
HAL Id: pastel-00960733
https://pastel.hal.science/pastel-00960733

Submitted on 18 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L’optimisation du déploiement des réseaux optiques.
Considérations sur l’incertitude de la demande.

Cédric Hervet

To cite this version:
Cédric Hervet. L’optimisation du déploiement des réseaux optiques. Considérations sur l’incertitude
de la demande.. Optimisation et contrôle [math.OC]. ENSTA ParisTech, 2013. Français. �NNT : �.
�pastel-00960733�

https://pastel.hal.science/pastel-00960733
https://hal.archives-ouvertes.fr

Thèse de doctorat de l’Ecole Polytechnique

Spécialité

Mathématiques Appliquées

pour l’obtention du titre de docteur de l’Ecole Polytechnique

présentée par

Cédric Hervet

Optimization of optical network
deployment.

Considerations on demand uncertainty

Soutenue le 18 Décembre 2013 devant le jury composé de

Matthieu Chardy Encadrant industriel
Pr. Marie-Christine Costa Directeur de thèse
Dr. Alain Faye Directeur de thèse
Stanislas Francfort Encadrant industriel et invité
Dr. Virginie Gabrel Examinateur
Dr. Olivier Klopfentstein Invité
Pr. Philippe Mahey Rapporteur
Pr. Dritan Nace Rapporteur
Dr. Adam Ouorou Examinateur
Pr. Frédéric Roupin Examinateur

1

2

Contents

Introduction 19

1 Bibliographical study 24
1.1 The passive optical network design optimisation problem in a capacitated

graph . 24
1.1.1 The deployment of a Fiber-To-The-Home network with the Passive

Optical Network technology . 24
1.1.2 Description and model of the problem 26
1.1.3 Remarks, properties and complexity 29
1.1.4 Another model for solving the problem with cables in an arborescence 31

1.2 The robust approach to optimization under data uncertainty 33
1.2.1 The representation of data uncertainty in robust optimization . . 34
1.2.2 The worst case criteria in robust optimization 35
1.2.3 Uncertainty sets for the robust approach 37
1.2.4 Row-wise data uncertainty . 38
1.2.5 The specific case of right-hand-side uncertainty 41
1.2.6 Two-stage robust optimization problems 42

1.3 Other interesting theoretical tools or methods used in this study 52
1.3.1 The Newton-Raphson method . 53
1.3.2 The Ordered Weighted Average in multi-criteria optimization . . . 53

2 Integration of Organisation, Administration & Management considera-
tions in the passive optical network deployment optimization problem 56
2.1 The choice of engineering rules in an OA&M perspective 58

2.1.1 Modeling of the optical splitter delocation rule 58
2.1.2 Modeling of the household grouping rule 62

2.2 Theoretical analysis of OA&M constraints 64
2.2.1 A pathological case for the optical splitter delocation rule 64
2.2.2 A pathological case for the household grouping rule 66

3

2.2.3 Feasibility conditions and thresholds’ effective ranges for the prob-
lem with OA&M constraints . 66

2.3 Solving the problem with OA&M constraints 72
2.3.1 Linearizing the household grouping rule constraints 72
2.3.2 Development of a pre-processing routine for the household grouping

rule . 74
2.3.3 Empirical analysis of the influence of OA&M constraints on CAPEX

costs . 74
2.4 Development of cost models for estimating future OA&M gains 80

2.4.1 A gain from the optical splitter delocation rule: the search for failures 80
2.4.2 A gain from the household grouping rule: the preventive mainte-

nance rounds . 80
2.4.3 Experimental study of OA&M rules gains 81

3 Optimization of Passive Optical Network deployments with cabling con-
straints in an arborescence 86
3.1 Modeling of the problem with cabling constraints in an arborescence . . . 87

3.1.1 An arc based formulation for the Passive Optical Network design
with cables constraints problem in an arborescence 87

3.1.2 Experimental comparison of formulations 89
3.2 Study of the problem’s properties . 90

3.2.1 Bounds on the number of splitters to be placed at every node . . 91
3.2.2 A cutting rule for ensuring cabling feasibility 93
3.2.3 Design of a dominance rule on the sets of feasible configuration . 94

3.3 Design of a labelling algorithm for solving the problem to optimality . . . 95
3.4 Experimental testing of the algorithm . 97

4 The modeling of the passive optical network deployment optimization
problem under demand uncertainty through robust optimization 101
4.1 The choice of robust optimization . 102
4.2 On the demand uncertainty in the passive optical network design context 103
4.3 On the field deployment practices by operational teams 105
4.4 Modeling the problem as a single stage robust optimization problem . . . 106

4.4.1 A formulation based on arc variables 107
4.4.2 A formulation based on path variables 109

4.5 Modeling the problem as a two stage robust optimization problem 117
4.5.1 The general Modeling of the two stage robust passive optical net-

work design problem . 118

4

4.5.2 The choice of a formulation for (PON2stage
rob) 120

4.6 Probability bound for ensuring uncertainty set validity 123
4.6.1 Theoretical bound for solution validity 125
4.6.2 The bound in the specific case where pi values are the same and

random variables have the same average value 129
4.6.3 A routine to compute an approximation of the bound in the general

case . 132
4.6.4 Bound computing and estimation of the bound’s quality 134

5 Development of exact solving approaches for the two-stage robust pas-
sive optical network design problem under demand uncertainty 138
5.1 A general column-and-constraint algorithm for solving the master problem 139
5.2 Solving the recourse problem . 141

5.2.1 The design of a column-and-constraint generation algorithm for
solving the recourse problem . 141

5.2.2 Solving the program (P2) . 144
5.2.3 Experimental study of the algorithm behaviour and formulation

efficiency comparison . 148
5.3 Improving the solving procedure . 150

5.3.1 A discriminating choice method for picking several good integer
vectors ζr ∈ Z in order to solve the recourse problem faster 150

5.3.2 Avoiding potential instability by using Ordered Weighted Average
as the objective function of the recourse problem 153

5.4 Study of what makes "robust" a solution 157

6 Development of non exact solving approaches for the two-stage robust
passive optical network design problem under demand uncertainty 162
6.1 Design of a heuristic for solving the recourse problem 163

6.1.1 Definitions and principles prior to the design of the heuristic . . . 163
6.1.2 Improvement of the sequence by solving the maximal stable prob-

lem in a hypergraph . 166
6.1.3 Improvement of the sequence by exploiting Fi values 169
6.1.4 Design of the heuristic for the recourse problem 170

6.2 Non-exact approaches based on relaxations of the recourse problem . . . 172
6.2.1 Using the Algorithm 10 for solving the recourse problem within

Algorithm 6 . 172
6.2.2 Continuous relaxation of the recourse problem and dualization . . 173
6.2.3 Affine approximation on the recourse variables 174

5

6.2.4 Experimental testing of relaxed approaches 178

General discussion and conclusion 185

Annex : Probability bound for the recourse cost forecasting in a robust
optimization problem with Right-Hand-Side uncertainty 190
The definition and modeling of the problem 191
Illustrative example of finding D∆ . 195
Properties and computation feasibility of the probability P 197
Development of a generic algorithm for probability approximation computation 199

6

List of Figures

1.1 FTTx architectures (Source: Wikipedia) 25
1.2 An example of a 3 level PON architecture 26

2.1 An illustration of the "Splitter Delocation" rule 60
2.2 An illustration of local branching options under the SD rule with e1 = 2 . 61
2.3 An illustration of the "Household Grouping" rule 64
2.4 An example of the pathological case for the SD rule with m1 = 8 and e1 = 50 65
2.5 An example of the pathological case for the HG rule with m1 = 8 and

HG1 = 75 . 67
2.6 A counterexample of a graph where the SD rule can make the problem

infeasible with e1 = 1 . 68
2.7 Demand repartition for Net2 . 77
2.8 Demand repartition for Net14 . 77
2.9 Overcosts due to the SD rule in function of parameter γSD for Net2 . . . 78
2.10 Overcosts due to the SD rule in function of parameter γSD for Net14 . . 78
2.11 Overcosts due to the HG rule in function of parameter γHG for Net2 . . . 79
2.12 Overcosts due to the HG rule in function of parameter γHG for Net14 . . 79
2.13 Troubleshooting gains due to the SD rule in function of parameter γSD for

Net2 . 82
2.14 Troubleshooting gains due to the SD rule in function of parameter γSD for

Net14 . 82
2.15 Preventive Maintenance gains due to the HG rule in function of parameter

γHG for Net2 . 83
2.16 Preventive Maintenance gains due to the HG rule in function of parameter

γHG for Net14 . 83

3.1 An illustration of the labelling algorithm on a little instance with only one
splitter level . 97

3.2 Solving times for all tested instances in function of the instance size . . . 98
3.3 Relevant labels for all tested instances in function of the instance size . . 99

7

4.1 An illustration of how the chosen routing strategy based on the use of
"proportional" installed fiber flow influences solutions 112

4.2 An illustration of the gain due to the robust approach depending on the
fiber cost for 3 different values of d̄ . 116

4.3 Example of a case where an arc-based solution and its corresponding path-
based solution have not the same robust splitter cost 121

4.4 Graphic representation of functions h1, h2 and h3 130
4.5 Branches of the Lambert W-function (Source: Wikipedia) 132
4.6 Probability bound in function of Ω for 3 different sizes of uncertainty sets 135

5.1 Solving time gains of Algorithm 9 for the 2 δ1 coefficients 157
5.2 Solving time gains of Algorithm 9 for the 3 δ2 coefficients 158
5.3 Solving time gains of Algorithm 9 for the 3 δ2 coefficients 159
5.4 Description of an instance with its costs and its demands 160
5.5 Optimal solution of (PONdet) . 160
5.6 Optimal solution of (PONrob) . 161

6.1 Example of G∗f ,z creation and decomposition into sub-connected-parts . . 164
6.2 Illustration of how the associated hypergraph Hp(V

p∗
J , Ep) is built from Hp 167

6.3 Example of how the Proposition 6.1.6 may be used to reduce the q̂pu values 170
6.4 Optimal sequence of q̂pu values for the example shown in Figure 6.3 170
6.5 Average solving time of the heuristic (Algorithm 10) 172
6.6 Illustrative example of a set D∆ (in Orange) that is contained in the cor-

responding set H∆ . 195
6.7 Graphic representation of D1, D2 and D3 for x∗ = 1 196
6.8 Illustration for a single d′ found in D∆ 198
6.9 Illustration for several vectors found in D∆ 198

8

List of Tables

2.1 Instances statistical description . 75
2.2 Splitter costs . 76
2.3 Results of the PONK problem for 3 architectures over the set of instances 85

3.1 Comparison of the two MILP formulations for a 2 level PON deployment 89
3.2 Comparison of the two MILP formulations for a single level PON deployment 90

4.1 Table of performance and comparison of the numerical approximation al-
gorithm . 136

5.1 Robust counterpart gains compared to a deterministic approach 149
5.2 Performance comparison between (Pmult2) and (Psingle2) as recourse formu-

lation for solving (PONrob) . 150

6.1 Comparison of all methods to the optimal value on several instances . . . 180

9

10

Remerciements

On présente souvent la thèse comme un travail solitaire très entouré. Pour chacune des
modestes pierres que j’ai pu apporter à l’édifice pendant 3 ans, toutes existent, de près
ou de loin, grâce à d’autres que moi. Je tiens à remercier mes directeurs de thèse, Marie-
Christine Costa et Alain Faye, ainsi que mes encadrants industriels Matthieu Chardy
et Stanislas Francfort, pour leur confiance, leur gentillesse et leur patience sans laquelle
j’aurai eu bien des peines à canaliser mon enthousiasme. Je sais combien leur soutien
constant et leur amitié m’a aidé, particulièrement dans les derniers instants, à mener ce
travail au bout. Merci encore.

Je remercie chaleureusement Philippe Mahey et Dritan Nace d’avoir accepté d’être les
rapporteurs de mon travail de thèse, et Virginie Gabrel, Adam Ouorou, Frédéric Roupin
d’en être les examinateurs.

Je remercie également Orange, en particulier Bertrand Decocq et Marie-Françoise
Colinas, pour m’avoir donné les moyens d’effectuer ce travail dans des conditions idéales.
Je les remercie pour leur bonne humeur et leurs encouragements. Avec eux, je remercie
également les collègues (André, Mickaëlle, Joanna, Stéphane, Christian, ...), les thésards
(Manu, José, la bande de TRM : le corse, le blog, Amel et tous les autres) et les stagiaires
(Dedy, Constant, Joseph, ...) que j’ai pu croiser et dont la liste est bien trop longue pour
que je sois exhaustif ici : je sais qu’ils se reconnaîtront.

Je tiens à remercier les membres du laboratoire CEDRIC du CNAM, ainsi que de
l’UMA de l’ENSTA, pour m’avoir toujours accueilli avec bonne humeur malgré mon
statut de "réfugié industriel". Je pense également aux thésards, notamment Pierre-Louis
et Sabine, explorateurs comme moi des recoins méandreux de la robustesse.

On ne cesse jamais d’être thésard, même en dormant. Il aura fallu toute l’amitié de
quelques-uns pour m’éviter d’oublier ce qu’est la vraie vie. Je pense bien sûr à Benoît,
mon éclectique compère depuis bien longtemps qui, un jour, m’a donné une leçon d’amitié

11

que je n’oublierai pas. David et sa lowerie qui aura brisé bien des arbalètes. Hugo qui,
un jour, refera le monde autrement que depuis son lit. Pierre-Olivier, qui bauguionne à
mes cotés depuis chez Berto jusqu’aux Canaries, n’oublie pas dude : "War has changed".
Sébastien, dont les manly tears éclipsent encore les "tap-tap" directifs. Bien sûr, Thomas,
fouine et plus vieil ami. Lucie, pour nous avoir si stoïquement supporté. Alexandre, papa
extatique à la moue ravageuse. Pierrig, à l’intensité d’avant-garde. Et tous les autres,
que je n’oublie pas.

Je remercie également les membres de ma famille, notamment mes parents et ma soeur
qui, chacun à leur façon, chacun de leur coté, n’ont jamais cessé de me soutenir pendant
toutes ses années. J’espère, avec ce travail, les rendre fiers.

Enfin, bien qu’elle l’ignore sans doute, je n’aurai pas pu me donner autant si je n’avais
eu besoin de briller aux yeux d’une jolie roturière qui a fait le choix courageux de me
suivre, et dont le soutien m’a été indispensable. Merci.

12

13

Donnez-moi de la terre... Donnez-moi de la terre à contrer !

Alain Damasio, La Horde du Contrevent

All the stream that’s roaring by
Came out of a needle’s eye;

Things unborn, things that are gone,
From needle’s eye still goad it on.

William Butler Yeats, A Needle’s Eye

14

15

A Berto,

Ils ont un drapeau noir
En berne sur l’Espoir

Et la mélancolie
Pour traîner dans la vie

Des couteaux pour trancher
Le pain de l’Amitié

Et des armes rouillées
Pour ne pas oublier

Leo Ferré, Les anarchistes

16

17

18

Introduction

With the advent of the Internet, many new services have been developed, thus increasing
the bandwidth requirement to a point where the current copper networks tend to reach
their natural limitation. On the long run, congestion in the access network (which is the
part of the network that is closest to the client) is inevitable. Therefore, for telecom-
munication operators, the deployment of new network technologies has to be made in
order to sustain this increase in bandwidth requirements, directly in the access network,
by replacing the former copper network. The related financial investments will be huge,
several billions euros will be necessary to deploy the new infrastructure in France alone.
This problem is not new for telecommunication operators who engaged this process a few
years ago. For Orange, many choices have been made so far, the most important being the
replacement of the old fixed access copper network by an optical one. Optical fibers have
many advantages: a higher download and upload rate (both being symmetric), a lower
signal attenuation per kilometer, etc. Many technologies were available and the choice
was made to deploy a specific kind of architecture: the Passive Optical Network, or PON.

PON is a point to multi-point architecture, which means that one fiber leaving the
entry point of the access network can serve several clients. This is done by using optical
splitters: these are passive equipments (i.e. they do not require to be electrically powered
to function) and can split one fiber flow into many, up to their capacity. Moreover, an-
other choice that was made is to deploy fibers from the entry point of the network, called
the Optical Line Terminal (or OLT), to its very end, that is the plug in every house and
every apartment. This is called a Fiber To The Home deployment, or FTTH.

Such deployments implying tremendous financial investments, and technically com-
plex, it is a key stake for telecommunication operators like Orange to know how to perform
these deployments at the lowest cost possible, while ensuring high quality of service and
respecting both engineering and regulation rules. Hence, the general problem that this
thesis will tackle is the optimization of a passive optical network deployment while taking
various aspects of this deployment into account such as the future running costs of the

19

network, the cabling constraints and, especially, the inherent uncertainty on the future
fiber demand.

This problem has already been described for a deterministic context in Mathieu Tram-
pont’s Ph.D. thesis in 2010 [50] who introduced it and for which he proposed a modeling
based on a description of optical arcs similar to a integer generalized multi-flow problem.
This model took several successive optical splitter levels into account and the potential
residual capacities of the existing civil engineering trenches. From that modeling, he
proposed an optimization of the capital expenditures (CAPEX) of the network, that is
roughly the equipment cost, composed of optical fibers and fibers themselves. He pro-
posed a mathematical program to solve this problem, to which he added cuts in order to
strengthen his formulation and accelerate his branch-and-bound procedure. An a posteri-
ori cabling heuristic was also proposed. This work of Trampont is important since it was
the first to describe specifically the optimization of the FTTH PON deployment, which
he was able to solve. However, the cabling is not integrated to the global optimization,
as well as the fact that the demand actually is uncertain. Finally, the network is only
built regarding its deployment cost, and the future maintenance, administration costs of
the network were neglected, even though they usually are more important on the long run.

In its very description, that mathematical optimization problem is both a routing and
location problem. Thus, it has a theoretical interest, beyond the practical one. Indeed,
the work of Ljubic et al. [30], or Gouveia et al. [29] proposed descriptions and algorithms
for generic theoretical problems that could be applied to optical network deployment.
The strength of their work is to explore the very structure of the problem, of which they
identify recurrent structures that they exploit in order to propose column generation
algorithms in the integer linear programming paradigm. However, simplifications have
been conceded so that fundamental aspects of the problem could be studied, thus making
their work difficult to transpose into the field.

Generally speaking, optimization problems do not mix capital expenditures (CAPEX)
and operational expenditures (OPEX). Indeed, one is a huge here-and-now investment,
while the other is made over time. These costs are not homogeneous, their separate op-
timization often leads to difficult problems that are very different in their structure (for
example a minimal cost network deployment and the optimization of the maintenance
rounds). That is why it is often preferred to separate these problems. However, those
two questions are highly linked and the topology of the deployed network will have an
impact on what one will be able to optimize later, once it is actually deployed. Among

20

the rare attempts to optimize CAPEX and OPEX costs at the same time, the work
of Wang et al. [53] or Jarray et al. [33] can be quoted. The main interest of their
approaches is that it enriches the problem’s description and allowed to influence the de-
ployment so that future costs are taken into account. But if the philosophy of these
approaches is interesting, network deployment problems studied in these works are too
far from FTTH PON deployment and their chosen criteria can not be transposed directly.

In network deployment optimization, literature tells us that most of the time, ca-
pacity constraints are often a factor of increasing theoretical complexity of a problem.
Cabling constraints are, in a way, one step harder than capacity constraints. Hence,
many network design problems are solved with relaxed cabling constraints so they will
be taken into account by post-processing heuristics. In the precise field of FTTH PON
deployment, the work of Kim et al. [34] proposes an optical network deployment model-
ing in tree-graphs where cabling constraints are taken into account. This enriched model
is used to describe various cable cost relaxations in order to solve the problem without
cables and approximate the real problem. They also propose a heuristic for solving the
whole problem. However, cost relaxation on cables leads to optimality gaps that may
be too wide, especially when several billions are at stake. Moreover, even though their
heuristic performs quite well most of the time, it can have a pathological behavior on
some instances. Even though it interesting, this work does not provide any efficient way
to solve the problem without relaxation.

Finally, about the tackling of demand uncertainty for optical network deployment,
nothing has been proposed in the literature so far, to the best of our knowledge. Methods
do exist, like stochastic programming or robust optimization. Stochastic programming
has been introduced by Dantzig in 1955 [23]. It assumes that uncertain data is following
well-known probability laws and introduces the concept of recourse variables. In this ap-
proach, the decision-maker considers that decisions may be taken in sequence, one after
another, and especially some decisions may be taken without knowing the actual scenario
that will occur, and some others may be taken right after the revealing of that scenario.
The objective of this approach is not to optimize a certain cost, but an expected cost
instead. This approach is suited for problems that repeat over time, with few possible
scenarios. On the other hand, robust optimization is a complementary approach from
stochastic programming in which one frees himself from probability laws hypotheses to
only consider variation intervals for uncertain data. Among all possible scenario, a ro-
bustness criterion will be optimized, such as the worst case, or the maximum regret. This
approach, initiated by Soyster in 1967 [47], recently received a renewed attention from

21

Ben-Tal et al. [6], or Bertsimas et al. [15]. At the beginning of the years 2000, it knew
many developments and was applied to network conceptions problems, like did Atamturk
et al. in 2004 [1]. The strong point of this approach is that it allows one to deal with
uncertainty with only a minimal number of hypothesis made about it. However, just
like stochastic optimization, it often leads to problems that are very complex to solve in
practice.

The passive optical network deployment optimization problem is a recent problem for
which various solving approaches have been proposed, more or less close to what is ex-
pected from a real-life deployment. The enriching of these models passes by taking OPEX
costs, cabling constraints and demand uncertainty into account. On these 3 points, taken
independently from the problem, the literature furnishes methods and indications on its
feasibility. However, there is not study that tackles theses issues in the PON deployment
context. This is what motivates the present work. It will consist, from existing models
for the problem, in the integration of these new considerations and in the proposal of
efficient algorithms to solve them.

After an extensive review of the literature, the first step of my scientific approach was
to examine what future network OPEX costs would be relevant to consider in the PON
deployment optimization. The objective of this selection being a potential integration to
the general problem, and most of all a validation model to assess the effectiveness of that
integration on CAPEX costs.

For the second step, I focused on the fiber cabling issue. If a modeling of this prob-
lem exists, an efficient solving approach is still lacking and it will be the purpose of this
step. The objective was to propose an algorithm that could tackle the PON deployment
optimization problem with cabling constraints in a tree-graph.

After that, my efforts were directed towards the demand uncertainty. To that extent,
I decided that the modeling of the problem under uncertainty by itself already makes lots
of questions arising on how the integration of uncertainty to the problem should be done.
This integration was made so that the robust optimization paradigm could be applied to
the problem.

Once the modeling of the problem was considered fitting and relevant, I tackled the
conception of efficient, and exact solving approaches for this problem. From that study,

22

I was able to examine in details what makes a solution "robust".

In order to tackle larger problems in size, the next step was to build approached solv-
ing methods. I developed several of them, which I compared experimentally in order to
decide which one was best suited for the problem.

23

Chapter 1

Bibliographical study

1.1 The passive optical network design optimisation
problem in a capacitated graph

In this section of the bibliographical study, I shall expose the problem as it was introduced
in the Ph.D thesis of Mathieu Trampont [50] in 2010, and later published in [21]. I will
detail the problem, a model for this problem, and what were the solving approaches
considered at the time.

1.1.1 The deployment of a Fiber-To-The-Home network with the
Passive Optical Network technology

In the past few years, bandwidth requirements have been increasing a lot, due to the
arrival of new internet services such as the Video on Demand or any Peer-to-Peer based
services. This led telecommunication operators to work on the deployment of a new
technology in their access network which is the part of the network that is closest to
the user. The physical support so far for the transportation of electrical information
to be used is copper. Originally designed to provide telephonic services, its use has
been extended to the Internet, thanks to Asymmetric Digital Subscriber Line (ADSL)
technologies for example. However, since these technologies are reaching their inherent
limit in capacity, a new physical support for information transportation will be deployed:
optical fibers. Since their functioning is of no interest for this study, let us just highlight
that it provides a much higher bandwidth capacity with much better properties for a data
oriented network, such as upload-download symmetry, a much lower signal attenuation
over the distance, and so on.

Thus, replacing the existing copper access network by an optical one is designated
under the generic term of a FTTx deployment. Here, the "x" may be replaced by several

24

terms:

• N for Neighbourhood

• C for Curb

• B for Building

• H for Home

The main difference between those architectures is the length of copper network that will
remain for the client, as shown on figure 1.1.

Figure 1.1: FTTx architectures (Source: Wikipedia)

As the access network starts from a point of origin, which is the frontier between the
access network and the core network, this distinction on the last letter is here to show
what is the range on the network that will be made optical. In our study, we will focus
on FTTH network deployment, that is, optical fiber network will be deployed from the
entry point (called the Optical Line Terminal, or OLT, for an optical network) of the
access network to the very end of it: the user household.

There are several architectures available for the FTTH network deployment, that may
be put in 2 categories. First, the point-to-point network architectures. It means that to
one fiber coming out from the entry point, one client will be assigned. The other types
of architectures is the point-to-multipoint Passive Optical Network (PON) which allows
one fiber coming out of the entry point to supply more than one client, thanks to the
use of optical splitters which are passive equipments (here, passive must be understood
as not needing any power to function) that have the property to split one entering fiber
into many, up to a given capacity. In this study, we are focusing on the FTTH PON
deployment optimization problem.

25

Before describing this problem, one needs to understand what a PON architecture is
in practice and especially what engineering rules must be respected while deploying such
network. As mentioned before, the specific equipment of a PON is the optical splitter
equipment. Basically, a PON architecture is composed of several levels of splitters and
every client must be connected to the OLT via all splitter levels. The point of using
splitters is to reduce the use, at the OLT, of an expensive equipment called PON card.
The network operator will have to install one PON card for every pair of fibers coming
out of the OLT. Therefore, optical splitters helps reducing the number of PON cards to
install, while still supplying the same amount of clients in the area. For a given splitter
level, every splitters of that level must have the same capacity, or splitting ratio, that is
for every fiber entering a level k splitter, the number of fibers that may go out of that
splitter is at most the same for every level k splitter. The figure 1.2 gives an example of
a 3 level PON architecture. From the first to the last level of splitters have a capacity
equal to 4, 2 and 4. Which means that from 1 fiber coming out of the OLT, 64 clients
can potentially be supplied, thus more or less dividing the number of future PON cards
to install by 32.

Figure 1.2: An example of a 3 level PON architecture

1.1.2 Description and model of the problem

Focusing on the work of authors of [50, 21], let us describe the problem more into details.
Given an area in which one can find a single Optical Line Terminal and a set of potential
client households, the problem we aim to solve is to find the FTTH Passive Optical
Network that connects every client to the OLT at a minimal cost in terms of installed
optical splitters and fibers. In their work, authors considered the hypothesis that the

26

routing options for fibers are contained in a capacitated non-oriented graph G = (V,E).
This means we do not allow new trenches to be dug in order to make the deployment.
By convention, we give the index 0 to the OLT node and |V | = n. There can be no fiber
demand on the OLT node. For the sake of simplicity, we use the notation V ∗ for V \{0}
As mentioned before, we need to deploy a k level PON architecture. In practice, there are
only 1 to 2 levels of splitters (and, consequently, 1 to 3 levels of fibers) used, because each
OLT can only delivers a limited optical budget, that is consumed as the signal travels
through fibers, and especially through optical splitters. Let us give the data we need to
write the mathematical Modeling of the problem for a 2 level PON architecture:

• ckij: cost of a level k fiber routed along the edge (i, j), for all (i, j) ∈ E and k =

1, ..., 3.

• Ck: cost of a level k optical splitter, for k = 1, 2.

• mk ∈ N: splitting ratio, or capacity, of a level k optical splitter, for k = 1, 2 such
that mk ≥ 2.

• di ∈ N: fiber demand at node i, and more precisely the last level fiber demand at
node i, for all i ∈ V ∗.

• bij ∈ N: capacity of the edge (i, j), for all (i, j) ∈ E, such that bij ∈ N.

Integer variables used to describe the possible deployment schemes are the following.

• zki : number of level k optical splitters installed at node i, ∀i ∈ V, k = 1, 2.

• fkij: number of level k fibers routed on the edge (i, j) from i to j, ∀(i, j) ∈ E, k =

1...3.

• uki : number of unused level k fibers leaving a splitter of level k− 1 located at node
i, ∀i ∈ V, k = 2, 3

The FTTH Passive Optical Network deployment optimization problem for a 2 level
splitter PON architecture can be written as the following integer linear program, denoted
by (PON2):

27

(PON2)



min
f ,z,u

n∑
i=1

2∑
k=1

Ckzki +
∑

(i,j)∈E

3∑
k=1

ckij
(
fkij + fkji

)
s.t.

∑
j 6=i

f1
ji = z1

i +
∑
j 6=i

f1
ij, ∀i ∈ V ∗ (1.1)∑

j 6=i

f2
ji +m1z1

i = z2
i +

∑
j 6=i

f2
ij + u2

i , ∀i ∈ V (1.2)∑
j 6=i

f3
ji +m2z2

i = di +
∑
j 6=i

f3
ij + u3

i , ∀i ∈ V (1.3)

3∑
k=1

(
fkij + fkji

)
≤ bij, ∀(i, j) ∈ E (1.4)

zki ∈ N, ∀i ∈ V ∗; k = 1, 2; zk0 = 0,∀k = 1, 2.

uki ∈ N, ∀i ∈ V ∗; k = 2, 3; uk0 = 0,∀k = 2, 3.

fkij ∈ N, ∀(i, j) ∈ E, k = 1, 2, 3

The objective function ensures that we obtain the minimal cost both in terms of
installed optical splitters and fibers. Constraints (1.1) ensure that the first level fiber
flow is coherent with the number of installed splitters on each nodes: either it goes
through, either it is consumed in a level 1 splitter. Constraints (1.2) ensure the same
property for the second level of fibers, taking into account that level 2 fibers may be
generated by level 1 splitters located on the node and that some of these fibers may be
unused. Constraints (1.3) makes sure that the third level of fiber flow is coherent and
high enough to supply the demand on every node. Finally, constraints (1.4) makes sure
that the whole fiber flow in a given edge does not exceed that edge’s capacity.

Integer variables uki are actually slack variables. Constraints (1.2) and (1.3) may be
written as inequalities. Authors wrote the model this way because in practice, solvers
were slightly more efficient with the model (PON) given as an entry.

Remark 1.1.1. For a 1 splitter level PON architecture deployment optimization problem,

28

the problem may be written as such:

(PON1)



min
f ,z,u

n∑
i=1

C1z1
i +

∑
(i,j)∈E

2∑
k=1

ckij
(
fkij + fkji

)
s.t.

∑
j 6=i

f1
ji = z1

i +
∑
j 6=i

f1
ij, ∀i ∈ V ∗ (1.5)∑

j 6=i

f2
ji +m1z1

i = di +
∑
j 6=i

f2
ij + u2

i , ∀i ∈ V (1.6)

2∑
k=1

(
fkij + fkji

)
≤ bij, ∀(i, j) ∈ E (1.7)

z1
i ∈ N, ∀i ∈ V ∗; z1

0 = 0.

u2
i ∈ N, ∀i ∈ V ∗; u2

0 = 0.

fkij ∈ N, ∀(i, j) ∈ E, k = 1, 2

1.1.3 Remarks, properties and complexity

This section compiles some interesting properties of the problem which can give some
insight about it.

Remark 1.1.2. If fiber costs ckij > 0, ∀(i, j) ∈ E and for k = 1, 2, 3, then any optimum
solution cannot contain a circuit such that fkij > 0 on all arcs of the circuit.

Proof. If this was not true, one could build a better solution by decreasing by finf all the
fkij along the circuit (finf being the lowest value of fkij on the circuit).

Remark 1.1.3. If optical splitter cost Ck > 0 for k ∈ {1, 2}, then in any optimal solution,
we have: uk+1

i < mk, ∀i = 1, ..., n, ∀k = 1, 2.

Proof. If this was not true, all level k splitters being equivalent, one could consider that
one of them producesmk unused fibers, which trivially leads to non-optimal solutions.

Remark 1.1.4. If there are no capacity constraints, integrity constraints for fiber vari-
ables fkij can be relaxed in fkij ≥ 0, ∀(i, j) ∈ E, ∀k = 1, 2, 3.

Proof. Indeed, for any given integral values of zki (i = 1, ..., n; k = 1, 2), an optimal
solution for the routing of fibers can be obtained by solving three independent minimum
cost flow problems. Let us consider the constraint matrix of (PON) without capacity
constraints (1.4) when variables zki have fixed integral values; it can be decomposed into
three independent flows (totally unimodular) sub-matrices; the right members of the
constraints being integral, any extreme point of the polyhedra is integral. This integrity
property of variables fkij is no more true either if variables zki are not integral or if there
are capacity constraints.

29

Next, authors showed that the problem is NP-hard through a polynomial reduction
from the SET COVER problem. They work from the single level PON architecture de-
ployment problem which they denote by:

FTTH

INSTANCE: Graph G = ({v0} ∪ V,E) where V = {vi, i = 1, ..., n} and v0 as a special
node corresponding to the OLT. Demand at node i: di, i = 1, ..., n. Cost of a fiber of
level k on the edge (i, j): ckij, i, j = 0, ..., n, k = 1, 2. Cost of an optical splitter: C1.
Splitting ratio of a splitter: m1. Integer K.

QUESTION: Is there a location of splitters on nodes of V and a routing of fibers
following the description given in (PON1) (remark 1.1.1) such that all demands can be
served for a total cost K or less ?

Proposition 1.1.1. FTTH is NP-complete even if di = 0 or 1 for all i, bij ≥
∑
i∈V

di for

all (i, j) and C1 = 0.

Proof. The FTTH problem is clearly NP. To prove the NP-completeness, we will make
the transformation from SET COVER which is NP-complete (see [28]):

SET COVER

INSTANCE: Finite set X = {xi; i = 1, ..., n′}. Collection of subsets of X: S =

{Si; i = 1, ..., n′′}. Integer K ′.
QUESTION: Does S contain a cover for X of size K ′ or less, i.e., a subcollection

S∗ ⊆ S with |S∗| ≤ K ′ such that every element of X belongs to at least one member of
S∗?

Any set covering problem can be solved using a simplified FTTH model. Consider
the FTTH instance defined on the following graph G = (V,E): V = {v0}∪S ′∪X ′ where
v0 represents the OLT, S ′ contains one node for each subset of S and X ′ contains one
node for each element of X. There is an edge from v0 to each element of S ′ and an edge
from S ′j ∈ S ′ to x′j ∈ X ′ if and only if xj ∈ Si. The fiber costs are equal to 1 (ckij = 1

for all {i, j, k}). The splitter cost is equal to 0 (C1 = 0). The demand is equal to 0 for
any node in S ′ and to 1 for any node in X ′. Let m1 = |X ′| = n′. This transformation is
made in polynomial time.

Now, with any cover S∗ ⊆ S of size K∗ = |S∗| we can associate a solution to FTTH
with value K∗ + n′ as follows: we assign a splitter to each node in S ′ associated with a
subset of S∗ and we route a level 1 fiber from v0 to each one of these nodes (for a total
cost equal to K∗). Then, to each node x′i ∈ X ′, we route a level 2 fiber from one node

30

in S ′ with a splitter corresponding to a subset of S∗ covering xi (for a total cost equal
to n′). Since m1 = n′, each splitter produces a number of level 2 fibers which is large
enough to serve all the clients it has to serve (some fibers could be unused) and since all
the elements of X are covered in S∗, all nodes in X ′ received a level 2 fiber in FTTH.
Finally, since C1 = 0 the cost is equal to K∗ + n′.

Conversely, let us consider a solution of FTTH. Recall that a client must be served
by a level 2 fiber. Since m1 = |X ′| =

∑
i

di, w.l.o.g. we can consider solutions with at

most one splitter on each node. Moreover, we claim that we can consider only solutions
where any client (in X ′) is served by a splitter installed on an adjacent node of S ′ and
directly linked to v0 by a level 1 fiber. Indeed, assume that a client in x′i is served by a
splitter in x′j. If i 6= j, let S ′k be the last node in S ′ along the path followed by the level
2 fiber routed from x′j to x

′
i for a cost of at least 2; we obtain a solution of same cost by

assigning a splitter to S ′k if there is none and by routing a level 1 fiber from v0 to S ′k of
S ′ adjacent to x′i: we obtain a so good solution by moving the splitter from x′i to S

′
k and

linking the splitter to x′i by a level 2 fiber. Finally, if a level 1 fiber is routed from v0 to a
splitter in S ′k ∈ S ′ along a path of length greater than 1, we obtain a better solution by
routing directly the level 1 fiber from v0 to S ′k.

Thus, we can consider a solution of FTTH with K∗ splitters on nodes of S ′ linked to
v0 by level 1 fibers (for a cost K∗) and serving demands of nodes in X ′ by level 2 fibers
(for a cost n′). With such a solution (with a total cost K∗ + n′) we can associate a cover
S∗ of size K∗ containing each subset of S associated with a node with a splitter. Since
each client of X ′ is linked to a splitter in S ′ each element of X is covered by a subset of
S∗.

1.1.4 Another model for solving the problem with cables in an
arborescence

In 2011, Kim, Lee and Han [34] proposed a different model for the optimization of a
passive optical network. This model is based on a specific graph topology since they
only work in arborescences. However, they tackled the constraint ensuring that fibers are
contained in fiber cables of given sizes. Let us review this different formulation, based on
paths variables. The notations used in this section will be similar to those used in section
1.1.1.

Let us introduce the model for the PON design problem for a 2 level of splitters
architecture in an arborescence. Let G = (V,A) be a tree-graph that contains the set
of vertices V and the set of directed arcs A. By convention, we give the index 0 to the
root node of the tree, which is the Optical Line Terminal, and we denote by V ∗ the set
of node without the root node. To each leaf node i ∈ V ∗ is associated a fiber demand

31

di ∈ N (which can be equal to 0 if there is no demand on the node). Let us denote by mk

(k = 1, 2) the capacity of the k-th level of splitters and denote its associated cost by Ck .
Fibers can be routed in cables that are listed in a set L, of capacity bl ∈ N for all l ∈ L,
and to each arc (i, j) ∈ A is associated a routing cost the cable of type l, denoted by glij.
For any node i 6= 0, we denote by Si the set of node on the path from node i to the root
node which is excluded from this set, and we denote by Ti the sub-tree rooted in i.

We define the portion of the demand dj served by last level splitters placed at node
i by the variable xij. The number of first level splitters placed at node i is denoted by
integer variable zi. The number of second level splitters placed at node j that are served
by first level splitters placed at node i is denoted by integer variable yij. Last, the binary
variable clij is equal to 1 when the cable of type l is installed on the arc (i, j).

The basic model introduced in [34] for the PON deployment of a 2 level architecture
optimisation problem is:

(PON2
Kim)



min
c,x,y,z

∑
l∈L

∑
(i,j)∈A

glijc
l
ij +

∑
i∈V ∗

C1zi +
∑
j∈V ∗

∑
i∈Sj

C2yij

s.t.
∑
i∈Sj

xij = 1, ∀j ∈ V ∗ (1.8)

∑
j∈Ti

yij ≤ m1zi, ∀i ∈ V ∗ (1.9)

∑
j∈Ti

djxij ≤ m2
∑
j∈Si

yji, ∀i ∈ V ∗ (1.10)

∑
v∈Tj

zv +
∑
u∈Si

dvxuv + yuv

 ≤∑
l∈L

blclij , ∀(i, j) ∈ A (1.11)

∑
l∈L

clij ≤ 1, ∀(i, j) ∈ A (1.12)

0 ≤ xij ≤ 1, ∀j ∈ V ∗, ∀i ∈ Sj
yij ∈ N, ∀j ∈ V ∗, ∀i ∈ Sj
zi ∈ N, ∀i ∈ V ∗

clij ∈ {0, 1} , ∀(i, j) ∈ A, ∀l ∈ L

Constraints 1.8 ensure that the demand at node j is satisfied. Constraints 1.9 make
sure that the number of first level splitters located at node i has enough capacity to
supply last level splitters located in the sub-tree rooted in i. Constraints 1.10 ensure
that last level splitters located at node i have enough capacity to supply its portion of
the demand located in the sub-tree rooted in i. Constraints 1.11 ensure that the cable
installed on the arc (i, j) have enough capacity to contain the whole fiber flow that goes

32

through the arc. Constraints 1.12 limit the number of cables one can install on an arc to
1.

Remark 1.1.5. From this model, one can derive a similar problem for a single level
architecture. Variables yij thus have to be removed and the problem (PON1

kim) can be
formulated as such:

(PON1
Kim)



min
c,x,z

∑
l∈L

∑
(i,j)∈A

glijc
l
ij +

∑
i∈V ∗

C1zi

s.t.
∑
i∈Sj

xij = 1, ∀j ∈ V ∗ (1.13)

∑
j∈Ti

djxij ≤ mzi, ∀i ∈ V ∗ (1.14)

∑
v∈Tj

zv +
∑
u∈Si

dvxuv

 ≤∑
l∈L

blclij , ∀(i, j) ∈ A (1.15)

∑
l∈L

clij ≤ 1, ∀(i, j) ∈ A (1.16)

0 ≤ xij ≤ 1, ∀j ∈ V ∗, ∀i ∈ Sj
zi ∈ N, ∀i ∈ V ∗

clij ∈ {0, 1} , ∀(i, j) ∈ A,∀l ∈ L

Authors made the remark that cable variables make the problem quite hard to solve
with standard MIP solvers. Therefore, they propose some relaxations of these cabling
constraints, mainly by computing an average/minimal/maximal cable cost per fiber in
order to have a good approximation/lower bound/upper bound for the problem. They
also provide a heuristic for solving the problem on real-size instances.

1.2 The robust approach to optimization under data
uncertainty

In this section, I will introduce the main concepts behind optimization under data un-
certainty, especially under the scope of robust optimization. Historically, the need for
tackling data uncertainty arose from the real-world applications, since in practice, many
data are not known precisely. For example, traffic variations in a vehicle routing problem
can make travel time uncertain, just like stock exchange variations in portfolio manage-
ment problems can make costs or gains uncertain too. Therefore, in the optimization
context, it was soon admitted that using nominal values, thus denying uncertainty, could
lead to bad solutions (in terms of cost), or even to infeasibility. To that extent, the first
method used to tackle unreliable data was stochastic optimization. To describe it shortly,

33

the core aspect of the method is to work under the hypothesis that uncertain data fol-
low well-known probability laws. Therefore, it is possible to describe possible outcomes
with a set of scenarios, each one being associated an occurring probability. The goal of
stochastic optimization is to maximise the expected gain one can expect on that problem.
We will not describe stochastic optimization further more, since for this study, the choice
was made before starting to focus on robust optimization. Even if this choice can seem
arbitrary for our particular problem, it will be justified later and we will show how robust
optimization is better suited for the business problem.

1.2.1 The representation of data uncertainty in robust optimiza-
tion

The first glimpse on robust optimization one can get from the literature comes from
Soyster in 1973 [47]. Considering a linear program P :

(P)



max
x

n∑
i=1

cixi

s.t.
n∑
i=1

aijxi ≤ bj, ∀j = 1, ...,m

x ∈ X

where X is a set of vectors of many variables that can belong to Rn
+ or Nn. The problem

raised by Soyster was to consider sets of possible values for each data, instead of a single
nominal value. Then, the purpose of the problem was to find a solution that is always
feasible. The set representation of data uncertainty will be used as the basis for robust
optimization, the robustness coming from the fact that we seek a solution that is always
feasible.

Let us consider an uncertain data ãij and the set it will belong to: [ǎij, âij] (this can
also be applied to right-hand-side values). Soyster showed that in order to find a solution
that is always feasible, one should solve the modified deterministic following problem:

(Psoyster)



max
x

n∑
i=1

cixi

s.t.
n∑
i=1

âijxi ≤ b̌j, ∀j = 1, ...,m

x ∈ X

Indeed, this approach consists in taking the worst possible value, that is the more restric-
tive for the optimization, into account. This approach introduces the set representation of
uncertain data. However, despite the fact that this representation frees the decision-maker

34

from designing complex and often inaccurate probability laws to describe its uncertainty,
it was found to be too conservative. This is due to the fact that Soyster’s approach makes
the solution set much smaller than it was before. Let us take an example with problem
(P1):

(P1)


max
x

x1 + x2

s.t. x1 + 2x2 ≤ 8

3x1 + x2 ≤ 10

x ≥ 0

The optimal solution of problem (P1) is x1 = 2.4 and x2 = 2.8 for an optimal gain
of 5.2. Let us pose now that every data in constraints of (P1) are uncertain, and that
they belong to a set of possible values of size 2, centered in the (P1) value. Therefore, in
order to grant feasibility in all cases, one have to solve the problem (P1soyster):

(P1soyster)


max
x

x1 + x2

s.t. 2x1 + 3x2 ≤ 7

4x1 + 2x2 ≤ 9

x ≥ 0

The optimal solution is such that x1 = 1.625 and x2 = 1.25 for an optimal gain of
2.875, which is almost half the original optimal gain of (P1). This example shows how
applying a strict robustness approach can lead to very cost conservative solutions.

1.2.2 The worst case criteria in robust optimization

In 1997, Kouvelis and Yu proposed a unified approach for tackling uncertainty under the
name of robust optimization. However, they were not considering a set representation
for data uncertainty. Instead, they proposed a scenario based approach, which is close
to what is usually done in stochastic optimization. They claimed that decision-makers
can easily provide a few representative scenarios regarding the uncertain data, using their
field expertise to avoid unrealistic scenarios. But, contrary to the stochastic approach,
they make the hypothesis that outcome probability for each scenario may be hard to
estimate for a decision-maker, therefore that shall not be expected of him. This is one
main difference between stochastic and robust optimization: the existence (or not) of
probability assumptions on uncertain data.

From that, they proposed a general concept for robust optimization, stating that a
robust solution has, whatever the outcome is, the following properties:

• the solution is always feasible

• the solution cost is "never too high"

35

If the first item is easy to understand and to formalize, there are many ways of defining
"never too high". Formally, one can define any optimization problem (Popt) with x being
the decision vector, X its feasible set and f the cost function:

(Popt)

{
min
x

f(x)

s.t. x ∈ X

Thus, let us consider a set S of possible scenarios for uncertain data. Data can be
uncertain in the cost function f , or in the feasibility set X (or both). Therefore, to each
scenario s of S, let us denote by fs and Xs the corresponding cost function and feasibility
set. Ensuring a solution x to be feasible in all scenarios can be reduced to imposing that

x ∈ ∩s∈SXs

At this point, their approach of robust feasibility was the same as Soyster’s (see the last
section 1.2.1). For the cost function, they proposed 3 robustness criteria.

The first one is called the worst case criteria. It means that whatever happens, the
worst scenario for the chosen configuration will have the smallest possible cost (w.r.t. a
minimization problem). In our previously introduced formalism, this would mean we aim
to solve:

(Pwc)

{
min
x

max
s

fs(x)

s.t. x ∈ ∩s∈SXs

The two other criteria are very similar, and are based on the notion of "regret". That
is, contrary to the worst case criterion where one ensures that the solution will not have
a higher cost than the worst-case one, the worst regret criterion ensures that the solution
cost variation compared to the cost one would have obtained if he knew what the actual
scenario would be, won’t exceed the worst-regret value. Formally, let us denote by x∗s the
optimal solution of problem (P s

opt) in the case of scenario s. It gives the absolute worst
regret criterion:

(Pawr)

{
min
x

max
s

fs(x)− fs(x∗s)

s.t. x ∈ ∩s∈SXs

Which is similar to the proportional worst regret criterion:

(Ppwr)

 min
x

max
s

fs(x)− fs(x∗s)
fs(x∗s)

s.t. x ∈ ∩s∈SXs

Of course, regret-based robustness criteria are more computationally demanding, since
they require the pre-computing of optimal solutions for every scenario s. However, one
can easily see that the average performance of these criteria on the solution cost will be
better than with the worst case one. However, that computational barrier will make the
worst-case criterion the most used in the literature that follows.

36

1.2.3 Uncertainty sets for the robust approach

After Kouvelis and Yu [35], the scenario based approach was not extensively used in the
literature. Since it requires a good knowledge of the uncertainty in order to define the
set of explicit scenarios, the interval approach from Soyster [47] was preferred to model
uncertain data. However, the over conservative aspect of this approach led to the design
of new uncertainty sets, all based on the assumption that the very worst case (considered
in Soyster’s approach) has so little chance to happen and is so costly to hedge against
that it may be better to just ignore it and restrain the set of possible outcomes.

In terms of Modeling, Ben-Tal and Nemirovski [7] or Bertsimas and Sim [15] proposed
a new approach. Given an uncertain data denoted by d̃ belonging to the set of uncertain
data D, and denoting by d̄ its nominal value, d̂ > 0 the maximum variation around d̄,
one can define its uncertainty range as follows:

d̃ ∈
[
d̄− d̂, d̄+ d̂

]
or, by the mean of a random variable ∆d ∈ [−1, 1]:

d̃ = d̄+ d̂∆d

Based on the fact that, in practice, the worst configuration (that is either d̃ = d̄ + d̂

or d̃ = d̄ − d̂ depending on the problem’s optimizing direction and variable signs) is
highly conservative and very unlikely to occur, theses authors proposed a way to restrict
uncertain data global variations. Babonneau and Vial [2] proposed a comprehensive way
to present these approaches.

Ellipsoidal uncertainty sets

Introduced by Ben-Tal et al. [7], it is presented by authors as a natural, intuitive way
of limiting uncertainty, that the normalized (that is, considering ∆d variables) distance
from the nominal point d̄ should not exceed a given parameter Ω. The uncertainty set
DΩ is:

DΩ =

∆ ∈ [−1, 1]|D|

∣∣∣∣∣∣
√∑

d∈D

|∆d|2 ≤ Ω


This set is defined with only one parameter, Ω, that is very useful when little infor-

mation is available to the decision-maker. However, this uncertainty set did not become
popular in the literature because of the relative difficulty to take it into account in solving
approaches. Indeed, as we will see later, its formalism is not suited for linear program-
ming approaches (even though semi-definite programming can be used to solve it), the
Bertsimas et al. approach has been preferred since then.

37

Bertsimas and Sim uncertainty set

In The Price of Robustness [15], Bertsimas and Sim proposed a new uncertainty set that
is suitable for the linear programming paradigm, even for integer variables. Given the set
of uncertain data D, all defined with their central nominal values d̄. The main concept
behind this uncertainty Modeling framework is that even if lots of data coefficients are
uncertain, it is a reasonable hypothesis to state that not all of them will deviate, at the
same time, from their nominal value. The number of uncertain data that will deviate,
and thus be set to their worst case value, is limited to Γ.

DΓ =

{
∆ ∈ [−1, 1]|D|

∣∣∣∣∣∑
d∈D

|∆d| ≤ Γ

}
As for DΩ, this set is defined with only one parameter Γ. Both sets DΩ and DΓ are

suited to cases where very few information is available on the uncertainty.

Polyhedral uncertainty set

This set is quickly introduced in [7], but it is also presented as the core concept of Ben-
Ameur and Kerivin’s work [4] in a network design context where the traffic matrix is
uncertain. It can be seen as a generalization of Bertsimas and Sim’s uncertainty set DΓ

since its description is entirely linear. Therefore, that uncertainty set DP can be defined
as follows:

DP =

{
∆ ∈ R|D|

∣∣∣∣∣∑
d∈D

ad,j∆d ≤ bj, ∀j

}
This generic set is suited for problems where much more information is available on

data uncertainty. As for Ben-Ameur and Kerivin, where one can estimate quite easily
the future amount of traffic for given subsets of commodities, thus enabling a polyhedral
description of the uncertain vector variation limitations.

1.2.4 Row-wise data uncertainty

The first case of data uncertainty that has been under study is straightforward derived
from Soyster’s approach. Indeed, it focuses on row-wise uncertainty. That is, given the
following problem of n variables and m constraints:

38

(Prow)



max
x

n∑
i=1

cixi

s.t.
n∑
i=1

ãijxi ≤ bj, ∀j = 1, ...,m

x ∈ X

where ãij are uncertain and X is defined as in problem (P) of section 1.2.1. Let us
denote by Dj the set of uncertain data indexes in the j-th row of the linear program.
To recall Soyster’s approach, this would lead to solve an other deterministic problem
where uncertain data is put in its worst case configuration. However, by the means of
uncertainty sets presented in section 1.2.3, there is a way to reduce the conservativeness
of the robust solution. This idea is common to Ben-Tal and Nemirovski [7] and Bertsimas
and Sim [15]. However, since we aim to remain in the realm of linear programming, we
only present Bertsimas and Sim approach in this section, but the reader should remember
that a similar approach is possible for other uncertainty sets.

The main idea is, as for Soyster, to add a "protection" to the constraint, so that no
matter what happens, the chosen solution remains feasible. Writing ãij = āij + âij∆ij

with ∆ij a continuous random variable between −1 and 1, let us consider uncertainty
sets DjΓ, defined as in section 1.2.3 for all uncertain data of row j:

DjΓj =

∆j ∈ [−1, 1]|Dj |

∣∣∣∣∣∣
∑
i∈Dj

|∆ij| ≤ Γj


Therefore, in order to have a so called robust solution, it is important that no matter

what happens, the solution remains feasible. In order to do so, our uncertainty sets
are only bonding uncertain data of the same row together. It is thus possible to ensure
feasibility by adding a quantity in the constraint, that will act as a protection. Let us
consider the robust counterpart (PBertsimas

row) of (Prow):

(PBertsimas
row)



max
x

n∑
i=1

cixi

s.t.
n∑
i=1

āijxi +

(
max

∆j∈DjΓj

∑
i

âijxi∆ij

)
≤ bj, ∀j = 1, ...,m (1.17)

x ∈ X

In appearance, (PBertsimas
row) has an unpleasant form. Let us show how one can find

his way back to the realm of linear programming.

39

Proposition 1.2.1. The maximization problem max
∆j∈DjΓj

∑
i

âijxi∆ij equals the objective

function of the following linear optimization problem:

βj(x,Γj)



max
z

n∑
i=1

âij|xi|zij

s.t.
n∑
i=1

zij ≤ Γj (1.18)

0 ≤ zij ≤ 1, ∀i ∈ Dj (1.19)

Proof. Clearly, the optimal solution value of problem βj(x,Γj) consists in Γj variables
zij at 1, and the other put to 0. This is equivalent to selecting a subset of ∆ij ∈ DjΓj
variables, either put to −1 or 1.

Which leads us to the following theorem:

Theorem 1.2.1. Model (PBertsimas
row) has an equivalent linear formulation as follows:

(PlinearBertsimasrow)



max
x,y,t,p

n∑
i=1

cixi

s.t.
n∑
i=1

āijxi + tjΓj +
∑
i∈Dj

pij ≤ bi (1.20)

tj + pij ≥ âijyi, ∀j = 1, ...,m, ∀i ∈ Dj (1.21)

−yi ≤ xi ≤ yi, ∀i (1.22)

x ∈ X
pij ≥ 0, ∀j = 1, ...,m, ∀i ∈ Dj

yi ≥ 0, ∀i
tj ≥ 0, ∀j

Proof. Let us first consider the dual of problem βj(x,Γj):

βdualj (x,Γj)



min
tj ,p∗j

∑
i∈Dj

pij + Γjtj

s.t. tj + pij ≥ âij|xi|, ∀i ∈ Dj (1.23)

pij ≥ 0, ∀i ∈ Dj (1.24)

tj ≥ 0 (1.25)

By strong duality, since problem βj(x,Γj) is feasible and bounded for all Γj ∈ [0, |Dj|],
then the dual problem βdualj (x,Γj) is also feasible and bounded and their objective values
coincide. Using Proposition 1.2.1, we have that problem (PBertsimas

row) is equivalent to the
linear optimization problem (PlinearBertsimasrow).

40

On this last proof, one should remember that the dualization of the inner maximization
problem is possible and easy because in this problem βj(x,Γj), x variables are fixed.

Remark 1.2.1. The robust linear optimization model (PlinearBertsimasrow) has n + k + 1

variables and m+k+n constraints, where k =
∑
j

|Dj| the number of uncertain data. In

most real-world applications, the constraint matrix is sparse. An attractive characteristic
of the (PlinearBertsimasrow) formulation is that it preserves the sparsity of the constraint
matrix.

1.2.5 The specific case of right-hand-side uncertainty

In many real world applications, optimization problems with right-hand-side (RHS) un-
certainty arise. As an example, for network design problems, production scheduling
problems, and so on, demand uncertainty often leads to uncertain RHS formulations.
Therefore, it seems incompatible with approaches presented in section 1.2.4, all based
on row-wise uncertainty. This specific class of robust problem was tackled by Minoux
[38, 39, 40], and in the Thesis work of Remli [46], which led to some publications with
Gabrel and Murat [25, 26].

The first thing one should note is that a problem with RHS uncertainty is different
from its dual counterpart. Let us show why by considering the following linear program:

(LP)


max
x

cTx

s.t.Ax ≤ b

x ≥ 0

Now, let us define the RHS vector b as uncertain and belonging to a given uncertainty
set denoted by B ⊂ Rm. In such case, solving the problem directly, as a special case of
Soyster’s model, reduces to:

(LP1)


max
x

cTx

s.t.Ax ≤ b̌

x ≥ 0

where b̌i = min
b∈B
{bi}. (LP1) is a more restrictive deterministic problem, compared to (LP),

in terms of cost.
Let us consider the dual problem of (LP1):

(D1)


min
u

uT b̌

s.t.uTA ≥ c

u ≥ 0

41

On the other hand, if we consider the dual of (LP), u being the vector of dual variables:

(D)


min
u

uT b

s.t.uTA ≥ c

u ≥ 0

Now, if we consider the robust version of (D) where b is uncertain and can take any
value in the uncertainty set B. A simple and natural objective in this context is to find
u achieving a minimum value of max

u
uT b over all possible b ∈ B, thus leading to:

(D2)


min
u

max
b∈B

uT b

s.t. uTA ≥ c

u ≥ 0

One can clearly realize that (D1) and (D2) are different optimization problems: they
have the same solution sets, but we have ∀u ≥ 0, uT b̌ ≤ max

b∈B
{uT b}, hence they have

different objective optimal values.

1.2.6 Two-stage robust optimization problems

As seen in sections 1.2.4 and 1.2.5, once the problem can not be modelled with a row-
wise uncertainty, one can hardly avoid the conservative aspect of robustness, inherent to
Soyster’s approach. Therefore, in order to tackle this issue, a new Modeling scheme was
proposed by Ben-Tal and Nemirovski [6, 7], and used a lot since by many authors for
many applications [1, 2, 3, 17, 40, 49]: two-stage robust optimization. The main idea
behind two-stage robust optimization is similar to what is done in stochastic optimization
[18]: the decision-maker will have the possibility to delay a subset of decisions in the
future, after the actual scenario of uncertainty is revealed. This is also called adjustable
robustness, or adaptable robustness, or even robust problem with recourse. It can be
generalized to multi-stage robustness if decisions can be delayed over more than 1 time
horizon.

General Modeling of two-stage robust optimization problems and theoretical
results

Denoting by x and y our set of variables, let us consider a deterministic linear program:

(LP ′)


min
x,y

cTx+ dTy

s.t. Ax+By ≥ b

x ∈ X
y ∈ Y

42

X and Y being sets of vectors belonging to the union of the real positive and natural
set (thus making the model valid for any LP, MILP or IP problem), let us consider that
some (or even all) data are uncertain in this problem, depending on a random variable
ξ belonging to a bounded uncertainty set Ξ. Stating that y variables do correspond to
decisions that can be delayed in the future once the realisation of the ξ vector is known
for sure, let us introduce the main concepts:

Definition 1.2.1. The two-stage linear robust optimization problem, based on (LP ′), can
be modelled as follows:

(LP ′robust) =

 min
x∈X

max
ξ∈Ξ

cTx+ min
y∈Y

dTy

s.t. By ≥ b− Ax

Remark 1.2.2. For the Modeling of (LP ′robust), the worst case criterion has been chosen
(see section 1.2.2), as it is mostly done in the literature.

Remark 1.2.3. This model is valid for any set of uncertain data. That includes the
previously examined row-wise uncertainty case, and the RHS uncertainty one.

Definition 1.2.2. If, for any valid solution vector x, and any ξ ∈ Ξ, there always exists
at least one feasible solution vector y(x, ξ), then the full recourse property is verified.

Definition 1.2.3. The maximization problem that is contained in the objective function
of problem (LP ′) is often referred as the recourse problem and is denoted by

Q(x) = max
ξ∈Ξ

cTx+ min y ∈ Y
By ≥ b− Ax


dTy

Of course, as such, the problem (LP ′robust) is not linear. However, there exists a general
linearisation scheme for this problem:

Proposition 1.2.2. The problem (LP ′robust) can be modelled as follows:

(LPlinear′robust)



min η

s.t. η ≥ cT (ξ)x+ dT (ξ)y(ξ), ∀ξ ∈ Ξ

A(ξ)x+B(ξ)y(ξ) ≥ b(ξ), ∀ξ ∈ Ξ

x ∈ X
y(ξ) ∈ Y, ∀ξ ∈ Ξ

Of course, (LPlinear′robust) is almost infinite in size, depending on the uncertainty set
Ξ. Note that the notation y(ξ) means that in (LPlinear′robust), there is a different set of
recourse variables y for each possible scenario ξ ∈ Ξ.

43

Theorem 1.2.2. The problem (LPlinear′robust) with RHS uncertainty (that is, only the
vector b is uncertain) and Ξ being a finite bounded polyhedron (like Bertsimas and Sim’s
uncertainty set) is strongly NP-hard, even for continuous x and y variables.

Proof. See the work of Minoux [40].

A few works have focused on 2 stage robust problems to compare the single stage
approach to the 2 stage one. The reader may refer to [11] for more information. There is
also a well-known application of 2 stage robust optimization to network design problems
done by Atamtürk et al. [1].

An exact solving approach for the 2 stage robust problem with continuous
recourse and RHS uncertainty

Since 2 stage robust problems are often NP-hard, there is a few works available on how to
solve specific versions of that problem. Thiele et al. [49], Zeng et al. [54] and Billionnet
et al. [17] proposed a generic method for solving 2 stage robust problems with continuous
recourse variables in the case of RHS uncertainty. Let us write this problem:

(LPRHS
robust)

{
min
x∈X

max
ξ∈Ξ

min
y≥0

cTx+ dTy

s.t. By ≥ b(ξ)− Ax

Which can be linearized as follows:

(LPlinearRHSrobust)



min η

s.t. η ≥ cTx+ dTy(ξ), ∀ξ ∈ Ξ

Ax+By(ξ) ≥ b(ξ), ∀ξ ∈ Ξ

x ∈ X
y(ξ) ≥ 0, ∀ξ ∈ Ξ

Note that, as mentioned before, (LPlinearRHSrobust) may be infinite in size. Here, authors
studied the problem with the Bertsimas and Sim’s uncertainty set. However, as showed
by Minoux in [39, 40], this problem is strongly NP-hard and writing the whole problem
directly may prove intractable in practice. Therefore, authors proposed a column-and-
constraint (because in addition to new constraints, a set of recourse variables y must be
generated for each possible ξ) generation algorithm which is presented in a short version
in this bibliography. In all the following, the full recourse property is assumed to be
verified. However, note that for cases that do not include this property, Billionnet et al.
[17] proposed a generalization of the described method.

44

Proposition 1.2.3. For any SΞ being a subset of the set of extremal points of the poly-
hedron Ξ, the following problem gives a lower bound for the problem (LPlinearRHSrobust):

(LPlinearRHSSΞ
)



min η

s.t. η ≥ cTx+ dTy(ξ), ∀ξ ∈ SΞ

Ax+By(ξ) ≥ b(ξ), ∀ξ ∈ SΞ

x ∈ X
y(ξ) ≥ 0, ∀ξ ∈ SΞ

Note that this is true for any subset of Ξ as well, SΞ being a specific case.

Proof. (LPlinearRHSSΞ
) is actually a relaxed version of (LPlinearRHSrobust) where column and

constraints for ξ ∈ Ξ\SΞ are not taken into account. Since the cost is only supported
by the first set of constraints, adding new columns will either change nothing to the
value of η, or it will increases this value. Therefore it gives a lower bound of the global
problem.

Proposition 1.2.4. For any feasible solution vector x′, solving the corresponding recourse
problem Q(x′) gives an upper bound for the problem.

Proof. Once the full recourse property established, this result is immediate since every
solution of a minimizing problem gives an upper bound for this problem.

From here, it is theoretically possible to find both lower and upper bounds for the
problem. However, Q(x) remains to be solved.

Theorem 1.2.3. The exact value of the recourse problem Q(x) can be computed by solving
the following quadratic problem:

Q(x)



max
λ,ξ

cTx+ λT (b(ξ)− Ax)

s.t.λTB ≤ d

ξ ∈ Ξ

λ ≥ 0

Proof. The result is obtained by dualizing the inner minimization problem of the recourse
problem. Since y variables are continuous, strong duality holds.

Remark 1.2.4. It is important to note what the full recourse property says and what
it does not. Indeed, having the full recourse property verified guarantees that solving
(LPlinearRHSSΞ

) and Q(x) will always be feasible. However, if the property is not verified,
it does not mean that these problems will become infeasible: it just removes the guarantee.
Various issues can raise when the property is not verified. The main one is that for a

45

given solution x, no solution y can be found for any ξ ∈ Ξ, that is: Q(x) is infeasible.
But that does not imply that the global problem (LPlinearRHSrobust) is infeasible as well since
other values of x would have been feasible.

Of course, since b is actually depending on ξ, there will be some quadratic terms in
the objective function. However, authors showed that while working with Bertsimas and
Sim’s uncertainty set, ξ variables have a boolean behaviour, thus making the linearization
possible. Hence, by alternatively solving (LPlinearRHSSΞ

) for a reduced set of scenarios
SΞ, it is possible to solve the recourse problem for the solution vector x′ found. Solving
Q(x′) will give an upper bound and, more importantly, a new scenario vector ξ′ (which is
the worst one for x′) to add to the set SΞ. Authors shows that by repeating this process,
convergence is assured and in practice, only a small set (in comparison to the whole Ξ)
is necessary to solve (LPlinearRHSrobust) to optimality. Algorithm 1 gives a sketch of that
procedure.

Algorithm 1 (LPlinearRHSrobust) solving procedure
Require: SΞ, UB, LB
1: while UB − LB > 0 do
2: solve (LPlinearRHSSΞ

) and update LB
3: solve Q(x′)

4: UB ← min{UB,Q(x′)}
5: SΞ ← SΞ ∪ {ξ′}
6: end while

Affine decision rules on recourse variables for solving 2 stage robust problems

Since 2 stage robust problems can be very large in size, it may be intractable in practice to
generate only "good" scenarios by the means of a procedure similar to the one presented
in the last section 1.2.6. In order to tackle this issue of a potentially infinite number of re-
course variables, Ben-Tal and Nemirovski first proposed an alternative in [6, 7] named the
Affinely Adjustable Robust Counterpart. This work was further described by Babonneau,
Vial and Apparigliato [2]. Applications of this approach have been done, particularly in
network design problems by Ouorou [43], Babonneau, Klopfenstein, Ouorou and Vial [3].
An in-depth study of the existing relations between the initial 2 stage robust problem
and its affinely adjustable robust counterpart has been done by Bertsimas and Goyal [11],
Bertsimas, Iancu and Parrilo [13], Iancu, Sharma and Sviridenko [32]. In these works,
they identify a few cases where the affine decision rule is actually optimal.

46

Let us look back to our generic model for 2 stage robust optimization problems, given
by definition 1.2.1:

(LP ′robust) =

{
min
x∈X

max
ξ∈Ξ

cTx+ min
y∈Y

dTy

s.t. By ≥ b− Ax

Which can be rewritten in a linear way as:

(LPlinear′robust)



min η

s.t. η ≥ cT (ξ)x+ dT (ξ)y(ξ), ∀ξ ∈ Ξ

A(ξ)x+B(ξ)y(ξ) ≥ b(ξ), ∀ξ ∈ Ξ

x ∈ X
y(ξ) ∈ Y, ∀ξ ∈ Ξ

The trick here is to consider optimal recourse decisions y as functions of the uncertain
vector ξ: y(ξ). Of course, an analytical expression of that function is not available. Even
thinking about the shape, continuity, of this function can prove irrelevant, especially for
discrete y. The main idea of this approach is to approximate this unknown function by
an affine function. This can also be seen as a Taylor development of the first order-like
of this function.

Hypothesis 1. We assume that any recourse variable y can be written as an affine
function of the uncertain vector ξ. Thus we shall write, for a given set of uncertain data
D:

y = y0 +
∑
h∈D

yhξh

This approximation, as mentioned before, leads to a problem that is different from
the original one, called the Affinely Adjustable Robust Counterpart (or AARC). We use
index h for the sake of clarity because the uncertainty set includes all uncertain data of
the problem, which are not necessarily in a row-wise or column-wise repartition. The
number of first stage variables x is denoted by n and the number of recourse variables y
is denoted by n′. Let us rewrite (LPlinear′robust) under hypothesis 1, denoting this new
problem (LPlinear′AARC):

47

(LPlinear′AARC)



min η

s.t. η ≥
n∑
i=1

ci(ξ)xi +

n′∑
i′=1

di′(ξ)

(
yi′,0 +

∑
h∈D

yi′,hξh

)
, ∀ξ ∈ Ξ

n∑
i=1

aij(ξ)xi +

n′∑
i′=1

bi′j(ξ)

(
yi′,0 +

∑
h∈D

yi′,hξh

)
≥ bj(ξ), ∀ξ ∈ Ξ,∀j

x ∈ X

yi′,0 +
∑
h∈D

yi′,hξh ≥ 0, ∀i′,∀ξ ∈ Ξ

yi′,0 ≥ 0, ∀i′

yi′,h ∈ R, ∀i′,∀h

Without loss of generality, we can replace the generic y(ξ) ∈ Y by yi′,0 +
∑
h∈D

yi′,hξh ≥ 0

because, once put in the affine form, it does not matter whether y(ξ) was actually integer
or not. Now, depending on what data are actually uncertain, solving this problem will
prove more or less easy. The literature mainly focuses on the so called static recourse
problem case.

Definition 1.2.4. The static recourse property is verified when the data related to
the recourse matrix and the recourse cost is not uncertain.

It can be put in another way by stating that all data corresponding to recourse vari-
ables y are not uncertain. In (LPlinear′AARC), it would mean, for the static recourse
property to be verified, that di′ (respectively bi′j) must not be uncertain for any i′ (re-
spectively for any i′, ∀j).

When the static recourse property holds, the problem can be rewritten as follows:

(LPstatic′AARC)



min η

s.t. η ≥
n∑
i=1

ci(ξ)xi +
n′∑
i′=1

di′

(
yi′,0 +

∑
h∈D

yi′,hξh

)
, ∀ξ ∈ Ξ

n∑
i=1

aij(ξ)xi +
n′∑
i′=1

bi′j

(
yi′,0 +

∑
h∈D

yi′,hξh

)
≥ bj(ξ), ∀ξ ∈ Ξ,∀j

x ∈ X
yi′,0 +

∑
h∈D

yi′,hξh ≥ 0, ∀i′,∀ξ ∈ Ξ

yi′,h ∈ R, ∀i′,∀h = 0, ...,m

In order to remain concise yet clear enough on the method, let us restrain ourselves in
this bibliography to a subset of 2 stage robust problems with static recourse. The point

48

being to give the reader a general idea of the method so he can extend it to any static
recourse case. Thus, let us assume that we are dealing with a case of RHS uncertainty
(as in Ouorou’s work [43] for example, where a network design problem under demand
uncertainty is tackled). The uncertainty set is the Bertsimas and Sim’s one. Therefore,
only RHS bj values are uncertain, and written as follows:

bj(ξ) = b̄j + b̂jξj

and

ΞΓ =

{
ξ ∈ [−1, 1]|D|

∣∣∣∣∣∑
h

ξh ≤ Γ

}
with D = 1, ...,m. Let us write the problem:

(LPrhs′AARC)



min η

s.t. η ≥
n∑
i=1

cixi +
n′∑
i′=1

di′yi′,0 +
n′∑
i′=1

di′
m∑
h=1

yi′,hξh, ∀ξ ∈ ΞΓ

n∑
i=1

aijxi +

n′∑
i′=1

bi′jyi′,0 +

n′∑
i′=1

bi′j

(
m∑
h=1

yi′,hξh

)
− b̂jξj ≥ b̄j , ∀ξ ∈ ΞΓ,∀j

x ∈ X

yi′,0 +
m∑
h=1

yi′,hξh ≥ 0, ∀i′,∀ξ ∈ ΞΓ

yi′,h ∈ R, ∀i′,∀h = 0, ...,m

Proposition 1.2.5. The problem (LPrhs′AARC) can be equivalently modelled as follows:

(LPrhs′′AARC)



min η

s.t. η ≥
n∑
i=1

cixi +
n′∑
i′=1

di′yi′,0 + max
ξ∈ΞΓ

(
n′∑
i′=1

di′
m∑
h=1

yi′,hξh

)
n∑
i=1

aijxi +

n′∑
i′=1

bi′jyi′,0 + min
ξ∈ΞΓ

(
n′∑
i′=1

bi′j

(
m∑
h=1

yi′,hξh

)
− b̂jξj

)
≥ b̄j , ∀j

x ∈ X

yi′,0 + min
ξ∈ΞΓ

(
m∑
h=1

yi′,hξh

)
≥ 0, ∀i′

yi′,h ∈ R, ∀i′,∀h = 0, ...,m

Proof. Constraints of problem (LPrhs′AARC) must be verified for all possible ξ in ΞΓ.
Therefore, depending on the side of the constraint that random variables are in, each
constraint thus must be verified for the worst value the uncertain quantity can take
(either maximal or minimal).

49

Proposition 1.2.5 enables to find a very similar problem to the one studied by Bertsi-
mas and Sim presented in section 1.2.4.

Theorem 1.2.4. (LPrhs′′AARC) can be solved by solving the following linear program:

(LPrhs′′′AARC)



min η

s.t. η ≥
n∑
i=1

cixi +
n′∑
i′=1

di′yi′,0 + Γt0 +
m∑
h=1

p0
h

− (t0 + p0
h) ≤

n′∑
i′=1

di′yi′,h ≤ t0 + p0
h ∀h

n∑
i=1

aijxi +
n′∑
i′=1

bi′jyi′,0 + Γtj +
m∑
h=1

pjh ≥ b̄j ∀j

− (tj + pjj) ≤
n′∑
i′=1

bi′jyi′,j − b̂j ≤ tj + pjj ∀j

− (tj + pjh) ≤
n′∑
i′=1

bi′hyi′,h ≤ tj + pjh ∀j,∀h 6= j

x ∈ X

yi′,0 + Γti
′
+

m∑
h=1

pi
′

h ≥ 0 ∀i′

− (ti
′
+ pi

′

h) ≤ yi′,h ≤ ti
′
+ pi

′

h , ∀i′,∀j
yi′,h ∈ R ∀i′,∀h = 0, ...,m

th ≥ 0 ∀h = 0, ...,m

ti
′ ≥ 0 ∀i′

pjh ≥ 0 ∀j = 0, ...,m, ∀h
pi
′

h ≥ 0 ∀h,∀i′

Proof. This equivalent, finite, linear Modeling is found by dualizing every inner optimiza-
tion problem in ξ. As ξ is continuous, strong duality holds as the Bertsimas and Sim
uncertainty set ΞΓ has a polyhedral description. The reader may refer to section 1.2.4
for more details.

Therefore, by making the affine approximation on recourse variables, it is thus possi-
ble to transform the model into a row-wise uncertainty case. Then, all that remains to
be done is applying the usual dualization technique to have a good looking linear pro-
gram. However, one should remember that this transformation remains greedy in terms
of additional columns and constraints. Of course, this is all an approximation, and the
reader should keep in mind that we do not solve the same problem at all. But the most

50

important part of the decisions is the first stage ones (the x variables in our model). The
Affinely Adjustable Robust Counterpart mainly aims to find "good" first stage decisions.

The K-adaptable 2 stage robust problem

This section focuses on an alternative way of Modeling robust problems. It has been
developed by Bertsimas and Caramanis in a general context [10] (2010) and in parallel
by Ben-Ameur and Zotkiewicz for the robust routing problem in particular [5] (2011).
This approach can be seen as a generalization of the usual robust approach. Indeed, it
aims at bridging the gap between a single stage robust problem and a 2 stage robust
problem (it can be extended to multi stage robust problems). They pointed out the fact
that only 2 ways of acting against uncertainty are available in the robustness literature,
that is:

• Deciding before the actual scenario is revealed, thus never adapting the solution to
this scenario.

• Having a subset of decisions that can be taken after the actual scenario is revealed,
thus always adapting the solution to that scenario.

Authors claimed that both may prove irrelevant in some cases. As the single stage
approach is often viewed as too pessimistic and too conservative, the 2 stage approach
which states that the decision-maker may be able to adapt himself to every possible
scenario could be too optimistic too (and hardly tractable in many cases, especially when
the recourse problem wields discrete variables). Indeed, one can easily conceive that for
some heavy organization, a quick reactivity to uncertainty may be impossible to put in
practice. However, having a reduced set of K prepared responses to the uncertainty, thus
limiting the decision to "which one should we pick?" can make sense in such context.
Therefore, they both proposed a new kind of robust models where the decision-maker
will not be able to adapt himself to all scenarios, while ensuring robust feasibility, thus
proposing an alternative solution that is really between single stage and 2 stage robust
Modeling.

Let us recall the general model for 2 stage robust optimization problems:

(LP ′robust) =

{
min
x∈X

max
ξ∈Ξ

min
y∈Y

cTx+ dTy(ξ)

s.t. B(ξ)y ≥ b− A(ξ)x

Note that without loss of generality, c and d vectors can be considered not uncertain, as
an uncertain cost function can always be put in the constraint matrix. In this problem,
adjustable decision variables y can be of different values for any possible ξ ∈ Ξ. On the

51

opposite, the single stage version of that problem which forbids any possible adaptation
to the outcome is:

(LP ′static) =

{
min

x∈X,y∈Y
cTx+ dTy

s.t. A(ξ)x+B(ξ)y ≥ b, ∀ξ ∈ Ξ

In the proposed K-adaptability problem, the decision-maker aims to define K ad-
justable solutions {y1, y2, ..., yK} (that will be found by the optimization problem), and
then commits to one of them only after seeing the realization of the uncertainty. Of
course, at least one of the K solutions must be feasible regardless of the realization of
the uncertainty. Authors thus defined the problem (LP ′adapt) as follows:

(LP ′adapt) =



min
x,y1,...,yK

cTx+ max
{
dTy1, d

Ty2, ..., d
Tyk
}

s.t.



A(ξ)x+B(ξ)y1 ≥ b
or

A(ξ)x+B(ξ)y2 ≥ b
or
...
or

A(ξ)x+B(ξ)yk ≥ b


∀ξ ∈ Ξ

Authors then show that this problem can be reduced to a K-partition problem where
one has to find the best way of partitioning the uncertainty set Ξ into K uncertainty
subsets, so that Ξ = Ξ1 ∪ Ξ2 ∪ ... ∪ ΞK . Then it is possible to rewrite (LP ′adapt) as such:

min
Ξ=Ξ1∪Ξ2∪...∪ΞK



min
x,y1,...,yK

cTx+ max
{
dTy1, d

Ty2, ..., d
Tyk
}

s.t. A(ξ)x+B(ξ)y1 ≥ b ∀ξ ∈ Ξ1

A(ξ)x+B(ξ)y2 ≥ b ∀ξ ∈ Ξ2

...

A(ξ)x+B(ξ)yk ≥ b ∀ξ ∈ Ξk

Once the optimal K-partition is found, solving (LP ′adapt) can be done in a tractable
way if (LP ′static) was tractable as well. Note that this model works for discrete recourse
variables y. However, by doing so, the difficulty of the problem has been shifted to the
finding of the optimal K partition for the problem. In terms of complexity, Bertsimas and
Caramanis showed that even for a 2-partition of the uncertainty set for RHS uncertainty
where Ξ is a simple polyhedron the one defined by Bertsimas and Sim is NP-hard.

1.3 Other interesting theoretical tools or methods used
in this study

This section contains short summaries of widely used methods, amongst other well known
definitions, that any reader may need while reading the present work. Topics presented

52

here were considered to be too generic, or too simple to have their own dedicated section.

1.3.1 The Newton-Raphson method

Let us just recall the basic principle of the Newton-Raphson method. It is an iterative
process that can be used to find roots of a real-valued function. Given a function f

that can be derived over I ⊆ R, the method provides a series of points xi that tends to
approximate a root of the function, denoted by xr.

For any x0 ∈ I such that f ′(x0) 6= 0, the series is defined as follows:

x0 ∈ I

xi+1 = xi −
f(xi)

f ′(xi)
, ∀i ≥ 1

Many things could be said on how the method converges and how the issue of having
multiple roots could be handled, but as it will not be needed in this study, me leave that
aside. That short section is just a quick reminded for the reader.

1.3.2 The Ordered Weighted Average in multi-criteria optimiza-
tion

A multi-criteria optimization problem (PMC) is an optimization problem in which sev-
eral criteria must be optimized simultaneously. Given x the set of variables, it can be
formulated as follows:

(PMC)

{
max
x

(c1(x), ..., cm(x))

s.t. x ∈ X
with X ⊆ Rn.

To tackle such problems, many options are available, such as finding all Pareto-optimal
solutions and let the decider pick amongst them those he prefer. However, the set of
Pareto-optimal solutions may be huge and the decider’s task may be difficult to complete.

Thus, an other way for tackling multi-criteria optimization is to use an aggregation
operator that will combine all criteria into a well chosen aggregate in order to optimize
it as a single criterion. The first that comes to mind usually is the arithmetic mean:

to each criterion ci, a weight µi ≥ 0 is associated with
m∑
i=1

µi = 1 (without loss of

generality). Thus we can define a new problem (PMCM) by using the arithmetic mean
as an aggregation operator:

(PMCM)

{
max
x

M(x)

s.t. x ∈ X

53

with M(x) =
m∑
i=1

µici(x).

Other operators can be considered, such as the Ordered Weighted Average operator
(OWA). Here, weights are also associated to criteria, but in an increasing order. Given

a decreasing sequence of weights λi ≥ 0 such that
m∑
i=1

λi = 1. Criteria are sorted in an

increasing order:
c(1)(x) ≤ ... ≤ c(m)(x)

where (.) is the criteria permutation that place the smallest one in first, the second
smallest one after, and so on until the biggest one is set at the end of the sequence. Thus
we can define a new problem (PMCOWA) by using the ordered weighted average as an
aggregation operator:

(PMCOWA)

{
max
x

OWA(x)

s.t. x ∈ X

with OWA(x) =
m∑
i=1

λic(i)(x).

Note that if λ1 = λ2 = ... = λm, then OWA(x) = M(x) where all µi coefficients are
also equal. Moreover, if λ1 = 1 and λi = 0 for all i ≥ 2, then OWA(x) = min

i=1,...,m
cix.

In order to model the OWA criterion in a linear program, one can easily check that the

permutation that sort criteria in an increasing order is the one that minimizes
m∑
i=1

λic(i)(x).

Thus, in order to find the proper criteria permutation, one needs to solve the following
affectation problem for a given x:

(AFF)



min
y

m∑
j=1

λj

(
m∑
i=1

ci(x)yij

)

s.t.
m∑
i=1

yij = 1, ∀j = 1, ...,m

m∑
j=1

yij = 1, ∀i = 1, ...,m

y ∈ Rm×
+

Note that y variables are considered continuous since they automatically take integer
values in the linear program (AFF). Thus, yij = 1 if, and only if the criterion ci is
affected to the weight λj. However, in practice, criteria ci depends on x and, as such,
(AFF) could lead to quadratic formulations. In order to have a linear program, it is

54

necessary to consider the dual of the affectation problem:

(DAFF)


max
α,β

m∑
j=1

αi + βi

s.t. αi + βj ≤ λjci(x), ∀i = 1, ...,m, ∀j = 1, ...,m

α ∈ Rm, β ∈ Rm

Thus, each criterion is multiplied by a constant instead of a variable. Note that variables
α and β have no sign here. For example, if one needs to maximize OWA(x), it can be
done by solving:

(PMCOWA)



max
x,α,β

m∑
j=1

αi + βi

s.t. αi + βj ≤ λjci(x), ∀i = 1, ...,m, ∀j = 1, ...,m

x ∈ X
α ∈ Rm, β ∈ Rm

The OWA aggregation operator has a few useful properties that are listed below.

Property 1.3.1. Given m criteria c1, ..., cm such that 0 ≤ c(1) ≤ ... ≤ c(m) where (.) is
the permutation that sort them in an increasing order. Let us have two ordered weighed
averages OWAµ and OWAλ of these m criteria with µ1 ≥ λ1 and µi ≤ λi for 2 ≤ i ≤ m.
Therefore, OWAµ ≤ OWAλ.

Property 1.3.2. Given m criteria c1, ..., cm such that 0 = c(1) = ... = c(k) < c(k+1) ≤
... ≤ c(m) with 1 ≤ k ≤ m − 1. Let us have two ordered weighed averages OWAµ and
OWAλ of these m criteria with µ1 ≥ λ1 and µi ≤ λi for 2 ≤ i ≤ m with at least an index
j ≥ k + 1 for which µj < λj. Therefore, OWAµ < OWAλ.

Proof. OWAµ −OWAλ =
m∑

i=k+1

(µi − λi)c(i) < 0

55

Chapter 2

Integration of Organisation,
Administration & Management
considerations in the passive optical
network deployment optimization
problem

Introduction and objectives

For long, network design strategies have been driven by mere deployment capital expendi-
tures (CAPEX, which can generally be seen as the "here and now" cost of the network, in
terms of installed equipments and required workforce). However, major sources of costs
on the long term are not the direct CAPEX costs but indirect and recurrent costs linked to
Operations, Administration and Maintenance (OA&M) which are part of what is usually
called Operational Expenditures (OPEX, in opposition to CAPEX). For a comprehen-
sive survey on network administration and maintenance concepts, the reader is referred
to [19]. This includes, but is not limited to, Information System costs, monitoring and
supervision costs, preventive and curative maintenance costs. Thus, important research
efforts are being spent on the field of Autonomics, i.e. roughly speaking the design of
networks and protocols able to perform such functionalities by themselves, with the aim
of getting rid of these costs. These are obviously long-term objectives. Nevertheless, it is
not going too far to acknowledge that telecommunication operators are highly concerned
about facilitating future OA&M costs of their network when discussing network design
strategies and operational deployment schemes.

As shown in the bibliographical study of section 1.1, there are few works associating

56

both CAPEX and OPEX costs in a single optimization problem, whatever the problem
is, and so there is nothing that has been done on the specific FTTH PON deployment
optimization problem about this issue. This is mainly due to the fact that CAPEX and
OPEX optimization problems are often difficult both in terms of computational com-
plexity and computational tractability, even when we tackle them separately, so treating
them both at the same time may lead to an even greater difficulty on those aspects.
But the most blocking issue is that those costs are not of the same dimension. Indeed,
CAPEX are here-and-now costs while OPEX are overtime costs. Consequently, we would
be dealing with multi criteria optimization over very complex problems.

In this chapter, we aim to take these OA&M considerations into account for optimizing
the deployment of a Passive Optical Network. However, since these future OA&M costs
are very diverse, and for all the reasons mentioned above, we decided to tackle this issue
by adding them to our models as engineering rules. That is, adding them as constraints,
because we aim at having a beneficial effect on future OA&M costs, even if they increase
the CAPEX deployment costs. More than the inherent great difficulty of the problem that
we aim to avoid, there is also a very practical and telecommunication company related
reason to do so. In fact, in most telecommunications operators companies that are in
charge of deploying a network and, later, exploiting it, entities in charge of each tasks are
often not the same, which means they do not run their activities on the same budget and
they do not have the same objectives. One can easily conceive that deployment teams will
consider their job done if the network deployment was made the cheapest way possible,
while network monitoring teams will have to do their best with the network they will
be given. Moreover, primary clients for such optimization models are deployment teams,
and the reality of a nowadays company being as it is, each part of it trying to get as
much budget as possible, it could be really hard to find a harmony between those two
very different costs if they were to be optimized at the same time over their Pareto fronts.

The objective of this chapter is to identify engineering rules that may be easily (which
must be understood as easily pluggable into our model) be added to the FTTH PON
deployment problem, without changing its cost objective (but not its value), to analyse
their impact in terms of cost and tractability of the problem, and finally, to propose a
way of assessing quantitatively and qualitatively the future gain one can expect after
adding these engineering rules to a FTTH PON model. Note that engineering rules will
not be exhaustive for this problem: two types of rules will be considered, drawn from
field considerations. Our second objective is to propose a preliminary work on this issue,
while trying to initiate what we think to be a "good" optimization practice which may
lead, for some problem, to interesting research. The work exposed in this chapter has

57

been published in 2012 1.

2.1 The choice of engineering rules in an OA&M per-
spective

In this section, we aim to propose various engineering rules. For that purpose, we will
focus on the general FTTH PON deployment optimization problem described in section
1.1.1. We first generalize the (PON1) and (PON2) models presented in section 1.1.2 to
a K level of splitters PON architecture. We use the same notations as in the previous
section.

(PONK)



min
f ,z,u

n∑
i=1

K∑
k=1

Ckzki +
∑

(i,j)∈E

K+1∑
k=1

ckij

(
fkij + fkji

)
s.t.

∑
j 6=i

f1
ji = z1

i +
∑
j 6=i

f1
ij , ∀i ∈ V ∗ (2.1)

∑
j 6=i

fkji +mk−1zk−1
i = zki +

∑
j 6=i

fkij + uki , ∀k = 2, ...,K, ∀i ∈ V (2.2)

∑
j 6=i

fK+1
ji +mKzKi = di +

∑
j 6=i

fK+1
ij + uK+1

i , ∀i ∈ V (2.3)

K+1∑
k=1

(
fkij + fkji

)
≤ bij , ∀(i, j) ∈ E (2.4)

zki ∈ N, ∀i ∈ V ∗; k = 1, ...,K; zk0 = 0,∀k = 1, ...,K

uki ∈ N, ∀i ∈ V ∗; k = 2, ...,K + 1;uk0 = 0, ∀k = 2, ...,K

fkij ∈ N, ∀(i, j) ∈ E, k = 1, ...,K + 1

Note that in practice, in recorded PON architecture deployed so far, the number of
optical splitters does not exceed 3, as optical splitters will consume a high amount of
optical budget, as explained in section 1.1.2.

2.1.1 Modeling of the optical splitter delocation rule

For the sake of simplicity in future network administration (and notably when think-
ing of fault monitoring and troubleshooting activities), network managers do appreciate
that subscribers of the same building (or neighbourhood) have the same "connection
point" to the network. Likewise, from a customer relationship point of view, managers

1C. Hervet, M. Chardy, Passive optical network design under operations administration and mainte-
nance considerations, Journal of Applied Operational Research, Vol. 4(3), pp. 152–172, 2012

58

do appreciate that subscribers experience the same Quality of Service, as it is always
complicated to explain to two neighbours affording the "same" subscription that they are
not delivered the "same" service. This is classically achieved by mono-routing strategies
in multi flow-based network design problems. Such reasoning can be extended to the
PON context, meaning that both optical routes and location of splitters (of any level)
are similar for the subscribers of a same building. When dealing with PON architectures
(and more generally Point to Multipoint architectures), one easily understands that such
a strategy might be drastically detrimental in terms of equipment costs, as the benefits
of concentrators (here splitters) are lost for low demands. Therefore, considering PON
architectures deployments, networks managers push for the following compromise: when
the demand of a node exceeds a given value, called delocation threshold, then all its
subscribers must be supplied by fibers of the latest ("latest" is to be defined according
to the demand value) levels initiated by splitters located at the demand node.

Definition 2.1.1. Let {e0 = +∞, e1, ..., eK} be the set of delocation thesholds (positive in-
tegers sorted in decreasing order). Considering a demand node i, let kmaxi denote the maxi-
mum index k such as the threshold ek exceeds the demand value di: kmaxi = max

k=0,...,K
{k | di <

ek}. Then the "Splitter Delocation" (SD) rule can be formulated as follows:⌈
di∏K

j=km
j

⌉
≤ zki , ∀i ∈ V ∗, ∀k = kmaxi + 1, ..., K (2.5)

In other words, this rule means that if the demand at a node i exceeds a threshold
ek′ (with k′ > kmaxi), it implies that:

• the demand also exceeds the given delocation thresholds for higher values of k ≥ k′

if they exist (since threshold are in a decreasing order)

• the number of splitters of level k ≥ k′ the rule will put onto the node i is large
enough to potentially supply all the demand at node i

Remark 2.1.1. If eK ≥ max
i∈V

di, then the SD rule never applies to the problem. This
condition can also be written as kmaxi = K, ∀i ∈ V .

For the sake of clarity, let us provide an example of how the splitter delocation rule can
be applied (see Figure 2.1). There are 3 demand nodes on this instance, with respective
demands 7, 10 and 7. For the sake of clarity, the deployed architecture is a single level
splitters one. On the left, the optimal solution without the SD rule is presented. In
order to quickly compute an optimal solution, let us assume for now that splitters are
far more expensive than fibers and that it is always better to save a splitter than any
number of fibers. On the right, the SD rule is applied with a delocation threshold e1

59

set to 8, which means that splitters must be installed on the node with 10 demands.
The optimal solution in this case is slightly different, due to the fact that fewer locating
options are available for splitters, thus making the use of more fibers necessary compared
to the solution when the SD rule is not applied.

Figure 2.1: An illustration of the "Splitter Delocation" rule

However, with that single definition of the SD rule, there is no guarantee that clients
at node i will be served by splitters located at node i if the rule applies on that node.
That is what the following proposition is ensuring:

Proposition 2.1.1. Considering the problem (PONK) with constraint (2.5), there exists
an optimal solution such that, for each node i where kmaxi < K (which means that the
SD rule holds for that node), subscribers located on node i are all served by fibers from
optical splitters of level k ≥ kmaxi also located on node i.

Proof. The proof is only detailed for level K, as the same reasoning applies for all levels.
Let i be a node of demand di such that di ≥ eK . The flow constraint (2.3) at this node is∑

j 6=i

(
fK+1
ji − fK+1

ij

)
+mKzKi = di + uK+1

i

If we denote by fK+1
ii the number of clients at node i served by splitters located at that

same node i. We will show that there is an optimal solution such that fK+1
ii = di if the

SD rule is applied at node i. Since there is zKi ≥
⌈
di
mK

⌉
, it means that the number of

level K+ 1 fibers generated at node i is greater than mK

⌈
di
mK

⌉
≥ di, which implies that

fK+1
ii = di is a feasible configuration.

60

Figure 2.2: An illustration of local branching options under the SD rule with e1 = 2

Figure 2.2 illustrates this principle. The optimal solution is represented for a single
level PON architecture deployment with a delocation threshold equal to 2. Therefore,
splitters of capacity 4 must be put in advance on the left-side and the central node. For
the central node, one can easily see that there are 2 ways of connecting clients with level
2 fibers. The option on the right connects clients by using fibers coming only from the
splitter located on that same node, and both options have the same optimal cost. Under
the SD rule, one can easily be convinced that the "option on the right" will always be
available.

Corollary 2.1.1. If delocation thresholds are such that ek = 0 for all k ≥ k′ with k′ ≥ 1,
it means that the routing of level k fibers (∀k ≥ k′) is already done and does not need to
be considered, therefore the problem (PONK) and the problem (PONk′−1

mod) are the same.

61

The transformation to obtain (PONk′−1
mod) is shown below, for the case of k′ = 2

(PONk′−1
mod)



min
f ,z,u

n∑
i=1

k′−1∑
k=1

Ckzki +
∑

(i,j)∈E

k′∑
k=1

ckij

(
fkij + fkji

)
s.t.

∑
j 6=i

f1
ji = z1

i +
∑
j 6=i

f1
ij , ∀i ∈ V ∗ (2.6)

∑
j 6=i

fk
′

ji +mk′−1zk
′−1
i =

⌈
di∏K

k=k′m
k

⌉
+
∑
j 6=i

fk
′

ij + uk
′
i , ∀i ∈ V (2.7)

K+1∑
k=1

(
fkij + fkji

)
≤ bij , ∀(i, j) ∈ E (2.8)

zki ∈ N, ∀i ∈ V ∗; k = 1, ...,K; zk0 = 0,∀k = 1, ...,K

uki ∈ N, ∀i ∈ V ∗; k = 2, ...,K + 1;uk0 = 0,∀k = 2, ...,K

fkij ∈ N, ∀(i, j) ∈ E, k = 1, ...,K + 1

This corollary implies that setting a delocation threshold to ek = 0 implies that
splitters (resp. fibers) variables of level greater than k (resp. k + 1) can be set before
solving the problem, thus reducing the number of required variables.

2.1.2 Modeling of the household grouping rule

PON deployment strategies that are purely driven by equipment CAPEX costs can lead to
an important scattering of splitters amongst eligible storing sites. Be their CAPEX costs
optimal, these deployment schemes should be avoided with regards to future maintenance
costs (let us think of technicians rounds for instance). Indeed, the degree of splitter
scattering will significantly impact the cost of technicians’ rounds that will be needed
for both preventive and curative maintenances. The more splitter sites are open, the
longer maintenance rounds will be. Moreover, this rule tends to facilitate the network
conception, as it will be more intelligible for network operators. Actually, databases
describing the network are not always up-to-date and administrating a widely distributed
network on a long-term run can be challenging without an efficient information system.
As telecommunication operators are used to work with empirical knowledge, facilitating
the acquisition of that knowledge through proposing a "simple", "intuitive" network is
another key issue for OA&M concerns.

Therefore, considering PON deployments, network managers push for the following
injunction: a site has the authorization for storing splitters of a given level only if the
installed splitters can "deliver" fiber services for at least a given number of households
(called household grouping threshold for this level). Another way of defining that in-
junction is to state that if a site is opened to a given level of splitters, then the number

62

of splitters installed on that node must be large enough to supply at least the grouping
threshold in terms of households.

Definition 2.1.2. Let us denote by HGk the household grouping threshold for level k
splitters (∀k = 1, ..., K) and let vki be a binary variable equal to 1 if and only if the i ∈ V ∗

is open to level k splitters, and 0 otherwise. The OA&M "Household Grouping" (HG)
rule can thus be formulated by means of the following set of logical constraints:

(
vki = 1

)
⇒

(
HGk ≤ zki

K∏
j=k

mj

)
∀k = 1..K, ∀i ∈ V ∗ (2.9)(

vki = 0
)
⇒
(
zki = 0

)
∀k = 1..K, ∀i ∈ V ∗ (2.10)

uk+1
i ≤

(
mk − 1

)
vki ∀k = 1..K, ∀i ∈ V ∗ (2.11)

Note that constraints (2.11) were proven automatically satisfied in (PONK) by au-
thors in [21] (see remark 1.1.3 in section 1.1.2). They must be added here since constraints
(2.9) and (2.10) are imposing a minimal number of splitters to be put on every node, and
there is no guarantee anymore that the model will not add optical splitters to satisfy
those constraints that are, in fact, useless.

Also note that HGk thresholds are not the exact number of clients that must be served
from a node opened to level k splitters. Actually, HGk are the maximal number of clients

such that

⌈
HGk∏K
j=km

j

⌉
splitters will be able to serve. Indeed, for each level of splitter at

a given node, there can be at most mk− 1 unused fibers going out of these splitters. And
by the influence of successive splitter layers, one can not control the effective number of
clients connected to splitters installed at a node. Therefore, HGk thresholds must be
interpreted as a number designed to impose a minimal number of splitters per node than
a real number of connected households.

Figure 2.3 gives an example of how this rule is applied. Without applying this rule (left
part of the figure), splitters can be installed in any eligible site, without considering the
total number of sites to be open, and especially without considering how many customers
are supplied by a storing site. On the contrary, let us set the customer threshold to 24
to impose the grouping of splitters in storing sites. Then, in this example (right part of
the figure), all splitters should be installed at a single storing site, leaving others empty,
while optimizing the fiber cost. Of course, adding this constraint will impose more fibers
reaching their target through longer paths, which is detrimental in terms of cost.

63

Figure 2.3: An illustration of the "Household Grouping" rule

2.2 Theoretical analysis of OA&M constraints

In the following, we will refer to the problem differently according to the rules that are
taken into account. The (PONK) problem will thus be denoted by:

• (PONK
SD) if it only includes the SD rule (i.e. constraints (2.5))

• (PONK
HG) if it only includes the HG rule (i.e. constraints (2.9),(2.10) and (2.11))

• (PONK
OA&M) if it includes both rules (and related constraints)

In order to give an insight on the overcosts induced by these new rules and constraints
on the problem, we present some pathological cases where the potential detrimental effect
of these rules will be shown. We will expose theses pathological cases for a single level
PON architecture for the sake of clarity, but the phenomena that are exposed in this
section can be generalized to K-levels PON architectures. Furthermore, we also provide
some feasibility conditions for (PONK

HG) and (PONK
OAM).

2.2.1 A pathological case for the optical splitter delocation rule

Let us denote by SM e1
m1 the smallest multiple of m1 greater than the level 1 delocation

threshold e1. We consider a star-graph with m1 demand nodes of SM e1
m1 + 1 households,

each of them directly connected the OLT (assumed to be the center of the star-graph)
through a link of sufficient capacity (at least greater than SM e1

m1 + 1) and with a unitary
routing cost of c, whatever the fiber level used. An example of how this star-graph is
built is given in figure 2.4 for m1 = 8 and e1 = 50 (which gives SM e1

m1 = 56). In this case,

64

we authorize splitters to be placed at the OLT (which can be seen as a double node, the
OLT and a normal one, with a link between those two of length equal to zero).

In such context, one should easily be convinced that:

• The optimal solution of PON1 consists in

– installing
SM e1

m1

m1
level 1 splitters on each demand node and 1 splitter at the

OLT

– routing
SM e1

m1

m1
level 1 and one level 2 fibers from the OLT to each demand

node

which leads to an optimal deployment cost of SM e1
m1(C1 + c) + C1 +m1c.

• The optimal solution of PON1
SD consists in

– installing
(
SM e1

m1

m1
+ 1

)
level 1 splitters at each demand node

– routing
(
SM e1

m1

m1
+ 1

)
level 1 fibers from the OLT to each demand node

which leads to an optimal deployment cost of (SM e1
m1 +m1)(C1 + c).

Then the CAPEX overcosts induced by the SD rule are (m1−1)C1, which can prove to
be important due to the relatively high cost of splitters equipments (compared to fibers).
More generally, this rule reduces the fiber aggregation capacity of optical splitters, which
imposes us to place splitters that may not be used at their full capacity.

Figure 2.4: An example of the pathological case for the SD rule with m1 = 8 and e1 = 50

65

2.2.2 A pathological case for the household grouping rule

Let us consider a star-graph with
⌈
HG1

m1

⌉
demand nodes of m1 households, each of them

being directly connected to the OLT (assumed to be at the center of the star-graph)
through a link of sufficient capacity (at least greater than m1) and with a unitary routing
cost of c whatever the fiber level used. An example of how this star-graph is built is given
in figure 2.5 for m1 = 8 and HG1 = 75 (which gives a star-graph with 10 demand nodes).
Like the example given in section 2.2.1, we authorize splitters to be placed on the OLT.
In such context, one should easily be convinced that:

• The optimal solution of PON1 consists in

– installing 1 level 1 splitters on each demand node

– routing 1 level 1 fiber from the OLT to each demand node

which leads to an optimal deployment cost of
⌈
HG1

m1

⌉ (
C1 + c

)
.

• The optimal solution of PON1
HG consists in

– installing
⌈
HG1

m1

⌉
level 1 splitters at the OLT

– routing m1 level 2 fibers from the OLT to each demand node

which leads to an optimal deployment cost of
⌈
HG1

m1

⌉ (
C1 +m1c

)
.

Then the CAPEX overcosts induced by the HG rule are
⌈
HG1

m1

⌉ (
m1 − 1

)
c, which is

potentially unbounded (thinking of c being arbitrarily large). More generally, with high
values of HGk, this will impose a very small number of splitters sites to be open, which
will lead to a higher fiber cost because there will be fewer routing options.

2.2.3 Feasibility conditions and thresholds’ effective ranges for
the problem with OA&M constraints

In this section, we examine the feasibility of OA&M related problems, compared to
PONK . Therefore, we will always work under the hypothesis that PONK has at least
one feasible solution. We also give conditions under which OA&M rules are not effective.

66

Figure 2.5: An example of the pathological case for the HG rule with m1 = 8 and
HG1 = 75

Feasibility of PONK
SD

First, we note the following proposition:

Proposition 2.2.1. Let us consider a given instance of PONK and a given set of splitter
delocation thresholds {ek|k = 1...K}. If eK ≥ max

i∈V
di, then the SD rule is never applied

on any node of the graph. In other words, we have:

v(PONK) = v(PONK
SD)

Proof. It is immediate that if every delocation threshold is greater than the demand in
any node of the graph, then the rule won’t apply. Moreover, by definition 2.1.1, delocation
thresholds are sorted in decreasing order, so that the K-th one is the smallest. Therefore,
one only needs to consider the last level threshold to compare it with the whole set of
demands.

Then, we can give the following property on the SD rule’s feasibility:

Remark 2.2.1. If PONK
SD is feasible for any set of delocation thresholds, then PONK

is feasible. However, if PONK is feasible, it does not imply that PONK
SD is feasible for

any set of delocation threshold.

Proof. The implication is straightforward since any valid solution of PONK
SD is also a

valid solution of PONK . On the contrary, figure 2.6 gives a counterexample that shows
a graph with a feasible solution of PON1, and an infeasibility in PON1

SD when the
delocation threshold is set to e1 = 1.

67

Figure 2.6: A counterexample of a graph where the SD rule can make the problem
infeasible with e1 = 1

Lemma 1. If PONk
SD is feasible when all its delocation thresholds are equal to 0, then

it is feasible for any set of delocation thresholds.

Proof. A solution of PONk
SD where all delocation thresholds are set to 0 reduces to

installing splitters to every demand node, thus only using level 1 fibers in the graph.
One can easily see that a solution that respects the SD rule with thresholds set to 0 also
respects the SD rule with thresholds of higher values.

On the basis of these observations, we can derive the following sufficient feasibility
condition for the SD rule:

Proposition 2.2.2. A sufficient feasibility condition for PONK
SD, for every set of delo-

cation threshold possible, is:

bij ≥
∑
i∈V

⌈
di∏K
j=1 m

j

⌉
, ∀(i, j) ∈ E

Proof. By Lemma 1, a condition that ensures the feasibility of PONk
SD for delocation

thresholds that are set to 0 is also valid for every set of thresholds. As a solution of

PONk
SD with thresholds sets uses

∑
i∈V

⌈
di∏K
j=1m

j

⌉
level 1 fibers at the same time, having

the capacities of every edge superior or equal to that number is a sufficient feasibility
condition for PONk

SD.

68

Feasibility of PONK
HG

As for the SD rule, let us examine when the HG rule is not effective.

Proposition 2.2.3. Let us consider a given instance of PONK and a given set of house-

hold grouping thresholds {HGk|k = 1...K}. If HGk ≤
K∏
j=k

mj, then the HG rule is never

applied for level k splitters. If that inequality holds for all k = 1...K, then the rule is
never applied at all. In other words, we would have:

v(PONK) = v(PONK
HG)

Proof. Let us recall constraint (2.9) that imposes the minimal number of level k splitters
one should install on a splitter site opened for level k:

(
vki = 1

)
⇒

(
HGk ≤ zki

K∏
j=k

mj

)
∀k = 1..K, ∀i ∈ V ∗ (2.9)

That constraint will be ineffective if it only imposes that zki ≥ 1, which happens if

HGk ≤
K∏
j=k

mj.

However, unlike the SD rule, the HG rule does not always guarantee feasibility. Indeed,
it is rather intuitive that setting a threshold HGk ≥

∑
i∈V

di is not really relevant and could

lead to infeasibility. Another source of infeasibility for the HG rule is arc capacities. First,
let us give the following valid inequality for PONK

HG (and even PONK
OA&M).

Proposition 2.2.4. Let us denote the minimal useful fiber flow of a level k splitter storing
site under the HG rule by:

δk = mk

⌈
HGk∏K
j=km

j

⌉
−
(
mk − 1

)
, ∀k = 1...K

and the maximal number of level k splitter storing sites one can open in order to supply
the whole demand Nk

site for which we give the following recursive definition:

NK
site =

⌊∑
i∈V di

δK

⌋

Nk
site =


Nk+1
site

⌈
HGk+1∏K
j=k+1m

j

⌉
δk

 , ∀k = 1...K − 1 if K ≥ 2

69

Then ∑
i∈V

vki ≤ Nk
site (2.12)

is a valid inequality for PONK
HG and PONK

OA&M .

Proof. For any splitter level k, one can compute the minimal number of subscribers that
can be served by installed splitters at a given node under the HG rule. The minimal fiber
output of p level k splitters is mkp− (mk − 1) as every installed splitter must be used to
its full capacity, except only one which supplies at least one fiber. Denoting by δk this
minimal output for a splitter site when the HG rule is applied, it thus comes:

δk = mk

⌈
HGk∏K
j=km

j

⌉
−
(
mk − 1

)
, ∀k = 1...K

Let us denote by Nk
site the maximum number of level k splitter sites to open in order to

supply the whole demand, that is, considering that every opened splitter site will only
supply the minimal amount of demand dk. For the last splitter level, we obviously have

NK
site =

⌊∑
i∈V di

δK

⌋
Let us recursively compute Nk

site from Nk+1
site , for all k = 1...(K − 1). Let us notice

that an upper bound for the number of level k splitters to be installed is given by

Nk
site

⌈
HGk∏K
j=km

j

⌉
. As previously defined, a lower bound for the amount of fibers a level k

splitter site can supply is given by δk. Therefore, the maximum number of level k splitter

sites one can open is given by Nk
site =


Nk+1
site

⌈
HGk+1∏K
j=k+1m

j

⌉
δk

 , ∀k = 1...K − 1 if K ≥ 2.

Then, the total number of opened level k splitter sites cannot exceed Nk
site. This inequal-

ity holds for PONK
HG and the addition of the SD rule does not change it so it also holds

for PONK
OA&M .

We thus give the following necessary conditions on PONK
HG feasibility:

Proposition 2.2.5. Necessary feasibility conditions on HGk thresholds values (∀k =

70

1...K) for PONK
HG are

HGK ≤
⌈∑

i∈V di

mK

⌉
mK (2.13)

HGk ≤


Nk+1
site

⌈
HGk+1∏K
j=k+1m

j

⌉
mk


K∏
j′=k

mj′ , ∀k = 1...K − 1 (2.14)

Proof. Let us consider the last splitter level K. We are trying to determine what is the
highest value possible for HGK so that the problem remains feasible. One can easily
see that the higher the value of HGK , the fewer the number of opened splitter sites.
Therefore, the highest value must be coinciding with a single opened splitter site. For j
being that only opened node, the number of installed level K splitter on that node must
be such that:

zKj ≤
⌈∑

i∈V di

mK

⌉
Since zkj ≥

⌈
HGK

mK

⌉
, HGK threshold must verify:

HGK

mK
≤
⌈
HGK

mK

⌉
≤
⌈∑

i∈V di

mK

⌉
which leads to the final result, that is the feasibility condition for level K splitters. For
lower levels, we apply the same reasoning, but one needs to take next level splitters instead
of the demand. With Nk

site defined as in Proposition 2.2.4, one can easily see that the

maximum number of next level splitters that may be installed equals Nk+1
site

⌈
HGk+1∏K
j=k+1 m

j

⌉
.

Of course, this condition is only necessary since capacity constraints can also lead
to infeasibility. Indeed, imposing a large number of splitters to be put per site also
imposes a potentially large number of fibers coming out of a single node, which can lead
to infeasibility.

Feasibility of PONK
OA&M

Applying simultaneously the SD rule and the HG rule can also imply problem infeasibility.
Indeed, since the SD rule will tend to open splitter sites if they meet the requirement,
the HG rule has an opposite objective since it tends to limit the total number of opened
splitter sites.

71

Proposition 2.2.6. We have the following necessary feasibility condition for the PONK
OA&M

problem: ∑
i∈V

χ{di≥ek} ≤ Nk
site, ∀k = 1...K (2.15)

where χ stands for the indicator function.

Proof. This result is straight-forward derived from Proposition 2.2.4, noticing that
∑
i∈V

χ{di≥ek}

is a lower bound of the number of level k splitter sites.

2.3 Solving the problem with OA&M constraints

The method used to solve the problem is a mere branch-and-bound approach, based on
the CPLEX framework. However, the model PONK

OA&M as it is now does not fit the
general integer linear program scheme.

2.3.1 Linearizing the household grouping rule constraints

Linearizing constraints (2.9) and (2.10) can be made via the use of a so-called big M
formulation.

Proposition 2.3.1. Constraints (2.9) and (2.10) can be linearised as follows:

zki ≤Mk
i vki ∀k = 1...K, ∀i ∈ V (with Mk

i a large constant) (2.16)⌈
HGk∏K
j=km

j

⌉
vki ≤ zki ∀k = 1...K, ∀i ∈ V (2.17)

However, big M formulations often lead to poor continuous relaxations. It is thus
essential to provide the lowest value possible, yet valid, for Mk

i . We provide two different
calculations, based on the total demand and the capacity of incoming edges of a node.

Proposition 2.3.2.

αki =



⌈∑
i∈V di

mK

⌉
∀i ∈ V, k = K

Nk+1
site

⌈
HGk+1∏K
j=k+1 m

j

⌉
mk


∀i ∈ V, ∀k = 1...K − 1

is valid for equation (2.16).

72

Proof. This result is derived from Proposition 2.2.5. Indeed, we already know what would
be the maximal number of splitters one could install on a single node per level, therefore
it is a suitable value for Mk

i .

However, depending on values of HGk, k = 1...K, αki values may still be high. And as
we noticed before, capacity constraints are another limitation for the number of installable
splitters at a node.

Proposition 2.3.3.

βk
i =


max
M∈N

M : M +

(
m1(M − 1) + 1−

⌈
di∏K

j=1m
j

⌉)+

≤
∑

j:(i,j)∈E

bji

 ∀i ∈ V, k = 1

max
M∈N

M :

⌈
M∏k−1

j=1 m
j

⌉
+

(
mk(M − 1) + 1−

⌈
di∏K

j=km
j

⌉)+

≤
∑

j:(i,j)∈E

bji

 ∀i ∈ V,∀k > 1

is valid for equation (2.16).

Proof. LetM be the number of level k splitters installed at site i ∈ V , and di the demand
of that site (which can be equal to zero if there is no demand on the node). Let us compute
the minimum cumulative number of incoming and outgoing fibers due to these splitters.

If k = 1, the number of incoming level 1 fibers supplying our M number of level 1
splitters is equal to M . If k > 1, then that number of incoming level 1 fibers is equal to⌈

M∏k−1
j=1 m

j

⌉
which is by definition the least capacity consuming way of supplying level k

splitters on a node. Moreover, by constraints (2.11), the minimum of level k + 1 fibers

produced by these splitters is mk(M − 1) + 1. At most

⌈
di∏K

j=km
j

⌉
of these fibers are

internally used to supply the demand at node i (by the same principle showed in proof
of Proposition 2.1.1). Therefore, a lower bound for the number of produced level k + 1

fibers that are not used to supply the node demand is

(
mk(M − 1) + 1−

⌈
di∏K

j=km
j

⌉)+

.

Noting that one level k + 1 fiber produced which is not used to supply the internal
demand will at least induce one outgoing level k + 2 fiber (exactly 1 fiber of level k + 1

if going directly out of node i, at least 1 level k + 2 fiber if going through only a level
k+ 1 splitter, ...), we conclude on the minimum number of incoming and outgoing fibers
due to M splitters of level k, which has to be lower to the cumulative capacity of the
incoming/outgoing edges of the node i.

Remark 2.3.1. The function

⌈
M∏k−1
j=1 m

j

⌉
+

(
mk(M − 1) + 1−

⌈
di∏K

j=km
j

⌉)+

is an

increasing function inM . Therefore, finding the maximal value ofM such that conditions
exposed in Proposition 2.3.3 are respected is an easy problem in terms of complexity (it
can be written as a 2 integer linear program variable).

73

Corollary 2.3.1.
Mk

i = min
{
αki , β

k
i

}
, ∀i ∈ V, ∀k = 1...K

is valid for equation (2.16).

2.3.2 Development of a pre-processing routine for the household
grouping rule

From results of Corollary 2.3.1, we can derive a preprocessing scheme, considering that:

• Corollary 2.3.1 (and more generally any set of valid Mk
i values) provides us with

an upper bound of the number of splitters at a given storing site

• The Household Grouping rule implies a minimum number of splitters to be installed
if a site is open

From these considerations, some v and z variables can be preprocessed, as shown in
Algorithm 2.

Algorithm 2 HG rule preprocessing algorithm for level k splitters
Require: V , HGk, Mk

i , ∀i ∈ V
1: for i = 1, ..., |V | do

2: if Mk
i <

⌈
HGk∏K
j=km

j

⌉
then

3: zki ← 0

4: vki ← 0

5: end if
6: end for

2.3.3 Empirical analysis of the influence of OA&M constraints
on CAPEX costs

Tests are performed on a 10 real-life instances basis. Theses are selected so as to be
representative of two types of areas where FTTH PON deployment is impending: first,
local areas with very high density of population (Net1 - Net7) and second, local areas
of moderate density of population (Net8 - Net14). Those instances are extracted from
Orange’s databases, over local areas in french cities of various sizes. Table 2.1 gives for
each instance the number of nodes and edges, the total demand, the mean demand and
the associated standard deviation (σ), as for capacities of the graph. If capacities are very
similar over all these instances, we can note that very high density instances have a lot

74

Instances Demands Capacities
Name |V | |E|

∑
i

di Mean σ max
i
di Mean σ

Net1 808 1101 46293 57.36 67.38 423 1198.17 1090.21
Net2 52 65 1828 35.84 52.64 199 683.51 726.77
Net3 235 313 12604 53.86 60.48 300 1172.32 1211.21
Net4 452 613 25420 56.36 68.18 423 1151.77 1118.87
Net5 322 421 16068 50.06 64.70 423 1163.86 1105.95
Net6 392 537 22326 57.10 65.00 343 1130.35 1096.31
Net7 229 297 11946 52.39 62.83 342 1188.24 1189.07
Net8 1624 1987 23734 14.62 24.63 252 1319.81 1656.52
Net9 602 730 8778 14.61 29.21 252 1373.52 1539.59
Net10 1258 1544 18149 14.44 22.46 222 1285.51 1580.21
Net11 234 297 2345 10.06 21.25 166 1049.30 872.62
Net12 955 1173 14000 14.68 20.84 144 1269.91 1441.58
Net13 449 562 5652 12.62 22.07 192 1355.27 1253.19
Net14 117 160 1147 9.89 20.92 115 788.14 437.16

Table 2.1: Instances statistical description

more demand to be served for fewer nodes than moderate density ones. Another feature
that is not displayed in table 2.1 is that very high density instances’ graphs are in the
shape of a meshing, while moderate density instances’ graphs are much more dispatched,
offering fewer paths from one point to another, which means fewer optimizing options.
Moreover, moderate density areas are wider than high density ones, which implies longer
edges over the instance. All this emphasizes the fact that the splitter cost of a solution
will be, in proportion, higher for high density areas than moderate ones, and vice versa.

We now solve the problem PONK (which means without taking any OA&M rules into
account) over these instances with 3 different architectures in order to make comparisons
with results of PONK

OA&M problems. Let us define the 3 PON architectures for a total
splitting ratio of 64 (splitters capacities were chosen accordingly to what is done on the
field):

• Architecture 1: 1 splitter level with the following set of capacities

– m1 = 64

• Architecture 2: 2 splitter levels with the following set of capacities

75

mk

2 4 8 16 32 64
Ck 69 92 138 230 414 782

Table 2.2: Splitter costs

– m1 = 2

– m2 = 32

• Architecture 3: 3 splitter levels with the following set of capacities

– m1 = 2

– m2 = 8

– m3 = 4

For each instance, we solve the problem PONK with each architecture. Splitter costs
are set according to table 2.2. The cost of a fiber is the same for every level and is set
to 0.1 per meter. This cost was computed as an average cost considering various fiber
cables. Even though these splitter and fiber costs may not be strictly exacts, they are
right in their order of magnitude.

Instances were solved by CPLEX 12.2 over a maximum time of 500 seconds (with
an additional polishing time of 50 seconds, which is a local search procedure). For each
architecture, we indirectly give the optimal cost by providing the optimal splitter cost
Cz and the optimal fiber cost cf (that have to be summed). We also give the best gap
to the continuous relaxation of the problem we got if the optimal solution was not found
within the time limit. We also give the CPU time needed/allowed for each instance.

Table 2.3 presents our results. The first observation is that very few instances are
solved to optimality. Indeed, only Net2 and Net14 are, since they are the smallest ones,
and only for architectures 1 and 2. Nevertheless, gaps to optimality are also very small.
One can notice that moderate density instances seems to be harder to solve, which was to

be expected. Another interesting feature is that the average ratio
Cz

Cz + cf
is higher for

high density areas (90%) than for moderate density ones (80%), as it was also expected.
This is indeed due to the smaller number of routing options we have in moderate density
areas and the fact that paths are longer.

The cost of the optical splitter delocation rule

The splitter delocation rule restricts possibilities of splitter placement. This will have a
detrimental impact on the cost of the solution. Let us show how that cost increases as

76

the delocation rule is getting strengthened. We pick 2 small instances out of our set. We
choose small ones mainly for practical reasons. Since they are small, they are also easier
to solve, even for a 3 level PON architecture (see table 2.3). Net2 and Net14 are picked in
order to have one instance of both density profiles. The 3rd architecture defined in section
2.3.3 is chosen. Many sets of delocation thresholds are possible for these instances. Let
us describe our 4 sets of thresholds:

•
{
e1

0 = +∞, e1
1 = γSD, e

1
2 = γSD, e

1
3 = γSD

}
for γSD = 1, ...,max

i∈V
di

•
{
e2

0 = +∞, e2
1 = 2γSD, e

2
2 = γSD, e

2
3 = γSD

}
for γSD = 1, ...,max

i∈V
di

•
{
e3

0 = +∞, e3
1 = 2γSD, e

3
2 = 2γSD, e

3
3 = γSD

}
for γSD = 1, ...,max

i∈V
di

•
{
e4

0 = +∞, e4
1 = 3γSD, e

4
2 = 2γSD, e

4
3 = γSD

}
for γSD = 1, ...,max

i∈V
di

Of course, many other sets of parameters are possible, but those 4 are enough to
emphasize the general behaviour of the SD rule with regard to the impact on the solution
cost. For each instance, we are going to solve the problem PON3

SD with every possible
threshold set as defined before, that is for every possible value of γSD in the instance
(which means that Net2 will be solved 796 times, and Net14 will be solved 460 times).
The bound on γSD value is set thanks to Proposition 2.2.1.

Figure 2.7: Demand repartition for Net2 Figure 2.8: Demand repartition forNet14

Finally, before solving our problems, let us give the demand profile of each instance
(see Figure 2.7 and 2.8 that give, for a given demand, the number of nodes in the graph
that have a demand that is less or equal). As we can see, Net2 has 51.9% of its nodes
with a demand that equals 0. These nodes are mostly network nodes where a splitter
room may be open but that is not directly linked to a customer. That percentage goes
up to 70.1% for Net14. The demand repartition is not uniform, but curves on figures 2.7
and 2.8 are almost continuous.

77

Figure 2.9: Overcosts due to the SD rule
in function of parameter γSD for Net2

Figure 2.10: Overcosts due to the SD rule
in function of parameter γSD for Net14

Figures 2.9 and 2.10 show results for these tests. As one can see, the overcost (which
is given as a percentage of the best value found for PONK) decreases as γSD increases,
which was to be expected since higher values of it means a less constrained SD rule.
There are two things that need to be noticed. First, in both cases, the decreasing of the
overcost is sharp for low values of γSD in the moderate density area, almost linear for
the high density area. After the inflexion point, the progress is much slower. This must
be taken into account while setting our delocation thresholds. Indeed, unless the future
OA&M gain is important enough to justify the CAPEX overcost, the SD rule shall not be
applied to every node for every splitter level. Another thing that must be noted is that
applying the SD rule differently according to the splitter level has an interest. Indeed, the
overcost gap between e1

k and e4
k thresholds can exceed 5% for the same γSD value. The

second important thing is the sudden overcost drop for high values of γSD (for γSD = 99

in Net2, γSD = 78 in Net14). This drop cannot be explained by the demand repartition
given in figures 2.7 and 2.8 since there is not a specifically high number of nodes with
those precise demands. The explanation must be more subtle. Indeed, one can see that
the overcost goes down step by step. It is just the "last" step that is bigger than the
other ones. So far, we can only conjecture that when γSD increases, there will be a point
where it will free a small set of essential nodes from the SD rule, thus enabling much more
good solutions to be found. We know that these nodes have a specific demand so we can
identify them, but their "property" is probably not linked to that particular amount of
demand since it must have something to do with the local graph topology around this
node.

78

The cost of the household grouping rule

The household grouping rule consists in forcing splitters to be located in a limited number
of nodes. Thus, it restrict the number of fiber routing solutions, which will increase the
solution cost. As for the SD rule, let us show how the cost increases as the HG rule is
strengthened. We perform our tests on the same basis as for the SD rule. We define 4
possible sets of Household Grouping thresholds:

•
{
HG1

1 = 10γHG, HG
2
1 = 10γHG, HG

3
1 = 10γHG

}
for γHG ∈ N+

•
{
HG1

2 = 20γHG, HG
2
2 = 20γHG, HG

3
2 = 10γHG

}
for γHG ∈ N+

•
{
HG1

3 = 50γHG, HG
2
3 = 30γHG, HG

3
3 = 10γHG

}
for γHG ∈ N+

•
{
HG1

4 = 30γHG, HG
2
4 = 50γHG, HG

3
4 = 10γHG

}
for γHG ∈ N+

We solve PON3
HG for every set of parameters, for every valid value of γHG.

Figure 2.11: Overcosts due to the HG
rule in function of parameter γHG for
Net2

Figure 2.12: Overcosts due to the HG
rule in function of parameter γHG for
Net14

Figures 2.11 and 2.12 show results for these tests. In both cases, the expected cost
increase is observed, though it is more important for Net14, the lowest client density
instance. Indeed, for Net2, overcosts go from 3% to 10% in the worst configuration (that
is γHG = 12) whereas, for Net14, they go from 10% to 20%. High density areas like
Net2 have a grid-like structure (unlike lower density areas like Net14), which offers a lot
of routing options. This is a possible reason for the relatively low cost increase one can
observe even for the most constrained version of the HG rule on that instance.

79

2.4 Development of cost models for estimating future
OA&M gains

This section is dedicated to an estimation of the future potential gains of taking into
account OA&M constraints in network design. As mentioned in previous Sections, gains
can be expected in various OA&M activities. In our approach we propose a specific
macro-model for each rule, enabling us to estimate a specific source of gain. Let us
emphasize that our aim is to get an insight in the gain and not to quantify it in an
absolute way, which would prove irrelevant in many cases.

2.4.1 A gain from the optical splitter delocation rule: the search
for failures

The specific OA&M indicator that is considered here is the time needed for troubleshoot-
ing. Troubleshooting activities include all activities consisting in monitoring the network
and defaults sources. These activities are time consuming for network supervisors. In
a general context, the time spent on these maintenance activities will clearly depend on
the "easiness" of identifying faults and their origin. In our PON context, we claim that
the time needed for finding the source of a subscriber service breakdown highly depends
on the fact that its supplying equipments (i.e. splitters) are located at the subscriber’s
node.

Definition 2.4.1. Let us denote by pki the number of subscribers of node i that are not
served by level k-or-upper splitters located at node i, we propose the following macro-model
TS to estimate troubleshooting gains, defined for a solution of the PONK and PONK

OA&M

problems by:

TS =
K∑
k=1

∑
i∈V

pki

with

pki =


0 ∀i ∈ V and k = K + 1

max

(
pk+1
i , di − (mkzki − uk+1

i)
K∏

j=k+1

mj

)
∀k = 1...K, ∀i ∈ V

2.4.2 A gain from the household grouping rule: the preventive
maintenance rounds

The specific OA&M indicator that is considered here is the time needed for preventive
maintenance. Preventive maintenance activities include all activities consisting in visit-
ing, checking weaknesses and update/enhance the status of equipments in operations so

80

as to anticipate and prevent future failures. These activities are intervention workforce
consuming and consequently induce significant operational costs (OPEX costs). In our
PON context, the time spent on these maintenance activities will clearly depend on two
main factors:

• the mean duration of an intervention on a splitter, denoted by linter

• the mean duration of the trip from a technician depot to a splitter site, denoted by
ltravel

Definition 2.4.2. We propose the following macro-model PM to estimate preventive
maintenance workforce needs, defined for a solution of the PONK and PONK

OA&M prob-
lems by

PM =
K∑
k=1

∑
i∈V

linterz
k
i + 2ltravelv

k
i

Noting that mean duration dtravel can vary according to the geographical areas, we propose

the following parametric model, based on one single parameter η =
2ltravel
linter

:

PMη =
K∑
k=1

∑
i∈V

zki + ηvki

2.4.3 Experimental study of OA&M rules gains

In order to assess the positive impact of OA&M rules on future OPEX, let us use the
test setting as defined in section 2.3.3, for the same two instances Net2 and Net14. Thus,
according to variations of parameter γ which control the strength of OA&M rules, the
variations of future estimated OPEX will be shown.

The troubleshooting gains of the "Splitter Delocation" rule

Let us focus on the Splitter Delocation rule and the estimated troubleshooting gain,
described in definition 2.4.1, one can expect to have while applying this rule. Problem
PON3

SD is solved over Net2 and Net14, using the set of delocation thresholds e4
k defined

in section 2.3.3. For each solution, TS is computed. The standard problem PON3 is also
solved for these two instances, and TS is also computed in order to have a comparison
basis. Therefore, the gain or loss relative to the application of the SD rule is easily

computed:
TS(PON3)− TS(PON3

SD)

TS(PON3)
.

Figures 2.13 and 2.14 give the result of this experiment. Let us recall that the lower
γSD is, the stronger the SD rule is also. Therefore, it is no surprise that for very low
values of γSD, which implies that most optical splitters are already put in place before

81

Figure 2.13: Troubleshooting gains due
to the SD rule in function of parameter
γSD for Net2

Figure 2.14: Troubleshooting gains due
to the SD rule in function of parameter
γSD for Net14

optimizing thus making TS very low, the observed troubleshooting gain is high, close
to 100%. Yet, another interesting fashion here is that TS does not strictly decrease as
γSD increases. Indeed, there are limited fluctuations along the curve, even if, globally,
the troubleshooting gain seem to decrease and tend to 0%. For Net2, the decrease is
somewhat linear, and it remains constant (close to 0%) for γSD values greater than 100.
This is also true for Net14 for γSD ≥ 78, with a non linear decrease of the gain and big gap
from 0% to 30% gain around γSD = 78. This shows that the SD rule is quite ineffective
when applied weakly.

However, for a strongly applied SD rule, the gain may be substantial. Indeed, for a
CAPEX overcost limited to 10%, one can see (according to figures 2.9 and 2.10), that
the expected troubleshooting gain given by TS can reach 55% for Net2, and even 70%

for Net14. This emphasizes the fact that the SD rule enables one to loose a little now in
order to save a lot later, which is the initial purpose of the OA&M considerations taken
into account in the optimization.

The preventive maintenance gains of the "Household Grouping" rule

Considering the Household Grouping rule gains, linked to the future maintenance rounds
cost, let us solve the problem PON3

HG over Net2 and Net14 with the set of thresholds
HGk

3. Computing PMη depends on the parameter η, which could be computed using
the instance properties (using the average travel time between all pair of splitter sites
and considering the average intervention time). In the end, η is here to give more or less
importance to the number of splitter sites compared to the total number of splitters. In
order to have different point of views, let us take 3 possible values for η: 0.1, 1 and 10.

82

The preventive maintenance gain or loss is computed from the one observed in solutions

of PON3 and resumed by the formula:
PMη(PON3)− PMη(PON3

SD)

PMη(PON3)
.

Figure 2.15: Preventive Maintenance
gains due to the HG rule in function of
parameter γHG for Net2

Figure 2.16: Preventive Maintenance
gains due to the HG rule in function of
parameter γHG for Net14

Figures 2.15 and 2.16 show the result of the experiment. Let us recall that, contrary
to the SD rule, augmenting γHG means making the HG rule stronger. Therefore, it is
not surprising that the OA&M gain globally rises with γHG, even if that is not a strict
increase (as shown in figure 2.15). In both cases, the gain is much higher for higher values
of η, which represent areas where the travel time ltravel is higher than the intervention
time linter. Thus, the impact of limiting the number of splitter sites that may be opened
makes sense, since the biggest gain observed is around 27% for Net2, and around 62%

for Net14.

Conclusion

To conclude, this chapter was dedicated to tackle the real-life issue of having both CAPEX
and OPEX cost to consider in an optimization problem. In the field of telecommunica-
tions, the area that deals with the future management of a network is the OA&M. From
that perspective, knowing the fact that CAPEX and OPEX are not to be optimized at the
same time, because they belong to different operational entities, with different objectives,
the choice was made to include these OA&M considerations in the optimization under
the form of engineering rules, or constraints. These rules had to be easy to understand,
with few parameters to deal with, and their effect on OA&M had to be assessed, at least
in a qualitative way.

Therefore, the Splitter Delocation rule and the Household Grouping rule were created,
modelled and included in the optimization. Feasibility bounds were provided to that

83

extent. In order to assess the rules’ effects, economical macro-models were created, based
on troubleshooting activities and future preventive maintenance rounds. These models
are easy to compute and simple to understand, with very few parametrization to do.
However, their purpose is only qualitative, and their role is limited to assessment.

From this approach, many other engineering rules may have been chosen, as well as
many other economical macro-models. This work could be extended by adding these new
rules and their economical counterpart. The main point of this study is, in definitive,
to propose a methodology for dealing with future OPEX costs in a real-life optimization
context, and we believe that it could be applied to other network optimization problems.

This work has been published in the Journal of Applied Operational Research, Volume
4(3) in September 2012 by Matthieu Chardy and Cédric Hervet under the title Passive
optical network design under operations administrations and maintenance considerations,
pages 152–172.

84

In
st
an

ce
A
rc
hi
te
ct
ur
e
1
(6
4)

A
rc
hi
te
ct
ur
e
2
(2
:3
2)

A
rc
hi
te
ct
ur
e
3
(2
:8
:4
)

C
z

cf
ga

p
T
im

e
C

z
cf

ga
p

T
im

e
C

z
cf

ga
p

T
im

e

N
et

1
57

24
24

84
63

2
0.
92

%
55

0
63

80
43

77
93

1.
5

1.
22

%
55

0
13

02
78

9
65

44
9.
7

0.
74
%

55
0

N
et

2
20

33
2

25
74

.9
0.
00

%
0.
8

21
52

8
29

72
.2

0.
00

%
4.
8

36
52

4
94

67
.6

0.
03
%

55
0

N
et

3
15

09
26

20
07

6.
6

0.
37

%
55

0
16

20
81

20
57

8.
8

0.
18

%
55

0
33

06
94

22
70

6.
6

0.
10

%
55

0
N
et

4
31

12
36

36
73

7.
5

0.
62

%
55

0
33

96
18

36
46

4.
1

0.
53

%
55

0
69

76
82

34
02

0.
4

0.
44

%
55

0
N
et

5
19

55
00

28
75

8.
1

0.
75

%
55

0
21

32
10

28
08

2.
5

0.
46

%
55

0
43

12
50

30
14

9.
6

0.
24

%
55

0
N
et

6
27

37
00

37
07

6.
5

0.
83

%
55

0
30

07
02

34
44

3.
3

0.
43

%
55

0
61

13
40

35
16

0.
4

0.
34

%
55

0
N
et

7
14

23
24

19
22

4.
4

0.
41

%
55

0
15

40
77

18
93

5.
5

0.
33

%
55

0
31

18
80

23
22

6.
3

0.
14

%
55

0
N
et

8
30

41
98

12
60

51
.3

2.
65
%

55
0

33
75

48
11

35
30

.8
5.
35
%

55
0

66
97

60
93

04
1.
1

1.
95

%
55

0
N
et

9
11

33
90

47
05

1.
5

2.
63

%
55

0
12

39
93

36
63

0.
1

1.
97

%
55

0
24

70
89

30
22

2.
9

1.
21

%
55

0
N
et

1
0

22
91

26
95
02

6.
3

2.
46

%
55

0
25

77
84

82
44

4.
4

4.
47

%
55

0
51

03
70

70
25

9.
4

1.
65

%
55

0
N
et

1
1

30
49

8
11

87
7

2.
75

%
55

0
32

22
3

85
85

.7
1.
44

%
55

0
62

81
3

77
18

.9
0.
79
%

55
0

N
et

1
2

17
36

04
77
46

3.
7

2.
14

%
55

0
19

69
95

65
79

5.
7

3.
88

%
55

0
39

45
19

54
33

8.
1

1.
28

%
55

0
N
et

1
3

70
38

0
19

39
4.
3

1.
93

%
55

0
76

65
9

15
79

2.
6

1.
41

%
55

0
15

54
80

12
70

8.
9

0.
65

%
55

0
N
et

1
4

14
07

6
32

97
.3

0.
00

%
9.
4

14
90

4
28

73
.6

0.
00

%
10

7
28

56
6

36
52

.9
0.
15
%

55
0

Ta
bl
e
2.
3:

R
es
ul
ts

of
th
e
P
O
N
K

pr
ob

le
m

fo
r
3
ar
ch
it
ec
tu
re
s
ov
er

th
e
se
t
of

in
st
an

ce
s

85

Chapter 3

Optimization of Passive Optical
Network deployments with cabling
constraints in an arborescence

Introduction

In an operational context, there are many engineering aspects to be considered. Some
of them are not integrated in optimization models because they can be negligible or too
complex to model, or both. For the passive optical network deployment problem, cabling
constraints are among those that may have a non negligible impact on both solution
cost and feasibility and that can be hard to integrate in existing models. Indeed, in the
literature, there are a few references that tackled this specific issue. In his Ph.D. thesis
[50], Trampont tried to integrate this aspect in his models for generic non oriented graphs.
However, it proved to be hardly tractable if directly put into Integer Linear Programs.
Therefore he proposed complex heuristics to modify a relaxed solution with no cables in
order to find a good "cabled one". The work from Kim et al. [34] is also worth being
mentioned: such constraints are integrated, but in a specific context where the graph over
which the optimization is made is an arborescence. In their work, they also point out the
fact that cabling constraints make the problem hard to solve and they propose relaxations
in order to find upper and lower bounds for the problem, as well as a dedicated heuristic.

Moreover, from an industrial point of view, the optimization tool developed at Orange
Labs for the field PON network deployments, must take into account almost every engi-
neering rules, including cabling constraints. Of course, the real-life size of the problem
(from 1000 to 5000 nodes) and the numerous and complex engineering rules make the
whole problem almost impossible to solve all at once. Therefore, a decomposition of the
problem had to be considered in order to solve several tractable sub-problems sequentially,

86

thus enabling the tool to propose good and valid solutions while loosing the guarantee of
optimality. Today, cabling constraints are integrated only once the routing-of-fibers step
is done. And as mentioned above, this process is highly heuristic and it can lead to cost
sub-optimal deployments.

In this chapter, we aim to tackle the passive optical access network deployment prob-
lem with cabling constraints in an arborescence. Based on the literature, it seemed to
us that this specific version of the problem was a propitious field for many theoretical
and practical improvements. Indeed, to the best of our knowledge, there is no solution
available for solving that problem to optimality for real size instances. Therefore, the first
objective of this chapter is to propose a new model for the PON problem with cabling
constraints. Then, from the literature, the second objective is to extend and prove some
properties of this problem. Finally, our last objective will be to propose a dedicated
labeling algorithm to solve the problem to optimality on real-life instances so that it can
be integrated in an operational decision-making tool. This algorithm will be compared
to exact branch and bound solving approaches.

3.1 Modeling of the problem with cabling constraints
in an arborescence

3.1.1 An arc based formulation for the Passive Optical Network
design with cables constraints problem in an arborescence

In this section, we aim to propose a new model for the optical deployment in an arbores-
cence, different from the one proposed by Kim et al. [34] (which is presented in section
1.1.4) and based on Trampont’s model.

Keeping the notations introduced in Section 1.1.4, let us define another set of variables
for modeling the problem. We denote by Γ−1(i) the unique father node of node i ∈ V ∗

and by Γ+(i) the set of sons of node i (which is an empty set if i is a leaf). As for decision
variables, we denote by zki the number of splitters of level k (for k ∈ {1, 2}) installed at
node i ∈ V and by fkij the number of fibers of level k (for k ∈ {1, 2, 3}) routed along the
arc (i, j) ∈ A. Variables zkolt, k ∈ {1, 2} are introduced in this chapter for convenience but
are equal to 0 for any deployment. We keep the variables clij, (i, j) ∈ A as defined in the
previous section. We thus propose a reformulation of the PON deployment of a 2 level
architecture optimization problem:

87

(P 2
tree)



min
z,f ,c

∑
l∈L

∑
(i,j)∈A

glijc
l
ij +

2∑
k=1

∑
i∈V ∗

Ckzki

s.t. f1
Γ−1(i)i = z1

i +
∑

j∈Γ+(i)

f1
ij, ∀i ∈ V ∗, (3.1)

f2
Γ−1(i)i +m1z1

i ≥ z2
i +

∑
j∈Γ+(i)

f2
ij, ∀i ∈ V ∗, (3.2)

f3
Γ−1(i)i +m2z2

i ≥ di +
∑

j∈Γ+(i)

f3
ij, ∀i ∈ V ∗, (3.3)

3∑
k=1

fkij ≤
∑
l∈L

blclij, ∀(i, j) ∈ A, (3.4)∑
l∈L

clij ≤ 1, ∀(i, j) ∈ A, (3.5)

fkij ∈ N, ∀(i, j) ∈ A, k ∈ 1..3,

zki ∈ N, ∀i ∈ V ∗, k ∈ 1..2,

clij ∈ {0, 1} , ∀(i, j) ∈ A, ∀l ∈ L.

Remark 3.1.1. From this model, one can straightforward derive a similar formulation for
a single level architecture problem. Variables f3

ij and z2
i can be removed and the problem

(P 1
tree) can be formulated as follows:

(P 1
tree)



min
z,f ,c

∑
l∈L

∑
(i,j)∈A

glijc
l
ij +

∑
i∈V ∗

C1z1
i

s.t. f1
Γ−1(i)i = zi +

∑
j∈Γ+(i)

f1
ij, ∀i ∈ V ∗, (3.6)

f2
Γ−1(i)i +mzi ≥ di +

∑
j∈Γ+(i)

f2
ij, ∀i ∈ V ∗, (3.7)

2∑
k=1

fkij ≤
∑
l∈L

blclij, ∀(i, j) ∈ A, (3.8)∑
l∈L

clij ≤ 1, ∀(i, j) ∈ A, (3.9)

fkij ∈ N, ∀(i, j) ∈ A, k ∈ 1..2,

zi ∈ N, ∀i ∈ V ∗,
clij ∈ {0, 1} , ∀(i, j) ∈ A, ∀l ∈ L.

Remark 3.1.2. Investigating the formulation (PON2
Kim) of Kim et al. (see Section

1.1.4), we assume that its relative difficulty to tackle larger instances came from its sym-
metries. Indeed, they are using a path based formulation to explicitly describe all the

88

physical optical branching possibilities from the OLT to any splitters, from any splitter to
any other splitter, and so on until the demand node is reached. On the contrary, P 1

tree

and P 2
tree relie on an arc based formulation, thus getting rid of the symmetry related to

physical optical branching options leading to the same fiber cost (see Figure 2.2).

3.1.2 Experimental comparison of formulations

Let us now compare these formulations on an experimental basis. We generated several
instances in which we solved the Passive Optical Network design problem with cabling
constraints in an arborescence, with a single level architecture, and a two level one.
We generated instances in the size range {10, 20, 30, ..., 100}. For each instance size, we
randomly generated 10 instances. For a given size, we report for the average solving time
("CPU Time (sec)" columns) over the 10 instances of this size, as well as the average gap
("gap (%)" columns). Instances are solved by the mean of the solver CPLEX 12.2 with a
time limit set to 1000 seconds for each run. Note that when no gap is reported, it means
that all instances were solved to optimality within the time limit for the considered size.

Instance size P 2
tree Formulation Kim et al. formulation

CPU time (sec) gap (%) CPU time (sec) gap (%)

10 0.02 - 0.02 -
20 0.09 - 0.30 -
30 0.41 - 133 -
40 2.89 - 754 1.21
50 5.23 - 1000 1.75
60 138 0.02 1000 2.07

Table 3.1: Comparison of the two MILP formulations for a 2 level PON deployment

Results of the experiment are reported in Tables 3.1 and 3.2. Two major observations
must be made:

• (P 1
tree) and (P 2

tree) formulations outperform those from Kim et a.l when a branch
and bound solving approach is considered. This was to be expected since the
formulation of Kim et al. introduces a lot of variables and symmetry.

• both approaches are very limited in terms of size of instances solved to optimality.

As a conclusion, both formulations prove ineffective for solving real-life instances. Thus,
in the next section, we will try to design a new algorithm that can tackle larger instances
of the problem.

89

Instance size P 1
tree Formulation Kim et al. formulation

CPU time (sec) gap (%) CPU time (sec) gap (%)

10 0.008 - 0.016 -
20 0.035 - 0.036 -
30 0.181 - 0.248 -
40 0.244 - 1.523 -
50 0.349 - 9.121 -
60 0.536 - 67.72 0.03
70 1.195 - 168.1 0.06
80 3.631 - 438.1 0.19
90 13.44 - 718.3 0.39
100 49.78 0.01 885.3 0.66

Table 3.2: Comparison of the two MILP formulations for a single level PON deployment

3.2 Study of the problem’s properties

The paper of Kim et al. contains properties of the problem’s optimal solutions. Some
of them could be extended. Since it is always observed on the field, we assume in the
following that cable costs increase with respect to their capacities.

All the definitions and propositions of this section are given (only) for (P 2
tree) as they

embed the similar results for (P 1
tree).

Definition 3.2.1. The sub-tree of G(V,A) induced by node j ∈ V is denoted by T (j), j
being thus the root node of T (j).

Definition 3.2.2. Let us introduce the notion of configuration of a node j ∈ V , denoted
by sj = (ẑ, f̂ , ĉ), where:

• ẑ denotes the splitter variables vector restricted to the nodes of the induced sub-tree
T (j),

• f̂ denotes the fiber variables vector restricted to the arcs of the induced sub-tree T (j),

• ĉ denotes the cable variables vector restricted to the arcs of the induced sub-tree
T (j).

sj is a feasible configuration iif it verifies the set of constraints of (P 2
tree).

Remark 3.2.1. A feasible configuration of the OLT node is a feasible solution of (P 2
tree).

However, a feasible configuration of node j ∈ V ∗ does not necessary correspond to a
solution of (P 2

tree) restricted to the induced sub-tree T (j).

90

3.2.1 Bounds on the number of splitters to be placed at every
node

Proposition 3.2.1. Focusing on the cumulative number of splitters (of level 1 or 2)
installed in each sub-tree, there always exists an optimal solution which satisfies:

∑
i∈T (j)

z2
i ≥

⌊∑
i∈T (j) di

m2

⌋
∀j ∈ V ∗ (3.10)

∑
i∈T (j)

z1
i ≥

⌊∑
i∈T (j) z2

i

m1

⌋
∀j ∈ V ∗ (3.11)

Proof. Let x be an optimal solution from (P 2
tree) such that

∑
i∈T (j)

z2
i =

⌊∑
i∈T (j) di

m2

⌋
− τ

with τ ≥ 1. This implies that there are at least m2τ level 2 fibers coming from the unique
father node of j, along the arc (τ−(j)j). Let us follow these m2τ level 2 fibers on the
same reverse path (it is possible since G is a tree) until we reach the τ first encountered
level 1 splitters along the path. Let j1, ..., jK the corresponding installation nodes (all
different except if K = τ) . We build x′ from x by "bottomizing" these splitters to node
j, that is to say:
∀n = 1, ..., K:

• let zn ∈ N = min(z2
jn ; τ −

∑
k=1,...,n−1

z2
jk

),

• we change the place of the level 2 splitters: z′2jn = z2
jn − zn and z′2j = z2

j + zn,

• we adapt the level 2 fiber flows ∀a ∈ path(jn, j) : f ′2a = f 2
a −m2zn as well as the

level 1 fiber ones ∀a ∈ path(jn, j) : f ′1a = f 1
a + zn.

Then we compute suitable cable size in arcs whose fiber flows were changed: ∀a ∈
path(jK , j), la = arg min

l∈L
bl s.t.

∑
k∈1,...,3

f ′ka ≤ bl, setting claa = 1 and cla = 0, ∀l 6= la ∈ L.

Noting that
∑

k∈1,...,3

f ′ka ≤
∑

k∈1,...,3

fka , we ensure that x′ is feasible and potentially of lower

cost. Therefore, (3.10) is true for some optimal solutions.
(3.11) can, in addition, be proven by the same reasoning, only considering that fibers
originated from level 1 splitters must serve level 2 splitters instead of demands.

Corollary 3.2.1. Focusing on the number of splitters (of level 1 or 2) installed in each

91

node, there always exists an optimal solution which satisfies:

z2
j ≥

⌊∑
i∈T (j) di

m2

⌋
−

∑
i∈T (j′)|j′∈Γ+(j)

z2
i , ∀j ∈ V ∗ (3.12)

z1
j ≥

⌊∑
i∈T (j) z2

i

m1

⌋
−

∑
i∈T (j′)|j′∈Γ+(j)

z1
i , ∀j ∈ V ∗ (3.13)

Corollary 3.2.1 is worth of interest, as it gives a lower bound of the optimal number
of splitters to install on a node as a function of the number of splitters of the same level
installed in the sub-tree originating from this node. Let us now focus on an finding an
upper bound for the number of splitters at a node.

Proposition 3.2.2. Focusing the cumulative number of splitters (of level 1 or 2) installed
in each sub-tree, any optimal solution satisfies:∑

i∈T (j)

z2
i ≤

∑
i∈T (j)

⌈
di
m2

⌉
, ∀j ∈ V (3.14)

∑
i∈T (j)

z1
i ≤

∑
i∈T (j)

⌈
z2
i

m1

⌉
, ∀j ∈ V (3.15)

Proof. Let us consider the deployment policy consisting in serving all demand nodes by

co-located level 2 splitters, thus installing
⌈
di
m2

⌉
level 2 splitters on every demand node

i. This is obviously the most consuming policy in terms of level 2 splitters (no sharing
of any level 2 splitter among demand nodes), thus defining an upper bound for this type
of splitters to be installed in any sub-tree, hence (3.14). Note that the fact can prove
unfeasible with respect to cabling constraints (3.4) and (3.5), but this fact can only reduce
these bonds. The same reasoning applies to level 1 splitters for deriving (3.15).

Corollary 3.2.2. In any optimal solution, an upper bound for the number of optical
splitters (of level 1 or 2) installed at each node is given by:

z2
j ≤

∑
i∈T (j)

⌈
di
m2

⌉
−

∑
i∈T (j′)|j′∈Γ+(j)

z2
i , ∀j ∈ V ∗ (3.16)

z1
j ≤

∑
i∈T (j)

⌈
z2
i

m1

⌉
−

∑
i∈T (j′)|j′∈Γ+(j)

z1
i , ∀j ∈ V ∗ (3.17)

Corollary 3.2.2 is worth of interest, as it can give an upper bound of the optimal
number of splitters to install on a node as a function of the number of splitters of the
same level installed in the sub-tree originated from its node. The previous corollaries can
be combined in the following proposition.

92

Proposition 3.2.3. On any leaf node j, the optimal number of optical splitter to be
installed is such that: ⌊

dj
m2

⌋
≤ z2

j ≤
⌈
dj
m2

⌉
(3.18)⌊

z2
j

m1

⌋
≤ z1

j ≤
⌈

z2
j

m1

⌉
(3.19)

Proof. This is a straightforward consequence of corollaries 3.2.1 and 3.2.2.

Corollary 3.2.3. There are at most 2 interesting possible splitter numbers per splitter
level for a leaf leaf node (there is only one if dj, respectively z2

j , are a multiple of m2,
respectively m1).

3.2.2 A cutting rule for ensuring cabling feasibility

Definition 3.2.3. We associate to any feasible configuration sj = (ẑ, f̂ , ĉ) (of any node
j ∈ V) a vector of remaining demand in fibers. The vector of remaining demand is
denoted d̂k(sj) ∈ N and defined by the following recursion:

• initialization (if j is a leaf):

d̂3(sj) = max
{
dj −m2ẑ2

j(sj), 0
}

(3.20)

d̂2(sj) = max
{
ẑ2
j(sj)−m1ẑ1

j(sj), 0
}

(3.21)

d̂1(sj) = ẑ1
j(sj) (3.22)

• recursive function (if i ∈ V , not being a leaf):

d̂3(sj) = max

 ∑
i∈Γ+(j)

d̂3(si)−m2ẑ2
j(sj) + dj; 0

 , (3.23)

d̂2(sj) = max

 ∑
i∈Γ+(j)

d̂2(si)−m1ẑ1
j(sj) + ẑ2

j(sj); 0

 , (3.24)

d̂1(sj) =
∑

i∈Γ+(j)

d̂1(si) + ẑ1
j(sj) (3.25)

Proposition 3.2.4. A feasible configuration sj = (ẑ, f̂ , ĉ) of node j ∈ V ∗ such that:

3∑
k=1

d̂k(sj) > max
l∈L

bl (3.26)

does not correspond to a solution of (P 2
tree) restricted to the induced sub-tree T (j) (see.

Remark 3.2.1).

93

Proof. This is straightforward when noticing that the whole cumulative remaining de-

mand of node j,
3∑

k=1

d̂k(sj), should be routed to j from its unique father node Γ−(j),

which would make constraints (3.4) and (3.5) of problem (P 2
tree) violated for at least the

arc (Γ−(j)j).

3.2.3 Design of a dominance rule on the sets of feasible configu-
ration

Before entering the details of the dominance rule we aim to introduce, let us introduce
some definitions first.

Definition 3.2.4. We associate a cost to any feasible configuration sj = (ẑ, f̂ , ĉ) (of any
node j ∈ V) defined by the following recursion:

• initialization (if j is a leaf):

cost(si) =
2∑

k=1

Ckẑkj (sj) (3.27)

• recursive function (if i ∈ V , not being a leaf):

cost(sj) =
2∑

k=1

Ckẑkj (sj) +
∑

i∈Γ+(j)

(
cost(si) +

∑
l∈L

gljiĉ
l
ji(sj)

)
(3.28)

Let us now introduce a dominance relation on the set of feasible configurations of any
node j ∈ V .

Definition 3.2.5. Let sj and s′j two feasible configurations of node j ∈ V . Then sj

dominates s′j, noted by sj � s′j, if{
d̂k(sj) ≤ d̂k(s′j), ∀k ∈ {1, 2, 3}

cost(sj) ≤ cost(s′j)

and that at least one of these inequations is strictly verified.

Proposition 3.2.5. Removing all dominated configurations from the set of feasible con-
figuration of j ∈ V does not remove all optimal solution vectors of (P 2

tree) restricted to
T (j).

Proof. Let sj and s′j be two feasible configurations of node j. Let sj correspond to an
optimal solution vector x∗ of (P 2

tree) restricted to T (j), and s′j � sj. Our objective is to
build an optimal solution x′ of (P 2

tree) from s′j. Let extend s
′
j with the x∗ solution vector

94

restricted to G(V,A) \ T (j). As d̂k(sj) ≤ d̂k(s′j) ∀k ∈ {1, 2, 3}, then (f ∗
k

Γ−(j),j)k=1,...,3

are compliant with s′j remaining demand. Then x′ is a feasible solution for (P 2
tree). As

cost(s′j) ≤ cost(sj) (the only part of the total cost that can differ between x′ and x∗), we
have x′ optimal.

3.3 Design of a labelling algorithm for solving the prob-
lem to optimality

In Section 3.2, we developed the theoretical material that is used in the design of our
exact labelling algorithm for solving (P 2

tree) to optimality.
Let us describe the general scheme of our labelling algorithm, which consists in re-

cursively build the set of feasible configurations of each node, starting from the leaves
until reaching the OLT. Results of the previous section are used to reduce the number of
configuration that we explore and propagate during the algorithm.

The first step of the algorithm is be to sort V according to the nodes depth in the
tree T , in a decreasing order. Let this new set be Ṽ . The second step is to sequentially
explore the nodes of Ṽ , and 3 cases can occur:

• The node is a leaf: at most 2 feasible configurations are generated thanks to corol-
laries 3.2.1 and 3.2.2, and if any of them is infeasible due to cable limitation, it is
removed (the cut of Proposition 3.2.4).

• The node is not a leaf: we build all the feasible configurations from the Cartesian
product of the sets of configurations of its son nodes for details on this building).
From any combination of a feasible configuration of each son node, at most 2 feasible
configurations are kept thanks to corollaries 3.2.1 and 3.2.2. Endly, the dominance
rule given by definition 3.2.5 is applied to remove dominated feasible configurations.

• The node is the root of the tree (OLT): build all the feasible configurations from
the Cartesian product of the sets of configurations of its son nodes. Since no optical
splitters can be put on the OLT, the only configurations we need to consider are
those with null remaining demands and splitter variables.

The third step consists in selecting a configuration of minimal cost (see. Definition 3.2.4)
at the OLT node: this configuration correspond to an optimal solution of (P 2

tree).

We provide the pseudo-code of the algorithm in a more formal way in Algorithm 3.

95

Algorithm 3 Labelling algorithm for solving (P 2
tree) to optimality.

Require: G(V,A).
1: Create Ṽ by sorting V according to their depth in a decreasing order.
2: for j = 1 to |Ṽ | do
3: if j is a leaf node then
4: Build the two feasible configurations compliant with corollaries 3.2.1 and 3.2.2.
5: else
6: Extend(j): build the set of feasible configurations from the Cartesian product

of the sets of feasible configurations of the son nodes of j, filtered by the use of
corollaries 3.2.1 and 3.2.2. Function Extend is detailed in Algorithm 4.

7: end if
8: Apply Proposition 3.2.4 to remove configurations.
9: Apply the dominance rule from Definition 3.2.5 to eliminate dominated configura-

tions.
10: end for
11: Consider the OLT node: configurations solt such that d̂2(solt) 6= 0 or d̂3(solt) or ẑ2

olt 6= 0

or ẑ1 6= 0 are removed.
12: return min

solt
cost(solt)

Remark 3.3.1. The fact that the algorithm is an exact solution method is ensured by
Proposition 3.2.5

Remark 3.3.2. The practical efficiency of labelling algorithms (in terms of computation
time or memory used) strongly relies on a smart management of in its coding. We wanted
to stress the fact that the implementation of the algorithm was in practice done in a more
efficient way as it is synthesized above for sake of understanding.

To conclude this section, we illustrate the algorithm on an example on Figure 3.1
where, for the sake of clarity, only one splitter level is considered. Since it is almost to
represent configurations, we use labels on the figure, denoted labels when associated to a
configuration s, such that labels = (d̂1(s), d̂2(s), d̂3(s), cost(s)). Starting by the two leaf
nodes at the bottom right of the tree, labels are generated. The node with 8 demands
only generates one label since the splitter capacity equals 8. The cost is shown as the
sum of the installed splitter and the required cable. At their father node, the orange
rectangle shows the result of the Cartesian product of all configurations. Since the node
with 8 demands only have one label, 2 labels are generated by the Cartesian product.
The 10 demands of the father node are then added in the labels, and the two possible
configurations are generated from each label. It results in 4 possible configurations. All

96

are feasible regarding the cable size, but the last two configurations are dominated by
the second one. They can be removed. As the node is a son node of the root, the first
solution can not be kept, as for the other son node of the root. In the end, only one
configuration is possible: it is the optimal solution of the problem.

Figure 3.1: An illustration of the labelling algorithm on a little instance with only one
splitter level

3.4 Experimental testing of the algorithm

The objective of this Section is to assess the efficiency of the method to solve real-life
instances, which implies between 1000 and 5000 nodes on average. To that extent, we
randomly generated tree graphs of various sizes, and for each size of graph (being a
multiple of 10), we generated 50 instances that we solved with Algorithm 3. For each
instance solved, we export the solving time and the number of labels that were kept at
each node after the appliance of both the cut rule and the dominance rule. All results
are displayed on Figures 3.2 and 3.3.

The results clearly indicates the tractability of the dynamic programming approach,
which solves real-size instances. Indeed, even the largest instances that were considered
here are solved within 50 seconds. Even though the solving time starts to increase expo-
nentially, one could hope to solve larger instances. In fact, tests showed that the memory
limitations allowed us to solve instances between 5000 and 6000 nodes, in less than half
an hour. Note that the range of solving times for a given instance size also increases.

97

Figure 3.2: Solving times for all tested instances in function of the instance size

Indeed for the largest instance size showed here, the solving time is between 10 seconds
and 50 seconds. This exponential behavior was to be expected since Algorithm 3 does
not avoid the curse of dimensionality, it only delays it.

Figure 3.3 shows the sum of relevant labels at each node generated throughout the
whole algorithmic process. Contrary to the solving time, it increases linearly. This
emphasizes the stability and the delaying of the combinatorial explosion provided by
properties of Section 3.2.

Conclusion

To conclude, this chapter explored a specific version of the Passive Optical Network design
problem in tree-graphs that takes cabling constraints into account. From the initial work
of Kim et al., we proposed another model for this problem, from which we were able
to derive some properties. These properties were then used to recursively characterize
optimal solutions, by the mean of the tree structure of the graph. A labeling algorithm
was then designed to solve the problem to optimality. All solving approaches were then
compared, showing that our new modeling seems to perform better than the one proposed
by Kim et al., but the major result being the fact the labeling algorithm outperforms
branch-and-bound approaches based on both models.

As such, these results are encouraging and one can imagine various ways of improving

98

Figure 3.3: Relevant labels for all tested instances in function of the instance size

the model so it could get closer to field expectations, while improving the labeling algo-
rithm as well so it can take these model improvements into account. We chose to leave
this research way opened so we could focus the major issue that field deployments teams
are struggling with: the uncertainty on fiber demand.

99

Algorithm 4 Extend function
Require: Let P the number of sons of node j : son1, ...sonP the nodes sons with their

set of configurations CONFIGson1 , ..., CONFIGsonP .
Require: Let CONFIGj = ∅ the set of configurations of j to be built.
Require: Let sj = null (one configuration)
1: for (sson1 , ..., ssonP) ∈ (CONFIGson1 × ...× CONFIGsonP) do
2: Initialize sj =

(
ẑ, f̂ , ĉ

)
.

3: for soni ∈ (sson1 , ..., ssonP) do
4: f̂ 1

j,soni
= d̂1(ssoni); f̂

2
j,soni

= d̂2(ssoni); f̂
3
j,soni

= d̂3(ssoni).
5: lj,soni = arg min

l∈L
bl s.t.

∑
k∈1,...,3

f̂kj,soni ≤ bl.

6: ĉ
lj,soni
j,soni

= 1.
7: for l 6= lj,soni ∈ L do
8: ĉlj,soni = 0.
9: end for
10: for (a ∈ Asoni | T (soni) = (Vsoni , Asoni)) do
11: f̂ 1

a = f̂ 1
a (ssoni); f̂

2
a = f̂ 2

a (ssoni); f̂
3
a = f̂ 3

a (ssoni).
12: for l ∈ L do
13: ĉla = ĉla(ssoni).
14: end for
15: end for
16: for (i′ ∈ Vsoni | T (soni) = (Vsoni , Asoni)) do
17: ẑ1

i′ = ẑ1
i′(ssoni); ẑ

2
i′ = ẑ2

i′(ssoni).
18: end for
19: end for
20: for z2 ∈ N do
21: if

⌊∑i′∈T (j) di′

m2

⌋
−

∑
i′∈T (soni)|soni∈Γ+(j)

ẑ
2
i′ ≤ z2 ≤

∑
i′∈T (j)

⌈
di′

m2

⌉
−

∑
i′∈T (soni)|soni∈Γ+(j)

ẑ
2
i′

 then

22: ẑ2
j = z2.

23: for z1 ∈ N do
24: if


∑i′∈T (j) ẑ2

i′

m1

− ∑
i′∈T (soni)|soni∈Γ+(j)

ẑ
1
i′ ≤ z1 ≤

∑
i′∈T (j)

⌈
ẑ2
i′

m1

⌉
−

∑
i′∈T (soni)|soni∈Γ+(j)

ẑ
1
i′

 then

25: ẑ1
j = z1

26: CONFIGj = CONFIGj ∪ {sj}
27: end if
28: end for
29: end if
30: end for
31: end for
32: return CONFIGj

100

Chapter 4

The modeling of the passive optical
network deployment optimization
problem under demand uncertainty
through robust optimization

Introduction

Chapters 2 and 3 focused on engineering-oriented aspects of the passive optical network
deployment. However, there is an issue that is recurrent in network design problems:
the uncertainty on the future demand for fiber services. Indeed, one can hardly predict
what the actual fiber demand will be in the future while conceiving the network. Thus,
many problem arises from this uncertainty. What if the network is not suited for the
occurring demand scenario? If not, how much money one should spend to modify the
network in order to supply that demand? What are the chances of having a "good"
network regarding the demand? How can we maximize these chances? How to build a
coherent model for that demand uncertainty?

These are the kind of difficult questions that often lead decision-makers to first build
optimization models with a fixed, certain demand, as in [21, 34]. Indeed, by essence, the
demand is highly volatile over space and time, then estimating it with accuracy can prove
very hard in many cases. Moreover, in a competitive context as the telecommunications
one, clients do not hesitate to switch their subscription contract from one operator to
another, thus impacting the actual demand over time, even once the network is installed
once and for all. Such imprecision could lead, in the case of network design problems, to
two main problems:

101

• in case the demand exceeds the estimation, this demand will not be supplied by the
network unless the operator does the necessary network extension, at a high cost,
thus delaying the connection of the client to the network.

• in case the demand is below the estimation, it means the network has been over
dimensioned, and it could be seen as a waste of time and money.

It is clear, by looking at these problems, that dealing with uncertainty will have a cost.
That cost will be the amount of resources decision-makers are ready to invest to somehow
protect themselves from what will happen later, and the cost he will spend later to repair,
or adapt, his solution.

In this chapter, the objective is to propose a coherent modeling of the optimization
problem that takes demand uncertainty into account. It will have to be coherent from
a field point of view, regarding what is usually done in the literature. That means we
want a model that tackles the real-life problem without limiting it to the realm of what
is easily solvable. To that extent, various approaches will be discussed in order to make a
modeling choice. The purpose of this chapter is to present the operational stakes linked
to demand uncertainty, our comprehension processing of the problem, our modeling, our
view of the approach and its motivation. The point is to clearly justify the trails we
decided to investigate in order to tackle the generic issue of demand uncertainty. At the
end of this chapter, we aim to obtain a comprehensive model of the problem we want to
solve, so that the following chapters may deal with that solvability.

4.1 The choice of robust optimization

The generic framework under which we aim to deal with the demand uncertainty is robust
optimization. This choice has been set as a rule before starting the present Ph.D, in order
to restrict the exploration field. Indeed, other choices could have been made, like using
stochastic optimization (or even inventing a whole new theory). However, this arbitrary
choice, made for practical reasons at first, could have lacked relevance on a scientific
point of view. Of course, this potential lack of relevance would have been detected during
the bibliographical study (presented in section 1.2) and another research way would have
been preferred to robust optimization. However, the initial choice of robust optimization
was maintained since we estimated this approach to be the best, suited for the passive
optical network deployment problem.

First, as mentioned in the bibliographical study, robust optimization is more focused
on building solutions that are not too bad, whatever may happen. In opposition to
this philosophy, stochastic optimization tries to get as many gain as possible from the

102

optimization, despite the data uncertainty, thus relying on its probabilistic description.
Therefore, stochastic optimization will be suited for problems that are repeated over time,
where one can afford to "loose" a little if it is assured to gain a lot globally. Problems
like portfolio management are a good example of applied stochastic optimization.

Robust optimization is thus designed to deal with problems where feasibility is a key
criterion, and where the decision-maker absolutely wants to avoid bad surprises regarding
the cost of the solution. Also, it is a good alternative to stochastic optimization when a
probabilistic description of the data uncertainty is not available, or hard to know with
precision. For all these reasons, we believe that robust optimization was more suited to
tackle the passive optical network design problem. Indeed, a network is deployed once
and for all. Therefore, if a "bad" scenario occurs, there is no way to cheaply adapt the
network to this scenario and in the end, the solution will be too much costly. We stress
the fact that decision-makers are often risk averse, and they tend to prefer solution that
will not be too bad whatever happens, with a good average cost performance. Moreover,
as we will see later, the future fiber demand is very hard to quantify and estimate, and
deriving predictive probability laws for that uncertain parameter would prove to be, in
practice, irrelevant, if not wrong.

4.2 On the demand uncertainty in the passive optical
network design context

In order to stay compliant with the notations throughout the document, let us denote
by d the vector of uncertain demands. That vector has a size of |V |, V being the set
of nodes. As it is stressed before, the customer demand is highly volatile over time
and space, which makes it hard to estimate. But in robust optimization, there is no
need for a precise description of the uncertainty, for it just needs to be contained in a
bounded uncertainty set (see section 1.2.3). There are some sets that were proposed in
the literature, they are reviewed in Section 1.2.3. Considering that dmaxi is the maximum
number of client linked to the node i ∈ V , the only thing we can state for now is:

di ∈ N, di ≤ dmaxi (4.1)

The first choice we made was to avoid ellipsoidal uncertainty sets like the one proposed
by Ben-Tal and Nemirovski [7]. Indeed, there was no particular reason from the field to
consider that kind of uncertainty set.

The second choice we made was to avoid the well-known Bertsimas and Sim uncer-
tainty set. Let us recall that building this set requires to define, for each uncertain data,

103

a nominal value that would be its "average" value. Then the actual future value could
be found "around" that central nominal value. That would mean we need to define that
average value for every demand node, and the set of valid values for the future demand
around this nominal value. Unfortunately, even this nominal value was not available in
practice. The only thing that is known about the demand is that it will be between noth-
ing and the total number of clients linked to the node. However, a way of circumventing
this issue would be to notice that the worst case scenarios that we will try to optimize will
always be scenarios where all uncertain data will be greater or equal than their nominal
value. Therefore, a model of the uncertainty set that could fit our needs could be to
consider the nominal value to be zero, the maximal variation around that nominal value
to be dmaxi for all i ∈ V , and limiting the number of nodes having their maximal demand
by a classic parameter Γ. But in a way, that would mean we would restrict ourselves to
scenarios where some nodes are set their maximal values, and others to zero. And as we
will see later, this is too restrictive in our problem.

Under these considerations, our final choice was to build an uncertainty set that is
derived from what is expected by operational teams. Even if very little information
is available about the demand behavior from the marketing department, they claim the
most relevant parameter to consider for the passive optical network design problem under
demand uncertainty is the maximum percentage of the total demand we expect to have
in the end: this parameter can be seen as the maximum market share expected by the
telecommunication operator for fiber subscriptions. This percentage will give us a total
amount of demand d̄ that will be distributed among all nodes of V in an unknown way.
We believe that this uncertainty set, denoted by D, is much more natural to use in our
context than the uncertainty set of Bertsimas and Sim. Therefore, we chose to use a
polyhedral uncertainty set.

Definition 4.2.1. The uncertain demand vector d is contained in the following uncer-
tainty set D, defined from the parameter d̄ that is the total amount of demand that will
actually occur in the future.

D =

{
d ∈ N|V |

∣∣∣∣∣di ≤ dmaxi ,∀i ∈ V and
∑
i∈V

di ≤ d̄

}
(4.2)

Remark 4.2.1. In appearance, this approach seems to ignore the fact that urban areas
themselves are changing over time. This means that new buildings may be built, thus
implying more households linked to a node (or even new nodes with households to serve)
to consider. It means that some actual dmaxi may be wrong in the future. However, stating
a maximal demand dmaxi does not imply a loss of generality. Indeed, if a construction
project is known around the node i so that there will be d′i more potential households

104

to serve, then one just need to add that number to dmaxi . If no construction project is
known, yet it is highly possible that the urban areas will change in the following decades,
telecommunication operators often add an over-dimensioning quantity to the local demand
in order to be able to supply that potential future demand. It is thus always possible to
increase dmaxi for all i ∈ V so that every scenario is included in D.

Remark 4.2.2. Note that if we consider the set D with d ∈ R|V |, the extremal points of
D would be integer points.

Remark 4.2.3. The model proposed for D states that we will know the demand limitation
over the whole area V . However, it is also possible that for some sub areas SV ⊂ V ,
deeper information is available. In that case, adding such information to the set D would
be useful to enrich its description. We denote by D′ such an uncertainty set.

D′ =

d ∈ N|V |

∣∣∣∣∣∣∣∣ di ≤ dmaxi , ∀i ∈ V and

∑
i∈V

di ≤ d̄∑
i∈SV

di ≤ d̄S,∀SV ∈ V

 (4.3)

Most of the methods presented in the following chapters will also be compliant with the
uncertainty set D′. For the sake of clarity, results will not be extended to that case every
time.

4.3 On the field deployment practices by operational
teams

Driven by the objective of proposing an approach that can answer real operational con-
cerns, let us quickly review our observations and feedback we obtained from field deploy-
ment operators. Indeed, engineering rules changed over the years, along with deployment
processes. They will be detailed below and every modeling choice of the chapter will
be made so as to be as close as possible from them. Some may seem contradictory with
what was proposed in Chapters 1, 2 and 3. These differences are chronologically explained
since our work on the robust approach started last. Therefore, deployment hypothesis
that were valid at the time had changed. Note that the deployment rules we are going
to detail here are those used by Orange. For that reason, we will only give a generic
description of it, so it is useful for our problem’s modeling. It is of course possible that
other operators decided to do otherwise.

The first important change is that in practice, the only relevant decision to make is
the placement of only one splitter level. Indeed, even if all deployed architectures are
still having 2 or 3 splitter levels, Orange decided that for the sake of simplicity, it would

105

be best to place some of these splitters in advance. Note that this in the line with what
was proposed in Chapter 2 with the splitter delocation rule (see Section 2.1.1 for specific
details). In practice, the last splitter level is now put directly on the client’s node, so as
to supply all the demand. In the case of a 3 level architecture, the first splitter level is
put at the OLT. In both cases, only one splitter level remains to be placed and optimized.

The second important change is about duct capacities. In practice, they are simply
ignored. There are two main reasons for that: the fact that most of the time the remaining
capacity is very large and the technological advancement which makes fiber cables getting
much thinner that before. Therefore, the chances that a deployment solution is unfeasible
due to capacity constraints is extremely low. Moreover, before starting the deployment
of a chosen solution, operational entities are always going on the field before to check if
the remaining capacity is large enough for the solution to be deployed. In case there is a
duct that can not be used as planned (due to an error or an omission in the database),
the solution is changed accordingly. This case rarely occurs on the field, this is why
operational entities prefer not to consider capacities in the first place and then changing
the solution before making the deployment if a limiting capacity is found on the field.

The last point is the most important since it deals with demand uncertainty. Indeed,
operators are fully aware of the difficulty of building the network without knowing the
demand precisely. To that extent, operational entities decided to build the network
sequentially. The first step is to draw fibers from the OLT to every potential household
in the area. Indeed, even if we cannot be assured that they will subscribe our fiber offer, it
is much simpler to give every client an incoming fiber than coming back later to add some
if the demand changes. As fibers are drawn, rooms are opened to they can receive optical
splitters, to sustain fiber paths. However, as the branching in and out of a splitter is
easy to perform, and most of all easy to modify, it was thus decided that optical splitters
would be the key decision that will adapt the network to the actual demand. In practice,
optical splitters are thus placed accordingly to the demand. As in the first step, optical
fibers were deployed for everyone, it is always possible to find a splitter configuration that
can fit any demand. Of course, depending on the demand, more or less splitters will be
needed. This is why the robust approach has been chosen.

4.4 Modeling the problem as a single stage robust op-
timization problem

Regarding the bibliography in section 1.2, the first approaches that were designed for
robust optimization were single stage approaches. However, as seen in section 1.2.5, it is
not suited for every problems. Thus, at this point, the reader may already know that a

106

single stage approach for this problem will quickly reach its limits due to the specificities
of Right-Hand-Side uncertainty. However, this raises the opportunity to discuss this issue
for our problem, and to highlight some of its particularities.

4.4.1 A formulation based on arc variables

For the deterministic version of the problem

For the time being, let us propose a model for a deterministic version of the problem
(that is, without uncertainty) which is based on the formulation proposed by Trampont
et al. in [50, 21], introduced in section 1.1.2 and using the same notations.

(PONarc
det)



min
f ,z

n∑
i=1

Czi +
∑

(i,j)∈E

2∑
k=1

ckij
(
fkij + fkji

)
s.t.

∑
j 6=i

f1
ji ≥ zi +

∑
j 6=i

f1
ij, ∀i ∈ V ∗ (4.4)∑

j 6=i

f2
ji +mzi ≥ di +

∑
j 6=i

f2
ij, ∀i ∈ V (4.5)

zi ∈ N, ∀i ∈ V ∗, z0 = 0

fkij ∈ R, ∀(i, j) ∈ E, k = 1, 2

Here, several differences (from the original deterministic model presented in Section
1.1.2 and studied in [50, 21]) shall be highlighted. First, constraints (4.4) and (4.5) are
set to be inequalities instead of equalities. Both formulations are equivalent, however, in
a robustness context, as shown in [2, 43] for example, dealing with equality constraints
can prove less relevant. Indeed, once demand is uncertain, the incoming number of fibers
on a node may not be set too strongly, as one may want to keep several branching
options for satisfying the demand in different ways. Moreover, we are only considering a
single level splitter architecture and we neglect capacity constraints to be consistent with
assumptions of Section 4.3.
Note that the integrity of variables f can now be relaxed since capacities have been
removed (see remark 1.1.4).

For the single stage robust version of the problem

Problem (PONarc
det) being defined, let us examine the demand uncertainty in this prob-

lem. The uncertain data here are the right-hand-side terms di,∀i ∈ V . Let us use the
uncertainty set D defined in the previous section 4.2 by the equation (4.2) since it is more
suited to our modeling needs. Let us define the single stage robust counterpart problem of

107

(PONarc
det), denoted by (PONarc

rob), which is the problem consisting in finding the cheapest
network so that any demand can be satisfied. Note that for now, the sequential building
of the network presented in Section 4.3 is not taken into account. It can be modeled as
follows:

(PONarc
rob)′



min
f ,z

n∑
i=1

Czi +
∑

(i,j)∈E

2∑
k=1

ckij
(
fkij + fkji

)
s.t.
∑
j 6=i

f1
ji ≥ zi +

∑
j 6=i

f1
ij, ∀i ∈ V ∗∑

j 6=i

f2
ji +mzi ≥ d̂i +

∑
j 6=i

f2
ij, ∀i ∈ V

zi ∈ N, ∀i ∈ V ∗, z0 = 0

fkij ∈ R, ∀(i, j) ∈ E, k = 1, 2

with d̂i = min{dmaxi , d̄}.

Remark 4.4.1. Note that d̂i = min{dmaxi , d̄}. Thus if, for all nodes i, dmaxi ≤ d̄, then
(PONarc

rob) is exactly the same as (PONarc
det) since d̂i = dmaxi , ∀i ∈ V ∗. In the following,

we will always consider that dmaxi ≤ d̄, ∀i ∈ V ∗ because it never happens in reality.

Thus, this robust single stage problem reduces to the deterministic passive optical
network design problem. Indeed, supplying the maximal demand possible on every node
is the best way to ensure a complete feasibility. Moreover, as it is discussed in the
following section, using dmaxi for all nodes (instead of d̄ if dmaxi > d̄) is more relevant from
an operational field point of view. However, knowing the fact that not every household
in the area will contract a fiber subscription in the end, we can reasonably state that
the network is over dimensioned, especially in terms of optical splitters. This issue is
specific to right-hand-side uncertainty formulations, as shown in section 1.2.5, for they
often lead to trivial single stage formulations where the limitations put on the uncertainty
set D are of little effect on the optimization. Moreover, as it is recalled in this section
by Minoux [38], dualizing (PONarc

rob) in order to have uncertain values in a row-wise
configuration is out of the question since it is a completely different problem: the dual
of the robust counterpart is different from the robust counterpart of the dual. Therefore,
unless having another formulation, solving the problem with a single stage approach
present little interest, both in practice and in theory.

108

4.4.2 A formulation based on path variables

For the deterministic version of the problem

In their work, Kim et al. [34] proposed a path formulation for solving the deterministic
version of the problem with cabling constraints in an arborescence. That model is also
used in Chapter 3. What is interesting us here is that in their model, demands were
introduced in a row-wise way in the constraint matrix. We will derive the modeling
principles they use to propose a single stage robust problem that may perform better
than the one presented in the latter section. However, since we remain in a single-stage
context, we cannot include the sequential building of the network explained in Section
4.3.

Let us denote by ckij, k = 1, 2, the cost of routing one level k fiber from node i to node
j in G, along the shortest path. Using only the shortest path is possible since we do not
consider capacity constraints in this problem. Ci is now the cost of installing a splitter at
node i. This splitter cost is a combination of the cost of the splitter itself C and the cost
of routing a level one fiber from the OLT to the node i along the shortest path. Then
Ci = C + c1

0i. All other data notations remains the same.
Splitter variables are still denoted by zi for all i ∈ V ∗. Let us denote by xij the

continuous variable that is the proportion (between 0 and 1) of the demand at node j
that is served by splitters located at node i along the shortest path in G from i to j. It
is important to note that we relax integrity constraints on the fiber variables and that,
as we will see later, it may result in non integer number of fibers, even though there are
no capacity constraints.

Thus, the deterministic passive optical network design problem can have the following
path formulation:

(PONpath
det)



min
f ,z

n∑
i=1

Cizi +
∑

(i,j)∈V 2

c2
ijdjxij

s.t.
∑
i∈V ∗

xij = 1, ∀j ∈ V ∗ (4.6)∑
j∈V ∗

djxij ≤ mzi, ∀i ∈ V ∗ (4.7)

zi ∈ N, ∀i ∈ V ∗,

xij ∈ R+, ∀(i, j) ∈ V ∗2

The objective function minimizes the cost of installing a splitter at a given node
plus the cost of routing fibers in the graph. Constraints (4.6) ensure that the demand
satisfaction at node j ∈ V ∗ is entirely served for all j. Constraints (4.7) ensure that there
are enough optical splitters located at node i ∈ V ∗ to produce the outgoing fiber flow

109

from node i towards all nodes of the graph (including i). Note that variables xij, even if
they are defined in R+, can not exceed 1.

For the single stage robust version of the problem

Let us now consider that the demand vector d is uncertain. From the literature (see
Section 1.2.4), we know that there are efficient methods to take row-wise uncertainty into
account. That consists in protecting every constraint against uncertainty by integrating
an optimization problem within each constraint. However, before applying this approach,
we must introduce the uncertainty in our problem appropriately. The idea is to consider
a "relaxed" version of the column-wise uncertainty defined in 4.2.

In (PONpath
det), there are di factors in the objective function and in constraints (4.7).

But before applying the results from the literature, let us discuss the purpose of robustly
optimizing our problem. As mentioned in the latter section 4.4.1, being feasible to every
scenario is actually very easy, since deploying the network for everyone is already, in
terms of feasibility, the "most" robust solution. Thus it is important to precise that the
point of dealing with uncertainty, in our operational context, is to reduce the total cost,
knowing that the full demand scenario will never occur, while ensuring feasibility.

Our problem has 2 types of variables: fibers and splitters. From the fiber point of
view, one can easily see that whatever our robust approach is, we will have to supply
every clients with fibers, as it is done on the filed (see Section 4.3). It implies that on
every demand node i, the number of coming last level fibers shall always be equal (or
greater) to dmaxi . That fact holds even when d̄ ≤ dmaxi (which is very unlikely in practice)
since within a building, one can hardly know which client will chose to be connected to
the network. In other words, the only way to ensure feasibility from a fiber point of view
is to provide everyone in the area with a last level fiber. This is also coherent with field
requirements since when networks are deployed, fiber cables are pulled into ducts and
clients are connected once and for all. It would not be acceptable to come back once the
network has been deployed long ago in order to add fibers so that a non connected client
that desires to join can do so. Therefore, our margin of action is in optical splitters.
While fibers ensure a potential connexion to the OLT, the key item that make the link
real is the optical splitter. In practice, splitter branching can be changed according to
the actual demand and operators already exploit that possibility to reduce the number
of splitters they will install in the network. Since in practice, optical splitters tends to
be much more expensive than fibers, one can easily see that reducing their number can
result in a non negligible gain, and this is why we tackled uncertainty in this study.

110

Once these considerations are taken into account, let us take our path formulation
introduced in this section. We propose the following single stage robust problem for the
passive optical network design problem:

(PONpath
rob)



min
x,z

n∑
i=1

Cizi +
∑

(i,j)∈V 2

c2
ijd

max
j xij

s.t.
∑
i∈V ∗

xij = 1, ∀j ∈ V ∗∑
j∈V ∗

djxij ≤ mzi, ∀i ∈ V ∗,∀d ∈ D

zi ∈ N, ∀i ∈ V ∗

xij ∈ R+, ∀(i, j) ∈ V ∗2

This formulation is a possible single stage robust version of the deterministic problem
(PONpath

det) where we consider that fibers are deployed for every one, which is why we
consider the cost of fiber as if they were deployed for the maximal demand on every node.
There is one important thing to stress here, in order to clearly understand what this
model does, and more importantly, what it does not. Fiber routing variables xij denote
a proportion of the total fiber flow that supplies the demand node j. In the deterministic
version of the problem, it is seen as a way of rewriting explicit fibers variables. But in our
robust context where the demand is unknown, it yields another decision, which is more
than just routing fibers. Indeed, x variables also indicate how the demand will be served,
that is, what fibers are we going to light in order to match the demand. This is more than
just routing fibers, it also decides how fibers will be used. The choice of variables x thus
imposes a rigid demand supplying strategy. Of course, this could be seen as restrictive
since in practice, operators will probably optimize the use of their installed fibers, and
there is no evidence that choosing a routing strategy that uses the same proportion of
fibers on every incoming path is good, or even relevant. But being able to optimize the
fiber branching once the demand is revealed and take it into account in our optimization
approach is not possible in a single stage robust context, since all decisions must be
taken before the uncertainty is revealed and this includes the branching strategy. At last,
note that we do not consider the uncertainty globally, but only constraint by constraint.
Indeed, for each single demand satisfaction constraint, we consider uncertainty locally,
independently of other demand satisfaction constraints.

Figure 4.1 shows an example of this principle. On the left side, a feasible solution of
the problem (PONpath

rob) is presented for the maximum demand (note that this solution
may not be optimal). On the right side, for two given demands (15 and 40), it shows how,
in our single stage robust problem, fibers will implicitly be used in order to supply the
demand. For the upper figure, one could imagine another way of supplying the demand

111

Figure 4.1: An illustration of how the chosen routing strategy based on the use of "pro-
portional" installed fiber flow influences solutions

by , for example, using 15 fibers coming from the upper node and none from the lower
node. This choice would be optimal in terms of splitters since it would only need 2 to
supply the demand. But our model cannot include such an adaptability to the demand
as the best routing strategy will not be the same depending on the configuration.

Remark 4.4.2. Note that the routing imposed by the proportional routing strategy may
not correspond to an integer number of fibers. Actually, most of the time, it will not.
Demand values showed on the right side of figure 4.1 were well chosen. Setting d̄ to 17
or 53 would lead to non integer fiber flows. However, this is due to its restrictive nature
in this context, and is one of the many side effects of this approximation.

However, even with this restrictive modeling, let us show how it could help reducing

112

the cost of the network by rewriting the problem.

(PONpath
rob)



min
x,z

n∑
i=1

Cizi +
∑

(i,j)∈V 2

c2
ijd

max
j xij

s.t.
∑
i∈V ∗

xij = 1, ∀j ∈ V ∗ (4.8)∑
j∈V ∗

djxij ≤ mzi, ∀i ∈ V ∗,∀d ∈ D (4.9)

zi ∈ N, ∀i ∈ V ∗ (4.10)

xij ∈ R+, ∀(i, j) ∈ V ∗2

Constraints (4.9) must be verified for all possible realizations of d ∈ D, which leads
to a huge sized model.

Remark 4.4.3. The optimal value of the problem (PONpath
rob) is lower or equal than the

optimal value of the problem (PONpath
det).

Proof. Constraints (4.9) of problem (PONpath
rob) can be rewritten as such:

max
d∈D

(∑
j∈V ∗

djxij

)
≤ mzi, ∀i ∈ V ∗

By definition of D (as x variables are all positive), we have

max
d∈D

(∑
j∈V ∗

djxij

)
≤
∑
j∈V ∗

dmaxj xij

Therefore, each robust splitter satisfaction constraint is either the same or less restrictive
than their deterministic counterpart.

The proof of Proposition 4.4.3 shows how the robust approach has a chance of reducing
the number of installed splitters, therefore the total cost of the problem. The following
theorem shows how to solve it.

Theorem 4.4.1. (PONpath
rob) can be rewritten as the following mixed integer linear pro-

113

gram:

(PONpath
rob)



min
x,z

n∑
i=1

Cizi +
∑

(i,j)∈V 2

c2
ijd

max
j xij

s.t.
∑
i∈V ∗

xij = 1, ∀j ∈ V ∗ (4.11)∑
j∈V ∗

dmaxj ωij + d̄Ωi ≤ mzi, ∀i ∈ V ∗ (4.12)

Ωi + ωij ≥ xij, ∀(i, j) ∈ V ∗2 (4.13)

zi ∈ N, ∀i ∈ V ∗,
xij ∈ R+, ∀(i, j) ∈ V ∗2

ωij ∈ R+, ∀(i, j) ∈ V ∗2

Ωi ∈ R+, ∀i ∈ V ∗

Proof. The problem (PONpath
rob) can first be rewritten as:

(PONpath
rob)



min
x,z

n∑
i=1

Cizi +
∑

(i,j)∈V 2

c2
ijd

max
j xij

s.t.
∑
i∈V ∗

xij = 1, ∀j ∈ V ∗

max
d∈D

(∑
j∈V ∗

djxij

)
≤ mzi, ∀i ∈ V ∗

zi ∈ N, ∀i ∈ V ∗

xij ∈ R+, ∀(i, j) ∈ V ∗2

For a given i′ ∈ V ∗, let us write the inner maximization problem in d, denoted by RD(x)

contained in the splitter satisfaction constraint for node i′:

Ri′
D(x)



max
d

∑
j∈V ∗

djxij

s.t. dj ≤ dmaxj , ∀j ∈ V ∗ (ωi′j)∑
j∈V ∗

dj ≤ d̄ (Ωi′)

dj ∈ R+, ∀j ∈ V ∗

Here, dj variables have their integrity relaxed. Indeed, Remark 4.2.2 shows that extremal
points of D are integer. That inner maximization problem is a continuous linear program
that can be dualized, which gives:

DRi′
D(x)


min
ωi′ ,Ωi′

∑
j∈V ∗

dmaxj ωi
′

j + d̄Ωi′

s.t.Ωi′ + ωi
′

j ≥ xi′j, ∀j ∈ V ∗

114

One can replace the maximization problem by its dual counterpart. Any feasible values

taken by
∑
j∈V ∗

dmaxj ωi
′

j + d̄Ωi′ will thus be greater or equal to max
d∈D

(∑
j∈V ∗

djxij

)
, making

the minimization useless as the global optimization problem will tend to minimize the
dual anyway.

Remark 4.4.4. Denoting by nd the number of demand nodes (that is: nd = |V ∗|), the
mixed integer program has n2

d + nd additional continuous variables and n2
d additional

constraints compared to the path formulation of the deterministic problem.

Experimental study of the gain induced by the single stage robust problem
with a path based formulation

Now that theorem 4.4.1 gives us a formulation that can be solved in practice, we aim to
conduct a quick empirical study on the potential gains offered by the single stage robust
approach. Since we already know that our single stage model has limitations, we intend
to propose more complex models. But for now, our objective is to assess the relevance of
our scientific approach. Therefore, we will not put many efforts in improving the solving
of the single stage problem as we strive for both qualitative and quantitative information
on what makes our problem robust so that we can decide our next course of action.

The tests presented in this section will not appear in their exhaustive form, since we
just aim to illustrate a behaviour that was always observed in the tests we performed. On
several instances between 10 and 50 nodes, randomly generated as described in section
6.2.4, both problems (PONpath

det) and (PONpath
rob) were solved. For (PONpath

rob), we chose 3
possible values for d̄ in order to highlight the impact of the uncertainty set’s size:

• d̄25% =

⌈
0.25×

∑
i∈V ∗

dmaxi

⌉

• d̄50% =

⌈
0.50×

∑
i∈V ∗

dmaxi

⌉

• d̄75% =

⌈
0.75×

∑
i∈V ∗

dmaxi

⌉
Moreover, we set the optical splitter cost to 1000, and we let the fiber cost per distance

unit increase from 0 to 10. For each cost configuration and each market share d̄α%, we

compute the gain due to the robust problem given by
v(PONpath

det)− v(PONpath
rob)

v(PONpath
det)

.

Figure 4.2 gives results of these tests for a given instance of 30 nodes where each curve
corresponds to a given α value. The gain due to the robust approach is reported with

115

Figure 4.2: An illustration of the gain due to the robust approach depending on the fiber
cost for 3 different values of d̄

respect to the fiber cost increase. The first observation is that the smaller d̄α% is, the
higher is the gain. Indeed, when fibers cost nothing, we observe that the gain is exactly
100%−α%. This is possible by putting splitters on a single node that supply every demand
nodes, regardless of the fiber routing since they cost nothing. The second observation is
that as the fiber cost increases, the gain tends to diminish quite fast. Indeed, if fibers
cost something, then their routing is not free any more, and the optimization thus finds
a good trade-off between fibers and splitters. No further gain is observed after a while,
and the solution proposed by the single stage robust problem is exactly the same as the
one proposed by its deterministic counterpart.

Remark 4.4.5. Let us consider the inner maximization problem RD(x) that is embedded
in the splitter satisfaction constraint of problem (PONpath

rob) for a given x′ and i′:

RD(x)



max
d

∑
j∈V ∗

djx
′
i′j

s.t. dj ≤ dmaxj , ∀j ∈ V ∗∑
j∈V ∗

dj ≤ d̄

dj ∈ R+, ∀j ∈ V ∗

The solution of this easy (in terms of complexity) problem is immediate. Considering we
have a sort of "demand budget" d̄ to spend, we will assign demand to the demand node

116

j that have the highest strictly positive x′i′j value, up to dmaxj . Once the node is full, we
just have to iterate the process by taking nodes according to x′i′j values in a decreasing
order. We stop when there is no demand budget any more or when there is no other
remaining strictly positive x′i′j. Note that if we stop before consuming all the demand
budget, the solution of RD(x) is exactly the same as in Soyster’s approach. Therefore,
to make use of the demand limitation d̄ in order to observe a gain, the node i′ needs to
supply enough demand nodes so that the total demand it reaches exceeds d̄. Depending
on d̄, this means that only a small number of nodes will be used for splitters, thus making
the global length of deployed optical fibers increase. Consequently, especially on instances
where both demands and distances are "high", the gain due to splitter centralization may
not compensate the loss in terms of optical fibers. Hence, in addition to the branching
strategy limitations, this is the major reason for the sharp decrease of the gain observed
in Figure 4.2 when the fiber cost increases.

We can draw several conclusions from that study. The first one is that robust opti-
mization does present a practical interest for our problem. Indeed, depending on the cost
structure of the problem, the single stage approach already allows us to find substantial
gains by exploiting the fact that the overall demand will be limited. However, and that
is our second conclusion, that cost high dependency is the main drawback on the single
stage approach, since its lack of adaptability to the uncertainty makes it efficient for a
very limited range of cost values. Indeed, we do not fully consider the operational process
that consists in installing optical splitters in the future, once the demand is known.

Regarding these conclusions, it seems that robust optimization is a pertinent scientific
choice, but our model needs to include adaptability to uncertainty. That is why our next
course of action is to tackle the passive optical network design problem by the means of
two-stage robust optimization.

4.5 Modeling the problem as a two stage robust opti-
mization problem

While exploring single stage robust approaches, we already mentioned that on the field
(see Section 4.3), telecommunication operators are actually adapting their network to the
outcome demand. For example, it can be done by deciding which fiber will supply which
client, with which optical splitter. Therefore, they do not apply the trivial super robust
solution that consists in deploying a network as if the maximal total demand was met
everywhere. However, our single stage approaches failed to take that field adaptability
into account. We thus aim to propose two stage approaches for the design of our network,
so that the total cost of the network can be more reduced.

117

4.5.1 The general Modeling of the two stage robust passive op-
tical network design problem

The concept of multi-stage optimization is not specific to robust optimization, since it
is already used in stochastic optimization for example [18]. The main principle is that
decisions are not taken all at once, but some of them can be delayed in the future. In our
context, we will consider a two-stage optimization problem, where some of our decisions
may be taken once the demand is revealed. For this first study of the problem, we
will consider that the demand is revealed all at once. Of course, in practice, all clients
will not purchase the fiber connexion offer at the same time, and we could imagine a
problem where the total demand increases gradually, following several time horizons, thus
exploiting it to reduce the cost over time. But as mentioned before, the customer demand
is highly unpredictable, therefore, knowing what time horizons would be pertinent is, by
itself, a difficult task in this context. Consequently, we choose to deal with the cost of the
network once the final total demand is revealed. In addition, the fact that the demand
may change over time will still be included in our robust solutions since we are dealing
with a huge set of solutions that includes all possible scenarios within the limit of d̄.

But before introducing the model, it is important to define with accuracy what our
decisions are. Indeed, decision variables are, in their own way, actual decisions. But
the mathematical formalism often leads to aggregate information, that is to say various
decisions, into a single variable. For example, splitter variables z actually aggregate
two different decisions: where splitters are located and how many of them are installed.
Therefore it is crucial to identify the elementary decisions that one has to take while
deploying a passive optical network, independently of the mathematical formalism. We
already applied that kind of reasoning while creating the model for the single stage robust
problem (PONpath

rob) presented in the latter section. The important thing to stress is that
one can not just pick a deterministic problem, decide which variables will be first stage
variables and which will be recourse variables and solve the whole problem as it is. The
decisions that we identified are:

• decisions related to optical splitters:

– the sites where optical splitters will be located (1s)

– the number of optical splitters to be installed (2s)

– the branching of optical splitters to fibers in order to supply the customer
demand (3s)

• decisions related to optical fibers:

118

– the point of departure and arrival of each optical fiber (1f)

– the number of optical fibers to deploy (2f)

– the routing path for each optical fibers to reach their arrival point (3f)

– the optical fiber allocation to the customer demand (which fibers will be used
for customer demand supplying) (4f)

In the deterministic models we used so far, all these decisions are resumed by only
2 sets of variables: fibers and splitters. But in a two-stage robust context, we need
to decide which decisions can be delayed. As mentioned before, operators insist on
bringing one fiber to each potential customer, even though it is known that most of it
will never be used. Therefore, the only gain margin is to be found in optical splitters.
Indeed, while dealing with the deployment of the passive optical network, operators do
not have to install optical splitters immediately, as long as their potential localization
has already been decided. Thus, as customers are eventually requesting to be connected,
the operator just has to install the required number of splitters amongst the pre decided
splitter locations, branching the right fibers in the right slots, and so on. Note that the
branching can be modified if needed. Of course, there can be many options for installing
and branching splitters and that is indeed an optimization problem to do so while trying
to minimize the total amount of installed splitters.

As the reader may anticipate, the choice of the mathematical formalism will not
be trivial and we shall discuss it in the next section. For now, we need to decide which
decisions should be taken here-and-now, and which one can be delayed. Using our decision
decomposition presented above, we decided that decisions that must be taken before
revealing the uncertainty are (1s), (1f), (2f) and (3f). Hence, the decisions we allow to
delay in the future are (2s), (3s) and (4f). Let us denote by h1 (respectively h2(d,h1))
the set of first stage (respectively recourse, thus depending on the uncertain vector d)
variables that do represent the selected decisions (1s), (1f), (2f) and (3f) (respectively
(2s), (3s) and (4f)). The associated set of possible solutions is denoted byH1 (respectively
H2(d,h1)). The associated cost function is C1(h1) which denotes the cost of installing
optical fibers only (respectively C2(d,h1,h2) which denotes the cost of installing optical
splitters in order to supply the customer demand). The two stage robust passive optical
network design problem (PON2stage

rob) can thus be modelled as such:

(PON2stage
rob) = min

h1∈H1

[
C1(h1) + max

d∈D

(
min

h2(d,h1)∈H2(d,h1)
C2(d,h1,h2)

)]
(4.14)

This problem is, as we justified before, the one that best fits with what is done in
reality. However, it is possible to think of other robust problems which may be more

119

suited depending on the context and deployment policy, that can be seen as variants
from the one presented above, depending on the repartition of elementary decisions in
the time-line. Remark 4.5.1 presents a possible variant of that problem that is, in our
opinion, the most relevant after ours. However, we now make the choice to stick to
(PON2stage

rob) in the following of our study since, as it will be presented later, this problem
is also much harder to solve that its variant, thus making it more challenging and, in a
way, interesting.

Remark 4.5.1. An interesting variant, from an industrial point of view, denoted by
(PON2stage′

rob), consists in taking decision (2s) during the first stage, instead of the second.
This means that in practice, optical splitters will be installed before knowing the actual
demand, but their branching can still be delayed. This way, the only human intervention
needed is to perform that branching. This problem can be seen as the direct two-stage
version of the problem (PONpath

rob), where the branching strategy is made free from the
restrictive proportional rule imposed in the single stage problem. Note that in this problem,
the recourse problem does not yield any cost, since the whole network is deployed before
knowing the uncertainty. Therefore, the recourse problem is actually a decision problem
(is there a demand scenario that is infeasible for this network?) instead of an optimization
problem. That aspect shall be explained later.

4.5.2 The choice of a formulation for (PON 2stage
rob)

In order to have a fitting formulation for our problem, we need to properly define our
variables and constraints. Of course, as the passive optical network design problem has
already been studied, there are existing models that are presented in the bibliographical
study in section 1.1. Thus, Modeling itself is not an issue, but the choice of the Modeling
may be less obvious in a two-stage robust context.

We mainly have two Modeling approach: one that is arc-based [21, 50], another that is
path-based [34]. Now let us examine the differences between those two kinds of modeling,
regarding our elementary decisions described in section 4.5.1. In a deterministic context,
both are strictly equivalent, since it is always possible to convert a path-based solution
in an arc-based solution, and an arc-based solution into several path-based solutions.
But actually, the path-based formulation embeds more information than the arc-based
one. Indeed, in an arc-based formulation, the routing choice is let completely free, as
we only manage fractions of routing paths, "non connected ducts of fibers". The main
difference between these two models lies in the elementary decisions (1f), (3f), (4f) and,
consequently,(3s). Indeed, in an arc-based formulation, these decisions are not explicitly
taken, since it is supposed we can take them later anyway in a deterministic context. To

120

put it in another way, it is like arc-based variables contains more possible decisions than
path-based decisions.

These differences being highlighted, let us examine what the impact in a 2 stage
context is. Let us suppose that (PON2stage

rob) is modelled only by the means of an arc-
based formulation. In the set of first stage variables, we aim to decide where fibers
should be put and what splitter rooms shall be opened. With an arc-based formulation,
a network will be proposed with, as explained before, an implicit set of possible routing
path for each pair of nodes that owns at least a fiber path between them. However, these
implicit decisions are not really taken in the first stage of our problem. Therefore, once
in the recourse problem, when the demand is revealed, it appears as these decisions are
still free to make for the optimization.

As presented in section 4.5.1, first stage decisions should be (1s), (1f), (2f) and (3f).
However, in an arc-based formulation, implicit decisions are (1f), (3f), (4f) and, conse-
quently, (3s). Therefore, it means that decisions (1f) and (3f) are actually delayed in
the future, once the demand is revealed. Thus, it does not seem to fit our general model
(PON2stage

rob). Yet, one could argue that it does not change the final solution, as in a
deterministic context. Figure 4.3 provides a counter example that clearly exposes the
difference.

Figure 4.3: Example of a case where an arc-based solution and its corresponding path-
based solution have not the same robust splitter cost

121

On this example, the splitter capacity is 4 and the total expected demand d̄ equals
4. The left figure presents an arc based solution where only the number of fibers per
duct is indicated. The maximum number of splitters one will have to install is only
1, since whatever the demand repartition is, there is always a way of branching fibers
with only one splitter. On the right side, the 4 possible path-based solutions derived
from the arc-based one on the left are shown. Below nodes a and b, demands that are
corresponding to a so-called worst case scenario in terms of splitters are shown. For all
the path-based solutions, in the worst case, 2 splitters will be needed to supply the worst
case scenario. Therefore, the delaying of the implicit decisions in an arc-based model
leads to the solving of a completely different problem. Of course, this version of the
problem is of little interest in practice. Indeed, it implies that one has to deploy cut
pieces of fibers along ducts without welding them together. That activity being delayed
in order to supply the demand, which is too costly in terms of human intervention, but
also in terms of optical budget since each weld between two fibers reduces the optical
signal strength.

Modeling of the problem via a path-based formulation

Using the notations for describing the data of the problem defined in the previous sections,
let us denote by fij the number of level 2 fibers routed along a shortest path from a node
i to a node j, for any (i, j) ∈ V ∗2, before the demand is revealed (i.e. so that every
household is connected to the OLT). By zi the maximum number of optical splitters
node i ∈ V ∗ can receive in the future (i.e. the number of splitters one would install if
all the fibers were to be used). fij and zi are first stage decision variables. Let ζi be
the number of splitters that will be actually installed on node i in order to match the
revealed demand, and ϕij the number of level 2 fiber paths that will be lighted, or used,
from i to j, once the demand is revealed. ζi and ϕij are recourse variables.

We take 2 costs into account in our optimization. First, the routing cost of a fiber
is denoted by cij for all (i, j) ∈ V 2. Therefore, each variable fij will be associated to a
cost cij. But there are level 1 fibers that are also used to supply optical splitters, for an
optical splitter located at node i, the routing cost of the corresponding level 1 fiber path
is denoted by c0i. Finally, the recourse splitter variables are associated to the splitter
installation cost, denoted by C.

We denote by PG(d) the polyhedra of feasible passive optical networks that satisfy the
demand vector d in the graph G. The two-stage robust passive optical network design

122

problem under demand uncertainty can thus be modelled as follows:

(PON2stage
rob)


min

(f ,z)∈PG(dmax)


∑

(i,j)∈V ∗2
cijfij +

∑
i∈V ∗

c0izi + max
d∈D

min
(ϕ, ζ) ∈ PG(d)

ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi


(4.15)

with PG(d) being defined as such:

(f , z) ∈ PG(d)⇔



∑
j∈V ∗

fij ≤ mzi, ∀i ∈ V ∗∑
i∈V ∗

fij ≥ dj, ∀j ∈ V ∗

zi ∈ N, ∀i ∈ V ∗
fij ∈ R+, ∀(i, j) ∈ V ∗2

In this context, we denote by Q(f , z) the recourse problem associated to the robust
problem (PON2stage

rob):

Q(f , z) : max
d∈D

min
(ϕ, ζ) ∈ PG(d)
ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi (4.16)

We spent an extensive amount of time on the last sections to present motivated
and justified modeling choices. Now, with regards to the literature, let us discuss some
properties of the problem in order to identify some issues related to this problem.

Proposition 4.5.1. The problem (PON2stage
rob) verifies the full recourse property.

Proof. First stage variables fij and zi defines a network that can supply the demand
vector dmax. If such solution exists, stating ϕ = f and ζ = z also defines a feasible
recourse solution that will be valid for any d ∈ D since d ≤ dmax by definition. Therefore,
there always exists a recourse solution that is valid for any scenario thus making the full
recourse property verified.

4.6 Probability bound for ensuring uncertainty set va-
lidity

In this section, we aim propose a method to design uncertainty sets when few probabilistic
information is available. Indeed, we made the assumption in section 4.2 that the total
amount of demand in an area can be known. However, that may not always be the
case and we can imagine that sometimes, other kind of information may be available

123

to the decision-maker, such as the expected demand for each building in a given area
(depending, for example, on various social and demographic factors). The purpose of
this section is to propose a method for building an uncertainty set by deriving it from
reduced probabilistic information.

As this approach is not limited to the only passive optical network problem, we decided
to generalize it to any robust approach where such uncertainty set are needed. Therefore,
notations and concepts invoked in this section are not related to the PON deployment
problem, except for section 4.6.4 which applies it to the PON deployment problem.

We will focus on polyhedral uncertainty sets that are a generalization of the uncer-
tainty set we use for our robust problem on fiber network deployment. Moreover, to the
best of our knowledge, they do not have been investigated yet on that subject. Let us
first consider an uncertain value d that can be contained in the set

[
ď, d̂
]
. Thus, without

loss of generality, one can always state that d actually depends on a random variable φ
that is always between 0 and 1:

d = ď+
(
d̂− ď

)
φ (4.17)

For both generalization and normalization purposes, let us define the polyhedral uncer-
tainty set we aim to study as such:

Φ =

{
φ ∈ [0, 1]|S|

∣∣∣∣∣∑
i∈S

piφi ≤ P

}

with S being the set of uncertain values of the problem we are dealing with. To the
uncertainty set Φ, we associate a set of pi values that are coefficient, for all i ∈ S and
a single value P . Φ is a simple uncertainty set with only one equation that limits the
overall variations of the uncertainty.

For example, the uncertainty set D defined in definition 4.2.1 is a special case where
pi = dmaxi and P = d̄.

Now that a generic description of polyhedral uncertainty sets has been done, note that
in practice, finding proper values for pi coefficient or/and P values may prove difficult, as
it is mentioned in the introduction of the section. Many cases can occur. Let us describe
the two main situations one can think of:

• the decision-maker knows how his uncertain data is correlated, hence he can define
himself the set Φ with pi values that are already known. However, the P value
remains hard to estimate and he wants a pertinent value for it.

• the decision-maker has no clue on how his uncertain data behave globally, therefore
he only aims to define a Φ uncertainty set where he does not know pi and P values

124

at all. Of course, fixing these values in order to remain coherent with what can
happen is important to him.

We name this approach a "chance model" approach, referring to the famous "chance
constraint" one that is present in the literature [7].

4.6.1 Theoretical bound for solution validity

Let us first state what we aim to deal with in this section.

Proposition 4.6.1. The probability that the optimal solution of a robust problem using
a pre-defined uncertainty set Φ is not feasible, denoted by P, is bounded by

P ≤ Prob (φ /∈ Φ)

Proof. By definition, an optimal solution of a robust problem is valid for every realization
of the uncertain vector φ within the uncertainty set Φ. Therefore, the probability that
such solution is not valid in practice is at most the probability that the uncertain vector φ
does not belong to its uncertainty set. Note that even if φ /∈ Φ, it does not automatically
imply that the solution will not be feasible, there is just no guarantee any more.

Corollary 4.6.1.

P ≤ Prob

(∑
i∈S

piφi > P

)
Estimating the probability that the uncertain vector belongs to its uncertainty set

may seem strange, but one should keep in mind that in this section, we are dealing
with cases where there is not enough relevant information to design the uncertainty set
properly. Hence, in this context, there is a chance that in the end, the actual scenario
can be outside the defined uncertainty set. This is what we aim to avoid by having
a probability that bounds the chances that this case occurs. However, estimating this
probability could prove to be impossible without a few not too restrictive assumption on
random variables φi.

Hypothesis 2. For the rest of this section, we assume that random variables φi are
independent and that we know their average value, denoted by E(φi) = θi < 1 (without
loss of generality).

Please note that there are no assumption made at all on random variables distribution
which may be continuous or not, and especially not always symmetric (in opposition
to what is generally made in the literature, see [15] for example). Without minimal
probabilistic information like the average value, it could be hard to derive anything in

125

order to find a useful method. To the least, the most restrictive assumption we are making
here is the independence of random variables. In some problems, it could indeed be too
strong to be taken lightly. However, this aspect is highly depending on the problem, and
we estimated that in most cases, this would be an approximation that most decision-
makers would make in practice.

Theorem 4.6.1. Under the hypothesis 2,

Prob

(∑
i∈S

piφi > P

)
≤ min

λ>0
g(λ) = min

λ>0

(∏
i∈S

hi(λ)

)

with

hi(λ) = eλpi(1−Ω)

1− λpi(1− θi)e
−
λpi
2

 if pi > 0

= e−λpiΩ

1 + λpiθie

λpi
2

 if pi < 0

and

Ω =
P k∑
i∈Sk pi

Before proving the theorem, we first need to recall the following lemma, drawn from
Chebytchev inequality, as it is demonstrated in the paper of Babonneau et al. in the
section 8.1 of [2].

Lemma 2. Given X a random variable:

Prob(X ≥ a) ≤ e−aE(eX)

Proof.

E
(
eX
)

= E
(
eX |X < a

)
Prob(X < a) + E

(
eX |X ≥ a

)
Prob(X ≥ a)

≥ E
(
eX |X ≥ a

)
Prob(X ≥ a)

(
because eX > 0⇒ E

(
eX |X < a

)
≥ 0
)

≥ eaProb(X ≥ a)

That last inequality being from

E (ex|X ≥ a) ≥ E (ea|X ≥ a) = ea

Theorem 4.6.1 can thus be proved:

126

Proof. We denote by S− ⊆ S (respectively S+ ⊆ S)the set of uncertain data associated
with a negative (respectively positive) coefficient pi in the uncertainty set Φ. Note that
without loss of generality, we have S+

⋂
S− = ∅ and S+

⋃
S− = S. Let us introduce the

following variable change for random variables φi by stating φ′i = aiφi + bi with ai ≥ 0

and φ′i ∈ [−1, 1]. Thus one can write piφi =
pi
ai
φ′i −

pi
ai
bi. Then, by lemma 2,

Prob

(∑
i∈S

piφi > P

)
≤ Prob

(∑
i∈S

pi
ai
φ′i ≥ P +

∑
i∈S

pi
ai
bi

)
≤ e

−
(
P+
∑
i∈S

pi
ai
bi

)
E
(
e
∑
i∈S

pi
ai
φ′i
)

= e
−
(
P+
∑
i∈S

pi
ai
bi

)∏
i∈S

E
(
e
pi
ai
φ′i
)

because φi variables are independent. Thus, we have for all i ∈ S+:

E
(
e
pi
ai
φ′i
)

= 1 + E

(
pi
ai
φ′i

)
+
∑
j≥2

E


(
pi
ai
φ′i

)j
j!


≤ 1 +

pi
ai

(aiθi + bi) +
∑
j≥2

E


(
pi
ai

)j
j!

 because pi ≥ 0

= 1 +
pi
ai

(aiθi + bi) + e
pi
ai − 1− pi

ai

=
pi
ai

(aiθi + bi − 1) + e
pi
ai

Using the same reasoning, we get for all i ∈ S−:

E
(
e
pi
ai
φ′i
)

=
pi
ai

(aiθi + bi + 1) + e
−pi
ai

By reintroducing in the initial expression,

Prob

(∑
i∈S

piφi > P

)
≤ e

−
(
P+
∑
i∈S

pi
ai
bi

) ∏
i∈S+

(
pi
ai

(aiθi + bi − 1) + e
pi
ai

)
∏
i∈S−

(
pi
ai

(aiθi + bi + 1) + e
−pi
ai

)

Let us remind that since φ′i ∈ [−1, 1], then ai and bi must verify ai + bi ≤ 1 and −1 ≤ bi.

Let us state that ai + bi = 1 in the following. It thus implies that
bi
ai

= −1 +
1

ai
, so we

have aiθi + bi − 1 = aiθi − ai = ai(θi − 1) and aiθi + bi + 1 = ai(θi − 1) + 2. By replacing

127

in the equation, we get

Prob

(∑
i∈S

piφi > P

)
≤ e

−
(
P+
∑
i∈S pi

(
−1+ 1

ai

)) ∏
i∈S+

(
pi(θi − 1) + e

pi
ai

)
∏
i∈S−

(
pi

(
θi − 1 +

2

ai

)
+ e

−pi
ai

)
= e−P+

∑
i∈S pi

∏
i∈S

e
− pi
ai

(
pi(θi − 1) + e

pi
ai

) ∏
i∈S−

e
− pi
ai

(
pi

(
θi − 1 +

2

ai

)
+ e

−pi
ai

)
= e−P+

∑
i∈S pi

∏
i∈S

(
1− pi(1− θi)e−

pi
ai

) ∏
i∈S−

e
− 2pi
ai

(
1 + pi

(
θi − 1 +

2

ai

)
e
pi
ai

)

Since (1− θi) ≥ 0, ai ≤ 2 one can easily check that the value for each ai is the one that
minimizes the whole product. This value is the biggest possible for ai, which is 2 (for
bi = −1). In the end, we do have

Prob

(∑
i∈S

piφi > P

)
≤ e−P+

∑
i∈S pi

∏
i∈S+

(
1− pi(1− θi)e−

pi
2

)
∏
i∈S−

e−pi
(

1 + piθie
pi
2

)
For any λ > 0,

Prob

(∑
i∈S

piφi > P

)
= Prob

(
λ
∑
i∈S

piφi > λP

)
≤ eλ(−P+

∑
i∈S pi)

∏
i∈S+

(
1− λpi(1− θi)e−

λpi
2

)
∏
i∈S−

e−λpi
(

1 + λpiθie
λpi
2

)
=
∏
i∈S+

eλpi(1−Ω)
(

1− λpi(1− θi)e−
λpi
2

)
∏
i∈S−

e−λpiΩ
(

1 + λpiθie
λpi
2

)

stands true with Ω =
P∑
i∈S pi

, especially for the λ that minimizes the right-hand side of

the equation.

Giving an analytic solution to the minimizing problem that theorem 4.6.1 yields is
not easy in the general case (with θi < 1 ∀i). However, it is still possible to give a brief
description of hi and g functions characteristics.

Proposition 4.6.2. hi functions are smooth on R, for all i.

128

Proof. The proof is immediate, since every hi function is a product of continuous functions
with derivatives of all orders.

Corollary 4.6.2. The function g is smooth on R.

Proposition 4.6.3. hi functions are strictly positive on R, for all i.

Proof. The proof is given for hi functions for which pi > 0, as it also immediately applies
to the other case. For negative values of λ, as for λ = 0, hi(λ) is obviously positive. For
positive values however, one has to check if the term

(
1− λpi(1− θi)e−

λpi
2

)
is always

positive, noting that its value in λ = 0 is 1, as for its limit when λ tends towards infinity.
The derivative of that term being:(

1− λpi(1− θi)e−
λpi
2

)′
= pi(1− θi)e−

λpi
2

(
λpi
2
− 1

)

It only nullifies for λ =
2

pi
. Thus, this term do have a single extremum on R+, of value

1− 2(1− θi)e−1. That extremum being a minimum since the derivative takes a negative

value in 0, having the term strictly positive is equivalent to having θi > 1− 1

2e−1
, which

is always true since, by definition, θi values are all positive.

Corollary 4.6.3. The function g is strictly positive on R.

In order to get an idea of what functions hi are like, figure 4.4 provides a graphic
representations of 3 of these functions, instantiated with different values of Ω and θi.
Considering the coefficient pi = 1 for all i in this case:

• h1(λ) is such that Ω = 0.3 and θ1 = 0.2.

• h2(λ) is such that Ω = 0.7 and θ2 = 0.2.

• h3(λ) is such that Ω = 0.7 and θ3 = 0.5.

4.6.2 The bound in the specific case where pi values are the same
and random variables have the same average value

In some cases, there is not enough information available to give pertinent values for pi
coefficients. In that case, making them equal does not really matter. It actually makes
the uncertainty set simpler. When average values are also all equal, then the writing of
function g can be very simplified.

129

Figure 4.4: Graphic representation of functions h1, h2 and h3

Hypothesis 3. In this subsection, let us assume that pi, and θi, values are all the same,
so one can write:

pi = p̄ > 0 and θi = θ̄, ∀i ∈ S

Under this assumption, it is rather obvious that hi functions are all identical, so that one
can write:

hi(λ) = h(λ), ∀i ∈ S

In that case, the following theorem gives an analytic solution to the minimization of
g.

Theorem 4.6.2. The minimizing problem, under the hypothesis 3, is

min
λ>0

g(λ) = (h(λ))|S|

and its optimal solution is

λ∗ =
2 log

(
2(1− θ̄)

)
p̄

for Ω =
1

2
and θ̄ <

1

2

=
1 + (1− 2Ω)W0

(
1−Ω

(2Ω−1)(1−θ̄)e
1

2Ω−1

)
(
Ω− 1

2

)
p̄

for Ω >
1

2
and Ω > θ̄

=
1 + (1− 2Ω)W−1

(
1−Ω

(2Ω−1)(1−θ̄)e
1

2Ω−1

)
(
Ω− 1

2

)
p̄

for θ̄ < Ω <
1

2
if θ̄ <

1

2

130

where W is the Lambert-function, which is the inverse function of wew.
If Ω ≤ θ̄, there is no optimal solution to this problem and g(λ) ≥ 1, ∀λ ∈ R+.

Proof. A necessary condition for g to be at its minimum with λ > 0 is g′(λ) = 0 (one
can easily check that g is a convex function in λ and that it possesses a single minimum
for λ > 0). Since g′(λ) = |S| (h(λ))|S|−1 h′(λ) and that h(λ) > 0 ∀λ > 0 (by Proposition
4.6.3), it implies that g′(λ) = 0 ⇔ h′(λ) = 0. Let us denote by ρ = λp̄ so that h(ρ) =

eρ(1−Ω)
(

1− ρ(1− θ̄e−
ρ
2

)
.

Then h′(ρ) = eρ(1−Ω)

(
1− Ω + (1− θ̄)

(
−1 +

(
Ω− 1

2

)
ρ

)
e−

ρ
2

)
. Thus one has to

solve the following equation

h′(ρ) = 0⇔ 1− Ω + (1− θ̄)
(
−1 +

(
Ω− 1

2

)
ρ

)
e−

ρ
2 = 0

If Ω =
1

2
, the equation simplifies and we get ρ = 2 log

(
2(1− θ̄)

)
(which is possible

since we assumed θ̄ < 1). From ρ = λp̄ we get λ, that is positive only when θ̄ <
1

2
.

If Ω 6= 1

2
, we can divide the equation by −2

(
Ω− 1

2

)
, thus we get

1− Ω

−2
(
Ω− 1

2

) + (1− θ̄)

(
1

2
(
Ω− 1

2

) − ρ

2

)
e−ρ/2 = 0

Let us denote by w =
1

2
(
Ω− 1

2

) − ρ

2
, thus we obtain the equation in w

1− Ω

−2
(
Ω− 1

2

) + (1− θ̄)we
w− 1

2(Ω− 1
2) = 0

from which we get

wew =
1− Ω

(2Ω− 1)(1− θ̄)
e

1
(2Ω−1)

The inverse function of wew is known as the Lambert function, denoted byW , discovered
by Lambert in 1758 and later by Euler, and first studied in [44]. By denoting A =

1− Ω

(2Ω− 1)(1− θ̄)
e

1
(2Ω−1) , we deduce that w = W (A), and finally, that ρ =

1

Ω− 1
2

−2W (A).

From ρ = λp̄ we get λ.

The Lambert function W is only defined on
[
−1

e
,+∞

[
, and for −1

e
≤ A < 0, W (A)

has two images W0(A) and W−1(A) (as shown on figure 4.5). In that case, there are two
potential solutions λ∗0 and λ∗−1. If both are positive, the one that gives the best value to
g shall be chosen. If only one is positive, there is no choice. If both are negative, there
is no solution, which means that g is increasing on R+ and as g(0) = 1, g(λ) ≥ 1 for all

131

λ ∈ R+ in that case. If A > 0, then there is only one value for W (A) that is given by
W0(A).

The optimal solution thus highly depends on the value of Ω. When Ω >
1

2
, A > 0

and is decreasing in Ω. The only valid branch of the Lambert function in that case is
W0(A), which is increasing in A > 0, thus decreasing in Ω. One can easily see that λ is
thus increasing with Ω. If Ω = θ̄, then W0(A) = 0. Therefore, Ω must be strictly greater
than θ̄, otherwise there is no solution. The same reasoning may be applied to deduce the
other cases.

Figure 4.5: Branches of the Lambert W-function (Source: Wikipedia)

So far, this is the only case where we managed to find an analytic solution to the min-
imization problem in λ. However, we believe that this case can be of interest, especially
when the decision-maker does not really know what values he could assign to pi values. If
it occurs that random variables all have the same average value (for example in the case
of a symmetric distribution), then the decision-maker could just take pi values that are
all equal in order to quickly compute the probability, thus fixing an acceptable P value.

4.6.3 A routine to compute an approximation of the bound in
the general case

As in the general case, we were not able to provide an analytic solution to the problem
min
λ>0

g(λ), we aim to propose an algorithm that could propose a numerical approximation
of the bound with a high enough precision.

132

Proposition 4.6.4. The function g has a minimum if, and only if,∑
i∈S

piθi < P

Otherwise, it is an increasing function that takes values strictly superior to 1 for λ > 0.

Proof. The derivative of function g is:

g′(λ) =
∑
i∈S

h′i(λ)
∏

j∈S\{i}

hj(λ)

As given by Proposition 4.6.3, h functions are strictly positive on R+. However, they do
not always are increasing, depending on Ω and θi values, as shown by theorem 4.6.2. One
can easily see that g tends towards +∞ as λ increases. As each h′ function is convex in
λ over R, the condition for g having a minimum on R+ is that the derivative of g in 0 is
negative. Otherwise, g would be an increasing function.

g′(0) =
∑
i∈S

h′i(0)
∏

j∈S\{i}

hj(0)

=
∑
i∈S

pi(1− Ω)− pi(1− θi)

Therefore, having g′(0) < 0 imposes that
∑
i∈S

pi(θi − Ω) < 0, that is:

∑
i∈S

piθi < Ω
∑
i∈S

pi

< P, because Ω =
P∑
i∈S pi

Remark 4.6.1. The latter proposition shows that the value chosen for P should always
be greater than the expected value of

∑
i∈S

piφi, otherwise the probability bound will always

be greater than 1.

The minimization problem yielded in theorem 4.6.1 consists in minimizing a function
of a single variable. Under the assumptions and properties demonstrated above, one
can easily check that the function g possesses a minimum in λ > 0 if the condition
given by Proposition 4.6.4 is met. Finding this minimum consists in finding the zero
of its derivative, which can be done by classic numerical methods, such as the famous
Newton-Raphson’s method (described in the bibliographical section 1.3.1). Algorithm
5 gives a numerical routine for finding a good approximation of our bound. Note that
the uniqueness of the minimum is not proven in our case, because the product of convex

133

positive functions is not immediately convex. However, in most cases, we conjecture that
there will be a unique minimum point. If not, then another starting point could be used
for the method as algorithm 5 as it is defined only finds the "first" minimum it can reach
from λ = 0.

As the derivative in λ = 0 is considered negative, it is the starting point of the method.
Then, the next points are computed iteratively, until the gap between the current value
of the derivative and 0 is less than a defined ε. This algorithm offers nice convergence
properties, and the next λ value may be computed in o(|S|3). Numerical errors can occur
and it may require a little tuning.

Algorithm 5 Computation of an approximation of the probability bound in the general
case
Require: Ω, θi,∀i ∈ S, ε
Require: λ, λnext, Xslack

1: λ← 0

2: Xslack ← +∞
3: while Xslack > ε do

4: λnext = λ−
∑

i∈S h
′
i(λ)

∏
j∈S\{i} hj(λ)∑

i∈S h
′′
i (λ)

∏
j∈S\{i} hj(λ) + h′i(λ)

∑
j∈S\{i} h

′
j(λ)

∏
k∈S\{i,j} hk(λ)

5: Xslack ← |g′(λnext)|
6: λ← λnext

7: end while
8: return λ

4.6.4 Bound computing and estimation of the bound’s quality

For the sake of testing purposes, let us suppose we are dealing with a problem where the
uncertainty set is modeled as such:

Φtest =

{
φ ∈ [0, 1]|S|

∣∣∣∣∣∑
i∈S

100φi ≤ P

}

We aim to define P so that the probability that
∑
i∈S

100φi exceeds it is very low. We

suppose that random variables φi are all independent and that their average value is
known, and is always 0.2 for all i ∈ S. Therefore, Theorem 4.6.2 can be used to compute

the bound for Ω =
P

100
going from 0.2 to 1. The result of such computation are shown

in figure 4.6, for |S| ∈ {20, 50, 100}.
As it is shown on the figure, the probability bound decreases relatively fast as Ω

(therefore P) increases. This was to be expected since the chances of being out of smaller

134

Figure 4.6: Probability bound in function of Ω for 3 different sizes of uncertainty sets

uncertainty set should be higher. Moreover, the decrease of the bound gets sharper as
the number of uncertain data increases. This is due to the fact that as |S| increases,
there are less chances for uncertain data to increase all at the same time. This is on that
specific point that the random variables independence is important.

In order to estimate the precision of algorithm 5, we applied to the cases tested above.
Empirically, there are 3 parameters that tend to increase the number of step necessary
for the algorithm to stop.

• The ε parameter: as it goes smaller, more steps are needed.

• The number of uncertain data |S|: as it goes bigger, more steps are needed.

• The value of P : as it goes bigger, more steps are needed.

Table 4.1 shows the performance of algorithm 5, based on the same uncertainty set
Φtest presented above. The algorithm is applied for the same 3 values of |S| and for 4
values of ε. In addition, the algorithm runs for 3 different values of Ω ∈ {0.3, 0.5, 0.7}.
For each case, we provide the following information (in that order in the table):

• The absolute gap between the probability bound found by the algorithm and the
exact value found using Theorem 4.6.2. It is set to 0% if it is strictly less than
0.01%.

135

|S|
20 50 100

ε

10
0.1% - 2 steps - 13 ms 0% - 4 steps - 175 ms 0.03% - 5 steps - 1.5 s
0.15% - 5 steps - 22 ms 0.4% - 6 steps - 239 ms 0.3% - 6 steps - 2 s
0.99% - 5 steps - 24 ms 0.3% - 6 steps - 252 ms 0.1% - 7 steps - 2.1 s

1
0% - 4 steps - 19 ms 0% - 5 steps - 207 ms 0% - 6 steps - 1.8 s
0% - 6 steps - 29 ms 0.06% - 8 steps - 328 ms 0.02% - 9 steps - 2.7 s

1.04% - 6 steps - 29 ms 0.06% - 8 steps - 287 ms 0.01% - 9 steps - 3 s

0.1
0% - 5 steps - 21 ms 0% - 6 steps - 258 ms 0% - 7 steps - 2.1 s
0% - 7 steps - 38 ms 0.01% - 10 steps - 422 ms 0% - 11 steps - 3.3 s
0% - 10 steps - 42 ms 0% - 11 steps - 457 ms 0% - 11 steps - 3.6 s

0.01
0% - 6 steps - 28 ms 0% - 7 steps - 331 ms 0% - 9 steps - 2.8 s
0% - 7 steps - 33 ms 0% - 12 steps - 550 ms 0% - 13 steps - 3.9 s
0% - 12 steps - 47 ms 0% - 13 steps - 544 ms 0% - 14 steps - 4.2 s

Table 4.1: Table of performance and comparison of the numerical approximation algo-
rithm

• The number of iterations necessary to the algorithm to finish.

• The time needed for the algorithm to finish.

The main observation is that the absolute gap rarely exceeds 1%, even for larger values
of ε. Regarding the small number of steps needed to finish, we can estimate that the
convergence speed is high. Of course, the algorithm is dealing here with a function g that
may be very different from the one in the general case (that is, without assumptions of
hypothesis 3). However, as it is the only case where we can have the exact value of the
probability bound, it is our only comparison basis.

Conclusion

In conclusion of this chapter, we examined various modeling options, by building, step
by step, a model that is coherent with field expectations. After defining a pertinent
uncertainty set for our problem, we first proposed a single stage robust approach for the
passive optical network design problem. We explored different Modeling for this problem,
thus highlighting their respective assets and limitations.

Robust single stage optimization’s potential greatly depends on the mathematical
formalism used to define the studied problem. In our case, after performing some tests,
we estimated that those limitations were too important for these models to be satisfying.
Therefore, we moved on to two-stage robust optimization to tackle our problem.

136

We discussed in detail the methods behind two-stage optimization, recalling that while
creating a robust mathematical model from a deterministic one, one should always start to
build it from actual decisions instead of variables, which can embed (as this is the case in
our context, some hidden or implicit information. We applied this reasoning to compare
arc-based and path-based approaches and we concluded that path-based formulations
were more suited for our Modeling intent.

Moreover, we proposed a method for modeling the uncertainty set in the case where
probabilistic information is available by providing probability bounds on the set’s validity.

In the end we defined a two stage robust problem, (PON2stage
rob). Our next goal is to

solve this problem.

137

Chapter 5

Development of exact solving
approaches for the two-stage robust
passive optical network design problem
under demand uncertainty

Introduction

In chapter 4, a two-stage robust model for solving the passive optical network design prob-
lem under demand uncertainty has been proposed. This problem, denoted by (PON2stage

rob),
presents various difficulties. The first one being that this is a two-stage problem, under
the form of a "min-max-min" formulation. By itself, it usually leads to very large linear
formulations, thus making its solving a serious issue even when all variables are continu-
ous.

In addition to that, having integer recourse variables makes the problem much harder,
and not only because of variable integrity, but mainly because there is almost nothing
that is proposed in the literature to solve these problems to optimality. Actually, the
only reference one could find, to the best of our knowledge, is a work of Zhao and Zeng
[55] published in 2012 on Optimization Online. Hence, as the problem can legitimately
be expected to be hard to solve, the way of doing it also represents a challenge.

Regarding the difficulties that await, one could feel that the efforts needed to design
such method will probably lead to a solving approach that will have a limited spectrum
of efficiency (in terms of problem size that can be solved). However, these results should
provide a lot of insight on what makes a solution robust, thus allowing us to later design
approached methods based on the knowledge we may gather from this study. We thus
considered that having such method would be worth the effort.

138

The objective of this chapter is to design one or several exact solving methods to find
the optimal solution of problem (PON2stage

rob) and, from these solutions, to gain insight
on what makes a solution robust.

5.1 A general column-and-constraint algorithm for solv-
ing the master problem

Before giving a method to solve the robust problem we propose to rewrite it. Similarly
to what is presented in the bibliographical study on two-stage robust problems of section
1.2.6, to each possible value of d in the uncertainty set D corresponds a scenario and we
have: D = {d ∈ N|V || di ≤ dmaxi ,∀i ∈ V and

∑
i∈V

di ≤ d̄} = {ds, s = 1, ..., S}, where ds

denotes a scenario. Since d, d̄ and dmaxi are integer, there is a finite (but probably huge)
number S of scenarios.

To each ds we associate a splitter recourse variable ζs and a fiber recourse variable
ϕs: we create S copies of the variables ζ and ϕ.

By enumerating all scenarios of demands, the problem PON2stage
rob , that we will now

denote by PONrob for the sake of simplicity, can be rewritten as the following mixed
integer linear program where, for shortening, we denote

∑
i∈V

ciζi by cζ.

(PONrob)



min
γ,(f ,z),(ζs,ϕs)s=1,...,S

∑
(i,j)∈V 2

cijfij +
∑
i∈V

c0izi + γ

s.t. (f , z) ∈ PG(dmax)

γ ≥ cζs

(ϕs, ζs) ∈ PG(ds)
ζs ≤ z,ϕs ≤ f

∀s = 1, ..., S

Let {γ∗, f∗, z∗; ζ∗s,ϕ∗s, s = 1, ..., S} be an optimal solution of PONrob. Then, there
is a scenario ds̄ such that γ∗ = cζ∗s̄: ds̄ is the worst scenario for the decision variables
f∗, z∗, ϕ∗s̄ and ζ∗s̄ which are the best responses to this scenario. But S may be huge,
then PONrob has an exponential number of constraints and is generally intractable. For
now, let us assume that we can solve Q(f , z) for any values of f and z. Since considering
all scenarios at once is inconceivable in practice, let us consider only a small subset D0

of D and then an increasing sequence (in cardinality) of subsets Dl of D, for l = 1, ..., L,
such that solving PONrob for D = Dl is tractable. For all Dl ⊆ D, we denote by PON l

rob

the restricted problem obtained by using Dl as the uncertainty set instead of D in the
above program PONrob, and by {f l, zl,γ l} the optimal solution of PON l

rob.
Let l = 0, and consider a given subset D0. Solving PON0

rob gives a feasible solution
{f0, z0, γ0} and, since only a subset of scenarios is taken into account, a lower bound LB

139

to PONrob:
LB = v(PON0

rob) =
∑

(i,j)∈V 2

cijf
0
ij +

∑
i∈V

ciz
0
i + γ0

Then, by solving Q(f0, z0), we get the worst scenario ds0 for (f0, z0) and we obtain an
upper bound UB of PONrob:

UB =
∑

(i,j)∈V 2

cijf
0
ij +

∑
i∈V

ciz
0
i + v(Q(f0, z0)) = LB − γ0 + v(Q(f0, z0))

Then if we solve the robust problem restricted to D1 = D0 ∪ {ds0}, we (possibly)
increase the value of LB and then (possibly) decrease the value of UB, and we iterate the
process until UB = LB, as described in the column-and-constraints generation algorithm
6.

Algorithm 6 A column-and-constraint generation algorithm for solving PONrob to op-
timality
Require: UB = +∞, LB = −∞, ε ∈ R+, D0, l = 0;
1: while UB − LB > ε do
2: solve PON l

rob; let {f l, zl,γ l} be an optimal solution;
3: LB ← v(PON l

rob);
4: solve Q(f l, zl); let dsl be an optimal solution;
5: UB ← min{UB,LB − γ l + v(Q(f l, zl)};
6: Dl+1 ← Dl + {dsl}; l← l + 1;
7: end while

At step l, in the calculation of both bounds UB and LB the fibers network is given
by f l and the possible splitter location by zl; in the solution corresponding to UB the
splitter location is the best one obtained for the worse scenario of demand associated to
(f l, zl) while in the solution corresponding to LB the splitter location is the best one for
the worse scenario among the scenarios taken into account at step l. There is a finite
number of scenarios and LB = UB if all the scenarios have been added: therefore the
algorithm converges to an optimal solution with a finite number of iterations (at most S).
Of course, we aim to add only a small subset of scenarios in order to solve the problem.
This framework is not new regarding the literature. The difficulty here is to solve the
recourse problem in a mixed integer variables context.

140

5.2 Solving the recourse problem

5.2.1 The design of a column-and-constraint generation algorithm
for solving the recourse problem

We are now interested in solving Q(f̃ , z̃), f̃ and z̃ being fixed values. This problem
is modeled as a so called max-min problem with mixed integer variables. The main
idea we can use is derived from the paper of Zhao and Zeng [55]: that is considering the
integer variables vector to be in a given set, and apply a column-and-constraint generation
algorithm to generate these vectors and their associated continuous variables in a similar
way as for the master problem.

First, let us denote by Z the set of integer vectors such that:

Z =
{
ζr
∣∣ζr ∈ N|V |, ζr ≤ z̃

}
Therefore, we can rewrite the problem Q(f̃ , z̃), first presented as in (4.16), as follows:

Q(f̃ , z̃) : max
d∈D

(
min

ζr∈Z s.t. ∃ϕ∈PG(d,ζr) and ϕ≤f̃
cζr
)

The minimization problem here actually consists in picking only one integer vector ζr

within the set Z. But that vector ζr can be chosen only if the answer to the following
decision problem is yes : "is there a ϕ such that ϕ ∈ PG(d, ζr) and ϕ ≤ f̃ ?". In other
words, we can only pick a splitter repartition that can supply the demand vector d and,
amongst all the possible splitter repartitions, we take the cheapest one.

There is an exponential number of variables ζr in Z and thus an exponential number
of constraints. In order to verify if there exists ϕ ∈ PG(d̃, ζ r̃) with ϕ ≤ f̃ for given values
d̃ and ζ r̃, of d and ζr, we transform the decision problem "is there ϕ...?" in the following
optimization program:

(P̂mult)(d̃, ζ
r̃)



min
(ϕ,ar̃)

∑
j∈V

ar̃j

s.t. (ϕ, ar̃) ∈ P̂G(d̃, ζ r̃)⇔

∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈V

ϕij ≤ mζ r̃i ,∀i ∈ V ∗∑
i∈V

ϕij + ar̃j ≥ d̃j,∀j ∈ V ∗

ϕij ≤ fij,∀(i, j) ∈ V ∗2
ar̃ ≥ 0,ϕij ∈ R+,∀(i, j) ∈ V ∗2

There exists ϕ ∈ PG(d̃, ζ r̃) with ϕ ≤ f if and only if (P̂mult)(d̃, ζ
r̃) has an optimum

value equal to 0, i.e. ar̃∗j = 0, ∀j ∈ V or ar̃∗ = 0.

141

Remark 5.2.1. There is an alternative formulation to (P̂mult)(d̃, ζ
r̃) which, instead of

using multiple variables ar̃j , uses only one "gap" variable denoted by sr̃. The new formu-
lation is thus:

(P̂single)(d̃, ζ
r̃)



min
(ϕ,sr̃)

sr̃

s.t. (ϕ, sr̃) ∈ P̂G(d̃, ζ r̃)⇔

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈V

ϕij ≤ mζ r̃i ,∀i ∈ V∑
i∈V

ϕij + sr̃ ≥ d̃j,∀j ∈ V

ϕij ≤ fij,∀(i, j) ∈ V 2

sr̃ ≥ 0,ϕij ∈ R+,∀(i, j) ∈ V 2

This alternative formulation will have an impact, as shown in section 5.2.2.

In the following, we will use (P̂mult) alone but one has to remember that the following
results are also valid for (P̂single).

Now, let (P1) be the following program:

(P1)


max
d

θ

s.t. d ∈ D

θ ≤ cζr, ∀ζr ∈ Z such that v
(

(P̂mult)(d, ζ
r̃)
)

= 0 (5.1)

Proposition 5.2.1. The program (P1) verifies

v(P1) = v
(
Q(f̃ , z̃)

)
Proof. As constraint (5.1) ensures that all valid vectors ζr are chosen, θ always equals
the one that minimizes cζr for a given d.

Now, consider the following program, given for a subset Z2 of Z:

(P2)


max
d

θ

s.t. d ∈ D

θ ≤ min
ϕ s.t.(ϕ,ar)∈P̂G(d,ζr)

∑
j∈V

ar̃j , ∀ζr ∈ Z2(⊆ Z) (5.2)

Proposition 5.2.2. If Z2 = Z, then we have

v(P2) = θ∗ = 0

Proof. Since the robust problem verifies the full recourse property (Proposition 4.5.1), it
is straightforward.

142

Let us assume for now that we can solve (P2) when constraints (5.2) are restricted
to a given subset of constraints (i.e. for all ζr ∈ Z2 ⊂ Z), as we will deal with this
aspect later in section 5.2.2. Thus, it would be possible to select, iteratively, ζ1, ζ2, ...,
ζK in Z and solve a sequence of sub-programs (P 1

2),..., (PK
2) of (P2) obtained by adding

successively the constraints associated to ζ1, ζ2, ..., ζK . We would only stop for the first
ζr such that θ = 0, i.e. θ1 > 0,...,θK−1 > 0 and θK = 0.

Remark 5.2.2. We have v(P2) = 0 if and only if, for any value of d, there is at least
one ζ r̄ in Z2 such that ar̄ = 0, i.e. such that there exists ϕ ∈ PG(d, ζ r̄), ϕ ≤ f̃ .

Let us denote by Zk ⊂ Z the subset of constraints associated to ζ1, ζ2, ..., ζk (Zk ={
ζ1, ..., ζk

}
) and let d∗k be the value of d obtained when solving (P k

2), then d∗k is the worst
scenario associated to Zk. To obtain ζk+1 we solve the following program where d = d∗k:

ζk+1 = arg min
ζr

cζr(for ζr such that (ϕ, ζr) ∈ PG(d∗k), ζ
r ≤ z̃,ϕ ≤ f̃) (5.3)

We denote by R(f̃ , z̃,d∗k) this minimization problem.
Since cζk+1 is minimal (from (5.3)) and since the problem verifies the complete re-

course property, we know that cζk+1 is finite and thus v
(

(P̂mult)(d
∗
k, ζ

k+1)
)

= 0. Finally,
we have the following theorem:

Theorem 5.2.1. The optimal value of the recourse problem is:

v(Q(z̃, f̃)) = max
k∈{1,...,K}

cζk

Proof. Let (P restr
1) be the following restricted version of (P1):

(P restr
1)


max
d

θ

s.t. d ∈ D

θ ≤ cζr, ∀ζr ∈
{
ζ1, ..., ζK

}
such that v

(
(P̂mult)(d, ζ

r̃)
)

= 0(5.4)

We are going to prove that max(cζ1, ..., cζK) ≤ v(Q(z̃, f̃)) ≤ v(P restr
1) and then that

max(cζ1, ..., cζK) = v(P restr
1).

First, from (5.3), we know that for each k ∈ {1, ..., K} we have cζk ≤ v(Q(z̃, f̃)) since
to obtain ζk, we consider only the demand d∗k of D. Then max(cζ1, ..., cζK) ≤ v(Q(z̃, f̃)).
Second, since (P restr

1) takes into account only a subset of constraints of (P1), we have
v(Q(z̃, f̃)) = v(P1) ≤ v(P restr

1). We know that v(P restr
1) is finite, i.e. if we replace Z

by
{
ζ1, ζ2, ..., ζK

}
in Q(z̃, f̃), we obtain a solution with a finite value. Finally, since in

(P restr
1) we have θ = cζr for some ζr ∈

{
ζ1, ..., ζK

}
, we have v(P restr

1) ≤ max(cζ1, ..., cζk),
which concludes the proof.

143

In other words, Theorem 5.2.1 states that by finding a subset of vectors ζr such that
any demand configuration can be supplied for fixed values of z̃ and f̃ , then an optimal
solution of (P1) is amongst them. In the end, instead of solving (P1), we just need to solve
(P2) iteratively until v(P2) = 0. Assuming we can effectively solve (P2), let us summarize
the column-and-constraint generation algorithm we detailed in this section:

Algorithm 7 A column-and-constraint generation algorithm for solving Q(z̃, f̃) to opti-
mality
Require: UB = +∞, ε ∈ R+, k = 0;
1: find an initial vector ζ1 by solving (5.3) for a randomly chosen scenario d ∈ D

2: Z2 ← ζ1

3: while UB > ε do
4: solve (P2) with Z2; let dk be an optimal solution;
5: UB ← v(P2);
6: solve (5.3); let ζk+1 be an optimal solution;
7: Z2 ← Z2 ∪ {ζk+1}; k ← k + 1;
8: end while
9: return max

k′∈{1,...,k}
cζk

′
and the associated dk∗ with k∗ = arg max

k′∈{1,...,k}
cζk

′
;

5.2.2 Solving the program (P2)

In each constraint (5.2) of (P2) associated to ζ̃
r̄ ∈ Z, there is a linear minimization

program. As mentioned in remark 5.2.1, this minimization program can take two forms:
(P̂mult) and (P̂single). We denote by RZ the set of indices r related to the set of vectors
Z.

With the formulation (P̂mult) for the inner minimization problem

The problem (P̂mult) has the following formulation:

(P̂mult)(ζ
r̃, d̃)



min
(ϕ,ar̃)

∑
j∈V ∗

ar̃j

s.t.
∑
j∈V ∗

ϕij ≤ mζ r̃i ,∀i ∈ V ∗ (5.5)∑
i∈V ∗

ϕij + ar̃j ≥ d̃j, ∀j ∈ V ∗ (5.6)

ϕij ≤ fij,∀(i, j) ∈ V ∗2 (5.7)

ar̃ ≥ 0,ϕij ∈ R+,∀(i, j) ∈ V ∗2

144

The constraint sub-matrix corresponding to variables ϕij is a flow constraint ma-
trix and so is totally unimodular. Since any sub-matrix corresponding to variables ar̃j is a
diagonal matrix, the matrix of constraints (5.5) and (5.6) is totally unimodular too. Con-
straints (5.7) being bound constraints, the constraint matrix of (P̂mult)(ζ̃

r̃, d̃) is totally
unimodular. So the constraints on the integrity of ϕij variables have been replaced by
ϕij ∈ R+ and (P̂mult)(ζ̃

r̃, d̃) has an integer optimal solution. Moreover, (P̂mult)(ζ̃
r̃, d̃) has

a finite value since ar̃ is not bounded. So we can consider its dual. Let λi, i ∈ V ∗, be the
dual variables associated to constraints (5.5), µj, j ∈ V ∗, the dual variables associated to
constraints (5.6) and πij, (i, j) ∈ V ∗2, the dual variables associated to constraints (5.7),
the dual program of (P̂mult)(ζ̃

r̃, d̃), for given ζ̃
r̃ ∈ Z , is:

(DP̂mult)



max
λ,µ,π

∑
j∈V ∗

(µj d̃j − λjmζ̃ r̃j)−
∑

(i,j)∈V ∗2
πijfij

µj ≤ 1, ∀j ∈ V ∗

µj − λi − πij ≤ 0 ∀(i, j) ∈ V ∗2 (5.8)

λi ≥ 0∀i ∈ V ∗,µj ≥ 0 ∀j ∈ V ∗,πij ≥ 0 ∀(i, j) ∈ V ∗2

and we denote by DPG the set of constraints of (DP̂mult).

Proposition 5.2.3. In (DP̂mult) the constraints 0 ≤ µj ≤ 1, ∀j ∈ V ∗ can be replaced by
µj ∈ {0, 1} : ∀j ∈ V ∗.

Proof. Since the constraint matrix in (P̂mult)(ζ̃
r̃, d̃) is totally unimodular, the constraint

matrix of (DP̂mult) which is its transposed matrix is totally unimodular too and there is
an optimal solution such that the variables are integer and in particular, since µj ≤ 1,
such that µj ∈ {0, 1} : ∀j ∈ V ∗.

Proposition 5.2.4. (P2) can be modeled as a mixed integer linear program. We denote

145

by (Pmult2) this formulation:

(Pmult2)



max
θ,d,λ,µ,π,y

θ

s.t. d ∈ D

θ ≤
∑
j∈V ∗

(yrj − λrjmζ̃
r̃

j)−
∑

(i,j)∈V ∗2
πrijfij, ∀ζr ∈ Z

µrj ≤ 1, ∀r ∈ RZ ,∀j ∈ V ∗

µrj − λri − πrij ≤ 0, ∀r ∈ RZ ,∀(i, j) ∈ V ∗2

yrj ≤ µrjdmaxj , ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≤ dj, ∀r ∈ RZ , ∀j ∈ V ∗

yrj ≥ dj − (1− µrj)dmaxj , ∀r ∈ RZ , ∀j ∈ V ∗

λri ≥ 0∀r,∀i ∈ V ∗,µrj ∈ {0, 1} , ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≥ 0, ∀r ∈ RZ ,∀j ∈ V ∗,πrij ≥ 0, ∀r ∈ RZ ,∀(i, j) ∈ V ∗2

dj ≥ 0, ∀j ∈ V ∗

Proof. The minimization problem within constraint (5.2) can be dualized in (DP̂single),
and as (P2) maximizes θ, the maximization can be removed. However, the dual objective
function has quadratic terms µj d̃j. Proposition 5.2.3 allows us to linearize these products
by stating yrj = µrj d̃j, ∀r,∀j ∈ V by the means of the following set of constraints:

yrj ≤ µrjdmaxj , ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≤ dj, ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≥ dj − (1− µrj)dmaxj , ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≥ 0, ∀r ∈ RZ ,∀j ∈ V ∗

Remark 5.2.3. Note that at each iteration of Algorithm 7, a set of boolean variables µr

must be added to the problem.

In the end, we were able to propose a mixed integer linear program to solve (P2).
However, as it is stressed by remark 5.2.3, once integrated in algorithm 7, solving the
problem will become more and more complex as new integer columns and constraints are
added.

With the formulation (P̂single) for the inner minimization problem

Instead of using (P̂mult), let us now use the formulation (P̂single) for the inner minimization
in (P2). The same principle will be used to transform (P2) into a mixed integer linear
program. The difference here will lie in the linearization of the quadratic terms.

146

Proposition 5.2.5. (P2) can be modeled as a mixed integer linear program. We denote
by (Psingle2) this formulation:

(Psingle2)



max
d,λ,µ,π,y

θ

s.t. d ∈ D

θ ≤
∑
j∈V ∗

(yrj − λrjmζ̃
r̃

j)−
∑

(i,j)∈V ∗2
πrijfij, ∀ζr ∈ Z∑

j∈V ∗
µrj ≤ 1, ∀r

µrj − λri − πrij ≤ 0, ∀r,∀(i, j) ∈ V ∗2

dj =

pj∑
e=1

2e−1bej , ∀j ∈ V ∗

yrj =

pj∑
e=1

te,rj , ∀r,∀j ∈ V ∗

te,rj ≤ bej , ∀r,∀j ∈ V ∗

te,rj ≤ µrj , ∀r,∀j ∈ V ∗,∀e = 1, ..., pj

te,rj ≥ µrj + bej − 1, ∀r,∀j ∈ V ∗,∀e = 1, ..., pj

te,rj ≥ 0,bej ∈ {0, 1}, ∀r,∀j ∈ V ∗,∀e = 1, ..., pj

λrj ≥ 0,µrj ≥ 0, ∀r ∈ RZ ,∀j ∈ V ∗

yrj ≥ 0, ∀r ∈ RZ ,∀j ∈ V ∗,πrij ≥ 0, ∀r ∈ RZ ,∀(i, j) ∈ V ∗2

dj ≥ 0, ∀j ∈ V ∗

with pj =
⌈
log2

(
dmaxj + 1

)⌉
, ∀j ∈ V ∗.

Proof. The minimization problem within constraint (5.3) can be dualized in (DP̂single),
and as (P2) maximizes θ, the maximization can be removed. However, the dual ob-
jective function has quadratic terms µj d̃j. As µ variables are continuous and demand
variables d are integer, the quadratic terms can be linearized by using the technique
that decomposes the integer variables d into their binary writing. Let us denote by
pj =

⌈
log2

(
dmaxj + 1

)⌉
, ∀j ∈ V ∗ the number of boolean variables necessary to write dj.

For each product µj d̃j, let us denote by bej the boolean variables used to decompose d̃j,
for e = 1, ..., pj, and by tr,ej the set of required continuous variables. As shown in [16],

147

these products can thus be linearized by the set of following constraints:

dj =

pj∑
e=1

2e−1bej , ∀j ∈ V ∗

yrj =

pj∑
e=1

2e−1te,rj , ∀r,∀j ∈ V ∗

te,rj ≤ bej , ∀r,∀j ∈ V ∗

te,rj ≤ µrj , ∀r,∀j ∈ V ∗,∀e = 1, ..., pj

te,rj ≥ µrj + bej − 1, ∀r,∀j ∈ V ∗, ∀e = 1, ..., pj

Remark 5.2.4. Note that at each iteration of Algorithm 7, there are no integer variables
to be added if formulation (Psingle2) is chosen. However, lots of boolean variables bej must
be added before the first iteration.

From remarks 5.2.3 and 5.2.4, one can expect that both formulations (Pmult2) and
(Psingle2) have their pros and cons. With (Pmult2), Algorithm 7 will add integer columns
at each step, thus making the problem more and more difficult, probably faster than with
formulation (Psingle2). However, that last formulation needs a lot of boolean variables
from the beginning in order to decompose each demand variable into its binary writing.
Therefore, finding the best option is not obvious, and the choice will be made on an
empirical basis.

5.2.3 Experimental study of the algorithm behaviour and formu-
lation efficiency comparison

In this section, we will proceed to a few numerical tests of our exact approach. As it was
introduced in sections 5.1 and 5.2.1, we will use a combination of Algorithms 6 and 7 to
solve (PONrob) to optimality, Algorithm 7 being called by Algorithm 6 to solve Q(f̃ , z̃).
In section 5.2.1, we showed that two formulations were possible because they proposed
different linearization of quadratic terms that occur in both cases. Thus, we have two
main objectives for these first tests:

• Conduct a first experimental study to assess the solving potential of the approach

• Compare both formulations

First, Table 5.1 shows the details of the 6 randomly generated instances that were
solved. For each instance, its number of node is given, along with its average demand per
node (column "Avg demand"). Then, the optimal fiber cost and splitter cost are given

148

for (PONdet) and (PONrob). Note that for all instances, the chosen value for d̄ equaled

25% of the total demand, that is d̄ =

⌈
0.25

∑
j∈V ∗

dmaxj

⌉
.

The main observation is that the total cost of (PONrob) is lower (the gain is between
14.2% and 32.3% depending on the instance), even though its fiber cost is always higher
or equal. However, since we are only dealing with small graphs, the impact of demand
limitation may be higher on larger graphs.

Instances (PONdet) (PONrob)

i |V | Avg demand Fiber cost Splitter cost Fiber cost Worst splitter cost

1 5 9.75 257 1000 278 800
2 5 16.75 680 1800 680 1000
3 5 13.75 588 1400 598 1000
4 5 18.25 1717 2000 1762 1000
5 5 14 1212 1600 1404 800
6 5 16.15 1304 1800 1353 800

Table 5.1: Robust counterpart gains compared to a deterministic approach

The reason why only 5 nodes instances were solved is partly given by Table 5.2 which
compares the solving performances of (PONrob) depending on the formulation used for the
recourse problem that is either (Pmult2) or (Psingle2). Note that while dealing with 5 nodes
instances, the solving time oscillates between 9 and 117 seconds for (Pmult2), and between
5 and 238 seconds for (Psingle2). This denotes the high instability of the algorithm. Note
that many tests were performed with that algorithm and that for some 7 nodes instance,
the algorithm could not converge in more than 10 hours. On the contrary, to illustrate
further more that instability, we managed (in some rare cases) to solve instances of size
15 in less than half an hour. It emphasizes the fact that some instances seem to be quite
easy to solve in practice, and some others need a huge amount of scenarios to be solved
to optimality (both in the master and in the slave problems).

For each formulation, the number of generated scenarios in the master problem is
reported, and the average number of generated scenarios for solving the slave problem is
also reported. It is no surprise to note that the number of iteration increases with the
solving time.

Both formulations have their pros and cons. On instances that seem easy to solve
(that is instances 1, 3 and 5), formulation (Psingle2) seems to be more efficient. However,
it tends to be more unstable for harder instances whereas (Pmult2) performs a lot better
on these ones. That lower, yet non negligible, instability is the reason why we focused on
using (Pmult2) instead of (Psingle2) for the rest of this chapter.

149

Instances With (Pmult2) With (Psingle2)

CPU time Master Avg Slave CPU time Master Avg Slave

1 20 24 10.2 15 23 9.95
2 117 18 35.69 238 17 35.75
3 9 11 14.6 5 10 20.25
4 69 11 36.83 227 12 35.43
5 21 15 15.67 12 14 16.12
6 99 18 30.79 158 17 31.77

Table 5.2: Performance comparison between (Pmult2) and (Psingle2) as recourse formula-
tion for solving (PONrob)

5.3 Improving the solving procedure

Regarding results of section 5.2.3, our solving approach needs improvement in order to
tackle larger instances, or at least to solve them faster. Hence, we decided to improve
the algorithm by using methods from the literature to tackle instability in Benders de-
composition related approaches like ours. Many were tried, conceived and tested, but we
only present the 2 most relevant we found. We consider them as relevant because they
can be generalized to other problems. For each potential improvement, we shall present
the theoretical principle behind it, and an experimental study that assesses, or not, the
effectiveness of the improvement.

5.3.1 A discriminating choice method for picking several good
integer vectors ζr ∈ Z in order to solve the recourse problem
faster

Theoretical developments on the method

This method was inspired by some of the work of Magnanti and Wong [37]. At a given
step k, in algorithm 7, once (P2) has been solved for a given subset Z2 of Z, there is a
current optimal solution d∗k. Then, we will solve R(f̃ , z̃,d∗k) in order to get a valid integer
vector ζr that will be added to the description of (P2). However, several vectors ζr may
be optimal solution to R. Therefore, we aim to design a discriminating method to choose
the best vectors for solving (P2) amongst the optimal solutions of R for a given d∗k. Let
us denote by Z(d∗k) the subset of Z such that all ζr ∈ Z(d∗k) are optimal solutions of
R(f̃ , z̃,d∗k). Let us recall the formulation of (Pm2) at a given step k:

150

(Pmult2)



max
θ,d,λ,µ,π,y

θ

s.t. d ∈ D

θ ≤
∑
j∈V

(yrj − λrjmζ̃
r̃

j)−
∑

(i,j)∈V 2

πrijfij, ∀ζr ∈ Z2 (5.9)

µrj ≤ 1, ∀r ∈ RZ2 ,∀j ∈ V

µrj − λri − πrij ≤ 0, ∀r ∈ RZ2 , ∀(i, j) ∈ V 2

yrj ≤ µrjdmaxj , ∀r ∈ RZ2 ,∀j ∈ V

yrj ≤ dj, ∀r ∈ RZ2 ,∀j ∈ V

yrj ≥ dj − (1− µrj)dmaxj , ∀r ∈ RZ2 ,∀j ∈ V

λri ≥ 0∀r,∀i ∈ V,µrj ∈ {0, 1} , ∀r ∈ RZ2 , ∀j ∈ V

yrj ≥ 0, ∀r ∈ RZ2 ,∀j ∈ V,πrij ≥ 0, ∀r ∈ RZ2 ,∀(i, j) ∈ V 2

dj ≥ 0, ∀j ∈ V

At step k, a new integer vector from Z(d∗k) must be added. Looking at constraint
(5.9), one would prefer to add an integer vector that can reduce θ, if possible, at the next
iteration. That is, adding the vector that verifies:

min
ζr∈Z(d∗k)

∑
j∈V

(yrj,0 − λrj,0mζ̃
r

j)−
∑

(i,j)∈V 2

πrij,0fij

with (yr0,λ
r
0,π

r
0) being an interior point of the dual variables polyhedron, which is strictly

equivalent to:
max

ζr∈Z(d∗k)

∑
j∈V

λrj,0mζ̃
r

j

From these facts, one can derive the following proposition:

Proposition 5.3.1. In Algorithm 7, at a given step k, once R(f̃ , z̃,d∗k) is solved, it is
possible to find other valid vectors ζr ∈ Z(d∗k) by solving the following mixed integer linear
program (PZk):

(PZk)



max
∑
j∈V

λj,0mζ̃
r

j

s.t. cζr = v
(
R(f̃ , z̃,d∗k)

)
(ϕ, ζr) ∈ PG(d∗k)

ζr ≤ z̃
ϕ ≤ f̃

ζr ∈ N|V |, ϕ ≥ 0

for any vector λ0 ∈ R|V |∗+ .

151

Proof. Constraints of (PZk) ensures that its solution is such that it belongs to the set
of solutions of R(f̃ , z̃,d∗k) and that its value equals v

(
R(f̃ , z̃,d∗k)

)
. Therefore, any vector

that verifies these constraints already belongs to Z(d∗k). As mentioned before, by maxi-
mizing

∑
j∈V

λrj,0mζ̃
r

j with these constraints, for λ0 being an interior point, we aim to find a

"good" vector. An interior point corresponds to strictly positive values of λ0 coefficients
(see proof of Proposition 5.2.4).

Remark 5.3.1. Note that by picking different λ0 ∈ R|V |∗+ , solving (PZk) may lead to
different optimal useful ζr vectors.

From Proposition 5.3.1, we propose a slight variant of Algorithm 7, called Algorithm
8, that allows one to potentially find better ζr vectors to add to Z2 at each step.

Algorithm 8 A column-and-constraint generation algorithm variant for solving Q(z̃, f̃)

to optimality
Require: UB = +∞, ε ∈ R+, k = 0;
1: find an initial vector ζ1 by solving (5.3) for a randomly chosen scenario d ∈ D

2: Z2 ←
{
ζ1
}

3: while UB > ε do
4: solve (P2) with Z2; let d∗k be an optimal solution;
5: UB ← v(P2);
6: solve (5.3);
7: solve (PZk); let ζk+1 be an optimal solution;
8: Z2 ← Z2 ∪ {ζk+1}; k ← k + 1;
9: end while
10: return max

k′∈{1,...,k}
cζk

′
and the associated dk′ with k∗ = arg max

k′∈{1,...,k}
cζk

′
;

Experimental testing of Algorithm 8

Algorithm 8 was extensively tested on several instances with very different λ0 configura-
tions. Unfortunately, the outcome was almost everytime the same: the solution found by
solving (PZk) is the same as the one found by solving (5.3). To us, this is due to the fact
that we are only working on very small graphs, thus making the number of equivalent
solutions that could be found by solving (PZk) very limited in practice. Note that this
is not due to a particular property of the problem since it happened, yet rarely, that
the solution of (PZk) was different. However, since it was so rare and unpredictable, its
impact was hard to quantify.

However, we think that on larger graphs, this approach would have a higher impact
that we can only forecast from our test basis.

152

5.3.2 Avoiding potential instability by using Ordered Weighted
Average as the objective function of the recourse problem

Theoretical developments on the method

While solving the recourse problem by the means of Algorithm 7, let us consider the
problem (Pmult2) at a given step k of the algorithm. There are k constraints (5.9),
each one limiting the value of variable θ. Let us denote by v(r) the value of the right-
hand-side of a line r (among constraints (5.9)). Let us assume these lines sorted in an
increasing order r1, r2, ..., rk with val(r1) ≤ val(r2) ≤ ... ≤ val(rk). Hence, the optimal
solution of (Pmult2) is the one that maximizes the value of line r1. Therefore, that optimal
solution does not take into account val(r2), nor val(r3), nor any other. However, it is
not impossible that at the next iteration k + 1, on of those lines become the minimal
one, thus making the next optimal solution computed from that line. Then, it could
be interesting, in order to avoid instability of successive (Pmult2) solutions, to somehow
anticipate by taking into account at each iteration these 2, 3 or more minimal lines in
the optimization.

In order to do so, it is possible to consider the Ordered Weighted Average operator
(OWA), described in the section 1.3.2 of the Bibliographical Study to which the reader
is referred. As OWA aggregates several criteria, let us define those we will work with. A
criterion is defined as such:

vr(d, ζ
r) = min

ϕ s.t.(ϕ,ar)∈P̂G(d,ζr)

∑
j∈V

arj , ∀r = 1, ..., R

where R = |Z|. In addition, let us consider a set of positive weights δ1 ≥ δ2 ≥ ... ≥ δq >

δq+1 = ... = δR = 0, with q < R and
R∑
i=1

δi = 1. As in section 1.3.2, we define the bijection

from {1, ..., R} to {1, ..., R} that sorts criteria in an increasing order: v(1) ≤ ... ≤ v(R).
We consider a subset of indexes of k ≥ q criteria K ⊂ {1, ..., R} with |K| = k, and we
define the bijection from {1, ..., k} to K that sorts selected criteria by K in an increasing
order: v[1] ≤ ... ≤ v[k].

Proposition 5.3.2.

0 ≤ v(1)(d, ζ
(1)) ≤

R∑
r=1

δrv(r)(d, ζ
(r)) =

q∑
r=1

δrv(r)(d, ζ
(r)) ≤

q∑
r=1

δrv[r](d, ζ
[r]) =

k∑
r=1

δrv[r](d, ζ
[r])

Proof. The first term is the smallest one. The second one is the ordered weighted average
of the q smallest criteria of {1, ..., R}. The third one is the ordered weighted average of
q criteria of {1, ..., R} that may not be the smallest ones.

153

We will now describe the variant of Algorithm 7 that uses the OWA aggregation
operator, and we will prove that they both converge towards the same objective. First,
we still have a set of weights δ1 ≥ δ2 ≥ ... ≥ δq > δq+1 = ... = δR = 0 with q < R and
R∑
i=1

δi = 1 as mentioned above. We set k = q and ζ1, ..., ζk chosen in Z. We denote by

(POWA
mult2) the following mixed integer program:

(POWA
mult2)



max
v,α,β,θ,d,λ,µ,π,y

k∑
r=1

αr + βr

s.t. d ∈ D

αr + βr′ ≤ δr′vr, ∀r, r′ = 1, ..., k (5.10)

vr ≤
∑
j∈V

(yrj − λrjmζrj)−
∑

(i,j)∈V 2

πrijfij, ∀r = 1, ..., k(5.11)

µrj ≤ 1, ∀r = 1, ..., k,∀j ∈ V

µrj − λri − πrij ≤ 0, ∀r = 1, ..., k,∀(i, j) ∈ V 2

yrj ≤ µrjdmaxj , ∀r = 1, ..., k,∀j ∈ V

yrj ≤ dj, ∀r = 1, ..., k,∀j ∈ V

yrj ≥ dj − (1− µrj)dmaxj , ∀r = 1, ..., k,∀j ∈ V

λri ≥ 0 ∀r = 1, ..., k,∀i ∈ V

µrj ∈ {0, 1} , ∀r = 1, ..., k,∀j ∈ V

yrj ≥ 0, ∀r = 1, ..., k,∀j ∈ V

πrij ≥ 0, ∀r = 1, ..., k,∀(i, j) ∈ V 2

dj ≥ 0, ∀j ∈ V

This problem minimizes the OWA of the above defined criteria (see section 1.3.2 for
more details).

Before entering the details, let us prove the following proposition.

Proposition 5.3.3. If v(POWA
mult2) = 0, then the recourse problem is solved.

Proof. Let d be the solution of the last iteration k. From Proposition 5.3.2, we have:

0 ≤ min
r=1,...,R

vr(d, ζ
r) ≤

k∑
r=1

δrv[r](d, ζ
[r])

Where [.] is the bijection from {1, ..., k} to K ⊂ {1, ..., R} the set of indexes of the k
criteria chosen by the algorithm such that v[1] ≤ ... ≤ v[k]. The last term equals 0 since
it is the objective function of the current problem.

154

Let θ = δ1 min
r=1,...,k

vr be the first term of the OWA. Let us examine the different cases.

If θ > 0, then let dk+1 be the solution of (POWA
mult2). We then solve R(f̃ , z̃,dk) in order

to obtain the solution ζk+1. Then we need to add the columns and constraints related to
that new integer vector to problem (POWA

mult2), we set k = k + 1 in order to solve it again.
Thus, we add a set of constraints that are violated by the current solution.

On the contrary, if θ = 0, there are two cases. If OWA also equals 0 (i.e. v(POWA
mult2) =

0), Proposition 5.3.3 implies that the recourse problem has been solved. If not, one needs
to change the sequence of weights by putting left its terms as follows:

δ1 = δ1 + δ2, δ2 = δ3, ..., δq = δq+1

and then solve (POWA
mult2) again. Proposition 5.3.4 proves that this process converges.

Proposition 5.3.4. Assuming that all δi > 0 weights are different for i = 1 to q and
let us suppose k ≥ q. If, after the choice made at the end of iteration k was to put
the δ sequence to the left, the solution at the next iteration k + 1 of problem (POWA

mult2) is
unchanged from iteration k, or if criteria vr (r = 1, ..., k) do not change values, then the
objective function of the recourse problem strictly decreases.

Proof. When the weights sequence is put to the left, it is because the first criterion equals
0 (i.e. the smallest one), and that OWA 6= 0. It implies that q > k′, k′ being the rank
of the last null criterion in OWA. By putting the sequence to the left, we obtain a new
sequence such that δ′i = δi+1 for i ≥ 2. Both sequences satisfies the conditions of Property
1.3.2. The result thus follows from that Property.

Hence, we designed a variant of Algorithm 7 that tries to avoid instability problems
by using the aggregation operator OWA. However, many issues remain, such as the choice
of δ values for instance. And, more importantly, the effectiveness of this variant remains
to be proven. Before doing so, let us sum up what has been done so far by describing
formally that variant under the name of Algorithm 9.

Experimental testing of Algorithm 9

In order to illustrate how the Algorithm 9 may improve the solving of problem (PONrob),
we ran the algorithm for a single instance first, in order to find good δ coefficients. Two
sets of coefficients are presented in these tests.

• δ1
1 = 0.5 + ∆1, δ1

2 = 0.5−∆1 for ∆1 ∈ {0, 0.05, 0.1, ..., 0.45}

• δ2
1 = 0.4 + ∆2, δ2

2 = 0.3− ∆2

2
, δ2

3 = 0.3− ∆2

2
for ∆2 ∈ {0, 0.04, 0.08, ..., 0.56}

155

Algorithm 9 A column-and-constraint generation algorithm variant based on the OWA
aggregation operator for solving Q(z̃, f̃) to optimality
Require: UB = +∞, ε ∈ R+, k = 0;
Require: δ1 ≥ δ2 ≥ ... ≥ δq

1: find an initial vector ζ1 by solving (5.3) for a randomly chosen scenario d ∈ D

2: Z2 ←
{
ζ1
}

3: while UB > ε do
4: solve (POWA

mult2) with Z2; let d∗k be an optimal solution;
5: UB ← v(POWA

mult2);
6: θ ← δ1 min

r=1,...,k
vr

7: if θ > 0 then
8: solve (5.3); let ζk+1 be an optimal solution;
9: Z2 ← Z2 ∪ {ζk+1}; k ← k + 1;
10: else
11: if UB > 0 then
12: δ1 ← δ1 + δ2, δ2 ← δ3, ..., δq ← δq+1

13: end if
14: end if
15: end while
16: return max

k′∈{1,...,k}
cζk

′
and the associated dk′ with k∗ = arg max

k′∈{1,...,k}
cζk

′
;

Note that others were tried. We pushed tests to q = 5 but the behavior presented
below was always observed. The instance we are dealing with is a randomly generated
instance of size 7 that is solved in 32 seconds by the standard algorithm 6. For each set
of coefficient, we solve the problem for all ∆k values. For every problem solved, we report
the gain in solving time that we observe.

Figures 5.1 and 5.2 shows the results for both sets of coefficients. In both cases, no
trend can be identified and the algorithm performance seem to be very sensitive to ∆k

variation. From there, we took for each set of coefficient the ones that performed best on
our instance:

• δ1
1 = 0.8 and δ1

2 = 0.2.

• δ2
1 = 0.56, δ2

2 = 0.22 and δ2
3 = 0.22.

We then used these coefficients in order to solve 10 other instances of similar size that
were previously solved by algorithm 6. For each instance, we report the gain in solving
time for both set of coefficient. Results are reported in Figure 5.3. There again, no
trend can be identified and, more importantly, both curves have no common trend at all.

156

Figure 5.1: Solving time gains of Algorithm 9 for the 2 δ1 coefficients

Moreover, the solving time is often longer, which means that the "best" set of coefficient
for an instance may not be the best for another.

In the end, we showed that algorithm 9 can perform better with the right set of
coefficient, but no rule could be identified on how to pick good coefficient since a set of
coefficient can improve the solving time on an instance can also deteriorate it a lot on
another.

5.4 Study of what makes "robust" a solution

In this section, let us examine a robust solution on a small instance we were able to
solve to optimality. This instance is presented on Figure 5.4 where numbers on grey
arcs denotes the routing cost of a single fiber, and numbers on orange arcs denotes the
routing cost of a fiber from the OLT and the splitter installation cost. Note that the
splitter installation cost alone equals 138, and its capacity equals 8. Finally, demands are
shown on the right-hand-side nodes. The total demand equals 35.

Let us first examine what the exact solution of the deterministic problem would be,
as it is presented on Figure 5.5. On this solution, 5 splitters are installed (for a total cost
of 690), and fibers are used according to the demand for a total cost of 115. Note that
the amount of fiber incoming a demand strictly equals the demand of that node so that

157

Figure 5.2: Solving time gains of Algorithm 9 for the 3 δ2 coefficients

no fiber is unused. On the third node from the top, 2 splitters are used for the third and
fourth nodes.

Let us now take a look at the optimal solution of (PONrob), shown on Figure 5.6,
for a total expected demand value of 11. Only first stage variables values are shown on
this figure. The fiber cost equals 197, which is higher than for the deterministic version
of the problem. On the contrary, the worst splitter cost possible equals 414 (which is
equivalent to 3 splitters). On the right of the figure, the first scenarios added in the
master problem by the Algorithm 6 are shown. The most important thing to note is the
fact that the incoming number of fibers on the second and fourth node are greater than
the maximal demand value of these nodes. For the second node, 7 fibers are incoming
whereas the maximum demand possible on that node equals 6. On the fourth node, 15
fibers are incoming for a maximum demand of 11. That explains the higher fiber cost
for that robust solution. The point of having more fibers incoming in a robust context
is to enable more routing options for second stage fiber variables, thus making more
localization options for the second stage splitter variables. This is how the worst case
splitter cost has been reduced. It is also important to note that fibers that may be
considered as "additional" are all coming from the third node. That grouping trend was
observed almost every time while solving (PONrob).

To sum up what this small example brought, there are two main orientations that
we identified that can make a solution robust, regarding demand uncertainty in a PON

158

Figure 5.3: Solving time gains of Algorithm 9 for the 3 δ2 coefficients

deployment context:

• Having more fibers than required for the full demand scenario.

• Having nodes that regroup lots of potential splitters.

Conclusion

In this section, we engaged several attempts to solve (PONrob) to optimality. A column-
and-constraint generation algorithm that solves its slave problem by the means of another
column-and-constraint generation algorithm was designed and tested. Unfortunately,
its behavior is highly unstable, and multiple stabilization techniques were employed.
However, their impact hard to quantify and to master. Hence, the instance size we
were able to solve with this approach remains limited. Yet we think that some of the
stabilization methods we tried may be useful for other problems. However, solving the
problem to optimality enabled us to extract information on what makes a solution robust.

At this point, we made the choice to let the exact solving of the problem aside as our
reflection on the problem led us to think that more interesting options were to be tried
regarding non-exact methods.

159

Figure 5.4: Description of an instance with its costs and its demands

Figure 5.5: Optimal solution of (PONdet)

160

Figure 5.6: Optimal solution of (PONrob)

161

Chapter 6

Development of non exact solving
approaches for the two-stage robust
passive optical network design problem
under demand uncertainty

Introduction

Chapter 5 focused on solving the robust problem to optimality. As the range of problems
that one is able to tackle with these algorithms is too limited for real-life instances, it
is thus important to develop solving methods that can deal with larger problem sizes.
Of course, for tackling this problem, many methods are available in the literature but
none have yet been applied to the specific problem of the two-stage robust passive optical
network deployment optimization problem.

Thus, many options are available to us. As shown in the bibliographical study of
section 1.2, many methods are available to solve two-stage robust problems with a con-
tinuous recourse. These methods could then be applied to our problem, at the cost of
a continuous relaxation. But it is not the only way, as the previous chapter allowed us
to gain insight on what makes a solution robust. From that information, it may be pos-
sible to design specific heuristics to solve the problem. As one can expect, many issues
will arise, and as nothing exists yet for this problem, it is important to proceed to the
exploration of our solving options.

The main objective of this chapter is to design and compare several non exact solving
approaches for the two-stage robust passive optical network design problem under demand
uncertainty. All methods will thus have to be evaluated in order to conclude on their
performance, or their interest.

162

6.1 Design of a heuristic for solving the recourse prob-
lem

The robust problem has proven difficult to solve. Thus, we aim to find a good heuristic
for solving the recourse problem (4.16). Let us recall it:

Q(f , z) : max
d∈D

min
(ϕ, ζ) ∈ PG(d)
ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi

6.1.1 Definitions and principles prior to the design of the heuris-
tic

First, let us point out some properties of the recourse problem.

Proposition 6.1.1. There always exists an optimal solution of Q(f , z) such that∑
j∈V

dj = d̄ (6.1)

Proof. It is immediate since adding demand on a node will either change nothing to the
number of required splitters, or increase the total splitter cost.

Even though it was to be expected, this proposition greatly restricts the number of
useful solutions in D.

Definition 6.1.1. Let G∗f ,z = (V ∗I ∪ V ∗J , E∗) be the bipartite graph derived from the initial
graph G = (V ∗ ∪ {0}, E) in which the robust problem is solved. Set:

• V ∗I = {v ∈ V s.t. z̃ 6= 0}, the splitters locations. The maximum number of splitters
that can be located in each node is given by the vector z̃.

• V ∗J = {v ∈ V s.t. dmax 6= 0}, the possible demands locations.

• e∗ is an edge of E∗ if and only if f̃ 6= 0. The capacity of each edge is given
by the vector f̃ . We denote by NG the number of connected components, and Hp

for p = 1, ..., NG the connected components of G∗f ,z. We also need to introduce
V p∗
I = V ∗I ∩Hp and V p∗

J = V ∗J ∩Hp.

Figure 6.1 sums up the elements introduced in definition 6.1.1 in a short example.
Now that we determined that an optimal solution of Q(f , z) always consists in d̄

demands that are distributed among the nodes of V ∗J , and that the graph can be decom-
posed, let us show that the recourse problem itself can be decomposed as well.

163

Figure 6.1: Example of G∗f ,z creation and decomposition into sub-connected-parts

Definition 6.1.2. Let us denote by qpu the minimal number of demands to be distributed
among the demand nodes of V p∗

J so that the minimal number of optical splitters needed to
supply it equals u. We denote by dpu the demand vector on Hp that verifies this property,
that is we have

∑
j∈V ∗J

dpj,u = qpu.

In other words, qpu values are the optimal solution of the following bi-level problem
denoted (Pqpu):

(Pqpu)



min
d

∑
j∈V p∗J

dj

s.t. d ∈ D

min
(ϕ, ζ) ∈ PHp(d)
ζ ≤ z, ϕ ≤ f

∑
i∈V p∗I

ζi

 ≥ u (6.2)

Constraints (6.2) ensures that d corresponds to a demand vector over which splitter
location has been optimized. Otherwise, sub-optimal splitter location could be used in
order to install too much splitters for a given demand vector.

For now, let us not worry about how to solve (Pqpu), and let us assume that qpu values
are available to us.

Definition 6.1.3. We denote by MHp a bound on the maximal number of splitters that
can be needed in Hp for any demand scenario. Note that MHp =

∑
i∈V p∗I

zi is a possible

value.

164

The following proposition holds:

Proposition 6.1.2. The optimal solution’s value of Q(f , z) equals the optimal solution’s
value of problem Qdecomp(f , z):

Qdecomp(f , z)



max
x

NG∑
p=1

MHp∑
u=0

Cxpuu

s.t.
MHp∑
u=0

xpu = 1, ∀p = 1, ..., NG (6.3)

NG∑
p=1

MHp∑
u=0

xpuq
p
u ≤ d̄ (6.4)

xpu ∈ {0, 1}

And the optimal solution of Q(f , z) is the combination of dpu vectors associated to each
xpu that equals 1.

Proof. For every Hp, qpu values gives us the best way to use a minimal amount of demand
for all splitter numbers possible. Moreover, as Hp are not connected to each other, the
demand scattering over V p∗

J nodes does not impact the best splitter solutions of the other
connected parts of the graph. Of course, among all the possible splitter numbers to install
on a given Hp, only one shall be chosen. We denote by xpu the boolean variable that equals
one if the demand vector dpu is used for the solution in the sub-graph Hp. Constraint
(6.3) ensures that only one variable xpu is set to one. Constraint (6.4) ensures that the
total demand that is used in all Hp sub-graphs does not exceed the maximum demand
possible d̄. MHp gives a bound of the maximum number of splitters that can be used in
a sub-graph Hp.

In other words, if one is able to find qpu values for all u and p, then he would only
have to solve Qdecomp(f , z) in order to solve Q(f , z). Qdecomp(f , z) is a kind of Knapsack
problem with an additional constraint (6.3) that limits the total number of objects one
can pick. It is a NP-hard problem, however, we expect it to be very tractable in practice,
especially when NG is low. Of course, the difficulty of the recourse problem has been
moved elsewhere. Indeed, the real hard part now is to find qpu values. However, our goal
is to design a heuristic for this problem. Therefore, we will now try to find "good" qpu
values, found through a heuristic process. The reason for such problem decomposition
shall be clearer for the reader in the following as it makes heuristic reasoning much easier
now.

Let us denote by q̂pu the heuristic values we aim to find, and by Q̂decomp(f , z) the
problem Qdecomp(f , z) when q̂pu values are used instead of qpu. The corresponding demand
vector associated to a q̂pu value is denoted by d̂

p

u.

165

Proposition 6.1.3. If q̂pu ≥ qpu for all p = 1, ..., NG and for all u = 1, ...,MHp, then
Q̂decomp(f , z) gives a lower bound of the recourse problem Q(f , z).

Proof. If q̂pu ≥ qpu, ∀p = 1, ..., NG, ∀u = 1, ...,MHp then Q̂decomp(f , z) is more constrained
than Qdecomp(f , z), whose optimal solution’s value equals that of Q(f , z) (by Proposition
6.1.2). Therefore, it is a lower bound for that problem.

From now on, our purpose will be to improve as much as possible our sequence of q̂pu
values, using properties of the graph.

6.1.2 Improvement of the sequence by solving the maximal stable
problem in a hypergraph

Proposition 6.1.4. The following values for q̂pu are all greater or equal than qpu values:

q̂p0 = 0 (6.5)

q̂p1 = 1 (6.6)

q̂pu = 1 + (u− 1)×m, ∀u ≥ 2 (6.7)

This is true for all sub graphs Hp. Moreover, if there exists a demand vector d̂
p

u ∈ D that
verifies those equalities for a given u value, it can be associated to these heuristic values.

Proof. For u = 0, it is actually obvious that the minimal demand needed here also equals
0. In the same way, putting 1 demand anywhere in V p∗

J will directly imply the installation
of 1 optical splitter in V p∗

I . More generally, putting 1 + (u − 1) × m demands in V p∗
J ,

even randomly distributed, will imply the use of at least u optical splitters to supply the
necessary capacity.

Remark 6.1.1. Note that qp0 = q̂p0 = 0 and qp1 = q̂p1 = 1.

Remark 6.1.2. Note that d̂
p

u can also be chosen so that 0 ≤ d̂j
p

u ≤ dmaxj , ∀j ∈ V p∗
J , as

solving problem Qdecomp(f , z) will ensure that the chosen combination of d̂
p

u will result in
a demand vector in D.

Proposition 6.1.4 gives us an easy-to-build sequence of heuristic q̂pu values to which
any random d̂

p

u can be associated. Thus, it will be the first step of our heuristic. Once
it is done, we will improve the sequence locally. Let us start by the first values of the
sequence, for low values of u, as the principle used to pose q̂p1 = 1 can be generalized.

Definition 6.1.4. Let us denote by Hp(V
p∗
J , Ep) the hypergraph associated to Hp that

is built by creating one hyperedge epi per node i in V p∗
I and that contains the nodes of

V p∗
J such that epi = {j ∈ V p∗

J |fij ≥ 1}. To each hyperedge epi is associated a capacity
Fi =

∑
j∈V p∗J

min
{
fij, d

max
j

}
.

166

Figure 6.2: Illustration of how the associated hypergraph Hp(V
p∗
J , Ep) is built from Hp

Figure 6.2 gives an example of how that hypergraph is built. On the example showed
by the figure, one can easily see that qp2 = 2. Indeed, by putting 1 demand at node a
or b, and 1 at node d, 2 optical splitters will be needed to supply that demand vector.
This structure can be seen as a generalization of the stable of a graph to the hypergraph.
Many definitions of the stable problem in a hypergraph are possible, and the reader may
refer to the book of Claude Berge [8] for an extensive review. Here, let us define the
stable problem in an hypergraph as follows:

Definition 6.1.5. A stable Sp in a hypergraph Hp(V
p∗
J , Ep) is a subset of V p∗

J such that
there is no hyperedge of Ep that can contain two elements of Sp. A stable of maximum
cardinality is denoted by S̄p and the problem that consists in finding one is denoted by
(PSp).

Given the hypergraph Hp(V
p∗
J , Ep), let us denote by sj the boolean variable that equals

1 if, and only if the node j ∈ V p∗
J belongs to the maximum stable. Thus, the problem

(PSp) can be modeled as such:

(PSp)



max
s

∑
j∈V p∗J

sj

s.t.
∑
j∈epi

sj ≤ 1, ∀epi ∈ Ep

sj ∈ {0, 1}

(PSp) is a NP-hard problem but in practice, we expect to get small hypergraphs
Hp(V

p∗
J , Ep), thus making this procedure tractable. Moreover, stable like constraints are

often well managed by up-to-date integer linear programming solvers. The following
proposition tells us how the solution of (PSp) will be used to improve q̂p values.

167

Proposition 6.1.5. Given S̄p, the following values for q̂pu are all greater or equal than qpu
values:

q̂pu = u, ∀u = 1, ..., |S̄p| (6.8)

q̂pu = |S̄p|+ (u− |S̄p|)×m, ∀u = |S̄p|+ 1, ...,

⌈∑
j∈S̄p d

max
j

m

⌉
(6.9)

For u = 1, ..., |S̄p|, the associated demand vectors are those with 1 demand per nodes of

the stable S̄p. For u = |S̄p| + 1, ...,

⌈∑
j∈S̄p d

max
j

m

⌉
, the associated demand vectors are

those with 1 plus a multiple of m demands put on one node of the stable S̄p.

Proof. By construction, by putting 1 demand at each node of the stable S̄p, each demand
will imply the installation of a splitter to supply it. That is because nodes of the stable
can not be supplied by the same splitter node. Once all nodes of the stable received their
single demand, adding m demands to a node of the stable will imply at least one more
optical splitter to be installed in order to supply it. By fulfilling nodes of S̄p up to their
maximal demand, we can keep increasing the number of splitters required to supply them
as well.

Looking at the figure 6.2, the maximum stable here would be, for example, the set of
nodes composed of nodes a and d. By putting 1 demand on a and d, the only mean for
supplying them is to put one splitter on the green node and one on the purple (or blue)
node. Then, by adding m demands on a or d, another optical splitter will be needed to
supply it. We can keep applying this rule in order to find lower values for q̂pu than those

found in Proposition 6.1.4, for all u = 1, ...,

⌈∑
j∈S̄p d

max
j

m

⌉
. If the stable is of size 1, then

proposition 6.1.5 has no impact on q̂pu values.

Remark 6.1.3. There may be several maximum stables for a given hypergraph Hp. If

that happens, one should pick the one that has the higher

⌈∑
j∈S̄p d

max
j

m

⌉
value. This can

be done by a goal programming approach. One just need to solve (PSp) once, and then
again by changing the objective function as such:

max
s

∑
j∈V p∗J

dmaxj sj

and adding the following constraint to the problem:∑
j∈V p∗J

sj = |S̄p|

168

Remark 6.1.4. For all u = 1, ..., |S̄p|, q̂pu values given by Proposition 6.1.5 are actually
optimal and equal to qpu. Indeed, spending 1 demand to cause 1 more splitter is the best
ratio one could have here.

6.1.3 Improvement of the sequence by exploiting Fi values

Another way for improving the sequence of q̂pu values is to make use of the fiber capacities.
Indeed, fij values impose some limitations on the routing options for minimizing the
splitter installation cost. Thus, there may exist some demand affectations that will
restrict the number of routing options so that the splitter cost minimization problem
will have to use more splitters than expected. In order to have a fast way of making use
of these capacity limitations, we need generic procedure. For each hyperedge, to which
is associated a capacity Fi, we denote by F r

i the remainder of the division of Fi by m.
Assume, without loss of generality, that F r

i values are sorted, such that F r
(i) ≥ F r

(i+1). We
thus have the following proposition:

Proposition 6.1.6. Given ũp =
∑
i∈V p∗I

⌊
Fi
m

⌋
, if ũp < MHp then the following values for

q̂pu are all greater or equal than qpu values:

q̂pũp+1 = 1 + ũp ×m (6.10)

q̂pũp+i = q̂pũp+i−1 + F r
(i−1), ∀i = 2, ...,MHp − (ũp + 1) (6.11)

This is true for all sub graphs Hp. Moreover, any demand vector d̂
p

u ∈ D that verifies
those equalities can be associated to these heuristic values.

Proof. Once 1+ ũp×m demands are placed on the nodes of V p∗
J , in the best case they are

distributed so that every hyperedge epi contains exactly
⌊
Fi
m

⌋
×m demands. Therefore,

only adding the greatest reminder F r
(1) to any node of the hyperedge (1) will add at least

one splitter because this hyperedge will be saturated. We can iterate the process until the
maximal u value is reached. As this is true for the specific demand vector that allocate⌊
Fi
m

⌋
×m demands to each hyperedge, and then 1 + F r

(1) to the edge (1), and then F r
(2)

to the edge (2), and so on, which is the worst case for us, it is also true for any random
demand vector in D since it can only be better.

Figure 6.3 gives an example of how this principle is applied. At first, 1 demand is

allocated to node a. Then,
⌊

10

8

⌋
×8 = 8 demands are allocated to node a. At this point,

only 4 demands are needed to saturate the hyperedge c. Therefore, adding 4 demands
(instead of 8) is enough to saturate the edge and imply another splitter somewhere on

169

node d or e. Finally, 2 demands are necessary on node b to saturate another hyperedge
(that is either d or e). Adding more demand would prove irrelevant since they would not
imply any more splitter.

Figure 6.3: Example of how the Proposition 6.1.6 may be used to reduce the q̂pu values

Note that the demand allocation proposed in Figure 6.3 is not optimal. Figure 6.4
shows an optimal q̂pu sequence that uses less demand.

Figure 6.4: Optimal sequence of q̂pu values for the example shown in Figure 6.3

6.1.4 Design of the heuristic for the recourse problem

Many principles of the heuristic were introduced in the last subsections. Let us sum them
up in this section, as they are presented in Algorithm 10.

170

Experimental testing of the heuristic

In order to estimate how good the heuristic performs, we needed to compare it to the
optimal solutions of the recourse problem. However, as these solutions are hard to obtain
on graphs larger than 10 nodes, the heuristic could be tested only on small instances.
Therefore, the following results have to be considered regarding that fact. Indeed, since
worst case scenarios imply a low number of splitters for theses instances, the relative
gap between the heuristic and the optimal solution can increase very fast for each worst
case splitter that is not grasped by the heuristic. Thus, we estimated it more relevant to
report the percentage of cases where the heuristic found the right number of splitters in
the worst case scenario.

To that extent, we launched algorithm 6 over 50 randomly generated instances (be-
tween 5 and 10 nodes) and, at each iteration of the master problem, we launched solved
the recourse problem both exactly and with the heuristic. Thus, they were compared
over (around) 1000 cases. We observed that most of the time (97%), demand scenarios
that were generated were different. However, the worst case cost found by the heuristic
equaled the optimal one in 81% of cases. Most cases where the heuristic performs well are
in the first iterations of the main algorithm since graphs have a lot of non connected parts
Hp with only one demand node, thus making the heuristic optimal for those sub-parts.
As the algorithm goes on, stables are detected by the heuristic that keep on performing
quite well. But after a while, as the solution built by the algorithm gets more and more
"robust", the heuristic struggles to find good qpu values.

Let us now look at the solving time for the heuristic. Note that it highly depends
on the structure of the graph we are solving. Indeed, finding the maximum stable is a
NP-hard problem and it may prove hard to solve for large Hp components. However, we
experimentally witnessed the fact that the size of Hp components does not increase a lot,
except for one component that tends to contain a lot more nodes than the others (that
remain with a size below 5 nodes in general). However, solving Q̂decomp(f , z) proves harder
as the graph increases in size. Figure 6.5 shows how the solving times increases with the
instance size. The solving time showed on the figure is the average solving time over 10
randomly generated instances per given size. The first thing to note is the exponential
increase of the solving time with the size of the graph. However, for the higher graph size
we tested here, that is graphs of 600 nodes, the solving time remained below 35 seconds
on average.

171

Figure 6.5: Average solving time of the heuristic (Algorithm 10)

6.2 Non-exact approaches based on relaxations of the
recourse problem

In this section, we explore various relaxations and approaches for tackling the recourse
problem. Methods will be presented and at the end of the section, compared so that the
same experimental protocol is applied to all.

6.2.1 Using the Algorithm 10 for solving the recourse problem
within Algorithm 6

Algorithm 10 designed in the last section can be used in many ways. For example, it could
be used to increase its speed by generating the first scenarios by the means of the heuristic
instead of the heavy exact method. But as we aim for non exact solving approaches, we
will use the heuristic in the initially exact framework developed in Chapter 5 to solve
the robust problem approximately. Indeed, the heuristic can be used to generate demand
scenarios and adding them to (PONrob) (see Section 5.1). Of course, as the heuristic
only provides a lower bound for the recourse problem, it is not possible to prove the
convergence of Algorithm 6 in that case. Therefore, a stopping criterion must be used
in order for the algorithm to stop. Here, we shall simply limit the number of iteration
that the framework will operate before stopping at a given number L. That modified,

172

heuristic version of Algorithm 6 is given by Algorithm 11.

6.2.2 Continuous relaxation of the recourse problem and dual-
ization

What makes the robust problem (PONrob) hard to solve is, among many things, the
integrity of some recourse variables. This prevented us from using the algorithms available
in the literature (see Section 1.2.6). Thus, by relaxing the integrity constraint of recourse
variables ζ, it would be possible to use an adaptation of the generic Algorithm 1 presented
in Section 1.2.6. Let us consider the recourse problem of (PONrob):

Q(f , z) : max
d∈D

min
(ϕ, ζ) ∈ PG(d)
ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi

Proposition 6.2.1. If recourse variables of the recourse problem have their integrity
relaxed, Q can thus be written as such:

Qrelaxed(f , z)



max
d,λ,µ,π,θ

∑
j∈V ∗

µjdj −
∑
i∈V ∗

θizi −
∑

(i,j)∈V ∗2
πijfij

s.t. mλi − θi ≤ C, ∀i ∈ V ∗ (6.12)

µj ≤ λi + πij, ∀(i, j) ∈ V ∗2 (6.13)

0 ≤ dj ≤ dmaxj , ∀j ∈ V ∗ (6.14)∑
j∈V ∗

dj ≤ d̄ (6.15)

dj ∈ N, ∀j ∈ V ∗

λ, µ, π, θ ≥ 0

Proof. Let us write the inner relaxed minimization problem:

min
ϕ,ζ

∑
i∈V ∗

Cζi

s.t.
∑
j∈V ∗

ϕij ≤ mζi, ∀i ∈ V ∗ ← λi∑
i∈V ∗

ϕij ≥ dj, ∀j ∈ V ∗ ← µj

0 ≤ ϕij ≤ fij, ∀(i, j) ∈ V ∗2 ← πij

0 ≤ ζi ≤ zi, ∀i ∈ V ∗ ← θi

By strong duality, this problem’s optimal value equals its dual. Dual variables are shown
on the right of each constraint.

173

The objective function of Qrelaxed(f , z) contains quadratic terms. Such situation has
already been encountered in Section 5.2.2. Thus, we do not enter in the details of the
linearization again. The reader may just remember that the quadratic terms can be
linearized by decomposing each variable dj into its binary writing, as for the (P̂mult)

formulation shown in Section 5.2.2. In that case, it is possible to use a column-and-
constraint generation algorithm for solving that relaxed version of (PONrob). Algorithm
12, presented above, is precisely doing this. It is directly derived from Algorithm 1 of
Section 1.2.6, which is why we skip the details of the procedure.

6.2.3 Affine approximation on the recourse variables

For now, every methods we proposed for solving the two-stage robust problem are based
on column-and-constraint generation. However, for a non-exact approach, there are other
ways proposed in the literature, such as the affine approximation on the recourse variables.
Indeed, as it is presented in the bibliography section 1.2.6, by making the assumption
that recourse variables follow a certain policy, it is possible to rewrite the problem as a
smaller, hopefully tractable one. Many policies are possible, but the one that has been
chosen is the affine approximation policy, mostly for practical reasons since it enables one
to keep a linear programming approach in order to solve it.

Let us recall that in (PONrob), there are two main sets of second stage variables:

• ϕij(d) the number of fibers routed along the shortest path from splitters at node i
to the demand node j for the demand scenario d

• ζi(d) the number of splitters eventually installed at node i in order to supply the
demand scenario d

Here, recourse variables are written as functions of the uncertain vector d, which just
means that they may take different values for each scenario. The affine approximation on
recourse variables consists in stating that recourse variables actually are an affine function
of the uncertainty. That is, recourse variables are defined as in the following hypothesis:

Hypothesis 4. Let us suppose that recourse variables of the problem (PONrob) are affine
functions of the uncertainty. They are written as follows:

ϕij(d) = ϕ0
ij +

∑
h∈V ∗

ϕhijdh, ∀(i, j) ∈ V ∗2 (6.16)

ζi(d) = ζ0
i +

∑
h∈V ∗

ζhi dh, ∀i ∈ V ∗ (6.17)

with all ϕhij and ζ
h
i having no sign for all h = 0, ..., |V ∗|.

174

Remark 6.2.1. Note that imposing ζi(d) ∈ N for all d ∈ D would imply that ζhi = 0

for all h ∈ V ∗. Hence, the interest of the affine approximation is lost in the process.
Therefore, the integrity of recourse variables must be considered relaxed here.

Remark 6.2.1 could make one feel that the affinely adjustable robust approach implies
too much approximation to be relevant. Since in this section, we try to find tractable
approaches for "good" solutions, at least trying the affinely robust one is relevant, the
only criteria being the experimental results that will follow. However, this approach is
also relevant because it has the potential to perform best, both computationally and
regarding the result since, for example, one can easily show that the optimal solution of
the affine version of (PONrob) will always be greater or equal than the integrity-relaxed
recourse version of it (presented in the last section 6.2.2). However, it may be either an
upper bound or a lower bound for the problem. Here again, experimental results will
separate the wheat from the chaff.

Under the hypothesis 4, (PONrob) become another problem, denoted (PONAARC) for
Affinely Adjustable Robust Counterpart, and can be written as follows:

(PONAARC)



min
z,f ,ζ,ϕ

∑
(i,j)∈V ∗2

cijfij +
∑
i∈V ∗

c0izi + γ

s.t. γ ≥ C
∑
i∈V ∗

(
ζ0
i +

∑
h∈V ∗

ζhi dh

)
, ∀d ∈ D (6.18)

∑
j∈V ∗

(
ϕ0
ij +

∑
h∈V ∗

ϕhijdh

)
≤ m

(
ζ0
i +

∑
h∈V ∗

ζhi dh

)
, ∀i ∈ V ∗,∀d ∈ D(6.19)

∑
i∈V ∗

(
ϕ0
ij +

∑
h∈V ∗

ϕhijdh

)
≥ dj , ∀j ∈ V ∗, ∀d ∈ D (6.20)

ϕ0
ij +

∑
h∈V ∗

ϕhijdh ≤ fij , ∀(i, j) ∈ V ∗2,∀d ∈ D (6.21)

ζ0
i +

∑
h∈V ∗

ζhi dh ≤ zi, ∀i ∈ V ∗,∀d ∈ D (6.22)

ϕ0
ij +

∑
h∈V ∗

ϕhijdh ≥ 0, ∀(i, j) ∈ V ∗2,∀d ∈ D (6.23)

ζ0
i +

∑
h∈V ∗

ζhi dh ≥ 0, ∀i ∈ V ∗, ∀d ∈ D (6.24)

(f , z) ∈ PG(dmax)

z ∈ N|V
∗|, f ∈ R|V

∗2|
+

As such, (PONAARC) is not a linear problem. The following Theorem shows how to
transform it so it can be tackled by a classic MIP solving approach.

175

Theorem 6.2.1. (PONAARC) can be rewritten as follows:

(PONAARC)



min
z,f ,ζ,ϕ,p,t

∑
(i,j)∈V ∗2

cijfij +
∑
i∈V ∗

c0izi + γ

s.t. γ ≥ C
∑
i∈V ∗

ζ0
i + tγ d̄+

∑
h∈V ∗

pγhd
max
h (6.25)

pγh + tγ ≥
∑
i∈V ∗

ζhi , ∀h ∈ V ∗ (6.26)∑
j∈V ∗

ϕ0
ij + tmi d̄+

∑
h∈V ∗

pmh,id
max
h ≤ mζ0

i , ∀i ∈ V ∗ (6.27)

pmh,i + tmi + ζhi ≥
∑
j∈V ∗

ϕhij , ∀i ∈ V ∗, ∀h ∈ V ∗ (6.28)

∑
i∈V ∗

ϕ0
ij ≥

∑
h∈V ∗

pdh,jd
max
h + tdj d̄, ∀j ∈ V ∗ (6.29)

pdh,j + tdj +
∑
i∈V ∗

ϕhij ≥ 0, ∀j ∈ V ∗,∀h ∈ V ∗\{j} (6.30)

pdh,j + tdj +
∑
i∈V ∗

ϕhij ≥ 1, ∀j ∈ V ∗, h = j (6.31)

ϕ0
ij + tfij d̄+

∑
h∈V ∗

pfh,ijd
max
h ≤ fij , ∀(i, j) ∈ V ∗2 (6.32)

pfh,ij + tfij ≥ ϕ
h
ij , ∀(i, j) ∈ V ∗2,∀h ∈ V ∗ (6.33)

ζ0
i + tzi d̄+

∑
h∈V ∗

pzh,id
max
h ≤ zi, ∀i ∈ V ∗ (6.34)

pzh,i + tzi ≥ ζhi , ∀i ∈ V ∗,∀h ∈ V ∗ (6.35)

ϕ0
ij ≥ tf0

ij d̄+
∑
h∈V ∗

pf0
h,ijd

max
h , ∀(i, j) ∈ V ∗2 (6.36)

pf0
h,ij + tf0

ij +ϕhij ≥ 0, ∀(i, j) ∈ V ∗2, ∀h ∈ V ∗ (6.37)

ζ0
i ≥ tz0i d̄+

∑
h∈V ∗

pz0h,id
max
h , ∀i ∈ V ∗ (6.38)

pz0h,i + tz0i + ζhi ≥ 0, ∀i ∈ V ∗,∀h ∈ V ∗ (6.39)

(f , z) ∈ PG(dmax) (6.40)

z ∈ N|V
∗|, f ∈ R|V

∗2|
+

p ≥ 0, t ≥ 0

176

Proof. The problem (PONAARC) can first be rewritten as follows:

(PONAARC)



min
z,f ,ζ,ϕ

∑
(i,j)∈V ∗2

cijfij +
∑
i∈V ∗

c0izi + γ

s.t. γ ≥ C
∑
i∈V ∗

ζ0
i + max

d∈D

(∑
i∈V ∗

∑
h∈V ∗

ζhi dh

)
(6.41)

∑
j∈V ∗

ϕ0
ij + max

d∈D

∑
h∈V ∗

−ζhi +
∑
j∈V ∗

ϕhij

dh
 ≤ mζ0

i , ∀i ∈ V ∗(6.42)

∑
i∈V ∗

ϕ0
ij + min

d∈D

(∑
i∈V ∗

∑
h∈V ∗

ϕhijdh

)
≥ dj , ∀j ∈ V ∗ (6.43)

ϕ0
ij + max

d∈D

(∑
h∈V ∗

ϕhijdh

)
≤ fij , ∀(i, j) ∈ V ∗2 (6.44)

ζ0
i + max

d∈D

(∑
h∈V ∗

ζhi dh

)
≤ zi, ∀i ∈ V ∗ (6.45)

ϕ0
ij + min

d∈D

(∑
h∈V ∗

ϕhijdh

)
≥ 0, ∀(i, j) ∈ V ∗2 (6.46)

ζ0
i + min

d∈D

(∑
h∈V ∗

ζhi dh

)
≥ 0, ∀i ∈ V ∗ (6.47)

(f , z) ∈ PG(dmax)

z ∈ N|V
∗|, f ∈ R|V

∗2|
+

Thus, in order to obtain a linear program, one needs to dualize every inner optimization
problem of every constraints. Since they are all similar, let us give the main principle.
All optimization problems here can be put into the following writing:

max
d∈D

∑
h∈V ∗

Xhdh

whose dual thus is:
min
t,p

td̄+
∑
h∈V ∗

phd
max
h

s.t. ph + t ≥ Xh

ph ≥ 0, ∀h ∈ V ∗

t ≥ 0

That last form can directly replace the inner optimization problems within the constraints.
Of course, every optimization problem is different and a new set of dual variables p and
t should be assigned to every problem.

Remark 6.2.2. The dual variables associated to inner optimization problems in con-
straints (6.44) and (6.46) (respectively (6.45) and (6.47)), are actually defining the same

177

set. Therefore, tfij and pfh,ij (respectively tzi and pzh,i) can be used instead of variables tf0
ij

and pf0
h,ij (respectively tz0i and pz0h,i), thus reducing the total number of variables.

Remark 6.2.3. The transformation proposed by Theorem 6.2.1 adds (2|V ∗|3 + 6|V ∗|2 +

4|V ∗| + 1) continuous variables and (2|V ∗|3 + 4|V ∗|2 + |V ∗|) constraints. With remark
6.2.2, (|V ∗|3 + 4|V ∗|2 + 4|V ∗| + 1) more continuous variables and (|V ∗|3 + 3|V ∗|2 +

|V ∗|) constraints are needed.

Thus, the problem is greatly increased in size, but it has the advantage to be solved
only once (contrary to column-and-constraint generation approaches).

6.2.4 Experimental testing of relaxed approaches

Many approaches were designed in order to tackle (PONrob), exactly or not. In order to
compare them, one needs to design an experimental protocol that could expose strengths
and weaknesses of all considered methods. These methods shall be compared over the
following criteria:

• The quality of the solution, both in terms of cost and robustness

• The solving time

• The instance’s size that may be tackled

As we are dealing with a two-stage problem, we have two kinds of costs: here-and-now
fiber cost and future robust cost. Given a first stage solution, it is easy to give the first
cost, but having the corresponding robust cost is difficult. Therefore, we need to design
a method in order to estimate that robust cost, even approximately, but on a fair basis.
Before entering the details, let us define our notations.

• The trivial method that consists in solving the problem without considering uncer-
tainty, used here as the scientific control, is denoted by PONtrivial

• The method presented in Section 6.2.1, using the heuristic Algorithm 10, is denoted
by PONheur

• The method presented in Section 6.2.2, based on the continuous relaxation of the
recourse problem, is denoted by PONrelax

• The method presented in Section 6.2.3, based on the affine approximation of re-
course variables, is denoted by PONAARC

178

Here, the method PONtrivial consists in solving the following mixed integer linear
program:

min
(f ,z)∈PG(dmax)

∑
(i,j)∈V ∗2

cijfij +
∑
i∈V ∗

(c0i + C)zi

and then extract the optimal solution (f∗, z∗) as the first stage solution for (PONrob).
This way, this solution will give us the threshold that any approached robust method
should not exceed. Indeed, if any of the above quoted methods would prove less effective
than PONtrivial, which does not deal at all with demand uncertainty, then it would be
enough to reject it.

Defining ways of estimating the robust cost

As mentioned before, obtaining the exact value of the robust problem for given values of
(f , z) is hard. Therefore, there is a need for methods that can estimate that worst cost.
One is already available to us: the Algorithm 10 designed in Section 6.1. Let us denote
by vhr the value of the robust cost found by the algorithm 10. However, this is not enough,
especially since method PONheur makes an explicit use of it. Moreover, the heuristic is
based on few causes of splitter cost increasing, but not all of them. Thus, in order to
have two different estimations of the robust cost, let us propose a robust cost estimating
method, based on the computation of the best splitter cost over a large sample of demand
scenarios.

Indeed, solving the inner minimization problem of the recourse problem, that is:

R(f , z,d) =

 min
(ϕ, ζ) ∈ PG(d̂)
ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi


is fast enough to make its solving over a large number of scenarios possible.

Let us denote by D̃ the subset of scenarios over which R(f , z,d) will be solved. Let us
denote by vsr the value of the worst splitter cost found by solvingR(f , z,d) over the sample
of scenarios D̃. Moreover, having the average splitter cost is also interesting, since some
methods may give solutions with a large worst splitter cost, but a good average splitter
cost. Let us denote by v̄sr that mean cost.

Demand scenarios of D̃ are generated by algorithm 13.
Other random vector generating methods could have been chosen, but as no proba-

bility assumptions are made on the uncertain demand, we preferred to introduce as less
bias as possible in the random generation.

179

Table 6.1 reports the comparison of all envisaged approaches of Section 6.2 to the
optimal value found with Algorithm 6. For each tested instance (that is randomly gen-
erated), we give its size. Then, for each solving approach, we report its solving time
in seconds (columns "Time") and the value it found (columns "v"). In the columns of
(PONrob) are reported the results found with Algorithm 6, in columns of "AARC" are
reported the results found by solving (PONAARC), in columns of "Heuristic" are reported
the results found by using the heuristic Algorithm 10 to solve the recourse problem for 15
iterations and in columns of "Relaxed" are reported the results found by using Algorithm
12.

Instances (PONrob) AARC Heuristic Relaxed
|V | Time v Time v Time v Time v

1 5 16 1031 0.07 703 1.2 727 0.8 650
2 5 32 1235 0.06 866 1.3 877 0.8 768
3 5 51 1137 0.07 742 1.3 800 0.8 710
4 5 9 1101 0.07 743 1.3 789 0.7 680
5 5 12 988 0.06 639 1.3 685 0.8 622
6 7 55 1644 0.08 1158 1.8 1121 0.9 1029
7 7 68 1575 0.09 1102 1.8 1105 0.9 987
8 7 55 1577 0.08 1070 1.9 1112 1.0 988
9 9 151 1891 0.1 1250 2.4 1351 1.1 1100
10 9 90 1867 0.11 1255 2.4 1612 1.1 1085

Table 6.1: Comparison of all methods to the optimal value on several instances

The first observation one can make is about the Affinely Adjustable Robust Coun-
terpart, for which we could not decide whether it is a lower or an upper bound to the
problem. In practice, its optimal cost is always lower than the optimal one and the case
where it gives a greater values was never encountered during our tests. This would mean
that AARC gives a lower bound of the problem, even though there is no proof of that.
The second observation shows that AARC performs a lot better in terms of solving time
compared to all other formulations. However, and that is our third observation, using
the heuristic for solving the recourse problem gives a better lower bound than all other
methods. Finally, our final observation is to mention that Algorithm 12 performs poorly
both considering the solving time and the bound value it provides. Of course, these
results have to be tempered since only small graphs are tackled.

Tendencies shown in Table 6.1 were also observed for larger graphs where they were
compared using the heuristic Algorithm 10 and randomly generated scenarios (as it is
detailed above). Algorithm 12 is always outperformed on both the solving time or the

180

value it provides by the other two approaches. We managed to solve instances of size 50
with all these approaches in less than an hour. Overall, we observed that even though
AARC gives slightly less good solutions than Algorithm 6 combined with Algorithm 10,
they were often very close. It happened that the value given by AARC was even better
in some rare cases. Regarding the solving time, AARC is always better than the other
approaches. Thus, if a choice was to be made on how to generate good first stage solutions,
we would recommend to use the AARC approach on the basis of what we tried. Of course,
many improvements could be proposed for all the presented methods, and their overall
performance in terms of optimal value shows that they are far aways from reaching the
true optimal value.

Conclusion

To conclude, we first designed a heuristic for solving the recourse problem, based on
the knowledge we could gather at the end of Chapter 5. This heuristic is based on a
decomposition of the problem. The graph is splitted in several parts that can be treated
separately. For each part, a bi-level problem is posed that we solve heuristically in 3
steps. We first create a sequence of greedy solutions for all bi-level problems, that we
improve step by step right after. We first use the maximum stable in a hypergraph to
improve low values of the sequence. Then, we use metaedge capacities to improve last
values of the sequence. That heuristic was compared to our optimal approach on small
instances and its effectiveness was assessed.

In order to solve the problem for larger graphs, we proposed 3 non-exact methods,
all based on different relaxations of the problem. Those 3 methods were compared over
a large set of instances. So far, results are encouraging, yet not satisfying, especially
regarding the optimal value proposed by all methods that are all below the optimal value.
Having an upper bound for the problem would be an interesting field to investigate. We
now leave the PON deployment problem under demand uncertainty aside to tackle more
general and theoretical issues that arise in robust optimization problem.

181

Algorithm 10 A heuristic for solving the recourse problem Q(f , z)

Require: f , z, G(V,E)
1: Decompose the graph G into sub graphs Hp as they are defined by Definition 6.1.1
2: for p = 1 to NG do
3: MHp ←

∑
i∈V p∗z

zi

4: q̂p0 ← 0, q̂p1 ← 1
5: for u = 2 to MHp do
6: q̂pu ← 1 + u×m
7: end for
8: Create the hypergraph Hp(V

p∗
J , Ep)

9: Find S̄p by solving the problem (PSp)
10: if |S̄p| ≥ 2 then
11: for u = 2 to |S̄p| do
12: q̂pu ← u
13: end for

14: for u = |S̄p|+ 1 to

⌊∑
j∈S̄p d

max
j

m

⌋
do

15: q̂pu ← |S̄p|+ (u− |S̄p|)×m
16: end for
17: end if
18: for epi ∈ Ep do
19: Fi ←

∑
j∈V p∗d

min
{
fij, d

max
j

}
20: F r

i ← Fi −
⌊
Fi
m

⌋
21: end for
22: Sort F r

i values in a decreasing order

23: ũp ←
∑
i∈V p∗I

⌊
Fi
m

⌋
24: if ũp < MHp then
25: q̂pũp+1 ← 1 + ũp ×m
26: for i = 2 to MHp − (ũp + 1) do
27: q̂pũp+i ← q̂pũp+i−1 + F r

(i−1)

28: end for
29: end if
30: end for
31: Solve problem Q̂decomp(f , z)

32: Combine the results to obtain the final demand vector d̂

33: Solve the problem

 min
(ϕ, ζ) ∈ PG(d̂)
ζ ≤ z, ϕ ≤ f

∑
i∈V ∗

Cζi

 to obtain Cζ̂ the heuristic worst cost

of the recourse problem
34: Return d̂, Cζ̂

182

Algorithm 11 A heuristic based on the exact framework for solving (PONrob)

Require: LB = −∞, L, D0, l = 0;
1: while l ≤ L do
2: solve PON l

rob; let {f l, zl,γ l} be the solution;
3: LB ← v(PON l

rob);
4: solve Qdecomp(f

l, zl) by using Algorithm 10; let dsl be the solution;
5: Dl+1 ← Dl + {dsl}; l← l + 1;
6: end while

Algorithm 12 Algorithm for solving (PONrob) with continuous relaxation on recourse
variables
Require: LB = −∞, UB = +∞, ε, D0, l = 0

1: while UB − LB > ε do
2: solve PON l

rob; let {f l, zl,γ l} be the solution
3: LB ← v(PON l

rob);
4: solve Qrelaxed(f

l, zl); let dsl be the solution;
5: UB ← min {UB, v (Qrelaxed(f , z))}
6: Dl+1 ← Dl + {dsl}; l← l + 1

7: end while

183

Algorithm 13 Algorithm for generating arbitrary scenarios in D

Require: d̄ from D, S = |D̃| the size of the desired sample
Require: Ṽ ∗ containing the nodes of V ∗ sorted in a pseudo-random order
Require: P ∈ [0, 1], d̃ a demand vector, dpool an integer
Require: j an integer,(j) being the j-th node of Ṽ ∗

1: while S > 0 do
2: dpool ← d̄

3: d̃ = 0

4: j ← 1

5: while dpool > 0 do
6: Draw a pseudo-random number r ∈ [0, 1]

7: if r ≤ P and d̃(j) < dmax(j) then
8: d̃(j) ← d̃(j) + 1

9: dpool ← dpool − 1

10: end if
11: if j = |Ṽ ∗| then
12: j ← 1

13: else
14: j ← j + 1

15: end if
16: end while
17: D̃← D̃ + d̃

18: S ← S − 1

19: end while
20: return D̃

184

General discussion and conclusion

In order to conclude this work, we shall review our achievements and examine what an-
swer they gave to questions we asked in introduction. For each research axis we explored,
we will also propose new investigation field that may arose from our work and that we
estimate worth of interest. Except in our last Chapter ?? which tackled a more generic
problem, this study focused on the Passive Optical Network deployment optimization
problem. This problem has been studied over the past few years, as the need for telecom-
munication operators to manage that deployment efficiently became a key stake for them.
Based on the previous work, we identified several research fields that needed an inves-
tigation, the most important being the tackling of demand uncertainty which takes the
biggest part of this study. As the literature already furnished the theoretical basis for
our research to take place, we took as a main objective to stick as close as possible from
real-life expectations in our modeling approaches.

In the chapter 2, we examined the PON deployment problem under the scope of the
future cost of the network, which is often more important on the long run. Driven by
our objective to be as close as possible from field expectations, we decided to merge our
optimization approach with another field: the OA&M (for Organisation, Administration
and Management) which, in the telecommunication context, is dedicated to managing all
aspects related to the functioning of a telecommunication network. This field, which is,
by essence, very engineering oriented provided us with a whole set of possible operational
aspects that could be taken into account. As mixing CAPEX and OPEX optimization
within the same problem is somewhat unorthodox in operational research, we decided
to build a methodology that we tried on two aspects (among others) of the OA&M: the
troubleshooting of network failures and the preventive maintenance rounds. For each
one of them, we proposed new constraints for our problem that we motivated by being
profitable in terms of future costs. In order to assess that profitability, we built cost
macro-models that could give a qualitative validation of the constraints we introduced.

The considerations we took into account have been integrated to an operational tool
that is used on the field now at Orange. This work also led to a publication in a pair-

185

reviewed journal [31]. However, even though the operational feedback on this work was
positive, there are other OA&M aspects that we did not take into account. As an ex-
ample, we can quote the management of branching new customers to the network, which
is strongly linked to the issue of demand uncertainty. But looking at the problem from
a higher point of view, we think that OA&M considerations are not limited to Passive
Optical Networks. It is even probable that every network deployment issue implies future
costs that have to be taken into account while making the deployment. Therefore, even
though our approach remains limited to the field of PON deployment, the methodology
we used may be extended to other network deployment problems. In that sense, general-
izing this approach to any network design problem would be, in our opinion, scientifically
interesting and operationally relevant.

Then, in chapter 3, we examined the Passive Optical Network deployment optimiza-
tion problem in a tree-graph, on the basis of the preceding work of Kim et al. [34]. We
motivated the study of this specific version of the problem by the fact that in the op-
erational tool Gpon Optimizer developed at Orange [22], the problem is decomposed in
order to tackle real-size instances and that one step of these decompositions corresponds
to the problem studied in this chapter. Therefore, we proposed a new modeling for this
problem, from which we derived properties that we used to design a new labeling algo-
rithm for solving this problem for larger instances. We showed that, experimentally, our
algorithm outperforms branch-and-bound based approaches from the literature since we
were able to solve instances with several thousands of nodes in a few seconds.

Even though our algorithm is efficient, there remains many ways of improving it so
it can include other features. For example, the fact that fibers are only allowed to go
down the tree can be seen as a limitation. It may be possible to enable fibers to climb
the tree for a given number of depth level. Furthermore, limiting the number of splitter
sites that may be opened (like in chapter 2) is another feature that could be included in
the labeling algorithm we proposed.

In chapter 4, we thus tackled the specific issue of demand uncertainty. Basing our
modeling intent on field expectations, we explored several options. We first tried to tackle
the problem with a single stage approach for which we established strong limitations that
we wanted to overcome. This is why we developed a two-stage robust approach that we
modeled so as to stick as much as possible to real-life deployment practices.

Of course, the problem may be posed in another way for another telecommunication
operator and it would be very interesting to investigate other variants of the problem. At
the end of this chapter, we proposed to make use of available probabilistic information in

186

order to integrate it within robust approaches. Thus, we proposed a probability bound for
estimating the relevance of a given uncertainty set. The last issue on probability bound
we tackled in this chapter could be extended to other cases of uncertainty, bounds could
be made tighter with the right assumptions, all this in order to increase the confidence
that a decision-maker can have in a robust optimization model.

In chapter 5, we made several attempt to solve the two-stage problem introduced in
chapter 4 to optimality. To that extent, we designed a column-and-constraint generation
algorithm that solves its slave problem by the means of another column-and-constraint
generation algorithm. This algorithm proved highly unstable in practice so we made
several attempts in order to regulate it by the means of stabilization techniques. Even
though the techniques we used are encouraging, they are not fully satisfying and the range
of problem we can tackle remains limited in size. However, we were able to withdraw
valuable information from solutions of this algorithm.

Solving two-stage robust problem with mixed integer recourse variable really is a chal-
lenge and proposing generic methods to tackle these problem in the general case would
be a major advance that would benefit the whole field of multi-stage robust optimization.
We think that some of the methods we used could be,among other stabilization methods,
an inspiration for such work.

In order to improve our solving capacity, we then designed non-exact solving methods
in chapter 6. We first designed a heuristic for solving the recourse problem of our robust
problem. This heuristic is mostly based on the exploitation of specific problem structures
we identified in the previous chapter 5. It especially involves the solving of the maximum
stable in a well-chosen hypergraph. We showed that experimentally it was providing good
recourse solutions and that it could handle large graphs of more than 500 nodes. Then,
based on several relaxations of the problem, we proposed 3 non-exact methods to solve
the problem. All these approaches were tested and compared and we could exclude at
least on of them which was outperformed by the other 2 on all the criteria we chose.

However, our non-exact approaches are struggling to deal with larger instances. There-
fore, based on the information we gathered in this study, it would be interesting to inves-
tigate this problem with a method able to tackle it on large graphs. Such method may
belong to the field of meta-heuristics, and they would require an extensive research work
to be applied to two-stage robust optimization.

To finish, we believe the work presented in the Annex chapter of this work would be
worth continuing. In its current state, it is highly theoretical and we lacked the time

187

to push it to the experimentation. Therefore, the main objective we would recommend
to follow is to complete the missing part of the algorithm we designed and to assess its
efficiency on several robust problems and, if needed, improving it.

188

189

Annex : Probability bound for the
recourse cost forecasting in a robust
optimization problem with
Right-Hand-Side uncertainty

In this section, we present a joint work with Pierre-Louis Poirion1, currently a Ph.D.
student at the CEDRIC laboratory of the CNAM. This work is presented as an annex
of the study because it is an ongoing work which needs a little more investigation to be
completed. Unfortunately, we lacked the time to finish it properly. However, we estimates
that as such, it already provides interesting insights on some generic aspects of robust
optimization problems.

To motivate our approach, let us first recall the general modeling of two-stage robust
problems with right-hand-side (RHS) uncertainty we aim to deal with, as it is similarly
given in definition 1.2.1:

(Probust) = min
Cx ≥ x
x ∈ X

αTx+ max
d∈D

min
By ≥ d− Ax

y ≥ 0

βTy

X being a set of vectors belonging to the union of the real positive and natural set (thus
making the model valid for any LP, MILP or IP problem with continuous recourse) and
D being an uncertainty set defined, without loss of generality, in the positive orthant.
The choice of limiting ourselves to RHS uncertainty problems, as it shall be explained
later, is due to the fact that first, the time was missing to explore every problem, and
second, we identified some interesting properties that theses problems have that could
be useful. The inner maximization problem in (Probust) is the recourse problem and is

1http://cedric.cnam.fr/index.php/labo/membre/view?id=296
http://uma.ensta-paristech.fr/ poirion?lang=en

190

denoted by:
Q(x,D) = max

d∈D
min

By ≥ d− Ax
y ≥ 0

βTy

The inner minimization problem in Q(x,D) is denoted by:

R(x, d) = min
By ≥ d− Ax

y ≥ 0

βTy

Solving this problem is not the point of this section, as the literature already provides
some ways to achieve this. Considering we can solve this problem in a tractable way,
there are questions that remains which lead to challenging problems. The latter section
addressed the problem of defining the uncertainty set properly. Here, the question we
aim to answer is "what are the chances of having a solution that will cost at least that
much?". In most robust approaches, the worst-case scenario is optimized, but we hardly
have any information about what would happen if another scenario is picked. Indeed,
we believe that knowing that all other scenarios will cost the same thing as the worst-
case scenario or knowing that 90% of scenarios will cost half the worst-case one is an
interesting information for decision makers. Of course, this could be done by solving the
recourse problem for all possible scenarios, but this is obviously not tractable. Therefore,
is it possible, from a given first-stage solution x∗ and what is known on d, to estimate
the probability of having a cost different from the worst-case one?

The definition and modeling of the problem

Considering a decision-maker to whom a solution x∗ to his robust problem (Probust) has
been provided, along with a worst possible cost ∆worst = αTx∗ + Q(x∗, D). However,
he may not be satisfied with that worst-case information alone, and he wants to know
the chances of having a cost that is either greater or less than a given cost ∆ 6= ∆worst.
Therefore, considering d as a random positive (without loss of generality since it is always
possible to transform the problem in order to have positive random variables) variable,
we aim to find the following probability:

P = Prob

 min
By ≥ d− Ax

y ≥ 0

βTy ≤ ∆− αTx∗



191

without loss of generality since:

Prob

 min
By ≥ d− Ax

y ≥ 0

βTy ≥ ∆− αTx∗

 = 1− P

Of course, computing this probability as such is not an easy task. It is thus essential
to transform this problem into a more convenient one.

Definition 6.2.1. The set denoted by D∆ contains all positive vectors d that are such
that:

min
By ≥ d− Ax∗

y ≥ 0

βTy ≤ ∆− αTx∗

Proposition 6.2.2.
Q(x∗,D∆) ≤ ∆− αTx∗

Proof. This is a direct consequence of the definition 6.2.1 of D∆, as any d ∈ D∆ is such
that R(x, d) ≤ ∆− αTx∗, then it is also true for the maximum value this can take.

Proposition 6.2.3. For any set D verifying Q(x∗, D) ≤ ∆− αTx∗, then

D ⊆ D∆

Proof. By definition, as D∆ contains all vectors verifying R(x, d) ≤ ∆ − αTx∗, then it
also contains those of D.

Proposition 6.2.4.
P = Prob (d ∈ D∆)

Proof. It is immediate from propositions 6.2.2 and 6.2.3.

We thus transformed the problem into another one, which consist in computing the
probability of a random vector to belong to a given set. However, there are two remaining
issues. For now, we do not have any probabilistic assumption on d and, more importantly,
we do not yet know what the set D∆ looks like.

Theorem 6.2.2. The set D∆ verifies:

d ∈ D∆ ⇔ λiTd ≤ ∆− αTx∗ + λiTAx∗, rjd ≤ Ax∗, ∀i ∈ I,∀j ∈ J

where
{
λi|i ∈ I

}
(respectively {rj, j ∈ J}) is the set of extremal points (respectively the

set of extremal rays) of the polyhedron
{
λ|λTB ≤ β

}
.

192

Proof. As given by Proposition 6.2.2, D∆ is such that Q(x∗,D∆) ≤ ∆−αTx∗. Therefore,
d ∈ D∆ if, and only if

R(x∗, d) ≤ ∆− αTx∗

For any d, R can be written as a maximization problem by using its dual counterpart:

R(x∗, d) = min
By ≥ d− Ax

y ≥ 0

βTy = max
λTB ≤ β

λ ≥ 0

(d− Ax∗)Tλ

Now, let us suppose that d ∈ D∆, therefore R(x∗, d) ≤ ∆T
αx
∗. Thus, max

λTB ≤ β

λ ≥ 0

(d−

Ax∗)Tλ ≤ ∆T
αx
∗. Considering the polyhedron

{
λ|λTB ≤ β

}
, then the inequality must be

verified for all its extremal points, which is denoted by I. Therefore,

d ∈ D∆ ⇒ λiTd ≤ ∆− αTx∗ + λiTAx∗, ∀i ∈ I

Moreover, since the optimal value of the dual problem is bounded, any extremal ray rj (of
the set of extremal rays J) of the constraint polyhedron must verify (d−Ax∗).rj ≤ 0. On
the contrary, let us suppose that d /∈ D∆. Therefore R(x∗, d) > ∆T

αx
∗, which means that

max
λTB ≤ β

λ ≥ 0

(d − Ax∗)Tλ > ∆T
αx
∗. Thus, if the maximization problem is bounded, there

must exist an extremal point i′ of the polyhedron
{
λ|λTB ≤ β

}
such that (d−Ax∗)Tλi′ >

∆− αTx∗. Hence,

d /∈ D∆ ⇒ ∃i′ : λi
′Td > ∆− αTx∗ + λi

′TAx∗

If the maximization is unbounded, there exists an extremal ray rj such that (d−Ax∗).rj >
0. We have proven that D∆ equals the desired set.

Corollary 6.2.1. D∆ is a bounded polyhedron.

Proof. This is an immediate consequence of Theorem 6.2.2.

Now that we showed that D∆ is a convex bounded polyhedron, let us get deeper in
its description.

Definition 6.2.2. Given two vectors d1 and d2, we define a dominance relation between
these vectors by stating that d1 dominate d2, denoted by d1 � d2, if, and only if, d1

i ≥ d2
i

for all i = 1, ..., |d|.

Proposition 6.2.5. If there exists a vector d that belongs to D∆, then every vector that
is dominated by d also belongs to D∆.

193

Proof. Given d′ � d, one can assess that R(x∗, d′) is a relaxed version of R(x∗, d). There-
fore if R(x∗, d) ≤ ∆T

αx
∗, this inequality also holds for R(x∗, d′).

Remark 6.2.4. Note that Proposition 6.2.5 holds even if recourse variables y are integer.

Inversely, we can give the following proposition:

Proposition 6.2.6. If there exists a vector d that does not belong to D∆, then every
vector that dominate d is not in D∆.

Proof. Using the same principle as in the proof of the latter proposition, it is immediate.

Definition 6.2.3. The hypercube H∆ is the smallest hypercube such that D∆ ⊆ H∆.

Theorem 6.2.3. The hypercube H∆ is defined by the following set of equations:

d ∈ H∆ ⇔ {di ≤ dmaxi , ∀i = 1, ...,m}

where m is the number of coordinates in vectors d ∈ D and dmaxi is the value of the
optimal objective function of the following linear program:

(Pdi)



max
d

di

s.t. βTy ≤ ∆− αTx∗

By ≥ d− Ax∗

di′ = 0, ∀i′ = 1, .., |D|, i′ 6= i

y ≥ 0

Proof. First, let us note that values of every di component of d ∈ D∆ can always be
limited by an equation such as di ≤ dmaxi , with dmaxi being a positive scalar that can
be reached by di if d ∈ D∆. By Proposition 6.2.5, we know that there is at least the
intersection of D∆ with the i-th axis which corresponds to that vector. Therefore, finding
dmaxi can be done by maximizing di with all other components of d set to 0 (or at least
free), while ensuring that R(x∗, d) ≤ ∆− αTx∗. That can be done by solving:

(Pdi)



max
d

di

s.t. R(x∗, d) ≤ ∆− αTx∗

di′ = 0, ∀i′ = 1, .., |D|, i′ 6= i

y ≥ 0

As R(x∗, d) is a minimization problem in y, and (Pdi) is a maximization problem in d, the
minimization can be removed from the constraint in order to obtain a linear program.

194

Remark 6.2.5. Note that the ratio between the volume of D∆ and H∆ is bounded:
1

2
≤ V (D∆)

V (H∆)
≤ 1

Proof. This is a direct consequence of how H∆ is built in Theorem 6.2.3 and the property
given by proposition 6.2.5. Indeed, using the same considerations as shown in the proof
of the latter theorem, one can show that hyperpyramid pointed towards the origin that
is the half of H∆ will always be contained by D∆.

Figure 6.6 gives an illustrative example of how a given set D∆ is contained in H∆ and
how it will always contain its half.

Figure 6.6: Illustrative example of a set D∆ (in Orange) that is contained in the corre-
sponding set H∆

Illustrative example of finding D∆

In order to illustrate the claims of the latter section, let us show how this work on a small
example. Let us consider the following problem:

Rex(x
∗, d) = min

y1,y2

y1 + 2y2

s.t. y1 + y2 ≥ d1 − x∗

y1 + 3y2 ≥ d2 − x∗

y1, y2 ≥ 0

195

We thus aim to find the set D∆, associated to a cost ∆, which is such that every
(d1, d2) ∈ D∆ makes R(x∗, d) ≤ ∆ − x∗ (here, α = 1), for positive values of d1 and d2.
By dualizing R, we get:

Rex(x
∗, d) = max

λ1,λ2

(d1 − x∗)λ1 + (d2 − 2x∗)λ2

s.t. λ1 + λ2 ≤ 1

λ1 + 3λ2 ≤ 2

λ1, λ2 ≥ 0

The extremal points of the latter linear program’s polyhedron are: (0, 0), (1, 0),(
0,

2

3

)
,
(

1

2
,
1

2

)
.

Therefore, by Theorem 6.2.2,

(d1, d2) ∈ D∆ ⇔


d1 ≤ ∆

d2 ≤
3

2
∆ +

1

2
x∗

d1 + d2 ≤ 2∆

d1, d2 ≥ 0

which is true for any value of ∆ and x∗, as long as x∗ ≤ ∆, which is given by the extremal
point (0, 0). Figure 6.7 gives a graphic representation of D∆ for different values of ∆ and
x∗.

Figure 6.7: Graphic representation of D1, D2 and D3 for x∗ = 1

Now that we are able to find, theoretically, the set D∆, the last part remains, that is
how to compute the probability.

196

Properties and computation feasibility of the probability
P

In practice, as the actual problem R may be wide in size, the size of the polyhedron{
λ|λTB ≤ β

}
may be wide as well. Therefore, enumerating all it extremal points in

order to have a full description of D∆ could prove hardly intractable in some cases.
Moreover, even having that description would not help directly to find the probability.
First, let us postulate the following hypothesis:

Hypothesis 5. Uncertain variables di that compose the uncertain vector d are all inde-
pendent and follow a known probability law such that Prob(di ≤ a) can be computed for
any a value.

For this hypothesis, let us provide theorems that allows to compute both lower and
upper bounds for the probability in a specific case.

Definition 6.2.4. Given a vector d̄, we denote by Hd̄ the hypercube defined by the fol-
lowing set of equations:

d ∈ Hd̄ ⇔ 0 ≤ di ≤ d̄i, ∀i

Proposition 6.2.7. Given a vector d̄, under hypothesis 5, we have:

Prob(d ∈ Hd̄) =
∏
i

(
Prob(di ≤ d̄i)− Prob(di ≤ 0)

)
Proof. For any vector d,

Prob(d ∈ Hd̄) = Prob(0 ≤ di ≤ d̄i, ∀i)

Under hypothesis 5, di random variables are supposed to be independent. Therefore,

Prob(d ∈ Hd̄) = Prob(
⋂
i

0 ≤ di ≤ d̄i)

=
∏
i

Prob(0 ≤ di ≤ d̄i)

=
∏
i

(
Prob(di ≤ d̄i)− Prob(di ≤ 0)

)

Note that
(
Prob(di ≤ d̄i)− Prob(di ≤ 0)

)
can always be computed under hypothesis

5, thus making the computation of Prob(d ∈ Hd̄) possible as well.

Theorem 6.2.4. Under hypothesis 5, if ∃d′ ∈ D∆ and ∃d′′ ∈ H∆ \D∆, then

Prob (d ∈ Hd′) ≤ P ≤ Prob (d ∈ H∆)− Prob (d′′ ≤ d ≤ dmax)

with dmaxi values being those defined with H∆.

197

Proof. As it is said by proposition 6.2.5, if d′ ∈ D∆, all vectors d dominated by d′ are
also in D∆. P is thus superior to the probability of d belonging to Hd′ and, by definition,
inferior to the probability of d belonging to H∆ minus the probability to fall into the
hypercube defined by d′′ and dmax.

The principle here is that finding a single d′ that belongs to D∆ enables one to find
a subset of D∆ for which the belonging probability is easy to compute and gives a lower
bound. Of course, if this is true for a single point d′ (see figure 6.8), it is also true if
several vectors in D∆ are found, thus making the bound better (as in figure 6.9). In both
figures, the grey area is the set used to approximate the complete D∆ which is depicted
by the orange lines.

Figure 6.8: Illustration for a single d′

found in D∆

Figure 6.9: Illustration for several vectors
found in D∆

Theorem 6.2.5. Given several vectors dk that do not dominate each other, for k =

1, ..., K with K ≤ |D|, such that dk ∈ D∆, under hypothesis 5, we have:

Prob

(⋃
k

d ∈ Hdk

)
≤ P

Proof. This is an immediate generalization of the lower bound of theorem 6.2.4 for several
valid vectors.

Proposition 6.2.8. The decision problem that consists in determining if a given vector
d does belong or not to D∆ is polynomially solvable.

Proof. It is immediate since one just needs to solve R(x∗, d), which is a continuous linear
program, and compare it to ∆− αTx∗.

Using the same principle as for Theorems 6.2.4 and 6.2.5, we can propose the following
theorem to reduce the upper bound proposed in those theorems.

198

Theorem 6.2.6. Under hypothesis 5, supposing that ∃dki , ∀k = 1, ..., K ≤ |D| that do
not dominate each other, such that dk ∈ H∆ \D∆, ∀k = 1, ..., K, we have

P ≤ Prob(d ∈ H∆)− Prob(
⋃
k

dk ≤ d ≤ dmax)

Proof. This is an immediate generalization of the lower upper bound of theorem 6.2.4,
considering that we must remove the probability for d to fall into the union of several
hypercubes from the probability for d to fall in H∆.

At the time this study was written, the work presented in this section was still ongoing.
Therefore, the computation of the probability of the vector d to belong to a union of
hypercubes Hd̄ is the missing part of the algorithm presented in the next section. We
think this computation is possible for a little number of hypercubes but, due to time
limitations, we were not able to fulfill this task. We thus leave that aspect of the problem
as an opened research way that would allow one to apply these results.

Development of a generic algorithm for probability ap-
proximation computation

As it is described in the previous section 6.2.4, we can give an upper bound and a
lower bound to the probability we aim to find here, under two kinds of hypothesis, by
approximating a polyhedron D∆. This is done by finding K vectors d in H∆ and, after
finding if they also belong to D∆ (which is done in polynomial time, see Proposition
6.2.8). As one could expect, the quality of the approximation will greatly depend on
the set of the chosen dk vectors. Therefore, that choice alone is an issue that may be
tackled in various ways. Lots of work are necessary for the development and testing of
all these approaches and for this Ph.D. thesis, time was lacking to complete it. However,
we believe this would be an interesting research field and we would like to expose the few
methods and strategies we could think about in order to find a good approximation for
P . To that extent, most methods presented in this subsection will not be highly detailed,
as we only focus on the principle that lies behind it. First, let us describe the two generic
framework one could work with while trying to approximate P .

Algorithms 14 and 15 are very similar in appearance. What will differ is that in one
case, dk vectors are found before computing P ’s lower and upper bounds, whereas in
the other case, dk vectors are added until the lower and upper bounds are close enough.
Therefore, in both cases, the core of the algorithm will be the actual finding of those
vectors (it correspond to the step 3 of Algorithm 14, and step 5 of Algorithm 15).

199

Algorithm 14 Computation of an approximation of P for a fixed K value
Require: K, ∆, x∗, R(x∗, d)

Require: SD the set of vectors that do belong to D∆

Require: SH the set of vectors that do belong to H∆ \D∆

Require: LBP , UBP
1: SD ← ∅, SH ← ∅
2: Define H∆ using Theorem 6.2.3
3: Find K vectors dk that do belong to H∆

4: for k = 1to k = K do
5: if dk ∈ D∆ then
6: SD ← SD + dk

7: else
8: SH ← SH + dk

9: end if
10: end for
11: Compute LBP using SD and Theorem 6.2.5
12: Compute UBP using SH and Theorem 6.2.6
13: return LBP , UBP

Depending on the effort one is ready to put into finding "good" vectors, these proce-
dures may require more or less computing. Indeed, for example, vectors that are pointing
to the facets ofD∆ will be the most interesting for computing the lower bound. Therefore,
we listed a few d-finding strategies that could be interesting for this problem:

• Generate d vectors randomly within H∆, which could prove useful for cases where
computing R(x∗, d) is really fast and the time lost on evaluating "bad" d vectors is
negligible.

• Define a given number of rays from the origin to a given direction and approach its
intersection with D∆ by dichotomy with a given precision (which can be seen as a
more precise random approach).

• Use Theorem 6.2.2 to generate a subset of facets of D∆ by finding a few extremal
points of the polyhedron

{
λ|λTB ≤ β

}
and choose d vectors exclusively on these

facets.

Of course, other approaches may be found, and their use will highly depend on the
problem the decision-maker is dealing with. Therefore, as time was lacking to explore all
these options, we chose not to investigate them in depth. Instead, we preferred to assess
the interest of our approach by applying it to a simple two-stage robust problem.

200

Algorithm 15 Computation of an approximation of P with a fixed precision ε
Require: ε, ∆, x∗, R(x∗, d)

Require: SD the set of vectors that do belong to D∆

Require: SH the set of vectors that do belong to H∆ \D∆

Require: LBP , UBP
1: SD ← ∅, SH ← ∅
2: LBP ← 0, UBP ← 1

3: Define H∆ using Theorem 6.2.3
4: while UBP − LBP > ε do
5: Find a vector d ∈ H∆

6: if d ∈ D∆ then
7: SD ← SD + d

8: Compute LBP using SD and Theorem 6.2.5
9: else
10: SH ← SH + d

11: Compute UBP using SH and Theorem 6.2.6
12: end if
13: end while
14: return LBP , UBP

Conclusion

To conclude, this chapter investigated two different problems linked to data uncertainty.
We first proposed a way to compute a bound on the probability for a random vector
to belong in a given uncertainty set, under few probabilistic assumptions. This led to
the minimization of a single variable function for which we were able to give an analytic
solution in an ideal case. For more general cases, we showed that a simple numeric
approach could help to find that minimum with very high precision in a few seconds. We
applied these results to assess how useful the bound can be. The main use for this bound
is for practical cases where the few number of probabilistic assumptions we made are
true, thus enabling one to build an uncertainty set with an a priori bounded validation
from the bound.

In a second time, we examined the robust cost of a two-stage robust problem with
right-hand-side uncertainty. We developed theoretical tools to describe the problem and
its implications. Under few probabilistic assumptions on data uncertainty, we especially
showed that the probability for the recourse cost to be under a given value is equivalent
to the probability for the uncertain data vector to belong to a bounded polyhedron for
which we gave an extensive description. From there, we proposed a generic algorithm

201

to compute a lower and an upper bound on that probability. However, due to time
limitations, we were not able to develop an essential part of this algorithm, thus leaving
an opened research field to investigate. Even though it is still early to claim that our
approach really can answer the problem we tackled, we motivated it by our will to answer
one of robust optimization’s drawbacks: the fact that the only relevant scenario is the
worst one. We estimate decision makers may want to obtain other information from a
robust solution, and our approach may be a part of it.

202

Bibliography

[1] A. Atamtürk., M. Zhang. Two-stage robust network flow and design under demand
uncertainty, Operation Research, Vol. 55, pp 662-673, 2007.

[2] F. Babonneau., J.P. Vial., R. Apparigliato. Handbook on "Uncertainty and En-
vironmental Decision Making", chapter Robust Optimization for environmental and
energy planning, International Series in Operations Research and Management Sci-
ence, Springer Verlag, 2009.

[3] F. Babonneau., O. Klopfenstein, A. Ouorou., J.P. Vial. Robust capacity expansion
solutions for telecommunications networks with uncertain demands, Technical paper,
Orange Labs R& D, 2009.

[4] W. Ben-Ameur., H. Kerivin. Routing of Uncertain Traffic Demands, Optimization
and Engineering Vol. 6, 2005, pp 283-313.

[5] W. Ben-Ameur., M. Zotkiewicz. Robust routing and optimal partitioning of a traffic
demand polytope, International Transactions in Operational Research, Vol. 18(3), pp
307–333, 2011.

[6] A. Ben-Tal., A. Goryashko., E. Guslitzer., A. Nemirovski. Adjustable robust solu-
tions of uncertain linear programs, Mathematical Programming, Vol. 99, pp. 351-376,
2004.

[7] A. Ben-Tal., L. El-Ghaoui., A. Nemirovski. Robust Optimization, Princeton Series
in Applied Mathematics, 2006.

[8] C. Berge. Graphs and Hypergraphs, North-Holland Publishing Company, 1973.

[9] D. Bertsimas., D.B. Brown., C. Caramanis. Theory and Applications of Robust
Optimization, SIAM Review, Vol. 53(3), pp. 464–501, 2011.

[10] D. Bertsimas., C. Caramanis. Finite Adaptability in Multistage Linear Optimization,
IEEE Transactions on Automatic Control, Vol. 55 (2), pp. 2751–2766, 2010.

203

[11] D. Bertsimas., V. Goyal. On the Power of Robust Solutions in Two-Stage Stochas-
tic and Adaptive Optimization Problems, Mathematics of Operations Research, Vol.
35(2), pp. 234–305, 2010.

[12] D. Bertsimas., V. Goyal. On the Power and Limitations of Affine Policies in Two-
Stage Adaptive Optimization, Mathematical Programming, Vol. 134(2), pp. 491–531,
2012.

[13] D. Bertsimas., D.A. Iancu., P.A. Parrilo. Optimality of Affine Policies in Multistage
Robust Optimization, Mathematics of Operations Research, Vol. 35(2), pp. 363–394,
2010.

[14] D. Bertsimas., M. Sim. Robust Discrete Optimization and Network Flows, Mathe-
matical Programming Series B, Vol. 98, 2003.

[15] D. Bertsimas., M. Sim. The Price of Robustness, Operations Research Vol. 52, No.
1, January-February 2004, pp. 35-53.

[16] A. Billionnet. Optimisation Discrète : De la modélisation à la résolution par des
logiciels de programmation mathématique, Dunod, série InfoPro, 2006.

[17] A. Billionnet., M.C. Costa., P.L. Poirion. 2-Stage Robust MILP with continuous
recourse variables, submitted, 2013.

[18] J.R. Birge., F. Louveaux. Introduction to Stochastic Programming, Springer Series
in Operations Research and Financial Engineering, 1997.

[19] R. Boutaba., J. Xiao. Network Management: State of the Art, Proceedings of the
World Computer Congress, pp. 127–146, 2002.

[20] B. Büeler., A. Enge., K. Fukuda. Exact Volume Computation for Polytopes: A
Practical Study, Polytopes - Combinatorics and Computation, DMV Seminar Vol. 29,
pp 131–154, 2000.

[21] M. Chardy., M.C. Costa., A. Faye., M. Trampont. Optimizing splitter and fiber
location in a multilevel optical FTTH network, European Journal of Operational Re-
search, Vol. 222, pp 430–440, 2012.

[22] M. Chardy., M.C. Costa., A. Faye., S. Francfort., C. Hervet., M. Trampont. La
RO au coeur du déploiement du Fiber To The Home à France-Télécom Orange : La
RO récompensée par le prix Orange de l’Innovation 2012 (catégorie Réseau), Bulletin
de la ROADEF, Article Invité, Vol. 29, pp. 8-11, 2012.

204

[23] G.B. Dantzig. Linear Programming under Uncertainty, Management Science, Vol.
1 (3-4), 1955.

[24] S. Dempe. Bilevel Programming - A Survey, Discrete Bilevel Optimization Problems,
Chapter 1, 1996.

[25] V. Gabrel., C. Murat. Robustness and duality in linear programming, Journal of
the Operational Research Society, Vol. 61, pp 1288-1296, 2009.

[26] V. Gabrel., C. Murat., N. Remli. Linear Programming with interval right hand
sides, International Transactions in Operational Research, Vol. 17, pp 397-408, 2010.

[27] L. Galand. Méthodes exactes pour l’optimisation multicritère dans les graphes :
recherche de solutions de compromis. Ph.D. thesis (in French), University of Paris VI,
2008.

[28] M.R. Garey., D.S. Johnson. Computers and Intractability, A guide to the theory of
NP-Completeness, W.H.Freeman, San Francisco, 1979.

[29] S. Gollowitzer., L. Gouveia., I. Ljubic. The Two Level Network Design Prob-
lem with Secondary Hop Constraints, Proceedings of the 5th International Network
Optimization Conference (INOC 2011), 71–76.

[30] S. Gollowitzer., I. Ljubic. MIP models for connected facility location: a theoretical
and computational study, Computers & Operations Research 38(2) (2011), 435–449.

[31] C. Hervet., M. Chardy. Passive optical network design under operations admin-
istration and maintenance considerations, Journal of Applied Operational Research,
Vol. 4(3), pp. 152-172, 2012.

[32] D.A. Iancu., M. Sharma., M. Sviridenko. Supermodularity and Affine Policies in
Dynamic Robust Optimization, Operations Research, A VOIR.

[33] A. Jarray, B. Jaumard, A.C. Houle. Minimum CAPEX/OPEX Design of Optical
Backbone Networks, In: International Conference on Ultra Modern Telecommunica-
tions & Workshops, (2009)

[34] Kim, Y., Lee, Y., L. and Han, J.: A splitter location-allocation problem in designing
fiber optic access networks. In: European Journal of Operational Research, Vol 210,
Issue 2, pp. 425–435, (2011)

[35] P. Kouvelis., G. Yu. Robust Discrete Optimization and Its Applications, Kluwer
Academic Publishers, (1997).

205

[36] Lee, Y., Kim, Y. and Han, J.: FTTH-PON Splitter Location-Allocation Problem.
In: Proceedings of the eighth INFORMS Telecommunications Conference, (2006)

[37] T.L. Magnanti., R.T. Wong. Accelerating Benders decomposition: algorithmic en-
hancements and model selection criteria, In: Operations Research, Vol. 29, pp. 464–
484, 1981.

[38] M. Minoux. Robust linear programming with right-hand-side uncertainty, duality
and applications, L.A. Floudas., P.M. Pardalos. (eds) Encyclopedia of Optimization,
2nd edn., pp. 3317-3327, 2008.

[39] M. Minoux. Robust network optimization under polyhedral demand uncertainty is
NP-hard, Discrete Applied Mathematics, 158, pp. 597-603, 2010.

[40] M. Minoux. On 2-stage robust LP with RHS uncertainty: complexity results and
applications, J Glob Optim, Vol. 49, pp 521-537, 2011.

[41] I. Newton. De analysi per aequationes numero terminorum infinitas, 1711.

[42] W. Ogryczak., T. Sliwinski. On solving linear programs with the ordered weighted
averaging objective, In: European Journal of Operational Research, Vol. 148, pp.
80–91, 2003.

[43] A. Ouorou. Tractable approximations to a robust capacity assignment model in
telecommunications under demand uncertainty, under revision.

[44] G. Polya., G. Szegõ. Aufgaben und Lehrsätze der Analysis [Problems and Theorems
in Analysis], Berlin: Springer-Verlag, 1925.

[45] T.M. Range. An Integer Cutting-Plane Procedure for the Dantzig-Wolfe Decompo-
sition: Theory, Discussion Papers on Business and Economics 10, 2006.

[46] N. Remli. Robustesse en Programmation Linéaire, LAMSADE (Université Paris-
Dauphine), thèse soutenue le 17 Mars 2011.

[47] A.L. Soyster. Convex programming with set-inclusive constraints and applications
to inexact linear programming, Operation Research, Vol. 21, pp 1154-1157, 1973.

[48] S. Takriti., S. Ahmed. On robust optimization of two-stage systems, Mathematical
Programming Vol. 99, Issue 1, 2004, pp. 109-126.

[49] A. Thiele., T. Terry., M. Epelman. Robust Linear Optimization With Recourse,
2010.

206

[50] M. Trampont. Modélisation et optimisation du déploiement des réseaux de télécom-
munications: application aux réseaux d’accès cuivre et optique., Ph.D Laboratoire
CEDRIC, octobre 2009.

[51] F. Vanderbeck. On Dantzig-Wolfe Decomposition in Integer Programming and Ways
to Perform Branching in a Branch-and-Price Algorithm, Operations Research Vol. 48,
No. 1, January-February 2000, pp. 111-128.

[52] F. Vanderbeck.,M.W.P. Savelsbergh. A generic view of Dantzig-Wolfe decomposition
in mixed integer programming, Operations Research Letters 34, pp. 296-306, 2006.

[53] Q. Wang Q., W. Li. Solution on OAM of FTTH based on PON, In: Information &
Communications, 2009.

[54] B. Zeng., L. Zhao. Solving two-stage robust optimisation problems using a column-
and-constraint generation method, Operations Research Letters 41(5), pp. 457-461,
2013.

[55] B. Zeng., L. Zhao. An Exact Algorithm for Two-stage Robust Optimization with
Mixed Integer Recourse Problems, Optimization Online, 2012.

207

