
HAL Id: pastel-00960808
https://pastel.hal.science/pastel-00960808v1

Submitted on 18 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Quest for Exactness: Program Transformation for
Reliable Real Numbers

Pierre Neron

To cite this version:
Pierre Neron. A Quest for Exactness: Program Transformation for Reliable Real Numbers. Logic in
Computer Science [cs.LO]. Ecole Polytechnique X, 2013. English. �NNT : �. �pastel-00960808�

https://pastel.hal.science/pastel-00960808v1
https://hal.archives-ouvertes.fr

École Doctorale de l’École Polytechnique

INRIA

THÈSE DE DOCTORAT

Présentée par

Pierre NERON

Pour obtenir le grade de

DOCTEUR de l’ÉCOLE POLYTECHNIQUE

Spécialité : Informatique

A Quest for Exactness:

Program Transformation for Reliable Real Numbers

Directeurs de thèse:
M. Gilles DOWEK Directeur de Recherche, INRIA

M. César MUÑOZ Chercheur, NASA

Rapporteurs:
M. John HARRISON Chercheur, Intel
Mme. Hélène KIRCHNER Directeur de Recherche, INRIA

Examinateurs:
M. Yves BERTOT Directeur de Recherche, INRIA

Mme. Sandrine BLAZY Professeur, Université Rennes 1
M. David LESTER Lecturer, University of Manchester
M. David MONNIAUX Directeur de Recherche, CNRS

A QUEST FOR EXACTNESS:
PROGRAM TRANSFORMATION FOR

RELIABLE REAL NUMBERS

Pierre NÉRON

Remerciements
Il est de coutume d’entamer un mémoire de thèse par les remerciements; et c’est avec une

grande joie que je me plie à cet exercice tant la présence et le soutient des personnes qui m’ont

accompagné depuis de plus ou moins longues années me sont précieux.

Tout d’abord je tiens à remercier Gilles sans qui je ne serais surement pas ici, pour m’avoir

permis de découvrir la logique, pour m’avoir encadré durant mes années à l’X, pour ses conseils

d’orientation, de mon stage en Suède à mon prochain départ à Delft, pour sa disponibilité dont

j’ai pu profiter voire abuser, pour les nombreux restaurants autour de la place d’Italie, pour ses

encouragements et son enthousiasme, pour tout les conseils et brillantes idées dont il m’a fait part

et pour sans doute une infinité d’autres raisons.

Je remercie César pour son accueil toujours très sympathique à Hampton, son enthousiasme

pour ce projet et ses multiples propositions d’extensions et d’améliorations.

Je remercie également tout particulièrement Catherine Dubois, avec qui il est toujours très

agréable de discuter, pour son animation de l’équipe et pour avoir toujours accepté le travail sup-

plémentaire que je lui fournissais, en particuler la relecture en profondeur de cette thèse.

Je remercie Hélène Kirchner et John Harrison d’avoir accepté de rapporter cette thèse, pour

leurs commentaires et leurs suggestions. Merci à Sandrine Blazy, Yves Bertot, David Lester et

David Monniaux d’avoir accepté de composer le jury de ma thèse.

Durant ces dernieres années, j’ai également partagé de très bon moments et eu de passion-

nantes discussions dans les differentes équipes que j’ai fréquentées, au LIX avec Assia, Benjamin,

Chantal, Cyril, Denis, Mathieu et Victor, puis a l’INRIA avec Alejandro, Ali, Benoit, Cécilia,

David, Frederic, Guillaume, Hugo, Kailang, Melanie, Olivier, Pierre, Pierre-Nicolas, Quentin,

Raphaël, Ronan et Simon. Je remercie également Raphaël pour son enthousiasme durant son stage

avec moi ainsi qu’Hélène et Marine toujours promptes à rendre service. J’ai eu aussi l’occasion

de rencontrer des personnes passionnantes au grès des conférences, visites ou séminaires, je pense

en particulier à Olivier Danvy, Xavier Leroy, Nachum Dershowitz qui m’ont donné de précieux

conseils et encouragé; ainsi qu’aux gens de la NASA, Alwyn, Anthony, Heber et Natasha qui

m’ont fait découvrir Hampton et sa région.

J’ai également une pensée pour les personnes qui ont accompagné mes premiers pas dans la

recherche, Arnaud, Thierry et Guilhem en Suède et Aline, Bruno, Boutheina, J-H, Julien, Huy,

Laurent, Maria chez Gemalto, le tout dans la bonne humeur.

Bien entendu il faut aussi savoir décompresser et j’ai toujours eu l’occasion de le faire en

la meilleure des compagnies avec une multitude d’amis, toujours présents pour toutes sortes de

traquenards et autres activités pedagogiques, Régis, Alice, Yannick, Charlotte, Quentin, Julie,

Thibault, Lucille, Julien, Faustine, Max, Chloé, Edouard, J-C, Pierre, Olivier, Alexander, Alexan-

dre, David, Claire, Clement, Tristan, Solenne, Leo, Bogdan, Pimousse, Jeanne, Piste, Julien, Hugo,

Thomas et tout ceux que j’oublie.

Je remercie Céline pour avoir supporté mon rythme décousu de thèsard et mes nombreuses

absences, mais pas que.

Enfin je remercie ma famille, et en particulier mes parents, qui m’ont toujours poussé et

soutenu afin que tout se passe dans des conditions idéales et que je puisse faire tout ce dont j’avais

envie, ainsi que mon frère et Amélie pour leur joie de vivre.

There is nothing (right well beloved Students in the Mathematickes)

that is so troublesome to Mathematicall practice, not that doth more molest

and hinder Calculators, then the Multiplications, Divisions, square and

cubical Extraction of great numbers, which besides the tedious expence of

time, are for the most part subject to many slippery errors.

John NAPIER, 1614

INTRODUCTION

C
OMPUTERS HAVE BEEN OF CRUCIAL IMPORTANCE in the realization of Jules Verne’s
dream on July 21th 1969. For two hundred years, machines have gradually re-
placed men for many complex tasks, from the assembly line of the Ford T to un-

manned trains and aircrafts and, nowadays, computer programs are the heart of most
of these systems. These programs have surpassed humans in many fields, they can be
more reliable since they are more deterministic, subject neither to emotions nor fatigue,
they can be more precise, if you want to compute the n-th digit of the number π, they
can be faster, since they react in a fraction of a second under the influence of any event.
However, the problem of software safety emerges from the increasing complexity of these
systems, since one needs to ensure they effectively do what they are supposed to. And
when the problem is the correctness of computations over real numbers, many troubles
arise.

The notion of real number is firmly related with the notion of infinity, which is not
compatible with the finiteness of computers memory. This limitation has been overcome
in different ways. Since the introduction of computable numbers by Alan Turing in 1936
[Tur36], many representations of real and computable numbers have been studied. The
most common way to deal with real numbers in programming languages is to use the
floating point numbers as described in the IEEE 754 standard [IEE85]. This standard de-
fines a representation of numbers with a sequence of 32 or 64 bits, the sign, the exponent

and the mantissa (f raction) representing (−1)sign × 2exponent−bias × 1.mantissa. For exam-
ple, the 64 bits representation includes one bit for the sign, eleven for the exponent and
fifty-two for the mantissa. However, this standard only represents a finite number of real
numbers and therefore many rounding issues arise. In particular, none of the usual oper-
ations is always exact [Gol91, MBdD+10, Mon08] and therefore the result of the compu-
tation of an arithmetic expression with floating point numbers may differ from the value
of this expression on real numbers. For example, the following assertions are true on the
floating point numbers:

sqrt 2.0 * sqrt 2.0 > 2.0 0.2 + 0.1 > 0.15 + 0.15 1.0 / 3.0 = .333333333333333315

Therefore many techniques have been developed to ensure the reliability of programs
using floating point numbers. Static analysis techniques have also been developed to

2

handle the rounding errors introduced by floating point numbers [GP11, GMP02], it
can be done by abstract interpretation [GMP02, Min04] using, for example, polyhedra
domains [CMC08]. Interval arithmetic [Moo95, DMM05] is also widely used to prove
the stability of programs using floating points numbers. Moreover, the floating point
arithmetic has been specified in many proof assistants such as PVS [BM06, Min95], COQ

[DRT01], HOL [Har95a, CM95] and HOL Light [Har97], it enables us to prove properties
on the floating point implementations instead of the axiomatized real numbers. How-
ever proving properties on floating point numbers specifications tends to be quite trou-
blesome since many of the usual properties of the real numbers (e.g., associativity or
distributivity) and thus many of the theorems commonly known do not hold anymore.
Other representations such as the fixed point numbers [Obe07] have been used previ-
ously but they are not as efficient as the floating point one and have not been as deeply
studied.

Using a fixed size representation for real numbers always enforces the use of rounding
and thus exact computation is out of scope. However, by introducing dynamic represen-
tations of real numbers, techniques have been developed to compute exactly. In 1980,
Wiedmer studied the computation over infinite objects [Wie80] and introduced a rep-
resentation with infinite decimal fraction. Then Boehm and Cartwright [BCRO86] both
extended this representation as a sequence of fraction and introduced a representation
using lazy evaluation of the digits representing the real number. Different constructions
of real numbers have then been introduced, with redundant representation of continued
fractions [Vui87] or with functional representation and lazy evaluation [Sim98, DGL04].
Some representations have even been formalized in the COQ system, a constructive con-
struction of the real number field is presented in [O’C08, KS11] and a construction of the
algebraic numbers [Bos03] is formalized in [Coh12a, Coh12b].

There is at least one main reason why computations with real numbers have been so
thoroughly studied. Real numbers are used to describe the physical world and many
systems, namely cyber-physical systems, are used to control physical entities. From cars to
airplanes, from medical robots to GPS chips, human develops thousands of such cyber-
physical systems. Moreover, many of these systems are embedded and require a high
level of safety since any failure may lead to dramatic consequences. Methods to ensure
the safety of such safety-critical embedded systems has been widely studied and efficient
tools have been developed for their analysis or development [BCC+03, CKK+12, BBF+00]
but these systems do not provide exact computation mechanism.

In this thesis, we address the problem of exact computation with real numbers in
safety-critical embedded systems. In such a setting, none of the exact representations
of real numbers discussed above is suitable, because all of them require an unbounded
amount of memory. Typical examples of embedded software using real numbers are im-
plementing conflict detection and resolution algorithms for aircraft navigation [NMD12,
MBMD09]. Not only these programs use solid geometry and therefore computes with
real numbers but they also require to be executed as embedded systems. And such sys-
tems have constraints to ensure that the programs do not fail due to lack of memory. Yet,
all the exact computation techniques we presented before, using either arbitrary preci-
sion, lazy evaluation or algebraic numbers, use dynamic data structures and may require
an unbounded amount of memory.

3

Contributions

In this thesis, we investigate a solution to the problem of computation with real numbers
based on program transformation. Program transformations may be used to improve the
efficiency or safety of programs [PS83] or program analysis [DD03]. One main example
regarding the correctness of computation with real number is a program transformation
presented in [Mar07, Mar09] that improves the accuracy of computation over floating
point numbers, limiting the rounding errors. However the exactness of the computation
is still out of scope.

The transformation we propose aims at removing square root and division opera-
tions from straight line programs (i.e., programs with no loops), such as those used in
aeronautics, in order to allow exact computation over real numbers with the addition,
subtraction and multiplication operations. These exact operations can be performed in
embedded programs since static analysis allows us to predict the memory required for
exact computation using a fixed point representation. This transformation does not al-
low to compute a real number with an arbitrary precision (the program sqrt(2) will still
return a rounded value of

√
2), however it allows the system to compute exactly Boolean

expressions that are built with comparisons between arithmetic expressions. Computing
exactly Boolean expressions protects the control flow of the program from any rounding
errors. This prevents the program effective behavior to diverge completely from its ex-
pected behavior, i.e., the one assuming the numbers are genuine real numbers. Therefore
the programs produced by our transformation are somehow continuous, the effective re-
turned value being, in the worst case, a rounding of the expected one and, if the program
returns a Boolean value, then this value is exact.

This transformation algorithm relies on two fundamental algorithms. The first is a
particular case of quantifier elimination on real closed fields, it eliminates square roots
and divisions in Boolean expressions. The second solves a specific anti-unification prob-
lem that we called constrained anti-unification in order to reduce the size of the produced
code. This anti-unification algorithm uses the axioms of a theory of the arithmetic and a
directed acyclic graph representation in order to compute common template that allow us
to optimize the size of the produced code. The constrained anti-unification algorithm is
also used to extend the transformation to a richer language allowing function definitions.

In order to still ensure the high level of safety required by the programs we are willing
to transform, we also proved the correctness of this transformation in the PVS proof as-
sistant. Indeed formal proof assistants enable the higher levels of safety and security for
programs. They are used to prove properties about the behavior of these programs and
ensure the correctness of such proofs more reliably than any human certification. There-
fore we used the PVS proof assistant to show that not only the algorithm we presented
effectively eliminates square roots and divisions but it also preserves the semantics of
the program we transform. It allows us to ensure that the behavior of the transformed
program is exactly the same as the expected behavior of the input program. Therefore,
all the properties satisfied by this input program still hold on the transformed one.

While the complete algorithm is not entirely proven in the PVS proof assistant, its
correctness only depends on that of the anti-unification algorithm. This proof is also suf-
ficient to built a proof strategy that eliminates square roots and divisions in the formulas

4

used by the PVS proof checker. Moreover, we provide in our transformation scheme a
mechanism to generate the correctness lemmas that state the semantics equivalences be-
tween input and output programs, these lemmas being quite easy to prove using the
proof strategy we defined. In Chapter 8 we will present how our algorithm has been able
to transform a complete PVS specification of a conflict detection algorithm for air traffic
management introduced.

Organization of this thesis

This thesis is organized in two parts. The first introduces the theoretical work of this
thesis, the second presents more practical issues.

Part I introduces the definitions of some properties of the algorithms that have been
developed in this thesis to define the program transformation.

Chapter 1 presents the elimination of square roots and divisions in Boolean expres-
sions in two different ways. The first transforms these operations elimination problem
into a quantifier elimination problem while the second method eliminates these two op-
erations directly in order to minimize the size of the transformed formula.

Chapter 2 presents a particular anti-unification problem that we define in this thesis
called constrained anti-unification. It also presents an algorithm that solves this problem in
a theory of arithmetic using directed acyclic graphs.

Chapter 3 presents the main program transformation algorithm. This algorithm trans-
forms straight line programs (programs without loop) into equivalent ones where square
roots and divisions have been eliminated from the Boolean computations using the algo-
rithms introduced in Chapter 2 and 1. This work have been published in [Ner12].

Chapter 4 presents an extension of the algorithm introduced in Chapter 3. This ex-
tended transformation now handles programs using function definitions and transforms
them directly, improving the size and the shape of the produced program.

Part II introduces the implementation of the transformation both as a PVS specification
and as an OCaml program and some concrete applications.

Chapter 5 the PVS specification of the transformation algorithm introduced in Chap-
ter 3. This specification proves that this transformation preserves the semantics of the
programs it transforms, assuming the anti-unification is correct.

Chapter 6 presents the OCaml implementation of the anti-unification algorithm used
to transform programs. It also defines the implementation of the transformation algo-
rithm extended to program with function definition described in Chapter 4.

Chapter 7 presents the interfaces that have been implemented to transform real pro-
grams. These are a PVS strategy to transform goals in a proof context and the transfor-
mation of PVS specifications with generation of the correctness predicates. Work on the
PVS strategy is going to be published [Ner13].

Chapter 8 presents the transformation of a PVS program for conflict detection called
cd2d implemented for the ACCoRD system for aeronautics.

CONTENTS

Introduction 1

Contents 5

I TRANSFORMATION ALGORITHMS 9

1 Boolean Expressions 11
1.1 Using Quantifier Elimination . 12
1.2 Arithmetic expression normal form . 13
1.3 Division Elimination . 15
1.4 Square Root Elimination . 16
1.5 Complexity and Examples . 18

2 Constrained Anti-Unification 19
2.1 Definition of the Constrained Anti-Unification 20
2.2 Anti-Unification Modulo an Equational Theory 22

2.2.1 Neutral Elements . 23
2.2.2 The Switch Operator . 23
2.2.3 Function Commutation and Normal Forms 25

2.3 Anti-Unification on Dag-like Terms . 26
2.3.1 Dag Representation . 26
2.3.2 Dag Constrained Anti-Unification 28

2.4 √ and / Anti-Unification . 31
2.4.1 Theory of Arithmetic . 31
2.4.2 Dag Representation . 32
2.4.3 {√, /}-Anti-Unification . 34
2.4.4 Dag Extension . 36

6

3 Transformation of Programs 41
3.1 Language . 41
3.2 Program subtypes . 44

3.2.1 Normalized language . 44
3.2.2 Target language . 45

3.3 Specification of the Transformation . 47
3.4 Reliable Computations over Real Numbers 47

3.4.1 Exact Computation . 47
3.4.2 Program √ and / Continuity . 48

3.5 Transforming Programs . 51
3.5.1 Orders on Programs . 51
3.5.2 Program Normal Form P . 52

3.6 Boolean Expression Transformation . 53
3.7 Variable Definition Transformation . 54

3.7.1 Specification of Variable Definition Transformation 55
3.7.2 Variable Definition Transformation 56
3.7.3 Single Expression Decomposition 58
3.7.4 Multiple Expression Decomposition 59

3.8 Main Transformation . 61

4 Transforming Functions and Function Calls 63
4.1 Language Extension . 64
4.2 Function Definition Transformation . 67

4.2.1 Function input transformation . 67
4.2.2 Function output transformation . 70

4.3 Dependency Graph . 72
4.4 Order for Variable Definition Transformation 76

4.4.1 Variable inlining consequences . 77
4.4.2 Definition transformation iteration 79

4.5 Towards Acyclic Graphs and Loops . 85
4.5.1 Function duplication . 85
4.5.2 Template fixpoint . 86
4.5.3 The Division Case . 87

II IMPLEMENTATIONS AND APPLICATIONS 89

5 Formal PVS Proof 91
5.1 The PVS Proof Assistant . 91
5.2 PVS Formalization . 93
5.3 Program normal form . 95

5.3.1 Substitution . 95
5.3.2 Program Normalization . 96

5.4 ElimB proof . 97
5.4.1 Head Division Form . 98
5.4.2 Division Elimination . 99

7

5.4.3 Square Root Factorization . 99
5.4.4 Square root elimination . 101

5.5 Variable Definition Transformation . 102
5.5.1 Template . 102
5.5.2 Decomposition . 104

5.6 Main elimination . 106

6 OCaml Implementation 107
6.1 Simplification . 108
6.2 Anti-unification Algorithm . 109

6.2.1 Dag construction . 109
6.2.2 Dag Anti-unification . 111
6.2.3 Template Computation Extension 114

6.3 Program with functions Transformation . 115
6.3.1 Elim f in and Elim f out implementation 115

7 Interfaces 117
7.1 Parsing and printing . 117
7.2 PVS Strategy . 118

7.2.1 Deep embedding . 119
7.2.2 Strategy definition . 120

7.3 PVS Theory Transformation . 123
7.3.1 PVS to OCaml . 123
7.3.2 Specification with subtyping . 125
7.3.3 Proving the equivalence . 127
7.3.4 From comparison operator to function 128

7.4 Yices . 130

8 Applications 131

Conclusion 137

Bibliography 139

8

PART I

TRANSFORMATION ALGORITHMS

9

1
ELIMINATION IN BOOLEAN EXPRESSIONS

S
QUARE ROOTS AND DIVISIONS CAN BE ELIMINATED from any Boolean expression.
These expressions are built with comparisons operators, arithmetic expressions
and Boolean operators. This elimination is a particular case of the quantifier elim-

ination on real closed fields. We first describe how the general quantifier elimination
could be used to eliminate square roots and divisions by transforming every quantifier
free expression with square root and divisions into a quantified expression that is free
of divisions and square roots. Then we present our elimination algorithm. This more
efficient algorithm normalizes the arithmetic expressions and recursively eliminates di-
visions and square root to get an equivalent Boolean expression. We assume that the
expressions we want to transform are well formed, they do not contain divisions by zero
or square root of negative numbers, the equivalence only holds under such hypothesis.

This section presents the algorithm in a very general way and we only give outlines
of the proofs. The complete algorithm and formalization in PVS along with the according
proof will be presented in Section 5. Let us define the Boolean expressions we consider,
they are based on comparisons between arithmetic expression that are defined by the
following grammar:

DEFINITION 1.1 (Arithmetic expressions). Given a set of variables X and a set of real
constants C ⊆ R, we define the following set of terms:

A ::= X
| C
| −A
|
√
A

| A + A
| A × A
| A / A

The Boolean expressions B are based on relations between arithmetic expressions:

DEFINITION 1.2 (Boolean expressions). The Boolean expressions are defined by the fol-
lowing grammar:

B ::= B

| ¬B
| B ∧ B
| B ∨ B

| A > A
| A ≥ A
| A < A
| A ≤ A

| A = A
| A 6= A

12 CHAPTER 1. BOOLEAN EXPRESSIONS

We also use − as a binary operator, a − b is an abbreviation for a + (−b), ab is the
abbreviation for a × b, e2 denotes the square operation, i.e., e × e and a

b = a/b. We do
not mark the parenthesis on the left e.g., a + b + c = (a + b) + c and we use the usual
priorities of operations e.g., a + b × c = a + (b × c). We respectively denote A

√
and B

√

the sets corresponding to A and B that do not contain the √ and / constructors. Given a
Boolean formula, we call atom every comparison relation between arithmetic expressions
(e.g., A > A) that is a sub-term of this formula.

1.1 SQUARE ROOTS AND DIVISIONS ELIMINATION USING QUANTIFIERS ELIM-
INATION

In this section we present how we can transform every formula in B into an equivalent
one in B

√
by using quantifier elimination. To this purpose we extend the set of Boolean

expression with quantifiers:

DEFINITION 1.3 (Boolean expression with quantifiers). The following set adds the ex-
istential constructor to the set of square root and division free Boolean expressions B

√
:

B∃ ::= B
√
| ∃ X , B∃

Using the characterization of the square root and divisions, we can transform every
formula in B into an equivalent one in B∃ by introducing a new quantifier for every
division or square root:

EXAMPLE 1.1 (Quantifier introduction).
√

a = b/c becomes ∃ s, ∃ d, d × c = b ∧ s ≥ 0 ∧ s2 = a ∧ s = d

Every occurrence of square root or division is replaced by the characterization of the
function:

PROPOSITION 1.1 (Square root and divisions specification).

∀ a, b, x ∈ R3, b 6= 0 =⇒ a/b = x ⇔ a = b × x

∀ a, x ∈ R2, a ≥ 0 =⇒
√

a = x ⇔ x ≥ 0 ∧ x × x = a

We denote ≤≤ the sub-term partial order, ≪ the strict one and T[e 7→ f] the term T

where every sub-term equal to e is replaced by f . We define the following algorithm for
quantifier introduction:

ALGORITHM 1.4 (Elimination using quantifiers). Given a Boolean expression f in B,
we define the following recursive algorithm:

elim_quant(f) := if ∃ a, b ∈ A, a/b ≤≤ f then

choose x ∈ {y ∈ X | ¬ y ≤≤ f };
return ∃ x, elim_quant(b × x = a ∧ f [a/b 7→ x]);

else if ∃ a ∈ A,
√

a ≤≤ f then

choose x ∈ {y ∈ X | ¬ y ≤≤ f };
return ∃ x, elim_quant(x ≥ 0 ∧ x × x = a ∧ f [

√
a 7→ x]);

else return f ;

1.2. ARITHMETIC EXPRESSION NORMAL FORM 13

This algorithm terminates since the cardinal of the following finite set:

{e ∈ A | e ≤≤ f ∧ (∃ a, b, e = a/b ∨ ∃ a, e =
√

a)}

strictly decreases for each recursive call. Indeed each iteration eliminates one element of
that set. Therefore we are able to transform any formula in B into an equivalent formula
in B∃.

EXAMPLE 1.2 (Elimination using quantifiers).

elim_quant(
√

a > b/c ∧√
a/d < e) =

∃ x, ∃ y, ∃ z, x × c = b ∧ y × d = z ∧ z ≥ 0 ∧ z × z = a ∧ z > x ∧ y < e

We can now use a quantifier elimination algorithm to eliminate the quantifiers from
such formulas and therefore obtain an equivalent formula in B

√
which is free of square

roots and divisions.
Quantifier elimination procedures on real closed fields have first been introduced by

Tarski in [Tar51] followed by Seidenberg [Sei54] and Cohen [Coh69] who developed the
same idea. Quantifier elimination can be used to proove that the theory of real closed
fields is decidable, i.e., there exists an algorithm that is able to decide for every formula
in that theory if this formula is either true or false. However, these elimination algo-
rithms were more theoretical proofs of the existence of such procedure than effective
decision procedures, due to their huge complexity. In 1976, Collins proposed a much
more efficient quantifier elimination using cylindrical algebraical decomposition [Col76].
Among others versions of this algorithm has been implemented in the Redlog system
[DS96b, DS96a] or QEPCAD project [Bro03]. It has also been formally proved in the Coq
proof assistant, see [CM10]. However the complexity of these general procedure depends
on the number of free variables in the quantified expressions and therefore, in the context
of a program transformation, it would provoke an explosion of the size of the output.

The particular quadratic (and cubic cases) have been studied by Weispfenning in
[Wei94, Wei97] but we now present a square root and division elimination procedure
that allows us to eliminate nested square roots, all occurrences of the same square roots
being handled in one step. This transformation relies on a reduction of arithmetic expres-
sion to a particular normal form introduced in Section 1.2 and on a mutually recursive
elimination of divisions (see Section 1.3) and square roots (Section 1.4). In Chapter 5 we
present a complete formal proof in PVS of this transformation.

1.2 ARITHMETIC EXPRESSION NORMAL FORM

The first step of this transformation relies on a reduction to division normal form, where
the head operation is a division, if there is one at top level in the expression. In this
section, we say that an operation is at top level if it appears in the expression without
being argument of a square root (

√
a/b + c does not have a division at top level). We

define the following normal form that corresponds to this head division reduction:

DEFINITION 1.5 (Division and polynomial normal forms). We define the Head Division

Form along with the Polynomial Form:

14 CHAPTER 1. BOOLEAN EXPRESSIONS

HDF = PF | PF/PF

PF = C | X | PF + PF | − PF | PF × PF |
√
A

This means that any division which is not the head constructor of an expression in
HDF is a sub term of a square root argument. The square roots being able to contain any
arithmetic expressions, these expressions will be normalized after the elimination of their
head square root symbol when they appear at top level.

This reduction to the Head Division Form can be done by commuting the division
with all the other operations. The corresponding rules are given in the following defini-
tion.

DEFINITION 1.6 (Head division reduction).

e1 +
e2

e3
−→ e3 × e1 + e2

e3

e1

e2
+ e3 −→ e1 + e2 × e3

e2
(HD +)

−e1

e2
−→ −e1

e2
−(−e1) −→ e1 (HD −)

e1 ×
e2

e3
−→ e1 × e2

e3

e1

e2
× e3 −→ e1 × e3

e2
(HD ×)

e1
e2

e3
−→ e1

e2 × e3

e1
e2
e3

−→ e1 × e3

e2
(HD /)

Remark 1.1. Since most of the arithmetic expressions we are dealing with contain free
variables, we can not take the divisions out of the square roots using the following rule:

√

e1
e2

−→
√

ǫ1e1√
ǫ2e2

with ǫ1, ǫ2 ∈ {+,−}2

Indeed the free variables prevent us from guessing the sign of the expressions e1 and e2

and therefore to chose the right epsilons.

Remark 1.2. Note that the rules HD / only holds when we suppose that the original
expression does not fail, if e2 in the first or e3 in the second is equal to zero then the left
side of the rule fails due to a division by zero whereas the right one does not.

This set of rewriting rules terminates and transforms any expression in A in an ex-
pression in HDF:

PROPOSITION 1.2. Normalization using the reduction rules defined in Definition 1.6 trans-

forms any term in A into a formula in HDF.

Proof. This reduction terminates using the multiset order on the depth of the division
operators. All the rules define switches between division and all the operations except
square root, therefore if a/b ≪ e there exists sq such that a/b ≪ √

sq ≤≤ e All these rules
trivially preserve the semantics. ◭

We now present how, given a comparison between two arithmetic expressions in
HDF, we are able to transform them by eliminating the top level square root.

1.3. DIVISION ELIMINATION 15

1.3 DIVISION ELIMINATION

We want to transform an atomic proposition e1 R e2, where R ∈ {=, 6=,>,<,≥,≤}
and e1, e2 ∈ DNF2, into a Boolean formula that only contains relations between PF ex-
pressions. When R ∈ {=, 6=} this can be easily done by multiplying both sides of the
equation by the denominator, the product of two PF expressions being in PF. We only
describe the case when both sides have divisions as head constructors, rules when only
one arithmetic operation has a division being similar:

DEFINITION 1.7 (Division elimination with equality).

a1/a2 = b1/b2 −→ a1 × b2 = b1 × a2

a1/a2 6= b1/b2 −→ a1 × b2 6= b1 × a2

However the usual elimination of division rule in comparisons enforces a case dis-
tinction on the signs of the denominators:

DEFINITION 1.8 (Division Elimination in Comparisons with Cases).

a1/a2 > b1/b2 −→ (a2 × b2 ≥ 0 ∧ a1 × b2 > b1 × a2) ∨ (a2 × b2 ≤ 0 ∧ a1 × b2 > b1 × a2)

a1/a2 ≥ b1/b2 −→ (a2 × b2 ≥ 0 ∧ a1 × b2 ≥ b1 × a2) ∨ (a2 × b2 ≤ 0 ∧ a1 × b2 ≥ b1 × a2)

a1/a2 < b1/b2 −→ (a2 × b2 ≥ 0 ∧ a1 × b2 < b1 × a2) ∨ (a2 × b2 ≤ 0 ∧ a1 × b2 < b1 × a2)

a1/a2 ≤ b1/b2 −→ (a2 × b2 ≥ 0 ∧ a1 × b2 ≤ b1 × a2) ∨ (a2 × b2 ≤ 0 ∧ a1 × b2 ≤ b1 × a2)

Using such rules to eliminate the division not only increase the sizes of the compar-
isons but also the number of comparisons in a formula. In order to avoid this case dis-
tinction, we prefer to multiply both sides of the comparison by the square of the denom-
inators. Indeed, if multiplying by the square create even bigger comparisons, it avoids
the case distinction since square are always positives:

DEFINITION 1.9 (Division Elimination in Comparisons with Squares).

a1/a2 > b1/b2 −→ (a1 × a2 × b2 × b2 > b1 × b2 × a2 × a2)

a1/a2 ≥ b1/b2 −→ (a1 × a2 × b2 × b2 ≥ b1 × b2 × a2 × a2)

a1/a2 < b1/b2 −→ (a1 × a2 × b2 × b2 < b1 × b2 × a2 × a2)

a1/a2 ≤ b1/b2 −→ (a1 × a2 × b2 × b2 ≤ b1 × b2 × a2 × a2)

All these transformations eliminate the head division if it exists and therefore trans-
form every relation between HDF terms into a formula that only embed PF expressions.
Let elim_div be the function that implements rules of definitions 1.7 and 1.9, depending
on the comparison operator, we have the following proposition:

PROPOSITION 1.3 (From HDF to PF). Given a relation e1 R e2, where R ∈ {=, 6=,>,<,≥
,≤} and e1, e2 ∈ DNF2, by eliminating the head division we get a Boolean formula f that only

uses relations between PF expressions:

elim_div(e1 R e2) = f =⇒
∀a1, a2 ∈ A,ℜ ∈ {=, 6=,>,<,≥,≤}, a1 ℜ a2 ≤≤ f =⇒ (a1, a2) ∈ PF2

16 CHAPTER 1. BOOLEAN EXPRESSIONS

The head division being eliminated, there is no division left at top level of the arith-
metic expressions. Given a relation between PF expressions we now introduce the elimi-
nation of one square root.

1.4 SQUARE ROOT ELIMINATION

As for the division elimination, the elimination of one square root symbol relies on a
standardization of the expression. First step of this normalization is to chose a non-nested
square root expression. Indeed, we want to avoid eliminating several times the same
square root expression, thus we chose a square root that is not nested, which means that
this square root is not a sub-term of any other square root expression.

DEFINITION 1.10 (Top level square root). Given an arithmetic expression e and an ex-
pression a, we call

√
a a non-nested square root when

√
a ≤≤ e ∧ ∀ y ∈ A,

√
y ≤≤ e ⇒ ¬

√
a ≪ √

y

PROPOSITION 1.4. While there is at least one square root, such a top level square root always

exists:

∀ e ∈ PF, ∃ s ∈ A,
√

s ≤≤ e =⇒ ∃ a ∈ A,√
a ≤≤ e ∧ ∀ y ∈ A,

√
y ≤≤ e ⇒ ¬

√
a ≪ √

y

Proof. Since ≪ is a well-founded order, a maximum of {y ∈ A | √y ≤≤ e} for this order
has the property we want. ◭

This allows us to transform any expression with square roots in the following form:

PROPOSITION 1.5 (Square root factorization). Given e ∈ PF and sq a top level square root

of e:

∃ p, r ∈ PF, e = p ×√
sq + r ∧ ¬√sq ≤≤ p ∧ ¬√sq ≤≤ r

This transformation can be done using the following set of rules:

DEFINITION 1.11 (Top level square root factorization).
x ∈ X

x −֒→ 0×√
sq+x

c ∈ C
c −֒→ 0×√

sq+c

e1 −֒→ p1×
√

sq+r1 e2 −֒→ p2×
√

sq+r2
e1+e2 −֒→ (p1+p2)×

√
sq+(r1+r2)

e1 −֒→ p1×
√

sq+r1
−e1 −֒→ (−p1)×

√
sq+(−r1)

e1 −֒→ p1×
√

sq+r1 e2 −֒→ p2×
√

sq+r2
e1×e2 −֒→ (p1×r2+r1×p2)×

√
sq+(p1×p2×sq+r1×r2)

a 6= sq√
a −֒→ 0×√

sq+
√

a

√
sq −֒→ 1×√

sq+0

Since sq is a top level square root, neither p nor q contains any
√

sq.

Now given a relation between two PF forms e1 R e2 being the result of the division
elimination introduced in Section 1.3. We can transform this relation by factorizing the
expression e1 − e2 with a top level square root. Therefore our new relation has the fol-
lowing form p ×√

sq + r R 0. We transform this relation into a new formula that do not

1.4. SQUARE ROOT ELIMINATION 17

contain
√

sq as a sub-term anymore. This transformation relies on a case distinction on
the signs of p and r. The following arrays present, depending on the sign of p and r,
formulas where

√
sq does not appear and which are equivalent to p ×√

sq + r R 0 when
R is = or >

• Transformation of p ×√
sq + r = 0:

r\p − 0 +

− ⊥ ⊥ p2 × sq − r2 = 0
0 sq = 0 ⊤ sq = 0
+ p2 × sq − r2 = 0 ⊥ ⊥

• Transformation of p ×√
sq + r > 0:

r\p − 0 +

− ⊥ ⊥ p2 × sq − r2
> 0

0 ⊥ ⊥ sq 6= 0
+ r2 − p2 × sq > 0 ⊤ ⊤

We can define equivalent case distinctions for the other operators, i.e., ≥, <, ≤ and 6=.
Therefore every Boolean formula of the form p ×√

sq + r R 0 can be transformed into an
equivalent one that do not contain

√
sq anymore:

DEFINITION 1.12 (Square root elimination). The following rules eliminate one top level
square root:

p ×√
sq + r = 0 −→ p × r ≤ 0 ∧ p2 × sq − r2 = 0

p ×√
sq + r > 0 −→ (p ≥ 0 ∧ r ≥ 0) ∨ (p ≥ 0 ∧ p2 × sq − r2

> 0) ∨ (r ≥ 0 ∧ p2 × sq −
r2

< 0) And we define similar rules for the other operators ≥, <, ≤ and 6=.

This transformation might introduce new divisions at top level (divisions that are
in sq), therefore before being able to remove another top level square root, we have to
normalize into HDF form and eliminate the division if there is one. Therefore we define
the following algorithm:

ALGORITHM 1.13 (Square roots and divisions elimination). While the comparisons
contain divisions or square roots, do:

i) Reduce to HDF form using rules of Definition 1.6

ii) Eliminate head division using one rule of Definition 1.9 or 1.8

iii) Factorize using one top level square root with rules of Definition 1.11

iv) Eliminate this square root using one of the rules of Definition 1.12

This algorithm terminates using the multiset of square root sub-terms given the fol-
lowing lemmas:

18 CHAPTER 1. BOOLEAN EXPRESSIONS

LEMMA 1.6 (Square roots sub-terms conservation). For every rule from definitions 1.6, 1.9,

1.8 and 1.11, transforming e into f , the following property holds:

∀a ∈ A,
√

a ≤≤ f =⇒
√

a ≤≤ e

LEMMA 1.7 (Square roots elimination). The rules of Definition 1.12 transforming p×√
sq+

r R 0, where sq is a top level square root, into f have the following sub-term property:

¬ √
sq ≤≤ f ∧ ∀a ∈ A,

√
a ≤≤ f =⇒

√
a ≤≤ e

It ensures that, after applying the four step of the algorithm, all the remaining square
roots were already in the input term and are different from the one we eliminated. There-
fore, even if the last rule produces 6 relations from one, the set of the square roots ap-
pearing in each relation strictly decreases and therefore enforce the termination of this
algorithm.

1.5 COMPLEXITY AND EXAMPLES

Using this algorithm the size of the transformed formula quickly grows when the number
of square roots in the expression increase. Indeed as mentioned earlier, every elimination
of square roots can produce up to 6 relations, and these relations might be bigger than
the original one (p2 × sq − r2 is bigger than p × √

sq + r). Given #√(e) the number of
square roots appearing in the expression e (i.e., the cardinal of {a | √a ≤≤ e}), then the
number of atoms in the formula produced by this elimination on e is bounded by 6#√(e).
Using variable definitions as it will be introduced in Section 3.6, this exponential can be
brought to 4#√(e), however this complexity can still easily makes the size of the output
explodes. Before presenting the constrained anti-unification problem in the next section
we first give some examples of square roots and division elimination in Boolean formulas
using this algorithm:

EXAMPLE 1.3 (Quadratic function root comparison).

(−b +
√

(∆))/(a) > c −→
a > 0 ∧−b × a − c × a × a > 0 ∨
a > 0 ∧ a × a × ∆ − (−b × a − c × a × a)× (−b × a − c × a × a) > 0 ∨
−b × a − c × a × a > 0 ∧ a × a × ∆ − (−b × a − c × a × a)× (−b × a − c × a × a) < 0

EXAMPLE 1.4 (Quadratic function roots comparisons).

(−b +
√

∆)/a > (−b −
√

∆)/a −→
a × a × a + a × a × a > 0 ∧ (a × a × a + a × a × a)× (a × a × a + a × a × a)× ∆ > 0

EXAMPLE 1.5 (Square root sum).

a ×√
sa + b ×

√
sb > 0 −→

a > 0 ∧ b > 0 ∧ b × b × sb > 0∨
a > 0∧ a × a × sa − b × b × sb > 0∧ (a × a × sa − b × b × sb)× (a × a × sa − b × b × sb) > 0∨
b > 0 ∧ b × b × sb > 0 ∧ a × a × sa − b × b × sb < 0∧

(a × a × sa − b × b × sb)× (a × a × sa − b × b × sb) > 0

2
CONSTRAINED ANTI-UNIFICATION

T
HE ANTI-UNIFICATION PROBLEM was introduced independently by J.C. Reynolds
[Rey70] and G.D. Plotkin [Plo70] in 1970. This problem is the dual of the unifi-
cation problem. While unification aims at computing a common instance of two

terms, the anti-unification computes a template (also called generalization or anti-unifier)
of two terms such that substitutions applied to this template produce the input terms:

DEFINITION 2.1 (Anti-unification). Given two terms t1 and t2, the anti-unification prob-
lem consists in finding a term t and two substitutions σ1 and σ2 such that:

t1 = tσ1 and t2 = tσ2

Such a term t is called an anti-unifier or template of t1 and t2.

Unification has been widely studied in the fields of proof theory and rewriting (see
[BS01] for a survey) and therefore many papers have presented efficient solutions [Rob65]
where equality is considered modulo various equational theories (e.g., [Hue76]).

Algorithms for first order anti-unification have been introduced in [Rey70, Plo70,
Hue76] and one for higher-order anti-unification, in the Calculus of Constructions, is pre-
sented in [Pfe91]. These algorithms are used, for instance, for proof generalization and,
more recently, termination [AEMO08] using generalization modulo some equational the-
ories [Pot89]. Anti-unification has also been used to find general properties or solutions
of algebraic expressions [LMM88, OSW05] or to detect code duplication [BKZ09, KLV11].
All of these applications focus on computing the most specific (or least general) template
which is the dual of the most general unifier, that is:

DEFINITION 2.2 (Most specific template). Given two terms, t1 and t2, a most specific
template is a template t such that:

For all s, if s is a template of t1 and t2 then exists σ such that t = sσ

The importance of this most specific template comes from the fact that one of the main
purposes of usual anti-unification is to factorize terms, the template being the common
part of all the terms while the substitutions capture their differences. This factorization is
then used to define a variable corresponding to that template and reuse this variable in
all the terms it anti-unifies.

20 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

In this chapter we present a variant of the anti-unification problem. The constrained

anti-unification problem consists in computing a template with the constraint that the lan-
guage of the terms allowed in the substitutions is a subset of that of the input terms.

We give a formal definition of this constrained anti-unification problem, state some
general properties of this problem in different equational theories and introduce how
directed acyclic graph can be used to compute a specific template. All of these features
are then used to provide a tailored constrained anti-unification algorithm modulo an
arithmetic theory.

2.1 DEFINITION OF THE CONSTRAINED ANTI-UNIFICATION

In this section we first describe the problem of constrained anti-unification on tree-like
terms. Given a set of variables X and a signature Σ which is a set of function symbols,
we define the following notations:

• Σ(m) is the set of functional symbols in Σ of arity m.

• T (Σ,X) (or simply T) is the set of terms t over Σ and X defined by the following
grammar:

t ::= x | f (t1, ..., tn) where x ∈ X and f ∈ Σ(n).

• A substitution σ ∈ S, is a partial mapping from a finite subset of X to T (Σ,X).

• The domain of the substitution σ is denoted by D(σ).

• I(σ) is the image of σ, i.e., {t ∈ T (Σ,X)|∃x ∈ D(σ), t = σ(x)}.

• [x 7→ a, y 7→ b] is the substitution that replaces x by a and y by b.

• tσ is the application of σ to a term t.

• σ1σ2 is the composition of σ1 and σ2, i.e., the substitution such that:
∀ t, t(σ1σ2) = (tσ1)σ2.

• When D(σ1) ∩ D(σ2) = ∅, σ1‖σ2 is the parallel substitution of σ1 and σ2, i.e., the
substitution such that:

if x ∈ D(σ1) then (σ1‖σ2)(x) = σ1(x) else (σ1‖σ2)(x) = σ2(x)

• ≪ is the strict sub-term order on terms, that is, the inductive relation defined by:
a ≪ f (t1, .., tn) ≡ (∃ i, a = ti ∨ a ≪ ti)

and the associated partial order ≤≤, such that s ≤≤ t ⇔ s = t ∨ s ≪ t

We usually denote by x, y, z... the variables in X , by a, b, c... the constants in Σ(0) and by
f , g, h... the other symbols in Σ. Given these definitions and notations, we now define the
constrained anti-unification:

DEFINITION 2.3 (Template with constraint). Given Σ ⊆ Σ and a term s in T (Σ,X), a
term t in T (Σ,X) is a Σ-template of s, denoted s 4Σ t when:

∃ σ, tσ = s ∧ I(σ) ⊆ T (Σ\Σ,X)

2.1. DEFINITION OF THE CONSTRAINED ANTI-UNIFICATION 21

Symbols in Σ are the forbidden symbols. An example of such a Σ-template is:

EXAMPLE 2.1. If Σ = { f , g, a, b} and Σ = { f , a} then f (x, y, a) is a Σ-template of f (x, z, a)

and f (b, g(x), a) with the substitutions [y 7→ z] and [x 7→ b; y 7→ g(x)].

The usual anti-unification problem is a way to factorize terms, the most specific tem-
plate represents the common part of the input terms and the substitutions embed the dif-
ferences. The constrained anti-unification has a different goal, it aims at factorizing the
terms depending on the symbol they use, the template has to contain all the forbidden
symbols that were used in the input terms whereas the substitution contains the rest of
the term. Unlike the usual anti-unification, we do not aim at computing the most specific
template but we aim at computing a large set of templates and select the best according to
a criterion that is completely different. Indeed, we will use the template to replace some
variables in Boolean expressions before eliminating square roots and divisions with the
algorithm introduced in chapter 1. Thus, the template is used many times and we prefer
a small template and large substitutions, this means that we might even chose one of the
less specific templates.

Let us first extend this definition to define the template of a set of terms:

DEFINITION 2.4 (Template of finite set). Given Σ ⊆ Σ and a finite set of terms S included
in T (Σ,X), a term t in T (Σ,X) is a template of S , when for all s in S , s 4Σ t.

Remark 2.1. For unconstrained problems, there is always a template: the (fresh) variable
x, since, for every term t = x[x 7→ t]. This is no longer the case when we add constraints
since the Σ-template of a set of expressions does not always exist. As soon as one of
the terms contains a forbidden symbol, a simple fresh variable is not a Σ-template any-
more, e.g., given Σ and Σ from Example 2.1, f (x, y, a) and g(b) do not have a common
Σ-template.

We aim at computing a common template of a finite set of terms. Since the Σ-anti-
unification relation is transitive, a template of a set of terms can be recursively computed
by using anti-unification on pairs of terms.

PROPOSITION 2.1 (Σ-template transitivity). If r is a Σ-template of s and s a Σ-template of t

then r is a Σ-template of t

Proof. s = rσ ∧ t = sσ′ =⇒ t = r(σσ′) and I(σσ′) ⊆ T (Σ\Σ,X) ◭

Without any equational theory, the constrained anti-unification of two terms is quite
simple.

ALGORITHM 2.5 (Constrained anti-unification algorithm). The following recursive func-
tion ctmp computes (if it exists) a Σ-template of t and t′:

(V) when (t, t′) ∈ T (Σ\Σ,X)× T (Σ\Σ,X), ctmp(t, t′) = x

otherwise
(R) ctmp(f (t1, ..., tn), f (t′1, ..., t′2)) = f (ctmp(t1, t′1), ..., ctmp(tn, t′n))
(F) ctmp(f (...), g(...)) = Fail (No Σ-template can be computed)

22 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

When we have two terms in T (Σ\Σ,X), i.e., with no forbidden symbols, the template
is a variable. This is because, unlike in the usual anti-unification, we are not interested in
computing the most specific template. However the variable has to be fresh in order to
avoid conflicts in the substitutions composition when applying the recursive step of rule
(R).

PROPOSITION 2.2 (Recursive template construction). Given f ∈ Σ(n), t1, ..., tn and t′1, ..., t′n
pairwise anti-unifiable terms such that t1, .., tn are the corresponding templates and σ1, ..., σn and

σ′
1, ..., σ′

n the associated substitutions:

∀ j, tj = tjσj ∧ t′j = tjσ
′
j

then, if the substitution have distinct domains, we have a template for f (t1, ..., t1) and f (t′1, ..., t′n):

(∀ i, j, j 6= i ⇒ tjσi = tj ∧ tjσ
′
i = tj ∧

D(σi) ∩D(σj) = ∅ ∧ D(σ′
i) ∩D(σ′

j) = ∅) =⇒
f (t1, ..., tn) = f (t1, ..., tn)(σ1‖...‖σn) ∧ f (t′1, ..., t′n) = f (t1, ..., tn)(σ′

1‖...‖σ′
n)

Proof. The distinct domains allows us to construct the parallel substitution. The tjσk = tj

condition states that the free variables of tj are not in the domain of σk, therefore we have
tj(σ1‖...‖σn) = tjσj and we get the following equality:

f (t1, ..., tn)(σ1‖...‖σn) = f (t1(σ1‖...‖σn), ..., tn(σ1‖...‖σn)) = f (t1σ1, ..., tnσn) = f (t1, ..., tn)

◭

As soon as one of the terms contains a forbidden symbol and the head symbols are
different the anti-unification fails. Therefore the set of elements that can be anti-unified
is quite small. We can anti-unify more terms if we take into account an equational theory
on terms. Hence in the next section, we generalize anti-unification, modulo an equational
theory.

2.2 ANTI-UNIFICATION MODULO AN EQUATIONAL THEORY

The anti-unification modulo an equational theory is defined using the equality modulo
the theory (using the axioms of the theory).

DEFINITION 2.6 (Anti-unification modulo theory). Given two terms t1 and t2 and a
theory E, an anti-unifier modulo E is a term t and two substitutions σ1, σ2 such that:

t1 =E tσ1 and t2 =E tσ2

Where =E is the equality in the theory E. However we use the simple = notation when
the context is clear.

In this section we will see that the use of an equational theories and some properties
on the sets Σ and Σ might allow the constrained anti-unification to be complete.

DEFINITION 2.7 (Completeness). Given Σ ⊆ Σ, Σ-constrained anti-unification is said to
be complete when every finite set of terms has a Σ-template.

2.2. ANTI-UNIFICATION MODULO AN EQUATIONAL THEORY 23

2.2.1 Neutral Elements

A simple case that enables the completeness of the constrained anti-unification is when
we only have constants and binary symbols, every binary operation having a constant
(i.e., in Σ(0)) left or right neutral element. We say that e ∈ Σ(0) is a left (respectively right)
neutral element of f when for all term t, f (e, t) =E t (respectively f (t, e) =E t).

PROPOSITION 2.3 (Right neutral restriction). If Σ = Σ(0) ∪ Σ(2), Σ ⊆ Σ(2) and every

function f in Σ(2) has a left or right neutral element e f in Σ(0) then for every pair of terms t1 and

t2 there exists a Σ-template.

Proof. We add to the (V) and (R) rules, the following rules:
(LRN) ctmp(f (t1, t2), s) = f (ctmp(t1, s), ctmp(t2, e f))

(RRN) ctmp(s, f (t1, t2)) = f (ctmp(s, t1), ctmp(e f , t2))

when f has a right neutral element e f . We use the symmetrical rules (LLN) and (RLN)
when f admits a left neutral element. This extended set of rules terminates since recursive
calls are made on strict sub-terms. Therefore if the head symbols are different, there are
two possibilities:

• If one of the term still contains a forbidden symbol, then its head symbol is in Σ(2),
it has a neutral element so one of the rule can apply

• If there is no forbidden symbol then the (V) rule terminates the anti-unification ◭

By using this neutral element rules, we can always anti-unify simple arithmetic ex-
pressions:

EXAMPLE 2.2 (Rational number arithmetic). If Σ = Q ∪ {+,−,×, /} and all the binary
operators are forbidden (Σ = {+,−,×, /} (notice that − and / have a right neutral
element) we can always anti-unify:
(x × y + (t × u/v))− (w + z) is a template of a + (b × c)/d and a′ × b′ − (c′ + d′) with
the following substitutions:

• [x 7→ a, y 7→ 1, t 7→ b, u 7→ c, v 7→ d, w 7→ 0, z 7→ 0]:
a + (b × c)/d = (a × 1 + (b × c/d))− (0 + 0)

• [x 7→ a′, y 7→ b′, t 7→ 0, u 7→ 1, v 7→ 1, w 7→ c′, z 7→ d′]:
a′ × b′ − (c′ + d′) = (a′ × b′ + (0 × 1/1))− (c′ + d′)

2.2.2 The Switch Operator

Another condition that ensures the completeness of the constrained anti-unification is the
existence of a switch operator:

DEFINITION 2.8 (Simple switch operator). A switch operator sw in T (Σ,X) is a term
that has the following property:

∃ e1, e2 ∈ T (Σ,X), x, y, z ∈ X ,
∀ s, t ∈ T (Σ,X), sw[x 7→ e1, y 7→ s, z 7→ t] = s ∧ sw[x 7→ e2, y 7→ s, z 7→ t] = t

The terms e1 and e2 are called the switch elements and x, y and z the switch variables.

24 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

EXAMPLE 2.3 (Switch operators). We can define switch operators in different theories:

In arithmetic, sw = x × y + (1 − x)× z with e1 = 1 and e2 = 0.

On Booleans, sw = (x ∧ y) ∨ (¬x ∧ z) with e1 = ⊤ and e2 = ⊥.

In a programming language, sw = i f x then y else z with e1 = true and e2 = f alse.

PROPOSITION 2.4 (Switch completeness). If T (Σ,X) admits a switch operator and if the

switch elements are Σ-anti-unifiable, then any finite set of terms has a Σ-template.

Proof. Given e, a Σ-template of e1 and e2, and the corresponding substitutions σ1 and σ2,
then for all s and t in T (Σ,X), sw[x 7→ e, y 7→ s, z 7→ t] is a Σ-template of s and t with the
same substitutions σ1 and σ2. ◭

When we are looking for small templates, the use of the switch operator has to be
avoided as much as possible since in that case the anti-unification algorithm produces a
template whose size is bigger than the sum of the sizes of the input terms. Nevertheless,
in many usual theories, this operator can be constructed and allows the completeness of
the constrained anti-unification. When such element exists we define a switch rule that
can replace the one that fails, i.e., (F):

DEFINITION 2.9 (Switch rule). If sw is a switch term and e a template of the switch
elements, the following rule produces a constrained template of two terms:

(SW) ctmp(t1, t2) = sw[x 7→ e, y 7→ t1, z 7→ t2]

We say that a is a left (respectively right) absorbing element of f when for all t,
f (a, t) = a (respectively f (t, a) = a). When the neutral element of one function is the
absorbing element of another one, we can define n-ary switches.

DEFINITION 2.10 (N-ary switch). In every theory that has the following elements:

• a binary function f , with a neutral element e f

• a binary function g, with e f as left absorbing element and a left neutral element eg

A n-ary switch is the following term:

swn = f (g(x1, y1), f (g(x2, y2), ..., f (g(xn−1, yn−1), g(xn, yn))))

That is:

• sw2 = f (g(x1, y1), g(x2, y2))

• swn+1 = f (g(x, y), swn) where x and y do not appear in swn

This switch directly defines the template of any set of terms:

PROPOSITION 2.5 (N-ary template). Given t1, ..., tn a set of terms and the hypothesis of defi-

nition 2.10, then

swn[y1 7→ t1, ..., yn 7→ tn]

is a template of t1, ..., tn

2.2. ANTI-UNIFICATION MODULO AN EQUATIONAL THEORY 25

Proof. ∀ i, swn[x1 7→ e f , ..., xi−1 7→ e f , xi 7→ eg, xi+1 7→ e f , ..., xn 7→ e f] = yi ◭

EXAMPLE 2.4. On Booleans:
swn =

n
∨

i=1
(xi ∧ yi) with e f = ⊥ and eg = ⊤

We have seen that, using neutral elements and switch properties, we are able to find
constrained templates in many equational theories. However, since we are looking for
particular templates, we might want to extend the set of possible templates. This can be
done using other axioms of the equational theory.

2.2.3 Function Commutation and Normal Forms

We call a function commutation axiom, every axiom of the form g(...) = f (...) that changes
the head symbol of a term, e.g., distributivity r × (s + t) = r × s + r × t; r/s + t = (r + t ×
s)/s; ¬(A ∧ B) = (¬A ∨ ¬B) etc. As explained in section 2.2.2 we want to avoid using
the switch rule since it produces really big templates. Therefore we prefer using these
axioms to change the head symbols of terms to apply the recursive rule (R) then using
the switch rule directly.

EXAMPLE 2.5 (Distributivity).
x × (1/y + 1/z) is a template of a.(1/b + 1/c) and a′/b′ + a′/c′

The use of these axioms extends the set of templates and also allows the computations
of normal forms that simplifies the anti-unification algorithm:

EXAMPLE 2.6 (Division anti-unification). When Σ = Q ∪ {+,−,×, /} and Σ = {/}
(division is the only forbidden function), then since every expression can be written t/u,
t and u not containing any division, x/y is the smallest most general template of any set
of expressions.

The use of normal forms really increases the efficiency of the algorithm when we
consider computing a template of a whole set of expressions at the same time instead of
recursively computing the templates of pairs of elements. Indeed it is easier to anti-unify
terms that already have the same shape:

EXAMPLE 2.7 (Boolean DNF anti-unification). On the Booleans {∨,∧,¬, B}, if Σ = {∨},
by transforming every term in its disjunctive normal form we can find a template whose
number of ∨ is the maximal number of ∨ in the normal forms:

(a1 ∧ a2) ∨ (a3 ∧ a4) ∨ a5

(b1 ∧ b2 ∧ b3) ∨ b4

c1 ∨ c2

−→ x ∨ y ∨ z

In order to minimize the size of the template we use the neutral elements and function
commutation axioms as a priority and only use the switch operator when we have no
other choice. We have seen how the use of an equational theory really enlarges the set
of possible templates. However, it seems too complex to try to compute all the possible
templates modulo a large equational theory, such as the arithmetic. However, for our
application, one of the criteria to chose the best template is the number of forbidden
function occurrences that we want to minimize. We now present how the use of directed
acyclic graphs as representations of terms helps us minimize the number of forbidden
functions symbols in the template.

26 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

2.3 ANTI-UNIFICATION ON DAG-LIKE TERMS

As mentioned previously, we want to compute a “small” template, regarding the number
of forbidden function occurrences. More precisely, we want to minimize the number of
function calls on distinct elements since, as introduced in section 1.5, the complexity of
the elimination in Boolean expressions depends on this number.

DEFINITION 2.11 (Number of forbidden occurrences). Given Σ and Σ, the number of
forbidden occurrences of t, denoted #Σ(t) is the cardinal of the following set:

{ f (t1, ..., tn) | f (t1, ..., tn) ≤≤ t ∧ f ∈ Σ }

For example the number of f occurrences in g(f (b, f (a, b)), f (a, b)) is 2. In order to
compute a template which minimizes that number, we adopt a directed acyclic graph
(a.k.a. dag) based representation.

2.3.1 Dag Representation

The dag representation proposed in this document uses pointers to represent sharing.
Therefore the dag nodes are represented by terms extended with pointers in N∗.

DEFINITION 2.12 (Directed Acyclic Graphs). Let T (Σ,X , N∗) (or Ṫ for short) denote
the set of dag terms (or nodes) corresponding to the following grammar:

• dn ::= x | f (dn1, ..., dnm) | k̇ where x ∈ X , f ∈ Σ(m) and k ∈ N∗

The dags are lists of such nodes, i.e., d := [dn0; ...; dnn], where k̇ represents a pointer to
the k-th element of the list, D(Σ,X) is the set of these dags. We call the length of the
dag the length of its list. We denote the cons infix constructor by :: and [dni]

n
0 the list

[dn0; ...; dnn]. pt(dn) is the set of pointers appearing in dn, i.e., {k | k̇ ≤≤ dn}. We also
extend the substitutions to dag nodes such that k̇σ = k̇ and to dags [dni]

n
0 σ = [dniσ]

n
0 .

We use dags to represent sharing in the terms, in practice we only use sharing for the
arguments of the forbidden function calls:

EXAMPLE 2.8 (Dag representation). The term g(f (a), f (h(b, f (a)))) where the f calls
arguments are shared is represented by:

g
0

f

f h

1

f

a
2

b

2̇

1̇

2̇

Figure 2.1: Dag representation

and we also use an array representation for dags:

2.3. ANTI-UNIFICATION ON DAG-LIKE TERMS 27

0 1 2

g(f (2̇), f (1̇)) h(b, f (2̇)) a

We use this array representation for dags and separate the first element (the root) for
clarity reasons.

In order to assure acyclic behaviors we only authorize in node i pointers to indexes
bigger than i, this hypothesis is called right dependency hypothesis.

DEFINITION 2.13 (Right dependency hypothesis). Given d = [di]
n
0 a dag, we say that d

is a right dependency dag when
∀i ∈ {0; ...; n}, pt(dni) ⊆ {i + 1; ...; n}

This hypothesis allows us to define the following order on dags.

DEFINITION 2.14 (Order on dags). Given [dni]
n
0 and [dgi]

n
0 we say that [dni]

n
0≫̇[dgi]

n
0

when:
∀i ≥ 1, dni = dgi ∧ (min(pt(dn0)) > min(pt(dg0)) ∨ dn0 ≫ dg0)

where ≫ is the sub-term relation defined in Section 2.1.

To compare 2 dags, the nodes bigger than 1 have to be equal. The relation ≫̇ is well
founded since the pointers in the sub-terms are included in the pointers of the term (i.e.,

dn0 ≫ dg0 =⇒ (min(pt(dn0)) ≥ min(pt(dg0))). Therefore it provides us a termination
criterion for a set of rules and an induction scheme for right dependency dags. Using
that order, we can define the semantics d⊤ of a dag d in D(Σ,X) as a term in T (Σ,X):

DEFINITION 2.15 (Dag to term). The semantics of a dag is defined by:

• (x :: [dni]
n
1)

⊤ = x

• (f (dn1, ..., dnm) :: [dni]
n
1)

⊤ = f ((d1 :: [dni]
n
1)

⊤, ..., (dnm :: [dni]
n
1)

⊤)

• (k̇ :: [dni]
n
1)

⊤ = (dnk :: [dni]
n
1)

⊤

The semantics of a dag without pointers is equal to the root node:

PROPOSITION 2.6 (Dags without pointers). When the first element of the dag is a term in

T (Σ,X) then the semantics of the dag is this term itself:

∀ dn0, ..., dnn ∈ Ṫ , dn0 ∈ T =⇒ (dn0 :: [dni]
n
1)

⊤ = dn0

Proof. By induction using the order from Definition 2.14 (≫̇-induction). ◭

The semantics equality means that the pointers identifiers are irrelevant:

EXAMPLE 2.9 (Dag equivalence).

[f (1̇, 2̇, 3̇); a; b; c]⊤ = [f (1̇, 3̇, 2̇); a; c; b]⊤ = [f (3̇, 2̇, 1̇); c; b; a]⊤

This renaming is the application of a permutation to the dag with the following defi-
nition:

28 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

DEFINITION 2.16. Given τ a permutation of {1, ..., n}, the application of τ to a dag node
is defined by: • τ(x) = x

• τ(f (d1, ..., dm) = f (τ(d1), ..., τ(dm))

• τ(k̇) = ˙(τ(k))

and τ([d0; d1; ...; dn]) = [τ(d0); τ(dτ−1(1)); ...; τ(dτ−1(n))]).

Applying such a permutation to a dag does not change the term it represents

PROPOSITION 2.7 (Permutation preserves the semantics). Given a dag d and a permutation

τ of {1, ..., n}, we have: (d)⊤ = (τ(d))⊤

Proof. By ≪̇-induction, we only give the pointer case:

(τ(k̇ :: [di]
n
1))

⊤ = (˙τ(k) :: [τ(dτ−1(i))]
n
1)

⊤

= (τ(dτ−1(τ(k))) :: [τ(dτ−1(i))]
n
1)

⊤

= (τ(dk :: [di]
n
1))

⊤

= (dk :: [di]
n
1)

⊤
◭

Of course, for every dag we can find at least one permutation such that the represen-
tation satisfies the right dependency hypothesis:

PROPOSITION 2.8 (Right Dependency Representation). For all dags d there exists a per-

mutation τ such that τ(d) is a right dependency dag

Proof. Renaming nodes using breadth-first numbering (see [Oka00]) allows us to define
a right dependency dag. ◭

In practice we avoid pointers in the substitutions and only consider substitutions with
usual tree terms in their image. When substitutions do not contain pointers then the
substitution commutes with the semantics:

PROPOSITION 2.9 (Substitution and semantics commutation).

∀ d ∈ D(Σ,X , σ ∈ S, I(σ) ⊆ T =⇒ (dσ)⊤ = d⊤σ

Proof. By ≫̇-induction on the dag:

− (k̇σ :: [dniσ]
n
1)

⊤ = (dnkσ :: [dniσ]
n
1)

⊤ = (dnk :: [dniσ]
n
1)

⊤σ since min(pt(dnk)) < k

− (σ(x) :: [dniσ]
n
1)

⊤ = σ(x) since σ(x) ∈ T and using Proposition 2.6 ◭

Given this definition of dags and their semantics, we introduce the anti-unification of
dags and use it to anti-unify the terms they represent.

2.3.2 Dag Constrained Anti-Unification

In this section we assume that all dags respect the right dependency hypothesis. Since we
are not eventually interested in the dags but only in the terms they represent, we consider
the anti-unification of dags modulo their semantics.

2.3. ANTI-UNIFICATION ON DAG-LIKE TERMS 29

DEFINITION 2.17 (Dag Anti-Unification). Given d a dag, we say that dt is a template of
d when:

∃ σ, d⊤ = (dtσ)
⊤ ∧ I(σ) ⊆ T (Σ\Σ,X , N∗)

An algorithm for dag anti-unification requires to find for each pointer another unique
pointer it will be anti-unified with, the corresponding dag terms being then anti-unified
e.g.,

g(f (1̇), f (2̇)) a b

g(f (2̇), f (1̇)) c d
−→ g(f (1̇), f (2̇)) x y with

σ1 = [x 7→ a; y 7→ b]

σ2 = [x 7→ d; y 7→ c]

matching term 1̇ with 2̇ and 2̇ with 1̇. This is equivalent to rename node identifiers in the
second dag in a first step and then only anti-unifying pointers and terms with the same
identifiers in a second, for example by permuting 1̇ and 2̇ we have the following seman-
tics equality

g(f (2̇), f (1̇)) c d = g(f (1̇), f (2̇)) d c

Since applying permutations to dags does not change the terms they represent, as stated
in Proposition 2.7, we can try different permutations on the input terms before anti-
unifying node by node in order to find the more suitable dag representation for the tem-
plate computation.

DEFINITION 2.18 (Pointer anti-unification). The only rule for pointers anti-unification
is the equality rule:

(EP) ctmp(ȧ,ȧ) = ȧ

and we have to compute a common template node by node:

DEFINITION 2.19 (Common template of dags). The common template of dags is com-
puted node by node:

ctmp([dni]
n
0 , [dgi]

n
0) = [ctmp(dni, dgi)]

n
0

Remark 2.2. As for the tree case, the variable chosen for the (V) rules (see Algorithm 2.5)
have to be fresh in order to avoid conflicts when joining the substitutions corresponding
to the different dag nodes.

Remark 2.3. The (V) rule does not change at all, this means that in order to anti-unify
with a variable the dag nodes have to be in T (Σ\Σ,X) and thus the substitutions do not
contain any pointers.

This definition only allows the anti-unification of dags of the same length, however
we can extend any dag with any list of nodes without changing its semantics:

PROPOSITION 2.10 (Dag extension). Given [dni]
n
0 a dag:

∀ dnn+1, ..., dnm ∈ Ṫ , ([dni]
n
0)

⊤ = ([dni]
m
0)

⊤

Proof. dnn+1, ..., dnm are never reached in the term computation. ◭

30 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

Therefore we can extend the smaller input dags to the length of the longest one using
any list of nodes. We will see in Section 2.4.4 how we choose terms to extend the dags.
We also have to ensure that the common template is an acyclic graph. Indeed, given two
acyclic graph, by only using the (V), (R), (F) and (EP) rules, the pointers in the template
can only come from the (EQ) rules, therefore they appear in every dag of the inputs.
Since they are acyclic, the template is acyclic. This is no longer the case when we use
neutral or switch rules e.g.,:

g(f (1̇), f (2̇)) f (2̇) a

g(f (1̇), f (2̇)) b f (1̇)
−→ g(f (1̇), f (2̇)) sw(e1, f (2̇), b) sw(e2, a, f (1̇))

This is why we enforced the acyclicity using the right dependency hypothesis. Indeed,
if the inputs are right dependency dags, then computing the anti-unifier node by node
produces an acyclic graph.

PROPOSITION 2.11 (Template right dependency). Using any set of rules in (V), (R), (F),

(EP), (SW) and all neutral rules on right dependency dags produces a right dependency dag, for

all dag nodes dni and dgi we have:

∀i ∈ {0; ...; n}, (pt(dni) ∪ pt(dgi)) ⊆ {i + 1; ...; n} =⇒ pt(ctmp(dni, dgi)) ⊆ {i + 1; ...; n}

Proof. By induction, the cases of rules (V), (R), (F) are trivial,
(EP): ȧ appears in both dni and dgi, thus a ∈ {i + 1; ...; n}

(LRN): the neutral element is a term in T (Σ,X) with no pointer, pt(f (t2, e f)) = pt(t2)

(SW): sw and e are terms in T (Σ,X), pt(sw[x 7→ e, y 7→ s, z 7→ t]) = (pt(s) ∪ pt(t)) ◭

Therefore we can define the generic dag constrained anti-unification algorithm, this
algorithm has many parameters, such as the dag nodes we chose to extend the short dags,
that can be used to refine the anti-unification:

ALGORITHM 2.20 (Generic Dag Constrained Anti-Unification). Given d1, ..., dm a set of
dags, we define l as maxi(length(di)) the maximum length, then we use the following
non-deterministic algorithm to compute a template of this set of dags:

i) Extend all the dags to the length l with dag nodes (without creating cycles)

ii) Choose a permutation for each extended dag and apply it

iii) Check the right dependency hypothesis, if it is false, apply a new permutation

iv) Anti-unify node by node with rules (V), (R), (EP), (F) and the ones allowed by the
theory, e.g., neutral, switches,...

Remark 2.4. The length of a template computed in Algorithm 2.20 is the maximum of the
lengths of the input dags. Therefore when the pointers designate the forbidden function
calls (see Definition 2.11 and Example 2.8) the number of forbidden function calls in the
template is the maximum of the number of forbidden calls in the input. This is why we
want to use the dag representation to minimize this number.

2.4.
√

AND / ANTI-UNIFICATION 31

We have introduced the general problem of constrained anti-unification, some of its
properties, e.g., incompleteness, and the particular case of anti-unification of dags. In Sec-
tion 2.4, we use the principles of anti-unification with dags to define a constrained anti-
unification algorithm for tuple terms in arithmetic with √ and / as forbidden functions.
This algorithm uses dag representation and all the different axioms of the arithmetic to
minimize the number of √ calls in the template.

2.4 √
AND / ANTI-UNIFICATION

This section introduces a constrained anti-unification of arithmetic expressions defined
with +, −, ×, /, √ where square root and division are the forbidden function symbols.
In this algorithm, we consider equality modulo theory of arithmetic and use a dag repre-
sentation of terms.

2.4.1 Theory of Arithmetic

The terms of arithmetic corresponds to the set A introduced in definition 1.1. We also
denote ∑

n
1 ai the term a1 + ... + an and ∏

n
1 ai the term a1 × ... × an.

We assume that the terms we are dealing with do not fail, this means that they do
not contain division by zero or square roots of negative numbers. We assume that the
arithmetic theory contains at least the following axioms that can be used to anti-unify
terms. For example binary operators have neutral and absorbing elements:

DEFINITION 2.21 (Neutral and absorbing elements). The following axioms define the
neutral and absorbing elements behavior of the constants 0 and 1:

x + 0 = x −0 = 0

x × 1 = x x × 0 = 0

x / 1 = x 0 / x = 0
√

0 = 0
√

1 = 1

Since 0 is neutral for + and absorbing for × and 1 is neutral for × we can define the
n-ary switch introduced in Proposition 2.5:

swn =
n

∑
1

xi × yi

with the xi as switch variables and 0 and 1 as switch elements. Thus the constrained anti-
unification modulo such a theory of arithmetic is complete. This theory also contains
axioms that allow us to transform the terms, we use the following ones:

DEFINITION 2.22 (Arithmetic axioms). The theory of arithmetic contains the following
usual axioms:

x + y = y + x x × y = y × x

x + (y + z) = x + y + z x × (y × z) = x × y × z

32 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

x/y

z
=

x

y × z

x

y/z
=

x × z

y

−− x = x
√

x
√

x = x

x × (y + z) = xy + xz x × y

z
=

xy

z
x

y
+ z =

x + yz

y
− x

y
=

−x

y
=

x

−y

−(x × y) = −x × y −(x + y) = −x +−y

Given this theory we present in the following section an equivalent representation for
terms and the associated dag representation that is used to anti-unify arithmetic terms
with the constraint that square roots and divisions are forbidden functions.

2.4.2 Dag Representation

In Section 2.2, we explained how the use of a normal form might make easier the research
of a common template of expressions. The theory of arithmetic embeds enough axioms
(see Definition 2.22) to be able to transform any expression into an equivalent expression
that have the following form:

∑
n
i=1 ai · ∏

mi
ji=1

√

bji

∑
n
i=1 ci · ∏

mi
ji=1

√

dji

where none of the ais or cis contain any square root or division and where the bji and dji

are also in that form. We will see in Chapter 6 an implementation of this reduction in
OCamL. The idea of this representation comes from the vector space representation of
algebraic numbers fields that are extensions of the rational numbers Q (see, for example
[Lan94]). We introduce a new representation for tuples of arithmetic expressions that
corresponds to this normal form, we directly extends this representation with pointers as
introduced in section 2.3:

DEFINITION 2.23 (Dag definition).

dn ::= PairD(dn1, dn2)

| DivD(dn1, dn2)

| VectD([(e1, [dn1,1, ..., dn1,j1]), ..., (em, [dnm,1, ..., dnm,jm])])

| ExprD(e)

| ṅ

d ::= [dn1, ..., dnk]

Where e, e1, ..., em are square root and division free arithmetic terms. We define the
associated arithmetic term JdK of the dag d with the following rules:

DEFINITION 2.24 (Dag associated arithmetic term).

JPairD(d01, d02) :: [di]
n
1K = (Jd01 :: [di]

n
1K, Jd02 :: [di]

n
1K)

JDivD(d01, d02) :: [di]
n
1K = Jd01 :: [di]

n
1K / Jd02 :: [di]

n
1K

JVectD([(ej, [sqjk]
pj

1)]m1) :: [di]
n
1K = ∑

m
j=1 ej · ∏

pj

k=1

√

Jsqjk :: [di]
n
1K

JExprD(e) :: [di]
n
1K = e

Jk̇ :: [di]
n
1K = Jdk :: [di]

n
1K

2.4.
√

AND / ANTI-UNIFICATION 33

Therefore any tuple of expressions can be represented by such a dag, we still ensure
that the dag is acyclic by using the right dependencies hypothesis.

EXAMPLE 2.10 (Dag representation).

(a1
a2+a3·

√
d

, b ·
√

d ·
√

c1 + c2 ·
√

d) is represented by (a1

a2+a3·
√

2̇
, b ·

√
2̇ ·

√
1̇) c1 + c2 ·

√
2̇ d

PairD

0

DivD

ExprD(a1)

VectD

a2

a3

VectD b

VectD

1 c2

c1

ExprD(d)

2

2̇

1̇

2̇

2̇

Figure 2.2: Dag representation

In section 2.3 we already introduced the semantics of a dag as the corresponding tree
term. The associated arithmetic term is a new layer of interpretation for these terms.

EXAMPLE 2.11 (Dag interpretations).

[PairD(VectD(a, [1̇]), ExpD(b)); ExpD(c)]⊤ = PairD(VectD(a, [ExpD(c)]), ExpD(b))

J[VectD(a, [1̇]); ExpD(c)]K = a · √c = J[VectD(a, [ExpD(c)])]K

The equality of the tree term semantics implies the equality of the arithmetic interpre-
tation:

PROPOSITION 2.12 (Tree term semantics and arithmetic term semantics). For every dag

d1 and d2, the following implication holds:

d⊤1 = d⊤2 =⇒ Jd1K = Jd2K

Proof. We prove by induction that Jd1K = J[d⊤1]K. ◭

In this section, we are interested in anti-unifying modulo this interpretation, indeed
our goal is to use the dag representation to compute a constrained anti-unifier of arith-
metic terms. Therefore we consider the anti-unification modulo this interpretation. The
substitutions are only allowed to replace the part of the dag that contains the arithmetic
terms, this means that all the dag symbols are forbidden:

DEFINITION 2.25 (Arithmetic dag constrained anti-unification). Given two dags d1 and
d2, we aim at computing a dag d, such that it exists two substitution σ1 and σ2 from X to
A

√
such that:

JdKσ1 =A Jd1K and JdKσ2 =A Jd2K

Where A
√

is the set of arithmetic terms that are square root and division free and =A the
equality modulo the arithmetic theory.

34 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

In fact, we only deal with a subset of such dags. In order to focus on minimizing
the number of square roots on distinct expressions, only the VectD constructors contain
pointers to other nodes and they contains only pointers. Thus the other nodes repre-
sent the different square roots of the expression and only the root node can embed PairD

constructors.

DEFINITION 2.26 (Well formed arithmetic dags). A dag [di]
n
0 is well formed if

• it is a right dependency dag, ∀i, pt(di) ⊆ {i + 1, ..., n}

• PairD(a1, a2) ≪ di =⇒ i = 0

• a ≪ VectD(l) =⇒ ∃k, a = k̇

• k̇ ≪ di =⇒ ∃l, k̇ ≪ VectD(l) ≪ di

where ≪ is strict and ≤≤ the large sub-term relation on dag nodes.

For clarity and concision, in the examples, we prefer the array representation of dags
using the semantics even if the algorithm is described with dag constructors. The ex-
pressions that are leaves of these dags are already square root or division free, therefore,
the generalization of two leaves is a variable. Thus the {√, /}-anti-unification consist of
computing a common template of the dag structure.

2.4.3 {√, /}-Anti-Unification

The VectD constructor is interpreted as a sum of products and both addition and multi-
plication are associative and commutative:

PROPOSITION 2.13 (VectD permutations). Given VectD([(ej, [sqjk]
pj

1)]m0) a dag node, for

any permutations τ, τ1, ...τm:

∀dn1, ..., dnn,

(VectD([(ej, [sqjk]
pj

1)]m1) :: [dni]
n
1)

⊤ = (VectD([eτ(j), [sqτ(j)τj(k)]
pτ(j)

1)]m1) :: [dni]
n
1)

⊤

This means that both level of lists do not need to be ordered, thus we define the range
of a VectD node:

DEFINITION 2.27 (VectD Range). Given VectD([(ej, [sqjk]
pj

1)]m0) a dag node, we define its
Range as the following set of set:

Range([(ej, [sqjk]
pj

1)]m0) = {{sq11, ..., sq1p1}, ..., {sqm1, ..., sqmpm}}

Since all the ej are square roots and division free we can construct templates for any
VectD node by only using the Range:

PROPOSITION 2.14 (VectD Range). Given VectD([ei, li]
m
1) and VectD([xi, l′i]

n
1) two dag nodes

(where for all i, xi is a variable) then if Range([ei, li]
m
1) ⊆ Range([xi, l′i]

n
1) then VectD([xi, l′i]

n
1)

is a constrained template of VectD([ei, li]
m
1)

2.4.
√

AND / ANTI-UNIFICATION 35

Proof. We use the substitution σ:

σ(xi) =

{

ej if {sq | sq ∈ l′i} = {sq | sq ∈ lj}
0 if not ◭

Following the principles of dag anti-unification we introduced in Section 2.3, we can
define the arithmetic constrained dag anti-unification.

DEFINITION 2.28 (Arithmetic dag anti-unification). The anti-unification node by node
is almost straightforward, we describe the different rules:

• PairD: the expressions to anti-unify are supposed to have the same type, therefore
they have the same PairD structure, the only rule is:

(P) ctmp(PairD(d11, d12), PairD(d21, d22)) = PairD(ctmp(d11, d21), ctmp(d12, d22))

• DivD: two rules are introduced, depending on the head symbols of both nodes:

(D) ctmp(DivD(d11, d12), DivD(d21, d22)) = DivD(ctmp(d11, d21), ctmp(d12, d22))

when t head symbol is not DivD:
(DI) ctmp(DivD(d11, d12), t) = DivD(ctmp(d11, t), ctmp(d12, ExprD(1)))

• ExprD: the generalization of square root and division free expressions is a variable:

(E) ctmp(ExprD(e1), ExprD(e2)) = ExprD(x)

However, as in usual computation of least general template [AEMO08, KLV11], we
record the already anti-unified terms and reuse the variable if possible.

• VectD: we use the template construction using the range from Proposition 2.14:

(VR) ctmp(VectD(lv1), VectD(lv2)) = VectD([(xi, li)])

with Range([(xi, li)]) = Range(lv1) ∪ Range(lv2)

(V0) ctmp(VectD(l), ExprD(e)) = VectD([(xi, li)])

with Range([(xi, li)]) = Range(l) ∪ {∅}

• ṅ : pointers only appear as sub-term of VectD nodes therefore we do not need any
rule for pointer since the (V0) and (VR) do not make recursive calls.

PROPOSITION 2.15 (Anti-unification correctness). The rules introduced in Definition 2.28

compute a
√ , /-constrained anti-unifier modulo arithmetic theory.

Proof. By induction, correctness of rules (P), (D) and (E) is trivial.

(DI) 1 is a right neutral element for division: ∀e, e = e/1

(VR) using Proposition 2.14

(V0) (VectD([(0, l1), ..., (e, []), ..., (0, ln)]) :: l)⊤ = e × ∏x∈∅

√
x = e ◭

This template computation can be represented by the following lattice on dag nodes,
the anti-unifier being the least upper bound where every leaf is abstracted with a variable.

36 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

DivD(VectD,VectD)

DivD(VectD,ExpD) DivD(ExpD,VectD)

DivD(ExpD,ExpD)VectD

ExpD

with: • ExpD(a) < VectD(l) iff ∅ ∈ Range(l)

• VectD(l) < VectD(q) iff Range(l) ⊆ Range(q)

Figure 2.3: Order on dag nodes (DNO)

In Section 2.3 we introduced the principle of extending the smallest dags in order
to anti-unify dags of equal length. Although it is easy to extend the smallest dag with
constant non-pointed elements (e.g., 0 or 1) before the anti-unification, we now present
how extending dags with tailored elements allow us to improve the computed template.

2.4.4 Dag Extension

In order to anti-unify dags node by node we first need to extend the smallest dags so
that all the dags we want to anti-unify have the same length. A simple solution would
be to extend these dags with non-pointed elements equals to 0 or 1 or any other constant
previously chosen. However this is not very efficient and by using more nodes we can
change the dag representation of the expression in order to upgrade the anti-unification.
Therefore, in a first step we extend the dags with undefined elements (#), these elements
are not referenced by pointers and are replaced later in the anti-unification process. Re-
placing undefined elements with appropriate expressions in the dags extension process
have two different objectives:

i) Compute more compact templates by breaking unnecessary sharing introduced by
the dag representation and avoid the use of the switch operation:

EXAMPLE 2.12 (Node duplication). We have the following semantics equalities√
1̇,
√

2̇ b a√
1̇,
√

1̇ c
=

√
1̇,
√

2̇ b a√
1̇,
√

1̇ c #
=

√
1̇,
√

2̇ b a√
1̇,
√

1̇ c c
=

√
1̇,
√

2̇ b a√
1̇,
√

2̇ c c

thus we can use the following constrained template:
√

1̇,
√

2̇ x y

ii) Avoid the use of new fresh variables when expressions are already identical vari-
ables:

EXAMPLE 2.13 (Avoiding renaming).√
1̇ x +

√
2̇ y

0 # #
=

√
1̇ x +

√
2̇ y

0 x +
√

2̇ y

and we have the following constrained template: z1 ·
√

1̇ x +
√

2̇ y

2.4.
√

AND / ANTI-UNIFICATION 37

The node duplication introduced in i) relies on the following transformations:

PROPOSITION 2.16 (Node and pointer duplication transformations). The following trans-

formations preserve the associated term:
(ND) when k < l : [d0, ..., dk−1, #, dk+1, ..., dn] −→ [d0, ..., dk−1, dl , dk+1, ..., dn]

(PD) when k < l and dk = dl : [di]
n
0 −→ [[l̇ 7→ k̇]d0, ..., [l̇ 7→ k̇]dk−1, dk, ..., dn]

where [k̇/l̇]d is the node d where some occurrences of l̇ are replaced by k̇, the equality in (PD)

condition being syntactic.

Proof.

(ND) since the k-th element of the list is undefined no nodes has a pointer to k̇.

(PD) by induction, using the order defined in Definition 2.14 the pointer case
being:

(l̇ :: [[k̇/l̇]d1, ..., [k̇/l̇]dk−1, dk, ..., dn])
⊤ = (dl :: [[k̇/l̇]d1, ..., [k̇/l̇]dk−1, dk, ..., dn])

⊤

= (dl :: [di]
n
1)

⊤ by induction hypothesis

= (dk :: [di]
n
1)

⊤ since dk = dl ◭

PROPOSITION 2.17 (Right dependency). (ND) and (PD) preserve the right dependency

condition:

Proof.

(ND) since k < l, we have pt(dl) ⊆ {l + 1, ..., n} ⊆ {k + 1, ..., n}

(PD) ∀i < k, pt([l̇ 7→ k̇]di) ⊆ pt(di) ∪ {k} ⊆ {i + 1, ..., n} ◭

However avoiding renaming of square roots is more complicated. Indeed, we assume
that all the expressions we want to anti-unify are correct in the context they will be eval-
uated in, i.e., arguments of square roots are positive and there is no division by 0. But
we do not assume that this context is the same for all the expressions,

√
x appearing in

one expression does not mean that x is positive in every expression. Moreover, we do
not consider that 0 is absorbing for failure, 0.

√
−1 fails. Therefore we can not replace

undefined elements by any term but only by terms that are known to be positive. For
example, in order to use z1 ·

√

x +
√

y as a template of 0 as in Example 2.13, we have to
be sure that y and x +

√
y are positive

Therefore, when we replace the undefined elements, we have to do it with expressions
that are positive in the context the expression is supposed to be evaluated. This problem
does not appear in node duplication since replacement of undefined elements is done
by another node of the same dag which is already argument of a square root of the same
expression and therefore positive, e.g., in Example 2.12, we already know that c is positive
in the context corresponding to the second dag.

Given this constraint, we introduce, as a parameter of the algorithm, a set of expres-
sions that are known to be positive in all these contexts: Pos. Given such a set, we can
use the following rule:

38 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

PROPOSITION 2.18 (Positive element replacement). The rule replacing an undefined ele-

ment by a positive element preserves the associated term and :

(PR) when Jp :: [d1, ..., dn]K ∈ Pos and pt(p) ∈ {i + 1, ..., n} and di = # :
[d0, ..., di−1, #, di+1, ..., dn] −→ [d0, ..., di−1, p, di+1, ..., dn]

In practice, we only use this rule when it allows to avoid renaming. When given
a set of dags all the i-th nodes are either equal to the same node, p, or undefined, this
ensures that pt(p) ∈ {i + 1, ..., n} since p is the i-th node of at least one dag. Therefore
the anti-unifier of the i-th node is p itself and we avoid to create a new square root.

If none of these rules can be applied, we can always replace undefined elements with
a positive numerical constant, e.g., 0 or 1. Therefore we have 3 different choices in order
to replace undefined elements:

• another square root of the same dag, using the rules defined in Proposition 2.16,

• an expression from Pos if all i-th nodes are either undefined or equal to this expres-
sion, using rule PR defined in Proposition 2.18,

• a positive constant:
when c ≥ 0, [d0, ..., di−1, #, di+1, ..., , dn] −→ [d0, ..., di−1, Expr(c), di+1, ..., dn]

and allow the use of the new identity rule for anti-unification:

DEFINITION 2.29 (Identity Rule).

(EI) ctmp(e, e) = e

We will see in Section 3.7.2 how Pos can be constructed in the context of the program
transformation. Given this undefined element replacement, we can now define how,
by trying different permutations as introduced in Section 2.3, we can compute a set of
{√, /}-constrained templates for any set of arithmetic expressions:

ALGORITHM 2.30 (Arithmetic expression {√, /}-constrained anti-unification). The fol-
lowing algorithm computes a set templates of a set of expressions:

i) Transform every expression into its dag representation.

ii) Extend all dags to the same length with undefined elements.

iii) Apply a permutation on the dag nodes identifiers with respect to right dependency
as introduced in Definition 2.16.

iv) Replace undefined elements using the different possibilities previously described.

v) Compute the {√, /}-template node by node using rules (P), (D), (DI), (E), (EI), (VR)
and (V0).

By trying different permutations and different undefined elements replacements, we
can compute a set of {√, /}-templates of the input expressions.

THEOREM 2.19 (Anti-unification correctness). Any template computed with the Algorithm

2.30 computes a valid constrained template modulo the arithmetic theory

Proof. The fourth first step of the algorithm preserve the semantics of the dags and the
anti-unification node by node is proven to be correct in Proposition 2.15. ◭

2.4.
√

AND / ANTI-UNIFICATION 39

Conclusion This section has defined the problem of constrained anti-unification and
proposed an algorithm to solve it. This constrained anti-unification will be used in the
program transformation removing square roots and divisions from programs. It allows
us to extract the operations that we do not want to see anymore in a term in order to
eliminate them later in some Boolean expressions. This elimination on Boolean expres-
sions has a huge complexity depending on the number of square roots and divisions that
appear in the terms. This is the reason why we focused on minimizing that number in
the template we compute. We really dealt with this main goal since, using the axioms
of the arithmetic theory and the dag representation, we managed to produce templates
whose number of square roots is the maximum of the number of square roots that can be
found in one of the input (the length of the template as dag is the maximum of the input
dags lengths).

40 CHAPTER 2. CONSTRAINED ANTI-UNIFICATION

3
TRANSFORMATION OF PROGRAMS

I
N THIS CHAPTER, A COMPLETE ALGORITHM for transformation of programs is pre-
sented. It uses the algorithm introduced in Chapter 1 for the Boolean expressions
and the one defined in Chapter 2 for variable definition transformation. In order

to discuss the transformation of programs, we need to introduce the language these pro-
grams are expressed in. In this chapter we present this language, defining its syntax,
type system and semantics. We also present the different subsets of this language that
this transformation targets. We introduce some general properties of this language and
some partial transformations and use them to define the global program transformation
algorithm.

3.1 LANGUAGE

This program transformation aims at transforming programs used in embedded systems
such as the ones presented in [NMD12, MBMD09]. These programs do not need all the
features that a Turing complete language provides. Therefore we can restrict the source
language of our transformation to straight line programs. The language this transformation
deals with is a typed functional language that contains numerical and Boolean constants
C, variables X and variable definitions (let in instructions), tests (if then else), pairs and
the usual arithmetic operators +,−,× (we also use . instead of ×),/,√, the comparisons
=,=,>,≥,<,≤ and Boolean operators (∧,∨,¬).

DEFINITION 3.1 (Syntax of the language).

Prog := C | fst Prog | Prog op Prog

| X | snd Prog | if Prog then Prog else Prog

| uop Prog | (Prog, Prog) | let V = Prog in Prog

where: V = X | (V ,V)
C ⊆ R ∪ {True, False}

op ∈ {+,×, /, =, 6=, >, ≥, <, ≤, ∧, ∨}
uop ∈ {√ , −, ¬}

42 CHAPTER 3. TRANSFORMATION OF PROGRAMS

In a variable definition, e.g., let x = b in sc, we call b the body and sc the scope of this
definition. The V set is used to make multiple variable definitions, we assume that in a
multi-variable v, all the variable in it are different. In order to complete the description
of the language we introduce the type system, as usual we use a typing environment Γ

that associates to every free variable its type.

DEFINITION 3.2 (Type system). The types of the programs are represented by the fol-
lowing set:

Type := R | B | Type × Type

The rules are the usual ones for such a language:

Γ,x : A ⊢ x : A Γ ⊢ c : R
c ∈ R

Γ ⊢ False : B Γ ⊢ True : B

Γ ⊢ e1 : R Γ ⊢ e2 : R

Γ ⊢ e1 op e2 : R
op ∈ {+,×, /} Γ ⊢ e : R

Γ ⊢ uop e : R
uop ∈ {−, √ }

Γ ⊢ e1 : B Γ ⊢ e2 : B

Γ ⊢ e1 op e2 : B
op ∈ {∨,∧} Γ ⊢ e : B

Γ ⊢ ¬e : B

Γ ⊢ e1 : R Γ ⊢ e2 : R

Γ ⊢ e1 op e2 : B
op ∈ {=, 6=,>,<,≥,≤} Γ ⊢ e1 : T1 Γ ⊢ e2 : T2

Γ ⊢ (e1, e2) : T1×T2

Γ ⊢ e : T1×T2
Γ ⊢ fst(e) : T1

Γ ⊢ e : T1×T2
Γ ⊢ snd(e) : T2

Γ ⊢ e1 : T1 Γ⊕(v,T1) ⊢ e2 : T2
Γ ⊢ let v = e1 in e2 : T2

Γ ⊢ f : B Γ ⊢ e1 : T Γ ⊢ e2 : T
Γ ⊢ if f then e1 else e2 : T

where:

Γ ⊕ ((v1, v2), T1 × T2) = (Γ ⊕ (v1, T1))⊕ (v2, T2)

Γ ⊕ (x, T) = Γ, (x : T) when x∈ X

These types are used to identify the way a program has to be transformed. Indeed, the
transformation is different for pure numerical expressions (e.g., in a variable definition)
and for the ones used in Boolean expressions (i.e., as arguments of a comparison).

It is easy to define a type checking function, TyΓ(p), that returns either a type or an
undefined value (U) if the program has no valid type in the given environment. We also
define the predicate wt(p) stating that a program is well typed:

DEFINITION 3.3 (Well typed program).

wt(p) ⇐⇒ ∃ Γ, TyΓ(p) 6= U

Then we define the denotational semantics of a program in the language, using an
environment Env that associates a value to every variable. It is the usual semantics of a
functional language using real numbers computation. The Fail value corresponds to the
semantics of square roots of negative numbers, divisions by zero and type errors.

3.1. LANGUAGE 43

DEFINITION 3.4 (Denotational semantics of the language). The semantics is defined by
the following induction rules:

Env ⊢ JcKR=c

Env,(x,v) ⊢ JxKR=v

Env ⊢ JEKR=Fail

Env ⊢ Juop EKR=Fail

Env ⊢ JEKR=v

Env ⊢ Juop EKR=uop(v)
op ∈ {−,¬} ∧ v 6= Fail

Env ⊢ JEKR=v

Env ⊢ J
√

EKR=Fail
v < 0 ∨ v = Fail

Env ⊢ JEKR=v

Env ⊢ J
√

EKR=
√

v
v ≥ 0

Env ⊢ JE1K
R=v1 Env ⊢ JE2K

R=v2
Env ⊢ JE1 op E2KR=v1 op v2

v1 6= Fail ∧ v2 6= Fail ∧ (op = / ⇒ v2 6= 0)

Env ⊢ JE1K
R=v1 Env ⊢ JE2K

R=v2
Env ⊢ JE1 op E2KR=Fail

v1 = Fail ∨ v2 = Fail ∨ (op = / ∧ v2 = 0)

Env ⊢ JE1K
R=v1 Env ⊢ JE2K

R=v2
Env ⊢ J(E1,E2)KR=Fail

v1 = Fail ∨ v2 = Fail

Env ⊢ JE1K
R=v1 Env ⊢ JE2K

R=v2
Env ⊢ J(E1,E2)KR=(v1,v2)

v1 6= Fail ∧ v2 6= Fail

Env ⊢ JEKR=(v1,v2)
Env ⊢ Jfst(E)KR=v1

v1 6= Fail ∧ v2 6= Fail

Env ⊢ JEKR=(v1,v2)
Env ⊢ Jfst(E)KR=Fail

v1 = Fail ∨ v2 = Fail

Env ⊢ JEKR=(v1,v2)
Env ⊢ Jsnd(E)KR=v2

v1 6= Fail ∧ v2 6= Fail

Env ⊢ JEKR=(v1,v2)
Env ⊢ Jsnd(E)KR=Fail

v1 = Fail ∨ v2 = Fail

Env ⊢ JE1K
R=v1 Env⊕(v,v1) ⊢ JE2K

R=v2
Env ⊢ Jlet v = E1 in E2KR=v2

v1 6= Fail

Env ⊢ JE1K
R=v1

Env ⊢ Jlet v = E1 in E2KR=Fail
v1 = Fail

Env ⊢ JFKR=True Env ⊢ JE1K
R=v1

Env ⊢ Jif F then E1 else E2KR=v1

Env ⊢ JFKR=False Env ⊢ JE2K
R=v2

Env ⊢ Jif F then E1 else E2KR=v2

Env ⊢ JFKR=Fail

Env ⊢ JIf F then E1 else E2KR=Fail

where:

Γ ⊕ ((x1, x2), (v1, v2)) = (Γ ⊕ (x1, v1))⊕ (x2, v2)

Γ ⊕ (x, v) = Γ, (x, v) when x∈ X
The semantics is also Fail if ⊕ can not be computed, e.g., Env ⊕ ((x, y), 3).

44 CHAPTER 3. TRANSFORMATION OF PROGRAMS

We now denote JPKEnv the abstract semantics of P in an environment Env (i.e., the v

such that Env ⊢ JPKR = v). In order to define the transformation we need the notion
of substitution. The substitution of x by e in p is denoted p[x 7→ e], it avoids variable
capture and thus respects the following property:

PROPOSITION 3.1 (Substitution specification).

∀Env, x ∈ X , e, p ∈ Prog2, Jp[x 7→ e]KEnv = JpKEnv,x:JeKEnv

We also define the substitution of multi-variable which is required to verify the fol-
lowing property:

PROPOSITION 3.2 (Multi-variable substitution).

∀Env, v ∈ V , e, p ∈ Prog2, Jp[v 7→ e]KEnv = Jlet v = e in pKEnv

EXAMPLE 3.1 (Substitutions).

(x + y) [x 7→ z] = z + y (x + y) [(x,y) 7→ (z,t)] = z + t

(x + y) [(x,y) 7→ (y,t)] = y + t (x + y) [(x,y) 7→ e] = fst(e) + snd(e)

We also denote FV(p) the set of the free variables in p. The language being defined,
we now precise some subtypes of Prog, that represent restricted syntactic forms.

3.2 PROGRAM SUBTYPES

The first subtype we define is the subtype our transformation applies on.

3.2.1 Normalized language

The normalized language is a subtype of the Prog type where arithmetic and Boolean
expressions do not contain tests or variable definitions. For example:
(let v = 3 in v + 4) + 8 or (if x > 0 then 3 else 5) < 4 are not allowed in P.

This type has the following definition, a transformation of any program into this form
will be introduced in Section 3.5.2.

DEFINITION 3.5 (Expressions and programs normal form).
The unary expressions in Eu are built with operators and the set E extends Eu with pairs
of unary expressions.

Eu := X | C | uop Eu | Eu op Eu | fst Eu | snd Eu

E := (E, E) | Eu

The programs in P can also contain variable definitions and tests:

P := let V = P in P | if P then P else P | E

In such a program, every time we meet an arithmetic or Boolean operator, we know
there is neither definitions nor tests inside its arguments. Moreover, fst and snd constructs
can only be applied to variables (in well typed programs) and thus not contain any square
roots or divisions in their arguments. Given such a normalized program, we call final

numerical expressions the expressions that the program may return:

3.2. PROGRAM SUBTYPES 45

DEFINITION 3.6 (Final numerical expressions). The final numerical expressions are de-
fined by the following algorithm f ne:

f ne(let x = b in sc) = f ne(sc)

f ne(if F then p1 else p2) = f ne(p1) ∪ f ne(p2)

f ne((e1,e2)) = f ne(e1) ∪ f ne(e2)

when e is in Eu then,
if it exists Γ such that TyΓ(e) = R then f ne(e) = {e} else f ne(e) = ∅

These final numerical expressions are the one where we are not able to eliminate the
square roots.

3.2.2 Target language

Now we present the language that corresponds to programs from which divisions and
square roots have been eliminated. Certainly, we can not eliminate all square roots and
divisions from any program, (e.g., in the program

√
2 we will have to return a rounded

value of
√

2) but we are able to remove them from all the Boolean computations, in par-
ticular the Boolean expressions of the tests but also the variables they depend on.

EXAMPLE 3.2 (Targeted programs).

let x = a − b in if x+ c × d > 0 then
√

2 else 0

is a valid output whereas:

let x = a − b in if x+
√

c × d > 0 then
√

2 else 0
and

let x =
√

a − b in if x+ c × d > 0 then
√

2 else 0
are not.

We define new subtypes of expressions and programs to specify this targeted lan-
guage:

DEFINITION 3.7 (Targeted program subtypes). Our goal is to define programs where
square roots and divisions are only allowed in the final numerical expressions. To for-
mally define this subtype we define other subtypes corresponding to different expres-
sions and programs, depending on which operators are allowed in different parts of the
program:

• the different sets of operators:

– Numerical unary and binary operators sets with or without square root and
division operators:
− Nuop√ = {−,√ } − Nuop = {−}
− Nbop/ = {+,×, /} − Nbop = {+,×}

– The Boolean unary and binary and the comparison operators:
− Buop = {¬} − Cbop = {=, 6=,<,>,≤, 6=}
− Bbop = {∧,∨}

• the different sets of numerical expressions regarding if square roots and divisions
are allowed or not:

46 CHAPTER 3. TRANSFORMATION OF PROGRAMS

– N := Nuop N | N Nbop N | fst N | snd N | X | C
– N√,/ := Nuop√ N√,/ | N√,/ Nbop/ N√,/ | fst N√,/ | snd N√,/ | X | C

• a subset of Boolean programs (without divisions, square roots or tests) that does
not contain any square root or division:

– Blet := Buop Blet

| (Blet, Blet)

| let V = Blet in Blet

| Blet Bbop Blet

| fst Blet

| X

| N Cbop N

| snd Blet

| C
in this Boolean subtype, we allow variable definition of square root and di-
vision free Boolean expressions in order to reduce the size of the output pro-
gram, as we will see in Section 3.6.

• the different sets of expressions where Boolean expressions do not contain any
square root or division but can contain local variable definitions and where nu-
merical ones:

– can not contain square roots or divisions: EN := N | Blet | (EN, EN)

– can contain square roots or divisions: EN√,/ := N√,/ | Blet | (EN√,/ , EN√,/)

• The programs that do not contain any square root or division
PN:= let V = PN in PN | if PN then PN else PN | EN

Given these definitions, the subtype of programs that can contain square roots or di-
visions only in the final numerical expressions (not in the body of any variable definition
or any test) corresponds to the following definition:

DEFINITION 3.8 (Targeted language). The language the transformation targets is:

PN√,/ := let V = PN in PN√,/ | if PN then PN√,/ else PN√,/ | EN√,/

For example (
√

x, a > b) is in EN√,/ but not in EN and
√

a > b belongs to none of these
sets. Notice that if a program returns a Boolean value and is in PN√,/ then it does not
contain any division or square root:

LEMMA 3.3 (Boolean PN√,/).

∀ p ∈ PN√,/ , (∃ Γ, TyΓ(p) = Bn) =⇒ p ∈ PN

Proof. By induction on p using the definition of PN√,/ . ◭

These definitions allow us to characterize the set of programs transformed by each
step of our transformation and what kind of programs it produces, PN√,/ being the output
language of our transformation. The language and the target language being defined, we
now define the specification of our transformation.

3.3. SPECIFICATION OF THE TRANSFORMATION 47

3.3 SPECIFICATION OF THE TRANSFORMATION

The transformation we want to define targets critical embedded systems. Programs used
in these systems are most of the time proved to be type safe and one can also prove that
failure due to divisions by zero or square roots of a negative number do not occur. There-
fore we assume that the programs we want to transform are well typed (see Definition
3.3) and do not fail in the environment where they are evaluated. Hence we do not have
to enforce the failure cases that disappear when removing divisions and square roots,
e.g., we can transform 1/x > 0 into x > 0 instead of if x = 0 then Fail else x > 0. Thus we
only ensure the preservation of the type and the semantics in every environment where
the initial program is well typed and does not fail. This corresponds to the following
predicate:

DEFINITION 3.9 (Program equivalence). We say that a program p2 is equivalent to a pro-
gram p1 modulo failure, denoted sem_ty_eq(p1, p2) when the following predicate holds:

∀Γ, TyΓ(p1) 6= U =⇒ TyΓ(p2) = TyΓ(p1) ∧
∀Env, J p1 KEnv 6= Fail =⇒ J p2 KEnv = J p1 KEnv

As already mentioned in Section 3.2.2, our transformation aims at transforming any
program in Prog into a program in PN√,/ , therefore given the no failure hypothesis, we
can now formally define our main goal as the defintion of a function called Elim that has
the following specification:

DEFINITION 3.10 (Transformation specification).
We aim at defining a function transforming program, called Elim, such that:

∀p ∈ Prog, Elim(p) ∈ PN√,/ ∧ sem_ty_eq(p, Elim(p))

The transformation being specified, the following section presents why we need such a
transformation and what kind of guaranties having a program in PN√,/ instead of Prog

can provide.

3.4 RELIABLE COMPUTATIONS OVER REAL NUMBERS

As said in the introduction, the main purpose of removing square roots and divisions
from these programs is to produce an equivalent program only using operations that we
can use safely because they perform exact computation. However, performing exact com-
putation even with addition or multiplication is troublesome, in this section we discuss
some way to ensure the exactness of such computations and some properties verified by
the transformed program.

3.4.1 Exact Computation

There is a fundamental difference between division and square roots on one side and
the three other arithmetic operations that are addition multiplication and subtraction on
the other side. Let us now introduce the subset D of R. D is the set of dyadic rational
numbers, the rational numbers whose denominator is a power of 2. Therefore every

48 CHAPTER 3. TRANSFORMATION OF PROGRAMS

element of D can be exactly represented using a finite sequence of bits and this set D is
closed under addition, multiplication and subtraction, whereas division and square roots
can not be precisely defined (e.g., 1/5 has no finite binary representation) and will force
us to use round offs as in the floating point number representation [IEE85].

Computing in D with addition, multiplication and subtraction can be done exactly by
using a dynamic representation of real numbers which allows us to use all the necessary
bits to avoid losing accuracy during computation (e.g., the product of two numbers of
size n can be stored in a number of size 2n). Certainly, these kind of computation does
not respect the constraint of embedded systems that requires to know at compile time the
memory the program will use at run time. But, since our language does not contain loop
or recursion, a simple static analysis can provide the number of bits required by every
computation depending on the number of bits of the inputs. The following algorithm
computes a large over-approximation of the size required by a program to compute ex-
actly with addition multiplication and subtraction. There may be more efficient way but
the purpose here is only to show that the memory use can be predicted.

ALGORITHM 3.11 (Static analysis of required memory). Given mFV , the number of bits
that are used to represent free variables (e.g., inputs), the following rules compute the
pair of the memory required for the exact computation of the program and the memory
required to store the result. We use an environment M to record the memory used by
each variable. The memory required by the constant c is the number of bits used for its
exact representation, denoted by memc:

M,(x,mx) ⊢m x : (0,mx) M ⊢m x : (mFV ,mFV)
(if x is a free variable)

M ⊢m c : (memc,memc)
M ⊢m e : (m,mr)

M ⊢m − e : (m,mr)

M ⊢m e1 : (m1,mr1) M ⊢m e2 : (m2,mr2)
M ⊢m (e1 + e2) : (max(m1,mr1+m2)+max(mr1,mr2)+1,max(mr1,mr2)+1)

M ⊢m e1 : (m1,mr1) M ⊢m e2 : (m2,mr2)
M ⊢m (e1 × e2) : (max(m1,mr1+m2)+mr1+mr2,mr1+mr2)

M ⊢m e1 : (m1,mr1) M,(x,mr1) ⊢m e2 : (m2,mr2)
M ⊢m (let x : e1 in e2) : (max(m1,mr1+m2),mr2)

M ⊢m e1 : (m1,mr1) M ⊢m e2 : (m2,mr2) M ⊢m f : (m f ,mr f)

M ⊢m (if f then e1 else e2) : (max(m f ,m1,m2),max(mr1,mr2))

We define similar rules for the Booleans constructors, they are omitted here.

Being able to compute exactly with addition, multiplication and subtraction enables
a protection of the control flow of the program from rounding and therefore to have pro-
gram that are continuous regarding the precision of the implementation of the division
and square root operations.

3.4.2 Program √ and / Continuity

Given a program in PN√,/ , neither the variables defined in this program nor the Boolean
values of the tests can contain divisions or square roots. We assume we have a concrete

3.4. RELIABLE COMPUTATIONS OVER REAL NUMBERS 49

semantics JpKK that represents the effective behavior of a program on a real machine. We
have seen in Section 3.4.1 that we can compute exactly with +,− and ×. We assume that
this semantics implements this exact computation, therefore for any program p in PN and
for any environment Env, the following equality holds: JpKK

Env = JpKEnv. This concrete
semantics has the same derivation rules as the semantics on real numbers, except for
divisions and square roots that depends on the chosen implementations:

DEFINITION 3.12 (Concrete Semantics). /K and √K are the functions corresponding to
the chosen implementation of / and √

Env ⊢ JEKK=e

Env ⊢ J
√

EKK=
√

e
K

Env ⊢ JE1K
K=e1 Env ⊢ JE2K

K=e2
Env ⊢ JE1/E2KK=e1 /K e2

Thus having a program in PN√,/ allows us to protect its control flow from √ and /, this

means that even if the /K and √K operations are not exact, the result is close to the real
number semantics. This property is related to the notion of continuity and robustness of
programs discussed in [CGLN11, CGL12]. To define our specific program continuity we
first define the notion of corresponding environment for a sub term of a program.

DEFINITION 3.13 (Sub Term Environment). For any program p and any environment
Env, the Sub-Term Environment STE(p,Env) is recursively defined by:

STE(let x = b in SC, Env) =
{(let x = b in SC, Env)} ∪ STE(b, Env) ∪ STE(SC, Env ⊕ (x, JbKEnv)

And for any other constructor C:

STE(C(p1,...,pn), Env) = {(C(p1,...,pn), Env)} ∪
n
⋃

1
STE(pi, Env)

PROPOSITION 3.4 (Program Continuity). For x, ǫ ∈ R × R+, we denote by V(x, ǫ) the

neighborhood of x, i.e., {y ∈ R | |x − y| < ǫ}. We define the neighborhood of the semantics of the

sub-terms: VSEM(p, Env, ǫ) = ∪{y| ∃(e,E)∈STE(p,Env), JeKE=y}V(y, ǫ) . Then we can state that

the program in PN√,/ that do not fail are continuous:

∀p ∈ PN√,/ , ∀Env, ∀ǫ ∈ R+, ∃η ∈ R+, JpKEnv 6= Fail =⇒
∀e1, e2 ∈ VSEM(p, Env, ǫ)2,

e2 6= 0 ⇒ |e1 /K e2 − e1 / e2| < η ∧ e1 ≥ 0 ⇒ |√e1
K −√

e1| < η =⇒

|JpKK
Env − JpKEnv| < ǫ

Where distance on semantics is defined by

|True − False| = 1

|(v1, v2)− (w1, w2)| = max(|v1 − w1|, |v2 − w2|)
and the usual distance on R.

Proof. By induction on p:

• p = if F then p1 else p2:
F is in PN thus JFKK

Env = JFKEnv then the induction hypothesis on p1 and p2 with the
same ǫ provides η1 and η2. Therefore η = min(η1, η2) verifies the property.

50 CHAPTER 3. TRANSFORMATION OF PROGRAMS

• p = let x = b in sc:
b is in PN thus JbKK

Env = JbKEnv and the induction hypothesis on sc applies with the
new environment Env ⊕ (x, Jp1KEnv).

• p = (p1,p2) can be proved with the induction hypothesis as for the if then else case.

• p in Blet then p is in PN thus JpKK
Env = JpKEnv

• p in N√,/, we only give the case p = p1 / p2, other cases are similar:

We denote s1 = Jp1KEnv, s2 = Jp2KEnv, sK
1 = Jp1K

K
Env and sK

2 = Jp2K
K
Env

We define f (x, y) = | (s1+x)
(s2+y)

− s1
s2
|

Since s2 6= 0 (if not JpKEnv = Fail) and f is continuous around (0, 0), then

∃α, max(|x|, |y|) < α ⇒ | f (x, y)| < ǫ/2, we denote α′ = min(α, ǫ)

By applying induction hypothesis on p1, Env and α′ we get η1 such that:

(HI1)
∀e1, e2,∈ VSEM(p1, Env, α′)2,

|e1 /K e2 − e1 / e2| < η1 ∧ |√e1
K −√

e1| < η1 =⇒ |sK
1 − s1| < α′

and a similar η2 and hypothesis (HI2) by applying induction hypothesis on p2.

Lets take η = min(η1, η2, ǫ/2)

Assuming (H):
∀ e1, e2 ∈ VSEM(p, Env, ǫ)2, |e1 /K e2 − e1 / e2| < η ∧ |√e1

K −√
e1| < η

We want to prove that |sK
1 /KsK

2 − s1/s2| < ǫ

Let us first prove the premise of (HI1):

Since p1 ≪ p and α′ ≤ ǫ we have VSEM(p1, Env, α′) ⊆ VSEM(p, Env, ǫ)

Since η1 ≥ η, using (H) we can prove this premise

Thus we have |sK
1 − s1| < α′, with the same reasoning we have |sK

2 − s2| < α′

Thus ∃x1, |x1| < α′ ∧ sK
1 = s1 + x1 and ∃x2, |x2| < α′ ∧ sK

2 = s2 + x2

Therefore:

|sK
1 /KsK

2 − s1

s2
| = |(s1 + x1)/K(s2 + x2)−

s1 + x1

s2 + x2
+

s1 + x1

s2 + x2
− s1

s2
|

≤ |(s1 + x1)/K(s2 + x2)−
s1 + x1

s2 + x2
|+ | s1 + x1

s2 + x2
− s1

s2
|

Since |x1| < α′ ≤ ǫ and |x1| < α′ ≤ ǫ then, using (H), we have:

|(s1 + x1)/K(s2 + x2)− s1+x1
s2+x2

| < η ≤ ǫ/2

Since |x1| < α′ ≤ α and |x1| < α′ ≤ α then, given the definition of α:

| s1+x1
s2+x2

− s1
s2
| < ǫ/2

Then the sum is smaller than ǫ and we have the theorem we want.

The other arithmetic operator can be handled in the same way, therefore, according to
this definition the program we build are continuous. ◭

This notion of continuity can be stated in natural language as:

3.5. TRANSFORMING PROGRAMS 51

If the concrete divisions and square roots are precise enough around the real se-

mantics of the sub-term then the concrete result of the program is close to its real

semantics.

This avoids huge mistakes due to the discontinuity of the test operator:

EXAMPLE 3.3. On floating point numbers, the concrete semantics of this program is 1000
whereas its semantics on real numbers is 0:

if
√

2×
√

2 6= 2 then 1000 else 0 Any rounding error in a test can introduce large
differences between the abstract and the concrete semantics.

The control flow of the program is protected from the rounding introduced by these
operations and therefore the result is, even in the worst case, close to the result we would
expect with real number arithmetic.

3.5 TRANSFORMING PROGRAMS

In this section we first give some principles about the termination of some program trans-
formations then we present the first step of our transformation.

3.5.1 Orders on Programs

In order to prove the termination of many of our transformations, we need to introduce
different well founded orders on programs.

DEFINITION 3.14 (Well founded order). An order ≺ on a set S is well founded, denoted
w f (≺), if every non empty set has a minimal element:

∀ S, S 6= ∅ =⇒ ∃ x ∈ S, ∀ z ∈ S, ¬ z ≺ x

The main order that is used is the usual sub-term order, denoted ≪. This order states
that p1 ≪ p2 when p1 is a sub-term of p2. However this is not always sufficient so we
sometimes need to extend this order by composing it with another order. We compose
two orders as the corresponding lexicographic order:

DEFINITION 3.15 (Order composition). Given two orders, ≺1 on a set S1 and ≺2 on S2,
we define the composition order on S1 × S2 as:

lex(≺1,≺2)((x1, x2), (y1, y2)) = x1 ≺1 y1 ∨ x1 = y1 ∧ x2 ≺2 y2

As proved in [BN98] (Theorem 2.4.2) the composition of two well-founded orders is
well founded. Using this composition of orders, we can compose an order with a measure
function.

DEFINITION 3.16 (Order with measure). Given an order ≺ on S and a measure function
m from S to N, we denote ≺m the following order:

x ≺m y = lex(<N,≺)((m(x), x), (m(y), y))

Where <N is the usual strict order on natural numbers.

52 CHAPTER 3. TRANSFORMATION OF PROGRAMS

Below we illustrate this notation with an order on programs based on the number of
variable definition it contains and the sub-term order:

EXAMPLE 3.4 (Letin based order). Given p a program, if we denote letins(p) the number
of variable definitions it contains, then ≪letins is a well founded order.

In the next section we detail the first step of the transformation, that is reducing any
program into its normal form.

3.5.2 Program Normal Form P

In Section 3.2.2, we introduced the P subtype as the source language of the core of our
transformation. Since the global transformation aims at transforming every program
in Prog, the first step of the transformation is to reduce any program in Prog into an
equivalent one in P. The normalization can be done using the following set of rules:

DEFINITION 3.17 (Prog Normalization). Normalization is done by inverting tests and
variable definitions on one side and the binary and unary operators on the other side

• inversions between variable definitions and other kinds of expressions:

- uop (let x = e1 in e2) −→ let x = e1 in (uop e2)

- (let x = e1 in e2) op e3 −→
let x’ = e1 in (e2[x 7→x’] op e3) x’ /∈ FV((e2,e3))

- e1 op (let x = e2 in e3) −→
let x’ = e2 in (e1 op e3[x 7→x’]) x’ /∈ FV((e1,e3))

- ((let x = e1 in e2),e3) −→
let x’ = e1 in (e2[x 7→x’],e3) x’ /∈ FV((e2,e3))

- (e1,let x = e2 in e3) −→
let x’ = e2 in (e1,e3[x 7→x’]) x’ /∈ FV((e1,e3))

- fst (let x = e1 in e2) −→ let x = e1 in fst (e2)

- snd (let x = e1 in e2)) −→ let x = e1 in snd (e2)

• inversions between tests and other kinds of expressions:
in the binary operator case we define a variable corresponding to the test instead of
duplicating the other argument to avoid an explosion of the size of the code:

- uop (if f then e1 else e2) −→
if f then (uop e1) else (uop e2)

- (if f then e1 else e2) op e3 −→
let xi = if f then e1 else e2 in (xi op e3) xi /∈ FV(e3)

- e1 op (if f then e2 else e3) −→
let xi = if f then e2 else e3 in (e1 op xi) xi /∈ FV(e1)

- ((if f then e1 else e2),e3) −→
let xi = if f then e1 else e2 in (xi,e3) xi /∈ FV(e3)

3.6. BOOLEAN EXPRESSION TRANSFORMATION 53

- (e1,if f then e2 else e3)) −→
let xi = if f then e2 else e3 in (e1,xi) xi /∈ FV(e1)

- fst (if f then e1 else e2) −→ if f then fst (e1) else fst (e2)

- snd (if f then e1 else e2) −→ if f then snd (e1) else snd (e2)

• projections reductions:

- fst (e1,e2) −→ e1

- snd (e1,e2) −→ e2

Using this set of rules we can transform any program in Prog into a program in P that
has the same semantics:

PROPOSITION 3.5 (Prog and P equivalence).

∀ p ∈ Prog, ∃ p⊤ ∈ P, ∀Env, JpKEnv = Jp⊤KEnv

Proof. By using the transformation rules defined in Definition 3.17. ◭

We will see in Chapter 5 how we can implement a strategy for this set of reduction
rules and prove the termination. Now that we have a program in P, we present how
we eliminate square roots and divisions from it. The first step of this transformation
is to define the elimination of square roots and divisions in Boolean expressions. The
algorithm we use is a variant of the algorithm introduced in Chapter 1.

3.6 BOOLEAN EXPRESSION TRANSFORMATION

In this section we present how to eliminate square roots and divisions in Boolean expres-

sions. A Boolean expression is a term in Eu of type B in a valid environment, that is:

DEFINITION 3.18 (Boolean Expression). A term e in Prog is said to be a Boolean expres-
sion when:

e ∈ Eu ∧ ∃ Γ, TyΓ(e) = B

There is a trivial mapping between the Boolean expressions and the B set introduced in
Chapter 1 extended with Boolean variable and projections. However, in Eu, pairs are not
allowed, therefore projections can only be applied to variables e.g.,fst(snd(x)). Therefore
the projections can not embed any square root or division and they can be treated the
same way as constants or variables in the normalization and elimination rules.

The language the global transformation targets is still PN√,/ and its subtype corre-
sponding to Boolean expressions is Blet. Therefore the goal of the elimination of square
roots and divisions in Boolean expression is to define a function, elimB that has the fol-
lowing specification:

DEFINITION 3.19 (elimB specification). We want to define a function elimB such that for
every Boolean expression e:

elimB(e) ∈ Blet ∧ sem_ty_eq(e, elimB(e))

54 CHAPTER 3. TRANSFORMATION OF PROGRAMS

The Algorithm 1.13 presented in the previous chapter verifies this specification, in-
deed it transforms any Boolean expression into an equivalent square root and division
free expression. However we allowed the Boolean variable definitions in Blet for the fol-
lowing reason. Each application of the square root elimination rules defined in Definition
1.12 can produce up to 6 atoms, but some of these atoms are equals or opposites. There-
fore we replace that square root elimination rule with a new one that name the atoms in
order to avoid an explosion of the size of the formula:

DEFINITION 3.20 (Square root elimination). We define new rules for the operators >, ≥
, < and ≤. We only give the rule for > the other ones being almost identical:

(P.
√

Q+ R) > 0 −→
let ((c1,c2),(c3,c4)) = ((P > 0,R > 0),(P2.Q− R2

> 0,P2.Q− R2 6= 0)) in

(c1 ∧ c2) ∨ (c1 ∧ c3) ∨ (c2 ∧¬ c3 ∧ c4)

For the = and 6= cases, we still use the elimination rules introduced in Definition 1.12
that do not use variables.

Remark 3.1. We use ¬ c3 ∧ c4 that corresponds to ¬ P2.Q − R2
> 0 ∧ P2.Q − R2 6= 0

instead of defining c4 directly as P2.Q− R2
< 0. This allows us to define c4 as an equality

where the elimination of square roots only produces two atoms instead of four. This way,
we minimize the number of atoms that will be produced in the following steps.

By replacing the rules of Definition 1.12 by the ones from Definition 3.20 in Algorithm
1.13, we get the elimB function we wanted, that respects the specification from Definition
3.19. This function transforms every formula into an equivalent one in Blet:

THEOREM 3.6 (Square root and division elimination in Boolean expression). Every

Boolean expression has a square root and division free equivalent Blet program:

∀ e ∈ Eu, (∃ Γ, TyΓ(e) = B) =⇒
ElimB(e) ∈ Blet ∧ ∀ Env, JeKEnv 6= Fail ⇒ JeKEnv = JElimB(e)KEnv

We are now able to eliminate the square roots and divisions from any Boolean ex-
pression, however we still can not ensure that their computation is independent from the
rounding that these operations might introduce. Indeed the free variables that appear in
these expressions may have been computed using square roots or divisions e.g.,

let x =
√

a in x > e × r

In the next section, we introduce how we can handle such variable definitions in order to
avoid having divisions or square roots in their definitions.

3.7 VARIABLE DEFINITION TRANSFORMATION

Rounding due to square roots or divisions might not be explicit in all the Boolean expres-
sions. This means that, even if a Boolean expression does not contain any square roots
or divisions, the variables that are used in this expression may have been defined using
these operations. Therefore the value of this variable is not exact and we can not guaranty
anymore the result of the Boolean computation as in the following example:

3.7. VARIABLE DEFINITION TRANSFORMATION 55

EXAMPLE 3.5 (Variable definitions with square roots).

let x = (3 × a)/(b + 5) in let y = x+
√

c + d in x + y > e

Therefore we need to transform these variable definitions such that the variables used
in Boolean expressions do not embed any square root or division computations but we
also have to take care of the size of the output code. Indeed, a simple solution would be
to inline all the variable definitions as in the following example:

EXAMPLE 3.6 (Variable definitions with square roots).

let x = (3 × a)/(b + 5) in let y = x+
√

c + d in x + y > e

−→ (3 × a)/(b + 5) + (3 × a)/(b + 5) +
√

c + d > e

Given a variable definition, let x = b in sc, we call b the body and sc the scope of the
definition, the inlining consists in replacing every occurrence of the variable in the scope
by the body of the definition. However using such transformations, especially when the
variables are defined using conditional expressions, makes the size of the output code
explode:

EXAMPLE 3.7 (Variable definitions with tests).

let x = if F then a/b else
√

c in x > d −→ (F ∧ a/b > d) ∨ (¬F ∧ √
c > d)

Therefore we had to find another way to transform these variable definitions. The
transformed program still uses variable definitions but the expressions contained in the
bodies of these definitions are square root and division free.

3.7.1 Specification of Variable Definition Transformation

As mentioned previously we want to eliminate square roots and divisions from the vari-
able definition bodies, without significantly increasing the size of the output code. This
means that we can not inline the definitions but we have to replace any definition by
a new definition that is square root and division free. The global transformation being
a recursive algorithm, we can assume that the body of the definition has already been
transformed and is therefore in PN√,/ . Therefore we aim at defining a function that have
the following specification:

DEFINITION 3.21 (Elimlet specification). Given x ∈ X , b ∈ PN√,/ and sc ∈ P, we define
the Elimlet function that computes x’, b’ and sc’ such that:

∀ Env, Jlet x = b in scKEnv 6= Fail =⇒
Jlet x = b in scKEnv = Jlet x’ = b’ in sc’KEnv ∧ b’ ∈ PN ∧ sc’ ∈ P

The main idea consists in replacing a variable definition by the definition of multiple
variables corresponding to the square roots and division free sub-expressions of the input
body. The transformation of Example 3.5 is:

EXAMPLE 3.8 (Naming of square root and division free sub expressions).
let x = (3 × a)/(b + 5) in let y = x+

√
c + d in x + y > e −→

let (xn,xd) = ((3× a), (b+ 5)) in let y = xn/xd +
√

c + d in xn/xd + y > e −→
let (xn,xd) = ((3 × a), (b + 5)) in

let (yn1,yd1,ysq) = (xn,xd,c + d) in xn/xd + yn1/yd1 +
√

ysq > e

56 CHAPTER 3. TRANSFORMATION OF PROGRAMS

It is easy to define such an algorithm for a variable definition whose body is an ex-
pression in E, the only thing to do is to define a tuple corresponding to the different sub
expressions that are square root and division free and to inline the former definition us-
ing these new defined variables (e.g., xn/xd and yn1/yd1 +

√
ysq in the previous example).

The principle of this transformation can be extended to variable definitions that contain
test:

EXAMPLE 3.9 (Variable definition with test).

let x =

if F then a1 +
√

a2

else b1
b2

in P

−→

let (x1,x2,x3) =

if F then (a1, a2, 1)
else (b1, 0, b2)

in P[x 7→ x1+
√

x2
x3

]

The expression x1+
√

x2
x3

comes from the constrained anti-unification of a1 +
√

a2 and b1
b2

.
It allows us to only define sub-expressions that are square root and division free and to
only inline a small expression. We have defined this constrained anti-unification problem
in a very generic way and presented an algorithm that computes a constrained template
of arithmetic expression in Chapter 2. We now use this anti-unification algorithm on
arithmetic expressions to transform the variable definitions.

3.7.2 Variable Definition Transformation

The goal in this section is to define a function Elimlet whose specification has been defined
in Definition 3.21. The elimination of square roots and divisions from a variable definition
(let x = p1 in p2 where x∈ X , p1 ∈ PN√,/ and p2 ∈ P) relies on a decomposition of the
body p1 into three distinct elements:

DEFINITION 3.22. A program in PN√,/ can be decomposed into

• a program part Pp of type En
N√,/

−→ PN√,/ and En
N −→ PN that represents the

test and local variable definition structure of the body

• a list of expressions (e1, ..., en) of En
N√,/

such that Pp(e1, ..., en) = p1. This list

of expression is then decomposed again by anti-unification with √ and / as
forbidden symbols. This produces:

- the template T in EN√,/ that contains the variables x1, ..., xk

- n substitutions, σ1, ..., σn on the same domain x1, ..., xk such that:
∀i ∈ [1...n], Tσi = ei

according to the usual rules of arithmetic and
I(σi) ⊆ EN.

The template T is computed using the algorithm introduced in Section 2.4. This al-
gorithm was defined for tuple of arithmetic expressions but the En

N√,/
subtype also em-

beds Boolean expressions. However these Boolean expressions are already square root
and division free and therefore the template of Boolean expressions is a simple variable
since we always can eliminate square roots and divisions from this kind of expressions.

3.7. VARIABLE DEFINITION TRANSFORMATION 57

Given σ a substitution, if σ = [x1 7→ e1; ...; xn 7→ en], we denote var(σ) the ordered tuple
of the variables appearing in the domain of the substitution (of variables in D(σ)), i.e.,

(x1, ..., xn) and arg(σ) the tuple of the corresponding images, i.e., (e1, ..., en). Using this
decomposition, the following rule describes how the variable definition is transformed.

DEFINITION 3.23 (Variable definition transformation). A variable definition is trans-
formed by commuting elements of its decomposition:

let x = Pp(Tσ1, ..., Tσn) in p2 −→
let var(σ1) = Pp(arg(σ1), ..., arg(σn)) in p2[x 7→ T]

Therefore, if all the arguments of the substitutions are square root and division free
then the body of this new variable definition is in PN. However the square root and
division operations in the inlined template will then have to be eliminated and this elim-
ination is exponential in the number of square roots, hence we try to compute a template
that contains the smallest possible number of square root operations in order to keep
the size of the transformed program in an acceptable range. This is done using the anti-
unification algorithm we introduced in Section 2.4 with a few extra features. We first
study how we can decompose the body in PN√,/ into its program part and its expression
part and then present how we can tune the anti-unification algorithm on arithmetic to
exactly fit this transformation. We define the following recursive algorithm Decompose,
that computes from a program p in PN√,/ , its program part and its expression part.

DEFINITION 3.24 (Program and expression part decomposition). The program part is
a meta-function where the final expression are abstracted:

Decompose(p) =

• if p ∈ EN√,/ then return ((f un x → x), p)

• if p = let y = a in p’ then

– (pp,ep) := Decompose(p’)

– return ((f un x → let y = a in pp(x)), ep)

• if p = if B then p1 else p2 then

– (pp1,ep1) := Decompose(p1)

– (pp2,ep2) := Decompose(p2)

– return ((f un (x1, x2) → if B then pp1(x1) else pp2(x2)), (ep1,ep2))

Given Pp the program part, we denote BV(Pp) the set of bound variables that appear in
p (i.e., the variables that are defined in the program part).

EXAMPLE 3.10.
Decompose(if F then let z = a in z +

√
b else c) =

(f un (x, y) → if F then let z = a in x else y, (z+
√

b,c))

The program p being in PN√,/ , neither the local variable definition bodies nor the
Boolean arguments of the tests can contain division or square root. Therefore if we apply

58 CHAPTER 3. TRANSFORMATION OF PROGRAMS

Pp to a tuple of expressions in EN, the result does not contain any divisions or square
roots. The program part only contains variable definitions and conditional expressions.
Therefore we can state the correction of the variable definition transformation

PROPOSITION 3.7. Given the program and variable of Definition 3.23, if FV(T) ∩ BV(Pp) =

∅ and ∀ v ≤≤ var(σ1), v ≤≤ x ∨ ¬v ≤≤ p2 then the rule from Definition 3.23 preserves the

semantics

Proof. We introduce a functional notation, given a term T and a substitution σ on (x1, ..., xn)

we denote Tσ the function (x1, ..., xn) −→ t[x1 7→ x1, ..., xn 7→ xn] and −→a the tuple
(a1, ..., an), this gives Tσ = Tσ(arg(σ)). Therefore the following semantics equivalences:

• let y = B in Tσ(−→e)
sem
= Tσ(let y = B in (−→e)) when the variables in y are not free

variables in T, we enforce this property in the construction of T

• if F then Tσ(−→e1) else Tσ(−→e2)
sem
= Tσ(if F then −→e1 else −→e2)

enables the transformation of Pp(Tσ1, ..., Tσn) into Tσ(Pp(arg(σ1), ..., arg(σn))) and

• let x = Tσ(a) in p
sem
= let x = (let var(σ) = a in T) in p

• let x = (let y = a in T) in p
sem
= let y = a in p[x 7→ T]

when the variables in y are either in x or not free in p, we enforce this property in
the construction of T

enables the transformation of:
let x = Tσ(Pp(arg(σ1), ..., arg(σn))) in p

into
let var(σ1) = Pp(arg(σ1), ..., arg(σn)) in p2[x 7→ T] ◭

We now detail the effective template computation that is used to minimize the size of
the output program.

3.7.3 Single Expression Decomposition

In a first step, we assume that the body of the variable definition does not contain any
test, therefore its program part can only be nested variable definitions (e.g., f un x →
let y = a in let z = b in x) and its expression part is reduced to a single expression in
EN√,/ . We call the variable defined in the program part the local variables. Computing a
most general {√, /}-template and the corresponding substitution of a singleton is quite
trivial, it simply consists in substituting with variables the square root and division free
sub expressions, this gives the following transformation:

EXAMPLE 3.11 (Simple variable definition transformation).

let x = (let z = a + b in z+d +
√

c.d/e) in P −→
let (x1,x2,x3) = (let z = a + b in (z+d, c.d, e)) in P[x 7→ x1 +

√
x2/x3]

However, one crucial point is to avoid renaming square roots that have already been
named. Since new variables are often defined using already existing variables the num-
ber of square roots in such a program might artificially and exponentially explode, e.g.,

3.7. VARIABLE DEFINITION TRANSFORMATION 59

EXAMPLE 3.12 (Renaming explosion).

let x = a.
√

b in

let y = x + c.
√

b in

if x + y > d then...

would lead to
let x1,x2 = a,b in

let y1,y2,y3,y4 = x1,x2,c,b in

if x1.
√

x2 + y1.
√

y2 + y3.
√

y4 > c then ...

The formula in which we want to eliminate square roots and division now containing 3
different square roots.

The optimized solution records already named sub-expressions, e.g.,

EXAMPLE 3.13 (No Renaming Transformation).

let x1,x2 = a,b in

let y = x1+c in

if x1 + y .
√

x2 > c then ...

It allows us to preserve the number of square roots that were in the input program.
Therefore, we remember the already named sub-expressions in order to reuse these names
as much as possible. We now explain how we compute the {√, /}-template of a set of ex-
pressions and also avoid the renaming by using the anti-unification algorithm introduced
in Chapter 2.

3.7.4 Multiple Expression Decomposition

The decomposition of the set of expressions coming from the different test cases directly
uses the anti-unification algorithm introduced in Section 2.4. As in the single expression
case and as introduced in Proposition 2.18, we also want to avoid renaming by using the
undefined element replacement but we are not always allowed to replace. Indeed, in the
final template these expressions replacing undefined elements will appear as square roots
and since, in our semantics, 0 can not absorb failures (0.

√
−1 fails), we have to make sure

that the expressions we use are positives. For example, the following transformation is
not allowed:

DEFINITION 3.25 (Unsafe Transformation).

let x = if y ≥ 0 then
√

y else 0 in P −→ let x = if y ≥ 0 then 1 else 0 in P[x 7→ x.
√

y]

since P[x 7→ x.
√

y] would fail when y < 0. Therefore we have to define the Pos set
of positive expressions introduced in Proposition 2.18. Using the hypothesis that our
program does not fail, we will take as positive expressions all the expressions that have
been previously used under a square root (e.g., square roots arguments coming from
previously defined variable inlining), for example:

EXAMPLE 3.14 (Known Positive Expressions).

let z =
√

a in

let x = if F then b.z +
√

a else 0 in P
−→

let z = a in

let x = if F then b + 1 else 0 in P[x 7→ x.
√

z]

We know that z (i.e., a) is positive since in the input program it is used under a square
root in the definition of z and we explained at the beginning of section 3.3 that the pro-
grams we want to transform do not fail due to square roots of negative numbers. In order

60 CHAPTER 3. TRANSFORMATION OF PROGRAMS

to realize such transformation, we record during the transformation the different expres-
sions that were arguments of square roots in the input programs and their corresponding
named expression (e.g., (a,z)) and use them as the Pos set.

For this anti-unification process, we also might want to extend even the longest dag in
order to produce the most suitable template. For example, assume we have the following
variable definition:

let (x,y,z) = if F then (
√

a,
√

b,
√

b) else (
√

c,
√

c,
√

d) in P

The anti-unification would give a template with only two distinct square roots:
√

x1, y1.
√

x1 + y2.
√

z1,
√

z1

If all the variables of the tuple are used together e.g., if P is x + y - z > 0 then this solution
is optimal, the inlined P having only 2 square roots: (1 + y1)

√
x1 + (y2 - 1)

√
z1 > 0.

However if in P these variables are used separately e.g., x > e ∧ y > f ∧ z > h, then the
second comparison, y > f would embed 2 square roots. In that case, an inlining with
no sharing would be a better solution since each of the 3 comparisons only embeds one
square root:

EXAMPLE 3.15 (Using Dag Extension).

let (x,y,z) = if F then (a, b, b) else (c, c, d) in
√

x > e ∧ √
y > f ∧ √

z > h

Computation of such templates requires to extend all the input dags with undefined
elements and replacing undefined elements by node duplication and pointer changes:√

1̇,
√

2̇,
√

2̇ a b #√
1̇,
√

1̇,
√

2̇ c d #
=

√
1̇,
√

3̇,
√

2̇ a b a√
1̇,
√

3̇,
√

2̇ c d d

Therefore, we will also try to extend the input dags with few undefined elements in
order to also compute such templates. We also want to ensure that the free variables
of the template do not appear in the program part in order to apply the permutation as
introduced in Proposition 3.7. This gives a new version of the anti-unification introduced
in Definition 2.30 that is completely tailored to the transformation:

ALGORITHM 3.26 ({√, /}-constrained anti-unification for transformation). Given a set
of expressions in EN√,/ , a set of forbidden variables S, the following algorithm computes
a template of these expressions:

i) Transform every expression into its dag representation.

ii) Choose the length of the anti-unifier (has to be larger than the maximum)

iii) Extend all dags to the same length with undefined elements.

iv) Apply a permutation on the dag nodes identifiers with respect to right dependency

v) Replace undefined elements using either

• Node duplication

• A node dn from another dag such that dn⊤ ∈ Pos

• A positive constant

3.8. MAIN TRANSFORMATION 61

vi) Compute the {√, /}-template node by node as in Definition 2.30, we restrict the
use of the (EI) rule (see Definition 2.29), it is only used for a square root entire node
(i.e., whose index is bigger than 0) and not for sub-terms of nodes:

(EI) ctmp(dni, dni) = dni when FV(dni) ∩ S = ∅

Given these features, we can now defined the Elimlet algorithm that, given a set of
positive expressions Pos, transforms a variable definition in order to eliminate square
roots and divisions from the body.

ALGORITHM 3.27 (Elimlet Function). Given a variable definition let x = p1 in p2 where
x∈ X , p1 ∈ PN√,/ and p2 ∈ P and a set of known positive expressions Pos, Elimlet is the
following transformation:

• Decompose p1 into its program part Pp and its expression part e1, ..., en using the
Decompose function from Definition 3.24.

• Compute a {√, /}-template of e1, ..., en, T, and the substitution σ1, ..., σn using {e ∈
Pos | FV(e) ∩ BV(e) = ∅} as positive expression set and BV(Pp) as forbidden
variables

• Add {e | √e ≤≤ T} to Pos

• Return:
(var(σ1), Pp(arg(σ1), ..., arg(σn)), p2[x 7→ T])

This transformation eliminates square roots and divisions from the body and, given
the Proposition 3.7, this transformation preserves the semantics. Therefore it satisfies the
specification from Definition 3.21. This transformation is now used to define the main
algorithm that eliminates square roots and divisions from programs.

3.8 MAIN TRANSFORMATION

In Section 3.6 we defined the ElimB function that eliminates square roots and divisions
from Boolean expressions. In Section 3.7.2 we defined the Elimlet function that removes
square roots and divisions from variable definition bodies. We now combine both of
these functions to define the transformation of any program p ∈ P into an equivalent one
in PN√,/ :

DEFINITION 3.28 (The ElimP function). We define the ElimP recursive function on any
program p in P:

ElimP(p) =

• if p ∈ Eu is a Boolean expression then return ElimB(p)

• if p ∈ Eu is an arithmetic expression then return p

• if p = (p1,p2) then return (ElimP(p1),ElimP(p1))

• if p = if F then p1 else p2 then return if ElimP(F) then ElimP(p1) else ElimP(p1)

62 CHAPTER 3. TRANSFORMATION OF PROGRAMS

• if p = let x = b in sc then

– nb1 := ElimP(b)

– (x’,nb,nsc) := Elimlet(x,nb1,p)

– return let x’ = nb in ElimP(nsc)

This algorithm preserves the semantics of programs and eliminates the square roots
and divisions from variable definitions and Boolean expressions:

PROPOSITION 3.8 (ElimP Correctness).
The function ElimP satisfies the following predicate:

∀p ∈ P, ElimP(p) ∈ PN√,/ ∧ sem_ty_eq(p, Elim(p))

Proof. By induction on P, using the specification of ElimB (see Definition 3.19) and Elimlet

(see Definition 3.21) ◭

Combining this transformation with the program normalization enables the elimina-
tion of square roots and divisions in any program in Prog:

DEFINITION 3.29. If Pnorm transforms any program in Prog into a program in P using
the rules from Definition 3.17 we define the following function Elim:

Elim(p) = ElimP(Pnorm(p))

This function satisfies the specification from Definition 3.29:

THEOREM 3.9 (Main Elim function).

∀p ∈ Prog, Elim(p) ∈ PN√,/ ∧ sem_ty_eq(p, Elim(p))

Conclusion We have defined function Elim that transforms any program in Prog into
an equivalent one in PN√,/ . This transformation makes the Boolean computations appear-
ing in the input program independent from any square root and division computation.
We present in Chapter 6 an OCamL implementation of this transformation. Chapter 5
provides a PVS specification of this transformation along with the correctness proof, i.e.,

the proof of Theorem 3.9. But first in Chapter 4 we detail an extension of this transforma-
tion that enables the transformation of programs that contain function definitions, still
using this anti-unification principle.

4
TRANSFORMING FUNCTIONS AND FUNCTION CALLS

W
E NOW WANT TO EXTEND THE LANGUAGE the transformation applies to. The lan-
guage defined in Chapter 3 contains many of the core features used in the em-
bedded systems the transformation targets, yet, these programs also use function

definitions. As we already explained we could inline the function definitions and then
eliminate the square roots and divisions using the Elim algorithm defined in Section 3.8.
However, this process would increase the size of the program and remove the intention
of the programmer that introduced those functions for modularity or readability reasons.

Indeed our goal is still to have Boolean expressions completely independent from
square roots or divisions computations and functions can contain these operations not
only in their definitions but also in their calls e.g.,

EXAMPLE 4.1 (Functions with square roots).
let f(x,y) = (x + y) / y ;

...

... f(a +
√

b,c) > d ...

In that case, how can we transform this function such that f(a +
√

b,c) > d does not
depend on any square root or division ? An inlining would transform this program into
the following one:

EXAMPLE 4.2 (Functions full inlining).
(a +

√
b + c) / c > d ...

But this is not what we are looking for. In this chapter, we present an algorithm that
do not increase too much the size of the produced code but also preserves the structure
of the program. The introduction of the functions definitions in our transformation can
also be handled using the constrained anti-unification we defined in Chapter 2. Indeed a
function call is somehow similar to a succession of variable definitions e.g.,:

EXAMPLE 4.3 (Function inlining with variable definition).
let f(x,y) = (x + y) / y ;

...

... f(a +
√

b,c) > d ...

−→

...

let (x,y) = (a +
√

b,c) in

let f = (x + y) / y in f > d ...

64 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

We already know how to transform this second program using the Elimlet function
introduced in Section 3.7, using tuples and templates to partially inline the definitions.
We can therefore imagine the same kind of transformation for a function:

EXAMPLE 4.4 (Function transformation with templates).
let f(x,y) = (x + y) / y ;

...

... f(a +
√

b,c) > d ...

−→
let f(x1, x2, y) = (x1 + y, x2, y) ;

...

... let (f1,f2,f3) = f(a,b,c) in (f1 +
√

f2) / f3 > d ...

In order to present the extensions of our transformation with functions we first extend
the language and the already existing transformation with function definitions. Then we
explain how to transform functions in order to remove square roots and divisions both
from their definitions and from their calls arguments. Finally we present a set of con-
ditions making this transformation with anti-unification effective since it is not always
possible.

4.1 LANGUAGE EXTENSION

The first step to extend the language the transformation applies on consists in adding
function definitions and calls in the syntax of the language. We redefine the type Prog:

DEFINITION 4.1 (Language with functions).

Prog := C | fst Prog | Prog op Prog

| X | snd Prog | if Prog then Prog else Prog

| uop Prog | (Prog, Prog) | let V = Prog in Prog

| X (V) | letf X V : Type → Type = Prog ; Prog

where Type corresponds to the Definition 3.2, therefore we only define first order func-
tions. For clarity and concision, we might forget the type of the function definitions when
we do not need it.

Consequently, we need to extend the type system and semantics of the language, for
the already existing constructors the rules are the same, therefore we only give the rules
for the application and function definition. ones:

DEFINITION 4.2 (Type and semantics extension). First we extend the type system with
functional types:

Type f := Type | Type → Type

And give the corresponding rules:

Γ ⊢ f : A → B Γ ⊢ e : A
Γ ⊢ f(e) : B

Γ⊕(x : A) ⊢ b : B Γ, f : A → B ⊢ sc : C
Γ ⊢ letf f x : A -> B = b; sc : C

Then we define the semantics of functions using closures and call by value:

(f, <x,b,E>) ∈ Env Env ⊢ JeK = u E⊕(x,u) ⊢ JbK = v
Env ⊢ Jf(e)K = v

Env, (f,<x,b,E>) ⊢ JscK = v
Env ⊢ Jletf f x : A -> B = b; scK = v

4.1. LANGUAGE EXTENSION 65

Env ⊢ JeK = Fail
Env ⊢ Jf(e)K = Fail

As we did in Section 3.1, we will require the program to be in a certain normal form
in order to transform it. This form prevents defining functions inside expressions (e.g.,

in binary operators), just like we did not want variable definitions to appear in such
expressions previously. Moreover function definitions will only be allowed at top level.
We define this new syntactic normal form, it is mutually recursive since functions calls
are allowed to contain test and variable definitions.

DEFINITION 4.3 (Program with function normal form). We introduce a new definition
for the Eu, E and P types introduced in Definition 3.5.

Eu := X | C | uop Eu | Eu op Eu | fst Eu | snd Eu | X (P)

E := (E, E) | Eu

P := let V = P in P | if P then P else P | E

and add the P⊤ type for the top level:

P⊤ := let V = P in P⊤ | letf X V : Type → Type = P ; P⊤ | P

For this transformation we assume that the functions are already defined at top level
and therefore we do not provide a mechanism to take function definitions out of the
other structures. However we still use the rules from Definition 3.17 to normalize the
other parts of the program.

Given the type of the input programs we now need to extend the type of the output
programs. We do not want to inline the function definitions but to transform them in or-
der to prevent their result from depending on square roots and divisions. Therefore, like
in the variable definition case where we wanted to eliminate square roots and divisions
from the body, we want not only the function bodies but also the function arguments to
be square root and division free. This gives the following target language:

DEFINITION 4.4 (Target language with functions). We reuse the sets of operators and
languages defined in Section 3.2.2 and we define some new languages that allow square
roots and divisions in Boolean expressions. As for the input language the definitions are
now mutually recursive:

• the different sets of numerical expressions, they allows function calls on square root
and division free programs:

– N := Nuop N | N Nbop N | fst N | snd N | X | C | X (PN)

– N√,/ := Nuop√ N√,/ | N√,/ Nbop/ N√,/ | fst N√,/ | snd N√,/ | X | C | X (PN)

• the subsets of Boolean expressions with or without square roots and divisions:

– B√,/ := Buop B√,/

| X (P)

| fst B√,/

| snd B√,/

| B√,/ Bbop B√,/

| Eu Cbop Eu

| X
| C

66 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

– Blet := Buop Blet

| (Blet, Blet)

| let V = Blet in Blet

| Blet Bbop Blet

| fst Blet

| X (P)

| N Cbop N

| snd Blet

| X
| C

• the sets of expressions keep the same definition:

– EN := N | Blet | (EN, EN)

– EN√,/ := N√,/ | Blet | (EN√,/ , EN√,/)

– EB√,/ := N | B√,/ | (EB√,/ , EB√,/)

• as previously, the programs that do not contain any square root or division
PN:= let V = PN in PN | if PN then PN else PN | EN

• the programs whose final expressions may contain divisions or square roots only
in Boolean parts
PB√,/ := let V = P in PB√,/ | if P then PB√,/ else PB√,/ | EB√,/

• the programs containing square roots or divisions only in final numerical expres-
sions
PN√,/ := let V = PN in PN√,/ | if PN then PN√,/ else PN√,/ | EN√,/

The language B√,/ is the set of Boolean expressions with square roots and divisions.
The languages using this set will be used as intermediate languages since the global strat-
egy to eliminate square roots and divisions will change. Indeed, square root and divisions
in Boolean expressions can be eliminated on place (without modifying other part of the
program), thus we will only do this elimination as the final step of our transformation,
after all the variable and function definitions have been transformed.

EXAMPLE 4.5 (Program subtype).

let x = a in (
√

b > c,x) ∈ PB√,/

let x = a in (
√

b > c,
√

x) /∈ PB√,/

Given these new definitions, we now define the target language. It only allows square
root and division free programs to appear in the body of a function or variable definitions
:

DEFINITION 4.5 (Target language). The language the transformation targets is:

P⊤
N√,/

:= let V = PN in P⊤
N√,/

| letf X V : Type → Type = PN ; P⊤
N√,/

| PN√,/

Of course our goal is still to preserve the semantics between the input and the trans-
formed program, therefore the specification of the transformation with functions is de-
fined as follows:

DEFINITION 4.6 (Transformation specification).
The transformation of program with functions, called FElim, has to satisfy the follow-
ing predicate:

∀p ∈ P⊤, FElim(p) ∈ P⊤
N√,/

∧ sem_ty_eq(p, FElim(p))

4.2. FUNCTION DEFINITION TRANSFORMATION 67

In order to extend the algorithm introduced in Chapter 3, we first define in Section 4.2
two transformations, that are similar to the Elimlet function. These transformations allow
us to eliminate square roots and divisions from function definitions and calls.

4.2 FUNCTION DEFINITION TRANSFORMATION

As mentioned previously, given a program that contains function definitions, we want to
remove square roots and divisions both from the arguments of the function calls and from
the bodies of the function definitions. We found a way to do both of these transformations
completely independently. The following example illustrates an elimination of square
roots and divisions in the function calls:

EXAMPLE 4.6 (Function input transformation).

letf f x : R → R = 3x +
√

a;

f(b) + f(c + d
√

e) > 0

−→
letf f (x1, x2, x3) : R × R × R → R = 3.(x1 + x2

√
x3) +

√
a;

f(b, 0, 0) + f(c, d, e) > 0

Where x1 + x2
√

x3 is a template of b and c + d
√

e.

This transformation has eliminated all the square roots and divisions that used to
appear in the arguments of the calls of function f. The next example illustrates the elimi-
nation in the function body:

EXAMPLE 4.7 (Function body transformation).

letf f (x1, x2, x3) : R × R × R → R = 3.(x1 + x2
√

x3) +
√

a;

f(b, 0, 0) + f(c, d, e) > 0

−→
letf f (x1, x2, x3) : R × R × R → R × R × R × R = (3.x1, 3x2, x3, a);

let (y1, y2, y3, y4) = f(b, 0, 0) in

let (z1, z2, z3, z4) = f(c, d, e) in

y1 + y2
√

y3 +
√

y4 + z1 + z2
√

z3 +
√

z4 > 0

Where y1 + y2
√

y3 +
√

y4 and z1 + z2
√

z3 +
√

z4 are templates of 3.(x1 + x2
√

x3) +
√

a

There are no more divisions in the body of the function, therefore the result of this new
function f (e.g., y1, y2, y3, y4) does not depend on square roots and divisions anymore.

We now formally define the transformation of the function input, still using a decom-
position and the constrained anti-unification introduced in Chapter 2.

4.2.1 Function input transformation

In this section we aim at defining a transformation that removes square roots and divi-
sions from the arguments of a function call, indeed in P⊤

N√,/
the function calls have to

68 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

be made on programs in PN, however as mentioned before, the elimination in Boolean
expression will be done later. Therefore we want to define a transformation Elim f in that
has the following specification:

DEFINITION 4.7 (Elim f in specification). Given f ∈ X , x ∈ V , A, B ∈ Type, b ∈ P and
sc ∈ P, we want the Elim f in function to compute x’, A′, b’ and sc’ such that:

∀ Env, Jletf f x : A → B = b; scKEnv 6= Fail =⇒
Jletf f x : A → B = b; scKEnv = Jletf f x’ : A′ → B= b’; sc’KEnv ∧

∀ f(p) ≤≤ sc’, p ∈ PB√,/

This means that the calls of the function are not made on numerical values computed
with square roots or divisions. However, Boolean values are still allowed to contain these
operations:

EXAMPLE 4.8 (Elimination in function calls).

letf f (x,y) : B × R → R = if x then y else 0;

f(if
√

s > t then (
√

b > c, d.
√

e) else (False, 1)) > 0

−→
letf f (x, y1, y2) : B × R × R → R = if x then y1.

√
y2 else 0;

f(if
√

s > t then (
√

b > c, d, e) else (False, 1, 0)) > 0

As in the variable definition case introduced in Section 3.7, this transformation is
done using a decomposition and the constrained anti-unification. However, in this case,
we have to compute a decomposition of the scope to extract the different function calls
of f. We assume that we have no nested calls of a function, indeed in that case we are not
able to transform the program as we will see in Section 4.4.

DEFINITION 4.8 (Scope f-decomposition). Given f a function variable and a program p

in P⊤, this program can be decomposed into

• a scope program part sc f of type Pn −→ P⊤ that represent the structure of
p where the function calls of f have been abstracted. Since there are no
nested calls, this function is analogous to the program part computed by the
Decompose function

• a list of programs (c1, ..., cn) in Pn such that

sc f (f(c1), ..., f(cn)) = p

Using the Decompose function from Definition 3.24, every program ci of this list
is then decomposed with a program part Ppi and a set of expressions ei,1, ..., ei,mi

such that
∀i, ci = Ppi(ei,1, ..., ei,mi

)

Then using constrained anti-unification we compute the common template T of
the set {ei,j | 1 ≤ i ≤ n∧ 1 ≤ j ≤ mi}, the set of the corresponding substitutions
{σ1,1, ..., σn,mn} that ∀ i, j, I(σi,j) ⊂ EB√,/ .

Therefore we have: p = sc f (f(Pp1(Tσ1,1, ..., Tσ1,m1)), ..., f(Ppn(Tσn,1, ..., Tσn,mn)))

4.2. FUNCTION DEFINITION TRANSFORMATION 69

By using the properties of the Decompose function, we already have the commutation
of the program parts and the template T when FV(T) ∩ BV(Ppi) = ∅ which is ensured
in the construction of T:

∀ i, Ppi(Tσi,1, ..., Tσi,mi
)

sem
= Tσ(Ppi(arg(σi,1), ..., arg(σi,mi

)))

Where Tσ is the function that corresponds to T as defined in the proof of Proposition 3.7.
We now define the commutation rule between the template and the scope program part:

DEFINITION 4.9 (Function input transformation). We inline the template of the calls in
the body of the function definition:

letf f x : A → B = b;

sc f (f(Pp1(Tσ1,1, ..., Tσ1,m1)), ..., f(Ppn(Tσn,1, ..., Tσn,mn)))

−→
letf f var(σ1) : A′ → B = b[x 7→ T];

sc f (f(Pp1(arg(σ1,1), ..., arg(σ1,m1))), ..., f(Ppn(arg(σn,1), ..., arg(σn,mn))))

where A′ is the type of the arg(σi,j)

Given some conditions on the variables of the template this rule preserves the seman-
tics:

PROPOSITION 4.1 (Function input transformation correctness). If
(Hp) ∀ i, ∀v ∈ FV(T), v /∈ BV(Ppi)

(HT) ∀ v ∈ FV(T), v ≤≤ x∨ v /∈ BV(sc f)

(Hx’) ∀ v ≤≤ x’, v ≤≤ x∨ v /∈ FV(b)

where x’ is, var(σ), then the rule from Definition 4.9 preserves the semantics.

Proof. The commutation of T and Ppi preserves the semantics using (Hp). Then, for
every call of f in sc and for every environment Env where this call is evaluated in, with
(f,<x,b,E>) ∈ Env, v /∈ BV(sc f) means that v is not redefined in sc f thus its value in Env

and E is the same. This gives:

Jf(Tσ(p))KEnv = JbKE⊕(x,JTσ(p)KEnv)

= JbKE⊕(x,JTKEnv⊕(x’,JpKEnv)
)

= JbKE⊕(x,JTKE⊕(x’,JpKEnv)
) using (HT) hypothesis

= JbKE⊕(x’,JpKEnv)⊕(x,JTKE⊕(x’,JpKEnv)
) using (Hx’) hypothesis

= Jb[x 7→ T]KE⊕(x’,JpKEnv)

= Jf(p)KEnv⊕(f,<x’,b[x 7→T],E>)

And < x’, b[x 7→ T], E > corresponds to the new definition of f. ◭

Application of the rule of Definition 4.9 enables the elimination of all square roots and
divisions from the numerical expression corresponding to the arguments of the calls of
the function f. This transformation inline the template of these calls in the body of the

70 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

definition. This transformation allows us to define the Elim f in function that respects the
specification from Definition 4.7:

DEFINITION 4.10 (Elim f in). The Elim f in function is the composition of 2 steps:

• Decompose the scope according to the Definition 4.8 with respect of the conditions
(Hp), (HT) and (Hx’) introduced in Proposition 4.1

• Apply the rule of Definition 4.9

We have defined a strategy that enables the elimination of the square roots and divi-
sions from the arguments of a function call, we now introduce the transformation of the
body of the definition to remove square roots and divisions from it.

4.2.2 Function output transformation

In this section we want to remove square roots and divisions from the body of a func-
tion definition since in P⊤

N√,/
the function bodies have to be programs in PN. As in the

input transformation the elimination of these operations in Boolean expressions will be
done later. Therefore we want to define a transformation Elim f out that has the following
specification:

DEFINITION 4.11 (Elim f out specification). Given f ∈ X , x ∈ V , A, B ∈ Type, b ∈ P and
sc ∈ P, we want the Elim f out function to compute B′, b’ and sc’ such that:

∀ Env, Jletf f x : A → B = b; scKEnv 6= Fail =⇒
Jletf f x : A → B = b; scKEnv = Jletf f x : A → B′= b’; sc’KEnv ∧

b’ ∈ PB√,/

This means that the new function can only return numerical values that do not contain
square root or division operations, these operations are still allowed in Boolean expres-
sions:

EXAMPLE 4.9 (Elimination in function body).

letf f x : R → B × R = if x > 0 then (x/2 > 3,
√

x) else (False, 1/x);

...f(a)

−→
letf f x : R → B × R × R = if x > 0 then (x/2 > 3, x, 1) else (False, 1, x);

...let (x1, x2, x3) = f(a) in (x1,
√

x2/x3)

The transformation of the output is even closer to the variable definition case than the
input one, indeed a function call can somehow be turned into a variable definition:

EXAMPLE 4.10. When ∀v ∈ FV(b), v ≤≤ x :
letf f x : A → B = b; ... f(a)

−→
...let x = a in let f = b in f

Since a does not contain any square root or division (due to the Elim f in transformation)

4.2. FUNCTION DEFINITION TRANSFORMATION 71

then, using the variable definition transformation Elimlet we get
...let x = a in let f’ = b’ in Tb

where Tb is a template of b. Yet b is the same for all the calls of f, thus this program can
be re-factorized:

letf f x : A → B′ = b’; ... let f’ = f(a) in Tb

Once again, the transformation relies on a decomposition, this time the body of the
function is decomposed as in the variable definition case (see Definition 3.22) with a
program part Pp, a template T and a list of substitution σ1, ..., σn such that:

b = Pp(Tσ1, ..., Tσn)

Given this decomposition we define the following transformation:

DEFINITION 4.12 (Function output transformation). We inline the template of the body
in the scope of the function:

letf f x : A → B = Pp(Tσ1, ..., Tσn);

sc f (f(a1),...,f(am))

−→

letf f x : A → B′ = Pp(arg(σ1), ..., arg(σn));

sc f (let var(σ) = f(a1) in T,...,let var(σ) = f(am) in T)

where B′ is the type of the arg(σi)

Once again we have to impose some conditions on the variables that are used in the
template in order to allow the elements to commute.

PROPOSITION 4.2 (Function output transformation correctness). If
(Hp) ∀v ∈ FV(T), v /∈ BV(Pp)

(HT1) ∀ v ∈ FV(T), v ≤≤ x’∨ ¬ v ≤≤ x

(HT2) ∀ v ∈ FV(T), (v ≤≤ x’∨ v /∈ BV(sc f))

(Hf) ∀ v ∈ FV(T), (v 6= f)

where x’ is, var(σ), then the rule from Definition 4.9 preserves the semantics.

Proof. (Hp) allows the commutation of T and Pp, we denote nb = Pp(arg(σ1), ..., arg(σn)).
Then, for every call of f in sc and for every environment Env where this call is evaluated

72 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

in, with (f,<x,b,E>) ∈ Env, we have:

Jf(ai)KEnv = JbKE⊕(x,JaiKEnv)

= JTσ(nb)KE⊕(x,JaiKEnv)

= JTKE⊕(x,JaiKEnv)⊕(x’,JnbKE⊕(x,JaiKEnv)
)

= JTKE⊕(x’,JnbKE⊕(x,JaiKEnv)
) using (HT1) hypothesis

= JTKEnv⊕(x’,JnbKE⊕(x,JaiKEnv)
) using (HT2) hypothesis

= JTKEnv⊕(x’,Jf(ai)KEnv⊕(f,<x,nb,E>))

= Jlet x’ = f(ai) in TKEnv⊕(f,<x,nb,E>) using (Hf) hypothesis

And < x, nb, E > corresponds to the new definition of f. ◭

This rule eliminates the square roots and divisions from the body of the function
definition. This enables us to define the Elim f out function that respects the specification
of Definition 4.11:

DEFINITION 4.13 (Elim f out). The Elim f out function is the composition of 2 steps:

• Decompose the body according to the Definition 3.22 with respect of the conditions
(Hp), (HT1), (HT2) and (Hf)

• Apply the rule of Definition 4.12

Given these two functions, Elim f in from Definition 4.10 and Elim f out from Definition
4.13, and the variable definition transformation defined in Definition 3.23 we define a
strategy that removes square roots and divisions from all the definitions of a program.

4.3 DEPENDENCY GRAPH

Application of the rules relatives to variable and function definitions is not as straight-
forward as in the case without functions. We have to find the right order to transform
the function and variable definitions in order to be sure that neither the functions calls
and definitions nor the variable definitions contain square roots or divisions. Indeed
the transformation Elim f in depends on the calls of this function. And these calls might
depend on variables that are defined in the scope of the function definition. Thus the in-
lining of templates used to transform these variable definitions might create new square
roots or divisions in these calls:

EXAMPLE 4.11 (Transformation order). Given the following program:

letf f x = x/2;

let y =
√

a in f(y) > 0

By following the program order and first eliminating square roots and divisions in f and
then in x we would get the following program:

letf f x = (x,2);

let y = a in let (f1, f2) = f(
√

y) in f1/ f2 > 0

The argument of a call of f still contains a square root.

4.3. DEPENDENCY GRAPH 73

This means that when we apply a transformation rule, we have to be sure that all
the variables and functions it depends on have already been transformed. In order to be
sure that we apply the rules in the right order we construct a dependency graph, that
associates to every variable x, and to every function input fi and function output fo, the
variables the corresponding transformation depends on. We call these elements, i.e., the
non functional variables and the function inputs and outputs, the transformation items.

The dependency in a variable x bound by a function f is a dependency in the function
input and not the variable itself since all these bound variables are transformed at the
same time when using the Elim f in rule. Moreover since we want a transformation item
to represent its definition, we only work on programs that only have unique variable
definitions (no variable is redefined):

DEFINITION 4.14 (Unique Variable Definition). A program p has unique variable def-
inition if every variable is only defined once. This means that, for every variable x the
following set contains at most one element:

{let v = b in sc | let v = b in sc ≤≤ p∧ x ≤≤ v} ∪
{letf f v = b; sc | letf f v = b; sc ≤≤ p∧ x ≤≤ v}∪

{letf x v = b; sc | letf x v = b; sc ≤≤ p}

And this set has to be empty if x is a free variable of p.

Every program can be easily transformed into a program with unique variable defi-
nition using variable renaming:

PROPOSITION 4.3. By choosing x’ and f’ such that ¬x’ ≪ (sc,b)∧¬f’ ≪ (sc,b), the following

rules preserve the semantics:

let x = b in sc −→ let x’ = b in sc[x 7→ x’]

letf f x = b; sc −→ letf f x’ = b[x 7→ x’]; sc

letf f x = b; sc −→ let f’ x = b; sc[f 7→ f’]

Given such a program with unique affectation we define the transformation item as-
sociated to every variable:

DEFINITION 4.15 (Corresponding transformation item). For every variable x ∈ X , we
define x⊤ the associated transformation item that corresponds to the only occurrence of
its definition:

if {let v = b in sc | let v = b in sc ≤≤ p∧ x ≤≤ v} = {let v = b in sc} then x⊤ = v

if {letf f v = b; sc | letf f v = b; sc ≤≤ p∧ x ≤≤ v} = {letf f v = b; sc} then x⊤ = fi
if {letf x v = b; sc | letf x v = b; sc ≤≤ p} 6= ∅ then x⊤ = xo

Therefore given such a program with unique variable definition we now present the
construction of the dependency graph. This graph is represented as list of edges. We
compute the graph in a context that represents the transformation item that is depending
on the current expression:

DEFINITION 4.16 (Definition Context). A context is a list of

74 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

• Variable definition context: VD(x) with x ∈ V

• Function definition context: FD(f , x) with (f , x) ∈ X × V

• Function application context: FA(f) with f ∈ X

• Boolean context: BC

In fact we are only interested in the items the corresponding Elimlet, Elim f in or Elim f out

transformation depends on and these are the ones involved in the template computation.
However, since the template of a Boolean expression is always a simple fresh variable,
no square root or divisions appear in such a template and therefore the dependencies of
a Boolean expression are empty. The Boolean context is used when we know that we are
computing a Boolean value (e.g., in the condition of an if then else).

We define the set of free variables of the numerical part of one expression in E. This set
contains the variables that, if they are substituted, may change the form of the template:

DEFINITION 4.17 (Free variables of the numerical part). Given e an expression in E, in
a program p, the set of free transformation items of the numerical part is defined by the
following rules:

FVN(c) = ∅ FVN(¬e1) = ∅

FVN((e1,e2)) = FVN(e1) ∪ FVN(e2) FVN(uop e1) = FVN(e1)

FVN(e1 op e2) = ∅ when op∈ Cbop ∪ Bbop FVN(fst e1) = FVN(e1)

FVN(e1 op e2) = FVN(e1) ∪ FVN(e2) FVN(snd e1) = FVN(e1)

FVN(f(p1)) = fo FVN(x) = x⊤

We now define the dependency graph. It associates to every transformation item the
other items that are depending on it. The graph is represented as a set of edges, (a, b)

meaning that b depends on a:

DEFINITION 4.18 (Dependency Graph). We denote the graph associated to the program
p ∈ P⊤ in the context C by (p, C)G :

(c, C)G = ∅ (¬e1, C)G = ∅

((e1,e2), C)G = (e1, C)G ∪ (e2, C)G (uop e1, C)G = (e1, C)G

(e1 op e2, C)G = ∅ when op∈ Cbop ∪ Bbop (fst e1, C)G = (e1, C)G

(e1 op e2, C)G = (e1, C)G ∪ (e2, C)G (snd e1, C)G = (e1, C)G

4.3. DEPENDENCY GRAPH 75

(if c then e1 else e2, C)G = (c,BC :: C)G ∪ (e1, C)G ∪ (e2, C)G

(let v = e1 in e2, C)G = (e1,VD(v) :: C)G ∪ (e2, C)G

(letf f x = e1 in e2, C)G = {(fi, fo)}(e1,FD(f , x) :: C)G ∪ (e2, C)G

(f(e), C)G = ∅ when C = BC :: C′ or C = ∅

(f(e),VD(x) :: C)G = {(fo, x)} ∪ (e,FA(f) :: VD(x) :: C)G

(f(e),FD(g, x) :: C)G = {(fo, go)} ∪ (e,FA(f) :: FD(g, x) :: C)G

(f(e),FA(g) :: C)G = {(fo, gi)} ∪ (e,FA(f) :: FA(g) :: C)G

(y, C)G = ∅ when C = BC :: C′ or C = ∅

(y,VD(x) :: C)G = {(y⊤, x)}
(y,FD(g, x) :: C)G = {(y⊤, go)}
(y,FA(g) :: C)G = {(y⊤, gi)}

If y⊤ does not exists (y is a free variable of the program), then there is no dependency.

In the following example we give the corresponding dependency graph

EXAMPLE 4.12 (Dependency graph).

letf f x = let y =
√

x+ a in (y+ x)/b;

letf g z = f(z)/e;

(f(c +
√

b) + g(d))

fi fo

gi go

y

The dependencies computed by this graph represents the variable that are involved
in the template computation in the input program:

PROPOSITION 4.4 (Dependency graph characterization). Given a program p and its de-

pendency graph pG we have the following properties:

∀ x, b, sc, let x = b in sc ≤≤ p∧ b = (Pp(e1, ..., en)) =⇒
∀ y /∈ FV(p), ∃i, y ∈ FVN(ei) ⇔ (y⊤, x) ∈ pG

∀ f, x, b, sc, letf f x = b; sc ≤≤ p∧ b = (Pp(e1, ..., en)) =⇒
∀ y /∈ FV(p), ∃i, y ∈ FVN(ei) ⇔ (y⊤, fo) ∈ pG

∀ f, x, b, sc, letf f x = b; sc ≤≤ p∧ sc = sc f (Pp1(e11, ..., e1m1), ..., Ppn(en1, ..., enmn)) =⇒
∀ y /∈ FV(p), ∃i, j, y ∈ FVN(eij) ⇔ (y⊤, fi) ∈ pG

We define an extension of the FVN notation. For any transformation item, in a pro-
gram p, we denote FVN(x, p) the variables that can appear in the template computation.

DEFINITION 4.19 (Variable template dependencies). We call the template dependencies
of a transformation item the transformation items corresponding to the free variable of
the numerical sub-expressions that have to be anti-unified:

FVN(x, p) = ∪iFVN(ei)

when let x = (Pp(e1, ..., en)) in sc ≤≤ p

FVN(fo, p) = ∪iFVN(ei)

when letf f x = (Pp(e1, ..., en)); sc ≤≤ p

76 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

FVN(fi, p) = ∪ijFVN(eij)

when letf f x =b;sc f (f(Pp1(e11, ..., e1m1), ..., f(Ppn(en1, ..., enmn)))) ≤≤ p

We dissociate the dependency graph and the FVN since the dependency graph will
be only computed once at the beginning of the transformation. However we will see
that this graph contains enough information to track the evolution of the FVN during the
transformation.

Firstly, notice that, in some cases, the dependency graph can contain cycles, one of the
most simple case with cycle is when a function is applied to itself:

EXAMPLE 4.13 (Cyclic dependency graph).

letf f x = let z = e in x +
√

z;

f(f(s)) fi fo

z

A cycle means that both templates of the input and of the output depend on each
other. We are not able to transform program whose dependency graph contains cycle at
this moment. As seen in Example 4.13, since for every function the edge (fi, fo) is in the
graph and a nested call (e.g., f (f (x))) introduces an edge or a path between fo and fi,
then having acyclic graphs prevents nested calls of functions and thus the Elim f in rules
can always be applied.

We will discuss in Section 4.5 prospectives to extend the transformation to handle
these cycles. However, there are lots of programs whose dependency graph is acyclic, or
programs that can easily be transformed into a program that has an acyclic dependency
graph. These programs with acyclic graphs can be transformed with the algorithm we
present in the following section. Given an acyclic dependency graph, we now present
how it is used to define the order to transform the variable and function definitions.

4.4 ORDER FOR VARIABLE DEFINITION TRANSFORMATION

We want to find a right order for the transformation of the variable and function defini-
tions. The main goal this order has to achieve is that when a variable or a function input
or output has been transformed by removing square roots and divisions from the body
of the definition or the call, then the transformations that will be applied after will not
introduce new square roots or divisions in the definitions or function arguments where
square roots and divisions have already been eliminated.

An edge of the dependency graph (x, y) represents the fact that the inlining of the
template by applying one of the rules Elimlet, Elim f in or Elim f out to the definition of x,
might introduce square roots or divisions in numerical part of the definition of y. This
means that, in the input program, the inlining relative to these rule can only modify the
direct dependencies of x. However, the template only contains variables that x was de-
pending on, thus, the inlining of this template might make y to depend on the variables
x was depending on. Therefore by doing repeated inlining, we aim at proving that the
variables that may introduce square roots or divisions in a variable y are the z such that
there is a path from y to z inside the graph of the input program. Since the transformed

4.4. ORDER FOR VARIABLE DEFINITION TRANSFORMATION 77

definitions have the same dependencies than the original ones, if we transform the vari-
ables by following the graph, then once a variable definition has been transformed, the
following transformations will not introduce any square roots or divisions in the parts
these operations have been eliminated from.

Therefore in a first step we present how a definition transformation might modify the
other definitions and then how we can arrange these transformation to avoid the creation
of square roots and divisions in already transformed definitions.

4.4.1 Variable inlining consequences

In order to formally state the evolution of the transformed program, we define the rela-
tion corresponding to the transformation of a variable or function input or output in a
program.

DEFINITION 4.20 (Variable transformation relation). The application of one of the rules
Elimlet, Elim f in or Elim f out in a program is represented by the following relation:

E lim(x,T)(p1, p2) =

p2 = p1[let x = b in sc 7→ Elimlet(let x = b in sc)] ∨
x = fi ∧ p2 = p1[letf f z = b; sc 7→ Elim f in(letf f z = b; sc)] ∨
x = fo ∧ p2 = p1[letf f z = b; sc 7→ Pnorm(Elim f out(letf f z = b; sc)))]

Where we use T as the template for the chosen Elimx rule and Pnorm is the normalization
algorithm from Definition 3.17 (we denote by Elimx the one of the rules Elimlet, Elim f in

or Elim f out corresponding to the transformation item x). The Pnorm reduction is used
because the Elim f out rule introduces variable definitions inside expressions. Thus we
need to extract these new variable definitions from these expressions before continuing
the transformation in order to still have a program in normal form P.

These transformation rules might modify the dependencies of the variables, indeed
these rules inline the template in the body or the scope of the definition. However we can
easily track the modified definitions since they are the ones that were depending on x.

PROPOSITION 4.5 (E lim and transformation dependencies). We can define the modifica-

tion in the transformation dependencies sets

∀p1, p2, x, T, E lim(x,T)(p1, p2) =⇒
∀ v ≤≤ p1, v 6= x,

x /∈ FVN(v,p1) =⇒ FVN(v,p2) = FVN(v,p1)∧
x ∈ FVN(v,p1) =⇒ FVN(v,p2) ⊆ (FVN(v,p1)\{x}) ∪ FVN(T) ∪ Fx

Where Fx are new fresh variables that may be introduced by the Pnorm reduction after we use the

Elim f out rule. Therefore F fi
= Fx = ∅ and ∀z ∈ F fo

, FVN(z,p2) = { fo} (z is defined by let z

= f (ei) in sc).

Proof. By using rule Elimlet then x is replaced by its template, by using Elim f in the bound
variables are replaced by the template, thus the variable in the dependency set after in-
lining are the one before the inlining plus the one of the template.

The rule Elim f out replaces f(e) by let x’ = f(e) in T and then after the reduction that
normalizes the program, the variables in the corresponding expressions are the original

78 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

ones plus the ones in T plus the fresh ones that have replaced the substitution variables
in T using the switch rules from Definition 3.17. ◭

We can also characterize the free variables of a template. Indeed in the template com-
putation introduced in Definition 3.26, the variable appearing in the template are either
the ones of the substitution or the ones in terms that are anti-unified using equality (using
the (EI) rule).

PROPOSITION 4.6 (Template variables). Given a set of expressions e1, ..., en, the free variables

of a template T with the associated substitutions σ1, ..., σn on the same domain computed as intro-

duced in Definition 3.26 are either the ones chosen for the substitution or free variables appearing

in at least one of the ei expressions:

∀ x ≤≤ T, x ∈ ∪iFVN(ei) ∪D(σ1)

The variable in the numerical part of the images of the substitution are also in the input expres-

sions:

∀ j, FVN(I(σj)) ⊆ ∪iFVN(ei)

Proof. The only terminating cases for the template computation are:

• the (V) rule, that produces a variable in the substitution, and the corresponding
expression in the image of the substitution

• the (EI) rule, that is applied when all the corresponding square roots are equal.
Therefore their free variables are in the numerical part of at least one the input
expressions (it is at least and not all since the replacement with elements of the Pos

set can introduce variables from the other expressions).

◭

Thus the variables of the template used in the transformation of x in p1 only depend
on the ones in FVN(x,p1):

PROPOSITION 4.7 (Template variables dependencies).

∀p1, p2, x, T, E lim(x,T)(p1, p2) =⇒
FVN(T) ⊆ FVN(x,p1) ∪ {x’}

Where x’ is the multi-variable corresponding to the substitution.

And then we have FVN(x’⊤,p2) ⊆ FVN(x,p1) or FVN(x’⊤,p2) = {fo} and FVN(fo,p2) ⊆
FVN(fo,p1) when x = fo

Proof. Using Proposition 4.6, the variables of the input expressions are in FVN(x,p1).
If a variable is in the substitution then the new definition in p2 is either:

• let x’ = Pp(arg(σ1), ..., arg(σn)) in sc[x 7→ T]]

and thus FVN(x’,p2) ⊆ FVN(x,p1)

since FVN(arg(σ1), ..., arg(σn)) ⊆ FVN(e1, ..., en)

4.4. ORDER FOR VARIABLE DEFINITION TRANSFORMATION 79

• letf f x’ = b[x 7→ T]; sc f (Pp1(arg(σ11), ..., arg(σnmn)))

and thus FVN(x’⊤,p2) ⊆ FVN(fi,p1)

since FVN(arg(σ11), ..., arg(σnmn)) ⊆ FVN(e11, ..., enmn)

• letf f x = Pp(arg(σ1), ..., arg(σn));

sc f (let x1’ = f(a1) in T[x’ 7→ x1’],...,let xm’ = f(am) in T[x’ 7→ xm’])

and thus FVN(xk’,p2) = {fo} and FVN(fo,p2) ⊆ FVN(fo,p1)

◭

The set of the transformation dependencies (FVN) is the set of variables such that, if
they are inlined, they may introduce square roots or divisions in the numerical part of
the body:

PROPOSITION 4.8 (Free variable of numerical expression dependency). Only the elimi-

nation rules corresponding to a dependency can change the subtype of a definition:

∀p1, p2, E lim(x,T)(p1, p2) =⇒
∀z, b, b’, sc, sc,

let z = b in sc ≤≤ p1∧ b ∈ PB√,/ ∧ let z = b’ in sc’ ≤≤ p2∧ b’ /∈ PB√,/ =⇒
x ∈ FVN(z,p1) ∧

∀ f ,
(∀e, f (e) ≤≤ p1 ⇒ e ∈ PB√,/) ∧ ∃e, f (e) ≤≤ p2 ∧ e /∈ PB√,/ =⇒

x ∈ FVN(fi, p1) ∧
∀ f , z, b, b’, sc, sc,

letf f z = b; sc ≤≤ p1∧ b ∈ PB√,/ ∧ let f z′ = b’; sc’ ≤≤ p2∧ b’ /∈ PB√,/ =⇒
x ∈ FVN(fo, p1)

Proof. The FVN(z,p) is the set of the free variables appearing in the definition of z (or
function calls) in p. Thus if we introduce a square root or a division in such definition
(or call) by using one of the Elim rules, then this square root comes from the template
inlining of x and the inlining only modify the parts that contains x as a free variable.
Since square roots and divisions introduction in Boolean expressions is not a concern for
the PB√,/ subtype, the elimination rule can only change the type of definition or call that
have x as a free variable in the numerical part of the definition (or call). ◭

We now know what variables might modify the subtype of a definition, thus we
present how iteration of such transformations can be arranged in order to avoid such
modifications after the transformations.

4.4.2 Definition transformation iteration

We only aim at transforming definitions that are in the input program, hence we are only
interested in tracking in the transformation dependencies the transformation items that
are in the input program. We first define the set of items corresponding to a program:

80 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

DEFINITION 4.21 (Transformation items of a program IT(p)). These are the items cor-
responding to all the definitions of the program

x ∈ IT(p) when ∃ b, sc, let x = b in sc ≤≤ p

{fi,fo} ⊆ IT(p) when ∃ x, b, sc, letf f x = b; sc ≤≤ p

Let us now consider the iteration of the Elimx transformations, we define the transi-
tive closure of the E lim relation:

DEFINITION 4.22 (Transformation iteration).

E lim[](p1, p2) ⇐⇒ p1 = p2

E lim(x,T)::l(p1, p2) ⇐⇒ ∃p, E liml(p1, p) ∧ E lim(x,T)(p, p2)

We only want to transform definitions and calls that are in the input program, thus we
want to see, at any point of the transformation, which FVN(z, p) contain transformation
items that are going to be transformed. This is why we defined the dependency graph,
since the transformation items that may end up in FVN(z, p) are the ones that have a path
to z. We define as usual a path in such a graph:

DEFINITION 4.23 (Path). We use the usual definition of a path, we say that there is a path
from x to z in G, denoted (x, z)∗ ∈ G if

∃ y1, ..., yn, (x, y1) ∈ G ∧ ∀ i, (yi, yi+1) ∈ G ∧ (yn, z) ∈ G

Then we can state the property for the transformation items in the program transfor-
mation process:

PROPOSITION 4.9 (Path and original item dependencies). Given a program p and its de-

pendency graph pG , the dependencies of a transformation item after a sequence of transformation

are included its predecessors in the initial graph.

∀p’, l, E liml(p, p’) ∧ ∀ x ∈ l, x ∈ IT(p) =⇒
∀ti ∈ IT(p), FVN(ti, p’) ∩ IT(p) ⊆ {it ∈ IT(p) | (it, ti)∗ ∈ pG}

Proof. By induction on l, Proposition 4.4 gives the empty list case. Then the induction
case: assume we have p1 such that E liml(p, p1)∧ E lim(x,T)(p1, p’), then using Proposition
4.5, we have 2 cases:

• x /∈ FVN(ti, p1) then the induction steps trivially applies

• x ∈ FVN(ti, p1) then FVN(ti, p’) = (FVN(ti,p1)\{x}) ∪ FVN(T) ∪ Fx

We have
Fx ∩ IT(p) = ∅ since they are new fresh variables and
(FVN(ti, p1)\{x}) ⊆ {it ∈ IT(p) | (it, ti)∗ ∈ pG} by induction.

Then using Proposition 4.7 we have:
FVN(T) ⊆ FVN(x, p1) ∪ {x′}:

Since x ∈ IT(p), using the induction with x, we have:
FVN(x, p1) ∩ IT(p) ⊆ {it ∈ IT(p) | (it, x)∗ ∈ pG}

and since x ∈ FVN(ti, p1) using induction with ti then:

4.4. ORDER FOR VARIABLE DEFINITION TRANSFORMATION 81

(x, ti)∗ ∈ pG .
Thus FVN(x, p1) ∩ IT(p) ⊆ {it ∈ IT(p) | (it, ti)∗ ∈ pG}
Finally, x′ is either equal to x (when the definition does not change) and thus in
FVN(ti, p1) or a fresh variable used for the template computation thus not in IT(p).

◭

This proposition only characterizes the set of variables involved in the template com-
putation of an item of the input program. We now describe the set of variables that may
modify an already transformed definition where variables have been renamed, first let
us define the first occurrence of this new defined variable:

PROPOSITION 4.10 (Variable transformation introduction). Given a program p, if a defi-

nition is in the transformed program and not in p, then there is one program that have introduced

it.

∀ p’, l, E liml(p, p’) ∧ ∀y ∈ l, y ∈ IT(p) =⇒
∀ti ∈ IT(p’)\IT(p), ∃ x, T, l′, p1, p2, E liml(p, p1) ∧ E lim(x,T)(p1, p2)

x :: l′ ≤≤ l ∧ ti /∈ IT(p1) ∧ ti ∈ IT(p2)

Where the sub-term relation on list l′ ≤≤ l means that there exists y1, ..., yn such that
y1 :: ... :: yn :: l′ = l. We denote the elements verifying this property by xintro(it), l′intro(it),
p1intro(it), p2intro(it) and Tintro(it).

Proof. Trivially, there is one program which is the first to introduce this new definition
and no definition is deleted except the ones in p. ◭

We can state that, if the order for transformation is correct, then once introduced, the
new variable only depends on variables that have already been transformed.

PROPOSITION 4.11 (Dependencies of transformed definition). Given a program p, its

dependency graph pG the dependency of the new definitions introduced by the transformation are

the ones of the input item:

∀p’, p” , l, x ∈ IT(p), E liml(p, p’) ∧ E lim(x,T)(p’, p”) ∧ ∀y ∈ l, y ∈ IT(p) =⇒
∀ti ∈ IT(p”)\IT(p’), FVN(ti, p”) ∩ IT(p) ⊆ {y | (y, x)∗ ∈ pG} ∪ {x}

Proof. The ti definition is introduced by the Elimx rule, then depending on the rule:

• if x is a non functional variable, then we have the following relation:

p” = p’[let x = b in sc 7→(let x′ = nb in sc[x 7→ T])]

where the only new item is x′ and its dependencies are the dependencies of nb, that
are included in the dependencies of b (the expressions in the substitution are sub-
terms of the input expression for the template computation). The dependencies of
b are the dependencies of x which is in IT(p) and thus Proposition 4.9 gives us the
property we want.

82 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

• if x = fi then

p2 = p1[letf f z = b; sc 7→letf f z’ = b[z 7→ T]; sc[f(e1) 7→ f(e’1),...,f(en) 7→ f(e’n)]]

There is no new variable definition

• if x = fo then

p2 = Pnorm(p1[letf f z = b; sc 7→letf f z = nb;

sc[f(e1) 7→ let y1 = f(e1) in T,...,f(en) 7→ let yn = f(en) in T]])

The new definitions, y1,...,yn are defined by f(.) thus their only dependency is fo = x

and the normalization process does not change this definition but only the names
of the yi

◭

Thus by choosing the right order we can ensure that the set of dependencies of a
transformed variable does not change later in the transformation process:

PROPOSITION 4.12 (Invariant dependencies of created variables).

∀p’, l, E liml(p, p’) ∧ ∀ x ∈ l, x ∈ IT(p) =⇒
∀ (x :: ls) ≤≤ l, {y | (y, x)∗ ∈ pG} ⊆ ls ∧ x /∈ ls =⇒

∀ ti ∈ IT(p’)\IT(p),

FVN(ti, p2intro) ∩ IT(p) = FVN(ti, p’) ∩ IT(p)

Proof. There exists a list l′ that represents the transformation that happened after the one
that created ti: l = l′@(xintro(ti), Tintro(ti)) :: lintro(ti) where @ is the list concatenation
operation. Now depending on xintro(ti):

• if xintro is a non functional variable, then using Proposition 4.11 we have:

FVN(ti, p2intro) ∩ IT(p) ⊆ {it ∈ IT(p) | (it, x)∗ ∈ pG}

Thus using the hypothesis of the list, we know that any y in {it ∈ IT(p) | (it, x)∗ ∈
pG} is in lintro and thus not in l′ (x can not be twice in l). By using Proposition 4.5,
we get that the FVN(ti, p2intro) set does not change due to the transformation in l′

• if xintro = fi there is no new definition

• if xintro = fo, FVN(ti, p2intro) = fo and since xintro /∈ l′, using Proposition 4.5, the set
does not change due to the elimination rules applied in l′.

◭

We can specify the elements in the FVN for the transformation items. Thus we can
state the property that the set of variables that remain to be transformed decreases. We
define the set of transformations that remain to be completed in order to remove square
roots and divisions from definitions or function calls:

4.4. ORDER FOR VARIABLE DEFINITION TRANSFORMATION 83

DEFINITION 4.24 (Set of transformation items with square roots or divisions). We de-
fine the set of the variable definitions and function calls that still contain square roots or
divisions in their numerical parts D(p):

• x ∈ D(p) when let x = b in sc ≤≤ p∧ b /∈ PB√,/

• fi ∈ D(p) when ∃ e /∈ PB√,/ , f(e) ≤≤ p

• fo ∈ D(p) when let f x = b; sc ≤≤ p∧ b /∈ PB√,/

Thus given a transformation order that respect the dependencies, we can state that
we can reduce this set to the empty set, since it is always included in the list of transfor-
mations that are left to be completed.

PROPOSITION 4.13 (Transformation order). Given a program p and its dependency graph,

the transformations that remain to be done are the ones of the input program that have not been

transformed yet:

∀p’, l, E liml(p, p’) ∧ ∀ x ∈ l, x ∈ IT(p) =⇒
∀ (x :: l′) ≤≤ l, {y|(y, x)∗ ∈ pG} ⊆ l′ ∧ x /∈ l′ =⇒ D(p’) ⊆ IT(p)\l

Proof. By induction on l, initiation case is trivial with l = [], then the induction case:

Assume the list is x :: l and p′′ such that E liml(p, p”) ∧ E limx(p” , p’) and it ∈ D(p’) then:
If it ∈ D(p”) then the induction hypothesis terminates
If it /∈ D(p) then, using Proposition 4.8, we have x ∈ FVN(it, p′′). Then depending on it:

If it /∈ IT(p) then using propositions 4.12 and 4.11, we have that:

FVN(it, p′′) ⊆ {y | (y, xinit(it))
∗ ∈ pG} ∪ {xinit(it)}

and thus (x, xinit(it))
∗ ∈ pG which contradicts the hypothesis of the list, we have

xinit :: linit ≪ l ∧ x /∈ l.

If it ∈ IT(p) then using propositions 4.9 we have that:

x ∈ {y | (y, it)∗ ∈ pG}
and then if it is in l then it contradicts the hypothesis on the list, therefore it has not been
transformed yet, it ∈ IT(p)\l ◭

Therefore, once every element in IT(p) has been transformed, there is no more defi-
nition or function call that contains any square root or division. The only thing to do is to
define this order of transformation that respect the hypothesis on the list, that is we only
apply a transformation after all the transformations it depends on have been done. We
define the following algorithm that transforms a program into an equivalent one where
all the variable definitions and function calls are in PB√,/ :

ALGORITHM 4.25 (Variable definition transformation ElimVar). Given a program p we
define the ElimVar function that transforms all the variable definitions and function calls:

i) G := pG , check that G is acyclic

ii) while G is not empty do

84 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

• Choose a root x

• Transform the definition of x using the according Elimlet, Elim f in or Elim f out

transformation

• Re-normalize the program with Pnorm from Definition 3.17 if the Elim f out rule
was used

• G := {(y, z) ∈ G | y 6= x}

iii) Transforms the variables that were not in pG , e.g., variables that are only used in
Boolean expressions let x =

√
2 in x > 1.4

PROPOSITION 4.14 (ElimVar correctness). The ElimVar algorithm preserves the semantics and

produces a program where all the variable definition are in PB√,/ .

Proof. Preservation of the semantics is ensured by the preservation induced by any of the
Elimlet, Elim f in or Elim f out and Pnorm rules. Since we only transform roots, the hypothe-
sis of Proposition 4.13 is verified, one node becoming a root only when all the variables it
depends on have been transformed. Since we transform all the variable definitions and
function definitions and calls from the input program, the D set is empty at the end, and
therefore the variable definitions and functions calls are in PB√,/ . ◭

Once all the variable definitions have been transformed, the only step left is to elimi-
nate the square roots and divisions that are left in the Boolean expressions. This is done
using the following algorithm that applies the ElimB transformation to any sub-term that
is a Boolean expression (whose head operators is either a Boolean or a comparison oper-
ator):

ALGORITHM 4.26 (Global elimination in Boolean expression). Using the ElimB algo-
rithm introduced in Definition 3.19, we define the global algorithm ElimG

B that eliminates
every square root and division in the Boolean sub-expressions of a program p:

• if p in Eu then

– if p = ¬ p2 or p = p1 op p2 with op ∈ Cbop ∪ Bbop then ElimB(p)

– else return p

• else apply recursive calls on the sub terms.

Then by first transforming the variable definition and calls into the PB√,/ subtype
and then eliminating the square roots and divisions in the Boolean expression we can
transform any program with function into a new program that is square root and division
free (as usual except in the returned numerical expression) that is a program in PN√,/ .

4.5. TOWARDS ACYCLIC GRAPHS AND LOOPS 85

ALGORITHM 4.27 (Main square root and division elimination with functions). The
main elimination algorithm is only the composition of these 2 steps:

FElim(p) = ElimG
B(ElimVar(p))

This function satisfies the specification of Definition 4.6 with the new definition of
PN√,/ :

THEOREM 4.15 (Main Elim function).

∀p ∈ Prog, FElim(p) ∈ PN√,/ ∧ sem_ty_eq(p, FElim(p))

This algorithm enables the transformation of any program with functions whose depen-
dency graph is acyclic, however this is not the case of every program we can build with
the language we introduced. We will now see how, in a future work, it might be possible
to transform programs with cyclic dependency graphs.

4.5 TOWARDS ACYCLIC GRAPHS AND LOOPS

The ideas introduced in this section have not been implemented or tested, even if some
programs have been manually transformed using such ideas as a pre-process of the trans-
formation. They are only leads to extend the transformation to larger sets of programs
with functions whose dependency graph contains cycles or even programs from a lan-
guage that contains loops.

The first idea to transform programs whose dependency graph is not acyclic is to
break the cycles with a duplication of the functions that are involved in these cycles.

4.5.1 Function duplication

If every function of the program is only called once then one might prove that the depen-
dency graph is acyclic. Therefore by duplicating function definitions as many times as
they are called, we have an acyclic graph. The Example 4.13 can be transformed into the
following program whose dependency graph is acyclic.

EXAMPLE 4.14 (Breaking cyclic dependency graph).
letf f1 x1 = let z1 = e in x1 +

√
z1;

letf f2 x2 = let z2 = e in x2 +
√

z2;

f1(f2(s)) f1i f1of2i f2o

z1z2

We do not have to duplicate every function for every call but we still can do this
transformation on functions involved into cycles until the graph becomes acyclic.

A cycle has to involve at least one function since the variables that a variable defini-
tion of x depends on were defined previously to x or in the body of the definitions, and
x can not be used in these parts of the program. In fact, for most of the dependencies
(x,y), x was defined previously to y or in its definition body where y is not yet defined.
The only special case is (x, fi) (x in a call of f) where fi depends on x and x can be de-
fined in the scope of f , this is the only backward edge and it is responsible of the cyclic
dependencies.

86 CHAPTER 4. TRANSFORMING FUNCTIONS AND FUNCTION CALLS

In some cases we also can handle the cyclic dependencies by using a template fixpoint
without having to duplicate the functions.

4.5.2 Template fixpoint

Let us consider the following program whose dependency graph contains a cycle:

EXAMPLE 4.15.
let a = e in

letf f x = 2x + 3
√

a;

letf g y = f(y) + y + 5;

f(g(n)) > 0 fi

fo gi

go

a

Even if this program contains a cycle (fi → fo → go → fi) it can be transformed, using
s + t · √a as a template for f and g:

EXAMPLE 4.16 (Common template with dependency graph).
let a = e in

letf f (x1,x2) = (2x1,2x2 + 3);

letf g (y1,y2) =

let (u,v) = f(y1,y2) in (y1+u+5, y2+v);

let (f1,f2) = f(g(n)) in f1 + f2 ·
√

a > 0

This is because s + t · √a is what we call a fixpoint template for the expressions x +

y + 5 and 2x +3 · √a, that is s + t · √a is a template of the expression after replacing the
free variable by this template itself.

DEFINITION 4.28 (Fixpoint Template). Given two terms t and e and their set of substi-
tution variables x1, ..., xn and y1, ..., ym then t is a constrained fixpoint template for e if t is
a constrained template of

e[y1 7→ t[x1 7→ y11; ...; xn 7→ y1n]; ...; ym 7→ t[x1 7→ ym1; ...; xn 7→ ymn]]

Where the yij are new fresh variables

EXAMPLE 4.17.

2(s + t ·
√

a) + 3 ·
√

a = 2s + (2t + 3) ·
√

a

(s1 + t1 ·
√

a) + (s2 + t2 ·
√

a) + 5 = (s1 + s2 + 5) + (t1 + t2) ·
√

a

We do not know yet how to compute such a template and it seems to us that it does
not always exists, for example a fixpoint template for

√
x might not be possible since

the depth of the most nested square root in
√

t is one more than the deepest one in t.
However, when they exist, such fixpoints could be used to handle some loops, as in the
following imperative program:

EXAMPLE 4.18 (Fixpoint template for loops).

4.5. TOWARDS ACYCLIC GRAPHS AND LOOPS 87

while x < 0 do

x := 2x +
√

a;

done

−→

x1 := x;

x2 := 0;

while x1× x1 - x2× x2 × a < 0 do

x1 := 2x1;

x2 := 2x2 + 1;

done

Once again these are only hints for the extension of the program transformation to
richer languages and we have not tackled this problem. However it could be worth to
study the cases where such fixpoints exist and therefore enable the transformation of such
programs.

4.5.3 The Division Case

There is one particular case that always allows a fixpoint template, it is the absence of
square roots. For expressions that only contain divisions and no square roots then s/t

is a fixpoint template for these expressions. Indeed, every expression that is square root
free can be transformed into an equivalent expression with only one head division using
the reduction rules from Definition 1.6. Therefore division can be eliminated from any
program by only using 2 variables, representing the numerator and the denominator for
every variable of the input program.

PROPOSITION 4.16 (Division elimination). Given a program with no square root then s/t

can be used as the template by any of the Elimlet, Elim f in and Elim f out rules.

This template would also allow us to transform any programs, with loops, recursion
or any other features, by using 2 variables for numerator and denominator:

EXAMPLE 4.19. Using the syntax of OCaml with the recursive definition let rec:

let rec f x =

if x > 1

then f(x/(x+1))

else x / 3;

let g x = f(x + b);

f(a/c + g(d)) > e

−→

let rec f xn xd =

if xn× xd > xd× xd

then f(xn,(xn+xd))

else (xn,3xd);

let g xn xd = f(xn + bxd,xd);

let (gn,gd) = g(d,1) in

let (fn,fd) = f(a×gd + c×gn, c×gd) in

fn× fd > e × fd× fd

Therefore any program with only divisions can easily be transformed into a division
free program. Transformation is more complicated with square root since there is no such
normal form that every expression can take.

Conclusion We have now extended our program transformation to programs with func-
tion that satisfies a certain hypothesis on the dependencies between the variable and
functions that are defined in it. Once again, we used the anti-unification introduced in
Chapter 2 as the core of our transformation and introduced an extended notion of anti-
unification that might enable us to transform program from an even richer language.
This concludes the description of the transformation algorithm, in the following part we
present how we have been able to prove in PVS and implement in OCaml such a trans-
formation.

PART II

IMPLEMENTATIONS AND

APPLICATIONS

89

5
FORMAL PVS PROOF

P
ROGRAMS WE ARE WILLING TO TRANSFORM require a very high level of safety, there-
fore we want to use formal proof assistant to achieve such a goal. In particular, we
want to ensure that the transformation is correct, that means it preserves the se-

mantics as introduced in its specification in Definition 4.6. Therefore we formalized this
transformation in the PVS proof assistant [ORS92] and proved its correctness. The proof
is done on the transformation without function definitions corresponding to the program
Elim introduced in Chapter 3. This chapter follows the description of the algorithms in
Chapter 1 and Chapter 3. We focus on the specificity of the formalism of the proof, the
proof itself being described in these chapters. In order to present this formal proof, we
briefly introduce the PVS proof assistant and then present how we have specified the
transformation and proved its correctness in this system.

5.1 THE PVS PROOF ASSISTANT

The PVS proof assistant is based on classical typed logic with an extended use of powerful
sub-typing features. Indeed many correctness properties are expressed in the type of the
objects instead of using predicates. The specification of an algorithm and the related
proofs in PVS mainly rely on the PVS sub-typing. Given a type T and a predicate P of type
T –> B, {x : T | P(x)} is the subtype of T of all elements x of type T that verify P, this
type can also be denoted (P). Then every definition of a function in PVS can be specified
using these subtypes, e.g.,

f(x : (P)) : {x’ : T’ | P’(x,x’)}

defines a partial function on T that takes only elements x of type T that verify P and
returns elements of type T’ that verify a relation with the input, i.e., P’(x,x’). When PVS

typechecks such a function, it generates Type Check Conditions (TCC) where we have to
prove that:

i) (Completeness) f can be applied to every element of type (P)

Indeed there are no partial functions in PVS, therefore we have to prove that for
every input, one case of the function deals with it. Using a predicate as P allows us
to restrict this domain and therefore to define these partial functions.

92 CHAPTER 5. FORMAL PVS PROOF

ii) (Soundness) ∀ x : T, f(x) : T’ ∧ P’(x,f(x))

This is the correctness lemma of the function, we want to ensure that the element
returned by the function verifies its specification.

iii) (Recursive function) if f is recursive, then for every recursive call on e:

a) (Recursive call) P(e)
Indeed we have to be sure that the recursive calls are made on elements that
are in the domain of the function.

b) (Termination) measure x by <

In order to ensure the termination we have to provide a measure that de-
creases, according to a well founded order, in the definition of f. Then we
need to prove that recursive calls are made on terms smaller than the input.

A well founded order is defined in PVS as an order such that every set has a minimal
element, therefore there can exist no infinite decreasing sequence:

well_founded ?(<): bool =

(FORALL p:

(EXISTS y: p(y))

IMPLIES (EXISTS (y:(p)): (FORALL (x:(p)): (NOT x < y))))

The type of a function can also be restricted using the HAS_TYPE judgment, e.g., given two
types T and T’, two subtypes S of T and S’ of T’ and a function:

f (x : T) : T’

then we can state the following judgment:
f (x : S) HAS_TYPE S’

and once the according type checking conditions are proven, use either T’ or S’ as type
of f(x) when x has type S. Therefore most of the time we will not give any correctness
lemmas for the functions but we will encode the properties we need in the type. Indeed,
properties encoded in the type are much easier to prove since the type checking condition
generation already decomposes the function according to the different cases.

EXAMPLE 5.1 (PVS type checking condition generation). Given the following function
that adds an element to a list if the element is not yet in the list:

add(x : T, l : list[T]) : RECURSIVE {nl : list[T] | member(x,nl)} =

CASES l OF

null : cons(x,l),

cons(a,q) : IF x = a THEN l ELSE cons(a,add(x,q)) ENDIF

ENDCASES

MEASURE l BY <<

PVS generates the following set of type checking conditions that have to be proved to
complete the type-checking of the definition:

add_TCC1: OBLIGATION

FORALL (x: T, l: list[T]): l = null IMPLIES

member[T](x, cons[T](x, l));

add_TCC2: OBLIGATION

FORALL (x: T, l: list[T], a: T, q: list[T]):

x = a AND l = cons(a, q) IMPLIES member[T](x, l);

5.2. PVS FORMALIZATION 93

add_TCC3: OBLIGATION

FORALL (x: T, l: list[T], a: T, q: list[T]):

NOT x = a AND l = cons(a, q) IMPLIES <<[T](q, l);

add_TCC4: OBLIGATION

FORALL (x: T, l: list[T],

v:

[d1: {z: [T, list[T]] | z‘2 << l} ->

{nl: list[T] | member(d1 ‘1, nl)}],

a: T, q: list[T]):

NOT x = a AND l = cons(a, q) IMPLIES

member[T](x, cons[T](a, v(x, q)));

where << is the sub-term order on lists.

Therefore if x is already in l then add(x,l) = l, this can be stated as a lemma or a
new typing judgement:

add_member : LEMMA

FORALL (x : T, l : list[T]) :

member(x,l) IMPLIES l = add(x,l)

add_member_st : RECURSIVE JUDGEMENT

add(x : T, l : list[T] | member(x,l))

HAS_TYPE { nl : list[T] | nl = l}

Given these features we describe the proof that the program transformation Elim as de-
fined in 3.29 satisfies its specification as stated in Theorem 3.9.

5.2 PVS FORMALIZATION

The first step of the formalization is to define the abstract syntax of the program that
corresponds to the programs in Prog introduced in Definition 3.1. Thus we define the
following datatype in PVS:

DEFINITION 5.1 (PVS abstract syntax).
program : DATATYPE

BEGIN

value(va : V) : value?

const(co : constant) : const?

uop(uop : unop , pr : program) : uop?

bop(bop : binop , pl : program , pr : program) : bop?

pair(pl : program , pr : program) : pair?

fst(pr : program) : fst?

snd(pr : program) : snd?

letin(x : variable , body : program , scope : program) : letin?

ift(fm : program , prt : program , prf : program) : ift?

END program

V is an abstract set of identifier for variables, however in this PVS specification and
proof we do not handle multi-variable definition, therefore we use projections to replace
the multi-variable definitions:

EXAMPLE 5.2.

let (x,y) = e in sc −→ let x = e in sc[x 7→ fst(x), y 7→ snd(x)]

94 CHAPTER 5. FORMAL PVS PROOF

A PVS datatype also includes several functions for each constructor that characterize
the head constructor and allow direct access to the sub-terms:

letin?(p) = EXISTS x,p1 ,p2 : p = letin(x,p1,p2)

body(letin(x,p1 ,p2)) = p1

Once again, after defining the syntax we need to define in PVS the type of a program
and its semantics. The type of the program can be numerical, Boolean, a pair, or a failure,
it is represented with the following datatype:

type_value : DATATYPE

BEGIN

numt: numt?

boolt: boolt?

pairt(tl : type_value , tr : type_value): pairt?

END type_value

mb_type : TYPE = Maybe[type_value]

where Maybe[T] is equivalent to the option type which is T ∪ {None} where None repre-
sent the failure of the type inference. Therefore we define the type inference of a program
as the following function:

type_infer(p : program , env : type_environment) : RECURSIVE mb_type

which returns the type in the environment that associates a value to every variable:
type_environment : TYPE = [V -> type_value]

In the same way we define the semantics of a program:
prog_value : DATATYPE

BEGIN

numv(re : real): numv?

boolv(bo : bool): boolv?

pairv(vl : prog_value , vr : prog_value): pairv?

END prog_value

program_environment : TYPE = [V -> prog_value]

mb_value : TYPE = Maybe[prog_value]

semantics(p : program , env : program_environment) : RECURSIVE mb_value

Given the definition of the semantics and types, their preservation, as introduced in Def-
inition 3.9 corresponds to the following predicate:

preserves_semantics_and_type(p : program)(pp : program) : bool =

(FORALL tenv : (some?(type_infer(p,tenv))) IMPLIES

type_infer(p,tenv) = type_infer(pp,tenv)) &

(FORALL env : (some?(semantics(p,env))) IMPLIES

semantics(p,env) = semantics(pp,env))

As in Chapter 3 we also define some subtypes of the program datatype that allow square
roots and divisions to appear in different sub-terms, they correspond to the languages
introduced in Definition 3.5, 3.7 and 3.8. Therefore we define some inductive predicate
to characterize these languages, e.g.,

is_expression(p : program) : INDUCTIVE bool =

is_expression_unit(p) OR

pair?(p) & is_expression(pl(p)) & is_expression(pr(p))

5.3. PROGRAM NORMAL FORM 95

is_program_P(p : program) : INDUCTIVE bool =

is_expression(p) OR

letin?(p) & is_program_P(body(p)) & is_program_P(scope(p)) OR

ift?(p) & is_program_P(fm(p)) &

is_program_P(prt(p)) & is_program_P(prf(p))

Our goal is to define an executable function that eliminates square roots and divisions
from Boolean parts of a program and that preserves the semantics and type. Given the
previously defined predicates, we specify the main function we want to define:

DEFINITION 5.2 (Main Transformation).
main_elim(tenv)(p : program | some?(type_infer(p,tenv))) :

{pp : program_N_sq | preserves_semantics_and_type(p)(pp)}

Where program_N_sq corresponds to the PN√,/ set of programs defined in Definition
3.8 and tenv is a typing environment provided for the proof of the transformation. In-
deed the transformation is complete and terminates only on well typed programs, having
a program well typed allows us to restrict the syntactic forms that are contained in the
program we transform, for example in a well typed expression, a projection can only be
applied to a variable or another projection:

proj_subterm_restrict : LEMMA

FORALL (x : well_typed_program | is_expression(x)), (y : program) :

(fst?(x) OR snd?(x)) & y << x IMPLIES fst?(y) OR snd?(y) OR value?(y)

Therefore in order to ensure such properties, we need to have an environment where the
program is well typed. It has to be explicit in order to compose these properties e.g.,

(some?(type_infer(p1,tenv))) & (some?(type_infer(p2,tenv))) IMPLIES

(some?(type_infer(pair(p1 ,p2),tenv)))

Remark 5.1. This explicit environment is only used to ensure the termination by enforc-
ing syntactic properties of the program we transform. Therefore it is only used in the type
and never in the body of the transformation, the transformed program does not depend
on the environment we provided.

We now present how to implement in PVS the transformation algorithm introduced in
Chapter 3. The first step of this algorithm is to transform any program into an equivalent
one in normal form, i.e., that satisfies the is_program_P predicate.

5.3 PROGRAM NORMAL FORM

A program is a program in normal form, i.e., in p_norm = (is_program_P), when it cor-
responds to the definition of P introduced in Chapter 3. Before presenting this normal-
ization we first need to define a substitution that does not capture variables.

5.3.1 Substitution

The substitution that replaces the variable x by the program e in p is defined by the
function replace that has the following type:

96 CHAPTER 5. FORMAL PVS PROOF

replace(x : V, e,p : program) : RECURSIVE { pp : program |

(FORALL (env) : some?(semantics(e,env)) IMPLIES

semantics(p,env WITH [(x) := val(semantics(e,env))])

= semantics(pp,env)) &

(FORALL (tenv) : some?(type_infer(e,tenv)) IMPLIES

type_infer(p,tenv WITH [(x) := val(type_infer(e,tenv))])

= type_infer(pp,tenv)) &

(let_number(e) = 0 IMPLIES let_number(pp) = let_number(p))} =

The substitution preserves the behavior, that is the type and the semantics when the
expression used to replace the variable does not fail. The let_number property will be
used to prove termination of recursive call on programs where some variables have been
replaced. It also allows us to prove the termination of the replace function itself using
the composition of the let_number measure and the program sub-term order introduced
in Section 3.5.1. Indeed in the variable definition case, to avoid variable capture, we make
a recursive call on program where a variable has already been substituted:

replace(x : V, e,p : program) ... =

CASES p OF

...

letin(y,e1 ,e2) :

IF y = x

THEN letin(y,replace(x,e,e1),e2)

ELSIF notin ?(get_FV(e))(y)

THEN letin(y,replace(x,e,e1),replace(x,e,e2))

ELSE

LET yp =

fresh_name_fv(y,add(x,disjunct_union(get_FV(e2),get_FV(e)))) IN

letin(yp ,replace(x,e,e1),replace(x,e,replace(y,value(yp),e2)))

ENDIF ,

Therefore we have to prove that for a certain order replace(y,value(yp),e2) < e2 this
is done using this <letins order. The substitution being defined we present the program
normalization.

5.3.2 Program Normalization

In Definition 3.17 we introduced a set of rules that enables the transformation of any
program into an equivalent one in p_norm. This transformation has to preserve the se-
mantics and type of the program but we also need to prove that it terminates. In a pro-
grams in p_norm, the variable definitions and tests never appear in arguments of other
operators such as Boolean or arithmetic ones. Therefore we will first define functions
that transform the application of operator and projection to a program in normal form
into a program where such operator is no longer the head one, for example we present
the switch with unary operator:

uop_p_norm_switch(op: unop)(p: p_norm | well_typed_program ?(uop(op ,p))):

RECURSIVE {pp: p_norm | preserves_semantics_and_type(uop(op ,p),pp) } =

CASES p OF

letin(x,e1 ,e2) :

letin(x,e1 ,uop_p_norm_switch(op)(e2)),

ift(f,e1,e2) :

ift(f,uop_p_norm_switch(op)(e1),uop_p_norm_switch(op)(e2))

ELSE uop(op ,p)

5.4. ELIMB PROOF 97

ENDCASES

MEASURE p BY <<

We define the same kind of function for the binary operators, the projections and the pair.
Given these functions, we can define the main function that apply the switch to all the
operators that contain variable definition or test:

p_norm_red(p : (prog_not_clear) | well_typed_program ?(p)) :

RECURSIVE { pp : p_norm | preserves_semantics_and_type(p,pp) } =

CASES p OF

uop(op,e1) :

LET p1 = p_norm_red(e1) IN uop_p_norm_switch(op)(p1),

...

letin(x,e1 ,e2) :

letin(x,p_norm_red(e1),p_norm_red(e2)),

ift(f,e1,e2) :

ift(p_norm_red(f), p_norm_red(e1), p_norm_red(e2))

ELSE p

ENDCASES

MEASURE p BY <<

This implementation of the reduction might not be the most efficient, however, the ter-
mination of this strategy is quite easy to prove and given the size of the programs we
transform and that this reduction is only used once, the efficiency is not an issue. Thus,
this reduction produces a program in p_norm that is equivalent if the input program does
not fail. Indeed we need this hypothesis since we want to reduce the projections on pairs
e.g., fst(pair(e1,e2)) −→ e1 that would change the semantics if e2 were failing in the
input program. The first step of the transformation being introduced, in the following
section we present the proof of another of the algorithms used in the global transforma-
tion, the ElimB algorithm introduced in Chapter 1.

5.4 ElimB PROOF

The ElimB algorithm is completely formalized and proved in the PVS proof assistant,
indeed we have been able to entirely define and prove a function with the following
type:

elim_bool(tenv)(e : expr | wt_bool_expr(tenv)) :

RECURSIVE { es : (is_bool_expr) | preserves_semantic_and_type(e)(es)} =

Where wt_bool_expr(tenv) is the set of expressions that have a type bool in the envi-
ronment tenv and (is_bool_expr) is the Blet subtype introduced in Definition 3.7. This
function relies on the elimination of the square roots and divisions in all the comparisons
that are sub-terms of this Boolean expression. A comparison is a Boolean expression
whose head constructor is a comparison:

comparison(tenv) : TYPE = { x : typed_program(tenv ,boolt) |

bop?(x) & is_compop(bop(x)) &

is_num_expression_unit(pl(x)) & is_num_expression_unit(pr(x))}

where is_compop(op) means that op is a comparison operator, i.e., in Cbop as defined
in Definition 3.7 and (is_num_expression_unit) is the subtype of the programs corre-
sponding to the set of arithmetic expressions as introduced in Definition 1.1. Therefore
the core of the elimination of square roots and divisions in Boolean expression will be

98 CHAPTER 5. FORMAL PVS PROOF

done on such comparison expressions. The ElimB algorithm introduced in Chapter 1
relies on a sequence of four transformations:

i) Factorize the arithmetic expressions with division as head operator

ii) Eliminate this head

iii) Factorize the arithmetic expressions with one top level square root

iv) Eliminate this square root

By iterating this sequence we eliminate all the square root and division operations in
the original comparison, this iteration terminates since the number of sub-terms whose
square root is the head operators strictly decrease after the sequence. Therefore in order
to prove the correction of this transformation we have to prove that:

• each rule preserves the semantics and the type

• each rule preserves the number of square root sub-terms

• at least one rules makes the number of square root strictly decrease

It is the rule iv which eliminates the chosen square root that makes this square root sub-
terms number strictly decrease. We now detail how these four rules are implemented so
that we can prove these properties.

5.4.1 Head Division Form

We define the inductive predicates stating that a numerical expression is in PF (denoted
by pf? in PVS) or HDF (hdf?) forms as introduced in Definition 1.5. Therefore the
first step of the transformation is to reduce both arguments of the comparison into these
forms, this is done with the following function:

to_hdf(tenv)(e : wt_num_expr(tenv)) : RECURSIVE

{ eout : wt_num_expr(tenv) | hdf?(eout) &

preserves_semantic_and_type(e)(eout) & preserve_sq(tenv)(e,eout) }

This function implements the set of reduction rules introduced in Definition 1.6 extended
with the rules when both arguments of the head operator have a division as head opera-
tion:

DEFINITION 5.3 (Head division reduction).

e1

e2
+

e3

e4
−→ e4 × e1 + e2 × e3

e2 × e4

e1

e2
× e3

e4
−→ e1 × e3

e2 × e4

e1
e2
e3
e4

−→ e1 × e4

e2 × e3

Therefore the implementation of the reduction is straightforward, for any expression
bop(op,e1,e2) we first reduce e1 and e2 and then depending if they have a division as
head operation or not, we apply the according rule. The termination is straightforward
since recursive calls are only made on direct sub-terms. Therefore we can prove that this
transformation:

5.4. ELIMB PROOF 99

• Preserves the semantics and the type, i.e., preserves_semantic_and_type(e)(eout)

using the properties of the division in the arithmetic theory

• Returns a program in HDF form, i.e., hdf?, the only division not under a square
root is the head operator

• Preserves the square root sub-terms since we do not reduce under the square roots:
preserve_sq(tenv)(cin , cout : wt_num_expr(tenv)) : MACRO bool =

FORALL (x : wt_num_expr(tenv)) :

(uop(sqrt ,x) << cout OR uop(sqrt ,x) = cout) IMPLIES

(uop(sqrt ,x) << cin OR uop(sqrt ,x) = cin)

This predicate states that the square roots that are sub-terms of the output were
sub-terms of the input.

This first transformation being implemented we can now define the elimination of the
head division in a comparison between two expressions in HDF.

5.4.2 Division Elimination

In the PVS specification we only use the division elimination that does not use the case
distinction, i.e., this transformation simply implements the rules introduced in definitions
1.7 and 1.9. It allows us to define a function that has the following type:

elim_div_rule(tenv)(p : comparison(tenv)) :

{ x : comparison(tenv) | pf?(pl(x)) & pr(x) = zero &

preserves_semantic_and_type(p)(x) & preserve_sq_comp(tenv)(e,x) }

Once again this function:

• produces a comparison between an expression in PF form and 0

• preserves the semantics and the type, using lemmas such as:
square_div_mult_gt : LEMMA

n1/d1 > n2/d2 IFF n1 * d1 * d2 * d2 - n2 * d1 * d1 * d2 > 0

• preserves the square roots sub-terms

The right argument of the comparison is now zero, therefore the next step is the factor-
ization of the left one using one top level square root.

5.4.3 Square Root Factorization

We want to define a function that, given a square root argument q, factorizes an expres-
sion in PF in a form p.

√
q + r, this is done by the following function:

factorize_sq(tenv)(e : pnf_type(tenv))(sq : wt_num_expr(tenv)) :

RECURSIVE { e1,e2 : wt_num_expr(tenv) |

pre_sem_type_w_sq(e)(uop(sqrt ,sq))

(bop(plus ,bop(times ,e1 ,(uop(sqrt ,sq))),e2))}

100 CHAPTER 5. FORMAL PVS PROOF

Semantics and type preservation In order to preserve the semantics and the type, we
have to ensure that not only the input expression e but also the square root expression do
not fail. Indeed when the reference square root

√
sq is not a sub-term of the expression

we want to factorize e then we transform e into 0.
√

sq + e. This may happen in the binary
operator case since the square root is not always a sub-term of both arguments. Moreover,
for efficiency, we do not want to check that the reference square root is a sub-term of each
argument but make straightforward calls:

bop(op,e1,e2) :

LET (p1,r1) = (factorize_sq(tenv)(e1)(sq)) IN

LET (p2,r2) = (factorize_sq(tenv)(e2)(sq)) IN

IF plus?(op)

THEN (bop(plus ,p1 ,p2),bop(plus ,r1 ,r2))

ELSIF ...

Therefore, to ensure the preservation of the semantics we have to suppose that the refer-
ence square root does not fail in the environments where we want to prove the semantics
and type equality. This is why we use a new predicate for semantics and type equiva-
lence:

pre_sem_type_w_sq(p: program)(sq: program)(pp: program) : bool =

(FORALL (tenv) : (some?(type_infer(p,tenv)) &

numt?(val(type_infer(p,tenv))) & some?(type_infer(sq ,tenv))) IMPLIES

type_infer(p,tenv) = type_infer(pp,tenv)) &

(FORALL (env) : (some?(semantics(p,env)) &

numv?(val(semantics(p,env))) & some?(semantics(sq ,env))) IMPLIES

semantics(p,env) = semantics(pp,env))

Since the reference square root that will be chosen is always a sub-term of the expression
we want to transform, we will be able to prove these hypothesis and therefore get the
semantics and type equivalence.

To prove the termination In order to prove the termination of the transformation we
need to make the number of square root sub-term decrease, therefore we have to ensure
that uop(sqrt,sq) is not a sub-term of the returned arguments. In order to have this
property we need to chose a top level square root (that is not nested). As mentioned
in Proposition 1.4 every expression that contains a square root has at least one top level
square root, for example we can take the maximum for the sub-term order

max_subterm(tenv)(l : { ls : list[wt_num_expr(tenv)] | cons?(ls)}) :

RECURSIVE { p : wt_num_expr(tenv) | member(p,l) &

FORALL (x : wt_num_expr(tenv)) : member(x,l) IMPLIES NOT p << x } =

By applying this function to the list of the square root sub-terms of a program, we have
this top level square root. By using such a square root for the factorization we can ensure
that the square root sub-terms of the returned expressions e1 and e2 were square root of
the input and are different from sq as stated by the following predicate.

prsrv_sq_ref(tenv)(e : wt_num_expr(tenv))

(sq : wt_num_expr(tenv))(x : wt_num_expr(tenv)) : MACRO bool =

FORALL (s: wt_num_expr(tenv)) :

(uop(sqrt ,s) << x OR uop(sqrt ,s) = x) IMPLIES

(s /= sq AND (uop(sqrt ,s) << e

OR uop(sqrt ,s) = e OR uop(sqrt ,s) << uop(sqrt ,sq)))

Thus we can add the following type to the factorization function:

5.4. ELIMB PROOF 101

factorize_square_root_preserve_sq : RECURSIVE JUDGEMENT

factorize_square_root(tenv)(e : pnf_type(tenv))

(sq : wt_num_expr(tenv) | (FORALL (s : wt_num_expr(tenv)) :

((uop(sqrt ,s) << e OR uop(sqrt ,s) = e) IMPLIES

NOT (uop(sqrt ,sq) << (uop(sqrt ,s)))))) HAS_TYPE

{e1 ,e2 : wt_num_expr(tenv) |

(prsrv_sq_ref(tenv)(e)(sq)(e1) AND prsrv_sq_ref(tenv)(e)(sq)(e2))}

Therefore this function returns numerical expressions e1 and e2 such that e1.
√

sq+ e2

has the same type and semantics and their square root sub-terms were sub-terms of e and
are different from sq.

The only step left is to eliminate this square root and then we will have completed
that sequence of four transformation.

5.4.4 Square root elimination

We now want to eliminate the square root that has been used to factorize the left mem-
ber of the comparison (the right one still being zero). This will be done using the rules
introduced in Definition 3.20 using names for the produced comparisons. However the
previously defined rules can only be applied to comparison expressions and this rule
produces a program with variable definition and Boolean operators. Therefore we first
apply the recursive call on the new comparisons where the top level square root have
been eliminated before combining them to produce the program equivalent to the input
comparison. Therefore the elimination rules are specified in the following way:

elim_sqrt_rule_gt(tenv)(p,q: wt_num_expr(tenv))(sq: wt_num_expr(tenv)):

{ e1 , e2, e3, e4 : comparison(tenv) |

FORALL (x : V) :

preserves_semantic_and_type

(bop(gt ,bop(plus ,bop(times ,e1 ,(uop(sqrt ,sq))),e2),zero))

(elim_sqrt_name_composition(x,e1,e2,e3,e4)) } =

Where elim_sqrt_name_composition(x,e1,e2,e3,e4) is the naming and the combina-
tion of the atoms according to the rule for >,

elim_sqrt_name_composition(x : V, e1, e2, e3 , e4 : program) : program =

letin(x,pair(pair(e1,e2),pair(e3 ,e4)),

bop(orf ,

bop(andf ,fst(fst(value(x))),snd(fst(value(x)))),

bop(orf ,

bop(andf ,fst(fst(value(x))),fst(snd(value(x)))),

bop(andf ,snd(fst(value(x))),

bop(andf ,uop(notf ,fst(snd(value(x)))),

snd(snd(value(x))))))))

By denoting the projection ‘1 and ‘2 the concrete syntax of this expression is:
let x = ((e1,e2),(e3,e4)) in x‘1‘1 ∧ x‘1‘2 ∨ x‘1‘1 ∧ x‘2‘1 ∨ x‘1‘2 ∧¬ x‘2‘1 ∧ x‘2‘2

By returning the 4 atoms we are able to apply the recursive calls before combining the
produced programs with this elim_sqrt_name_composition.

In order to prove the termination we also need to prove that the targeted square root
has indeed disappeared:

elim_sqrt_rule_gt_preserves_sq : JUDGEMENT

elim_sqrt_rule_gt(tenv)(p,q : wt_num_expr(tenv))

(sq : wt_num_expr(tenv) | FORALL (s : wt_num_expr(tenv)) :

102 CHAPTER 5. FORMAL PVS PROOF

(uop(sqrt ,s) << p OR uop(sqrt ,s) = p OR

uop(sqrt ,s) << q OR uop(sqrt ,s) = q) IMPLIES (s /= sq))

HAS_TYPE

{ e1 , e2, e3, e4 : comparison_expression(tenv) |

prsrv_sq_ref_comp(tenv)(p,q)(sq)(e1) AND

prsrv_sq_ref_comp(tenv)(p,q)(sq)(e2) AND

prsrv_sq_ref_comp(tenv)(p,q)(sq)(e3) AND

prsrv_sq_ref_comp(tenv)(p,q)(sq)(e4)

}

Where prsrv_sq_ref_comp is analogous to prsrv_sq_ref for comparisons. Therefore this
rule states that the square roots in each atoms were already either in p or q or sq and are
different from sq. This allows us to make recursive call on these atoms since the number
of their square root sub-terms is lower than in the input atom.

We have now defined the four successive transformation that are required for the
elimination of square roots and divisions in a Boolean expression and typed them in
order to ensure both the preservation of the semantics and the type and the termination
using the number of square root sub-terms. Therefore the only thing left is to combine
these four transformations and to apply the recursive calls in order to eliminate all the
square roots and divisions. This is done by defining a recursive function that transforms
a comparison into a square root and division free Boolean program:

elim_bool(tenv)(xsq)(c : comparison_expression(tenv)) :

RECURSIVE {e : (is_bool_expr)| preserves_semantic_and_type(c)(e) }=

It terminates using the number of square root sub-terms of the comparison:
MEASURE (length(comp_expression_sq_list(tenv)(c))) BY <

By recursively applying this function to any comparison that can be found in a Boolean
expression, we are able to completely eliminate square roots and divisions from these
Boolean expressions. This defines the function elim_bool introduced at the beginning of
Section 5.4. The ElimB function now being specified and proved in PVS, we now present
the proof of the other main transformation, the Elimlet function introduced in Section 3.7.

5.5 VARIABLE DEFINITION TRANSFORMATION

In this section we aim at proving the transformation of a variable definition. This trans-
formation relies on a decomposition of the body and then on the transformation intro-
duced in Definition 3.23. When the body of the transformation contains tests, we use
the anti-unification algorithm introduced in Chapter 2 in order to compute the common
template of the expressions corresponding to the different test cases. This anti-unification
algorithm is not specified in PVS but only stated as an axiom. Therefore we assume that
we have a function that can produce a template of a set of expressions.

5.5.1 Template

As introduced in Section 3.7.4, given a set of positive expressions and a set of variables
that are not allowed to be used, we want the template to have the following PVS property:

DEFINITION 5.4 (Template property). Given a sequence of expressions se, a set of known
positive arithmetic expressions spos and a set of forbidden variables locvar, we want the

5.5. VARIABLE DEFINITION TRANSFORMATION 103

template computation to return a term t, a variable x and a sequence of expressions nse

(that represent the substitutions) respecting the following predicate:
template_prop(t : expr , x : V, nse : finseq[program])

(se : finseq[program], spos : finite_set [(is_num_sq_expr)],

locvar : finite_set[V]) : MACRO bool =

We detail and comment the body of the predicate, it states that:
− se and nse have the same length:

nse ‘length = se ‘length &

− the free variables of the template are not in locvar:
disjoint ?(get_FV(t),locvar) &

− in an environment where the elements of spos are positive numerical expressions then
the semantics of the n-th input expression is the same as the one of the template where x

is replaced by the n-th expression of the new sequence:
(FORALL (env : program_environment) :

(FORALL (es : (spos)) :

value?(semantics(es,env)) & numv?(val(semantics(es,env))) &

r(val(semantics(es,env))) >= 0) IMPLIES

(FORALL (n : below(nse ‘length)) :

value?(semantics(se‘seq(n),env)) IMPLIES

(value?(semantics(nse ‘seq(n),env)) &

semantics(se‘seq(n),env) = semantics(replace(x,nse ‘seq(n),t),env)))) &

− in an environment where the elements of spos have numerical type then the type of the
n-th input expression is the same as the one of the template where x is replaced by the
n-th expression of the new sequence:

(FORALL (tenv : type_environment) :

(FORALL (es : (spos)) :

value?(type_infer(es,tenv)) &

numt?(val(type_infer(es,tenv)))) IMPLIES

(FORALL (n : below(nse ‘length)) :

value?(type_infer(se‘seq(n),tenv)) IMPLIES

(value?(type_infer(nse ‘seq(n),tenv)) &

type_infer(se‘seq(n),tenv)= type_infer(replace(x,nse ‘seq(n),t),tenv))))

This allows us to state that the term t is a template for this set of expressions. In order
to ensure that it is a constrained template, we also need to state that the new expressions
are square root and division free.

It is easy to define such a function when the sequence only has one element. In this
case, we only need to replace the sub-expressions of a term that are square root and
division free with projection of a variable. However the template construction when
the sequence contains more expressions is not specified, we only assume that we have
a function with the right type that can handle this case. Therefore we have a partially
executable function that computes a constrained template:

template(x : V,

se : { s : finseq[program] |

all_well_typed(s) & every_fs(is_expr_N_sq)(s)},

spos : list[program],

locvar : { l : list[V] |

FORALL (es : (in?(spos))) :

is_num_sq_expr(es) & disjoint_sl ?(get_FV(es),l)}) :

104 CHAPTER 5. FORMAL PVS PROOF

{ t : expr , se_free : finseq[program] |

every_fs(is_expr_N)(se_free) &

template_prop(t,x,se_free)(se ,spos ,locvar) } =

Given such a template, we describe the other part of the variable definition transforma-
tion that is the Decompose function from Definition 3.24.

5.5.2 Decomposition

We define this Decompose function and prove that it commutes with a template that cor-
responds to our specification. Once again the size of the type is quite huge due to the
number of parameters of such function, we comment all the different properties of the
corresponding to the returned type:

DEFINITION 5.5 (Decompose in PVS). This function input is a program and a set of nu-
merical expressions:

program_part_extract(tenv)(p : program_N_sq | some?(type_infer(p,tenv)),

spos : list[program] | FORALL (s : (in?(spos))) :

is_num_sq_expr(s) & some?(type_infer(s,tenv)) &

numt?(val(type_infer(s,tenv)))) : RECURSIVE

It returns the number n of test cases (i.e., the number of expression to anti-unify), a func-
tion f that is the program part, the list of expression to anti-unify, the set of local variable
and the new set of positive expressions spos:

{n: nonneg_int , f: [{s : finseq[program] | s‘length = n} -> program],

(se : finseq[program] | se‘length = n), locvar : list[V],

spos_out : list[program] |

These returned elements verify the following properties:
i) The elements of the sequence are expressions, so we can apply the template computa-
tion:

every_fs(is_expr_N_sq)(se) &

ii) The program part applied to square root and division free expressions produces a
square root and division free program. Therefore we will able to produce a square root
and division free program by applying this program part to the square root and division
free expressions returned by the template computation:

FORALL (fseq : finseq[program] | fseq ‘length = n) :

every_fs(is_expr_N)(fseq) IMPLIES (is_program_N(f(fseq))) &

iii) The expressions in the sequence have the same type as the input program, in fact we
only need to prove that they have the same type for the template computation:

(FORALL (k : below(n)) : EXISTS (tenvk : type_environment) :

type_infer(se‘seq(k),tenvk) = type_infer(p,tenv)) &

iv) The new positive expressions are the input positive expressions that do not contain
a local variable, therefore their semantics is not changed by the definition of the local
variables.

FORALL (epos : (in?(spos_out))) : in?(spos)(epos) &

disjoint_sl ?(get_FV(epos),locvar) &

v) A template commutes with the program part, i.e., Pp(t(e1), ..., t(en)) = t(Pp(e1, ..., en))

for the semantics:

5.5. VARIABLE DEFINITION TRANSFORMATION 105

FORALL (t : expr , x : V, se_free : finseq[program] |

template_prop(t,x,se_free)(se ,spos_out ,locvar)) :

FORALL (env : program_environment) :

FORALL (es : (in?(spos))) : some?(semantics(es ,env)) &

numv?(val(semantics(es,env))) & re(val(semantics(es ,env))) >=0 IMPLIES

some?(semantics(p,env)) IMPLIES

(some?(semantics(f(se_free),env)) &

semantics(p,env) = semantics(replace(x,f(se_free),t),env)) &

And for the type:

FORALL (tenv : type_environment) :

FORALL (es : (in?(spos))) : some?(type_infer(es ,tenv)) &

numt?(val(type_infer(es,tenv))) IMPLIES

some?(type_infer(p,tenv)) IMPLIES

(some?(type_infer(f(se_free),tenv)) &

type_infer(p,tenv) = type_infer(replace(x,f(se_free),t),tenv))

} =

The body of the definition is straightforward using the Definition 3.24.

Given this decomposition function and the template computation we are now able to
define the Elimlet function as defined in Section 3.7.2. This function transforms a variable
definition into a new one whose body is square root and division free by decomposing
the body, computing a template and inlining this template in the scope of the definition.
This function returns the new body and scope of the definition and update the set of
positive expressions by adding the square root sub-terms of the template, preserving the
semantics and the type of the program.

elim_let(tenv)(x : V, p1 : program_N_sq ,

p2 : p_norm | some?(type_infer(letin(x,p1,p2),tenv)),

spos : list[program] |

FORALL (s : (in?(spos))) : is_num_sq_expr(s) &

some?(type_infer(s,tenv)) & numt?(val(type_infer(s,tenv)))) :

{pp1 : program_N , pp2 : p_norm , nspos : list[program] |

every(is_num_sq_expr)(nspos) &

preserves_semantic_and_type_with_spos(x,p1,p2,spos)(pp1 ,pp2 ,nspos) &

if_letin_number(pp2) <= if_letin_number(p2)

} =

LET nspos =

filter(spos ,

(LAMBDA (sp : (is_num_sq_expr)) : notin?(get_FV(sp))(x))) IN

LET (n,f,se,locvar ,sposout) = program_part_extract(tenv)(p1 ,nspos) IN

LET (t,sef) = template(x,se,sposout ,locvar) IN

(f(sef),

pair_reduction(replace(x,t,p2)),

disjunct_union(nspos ,get_sqrt_expr(t)))

The if_letin_number hypothesis will be used to prove the termination of the main algo-
rithm that combine this elim_let and the elim_bool function previously defined. There-
fore the only step left is to combine these functions to transform any normalized program
into a square root and division free one.

106 CHAPTER 5. FORMAL PVS PROOF

5.6 MAIN ELIMINATION

By using the elim_let and the elim_bool functions we are able to define the transfor-
mation of any normalized program. Indeed we can define the ElimP algorithm that was
introduced in Definition 3.28. As intended, this function preserves the semantics and the
type of the program and removes square roots and divisions from it:

elim(tenv)((p : p_norm | some?(type_infer(p,tenv))),

spos : list[program] | FORALL (s : (in?(spos))) : is_num_sq_expr(s) &

some?(type_infer(s,tenv)) & numt?(val(type_infer(s,tenv)))) :

RECURSIVE { pp : program_N_sq |

(FORALL (tenv : type_environment) :

((FORALL (es : (in?(spos))) :

some?(type_infer(es ,tenv)) & numt?(val(type_infer(es ,tenv)))) &

some?(type_infer(p,tenv))) IMPLIES

(type_infer(p,tenv) = type_infer(pp,tenv))) &

(FORALL (env : program_environment) :

((FORALL (es : (in?(spos))) : some?(semantics(es ,env)) &

numv?(val(semantics(es,env))) & re(val(semantics(es ,env))) >= 0) &

some?(semantics(p,env))) IMPLIES

(semantics(p,env) = semantics(pp,env))) } =

And the final step consist of combining this function with the program normalization,
enabling the transformation of any program:

main_elim(tenv)(p : (prog_not_clear) | some?(type_infer(p,tenv))) :

{pp : program_N_sq | preserves_semantic_and_type(p)(pp)} =

elim(tenv)(p_norm_reduction(p),null)

The type of this function is exactly the specification of the transformation that we intro-
duced in Definition 4.6.

Conclusion

Except for the template computation, we have completely defined and proved correct
the Elim transformation in the PVS proof assistant. The modularity of the proof ensures
that if the template computation is correct, as specified by the type of the axiomatized
template computation, then the complete transformation is correct. Therefore we only
have to prove a correct implementation of the constrained anti-unification to complete the
proof. Moreover, since the transformation of expressions does not require the template
computation, we will see in Chapter 7 how we can define a strategy in PVS that uses this
function to transform PVS expressions during a PVS proof.

6
OCAML IMPLEMENTATION

T
HE TRANSFORMATION OF PROGRAMS USING FUNCTIONS introduced in Chapter 4
has been implemented in the OCaml Language. OCaml is a typed functional lan-
guage [LDF+12] that allows us to completely define our transformation of pro-

grams. This chapter only deals with the core of the transformation, that is the transfor-
mation of the symbolic abstract syntax of the program. The implementation in OCaml
of the part of the transformation that has also been defined in PVS being very similar,
we will not discuss it in this chapter. Therefore this chapter mainly describes the anti-
unification and the function transformation implementations that are used to transform
complete programs with function definitions. Questions related to the interfaces, like
parsing and pretty printing will be handled in Chapter 7.

We have tried to keep a purely functional style for programming this transforma-
tion in OCaml and to have a code as simple as possible in order to be certain about the
transformations it does. Therefore we only use imperative features or references for opti-
mizations and some choices in the transformation, the correctness of the transformation
being independent of these choices. Moreover we also want to only use basic features in
these programs so that they can be easily translated into a PVS specification and hope-
fully proven correct. Let us first define the abstract syntax of the programs as the type
Prog introduced in Definition 4.1. It corresponds to the following type:

DEFINITION 6.1 (OCaml type for programs). This type defines the abstract syntax of the
programs:

t ype program =

| Value o f uvar

| Const o f c on s t a n t s

| UOp o f unop ∗ program

| BOp o f b inop ∗ program ∗ program

| Pa i r o f program ∗ program

| Fst o f program

| Snd o f program

| L e t i n o f va r ∗ program ∗ program

| I f o f program ∗ program ∗ program

| App o f uvar ∗ program

| Dfun o f uvar ∗ (va r ∗ t yp e s) ∗ t yp e s ∗ program ∗ program

where

108 CHAPTER 6. OCAML IMPLEMENTATION

t ype unop =

| Sqr t | Umin | Neg

type b inop =

| P lus | Times | Div | And | Or | Neq | Eq | Gt | Geq | Lt | Leq

This definition directly corresponds to the Definition 4.1, the variable identifiers are
strings and the types corresponds to the Definition 3.2. Therefore all the transformations
are going to be defined on that type, transforming every program into an equivalent one
that does not contain the Div and Sqrt operators. As one can notice, this syntax is an
extension of the one used in Chapter 5 to prove the Elim transformation on program
without functions. The OCaml implementation of this part of the transformation is al-
most identical to its PVS specification. The only change is that this program type enables
the multi-variable definition since var is the following type:

t ype va r =

| Var o f uvar

| P a i r v a r o f va r ∗ va r

This barely changes the part of the transformation that has been defined and proven in
the PVS proof assistant. Therefore we do not detail the OCaml implementation of the
ElimB or Elimlet functions which have already been defined and proved in PVS but we
focus on the part that have not.

After presenting some general properties of our OCaml transformation we will detail
the implementation of the common template computation used in the variable and func-
tion definition transformation and then we present the global transformation of programs
with function definitions.

6.1 SIMPLIFICATION

We still want to minimize the size of the output program, and for efficiency reason it
is easier to simplify programs as soon as we can in the transformation. It avoids us to
handle expression part of the program that are not relevant anymore. In order to simplify
the expressions all along the transformation, we define some functions corresponding to
the different operators that allows us to use the absorbing and neutral properties of some
constants:

l e t one = (Const (Num 1 .))

l e t z e r o = (Const (Num 0 .))

l e t t r = Const (Bool t r u e)

l e t f s = Const (Bool f a l s e)

l e t p l u s a b =

match a , b wi th

| Const (Num 0 .) ,_ −> b

| _, Const (Num 0 .) −> a

| _,_ −> BOp(Plus , a , b)

l e t d i v a b =

match a , b wi th

| Const (Num 0 .) ,_ −> ze ro

| _, Const (Num 1 .) −> a

| _,_ −> BOp(Div , a , b)

6.2. ANTI-UNIFICATION ALGORITHM 109

In the same way we define the mult, umin, ands, ors, sqrt and neg function that respec-
tively correspond to the Times, Umin, And, Or, Sqrt and Neg operators. All of these func-
tions trivially preserve the semantics when the program does not fail (e.g., 0/0 reduces
to 0). Using these functions instead of the Boolean and arithmetic constructors allows
us not to handle all the particular cases with zero, one, true or false that could be used to
reduce the size of the returned expressions and programs. These definitions given, we
now explain how the anti-unification algorithm defined in Section 3.7.4 is implemented
in OCaml.

6.2 ANTI-UNIFICATION ALGORITHM

The algorithm for constrained anti-unification has been introduced in Chapter 1 and
some extra features have been added in Section 3.7.4. This algorithm aims at computing
a constrained template of a set of arithmetic expressions such that the associated substi-
tutions do not use any square root or division. It also uses a dag representation in order
to minimize the number of square roots in the computed template.

6.2.1 Dag construction

In Section 2.4 we explained that the anti-unification relies on the following normal form
of arithmetic expressions:

∑
n
i=1 ai ∏

mi
ji=1

√

bji

∑
n
i=1 ci ∏

mi
ji=1

√

dji

Where the ai and ci are square root and division free, and the bj and dj are also in this
form with the division as head operator. In order to represent arithmetic expressions in
this normal form with dags we use the following OCaml type:

t ype dag_elt =

| ExprD o f program

| VecD o f (program ∗ dag_elt l i s t) l i s t

| DivD o f dag_elt ∗ dag_elt

| PtD o f i n t

| PairD o f dag_elt ∗ dag_elt

type dag = dag_elt l i s t ; ;

The semantics of such dags is exactly the one introduced in Definition 2.24, we also want
to have normalized dags with only one division at head except under the square roots. In
order to transform arithmetic expressions in program into this dag type, we first transform
them into a single tree term (a dag_elt with no pointer) and then use pointers to share the
square roots arguments. Reduction of an arithmetic expression in program into a dag_elt

relies on the following mutually recursive algorithm that computes with these normal
forms.

DEFINITION 6.2. We define mutually recursive functions for the addition, multiplication
and division of tree and the monomial multiplication (a1. ∏sq∈l1

√
sq × a2. ∏sq∈l2

√
sq):

l e t r e c monom_mult a1 l 1 a2 l 2 =

l e t l t r e e = i n t e r s e c t l 1 l 2 i n

110 CHAPTER 6. OCAML IMPLEMENTATION

l e t l s q = d i s j_un i on l 1 l 2 i n

l e t ncoe f = (f o l d_ r i g h t mult_tree l t r e e (ExprD one)) i n

match l s q w i th

| [] −> con s t a n t_mu l t i p l i c a t i o n (mult a1 a2) ncoe f

| _ −> mult_tree ncoe f (VecD ([(mult a1 a2 , l s q)])) ; ;

The monomial multiplication relies on the following equality:

a1 × ∏sq∈l1

√
sq × a2 × ∏sq∈l2

√
sq = a1 × a2 × ∏di∈(l1∪l2)\(l1∩l2)

√
sq × ∏dj∈(l1∩l2) sq

The division is straightforward:

and d i v_t r e e t1 t2 =

match t1 , t2 w i th

| ExprD _, ExprD _ | VecD _, ExprD _

| VecD _, VecD _ | ExprD _, VecD _ −> DivD (t1 , t2)

| DivD (e1 , e2) ,_ −> d iv_t r e e e1 (mult_tree e2 t2)

| _, DivD (e1 , e2) −> d iv_t r e e (mult_tree t1 e2) e1

For the multiplication of trees, we only give the VecD case:

and mult_tree t1 t2 =

match t1 , t2 w i th

. . .

| VecD ((a1 , l 1) : : q1) , VecD ((a2 , l 2) : : q2) −>

l e t e l e t = monom_mult a1 l 1 a2 l 2 i n

l e t r e c1 = mult_tree (VecD ([(a1 , l 1)])) (VecD(q2)) i n

l e t r e c2 = mult_tree (VecD(q1)) t2 i n

p l u s_t r e e e l e t (p l u s_t r e e r e c1 r e c2)

It relies on: (a + b)× (c + d) = (a × c) + (a × d) + (b × (c + d))

And the addition of trees:

and p l u s_t r e e t1 t2 =

match t1 , t2 w i th

. . .

That implements the following simplification:

a1 × ∏sq∈l1

√
sq + a2 × ∏sq∈l2

√
sq = (a1 + a2)× ∏sq∈l2

√
sq

when l1 = l2 (as set equality)

This allows us to define the transformation of any arithmetic expression by combining
their tree representations using the previously defined functions:

l e t r e c expr_num_to_tree e =

match (to_hdf e) w i th

| e1 when i s_sq r t_d i v_f r e e e1 −> ExprN e1

| BOp(Div , e1 , e2) −>

d iv_t r e e (expr_num_to_tree e1) (expr_num_to_tree e2)

| BOp(Mult , e1 , e2) −>

mult_tree (expr_num_to_tree e1) (expr_num_to_tree e2)

| BOp(Plus , e1 , e2) −>

p lu s_t r e e (expr_num_to_tree e1) (expr_num_to_tree e2)

| UOp(Umin , e1) −>

con s t a n t_mu l t i p l i c a t i o n (UOp(Umin , one)) (expr_num_to_tree e1)

| UOp(Sqrt , e1) −>

VecD ([one , [expr_num_to_tree e1]]) ; ;

6.2. ANTI-UNIFICATION ALGORITHM 111

Termination This algorithms terminates on all the examples that been tested, however
we have not been able to prove its termination formally.

CONJECTURE 1. The transformation of any arithmetic expression into an equivalent normalized

dag_elt using the algorithm from Definition 6.2 terminates.

However, given this tree representation we are now easily able to transform such a
tree into a dag by using pointers in order to represent square root calls as introduced in
Chapter 2. It is easy to find the square root arguments and replace them by pointers in
order to construct the equivalent dag. The only thing we have to take care of is the right
dependency hypothesis. Therefore we are able to produce well-formed dag as introduced
in Definition 2.26 with a function tree_to_dag. We present how to anti-unify these dags
in order to use the template in the program transformation.

6.2.2 Dag Anti-unification

The dag anti-unification implementation is really close to the algorithm introduced in
Section 3.26. We will first present a version where the length of the template is the maxi-
mum of the length of the input dags. Then we will present an extension of this algorithm
that was implemented by Raphaël BOST during his internship (see [Bos12]).

Dag extension First step of the template computation using dags is the extension of the
smaller dags to the maximum length using undefined elements. In order to represent
these undefined elements we simply use the ‘a option type of OCaml (i.e., Some ‘a | None),
None representing the not yet specified elements. This way, given a list of dags we can
easily transform these dags into lists of dag_elt option list that have the same length and
that represent the extended dags.

Dag permutation Given this list of dags with undefined elements of the same length,
we apply different permutations to these dags. If n is the length of the dags we compute
all the permutations of {1, ..., n − 1}, permutations being only applied to the tail of the
dag, the head element remaining not being moved. Then we try all these different per-
mutations on all the input dags. After the application of every permutation we will check
that the dag still satisfies the right dependency hypothesis.

Undefined element replacement Before the anti-unification we need to replace the un-
defined elements by real terms. As explained in Definition 3.26 we have 3 different
choices to replace the undefined elements in the tails of the dags (i.e., lbas), with the fol-
lowing function:

l e t r e c r ep l a c e_none_ l i s t_base s l b a s l p o s d e f_e l t r e f d a g l o c v a r =

An undefined element can be replaced by:

• a positive expression in the Pos set (i.e., lpos), that is a parameter of the function.
The refdag is one of the longest dags of the list (it does not have any undefined
element). The replacement of the k-th element of the tails is done only if all the
k-th elements are either undefined or equal to the k-th element of the refdag if this

112 CHAPTER 6. OCAML IMPLEMENTATION

element is in lpos and if this element does not contain any forbidden variable stored
in locvar. Indeed, we use this replacement only in order to apply the identity rule
of anti-unification (EI) (i.e., ctemp(e, e) = e) and therefore this element will be a
sub-term of the final template.

• another element of the same dag. We only use elements on the left since it enforces
the left dependency hypothesis and the dags corresponding to replacement with
elements on the right can be computed using another permutation:

if a permutation produces:
PairD(VectD([(a, [2̇])]), VectD([(b, [2̇])])) # d2

where # can not be replaced by d2, then another permutation produces
PairD(VectD([(a, [1̇])]), VectD([(b, [1̇])])) d2 #

where this replacement can happen.
Then we change the associated pointers, for example, one pointer 1̇ can be replaced
by a pointer 2̇, e.g.,

PairD(VectD([(a, [1̇])]), VectD([(b, [2̇])])) d2 d2

As for the permutations we try all the possible pointer changes with respect to right
dependency.

• a default element, def_elt. We use the constant zero but this is a parameter of the
transformation.

Once the undefined elements have been replaced, the only step left is the anti-unification
of these dags.

Dag template computation The template computation is exactly that described in Defi-
nition 2.28. We first abstract the dag nodes in order to be only interested by their structure
using this corresponding type:

t ype temp_elt =

| ExpT

| DivT o f temp_elt ∗ temp_elt

| PairT o f temp_elt ∗ temp_elt

| VecT o f (i n t l i s t) l i s t

And then compute the common structure of 2 dags. As explained in Proposition 2.1 the
process can be iterated to compute the common template of any set of dags:

l e t r e c g reates t_temp_e l t t1 t2 =

match t1 , t2 w i th

| ExpT , VecT(l) | VecT(l) , ExpT −>

VecT(i f (mem [] l) then l e l s e [] : : l)

| DivT (t11 , t12) , DivT (t21 , t22) −>

DivT (greates t_temp_e l t t11 t21 , g reates t_temp_e l t t12 t22)

| DivT (t1 , t2) , t3 | t3 , DivT (t1 , t2) −>

DivT (greates t_temp_e l t t1 t3 , t2)

| ExpT , _ −> t2

| _, ExpT −> t1

| PairT (t11 , t12) , PairT (t21 , t22) −>

PairT (greates t_temp_e l t t11 t21 , g reates t_temp_e l t t12 t22)

| VecT(l 1) , VecT(l 2) −>

VecT(

6.2. ANTI-UNIFICATION ALGORITHM 113

f o l d_ r i g h t

(fun l i l −>

i f e x i s t s (equal_comm l i) l then l e l s e l i : : l)

l 1

l 2) ; ;

Where equal_comm is the equality of lists seen as sets (they contain the same elements).
Given this template abstract structure, we now compute the template of a list of dags. In
order to avoid substituting later in order to prevent renaming or other variable conflicts,
we do not compute the template as a term with the corresponding the substitutions but
as an OCaml function of type (program -> dag) and the corresponding program. Therefore
we will be able to chose the variable we want to use at the last moment. Given an abstract
dag element we produce the associated template with the following function:

l e t r e c temp_elt_to_fundag_elt t =

match t w i th

| ExpT −>

(fun x −> ExprD x)

| DivT (t1 , t2) −>

(fun (Pa i r (x , y)) −>

DivD (temp_elt_to_fundag_elt t1 x , temp_elt_to_fundag_elt t2 y))

| PairT (t1 , t2) −>

(fun (Pa i r (x , y)) −>

PairD (temp_elt_to_fundag_elt t1 x , temp_elt_to_fundag_elt t2 y))

| VecT ([l i]) −>

(fun a i −>

VecD ([a i , (map (fun x −> PtD x) l i)]))

| VecT(l i : : l) −>

l e t f l = temp_elt_to_fundag_elt (VecT(l)) i n

(fun (Pa i r (a1 , a2)) −>

l e t (VecD l 2) = f l a2 i n

VecD ((a1 , (map (fun x −> PtD x) l i)) : : l 2))

Given this function, we are able to compute the functional template of a set of dags.
It is computed node by node, the template of each node being either a constant (if all
the nodes are equal) or the function computed by the temp_elt_to_fundag_elt. Then
for every set of dags, the construct_template_se_var computes a function, the associated
sub-expressions and the associated variable structures (i.e., the returned type is (program

-> dag) * (program list) * var) such that:

construct_template_se_var ldag ... = (t,lse,x) =⇒ ∀ E, Jt(nth k lse)KE = Jnth k ldagKE

The free variables that are in the template are the ones coming from the equality rule and
therefore are contained in expressions in Pos:

∀ p, construct_template_se_var ldag lpos ... = (t,lse,x) =⇒
FV(t(p)) \ FV(p) ⊆ {FV(e) | e ∈ lpos}

This way we know exactly the variable that are used in the template term and can ensure
all the properties required either for semantics equality in the program transformation or
for the dependency graph.

114 CHAPTER 6. OCAML IMPLEMENTATION

Template choice This algorithm generates many templates and we have to chose the
one we want to use in our transformation to minimize the size of the code produced by
this transformation, which mainly depends on the complexity of the elimination in the
Boolean expression as explained in Section 1.5. Given a variable definition let (x1,...,xn)

= b in sc the use of the dag minimize the number of square roots and divisions when all
the variables are used together in a Boolean expression e.g., ∑i xi > 0 since it shares the
square roots between these different variables, thus the number of distinct square roots
calls in such a Boolean expressions is the length of the tail of the template dag.

Therefore in order to chose the best permutation we have to find another criterion, this
is provided by a measure function. For this measure we chose to minimize the opposite
case that is for example when all the variables are used separately, e.g.,

∧

i xi > 0, and
thus the measure function for the template we chose is ∑i 4#√xi where #√xi is the number
of square roots in the part of the template that corresponds to xi. This number is an over-
approximation of the number of atoms that can be produced by the elimination of the
square roots in such formula.

In a future work we might want to specialize that measure function for each template
computation, depending on how the variables are really used in the rest of the program to
really find the template that fits the best to minimize the size of the transformed program.
However this looks far from trivial since the template chosen for the transformation of
one definition changes the expressions corresponding to other definitions (as shown by
the dependency graph of the program).

We now describe an extension of this template computation where the maximum
length is bigger than the maximum length of the input dag.

6.2.3 Template Computation Extension

The work we present in this section has been realized with Raphaël BOST during its mas-
ter internship. The idea is to implement the extended template as introduced in Section
2.4.4. Let us first discuss a little bit about the complexity of the template computation
algorithm.

Complexity Indeed, we want to try many possibilities for our template in order to find
the one that will minimize the size of the output code. However the induced complexity
is really huge. For the algorithm introduced in Section 6.2.2, given a set of n dags of
maximum length l, the number of possible permutations is then (l!)n. In practice, due to
the usual structure of programs that do not have many cases with a lot of distinct square
roots it is still manageable. However extending the maximum length of the dags made
the number of possible template completely explode.

Optimizations In order to manage this complexity, the template computation has to be
implemented more efficiently. For example, generating all the permutations in a first step
and then applying them was not possible anymore, therefore they have to be generated
directly when we want to use then. This permutation generation has been done by using
the Steinhaus-Johnson-Trotter algorithm [Joh63].

6.3. PROGRAM WITH FUNCTIONS TRANSFORMATION 115

Another optimization is that the template choices does not depend anymore on a fixed
measure function but we wanted to try all the possible template to see how this influences
the size of the output program. Therefore every time we have to use a template, we
continue the transformation with all the possible templates, modulo some equivalences,
in order to reduce the set of output programs.

By doing this, we realized that even if the set of template is very large, many of the
output programs are equivalent. Hence we introduce the idea to only chose a random
subset of all the permutations and other possible choices. Most of the time, one of the
programs with the smallest size comes out, but this also allows us to try even longest
template and therefore in some case to really improve the size of the output program.
More details about this work can be found in Raphaël BOST master thesis [Bos12]

Given these different template computation implementations, we discuss the other
part we did not formalize in PVS, that is the transformation of programs with function
definitions.

6.3 PROGRAM WITH FUNCTIONS TRANSFORMATION

The implementation of the transformation of the program with function is almost straight-
forward given the description of the algorithm introduced in Chapter 4. The rules Elim f in

and Elim f out reuse the template computation and the Decompose functions defined for the
Elimlet rule. However there are new functions that need to be implemented.

6.3.1 Elim f in and Elim f out implementation

One of the functions required for the application of Elim f in and Elim f out transformation
is the abstraction of the function calls to compute the scope program part as introduced in
Definition 4.8. This function has to compute this scope program part and all the associ-
ated function calls and the variables that are declared in this scope program part. Thus
this function has the following type:

v a l e x t r a c t_ e x p r e s s i o n s_ c a l l s :

Language . f un va r −>

Language . program −>

(Language . program l i s t −> Language . program) ∗

Language . program l i s t ∗ Language . uvar l i s t

And its implementation is quite close to the Decompose function, we only have to go
deeper in the expression and abstract the function calls. Therefore we have the following
predicate:

∀ p ∈ P⊤, extract_expressions_calls f p = (scf,lcall,lvar) =⇒
p = scf(lcall)∧ ∀ e ∈ lcall, FV(e)\FV(p) ⊆ lvar

Given this function we are now able to define the functions corresponding to the rules
Elim f in and Elim f out as defined in definitions 4.9 and 4.12.

Thus the only step left is to define how, given a transformation item, we find the corre-
sponding definition as introduced in Definition 4.20, in order to apply the corresponding
rule. To construct the set of positive expressions that can be used in the template we have

116 CHAPTER 6. OCAML IMPLEMENTATION

to find the positive expressions we know are valid in the context of this targeted defi-
nition. Therefore every time we transform a variable, we record the pair (new variable
defined, square roots of the template) in a list. This way, for the transformation of a given
definition, we only consider the positive expressions that only use variables that are free
in the body of the targeted definition.

Therefore, for the use of the Elim f in rule in a program p on the definition of f we define
the following function:

l e t r e c el im_fun_in_top f p l p o s v a r c u r r p o s v a r n =

match p wi th

| L e t i n (v , e1 , e2) −>

l e t nposva r =

t r y a s soc v l p o s v a r w i th

| _ −> []

i n

l e t k , np =

elim_fun_in_top f e2 l p o s v a r (conc_no_repeat nposva r c u r r p o s v a r) n

i n

(k , L e t i n (v , e1 , np))

Where lposvar is the global list of possible positive expressions and currposvar the one that
will be used in the Elim f in rule. k is only an index for the fresh name generation. The rest
of the function is straightforward:

| Dfun (v , (l x , t x) , t , b , s c) when v = f −>

l e t (n lx , ntx , nst , nb , nsc , k) =

e l im_fun in f l x t x t b sc c u r r p o s v a r n

i n

k , Dfun (v , (n lx , ntx) , nst , nb , nsc)

| Dfun (v , l v , t , b , s c) −>

l e t k , np = elim_fun_in_top f sc l p o s v a r c u r r p o s v a r n i n

k , Dfun (v , l v , t , b , np)

We define similar functions for the Elim f out and Elimlet transformations .
These functions being defined, the only step left is the construction of the dependency

graph as introduced in Definition 4.18 in order to apply the transformation in the right
order and finally the implementation of the global definition transformation algorithm
introduced in Definition 4.25. The implementation of these functions following directly
the formal definition presented in Section 4, we will not discuss their implementation
any further.

Conclusion We now have a function in OCaml that is able to transform any normal-
ized program defined in the abstract syntax introduced at the beginning of this chapter.
However in order to have a practical tool that is able to transform a real program we
will have to build interfaces for the corresponding languages. This is the purpose of the
next chapter that presents how this transformation has been used to transform programs
from an home-made language but also PVS expressions and specifications and inputs of
the Yices solver.

7
INTERFACES

O
UR TRANSFORMATION AIMS AT PROCESSING REAL EMBEDDED PROGRAMS. There-
fore we have to be able to transform real programs, not just toy examples. The
motivation of this work comes from the development of highly secure embed-

ded systems for aeronautics, in particular the ACCoRD system developed in the Formal
Methods groups at NASA Langley. This system includes conflict detection and resolution
algorithms [NMD12] that use square roots and divisions.

Another application of the square root and division elimination is proof automa-
tion. Indeed proof verification systems such as PVS, COQ [Cdt] or HOL [NWP02] in-
cludes proofs strategies that enables the user to deal with arithmetic problems automati-
cally. However most of these techniques such as the use of SMT solvers [BT07, DdM06a,
dMB08] or quantifier elimination [Col76] do not handle all arithmetic operations, in par-
ticular division and square root. Being able to transform any goal or hypothesis contain-
ing square roots or divisions into an equivalent one that is free of them would allow the
use of arithmetic decision procedures to resolve the current goal.

In this chapter we present some concrete transformations using both the OCaml and
the PVS implementation of the algorithm. In a first step, we present the language that
can be processed by the OCaml implementation, then we describe how we have used a
deep embedding and reflection techniques to define a PVS strategy eliminating square
roots and divisions in goals and hypothesis. Finally we present the transformation of
PVS specifications with the OCaml implementation, generating correctness lemmas, and
prove them using the PVS strategy we defined.

7.1 PARSING AND PRINTING

The main language that is used as an input for the program transformation in OCaml is
almost that of Definition 4.1, where we use the usual strings for variables names. We also
wrote an interpreter for this language in OCaml, that implements the semantics intro-
duced in Definition 3.4 and completed in Definition 4.2 in order to test our transformation
in the first steps of the implementation.

We have a parser for this language implemented with ocamlyacc (see the OCaml man-
ual [LDF+12]). It produces the corresponding program in the program type introduced in

118 CHAPTER 7. INTERFACES

Definition 6.1. We use the parenthesis as delimiters for the precedences of the arithmetic
and Boolean infix operators. However, in order to minimize the number of parenthesis
that have to be used we also implemented the usual precedences of the arithmetic and
Boolean operators (as in the OCaml language) and use left associativity. We overload the
− operator to use it both as a unary and binary operator.

EXAMPLE 7.1 (Operator precedences). The following expressions:

x + y + z

f s t x − y

z − x ∗ y > n

a | | n < x && b

are parsed the following way:

BOp(Plus ,BOp(Plus , Value "x" , Value "y") , Value "z")

BOp(Plus , Fs t (Value "x") , Value "y")

BOp(Gt ,BOp(Plus , Value "z" ,

UOp(Umin ,BOp(Times , Value "x" , Value "y"))) ,

Value "n")

BOp(Or , Value "a" ,BOp(And ,BOp(Lt , Value "n" , Value "y") , Value "z"))

The only other modification of the language from Definition 4.1 is that the if then else

constructor has to end with an fi token. Therefore the implementation of the parser is
quite straightforward.

We also wrote a printer for this language to be able to evaluate the size of the pro-
duced program. As for the parser we wanted to avoid redundant parentheses, therefore
this printer only prints parenthesis when they are necessary. A common way to handle
this is by associating to every operator a precedence level. Given an expression e1 op e2

we only print parenthesis around the expressions e1 and e2 when the precedence of their
head operator is lower than the one of op. We also try to take care about the indentation
in order to produce a program that is readable by a human. Indeed we will use a varia-
tion of this printer later for the transformation of PVS specification where we will have to
prove some properties on the produced program.

In the following section we present a first utilization of the elimination of square and
division as a strategy transforming goal and hypothesis in a PVS proof.

7.2 PVS STRATEGY

As introduced in Chapter 5, the transformation that removes square roots and divisions
from programs has been defined and proved correct in PVS. We now aim at using this
implementation of the transformation and the proof of the semantics equivalence be-
tween the input and the output formulas to define a PVS strategy [AVM03]. This strategy,
elim-sqrt, transforms any goal or hypothesis by eliminating square roots and divisions
from it e.g.,

{-1} x <= 1

|–––-

{1} x <= sqrt(x)

−→
elim-sqrt

{-1} x <= 1

|–––-

{1} x * x - x <= 0

This is realized by doing a deep embedding [WN04] of a fragment of PVS inside PVS

7.2. PVS STRATEGY 119

in order to use computational reflection for transformation computation [LC09, Har95b,
Rue97, Bou97]. This is a big difference with PVS or Coq fields strategies, that are written
in the strategy language, since the size of the proof does not depend on the input terms.

7.2.1 Deep embedding

To define such a transformation we use the proven PVS computable specification of the
transformation that have been described in Chapter 5. It defined the elim function that
removes square roots and divisions and preserves the type and the semantics of a pro-
gram. To use this transformation, we have to transpose a PVS statement into the for-
malism used for this specification that is the program datatype used in Section 5.2. We
achieve this transformation by doing a deep embedding of a fragment of PVS inside PVS.

Deep embedding

Given a proof context in PVS, we aim at transforming a statement (either a goal or an
hypothesis) into an equivalent one which is free of divisions and square roots. First of all,
as we can see in Definition 5.1 the formalism only represents a fragment of PVS, therefore
the statement we want to transform has to match this formalism. Given such a statement,
we call it S, the first step of this embedding is to compute the equivalent p : program

and the corresponding evaluation environment env such that:

sem(p,env) = boolv(S)

Indeed, the variable of the program type are not PVS variables but identifiers (e.g., string
or natural numbers), therefore we need the environment to make the link between these
identifiers and their value, i.e., the value of the corresponding PVS variables. From now
on, given a PVS variable x in a statement and the corresponding environment env, its
identifier will be the string "X". These elements, i.e., the program and environment, have
to be computed as their PVS string representation:

EXAMPLE 7.2 (Equivalent program in environment).

|––-

{1} sqrt(x‘1) > y
−→

p = "bop(gt,uop(sqrt ,fst(var("X"))), var("Y"))"

env = "LAMBDA (z : string) :

IF z = "X" THEN pairv(numv(x‘1),numv(x‘2))

ELSIF z = "Y" THEN numv(y) ELSE 0 ENDIF"

This string representation allows us to introduce these items in the current context
with some PVS prover commands.

Equivalent program computation

Given a PVS context and a statement S, by using the strategy language we can access
to the corresponding lisp tree structure that represents the abstract syntax of the PVS

statement. Therefore if the statement matches the embedded fragment, computing the
equivalent program can be done by decomposing this lisp structure and building the
corresponding string. As most of the cases are straightforward, we only detail a few of
them:

120 CHAPTER 7. INTERFACES

• the variable: as mentioned earlier, the variables of the program type are identifiers
(e.g., string) and we need to have a mapping between every PVS variable and its
corresponding string identifier.

• the projections: in PVS, tuples are represented as arrays (int → element), the cor-
responding lisp object is a list and we need to translate it as a binary tree, e.g., list
(e1 e2 e3) gives pair(e1,pair(e2,e3)) and the projection x‘3 is translated into
"snd(snd(Value"X"))"

Corresponding evaluation environment

As we can see in Example 7.2, the correspondence between identifiers and variables is not
straightforward either. Indeed, we need to build the value corresponding to each iden-
tifier. Given an identifier "X" and its associated variable x, if x has a basic type, number
or bool, then the semantics of value("X") is x, but if x is a tuple, then we need to extract
its elements and build the corresponding prog_val. For example if x is a triple of type
[bool,real,real] then the associated value prog_val is:

pairv(boolv(x‘1),pairv(numv(x‘2),numv(x‘3))).

Given a PVS statement E, we are able to compute the corresponding program p and envi-
ronment env, such that E can be replaced by the semantics of p, i.e., bo(sem(p,env)). This
allows us to work on the program p in order to apply the transformation.

7.2.2 Strategy definition

In this section we present how to build the strategy that transforms a current goal or
hypothesis into an equivalent square root and division free one. In the program expres-
sions we will avoid writing constructors that are obvious, e.g., we will write "A" and
plus(e1,e2) instead of val("A") and bop(plus,e1,e2).

Fig. 7.1 describes the main steps of the elim-sqrt strategy:

|–––-

{1} sqrt(a) > b

|–––-

{1} -b > 0

{2} a > b * b

sem(gt(sqrt("A"),"B"),env)

sem(elim(gt(sqrt(A),B)),env)

sem(or(gt(0,B),gt(A,times(B,B))),env)

strategy

(1) grind

(2) typepred "elim" (3) eval-expr

(4) grind

Figure 7.1: elim-sqrt strategy outlines

(1) we introduce the equivalent program and environment and prove this equivalence
using symbolic evaluation with grind

7.2. PVS STRATEGY 121

(2) using the following type predicate of elim we apply this function to the program

FORALL (env : program_environment) :

some?(sem(p,env))) IMPLIES (sem(p,env) = sem(pp ,env))

(3) we compute the elimination using computational reflection eval-expr

(4) we return into the PVS language itself using symbolic evaluation of the square root
and division free program semantics

We have introduced the main steps of the transformation strategy, we will now see how
these different expressions can be introduced in the PVS prover, and their equivalence
proven. In this section we assume that we have an hypothesis, H, we want to remove
square roots from, the elimination in a positive formula (e.g., a Goal) being similar.

From PVS expression to program datatype

As mentioned in Section 7.2.1 the transformation is defined using the program abstract
datatype, the first step of the strategy is therefore to transpose the PVS statement into
this datatype. In 7.2.1 we introduced a lisp function that, given a PVS statement, builds
the corresponding program, p and environment env. The first step of the strategy is to
introduce this program equivalent to H using its Boolean semantics bo(sem(p,env)). The
extraction of the Boolean part of the semantics with bo such as the use of the type of
the elim function will require to prove that sem(p,env) does not fail and is a Boolean
prog_val, this can be done by doing a symbolic evaluation of sem(p,env) but this eval-
uation is not very efficient. Therefore in order to do it only once, we introduce explicitly
this hypothesis with the following command:

(case "boolv?(sem(p,env)) AND bo(sem(p,env))")

This rule introduces a new hypothesis we first have to prove in the current context. The
proof of boolv?(sem(p,env)) AND bo(sem(p,env)) only uses the symbolic evaluation of
sem(p,env) that produces boolv(H) and therefore finishes that case. Now that we have
introduced bo(sem(p,env)) equivalent to H, we can delete H from the context.

elim function introduction

We now want to eliminate square roots and divisions from p. Hence, we introduce the
type of elim(p), with the typepred command (1), nofail(sem(p,env)) is straightfor-
ward using the -2 hypothesis and thus it allows the use of the semantics equality to
replace p by elim(p) (2):

(1)

{-1} nofail(sem(p,env)) IMPLIES

sem(p,env) = sem(elim(p),env)

{-2} boolv?(sem(p,env))

{-3} bo(sem(p,env))

{-4} Hypothesis

|–––-

{1} Goal

(2)

{-1} boolv?(sem(elim(p),env))

{-2} bo(sem(elim(p),env))

{-3} Hypothesis

|–––-

{1} Goal

122 CHAPTER 7. INTERFACES

Computational reflection

The next step is to produce the equivalent square root and division free formula, this
is done by computational reflection of elim(p). The use of this technique requires two
hypotheses:

• the function, (i.e., elim) has to be completely defined with computable structures
(e.g., use list instead of sets), so there is a corresponding executable lisp function,

• the arguments have to be ground (do not contain any PVS variable), this is ensured
by using identifiers to represent the original PVS variable, the link between these
identifiers and variables being handled separately by env.

Therefore we can compute elim(p) in order to get the equivalent program, p’, free of
square roots and divisions with the eval-expr strategy.

Semantics evaluation

From our new square root and division free program p’we want to get the corresponding
PVS expression. Therefore we have to compute the semantics of this program. This is
done once again by symbolic evaluation and in the end we get a new PVS statement H’,
equivalent to H, free of square roots and divisions. However in this case we already know
that the program does not fail, therefore we are able to write another semantics function,
that computes the semantics of programs that do not fail.

semantics_opt(p: program , env | some?(semantics(p,env))) :

RECURSIVE {v : prog_value | val(semantics(p,env)) = v} =

This optimized semantics is really straightforward and thus its symbolic evaluation is
more efficient. For example, for the projection case, the general semantics have to test
that the sub-term semantics does not fail and is a pair:

fst(p1) : LET t = (semantics(p1 ,env)) IN

IF some?(t) & pairv ?(val(t)) THEN Some(vl(val(t))) ELSE None ENDIF ,

While the optimized semantics directly extract the first element of the semantics of the
argument:

fst(p1) : (vl(semantics_opt(p1,env))) ,

Square roots and divisions being eliminated in this hypothesis we can now continue the
proof using our favorite arithmetic strategy.

Conclusion

We have described how to turn a PVS computable specification and the corresponding
proof of a program transformation into a PVS strategy. We realized this by doing a deep
embedding of PVS inside PVS, using symbolic evaluation to prove the correspondence
between PVS and its embedding when the transformation itself uses computational re-
flection. This kind of embedding can be generalized for any transformation defined in
PVS on an abstract datatype representing a fragment of PVS.

This strategy has been tested on various examples, from simple comparisons to more
complex statements that embed variable definitions and conditional expressions. The

7.3. PVS THEORY TRANSFORMATION 123

strategy takes between twenty seconds to few minutes mainly depending on the num-
ber of square roots. These results can be explained by the low performances of the PVS

symbolic evaluation whereas the transformation itself that uses reflection, is almost in-
stantaneous.

This strategy is also the first step of a larger scale transformation that aims at elim-
inating square roots and divisions from full PVS specifications. This transformation is
presented in the following section.

7.3 PVS THEORY TRANSFORMATION

In this section, we aim at transforming complete PVS theories that are mainly built with
PVS function definitions. The PVS specification of the transformation does not handle
programs that include function definitions. Therefore we have to use our OCaml imple-
mentation in order to transform such programs.

7.3.1 PVS to OCaml

Besides the theorem proving part, such as lemmas and theorem declarations or typing
judgments, a PVS specification is basically a list of variable and function definitions. If the
features used in these functions and variable definitions are similar to the ones that are in
the abstract input language of our transformation, i.e., arithmetic and Boolean operators,
projection, variable definitions and conditional expressions, then we should be able to
translate these specifications into this input language. However, even if the function
definitions are limited to the use of these features, the type system in PVS is much richer
than the one in our language. Thus we do not want to write a new PVS parser in order to
have these PVS specifications in the abstract syntax used in OCaml.

Thus we first use the PVS parser and the pvsio features that enables us to handle
input and output of the PVS system. This way we are able to use the lisp parser of PVS,
to parse the theory we target. We end up with a lisp structure representing the current
PVS specification and it is quite straightforward, as for the strategy case introduced in
Section 7.2.1 , to generate the corresponding program in the language that the OCaml
implementation can process (let us call it the letf-language). Indeed, while for the strategy
we generated the string corresponding to the PVS abstract syntax of the language, this
time we simply generate the concrete syntax of the letf-language. We do not detail this
translation since it is quite straightforward as in the strategy case.

Main problems in this translation are coming from the different representation of tu-
ples in PVS (i.e., arrays), lisp (i.e., list) and the input language (i.e., binary trees). Another
particular case is the type declaration of the function, but in lisp we are able to access the
supertype of a term, i.e., number or Booleans. This allows us to have the corresponding
first order type for the functions arguments and outputs. The last issue if that, unlike the
transformation language, PVS definitions do not always have a scope, a specification can
simply be a list of definitions without returned expression. In order to translate this in
our language we only add as final scope a new fresh variable that does not depends on
the previous definitions.

We also have to use the importing (dependencies) of the input program to allow the
output of the OCaml transformation to be directly typechecked by PVS, therefore we

124 CHAPTER 7. INTERFACES

also transfer this list and lightly modify the OCaml parser to handle such declarations.
Therefore the pvsio generates programs in the following way:

EXAMPLE 7.3 (From PVS to OCaml). The following PVS specification:

example : THEORY

BEGIN

IMPORTING reals@sqrt , Elim

a : real = sqrt (2)

f(x : real , y,z : nnreal) : real = x*y + sqrt (2+z)

f_test(x1 : real , y1,z1 : nnreal) : bool =

f(x1 ,y1 ,z1) > 0

END example

produces this equivalent program in letf-language:

example : THEORY

IMPORTING r e a l s@ s q r t , E l im

BEGIN

l e t a = (s q r t 2) i n

l e t f f (x , (y , z)) : (Num∗(Num∗Num)) −> Num =

((x ∗ y) + (s q r t (2 + z))) ;

l e t f f_ t e s t (x1 , (y1 , z1)) : (Num∗(Num∗Num)) −> Bo =

(f ((x1 , (y1 , z1))) > 0) ;

Token_pvs

END example

Token_pvs being the free variable representing the final scope.

This program is never seen in practice since the only goal of producing such a pro-
gram is to link it with the transformation. Therefore the lisp printer is really straight-
forward and does not handle operation precedences for example but uses redundant
parenthesis.

Given a program in this form, we are now able to parse it with the OCaml implemen-
tation and thus eliminating square roots and divisions from it. The only step left is to
generate the new PVS code, given a transformed program in the abstract syntax of the
transformation. This generation is really straightforward since this language is almost a
subset of the PVS language. Once again the only troubles come from the tuple represen-
tation since PVS does not allow multi-level of matching. Thus

l e t (a , (b , c)) = i f t then (x1 , (x2 , x3)) e l s e (y1 , (y2 , y3)) f i i n . . .

is printed as

LET (a,b,c) = IF t THEN (x1 ,x2 ,x3) ELSE (y1 ,y2 ,y3) ENDIF IN ...

However, since the specification in PVS does not always return a value, that is re-
quired to define the semantics of a program, one can wonder how we can now specify
that the transformed program is equivalent to the input one. This is presented in the
following section.

7.3. PVS THEORY TRANSFORMATION 125

7.3.2 Specification with subtyping

There is one case where the equivalence between the input program and the output pro-
gram can be quite easy to state. This case is when the specification’s last definition is
a Boolean value or a function returning Boolean values. Indeed, if the transformation
changes the type when we compute with numerical sub-expressions, the Boolean ones
are not changed since square roots and divisions can be eliminated locally. If the last
definition is a function then it is never called in the specification we target and thus the
input type does not change either:

EXAMPLE 7.4 (Boolean function transformation). The following function:
f_test(x,y : real , z : nnreal) : bool =

LET sq = y*sqrt(z) IN

x + sq > 0

is transformed into
f_test_e(x, y, z : real) : bool =

LET sq_1 = y

IN

LET (at_p , at_r , at_rel , at_neq) =

(sq_1 > 0 ,x > 0 ,sq_1 * sq_1 * z - x * x > 0 ,

sq_1 * sq_1 * z - x * x /= 0)

IN at_p AND at_r OR at_p AND at_rel OR at_r AND NOT at_rel AND at_neq

that have the same semantics.

However transforming the functions that return numerical values changes the types
and thus the semantics can not be compared. Moreover, when these functions are used
into other functions the relation with the functions of the input programs is completely
lost.

We decided to use the sub-typing features of PVS to add a typing predicate to the
transformed functions, it allows us to specify the behavior of the transformed functions
relatively to the input functions. In fact this predicate only represents the template that
have been used to transform the input and the output of the function. In order to realize
such a transformation, we add another constructor for functions in the OCaml abstract
syntax that enables us to add a predicate to the returned type of the transformed func-
tion:

| Dfunt o f uvar ∗(va r ∗ t yp e s)∗ (va r ∗ t yp e s ∗program)∗ program∗program

The program added to the output type is supposed to be a Boolean expression that repre-
sents the specification of the new function. This constructor has the following meaning:

Dfunt (f , (x , Ti) , (y , To ,P) , body , scope)

represents the following PVS definition:
f (x : Ti) : { y : To | P } = body

scope

Using this predicate, we are able to transform a function and specify the behavior of the
transformed function using the input function, e.g.,

EXAMPLE 7.5 (Function subtype specification). The transformation of the following func-
tion:

126 CHAPTER 7. INTERFACES

f(t : real) : real =

(t + 1) / (t - 1)

res : bool = f(a + b * sqrt(c)) > 0

is specified in the type of the transformed function:
f_e(t_1 , t_2 : real) :

{f_n_1 , f_n_2 , f_d_1 , f_d_2 : real |

(f_n_1 + f_n_2 * sqrt(c)) / (f_d_1 + f_d_2 * sqrt(c))

= f(t_1 + t_2 * sqrt(c)) } =

(1 + t_1 ,t_2 ,-1 + t_1 ,t_2)

res : bool =

LET (f_n_1 , f_n_2 , f_d_1 , f_d_2) =

f_e((a ,b))

IN ...

Therefore we can give the new transformation rules for the functions. We use new
names for the functions in order to use the input program as an import in the output pro-
gram to specify the transformed function with functions defined in this input program:

DEFINITION 7.1 (Function input transformation with subtyping). We use the template
to specify the new entry:

letf f x : A → B = b;

sc f (f(Pp1(Tiσ1,1, ..., Tiσ1,m1)), ..., f(Ppn(Tiσn,1, ..., Tiσn,mn)))

−→
letf f_e var(σ1,1) : A′ → {y : B | y = f(Ti)} = b[x 7→ Ti];

sc f (f_e(Pp1(arg(σ1,1), ..., arg(σ1,m1))), ..., f_e(Ppn(arg(σn,1), ..., arg(σn,mn))))

where A′ is the type of the arg(σi,j)

DEFINITION 7.2 (Function output transformation with subtype). We use the output
template to specify the relation with the input function:

letf f_e x : A → {y : B | y = f(Ti)} = Pp(Toσ1, ..., Toσn);

sc f (f(a1),...,f(am))

−→
letf f_e x : A → {var(σ1) : B′ | To = f(Ti)} = Pp(arg(σ1), ..., arg(σn));

sc f (let var(σ1) = f_e(a1) in To,...,let var(σ1) = f_e(am) in To)

where B′ is the type of the arg(σi)

We end up with new function definitions that do not contain any square roots or di-
visions (except in the typing predicate). The typing predicate associated to Boolean func-
tions states that the output of the new function is equal to the output of input function,
the template of a Boolean being a single variable.

This way the functions in the transformed program are completely specified with re-
spect to the input functions, the only step left being to prove the type checking conditions
resulting from these predicates.

7.3. PVS THEORY TRANSFORMATION 127

7.3.3 Proving the equivalence

Adding predicates to the type of the produced function imply to prove some type check-
ing conditions (see Section 5.1). The TCC generation by PVS already decompose the
functions bodies such that it generates one TCC per case.

EXAMPLE 7.6 (TCC decomposition). Assume we have the following functions:
f(x1 ,y1 : posreal) : real = x1/y1

g(t : bool ,x,y : posreal) : real =

IF t THEN f(x,(y + 1)) ELSE sqrt(x) + y ENDIF

that are transformed into:
f_e(x1, y1 : real) : {f_n , f_d : real | f_n / f_d = f((x1 , y1))} =

(x1 , y1)

g_e(t : bool , x, y : real) : {g_n_1 , g_n_2 , g_d , sq_0 : real |

(g_n_1 + g_n_2 * sqrt(sq_0)) / g_d = g((t, x, y))} =

IF t

THEN

LET (f_n , f_d) =

f_e((x, y + 1))

IN (f_n , 0, f_d , 0)

ELSE (y, 1, 1, x)

ENDIF

Then PVS generates for g_e the following TCCS:
g_e_TCC2: OBLIGATION

FORALL (t: bool , x, y: real):

t IMPLIES

(FORALL (f_n: real , f_d: real):

f_d = f_e(x, y + 1)‘2 AND f_n = f_e(x, y + 1)‘1 IMPLIES

(f_n + 0 * sqrt (0)) / f_d = g(t, x, y));

g_e_TCC3: OBLIGATION

FORALL (t: bool , x, y: real):

NOT t IMPLIES (y + 1 * sqrt(x)) / 1 = g(t, x, y);

The different cases corresponding to the conditional constructor (if then else) are al-
ready decomposed, and the only predicates to prove are equalities between arithmetic
expressions. Yet, the expression comparison does not involve the common template com-
putation and therefore these equalities corresponds to the transformation that have been
proved correct in PVS. Therefore, after inlining the type of the other functions (e.g., f_e)
the current function is depending on, we can use the strategy that we introduced in sec-
tion 7.2 to prove such equalities. The proof of g_e_TCC2 is done by the following strategy:

EXAMPLE 7.7 (Proof of equivalence predicates). The g_e_TCC2 obligation requires to
prove that (f_n + 0 * sqrt(0)) / f_d = g(t, x, y))

i) By expanding g knowing that t is true, the new goal is the following formula:
(f_n + 0 * sqrt(0)) / f_d = f(x, 1 + y)

ii) Then by adding the type predicate of f_e we have the following hypothesis
f_n / f_d = f(x, 1 + y)

128 CHAPTER 7. INTERFACES

iii) A simple simplification using the rules of arithmetic finishes the proof

This predicate is quite simple and PVS solves it directly using for example the (assert)
strategy but more complicated predicates require to invoke the subtyping of many other
functions and use the (elim-sqrt) strategy, in particular when square roots are involved
in Boolean expressions. However this is the general scheme of the proof of the equiva-
lences between the input and the output functions:

• First, expand the input function that corresponds to the current TCC

• Then, introduce all the typing predicates corresponding to the functions that are
called in the new expression

• Prove the Boolean equivalence to reduce the expanded input function to the case
corresponding to the current TCC of the output one

• Prove the expression equality with either native arithmetic strategies or the (elim-sqrt)
one for more complicated cases

Therefore, even if the OCaml transformation is not proved correct in PVS, we are
still able to prove the equivalence between the input and the output programs. These
equivalence proofs can be done quite easily by using both the powerful type checking
condition generation in PVS and the (elim-sqrt) strategy we defined, that corresponds
to the transformation of Boolean expressions that is the core of our transformation.

In the following section, we present how we are now able to reduce the size of the
output programs by defining comparisons operators as function.

7.3.4 From comparison operator to function

The transformation of functions using anti-unification is efficient regarding the size of
the produced code and the equivalence lemmas are relatively easy to prove using the
strategy described in section 7.3.3. Therefore we decided to try to use this function trans-
formation in order to factorize the large Boolean expressions produced by the elimination
of square roots in Boolean. This is done by first replacing the comparisons operators in
the input program by functions that have the same semantics before applying the trans-
formation,e.g.,

EXAMPLE 7.8 (Comparisons as functions). The following program :
f(x1 ,y1 : posreal) : bool = x1 + sqrt(y1) * y1 > 0

g(x,y, z : posreal) : real =

IF z + sqrt(y + x) > 0 OR f(y,z) THEN y ELSE sqrt(x) + y ENDIF

Is first transformed into the following program:
gt1(gt1l ,gt1r : real) : bool = gt1l > gt1r

gt2(gt2l ,gt2r : real) : bool = gt2l > gt2r

f(x1 ,y1 : posreal) : bool = gt1(x1 + sqrt(y1) * y1 ,0)

g(x,y, z : posreal) : real =

IF gt2(z + sqrt(y + x),0) OR f(y,z) THEN y ELSE sqrt(x) + y ENDIF

7.3. PVS THEORY TRANSFORMATION 129

And only then the elimination of square roots and division is applied.

Since the Boolean function outputs do not create any dependency such transforma-
tion do not create cycles in the dependency graph. This allows us to transform such
programs, the Boolean formulas from the input program are almost the same, the > op-
erator being replaced by a gt function. But then the transformed gt functions that have
the same specification are re-factorized in one unique function corresponding to the tem-
plate. However, having different functions for different templates is still useful since we
want to avoid computation of large expressions as much as possible to limit the size of
the fixed point numbers that have to be used for exact computation. This is why we de-
clared different functions for the different occurrences of the comparisons operators in
the first place.

EXAMPLE 7.9 (Transformation with comparisons function factorization). The program
is transformed, the two gt transformations using the same template, we only use one of
them:

gt0_e(gt0_1_1 , gt0_1_2 , gt0_2 , sq_2 : real) :

{res : bool | res = gt0_1_1 + gt0_1_2 * sqrt(sq_2) > gt0_2} =

LET (at_p , at_r , at_rel , at_neq) =

(gt0_1_2 > 0, gt0_1_1 - gt0_2 > 0,

gt0_1_2*gt0_1_2*sq_2 - (gt0_1_1 - gt0_2)*(gt0_1_1 - gt0_2) > 0,

gt0_1_2*gt0_1_2*sq_2 - (gt0_1_1 - gt0_2)*(gt0_1_1 - gt0_2) /= 0)

IN at_p AND at_r OR at_p AND at_rel OR at_r AND NOT at_rel AND at_neq

f_e(x1, y1 : real) : {res : bool | res = f((x1, y1))} =

gt0_e((x1 , y1, 0, y1))

g_e(x, y, z : real) : {g_1 , g_2 , sq_0 : real |

g_1 + g_2 * sqrt(sq_0) = g((x, y, z))} =

IF gt0_e ((z, 1, 0, y + x)) OR f_e((y, z))

THEN (y, 0, 0)

ELSE (y, 1, x)

ENDIF

Therefore this transformation of Boolean expressions with functions requires only an
automatic pre and post process of the transformation:

• Before applying the main transformation, replace every occurrence of the Boolean
operators by a function whose definition is this operator

• Apply the main transformation

• For all the transformed functions corresponding to the comparison operator, factor-
ize the ones that have the same specification.

The new comparisons functions can also be generated in a separate file that is a depen-
dency of the transformed program. In this way the transformed program has exactly
the same structure as the input one. In order to illustrate this transformation on a real
example, we present in Chapter 8 the transformation of a real PVS program for conflict
detection in two dimensions.

130 CHAPTER 7. INTERFACES

7.4 YICES

We also implemented an interface for the Yices solver. Yices is an SMT solver devel-
oped by the SRI Laboratory [DdM06b]. This solver does not handle division or square
root. Therefore we implemented in OCaml a parser for a subset of the Yices language
corresponding to the Boolean expressions built with comparisons between arithmetic ex-
pression extended with square roots and divisions. The reverse pretty printer produces
Yices files from the transformed program where square roots and divisions have been
eliminated. This way we are able to pre-process Yices programs before using the solver
to allow it to handle formulas using the square root and division operations.

8
APPLICATIONS

A
COMPLETE PVS SPECIFICATIONS CAN BE PROCESSED by the OCaml implementation
of the transformation linked with pvsio. In this chapter we present the transfor-
mation of a conflict detection algorithm, namely cd2d that is developed by NASA

in the ACCoRD framework. This algorithm aims at detecting loss of separation between
two aircrafts in a two-dimensional space. An analysis of numerical stability of this pro-
gram has been presented in [GMKC13], the algorithm is described in this paper but we
recall its main characteristics.

Coordinates of the aircraft are represented relatively thus, given s1 = (x1, y1) and s2 =

(x2, y2) the positions in two dimension of the aircrafts, s = (x1 − x2, y1 − y2) represents
the relative distance between these aircrafts. The aircrafts are supposed to have a constant
speed during at least a lookahead time and their speeds are also represented relatively in a
two-dimensional space v = (vx1 − vx2, vy1 − vy2).

Given a distance D, a loss of separation occurs when the aircraft are too close, this
means that their distance is less than D:

loss?(s) ⇐⇒
√

s2
x + s2

y < D

And a conflict occurs when a loss of separation is going to occur before the end of a
lookahead time T:

con f lict?(s, v) ⇐⇒ ∃ t ≤ T, loss?(s + t.v)

Where + and . are the usual addition and constant multiplication in R2. A function
named detection_2D is defined cd2d, it computes the interval of time where the loss of
separation occurs. Indeed the following predicates have been proved in PVS:

detection_2D_correct : THEOREM

LET (tin ,tout) = detection_2D(s,v) IN

tin < t AND t < tout IMPLIES horizontal_los ?(s+t*v)

detection_2D_complete : THEOREM FORALL (s,v)

LET (tin ,tout) = detection_2D(s,v) IN

horizontal_los ?(s+t*v) IMPLIES

tin <= t AND t <= tout AND tin < tout

conflict_detection_2D : THEOREM FORALL (s,v)

132 CHAPTER 8. APPLICATIONS

LET (tin ,tout) = detection_2D(s,v) IN

conflict_2D ?(s,v) IFF tin < tout

The detection_2D is defined in the following specification. In order to be able to trans-
form the program we had to remove all the lemmas and theorems from the original pro-
gram.

EXAMPLE 8.1 (Conflict detection algorithm). This PVS specification of the conflict detec-
tion algorithm is defined in the ACCoRD system:
cd2d : THEORY

BEGIN

3

IMPORTING reals@sqrt , Elim

zero_vect2 ?(zerov : [real ,real]) : bool = zerov ‘1 = 0 AND zerov ‘2 = 0

8 det(sdet ,vdet : [real ,real]) : real = sdet ‘1 * vdet ‘2 - sdet ‘2 * vdet ‘1

horizontal_los ?(horizv : [real ,real], horizD : real) : bool =

horizv ‘1 * horizv ‘1 + horizv ‘2 * horizv ‘2 < horizD * horizD

13 minmax(maxv1 ,maxv2 , minv : real) : real =

LET maxi = IF maxv1 > maxv2 THEN maxv1 ELSE maxv2 ENDIF IN

IF maxi < minv THEN maxi ELSE minv ENDIF

maxmin(minv1 ,minv2 ,maxv : real) : real =

18 LET mini = IF minv1 < minv2 THEN minv1 ELSE minv2 ENDIF IN

IF mini > maxv THEN mini ELSE maxv ENDIF

Delta(sDelt ,vDelt : [real ,real], DDelt : real) : real =

(DDelt * DDelt) * (vDelt ‘1 * vDelt ‘1 + vDelt ‘2 * vDelt ‘2) -

23 det(sDelt ,vDelt)*det(sDelt ,vDelt)

Theta_D(sThe ,nzvThe : [real ,real], eps , Dthe : real):real =

LET a = (nzvThe ‘1 * nzvThe ‘1 + nzvThe ‘2 * nzvThe ‘2),

b = sThe ‘1 * nzvThe ‘1 + sThe ‘2 * nzvThe ‘2,

28 c = (sThe ‘1 * sThe ‘1 + sThe ‘2 * sThe ‘2) - Dthe * Dthe IN

(-b + eps*sqrt((b*b) - a*c))/a ;

detection_2D(s,v : [real ,real],B,T,D,Entry ,Exit : real) : [real ,real] =

IF zero_vect2 ?(v) AND horizontal_los ?(s,D) THEN

33 (B,T)

ELSIF Delta(s,v,D) > 0 THEN

LET tin = Theta_D(s,v,Entry ,D),

tout = Theta_D(s,v,Exit ,D) IN

(minmax(tin ,B,T),maxmin(tout ,T,B))

38 ELSE

(B,B)

ENDIF

detect ?(st, vt : [real ,real], Bt , Tt, Dt, Entryt , Exitt : real) : bool =

43 LET (tint ,toutt) = detection_2D(st ,vt ,Bt ,Tt,Dt,Entryt ,Exitt) IN

tint < toutt

END cd2d

133

The only square roots and divisions of this program are in the Theta_D function, how-
ever in the body of the detection_2D function, the result of Theta_D is then used by the
minmax and maxmin functions. Therefore square roots and divisions will propagate to
these other functions during the transformation.

The OCaml implementation of the transformation of programs with function defini-
tions introduced in Chapter 6 and with the subtype predicate generation introduced in
Section 7.3 transforms the PVS program from Example 8.1 into the following one:

EXAMPLE 8.2 (Transformed cd2d). The transformation generates the following program,
the comparison operators being defined in a separate file, namely cd2d_operators.pvs, as
introduced in Section 7.3.4:
cd2d_elim : THEORY

BEGIN

IMPORTING cd2d , cd2d_operators , reals@sqrt , Elim

4

zero_vect2?_e(zerov : [real ,real]) :

{res : bool | res = zero_vect2 ?(zerov)} =

zerov ‘1 = 0 AND zerov ‘2 = 0

9 det_e(sdet , vdet : [real ,real]) :

{det : real | det = det((sdet , vdet))} =

sdet ‘1 * vdet ‘2 - sdet ‘2 * vdet ‘1

horizontal_los?_e(horizv : [real ,real], horizD : real) :

14 {res : bool | res = horizontal_los ?((horizv , horizD))} =

horizv ‘1 * horizv ‘1 + horizv ‘2 * horizv ‘2 - horizD * horizD < 0

minmax_e(maxv1_n_1 , maxv1_n_2 , maxv1_d , maxv2 , minv , sq_4 : real) :

{minmax_n_1 , minmax_n_2 , minmax_d , sq_6 : real |

19 (minmax_n_1 + minmax_n_2 * sqrt(sq_6)) / minmax_d =

minmax (((maxv1_n_1 + maxv1_n_2 * sqrt(sq_4)) / maxv1_d ,

maxv2 ,

minv))} =

LET (maxi_n_1 , maxi_n_2 , maxi_d , sq_5) =

24 IF gt0_e ((maxv1_n_1 , maxv1_n_2 , maxv1_d , maxv2 , sq_4))

THEN (maxv1_n_1 , maxv1_n_2 , maxv1_d , sq_4)

ELSE (maxv2 , 0, 1, 0)

ENDIF

IN

29 IF lt1_e ((maxi_n_1 , maxi_n_2 , maxi_d , minv , sq_5))

THEN (maxi_n_1 , maxi_n_2 , maxi_d , sq_5)

ELSE (minv , 0, 1, 0)

ENDIF

34 maxmin_e(minv1_n_1 , minv1_n_2 , minv1_d , minv2 , maxv , sq_1 : real) :

{maxmin_n_1 , maxmin_n_2 , maxmin_d , sq_3 : real |

(maxmin_n_1 + maxmin_n_2 * sqrt(sq_3)) / maxmin_d =

maxmin (((minv1_n_1 + minv1_n_2 * sqrt(sq_1)) / minv1_d ,

minv2 ,

39 maxv))} =

LET (mini_n_1 , mini_n_2 , mini_d , sq_2) =

IF lt1_e ((minv1_n_1 , minv1_n_2 , minv1_d , minv2 , sq_1))

THEN (minv1_n_1 , minv1_n_2 , minv1_d , sq_1)

ELSE (minv2 , 0, 1, 0)

134 CHAPTER 8. APPLICATIONS

44 ENDIF

IN

IF gt0_e((mini_n_1 , mini_n_2 , mini_d , maxv , sq_2))

THEN (mini_n_1 , mini_n_2 , mini_d , sq_2)

ELSE (maxv , 0, 1, 0)

49 ENDIF

Delta_e(sDelt , vDelt : [real ,real], DDelt : real) :

{Delta : real | Delta = Delta ((sDelt , vDelt , DDelt))} =

DDelt * DDelt * (vDelt ‘1 * vDelt ‘1 + vDelt ‘2 * vDelt ‘2) -

54 det_e((sDelt , vDelt)) * det_e ((sDelt , vDelt))

Theta_D_e(sThe , nzvThe : [real ,real], eps , Dthe : real) :

{Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , sq_0 : real |

(Theta_D_n_1 + Theta_D_n_2 * sqrt(sq_0)) / Theta_D_d =

59 Theta_D ((sThe , nzvThe , eps , Dthe))} =

LET a =

nzvThe ‘1 * nzvThe ‘1 + nzvThe ‘2 * nzvThe ‘2

IN

LET b =

64 sThe ‘1 * nzvThe ‘1 + sThe ‘2 * nzvThe ‘2

IN

LET c =

sThe ‘1 * sThe ‘1 + sThe ‘2 * sThe ‘2 - Dthe * Dthe

IN (-b, eps , a, b * b - a * c)

69

detection_2D_e(s, v : [real ,real], B, T, D, Entry , Exit : real) :

{detection_2D1_n_1 , detection_2D1_n_2 ,

detection_2D1_d , detection_2D2_n_1 ,

detection_2D2_n_2 , detection_2D2_d , sq_7 , sq_8 : real |

74 ((detection_2D1_n_1 + detection_2D1_n_2 * sqrt(sq_8)) /

detection_2D1_d ,

(detection_2D2_n_1 + detection_2D2_n_2 * sqrt(sq_7)) /

detection_2D2_d) =

detection_2D ((s, v, B, T, D, Entry , Exit))} =

79 IF zero_vect2?_e(v) AND horizontal_los?_e((s, D))

THEN (B, 0, 1, T, 0, 1, 0, 0)

ELSE

IF Delta_e ((s, v, D)) > 0

THEN

84 LET (Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , sq_0) =

Theta_D_e ((s, v, Entry , D))

IN

LET (new_Theta_D_n_1 , new_Theta_D_n_2 , new_Theta_D_d , new_sq_0) =

Theta_D_e ((s, v, Exit , D))

89 IN

LET (maxmin_n_1 , maxmin_n_2 , maxmin_d , sq_3) =

maxmin_e ((new_Theta_D_n_1 , new_Theta_D_n_2 ,

new_Theta_D_d , T, B, new_sq_0))

IN

94 LET (minmax_n_1 , minmax_n_2 , minmax_d , sq_6) =

minmax_e ((Theta_D_n_1 , Theta_D_n_2 , Theta_D_d , B, T, sq_0))

IN (minmax_n_1 , minmax_n_2 , minmax_d , maxmin_n_1 ,

maxmin_n_2 , maxmin_d , sq_3 , sq_6)

ELSE (B, 0, 1, B, 0, 1, 0, 0)

135

99 ENDIF

ENDIF

detect?_e(st , vt : [real ,real], Bt, Tt, Dt , Entryt , Exitt : real) :

{res : bool | res = detect ?((st, vt , Bt, Tt, Dt , Entryt , Exitt))} =

104 LET (detection_2D1_n_1 , detection_2D1_n_2 , detection_2D1_d ,

detection_2D2_n_1 , detection_2D2_n_2 , detection_2D2_d , sq_7 , sq_8) =

detection_2D_e ((st , vt, Bt, Tt , Dt , Entryt , Exitt))

IN lt3_e ((detection_2D1_n_1 , detection_2D1_n_2 , detection_2D1_d ,

detection_2D2_n_1 , detection_2D2_n_2 , detection_2D2_d , sq_8 , sq_7))

109 END cd2d_elim

As one can notice, the number of lines in the output program is more than twice
the length of the input one. However this is mainly due to the length of the sub-typing
predicates associated to the transformed functions.

The comparisons are replaced by function that are defined in the cd2d_operators

theory, such as gt_0_e or lt_1_e used in the minmax and maxmin function. And their use
is factorized since both minmax_e and maxmin_e use the same comparison functions.

This transformed program is therefore equivalent to the input one according to the
type predicates embedded in the type of the functions and it does not use square roots or
divisions anymore except in these predicates. Therefore, being able to construct an exact
implementation of real numbers computations with addition, subtraction and multipli-
cation would enable an exact execution of this program.

136 CHAPTER 8. APPLICATIONS

CONCLUSION

T
HIS THESIS has presented a way to deal with the usual inexactness introduced by
the computation over real numbers. This is achieved with a program transforma-
tion that removes square roots and divisions from straight lines programs. This

transformation has been implemented in OCamL and partially proven in the PVS proof
assistant. As presented in Chapter 8, the OCaml/pvsio transformation handles the trans-
formation of PVS specifications. The proof of the sub-typing predicates generated by this
transformation is quite easy in PVS using the strategy we presented in Chapter 7. Thus
we provide a transformation of PVS programs that enables the user to certify with min-
imum efforts the equivalence between the input and the output program. But the work
presented in this thesis can be pushed further in many directions.

Exact computation with +,−,× Even after the transformation, the exactness of the
computations still relies on an exact implementation of the addition, subtraction and
multiplication in an embedded system. In Section 3.4.1 we outlined an analysis of the
program in order to implement these exact operations. However, the real implementa-
tion, that involves compilation issues was not in the scope of this thesis and still remains
to be done in order to have a real embedded system computing exactly.

Loops or recursion Chapter 4 introduced an extension of the first program transfor-
mation by adding the function definitions to the language processed by the transfor-
mation. However, if targeting a real Turing-complete language is not in the scope yet,
the unbounded behaviors associated to such languages not being allowed in embedded
systems, features such as bounded loops are conceivable. In Section 4.5, we briefly intro-
duced an idea to extend the transformation to loops that might be worth to be studied
deeper.

Certified transformation The transformation is only partially proved in PVS since nei-
ther the anti-unification nor the function transformation are specified in this system. As
shown in Chapter 8 we are able to generate and prove lemmas associated to the transfor-
mation of a PVS specification to certify that the transformed program is correct. It could

138 CONCLUSION

be worth to have a automated certified transformation, either by defining a strategy that
always prove the generated type-checking conditions associated to the sup-typing pred-
icates stating the correctness of the transformed program. But the best way would be to
complete the specification and the proof of the transformation in the PVS system so that
the transformation would be certified itself instead of certifying the programs it gener-
ates. Therefore such a transformation would allow us to have a certified transformation
for programing languages that do not rely on a particular proof system to prove proper-
ties of these programs.

Other operations Last but not least, the transformation scheme introduced in this thesis
for the elimination of square roots and divisions might be reused to eliminate other oper-
ations. In particular, the extension of the transformation to eliminate the cubic extractions
seems a reasonable goal, but this must be pushed further.

BIBLIOGRAPHY

[AEMO08] María Alpuente, Santiago Escobar, José Meseguer, and Pedro Ojeda. A mod-
ular equational generalization algorithm. In Michael Hanus, editor, LOP-

STR, volume 5438 of Lecture Notes in Computer Science, pages 24–39. Springer,
2008. 19, 35

[AVM03] Myla Archer, Ben Di Vito, and César Muñoz. Developing user strategies
in PVS: A tutorial. In Proceedings of Design and Application of Strategies/-

Tactics in Higher Order Logics STRATA’03, NASA/CP-2003-212448, NASA
LaRC,Hampton VA 23681-2199, USA, September 2003. 118

[BBF+00] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nas-
sor, and Robert de Simone. ESTEREL: a formal method applied to avionic
software development. Sci. Comput. Program., 36(1):5–25, 2000. 2

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In Ron Cytron and Rajiv Gupta,
editors, PLDI, pages 196–207. ACM, 2003. 2

[BCRO86] Hans-Juergen Boehm, Robert Cartwright, Mark Riggle, and Michael J.
O’Donnell. Exact real arithmetic: a case study in higher order programming.
In Proceedings of the 1986 ACM conference on LISP and functional programming,
LFP ’86, pages 162–173, New York, NY, USA, 1986. ACM. 2

[BKZ09] Peter E. Bulychev, Egor V. Kostylev, and Vladimir A. Zakharov. Anti-
unification algorithms and their applications in program analysis. In Amir
Pnueli, Irina Virbitskaite, and Andrei Voronkov, editors, Ershov Memorial

Conference, volume 5947 of Lecture Notes in Computer Science, pages 413–423.
Springer, 2009. 19

[BM06] Sylvie Boldo and César Muñoz. A formalization of floating-point numbers
in PVS. Report NIA Report No. 2006-01, NASA/CR-2006-214298, NIA-
NASA Langley, National Institute of Aerospace, Hampton, VA, 2006. 2

140 BIBLIOGRAPHY

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998. 51

[Bos03] Alin Bostan. Algorithmique efficace pour des opérations de base en Calcul formel.
PhD thesis, Ecole polytechnique, 2003. 2

[Bos12] Raphaël Bost. Nombres réels et transformation de programmes. Master thesis,
Ecole polytechnique, 2012. 111, 115

[Bou97] Samuel Boutin. Using reflection to build efficient and certified decision pro-
cedures. In TACS’97, volume 1281 of Lecture Notes in Computer Science, pages
515–529. Springer, 1997. 119

[Bro03] Christopher W. Brown. An overview of QEPCAD B: a tool for real quantifier
elimination and formula simplification. Journal of Japan Society for Symbolic

and Algebraic Computation, 10(1):13–22, 2003. 13

[BS01] Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 445–
532. Elsevier and MIT Press, 2001. 19

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science,
pages 298–302. Springer, 2007. 117

[Cdt] The Coq development team. The Coq proof assistant reference manual. 117

[CGL12] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity
and robustness of programs. Commun. ACM, 55(8):107–115, 2012. 49

[CGLN11] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navid-
Pour. Proving programs robust. In Tibor Gyimóthy and Andreas Zeller,
editors, SIGSOFT FSE, pages 102–112. ACM, 2011. 49

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-C: a software analysis perspective.
In Proceedings of the 10th international conference on Software Engineering and

Formal Methods, SEFM’12, pages 233–247, Berlin, Heidelberg, 2012. Springer-
Verlag. 2

[CM95] Victor A. Carreño and Paul S. Miner. Specification of the IEEE-854 floating-
point standard in HOL and PVS, 1995. 2

[CM10] Cyril Cohen and Assia Mahboubi. A formal quantifier elimination for alge-
braically closed fields. In Serge Autexier, Jacques Calmet, David Delahaye,
Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, ed-
itors, AISC/MKM/Calculemus, volume 6167 of Lecture Notes in Computer Sci-

ence, pages 189–203. Springer, 2010. 13

BIBLIOGRAPHY 141

[CMC08] Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point
polyhedra abstract domain. In G. Ramalingam, editor, APLAS, volume 5356
of Lecture Notes in Computer Science, pages 3–18. Springer, 2008. 2

[Coh69] Paul J. Cohen. Decision procedures for real and p-adic fields. Communica-

tions on pure and applied mathematics, 22(2):131–151, 1969. 13

[Coh12a] Cyril Cohen. Construction of real algebraic numbers in Coq. In Lennart
Beringer and Amy Felty, editors, ITP - 3rd International Conference on Inter-

active Theorem Proving - 2012, Princeton, États-Unis, August 2012. Springer.
2

[Coh12b] Cyril Cohen. Formalized algebraic numbers: construction and first-order theory.
PhD thesis, Ecole polytechnique, 2012. 2

[Col76] George E. Collins. Quantifier elimination for real closed fields by cylindri-
cal algebraic decomposition: a synopsis. SIGSAM Bull., 10:10–12, February
1976. 13, 117

[DD03] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis:
on the impact of the CPS transformation. J. Funct. Program., 13(5):867–904,
2003. 3

[DdM06a] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Thomas Ball and Robert B. Jones, editors, CAV, vol-
ume 4144 of Lecture Notes in Computer Science, pages 81–94. Springer, 2006.
117

[DdM06b] Bruno Dutertre and Leonardo Mendonça de Moura. The Yices SMT solver.
Technical report, SRI International, 2006. 130

[DGL04] Pietro Di Gianantonio and Pier Luca Lanzi. Lazy algorithms for exact real
arithmetic. Electron. Notes Theor. Comput. Sci., 104:113–128, November 2004.
2

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. 117

[DMM05] Marc Daumas, Guillaume Melquiond, and César Muñoz. Guaranteed
proofs using interval arithmetic. In IEEE Symposium on Computer Arithmetic,
pages 188–195, 2005. 2

[DRT01] Marc Daumas, Laurence Rideau, and Laurent Thery. A Generic Library
for Floating-Point Numbers and Its Application to Exact Computing. In
Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science,
pages 169–184, Edinburgh, Royaume-Uni, 2001. Springer Berlin / Heidel-
berg. 2

142 BIBLIOGRAPHY

[DS96a] Andreas Dolzmann and Thomas Sturm. Redlog computer algebra meets
computer logic. ACM SIGSAM Bulletin, 31:2–9, 1996. 13

[DS96b] Andreas Dolzmann and Thomas Sturm. Redlog User Manual, 1996. 13

[GMKC13] Alwyn Goodloe, César Muñoz, Florent Kirchner, and Loïc Correnson. Ver-
ification of numerical programs: From real numbers to floating point num-
bers. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors, Proceed-

ings of the 5th NASA Formal Methods Symposium (NFM 2013), volume 7871
of Lecture Notes in Computer Science, pages 441–446, Moffett Field, CA, May
2013. 131

[GMP02] Eric Goubault, Matthieu Martel, and Sylvie Putot. Asserting the precision
of floating-point computations: A simple abstract interpreter. In Daniel Le
Métayer, editor, ESOP, volume 2305 of Lecture Notes in Computer Science,
pages 209–212. Springer, 2002. 2

[Gol91] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23:5–48, 1991. 1

[GP11] Eric Goubault and Sylvie Putot. Static analysis of finite precision computa-
tions. In Ranjit Jhala and David A. Schmidt, editors, VMCAI, volume 6538
of Lecture Notes in Computer Science, pages 232–247. Springer, 2011. 2

[Har95a] John Harrison. Floating point verification in HOL. In Phillip J. Windley,
Thomas Schubert, and Jim Alves-Foss, editors, Higher Order Logic Theorem

Proving and Its Applications: Proceedings of the 8th International Workshop, vol-
ume 971 of Lecture Notes in Computer Science, pages 186–199, Aspen Grove,
Utah, 1995. Springer. 2

[Har95b] John Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cam-
bridge, UK, 1995. Available on the Web as http://www.cl.cam.ac.uk/

~jrh13/papers/reflect.dvi.gz. 119

[Har97] John Harrison. Floating point verification in HOL Light: the exponential
function. Technical Report 428, University of Cambridge Computer Lab-
oratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK,
1997. 2

[Hue76] Gérard Huet. Resolution d’Equations dans les langages d’ordre 1, 2,..., ω. PhD
thesis, Université de Paris VII, 1976. 19

[IEE85] IEEE. IEEE standard for binary floating-point arithmetic. Institute of Electrical
and Electronics Engineers, New York, 1985. Note: Standard 754–1985. 1, 48

[Joh63] Selmer M. Johnson. Generation of Permutations by Adjacent Transposition.
Memorandum (Rand Corporation). Rand Corporation, 1963. 114

http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz

BIBLIOGRAPHY 143

[KLV11] Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked
terms and hedges. In Manfred Schmidt-Schauß, editor, RTA, volume 10 of
LIPIcs, pages 219–234. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011. 19, 35

[KS11] Robbert Krebbers and Bas Spitters. Type classes for efficient exact real arith-
metic in Coq. Logical Methods in Computer Science, 9(1), 2011. 2

[Lan94] Serge Lang. Algebraic Number Theory. Graduate Texts in Mathematics.
Springer, 1994. 32

[LC09] Stéphane Lescuyer and Sylvain Conchon. Improving Coq propositional rea-
soning using a lazy CNF conversion scheme. In Silvio Ghilardi and Roberto
Sebastiani, editors, FroCoS, volume 5749 of Lecture Notes in Computer Science,
pages 287–303. Springer, 2009. 119

[LDF+12] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml system (release 4.00): Documentation and

user’s manual. Institut National de Recherche en Informatique et en Au-
tomatique, July 2012. 107, 117

[LMM88] Jean-Louis Lassez, Michael J. Maher, and Kim Marriott. Unification revis-
ited. In Foundations of Deductive Databases and Logic Programming., pages
587–625. Morgan Kaufmann, 1988. 19

[Mar07] Matthieu Martel. Semantics-based transformation of arithmetic expressions.
In SAS, pages 298–314, 2007. 3

[Mar09] Matthieu Martel. Program transformation for numerical precision. In
PEPM, pages 101–110, 2009. 3

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-
4704-9. 1

[MBMD09] Jeffrey Maddalon, Ricky Butler, César Muñoz, and Gilles Dowek. Math-
ematical basis for the safety analysis of conflict prevention algorithms.
Technical Memorandum NASA/TM-2009-215768, NASA, Langley Research
Center, Hampton VA 23681-2199, USA, June 2009. 2, 41

[Min95] Paul S. Miner. Defining the IEEE-854 floating-point standard in PVS, 1995.
2

[Min04] Antoine Miné. Relational abstract domains for the detection of floating-
point run-time errors. In David A. Schmidt, editor, ESOP, volume 2986 of
Lecture Notes in Computer Science, pages 3–17. Springer, 2004. 2

144 BIBLIOGRAPHY

[Mon08] David Monniaux. The pitfalls of verifying floating-point computations.
ACM Trans. Program. Lang. Syst., 30(3), 2008. 1

[Moo95] Ramon E. Moore. Methods and applications of interval analysis. SIAM studies
in applied mathematics. SIAM, 1995. 2

[Nap14] John Napier. Mirifici logarithmorum canonis descriptio. Hart, Edimburgh,
1614. English translation by Edward Wright: A description of the admirable

table of logarithmes, London, 1616.

[Ner12] Pierre Neron. A formal proof of square root and division elimination in
embedded programs. In Chris Hawblitzel and Dale Miller, editors, CPP,
volume 7679 of Lecture Notes in Computer Science, pages 256–272. Springer,
2012. 4

[Ner13] Pierre Neron. Square root and division elimination in pvs. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, ITP, volume
7998 of Lecture Notes in Computer Science, pages 457–462. Springer, 2013. 4

[NMD12] Anthony Narkawicz, Céar Muñoz, and Gilles Dowek. Provably correct con-
flict prevention bands algorithms. Science of Computer Programming, 77(1–
2):1039–1057, September 2012. 2, 41, 117

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a

proof assistant for higher-order logic. Springer, Berlin, Heidelberg, 2002. 117

[Obe07] Erick L. Oberstar. Fixed-point representation & fractional math. Oberstar

Consulting, revision, 1, 2007. 2

[O’C08] Russell O’Connor. Certified exact transcendental real number computation
in Coq. In OtmaneAit Mohamed, César César, Muñoz, and Sofiène Tahar,
editors, Theorem Proving in Higher Order Logics, volume 5170 of Lecture Notes

in Computer Science, pages 246–261. Springer Berlin Heidelberg, 2008. 2

[Oka00] Chris Okasaki. Breadth-first numbering: lessons from a small exercise in
algorithm design. In Proceedings of the fifth ACM SIGPLAN international con-

ference on Functional programming, ICFP ’00, pages 131–136, New York, NY,
USA, 2000. ACM. 28

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype ver-
ification system. In Deepak Kapur, editor, 11th International Conference on

Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelli-

gence, pages 748–752, Saratoga, NY, jun 1992. Springer. 91

[OSW05] Cosmin Oancea, Clare So, and Stephen M. Watt. Generalization in Maple,
2005. 19

[Pfe91] Frank Pfenning. Unification and anti-unification in the calculus of construc-
tions. In LICS, pages 74–85. IEEE Computer Society, 1991. 19

[Plo70] Gordon D. Plotkin. A note on inductive generalization. In Machine Intelli-

gence, volume 5, pages 153–163. Edinburgh University Press, 1970. 19

[Pot89] Loïc Pottier. Generalisation de termes en theorie equationnelle. Cas
associatif-commutatif. Rapport de recherche RR-1056, INRIA, 1989. 19

[PS83] H. Partsch and R. Steinbrüggen. Program transformation systems. ACM

Comput. Surv., 15(3):199–236, September 1983. 3

[Rey70] John C. Reynolds. Transformational systems and the algebraic structure of
atomic formulas. Machine intelligence, 5(1):135–151, 1970. 19

[Rob65] John A. Robinson. A machine-oriented logic based on the resolution princi-
ple. Journal of the ACM, 12(1):23–41, 1965. 19

[Rue97] Harald Rueß. Computational reflection in the calculus of constructions and
its application to theorem proving. In R. Hindley, editor, Proceedings of

the Third International Conference on Typed Lambda Calculus and Applications

(TLCA’97), Lecture Notes in Computer Science, Nancy, France, April 1997.
Springer. 119

[Sei54] Abraham Seidenberg. A new decision method for elementary algebra. The

Annals of Mathematics, 60(2):365–374, 1954. 13

[Sim98] Alex K. Simpson. Lazy functional algorithms for exact real functionals. In
Luboš Brim, Jozef Gruska, and Jiří Zlatuška, editors, Mathematical Founda-

tions of Computer Science 1998, volume 1450 of Lecture Notes in Computer Sci-

ence, pages 456–464. Springer Berlin Heidelberg, 1998. 2

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Univ.
of California Press, 2nd edition, 1951. 13

[Tur36] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Journal of the London Mathematical Society, 42:230–
265, 1936. 1

[Vui87] Jean Vuillemin. Exact real arithmetic with continued fractions. Rapport de
recherche RR-760, INRIA, 1987. 2

[Wei94] Volker Weispfenning. Quantifier elimination for real algebra - the cubic case.
In ISSAC, pages 258–263, 1994. 13

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra - the quadratic
case and beyond. Appl. Algebra Eng. Commun. Comput., 8(2):85–101, 1997. 13

[Wie80] Edwin Wiedmer. Computing with Infinite Objects. Theoretical Computer Sci-

ence, 10:133–155, 1980. 2

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety:
Shallow versus deep embedding. In Konrad Slind, Annette Bunker, and
Ganesh Gopalakrishnan, editors, TPHOLs, volume 3223 of Lecture Notes in

Computer Science, pages 305–320. Springer, 2004. 118

RÉSUMÉ

Cette thèse présente un algorithme qui élimine les racines carrées et les divi-
sions dans des programmes sans boucles, utilisés dans des systèmes embarqués,
tout en préservant la sémantique. L’élimination de ces opérations permet d’éviter
les erreurs d’arrondis à l’exécution, ces erreurs d’arrondis pouvant entraîner un
comportement complètement inattendu de la part du programme. Cette trans-
formation respecte les contraintes du code embarqué, en particulier la nécessité
pour le programme produit de s’exécuter en mémoire fixe. Cette transformation
utilise deux algorithmes fondamentaux développés dans cette thèse. Le premier
permet d’éliminer les racines carrées et les divisions des expressions booléennes
contenant des comparaisons d’expressions arithmétiques. Le second est un algo-
rithme qui résout un problème d’anti-unification particulier, que nous appelons
anti-unification contrainte. Cette transformation de programme est définie et prou-
vée dans l’assistant de preuves PVS. Elle est aussi implantée comme une stratégie
de ce système. L’anti-unification contrainte est aussi utilisée pour étendre la
transformation à des programmes contenant des fonctions. Elle permet ainsi
d’éliminer les racines carrées et les divisions de spécifications écrites en PVS.
La robustesse de cette méthode est mise en valeur par un exemple conséquent:
l’élimination des racines carrées et des divisions dans un programme de détection
des conflits aériens.

ABSTRACT

This thesis presents an algorithm that eliminates square root and division op-
erations in some straight-line programs used in embedded systems while pre-
serving the semantics. Eliminating these two operations allows to avoid errors
at runtime due to rounding. These errors can lead to a completely unexpected
behavior from the program. This transformation respects the constraints of em-
bedded systems, such as the need for the program to be executed in a fixed size
memory. The transformation uses two fundamental algorithms developed in this
thesis. The first one allows to eliminate square roots and divisions from Boolean
expressions built with comparisons of arithmetic expressions. The second one is
an algorithm that solves a particular anti-unification problem, that we call con-
strained anti-unification. This program transformation is defined and proven in
the PVS proof assistant. It is also implemented as a strategy for this system. Con-
strained anti-unification is also used to extend this transformation to programs
containing functions. It allows to eliminate square roots and divisions from PVS

specifications. Robustness of this method is highlighted by a major example: the
elimination of square roots and divisions in a conflict detection algorithm used in
aeronautics.

	Introduction
	Contents
	I Transformation Algorithms
	Boolean Expressions
	Using Quantifier Elimination
	Arithmetic expression normal form
	Division Elimination
	Square Root Elimination
	Complexity and Examples

	Constrained Anti-Unification
	Definition of the Constrained Anti-Unification
	Anti-Unification Modulo an Equational Theory
	Neutral Elements
	The Switch Operator
	Function Commutation and Normal Forms

	Anti-Unification on Dag-like Terms
	Dag Representation
	Dag Constrained Anti-Unification

	 and / Anti-Unification
	Theory of Arithmetic
	Dag Representation
	{,/}-Anti-Unification
	Dag Extension

	Transformation of Programs
	Language
	Program subtypes
	Normalized language
	Target language

	Specification of the Transformation
	Reliable Computations over Real Numbers
	Exact Computation
	Program and / Continuity

	Transforming Programs
	Orders on Programs
	Program Normal Form P

	Boolean Expression Transformation
	Variable Definition Transformation
	Specification of Variable Definition Transformation
	Variable Definition Transformation
	Single Expression Decomposition
	Multiple Expression Decomposition

	Main Transformation

	Transforming Functions and Function Calls
	Language Extension
	Function Definition Transformation
	Function input transformation
	Function output transformation

	Dependency Graph
	Order for Variable Definition Transformation
	Variable inlining consequences
	Definition transformation iteration

	Towards Acyclic Graphs and Loops
	Function duplication
	Template fixpoint
	The Division Case

	II Implementations and Applications
	Formal Pvs Proof
	The Pvs Proof Assistant
	Pvs Formalization
	Program normal form
	Substitution
	Program Normalization

	ElimB proof
	Head Division Form
	Division Elimination
	Square Root Factorization
	Square root elimination

	Variable Definition Transformation
	Template
	Decomposition

	Main elimination

	OCaml Implementation
	Simplification
	Anti-unification Algorithm
	Dag construction
	Dag Anti-unification
	Template Computation Extension

	Program with functions Transformation
	Elimfin and Elimfout implementation

	Interfaces
	Parsing and printing
	Pvs Strategy
	Deep embedding
	Strategy definition

	Pvs Theory Transformation
	Pvs to OCaml
	Specification with subtyping
	Proving the equivalence
	From comparison operator to function

	Yices

	Applications

	Conclusion
	Bibliography

