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Résumé

Cette thèse a pour objet l’étude d’algorithmes pour des applications de réalité visuellement
augmentée. Plusieurs besoins existent pour de telles applications, qui sont traités en tenant
compte de la contrainte d’indistinguabilité de la profondeur et du mouvement linéaire dans le
cas de l’utilisation de systèmes monoculaires. Pour insérer en temps réel de manière réaliste des
objets virtuels dans des images acquises dans un environnement arbitraire et inconnu, il est non
seulement nécessaire d’avoir une perception 3D de cet environnement à chaque instant, mais
également d’y localiser précisément la caméra. Pour le premier besoin, on fait l’hypothèse d’une
dynamique de la caméra connue, pour le second on suppose que la profondeur est donnée en
entrée: ces deux hypothèses sont réalisables en pratique. Les deux problèmes sont posés dans le
contexte d’un modèle de caméra sphérique, ce qui permet d’obtenir des équations de mouvement
invariantes par rotation pour l’intensité lumineuse comme pour la profondeur. L’observabilité
théorique de ces problèmes est étudiée à l’aide d’outils de géométrie différentielle sur la sphère
unité Riemanienne. Une implémentation pratique est présentée: les résultats expérimentaux
montrent qu’il est possible de localiser une caméra dans un environnement inconnu tout en
cartographiant précisément cet environnement.

Abstract

The purpose of this thesis is to study algorithms for visual augmented reality. Different
requirements of such an application are addressed, with the constraint that the use of a monocular
system makes depth and linear motion indistinguishable. The real-time realistic insertion of
virtual objects in images of a real arbitrary environment yields the need for a dense Three
dimensional (3D) perception of this environment on one hand, and a precise localization of
the camera on the other hand. The first requirement is studied under an assumption of known
dynamics, and the second under the assumption of known depth: both assumptions are practically
realizable. Both problems are posed in the context of a spherical camera model, which yields
SO(3)-invariant dynamical equations for light intensity and depth. The study of theoretical
observability requires differential geometry tools for the Riemannian unit sphere. Practical
implementation on a system is presented and experimental results demonstrate the ability to
localize a camera in a unknown environment while precisely mapping this environment.
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Introduction

Augmented reality

The emergence of mobile phones since the years 2000, and smartphones in the last few
years led to an increasing demand of the public to quick, easy and wide access to personal as
well as general information in any situation of everyday’s life. For example, it is nowadays a
basic requirement to be able to precisely locate oneself wherever in the world, even although
the Global Positioning System (GPS), based on radio-frequency signals, is well known to be
highly sensitive (among others) to the relative positions of the satellite constellation with
respect to the user ([Kaplan and Hegarty, 2005]). Real-time localization is only one example
of augmented reality, which can be defined as the addition of intangible information to our
physical perception of the world: this can be achieved through sound, vision or even touch
([Azuma et al., 1997]). Numerous applications have been reached by augmented reality: a few
examples are urban navigation ([Graham et al., 2013]), learning ([Gavish et al., 2013]), surgery
or medical applications in general ([Speidel et al., 2013] or [Mousavi Hondori et al., 2013]),
3D modeling ([Brenner, 2005], [Yang et al., 2013] or [Newcombe and Davison, 2010]), robots
teaching and learning ([Borrero and Marquez, 2013]), manufacturing
([Ong et al., 2008]), archeology ([Girbacia et al., 2013]), fine arts ([Bovcon et al., 2013]), gesture
training ([de Sorbier et al., 2012]), astrophysics ([Vogt and Shingles, 2013]); but also virtual in-
terior design ([Han and Seo, 2013]), fashion ([Ruzanka et al., 2013]), tourism ([Lin et al., 2013]),
advertisement ([Shiva and Raajan, 2013]), e-commerce ([Li et al., 2013]) and, last but not least,
gaming ([Santoso and Gook, 2012] or [Woun and Tan, 2012]).

The most natural and appealing way to augment reality is by the mean of visual addition,
which yields some requirements, of software as well as of hardware types. The obvious
hardware requirements are a capture (e.g a video camera, now available on most mobile phones
[Khan et al., 2013]), and a display technology: the later has become the last fashion trend with
the overwhelming (but still unavailable for the large public at the time of writing) Google
Glass product ([Edwards, 2013] or [Ackerman, 2013]). The hidden hardware technology is the
processing capability, which is driven by the software complexity. As for the software part, the
possibility to add virtual objects to a real image in a realistic way requires the ability to localize
the camera with respect to the visible environment, to inlay a 3D model of the object in the
physical world, and to project this 3D view in the image. The first part of these requirements
is generally solved by Simultaneous Localization and Mapping (SLAM) algorithms: from the
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visual input (from one or multiple cameras), which can be aided by inertial inputs present in
most portable technologies in the form of Micro-Electro-Mechanical Systems (MEMS) sensors,
the camera is localized with respect to a 3D model of the environment. This model can be
a complete input, for example a 3D model of the city ([Lothe et al., 2010]); a partial input,
e.g fiducial known markers ([Lim and Lee, 2009]); or simply a real-time reconstruction of the
environment without any input, which is the domain of application of Structure from Motion
(SfM) algorithms ([Wei et al., 2013]). As for the second part of the software requirements, it
leads to the necessity of a dense 3D modeling of the environment (at the very least a current
camera-centered model) to be able to handle occlusions of the virtual object with the real world
([Kahn, 2013] or [Zollmann and Reitmayr, 2012]).

Dense 3D reconstruction of the environment

Environment reconstruction is
tightly related to the SLAM problem [Smith et al., 1990], which can be addressed by nonlinear
filtering of observed key feature locations (e.g. [Civera et al., 2008], [Montemerlo et al., 2003]),
or by bundle adjustment ([Strasdat et al., 2010b, Strasdat et al., 2010a]). The problem of
designing an observer to estimate the depth of single or isolated keypoints has raised a lot of
interest, specifically in the case where the relative motion of the carrier is described by constant
known ([Abdursul et al., 2004, Dahl et al., 2010]), constant unknown [Heyden and Dahl, 2009],
or time varying known ([Dixon et al., 2003, Karagiannis and Astolfi, 2005, Luca et al., 2008,
Sassano et al., 2010]) affine dynamics. From a different perspective, the seminal paper of
[Matthies et al., 1989] performs incremental depth field refining for the whole field of view via
iconic (pixel-wise) linear Extended Kalman filtering. However, estimating a sparse point cloud
is insufficient for augmented reality applications, and none of these methods provide an accurate
dense depth estimation in a general setting concerning the environment and the camera dynamics.

Motion estimation

For the specific problem of motion estimation and localization, the nature and the quality of
the available measurements are critical, and delimit the reachable performances. In the 1950s,
expensive Inertial Measurement Units (IMUs) were developed, as missile guidance and control
required extremely accurate navigation data [Bezick et al., 2010, Chatfield, 1997, Faurre, 1971].
Tactical grade IMUs, less expensive, enable dead-reckoning techniques over short time periods,
but require position fixes provided by GPS [Abbott and Powell, 1999], or combination through
data fusion of other sensors outputs [Skog and Handel, 2009, Vissière et al., 2007]. As to recent
low-cost IMUs using MEMS technologies, the cumulated error due to the bias of gyroscopes
integrated over long time periods induces drift in orientation, which can be bounded. However,
from biased accelerometers, only high frequency output can be relied on, since the double
integration induces a position error quadratically growing in time; even more severe errors can
be induced when accelerometers are used in the frame of attitude estimation. As odometers
and velocimeters (e.g. Doppler radar [Uliana et al., 1997], Pitot tube, Electromagnetic (EM) log

2



sensor), are commonly available technologies in vehicles, mass market applications can combine
their linear velocity outputs with angular velocity from low-quality IMUs. Unfortunately,
Pitot probes and EM log sensors are known to only provide airspeed and Speed through the
water (STW) instead of Speed over ground (SOG): real-time or beforehand bias estimation is
necessary to make the measurements from these sensors exploitable. In a different category,
the Kinect device has been a huge outbreak in the robotics and vision communities as it
provides depth measurements registered at each pixel of a RGB image, at a relatively low
cost: this output is named RGBD (Red Green Blue and Depth: refers to the aligned pair of
an usual color image and a depth image (RGBD)). This sensor trivially solves the ambiguity
issue in ego-motion estimation by a monocular system: while motion is generally estimated
up to as scale factor (for example by homography estimation [Hamel et al., 2011]), RGBD data
provide the input required to solve the SfM problem without resorting to stereo vision techniques
[Pollefeys et al., 2004, Zhang and Faugeras, 1992].

Layout of the dissertation

Part I is dedicated to the study of real-time dense 3D reconstruction under the assumptions
of known camera motion and known projection model for the on board monocular camera. These
assumptions are motivated by the existence of a novel system developed by Sysnav company,
providing linear and angular velocity of a system obtained by processing of measurements from
gyrometers, accelerometers and magnetometers (see [Vissiere, 2008, Dorveaux, 2011] for a com-
plete description and the historical development of this novel technique, and [Vissière et al., 2008]
for a technical patented description). 1 We propose in this part a new estimation method for
dense depth data, from known camera dynamics, namely six degrees of freedom (6-DOF) inputs.
This method is based on a formulation of the optical flow constraint deriving from the spherical
camera model introduced in [Bonnabel and Rouchon, 2009], where the camera dynamics is made
explicit. This model is described in Chapter 1 and highlighted by a comparison with other
camera models. The principal assumptions and notations are also introduced in this chapter.
Variational methods applied to this constraint enable dense depth field estimation (Chapter
2). In addition, a so-called geometrical flow constraint can be exploited to design a non-linear
observer based on optical flow or depth measurements (Chapter 3). These results are based on
[Zarrouati et al., 2012a, Zarrouati et al., 2012b, Zarrouati et al., 2012c], and meet the needs of
augmented reality for a real-time dense 3D perception of the visible part of the environment.

The requirement of visual augmented reality concerning the localization of the carrier
with respect to its environment is addressed in Part II. We intend in this part to exploit
simultaneously image and dense depth data, as provided by the Kinect device, for motion
estimation. To bypass the nonlinearities of the system dynamics which usually force to

1. An extension of the distributed magnetometry approach was conducted by application of the method to
visual measurements. It was shown in [Zarrouati et al., 2012d] that curvilinear velocity of a grounded rigid body
can be estimated by the processing of low-cost images from a stereo vision system and gyrometers measurements.
This work, at the stage of development, is not described in this dissertation.
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study specific geometrical formulations (e.g the essential space [Soatto et al., 1994], the Plücker
coordinates [Mahony and Hamel, 2005]), we lean on the spherical camera model and motion
equations described in Chapter 1. In a first approach (Chapter 5), biased angular and linear
velocity measurements are supposed to be available. Our work focuses on biases estimation:
an important part of the study consists in determining the conditions of observability of such
biases. These results appear in [Zarrouati-Vissiere et al., 2012] and have been completed by
[Zarrouati-Vissière et al., 2013]. Next in Chapter 6, a novel odometry method based on the
processing of dense depth images like the ones provided by the Kinect device is described. This
method is named geometrical flow velocity estimation. This work has been the subject of a filed
patent application [Zarrouati-Vissière et al., 2013b]. Finally, in Chapter 7, these geometrical flow
velocity measurements are processed in addition to biased accelerometers, biased gyrometers and
magnetometers to provide an estimation of acceleration and angular velocity biases, as well as a
filtered estimate of the linear velocity.

In Part III, we describe a new implementation of a SLAM algorithm adapted for augmented
reality. The proposed system includes magneto-inertial sensors (accelerometers, gyrometers and
magnetometers), and a RGBD sensor. The algorithm is based on an implementation of Parallel
Tracking and Mapping algorithm (PTAM), which was adapted to process RGBD and magneto-
inertial data instead of the sole monocular RGB data. The vision algorithm, based on pose
optimization and parallel bundle adjustment to optimize the map, is made more robust and
scaled by the constraints of depth data. In addition, the fusion of visual position, inertial motion
and geometrical flow velocity measurements enable a precise continuous localization.
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Acronyms

2D Two dimensional.

3D Three dimensional.

6-DOF six degrees of freedom.

EKF Extended Kalman Filter.

EM Electromagnetic.

FAST Features from Accelerated Segment Test.

FSBI Fast Small Blurry Image.

GPS Global Positioning System.

GPU Graphical Processing Unit.

ICP Iterative Closest Point.

IMU Inertial Measurement Unit.

MEMS Micro-Electro-Mechanical Systems.

PDE Partial Differential Equation.

PTAM Parallel Tracking and Mapping algorithm.

PVS Potentially Visible Set.

RANSAC RANdom SAmple Consensus.

RGBD Red Green Blue and Depth: refers to the aligned pair of an usual color image and a
depth image.

SBI Small Blurry Image.

SfM Structure from Motion.

SLAM Simultaneous Localization and Mapping.

SOG Speed over ground.

STW Speed through the water.
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Part I

From motion to depth

Du mouvement à la profondeur
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Chapter 1

Camera models and motion equations

Formation des images et influence du mouvement

La définition la plus générale d’une caméra pourrait être : un système par lequel le monde
tridimensionnel est projeté sur une surface bidimensionnelle. La difficulté de la définition réside
dans l’estimation de l’opérateur de projection : pendant des siècles, le principal objectif de
l’Optique a été d’établir des modèles traduisant la formation d’images ; dans les dernières décades,
les scientifiques se sont concentrés sur le problème de calibration de caméras par rapport à un
modèle. Dans ce chapitre, différents modèles de caméras sont décrits, du plus simple et largement
utilisé sténopé à des modèles plus élaborés. Le modèle sphérique, adopté dans les Parties I et II,
peut être considéré comme un modèle unificateur. Les équations de mouvement associées à ce
modèle sont explicitées.

The most general definition of a camera system could be: a system projecting the three-
dimensional world onto a two-dimensional surface. However, the estimation of the projection
operator for any system is far from obvious: for many centuries, it has been the main purpose of
optics to establish models representing image formation; in the past decades, scientists focused
on the problem of calibration of systems according to a model. In this chapter, different
camera models are described, from the simplest and most used pinhole camera model to more
sophisticated ones. The spherical model, adopted in Parts I and II can be seen as a unifying
model. The motion equations satisfied by such a spherical camera are then developed.

1.1 Camera models

1.1.1 Pinhole model

The pinhole camera model is the simplest as well as the oldest camera model, as it derives
from the camera obscura (the latin for "darkened room"). Known by Aristotle and Kepler
[Lefèvre, 2007] to observe stars and sun eclipses, its lightest implementation consists of a dark
box with a small aperture (a pinhole) on one of the sides. It enabled the discovery that light
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travels across straight lines since an inverted image of the surrounding environment is projected
onto the back side of the box. More complex devices including mirrors, lenses or translucent
screens can rectify the image. Apart from its scientific interest, it used to be an entertainment
object at a time where people were unfamiliar with two-dimensional views of the world. In
addition, although there is no documentary evidence of this idea apart from the paintings
themselves ([Gaskell, 1998]), it is widely admitted that Dutch painters such as Vermeer used
camerae obscurae as an aid to render unusual perspective views (Figure 1.1).

Figure 1.1: Woman with a pearl necklace, Johannes Vermeer, Gemäldegalerie, Berlin.
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Figure 1.2: Pinhole camera model

The pinhole camera model is a schematic representation of the camera obscura: the image is
the projection of the world onto a plane (the focal plane) located in front of the optical center
of the system (the image in that case is virtual and not inverted). The projection is central, so
that every light ray travels across the optical center (Figure 1.2). Let us define a direct frame
of reference Rcam attached to the camera and centered at the the optical center C: the optical
axis (or principal axis), orthogonal to the image plane, is the z-axis, and the x and y axis have
horizontal and vertical orientations, pointing in the right and down directions respectively. Let
us consider a punctual object, with coordinates (x, y, z) with respect to the camera frame Rcam.
According to the pinhole camera model, the image of this object is located at the intersection of
the image plane (the equation of this plane is z = f , where f is the focal length) and on the line
(CX). The relation between the object coordinates and the image coordinates, both expressed
in Rcam, is:

(x, y, z)T ↦ f(x
z
,
y

z
)T . (1.1)

From this relation, the perspective phenomenon can be seen in different ways: first, different
punctual objects aligned on the same light ray are all projected on the same punctual image;
secondly, the closer extended objects are from the camera center, the bigger they appear on
the image; thirdly, the relation between points and image coordinates is non-linear. These
considerations led to the introduction of the so-called homogeneous coordinates, consistent with
the perspective projection: since all objects on a line that crosses the optical center are equivalent
by perspective, their homogeneous coordinates are equal. The homogeneous coordinates of a
point X in 3-D space is a vector with 4 components, denoted X̃ = (x1, x2, x3, x4)T . Consistency
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with perspective yields X̃ ∼ λX̃ for any non-zero multiplicative factor λ if X̃ is expressed in
Rcam. More precisely, X̃ is the homogeneous representation of X as soon as x4 ≠ 0 and

x = x1
x4
, y = x2

x4
and z = x3

x4
;

the simplest homogeneous representation of X is (x, y, z,1)T . Homogeneous coordinates are also
possible for 2D−points. These coordinates enable to write the non-linear relation (1.1) as matrix
multiplication:

X̃ =
⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠
↦ x̃ =

⎛
⎜
⎝

fx

fy

z

⎞
⎟
⎠
=
⎛
⎜
⎝

f 0 0 0

0 f 0 0

0 0 1 0

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠
= PX̃ (1.2)

where P is the matrix projection. This basic projection model can be improved and augmented
in numerous ways to better represent image formation in a real camera: this is the purpose of
camera calibration. A brief summary of possible extensions is given in the following. Details
can be found in the excellent textbook [Hartley and Zisserman, 2000] (chapters 4 and 6); a
good (french) review is given in [Boutteau, 2010]; issues about (self-)calibration are addressed in
[Pollefeys, 1999]; methods and ready-to-use algorithms for camera calibration were developped
by Zhengyou Zhang [Zhang, 2000, Zhang, 2001].

Intrinsic calibration

The intrinsic calibration of a camera is the relation between the coordinates of a 3D−point
X̃ and its 2D projection x̃, both expressed in the camera reference frame Rcam.

– Principal point offset In equation (1.2), it is assumed thatRcam is centered at the optical
center of the camera, so that the principal point (the intersection between the image plane
and the principal axis) is the origin of coordinates in the image plane. In practice, pixels
are labeled with positive integer values: the origin of coordinates is located in a corner of
the frame (usually the upper-left corner to be consistent with the camera frame definition).
Let us denote px and py the coordinates of the principal point: the projection relation is
now

X̃ =
⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠
↦ x̃ =

⎛
⎜
⎝

fx + zpx
fy + zpy

z

⎞
⎟
⎠
=
⎛
⎜
⎝

f 0 px 0

0 f py 0

0 0 1 0

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠
. (1.3)

– Pixel coordinates To express the image coordinates in pixels, instead of meters, let
us introduce mx and my the number of pixels per meter in the horizontal and vertical
directions, respectively: in particular cases, mx ≠ my which results in rectangular pixels;
but in most cases, pixels are square (mx =my). This yields

X̃ =
⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠
↦ x̃p =

⎛
⎜
⎝

mx(fx + zpx)
my(fy + zpy)

z

⎞
⎟
⎠
=
⎛
⎜
⎝

αx s x0 0

0 αy y0 0

0 0 1 0

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

x

y

z

1

⎞
⎟⎟⎟
⎠

(1.4)
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where αx ∶=mxf and αy ∶=myf , are the focal lengths expressed in pixels, and x0 ∶=mxpx
and y0 ∶= mypy are the principal point coordinates expressed in pixels. s is the skew
parameter: it describes the orthogonality default of horizontal and vertical axis. Since in
practice, internal calibrations can only be performed using pixel coordinates, αx, αy, x0
and y0 are the values actually estimated, and then f , px,y, mx,y are deduced from the
previous relations. Other parameters are useful when performing an internal calibration:
for example, resolution (the number of pixels actually seen in each direction, 640 by 480
for a VGA format), sensor size or field-of-view (denoted FOV, the angular section actually
seen in each direction) are very meaningful in the choice of a camera objective. Simple

relations exist between these parameters (for example, FOV = 2 tan ( resolution
2αx

)−1), and
various combinations of these parameters can be used to express the projection matrix P .

– Distortion In real cameras, perspective is not the only cause of non-linearity: low-cost
lenses and optical devices can result in distortions. Distortions can be defined as an
additional transformation applied to the "ideal" (undistorted) image coordinates x̃u as
expressed in (1.2) (the principal point is the origin of coordinates). The radial distortion
function R maps the ideal radius ru = √x2u + y2u onto the real (distorted) radius rd of image

coordinates x̃d:
√
x2
d
+ y2

d
= rd = R(ru). Given the coordinates x̃u and the mapping R, the

distorted image coordinates are

xd = xuR(ru)
ru

, yd = yuR(ru)
ru

. (1.5)

Then, translation and conversion to pixels are applied similarly to (1.3) and (1.4).
Let us underline that the distortion center and the principal point may be different
points. Details on distortion models and calibration procedures can be found in
[Devernay and Faugeras, 2001]. Let us cite two main radial distortion mappings:

1. Polynomial distortion model: the inverse mapping R−1 is a polynomial function of rd,
whose degree is one of the parameters to estimate during calibration:

ru = R−1(rd) = rd(1 + κ1r2d + κ2r4d + . . . ).
The direct mapping R is computed solving a polynomial equation: as the closed-loop
solution does not necessarily exist, numerical computations can be considered.

2. Fish-eye model: the direct mapping only depends on one parameter ω (corresponding
to the field-of-view of the ideal lens):

rd = R(ru) = 1

ω
arctan(2ru tan(ω

2
)). (1.6)

Extrinsic calibration

The extrinsic calibration of a camera is the relation between the coordinates of a 3D−point
X̃W expressed in a fixed external reference frame (usually called the world and denoted RW ) and
its 2D projection x̃ expressed in the camera reference frame Rcam. It depends on the (possibly

13



varying) orientation and position of the camera with respect to the world. Let us introduce R(t)
the rotation matrix representing the orientation of the camera frame Rcam with respect to the
world reference frame RW , and C(t) the position of the optical center of the camera with respect
to RW . Then, the (inhomogeneous) coordinates Xcam in Rcam of a 3D−point with coordinates
XW in RW are given by

Xcam = R(t)(XW −C(t)).
This is linearly written in homogeneous coordinates as

X̃cam = ( R(t) −R(t)C(t)01×3 1
) X̃W =KX̃W . (1.7)

Sometimes, the translation term −R(t)C(t) in the matrix K is simply replaced by T : one must
always keep in mind that this corresponds indeed to the translation of the camera center with
respect to a fixed reference frame, but expressed in the current camera frame. For a regular
camera (pinhole model, no distortion considered) , the relation between the coordinates X̃W of
a 3D point and its 2D projection x̃ is simply the multiplication of the extrinsic and intrinsic
calibration matrices (K and P respectively). The extrinsic matrix K is a member of the special
Euclidean group SE(3) which is the set of rigid body transformations in three dimensions. More
details on SE(3) and more generally on representation of 3D rigid-body kinematics can be found
in Appendix C.

When the acquisition system consists of a set of camera, as it happens for a stereo vision
system (a stereo rig), extrinsic calibration can refer to the estimation of position and rotation
of cameras with respect to each other. This is a crucial step in an algorithm that aims to
reconstruct the geometry of a scene by triangulation of matched point of interests between
stereoscopic views. In strict triangulation, the baseline (the distance between the optical centers
of the cameras) is in a sense the unit of length of the entire map: it is applied as a scale factor
in the 3D reconstruction process. Stereo Vision and its extension to SfM have been thoroughly
studied as a rich field of Computer Vision: description and comparison of existing algorithms can
be found in [Faugeras, 1993], [Szeliski, 2010], [Hartley and Zisserman, 2000], and state-of-the-art
applications are described in [Nistér et al., 2004, Zhang and Faugeras, 1992].

1.1.2 Other models

In the regular pinhole model, light rays travel across lenses: even when distortion is involved,
only transmission is considered. Other optical devices, known as catadioptric systems, involve
mirrors, which can be very useful to increase the field-of-view of the camera. Consequently, the
effect of reflection on light rays must be included in the projection model of such a camera.
Several classes of catadioptric systems exist, depending on the shape of the reflective systems:
planar, conical, spherical, ellipsoidal, hyperboloidal and paraboloidal mirrors have been studied.
For any of them, the parameters describing the overall geometry of the surface must satisfy the
single effective viewpoint constraint : this constraint ensures that the camera system measures
the intensity of light rays that all meet in a single point, also called the projection center.
The expression of this constraint obviously depends on the class of the catadioptric system: it
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was first derived by Baker and Nayar in [Baker and Nayar, 1998] and [Baker and Nayar, 1999].
Then, Geyer showed that all classes of central catadioptric systems were equivalent in the
sense that their projection mapping is isomorphic to projective mapping from the sphere to a
plane with a projection center on the perpendicular to the plane ([Geyer and Daniilidis, 2000]).
Recently, Barreto proposed a unifying geometric representation of central projection systems
([Barreto, 2006]): it covers perspective, catadioptric camera models and includes distortion. In
parallel, a general model for imaging systems (including multiple viewpoints systems) was studied
([Grossberg and Nayar, 2001]). These developments suggest that image formation in a generic
system is mainly governed by one (or many) viewpoint(s) and a surface of projection, which can
be arbitrarily chosen. Once the generic projection model corresponding to these fixed parameters
is known, the projection model (either linear or non-linear) of any specific camera, as long as this
camera ensures uniqueness of an imaging point, is developed as a mapping between the generic
and the specific model.

1.2 Spherical model: notations

The generic model chosen in the following (Parts I and II) is a spherical model: the projection
surface is a unit three dimensional sphere (S2) and the projection center its center, denoted by
C(t) as previously. The coordinates of C(t) are expressed in the reference frameRW . Orientation
of the camera is given by the quaternion q(t): any vector ς in the camera frameRcam corresponds
to the vector qςq∗ in the reference frame RW using the identification of vectors as imaginary
quaternions (see Appendix C.1.2). A pixel is labeled by the unit vector η in the camera frame:
η belongs to the sphere S

2 and receives the brightness y(t,η). Thus at each time t, the image
produced by the camera is described by the scalar field S

2 ∋ η ↦ y(t,η) ∈ R. The notations
of this model are represented in Figure 1.3. In this model, no particular axis is preferred to
another, as it is the case in the pinhole model where the optical axis, orthogonal to the image
plane partially defines orientation and direction of the camera reference frame.

1.3 Motion equations

1.3.1 Spherical model: the camera in a fixed environment

The motion of the camera is given through the linear and angular velocities v(t) and ω(t)
expressed in the camera reference frame Rcam. Linear and angular velocities are related to the
time derivatives of position and orientation through the motion equations (see Appendix C and
[Radix, 1980])

q̇ = 1

2
qω and Ċ(t) = qvq∗. (1.8)

The model adopted for the scene is based on two main assumptions:
– (H1): the scene is a closed, C1 and convex surface Σ of R3, diffeomorphic to S

2;
– (H2): the scene is a Lambertian surface;
– (H3): the scene is static.
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Figure 1.3: Model and notations of a spherical camera in a static environment
[Bonnabel and Rouchon, 2009, Zarrouati et al., 2012c].

To be consistent with assumption (H1), the camera is inside the domain Ω ⊂ R3 delimited by
Σ = ∂Ω.

The first assumption implies that to a point M ∈ Σ corresponds one and only one camera
pixel. At each time t, there is a bijection between the position of the pixel given by η ∈ S2 and
the point M ∈ Σ. Since the point M is labeled by s ∈ S2, this means that for each t, exist two
mappings S

2 ∋ s ↦ η = φ(t, s) ∈ S2 and S
2 ∋ η ↦ s = ψ(t,η) ∈ S2 with φ(t, ψ(t,η)) ≡ η and

ψ(t, φ(t, s)) ≡ s, for all η, s ∈ S2. To summarize we have:

η = φ(t, s) and s = ψ(t,η) (1.9)

where ψ(t, .) and φ(t, .) are diffeomorphisms of S
2 for every t > 0. Moreover, φ is implicitly

defined by the relation

η = q(t)∗ ÐÐÐÐÐÐ→C(t)M(s)
∥ÐÐÐÐÐÐ→C(t)M(s)∥q(t) (1.10)

The density of light emitted by a pointM(s) ∈ Σ does not depend on the direction of emission:
this results from the second assumption (H2) on the scene. In addition, it is independent of t
(H3). This means that y(t,η) depends only on s: there exists a function yΣ(s) such that

y(t,η) = yΣ(ψ(t,η)). (1.11)

In other words,

∂y

∂t
∣
s
= 0. (1.12)

The distance ∥ÐÐÐÐÐÐ→C(t)M(s)∥ between the optical center and the object seen in the direction η =
φ(t, s) is denoted by D(t,η).

D(t,η) ∶= ∥ÐÐÐÐÐÐÐÐÐÐ→C(t)M(ψ(t,η))∥. (1.13)
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Let us consider the time derivative of the distance D attached to a specific point M(s):
∂D

∂t
∣
s
= ∂∥ÐÐÐÐÐÐ→C(t)M(s)∥

∂t

RRRRRRRRRRRRs
= ∂ÐÐÐÐÐÐ→C(t)M(s)

∂t

RRRRRRRRRRRRs ⋅
ÐÐÐÐÐÐ→
C(t)M(s)
∥ÐÐÐÐÐÐ→C(t)M(s)∥= −qvq∗ ⋅ qηq∗ using (1.8) and (1.10)= −v ⋅ η. (1.14)

The last relation holds since a dot product does not depend on the frame of reference in which
it is computed. The meaning of equation (1.14) is simple: the distance between the camera and
a specific point decreases as the camera moves towards that point.

On the other hand, the direction of observation η of a specific object M(s) in the camera
frame evolves during the trajectory of the camera according to:

∂η

∂t
∣
s
= ∂

∂t

⎛⎝q∗
ÐÐÐÐÐÐ→
C(t)M(s)∣∣C(t)M(s)∣∣q⎞⎠

RRRRRRRRRRRRs using (1.10)

= q∗ ∂

∂t

⎛⎝
ÐÐÐÐÐÐ→
C(t)M(s)∣∣C(t)M(s)∣∣⎞⎠

RRRRRRRRRRRRs q + η ×ω using (1.8) and properties of the quaternion product

= q∗ (q (− v
D
+ ηv ⋅ η

D
) q∗) q + η ×ω using (1.8)

= η × (ω + 1

D
η × v). (1.15)

In a pure rotational motion (v = 0), this equation means that all objects move in the same way
in the image: in other words, all pixels are relabeled with a different origin, which is consistent
with the spherical geometry of the problem. If the trajectory of the camera is a translation
(v ≠ 0), the objects move differently depending on their position with respect to the camera.
Exactly as for a regular perspective camera, there is an intrinsic ambiguity in the projection of
the trajectory of an object, due to the multiplicative term v

D
: a monocular camera system can

not capture the scale factor of the perceived environment.
Tracking specific well-defined objects like we just did to obtain equations (1.12), (1.14) and

(1.15), is somehow a Lagrangian approach. But these equations can be combined all together in
a Eulerian approach, using chain rule differentiation: for any mapping S

2 ∈ η ↦ h(t,η) ∈ R,

∂h

∂t
∣
s
= ∂h
∂t
∣
η

+ ∂h
∂η
∣
t

⋅ ∂η
∂t
∣
s
.

∂h
∂η
∣
t
is the gradient of h with respect to the Riemannian metric of S2 (see Section A.2), denoted

∇h in the following. Applied to the intensity y and the depth D, it yields
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∂y

∂t
∣
η

= −∇y ⋅ (η × (ω + 1

D
η × v)), (1.16)

∂D

∂t
∣
η

= −∇D ⋅ (η × (ω + 1

D
η × v)) − v ⋅ η, (1.17)

where ∂y
∂t
∣
η

and ∂D
∂t
∣
η

stand for partial derivatives of y and D with respect to t: they are denoted

in the following ∂ty and ∂tD for sake of simplicity.
The first Partial Differential Equation (PDE) (1.16) is well-known in the literature,

under a slightly different form, as the optical flow constraint (see [Horn and Schunck, 1981]
and Part I for more details on optical flow). The second PDE (1.17) was introduced in
[Bonnabel and Rouchon, 2009]: the transport term is the same than in (1.16), but a second term
breaks the ambiguity of the scale factor. This very interesting property enables to solve many
issues encountered in image processing: this will be the main topic of Parts I and II. By analogy
with the optical flow constraint (1.16), this equation (1.17) is named in the following geometrical
flow constraint. Equations (1.16) and (1.17) are SO(3)-invariant: they remain unchanged by
any rotation described by the quaternion σ and changing (η,ω,v) to (σησ∗, σωσ∗, σvσ∗).
1.3.2 Pinhole-adapted model

To use this model with camera data, one needs to write the invariant equations (1.16)
and (1.17) with local coordinates on S

2 corresponding to a real camera model. We detail here the
computations for a pinhole camera model, but as explained in Chapter 1, any single viewpoint
model could be considered, as long as the mapping between a 3D point coordinates in the camera
frame and its projection on the image plane is known. For the pinhole camera model, the pixel
of coordinates (z1, z2) corresponds to the unit vector η ∈ S2 of coordinates in R

3:

η = 1√
1 + z2

1
+ z2

2

⎛⎜⎝
z1
z2
1

⎞⎟⎠ .
The optical axis of the camera(z-axis in the notations introduced in Subsection 1.1.1) corresponds
here to the direction z3. Directions 1 and 2 correspond respectively to the horizontal axis from
left to right and to the vertical axis from top to bottom on the image frame (x-axis and y-axis
respectively).

The gradients ∇y and ∇Γ must be expressed with respect to z1 and z2. Let us detail this
derivation for y. We use two properties of the Riemannian gradient:

– ∇y is tangent to S
2, thus ∇y ⋅ η = 0;

– the differential dy corresponds on one hand to ∇y ⋅ dη and on the other hand to ∂y
∂z1

dz1 +
∂y
∂z2

dz2.
The computation of dη yields

dη = 1(1 + z2
1
+ z2

2
)3/2
⎛⎜⎝

1 + z22
−z1z2
−z1

⎞⎟⎠dz1 +
1(1 + z2

1
+ z2

2
)3/2
⎛⎜⎝
−z1z2
1 + z21
−z2

⎞⎟⎠dz2. (1.18)
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Then, by identification of ∇y with a vector of R3 expressed in the camera frame, one writes

∇y = ⎛⎜⎝
∇y1∇y2∇y3

⎞⎟⎠ .
This yields for dy

∇y ⋅ dη = 1(1 + z2
1
+ z2

2
)3/2 [(∇y1(1 + z22) −∇y2(z1z2) −∇y3(z1))dz1

+ (−∇y1(z1z2) +∇y2(1 + z21) −∇y3(z2))dz2]. (1.19)

Then, ∇y ⋅ η = 0 yields
∇y3 = −∇y1z1 −∇y2z2. (1.20)

Equation (1.20) is plugged in (1.19), then by identification of dy with ∂y
∂z1

dz1 + ∂y
∂z2

dz2, one
gets:

∇y =√1 + z2
1
+ z2

2

⎛⎜⎜⎝
∂y
∂z1
∂y
∂z2

−z1 ∂y∂z1 − z2 ∂y∂z2

⎞⎟⎟⎠ . (1.21)

Similarly we get the three coordinates of ∇Γ. Injecting these expressions in (1.16) and (1.17)
yields the following PDEs corresponding to (1.16) and (1.17) in local pinhole coordinates:

∂ty = − ∂y
∂z1
(z1z2ω1 − (1 + z12)ω2 + z2ω3 + 1

D

√
1 + z2

1
+ z2

2
(−v1 + z1v3))

− ∂y

∂z2
((1 + z22)ω1 − z1z2ω2 − z1ω3 + 1

D

√
1 + z2

1
+ z2

2
(−v2 + z2v3)) (1.22)

∂tD = −∂D
∂z1
(z1z2ω1 − (1 + z12)ω2 + z2ω3 + 1

D

√
1 + z2

1
+ z2

2
(−v1 + z1v3))

− ∂D
∂z2
((1 + z22)ω1 − z1z2ω2 − z1ω3 + 1

D

√
1 + z2

1
+ z2

2
(−v2 + z2v3))
− (z1v1 + z2v2 + v3) (1.23)

where v1, v2, v3, ω1, ω2, ω3 are the components of linear and angular velocities in the camera
frame.
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Chapter 2

Formulation as a minimization problem

La profondeur, solution d’un problème inverse

Dans ce chapitre sont décrites les méthodes variationnelles et leurs applications à l’estimation
du flot optique. Les plus connues de ces techniques d’estimation, la méthode d’Horn-Schunck
et la méthode TV-L1, sont détaillées. De telles méthodes peuvent être adaptées à l’estimation
de profondeur par la minimisation de notre contrainte de flot optique spécifique (1.16) plutôt
que de la contrainte de flot optique classique : le mouvement apparaissant explicitement, le
problème est bien posé au sens où, à chaque pixel de l’image, une équation scalaire est
associée à l’unique inconnue du problème, la profondeur. Ces méthodes ont été présentées dans
[Zarrouati et al., 2012a, Zarrouati et al., 2012b, Zarrouati et al., 2012c].

In this chapter, variational methods and their application to optical flow estimation are
described. The most well-known, the Horn and Schunck and the TV-L1 optical flow estimation
methods are detailed. Such methods can be adapted to depth estimation by the minimization
of our invariant optical flow constraint (1.16) where motion is made explicit, instead of the
regular optical flow constraint: the problem is well-posed and geometrically constrained in the
sense that at each pixel, one scalar equation is associated to the only unknown of the problem,
the depth. These methods were presented in [Zarrouati et al., 2012a, Zarrouati et al., 2012b,
Zarrouati et al., 2012c].

2.1 Variational methods applied to optical flow estimation

2.1.1 Optical flow

In [Horn and Schunck, 1981], Horn and Schunck described a method to compute the optical
flow, defined as "the distribution of apparent velocities of movement of brightness patterns in
an image". The entire method is based on the assumption that the light intensity emitted by a
specific object does not depend on time or direction of observation (assumptions (H2) and (H3)
of the Section 1.3.1 and the consequent equation (1.12)). Provided that the same physical point
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is observed in two different images y1 and y2, the following equality holds:

y1(z1, z2) = y2(z1 + δz1, z2 + δz2)
where z ∶= (z1, z2) is the position of the point in the first image, and (δz1, δz2) is the apparent
displacement of the point between the two images. If the images are only separated by a short
time interval δt, it is natural to introduce an apparent velocity vector (V1, V2) ∶= 1

δt
(δz1, δz2).

Extending this apparent velocity concept to the whole image yields a velocity field V (t, z) ∶=(V1, V2)(t, z1, z2) named optical flow. First order differentiation in both time and space yields
the so-called optical flow constraint:

∂y

∂t
+ V1 ∂y

∂z1
+ V2 ∂y

∂z2
= 0. (2.1)

This equation can be identified with equation (1.22): an explicit expression of V1 and V2 with
respect to velocity and depth is given in the following (see equations (2.10) and (2.11)).

2.1.2 Variational methods applied to inverse problems

An important field of image processing is devoted to image restoration: the object is to
improve the quality of a given damaged image. The term "damage" covers a wide range of
effects, from additional noise to missing pixel data or blur. The usual formulation of restoration
is the following: one aims to reconstruct the ideal input y0 given an output y (the image) related
by

y = Ky0 + ν
where ν designates noise and K is a linear operator that describes the "damaging" effect. For
example, to restore

– a noisy image: K is simply the identity (noise is already taken into account in ν);
– a blurred image: K is the convolution with a Gaussian kernel;
– an image where pixel data are missing: K is the characteristic function 1S of a discrete set
S.

Variational methods (specifically variational minimization) apply to inverse problems as the
solution is claimed to be the argument of the following minimized functional

∫ ∣∣y −Ky0∣∣ + α2J(y)
where

– J is a prior, in other words a weighting function of the image,
– ∫ ∣∣y − Ky0∣∣ is the data fidelity term, usually the sum over the whole rectangular frame

occupied by the image of the residuals, and
– α2 is a strictly positive parameter allowing to scale the influence of the prior term in the

minimization task.
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Many priors have been proposed in the recent years, and generally each one is very well adapted to
a specific class of images. The most well known are the Sobolev prior and the total variation prior.
The data fidelity term usually takes into play the Euclidean norm (L2) but can be in some cases
more sophisticated. For more details on variational minimization applied to inverse problems and
the links between variational methods and PDEs methods, see [Peyré, 2013], [Grasmair, 2010],
or [Guichard and Morel, 2004]. Variational methods have also been applied to other estimation
problems, and in particular to optical flow estimation, for which two formulations are detailed
in the following.

2.1.3 Variational method with Sobolev prior

For optical flow estimation, Horn and Schunck proposed the data fidelity term to be replaced
by the optical flow constraint (2.1) in L2 norm. The prior used for J is the Sobolev prior, defined
as the L2 norm of the gradient, applied to optical flow:

J(V1, V2) = ∣∣∇V1∣∣2L2 + ∣∣∇V2∣∣2L2 .

This yields that the apparent velocity field V = (V1, V2) is estimated for each time t by minimizing
versus W ∶= (W1,W2) the following cost (the image I is the rectangle of R

2 occupied by the
image)

I(W ) =∬I ((∂y∂t +W1

∂y

∂z1
+W2

∂y

∂z2
)2 + α2(∇W1

2 +∇W2
2))dz1dz2 (2.2)

where ∇ is the gradient operator in the Euclidean plane (z1, z2) and the partial derivatives ∂y
∂t

,
∂y
∂z1

and ∂y
∂z2

are assumed to be known. The Sobolev prior is a regularizing term, and α > 0 is a
regularization parameter: when used for image restoration, it yields to a formulation where the
solution of the minimization problem is the solution of the heat equation and can be explicitly
deduced from the image y by convolution with a Gaussian kernel.

Notice that for optical flow estimation, the prior term is necessary to solve a fundamentally
ill-posed problem where for each position in an image, two components of a vector are estimated
from only one scalar equation. Here, the Sobolev prior comes from the assumption that the
velocity field is only submitted to small spatial variations: this is a reasonable assumption in
an environment where the depth D is continuous, regular and lower-bounded as shown by the
following identification ((2.10) and (2.11)).

Such Horn-Schunk estimation of V at time t is denoted by

VHS(t, z) ∶= (VHS1(t, z), VHS2(t, z)).
For each time t, minimization of the cost I is computed using usual calculus of variation, as the
velocity field solution VHS satisfies the system of Euler-Lagrange equations obtained as first-order
stationary equations for I:

∂y

∂z1

∂y

∂t
+ ( ∂y

∂z1
)2 VHS1 + ∂y

∂z1

∂y

∂z2
VHS2 − α2∆VHS1 = 0

∂y

∂z2

∂y

∂t
+ ∂y

∂z1

∂y

∂z2
VHS1 + ( ∂y

∂z2
)2 VHS2 − α2∆VHS2 = 0
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with boundary conditions ∂VHS1

∂n
= ∂VHS2

∂n
= 0 (n the normal to ∂I). Here ∆ is the Laplacian

operator in the Euclidean space (z1, z2). The numerical resolution is usually based on

1. Computations of ∂y
∂z1

, ∂y
∂z2

and ∂y
∂t

via differentiation filters (e.g. Sobel filtering)

directly from the image data at different times around t. For example, ∂y
∂z1

can be
approximated using a central finite difference scheme (among others) by

∂y

∂z1
(z1, z2, t) ≈ y(z1 + δ, z2, t) − y(z1 − δ, z2, t)

2δ
∶=Dyz1(z1, z2, t). (2.3)

To minimize the impact of noise on this differentiation scheme, a slight smoothing of the
resulting derivative along the orthogonal direction (z2 in this example) is required. Using
the above definition (2.3) yields

∂y

∂z1
(z1, z2, t) ≈ 1

4
(2Dyz1(z1, z2, t) +Dyz1(z1, z2 − δ, t) +Dyz1(z1, z2 − δ, t)) . (2.4)

When δ is the length of the square pixels of the grid where image data are available, (2.4)
can be expressed as a convolution operator: an approximation of ∂y

∂z1
(z1, z2, t) is obtained

by convolution of y with the following kernel:

1

8δ

⎛⎜⎝
1, 0, −1
2, 0, −2
1, 0, −1

⎞⎟⎠ .
2. Approximation of ∆VHS1 and ∆VHS2 by the difference between the weighted

mean of VHS1 and VHS2 on the neighboring pixels and their values at the current
pixel. The most common approximation of the discrete Laplacian ∆Df of a function
f(z1, z2) is given by

∆Df ≈ f(z1 − δ, z2) + f(z1 + δ, z2) + f(z1, z2 − δ) + f(z1, z2 + δ) − 4f(z1, z2)
δ2

in the case where f is known at every vertex of a square grid with length spacing δ. Thus,
a fast computation of ∆Df is f̄n−nf

δ2
(here n = 4) where f̄n is computed as the convolution

of f with Kn, here

K4 = ⎛⎜⎝
0, 1, 0

1, 0, 1

0, 1, 0

⎞⎟⎠ .
This yields the following system of linear equations in (VHS1, VHS2) at each pixel of the
image: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(( ∂y
∂z1
)2 + nα2

δ2
)VHS1 + ( ∂y∂z1 ∂y

∂z2
)VHS2 = α2

δ2
(Kn ∗ VHS1) − ∂y

∂z1

∂y
∂t

( ∂y
∂z1

∂y
∂z2
)VHS1 + (( ∂y∂z2 )2 + nα2

δ2
)VHS2 = α2

δ2
(Kn ∗ VHS2) − ∂y

∂z2

∂y
∂t
.

(2.5)
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3. Iterative resolution (Jacobi scheme) of the linear system (2.5) in VHS1 and VHS2.
Defining VHS1 = 1

n
Kn ∗ VHS1 and VHS2 = 1

n
Kn ∗ VHS2, the inversion of (2.5) at each pixel

writes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(( ∂y

∂z1
)2 + ( ∂y

∂z2
)2 + nα2

δ2
)VHS1 = (nα2

δ2
+ ( ∂y

∂z2
)2)VHS1 − ( ∂y∂z1 ∂y

∂z2
)VHS2 − ∂y

∂z1

∂y
∂t

(( ∂y
∂z1
)2 + ( ∂y

∂z2
)2 + nα2

δ2
)VHS2 = (nα2

δ2
+ ( ∂y

∂z1
)2)VHS2 − ( ∂y∂z1 ∂y

∂z2
)VHS1 − ∂y

∂z2

∂y
∂t
.

(2.6)

However, as VHS1 and VHS2 implicitly depend on VHS1 and VHS2, the closed form solution
of the problem (2.6) would require to invert a system of equations whose length is twice
the size of an image, which is computationally not optimal. Alternatively, an iterative
computation of the solution of this system appears, rewriting (2.6) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

VHS1 = VHS1 − ( ∂y

∂z1
)2VHS1+( ∂y

∂z1

∂y

∂z2
)VHS2+ ∂y

∂z1

∂y

∂t

(( ∂y

∂z1
)2+( ∂y

∂z2
)2+nα2

δ2
) = V1(VHS1, VHS2, y)

VHS2 = VHS2 − ( ∂y

∂z2
)2VHS2+( ∂y

∂z1

∂y

∂z2
)VHS1+ ∂y

∂z2

∂y

∂t

(( ∂y

∂z1
)2+( ∂y

∂z2
)2+nα2

δ2
) = V2(VHS1, VHS2, y)

. (2.7)

This form shows that VHS1 and VHS2 can be iteratively computed, applying the operators
V1 and V2 to the result of the previous iteration.

The convergence of this numerical method of resolution
was proven in [Mitiche and reza Mansouri, 2004]. Three parameters have a direct impact on
the speed of convergence and on the precision: the regularization parameter α, the number of
iterations for the Jacobi scheme and the initial values of VHS1 and VHS2 at the beginning of this
iteration step. To be specific, α should neither be too small in order to filter noise appearing in
differentiation filters applied on y, nor too large in order to have VHS close to V when ∇V ≠ 0.
2.1.4 Variational method with total variation prior

In their seminal article [Rudin et al., 1992], Rudin, Osher and Fatemi proposed for image
denoising the total variation prior defined by the sum of the gradients in L1 norm. Its main
advantage resides in the fact that edges are better conserved: the smoothing/regularizing effect
related to diffusion in the heat equation is attenuated. This prior enables the extension of
variational methods to non-smooth functions, and is well-adapted to piecewise constant images
(cartoon images). It can however sometimes lead to a staircase effect. The main issue with total
variation prior comes from the non differentiability of this prior at point 0. A solution to this
problem consists in the following approximation:

∫ ∣∣∇f ∣∣ ≈ ∫ √ǫ2 + ∣∣∇f ∣∣2
where ǫ is a small positive constant, which is differentiable. Another solution is based on dual
formulation of the minimization task and was introduced by Chambolle in [Chambolle, 2004]
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along with a convergent iterative scheme summarized in the following. The solution of the
minimization task

min
y
∫ ∣∣∇y∣∣ + β2∣∣y − yd∣∣2

is given by

y = yd + 1

2β2
∇ ⋅ p (2.8)

where p = (p1, p2) is the dual variable and ∇ ⋅ p denotes the Euclidean divergence of the vector
field p. The dual variable is computed iteratively by

p̃n = pn−1 + 2β2τ (∇(yd + 1

2β2
∇ ⋅ pn−1))

and then

pn = p̃n

max(1, ∣p̃n∣)
where p0 = 0 and the time step τ ≤ 1/4.

When, in addition, the data fidelity term ∣∣y−yd∣∣ also involves L1 norm, the method is known
as TV-L1 minimization, and a solution consists of dividing the problem in two minimization sub-
tasks. An auxiliary variable ya is introduced, and the functional to minimize is approximated
by

Fβ = ∫ ∣∣∇y∣∣ + α2∣∣ya − yd∣∣ + β2∣∣y − ya∣∣2
where β is a small positive constant. Then, the minimization process of Fβ consists of alternating

1.
min
y
∫ ∣∣∇y∣∣ + β2∣∣y − ya∣∣2

for which a solution is given by (2.8), and

2.
min
ya
∫ α2∣∣ρ(ya)∣∣ + β2∣∣y − ya∣∣2

where ρ(ya) designates the residuals associated to the auxiliary variable ya. The second step can
be solved point-wise if the residual ρ(ya) does not depend on spatial derivatives of ya.

This method was applied to optical flow estimation in [Chambolle and Pock, 2010] and
[Wedel et al., 2009]. In that case, the residual ρ(y) is simply the optical flow constraint,
which is linear with respect to the optical flow components. This yields that the second
step optimization is performed using regular optimization methods (e.g. Karush-Kuhn-Tucker
conditions) combined with thresholding steps (see [Wedel et al., 2008]):

ya = y +
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α2

2β2∇y if ρ(y) < − α2

2β2 ∣∣∇y∣∣2
− α2

2β2∇y if ρ(y) > α2

2β2 ∣∣∇y∣∣2
−ρ(y) ∇y∣∣∇y∣∣2 if ∣ρ(y)∣ ≤ α2

2β2 ∣∣∇y∣∣2
. (2.9)

26



2.2 Variational methods applied to depth estimation

We described in Chapter 1.3 a slightly different form of optical flow constraint, where linear
and angular velocities appear explicitly and optical flow as a vector field is implicit. Expressing
(1.16) in pinhole coordinates (see (1.22)) yields a precise identification of optical flow components
with respect to velocities v and ω and depth D:

V1(t, z) = f1(z,ω(t)) + 1

D(t, z)g1(z,v(t))
V2(t, z) = f2(z,ω(t)) + 1

D(t, z)g2(z,v(t))
(2.10)

with

f1(z,ω) ∶= z1z2ω1 − (1 + z12)ω2 + z2ω3

g1(z,v) ∶=√1 + z2
1
+ z2

2
(−v1 + z1v3)

f2(z,ω) ∶= (1 + z22)ω1 − z1z2ω2 − z1ω3

g2(z,v) ∶=√1 + z2
1
+ z2

2
(−v2 + z2v3)

(2.11)

where ω = (ω1, ω2, ω3)T and v = (v1, v2, v3)T are expressed in the camera reference frame Rcam
(see Section 1.3.2 for notations). Assuming that linear and angular velocities are known inputs,
the structure of optical flow is well determined: in addition, it is linear with respect to Γ ∶= 1/D
the inverse of depth. We will describe in the following how one can take advantage of this
linear dependence and the knowledge of motion to adapt usual variational methods of optical
flow estimation to depth estimation. Let us highlight the fact that depth only appears in the
expressions (2.10) multiplied by the terms g1 and g2 which directly depend on the linear velocity:
in others words, linear motion is necessary to estimate depth. In addition, the quality of depth
estimation directly depends on the magnitude of linear velocity. This a well-known effect in
stereo-vision where the choice of the baseline between the cameras is the result of a trade off
between performance and practical considerations.

2.2.1 Estimation of depth with Sobolev priors

Instead of minimizing the cost I given by (2.2) with respect to the optical flow components
W1 and W2, let us define a new invariant cost JHS associated to our optical flow constraint
(1.16),

JHS(Υ) =∬I ((∂y∂t +∇y ⋅ (η × (ω +Υη × v)))2 + α2∇Υ2)dση (2.12)

and minimize it with respect to any inverse depth profile I ∋ η ↦ Υ(t,η) ∈ R. The time t is fixed
here and dση is the Riemannian infinitesimal surface element on S

2. I ⊂ S2 is the domain where
y is measured and α > 0 is the regularization parameter.
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The first order stationary condition of JHS with respect to any variation of Υ yields the
following invariant PDE characterizing the resulting estimation ΓHS of Γ in pinhole cordinates:

α2∆ΓHS = (∂y
∂t
+∇y ⋅ (η × (ω + ΓHSη × v))) (∇y ⋅ (η × (η × v))) on I (2.13)

∂ΓHS

∂n
= 0 on ∂I (2.14)

where ∆ΓHS is the Laplacian of ΓHS on the Riemannian sphere S
2 and ∂I is the boundary of I,

assumed to be piece-wise smooth and with unit normal vector n.
In pinhole coordinates, recall from Section 1.3.2 that

dση = (1 + z21 + z22)−3/2 dz1dz2
∇Υ2 = (1 + z21 + z22)( ∂Υ∂z1

2

+ ∂Υ
∂z2

2

+ (z1 ∂Υ
∂z1
+ z2 ∂Υ

∂z2
)2)

(∂y
∂t
+∇y ⋅ (η × (ω +Υη × v)))2 = (F +ΥG)2

where

F ∶= ∂y
∂t
+ f1(z,ω) ∂y

∂z1
+ f2(z,ω) ∂y

∂z2

G ∶= g1(z,v) ∂y
∂z1
+ g2(z,v) ∂y

∂z2
.

(2.15)

Consequently, the first order stationary condition (2.13) reads in (z1, z2) coordinates:

ΓHSG
2 + FG = α2(1 + z21 + z22)3/2

⎡⎢⎢⎢⎢⎣
∂

z1

⎛⎝ 1 + z21√
1 + z2

1
+ z2

2

∂ΓHS

∂z1

⎞⎠
+ ∂

z2

⎛⎝ 1 + z22√
1 + z2

1
+ z2

2

∂ΓHS

∂z2

⎞⎠
+ ∂

z2

⎛⎝ z1z2√
1 + z2

1
+ z2

2

∂ΓHS

∂z1

⎞⎠
+ ∂
z1

⎛⎝ z1z2√
1 + z2

1
+ z2

2

∂ΓHS

∂z2

⎞⎠
⎤⎥⎥⎥⎥⎦

(2.16)

on the rectangular domain I ∶= [−z̄1, z̄1] × [−z̄2, z̄2] (z̄1, z̄2 > 0 with z̄21 + z̄22 < 1).
The right term of (2.16) corresponds to the Laplacian operator on the Riemannian sphere S

2

multiplied by α2 in pinhole coordinates by identification with (2.13). At the center of the image,
it is equivalent to the Euclidean Laplacian, but as the direction of observation η moves towards
the corners of the rectangular matrix of pixels, (the absolute value of pixel coordinates z1 and
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z2 increase), the correction due to the reprojection of the equation on S
2 back to a regular plane

can not be neglected. As a numerical example, let us consider that the visible portion of the
environment is a plane, orthogonal to the optical axis. The equation describing this plane is

Γ(z1, z2) = Γ0√
1 + z2

1
+ z2

2

.

The Euclidean Laplacian ∆EΓ and the Riemannian Laplacian ∆RΓ of this function write
respectively

∆EΓ(z1, z2) = Γ0(z21 + z22 − 2)(1 + z2
1
+ z2

2
)5/2 , ∆RΓ(z1, z2) = − 2Γ0√

1 + z2
1
+ z2

2

.

Notice that the Riemannian Laplacian ∆RΓ can be computed by two different methods: first,
using the identification of the Laplacian with the right term of the expression (2.16); secondly,
using the differential calculus expression (A.4) applied to Γ(η) = Γ0η ⋅ (0,0,1)T .

Figure 2.1 graphically represents the relative difference ∣∆EΓ−∆RΓ∣
∣∆EΓ∣ over the whole image: the

relative error reaches 200% in the corners in the image, for a camera with a total field of view of
60° by 50° (horizontally and vertically, respectively).

The numerical resolution of this scalar diffusion equation providing the estimation ΓHS of Γ
is similar to the one used for the Horn-Schunck estimation VHS of V , except for the evaluation
of the Laplacian, which is adapted to the spherical model.

2.2.2 Estimation of depth by total variation minimization

For total variation minimization as in subsection 2.1.4, both our optical flow constraint and
the regularization term are taken into account in L1 norm in the functional JTV −L1 to minimize:

JTV −L1(Γ) = ∫I (α2∣∣∂y
∂t
+∇y ⋅ (η × (ω + Γη × v))∣∣ + ∣∣∇Γ∣∣)dση (2.17)

where dση is the Riemannian infinitesimal surface element on S
2 and α is a parameter that

weights between the data fidelity and the regularization terms. As described for optical flow
estimation, the minimization strategy used is divided in two tasks:

1. For Λ being fixed, find the argument Γ of the minimum of

J1(Γ) = ∫I (∣∣∇Γ∣∣ + β2(Γ −Λ)2)dση (2.18)

2. For Γ being fixed, find the argument Λ of the minimum of

J2(Λ) = ∫I (α2∣∣ρ(Λ)∣∣ + β2(Γ −Λ)2)dση (2.19)

where ρ(Λ) = ∂y
∂t
+∇y ⋅ (η × (ω +Λη × v)) is the depth residual.

The main algorithm steps are given by the following:
– Initialization: Γ0 = 0, Λ0 = 0, Γ̄0 = 0 p0 = 0, τ ≤ 1/4
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Figure 2.1: Isolines of relative difference between the Riemannian and the Euclidean Laplacian
of the depth field when the visible environment is a plane orthogonal to optical axis, for a total
field of view of 60° by 50°(horizontally and vertically respectively).

30



– Iterations:

1. pn+1 = pn + 2β2τ∇Γ̄n
2. pn+1 = pn+1

max(1,∣∣pn+1∣∣)
3. Γn+1 = Γn + 1

2β2∇ ⋅ pn+1

4. Λn+1 = Λn+
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ρ(Γ)

G
, if ∣∣ρ(Γ)∣∣ ≤ α2

2β2G
2

α2

2β2G, if ρ(Γ) < − α2

2β2G
2

− α2

2β2G, if ρ(Γ) > α2

2β2G
2

5. Γ̄n+1 = 2Λn+1 −Λn
where p = (p1, p2) and G is defined as in (2.15). The first three steps of the iteration process
result from the minimization of J1, the fourth step is the thresholding method for minimizing J2
applied to our specific residual and the fifth step is a low-pass filter. More precisely, the fourth
step is based on the first order stationary condition in the cases where ρ(Λ) = 0, ρ(Λ) < 0 and
ρ(Λ) > 0, respectively. For example, when ρ(Λ) > 0, the minimum may only be reached if Λ

satisfies
α2G − 2β2(Γ −Λ) = 0 (2.20)

which yields Λ = Γ − α2

2β2G. Thus, ρ(Λ) > 0 reads ρ(Γ) > α2

2β2G
2.
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Chapter 3

Reconstruction of the depth

Filtrage de la profondeur par la contrainte de flot géométrique

Dans ce chapitre, nous montrons comment notre contrainte de flot géométrique invariante
(1.17) peut être mise à profit pour la création d’observateurs asymptotiques non-linéaires : les
mesures de flot optique ou de profondeur ainsi que la dynamique de la caméra peuvent être
utilisées comme entrées de l’observateur de manière à améliorer progressivement l’estimation
de profondeur. La convergence de ces observateurs est étudiée, et repose sur des hypothèses
géométriques sur l’environnement et la dynamique de la caméra. Ces observateurs et les preuves
de convergence ont été présentés dans [Zarrouati et al., 2012a, Zarrouati et al., 2012c].

In this chapter, we show how our invariant geometrical flow constraint (1.17) can be of
great benefit in the frame of an asymptotic non-linear observer: either optical flow or depth
measurements can be used as inputs, along with camera dynamics, to incrementally refine
depth estimation. Convergence of such observers, relying on geometric assumptions concerning
the camera dynamics and the environment, is addressed. These observers and the proofs of
convergence were presented in [Zarrouati et al., 2012a, Zarrouati et al., 2012c].

3.1 Asymptotic observer based on optical flow measures

From any optical flow estimation, such as VHS, it is reasonable to assume that we have access
for each time t, to the components in pinhole coordinates of the vector field

̟t ∶ S2 ∋ η ↦̟t(η) = η × (ω + 1

D
η × v) ∈ Tη

appearing in (1.17). Tη is the tangent space of the unit sphere S
2 at point η (see Appendix

A). This vector field can be considered as a measured output for (1.17), expressed as ̟t(η) =
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ft(η) + 1

D(t,η)gt(η), where ft and gt are the vector fields

ft ∶ S2 ∋ η ↦ ft(η) = η ×ω ∈ Tη (3.1)

gt ∶ S2 ∋ η ↦ gt(η) = η × (η × v) ∈ Tη. (3.2)

Since D obeys to ∂tD = −∇D ⋅̟t − v ⋅ η, we propose the following asymptotic observer for D,
where D̂ denotes the estimation of D:

∂D̂

∂t
= −∇D̂ ⋅̟t − v ⋅ η + kgt ⋅ (D̂ft + gt − D̟̂t) (3.3)

where ̟t, ft and gt are known time-varying vector fields on S
2 and k > 0 is a tuning parameter.

This observer is trivially SO(3) invariant and reads in pinhole coordinates:

∂D̂

∂t
= −∂D̂

∂z1
V1 − ∂D̂

∂z2
V2 − (z1v1 + z2v2 + v3) + k(g1(D̂f1 + g1 − D̂V1) + g2(D̂f2 + g2 − D̂V2)) (3.4)

where V is given by any optical flow estimation and (f1, f2, g1, g2) are defined by (2.11).
As assumed in section 1.3.1, for each time t, there is a one to one smooth mapping between

η ∈ S2 attached to the camera pixel and the scene point M(s) corresponding to this pixel. This
means that, for any t ≥ 0, the flow φ(t, s) defined by

∂φ

∂t
∣
(t,s)
=̟t(φ(t, s)), φ(0, s) = s ∈ S2

defines a time varying diffeomorphism on S
2. As in 1.3.1, ψ denotes the inverse diffeomorphism:

φ(t, ψ(t,η)) ≡ η. Assume that Γ(t,η) > 0, v(t) and ω(t) are uniformly bounded for t ≥ 0 and
η ∈ S2. This means that the trajectory of the camera center C(t) remains strictly inside the
convex surface Σ with minimal distance to Σ. These considerations motivate the assumptions
used in the following theorem.

Theorem 1. Consider D(t,η) associated to the motion of the camera inside the domain Ω

delimited by the scene Σ, a C1, convex and closed surface as explained in section 1.3.1. Assume
that exist v̄ > 0, ω̄ > 0, dm > 0 and DM > 0 such that

∀t ≥ 0, ∀η ∈ S2, ∣v(t)∣ ≤ v̄, ∣ω(t)∣ ≤ ω̄, dm ≤D(t,η) ≤DM .

Then, for t ≥ 0, D(t,η) is a C1 solution of (1.17). Consider the observer (3.3) with a C1 initial
condition versus η, D̂(0,η). Then we have the following implications:

1. ∀t ≥ 0, the solution D̂(t,η) of (3.3) exists, is unique and remains C1 versus η. Moreover

t↦ ∥D̂(t, ) −D(t, )∥L∞ =max
η∈S2 ∣D̂(t,η) −D(t,η)∣

is decreasing (L∞ stability);
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2. if additionally for all s ∈ S2, ∫ +∞0
∥gτ(φ(τ, s))∥2dτ = +∞, then we have for all p > 0,

lim
t↦+∞∫S2 ∣D̂(t,η) −D(t,η)∣pdση = 0

(convergence in any Lp topology);

3. if additionally there is λ > 0 and T > 0 such that, for all t ≥ T and s ∈ S
2,

∫ t0 ∥gτ(φ(τ, s))∥2dτ ≥ λt, then we have, for all t ≥ T ,

∥D̂(t, ) −D(t, )∥L∞ ≤ e−k 1

DM
λt∥D̂(0, ) −D(0, )∥L∞

(exponential convergence in L∞ topology).

Remark 1. Assumptions on ∫ ∥gt(φ(t, s))∥2dt can be seen as a condition of persistent
excitations. It should be satisfied for generic motions of the camera.

Proof. The facts that v, ω and D are bounded and that the scene surface Σ is C1, closed and
convex, ensure that the mapping η = φ(t, s) and its inverse s = ψ(t,η) are C1 diffeomorphism on
S
2 with bounded derivatives versus s and η for all time t > 0. Therefore, D is also a function of(t, s). Set D(t, s) = D(t, φ(t, s)): in the (t, s) independent variables the PDE (1.17) becomes a

set of ordinary differential equations indexed by s:

∂D

∂t
∣
s

= −v(t) ⋅ φ(t, s).
Thus

D(t, s) −D(0, s) = −∫ t

0

v(τ) ⋅ φ(τ, s) dτ.
Consequently, 1/D is C1 versus s and thus 1/D is C1 versus η.

Set D̂(t, s) = D̂(t, φ(t, s)). Then

∂D̂

∂t

RRRRRRRRRRRRs = −v(t) ⋅ φ(t, s) + k∥gt(φ(t, s))∥
2 1

D(t, s)(D(t, s) − D̂(t, s)). (3.5)

Set E = D̂ −D and E = D̂ −D. Then

∂E

∂t
∣
s

= −k 1

D(t, s)∥gt(φ(t, s))∥2E(t, s) (3.6)

Consequently, Ē is well defined for any t > 0 and C1 versus s. Thus E and consequently D̂ = E+D
are also well defined for all t > 0 and are C1 versus η.

Since for any s and t2 > t1 ≥ 0 we have ∣E(t2, s)∣ ≤ ∣E(t1, s)∣, we have also

∣E(t2, s)∣ ≤max
σ
∣E(t1, σ)∣ = ∥D̂(t1, ) −D(t1, )∥L∞ .
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Thus, taking the max versus s, we get

∥D̂(t2, ) −D(t2, )∥L∞ ≤ ∥D̂(t1, ) −D(t1, )∥L∞
This ends the proof of the first implication.

Since

E(t, s) = E(0, s)e−k ∫ t
0
( 1

D(τ,s)
∥gτ (φ(τ,s))∥2)dτ

we have (φ(0, s) ≡ s).
∣E(t, s)∣ ≤ ∣E(0, s)∣e−k 1

DM
∫ t
0
∥gτ (φ(τ,s))∥2 dτ

.

Take p > 0. Then

∫
S2
∣E(t,η)∣pdση = ∫

S2
∣E(t, s)∣p det(∂φ

∂s
(t, s))dσs.

By assumption ∂φ
∂s

is bounded. Thus exists C > 0 such that

∥E(t, )∥Lp = ∫
S2
∣E(t,η)∣pdση ≤ C ∫

S2
∣E(t, s)∣pdσs.

When ∫ +∞0
∥gτ(φ(τ, s))∥2dτ = +∞, for each s we have

lim
t↦+∞E(t, s) = 0.

Moreover ∣E(t, s)∣ is uniformly bounded by the L∞ function E(0, s). By Lebesgue dominate
convergence theorem limt↦+∞ ∥E(t, )∥Lp = 0. Previous inequality leads to

lim
t↦+∞ ∥E(t, )∥Lp = 0

which ends the proof of the second implication of Theorem 1.
When, for t > T , ∫ T0 ∥gτ(φ(τ, s))∥2dτ ≥ λt, we have,

∀s ∈ S2, ∣E(t, s)∣ ≤ ∣E(0, s)∣e−k 1

DM
λt
.

Thus, for all s ∈ S2 we get ∣E(t, s)∣ ≤ ∥E(0, )∥L∞ . Since η ↦ ψ(t,η) is a diffeomorphism of S2,
we get finally,

∀η ∈ S2, ∣E(t,η)∣ ≤ ∥E(0, )∥L∞e−k 1

DM
λt
.

This proves

∥E(t, )∥L∞ ≤ ∥E(0, )∥L∞e−k 1

DM
λt

and concludes the proof of the theorem.
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3.2 Asymptotic observer based on depth estimation

Instead of relying the observer on optical flow estimation, we can base it on depth estimations
as outputs of variational methods described in subsection 2.2. For example, ΓHS is the output
of the variational method with Sobolev prior. Then we propose the following observer for D
(k > 0):

∂D̂

∂t
= −∇D̂ ⋅ (ft + ΓHSgt) − v ⋅ η + k(1 − D̂ΓHS) (3.7)

that reads in pinhole coordinates

∂D̂

∂t
= −∂D̂

∂z1
(f1 + ΓHSg1) − ∂D̂

∂z2
(f2 + ΓHSg2) − (z1v1 + z2v2 + v3) + k(1 − D̂ΓHS). (3.8)

For this observer we have the following convergence result.

Theorem 2. Take assumptions of Theorem 1 concerning the scene surface Σ, D, v and ω.
Consider the observer (3.7) where ΓHS coincides with Γ = 1

D
and where the initial condition is

C1 versus η. Then ∀t ≥ 0, the solution D̂(t,η) of (3.7) exists, is unique, remains C1 versus η

and ∥D̂(t, ) −D(t, )∥L∞ ≤ e−k 1

D
t∥D̂(0, ) −D(0, )∥L∞

(exponential convergence in L∞ topology).

The proof is similar to the one of Theorem 1.

Remark 2. Observers (3.3) and (3.7) are contracting for the metric M defined as

δD̂TMδD̂ ∶= 1

2
∫
S2
δD̂

2
dση . (3.9)

Details on contraction
analysis can be found in [Lohmiller and Slotine, 1996] or [Lohmiller and Slotine, 1998]. This
is proven noticing that δD̂ satisfies the following system (for observer (3.3))

∂δD̂

∂t
= −∇δD̂ ⋅̟t + kgt ⋅ (−δD̂gt)

Thus using the same notations than in the proof of Theorem 1

∂δD̂

∂t

RRRRRRRRRRRRs = −k∥gt(φ(t, s))∥
2 δD̂(t, s)
D(t, s) (3.10)

which yields

∂

∂t
(1
2
∫
S2
δD̂

2
dση) = −k∫

S2
∥gt(φ(t, s))∥2 δD̂(t, s)

2

D(t, s) det(∂φ
∂s
(t, s))dσs ≤ 0.

This proves that the time-derivative of the variation δD̂ is decreasing for the metric M .
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Chapter 4

Implementations, simulations and

experiments

Implémentations

Dans ce chapitre, l’implémentation des méthodes précédentes sont décrites, et des simulations
sont présentées. Une expérience préliminaire traitant des données réelles montre que les hypo-
thèses de continuité sur l’environnement ne sont peut-être pas nécessaires : les résultats sont
cohérents avec la géométrie réelle de l’environnement filmé. Ces résultats ont été présentés dans
[Zarrouati et al., 2012a, Zarrouati et al., 2012b, Zarrouati et al., 2012c].

In this chapter, implementations are described, and simulation results are presented. A
preliminary experiment on real data shows that continuity assumptions on the environment may
not be necessary, given that the results are consistent with reality. These results were presented
in [Zarrouati et al., 2012a, Zarrouati et al., 2012b, Zarrouati et al., 2012c].

4.1 Simulations

4.1.1 Sequence of synthetic images and method of comparison

The non-linear asymptotic observers described in Chapter 3 are tested on a sequence of
synthetic images characterized by the following:

– virtual camera: the size of each image is 640 by 480 pixels, the frame rate of the sequence
is 60 Hz and the field of view is 50 deg by 40 deg;

– motion of the virtual camera: the trajectory of the camera is a combination of sinusoids;
linear and angular velocities (plotted in Figures 4.1 and 4.2) are computed as the time-
derivatives of position and attitude.

– virtual scene: the scene is a room of dimensions 3×4×4.5 meters (width, length and height
respectively); the walls are (virtually) painted with a gray pattern, whose intensity varies
in horizontal and vertical directions as a sinusoid function;
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Figure 4.1: Angular velocity of the camera
for the virtual sequence.
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Figure 4.2: Linear velocity of the camera for
the virtual sequence.

– generation of the images : each pixel of an image has an integer value varying from 1 to 256,
directly depending on the intensity of the observed surface in the direction indexed by the
pixel, to which a normally distributed noise varying with mean 0 and standard deviation
σ is added.

To compare the performances of the various methods, we use the global relative error in the
estimation of D, defined as

E = ∫I ∣D̂(t,η)−D(t,η)∣D(t,η) dση

∫I dση
where D is the true value of the depth field, D̂ is the estimation computed by any of the proposed
methods and I is the image frame.

4.1.2 Implementation of the depth estimation based on optical flow measures

We test on the sequence described in 4.1.1 the depth estimation characterized by the PDE
(3.3). The optical flow input VHS or VTVL1 (V1 and V2 components) is computed by a classical
Horn-Schunck method or the TV-L1 method described in Subsection 2.1.1. Note that convergence
Theorem 1 assumes that the domain of definition of the image is the entire unit sphere S

2. Here
the field of view of our virtual camera limits this domain to a portion of the sphere I. However,
the motion of our virtual camera ensures that most of the points of the scene appearing in the
first image stay in the field of view of the camera during the whole sequence. The convergence
of the method is only ensured for these points, and Neumann boundary conditions are chosen at
the borders where optical flow points toward the inside of the image:

∂D̂

∂n
= 0 if n ⋅ VHS < 0 (4.1)
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Figure 4.3: Overview of estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
perfect.
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Figure 4.4: Zoom on estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
perfect.
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Figure 4.5: Overview of estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
corrupted by gaussian noise (σ = 1).
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Figure 4.6: Zoom on estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
corrupted by Gaussian noise (σ = 1).
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Figure 4.7: Overview of estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
corrupted by gaussian noise (σ = 10).
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Figure 4.8: Zoom on estimation errors of
D̂ using the asymptotic observer (3.4) with
optical flow input VHS and VTVL1. Images are
corrupted by Gaussian noise (σ = 10).

To test the accuracy and the robustness of this method, the observer is successively
implemented on the same sequence of images, on which noise is added. This perturbation is
a centered normally distributed noise, characterized by a standard deviation σ. Recall from
Subsection 4.1.1 that the image pixel values vary from 1 to 256. Figures 4.3 and 4.4 show
the result of this implementation for perfect data (σ = 0); in Figures 4.5 and 4.6, the noise
corrupting the images is small (σ = 1); in Figures 4.7 and 4.8, the noise is magnified by ten
(σ = 10). The same observer gain k > 0 is chosen for the various levels of noise, according to
scaling considerations: k = 500 s.m−1. These results show that the method is valid for perfect
data, but is highly dependent on the quality of estimation of the optical flow: the TV-L1 method
of optical flow estimation, more robust, yields a fast convergence rate (less than 2 seconds),
a reasonable accuracy (less than 10% of relative error for σ = 10) and a good robustness to
noise. On the contrary, although the method using the Horn-Schunck optical flow estimation
has a reasonable accuracy for perfect data, robustness to noise is not here. Note that for both
methods, peaks of error occur when the magnitude of linear velocity is close to zero: like in
triangulation methods where the baseline must be large enough to accurately reconstruct a 3D
position, the quality of the results is degraded when linear displacement is too small.

4.1.3 Implementation of the asymptotic observer based on rough depth

estimation

Subsequently, the observer described by (3.7) was applied to the same sequence. The input
depth fields ΓHS and ΓTVL1 are obtained as the outputs of (2.16) and the algorithm described in
Subsection 2.2.2 respectively. The regularization parameter α is chosen accordingly to scaling
considerations and taking into account the magnitude of noise: α = 300 m.s−1 provides a slow
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Figure 4.9: Overview of estimation errors of
D̂ using the variational methods described
in Subsections 2.2.1 and 2.2.2. Images are
perfect.
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Figure 4.10: Zoom on estimation errors of
D̂ using the variational methods described
in Subsections 2.2.1 and 2.2.2. Images are
perfect.
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Figure 4.11: Overview of estimation errors of
D̂ using the asymptotic observer (3.7) with
depth inputs ΓHS and ΓTVL1. Images are
perfect.
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Figure 4.12: Zoom on estimation errors of
D̂ using the asymptotic observer (3.7) with
depth inputs ΓHS and ΓTVL1. Images are
perfect.
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Figure 4.13: Overview of estimation errors of
D̂ using the variational methods described
in Subsections 2.2.1 and 2.2.2. Images are
corrupted by Gaussian noise (σ = 10).
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Figure 4.14: Zoom on estimation errors of
D̂ using the variational methods described
in Subsections 2.2.1 and 2.2.2. Images are
corrupted by Gaussian noise (σ = 10).
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Figure 4.15: Overview of estimation errors of
D̂ using the asymptotic observer (3.7) with
depth inputs ΓHS and ΓTVL1. Images are
corrupted by Gaussian noise (σ = 10).
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Figure 4.16: Zoom on estimation errors of
D̂ using the asymptotic observer (3.7) with
depth inputs ΓHS and ΓTVL1. Images are
corrupted by Gaussian noise (σ = 10).
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but clean convergence. The correction gain k = 30 m.s−1 enables a rate of convergence similar to
the one of the previous observer (see Subsection 4.1.2).

As in the previous subsection , we first test the variational methods for different levels of
noise corrupting the image data. For perfect and noisy data (σ = 0 and σ = 10 respectively), the
error of estimation associated to the input depths ΓHS and ΓTVL1 are plotted in Figures 4.9 and
4.10 and in Figures 4.13 and 4.14 (respectively). As expected, the variational method based on
Sobolev prior is slow but shows a better robustness than the variational method based on TV-L1

minimization.
Then, the observer (3.7) is tested, using the previous depth estimates as depth inputs. The

results are plotted in Figures 4.11 and 4.12 and in Figures 4.15 and 4.16 respectively. For
perfect data, the observer based on TV-L1 estimations quickly provides almost perfect results
(greater bound of 0.5% for the error) but is unusable for noisy data. The observer based on L2

minimization shows more robustness but is still less accurate than the observer based on TV-L1

optical flow estimation (the error is always greater than 5%).

4.2 Experiment on real data

Real data have been processed in preliminary experiments, to ensure that the regularity
assumptions on the environment are not necessary to get consistent results. To realize the
experiments, a camera was fixed on a motorized trolley traveling back and forth on a 2 meter-
linear track in about 6 seconds. The resolution of the encoder of the motor enables to know the
position and the speed of the trolley with a micrometric precision. This experimental benchmark
was set up and provided by the CAS (The Systems and Control Centre of Mines ParisTech) and
is shown in Figure 4.17.
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Figure 4.17: The linear track and the motorized trolley used to measure the linear velocity of
the system. This experimental benchmark was set up and provided by the CAS (The Systems
and Control Centre of Mines ParisTech).

The camera is a Flea2 - Point Grey Research VGA video cameras (640 by 480 pixels)
acquiring data at 20.83 fps, with a Cinegon 1.8/4.8 C-mount lens, with an angular field of
view of approximately 50 by 40 deg, and oriented orthogonally to the track. It was provided by
Sysnav company.

Synchronization of linear velocity measurements and RGB images acquired by the camera
has been achieved after the acquisition by comparison of images and specific motion times (e.g.
starting point, ending point, turn-around point). This might result in some imprecision that can
affect the overall depth estimation.

The scene is a static work environment, with desks, tables, chairs, lamps, lit up by electric
light plugged on the mains, with frequency 50 Hz. The acquisition frame rate of the cameras
produces an aliasing phenomenon on the video data at 4.17 Hz. In other words, the light intensity
in the room is variable, at a frequency that can not be easily ignored, which does not comply with
the initial hypothesis (1.12). However, the impact of this temporal dependence in the equations
can be reduced by a normalization of the intensity of the images such as y(x, y) = y(x,y)

ȳ
where x

and y are the horizontal and vertical indexes of the pixels in the image, y(x, y) is the intensity
of this pixel and ȳ is the mean intensity on the entire image.

The depth field was estimated via the asymptotic observer (3.3) based on optical flow
measures. The components of the optical flow were computed by the TV-L1 variational method
(see Subsection 2.1.4). The correction gain was tuned to k = 100 s.m−1. An example of image
data is shown in Figure 4.18, and the depth estimate associated to that image at the same time
t̄ is shown in Figure 4.19. At that specific time t̄ ≈ 8 s, the trolley already traveled once along
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the track and is on its way back toward its starting point. Some specific estimates are extracted
from the whole depth field (two tables, two chairs, a screen, two walls) and highlighted in black;
they are compared to real measurements taken in the experimental room by a laser telemeter(in
red): the estimate depth profile D̂(t̄, ⋅) exhibits a strong correlation with these seven punctual
reference values of D(t̄, ⋅) since the relative error does not exceed 13%; the global appearance of
the depth field looks very realistic.
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Figure 4.19: Estimation of the depth field associated with the image shown in Fig.4.18. Depth
is associated to a gray level, whose scale in meters is on the right. The depth field was estimated
via the asymptotic observer (3.3) based on optical flow measures. The components of the optical
flow were computed by the TV-L1 variational method. Some estimates are extracted from the
entire field (in black) and compared to real measures (in red). The relative erreor does not exceed
13%.
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Part II

From depth to motion

De la profondeur au mouvement
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Introduction

The Kinect device has been a huge outbreak in the robotics and vision communities as it
provides depth measurements registered at each pixel of a RGB image, at a relatively low cost:
this output is named RGBD. Since its first release in November 2010, it has been extensively
evaluated, in terms of accuracy [Gonzalez-Jorge et al., 2013, Khoshelham and Elberink, 2012],
as well as calibration [Daniel Herrera et al., 2012] or possible applications [Smisek et al., 2011,
Zhang, 2012]. The most obvious applications in the field of robotics are indoor mod-
eling [Du et al., 2011, Henry et al., 2012], control [Stowers et al., 2011], obstacle avoidance
[Correa et al., 2012]. But other applications have also raised interest: for example motion
capture [Asteriadis et al., 2013, Calderita et al., 2013], surgery [Guo et al., 2013], training and
learning [Guerrero and Uribe-Quevedo, 2013], gesture detection [Maisto et al., 2013], or human
action recognition [Munaro et al., 2013]. Finally, the domain of 3D SLAM has literally
exploded with new algorithms known as RGBD SLAM algorithms, such as [Endres et al., 2012,
Audras et al., 2011, Huang et al., 2011] or Kinect Fusion [Izadi et al., 2011] and its Kintinuous
extensions ([Whelan et al., 2012, Whelan et al., 2013a, Whelan et al., 2013b]).

The Kinect device made possible the work presented in the following part: our approach
consist in the combined processing of dense intensity and depth fields (namely the RGBD data)
for 6-DOF motion estimation.

Figure 4.20: The Kinect device, released by Microsoft in November 2010. It provides RGBD
data, which enables motion estimation techniques based on combined processing of image and
depth, as presented in this part.
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Chapter 5

Estimation of biases on linear and

angular velocities

Estimation de biais sur les vitesses linéaire et angulaire

Dans ce chapitre, nous étudions l’estimation de biais sur les vitesses linéaire et angulaire
par l’exploitation combinée d’images RGBD et de données biaisées de vitesses linéaire et
angulaire. Le système d’EDP lié au modèle de caméra sphérique décrit au Chapitre 1 est
utilisé pour construire un observateur associé à une fonction de Lyapunov. On en déduit un
système d’équations intégrales/aux dérivées partielles sur les champs et les biais estimés. La
convergence de l’observateur est traitée dans le cadre d’hypothèses de régularité C1 sur le
mouvement de la caméra et la scène. Il est prouvé que les biais estimés convergent vers les
biais réels si et seulement si la scène n’admet pas de symétrie de révolution. L’observateur
peut être adapté à des capteurs plus réalistes pour lesquels les champs d’intensité lumineuse
et de profondeur ne sont disponibles que sur une partie de la sphère S

2. Ces résultats ont été
présentés, partiellement dans [Zarrouati-Vissiere et al., 2012], et de manière plus complète dans
[Zarrouati-Vissière et al., 2013].

In this chapter, the estimation of angular and linear velocity biases from the combined
exploitation of RGBD images and biased linear and angular velocity inputs is studied. The
PDE system associated to the spherical camera model described in Chapter 1 is used to design
an observer based on a Lyapunov functional. It yields an integro/partial differential system for
the estimated fields and biases. The observer convergence is investigated under C1 regularity
assumptions on the object motion and its scene. It relies on Ascoli-Arzela theorem and pre-
compactness of the observer trajectories. It is proved that the estimated biases converge towards
the true ones, if and only if, the scene admits no cylindrical symmetry. The observer design
can be adapted to realistic sensors where brightness and depth data are only available on a
subset of S2. These results were presented partially in [Zarrouati-Vissiere et al., 2012] and fully
in [Zarrouati-Vissière et al., 2013].
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5.1 Statement of the problem

We intend to study the situation, where linear and angular velocity are provided up to a slowly
varying bias (the wind or an ocean current), which can be illustrated by [Bristeau et al., 2011].
Synchronized RGBD data are processed along with these measurements to estimate their biases,
in order to improve the overall reconstructed trajectory. We recall from Chapter 1.3 that
functions y and D (light intensity and depth respectively) obey to

∂ty = −∇y ⋅ (η × (ω + 1

D
η × v)),

∂tD = −∇D ⋅ (η × (ω + 1

D
η × v)) − v ⋅ η,

where ∂ty and ∂tD stand for partial derivatives of y and D with respect to t. The camera motion
characterized by (v,ω) is not known precisely. We assume here that sensor data provide vm(t)
and ωm(t) differing from true velocities by measurement biases, defined as constant errors:

vm(t) = v(t) + vb, ωm(t) = ω(t) +ωb, (5.1)

where vb,ωb ∈ R3 are constant:
∂tvb = 0, ∂tωb = 0. (5.2)

Thus, the state equations of the system are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ty = −∇y ⋅ η × (ωm −ωb + 1

D
η × (vm − vb)),

∂tD = −∇D ⋅ η × (ωm −ωb + 1

D
η × (vm − vb)) − η ⋅ (vm − vb),

∂tvb = 0,
∂tωb = 0.

(5.3)

Here (vm,ωm) are considered as known inputs and (y,D) as the measured outputs. The
state is (y,D,vb,ωb)T . The goal is to estimate in real-time the parameters (vb,ωb) from the
known signals corresponding to sensors measuring y, D, vm and ωm. We assume

1. v and ω are in C1

b ([0,+∞),R3); C(t) stays in a fixed compact subset K of Ω for all t > 0,
2. yΣ is a C1 function of s ∈ S2; the surface Σ is C1

where Ckb ([0,+∞),X) is the set of functions whose time derivatives are bounded on X uniformly
with respect to t ∈ [0,+∞) up to order k.

Thanks to the first assumption and (1.8), C(t) and q(t) belong to C2

b ([0,+∞)). Thanks to
the second assumption and (1.9), ψ(t,η) and φ(t, s) belong to C1

b ([0,+∞)× S2,S2). We deduce
also from (1.11), (1.13) and the first assumption that

y,D ∈ C1

b ([0,+∞) × S2,R) and
D(t,η) ⩾D∗ > 0 ,∀(t,η) ∈ [0,+∞) × S2 . (5.4)
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5.2 Observability of the reference system

5.2.1 Characterization of the observability

To prove the observability, we consider two state-trajectories

t↦ (y1(t, ⋅),D1(t, ⋅),vb1(t),ωb
1(t))T and t↦ (y2(t, ⋅),D2(t, ⋅),vb2(t),ωb

2(t))T
and assume that they satisfy the same state equations (5.3) with the same inputs t ↦(vm(t),ωm(t)) and outputs t ↦ (y(t, ⋅),D(t, ⋅)). It immediately follows that y1 = y2 = y,
D1 = D2 = D, vb

1 = vb
2 + vb and ωb

1 = ωb
2 + ωb with ∂tvb = 0 and ∂tωb = 0. Then

t↦ (y(t, ⋅),D(t, ⋅),vb(t),ωb(t))T satisfy:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇y ⋅ η × (ωb + 1

D
η × vb) = 0,

∇D ⋅ η × (ωb + 1

D
η × vb) + η ⋅ vb = 0,

∂tvb = 0,
∂tωb = 0.

(5.5)

Observability means that (5.5) implies that (ωb,vb) = 0.
Consider a solution (y,D,ωb,vb) of (5.5). Take some fixed value t̄ of t and set ȳ(⋅) = y(t̄, ⋅)

with D̄(⋅) = D(t̄, ⋅). Then (ȳ, D̄) is a stationary solution of (1.16,1.17) when (ω,v) is constant
and equal to (ωb,vb). Characterizing a scene, i.e., the surface Σ and its painting yΣ, that admits
a stationary solution of (1.16) and (1.17) with non zero constant values of (ω,v), i.e. that is
compatible with an effective motion producing stationary images y and D, is not obvious.

These considerations motivate the following terminology: for a given scene (Σ, yΣ), a constant
motion (ω,v) = (ωb,vb), such that a stationary solution (y,D) of (1.16,1.17) exists, i.e.,

{ ∇D ⋅ η × (ωb + 1

D
η × vb) + η ⋅ vb = 0,

∇y ⋅ η × (ωb + 1

D
η × vb) = 0, (5.6)

is called a stationary motion inside (Σ, yΣ). For any scene (Σ, yΣ), the null motion vb = ωb = 0
is always stationary. Apart from this trivial stationary motion, only very specific scenes (see
Theorem 3) admit non trivial stationary motions (vb,ωb). Thus observability of (5.3) with
output (y,D) is equivalent to the following statement: the stationary motions (vb,ωb) inside
the scene (Σ, yΣ) are all reduced to the trivial one (0,0).
5.2.2 Scenes with non trivial stationary motion

The following theorem characterizes the scenes admitting only trivial stationary motion, i.e.,
such that a stationary solution of (1.16,1.17) exists for some (ω,v) ≠ 0 constant.

Theorem 3. Consider the assumptions given in Chapter 1.3 and Section 5.1. The scene (Σ, yΣ)
admits a non trivial stationary motion, if and only if, it admits a rotation axis.
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Proof of Theorem 3: Let us consider a non-zero motion (vb,ωb)T . Under the assumption that
the equations (5.6) have a solution (y,D) ∈ C1(S2,R2) we prove that (Σ, yΣ) admits a rotation
axis. Note that

Σ = {D(η)η;η ∈ S2} ,
yΣ(s) = y(t,η) with η = φ(t, s)(see Chapter 1.3).

Let us eliminate two trivial cases:
– vb = 0,ωb ≠ 0: the two first equations of (5.6) reduce to

{ ∇D ⋅ (η ×ωb) = 0,
∇y ⋅ (η ×ωb) = 0, (5.7)

which characterizes a cylindrical symmetry for y and D, with same rotation axis defined
by the direction of ωb;

– vb ≠ 0,ωb = 0: let us replace η by vb/∥vb∥ in the first equation of (5.6): this yields ∥vb∥ = 0,
which is absurd.

From now on, we consider only the case where vb and ωb are both non-zero. Our strategy
consists in finding a fixed vector u such that a translation of the origin of the camera frame
in the direction u transforms the functions D(η) and y(η) in new functions D̃ and ỹ on the
sphere S

2 and those functions are invariant by rotation about the axis Rωb. This requires several
technical steps.

Step 1: Let us prove that vb and ωb are orthogonal. Starting from the first equation
of (5.6), let us multiply it by Dn(η ⋅ωb), where the choice of n ∈ N will follow, and integrate the
result on S

2:

I = ∫
S2
(Dn∇D ⋅ η × (ωb + 1

D
η × vb) +Dnη ⋅ vb)(η ⋅ωb)dση = 0, (5.8)

We have

I = ∫
S2
[ 1

n + 1∇D
n+1 ⋅ (η ×ωb)(η ⋅ωb) + 1

n
∇Dn ⋅ (η × (η ×ωb))(η ⋅ωb)

+Dn(η ⋅ vb)(η ⋅ωb)]dση.
The two first terms are integrated by parts:

I = ∫
S2
[ − 1

n + 1D
n+1∇ ⋅ ((η ×ωb)(η ⋅ωb)) − 1

n
Dn∇ ⋅ ((η × (η × vb))(η ⋅ωb))

+Dn(η ⋅ vb)(η ⋅ωb)]dση.
The derivatives are developed:

I = ∫
S2
[ − 1

n + 1D
n+1(∇ ⋅ (η ×ωb)(η ⋅ωb) + (η ×ωb) ⋅ ∇(η ⋅ωb))

− 1

n
Dn(∇ ⋅ (η × (η × vb))(η ⋅ωb) + (η × (η × vb)) ⋅ ∇(η ⋅ωb))

+Dn(η ⋅ vb)(η ⋅ωb)]dση.
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Now, let us recall the following basic formulae of differential geometry on S
2 (detailed and proven

in Appendix A), where P is a constant vector:

∇(η ⋅P) = −η × (η ×P), (5.9)

∆(η ⋅P) = −2η ⋅P, (5.10)

∇ ⋅ (η ×P) = 0. (5.11)

Using the formulae (5.11) and (5.9) in the first term, and (5.10) and (5.9) in the second term
yields:

I = ∫
S2
[ 1

n + 1D
n+1(η ×ωb) ⋅ (η × (η ×ωb))
− 1

n
Dn((2η ⋅ vb)(η ⋅ωb) − (η × (η × vb)) ⋅ (η × (η ×ωb)))

+Dn(η ⋅ vb)(η ⋅ωb)]dση.
The first term is obviously zero. Then

(η × (η × vb)) ⋅ (η × (η ×ωb)) = −(η ⋅ vb)(η ⋅ωb) + vb ⋅ωb.

Thus
I = ∫

S2
[ − 1

n
Dn((3η ⋅ vb)(η ⋅ωb) − vb ⋅ωb) +Dn(η ⋅ vb)(η ⋅ωb)]dση.

Choosing n = 3 yields (vb ⋅ωb)∫
S2
D3dση = 0. (5.12)

Since D > 0, we deduce that vb ⋅ωb = 0. This ends the proof of Step 1.
As vb and ωb are orthogonal and both non-zeros, one can introduce a new vector, lu, where

l > 0 is a length and u is a unit vector, by: vb = ωb × lu. Let us also define v and w the unit
vectors such that vb = ∥vb∥v and ωb = ∥ωb∥w. Then, (u,v,w) is an orthonormal and direct
frame of R3. From now on, (5.6), multiplied by lD/∥vb∥ writes:

{ ∇D ⋅ ((Dη + lu) ×w) + lDη ⋅ v = 0,
∇y ⋅ ((Dη + lu) ×w) = 0. (5.13)

Step 2: Let us prove that D(η)η+ lu ≠ 0,∀η ∈ S2. It is sufficient to prove that D(−u) ≠ l.
Let ηǫ ∶= −u+ǫv√

1+ǫ2 = −u + ǫv + o(ǫ). We have

D(ηǫ)ηǫ = (D(−u) + ǫ ∇D∣−u ⋅ v + o(ǫ)) (−u + ǫv + o(ǫ))= −D(−u)u + ǫ (D(−u)v − (∇D∣−u ⋅ v)u) + o(ǫ)
Thus, (5.13) evaluated at ηǫ yields

∇D∣ηǫ
⋅ [[(l −D(−u))u + ǫ (D(−u)v − (∇D∣−u ⋅ v)u)] ×w] + ǫlD(−u) = o(ǫ),
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or

∇D∣ηǫ
⋅ [(D(−u) − l)v + ǫ (D(−u)u + (∇D∣−u ⋅ v)v)] + ǫlD(−u) = o(ǫ). (5.14)

Equation (5.13) evaluated at η = −u and substracted to (5.14) yields:

(D(−u) − l) (∇D∣ηǫ
− ∇D∣−u) ⋅ v
+ ǫ [D(−u) ∇D∣ηǫ

⋅ u + (∇D∣−u ⋅ v) (∇D∣ηǫ
⋅ v) + lD(−u)] = o(ǫ). (5.15)

Let us define

F ∶ R → R

ǫ ↦ D(−u) ∇D∣ηǫ
⋅ u + (∇D∣−u ⋅ v) (∇D∣ηǫ

⋅ v) + lD(−u).
Assuming that (D(−u) − l) = 0 implies that F (ǫ) = o(1) as ǫ → 0. Since F is a C0 function

of ǫ, it implies F (0) = 0, i.e. (∇D∣−u ⋅ v)2 + lD(−u) = 0
which is absurd since l > 0. This concludes the Step 2.

Step 3: Let us prove that f(η) ∶= ∥D(η)η+lu∥ (respectively y(η)) satisfies df(η)⋅δη =
0 (respectively dy(η) ⋅ δη = 0) where δη ∶= (D(η)η + lu) ×w + l(η ⋅ v)η, ∀η ∈ S2. We have

f(η) = g ○ k(η) where g(x) ∶= ∥x∥ and k(η) ∶=D(η)η + lu.
Thanks to the Step 2, f ∈ C1(S2) and

df(η) ⋅ δη = dg[k(η)] ⋅ (dk(η) ⋅ δη).
We have

dk(η) ⋅ δη = (∇D(η) ⋅ δη)η +D(η)δη= (∇D(η) ⋅ ([D(η)η + lu] ×w + l(η ⋅ v)η))η
+D(η) ([D(η)η + lu] ×w + l(η ⋅ v)η)= (∇D(η) ⋅ ([D(η)η + lu] ×w))η +D(η) ([D(η)η + lu] ×w + l(η ⋅ v)η)

because ∇D(η) ⊥ η. Thanks to (5.13), we obtain

dk(η) ⋅ δη =D(η)[D(η)η + lu] ×w.
Thus

df(η) ⋅ δη = ⟨ D(η)η + lu∥D(η)η + lu∥ ,D(η)[D(η)η + lu] ×w⟩ = 0.
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Similarly,

dy(η) ⋅ δη = ∇y ⋅ δη= ∇y ⋅ ((D(η)η + lu) ×w + l(η ⋅ v)η)= ∇y ⋅ ((D(η)η + lu) ×w) because ∇y(η) ⊥ η= 0 according to (5.13).

This ends the proof of Step 3.

Step 4: Let us prove that, when η = η(τ) satisfies ∂τη = [D(η)η + lu] × w + l(η ⋅
v)η, then η̃ ∶= [D(η)η + lu]/∥[D(η)η + lu]∥ is a periodic trajectory on S

2, describing
a circle perpendicular to the axis Rw. Let η0 ∈ S2. We consider the characteristic (see
[LeVeque, 1992, Serre, 1999] for a description of the method of characteristics)

⎧⎪⎪⎨⎪⎪⎩
dη
dτ
(τ) = (D[η(τ)]η(τ) + lu) ×w + l(η(τ) ⋅ v)η(τ),

η(0) = η0.

The right hand side is defined by a C1 function of η thus the Cauchy-Lipschitz theorem guarantees
the existence and uniqueness of a maximal solution. Moreover, no explosion is possible in finite
time (the solution η(τ) lives on S

2) thus the maximal solution is defined for every τ ∈ R. From
Step 3, we deduce that the quantity τ ↦ ∥D[η(τ)]η(τ)+lu∥ is constant along the characteristics:

∥D[η(τ)]η(τ) + lu∥ ≡ D̃ ∶= ∥D[η0]η0 + lu∥, ∀τ ∈ R.
Now let us consider

η̃(τ) ∶= D[η(τ)]η(τ) + lu∥D[η(τ)]η(τ) + lu∥ = D[η(τ)]η(τ) + luD̃
.

Then, η̃(τ) is a C1-function and

D̃ dη̃
dτ
= (∇D[η(τ)] ⋅ dη

dτ
)η(τ) +D[η(τ)]dη

dτ= (∇D[η(τ)] ⋅ (D[η(τ)]η(τ) + lu) ×w)η(τ)
+D[η(τ)]((D[η(τ)]η(τ) + lu) ×w + l(η(τ) ⋅ v)η(τ)) .

Here, we have used the relation ∇D[η(τ)] ⋅ η(τ) = 0 to get the last equality. Thanks to (5.13),
we obtain

D̃
dη̃

dτ
=D[η(τ)](D[η(τ)]η(τ) + lu) ×w =D[η(τ)]D̃η̃(τ) ×w.

Thus, η̃ turns about the axis Rw as τ varies. Note that the speed D[η(τ)] is bounded from
below by a positive constant, thus the trajectory of η̃ is the (complete) circle on S

2, perpendicular
to the axis Rw and containing η̃0 ∶= [D(η0)η0 + lu]/D̃.
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Figure 5.1: The vectors D(η)η taken from the camera center C and D̃η̃ taken from the camera
center translated by −lu arrive at the same pointM(s). It is equivalent to see this as a translation
of the domain Σ by lu.

Step 5: Let us prove that the map

S
2 → S

2

η0 ↦ η̃0 ∶= D(η0)η0+lu∥[D(η0)η0+lu]∥
is surjective. This step leans on the statement that when the convex set defined by the surface
Σ is translated by lu, the center of the camera frame stays inside the convex set (Σ + lu). This
statement is ensured by the fact that D(−u) > l (or equivalently, that D̃(−u) > 0 , see Figure
5.2.2).

Thus, for any η̃0 ∈ S2, ∃M a point of the surface Σ + lu and ∃λ > 0 such that λη̃0 = ÐÐ→CM =
D(η0)η0 + lu where η0 ∈ S2 (by definition of Σ+ lu). Then λ = ∥D(η0)η0 + lu∥ since η̃0 is a unit
vector, and we have shown that ∃η0 ∈ S2 such that η̃0 = D(η0)η0+lu∥D(η0)η0+lu∥ . Thus the map η0 ↦ η̃0 is
surjective.

Now, let us prove that D(−u) > l. Let us assume that D(−u) ⩽ l. Then, the function
η ↦ D(η) + lu ⋅ η is positive at η = u and non positive at η = −u, thus (intermediate values
theorem) there exists η∗ such that η∗ ⋅w = 0 andD(η∗)+lu⋅η∗ = 0. Then, the vectorD(η∗)η∗+lu
is orthogonal to w (because u and η∗ are) and orthogonal to η∗, thus

D(η∗)η∗ + lu = ((D(η∗)η∗ + lu) ⋅ (w × η∗))w × η∗.
Note that w × η∗ is unitary. Moreover,

(D(η∗)η∗ + lu) ⋅ (w × η∗) = lu.(w × η∗) because η∗ ⊥w × η∗= lη∗ ⋅ (u ×w)= −lη∗ ⋅ v
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thus

D(η∗)η∗ + lu = l(η∗ ⋅ v)η∗ ×w.
Incorporating this relation in (5.13), we get

l(η∗ ⋅ v)∇D(η∗) ⋅ ((η∗ ×w) ×w) +D(η∗)lη∗ ⋅ v = 0.
Moreover,

(η∗ ×w) ×w = η∗ − (w ⋅ η∗)w = η∗
is orthogonal to ∇D(η∗) thus

lD(η∗)η∗ ⋅ v = 0.
Therefore, η∗ ⋅w = η∗ ⋅ v = 0, i.e. η∗ = ±u, which is impossible because D(u) > 0 and D(−u) ≠ l
(see Step 2). This proves that D(−u) > l and ends the Step 5.

Step 6: Conclusion. The origin of the camera frame is translated by the vector −lu.
We denote by η̃ ∈ S2 the space variable in this new system of coordinates. Then, to any pair(η,D(η)) in the first system of coordinates corresponds a unique pair (η̃, D̃) in the new system
of coordinates:

η̃ ∶= D(η)η + lu∥D(η)η + lu∥ , D̃ ∶= ∥D(η)η + lu∥,
and they describe the same point M(s) on Σ:

M(s) =D(η)η = −lu + D̃η̃.

In addition, ỹ is defined so that for a given point M(s) on Σ, the light intensity is the same in
both systems of coordinates:

yΣ(s) = y(t,η) where η = φ(t, s) in the first system of coordinates

= ỹ(t, η̃) where η̃ = D(η)η + lu∥D(η)η + lu∥ in the new system of coordinates.

Steps 3 and 4 of this proof show that the quantities D̃ and ỹ are constant when η̃ covers circles
on S

2 orthogonal to the axis Rw. Moreover, Step 5 ensures that η̃ covers any such circle.
Therefore, Σ = {D̃(η̃)η̃; η̃ ∈ S2} (in the new system of coordinates) and yΣ(s) have rotation axis,
with direction w. ◻
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5.3 The asymptotic observer

5.3.1 A Lyapunov based observer

We propose the following observer for ωb and vb, inspired by the one proposed in
[Bonnabel and Rouchon, 2009]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tŷ = −∇ŷ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) + ky(y − ŷ),

∂tD̂ = −∇D̂ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) − (vm − v̂b) ⋅ η + kD(D − D̂),

dω̂b

dt
= −kω∫ S2

(λy(ŷ − y)(∇ŷ × η) + λD(D̂ −D)(∇D̂ × η))dση,
dv̂b

dt
= −kv∫ S2

(λD(D̂ −D)η + λy(ŷ − y)( 1Dη × (η ×∇ŷ))
+λD(D̂ −D)( 1Dη × (η ×∇D̂)))dση,

(5.16)

where ky, kD, kω, kv, λy, λD > 0 are constant gains. The choice of this observer is motivated by
the following Lyapunov function candidate

V ∶= 1

2
∫
S2
(λyỹ2 + λDD̃2)dση + ∥ω̃b∥2

2kω
+ ∥ṽb∥2

2kv
(5.17)

with
ỹ ∶= ŷ − y, D̃ ∶= D̂ −D, ω̃b ∶= ω̂b −ωb and ṽb ∶= v̂b − vb. (5.18)

Let us prove that V decreases along the trajectories of (5.16) for appropriate choices of ky and
kD.. Let us consider any scalar field h(t,η) defined on S

2 and its integral H on the unit sphere:

H = ∫
S2
h(t,η)2dση = ∫

S2
h(t, q∗ηq)2dση

since η ↦ q∗ηq is an isometry on S
2. For η a constant vector of the earth-fixed frame, q∗ηq is

the same vector, expressed in the camera frame. Thus, h(t, q∗ηq) is the value of h corresponding
to a specific object M(s) of the scene. This yields

d
dt
H = ∫

S2

d
dt
(h(t, q∗ηq)2)dση

= 2∫
S2
h(t, q∗ηq) d

dt
h(t, q∗ηq)∣

s
dση

= 2∫
S2
h(t, q∗ηq) (∂th +∇h ⋅ (η ×ω))dση.

One can apply this calculation rule to the scalar fields ỹ and D̃. Then, equations (1.16) and
(5.16) yield

∂tỹ +∇ỹ ⋅ (η ×ω) = ∇ŷ ⋅ (η × (ω̃b + 1

D
η × ṽb)) −∇ỹ ⋅ (η × ( 1

D
η × v)) − kyỹ . (5.19)

Equations (1.17) and (5.16) yield

∂tD̃ +∇D̃ ⋅ (η ×ω) = ∇D̂ ⋅ (η × (ω̃b + 1

D
η × ṽb)) + η ⋅ ṽb −∇D̃ ⋅ (η × ( 1

D
η × v)) − kDD̃ . (5.20)
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Now, using a ⋅ (b × c) = (a × b) ⋅ c and the expressions of dω̂b

dt
and dv̂b

dt
, one gets

V̇ = −∫
S2
(kyλyỹ2 + kDλDD̃2)dση − ∫

S2
(λy∇ỹ2

2
+ λD∇D̃

2

2
) ⋅W (t,η)dση. (5.21)

where (R,S2) ∋ (t,η) ↦W (t,η) = η × ( 1
D
η × v) ∈ R3. Integration by parts of the second term of

this expression yields

V̇ = −∫
S2
(λy (ky − ∇ ⋅W (t,η)

2
) ỹ2 + λD (kD − ∇ ⋅W (t,η)

2
) D̃2)dση . (5.22)

Thus V is a Lyapunov function for trajectories of (5.16) when ky, kD are large enough (see
Proposition 1 below).

The convergence analysis relies on an adaptation to this infinite dimensional setting of the
Lasalle invariance principle. Precisely, we prove that any adherence value of (ỹ, D̃, ω̃b, ṽb) as[t → +∞] satisfies geometric equations equivalent to (5.6) (see Theorem 4). This proof requires
the following successive steps.

1. The Lyapunov function V decreases along the trajectories of (5.16), for appropriate choices
of ky and kD (see Proposition 1).

2. The non-linear partial differential equations (5.16) define a well posed Cauchy problem for
every t ≥ 0 (see Proposition 2).

3. The functions ∇ŷ and ∇D̂ are uniformly bounded with respect to (t,η) ∈ [0,+∞)×S2 (see
Proposition 3).

4. The estimated state (ŷ, D̂, ω̂b, v̂b) depends continuously on (y,D,ω,v) (see Proposition
4).

5.3.2 Decrease of the Lyapunov function

In the next statement are given sufficient conditions for the choice of correction gains ky and
kD to ensure the decrease of the Lyapunov function V .

Proposition 1. The Lyapunov function V decreases along the trajectories of (5.16) under the
assumption that ky, kD > L

2
where L is defined as

L ∶= ∥ 1

D(t,η) (2η ⋅ v(t) − ∇D(t,η)D(t,η) ⋅ (η × (η × v(t))))∥
L∞((0,+∞)×S2)

.

Proof of Proposition 1: Note that L is well defined thanks to (5.4) and assumption v ∈
C1

b ((0,+∞),R3) (see Section 5.1). Moreover, L = ∥∇ ⋅W (t,η)∥L∞((0,+∞)×S2) (see formulae (5.9)
and (5.10)). From (5.22), we deduce that

V̇ ≤ −∫
S2
(λy (ky − L

2
) ỹ2 + λD (kD − L

2
) D̃2)dση ∶= −f(t) (5.23)

which ends the proof of Proposition 1. ◻
From now on, we assume that ky and kD satisfy the assumption of Proposition 1.

63



5.3.3 Existence and uniqueness

Existence and uniqueness of solutions of (5.16) is given by the next statement. For the
simplicity of notations, from now on, we assume that kv = kω = 1.
Proposition 2. Let R > 0. There exists a constant

k∗ = k∗(R, ∥(vm,ωm)∥L∞(0,+∞),D∗, ∥(y,D)∥C1([0,+∞)×S2)) > 0
such that, for every ω̂b

0, v̂b
0 ∈ R3 with ∥(ω̂b

0 − ωb, v̂b
0 − vb)∥ ⩽ R, ky, kD > k∗, there exists a

unique solution (ŷ, D̂, ω̂b, v̂b) ∈ C1([0,+∞) × S2,R)2 ×C1([0,+∞),R3)2 of the Cauchy-problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tŷ = −∇ŷ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) + ky(y − ŷ),

∂tD̂ = −∇D̂ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) − (vm − v̂b) ⋅ η

+kD(D − D̂),
dω̂b

dt
= −∫S2 (λy(ŷ − y)(∇ŷ × η) + λD(D̂ −D)(∇D̂ × η))dση,

dv̂b

dt
= −∫S2 (λD(D̂ −D)η + λy(ŷ − y)( 1Dη × (η ×∇ŷ)
+λD(D̂ −D)( 1Dη × (η ×∇D̂))dση,

ŷ(0,η) = y(0,η),
D̂(0,η) =D(0,η),
ω̂b(0) = ω̂b

0,

v̂b(0) = v̂b0.

(5.24)

The proof of Proposition 2 is technical, thus we postpone it to Section 5.5.

5.3.4 Regularity and bounds

The following proposition states the uniform boundedness of the estimates and their partial
derivatives.

Proposition 3. Let R and k∗ be as in Proposition 2. There exists

C = C(R, ∥(vm,ωm)∥L∞(0,+∞),D∗, ∥(y,D)∥C1([0,+∞)×S2)) > 0
such that for every (ω̂b

0, v̂b
0) ∈ R6 with ∥(ω̂b

0 − ωb, v̂b
0 − vb)∥ ⩽ R, ky, kD > k∗, the solution of

the Cauchy problem (5.24) satisfies

∥ŷ(t,η)∥ , ∥D̂(t,η)∥, ∥∇ŷ(t,η)∥, ∥∇D̂(t,η)∥ ⩽ C, ∀(t,η) ∈ [0,+∞) × S2.
The proof of this result is a corollary of an intermediary result of the proof of Proposition 2

(see Proposition 6 in Section 5.5).
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5.3.5 Continuity

The following proposition details the continuity of the estimated state with respect to(y,D,ω,v).
Proposition 4. Let T > 0. Let (vn,ωn)n∈N, (v,ω) ∈ C1

b ([0,+∞),R3), (yn,Dn)n∈N, (y,D) ∈
C1

b ([0,+∞) × S2,R) be associated solutions of (5.3) such that

(vn,ωn) Ð→
n→+∞ (v,ω) in C0([0, T ],R3)2, (5.25)

(yn,Dn)n∈N is bounded in C1([0, T ] × S2,R)2, (5.26)

(yn,Dn) Ð→
n→+∞ (y,D) in C0([0, T ] × S2,R)2. (5.27)

Let R and k∗ be as in Proposition 2, (ŷn, D̂n, ω̂b
n, v̂b

n)n∈N, (ŷ, D̂, ω̂b, v̂b) be associated solutions
of the observer (5.24) with ky, kD > k∗ and initial conditions such that

(ω̂b
n, v̂b

n)(0)→ (ω̂b, v̂b)(0) when n→ +∞.
Then, for every T > 0,

(ω̂b
n, v̂b

n) Ð→
n→+∞ (ω̂b, v̂b) in C0([0, T ],R3)2, (5.28)

(ŷn, D̂n)(t) Ð→
n→+∞ (ŷ, D̂)(t) in C0([0, T ] × S2,R)2, ∀t ∈ [0, T ]. (5.29)

The proof of Proposition 4 relies on tools introduced in the proof of Proposition 2, thus, we
postpone it to Section 5.6.

5.3.6 Convergence

The following theorem states that the proposed observer is optimal, in the sense that the
conditions for convergence of the observer and observability of the system are strictly equivalent.

Theorem 4. Let R and k∗ be as in Proposition 2. For every (ω̂b
0, v̂b

0) ∈ R6 with ∥(ω̂b
0 −

ωb, v̂b
0 − vb)∥ ⩽ R, ky, kD > k∗, the solution of the Cauchy problem (5.24) satisfies

1. ∥(ŷ − y)(t)∥L∞(S2) + ∥(D̂ −D)(t)∥L∞(S2) Ð→
t→+∞ 0 ,

2. for every adherence value (vb,ωb) of (v̂b, ω̂b) as [t→ +∞], there exists C̄ ∈K ⊂ Ω a camera
position such that, ∀η ∈ S2

∇ȳ ⋅ η × ((ωb −ωb) + 1

D̄
η × (vb − vb)) = 0 (5.30)

∇D̄ ⋅ η × ((ωb −ωb) + 1

D̄
η × (vb − vb)) + η ⋅ (vb − vb) = 0 (5.31)
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where ȳ(t,η) and D̄(t,η) are the brightness and depth fields associated to the position C̄ of the
camera. According to Theorem 3, when the system is observable (i.e. when (Σ, yΣ) does not
admit a rotation axis), then (ω̂b, v̂b)(t) Ð→

t→+∞ (ωb,vb).
Proof of Theorem 4:
Step 1: Convergence of f(t), defined by (5.23), to zero when t→ +∞. The function

V (t) is nonincreasing and nonnegative, thus it converges when t→ +∞. From (5.23), we deduce
that the nonnegative fonction f satisfies

∫
t

0

f(s)ds ⩽ V (0) − V (t) , ∀t > 0 .

Thus f ∈ L1(0,+∞). In order to conclude, it is sufficient to prove that f is uniformly continuous
on [0,+∞) (Barbalat Lemma). We have

ḟ = 2∫
S2
(λ∗y ỹ (∇ŷ ⋅ η × (ω̃b + 1

D
η × ṽb) −∇ỹ ⋅ 1

D
η × (η × v) − kyỹ)

+λ∗DD̃ (∇D̂ ⋅ (η × (ω̃b + 1

D
η × ṽb)) − η ⋅ ṽb −∇D̃ ⋅ 1

D
η × (η × v) − kDD̃))dση (5.32)

with λ∗y ∶= λy (ky − L
2
) and λ∗D ∶= λD (kD − L

2
). Thanks to Proposition 3, we get ḟ ∈ L∞(0,+∞),

which ends the proof of Step 1.

Step 2: Proof of statement 1. The functions (ŷ−y, D̂−D) belong to C1

b ([0,+∞)×S2,R)2
thanks to Proposition 3 and (5.4). Thus Ascoli theorem guarantees the existence of adherence
values in C0(S2,R)2 of (ŷ − y, D̂ −D)(t) when t → +∞. Thanks to Step 1, the only possible
adherence value is (0,0), thus the whole function converges to (0,0) in C0(S2,R)2.

Step 3: Proof of statement 2. Let (vb0,ωb
0) be an adherence value of (v̂b, ω̂b) as t→ +∞.

Let (tn)n∈N be an increasing sequence of [0,+∞) such that (v̂b, ω̂b)(tn)→ (vb0,ωb
0). Let T > 0.

The functions v,ω (resp. y,D) belong to C1

b ([0,+∞),R3)2 (resp. C1

b ([0,+∞) × S2,R)2), thus

Ascoli’s theorem guarantees the existence of v,ω ∈ C0([0, T ],R3)2 (resp. D
0
, y0 ∈ C0(S2,R)2)

such that, up to an extraction

(v,ω)(tn + .)→ (v,ω)(.) in C0([0, T ],R3)2,(y,D)(tn)→ (y0,D0) in C0(S2,R)2.
The continuity of the flow for (5.3) justifies that

(y,D)(tn + .)→ (y,D)(.) in C0([0, T ] × S2,R)2
where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ty = −∇y ⋅ (η × (ω + 1

D
η × v)),

∂tD = −∇D ⋅ (η × (ω +Dη × v)) − v ⋅ η,
y(0) = y0,
D(0) =D0

.
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Thanks to Proposition 4, we know that

(ω̂b, v̂b)(tn + .) → (ω̂b, v̂b) in C0([0, T ],R3)2,(ŷ, D̂)(tn + .)→ (ŷ, D̂) in C0([0, T ] × S2,R)2,
where (ŷ, D̂, ω̂b, v̂b) is the solution of the observer associated to (y,D), ωm(t) = ω(t) + ωb,
vm(t) = v(t) + vb and the initial conditions (ω̂b, v̂b)(0) = (ωb

0,vb
0).

We know that V (t) converges to some limit V∞ as t → +∞. Moreover, V (tn + t) → V (t) for
every t ∈ [0, T ]. Therefore, V (t) = V∞ for every t ∈ [0, T ]. In particular, 0 ⩽ f(t) ⩽ ∣dV /dt∣ ≡ 0
i.e. (ŷ − y)(t) = (D̂ −D)(t) = 0,∀t ∈ [0, T ]. Substracting the equations on ŷ and y (resp. on D̂

and D), we get the relation (5.30) (resp. (5.31)). ◻

5.4 Practical implementation, simulations and experimental re-
sults

5.4.1 Adaptation to a spherical cap

Concretely, a spherical camera is only a model, and the image perceived by real cameras only
occupy a part of S2. Let us call K this portion: y(t,η) and D(t,η) are known only for η ∈ K.
The observer introduced in Section 5.3 can not be readily used since it brings into play the
integral of y or D over the whole unit sphere. We will see that one can compensate this problem
by considering virtual observations, equal to the real observations over the window defined by K.

Let K1 and K2 be two compact sets s.t.
○
K1⊂ ○K2⊂ ○K. Let φ be a C∞ scalar field S

2 ∋ η ↦ φ(η) ∈ R,

s.t. φ = 1 on K1, φ = 0 and ∇φ = 0 on S
2∖ ○
K2. Let us define X = φy and Λ = φD. Then,

∂tX = −∇X ⋅ (η × (ω + 1

D
η × v)) + y∇φ ⋅ (η × (ω + 1

D
η × v))

and
∂tΛ = −∇Λ ⋅ (η × (ω + 1

D
η × v)) +D∇φ ⋅ (η × (ω + 1

D
η × v)) − φη ⋅ v.

We propose the following adaptation of observer (5.16):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tX̂ = −∇X̂ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b)))

+y∇φ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b)))

+kX(X − X̂),
∂tΛ̂ = −∇Λ̂ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b)))

+D∇φ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b)))

−φ(vm − v̂b) ⋅ η + kΛ(Λ − Λ̂),
∂tω̂b = −kω ∫K λX(X̂ −X)((∇X̂ − y∇φ) × η)

+λΛ(Λ̂ −Λ)((∇Λ̂ −D∇φ) × η)dση,
∂tv̂b = −kv ∫K λΛ(Λ̂ −Λ)η

+λX(X̂ −X)( 1Dη × (η × (∇X̂ − y∇φ))
+λΛ(Λ̂ −Λ)( 1Dη × (η × (∇Λ̂ −D∇φ))dση.

(5.33)
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Notice that the estimates X̂ and Λ̂ of the virtual observations are computed only on the domain
K, and not on the entire sphere S

2, and only their values on K are used in the dynamics of
the estimated biases. Neumann boundary conditions are imposed on the parts of ∂K where the
direction of propagation points toward the inside of the domain K:

∂X̂

∂n
= 0, ∂Λ̂

∂n
= 0

where n is the outwards-pointing normal of ∂K such that

n ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) < 0.

Let us choose the candidate Lyapunov function

V = 1

2
(∫

K
(λXX̃2 + λΛΛ̃2)dση + ω̃b

2

kω
+ ṽb

2

kv
) .

One can prove that

V̇ = ∫
K
(λXX̃ (−∇X̃ ⋅ (η × (ω + 1

D
(η × v))) − kXX̃))dση
+ ∫

K
(λΛΛ̃(−∇Λ̃ ⋅ (η × (ω + 1

D
(η × v))) − kΛΛ̃))dση

and integration by parts yields

V̇ = −∫
K
(λX (kX − ∇ ⋅W (t,η)

2
) X̃2 + λΛ (kΛ − ∇ ⋅W (t,η)

2
) Λ̃2)dση

− ∮
∂K
(λXX̃2 + λΛΛ̃2)W (t,η)

2
⋅ →n dlη

where W is defined as (R,S2) ∋ (t,η) ↦W (t,η) = η×(ω+ 1

D
η×v) ∈ R3. We guess that for given

environment and trajectory, sufficiently large correction gains kX and kΛ can ensure the decrease
of the candidate Lyapunov function V . Then convergence analysis done when K = S2 should be
extended to compact sub-domains K of S2. As the candidate Lyapunov function should decrease
unless X̃ = Λ̃ = 0 on K, we guess that the necessary and sufficient condition for observability is
the same as stated in Theorem 3, but restricted to the visible part of the environment. From
a practical point of view, it is possible that specific views along the camera trajectory admit a
cylindrical symmetry, although the environment does not: in that case, a residual error coupled
between linear and angular velocity might subsist. However, as soon as a new view enables to
raise the ambiguity (for example, a new wall appears in the field of view), this residual error
vanishes. The observability condition in that situation does depend in a certain sense on the
camera trajectory.
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5.4.2 The observer in pinhole coordinates

The previous observer (5.33) can be finally adapted to a real model of camera: we choose here
the widely spread pinhole camera model enabling a correspondence between the local coordinates
on S

2 with a rectangular grid of pixels. The pixel of coordinates (z1, z2) corresponds to the unit

vector η ∈ S2 of coordinates in R
3: (1 + z21 + z22)−1/2 (z1, z2,1)T . The optical camera axis (pixel(z1, z2) = (0,0)) corresponds here to the direction z3. Directions 1 and 2 correspond respectively

to the horizontal axis from left to right and to the vertical axis from top to bottom on the image
frame.

The gradients ∇y and ∇D must be expressed with respect to z1 and z2 (see Subsection
1.3.2 for the detailed computations). Plugging these expressions in (5.33), we get a PDE system
written in terms of (t, z1, z2) as independent variables. Due to space limitation, this system is
not given here, but its derivation is straightforward and a little bit tedious.

5.4.3 Simulations

The non-linear asymptotic observer (5.33) is tested on a sequence of synthetic images
characterized by the following:

– virtual camera providing images restricted to the spherical cap K ⊂ S
2: the size of each

image is 640 by 480 pixels, the frame rate of the sequence is 42 Hz and the field of view is
50 deg by 40 deg.

– motion of the virtual camera (ω,v): it consists of the motion of a real hand-held camera
(filtered data), combining translations and rotations in each direction; the real linear and
angular velocities expressed in the camera frame are plotted in Fig ures 5.2 and Fig.5.3;
zero-mean normally distributed noise (standard deviations σv and σω) is added to these
velocities to test the robustness;

– virtual scene corresponding to (Σ, yΣ): it consists of the walls, ceiling and floor of a virtual
room; the observed walls are virtually painted with a gray pattern, whose intensity varies
in horizontal and vertical directions as a sinusoid function;

– generation of the brightness images y: each pixel of an image has an integer value varying
from 1 to 256, directly depending on the intensity of the observed surface in the direction
indexed by the pixel, to which a zero-mean normally distributed noise with standard
deviation σy is added to test the robustness;

– generation of the depth images D: to each pixel of the rectangular grid of an image is
attributed the depth of the corresponding element of the observed surface, computed with
respect to position and orientation of the camera in the room, to which a zero-mean
normally distributed noise with standard deviation σD is added to test the robustness.

The numerical resolution used to compute ŷ, D̂, ω̂b and v̂b according to (5.33) is based on a
temporal Euler discretization scheme where ∇ŷ and ∇D̂ are computed via differentiation filters
(Sobel filtering) directly from the image and depth previous estimates. The observer is then tested
for reasonable biases: in rotation, a bias of 0.05 rad.s−1 (10,000 deg/h, for a low-cost gyroscope)
around the horizontal axis; in translation, a bias of 2.5 m.s−1 in the horizontal direction (9 km/h,
for the windspeed). In other words, ωbx = 0.05 rad.s−1 and vbx = 2.5 m.s−1. Biases in the other
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Figure 5.2: Components of the linear velocity v used to test the observer: translations in the
horizontal, vertical and optical axis directions, respectively.
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Figure 5.3: Components of the angular velocity ω used to test the observer: rotations around
the horizontal, vertical and optical axis, respectively.
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directions are set to 0. Initial conditions for ŷ and D̂ are y(0,η) and D(0,η). Initial conditions
for the estimated biases are set to zero. The chosen correction gains are: ky = kD = 2s−1,
kv = 10−2m2.s−2 and kω = 10−5rad.m.s−2. These correction gains are chosen in accordance with
the expected values of biases and the scene averaged depth, to enable a reasonable convergence
speed. The correction gains ky and kD are comparatively much larger than kv, which is itself
larger than kω, as large oscillations in the estimation of ωb can make the discretized observer to
diverge. Finally, the ponderation coefficients are λy = 1 and λD = 5000m2, chosen to compensate
the difference of magnitudes of y and D. First, when image and depth data contain no noise
(σy = σD = 0), the results are plotted in Figure 5.4 and Figure 5.5 as the instantaneous errors
of estimations ṽb and ω̃b expressed in the camera frame, respectively. In the first 6 s, errors
slowly converge towards 0, and coupling between rotation and translation occurs: this reflects
the fact that an horizontal translation can be interpreted as a rotation around the vertical axis
to a certain extent. Oscillations decrease, and after convergence, errors stay bounded: for the
bias in rotation, it does not exceed 0.002 rad.s−1 (4 % of the original bias); in translation, it is
less than 0.01 m.s−1 (0.4 % of the original bias).

Then, to test the robustness of the method, noise is added to the image data (σy = 30, about
12% of the full scale), to the depth data (σD = 25 cm, which is three times as much that can
be expected from a Kinect device), to linear velocity (σv = 0.05m.s−1) and to angular velocity
(σω = 0.005 rad.s−1). Results are plotted in Figure 5.6 and Figure 5.7. Convergence time is
shorter for biases in translation estimation: after 3 s, error does not exceed 0.2 m.s−1 (8 % of
the original bias). For the rotation, convergence is slower (as kω is smaller), but in the last 3 sec
of the simulation, biases are estimated up to 0.003 rad.s−1 (6 % of the original bias).
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Figure 5.4: Error of estimation of the biases in translation for noiseless image and depth data.
Real biases are ωbx = 0.05 rad.s−1 and vbx = 2.5 m.s−1
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Figure 5.5: Error of estimation of the biases in rotation for noiseless image and depth data. Real
biases are ωbx = 0.05 rad.s−1 and vbx = 2.5 m.s−1
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Figure 5.6: Error of estimation of the biases in translation for noisy image and depth data,
and noisy velocities: σy = 30, σD = 25 cm, σv = 0.05m.s−1, σω = 0.005 rad.s−1. Real biases are
ωbx = 0.05 rad.s−1 and vbx = 2.5 m.s−1
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Figure 5.7: Error of estimation of the biases in rotation for noisy image and depth data, and noisy
velocities: σy = 30, σD = 25 cm, σv = 0.05m.s−1, σω = 0.005 rad.s−1. Real biases are ωbx = 0.05
rad.s−1 and vbx = 2.5 m.s−1
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5.4.4 Experiments on real data

The observer described by the system of PDEs (5.33) is then tested on a sequence of real
RGB and depth images. These images are acquired by a Kinect device, a pair of RBG and depth
images is acquired at the same instant, at a frame rate of 25 Hz (see Section 9.1 for more details
on the Kinect device). Gyrometers are embedded along with this device and provide angular
velocity measurements at a frame rate of 125Hz. The system was provided by Sysnav company.
Unfortunately, for this experiment, we did not have a biased linear velocity sensor synchronized
with the system available. To overcome this issue, the system was only submitted to rotations,
and only biases on angular velocity were estimated. More specifically, this is achieved by replacing
(5.33) by the following system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tX̂ = −∇X̂ ⋅ (η × (ωm − ω̂b)) + y∇φ ⋅ (η × (ωm − ω̂b)) + kX(X − X̂),
∂tΛ̂ = −∇Λ̂ ⋅ (η × (ωm − ω̂b)) +D∇φ ⋅ (η × (ωm − ω̂b)) + kΛ(Λ − Λ̂),
∂tω̂b = −kω ∫K λX(X̂ −X)((∇X̂ − y∇φ) × η) + λΛ(Λ̂ −Λ)((∇Λ̂ −D∇φ) × η)dση.

(5.34)

The measured angular velocity is plotted in Figure 5.8: the motion is relatively slow, with an
order of magnitude of 0.15 rad.s−1 (8.5 deg.s−1). In the first 40 sec, the system stands still, which
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Figure 5.8: Angular velocity as measured by gyrometers embedded on the system.

reveals a bias on angular velocity: this bias is estimated by a rough mean calculation. This yields

ωb = ⎛⎜⎝
1.0304

−1.0384
1.2129

⎞⎟⎠10−3rad.s−1.

The sequence of RGBD images is processed along with the measurements from gyrometers, which
yields an estimation of angular velocity biases plotted in Figure 5.9. Biases in the x-axis and
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y-axis directions converge quickly (about 50 sec) and are submitted to perturbations, but bias in
the z-axis direction still evolves at the end of the sequence. The same sequence is thus processed
a second time, with the biases initialized at their final values at the end of the first processing.
This operation is repeated a few times, and the resulting estimated biases are plotted in Figure
5.10. After several iterations, the tendency of evolution is stationary: biases are submitted to
perturbations but have a constant mean. The perturbations can be the consequence of several
factors, the main being that the hypothesis of null linear velocity may be unsatisfied. The mean
of estimated biases is

ω̂bmean = ⎛⎜⎝
1.050−0.975
1.170

⎞⎟⎠10−3rad.s−1.

The magnitude of variations around this mean is about 10−4rad.s−1. From this real data
experiment, the method can be validated: a precision of 10−4rad.s−1 (5.7mdeg.s−1) can be
expected on the angular velocity bias estimation.
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Figure 5.9: Estimated biases resulting from the processing of RGBD images and biased angular
velocity. Bias in the z-axis direction (black) is still converging at the end of the sequence.
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Figure 5.10: Estimated biased on angular velocity by loop processing of the same sequence of
RGBD images and biased angular velocity measurements. This shows the convergence of biases
in all directions towards a mean value, and perturbations around this mean value.

5.5 Proof of the well posedness of the observer

The goal of this section is the proof of Proposition 2 in 3 steps:
– the first step consists in proving the existence of local (in time) solutions,
– the second step consists in proving that solutions stays bounded in a appropriate way, so

that
– we can iterate the local argument to get global (in time) solutions, in a third step.

5.5.1 Local solutions

The goal of this section is the proof of the following result.

Proposition 5. Let R and M > 0. There exists

T = T (M,R, ∥(vm,ωm)∥L∞(0,+∞),D∗, ∥(y,D)∥C1([0,+∞)×S2), ky, kD, λy, λD) > 0
such that, for every ω̂b

0, v̂b
0 ∈ R3, ŷ0, D̂0 ∈ C1(S2) with

∥(ω̂b
0 −ωb, v̂b

0 − vb)∥ ⩽ R , (5.35)

∥ŷ0∥C1(S2) , ∥D̂0∥C1(S2) ⩽M , (5.36)
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there exists a unique solution (ŷ, D̂, ω̂b, v̂b) ∈ C1([0, T ]×S2,R)2 ×C1([0, T ],R3)2, defined on the
time interval [0, T ], of the Cauchy-problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tŷ = −∇ŷ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) + ky(y − ŷ) ,

∂tD̂ = −∇D̂ ⋅ (η × (ωm − ω̂b + 1

D
η × (vm − v̂b))) − (vm − v̂b) ⋅ η

+kD(D − D̂) ,
dω̂b

dt
= −∫S2 (λy(ŷ − y)(∇ŷ × η) + λD(D̂ −D)(∇D̂ × η))dση,

dv̂b

dt
= −∫S2 (λD(D̂ −D)η + λy(ŷ − y)( 1Dη × (η ×∇ŷ)
+λD(D̂ −D)( 1Dη × (η ×∇D̂))dση ,

ŷ(0,η) = ŷ0(η),
D̂(0,η) = D̂0(η),
ω̂b(0) = ω̂b

0,

v̂b(0) = v̂b0.

(5.37)

Proof of Proposition 5: We prove the existence and uniqueness of the non-linear and non-
local system of PDEs (5.37) by a standard fixed-point approach. Our strategy consists in
explicitly solving the two first PDEs of (5.37) with fixed functions t ↦ (Ŵb, V̂b)(t), instead
of t ↦ (ω̂b, v̂b)(t). Then, the explicit solutions (Ŷ (t), d̂(t)) are plugged in the third and fourth
ODEs of (5.37). We conclude by applying the Banach fixed point theorem (see [Brezis, 1983])
on the map (Ŵb, V̂b)↦ (ω̂b, v̂b).

Let R,M > 0, ω̂b
0, v̂b

0 ∈ R3, and ŷ0, D̂0 ∈ C1(S2) such that (5.35) and (5.36) hold. For any
T > 0, the functional space

ET ∶= {(Ŵb, V̂b) ∈ C0([0, T ],R6); ∥(Ŵb, V̂b)(t) − (ωb,vb)∥ ⩽ 2R,∀t ∈ [0, T ]}
equipped with the L∞((0, T ),R6)-norm is a Banach space. To any element (Ŵb, V̂b) ∈ ET , we
associate the solutions (Ŷ , d̂, ω̂b, v̂b) ∈ C1([0, T ] × S2)2 ×C1([0, T ],R3)2 of the Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tŶ = −∇Ŷ ⋅ (η × (ωm − Ŵb + 1

D
η × (vm − V̂b))) + ky(y − Ŷ ) ,

∂td̂ = −∇d̂ ⋅ (η × (ωm − Ŵb + 1

D
η × (vm − V̂b))) − (vm − V̂b) ⋅ η + kD(D − d̂) ,

dω̂b

dt
= −∫S (λy(Ŷ − y)(∇Ŷ × η) + λD(d̂ −D)(∇d̂ × η))dση ,

dv̂b

dt
= −∫S (λD(d̂ −D)η + λy(Ŷ − y)( 1Dη × (η ×∇Ŷ )

+λD(d̂ −D)( 1Dη × (η ×∇d̂))dση ,
Ŷ (0,η) = ŷ0(η) ,
d̂(0,η) = D̂0(η) ,
ω̂b(0) = ω̂b

0 ,

v̂b(0) = v̂b0 .

(5.38)

Let us emphasize that this Cauchy problem is well posed because Ŷ and d̂ have explicit
expressions along the characteristics (see [LeVeque, 1992, Serre, 1999] for a description of the
method of characteristics).
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Indeed, let us introduce the flow Φt on the sphere S
2 associated to the ODE

⎧⎪⎪⎨⎪⎪⎩
dη
dt
= η × (ωm(t) − Ŵb(t) + 1

D(t,η)η × [vm(t) − V̂b(t)]) ,
η(0) = η0 .

(5.39)

This means that the solution of (5.39) is η(t) = Φt(η0), ∀t,η0. Note that the right hand side
of this equation is continuous in t and C1 in η, thus the flow is uniquely defined. This flow is
defined for every t ∈ [0, T ] because no explosion is possible in finite time: it lives on the sphere
S
2. Moreover, for every t ∈ [0, T ], η ↦ Φt(η) is a C1-diffeomorphism of the sphere S

2, thus, there
exists

C = C(R, ∥(ωm,vm)∥L∞(0,T ),D∗, ∥D∥C1([0,T ]×S2)) > 0
such that

∥∂Φt
∂η
(η)∥ ,∥∂Φ−1t

∂η
(η)∥ ⩽ C, ∀(t,η) ∈ [0, T ] × S2. (5.40)

With the characteristics method, we get the following explicit expressions

Ŷ [t,Φt(η)] = ŷ0(η)e−kyt + ∫ t

0

kyy[τ,Φτ(η)]eky(τ−t)dτ,
d̂[t,Φt(η)] = D̂0(η)e−kDt

+∫ t0 (kDD(τ,Φτ(η)) − (vm − V̂b)(τ).Φτ(η)) ekD(τ−t)dτ,
or, equivalently

Ŷ [t,η] = ŷ0[0,Φ−1t (η)]e−kyt + ∫ t

0

kyy[τ,Φτ ○Φ−1t (η)]eky(τ−t)dτ, (5.41)

d̂[t,η] = D̂0[Φ−1t (η)]e−kDt
+∫ t0 (kDD[τ,Φτ ○Φ−1t (η)] − (vm − V̂b)(τ).[Φτ ○Φ−1t ](η)) ekD(τ−t)dτ. (5.42)

Thus, ω̂b and v̂b are also explicit:

ω̂b(t) = ω̂b
0 − ∫

t

0
∫
S2
(λy(Ŷ − y)(∇Ŷ × η) + λD(d̂ −D)(∇d̂ × η))dσηdτ, (5.43)

v̂b(t) = v̂b0 −∫ t0 ∫S2 (λD(d̂ −D)η + λy(Ŷ − y)( 1Dη × (η ×∇Ŷ )
+λD(d̂ −D)( 1Dη × (η ×∇d̂))dσηdτ. (5.44)

Now, let us introduce the map

FT ∶ ET → C0([0, T ],R6)(Ŵb, V̂b) ↦ (ω̂b, v̂b).

Step 1: Let us prove the existence of

T ∗ = T ∗(M,R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(D,y)∥C1([0,1]×S2), ky, kD, λy, λD) ∈ (0,1)
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such that FT maps ET into ET for every T < T ∗. From now on, we assume that T ∈ (0,1).
Let (Ŵb, V̂b) ∈ ET . Thanks to the explicit expressions (5.41), (5.42) and the bounds (5.40), (5.4)
there exists a constant

C1 = C1(M,R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(y,D)∥C1([0,1]×S2), ky, kD) > 0
such that ∣Ŷ (t,η)∣, ∣∇Ŷ (t,η)∣, ∣d̂(t,η)∣, ∣∇d̂(t,η)∣ ⩽ C1, ∀(t,η) ∈ [0, T ] × S2. (5.45)

Then, we deduce from (5.43), (5.44) and (5.35) that

∣ω̂b(t) −ωb∣, ∣v̂b(t) − vb∣ ⩽ R +C2T,∀t ∈ [0, T ],
where

C2 = C2(M,R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(D,y)∥C1([0,1]×S2), ky, kD, λy, λD) > 0.
Thus if T < R/C2, then (ω̂b, v̂b) belongs to ET . This ends Step 1 with T ∗ ∶=min{1,R/C2}.

Step 2: Let us prove the existence of

T ∗∗ = T ∗∗(M,R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(y,D)∥C1([0,1]×S2), ky, kD, λy, λD) ∈ (0,1)
such that FT is (1/2)-contractant on ET for every T < T ∗∗. Let (Ŵb

1
, V̂b

1), (Ŵb
2
, V̂b

2) ∈
ET , Φ1

t , Φ
2
t be the associated flows on S

2 and (Ŷ 1, d̂1, ω̂b
1, v̂b

1), (Ŷ 2, d̂2, ω̂b
2, v̂b

2) be the associ-
ated solutions of (5.38). The regularity of the flow of (5.39) with respect to the function (Ŵb, V̂b)
justifies the existence of a constant C3 = C3(R, ∥(ωm,vm)∥L∞(0,T ),D∗, ∥D∥C1([0,T ]×S2)) > 0 such
that, for every t ∈ [0, T ],

∥Φ1

t −Φ2

t ∥C1(S2), ∥(Φ1

t )−1 − (Φ2

t )−1∥C1(S2) ⩽ C3∥(Ŵb
1 − Ŵb

2
, V̂b

1 − V̂b
2)∥L∞(0,T ) .

Using the regularity of y, ŷ0, D, D̂0 and bound (5.36), we deduce the existence of a constant
C4 = C4(M,R, ∥(ωm,vm)∥L∞(0,T ),D∗, ∥(y,D)∥C1([0,T ]×S2), ky, kD) > 0 such that

∥(Ŷ 1 − Ŷ 2, d̂1 − d̂2)(t)∥C1(S2) ⩽ C4∥(Ŵb
1 − Ŵb

2
, V̂b

1 − V̂b
2)∥L∞(0,T ) ,∀t ∈ [0, T ] .

Thus, we deduce from (5.43) and (5.44) that

∥(ω̂b
1 − ω̂b

2, v̂b
1 − v̂b2)∥L∞(0,T ) ⩽ C5T ∥(Ŵb

1 − Ŵb
2
, V̂b

1 − V̂b
2)∥L∞(0,T )

for some constant C5, that depends on the same quantitites as C4. This gives the conclusion
with T ∗∗ = 1/(2C5). ◻
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5.5.2 Bounds on solutions

The goal of this section is the proof of the following result.

Proposition 6. Let R > 0. There exists

k∗ = k∗(R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(y,D)∥C1([0,1]×S2)) > 0
such that for every ω̂b

0, v̂b
0 ∈ R3 with (5.35), ky, kD > k∗, T ∗ > 0, if (ŷ, D̂, ω̂b, v̂b) ∈ C1([0, T ∗] ×

S
2)2 ×C1([0, T ∗],R3)2 is a solution of (5.24) on the time intervall [0, T ∗], then

∥(ŷ, D̂)(t)∥C1(S2) ⩽ ∥(y,D)∥C1(S2) + 1 , ∀t ∈ [0, T ∗].
The proof of this proposition relies on the following technical Lemma.

Lemma 5. Let M0 > 0. There exists k∗ = k∗(M0) > 0 such that

– for every a ∈ C1([0,+∞) × S2,R3), b ∈ C1([0,+∞) × S2,R) such that

a(t,η) ⋅ η = 0 , ∀(t,η) ∈ [0,+∞) × S2 , (5.46)

∥a(t,η)∥, ∥b(t,η)∥,∥∂a
∂η
(t,η)∥ ,∥ ∂b

∂η
(t,η)∥ ≤M0 , ∀(t,η) ∈ [0,+∞) × S2 , (5.47)

– for every k > k∗, h0 ∈ C1(S2,R), T ∗ > 0 and h ∈ C1([0, T ∗] × S2,R) solution on [0, T ∗] of

{ ∂th(t,η) = ∂h
∂η
(t,η) ⋅ a(t,η) + b(t,η) − kh(t,η) ,

h(0,η) = h0(η) ,
then, ∥h(t, .)∥C1(S2) ⩽ ∥h0∥C1(S2) + 1 ,∀t ∈ [0, T ∗].

Proof of Lemma 5: Let us consider the flow ϕ(t,η) associated to the following equation

{ ∂tϕ = −a(t, ϕ)
ϕ(0,η) = η. (5.48)

The ODE has a local (in time) solution for any η ∈ S2 thanks to Cauchy-Lipschitz theorem
because a is continuous in t and C1 in η. This solution lives on S

2 thanks to assumption (5.46),
thus no explosion is possible and ϕ(t,η) is defined for every (t,η) ∈ [0,+∞) × S2.

The new function:
z(t,η) ∶= h(t, ϕ(t,η)) (5.49)

solves ∂tz(t,η) = b(t, ϕ(t,η)) − kz. Thus

z(t,η) = e−kth0(η) + ∫ t

0

b(τ,ϕ(τ,η))ek(τ−t)dτ . (5.50)
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Step 1: Bound on h. For every t ∈ [0, T ∗], ϕ(t, .) is a bijection of S2 thus

∥h(t, .)∥L∞(S2) = ∥z(t, .)∥L∞(S2)⩽ ∥h0∥L∞(S2)e−kt + ∫ t0 M0e
−k(t−τ)dτ by (5.50) and (5.47)⩽ ∥h0∥L∞(S2) + M0

k⩽ ∥h0∥L∞(S2) + 1 when k >M0 .

Step 2: Bound on ∂h/∂η. From (5.49) and (5.50), we deduce that

∂h
∂η
(t, ϕ(t,η)) = ∂z

∂η
(t,η) (∂ϕ

∂η
(t,η))−1

= e−kt ∂h0
∂η
(η) (∂ϕ

∂η
(t,η))−1+ ∫ t0 e−k(t−τ) ∂b∂η (τ,ϕ(τ,η))Σ(τ, t,η)dτ

(5.51)

where

Σ(τ, t,η) ∶= ∂ϕ
∂η
(τ,η) ⋅ (∂ϕ

∂η
(t,η))−1 .

Note that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂t
(∂ϕ
∂η
(t,η))−1 = (∂ϕ

∂η
(t,η))−1 ∂a

∂η
(t, ϕ(t,η)) ,

(∂ϕ
∂η
(0,η))−1 = Id

and

{ ∂Σ
∂τ
(τ, t,η) = − ∂a

∂η
(τ,ϕ(τ,η))Σ(τ, t,η) ,

Σ(t, t,η) = Id .
Thus, by Gronwall Lemma,

∥(∂ϕ
∂η
(t,η))−1∥ ⩽ eM0t , ∀(t,η) ∈ [0, T ∗] × S2 ,

∥Σ(τ, t,η)∥ ⩽ eM0∣t−τ ∣ , ∀(τ, t,η) ∈ [0, T ∗]2 × S2 . (5.52)

We deduce from (5.51) and (5.52) that

∥ ∂h
∂η
(t, ϕ(t,η))∥ ⩽ e(M0−k)t∥∂h0

∂η
∥L∞(S2) + ∫ t0 M0e

(M0−k)(t−τ)dτ⩽ ∥∂h0
∂η
∥L∞(S2) + M0

k−M0
when k >M0⩽ ∥∂h0

∂η
∥L∞(S2) + 1 when k > 2M0 .

This ends the proof of Lemma 5 with k∗ = 2M0. ◻

Proof of Proposition 6: We apply Lemma 5 to ỹ = ŷ − y and D̃ = D̂ −D with (see equations
(5.19) and (5.20))

a(t,η) ∶= −η × ((ωm − ω̂b)(t) + 1

D(t,η)η × (vm − v̂b)(t))
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b1(t,η) ∶= ∇y(t,η) ⋅ (η × (ω̂b(t) −ωb) + 1

D(t,η)η × (v̂b(t) − vb))
b2(t,η) ∶= ∇D(t,η) ⋅ (η × (ω̂b(t) −ωb) + 1

D(t,η)η × (v̂b(t) − vb)) + v̂b(t) ⋅ η − vb ⋅ η .
Note that ∥(v̂b, ω̂b)(t)∥ is bounded uniformly with respect to t ∈ [0, T ∗] by a constant that
depends only on R thanks to the decrease of the Lyapunov function V . Thus, the assumptions
of Lemma 5 are satisfied with

M0 =M0(R, ∥(ωm,vm)∥L∞(0,1),D∗, ∥(y,D)∥C1([0,1]×S2)) > 0 .
Therefore, there exists a constant k∗ > 0 (that depends on the same quantities as M0) such that,
for every ky, kD > k∗ then

∥(ŷ − y, D̂ −D)(t)∥C1(S2) ⩽ 1 , ∀t ∈ [0, T ∗] ,
which gives the conclusion. ◻

5.5.3 Global solutions

The goal of this section is the proof of Proposition 2 thanks to Propositions 5 and 6.
Let ω̂b

0, v̂b
0 ∈ R3 and R ∶= ∥(ω̂b

0 −ωb, v̂b
0 − vb)∥. We define

M ∶= ∥(y,D)∥C1(S2) + 1 .
By Proposition 5, there exists a time T = T (M,R) > 0 and a unique local solution of (5.24)
defined on [0, T ]. By Proposition 6, we have

∥(ŷ, D̂)(T )∥C1(S2) ⩽M .

By decreasing of the Lyapunov function, we have

∥(ω̂b −ωb, v̂b − vb)(T )∥ ⩽√2V (T ) ⩽√2V (0) = ∥(ω̂b
0 −ωb, v̂b

0 − vb)∥ = R
Thus we can apply Proposition 5 with initial condition at t = T and we get a solution defined on[0,2T ]. By iterating this argument, we get a solution defined for every t ∈ [0,+∞). ◻

5.6 Continuity of the flow

The goal of this section is to prove Proposition 4. We use the same notations as in the proof
of Proposition 5.

Let R ⩾ ∥(ω̂b
n(0) − ωb, v̂b

n(0) − vb)∥ for every n ∈ N. Thanks to the convergences
in assumption, there exists T1 > 0 such that the maps (FnT1)n∈N and FT1 associated to(vn,ωn, yn,Dn)n∈N and (v,ω, y,D) are (1/2)-contractions of the same space ET1 .
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Step 1: We prove that, for every (Ŵb, V̂b) ∈ ET1 then

∥(FnT1 − FT1)(Ŵb, V̂b)∥L∞(0,T1) → 0 when n→ +∞.
Let (Ŵb, V̂b) ∈ ET1 . The first component of (FnT1 − FT1)(Ŵb, V̂b) is

(FnT1 − FT1)(Ŵb, V̂b)(1)(t) = (ω̂b
n − ω̂b)(0) +An(t) +Bn(t)

where, for every t ∈ [0, T1] (integrations by part)

An(t) = −∫ t

0
∫
S2
λy((Ŷ n − yn − Ŷ + y)(∇Ŷ n × η) − (Ŷ n − Ŷ )∇(Ŷ − y) × η)dσηdτ,

Bn(t) = −∫ t

0
∫
S2
λD((d̂n −Dn − d̂ +D)(∇d̂n × η) − (d̂n − d̂)∇(d̂ −D) × η)dσηdτ.

For every t ∈ [0, T1], we have

∣An(t)∣ ⩽ λyT1C( ∥Ŷ n − yn − Ŷ + y∥L∞((0,T1)×S2)∥∇Ŷ n∥L∞((0,T1)×S2)+∥∇(Ŷ − y)∥L∞((0,T1)×S2)∥Ŷ n − Ŷ ∥L∞((0,T1)×S2)). (5.53)

Thanks to (5.25), we also have Φnt → Φt in C0([0, T1]×S2,S2) (consequence of Gronwall lemma).
From the explicit expressions of Ŷ n, Ŷ , d̂n, d̂ (see (5.41) and (5.42)) and the convergence (5.27),
we deduce that (Ŷ n, d̂n)→ (Ŷ , d̂) in C0([0, T1] × S2,R)2. (5.54)

Moreover, thanks to (5.26), the quantities ∥∇d̂n∥L∞((0,T1)×S2),∥∇Ŷ n∥L∞((0,T1)×S2) are uniformly
bounded. Thus, the right hand side of (5.53) converges to zero as n → +∞. We may work
similarly to prove that Bn(t) and (FnT1 − FT1)(Ŵb, V̂b)(2)(t) converge to zero uniformly with
respect to t ∈ [0, T1]. This ends the proof of the first step.

Step 2: Conclusion. We have

∥(ω̂b
n − ω̂b, v̂b

n − v̂b)∥L∞(0,T1)= ∥FnT1(ω̂b
n, v̂b

n) − FT1(ω̂b, v̂b)∥L∞(0,T1)⩽ ∥FnT1(ω̂b
n, v̂b

n) − FnT1(ω̂b, v̂b)∥L∞(0,T1) + ∥(FnT1 − FT1)(ω̂b, v̂b)∥L∞(0,T1)
(5.55)

and FnT1 is a (1/2)-contraction of ET1 thus

∥(ω̂b
n − ω̂b, v̂b

n − v̂b)∥L∞(0,T1) ⩽ 2∥(FnT1 − FT1)(ω̂b, v̂b)∥L∞(0,T1) → 0

thanks to the first step. Iterating this argument on a finite number of intervals [T1,2T1],[2T1,3T1], etc, we conclude that (5.28) holds. Let ϕt be the flow associated to the equation

dη

dt
= η × (ωm(t) − ω̂b(t) + 1

D(t,η)η × [vm(t) − v̂b(t)])
and ϕnt similarly associated to (ω̂b

n, v̂b
n). Then, by (5.28), ϕnt → ϕt in C0([0, T ] × S

2,S2).
Thanks to the explicit expressions of (ŷnD̂n) and (ŷ, D̂) in terms of ϕnt and ϕt (obtained by the
characteristic method, as (5.41) and (5.42)), we deduce that (5.29) holds. This ends the proof of
Proposition 4. ◻
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Chapter 6

The geometrical flow method for

velocity estimation

Estimation de vitesses linéaire et angulaire à partir d’images de profondeur

Dans ce chapitre est décrite une nouvelle méthode d’odométrie, basée sur le traitement
d’images de profondeur seules, considérées comme un champ scalaire dense. L’adaptation de
cette méthode à des images de profondeur réelles associées à un modèle de caméra pinhole est
détaillée. Des résultats préliminaires d’implémentation de notre méthode sur des données réelles
est prometteuse : un indice de confiance peut être associé à la vitesse calculée, ce qui est très
utile en fusion de données lorsque la redondance de l’information est exploitée. Ces résultats ont
été présentés dans [Zarrouati-Vissière et al., 2013a] et ont été l’objet d’une demande de brevet
[Zarrouati-Vissière et al., 2013b].

In this chapter, a novel odometry method based on the sole processing of depth images as
a dense scalar field is described. Adaptation of this method to real depth images associated to
a pinhole camera model is detailed. Preliminary results of implementation of our method on
real data seem promising: a confidence index can be assigned to the resulting velocity, which
is of great help in data fusion where (partial) redundancy of information is involved. These
results were presented in [Zarrouati-Vissière et al., 2013a] and are the subject of a filed patent
application [Zarrouati-Vissière et al., 2013b].

6.1 The geometrical flow as a conservation law

Recall from chapter 1.3 the PDE satisfied by the depth D

∂tD = −∇D ⋅ (η × (ω + 1

D
η × v)) − v ⋅ η, see equation (1.17)

The equation is called in this dissertation the geometrical flow equation by analogy with the
optical flow equation (see equation (1.16)). We will work on this PDE, with the help of two
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differential calculus relations, recalled in the following. These relations hold on the unit sphere
S
2, for η ∈ S2 and P ∈ R3 any vector independent of η:

∇ ⋅ (η ×P) = 0, see equation (A.7)

∇ ⋅ (η × (η ×P)) = −2η ⋅P, see equation (A.4)

where ∇⋅ denotes the divergence operator on S
2 as a Riemaniann manifold.

From (1.17), the partial time-derivative of D3 is computed:

∂tD
3 = −∇D3 ⋅ (η ×ω) − 3

2
∇D2 ⋅ (η × (η × v))) − 3D2v ⋅ η (6.1)

Then, using (A.7):
∇D3 ⋅ (η ×ω) = ∇ ⋅ (D3η ×ω)

and using (A.4):

∇D2 ⋅ (η × (η × v))) = ∇ ⋅ (D2η × (η × v))) −D2∇ ⋅ (η × (η × v)))
= ∇ ⋅ (D2η × (η × v))) + 2D2v ⋅ η

Thus, (6.1) can be reformulated as

∂tD
3 = −∇ ⋅ (D3η ×ω) − 3

2
∇ ⋅ (D2η × (η × v)))

Which means that the partial time-derivative ofD3 can be completely expressed as the divergence
of a vector field. Physically, the integral formulation of this point-wise equation is equivalent
to the basic assumption that the volume of the environment in which the camera is moving is
constant, which is a conservation law. This does not seem like a huge discovery. However, this
point-wise formulation can be expressed as a local balanced equation, which is, to our knowledge,
new.

Integrating this equation on a fixed portion Ω of S
2 with boundary ∂Ω, Stokes’s theorem

yields

∂t∫
Ω

D3dση = −∮
∂Ω
(D3η ×ω)⋅ →n dlη − 3

2
∮
∂Ω
(D2η × (η × v)))⋅ →n dlη

where dση is an infinitesimal surface element of S2, dlη is an infinitesimal length element, and
→

n

is the outwards-pointing normal vector of ∂Ω.
This equation is rearranged using the double product properties

∂t∫
Ω

D3dση = (∮
∂Ω
(D3η× →n)dlη) ⋅ω + (3

2
∮
∂Ω
(D2η × (→n ×η))dlη) ⋅ v (6.2)

Which is simplified, noticing that
→

n, as the normal vector of boundary ∂Ω is an element of
Tη (the tangent set of S2 at point η), which implies η × (→n ×η) =→n. Finally,

∂t∫
Ω

D3dση = (∮
∂Ω
(D3η× →n)dlη) ⋅ω + (3

2
∮
∂Ω
D2 →n dlη) ⋅ v (6.3)
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Formally, given two consecutive depth images and a fixed domain Ω of S
2, the left term

of (6.3) can be computed by discrete approximation of the time-derivative. Computation of(∮∂Ω(D3η× →n)dlη) and (3
2 ∮∂ΩD2

→

n dlη) yields a scalar equation, linear with respect to v and
ω. To each domain Ω corresponds such an equation. Six linearly independent equations yield
the reconstruction of the linear and angular displacements v and ω that occurred between the
two depth images.

6.2 Implementation of the method for a pinhole camera model

To adapt this method to real images, it is necessary to express the integral terms of (6.3)
with respect to the real coordinates of pixels in the image. As already mentioned in Chapter
1, this requires to know the calibration model and parameters of the camera. In this section,
we consider a regular pinhole camera model, where distortion is neglected. The image is a
rectangular matrix, whose size defines the resolution of the image: we will denote it (rx, ry). A
pixel’s position is denoted (i, j) ∈ (1, rx) × (1, ry). Using the notations of Chapter 1, the unitary
vector η corresponding to the pixel’s position (i, j) is given by

η = 1√( i−x0
frx
)2 + ( j−y0

fry
)2 + 1

⎛⎜⎜⎝
i−x0
frx
j−y0
fry

1

⎞⎟⎟⎠
For sake of simplicity, we define z1 ∶= i−x0

frx
and z2 ∶= j−y0

fry
, so that

η = 1√
z2
1
+ z2

2
+ 1(z1, z2,1)T .

The implementation of the proposed method for a real image requires the choice of domains
Ω on S

2: a natural choice is to ensure that the domains, when reprojected on the plane image,
are identified with rectangles (the smallest possible rectangle is a single pixel). In particular,
the infinitesimal surface element dση is, reprojected on S

2, the area corresponding to a pixel: it
naturally depends on the position of this pixel in the image. The value of this area is established
by the following consideration: it is simply the Euclidean norm of the vector dη1 × dη2, where
vectors dη1 and dη2 are infinitesimal displacements along each side of the pixel:

dη1 ∶= ∂η
∂z1

dz1, and dη2 ∶= ∂η
∂z2

dz2

where dz1 et dz2 are the length and the width of a pixel.
Computation yields

∂η

∂z1
= 1(1 + z2

1
+ z2

2
)3/2
⎛⎜⎝
1 + z22−z1z2−z1

⎞⎟⎠ ,
∂η

∂z2
= 1(1 + z2

1
+ z2

2
)3/2
⎛⎜⎝
−z1z2
1 + z21−z2

⎞⎟⎠

87



hence

dση = dz1dz2(1 + z2
1
+ z2

2
)3/2 .

Similarly, an infinitesimal length element dlη corresponds to the norm of dη1 or dη2,
depending on the direction of displacement along ∂Ω: horizontally corresponds to dlη1 and
vertically to dlη2 . This yields

dlη1 =
√
1 + z2

2

1 + z2
1
+ z2

2

dz1, dlη2 =
√
1 + z2

1

1 + z2
1
+ z2

2

dz2.

The outwards-pointing normal
→

n along ∂Ω corresponds to the unit vector of Tη whose
direction is given by ±dηi × η (i = 1,2): the sign depends on the direction in which the path is
run, and dηi is only the orientation. Thus

→

n+1= 1√
1 + z2

2

⎛⎜⎝
0−1
z2

⎞⎟⎠ ,
→

n−1= 1√
1 + z2

2

⎛⎜⎝
0

1−z2
⎞⎟⎠ ,

→

n+2= 1√
1 + z2

1

⎛⎜⎝
1

0−z1
⎞⎟⎠ ,

→

n−2= 1√
1 + z2

1

⎛⎜⎝
−1
0

z1

⎞⎟⎠
The previous computations are aggregated to finally obtain the expressions of η× →n dlη and

→

n dlη on any of the sides of a given rectangle, which is parameterized by the side coordinates(z1, z1, z2, z2). These expressions are gathered in the following table:

z1 z2 (η× →n)dlη →

n dlη

∈ (z1, z1) z2
dz1(1+z2

1
+z22)3/2

⎛⎜⎝
1 + z22−z1z2−z1

⎞⎟⎠ dz1
1+z2

1
+z22
⎛⎜⎝
0−1
z2

⎞⎟⎠
z1 ∈ (z2, z2) dz2(1+z12+z22)3/2

⎛⎜⎝
−z1z2(1 + z12)−z2

⎞⎟⎠ dz2
1+z12+z22

⎛⎜⎝
1

0−z1
⎞⎟⎠

∈ (z1, z1) z2
dz1(1+z2

1
+z22)3/2

⎛⎜⎝
−(1 + z22)
z1z2
z1

⎞⎟⎠ dz1
1+z2

1
+z22
⎛⎜⎝

0

1−z2
⎞⎟⎠

z1 ∈ (z2, z2) dz2(1+z12+z22)3/2
⎛⎜⎝

z1z2−(1 + z12)
z2

⎞⎟⎠ dz2
1+z12+z22

⎛⎜⎝
−1
0

z1

⎞⎟⎠
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6.3 Implementation of the method for a pinhole camera model
including radial distortion

In this section, we use the notations of Chapter 1. Similarly to the previous implementation,
the first step is to express the unitary vector η with respect to pixel coordinates (i, j). The
fish-eye distortion model described by (1.6) yields

η = 1√
tan(rw)2

(2 tan(w/2))2 + 1
⎛⎜⎜⎝
z1

tan(rw)
2r tan(w/2)

z2
tan(rw)

2r tan(w/2)
1

⎞⎟⎟⎠

where r ∶= √z2
1
+ z2

2
(same definitions for z1 and z2 than in the previous section) and w is the

distortion coefficient.

Then dση is computed using the same method than in the previous section:

dση = 2w tan(rw)
tan(w/2)2 (1 + tan(rw)

2)
r(4 + tan(rw)2

tan(w/2)2 )3/2dz1dz2.

Finally, the expressions of η× →n dlη and
→

n dlη on the four sides of a given rectangle are
computed and gathered in the following table. For sake of concision of the relations, we use the
following notations:

Cw = cos(w/2), Sw = sin(w/2), Cr = cos(wr), Sr = sin(wr).
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z1 ∈ (z1, z1) z2 = z2 (η× →n)dlη = dz1Cw

r3(4S2
wC

2
r+C2

wS
2
r )3/2

⎛⎜⎝
(z22Sr(4S2

wC
2
r +C2

wS
2
r ) + 4wrz21S2

wCr)−z1z2(C2
wS

3
r + 4S2
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6.4 Experiments on real data

This method is tested on real depth images. The system of acquisition is the same than in
Section 5.4.4. For the sequence of images tested, the system lies in the beginning on a table, in
front of a laser telemeter, which measures the distance towards a plane surface of the system.
The system is submitted to rotations and translations, in the following order:

– rotation about the vertical axis (y-axis in the camera reference frame Rcam),
– rotation about the optical axis (z-axis in the camera reference frame Rcam),
– rotation about the lateral axis (x-axis in the camera reference frame Rcam),
– translation along the optical axis (the laser telemeter measurements provide a reference for

this linear velocity)
– rapid rotation about the vertical axis (y-axis in the camera reference frame Rcam).

Figure 6.1 illustrates the setup used for this experiment. The method presented in the previous

������ ����� 	��
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Figure 6.1: Setup of this experiment. The system lies on a table, in front of a laser telemeter,
which measures the distance towards a plane surface of the system. The Kinect device acquires
depth images, and angular velocities of the system are provided by embedded gyrometers.

sections is implemented, and the results are plotted in the following figures. The linear velocities
expressed in the reference camera frame Rcam are represented in Figure 6.2. The linear velocity
along the optical axis is plotted along with the velocity computed by time-differentiation and
low-pass filtering of distance measurements from the laser telemeter in the third subplot. The
magnitude of the difference does not exceed 0.1m.s−1. This enables to validate the functioning
of this method, although the results are noisy, especially in the x and y directions.

The angular velocities about the x, y and z axis are plotted along with gyrometers
measurements in Figure 6.3. Again, both measurements are perfectly consistent, with the sole
exception that the gyrometers measurements are biased, and the geometrical flow measurements
are noisy. The magnitude of the difference does not exceed 10−3rad.s−1.

From these preliminary results arise several questions: are any environments more favorable
than others to this method? Can we describe them? Can we make sure that the choice of the
domains Ωi is the most efficient? Can we assign a confidence index to the measured velocities?
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Figure 6.2: Linear velocities measured using the geometrical flow method. In the third subplot,
linear velocity along the optical axis is plotted along with linear velocity computed from the laser
telemeter measurements (red).
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Figure 6.3: Angular velocities: measurements using the geometrical flow method (blue) and
gyrometers measurements (red). Both measurements are perfectly consistent, with the sole
exception that the gyrometers measurements are biased, and the geometrical flow measurements
are noisy. The magnitude of the difference does not exceed 10−3rad.s−1.
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To the questions concerning the influence of the environment, one can immediately answer
that the most favorable environment is the one that satisfies the hypothesis that enabled to
formulate the geometrical flow equation in Section 1.3.1, especially hypothesis (H1). However,
this is not sufficient to ensure that the 6-DOF motion can be fully reconstructed. In fact, the
possibility to reconstruct the motion of the camera is ensured by the same condition that was
pointed in Chapter 5 for observability of biases on velocity (see Theorem 3): the environment
should not admit a rotation axis. This is proved working by contradiction and using usual linear
algebra tools and Stokes formula.

This yields an issue for implementation of this method on real depth images: given that the
actual field of view of the camera is much narrower than the entire field of view of the unit
sphere in the ideal spherical model, a non-cylindrical symmetry should be visible even from a
small visible part of the scene. For a given environment, ensuring that, for any point of view of
the camera, the visible part of the scene won’t admit a rotation axis is a difficult task, which
requires a precise work on the geometry of the environment: in our opinion, this can not be
achieved in real-time.

Similarly, the choice of the most efficient domains is a critical task: ideally, we would like to
be able to choose only six domains that would enable to invert the linear system of six equations
written in the form of equation (6.3). Unfortunately, even if a precise characterization of the
environment ensures that 6 such domains exist, their choice require a thorough analysis of the
geometry of the scene.

Fortunately, it is possible, once the domains are chosen and the (rectangular) linear system
is (pseudo) inverted, to know the quality of the measurements: the covariance of the result is
directly encrypted in the pseudo-inverse of the linear system weighted by the residuals of the
linear system. This a precious information for data fusion such as Kalman filtering.

It is rather difficult to compare this novel method to other known techniques. The closest
algorithm that can perform 6-DOF motion estimation from depth data is (to our knowledge)
the Iterative Closest Point (ICP) algorithm, which is used in the seminal work known as Kinect
fusion [Izadi et al., 2011]. ICP performs an estimation of displacement by iterative alignment of
two point clouds, without any explicit point correspondence ([Rusinkiewicz and Levoy, 2001]).
Variants have been studied to take into account surface normals or elastic deformations of point
clouds (e.g for medical applications). It is mostly used for depth data merging. This algorithm
has two main limitations: its domain of convergence is very local, and it requires an important
processing time. By comparison, our proposed method runs at 140 Hz on a commercial laptop
purchased in 2011 including an Intel Core i5-2520M CPU @ 2.50 GHz processor. To be specific,
depending on the number of domains used to form the rectangular linear system to be inverted,
the processing time can vary (see Table 6.1 for a comparison).

See for example [Gold et al., 1998], [Zhang, 1994], [Li and Hartley, 2007] for more details on
ICP variants. Dense depth data can also be used as an aid for SLAM techniques: for example,
it is well adapted to plane extraction [Georgiev et al., 2011, Dube and Zell, 2011], which can
then be used in SLAM algorithms [Taguchi et al., 2012]. An interesting approach using RGBD
images and presented in [Steinbrucker et al., 2011] is the minimization of optical flow constraint
where 6-DOF motion and depth are made explicit. It does require RGB images and is highly
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Number of domains considered Processing time (ms)

40 6.5
100 8.8
200 15.3
500 38.0
1000 76.6

Table 6.1: Comparison of different processing times depending on the number of domains
considered for the geometrical flow velocity estimation.

sensitive to noise due to the explicit use of image gradients. It is used conjointly with ICP in
[Whelan et al., 2013a].
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Chapter 7

Estimation of biases on angular velocity

and acceleration

Estimation de biais pour le filtrage de la vitesse linéaire

Etant données des mesures de vitesses linéaire et angulaire par la méthode du flot géométrique
telle que décrite en Chapitre 6, l’estimation de biais sur des données issues de gyromètres
et d’accéléromètres est possible : on utilise pour cela des gyromètres et des accéléromètres
biaisés et des magnétomètres. L’observabilité est garantie pour des mouvements non-planaires, et
l’observateur est associé à une fonction de Lyapunov. On en déduit un système d’équations diffé-
rentielles non-linéaires, dont la convergence asymptotique est étudiée dans le cadre d’hypothèses
de bornitude sur les vitesses et de périodicité sur la vitesse angulaire. En outre, la périodicité
des trajectoires garantit une convergence exponentielle locale, qui rend l’observateur robuste au
bruit ou aux perturbations. L’implémentation sur des données réelles montre une estimation
correcte des biais angulaires ; quant aux biais sur les accéléromètres, il n’est pas possible de
conclure à la précision des résultats faute de référence, mais l’estimation réalisée permet une
amélioration notable de la reconstruction de trajectoire. Ces résultats ont été présentés dans
[Zarrouati-Vissière et al., 2013a].

Given the linear and angular velocity measurements provided by the geometrical flow
method described in Chapter 6, estimation of biases on accelerometers and gyrometers is made
possible, relying on biased accelerometers and gyrometers, and magnetometers measurements.
Observability is guaranteed for non planar motion, and the observer design is based on a
Lyapunov functional. It yields a system of non linear differential equations, whose asymptotic
convergence towards equilibrium is studied in the framework of bounded velocities and periodic
angular velocity. In addition, the periodicity of the trajectory guarantees local exponential
convergence, which makes this observer robust to noise or perturbations. Implementation on
real data shows that biases on angular velocity are correctly estimated; as for accelerometers
biases, no reference enables to conclude on the accuracy of our results, but it is possible
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to infer that trajectory estimation is indeed improved. These results were presented in
[Zarrouati-Vissière et al., 2013a].

7.1 Problem formulation

The equations of motion of a 3D rigid body described in Appendix C, and more specifically
equation C.5, can be rearranged in the following way:

∂tv = v ×ω + g + a
∂tg = g ×ω

where v and ω are the linear and angular velocity, g is the gravitational acceleration and a is
the specific acceleration of the body, all of them expressed in the body frame. Embedded sensors
make some measurements available: as real equipment, data contain errors and in particular
constant errors, called biases. These biases should be estimated on line: this is the goal of this
study, as well as trajectory reconstruction. To be specific, the measures are:

am = a + ab, ωm = ω +ωb

where ab and ωb are constant biases. Thus, the state equations of the system are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tv = v × (ωm −ωb) + g + am − ab,

∂tg = g × (ωm −ωb),
∂tωb = 0,
∂tab = 0.

(7.1)

In addition, measures of the linear and angular velocities are extracted from depth images
processing (see Chapter 6): vm and ωm

′. Comparison of ωm
′ and ωm gives a so-called measure

of the angular bias: ωbm.
Finally, g, as the measure in a moving frame of the constant vector A, has a constant norm.

A last class of embedded sensors, the magnetometers, gives a measure b in the body frame of
the magnetic field B. A and B are known vectors. This yields the output equation

b ⋅ g =A ⋅B.
The inputs of this system are ωm and am, the outputs are vm, ωbm and b.

7.2 Observability

To study the observability of the system, one looks for the assumptions on the trajectory
under which two states (vi,gi,ωb

i,ab
i) (i = 1,2),verifying the same state equations with same

inputs and outputs are necessarily equal. Since vm is measured, v1 = v2. Similarly, ωb
1 = ωb

2.
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Defining δg = g1 − g2 and δab = ab
1 −ab

2, the subtraction of the two systems of state equations
yields ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 = δg − δab,

∂tδg = δg ×ω,
0 = 0,
∂tδab = 0,

and the output equation becomes
δg ⋅ b = 0.

This is equivalent to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δab = δg,
∂tδab = 0,
δab ×ω = 0,
δab ⋅ b = 0.

(7.2)

which has to be verified for any time t. Thus, a necessary condition on the trajectory for this
system to have a non trivial solution δab is that ω(t) remains collinear to a fixed direction (δab).
In addition, this direction has to be orthogonal to b.

Proposition 7. The system is observable if and only if the angular velocity does not remain
collinear to a fixed direction orthogonal to the magnetic field expressed in the body frame.

Remark 3. The following condition is sufficient for observability: ∃t1 such that at least one of
the following conditions is true

{ ω(t1) × ω̇(t1) ≠ 0,
b(t1) ⋅ω(t1) ≠ 0. (7.3)

7.3 Observer design

The observer is designed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tv̂ = v̂ × (ωm − ω̂b) + ĝ + am − âb − kv(v̂ − vm),
∂tĝ = ĝ × (ωm −ωbm) − kg1(v̂ − vm) − kg2(ĝ ⋅ b −A ⋅B)b,
∂tω̂b = −kw1(ω̂b −ωbm) + kw2(v̂ − vm) × v̂,
∂tâb = ka(v̂ − vm).

(7.4)

From systems (7.1) and (7.4), and assuming that the measures vm and ωbm are close enough to
the real states v and ωb so that in particular, their dynamics are the same as the real dynamics,
the error dynamics is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tṽ = ṽ × (ωm −ωb) − v̂ × ω̃b + g̃ − ãb − kvṽ,
∂tg̃ = g̃ × (ωm −ωb) − kg1ṽ − kg2(g̃ ⋅ b)b,
∂tω̃b = −kw1ω̃b + kw2ṽ × v̂,
∂tãb = kaṽ.

(7.5)
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where ṽ = v̂−vm, g̃ = ĝ−g, ω̃b = ω̂b−ωbm and ãb = âb−ab. Linear velocity measurements (vm)
are taken into account to correct the estimation of all states: although it seems quite natural
for the linear velocity and the bias on acceleration estimates, that might be surprising for the
specific acceleration and especially for the rotational bias estimates. Indeed, measurements of
this bias being available, its estimation is straightforward. Actually, the correction terms are
chosen so that the following Lyapunov functional is positive and decreases along the trajectories:

V = λv ∣∣ṽ∣∣2 + λg ∣∣g̃∣∣2 + λw∣∣ω̃b∣∣2 + λa∣∣ãb∣∣2.
Indeed,

V̇ = − λvkv ∣∣ṽ∣∣2 − λwkw1∣∣ω̃b∣∣2 − λgkg2(g̃ ⋅ b)2
+ (λv − λgkg1)ṽ ⋅ g̃ + (λaka − λv)ṽ ⋅ ãb + (λwkw2 − λv)ṽ ⋅ ω̃b

Coupled terms are brought into play, that are canceled by the choice of specific correction gains.
Choosing kv, kw1, kg2 > 0, kg1 ∶= λv

λg
, ka ∶= λv

λa
and kw2 ∶= λv

λw
yields

V̇ = −λvkv ∣∣ṽ∣∣2 − λwkw1∣∣ω̃b∣∣2 − λgkg2(g̃ ⋅ b)2 ≤ 0.
7.4 Asymptotic convergence

Proposition 8. Assuming that linear and angular velocities are bounded and angular velocity is
T -periodic, the error dynamics of the observer (defined in (7.5)) converge towards zero for any
initial condition.

Proof. Step 1: Let us prove that ṽ, ω̃b and g̃ ⋅ b tend to 0 as t tends to ∞.
The Lyapunov functional V decreases along the trajectories of the system and is positive,

thus it tends to a limit V∞ ≥ 0. Using the previous expression of the time derivative of V ,

V (t) = V (0) − ∫ t

0

λvkv ∣∣ṽ(s)∣∣2 + λwkw1∣∣ω̃b(s)∣∣2 + λgkg2(g̃(s) ⋅ b(s))2ds
and we deduce that t↦ ṽ(t), t↦ ω̃b(t) and t↦ g̃(t) ⋅ b(t) ∈ L2(0,∞).

Then, V (t) ∈ L∞(0,∞) implies that ṽ(t), ω̃b(t), g̃(t) and ãb(t) ∈ L∞(0,∞) themselves.
Assuming that t ↦ v(t) and t ↦ ω(t) ∈ L∞(0,∞), the time derivatives of ṽ, ω̃b and g̃ ⋅ b are
bounded. Thus ṽ, ω̃b and g̃ ⋅ b are uniformly continuous. Using Barbalat’s lemma, we conclude
that (ṽ, ω̃b, g̃ ⋅ b)(t) Ð→

t→+∞ (0,0,0).
Step 2: The periodic system Since the angular velocity is T -periodic, let us define(tn)n∈N an increasing sequence such that tn Ð→

n→+∞∞: up to an extraction, the bounded sequence

(tn[T ])n∈N has an adherence value, called α. Since the Lyapunov function V is bounded, the
sequences (b, ṽ, g̃, ω̃b, ãb)(tn) are bounded, thus up to an extraction, ∃(b0∞, ṽ0∞, g̃0∞, ω̃b

0∞, ãb
0∞) ∈(R3)5 such that (b, ṽ, g̃, ω̃b, ãb)(tn) Ð→

n→+∞ (b0∞, ṽ0∞, g̃0∞, ω̃b
0∞, ãb

0∞).
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Let us define the maps (α,+∞) ∋ t ↦ (b∞, ṽ∞, g̃∞, ω̃b∞, ãb∞)(t) ∈ (R3)5 solutions of the
following Cauchy problem:

Σ∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tb∞ = b∞ ×ω,
∂tṽ∞ = ṽ∞ ×ω + g̃∞ − ãb∞ − kvṽ∞,
∂tg̃∞ = g̃∞ ×ω − kg1ṽ∞,
∂tω̃b∞ = −kw1ω̃b∞,
∂tãb∞ = kaṽ∞,

(7.6)

with initial conditions ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b∞(α) = b0∞,
ṽ∞(α) = ṽ0∞,
g̃∞(α) = g̃0∞,
ω̃b∞(α) = ω̃b

0∞,
ãb∞(α) = ãb

0∞.

(7.7)

Thanks to Step 1, we know that

ṽ0∞ = 0, ω̃b
0∞ = 0, g̃0∞ ⋅ b0∞ = 0.

Let us define X ∶= (b, ṽ, g̃, ω̃b, ãb) and X∞ = (b∞, ṽ∞, g̃∞, ω̃b∞, ãb∞).
Step 3: Let us prove that ∀τ > 0,X(tn + τ) Ð→

n→+∞ X∞(α + τ). Let τ > 0. On one

hand, X∞ is the solution of the periodic linear system of dynamical equations Σ∞: it writes
∂tX∞ = A∞(t)X∞. On the other hand, X is the solution of almost the same system, differing
by an additive term that is proven to tend to 0 as t tends to ∞: ∂tX = A∞(t)X + c(t) with

c(t) =
⎛⎜⎜⎜⎜⎜⎜⎝

0

−v̂ × ω̃b

−kg2b(g̃ ⋅ b)
kw2ṽ × v̂

0

⎞⎟⎟⎟⎟⎟⎟⎠
(7.8)

Let us introduce R∞(t, s) the resolvant asssociated to A∞(t):
X∞(t) = R∞(t, s) ⋅X∞(s) ∀s, t > 0.

In particular,
X∞(α + τ) = R∞(α + τ,α) ⋅X0∞ ∀τ > 0. (7.9)

Since the system Σ∞ is T-periodic, R∞(t+T, s+T ) = R∞(t, s). Let us define (kn)n∈N such that
tn = knT + αn. From Step 2, αn Ð→

n→+∞ α. Then,

∀n ∈ N,R∞(tn + τ, tn) = R∞(αn + τ,αn)
and R∞(αn + τ,αn) Ð→

n→+∞R∞(α + τ,α) (7.10)
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by continuity of the resolvant. Now, from the variation of constants method,

X(tn + τ) = R∞(tn + τ, tn) ⋅X(tn) + ∫ tn+τ
tn

R∞(tn + τ, s) ⋅ c(s)ds. (7.11)

Substracting (7.9) and(7.11) yields

X(tn+τ)−X∞(α+τ) = R∞(tn+τ, tn) ⋅X(tn)−R∞(α+τ,α) ⋅X0∞+∫
tn+τ

tn
R∞(tn+τ, s) ⋅c(s)ds.

Thus, ∣∣X(tn + τ) −X∞(α + τ)∣∣ ≤ An(τ) +Bn(τ)
with

An(τ) = ∣∣R∞(tn + τ, tn) ⋅X(tn) −R∞(α + τ,α) ⋅X0∞∣∣
and

Bn(τ) = ∣∣∫ tn+τ
tn

R∞(tn + τ, s) ⋅ c(s)ds.∣∣
First, let us prove that An(τ) Ð→

n→+∞ 0 ∀τ > 0:
An = ∣∣(R∞(tn + τ, tn) −R∞(α + τ,α)) ⋅X(tn) +R∞(α + τ,α) ⋅ (X(tn) −X0∞)∣∣= ∣∣(R∞(αn + τ,αn) −R∞(α + τ,α)) ⋅X(tn) +R∞(α + τ,α) ⋅ (X(tn) −X0∞)∣∣≤ ∣∣(R∞(αn + τ,αn) −R∞(α + τ,α))∣∣ sup

n∈N
∣∣X(tn)∣∣ + ∣∣R∞(α + τ,α)∣∣ sup

n∈N
∣∣X(tn) −X0∞∣∣

From (7.10), ∣∣(R∞(αn + τ,α) −R∞(α + τ,α))∣∣ Ð→
n→+∞ 0.

From Step 1, supn∈N ∣∣X(tn)∣∣ < +∞ By definition of X0∞, ∣∣X(tn) −X0∞∣∣ Ð→
n→+∞ 0. This proves

that An Ð→
n→+∞ 0.

Let us prove that Bn Ð→
n→+∞ 0. Let us define the maps fn ∶ s ∈ (0, τ) ↦ c(tn + s). By

definition of c(t), ∀s ∈ (0, τ), fn(s) Ð→
n→+∞ 0. As fn(s) is bounded on (0, τ), according to the

dominated convergence theorem, ∣∣fn∣∣L1(0,τ) Ð→n→+∞ 0. Thus ∣∣c∣∣L1(tn,tn+τ) Ð→n→+∞ 0. Since Bn ≤
τ ∣∣R∞∣∣∣∣c∣∣L1(tn,tn+τ), we proved that Bn Ð→

n→+∞ 0. Thus, X(tn + τ) Ð→
n→+∞X∞(α + τ).

Step 4: Let us prove that ∀τ > 0,X∞(α + τ) = 0 From Step 1 and Step 3, we know that

∀τ > 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṽ∞(α + τ) = 0
ω̃b∞(α + τ) = 0
g̃∞(α + τ) ⋅ b∞(α + τ) = 0 (7.12)

Since X∞ is the solution of Σ∞ and ω ∈ C1(α,+∞), we deduce that X∞ ∈ C1(α,+∞) and thus,
from the two first equalities of (7.12) that

∂tṽ∞(α + τ) = 0, ∂tω̃b∞(α + τ) = 0 ∀τ > 0.
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Injecting all of this in Σ∞ yields

∀τ > 0,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tb∞(α + τ) = b∞(α + τ) ×ω(α + τ),
0 = g̃∞(α + τ) − ãb∞(α + τ),
∂tg̃∞(α + τ) = g̃∞(α + τ) ×ω(α + τ),
∂tãb∞(α + τ) = 0,

(7.13)

which, in addition to the third equality of (7.12), is equivalent to

∀τ > 0,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ãb∞(α + τ) = g̃∞(α + τ),
∂tãb∞(α + τ) = 0,
ãb∞(α + τ) ×ω(α + τ) = 0,
ãb∞(α + τ) ⋅ b∞(α + τ) = 0.

Finally, using the Proposition 7 and the following Remark, we deduce that if ∃t1 such that
ω(t1) × ω̇(t1) ≠ 0 or b(t1) ⋅ω(t1) ≠ 0, then ãb∞(α + τ) = ãb∞(α + τ) = 0∀τ > 0, which concludes
the proof of Step 4.

7.5 Exponential convergence

Proposition 9. If in addition to the previous assumptions, we assume that the trajectory is
T -periodic, the observer exponentially locally converges towards the real trajectory.

Proof. Since the trajectory is T-periodic, the time functions b(t), v(t) and ω(t) are T-periodic.
To prove the exponential convergence, let us underline how the steps of the proof of asymptotic
convergence are modified. The step 1 remains unchanged. In step 2, the Σ∞ system is defined
as in the following:

Σ∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tb∞ = b∞ ×ω,
∂tṽ∞ = ṽ∞ ×ω − v × ω̃b∞ + g̃∞ − ãb∞ − kvṽ∞,
∂tg̃∞ = g̃∞ ×ω − kg1ṽ∞ − kg2(g̃∞ ⋅ b∞)b∞,
∂tω̃b∞ = −kw1ω̃b∞ + kw2ṽ∞ × v,
∂tãb∞ = kaṽ∞,

(7.14)

with same initial conditions. In the step 3, the term c(t) is now defined as

c(t) =
⎛⎜⎜⎜⎜⎜⎜⎝

0

−ṽ × ω̃b

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠
. (7.15)

Same conditions remain true on the time function c and on the resolvant of Σ∞, thus the
conclusion holds:

∀τ > 0,X(tn + τ) Ð→
n→+∞X∞(α + τ).
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In the Step 4, we deduce as previously from the observability assumption on the system that
∀τ > 0,X∞(α+τ) = 0. Then, since Σ∞ is periodic, a usual result on periodic systems states that
∃Ū , λ > 0 such that ∣∣R∞(t, s)∣∣ ≤ Ū exp−λ(t−s). Then

X(t) = R∞(t) ⋅X(0) + ∫ t

0

R∞(t, s) ⋅ c(s)ds
where c is quadratic in X: ∃µ > 0 such that ∣∣c(s)∣∣ ≤ µ∣∣X(s)∣∣2. Thus

∣∣X(t)∣∣ ≤ Ū exp−λt ∣∣X(0)∣∣ + ∫ t

0

Ū exp−λ(t−s) µ∣∣X(s)∣∣2ds
or ∣∣X(t)∣∣ expλt ≤ Ū ∣∣X(0)∣∣ + ∫ t

0

Ū expλs µ∣∣X(s)∣∣2ds
Let us define δ0 ∶= ∣∣X(0)∣∣, δ1 > max(δ0, Ūδ0), t1 ∶= sup{t > 0; ∣∣X(s)∣∣ ≤ δ1,∀s ∈ (0, t)}.

Working by contradiction, we assume that t1 < +∞. We apply Gronwall’s lemma to the inequality

∣∣X(t)∣∣ expλt ≤ Ūδ0 + ∫ t

0

Ūµδ1 exp
λs ∣∣X(s)∣∣ds, t ≤ t1.

It yields ∣∣X(t)∣∣ expλt ≤ Ūδ0 expŪµδ1t
∣∣X(t)∣∣ ≤ δ1 exp(Ūµδ1−λ)t

Assuming δ1 ≤ λ/(2µŪ) yields ∣∣X(t)∣∣ ≤ δ1 exp−λ/2t: in particular, this implies that ∣∣X(t1)∣∣ <
δ1, which contradicts the definition of t1. To conclude, under the assumption that ∣∣X(0)∣∣ ≤
min(λ/(2µŪ), λ/(2µŪ2)), ∣∣X(t)∣∣ has an exponential decay:

∣∣X(t)∣∣ ≤ λ/(2µŪ) exp−λ/2t .
The asymptotic convergence of the periodic system yields the exponential convergence of the

complete system for initial conditions close enough to the real trajectory.

7.6 Robustness to noise

As for any real system equipped with sensors, measurements are not ideal: the inputs and
outputs of the system are noisy representations of the real variables that they represent. Let us
define (ξa,ξw,ξwb,ξv,ξb) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

am = a + ab + ξa,
ωm = ω +ωb + ξw,
ωbm = ωb + ξwb,
vm = v + ξv,
bm = b + ξb.

(7.16)
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Using the observer defined by (7.4), the error dynamics is now given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tṽ = ṽ ×ω − v̂ × ω̃b + g̃ − ãb − kvṽ + v × ξw + ξa + kvξv + ṽ × ξw,
∂tg̃ = g̃ ×ω − kg1ṽ − kg2(g̃ ⋅ b)b + g × (ξw − ξwb) + kg1ξv − kg2(g̃ ⋅ b)ξb − kg2(ĝ ⋅ ξb)(b + ξb)

+g̃ × (ξw − ξwb),
∂tω̃b = −kw1ω̃b + kw2ṽ × v + kw1ξwb − kw2ξv × v − kw2ξv × ṽ,
∂tãb = kaṽ − kaξv.

(7.17)
In compact form, and using the notations of Section 7.5 studying exponential convergence,

this writes:
∂tY = A∞(t)Y + c(t) + f1(t) + f2(t)Y

where

f1(t) ∶=
⎛⎜⎜⎜⎝

v × ξw + ξa + kvξv
g × (ξw − ξwb) + kg1ξv − kg2(g̃ ⋅ b)ξb − kg2(ĝ ⋅ ξb)(b + ξb)

kw1ξwb − kw2ξv × v
−kaξv

⎞⎟⎟⎟⎠
, (7.18)

and

f2(t)Y ∶=
⎛⎜⎜⎜⎝

ṽ × ξw
g̃ × (ξw − ξwb)
−kw2ξv × ṽ

0

⎞⎟⎟⎟⎠
. (7.19)

Recall also that
– the resolvent R∞ associated to the linear T-periodic matrix A∞ satisfies ∣∣R∞(t, s)∣∣ ≤
Ū exp−λ(t−s);

– c(t) is actually quadratic in Y (t): c(t) = Q(Y (t)).
Let us recall the result of Section 7.5 on the following Cauchy problem:

{ ∂tX = A∞(t)X + c(t)
X(0) =X0.

(7.20)

∃δ,K,λ > 0 such that ∣∣X0∣∣ < δ implies ∣∣X(t)∣∣ ≤K ∣∣X0∣∣ exp−λt∀t > 0. (7.21)

The following proposition states that our observer is locally robust to deterministic noise on
measurements:

Proposition 10. In addition to the previous assumptions, let us assume that the perturbations
are characterized by some constants F1 and F2 such that ∣f1(t)∣ ≤ F1 and ∣∣f2(t)Y ∣∣ ≤ F2∣∣Y ∣∣.
X(t) is the solution of (7.20) with ∣∣X0∣∣ < δ so that (7.21) is satisfied. Then the solution Y to
the Cauchy problem

{ ∂tY = A∞(t)Y +Q(Y (t)) + f1(t) + f2(t)Y
Y (0) =X0

(7.22)
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satisfies

∣∣Y (t) −X(t)∣∣ ≤ KL(F1 + F2∣∣X0∣∣)
cL

+ o(F1 + F2)
for some positive constants KL and cL depending on the initial condition ∣∣X0∣∣ and the level of
perturbation F2.

Proof. Step 1: Linearization of the perturbed system Let us define Y 1 the solution of the
following Cauchy problem:

{ ∂tY 1 = (A∞(t) + ∂XQ(X(t)) + f2(t))Y 1 + f1(t) + f2(t)X(t)
Y 1(0) = 0 (7.23)

Since Q is quadratic in X, ∂XQ(X(t)) is linear in X: in particular, (7.21) implies that∣∣∂XQ(X(t))∣∣ ≤ Q1 for some positive constant Q1(∣∣X0∣∣). Similarly, (7.21) implies that∣∣f2(t)X(t)∣∣ ≤ F2∣∣X0∣∣.
Step 2: Let us prove that the resolvent associated to the linearized system has

an exponential decay. Let us consider the following Cauchy problem

{ ∂tY 2 = (A∞(t) + ∂XQ(X(t)) + f2(t))Y 2

Y 2(0) = Y 0

(7.24)

The explicit solution of this problem is given by the method of variation of constants, where R∞
is the resolvent associated to A∞:

Y 2(t) = R∞(t,0)Y 0 +∫ t

0

R∞(t, s)(∂XQ(X(s)) + f2(s))Y 2(s)ds.
This yields

∣∣Y 2(t)∣∣ ≤ ∣∣R∞(t,0)∣∣∣∣Y 0∣∣ +∫ t

0

∣∣R∞(t, s)∣∣(Q1(∣∣X0∣∣ + F2)∣∣Y 2(s)∣∣ds,
∣∣Y 2(t)∣∣ ≤ Ū ∣∣Y 0∣∣ exp−λt +∫ t

0

Ū exp−λ(t−s) (Q1(∣∣X0∣∣) + F2)∣∣Y 2(s)∣∣ds.
Then, by a similar reasoning than used in Section 7.5, ∃δy,KL(∣∣X0∣∣, σ2) and cL(∣∣X0∣∣, F2) such
that ∣∣Y 0∣∣ < δy implies ∣∣Y 2(t)∣∣ ≤KL∣∣Y 0∣∣ exp−cLt∀t > 0. (7.25)

On the other hand, the solution of the Cauchy problem Y 2 writes Y 2(t) = RL(t,0)Y 0, whereRL is the resolvent associated to A∞(t) + ∂XQ(X(t)) + f2(t). This proves that ∣∣RL(t, s)∣∣ ≤
KL exp

−cL(t−s).
Step 3: Let us prove that ∣∣Y 1(t)∣∣ ≤ KL(F1+F2∣∣X0∣∣)

cL
. Using the definition of RL and the

variation of constants to the linearized Cauchy problem (7.23) yields

Y 1(t) = ∫ t

0

RL(t, s)(f1(s) + f2(s)X(s))ds,
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thus ∣∣Y 1(t)∣∣ ≤ ∫ t

0

KL exp
−cL(t−s)(F1 + F2∣∣X0∣∣)ds,

and finally

∣∣Y 1(t)∣∣ ≤ KL(F1 + F2∣∣X0∣∣)
cL

.

Step 4: Conclusion We proved that ∣∣Y 1(t)∣∣ = O(F1 + F2). Let us introduce the function
Y 3 = Y −X − Y 1. We write Y 3 = (F1 + F2)y. We will prove that y = O(F1 + F2). Y 3 is the
solution of the following Cauchy problem:

{ ∂tY 3 = (A∞(t))Y 3 +Q(Y 3 +X +Y 1) −Q(X) − ∂XQ(X(t)) ⋅Y 1 + f2(t)(X(t) +Y 3(t))
Y 3(0) = 0

(7.26)
Since Q is quadratic, Q(Y 3 +X +Y 1) can be written in the form

Q(Y 3) +Q(X +Y 1) +LY 3 ⋅ (X +Y 1)
where L is a constant. Since Y 1 = O(F1 + F2), Q(X +Y 1) can be written in the form

Q(X) + ∂XQ(X(t)) ⋅Y 1 + (F1 + F2)o(1).
Thus, (7.26) writes

{ ∂tY 3 = (A∞(t) +L(X +Y 1) + f2(t))Y 3 +Q(Y 3) + (F1 + F2)o(1) + f2(t)X(t)
Y 3(0) = 0 (7.27)

From the linear part of this system, we conclude as in Step 2 that the resolvent has an
exponential decay since the terms L(X + Y 1) and f2 are bounded and small. We write this
resolvent R3: ∣∣R3(t, s)∣∣ ≤K3 exp

−c3(t−s) .
Then, by variation of constants,

Y 3(t) = ∫ t

0

R3(t, s)(Q(Y 3)(s) + (F1 + F2)o(1) + f2(s)X(s))ds,
thus

(F1 + F2)∣∣y(t)∣∣ ≤ ∫ t

0

K3 exp
−c3(t−s)((F1 + F2)2Q(y)(s) + (F1 + F2)o(1) + F2K ∣∣X0∣∣ exp−λs)ds.

Finally,

∣∣y(t)∣∣ ≤ K ∣∣X0∣∣
c3

exp−λt +K3

c3
o(1) + (F1 + F2)∫ t

0

K3 exp
−c3(t−s)(Q(y)(s))ds.

This proves that ∣∣y(t)∣∣ = O(F1 +F2) and then, ∣∣Y 3∣∣ = o(F1 +F2), which concludes the proof of
Proposition 10.
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7.7 Implementation on real data

To test this method on real data, the same sequence of depth images that what used to
illustrate the geometrical flow velocity estimation method in Section 6.4 is processed. Embedded
gyrometers , accelerometers and magnetometers provide angular velocity, specific acceleration
and magnetic field expressed in the rigid-body reference frame Rcam. The asymptotic observer
(7.4) is implemented on this data, and provides estimates for ωb, ab and v plotted in Figures
7.1, 7.2 and 7.3 respectively. The noisy velocity measurements obtained by the geometrical flow
estimation method are clearly filtered by this observer. As for the biases, it seems that the
sequence is not long enough to enable asymptotic convergence towards constant values.

Loop processing of the sequence is thus performed as in Subsection 5.4.4: the results of the
estimated biases values are plotted in Figures 7.4 and 7.5. The estimated biases on angular
velocity are submitted to perturbations (the magnitude of these perturbations does not exceed
5.10−5rad.s−1) but converge towards a mean value:

ω̂bmean = ⎛⎜⎝
1.025

0.075−0.50
⎞⎟⎠10−3rad.s−1.

This value is compared with a rough mean computation of the angular velocity measured by the
gyrometers during the 40 first seconds, when the system is known to stand still. This value is

ωb = ⎛⎜⎝
1.04−0.21−0.43

⎞⎟⎠10−3rad.s−1.

We conclude that the proposed observer can estimate biases up to a precision of about
3.10−4rad.s−1 (about 60deg.h−1). The estimated biases on acceleration converge slowly towards
a constant value (the magnitude of the perturbations does not exceed 5.10−4m.s−2)

ab = ⎛⎜⎝
0.072−0.023−0.12

⎞⎟⎠m.s−2

which is consistent with the usual bias values observed on sensors. The only possibility to
validate the accuracy of this result consists of showing that it actually improves the linear
velocity estimation: Figure 7.6 is a comparison of the initial filtered velocity (obtained by the
regular processing of the sequence of data),and the filtered velocity obtained after a complete bias
estimation(obtained by multiple loop processing of the same sequence). This figure shows that
the velocity estimation is clearly improved, especially for the component along the y-direction.
This is explained by the fact that velocity measurements along this direction are particularly
noisy: the observer relies mostly on the accelerometers to predict the state, which is rarely
updated by valid velocity measurements. Thus, a bias on the specific acceleration is more visible
than for the components where valid velocity fixes are available.
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Figure 7.1: Bias estimation on angular velocity by the observer 7.4 processing RGBD data along
with accelerometers, magnetometers, gyrometers and velocity measurements.
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Figure 7.2: Bias estimation on acceleration by the observer 7.4 processing RGBD data along
with accelerometers, magnetometers, gyrometers and velocity measurements.
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Figure 7.3: Filtering of the linear velocity measurements by the observer 7.4 processing RGBD
data along with accelerometers, magnetometers, gyrometers and velocity measurements.
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Figure 7.4: Bias estimation on angular velocity by the observer 7.4 applied to loop-processing of
RGBD data along with accelerometers, magnetometers, gyrometers and velocity measurements.
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Figure 7.5: Bias estimation on acceleration by the observer (7.4) applied to loop-processing of
RGBD data along with accelerometers, magnetometers, gyrometers and velocity measurements.
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Figure 7.6: Comparison of the filtering of the linear velocity measurements by the observer 7.4
processing of RGBD data along with accelerometers, magnetometers, gyrometers and velocity
measurements, using for the initial values of biases: zero (red); the values obtained by loop-
processing (blue).

114



Part III

Simultaneous tracking and mapping for

augmented reality

Localisation et cartographie simultanés pour la réalité

augmentée
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Chapter 8

Architecture of the original algorithm

PTAM

L’algorithme présenté dans cette dissertation est une modification de l’algorithme PTAM
[Klein and Murray, 2007] décrit dans ce chapitre. La plupart des algorithmes de SLAM réalisent
le suivi de trajectoire et la cartographie de l’environnement à chaque image [Davison et al., 2007,
Eade and Drummond, 2006], ce qui implique qu’un suivi et une cartographie de mauvaise qualité
vont se produire au même moment, et donc se dégrader mutuellement en un cercle vicieux. Au
contraire, PTAM réalise un suivi et une cartographie parallèles : la carte est optimisée dans
un processus séparé, et seuls les bons points d’intérêt associés à un suivi de bonne qualité
sont ajoutés à la carte. Une autre spécificité de cet algorithme est la méthode d’optimisation
de la cartographie : tandis que la plupart des algorithmes de SLAM utilisent des méthodes de
filtrage telles que Extended Kalman Filter (EKF) [Civera et al., 2008] ou filtrage particulaire
[Montemerlo et al., 2003], qui sont toutes deux connues pour leur lourdeur en terme de temps
de calcul, PTAM utilise l’ajustement de faisceaux, dont la complexité est en O(m3 +mn) où m

est le nombre de poses de caméra et n est le nombre de points de la carte [Engels et al., 2006].
Cela permet de traiter en temps réel une très grande quantité de points d’intérêt visuels de basse
qualité et faciles à détecter (plus précisément des coins Features from Accelerated Segment Test
(FAST)), sans recourir à des descripteurs de points complexes. Cependant, la carte produite
par cet algorithme n’est connue qu’à un facteur d’échelle près, ce qui est inévitable lorsque l’on
traite des images produites par un système monoculaire. En outre, elle est uniquement composée
de points d’intérêt discrets, ce qui ne permet pas de gérer en réalité augmentée les occultations
qui peuvent avoir lieu entre un objet virtuel et l’environnement réel. Pour finir, cet algorithme
a été conçu pour fonctionner sur de petits espaces de travail, alors qu’il serait nécessaire de
cartographier une pièce entière.

The algorithm presented in this dissertation is based on the original PTAM
[Klein and Murray, 2007] described in this chapter. Most of the SLAM algorithms perform
tracking and mapping refining at each frame[Davison et al., 2007, Eade and Drummond, 2006]
which implies that low-quality tracking and mapping would occur at the same time and will
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consequently degrade each other in a vicious circle. On the contrary, PTAM performs parallel
tracking and mapping: the map is refined in a separate thread, and only good features associated
to good tracking quality are added. Another specificity of this algorithm is the refinement method
of the cartography: while most SLAM algorithms are based on EKF [Civera et al., 2008] or
particle filtering [Montemerlo et al., 2003], which are both known to be a great computational
burden, PTAM is based on bundle adjustment, whose complexity is O(m3 +mn) where m is
the number of camera poses and n is the number of map points [Engels et al., 2006]. This
enables to deal in real-time with a large amount of low-quality and easy-to-detect visual features
(namely FAST corners), without the requirement of complex point descriptors. However, the
map produced by this original algorithm intrinsically lacks a scale factor, which is unavoidable
with monocular image processing. In addition, it is only composed of sparse features, which
prevents the handling of occlusion of virtual objects in real images as required by augmented
reality. Finally, it was first designed to map small workspaces, while we would like to be able to
map at least a whole room.

8.1 Overview of the algorithm

PTAM is the acronym for Parallel Tracking and Mapping, an application initially proposed in
[Klein and Murray, 2007] and later improved in [Klein and Murray, 2009], created by a research
group of Oxford University. This open source system is one of the first to enable real-
time processing: every step of tracking and mapping algorithms has been carefully chosen
and optimized to ensure real-time capabilities of the system. In addition, trade off between
performance and quality is adjustable, depending on the available resources. Only one camera
is necessary (monocular system). As highlighted in Chapter 1, this yields an overall unknown
scale factor on the produced map and in the localization within that map. Three distinct stages
may exist:

– Map initialization: at the very beginning of the algorithm, this phase consists of the
creation of a map. This phase is necessary since monocular system can not strictly speaking
simultaneously estimate pose and structure without any external a priori. The map will
be augmented all along the motion of the camera.

– Tracking and Mapping generic algorithm: once the map has been created, two
threads run in parallel. Tracking consists of localizing (estimating the pose of ) the camera
with respect to the map. When new features of the environment appear along the motion of
the camera, the tracking module notifies the mapping module to reinforce the cartography.
If this is not the case, resources are available for the mapping module to optimize the map.

– Relocalization: sometimes, the tracking algorithm may not return a valid camera pose,
generally because of the poor quality of the images (and consequently of the detected
interest points). A specific method is implemented to enable the relocalization of the
camera in the map.

These three stages are more precisely described in the following sections, to better underline the
modifications implemented in the frame of this thesis. But first are introduced some general
considerations.
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The map consists of a set of camera poses and 3D-points, linked by measurements, or in
other words by the position in the RGB images (when existing) of these 3D points at the camera
poses. Feature tracking and SLAM as a general method consists of

1. detection of Two dimensional (2D) point features in the current view;

2. matching of point features with 2D features detected in other views or with 3D features of
a map;

3. depending on the external inputs, estimation of camera pose (pose tracking), of 3D position
of the 2D features (mapping), or of a combination of both (for example, homography or
essential matrix estimation, as for map initialization).

PTAM uses FAST corner detector in the first step ([Rosten and Drummond, 2006]), which
does not require as much processing time as more robust detectors such as Harris detector
([Harris and Stephens, 1988]) or SIFT extractor ([Lowe, 2004]). On the other hand, FAST does
not provide a descriptor that could be used to match two 2D features (second step): matching
is thus performed by patch comparison.

8.2 Map initialization

In order to start the SLAM loop, the algorithm must be initialized with some 3D features
positioned in a fixed reference frame and a camera pose with respect to the same frame. Since
the system is monocular, 3D positioning of features is performed by stereo vision. The procedure
is the following:

– the user selects an initial pose,
– performs a slow motion (preferably a lateral translation) that allows for robust feature

tracking,
– then selects a final pose.

Features are tracked from frame to frame all along the motion, and a relative pose estimation
of the second pose with respect to the first one is computed, up to a scale factor. Two different
methods are possible:

– Essential matrix estimation: if x and x′ are the measurements of the same 3D point
in two different views, their coordinates are related by

x′
T
Ex = 0, with E = R[T ]×

where E is the essential matrix, R and T are the difference of orientation and position
(with the SE(3) notation convention) between the two views, and [T ]× is the matrix
representation of the cross product with T . E, and then R and T (up to a scale factor) can
be estimated by the five-point algorithm ([Nister, 2004],[Stewénius et al., 2006]) combined
with RANdom SAmple Consensus (RANSAC) algorithm [Fischler and Bolles, 1981].

– homography estimation: if xi and x′
i

are the measurements of the same 3D points Xi

in two different views, where the points Xi all belong to the same plane, their coordinates
are related by

x′
i
=Hxi, with H = R + T ⋅n

d
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where R and T have already been defined, and n and d are the normal and the distance
to the plane, respectively. This requires for the user to start map initialization in
front of a plane where features are present. The plane and its normal are estimated
by RANSAC algorithm, then homography and R and T

d
are estimated according to

[Faugeras and Lustman, 1988].
Then, an external (arbitrary) scale factor is provided, and the robustly tracked features are
positioned in the map by triangulation.

8.3 Pose estimation (tracking)

Once a map has been created, current pose estimation with respect to the map is possible,
and is an essential step in the SLAM loop. Pose estimation is not given in a closed-loop form,
but rather as the optimization of an initial pose. This requires

– a pose initialization (or pose prediction),
– a function, or cost, to optimize, (the cost must depend on the pose), and
– an optimization method.

The pose initialization is computed using a motion model. Since the system does not include
velocity sensors or accelerometers, the motion model is arbitrarily chosen under the assumption of
constant velocity with stability constraints (decaying alpha-beta model). This yields an estimate
of linear and angular velocity v and ω, which are applied to the previous camera pose to compute
a current pose prediction:

Kpred = exp∑i αiGidtKprev

where the αi are the components of v and ω and the Gi are the infinitesimal generators of
SE(3) (see Appendices B and C for more details). Kprev and Kpred denote the previous and
the predicted camera poses (using the notations introduced in chapter 1). Finally, dt is the time
interval between previous and current image acquisition.

From this predicted pose and the 3D points of the map, a set of potentially visible points is
computed, and these points are projected on the image plane. In parallel, FAST detector is run
on the current image, then the algorithm searches for matches between the projected points of
the Potentially Visible Set (PVS) and the actual features of the image. The search is limited to
a fixed region around the position of the projected features of the PVS. Figure 8.1 illustrates the
PVS computation and the consequent match search. Details about FAST detector and patch
scoring including warping and pyramidal search won’t be given here, but can be found in the
original publication ([Klein and Murray, 2007]). Once the match has been performed, the cost to
minimize is defined as the projection error between the projected PVS and the detected features.
Considering n pairs of matched features, xj

d
is the vector of coordinates in the image of the

detected features and xjp is the vector of coordinates in the image of the matched projected point
of the map, with j ∈ (1, n). As described in Chapter 1, xjp is given in homogeneous coordinates
by

x̃jp = PKpredX̃
j
W
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Figure 8.1: Projection of the Potentially Visible Set on the image plane and match search with
dectected features.
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where P is the intrinsic calibration matrix (under the assumption of a linear projection model,
which can be adapted to non-linear models including distortions), and X̃j

W is the position of the
corresponding 3D point of the map. The cost to minimize is given by

C(K) =∑
j

Wj ∣∣x̃jp − x̃jd∣∣2
where the Wj are weights iteratively computed to diminish the influence of outliers (defined as
mismatched features) in the pose estimation (more details on these weights below). This method
is known as iteratively re-weighted least squares minimization. Gauss-Newton iterations were
employed for this non linear least-square minimization ([Hartley and Zisserman, 2000]). Only
error, weights and Jacobian are required for this method.

– Error is as previously mentioned the reprojection error x̃jp − x̃jd.
– Weights are computed using any robust M-estimator function: for example, the Tukey’s

biweight function might be used , where the influence function parameters directly depend
on the median of the errors distribution.

– To compute the Jacobian of the error with respect to the camera pose, the problem is
formulated in terms of pose update, expressed as an element of the Lie algebra of SE(3)
and more specifically as the 6 components αi of the pose update expressed with respect to
the 6 infinitesimal generators Gi:

Kcurrent =KupdateKpred, with Kupdate = exp∑i αiGi , and αi = argmin C(αi).
With this formulation, the derivative of the error with respect to the pose update is simply

∑
i

∑
j

∂(x̃jp − x̃jd)
∂αi

=∑
i

∑
j

PGiKpredX̃
j
W . (8.1)

To summarize, the tracking process consists of

1. applying the motion model to the previous camera pose;

2. determining the PVS of map points;

3. finding currently visible matches with the projection of the PVS;

4. updating camera pose to minimize reprojection errors;

5. assessing the quality of the updated camera pose.

The last step of this process is essential for relocalization and mapping purposes. The number of
map points projected and actually matched with FAST corners in the image is compared with
the total number of points of the PVS. The ratio value is a measure of the quality of tracking.
Below a certain threshold, current measurements can not be used to augment the map. Below
an even lower threshold, the tracking is considered to be lost and the relocalization procedure is
initiated.
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8.4 Mapping

After initialization (described in Section 8.2), the map contains two keyframes, defined as
specific and carefully chosen views, which contain the measurements (the 2D detected features)
that link camera poses and 3D map points. Insertion of a new keyframe in the map enables the
addition of new 3D points in the cartography by triangulation (Subsection 8.4.1): the precision
of 3D positioning of these new points directly depend on the quality of pose estimation of the
camera. The position of 3D points can be optimized when features have been detected in multiple
views, along with camera poses associated to these views (Subsection 8.4.2).

8.4.1 Keyframe insertion

As the camera explores new parts of its environment, the map must be augmented to enable
pose estimation: this is performed by keyframe insertion. A keyframe must satisfy the following
criteria:

– the camera pose estimation associated to this view was assessed to be good;
– the time elapsed since previous keyframe insertion exceeds a given threshold;
– the linear distance to the closest keyframe’s camera pose is sufficient to provide a good

stereo baseline for triangulation (this distance depends on the mean depth of detected 3D
map points).

If these conditions are met (verified by the tracking module), the mapping module aborts any
operation other than keyframe insertion or places the keyframe in a waiting queue. Then
keyframe is processed, which consists in thorough features detection (new features are considered
now that real-time tracking constraints do not prevail). Another measurement of these features
is necessary to compute their 3D position: these measurements and correspondences are searched
in the closest keyframe by epipolar search, which consists of comparing the patch of a feature of
the inserted keyframe to patches located along the epipolar line in the target view. Comparison
is achieved through zero-mean sum of squared differences. When match is found, 3D position
is computed by triangulation using the target keyframe camera pose and the inserted keyframe
tracked camera pose.

8.4.2 Bundle adjustment

When no keyframe waits to be inserted in the map, the mapping module can achieve map
optimization, which consists, as in pose update in the tracking module, of minimizing the
difference between the projection of 3D map points in keyframes and their actual measurements.
But, on contrary with pose updates, the minimization is performed by variations of both
camera poses and 3D map points positions: this method, based on Levenberg-Marquadt
algorithm [Marquardt, 1963], is called bundle adjustment and has been extensively studied
(see [Hartley and Zisserman, 2000] for textbook implementation and [Snavely et al., 2008] for
an example of application).

The main steps of bundle adjustment are recalled in the following, but first is summarized
Levenberg-Marquadt iterative parameters estimation method.
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Consider a functional relation that links parameters Π and measurementsX, such that f(Π) =
m. The goal is to give an estimate of Π that best fits the model given the measurements, starting
from a initialization parameter Π0. The residual error is defined as ǫ(Π) = f(Π) −m. The goal
is to minimize the (possibly weighted) squared error ∣∣ǫ(Π)∣∣2. When f is nonlinear, the iterative
method seeks for a small update δΠ of the parameter, so that f(Π + δΠ) can be approximated
by f(Π) + JδΠ where J is the Jacobian of f with respect to Π. The goal is to find the minimal
argument δΠ of ∣∣ǫ(Π + δΠ)∣∣2 = ∣∣ǫ(Π) + JδΠ∣∣2. First-order stationary equation yields the result
as the solution of the following normal equation

JTJδΠ = −JT ǫ(Π) (Gauss-Newton iterative method).

Levenberg-Marquadt’s method augments the normal equation by

(JTJ + λI)δΠ = −JT ǫ(Π)
or even (JTJ)λδΠ ∶= (JTJ + λdiag(JTJ))δΠ = −JT ǫ(Π)
where the parameter λ varies depending on the achieved iteration.

This method is applied to bundle adjustment using the relation

x̃
j
i = PKiX̃

j
W = f2D(Ki, X̃

j
W ). (8.2)

The measurements formally consists of the concatenation of any measurement x̃ji that could exist
in a given set of keyframes. The vector of parameters Π is the concatenation of camera poses Ki

associated to the keyframes (and more specifically poses updates expressed as the components
of the Lie algebra element with respect to infinitesimal generators like in pose estimation 8.3)
and 3D map points positions X̃j

W associated to measurements. Let us define
– JK as the Jacobian of f2D with respect to camera pose (see (8.1)),
– JX as the Jacobian of f2D with respect to 3D points position (computed by chain rule

differentiation, taking into account the pinhole projection first, and then the distortion)
– δK as the update of camera poses,
– δX as the update of 3D points positions,
– ǫ is the reprojection difference, in other words the difference between the 2D position of

the measurement and the 2D position of the projection of the associated 3D point in the
image plane of the associated view.

The usual normal equations are given in the form

( JTKJK JTKJX
JTXJK JTXJX

)( δK
δX
) = ( JTKǫ

JTXǫ
)

and transformed by Levenberg-Marquadt augmentation by

( (JTKJK)λ JTKJX
JTXJK (JTXJX)λ )(

δK
δX
) = ( JTKǫ

JTXǫ
) .
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The solution is given in a triangular form. First, δK is given as the solution of

((JTKJK)λ − JTKJX(JTXJX)−1λ JTXJK)δK = JTKǫ − JTKJX(JTXJX)−1λ JTXǫ
then δX is given as the solution of

(JTXJX)λδX = JTXǫ − JTXJKδK .
The minimization does not equally take into account all the measurements: weights are

iteratively computed using a M-estimator influence function such as the Tukey’s biweight
objective function to reject the outliers influence in the optimization process (as for pose update,
see section 8.3). The error to minimize is ∣∣ǫTWǫ∣∣, where W is a diagonal weighting matrix. The
optimization procedure is modified accordingly.

8.5 Relocalisation

In case where the tracking was considered of poor quality for three successive frames, the
system is declared "lost". A recovery procedure is initiated, described in [Williams et al., 2007].
The goal is to give a pose estimate that can be used as tracking initialization. The fastest solution
is to compare a light version of the current image to similar versions of the views associated to
keyframes of the map. Comparison is achieved through zero mean sum of squared differences.
The "light" version is obtained by down sampling and blurring of the image and are named Small
Blurry Image (SBI).
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Chapter 9

Fusion of magneto-inertial, visual and

depth measurements

Fusion de données RGBD, de mesures magnéto-inertielles et de mesures de

vitesse par la méthode du flot géométrique.

Dans ce chapitre, nous décrivons comment PTAM a été amélioré par l’apport de données
magnéto-inertielles et de profondeur : l’ambiguité du facteur d’échelle devient obsolète, tout
comme le problème de l’occultation. En outre, les mesures de vitesse linéaire apportées par la
méthode du flot géométrique (voir le Chapitre 6) peuvent être utilisées en même temps que les
accéléromètres pour filtrer les mesures de position très bruitées fournies par l’algorithme de vision,
et ainsi fournir une estimation de la position même quand les mesures visuelles ne sont pas
disponibles. Une partie de ces améliorations ont été réalisées directement à Sysnav : toutes ont
été possibles grâce à leur aide. L’algorithme initial PTAM a été implémenté et adapté pour être
complété et rendu plus robuste par des capteurs supplémentaires, qui peuvent être classés en deux
catégories : les capteurs magnéto-inertiels, plus précisément les accéléromètres, les gyromètres et
les magnétomètres ; le capteur de profondeur, qui est une sous-partie du capteur RGBD. Nous
décrivons ici les capteurs et leur synchronisation, puis les améliorations apportées par la fusion
d’un algorithme de vision et de données complémentaires.

In this chapter, we describe how PTAM is improved when aided by magneto-inertial and
depth data: the scale factor ambiguity becomes obsolete, as well as the occlusion issue. In
addition, linear velocity measurements from our geometrical flow method (see Chapter 6) can be
used along with accelerometers to filter the noisy position measurements provided by the vision
algorithm, and to provide a position estimate even when vision measurements are not available.
Part of these improvements were performed by Sysnav company: all of them were made possible
thanks to their help. The original algorithm of PTAM was implemented and adapted to be
completed and made more robust by additional sensors, that can be separated in two classes:
magneto-inertial sensors, namely accelerometers, gyrometers and magnetometers; depth sensor,

127



as part of the RGBD sensor. We describe the sensors and their synchronization, then the
improvements provided by fusion of a vision algorithm with complementary informations.

9.1 Sensors and synchronization

9.1.1 Depth sensor

We make use of the RGBD sensor integrated in the Kinect device developed by Microsoft for
the Xbox 360 video game console and first released in November 2010. Although the technology
on which this sensor is based has been known for years, this device is a technological outbreak
in the way data is provided, and because of its relatively low cost. At 24.8 Hz, two images of
a resolution of 640 by 480 pixels are jointly provided. The first image is a regular RGB image,
but the second image is a dense depth image aligned with the RGB image. This yields that to
any object in the field of view of the camera, a color and a 3D position (with respect to the
camera frame Rcam) is provided: on one hand this is a direct solution to the scale factor issue of
monocular systems and on the other hand this theoretically allows to bypass any triangulation
limitation. The image and depth sensors are actually regular CMOS sensor, the depth sensor
being equipped with an infrared filter. Along with them, an infrared emitter sends a given pattern
of infrared "dots". This pattern is projected onto the environment: depending on the depth of
the objects on which the dots are projected, the pattern is more or less distorted. The distorted
pattern is then acquired by the infrared sensible CMOS sensor, and disparity is computed from
the distortion. Depth is then computed from this disparity, and stereo rectification enables to
align RGB and depth images. Concerning the depth sensor, one can neither decide of the date
of data acquisition, nor precisely know this date : one can only assume that acquisition rate is
constant, that no data is lost during transmission by the USB or even the sensor’s driver, and
that the depth image and the RGB image of a specific frame were acquired at the same time. An
example of RGBD data is given in Figure 9.1, in which areas where depth data is not valid can
be seen (black areas, the depth data associated to these pixels is zero). Depth data is typically
corrupted in presence of sun light or reflective surfaces, and of course if the environment is out
of the range of the sensor (0.5-7 meters).

9.1.2 Magneto-inertial sensors

Over the past decades, MEMS have become more popular and more accurate, because
they are small, they are cheap and they can be sufficient when high precision data is not
required. For example, they are present in any current smartphone. The 3 accelerometers and
3 gyrometers used in our system are MEMS, gathered in a 6-DOF IMU distributed by Epson.
It measures a few millimeters, consumes only 6 mA, and is operated at 125Hz. In addition
to these sensors, magnetometers are Anistropic Magnetoresistances (AMR), and also operate
at 125Hz. Synchronization between accelerometers, gyrometers and magnetometers is achieved
independently of the depth sensor through a global numerical trigger, which ensures that data
was acquired for all magneto-inertial sensors at the same date.
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Figure 9.1: An example of aligned RGB and depth images acquired by the Kinect device

9.1.3 Synchronization

RGBD data and magneto-inertial data can be seen as two separate devices (RGBD sensor and
magneto-inertial sensor) in which various data types are internally synchronized. The magneto-
inertial sensor sends to the RGBD sensor a signal synchronized with magneto-inertial data that
encodes a value varying from one frame to the next. The depth sensor’s hardware has been
modified to acquire this signal and to associate it with the current RGBD frame. When a
RGBD frame sent by the RGBD sensor is received by the master system, synchronization with
a magneto-inertial data frame is achieved by comparison of the signals.

9.2 Map initialization

Map initialization becomes easier when scale factor ambiguity is removed. The first 3D
positions of map points can be computed from one single view: the position of a 2D point in
a view gives the perspective line on which the 3D point is located, and the depth image gives
the position on this line (to be precise, the position along the optical axis). Since accuracy
of localization crucially depends on the quality of the map, only very distinctive map points
are initialized, which is achieved through robust detection and description of features in several
frames, and consistency check between several frames. In addition, map points insertion is
restricted to features for which depth data is valid.

9.3 Mapping

Using data sources other than visual data can be of great profit for the mapping module.
First, insertion of new map points is greatly simplified and made more robust when triangulation
is not necessary (like in map initialization). Secondly, depth measurements can be added in the
overall optimization by bundle adjustment.
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9.3.1 Keyframe insertion

When the user explores large areas and does not want to be restricted to small workspaces
for which the original algorithm was first designed, the principal differences arise in

– the number of keyframes and map points of the cartography;
– the range of camera poses admissible: in particular, orientation is submitted to larger

variations when the user intends to map a whole room or building.

The problem of map size is critical in bundle adjustment, for which processing time evolves
in O(m3 +m2n) where m is the number of keyframes and n the number of map points of the
cartography: it must be addressed as soon as the decision on keyframe insertion is taken. This
would tend to increase the value of the threshold of the linear distance from which a new keyframe
is considered as necessary (see Subsection 8.4.1). In parallel, camera orientation is submitted
to large variations: it is natural when exploring a large environment to turn the head to see as
most new areas as possible. But precisely, orientation variation induces large view variations,
which means that the number of features present in two consecutive views is likely to significantly
decrease, possibly up to the point where no map points are visible in the current view: this leads
then to the loss of tracking. In pure visual SLAM algorithms, a trade off is necessary to decide
when a new keyframe should be inserted: the linear distance between the closest keyframe of
the cartography must be sufficient to enable good triangulation quality, unless large variation of
orientation occurs: in this later case, map points must be added to the map as soon as possible
to ensure tracking continuity.

When depth data is available, the constraints on minimal linear distance between keyframes is
looser, since triangulation is not anymore necessary. Criteria used to decide whether a keyframe
should be inserted are changed according to these considerations:

– linear distance between keyframes must be over a minimal threshold to limit the map size
growth, and below a maximal threshold to ensure good correspondence between detected
features and sufficient view superposition;

– difference of orientation between keyframes must be as small as possible to ensure good
correspondence between detected features and sufficient view superposition;

– difference of orientation between keyframes must be below a maximal threshold;
– if difference of orientation between the current view and all existing keyframes is over a

minimal threshold, the current view should be inserted as soon as possible, since tracking
is likely to be lost soon.

Map points insertion process depends on depth data availability. Considering a given 2D
detected feature of the current view: like in the original algorithm, a feature match is searched
on the epipolar line of the target view (the closest from the standpoint of linear distance), then
the 3D position of the corresponding map point is computed:

– if depth data is available for both 2D features position and corresponding 3D positions are
close, the consequent 3D position is the mean of both positions (expressed in the world
frame)

– if depth data is available for neither of 2D features position, 3D position is computed by
triangulation;
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– if depth data is available for only one 2D feature position, the corresponding 3D point is
reprojected in the other view; if this reprojection is close to the associated detected feature,
the 3D point is added to the map.

9.3.2 Depth data in bundle adjustment

Bundle adjustment as described in Section 8.4.2 was only adapted to 2D measurements. But
with the use of depth sensor, 3D measurements are available. One of the main weaknesses of
bundle adjustment lies in the continuous drift of the scale factor: as camera poses and map points
positions are simultaneously optimized, both can slowly corrupt each other if nothing stops that
vicious circle. 3D measurements can put an end to this drift since it intrinsically contains a scale
factor. To our knowledge, this method has first been published in [Scherer et al., 2012]. We
describe here how it is adapted to our application. When depth data is available for a 2D feature
detected in several different keyframes, a 3D measurement is automatically created, which is
related to camera pose and 3D map point world position by

X̃
j
i =KiX̃

j
W = f3D(Ki, X̃

j
W ). (9.1)

which is similar to the 2D equation of projection (8.2). To use bundle adjustment in a similar
way, one has

– to define the error ∣∣ǫ∣∣2 to be minimized,
– to explicit the Jacobian of f3D with respect to the camera pose Ki,
– to explicit the Jacobian of f3D with respect to the map point position X̃j

W .
Then bundle adjustment as described in Section 8.4.2 can be readily used.

The error to be minimized is simply the Euclidean norm of the difference ǫ between the 3D
measurement and the 3D estimate computed from the 3D world position and the camera pose.

The Jacobian JK of f3D with respect to the camera pose is computed as in (8.1) by use of
the infinitesimal generators of the Lie algebra of SE(3), omitting the projection matrix P .

Finally, the Jacobian JX of f3D with respect to the 3D map point world position is extremely
easy to compute, as it simply is the rotation term of the element of SE(3) representing the
camera pose Ki.

2D measurements and 3D measurements are used together in the optimization procedure: the
size of the Jacobian matrices relative to f2D and f3D are different (sizes 2×6 and 3×6 respectively
for JK , and sizes 2×3 and 3×3 respectively for JX), but they are in the algorithm always combined
together to compute the pose updates δK (vectors of length 6) and map points position updates
δX (vectors of length 3). However, the weights given to measurements of different types must be
normalized so that their influence in the optimization is the same.

9.4 Pose estimation

The pose estimation is in its principle the same than in the original algorithm: prediction
of the current camera pose from the previous camera pose, projection of the PVS on the image
plane, pose update by minimization of the reprojection error. It has been modified to integrate
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magneto-inertial and depth data in the pose prediction and in the computation of the PVS steps.
The pose prediction consists of two distinct processes: linear velocity estimation (v the linear
velocity expressed in camera frame Rcam) and attitude estimation (quaternion q that expresses
the passage from the world reference frame RW to the current camera frame Rcam).

Attitude estimation is achieved through the processing of measurements of magnetometers,
accelerometers and gyrometers, as described in [Martin and Salaün, 2010], along with the
estimation of gyrometers biases. Biases and scale factors of accelerometers are independently
previously estimated. The principal assumption of this work consists of neglecting the linear
acceleration of the moving system: ∂tV(t) = 0. This yields (see Appendix C.2 for notations
and details on the usual motion equations under flat Earth assumption, e.g. (C.5)) that the
specific acceleration a is simply a measurement of the gravity acceleration expressed in the
camera frame (Rcam) q∗Aq. In parallel, magnetometers provide the measurements of the
magnetic field expressed in the camera frame q∗Bq and gyrometers enable to express the attitude
dynamics (C.4). An invariant non-linear observer has been designed to provide attitude and
gyrometers biases estimation, for which local convergence is ensured. The difference of orientation
between previous and current RGBD frames is then estimated (strictly from magneto-inertial
measurements) and applied to the previous camera pose estimated by visual measurements to
provide current attitude prediction.

Linear velocity estimation is achieved through depth images processing, as described in
Chapter 6. This yields a linear displacement estimation, applied to the previous camera pose
(with the help of attitude estimation to express the linear displacement in the world camera
frame RW ) to provide a prediction a camera pose position. The pose prediction algorithm is
summarized in Figure 9.2: data, state variables and algorithms steps are respectively depicted
in blue, green and red to highlight the data flow.

Computation of the PVS is improved using the magnetic field measurement. To each map
point is attached the value of the magnetic field measured by he system at the time when this
map point was first observed. At a given time, a map point can only be added to the PVS if
this magnetic field vector and the current magnetic field measurement are close enough. This
criterion enables to reject in a simple way the map points that belong to a non-visible surface.
Consider for example a map point on a wall of a room; if the camera user goes to the next room
and turns around to look at the other face of that wall, the map point is strictly speaking in its
field of view since occlusion is not taken into account in the PVS construction. Yet, the u-turn
operated ensures that magnetic field measurements associated to the two views are opposite:
thanks to this selection criterion the map point will not be added to the PVS.

9.5 Tracking quality and relocalization

Sources of localization other than images are of great help when the quality of RGB data is
too poor to enable robust feature detection and matching, which often occurs when the camera is
submitted to high dynamics, or simply when the texture of the environment is too uniform. For
this purpose, magneto-inertial and depth data can "take over" to fill data in when algorithm
based on pure vision is not sufficient. This issue is addressed in the next section, dealing
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Figure 9.2: Representation of the pose estimation algorithm modified to take into account depth
and magneto-inertial data
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with localization for augmented reality. This section describes how magneto-inertial data, as
redundant data, can assess of the tracking quality in one hand, and help in the recovery process
in the other hand.

9.5.1 Assessing the visual tracking quality

Recall from Section 8.3 that in the original algorithm, tracking quality was estimated from
the ratio of features of the PVS actually detected in the current frame. Along with this criterion,
the absolute number of detected features is used: the minimum number of matched features
necessary for pose estimation is theoretically 5. To these two purely visual criteria, a comparison
of vision and magneto-inertial data is added.

Formally, the quality of visual tracking is judged from the standpoint of attitude accuracy.
As we already mentioned in Section 9.4, processing of magneto-inertial data enables attitude
estimation of the camera. This attitude is compared to the attitude estimated by visual tracking
on a relative basis. Indeed, accelerometers enable the estimation of gyrometers biases, apart from
the bias about the vertical axis. Magnetometers eliminate this ambiguity under an assumption of
homogeneous magnetic field, which is generally not satisfied indoor. This yields a slow (bounded
time-derivative) drift of the pitch angle: thus, pitch estimation lies in a cone of uncertainty,
linearly growing in time.

The difference of attitude between the current time t and a given anterior time t0 is computed
by magneto-inertial attitude estimation (Rin) and by visual attitude estimation (Rvis). These
attitude variations are then compared to each other. If they are close and stable in time during
the time interval (t0, t), the visual quality is considered to be good and the current frame will be
used for the next frames for relative attitude computation (t will replace the anterior time t0).
Since vision is not anymore the only localization data, visual tracking loss is not as bad as in
the original algorithm: criteria for good tracking quality are purposely difficult to meet to make
sure that "bad" views are not chosen as keyframes, which would corrupt the entire map. As a
consequence, tracking loss is more frequent and the relocalization procedure is optimized to be
as robust and fast as possible.

9.5.2 Relocalization procedure

In the original algorithm, tracking can only be recovered if the camera is close enough to the
camera pose of a keyframe of the cartography, which is a large limitation. On the other hand,
the multiplication of the number of keyframes must be limited to avoid memory overload and
large processing time devoted to optimization. This is why a new structure has been introduced,
named Fast Small Blurry Image (FSBI). A FSBI is much lighter than a keyframe, as it only
contains a SBI, a camera pose and a magnetic field measurement. A new FSBI is created when
tracking is not lost and provided that a minimal linear distance of a few millimeters exist with
respect to the already existing FSBIs. These small structures are kept in memory all along the
camera motion and organized with respect to camera pose orientation. When tracking is lost,
an attitude is estimated using magneto-inertial measurements: a difference of magneto-inertial
attitudes since the last time when quality was considered to be good is computed and applied to
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the last visual attitude. From this predicted attitude, a set of FSBIs are selected and compared
in various ways to the current view:

1. the current and FSBI’s magnetic field measurements are compared ;

2. if they are close enough, the SBIs corresponding to the current and to the selected FSBI
are compared;

3. if they are close enough, a difference of camera poses between the FSBI and the current
view is estimated by warping of the current SBI;

4. step 3 provides a camera pose estimate used as the initialization of tracking procedure
(PVS projection and pose update);

5. the resulting camera pose attitude is compared to magneto-inertial attitude;

6. if they are close enough, tracking is recovered; otherwise, the FSBI selected in step 3 is
removed from the list of FSBI to compare the current view with, and the procedure starts
over from step 1.

9.6 Localization and augmented reality

The objective of augmented reality is to inlay the image of a virtual object in a real image,
in a realistic way. Realistic can be defined using the following criteria:

– occlusion: the virtual 3D object (or part of it) must be hidden in the image when it is
placed behind real objects;

– relative displacement: real image and virtual object must evolve in a consistent way
along the camera motion;

– stability: if the camera user is immobile, the virtual object must appear immobile in the
image;

– persistence: the image of the virtual object must continuously appear in the image,
independently of the tracking state.

The first criterion involves a complete current knowledge of the geometry of the visible scene,
which can be given by the complete and dense cartography of the environment. However, the
computational burden associated to such a goal would prevent any real-time processing. The
depth image actually gives a complete and easy solution: for a given position of the virtual object
in the current camera frame Rcam, occultation is immediate by comparison of the current real
depth (measured) and the potential virtual depth (computed).

The three last criteria are associated with the problem of localization: indeed, for a given
position of the virtual object in an external reference frame (the world RW ), its position in
the current view only depends on the current camera pose in the world RW . This means
that localization must be accurate, stable and continuous (respectively, following the three last
criteria), which can not be satisfied using visual data only since it implies ambiguity of the
scale factor and does not prevent a tracking loss. We will describe how fusion between visual,
magneto-inertial and depth measurements may solve this issue. Camera pose is described by a
unitary quaternion q and a position XC in the inertial reference frame RW . Its state is completed
by a linear velocity v expressed in the camera frame Rcam.
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Like for pose prediction, the camera pose estimation is decoupled between attitude estimation
and position estimation.

Figure 9.6 shows an implementation of the augmented reality system, which is intended to
be worn on the head: the RGBD sensor is placed right on top of the eyes, and augmented reality
glasses are fixed in front of the eyes, to project the augmented images. The magneto-inertial
sensors lie on top of the head: all components are linked to an external master system.

Figure 9.3: Implementation of the augmented reality system, which is intended to be worn on
the head: the RGBD sensor and augmented reality glasses are fixed respectively on top and in
front of the eyes, to acquire real images and project the augmented images. The magneto-inertial
sensors lie on top of the head: all components are linked to an external master system.

9.6.1 Attitude estimation

Attitude estimation is achieved using magneto-inertial and visual measurements. Magneto-
inertial measurements (namely gyrometers, magnetometers and accelerometers) provide debiased
measurements of angular velocity ωm. Vision provide attitude measurements expressed by
quaternions qV . The proposed non linear observer was inspired by invariance theory (see
[Bonnabel et al., 2008] for details on invariance theory, see [Mahony et al., 2008] for a SO(3)-
invariant attitude observer):

{ ∂tq̂ = 1

2
q̂ωm + q̂K(q̂∗qV − 1)

q̂(0) = qV (0) (9.2)

where 1 designates the quaternion (1,0,0,0)T and K is a correction gain. Local convergence is
ensured by the following. Let us define ξ ∶= q̂∗qV −1 the attitude error, and ζ ∶= qξq∗ the attitude
error expressed in the inertial frame RW . The dynamics of this latter is given by

∂tζ = (∂tq)ξq∗ + q(∂tξ)q∗ + qξ(∂tq∗)= q(ωm × ξ)q∗ + q(∂tξ)q∗ (9.3)
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On the other hand, assuming that the attitude measurements qV have same dynamics that the
true attitude q (∂tqV = 1

2
qV ωm), the dynamics of the error ξ is

∂tξ = −q̂∗(∂tq̂)q̂∗qV + q̂∗∂tqV= −1

2
(ωm +Kξ)(ξ + 1) + 1

2
(ξ + 1)ωm= ξ ×ωm − 1

2
Kξ(ξ + 1)

which in linearized around equilibrium (ξ = 0) by

∂tξ = ξ ×ωm − 1

2
Kξ (9.4)

Plugging (9.4) into (9.3) yields

∂tζ = −1
2
Kζ.

Thus, a positive correction gain K ensures local exponential convergence of ζ towards zero.
This means that our attitude estimate stays close to the visual attitude measurements when
such measurements are available, is continuous and differentiable by construction, and is always
available. This characteristics satisfy the conditions required for realistic augmented reality.

9.6.2 Position estimation

For position estimation, magneto-inertial and RGBD data are combined: first, to estimate
the linear velocity v̂, and then to estimate the position X̂C itself. The proposed observer for
velocity and position is the following:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tv̂ = v̂ ×ωm + am − q̂∗Aq̂ + kv(vm − v̂) + kvxq̂∗(Xm − X̂C)q̂
∂tX̂C = q̂v̂q̂∗ + kX(Xm − X̂C)
v̂(0) = vm(0)
X̂C(0) =Xm(0)

(9.5)

where
– am and ωm are the measurements from accelerometers and gyrometers expressed in camera

frame Rcam,
– q̂ is the output of the previous attitude estimation (see Subsection 9.6.1),
– vm is the output of the linear velocity estimation algorithm from depth data expressed in

camera frame Rcam (see Chapter 6),
– Xm is the position measurement with respect to the inertial frame RW (the output of the

tracking algorithm).
To establish convergence results, let us define
– Vm ∶= qvmq∗ the linear velocity measurement expressed in RW ,
– V̂ ∶= qv̂q∗ the linear velocity estimate expressed in RW ,
– Ṽ ∶= V̂ −V the error of linear velocity,
– X̃ ∶= X̂C −X the error of position,
– ξ ∶= qq̂∗ − 1 the absolute error of attitude.
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Then, as in the previous section, the dynamics of V̂ is given by

∂tV̂ = q(ωm × v̂)q∗ + q(∂tv̂)q∗= qamq
∗ − (ξ + 1)A(ξ∗ + 1) + kv(Vm − V̂) + kvx(ξ + 1)(Xm − X̂C)(ξ∗ + 1). (9.6)

Assuming that attitude error ξ is small, ξ∗ = −ξ (ξ can be identified with a vector of R3). The
terms of equation (9.6) involving ξ can be linearized, yielding

∂tV̂ = qamq
∗ −A + 2A × ξ + kv(Vm − V̂) + kvx(Xm − X̂C) − 2kvx(Xm − X̂C) × ξ (9.7)

and similarly
∂tX̂C = V̂ + 2V̂ × ξ − kX(Xm − X̂C). (9.8)

Finally, assuming that the measurements Xm and vm can be identified with true position
and velocity X and v, this yields the following dynamics for the errors Ṽ and X̃:

{ ∂tX̃ = Ṽ − kXX̃ + 2V̂ × ξ
∂tṼ = −kvxX̃ − kvṼ + 2A × ξ + 2kvxX̃ × ξ. (9.9)

This system can be decomposed in a linear globally exponentially stable system (for positive
correction gains kX , kv and kvx), and perturbation terms which directly depend on the attitude
error ξ. Provided that the correction gains are large enough and the attitude error ξ is small
enough, the perturbations terms should be dominated by the exponential convergence of the
errors of position and linear velocity towards 0.
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Chapter 10

Experimental results

Validation quantitative de l’algorithme

Les résultats de ce nouvel algorithme sont présentés dans ce chapitre : la qualité de la
reconstruction de trajectoire est estimée par comparaison avec une trajectoire de référence acquise
par un système d’acquisition de mouvement ; la qualité de la cartographie peut uniquement être
évaluée par des mesures manuelles. Les résultats sont suffisamment bons pour permettre l’addition
de données virtuelles à l’image réelle, et un petit jeu a été conçu pour démontrer les capacités du
système.

The results of this new algorithm and system are presented in this chapter: the tracking
quality is evaluated by comparison with a reference trajectory acquired by a motion capture
system; the quality of the cartography can only be evaluated by manual measurements. The
results are good enough to perform visual augmentation of a real image with a virtual object,
and a small game has been designed to demonstrate the systems capabilities.

10.1 Experimental conditions

To test our system and the associated algorithm, experiments have been performed in a
room equipped with a motion capture system (distributed by Vicon). This system, widely used in
research as well as in the entertainment industry, consists of a set of cameras pointing towards the
center of the room, equipped with infrared optical filters and infrared LEDs. The positions and
orientations of these cameras have to be carefully calibrated before any experiment. Reflecting
dots (markers) are embedded on the system whose trajectory is to be estimated: the set of
markers forms a rigid object, tracked by the cameras (infrared filtering ensures that only these
dots are detected). Provided that these dots are detected by enough cameras, the position and
orientation of the object can be estimated, with a millimeter resolution. The actual resolution of
reconstruction depends on the number of detecting cameras. See [Aghajan and Cavallaro, 2009]
for more details on motion capture systems. Figure 10.1 shows our system equipped with the
reflective dots: at the forefront of the system is the RGBD sensor (an Xtion Pro distributed
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by ASUS ), and behind are fixed the inertial sensors (accelerometers, magnetometers and
gyrometers). Figure 10.2 shows the room equipped with cameras of the Vicon motion capture
system.

Note that only position and orientations are provided: velocities are postprocessed in the
following for results comparison.

Note also that the motion capture system provides the attitude and position of the rigid
body formed by the reflective markers attached to the system, with respect to an inertial fixed
reference frame: both differ from the the reference frame Rcam that defines our system and
the world RW . As a result, thorough evaluation of all the different reference frames must be
achieved in order to enable trajectory comparison. This work, which might be fascinating as well
as time-consuming, is not presented in this dissertation. Imprecisions might persist, yielding
slight repeatable trajectory differences.

Figure 10.1: Our system equipped with reflective markers tracked by the Vicon system.
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Figure 10.2: Views of the room equipped with a motion capture system (system Vicon©)
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10.2 Linear velocity, position and attitude estimation

10.2.1 Translation along the lateral direction

In a first test, the system is placed from its starting point onto a trolley (shown in Figure
10.3), then the trolley moves back and forth along the lateral direction of the system (the x-axis):
the system is only submitted to translations. Linear velocity estimation is the result of the fusion

Figure 10.3: The trolley used to ensure that our system is only submitted to pure lateral
translation.

of linear velocity measurements (computed by geometrical flow method described in Chapter 6),
filtered by accelerometers using inertial attitude estimation (see Subsection 9.6.1 for attitude
estimation and system (9.5) for linear velocity filtering). An important part of the algorithm
is the detection of inaccurate linear velocity measurements (caused by depth images of poor
quality). Figures 10.4 and 10.5 show the results of linear velocity estimation, and more precisely
the linear velocity measurements, detected as accurate (blue points) and inaccurate (red points).
The filtered linear velocity is plotted in cyan and the reference (computed from motion capture
positions) in black. A zoom on the linear velocity in the x-axis direction shows that most of the
inaccurate linear velocity measurements are actually detected: for example between the times
t = 160 sec and t = 240 sec, the high velocity phases are subject to inaccurate measurements:
nevertheless, the accelerometers during these short periods are sufficient to provide open-loop
integration, before the next accurate measurement provides the next velocity fix. The same
phenomenon occurs between the times t = 260 sec and t = 330 sec.
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Figure 10.4: Linear velocity measurements are evaluated as accurate or inaccurate, depending on
which they are used or not as velocity fixes in the linear velocity filter (9.5). When measurements
are unavailable (red), accelerometers are integrated in open-loop. Overview (top) and zoom
(bottom) on linear velocity along the lateral direction. Comparison with the reference trajectory
(black) shows an excellent accuracy.
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Figure 10.5: Linear velocity measurements are evaluated as accurate or inaccurate, depending on
which they are used or not as velocity fixes in the linear velocity filter (9.5). When measurements
are unavailable, accelerometers are integrated in open-loop. Linear velocity along the vertical
direction (top) and optical axis (bottom) directions.
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Filtered linear velocity is also compared to the velocity that was used in the original algorithm,
computed by a motion model described in Section 8.3. Recall that this velocity is used to predict
the current pose of the camera, which enables the computation of the PVS. The velocity is plotted
(in blue) along with filtered velocity (in red) and velocity reference (in black) computed from
motion capture positions in Figure 10.6. These results shows that the velocity of the motion
model is noisier and less accurate than the filtered velocity, which should lead to better tracking
results. Unfortunately, we were unable to prove that the impact of this improved prediction step
actually improved the tracking accuracy.

Finally, the position is filtered as described by (9.5), using attitude estimation, filtered linear
velocity (expressed in Rcam) and position measurements (the output of the tracking algorithm).
The result is shown in Figure 10.7. Recall that the position is expressed in the world reference
frame RW , which explains that the larger variation of position occurs along the z-axis. These
results show that the strong position outliers are canceled: the filter provides a continuous
position even when the tracking algorithm based on RGB data processing is lost, which occurs
in this test only once, at t ≈ 170 sec. The position estimation in the x-axis direction does not
seem accurate in this test: at some times, the error exceeds 10 cm. However, it is repeatable.
This error might actually be the artifact of an imprecision in the harmonization of the different
reference frames, as explained in Subsection 10.1.
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Figure 10.6: Comparison of the filtered linear velocity and the motion model velocity used in
the prediction step of the tracking algorithm.
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Figure 10.7: Comparison of the filtered camera position in the world reference frame RW (in
red) with the output of the tracking algorithm (in blue) and the position reference (in black).
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10.2.2 Exploration of an entire room

In a second test, the system is handheld and the goal is to explore the entire room, with
different dynamics: first, a slow loop is performed around the room, then motion with higher
dynamics occur to test the robustness of the algorithm. The motion mostly occurs in a horizontal
plane.

Just as for the previous test, linear velocities are estimated, and plotted along with the motion
model and the reference linear velocities in Figure 10.8. Again, the filtered velocity is cleaner,
except at very specific times where inaccurate velocity measurements were not successfully
detected (for example at times t ≈ 130 sec or t ≈ 190 sec in the x-axis direction).

Then the attitude estimation is performed and results are plotted in Figure 10.9: recall
that attitude estimation as described in Subsection 9.6.1 is based on gyrometers measurements
and attitude measurements (outputs of the tracking algorithm). Along with these is plotted
the attitude estimate based on inertial data only as described in Section 9.4. All of them are
represented as Euler angles (see the Subsection C.1.3 in appendix for definition of these angles).
The goal of this filter is completely achieved as it filters the high frequency dynamics of the
tracking output as well as provides continuous attitude estimate when this measurement is not
available: for example, at times t ≈ 100 sec or t ≈ 130.

Finally, position estimation is performed as described by (9.5) and explained for the previous
test. The result is plotted in Figure 10.10, and a top view of the trajectory is shown in Figure
10.11. These results show that position estimation is generally accurately achieved, except at
certain times, which are the combination of the loss of tracking and inaccurate and undetected
linear velocity measurements.
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Figure 10.8: Comparison of the filtered linear velocity and the motion model velocity used in
the prediction step of the tracking algorithm.
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Figure 10.9: Attitude estimation, represented by Euler angles: in cyan, using inertial data only
(see Section 9.4); in blue, the output of the tracking algorithm; in red, the filtered attitude (see
Subsection 9.6.1); in black the reference.
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Figure 10.10: Comparison of the filtered camera position in the world reference frame RW (in
red) with the output of the tracking algorithm (in blue) and the position reference (in black).
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Figure 10.11: Top view of the trajectory of the camera during entire room exploration.
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10.3 Cartography

A cartography can be reconstructed as a point cloud: from each depth image, a new point
cloud can be generated, whose points positions in the world reference frame RW are computed
using current filtered camera position and attitude. To each of these points, a color is attributed
using the RGB image, and the different point clouds are then aggregated to form the cartography.
The result of such a reconstruction is shown in Figures 10.12 and 10.13. In the first figures,
different views of the room are shown, along with the corresponding views of the point cloud
formed by the map points of the Vision algorithm. In the second figure, an overview of the entire
reconstruction is shown. Notice that the points corresponding to large depth measurements (e.g
the distant walls of the room) form noisier point clouds: indeed, the noise distribution of the
depth image directly depends on the depth value itself.
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Figure 10.12: Details of the reconstructed cartography, computed using filtered position and
depth measurements (left) and map points of the Vision algorithm (right).

154



Figure 10.13: Entire view of the reconstructed cartography, computed using filtered position and
depth measurements. The reconstructed point cloud is very accurate, since relative errors on
direct physical measurements do not exceed 1%. The overall geometry of the reconstructed scene
is also very convincing: walls are flat and objects are not duplicated.
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To assess the accuracy of the reconstructed cartography, distances were measured in the
room using a laser telemeter. These various lengths, corresponding to physical distances such
as space between windows or distance from a wall to another, are shown in Figure 10.14. The

B1B1

B2

B3

M1

M2

 

HF
F

Figure 10.14: Definition of the meter-readings measured in the room by a laser telemeter.

same physical lengths are then estimated in the point cloud and compared to their actual values:
comparison of both is shown in Table 10.1. Due to the noise in certain parts of the point
clouds, especially the walls, the measurements can only be given with an uncertainty margin,
which depends on the physical object being measured. The reconstructed point cloud is very
accurate, since relative errors on the measurements do not exceed 1%. The overall geometry of
the reconstructed scene is also very convincing: walls are flat and objects are not duplicated.
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Real (m) Cartography (m)

B1 5.92 5.94 ± 0.02
B2 5.91 5.90 ± 0.01
B3 6.45 6.42 ± 0.10
M1 2.41 2.39 ± 0.05
M2 4.21 4.12 ± 0.15
F 1.31 1.28 ± 0.03
HF 2.44 2.39 ± 0.06

Table 10.1: Comparison of some specific physical distances measured in reality and in the point
cloud of the cartography.
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Conclusion

In this thesis, we have presented different algorithms that meet the needs of visual augmented
reality for a dense 3D perception of the surrounding environment on one hand and for a precise
localization of the camera in this environment on the other hand.

The theoretical framework is based on a spherical camera model, which allows to express the
dynamics of the light intensity and the depth by a system of SO(3)-invariant PDEs. The camera
dynamics are made explicit in this system, as well as the depth of the environment surrounding
the camera. It appears that linear velocity and depth are indistinguishable in the first PDE
(the optical flow constraint), as expected for a monocular system; but the second PDE (the
geometrical flow constraint) is not submitted to this ambiguity.

In the first part of this manuscript, the assumption of known camera dynamics is made to
estimate the current dense depth field. Like for optical flow estimation, variational methods
can be implemented to estimate the depth as the solution of the optical flow constraint where
motion dynamics is made explicit. This formulation is advantageous because the fundamentally
ill-posed problem of optical flow is now geometrically constrained by the knowledge of the camera
dynamics. Accuracy of the result is highly dependent of the quality of the processed RGB
images and of the value of the linear velocity. The indistinguishability of depth and velocity
translates here as unobservability of the depth for a purely rotational motion. The geometrical
flow constraint is thus exploited to design a non-linear asymptotic observer that refines the depth
estimation based on optical flow or depth measurements.

The release of the Kinect device in November 2010 provided a low-cost and easy solution to
the problem of dense depth estimation. In addition, it enabled to completely pose the converse
problem, namely motion estimation from RGBD data as dense scalar fields. In a first time, the
possibility to embed linear velocity sensors such as Pitot tubes or EM log sensors on the system
as well as MEMS gyrometers led to the problem of bias estimation, unavoidable as soon as
relatively low-cost sensors are involved. Interestingly, the observability of this question is strongly
related to geometric properties of the environment, but not to the motion of the camera itself.
Moreover, while these properties are quite intuitive, their meticulous demonstration requires a
deep understanding of the Riemannian geometry of the unit sphere. The combined processing
of regular images and depth images increase the probability that observability conditions may
be satisfied for a given environment, but only depth images are necessary for the convergence
of the estimation method. In a second time, a novel estimation method of linear and angular
velocity by depth images processing was proposed. This technique is fast and does not lean on

159



features correspondence nor on explicit computation of spatial derivatives of the dense depth
field. Exactly like for the previous observability problem of biases estimation, the quality of the
results depend on properties of the environment. In addition, a confidence index is assigned
to any measurement, which is a key component of good data fusion. These measurements are
finally used to estimate biases on accelerometers and gyrometers in a third part, as well as to
filter the linear velocity.

A practical implementation of a SLAM solution was tested for augmented reality: visual
position measurements are issued from an adaptation of PTAM, where the missing scale factor
is provided by the depth component of the processed RGBD data. Velocity measurements are
obtained from our novel geometrical flow estimation method, and combined with these visual
position measurements and inertial data to reconstruct a continuous and smooth trajectory that
meet the augmented reality requirements. Cartography of the environment is still subject to
long-time drifts or distortions when loop closure occurs, which is one of the biggest limitations
of the actual system. This might be fixed by the addition of better features for detection and
description: for example, the ORB detector and descriptor [Rublee et al., 2011] is comparable
to SIFT in terms of accuracy, but runs about 100 times faster. The pose prediction of the
tracking module is highly improved by our trajectory estimation, which means that the following
pose estimation should not suffer from the reduce in the number of "low-quality" features
and the addition of "good-quality" ones. In addition, better descriptors could be used in the
relocalization module instead of the actual FSBI, and could be of great help for loop-closure
detection [Angeli et al., 2008]. After loop-closure, the map should be globally corrected, by
a distribution of error in the loop either uniformly or weighted by the path length, or by more
sophisticated relaxation methods [Sprickerhof et al., 2011]. If the map can be efficiently corrected
by loop-closure detection, the algorithm could benefit of two advantages. First, in a situation
where pose estimation is submitted to large drifts, the local nature of pose optimization in the
tracking module of PTAM may lead to the duplication of the environment in the cartography,
and consequently to oscillations between two positions in the camera pose estimation, one for
each representative of the cartography. On the contrary, if loop-closure is detected, this harmful
effect would be avoided. Secondly, drifts of the cartography yield drifts in the visual attitude
measurements: even if the cartography is initially aligned with the inertial reference frame, the
visual measurements used in the attitude observer (9.2) eventually lead to erroneous attitude
estimation. This has a direct consequence in the position observer (9.5), where the gravity
acceleration is expressed in the camera frame thanks to this attitude estimate, and makes
impossible the sole use of accelerometers when neither velocity nor position measurements are
available.

To our knowledge, the work the most similar to our system in terms of results was achieved
in the Kintinuous project, which is an extension of the Kinect Fusion work. Descriptions and
videos are available online ([Whelan et al., 2012, Whelan et al., 2013a, Whelan et al., 2013b]).
The team first dealt with the possibility to work on large areas, then improved the odometry
part (originally only based on ICP, now augmented by the work of [Steinbrucker et al., 2011]),
and finally (at the time of writing) added a place recognition module for loop-closure detection
and post-correction of the map. This system, and especially the mapping module, almost entirely
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runs on the Graphical Processing Unit (GPU) of the computer, which enables Massively Parallel
Computation. The successive modifications applied to the Kintinuous project confirm our
intuition that loop-closure detection is necessary, and suggest that significant improvements in
real-time performances and increase of the map size should be inquired by parallel implementation
on GPU of our algorithms.
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Appendix A

Differential geometry on the

Riemannian unit sphere

To deal with vector fields, gradients and algebraic computations on the unit sphere S
2, two

different approaches can be adopted:
– the sphere S

2 can be thought of as a subset of R3, where any point or vector has regular
coordinates (e.g. Cartesian or spherical), and special constraints must be taken into account
to make sure that vectors and points lie on that surface. For example, a point X has
Cartesian coordinates (x, y, z)T where x2 + y2 + z2 = 1.

– the sphere S
2 can be thought of as a two-dimensional manifold, where vectors and metrics

are defined with respect to curves living on S
2.

Although the first approach is the most natural to begin with, computations can easily
become tedious. The second approach, adopted in this thesis, requires first to understand
the basics of Riemannian metrics and the differential geometry associated. In the following,
we first recall these basics in a simplified way (more details can be found in [Stoker, 1969] or
[Doubrovine et al., 1987]), then some useful relations of differential geometry are established.

A.1 Riemannian manifolds

A n-dimensional r-differentiable manifoldM can be thought as a topological space which is
locally equivalent to the Euclidean vector space R

n. A precise definition involves a countable
collection of patches coveringM. Any of these patches can be mapped into the unit ball of Rn.
Compositions of these mappings are consistent with respect to each other. The mappings are
differentiable of order r with respect to the Euclidean coordinates of Rn. Any composition of
the mappings has non-vanishing Jacobian. Finally, M is connected.

A Riemannian manifold is a manifold for which a Riemannian metrics is defined and enables
to define the concepts of lengths and vectors, necessary to work on intrinsic differential geometry.
First, let us define a differentiable curve: it is the locus of points p(t) in the manifold that results
when the local coordinates ui of the points of the locus are differentiable functions ui(t) of a
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parameter t. To define the length of such a curve, let us a define the length of a line element dl,
independent (by assumption) of the choice of local coordinates:

dl =∑
i,k

gikduiduk

where the functions gik are defined with respect to the coordinates, are differentiable and such
that the quadratic form in the differentials is positive definite. To make sure that such a definition
does not depend on the choice of local coordinates, it is required that the functions g′ik associated
to new coordinates u′i must satisfy

g′ik =∑
l,m

glm
∂ul

∂u′i
∂um

∂u′
k

.

Then, the length of of a differentiable curve associated to ui(t) is defined by

lt1t0 = ∫ t1

t0

⎛⎝∑i,k gik
dui

dt

duk

dt

⎞⎠
1/2
dt

and, more generally, a metric is defined using only the coefficients gik, so that the geometrical
metric properties are invariant under change of local coordinates.

Then, vectors in the manifold M are identified with the tangent vectors of differentiable
curves. For example, let us consider a curve ui(t) through a point p that corresponds to t = 0;
its tangent vector at p can be written in the form dui

dt
∣
t=0

. Every differentiable curve through
p defines such a vector v. Conversely, every vector v is the tangent vector of a curve. These
vectors form a linear vector space, called the tangent space of the manifold M at the point p.

These general matters are used in this thesis under the following form:
– a point on the unit sphere S

2 is associated to a unit vector η;
– considering a mapping S

2 ∋ η ↦ h(η) ∈ R, the gradient of h at point η, denoted ∇h, lives
in the tangent space at η denoted Tη;

– any differential geometry manipulation on h only has meaning in the tangent space Tη.

A.2 Differential calculus

In this section, we will establish some useful relations. Unless otherwise specified, P is a
constant vector of R3. Let us define the mapping

S
2 → R

η ↦ f(η) ∶= η ⋅P
We will first prove that

∇f = −η × (η ×P). (A.1)

By definition of the differential of a mapping f defined on S
2,

∇f ⋅ δη = df ∀δη s.t. δη ⋅ η = 0. (A.2)
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A.2. DIFFERENTIAL CALCULUS

The differential df in the direction δη writes P ⋅ δη, which means that the projections of P and
∇f on Tη are the same.

∇(η ⋅P) ⋅ δη = δη ⋅P (A.3)

On the other hand, ∇f ⋅η = 0 because ∇f at point η lives in the tangent space Tη, which means
that ∇f equals its projection on Tη, and thus the projection of P on that space. This projection
is written in the form P − (η ⋅P)η, or equivalently −η × (η ×P), which is the relation (A.1).

Now, we prove that
∆f = −2η ⋅P (A.4)

By definition, the Laplacian of a function is the divergence of its gradient. Thus

∆f = ∇ ⋅ (−η × (η ×P)).
Let us define

S
2 → Tη
η ↦ g(η) ∶= −η × (η ×P).

The divergence of a vector field is the derivative of the area of a surface element as it evolves
along the flow defined by the vector field. More precisely, as δη1 and δη2 are two infinitesimal
vectors of Tη for η ∈ S2, they define a surface element whose area is (δη1 × δη2) ⋅ η. As η, δη1

and δη2 evolve according to
∂η

∂s
= g(η) (A.5)

the divergence verifies:
∂(δη1 × δη2) ⋅ η

∂s
= ∇ ⋅ g(η)(δη1 × δη2) ⋅ η (A.6)

It is developped as

∂(δη1 × δη2) ⋅ η
∂s

=(∂δη1

∂s
× δη2) ⋅ η + (δη1 × ∂δη2

∂s
) ⋅ η + (δη1 × δη2) ⋅ ∂η

∂s

Using (A.5) and the definition of g(η) applied to δη1, δη2 and η:

∂(δη1 × δη2) ⋅ η
∂s

=((−δη1 × (η ×P) − η × (δη1 ×P)) × δη2) ⋅ η
+ (δη1 × (−δη2 × (η ×P) − η × (δη2 ×P))) ⋅ η
+ (δη1 × δη2) ⋅ (−η × (η ×P))

Rearranging the terms, and since δη1 and δη2 ∈ Tη yields:

∂(δη1 × δη2) ⋅ η
∂s

= −2(η ⋅P)(δη1 × δη2) ⋅ η
By identification with (A.6), this proves that

∇ ⋅ g(η) = −2(η ⋅P)
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which concludes the proof of the relation (A.4).

Finally, we prove that ∇ ⋅ (η ×P) = 0 (A.7)

The method used to prove the relation (A.4) is applied to the vector field f(η) = η ×P. This
yields

∂(δη1 × δη2) ⋅ η
∂s

= ((δη1 ×P) × δη2) ⋅ η + (δη1 × (δη2 ×P)) ⋅ η + (δη1 × δη2) ⋅ (η ×P) . (A.8)

Rearranging the terms yields the Jacobi identity:

∂(δη1 × δη2) ⋅ η
∂s

= [(δη1 × (δη2 ×P)) + (δη2 × (P × δη1)) + (P × (δη1 × δη2))] ⋅ η = 0 (A.9)

which by identification with (A.6) yields

∇ ⋅ f = 0.
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Appendix B

Matrix Lie groups and Lie algebra

We will focus in this short description on matrix Lie groups on R.
A matrix Lie group is any subgroup G of the group GL(n,R) of invertible real matrices with

the following property: if Am is any sequence of matrices in G and Am converges to some matrix
A, then either A ∈ G, or A is not invertible. Thus a matrix Lie group is a closed subgroup of
GL(n,R). GL(n,R) itself is a matrix Lie group. Other matrix Lie groups of interest will be
studied in the following sections.

A Lie group is a differentiable manifold G which is also a group and such that the group
product G ×G ↦ G and the inverse map g ↦ g−1 are differentiable. A matrix Lie group is a Lie
group (as its name indicates, but not obviously from its definition).

Matrix Lie groups are in fact transformations that act on a vector space (e.g. R
n), and

composition of such transformations are simply matrix products.
The exponential of a square matrix X, denoted expX is defined as

expX = m=∞∑
m=0

Xm

m!
.

Such a definition is consistent since it is proven that the series converges. The matrix exponential
is a continuous function of X.

The main properties of the matrix exponential are the following:
– exp0 = I
– expX is invertible and (expX)−1 = exp−X
– if X and Y commute, expX+Y = expX expY = expY expX .
The logarithm of a square matrix X, denoted logX, is defined as

logX = m=∞∑
m=1

(−1)m+1 (X − I)m
m

whenever the series converge. The logarithm of a matrix X is defined and continuous on the set
of square matrices with ∥X − I∥ < 1.

Let G be a matrix Lie group. The Lie algebra of G, denoted g, is the set of all matrices X
such that exptX is in G for all real numbers t.
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If G is a connected matrix Lie group, then every element A of G can be written in the form

A = expX1 expX2 . . . expXm

for some X1,X2 . . .Xm in g.
Suppose G is a matrix Lie group with Lie algebra g. Then g is the tangent space at the

identity to G.
Any element XI of the tangent space at the identity (and thus of g) can be written in the

form
XI =∑

i

αiGi

where the Gi are the infinitesimal generators of the Lie algebra and the αi are real numbers.
Consider an element A of G; a small variation around A acts as expXI : A′ = expXI A where A′

is the new transformation. From the point of view of the vector space on which the Lie group G
acts, consider two vectors x and y such that

y = Ax.
y′ is the result of a variation XI at A acting on y:

y′ = expXI Ax = expXI y. (B.1)

We can also formally write δA ∶= A′ −A. Then

δA = (expXI −I)A = m=∞∑
m=1

Xm
I

m!
A. (B.2)

Lie groups and Lie algebras have bee extensively studied. See for example [Hall, 2003] for a good
introduction on these topics, and [Olver, 1999] for infinitesimal invariance theory applied to Lie
groups.
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Appendix C

3D rigid-body kinematics and

quaternions

C.1 Attitude and angular velocity

The attitude (or orientation) of a rigid body can be represented in many ways: we will start
with the most general one and give some other examples that are of great interest for specific
applications.

C.1.1 The special orthogonal group

The orthogonal group O(n) is the group of orthogonal matrices, that is, the column vectors
that make up such a matrix are orthonormal. An equivalent definition is that A ∈ O(n) if and
only if ATA = In (or A−1 = AT ). Consequently, the determinant of orthogonal matrices is ±1.
The Special Orthogonal group SO(n) is the subgroup of orthogonal matrices with determinant
one. The elements of SO(n) are the rotations of Rn, and thus describe the orientation of a rigid
body with respect to fixed external frame of reference. For example, every element of SO(2) has
the form

( cos θ − sin θ
sin θ cos θ

) , with θ ∈ R.
The Special Orthogonal group is a matrix Lie group. The Lie algebra of SO(n) is the space of
all matrices X of Mn(R) such that XT = −X: they are denoted dtΩ where Ω is written in the
form

Ω = ⎛⎜⎝
0 −ωz ωy
ωz 0 −ωx−ωy ωx 0

⎞⎟⎠ when n = 3.
The infinitesimal generators at the identity (for n = 3) are

Gωx = ⎛⎜⎝
0 0 0

0 0 −1
0 1 0

⎞⎟⎠ , Gωy = ⎛⎜⎝
0 0 1

0 0 0−1 0 0

⎞⎟⎠ , Gωz = ⎛⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎠ . (C.1)
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Consider a vector expressed in a specific fixed coordinate frame RW by xw, and in a moving
coordinate frame Rc by xc. Let us denote Rcw the rotation matrix from RW to Rc:

xc = Rcwxw.
As Rc is moving, the effect of a small variation Ω at the position (orientation) Rcw transforms xc
into x′c such that

x′c = expΩdt xc
(see equation (B.1)). Equivalently

x′c − xc = m=∞∑
m=1

(Ωdt)m
m!

xc.

At first order in Ωdt, this yields

x′c − xc = Ωxcdt,which is usually written ∂txc = ⎛⎜⎝
ωx
ωy
ωz

⎞⎟⎠ × xc
where a×b stand for the usual cross product in R

3. The vector ω = (ωx, ωy, ωz)T is the so-called
angular velocity. Similarly, a first order approximation of (B.2) yields

∂tR
c
w = ΩRcw. (C.2)

This relation is extended to higher orders using the Hausdorff formula and the adjoint
representation of Lie groups and Lie algebras (see [Hall, 2003] and [Selig, 2005]). The matrix Rcw
that describes the relative attitude between two coordinate frames is often called the direction
cosine matrix. It is mainly used in the robotics communities. Since the angular rates or angular
velocities are provided by gyroscopes or gyrometers, it is often desired in inertial navigation to
integrate relation (C.2) from a given initial attitude and given embedded sensor measurements
to reconstruct the trajectory of a moving object. One must be cautious as the "orthogonal"
property of the rotation matrix is easily lost by numerical integration . The proper integration
method as described in [Radix, 1980] consists in right-multiplying the current orientation by a
so-called micro-rotator defined by

δR = I + sin θ

θ
Θ + 1 − cos θ

θ2
Θ2

where Θ is the skew-symmetric matrix associated to the vector θ, θ = ∥θ∥ and θ is obtained by
integration of

∂tθ = ω + 1

2
θ ×ω, θ(0) = 0, t ∈ [0, dt]. (C.3)

This holds for short time intervals dt.
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C.1. ATTITUDE AND ANGULAR VELOCITY

C.1.2 Quaternions

Quaternions were discovered by Hamilton in 1843: this fact was set in stone by the
mathematician himself by carving the multiplication of the three basic imaginary units on the
Broome Bridge in Dublin (although it appeared later that Gauss had made the same discovery
a few years before). Any quaternion q ∈ H can be written in the form q = q0 + q1e1 + q2e2 + q3e3
where (q0, q1, q2, q3) are real numbers and the three imaginary units satisfy

e21 = e22 = e23 = −1, e1e2 = e3, e2e3 = e1, e3e1 = e2
and the commutation of any of these products yields an opposite result. This is an extension
of the theory of complex numbers. Equivalently, a quaternion can be identified with a vector of
R
4, itself divided into a scalar (q0) and a vector (q) of R3. It follows that the product of two

quaternions p and q is

pq = ( p0q0 − p ⋅ q
p0q + q0p + p × q ) .

The norm ∥q∥ of a quaternion is the Euclidean norm of its representation as a vector of R4. The
conjugate of a quaternion q = (q0,q) is q∗ = (q0,−q) (like for the complex numbers, the imaginary
part is the opposite). Since q and q∗ have same norm ∥q∥, the inverse q−1 of q is q∗

∥q∥2
. A vector

x of R3 can be seen as an imaginary quaternion where the scalar part is simply zero.
Dot product and cross product are defined in H to coincide with the same operators in R

3:

p ⋅ q = 1

2
(pq∗ + qp∗), p × q = 1

2
(pq∗ − qp∗).

It appears then that the operator Rq ∶ x↦ q∗xq is a rotation as soon as ∥q∥ = 1, since it preserves
lengths and angles. The corresponding rotation matrix Rq can be written in the form

Rq = ⎛⎜⎝
q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎞⎟⎠ .
Conversely, any rotation can be represented by two unitary opposite quaternions. Identification
is made through the axis-angle representation of a rotation: any element R of SO(3) can be
represented by a scalar θ (the magnitude of rotation) and a unit vector u (the axis of rotation)
(and equivalently by their opposite). Then the quaternion q representing the same rotation is(cos θ

2
, sin θ

2
u). More details on this representation and identification with SO(3) can be found

in [Radix, 1980] and [Savage, 2000].
It can be proven that the time derivative of the quaternion representing the attitude of a

moving object with respect to a fixed frame is related to the angular velocity by

∂tq = 1

2
qω (C.4)

where ω is the vector of angular velocity in R
3. Numerical integration of quaternions is faster

than for direct cosine matrices and quaternions are "lighter" in terms of memory space: they are
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Appendix C. 3D rigid-body kinematics and quaternions

therefore favored for applications where real-time computation is necessary. But like for rotation
matrices, in case of imprudent numerical computations, quaternions may no longer be unitary.
A proper integration scheme is

qt+dt = qtδq
where δq is defined as

δq = (cos θ
2
,
sin θ

2

θ
θ)

where θ is computed by integration as in (C.3).

C.1.3 Euler angles

It is sometimes useful to see a direct cosine matrix as a succession of rotations about
predefined axis. They are as many representations (sequences) as possibilities to choose the
axis: in addition, the order of the sequence is also decisive since the group of rotations is not
commutative. An element of SO(3) is then uniquely defined by three angles of magnitude,
three predefined axis, and a sequence. One possibility is to choose three fixed axis, but in the
most popular choice, the axis of rotations are defined successively by the previous rotations:
this yields the Euler angles representation. We detail here one of these representations for a
coordinate frame where the axis are defined by the computer vision convention: the z axis is the
optical axis, the y axis point downwards and the x axis points towards the right of the image
(see figure C.1). Then, the convention adopted in this thesis is to define Euler angles (ψ, θ, φ) as

z

x

y

image plane

Figure C.1: Definition of the axis used to define the Euler angles of this dissertation

the successive rotations about axis y0, then about the newly defined axis x1, and finally about
the newly defined axis z2. This yields for (ψ, θ, φ) the usual names of yaw, pitch and roll. Figure
C.2 shows the sequence of rotations that defines the Euler angles. The representation with Euler
angles is particularly convenient because a given attitude R is simply defined by matrix product:
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C.2. POSITION, LINEAR VELOCITY AND ACCELERATION

y0
z0

x0

z1

x1

x1
y1=y0

y2

z1z2

z2

x3

y2y3

x2=x1

Ã µ Á

RÃ Rµ RÁ

Figure C.2: Euler angles definition

R = RφRθRψ, with

Rψ = ⎛⎜⎝
cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

⎞⎟⎠ , Rθ = ⎛⎜⎝
1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞⎟⎠ , Rφ = ⎛⎜⎝
cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎞⎟⎠ .
It is often more meaningful to represent an orientation with angles which are easy to figure
than with quaternions or matrices. However, computations with Euler angles are particularly
tedious and highly non-linear since they involve trigonometric functions. Moreover, a singularity
is encountered at θ = ±π

2
. In this thesis, Euler angles are only used to represent an attitude

with respect to another as an external output of navigation filters: we will never use them in the
observers themselves. This is why relations between angular velocities and time derivatives of
Euler angles are not given. They can be found in numerous textbooks including [Radix, 1980],
[Savage, 2000].

C.2 Position, linear velocity and acceleration

The position of a rigid-body with respect to another reference frame RW is simply the
coordinates of the origin C(t) of a reference frame Rcam attached to the moving body expressed
in RW . In this thesis, RW always refers to a reference frame attached to a physical point at the
earth’s surface. Earth’s rotation is neglected and RW is an inertial reference frame. In addition,
Earth’s curvature is also neglected. More details on reference frames commonly used in inertial
navigation or in radio navigation can be found in [Zarrouati, 1987]. The linear velocity of the
moving rigid-body relative to the inertial frame RW can be expressed in both frames of reference:

– in RW , the linear velocity, denoted V(t) is simply ∂tC(t);
– in Rcam, the linear velocity is denoted v(t) and is expressed as v(t) = q∗V(t)q, where q is

the quaternion representing the attitude of the rigid-body at time t (see paragraph C.1.2).
The acceleration γ of the moving rigid-body relative to RW expressed in Rcam satisfies

∂tv = v ×ω + γ
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where ω is the angular velocity introduced in Section C.1. The reason why acceleration is only
introduced in body coordinates is that the sensors used in this thesis are "strap-down" sensors,
rigidly attached to the moving body frame. Body coordinates is the natural expression of these
sensors. This is also the case for angular velocity. To be precise, embedded accelerometers
provide measurements of the specific acceleration a

γ = a − q∗Aq where A = ⎛⎜⎝
0

9.81

0

⎞⎟⎠ .
q∗Aq is the gravity acceleration expressed in the body frame Rcam. Finally, the linear velocity
expressed in Rcam satisfies

∂tv = v ×ω + a − q∗Aq. (C.5)

The main issue of inertial navigation with strap-down systems is encrypted in this equation: a
precise estimation of attitude is required to properly reconstruct linear velocity. In practice, this
also means that errors in acceleration measurements are indistinguishable of imprecise estimation
of attitude.

C.3 The Special Euclidean group

Another matrix Lie group of interest is the Special Euclidean group SE(n). The Euclidean
group E(n) by definition consists of all one-to-one, onto, distance-preserving maps of Rn to itself.
In fact, one can prove that every element of E(n) can be written uniquely as an orthogonal linear
transformation R followed by a translation T: it maps a vector x ∈ Rn into Rx +T ∈ Rn. It is
denoted (R,T). The product operation for E(n) is the following:

(R1,T1)(R2,T2) = (R1R2,T1 +R1T2).
The inverse of an element of E(n) is given by

(R,T)−1 = (R−1,−R−1T).
Since translations are not linear, E(n) is not a subgroup of GL(n,R), but it is isomorphic to a
subgroup of GL(n + 1,R): to any element (R,T) of E(n), one associates the matrix

( R T

01×n 1
) .

Product operator and inversion are then simply expressed as matrix multiplication and inversion.
SE(n) is the subgroup of E(n) where the element R is a member of SO(n). It actually describes
all rigid-body transformations of R

n. To be more specific, it enables to linearly express the
coordinates of a given fixed vector in a moving reference frame with respect to the coordinates
of the same vector in a fixed reference frame: it is an extrinsic calibration matrix (see Section
1.1.1).
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C.3. THE SPECIAL EUCLIDEAN GROUP

The Lie algebra of SE(n) is the set of all matrices X of Mn+1(R) of the form

( Ω V

01×n 0
) such that ΩT = −Ω.

In R
3, the infinitesimal generators at identity can be deduced from the Lie algebra of SO(3)

((C.1)) and the three unit vectors

Gvx = ⎛⎜⎝
1

0

0

⎞⎟⎠ , Gvy = ⎛⎜⎝
0

1

0

⎞⎟⎠ , Gvz = ⎛⎜⎝
0

0

1

⎞⎟⎠ .
They can be written in the form

G1 = ( Gωx 03×1
01×3 0

) , G2 = ( Gωy 03×1
01×3 0

) , G3 = ( Gωz 03×1
01×3 0

) ,
G4 = ( 03×3 Gvx

01×3 0
) , G5 = ( 03×3 Gvy

01×3 0
) , G6 = ( 03×3 Gvz

01×3 0
) .

Consider a vector expressed in a reference frame Rcam attached to a moving object with
respect to its coordinates in another fixed reference frame RW by

xc =Kxw

where K is a member of the Special Euclidean Group SE(n). A small variation of K, in other
words of the position and/or orientation of the moving object, is represented by an element(Ω,V) of the Lie algebra, with can be written in the form

(Ω,V) ≡∑
i

αiGi

This variation has the following effect on xc (see (B.1)):

x′c = exp∑i αiGi xc. (C.6)

Similarly (see equation (B.2)), a small variation of orientation and position applied to an
element K of SE(n) yields an new element K ′ which is given by

K ′ = exp∑i αiGi K. (C.7)
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INSTITUT DES SCIENCES ET TECHNOLOGIES

La réalité augmentée:

fusion de vision et navigation.

Résumé: Cette thèse a pour objet l’étude d’algorithmes pour des applications de réalité
visuellement augmentée. Plusieurs besoins existent pour de telles applications, qui sont traités
en tenant compte de la contrainte d’indistinguabilité de la profondeur et du mouvement linéaire
dans le cas de l’utilisation de systèmes monoculaires. Pour insérer en temps réel de manière réaliste
des objets virtuels dans des images acquises dans un environnement arbitraire et inconnu, il est
non seulement nécessaire d’avoir une perception 3D de cet environnement à chaque instant, mais
également d’y localiser précisément la caméra. Pour le premier besoin, on fait l’hypothèse d’une
dynamique de la caméra connue, pour le second on suppose que la profondeur est donnée en entrée:
ces deux hypothèses sont réalisables en pratique. Les deux problèmes sont posés dans le contexte
d’un modèle de caméra sphérique, ce qui permet d’obtenir des équations de mouvement invariantes
par rotation pour l’intensité lumineuse comme pour la profondeur. L’observabilité théorique de ces
problèmes est étudiée à l’aide d’outils de géométrie différentielle sur la sphère unité Riemanienne.
Une implémentation pratique est présentée: les résultats expérimentaux montrent qu’il est possible
de localiser une caméra dans un environnement inconnu tout en cartographiant précisément cet
environnement.
Mots clés: Réalité augmentée, systèmes de navigation, vision, algorithmes SLAM, estimation de
biais, profondeur, observabilité, géométrie différentielle, capteurs MEMS, données RGBD

Augmented reality:

the fusion of vision and navigation.

Abstract: The purpose of this thesis is to study algorithms for visual augmented reality. Different
requirements of such an application are addressed, with the constraint that the use of a monocular
system makes depth and linear motion indistinguishable. The real-time realistic insertion of virtual
objects in images of a real arbitrary environment yields the need for a dense 3D perception of this
environment on one hand, and a precise localization of the camera on the other hand. The
first requirement is studied under an assumption of known dynamics, and the second under the
assumption of known depth: both assumptions are practically realizable. Both problems are posed
in the context of a spherical camera model, which yields SO(3)-invariant dynamical equations for
light intensity and depth. The study of theoretical observability requires differential geometry
tools for the Riemannian unit sphere. Practical implementation on a system is presented and
experimental results demonstrate the ability to localize a camera in a unknown environment while
precisely mapping this environment.
Keywords: Augmented reality, navigation systems, vision, SLAM algorithms, bias estimation,
depth, observability, differential geometry, MEMS sensors, RGBD data
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