

Matériaux laser dopés terres rares impulsionnels dans la gamme spectrale 1 um et 1.5 um: efforts sur la montée en puissance et en cadence

Anael Jaffres

► To cite this version:

Anael Jaffres. Matériaux laser dopés terres rares impulsionnels dans la gamme spectrale 1 um et 1.5 um: efforts sur la montée en puissance et en cadence. Chimie inorganique. Université Pierre et Marie Curie - Paris VI, 2013. Français. NNT: . pastel-00973878

HAL Id: pastel-00973878 https://pastel.hal.science/pastel-00973878

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Anaël Jaffrès

Directeur de thèse: Bruno Viana Co-Directeur de thèse: Gérard Aka Encadrant: Pascal Loiseau

Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP)

20 décembre 2013

 Une grande diversité d'applications laser: médecine, industrie (soudure, découpe), défense, télécommunications...

Cible du LaserMégaJoule (énergie, défense, recherche)

Amplificateur à fibre dopée Erbium (télécommunications)

 Une grande diversité d'applications laser: médecine, industrie (soudure, découpe), défense, télécommunications...

Cible du LaserMégaJoule (énergie, défense, recherche)

Amplificateur à fibre dopée Erbium (télécommunications)

- Des longueurs d'onde laser requises variées: de l'IR à l'UV...
- Des milieux à gain divers: lasers à gaz, diodes lasers à semi-conducteurs, matériaux (verres ou monocristaux) dopés aux ions de transition ou de terres rares...

 Une grande diversité d'applications laser: médecine, industrie (soudure, découpe), défense, télécommunications...

Cible du LaserMégaJoule (énergie, défense, recherche)

Amplificateur à fibre dopée Erbium (télécommunications)

- Des longueurs d'onde laser requises variées: de l'IR à l'UV...
- Des milieux à gain divers: lasers à gaz, diodes lasers à semi-conducteurs, matériaux (verres ou monocristaux) dopés aux ions de transition ou de terres rares...
- Montée en puissance et en cadence: choix des monocristaux dopés terres rares et pompés par diodes laser
- Deux gammes spectrales étudiées: 1 µm et 1,5 µm

Plan

- 1. Monocristaux dopés Yb³⁺ pour application laser émettant à 1 µm
- Intérêt du composé CaGdAlO₄ (CALGO)
- Centres diffusants: voies de caractérisation et d'élimination
- Centres colorés: voies de caractérisation et d'élimination
- 2. Monocristaux dopés Er³⁺, Yb³⁺, Ce³⁺ pour application laser émettant à 1,5 µm
- Critères de choix des matériaux
- Croissance cristalline
- Caractérisations spectroscopiques
- Caractérisations laser

Conclusion

Plan

- 1. Monocristaux dopés Yb³⁺ pour application laser émettant à 1 μ m
- Intérêt du composé CaGdAlO₄ (CALGO)
- Centres diffusants: voies de caractérisation et d'élimination
- Centres colorés: voies de caractérisation et d'élimination
- 2. Monocristaux dopés Er³⁺, Yb³⁺, Ce³⁺ pour application laser émettant à 1,5 µm
- Critères de choix des matériaux
- Croissance cristalline
- Caractérisations spectroscopiques
- Caractérisations laser

Conclusion

- Génération d'impulsions laser ultra-brèves (<100 fs) de forte puissance moyenne
- Applications: chirurgie de l'œil, industrie (découpe, perçage), recherche...

- Génération d'impulsions laser ultra-brèves (<100 fs) de forte puissance moyenne
- Applications: chirurgie de l'œil, industrie (découpe, perçage), recherche...
- Matériau de référence: Ti:Sa
 Spectre d'émission large, impulsion de durée 5 fs
 Conductivité thermique élevée: 35 W.m⁻¹.K⁻¹
 - Limite liée au système de pompage YVO₄:Nd pompé par diode et doublé en fréquence Efficacité et compacité limitées

- Génération d'impulsions laser ultra-brèves (<100 fs) de forte puissance moyenne
- Applications: chirurgie de l'œil, industrie (découpe, perçage), recherche...
- Matériau de référence: Ti:Sa 1.0 Intensité [u.a.] absorption émission Spectre d'émission large, impulsion de durée 5 fs 0.5 Conductivité thermique élevée: 35 W.m⁻¹.K⁻¹ 😕 Limite liée au système de pompage YVO₄:Nd pompé par diode et doublé en fréquence 400 700 500 600 800 900 1000 Longueur d'onde [nm] Efficacité et compacité limitées
 - Téveloppement de matériaux dopés pompés par diodes commerciales

Diodes émettant à 800 nm @ Matériau dopé Nd³⁺

Diodes émettant à 980 nm @ Matériau dopé Yb³⁺

• Limitation principale: gestion des problèmes thermiques au sein du cristal

η ~ 25%

 Choix de la matrice pour laser de puissance et ultra-bref: compromis entre conductivité thermique élevée et large spectre d'émission

 Choix de la matrice pour laser de puissance et ultra-bref: compromis entre conductivité thermique élevée et large spectre d'émission

 Choix de la matrice pour laser de puissance et ultra-bref: compromis entre conductivité thermique élevée et large spectre d'émission

• Choix de la matrice pour laser de puissance et ultra-bref: compromis entre conductivité thermique élevée et large spectre d'émission

• Matériau désordonné: un seul site cristallographique partagé par Ca²⁺ et Gd³⁺

I4/mmm, cristal uniaxe Fusion congruente à T_f=1860°C

• Matériau désordonné: un seul site cristallographique partagé par Ca²⁺ et Gd³⁺

I4/mmm, cristal uniaxe Fusion congruente à T_f=1860°C

Large spectre d'émission (FWHM=80 nm)

• Sections efficaces d'absorption de l'ion Yb³⁺

 σ_{abs} =5.10⁻²⁰ cm² (π)

Pompage par diode à 980 nm

 σ_{abs} =5.10⁻²⁰ cm² (π)

Pompage par diode à 980 nm

Emission large et plate (σ)

Impulsions laser fs

• Résultats laser très prometteurs

Fortes puissances (continu)

- LCF (2012) (disque mince)
- 152 W/36% efficacité
- ILP Hambourg (2013) (massif)
- 30 W/57% efficacité

Résultats laser très prometteurs

S. Ricaud, Doctorat, Paris 11, (2012)/A. Diebold et al, Optics Letters 38, 19, 3842 (2013)/K.Beil et al, Optics Letters 38, 11, 1966 (2013)

Résultats laser très prometteurs

S. Ricaud, Doctorat, Paris 11, (2012)/A. Diebold et al, Optics Letters 38, 19, 3842 (2013)/K.Beil et al, Optics Letters 38, 11, 1966 (2013)

Résultats laser très prometteurs

S. Ricaud, Doctorat, Paris 11, (2012)/A. Diebold et al, Optics Letters 38, 19, 3842 (2013)/K.Beil et al, Optics Letters 38, 11, 1966 (2013)

• Matériau en voie de pré-industrialisation (FEE)

Utilisé dans les lasers commerciaux Montfort Laser
 M-FEMTO Sub-100fs 3W

3W/<100 fs/75 MHz M²<1,2 520 x 100 x 100 mm³

Applications: spectroscopie ultrarapide, chirurgie, micro-usinage...

• Matériau en voie de pré-industrialisation (FEE)

Utilisé dans les lasers commerciaux Montfort Laser
 M-FEMTO Sub-100fs 3W

3W/<100 fs/75 MHz M²<1,2 520 x 100 x 100 mm³

Applications: spectroscopie ultrarapide, chirurgie, micro-usinage...

Limite principale de ce matériau: qualité cristalline variable

😕 Centres diffusants (rendements laser perfectibles)

😕 Centres colorés (échauffement du matériau)

- Centres diffusants visibles par microscopie optique
- Géométrie et orientation identiques dans tous les cristaux
- Taille typique: 10 µm @ Phénomènes de diffusion importants, pentes d'efficacité laser limitées à 40-50%
- Pertes maximales estimées à 5%/mm

- Centres diffusants visibles par microscopie optique
- Géométrie et orientation identiques dans tous les cristaux
- Taille typique: 10 µm @ Phénomènes de diffusion importants, pentes d'efficacité laser limitées à 40-50%
- Pertes maximales estimées à 5%/mm
 - Tentatives de caractérisations infructueuses
 - × DRX
 - × ATD
 - × MEB
 - × FIB-MEB
 - Soit phases secondaires, soit bulles

Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- ☞ Excès de Gd³⁺-Yb³⁺ (1%): **5 cristaux de CALGO:5%Yb**

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- ☞ Excès de Gd³⁺-Yb³⁺ (1%): **5 cristaux de CALGO:5%Yb**

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- ☞ Excès de Gd³⁺-Yb³⁺ (1%): **5 cristaux de CALGO:5%Yb**

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- Excès de Gd³⁺-Yb³⁺ (1%): 5 cristaux de CALGO:5%Yb

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- Excès de Gd³⁺-Yb³⁺ (1%): 5 cristaux de CALGO:5%Yb

Voie d'élimination des centres diffusants n°1: Partir d'un mélange non-stœchiométrique

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- Excès de Gd³⁺-Yb³⁺ (1%): 5 cristaux de CALGO:5%Yb

8 Pas d'effet notable sur les centres diffusants

Voie d'élimination des centres diffusants n°1: Partir d'un mélange non-stœchiométrique

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- Excès d'un constituant (Ca²⁺) pour 'améliorer' la qualité cristalline pour les composés CaNdAlO₄, CaYAlO₄

Voie d'élimination des centres diffusants n°1: Partir d'un mélange non-stœchiométrique

- Fusion non-congruente, mélange non-stœchiométrique enrichie en RE³⁺pour les composés SrLaAlO₄, SrLaGaO₄, SrPrGaO₄
- Excès d'un constituant (Ca²⁺) pour 'améliorer' la qualité cristalline pour les composés CaNdAlO₄, CaYAlO₄
- Excès de Ca²⁺ (5%, 10%): 2 cristaux

8 Pas d'effet notable sur les centres diffusants

Voie d'élimination des centres diffusants n°2: Solution solide Ca²⁺-Sr²⁺

 Substitution Ca²⁺-Sr²⁺ qui stabilise la structure en évitant sa décomposition (dans le cas de CaLaAlO₄)

Voie d'élimination des centres diffusants n°2: Solution solide Ca²⁺-Sr²⁺

- Substitution Ca²⁺-Sr²⁺ qui stabilise la structure en évitant sa décomposition (dans le cas de CaLaAlO₄)
- Solution solide Ca²⁺/Sr²⁺ possible jusqu'à 50% (par réaction à l'état solide)

Voie d'élimination des centres diffusants n°2: Solution solide Ca²⁺-Sr²⁺

- Substitution Ca²⁺-Sr²⁺ qui stabilise la structure en évitant sa décomposition (dans le cas de CaLaAlO₄)
- Solution solide Ca²⁺/Sr²⁺ possible jusqu'à 50% (par réaction à l'état solide)
- Cristal de CALGOS:5%Yb: Solution solide Ca²⁺-Sr²⁺ (75%-25%)
- ☺ Suppression des défauts typiques du CALGO
- 😕 Mais apparition d'autres types de défauts (bulles)...

• Présence de centres colorés dans le cristal brut de croissance

1000°C/40h (Ar/H₂ 10%)

• Caractérisation optique: bande d'absorption large à 390 nm

sion CM

- Nature des centres colorés: polarons O⁻ (O²⁻ + h[•]) ?
- Polaron=Charge (électron ou trou) + Polarisation induite
- Petit polaron, grand polaron
- Polaron libre, polaron lié

- Nature des centres colorés: polarons O⁻ (O²⁻ + h[•]) ?
- Polaron=Charge (électron ou trou) + Polarisation induite
- Petit polaron, grand polaron
- Polaron libre, polaron lié
- Signature optique théorique du petit polaron lié:

on CM

- Nature des centres colorés: polarons O⁻ (O²⁻ + h[•]) ?
- Polaron=Charge (électron ou trou) + Polarisation induite
- Petit polaron, grand polaron
- Polaron libre, polaron lié
- Signature optique théorique du petit polaron lié:

Dans le cas du CALGO

M (eV)	HW (eV)	(HW)²/ M
2,8-3,5	0,3-0,6	0,06-0,1

O. F. Schirmer, *J. Phys. Condens. Matter*, vol. 18, no. 43, pp. R667–R704, 2006.

- Petit polaron lié: stabilisé par des défauts structuraux
- ☞ (V_{Ca})", (V_{Gd})",(V_{AI})" (lacunes)
- ☞ Gd_{AI} et Al_{Gd} (antisites)
- Environnements locaux riches en Ca²⁺ et déficitaires en Gd³⁺ (distribution inhomogène)

- Petit polaron lié: stabilisé par des défauts structuraux
- ☞ (V_{Ca})", (V_{Gd})",(V_{AI})" (lacunes)
- ☞ Gd_{AI} et Al_{Gd} (antisites)
- Environnements locaux riches en Ca²⁺ et déficitaires en Gd³⁺ (distribution inhomogène)

Forces d'oscillateur typiques du polaron (entre 0,01 et 0,1)
 Entre 5.10¹⁷ et 5.10¹⁸ O⁻/cm³, soit 0,00125%-0,0125% des oxygènes

Non détectable par spectroscopie diélectrique

Voie d'élimination n°2: introduire des charges + en excès **Substitution Al³⁺-M⁴⁺ (M⁴⁺: Zr⁴⁺, Ge⁴⁺, Ti⁴⁺, Si⁴⁺)**

Voie d'élimination n°2: introduire des charges + en excès **Substitution Al³⁺-M⁴⁺ (M⁴⁺: Zr⁴⁺, Ge⁴⁺, Ti⁴⁺, Si⁴⁺)**

• Par voie solide

✓ Substitution Al³⁺-M⁴⁺
 (M⁴⁺: Zr⁴⁺, Ge⁴⁺, Ti⁴⁺, Si⁴⁺) (1,
 2, 5, 10%)

Substitution Al³⁺-M⁴⁺ Effet de décoloration

Voie d'élimination n°2: introduire des charges + en excès **Substitution Al³⁺-M⁴⁺ (M⁴⁺: Zr⁴⁺, Ge⁴⁺, Ti⁴⁺, Si⁴⁺)**

2, 5, 10%)

Substitution Al³⁺-M⁴⁺ Effet de décoloration

• Par four à image (FAI)

Décoloration moins nette par FAI 17

Voie d'élimination n°2: introduire des charges + en excès **Substitution Al³⁺-M⁴⁺ (M⁴⁺: Zr⁴⁺, Ge⁴⁺, Ti⁴⁺, Si⁴⁺)**

• Par four à image (FAI)

Décoloration moins nette par FAI

Conclusion sur les lasers à 1 µm (CALGO:Yb)

- CALGO:Yb matériau d'intérêt pour les lasers de forte puissance moyenne et ultra-brefs: bonne conductivité thermique et large plateau d'émission
- Potentiel laser déjà démontré: 5,1 W/62 fs/65 MHz (2013)
- Limite principale: qualité cristalline variable

Conclusion sur les lasers à 1 µm (CALGO:Yb)

- CALGO:Yb matériau d'intérêt pour les lasers de forte puissance moyenne et ultra-brefs: bonne conductivité thermique et large plateau d'émission
- Potentiel laser déjà démontré: 5,1 W/62 fs/65 MHz (2013)
- Limite principale: qualité cristalline variable
- Centres diffusants: soit phases secondaires, soit bulles
- Croissance à partir d'un mélange non-stœchiométrique: pas d'effet
- Solution solide 75%Ca²⁺-25%Sr²⁺: disparition des centres diffusants typiques mais d'autres défauts (bulles) sont induits

Conclusion sur les lasers à 1 µm (CALGO:Yb)

- CALGO:Yb matériau d'intérêt pour les lasers de forte puissance moyenne et ultra-brefs: bonne conductivité thermique et large plateau d'émission
- Potentiel laser déjà démontré: 5,1 W/62 fs/65 MHz (2013)
- Limite principale: qualité cristalline variable
- Centres diffusants: soit phases secondaires, soit bulles
- Croissance à partir d'un mélange non-stœchiométrique: pas d'effet
- Solution solide 75%Ca²⁺-25%Sr²⁺: disparition des centres diffusants typiques mais d'autres défauts (bulles) sont induits
- Centres colorés: polarons O⁻ lié à des défauts structuraux
- Substitution Al³⁺-M⁴⁺ (M=Zr, Ge, Ti, Si): décoloration nette par voie solide, peu d'effet au four à image

CM CP

Plan

- 1. Monocristaux dopés Yb³⁺ pour application laser émettant à 1 µm
- Intérêt du composé CaGdAlO₄ (CALGO)
- Centres diffusants: voies de caractérisation et d'élimination
- Centres colorés: voies de caractérisation et d'élimination
- 2. Monocristaux dopés Er³⁺, Yb³⁺, Ce³⁺ pour application laser émettant à 1,5 µm
- Critères de choix des matériaux
- Croissance cristalline
- Caractérisations spectroscopiques
- Caractérisations laser

Conclusion

Intérêt de cette longueur d'onde
 Zone de sécurité oculaire

Intérêt de cette longueur d'onde

 Zone de sécurité oculaire

 Zone de transportence de l'otm

 Zone de transportence de l'otm

Zone de transparence de l'atmosphère

- Intérêt de cette longueur d'onde @ Zone de sécurité oculaire
 - Zone de transparence de l'atmosphère
 - Minimum d'absorption fibres optiques

- Intérêt de cette longueur d'onde 🖙 Zone de sécurité oculaire
 - Zone de transparence de l'atmosphère
 - Minimum d'absorption fibres optiques

• Applications: Sécurité oculaire, télémétrie, télécommunications

- Emission laser à 1,5 µm
- Dopant Er^{3+,} ~0,5% (6,7.10¹⁹ at.cm⁻³)
- Pompage par diode InGaAs à 980 nm

- Emission laser à 1,5 µm
- Dopant Er³⁺, ~0,5% (6,7.10¹⁹ at.cm⁻³)
- Pompage par diode InP à 1500 nm
- 8 Efficacité faible et encombrement des diodes de pompe
- Θ σ_{abs} Er³⁺: ⁴I_{13/2} faible (<1.10⁻²⁰ cm²)
 □ η=90%

- Emission laser à 1,5 µm
- Dopant Er³⁺ + Codopant Yb³⁺
- Pompage par diode InGaAs à 980 nm
- © Compacité, faible coût
- \odot Absorption optimale, σ_{abs} Yb^{3+: } {}^{2}F_{5/2} ~2-3.10 $^{-20}$ cm 2

8 η=60%

- Emission laser à 1,5 µm
- Dopant Er³⁺ + Codopant Yb³⁺
- Pompage par diode InGaAs à 980 nm
- © Compacité, faible coût
- \odot Absorption optimale, σ_{abs} Yb^{3+: } {}^2F_{5/2} ~2-3.10 $^{-20}$ cm 2

8 η=60%

- Emission laser à 1,5 µm
- Dopant Er³⁺ + Codopant Yb³⁺
- Pompage par diode InGaAs à 980 nm

- Choix de la matrice
- Sites d'insertion compatibles
- Bonnes propriétés thermomécaniques
- Fréquence de phonons idéale autour de 1100 cm⁻¹
- Recouvrement spectral Yb-Er
- Choix des dopants
- Concentrations Er³⁺, Yb³⁺
 (efficacité du transfert d'énergie, processus parasites)
 - Codopage Ce³⁺ éventuellement

Introduction Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion

Chimie Paris

ParisTech

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser

Matériaux	croissance	Conductivité thermique k (W.m ⁻¹ .K ⁻¹)	Temps de vie Er ³⁺ : ⁴ I _{13/2} / Efficacité transfert énergie Yb-Er	Performances Laser	
Er, Yb				En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}
Verre (phosphate)	/	0.8	8 ms/> 90%	350 mW/1535 nm	10-20 mJ/1535 nm

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Introduction Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C D. ParisTech Temps de vie **Performances Laser** Matériaux Conductivité Er³⁺:⁴I_{13/2}/ Croissance thermique k Efficacité dopés $(W.m^{-1}.K^{-1})$ Er, Yb transfert énergie En continu **Q-Switch** Yb-Er P_{max}/λ_{laser} E_{max}/λ_{laser} Verre **8.0** 10-20 mJ/1535 nm 8 ms/>90% 350 mW/1535 nm (phosphate)

 Recherche de nouveaux matériaux cristallins pour application laser en régime Q-Switch à forte cadence afin de remplacer le verre commercial

Introduction Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion

Chimie Paris

ParisTech

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser

Matériaux dopés C Er, Yb	Conductivité Croissance thermique k (W.m ⁻¹ .K ⁻¹)	Temps de vie Er ³⁺ : ⁴ l _{13/2} /	Performances Laser		
		(W.m ⁻¹ .K ⁻¹)	transfert énergie Yb-Er	En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}
Verre (phosphate)	1	0.8	8 ms/> 90%	350 mW/1535 nm	10-20 mJ/1535 nm
Aluminate YAG	CZ	11	7.7 ms/ 55%	30 mW/ 1645 nm	1.7 mJ/1645 nm

Introduction Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion

Chimie Paris

ParisTech

Matériaux dopés Er, Yb	Croissance Conductivité thermique k (W.m ⁻¹ .K ⁻¹)	Conductivité	Temps de vie Er ³⁺ : ⁴ I _{13/2} / Efficacité transfert énergie Yb-Er	Performances Laser	
		(W.m ⁻¹ .K ⁻¹)		En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}
Verre (phosphate)	1	0.8	8 ms/> 90%	350 mW/1535 nm	10-20 mJ/1535 nm
Aluminate YAG	CZ	11	7.7 ms/ <mark>55%</mark>	30 mW/ 1645 nm	1.7 mJ/ <mark>1645</mark> nm
Borate YAB	Flux	4,5	0.3 ms/90%	1W/1555 nm	0.5 mJ/1555 nm
Introduction Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion

Chimie Paris

ParisTech

Matériaux	Oraionana	Conductivité	Temps de vie Er ³⁺ : ⁴ I _{13/2} / Efficacité transfert énergie Yb-Er	Performances Laser	
Er, Yb	Croissance	(W.m ⁻¹ .K ⁻¹)		En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}
Verre (phosphate)	/	0.8	8 ms/> 90%	350 mW/1535 nm	10-20 mJ/1535 nm
Aluminate YAG	CZ	11	7.7 ms/ 55%	30 mW/ 1645 nm	1.7 mJ/1645 nm
Borate YAB	Flux	4,5	0.3 ms/90%	1W/1555 nm	0.5 mJ/1555 nm
Vanadate (YVO ₄ , GdVO ₄)	CZ	9	2.5 ms/ <mark>55%</mark>	125 mW/1600 nm	0.2 mJ/1600 nm

Introduction Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion

Chimie Paris

ParisTech

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser

Matériaux	iaux Croissance Conductivité Er ³⁺ : ⁴ I _{13/2} / thermique k (W.m ⁻¹ .K ⁻¹) Efficacité Yb-Er	Conductivité	Temps de vie Er ³⁺ :4I _{13/2} /	Performances Laser	
Er, Yb		transfert énergie Yb-Er	En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}	
Verre (phosphate)	1	0.8	8 ms/> 90%	350 mW/1535 nm	10-20 mJ/1535 nm
Aluminate YAG	CZ	11	7.7 ms/ 55%	30 mW/ 1645 nm	1.7 mJ/1645 nm
Borate YAB	Flux	4,5	<mark>0.3 ms/90%</mark>	1W/1555 nm	0.5 mJ/1555 nm
Vanadate (YVO ₄ , GdVO ₄)	CZ	9	2.5 ms/ <mark>55%</mark>	125 mW/1600 nm	0.2 mJ/1600 nm
Silicate (CAS, YSO)	CZ	2-4	8 ms/70-80%	20 mW/1555 nm	/

- Familles des silicates
- $\$ Ca₂Al₂SiO₇ (CAS) et Y₂SiO₅ (YSO)
- Bonnes propriétés spectroscopiques
- © Effet laser déjà démontré

- Familles des silicates
- $\$ Ca₂Al₂SiO₇ (CAS) et Y₂SiO₅ (YSO)
- Bonnes propriétés spectroscopiques
 Effet laser déjà démontré
- Dérivé du CAS: Ca₂Ga₂SiO₇ (CGS)
- Dérivé du CAS: SrGdGa₃O₇ (SGGM)

- Familles des silicates
- $\$ Ca₂Al₂SiO₇ (CAS) et Y₂SiO₅ (YSO)
- Bonnes propriétés spectroscopiques
 Effet laser déjà démontré
- Dérivé du CAS: Ca₂Ga₂SiO₇ (CGS)
- Dérivé du CAS: SrGdGa₃O₇ (SGGM)
- Famille des aluminates
- CaGdAlO₄ (CALGO)

- Familles des silicates
- $\$ Ca₂Al₂SiO₇ (CAS) et Y₂SiO₅ (YSO)
- Bonnes propriétés spectroscopiques
 Effet laser déjà démontré
- Dérivé du CAS: Ca₂Ga₂SiO₇ (CGS)
- Dérivé du CAS: SrGdGa₃O₇ (SGGM)
- Famille des aluminates
- CaGdAlO₄ (CALGO)
- Famille des sesquioxydes (céramiques transparentes)

Familles des silicates

- Bonnes propriétés spectroscopiques
- Effet laser déjà démontré
- Dérivé du CAS: Ca₂Ga₂SiO₇ (CGS)
- Dérivé du CAS: SrGdGa₃O₇ (SGGM)
- Famille des aluminates
- CaGdAlO₄ (CALGO)
- Famille des sesquioxydes (céramiques transparentes)

Familles des silicates

- ③ Bonnes propriétés spectroscopiques
- Effet laser déjà démontré

Stratégie

- Détermination des taux de dopants optimaux
- Croissances par méthode Czochralski
- Caractérisations spectroscopiques
- Caractérisations laser

- Cristal uniaxe tétragonal, P-42₁m
- Croissance cristalline par technique Czochralski
- T_f=1580°C, creuset Pt-Rh, sous air

0,5%Er, 2,25%Yb, 2,5%Ce v=0,2 mm.h⁻¹, 20 tpm, germe // c

0,5%Er, 2,5%Yb, 3,3%Ce v=0,2 mm.h⁻¹, 20 tpm, germe // a

0,5%Er, 2,5%Yb, 3,3%Ce v=0,1 mm.h⁻¹, 30 tpm, germe // c

Introduction Gamme spectrale 1 μm Gamme spectrale 1,5 μm Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser

- Qualité cristalline: présence de stries espacées de quelques centaines de um
- Pas d'influence de l'orientation du germe
- Influence de la vitesse de croissance: défauts moins visibles

☞ v_{corps}=0,2 mm/h

- Qualité cristalline: présence de stries espacées de quelques centaines de um
- Pas d'influence de l'orientation du germe
- Influence de la vitesse de croissance: défauts moins visibles

☞ v_{corps}=0,1 mm/h

 σ_{abs} =2,8.10⁻²⁰ cm² (σ) Pompage par diode à 980 nm © 90% absorbé pour 3 mm d'épaisseur

Sections efficaces de gain de l'ion Er³⁺

 σ_{em} =0,8-1,3.10⁻²⁰ cm²

 λ_{laser} >1535 nm pour β =60%

• Temps de vie expérimentaux à 1 µm et 1,5 µm

Matériau	τ @ 1 μm (μs)	τ @ 1,5 μm (ms)
CAS:Er, Yb, Ce	200-250	7,5-8

• Temps de vie expérimentaux à 1 µm et 1,5 µm

Matériau	τ @ 1 μm (μs)	τ @ 1,5 μm (ms)
CAS:Er, Yb, Ce	200-250	7,5-8

• Estimation de l'efficacité du transfert d'énergie Yb³⁺-Er³⁺ (ETE)

$$\text{ETE} = 1 - \frac{\tau_{Yb-Er}(1\,\mu m)}{\tau_{Yb}(1\,\mu m) \sim 900\mu s}$$

• Temps de vie expérimentaux à 1 µm et 1,5 µm

Matériau	τ @ 1 μm (μs)	τ @ 1,5 μm (ms)
CAS:Er, Yb, Ce	200-250	7,5-8

• Estimation de l'efficacité du transfert d'énergie Yb³⁺-Er³⁺ (ETE)

$$ETE = 1 - \frac{\tau_{Yb-Er}(1 \ \mu m)}{\tau_{Yb}(1 \ \mu m) \sim 900 \ \mu s}$$

Pour le CAS ETE=75-85%

Introduction Gamme spectrale 1 μm Gamme spectrale 1,5 μm Conclusion C

Résultats Laser en régime continu

Cavité biconcave

- M1, r=5 mm, HR @ 1500-1650 nm, HT @ 950-980 nm
- M2, r=5 mm, T_{OC} =2%@ 1555 nm, >70%R @ 950-980 nm
- Diamètre de pompe: 100 µm
- Diamètre du faisceau laser: 60 µm

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Introduction Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C 🗅 ParisTech Résultats Laser en régime continu Cavité biconcave Diode Laser M1, r=5 mm, HR @ 1500-1650 @ 980 nm nm, HT @ 950-980 nm Diamètre 100 um M2, r=5 mm, T_{OC} =2%@ 1555 nm, M1 M2 f=100 f=100 NA 0.22 >70%R @ 950-980 nm Diamètre de pompe: 100 µm Diamètre du faisceau laser: 60 µm Cristal

- P_{max}=270 mW
- Pente d'efficacité: 10%
- $\lambda_{\text{laser}} = 1555 \text{ nm}$

Résultats Laser en régime quasi-continu

Cavité à 3 miroirs

- M1 plan, HT à 980 nm/HR à 1550 nm
- M2 concave, r=100 mm, HR à 1550 nm
- OC plan, T_{oc}=4 ou 7% à 1550 nm
- Diamètre de pompe: 200 µm
- Diamètre du faisceau laser: 120 µm

THALES

Introduction Gamme spectrale 1 μm Gamme spectrale 1,5 μm Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C P

Résultats Laser en régime quasi-continu

Cavité à 3 miroirs

- M1 plan, HT à 980 nm/HR à 1550 nm
- M2 concave, r=100 mm, HR à 1550 nm
- OC plan, T_{oc}=4 ou 7% à 1550 nm
- Diamètre de pompe: 200 µm
- Diamètre du faisceau laser: 120 µm

- f=10Hz, T=10 ms
- Rapport cyclique η =T×f=10%

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C P

Résultats Laser en régime quasi-continu

Cavité à 3 miroirs

- M1 plan, HT à 980 nm/HR à 1550 nm
- M2 concave, r=100 mm, HR à 1550 nm
- OC plan, T_{oc}=4 ou 7% à 1550 nm
- Diamètre de pompe: 200 µm
- Diamètre du faisceau laser: 120 µm

- f=10Hz, T=10 ms
- Rapport cyclique η =T×f=10%

Echantillons testés

- CAS-2//e=2,8 mm
- Verre phosphate//e=2 mm

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C

Gamme spectrale 1 µm Gamme spectrale 1,5 µm

Résultats Laser en régime quasi-continu

Introduction

Verre phosphate

Chimie Paris

ParisTech

 P_{laser} =60 mW/eff=15%

THALES

Conclusion

Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser

Gamme spectrale 1 µm Gamme spectrale 1,5 µm

Résultats Laser en régime quasi-continu

Introduction

- Verre phosphate
 P_{laser}=60 mW/eff=15%
- CAS-2

Chimie Paris

ParisTech

P_{laser}=90 mW/eff=6%

THALES

Conclusion

P_{laser}=15 mW/eff=4%

- P_{laser}=60 mW/eff=15%
- CAS-2
- P_{laser}=90 mW/eff=6%

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Chimie Pari Introduction Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C 🔊 ParisTech Résultats Laser en régime quasi-continu THALES T_{OC}=4% à 1550 nm T_{oc}=7% à 1550 nm 110 100 CAS-2//e=2,8 mm 100 CAS-2//e=2,8 mm 90 verre phosphate//e=2 mm verre phosphate//e=2mm 90 80 80 Fusion du verre 70 70 60 P_{laser} (mW) P_{laser} (mW) 60 50 50 40 40 Fusion du verre 30 30 20 20 T_{oc}=4% à 1550 nm T_{oc}=7% à 1550 nm 10 10 0 200 400 600 800 1800 2000 0 1000 1400 1600 1200 200 400 600 800 1000 1200 1400 1600 1800 2000 P_{abs} (mW) P_{abs} (mW) Verre phosphate Verre phosphate P_{laser}=15 mW/eff=4%

CAS-2

- P_{laser}=60 mW/eff=15%
- CAS-2
- P_{laser}=90 mW/eff=6%

Plaser=80 mW/eff=5,5%

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Chimie Pari Introduction Conclusion Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C 🔊 ParisTech Résultats Laser en régime quasi-continu THALES T_{oc}=4% à 1550 nm T_{oc}=7% à 1550 nm CAS-2//e=2,8 mm CAS-2//e=2,8 mm verre phosphate//e=2 mm verre phosphate//e=2mm Fusion du verre P_{laser} (mW) P_{laser} (mW) Fusion du verre T_{oc}=4% à 1550 nm T_{oc}=7% à 1550 nm P_{abs} (mW) P_{abs} (mW)

- Verre phosphate
- Sond pour P_{abs}=0,5 W
- CAS-2
- ③ Intact pour le maximum de la puissance disponible

Résultats Laser en régime Q-Switch

THALES

AO=modulateur acousto-optique

Conditions de pompage

- f=10Hz, T=2,5 8, 10 ms
- Rapport cyclique η =2,5, 8, 10%
- T_{oc}=4% à 1550 nm

Echantillons testés

- CAS-2//e=2,8 mm
- Verre phosphate//e=2 mm

Introduction Gamme spectrale 1 μm Gamme spectrale 1,5 μm Conclusion

Résultats Laser en régime Q-Switch

THALES

Conditions de pompage

- f=10Hz, T=2,5 8, 10 ms
- Rapport cyclique η =2,5, 8, 10%
- T_{OC}=4% à 1550 nm

Echantillons testés

- CAS-2//e=2,8 mm
- Verre phosphate//e=2 mm

AO=modulateur acousto-optique

Impulsion laser Q-Switch obtenue dans CAS-2

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Conclusion Chimie Paris Introduction CM Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C 🔊 ParisTech **Régime Q-Switch** THALES Verre phosphate E_{max} =1,45 mJ 1,5 $\eta_{G} = 5\%$ Kigre 1,4 1,3 erre 1,2 η_G=8% 1,1 $1\eta_{G}^{}=2\%$ 1,0 Fusion 0,9 E_{Q-Switch} (mJ) 0,8 0,7 0,6 0,5 0,4 0,3 0,2 - Verre Kigre//e=2mm 0,1 0,0

20

0

40

60 80 100 120 140 160 180 E_{abs}/impulsion (mJ)

Gamme spectrale 1 µm Gamme spectrale 1,5 µm Chimie Paris Introduction Conclusion CM Choix des matériaux Croissance cristalline Caractérisations spectroscopiques Caractérisations laser C 🔊 ParisTech **Régime Q-Switch** THALES Verre phosphate CAS-2 E_{max} =1,45 mJ E_{max}=1,45 mJ 1,5 η_{G} =5% Kigre η_c=8% 1,4 η_c=5% 📕 1,3 η_c=10% 1,2 η_G=8% 1,1 η_{G} =2% 1,0 usion 0,9 (fu) 0,9 0,8 E_{Q-Switch} 0,7 0,6 0,5 0,4 η_c=2% 0,3 CAS-2//e=2,8mm 0,2 Verre Kigre//e=2mm 0,1 0,0 20 40 60 80 100 120 140 160 180 0 E_{abs}/impulsion (mJ)

Energies similaires pour le cristal CAS et le verre phosphate
 Meilleure résistance au pompage incident pour le CAS

Conclusion sur les lasers à 1,5 µm (CAS:Er, Yb, Ce)

•Nouveaux matériaux cristallins pour application laser en régime Q-Switch à forte cadence afin de remplacer le verre commercial

- •Croissance cristalline de cristaux de Ca₂Al₂SiO₇: Er, Yb, Ce
- Présence de stries
- Voies d'amélioration possibles
 Jouer sur les paramètres de croissance

Conclusion sur les lasers à 1,5 µm (CAS:Er, Yb, Ce)

•Nouveaux matériaux cristallins pour application laser en régime Q-Switch à forte cadence afin de remplacer le verre commercial

- •Croissance cristalline de cristaux de Ca₂Al₂SiO₇: Er, Yb, Ce
- Présence de stries
- Voies d'amélioration possibles
 Jouer sur les paramètres de croissance
- Obtention de 270 mW de puissance laser à 1555 nm et pente d'efficacité de 10% en régime continu
- 1^{er} résultats laser en régime Q-Switch

☺ E_{Q-Switch}=1.4 mJ

☺ Pas de fracture (jusqu'à 150 mJ d'énergie absorbée /pulse)

☺ Energies similaires à celles du verre phosphate commercial (mais ce dernier fond pour 50 mJ d'énergie absorbée /pulse)

Perspectives

CALGO et CAS: Matériaux avec un potentiel laser fort mais perfectibles en matière de qualité cristalline

Perspectives

- CALGO et CAS: Matériaux avec un potentiel laser fort mais perfectibles en matière de qualité cristalline
- Perspectives pour les lasers à 1 µm (CALGO:Yb)
- -Effet bénéfique d'un codopage par l'ion Zr⁴⁺ sur la décoloration des monocristaux de CALGO:Yb³⁺ ? Croissance par méthode Czochralski
- -Solutions solides Ca²⁺-Sr²⁺ (avec des taux de strontium entre 5 et 20% par exemple):piste intéressante à tester pour éliminer les centres diffusants
- -Solutions solides CaGdAlO₄-CaYAlO₄
- -Autres techniques de croissance: flux, Bridgman...

Perspectives

- CALGO et CAS: Matériaux avec un potentiel laser fort mais perfectibles en matière de qualité cristalline
- Perspectives pour les lasers à 1 µm (CALGO:Yb)
- -Effet bénéfique d'un codopage par l'ion Zr⁴⁺ sur la décoloration des monocristaux de CALGO:Yb³⁺ ? Croissance par méthode Czochralski
- -Solutions solides Ca²⁺-Sr²⁺ (avec des taux de strontium entre 5 et 20% par exemple):piste intéressante à tester pour éliminer les centres diffusants
- -Solutions solides CaGdAlO₄-CaYAlO₄
- -Autres techniques de croissance: flux, Bridgman...
- Perspectives pour les lasers à 1,5 µm (CAS:Er,Yb,Ce)

-Optimisation des paramètres de croissances afin de supprimer les stries observées

-Tester des matrices similaires au composé CAS (CGS, CAGS)

Remerciements

G.Aka P.Loiseau B.Viana J.C.Badot A.Suganuma F.Pacaud B.Gomes de Melo.... F.Druon S.Ricaud J.Pouysegur P.Georges

M.Jacquet M.Escudier I.Estève

D.Rytz S.Vernay C.Liebald

 Voie possible pour éliminer les stries: modifier la matrice de départ Ca₂Al₂SiO₇ (CAS)

Ca₂Al_{2-x}B_xSiO₇ (CABS)

- Substitution Al³⁺-B³⁺
- Diminuer T_f
- ⊗ ATD: fusion congruente ?
- ☺ Voie solide: phases parasites
- ☺ FAI: matériau non transparent
- ☺ Incorporation du bore limitée

 Voie possible pour éliminer les stries: modifier la matrice de départ Ca₂Al₂SiO₇ (CAS)

Ca₂Al_{2-x}B_xSiO₇ (CABS)

- Substitution Al³⁺-B³⁺
- Diminuer T_f
- ⊗ ATD: fusion congruente ?
- ℬ Voie solide: phases parasites
- SFAI: matériau non transparent
- ☺ Incorporation du bore limitée

Ca₂Ga₂SiO₇ (CGS) Ca₂AlGaSiO₇ (CAGS)

- Substitution Al³⁺-Ga³⁺
- Diminuer T_f + stries
- \odot Voie solide
- 🙂 FAI
- ⊗ Croissance Czochralski de

Ca₂Ga₂SiO₇:0,5%Er, 2,5%Yb, 3,3%Ce

Matériaux	Conductivité thermique k (W.m ⁻¹ .K ⁻¹)	Temps de vie Er ³⁺ : ⁴ l _{13/2} /	Performances Laser		
Er, Yb		transfert énergie Yb-Er	En continu P _{max} /λ _{laser}	Q-Switch E _{max} /λ _{laser}	
Verre (phosphate)	0.8	8 ms/>90%	350 mW/1535 nm	10-20 mJ/1535 nm	
Aluminate YAG	11	7.7 ms/55%	30 mW/1645 nm	1.7 mJ/1645 nm	
Borate (YCOB, YAB)	2-4	0.3-1.3 ms/90%	1W/1555 nm	0.5 mJ/1555 nm	
Vanadate (YVO ₄ , GdVO ₄)	9	2.5 ms/55%	125 mW/1600 nm	0.2 mJ/1600 nm	
Silicate (CAS, YSO)	2-4	8 ms/70-80%	20 mW/1555 nm	/	

Simondi-Teisseire *et al*, *IEEE J. Quant. Elec.*, 32, 11, 2004 (1996)/Chen *et al*, *IEEE J. Quant. Elec.*, 48, 5, 616 (2012) Georgiou *et al*, *Opt. Eng.*, 44, 6, 064202 (2005)/Ryabtsev *et al*, *App. Phys. B*, 108, 2, 283 (2012) Tolstik *et al*, *App. Phys. B*, 86, 2, 275 (2006)

- Synthèse de compositions Ca_{2(1-x-y-z)}Er_{2x}Yb_{2y}Ce_{2z}Al₂SiO₇ par voie solide
- x = 0,5 % Er³⁺, soit 6,20.10¹⁹ ions.cm⁻³
- Taux d'ions Yb³⁺ variable (y = 0 à 15 %)
- Taux d'ions Ce³⁺ variable (z = 0 à 3,33 %)
 - Estimation du transfert d'énergie Yb³⁺-Er³⁺

$$\eta{=}1{-}\frac{{}^{\tau}Yb}{{}^{\tau}}{}^{0}_{Yb}({\sim}900~\mu s)$$

 τ_{Yb} : temps de vie de Yb³⁺ en présence d'ions Er³⁺ à 1 µm τ_{Yb}^{0} : temps de vie de Yb³⁺ en l'absence d'ions Er³⁺ à 1 µm Mesures de temps de vie à 1 µm et 1,5 µm

2 compositions optimisées pour le CAS

© 0,5%Er³⁺, 2,25%Yb³⁺, 2,5%Ce³⁺ 0,5%Er³⁺, 2,5%Yb³⁺, 3,3%Ce³⁺

	Dopage théorique	Dránaration de la	Conditions de croissance				
Matériau		charge	Laboratoire	Germe	V _{corps} (mm.h ⁻¹)	Rotation (tpm)	
CALGO:Yb 8 cristaux	5%Yb	1% excès RE³+	LCMCP	⊥ C	0,6	30	
					0,3		
					0,1		
			FEE		0,6		
				//a	0,5	12	
					0,5		
		5% excès Ca²+	LCMCP	⊥ C	0,6	30	
	Non dopé	10% excès Ca ²⁺	FEE	//a	0,7	12	
CALGOS:Yb 1 cristal	5%Yb	Stoechiométrique Ca _{0.75} Sr _{0.25} Gd _{0.95} Yb _{0.05} AlO	LCMCP	⊥ C	0,6	30	
CALGO:Er, Yb, Ce 3 cristaux	0,5%Er 7,5-15%Yb 0-3,3%Ce	stoechiométrique	LCMCP, FEE	⊥ c //a	0,4-0,6	12 -30	