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If the only tool you have is a hammer,

every problem will look as a nail.
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Abstract

The study and analysis of social networks attract attention from a variety of Sci-

ences (psychology, statistics, sociology). Among them, the field of Data Mining

offers tools to automatically extract useful information on properties of those net-

works. More specifically, Graph Mining serves the need to model and investigate

social networks especially in the case of large communities – usually found in

online media – where social networks are prohibitively large for non-automated

methodologies.

The general modeling of a social network is based on graph structures. Nodes

of the graph represent individuals and edges signify different actions or types

of social connections between them. A community is defined as a subgraph (of a

social network) and is characterized by dense connections. Various measures have

been proposed to evaluate different quality aspects of such communities – in most

cases ignoring various properties of the connections (e.g. directionality).

In the work presented here, the k-core concept is used as a means to evaluate

communities and extract information. The k-core structure essentially measures

the robustness of an undirected network through degeneracy. Further more ex-

tensions of degeneracy are introduced to networks that their edges offer more

information than the undirected type.

Starting point is the exploration of properties that can be extracted from undi-

rected graphs (of social networks). On this, degeneracy is used to evaluate col-

laboration features – a property not captured by the single node metrics or by

the established community evaluation metrics – of both individuals and the en-

tire community. Next, this process is extended for weighted, directed and signed

graphs offering a plethora of novel evaluation metrics for social networks. These

new features offer measurement tools for collaboration in social networks where

we can assign a weight or a direction to a connection and provide alternative ways

to signify the importance of individuals within a community. For signed graphs

the extension of degeneracy offers additional metrics that can be used for trust

management.

Moreover, a clustering approach is introduced which capitalizes on processing

the graph in a hierarchical manner provided by its core expansion sequence, an

ordered partition of the graph into different levels according to the k-core decom-

position
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The graph theoretical models are then applied in real world graphs to investi-

gate trends and behaviors. The datasets explored include scientific collaboration

and citation graphs (DBLP and ARXIV), a snapshot of Wikipedia’s inner graph

and trust networks (e.g. Epinions and Slashdot). The findings on these datasets

are interesting and the proposed models offer intuitive results.
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Résumé

L’étude et l’analyse des réseaux sociaux attirent l’attention d’une variété de sci-

ences (psychologie, statistiques, sociologie). Parmi elles, le domaine de la fouille

de données offre des outils pour extraire automatiquement des informations utiles

sur les propriétés de ces réseaux. Plus précisément, la fouille de graphes répond

au besoin de modéliser et d’étudier les réseaux sociaux en particulier dans le

cas des grandes communautés que l’on trouve habituellement dans les médias en

ligne oú la taille des réseaux sociaux est trop grande pour les méthodes manuelles.

La modélisation générale d’un réseau social est basée sur des structures de

graphes. Les sommets du graphe représentent les individus et les arêtes des ac-

tions différentes ou des types de liens sociaux entre les individus. Une commu-

nauté est définie comme un sous-graphe (d’un réseau social) et se caractérise

par des liens denses. Plusieurs mesures ont été précédemment proposées pour

l’évaluation des divers aspects de la qualité de ces communautés mais la plupart

d’entre elles ignorent diverses propriétés des interactions entre individus (par ex-

emple l’orientation de ces liens).

Dans la recherche présentée ici, le concept de “k-core” est utilisé comme un

moyen d’évaluer les communautés et d’en extraire des informations. La structure

de “k-core” mesure la robustesse d’un réseau non orienté en utilisant la dégénéres-

cence du graphe. En outre, des extensions du principe de dégénérescence sont

introduites pour des réseaux dont les arêtes possèdent plus d’informations que

celles non orientées.

Le point de départ est l’exploration des attributs qui peuvent être extraits des

graphes non orientés (réseaux sociaux). Sur ce point, la dégénérescence est util-

isée pour évaluer les caractéristiques d’une collaboration entre individus et sur

l’ensemble de la communauté - une propriété non capturée par les métriques sur

les sommets individuels ou par les métriques d’évaluation communautaires tra-

ditionnelles. Ensuite, cette méthode est étendue aux graphes pondérés, orientés

et signés afin d’offrir de nouvelles mesures d’évaluation pour les réseaux sociaux.

Ces nouvelles fonctionnalités apportent des outils de mesure de la collaboration

dans les réseaux sociaux oú l’on peut attribuer un poids ou un orientation à une

interaction et fournir des moyens alternatifs pour capturer l’importance des in-

dividus au sein d’une communauté. Pour les graphes signés, l’extension de la

dégénérescence permet de proposer des métriques supplémentaires qui peuvent

être utilisées pour modéliser la confiance.
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De plus, nous introduisons une approche de partitionnement basée sur le traite-

ment du graphe de manière hiérarchique, hiérarchie fournie par le principe de

“core expansion sequence” qui partitionne le graphe en différents niveaux ordon-

nés conformément à la décomposition “k-core”.

Les modèles théoriques de graphes sont ensuite appliqués sur des graphes du

monde réel pour examiner les tendances et les comportements. Les jeux de don-

nées explorés incluent des graphes de collaborations scientifiques et des graphes

de citations (DBLP et ARXIV), une instance de graphe interne de Wikipédia et

des réseaux basés sur la confiance entre les individus (par exemple Epinions et

Slashdot). Les conclusions sur ces ensembles de données sont significatives et les

modèles proposés offrent des résultats intuitifs.
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1
Introduction

1.1 introduction

Large and evolving graphs constitute an important element in current large-scale

information systems. Common cases of such graphs are the Web, social networks,

citation graphs, CDRs (Call Data Records) where nodes – featured with, in some

cases, many attributes – are connected to each other with directed edges, repre-

senting a relation such as endorsement, recommendation or friendship. The Web,

social networks, and citation graphs form a context where the detection and eval-

uation of communities constitutes an important and challenging task. In all cases,

due to the economic significance of these networks, the ranking of individual

nodes is also a necessity.

The research methods in this area have mainly capitalized on the Hub/Author-

ity concepts (see [75, 87]), evaluating communities based on the centrality of nodes

in terms of incoming/outgoing links. Graphs of real-world data with community

structure have vertex degree with a wide range. As pointed out in [38], nodes of

low degree coexist with nodes of high degree making the graph inhomogeneous

both globally and locally which usually indicates particularities in its structure,

for instance, communities.

But the inherent mechanisms of community creation and evolution are not

solely based on the Hub/Authority concepts. An important constituent of such a

mechanism, generally neglected, is the community cohesion in terms of a dense

distribution of in/outlinks within the community – as opposed to sparse con-

nections across them. One of the main interests of this work is in quantifying

the degree of cohesion of a community sub-graph as a measure of collaboration

among its members.

1.2 network communities

Graphs representing real systems have a unique structure that displays a form of

order. The degree distribution of the nodes can vary greatly and it usually follows

a power law [37]. Specifically, a lot of low degree nodes coexist with a few nodes

of high degree. The same inhomogeneous pattern can be seen locally as well;

there are groups of nodes displaying high concentration of connections while the

1



2 introduction

Figure 1.1: Example of a network with different communities (marked by color)[38].

groups themselves are spatially connected. These attributes are all characteristics

of social networks (among other types of real networks) and are attributed as a

“community structure” [41].

Community detection and evaluation is an important task in graph mining. The

general idea of community detection is to identify groupings within the graph

structure and possibly hierarchies of groups within them. Community evaluation

aims at quantifying the “importance” of nodes (or groups of them that belong to

the same community) using criteria that depend on the definition of importance

(e.g. importance of influence). Community evaluation metrics can also be used

in community detection as either a way to define the similarity function between

nodes or as a feature to help in selecting points of interest.

But the idea of communities in graph networks has ambiguous interpretations.

There is not a universal definition [38]. Here, a community is considered as a sub-

graph with much denser connections (or interactions) among its nodes than the

rest of the graph. Although this is not very specific for a community detection task,

the purpose of this definition is only to provide a basic and intuitive reference to

the structures that will be regarded as communities.

An example can been seen in Figure 1.1 where different colors represent com-

munity sub-graphs of the entire network. There, the properties of “community

structure” become apparent. As the term “community” may refer to an entire net-

work (e.g. the community of physicists) or a part of it (e.g. a group of scientist that

collaborate often), for the rest of the document the use of this term is explicitly

defined to which case it refers when needed.
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1.2.1 Applications

Community detection and evaluation serve interesting real world applications.

One prominent example can be seen in the area of recommendation systems. Peo-

ple in a social network sharing “friendship” connections create groups. The activ-

ities of some individuals in one group (e.g. purchase of a product, liking a movie)

can be used as a way to predict activities that others of the same community

would seek to participate.

Another example is that of data segmentation (or sharding). Social networks

have increased in sizes (in terms of users) too big for single location data manage-

ment. It is quite often that the need arises to partition the database containing the

social network into “shards” (by database rows while trying to maintain the infor-

mation of the schema within the same part) that are quite often stored in different

locations. Community detection can be used to create an efficient partitioning.

Community evaluation can be viewed as an evaluation of single entities and

their “role” within their community or as an evaluation of a sum of entities and

their collective actions. Both situations can be used as part of the community de-

tection procedure but can also serve directly application oriented requirements.

A simple example would be identifying people with influence within their “envi-

ronment”. While at first this appears to have a trivial solution (e.g. node of high

degree) it becomes more complex when restrictions from real world applications

are applied (e.g. high diversity in the groups someone belongs to).

As social networks are sometimes integrated along with reviewing systems (e.g.

Epinions) or collaborative systems (e.g. Wiki platforms of information) the issue

of discovering good reviewers can be seen as a community evaluation issue as

well. In such scenarios one may need to evaluate either the trustworthiness of

individuals or even the credibility of their collective “work”.

A need for expert consulting is needed in many small businesses (usually for

a short period of time). For this need, there are on-line services (e.g. Expert Ex-

change) that provide the means to contact professional with very specific technical

skills. Quite often, these on-line platforms of expertise are accompanied with a so-

cial network of the experts. While issues of specific nature are easy to address

with such services, the need of ad doc team formation has also become frequent.

Requiring a team to assist in broader issues can be also seen as a community

detection problem. The benefit of knowing the underlying social network is that

the choice in the list of professionals can also be assisted by their connections

(through community detection and evaluation).

Community detection and evaluation methodologies are not limited to social

networks. The same principles can be (and are) applied to networks of a dif-

ferent context but display the same community like structure. Most networks

that are associated in some way with human (inter)actions display properties of
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the “community structure”. Whether it is pages of the World Wide Web, articles

in Wikipedia, personal WebBlogs or just comments under a YouTube video, all

of these create underlining networks that follow similar properties. In essence

the same algorithmic techniques can be used to find structure that are similar

throughout the different networks but with altered (depending on the situation)

semantics.

1.2.2 Collaboration

An interesting aspect of social networks, highlighted by the some of the examples,

is that of collaboration. Of course, collaboration is a concept not applicable to

all social networks. But that is only semantics; collaboration is the process of

separate entities (people, organizations etc.) working together to accomplish a

task. While this is directly applicable to some social networks (e.g. social network

of professionals) it can also make sense in other types of networks as well. Taking

for example a group of densely connected web pages with articles one could

interpret their “collaboration” as their cumulative ability to provide information

on a subject.

When looking some of the examples of applications, it is obviously a necessity

to be able to quantify collaboration. One may need to decide the collaborative

value of an individual entity in relevance to a specific team in order to decide

whether it is a “good fit”. Even the evaluation of entire communities show interest

when trying to inspect whether they offer a good environment for collaboration.

For example one may try to compare communities drawn from various confer-

ences to see which ones have strong collaborations and therefore might offer a

welcoming environment.

1.2.3 Degeneracy

The degeneracy of an undirected graph G is also known as its “k-core number”.

The k-core of a graph G is the largest subgraph of G for which every node has

a degree of at least k within the sub-graph. The degeneracy of a graph is the

maximal value of k such that the k-core is not empty. In simple terms, in a k-

core of a network an individual is connected to at least other k members (of the

network) and those are also connected to (at least) k “neighbors” as well. The

process of computing all k-cores of a graph G, for k = 1, 2, 3, . . . ,kmax (where

kmax is the degeneracy of the graph), is the called k-core decomposition.

The graph theoretic study of degeneracy and k-cores dates back to the 60’s [36,

66, 81, 85]. It has been used to understand various properties of random graphs

[61, 76]. Moreover, it has been extensively used, in an experimental level, for eval-
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uating and detecting strongly cohesive communities in real-word graphs [2, 3, 8,

11, 20, 90]. The k-core decomposition process has also been used to provide an

approximation algorithm for the dense subgraph problem [5, 50].

One of the main benefits of the k-core structure is the efficiency of the algo-

rithms for computing a k-core. For graph G, all that is needed is to recursively

remove the vertices (which represent nodes of the modeled network) that have a

degree lower than k. Once a vertex is removed all of its connections are removed

as well. The running time of this process can be proportional to the number of

edges (the connections of the network) of the graph [13].

1.2.4 Beyond Simple Graphs

Degeneracy has been defined and explored on simple undirected graphs. For real

networks this simple representation bears the semantic of an equal and symmetric

relationship (e.g. two people being friends). This representation is not sufficient

in the study of a more complex context of connections that may have:

• Weight: Weight can represent the strength of the relationship. For example

the weight of a professionals’ social network could indicate the frequency

two of them work together.

• Direction: Directed networks have become most prominent, but not limited,

in the online environment of the world wide web. Some examples are web

sites linking to one another, social networks of users following posts in mi-

crobloggs, networks formed by on line voting/liking and citation networks.

This directionality is obviously necessary in the corresponding graphical

model. For instance, one could compare social networks of friendship with

microblogging social networks. On one, friendship is in both directions and

therefore unidirectional in the corresponding graph model. On the other, not

including the direction would make the statement "A follows microblogg of

B" equivalent to the exact opposite.

• Labels: Labeling a connection creates entirely new contexts (depending on

the label). One example is that of the “ trust” concept in social networks.

Practically, there are two ways to treat labels, one is to assume them as

separate entities and essentially interpret the entire modeled network as an

overlap of many networks with the same nodes. The other is to map the

labels into weights (e.g. in the case of trust integer values: 0 & 1 or −1 & 1).

Choosing either way depends on the reason for modeling the network.
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1.2.5 Extending Degeneracy

The work presented here starts with community evaluation, based on the k-core

concept, as a means of evaluating collaborative nature of individuals in networks

modeled by simple graphs. The vertices of a graph G represent a set of entities

and its edges represent collaboration links between them, thus a core of high

value for k (or simply a high index core) in a graph G can be seen and treated as

a community of entities that demonstrates a strong collaboration between them.

Building upon the findings of the previous, extensions of the k-core concept are

introduced. These extensions aim at introducing degeneracy to the more complex

graph structure cases mentioned above. Along with the extensions, interesting

metrics and ways to visualize graph structure arise. The extensions are utilized for

the evaluation of collaboration (and trust) under weighted, directed and labeled

graphs. Specifically:

• Fractional k-cores are defined for edge-weighted graphs. This new concept

displays interest in both theory and practice and the necessity of this ex-

tension is displayed by evaluating the same network under the two struc-

tures (k-cores and the fractional extension) and comparing the resulting

subgraphs.

• The theoretical framework of cores is vastly extended to the case of directed

graphs. Such graphs emerge naturally from social/citation networks and

the Web. D-cores constitute dense directed sub-graphs of the original one

involving intensive and mutual collaboration in terms of directed links. In-

terestingly, all these notions induce a 2-dimensional setting indicating quali-

tative differences for the directed case and are later employed and visualized

during experimentation.

• Based on the D-core extension, new structures and metrics are defined for

the evaluation of the collaborative nature of directed graphs. Namely, such

are the D-core matrix for a graph, its frontier, and a series of novel metrics

to evaluate:

a. the robustness of the directed graph under degeneracy, as a metric of

cohesiveness and hence the collaboration among the members of the

graph under study and

b. the dominant patterns of the graph with respect to the inlink/outlink

trade off indicating macroscopic graph patterns related to whether the

graph is extrovert or “selfish”.

• Finally, cores on signed graphs (that model trust networks) are defined for

the evaluation of trust (S-cores). As this extension can not be compared with
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existing metrics, existing metrics are also redefined (extended) in parallel

for trust networks. The signs on the edges of the graph are treated as labels

and this creates a much richer setting for experiments and the interpretation

of their results. Additional metrics -based on the S-core- are defined here as

well for both individuals and entire network communities.

Moreover, as the graphs that are explored are in the size of millions (of members),

the core decompositions (k, fractional, D and S) are used as a structure to build

interesting visualizations and management tools for such large graphs.

The core concept, all of its extensions and the relevant structures and metrics,

which are defined throughout this work, constitute a framework of tools for effi-

cient and valid evaluation of cohesiveness and collaboration in directed networks

and of trust in signed.

1.2.6 Degeneracy and Clustering

Graph clustering or community detection constitutes an important task for inves-

tigating the internal structure of graphs, with a plethora of applications in several

diverse domains. While the main focus of this work was a direct use of degeneracy

for evaluating collaborative behavior, the application of degeneracy in graph clus-

tering is also investigated. Traditional tools for graph clustering, such as spectral

methods, typically suffer from high time and space complexity. The last part, of

the work presented here, is CoreCluster, an efficient graph clustering framework

based on the concept of graph degeneracy, that could be used along with any

known graph clustering algorithm.

The approach capitalizes on processing the graph in a hierarchical manner pro-

vided by its core expansion sequence, an ordered partition of the graph into dif-

ferent levels according to the k-core decomposition. Such a partition provides a

way to process the graph in an incremental manner that preserves its clustering

structure, while making the execution of the chosen clustering algorithm much

faster due to the smaller size of the graph’s partitions onto which the algorithm

operates. It is proven experimentally on a multitude of real and synthetic graphs

that this approach accelerates systematically the clustering process by orders of

magnitude, especially as the graph’s size increases, while the quality of the clus-

tering results is not compromised or even is improving.

1.2.7 Explored Data

Three types of graph data are explored with degeneracy: a. undirected social

structures, b. directed social and web structures and c. trust networks. A brief

description of these follows next.
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1.2.7.1 Undirected Graph Data

Experiments are mainly dealing with two undirected graph datasets: the DBLP

bibliographic dataset and the ArXiv on High Energy Physics - Theory ( ArXiv.hep-

th). Both networks can be seen as bipartite graphs of author entities being con-

nected with paper entities. A transformation of the bipartite graphs into collab-

oration networks (between authors) is the final model; upon which an extended

experimental evaluation studying in depth the core subgraphs is performed, both

integer and fractional, of their edge-weighted co-authorship connections.

1.2.7.2 Directed Graph Data

Large scale experiments are also conducted in the following directed graph data:

• A snapshot from the (English) Wikipedia in 2004. There the underlying graph

is that of the network Wikipedia articles create by linking to one another.

• Citation graphs from DBLP and ArXiv. These graphs are created from the

aforementioned data. In this instance thought, citations from one paper to

another create directed connections between their authors.

• Scale-free/preferential attachment synthetic graphs, generated by well es-

tablished procedures/algorithms, are used to compare the behavior under

degeneracy of real world datasets vs generative models.

The different type of networks (first two) explored here are used to display the

diversity of applications the methods established in this work can be applied to.

1.2.7.3 Signed Graph Data

As signed graph data, trust networks were used where one expresses his judg-

ment of trust/distrust towards the actions of another. Experiments were per-

formed on the explicit signed graphs (Epinions and Slashdot). The term “explicit” is

used to signify that the relations from members of these networks were direct ac-

tions of trust/distrust through mechanisms offered by each platform (voting). In

the opposite side, inferred networks from Wikipedia were used as well. These net-

works were inferred from interactions of users upon the editing platform Wikipedia

offers (i.e. deleting content, creating new, correcting etc.).

1.2.8 Dissertation Organization

The rest of the document is organized in three parts:

1. Theoretical Models. This section will begin with presenting all the related

work on the subjects that will be addressed through degeneracy. While de-

generacy is the main focus, other aspects of graph mining will be mentioned
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in this part for a complete picture. Continuing, the footing will be set -

through the basic definitions of the k-core structure and decomposition- for

the proper presentation of the theoretical aspects for the degeneracy exten-

sions introduced in this work. Moreover, additional metrics and structures

will be defined along with an intuitive explanation of their interpretation.

Such (metrics and structures), will be the collaboration index, the decompo-

sition forest, the D-core matrix and others with main focus targeted at the

evaluation of collaboration.

2. Data Exploration. The aforementioned data will be explored in this section

with the appropriate degeneracy methodologies. Structures defined in the

previous section will be presented on large scale real graphs. Through this

study the new concepts will display interesting results thus establishing not

only the theoretical but also the practical potential of the proposed models.

Moreover, a demonstration will be shown for potential applications of this

work.

3. Degeneracy and Clustering. This section inspects degeneracy’s potential

use in graph clustering. While many indications about the implication of

degeneracy in graph clustering will be also made at the previous section, in

this one degeneracy is directly used as a heuristic to improve the compu-

tational cost (in running time) of a highly complex algorithm (specifically

spectral clustering). This is done to demonstrate the well diverse use of de-

generacy. The experiments contacted here are in both synthetic and real

datasets and display very good results.





Part I

T H E O R E T I C A L M O D E L S





2
Community Evaluation

2.1 introduction

Before presenting the graph theoretic extensions of k-cores, the related work on

community evaluation measures must be introduced. This section presents related

work on such metrics for individuals and entire (sub)networks and foundational

work of degeneracy. Moreover, work on signed networks and theoretic models of

trust is also presented.

2.2 related work

Related work on community detection is reserved for the last part of this doc-

ument. For reference, a thorough review on community detection in graphs is

offered by Fortunato in [38]. In that work techniques, methods, and datasets are

presented for detecting communities in sociology, biology and computer science,

disciplines where systems are typically represented by graphs. Most existing rele-

vant methods are presented, with a special focus on statistical physics, including

discussion of crucial issues like the significance of clustering and how methods

should be tested and compared against each other.

2.2.1 Graph Theoretic Metrics

Studying the general behavior and properties of real graphs, both edge-weighted

and unweighted, is the subject of [68] where a pattern on the behavior of con-

nected components over time is observed and, upon that, a generative model is

build.

In recent literature, various metrics are proposed relevant to the graph structure

of a social network. Such are “Betweenness” [87], “Centrality" [75], and “Cluster-

ing coefficient” [88] (a measure of the likelihood that two associates of a node are

associates themselves).

Clustering coefficient can been seen both as a metric to evaluate single nodes

and the entire network:

13
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• The clustering coefficient of a vertex (that represents a network node) is the

ratio of links the vertex has with other vertices to the total number of links

that could exist between between them. For simplicity, this is referred as

“local clustering coefficient”.

• The clustering coefficient of an entire network is the average of the local one

over all vertices.

A higher clustering coefficient indicates a greater “cliquishness”, i.e. cohesion de-

gree or density. Centrality is a more general term (which can include between-

ness):

• Degree centrality is a more accurate term when referring to centrality as an

evaluation metric. This is essentially the degree of a vertex.

• Closeness centrality is a notion that is connected to the “farness”/“closeness”

of a node to other nodes. The measurement of those two concept is a func-

tion over the sum of distances between a node in the network and the rest (of

the nodes). This function has many definitions from a simplistic one (only

the sum) to more complex for specific applications [26]

• Betweenness centrality (or just betweenness) measures the number of times

a node of a network is on the shortest path between two other ones [33].

• Of special interest here is the eigenvector centrality – a measure of the im-

portance of a node in a network. It assigns relative scores to all nodes in

the network based on the principle that connections to nodes having a high

score contribute more to the score of the node in question. PageRank can be

considered a form of eigenvector centrality [74].

Other interesting measures include “path length" (i.e. distances between pairs

of nodes in the network), and “Structural cohesion" - the minimum number of

members who, if removed from a group, would disconnect the group [71].

In [52] an alternative “core notion” is considered for the case of directed graphs

where a core is seen as a complete bipartite graph where all edges are directed

from the one part to the other. In [52], such cores are detected and are then fed to

a generalized HITS algorithm used to expand the communities within them.

Within the work presented here, a direct comparison of degeneracy and reci-

procity will be made for signed networks. The basic definition of reciprocity is a

local property based on mutuality in pairs of nodes in directed graphs [69, 82, 87]:

r ≡
L↔

L
(2.1)
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where L↔ is the number of links pointing in both directions and L is the total

number of links. Thus, the highest value of r is 1, when the network is fully bi-

directional, and the lowest is 0 when the network is completely unidirectional.

Reciprocity is used to examine directed networks of various kinds [40, 69, 82],

an extension for weighted networks is in the recent work of [1]. In [40], reciprocity

is extended in order to take into account the density of the network.

2.2.1.1 Signed Networks

In the area of signed graphs, a machine learning-based approach for inferring

negative or positive links in Epinions was published in [60], whose techniques

rely on an existing signed network complemented by user interactions. In [64], a

signed network over the editors of the Wikipedia, denoted Wiki-Signed, is inferred

exclusively from interactions; it is evaluated, at both local and global level, in rela-

tion with social theories and existing signed networks on the Web. We rely in this

paper on networks built as in [64]. Another approach for detecting positive and

negative interactions in Wikipedia was presented in [18], showing the emergence

of polarization in Wikipedia articles.

Several papers have also studied the prediction of links and link signs, when

only the signed network is known, a problem also known as trust propagation.

The first rigorous treatment of this problem is given in [43], where the authors

define four atomic operators to predict link signs (direct propagation, co-citation,

transpose trust and trust coupling). This approach was extended in [56, 57], where

trust propagation was studied through the lens of social theories such as balance

and status, and a prediction model based on the number of triangles involving

each candidate link was proposed.

For undirected signed graphs, the theory of Social Balance [6] is a model for the

dynamics of friendship and enmity through time. The weakness of this model is

that it assumes that all relationships are reciprocal. A more advanced model called

Status Model is introduced in [43] and elaborated in [56]. The advantage of this

model is that it takes into account the direction of the relationships but it is built

upon the structure of triangles within the graph. The main point of this model

is that a directed signed edge signifies someone of either higher or lower status

and thus predicts that the flipping of a direction should flip the sign as well. But

this would not account for the relationships of trust (that we attempt to study). In

principle (and shown by the experimental results), it is counter intuitive to assume

that showing trust or distrust to others would lead to the opposite assumptions

of others to us.

Recently, the problem of ranking vertices in signed networks has been studied

in [27, 70]. This problem is challenging, since power iteration methods used for

regular networks do not apply to networks in which links can also have negative
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scores. The PageTrust algorithm, extending the ubiquitous PageRank algorithm

to handle also negative links, has been proposed in [27]. An algorithm that uses a

signed network to derive two scores for each vertex, called prestige and bias, has

been presented in [70].

2.2.1.2 Cores

The k-cores are fundamental structures in graph theory and their study dates back

to the 60’s [36, 66, 81, 85]. A k-core of a graph G is the maximum subgraph H of G

where each vertex in H has at least k neighbors in H. The degeneracy of a graph is

defined as the biggest k for which a graph contains a non-empty k-core [59]. The

same notion has appeared with several names such as width [67], linkage [39, 49],

or coloring number [28] and has been proven to be equal to the smallest k for which

we can find a linear ordering of the vertices of the graph such that for each vertex

v, the number of its neighbors that appear before v in the ordering is at most k

(see [39, 59, 66]).

The existence of k-cores of large size in sufficiently dense graphs has been

theoretically studied by [76] for random graphs generated by the Erdős-Rényi

model [35]. As shown in [76], a k-core whose size is proportional to the size of G

(i.e. a “giant” k-core) “suddenly” appears in a random graph with n vertices and

m edges when m reaches a threshold ck · n, for some constant ck that depends

exclusively on k. Also, it was proved in [15, 61] that, in the Erdős-Rényi model,

almost all k-cores are k-connected (see [46] for more recent results on this topic).

An efficient algorithm for the computation of the k-core of a graph was given

in [13] and its running time is proportional to the number of edges of the in-

put graph. Actually, the algorithm in [13] can compute the core decomposition of a

graph consisting of the sequence of all the non-empty i-cells of G where each i-cell

is defined as the vertices contained in the i-core but not in the (i+ 1)-core. Core

decompositions provides useful information on the way subgraphs of a graph

are clustered according to their degrees and has been used extensively in several

topics such as the study of internet topology [3, 20], large scale network visual-

ization [2, 3, 11], networks of protein interaction [8, 90], and complex network

modeling and organization [14, 30]. A more general notion of k-cores was intro-

duced in [12] where, instead of vertex degrees, more general functions where

considered.

In [21], greedy approximation algorithms are proposed for finding the dense

components of a graph. Both undirected and directed graphs are examined. In

the case of directed graphs the vertices are divided into hubs (S) and authorities

(T ). Then, based on a value of |S|/|T |, a greedy algorithm removes the vertex of

minimum degree from either S or T until both sets are empty. Also, in [84], the
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subject of finding dense subgraphs, based on query nodes, is studied, where the

issue is to find a community that contains certain given nodes.

2.2.2 Citation Graphs

The experiments, that will be presented in the next part of this document, focus

partially on applying our evaluation techniques on citations graphs (DBLP, ArXiv).

Recent work on citation graphs can be found in [4] where a study is carried out

on the citation graph of Computer Science Literature and [47]. In [4], an attempt

is made to extract a descriptive summary of the graph through a study of funda-

mental and well established properties (degree distribution, giant component size

etc.). In contrast, our work focuses on novel techniques for evaluating community

graphs and expands on a wider scope of study. In [47] the focus is on community

detection and the evolution through time. The community detection is performed

on the authors through the papers they have co-cited and the evaluation of the

citation graph is based on the detected clusters.

2.3 theory on degeneracy

2.3.1 Preliminaries

As degeneracy for undirected graphs will only be explored on bibliographic datasets,

some of the following definitions refer specifically on network structures formed

by authors collaborating (or not) on the work of a published paper.

For the basic definition of degeneracy, graphs are considered undirected and

simple (i.e. they do not have multiple edges or loops). The vertex and the edge set

of a graph are denoted by V(G) and E(G) respectively. The cardinality of V(G) will

be referred as the size of G. Moreover, edge-weighted graphs (or, simply weighted

graphs) are denoted by pairs (G, w) where w is a weighting function assigning

rational numbers to the edges of G.

A graph H is a subgraph of a graph G if H occurs from G after removing

vertices or edges (the removal of an edge implies the removal of all edges that

are incident to it). A graph is connected if for every pair of its vertices there is a

path connecting them. A connected component of a graph is a maximal connected

subgraph of it. Given a graph G, the size of the largest connected component of

G is denoted by g(G) and it is called giant component.

Definition 1. Given a vertex v ∈ V(G), the degree of v in G is the number of edges

that are incident to it. Also, δ(G) denotes the minimum degree of a vertex in G. The

degeneracy of a graph G is defined as follows:

δ∗(G) = max{δ(H) | H is a non-empty subgraph of G}. (2.2)
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Definition 2. Given a graph G and a non-negative integer k, the k-core of G is defined

as the maximum size subgraph H of G where δ(H) > k. It is easy to see that such a

subgraph is unique. Given a k-core, k is referred as its core index or simply index.

Assume that for i = 0, . . . , δ∗, Gi is the i-core of G. Then the sequence

V(G0),V(G1), . . . ,V(Gδ∗(G))

is called core sequence of G.

Observe that V(Gi) ⊆ V(Gi+1) for i ∈ {0, . . . , δ∗(G) − 1}.

Additionally, the sequence:

V(G1) − V(G1), . . . ,V(Gδ∗(G)) − V(Gδ∗−1)

is called cell sequence of G and its elements form a partition of V(G).

Definition 3. For every graph G where δ∗(G) = k, its core expansion sequence is defined

as the sequence of vertex sets {Vk,Vk−1, . . . ,V0} that is recursively defined as follows:

Vk = V(corek(G)) and

Vi = V(corei(G)) \ Vi+1, i = k− 1, . . . , 0.
(2.3)

The sets of a core expansion sequence are also refered as layers agreeing that the set Vi is

its i-th layer.

2.3.1.1 The Trim Procedure

Notice that, for each i 6 j, the j-core of a graph is a subgraph of its i-core. Fur-

thermore, the degeneracy of a graph is the maximum k for which G contains a

non-empty k-core. Given a graph G where δ∗(G) = d and an integer i where

0 6 i 6 d, the i-core of G is denoted by Gi and the core sequence of G is defined as

G(G) = G0,G1, . . . ,Gd , where G0 = G and Gd is the densest core of G. For every

i > 0, the graph Gi+1 can be computed by the following simple procedure.

Procedure Trim(G,k)

Input: An undirected graph G and a positive integer k

Output: the (k+ 1)-core of G

1. let F := G

2. while there is a node x in F such that degF(x) 6 k

3. delete node x from F

4. return F

The Trim(G,k) procedure runs in O(kn) steps, thus computations are feasible even

in large scale graphs [13]. Applying successively Trim(G, i), for i = 0, . . . , δ∗(G) − 1,
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gives a fast way to compute the core sequence of G. In fact an optimal implemen-

tation of the above pruning procedure that is able to produce the core sequence of

a graph in O(δ∗(G) ·n) steps and been given in [13]. The procedure in [13] works

for much more general variants of the core notion, including the fractional core

notion that will be defined later in this section.

Definition 4. The core index of a vertex v of G is the maximum k for which v belongs

in the k-core of G.

Notice that one may also define the core index of a set S of vertices in G as the

maximum k for which all vertices of S belong in the k-core of G [12]. It is easy to

see that this number is the minimum core index of all the vertices in S.

2.3.1.2 Core Decomposition Forest

In this section, the Core Decomposition Forest is defined for the case of the undi-

rected cores (weighted or not). For the directed case, an almost identical definition

will be in the sections that follow.

Definition 5. Let G = G0,G1, . . . ,Gd be a sequence of graphs such that for each i, j

where i 6 j, Gi is a subgraph of Gj (such a sequence is called monotone). The Decompo-

sition Forest of a monotone graph sequence G is the graph DF(G) that is defined as follows.

For each i = 0, . . . ,d, the connected components of Gi are denoted by G1
i , . . . ,Gmi

i and

each such connected component is a vertex of DF(G) (the isomorphic graphs are treated

here as different graphs). The pair (Gj
i,G

j ′

i ′) is a directed edge of DF(G) if j ′ = j+ 1 and

G
j
i contains Gj ′

i ′ as a subgraph.

It is easy to verify that the directed graph defined above is a rooted forest. In

fact, each of its components is a rooted tree where all its edges are directed away

from the root and each root is a connected component of G0. Given that the core

sequence of G is monotone, the Core Decomposition Forest of a graph (edge-

weighted or not) is defined as the decomposition forest corresponding to its core

sequence. The notion of the core decomposition forest appeared for the first time

in [44] under the name hierarchical degree core tree and was used in order to visu-

alize the connected components of several real-word graphs including the graph

extracted by the common-author relation of the papers of the DBLP citation graph.

As the graphs that are extracted from DBLP and ARXIV are expressing relations

between authors, the core decomposition forests that are described and presented

in the second part are of radically different nature than the one extracted in [44].

2.3.2 Cores for bipartite graphs

A great part of the datasets (the bibliographic ones e.g. DBLP), that are studied

here, are represented by bipartite graphs where edges denote relations between
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papers and authors. Such a graph is denoted by G = (A,P,E) where A is the set

of authors, P is the set of papers, and E is a set of edges. Each edge {x,y} (where

x ∈ A and y ∈ P) expresses the fact that x is one of the authors of paper y. As

the aim is to evaluate the collaboration between authors, a restriction is applied

to the study of papers that are written by at least two authors, i.e., there is an

assumption that all the vertices in P have degree of at least two.

Definition 6. The co-authorship graph corresponding to G is defined as follows:

HG = (A, {{x, x ′} | ∃y ∈ P : {x,y}, {x ′,y} ∈ E), (2.4)

i.e., two authors are adjacent if they appear as co-authors in at least one paper.

Notice that the above definition of HG is radically different from the one used

in [44], where they study graphs whose vertices correspond to authors and edges

indicate joint publications between two authors. In fact, the construction in [44]

can be seen as being the dual of the one used here for creating HG in the sense of

vertex-edge duality of hyper-graphs.

For each dataset (represented by a bipartite graph G), the δ∗(HG) is computed

along with the core index of each vertex/set of vertices in HG in order to eval-

uate the collaboration behavior in the bipartite graph G and the dataset that it

represents. The idea of this criterion is to locate communities of authors with a

high collaboration between them in the sense that the demand is not just so that

they have authored many papers but also that they have all authored them with

authors in the same community.

However, this is not an entirely satisfactory evaluation, since the number of

authors on a paper has no impact in this measure. For this reason, below is in-

troduced a more refined way to define cores based on the notion of a fractional

core.

2.3.3 Fractional k-cores for edge-weighted graphs

Continuing with the papers-authors paradigm, let G = (A,P,E) be a bipartite

graph where all vertices in P have minimum degree of 2. Given an author vertex

x ∈ A, the neighborhood NG(x) of x is defined as the set containing each paper

y ∈ P for which {x,y} ∈ E, i.e., NG(x) is the set of papers co-authored by x. The

neighborhood NG(y) of a paper y ∈ P can be defined in a symmetrical manner,

i.e., the set of the authors of paper y. Also, given an author x, the set of all edges

that are incident to x in G is denoted by EG(x). In what follows, Q+ denotes the

set of all non-negative rational numbers.

Definition 7. Given a bipartite graph G = (A,P,E), the definition of the edge-weighted

co-authorship graph, denoted by (HG, w), by taking HG, as defined in (2.4), and setting
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Figure 2.1: An example of a bipartite graph G and its edge-weighted co-authorship graph,
(HG, w).

up a rational weight function w : E → Q+ on the edges of HG is as follows: For every

edge e = {x, x ′} we set

w(e) =
∑

y∈NG(x)∩NG(x ′)

1

NG(y)
. (2.5)

Notice that,
∑

e∈HG
w(e) = |V(P)|, i.e. the sum of all the weights on the edges

is the size of the graph, i.e., the number of its vertices. For example, in Figure 2.1,

in order to compute the weight of the edge e = {a1,a3}, one should observe that

the authors a1 and a3 are co-authors of the papers p1 and p3. As p1 and p3

have 3 authors each, they contribute 1/3 to the weight of e, that is w(e) = 2/3.

This weighting of e expresses the fact that the collective effort of author a1 to the

papers he/she co-authored with p3 is of 2/3 papers, and vice versa.

As agreed before, the notation (G, w) for the graph G is used to denote that it

is edge-weighted by w.

Definition 8. Given an edge-weighted graph (G, w) and a vertex x ∈ V(G), the fractional-

degree of x in (G,w) is defined as

degG,w(x) =
∑

e∈EG(x)

w(e). (2.6)

In the co-authorship context, the degree degG,w(x) of an author x is the collective effort

of author x for all the papers she/he wrote. For instance, in Figure 2.1, the degree author

a4 is the sum of all the weights of the edges that are incident to it, i.e., 1/3+ 2/3+ 4/3 =

13/6.
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A graph (H, wH) is an edge-weighted subgraph of (G, w) if H is a subgraph of G

and wH is the restriction of w on E(H). Given any such subgraph (H, wH) of (G, w), we

define

δ(H, wH) = min{degH,wH
(x) | x ∈ V(H)}. (2.7)

For example, if (G, w) is the edge-weighted graph in Figure 2.1, then δ(G, w) =

degG,w(a2) = 7/6. If H is the subgraph of G containing all edges that are incident

to the vertices a1,a2, and a4, then δ(H, wH) = degH,wH
(a1) = 2/3.

Definition 9. Let (G, w) be an edge-weighted graph. The fractional-degeneracy of

(G, w) is defined as follows:

δ∗(G, w)=max{δ(H, wH) | (H, wH) is a non-empty

edge-weighted subgraph of (G, w)}.
(2.8)

Let k ∈ Q+. Then the k-core of (G, w) is the maximun-size edge-weighted

subgraph (H, wH) of (G, w) where δ(H, wH) > k.

The Trim procedure can also compute k-cores where k is a rational number.

The only modification, in the Trim algorithm presented in subsection 2.3.1.1, is

that degF(x) 6 k should be replaced by degF,wF
(x) 6 k, i.e., the Trim procedure

for fractionally weighted graphs would check the fractional degree of x in the

edge-weighted graph (F, wF), where wF is the restriction of w to the edges of F.

In fact, the definition of the fractional analogue of the core sequence requires

more attention, as it now should be indexed by rational numbers. For this, con-

sider the infinite sequence G = Gh0
,Gh1

, . . . , recursively defined as follows:

Gh0
= G,h0 = 0, and for i > 0,Ghi

= Trim(Ghi−1
,hi−1) where hi = δ(Gi, wGi

).

Then, the fractional core sequence of an edge-weighted graph (G, w) is the prefix of

G that contains all non-empty graphs of G and is denoted by G(G, w). The size of a

fractional core sequence is the number of its terms minus one. Notice that the size l

of the fractional core sequence of an edge-weighted graph (G, w) can never exceed

the size of G. Finally the sequence h1, . . . ,hl is called fractional index sequence of

(G, w).

The fractional core index of a vertex of an edge-weighted graph (G, w) is the

maximum rational number k for which v belongs in the k-core of G. As in the

unweighted case, the fractional core index definition can be naturally extended to

sets instead of vertices. Again the fractional core index of a set of vertices is the

minimum fractional core index of its members.

As an example of the above definitions, the edge-weighted graph (HG, w) de-

picted in Figure 2.1, has fractional degeneracy 7
6 , i.e. δ(HG, w) = δ∗(HG, w). In-

deed if one applies Trim(HG, 7
3) then the first vertex to be removed is a2. This
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removal drops the fractional degrees of a1, a3, and a4 below 7
3 . Therefore, they

are also removed and, for the same reason, the remaining vertex a5 is removed as

well. Therefore, G1 is the empty graph, the fractional core sequence contains only

graph G0 = G, and the length of the fractional index sequence of (HG, w) is 0. A

mention should be made that a less trivial example would be too complicated to

present in a figure and even more complicated to be processed by the reader.

At this point it is important to stress that, as a graph-theoretic notion, frac-

tional cores are defined on bipartite graphs, encoding relations between two sets

representing different entities (in this case, papers and authors). Equivalently, frac-

tional cores can be defined in hypergraphs by considering the fractional cores of

their (bipartite) incident graphs. In this case, the hypergraph corresponding to

the graph G would contain the authors as vertices and the papers as hyperedges.

In the work presented here it was chosen to avoid hypergraph notation and, for

simplicity, the definition that uses bipartite graphs was adopted.

2.4 d-cores

Let D = (V ,E) be a digraph that is a set V of vertices and a set E of directed

edges between them. Each edge e ∈ E can be seen as a pair e = (v,u) where v is

called the tail of e while u is the head of e. The set of vertices of a digraph D is

denoted by V(D). Given a vertex x ∈ V , its in-degree, which is denoted by degin
D(x),

is the number of in-links of x, i.e. the edges in D with x as a head. Similarly, the

out-degree of x, denoted by degout
D (x), is the number of out-links of x, i.e. edges in

D with x as a tail. The min-in-degree and the min-out-degree of a digraph D are

defined as

δin(D) = min{x | degin
D(x) | x ∈ V(D)} and

δout(D) = min{x | degout
D (x) | x ∈ V(D)}

(2.9)

respectively. Given two positive integers k, l and a digraph D = (V ,E), a (k, l)-D-

core of D is a maximal size sub-digraph F of D where δout(F) > k and δin(F) > l; if

no such digraph exists then the (k, l)-D-core of D is the empty digraph. It is easy

to see that when such a sub-digraph exists, it is unique.

Given a digraph D, the (k, l)-D-core of D is denoted by DCk,l(D). Additionally,

dck,l(D) denotes the size of DCk,l(D), i.e. the number of its vertices. As D will

always be the network under study, the simpler notations DCk,l and dck,l will be

used instead.

The intuition behind (k, l)-D-cores is to find a sub-digraph where all nodes have

enough out-links and in-links to the rest of it. Clearly, it is not enough for a node

to have big in-degree and/or out-degree in order to be a member of such a core.

What counts, on the top of this, is that the node forms part of a community where
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Figure 2.2: Two portions of a digraph. The one in the left does not contain any non-trivial
(k, l)-core and the one in the right is a (2, 2)-core.

each of its members satisfy the same in-degree and/or out-degree requirements

with respect to all the other community members (see Figure 2.2 for an example).

This indicates that nodes in a D-core exhibit a strong collaboration behavior among

them.

The detection of DCk,l is computationally easy and can be done by altering the

original Trim procedure (subsection 2.3.1.1) thus having the following:

Procedure Trimk,l(D)

Input: A digraph D and positive integers k, l
Output: DCk,l(D)

1. let F← D.
2. while there is a node x in F such that degout

F (x) < k or degin
F (x) < l,

3. delete node x from F.

4. return F.

Let L = (v1, . . . , vm) be a layout of the vertices of D. For every i = 1, . . . ,n,

Di denotes the digraph induced by the vertices in {v1, . . . , vi}. The layout L is

(k, l)-eliminable if for every i ∈ {0, . . . ,n}, either degout
Di

(vi) < k or degin
Di

(vi) < l.

The following Lemma on (k, l)-D-cores generalizes the classic min-max result

of [67] (see also [39, 49]).

Lemma 1. Given a digraph D and two positive integers k and l, the (k, l)-D-core is empty

if and only if there exists a (k, l)-eliminable layout of V(D).

Lemma 1 essentially indicates that the elimination procedure of the algorithm

Trimk,l(D) works correctly and (optimally) runs in O(m) steps, where m = |E(G)|.

The proof is easy and follows the arguments of [39] for the undirected case (see

also [12]).

For an optimal implementation of the Trimk,l(D) procedure, see the general

algorithm of [12] that is based on the same ideas for the undirected case. In the

implementation of this procedure, DCk,l(D) is incrementally computed for all

pairs of k and l.
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2.4.1 Degeneracy of digraphs

The degeneracy of a directed digraph differs radically from its undirected counter-

part. Actually, it has a two-dimensional nature since different choices of the lower

bounds to the number of incoming/outgoing edges result to different D-cores.

Definition 10. The degeneracy of a digraph D is defined as follows.

δ∗(D) =
1

2
max{δout(H) + δin(H) | H ⊆ D}. (2.10)

The intuition behind the definition of δ∗(D) is to return the maximum r (for

some pair k, l where k+ l > 2r) such that D contains a non-empty (k, l)-D-core (δ∗

takes semi-integer values). Also the value of δ∗(D) may correspond to multiple

(k, l)-D-cores for different choices of k and l (those where k+ l = 2 · δ∗(D)).

Notice that if each edge of a graph is replaced by two opposite direction edges,

the degeneracy of the resulting digraph is equal to the degeneracy of G. Thus δ∗

is indeed a valid generalization of undirected degeneracy to directed graphs.

It is important to stress that δ∗ is the first density parameter on digraphs that

takes into account Hub/Authority trade offs as it differs radically (and is not com-

parable) with previous digraph density measures such as the ones defined in [21]

and [52]. A powerful extension of the classic notion of a k-core was given in [12]

where the k-core is defined as a set of vertices where some general vertex property

function is bounded. While the results in [12] can also provide a natural concept

of k-core for directed graphs, they are not able to capture the “two-dimensional”

nature of our (k, l)-core concept where degree bounds are applied simultaneously

on both the in-degrees an the out-degrees.

Definition 11. Let τ be a real number in the interval [0,π/2] representing an angle. The

τ-degeneracy of a digraph D is defined as follows:

δ∗τ(D) = max{
⌈k⌉+ ⌈l⌉

2
| G contains a non-empty (k, l)-D-core where

k = r · cos(τ) and l=r · sin(τ) for some r where r2 = l2 + k2}

(2.11)

In the above definition one may see each pair (k, l) as a point of a Cartesian sys-

tem of coordinates, corresponding to the D-core DCk,l(D). To compute δ∗τ(D), we

essentially follow the τ-slope segment starting from (0, 0) until DCk,l(D) becomes

empty along this line. The last such non-empty D-core is the one determining the

degeneracy of D with respect to the angle τ. The value of τ reflects the Hub/Au-

thority trade-off in the considered D-cores and we refer to it as H/A-angle.

Again it is easy to observe that δ∗π/4 deteriorates to classic degeneracy when

we replace each edge of an undirected graph by two (opposite) directed edges.
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Observe that δτ can also provide an another definition of δ∗, equivalent to the one

in (2.10), as δ∗(D) = max{δ∗τ(D) | τ ∈ [0,π/2]}.

2.4.2 D-core matrix

The objective of this work is to define a series of digraph-based metrics, based

on directed degeneracy, in order to evaluate the dense collaboration of nodes in

networks whose links have directional nature. The whole network is represented

by a digraph D and there is a unique DCk,l for each k, l > 0.

Definition 12. The sizes dck,l, (for k, l > 0) define an (infinite) matrix AD = (dck,l)k,l∈N

that is called D-core matrix of D. The notion of AD(k, l) is the two-dimensional digraph

analogue of the notion of core sequence defined in Subsection 2.3.1 for the undirected case.

For each k, l > 0 the following is defined:

DCLout
k,l = V(DCk,l) − V(DCk+1,l) and

DCLin
k,l = V(DCk,l) − V(DC1,l+1).

(2.12)

Also, set :

dclout
k,l = |DCLout

k,l | and

dclin
k,l = |DCLin

k,l|.
(2.13)

In other words, the values of DCLout
k,l and DCLin

k,l represent the “differential” of the

of the matrix AD taken in both horizontal and vertical direction. For this reason,

the matrices ∂outAD = (dclout
k,l)k,l∈N and ∂inAD = (dclin

k,l)k,l∈N are defined. To

visualize them, one may see the values of AD as being assigned to the squares of

an infinite two-dimensional grid centered to the esquire (0, 0) and the values of

∂outAD and ∂inAD as assigned to the vertical and horizontal edges of this grid.

2.4.3 An Example

As the structures these definitions describe might become a little hard to com-

prehend, there is a need for an example to demonstrate them. Here, results from

Wikipedia are used as such an example. The full details on Wikipedia will be pre-

sented along with the other datasets on the “Data Exploration” part. Additionally,

these examples will be used for reference to any of the following definitions where

needed. Figure 2.3a displays the differentials ∂outAD and ∂inAD for the digraph

formed by Wikipedia. Figure 2.3b displays the D-core of the same dataset along

with some metrics and concepts defined in the following subsections.
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Figure 2.3: a.The differentials ∂outAD and ∂inAD for the digraph formed by
Wikipedia.White squares indicate a value of zero.
b. The D-core matrix of the Wikipedia 2004 digraph
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In the example of Figure 2.3 the matrix AD and its differentials ∂outAD and

∂inAD for the digraph formed by the Wikipedia (2004, English edition). The nodes

correspond to Wikipedia pages and each directed edge e = (x,y) is a link from

page x to page y. Cell (k, l) in the matrix AD stores the size (dck,l)k,l∈N of the re-

spective d-core DCk,l. As agreed before, the coordinates (k, l) ar5e seen as squares

of an infinite two-dimensional grid, the values dclout
k,l and dclin

k,l are assigned to its

edges.

The result for the case of AD is depicted in Figure 2.3b. As there is no Wikipedia

entry with more than 51 out-links or more than 43 in-links this matrix is restricted

to its lower 51×43 portion. For each digraph D examined, this matrix is called D-

core matrix of D; its cells are visualized as squares of an infinite two-dimensional

grid ΓD and the size of its (k, l)-cores is depicted by coloring the corresponding

squares with different colors. According to Figure 2.3b, the value of δ∗(DWiki) for

the Wikipedia digraph DWiki is obtained in cell (38, 41) and is equal to 38+41
2 =

39.5. In other worlds, 39.5 is the half of the Manhattan distance between a cell of

the D-core matrix of DWiki and the cell (0, 0); in our case this cell is (38, 41) and

this justifies the value of δ∗(DWiki).

For the cases of ∂outAD and ∂inAD the visualization of Figure 2.3a is adopted

and makes it possible to depict together differential values in both directions:

Example: Consider the grid ΓD depicting AD in Figure 2.3b. For each square in

this grid, a new vertex is added in its center, an edge is drawn connecting it to

its 4 corners, and then the square is removed. Notice that the resulting graph is a

new infinite grid, denoted here by ∂ΓD, whose squares are corresponding either

to horizontal or to vertical edges of ΓD. That way one can assign the values of

∂outAD to “vertical” squares of ∂ΓD and and the values of ∂inAD to “horizontal”

squares of ∂ΓD. The colors of the squares of ∂ΓD correspond to the different sizes

of DCLout
k,l and DCLin

k,l. That way the visualization of Figure 2.3a can be seen as

a visualization of the discrete differential values of the matrix AD depicted in

Figure 2.3b.

The sequence of squares in ΓD is called incremental if for each two consecutive

squares (x,y), (x ′,y ′), it holds that either x ′ = x+ 1 and y ′ = y or that x ′ = x and

y ′ = y+ 1. Each incremental sequence that starts from (0, 0) corresponds to a pos-

sible scenario of considering consecutive D-cores of D by gradually incrementing

either the demand on the minimum out-degree or the demand on the minimum

in-degree.

2.4.4 Digraph Degeneracy Frontiers

The following observation follows directly from the definitions:
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Observation 1. For every k,k ′, l, l ′ where k > k ′ and l > l ′ it holds that DCk,l is a

sub-digraph of DCk ′,l ′ and therefore, dck,l 6 dck ′,l ′ .

Here, a cell (k, l) is called frontier cell for a digraph D if dck,l > 0 and dck+1,l+1 =

0 – thus the frontier consists of the cells corresponding to the last non-empty D-

cores as k or l increase. The set of frontier cells of a digraph D is denoted as F(D).

Formally:

F(D) = {(k, l) : dck,l > 0 & dck+1,l+1 = 0}.

See Figure 2.3b where the frontier appears as the squares that have some common

point with 0-valued squares (i.e. the white area).

The (k, l)-D-cores corresponding to the frontier cells are the frontier D-cores of

D and all of them together constitute the D-core frontier of D. Intuitively, these

D-cores exhibit the highest collaboration behavior in the network for different

Hub/Authority trade-offs (i.e. H/A-angles).

Let kmax be the maximum k for which (k, 0) ∈ F(D) and lmax be the maximum

l for which (0, l) ∈ F(D). We call (kmax, 0), (0, lmax) extreme cells of F(D). Observe

that number of frontier cells is always equal to kmax + lmax − 1. Thus the extreme

DC0,lmax represents the D-core with no in-links and a maximum number of out-

links. In the Wikipedia graph the DC0,50 represents the sub-digraph bearing to a

maximum the Hub-property (i.e. many out-links thus a very “extrovert” D-core).

On the contrary, the extreme DCkmax,0 represents the D-core with no out-links and

a maximum number of in-links. In case of the Wikipedia digraph, this graph is

DC42,0.

2.4.4.1 Core Sequence in D-Cores

Consider a core sequence L in ΓD that starts from square (k, l) and finishes in

square (k ′, l ′). Let e1, . . . , er be the sequence of edges that belong in consecutive

squares of L. Notice that each ei corresponds to some square of ∂ΓD that, in

turn, corresponds to some vertex set that is either DCLout
x,y (in case ei is a vertical

edge) or DCLin
x,y (in case ei is an horizontal edge) for some value of x and y. We

conclude that each monotone sequence L corresponds to a sequence of vertex sets

that form a partition P of the vertex set V(DCk,l) −V(DCk ′,l ′). That way, the size

of V(DCk,l) −V(DCk ′,l ′) (or, equivalently, the value dck,l − dck ′,l ′) is the number

of vertices that are discarded in order to transform DCk,l to DCk ′,l ′ , following

the core sequence L. Notice that this number is always the same no matter the

choice of the elimination sequence L (while certainly the partition P may vary a

lot). Therefore, it can be said that the edge weighting of ΓD defined by ∂outAD and

∂inAD is adiabatic in the sense that all paths between two vertices have the same

total weight.
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It is now possible to define the mono-dimensional analogue of core sequence

and cell sequence in directed graphs. A core sequence of a directed graph D is an

incremental sequence of squares in ΓD that starts from (0, 0) and finishes in some

square of the D-core frontier of D.

In conclusion, each core sequence L corresponds to a sequence of vertex sets

that form a partition of the vertex set of D. This sequence is called cell sequence of

D and is denoted by P(L). As there exist an exponential number of core sequences,

the same holds also to the number of different partitions one may consider. This

sharply contrasts the mono-dimensional undirected case where there the corre-

sponding cell partition is uniquely defined.

2.4.5 Digraph Collaboration indices

This section treats the issue of choosing the optimal D-core on the frontier, as the

most representative of the specific graph D-cores, with regard to the collaborative

features as implemented via dense in/out links connectivity. To this end, different

properties of digraph degeneracy are taken into account, especially with regard

to the frontier. Intuitively, one would be interested in the dominant trend in the

frontier D-cores i.e. whether they contain more in-links or out-links. Following this

line, we define a series of metrics quantifying distinct measures of robustness.

balanced collaboration index(bci)

One possibility is to choose a D-core with a balanced rate of in/out links. Thus

is defined the balanced collaboration index of D as the unique integer r for which

DCr,r is a frontier (r, r)-D-core. In other words, these are the coordinates of the

cell where the diagonal intersects the D-core-frontier of D. Formally, the balanced

collaboration index of D, BCI(D), is equal to δ∗π/4(D) (i.e. the H/A-angle is of 45◦).

The choice of the diagonal focuses on the D-cores with a balanced Hub/Authority

trade-off - thus containing vertices that are connected to others, on average, with

equal lower bounds on their in and out links.

optimal collaboration index (oci)

In this case the frontier D-cores DCk,l, for which (k+ l)/2 is maximized, is cho-

sen . In terms of the D-core diagram, the position of such D-core has the maximum

(among other frontier D-cores) Manhattan distance from the origin (0, 0). Formally

the optimal collaboration index, OCI(D), is equal to δ∗(G). Notice that the frontier

(k, l)-D-cores where k+l
2 is maximized can be multiple and may correspond to

several H/A-angles.
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inherent collaboration index (ici)

This index aims to represent the inherent hubs/authority trade-off in the graph

and is based on the average ratio of out-links to in-links of the vertices in the

digraph. Based on this we define the average H/A-angle of a digraph D as follows:

ρav = tan−1(
1

|V(DC1,1(D))|
·

∑

v∈V(DC1,1(D))

degin
D(v)

degout
D (v)

). (2.14)

To make the above formula feasible, vertices with zero in or out links are excluded,

i.e. the averaging is applied inside the D-core DC1,1(D). The inherent collaboration

index, ICI(D), of the digraph D is equal to δ∗ρav

(D) where ρav is defined as above.

Thus the terms: BCI/OCI/ICI - optimal D-core(s) are used respectively for the

D-cores corresponding to each particular optimization. See Figure 2.3b for a de-

piction of the above indices on the Wikipedia D-cores matrix frontier.

average collaboration index (aci)

This index is the average of the τ-degeneracies over all possible H/A-angles

corresponding to the cells of the D-core frontier of D. Thus, the average collaboration

index, ACI(D), of the digraph D is defined as:

ACI(D) =
1

|F(G)|

∑

(k,l)∈F(D)

δ∗tan−1(lk)
(D). (2.15)

In other words, ACI(D) is the half of the average Manhattan distance of the frontier

cells of D. Alternatively defined:

ACI(D) =

∑

(k,l)∈F(D)(k+ l)

2 · |F(D)|
. (2.16)

robustness

Notice that the maximum value of the average collaboration index of a digraph

D with extreme positions (kmax, 0) and (0, lmax) is obtained in the case where

F(D) = {(kmax, 0), (kmax, 1), . . . , (kmax, lmax), (kmax − 1, lmax), . . . , (0, lmax))}.

In this extreme and, in a sense, ideal case, the digraph D has the maximum pos-

sible robustness under degeneracy with respect to its extreme positions and the

Average Collaboration Index of such a graph is equal to

2kmaxlmax − kmax − lmax +
(

kmax+1
2

)

+
(

lmax+1
2

)

2 · |F(D)|
.
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The above quantity is denoted by µ(kmax, lmax). That way, the robustness of a di-

graph D, with extreme positions (kmax and lmax), id defined as the ratio:

∑

(k,l)∈F(D)(k+ l)

µ(kmax, lmax)

and it always results in a real value in [0, 1].

The above definition implies that the robustness is essentially the surface en-

closed between the F(D) frontier and the (0, 0), . . . , (kmax, 0), (0, 0), . . . , (0, lmax) co-

ordinates divided by µ(kmax, lmax). This represents the endurance of the D-core

graph to degeneracy, i.e. the degree of cohesion among the graph nodes – in

terms of globally distributed in/out links.

2.4.6 Set frontiers and indices

Let X be a subset of nodes in a digraph D. In a similar manner as above, the

D-core matrix of X, DCX
k,l(D), is defined as the cells (k, l) where X is a subset

of DCk,l and dck,l > 0. Similarly, the D-core frontier of X is defined as the set

of the extreme non-empty D-cores corresponding to the cells (k, l) where dck,l >

0 and dck+1,l+1 = 0. Thus:

FD(X) = {(k, l) : X ⊆ D & dck,l > 0 & dck+1,l+1 = 0}. (2.17)

The D-core matrix of a node set X ⊆ V(D), is defined in an analogous way as in

subsection 2.4.6. It represents the capacity of the nodes of X to be part, all-together,

in subgraphs with strong mutual linking and thus presenting a noteworthy col-

laboration behavior.

The five collaboration indices for a set X ⊆ V(D) as well as its robustness are

defined analogously as in previous sections:

• The Balanced Collaboration Index of X, BCID(X), is the maximum r for which

X ⊆ V(DCr,r).

• The Optimal Collaboration Index of X, OCID(X), is the maximum value of k+l
2

for which X ⊆ V(DCk,l).

• The Inherent Collaboration Index of X, ICID(X), is the maximum (⌈k⌉+ ⌈l⌉)/2

for which X ⊆ V(DCk,l), where k = r · cos ρav and l = r · sin ρav, for some r

where r2 = k2+ l2 (ρav is the average H/A-angle, defined as in the previous

subsection).
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• The robustness of a set X with extreme positions (kmax and lmax) is defined as

the ratio:
∑

(k,l)∈FD(X)(k+l)

µ(kmax,lmax)
where the function µ is defined as in the previous

section.

• The Average collaboration H/A-angle of a set with extreme positions (kmax and

lmax) is defined as:

σD(X) =

∑

(k,l)∈FD(X)(k+ l) · tan−1( lk)

Σ(k,l)∈FD(X)(k+ l)

As before, this angle conveys the Hub/Authority trade-off for the D-cores in

which X is a subgraph.

These indices can be applied also to every individual node x ∈ V(D) by setting

X = {x}. In this case, all above notations and concepts can also be used for nodes

instead of sets of nodes. Notice that all indices defined in this subsection are anti-

monotone. In particular:

Observation 2. LetX1 andX2 are subsets of the vertex set of some digraph D. If X1 ⊆ X2,

then the balanced/optimal/inherent/diagonal collaboration index of X1 will be at least the

balanced/optimal/inherent/diagonal collaboration index of X2.

2.4.7 Core Decomposition Forests

In this section the concept of a core decomposition forest is defined for D-cores in

order to examine the structure of a digraph and the connected components of its

cores. But first some definitions are required.

A digraph D is strongly connected when every pair x and y of vertices in D is

been met by some directed cycle, i.e. there is a directed path from x to y and a

directed path from y to x.

A strongly connected component (in short: SCC) of a digraph D is any maximum

sub-digraph of D that is strongly connected. Finding the strongly connected com-

ponents of a digraph graph can be done in time linear to the sum of its edges and

vertices.

Definition 13. Let D = D0,D1, . . . ,Dd be a sequence of digraphs such that for each

i, j where i 6 j, Di is a subgraph of Dj (we call such a sequence monotone). The

Decomposition Forest of a monotone digraph sequence D is the digraph DF(D) defined

in the following way: For each i = 0, . . . ,d we denote the strongly connected components

of Di by D1
i , . . . ,Dmi

i and each such strongly connected component is a vertex of DF(G).

An edge (Gj
i,G

j ′

i ′) is added in DF(G) if j ′ = j+ 1 and G
j
i contains Gj ′

i ′ as a sub-digraph.

The above definition implies directly that DF(D) is a union of trees, each rooted

to some of the strongly connected components of D0. Given now a directed graph
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D and one, say L of its cell sequences, it is easy to verify that the directed graph

defined above is a rooted forest.In fact, each of its components is a rooted tree

where all its edges are directed away from the root and each root is a connected

component of D0. Given that, by its definition, each core sequence L of D is

monotone, the Core Decomposition Forest (CDF) of D with respect to L is defined as

the decomposition forest corresponding to L.

This notion of the Decomposition Forest is an extension of the undirected one

( 2.3.1.2) to digraphs and in the experimental study is used to visualize the core

decomposition forests for both Wikipedia 2004 and DBLP, where the sequence L

corresponds to the cells in the diagonal of each D-core matrix (see Figure 2.3b).

2.5 s-cores and reciprocity

2.5.1 Introduction

In this section the fundamental concept of degeneracy is defined for signed graphs.

This will be exploited towards the evaluation of trust and the definition of reci-

procity in such graphs. First will be the definition of the notion of S-core – an

extension of D-core – that represents degeneracy in signed graphs. Moreover ad-

ditional concepts are defined to quantify the robustness of the graph under degree

based degeneracy.

The concept of reciprocity as defined in existing works – as a measure of local

mutuality among pairs of nodes – does not offer an adequate descriptive capabil-

ity (especially for signed networks) for measuring reciprocity at the graph level.

For that reason a comparison will be made between reciprocity in signed graphs

and metrics derived from the S-core structure.

The comparison, of reciprocity with the degeneracy based metrics, will be done

under the signed graph context not only to display a better concept for reciprocity

but also to signify the need of the metrics in an area of graph mining that is in its’

“dawning” phase.

Reciprocity, in unsigned directed networks, quantifies the predisposition that

the members of a network display in creating mutual connections. In signed trust

networks, reciprocity would have different interpretations based on the pairs of

signs one examines. The in+/out+ pairs, provide an indication on the level of

trust. In contrast, in−/out− pairs would indicate distrust or vindictiveness. More-

over, the in+/out− and in−/out+ pairs may reveal interesting aspects as well.

The reciprocity of the former would describe impartiality under positive votes

(trust), while the latter would describe impartiality under negative votes (distrust).

A more strict version of reciprocity could be viewed by the account of only the

number of bidirectional links baring the same sign in both ends. This would de-
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Figure 2.4: Example digraph of signed networks.

scribe only the most basic nature of reciprocity without taking into account any

further context.

Disregarding for now what would be the best definition of reciprocity for signed

networks, in Figure 2.4 a sample toy signed directed graph can be seen (to keep

it simple the assumption of only positive signs on the links is made) representing

trust relations. As one observe there is no pairwise mutuality in terms of mutual

plus links among pairs of nodes – therefore the local reciprocity as defined in

directed and signed network is zero. On the other hand it is clear from the graph

that there is a global reciprocity as for each node we observe a balanced in / out

positive trust. For example, in this case each node offers two outgoing positive

(+) trust links to the community and at the same time receives two positive (+)

incoming trust links – although they do not emanate from the same node as those

it gives trust to. Thus it is evident that there is a challenge in representing and

dealing with reciprocity at a more global level. This issue becomes even greater

when the added complexity of signs is taken into consideration; since possible

combinations of local reciprocities would lessen their importance when looking

at the graph at a node level.

2.5.2 S-cores

A signed digraph is a triple G = (V ,E, w) such that (V ,E) is a simple directed graph

and w : E→ {+,−} is a labeling of E, assigning either a positive or a negative sign

on the edges of G. The existence of a positive signed edge e = (x,y) from a

vertex x to a vertex y represents the fact that “x trusts y” or “x likes y", while the

existence of the same edge with negative sign means that “x distrusts y” or “x

dislikes y".

Given a vertex v of G, the positive in-degree (resp. positive out-degree) of v in G

is denoted by deg+
in(v,G) (resp. deg+

out(v,G)), i.e. the number of positive-signed
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edges tailing (resp. heading) on v. The negative in- and out-degrees of the vertices

of G are defined analogously and are denoted by deg−
in(v,G) and deg−

out(v,G).

Definition 14. Let G = (V ,E, w) be a signed graph. Let also s, t ∈ {+,−} and k, l ∈N.

The (lt,ks)-dicore of G is defined as the maximum size subgraph H of G where, for each

vertex v of H, it holds that degs
in(v,H) > k and degt

out(v,H) > l.

For the rest of this document the generic term S-core is used when there is no

need to make explicit the values of the pair (lt,ks).

Notice that the (lt,ks)-dicore of G can be computed by a greedy procedure

similar to Trim and Trimk,l (sections 2.3.1.1 and 2.4 respectively):

In short, remove from G a vertex v where degs
in(v,H) < k or degt

out(v,H) < l, until this

is not possible anymore.

It is straightforward that the resulting sub-graph is well-defined – i.e., it is

the same regardless of the order of elimination of vertices – and it is indeed the

(ks, lt)-dicore of G.

Definition 15. (s, t)-degeneracy: Given a pair (s, t) ∈ {+,−}2, the (s, t)-degeneracy

of G is defined as follows:

δs,t(G) = max{k+l
2 | G contains a non-empty (lt,ks)-dicore }. (2.18)

For convenience, the sign function s : Z → {+,−} is defined so that, given an

integer i, it outputs − or + depending whether i is negative or not.

Thus the (s, t)-degeneracy of the graph represents its robustness under degen-

eracy in the four different combinations of edge-direction and sign. In the case

of trust networks the (s, t)-degeneracy represents the degeneracy of the graph for

each of the combinations of incoming/outgoing and positive/negative trust. For

instance refer to Figure 2.5 where the four cases of degeneracy are depicted as

δ++
max(G) etc.

Definition 16. Signed dicore diagram: The signed dicore diagram, of a signed di-

graph G, is defined as a matrix A = (αi,j)(i,j)∈Z2 where for each (i, j) ∈ Z2, αa,b is the

size (i.e., the number of vertices) of the (is(i), js(j))-dicore of G.

As it becomes obvious many of the definitions of the S-core will describe con-

cepts similar to the ones of the D-core . For example the previous definition is

equivalent to the one of the D-core Matrix (section 2.4.2). As the signs of the

graph create a more complicated context, the same notions need to be defined

with greater intricacy.
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signed graph extension

As the above definition of A = (αi,j)(i,j)∈Z2 produces an infinite matrix, it

is sufficient to consider its finite portion, which contains all its non empty di-

cores. For this, i and j are restricted to belong in the frame of G that is the set

FG = {−(b+ 1), . . . , 0, . . . ,b+ 1} where

b = max{l,k | G has a non-empty (lt,ks)-dicore for some (s, t) ∈ {+,−}2}. (2.19)

The value b will be called the extension of the signed graph G and denoted by

b(G).

Definition 17. S-core region. Given a signed graph G, its core region is defined as the

set RG = {(i, j) ∈ F2G | αi,j > 0}, that is all the pairs that correspond to a non-empty

S-core.

2.5.2.1 S-core Frontier

Definition 18. The core-frontier of G, denoted by BG, is the set of all entries (i, j) ∈ F2G
with the property that ai,j > 0 and αi+1,j+1 = 0. These are the extreme non-empty

S-cores, in the sense that any further shift of their coordinate results in an empty S-core.

Definition 19. Similarly to BG, given a vertex x ∈ V(G), its core region of x is defined

as the set RG(x) = {(i, j) ∈ F2G | x belongs to the (is(i), js(j))-dicore}.

The core-frontier of x, denoted by BG(x), is the set of all entries (i, j) ∈ F2G with

the property that (i, j) ∈ RG(x) and (i+ 1, j+ 1) 6∈ RG(x). The semantics of the

core frontiers vary and they will become clear in the “Data Exploration” part.

Here, an attempt is made for an intuitive presentation of the above definitions

based on Figure 2.5. There the reader may see the extension of the degeneracy of

the four cases in the areas (e.g. R++(G) for the positive in and out trusts edges

degeneracy) enclosed by the respective frontiers.

To evaluate the trust/distrust tendencies in the signed digraphs, a series of

parameters need to be defined. For this, it is useful to model the dicore diagram

as a graph ΓG, defined as follows:

Definition 20. The vertices of ΓG are the pairs in the set RG and an edge {{i, j}, {i ′, j ′}}

exists in ΓG iff {i, j}, {i ′, j ′} ∈ RG and |i− i ′|+ |j− j ′| = 1. Therefore, ΓG can be seen as

the subgraph of a grid whose vertices are the pairs corresponding to non-empty S-cores.

This graph-theoretic representation of G makes it possible to assess the trust/dis-

trust tendencies in a signed graph, by studying the geometry of Γ under the regu-

lar metric of graph distance. Many of the above definitions, (and some that follow

in latter sections) can be seen in a visual representation in Figure 2.5.
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Figure 2.5: Metrics on the S-core graph. The square in the doted line is the extension and
the irregular shape is the frontier.

2.5.3 Reciprocity in Signed Graphs

In this section, different notions of reciprocity in signed graphs are defined. The

definitions are build upon the existing ones of reciprocity for directed graphs

based on local criteria and extend them towards signed ones. Moreover novel no-

tions of reciprocity are defined that do not depend only on local binary reciprocity

but represent this concept in an aggregate manner at the graph level.

2.5.3.1 Signed graph reciprocity – local definition

First, existing definitions [69, 82, 87] have to be adapted to signed digraphs. Trust

networks are conspired as a prominent example of signed digraphs where a node

can either trust or distrust another. Additionally, since self-trust is trivial, self

loops are excluded.

The intuition of reciprocity in signed networks must also be examined. Two

different options are explored:

i. Contextual local reciprocity, where we examine all four possible sign permu-

tations between two reciprocal edges where each sign permutation defines

a context of trust and

ii. Simple local reciprocity, where we consider only the mutuality under trust

and distrust – i.e. we consider only the pairs of nodes with the same sign

that represents the coarse level of trust reciprocity.
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contextual local reciprocity

Following are the definitions of reciprocity emanating from all the possible

signs permutations on reciprocal links on a pair on nodes:

r++ ≡
L+↔+

L+
for the in+/out+

r+− ≡
L+↔−

L+
for the in+/out−

r−− ≡
L−↔−

L−
for the in−/out−

r−+ ≡
L−↔+

L−
for the in−/out+.

(2.20)

where L+/− is the count of positive/negative edges and the signs on the double

arrow of L↔ (links pointing both ways i.e. reciprocations) indicate the sign of in and

out edges respectively. Notice that the denominator is not the same for all the

definitions. It could have been L instead of L+/− but, in the trust model explored

here, the second and fourth reciprocity would have had identical values. The

identical values would not be an issue for a more relaxed model that would allow

two edges of different sign to have the same source and target.

The rationale for this definition is that, since reciprocity quantifies mutuality,

only the type of actions that are being mutual are of interest. For each type of

reciprocity above, a different set of actions is selected which are of interest to

see if they are being reciprocated. For example, in the study of reciprocation of

trust by trust (in+/out+) it is more intuitive (and more expressive) to compute

reciprocity as only the portion of the positive edges and not the total number of

them. More over, with this, in the assumptions about the network, it is possible

to have distinguishable values between the in+/out− and in−/out+ cases of

reciprocity.

simple local reciprocity

Moving on to the second definition, only the same sign reciprocations are con-

sidered and thus the following reciprocity is defined :

rs ≡
L+↔+ + L−↔−

L
. (2.21)

For the rest of the document rs will be referred as simple reciprocity and the for-

mer set of four signed reciprocities as contextual reciprocity. Additionally, the aver-

age of the local reciprocities over the individual nodes is considered (e.g. r+↔+
a is

the average of ratios of reciprocal positive edges in individuals over all vertices).

These average local reciprocities are utilized only for comparison and not any fur-

ther trust evaluation. All references to local reciprocities in the text correspond to

the original five definitions unless specified otherwise.
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Observation 1. Invariance under sign flipping: A crucial difference between the two

definitions is that the first one is not invariant to sign flipping while the second one

is. With contextual reciprocity the objective is to quantify different behaviors under a

particular context. For example, trust and distrust are two opposite concepts and their

measurement should change if there is a different count of reciprocal signs. On the other

hand, simple reciprocity remains the same since only one type of behavior is counted.

Therefore, flipping the signs should not (and does not) change the measurement of simple

reciprocity.

2.5.3.2 Signed graph reciprocity – global definition

As seen in the introduction, the concept of reciprocity as defined in existing works

capitalizes on the local property of mutuality among pairs of nodes and does not

offer an adequate descriptive capability for measuring reciprocity at the graph

level.

Following here is the definition of metrics that represent signed graph reci-

procity at graph level. Figure 2.5 is a visual aid to those definitions (the S-core fron-

tier here is the irregular shape outlined with the thick line). In this diagram the

trust axes (in,out) and signs (+,−) define respective quadrants Qout_sign,in_sign,

where out_sign, in_sign ∈ {+,−}. Each of the quadrants bears specific semantics

regarding the in/out trust. For instance Q+,+ represents degeneracy in graphs

where the criterion is the mutual incoming and outgoing trust. On the other

hand Q+,− represents degeneracy under outgoing trust but incoming distrust.

The graphs in the S-Core frontier (in Q+,−) represent situations where users max-

imally trust others in the graph but they receive distrust from others. The inter-

pretations are analogous for the remaining two quadrants Q−,−, Q−,+.

maximum degeneracy on the trust axes

Here is discussed the extreme degeneracy on each of the four trust axes – rep-

resenting the robustness of the graph for each type of trust. For instance the

δ
(out,+)
max (G) represents the extreme graph with regards to outgoing positive trust

degeneracy, i.e. the last non empty graph when we increase the threshold for the

outgoing positive trust. Similarly are defined the rest of extreme degeneracies

δ
(in,+)
max (G), δ(out,−)

max (G), δ(in,−)
max (G) on the other trust axes.

quadrant bounding box

For each of the four aforementioned quadrant there is the previously defined

frontier that has a respective bounding box which is defined by the maximal

degeneracies on the relevant axes. For instance the bounding box for Q+,+ is

defined by the dotted rectangle define by the axes the points: 0, 0, (δ(out,+)
max (G),

δ
(in,+)
max (G)). This bounding box would be the S-core frontier of G if all its vertices
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(or at least a subset of the vertices in G) had degrees of at least δ(out,+)
max (G) and

δ
(in,+)
max (G) and moreover their out/in edges connected them with vertices having

the same property.

quadrant maximal degeneracy

By utilizing the bounding box, it is possible to define the max degeneracy of

each quadrant as the intersection point between the diagonal of the bounding box. For

instance for the Q+,+ quadrant the maximal degeneracy δ
(+,+)
max (G) is defined by

the intersection of the diagonal (0, 0, (δ(out,+)
max (G), δ(in,+)

max (G))) and the respective

frontier F++(G). The max degeneracy of each quadrant corresponds to the most

extreme core in relevance to the natural ratio of the maximum degeneracies that

characterize the quadrant. This metric signifies the overall activity of the signed

network (i.e. evaluation of how much the users interact for each type of relation-

ship) while, at the same time, taking into account the over all outward or inward

tendencies (e.g. are the users more prone to giving or receiving trust).

contextual reciprocity

Here the definition of reciprocity at a graph level is defined in accordance to

the local reciprocities defined in the previous subsections. As it can be observed in

Figure 2.5, the S-core frontier covers the bounding boxes reaching different levels

of degeneracy in each. This is utilized to measure graph level reciprocity. Thus

contextual reciprocity at the graph level is defined (per quadrant) as the ratio of the

area under the respective quadrant frontier over the corresponding bounding box

surface:

GR++ = R++(G)/(δ
(out,+)
max (G) ∗ δ

(in,+)
max (G))

GR+− = R+−(G)/(δ
(out,+)
max (G) ∗ δ

(in,−)
max (G))

GR−− = R−−(G)/(δ
(out,−)
max (G) ∗ δ

(in,−)
max (G))

GR−+ − R−+(G)/(δ
(out,−)
max (G) ∗ δ

(in,+)
max (G)).

(2.22)

These Global Reciprocities have the same contextual meaning as their node level

equivalents. For example, GR++ (the graph level equivalent of r++) measures

global trust reciprocity and would reach a maximum value of one if everybody

gave as much trust as they received (but not necessarily to the same people).

global reciprocity

Much like the node level reciprocities there is a need to define a more strict

version of reciprocity for the mutual interchange of the same types of actions. For

this purpose, the quadrants of same sign are considered (i.e. Q+,+, Q−,−) as those
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capturing this type of reciprocity, and the quadrants having different in/out signs

as ones capturing inverse reciprocity. Then Graph Reciprocity can defined as:

GR =
GR++ +GR−−

GR++ +GR+− +GR−− +GR−+
. (2.23)

Ideally, the value of this metric would reach a maximum of one only when the

reciprocation is in the same sign quadrants (i.e. GR+− and GR−+ are equal to

zero) thus keeping the same range of values as the rest of reciprocations. By tak-

ing into account the inversely reciprocal quadrants, there is a difference between

cases where the signed graph is highly reciprocal only in the same sign quad-

rants and cases where the same applies while simultaneously there is also high

reciprocation in the other quadrants as well.

2.5.4 Conclusion

Cohesion and collaboration in graphs are cornerstone features for their evalua-

tion, especially with the advent of large scale applications such as the Web, social

networks, citations graphs etc. The traditional way to look at graphs is through

the authority/hub notion based on per node in/out links patterns. Other group

evaluation measures do not take into account the directed nature of the afore-

mentioned graphs. On the contrary, with the definitions presented in this part

of the document, the importance of cohesion and collaboration among groups of

nodes is being stressed. The intuition is that sub-graphs with many links among

their nodes convey a high degree of collaboration (adapted to the local application

semantics). Thus, extensions of the k-core structure are defined, as means of rep-

resenting their collaborative features based on their robustness under degeneracy.
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3
Experiments

3.1 introduction

The metrics and structures defined in the previous sections will be used here to

evaluate large scale graphs of real world networks. The aim is to detect, in each

dataset, the sets of authors that correspond to the most coherent communities in

terms of co-authorship collaboration. In the following sections, for each of the

aforementioned variations of core structure, all the relative to each case datasets

will be described in full detail along with information related to the processes

involved in modeling them to their respective graphs. Following the experiments

conducted will be presented along with interpretations on the results.

3.2 undirected and weighted

3.2.1 Dataset Description

The application of the k-core and the fractional core framework is done on the

bipartite graphs corresponding to the DBLP dataset, concerning publications in

computer science, and the ARXIV on High Energy Physics - Theory (ARXIV.hep-

th) dataset, concerning publications on High Energy Physics. From now on, for

notational convenience, the abbreviation ARXIV will be used instead of ARXIV.hep-

th.

The DBLP dataset is freely available in XML format at

http : //dblp.uni-trier.de/xml/

and the ARXIV dataset on High Energy Physics Theory is available in simple text

format at:

http : //snap.stanford.edu/data/ca-HepTh.html

The bipartite graphs DBLP and ARXIV were extracted from these datasets. In

the current snapshot, DBLP has 2208512 papers while ARXIV has 25170 papers.

Among them, 817 of the papers in DBLP have only one author, while the same

holds for 7196 of the papers of ARXIV. Also, DBLP has 825761 authors and ARXIV

45
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Figure 3.1: Distribution of number of publications versus cardinality of co-author set for
a.DBLP and b.ARXIV.

has approximately 8862 authors. In total, DBLP has 4446765 edges and ARXIV has

56065 edges.

In Figure 3.1, one can see the distribution of the number of co-authors per

publication in the DBLP graph and the ARXIV graph. It is clear that the vast

majority of the papers are authored by few authors. However, there are some

extremities where one specific paper in DBLP has 114 authors! On the other side

all papers in ARXIV have at most 8 co-authors.

The unweighted graphs HDBLP and HARXIV and their edge-weighted versions

(HDBLP, w) and (HARXIV, w) were computed, as described in Subsections 2.3.2 and

2.3.3.

Clearly, single-author papers will not create any edge between authors and all

isolated vertices in HDBLP and HARXIV correspond to authors that have written

only single-author papers.

3.2.2 k-cores in co-authorship graphs

We applied the Trim procedure to find the core sequences of the graphs HDBLP

and HARXIV. In this computation, we took into account all the papers regardless

of the number of the authors each may have. In Figures 3.2a and 3.2b, we can see

the distribution of cores sizes for each graph.

In Table 3.1, a ranking of a few selected authors is presented for both datasets.

As mentioned before, one paper with a large number of co-authors can “push”

authors with otherwise low co-authorship to the densest k-core. For example, in

DBLP, at k = 113 there are 114 authors all of which have participated in the same

publication and some of them do not appear anywhere else on the dataset.
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Figure 3.2: Distribution of the core sizes vs core indices in HDBLP and HARXIV.

HDBLP Name of author Index

Serge Abiteboul 28

Christos Faloutsos 28

Gerhard Weikum 22

Christos H. Papadimitriou 17

Paul Erdös 16

Andrew Tanenbaum 48

HARXIV Name of author Index

Mirjam Cvetic 9

Riccardo D’Auria 8

Christoph Schweigert 7

John Ellis 6

Jürgen Fuchs 6

Dimitris Nanopoulos 6

Table 3.1: Ranks of selected authors in HDBLP and HARXIV.

Actually, the results on the HDBLP graphs are apparently quite biased, i.e. a

maximum-index 113-core exists in HDBLP because of the existence of a single pa-

per regardless of their other publication activity. In graph theoretic terms this

HDBLP core is a clique of 114 vertices that is created because of the existence of

a vertex in DBLP of degree 113. However, this does not hold for the case of the –

smaller in size – graph HARXIV where the maximum number of authors in a paper

is 8. The densest core in HARXIV is the 9-core and is a clique on 10 vertices. The

members of this core are presented in the lower part of Table 3.2. It is interesting

to note that the edges of this clique are formed by many different papers. In fact

there are at least 118 papers in ARXIV that have been co-authored by at least two

of the members of the 9-core of HARXIV.

The biased situation that was detected in HDBLP was the motivation to consider

filtering out papers with excessively high number of co-authors. In this case, a

filtered version of HDBLP was computed, by taking into account only the papers

whose number of co-authors is within the 99% of the corresponding distribution

shown in Figure 3.1. This excludes from DBLP papers with more than 15 co-

authors. This version of the graph HDBLP is called filtered and is denoted it by

H∗

DBLP
.
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Figure 3.3: Distribution of the core sizes vs core indices in H∗

DBLP
.

H∗

DBLP

Pankaj K. Agarwal Hee-Kap Ahn Oswin Aichholzer Greg Aloupis

Helmut Alt Esther M. Arkin Boris Aronov Tetsuo Asano

Mark de Berg Therese C. Biedl Prosenjit Bose David Bremner

Hervé Bronnimann Sergio Cabello Timothy M. Chan Bernard Chazelle

Otfried Cheong Sébastien Collette Mirela Damian Erik D. Demaine

Martin L. Demaine Olivier Devillers Vida Dujmovic Herbert Edelsbrunner

Alon Efrat David Eppstein Jeff Erickson Hazel Everett

Sàndor P. Fekete Joachim Gudmundsson Leonidas J. Guibas Dan Halperin

Sariel Har-Peled John Hershberger Ferran Hurtado John Iacono

Christian Knauer Danny Krizanc Stefan Langerman Sylvain Lazard

Giuseppe Liotta Anna Lubiw Rolf Klein Mark Jirì Matousek

Kurt Mehlhorn Henk Meijer Joseph S. B. Mitchell Pat Morin

Joseph O’Rourke Mark H. Overmars Belén Palop Richard Pollack

Suneeta Ramaswami David Rappaport Gunter Rote Vera Sacristan

Otfried Schwarzkopf Raimund Seidel Micha Sharir Thomas C. Shermer

Michiel H. M. Smid Jack Snoeyink Michael A. Soss Diane L. Souvaine

Bettina Speckmann Ileana Streinu Subhash Suri Perouz Taslakian

Godfried T. Toussaint Marc J. van Kreveld Jorge Urrutia Sue Whitesides

David R. Wood Stefanie Wuhrer Chee-Keng Yap Emo Welzl

HARXIV

Mirjam Cvetič Michael J. Duf P Hoxha R Martinez-Acosta

James T. Liu Hong Lu Jian-Xin Lu Christopher N. Pope

Hisham Sati Tuan A. Tran

Table 3.2: Authors of the 15-core of H∗

DBLP
(top) and the 9-core of HARXIV (down).
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Name of author Index

Serge Abiteboul 14

Paul Erdös 14

Christos Faloutsos 14

Christos H. Papadimitriou 14

Gerhard Weikum 14

Andrew Tanenbaum 12

Table 3.3: Ranks of selected authors in H∗

DBLP
.

The Trim procedure is applied to find the core sequence of the graph H∗

DBLP
.

The distribution of the resulting core sizes appears in Figure 3.3. In the filtered

case, the densest core of H∗

DBLP
has index 15 and has a size of 76 authors. These

authors appear in the upper part of Table 3.2.

As expected, in the filtered graph HDBLP, several of the authors “move down” in

cores of smaller index. The new indices for the selected sets of authors of Table 3.1

for DBLP are now depicted in Table 3.3. As seen there, in the case of HDBLP, the

authors of Table 3.3 get now accumulated in the second densest core, i.e the 14-

core.

It is interesting that for some authors of DBLP, such as Andrew Tanenbaum, the

core index in the filtered case is much lower (12) that in the unfiltered one (48).

Apparently, this happens due to his participation in multi-author papers that were

filtered out.

3.2.3 Fractional cores on the weighted graph

Here the need is articulated for assigning weights to the edges of the previously

defined co-authorship graphs. Assume that two authors x,y have co-authored

several papers and therefore they are connected by an edge e = {x,y}. This co-

authorship relation represents a strong collaboration among the two that escapes

the unweighted setting of the previous section.

This collaborative effort is apparently larger as the number of co-authored pa-

pers increases. On the other hand, the effort to author a paper is naturally divided

among all the co-authors (we assume in equal parts). This justifies the definition

in Section 2.3.3 of an edge-weighted co-authorship graph where the contribution

of each author is now fractional.

In the fractional case, there is no need to apply any filtering of papers with a

huge number of authors, as they are now filtered indirectly because the weight

they contribute to their authors is tiny. Recall that the weight w(e) assigned to

each edge is proportional to the number of papers they have co-authored and
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DBLPa

34.0 34.3 35.2 36.4 37 37.3 38.8 42.7

42 39 35 31 29 25 22 20

8 7 7 4 4 3 3 3

DBLPb

44.2 47.8 48.4 53.8 55.3 64.6 77.8 149.2

18 16 13 11 8 6 4 2

3 3 3 3 2 2 2 2

ARXIVa

10.4 10.5 10.6 10.7 11.0 11.4 11.5 12.0

51 50 36 35 33 26 23 21

37 36 20 19 19 16 16 14

ARXIVb

13.1 13.4 13.7 14.9 16.0 21.7 24.5 34.9

16 14 11 9 6 5 4 2

6 6 6 6 6 5 2 2

Table 3.4: Data of the last 16 graphs of the fractional core sequence of (HDBLP, w) (top)
and (HARXIV, w) (bottom). For each dataset, the first line depicts hi, the second
line contains the size of the hi-core and the third one contains the size of the
biggest connected component of the hi-core. The data have been split for each
dataset into subsets a and b for better presentation.

Figure 3.4: The 27.1-core of (HARXIV, w).



3.2 undirected and weighted 51

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
x 10

5

Fractional core index

C
o
re

 s
iz

e

(a)

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fractional core index

C
o
re

 s
iz

e

(b)

Figure 3.5: Distribution of the fractional core sizes vs core indices in the edge-weighted
co-authorship graph of a. DBLP and b. ARXIV

inversely proportional to the number of co-authors per co-authored paper. Thus

w(e) represents the “essential amount” of collaboration among authors x,y in

terms of the effort committed for common publications (which is normalized in

each case by the number of contributing co-authors). This implies that the best

fractional k-core communities contain authors that are intensively co-authoring

with others and, while the number of co-authors is not high, it follows that the

share of collaborative effort is high.

In Figure 3.5 the reader can see the size distribution of the graphs in the frac-

tional core sequence of (HDBLP, w) and (HARXIV, w), i.e. the edge-weighted co-

authorship graph of DBLP and ARXIV respectively.

For both (HDBLP, w) and (HARXIV, w), the behavior is of similar flavor in terms of

the relation of the hi-core size and hi. The fractional index sequence of (HDBLP, w)

contains a big number of rational numbers that becomes “sparsest” as it increases,

i.e., the differences between two consecutive elements is increasing, especially in

the end. The 16 last terms of the fractional index sequence of (HDBLP, w) and

(HARXIV, w) are depicted in Table 3.4.

3.2.4 Rank vs size

For (HDBLP, w), the densest fractional core has index 149.2 and contains only two

authors (Sudhakar M. Reddy, Irith Pomeranz) whose publication record indeed

verifies the claims as they have co-authored 373 papers, 256 of which as the only

authors! The second densest core of (HDBLP, w) is the 77.8-core that includes the

additional authors: Henri Prade, Didier Dubois whose intense collaboration is

verified by the number of co-authored papers (223 according to DBLP). In other

words, the 77.8-core of HDBLP consists of just two isolated edges. This trend con-
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Figure 3.6: The 34.30-core of (HDBLP, w)

tinues for some of the next members of the fractional core sequence until the cores

become greater and thus more complex.

In the case of (HARXIV, w), similar behavior is observed for the densest cores.

However now the cores swiftly develop large connected components. The dens-

est (HARXIV, w) core, the 34.9-core, contains only two authors: H. Lu and C. N.

Pope that have co-authored 114 papers. The second densest 24.5-core contains

two more authors: Shinich Nojiri and Sergey D. Odintsov who co-authored 76

papers. Interestingly, this set of authors becomes connected in the next 27.1-core

because of the insertion of Mirjam Cvetic in it who has published papers with all

aforementioned authors. The 21.7-core of (HARXIV, w) is depicted in Figure 3.4.

To amortize the effect of having tiny dense cores or dense cores of small con-

nected components, two criteria are introduced to focus on dense cores:

• SVR (Size Versus Rank) Criterion: discarding from the core sequence of HG

all Ghi
for which hi > |V(Ghi

)|, i.e., the cores whose size is less than their

index are not considered.

• GCVR (Giant Component Versus Rank) Criterion: discarding from the core

sequence of HG all Ghi
for which hi > g(Ghi

), i.e., the cores for which the

size of their giant component is less than their index are not considered.



3.2 undirected and weighted 53

Figure 3.7: The 13.40-core of (HARXIV, w)

Both above criteria are balancing the high index with some quantity criterion

on the number of authors that generate it. SVR asks that the essential degree

of effort of each author (i.e. the fractional degree of each vertex) is bigger than

the total number of authors in the core with whom this effort has been shared.

Clearly, GCVR is at least as strict as SVR and reflects the fact that, as cores grow

in size, most of their authors are accumulated on the giant component (see Sec-

tion 2.3.1.2). The application of GCVR on (HDBLP, w) considers the 34.3-core (de-

picted in Figure 3.6): it has 39 authors while the next 35.2-core has 35 authors. The

same criterion applied to (HARXIV, w) considers the 13.4-core that has 14 authors

(depicted in Figure 3.7). Notice that in both Figures 3.6 and 3.7, the graphs are still

quite fragmented and, at the same moment, already big enough to reveal several

collaboration communities.

The next step is to apply the GCVR criterion on HDBLP. In this case, the biggest

k in the fractional index sequence of HDBLP for which the giant component of the

k-core is bigger than k is 27.7. Indeed, the 27.7-core has 132 authors and its giant

component has 42 authors, while the next index is 28.0 and the 28.0-core has size

122 and its giant component has 23 authors. The 27.7-core is depicted in Figure 3.8

(as it has 122 vertices, the names of the authors are not included).

The application of the GCVR criterion on HARXIV implies that the 12-core, that

has 21 vertices, is the last one whose giant component has more vertices, that is

12 than its index. Indeed, the next index is 13.1 and the 13.1-core has 16 authors

and, among them, 6 are in its giant component. The 12-core of HARXIV is depicted

in Figure 3.9.
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Figure 3.8: The 13.40-core of (HDBLP, w)

Figure 3.9: The 12-core of (HARXIV, w)
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Name of author Index

(HDBLP, w)

C.H.Papadimitriou 20.8

Serge Abiteboul 20.5

Christos Faloutsos 18.7

Gerhard Weikum 16.3

Paul Erdós 13.9

A. Tanenbaum 13.0

Name of author Index

(HARXIV, w)

Mirjam Cvetic 21.7

John Ellis 14.9

D. Nanopoulos 14.9

C. Schweigert 13.7

Riccardo D’Auria 13.1

Table 3.5: Ranks of selected authors in (HDBLP, w) and (HARXIV, w).

3.2.5 Hop-1 lists

In Table 3.5 the index of the previous sample is depicted for selected authors of

both DBLP and ARXIV, based on the fractional cores computation. It is interest-

ing that the indices are different in this case due to the weighting scheme that

favors not just a big number of publications but also repetitive co-authorship with

limited number of co-authors. In this case, intensive collaboration with certain co-

authors over a long series of publications increases the mutual edge weights and

thus the indices in the fractional k-cores.

Assuming an author x in HDBLP, it should be stressed that his/her best hop-

1 co-authorship k-core (i.e. immediate co-authors) are those that have at least k

co-authors in the same core.

In Table 3.6, the relevant data for fractional cores are presented for a selec-

tion of well known and seminal authors from DBLP representing their degree of

collaboration with their co-authors. C. H. Papadimitriou has a top score in this

measure (20.8) while having a very small but cohesive community of co-authors,

with the prominent example of Michalis Yannakakis contributing an awesome

weight (19.62) to the vertex fractional degree of Papadimitriou. This implies that

they have co-authored many papers together (46) out of which more than 30

are co-authored by the two of them only! On the other hand, G. Weikum has

a much more distributed collaboration circle in terms of co-authors that almost

uniformly (except the case of Scheck, that is 7.43) contribute to his vertex frac-

tional degree. Finally, Andrew Tanenbaum with a vertex fractional degree 13.0

has a rather small collaboration community with main collaborators Maarten van

Steen (contributing a weight 4.68) and Robbert van Renesse (5.4) while the rest is

uniformly distributed to the others.

In Table 3.7, the respective data for selected authors from ARXIV can be seen.

There can also be found very well known names in the scientific area together with

their closet collaborators. Actually in this case all authors indicated in Figure 3.7
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Author Fractional Rank Size

C.H. Papadimirtiou 20.80 417

Michalis Yannakakis (19.62) Erik D. Demaine (0.14) Georg Gottlob (1.00)

Gerhard Weikum 16.30 1506

Hans-Jörg Schek (7.43) Surajit Chaudhuri (5.05) Yuri Breitbart (1.49)

Gautam Das (0.70) Jeffrey F. Naughton (0.57) Divesh Srivastava (0.53)

DanSuciu (0.50) Rakesh Agrawal (0.48) Gustavo Alonso (0.43)

Raghu Ramakrishnan (0.41) Catriel Beeri (0.33) Michael Backes (0.33)

Serge Abiteboul (0.33) Divyakant Agrawal (0.29) Amr El Abbadi (0.29)

Stefano Ceri (0.275) Yannis E. Ioannidis (0.23) Henry F. Korth (0.23)

S. Sudarshan (0.20) Jennifer Widom (0.19) David J. DeWitt (0.19)

Abraham Silberschatz (0.17) David Maier (0.16) Krithi Ramamritham (0.15)

Hector Garcia-Molina (0.14) Christos Faloutsos (0.13) Victor Vianu (0.13)

Edward A. Fox (0.09) Beng Chin Ooi (0.08) Richard Snodgrass (0.07)

Jeffrey D. Ullman (0.07) Timos K. Sellis (0.07) Umeshwar Dayal (0.17)

Michael J. Carey (0.14)

Andrew Tanenbaum 13.0 4016

M. Frans Kaashoek (7.00) Robbert van Renesse (5.40) Maarten van Steen (4.68)

Frances M. T. Brazier (0.98) Anne-Marie Kermarre (0.25) Howard Jay Siegel (0.13)

Michael S. Lew (0.02)

Paul Erdös 13.9 2678

János Pach (2.53) Boris Aronov (0.28) Leonard J. Schulman (0.28)

Ronald L. Graham (1.83) Fan R. K. Chung (1.74) Zoltán Furedi (1.58)

Noga Alon (0.50) Endre Szemerédi (1.40) Vojtech R’́odl (1.33)

Nathan Linial (1.0) Miklós Ajtai (0.25) János Komlós (0.25)

László Lovász (0.33) Shlomo Moran (0.53) Andreas Blass (0.33)

Michael E. Saks (0.33) Richard Pollack (0.25) Shmuel Zaks (0.20)

Table 3.6: Fractional indices and hop-1 list for selected authors from DBLP.
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Author Fractional Rank Size

Mirjam Cvetic 21.7 5

H Lu (12.36) C N Pope (11.36) Shinich Nojiri (0.33)

S D Odintsov (0.33)

John Ellis 14.9 9

N E Mavromatos (8.61) D V Nanopoulos 9.35

Christoph Schweigert 13.7 11

Jurgen Fuchs (14.86)

Riccardo D’Auria 13.1 16

S Ferrara (12.98) Laura Andrianopoli (6.62)

Table 3.7: Fractional indices and hop-1 list for selected authors from ARXIV.

are present in both the 13.40-core and the 12-core of (HARXIV, w). Especially in

the 13.40 they appear in different connected components. Observe that, in the 12-

core, Mirjam Cvetic and Riccardo D’Auria appear in the same component while

this is not the case in the higher rank 13.40 core. However, the “clusters” of John

Ellis, and Christoph Schweigert are already becoming disconnected in the 12-core.

Observe also that S D Odintsov enters the hop-1 list of Mirjam Cvetic because of a

link of relatively low weight, i.e., 0.33. However, S D Odintsov enters in the hop-1

list of Mirjam Cvetic because of his strong collaboration with Shinich Nojiri and

E Elizaide (that, however is not in the hop-1 list of Mirjam Cvetic).

3.2.6 Community-focused rankings

In the final experiments (on undirected and undirected weighted graphs), the fo-

cus is turned on authors belonging to specific scientific communities and compare

their rankings according to our fractional cores method against rankings deter-

mined using simpler measures of collaborativeness. More precisely, the names

of program committee members of SIGMOD, SIGIR, and SIGKDD for the years

2009, 2010, and 2011 were extracted to obtain subsets of the database, information

retrieval, and data mining community, respectively. Most of the authors could be

mapped automatically to their entries in DBLP using string matching; for some

a best-effort manual mapping (e.g., because of missing middle initials or nick-

names in the programme committee lists) had to be performed; about a handful

of authors could not be mapped with confidence (author name disambiguation

issues e.g.from abbreviations) and are thus missing from the rankings. For each

community, authors are ranked therein according to the following measures:

(a) fractional index

(b) number of co-authors
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(c) number of publications

(d) average number of co-authors per publication

(e) years active.

The resulting top-10 rankings are given in Table 3.8, Table 3.9, and Table 3.10.

Note that for the fractional cores method, as before, an author’s fractional index

is determined on the entire DBLP co-authorship graph and not only based on col-

laborations with authors within the same scientific community. When looking at

the top-10 rankings presented, its observed that across all communities rankings

according to (b), (c), and (e) are biased in favor of senior authors (e.g., Michael

Stonebraker, W. Bruce Croft, and Jiawei Han) and overlap sometimes significantly.

This is natural, given that authors who have been active longer, tend to have more

publications, co-authored with different people at different points in time.

The rankings according to d), the average number of co-authors per publica-

tion, contain for all three communities relatively junior alongside senior authors.

However, it can also be seen that this is not a robust measure, bringing up authors

who have published and collaborated modestly, but happen to have one publica-

tion with a large number of co-authors. Finally, the rankings according to (a), the

fractional cores method, seem less biased toward senior authors, bringing up a

mix of prolific authors with long-lasting intensive collaborations between them

(e.g., Amr El Abbadi and Divyakant Agrawal, Ophir Frieder and Abdur Chowd-

hury, Annalisa Appice and Donato Malerba).
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Amr El Abbadi
Divyakant Agrawal
Christian S. Jensen
Richard T. Snodgrass
Sourav S. Bhowmick
Beng Chin Ooi
Kian-Lee Tan
Pierangela Samarati
Sabrina De Capitani

di Vimercati
Mong-Li Lee

(a)

Wei Wang
Hans-Peter Kriegel
Christos Faloutsos
Divyakant Agrawal
Elke A. Rundensteiner
Kian-Lee Tan
Amr El Abbadi
Christian S. Jensen
Ming-Syan Chen
Richard T. Snodgrass

(b)

Wei Wang
Christos Faloutsos
Michael Stonebraker
Michael J. Carey
Wolfgang Nejdl
Stefano Ceri
Christian S. Jensen
Raghu Ramakrishnan
Jian Pei
Beng Chin Ooi

(c)

Michael Stonebraker
David B. Lomet
Theo Häsrder
Philip A. Bernstein
Hans-Peter Kriegel
Michael Hatzopoulos
Carlo Zaniolo
Umeshwar Dayal
Stefano Ceri
Meral Ozsoyoglu

(d)

Nesime Tatbul
Anastasia Ailamaki
Laura M. Haas
Mitch Cherniack
John McPherson
Brian Cooper
Daniel J. Abadi
Jayavel

Shanmugasundaram
Tim Kraska
Fatma Ozcan

(e)

Table 3.8: Database community ranking. Labels a, b, c, d and e indicate the rankings de-
fined in 3.2.6.

Ee-Peng Lim
Paolo Boldi
Jie Lu
Steven M. Beitzel
Abdur Chowdhury
Ophir Frieder
Juan M. Fernández-Luna
Juan F. Huete
Wei-Ying Ma
Yong Yu

(a)

Lei Zhang
Jun Wang
Gerhard Weikum
Hsinchun Chen
Tao Li
Wei-Ying Ma
Qiang Yang
C. Lee Giles
Lee Giles
Ricardo A. Baeza-Yates

(b)

Lei Zhang
Jun Wang
Yi Zhang
Tao Li
Qiang Yang
Wei-Ying Ma
Jun Xu
Gerhard Weikum
Hsinchun Chen
Yong Yu

(c)

Michael Lesk
Erich J. Neuhold
Jun-ichi Tsujii
W. Bruce Croft
Fredric C. Gey
Donald H. Kraft
Jaime G. Carbonell
David Lewis
William R. Hersh
Nicholas J. Belkin

(d)

Michael Taylor
Gerald Benoit
Yifen Huang
Claus-Peter Klas
Mark Greenwood
Yantao Zheng
Maria M. Nikolaidou
Jinhui Tang
Jayavel

Shanmugasundaram
David Smith

(e)

Table 3.9: Information retrieval community ranking. Labels a, b, c, d and e indicate the
rankings defined in 3.2.6.
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Floriana Esposito
Ee-Peng Lim
Annalisa Appice
Donato Malerba
Charu C. Aggarwal
Alok N. Choudhary
Diane J. Cook
Alberto Del Bimbo
Jeffrey Xu Yu
Carlo Zaniolo

(a)

Jiawei Han
Christos Faloutsos
Alok N. Choudhary
Alberto Del Bimbo
C. Lee Giles
Gonzalo Navarro
Ee-Peng Lim
Jeffrey Xu Yu
Floriana Esposito
Carlo Zaniolo

(b)

Jiawei Han
Christos Faloutsos
Gang Wang
Alok N. Choudhary
C. Lee Giles
Jian Pei
Bing Liu
Jeffrey Xu Yu
Aoying Zhou
Ee-Peng Lim

(c)

Andrzej Skowron
Carlo Zaniolo
Christos Faloutsos
Heikki Mannila
Daniel Barbara
Dennis Shasha
Alberto Del Bimbo
Foto N. Afrati
David Poole
C. Lee Giles

(d)

Jonathan Chang
Jeffrey Yu
Byron J. Gao
Jennifer Dy
Edwin V. Bonilla
Gui-Rong Xue
Ashok Savasere
Benoit Huet
Jiangtao Ren
Dou Shen

(e)

Table 3.10: Data mining community ranking. Labels a, b, c, d and e indicate the rankings
defined in 3.2.6.

3.2.7 Core Decomposition Forest on DBLP and ARXIV

In this section, the relation between the core structure of a graph and the con-

nected components of its cores is examined with Core Decomposition Forest as

defined in section 2.3.1.2 The following Core Decomposition Forests were com-

puted:

• DF(G(H∗

DBLP
)),

• DF(G(HARXIV)),

• DF(G(HDBLP), w), and

• DF(G(HARXIV), w).
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Figure 3.11: The Core Decomposition Forest of the core sequence of HARXIV

Figure 3.12: The Core Decomposition Forest of the core sequence of (HDBLP, w)

Figure 3.10: The Core Decomposition Forest of the core sequence of H∗

DBLP

The results for the case of H∗

DBLP
and HARXIV are depicted in Figures 3.10

and 3.11 respectively, while the results for the cases of (HDBLP, w) and (HARXIV, w)

are depicted in Figures 3.12 and 3.13 respectively. It should be pointed out that

these figures depict only an approximation of these trees as their sizes are too
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Figure 3.13: The Core Decomposition Forest of the core sequence of (HARXIV, w).

big to fit in a visible way. To facilitate the visualization of the core decomposition

forests we applied the following relaxations parameterized by α and n:

(1) suppress in G consecutive terms that are the same (i.e. if two consecutive

core have the same corresponding components -most probable one compo-

nent in the higher valued cores- then one of them is omitted),

(2) consider only the members of the resulting sequence that are indexed by

multiples of α, and

(3) in the core decomposition forest of the (fractional) core sequence remaining

after relaxations (1) and (2), exclude all subtrees that do not have ancestors

after the n-th core of this sequence.

For the visualization of the core decomposition forest for H∗

DBLP
and HARXIV

we applied steps (1)–(3) for α = 1,n = 8 and α = 1,n = 1 respectively. For the

visualization of the core decomposition forests for (HDBLP, w) and (HARXIV, w),

we only applied the relaxation steps (2) and (3) (relaxation step (1) is unnecessary

on fractional sequences) for α = 5, n = 10 and α = 5 and n = 8 respectively. In

each case the values of the parameter n and α have been chosen as to optimize

the visualization of the corresponding datasets.
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As we see in Figure 3.10, the H∗

DBLP
dataset presents the following behavior in

terms of connected components: There is clearly a giant component that evolves

as k increases and survives until the last 15-core. It is interesting that many con-

nected components survive until core index 11, thus the H∗

DBLP
dataset is rather

robust under degeneracy.

In Figure 3.11 we see the robustness of the cores of the ARXIV co-authorship

graph under degeneracy. Again there is a giant component that evolves as k in-

creases and survives until the last 9-core. It is interesting that many connected

components survive until core index 5.

As for the edge-weighted graphs there is a remarkable behavior. In Figure 3.12

we see the evolution of the connected components of the (HDBLP, w) graph. In this

case the graph is much more robust as the steps of degeneracy are fractional while

we see again a giant component that splits into other components that merge

before they shrink again.

In Figure 3.13 the evolution of the connected components of the (HARXIV, w)

graph is depicted. In this case the graph is much less robust as the number of

connected components is swiftly shrinking and only a few - together with the

giant component survive until the highest index fractional core.

3.3 real world application

In this section, a demo application is presented which was developed under

the context of evaluating communities with the fractional core framework. The

demonstrated system leverages the notion of fractional cores to rank and filter

vertices in the network and in the hop-1 coauthoring community to create connec-

tions between them. It is available at the following URL:

http://www.graphdegeneracy.org/fcores/dblp/

It is stressed that the visualization of the hop-1 coauthoring community that

is proposed here conveys much more meaning and information than the simple

co-author graphs presented in other approaches such as the Co-author Graph at

http://academic.research.microsoft.com/ or the respective in Arnet Miner at

http://arnetminer.org/). More specifically, in the case presented here the visual-

ization depicts the neighbors of authors in the DBLP co-authorship network that

are inside the highest index core they belong to.

http://www.graphdegeneracy.org/fcores/dblp/
http://academic.research.microsoft.com/
http://arnetminer.org


64 experiments

3.3.1 System Architecture

Figure 3.14 depicts the overall architecture of the system, which is the subject of

this section. For our demonstration, we use a co-authorship network derived from

the DBLP bibliographic dataset1

Extract co-authorship

f-cores algorithm

Extract f-core

ranks and hop-1

community

Query

DBLP

GUI access

User

Figure 3.14: System Architecture

Going from top to bottom in Figure 3.14, first the bibliographic dataset is con-

verted into an undirected edge-weighted co-authorship graph as described in Sec-

tion 2.3.2.

Next, as a one-time pre-computation, the fractional core sequence of this graph

is iteratively computed. That is, the Trim procedure is repeatedly invoked remov-

ing more and more vertices from the graph and thus implicitly partition it. When

a vertex is removed from the graph, its fractional core index and its hop-1 neigh-

borhood (consisting of immediate neighbors in the remaining graph) are recorded.

This information is stored in a relational database, so that it can be retrieved ef-

ficiently by our system at runtime. Note that, despite of the large scale of the

DBLP co-authorship network, we were able to run the entire computation on a

commodity notebook equipped with a 2-core CPU and 2 GB of main memory

– an indication that fractional cores are computationally lightweight and can be

applied to large-scale collaboration networks.

Users interact with the system through a web-based GUI that be accessed at the

aforementioned URL. Its functionality, described in more detail in the following

Section 3.3.2, includes the display of rankings for authors by their fractional core

1 Freely available at http://dblp.uni-trier.de.

http://dblp.uni-trier.de
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Figure 3.15: Main input interface.

index but also an interactive visualization of an author’s neighborhood, display-

ing only those co-authors with an equal or higher fractional core index to provide

a clutter-free view on the collaboration network.

3.3.2 Demonstration

The main user interface of the system is shown in Figure 3.15, offering users

two options to interact. On the right, a slider allows users to select a threshold

on the fractional core index and browse through qualifying authors. On the left,

an input box allows users to search for a specific author by name – both exact

match and fuzzy match are supported here. Either way, once an author has been

selected, the system shows the fractional core index of the author together with

a visualization of the surrounding hop-1 neighborhood, i.e., the author’s closest

co-authors who have at least an equally high fractional core index. Figure 3.16

shows an example hop-1 neighborhood (in this case for Michalis Vazirgiannis).

From the visualization, users can see author’s fractional core index (here 10.6)

and his “tightest” collaborators each linked with a weighted edge indicating the

“strength” of their partnership.

On this initial star-like graph the user can explore the surrounding authors by

clicking on the “Find” function that appears when the mouse hovers over the

author’s vertex. If the “incremental visualization” option is not activated the re-

sult of the “Find” function is a fresh star-like graph centered around the newly

selected author. Otherwise, if the option is activated, the user gets to explore the

intersection of the two authors’ (the original and the newly selected one) strongest

collaborators. This “incremental” visualization can continue for multiple steps to

reveal an increasingly broader and possibly highly interconnected community

around an author. Figure 3.17 demonstrates this functionality building on the

earlier example. Here, the star-like graph from Figure 3.16 was expanded by se-

lecting Timos K. Sellis from the surrounding hop-1 neighborhood of collaborators.

Interestingly, as can be observed from the figure, there is an overlap between the

“tightest” collaborators of the two authors, revealing a much richer view on the

community that they belong to.
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Figure 3.16: Output for the query “Vazirgiannis”.

When the user selects a threshold for the fractional core index with the slider

shown in Figure 3.15, using the “incremental”, function more than one author can

be selected and the user can see how different communities are formed within

the same fractional core from the interconnection of the authors within that core.

Figure 3.18 shows a small example based on authors from the 19.6-core – it is

interesting to see the selected authors belong to two disconnected communities.

3.3.3 Application Scenarios

What are other application scenarios where a visual exploration of collaboration

networks, as provided by the developed system, can provide useful insights?

Bibliographic data and measures derived therefrom (e.g., the H-Index [45] and

G-Index [34]) nowadays play a big role in academic hiring. Measures like the afore-

mentioned ones have focused on citations and sought to capture a candidate’s

scientific impact.
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Figure 3.17: Example of browsing the hop-1 neighborhood with the “incremental” func-
tion activated.

As networking skills and the ability to work in teams become more impor-

tant, even in academia, our system provides the means to inspect a candidate

in these regards. Relying on the notion of fractional cores, our system automati-

cally zooms in on the connections to peers and more senior scientists and, as a

consequence, provides a clutter-free view on the candidate’s collaborations. Thus,

collaborations that are ephemeral or with less prolific individuals (e.g., students

who left academia after graduating) are automatically filtered out thanks to the

use of fractional cores.

Similar applications for human resources and team building could be found in

industry, where collaboration networks can be derived from other datasets, e.g.,

Figure 3.18: Example of browsing the 19.6-core with the “incremental” function activated.
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patents (based on the listed inventor names), e-mails (based on recipient lists)

or records about who worked together on which projects in the past. A visual

exploration of collaboration networks can also turn out insightful for other col-

laboration networks, for example, those of actors who played in the same movie

(e.g., derived from a movie database such as IMDB2) or politicians who co-signed

a petition or participated in other joint activities.

The ideas behind this system are not limited to collaboration networks but

can be applied to any dataset from which undirected weighted graphs can be

derived in a sensible manner. This includes various facets of social networks with

ties that signify, for instance, joint interests (based on group memberships) or

reciprocal activities. Also in other contexts, the ability to visually explore large-

scale datasets becomes more important in face of the ongoing data deluge. Some

of the now available data has natural interpretations as graphs, for example, RDF

datasets like those connected in the linked data cloud3. It is expected that a visual

exploration of such datasets can greatly profit from the use of fractional cores

that, as in the applications above, help to get a clutter-free view on the data that

focuses on essential highly-connected data items.

3.4 d-cores

This section is dedicated for presenting the experiments performed by applying

the D-core structures and algorithms on real-world and artificial data sets. As

the artificial data are produced by an algorithmic process, a description on that

process will be made before presenting the real-world data.

3.4.1 Directed Graph Degeneracy for Scale-Free Graphs

Real world web graphs have been found to display scale-free characteristics[9, 10,

51] evident by the power law degree distribution. Here are also explored author

citation graphs which share the same properties (as it can been seen in their degree

distributions). Scale-free graphs are frequently modeled by the combination of

growth with preferential attachment. There have been many variations in this

modeling both for directed and undirected cases but the main idea is that the

graph grows one vertex at the time and edges are added (between vertices that

may be new or old). The key idea in the preferential attachment scheme is that

the probability of taking an edge is proportional to the respective degrees of its

endpoints. This intuitively matches with the mechanism of the evolution of both

web graphs and citations graphs of authors (i.e. a “popular” page is more likely

2 http://www.imdb.com

3 http://linkeddata.org

http://www.imdb.com
http://linkeddata.org
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to get in-links and a “famous” author is more likely to get a citation from a new

page/paper following the “rich get richer” of the preferential attachment process).

As the scale-free model seems to approximate the graphs examined, it has been

chosen for evaluation with the D-core computation procedure to see if the re-

sults are similar for both various parameters and as well parameters that pro-

duce graphs with approximately similar degree distributions with the real world

graphs.

3.4.1.1 Preliminaries for preferential attachments

Barabasi and Albert in [9] were the first to introduce a scale-free model for undi-

rected graphs. In that model, the graph is generated with a small number of initial

vertices m0 and grows by adding each time a new vertex with m(6 m0) edges

from the new vertex to the old ones. Preferential attachment is introduced in the

selection of the old nodes; the probability a vertex i depends on the degree of that

vertex, so that Π(ki) = ki/
∑

j kj where ki the degree of the vertex. The Barabasi-

Albert model was examined in more detail by Bollobás et. al in [17] and in[78]

where a detailed model called Linearized Chord Diagram (LCD) was designed. This

applies to directed and undirected graphs as well; a parameter m is used and if

m = 1 then at each step t a new vertex vt is added to a given graph G
(t−1)
1 with

a single edge between vt and vi where i is chosen randomly with

P(i = s) =







deg
G
(t−1)
1

(vs)

2t−1 1 6 s 6 t− 1,
1

2t−1 s = t

(3.1)

For m > 1, m edges are added from vt to vi one at a time, each time counting the

previous edges in the total degree of each vi.

In [31] and [29] a variation on the Barabasi-Albert model is introduced, where

a constant parameter α represets the “initial attractiveness” of a node. Here the

old vertices are chosen based on a probability proportional to their degree plus

the “initial attractiveness”. Thus the selection probability, defined in detail in [19],

is:

P(i = s) =







deg
G
(t−1)
1

(vs)+α

2t−1 1 6 s 6 t− 1,
α

(α+1)t−1
s = t

(3.2)

The constant parameter here is important as it introduces a mixture of uniform

and preferential attachment behavior (where if α = 1 we have only preferential

attachment). This model is also important as it resembles the directed one we

utilized for our experiments. Another model that also introduced a mixture of

uniform and preferential attachment was in the work of Cooper and Frieze [25].
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Here instead, the uniformity was defined explicitly by defining additional param-

eters that would determine the probability of selecting a uniform or preferential

attachment model. Furthermore, they define two different steps : a) one of growth

and b) one that chooses to connect two old vertices together with a new edge.

This model is also important as it gives the opportunity to control the density of

a graph by controlling the probability between the two steps.

As these models seemed to be better suited for models of undirected graphs,

the model introduced by Bollobás, Borgs, Chayes, and Riordan in [16] was chosen.

This model, as seen bellow in the description, has an initial preference parameter

for both the in- and out-degrees, while also following the general idea between

different steps as in the Cooper-Frieze model. Following the description of that

model is offered (taken from [16]):

We consider a graph which grows by adding single edges at discrete

time steps. At each such step, a vertex may or may not also be added.

For simplicity we allow multiple edges and loops. More precisely, let α,

β, γ, δin, and δout be non-negative real numbers, with α+ β+ γ = 1.

Let G0 be any fixed initial graph, for example a single vertex without

edges, and let t0 be the number of edges of G0. (Depending on the

parameters, we may have to assume t0 > 1 for the first few steps of

our process to make sense.) We set G(t0) = G0, so that at time t the

graph G(t) has exactly t edges, and a random number n(t) of vertices.

In what follows, to choose a vertex v of G(t) according to dout + δout,

means to choose v so that Pr(v = vi) is proportional to dout(vi)+ δout,

i.e., so that Pr(v = vi) = (dout(vi) + δout)/(t+ δoutn(t)). To choose

v according to din + δin, means to choose v so that Pr(v = vi) =

(din(vi) + δin)/(t+ δinn(t)), where all degrees are measured in G(t).

For t > t0 we form G(t+ 1) from G(t) according the following rules:

(A) With probability α, add a new vertex v together with an edge

from v to an existing vertex w, where w is chosen according to

din + δin.

(B) With probability β, add an edge from an existing vertex v to an

existing vertex w, where v and w are chosen independently, v

according to dout + δout and w according to din + δin.

(C) With probability γ, add a new vertex w and an edge from an

existing vertex v to w, where v is chosen according to dout+ δout.

The probabilities α, β, and γ clearly should add up to one. To avoid

trivialities, we will also assume that α+ γ > 0. When considering the

web graph, we take δout = 0; the motivation is that vertices added

under step (C) correspond to web pages which purely provide content
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– such pages never change, are born without out-links and remain

without out-links. Vertices added under step (A) correspond to usual

pages, to which links may be later added. While mathematically it

seems natural to take δin = 0 in addition to δout = 0, this gives a

model in which every page not in G0 has either no in-links or no out-

links, which is rather unrealistic and uninteresting! A non-zero value

of δin corresponds to insisting that a page is not considered part of the

web until something points to it, typically one of the big search engines.

It is natural to consider these edges from search engines separately

from the rest of the graph, as they are of a rather different nature;

for the same reason, it is natural not to insist that δin is an integer. We

include the parameter δout to make the model symmetric with respect

to reversing the directions of edges (swapping α with γ and δin with

δout), and because we expect the model to be applicable in contexts

other than that of the web graph.

The choice for this model was based both on the sophistication it displayed and

the ability to produce graphs with behavior, in the degree distribution, very simi-

lar to the real datasets explored (see next sub-section).

3.4.1.2 Generating preferential attachment graphs

A set of graphs was created by adopting the preferential attachment model ac-

cording to [16] (see the previous sub-section) for various parameters. Here are

discussed the findings on this model for a set of 4 different parameters:

1. α = 0.018,β = 0.102, γ = 0.88,δin = 1, δout = 2

2. α = 0.018,β = 0.102, γ = 0.88,δin = 5, δout = 1

3. α = 0.102,β = 0.238, γ = 0.66,δin = 1, δout = 3

4. α = 0.001,β = 0.009, γ = 0.99,δin = 1, δout = 1

The size off the graph is 16500 nodes so that it will approximate the number of

nodes that have in/out-degree of at least 1 (in relevance to the DBLP citation

graph described in section 3.4.2). The reader can see the distributions of resulting

graphs in Figure 3.19a in the same order from left to right and top to bottom. It

is clear that all these graphs are scale free. We ran the defined algorithms and

metrics and, in what follows, we report on their expressive power and features.

3.4.1.3 D-core matrices for the synthetic data

Following the same sequence of parameters as before, the findings on the created

datasets are discussed. Firstly, the meaning of the parameters starting with the
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γ is explained, the parameter that controls the density of the network. Parame-

ters α and β control the out- and in-degree behavior respectively while δin and

δout represent the aforementioned“initial preference” for the respective in and

out degrees.

For the first two datasets the same values were chosen for α,β, and γ so that

it can be compared on how the other two affect the results. The value of γ was

chosen, experimentally, to produce an “average" density. Given the fact that the

α parameter is lower than β a more extrovert behavior is expected but we this is

expected to change for the second dataset as the δin parameter is a lot larger than

the δout. These expectations are confirmed by the D-core matrix behavior as seen

in 3.19b. It is clearly visible that the ICI angle changes when the δout increases

and the ICI line (in green) moves closer to the diagonal (in dark gray).

The next two datasets demonstrate how the γ parameter affects the “extend” of

the D-cores. Since it is closely correlated to the density of a graph, it is expected

that the degeneracy would be affected accordingly. This would mean that, for a

low value of γ, one would get graphs that would produce only low-degeneracy

D-cores and for a high value the opposite. This is also confirmed by the results. As

the reader can see in the two D-core matrices in the bottom part of Figure 3.19b,

the graph degrades really fast for a γ value of 0.66. On the other hand, when a

value of 0.99, is chosen it can be easily seen that the resulting graph is much more

robust. This is evident by the high numbers for in- and out-degrees that the graph

survives in the D-core matrix.

3.4.1.4 Comparison to real world Data

In this section, parameters were chosen so that to produce a graph with degree

distributions similar to a real world dataset and verify this via a comparison to the

DBLP data. For this reason the following parameters were chosen experimentally

in order to approximate the DBLP digraph : α = 0.011, β = 0.031, γ = 0.958,

δin = 2, and δout = 5. Evidence of the approximation can be seen from the

comparison of the in/out degree distributions in Figure 3.20.

In Figure 3.21 one can see that the behavior is quite similar to the previous

one. The single interesting difference is how the size of the D-cores drops. On the

synthetic graph case we see a dramatic drop indicating that the inner structure is

less connected.

Looking at the CDF forest comparison in Figure 3.22 - excluding the small

SCCs in the initial cores of the DBLP digraph - the two figures look similar as in

both cases there is a giant component that survives robust until the end. Again

there are some insignificant differences mostly on the rate at which the size of

giant SCC drops.
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Figure 3.19: a. Distributions for 4 different parameter sets on the adopted model.A.Top
left: α = 0.018,β = 0.102, γ = 0.88, δin = 1, δout = 2 B.Top right: α = 0.018,
β = 0.102, γ = 0.88, δin = 5, δout = 1 C.Bottom left: α = 0.102, β = 0.238,
γ = 0.66, δin = 1, δout = 3 D.Bottom right: α = 0.001, β = 0.009, γ = 0.99,
δin = 1, δout = 1.
b. D-core matrices for 4 different parameter sets on the adopted model. A.Top
left: α = 0.018,β = 0.102, γ = 0.88, δin = 1, δout = 2. B.Top right: α =

0.018,β = 0.102, γ = 0.88, δin = 5, δout = 1. C.Bottom left: α = 0.102,
β = 0.238, γ = 0.66, δin = 1, δout = 3. D.Bottom right: α = 0.001, β = 0.009,
γ = 0.99, δin = 1, δout = 1.
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Figure 3.20: Comparison of the distributions for the in/out degrees between the chosen
parameters (α = 0.011,β = 0.031,γ = 0.958,δin = 2,δout = 5) and the DBLP

graph.

In conclusion the synthetic digraph seems to approximate quite well the DBLP

graph with regards to the D-core behavior. This is important as it could be possible

to predict the D-core metrics of a real world graph of immense scale simply by

producing a down-scaled ‘miniature’ of it by its parameters.
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Figure 3.22: The CDF corresponding the diagonal D-cores(i, i) for the synthetic/artificial
(upper), DBLP (bottom). SCC’s are depicted with different colors depending
on their sizes.

3.4.2 Data sets description

Starting with the Wikipedia dataset, a snapshot of the English version of Wikipedia

was utilized, the digraph consists of about 1.2M nodes and 3.662M links. The snap-
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Figure 3.21: The D-core matrices of the synthetic digraph (left) and the DBLP digraph
(right)

shot depicts Wikipedia as it was in the January of 2004 and was extracted from a

database dump containing the entire history of the encyclopedia; available at:

http : //download.wikipedia.org/.

In the experiments, was also used a popular bibliographic dataset derived from

the available snapshot of DBLP, which is freely available in XML format at:

http : //dblp.uni-trier.de/xml/.

The digraph structure was obtained from the dataset as follows: authors cor-

respond to the nodes of the digraph and each directed edge e = (x,y), express

the fact that author x cited in his/her papers a paper of author y. That way, was

obtained a digraph containing about 825K author nodes and 351K edges. The vast

majority of them have no in-/out- links (about 800K) thus we remain with the

rest 25K authors that are minimally connected.

Additionally, experiments were run on the ARXIV HEP-TH (high energy physics

theory) citation graph. This is a paper citation graph is originally from the e-print

arXiv with 27.700 papers and is freely available at

http : //snap.stanford.edu/data/cit-HepTh.html.

From the paper citation graph was extracted the author citation digraph similar

to the DBLP one, containing 8821 authors and 391K edges/citations.

http://download.wikipedia.org/
 http://dblp.uni-trier.de/xml/
http://snap.stanford.edu/data/cit-HepTh.html
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Figure 3.23: Distributions of the in and out degree for the real world datasets as noted
above in log-log scale with power-law fitting.The exponent of the power law
is also displayed.

In Figure 3.23, the reader can see the degree distribution of both in- and out-

degree for the three datasets. There, all of them display a scale-free behavior gov-

erned by a power law; a parameter fitting was carried out to identify approxi-

mately that behavior. In more detail, all three of them display a clear preferential

attachment behavior with regards to the in-degree, probably with no “initial at-

tractiveness” (see the described models above). Instead, in the out-degree, even

though there is a general scale free behavior, there is also evidence of the “initial

attractiveness” parameter being larger than the absolute minimum. This is evident

by the somewhat uniform behavior for the “smaller" degrees (not including the

degree of 1). Intuitively papers with more than zero citations to other papers will

cite a few papers, meaning more than one. On the other end, a paper can not have

too many citations, i.e. out links. The previous applies naturally to authors as well.

This in a way resembles the δout parameter of our adopted model. Thus the δout

(for the model we adopt) has to be larger than 1 for the citations networks. As it

can be seen later, the parameters that fitted the closest to the DBLP dataset adapt

to this intuition.
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3.4.3 Algorithms complexity

The proposed D-core algorithm is of low complexity thus D-core computations are

feasible even in large scale digraphs. As shown in procedure Trimk,l(D) in section

2.4, the computation of each D-core is linear to the number of its edges and thus

optimal. Moreover as the digraphs we examine are sparse, the identification of

the D-cores is very fast.

The D-core matrix computation, starts from the original digraph and reduces

it until the degeneracy leads to an empty one. This procedure involves about

(40× 50) ∼2000 repeated executions, in the case of the Wikipedia digraph, of the

basic Trimk,l(D) procedure. Depending on the implementation, each execution

can be done on commodity desktops in the scale of minutes even in million scale

sized graphs, as it is also noted in [12] for the case of non directed graphs.

3.4.4 Experimental methodology

The experimental method for processing the previously mentioned digraphs in-

volved the following phases:

1. D-core matrix computation: this involves computing the D-core DCk,l sub-

graph, where (k, l) ∈ {0, . . . ,kmax}× {0, . . . , lmax} where (kmax, 0), (0, lmax)

are the extreme cells of F(D). According to Observation 2, a D-core DCi,j is

a subgraph of every D-core DCi ′,j ′ where i ′ 6 i and j ′ 6 j. Based on this

property, it is to compute e.g. the D-core DC0,2 having computed and stored

in memory the D-core DC0,1. Therefore, in order to compute the entire D-

core diagram, the process has to be started by computing only the D-cores

in row 0 and column 0 and used those two sets of D-cores to “fill in” the

rest of the matrix (note that the D-cores DC0,1 and DC1,0 are not correlated

so we need to compute both but we only need one of them to fill the rest

of the matrix). Each D-core occupies moderate storage space, such that the

whole D-cores matrix occupies less than 4GB of disk space, so storing them

for subsequent use was an obvious choice.

2. Collaboration indices computation: The values that optimize the criteria set

along with the sizes of the corresponding D-cores are computed. Namely,

those are the corresponding BCI/ICI/OCI/ACI, indices and the Robustness.

3. Strongly Connected Components (SCCs) and Core Decomposition Forests (CDF’s):

Let D be the digraph corresponding to Wikipedia 2004 or DBLP. For each D-

core DCi,i – i.e. on the D-core matrix diagonal – the strongly connected com-

ponents were computed. The core elimination sequence L = DC0,0, . . . , DCr,r
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Figure 3.24: Selected term-pages and sets of term-pages frontiers from Wikipedia.

was considered; where r is the BCI of D and the corresponding Core De-

composition Forests was computed for both graphs. SCCs indicate groups

of strong cohesiveness in the D-core. See Figure 3.25 for a detailed view on

the SCCs size evolution and sub-digraph relationships as i, running along

the D-core matrix diagonal, increases for both datasets considered.

4. Frontiers for sets of entries: moreover were computed the frontiers for single

terms/authors for the Wikipedia and DBLP digraphs respectively. This is

also extended to sets of terms/authors. These indicate the robustness (rep-

resented by the values of the indices) for the D-cores containing them.

3.4.5 Experimental results on Wikipedia

d-core matrix and indices values .

The Wikipedia digraph was processed and for each (k, l) cell of the D-core ma-

trix the sizes of the resulting D-cores were computed (see Figure 3.26) as well as

the sizes of the SCC’s in each of the D-core(i, i), i.e. on the diagonal of the matrix

as mentioned before.

The indices, defined in section 2.4.5, were computed for the global Wikipedia

digraph as well as for selected representative terms and sets of terms (see Fig-

ure 3.24). For Wikipedia 2004 the balanced collaboration index(BCI) value is 38

while the respective D-core DC38,38 contains 237 nodes. For the same digraph,

the inherent collaboration index ICI is 36 and is obtained for the D-cores DC39,33

that contains 206 nodes. For the OCI index we obtain two OCI-optimal frontier

cells corresponding to the DC38,41 and DC36,43 D-cores containing 228 and 233

nodes respectively. The robustness of the global Wikipedia digraph is remarkably

high at 0.963, while the maximum value is 1, indicating a very robust digraph.

d-cores frontiers for terms and sets of terms .

Afterwards the cohesion and in/outlinks trade-off was investigated for D-cores

containing specific term-pages. These metrics are perceived as indication of the
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collaborativeness and authority/hubness of the digraphs containing these term-

pages. Further we present representative terms-pages D-core matrices evaluating

them.

As defined in 2.4.6, the D-core diagram of a vertice containing term X corre-

sponds to the D-cores of the D-core diagram of D whose vertices sets contain X.

In Figure 3.24 the reader can see the D-cores matrix frontiers for the digraphs con-

taining the terms: Congress of Vienna, Continental Congress, Gregorial Calendar, Progressive

Conservative party of Canada, and United States Congress. In each sub-figure, the fron-

tier of the respective digraphs degeneracy can be seen, each presenting different

features and trends. The frontier for the term Continental Congress for example is

presenting a low BCI index with regard to the global digraph (the BCI index is

38), as the page is participating in D-cores with low degeneracy. Its respective ICI

index is (19.7) much lower than the global ICI value 36. This is a rather “selfish”

page as it participates in D-cores dominated by in-links.

Contrary to the previous, the Gregorian Calendar page participates in much more

robust D-cores as its BCI index reaches a high 26, while its OCI is a very high – oc-

curring at cell (42,12) – indicating a very “selfish behavior” dominated by inlinks

and thus having an authority digraph behavior. On the other hand, the Congress

of Vienna page is presenting a rather extrovert behavior as its OCI index occurring

at cell (8,23), an indication of outlinks domination in the optimal subgraphs. The

robustness of the digraph is rather low with a BCI index at 11, a low value as

compared to the global BCI 38.

In Figure 3.24 (right) we present the joint D-core matrix and frontier of two

term pages (Progressive Conservative Party of Canada and United States Congress). The

“together" frontier represents the frontier of the D-core digraphs containing both

terms. The joint D-core frontier can exhibit much worse robustness under de-

generacy (i.e. removing in/out links) that the individual ones. This can be the

case when the D-core frontiers of term pages with contradictory trends are put

together; as it is in our example, where the joint frontier is at DC8,22. Thus we

obtain a much weaker digraph than the ones of the individual terms.

thematic focus of wikipedia sccs .

The SCCs of the Wikipedia D-cores DCi,i were computed on the balanced di-

agonal direction (BCI direction). The intuition is that the SCCs are considered as

digraph areas with high cohesion. In Figure 3.25 the reader can see the cardinal-

ity of the SCCs in each Wikipedia D-core DCi,i, the size of the SCCs and their

hierarchical containment relation as i increases along the BCI axis. As it can be

noticed there, starting in D-core DC1,1, there are several SCCs moderately sized

(<100 nodes) – excluding one significantly larger sized SCC (>100K nodes in D-

core DC1,1. Many of the SCCs survive until the D-core DC32,32, after this only the

initial giant component survives until the extreme BCI D-core DC38,38.
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(k,k) # SCCs Top-k Thematic Focus

SCCs size

1 1024 24 Wisconsin

10 Cynodonts Species

10 Iowa

10 Eurovision

5 History of the British penny

5 Submarines

10 Wyoming

2 23 30 Music albums

10 Eurovision

6 Cynodonts Species

6 Metal Deficiencies

5 History of the British penny

3 Helladic

3 13 23 Extinct species

10 Eurovision Young Dancers

6 Metal Deficiencies

6 Books

5 Cynodonts Species

5 History of the British penny

4 12 26 poker jargon

10 Eurovision

6 Metal Deficiencies

5 History of the British penny

5 films by decade

4 Fayette

5 8 26 poker jargon

17 Sibley-Monroe checklist

10 Eurovision

7 North Carolina

. . . . . .

38 1 Dates

Table 3.11: The thematic focus of the Wikipedia SCCs for increasing degeneracy along the
BCI axis.
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Figure 3.25: The CDF corresponding to the diagonal D-cores(i, i) for Wikipedia 2004 (up-
per), DBLP (bottom). SCC’s are depicted with different colors depending on
their sizes.

Further, the thematic focus of the SCCs is investigated by studying the D-cores

along the BCI optimal axis, see Table 3.11. A giant component is observed that

dominates and almost all the pages within it contain the terms “time". The di-

graph was pruned, removing those pages and that were noticed to have a similar

behavior, this time with the term Grammy awards dominating the single giant SCC

remaining. It is interesting to stress that in D-core DC1,1 there are 1034 SCCs

(apart from the giant one). The size of the top-5 SCCs ranges between 5 and 24

nodes while for each one there is a remarkably narrow focus in their thematic

area. For instance, see Table 3.11, the top sized SCC is about Wisconsin. The rest

of the SCCs are thematically focused in: Cynodonts species, Iowa, Eurovision, History of

the British penny, Submarines, Wyoming. In D-core DC2,2 there are only 23 SCCs (apart

from the giant one). The size of the top-5 SCCs ranges between 3 and 30 nodes

while the thematic focus of the top sized SCCs is to a large degree identical to

the top SCCs in D-core DC1,1 A similar trend continues as i increases along the

diagonal DCi,i.

The DBLP digraph was processed and the size of the resulting D-cores was

found for each cell (k, l) (see Figure 3.26 bottom). Additionally, the number of

strongly connected components (SCC’s) in each of the D-cores DCi,i – i.e. on

the diagonal (see Figure 3.25 bottom) – was computed. All the indices, defined

in section 2.4.5, were computed for the global DBLP digraph and for selected

representative authors and sets of authors.

For the case of the DBLP digraph, the value of BCI is 42 (see Table 3.12 a sum-

mary of all indices values) while the respective D-core DC42,42 contains 188 nodes

(see the lower part of Figure 3.26). For the same digraph, the inherent collabora-

tion index ICI is 39 and is obtained for the D-core DC30,48 that contains 220 nodes.



82 experiments

0

5

10

15

20

25

30

35

40

45
0 5 10 15 20 25 30 35 40 45 50

in
li
n

k
s

outlinks

OCI

BCI
ICI

>30k >10k >5k >3k >2k >1k >700 >600 >450 >300 >0 

0

5

10

15

20

25

30

35

40

45

50
0 5 10 15 20 25 30 35 40 45 50 55

in
li
n
k
s

outlinks

>30k >10k >5k >3k >2k >1k >700 >600 >450 >300 >0

OCI

BCI

ICI

Figure 3.26: The D-core matrices of the Wikipedia 2004 digraph (left) and the DBLP di-
graph (right)

For the OCI index we get a value 42, which occurs in six D-cores located at the po-

sitions: (38, 46), (39, 45), (40, 44), (41, 43), (42, 42), (43, 41) on the D-core matrix fron-

tier. The robustness of the global DBLP digraph is remarkably high at 0.966 indicat-

ing a very robust to degeneracy digraph. It is evident that the DBLP digraph has

significant extrovert features (i.e. more out than in citations, an expected result)
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Figure 3.27: Representative authors D-core frontier from the DBLP digraph

3.4.6 Experimental results on DBLP

Furthermore, the SCCs of the DBLP D-cores DCi,i were computed on the balanced

diagonal direction (BCI direction). In Figure 3.25, bottom, one can see the cardi-

nality of the SCCs in each DBLP D-core DCi,i, the size of the SCCs, and their

containment relation as i increases. As it can be noticed, starting in D-core DC1,1,

there are few SCCs poor sized (<10 nodes) – excluding one significantly larger

sized SCC (>1000 nodes in DC1,1 – that survive until DC4,4. After this, only the

initial giant component continues until the extreme BCI D-core DC42,42. This SCC

apparently contains the nodes/authors with a large number of mutual citations.
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DBLP E.F. Codd G. Weikum

BCI(k,l)/ Size of

optimal DC 42/188 22/913 41/221

ICI/(k,l)/angle/ 39/(30,48)/

size of optimal DC 32.01/220 19/(15,23) 38/(29,47)

42/〈(43,41)...

(38,46)/43.63

OCI/〈(k,l)/angle/ ,...,50.44/165,

size of optimal DC〉 188,217,187,

185,188〉 31.5/(42,21) 41.5/(38,45)

Robustness,Local - 0.457 0.966

Robustness, Global 0.966 0.952 0.928

ACI 35.17 23.083 33.66

AC H/A-angle (deg) 43.90 55.66 41.91

Table 3.12: Collaboration indices values for the DBLP digraph

The giant SCC contains 188 authors (Table 3.13) presenting both top publication

activity, thus many outgoing citations, as well as high rate of incoming citations.

This group of authors indeed contains well known and reputable scientists’ names

and looks pretty reasonable. Of course, it has to be stressed that the partial cover-

age of the DBLP data set as its citation bulk is before 2004. Also in the first years

of its function the emphasis is on database related papers.

Further on, the D-cores corresponding to specific authors were studied and the

respective D-core matrices and frontiers were computed. We selected two char-

acteristic cases of seminal authors. In Figure 3.27 (left), the D-core matrix and

frontier for “E.F Codd" can be seen, founder of the relational database area. His

BCI extreme is DC42,23 indicating an intensive inlinks (incoming citations) trend.

This is natural as he was authoring in the early years of computer science with

few previous works to cite. On the contrary his works enjoy a very high number

of citations, thus a high number of inlinks in the citations digraph.

On the other hand a more modern seminal author G. Weikum presents a very

robust to degeneracy D-core structure for both in/out links tendency. This is ex-

plained by the facts.

i. his works are highly cited during many years and

ii. he is intensively authoring and thus citing other authors.

In Figure 3.27 (right) the joint D-core matrix and frontier for the two aforemen-

tioned authors are presented. The “together frontier” represents the frontier of

the D-cores that contain both E.F. Codd and G. Weikum author (nodes), thus repre-

senting the D-cores (i.e. citation subgraphs) in which the two aforementioned cite

in common and they are commonly cited.
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Arie Segev Gio Wiederhold Witold Litwin Theo Härder
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Henry F. Korth S. Sudarshan Patrick E. O’Neil Dennis Shasha

Shamim A. Naqvi Shalom Tsur Christos H. Papadimitriou Georg Lausen

Gerhard Weikum Kotagiri Ramamohanarao Maurizio Lenzerini Domenico SaccÃ

Giuseppe Pelagatti Paris C. Kanellakis Jeffrey Scott Vitter Letizia Tanca

Sophie Cluet Timos K. Sellis Alberto O. Mendelzon Dennis McLeod

Calton Pu C. Mohan Malcolm P. Atkinson Doron Rotem

Michel E. Adiba Kyuseok Shim Goetz Graefe Jiawei Han

Edward Sciore Rakesh Agrawal Carlo Zaniolo V. S. Subrahmanian

Claude Delobel Christophe Lécluse Michel Scholl Peter C. Lockemann

Peter M. Schwarz Laura M. Haas Arnon Rosenthal Erich J. Neuhold

Hans-Jörg Schek Dirk Van Gucht Hamid Pirahesh Marc H. Scholl

Peter M. G. Apers Allen Van Gelder Tomasz Imielinski Yehoshua Sagiv

Narain H. Gehani H. V. Jagadish Eric Simon Peter Buneman

Dan Suciu Christos Faloutsos Donald D. Chamberlin Setrag Khoshafian

Toby J. Teorey Randy H. Katz Miron Livny Philip S. Yu

Stanley Y. W. Su Henk M. Blanken Peter Pistor Matthias Jarke

Moshe Y. Vardi Daniel Barbará Uwe Deppisch H.-Bernhard Paul

Don S. Batory Marco A. Casanova JÃŒrgen Koch Joachim W. Schmidt

Guy M. Lohman Bruce G. Lindsay Paul F. Wilms Z. Meral Özsoyoglu

Gultekin Özsoyoglu Kyu-Young Whang Shahram Ghandeharizadeh Tova Milo

Alon Y. Levy Georg Gottlob Johann Christoph Freytag Klaus KÃŒspert

Louiqa Raschid John Mylopoulos Alexander Borgida Anand Rajaraman

Joseph M. Hellerstein Masaru Kitsuregawa Sumit Ganguly Rudolf Bayer

Raymond T. Ng Daniela Florescu Per-Ake Larson Hongjun Lu

Ravi Krishnamurthy Arthur M. Keller Catriel Beeri Inderpal Singh Mumick

Oded Shmueli George P. Copeland Peter Dadam Susan B. Davidson

Donald Kossmann Christophe de Maindreville Yannis Papakonstantinou Kenneth C. Sevcik

Gabriel M. Kuper Peter J. Haas Jeffrey F. Naughton Nick Roussopoulos

Bernhard Seeger Georg Walch R. Erbe Balakrishna R. Iyer

Ashish Gupta Praveen Seshadri Walter Chang Surajit Chaudhuri

Divesh Srivastava Kenneth A. Ross Arun N. Swami Donovan A. Schneider
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Table 3.13: Authors in the D-core DC42,42 of the DBLP digraph.
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3.4.7 Experimetnal results on ARXIV
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Figure 3.28: Left:The CDF corresponding to the diagonal D-cores(i, i) for ARXIV. SCC’s
are depicted with different colors depending on their sizes. Right: The D-core
matrix of the same data.

Following the same procedure, with the other two datasets, the D-core matrix and

the CDF for the ARXIV citation graph were produced. The reader can see the re-

sults in Figure 3.28. It is interesting to stress that this graph has a much denser

core resulting in much larger metric values as it can be easily seen in the respec-

tive D-core matrix. Additionally it can be seen that the CDF is dominated by one

SCC in its largest part. Furthermore it can be noticed that the initial giant com-

ponent survives until the extreme BCI D-core DC83,83. Thus this graph is much

more robust to degeneracy than all the others we tested indicating thus a very

dense collaboration among the members of the theoretical Physics community.

The authors of this core can be seen in Table 3.15. It is evident that all the senior

names in this scientific area appear here justifying their close collaboration to the

community in terms of in/out citations. It is stressed here that the abbreviated

version for most of the author names was used as these was more frequent in the

dataset.

As for the other characteristics, the inherent collaboration index ICI is charac-

terized by an angle of 25 degrees at the DC50,107 D-core with size of 306. For the
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M.B. Green M. Gutperle Petr Horava Clifford V. Johnson
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O. Bergman G. Lifschytz Atish Dabholkar Barton Zwiebach

Barton Zwiebach Nathan Berkovits R.R. Metsaev S. Yankielowicz
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Hong Liu P.S. Howe P.C. West Nakwoo Kim
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Table 3.14: Authors in the D-core DC83,83 of the of the ARXIV digraph.
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Table 3.15: Authors in the D-core DC83,83 of the of the ARXIV digraph(continued).

OCI index we obtain three cells DC78,95, DC79,94 and DC80,93 with respective

sizes of 237, 241, and 244 nodes respectively.

The robustness of the ARXIV graph is high as well at 0.9704 indicating, much

like the DBLP one, very high robustness to degeneracy digraph. Again, overall are

observed some very extrovert features meaning that the graph is featured mostly

by outgoing citations. In this case it ca be said that the ARXIV digraph displays

higher extroversion than the DBLP. On the other hand this could be attributed to

the fact that the DBLP dataset is not very well maintained thus lots of citations

missing.

3.4.8 Conclusions

In this section the behavior of the new concepts and metrics was investigated

for the case of synthetic preferential attachment graphs - dominant in real world

cases. The study is extended to various parameters values in an attempt to fit

the features of the real-worlds graphs. In order to achieve this a multi-parametric

graph generator was developed. Moreover, an extensive experimental evaluation

was conducted for scale-free/preferential attachment synthetic graphs as well as

real-world large scale directed graphs: the (English) Wikipedia - 2004 edition, the

ARXIV and DBLP citation graphs. The D-cores matrices, frontiers and metrics were



88 experiments

computed and explored respectively, thus deriving interesting results and obser-

vations both at the macroscopic (graph) and at the microscopic (node) level. The

goal of this section was to validate that the D-core concept and the relevant struc-

tures and metrics that were defined in this work constitute a framework of tools

for efficient and valid evaluation of cohesiveness and collaboration in directed

networks.

3.5 s-cores

In this section, the metrics and structures defined in section 2.5.2 are used on

two kinds of signed networks: explicit ones, from existing Web applications pub-

lishing such networks, and implicit ones, inferred from interactions that can be

interpreted as positive or negative.These datasets are described below. For the lat-

ter kind, signed networks from articles in four domains on the English Wikipedia

are considered.

3.5.1 Datasets Description and Methodology

explicit signed networks .

Two explicit signed networks are explored, available on the SNAP website4,

Epinions and Slashdot. The Epinions network is extracted from the epinions.com

website, an user-driven product review website, in which any user of the site

can indicate in their profile if they trust or distrust other users. Similarly, in the

Slashdot signed network, extracted from the slashdot.org website, users declare

friends or foes.The basic properties properties of these explicit signed networks

– number of nodes, number of edges and ratio of negative edges – are presented

in Table 3.16. For a more in-depth description, the reader is reffed to [56], where

these networks are studied through the lens of social theories like status and

balance, as well for signed link prediction.

implicit (inferred) signed networks .

In this part, the network WikiSigned5 was adopted, which is a signed network

built with the methodology of [64], over the Wikipedia editors, based on the arti-

cles of the English Wikipedia and the revision history thereof. In short, this net-

work tracks the various interactions between contributors, either in text editing, in

votes for adminship of pages, or in acknowledgments of contributions (so called

barnstars). For the reader’s convenience, the methodology of link construction

from interactions in the Wikipedia is detailed in section 3.5.2 . From the global

4 http://snap.stanford.edu/data/index.html#signnets

5 http://www.infres.enst.fr/wp/maniu/datasets/

http://snap.stanford.edu/data/index.html#signnets
http://www.infres.enst.fr/wp/maniu/datasets/
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Network Nodes Edges Negative

Epinions 119,217 841,200 15.0%

Slashdot 82,144 549,202 22.6%

Table 3.16: Properties of the explicit signed networks.

Domain Articles Nodes Edges Negative

History 3,331 141,983 534,693 17.5%

Politics 12,921 453,116 2,428,945 13.5%

Religion 6,459 277,482 1,423,279 12.6%

Mathematics 9,610 158,671 651,450 15.9%

Table 3.17: The signed networks extracted from the four Wikipedia domains.

WikiSigned network, four subsets of articles were selected, from the following

domains History, Politics, Religion and Mathematics. Each of these sets gave a

corresponding subgraph of WikiSigned.

In Table 3.17 the properties of the four signed networks are given – correspond-

ing to the four domains of articles: number of extracted articles for each domain,

number of nodes, number of edges and ratio of negative edges.

3.5.2 WikiSigned methodology

For the construction of the four signed networks, the following methodology was

used, as in [64]. For each Wikipedia article in the corpus, its complete version

(or revision) history was processed, in chronological order. For each revision, the

following types of interactions were extracted:

1. the number of words inserted by the author of the current revision in the

vicinity of the text belonging to other authors,

2. the number of words deleted or replaced between the author of the current

revision and the previous authors of the modified text,

3. if the current revision is a reversion, i.e., the current author decided that a pre-

vious revision of the article needs to be restored; a revision restore interaction

was established between the current author and the author of the targeted

revision, and one or more revision revert interactions were established be-

tween the current author and the authors of the revisions discarded in the

process.

The first two items are called text interactions, while interactions resulting from the

last item are called revision interactions. Note that in order for these interactions
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to be properly tracked, an up-to-date text author list needs to be computed for

each revision. When revisions are reverted, so are their corresponding author

lists. Furthermore, the following interactions between the authors of the above

revisions need to be extracted:

1. votes in administrator elections6, as either positive votes or negative votes,

2. barnstars, i.e., prizes acknowledging important contributions, which can be

put on a user’s profile page by other contributors.

For each such interaction, either a positive or negative interpretation is assigned.

Deleted or replaced text, reverted revisions and negative administrator votes were

assigned a negative interpretation. The rest were assigned a positive interpreta-

tion. Then, each unique contributor pair was aggregated, via summation, result-

ing in an interaction vector between the contributors. This vector summarizes the

directed interactions, from an interaction generator to a recipient.

For deciding the link sign from this interaction vector, the following straightfor-

ward heuristic was used. For each of the four types of interactions (text, revision,

election and barn star), its corresponding interpretation was the one of the more

prevalent interaction, taking values in {−1, 0, 1} (depending on its negative, unde-

cided or positive outcome).7 For example, if more words were replaced or deleted

than inserted between a pair of contributors, then the text interactions between

them were labeled as negative. Finally, these interpretations were aggregated into

a link sign from the generator to the recipient, by the sign of the sum of the four

per-interaction interpretations. This of course means that the various interactions

may cancel each other out, in which case no link is built. In order to avoid creat-

ing links between contributor pairs that have too few interactions, two thresholds

were imposed in the WikiSigned construction: a threshold on the minimum num-

ber of words interacted upon, and a parameter k for the minimum number of

unique revisions each contributor pair must have interacted upon. In the experi-

ments shown here, the word threshold is set at 10.

3.5.3 Experimental Evaluation

Here are displayed the experiments that were performed on the explicit signed

graphs (Epinions and Slashdot), all the inferred Wikipedia networks and semiarti-

ficial networks. The algorithm for computing the S-cores of a signed digraph is

linear to the number of the graph edges. As the signed graphs examined are

sparse, the construction of the S-cores is hence very fast. The computation is quite

6 Each Wikipedia contributor can be candidate for election to a page administrator position. Other
contributors can either oppose or support a candidate in an election.

7 This is justified by the fact that, for instance, one cannot objectively compare a number of deleted
words with a number of negative votes.
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straightforward: for a given pair of in- and out-degree thresholds, the vertices hav-

ing degrees that are below the desired threshold are removed and the degrees of

the remaining nodes are updated. This is repeated until there are no more nodes

in the graph to remove.

The algorithm follows the same logic as in k/fractional-cores and S-cores. In

particular, the efficiency of computing all the S-cores is optimized by utilizing

the following property. A (is(i), js(j))-dicore is a subgraph of every (i ′s(i
′), j ′s(j

′))-

dicore where i ′ 6 i and j ′ 6 j and for the signs: s(i ′) = s(i) or i’=0 and s(j ′) = s(j)

or j’=0 (i.e. both of the dicores are in the same quadrant). Thus, the (e.g.) (2+, 0)-

dicore can be computed having computed and stored in memory the (1+, 0)-

dicore. Moreover, the entire S-core diagram can be computed by computing firstly

the S-cores on the axes. Note that two S-cores upon different axes are not corre-

lated so we need to compute all of them across the axes but we need on each

quadrant only one of the axes to fill in the rest.

The execution time of the processing algorithm is in the order of tens of min-

utes on commodity hardware (2.5 Ghz dual-core processor with 4GB RAM), even

for graphs of millions of nodes. In total, 40 different graphs were processed in a

matter of hours (the two explicit networks and the inferred ones for various pa-

rameters). All the computed S-cores were stored for further analysis accumulating

in total 60GB of disk space.

3.5.4 Slashdot and Epinion graphs

The graphs derived from the Slashdot and Epinions networks are explicitly defined

by the users thus providing ground truth examples for the S-cores and their met-

rics. Figure 3.29a displays comparatively the frontiers of the Slashdot and Epinion

graphs. It can be seen that the Epinions network has a larger negative area, which

is interpreted as a more distrustful community. For more details the reader ca

look at Table 3.18, containing the general trends of the two networks. For example

we see the higher activity of mutual trust (Q+,+) displayed from Slashdot (com-

pared to Epinions) evident by the higher valued coordinates of δ(+,+)
max (G) in that

quadrant.

Additionally, a pattern arises concerning the equivalent values of reciprocity at

node and graph level. Both types of reciprocity agree in the inversely reciprocal

cases with low values. The more distinct differences are in the other quadrants

and when comparing simple reciprocity (rs) with the graph reciprocity (GR). It is

quite evident that, concerning the remaining reciprocities, on a node level there is

much less reciprocity. On the other hand, the general reciprocities are quite large

which is attributed to users reciprocating more at a community level than a local

one.
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Graph Q+,+ Q+,− Q−,− Q−,+ rs/GR

Epinions

max degeneracy (δmax) (19,18) (1,-4) (-5,-5) (-5,1) -

local reciprocity (r) 0.347 0.003 0.038 0.022 0.302

mean local reciprocity 0.230 0.002 0.046 0.013 0.160

graph reciprocity (GR) 0.976 0.109 0.886 0.197 0.859

Slashdot

max degeneracy (δmax) (37,35) (2,-2) (-4,-4) (-3,1) -

local reciprocity (r) 0.197 0.004 0.072 0.016 0.169

mean local reciprocity 0.228 0.004 0.091 0.025 0.133

graph reciprocity (GR) 0.978 0.067 0.8 0.108 0.911

History

max degeneracy (δmax) (17,17) (1,-1) (-2,-2) (-1,1) -

local reciprocity (r) 0.065 0.004 0.010 0.020 0.055

mean local reciprocity 0.050 0.004 0.030 0.029 0.010

graph reciprocity (GR) 0.938 0.158 1.0 0.205 0.842

Politics

max degeneracy (δmax) (64,65) (1,-2) (-2,-2) (-3,1) -

local reciprocity (r) 0.105 0.006 0.020 0.040 0.094

mean local reciprocity 0.059 0.006 0.067 0.048 0.014

graph reciprocity (GR) 0.955 0.535 1.0 0.564 0.640

Religion

max degeneracy (δmax) (42,43) (1,-2) (-2,-2) (-2,1) -

local reciprocity (r) 0.084 0.006 0.022 0.044 0.076

mean local reciprocity 0.058 0.007 0.064 0.050 0.015

graph reciprocity (GR) 0.952 0.396 1.0 0.540 0.676

Mathematics

max degeneracy (δmax) (46,47) (1,-1) (-2,-2) (-2,1) -

local reciprocity (r) 0.099 0.006 0.011 0.032 0.085

mean local reciprocity 0.063 0.006 0.037 0.029 0.012

graph reciprocity (GR) 0.963 0.327 1.0 0.356 0.742

Table 3.18: The calculated metrics for all graphs. The first four columns (of the calcu-
lated values) present the for contextual reciprocities (e.g. r in column Q+,+ is
the contextual local reciprocity in the +,+ quadrant r++). The last column is
Simple Local Reciprocity rs or the Global Reciprocity GR(depending on the
corresponding row).
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Figure 3.29: a. The frontiers for Slashdot and Epinions networks. b. The frontiers for the
Wikipedia topics.

3.5.5 Wikipedia topics

The S-cores structure are analyzed for the four Wikipedia topics selected above:

politics, history, mathematics and religion. In Figure 3.29b are the corresponding S-

core frontiers, and in Table 3.18 the values for the defined metrics. In terms of

maximal degeneracy the topic of Politics has by far the largest trust quadrant. This

is expected since there is more activity in that topic, in comparison with the others,

evident by the larger number of articles, resulting in a larger overall graph. On

the other hand, the History graph has the smallest value (a direct result from

the smaller number of articles). It is quite interesting that, despite the difference

in size, all four networks present the same behavior in many of their aspects.

The network derived from the topics under History seems to display a slightly

different behavior. The larger value of GR expresses a general tendency for the

users to reciprocate edges of only the same sign back to the community, which in

turn can be assigned to a larger bias in the actions of a user.

Again, the node level reciprocities cannot describe the bigger picture of the com-

munity’s collective actions. For example, Contextual Global Reciprocity GR++ has a

high value – indicating a lot of trustworthiness coming and going from the user to

the community– while at the same time the equivalent node level reciprocities for

all four topics are very low. It should also be pointed out that GR−− has reached

maximum value for all four topics as well. Meaning that, despite the fact there

is less unbiased actions (evident by the higher values of GR+− and GR−+ and

with the exception of History), there is a (small) remaining part of the community

where distrust is at its maximum – but not directly as the node level contextual

reciprocities values are very small.
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3.5.6 Local vs. Global reciprocity

It is visible from the comparison in Table 3.19, that node level reciprocity, although

it captures somewhat the different trends in trust and distrust, it can not evaluate

the wider concept of general (“social") trust/distrust. This is more visible in quad-

rant Q+,+ as reciprocity r++ is low in most of the cases while the respective GR++

is close to maximum. The large value of quadrant maximal degeneracy δ
(+,+)
max (G) in-

dicates that there is a strong community of individuals that reciprocate their trust

with their community.

In Table 3.18 are also compared the Graph Reciprocities to the average local re-

ciprocities over all vertices in the presented data graphs. The motivation for this

is to establish that Global Reciprocity represents the reciprocal behavior better than

the local one. The local reciprocities are ratios over the edges while the average local

reciprocities are the mean values over individual behaviors and could be perhaps

better at capturing the average behavior over the entire graph. From the compari-

son in Table 3.18, it is clear that:

a) the values of average local reciprocities and of local reciprocities display more or

less the same trends and

b) Graph Reciprocity can capture collective behaviors the other two metrics can-

not.

It is also visible that, when the visual information of the frontier is reduced to

sets of numbers, the descriptive capability of the S-core frontier is also reduced.

In many cases, the relative (to its bounding box) volume of the Q−,− quadrant is

equal to 1 (for the Wikipedia articles). This can be interpreted by a sub-community

of distrustful members; although the total volume is quite small meaning that the

members are not that many. This would be quite easy to interpret both by the size

and shape of that portion of the frontier. Again at this quadrant, there isn’t much

of agreement on the magnitude with the equivalent node level reciprocity values.

This suggests, again, that the distrust is not directly reciprocated at a individual

member but at the community (or part of it) as a whole.

3.5.7 General Trends of Graph Reciprocity

When looking at the set of GRst it is noticeable that all of the signed networks

seem to display a very high reciprocity in trust Q+,+ and distrust Q−,−. This

is also evident by the respective high values of the Global Reciprocity GR. The

behavior these high values express can be described as biased. In a real graphs

it is expected that edge signs distributions are not uniform as the users tent to

be reciprocal in the context of trust signs: a user tends to give and receive same
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sign trust to/from the community or another user. It is unlikely that users receive

positive trust and return negative or vice versa. Thus in a real world signed graph

the graph generation mechanism is highly biased in terms of sign distribution.

Is is of interest to study the values and behaviors of the metrics that have been

defined in the case of graphs where signs are assigned in an unbiased manner.

This exploration is attempted in artificially created networks with the assump-

tion that in an unbiased behavior the sign of an edge would be equally probable

for either positive or negative. For easier comparison, a single structure of a real

graph (Epinions) is utilized while changing, in a random manner, the assignment

of trust signs. Firstly, the signs are assigned while keeping the original ratio of

positive to negative signs. Afterwards, different ratios are explored and their fol-

lowing affect on the signed reciprocity aspect of the graph is noted. Random sign

assignment should result in a less biased reciprocity of signs. Specifically, it is

expected (and verified by the results) that the model for general Graph Reciprocity

to always result in an equally balanced reciprocity for all quadrants – without

being affected by the ratio of signs – and thus always to produce (in an unbiased

scenario) for GR a value close to 0.5.

In Figure 3.30a one can see the effect, after the redistribution of signs, upon

the S-core frontier. As seen, in the green dotted line, the portion of the inversely

reciprocal quadrants has become larger even though we have not changed the

structure of the graph and we have kept the same ratio of positives to negative

edges. It is quite clear, just from the image, that on a graph level the reciprocity is

balanced for the random redistribution.

In fact, the reciprocity at graph level always indicates the unbiased behavior

(with GR ≈ 0.5) as seen in Figure 3.30b – and as it we will be seen with particular

values. In Figure 3.30b the visualization represents different scenarios of random

sign distribution for different percentages of positive and negative signs. Starting

from the lower left part, cases of larger portions of negative signs can be seen (with

the extreme lower left frontier having only negative signs) and moving up and to

the right to larger portions for positive signs (likewise the extreme “right-up”

frontier has only positive signs). With the exceptions of purely positive/negative

signs, the global reciprocity will always be GR ≈ 0.5 as all the quadrants reach

approximately maximum “capacity” in their respective bounding boxes. As all

of this cases are unbiased, it is to be expected to be characterized by the same

reciprocity values. At each case, the maximal degeneracy values differentiate to

indicate where the general attitude of trust/distrust is “pointing”.

It is essential to point out that in Figure 3.30b the frontier moves upon the diag-

onal of Q+,+ and Q−,− because only the signs are changed and not the structure

of the network. Thus the same relationships remain and only their nature changes.

In fact the two most extreme cases of full positive/negative signs are essentially a

mirror of one another and have the exact same frontier shape.
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Figure 3.30: a. The frontiers for Epinions originally and with random redistribution of the
signs (while keeping the same sign ratio). b. The frontiers for Epinions with
random sign distribution for varying positive/negative ratios.

Graph Reciprocity Q+,+ Q+,− Q−,− Q−,+ rs/GR

Original local 0.347 0.003 0.038 0.022 0.302

graph 0.976 0.109 0.886 0.197 0.859

Random1 local 0.263 0.045 0.046 0.261 0.231

graph 0.961 0.932 0.966 0.962 0.504

Random2 local 0.154 0.153 0.154 0.154 0.154

graph 0.971 0.961 0.985 0.980 0.501

Table 3.19: The calculated metrics for different sign distributions in Epinions. Random1

is the random distribution of signs while keeping the original ratio and
Random2 is the random distributions of signs while + and - have the same
probability.

Additionally in more detail are studied two cases of random distribution:

a Random1 where the sign ration is the same as the original and

b Random2 where the sign ratio is equal for both signs (i.e. the S-core frontier

centered at the axes in Figure 3.30b).

The reciprocities (local and global) are compared to the original network of Epin-

ions in Table 3.19. As it can be seen, the local reciprocity does not offer an intuitive

result (i.e. a result that would signify that signs have been assigned in an unbiased

manner) unless the ratio of signs is also balanced. At the same time, it is validated

that the unbiased behavior will be clearly evident by the global reciprocities (GRst

and GR) no matter what the ratio of signs may be.
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3.5.8 Author Frontiers
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Figure 3.31: Comparison between Wikipedia contributor frontiers randomly selected from
the politics topic.

As seen in section 2.4.6, a frontier can be defined for individual nodes. This

frontier could be used as an evaluation tool for individuals in a trust network.

Here, is presented an example of a such an evaluation of Wikipedia contributors

and we show different trends that might appear.

In Figure 3.31 are presented frontiers for four randomly chosen users from the

domain of politics in Wikipedia. The frontier of a user is similar to the frontier of

graph and it gives a visual representation of the user’s trustworthiness. In the

example cases appearing here, user Gobonobo has his frontier almost as large as

the entire politics graph frontier (Figure 3.29b). Thus being an author that has had

many interactions and many of them positive establishing him at a high status of

trustworthiness. A counter example is the user Writtenonsand which displays a

very small frontier.

Furthermore, with the frontiers a global “pictures” is given of the users’ interac-

tion with the community and the general reciprocation from the community as a

whole. For example, for the user Mike1, the frontier is extended more on the posi-

tive out degree which is interpreted as an author that votes positively more than

he is being voted. On the other hand, user Rayizmi has a more introvert behavior

on the positive side.



98 experiments

(a) (b) (c) (d)

Figure 3.32: The four possible triangle configurations (for a node – the green one) in a di-
rected network. The dashed line indicates that the direction is not important
(as the two possible directions create a "mirror" of one another). From left to
right:a) In-triangle, b) Out-triangle, c) through triangle, d) cycle triangle.

3.5.9 S-core reciprocity vs clustering structure

While reciprocity (global or local) is an intuitive measure and can be used to de-

scribe important behavioral aspects of signed networks, it is also important to ex-

plore the properties these metrics (that we defined here) might have in relevance

to more complex tasks. In this section the correlation between triangles formed by

the nodes of signed networks and the properties of reciprocity are explored. The

number of triangles a node participates is important to tasks like graph cluster-

ing. As graph clustering in signed networks is still quite unexplored, the results

presented here could be the seed for further research in graph mining algorithms

of signed networks.

In Figure 3.32 there is an example of the four possible combinations of edges in

a triangle formation of a directed graph. From left to right:

a the in-triangle 3.32a,

b the out-triangle 3.32b,

c the through triangle 3.32c and

d the cycle triangle 3.32d.

In a signed network the types of triangles (for a given node) is sixteen. In the

cases studied here though, the types of triangles can be seen as four sets of the

four directed types in Figure 3.32. Each set is the aforementioned four types that

is "restricted" by the "properties" imposed from each quadrant. For example, for

Q+,+ we have the four types displayed in Figure 3.32 where the incoming edges

must be positive and the outgoing as well. While for Q+,− only the outgoing must

be positive and the incoming negative.

In Table 3.20 is displayed the correlation between a node’s triangle count and

the respective reciprocities of the nodes for each quadrant. Much like the frontier
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for each individual node, the global reciprocity (GR) for that node can be calcu-

lated for each of the quadrants. Afterwards we measure the correlation coefficient

between a nodes triangle count (four types for each quadrant) and the GR. All the

values displayed in Table 3.20 have p− value < 0.05 (from comparison to the no

correlation null hypothesis) thus indicating that the correlation is significant.

Quadrant in-triangle out-triangle through triangle cycle triangle

Q+,+

GR++ 0,56 0,79 0,96 0,87

r++ 0,29 0,09 0,08 0,09

Q−,+

GR−+ 0,17 0,26 0,60 0,47

r−+ 0,10 0,02 0,01 0,02

Q−,−

GR−− 0,05 0,79 0,97 0,87

r−− 0,46 0,03 0,04 0,04

Q+,−

GR+− 0,17 0,19 0,42 0,36

r+− 0,10 0,01 0,04 0,03

Table 3.20: Correlation coefficient values between the four types of triangles and reciproc-
ities for each quadrant.

The global reciprocity can be computed by the cores of a node’s S-core frontier

and a connection has been found between the k-core properties of an undirected

graph and its clustering coefficient (e.g. see [42]).

And, Even though the local reciprocity of a node is not connected by intuition

to clustering properties, we also presented the correlation of the local reciprocity

of a node to the number of triangles for comparison and completeness of the

exploration.

It is very interesting that, with the exception of the in-triangles, the global reci-

procity presents a consistently higher that the local one correlation with the trian-

gles count. In the in-triangle case the reason for this inconsistency (in the Q−,−)

could be that newcomers into a social network –since they are new to the net-

work and less knowledgeable and/or more eager to participate– are more likely

to receive negative votes due to inexperience (which in turn could have a direct

reciprocation with a negative vote for the same reason). Never the less the high

correlation of GR with triangle count is an indication that GR could be used in

signed network clustering (for perhaps a selection phase of seed nodes). Further-
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more this indicates the validity and superiority of the GR measure over the local

reciprocity.

3.6 conclusions

This section displayed various uses of the extended degeneracy concept. Capital-

izing on the core structure and models and metrics derived from that :

• In the case of graphs that do their edges do not display directionality : collab-

oration was evaluated and, with the fractional core methodologies, a more

meaningful framework was established for the evaluation of individuals on

their role within a community.

• In the case of directed graphs: the collaboration aspect was extend in con-

cepts of inward /“egotistical” and outward/“unselfish” behaviors. This was

displayed in diverse environments (Wikipedia articles and DBLP citation

graph) thus establishing the multiple purposes this tool can be utilized for.

• The case of signed digraphs “transformed” the collaboration aspect into a

trust management context where the evaluation shows properties of signed

networks, both explicit and implicit ones, that are better captured by the

new reciprocity measures, suggesting its potential as an objective for opti-

mization algorithms in the context of directed and/or signed graphs, such

as graph clustering or link formation models.

All of the above were displayed to be applicable in both individuals and various

sets of them or communities.
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4
Scaling Graph Clustering with the

k-core Expansion Sequence

4.1 introduction

Detecting clusters or communities in graphs constitutes a cornerstone problem

with many applications in several disciplines. Characteristic application domains

include social and information network analysis, biological networks, recommender

systems and image segmentation. Due to its importance and multidisciplinary

nature, the problem of graph clustering has received great attention from the re-

search community and numerous algorithms have been proposed (see [38] for a

survey in the area).

Spectral clustering (e.g., [74]) is one of the most sophisticated methods for cap-

turing and analyzing the inherent structure of data and can have highly accurate

results on different data types such as data points, images, and graphs. Neverthe-

less, spectral methods impose a high cost of computing resources both in time

and space regardless of the data on which it is going to be applied [38]. Other

well-known approaches for community detection are the ones based on modu-

larity optimization [24, 73], stochastic flow simulation [79] and local partitioning

methods [38]. In any case, scalability is still a major challenge in the graph clus-

tering task, especially nowadays with the significant increase of the graphs’ sizes

in various networks.

Typically, there are two main methodologies for scaling up a graph clustering

method:

i algorithm-oriented and

ii data-oriented.

The first one considers the algorithm of interest and appropriately optimizes –

whenever is possible – the “parts” of the algorithm responsible for scalability

issues. Prominent examples here are the fast modularity optimization method

[24] and the scalable flow-based Markov clustering algorithm [79]. The second

and widely used methodology is to rely on sampling/sparsification techniques.

In this case, the size of the graph onto which the algorithm will operate is reduced,

103
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by disregarding nodes/edges (see Section 4.2). However, in this approach possibly

useful structural information of the graph (i.e., nodes/edges) is ignored.

This chapter presents the proposal of a graph clustering framework that capi-

talizes on the notion of graph degeneracy – also known as k-core decomposition

[36, 66, 81, 85]. The main idea behind this approach is to combine any known

graph clustering algorithm with an easy-to-compute, clustering-preserving hierarchi-

cal representation of the graph – as produced by the k-core decomposition – to-

wards a scalable graph clustering tool. The k-core of a graph is a maximal size

subgraph where each node has at least k neighbors in the subgraph (the k will be

also referred as the rank of such a core). That way, the notion of the core expansion

sequence (also known as layers) Vk, . . . ,V0 is defined, where Vk contains the ver-

tices of the highest-rank core, Vk−1 contains the vertices of the (k− 1)-core that do

not belong in Vk, and so on (see section 2.3.1, definition 3 for formal definitions).

Based on the idea of degeneracy, its shown that the densest cores of a graph

are roughly maintaining its clustering structure and thus constitute good starting

points (seed subgraphs) for computing it. Given the fact that the size of the dens-

est core of a graph is orders of magnitude smaller than that of the original graph,

a clustering algorithm is applied starting from its densest core and then, on the

resulting structure, the rest of the nodes in the lower rank cores are clustered in-

crementally in decreasing order – following the hierarchy produced by the k-core

decomposition. It is shown experimentally that this process is considerably im-

proving the execution time of the clustering process (using as baseline a spectral

clustering method), while the quality of the clustering results is maintained or

even, in some cases, is improved.

The rest of this section is organized as follows. Firstly are reviews of the related

work. Afterwards follows a description of the proposed framework for graph

clustering. Finally is the presentation of the experimental results.

4.2 related work

In this section there is a review on the related work regarding graph clustering,

approaches for scaling-up graph clustering.

graph clustering

The problem of community detection and graph clustering has been extensively

studied from several points of view. Some well-known approaches include spec-

tral clustering (e.g., [74, 83, 89]), modularity optimization (e.g., [24, 72]), multilevel

graph partitioning (e.g., Metis [48]), flow-based methods [79], hierarchical meth-

ods [73] and many more. A very informative and comprehensive review over the

different approaches can be found in [38]. Also Fortunato et al. [54] has conducted
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a comparative analysis on the performance of some of the most recent algorithms,

in artificial data produced by their parametrized generator of benchmark graphs.

In the work presented here, the same graph generator as in [54] is used to evalu-

ate the proposed framework. Another recent empirical comparison of community

detection algorithms has been performed by Leskovec et al. [58]. There, due to

lack of ground-truth data, the evaluation of the produced clusters is achieved ap-

plying quality measures, such as conductance. As we will be see in Section 4.4, a

similar practice is used to evaluate the framework in real-world graph data.

scaling-up graph clustering

The efficiency of graph clustering can be improved in various ways. Two well-

known approaches are the ones of sampling and sparsification. In the case of spec-

tral clustering, sampling-based approaches include the Nyström method [53] and

randomized SVD algorithms [32].

The approach of [53] capitalizes on the Nyström column-sampling methods

and, from the insights gained by the comparison, a novel technique, that follows

a non uniform selection of columns, is presented and outperforms existing tech-

niques. In [32] the proposed randomized SVD is essentially picking a few columns

of the data matrix with respect to a certain probability distribution and then doing

Principal Component Analysis on the selected features

Concerning graph sampling, the goal is to produce a graph of smaller size

(nodes and edges), preserving a set of desired graph properties (e.g., degree dis-

tribution, clustering coefficient) [55].The work by Maiya and Berger-Wolf [63],

presents a method – based on the notion of expansion properties – to sample

a subgraph that preserves the community structure, i.e., contains representative

nodes of the communities . Then, the community membership of the nodes that

do not belong to the sample can be expressed as an inference problem.

Unlike the aforementioned methods that sample both nodes and edges, the

graph sparsification algorithm presented in [80] reduces only the number of edges

(focusing on inter-community edges) in order to improve the running time of a

clustering algorithm. In contrast to the above methods, our approach keeps the

structure of the graph intact, without excluding any structural information from

the clustering process.

A different approach for sampling can be found in the work of [91] where

spectral clustering is applied on the centroids produced by simpler clustering

algorithms (k-means and random projection trees), the assignment, of the other

data points, in the final clusters is decided by their correlation to the centroids. The

same idea is found in [23] where “Landmarks" are chosen, with the utilization of k-

means, as representatives of the original data. A similar approach, using a simple

clustering algorithm, is reported in [62], where the optimization is carried out by

minimizing the cost of calculating the similarity matrix based on an estimation
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core4

core0
core1

core2
core3

Figure 4.1: A graph G of degeneracy 4 and its cores. The different colors express the
partition of the vertices of the graph to layers V4,V3,V2,V1, and V0. Fat-edges
indicate parts of a clustering of the graph.

process of the similarities between two points. The basic idea is that if in multiple

runs of k-means – with random initialization – two data points are assigned to

the same cluster, then those two points have a high similarity.

In a completely different spirit, clustering techniques can also be improved by

parallelizing the process like in the work of [22]. Here the idea was to conduct

spectral clustering on a distributed environment by “breaking down" the eigen-

vector computation in terms of partitioning the similarity matrix.

4.3 the proposed method

In this section, the proposed graph clustering framework is described. The pro-

posed methodology capitalizes on the concept of degeneracy to improve the ef-

ficiency of graph clustering. The main idea behind this approach is that the k-

core decomposition preserves the clustering structure of a graph and therefore

the “best” k-core subgraph can be used as good starting point for a clustering

method. Furthermore, the decomposition provides an hierarchical organization

of the nodes in the graph, that can “guide” the clustering process.

A simple toy example of a graph can be seen in Figure 4.1. There can be seen a

visual representation of the intuition behind the proposed frame work. As it can

be seen, there are two “core” clusters in purple color. Once every layer (other than

the last one) is removed then the two basic communities are easily separable. The

rest of the nodes can be easily assigned (in this example) to the two clusters with

simplistic procedures.
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4.3.1 The Framework

Spectral Clustering is a method that requires significant computing resources as

it involves matrix eigenvalue decomposition. Many sophisticated clustering algo-

rithms have a high computational complexity as well.

Suppose there is an algorithm that takes as input a graph G and outputs a

partition of V(G) into a number of sets that form a clustering of G. As in this

section the main focus is on the general aspects of the methodology, the attributes

of such an algorithm are discussed any further and it is, abstractly, named it

Cluster. It is also assumed that it runs in O(n3) steps as, in our experiments,

the Cluster algorithm is the spectral algorithm of [74]. The aim is to define a

procedure that uses Cluster and accelerates the algorithm without any significant

loss in its accuracy. This procedure is called CoreCluster and is presented below

together with the subroutines that it uses.

Procedure CoreCluster(G).

Input: A graph G.

Output: A partition of V(G) into clusters.

1. k := δ∗(G).

2. q := 0.

3. Let Vk, . . . ,V0 be the core expansion sequence of G.

4. For i = 0, . . . ,k, let Gi be the i-core of G,

5. Let Sk = Vk.

6. Let Ak = {Ck
1 , . . . ,Ck

ρk
} = Cluster(G[Sk]).

7. for i = k− 1 to 0 do

8. Si =Select(Gi,Ak ∪ . . .∪Ai+1,Vi),

9. let Ai = (Ci
1, . . . ,Ci

ρi
) = Cluster(G[Si]).

10. Return Ak ∪ · · · ∪A0.

Initially, CoreCluster performs k-core decomposition to obtain the core expan-

sion sequence of the graph. Then, algorithm Cluster is applied to the k-core sub-

graph, creating the first clusters. The procedure Select takes as input the, so far,

created clusters, i.e., the sets in Fi+1 = Ak ∪ · · · ∪Ai+1 and the i-layer Vi and tries

to assign each of the vertices of Vi in some cluster in Ak ∪ · · · ∪Ai+1. After this

update, the procedure Select returns the unassigned vertices.

The choice of the selection procedure considers the way the vertices of Vi are

adjacent with the vertices of the clusters in Ak ∪ · · · ∪Ai+1. As this selection can

be done with several heuristic approaches,it is not specified it in this section. A

detailed description of such a procedure is given in Section 4.3.2 where the exper-

imental part of this work is presented.
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The CoreCluster can be essentially seen as a “meta-algorithmic procedure” in

the sense that it can be applied to any clustering algorithm. The discussion that

follows in the next two sections, argues that this indeed can improve the clustering

argument in time without any significant expected loss in its performance.

Figure 4.2: An example of the operation of the CoreCluster procedure for a portion of a
graph obtained from the experiments. This graph consists of the core sequence
members V7, V6, V5, and V4 that are included in the black, green (#), blue
(∗), and red (s) squares respectively. Vertices of different colors correspond to
different clusters.

4.3.2 Selection procedure

In this section, the selection procedure (Select()) ( in Line 8 of CoreCluster) is

described. The procedure takes as input the so far created clustering Fi+1 =

Ak ∪ · · · ∪Ai+1 and the vertex set Vi. We describe below how this procedure as-

signs some of the vertices of Vi to the clusters in Fi+1 and outputs the remaining

ones.

First of all a pair (G,V ,F) is called a candidate triple, if G is a graph, and F ∪ {V}

is a partition of V(G). Given a candidate triple (G,V ,F), the following property is

defined on the vertices of V :

Pα,β(v) = ∃C ∈ F :
|NG(v)∩ V(C)|

|NG(v)|
> α and |NG(v)| > β, (4.1)



4.3 the proposed method 109

where α > 0.5 and β is a positive integer. Notice that, as α > 0.5, the truth of

Pα,β(v) can be certified by a unique set C in F. We call such a set the certificate

of v. This defined parameter has fixed values through the experiment that were

found experimentally to provide better results over all data.

Procedure Select(G,F,V).

Input: A candidate triple (G,V ,F)

Output: A subset S of V and a partition F ′ of V(F)∪ (V \ S).

1. while Pα,β(v) is true for some v ∈ V ,

2. set F ← (F \ {C})∪ {C∪ {v}} where

3. C is the certificate of v

4. and set V ← V \ {v}.

5. set V1= NG(V(F)) and V2 = V \ (V1 ∪ F).

6. if V2 is either empty or an independent set of G,

7. then

8. F ← assign(G,F,V ,V1)

9. F ←assign(G,F,V ,V2)

10. return ∅

11. else return V1 ∪ V2.

Before we the assign routine is provided, there is a need for some definitions.

Given a candidate triple (G,F,V) and a vertex v ∈ V the following is defined

span(v) = max{|NG(v)∩ V(C)| | C ∈ F}. (4.2)

Also defined, argspan(v) as a minimum size C ∈ F with the property that

|NG(v)∩ V(C)| = span(v). (4.3)

Procedure assign(G,F,V ,S).

Input: A candidate triple (G,V ,F) and a subset S of V

Output: A partition F

1. while S 6= ∅,

2. let l = max{span(v) | v ∈ S}

3. let L = {v ∈ S | span(v) = l}

4. for every v ∈ L,

5. set C ′ = C∪ {v} where C = argspan(v)

6. set S← S \ {v}

7. set F ← (F \ {C})∪ {C ′}

8. return F.
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The selection procedure first tries to assign vertices of V to clusters of F using

the criterion of the property Pα,β that assigns a vertex to a cluster only if the vast

majority of its neighbors belong in this cluster. The quantification of this “vast

majority” criterion is done by the constants α and β that, in the implementations

regarding the presented experiments, are chosen to be α = 0.8 and β = 5 (this

choice appears to work optimally in our experiments). This first selection is done

in lines 1–4 of procedure Select. The vertices that cannot be assigned are parti-

tioned into two groups: V1 contains those that have neighbors in vertices that are

already classified in the clusters of F and V2 contains the rest. As the vertices in

V2 have no neighbors in the clusters, they have at least k neighbors out of them,

it is most likely that they may not enter to any existing cluster in the future, un-

less, possibly, they are completely disjoint. If this is not the case, a further (milder)

classification is attempted by the assign procedure that first classifies the vertices

in V1 in the existing clusters and then we do the same for the vertices in V2.

We stress that this last selection has been useful in our experiments in cores of

low rank (where many independent vertices may appear). The procedure assign

is a heuristic that classifies each vertex to the cluster that has the majority of its

neighbors.

In simple terms, the CoreCluster framework applies the Cluster algorithm at

the highest k-core and then it iterates from the highest to the lowest core trying

to apply the following logic: Assign with a simple criterion, all the nodes that

can be assigned, to the existing clusters and apply the Cluster algorithm to the

remaining nodes (in order to create new clusters).

Examples of the choices of the selection procedure can be extracted by Figure 4.2

that is a instance of a graph derived from our experimental data (in particular

from the D1 dataset – see section 4.4.2). In this graph, the 7-core (i.e., the graph

delimited by the red square) consists exclusively of the vertices of the “grey” clus-

ter. The set V6 contains all the vertices of the 6-core that are not in the 7-core. All

but two of these vertices are sparsely connected with the grey cluster, while they

exhibit a strong interconnection between them. Therefore, they form the red clus-

ter, while the remaining two vertices, that have all of their neighbors in the gray

cluster, become a member of it. A similar assignment to the gray and red clusters

is happening for the vertices in V5, i.e., the vertices in the 5-core that do not be-

long in the 6-core. Finally, the remaining vertices of the graph (the vertices in V4)

either clearly belong to the existing clusters or are forming two more clusters, the

ping and the purple ones. The experimental evaluation indicates that a similar

clustering behavior characterizes the entire data set that has been considered and

that this is indeed captured by the CoreCluster procedure.
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4.3.3 Expected time

Procedure CoreCluster(G) runs algorithm Cluster(G) on the subgraphs induced

by the subsets Sk, . . . ,S0. Each of Si is the subset of vertices of Vi that cannot be

assigned to already existing clusters according to the selection procedure (Step

8). That way, the selection step makes it possible for some of the vertices in Vi

to be incorporated in the already computed clusters, reducing the burden of the

computation of Cluster(G[Si]). However, the real speed up of the algorithm is

based on the fact that CoreCluster(G) now runs in k+ 1 disjoint subgraphs of G

instead from G itself. As the i-th selection phase requires O(|V(Gi)|
3) steps, the

running time of CoreCluster(G) is bounded by

∑

i=k,...,0

O(|Si|
3) 6

∑

i=k,...,0

O(|Vi|
3) 6 O(k ·n3

max), (4.4)

where nmax =max{|Vk|,. . . ,|V0|}. In the above bound, the first equality holds only

in the extremal case where no selection occurs during the selection phases. Clearly,

the general bound in (4.4) is the best possible when |Vk|,. . . ,|V0| tend to be equally

distributed (which would accelerate the running time by a factor of k2).

According to the first inequality of (4.4) the running time of the algorithm is pro-

portional to (k+ 1) ·n3
max where nmax = max{|Sk|, . . . , |S0|}. Let ρG = max{ |V(G|)

|Si|
|

i = 0, . . . ,k} and µG = max{ |V(G)

|Vi|
| i = 0, . . . ,k} and observe that ρG > µG. Notice

that the discrepancy between ρ and µ is a measure of the acceleration of the algo-

rithm because of the selection phases. Concluding, the acceleration of CoreCluster

is upper bounded by

∑

i=k,...,0

O(|Si|
3) = O

(

k

ρ3
·n3

)

. (4.5)

The above estimation is purely theoretical and its purpose is to expose the general

complexity contribution of our algorithmic machinery. In practice, the acceleration

given by the CoreCluster framework can be much better and this also depends on

the heuristics that are applied for the selection phase (see Section 4.3.2).

4.3.4 Quality of the CoreCluster framework

The intuition behind of this framework is is that the core expansion sequence

Vk,Vk−1, . . . ,V0 gives a good sense of direction on how to do clustering in an

incremental way. In fact, the initial guess (Ck
1 , . . . ,Ck

ρk
) is a way to divide the

“densest” part of G to clusters. After that, the procedure considers Vk−1 as the

remaining vertices of the (k− 1)-core Gk−1, and tries to assign them one by one

to the already existing clusters Ck
1 , . . . ,Ck

ρk
. The vertices for which such an as-
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signment is not possible, form the set Sk−1 and the Cluster is now applied on

G[Sk−1].

As the algorithm continues, the existing clusters grow up and the vertices for

which this is not possible, are grouped to new clusters. The fact that this procedure

approximates satisfactorily the result of the application of Cluster to the whole

graph is justified by the observation that the early i-cores (i.e., i-cores where i

is close to k) are already dense, and therefore sufficiently coherent, to provide a

good starting clustering that will expand well because of the selection criterion.

In fact, the subgraphs obtained by the k-core decomposition, provide an (1/2)-

approximation algorithm for the Densest-Subgraph problem [5].

This makes it quite unexpected that an initial cluster of corei(G) (where i =

k, . . . ,k− q, for moderately small values of q) is split into two parts of different

clusters of the whole graph. Therefore, the ordering of the core expansion se-

quence is indeed correctly indicating in which parts of the graph one should look

for “good guesses” of the densest parts of the clustering.

Figure 4.3 depicts the above intuition for the datasets we used for our experi-

ments (as they are described in Section 4.4.2). Figure 4.3a displays the average

clustering coefficient of a k-core subgraph with regards to the core index value

k (normalized by the maximum k of each graph). This indicates that, overall, a

clearer clustering can be given at the maximum k-core.

In Figure 4.3b the “survival" behavior of the clusters with regards to the core

index(k/kmax for each graph) is depicted. The clusters of each graph are ranked by

size giving to the largest cluster a size rank value of 1.0 and then assigning to the

rest of the clusters a rank of (ClusterSizei)/MaxSize for each clusteri within a

graph. Then, each clusteri is tracked to see how far it can be traced in the k-core

layers. It can be observed that the rank of a cluster (i.e., size) is also positively

correlated with the core index. In conclusion, the above two observations lead us

to the perception that the maximum k-core will hold the vertices from the biggest

clusters and at the same time those clusters will be the easiest to distinguish from

one another. Next, the above observations are theoretically justified.

4.3.4.1 Theoretical justification

The goal of this subsection is to provide a theoretical justification of the CoreCluster

framework. The objective is to show that at the best k-core of the graph, i.e., for k =

δ∗(G) (graph degeneracy), the “best” clusters of the graph G are preserved and

therefore they can be used as seed subgraphs for a clustering algorithm. The claim is

that the decomposition identifies subgraphs that progressively correspond to the

most central regions and connected parts of the graph. This can be shown using

the measure of local clustering coefficient [88] of the nodes in the graph: nodes

with high clustering coefficient at G, are those who finally “survive” at the k-core
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Figure 4.3: a. Average clustering coefficient compared to k-core index normalized by the
maximum value. b. Cluster size, normalized by maximum size, compared to
“survival” k-core index.

subgraph by the pruning (decomposition) procedure. Typically, these nodes are

representative of the clustering structure in the original graph, in the sense that

they belong to the best clusters, and therefore the k-core decomposition preserves

the clustering structure of a graph.

The claim is based on the following Theorem:

Theorem 1 ([42]). Let G = (V ,E) be a graph with heavy-tailed degree distribution, and

let CG be the (global) clustering coefficient of G. Then, there exists a k-core in G for

k > CG
d
β
max

2
, where β < 1 is a constant such that most edges are incident to a node

with degree at least d
β
max (typically β = 2/3), where dmax the maximum degree of the

nodes.

The above Theorem implies that graphs with heavy-tailed degree distribution and

high global clustering coefficient CG, have large cores. Next is proven that the

claim for the relationship between the local clustering coefficient Cv, ∀v ∈ V(G)

and the k-core subgraph; that way, the selection of the k-core is justified as good

seed subgraph for starting the clustering procedure.

Claim 1. Let G be a graph with heavy-tailed degree distribution. The contribution of

each node v ∈ V(G) to the k-core decomposition of the graph is proportional to the local

clustering coefficient Cv.
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Proof. The global clustering coefficient CG for the entire graph is given by the

average of the local clustering coefficients Cv, ∀v ∈ V(G), i.e., CG =
1

n

∑

vCv,

where n = V(G). Then, from Theorem 1 we have that:

k > CG
d
β
max

2
=

(

1

n

∑

v

Cv

)

d
β
max

2
=

(

1

n

d
β
max

2

)

︸ ︷︷ ︸

α

∑

v

Cv

⇒ k > α
∑

v

Cv,

where parameter α captures some global characteristics of the graph (that depend

on the total number of nodes and the maximum degree). Therefore, nodes with

high clustering coefficient (in the original graph) are more likely to be found it

the best k-core (k = δ∗(G)) subgraph, since they tend to be more robust to the

degeneracy process.

Based on the above claim, the nodes that survive in the k-core subgraph poten-

tially capture the best clusters of the graph, due to their high local clustering

coefficient (in the entire graph). Thus, the k-core subgraph can be used as good

starting point for the clustering task.

4.4 experimental evaluation

In this section are presented the experiments that were carried out using the frame-

work on several real and synthetic graph datasets. Initially, the consistent and sig-

nificant execution time amelioration – that was achieve with the framework – is

verified (compared to a baseline method) and next the quality of the produced

clustering results is measured and compared for several graph datasets.

4.4.1 Spectral algorithm

As the baseline and the basis for the CoreCluster framework (algorithm Cluster),

the Ng-Jordan-Weiss spectral clustering algorithm is used as it is described in [74].

The basic idea of this algorithm is to keep the top k eigenvectors of the normal-

ized adjacency matrix and perform k-means clustering on the rows of the matrix

composed from these eigenvectors. Each row in the new matrix corresponds to a

data point and usually the k is the same as the number of clusters we are looking

for. In this variation k-means++ [7] is used for its advantage of performing better

seeding during the initialization process and, since an automatic choice for k is

desired, k is define by noticing the “eigen gap” as it is suggested in [77].
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4.4.2 Datasets description

While real networks are the objective, actual datasets lack ground truth which

leaves only evaluation metrics of the quality of clustering as an option and not

direct comparison. On the other hand, artificial networks offer ground truth and

a large variety of properties that can be parametrized to produce different “types”

of networks.The evaluation of the framework is conducted on both real and artifi-

cial networks in order to have complete and decisive results.

4.4.2.1 Artificial Networks

The graph generator by Fortunato [54] is exploited to produce graphs with a

clustering structure which is available to the tester (ground truth). This graph

generator provides a wide range of input parameters. The parameters in Table 4.1

are used and tuned them various combinations in order to get a wide range of

graphs with different features. Thus, the testing is credible as it is evaluated in

essentially hundreds of graphs with different properties and quality of clustering

structure. The parameters used are:

• N is the size of the graph,

• maxd is the maximum node degree,

• mind is the minimum node degree and

• µ is the mixing parameter representing the overlapping between clusters,

i.e., each node shares a fraction 1− µ of its links with the other nodes of its

community and a fraction µ with the other nodes of the network.

The graphs produced by the generator contain inherent clusters and the cluster

assignment is offered by the generator, enabling thus usage of these data sets for

evaluating graph clustering algorithms.

Table 4.1 depicts the various parameters’ values for the three main different

settings in our experiments. As we see the most important parameter is the mind,

as it is the one differentiating the overall density of the graph. In Figure 4.4 we

see the link distribution of the produced datasets.

4.4.2.2 Real Networks

In the case of real networks evaluations are performed to a subset of the Facebook

100 dataset [86]. This is a collection of friendship networks of Facebook from 2005,

for 100 US Universities (i.e., 100 individual networks). The evaluations were not

performed to the full extend of this dataset as hardware limitation did not allow

an evaluation, with spectral clustering, of networks with more than 13K nodes
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Figure 4.4: a. Link Distribution in the D1, D2, D3 data sets b. minimum Link Distribution
in the D1, D2, D3 data sets.

D1 D2 D3

maxd(node max degree) 10%, 30%, 50%, 10%, 30%, 50% 200 edges

mind ∼5 7 20

(node (the absolutely

min degree) minimum)

µ (mixing parameter) 1% – 43% 3% – 43% 3% – 43%

(in 7 equal steps) (in 6 equal steps) (in 6 equal steps)

N (graph size in nodes) 600−3600 3500−5500 3500−5500

Table 4.1: Parameters’ values for the artificial graphs.

(the CoreCluster framework could handle much larger networks). About half of

the networks from this dataset were used for the final evaluation.

4.4.3 Time performance

It is evident that the gain in execution time using the proposed framework is

very significant (i.e., at least three orders of magnitude for graph sizes above 3000

nodes) and increases exponentially with the graph size. Figures 4.5a - 4.5d(d)

depict the specific execution times for the three data sets D1, D2, D3 and Facebook

in that order. On the other hand, as on can see in Figure 4.6, the execution time

of the proposed framework increases rather linearly with the graph size – thus

showing good scaling features.
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Figure 4.5: Execution time of base line spectral graph clustering and of our framework for
various graph sizes for the data sets a.D1, b.D2, c.D3 and d.Facebook respec-
tively.

4.4.4 Clustering quality evaluation

The experimental setup is the following. For each of the graphs at hand are run:

i as baseline approach, the Ng-Jordan-Weiss [74] spectral graph clustering

algorithm and

ii the CoreCluster framework on the datasets described in Section 4.4.2.

Following, are described the methods and metrics for evaluating the results on

artificial and real networks.

artificial networks

The quality of the clustering results in are measured terms of the widely used

Normalized Mutual Information [65] (NMI). In Figure 4.7, displays the compar-

ative performance (in terms of NMI values) of the plain spectral algorithm as

compared to the performance of our framework (CoreCluster) for different graph
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Figure 4.6: Time execution of the CoreCluster framework for various graph sizes.

sizes and mixing parameter values. Each point represents the average NMI value

for all the graphs produced for each different combinations of parameter values,

whose ranges appear in Table 4.1. In order to promote statistical significance of

the results for each of the aforementioned combinations, the generator was run

ten times and the corresponding graphs were computed. It is noticeable that the

proposed approach performs almost perfectly (with NMI>0.92) and generally out-

performs the quality of the spectral algorithm applied directly on the graphs in

most cases, especially as the graph size grows (this happens for mixing parame-

ters values generally smaller than 0.2). For larger values of the mixing parameter,

plain spectral clustering performs better (even though the absolute quality is low).

Of course the counterargument here is that for larger values of the mixing pa-

rameter the overlap of the clusters is such that it basically prevents the definition

of a clustering structure – and therefore perhaps it is meaningless to search for

clusters in these cases.

The proposed algorithm performs even better – in comparison to the spectral

algorithm – in dataset D2, which resembles well real graphs as they are known

to have low mind value. In this case (see Fig. 4.7b), CoreCluster performs excel-

lently (NMI values close to 1) for small values of the mixing parameters while, on

the contrary, the plain spectral algorithm performs really bad (NMI values close

or inferior to 0.2). The deterioration of performance when µ (mixing parameter)

increases is expected as the clustering structures vanish.
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Figure 4.7: Clustering quality comparison in terms of NMI values for the graph datasets
a.D1, b.D2 and c,D3.
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Another set of experiments was performed with the dataset D3 matching the pa-

rameters in [54], where a series of different algorithms are compared. This dataset

is characterized by a high number of minimum links per node (20, see Table 4.1)

– resulting in a relatively dense graph. In this case, (see Fig. 4.7c the performance

of plain spectral clustering was very good for a wide range of mixing param-

eter values. The CoreCluster algorithm is matching or outperforming the plain

spectral clustering performance for small values of mixing parameters while its

performance decreases significantly for larger mixing parameter values. This is

explained by the fact that the graph is quite dense, which makes the usage of the

k-core structure questionable, as the partitioning on which the CoreCluster proce-

dure is based is poor for lower values of k. Of course, it has to be stressed that, in

all the above cases, the execution time of CoreCluster, especially for large graphs,

is 3-4 orders of magnitude smaller that those of the plain clustering algorithms

– achieving essentially the same or even better clustering quality for reasonable

values of the mixing parameters.
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Figure 4.8: Clustering quality comparative performance (Facebook100) in terms of conduc-
tance (lower values are better).

facebook100

The networks of this dataset lack ground truth, and for this reason the results

are evaluated with the evaluation criterion of conductance. Given a graph G and

a cut (S,S) conductance is defined as

φ(S) =

∑

i∈S,j/∈SAij

min (a(S),a(S))
,
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where Aij are the entries in the adjacency matrix A of G and

a(S) =
∑

i∈S

∑

j∈G

Aij

Informally, conductance measures (for a cluster) the ratio of internal to external

connectivity. It has been used widely to examine clustering quality (e.g., [58]) and

has a simple and intuitive definition. In Fig. 4.8, the reader can see the comparison

of conductance values versus different sizes of detected communities by the two

methods. Conductance has values in the range (0, 1) with lower values indicating

better clustering quality.

For better presentation (in Fig. 4.8) the detected cluster sizes (in terms of num-

ber of nodes) have been aggregated into bins of 500 (e.g., 0− 500, 501− 1000, etc.)

and the average conductance for each bin has been provided. This plot essentially

provides the comparison of average clustering quality between the baseline and

CoreCluster for different cluster sizes. Before commenting the comparison, it is im-

portant to note that – for both methods – clusters with less than 10 nodes were

excluded as they were trivia with regards to the clustering criteria for large scale

graphs. Moreover, CoreCluster was evaluated to a larger subset of Facebook100 in-

cluding networks that could not be evaluated with the baseline spectral, due to

limitations of hardware memory. Consequently, results exist of clusters up to 8K

nodes (from networks of up to 13K of nodes) for the baseline and results of clus-

ters up to 16K (from networks of up to 23K of nodes) for CoreCluster.

Moving on to the comparison, in Fig. 4.8 we can see that CoreCluster displays

better clustering quality than the baseline, with the exception of the first bin. The

difference there is negligible and only sightly surpassed by the baseline’s conduc-

tance value. For the last two bins of the baseline, we should note that there was

only one cluster found for each with the one having 0 conductance consisting of

the entire network (i.e., the whole graph was found as one cluster). In fairness,

we could consider an “in between" value but it would be still worse than the

corresponding conductance of CoreCluster. Overall, CoreCluster displays a quite

low conductance regardless of cluster size. From the results, the argument can be

made that CoreCluster provides better clustering than the baseline in a much faster

time.

4.4.5 Degeneracy features vs. running time

In this subsection, the gain in execution time is discussed with regards to the

graph features – especially with regards to its size deterioration in the application

of the k-cores algorithm. As stated in Section 4.3.3, running the spectral clustering

algorithm in the k-cores, with k decreasing from kmax to 1 , decreases the execu-
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tion time significantly – as in Relation (4.4). In Section 4.3.3, it is also stressed that

if the core sizes change in roughly equal parts, as k decreases from kmax to 1, the

execution time is accelerated by a factor of k2max. Here the above statement is ver-

ified experimentally. Indeed the CoreCluster method was run on each k-core Gk

(k ranging between kmax and 1) and the running time was measured for graphs

having different degeneracy features – with regards to their size decay. The intu-

ition is that the closer to linear is the decay rate, the faster will be the CoreCluster

method. The k-core size decay is presented for three different graphs, selected

as representative from the D1, D2 and D3 sets respectively, such that they are of

the same size (3500) and that they present relatively high quality of NMI value -

meaning that the clustering structure is sound and is computed correctly by the

clustering algorithm. The other graph parameters are: D1 (µ:0.15, mind:6, maxd:

350), D2 (mu:0.19, mind:<5, maxd:1000) and D3 (mu:0.19, mind:20, maxd:200).

The contribution of the selection phase to the running time is also analyzed.

The results appear in Fig. 4.9 where the reader can see the normalized (k-core

size/original graph size) k-core size decay with regards to the normalized core

index (k/kmax for each graph). It is clear that D3 and D1 decays behave closer to a

linear mode which would ideally speed up the proposed algorithm, while D2 has

a clearly more exponential behavior. Thus, the ranking of the three graphs with

regards to proximity to linear decay behavior is: D1, D3, D2, with D1 and D3 being

practically very close to each other. It is interesting to observe that the CoreCluster

procedure execution time on these graphs verifies the original intuition, as well

as the findings of Section 4.3.3. Also, it is inverse to the decay ordering above: the

execution time for D1 (0.86 sec) and D3 (1.1 sec) are significantly smaller that the

respective of D2 (2.9 sec).
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Figure 4.9: Normalized k-core behavior vs. time: Core size decay for representative D1,
D2, D3 graphs with core clustering execution times.
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Figure 4.10: Core-clustering incremental load for each step of the core expansion se-
quence.

For the above mentioned graphs the incremental load to the core-clustering

algorithms is presented for each step of the core expansion sequence as it evolves

with k (the k-core index). This load has two constituents:

a the nodes assigned to existing clusters (Na)

b the unassigned nodes that are the input to the spectral clustering algorithm

(Nu).

In Figure 4.10 one can see, for each graph and for each step in the core expan-

sion process, the additional load to the core clustering algorithm consisting of the

Na and Nu sets of nodes. There it is evident that, in all cases, there is a significant

number of nodes that are processed in the last step (k = 2 for D1, k = 1 for D2,

k = 6 for D3). In the case of D1 and D2 – that are sparse as the values of mind

are 6 and 5 respectively – the loads for dense cores is minimal (i.e., k > 3) and

drops exponentially with k. On the other hand, for D3 which is a dense graph

(as mink = 20), the incremental load is almost linear with k and the portion of

non assigned nodes is in all cases significant – contributing thus to decreasing the

execution time of the clustering. It is worth stressing that the execution times re-

ported above for the core clustering algorithm (D1: 0,86 sec, D3: 1.1 sec D2: 2.9 sec)

are well explained by the distribution of values in the above figure. Indeed in the
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case of D2 that has by far the largest execution time the algorithm has to process

in the last step an additional load of 2800 nodes (about 800 of them are directly

assigned to clusters while the rest 2000 have to be processed with the expensive

spectral clustering algorithm). On the contrary, for D1, the additional largest load

is about 1900 nodes (from which ≈ 400 are assigned immediately to clusters). Fi-

nally, in the case of D3, the last-step additional load (k = 6) involved only about

800 nodes (≈ 100 of which we assigned immediately). On the other hand, for D3,

the next steps accumulate a additional remarkable cost for the core expansion

subsequence from 7 to 21, for which the additional load is not negligible (in the

area of few hundreds nodes each time).

4.4.6 Conclusion

An effort for optimizing the efficiency of graph clustering has been articulated

here. This is achieved by capitalizing on the intuition that the extreme k-core a

graph preserves the clustering structure of the original graph, while it is much

faster to execute clustering on this degenerate graph due to its much smaller size.

The key points of this work are:

• Graph Clustering Framework. The CoreCluster framework that initiates clus-

tering on the highest rank core of the graph and then incrementally clus-

ters the graph’s nodes in the subsequent lower rank cores. Furthermore,

CoreCluster could be potentially combined with any clustering algorithm.

• Performance Analysis. An analytical description on why the CoreCluster

framework scales-up the clustering process and why the k-core decomposi-

tion provides good starting subgraphs – that preserve the clustering struc-

ture – for the clustering task.

• Experiments. A validation of the framework through experiments on a mul-

titude of synthetic (with diverse properties) and real world graphs. The

framework is decreasing the execution time of the clustering process by or-

ders of magnitude, especially as the graph’s size increases, while the quality

of the clustering results is not compromised or even improving.



5
Epilogue

5.1 conclusions

Cohesion and collaboration in graphs are cornerstone features for the evaluation

of complex networks, especially with the advent of large scale applications such

as the Web, social networks, citations graphs etc. In this dissertation, methodolo-

gies and metrics are introduced for the evaluation these concepts on both at the

macroscopic (graph or sub-graph) and at the microscopic (node) level of commu-

nities. While a variety of measures has been defined to that end, the ones defined

and utilized throughout this work take into account the collective collaborative

nature of networks with community structure –a property not captured by indi-

vidual node metrics or by other community evaluation metrics. This is achieved

by capitalizing on the degeneracy features of the networks.

Degeneracy has been explored into simple graphs with the k-core structure.

Even though this is sufficient for simplistic graph models of real networks, there is

a need of greater expressibility for social (and other type of) networks that contain

more complex relationships than a simple/equal binary one. For this reason the

core concept – and “accompanied” structures: core sequence, cells, cell sequence

– has been extended to more complex graph structure. Specifically, k-cores have

been extended to weighted (fractional k-cores), directed (D-cores) and signed di-

rected (S-core) graphs. Each type, of the aforementioned ones, signifies different

relationships between individual members of the networks. Thus the concept of

collaboration is adapted to the semantics of each occasion; e.g. in signed networks

collaboration can also be seen as trust/distrust evaluation.

The extensions of degeneracy displayed great interest by themselves but also

created a rich setting for new concepts and structures of visualizing and orga-

nizing the graph structure (e.g core frontiers, collaboration indices etc). The novel

structures, metrics and methodologies were articulated firstly in a theoretical man-

ner, adopting valid terminology from related work, and then explored experimen-

tally on real-world large scale networks which provided interesting and intuitive

results.

Finally, as the connection between community structure and the core concept

is very close, the application of the k-core structure in community detection was

125



126 epilogue

explored by utilizing it as a preprocessing step and a heuristic function in order

to accelerate a graph clustering algorithm of high complexity.

5.2 future directions on graph mining and degeneracy

The methodologies for community evaluation that were developed have a great

potential for future applications (as it was shown in the Data Exploration part)

but have also a great potential for further research. In particular :

• Altering the weight function to a combination of various factors. For exam-

ple including the H-Index of an author could be used to evaluate authors

or communities (cores) where the collaborative strength is mixed with one’s

standing in research.

• The exploration of a weighted digraph is also interesting. Extending degen-

eracy to weighted digraphs, would potentially deal with issues equivalent to

the undirected case and would also create a more sophisticated and detailed

model for collaboration evaluation.

• Another subject still unexplored is the temporal evolution of cores (of any

extension) to capture collaboration evolution and other aspects on how com-

munities might grow.

• As k-cores were used for optimizing the execution time of clustering simple

graphs, D-cores (and the other core extensions as well) could be used for the

same reason on directed graphs (or the equivalent graph for the other exten-

sions). In the D-core case the decomposition of the graph is two-dimensional

thus creating an area where one might seek to find the best “path” to use in

the clustering procedure.

• The case of the signed networks can also spark a few new directions.

– Firstly there is the “logical” step of utilizing a weight function over the

signs.

– Since clustering in signed networks is still quite new as a research field,

it would be a big contribution to develop a such a framework that

would based on degeneracy.

– Finally, there is a great selection of models for link formation on di-

rected graphs. Based on those equivalent models could be built for

signed networks in order to be used in order to test metrics and evalu-

ation tools like degeneracy. This would be of great use as there are not

a lot of real-world signed network data available for such purposes.
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