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INTRODUCTION

Metal sheets are widely used in many different industries and have many applica-
tions (see Figure 1): construction (covering roofs, decoration), automotive, aeronautical
and more generally transport industry, domestic electrical appliances, packaging and many

other applications including tables, storage units...

Figure 1: Different uses of metal sheets.
From left to right: In construction, for medical storage, in automotive bodies, in aircraft
parts, in packaging and other applications such as tables.
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1 Motivation of this study

The manufacturing of all these goods includes cold rolling as a major step, producing
the semi-finished products which are then stamped or deep-drawn, bent, fine cut etc.
(sheet metal forming). Stringent quality requirements are imposed on these semi-finished
products. The geometry is one of the most critical. The format of the sheets (width /
thickness) must be obtained precisely and with as little oversize as possible: extra-width
is given for free (material cost) or has to be trimmed (processing cost and material loss).
The thickness must be very precise and this is expressed in um. Moreover, for ease of
manipulation at the customers, the thickness variations across the width ("strip profile",

or "strip crown") and along the length must be kept to a minimum.

Figure 2: Different types of flatness defects encountered during cold rolling.
From left to right: Wavy edges and center buckles [THI website].

The shape or flatness is most critical, as any departure from flatness may result in
poor further processability and unacceptable defects of the final product. This is the sub-
ject of this memoir. The main categories of flatness defects are shown in Figure 2. They
cause many problems for both producers and customers. They generate e.g. manipulation
or assembling difficulties, put further processing at risk (stamping e.g.); moreover their
wavy aspect may remain even after painting, which is not acceptable by the buyer of an
expensive car or even a beverage can.

The common nature of these different shapes is elastic buckling, a mechanical instability
which induces spurious out-of-plane displacements when a critical in-plane compressive
load is applied on a thin product. Their origin is the roll elastic deformation which results
in a heterogeneous thickness reduction of the sheet, hence differential elongation. This in
turn causes self-balanced residual stress fields in the pre- and post-bite areas, with part
of the sheet being in compression. Compression of a very thin sheet almost necessarily

means buckling.
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Once generated, these defects are difficult to eliminate. This requires careful inspec-
tion, further processing such as leveling, with the corresponding investment and labor
cost. Flatness defects should therefore be prevented, or at least kept to such a low level
that their correction will be a benign operation. This is done by implementing powerful
and complex on-line measurement systems (stress-meter rolls), complex stands with nu-
merous actuators (roll bending, shiftable rolls etc.) and automatic control techniques and

algorithms, an overview of which is given in the next chapter.

All this equipment is best used if the mechanics of the flatness defects and the response
to actuation are accurately known. One way to gain expertise in this multifactorial, highly
coupled problem is to develop a rolling model capable of predicting the state of the cold
rolled strip. Based on information extracted from such a model, one could adjust the

rolling conditions and prevent flatness problems.

To be complete, surface aspect and mechanical properties are other important require-
ments. The latter is of interest to us as new, harder alloys are being put in service to help
build lighter cars e.g. for environmental reasons. Harder alloys, leading to higher rolling

loads and more roll deformation, result in enhanced flatness control difficulties.

A final remark: all these technical constraints must be combined with maximum

productivity in order to produce even cheaper.

2 Aim of this study

.Arcelorl\/[ittal and Constellium, two major metal sheets producers, own a Finite Ele-
ment Method (FEM) based rolling model named Lam3/Tec3. In the case of sheet rolling,
the Tec3 module couples roll thermo-elastic deformation with strip plastic deformation.
This allows computing the stresses and strains in the roll bite, roll loads and torques, roll
deformation and strip transverse thickness profile, thermal fields... It also determines the
complex post-bite stress field resulting from heterogeneous strain.

This capacity is easily exploited for the simulation of rolling cases where sheets remain flat
on the mill (under interstand or coiling strip tension forces). But the standard version of
Lam3/Tec3 [Hacquin, 1996] is not equipped to predict defects if sheets do buckle on line.
In such cases, one finds major differences between computed and measured post-bite stress
profiles, because at buckling a thorough stress redistribution occurs, which is not captured

in the absence of a buckling computing algorithm. It has been shown [Abdelkhalek, 2010|
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that fortunately, this error made on the out-of-bite fields has no significant impact on the
in-bite stress and strain fields, efforts and roll deformation, or final strip profile. If the
ambition is limited to such results, the software works perfectly.

If the post-bite stress field is an expected result, or if a fortiori flatness defects are at
stake, the standard version is no more sufficient. This limitation is usually fought by
transporting the (incorrect) stress field into a structural mechanics tool which detects
the buckling bifurcation, telling if a defect will be found or not; if it has a post-buckling
capacity, it will also yield the shape of the defects (mode, wavelength, amplitude) and the
(corrected) stress field. Note that both the shapes and stresses under strip tension forces

(on the mill) and after tension cancellation (at the customers) are of interest.

Abdelkhalek extended the capacity of Lam3/Tec3 towards flatness problems by im-

plementing two models:

1) Lam3/Tec3-Abdelkhalek performs a strong coupling of a fairly simple buckling model
with the stress field determination, inside Lam3/Tec3. The strong coupling, at
constitutive model level, allows any possible elastic-plastic deformation / buckling
interactions to be taken into account. On the other hand, this model is limited to
buckling on line, under tension forces. It can detect buckling, but does not give the

shape of the defects. It does not require much more time than Lam3/Tec3 itself.

2) Lam3/Tec3-MAN couples in a staggered scheme the rolling software with a powerful
shell FEM software concentrating on buckling and post-buckling studies thanks to an
advanced non-linear solver based on a method called ANM (Asymptotic Numerical
Method). The coupling procedure is unfortunately complex and tedious, and it
requires long computing times. But it is able of quantify defects in all respects,
describing the post-buckling state of the strip under tension as well as after tension

cancellation, in a single computation.

The aim of this study is to develop a buckling model combining the advantages of both
models. It should be able to detect the defective zone, describe the flatness defect (mode)
and quantify it (amplitude and wavelength), predict the post-buckled state of the strip
(including relaxed stresses). Yet it should be simple enough to be completely immersed in
the rolling model Lam3/Tec3 in a strong coupling with stress determination. Indeed, the
objective is to provide the industrial partners with two tools based on the same buckling

theory:

¢ a decoupled version which can be used as a post-processor for the stress field determined
by Lam3/Tec3;
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o a coupled version, a rolling-buckling model, similar to Lam3/Tec3-Abdelkhalek but

with an additional capacity to quantify the geometry of flatness defects.

3 Structure of this memoir

&

Chapter 1 presents an overview of the rolling process for unfamiliar readers, with a
focus on flatness defects: the rolling mills in so far as their features are connected
with flatness defects, the mechanical origin of flatness defects, their measurement,

control systems.

<

Chapter 2 surveys literature on the different methods dealing with buckling, especially

those which have been applied to flatness defects in rolling processes.

<

Chapter 3 completes the description, exploiting one of those, the buckling model im-
plemented in Lam3/Tec3 by Abdelkhalek, in a quick study of the effects of different

rolling mill actuators on flatness defects.

Chapter 4 describes the multi-scale buckling model (MSBM), the central development

of this PhD work. The theoretical presentation is completed with simple applications

<&

to academic examples, with a comparison to results in the literature.

<

Chapter 5 the multi-scale buckling model is used in a decoupled manner to predict
on-line flatness defects for a real rolling operation, testing in addition its response

to changing friction and work roll bending force.

&

Chapter 6 explores the coupling of Lam3/Tec3 and MSBM, again confronting the

results with previous work.

&

Finally, general conclusions and recommendations are drawn.
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CHAPTER 1

AN OVERVIEW ON THE ROLLING

PROCESS

Life is not about waiting for the storm to pass.... It is about learning to
dance in the rain.
by Paulo Coelho
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Chapter 1. An Overview on the Rolling Process

Z n this chapter, a quick overview of the rolling process is presented to simplify the sub-
ject to unfamiliar readers. The objective of this brief description is a better understanding
of the procedure and the origin of the flatness problems and their different types. For
more detailed descriptions, the readers are invited to refer to more complete sources such
as [Roberts, 1978], [Roberts, 1988], [Ginzburg, 2009] and [Pittner & Simaan, 2011].

From start to finish, the metal forming process is a sequence of continuous sub-processes
transforming raw material to semi-finished then, finished products ready to use. The most
important ones are:

- Extracting the metal from its ore.

For Steel: Blast furnace / Electric furnace, Oxygen furnace (Figure 1.1).

For Aluminum: Electrolysis method. An Aluminum ore is first converted into pure alu-
minum oxide AlyO3 by the Bayer Process and then electrolyzed into molten aluminum.
- Continuous casting

- Reheating

- Descaling

- Hot rolling and cooling

- Pickling/Rinsing operations

- Cold rolling

- Quality Improvement and finishing

Next, we mainly focus on the steel making process as an example.

1.1 From Blast furnace to cold rolling: A survey of

Steel making

In the blast furnace, iron ore, coal and limestone (the raw materials of steel) are
continuously supplied through the top of the furnace. From below, a continuous blast
of superheated air soften the raw materials and the chemical reactions transform them
into molten iron. The molten metal and slag are tapped from the bottom and waste
gases exit from the top. Adding steel scrap to molten iron into an oxygen furnace, it is
now transformed into molten steel (see Figure 1.1). The molten metal feeds a continuous
casting process containing different molds. The shapes of the molds will determine the
forms of the semi-finished products. After cooling, straightening and cutting, blooms!,

slabs? and billets? are ready to be further processed to produce materials in standard form
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such as plates, sheets, rails, tubes and structural sections.

The forces shift to forming and finishing which determine even more of the steel char-
acteristics. The semi-finished shapes are refined to final specifications utilizing two main

. initial rolling steps are done by Hot Rolling then followed by Cold

rolling processes
Rolling if needed (see Figure 1.2). This present study is dedicated to flat rolling processes;
in particular, to cold rolling of thin strips and to the industrial difficulties encountered
during this process, such as flatness defects. From now on, only flat rolling is considered.
Since a metal is highly resistant to shaping when cold, it must be hot rolled first. Thus,
slabs are reheated in furnaces where the evolution of the piece temperature is monitored.
Once the right temperature is reached, the piece is descaled to remove any built up scale
then fed into hot rolling mills. During this step, pieces are deformed above their recrys-
tallization temperature. The main reason for hot rolling is that at elevated temperatures,
metals weaken and become more ductile. Thus, the thickness reduction will be much
easier.

Hot rolling offers the possibility of producing a very large shape change and/or reduction
in a single working step, without causing large amounts of internal stress or cracks. Hot
rolling can remove some defects that occur in cast metals. It can close gas pockets (bub-
bles) or voids in a cast billet; and it may also break up non-metallic slag which sometimes
get caught in the melt (inclusions).

The surface finish of hot worked metal tends to be coarse and rough because: i) The rolls
wear and ii) there is the constant problem of scale formation on the surface of the hot
metal due to oxidation.

During hot rolling steps, scale is formed on the metal. The scale must be removed before
cold rolling, otherwise surface defects occur. Several processes are used. In the aluminum
industry e.g., the skin of the just cast plate is scraped (machined away), no further descal-
ing operation is needed. In steel hot rolling, water jet descaling is by far the most frequent:
a high pressure water jet (150 bars) impacts the slab / strip surface; the resulting brutal
cooling and the temperature gradient build up very high stresses which fracture the oxide,
peel it off and the fragments are finally washed away by the water. This is done first at
the exit of the reheating furnaces, and then a second time after the roughing mill (i.e.
before the entry into the finishing mill). As oxide re-grows in the finishing mill and on
the run-out table, descaling is needed again just before cold rolling. This is usually done
by pickling in an hydrochloric acid bath, then, the strip is rinsed to remove any excess

acid.

!Blooms: bars 150 to 400 mm?

2Slabs: parallelepipeds 500 to 1800 mm wide and 50 to 300 mm thick

3Billets: bars 40 to 150 mm?

4Rolling process is the process of plastically deforming metal drawn by means of friction into the gap
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Scrap —_—

Ladle
Metallurgy
and
Yacuum
Degassing

Figure 1.1: The Steel making process [ltvsteel website]

formed by two revolving rolls. The compressive forces applied by the rolls reduce the thickness or shape
the cross section area of the rolled material, where the final geometry of the product depends on the
contour of the roll gap. For a better understanding and examples, see Figure 1.2
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Pickling and Cold strip
oiling

Slab Skelp Welded pipe

Continuous
casting or >
ingots

Wire and wire
products

Bloom

Figure 1.2: Schematic outline of the most important flat-and-shape-rolling operations
[Steel website|
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1.2 Cold rolling

Metals are plastically deformed at room temperature. Cold rolling is applied after
hot rolling to obtain and enable accurate dimensions of the final product as well as a
better surface finish and good mechanical properties.

Cold rolling presents several advantages:

i) Thinner walls are possible (thickness < 0.5 mm) ,

ii) Dimensional accuracy can be excellent because the product does not have to shrink on
cooling.

iii) Usually there is no significant oxidation.

iv) The final properties of the sheets can be closely controlled and, if desired, the high
strength obtained during cold rolling can be retained; alternatively high ductility can be

restored by annealing if needed.

Tension |Compression

Tension |Compression

Figure 1.4: Rolling defects: (a) wavy

Figure 1.3: Residual stress gener- edges; (b) zipper cracks in the center of
ated during rolling processes (after the strip; (c) edge cracks; and (d) alliga-
[Kalpakian & Schmid, 2003]). toring (after [Hosfor & Caddell, 1993]).

Defects may be present on the surfaces or in the products. They are undesirable as
they compromise surface appearance and adversely affect strength, formability and other
manufacturing characteristics. Figure 1.4 shows different types of defect found during cold
rolling. For example, cracks are due to poor material ductility at the rolling temperature.
However, the main focus of this study is a class of geometrical defects called flatness
defects, detailed in section 1.4. Indeed in cold rolling, sheets (0.1 mm ~ 1 mm thickness)
show a great sensitivity to residual stress® which can generate some flatness defect. Figure

1.3 illustrates the appearance of a non-uniform residual stress, in the thickness for instance.

After cold rolling, coils may be shipped directly. A growing proportion of steel strips

is however coated to improve / diversify surface properties. In most cases, strips undergo

SResidual stress: stress trapped in the rolled product due to nonuniform plastic deformations
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further plastic deformation processes (sheet metal forming), which requires ductility. An-
nealing® is introduced in such cases. For carbon steel, it must be followed by temper
rolling (or skin pass rolling), a small reduction pass (0.3 -3%) which improves flatness and

imparts a specific surface topography on the strip surface’.

1.3 Cold rolling mills

1.3.1 Description of the main stand geometries

There are many types of rolling mills -to a certain extent, one cannot find two of
a kind. In modern cold rolling practice, two-high, four-high, six-high and cluster-type
mills, including the Sendzimir mills, constitute the principal examples of single-stand
mills. They differ by the number and size of their rolls.
Rolls are classified as work rolls (WR), intermediate rolls (IR) or backup rolls (BUR)
depending on their role.
The work rolls are the ones that enter directly in contact with the rolled material and
apply the forces that will reduce the section. They are made of material harder than the
strip: cast iron, cast and forged quenched and tempered hot working tool steels, High
Speed Steels for hot rolling, high-Cr steels for Al cold rolling... The barrel may have a
slightly larger diameter in the center, in which case it is said to have a "crown". This
feature and its impact on flatness will be discussed in section 1.4.3.
The back-up rolls are intended to provide rigid support to the work rolls to prevent bend-
ing upon rolling load. They have usually a larger diameter than the work rolls, up to two

or three times greater.

The Two-High mill (illustrated in Figure 1.5) is the oldest type used for cold reduction
of steel. Nowadays it is used mainly for temper rolling’” .  The Four-High Mill (illus-
trated in Figure 1.6) is by far the most frequent mill stand for cold rolling of strip. It
is essentially formed by two work rolls backed up with two bigger rolls. Their action is
complemented by profile and flatness actuators, the most common are the bending of the
mill rolls (Work Roll Bending - WRB - or Back-up Roll Bending - BURB).

The six high-mill arranged in six layers (illustrated in Figure 1.7) finds application mainly
in final passes during cold rolling. Once the strip goes through the gap, the shiftable ta-
pered intermediate rolls move laterally in a way to align or dis-align their edge with the

strip edge. As shown in Figure 1.8 b), the tapered shape of the intermediate roll can

6 Annealing is a heat treatment in which the metal is heated, then cooled under controlled conditions
to relieve internal stresses and/or soften the metal and restore its ductility
"For more details check section 1.4.4 a)
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offer more space for the work roll to deflect and thus, less reduction near the edge and
less waviness. Combined with the roll bending -used to correct center defects-, this mill

allows optimally flat sheets.

f f

Figure 1.5:  Two-High Mill (after Figure 1.6:  Four-High Mill (after
[Roberts, 1978]) [Roberts, 1978])

(a) _! -

Figure 1.7: Six-High Mill with shiftable
intermediate rolls (after |[Roberts, 1978])

Figure 1.9: From left to right: Six- roll Mill, Twelve-roll Mill, Twenty-roll cluster Mill
(known as Sendzimir mill) (after [Roberts, 1978]) .
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To utilize still smaller diameter work rolls while maintaining rigidity, the BUR must
support the WR not only against vertical bending, but also in the horizontal plane. Six-
roll cluster mills organized in four layers (illustrated in Figure 1.9.a)) were put into use
for this purpose. However, there is a limit to the BUR / WR ratio attainable due to steric
hindrance (the BUR must not touch each other, while making contact with the WR). To
overcome this difficulty, stands with BUR organized in several layers have been designed,
such as the twelve-high mill illustrated in Figure 1.9.b). One step further, the Sendizmir
mills were developed in the 1950s (Figure 1.9.c)) and gained worldwide acceptance for
two fundamental reasons. First, these mills can be built more economically than non-
reversible four-high mills of comparable reduction capacity. Second, the small work rolls
(diameters usually 40 - 100 mm) of this cluster mill promised lower working forces and a

much closer accuracy than other mills [Roberts, 1978].

1.3.2 A brief, simple analysis of the roll stack design

With the aim of explaining the different kinds of stands and their evolution, it is
important to clarify how roll sizes affect the roll force, and how roll force affects elastic
roll deformation. The latter is written as follows in terms of R the roll radius, h and [
the strip thickness and width, Ly;. the roll-strip contact length, Ah the strip thickness

reduction , u the friction coefficient and oy the average yield stress of the strip:

L.
F = 00.l.Lijge-(1 + k.. I;Zte) and Ly = VAR (1.1)

This equation is not sufficient to accurately predict the roll force, although this or similar
forms can be used for on line models, thanks to the fitting factor . It gives a global idea
on its evolution with the different interesting parameters such as the roll radius. It shows
that the roll force is at least proportional to the square root of the roll radius through
Lyite. For given friction coefficient, width and thickness, a smaller radius gives a lower roll
force to achieve the same reduction Ah.

Lower roll load means either that the mill can be built less strong and therefore cheaper,

or that harder or wider strip can be rolled on the same mill.
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Stiip tension

Figure 1.10: Sketch of the roll defor-
mation under the rolling load, showing
roll bending and flattening at contact
[Gratacos et al., 1992.b)].
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Figure 1.11: The roll flattening component
of roll deformation is roughly proportional
to the rolling load [Montmitonnet, 2003].

The second point of importance is roll deformation, schematically described in Figure

1.10. Under the contact stress field, rolls undergo a complex 3D elastic deformation,

which is often summarized by two major components :

1) roll bending: considering a roll as a (quasi) cylindrical beam loaded by the rolling

force F distribution on part of its length (Figure 1.12), an estimate of the deflection

at any point z along the beam can be given |Gere & Goodno, 2012]:

F
5, = oL'zx(2L — L (2? — L?) — xL(2® — L
sir7g 2L QL — L)@ — 17) — 2L(a® — L7
— o(L— LN+ L(x — L")
D&
] — beam
64

(1.2)

in which L and Dy, are respectively the cylindric beam length and diameter, F'

the rolling load applied on a part L’ of its length, £ Young’s modulus and I the

area moment of inertia.

This shows that bigger rolls are much more resistant to bending. Hence, if small WR

are preferred, big BUR are necessary. The formula also shows that the problem is

most critical for wide mills (large L) and of course for hard materials (large contact

stress).
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Figure 1.12: Deflection of a simply supported beam under uniform load

2) roll flattening is the local shortening of a roll radius under the compression undergone
in the bite. It is limited to the immediate vicinity of the contact surface, and is to a
first approximation proportional to the local load distribution or stress (see Figure
1.11) : an important feature is that the larger the roll radius, the larger flattening
is (in pm), and the more difficult it is therefore to obtain precise dimensions and
a precise shape. Near the edges, the transition between the contact area and the
roll outside the contact gives birth to the edge drop defect, an excess of reduction
which is also strongly connected with flatness defects in the case of thin strips.
Roll flattening and its effect on e.g. the contact length is often estimated (very
approximately) by Hitchcock’s formula (based on approximations which make the

roll / strip contact amenable to Hertz elastic contact) [Hitchcock, 1935] :

2
R =R, <1+%Aﬂh) (1.3)
E and v are the roll elastic parameters, Ry the initial and R the deformed roll
radius, F the roll load per unit width. As F'in turn depends on R as shown above, an
iterative scheme is necessary to fully exploit this simple formula (a graphical, simple
coupling has been in use for a long time). The formula shows that low reductions as
well as high loads are critical factors for roll flattening. For instance, low reduction
on a very thin strip under rather high friction (such as occurs in temper rolling)

gives high I and small Ah, resulting in a very severe roll deformation problem,
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contrary to intuition [Krimpelstitter, 2005].

1.3.3 Multi-stand mills

The total reduction needed cannot be achieved in one single pass. Taking the
example of hot steel strip rolling, starting from a cast slab 250 mm thick, it takes about
12 passes to reach thickness between 6 and 1.5 mm (average reduction per pass: 27% to
35%). Cold rolling down to 0.3 - 0.8 mm typically takes 5 more passes, and two stands may
be necessary to roll it further down to 0.13 - 0.15 mm as needed for 'can making’. Part of
this hot rolling stage can be made on a reversing mill, i.e. a single stand in which the slab
passes several times, reversing the rolling direction. This makes the investment lower, but
the productivity moderate. To produce millions of tons, a series of non-reversing stands

is preferable.

N — &) . & -
< © )

Reversing mill Non-coupled multi-stand mill Tandem mill

Figure 1.13: Schematic solutions for multi-pass rolling.

Thus, three types of hot strip rolling lines can be found:

i) the whole hot rolling schedule is performed on a reversing mill.

ii) a non-coupled multi-stand mill followed by a 7-stand tandem mill is the standard for

large production steel plants.

iii) a reversing mill for the "roughing" stage (first passes on thick slabs) followed by a
tandem "finishing" mill; this the case most of the time for light alloys (5 stands

finishing mill) and sometimes for steel (6 or 7 stands finishing mill)

For aluminum as well as for steel, the standard cold rolling mill is a tandem mill (3
stands e.g. for Al, 5 stands for carbon steel). But stainless steel, or hard carbon steels
(more generally, hard, thin strips), are cold rolled on reversing cluster mills such as Sendz-

imir mills.

The tandem / non tandem character is important as it conditions the application of

strip tensions. These are forces applied in the rolling direction between the stands i) to
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guide the strip, keep it in the center of the mill and reasonably flat, ii) to decrease rolling
loads - in plasticity, if a tensile stress is applied in RD, the compressive contact stress
in ND decreases by the same amount, iii) to take part in flatness control. On reversing
cold mills, tensions are applied by coilers, whereas inter-stand tensions are applied by
the roll differential velocity from stand to stand in tandem mills. Of course, on a non-
coupled multi-stand mill without coilers such as on the hot roughing mill, no tension can

be applied (it is not necessary at this stage anyway).

1.3.4 Problem definition

In this study, four-high mills are used for all the simulations (Figure 1.14), where
the applied front and back tensions are essential : i) to ensure the flatness of the rolled
strip, ii) to prevent the strip from strolling in the transverse direction and iii) to reduce
the rolling force.

Common actuators in this mill are bending work and back-up rolls, spot cooling system

and tension changing (check section 1.4.3 for a more complete description ).

Rolling load Rolling load

\

Work roll

Rl \/\/ork-piece — - .
Back Font IV el
Tension Tenslon

Figure 1.14: 4-hi mill

AS mentioned earlier, the next and final step after Cold rolling is the "Quality,
flatness Improvement and Surface finishing". Before proceeding, one must understand
exactly why it is indispensable: what are flatness defects, their origins and how to prevent

their appearance.
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1.4 Flatness problems in cold rolling

In this section the problem of flatness defects encountered during cold rolling is
presented as well as the best known flatness measurement methods and different ac-
tuators available to control and prevent their appearance. Unless specified otherwise,
the sources of information used in this section are |[Roberts, 1978|, [Roberts, 1988| and
|Ginzburg, 2009].

1.4.1 Phenomenology of Flatness defects

The term flatness in cold rolling means "the ability of the strip to lie flat when no
tension is applied".
During cold rolling, there is no significant width increase of the strip normally but the
thickness reduction taking place in the bite leads to proportional increase in the length.
To obtain the best strip flatness possible, both the strip thickness profile and the roll-bite
profile under load should match perfectly. Otherwise, the thickness reduction and its
corresponding length increases non-uniformly across the width of the strip and therefore
flatness defects appear.
Another important notion is the "manifest" or "latent" defect. This identification in-
troduced by Wistreich in [Wistreich, 1968| states that "flatness problems may be there,
invisible, even if the strip appears to be flat". Residual stress may be trapped inside the

metal and can generate flatness defect once the strip is trimmed for instance.

Marrow strip
: 3 B A‘\ =
__d_(--'I \VA\
_—
coil set cross bow tarsion
Broad strip
-~ >
k"\, ) fh\\\_a{“ @ &\\
wiavy cdges one-sided collbreaks central buckles
wavy edges

Figure 1.15: Flatness defects in cold rolling: bow shaped defects and waviness
defects.[ARKU website]

Two major flatness problems arise during cold rolling (illustrated in Figure 1.15) and
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could be corrected using different approaches:

-Bow shaped defects like coil set, cross bow and torsion. The main reason for these
types of defects is a corresponding asymmetry between the work rolls. Coil set refers
to a dis-symmetric o,,(2) residual stress profile, possibly due to a difference between the
rolls speeds or diameters. Cross bow betrays a dis-symmetric o, (2) stress profile, whereas
torsion shows complex gradients of stress. These developable defects (in the mathematical
sense of surface geometry) are reversible and can be corrected by passing the strip through
a simple plastic bending process.

-Waviness defects (non-developable) like wavy edges, one-sided wavy edges, coil-breaks
and central buckles are the most complex types. The elongation gradient combined with
a nonuniform residual stress distribution generates waves across the strip length: The
difference in length is balanced by residual stress and waves appear once the amount of
locally compressive residual stress exceeds the buckling limit of the strip. Wavy edges

and center buckles are the most common ones during cold rolling.
= |
L E |
X (RD)
(a) (c)

Figure 1.16: From a neutral crowned roll to wavy edges: An increase in rolling force causes
more work roll deflection, the space between the rolls is smaller near the edges (b) and
gives rise to bigger reduction on the edge, leading to a compressive residual stress on the
sides (c) and finally waves along the strip edges (d). (after [Kalpakian & Schmid, 2003])

uoissaidwoof uoisusL  Z

Buckling edges are the result of a mismatch of strip crown® and work rolls crown® due
to roll flattening near the edge (narrow waves) or to excessive roll bending (wide waves)
under higher load. The reduction is thus not uniform, the strip is thinner on the edges.
This means that residual stresses are compressive on the edges and if higher than the

buckling limit, they cause wavy edges (Figure 1.16).

8Check Appendix A
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Buckling center is the converse of wavy edges, when non-uniform reduction generates
compressive stresses in the center. Note that waviness can also occur in the width or
diagonally in the strip. This study is however devoted only to waviness occurring in the
rolling direction (across the length of the strip as illustrated in Figure 1.17). All these
waviness types cannot be eliminated simply and require post-rolling leveling processes
(see section 1.4.4) .

The high demand for an increasing productivity, thinner sheets and optimal quality at
the same time requests necessarily a better understanding and control on appearance of
flatness defects in the first place. To this aim, different methods and control actuators

are presented next in section 1.4.3.

1.4.2 Flatness Measurements

As mentioned earlier, the conventional expression of flatness is the maximum of
deviation from a horizontal flat surface ( Figure 1.17), described through wave height
H and wavelength I. The width (or depth) of the defect denoted D was introduced
in [Yuen et al., 2003] and used to give even richer characterization for wavy edge prob-
lems. The width of the buckles is an interesting parameter particularly in rolling where
producers aim to minimize as possible the width of these types of defects. In addition
to this conventional expression, two flatness parameters were introduced for characteriz-

ing flatness of sheets presenting longitudinal buckles: the steepness and the flatness index.

= 3 —* Lref

o

Figure 1.18: Schematic representa-
tion of the ’slit” method where the
Figure 1.17: Representation of a sheet strip strip is considered as a series of lon-
showing wavy edges. gitudinal cuts of differing length

The steepness index S is defined according to Eq. (1.4) for a sheet presenting waves
of height H and a wavelength [.

S = T (1.4)

The second parameter is the flatness index noted I. In order to measure the exact flatness,
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a series of longitudinal cuts can be made, the elastic stress is relaxed as in (Figure 1.18).
Using the length of one of these strips as a reference L,.; (usually the shortest one), the

T-unit value is defined as follows:
AL

1
Lref

10° (1.5)

where AL is the difference between the concerned cut and the reference cut. The scaling
with 10° was introduced for this flatness unit (I-unit'®) definition. Since it is impossible
to slice every strip to assess its quality, it is important to be able to continuously measure
this flatness defect online. In the case of latent defect, with the application of tension, the
wave may not appear and the latter method is unable to measure flatness without some
adjustments:

Hooke’s law expresses AL in term of F, (V) the force (which can be measured) required
to elongate the cuts length AL from the reference Length L,.;:

AL F,

e (1.6)

E
Lo A

where A is the cross section area and E the Young’s Modulus.
Combining Egs. (1.5) and (1.6), the flatness index I for two adjacent cuts ¢ and j is

calculated as:

I;; — -
77 Ly AE

(1.7)

1.4.2.1 Online measurement system for latent defects

a) Flatness Rolls During rolling, some defects may not show because of the applied

tension giving the strip a flat appearance. The best way to assess the flatness of the
strip post-rolling (after releasing the tension), is to be able to measure the residual
stress distribution. A flatness rolls system is mainly formed by a roll used as a deflector
roll in the mill equipped with a series of sensors (up to 60 sensors with a resolution of
52 mm) giving measurements on each zone. The roll should be placed with a slight
deflection with the strip, the radial force is measured under the applied tension, then

the stress value given by each sensor ¢ is determined as:

7
7 Fc

- 0= 1-
2.kl ytsin(g) (18)

o
where « is the wrap angle between the strip and the roll, 2, y*, F and o’ are respec-
tively the thickness, the width, the force of contact and the stress value determined

on the zone 1.

1077 — ynit = 1027
m
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Figure 1.19: On the left: Schematic representation of the 'flatness rolls’” measurement
system. On the right: An example of measurement

Once the stress distribution is determined, one can predict the post-rolling flatness by
deducting the tension Ty. If the profile of o,, — Tj (illustrated in Figure 1.19) shows
a compression in the center for instance, the expected defect is center buckles.

Stress measuring systems present some uncertainties due to several deficiencies. For
instance, in the case of thermal originated stress, a stress distribution is measured and
analyzed to predict the type of the flatness defect. Once the strip cools down, the same
distribution is no longer valid and the expected defect is not necessarily the same as
predicted earlier. Another limitation is due to insufficient number of sensors on the

edges where most of the problems occurs during cold rolling.

Speed Sensor Meter The first flatness system based on speed sensors was developed

by Person in [Person, 1964]. It is based on the idea of non-uniform deformation in cold

rolling which contributes in a difference in speed and length from a zone to another.

Using the tangential speed, flatness was determined in terms of where V,..; is the

ref

is directly proportional to
ref ref
flatness can be measured using Eq. (1.7).

reference speed value. And since , once again the

Note that this measurements system can easily be disturbed due to sliding between
the rolls and the rolled piece. In addition, it is not effective in the case of manifest
defects; the measurements are disturbed by the defects translated as noise affecting

the corresponding data.

1.4.2.2 Online measurement system for manifest defects

a)

Shapeline The shapeline system, illustrated in Figure 1.20, is based on a laser line

triangulation. The line is spread in one dimension to make a fan of light. The shape

of the line determines the flatness of the strip. A straight line means the strip is flat.
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Otherwise, the flatness measure is determined by using the deflection of the line.

Figure 1.21: (a) an example of the

camera photo of the defect line,
Figure 1.20: Schematic representation of the (b) the topography describing the
‘shapeline’ flatness measurement system shape of the sheet.

This procedure can be repeated periodically and series of the 2D-shapelines observed
with a 2D matrix camera can be transformed into a 3D topographical data (see Figure
1.21b) ).

Moiré Method was first developed by Meadows et al. in [Meadows et al. , 1970] and
Takasaki [Takasaki, 1970], then applied to flatness measurements during strip rolling
in [Kantola et al., 1996] and [Paakkari, 1998]. This system presented in Figure 1.22

consists in projecting a grating on the rolled strip. It is called reference plane grating.

Then the deformed grating is captured. The aim is superposing the reference image
and the image of the actual strip. The result is a Moiré image (Figure 1.23) saved,
treated and converted into 3D topographic image representing the strip contour and

flatness.
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(a)

Figure 1.23: (a) projected reference
grid, (b) captured deformed grid (c)
Figure 1.22: Schematic representation of the Moiré photo superposing the latter
"Moiré projection’ flatness measurement sys- two grids and illustrating the state
tem of the defective sheet.

Shapeline, Moiré as well as any other laser based measurement method show serious
difficulties for high speed rolling processes. That’s why these types of measurement
systems are normally installed on inspection lines or in the case of low speed rolling

process.

Meplaca
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Figure 1.24: The ’Meplaca’
measurement system Figure 1.25: An example of manifest flatness defect
|Indwitech website| map measured by Meplaca [Arcelormittal website]

Developed by Arcelormittal, Meplaca is a new contactless measurement device for strip
flatness online (see Figure 1.24) . It is basically a series of condensers aligned to match
the width of the rolled sheet, distant of a few centimeters (5 cm ~ 10 cm) from each
other (strip/condenser). This distance should be chosen carefully in the case of a sheet
presenting strong geometrical defects so that the device does not run up against the
strip. When the rolled strip is passing by, Meplaca records the variation of the electric

tension. It corresponds to the distance separating the condensers from the sheet sur-
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face. These variations are transformed using a specialized software into a geometrical
description which allows viewing the state of the strip immediately during rolling (Fig-
ure 1.25) . Despite its capacities, this device is considered expensive compared to the
latter ones, and shows calibration difficulties. As stated earlier, the distance between
the strip and the condensers should be chosen carefully for each strip depending on

the type and the magnitude of the manifest defect.

1.4.3 Online Flatness control and actuators

As explained in section 1.4.1, uneven roll gap leads to non-uniform reduction i.e.

different length increase from strip fiber to another. Thus flatness defects will take place.

To adjust the roll gap, several methods consisting in adjusting the work roll shape are

available and thus improving the shape and flatness of the strip. We cite :

a)

Roll bending Roll bending is the most powerful method to change the shape of the

work roll. A positive bending results in a negative roll crown; it offers less reduction
in the center and therefore is useful to prevent the appearance of center buckles. A
negative bending force gives a positive crown (less reduction on the edges) and therefore

is used to correct wavy edges.

Note that, the work roll crown can

be adjusted also by the use of bend- \ = /
ing backup rolls or intermediate —Gtrbings: bending

(shiftable or not) rolls. Even bet- M

ter, these two actuators (WR bend- —
ing and BR bending) can be com-

Roll bending shape

bined (linearly) as illustrated in Fig-

Width of the rolls

ure 1.26 and the resulting bending

can prevent the appearance of more Figure 1.26: Combined work roll bending
complex type of waviness such as and backup roll bending- issued from a

quarter buckles. Lam3/Tec3 simulation.

Changing Tension Changing the applied strip tension is considered also an impor-

tant and very effective actuator for on-line flatness of thin strips (0.5 mm). Roberts
states in [Roberts, 1978] that "The choice of the tension depends on the chosen friction
coefficient and the shape of the contact zone". If the tension increases, roll separating
force decreases and results in more crowned roll. Thus, if the strip presents center
buckles (the center is too long), the solution is to decrease the work roll crown i.e.
the application of a smaller tension stress. Note that for a given coefficient of fric-

tion, the interval of tension variation is narrow. A drastic increase/decrease can cause
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breaking/tracking strip problems.

Shiftable intermediate rolls Mills organized using intermediate rolls can be equipped

with a shiftable rolls system (For instance in the six-high mill illustrated previously in
Figure 1.7). These rolls can move back and forth in the axial direction, adjusting their
edges on the edges of the strip or work roll, and can clear efficiently the appearance of

edge defects.

Changing lubricant The rolling lubricant is another important actuator. Lubrica-

tion reduces friction between the rolled strip and the work rolls. As a consequence,
it reduces the roll separating force, and therefore rolls present less flattening effects
and roll wear which improves the surface of the rolled strip. If lubricity is improved
in the roll bite for instance, roll flattening'! is reduced and the roll diameter increases
and causes a local over-rolling. This can be clearly used to over/under-roll certain
thinner/thicker areas to ensure a uniform reduction and prevent the appearance of

waves.

Differential Watering/Cooling rolls Cold rolling mills use large amounts of energy

and it is transformed later on into heat trapped in the work rolls. As a result, work
rolls present a thermal crown'? which causes control and flatness problems. Localized
cooling by spraying water on the problematic zone (different patterns, pressure flow
and temperatures) is the best solution for this irregularity. It reduces the roll crown

and minimizes control problems.

1.4.4 Post-rolling Flatness Improvement

AS for flatness improvement, many procedures are available like Temper or skin pass

rolling and leveling processes.

a)

Temper rolling process is the process of light cold rolling sheet steel (reduction

0.3% ~ 3%) . It is used to improve flatness, to minimize stretching and straining, to
fix the gauge consistency and to add hardness to the steel sheet and finally to obtain

a specific surface texture. Two-high mills are perfect match for this process.

HRoll flattening means the roll diameter is smaller than its initial value, in this case it will cause a

local under-rolling.

2Due to friction, plastic deformation and energy used by the mills, a high amount of heat can be

generated resulting in expansion of the rolls and giving them a crowned shape called 'thermal crown’.
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b) Roller leveling process is used to improve flatness of the strip after hot rolling. The

strip is passed through a number of work rolls organized into two layers and aligned on
a common center point (illustrated in Figure 1.27). The rolls bend the strip slightly
to deform it plastically in a way to have uniform thickness all over the strip. Rolls
are closer together at the entry than the exiting side. This arrangement insures less
bending toward the exit and prevents therefore introducing additional residual stress

to the strip. The result strip is straightened and free of defects.

c) Tension leveling process treats sheets to improve flatness after cold rolling. The

combination tension-bending pulls the sheet beyond its yield point. Shape imperfec-
tions are corrected in this process where the strip is passed around a series of rolls to
initiate bending and stretching, finally the strip is flattened out to correct the bend
(Figure 1.28 ). The result strip is ideally flat and is free of residual stresses.

Figure 1.27: Roller leveling process (af- Figure 1.28: Tension leveling process
ter [Roberts, 1978|). (after [Roberts, 1978]).

1.5 Résumé en Francais

Dans ce chapitre une introduction générale du procédé de laminage est présentée
pour simplifier le sujet aux lecteurs peu familiers. Le but de cette bréve description est
une meilleure compréhension des différents types de défauts de planéité et leurs origines
durant une opération de laminage a froid.

La notion de "flambage sous contraintes résiduelles" a été introduite en catégorisant les
défauts en deux types: défaut manifeste et défaut latent. Les dispositifs de mesure de
planéité les plus connus (rouleau de planéité, moiré, shapeline ....) ont été présentés. En
plus, les actionneurs de planéité disponibles en ligne pour corriger et éviter 1’apparition
de ces défauts ont été exhibés. Enfin, quelques procédés de post-traitement utilisés pour

améliorer la planéité des tdles minces ont été briévement exposés.

29



Chapter 1. An Overview on the Rolling Process

30



CHAPTER 2

LITERATURE SURVEY: SHEETS AND
PLATES BUCKLING THEORIES

Our greatest weakness lies in giving up. The most certain way to succeed
18 always to try just one more time.
by Thomas A. Edison
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As described previously, the form of the gap between the rolls affects the shape of
the rolled strip. The main reasons are the work rolls elastic deformations such as the
rolls crown, flattening and bending. These deformations create a non-uniform reduction
in the width of the strip and generate a heterogeneous residual stress distribution. If the
compressive residual stress goes past the critical value tolerated by the strip, it buckles
and becomes wavy. Since the defect is manifest, the gap between the critical value and
the compressive stress is balanced by the appearance of geometrical displacements. The
residual stress is once more modified to respect the equilibrium state after buckling and
can affect what happens in the bite.The defective sheet can be improved by post-rolling
operations, which is time and energy consuming. Rather than correcting defects, it is
better to avoid them, i.e. to control flatness during rolling (Chapter 1). Many parameters
are available for that, corresponding to the diversity of the physical phenomena and the
flatness actuators installed on the rolling mills. Their complexity requires models of
prediction, which can be only Computational.

After this summary, one can deduce that the rolling process is complex and every aspect
affecting the residual stress should be included. The ideal rolling model should couple

many aspects:

a) The elastic deformation of the work rolls (flattening, bending..);
b) The elastic-plastic deformation of the rolled strip in-bite;
¢) The buckling out of the bite and its effect on the bite;

d) The thermal deformation and thermal stress development.

Note that since this study is dedicated to the appearance of flatness defects during cold
rolling, all thermal effects were neglected (check Chapter 3 section 3.5). As for coupling
the rolling load with the stack deformation, the existing work roll-deformation model
"Tec3" will be used in coupling with "Lam3". The objective is to find a suitable buckling
model capable of describing the state of the defective strip and adequate to be coupled
with the rolling model "Lam3".

The literature proposes several approaches. So far, most of these models are based on an

uncoupled approach dealing with the problem in two parts:
- A computation of the rolling process without buckling, giving the residual stresses.

- A calculation of the rolled sheet buckling under the effect of these residual stresses.

Taking into account that buckling is a direct consequence of what occurs under the

bite, a strongly coupled analysis bite-buckling is preferable for a better representation
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of the complexity of this process. The only exceptions treating a model of buckling
integrated in rolling are the models of Counhaye [Counhaye, 2000] and Abdelkhalek
[Abdelkhalek, 2010]. In this chapter, a survey of the available modeling methods is pre-
sented with the aim of finding powerful approaches to carry out buckling and post-buckling
computation -with capacity to be coupled with the existing rolling model "Lam3"-.
First a quick description of the treated problem is presented, next different modeling
methods for general buckling and post-buckling problems are explored. Finally, the last
part is devoted to describing the approaches applied to rolled strip flatness.

2.1 Description of the problem

The modeling of buckling and post-buckling is a very delicate problem. The aim is
to find methods able to describe the stability of the problem. Stability can be defined as
"the capacity of the system to return to balance when slightly disturbed". For instance,
in the case of strips under compressive stress, the solution stops being stable once the
residual stress exceeds the critical value noted o.. To describe the problem, it is necessary
to study the behavior of the system at and beyond its critical point.

Buckling theories for structures began with the study of Euler for beam buckling [Euler, 1744].
Next, von Karman formulated equations describing buckling of thin elastic plates under
compressive stress and these equations bear his name [von Karmén, 1910]. Many studies
were based on a variant form of these equations and presented different methods and
solutions for many different applications. We mention in particular, the semi-analytical
approaches presented by Fisher [Fisher et al., 2001] and Bush [Bush et al., 2001] with ap-
plication to strip rolling.

Later on, a new theory for buckling of elastic structures taking into account the initial
imperfections, was presented by Koiter in [Koiter, 1970].

Koiter used in his study, the bifurcation and stability theories. They first appeared in the
mathematical studies of Poincaré [Poincare, 1885 and Schmidt [Schmidt, 1908] where
asymptotic expansions were used in almost every buckling and post-buckling theories.
Many recent studies, like the ones presented by Potier-Ferry in [Potier-Ferry, 1987| and
Budiansky in [Budiansky, 1974|, were developed using modern mathematical approaches
of the bifurcation theory and presented several applications in the domain of buckling and

post buckling problems.
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2.2 Modeling methods for buckling and post-buckling

problems

The literature survey presented next, introduces available methods capable of de-
scribing the buckling problem (i.e. determining the critical load of stability and the mode
of the defect), as well as the post-buckling problem (i.e. the magnitude of the defect).

2.2.1 General methods for determining the critical load

] he critical load of a system can be determined using two methods: by direct
resolution of the equilibrium equations or by approximate methods based on

an energetic description of the problem.

2.2.1.1 Column buckling: Equilibrium Method

According to the equilibrium method, the critical values of applied forces may be
found from the solution of the governing differential equation where the solution takes
often a sinusoidal form. This assumption is a form of a semi-inversed method used fre-
quently in the theory of elastic stability, in which a specific solution is chosen and helps
find which problem it solves.

For a column of length [ with both ends pinned, subjected to a force P as illustrated in

Figure 2.1, the equation describing the deflection is

d?y
EFl—= —Py=0 2.1
73 y (2.1)

Where E is Young’s modulus and [ is the inertia moment.

Note that the solution y should verify the boundary conditions presented below:
y=0forz=0 (2.2)

y=0forz=1L (2.3)

A proposed solution by Timoshenko [Timoshenko & Gere, 1961] takes the form

y = Asin(kx) + Bcos(kx) (2.4)

| P
where k = ol and A and B are two constants determined using the boundary condi-

tions.
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Equations (2.2) and (2.3) give respectively (B = 0) and (A = 0 or sin(kl) = 0) i.e.
kl = nm where n is an integer to be determined.
Replacing all the above information in the governing equation (2.1) , the critical load is

determined as follows:
n?m2El

L2

n is the number of half-waves -developed in the axial direction of the column- and for

Pcr,n - (25)

every n corresponds a different buckling mode.

The lowest buckling load corresponds to the first buckling mode i.e. n =1. So ,

m2El

Pcr: 12

(2.6)

is the smallest critical load and corresponds to the classical solution of Euler [Euler, 1744].
Figure 2.2 illustrates the first three buckling modes for y = Asin(n—zx). n=1,2 and 3
means that the column buckles respectively into one, two and three half-waves. Note that

A, the buckling amplitude, remains undetermined.

P

!

L/2

L/2
n=1 n=2 n=3

Figure 2.1: Column under compres- Figure 2.2: The first three column buck-
sive force ling modes

<

In reality, it is nearly impossible to find exact solutions for practical applications.
The equilibrium method shows serious mathematical difficulties when determining the
buckling loads for complex geometry, mixed boundary conditions and complex loads.

Under these circumstances a possibility for obtaining a rigorous solution of the differential
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equation becomes very complicated. Therefore, the use of the energy method can be very

advantageous.

2.2.1.2 Column buckling: Energy Method

g nergy methods are based on the principle of the existence of a minimum of energy
when the system is at its equilibrium state. If V' = U + () is the total energy of the system
where U and () are respectively the strain and potential energy, the stable equilibrium

state is defined by the set of the following equations:
6V =0 and §*V > 0 (2.7)

To compute the critical buckling load, equation (2.8) is often used i.e. the load at which

the equilibrium passes from stable to unstable (§2V changes from positive to negative).
52V =0 (2.8)

in which ¢ indicates the variation of V. Many methods where proposed to find the critical
load such as Rayleigh’s coefficient method, Rayleigh-Ritz method and Galerkin’s method.
The same example presented earlier is used to illustrate the energetic approach method
by Rayleigh-Ritz method for instance. This method proposes to write the solution y as a
linear combination of a family of functions (®;);: y = Zym@m.

In this 1D buckling problem, the solution y is written as

y(r) = y1.@1(7) + y2.P2(2) (2.9)

where ®; and ®, are two shape functions that verify the boundary conditions y = 0 for
L

r=——and xr = —
2 2 2 7
() = 2 — T and ®y(z) = 2* — T (2.10)

The total potential energy of this mechanical system is

1 L/2 d2y L/2 dy
= 0=2= EI(—2)dx — P —Z)2 2.11
VU4 2[/0 (0 dr /0 ()2 (2.11)

Combining Equations (2.9), (2.10) and (2.11), the following form is obtained.

PL3 9FIL> PLT PL?
V =y?(2EIL — — 2 — 2FIL? —

) (2.12)
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Thus the second variation of the total potential energy is computed using the partial

derivatives with respect to y; and ys.

V. 9V pPL? PL?
. 57 0.0y AEIL — = opI[3—~—
M@EV) =1 gy gy | = Prs oprLs  PLT (2.13)
9OEIL3 — _
Oy 0ys  Oy3 10 5 28

The critical load is the smallest value for which the matrix M is singular i.e. the deter-
minant is equal to zero.

El
Note that the critical loads obtained in both equations (2.6) and (2.14) are quite smi-
lar; knowing that the chosen shape functions eq. (2.10) can affect the precision of the

computed solution.

2.2.1.3 Plate buckling: Equilibrium Method

Let us consider a simply supported plate subjected to uniform compressive stress

as shown in Figure 2.3(a). The buckling problem is described by the following set of

equations:
NMw o*w Mw 1 0w
+2 + =7 ==N—
ox4 8§28y2 oyt D T 0y?
0
w:Oand—w:(),for:U:Oandx:L (2.15)
8952

w:Oanda—w:O,fory:Oandy:l
oy?

where D is the plate flexural rigidity.
A proposed solution of equation (2.15) takes the following form

ML nmy

7 )sin( ;

w = Asin( ) (2.16)
in which A denotes the magnitude of the buckling, m and n are respectively the number
of half-waves in the directions x and y.
Replacing (2.16) in the governing equation, the characteristic equation of the load can be
formulated as:

w2 L*D [m? n

N TLD {F . l_j} (2.17)

m

The smallest load N satisfying (2.17) corresponds to the buckling load. Thus, in order to
find the critical load, the minimum of the problem should be studied.

Neo = MinN(L,l,n,m) (2.18)

(m,n)
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Once again, the buckling amplitude is undetermined, the buckling plate is only described
by the buckling load and its mode i.e. the number of half-waves in the directions z and y.
Figure 2.3(b) illustrates the defected plate presenting two half-waves in the z—direction

(m = 2) and one half-wave in the y—direction (n = 1).

Figure 2.3: Plate buckling under compressive stress

2.2.1.4 Plate buckling: Energy Method

The total potential energy of this mechanical system is

V = U+Q

L gl 2 2 2 2 2 2
— %/0 /0 ]D(ZTU; + (2715)2 —2(1—v) [g;ﬁgyf — (;ﬂjgy) ] dzdy (2.19)
et fow\?
—5/0 /0 N (0_1;)) dzdy

The out of plane displacement w can be written as a double Fourier series. (®;);: y =

Zym.q)m as

w = ZZwmnsm(m;w)sm(njy) (2.20)

Combining (2.20) with the equilibrium equation 2V = 0, the characteristic load equation
is written as:
m2 n2 2
L ]
N =rL*D™ ”sz% (2.21)

If each coefficient w,,, is positive then 6%V is positive definite. Thus, buckling is visible
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when all coefficients except one are equal to zero, which gives the following buckling load:

2L2]D 2 2
_ {m r } (2.22)

N=—w " r
The smallest value of N in (2.22) corresponds to the buckling load. Thus, in order to find

the critical load, the minimum of the problem should be studied.

N, = {\41’7}N(L, l,n,m) (2.23)
Once again, we find the same buckling load. To consult more buckling problems with com-
plicated loads and mixed boundary conditions and more details on how to pick the general
solutions, the readers are invited to refer to Timoshenko’s book [Timoshenko & Gere, 1961].
The deflection under the buckling load is undetermined in magnitude yet determined in

shape.

Remark 1

Numerical methods such as Finite Elements Method (FEM) and Finite Difference
Method (FDM) are used often to solve stability problems (to determine the critical
load and the buckling mode). The main reason for these methods is overcoming the
difficulties encountered to find analytical values for problems with complex geometries
and boundary conditions.

All the above approaches give neither an idea about the precision of the solution, nor
an actual error estimation. In addition, when based on minimizing the total potential
energy, a minimum is detected without being sure if it is a global or just local minimum
of the system. Thus, some have proposed to solve the problem by iterative methods
replacing the non-linear problem by a series of linear problems converging to a unique
solution. We mention well known algorithms such as the Newmark-Vianello algorithm
[Newmark, 1943| dedicated to stability problems. This algorithm will not be described
in details since a similar iterative method, proposed by Tozawa in [Yukawa, 1986] with
direct application on buckling in rolled strips under residual stress, will be presented

in the next section.

Remark 2
Generally, stability problems, solved either by equilibrium method or energy meth-

ods, are transformed into eigenvalue problems. The stress or load is multiplied by a

load parameter A. For instance, the problem (2.15) is transformed to the generalized
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eigenvalue problem:

O*w 0w Mtw 1 0%w
2 — N, 2Y 2.24
ox?t * 0x20y? * oy* D 0y? (2.24)

Combined with a numerical method such as the Finite Element Method the problem
is transformed into

AX = ABX (2.25)

in which A = (A, Ag, ..., A,) , nis the dimension of the matrices A and B, and (\;)i=1,.»
are the eigenvalues of this problem. The smallest eigenvalue not equal to zero is the
solution and it is noted .., the critical load parameter. The corresponding eigenvector
describes the buckling mode. Finally, the critical load is found using the critical load

parameter as N, = A, V.

2.2.2 Post-buckling methods

.All the methods described above were able to determine the buckling load and mode
but remain insufficient to quantify the waves amplitude. In this section, a review of a few
available approaches to determine the defect magnitude and to follow its evolution during
the post-buckling stage will be presented briefly.

Note that the following approaches were already or have the potential to be coupled with
the rolling model Lam3/Tec3.

2.2.2.1 Asymptotic Numerical Method (ANM) based on the Perturbation
theory

These methods are generally introduced for physical system presenting strong geo-
metrical non-linearities such as the post-buckling of elastic and plastic structures. They
belong to perturbation theories, which allow finding an approximate solution for the
problem FE) dependent of a dimensionless parameter A (generally supposed small) un-
der the condition that the solution of Ej is known [Howison, 2005, Cochelin, 1994] and
[Cochelin et al., 1994].

The plate buckling problem is equivalent to the stationarity of the Hu-Washizu functional:

dopw = / [6S : [y =D : 8]+ S": §7]dV — AP,(6u) =0 (2.26)
v

where D is the flexural rigidity of the plate, S is the second Piola-Kirchhoff stress tensor
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tis the transpose operator. P,

and 7 the Green-Lagrange strain tensor. The operator .
presents the virtual work of the external loads AN,, u the displacement field and \ a
loading parameter.

The principle of the ANM consists in looking for a solution in a fixed neighborhood in

the form of a finite converging sum, written as power expansions of a parameter a:
n
Ula) =T+ Y _d'U;
i=1

Aa) =X+ G,i>\i
(a) =% ; (2.27)

Nx(a> = Nxo + ZCLZN%
i=1
a=<u—ug,u >+(A— )\

where U = (u,%,S)". In other words, it is equivalent to improve the solution by adding
the extra-terms corresponding to n > 0.

For the sake of clarity, equation (2.26) is written in its residue form:
L)+ QU,U) — \F =0 (2.28)

F results from the external forces, L and () are respectively a linear and quadratic oper-
ator.

Using the expansion (2.27) and provided that (Up, Ag) is well known, the non-linear equa-
tion (2.28), is transformed into n linear ones by identification of coefficient of each power

of the parameter a:

order 1: LY(U;) = M\ F
< Ui, uy > +)\% =1

p1 (2.29)
order p:  LY(U,) = \,F — Z QU Up—y)
r=1

(l<p<n) <wupu >+ =0

where L? is the tangent operator depending on the initial solution only.
To determine the bifurcation indicator, a fictive perturbation force Auf is introduced into
the system:

LU+ AU)+ Q(U 4+ AU, U + AU) = AF + Auf (2.30)
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The bifurcation indicator takes the following form:

- < AUQ, f >
ST (231

The critical value is defined as the smallest point canceling Ay i.e. Ap = 0. Then,
one by one, the linear problems for each order, going from 0 to n, are solved until all
the expansion coefficients are identified. U is computed, in particular the out of plane
displacement w which quantifies the waves.

This method has a high potential. Unlike other approaches, it can describe both buckling
and post-buckling problems. Figure 2.4 illustrates a simply supported buckling strip under
a uniform compressive stress o, = —85 MPa. The amplitude of the wave, computed using
ANM, is equal to 0.12 mm.

a=0.12 mm

03
02 -
02
015
01
00s

Figure 2.4: A simply supported plate buckling under a uniform compressive stress o, =
—85 MPa.

Using this approach and a Shell Finite Element formulation, a model called MAN was
developed in [Zahrouni et al., 1999| |[Zahrouni, 1998] and applied later on to flat rolling
and buckling strips by Abdelkhalek in [Abdelkhalek, 2010, Abdelkhalek et al., 2009]. The
model MAN will be presented in details in section 2.3.1.3.2.

2.2.2.2 Multi-scale Method based on Fourier series expansion

This approach proposed in [Damil & Potier-Ferry, 1986, Damil & Potier-Ferry, 2006,
Damil et al., 2013 for beam and plate buckling, aims to define "macroscopic models" cou-

pling the linear elasticity with equations governing the evolution of buckles.
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Such local instabilities can be described by bifurcation analysis according to the Landau-
Ginzburg theory [Wesfreid & Zaleski, 1984] using an asymptotic double scale analysis. At
the local level, one accounts for the periodic nature of the buckles, while the slow variations
of the envelope are described at the macroscopic scale. Therefore the "Multi-scale’ no-
tation. [Damil & Potier-Ferry, 1986, Damil & Potier-Ferry, 2006, Damil et al., 2013] pro-
pose a modification to this latter approach in which the nearly periodic fields are explicitly
expressed by Fourier series with slowly varying coefficients. This leads to macroscopic
models defined by Fourier coefficients of the microscopic model.

The essence of this approach relies on a specific description of the nearly periodic fluctu-

ations by at least two slowly varying functions as illustrated in Figure 2.5

/ Mean field +amplitude

u J v v . v L =, | N

A

Mean field YA
»’ -

Figure 2.5: A nearly periodic buckling response described by two macroscopic fields: the
mean field and the amplitude of the undulation otherwise called the first envelope.

The unknowns U = (u,v,w) of the problem are written in the form of Fourier series,

with slowly variable coefficients:
+00 ‘
Uz) = Up(x)e™* (2.32)

in which x is the direction of the buckling and ¢ is the number of the half-waves developed
in this direction.

To give a quick description, the following example is presented: a strip is double loaded
as described in Figure 2.6: N, = 0,.h, N, = 0,.h under the condition o, << 0,. L and [
are respectively the length and width of the plate.
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Figure 2.6: Rectangular membrane Figure 2.7: Sketch of the wrinkled mem-
under biaxial load. brane under biaxial load.
The chosen Fourier expansion for the displacement w is limited to the first order in which
the mean field wy can be canceled -since sinusoidal waves have a mean field equal to zero-
and the envelope w; is supposed real.
The macroscopic model can be deduced from the stationarity of the total energy. And

the envelope w; will verify the following differential equations of the macroscopic model:

divN =0 (a)
28271)1 2 827111 4 321111 2
—6Dg o (2Dg” + N,) 3y + D¢ wy = =N, |— 57 + ¢ w | (c)

The nonlinear model (2.33) couples the bifurcation equation verified by the envelope w;
(2.33.c) with the nonlinear membrane equation (2.33.b).

To recover the buckling mode and load, the authors propose an analytical form by choosing
a particular solution verifying (2.33.c): w; = sm(%)sm(%y) Taking into account that
1 << gL and 2D¢* ~ |N,| << N,, the following relation between the stress and the
wavenumber is deduced:

N,m?
|N2(q)| = q;’lg +Dg’ (2.34)

The wave-number ¢ is determined by minimizing (2.34) as a function of the wavenumber.

Finally the analytical form of the buckling stress is determined as:
m/ Eoyh (2.35)
1/3(1 - 12) '

Once the load threshold (2.35) and the mode (the number of waves ¢) are known, the

bifurcation equation verified by the envelope w; can be solved. The stress post-buckling

wr| _
|Ux -
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state is established by adding +*", the wrinkling contribution, computed in terms of ¢
and wy, to the usual behavior law (2.33.b).
For quantifying the amplitude (i.e. the envelope), the authors propose to seek the envelope
wy and the compression load as Taylor series with respect to a scalar a (denoting the
amplitude):
wi(a) = wy + wgl).a + w§2).a2
Ma) = A0 4 \@ 42 (2.36)
N,(a) = N© + N qo?

where A is a loading parameter introduced to insure the bifurcation of the equation
(2.33.c), i.e. N is replaced by AN.

Replacing the expansion (2.36) in (2.33.c), the problem is transformed into three linear
problems (corresponds to n = 0, 1 and 2). Several steps lead to identifying A\ and As.

Once \g, Ay are known, the amplitude can be defined from (2.36) as :

—_ \(0)
- AA(?) (2.37)

Finally, the authors establish this relation connecting the wrinkling amplitude as a func-

tion of the compressive stress:

a l loal/3(1 —v?)
n- ¢ (Z) \/ hy/Eo,m ! (238)

l [
where C'| — | is an amount depending of the ratio — and integrals resulting from a
Galerkin approximation imposed by the authors. To understand the different steps into

l
computing Ag, A2 and C' (E)’ please refer to [Damil et al., 2013].

As a numerical result, the authors gave the following example: A clamped rectangular

membrane is subjected to bi-axial tension-compression load. The side lengths L and [ are
respectively 400 mm and 200 mm and the thickness h is 0.05 mm. The applied tension
is N, = 10 N/mm and the compression force N, increases. In the macroscopic model, a
wavenumber ¢ has to be chosen. The authors choose the one predicted by minimizing the
analytic formula 2.34.
By comparison with the shell model Abaqus, Figure 2.8 confirms that the wrinkling
pattern, predicted by the macroscopic model, just after bifurcation is correctly described.
In addition the envelope is nearly sinusoidal in the z—direction and appears to have the
same behavior as the one illustrated by the shell model Abaqus.

Quantitatively, Figure 2.9 shows that the new macroscopic model is able to describe
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quite perfectly the initial post-bifurcation response, knowing that it requires much less
degrees of freedom than the full shell model. This point is significantly important since
it reduces the computational time. The curves show that both models predict the same
bifurcation point corresponding approximately to N, = —0.09 N/mm. The evolution of

the amplitude predicted by both models is quite similar.

Figure 2.8: Rectangular membrane submitted to tension and compression. Post-
bifurcation patterns near the bifurcation, with the multi-scale model (a) and the full
shell model Abaqus (b).

N, =10 N/mm, N, = —0.09 N/mm.
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Figure 2.9: Rectangular membrane submitted to tension and compression. Response
curves near the bifurcation for the bi-axial load problem of Figure 2.6, with two different
models, the new macroscopic model and the shell model Abaqus.
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This approach presents novelty in modeling buckling and post-buckling problems. Its
multi-scale formulation is capable of identifying the waves using envelopes which give a
good geometric description and quantification.

The example presented above with all the simplifications does not do this approach jus-
tice. For more complete description and examples, the readers are invited to consult
[Damil & Potier-Ferry, 1986, Damil & Potier-Ferry, 2006, Damil et al., 2013| and
[Potier-Ferry & Damil, 2010].

This generalized method, by its capacity yet simplicity, is a good candidate for application
such as buckling during flat rolling. It will be adapted to the needs of this application

and presented in chapter 4.

2.2.2.3 Analytical Method based on the Membrane Theory

The membrane theory, easily applied for very thin plates, forbids the appearance of
a negative stress: every time a negative stress is about to appear, the structure buckles;
this means that the critical load or stress is equal to zero; o. = 0. Based on this theory,
[Roddeman et al. , 1987.a)] and [Roddeman et al. , 1987.b)| define a strain tensor able
to describe the situation of the stress after buckling.

In this study, several assumptions are posed:

a- The membrane or eventually the strip is under plane stress.

b- By definition of a membrane, bending does not introduce additional stresses.
The Cauchy stress tensor o can be written as:

1
o= jF.H(E).Ft (2.39)
in which F is the deformation tensor n, J = det(F), E is Green-Lagrange strain tensor
and H the first Piola-Kirchhoff stress tensor.
From the mathematical point of view, the assumption "negative stress does not exist"

can be expressed by the following set of equations:

n.om; >0 (a)
ny.omny >0 (b) (2.40)
n.0my =0 (c)

in which n7 et n5 are the orthonormal vectors denoting the principal direction of the real
Cauchy stress tensor.
The third equation expresses simply that the shear stresses are equal to zero in the

principal frame.

47



Chapter 2. Literature Survey: sheets and plates buckling theories

Remark 3:
Since n; and nj indicate a priori the unknown directions of Cauchy principal stress in

the buckled membrane, the conditions (2.40) give three possible situations:

- If both principal stresses in directions n7 and n5 are positive, the membrane stays

taut.
- If both principal stresses in directions n] and n3 are zero, the membrane is slack.

- If one of the principal stresses is zero (in the direction n for instance) and the other
one is positive (in the direction 75), the membrane buckles in the zero direction

ni.

When studying buckling structures, only the third situation is of interest to us. So

conditions (2.40) transform into:

n.ony =0 (a)
1.0.n5 >0 (b) (2.41)
1.0 =0 (c)

The buckling phenomena is known to affect the stress distribution in the structure, it
relaxes the stresses exceeding the critical values. So it can been said that calculation done
without taking into account the buckling would give stresses violating these conditions.
The principle of the method is to seek the off-plane deformations which,via the behavior
law, will lead the stresses to respect the equations (2.41).

In this situation, the membrane is illustrated in Figure 2.10 (a) and n is the buckling
direction .

The assumption a- allows to straighten the membrane, as described in Figure 2.10 (b),
without affecting the situation of the stress. Therefore, the strain tensor of the buckling

membrane can be expressed as a function of the fictional tensor as follows:
F’ = (I + Bgni.ny).F (2.42)

in which I is the unit tensor and (I+ Sgny.n1) is the tensor elongating the fictional straight
membrane to fit the real buckling membrane length; where Sr can be expressed implicitly
as the ratio between the fictional and real membrane length.

Therefore,
1 1
o= jF’.H(E’).F’t with E' = §(F’.F’t — 1) and J = det(F?) (2.43)
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Buckled .

(a) (b)

Figure 2.10: (a) A buckling membrane with a deformed length L', and the dotted non-
buckling membrane with length L < L', (b) the straightened buckling membrane in the
plane determined in (n},n3) [Roddeman et al. | 1987.a)]

Once o(F?) is defined, the new set of conditions to verify are presented below:

n.0(F)n; =0
o (F?).iy =0 (2.44)
=0

S
3
—~
5|
\_)'

It should be noted that in anisotropic materials, frames (n7,73) and (€7, €3) are different,
where (€7, €3) is the real frame of the membrane. That is why an angle ag = (n3;€7) can
appear when solving the set of equations (2.44).

This leads to solve a set of non-linear coupled equations :

hl (aRy 51‘37 5h) =0
hQ(aR7 6R7 5h> =0 (245)
hs(ar, Br,6h) =0

where 0h is the variation in the thickness of the membrane upon buckling.

This method, despite the assumptions, provides post-buckling informations such as the
direction of the buckling, the additional elongation of the membrane, the new stress
distribution due to buckling and the variation in the thickness of the membrane. This is
a clearly rich approach and its capacity will be explored in the following sections when
applied to rolling thin strip and coupled with a rolling model as in [Counhaye, 2000] and
[Abdelkhalek, 2010].
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2.3 Review of methods applied to rolled strip defect

N ow that a brief survey of approaches used to treat buckling and post-buckling
problems have been presented, this section is dedicated to the methods applied for mod-
eling defect problems during rolling processes.

It is divided into two parts. The first describes the uncoupled approaches where the
buckling is treated as a consequence of the rolling process. The second is the coupled
approaches where not only the rolling can activate the appearance of buckling but also
the effect of buckling on the rolling process is taken into account, so they are treated as

two coupled problems.

2.3.1 Uncoupled approaches for Rolling-buckling problems

2.3.1.1 Semi-analytical study by Bush

Agaim the deflection of the plate is described by the equation (2.15) introduced by
Timoshenko et al. in [Timoshenko & Gere, 1961]. Bush et al. [Bush et al., 2001] took
the same example of a simply supported plate but proposed that the plate is subjected

to a residual stress distribution not necessarily uniform along the width. Thus,

Nu(y) = —0ou(y).h (2.46)
Next the authors introduced a non-dimensional compressive stress distribution k(y) =
N, (y)b
gglg , where D is the flexural rigidity of the plate and [ is the width of the plate.
T

Taking into consideration the form of k£ and the fact that every stability problem can be
converted into an eigenvalue problem, a loading parameter A is introduced. The governing
equation is transformed into:

o'w 0w dw  Nk(y)m? 0*w

- _ 2.47
ox* + 28x28y2 * oy* [2 0y? ( )

According to Bush, a realistic example of a stress distribution during flat rolling can take

the form:
1 1

2y " Y

This stress distribution has a tensile central region and a compressive one at the edges
with maximum compression ap — 1. Note that when the even integer r, the order of this
polynomial distribution increases, the center region grows and the defect will be more
localized on the edges.

As proposed in [Timoshenko & Gere, 1961], the general solution of equation (2.47) takes
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the following form:

"”) (2.49)

wia,y) = f(y)sin (“5-
in which n is the number of half waves developed under the buckling load, L is the
length of the plate and f(y) is the cross-width deflection function. Replacing (2.49) in
(2.47), the new equation to solve is the ordinary differential equation (2.50) along with

the appropriate boundary conditions.

d*f nm\2 d*f nmwy 4 % rnmy 2

P Y i O LV S 250

dy L) ar T\ T z\z7) |/ (2:50)
Since equation (2.50) is simple to solve if & is constant, the authors propose to replace the
continuous function k(y) by a discretized set of constant values over the discretized width
of the plate: k(y) = k;; i = 1,2, ...,2m where the width is discretized into 2m elements.
Since the domain is divided into 2m sub-domains, equation (2.50) is transformed into 2m

sub-equations i.e. 2m solutions.

The solution f; on each sub-domain takes the following form:

myi/nl(nl & Lyv/AE;)
IL

fl(y) = Z C’ij.eaj where o; = + <251>
j 4

Jj=1,..,

The constant Cj; are identified using the four boundary conditions and the continuity
condition of f ie. f € C*Q).

The matrix form of these 8m equations used to determine Cy j—1, g 1S

8m

> MpCy=0 I=1,..8m
o (2.52)

— AC — ABC =0

The problem is turned now into a generalized eigenvalue problem, where the only non-
trivial solution can be obtained when the determinant of the matrix M is equal to zero.
The minimum of the eigenvalues is called the critical value \.. and the corresponding

eigenvector is the mode of the plate buckling.

Remark 4:
In Bush’s buckling study applied to flat rolling, there is no mention of the tension

applied normally during this process. One may interpret it in two different ways:

1) The tension was taken into consideration in the form of N, i.e. k; if this is the
case, the loading parameter A\ should not multiply £ but a part of it.

or,
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2) The tension was never taken into account in this model and for that this model does
not describe the on-line flatness of a rolled strip. It studies the strip buckling

under residual stress after the strip tension cancellation (i.e. off-line flatness).

2.3.1.2 Semi-analytical study by Fischer

|[Fisher et al., 2001]| and |Fisher et al., 2003] took the same buckling plate example but
the plate is loaded this time not only by a self equilibrating residual stress distribution
N.(y) = Ng(y) but also by a constant global tension N,. Thus, the cross-width force

load distribution is given by:
Na(y) = Ng(y) + No (2.53)

New dimensionless quantities were introduced:

[
n == where ——<y<§
~ NI? ~ Nol? 92 54
N=g5 and No=o5 (2.54)

w(z,y) = a\2%|"(5ign(%))@cos(i) (2.55)

in which [ is the half-wave length, ¢ (integer) determines the symmetry/antisymmetry of
the buckling mode, n (real) describes the profile of the cross-width deflection function and
a is the amplitude of the buckling waves which should minimize the total potential energy
V. The total potential energy takes the same form as presented in (2.19) by replacing N
by Ng(y) + No.

Combining the solution with the concept of minimization of the total energy — = 0

da

the buckling load characteristic equation N (l~, n) can be obtained. Minimizing N (l~, n)
according to [ and n the load critical value and the corresponding half-wave length i.e.
the buckling mode is determined.

In [Fisher et al., 2001], the authors propose two different residual stress distributions.

A cosine distribution: N, (n) = Cpcos™(mn) with m =1,2...
1 2.56

A polynomial distribution: N,(n) = —[(m + 1)(2|n|)™ — 1] with m =1,2... (2:56)
m
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oV
Combining the polynomial stress distribution in the energy minimizing problem Sa = 0,
a

the analytical characteristic equation of the dimensionless buckling load was established:

Ne(n) = fi(n) + fo(n)No

dn + 2m + 2 2n +1 2n +1
=TT T (2n =2 _
Hin) 2 [< n-—2) [\/ m—3 om—1

m+ 1

+2(14+v)2n+1) (2.57)

Again, the buckling load form can be retrieved by removing the non-dimensionalization

N,(n)D7r?
N.(n) = — (2.58)
Finally, the critical load is obtained by minimization of (2.58) according to n and the

half-wave length [ corresponds to the smallest buckling load.

Ne = MinN.(n) (2.59)

Remark 5
The novelty of this study is that the chosen solution can represent the symmetry of the
mode thanks to the parameter ¢. But still, the solution proposed in [Bush et al., 2001]
remains more general where the cross-width deflection function is not bound to have
a polynomial form.
Note that these two semi-analytical studies are limited to the linear analysis i.e. de-
termining the mode and the buckling load. The amplitude of the defects remains

undetermined.

2.3.1.3 Buckling analysis problem with shell finite element method

Tvvo buckling studies, applied on defect appearance during flat rolling processes,
using Shell Finite Elements Methods stand out from the rest: the first is an iterative
method presented in [Yukawa, 1986| and the second uses an asymptotic analysis and
it is detailed by Abdelkhalek in his work [Abdelkhalek, 2010, Abdelkhalek et al., 2009,
Abdelkhalek et al., 2011].

2.3.1.3.1 Iterative method for plate buckling under residual stresses

.AS mentioned earlier in Remark 1, when the stability study is based on minimizing
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the total potential energy, a minimum may be detected without being sure if it is a global
or just local minimum of the system. Thus, iterative methods replacing the non-linear
problem by a series of linear problems converging to a unique solution are the answer
to this doubt. By unique we mean that the minimum of the system corresponds to the
global one. Another upside for such algorithms is that there is no need for imposing an
a priori form for the out of plane displacement. Few algorithms have been proposed and
fewer still applied to rolling strips.

One exception is the method of [Yukawa, 1986] with direct application to buckling of
rolled strips under residual stress.

The principle is to find the bifurcated branch verifying the concept of minimization of the
total potential energy V.

To solve the non-linear problem by iterative methods, for every increment the following

form (2.60) is adopted:
1
AV =6V + §52v + ... (2.60)

As explained in section 2.2.1.2, in the case of stable equilibrium state, the linear term 6V
must be equal to zero and the quadratic term 62V positive definite. The critical buckling

load is the smallest value corresponding to %V changing sign i.e. 62V = 0.

V= [ sdn - 6)(P) (2.61)

in which £ = (u,v,w)" is the displacement vector, S is the second stress tensor of Piola-
Kirchhoff, v is the Green-Lagrange strain tensor and P the tension applied on the plate
during rolling.

Note that, for a plate, the strain tensor v is the combination of two terms: a linear one

+" and a non-linear one y:
v o= A+
(u v du v Pw D, 0w ' (1 (0w L\ dwdw o
 \o0x’0y’ 0y Ox’ 022’ Oy?’ Ox0y 2\0x) 2\0y) '0x oy’
(2.62)

When discretized using a finite elements method, the matrix form of the strain tensor is

written as follows:
{7} = [B{&} (2.63)

where the matrix [B] contains the derivatives of the chosen basis functions and it is divided

into two matrix [Br] and [Byy] corresponding respectively to the terms 4 and v

[B] = [BL] + [Bn1] (2.64)
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[Yukawa, 1986] suppose that the behavior law can be written as:

{s} =[Cl{»} (2.65)

where [C] is the matrix containing the elastic coefficients, then the quadratic term §*V

can take the following form:

52V = ( / ([BI{S} + [B]'[C]B]) dQ) {6¢} (2.66)

The following notation are adopted:

K] = / (BLYC)[BL)dS

[Kni) = [ ([Bnio)'[Cl[BL] + [BL)'[C][Byi] + [Byi][C][Byi]) d2 (2.67)
K.) = [ [BI{S}d2
[Kr] = [K] + [Kni] + [Ko]
Replacing (2.67) in (2.66), the final form of §2V is:
0V = [Kr]{6¢} (2.68)

Finding the point of bifurcation gives the exact limit for buckling. Before bifurcation, the
plate is flat (w(z,y) = 0) so that [Ky] = 0. Having clarified this point, we can proceed
to the different steps of the algorithm.

First, the algorithm (presented in Figure 2.11) computes the matrix [Kp], [K,] and the

initial displacement {£,} for an initial loading parameter equal to zero:
Linear problem: {&} = [K.]"'{P} and [Ky.] =0 (2.69)
So, the critical loading parameter \. is determined and should verify:
8V = [Kz] + A\[K,] =0 (2.70)
Then, the displacement vector describing the buckling mode is defined by :
Non-linear problem: {66*} = [K7]7{P} and [Kyp] # 0 (2.71)

A prediction/correction algorithm using the Newton-Raphson method provides the follow
up of the strip post-buckling, once the loading parameter A surpasses the first bifurcation

point A.. In the expression of 6V, S is replaced by AS where X is the loading parameter
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i.e. the load (here the residual stress S) is applied gradually on each step:

5V = < / (7} ASdQ — {P}) (66} = 0 (2.72)

For every increment, the displacement, the loading parameter A and the loading increment
A\ are initialized: {£} =0, A =0 and A\ = 0.

Finally, if the equilibrium is verified i.e. §V = 0 and the loading parameter hits the
real load applied on the strip i.e. A\ = 1, the solution has been found. If not, X is replaced
by A+ A\ and the step is repeated until reaching these conditions. Analyzing this model

shows more potential than others presented earlier:

- All the stress tensor components may be taken into account, not only the component

Og.

- Although it is not mentioned if the authors determined the magnitude of the buckling,

the displacement vector was described in the equation (2.71).

Note that, similar to the semi-analytical models presented earlier, this algorithm uses
additional boundary conditions to control the type of the buckling mode i.e. a fixed center
is imposed if wavy edges are expected and fixed edges are imposed if center buckles are

expected.

o6



Chapter 2. Literature Survey: sheets and plates buckling theories

| Input data |

| Compute [K , |and {EO }for A=0 |
|
Compute [K ], A and {f *}

Al

}= As

Uy

Verified Compute £}
@ Verified ]

Not verified
Not verified
Compute [KT]; AC:'[KT]A{RV}
A{E}: —-Ac; AA=0 Compute [KT]; {E‘}=[ T]ﬁl{P}
ASZ
AL = =
+{efie
afé}=-arf{e}
End

Figure 2.11: General algorithm of Tozawa’s buckling model presented in |[Yukawa, 1986].

2.3.1.3.2 MAN model based on an asymptotic analysis and shell finite ele-

ments formulation

Based on a shell finite elements formulation' and an asymptotic method, a buckling
model called MAN was developed and presented in [Zahrouni et al., 1999, Zahrouni, 1998,
Boutyour et al., 2004]. This model was adapted to predicting flatness defects problems
during Flat rolling by Abdelkhalek in [Abdelkhalek, 2010, Abdelkhalek et al., 2009].
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The three dimensional formulation is based on the stationarity of the Hu-Washizu func-
tional taking into account a double loading (2.73); i) the tension applied on the strip

and ii) the residual stress distribution trapped inside the strip mainly due to the plastic

deformation : )
/ St 5CdQ = Nem / PocdS  (a)
Q 003
St 67dQ =0 (b)
S—c. (7€ + 7) + Aresgres (c) (2.73)
¢ =€) + 1", €) (d)
57° = (08) + 29 (&, 6€) (e)
7= (f)

in which the unknowns are the displacement field &, the Green-Lagrange strain v and
the second Piola-Kirchhoff stress tensors S. 7 is an extra unknown called the enhanced
part of the strain (eq. (2.73f) ) incorporated via the Enhanced Assumed Strain (EAS)
concept which has been introduced by Simo and Rifai [Simo & Rifai, 1990] to improve
the performance of displacement finite element. It does not depend on the displacement
and is required to be orthogonal to the stress field as shown in (2.73 b).

The loading parameters A" and A" allow respectively the control of the applied tension
P and the residual stress S™.

In the buckling model M AN, only one loading parameter is applied at a time. Thus, it

is divided into four steps as follows:

Step 1: The tension P is applied gradually to the strip (on 0Q3) which gives it some
rigidity and brings it one step closer to the flat rolling conditions. The loading
parameter \*" varies from 0 to 1, where \**" = 0 corresponds to no tension applied
and A" = 1 means the whole tension P, chosen by the user, is applied. In this

step, the residual stress is not yet considered, so A" = 0.

Step 2: In this step, the tension is kept at AX**® = 1. The aim is to determine the buckling
load A and its corresponding buckling mode by applying A™*S7.
The buckling load parameter )., is determined by means of a bifurcation indicator.
The problem is disturbed by a fictive force and its singularity gives the critical

parameter value.

Step 3: Now that the critical value and the mode are determined, the post-buckling is
to be studied in this step. A" increases from 0 to 1 and the evolution of the strip

state is followed for every increment.

!The shell element used by MAN is described in Appendix B.III
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Step 4: The final step is to study the buckling of the strip under residual stress ( A" = 1)
once the tension is canceled i.e. A" decreases from 1 to 0. Accomplishing this step

allows the prediction of latent flatness defects that only show after tension release.

Combined with the power series expansions (2.74) of U = (£,4,5)" and A, the non-linear
problem (2.73) is transformed into n linear problems by identifying coefficients of each

power of the length parameter a, where only one loading parameter is unknown at a time.

i=1 (2.74)

This model is capable of detecting the flatness defects area, determining the buckling
mode, the buckling load and following its evolution. MAN gives a geometrical description
of the flatness defect both before and after tension release (see Figure 2.12). For more
details on the equations of each step check [Abdelkhalek, 2010].

n - clamped y L i clamped

g
[
1
2
0
2 -
"
6
g
0

a0 -

Figure 2.12: The defective plate: (a) under strip tension (b) after strip tension release
[Abdelkhalek, 2010].

Remark 6
In the decoupled approach, the buckling model MAN is used with Lam3/Tec3 in the
following way:
i) First, a rolling simulation is launched using Lam3/Tec3 without taking into account
buckling, supplying fields of residual stress for the buckling model.
ii) Then, these fields of residual stress are used as loads in the shell buckling model
MAN which gives the critical load, the buckling mode as well as the post-buckling

state and the new distribution of the stress in the steel strip.
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Remark 7
An approach which deserves mentioning is the one proposed by Marchand et al.
[Marchand, 2000] where a first attempt to couple buckling under residual stress with
a commercial rolling model such as Abaqus was established. Since it is near impossi-
ble to inject a residual stress distribution in Abaqus [Abaqus, 2008], it was done via
the thermal field: starting from a heterogeneous temperature field, cooling induces a
thermo-elastic stress field distribution considered as the residual stress. This method
is a good alternative, yet it presents some limitations: a complex nonuniform stress
distribution cannot be expressed easily using the thermal field and thus is not able to

model a realistic buckling-rolling problem.

2.3.2 Coupled approaches for Rolling-buckling problems

All the models presented earlier were dedicated to studying buckling during flat
rolling but decoupling the buckling phenomenon from the rolling process.Taking into
account that buckling is a direct consequence of the strip plastic deformation happening in
the bite and that buckling can relax the residual stresses generated by these deformations,
the best representation of the complete process can be described by coupling these two
phenomenons. Such models are hard to find in the literature but two particular works
stand out: the works of Counhaye [Counhaye, 2000] and Abdelkhalek [Abdelkhalek, 2010].

2.3.2.1 Rolling-buckling model by Counhaye

Counhaye in his work, was one of the first to include simple yet efficient method to
deal with sheet buckling in a rolling model. The rolling model used is based on Finite
Difference Method (FDM) where steady state formulation based on streamlines is used.
The buckling representation is founded on the hypothesis that when the structure is sat-
urated by residual compressive stress, buckling occurs and relaxes the stress distribution
to respect a certain value and remain in its vicinity. This value is the critical stress and

was estimated in [Counhaye, 2000] by:

T Eh?
302

(2.75)

Ocr =
in which F is Young’s Modulus, h is the rolled strip thickness and [ is the wavelength esti-

mation. This form is similar to what is proposed by Timoshenko in [Timoshenko & Gere, 1961].
Similar to the work of Roddeman et al. [Roddeman et al. , 1987.a)|, the foundation of
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the model consists in determining an extra deformation £ which elastically brings the

stress in the buckled direction back to o,.
_ el pl bu
e=¢e4+e +¢ (2.76)

where £°, P! and €* present respectively the elastic strain tensor, the plastic strain tensor

and the additional strain tensor added by buckling.

60 SIGxx {MPa)

B Exp. (stress-meter roll)

—— Maodel, without buckling

-100 +
—@—Model, with buckling

-120 +

Figure 2.13: Longitudinal Stress distribution after tandem n.5 bite exit. Comparison
between experimental measurements and numerical results with two models, one taking
the buckling effect into account and the other neglecting it [Counhaye, 2000].

Although this method is based on the simplest hypothesis, this first of a kind coupling
(between the buckling phenomenon and the strip-roll deformation model) proves its im-
portance. Its efficiency can be closely inspected via the stress profile o,. A comparison
between the experiment results (measured on the mill by a flatness roll) and the numerical
results proves that taking into account the buckling effects in the rolling simulations up-
grades the results to: i) respect the buckling criterion o.. and ii) be in a good agreement
with measurements (see Figure 2.13). Note that this method can detect successfully the
buckling directions and zones but still is not able to describe the geometric form of the

defect neither determine its amplitude.
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2.3.2.2 Rolling-buckling model Lam3/Tec3 by Abdelkhalek

2.3.2.2.1 Lam3/Tec3

AS Lam3/Tec3, used by Abdelkhalek, is also the basis of our own work, it is worth
taking this opportunity to present it in a few words.
The basis of the present approach is an implicit FEM based rolling model called Lam3/Tec3,
developed in the 90’s and early 2000’s. It couples strip and roll stack deformation models,
as described in [Hacquin et al., 1998.a), Hacquin et al., 1998.b), Hacquin, 1996]. Its gen-
eral flow chart is given in Figure 2.15. For the strip deformation (Lam3), the most salient
feature is a steady state formulation based on streamline integration to correct the shape
for spread, anticipation of deformation at bite entry etc... This can be considered as a
variant of Eulerian-Lagrangian formulation. A great care is devoted to the determination
of the contact onset and exit, a difficulty in streamline techniques [Yamada et al., 1992],
since, due to the space integration, strip surface streamlines may penetrate the roll surface,

or on the contrary lose contact artificially (see Figure 2.14).

Pre-deformation

o Contact arc length—
8-, (assumed)
B B 8 iy 0 I s ey o o e
- - - - Assumed mesh —— Obtained mesh

Adjust contact arc
length and mesh
Thickness

y ]
Contact arc length — cﬁrecfron
(adjusted} 2?23%«1

X

- - - - Assumed mesh —— Adjusted mesh

Figure 2.14: An illustration of the streamline technique presented in [Yamada et al., 1992].

Another important point is the thermal-mechanical coupling. Due to the high Peclet
number (advection dominates conduction heat flow), a Streamline Upwind method is used
[Pardo & Weckman, 1990].

As many aspects of the formulation rely on streamlines, a structured mesh has been
preferred. It is based on 8node, tri-linear hexahedra, with reduced integration of the
pressure in the Principle of Virtual Power |Gratacos et al., 1992.a)]. Figure 2.16 illus-
trates the structured mesh, formed by "extrusion in the rolling direction” of a rectangular
grid of the upstream plane. Structuring the mesh allows a very efficient local refinement

of the mesh, in particular at bite entry and exit. As residual stresses are essential here,

62



Chapter 2. Literature Survey: sheets and plates buckling theories

an elastic-visco-plastic constitutive model is used. It is based on Prandtl - Reuss additive
decomposition of strain rate. Jaumann objective derivative is used to write the elastic
model in rate form, and associated von Mises behavior is assumed for plasticity. The
incremental consistency is based on the standard radial return technique. In the principle
of virtual work, the updated stress is obtained by streamline integration, where the time
needed for matter to move from an integration point to the next in the streamline is a
substitute for time step [Hacquin, 1996]-since time does not exist properly speaking in a
steady state formulation. As the pseudo-time step is therefore point dependent due to

the adapted mesh, the formulation has been termed "Generalized Heterogeneous Time
Stepping" (GHTS).

The roll stack deformation model is another essential feature. Like most of the previ-
ous ones [Shohet & Townsend, 1968|, the single roll bending and flattening model is based
on Timoshenko beam theory, Boussinesq solution for a half-space under general loading,
combined after the results in [Berger et al., 1976]. Based on extensive FEM simulations,
corrections have been brought for end effect and the barrel / axle transition. Hertzian
contact mechanics is assumed for work roll (WR) / back-up roll (BUR) contact. The
Influence Function Method (IFM) is used to discretize the system, with particular refine-
ment near the edge of the strip-WR contact. A global non-linear system is formed with
all displacements of all contact lines, with external forces (rolling load, WRB or BURB)
in the right-hand side. This non-linear system is solved by Newton-Raphson method.
Details can be found in [Hacquin et al., 1998.a), Hacquin et al., 1998.b)].

| Mesh generation, contact initialization, boundary conditions |

I}
| Velocity and state variables computations (Newton-Raphson) |‘7
v
| Strip temperature computation (SUPG) |
v
Roll temperature modeling;
Roll and stand elastic displacement Not
i verified

Updating of roll surface
Updating of streamlines and mesh
Updating of contact variables

l

Convergence tests:
(loads, geometry,
temperature)

End

Figure 2.15: General algorithm of the Lam3/Tec3 FEM strip rolling model.
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15 F
R
Sl}}éiry ) 5t
X (mm)
Figure 2.16: The structured mesh used
in Lam3. Note axes x = Rolling Di- Figure 2.17: A side view of the struc-
rection |RD|, y = Transverse Direction tured mesh containing several elements
[TD], z = Normal Direction [ND|. in the thickness.

2.3.2.2.2 Rolling-buckling model Lam3/Tec3-Abdelkhalek

The simple approach proposed by Counhaye in [Counhaye, 2000] to deal with sheet

buckling in a FDM rolling model, seems quite similar to the one presented in a more gen-
eral context by Roddeman et al. in [Roddeman et al. , 1987.a), Roddeman et al. , 1987.b)].
The same has been implemented in Lam3/Tec3 by Abdelkhalek in [Abdelkhalek, 2010,
Abdelkhalek et al., 2011].
In the context of small incremental deformation, the strain tensor is the sum of two com-
ponents: if buckling happens in the direction 1 (respectively 2), the conditions (2.44) in-
troduced by Roddeman et al. in [Roddeman et al. , 1987.a), Roddeman et al. , 1987.b)|
hold for o. # 0

n1.0.10 = O, ny.0.ny >0
ny.omy >0 respectively n.0.nh = o, (2.77)
ny.ony =0 ny.ony =0

o1 o2 0

If the thin strip is subjected to plane stress, then 0 = | o015 099 0 | and
0O 0 O
en €12 0
e=1| €12 €2 0 are respectively the stress and strain tensor.
0 0 e33
Consider A = :\I where A\; et A\;; are the extra deformations representing buckling
I

computed in the principal directions I et I1.
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Solving conditions (2.77),
= U =111 (2.78)

where F is Young’s Modulus.
Ai for @ = I, 11 could be computed using the stress components o;; pour %,j = 1,2 in the

reference frame as:

1 o1 +o o o 2
11 22 11 — 022
)\[ = E Oc — <T) — (T) + U%Q (279)

1 011 + 022 011 — 092 2
et (bt oo ) e

1
Moving back to the reference frame (Figure 2.18 (b)) with 6 = Qtan_l (%), the
011 — 022
buckling strain is computed then added to the global strain increment:

cosf ' A 0 O cosf
At = | sing 0 N7 O sinf | = Ar.cos*6 + \p.sin’0 (2.81)
0 0O 0 O 0
—sinb ' A 0 O —sinb
Achy = cost 0 M7 O cosf = \;.sin%0 + \j.cos*0 (2.82)
0 0O 0 O 0
cost ' Ar 0 O —sinb
Aety = | sind 0 A 0 cos | = |\ir — Ar|.sinf.cosd (2.83)
0 0O 0 0 0

This strain increment is added to the standard one computed by the module solving the

constitutive differential equations as illustrated in Figure 2.18(a).

After implementing this simplified buckling model in the rolling model Lam3/Tec3, the
new stress distribution taking into account the relaxing effect of the buckling is i) more
realistic than the one neglecting the impact of the buckling appearance, ii) respects the
buckling criterion and iii) is in a good agreement with the experimental measurements
(see Figure 2.19).
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Figure 2.18: On the left: General algorithm of the buckling model implemented directly
in Lam3 . On the right: the principal axes rotated by an angle 6 from the reference ones.
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Figure 2.19: Comparison of the longitudinal stress distribution o, between the experi-
mental results and the numerical one using i) a non-buckling rolling model (Lam-Tec3)
and ii) a buckling-rolling model (Lam3/Tec3/Counhaye) |[Abdelkhalek, 2010].
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Remark 8
This coupled rolling-buckling model is one of the few treating the buckling problem
completely integrated in the rolling process.
It provides a post-buckling description by means of additional deformations and can
detect were the defects appear i.e. where )\; # 0. This model however fails to quantify
the amplitude and the form of the defect.

2.3.2.3 Rolling-Buckling model Lam3/Tec3-MAN

The coupling between the strip and roll stack deformation model Lam3/Tec3 and the
shell buckling model M AN is built in a way that the roll stack deformation is described
by Tec3, the strip deformation in the bite by Lam3 (3D FE) and strip buckling outside
the bite is described by MAN (shell FE) (See Figure 2.21).

A coupling interface (or connecting section) is defined by the red dots in Figure 2.21, in
which Lam3/Tec3 receives the additional stress field caused by the strip buckling via the
boundary conditions (2.84.a).

?iam?) = _??WAN (a)

(2.84)
VAN = UMAN-ﬁr (b

where ﬁr is the normal vector to the coupling section and o4y is the stress field com-
puted by MAN.

The coupling algorithm, described in Figure 2.20, begins with a standard Lam3/Tec3
simulation, which supplies the out-of-bite residual stress distribution o¢,.s. This stress
distribution is then transferred to the buckling model MAN. A new post-buckling stress
distribution ??M 4y 1s computed by MAN. It is used as a new boundary condition for
Lam3/Tec3: ?iamg = —T'S;an- Next, a new simulation is run using Lam3/Tec3 but
only treating a part of the strip rolling: the bite vicinity. The purpose of this step, called
the truncated simulation, is to insure the interaction between buckling and what happens
in-bite i.e. the buckling will possibly change the roll geometry. If the roll stack geometry
is unchanged the program is put to an end. If not, the new roll stack geometry is im-
ported and used to repeat the first step and loop all over again until converging i.e. the

roll geometry remains stable.
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Complete rolling simulation by Lam3-Tec3
Recovering the out of bite residual stress distribution c'es

i
MAN using o'ss

c _ _T¢c
MAN T m3

Deducing 7rs  from Guan 8
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v
Truncated Lam3-Tec3 simulation out of
bite using Ttfpnsas boundary conditions Rolling direction
Recovering the new Roll stack geometry —_
Shell Shell
<

Bite and buckling Back tension -
mode in a stabilized Verified —
Coupling interfaces
between Lam3-Tec3
and MAN

Not
verified
i
Complete rolling simulation by Lam3- Convergence
Tec3 using the new roll geometry. End

state
Recovering o™s

Figure 2.21: Lam3/Tec3-
Figure 2.20: Lam3/Tec3/MAN coupling al- MAN coupling scheme
gorithm |Abdelkhalek, 2010].

Before presenting the defective strip described by Lam3/Tec3-MAN, one important
point should be clarified: the initial version of M AN presented in section 2.2.2.1 and in
[Abdelkhalek, 2010], was found reliable for the simulation of academic cases, but presents
limitations when coupled with Lam3/Tec3 to simulate industrial problems. Figure 2.23a)
confirms the difficulties where no waviness on the edges were detected despite the stress
profile presenting very large compressive stresses near the edges.

To correct this defect, an optimized version called MAN v2 [Note MAN v2.0, 2013| was
introduced. It is a combination of the method M AN with a Newton-Raphson algorithm
allowing to control the chosen bifurcation branch: it chooses a nearby solution verify-
ing the equilibrium state. In other words the combination ML AN-Newton-Raphson helps
managing nearby solution branches showing smaller energy. This resolution procedure is
called HOPC ( High Order Prediction Correction).

The new version MAN v2 is an implicit resolution of the problem which guarantees a
good residue along the branch solution; while the older version MAN v1 is an explicit res-

olution where the system can stray away progressively from the solution (see Figure 2.22).
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MAN explicit

MAN implicit (HOPC)

Load
Load

»

displacement displacement

Figure 2.22: On the left: Explicit MAN (version 1), on the right implicit MAN (version
2).

Using the optimized version, Lam3/Tec3-MAN is now able to detect the wavy edges
with an amplitude of 3.5 mm, which seems more realistic and compatible with the conclu-
sions presented by Counhaye in [Counhaye, 2000]: small wavy edge defects of the order
of ~ 1 mm with a wavelength equal to 70 mm and a depth of 10 mm.

Bite exit
Clamped

Bite exit
Clamped

\D<Z
Rolling N J
m

Figure 2.23: The defective plate under strip tension described using the coupled approach

Lam3/Tec3-MAN: (a) the initial Lam3/Tec3-MAN version called Lam3/Tec3-MAN2010
and (b) the optimized version called Lam3/Tec3-MAN2013.
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When compared with the experimental measurements (provided by the flatness roll),
the new stress distribution shows a great improvement and good agreement. By that it

is concluded that taking the buckling effects into account is a must (see Figure 2.24).
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Figure 2.24: Comparison of the longitudinal stress distribution o, between the experi-
mental result and the numerical one using i) a non-buckling rolling model (Lam-Tec3)

and ii) a buckling-rolling model (Lam3/Tec3-MAN2010) [Abdelkhalek, 2010].

Note that in his thesis [Abdelkhalek, 2010], Abdelkhalek did not detect any buckling-
bite interaction for this special rolling operation: The buckling appearance has minimal
to no effect on what happens in the bite (redistribution of the stress, rolling speed and
strip thickness).

Until now, the model Lam3/Tec3-MAN seems to be the most powerful model predicting a
complete rolling operation presenting flatness defects. It can predict the type and form of
the flatness defects, quantify the defect amplitude and provide the new stress distribution
post-buckling.

In spite of its strong points, it presents some downsides such as its complicated coupling

method leading to difficult use and significantly more computing time.

Remark 9
This type of coupling presents several difficulties regarding the coupling interface such
as i) where to choose exactly the coupling interface position after the bite exit and
ii) how to make it straight. And since the coupling is done via the stress field, there
is some simplifications taken to ensure its continuity; which is not evident due to the

non uniform geometry especially at bite exit.
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A more rigorous way is to couple two different finite elements models such
as Lam3/Tec3 (3D FE) and MAN (shell FE) by the Arlequin coupling or
what is called bridging technique [Ben Dhia & Jamond, 2010, Ben Dhia, 1998,
Ben Dhia & Rateau, 2001]. It ensures the continuity and the coexistence of the two
different domains (the same energy for the two sub-domains) in the overlapping zone
called gluing zone (Figure 2.25). The Arlequin coupling for this particular case is rel-
atively delicate due to two completely different formulations: one is a velocity based
formulation (in Lam3) and the other a displacement based formulation (in MAN).
Such a coupling is being attempted presently within the ANR PLATFORM project
(K. Kpogan - Y. Tampango, personal communication, August 2013).

QSD - _E i . Qsheﬂ -
'-J

Q

gluing

Figure 2.25: Arlequin framework for two different finite elements domains

The mixed Arlequin problem based on an energetic coupling is:

Find (u3p, Usheut, M) € Wap @ Wapen @ Wotwing;
Vusp € Wap : / aspo(uzp) : e(vsp) + C(A\*, v3p) = Bsp f.v3p
QgD Q3D
VUshett € Wshen Qshett (Ushent) : €(Vshent) — O, Vanent) = Bsheir f-Vsheit
Qshell Qshell
V/L € nguing ) C(ua Usp — ushell) = / U(/JJ) : €(U3D - ushell) =0
leuing

(2.85)
in which f is the volume density of the applied forces, o and e are respectively the
stress and strain tensors. The couples (asp, aspen) and (Bsp, Bsnenr) are respectively
the unity partition of the internal and external energies. The form of the coupling
operator ¢(.,.), chosen in equation 2.85, is one of many others available depending of
the problem complexity.

Wsp, Wenen and Wying are Sobolev spaces defined as follows:

Wsp = H1(Q3p) = {vsp € L' (Qp), Dvsp € L' (Q3p)}
When = Hl(Qsheu) = {Usheu S Ll(Qshell)a Dvgpen € Ll(Qshell)} (2-86)
nguing = H1<leuing) = {vgluing € L! (leuing)a Dvgluing € L1<leuing)}
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Remark 10

The notion of "critical stress" is inadequate language, it can be only used when
the stress distribution is homogeneous all over the domain. Otherwise, to an
heterogeneous loading corresponds a "critical loading".

Not all researchers respected this naming. For instance, Counhaye in his work
[Counhaye, 2000], defined a unique critical value (typical Timoshenko form) to be
respected globally on each point of the strip. Rigorously, this is only valid for
a homogeneous stress distribution, contradicting what is used in his study. To
overcome this contradiction, Counhaye treated every element separately discretizing
the heterogeneous stress distribution into constant field per element. It cannot be

said that the followed approach is a good presentation of the reality.

In our study, "critical stress" corresponds to a value determined locally: on the
edge or center depending on the compressive zone position. For an heterogeneous
transverse stress profile o, (y) the stress value o, corresponding to the critical loading
Aer 18 equal to A...Min(o,(y)) where Min(o,(y)) < 0.

2.4 Conclusion

This survey cited sources of available approaches for treating plate buckling problem,

whether they were applied to flatness defects during flat rolling or not. Then, the few
available approaches treating buckling and rolling as a coupled problem were presented
evoking both their capacities and deficiencies.
The aim is to complete the available rolling model Lam3/Tec3 by a buckling model capable
of detecting and describing the buckling of the plate. This model should be simple enough
to be integrated completely in the rolling model Lam3/Tec3, avoiding coupling interfaces
such as the one used to couple Lam3/Tec3 with MAAN. The resulting model is expected
to be able i) to detect flatness defects zones, ii) to determine the mode and the buckling
load, iii) to quantify the buckling amplitude, iv) to relax the stress distribution by an
additional stress distribution to respect the buckling criterion and v) to take into account
the bite-buckling interactions.

None of the previous works was able to fulfill all of these demands:

1) The simplified buckling model presented by Counhaye and then implemented by Ab-

delkhalek in Lam3 is capable of detecting the zone with flatness problems and relax-
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ing the stress distribution to respect both the buckling load and the experimental
results but fails to quantify the buckled geometry.

2) The shell buckling model MAN is capable of describing the buckling and post-buckling
state of the strip and can give a good approximation of the buckling amplitude. By

itself, it cannot take the interaction between the bite and the buckling into account.

3) When coupled with the rolling model Lam3/Tec3, the shell buckling model MAN
was subject to several problems. A smooth transition between the shell and 3D
finite elements formulation such as given by the Arlequin coupling could not be
insured, because of the displacement versus velocity based formulation of MAN
and Lam3/Tec3. Instead, the coupling was done going back and forth between the
two models transmitting the results of each model as boundary conditions to the

other one via the coupling interface.

The purpose is to find a simple yet pertinent approach; pertinent means capable of do-
ing what MAN and Counhaye’s model combined can do i.e. describing the buckling
and post-buckling state, and simple means that it should be integrated completely in the
rolling model Lam3/Tec3.

The only approach that seems to respond to these needs is the Multi-Scale Method based
on Fourier series expansion presented in section 2.2.2.2. By its simplicity, it is capable of
describing the flatness defects and seems to have a similar way as Counhaye’s buckling
model to be coupled with Lam3/Tec3. The application of this approach on flatness defects
during cold rolling processes will be treated, developed and studied in Chapters 4 and 5
then coupled with Lam3/Tec3 in chapter 6.

Before proceeding, an illustration of Lam3/Tec3-Abdelkhalek model capacities will be
presented by a full description with application to real rolling problems. The purpose of
Chapter 3 is to clarify the notion of flatness defects and its direct relation with the stress

distribution in view of a comparison in Chapter 5.
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2.5 Résumé en Francais

Dans ce chapitre, une enquéte citant différentes approches disponibles dans la lit-

térature pour le traitement de flambage des toles a été présentée. Ensuite, quelques
approches traitant le flambage durant le laminage de facons couplées et découplées ont
été exposées évoquant a la fois leurs capacités et leurs lacunes .
Le but est de compléter le modeéle de laminage disponible Lam3/Tec3 par un modéle de dé-
formation capable de détecter et de décrire la déformation de la plaque . Ce modéle devrait
étre assez simple pour étre complétement intégré dans le modéle de laminage Lam3/Tec3,
évitant les interfaces de couplage telles que celles utilisées pour coupler Lam3/Tec3 avec
MAN. Le modéle résultant devrait étre capable de i) détecter les défauts de planéité,
ii) déterminer le mode et la charge de flambement, iii) quantifier amplitude des vagues,
iv) redistribuer les contraintes post-flambement et v) prendre en compte les interactions
cage-flambement.

Aucun des travaux antérieurs n’est apte a remplir toutes ces exigences :

1) Le modéle de flambement simplifié présenté par Counhaye puis mis en oeuvre par
Abdelkhalek dans Lam3 est capable de détecter la zone présentant des problémes de
planéité et de redistribuer les contraintes post-flambage pour respecter les mesures

expérimentales, mais ne peut pas quantifier ’amplitude des défauts.

2) Le modéle de flambage (EF coques) MAN est capable de décrire I’état de flambage
et post-flambage de la téle et peut donner une bonne approximation de 'amplitude
de la déformation. Découplé, il ne peut pas prendre en compte 'interaction entre

la cage et le flambage.

3) Pour étre couplé avec le modéle de laminage Lam3/Tec3, MAN rencontre plusieurs
problémes. Une transition entre I’élément fini coque et ’élement fini 3D, comme
proposée par le couplage Arlequin, n’a pas pu étre assurée en raison des deux
formulations différentes utilisées (en vitesse dans MAN et en déplacement dans
Lam3/Tec3). Le couplage a donc été fait via des allers-retours entre les deux mod-

éles transmettant les résultats de 'un comme conditions limites de Uautre.

Le but est de trouver une approche pertinente et simple a la fois. ’Pertinente’ signifie
étre capable d’accomplir ce que MAN et le modéle de Counhaye combinés peuvent faire
(décrire I'état flambé et post-flambé de la tole), et ’simple’ signifie qu’il doit étre com-
plétement intégré dans le modéle de laminage Lam3/Tec3 pour éviter des problémes de
couplage.

La seule approche qui semble répondre a ces besoins est la méthode multi-échelle utilisant
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des développements en série de Fourier (section 2.2.2.2). Par sa simplicité, elle est capa-
ble de décrire les défauts de planéité et semble avoir la méme facon de se coupler avec
Lam3/Tec3 que le modéle de Counhaye. L’application de cette approche sur la modéli-
sation de défauts de planéité au cours des opérations de laminage a froid sera traitée et

étudiée dans les chapitres 4 et 5, ensuite couplée avec Lam3/Tec3 dans le chapitre 6.

Avant de commencer, une illustration des capacités du modéle Lam3/Tec3-Abdelkhalek
sera présentée avec application sur de vrais problémes de laminage . Le but du chapitre
3 est de clarifier la notion de défaut de planéité et sa relation directe avec la répartition

des contraintes en vue d’une comparaison dans le chapitre 5.
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CHAPTER 3

FLATNESS ACTUATORS ON LINE:
USING LAM3/TEC3-ABDELKHALEK

Never give up on something you really want. It is difficult to wait, but

worse to regret.
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Chapter 3. Flatness actuators on line: Using Lam3/Tec3-Abdelkhalek

.F latness defects in thin strip cold rolling are a consequence of roll thermo-elastic
deformation, from which heterogeneous strip plastic deformation results (i.e. residual
stress).

To study the effects of several parameters on the flatness of a thin strip, the model pre-
sented in section 2.3.2.2 will be used in this chapter. Mainly, the impacts of friction, work
roll bending (WRB) and strip tension on the flatness of thin rolled strips are examined.
In addition, a friction-WRB relation is established in order to obtain the optimal flatness.
Finally, the effects of temperature on cold rolled strip flatness are studied. The latter
part is a means to justify why thermal effects on buckling appearance are neglected later

on in this study.

The goal of this chapter is not to provide a complete abacus to run a specific rolling
mill, but to highlight interactions between several actuators.
Friction on the one hand, strip tensions on the other hand, have been proved to impact
strip profile after cold rolling [Jiang et al., 2003, Jiang et al., 2007, Wang et al., 2007]. In
[Jiang et al., 2008], the effect of a parabolic variation of friction in the transverse direc-
tion has been evaluated. The following study examines the effects of friction, work roll

bending force and strip tension on the shape of the strip.

All examples shown next refer to the same rolling pass, the last stand of a tinplate
sheet mill, with very low thickness. All the characteristics are detailed in Table 3.1 and

Figure 3.1.
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Strip width 855 mm
Strip entry thickness | 0.355 mm
Strip exit thickness 0.252 mm
Strip crown 4.81 %
Rolling speed 22 m/s
Back and front tension | 170 MPa - 100
MPa
Type of mill 4-high
Work Roll diameter 555 mm
Work Roll length 1400 mm
Work Roll crown 0.0322 %
Back Up roll diameter | 1300 mm
Back Up roll length 1295 mm
Back Up roll crown No crown
Work Roll bending | FF =480 KN
Force
Work Roll bending | y = 1010 mm
Force position
Coulomb Friction Law | 7 = 0.0250,,
Young’s Modulus E =210 GPa £
Poisson’s ratio v=20.3 2 .
Critical stress o, = —10 MPa = ; i
Stress-Strain curve oy = : :
(470.5 + 175.48) x (1 — 0.45¢~59) — 175) G B

Table 3.1: The characteristics of the
investigated rolling pass.

Figure 3.1: The mill structure (4-Hi)
and dimensions.

3.1 Friction and Flatness

In this section, a quick study on how friction influences flatness of a thin strip is
presented. The strip flatness is mainly judged via the thickness profile and the residual
stress profile which can easily generate flatness defects.

The rolling operation detailed in Table 3.1 and Figure 3.1 has been modeled using coef-
ficients of friction between 0.01 and 0.035. Figures 3.2(d) and 3.2(e) present respectively

the strip thickness profile and the stress profile in a cross section about 1 m after roll bite
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exit.

Figure 3.2(d) shows that as friction increases, the thickness of the strip on the edges
decreases. Note that a perfect strip gauge control has been assumed, so that the central
thickness is maintained at its nominal value. The reason for the growing profile defect is
the higher rolling load resulting in more WR bending, hence a larger edge-drop defect.
This occurs in spite of the roll crown, which is normally planned to compensate for bend-

ing, but is not adaptable when the roll load varies.

Proceeding with the stress distribution downstream of the roll bite, Figure 3.2(e) shows
that changing friction may transform the on-line residual stress distribution in the strip.
The profiles must be compared with the average tension 100 MPa: wherever the stress is
smaller, there is a suspicion of compression after tension release, therefore of waviness. For
the central value p = 0.025, the profile is slightly concave in the center, where o,, < 100
MPa. The strip might remain flat on the mill, but a wavy center is not excluded after
tension release - wavy edges may also occur simultaneously as the stress, there, is close to
0. = 0. For the highest friction, ; = 0.035, the tension is slightly above 100 MPa in the
center, rather constant, and drops only in the last 100 mm. The curve is concave except
near the edge where waviness of limited dimension might occur.

Finally, the lowest friction g = 0.01 leads to a dramatic change in the stress profile: even
under strip tension, the center is practically slack, whereas the edges are extremely tensile:
the WRB force 480 kN, added to the roll crown, is too large for the lower roll load, the
gap is thinner in the center, the elongation of the strip is too large there (this is also where
the strip is thickest at entry) and a wavy center will obviously result after tension release.
It can be said that the bending force used is poorly adapted to such a low friction.

Note that as shown by the roll load transverse profile (Figure 3.2(a)) and the roll profiles
(Figure 3.2(b)), "roll kiss" has occurred for p = 0.035 (mutual contact of the two WR on
either side of the strip). The increasing friction results in a higher rolling load, thus the
work rolls present more flattening (Figure 3.2(c)) and smaller gap in between near the

edges (Figure 3.2(b)) which justifies the edge drop (i.e. higher reduction near the edges).
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Figure 3.2: The impact of friction on (a): Roll load transverse distribution.
(b): Roll active generator shape z(y), (¢): Roll flattening, (d): Strip thickness profile and

(e): Post-buckling stress distribution under strip tension
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3.2 Roll bending and Flatness

The aim of this section is to understand how changing work roll bending can impact
flatness of a thin strip and how it can be adjusted to neutralize the effects of changing
friction.

The rolling operation detailed in Table 3.1 and Figure 3.1 has been modeled using WRB
values ranging from 350 kN to 900 kN. Again, the strip thickness profile and stress profile
are presented on the same cross section used before.

Though the thickness of the strip on the edges in not dramatically affected, Figure 3.3(d)
shows that as the WRB increases, the thickness profile i.e. the crown of the strip is
clearly affected. One of the aims is to maintain the most flat homogeneous thickness
profile along the width of the strip which is clearly not respected in the case of WRB
equal to 900 kN. The reason for the thickness profile defect is the higher WR bending
resulting in a more convex profile of the roll load (Figure 3.2(a)) and a bigger gap be-

tween the rolls near the edges (Figure 3.2(b)); hence a non-homogeneous thickness profile.

As for the stress distribution downstream of the roll bite, Figure 3.2(e) shows that

changing the work roll bending can transform drastically the on-line and off-line residual
stress distribution in the strip. The profiles must be compared with the average tension
100 MPa: wherever the stress is smaller, there is a suspicion of compression after tension
release, therefore of waviness. For the central value WRB= 480 kN, the stress profile is
slightly concave in the center, where o,, < 100 MPa. The strip might remain flat on
the mill, but a wavy center is not excluded after tension release - wavy edges may also
occur simultaneously as the stress there is close to zero. For the smallest bending value,
WRB= 350 kN, the stress is slightly above 100 MPa in the center, rather constant, and
drops only in the last 100 mm. This means the strip will probably remain flat except on
the edge where waviness of limited dimension might occur.
Finally, the highest bending WRB= 900 kN leads to a dramatic change in the stress
profile: o,, << 100 MPa in the center, whereas the edges presents compressive stresses.
After tension release, this will result in a strong wavy center covering a great part of the
strip width. In this case, one can deduce that this WRB force 900 kN, is badly adapted
to the chosen friction coeflicient p = 0.025.
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Figure 3.3: The impact of varying bending force on (a): Roll load transverse distribution.
(b): Roll active generator shape z(y), (¢): Roll flattening, (d): Strip thickness profile and
(e): Post-buckling stress distribution under strip tension
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3.3 Best-adapted WR bending force for a given friction

level

; he previous analysis shows i) that friction affects the strip thickness profile, the
stress distribution, and will therefore impact the defect type and amplitude. ii) One of

the flatness actuators which can be used to improve flatness is the Work Roll Bending

(WRB) force. Its effect, at constant y, is illustrated in Figure 3.4(a).

Increasing it to

large values clearly exaggerates counter-bending, with too large reduction in the center

resulting in a concave profile, leading to a wavy center.
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Figure 3.4: (a):
coeficient (u = 0.025).

(d)

The o0,.(y) stress profile for varying bending force and fixed friction

(b): The stress profile for varying friction and fixed bending force (480 KN).
(c): Evolution of the forward slip rate as friction changes
(d): The relationship between friction and optimal bending force.
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Since the effect of WRB can neutralize the effects of varying friction on flatness, a
good idea is to establish a relation between friction and the corresponding WRB giving
the best flat strip profile.

Thanks to a set of numerical experiments, the relation between friction, bending force
and stress profile 0,,(y) has been established for the rolling operation investigated. For
each value of the friction coefficient, the "optimal bending force" is defined here as the
one giving the most flat stress profile (as judged by eye). For instance, from Figure 3.4(a),
it can be concluded that 350 kN is the optimal bending force for p = 0.025. Inversely, in
Figure 3.4(b), F' = 480 kN gives a flat profile with x = 0.03, so that the optimal bending
force foru = 0.03 is 480 kN. The results obtained for the whole range of parameters are
given in Figure 3.4(d). It shows how the bending force could be preset as a function of
friction when the latter varies, e.g. during mill acceleration or deceleration.

The relationship has been established for ;= 0.02 to 0.035. p < 0.02 is not desirable,
due to a risk of skidding shown by the negative forward slip below p = 0.015 in Figure
3.4(c). "High" friction, > 0.03, leads to "Roll Kiss"

3.4 Tension and Flatness

Another possible actuator is the strip tension itself. It is examined in the following if,

for a given rolling operation, it can be used to control -and minimize- the stress variations
0.:(y). Average tension stresses of 50 and 150 MPa have been tested.
Curves of Figures 3.5(c) and 3.5(d) present respectively the stress profile (average tension
T has been subtracted) and the strip thickness profile in a cross section ~ 1 m after roll
bite exit. Decreasing the tension (50 MPa) does not change the stress profile too much,
but increasing it above 100 MPa clearly affects the stress distribution (Figure 3.5(c)). As
tension increases, the stress on the edge is kept at the buckling threshold (—10 MPa),
but in relative terms, it is more compressive after tension subtraction. Increasing the
tension to 150 MPa increases 0., (y) everywhere, but the profile is almost three times more
concave, suggesting a wavy center upon cancellation of the tension force. Figures 3.5(d,e)
show that as the tension decreases, the thickness of the strip on the edges decreases (the
edge-drop defect is larger). This is because lower tension results in increased roll load,
giving more roll flattening 3.5(b), also shown by the large peak at the edge of the roll
load profile (Figure 3.5(a)). The total rolling force increases linearly from 8380 to 9180
and to 10100 kN as tension decreases from 150 to 100 and to 50 MPa.
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Figure 3.5: The effect of increasing strip tension on (a): Roll load transverse distribution,
(b): Roll active generator shape z(y), (c): stress profile (1 = 0.025, WRB force = 480
kN, strip tension stress T' has been subtracted for easier comparison, (d): Strip thickness

(e): -Zoom of the strip thickness near the edge-
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3.5 Temperature and Flatness

In this section, the friction, the tension and the bending force are fixed and take
the values described in Table 3.1. Only the temperature effects on flatness defects are
studied. This will help deduce if taking into account the thermal contribution is crucial
or not.

At bite exit, temperature is much larger at the edge than in the center (Figures 3.6(a)
and 3.6(b)), about 165°C versus 110°C. This is due to larger reduction and plastic heating
on the edges (3.2(d)). Due to the corresponding differential dilatation, the stress pattern
could be affected. A series of simulations has therefore been run. The first is an isothermal
case and it is taken as a reference. In the second case, the strip is allowed to cool after
bite exit under the effect of the strip cooling system, with H.,,; = 5 kW.m 2. K~ for heat
transfer coefficient (HTC); strip - roll contact is kept adiabatic (H,,; = 0). Temperature
increases in the roll bite and slowly decays afterwards.

In the third case, the roll - strip interface is represented by H,.; = 100 kW.m=2.K~'. The
temperature increase is less in the bite, cooling is similar to the previous case. Finally, in
the fourth case, Hopop = 5 kEW.m 2. K=, H,o; = 100 kW.m~2. K1, but rolls are moreover
cooled efficiently by water sprays, so that strip temperatures are significantly lower.
However, the temperature difference between strip edge and center is very similar in all
three cases, 40 to 50°C. Figure 3.6(e) shows that these temperature differences, even in
the isothermal case (T' = 25°C everywhere), have negligible impact on the stress pattern
once relaxed by edge buckling.

In this operation, the edge is significantly thinner than the center (in the case studied,
central thickness is kept fixed at 0.252 mm by a supposedly perfect gauge control system,
but it may drop to 0.18 mm on the edge). This means less rigidity against buckling of
long edges as is the case here. In spite of its vulnerability to buckling, the temperature
effect on the stress profile e.g. the flatness defect is very small to non-existent.

It can be concluded that in cold rolling, or rather for this operation in particular, the

thermal effects are negligible and can be dropped.
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Figure 3.6: Effect of all thermal boundary conditions on (a): edge longitudinal tempera-
ture profiles in the rolled strip post-bite, (b): central longitudinal temperature profiles in
the rolled strip post-bite, (¢): edge longitudinal temperature profiles in the bite, (d): cen-
tral longitudinal temperature profiles in the bite and (e): the longitudinal stress transverse

profile 0,.(y)

88




Chapter 3. Flatness actuators on line: Using Lam3/Tec3-Abdelkhalek

3.6 Conclusion

The problem of flatness defects has been addressed using a completely coupled model
combining the FEM for strip elastic-viscoplastic deformation "Lam3", a powerful semi an-
alytical model of roll elastic deformation "Tec3", and a simple model of buckling based

on elastic / buckling deformation decomposition described in section 2.3.2.2.

A study of the effect of friction concludes that, in the thin sheet (tinplate) case, friction
is an essential parameter for flatness. An adaptive set up of the bending force is shown
to be able to compensate for unavoidable friction variations: to each coefficient of friction
corresponds a bending force ensuring the best possible flatness. For the time being, the
expected optimal flatness is judged only by the homogeneity of the stress profile, but this
criterion could be refined in the future.

Front tension has been studied as well. The effect of an increased tension is positive
on the roll load and roll deformation, but raises a flatness issue. Probably, this could
be again partly compensated by changing simultaneously the WRB force. Playing with
two actuators together however raises the question of the local / global character of their
effects, a question which will be examined in Chapter 5 section 5.3.

It has been shown also that the temperature increase in cold rolling is not large enough to
introduce thermal residual stress. Thus it does not affect the on-line/off-line strip flatness

and therefore its effect can be neglected later on.

Now that we have a good vision of Abdelkhalek’s model capacities, in the following
chapters we turn to the model developed in the present work: the Multi-Scale Buckling
Model (MSBM).

3.7 Résumé en Francais

Dans ce chapitre de transition le probléme des défauts de planéité a été abordé
avec un modéle complétement couplé combinant le modéle éléments finis de déformation
élastique-viscoplastique de tole "Lam3", un puissant modéle semi analytique de déforma-
tion élastique de cage "Tec3" et un modéle simple de flambage (décrit dans la section
2.3.2.2).

D’abord, une étude de l'effet de frottement a conclu que, pour une tole mince, le frot-
tement est un paramétre essentiel affectant sa planéité. Mais nous montrons que nous

pouvons compenser son effet en jouant sur la force d’équilibrage: a chaque coefficient de
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frottement correspond une force d’équilibrage optimale assurant la meilleure planéité pos-
sible. Les effets du changement de traction ont été étudiés aussi. Une traction croissante
diminue la déformation des cylindres de travail, mais augmente les risques d’apparition
de défauts de planéité aprés relachement. Probablement, ceci pourrait étre de nouveau
en partie compensé en changeant simultanément la force d’équilibrage. Enfin, les effets
de température sur les contraintes résiduelles ont été trouvés faibles. Ainsi, elle n’affecte
pas la planéité de la tole en/hors ligne, ¢’est pourquoi nous négligeons son incidence dans

les chapitres suivants.

Maintenant que nous avons une bonne vision des capacités du modéle d’Abdelkhalek,
dans les chapitres suivants nous passons au modéle développé dans le présent travail: le
modéle de flambage multi-échelle (MSBM).
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CHAPTER 4

FROM VON KARMAN EQUATIONS TO
MULTI-SCALE BASED BUCKLING
MODEL

If you only walk on sunny days you’ll never reach your destination.
by Paulo Coelho
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Chapter 4. From von Kérman Equations to Multi-scale Based buckling model

In 1910, T. von Karméan [von Karman, 1910] introduced a pair of fourth order elliptic
partial differential equations. This system describes out of plane large deflections and
stresses produced in a thin elastic plate subjected to in-plane compressive forces. Follow-
ing his work, attempts for more complete studies of these equations -without additional
assumptions on the shape, symmetry and boundary conditions of the buckled plate- were
proved to be nearly impossible due to the nonlinear nature of these equations. Despite all
these difficulties, it is assumed that the von Karman equations give a valid description of
buckling plates problems. Thus, these equations are rewritten for thin elastic strip buck-
ling under residual stress and the different steps will be presented in section 4.1. From
the mathematical point of view, the buckling of a thin strip is expressed by the multi-
plicity of solutions associated to the von Karman system. Many works have addressed
this problem to obtain a qualitative uniqueness solution theory for this problem. Thus, a
quick mathematical description of the problem is explored in section 4.3.

Since the von Karman equations are well known to be derivable from a variational prin-
ciple i.e the Constant Internal Energy principle, the energetic formulation of this
problem will be detailed and adapted to the needs of buckling during cold flat rolling
processes in section 4.4.

Once the appropriate equations are established, they will be combined in section 4.5 with
the multi-scale method presented in [Damil & Potier-Ferry, 1986, Damil & Potier-Ferry, 2006]
to offer a simple yet performant buckling and post-buckling model. The resulting model
will be called the Multi-Scale Buckling Model (MSBM) from now on for simplicity
reasons. Finally, the numerical results are presented then validated with different avail-
able studies in section 4.7.

The readers are invited to consult the works of von Karman [von Karman, 1910], Tim-
oshenko [Timoshenko & Gere, 1961], Berger [Berger, 1967, Berger & Fife, 1996|, Lewicka
[Lewicka et al. , 2011] and Ventsel [Ventsel & Krauthammer, 2001] for interesting descrip-

tions from both 'mathematical’ and 'physical’ points of view.

4.1 Von Karman Equations

./4 thin flat elastic plate subjected to compressive forces along its edges, remains
flat when these forces are small. It deflects when they exceed a certain critical value. The
buckling of the plate under compressive stress is described by the set of equations (4.1)

called the von Karman equations:

éAQ(I)(m,y) = %g(%y)—%[wald (4.1)
D.A*w(z,y) = [w,?]
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in which w(x,y) is the out-of-plane displacement, ®(x,y) is the Airy stress function (i.e.
the stress components are computed in terms of the second derivatives of @), g(x,y) is a

stress function that could be present initially in the plate and can cause its deflection if
3

sufficiently large, E denotes Young’s modulus and D = the plate rigidity.

12(1 — v?)
Note that A% and [.,.] are respectively the biharmonic and the bracket operators defined
as follows

4 4 4
A? = ARSI

ox 0?xd%y Oy (4.2)

PudPw  0*ud*w P*u PPw '
[u, w] = 2 for any u and w

0x? Oy? * Oy2 0x2 " 0xdy dxdy

Since buckling occurs when ¢ is sufficiently large, it can be written as a linear function
depending on a loading parameter A\. From now on, g can be replaced by Ag. When this
parameter is small enough and does not surpass a critical value denoted .., buckling

does not manifest. Thus the displacement w = 0 and g verify the equation 4.3.

A*f(z,y) = g(z,y) (4.3)

where f is the Airy stress function corresponding to the force g when the plate is not
loaded enough to buckle.

If ' = ®— \f is the stress function produced once the plate begins buckling i.e. \ exceeds
Aer, O what is called usually the buckling additional stress function, then the von Karman

system 4.1 is replaced by the new system 4.4:

I 1
grt Floy) = gl (4.4)
D.A*w(z,y) — A[f,w] = [w,F]

4.2 Von Karman Equations for buckling plate under

residual stress

To obtain the governing differential equations for deflection of a thin rectangular
plate, the equilibrium of the plate, the compatibility and the constitutive relations will be
put into use. Introducing the residual stresses as initial loading, we will retrieve the von
Kéarman Equations for buckling plates under residual stress. As mentioned earlier, the
von Karméan system is a set of two partial differential equations (4.4), so we will proceed
in two steps to write each one of them.

The First Equation:

Consider a thin plate of thickness A illustrated in Figure 4.1 subjected to a normal
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load p(z,y) and to in-plane forces (in this case residual ones) N;**(z,y), N;**(z,y) and

res : — res res res\t _ :
Npes(z,y) ie. g = (N7, N;e°, N7=*)'. Let us denote once and for all, N = o.h where o is

a stress tensor.
ems Ems

if ems = fns ::35 is the strain deformation tensor in the plate mid-surface, its
Sy Sy

components are computed as follows:

ms %4_1 a_w i
fr T or 2\ 0z
1

ov ow\*
ms — - 4.5
€y ay + 2 \ 9y (4.5)
gms  — 1 a_u + @ + a_wa_w
W 2\9y Or Oxdy

where u, v and w represent respectively the mid-surface displacement components in the

directions of Cartesian coordinates x, y and z.

N A A ) - S

|

Figure 4.1: A thin plate subjected to a normal load and in-plane forces.

Eliminating the tangential components of the displacement w and v by the relevant

differentiation combination, the compatibility equation of the middle surface is retrieved:

ms 2 .-ms 2 .ms 2
e O Oy (w ' Fwi )
0y? 0x? Oydy 0xdy 0x? Oy?
Hooke’s law allows writing the following relation (small perturbation amplitude):
N = Mtr(e™)I + 2ue™ (4.7)

in which I is the identity tensor, A and v are Lame coefficients. Now we can take into
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account the residual stresses (i.e forces) by introducing N"¢*

N — N" = h.(Atr(e™)T + 2ue™)

(4.8)

Inversing equation (4.8), we can write:

€ms

Introducing the loading parameter A\, the component of ¢

expressed easily as:

ms
oel

ol

1+ ) (N = N™) — ptr(N — N™)T] (4.9)

ms and its derivatives can be

Ny —vN, — M(NJ® — vN]*)]

Ny — Ny — MN;® — vN*)]

— o

(1+v)Nyy — A1+ u)N;;S}
ON, V@Ny L ONGe

dy dy Al dy -7

aN:[?I“eS

(4.10)
y )

|3/ -2 2|~

Note that this supposes that the thickness of the strip is constant (homogeneous). Finally,

replacing the partial derivatives of ¢

following equation:

ms

in the compatibility equation (4.6), we get the

1 [0®N,  &°N, O>Nres O*N}e> 92N, %N,
— —v—L -\ + \v—— L—v
Eh 0y? 0y? 0y? Oy? Ox? Ox?
82 Nres 82Nr55 82N 02 Nres
— A Y A £ —2(1 Y 2)(1 =Y 4.11
0x? A 0x? (1+v) 0x0y 21 +v) 0x0y (411)
Pw\> 0w dtw
B (&cﬁy) 922 Oy

Since N represents the resultant force in the plate, it can be expressed as a combination

of the residual force present initially in the plate AN"** and N the one created by the

plate buckling once X is greater than the critical value A,.
So if ¢ is the Airy stress function associated to N then, ¢ = F'+ \f where f is the stress

function associated to N and F' is the one associated to the redistribution of the stress

after buckling.

® is the Airy function associated to N i.e. & = ¢.h and N, =

0?®

Ny = ———.
v 0y

0*®
oy?’
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Replacing the above information in equation (4.11)

1 84¢>+84d>+2 0*® 7_1[ ]
Eh dy*  Ox? ox20y%| 2 - 419
N[N BN CON N NG (4.12)
+ﬁ o2 v oy? * 922 © Ox2 +21+v) 0xdy

To find the same form as the system (4.4), let us write the residual force components

82 82 82
using the stress function f: N = 0—]; L= a—‘}; = -3 é]:
Y z roy

and replace it

in equation (4.13),
Eh
A*D = —T[w, w] + ANA?f (4.13)

And since ® = F' + \f, we find:

Eh

A’F = —T[w, w] (4.14)

The Second Equation:

To establish the second equation, let us consider an infinitesimal mid-plane element of
sides dx and dy (illustrated in Figure 4.2). Let us examine the contribution of the normal
loading, the in-plane forces and their moments in the plate equilibrium equation ; more

specifically on the chosen reference element.

TIes
QJ‘ l\/,"
res AnTres
ON.;
& I X Nx," - de --------- > N®+ 29 g
D e > ) x A
]\/ms Ox
b X
‘ . / yL BN
NFZ+—dx

fﬁ
I's A Ox
l 0.+ O?‘ dx /

~ ox ENTE

Q‘ + Y dy A‘T Py . d:]:
) ) QV

(@) (b) (c)

Figure 4.2: The contribution of the in-plane forces, normal loading and their moments on
the equilibrium of a reference element.

Before writing the equilibrium equations and since the main interest is to compute
the strip deflection, one must understand that the effect of the in-plane stresses on the
plate bending should not be neglected. w is large enough that its derivatives and their
products are of the same order as the shear forces denoted @, et @,.

Initially, the forces acting on the reference element are the in-plane forces N;*, N/ and

N, and the normal load P(z,y). Note that P can represent the body forces. Let us
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adopt the same notations as earlier: N = AN"® + N where N is the additional stress
introduced by the buckling occurrence.

From Figure 4.2(a), the equilibrium of the forces in the x-direction can be written as

> F=0 (4.15)

N. N
(N, + 63; dx)dxdy.cosﬁ/_Nxdy.cosﬁ_i_(Nmy+3@;@; da)dy.cosB — Nyydy.cosB = 0 (4.16)

— “ON,
where 5 = (N,; %) and ' = (N, + N,

ox
tions, cosf3, cos/3’ ~ 1. Hence,

dx; ). Since we are in a context of small deflec-

ON, N ONyy
ox dy

In the same manner, the equilibrium equation in the y-direction is established:

=0 (4.17)

ON,, 0N,
= 4.1
St 5 =0 (4.18)

Now, to write the equilibrium equation in the z—direction, the forces acting should be
projected on the z—axis. To simplify the projection, let us write the contribution of each
force separately.

The projection of N, on the z—axis gives

ON,
— N,dy.sinf + (N, + a—dx)dy.smﬁ' (4.19)
x
and since we are in the context of small deflections, sinf ~ § = 8_w and sinf3 ~ ' =
x
op ow 0w
dp ~ —dr = — 4+ ——du.
p+dp ﬁ—i_axx 8x+8x2x o2
Replacing this new information in (4.19), the contribution of N, is equal to Nxa—u;dmdy+
x
ON, Ow
? ——dzxd
oz oz Y
The same steps are followed to determine, N, and N,, contributions to the equilibrium
tion in the 2— direction: Nyy-0dudy + N O g
equation in the z— direction: N,,———dx —dzdy.
4 Y 0xoy Y oxr Oy Y

Finally, the equilibrium equation

Y F.=0 (4.20)

98



Chapter 4. From von Kérman Equations to Multi-scale Based buckling model

is equivalent to

0Q, 00Q, O*w O*w Pw  (ON, ONy\ Ow (ON, IN,\ ow
ox + dy PN 0x? Ny Oy? +2ny8x0y+ ox + dy ) Ox ox + dy ) Oy
(4.21)

Since the in-plane forces do not introduce moments on the element boundaries, the

sum of the moments in the x and y directions are respectively:

OM,, M, OMy, | OM,

_ =0 = 4.22
Thus, the shear forces (), and @), are expressed in terms of the moments as:
oM,, M, OM,, M,
—Q, = (=N = Y 4.23
Ay * ox @ ¢ dy * Ox (4.23)
Note that,
Pw  Pw
M,= -D|— —
(5555
Pw  w
0%w
M,, = —D(1 —
Y ( V) ﬁxay

Replacing equations (4.17), (4.18), (4.22), (4.23) et (4.24) in equation (4.21), the

following relation is established:

*w 0*w Mtw 1 0*w 0*w 0*w
2 4.25
Ozt * 0220y>? * oyt D ( ) (4.25)

P+ N,— + N,— y——
+ 0x? + Y Oy? + Y 0x0y
To retrieve the same form as the one presented in (4.4), Let us consider ® the Airy

function associated to NN:

4 4 4 2 A2 24 A2 2 2
o0*w 0*tw O*w 1(P 0°® 0w 0°® 0*w 0*® aw) (4.26)

S —2
oxt + 28x28y2 + oy* D * oy? 0x? + 0x? Oy? 0x0y 0xdy

We decide to neglect the body forces of a thin strip since we are mainly interested in the

buckling phenomenon under in-plane compressive forces: P = 0:

Nw:%@w] (4.27)

Combining (4.27) and (4.14), the von Karman system describing the buckling of a plate
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under residual stress is finalized.

(I 1
gt Fey) = gl (4.28)
D.A*w(z,y) — A[f,w] = [w,F]

4.3 Existence and non-uniqueness solution of the von

Karman equations

As mentioned earlier, the most interesting phenomenon associated to the von Kér-
méan equations is the buckling of the plate described as the appearance of wrinkling
when the loading reaches a critical value. From the mathematical point of view, this phe-
nomenon is expressed by the existence of multiple solutions of the boundary value problem
(the variational formulation). Many mathematical studies where devoted to proving the
existence and the non-uniqueness of solutions associated to this problem. We mention
in particular the work of Berger and Fife |Berger, 1967, Berger & Fife, 1996| where they
dealt not only with buckling of clamped plate but also with mixed boundary conditions
for w and F. Knightly in [Knightly, 1967, Knightly & Sather, 1970 has presented, for
a plate under direct and normal forces, an existence theorem and detailed bifurcation
solutions results of the von Karméan equations under Dirichlet conditions for both w and
F. Another outstanding work presented by [Naumann, 1974| uses a novel approach to
prove the existence theorem for the system under Free Boundary Conditions.

Our main interest is finding a solution of the von Karman system (4.28) for a buckling
plate under residual stresses with free edges. It is equivalent to finding a solution for the

following variational problem:

Find the couple (w, F) € H*(Q) x H*(Q2) such as:

. 2 L/ 2~ 1 _1/ .
Y € H*(Q), = QA Fwd) = ) Q[w,w]wdQ (a)
Vi € H?(Q), ]D./ Aw(z,y)udQ = )\/[f,w]&dQJr/[w,F]adQ (b)
Pw  Pw N . (4.29)
—+v—=0 on dN
831/2 O0x? \
a—w—i-(Q—y)a—w:O on 0f)

8%‘3 0x20y
of _or_of b o
oxr Oy Oxr Oy
where () notes the plate domain and H?(Q) is the Sobolev space defined as the set of
all functions u € L*(Q) such that for every multi-index o with |a| < 2, the weak partial

derivative D®u belongs to L?(2) as well.
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Next, the existence and non-uniqueness (or bifurcation) theorems will only be quoted. For
more details and proofs, the readers are invited to consult the articles mentioned above.
For the linearized problem (4.29 (b)), (F' = 0 since the buckling did not happen yet);
Berger and Fife in |Berger, 1967, Berger & Fife, 1996] proved that a spectrum of eigen-
values \,, exists such as:

D<M < <.+

where the smallest eigenvalue of this spectrum A, is the first bifurcation point and called
the critical value.

As for non-uniqueness theorem for the non-linear problem, they proved that:

1) For all values A < \; the system (4.29) has no nontrivial solutions i.e. the only solution
isw=F=0.

2) The only bifurcation points of the non-linear problem are the eigenvalues A, of the
linearized problem. In addition, for higher eigenvalues the bifurcation happens only
on the right of the specific bifurcation point.

This means that if a simple eigenvalue \;;+; is a bifurcation point, for all ¢ > 0,

and A € [A\;, \; + €], at least one nontrivial solution w (w # 0) exists.

4.4 Physical-Energetic formulation of the problem

Before applying the multi-scale approach proposed in [Damil & Potier-Ferry, 2006,
Damil et al., 2013, Potier-Ferry & Damil, 2010] and since equation (4.26) is derived from
a variational problem, it is appropriate to present the energetic formulation of the von
Kéarméan problem before proceeding. The stationarity energetic principle is equivalent to
the weak formulation of the problem and will definitely become handy later on.

The strain energy stored in a thin plate due to deformation is defined as:

1
U= 3 / / /(ong + oyey + 20,480y ) drdydz (4.30)

in which o' = (04, 0,,04,) is the stress tensor. Note that the strain tensor ¢ defined at

any point of the plate can be expressed in terms of the mid-surface strain tensor £”*:

— oms + 82_11} & ms _ @ + 1 a_w ’
fr T ‘ 02 fo T or 2\ 0x

0w ov 1 [0w\?

_oms JOW ms _ 0V 1 (0w 4.31
gy = &, +28y2 & g, 3 +2(8y) ( )
€ —5m5+2282w & 67”3—1 Ou @—i—a—wa—w
Ty 0x0y W 2\9y  Or Ox dy
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where (u,v,w)" is the mid-surface displacement vector. Replacing (4.31) in (4.30) and
neglecting the tangential components of the displacements u and v, the strain energy can

be expressed as the sum of the membrane strain energy U,,, and the bending strain energy
U= U,+U,
1 ms ms
5 /(ax + oyeyt + 20,eh, Jdrdydz (4.32)

1 // 0*w 0w 0w
- = e NN P il
U= 5 /// (z Ooggz T Ay T2 o—xyaxay> dadydz

Finally, integrating with respect to z, substituting the integrals z.o by there corresponding

form and using Hooke” Law, the new relations are:

1

—//EmSCEmS =1 —y2 // ms® +5m5 +2(1 —1/)5;’;5 + 2velte ms) dxdy

D Pw  *w 0w 0*w 0*w
//((ax o) 2 (W o~ (o) ))dwdy

3

12(1 — v?)
the main objective of this study is to find a buckling model applied to flat rolling problems,

(4.33)
where C is the elasticity matrix and D = is the plate bending rigidity. Since

we introduce the residual stresses ¢"* and the strip tension 7y applied in the rolling
direction (z-axis). To maintain the same notations, N = ¢"*.h and Ny = Ty.h where
h denotes the plate thickness.

The potential energy introduced by the applied residual stresses N and the strip tension

NO iSZ
1 res \7 aw ? res aw res aw aw

For equilibrium, the total potential energy functional V' = U + €2 must be stationary i.e.
0V should be equal to zero. From this point forward, it is simple to prove that 6V = 0 is
equivalent to (4.26).

We can consider now that the stationary energy principle is equivalent to the weak formu-
lation of the von Karman problem and we can proceed applying the Multi-scale method

directly on it.

4.5 From von Karman equations to the Multi-scale prob-

lem
The multi-scale method presented in [Damil & Potier-Ferry, 2006, Damil et al., 2013,
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Potier-Ferry & Damil, 2010] proposes a nonlinear membrane model describing buckling
by a new bifurcation equation deduced by combining: i) the method of Fourier series with
slowly variable coefficient (4.35) and ii) the von Karmén system for elastic isotropic plates
(4.36):

Ulx,y) = Z Upn(z,9)e™4* (4.35)

where U = (u,v,w, e, N), ¢ is the half-wavenumber and U,, =< Ue™ "™ > are the new
macroscopic unknown fields varying slowly over a single period.
Note that this form chosen in equation (4.35) means that undulations are expected to

appear in the z—direction, i.e. the rolling direction.

DA*w — div(NVw) = 0 (a)

N =C.c+ N (b)

€= % (Vu+Vu' + Vw @ Vw) (c) (4.36)
divN = 0 (d)

u=(u,v)

where u is the in-plane displacement, w is the out of plane displacement, C the elasticity
tensor, D the bending stiffness, N and ¢ are the stress and strain and N"*° is the residual

stress.

Combining the Fourier development with the microscopic system, it is transformed

into m macroscopic systems with the Fourier coefficients U,, as new unknowns.

Remark 1
The proposed multi-scale approach is a generalized method offering a rich description
for buckling problems. In this study we limited our search to buckling developed in the
rolling direction z, hence the chosen Fourier series development. To generalize even
more the description in both directions, the Fourier development should be extended

as follows:
Ulz,y) =Y Un(z,y)emaetimey (4.37)

where ¢; and ¢, are respectively the wave-numbers in the direction z and y.

The aim is to develop a simple yet capable Buckling Model. In order to build this

model, many hypotheses have to be imposed:
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Hypothesis 1 <

The Fourier series development is limited to the first order for displacements and

to the second order for the stress and strain tensors:

(u,v) = (ug, vo) + (ug, v2)e* ™ + (Ty, V)™ 24" (4.38)
w = wy + w1 + e (4.39) o

N = Ny + Noe* @ + Nye 24" (4.40)

E=¢&y+ 6262iq$ + 526—2iqa: (441)

where wy and w, are respectively the mean field and first envelope of the undu-

lations (Figure 4.3).

This specific development, specially the one used for the stresses, was chosen using the
same identification method presented in [Budiansky, 1974] . It is the minimal development
capable of describing the appearance of undulations in the x—direction (Figure 4.3), where
the new macroscopic unknowns wy and w, are sufficient to quantify the magnitude of the
waves. It is beneficial to use this minimal development since having less macroscopic

unknowns means less equations and computational time.

Figure 4.3: A pseudo-periodic undulation developed in the x—direction, described by the
mean field (in dots) and the first envelope (dashed).

Hypothesis 2

The first envelope w; is supposed to be real:

wi(x,y) = wi(z,y) (4.42)
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On the one hand, such simplification imposed in this early stage can affect the preci-
sion of the solution. On the other hand, keeping the envelope complex then taking its real
part after solving, will increase considerably the computational time. Taking w; = w;
means replacing ||wq||cos(qx + ¢) with wycos(gz) by supposing that the phase shift ¢ is

equal to zero.

Hypothesis 3 \

The first envelope w; is supposed to vary slowly in the z—direction. Thus, its

derivatives according to x can be dropped:

8w1($,y) _ 02w1(:v,y) _ a3wl($7y> _ 04w1($7y) _
or  ox>  0x3  Oxt 0 (143)

This hypothesis allows us transforming the problem to an unidimensional one i.e. all
the Fourier coefficients (in particular wy, Ny and Ny) are functions depending only of the
transverse coordinate y.

In the case of a single stress profile spread all along the plate, this hypothesis is perfectly
fit and logic. Even if the stress profiles are slightly-moderately different from one trans-
verse section to another, it is still valid and a good approximation to reality. A difficulty
may appear if shockingly different profiles coexist in the same vicinity, this simplification

then ceases to be effective.

Hypothesis 4 \

The first envelope w; is approximated by the Galerkin method:

wi(z,y) = a(z).W(y) (4.44) O

where a is the waves amplitude and W (y) is the buckling mode i.e. the deflection

shape in a transverse section.

Hypothesis 4 is a good way to prevent any coupling between different types of finite
elements once the final Buckling Model is coupled with another software (in particular

the rolling model Lam3).
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Hypothesis 5 \

The thickness h is supposed to remain constant:

h(y) = h (4.45)

In order to clarify the different steps into writing the new macroscopic systems, we begin
by expressing the Fourier coefficients ¢3 and €5 of the strain tensor € in terms of the
Fourier coefficients of the displacement vector (u,v,w).

Combining Hypotheses 1 and 3, the strain tensor Fourier coefficients ¢y and e, for the

levels m = 0 and m = 2 are:

g0 == (vao + (Viig)' + Vwo ® Vg + (Vw); ® (Vw); + (V) ® (Vw)l)

O | —

(4.46)
g2 = 5 (Vi) + (Vid)y + (V)1 @ (Vo))
where,
o= (u,v)"
1quy
(Vw)r = Vur +ige; ®wi = | dwy
dy
(V@)Q = VﬂQ + 2@(]63; (24 €L2
) qzw2 qu Own
W . ow, et 1(9_1/
Weh@ Vel = | om ) G 50 = ow (w* | @)
Jy quy ay oy
éqwl . 8w1
(Vw)1 ® (VU])1 + (Vw)1 X (Vw)1 = % (—@qwl 8_) +
oy 4
—iqui \ cwi 0
% (iqun 3_y) =2 0 % 2
oy Ay

Finally, the matrix forms of g and e, are:

8u0

1 [/ Owy
)
co=| 2, |= % %( ) (811}1)2 (4.48)

gOZy 8u0 (%0 (9w0 (9w0

8y &B o ox 8y

106



Chapter 4. From von Kérman Equations to Multi-scale Based buckling model

U 1
—2 4 2iquy — ~q*w?

- % our)?
! (%) 1 w1
_ _ ov2 L (oW1 4.4
= "2 0y+2(3y) 149
€2,y Ous N Ovs N N 1 ow,
— + —= +iquy + —iqw
By o qus 9 qui—(— y

From the above relations, the wrinkling strain €“” or what is known as the additional

strain introduced due to the appearance of buckling is deduced:

2,2
wr q2w% _aq el 5
x 2
1 w1y .
e = e | = (_8“]1) e (8_3/) e2ia® (4.50)
wr ay 2 ow
dy

Compatible with the von Karméan steps presented earlier, the tangential components of

up and uy are neglected.

Using Hypothesis 1, 2 and 3 and replacing equations (4.48) and (4.49) in 6V = 0, the

new macroscopic bifurcation equation corresponding to the level 1 is:

D /W 0%wy 9%6w, /W 825w1 0%w,
dy — Dv w owdy+
s O o / _l/g/l op oY
1/2 1/2
Ow; 00 _
2D(1 — V) /l/2 % ((;;1 dy + /l/2(]])q2 + N0>w15w1dy+
12 1 [Y? Oowy 00w
[, b + ?/_W Ny oy (.51
/2 1 l/2 ) EH /2
Ny widwidy + — N W wld — N, widwidy+
v g y "9y Oy s
2 2
Owy Odwy i Jw, ddw,
— ——dy + N, owy +w dy =0
/1/2 "y Oy qJ-i2 yQ(ay Y )

where [ is the width of the strip, NN is the strip tension, N7°* is the residual stress, N
and N, are respectively the stress Fourier coefficients for the levels m = 0 and m = 2 and
w; is the first envelope i.e. the displacement Fourier coefficient for the level m = 1.

Note that the problem is transformed into a 1D equation since wy = wq(y) i.e. %—IZI =w'.
As for the macroscopic equations derived from the behavior law, it is complicated to write
them directly from the weak formulation. So we proceed into writing it for each level using
the strong formulation.

Level 0:

The equilibrium equation gives:

107



Chapter 4. From von Karman Equations to Multi-scale Based buckling model

div(N) =0 < div(Np) = 0 < an Airy function fy(y) exists such that:

0 fo
N,, = 82y2
9" fo
Ny, = 032 =0
N, — Pho _
O 9x0y
According to Hooke’s law:
1 1 9%,
00 = Tpr [Niy — v Ny, | = Eh Oy
1 14 anO
Eyo = E_h [Nyo — UNxO] = _E_h ay2
1
Cayo = ﬁ [(1 + V)Na?yo] =0

Combining (4.48) with gy compatibility equation:

2 2 2
Oezy | Oy 28 Exyo

Oy? + 0x? Yoy =0
1oy 0%(qPwi)
Eh 0yt Oy?

1 84f0 2 811)1 2 82’(1}1
_ —9 =
Eh oyt~ ! (3y2) o dy?

Level 2:

In the same manner, the level 2 macroscopic equilibrium equation is built:
div(N) < div(Ns) + 2igNy = 0 < an Airy function f5(y) exists such that:

0*f 0 f2
_ an 282f2
Me=\Gaz), = 150

2
O*f . Ofy
Now = <5$0y)2 ]

According to Hooke’s law:

fe = g | Eh \ ay?

1 1
Eyp = E[Nw VNM] _h 4q2f2+7/

1 2 .0
Eayp = Eh [(1+ V)waz] = _E_h(l +v)igZ—
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Combining (4.49) with e, compatibility equation and neglecting the tangential compo-

nents of the displacements coefficients uy and vy (following the same steps as for the von

Kéarmén equations):

0° o ..\ o (0 .
@;@mw%§;+am)<%n—%g(5;+mﬁ<%w> 0
f2 §

ﬁ [8y (a > TAvq f2) +4q° (4q2f2+u88y";2) — 4igq ( 2(1+u)@q%7;2)]
1

2.2\ 442 _ I
3 |- ud) — 4w — i s )

1 [0, 9% fy [ (owm))? 9%,
i (g 305 ) == ((5) - m %5

Equations (4.55) and (4.59) are quite similar to the von Karman equation (4.14).

The final step is to use Galerkin approximation proposed in Hypothesis 4:

wy; = a.W & functions Iy and Fy exist such as fy = a’F, and fo= a’Fy

(4.58)

(4.59)

(4.60)

where a is the dimensionless amplitude of the waves and W (y) is the buckling mode

computed on a transverse section.

All that is left to do is replacing in the equations (4.51), (4.55) and (4.59) wy by aW, Ny

and N, by their new expressions in terms of the new Airy functions Fy and F5. The new

set of equations to solve is:

1 9*F, oW\ 2 02w
— — 9242 -
Eh 0y ¢ ((3?;) +W3y2> (a)
1 (0*'F, _ ,0%F . o [OW? PW
— — 16¢4F, | = — ) —-w b
(@48qaf+®2) ¢ (@) oz ) ©
1/2 o2 2 1/2 2 2
a_/ awaazv D/ ( 920w 61/;/5W>dy+
q —1/2 ay 1/2 y 0
1/2 1/2 ~
2D(1 —v) / oW 8(Wvdy 4 / (Dg* + No)W W dy+
—1/2 8?9 dy 1/2
e L OW d6W
NISWEW dy + — NresZ— 2" dy c
_1)2 @ Joyp Y 0y Oy (©)
2 r92F,  92F, V2 OwW 96w
a3 / ( z_ °>W6Wd +4/ Fm 2y —
[ 1/2 dy? y? Y 1/2 ’ dy Oy Y
2 9F, OW OOW
—9) T2 SW W —)d
/z/zay<8y 3y)y
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The weak formulation of equations (4.61(a)) and (4.61(b)) is presented in the next section

before presenting the discretized problem.

The problem is divided into two main parts:

— The first is solving the buckling problem where the load critical value, the mode W
and the half-waves number ¢ are to be determined. Since the waves did not form
yet, it means that no additional stresses (i.e. strain) are introduced: Ny = Ny =0
in equation (4.61(c)). Since W = 0 is a trivial solution of this equation, a loading
parameter A is introduced to insure the equation bifurcation.

N, and N are replaced by AN;* and AN;*. The problem is transformed into
an eigenvalue problem, where the loading parameter critical value \.. = Min()\;),
where ¢ is the number of the problem eigenvalues. The critical stress is computed as
NI = Aoy Min(N"**). The mode W and ¢ are the eigenvector and the half-waves
number corresponding to A... The mode W (also referred to as the deflection func-
tion) describes the form of the deflection in the transverse direction and ¢ describes

the defect sinusoidal form in the longitudinal direction.

— The second is solving the post-buckling problem where the additional stresses Ny and
Ny (i.e. Iy and F3) introduced due to buckling as well as the defect amplitude a are
computed. In this part, the mode W, the critical load and the half-waves number
q are known from the first step and fixed (not allowed to change). First, equations
(4.61(a)) and (4.61(b)) are solved to identify F, and F5. Then, the amplitude a is

computed by replacing all the previously determined components in (4.61(c)).

Remark 2
Note that the mode (W, q) determined in the buckling problem -corresponding to the
critical loading parameter \..- is transferred to the post-buckling problem. It means

that we are unable to follow the evolution of the buckling mode beyond \... Thus, we

are stuck with the same buckling mode for both problems.

4.5.1 Finite elements discretization

.F irst, the basis functions should be defined before proceeding to discretize our equa-
tions. We want to find an approximate solution g for an exact solution g on an element
containing two nodes (two degrees of freedom) y; = 0, and yo = b, i.e. n = 2. In addition,
we want the first derivative ¢’ ( i.e. the slope) to be exactly approximated as well i.e.

m = 1.
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The approximated solution is a polynomial function of a degree equal to n(m+1)—1 = 3,
thus the basis is [1 y v* 3?].
To find the four basis functions Ny, Ny, N3 and Ny, the approximated solution g is

written as the following combination:

g(y) = Ni(y)g(y1) + Na(y)g'(y1) + Ns(y)g(y2) + Nu(y)g'(12) (4.62)

The form (4.62) is replaced in the following system:

gly)=1 & gly)=1 < Ni(y) +N3y) =1

g)=y & )=y & No(y) +Ns()b+Ny(y) =y (4.63)
gy)=y> & gy)=1y* & Ny(yb®+2Ny(y)b = >

gy)=y> & gy)=1> & Ni(yb®+3Ny(y)b*> =4*

Solving the system (4.68) allows us to identify the four basis functions defined on a 1D
element of length b:

3 2 2 1

Ni(y) =1—- 50" + 59" 5 No(y) =y — 7" + 739 (@64)
3 2 1 1 :
Na(y) = 59" = 75" P Nu(y) = —70" + 550

Figure 4.4 illustrates the four basis function for a reference element using the Hermite
approximation. It is perfectly clear that N; and N3 are the partition of unity. In addition,
N, and Ny are equal to zero on both nodes; As to their derivatives, they are equal to zero

or one on the nodes.

1.0 4 N, 1.0
0.5 0.5 -
No
\ /I\

i 0.5 1.0 — 05 1.0
1.0
05 1

L E ‘N‘:l L
' 0.5 1.0 ' 55 1.0

Figure 4.4: The basis functions of the Hermite reference Finite Element of length b = 1.
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Now that the basis functions are defined, we can proceed to discretize the weak for-

mulation and write the matrix form of the problem.

4.5.2 Discretization: Buckling Problem

In the buckling problem, the buckling load and mode should be identified i.e. the
critical value, the deflection form W describing the shape in a transverse section and
the half-wave number ¢ describing defect form in the x—direction. Thus the following

equation should be solved:

E{/”@%VWMV Uz 928w 9*W V2 oW d6W
= —— ———dy—Dv wu———+———mvwr+ﬂ)1—y(/ —
q2l/ _i2 Oy Oy? 2 dy? y* y ( ) _ij2 Oy Oy
2 B 2 1 2 5
./ (DJA+N@WWWﬂy:—1/ ]WFW@W%y——E/‘ Nﬁ*ﬁﬁglzﬁ/
—1/2 —1/2 q” J—i/2 dy Oy
(4.65)

Using the Hermite approximation described above, the mode W takes the following form:
W(y) = WiNi(y) + WaNa(y) + WaN3(y) + WaNy(y) (4.66)

where N; and W, for ©+ = 1, ..,4 are respectively the four basis functions and the element

ow ow
nodal values of W and 0 Note that both the mode W and its first derivative T
Yy Yy

. . . ow
are continuous over the element and its boundary i.e. W € C' and — € C'.

Y
Over an element e, we adopt the following notations:
W1 5Wl
)
vo= | "2 |su = | O
W3 oWs
W4 5W4
1 1
&Mgﬁ+@+@+fﬁ+ﬁ—%—?@m:o (4.67)
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where k¢, kS, .., kS are the local matrices defined on each element e = [0, b] as:

b 22nTt 92
92N 02N,
k;f:JD/ eZ g
0

Q]y"' oy?
0’N O0?IN!
kS = —-D N? = °N, | d
: b”/o(eaw oy )y
kS = NoN!N,dy
0 b
k{ = D | N.N.dy (4.68)
0
b t
0N’ ON
k¢ = 2D(1 — / € °d
5 (b ) 0 ay ay
ki = — / NIN' N, dy
0
b t
ON'’ ON
k¢ = _— Nres e ed
! /o v oy oy

where N, = (N, Ny, N3, Ny)!. These local matrices can be easily computed numerically
using Gaussian quadrature rule. Then, the global system is assembled using a binding
matrix mapping the relations between the local and global positions of the variable nodes.
Note that the different loads (No, N7 and N;"es) contributions are presented respectively
by the matrices k3, kg and k7. Since W = 0 is always a solution (trivial solution), we can
already expect that the system is not defined and the global matrix is singular. That is
why the loading parameter ) is introduced to ensure bifurcation, thus finding a non-trivial

solution. The system is now transformed into a generalized eigenvalue problem:

1 A
—Ki+ Ko+ Kz + *Ky+ K5)U = (AKg+ = K7)U
(q2 1 2 3T 4 Ry 5) (AKs e 7) (4.69)
AU = ABU
. 1
where K7, K, .., K7 are the global matrices defined on 53|

The smallest positive eigenvalue is the critical buckling parameter \.. and the correspond-
ing eigenvector is its mode W. Along the way, ¢ the half-waves number is also computed

using equation (4.65).

4.5.3 Boundary conditions: Buckling Problem

We are interested mainly in using free edges boundary conditions since it is the
most realistic boundary condition for treating buckling problems during flat rolling. Nev-

ertheless other boundary conditions are equally interesting and are cited as well.
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Remark 3

wie " and W is the buckling mode such as w; = a.W.

Do not confuse w with W. w is the out of plane displacement w(x,y) = wy + w; e +

Free Edges:
83w 8311) 11
- _ 3) _ 2 2 r_ O __ bt
327/3 + (2 - )8x28y 0 & W ¢c2-v)W =0 ; fory= 55
a_w+ 82 —0 o W(Q)_ QVW_O - for _££
oy? Ox2 q - ) Y= 55
Simply supported Edges:
[ 1
w(z,y) =0 <& W(y) = ; fory = —?,?
Aw(z,y) =0 < W'(y)=0 ; fory= ~3i3
Clamped Edges:
1
w(z,y) =0 & W(y)=0 ; fory_—a,5
a’LU(.CU’y) ’ [ ]
U I _0 - f _ Ll
ay 0 & W (y) 0 ; ory = 2, 5

4.5.4 Discretization: Post-buckling Problem

I n the post-buckling problem, two sets of equations should be solved first to compute

the Airy functions Fy and F5.

amplitude a.

1 /2 1/2 1/2
o7 | FooFgdy =2 / (W™ + WW?)5Fydy = 242 / Sod Fody
—1/2 —1/2 s
1 /2 /2 A 1/2 2
_ / F2//5F2”dy+8q2/ F2/5F2/dy+ 16q / F25F2dy = —2(] f l/2 W/2
Eh [ J-2 —1/2 —1/2
1/2
= —26]2/ S25F2dy
—1/2
L
a.li=a* Lo a=0o0ra=,]=*
Ly
(4.73)

where L, and Lo are the terms between brackets in equation (4.61(c)).

Since the buckling mode W is known in this step, for the sake of clarity, the terms in W
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Once known, the last step is to identify the buckling
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and W' are replaced as follows:
(W?+WW?”) = Sy and (W? = WW”) = S,
Once again using the Hermite approximation the unknowns Fj and F; are written as:

Fo(y) = Fo,N1(y) + Fo,Na(y) + Fo,N3(y) + Fo,Na(y)

(4.74)
Fy(y) = Fo,Ni(y) + F2,No(y) + Fo,N3(y) + F2,Ny(y)

where N;, Fy, and Fy, for i = 1,..,4 are respectively the four basis functions and the
element nodal values of Fy and F5 and their derivatives.

In the same manner, the local system and matrices are computed from the integrals over

an element e = [0,b], then assembled to obtain the global system defined all over the
width of the plate [:
AUy = B
oo (4.75)
AQUQ = Bg

in which Uy and U, are the vectors formed by the nodal values of Fj and F5.
Now that the Airy functions are known, the buckling amplitude a is computed using the
third equation of (4.73).

4.5.5 Boundary conditions: Post-buckling Problem

If needed, the out-of-plane displacement w i.e. the mode W, verify the same bound-
ary conditions used in the buckling problem.

As for the Airy functions, Fy and F5 should verify the following boundary conditions:

I

Foly) = Fy(y) =0 ; fory=— (476

)

Fy(y) =Fy(y) =0 ; fory=—

DN | =~ | ~
DN | =~ | ~

These boundary conditions could be interpreted as vanishing shear forces along the edges

of the strip, i.e. the boundaries are free of stresses.

We should mention that a similar buckling model was developed by [Kpogan, 2011|
for his Master thesis.

4.6 Numerical results: Qualitative appreciation

../4 steel sheet (E = 210 GPa, v = 0.3) of length L = 3000 mm, width [ = 855 mm
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and thickness h = 0.25 mm is used throughout this section. To approach the appearance
of on line flatness defects in a rolling simulation, the steel sheet is subjected to a tension
To = 10 MPa in the z—direction or what is called the rolling direction (RD). Note that
the edges of the strip are left free from any restrictions. Two different types of defects
are investigated, linked with two specific, arbitrarily assumed residual stress profiles:
wavy edges and center buckles. In spite of the simplicity of the parabolic residual stress
profiles used here compared with a real rolling simulation, they provide a means to assess
the capacity of the present MSBM in detecting the mode and computing the defect

amplitude.

4.6.1 Wavy edges example

; he sheet is subjected to 0.% a self-balanced residual stress distribution uniform

along the rolling direction (RD):

yi2 1
o (y) = 19. (—6 ‘7‘ + 5) (4.77)

In this case, a wavy edge is expected since the stress is compressive at the edges of
the sheet (Figure 4.5(a)). This is confirmed once the deflection function describing the
deflection form in a particular transversal cut is computed. Indeed Figure 4.5(b) confirms

that the-out-of-plane displacement will occur on the edges of the strip.
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Figure 4.5: (a): the applied residual stress showing compression along the edges of the
sheet. (b): the deflection form on a transversal section showing deflection towards the
edges.
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Figure 4.6: Wavy edges under stress profile 0.%(y) = 19. | —6 ‘7
Ty = 10 MPa

The stress edge value o, corresponding to \.. = 0.68 is equal to —12.962 MPa, the
2
wavelength (1) is equal to 428.571 mm and the amplitude of the waves is 0.114 mm.

The defected sheet under both the tension and the compressive stress is presented in Fig-

ure 4.6.
The buckling strain e*” (the strain introduced due to w(z)) computed using equation

(4.50) is presented in Figure 4.7(a). The additional stress o" due to buckling is illustrated

along with a comparison of stress distribution before and after in Figure 4.7(b).
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Figure 4.7: (a): the additional strain introduced due to the strip buckling under residual
stress. (b): the additional stress introduced due to buckling along with a comparison
between the initial and relaxed stress profiles. The curves are plotted on half of the
domain according to the symmetry axis y = 0.
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4.6.2 Center buckles example

; he sheet is subjected to 0.% a self-balanced residual stress distribution uniform

along the rolling direction (RD):

TeSs y 2 1
o7 (y) = —57. [ =6 ‘7 +5 (4.78)
In this case, a buckling center is expected since the stress is compressive along the center
of the sheet (Figure 4.8(a)). The deflection function plotted in the transverse direction y
illustrated in Figure 4.8(b) confirms that the-out-of-plane displacement will occur in the

center of the strip.
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Figure 4.8: (a): the applied residual stress showing compression along the center of the
sheet. (b): the deflection form on a transversal section showing deflection towards the
center.

The stress central value o, corresponding to A, = 0.36 is equal to —11 MPa (critical
value in the center), the wavelength (2—7T) is equal to 545.45 mm and the amplitude of the
waves is 0.259 mm. !

The defected sheet under both the strip tension and the compressive stress along its center
is presented in Figure 4.9.

The buckling strain *" (the strain introduced due to w(x)) computed using equation
(4.50) is presented in Figure 4.10(a). The additional stress o%" due to the buckling strip

is illustrated along with a comparison of stress distribution before and after 4.10(b) .
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Figure 4.9: Wavy edges under stress profile o
tension Ty = 10 MPa
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Figure 4.10: (a): the additional strain introduced
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between the initial and relaxed stress profiles.
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4.6.3 Strip tension and the buckling mode/amplitude

; he same metal sheet used in the previous examples is used in this study as well. It

is subjected to a residual stress distribution exhibiting compression on the edges 0. (y) =

2 1
19 (—6 ’%’ + 5) and a tensile load in the x-direction or the rolling direction. The tension

is used as a parameter in this study. Changing the tension will affect the buckling strip
form: mode, buckling load and amplitude. The evolution of each component is followed
and assessed.

Table 4.1 summarizes the evolution of the critical stress, the wavelength and the amplitude

with an increasing tension.

Tension (MPa) | 2 4 6 8 10 12 14 16 18
Critical Stress | -3.13 | -5.7 | -8.17 | -10.58 | -12.96 | -15.31 | -17.64 | -18.79 | -20.1
(MPa)

Wavelength 750 | 600 | 500 | 461.53 | 428.57 | 400 30 0 0
(mm)

Amplitude 032 {023 | 0.17 | 0.14 0.11 0.08 0.04 0 0
()

Table 4.1: The evolution of the buckling load, defect mode and amplitude with the strip
tension.

Critical stress (MPa)
>

S

-25

Tension {MPa)

Figure 4.11: The critical stress evolution with an increasing tension.

Table 4.1 and Figure 4.11 show that the critical stress |o..| increases linearly with

an increasing tension, this is expected since the tension gives more stiffness to the strip
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to endure more compressive stress in its plane. Figure 4.12 shows that when tension
increases, the deflection function is wider in the center and is tighter and localized more
towards the edge, until reaching a certain tension value (14 MPa in this case). Once the
tension exceeds this value, the deflection function is equal to zero which means the strip
stays flat and the amplitude will most definitely be equal to zero. This is represented in
Figures 4.13. Both the amplitude and the wavelength decrease until reaching zero with
an increasing tension. Once again this is logical since tension gives stiffness to the strip
and beyond a certain value the strip is unable to buckle. This value corresponds to the
zero-amplitude, the zero-wavelength and the zero-deflection function which is equal to 16
MPa. This means that since 07° € [—19, +9.5] when the tension 7 = 16 MPa is added,
the stress interval is [—3, 4+25] and these kinds of compressive stresses are not capable of
generating waviness.

Figure 4.14 confirms that increasing tension produces tighter and smaller waves. A side
view illustrating the buckling strip under tensions of 2 MPa and 12 MPa shows smaller

wavelengths i.e. more but tighter waves in the length of the strip..

Evolution of the Deflection Function with an increasing Tension
0.8 ——Tension T=2 MPa
—&-Tension T=4 MPa
S —— Tension T=6 MPa
= —=Tension T=8 MPa
€ 08 —t—Tension T=10 MPa
= —e—Tension T=12 MPa
° —+—Tension T=14 MPa
g —Tension T=16 MPa
L
p= 0.4
e
=
Q
=
= 0,2
o
0 & — =T T T i e e e EEe———
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Figure 4.12: The effect of increasing tension on the deflection function. Half of the
deflection function is presented in the graph according to the axis of symmetry y = 0.
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Figure 4.14: A side view for the buckling plate 1) under a tension of 2 MPa, 2) under a

tension of 12 MPa

4.6.4 Compression zone and the buckling mode/amplitude

N ow that the effects of the strip tension on the on-line flatness have been studied,
a new component can be investigated which is the width of the compression zone on the
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mode and the amplitude of the defects. To examine its effects, all the other parameters are
fixed; the strip is under a tension of 5 MPa and has the same dimensions and characteristics
as the one used in section 4.6. Only the compressive zone is adaptable and it is determined
by changing the residual stress profile. That is why, the following cosine stress distribution

is used:

o (y) = —20005’"(? +5) (4.79)

in which the parameter m is the key to controlling the width of the zone under compressive
stress. As shown in Figure 4.15, the stress minimum —15 MPa and maximum 5 MPa are
the same for the five different profiles (for m = 1,2,3,4,5) and the compressive zone is
modified by changing the parameter m. The larger the parameter m is, the smaller the

width of the compressive zone. Note that these profiles do not have the same resultant.

10
14

&

o

N/ 7

—8-power=2

Stress profiles (MPa)

——power=3
——power=4
— power=5

¥ (mmj)

[k
=3

Figure 4.15: The different residual stress distributions obtained for m =1,2,3,4,5

Since the compression zone is located in the center, a wavy center is expected, if the
stresses exceed the critical value. This was already established in the previous section.
The aim is to qualify the effect of its width on the defect shape.

Table 4.2 and Figures 4.16 to 4.19 illustrate and summarize the most important effects of
changing the width of the compression zone.

Table 4.2 and Figure 4.16 show that the wider the compression zone (m smaller), the
greater the defective zone gets. In the same manner, Figure 4.17 shows that when the
compression zone is narrower, not only the defective zone gets smaller but the wavelength
does as well. This means that the number of waves increases when the defective zone is

narrower (confirmed in Figure 4.18). It seems logical that when the wavelength decreases,

124



Chapter 4. From von Kérman Equations to Multi-scale Based buckling model

the wave amplitude does the same to reach zero when the wavelength is in the vicinity
of zero. This is indeed established in Figure 4.18: the parameter m increases, the com-
pression zone width decreases; hence the wavelength decreases and the number of waves
increases and simply the waves amplitude decreases gradually to hit zero.
In addition, it is noticeable that the defective zone half-width and the wavelength are
wavelength )
————— ~ 2.5. Note that the defect zone width and the com-
Defect width ) )
compression width

ression zone width can be related also via the ratio ~
p Defect width

proportional where

m | Compressive Defective zone | Wavelength (mm) | wave number | amplitude
zone (mm) (mm) (mm)

1 | 360 180 461.538 6.5 0.146

2 1 280 160 375.00 8 0.108

2 1235 140 352.941 8.5 0.0959

4 1215 135 333.33 9 0.0856

5 | 185 120 315.789 9.5 0.0708

Table 4.2: The effect of changing the parameter m i.e. compression zone width on the
defect shape and amplitude. Dimensions given for the strip half-width (see Figures 4.15
and 4.16 )

=4=power=1
=l=power—2
=gr=power=3

\ oot
LN
A \\N

; ‘ = . =
0 50 100 150 200 250 300 350 400
y (mm)

Deflection function W(y)

Figure 4.16: The evolution of the deflection function i.e. the defect shape and the defected
zone form=1,2,3,4,5
The curves are plotted on the strip half-width according to the symmetry axis y = 0.
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Figure 4.17: Evolution of the compression zone width, the defected zone width and the
defect wavelength with the power parameter m.
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Figure 4.18: Evolution of the defect amplitude and wave number with the power parameter
m i.e. the compression zone width.

Finally, the form of the defective plates presenting center buckles are illustrated in
Figure 4.19 for m = 1 and m = 5 respectively. It is clear that the number of waves is
higher for m = 5, the defected zone is smaller and the amplitude of the undulations is

smaller.
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4.7 Numerical results

In this section, the results and capacity of the MSBM are confronted to other
available studies. The first one is the analytical study introduced in |[Fisher et al., 2001,

Fisher et al., 2003|. Tt is capable of predicting the buckling mode and load and it is a

good means to validate the first part of the MSBM.

The second one is an Abaqus simulation capable of providing both the buckling load and
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amplitude. The third is a simple buckling problem using the shell model MAN which
can also provide the buckling amplitude. The last two present the advantage to compare

the computed amplitude and thus validate the second part of our MSBM.

4.7.1 Buckling Validation via semi-analytical solutions

The same sheet used to illustrate the results in section 4.6 will be used through
this study: A steel sheet (E = 210 GPa, v = 0.3) of length L = 3000 mm, width
[ = 855 mm and thickness h = 0.25 mm. For the sake of this comparison, the same

residual stress fields as in [Fisher et al., 2001, Fisher et al., 2003| are adopted for easy

Tes res res

quantitative comparison: o.%(y) = —6‘%‘2 +% and 0,“(y) = 0,,°(y) = 0. Please
refer to section 2.3.1.2 for a better understanding on how the analytical values where
established in |Fisher et al., 2001, Fisher et al., 2003]. Strip tension is the parameter of
the study, varying from 20 to 100 MPa; a series of computations (Table 4.3) were car-
ried out i) describing on the one hand the evolution of the critical stress o.. and the
buckled wavelength [ with varying tension and ii) comparing on the other hand the
numerical values computed using the MSBM with the semi-analytical ones found in
[Fisher et al., 2001, Fisher et al., 2003].

Table 4.3 and Figure 4.20 describe how the critical stress 0., and the buckled wavelength
[ vary with tension. |o.,| increases linearly as expected, since an increased tension makes
the sheet stiffer and more resilient to in-plane compression. Moreover, the wavelength [
decreases. This means that the compressive stresses on the edge at buckling exceed Tj by

a roughly proportional value: —o.. ~ (1 + k)Ty; k ~ 0.22.

Semi-analytical Method Buckling Model MSBM

Tension Critical stress | o..+Ty | Wavelength | Critical stress | o..+7y | Wavelength
To (MPa) | 0. (MPa) [ (mm) oo (MPa) [ (mm)

20 -26.47 -6.47 383.54 -24.57 -4.57 352.94

40 -50.08 -10.08 | 298.38 -47.03 -7.03 285.71

60 -73.10 -13.10 | 244.16 -69.06 -9.06 250

80 -95.77 -15.77 | 223.82 -90.86 -10.86 | 222.22

100 -118.24 -18.24 | 206.6 -112.5 -12.5 206.89

Table 4.3: The evolution of the critical stress and wavelength with the strip tension.
Results obtained using a semi-analytical method [Fisher et al., 2001, Fisher et al., 2003|
on the left and the Finite Elements MSBM on the right.
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Figure 4.20: Stress o, and wavelength [ versus growing strip tension stress. Com-
parison between the semi-analytical values (dashed line) found in |Fisher et al., 2001,
Fisher et al., 2003| and the numerical ones (Solid line) computed in the MSBM.

Table 4.3 and Figure 4.20 prove a good agreement between the results of the present
model and the analytical results of [Fisher et al., 2001, Fisher et al., 2003].

4.7.2 Post-Buckling Validation via the shell elements model MAN

Once again, the same sheet is used to compare the post-buckling results especially
the amplitude of the defects. The sheet is doubly loaded by the strip tension Ty = 2

2 1
MPa and the residual stress profile 07.%(y) = 19. (—6 ‘% + 3
edges. The buckling problem is treated using two different models: the shell buckling
model MAN and our Finite Element MSBM. The results are presented in Figure 4.21.

Note that i) the symmetry of the solution is forced in both models MAN and MSBM i.e.

, compressive along the

l
the buckling/post-buckling problems are studied on half the domain [O, 5] and extended

using the symmetry axis y = 0.

ii) The upstream boundary conditions are different: for MAN it is clamped, whereas for
the MISBM it is left free. This causes the symmetry loss in MAN as illustrated in Figure
4.21a).
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Because in MAN, it is necessary to have the upstream boundary clamped or simply
supported to insure the existence of the solution, it comes down to comparing these two

similar yet not identical problems.
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Figure 4.21: (a) & (c) : the defected plate and its side-view obtained by the shell model
MAN

(b) & (d) : the defected plate and its side-view obtained by MSBM

(e) & (f): the deflection form plotted in a transverse section using MAN & MSBM

As expected, the defected plate presents wavy edges in both models. In addition, the
buckling form seems similar (Figure 4.21 (a) & (b) ) yet there is a slight change noticed
in (Figure 4.21 (e) & (f) ); the plate buckles into approximately 4 ~ 5 waves in 3000 mm.
When side-views are compared (Figure 4.21 (¢) & (d)), one can confirm that the computed
waves amplitudes under strip tension have the same order: for the shell model M AN the
magnitude is equal to 0.46 mm in the stabilized zone and for the finite element buckling

model it is equal to 0.4 mm.
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4.7.3 Validation via a simple Abaqus example

Let us take the simplest buckling problem of a square simply supported plate of
dimension [l x L x h] = [100mm x 100mm x lmm]. Young’s modulus E is equal to

200 GPa and Poisson’s coeflicient v is equal to 0.3.

Tes
T

o) (7+) = o2 () (54 7) e =

in which D is the plate rigidity, L, [ and h are respectively the length, the width and

The plate is subjected to an homogeneous compressive stress ¢’ equal to

the thickness of the plate. Note that this is the form of the critical stress determined by
Timoshenko i.e. A, should be equal to 1.

In Abaqus, it is impossible to enter a residual stress field, therefore this stress distribution
is used as an initial lateral loading which leads to non-uniform stress distribution in the

strip (mainly in the strip center).

Tes

¢ is multiplied

To determine the buckling load under this particular stress distribution, o
by a loading parameter A\. Using our Finite Elements buckling model, the loading pa-
rameter \.. is equal to 0.98; which gives us the critical stress o, = —72.30 MPa. The
corresponding mode is described in Figure 4.22, a cut in the transversal direction shows

the form of the out-of-plane displacement which clearly predicts a buckling center.

Buckling Mode

/ 8;
O

[en)
@

o © d
a [0)} B

Deflection Function

D O O
b ¢ &

N
~

y(mm)
Figure 4.22: The deflection shape viewed according to a transversal cut predicting a

buckling center, which means that waviness will definitely appear in the center under this
loading and these boundary conditions.
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This is totally expected since the edges are simply supported i.e. w = 0. Thus, the
plate will most definitely deflect in the center under compressive stress as confirmed in
Figure 4.22. On the other hand, a simulation using Abaqus, the critical loading was
determined equal to —71.29 M Pa (M. = 0.96). This comparison confirms the precision
of the used buckling analysis to predict the buckling mode.

Let us proceed to the post-buckling part, and compare the computed amplitudes of the
defects using both Abaqus and our buckling model MSBM. For this purpose, a series
of simulations describing the evolution of the defect amplitude with the applied load A
was carried out. Table 4.4 represents the results obtained for both Abaqus and MSBM
simulations. This comparison confirms that both models behave similarly, they detect
the same defects and the computed amplitudes are comparable. Note that the difference
of 20% for particular cases could be explained either by the simplifications in MSBM or

by the different ways used to apply the stress 07 in the respective models:

o In MSBM, it is applied as residual stresses uniform all over the strip.

¢ In Abaqus, it is applied as lateral loading which creates non-uniform stress distribution

in the strip.

Abaqus Software Buckling Model MSBM
A Aer | Ao (M Pa) | Amplitude (mm) A Aer | Ao (M Pa) | Amplitude (mm)
1.1 -78.42 0.63 1.1 -79.53 0.81
1.2 -85.55 0.91 1.2 -86.76 1.15
1.3 -92.68 1.13 1.3 -93.99 1.41
1.4 -99.80 1.31 1.4 -101.2 1.63
1.5 -106.94 1.47 1.5 -108.45 1.82
1.6 -114.06 1.62 1.6 -115.686 1.99
1.7 -121.19 1.76 1.7 -115.68 2.15
1.8 -128.32 1.88 1.8 -130.14 2.30
1.9 -135.45 2 1.9 -137.37 2.44
2 -142.58 2.13 2 -144.6 2.57

Table 4.4: The evolution of the defect amplitude with the loading parameter \. Results
obtained using Abaqus Software on the left and the Finite elements Buckling Model on
the right.

Finally, Figure 4.23 and 4.24 present respectively in MSBM and Abaqus the form of the
buckling plate under the applied loading (for A = 1.1\..) as well as a side-view to give a
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better idea of the defect amplitude.
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Figure 4.23: The defect form computed by the Buckling Model for A = 1.1\, with an
amplitude of 0.81 mm.

Figure 4.24: The defect form computed by Abaqus for A = 1.1\, with an amplitude of
0.63 mm.
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4.8 Discussions

4.8.1 Buckling criterion

Through the last two chapters, we mentioned several time the ’Buckling criterion’
terminology. It means that the stress distribution in the strip should respect a certain
critical value/profile if the stress is homogeneous/heterogeneous. Not all researchers agree
on how this criterion should be applied. Some propose that one value should be respected
globally (generally equal to zero), while others suggest that the value can be respected
locally.

For instance, Counhaye in his work [Counhaye, 2000|, defined a unique critical value
(typical Timoshenko form) for the whole strip and forced it to be respected at every point
of the strip. This is only valid for a homogeneous stress distribution contradicting what
is used in his study (a heterogeneous distribution). Abdelkhalek in his simple buckling
model, tried to do the same but, as shown in his thesis [Abdelkhalek, 2010], it was not
respected globally.

Another example is the one presented in [Abdelkhalek, 2010] using the shell buckling
model MAN. A strip with the following dimensions and characteristics -length of 500
mm, width of 100 mm, thickness of 1 mm, £ = 200 GPa and pu = 0.3 - is subjected to

the residual stress transverse profile illustrated in Figure 4.25.

4001

200+

G, (MPa)

-200

400 +

-600

0
y (mm)

Figure 4.25: Transverse residual stress profile o,.

The stress tolerated by the strip under the residual stress distribution and a strip tension
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of 150 MPa is approximately equal to —400 MPa on the edges. The defective strip before
and after strip tension release are presented in Figure 4.26. Inspecting the stress maps

post-buckling (before and after tension release), we notice that buckling did not relax the

compressive stresses uniformly all over the strip.

T (MPa)
150
100
50

-50

N
8
y (mm)

0

T T T T T
-400 -200 0 200 400 Symmetry
Rolling direction

-400 -200
x (mm) Rolling direction

X (mm)
(c) (d)
Figure 4.26: Buckling strip: (a) under strip tension 7y = 150 MPa, (b) after strip tension

release.

Stress redistribution o, due to buckling: (c) under strip tension 7, = 150 MPa, (d) after
strip tension release.

In our research, the value tolerated by the strip was determined locally: on the edge or
center depending on the compressive zone position (see Remark 2 page 72). If the critical
value is reached, waviness appears and the stress in the defective zone is relaxed to respect
locally the critical stress. Figures 4.7b) and 4.10b) confirm that though this criterion is
respected locally, it does not mean that compressive stresses are forbidden.

We cannot confirm which one is the more appropriate way to apply this concept but one

can suggest that it may be excessive to impose "no compressive stress" all over the strip.
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4.8.2 Conclusion

Combined with von Karman equations, a multi-scale approach is the basis of a buck-
ling model capable of describing strip buckling and post-buckling under residual stress. It
is capable of determining the buckling load and mode, describing the form of the defect
and quantifying it. In addition, new stress distribution due to buckling occurrence is
generated.

The buckling model was tested with different academic stress profiles illustrating both
wavy edges and center buckles. Note that, the choices and simplifications made in this
chapter enable us to predict only undulations developing in the rolling direction. The
impact of these simplifications will be discussed in the last chapter.

To assess the abilities of this buckling model, it was subjected to different studies such

as.

o The effect of changing tension on the flatness defect.

¢ The effect of the compression zone width on the form of the defect.

The buckling model gave good results describing flatness defects with very reasonable/logical
tendencies depicting their evolution with these different parameters.
In addition, the multi-scale buckling model was confronted to other studies/models avail-

able in the literature such as:

o The semi-analytic study by Fisher et al. [Fisher et al., 2001].
o The shell buckling model MAN [Abdelkhalek et al., 2008].

o The shell software Abaqus [Abaqus, 2008|.

The results were found satisfactory and showed good agreement.
Overall the buckling model behavior was found performant in academic cases, its capacity
will be tested in chapter 5 for more complex and stiffer profiles (imported from rolling

software) and in chapter 6 when implemented in the rolling software Lam3/Tec3.

4.9 Résumé en Francais

Dans ce chapitre, une approche muti-échelle a été combinée avec les équations de
von Karmén pour présenter un modéle de flambage/post-flambage des toles minces sous
contraintes résiduelles. Il est nommé MSBM. Il est capable de déterminer la charge

critique, décrire la forme du défaut ( le mode de flambage ) et quantifier 'amplitude
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des ondulations. En plus, une nouvelle distribution de contraintes est générée en post-
flambage.

MSBM a été testé en utilisant différents profils de contraintes académiques (paraboliques)
illustrant des bords et centres longs. Notez que les choix et les simplifications imposés
dans ce chapitre nous permettent de modéliser seulement des ondulations se développant
dans le sens du laminage. Les effets de ces simplications seront discutés dans le dernier
chapitre.

Pour évaluer les capacités de MSBM, différentes études ont été réalisées, telles que
les effets de la traction et de la largeur de la zone en compression sur la forme des
défauts de planéité. Le modéle a donné de bons résultats, décrivant les défauts de
forme avec des tendances trés raisonnables. MSBM a été aussi confronté a d’autres
études/modéles disponibles dans la littérature comme le modéle semi-analytique de Fisher
et al. [Fisher et al., 2001], le modéle de flambage (élément finis coques) MAN
|Abdelkhalek et al., 2008] et le logiciel Abaqus [Abaqus, 2008|. Les résultats sont en bon
accord.

En général le modéle de flambage MSBM a été trouvé performant pour les cas académiques
traités. Sa capacité sera testée dans le chapitre 5 pour des profils plus complexes importés
d’un calcul de laminage et dans le chapitre 6 une fois couplé avec le logiciel de laminage
Lam3/Tec3.
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CHAPTER 5

UNCOUPLED ROLLING-BUCKLING
MODEL

Believe in yourself! Have faith in your abilities! Without a humble but
reasonable confidence in your own powers you cannot be successful or happy.

by Norman Vincent Peale
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Chapter 5. Uncoupled Rolling-Buckling Model

Zn the previous chapter, the Multi-Scale Buckling Model (MSBM) was presented. Sev-
eral academic examples illustrating buckling strips under residual stress and strip tension
were studied and compared with powerful codes like MAN and Abaqus.

In the present one, the same Buckling Model will be explored to predict flatness defects
during real rolling operation, i.e. using complex stress profiles supplied by a rolling soft-
ware Lam3/Tec3. In other words, the buckling and rolling problems will be treated in a

decoupled manner:

1) First, a rolling simulation is accomplished using Lam3/Tec3, without taking into ac-
count buckling problems, providing residual stress distribution out of the bite zone.

Note that these profiles include as well the applied strip tension contribution.

2) These output fields of residual stresses are used as loads in the MSBM predicting the
critical load, the buckling mode and the state of the strip post-buckling including a
new repartition of stress.

Note that the imported stress profiles are extracted far from the bite exit (~ 1 m)

where they are perfectly stabilized.

Why use a decoupled approach 7

As a first attempt to predict flatness defects for real rolling operation, it seems
reasonable to study the capacity of the MSBM before any coupling. Since decoupled ap-
proaches are used in literature (specially for cases presenting minimal to no bite-buckling
interactions) this gives us an asset to compare our results to these available approaches
(like the comparison presented in chapter 4). In addition, as mentioned by Abdelkhalek in
his thesis [Abdelkhalek, 2010], simulations using coupled approaches to treat the rolling
and buckling problems (such as the one presented in chapter 5) consume more compu-
tational time; thus, the necessity to provide the industrial partners with two assets: one
standalone buckling model MSBM and one coupled rolling-buckling model Lam3/Tec3-
MSBM.

Having explained the motivation behind this study, this chapter will be divided into
two main parts. The first is dedicated to flatness defects prediction for the rolling op-
eration described in page 79. The second describes the evolution of the defect shape
while changing important parameters in rolling operations, such as friction and the work
roll bending force (WRB). Since a similar study was accomplished using the software
Lam3/Tec3-Abdelkhalek (presented in chapter 3), we take advantage to compare quali-
tatively the defect prediction offered by each one of those models.
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In this chapter, all transverse profiles are plotted only for y > 0 by symmetry. K&

5.1 On-line Flatness prediction using the decoupled ap-
proach Lam3/Tec3-MSBM

Once again the same rolling operation presented on page 79 is used. It is simulated
using the rolling software Lam3/Tec3 and the transverse residual stress profile illustrated
in Figure 5.1a) is recovered.

In the MISBM, the exiting strip is defined to have a thickness of 0.252 mm, a width of
855 mm and a length of 3000 mm. It is under a strip tension of 100 MPa and loaded by
the recovered residual stress profile. The same elastic characteristics used in the rolling
software are chosen as well: Young’s modulus F is equal to 210 GPa and Poisson’s coef-

ficient v is equal to 0.3.

For this particular profile, the loading parameter \.. is computed equal to 0.26; this
means that the strip can support —226 MPa of residual stress on the edges under 100 MPa
of strip tension . Having exceeded this threshold on the edges, Figure 5.1b) -illustrating
the deflection form of the strip per transverse section-, confirms the occurrence of a defect

on the strip edges.
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Figure 5.1: (a) The transverse residual stress profile before buckling plotted on a section
at 1 m after bite exit. (b) The transverse deflection function mapping the defect shape.

The shape of the defective strip is presented in Figure 5.2 showing wavy edges where
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the undulations are tight and very local. Note that the 3D strip is plotted using the
amplitude a, the mode W and the half-wave number ¢ as Re[a.W (y).e"*]. Thus, if the
defects amplitude does not seem homogeneous all over the strip, it is because of the coarse

meshing used to illustrate the 3D function.

o Judging by the deflection form W (Figure 5.1b) ), the depth of the defect is approxi-
mately 28 mm. It can be directly connected to the zone width under compression.
In this case, when adding the strip tension 100 MPa, the compressive zone width is

approximately 61 mm, roughly double the defect zone width.
o The wave-length is 90 mm (35 waves in this 3000 mm long strip).

o The amplitude of the defect is a = 0.2 mm.

Figure 5.2: The defective strip under a strip tension of 100 MPa and a residual stress
profile imported from a rolling operation. (u = 0.025, WRB = 480 KN)

The MSBM - even decoupled- is able to predict flatness defects for more complex
stress profiles (very large gradient near the edge) like the one imported from a real rolling
operation presented above. We now push this study forward predicting flatness defects
evolution with different actuators and parameters: friction and work roll bending. This is
identical to the study presented in chapter 3 using the rolling-buckling model Lam3/Tec3-
Abdelkhalek. The aim is to compare qualitatively the results, qualitatively because Ab-

delkhalek’s model cannot predict shapes and amplitudes.

5.2 Flatness and Friction

To study the effect of changing friction on the flatness defect of thin strips, the rolling

operation detailed in page 79 has been modeled using coefficients of friction between

142



Chapter 5. Uncoupled Rolling-Buckling Model

0.01 and 0.03. The stress profiles, corresponding to the different friction coefficients,
are imported on a transverse section from the rolling software Lam3/Tec3, (Figure 5.3).
We notice that when friction increases, the compressive stress on the edges increases as
well. It is expected since more friction means higher load, more roll bending and more
edge reduction hence more compressive residual stresses. In addition, it is clear that the
width of the compressive zone increases when friction increases. Do not forget adding the
contribution of the strip tension 100 MPa to the stress profiles. Thus, from the previous
section, it can be expected that the defects depth on the edges will be larger for higher
friction. Note that for the smallest chosen coefficient friction p = 0.01, the compressive
stress is migrated from the edge to the center. If sufficient, it can cause center buckles
off-line. However, the compression in the center does not surpass —100 MPa so when
adding the strip tension 100 MPa, no compression shall be visible i.e an on-line defect is

not expected.
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Figure 5.3: The different stress profiles corresponding to WRB= 480 KN and varying
friction. Profiles are recovered ~ 1 m downstream of the bite.

Examining Figure 5.4a), the deflection form and the profile of the computed addi-
tional strain confirm what has been discussed earlier. For the smallest friction coefficient
1= 0.01, the MSBM does not detect any defect when the strip is under 100 MPa of ten-
sion, hence the flat corresponding curve. In addition, when friction increases it is noticed

that the defect depth increases and the buckling strain increases as well. It means that it
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is expected to find higher amplitudes under higher friction.

Comparing the results with the ones found using Lam3/Tec3-Abdelkhalek, Figure 5.4b)
confirms that both models find qualitatively the same defective zone. Moreover, they
evolve in the same manner. When friction increases the defective zone is wider and the
additional strain is larger as well. It is reassuring that these two models, though based

on different assumptions, can give similar results from the defect detection point of view.
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(a): MSBM (b): Lam3/Tec3-Abdelkhalek

Figure 5.4: The additional strain computed due to buckling occurrence for different fric-
tion coefficients. The additional strains are computed using the equations presented in
pages 65 and 107.

Figures 5.5 to 5.7 complete this discussion. For g = 0.01 the strip under tension
is perfectly flat. Increasing friction leads to waviness on the edges. When friction in-
creases, the amplitude increases quasi-linearly, and simultaneously the wavelength grows
quasi-linearly. Since the Lam3/Tec3-Abdelkahelek cannot quantify the amplitude of the
defect, it is approximated using the ratio between the additional strains Ae, computed by
MSBM and Lam3/Tec3-Abdelkhalek for each friction. Its evolution is described quali-
tatively in Figure 5.6 (the red curve).

Since both models predict a flat strip under tension for p = 0.01, it means that the
critical friction value is somewhere between p = 0.01 and g = 0.02. To reduce the
interval, two new simulations are launched for 4 = 0.015 and p = 0.0185. Again for
1 = 0.015 both models give a perfectly flat strip. As for u = 0.0185 they give a very
small but not zero amplitude. These new simulations provide a smaller critical interval,
Le. 0.015 < pe < 0.0185.
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The post-buckling transverse stress profiles computed by MSBM are presented in
Figure 5.8a) and compared with the profiles computed by Lam3/Tec3-Abdelkhalek (
Figure 5.8b) ). Both models have qualitatively the same behavior. Though the stresses are
relaxed on the edges where the defects were detected, the stress is not fully redistributed
as in Lam3/Tec3-Abdelkhalek.

For = 0.01, though no defect is detected under strip tension, both models predict center

buckles once the tension is canceled.
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Figure 5.8: The post-buckling stress transverse profiles for different friction coefficients.

We suspect that this disagreement between the computed stress profiles, especially
their concavity, is due to forbidding in MSBM the relaxation of oy, by the transverse
defect appearance (as illustrated in section 2.3.2.3). In other word, it prevents finding the
good buckling mode.

This point will be inspected closely in the next chapter, where MSBM is coupled with
Lama3.

5.3 Flatness and Work Roll Bending

5.3.1 Wavy edges and Work Roll Bending

Conversely in this section, we want to study the effect of work roll bending force on
buckling. The rolling operations are modeled with a fixed friction coefficient of ;1 = 0.025
and using WRB between 350 KN and 900 KN. Once again, the corresponding stress
profiles are imported from the rolling software Lam3/Tec3 and used as residual loads
for the strip in the MSBM. They are illustrated in Figure 5.9. In the MSBM, the

strip is customized to match the exiting strip dimensions used in Lam3/Tec3 then it is
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doubly loaded by the residual stresses and 100 MPa of strip tension. Figure 5.9 shows
that increasing the WRB force increases slightly the compressive stress on the edge. In
addition, it does not affect the compression zone that much. Thus, it is expected not to

change the defective zone as well.
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Figure 5.9: The different stress profiles corresponding to the coefficient of friction pu =
0.025 and a varying WRB. Profiles are recovered at 1 m i.e. for downstream bite.
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Figure 5.10: Evolution of the defect amplitude transverse profile with varying WRB force.
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Figure 5.11: The additional strain computed due to buckling for different WRB values.

The form of the additional strains for different WRB values presented in Figure 5.11,
whether by the decoupled MSBM or the rolling-buckling model, concurs with what has
been said. Both models detect the defect developing on the edges and the buckling strain
curves behave the same way. Though the defective zone is not affected by changing WRB,

Buckling Model by NAKHOUL

===\WRB=350 KN
===WRB=480 KN

==WRB=900 KN

0 50 100 150 200 250 300 350 400 450

y(mm)

(a): MSBM

their magnitude is.

Amplitude {(mm)

0.21

0.0014
0.0012
0.001

0.0008
=

<
0.0006
0.0004

0.0002

Rolling-Buckling Model by ABDELKHALEK

——WRB=350 KN

—=—WRB=480 KN
——WRB=900 KN

1 T T T »
100 150 200 250 300
y(mm)

T
350

(b): Lam3/Tec3-Abdelkhalek

ol N

0.19 \

0.18 \

0.17

0.16

~

0.15 T T T T T T

300 350 400 450 500 550 600 650 700 750 800 850 900 950

Work roll bending force (KN)

Figure 5.12: Evolution of the defect amplitude with an increasing WRB.
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Figures 5.11 and 5.12 show that increasing the WRB force leads to smaller amplitude.

That goes side by side with decreasing wavelength, meaning more waves in strip length

(Figure 5.13). This response is logical since increasing work roll bending induces smaller

rolling force on the edges, thus smaller reduction and more resistance to flatness loss.

We notice that even a high WRB force (900 KN) is unable to correct the edge undulations.

This is normal because changing the WRB is not the perfect actuator to correct this type

The best actuator for localized wavy edge

).

can be a 6-high mill with intermediate shiftable rolls.

of defect (localized over 15 mm of the edge

Nevertheless adjusting the WRB can be used to correct the appearance of center buckles

and this will be explored in the next section.
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Figure 5.13: The defective strip under tension and residual stress for p = 0.025 and

varying WRB.
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5.3.2 Center buckles and Work Roll Bending

To study the effects of changing the work roll bending force on correcting the center
buckles, the rolling operations are modeled with a fixed friction coefficient of 4 = 0.01 and
using WRB between 480 KN and 900 KN. The corresponding stress profiles are imported
from the rolling software Lam3,/Tec3 in the stabilized zone after 1 m and used as residual
loads for the strip in the MSBM. Since in the software Lam3/Tec3 the contribution of
the strip tension Ty is already included in the stress profile, the residual stress profiles
are illustrated in Figure 5.9 by subtracting 7y. In the MSBM, the strip is customized
to match the exiting strip dimensions used in Lam3/Tec3 then it is doubly loaded by the
residual stresses and 100 MPa of strip tension. Figure 5.14 shows that the compressive
stresses are located in the center; if they are compressive enough, they may induce wavi-
ness along the strip center. Increasing the WRB force increases the compressive stress in
the center. In addition, it increases slightly the compressive zone and by that affects the
width of the defect. Note that, for W RB = 480 KN, the stresses do not exceed —100
MPa. Thus, when adding the strip tension 100 MPa, no defect is expected.
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Figure 5.14: The different stress profiles corresponding to the coefficient of friction p =
0.01 and a varying WRB. Profiles are recovered ~ 1 m downstream of the bite.

Figures 5.15 and 5.16 confirm this discussion. Increasing the WRB means more rolling
force especially in the center. This introduces more reduction and therefore more com-

pressive stress in the center. Figures 5.15 and 5.18 show that when increasing the WRB,
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the magnitude of the defects and their width get larger. For u = 0.01 and WRB= 480
KN the strip is perfectly flat, as shown by the amplitude and Ae, transverse profiles.
Figure 5.16 shows that both models MSBM and Lam3/Tec-Abdelkhalek behave in the
same way. They both detect the defect in the center and increasing the WRB introduces
more defects translated by larger buckling strain in the center. Figure 5.17 shows that the
amplitude computed using the MSBM increases with the WRB. Though Lam3/Tec3-
Abdelkhalek is unable to define the magnitude of the defects, its evolution is approximated
using the additional strain ratios. The curves confirms that both models behave qualita-
tively in the same way. In addition, both models agree that for p = 0.01 and WRB= 480
KN the strip is flat. This means that the critical bending force giving a flat strip is
480 KN < WRB,, < 700 KN.
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Figure 5.15: Evolution of the defect amplitude transverse profile with and WRB force.
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Figure 5.16: The additional strain computed due to buckling appearance for u = 0.01
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Figure 5.17: Evolution of the defect amplitude with ;= 0.01 and increasing WRB.

Figure 5.18 illustrates the strip shapes under a strip tension of 100 MPa for a fixed
friction coefficient = 0.01 and changing WRB force. Figure 5.18¢) confirms that the
strip is perfectly flat for © = 0.01 and WRB= 480 KN. Decreasing the WRB does not
seem to affect significantly the defective zone width or the wavelength, but impacts mainly

the magnitude of the defect.
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333.33 mm, 9 waves

wavelength=

)

0.01, a = 0.308 mm

(a): WRB = 900 KN, 1

315.782 mm, 10 waves

wavelength=

)

0.01, a = 0.194 mm

(b): WRB = 700 KN, p

0.01 and varying

=0 mm

a

b

0.01

WRB = 480 KN, 4

(c):

Figure 5.18: The defective strip under tension and residual stress for
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5.4 Conclusion

gven decoupled, the MSBM seems to have the same response in detecting flatness
defects as the coupled Rolling-Buckling software Lam3/Tec3-Abdelkhalek. Qualitatively,
they are comparable, whether by detecting the same defective zone or by predicting the
same evolution when changing the friction and work roll bending force.
Increasing friction induces more reduction on the edges for this particular operation, which
means more compressive residual stresses. Thus, when friction increases the defective zone

width increases, the waves and their magnitude are larger.

As for the WRB force, it can neutralize the effects of friction. Though its effects were
not obvious for the wavy edges, it was shown that it has significant impact on eliminating

center buckles. When the WRB force decreases, the waves amplitude decreases.

These studies establish that the MSBM is capable of describing more complex buck-
ling problems and can clarify the strip behavior under different conditions. By itself,
it can be considered as an asset to predict flatness defects and which actuators could be
adjusted to prevent their appearance. This fact encourages us to push further by coupling
the MSBM with the rolling model Lam3/Tec3. This will be presented in the following
chapter.

5.5 Résumé en Francais

Dans le présent chapitre la capacité du modéle de lambage MSBM a prédire des
défauts de planéité pour de vrais cas de laminage a été explorée. Les profils transversaux
de contrainte résiduelle ont été importés d’un logiciel de laminage Lam3/Tec3. Autrement
dit, le probléme est traité d’une facon découplée dans ce chapitre: la premiére étape est
de simuler un cas de laminage a froid utilisant Lam3/Tec3, fournissant des profils de con-
traintes résiduelles, et la deuxiéme est d’utiliser ces profils dans MSBM pour étudier le
flambage de la tole sous traction.

Pour étudier son comportement, le modéle de flambage a été utilisé pour prédire 1'effet
du frottement et de la force d’équilibrage sur 'apparition des défauts de planeité en ligne.
Les résultats ont été comparés a ceux obtenus par le modéle Lam3/Tec3-Abdelkhalek
(modéle de Laminage-Flambage couplé).

Méme découplé, MSBM semble avoir la méme réponse que le modéle couplé Lam3/Tec3-
Abdelkhalek: ils détectent tous les deux la méme zone défectueuse et ont qualitativement

la méme réponse a un changement du frottement et de la force d’équilibrage.
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Pour 'opération présentée dans ce chapitre, un frottement croissant induit plus de réduc-
tion aux bords ce qui 8’y traduit par des contraintes plus compressives. Ainsi, quand le
frottement augmente, la largeur des défauts, les ondulations et leur amplitude augmentent
aussi.

Quant a la force d’équilibrage, elle est utilisée pour neutraliser les effets d’une variation
du frottement. Quoique ses effets ne soient pas évidents pour les bords longs dans les con-
ditions étudiées, il est montré qu’ elle a un impact significatif éliminant les centres longs.
Une force d’équilibrage décroissante induit une diminution de ’amplitude des ondulations

(au centre).
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CHAPTER 6

COUPLED ROLLING-BUCKLING MODEL
LAM3/TEC3-MSBM

Man cannot discover new oceans unless he has the courage to lose sight of

the shore.
by André Gide
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Chapter 6. Coupled Rolling-Buckling Model Lam3/Tec3-MSBM

; he rolling software Lam3/Tec3, in its standard version, shows several limitations:

i) It is not able to describe geometrically thin cold rolled strip when flatness defects occur.

ii) The stress distribution is overestimated and is not in a good agreement with the

measurements.

In fact, the latter is the consequence of the former: since the buckling of a strip could
not be described, its effects such as the redistribution of the stress is not taken into
account. This leads to over/under-estimation of the real stress distribution.

To examine these restraints, a rolling simulation, described in page 79 has been launched
using Lam3/Tec3. A thin strip of 855 mm width and 0.355 mm thickness is rolled to an
exit thickness of 0.252 mm. The results are represented in Figure 6.1. It is clear that the
stress is overestimated (in compression) near the edges. For a thin strip, the tolerated
stress is surely not equal to —800 MPa. The critical value o, is largely exceeded, thus
the strip should buckle. Since Lam3/Tec3 is not engineered to take into account the
buckling phenomenon, it fails to represent the strip state post-buckling i.e. relax the

stress distribution.
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Figure 6.1: Comparison between the stress transverse profile o,,(y) computed by
Lam3/Tec3 and the measurements given by the flatness rolls.

The model has therefore been enriched by [Abdelkhalek et al., 2008| where a simple
buckling model was implemented completely in Lam3. It allowed Lam3/Tec3 to detect

the defective zone, compute the equivalent buckling strain and relax the post-buckling
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stress distribution to be in a good agreement with the measurements. With all these im-
provements, this model -called Lam3,/Tec3-Abdelkhalek- remains incapable of describing
the type and form of the flatness defects (see section 2.3.2.2 for more details).

A second improvement was developed by |[Abdelkhalek et al., 2009] coupling two different
models, the rolling model Lam3/Tec3 with the shell buckling model MAN. The result is a
model called Lam3/Tec3-MAN (see section 2.3.2.3 for more details) capable of detecting
the defective zones, describing and quantifying the buckling and redistributing the stress

post-buckling. This model is difficult to use since:

i) The coupling method is complex and not rigorous (transfer of the boundary conditions).

ii) The necessary steps to use this software are tricky, heavy and consume a lot of time

(it is done manually).

In this chapter, a coupled rolling-buckling model -called Lam3/Tec3-MSBM- will be
presented. The aim is to combine the advantages of both models mentioned above. First,
the coupling procedure merging the multi-scale Buckling Model (MISBM) (chapter 4)
with the rolling model Lam3/Tec3 is presented. Next, the on-line flatness prediction
using the resulting model is explored. In addition, comparison with measurements and
previous models are examined and analyzed. Finally, a discussion is presented inspecting
not only advantages but also difficulties, limitations and what can be done to improve

them in future work.

6.1 MSBM implementation in the rolling model Lam3/Tec3

The multi-scale Buckling Model (MSBM) has been implemented in Lam3/Tec3 in
a manner similar to the simple buckling model introduced by |[Abdelkhalek et al., 2011|
and summarized in section 2.3.2.2.
Figures 6.2 and 6.3 illustrate respectively the algorithm flow charts of the rolling model
Lam3 and the MSBM. For each transverse section i- treated independently from the
nearby sections- and at every Gauss integration point GG of Lam3, the buckling model is
activated, the buckling mode (W, ¢) and amplitude a are computed. Then, the additional
deformation Ae introduced by the buckling phenomenon is estimated in terms of W and
a. Next, the buckling deformation is added to the global strain (computed classically by
Lam3) on every Newton-Raphson iteration it (illustrated in Figure 6.3(a)). This modi-
fies implicitly the constitutive law and the streamline integration in a way to adjust the

post-buckling stress distribution to respect a new equilibrium state.
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Figure 6.2: General algorithm of the FEM strip rolling model Lam3/Tec3.
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Figure 6.3: General algorithms of the MSBM implemented in Lam3: (a) Algorithm of
the MSBM, (b) Algorithm describing the coupling between Lam3 and the MSBM.
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Three main objectives are expected from this coupling:

a) The flatness defects are detected, described and quantified;
b) The interaction between the bite deformation and buckling can be analyzed;

¢) The out-of-bite stress distribution is relaxed by buckling and is closer to reality than

the one computed without buckling.

Before proceeding, several points/difficulties should be clarified:

6.2 Implementation difficulties
8 ince the following form was chosen,
w(w,y) =Y wn(y)e™ (6.1)
where ¢ is the half-wave number in the z—direction, our model is unable to detect and

represent the waves developed in the y—direction which can happen often during cold

rolling -near the bite exit- (see Figure 6.4, "longitudinal folds").

Figure 6.4: Schematic view of flatness defects during strip rolling.

This can have a significant impact on the results:
i) Similar to what happens in the x-direction, if the stress o,,(y) exceeds the critical value
o, waves are formed in the y—direction i.e. o, is relaxed by an additional wrinkling
stress o, (y).
ii) The fact that o,, and oy, are not relaxed properly in an area presenting longitudinal
waves may cause convergence problems : as presented in Figure 6.5 the amplitude map

presents unreasonable values causing excessive strain values Ae, inducing convergence
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problems in Newton-Raphson algorithm. Moreover in this vicinity, o,, changes quickly
from one section to the next -resulting in disordered amplitude (Figure 6.6); thus, Hy-

pothesis 3 (page 105) is no longer valid (i.e. the envelope does not vary slowly) and the
MSBM ceases being effective.
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Figure 6.5: Chaotic amplitude mapping due to omitting waves in the y—direction -
computed as illustrated in Figure 6.3 .
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Figure 6.6: Amplitude transverse profiles on four consecutive sections sl, s2, s3 and s4.

When rolling thin strips (section 6.3), this difficulty will most definitely appear and
some measures should be taken. Two main options are available:
1) The MSBM is activated only a chosen distance after bite-exit where the stress o,
respects again Hypothesis 3 (page 105).
2) The MSBM is activated directly after bite-exit, omitting the transfer of oy,
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In this chapter, all transverse profiles are plotted only for y > 0 by symmetry.

6.3 Results: On-line Flatness prediction using Lam3/Tec3-
MSBM

Z/{ sing the coupled rolling buckling software, Lam3/Tec3-MSBM, the rolling opera-
tion described on page 79 is simulated to predict on-line flatness defects (i.e. under strip
tension) .

In this particular rolling operation, it is noted that o,, does not verify Hypothesis 3 (page
105) in the bite-exit vicinity. As discussed in the previous comment, we choose to dismiss
transferring o, in the 100 mm following the bite exit. This insures that no numerical
problem will appear during the simulation. This simplification does not go without side

effects. They will be discussed in the last section.
e Edge i

el = = = = = .

Rolling direction Symmetry

xxxxx

700

xxxxx

=720 MPa

= (b)

Figure 6.7: (a) The stress o,, map in the strip without taking into account buckling
effects. (b) zoom of the stress o,, map near the edge.
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Examining Figure 6.7, the stress map computed using the standard version of Lam3/Tec3,
indicates that the strip is under severe compression on its edges: around —700 MPa. Nor-
mally, this compression is enough to induce buckling in the strip. Thus, when taking
into account that buckling may happen, the model finds that the strip can tolerate on
its edges a critical value of —250 MPa. The gap on the edges between the actual stress

value 0,, = —700 MPa and the critical value o, = —250 MPa under a strip tension of

100 MPa must be translated into waves near the edges.

This is confirmed in Figures 6.8 to 6.10. The software detects a defective zone. It
varies from a transverse section to another since our model sweeps one section after an-
other predicting its state. For instance, Figures 6.9¢) and 6.9d) -plotted 1500 mm after
the bite exit-, give an idea of the defective zone on the edge, around 45 mm deep.
Overall, the strip under tension is presenting wavy edges of height equal to 0.35 mm
(Figure 6.10). Note that the undulations are not identical along the strip, neither by
it amplitude nor by its shape (Figure 6.8). This is expected since the strip is treated
as continuous series of sections; so that the mode and amplitude depend mainly on the

residual stresses and strip tension in each section.
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Figure 6.8: The amplitude transverse profile plotted on different sections after bite exit:

after 10 mm, 1 m and 1.5 m.
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Figure 6.10: The defected plate under strip tension showing wavy edges of approximately

0.35 mm high.
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In the defective zone, the additional buckling strain Ae,, and Ae,, -eventually trans-
formed into buckling stresses- are computed and their mapping is presented in Figures
6.9a) and 6.9b). Once computed, they are added to the global strain computed by the
standard version of Lam3/Tec3 and help relaxing the stresses to respect a new distribu-
tion after the strip buckling. Ae is computed according to the formulas recalled in Figure
6.3b) . The new stresses distributions are presented in Figure 6.11 as well as Figure 6.12.
We notice that the stress profile is relaxed to respect the edge critical value but is not
what we expected when it is compared with the measurements. The profiles present poor

agreement.

xxxxx

800

- [ . Rolling direction l symumetry

(b)

Figure 6.11: (a) The stress o,, map in the strip taking into account buckling effects. (b)
zoom of the stress o,, map near the edge.
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If we examine the stress distribution o, along streamlines, mainly where buckling hap-
pens i.e. on the edges, we notice that the stresses in compression are relaxed and balanced
by buckling (see Figures 6.13a) and 6.13b) ). The redistribution is not homogeneous all
along the streamlines since this problem is treated on each section separately and the
criterion is supposed to be respected locally where buckles appear i.e. the extreme edge.
Figure 6.13c) shows that no significant changes were noticed in the center since the
MSBM did not detect any defect there (strip center).

6.4 Results: Lam3/Tec3-MSBM vs. Lam3/Tec3-Abdelkhalek
and Lam3/Tec3-MAN

6.4.1 Lam3/Tec3-MSBM vs. Lam3/Tec3-Abdelkhalek

To recapitulate, the software Lam3/Tec3-Abdelkhalek is capable of detecting the
defective zone and relaxing the stresses due to buckling appearance. Note that, the critical
value o, is not computed by the model itself, but entered as an input datum. In addition,
the defect form and height remain undetermined, only the shortening/lengthening of the
material line is computed.

Suppose that we adopt the stress tolerated on the edge —250 MPa -computed by MSBM-
as the critical stress in Lam3/Tec3-Abdelkhalek under a strip tension of 100 MPa.

Both Lam3/Tec3-Abdelkhalek and Lam3/Tec3-MSBM detect flatness defects on the
edges of the strip (see Figure 6.14). The additional strains are not necessarily of the
same order since these models are based on different hypotheses. Ae is computed by the

buckling model of Abdelkhalek according to the formulas recalled in Figure 2.18.
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Figure 6.14: The buckling strain computed by Lam3/Tec3-Abdelkhalek and Lam3/Tec3-
MSBM plotted on transverse section. (a): near the bite exit ~ 10 mm, (b): far from
the bite exit ~ 1 m. In Lam3/Tec3-Abdelkhalek, o.. = —250 MPa has been assumed for
comparison.
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Figure 6.15: Comparison between the stress transverse profile o,,(y) computed by
Lam3/Tec3 standard version, by Lam3/Tec3-Abdelkhalek, by Lam3/Tec3-MSBM and
the measurements provided by the flatness rolls.

As for the post-buckling stresses, Figure 6.15 presents a confrontation between profiles
0.2(y) provided by the measurements and the two rolling buckling models Lam3/Tec3-
Abdelkhalek and Lam3/Tec3-MSBM. Note that both numerical profiles match well and
behave alike on the edge. In addition they show, on this particular section (far from the

bite exit), that the detected edge defects are able to relax the stresses up to the critical
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value —250 MPa. However in the center, neither numerical stress profile matches the

experimental curve.
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Figure 6.16: The additional strain Ae, map using Lam3,/Tec3-Abdelkhalek for 0., = —10
MPa and o, = —250 MPa.

In Lam3/Tec3-MSBM, no defects were detected in the strip center near the bite exit
since the MISBM cannot describe the transverse defects such as folds appearing near the
bite exit due to compressive stresses o,,(y). Normally, if transverse waves can be detected

in the bite exit, additional strains Ae, and Ae, are computed and can adjust the stress
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profiles in the center to match at least the concavity of the measurements.

To confirm that detecting folds in the strip center after bite exit is one of the main
reasons behind this mismatch, we plot the transverse stress profile using Lam3/Tec3-
Abdelkhalek with 0. = —10 MPa. The new stress profile is in a good agreement with
the measurements. A lower critical stress value allows the compressive stress o,,(y) to
be treated after bite-exit. Figure 6.16 shows that transverse folds can be detected in
the center and lead to additional strains Ae changing the concavity of the stress profile
in the center. For o, = —250 MPa no center defect is detected and the stress profile
does not match the measurements. As for o, = —10 MPa defects are detected in the
center suggesting the forming of transverse folds after bite-exit and the corresponding
post-buckling stress profile match the measurements.

This suggests that the post-buckling stresses computed using Lam3/Tec3-MSBM are not
properly redistributed due to the incapacity of MSBM to detect defect forming in the

y—direction such as transverse folds.

6.4.2 Lam3/Tec3-MSBM vs. Lam3/Tec3-MAN

The software Lam3/Tec3-M AN is not only capable of computing the critical value,
detecting the defected zone and relaxing the stresses by buckling, but also determining
the defect height and following its evolution on-line and off-line (under and after release
of strip tension).

Again using the same rolling operation, the results are confronted and analyzed below:

¢ The stress value tolerated on the edges -corresponding to A\"** ~ 0.24- computed respec-
tively by Lam3/Tec3-MSBM and Lam3/Tec3-MAN2013 under a strip tension of
100 MPa are —250 MPa and —252 MPa. This confirms that for the linear problem

both models find the same results.

¢ Figure 6.17 presents the stress profiles supplied by the measurements and the two
rolling-buckling softwares Lam3/Tec3-MAN and Lam3/Tec3-MSBM.

- For X ~ 0.24 Lam3/Tec3-MAN, similar to Lam3/Tec3-MSBM, relax the
stress on the edges to —250 MPa. The concavity in the center changes as

well, yet still far from respecting the experimental curve.

- For A" = 1, it is clear that the concavity of the stress profile provided by
Lam3/Tec3-MAN is in a good agreement with the experimental curve. The
concavity of both curves match and the stress profile is redistributed and is
equal to 38 MPa on the edge.
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Figure 6.17: Comparison between the stress transverse profile o,,(y) computed by
Lam3/Tec3 standard version, by Lam3/Tec3-MAN, by Lam3/Tec3-MSBM and the
measurements provided by the flatness rolls.

o The latter points imply that two reasons may be behind the poor agreement of the
stress profile computed by Lam3/Tec3-MSBM and the experimental results. It is
partially caused by

- the incapacity of MSBM to describe transverse waves as MAN does (see Figure
6.19) and by that cannot change the concavity of the stress profile o,,.

- fixing the mode W corresponding to .. and adopting it for every A > A... This
simplification affects the waves amplitude and by that fails to relax properly

the stress profile. It is confirmed in Figures 6.18 and 6.19.

\ Rolling

Figure 6.18: The defected plate under strip tension described using Lam3/Tec3-MSBM
obtained for A = 1.
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Figure 6.19: The defective plate under strip tension illustrated using Lam3/Tec3-
MAN2013 for A" ~ 0.24 and \™* =1

When studying the buckling of the strip using Lam3/Tec3-MAN (for this particular
rolling operation), the longitudinal folds appear first (for A" = 0.03). Then, they are

followed by the undulation generation along the edges.

Comparing the strip post-buckled state, Figures 6.18 and 6.19 confirms that both
models detect defects along the edges. The depth of the waves are more or less compa-
rable, equal to 40 mm approximately. For A" ~ 0.24 Lam3/Tec3-MAN computes an
amplitude of 0.28 mm, as for A" = 1 it is equal to 4.5 mm. Lam3/Tec3-MSBM detects
waviness of 0.35 mm height. It is rather comparable with the results of Lam3/Tec3-MAN
at A" ~ 0.24.

This indicates that blocking the same mode W for the whole post-buckling study affects
significantly the wave magnitude and by that induces poor agreement between the numer-
ical stress profile and the experimental one. It is advised to reconsider this point trying to

follow the evolution of the buckling mode beyond the bifurcation point (maybe consider
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an iterative scheme as the one used in MAN), especially if we aim to a more general
model -capable of describing the defects before and after cancellation of strip tension -.
For this same rolling operation, Counhaye in his thesis [Counhaye, 2000] measured the
wave defect: the wave depth was equal to 10 mm, the wavelength was 70 mm and the
amplitude was approximately equal to 1 mm. This certifies that the type of defect pre-
dicted by both models is the same as observed by Counhaye.

Note that, even though Lam3/Tec3-MAN is yet the most powerful model of all these
mentioned above, the magnitude of the defects amplitude is still not validated due to lack

of experimental data and literature studies treating exactly the same problem.

6.4.3 Discussions

The same rolling operation is modeled using all the above-mentioned coupled rolling

- buckling models. The computational cost is summarized in Table 6.1.

Model Computing time (CPU)
Lam3/Tec3 Topy = 4h 22 min
Lam3/Tec3-Abdelkhalek (1.2 to 1.5) xTepy
Lam3/Tec3-MAN (3 to 4) xTepy
Lam3/Tec3-MSBM (1.4) xTepy

Table 6.1: Summary of the cost in terms of computing time (CPU) for : the stan-
dard rolling model Lam3/Tec3, The simple rolling-buckling model Lam3/Tec3-Counhaye,
Lam3/Tec3-MAN the Finite element rolling model coupled with the shell element buck-
ling model MAN and Lam3,/Tec3-MSBM the rolling model Lam3/Tec3 coupled with the
multi-scale buckling model.

Compared with the non-buckling model (Lam3/Tec3), both Lam3/Tec3-Abdelkhalek
and Lam3/Tec3-MSBM mean an extra-cost of 20 to 50%, representing the time needed
to process the stress field and the price of more iterations due to the more complex strain
decomposition. By contrast, Lam3/Tec3-MAN costs 200 to 300% more, to which the
user’s manipulation time must be added. One of the reasons for the difference is the full
integration of the first two buckling models, which means that the rolling and buckling
computations are performed in one shot. On the contrary, the latter requires typically
three full Lam3/Tec3 simulations.

This observation must be balanced against the difference in performance. It must be
recalled first that in the absence of precise experimental, quantitative assessment of the
waves geometry, all that can be done is judge 1) quantitatively by the stress profile -as

measured by the flatness roll, 2) qualitatively by the likelihood of the shape of the com-
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puted waves compared with the stress profile.

Lam3/Tec3-MAN2013 is clearly the most powerful in this respect. Not only does it
compute a stress profile 0., (y) in good agreement with the measurement, but is also de-
tects the two sets of waves, longitudinal in the center at bite exit, and transversal on the
edge further down the line. The amplitude of the latter, though apparently larger than
measured by [Counhaye, 2000|, remains realistic.

Lam3/Tec3-Abdelkhalek also gives a correct o,,(y) profile, and detects the two types
of waves. Its drawback is the limited information it gives on the wave amplitude. Not
that it is completely absent: the shortening is a function of two variables which are not
computed in this model, the wavelength and the amplitude - if one chooses a wavelength,
the amplitude comes out. The reason is that the technique of Roddeman - Counhaye -
Abdelkhalek never chooses a wave shape or mode, contrary to all other models where a
mode is pre-shaped or computed - sinusoidal in one or even two directions. This geomet-
rical choice therefore has to be made afterwards if the ambiguity between wavelength and
amplitude is to be eliminated.

The choices made here for the Multi-Scale model, namely a sinusoidal development in the
x—direction only, allow only an estimate of the edge waves amplitude and wavelength.
It is different from those given by Lam3/Tec3-MAN, but compatible with what is known
from the experiments. The longitudinal waves cannot be predicted, by construction of
the model, and it turns out that this does not allow computing a good stress profile. This
by the way shows the strong interaction between the longitudinal waves formed under
oyy and the mechanical process which leads to the o,, stress relaxation by the transverse

waves.

Another important argument in favor of Lam3/Tec3-MAN is that it allows determin-
ing flatness not only on line, under strip tension, but also after strip tension release. This
is of course essential in terms of product quality. With the other two models, the state
after tension release can be more or less qualitatively guessed from the residual stress
profile relaxed after buckling, by subtracting Ty and analyzing the resulting profile, but
the non-linearity of the relaxation process, with possible mode changes, might well yield

questionable results in some cases.

Therefore, if coupled models are preferred, the choice in the present state is clearly be-
tween the most powerful Lam3/Tec3-MAN and the less costly Lam3/Tec3-Abdelkhalek,
under the reservation of the verification by experiments of the conclusions on wave ge-

ometry, and also of more tests in different rolling cases. Lam3/Tec3-MSBM lies in be-
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tween, giving quantitative results on the wave geometry which Lam3/Tec3-Abdelkhalek
can hardly suggest, but an erroneous final, residual stress state. Is the latter important in
practice? It should condition the wrinkling and twisting of the blanks cut from the strip

in the press shop, which is not a small deal.

Now the question is: in scientific terms, calculating altogether elastic-plastic strip de-
formation, roll stack elastic deformation, buckling of the free strip is a beautiful problem
of solid mechanics, accounting for all the possible couplings, feedbacks, interactions, but

is it really necessary in practice?

Abdelkhalek has not found a significant impact of buckling, although it completely
redistributes stress away from the bite, on the strain and stress fields in the bite. The
absence of this interaction suggests that a two-step, decoupled model could be sufficient to
characterize the behavior even on-line (under tension). Indeed, the two-step computation
using MAN (2013 version) gives seemingly good results, in terms of shape and of relaxed
stress profile (see Figures 2.23 and 2.24), little different from the coupled version.
Lam3/Tec3-MSBM cannot detect longitudinal folds, neither in the coupled nor in the
decoupled version. However, these particular defects do not impact product quality. On
the contrary, it does detect edge waves, although much smaller (0.2 mm amplitude) than
Lam3/Tec3-MAN (3 mm). It can therefore be said that its performance is good in the
decoupled strategy, with the advantage over Lam3/Tec3-Abdelkhalek that it attributes
an amplitude and a wavelength to the waves. It thus appears, in the decoupled version,

as a good compromise between performance and cost.

Finally, the MSBM can still be improved for a better performance. Two options are

available:

i) Choose a more general form for the solution, taking into account buckling in both

directions z and y:
w(z,y) =Y wy(z,y)e 0oy (6.2)

m
where ¢; and ¢y are respectively the half-wave number in the x—direction and
y—direction.

The Fourier coefficients are no longer dependent of a single variable x and there will
be in addition m orders for each direction x and y. The MSBM will be transformed
into 2D Finite Element Model costing more computational time. Some hypotheses
similar to the ones proposed previously in chapter 4 could be proposed to reduce

the microscopic system: simplification regarding the form of the defects and its
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derivatives (if the defect amplitude is changing more slowly in one direction than in
the other) etc. Anyway, these equations will be considerably more complex and will
consume more computational time than the ones presented for the current MSBM.
This modification could allow fold detection changing the center concavity and redis-
tributing stresses on the edges to respect hopefully the experimental measurements.

Note that these changes could affect the amplitude of the edge waviness as well.

ii) Another alternative is to preserve the same MISBM (i.e the same development) but
use it two times to detect both defects. In a first stage, the MSBM could be used
to detect defects in the y—direction. It could be studied all over the plate or in a
particular zone such as the bite-exit, where o, is highly compressive. In a second
stage, the MSBM could be used to detect waviness in the z—direction all over
the strip as before. Note that using the same MSBM to detect the folds in the
y—direction can be easily done by switching « by y and o, by o, in the microscopic
system. Of course the transverse sections should be switched as well to longitudinal
ones to keep the same foundations.
It is likely that once transverse folds are detected, the stresses in particular o, would

be relaxed and no longer cause problems as the ones faced before.

These improvements, if successful, could be used in the coupled model to simultaneously
detect the longitudinal folds, and find the correct stress profile. In the decoupled version,
it could improve the computation of the amplitude of the edge waves by treating the

interaction between the two types of waves.

6.5 Conclusion

First, the coupling of the buckling model MSBM and the rolling model Lam3/Tec3
has been presented. Then, predicting flatness defects using the resulting model Lam3/Tec3-
MSBM was explored. To analyze the results and the limitation of this model, several
comparisons were examined. With the experimental measurements as well as with other
available numerical results (Lam3/Tec3-Abdelkhalek and Lam3/Tec3-MAN), it was es-
tablished that the model Lam3/Tec3-MSBM needs to be extended. To simulate accu-
rately industrial applications such as buckling during cold rolling operations, it should
be capable of describing defects in both directions x and y as well as following the mode
evolution post-buckling. Finally, the possible improvements were explored and discussed

in the last section.
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6.6 Résumé en Francais

Dans ce chapitre le couplage entre le modéle de flambage (basé sur une méthode
multi-échelle) MSBM et le modéle de laminage Lam3/Tec3 a été présenté.
D’abord, la capacité du modeéle résultant, nommé Lam3/Tec3-MSBM, a prédire les
défauts de planéité sous traction (en ligne) a été explorée. Puis, les résultats et lim-
itations de ce modéle ont été analysés en utilisant des comparaisons avec des mesures
expérimentales et d’autres résultats numériques disponibles (Lam3/Tec3-Abdelkhalek et
Lam3/Tec3-MAN). Ces derniers ont établi que le modéle Lam3/Tec3-MSBM doit étre
enrichi pour simuler précisement des applications industrielles telles que les opérations de
laminage a froid. Cela devrait étre capable de décrire des défauts dans les deux directions
x et y aussi bien que suivre I’évolution du mode de flambage au dela du premier point de
bifurcation. Finalement, les améliorations possibles ont été explorées et discutées dans la

derniére section.
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CONCLUSIONS AND
RECOMMENDATIONGS

1 Conclusions

This work is a first attempt investigating the feasibility of the implementation of
a multi-scale based buckling model in a strip rolling software (Lam3/Tec3), where the

resulting model is capable of:

¢ Detecting and describing on-line defects geometrically i.e. under strip tension
¢ Taking into account the roll-stack deformation coupling

¢ Taking into account the bite-buckling interactions

We started from the standard version of the rolling software Lam3/Tec3, where the cou-
pling between the strip and roll stack deformation is already realized. A simulation
accomplished using Lam3/Tec3 showed that the stress transverse profiles are unrealistic
and in poor agreement with the experimental measures. As proved in previous works
[Counhaye, 2000] and [Abdelkhalek, 2010|, the strip-roll stack coupling is not enough.
Buckling must be taken into account if it occurs on-line under strip tension (manifest

defect) as is often the case for very thin strips.
To upgrade the performance of Lam3/Tec3, two improvements were introduced by
Abdelkhalek in [Abdelkhalek, 2010]:

o The first is a simple buckling model implemented completely in Lam3/Tec3. The
resulting model was called Lam3/Tec3-Abdelkhalek. It is able to detect the defective
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zone and redistribute the stress post-buckling. But it is unable to quantify the
flatness defects (their magnitude), only the shortening/lengthening of the material

lines.

o The second is coupling the 3D finite element model Lam3/Tec3 with the shell buckling
model MAN. The resulting model -called Lam3/Tec3-MAN- is able of detecting
the defective zone, quantifying the waviness and relaxing the stresses due to buck-
ling. Due to two different formulations (3D vs. shell FE) the coupling was done

manually. As a result, the use of this model is tricky and costly.

In the present Ph.D. work, the aim was to find a buckling model simple enough to be im-
plemented completely in Lam3/Tec3 yet rich enough to be able to describe and quantify
also the strip buckled shape.

After an overview of the origin of flatness defects in cold rolling (Chapter 1 ), the lit-
erature was scanned to find a potential model corresponding to our needs (Chapter 2).
The multi-scale approach proposed in [Damil & Potier-Ferry, 2006 was considered a good
candidate. Combined with von Karman’s equations, the multi-scale approach applied on
predicting on-line flatness defects during rolling processes was presented in Chapter 4.
Several simplifications were imposed such as supposing that the waves will only appear
in the x—direction (rolling direction). This allows transforming the problem into a 1D
problem browsing the strip transverse section by transverse section.

In the same chapter, the capacity of the multi-scale buckling model called MSBM
was tested using academic examples (parabolic stress profiles) then confronted to other
available buckling studies such as MAN, Abaqus and the analytic study presented by
[Fisher et al., 2001]. The results were found satisfactory.

Chapter 5, explored the capacity of the decoupled MSBM applied on real rolling oper-
ations i.e. with complex stress profiles imported from the rolling software Lam3/Tec3.
Different studies tested the behavior of the MSBM with changing parameters such as
friction and work roll bending. The decoupled model gave good results -describing the
flatness defects- with very reasonable tendencies -evolution of the defect with friction and
the WRB force.

The coupling of the MSBM with Lam/Tec3 (Chapter 6) has met several difficulties due
to the rapidly varying stress o, just after bite exit. Since it is supposed that waves will
only develop in the rolling direction, the MISBM is unable to detect defects in the trans-
verse direction. Not redistributing the stresses o, has caused numerical instabilities after

bite exit.
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2 Recommendations

I n summary, the future work should be directed to:

<

Enriching the current MSBM to be capable of :

- describing waviness in all directions,

- following the evolution of the buckling mode beyond the first bifurcation point
Ao 1.e. similar to the shell model M AN.

<&

Coupling the enriched buckling model in Lam3/Tec3 and validate the results by con-

frontation with the experimental measurements:

- the Meplaca device and/or the laser measurement instruments for manifest de-

fects,

- the flatness roll for latent defects.

<

Revisit the bite-buckling interaction study using the upgraded multi-scale buckling

model.

<

Repeat the same studies, presented for the decoupled approach in chapter 5, using
instead the coupled approach Lam3/Tec3-MSBM. The effects of friction and the
work roll bending force on the strip flatness established for both approaches should

be confronted.

<

Take into account the thermal effects in Lam3/Tec3-MSBM and confirm if they are

insignificant as supposed in this study.

Another important point, that remains an open debate, is whether the rolling-buckling
problem should be treated in the context of a coupled approach or not.

The results presented by Abdelkhalek in [Abdelkhalek, 2010], for the treated rolling op-
erations, suggest that the bite and post-bite states are nearly decoupled. Thus, it favors
the use of decoupled approaches that are widely spread in the literature.

Future works should investigate, via numerical and experimental means, the truth behind
this suggestion. If it is the case, one must consider seriously treating the problem in a
decoupled manner. It simplifies considerably the problem and allows the use of all the
available techniques from the simplest to the most complicated ones, avoiding all sorts of

compatibility restrictions with the software to be coupled with.
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APPENDIX A

A.I Roll crown

The crown of the roll C, is defined as the difference between its center diameter D,

and its edge diameter D,:
C.=D.— D, (A.1)

The curvature of the roll affects the way the roll interacts with the strip. For the ideal
flat strip, both the shape of the strip and the roll should match perfectly. Figure A.1

illustrates rolls presenting negative, positive and neutral crown.

_'“':sitive Crow/'
Cr>0

Figure A.1: The different types of roll crown

A.Il Strip crown

At the exit of a hot roll mill, a strip can present a non-uniform thickness along its width.
H. denotes the thickness of the strip along its vertical centerline and H, its thickness along

the edges. A choice has been made to define a third value called feather thickness H;
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measured on a feather slightly distant from the edge where the measurement are judged
reliable. Similar to the rolls, the strip profile is also measured by crown. Equation 1.4

defines the strip crown C:
Cs=H.— Hy (A.2)

as the difference in thickness between the center of the strip H, and the feather Hy .

Figure A.2 shows the different strip crown types.

Figure A.2: The different types of strip crown.
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B.I Lam3

Lam3, the rolling model devoted to rolling thin strips uses a quasi-Fulerian formula-
tion. The equilibrium equation and the Elastic-visco-plastic behavior law are presented
respectively in equations ((B.1)), ((B.2)) and ((B.3)).

o(V) : D*dQ— /

For every V*,/
09,

TtV*dS—/ an.nV*dS—/ T"™PV*dS =0 (B.1)
Q 09 o0y

p = —xtr(D)
Plastic formulation : d— S_J 3_¢ siféeRY or (B.2)
2u - 200(E,¢) ’
3
\ \/58 15 =09(€,8)
p = —xtr(D)
Elastic formulation : (B.3)
-
d= 2 iféeR™
24

We recall that Lam3/Tec3 uses a structured meshing formed by hexahedric elements.
The mesh nodes form streamlines and are updated to conserve the streamlines properties.

Thus the nodes position x = (z,y, z) respect always equations (B.4), where V' is the speed
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field, solution of equation ((B.1)):

T (x
yk+1=yk+/ ol )dw

o Velo) (B.4)
Tp+1 ‘/z T
Zk+1:2k+/zk Vmﬁxidx

where k and k+ 1 are the indices of two consecutive nodes belonging to the same stream-
line.

This equation ((B.4)) is iteratively solved with the system ( (B.1))-((B.3)) to improve the
computing domain shape approximation. Between two iterations are also computed the
elastic roll stack deformation ( if activated - see section B.II) and the rolls/strip temper-

atures (if the thermal coupling is activated).

Since the used formulation is stationary, the time step integration is replaced by a
space step (where the speed/space ratio replace the time step). To solve the elasto-
plastic and differential equations, the time step represents the time needed to pass from a
Gauss integration point to the next one (on the same streamline). This fictive time step
depends from the Gauss point positions and this scheme is called GLHTS (Generalized

Large Heterogeneous Time-Step).

B.II Tec3

Tec3 is a stand-alone model containing several features:

o A steady/unsteady thermal model
¢ A work roll thermal crown estimation model
o A work roll and strip meshing model

o A roll stack deformation model with a coupling option with Lam3

Tec3 uses the strip stress distribution computed by Lam3 to determine the strip-WR

contact pressure as:

(B.5)

Op = 0.N,

where n, is the orthonormal vector on the strip-WR. contact surface.
The stress o,, is used for the 3D elastic stack deformation modules where the roll bend-

ing/flattening are described using Timoshenko beam theory and Boussinesq model. The
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contact between the rolls (work and backup rolls) including the 'Roll Kiss’ phenomenon

is taken into account using the 3D Hertzian contact model.

B.III Shell element description used by MAN

The basis used within the M AN formulation is simple; it rests on the classic theories
of plates and shells.
The position of any point of the deformed geometry -described in Figure B.1- is located

on the initial configuration by a vector x expressed as follows:
$(91,92793) = 7“(91,02) —1—93@3(91,92) (BG)

where 7 is a vector defining the position of the mid-surface, (6, 6s,03) indicate the con-
vective curvilinear coordinates and a3 is the normal vector defined on this point.

Supposing that the displacement in the thickness direction is linear, it can be defined as:

Initial configuration Deformed configuration

T

Figure B.1: Geometric and kinematic description of the shell element used by M AN.

5(91,92,93) = 6(91,92) +93Cd((91,92) (B?)

where £ and w are respectively the displacement defined on a mid-surface point and the
variation between the initial normal vector and the deformed normal vector. Now, the

vector T describing the deformed configuration can be defined as:

T = (7" + f) + 93(&3 —|—CU) =7+ 936_13 (BS)
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From equations ((B.7)) and ((B.8)), the components of the contravariant Green-Lagrange

strain tensor v¢ can be deduced as follows:
V5 = auj + 03855 + (05)° Qs (B.9)

Or 0%
80, >~ 06,

a3 =
@i = Ti; Q; =T

(didj — aiaj)

1
Oéij:§

1
Bij = §(a3,i@j + a3 ja; + az;a; + az ja;)

1
where Bis = 5(51372'@3 + asa3)

BZ’)BIO

1,
Qij = §(a3,ia3,j - a3,z‘a3,j)

QiSZO

Q33:0

The term f33 is equal to zero due to the the linearity hypothesis of the displacement
vector in the thickness direction. This can generate locking problems in some cases. To
avoid this kind of problem, Buchter et al. [Buchter et al., 1994] demonstrate that 755 must
be at least linear in the thickness; meaning that 33 has to be at least a non-zero constant
in the thickness direction. Therefore, an additional strain called the non-compatible or
enhanced strain 7 is introduce into the formulation. By means of the concept Enhanced
Assumed Strain (EAS) proposed in [Simo & Rifai, 1990]; this additional strain must be
orthogonal to the stress field and independent of the displacement vector.

This deformation represents the linear variation of 4, in the thickness and hence should

verify:

(B.10)
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Méthode multi-échelle pour la modélisation du flambage des téles

minces sous contraintes résiduelles — Application au laminage a froid

RESUME La modélisation des défauts de planéité apparaissant en ligne en laminage a froid des tdles
minces est abordée comme un probléeme de flambage de téles minces sous contraintes résiduelles.
Celles-ci sont les contraintes engendrées au-del de I'emprise par le laminage lui-méme. Pour cela,
un modéle de flambage et post-flambage de téle (forme, amplitude, contraintes) fondé sur la méthode
multi-échelle de Damil et Potier-Ferry, et nommé MSBM pour Multi-Scale Based Method, a été
développé. En entrée, on y introduit une carte de contraintes post-emprise venant d’'un calcul de
laminage. Les hypothéses simplificatrices du modéle de flambement permettent de ramener sa
r solution un ensemble de probl mes | ments finis 1D, mais de ce fait restreignent I'analyse aux
défauts de type bord long ou centre long. Dans sa version découplée, ce modeéle a été comparé avec
succ s des r sultats de la litt rature. Il permet d’effectuer des tudes param triques d’int r t
pratique, comme linfluence du frottement ou de la force de contre-flexion des cylindres sur I' tat de
contrainte et la géométrie de la téle.

Dans un second temps, ce modéle est introduit comme modéle de flambage intégré dans le logiciel
éléments finis de laminage Lam3/Tec3. Comme dans le modéle précédent implémenté par
Abdelkhalek en 2010, MSBM calcule un champ de déformation lié spécifiquement aux déplacements
hors-plan caractérisant le flambage, champ de déformation qui est ajouté a la décomposition élastique
— plastique et réactualisé a chaque itération du calcul éléments finis. Des comparaisons ont été
effectuées avec les deux modéles couplés précédemment implantés par Abdelkhalek. Elles montrent
les insuffisances du présent modéle de flambage, unidirectionnel, qui ne permet pas de traiter toutes
ensemble les diverses instabilit s, d’orientations diff rentes, qui ont lieu apr s la sortie d’emprise et se
r v lent fortement coupl es entre elles. Des pistes d’am lioration sont propos es en cons quence.

Mots clés : Laminage a froid, Téle mince, Flambage, Post-flambage, Contraintes résiduelles,
Méthode éléments finis, Méthode multi-échelle

Multi-scale method for modelling thin sheet buckling under residual stress
in the context of cold strip rolling

ABSTRACT : Modelling of on line manifest flatness defects in thin strip cold rolling is addressed as a
problem of buckling under residual stresses. The latter are stresses built beyond the roll bite by the
rolling process itself. To this aim, a buckling / post buckling model has been developed, giving strip
shape, amplitude and stresses, based on Damil and Potier-Ferry’'s method and hereafter named
MSBM like Multi-Scale Based Method. Its input is a post-bite stress map computed by a rolling model.
Simplifications of the buckling model make it amenable to a series of 1D FEM solutions, but restrict its
application to simple flatness defects such as wavy edges or wavy centre. In a decoupled version, it
has been successfully compared with literature results. It allows parametric studies of practical
interest, such as the influence of friction or work roll bending force on post-buckled strip shape and
stress.

In a second stage, this model is implemented as the internal buckling model in the FEM software
Lam3/Tec3. As the previous one, implemented by Abdelkhalek in 2010, MSBM computes a strain field
strictly due to the out-of-plane displacement which characterizes buckling. This strain field is
introduced into the elastic — plastic decomposition and updated at each iteration of the finite element
computation. Comparisons have been performed with the two models previously coupled to
Lam3/Tec3 by Abdelkhalek. They show the limits of the present unidirectional buckling model, which
cannot deal with all instabilities together, which have different orientations and take place after roll bite
exit, which furthermore prove to be strongly interacting. Ideas for future generalization of the coupled
model are proposed accordingly.

Keywords : Cold rolling, Thin strip, Buckling, Post-buckling, Residual stress, Finite element method,
Multi-scale method
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