution mRNA time courses for the wild

type (no perturbation of the system). The first experiments chosen by the method

were wild-type protein concentration time courses. This makes sense since we have

enormous uncertainty about proteins time courses because we do not know anything
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Team Dparam p-value Dprot p-value Score
orangeballs 0.0229 3.25E-03 0.0024 1.21E-25 27.40
Team 387 0.8404 1.00E+00 0.0160 3.39E-18 17.47
Team 93 0.1592 6.00E-01 0.0354 4.45E-15 14.57
Team 509 0.0899 1.88E-01 0.0475 6.28E-14 13.93
Team 374 0.1683 6.45E-01 0.0979 4.01E-11 10.59
Team 197 0.0453 1.37E-02 0.1988 1.93E-08 9.58
Team 202 0.1702 6.45E-01 0.3625 2.90E-06 5.73
Team 450 0.8128 1.00E+00 0.3564 2.53E-06 5.60
Team 111 0.3766 9.99E-01 0.8180 1.34E-03 2.87
Team 78 0.0699 9.83E-02 19.3233 1.00E+00 1.01
Team 408 0.1883 7.29E-01 3.2228 6.90E-01 0.30
Team 626 5.0278 1.00E+00 14.7744 1.00E+00 0

Table 5.1: Results of DREAM7 Network Topology and Parameter Inference Chal-
lenge. Two criteria were used to compare teams. The first one (column 2) is related
to precision of parameter estimation. The second one (Column 4) is related to pre-
diction of protein time course for an unseen experimental setting. p-values were
computed using a bootstrap procedure. The global score aggregates both criteria.

about them. Once we have purchased these datasets we ran our procedure to deter-

mine what the next experiment should be. Interestingly, the perturbations with the

lowest risk were related to gene 7 which is on the top of the cascade (see figure 5.1) as

shown in table 5.2. Moreover it seemed obvious from table 5.2 that we had to observe

protein 8 concentration. Indeed, figure 5.6 shows that there is a lot of uncertainty

about protein 8 evolution when we remove gene 7. Moreover, our criterion determined

that it was better to observe protein 3 than protein 5, which makes sense since the

only protein which affects protein 5 evolution is protein 8 (see figure 5.1). Therefore

uncertainty about protein 5 time course is tightly linked to protein 8 time course, and

observing protein 3 brings more information than observing protein 5. This might

not be obvious when looking at the graph in figure 5.6 and could not have been fore-

seen by a method that considers uncertainty about each protein independently. At

this point, we purchased protein 3 and 8 time courses for gene 7 deletion experiment

which results are available in figure 5.6.
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Figure 5.5: Comparison between the true time course trajectory and protein time
course prediction. This corresponds to the second criterion for the evaluation of
participants to the challenge (table 5.1).

Parameter and time trajectory variability

Figure 5.7 represents a sample from the posterior distribution after all credits had

been spent and no further experiments could be conducted. Both parameter values

and protein time course for the unseen experiment are presented. All parameters

have been optimized using local optimization. Some parameter clearly concentrate

around a single value while some other have very wide range with multiple accumu-

lation points. Despite this variability in parameter values, the protein time course

trajectories are very similar.

5.3.2 Discussion

Generalizability of the proposed framework

As stated in the introduction, one of the motivation for the approach we consider

was to build a method that is not specific to one instance of the problem and could
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Risk Cost Experiment Observe proteins
771 1200 Delete gene 7 3-8
1196 850 Decrease gene 7 RBS activity 3-8
1290 750 Knock down gene 7 3-8
1957 850 Decrease gene 7 RBS activity 3-7
2254 850 Decrease gene 7 RBS activity 7-8
2554 1200 Delete gene 9 3-8
2867 750 Knock down gene 7 8-9
4647 1200 Delete gene 7 8-9
4798 850 Decrease gene 7 RBS activity 8-9
4928 850 Decrease gene 7 RBS activity 5-8

Table 5.2: Estimation of the expected risk at a certain stage of the experimentation,
ten lowest values. There is consistency in the type of experiment to be conducted
(targeting gene 7 which expression impacts on a big part of the network) and the
quantities to measure (protein 8 almost all the time and protein 3 quite often). Figure
5.6 illustrate this point further.

Figure 5.6: Corresponds to table 5.2 figures. We plot trajectories from our posterior
sample (protein 8 concentration was divided by 2 and we do not plot concentrations
higher than 100). The quantities with the highest variability are protein 8 and 3
concentrations. This is consistent with the estimated risks in 5.2. There is quite
a bit of uncertainty in protein 5 concentration, however this is related to protein 8
uncertainty as protein 8 is an inhibitor of protein 5. Moreover, mRNA concentration
have much lower values and are not as informative as proteins concentrations. Red
dots shows the data we purchased for this experiment after seeing these curve and in
accordance with results in table 5.2.
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Figure 5.7: Comparison of parameter variability and time course trajectory variability.
This is a sample from the posterior distribution after spending all the credits in the
challenge. The top of the figure shows parameter values on log scale, while the bottom
shows prediction of protein time courses for an unseen experiment. The range of some
parameter values is very wide while all these very different values lead to very similar
protein time course predictions.

handle different structures using the same tools. A good experimental design strategy

should perform well on large variety of dynamical systems and not rely on specific

assumptions that are valid only for a few network structures. This is in our opinion

a key point in order to be able to deal with large scale networks of size comparable

that of a cell for example. Moreover, the experimental design strategy should produce

results that are reproducible.
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In order to be able to reproduce experimental results related to the experimental

design problem (for example to compare between different strategies), one needs to

make decision based on a well specified numerical criterion, which could aggregate

several criteria, not requiring human subjectivity. For DREAM7 challenge, our strat-

egy did not compare well to other strategies, as results presented in table 5.1 suggest.

Indeed, the strategy relies on sampling methods which should be tuned to perform

well on specific problems. Comparison of different sampling strategies was done a

posteriori. For the challenge, we used a sampling strategy that did not give results

with accurate reproducibility.

Our method would theoretically handle more complex systems, the limit being the

computational cost of simulating larger networks and exploring higher dimensional

parameter spaces. Different strategies for parameter space exploration and uncer-

tainty evaluation could be investigated for larger networks. We chose to use samples

from the parameter space because of the high multimodality of the likelihood func-

tion. A common approach in active design is to use single parameter value and to

measure dispersion of the likelihood around this point of the space. Our experiments

suggest that this approach does not lead to consistently reproducible results.

Parameter estimation versus network behaviour inference

As observed from the results of different challenge participants in table 5.1, better

parameter estimates do not necessarily lead to better reproduction of the original

system’s behaviour. Moreover, in our setting, as posterior distributions do not con-

centrate strictly around a single mode, many different parameters from different areas

of the parameter space lead to similar fit to the data. This was illustrated in sec-

tion 5.3.1 (see also figure 5.7) and has already been observed on similar numerical

simulations in [97]. These facts question the idea of single parameter estimation and

highlight the importance of reproducing the original dynamical system behaviours

compared to parameter estimation. Such observations are based on computer experi-

ments where the data is ‘clean’, meaning that the noise model and dynamics are well

specified. The effect highlighted here might be even more important in the study of
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real dynamical systems where data is not generated from a model. Indeed, experi-

ments conducted in [34] applying inverse methods to inference of kinetic parameters

based on real data suggest that finding a single parameter value is out of reach and

leads to biologically unrealistic parameter values. They point out the need to address

this problem. The Bayesian framework is an elegant alternative replacing the single

parameter strategy by probability distributions over parameter space. Its main draw-

back lies in higher computational cost. The natural research direction suggested here

is the design of efficient Bayesian inference methods for this specific kind of setting.

5.4 Conclusion

Computational systems biology is a promising line of research based on the heavy use

of computational resources to improve the understanding of the complexity under-

lying cells biology. The most widespread approach is to specify a dynamical model

of the studied biological process based on biochemical knowledge, and consider that

the real system follows the same dynamics for some kinetic parameter value. Recent

reports suggest that this has benefits in practical applications (e.g. [68]). System-

atic implementation of the approach requires to deal with the fact that some kinetic

parameters might be unknown. This raises the issue of estimating these parameters

from experimental data as efficiently as possible. An obvious sanity check is to recover

kinetic parameters from synthetic data where dynamic and noise model are well spec-

ified. This is already quite a challenge. The method we proposed takes advantage

of the Bayesian framework to sequentially choose experiments to be performed, in

order to estimate these parameters subject to cost constraints. The method relies on

a single numerical criterion and does not depend on specific a specific instance of this

problem. Experimental results suggest that the strategy works better than random

experimental choice, even though it is not optimal on specific networks where more

fine tuned strategies improve accuracy of kinetic parameter inference. We evidenced

the mechanisms underlying these observations.

The approach focusing on kinetic parameter estimation is questionable. We give

empirical evidences similar to these of [97] that raises the issue of well posedness of
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this approach showing that very different parameter values could produce very similar

dynamical behaviours, potentially leading to non-identifiabilities. Moreover, focusing

on parameter estimation supposes that the dynamical model represents the true un-

derlying chemical process. In some cases, this might be false. For example, hypotheses

underlying the law of mass action are not satisfied in the gene transcription process.

However, simplified models might still be good proxies to characterise dynamical be-

haviours we are interested in. The problem of interest here is to reproduce dynamics

of a system in terms of observable quantities, and to predict the system behaviour for

unseen manipulations. Parameters can be treated as latent variables which impact

the dynamics of the system but cannot be observed. In this framework, the Bayesian

formalism described here is well suited to tackle the problem of experimental design.

The natural continuity of this work is to adapt the method to treat larger prob-

lems. This raises computational issues and requires to develop numerical methods

that scale well with the size of the problem. The main bottlenecks are the cost of

simulating large dynamical systems, and the need for large sample size in higher

dimension for accurate posterior estimation. Promising research directions are pa-

rameter estimation methods that do not involve dynamical system simulation such

as [18] or differential equation simulation methods that take into account both pa-

rameter uncertainty and numerical uncertainty such as the probabilistic integrator of

[23].
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Conclusion

The common denominator to the studies presented in this thesis is the use of compu-

tational statistics for studying biological phenomena. The main motivation behind

the use of such methods is the complexity of the underlying tasks. The example of

unsupervised correlation based methods and model based clustering methods given

in chapters 3 and 4 show that it is possible to use such methods in order to extract

relevant information. Here, the complexity of the task is related to the quantity of

data that renders non automatized inspection prohibitive. In chapter 5, the complex-

ity of the task stems from highly non linear behaviour of the studied system. In these

cases computer aided methods are essential to tackle the underlying question.

Computer aided biology dates back to the middle of the nineties and has now

specialized into several specific biology related tasks such as data management and

interpretation, technology specific workflows or genomic medicine [92]. Most of the

biomedical research currently heavily relies on the integration of technological plat

forms, database knowledge, biology and computation. This makes biology one of the

largest field of application of computational statistics. The increasing complexity of

tasks related to biological research suggests that both fields will remain intimately

linked in the future.

Extension of the proposed methods are related to the challenges that the field has

to face for the next years. At the molecular scale, more and more information about

chemical and biological assays of various nature are publicly available. Molecular

122
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representation is the key issue in prediction. Indeed, poor data representation sets

the best performance achievable by any prediction algorithm at a very low level.

Stacking information from many sources can help improve the representation of small

molecules. Among the relevant related questions are:

• How to integrate heterogeneous molecular information in a scalable way?

• Does this integration improve performances over specific prediction task?

• Does richer representation systematically leads to better prediction performances?

The last question is of interest beyond the field of computational chemistry and

chemogenomics. Indeed, motivated by the explosion of the quantity of data available,

a general trend in many related fields, is to integrate as many sources of information

as possible regardless of their relevance to the task at hand. A natural question is

whether this is a good idea or not. Indeed stacking sources of information increases the

likelihood of including the most relevant information in the set of available sources but

also diminishes the ability of anyone to distinguish between relevant and irrelevant

information for a specific task. It might be needed to consider how information

sources are related to the physical reality of the studied process. In the field of

computational chemistry for example, an interesting research direction is to build and

evaluate a similarity measure between molecules that reflect the underlying chemistry.

Using expert systems such as in [69] could for example allow to predict the chemical

complexity of turning one specie into another.

Building generative models based on cell imaging assays is becoming a popular

method to explore and summarize results of fluorescent microscopy cell imaging ex-

periments (for example [138]). Generative models allow to represent the hierarchy

of scales explicitly in their structure. Such models are very popular in unsupervised

modelling of text corpora [14]. Using such hierarchy in the context of fluorescent

cell microscopy could allow to perform phenotypic inference jointly at different levels

of the phenotypic scale and to share information between different scales in a well

defined manner.

As for dynamical systems as considered in chapter 5, the main bottleneck is the

high computational cost of simulating the system accurately. However, given that
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the system parameter values are also uncertain, one may not need to perform very

accurate simulations in order to perform accurate inference. A very fruitful area

of research in machine learning is the investigation of tradeoffs between statistical

and computational accuracy. Understanding these tradeoffs leads to massive saving

in computational requirement of statistical tasks [16]. Similar tradeoffs might exist

when performing inference based on undetermined control problems such as the one

considered in chapter 5. At the heart of these tradeoffs lies the question of propagating

uncertainty in highly non-linear systems. Efficient methods to achieve this task will

probably increase significantly the size of problems of the type of the one considered

in 5 that can be tractably handled.

The results presented in this thesis are based on numerical experiments. We

demonstrated that the output of these experiments were relevant for the related

biological question. These manipulations suggest that the methods described in this

thesis could be used for field applications. However, we did not explicitly provide

examples of biological discoveries made possible thanks to them. This would be the

ultimate goal, a longer term challenge. The only way to actually show that the

proposed approaches are useful is to implement them as part of the tools available

for projects which ultimate objective is to solve a biological problem. The time scales

for this types of projects much wider.

Lastly, a critical point for the usefulness of a method is its computational tractabil-

ity. This is most striking in the work presented in chapter 5 where the amount of

computation required to implement the method on a medium scale problem was

considerable. When designing a protocol to solve a biology related problem, one is

provided with state-of-the-art algorithmic tools that come from different fields such as

computer science, optimization or control. Understanding how efficiently a problem

can be solved on a computer and proposing efficient algorithms for abstract problem,

in addition to be interesting questions by themselves, directly influence the ability

of solving numerical problems. Among others, the field of computer aided biology

benefits directly from these advances. Considering the need to adopt systems point

of views to improve the understanding of complex biological systems behaviours, al-

gorithmic and complexity questions are keys for future biological advances.
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Appendix A

Copulas

Copulas became popular in statistical litterature at the end of the twentieth century.

However, the study of these objects goes back to the middle of the century [88]. We

present here a brief review of the copula framework.

A.1 Definition and example

A copula is a joint multivariate (cumulative) distribution which univariate marginals

are uniform over [0, 1]. More formaly, let U1, . . . , Ud ∈ [0, 1]d d uniform random

variables, Ui ∼ U . A copula C : [0, 1]d → [0, 1] is a joint distribution function

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud)

Let X = {X1, . . . , Xd} a finite set of real valued random variables and let FX (x1, . . . , xd) =

P (X1 ≤ x1, . . . , Xd ≤ xd) a cumulative distribution function over X . The importance

of copulas comes from the fact that any distribution can be formalized in term of

copula [110].

Sklar theorem (1959) Let FX be any multivariate distribution over real-valued

random variables, then there exists a copula function such that

FX (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

141
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Where the Fi are the correponding univariate marginals. If each Fi is continuous then

C is unique.

Conversely, since for any univariate random variable X with cumulative distri-

bution F , the random variable F (X) is uniformly distributed over [0, 1], any copula

taking these transformed univariate marginals {F1(X1), . . . , Fd(Xd)} as its arguments

defines a valid distribution function which univariate marginals are specified. From

a modeling point of view, this allows to separate the choice of univariate marginals

and the choice of the joint dependence structure when constructing a distribution.

Copula based densities Since the joint cumulative distribution function can be

expressed in term of copula, the joint density can also be specified in term of copula

density. If x = (x1, . . . , xd), let F (x) = C(F1(x1), . . . , Fd(xd)) a distribution over X
with d-order partial derivatives. The corresponding density can be expressed as

f(x) =
∂dF (x)

∂x1, . . . , ∂xd

(A.1)

=
∂dC(F1(x1), . . . , Fd(xd))

∂F1(x1), . . . , ∂Fd(xd)

∏

i

fi(xi)

= c(F1(x1), . . . , Fd(xd))
∏

i

fi(xi)

Where c is a copula density function and fi is the univariate density corresponding

to Fi. There are many ways to define and construct copulas, see [88] for a general

review. We focus here on one specific copula family which is defined from multivariate

gaussian distributions.

The gaussian copula This copula family describes the denpendance structure of

multivariate gaussians. It has been introduced in 2000 [132]. Let φ and Φ the standard

(zero mean, unit variance) univariate normal density and cumulative distribution

respectively. Φ−1 is the corresponding quantile function. A general univariate normal

with mean µ and standard deviation σ has a density function f1(x) = φ(xs)
σ

and
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cumulative distribution function F1(x) = Φ(xs) where xs = x−µ

σ
corresponds to x

scaled.

Let X = {X1, . . . , Xd} a d-dimensional random variable which follows a multi-

variate normal distribution with correlation matrix R. If x = (x1, . . . , xd) ∈ Rd,

let {µi, σi} the mean and standard deviation of Xi and xsi =
xi−µi

σi
for all i, xs =

(xs1, . . . , xsd) ∈ Rd. The d dimensional multivariate normal density describing X can

be expressed as

fd(x) =
1

(2π)
d
2 |R| 12 ∏d

i=1 σi

exp(−1

2
xT
s Rxs) (A.2)

=
1

|R| 12
exp(−1

2
xT
s (R

−1 − I)xs)
d∏

i=1

φ(xsi)

σi

We have xsi = Φ−1(Φ(xsi)) = Φ−1(Fi(xi)) where Fi is the univariate marginal dis-

tribution related to xi. Moreover , we have seen that φ(xsi)
σi

is the univariate marginal

density related to xi. Identifying the density formulation in (A.2) with the general

formulation in (A.1) allows to define the gaussian copula density. Let R a correlation

matrix and {U1, . . . , Ud}, d random variables uniform over [0, 1].

cg : (u1, . . . , ud)→
1

|R| 12
exp(−1

2
uT
s (R

−1 − I)us)

where usi = Φ−1(ui), is the copula density function describing the joint dependence

structure shared by the multivariate normal distributions which correlation matrix is

R. This definition is independent of the univariate marginal, therefore pluging any

univariate marginal in this formulation allows to construct density functions which

have a gaussian dependence structure and a different domain for example.

A.2 Copula models parameters estimation

Let {Fθ1 , . . . , Fθd} a set of univariate marginal distributions and {fθ1 , . . . , fθd} the cor-
responding univariate densities parametrized by θF = {θ1, . . . , θd}. Let cθc a copula
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density function parameterized by θc. We are concerened with finding the parameters

Θ = {θF , θc)} which fit the best to a set of n d-dimensional data points: {x1, . . . ,xn}.
We review three common procedures. Let PF,c,Θ : x→ cθc(Fθ1(x1), . . . , Fθd(xd))

∏
i fθi(xi)

the density function associated to the parameter Θ.

A.2.1 Maximum likelihood

The most logical approach is to find Θ̂ which is defined as

Θ̂ = argmax
Θ

n∏

k=1

PF,c,Θ(xk)

This estimator enjoys consistency and assymptotical normality under regularity

conditions [25]. It is well suited to problems which optimal parameters can be esti-

mated in closed form which is not the case here. Numerical optimization is needed,

wich becomes very heavy when the dimension increases.

A.2.2 Inference functions for margin

This two stage estimation has been introduced by [109] for the bivariate case and by

[63] in the general case. First the univariate marginal parameters are estimated inde-

pendently from the copula. In a second stage, the copula parameters are estimated

given the univariate marginal parameters. For all i,

θ̂i = argmax
θi

n∏

k=1

fθi(xki)

Wich defines θ̂F = {θ̂1, . . . , θ̂d} and fixes the univariate marginals. θc is then

estimated as follows.

θ̂c = argmax
θc

n∏

k=1

PF,c,θc,θ̂F
(xk)

The copula parameter estimate is consistent with assymptotic normality [109].

Moreover, the whole set of estimators Θ̂ = {θ̂F , θ̂c} has the same property [64].
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This procedure is way less expensive computationally than the maximum likelihood

estimator.

A.2.3 Semi-parametric estimation

The inference functions for margin method relies on univariate marginals parameter

estimation as a first stage. This estimations procedure relies on the parametrization

of univariate marginals. [40] proposes a semi-parametric alternative using a non para-

metric estimate of the univariate marginals. The univariate marginals are replaced

by their scaled empirical cumulative distribution function. This amounts to work

with standardized ranks instead of original variables. For all i, let F ∗
i stand for n

n+1

times the i-th univariate marginal empirical distribution function. The scaling factor

ensures that our observations strictly stay in ]0, 1[. The estimator θ̂c of the copula

parameter is then

θ̂c = argmax
θc

n∏

k=1

cθc(F
∗
1 (xk1), . . . , F

∗
d (xkd))

This estimator is consistent and assymptotically normal [40]. The criterion to

optimize is sometimes called pseudo-likelihood due to its similarities with conventional

likelihood. In this formulation, the copula parameter estimation does not rely on

the univariate marginal parameters, both can be estimated separately. It can be

shown that the asymptotic variance of this estimator is higher than that of maximum

likelihood estimation. However, [72] showed empirically that this last procedure is

more robust to marginals mispecification than the two preceding ones.
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Appendix B

DREAM7 parameter estimation

challenge dynamic equations

[as1] =

(
[p1]
r1Kd

)r1h

1 +
(

[p1]
r1Kd

)r1h

[as2] =

(
[p1]
r2Kd

)r2h

1 +
(

[p1]
r2Kd

)r2h

[as3] =

(
[p4]
r5Kd

)r5h

1 +
(

[p4]
r5Kd

)r5h

[as5] =

(
[p8]

r13Kd

)r13h

1 +
(

[p8]
r13Kd

)r13h

[as6] =

(
[p9]
r9Kd

)r9h

1 +
(

[p9]
r9Kd

)r9h

[as7] =

(
[p6]

r12Kd

)r12h

1 +
(

[p6]
r12Kd

)r12h

[as9] =

(
[p6]

r11Kd

)r11h

1 +
(

[p6]
r11Kd

)r11h

[rs1a] =
1

1 +
(

[p2]
r4Kd

)r4h

[rs1b] =
1

1 +
(

[p6]
r8Kd

)r8h

[rs2] =
1

1 +
(

[p3]
r3Kd

)r3h

[rs3] =
1

1 +
(

[p5]
r7Kd

)r7h

[rs7] =
1

1 +
(

[p7]
r6Kd

)r6h

[rs8] =
1

1 +
(

[p9]
r10Kd

)r10h
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[g1] = [as1] · [rs1a] · [rs1b]
[g2] = [as2] · [rs2]
[g3] = [as3] · [rs3]
[g4] = [as4] · [rs4]
[g5] = [as5]

[g7] = [as7] · [rs7]
[g8] = [rs8]

[g9] = [as9]

d ([p1])

dt
= rbs1strength · [v1mrna]− p1degradationRate · [p1]

d ([p1])

dt
= rbs1strength · [v1mrna]− p1degradationRate · [p1]

d ([p2])

dt
= rbs2strength · [v2mrna]− p2degradationRate · [p2]

d ([p3])

dt
= rbs3strength · [v3mrna]− p3degradationRate · [p3]

d ([p4])

dt
= rbs4strength · [v4mrna]− p4degradationRate · [p4]

d ([p5])

dt
= rbs5strength · [v5mrna]− p5degradationRate · [p5]

d ([p6])

dt
= rbs6strength · [v6mrna]− p6degradationRate · [p6]

d ([p7])

dt
= rbs8strength · [v7mrna]− p7degradationRate · [p7]

d ([p8])

dt
= rbs7strength · [v8mrna]− p8degradationRate · [p8]

d ([p9])

dt
= rbs9strength · [v9mrna]− p9degradationRate · [p9]

d ([v1mrna])

dt
= pro1strength · [g1]− v1mrnaDegradationRate · [v1mrna]

d ([v2mrna])

dt
= pro2strength · [g2]− v2mrnaDegradationRate · [v2mrna]

d ([v3mrna])

dt
= pro3strength · [g3]− v3mrnaDegradationRate · [v3mrna]
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d ([v4mrna])

dt
= pro4strength · [g4]− v4mrnaDegradationRate · [v4mrna]

d ([v5mrna])

dt
= pro5strength · [g5]− v5mrnaDegradationRate · [v5mrna]

d ([v6mrna])

dt
= pro6strength · [g6]− v6mrnaDegradationRate · [v6mrna]

d ([v7mrna])

dt
= pro7strength · [g9]− v7mrnaDegradationRate · [v7mrna]

d ([v8mrna])

dt
= pro9strength · [g7]− v8mrnaDegradationRate · [v8mrna]

d ([v9mrna])

dt
= pro8strength · [g8]− v9mrnaDegradationRate · [v9mrna]



Applications de l'apprentissage statistique à la biologie computationnelle

RÉSUMÉ :  Les biotechnologies sont arrivées au point ou la quantité d'information disponible permet de 

penser  les objets  biologiques  comme des systèmes complexes.  Dans ce contexte,  les phénomènes qui 

émergent  de  ces  systèmes  sont  intimement  liés  aux  spécificités  de  leur  organisation.  Cela  pose  des 

problèmes computationnels  et  statistiques qui  sont précisément  l'objet  d'étude de la communauté liée à 

l'apprentissage statistique. Cette thèse traite  d'applications de méthodes d'apprentissage pour  l'étude de 

phénomène biologique dans une perspective de système complexe. Ces méthodes sont appliquées dans le 

cadre de l'analyse d'interactions protéine-ligand et d'effets secondaires, du phenotypage de populations de 

cellules et du plan d'expérience pour des systèmes dynamiques non linéaires partiellement observés.

D'importantes quantités de données sont désormais disponibles concernant les molécules mises sur 

le  marché,  tels  que  les  profils  d'interactions  protéiques  et  d'effets  secondaires.  Cela  pose  le  problème 

d'intégrer  ces données  et  de  trouver  une forme de  structure  sous tendant  ces  observations  à grandes 

échelles. Nous appliquons des méthodes récentes d'apprentissage non supervisé à l'analyse d'importants 

jeux de données sur des médicaments. Des exemples illustrent la pertinence de l'information extraite qui est  

ensuite validée dans un contexte de prédiction.

Les variations de réponses à un traitement entre différents individus posent le problème de définir 

l'effet d'un stimulus à l'échelle d'une population d'individus. Par exemple, dans le contexte de la microscopie 

à haut débit, une population de cellules est exposée à différents stimuli. Les variations d'une cellule à l'autre 

rendent la comparaison de différents traitement non triviale. Un modèle génératif est proposé pour attaquer 

ce problème et ses propriétés sont étudiées sur la base de données expérimentales.

A l'échelle moléculaire, des comportements complexes émergent de cascades d'interactions non 

linéaires entre différentes espèces moléculaires. Ces non linéarités engendrent des problèmes d'identifiabilité 

du système. Elles peuvent cependant être contournées par des plans expérimentaux spécifiques, un des 

champs de recherche de la biologie des systèmes. Une stratégie Bayésienne itérative de plan expérimental 

est proposée est des résultats numériques basés sur des simulations in silico d'un réseau biologique sont 

présentées.

Mots  clés :  Apprentissage  statistique,  biologie  computationnelle,  conception  de  médicaments, 

microscopie haut débit, biologie des systèmes.

Applications of machine learning in computational biology

ABSTRACT : Biotechnologies came to an era where the amount of information one has access to allows to 

think about biological objects as complex systems.  In this context, the phenomena emerging from those 

systems  are  tightly  linked  to  their  organizational  properties.  This  raises  computational  and  statistical 

challenges which are precisely the focus of study of the machine learning community. This thesis is about 

applications of machine learning methods to study biological phenomena from a complex systems viewpoint. 

We apply machine learning methods in the context of protein-ligand interaction and side effect analysis, cell 

population phenotyping and experimental design for partially observed non linear dynamical systems.

Large amount  of  data is available about  marketed molecules,  such as protein  target  interaction 

profiles and side effect profiles. This raises the issue of making sense of this data and finding structure and  

patterns that underlie these observations at a large scale. We apply recent unsupervised learning methods to 

the analysis  of large datasets of marketed drugs. Examples show the relevance of  extracted information 

which is further validated in a prediction context.

The variability of the response to a treatment between different individuals poses the challenge of 

defining the effect of this stimulus at the level of a population of individuals. For example in the context High 

Content  Screening,  a population of  cells is  exposed to different  stimuli.  Between cell  variability within  a 

population  renders  the  comparison  of  different  treatments  difficult.  A  generative  model  is  proposed  to 

overcome this issue and properties of the model are investigated based on experimental data.

At the molecular scale, complex behaviour emerge from cascades of non linear interaction between 

molecular species. These non linearities leads to system identifiability issues. These can be overcome by 

specific experimental plan, one of the field of research in systems biology. A Bayesian iterative experimental  

design  strategy is  proposed and numerical  results  based on  in  silico  biological  network  simulations  are 

presented.

Keywords : Machine learning, Computational Biology, Drug Design, High Content Screening, Systems 

biology
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